Towards the MaSHReC Manufacturing System

under Real-Time Constraints

A Contribution to the Application of Real-Time System Advances to
Production Control Systems

Dissertation

A thesis submitted to the
Department of Mathematics and Computer Science
of the
Paderborn University
in partial fulfillment of the requirements for the
degree of Dr. rer. nat.

by

Dania Adnan El-Kebbe

Paderborn
April 2002

11

Supervisors:
1. Prof. Dr. rer. nat. Franz-Joseph Rammig, University of Paderborn

2. Prof. Dr.-Ing. habil. Wilhelm Dangelmaier, University of Paderborn

111

%
"The

time will come
when diligent re-
search over long periods
will bring to light things which
now lie hidden... And so this knowl-
edge will be wunfolded only through long
successive ages. There will come
a time when our descendants
will be amazed that we did
not know things that
are so plain to
them.”

&

- Seneca, Natural Questions, Book 7, first century .

v

Acknowledgments

This work was supported by a scholarship from the graduate college ”Par-
allel Computer Networks in the Production Technique”, of Heinz-Nixdorf
Institute (HNI), an interdisciplinary center of research and technology of
the University of Paderborn, Germany.

Without the support of many people, this work would not have been possi-
ble. T am greatful to them all, not just for their technical support, but more
importantly, for the experiences I shared with them.

First of all, I want to express my gratitude to Prof. Dr. Franz-Joseph Ram-
mig and Prof. habil. Dr. Wilhelm Dangelmaier for supervising and vice-
supervising this work respectively. From them, I learned, through many
discussions, how to conduct research. I sincerely thank Prof. Rammig for
the helpful advices and direction he has given me, for his support and con-
stant guidance during this work.

Writing this thesis would not have been possible without the support of ad-
ditional wonderful people. At the top of the list have to be my dear husband
(Walid) and my lovely children (Ali and Roufayda). Walid always has a ”go-
getter” attitude about difficult tasks, which has influenced me. He urged to
go when my patience ran short and confidence low. I have invested a lot of
my free time writing this thesis. My family have been most understanding
and encouraged me at times when they would have preferred we were doing
other things together.

I am indebted to my colleagues for the nice environment we have in the
work. Thanks to Christoph Bodba and Mohamed Hamadi for the many dis-
cussions we had. I am much obliged to Carsten Bke and Dr. Prasad for their
detailed comments and for correcting a previous version of this thesis. I owe
my sincere thanks to Dr. Ibrahim Kibbi from the American University of
Beirut for the many extensive discussions we had during my stay in Beirut.
Thank you also for Nathalie Naamai for correcting an earlier version of this
thesis.

The closing but most important appreciations go to my parents. Without
their continuous support and encouragement in my education, I would not
have been able to achieve this endeavour.

VI

Contents

Aknowledgments

Contents

List of Figures

1 Introduction

1.1
1.2
1.3
14

1.5
1.6
1.7
1.8

Motivation
Manufacturing Systems
Real-Time Systems
Basic Definitions
1.4.1 What is a Real-Time System?

Organization and Special Features
Relevant Publications

Bibliography oL

2 The MaSHReC Architecture

2.1
2.2
2.3
2.4
2.5

State-of-the-Art
The MaSHReC Architecture
Motivations for the Use of the Holonic Approach
Contributions of the Chapter
Hypotheses Evaluation

Bibliography oL

3 The MaSHReC Design Methodology

3.1

Requirements for Modeling Real-Time Systems .

VII

XI

17
18
19
20
22
22
25

27

CONTENTS CONTENTS

3.1.1 Infrastructure modeling requirements. 28
3.1.2 Behaviour modeling requirements 28
3.1.3 Structure modeling requirements 28
3.2 A Design Model for MaSHReC 29
3.2.1 Modeling the infrastructure of MaSHReC 29
3.2.2 Modeling the real-time behaviour of MaSHReC 30
3.2.3 Object interaction modeling 32
3.2.4 Object interaction modeling using collaboration dia-
raIlS . . ¢ v v e e e e e e e e e 33
3.3 Contributions of the Chapter 40
3.4 Hypotheses Evaluation 40
Bibliography 41
4 A Local Scheduling Algorithm for MaSHReC 43
4.1 Taxonomy of Scheduling 44
4.2 Literature Survey 44
4.3 From RT Operating Systems to RT Manufacturing 45
4.4 System Characteristics 46
4.5 Computational Model for Preemptive Multitasking in Manu-
facturing Sytems 48
4.6 An Extended Schedulability Test for EDF 50
4.7 Contributions of the Chapter 52
4.8 Hypotheses Evaluation 52
Bibliography Lo 95
5 A Distributed Scheduling Algorithm for MaSHReC 59
5.1 Traditional Scheduling Theory vs RT Scheduling Theory . . . 60
5.2 Related Work 60
5.3 The Structure and Behaviour of the Cell Coordinator Holon . 63
5.3.1 Bidder and local scheduler 64
5.3.2 Thedispatcher 64
5.4 The Data Structure of the Cell Coordinator Holon 65
5.4.1 The system part table 65
542 Surplus 65
5.4.3 The guarantee routine 66
5.4.4 Considerations of time overheads in scheduling 66
5.5 Distributed Part Scheduling 67
5.5.1 The focused addressing scheme 67
5.5.2 The bidding scheme 68

VIII

CONTENTS CONTENTS

5.5.3 Requestforbids 68
5.5.4 Bidding in responseto RFBs 70
5.5.5 Bidprocessing L. 72
5.5.6 Responsetopartaward 73
5.6 Estimation Techniques 73
56.1 EST(Bidwait) 74
56.2 EST(LSwait), 74
5.6.3 EST(Response_time for REBs) 74

5.6.4 EST(Production_time_local between ART _and_D) and
EST(Production_time_bid_between ART and D) ... 75
5.6.5 EST(Part_processing_time_ratio) 7
5.7 Prototype Simulation. oL Lo 77
5.8 Performance Evaluation 78
5.9 Contributions of the Chapter 84
5.10 Hypotheses Evaluation 84
Bibliography L L 85
6 Predictable Monoprocessor Scheduling 93
6.1 Predicatble Aperiodic Scheduling 94
6.2 State-of-the-Art 95
6.3 Server Algorithms Evaluation 95
6.4 Assumptions and Terminology 100
6.5 The Total Bandwidth Server Algorithm 101
6.5.1 The fisrt version of the Total Bandwidth Server 101

6.5.2 Extension of the Total Bandwidth Server: the Robust
Total Bandwidth algorithm 101

6.6 Adapting the TBS algorithm to the Monoprocessor Schedul-
ing of a Production Stage 102

6.7 Adding Changeover Time Costs to TBS with Resource Re-
claiming L L 102
6.8 Schedulability Analysis 103
6.9 Contributions of the Chapter 107
6.10 Hypotheses Evaluation 107
Bibliography L L 109
7 Predictable Multiprocessor Scheduling 121
7.1 Taxonomy of Multiprocessor Platforms 122
7.2 State-of-the-Art L. 122
7.3 The On-line Parallel Model 124

IX

CONTENTS CONTENTS

7.4 Total Bandwidth Server on Uniform Multiprocessors 127
7.5 Schedulability Analysis of Hybrid Task Systems on Uniform
Multiprocessors oL o e 131
7.6 Practical Conclusions 135
7.7 Performance Evaluation 135
7.8 Contributions of the Chapter 139
7.9 Hypotheses Evaluation 139
Bibliography Lo 141
8 Conclusions and Outlook 149
81 Summary 150
8.1.1 Chapter 1 ”Introduction” 150
8.1.2 Chapter 2 ”The MaSHReC Architecture” 150
8.1.3 Chapter 3 ”The MaSHReC Design Model” 150

8.1.4 Chapter 4 ” A Local Scheduling Algorithm for MaSHReC” 150
8.1.5 Chapter 5 ”A Distributed Scheduling Algorithm for
MaSHReC” e 151
8.1.6 Chapter 6 ”Predictable Monoprocessor Scheduling” . 151
8.1.7 Chapter 7 ”Predictable Multiprocessor Scheduling” . . 151

8.2 Achievements of the Thesis 152
8.3 Suggestions for Future Research and Development 153
Bibliography 157

List of Figures

1.1

1.2

1.3
2.1

3.1
3.2
3.3
3.4
3.5
3.6

3.7

3.8

3.9

3.10

4.1
4.2

4.3
4.4

Workload considerations in a traditional production planning

and control system, 4
Workload considerations in a production planning and control

system underlying real-time constraints 5
Structure of the thesis 10
The MaSHReC architecture 20
The class diagram of the MaSHReC architecture 31
The state machine diagram of the PPS Manager Holon 32
The state machine diagram of the Machine Holon 33
The state machine diagram of the Cell Coordinator Holon . . 34

The sequence diagram involved in initiating aperiodic orders. 35
The sequence diagram involved in initiating and producing

pre-planned parts L Lo 36
The sequence diagram involved at the occurence of a machine
trouble L 37
The collaboration diagram involved in initiating and produc-
ing pre-planned parts.o Lo 38
The collaboration diagram involved in initiating aperiodic or-
ders 39
The collaboration diagram involved at the occurence of a ma-
chine trouble o 39
Taxonomy of scheduling 45
The different perspectives of the scheduling problem in HMS
and the different approaches to solveit 46

Example of an architecture for the on-line manufacturing system 47
Part characteritics specified by the programmer of the machine 49

LIST OF FIGURES

LIST OF FIGURES

5.1
5.2

5.3
5.4
9.5
5.6

5.7

5.8

6.1
6.2
6.3

7.1
7.2
7.3

74
7.5

Real-time distributed algorithms review
Tllustration example of the estimation technique for local pro-
duction time between ART and D
Prototype simulation 00
Changeover time versus production time
Performance evaluation of periodic tasks
Performance evaluation of periodic and aperiodic tasks with
an aperiodic task utilization of 23,8%
Performance evaluation of periodic and aperiodic tasks with
an aperiodic task utilization of 41,2,8%
Performance evaluation of periodic and aperiodic tasks with
an aperiodic task utilization of 52,4%

Real-time uniprocessor algorithms evaluation
Real-time uniprocessor algorithms evaluation (continued)
Evaluation summary of dynamic priority server

Real-time multiprocessor algorithms evaluation
Changeover time versus production time
Performance evaluation of aperiodic tasks scheduled with TBS

upon a uniform multiprocessor platform
Machine capacities variation of 3-machines platforms
Periodic utilization versus aperiodic server utilization upon

3-machines platformso Lo

XII

Chapter 1

Introduction

&

” Almost
all computer
systems of the fu-
ture will utilize real-time
scientific princi-
ples and tech-
nology.”

%
John. A. Stankovic

A main object of this chapter is to present the basic hypotheses con-
cluded from the different observations in several fields of Real-Time
Systems and Production Planning and Control. The developed hy-
potheses structure the overview of the thesis. The evaluation of these
hypotheses is the subject of the following seven chapters.

Introduction

1.1 Motivation

From its title, it is obvious that this dissertation is about Real-Time Systems
(RTS) and Production Planning and Control Systems (PPCS). Rather than
pausing here to define both systems precisely, which will be done in section
1.4, the motivation of this thesis is first presented.

My involvement in the research fields RTS and PPCS - specifically the de-
sign of real-time systems, real-time modeling techniques, object-oriented de-
sign, real-time operating systems, real-time scheduling, schedulability analy-
sis of real-time systems, production planning and control, and holonic man-
ufacturing systems (HMS) - influenced this thesis. For this reason, the
aspects of these fields, which are relevant for the motivation of the thesis,
are considered in the following sections.

1.2 Manufacturing Systems

Since the industrial revolution, some 200 years ago, mathematicians, engi-
neers, scientists and production managers have been trying to develop effi-
cient factory scheduling and control procedures. In general, mathematicians
and operation researchers have tried to solve the problem optimally, and
have discovered that optimal analysis is very difficult. On the other hand,
production managers and production engineers have tried to use heuristic
procedures to order and organize production flow. Unfortunately, the results
from these methodologies seem to be dependent on manufacturing system
details and no general policies have been developed. The validation of these
analyses has also been very difficult.

The advent of Numerical Control and Flexible Manufacturing Systems
(FMS), including Holonic Manufacturing Systems (HMS), highlighted the
past decade. Rapid static and hierarchical manufacturing systems have
given way to systems that are more adaptable to rapid changes. Distributed
control of various entities has taken place of centralized control. Thus, an
effective coordination has been one key challenge for this generation of man-
ufacturing systems. In a FMS, the ability to effectively schedule machines
automatically has been highlighted. The system controller is responsible for
scheduling decisions. However, selecting the proper scheduling rules in flex-
ible automated systems is as difficult as it is in conventional manufacturing
systems.

As more industries try to implement FMS, effective production control of
these systems is needed to enable successful performance and safe operations.

Introduction

Many control decisions in a manufacturing system are made in real-time,
due to the dynamic nature of the environment. The manufacturing system
should provide means to cope with various unexpected on-line requests in
the presence of off-line preplanned requests.

To cope with various unexpected events in production planning and con-
trol, production engineers adopt a rescheduling policy (Nishi et al. 2000).
Such rescheduling policies yields to the following drawbacks:

1. Rescheduling policies are feasible for small-sized and simple manufac-
turing systems. As manufacturing systems grow in size and complex-
ity, a rescheduling policy becomes impracticable.

2. Additionally, no rescheduling policy is made on-line, in the sense that
rescheduling policies are unfortunately executed at the end of a pro-
duction shift.

3. Furthermore, no prediction can be made concerning unexpected arriv-
ing requests.

As an illustration, see Figure 1.1. It shows a manufacturing system con-
sisting of four production stages (Broaching, Machining, Galvanic, and As-
sembly) designed according to the MFERT-model presented by Schneider
(1996). The figure indicates a production stage to show that only pre-
planned tasks are schedulable using a production planning tool like OOPUS-
DPS! upon a parallel uniform platform?.

1.3 Real-Time Systems

As computer technologies advance, research activities and applications in-
volving real-time systems have grown remarkably since the last few years.
The field of real-time systems has expanded quickly towards new applica-
tion areas, including telecommunication systems, multimedia computing,
embedded systems, and wireless networks. Such new domains gave rise to
new challenges and stimulated research in novel directions including qual-
ity of service control, energy aware computing, stochastic scheduling, and
feedback based techniques for adaptive operating systems.

!OOPUS-DPS is an object-oriented planning tool developed by the workgroup of Prof.
Dr. habil. W. Dangelmaier at the Heinz-Nixdorf Institute in Paderborn. For further
information, please visit the web-page:
http://wwwhni.uni-paderborn.de/cim/projekte/oopus-dps.php3

2The parallel platform is only an example out of different platforms a production stage
can comprise.

Introduction

Raw material Galvanic

/I uniform /I uniform Il uniform /I uniform
machines machines machines machines

| |
!

Pre-planned production of parts realized by traditional production planning and control systems

Figure 1.1: Workload considerations in a traditional production planning
and control system

A novel application area of real-time systems, introduced in this thesis,
is production control. The use of state-of-the-art real-time techniques in
manufacturing planning and control is still rare. The lack of competence in
real-time theory among production engineers, the lack of commercially avail-
able tools, and the lack of methodologies that consider real-time throughout
the complete planning and control process are the major reasons for this.

The specific area of scheduling theory, which has been studied since
more than two decades, involves different aspects of the real-time scheduling
problem. Despite the leaping advances in real-time scheduling theory, more
research effort is needed in order to put to use this theory in novel application
areas.

Manufacturing systems underlying real-time constraints must be able to
handle not only periodic tasks, but also aperiodic tasks. Periodic tasks are
used to implement off-line pre-planned requests. While periodic tasks in
real-time manufacturing systems have hard deadlines, aperiodic tasks may
have soft, firm, hard or no deadlines at all. As an illustration, the Figure
1.2 presents the same production line as in Figure 1.1 but from a real-time
perspective. Pre-planned orders are substituted by periodic orders. Fur-
thermore, newly arriving aperiodic orders in a production shift are allowed
to be produced.

The reader should note that a full implementation of a Manufacturing

Introduction

v

Raw material P;

Galvanic

<

y =

.
3

/I uniform /I uniform /I uniform /I unifort
machines machines machines machine:

| |
v

Periodic and aperiodic production of parts in a production system underlying real-time constraints

(7]

Figure 1.2: Workload considerations in a production planning and control
system underlying real-time constraints

System under Real-Time Constraints (MaSHReC) would require years of
research effort. In this thesis, a restricted structure and design of a Manu-
facturing System under Real-Time Constraints is clearly defined. A schedul-
ing methodology for MaSHReC, especially the aperiodic scheduling of hard
and firm tasks in the presence of hard periodic tasks, is provided. Schedu-
lability tests and simulation studies of a prototyped manufacturing system
are generated to ensure the predictability of the system and to evaluate the
performance of the algorithms respectively.

1.4 Basic Definitions

Before proceeding further, it is helpful to establish the meaning of the terms
”Real-Time System” and ”Holonic Manufacturing System”.

1.4.1 What is a Real-Time System?

In order to show the various ways in which real-time systems are defined,
the following definitions of real-time systems are stated.
Young (1982) defines a real-time system to be:

?any information processing activity or system which has to respond to ez-
ternally generated stimuli within a finite and specified period.”

Introduction

The Predictably Dependable Computer Systems Project (PDCS) project
(Randell et al. 1995) gives the following definition:

?A real-time system is a system that is required to react to stimuli from the
environment (including the passage of physical time) within time intervals
dictated by the environment.”

Kopetz (1997) referred to a real-time system as

?a computer system in which the correctness of the system behaviour depends
not only on the logical results of the computations, but also on the physical
instant (deadline) at which these results are produced.”

Stankovic and Ramamritham (1988a) used a quite similar definition to
refer to hard real-time systems.

The definition of a real-time system, as stated by (Kopetz 1997), is used
in this thesis. A real-time system is a system where the correct functioning
of the system depends on the results produced by the system and the time at
which these results are produced. Hard real-time sytems are characterized
by the fact that severe and sometimes catastrophic consequences will result if
logical as well as timing correctness properties of the system are not satisfied.

1.4.2 What is a Holonic Manufacturing System?

Holonic Manufacturing is a new paradigm originated in the framework of the
Intelligent Manufacturing Systems (IMS) program (Kriz 1995), one of the
largest research programs launched in manufacturing. Holonic systems are
distributed multi-agent systems in which the entities, called holons, are both
autonomous and cooperative. The Holonic Manufacturing System (HMS) is
defined by the HMS consortium as follows (Valckenaers et al. 1997):

HMS is a holarchy that integrates the entire range of manufacturing activi-
ties from order booking through design, production and marketing to realize
the agile manufacturing enterprise.

The Holonic Manufacturing System distinguishes itself from other dis-
tributed approaches by introducing hierarchy in the system. Compared to
traditional hierarchical systems, this hierarchy should be flexible, dynamic
and reconfigurable (Bongaerts 1998).

Central to the concept of HMS is the notion of a holon - a term introduced
by the hungarian A. Koestler (Koestler 1967)- to mean simultaneously a
whole and a part of a whole. The word ”Holon” is a combination of the

Introduction

greek ”holos” which means a whole, and the suffix ”on”, which as in proton
or neutron suggests a particle or a part. Thus a holon can be made up of
other holons. A holon is autonomous and cooperative. Each production unit
can be a holon and these holons co-operate with each other - from planning
and scheduling to physical production - to manufacture products.

1.5 Basic Approach

Due to the several observations provided in sections 1.2 and 1.3, different
hypotheses may be identified. A procedure of hypotheses evaluation occurs
at the end of each chapter.

Hypothesis 1 Due to their autonomous and cooperative characteristics
Holonic Manufacturing Systems provide a suitable basis to model the dy-
namic environment in which manufacturing has to take place. A real-time
model supporting holonic features would benefit not only from holonic at-
tributes, but also from predictable, logically and timely correct results.

Hypothesis 2 Deadline guarantee is the most important constraint in the
manufacturing system. Thus, in opposite to soft real-time (RT) constraints
which permit deadlines to be missed, the manufacturing activities should take
place under hard real-time constraints.

Hypothesis 3 On-line requests in a production system under hard real-time
constraints are aperiodic tasks to handle external events, which are usually
unpredictable. Allowing additional orders in the manufacturing environment
may lead to a high-level system utilization.

Hypothesis 4 The use of rigorous schedulability analysis coupled with pre-
dictable scheduling algorithms that attempt to capture the timing behavior of
all tasks in a multiprocessor real-time system environment provides a high
degree of schedulable resource utilization and a priori verification of timing
correctness for all tasks in the system.

Hypothesis 5 The support of basic properties, including the following ones,
is a major challenge in Production Planning and Control Systems underlying
real-time constraints.

1. Timeliness. Results have to be correct not only in their value but
also in the time domain.

Introduction

2. Overload support. Real-time PPCS must not collapse when they are
subject to peak-load conditions.

3. Predictability. One of the most important properties that differen-
tiates real-time systems from other conventional systems. The system
must be able to predict the consequences of any scheduling decisison. If
some task cannot be guaranteed within its timing constraints, the sys-
tem must notify this fact in advance, so that alternative actions can
be planned in time to cope with the event.

4. Maintainability. In order to ensure that possible system modifica-
tions are easy to perform, the architecture of a real-time manufacturing
system should be designed according to an object-oriented structure.

1.6 Overview of the Thesis

In this section, the chapters of this thesis are put in a common perspective.

Chapter 2 The MaSHReC Architecture introduces the architecture of
a Manufacturing System under Hard Real-Time Constraints. The goal from
developing an architecture for MaSHReC is to ease the design and imple-
mentation of production control systems. The architecture described uses
the holonic approach. Therefore, this chapter reviews state-of-the-art man-
ufacturing architectures based on the holonic approach and it clears the
motivation for the use of the holonic paradigm.

The modeling of MaSHReC is covered in Chapter 3, The MaSHReC
Design Model. An object oriented (OO) model is developped based on the
Unified Modeling Language (UML) modeling techniques. The different dia-
grams of the UML enables a graph based representation of MaSHReC. The
0O model provides an overview of the information and functional structure
of the manufacturing system. It allows also the behavioural representation

of MaSHReC.

The local scheduling of a manufacturing cell in MaSHReC is the focus
of Chapter 4, A Local Scheduling Algorithm for MaSHReC. The chapter 4
starts by providing a taxonomy which allows to classify the scheduling algo-
rithms in manufacturing systems under consideration of real-time aspects.
It reviews briefly the scheduling literature of Holonic Manufacturing sys-
tems. A computational model used for scheduling is built and the extended
Earliest Deadline First algorithm and its schedulability test are developed
for the local scheduling of MaSHReC.

Introduction

The main purpose of Chapter 5, A Distributed Scheduling Alogorithm
for MaSHReC is to develop a distributed scheduling algorithm that can be
applied to the proposed model. The chapter starts with a brief survey of
the variety of distributed scheduling algorithms. The result is an effective
distributed scheduling algorithm, that satisfies the real-time requirements of
MaSHReC. Various simulation experiments of the presented algorithm upon
a prototyped manufactuting system underlying real-time constraints allow
to study the performance of the system.

The goal of Chapter 6, Predictable Monoprocessor Scheduling, is to im-
prove the results presented in the precedent chapter, especially those dealing
with the unpredictability of heuristic mechanisms. To address the problem
of predictable aperiodic scheduling in the presence of hard periodic tasks is an
important challenge for MaSHReC. This is achieved upon the monoprocessor
platform of a production stage by applying real-time server algorithms. A
survey of real-time uniprocessor scheduling mechanisms including server al-
gorithms is addressed. An evaluation of dynamic server algorithms assists to
find the appropriate scheduling technique to be applied to MaSHReC. Fur-
thermore, an extension of the algorithm to include changeover time costs is
provided. The predictability of the system is proven through schedulability
analysis techniques.

One step further than dealing with predictable real-time scheduling upon
monoprocessor production stages in manufacturing systems is to predictably
schedule aperiodic tasks upon multiprocessor production stages. This is the
topic of Chapter 7, Predictable Multiprocessor Scheduling. First, a compar-
ative study of state-of-the-art real-time multiprocessor scheduling schemes
is provided. The Total Bandwidth Server algorithm is developed. The
uniform multiprocessor scheduling algorithm is analyzed by considering its
performance when it is allowed to run on faster machines. The predictabil-
ity of the system is proven through schedulability analysis techniques. The
performance of the multiprocessor control algorithm is analyzed through
simulation studies.

In Chapter 8, Conclusions and Outlook, the thesis concludes with a
summary of the results obtained and suggests promising directions for future
research.

The Figure 1.3 illustrates the structure of the thesis including the affili-
ation of the different hypotheses.

Introduction

MaSHReC model

CH1])

On-line Scheduling for

MaSHReC
Introduction
MaSHReC Local
Architecture Scheduling
Chapter 2 Chapter 4
N
v
MaSHReC Distributed
Design Model Scheduling
Chapter 3 Chapter 5
Simulation
"""""""""""""" Model
Chapter 5
Predictable
@— Monoprocessor
Scheduling
Chapter 6
Predictable
H6,H2 Multiprocessor
Scheduling
Chapter 7

Schedulability
Analysis
Chapter 7

Conclusions
and Outlook
Chapter 8

Figure 1.3: Structure of the thesis

10

Introduction

1.7 Organization and Special Features

e The thesis addresses topics in the fields of real-time systems, Unified
Modeling Language, object-oriented design, production planning and
control systems, and Flexible Manufacturing Systems (FMS) including
Holonic Manufacturing Systems (HMS). It is assumed that the reader
is familiar with the basic terms and concepts in these areas.

e A bibliography with short comments is presented at the end of each
chapter. The complete bibliography is presented at the end of the
thesis.

e The obtained scientific results listed in the last section of each chapter
(Chapter 2 to 7) and in Section 8.2 are derived from the point of view
of the author.

e Unless stated explicitly, the following words are used interchangeably:
machine and processor; job, order and task; manufacturing and pro-
duction.

¢ In section ”Hypotheses Evaluation” of chapters 2 to 7, the evaluation
of the hypotheses related to each chapter is to be deduced from the
results presented in the chapter.

1.8 Relevant Publications

The most important results of this work were reported in the following
publications: (El-Kebbe 2001c), (El-Kebbe 2001b), (El-Kebbe 2001d), (El-
Kebbe 2001e), (El-Kebbe 2001a), (El-Kebbe 2000c), (El-Kebbe 2000b), (El-
Kebbe 2000a), and (El-Kebbe 2002).

11

Introduction

12

Bibliography

Bongaerts, L. (1998). Integration of Scheduling and Control in Holonic
Manufacturing Systems. Ph. D. thesis, PMA /K.U. Leuven.
Develops shop floor control algorithms based on the notion of holonic man-
ufacturing systems.

El-Kebbe, D. A. (2000a, May). Integration of On-Line and Off-Line Sys-
tems in Real-Time Manufacturing. In Proc. of the Workshop of the
Informatics Graduate Colleges, Schloss Dagstuhl, Germany.
Introduces a methodology to integrate off-line and on-line production plan-
ning systems to achieve both flexibility and a guarantee for critical production
tasks.

El-Kebbe, D. A. (2000b, October). Modeling the Manufacturing System
under Hard Real-Time Constraints Using Real-Time UML. In Work-
shop on Formal Design Techniques Using Real-Time UML, York, UK.
Discusses modeling techniques for MaSHReC. Introduces an object oriented

holonic model for a manufacturing system under real-time constraints using
UML.

El-Kebbe, D. A. (2000c, September). Towards a Manufacturing System
under Hard Real-Time Constraints. In Informatik 2000: 30. Jahresta-
gung der Gesellschaft fiir Informatik, Berlin.

Presents the basic concept of a manufacturing system under hard real-time
constraints.

El-Kebbe, D. A. (2001a, April). A Real-Time Holon-Based Architecture
for the Production Planning System: Further Results. In Proc. of the
Workshop on Agent Based Simulation II, Passau, Germany.

Presents the architecture for the manufacturing system under hard real-time

constraints (MaSHReC). Models the structure, bahavior and interactions of
MaSHReC using UML.

El-Kebbe, D. A. (2001b, March). A UML Model for the MaSHReC Archi-

BIBLIOGRAPHY BIBLIOGRAPHY

tecture. In Proc. of the International Congress on Information Science
Innovations in Intelligent Automated Manufacturing, Dubai, United
Arab Emirates.

Investigates current holonic manufacturing architectures. The MaSHReC
model is designed using the Unified Modeling Language (UML). UML tem-
plates are provided to allow the design of the system structure, components,
relations, data, functions and interactions.

El-Kebbe, D. A. (2001c, December). Aperiodic Scheduling in a Dynamic
Real-Time Manufacturing System. In Proc. of the IEEE/EE Real-
Time Embedded Systems Workshop (Satellite of the IEEE Real-Time
Systems Symposium,), London.

Addresses the problem of aperiodic scheduling of manufacturing systems un-
der hard real-time constraints. Adopts the extended version of the Total
Bandwidth Server algorithm and extends it to include changeover time costs.

El-Kebbe, D. A. (2001d, October). Findings from Adapting Real-Time

Aperiodic Tasks to Production Planning Systems. In Proc. of the IEEE
Conference on Emerging Technologies and Factory Automation, An-
tibes, France.
Presents some findings from adapting real-time operating systems scheduling
theory to production planning and control. Concludes with the introduction
of server mechanisms to the aperiodic scheduling of manufacturing systems
with the novel feature of including changeover time costs.

El-Kebbe, D. A. (2001e, October). Scheduling of Manufacturing Systems
under Hard Real-Time Constraints. In Proc. of the IEEE Systems,
Man and Cybernetics Conference, Tucson, Arizona.

Presents a real-time distributed scheduling scheme for a manufacturing sys-
tem underlying real-time constraints based on bidding and focused address-
ing.

El-Kebbe, D. A. (2002, April). Predictable Multiprocessor Scheduling in
Manufacturing Systems underlying hard Real-Time Constraints. In
Proc. of the AIPS Workshop on On-line Planning and Scheduling,
Toulouse, France.

Presents the Total Bandwidth server algorithm and its schedulability analysis
upon uniform multiprocessor platforms.

Koestler, A. (1967). The Ghost in the Machine. London: Hutchinson &
Co. (Second Edition: Arkana Books, London, 1989)
Observes a dichotomy of wholeness and partness in living organisms and
social organisations. Uses the ” Janus Effect” as a metaphor for this dichotomy

14

BIBLIOGRAPHY BIBLIOGRAPHY

of wholeness and partness. Suggests a new term "holon” to describe the
members of these systems.

Kopetz, H. (1997). Real-Time Systems: Design Principles for Distributed
Embedded Applications. Kluwer Academic Publishers.
This book treats issues of hard real-time distributed systems with fault tol-
erance aspects.

Kriz, D. (1995). Holonic Manufacturing Systems: Case study of an IMS
Consortium. http://hms.ifw.uni-hannover.de.
Presents motivational and implementation issues for Holonic Manufacturing
Systems.

Nishi, T., A. Sakata, S. Hasebe, and I. Hashimoto (2000). Autonomous

Decentralized Scheduling System for Just-in-Time Production. In
Proc. of the Tth International Symposium on Process System Engi-
neering, pp. 345-351.
Proposes an autonomous decentralized scheduling system for just-in-time
production. The goal for each sub-system scheduling includes the storage
costs for intermediate and final products in addition to the changeover costs
and the due date penalties.

Randell, B., J.-C. Laprie, H. Kopetz, and B. Littlewood (1995). Pre-
dictably Dependable Computing Systems. Springer-Verlag.
Contains a selection of papers on main topics in Predictable Dependable
Computing Systems: fault prevention, fault tolerance, fault removal, and
fault forecasting.

Schneider, U. (1996). Fin formales Modell und eine Klassifikation fir die
Fertigungssteuerung. Ph. D. thesis, Heinz-Nixdorf Institut / Univer-
sitit Paderborn.

Presents a methodology for the construction of production planning and
control systems based on a classification of production control tasks and
production control procedures.

Stankovic, J. and K. Ramamritham (1988). Tutorial Hard Real-Time Sys-
tems. IEEE Computer Society Press.

Valckenaers, P., H. V. Brussel, L. Bongaerts, and J. Wyns (1997). Holonic
Manufacturing Sytems. Integrated Computer-aided Engineering 4(3),
191-201.

Young, S. (1982). Real-Time Languages: Design and Development. Ellis
Horwood.

15

BIBLIOGRAPHY BIBLIOGRAPHY

16

Chapter 2

The MaSHReC Architecture

Chapter 2 introduces the architecture of a Manufacturing System under
Real-Time Constraints. The architecture described uses the holonic ap-
proach. Therefore, this chapter reviews state-of-the-art manufacturing
architectures based on the holonic approach and it develops a section
clearing the motivation for the use of the holonic paradigm.

The MaSHReC' Architecture

2.1 State-of-the-Art

The HMS paradigm has been launched since less than a decade. Thus, few
architectures were investigated in the literature. This paragraph gives a
brief overview of these architectures.

Kouiss et al. (1997) presented a multi-agent system for dynamic schedul-
ing in Flexible Manufacturing Systems. Each agent models a Work Centre
in the FMS, and keeps its own job queue. Jobs are scheduled by locally
applying dispatch rules. The selection of a dispatch rule takes into account
primary and secondary objectives as well as the state of the work centre, and
information received from other agents. This selection is done in a rule based
way. The system includes a supervisory agent that monitors the global state
of the manufacturing system. It may eventually impose the use of specific
dispatch rules to some or all work centre agents if it finds it advisable to do.

AARIA’s architecture (Parunak et al. 1997) connects a group of manu-
facturing capabilities in the form of agents. The system implements the fol-
lowing functionality: finite capacity scheduling, basic planning, order entry,
purchasing, bill-of-materials management, inventory management, resource
management, personnel management, integrated financials, and reporting.
Each agent has pieces of this general functionality and when placed together,
they self-configure to provide a full Enterprise Resource Planning and Man-
ufacturing Execution System (ERP/MES). There is no centralised system
in AARIA architecture.

Gou and Luh (1997) follow a very modular approach to implement a
Holonic Manufacturing System, using eight types of holons: Product, Part,
Machine-Type, Machine, Cell-Coordinator, Cell, Factory Coordinator and
Factory. A Product holon represents a manufacturing order, and is com-
posed by Part holons, which represents a stage in the manufacturing process
of that product. A Cell holon is a Holarchy composed of a Cell-Coordinator,
Machine, Machine-Type and Part holons. A factory consists of multiple cells
each with several machines. Products must move through machines (most
likely on different cells). Infinite buffer capacity is assumed.

The PROSA reference architecture (Valckenaers et al. 1998) is built
around three types of basic holons. The Order holons represent a task in
the manufacturing system, the Product holons which hold the product and
process knowledge and the Resource holons, which contain a physical part
(the production resource) and an information part that controls the resource.
The basic holons are assisted by staff holons, which give them advices.

The architectures presented above do not provide means to support real-

18

The MaSHReC Architecture

time constraints. Therefore, they cannot be used to model the novel ap-
proach of manufacturing systems underlying real-time constraints. Further-
more, the aimed architecture should support analysis techniques of real-time
systems in order to predict and to assure timely correct behaviour.

2.2 The MaSHReC Architecture

There are two basic building blocks in the MaSHReC architecture char-
acterized upon their workload: the off-line and the on-line manufacturing
sytem.

e The off-line manufacturing system is made up of all orders preplanned
by a Production Planning System (PPS) and a PPS manager holon,
responsible for the off-line scheduling of orders and their communica-
tion between the off-line and the on-line system.

e The on-line manufacturing system which is made up of manufacturing
cells coordinating with each other, in order to execute preplanned and
aperiodic orders. Each manufacturing cell consists of a machine with
an input and an output buffer. A cell coordinator holon supervising
each cell is responsible for the local scheduling of the manufacturing
cell as well as the inter-cell coordination scheduling. The MaSHReC
architecture is shown in Fig. 2.1.

The manufacturing system consists of:
M ={M;|ie N}
a set of workstations or machines,
IB ={IB;|i€ N}
an input buffer per machine for the parts before execution on the machine,
OB ={OB; |i € N}
an output buffer per machine for the parts after execution on the machine,
T =A{Tj|j € N}
a set of tools related to each station,

M ={P,, | mec N}

19

The MaSHReC' Architecture

Off-line Manufacturing System

PPS
Order ||| > Manager Holon
Holon

On-line Manufacturing System

v Sioton l { kT l
IB OB 1B OB

r [[€E—> I
Part \«—>Machine Part Part l\«—»Machine—{ |Part
Holon Holon Holon Holon

Figure 2.1: The MaSHReC architecture

a set of parts, and
C={C,|nelN}

a set, of carriers of tools or parts.
In this thesis, tools and parts are considered to be available as soon as
the parts are to be produced on the machine.

2.3 Motivations for the Use of the Holonic Ap-
proach

MaSHReC is a holonic architecture since it is characteized by the following
propoerties.

e Hierarchical structure: A priori, all manufacturing cells have equal
status. However, it turns out to be of advantage if a Cell Coordinator
Holon is designed to manage the manufacturing cell activities. At
the next hierarchical level, the PPS Manager holon gives guidelines to
these regional cell coordinators.

20

The MaSHReC Architecture

e Heterarchical structure: The internal behaviour of the manufacturing
cell could be changed without influencing the overall behaviour of the
system.

e Decomposability: The overall task to execute an order before its dead-
line can be decomposed into part orders (to avoid deadline missing).

e Communication: Manufacturing cells communicate with each other
(in general, cells of the same type). The cell manager holon can com-
municate with all holons in the manufacturing system.

e Social elements: The setting is cooperative within the cells of the
manufacturing system.

e Real-time requirement: This scenario underlies hard or firm real-time
requirements, where parts have to cope with a changing environment
and a fixed deadline.

21

The MaSHReC' Architecture

2.4 Contributions of the Chapter

The scientific contributions of this chapter are summarized as follows:

e Review of Holonic Manufacturing Architectures
Results of a complete review of holonic manufacturing architectures
are provided. An architecture supporting real-time considerations was
not found in the literature survey.

e Development of a Global Architecture of a Manufacturing System un-
der Real-Time Constraints
A global architecture of a manufacturing System under real-time con-
straints is developed. The main purpose of this architecture is to fa-
cilitate the design and implementation of production control systems.

2.5 Hypotheses Evaluation

The achievements of this chapter, together with Chapter 1 (partly), are
basically related to Hypothesis 1, which deals with holonic manufacturing
models supporting real-time constraints.

Hypothesis 1 Due to their autonomous and cooperative characteristics
Holonic Manufacturing Systems provide a suitable basis to model the dy-
namic environment in which manufacturing has to take place. A real-time
model supporting holonic features would benefit not only from holonic at-
tributes, but also from predictable, logically and timely correct results.

Hypothesis 5 The support of basic properties, including the following ones,
is a major challenge in Production Planning and Control System underlying
real-time constraints.

4. Maintainability. In order to ensure that possible system modifi-
cations are easy to perform, the architecture of a real-time manufacturing
system should be designed according to an object-oriented structure.

The hierarchical approach to production planning is classically used to han-
dle the different descriptions of the production process in complex produc-
tion systems. The advances in manufacturing systems (see Section 1.2) and
the motivation for implementing holonic features (see Section 2.3) reveals
the relevance of HMS in dynamic environments. Being the core of a design
model for MaSHReC, an architecture designed to support real-time systems

22

The MaSHReC Architecture

and to incorporate holonic attributes is clearly provided. In addition, the
aspects which characterize the MaSHReC holonic architecture are evidently

defined.

23

The MaSHReC' Architecture

24

Bibliography

Gou, L. and P. Luh (1997, June). Holonic Manufacturing Scheduling:
Architecture, Cooperation, Mechanism and Implementation. In Proc.
of IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, Tokyo, Japan.

Models a Holonic Manufacturing System with its key elements such as ma-
chines, cells, factories, parts, products, operators, teams, etc. having au-
tonomous and cooperative properties.

Kouiss, K., H. Pierreval, and N. Mebarki (1997). Using multi-agent ar-
chitecture in FMS for dynamic scheduling. J. of Intelligent Manufac-
turing 8, 41-47.

Presents a multi-agent system for dynamic scheduling in Flexible Manufac-
turing Systems.

Parunak, H., A. Baker, and S. Clark (1997, February). The AARIA Agent
Architecture. In Proc. of the International Conference on Autonomous
Agents, Marina del Rey, CA.

Presents an architecture for a full Enterprise Resource Planning anf Manu-
facturing Execution System.

Valckenaers, P., J. Wyns, H. V. Brussel, L. Bongaerts, and P. Peeters
(1998). Reference Architecture for Holonic Manufacturing Systems:
PROSA. Computers in Industry, Special Issue on Intelligent Manu-
facturing Systems 37(3), 255-276.

Presents the PROSA reference architecture for holonic Manufacturing Sys-
tems. This architecture consists of three types of holons: product, resource
and order with the assistance of staff holons.

BIBLIOGRAPHY BIBLIOGRAPHY

26

Chapter 3

The MaSHReC Design
Methodology

The goal of this chapter is to develop a design methodology of a manu-
facturing system under real-time constraints based on the architecture
presented in Chapter 2. The Unified Modeling Language (UML) is used
to model the system structure, components, relations, data, functions
and interactions.

The MaSHReC' Design Methodology

3.1 Requirements for Modeling Real-Time Systems

The need of timeliness is essential in real-time systems. In "hard” real-time
systems the violation of even a single deadline might mean catastrophic
results. A crucial requirement therefore is to use models of such systems
to derive early and accurate predictions of the actual system. A number
of techniques have evolved in the real-time domain for predicting these at-
tributes. These techniques include schedulability analysis procedures, which
determine whether a given system will meet all of its deadlines.

For models to be predictive, it is necessary to model not only the structure
and behaviour of the system but also the logical and physical resources, or
engineering infrastructure on which that system relies (Selic 1999).

3.1.1 Infrastructure modeling requirements

The engineering infrastructure comprises physical devices such as machines
and networks as well as logical devices such as concurrent orders or buffers.
When attributes of these resources such as capacity and location are as-
signed numerical values in the model, then the model can be used to make
predictions of the actual system. In addition to resources, the engineer-
ing infrastructure often include basic services such as scheduling, timing,
buffer management, and so forth. These services may also have quantitative
attributes such as response time.

3.1.2 Behaviour modeling requirements

The sequential paradigm of specifying behaviour that characterizes proce-
dural programming is often inappropriate for describing the behaviour of
real-time systems. This is mainly because real-time events can occur un-
predictably and concurrently with other events. Instead two different meth-
ods have evolved for specifying the behaviour in real-time systems (Kopetz
1997). The event-driven method is used for modeling discrete behaviours in
which concurrent events occur asynchronously. In contrast, the time-driven
style is used for continuous or periodic inputs.

3.1.3 Structure modeling requirements

Modeling runtime structures of real-time systems is one of the dominant
aspects in the modeling of real-time systems. A key aspect of runtime

28

The MaSHReC' Design Methodology

structures is the relationship between the individual objects. These can
be grouped into three categories:

e Peer relationships that occur between directly communicating objects.

e Containment relationships. This includes both composition and ag-
gregation as known in the UML terminology, whereby the container
merely encapsulates a component.

e Layering relationships. This is a special case of a client-server rela-
tionship in which the client uses a shared server as part of its imple-
mentation.

In addition to the preceding three different structural forms, there is a need
to model dynamic runtime structures. These are structures in which objects
and links are constantly being created and destroyed as the load in the
system changes.

3.2 A Design Model for MaSHReC

UML is a general-purpose modeling language. It is a standard for visualizing
object-oriented diagrams. UML emerged from the combination of the Booch
method (Booch 1991) and the method developed by Rumbaugh et al. (1991).
Since the concepts of HMS are closely related to the concepts of object-
oriented design, an object-oriented modeling tool is choosen.

Research effort has been conducted to extend UML for the real-time
domain by adding new concepts to its base UML-RT (Selic 1998). A work
towards achieving this aim has been conducted by the C-Lab in Paderborn
in the course of the DESS project! (Software Development Process for Em-
bedded Real-Time Systems). It is based on the concept of consistency for
sequence diagrams and statecharts, in general and then directed to the do-
main of real-time modeling. This is of fundamental importance for modeling
reliable real-time systems. Further readings can be found in: (Kiister and
Stroop 2000), (Kiister and Stroop 2001), and (Kiister 2001).

3.2.1 Modeling the infrastructure of MaSHReC

The MaSHReC infrastructure as defined in section 3.1.1 is modeled with
the UML class diagram. The UML class diagram addresses the static design

IDESS is sponsored by BMBF and is also a european project as part of the Eureka
program ITEA.

29

The MaSHReC' Design Methodology

view of the system. Figure 3.1 shows a set of classes from the implementation
of the MaSHReC infrastructure.

3.2.2 Modeling the real-time behaviour of MaSHReC

MaSHReC is an event-driven (reactive) system, where the production pro-

cess is launched by the arrival of orders. The production of parts in MaSHReC
can be easily interrupted if another more critical concurrent part arrives. It

is mostly convenient to describe the underlying model with a transition

system formalism. State machines of UML are an example of a transition

system that is particularly suitable for highly concurrent real-time systems.

Several state machine diagrams of holons in MaSHReC are described in this

section.

Figure 3.2 represents the state machine diagram of the PPS Manager
Holon. The PPS Manager Holon might be in any of three states: Idle
(waiting for an aperiodic request or a confirmation order message from the
on-line system), Executing Order Plan (designating different parts to
be produced for a specific order and allocating them to the appropriate cell
type) , and Creating (creating Part Order Holons corresponding to an ape-
riodic order).

Figure 3.3 represents the state machine diagram of a Machine Holon. The
Machine Holon might be in any of the following states: Idle (waiting for
a Part Order Holon), Producing (producing a part; a part being produced
may be preempted due to the arrival of a high priority Part Order Holon),
Blocked (In case of a machine trouble, the machine passes to a Blocked
state).

The Cell Coordinator Holon passes from the Idle state to the EDF
Scheduling state at the arrival of a Part Order Holon event and when
the cell state is InFunction. Otherwise, it sends the Part Order Holon or
Part Order Message to another cell from the same type. On entering the
EDF Scheduling state, the Cell Coordinator Holon calculates a local EDF
schedule. At scheduling end and if the schedule is feasible, the Cell Coordi-
nator Holon returns to the idle state.

30

The MaSHReC' Design Methodology

PPS_Man_Hol

0,1 0,1

ol 019 .
Part_ Order Hol

=

0,1 *

w2

0,1

o= m

aQ

Cell_Coord_Hol with

mm’(o1 o1 Jo1 o1

Communicates

Part-hol B Machine_Hol 0B Storage

01 01 01 01 * 01

Figure 3.1: The class diagram of the MaSHReC architecture 31

The MaSHReC' Design Methodology

At aperiodic
order request /
execute-order-plan()

{ Executing
| order
plan

At order plan execution end
/send-to-cell-coord-Hol

At confirmation
arrivallcreate
(Part-Order-Hol)

Creating

Figure 3.2: The state machine diagram of the PPS Manager Holon

3.2.3 Object interaction modeling

While state machine diagrams are useful to describe the reactive behaviour
of individual objects, it is also useful to specify and view the behaviour of
a set of collaborating objects. From a real-time perspective, sequence dia-
grams, which emphasize the time ordering of a message, are a useful way to
model the interaction among objects. Two features distinguish them from
collaboration diagrams (Booch et al. 1999): the object lifeline (represented
by vertical dashed lines in the sequence diagram and the focus of control
(represented by a tall, thin rectangle in the sequence diagram).

Figure 3.5 shows a sequence diagram that specifies the flow of control
involved in initiating aperiodic orders. The sequence begins at the arrival
of an aperiodic order by calling the PPS_Man Hol’s Get_order() opera-
tion. The PPS_Man Hol executes an Execute_product_plan() operation
(to specify the parts to be produced and their related machine type), which
in turn sends the aperiodic order to the Cell _Coord Hol of the speci-
fied machine type. The Cell_Coord_Hol calls the EDF_schedule() op-

32

The MaSHReC' Design Methodology

\ At machine
trouble)
lock
ge sendlblocked) f o ed]

At machine repaired

At part
arrival

Atend
production
/send to OB

Producing |
produce ()

At arrival high priority order/preempt()

Figure 3.3: The state machine diagram of the Machine Holon

eration, that calculates a local EDF schedule. When the schedule is fea-
sible, the Cell_Coord_Hol runs the send(schedule) operation to the
PPS_Man_Hol, which in turn creates the corresponding Part_Order_Hol.
In the other case, it executes an Inter_cell_schedule operation among
all the cells from the same type. If the inter-cell schedule is feasible, the
Cell_Coord_Hol runs a send (schedule) operation to the Cell_Coord_Hol,
which in turn also creates the corresponding Part_Order_Hol. If not, a re-
jection message is sent to PPS_Man Hol and the order is deleted.

The sequence diagram specifying the flow of control involved in initiating
and producing Preplanned Parts is represented in Figure 3.6.

The sequence diagram involved at the occurence of a machine trouble is
represented in Figure 3.7.

3.2.4 Object interaction modeling using collaboration dia-
grams

Some recent work did focus on the use of collaboration diagrams for speci-
fying complex real-time architectures. This has the following advantages:

33

The MaSHReC' Design Methodology

At_arrival_part_Order_Hol an
[cell_state.Introuble]

/send_to_cell cood_Hol

(part_order_hol,cell_type)

At

scheduling_end
and

[schedule

feasible] schedule.notfeasible]/zt execute (part_order)

and [cell_state.infunction]
to cell_cood_hol /' /EpF.schedule()

Figure 3.4: The state machine diagram of the Cell Coordinator Holon

e The architectural models can be formally analyzed for consistency and
completeness.

e The models are executable and allow early and precise assessment of
the validity of different architectural approaches.

e The implementation is derived directly from architectural specifica-
tions using automatic code generation.

Figures 3.8, 3.9, and 3.10 show the same scenario respectively as in figures
3.6, 3.5, 3.7 but in the form of a collaboration diagram. The structure in
Figures 3.8, 3.9, 3.10 is clearer, but that sequence is harder to follow.

34

The MaSHReC' Design Methodology

:PPS_Order_Hol :PPS_Man_Hol :Cell_Coord_Hol

Get_order(o)

D:'Execu!e_order r_plan(o)

Send(p,y) .

EDF_
[EDF feasible] / Send(Schedule) U] Schedule(p)

‘Part_Order Hol

Create(p)

[EDF.not
feasible] /
Inter_cell_

] schedule()

I

I

: [Inter_cell_schedule.feasible] / send(schedul

[}

I

I

1 Create(p) <

'

A

¢ [Inter_cell_schedule.notfeasible] / send(rejected)

Delete_order(o)

T
1
1
1
1
1

Figure 3.5: The sequence diagram involved in initiating aperiodic orders

The MaSHReC' Design Methodology

: Part_Hol | |:Ce11_Coord_Ho4 | :IB | |Y:Machine_Hol| | :0B || : Storage |
I T I T] T
1 | 1 | 1
| | 1 1 | |
| | 1 | 1 |
I 1 I | 1 I
	I 1			
	I	1		
:Atfreleaseftime/ ! : : : :
M, | | | 1

[Cell_state. : : : :
not blocked] / | | | |
EDF Schedulel | | |
® | | | |
I | 1 I
I I | |
| | | |
I | | I
| | | |
. = 1 | 1
[EDE feasible] / | | |
Send(p)) | | |
At _start_processing_ ! | !
time / Send(p) : :
| I
Produce(p) | I
| I
| I
duction/ ! |
At e';‘;;d Atlast |
J)—P production_ |
stage / A
P Send (p, Next_| | production_stage) Send(p) »
At arrival
high priority |
order /
preempt(p)
Send(p)
T T T T
| | 1 |
| | | |
il |] I I
[Cell state. | | | |
Blocked]/ | | ! !
Send(p, | 1 I I
Same_cell | | 1 |
_type) ! ! I |
Eor I : l
.not feasible] /I | | |
Send(p, | | | |
j Same_cell | | | |
_type)

Figure 3.6: The sequence diagram involved in initiating and producing pre-
planned parts

36

The MaSHReC' Design Methodology

:Cell_Coord_Ho]I | :IB | | :Machine
T I T
| 1 |
| |
| |
: : At Trouble/
1 1 Machine_state.
N i Blocked;preempt (p)
Send(p)

>
Bl

_ Send (Blocked)

Set (Cell_state.
Blocked)

Send (p,Same__
cell_type)

|
-

pmm =]

Machine_state.
Infunction

Send (InFunction)

A

Set (Cell_state.
InFunction)

Figure 3.7: The sequence diagram involved at the occurence of a machine
trouble

37

The MaSHReC' Design Methodology

:Part_Hol
1:At_release_time/
iSend (p,ml)
2.1:[Cell_state.not blocked]
/EDF.schedule(p) RS
2.2:[Cell_state. Blocked] ;@b‘w’\ ‘1B
/Send (Same_cell_type) @0@ <
3.1.2:[EDF.not feasible] _\-X &5 41LAt start ing time/
/Send (Same_cell_type) ’b-\ & /V i X .S. d_(:) ; _processing_time
e
i 5.1.1:Produce (p)
:Cell_Coord_Hol ‘Machine Hol

2, i 6.1.1:At_end_production/
i \ Send (p)
&

0@ : OB

7.1.1.1:At_last_production_
stage /Send (hp)

: Storage

Figure 3.8: The collaboration diagram involved in initiating and producing
pre-planned parts

38

The MaSHReC' Design Methodology

:Part Order Hol

6.2.1: Delete_order (0) *

$ 1: Get_order (0)

plan(o)

5.1.1:Create(p)
6.1:Create(p)

2: Execute$ 4:EDF_Schedule(p)
order_ 5.2:[EDF.notfeasible] /
:PPS_Man_Hol 3-2 :Cell_Coord_Hol

Inter_cell schedule()

3: Send (p,y)

5.1:[EDF feasi

ble] / send (schedule)

6.2:[Inter_cell_schedule.notfeasible] /
send(rejected)

6.1:[Inter_cell_schedule.feasible] /
send (Schedule)

Part_Hol

Figure 3.9: The collaboration diagram involved in initiating aperiodic orders

3:Send (1;)/

:Machine_Ho’lj

1:At trouble/Machine_state.blocked
2:preempt ()
7:machine_state.Infunction

4:Send (Blocked)
8:Send (Infunction)

5:Set (Cell_state.blocked)

6:Send (p,same_cell_typ_e)
-C ell_C OO d_H ol 9:Set (Cell_state.Infunction)

Figure 3.10: The collaboration diagram involved at the occurence of a ma-

chine trouble

39

The MaSHReC' Design Methodology

3.3 Contributions of the Chapter

The scientific contribution of this chapter can be summarized as follows:

o A Design Methodology of a Manufacturing System under Real-Time
Constraints
A design methodology of a manufacturing system under real-time con-
straints using the holonic approach is provided. UML templates, which
allow the design of the system structure, components, relations, data,
functions and interactions, are provided. Based on these templates
modeling of any real manufacturing system may be carried out.

3.4 Hypotheses Evaluation

This chapter is fully dedicated to the modeling of MaSHReC and is the basis
for the validation of the following hypotheses:

Hypothesis 1 Due to their autonomous and cooperative characteristics
Holonic Manufacturing Systems provide a suitable basis to model the dy-
namic environment in which manufacturing has to take place. A real-time
model supporting holonic features would benefit not only from holonic at-
tributes, but also from predictable, logically and timely correct results.

Hypothesis 5 The support of basic properties, including the following ones,
is a magor challenge in Production Planning and Control System underlying
real-time constraints.

4. Maintainability. In order to ensure that possible system modifi-
cations are easy to perform, the architecture of a real-time manufacturing
system should be designed according to an object-oriented structure.

A structured object oriented model like MaSHReC allows the maintability
of the system according to the application demands.

40

Bibliography

Booch, G. (1991). Object Oriented Design with Applications. Redwood
City, California: Benjamin/Cummings.
Presents a unified notation that incorporates the Boochs notation (first book)
and other methods. Includes several examples of projects implemented in
C++.

Booch, G., J. Rumbaugh, and I. Jacobson (1999). The Unified Modeling
Language User Guide. Addison-Wesley.
Presents the UML conceptual model and applies UML to series of modeling
problems.

Kopetz, H. (1997). Real-Time Systems: Design Principles for Distributed
Embedded Applications. Kluwer Academic Publishers.
This book treats issues of hard real-time distributed systems with fault tol-
erance aspects.

Kiister, J. (2001, September). Towards Behavior Consistent Modeling in
UML-RT. In Proc. of the Forum on Design Languages (FDL’01).

Kiister, J. and J. Stroop (2001). Consistent Design of Embedded Real-
Time Systems with UML-RT. In Proc. of the 4th IEEE Interna-

tional Symposium on Object-Oriented Real-Time Distributed Comput-
ing (ISORC 2001), pp. 31-40. IEEE Computer Society.

Kiister, J. M. and J. Stroop (2000, October). Towards Consistency of
Dynamic Models and Analysis of Timing Constraints. In Workshop
on Formal Design Techniques Using Real-Time UML, York, UK.
Introduces the notion of consistency for sequence diagrams and state-charts
to the domain of real-time modeling using UML/UML-RT.

Rumbaugh, J., M. Blaha, W. Premerlani, S. Eddy, and W. Lorensen
(1991). Object Oriented Modeling and Design. New York, USA: Pren-
tice Hall, Englewood Cliffs.

BIBLIOGRAPHY BIBLIOGRAPHY

Explores the Object Modeling Technique (OMT), a generic method of rep-
resenting objects and their relationships.

Selic, B. (1998). Using UML for modelling complex real-time systems.
Lecture Notes in Computer Science 1474, 250-260.

Selic, B. (1999, October). Turning Clockwise: Using UML in the Real-
Time Domain. Communications of the ACM 42(10), 46-54.
Discusses modeling of real-time systems using UML.

42

Chapter 4

A Local Scheduling
Algorithm for MaSHReC

The purpose of this chapter is to develop a local scheduling algorithm
for MaSHReC. Before treating the local scheduling problem, Chapter 4
provides a taxonomy which allows to classify the scheduling algorithms
in manufacturing systems under consideration of real-time aspects. Fol-
lowing the taxonomy, a brief overview of the holonic scheduling litera-
ture is given. The chapter ends by building the computational model
and assigning the local scheduling scheme and its schedulability test.

A Local Scheduling Algorithm for MaSHReC

4.1 Taxonomy of Scheduling

The scheduling problem has many different dimensions. Therefore it is very
hard to define a taxonomy that pays tribute to all aspects. However, it
is important to attempt such a classification as it allows to define a spe-
cific scheduling algorithm and relate it to the other research conducted in
scheduling. El-Rewini and Ali (1995) and Dussa-Zieger (1998) propose a
taxonomy for the scheduling problem. This section presents a taxonomy
that reflects the taxonomy of El-Rewini and Ali (1995) and Dussa-Zieger
(1998), but additionally includes new features.

The idea of the taxonomy in Figure 4.1 is derived from the scheduling
problem itself. To be more precise, the taxonomy reflects the input to the
scheduling algorithm and the nature of the algorithm itself. A scheduling
algorithm expects some type of workload, e.g. application programs, and
it schedules these programs on some given target machine. Therefore the
first classification criteria is the type of target machine which the scheduling
algorithm can handle, while the type of workload yields the second crite-
ria. The third aspect that allows to classify scheduling algorithms is the
algorithm itself, e.g. whether the produced schedule is optimal or not. The
fourth dimension of the classification is the nature of jobs, e.g. whether a
job can be preempted or not. Figure 4.1 depicts the taxonomy. It should
be noted that the taxonomy is by no means a complete description of all
scheduling issues.

4.2 Literature Survey

Scheduling in HMS was investigated by several researchers. Ramos and
Sousa (1996) address heterarchical scheduling. They propose a distributed
scheduling method based on the contract net protocol and on forward and
backward propagation of precedence constraints. To6nshoff and Winkler
(1995) propose a completely heterarchical method for distributed resource
allocation, where agents perform simulations in virtual worlds. Méarkus et al.
(1996), Mérkus and Vancza (1996), and Vancza and Mérkus (1998) propose
a market mechanism for task allocation in HMS. Moriwaki et al. (1992)
propose an on-line scheduling mechanism in an object-oriented framework.
In order to include opportunities for optimization, Gou et al. (1994) define
a distributed algorithm based upon Lagrangian relaxation concepts. Also
Kéadar et al. (1997) discover the need for centralized elements and pro-
pose the coupling of a multi-agent control system with a genetic algorithm.

44

A Local Scheduling Algorithm for MaSHReC

. Jobs
SChedUIIng _ tPreemptable vs non preemptable
Periodic vs aperiodic vs sporadic vs hybrid
Independent tasks vs precedence constraints

(Algorithm

Static vs dynamic vs hybrid
Optimal vs heuristic vs real-time

Machine
“\Esingle vs multiple vs distributed processcors (vvork|oad
fiow shop vs job shop
shared vs distributed memory LDeterministic vs nondeterministic
interconnection network LReal—time vs non real-time
homogeneous vs heterogenous systems With vs without communication
monoprogramming vs multiprogramming -

context switch time >0 vs =0

Figure 4.1: Taxonomy of scheduling

Bongaerts (1998) addresses the issue of integrating hierarchy in distributed
systems. He proposes totally distributed algorithms based on a market
mechanism and supplemented with a reactive scheduler. While the reactive
scheduler is calculating an updated schedule, the autonomous agents execute
the existing schedule.

This brief overview on the literature of scheduling in HMS shows that
scheduling was restricted to deterministic and stochastic perspectives. The
scheduling approaches presented focused on solving and optimizing the de-
terministic and stochastic scheduling problem. These approaches are illus-
trated in Fig. 4.2. This thesis adds a new perspective of solving scheduling in
HMS in adding time-critical constraints in static and dynamic environments
to assure the safety and predictability of the production system.

4.3 From RT Operating Systems to RT Manufac-
turing

To increase throughput most modern operating systems support multipro-
gramming. The total time to complete a set of tasks is reduced due to less
time being wasted while waiting for external inputs. The sequencing of such
a multitasking or multiprogramming system is controlled by an operating

45

A Local Scheduling Algorithm for MaSHReC

Real-Time RT-off-line RT-on-line
constraints scheduling scheduling
L Off-line Dynamic
Deterministic scheduling scheduling
Stochastic Reactive
Stochastic considerations in | scheduling, pro-
scheduling active scheduling
Static Dynamic

Figure 4.2: The different perspectives of
the scheduling problem in HMS and the
different approaches to solve it

system service called the scheduler. Preemptive multitasking is used in most
operating systems designed for efficient multitasking.

Multitasking in manufacturing means production of multiple parts si-
multaneously on a single machine. It is represented in Fig. 4.3 with the
dashed directed arcs and described in Sect. 4.5. It is also important to
note that the changeover time for the different parts must be taken into
consideration. There is a difference to real-time operating systems where
the overhead of context switching is negligibly small compared to the execu-
tion time of tasks or is considered constant and included in the worst-case
computation time.

Multiprocessing means the assignment of parts to the next available
machine. The Fig. 4.3 gives an example of this architecture consisting of
five manufacturing cells. Each cell comprises a machine with an input and
an output buffer containing a set of parts. Multiprocessing is represented in
Fig. 4.3 by the straight directed arcs.

4.4 System Characteristics

The characteristic problem of real-time systems, namely predicting timely
correct behaviour of tasks can be solved, if a complete off-line analysis of
all application tasks including the operating system and the environment is
possible.

An arbitrarily complex manufacturing system cannot be analysed easily
to predict its worst-case behaviour. It is necessary to define some restrictions
on the structure that a real-time manufacturing system can have.

46

A Local Scheduling Algorithm for MaSHReC

IB1 IB3

eS| [S s -

OB1 OB3

P11 P15

P12 P16
1B4

OB2 OB5

P19

P20 P14
P18

Figure 4.3: Example of an architecture for the on-line manufacturing system

47

A Local Scheduling Algorithm for MaSHReC

A uniprocessor and/or multiprocessor platform at each production
stage is considered.

The manufacturing system is assumed to consist of a fixed set of parts.
Parts are periodic and aperiodic.

Off-line preplanned requests in a production system under hard real-
time constraints correspond to the normal (periodic) functions of the
system. Off-line requests are assumed to be preplanned by a Produc-
tion Planning System (PPS) in the manufacturing environment. An
integration of the PPS in the production execution under real-time
constraints requires a 100% deadline guarantee of the planned pro-
cesses.

Parts are completely independent of each other.
Parts can be preempted at any time.

More flexible methods for manufacturing with interleaving of different
production tasks takes place. Thus, the production of one product
on one machine is substituted by producing different products on the
same machine.

Overheads of context switching time (changeover cost) is accounted
for in the algorithm and the schedulability test.

All parts should be schedulable using worst-case processing times and
worst-case arrival rates.

The listed characteristics applies to chapters 4, 5, 6 and 7. Further system
characteristics are defined in the following chapters when it is necessary.

4.5 Computational Model for Preemptive Multi-

tasking in Manufacturing Sytems

This simplified, abstract computational model to represent the behaviour of
a preemptive multitasking manufacturing system is derived from the hard
real-time schedulability theory (Fidge 1998).

The model assumes that the machine programmer wishes to implement

part sets on a particular machine. Each part P; arrives infinitely often, each
arrival separated from the last one by at least T; time units. A periodic part

48

A Local Scheduling Algorithm for MaSHReC

C; Worst case processing time that may be required by an invocation
of part P;.

T; Lower bound between two succesive arrivals of part P;.

D; The deadline for each invocation of part P;, measured from its
arrival time.

Figure 4.4: Part characteritics specified by the programmer of the machine

arrives regularly with a separation of exactly T; time units. Aperiodic parts,
which arrive irregularly with no minimum separation, are out of the subject
of this chapter. Following chapters take into account aperiodic real-time
scheduling.

At each arrival, part P, issues a notional invocation request for up to
C; units of processing time on the machine, its worst-case processing time.
Each invocation of part P; must have this request satisfied before its deadline
D; expires. This has to be achieved by executing a worst-case chedulability
test.

The scheduler goes through these requests according to a particular
scheduling policy. Each part making a request is put in a ready buffer at
which time the part is said to be released. The scheduler selects a part to
be processed from the ready queue with respect to the scheduling policy it
implements. Parts of higher priority can preempt the processing part P;,
resulting in a degree of interference I; to the progess of part P;. Parts stop
being ready by being suspended due to parts with higher priority. Suspended
parts wait in the input buffer until they become ready again.

Scheduling decisions are based on the priority of ready parts. The
dynamic-priority scheduling policy Farliest Deadline First is considered.
The Fig. 4.4 shows the part characteristics.

As already stated in Section 4.4, parts are considered to be independent,
i.e. they do not interact or otherwise communicate using shared resources
and hence cannot block one another.

49

A Local Scheduling Algorithm for MaSHReC

4.6 An Extended Schedulability Test for EDF

A common scheduling technique used in real-time systems to dynamically
schedule a set of periodic tasks is based upon the Earliest Deadline First al-
gorithm. The dynamic priority assignment and the high schedulable utiliza-
tion (up to 1) are the main advantages of EDF compared to other dynamic
scheduling techniques of periodic tasks such as FIFO (First-in-First-out)
and LIFO (Last-in-First-out).

To determine whether the given system of n independent periodic tasks
surely meets all the deadlines when scheduled according to the preemptive
EDF algorithm on one processor, the following inequality is to be checked

n
<1
2:: DkaTk)

Applying this schedulability test to the EDF-scheduling of manufacturing
systems requires changeover time considerations. Therefore, each execution
of a part suffers from at least one changeover time overhead when it starts
execution and another changeover time overhead when it completes.

The following example describes a roboter boring process with changeover
time considerations: A roboter processes wood panels using different boring
tools placed on a circular plate. When a workpiece arrives, (1) the circular
plate of the boring tools is rotated to reach the appropriate tool (2) the
roboter arm picks up the boring tool, (3) the roboter arm moves to the
workpiece and processes it, (4) the roboter arm returns the boring tool to
the circular plate, and (5) the roboter arm returns to its initial position.
Consequently, changeover time should be accounted for before (steps 1 and
2) and after (steps 4 and 5) processing a part.

It can be accounted for this changeover time overhead in a schedulability
test by adding the time spent for the two changeover time overheads at the
start and completion of each part to the production time of the part.

More formally, let O = {Oj, | j, k € IN} be the switch time or changeover
time caused by the arrival of the part from type j at the machine m. If the
part can be preempted for a maximum of ; times after its production
starts, the schedulability test of EDF including changeover time is deduced
from the following inequation

2”: Cr +2(Q; +1)0;

- J,m <1
= min(Dg,Tk) -

50

A Local Scheduling Algorithm for MaSHReC

It should be noted that changeover time overhead is derived by a static
analysis of parts belonging to the same type on the machine.

51

A Local Scheduling Algorithm for MaSHReC

4.7 Contributions of the Chapter

The scientific contributions of this chapter can be summarized as follows:

e Development of a Taxonomy for the Real-Time Scheduling Problem
A taxonomy for the real-time scheduling problem is proposed where
scheduling algorithms are organized with respect to the type of work-
load they can handle, the target machine they schedule on, the char-
acteritics of the algorithm itself and the jobs they intend to schedule.

e Review of Holonic Manufacturing Scheduling Schemes
A complete and brief literature review of holonic manufacturing schedul-
ing schemes is provided. A holonic scheduling scheme supporting real-
time considerations was not found in the literature survey.

o Assignment of the Local Scheduling Policy and the Local Schedulability
Test for MaSHReC
The scheduling policy used for the local scheduling of MaSHReC is
based on the Earliest Deadline First algorithm. An extended schedula-
bility test for EDF, including the novel feature of integrating changeover
time overhead, is proposed.

4.8 Hypotheses Evaluation

This chapter presents a local scheduling scheme that assigns different parts
to be produced simultaneously on the same machine. This validates the
following hypothesis.

Timeliness and predictability of the local scheduling scheme presented in
this chapter are a basis for the validation of Hypotheses 5.1 and 5.3.

Hypothesis 5 The support of basic properties, including the following ones,
is a major challenge in Production Planning and Control Systems underlying
real-time constraints.

1. Timeliness. Results have to be correct not only in their value but
also in the time domain.

3. Predictability. One of the most important property that differenti-
ates real-time systems from other conventional systems. The system must
be able to predict the consequences of any scheduling decisison. If some task

52

A Local Scheduling Algorithm for MaSHReC

cannot be guaranteed within its timing constraints, the system must notify
this fact in advance, so that alternative actions can be planned in time to
cope with the event.

53

A Local Scheduling Algorithm for MaSHReC

54

Bibliography

Bongaerts, L. (1998). Integration of Scheduling and Control in Holonic
Manufacturing Systems. Ph. D. thesis, PMA /K.U. Leuven.
Develops shop floor control algorithms based on the notion of holonic man-
ufacturing systems.

Dussa-Zieger, K. (1998). Model-Based Scheduling and Configuration of
Heterogeneous Parallel Systems. Ph. D. thesis, University Erlangen-
Niirnberg.

Studies the problem of scheduling in heterogeneous multiprocessor systems.
Uses and implements heuristic algorithms based on genetic algorithms and
tabu search.

El-Rewini, H. and H. Ali (1995). Scheduling of Conditional Branches in
Parallel Program. Journal of Parallel and Distributed Computing 24,
41-54.

Fidge, C. (1998, January). Real-Time Schedulability Tests for Preemptive
Multitasking. J. of Real-Time Systems 14(1), 61-93.
A tutorial acting as a guide to the major schedulability tests available for
preemptive multi-tasking applications.

Gou, L., T. Hasegawa, P. Luh, S. Tamura, and J. Oblak (1994, Oc-
tober). Holonic Planning and Scheduling for a Robotic Assembly
Testbed. In Proc. of the Rensselear’s fourth International Conference
on Computer Integrated Manufacturing and Automation Technology,
New York. Rensselear Polytechnique Institute.

Applies the holonic concept to a simple robotic assembly testbed. Establishes
cooperation mechanisms for planning and scheduling among holons based on
an adaptive consistency algorithm and the Lagrangian relaxation technique.

Kédar, B., L. Monostori, and E. Szelke (1997). An object-oriented
framework for developing distributed manufacturing architectures. In
L. Monostori (Ed.), Proc. of the Second World Congress on Intelli-

BIBLIOGRAPHY BIBLIOGRAPHY

gent Manufacturing Processes and Systems, Budapest, Hungary, pp.
548-554.

Miérkus, A., T. Kis, J. Vancza, and L. Monostori (1996). A market ap-
proach to holonic manufacturing. CIRP Annals 45(1), 433-436.
Introduces a market mechanism for coordinating the activities of intelligent
agents that pursue their own interest by operating under bounded rationality
in a changing, hardly predictable environment.

Maérkus, A. and J. Vancza (1996, September). Are manufacturing agents
different? In S. B. S. Albayrak (Ed.), Proc. of the European Workshop
on Agent-Oriented Systems in Manufacturing, Berlin, Germany, pp.
86—103. Daimler-Benz AG and T.U. Berlin.
outlines a prototype of an order-processing and scheduling system that has
been built on a market mechanism.

Moriwaki, T., N. Sugimura, Y. Martawirya, and S. Wirjomartono (ASME
1992). Production scheduling in autonomous distributed manufactur-

ing system. Quality Assurance Through Integration of Manufacturing
Processes and Systems PED-Vol. 56, 175-186.

Ramos, C. (1996). A Holonic Approach for Task Scheduling in Manu-
facturing Systems. In Proc. of the IEEE International Conference on
Robotics and Automation.

Ramos, C. and P. Sousa (1996, September). Scheduling Orders in Man-
ufacturing Systems using a Holonic Approach. In S. B. S. Albayrak
(Ed.), Proc. of the European Workshop on Agent-Oriented Systems in
Manufacturing, Berlin, Germany, pp. 80-85. Daimler-Benz AG and
T.U. Berlin.

Presents an approach to resource allocation in holonic manufacturing based
on the contract net protocol.

Sousa, P. and C. Ramos (1997). A Dynamic Scheduling Holon for Man-
ufacturing Orders. In L. Monostori (Ed.), Proc. of the Second World
Congress on Intelligent Manufacturing Processes and Systems, Bu-
dapest, Hungary, pp. 542-547.

To6nshoff, H. and M. Winkler (1995). Shop Control for Holonic Manufac-
turing Systems. In Proc. of the 27th CIRP International Seminar on
Manufacturing Systems, Michigan, USA, pp. 329-336. Ann-Arbor.

Véancza, J. and A. Mérkus (1998). Holonic manufacturing with economic
rationality. In E. W. G. on IMS & EPFL (Ed.), Proc. of the Furopean

56

BIBLIOGRAPHY BIBLIOGRAPHY

Workshop on Intelligent Manufacturing Systems (IMS-EUROPE-98),
Lausanne, Switzerland, pp. 383-394.

57

BIBLIOGRAPHY BIBLIOGRAPHY

58

Chapter 5

A Distributed Scheduling
Algorithm for MaSHReC

Chapter 3 and 4 introduced the model and local scheduling scheme of
MaSHReC respectively. It is the purpose of this chapter to study the
scheduling problem for distributed manufacturing systems underlying
real-time constraints. The investigation of recent distributed schedul-
ing techniques and of the relevant literature of distributed real-time
scheduling schemes is a significant part of this chapter. Following, the
scheduling methodology is developed and implemented in a prototyped
manufacturing cell. The performance of the proposed scheduling algo-
rithm is analyzed via simulation sutdies.

A Distributed Scheduling Algorithm for MaSHReC

5.1 Traditional Scheduling Theory vs RT Schedul-
ing Theory

The scheduling theory of real-time systems addresses the problem of meeting
the specified timing requirements. Satisfying timing requirements of real-
time systems demands the scheduling of system resources according to some
well-understood algorithms so that the timing behaviour of the system is
understandable, predictable, and maintainable. Scheduling theory is not
only restricted to the study of real-time systems, it also arises in the study
of manufacturing systems, transportation systems, process control systems,
and so on. However, it is important to realize that real-time scheduling
problems are different from the scheduling problems usually considered in
areas of operations research (Stankovic and Ramamritham 1993). The most
operations research distributed scheduling problems consider a fixed system
having completely specified and static service characteristics. The goal is
to find optimal static schedules that minimize the response time for a given
task set. Such algorithms must be based on heuristics, since these scheduling
problems are NP-hard. The most real-time systems negligates the goal of
traditional operations research problems. The goal is to meet the deadlines
for a given task set. The system is dynamic, requiring on-line, adaptive
scheduling algorithms. The scheduling problem in its general form is also
NP-hard.

Therefore, the emphasis in this chapter is on heuristic algorithms which
provide hard real-time constraints for periodic tasks and firm real-time con-
straints for aperiodic tasks.

5.2 Related Work

An overview of scheduling solutions for HMS was presented in Section 4.2
page 44. Consequently, it was shown that these algorithms are not applica-
ble to the approach presented in this thesis. Many distributed scheduling
algorithms have been proposed for traditional distributed systems. Most re-
search on scheduling in traditional distributed systems is restricted to load
balancing algorithms (Casey 1981), (Eager et al. 1986), (Livny and Melman
1982), (Stankovic 1984), (Stankovic 1985a), (Stankovic 1985b), (Stankovic
and Mirchandaney 1986), and (Shirazi et al. 1995). Most of the load bal-
ancing algorithms do not consider timing constraints of tasks and cannot be
applied to real-time systems (Stankovic and Ramamritham 1988b).

A considerable research effort has been conducted in the area of real-time

60

A Distributed Scheduling Algorithm for MaSHReC

distributed scheduling over the last three decades. Almost all real-time dis-
tributed scheduling algorithms in the literature are based on heuristics. In-
stead of presenting a detailed survey of the research on real-time distributed
systems, a brief overview of all relevant surveyed contributions is depicted
and presented in a tabular structured form in Figure 5.1' page 62, thus
allowing the reader to get an overview of the literature and to establish a
comparative study among the different problems addressed in the literature
and the problem faced in this chapter. In addition, a brief overview and
commentary of the investigated literature is presented in the bibliography
at the end of the chapter. However, because the scheduling scheme pre-
sented in this chapter is derived from the focused addressing and bidding
techniques proposed by Ramamritham and Stankovic (1984) and Stankovic
and Ramamritham (1988b), a distinction of these two contributions with
the one presented in this chapter is proposed in the following.

1. Application area. An important property of a scheduling technique
is its application area. While the scheduling scheme presented by Ra-
mamritham and Stankovic (1984) and Stankovic and Ramamritham
(1988b) finds its application in real-time operating systems, the heuris-
tic scheduling described in this chapter is applied to real-time produc-
tion planning and control systems.

2. Structure of the system. The scheduling technique developed by
Ramamritham and Stankovic (1984) and Stankovic and Ramamritham
(1988b) works on loosely coupled distributed systems. The heuristic
presented in this chapter inherits its structre from the model developed
in Chapter 5.7.

3. Changeover time cost. Although the distributivity of the schedul-
ing problem is the same, the costs of changeover time and possible

!The references in the first column of Figures 6.1 and 6.2 are composed as follows:
when the publication is written by a single author, the reference is composed of the first
3 letters of his family name followed by the year of publication. When the publication is
written by more than one author, the reference is the composed of the first letter of the
family names of the authors followed by the year of publication.

The abbreviations in the first line of the tables refer to the following terms: sched.:
scheduling, alg.: algorithm, PT: Periodic Task, ST: Sporadic Task, AT: Aperiodic Task,
Com.: Communication, CST: Context Switch Time, Int.: Integer, par.:parameters, per.:
periods, SM: Shared Memory, DM: Distributed Memory, Ind.: Independent, Prec. Cons.:
Precedence Constraints, JC: Jitter Control, RM: Resource Management.

The abbreviations in the rest of the table refer to the following terms: D: distributed, U:
uniprocessor, M: multiprocessor, H: hard, S: soft, Dy: Dynamic, Fi: fixed

61

A Distributed Scheduling Algorithm for MaSHReC

X X X X aj 1oz

1039

aj 1002 104V

aj Looz | LOISLANVHS

X aj 0002 00SY

X W‘a 000z ooamad

X n'aj 666} 6688

aj 866l 86711

X a| 8661 86d9M!

X W‘a| 8661 86HV

X aj 166} 160048

X aj Le6l L6vSd

X a) 9661 9615

H W'a se6l S6NY

W'} 5661 G6H

X aj 66l 66Sd

X aj 5661 G64TH

H aj se6l S6SV|

H Q5661 66404

aj 66l G611

aj ¥661 63l

aj v661 7601

aj ¥661 veiel

aj v66l 6198

@) £661 £688]

aj 66l €659

S W'aj 166} 1648

X Aa X |[S X n‘a| 686} 68INL]

X X {X XX X d] 686} 6878

peo; |wy|or|suog [syser (wa|ws| fou |ued | ued [o< |o=| uond |uopdwe | swn |1v|LS|.1d |oun [auy | ‘Ble | "payos | -payos | uuoy | teap S89UBIRNRY
-19AQ 2a1d | “pu| -olid | Ju| |'payos [189|189 | -weaid | -aig | ‘woy -uQ [-4o |'mag | aiqeo | opsunay | -jeid

| oN -Ipaid

Figure 5.1: Real-time distributed algorithms review

62

A Distributed Scheduling Algorithm for MaSHReC

preemption of tasks in a Production Planning and Control System are
significantly higher than in real-time operating systems.

4. Transportation time cost. While the algorithm treated by Ra-
mamritham and Stankovic (1984) and Stankovic and Ramamritham
(1988b) considers communication overhead due to the control software,
the algorithm presented in this chapter should additionally account for
parts transportation time overhead. It should be noted that the dom-
inant factor for scheduling in a production system is the machinery.
Consequently, transportation time significantly influences timing con-
siderations.

5. Local guarantee routine. The guarantee routine presented by Ra-
mamritham and Stankovic (1984) and Stankovic and Ramamritham
(1988Db) is extended to include the schedulability test developed in
Section 4.6 page 50.

The reader should additionally note that according to the literature investi-
gation presented in Figure 5.1, no real-time distributed scheduling algorithm
accounts for changeover time costs.

5.3 The Structure and Behaviour of the Cell Co-
ordinator Holon

Each cell in MaSHReC has a Cell Coordinator Holon. One function of
the cell coordinator Holon is the local scheduling of the manufacturing cell
(please refer to Section 4.6 page 50). A set (possibly empty) of preplanned
parts exits at each cell. Aperiodic parts may arrive at any cell in the man-
ufacturing system. When a new part arrives, the Cell Coordinator Holon
checks whether the part can be scheduled at that cell so as to finish before
its deadline; if so, the part is guaranteed. Otherwise, the Cell Coordina-
tor Holon of the Cell interacts with Cell Coordinator Holons of other cells,
using a scheme that combines bidding and focused addressing, in order to
determine whether the part can be sent to be scheduled. Upon arrival at
that cell, another attempt is made to schedule the part there. Eventually
the part either gets guaranteed and executed or is not guaranteed.

While preplanned parts are guaranteed parts, aperiodic parts, after they
arrive, may or may not be guaranteed. However, once guaranteed, they will
definitely meet their deadlines.

The structure of the Cell Coordinator Holon is composed of a

63

A Distributed Scheduling Algorithm for MaSHReC

e local scheduler,
e bidder, and a
e dispatcher.

Their functions are discussed next.

5.3.1 Bidder and local scheduler

Parts may arrive directly at a cell (aperiodic parts) or at the start of their
release time (preplanned parts) or as a result of the interaction between Cell
Coordinator Holons of different cells. Parts arriving at a cell are handled
by the local scheduler and may or may not cause preemption. Conditions
under which preemption is permissible are derived below.

The local scheduler first calls the guarantee test provided in Section 4.6
page 50 in order to guarantee the part locally. If it is guaranteed, then it
is stored in the input buffer. Guaranteed parts are dispatched sequentially
according to Earliest Deadline First algorithm.

If the part is not guaranteed locally, it is handled by the bidder. The
bidder is the component that is involved in the distributed aspect of parts
scheduling. The bidder part is the subject of section 5.5.

5.3.2 The dispatcher

It is the dispatcher part that determines which of the guaranteed preplanned
parts and aperiodic parts is to be executed next. As mentioned in section 4.6,
the EDF is optimal in the sense that it can achieve a schedulable utilization
equal to 1. In our scheme, preplanned parts are produced according to the
EDF scheme. It should be mentioned that our use of EDF on a single cell
does not guarantee an optimal schedule of the manufactruing system as a
whole.

The dispatcher’s action are simple: whenever a part completes, the dis-
patcher is invoked, and it selects the next part with the earliest deadline for
execution. The input buffer is ordered according to EDF. The run-time of
the dispatcher is part of the processing time of every part.

64

A Distributed Scheduling Algorithm for MaSHReC

5.4 The Data Structure of the Cell Coordinator
Holon

For the purpose of scheduling, information on preplanned parts, such as their
deadlines and computation times, is maintained in a data structure called
the Preplanned Part Table (PPT). During the operation of the system the
guarantee algorithm uses the PPT in conjunction with the concept of a
surplus to ascertain whether a aperiodic part can be guaranteed. Surplus is
derived from information in the System Part Table (SPT). Both SPT and
the surplus are described below.

5.4.1 The system part table

Each cell maintains an SPT for all local preplanned, aperiodic, and aperiodic
high priority parts guaranteed at any point of time. In the SPT, there is one
entry per part which contains the part’s arrival time, its latest start time,
deadline and computation time. All but the latest start time are inputs.
Entries for parts that have already arrived are ordered according to their
deadlines. Note that parts may arrive from various sources, and different
parts may have the same arrival time.

To compute the latest start time of a part with deadline D and, all
preplanned parts with deadlines greater than or equal to D are ordered
aconding to the decreasing priority. The latest start time is determined
by assuming that parts are scheduled to execute just in time to meet their
deadlines. For example, if the first part on the list with priority R1 has
a computation time C1 and a deadline D1, it has a latest start time of
D1 — C1. Suppose the part with priority R2, computation time C2 and
deadline D2. If D2 is greater than D1 — C1, then the part has a latest start
time of D1 — C'1 — C2 , otherwise D2 — C'2. In this manner, latest start
times are calculated for every guaranteed parts.

5.4.2 Surplus

Clearly, an aperiodic part can be guaranteed to execute at a cell only if the
surplus production time at that cell, between when the part arrives and its
deadline, is greater than the processing time requirement for the part. Thus,
we are interested in surplus with respect to the part about to be guaranteed
or rejected. Surplus, then, is defined as the amount of processing time
available on a cell between the time of arrival of the new unguaranteed part
and its deadline.

65

A Distributed Scheduling Algorithm for MaSHReC

While surplus is not explicitly calculated for guaranteeing local parts,
surplus information is implicitely taken into account during the computation
of the latest start times for such parts: only if the latest start time is greater
than the arrival time of the part, the part is guaranteed. Surplus is computed
explicitly while responding to a request for bid (see section 5.5).

5.4.3 The guarantee routine

The guarantee routine local to a cell is invoked to determine if there is enough
production time to execute a newly arriving part before its deadline. An
aperiodic part can be guaranteed only after ascertaining that guaranteeing
a part does not jeopardize previously preplanned parts. If the aperiodic
part cannot be guaranteed locally, the part becomes a candidate for bidding
and/or focused addressing (see section 5.5). The guarantee routine uses
information in the PPT and SPT. Recall that each entry in the SPT contains
an arrival time, a latest start time, a deadline, and a processing time. Note
that the guarantee routine is coded assuming that before it is called, the
SPT has been updated to reflect the current state of the cell.

5.4.4 Considerations of time overheads in scheduling

One of the prime motivation for the above separation of scheduling activity
among various scheduling parts is to take into account the time spent on
scheduling. Although the control software in manufacturing system is not
a dominant factor, especially when compared to the mechanical machinery
overheads such as transportation time and changeover time considerations,
but it is unavoidable to consider it in manufacturing systems underlying
hard real-time constraints.

Aperiodic parts are to be examined soon after they arrive. But inter-
rupting a part being produced to guarantee a newly arriving part might
result in the running part missing its deadline. This is solved as follows:
after the production of the next part to be produced starts, the check rou-
tine checks if there is sufficient surplus such that running the bidder or the
local scheduler, after preempting the newly dispatched part, does not result
in guaranteed parts missing their deadlines. If the above is true for the
bidder (local scheduler), then the check routine sets the invoke bidder flag
to true. If a part arrives from another cell that requires the attention of the
bidder, and the invoke bidder bid is set, then the currently running part is
preempted and the bidder is executed. If instead, a part arrives locally and

66

A Distributed Scheduling Algorithm for MaSHReC

the invoke local scheduler flag is set, then the currently part being produced
is preempted and the local scheduler part is executed.

5.5 Distributed Part Scheduling

Cell Coordinator Holons are responsible for aperiodic parts that cannot be
scheduled on that cell itself. It interacts with the schedulers on other cells
in an attempt to find a cell that has sufficient surplus to guarantee the part.
This interaction is based on a scheme that combines focused addressing and
bidding (Smith 1980).

5.5.1 The focused addressing scheme

Focused addressing utilizes system surplus information to reduce overheads
incurred by bidding in determining a good cell to send a part to. It is
described in the following.

A cell, before sending request for bids (RFB), uses the surplus informa-
tion about other cells in the system to determine if a particular cell has a
surplus which is significantly greater than the processing time of the new
part, which cannot be guaranteed locally. Such a cell has a high probability
of guaranteeing this new part, and hence the new part can be sent directly
to that cell.

The following procedure is executed to determine the appropriate cell
for focused addressing: Estimate the time ART when the part will arrive
at the selected cell. If the estimated surplus of that cell, between ART
and the deadline D of the part, is FP times the processing time C of the
part, then the part is sent to that cell. (The computation of ART and of
the surplus between ART and D will be described subsequently, when the
bidding scheme is presented. FP is an adaptive parameter used in focused
addressing.) If a number of cells satisfy this requirement, one of them is
chosen randomly. The chosen cell, refered to as the focused node, uses the
guarantee routine to check if the arriving part can be guaranteed there. If
there is no focused cell, then the bidding scheme is invoked. Also, should
the focused cell fail to guarantee the part, and if time considerations permit,
the bidding scheme can be invoked.

Rather than invoking bidding only when use of focused addressing fails
to guarantee the part, we invoke bidding while communication with the
focused cell is in progress. This should increase the probability of parts
being guaranteed. In this scheme, when a cell sends a part to a focused cell,

67

A Distributed Scheduling Algorithm for MaSHReC

it also sends RFB messages to other cells with an indication that bids should
be returned to the designated focused cell. If the focused cell is unable to
guarantee the transferred part, it chooses a cell to send the part to based
on bids sent by the bidding cells.

To facilitate this approach to distributed scheduling, every cell has to
keep track of the surplus of other cells. Towards this end, the percentage of
time during the next window is requested for preplanned parts of the same
cell-type. (Window is a system parameter used in the estimation of schedul-
ing delays, surplus, etc. See section 5.6). In addition surplus information is
returned on messages that are exchanged in the bidding process. It should
be pointed out that given the delays involved in message transmission, such
surplus information will be outdated by the time it is received. Hence, the
algorithm utilizes this information only to estimate the surplus of cells.

The following subsections examine the details of the bidding scheme.

5.5.2 The bidding scheme

Cells making bids do not reserve resources needed to execute the part for
which they are bidding. When a part arrives at a cell as a result of its
bid being accepted, the part is handled as though it arrived locally. It is
possible that the cell is unable to guarantee the part since the cell’s surplus
has changed since it sent the bid. This can happen due to the arrival of
parts as a result of previous bids.

A number of factors that affect bidding require estimations, for exam-
ple, transportation delays, machine requirements of future parts, etc. In
this section, we describe the bidding approach, assuming that the needed
estimates are available. In the next section, we show how these estimations
can be made.

We now describe the different phases of the bidding process in detail.
The main functions of the bidder component on a cell are: sending out
request for bids for parts that cannot be guaranteed locally, responding to
the request for bids from other cells, evaluating bids, and responding to part
awards.

5.5.3 Request for bids

For a part that cannot be guaranteed locally, a decision is made as to whether
to transmit an RFB. This decision is based on calculating an earliest possible
response time (FR) and a deadline for response, (DR). ER takes into account
the fact that an RFB is produced on a remote cell and that a two-way

68

A Distributed Scheduling Algorithm for MaSHReC

communication is involved with the bidder.
Hence,

ER = Current_time + Processing_timep;qder

+(2 * Worst_Comm_delay_per_message) (5.1)

where
Processing timey;qqer = Processing time of the bidder, and
Worst_Comm_delay_per_message) = Worst communication delay for
control message such an RFB or a bid.

DR takes into account the fact that after DR elapses, there should be
sufficient time for

1. the bidder part to evaluate the incoming bids and determine the best
bidder,

2. the part to be sent to the best bidder cell,

3. the part to be guaranteed by the local scheduler at the best bidder
cell,

4. the machine to be prepared for producing the part, and

5. the part to be produced and completed before its deadline.

DR = D — Processing_timep;qqer
—EST(Transp-delay_for_the_part)
—2 x (Changeover_time_for_the_part)

—Processing_timerocal_scheduler — C (5.2)

where
EST (Transp_delay_for_the_part) = Average transportation delay for
transporting a part,
Changeover time_for_the_part = Changeover time for producing
the part, and
Processing timeyocal_scheduler = Processing time of local scheduler

If ER is greater or equal to DR, then there is no need to transmit an
RFB. If ER is less than DR, then an RFB will be broadcast to all cells of

69

A Distributed Scheduling Algorithm for MaSHReC

the same type. The RFB message itself contains the following information:
D, C, current time, and DR.

One way to reduce the communication overheads due to bidding is to
send RFB’s only to those cells which have a high probability of responding
to the request. Such cells can be identified by using the surplus information
about other cells.

Before the RFB is actually sent, the algorithm calculates the time at
which to begin bid evaluation, Timep;q_¢ypqr, Where

Timepig_evar = Current_time
+EST(Response_time_for_RF Bs) (5.3)

where
EST (Response_time_for_RF Bs) = estimated delay between transmis-
sion of an RFB and the arrival of a bid.

If Timepiq_evar 18 less than DR, then the requesting cell waits until
Timep;q_eva; before evaluating bids. However, if Timep;q_eva; 1S greater than
or equal to DR, then we arbitrarily let Timep;q_cvay = (ER + DR)/2, with
the hope that at least one reply arrives in time. Information about the part
as well as the T'imes;q_cvq 18 placed in the wait_for_bid_queue.

5.5.4 Bidding in response to RFBs

The bidder first estimates if its response will reach the requestor before the
deadline for response DR. It proceeds with further actions on the request
for bid only if the time of response plus the communication delay for the
response is less than the indicated deadline for response.

Once a cell decides to respond, it first computes ART, the estimated
arrival time for the part, in case the cell is awarded the part. ART is one of
the three components of the bid. Computation of ART is done as follows:

ART = Current_time
+Worst_Comm_delay_per_message
+EST(Bid W ait)
+EST(Transp_delay_for_the_part)
+EST(LS Wait) (5.4)

where

70

A Distributed Scheduling Algorithm for MaSHReC

EST(Bid_Wait) = the estimated delay in processing a returned bid,
and
EST(LS_Wait) = the estimated wait time experienced by a transported
part at its new cell before it is either guaranteed or
rejected.

The second component of the bid is the production time surplus at this
cell between the estimated arrival time, ART, and the parts deadline D. We
call this SARTD. The surplus information takes into account the following.

1. Future instances of preplanned and guaranteed aperiodic parts: this
ensures that guaranteed parts are not jeopardized.

2. Processing time needed for parts that may arrive as a result of previous
bids: this ensures that cells requesting bids are aware of other bids by
a cell and hence minimizes the probability of a cell being awarded
parts with conflicting requirements or being awarded too many parts
creating an unstable situation.

3. Surplus resulting from parts that do not execute to their worst case
processing time.

While accurate information is available concerning 1., information needed
for the second item is estimated based on the past behaviour of the cell.

More precisely, SARTD is computed as follows:

Let EST(Production_time_local _between_ART _and_D)
= estimated production time required by local parts that
execute on the cell between ART and D.
Let EST(Production_time_bid_between_ART -and_D)
= estimated production time required by parts that arrived
due to bidding and that execute on the cell between
ART and D
Then

SARTD =
((D — ART) = (1 — Percent_pre_planned_parts))
—[(EST (Production_time_local _between_ART _and_D)
+EST (Production_time_bid_between_ART _and_D))
x EST (Part_processing_time_ratio)] (5.5)

71

A Distributed Scheduling Algorithm for MaSHReC

where

Percent_pre_planned_parts = the percentage of production time required
by preplanned parts between ART and D, and

EST(Part_processing_time_ratio) = the average value for the ratio (ac-
tual production time used by a part / Worst case production time required
by that part).

Finally , if SARTD is less than C', then no bid is made since the surplus is
not efficient. If SARTD is greater than or equal to C', then a bid is returned
with the information, ART, SARTD, and an estimation of how long a new
part transported to to this cell will have to wait before it is processed for a
possible guarantee.

5.5.5 Bid processing

Bid processing is carried out by the cell that originally sent out the request
for bids. A bid part waits for bids returned in response to an RFB until
either

1. required minimum number of bids are received (a tunable system pa-
rameter)

2. Timebz-d_ewl .

Whether one or both of these factors is used is specified by a tunable system
parameter. As soon as conditions 1 or 2 is met, and if any bids have been
received, the evaluation of the received bids is started. For each bidding cell,
the algorithm computes ETA, the estimated time of arrival of the part at
the bidder’s cell. For each bidder it estimates SETAD, the surplus between
ETA and D using the following formula:

(5.6)

SETAD = SARTD x (D _ ETA)

D — ART

If there is at least one bid whose SETAD is greater than or equal to C,
then the bidder part chooses the one with the greatest SETAD as the best
bid and the part is sent to the cell that sent the bid. If for all bids, SETAD
is less than C, then the bid processor part waits for more bids until DR.
For each new bid, if SETAD is greater than C, then the part is immediately
sent to the bidder cell. The identity of the second best bidder, if any, is also
communicated to the best bidder (see the next subsection).

One final note about the information sent on bids: a cell utilizes this in-
formation to keep track of the surplus in other cells. This is used for sending

72

A Distributed Scheduling Algorithm for MaSHReC

RFB to cells with high surplus and in focused addressing. In response to a
RFB for a part, a bidder send the estimated arrival time and the estimated
surplus between the arrival time and the part’s deadline. If a message does
not respond to an RFB, it is assumed that it does not have sufficient sur-
plus. In reality, a cell may not have sent its bid because it estimated that
its bid would not reach the requester before the deadline for response. In-
formation received via bids is bound to be fragmented, and hence, a cell, if
needed, utilizes information about available free times sent periodically by
other cells.

5.5.6 Response to part award

Once a part is awarded to a cell, the awardee cell treats it as a part that
arrived locally at the cell and takes actions to guarantee it. If the part
cannot be guaranteed, the cell can request for bids and determine if some
other cell has the surplus to guarantee it. However, given that the part
was sent to the best bidder and that the part’s deadline will be closer than
before, the chances of finding another cell with surplus are small. Hence,
the decision is made to send not only the part but also the identity of the
second best bidder to the best bidder: if the best bidder cannot guarantee
the part, then, should time considerations permit, it sends the part to the
second best bidder, if any. Otherwise, the part is rejected.

5.6 Estimation Techniques

This section shows how estimates used in the previous section are calculated
using exponential smoothing.

Given a set of data {y1,y2, ... ,¥n}, exponential smoothing transforms
this set into the smoothed data {Y7,Y5, ... ,¥,} by means of a weighted
average with exponentially decreasing weights. If Y;, is the smoothed value,
then we obtain the next smoothed value Y,,11 by means of the relation

Yoii =Y +ax (Yyme1 — Ym)
=a*xYpy1 + (1 —a)*Y,
form =0,1,2,...n;.

Thus, the current smoothed value is an interpolation between the pre-
vious smoothed value and the current observation, where « controls the

73

A Distributed Scheduling Algorithm for MaSHReC

closeness of the interpolated value to the most recent observation and lies
between 0 and 1.

Exponential smoothing is a simple and efficient forecast method because
of its weighting process. The weights given to previous values are not equal;
instead, they decrease with the age of the data. Since exponential smooth-
ing relies on only two windows of data (the last period’s actual value and
the forecasted value for the same period), it minimizes the data storage
requirements.

For calculating the estimates used in the precedent section using expo-
nential smoothing, time is divided into time slots. A window is formed by
five consecutive time slots. As time progresses, the window is moved, i.e.,
when the current time indicates the end of a time slot, the window is moved
to occupy the most recent five time slots. Information such as the delay
in processing bids (used to compute EST (Bid_wait)), is gathered for each
time slot. The cumulative information in the time slots forming a window
is used to make the various estimations described below.

5.6.1 EST(Bid_wait)

To calculate the estimated bid wait, delays invoked in processing bids are
gathered. Window_bid_wait is computed to be the average bid_wait for bids
received in the most recent window. The new value of EST(Bid_-wait) is
computed using its current value and the value of Window_bid_wait via
exponential smoothing, i.e.,

New_EST(Bid-wait) = (a x Window_bid_wait)
+[(1 — @) * EST(Bid_wait)] (5.7)

5.6.2 EST(LS_wait)

EST(LS -wait) is the estimation of how long a transported part waits before
it is processed by a local scheduler part. This wait time is averaged with pre-
vious wait times in the same manner as described above for EST (Bid_wait),
and estimation of the wait time in the future is done by single exponential
smoothing.

5.6.3 EST(Response_time_for RFBs)

Let Threceive denote the time when a returned bid is placed in a queue await-
ing processing, Tseng be the time when the RFB for this bid was sent, and

74

A Distributed Scheduling Algorithm for MaSHReC

Turnaround_time = Treceive — Tsend- EST(Response_time_for RFBs) is the
average Turnaround_time in window. The average turnaround time is com-
puted over the past five time slots. Estimation is done via exponential
smoothing.

5.6.4 EST(Production_time_ local between ART and_D) and
EST(Production_time_bid_between ART and_D)

As seen in the last section, these are used to estimate the surplus between
the estimated arrival time of a part, ART, and its deadline D. To do this,
each cell maintains the following information:

PGLP = Production time required by Guaranteed Local Parts.

PGBP (Production time of Guaranteed Bidding Parts) = Production
time required by parts acquired by bidding and guaranteed

PFBP (Production time of Future Bidding Parts) = Production time
required by parts for which bids were sent out and may arrive in the future.

For the sake of clarity and better understanding, an example illustrating
the different steps of EST (Production_time_local _between_ART _and_D) com-
putations is presented in Figure 5.2.

PGLP, PGBP, and PFBP information is maintained in an array of time
slots. When a part is guaranteed, or a bid is sent, the production time of
that part is proportionally divided among all time slots that lie between its
ART and D so that it evenly affects all time slots which it overlaps. Refer
to steps (1) and (2) of Figure 5.2. Note that in step (2), the production time
of part 1, which is 2, is divided in two time slots of 1 production time unit.
The production time of part 2, which is 2 is divided in four time slots of 0.5
time units, etc.

A cell also maintains WPGLP, which is the sum of the PGLPs in the
previous five time slots. Refer to step (3) of Figure 5.2. Note that WPGLP at
time 5 is equal to 2, WPGLP at time 6 is equal to 2.5, etc.. WPGBP, which
is the sum of the PGBPs in the previous five time slots; and WPFBP, which
is the sum of the PFBPs in the previous five time slots. This information is
updated at the end of each time slot. Let

Percent_PGLP = —WPGLP (5.8)
window
. . W PGBP
Success_ratio_of _bids = WPFBP (5.9)

75

A Distributed Scheduling Algorithm for MaSHReC

ART1 D1 ART2 ART3 D2 D4 ARTS
™
1|2 3|4|5 6 7 8 9 10 1112 1314 1516 17 20 21 22 23 24 25 26 27 28 29 30
Part 1 Part 2 Part 3 Part 4 Part5
Production Production Production Production Production Time =4
Time =2 Time =2 Time=3 Time=3
ART1 pf ART2 ART3 D2 ART5 D5
(2) 11| [o5]05]05]05 111 0,50,5 0,9 0,5 0,50,50,5(0,5 0,
0,5 0,5/ 0,5 0,5 0,5
12 3 45 67 8 9 10 1112 1314 1516 17 20 21 22 23 24 25 26 27 28 29 30
Part 1 Part 2 Part3 Part4 Part5
Production - Production Production Production Production Time =4
Time =2 Time =2 Time =3 Time =3
Time 5(6 7] 8]---
3) WPGLP 2125 3|25|---
Percent-PGLP 2125]| 3 |23|..-
5[/ 5|1 5| 56

Figure 5.2: Tllustration example of the estimation technique
for local production time between ART and D

76

A Distributed Scheduling Algorithm for MaSHReC

Refer to step 3 of Figure 5.2 for the computation of Percent PGLP. EST (Percent PGLP)
and EST(Success_ratio_of_bids) are computed using single exponential smooth-
ing.
Let PGLP2 be the production time required between ART and D by
already guaranteed local parts. Then

EST(Production_time_local between_ART _and_D) =
max[EST (Percent_PGLP) x (D — ART), PGLP2] (5.10)

Let PGBP2 be the production time required between ART and D of
guaranteed parts which arrived via past bidding, and PFBP2 be the pro-
duction time needed between ART and D for parts for which bids were sent
out. Then

EST(Production_time_bid_between_ART _and_D) =
max[EST (Sucess_ratio-of bids) « PFBP2, PGBP2] (5.11)

5.6.5 EST(Part_processing _time ratio)

This is estimated to be the average of (actual processing time/worst case
processing time) of the parts that completed during the past window.

In all above estimations, we assume that the clocks on different cells are
synchronized. The only effect of slight asynchrony in the clocks will be that
the estimates will be slightly inaccurate. It should be noted that parts are
independent and are guaranteed only at the cell where they actually reside,
therefore, a cell can guarantee a part based solely on local information.
Hence asynchrony in the clock does not affect the guarantee algorithm itself.

5.7 Prototype Simulation

The following graphical simulation study is an attempt to analyze the algo-
rithm’s behaviour given the use of the local scheduling scheme developed in
Chapter 4 and the distributed scheduling scheme developed in this chapter.
Note that the simulation model applies the modeling techniques presented
in Chapter 3.

The simulation model consists of four manufacturing cells coordinating
with each other in order to execute periodic and aperiodic orders. Each
manufacturing cell consists of a machine, an input and output buffer. A

77

A Distributed Scheduling Algorithm for MaSHReC

cell coordinator holon at each cell is responsible for the local scheduling
of a manufacturing cell as well as the inter-cell coordination scheduling.
The Production Planning System (PPS) manager holon is responsible for
the off-line scheduling of orders and their communication to the cells. The
simulation model is represented in Figure 5.3, the following labels refer to
the following machinery and holons:

e Mach_Holl, Mach_Hol2, Mach_Hol3, and Mach_H ol4 are machines.

IB1, IB2, IB3, and IB4 are input buffers.

OB1, OB2, OB3, and OB4 are output buffers.

Cell_Coord_Holl, Cell_Coord_Hol2, Cell Coord_Hol3, and Cell Coord_Hol4
are cell coordinator holons.

PPS_Man_Hol is the PPS manager holon.

5.8 Performance Evaluation

In this section, the heuristic algorithm, which has been implemented to solve
the aperiodic control problem addressed in this thesis, is evaluated. Since no
control algorithm allowing aperiodic part scheduling in a production stage
and shift exists?, a comparison of the presented algorithm with other existing
algorithms is not possible. Still, the performance of this algorithm has to
be assessed.

The algorithm described in this chapter has been simulated on the 4-cells
prototype model proposed in Section 5.7, in order to compare the deadline
guarantee of tasks with different periodic and aperiodic loads.

The performance evaluation is based on a set of experimental simula-
tions:

e Since changeover time in production control systems is a dominant fac-
tor, the diagram of Figure 5.4 reveals the considered changeover time
costs compared to production time. Due to their considerable over-
head (up to an overhead approximately equal to production time),
changeover time costs involved in the proposed experimental simula-
tions are moderately realistic.

Literature investigations and publications of the author showed that the production
control scheduling problem of interest in this thesis is still not solved.

78

A Distributed Scheduling Algorithm for MaSHReC

S
&

AR

i

== =
Mach_Holl ~ 0B1 SystemPartT ableT outRFB quevel Mach_Hol2 0B2

cell_surplus1

olt WaitFoiBidQueue inRFB queue

Celf Coord_Hol2' SystemPartTable2 outRFBqueus2

'

+ cell_surplus2

M B

SetSystemTime OrderTable Source

| i)]
L
Mach_H

‘I—l .
o3

1B4 Mach_Hold 084
n plusS * uRFBR FAFBmd m
' endProdTime

SyStE"\Fa'lTaﬁ|ﬁ3 Wa\tFotB dQueued

inAFBqueue?
WaitFoiBidQueus2

‘localScheduler
" spPatPosd=3
.) * focusedzelsd *
cell_suplisd OutRFBqueued :
Cel_Coord_Hol3 inRFBqueued
: Cell_Coord_Hold’ .

SystemPartT abled WaitForBidQueued

Figure 5.3: Prototype simulation

79

A Distributed Scheduling Algorithm for MaSHReC

100% (@l

Y]

80%

//////////////////////////////////%2

D

N

60%

N
§
N
|
\
T
N
'
\
\
'
§
§:

40% Changeover Time

£ Production Time

20%

order8 |

0%

order1
order10

order3

order4
order12
order14

Tasks

Figure 5.4: Changeover time versus production time

e First, a set of periodic tasks are produced with a periodic machine
utilization of 0.66, 0.73, 0.9 and 0.41 for machine 1 of cell 1, machine
2 of cell 2, machine 3 of cell 3, and machine 4 of cell 4 respectively.
The experimental simulations of Figure 5.5 have established that all
periodic tasks meet their deadlines.

e In the second set of experiments, the effect of aperiodic tasks with a
total aperiodic machine utilization of 0.238 is investigated. Analogous
to the first set of experiments, the quality of solution is evaluated by
comparing the guaranteed deadlines. Figure 5.6 has established that
all tasks meet their deadlines.

e Furthermore, the proposed algorithm has been compared with higher
aperiodic loads, in order to show peak load conditions. With a total
aperiodic machine utilization of 0.412, Figure 5.7 shows that deadline
guarantee of all tasks is achieved. However, with a total aperiodic
machine utilization of 0.524, two aperiodic tasks miss their deadlines
as shown in Figure 5.8.

e Due to high changeover and tranportation time overheads, the algo-

A Distributed Scheduling Algorithm for MaSHReC

Time

Performance evaluation of periodic tasks

N) {L o {L X

S S < o < <

o‘b 4 o‘& o‘be' o‘be 0‘60 0‘60 o‘b 4 o‘b 4
Tasks

——D
RT

Figure 5.5: Performance evaluation of periodic tasks

Time

Performance evaluation of periodic and aperiodic
tasks (aperiodic task utilization = 23.8%)

ey b A
&\&\\\:\\\\;\\m\\\\w\\\\\w&\\w N\

9:51:50

T
. L &\

—e— Deadline

RT

9:50:24
9:49:41

o & o &

AN R LN SIS L
& O Q¥ Q7 © s O
& & & & & &S

&
S

Tasks

Figure 5.6: Performance evaluation of periodic and aperiodic

tasks with an aperiodic task utilization of 23,8%

81

A Distributed Scheduling Algorithm for MaSHReC

Time

Performance evaluation of periodic and aperiodic
tasks (aperiodic task utilization = 41,2%)

0:52:34
9:51:50 —e— Deadline
9:51:07 ~g AT
9:50:24 RT
9:49:41

A

© 0 40N B 0D 4 K
& & N A @ W s W
FFEEFLELFEILSS S

Tasks

Figure 5.7: Performance evaluation of periodic and aperiodic
tasks with an aperiodic task utilization of 41,2,8%

Time

Performance evaluation of periodic and aperiodic
tasks (aperiodic task utilization = 52,4%)

e
9:51:50 - .
9:51:07

—e— Deadline
~N\- AT

—\\v « » :"\\\\\\\\x\\\\\\\\\\\
\ e \\\\‘_—
8 \\\\\\\\\ \\\

9:50:24 RT
9:49:41
9:48:58
N H O 4N XN A S D
EANEC I A M. N A N AN)

Tasks

Figure 5.8: Performance evaluation of periodic and aperiodic
tasks with an aperiodic task utilization of 52,4%

82

A Distributed Scheduling Algorithm for MaSHReC

rithm would not perform better, when the aperiodic load is generated
by a large number of tasks with low production time.

83

A Distributed Scheduling Algorithm for MaSHReC

5.9 Contributions of the Chapter

The scientific contributions of this chapter can be summarized as follows:

e Review of Recent Distributed Scheduling Techniques

A brief review of distributed scheduling techniques in manufacturing
systems is provided. None of the techniques found in the literature
supports real-time considerations.

A Classification and Review of Real-Time Distributed Scheduling Lit-
erature

A relevant and structured overview of real-time distributed scheduling
theory is presented. The different algorithms are structured according
to the problem they solve and to the scheduling parameters which are
relevant for the real-time scheduling of manufacturing systems.

Development of a Distributed Scheduling Scheme for MaSHReC

A heuristic method, which solves the control problem for distributed
production systems, is developed. It uses a scheduling component local
to every node and a distributed scheduling scheme that is specifically
suited to hard periodic and firm aperiodic real-time constraints. Pre-
planned parts, aperiodic parts, scheduling overheads, communication
overheads due to scheduling, transportation overheads, changeover
time costs and preemption are all accounted for in the algorithm.

A Prototype Implementation and Performance Fvaluation of the Pro-
posed Scheduling Scheme

A prototyped manufacturing system model is presented. The perfor-
mance evaluation, via simulation studies, of the prototyped manufac-
turing system using the proposed scheduling scheme is analyzed.

5.10 Hypotheses Evaluation

Providing a scheduling policy allowing the production of periodic and ape-
riodic tasks in this chapter clearly validates hypotheses 3.

Hypothesis 3 On-line requests in a production system under hard real-time
constraints are aperiodic tasks to handle external events, which are usually
unpredictable. Allowing additional orders in the manufacturing environment
may lead to a high-level system utility.

84

Bibliography

Abdelzaher, T. and K. Shin (1995, December). Optimal Combined Task
and Message Scheduling in Distributed Real-Time Systems. In Proc.
of the Real-Time Systems Symposium, Pisa, Italy, pp. 162-171.
Presents an optimal algorithm for combined task and message scheduling in
distributed hard real-time systems. Uses a branch-and-bound technique to
find an optimal solution to the problem.

Altenbernd, P. and H. Hansson (1998). The Slack Method: A New Method
for Static Allocation of Hard Real-Time Tasks. Real- Time Systems 15,
103-130.

Presents and evaluates the Slack Method, a constructive heuristic for the
allocation of periodic hard real-time tasks to multiprocessor or distributed
systems.

Anderson, J. and A. Srinivasan (2000, June). Early-Release Fair Schedul-
ing. In Proc. of the EuroMicro Conference on Real-Time Systems,
Stockholm, Sweden, pp. 35-43. IEEE Computer Society Press.
Presents a variant of P-fair scheduling, the early-release fair (ERfair). ER-
fair differs from P-fair scheduling in that it has a lower average job response
times and run-time costs, particularly in a lightly-loaded systems.

Bate, I. and A. Burns (1999). A Framework for Scheduling in Safety-
Critical Embedded Control Systems. In Proc. of the 6th International
Conference on Real-Time Computing Systems and Apllications.
Presents a computational model that supports the reuse of legacy systems.
Develops timing analysis that features low pessimism and low computational
complexity.

Bestavros, A. and D. Spartiotis (1993, May). Probabilistic Job Scheduling
for Distributed Real-Time Applications. In Proc. of the First IEEE

Workshop on Real-Time Applications, New York, NY.
Describes a heuristic for the dynamic real-time scheduling in a distributed

BIBLIOGRAPHY BIBLIOGRAPHY

environment. When a task is submitted to a node, the scheduling software
tries to schedule the task locally so as to meet its deadline. If it fails, it tries
to locate another node where this could be done with a high probability of
success.

Bettati, R. (1994). End-to-End Scheduling to Meet Deadlines in Dis-
tributed Systems. Ph. D. thesis, University of Illinois at Urbana-
Champaign, Zrich.

Presents two algorithms for scheduling flow shops where tasks can be ser-
viced more than once by some processors. Describes a technique to schedule
flow shops that consist of periodic tasks and to analyze their schedulability.

Casey, L. (1981). Decentralized Scheduling. The Australian Computer
Journal 13(2).

Chiu, J.-F. and G.-M. Chiu (2001, December). Placing Forced Check-
points in Distributed Real-Time Embedded Systems. In Proc. of the
IEEE/EE Real-Time Embedded Systems Workshop (Satellite of the
IEEE Real-Time Systems Symposium,), London.

Presents a scheme for placing forced checkpoints in a distributed real-time
embedded systems so as to make all checkpoints useful for rollback recovery.

DiNatale, M. and J. Stankovic (1995, December). Applicability of Simu-
lated Annealing Methods to Real-Time Scheduling and Jitter Control.
In Proc. of the Real-Time Systems Symposium, Pisa, Italy, pp. 190—
199.
Introduces a scheduling approach, which minimizes jitter for periodic tasks
in distributed static systems. Presents a general framework consisting of an
abstract architecture model and a general programming model are .

Eager, D., E. Lazowska, and J. Zahorajan (1986, May). Adaptive Load

Sharing in Homogeneous Distributed Systems. IEEE Trans. on Soft-
ware Engineering SE-12(5), 662-675.
Uses the system decomposition technique to evaluate three types of load shar-
ing algorithms. This technique enables the entire system to be modeled in
terms of a single node, replying upon the conjecture that the decomposition
method is asymptotically exact as the number of nodes, N, becomes larger.
Concludes that any redistribution strategy was better than none, and that
simple policies were almost as effective as more complex ones.

Fohler, G. (1995, December). Joint Scheduling of Distributed Complex
Periodic and Hard Aperiodic Tasks in Statically Scheduled Systems.
In Proc. of the Real-Time Systems Symposium, Pisa, Italy, pp. 152—

86

BIBLIOGRAPHY BIBLIOGRAPHY

161.
Presents an algorithm for the joint scheduling of periodic and aperiodic tasks
in statically scheduled distributed real-time systems.

Hsueh, C.-W., K.-J. Lin, and N. Fan (1995, December). Distributed Pin-
wheel Scheduling with End-toEnd Timing Constraints. In Proc. of the
Real-Time Systems Symposium, Pisa, Italy, pp. 172-181.

Presents an end-to-end scheduling model for real-time distributed system
based on the pinwheel scheduling algorithm.

Larsson, E. (1994). The Scheduling Tool. Technical report ProVia-DoCs-
94204, Department of Computer Sytems, Uppsala University.
Presents an off-line scheduling tool that maps a set of process graphs onto a
particular system configuration. The tool accept as input process graphs of
the RED processes to be scheduled, together with a target system description,
and produces as output one schedule for each node executing RED processes.

Liu, J. W. S. and R. Ha (1995). Advances in Real-Time Systems (Sang H.

Song ed.)., Chapter 9, Efficient Methods of Validating Timing Con-
straints, pp. 196-220. Prentice Hall.
Presents worst-case bounds and efficient algorithms for determining how late
the completion times of independent jobs with arbitrary release times can be
in a dynamic multiprocessor or distributed system when their release times
and execution times may vary from one instance to another.

Livny, M. and M. Melman (1982, April). Load balancing in homogeneous

broadcast distributed systems. In ACM Computer Network Perfor-
mance Symposium, pp. 47-55.
Studies the probability that in a homogeneous distributed computing system,
a customer waits for service at one node while at least one node is idle. Shows
that for a wide range of system traffic intensity, this probability is close to
one.

Martins, E., L. Almeida, and J. Fonseca (2001, December). Integrating
Traffic Scheduling and Schedulability Analysis in an FPGA-based Co-
processor. In Proc. of the IEEE/EE Real-Time Embedded Systems
Workshop (Satellite of the IEEE Real-Time Systems Symposium),
London.

Presents a dedicated coprocessor to support the traffic management in
the communication system. The coprocessor integrates both scheduling and
schedulability analysis functions.

Peng, D.-T., K. Shin, and T. Abdelzaher (1997, December). Assignment

87

BIBLIOGRAPHY BIBLIOGRAPHY

and Scheduling Communicating Periodic Tasks in Distributed Real-
Time Systems. IEEE Transactions on Software Engineering 32(12),
745-758.

Presents an optimal solution to the problem of allocating communicating
periodic tasks in a distributed real-time systems. The task system is modeled
with a task graph and are assigned to processing nodes by using a branch &
bound search algorithm.

Poledna, S., A. Burns, A. Wellings, and P. Barrett (2000, February).
Replica Determinism and Flexible Scheduling in Hard Real-Time De-
pendable Systems. IEEE Transactions on Computers 49(2), 100-111.
A method, called timed messages, to avoid the inconsistent order and timing
of replicated tasks in real-time distributed systems is presented. The major
advantage of timed messages is its efficiency and flexibility while guaranteeing
deterministic operation of replicated tasks.

Ramamritham, K. and J. Stankovic (1984). Dynamic Task Scheduling in
Hard Real-Time Distributed systems. IEEE Software 1(3), 65-75.
Deals with multiprocessor scheduling in hard real-time distributed systems.
Uses a uniprocessor scheme for local scheduling, and perform distributed
scheduling for tasks which are potentially subject to timing failures at run-
time.

Ramamritham, K., J. Stankovic, and W. Zhao (1989, August). Dis-
tributed Scheduling of Tasks with Deadlines and Resource Require-
ments. IEEE Transactions on Computers 38(8), 1110-1123.
Evaluates four algorithms for cooperation in a distributed real-time system.
They differ in the way a node treats a task that cannot be guaranteed locally.

Rhee, I. and G. Martin (1995, December). A Scalable Real-Time Synchro-

nization Protocol for Distributed Systems. In Proc. of the Real-Time
Systems Symposium, Pisa, Italy, pp. 21-27.
Proposes a distributed protocol for the synchronization of real-time tasks that
have variable resource requirements. The protocol is intended for large-scale
distributed or parallel systems in which processes communicate by message
passing.

Santos, J., E. Ferro, J. Orozco, and R. Cayssials (1997). A Heuristic
Approach to the Multitask-Multiprocessor Assignment Problem using
the Empty Slots Method and Rate Monotonic Scheduling. Real-Time
Systems 13, 167-199.

Presents a heuristic approach to the problem of assigning a set of preemptable
resource-sharing and blockable real-time tasks to be executed in a set of

88

BIBLIOGRAPHY BIBLIOGRAPHY

heterogeneous processors communicated through an interprocessor network.

Sha, L. and S. Sathaye (1993). Distributed real-time system design: Theo-
retical concepts and applications. Technical Report CMU/SEI-93-TR-
2 ESC-TR-93-179, Software Engineering Institute, Canergie Mellon
University.
Describes the use of generalized rate monotonic scheduling theory for the
design and analysis of a distributed real-time system.

Shirazi, B., A. Hurson, and K. Kavi (1995). Scheduling and Load Balanc-
ing in Parallel and Distributed Systems. New York: IEEE Computer
Society Press.

Smith, R. (1980, December). The Contract Net Protocol: High-Level
Communication and Control in a Distributed Problem Solver. IEEFE
Transactions on Computers C-29(12), 1104-1113.

Pioneers the research in communication among cooperating distributed
agents with the contract net protocol.

Stankovic, J. (1984, June). Simulation of Three Adaptive Decentralized
Controlled Job Scheduling Algorithms. Computer Network 8(3), 199
217.

Stankovic, J. (1985a, February). An application of bayesian decision the-

ory to decentralized control of job scheduling. IEEE Transactions on
Computers C-34(2), 117-130.
The delay in transferring state information and tasks makes it impossible for
a node scheduler to obtain the necessary data to take an optimal decision.
The Bayesian decision based algorithm tries to reduce uncertainty through
estimates based on information provided by the exchange of messages.

Stankovic, J. (1985b). Stability and Distributed Scheduling Algorithms.
IEEE Transactions on Software Engineering SE-11(10), 1141-1152.
Lists two scheduling methods. The first is adaptive with dynamic reassign-
ment, and is based on broadcast messages and stochastic learning automata.
The second method uses bidding and one time-assignment in a real-time
environment.

Stankovic, J., T. He, T. Abdelzaher, M. Marley, G. Tao, S. Son, and C. Lu
(2001, December). Feedback Control Scheduling in Distributed Real-
Time Systems. In Proceedings of the Real-Time Systems Symposium,
London, pp. 59-70.

Presents a framework (Distributed Feedback Control Real-Time Scheduling)
for developing software control algorithms based on a theory of feedback

89

BIBLIOGRAPHY BIBLIOGRAPHY

control to a distributed open system.

Stankovic, J. and R. Mirchandaney (1986, December). Using stochastic
learning automata for job scheduling in distributed processing systems.
J. of Parallel and Distributed Computing 3, 527-552.

Stankovic, J. and K. Ramamritham (1988a). Tutorial Hard Real-Time
Systems (J. A. Stankovic and K. Ramamritham ed.)., Paper: Schedul-
ing Algorithms for Hard Real-Time Sytems - A Brief Survey, pp. 150—
173. IEEE Computer Society Press.

Stankovic, J. and K. Ramamritham (1988b). Tutorial Hard Real-Time
Systems, Paper: Evaluation of a Flexible Task Scheduling for Dis-
tributed Hard Real-Time Systems, pp. 273-286. IEEE Computer So-
ciety Press.

Stankovic, J. and K. Ramamritham (1991, May). The Spring Kernel: A
New Paradigm for Real-Time Systems. IEEE Software 8(3), 62-72.
Implements and evaluates multiprocessor schedulers running on single, dedi-
cated nodes of small scale parallel embedded systems using a static heuristic
function, which may integrate timing, resource and preceding constraints.

Stankovic, J. and K. Ramamritham (1993). Advances in Real-Time Sys-
tems, Article: Misconceptions About Real-Time Computing, pp. 17—
25. IEEE Computer Society Press.

Sun, J. and J. Liu (1996, May). Synchronization Protocols in Distributed

Real-Time Systems. In Proc. of the 16th International Conference on
Distributed Computing Systems, pp. 38—45.
Focuses on distributed real-time systems that contain independent, periodic
tasks scheduled by fixed priority scheduling algorithms. Describes three syn-
chronization protocols together with algorithms to analyze the schedulability
of the system when these protocols are used.

Tia, T.-S. and J.-S. Liu (1995). Assigning Real-Time Tasks and Resources

to Distributed Systems. Special Issue of the International Journal of
Mini and Microcomputers 17(1), 18-25.
Presents a method for allocating periodic tasks where different tasks may
have different deadlines. Graph based heuristics, which attempt to minimize
interprocess communication and based on clustering and graph-bisection, are
used for task assignment.

Tindell, K. and J. Clark (1994). Holistic Schedulability Analysis for Dis-
tributed Hard Real-Time Systems. Microprocessing & Microprogram-
ming 40, 117-134.

90

BIBLIOGRAPHY BIBLIOGRAPHY

Performs an early work on an event-driven model for scheduling of distributed
systems. Analyses schedulability for distributed systems where tasks with
arbitrary deadlines communicate by message passing and shared data areas.
Uses periodic tasks for the first task in the transaction. Subsequent tasks are
triggered as sporadic tasks when the preceding task has been completed.

Tokuda, H. and C. Mercer (1989, July). Arts: A Distributed Real-Time

Kernel. In Operating Systems Review, Volume 23 of 3, pp. 29-53. ACM
Press.
Introduces a real-time object model and the integrated time-driven schedul-
ing model to develop real-time computing systems in a distributed environ-
ment. Describes the Advanced Real-Time Technology (ARTS) kernel and the
real-time toolset consisting of schedulability analyzer, Scheduler 1-2-3, and
the real-time monitor/debugger.

Wellings, A., L. Beus-Dukic, and D. Powell (1998, December). Real-Time
Scheduling in a Generic Fault-Tolerant Architecture. In Proc. of the
19th IEEE Real-Time Systems Symposium, Madrid, Spain.

Presents a real-time scheduling for Generic Upgradable Architecture for
Real-Time Dependable Systems (GUARDS). Uses an extended response-time
analysis to predict the timing properties of replicated real-time transactions.

91

BIBLIOGRAPHY BIBLIOGRAPHY

92

Chapter 6

Predictable Monoprocessor
Scheduling

The goal of this chapter is to improve the results presented in the
precedent, chapter, especially those dealing with the unpredictability
of heuristic mechanisms. To address the problem of predictabe aperi-
odic scheduling in the presence of hard periodic tasks is an important
challenge for MaSHReC. This is achieved upon the monoprocessor plat-
form of a production stage in MaSHReC by applying real-time server
algorithms. A survey of real-time server mechanisms is addressed. An
evaluation of dynamic server algorithms assists to find the appropriate
scheduling technique to be applied to MaSHReC. Furthermore, an ex-
tension of a server-based algorithm to include changeover time costs is
provided. The predictability of the system is proved through schedu-
lability analysis techniques.

Predictable Monoprocessor Scheduling

6.1 Predicatble Aperiodic Scheduling

Real-time manufacturing systems must be able to handle not only periodic
tasks, but also aperiodic tasks. Periodic tasks are used to implement off-
line pre-planned requests. While periodic tasks in real-time manufacturing
systems have hard deadlines, aperiodic tasks may have soft, hard or no
deadlines at all according to the priority of aperiodic requests.

When aperiodic tasks have hard deadlines, the goal of the system is to
allow the production of aperiodic tasks without jeopardizing the schedulabil-
ity of hard periodic tasks. A number of algorithms that solve this problem
in fixed priority systems can be found in the literature. Figures 6.1 and
6.2! state, among other real-time uniprocessor algorithms, the relevant al-
gorithms treating aperiodic tasks in fixed priority systems (Refer to the
algorithms with ?X”, ?S” or ”F” in the column ”"AT” and with ”F” in
the column ”Priority” of Figures 6.1 and 6.2). The same problem has been
solved in the context of dynamic priority systems (Refer to the algorithms
with the letter ”D” in the column ”Priority” of Figures 6.1 and 6.2 in order
to point to dynamic priority algorithms). A common approach to solve the
problem of aperiodic scheduling in real-time scheduling theory is the use of
servers. A server is a special purpose process in the system, whose capac-
ity is used to serve aperiodic requests. A server is usually scheduled by a
specific algorithm designed in such a way that periodic tasks do not miss
their deadline and at the same time, the machine is allocated to the server
as soon as possible, in order to maintain the deadline of aperiodic tasks.

!The references in the first column of Figures 6.1 and 6.2 are composed as follows:
when the publication is written by a single author, the reference is composed of the first
3 letters of his family name followed by the year of publication. When the publication is
written by more than one author, the reference is the composed of the first letter of the
family names of the authors followed by the year of publication.

The abbreviations in the first line of the table refer to the following terms: sched.: schedul-
ing, alg.: algorithm, PT: Periodic Task, ST: Sporadic Task, AT: Aperiodic Task, Com.:
Communication, CST: Context Switch Time, Int.: Integer, par.:parameters, per.: periods,
SM: Shared Memory, DM: Distributed Memory, Ind.: Independent, Prec. Cons.: Prece-
dence Constraints, JC: Jitter Control, RM: Resource Management.

The abbreviations in the rest of the table refer to the following terms: D: distributed, U:
uniprocessor, M: multiprocessor, PI: parallel identical, H: hard, S: soft, F:firm, Dy: Dy-
namic, Fi: fixed, DS: deferrable server, SS: sporadic server, PE: priority exchange, TBS:
total bandwidth server, ETBS: extended total bandwidth server.

94

Predictable Monoprocessor Scheduling

6.2 State-of-the-Art

A number of essential features characterizes the scheduling technique pre-
sented in this chapter. These are the uniform platform upon which the server
algorithm is executed, predictabilty of the control technique, task preemp-
tion, on-line execution, handling of periodic and aperiodic tasks, dynamic
priority of tasks, and context switch time considerations. Figures 6.1 and
6.2 provide a broad overview of relevant uniprocessor real-time scheduling
techniques. As shown in Figures 6.1 and 6.2, selected features attempted
for in this chapter are considered in the literature. However, a combination
of all features relevant for this chapter is not treated.

Furthermore, an important remaining problem, that distinguishes real-
time operating systems from production control systems, is to analyze the
effects of context switch operations on the real-time schedule and schedu-
lability analysis. Almost all the literature investigated considered no con-
text switch time overhead. However, a technique presented by Burns et al.
(1995) is capable of incorporating a non-negligible context switch cost into
the schedulability analysis. Unfortunately, these schedulability analyses are
based on the assumption that the cost for a context switch is constant and
independent of the underlying thread-invocation pattern (Jonsson 1998).

6.3 Server Algorithms Evaluation

This chapter addresses the problem of aperiodic scheduling of manufactur-
ing systems under hard real-time constraints including the novel feature of
integrating switch time overheads. As already mentioned, the use of servers
is a common approach in real-time systems theory to solve the problem of
aperiodic task scheduling. The main idea is to use a server, which is a peri-
odic task whose purpose is to service aperiodic requests as soon as possible.
A short description and evaluation of different server scheduling techniques
considered in the literature is given.

A Polling server (Shin and Chang 1995) is a periodic task with a fixed
priority level (usually the highest) and an execution capacity. The capacity
of the server is calculated off-line and is normally set to the maximum pos-
sible, such that the task set, including server, is schedulable. At run-time,
the Polling server is released periodically and its capacity is used to service
aperiodic real-time tasks. Once this capacity has been exhausted, execution
is suspended until it can be replenished at the server’s next release. The
Polling server will usually significantly improve the response times of soft

95

Predictable Monoprocessor Scheduling

ON

X X

H
X
X
X
X
X
X
H
X

» x x

X % X x

1V (LS |Lld[aulf |aul

sal
3ad
SS
sa

-UQ |-HO | ‘MO9S | 3]qe}d | dsHNSH

-Ipaid

2D D5D2DD>5D>D

=] v g § o e

Figure 6.1: Real-time uniprocessor algorithms evaluation

96

Predictable Monoprocessor Scheduling

Over-

Ind. | Prec.

Int.

par. | Per.| rity | SM|DM| Tasks| Cons.| JC| RM| load

=0 (>0

No

ption

>
>
> > >
> > > > > = X
> ic > [y = > >
>
> > <
<

emption

Com| Pre-

Predi-
Pla- | Heuristic| iy | Serv.| OFF-| O

Sooo9o>o5o0>5o53>58o05555552 55>

5EEEEYIEEERISIEERREREERE

References | Year | fom | sched. | sched, | alo. [line] line| PT [ST| AT| time

T T R

Figure 6.2: Real-time uniprocessor algorithms evaluation (continued)

97

Predictable Monoprocessor Scheduling

tasks over background processing. However, if the ready tasks exceed the
capacity of the server, then some of them will have to wait until its next
release, leading to potentially long response times. Conversely, no aperiodic
tasks may be ready when the server is released , wasting its high priority
capacity.

This latter drawback is avoided by the Priority Exchange server (Sprunt
et al. 1989), Deferrable server (Strosnider 1988), Sporadic server (Sprunt
1990) and Total Bandwith server (Spuri and Buttazzo 1996) algorithms.
These are all based on similar principles to the Polling server. However, they
are able to preserve capacity if no tasks are pending when they are released.
A consumption rule gives the conditions under which the execution budget
is preserved and consumed and a replenishment rule indicates when and by
how much the budget is replenished. Due to these properties, they are named
”bandwidth preserving algorithms”. The three algorithms differ in the ways
in which the capacity of the server is preserved and replenished and in the
schedulability analysis needed to determine their maximum capacity. Like
a Poller server, the execution budget of a Deferrable server is replenished
periodically. However, unlike a Poller server, when a Deferrable server finds
no aperiodic task ready for execution, it preserves its budget. The Dynamic
Priority Exchange server trades its runtime with runtime of lower priority
periodic tasks in case there are no aperiodic requests pending. In this way,
the server time is only exchanged by periodic tasks but never wasted (unless
there are idle times). The Sporadic sever differs from Deferrable server
and Priority Exhange server in the way it replenishes its capacity. Whereas
Deferrable server and Priority Exhange server replenish their capacities to its
full value at the beginning of each server period, Sporadic server replenishes
its capacity only after it has been consumed by aperiodic task execution.

In general, all three servers offer improved responsiveness over the polling
approach. However, there are still disadvantages with these more complex
server algorithms. They are unable to make use of slack time which may
be present due to the often favourable phasing of periodic tasks (i.e. not
worst case). Furthermore, they tend to degrade to providing essentially the
same performance as the Polling server at high loads. The Deferrable and
Sporadic servers are also unable to reclaim spare capacity gained, when for
example, hard tasks require less than their worst case execution time. This
spare capacity can however be reclaimed by the Extended Priority Exchange
Algorithm (Sprunt et al. 1988).

A more simple bandwidth preserving algorithm to schedule aperiodic
tasks is given by Total Bandwidth servers. The main idea of a Total Band-

98

Predictable Monoprocessor Scheduling

Excellent Good Poor

Portormance| aTeuaterna] qurament | "Eemsnater
BKG
DPE
DDS
T8
EDL
IPE
TB*

Figure 6.3: Evaluation summary of dy-
namic priority server

width sever is to assign a possible earlier deadline to each aperiodic request
such that the overall processor utilization of the aperiodic load is less or
equal than a server utilization value.

A qualitative evaluation among the servers is presented in Figure 6.3
(Buttazzo 1997). This comparison shows that the Total Bandwidth Server
algorithm and the nearly optimal Improved Priority Exchange algorithm
have a good performance. However, compared to the Improved Priority Ex-
change algorithm, the Total Bandwidth server scheme does not require large
memory capacity and it benefits from a low implementation and computa-
tional complexity. Less switching time overheads and a better maintainabil-
ity of the system are achieved through a low computational complexity and a
low implementation complexity respectively. Since manufacturing systems
are concerned with a significant changeover time cost and should provide
a high degree of maintainability (refer to hypothesis 5 page 7), the Total
Bandwidth Server mechanism is adopted (called in Section 6.5).

99

Predictable Monoprocessor Scheduling

6.4 Assumptions and Terminology

The algorithm to be defined in the following sections is based on the following
assumptions and terminology.

o 7 = {1, |i,j € IN} A set of periodic tasks with hard deadlines. ¢

denotes the number of the part, and j the group to which it is affiliated
according to its changeovertime.

J={Ji;|1i,j € N} A set of active aperiodic tasks ordered by increas-
ing deadline, J; ; being the task with the shortest absolute deadline.

O = {0;; | j,k € IN} The context switch time or changeover time
caused by the arrival of a part from type j at the machine k. Changeover
time is derived by a static analysis on the machine.

O = {Ojy | j,k € IN} denotes the actual switch time or changeover
time caused by the arrival of the part from type j at the machine k.

The arrival time of each aperiodic task is unknown.

The worst case production time of each aperiodic task is considered
to be known at its arrival time.

A periodic task 7;; has a constant period T; and a constant worst
case production time C;. The worst case production time of a task is
derived by a static analysis on the machine.

All aperiodic tasks have firm deadlines and can be rejected.
r; denotes the arrival time of task J; ;.
7; denotes the corrected release time of task J; ;.

C; denotes the maximum production time of task J; j, i.e. the worst
case production time needed for the machine to execute task J; ; with-
out interruption.

C; denotes the actual production time of task J; ;.

d; denotes the absolute deadline of task J; ;, i.e. the time before which
the task should complete its production in order to be useful to the
system.

100

Predictable Monoprocessor Scheduling

e m,; denotes the deadline tolerance of task J; j, i.e. the maximum time
that task J; ; may execute after its deadline, and still produce a valid
result.

¢ v; denotes the task value, i.e. the relative importance of task J; ; with
respect to the other tasks in the set.

e f; denotes the finishing time of task J; ;, i.e. the time at which task
J;j completes its execution and leaves the system.

e E; denotes the exceeding time, i.e. the possible lateness of task .J; ; in
case of overload.

6.5 The Total Bandwidth Server Algorithm

In this section, the Total Bandwidth Server algorithm with its extensions
are briefly recalled.

6.5.1 The fisrt version of the Total Bandwidth Server

The main idea of the Total Bandwidth Server is to assign, whenever possible,
the total bandwidth (in term of machine production time) of the server,
each time an aperiodic task enters the system. This is done by assigning a
deadline

Ck

dy = max(rg,dy_1) + 7.

(Cy is the mazimum execution time of the request and U, is the server
utilization factor or bandwidth)

to the request and to schedule it according to the Earliest Deadline First
algorithm together with the periodic tasks in the system. Spuri and Buttazzo
(1994) investigated the problem of the joint hard periodic and soft aperiodic
scheduling under dynamic priority systems. The Total Bandwidth server

algorithm showed the best performance/cost ratio among the several servers
described.

6.5.2 Extension of the Total Bandwidth Server: the Robust
Total Bandwidth algorithm

Spuri et al. (1995) extended the original formulation of the Total Bandwidth
Server algorithm: the robust Total Bandwidth algorithm. The extended al-
gorithm focused on the problem of the joint hard periodic and firm aperiodic

101

Predictable Monoprocessor Scheduling

scheduling under dynamic priority systems. It extends the Total Bandwidth
Server to include preemption and a technique, including a rejection and a
reclaiming strategies, for the addition of robustness in case of transient over-
loads. This mechanism has been proved effective by extensive simulations
(Spuri et al. 1995).

6.6 Adapting the TBS algorithm to the Monopro-
cessor Scheduling of a Production Stage

While most of real-time systems scheduling theory assumes that context
switch time overheads are negligible, production control systems, which have
a higher changeover time cost, are not allowed to deal with this assumption.
The problem is more complex in real-time production control systems where
disregarding changeover time overheads may lead to undesired results, such
as the domino effect (Spuri, Buttazzo, and Sensini 1995), in which a missed
deadline causes a series of subsequent deadlines to be also missed, and in
hard real-time manufacturing systems to disruptive results. This section
adapts the Total Bandwidth Server algorithm to the planning and control
of manufacturing systems in retaining the advantages of the previous Total
Bandwith Server algorithms recalled in the previous section while overcom-
ing their limitations. Note that the following section treats the problem of
resource reclaiming simultaneously.

6.7 Adding Changeover Time Costs to TBS with
Resource Reclaiming

Since deadlines of aperiodic tasks are assigned based on their estimated max-
imum execution time, this may be a drawback for the TB server when the
value is overestimated. Spuri et al. (1995) proposed a reclaiming technique,
to correct the assigned deadlines. Whenever a request completes earlier, its
actual execution time is used to compute the deadline that could have been
assigned to it if its execution time had been known in advance. This value
is then used to compute the deadline for the next request.

Integrating changeover time costs affects also the TB server, since dead-
lines are also based on this value. There are two methods to solve the
problem of integrating changeover time costs:

e One is to assign a constant maximum changeover time and to include it
in the estimated execution time. This would result in a lot of wasted

102

Predictable Monoprocessor Scheduling

machine time, specifically when the arriving aperiodic part has the
same type as the precedent one, and subsequently the machine does
not execute any switching time.

e The second alternative is to consider changeover time costs in the
computation of the deadlines of aperiodic tasks. More formally the
i-th task to be executed receives a deadline equal to:

o4 ij T 2x 0
Us

where C; is the maximum execution time of the task and Uj is the
server utilization factor. The reader should refer to the example in
section 4.6 page 50 for an explanation of 2x O; ;. 7; is the ”corrected”
release time of the task and is computed as:

7 = max(ri,di_1, fi—1)
At task completion the corrected deadline is computed as:

= Cij+2%0,;
d =7 + Ty T TN

(2) Us
Furthermore, the corrected deadline d may be optimized by considering the
”corrected” changeover time cost, when the executed changeover is shorter
than the assumed maximum changeover time. At task completion the cor-
rected deadline is computed as

az‘:ﬂ+

where O is the actual changeover time. Being C;; < C;; and 20; ; < O, ;,
we have d; < d}, that is we try to reclaim the unused computation time
and the unused changeover time by assigning a shorter deadline to the next
request.

6.8 Schedulability Analysis

To prove the schedulability of the TB server with this new formulation, a
slight extension of the proof of Buttazzo (1997) to include changeover time is
proceeded. Buttazzo (1997) first showed that the actual aperiodic machine

103

Predictable Monoprocessor Scheduling

utilization cannot exceed U, and then he shows that the overall utilization

can be up to 100%.

Lemma 1 In each interval of time [t1,t2], if Cape is the total execution time
actually demanded by aperiodic requests arrived at t; or later and served
with deadlines less than or equal to ta, and Ogpe the total changeover time
due to the arrival of these aperiodic requests in the interval of time [t,ts]

then

Proof. By definition

(6.1)

(6.2)

(6.3)

The index k indicates the order of execution. Thus, there must be two

indexes ki and k2 such that

ko
> Ce< > Gy
t1<rp,d'k<ts k=k;

and

>, O

t1<rg,d k<t

IN

ko o
> 0
k=k

By adding the inequations (6.4) and (6.5) we obtain

ko k2
> Ot > Ok) Ci+) O
tl ST‘k ,d,kStQ tl ST‘k,d/kStQ k:kl k:kl

From the inequations (6.2) and (6.3) it follows that

ko ko
Uape +6ape < Z Uk + Z 6’6

k=k1 k=k1
Cape + Oape S Z (Ck: + Ok:)
k=k1

(6.4)

(6.5)

(6.6)

104

Predictable Monoprocessor Scheduling

k2
Cape + Oape < Z (dk - Flc)Us (69)
k=k1
ko
Uape + 6ape <Us (Ek - Fk) (610)
k=k1

Since dy_; < T, the inequation (6.10) becomes
Uape + 6ape < US(akQ - FI<:1) (611)
Finally, being dy, < dj <ty and Ty, > g, > t), we have

Cape + Oape < Us(ta —11) (6.12)

We can now prove the following result.

Theorem 1 Given a set of n periodic tasks with processor utilization U, and
a TB server with processor utilization U, the whole set is feasibly scheduled
if and only if

U,+U, <1 (6.13)

Proof. ”If’. Suppose there is an overflow at time ¢. The overflow must
be preceeded by a period of continuous utilization of the processor. Fur-
thermore, from a certain point # on, only instances of tasks (periodic or
aperiodic) ready at ¢’ or later and having deadlines less than or equal to ¢
are run. Let C be the total execution time and O the total changeover time
demanded by these instances. Since there is an overflow at time ¢, we must
have

t—t'<C+0 (6.14)
We also know that
= &t
C+0< Z { JC + Cape + Ogpe (6.15)
< Z "NU, (6.16)
< (t —t") (U, + Uy) (6.17)

105

Predictable Monoprocessor Scheduling

The following contradiction is derived

Uy +U, > 1 (6.18)

?Only if”. If an aperiodic request enters the system periodically, say each
T, > 0 units of time, and the execution time Cs + Oy = Cs + C = T, U,,
the server behaves exactly as a periodic task with period T and execution
time C. Having a processor utilization U = U, 4+ U, and using the theorem
of Liu and Layland (1973) , we can conclude that U, + U, < 1.

106

Predictable Monoprocessor Scheduling

6.9 Contributions of the Chapter

The scientific contributions of this chapter can be summarized as follows:

o A Classification and Review of Real- Time Uniprocessor Scheduling Lit-
erature
A relevant and structured overview of real-time Uniprocessor schedul-
ing theory is presented. The different algorithms are structured ac-
cording to the problem they solve and to the scheduling parameters
which are relevant for the real-time scheduling of manufacturing sys-
tems.

e Predictable Scheduling upon a Monoprocessor Production Stage in
MaSHReC
A predictable scheduling, based on the TBS algorithm, is adapted
upon a monoprocessor production shift in MaSHReC. It is extended to
include the novel feature of accounting for changeover time overheads.

6.10 Hypotheses Evaluation

The scheduling problem treated in this chapter clearly validates the hy-
potheses related with the production of aperiodic tasks, system timeliness
and system predictability. The corresponding hypotheses are 3, 5.1 and 5.2
respectively. The reader should refer to Section 1.5 page 7 of Chapter 1 for
a detailed definition of the cited hypotheses.

107

Predictable Monoprocessor Scheduling

108

Bibliography

Abdelzaher, T. and K. Shin (1997, September). Comment on ”A Pre-
Run-Time Scheduling Algorithm for Hard Real-Time Systems”. IEEE
Transactions on Software Engineering 23(9), 599-600.

Shows that the branch-and-bound implicit enumeration algorithm does not
always succeed in finding a feasible solution, and describes the reason why
this algorithm might fail.

Atlas, A. and A. Bestravos (1998, December). Statistical Rate Monotonic

Scheduling. In Proc. of the 19th IEEE Real-Time Systems Symposium,
Madrid, Spain.
Statistical Rate Monotonic Scheduling is a generalization of the classical Rate
Monotonic Scheduling results of Liu and Layland. This algorithm allows the
scheduling of periodic tasks with variable resource requirement to achieve a
requested statistical Quality of Service guarantee. It Yield controllable and
predictable Quality of Service unrelated to the period of a given task.

Audsley, N., A. Burns, M. Richardson, and A. Wellings (1991). Hard

Real-Time Scheduling: The Deadline Monotonic Approach. In FEighth
IEEE Workshop on Real-Time Operating Systems and Software, pp.
133-137.
Investigates schedulability tests for sets of periodic processes whose deadlines
are permitted to be less than their period. Such a relaxation enables sporadic
processes to be directly incorporated without alteration to the process mod-
els.

Aydin, H., R. Melhem, D. Mossé, and P. Mejia-Alvarez (2001, December).
Dynamic and Agressive Scheduling Techniques for Power-Aware Real-
Time Systems. In Proceedings of the Real-Time Systems Symposium,
London, pp. 95-105.

Addresses power-aware scheduling of periodic hard real-time tasks using dy-
namic voltage scaling.

BIBLIOGRAPHY BIBLIOGRAPHY

Aydin, H., R. Melhem, S. Mossé, and P. Mejia-Alvarez (1999, December).

Optimal Reward-Based Scheduling of Periodic Real-Time Tasks. In
Proc. of the Real-Time Systems Symposium, Phoenix, Arizona. IEEE
Computer Society Press.

Addresses the periodic reward-based scheduling problem in the context of
uniprocessor systems. Focuses on linear and concave reward functions, which
adequately represent realistic applications such image and speech processing,
time-dependent planning and multimedia presentations.

Baruah, S. (1995, December). Fairness in Periodic Real-Time Scheduling.

In Proc. of the Real-Time Systems Symposium, Pisa, Italy, pp. 200—
209.

Describes a quantitative measure of temporal fairness ” pfairness” in periodic
real-time scheduling. Presents the Weight-Monotonic scheduling algorithm,
a static priority scheduling algorithm for generating ”pfair” schedules.

Baruah, S., R. Howell, and L. Rosier (1990). Algorithms and Complexity

Concerning the Preemptive Scheduling of Periodic, Real-Time Tasks
on One Processor. Real-Time Systems 2, 301-324.

investigates preemptive scheduling algorithms of periodic real-time task sys-
tems on one processor.

Baruah, S., A. Mok, and L. Rosier (1990, December). Preemptively

Scheduling Hard Real-Time Sporadics Tasks on One Processor. In
Proc. of the Real-Time Systems Symposium, pp. 182-190. IEEE Com-
puter Society Press.

Gives a necessary and sufficient conditions for a sporadic task system to be
preemptively schedulable on one processor.

Bate, I. and A. Burns (1999). A Framework for Scheduling in Safety-

Critical Embedded Control Systems. In Proc. of the 6th International
Conference on Real-Time Computing Systems and Apllications.
Presents a computational model that supports the reuse of legacy systems.
Develops timing analysis that features low pessimism and low computational
complexity.

Bernat, G. and C. Cayssials (2001, December). Guaranteed On-Line

Weakly-Hard Real-Time Systems. In Proceedings of the Real-Time
Systems Symposium, London, pp. 25-35.

Presents an on-line scheduling framework called Bi-Modal Scheduler for
weakly hard real-time systems. In a normal mode, tasks can be scheduled
with a generic scheduler. Weakly hard constraints are guaranteed to be sat-
isfied by switching to a panic mode for which schedulability tests exist.

110

BIBLIOGRAPHY BIBLIOGRAPHY

Biyabani, S., J. Stankovic, and K. Ramamritham (1988, December). The
Integration of Deadline and Criticalness in Hard Real-Time Schedul-
ing. In Proc. of the 9th Real-Time Systems Symposium, Los Alamitos,
California, pp. 152-169. CS Press.

Presents two heuristric approaches for distributed hard real-time computer
systems. The algorithms explicitely account for both deadlines and critical-
ness of tasks when making scheduling decisions.

Burns, A. and G. Bernard (2001). Jorvik: A framework for effective
scheduling. Technical Report YCS-334, Department of Computer Sci-
ence, University of York.

Presents a collection of mechanisms that together form a framework for the
support of flexible scheduling with mix hard and soft tasks, periodic and
aperiodic load and intertask relationships.

Burns, A., K. Tindell, and A. Wellings (1995, May). Effective Analysis
for Engineering Real-Time Fixed Priority Schedulers. In IEEE Trans-
actions on Software Engineering, Volume 21 of 5, pp. 475-480.
Presents an analysis that enables the cost of the scheduler (clock overheads,
queue manipulations and release delays) to be factored into the standard
equations of calculating worst-case response times in hard real-time systems.

Buttazzo, G. (1997). Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer academic Publishers.
Introduces basic concepts for real-time computing, with emphasis on pre-
dictable scheduling algorithms. Handles periodic and aperiodic task schedul-
ing, tasks with precedence constraints, access protocols to shared resources,
schedulability analysis, and handling overload conditions.

Buttazzo, G., M. Spuri, and F. sensini (1995, December). Value vs Dead-
line Scheduling in Overload Conditions. In Proc. of the Real-Time
Systems Symposium, Pisa, Italy, pp. 90-99.

Presents a comparative study among scheduling algorithms which use differ-
ent priority Assignments and different guarantee mechanism during overload
conditions.

Caccamo, M., G. Lipari, and G. Buttazzo (1999, December). Sharing Re-
sources among Periodic and Aperiodic Tasks with Dynamic Deadlines.
In Proc. of the IEEE Real-Time Systems Symposium, Phoeniz, Ari-
zona, pp. 284-293.
Addresses the problem of scheduling hybrid real-time task sets consisting of
hard periodic and soft aperiodic tasks that may share resources in exclu-
sive mode in a dynamic environment. Considers that resources are accessed

111

BIBLIOGRAPHY BIBLIOGRAPHY

through the Stack Resource Policy and aperiodic tasks are serviced by the
tunable Total Bandwidth Server.

Caccamo, M. and L. Sha (2001, December). Aperiodic Servers with Re-
source Constraints. In Proceedings of the Real-Time Systems Sympo-
stum, London, pp. 161-170.

Addresses the problem of integrating resource constraints in the execution
of hybrid task sets including hard period and soft aperiodic task sets using
a capacity based server.

Davis, R., K. Tindell, and A. Burns (1993). Scheduling Slack Time in

Fixed Priority Pre-emptive Systems. In Proc. of the IEEE Real-Time
Systems Symposium, pp. 222-231.
Addresses the problem of jointly scheduling tasks with both hard and soft
time constraints. Determines the maximum processing time which may be
stolen from hard deadline periodic or sporadic tasks, without jeopardising
their timing constraints.

Davis, R. and A. Wellings (1995, December). Dual Priority Scheduling. In
Proc. of the Real-Time Systems Symposium, Pisa, Italy, pp. 100-109.
Presents a strategy for scheduling tasks with soft deadlines in real-time sys-
tems containing periodic, sporadic and adaptive tasks with hard deadlines.

El-Kebbe, D. A. (2001, March). A UML Model for the MaSHReC Archi-

tecture. In Proc. of the International Congress on Information Science
Innovations in Intelligent Automated Manufacturing, Dubai, United
Arab Emirates.
Investigates current holonic manufacturing architectures. The MaSHReC
model is designed using the Unified Modeling Language (UML). UML tem-
plates are provided to allow the design of the system structure, components,
relations, data, functions and interactions.

Feng, W. and J. W.-S. Liu (1997, February). Algorithms for Scheduling

Real-Time Tasks with Input Error and End-to-End Deadlines. Trans-
actions on Software Engineering 23(2), 93-106.
Describes algorithms for scheduling preemptive, imprecise, composite tasks in
a real-time system. Extends the imprecise computation technique to account
for input error and end-to-end timing constraints. Develops five algorithms
to minimize the output error of each composite task.

Ghosh, S., R. Melhem, and D. Mousse (1995, December). Enhancing Real-
Time Schedules to Tolerate Transient Faults. In Proc. of the Real-Time
Systems Symposium, Pisa, Italy, pp. 120-129.

112

BIBLIOGRAPHY BIBLIOGRAPHY

Presents a scheme that can be used to guarantee that the execution of real-
time tasks can tolerate transient und intermittent faults. The scheme is based
on reserving sufficient slack in a schedule such that a task can be re-executed
before its deadline without compromising the guaranteed given to other tasks.

Hong, 1., M. Potkonjak, and M. Srivastava (1998, November). On-Line
Scheduling of Hard Real-Time Tasks on Variable Voltage Processor.
In Proc. of the International Conference on Computer-Aided Design.
Considers the problem of scheduling hard periodic and firm sporadic tasks
on variable voltage processor to optimize power consumption.

Isovic, D. and G. Fohler (1998). Handling Sporadic Tasks in Off-line
Scheduled Distributed Real-Time Systems. In Proc. of the 11th Eu-
romicro Conference on Real-Time Systems. IEEE.

Presents an algorithm to handle event-triggered sporadic tasks in the context
of time-triggered, off-line scheduled systems. Provides off-line schedulability
test for sporadic tasks.

Jonsson, J. (1998). Compile-Time Scheduling of Real-Time Threads on
Multi-Level-Context Architectures. In Proc. of the Seventh Swedish
Workshop on Computer System Architecture.

Addresses the problem of how to schedule periodic, real-time threads on a
class of architectures referred to as multi-level-context (MLC) architectures
such as real-time operating system architectures.

Koren, G. and D. Sasha (1992, December). D-over: An Optimal On-Line
Scheduling Algorithm for Overloaded Real-Time Systems. In Proc. of
the Real-Time Systems Symposium, Phoenix, Arizona, pp. 290-299.
TEEE.

Presents an optimal on-line algorithm for overloaded systems. Optimal means
that the algorithm gives the best competitive factor possible relative to an
off-line scheduler.

Koren, G. and D. Shasha (1991). An optimal scheduling algorithm with

a competitive factor for real-time systems. Technical Report TR572,
Department of Computer Science, New York University.
Presents an algorithm for a possibly overloaded system which behaves like
the EDF algorithm when the system is underloaded, and obtains at least a
quarter of the maximum value that an optimal clairvoyant algorithm could
obtain even when the system is overloaded.

Koren, G. and D. Shasha (1995, December). Skip-Over: Algorithms and
Complexity for Overloaded Systems That Allow Skips. In Proc. of the

113

BIBLIOGRAPHY BIBLIOGRAPHY

Real-Time Systems Symposium, Pisa, Italy, pp. 110-117.
Investigates the problem of uniprocessor scheduling of occasionally skippable
periodic tasks (tasks with acceptable deadline missing).

Lamastra, G., G. Lipari, and L. Abeni (2001, December). A Bandwidth

Inheritance Algorithm for Real-Time Task Synchronization in Open
Systems. In Proceedings of the Real-Time Systems Symposium, Lon-
don, pp. 151-160.
Presents the BandWidth Inheritance (BWI) scheduling strategy that extends
the bandwidth reservation approach to open systems where tasks can inter-
act through shared resources. Off-line sched anal. not possible. Arrival Time
unknown.

Lawler, E. and C. Martel (1981, Februar). A Note on Preemptive

Scheduling of Periodic Real-Time Tasks. Information Processing Let-
ters 12(1), 9-12.
Considers a problem in which periodic tasks are to to be preemptively sched-
uled on a system of parallel processors. Shows that there exists a feasible
schedule if and only if there exists a feasible schedule which is cyclic with
a period equal in length to the least common multiple of the periods of the
individual tasks.

Lee, S., S. Min, C. Kim, C.-G. Lee, and M. Lee (1999). Cache-Conscious
Limited Preemptive Scheduling. Real-Time Systems 17, 257-282.
Proposes a scheduling scheme, called Limited Preemptive Scheduling, to ad-
dress the problem of inter-task cache interference due to preemptions in
multi-tasking real-time systems.

Lehoczky, J. and S. Ramos-Thuel (1992, December). An Optimal Algo-

rithm for Scheduling Soft-Aperiodic Tasks in Fixed-Priority Preemp-
tive Systems. In Proc. of the IEEE Real-Time Systems Symposium,
Phoenix, Arizona, pp. 110-123.
Presents an approach (Slack Stealing) for servicing aperiodic requests within
the context of a hard real-time system by making any spare processing time
available as soon as possible. A means of determining the maximum amount
of slack which may be stolen, without jeopardising the hard timing con-
straints, is thus the key to the operation of the algorithm.

Leung, J. and M. Merril (1980). A Note on Preemptive Scheduling of
Periodic Real-Time Tasks. Information Processing Letters 11(3), 115
118.

Leung, J. and J. Whitehead (1982, December). On the complexity of

114

BIBLIOGRAPHY BIBLIOGRAPHY

fixed priority scheduling of periodic, real-time tasks. In Performance
Evaluation, Volume 2 of 4, Netherlands, pp. 237-250.

Formulates an alternative priority assignment policy, where task deadlines
can be less than the period of a task. Provides simple analysis to determine
the schedulability of such tasks.

Liu, C. and J. Layland (1973, January). Scheduling algorithms for multi-
programming in a hard real-time environment. J. of the ACM 20(1),
46-61.

Describes the different aspects of scheduling of periodic systems. Presents
the first proof of the optimality of rate-monotonic and Earliest Deadline
First scheduling for periodic systems.

Liu, C., J. Liu, and A. Liestman (1982). Scheduling with Slack-Time. In
Acta Informatica, Volume 17, pp. 31-41.

Liu, J., K.-J. Lin, and S. Natarajan (1987, December). Scheduling Real-
Time Periodic Jobs Using Imprecise Results. In Proc. of the 8th Real-
Time Systems Symposium, San Jose, California, pp. 252-260. IEEE.
Outlines an approach to design general purpose real-time computer systems
that can skip non-critical portions of scheduled jobs in order to avoid missed
deadline during system overloads.

Lu, C., J. Stankovic, G. Tao, and S. Son (1999, June). Design and Eval-
uation of a Feedback Control EDF Scheduling Algorithm. In Proc. of
the Real-Time Systems Symposium.

Presents and evaluates the feedback control real-time scheduling.

Marti, P., J. Fuertes, F. Fohler, and K. Ramamritham (2001, December).
Jitter Compensation for Real-Time Control Systems. In Proceedings
of the Real-Time Systems Symposium, London, pp. 39-48.
Proposes an approach for real-time scheduling of control systems by com-
pensating for sampling jitter and sampling-actuation delay through the ad-
justment of controller parameters.

Mok, A. and D. Chen (1997, October). A Multiframe Model for Real-Time
Tasks. IEEE Transactions on Software Engineering 23(10), 635-645.
Presents a multiframe real-time task model which allows the execution time
of a task to vary from one instance to another by specifying the execution
time of a task in terms of a sequence of numbers.

Mok, A. and W. Wang (2001, December). Window-Constrained Real-
Time Periodic Task Scheduling. In Proceedings of the Real-Time Sys-
tems Symposium, London, pp. 15-24.

115

BIBLIOGRAPHY BIBLIOGRAPHY

Shows that the Dynamic Window-Constrained Scheduling fails for arbitrarily
low aggregate utilization rates of the packet streams. Defines the notion of
Pfairness in relation to the Window-Contrained Scheduling model. Defines
an EDF for the Window-Contrained scheduling problem.

Oliveira, R. and J. Fraga (1996). Scheduling Imprecise Computation
Tasks with Intra-Task / Inter-Task Dependence. In Proc. of the 21st
IFAC/IFIP Workshop on Real-Time Programming, pp. 51-56.
Presents two heuristics to be used as admission policy when the system is
made of imprecise tasks. The objective of the admission policy is to max-
imize system utility through the selection of optional parts for execution.
These heuristics are supposed to be used combined with off-line schedulabil-
ity tests and on-line acceptance tests already described in the literature.

Orozco, J., R. Santos, J. Santos, and E. Ferro (2001, December). Hybrid
Rate-Monotonic/Reward-Based Scheduling of Real-Time Embedded
Sytems. In Proc. of the IEEE/EE Real-Time Embedded Systems Work-
shop (Satellite of the IEEE Real-Time Systems Symposium,), London.
Studies the on-line scheduling of periodic, independent, preemptable real-
time sets of tasks consisting of a mandatory and an optional part. Presents
a scheduling method allowing a rearrangement of slack time based on the
detection of singular instants during the processing.

Padreiras, P. and L. Almeida (2001, December). A Practical Approach to

EDF Scheduling on Controller Area Network. In Proc. of the IEEE/EE
Real-Time Embedded Systems Workshop (Satellite of the IEEE Real-
Time Systems Symposium), London.
Compares Earliest Deadline First algorithm with the rate monotonic ap-
proach on a FTT CAN protocol. Concludes that using EDF, a higher bus
utilization and a reduced jitter and delay time for messages with long periods
are achieved.

Ripoll, I., A. Crespo, and A. Garcia-Fornes (1997, June). An Optimal Al-

gorithm for Scheduling Soft Aperiodic Tasks in Dynamic-Priority Pre-
emptive Systems. IEEE Transactions on Software Engineering 23(6),
388-400.
Presents the theoretical foundations for the EDF Exact Slack Stealer algo-
rithm which provides a solution to the problem of jointly scheduling hard
periodic tasks and aperiodic tasks. Is optimal for periodic tasks since it is
based on EDF and optimal for aperiodic tasks since it gives the shortest
response time to aperiodic tasks.

Serlin, O. (1972, May). Scheduling of Time Critical Processes. In Proc. of

116

BIBLIOGRAPHY BIBLIOGRAPHY

the Spring Joint Computer Conference, Atlantic city, New Jersey, pp.
925-932. Montvale, NJ: American Federation of Information Process-
ing Societies.

(First algorithm to handle periodic tasks.).

Shih, W.-K., J. Liu, J.-Y. Chung, and D. Gillies (1989, July). Scheduling

Tasks with Ready Times and Deadlines to Minimize Average Error.
Operating Systems Review 23(3), 14-28.
Presents a preemptive optimal algorithm for scheduling n dependent tasks
with rational ready times, deadlines, and processing times on uniprocessor
systems. The tasks are logically decomposed into mandatory and optional
subtasks.

Shin, K. G. and Y.-C. Chang (1995, December). A reservation-based al-
gorithm for scheduling both periodic and aperiodic real-time tasks.
IEEFE Transactions on Computers 44, 1405-1419.

Sprunt, B. (1990, August). Aperiodic Task Scheduling for Real-Time Sys-

tems. Ph. D. thesis, Department of Electrical and Computer Engineer-
ing, Canergie Mellon University.
Develops the Sporadic Server Algorithm for scheduling aperiodic tasks in
real-time systems. Demonstrates that the Sporadic Server algorithm is able
to guarantee deadlines for hard-deadline aperiodic tasks and provides good
responsiveness for soft-deadline tasks.

Sprunt, B., J. Lehoczky, and L. Sha (1988, December). Exploiting Unused
Periodic Time For Aperiodic Service Using the Extended Priority Ex-
change Algorithm. In Proc. of IEEE Real-Time Systems Symposium,
pPp- 251-258.

Presents an extended version of the priority exchange server algorithm for
exploiting unused periodic time.

Sprunt, B., L. Sha, and J. Lehoczky (1989). Aperiodic Task Scheduling
for Hard Real-Time Systems. In J. of Real-Time Systems, pp. 27-60.
Develops the Sporadic Server algorithm for scheduling aperiodic tasks in real-
time systems. This algorithm extends the rate monotonic algorithm which
was designed to schedule periodic tasks. It guarantees deadlines for hard
periodic tasks and provide good responsiveness for soft aperiodic tasks.

Spuri, M. and G. Buttazzo (1994, December). Efficient Aperiodic Service
under Earliest Deadline Scheduling. In Proc. of the 15th IEEE Real-
Time Systems Symposium, Portorico, pp. 2-11.

Proposes and studies server algorithms under earliest deadline first schedul-

117

BIBLIOGRAPHY BIBLIOGRAPHY

ing. Studies the performance of the Improved Priority Exchange algorithm.

Spuri, M. and G. Buttazzo (1996). Scheduling aperiodic tasks in dynamic

priority systems. Real-Time Systems Journal 10, 179-210.

Spuri, M., G. Buttazzo, and F. Sensini (1995, December). Robust Ape-

riodic Scheduling under Dynamic Priority Systems. In Proc. of the
IEEE Real-Time Systems Symposium, Pisa , Italy, pp. 210-219.
Extends the Total Bandwidth Server algorithm to handle firm aperiodic tasks
and then integrates a guarantee mechanism that allows to achieve degrada-
tion in case of transient overload.

Stankovic, J., C. Lu, S. Son, and G. Tao (1999, June). The Case for

Feedback Control Real-Time Scheduling. In Proc. of the FEuromicro
Conference on Real-Time Systems.

Studies the use of feedback control concepts in soft rea-time scheduling
systems, with the goal of the development of a theory of feedback control
scheduling.

Stewart, D. and P. Khosla (1991, May). Real-Time Scheduling of Sensor-

Based Control Systems. In Proc. of the Eighth IEEE Workshop on
Real-Time Operating Systems and Software, Atlanta, pp. 144-150.
Proposes the maximum urgency first algorithm, which is a mixed priority
real-time scheduling algorithm (combination of fixed and dynamic priority
scheduling). The motivation behind this algorithm is to provide guaranteed
soft real-time scheduling.

Streich, H. (1995). TaskPair-Scheduling: An Approach for Dynamic Real-

Time Systems. Int. Journal of Mini € Microcomputers 17(2), 77-83.
Presents an on-line scheduling approach which merges the concepts of guar-
anteeing (an activity) and exception handling (due to time outs). It gives a
guarantee, when the task is accepted, that the TaskPair will hold its time
constraints.

Strosnider, J. (1988, August). Highly Responsive Real-Time Token Rings.

Ph. D. thesis, Department of Electrical and Computer Engineering,
Canergie Mellon University.

Develops the deferrable server algorithm. The execution of the deferrable
server is replenished periodically. Unlike a poller, when a deferrable server
finds no aperiodic jobs for execution, it preserves its budget.

Sun, J. and M. G. J. Liu (1997, October). Bounding Completion Times

of Jobs with Arbitrary Release Times, Variable Execution Times,
and Resource Sharing. IEEE Transactions on Software FEngineer-

118

BIBLIOGRAPHY BIBLIOGRAPHY

ing 23(10), 603-615.
Presents three algorithms for computing upper bounds on the completion
times of jobs that have arbitrary release times and priorities.

Swaminathan, V. and K. Chakrabarty (2000, November). Real-Time Task
Scheduling for Energy-Aware Embedded Systems. In Proc. of the
IEEFE Real-Time Systems Symposium.

Presents an approach for scheduling periodic tasks in real-time systems. The
presented approach minimizes the total energy consumed by the task set and
guarantees that the deadline for every periodic task is met.

Tokuda, H. and C. Mercer (1989, July). Arts: A Distributed Real-Time

Kernel. In Operating Systems Review, Volume 23 of &, pp. 29-53. ACM
Press.
Introduces a real-time object model and the integrated time-driven schedul-
ing model to develop real-time computing systems in a distributed environ-
ment. Describes the Advanced Real-Time Technology (ARTS) kernel and the
real-time toolset consisting of schedulability analyzer, Scheduler 1-2-3, and
the real-time monitor/debugger.

Young, M. and L.-C. Shu (1991). Hybrid online/offline scheduling for hard
real-time systems. Technical Report SERC-TR-100-P, Software Engi-
neering Research Center, Department of Computer Sciences, Purdue
University.

Constructs an off-line scheduler that optimally allocates idle time to improve
rate-monotonic schedulability.

119

BIBLIOGRAPHY BIBLIOGRAPHY

120

Chapter 7

Predictable Multiprocessor
Scheduling

One step further than dealing with predictable real-time scheduling
upon monoprocessor production stages in manufacturing systems (refer
to Chapter 6) is to predictably schedule aperiodic tasks upon multipro-
cessor production stages. This chapter deals with this problem. First, a
comparative study of state-of-the-art real-time multiprocessor schemes
is provided. The preemptive scheduling of systems of hybrid (periodic
and aperiodic) tasks on a platform comprised of several uniform multi-
processors is considered. A scheduling algorithm, the Total Bandwidth
Server on uniform multiprocessors, is developed. The scheduling al-
gorithm is analyzed by considering its performance when it is allowed
to run on faster machines. The predictability of the system is proved
through schedulability analysis techniques and illustrated by an exam-
ple. The performance of the multiprocessor algorithm proposed in this
chapter is analyzed through simulation experiments.

Predictable Multiprocessor Scheduling

7.1 Taxonomy of Multiprocessor Platforms

Scheduling theorists distinguish between at least three different kinds of
multiprocessor machines depending on their production time:

¢ Parallel identical machines: All parallel machines have equal task
production time.

e Parallel uniformm machines: Machines differ in their production
time, but the production time of each machine is constant and does
not depend from the type of the task.

¢ Parallel unrelated machines: The production time of the machine
depends on the particular task processed.

The uniform parallel machines model is a very relevant one for modelling
many actual application systems including mamufacturing systems. There
are several reasons for this:

e The existence of this model gives production system designers the
freedom to use machines with different production speeds, rather than
constrainting them to always use identical processors. In fact, pro-
duction lines with multiprocessor platforms in a production stage are
widespread.

e Even when all the machines available are identical, they may not all be
exclusively available for the execution of the real-time periodic tasks,
but may be required to devote a certain time of their production ca-
pacity to some other (non real-time or aperiodic tasks). Each such
machine can be modelled by another one of lower production capacity.

e As new and faster machines become available, one may choose to im-
prove the performance of a system by upgrading some of its machines.
If the only model we have available is the identical multiprocessor
model, we must necessarily replace all the processors simultaneously.
With the uniform parallel machines model, we can however choose to
replace just a few of the processors, or indeed simply add some faster
processors while retaining all previous processors.

7.2 State-of-the-Art

Scheduling of real-time systems has been well studied, particularly upon
uniprocessor platforms. In multiprocessor platforms, there are several pro-

122

Predictable Multiprocessor Scheduling

cessors available upon which jobs may execute. Recently steps have been
taken towards obtaining a better understanding of real-time scheduling on
identical multiprocessors (Philips et al. 1997), (Moir and Ramamurthy
1999), (Abdelzaher and Shin 2000), and (Aydin et al. 1999). However,
not much is known about real-time scheduling on uniform or unrelated pro-
Cessors.

Furthermore, task scheduling in hard real-time systems can be static
or dynamic. A static approach calculates schedules for tasks off-line and
it requires complete a priori knowledge of tasks’ characteristics. Although
static approaches have low run-time cost, they are inflexible and cannot
adapt to a changing environment or to an environment whose behavior is
not completely predictable. Several uniprocessor on-line algorithms, such
as the Earliest Deadline First algorithm (Liu and Layland 1973) and the
Least Laxity algorithm (Mok 1983) are known to be optimal in the sense
that if a set of jobs that can be scheduled such that all jobs complete by
their deadlines, then these algorithms will also schedule these sets of jobs to
meet all deadlines. However, no on-line scheduling algorithm in multipro-
cessor systems can be optimal: this was shown for the simplest (identical)
multiprocessor model by Hong and Leung (1988) and the result from Hong
and Leung (1988) can be directly extended to the more general (uniform or
unrelated) machine models.

Philips et al. (1997) explored the use of resource augmentation tech-
niques® for the on-line scheduling of real-time tasks. They considered two
problems in dynamic scheduling: scheduling to meet deadlines in a pre-
emptive identical multiprocessor setting, and scheduling to provide good
response time in a number of scheduling environments. Using the resource
augmentation approach, they established that several well-known on-line
algorithms, that prove poor performance from an absolute worst-case per-
spective, are optimal for the problems in question when allowed moderately
more resources. Funk et al. (2001) extended this method to be applied
upon uniform parallel machines. However, results derived from their work
are applied only to periodic task systems.

The idea of this chapter is based on competitive analysis theory, intro-
duced by Kalyanasundaram and Pruhs (1995) and extended by Funk et al.
(2001). A primary contribution of this chapter is the consideration of both
hard periodic and hard aperiodic tasks in uniform multiprocessor scheduling.

! A method of analysis introduced by Kalyanasundaram and Pruhs (1995) for unipro-
cessor scheduling, comparing the performance of an on-line algorithm to the performance
of an optimal off-line algorithm when the on-line algorithm is given extra resources.

123

Predictable Multiprocessor Scheduling

Additionally, the feature of including changeover time costs is accounted for.

Similar to the literature review provided in Chapter 5 and 6, a brief
overview of relevant contributions to multiprocessor scheduling is depicted
and presented in a tabular structured form in Figure 7.12 thus allowing the
reader to get a broad overview of the literature and to establish a compara-
tive study among the different problems addressed in the literature and the
problem faced in this chapter. In addition, a brief overview and commentary
of the investigated literature is presented in the bibliography at the end of
the chapter.

The following essential features characterize the scheduling technique
presented in this chapter: a uniform multiprocessor platform upon which
the server algorithm is executed, predictability of the control scheduling
technique, on-line execution, handling of periodic and aperiodic tasks con-
siderations, preemption, and context switch time considerations. Figure 7.1
shows that no real-time scheduling approach takes into account the cited
features relevant for the problem treated in this chapter, especially the ones
related with changeover time considerations and predictable multiprocessor
scheduling of periodic and aperiodic tasks.

7.3 The On-line Parallel Model

Based on the following assumptions and terminology, the scheduling of hard
real-time systems upon a uniform multiprocessor platform comprised of m €
IN* machines (there is at least one machine) is considered in this chapter.

o m = {s1,82,...,Sm} | m € IN* represents a m-machine uniform multi-
processor platform in which machines have speeds or production capac-
ities s1, 82, ..., Sy respectively; without loss of generality, it is assumed

2The references in the first column of Figures 6.1 and 6.2 are composed as follows:
when the publication is written by a single author, the reference is composed of the first
3 letters of his family name followed by the year of publication. When the publication is
written by more than one author, the reference is composed of the first letter of the family
names of the authors followed by the year of publication.
The abbreviations in the first line of the table refer to the following terms: sched.: schedul-
ing, alg.: algorithm, PT: Periodic Task, ST: Sporadic Task, AT: Aperiodic Task, Com.:
Communication, CST: Context Switch Time, Int.: Integer, par.:parameters, per.: periods,
SM: Shared Memory, DM: Distributed Memory, Ind.: Independent, Prec. Cons.: Prece-
dence Constraints, JC: Jitter Control, RM: Resource Management.
The abbreviations in the rest of the table refer to the following terms: D: distributed, U:
uniprocessor, M: multiprocessor, MI: multiprocessor identical, MU: multiprocessor uni-
form, PI: parallel identical, PU: parallel uniform, H: hard, S: soft, F:firm, Fi: fixed.

124

Predictable Multiprocessor Scheduling

Figure 7.1: Real-time multiprocessor algorithms evaluation

125

Predictable Multiprocessor Scheduling

that these speeds have positive values and they are indexed in a de-
creasing manner: s, > sqy1 for all ¢,1 < g <m.

T = {1, | i,j € IN} A set of periodic tasks with hard deadlines. i
denotes the number of the task and j the group to which its is affiliated
according to its changeover time.

J={Ji;|1i,j € N} A set of active aperiodic tasks ordered by increas-
ing deadline, J; ; being the task with the shortest absolute deadline.

Each Job 7;; or J; ; is characterized by an arrival time r;, a produc-
tion time ¢; and a deadline d;, respectively r;, ¢;, d;. Each Job 7; ;
is additionally characterized by a period p;. Whereas arrival times,
production times and deadlines of the periodic jobs 7; ; are known in
advance, it is assumed that, for an aperiodic job set J; ;, these relevant
information about jobs are known when a job arrives.

The preemptive multiprocessor scheduling model is considered. In the
preemptive scheduling model presented in this thesis, a job may be
interrupted and subsequently resumed with a penalty.

O = {Ojm | j,m € IN*} represents the switch time or changeover
time caused by the arrival of the part from type j at the machine m.
Changeover time is derived by a static analysis on the machine.

u; = ¢;/p; The utilization u; of a task is the ratio of its execution
requirement to its period. Without loss of generality, the tasks in 7
and J are indexed according to a decreasing utilization: u; > u; + 1
forall i, 1 <i < n.

In the context of uniform multiprocessor scheduling, a work-conserving
scheduling algorithm is defined to be one that satisfies the following
conditions (Funk et al. 2001): i) no machine is idled while there are
active jobs awaiting execution and, ii) if at some instant there are fewer
than m (the number of processors in the uniform multiprocessor plat-
form) active jobs awaiting execution then the active jobs are executed
upon the fastest machines. More formally, at any instant ¢ and for
all k& > j, if the j’th-slowest processor is idled by the work-conserving
scheduling algorithm, then the k’th-slowest processor is also idled at
instant 2.

Job preemption is permitted. That is, a job executing on a ma-
chine may be preempted, prior to completing execution, and its ex-

126

Predictable Multiprocessor Scheduling

ecution may be resumed later. Unfortunately, state-of-the-art real-
time multiprocessor scheduling techniques assume that there is no
penalty associated with such preemption. It is obvious that disre-
garding this assumption is inappropriate for manufacturing systems
where changeover time overhead may have a considerable time value.

e Job migration is permitted. That is, a job that has been pre-
empted on a particular machine may resume execution on the same
or different processor. The penalty associated with such migration is
unfortunately not accounted for in the literature. Manufacturing sys-
tem applications necessitate that transport costs of a part or product
from one machine to another are regarded. Accounting for transport
costs in uniform multiprocessor platforms is beyond the scope of this
thesis.

e Job parallelism is forbidden. That is each job may execute on at
most one processor at any given instant in time.

7.4 Total Bandwidth Server on Uniform Multipro-
Cessors

Recall that the TBS server technique is used to schedule jointly hard periodic

and hard aperiodic tasks under dynamic priority systems upon uniprocessor

platforms. One main benefit of this technique is that it guarantees both

periodic and aperiodic task sets. An extension of the TBS technique to

include changeover time costs is developed in Section 6.6 page 102. Each
aperiodic request receives a deadline

where
Fj = mazx (rjaajflafjfl)

In this chapter, we define a TBS algorithm to be implemented upon uniform
multiprocessor systems according to the following rules:

e No machine is idled while there is an active job awaiting execution.

e When fewer than m jobs are active, they are acquired to execute upon
the fastest machines while the slowest are idled.

127

Predictable Multiprocessor Scheduling

e Higher priority jobs are executed on faster processors. More formally,
if the j’th-slowest processor is executing job J, at time ¢ under the
TBS implementation, it must be the case that the deadline of .J; is not
greater than the deadlines of jobs (if any) executing on the (5 + 1)’th-,
(4 + 2)’th-, (j + 3)’th-, ..., m’th-slowest machines.

e Whenever the j-th aperiodic task arrives at time ¢ = r;, it receives a
deadline

Ej =7; +
where
7 =magz (rj,dj-1, fj-1)

The utilization of the server U, will be defined later.
Unavoidably, some additional notations are given in the following.

Definition 1 (W(A,r,I,t)). Let I denote any set of jobs, and © any
uniform maultiprocessor platform. For any algorithm A and time instant
t >0, let W(A,r,L,t) denote the amount of work done by algorithm A on
jobs of I over the interval [0,t), while executing on .

Definition 2 (S;). Let © denote a m-processor uniform multiprocessor
platform with processor capacities si,52,...,5m,8; > Sj41 for all j, 1 < j <
m. Sj is defined as follows:

J
Sj=231 forallj, 1< j<m
=1

Definition 3 (\;). (Funk et al. 2001) Let © denote a m-processor
uniform multiprocessor platform with processor capacities s1,52, ..., 5m,8; >
sj+1 for all j, 1 < j <m. A is defined as follows:

m
Ar = max {_Zij-l-l Sk }
=

7=1 Sj

128

Predictable Multiprocessor Scheduling

The parameter A\; measures the ”degree” by which 7 differs from an identical
multiprocessor platform. Consequently, A\; becomes progressively smaller as
the speeds of the processors differ from each other by greater amounts.

Lemma 1. (Funk et al. 2001) Let = denote a m-processor uniform
multiprocessor platform with processor capacities si,82,...,8m,8; > Sji+1,
for all j, 1 < j < m. Let " denote a m-processor uniform multiprocessor
platform with processor capacities s}, 85, ..., 8,85 > 8.4, for all j, 1 < j <
m. Let A denote any m-processor uniform multiprocessor algorithm, and A’
any work-conserving m-processor uniform multiprocessor algorithm. If the

following condition is satisfied by = and 7':

S,’n > A1+ S (71)
then for any set of jobs I and at any time-instant t > 0
W(AI,,]TI,Iﬁ t) 2 W(Aﬁln-,‘[, t) (7'2)

Lemma 1 specifies a condition under which any work-conserving algorithm
A’ (such as TBS) executing on 7' is guaranteed to complete at least as much
work as any other algorithm A (including an optimal algorithm) executing
on w, when both algorithms are executing any set of jobs I. This condition
expresses the additional production capacity needed by 7’ in terms of the
A parameter, and the speed of the fastest processor in 7. The smaller the
value of A (the more 7’ deviates from being an identical multiprocessor),
the smaller the amount of this excess processing capacity is needed.

The processing of aperiodic tasks can be integrated into a periodic envi-
ronment by introducing one or more periodic tasks to execute the aperiodic
tasks. Therefore, we may deal with aperiodic tasks in a similar way to pe-
riodic tasks. As a result, the following theorem uses Lemma 1 to deduce
whether a work-conserving algorithm can feasibly schedule a task set: it
states that any collection of jobs I that is feasible on a uniform multiproces-
sor platform 7 will be scheduled to meet all deadlines by algorithm TBS on
any platform 7’ satisifying the condition of lemma 1.

Theorem 1 Let I denote an instance of jobs that is feasible on m-
processor uniform multiprocessor platform w. Let © denote another m-
processor uniform multiprocessor platform. Let the parameter A\ of ' be
as defined in Definition 3:

A = nfix {M}

!
Sj

129

Predictable Multiprocessor Scheduling

If the condition of Lemma 1 is satisfied by platforms w and 7':
S;n > Apr-81+ Sm

then I will meet all deadlines when scheduled using TBS algorithm ezxecuting
on 7.

Proof. The proof of Theorem 1 is, like the TBS algorithm itself, simple.
By definition, TBS assigns a deadline to an aperiodic request. The request
is then inserted into an input buffer and scheduled by EDF. Therefore, it
remains to prove that Theorem 1 is valid under EDF. This is done in Funk
et al. (2001). Theorem 1 follows.

Before proceeding further, the following definition is given.

Definition 4 (s-speed approximation algorithm). (Philips et al.
1997) Given an input I to a scheduling problem with m-machines and an
objective function value V of scheduling all jobs by their deadlines, a s-
speed approximation algorithm finds a solution of value V using m
speed-s machines.

Philips et al. (1997) showed that if a set of jobs is feasible on m identical
machines, then the same set of jobs will be scheduled to meet all deadlines
by EDF on identical machines in which the individual machines are (2 — %)
time as fast as in the original system. Since identical parallel machines are a
special case of uniform parallel machines, in which the production capacities
are equal, results of Philips et al. (1997) concerning EDF-scheduling on
identical multiprocessor platforms are obtained as an immediate result of
Theorem 1:

Corollary 1. TBS is a preemptive, (2 — %)—speed algorithm for hard
real-time scheduling on parallel machines.

Theorem 2 Given a set of n periodic tasks with machine utilization U,
and a Total Bandwidth server with machine utilization Us, the whole set is
feasibly scheduled upon a multiprocessor platform if and only if

U, +Us; <85y
where

Up=Uy, +Upy + oo+ Upm

130

Predictable Multiprocessor Scheduling

Up,, Upy, ..., Upm are the periodic utilization of the 1st, 2nd, ..., m-th ma-
chine respectively , and

U5 - U51 + U52 + ...+ Usm

Us,, Us,, ..., Usy are the total bandwidth utilization of the 1st, 2nd, ..., m-th
machine respectively.

Proof. Funk et al. (2001) proved that a set of periodic tasks can be
scheduled to meet all deadlines on a uniform multiprocessor platform if and
only if the following constraints holds:

Up < Sm,
U <8 forall k=1,...m

Since TBS schedules aperiodic tasks as periodic tasks using EDF, all tasks
scheduled using TBS are considered as a periodic load and thus machine
utilization of periodic and aperiodic tasks is U, 4+ Us. The theorem follows.

7.5 Schedulability Analysis of Hybrid Task Sys-
tems on Uniform Multiprocessors

In this section, the theory developed in Section 7.4 is applied to study the
deadline-based scheduling of hybrid (hard periodic and hard aperiodic tasks)
task systems on uniform multiprocessor platforms. The method of analysis
developed in this section proceeds as follows:

1. an exact test for determining whether a given hybrid task system is
feasible on a particular uniform multiprocessor platform is developed
and

2. this exact feasibility test along with the results obtained in section 7.4
are used, to design a schedulability analysis for determining whether
a given hybrid task system will be successfully scheduled by TBS on
a specified uniform multiprocessor platform.

Funk et al. (2001) identified a uniform multiprocessor platform upon
which a given periodic task system 7 is schedulable. They determine a
sufficient condition for 7 to be successfully scheduled by EDF on any given
multiprocessor platform 7’ (Theorem 3).

131

Predictable Multiprocessor Scheduling

Theorem 3 (Funk et al. 2001) Let ©' = [s], sh, ..., s},,] denote any m-
processor multiprocessor platform, and let A\ be as defined in Definition

3:
m
m Z =j+1 Sk
Ay = max{ =k=IHL 0
7=1 Sj

Periodic task system 7 will meet all deadlines when scheduled on 7 using
EDF if the following condition holds:

Sl > Ay * mazx {ul, %} + U,
m

Below, it is shown how the problem of scheduling periodic tasks on uni-
form multiprocessors can be transformed to the scheduling of periodic and
aperiodic tasks. Whereas EDF is a scheduling policy trying to schedule up
to the whole capacity of the multiprocessor platform, the TBS algorithm
upon multiprocessor platforms aims at using the whole capacity of the sys-
tem, while assuring that a fraction of this capacity is dedicated to aperiodic
requests. This necessitates the computation of the server utilization of the
multiprocessor platform given by Theorem 4.

Theorem 4 Let ' = [s, 85, ..., sI,,] denote any m-processor multiproces-
sor platform, and let A\ be as defined in Definition 3:

m
A, = max {4

j:l Sj
The aperiodic task system J has a utilization

S;n:)\ﬁ,*ul+Up+Us
USZS;n—)\ﬁ,*ul—Up

Proof. According to Funk et al. (2001), a set of periodic tasks indexed
according to a decreasing utilization is feasible on a m-processor uniform
multiprocessor platform = = (s1,s2,...,8,) with s; = u; and S, = U,.
By Theorem 2, a set of periodic and aperiodic tasks achieves a maximum
utilization equal to U, + Uy = Sy,.

132

Predictable Multiprocessor Scheduling

Hence by Theorem 1, a set of periodic and aperiodic tasks will meet all
deadlines when it is scheduled using TBS on #', if

S;n > Ap.81+ S
Since s1 = u; and Sy, = U, + U, the following inequation is obtained
S;n Z)\W/.ul + Up + Us

As the TBS scheme upon a uniform multiprocessor platform tries to use
the whole capacity of the multiprocessor platform, the precedent inequation
becomes

S, = Apruy + Uy + U

This equation states the ”degree” by which the production capacity of the
multiprocessor platform should be reduced (in terms of A, and the speed of
the fastest processor) in order to achieve a 100% guarantee of periodic and
aperiodic tasks. From this equation, Ug is deduced as follows:

US:S;'n_Aﬂ'/*ul_Up

The theorem follows.
As a result, deadlines of aperiodic jobs may be computed as defined in
the following corollary.

Corollary 3. The aperiodic jobs J(rj,c;) of a m-processor uniform
multiprocessor platform are scheduled using TBS and a total bandwidth as
defined in Theorem 4 with a deadline

dj = max(rj,d;j_1) + [Cj_]s

Furthermore, the Corollary 4 follows directly from the results of the

precedent chapter, involving changeover time costs in the TBS algorithm

(Section 6.6 page 102) and allowing resource reclaiming (Section 6.7 page
102).

Corollary 4 Aperiodic jobs J(r;,c;) of a m-processor uniform multipro-
cessor platform are scheduled using TBS and a total bandwidth as defined in
Theorem 4 with a deadline

dj =7 +

133

Predictable Multiprocessor Scheduling

where

Fj = max (rj7aj—1afj—1)
Theorem 4 is now illustrated by an example.

Example. Consider a task system T comprised of five periodic tasks
(ciapi)

T = {(15,10), (4,5), (14, 20), (6,15), (2,10) }

and an aperiodic task (r;, ¢;)

J=1{(53)}

for this system, u; = 1.5, ug = 0.8, uz = 0.7, ugy = 0.4, us = 0.2. Suppose
that 7 and J are to be TBS-scheduled upon the uniform multiprocessor plat-
form 7' =[3,1,0.5] - will all deadlines be met?

By Definition 3, the value of A for the uniform multiprocessor platform =’
18
N _max{1+0.5 E} 1
T 3 71 2
and the total production capacity is
34+14+05=45

By Funk et al. (2001) 7 is feasible on some 3-processor uniform multipro-
cessor platform having a total production capacity of

1.54+08+4+0.7+04+02=36
and with the fastest processor having a production capacity
S1 = U1 = 1.5

By theorem 4, the aperiodic requests J are feasible on the 3-processor uniform
multiprocessor platform with a total bandwidth of

45=05%15+36+U;
4.5=4.35+U;
U, =0.15

134

Predictable Multiprocessor Scheduling

The aperiodic job J = {(5,3)} is to be scheduled on the 3-processor multi-
processor platform with a deadline equal to:

3
0.15

and 7 and J can consequently be scheduled by TBS to meet all deadlines on
n" with Uy = 0.15 and d; = 25.

d; = max{5,0} + 25

7.6 Practical Conclusions

The results presented in this chapter have various practical implications,
which results from the application of the resource augmentation paradigm.
First, the results provide system designers with analytic guidelines for cop-
ing with lack of knowledge of the future. The results that describe the
performance of an algorithm when given faster machines not only tell the
system designer how much faster the processors need to be to insure a de-
sired performance level, they also have implications for the performance of
the original system in a setting where job-arrival rate is reduced.

7.7 Performance Evaluation

The purpose of this section is to evaluate the scheduling scheme proposed
in this chapter. Implementation issues for TBS scheduling upon uniform
multiprocessor platforms allow to evaluate the effect of aperiodic task gen-
eration over various total bandwidth utilizations and the effect of aperiodic
processor utilization over various uniform multiprocessor platforms.

In the first experiment, an evaluation of tasks scheduled with TBS upon
a uniform multiprocessor platforms with different periodic utilizations is
achieved. The model consider a 3-multiprocessor platform with aperiodic
task utilization varying from 0.15 to 2.

Figure 7.2 depicts changeover time considered in the experiment. Changeover
time may achieve an overhead approximately equal to production time. This
permits a moderately realistic representation of changeover time considera-
tions in production systems.

Figure 7.3 demonstrates the significance of aperiodic server utilization
when scheduling a set of aperiodic tasks upon a uniform multiprocessor
platform. As seen in this figure, tasks produced with a low server utilization
suffer from a broad deadline assignment. This effect may be inacceptable in
applications, where aperiodic tasks are expected frequently.

135

Predictable Multiprocessor Scheduling

Changeover time versus production time

B Changeower time
[Production time

12 3 45 6 7 8 910111213 14
Tasks

Figure 7.2: Changeover time versus production time

Performance evaluation of aperiodic tasks scheduled with TBS upon
a uniform multiprocessor platform

2500
—&— Deadlines for Us=2
a 2000 —x— Deadlines for Us=1.5
€ 1500 - Deadlines for Us=1
£ 1000 Deadlines for Us=0.5
- 500 ~\ Deadlines for Us=0.15
e Arrival time
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Tasks

Figure 7.3: Performance evaluation of aperiodic tasks sched-
uled with TBS upon a uniform multiprocessor platform

136

Predictable Multiprocessor Scheduling

Machine capacities variation of 3-machines platforms

12 3 4 5 6 7 8 9 10 11 12 13 14 15

Multiprocessor platforms

9

8

7

6

5

4 Os3
3 Hs2
2 ms1
1

0

Figure 7.4: Machine capacities variation of 3-machines platforms

The second experiment aims at studying the effect of periodic and aperi-
odic task utilizations, when a set of periodic and aperiodic tasks are sched-
uled upon uniform 3-multiprocessors platforms with different production
capacities. Aperiodic server utilizations are computed using Theorem 4
considering a periodic utilization of 3,6.

Figure 7.4 shows the variation of production capacities of different plat-
forms considered in this experiment. The first multiprocessor platform is
an identical platform. The production capacity of the second machine is
invariable for all platforms. Production capacities of the first machines are
augmented gradually by 0,2 time units. Production capacities of the third
machines are reduced gradually by 0.2. The purpose of this representation
of production capacities is to achieve progressive representation of results
and therefore, to provide clarity for the reader. By coupling Figure 7.4 and
Figure 7.5, the second experiment has established that as a multiproces-
sor platform differs from an identical platform, server utilizations become
progressively smaller. This is due to the fact that when a multiprocessor
platform differs from an identical platform, A, becomes smaller and con-
sequently aperiodic server utilization (computed by Theorem 4) becomes
greater. Furthermore, it should be stated that as multiprocessor platforms
differ from an identical platform, the wasted utilization of machines becomes

137

Predictable Multiprocessor Scheduling

Periodic utilization versus aperiodic server
utilization upon 3-machines platforms

|

I
|]
£
]
L]

|

2 3 4 56 6 7 8 910111213 14 15

Owasted utilization

N Up
EUs

Multiprocessor platforms

1
Figure 7.5: Periodic utilization versus aperiodic

server utilization upon 3-machines platforms

smaller. This is due to higher aperiodic utilizations.

138

Predictable Multiprocessor Scheduling

7.8 Contributions of the Chapter

The scientific contributions of this chapter can be summarized as follows:

e Review of Multiprocessor Scheduling Algorithms
A relevant and structured overview of real-time multiprocessor schedul-
ing theory is presented. The different algorithms are structured ac-
cording to the problem they solve and to the scheduling parameters
which are relevant for the real-time scheduling problem of this chapter.

e Predictable Scheduling upon a Uniform Multiprocessor Production Stage
A predictable on-line scheduling scheme, the Total Bandwidth Server
on uniform multiprocessor platforms, is developed. It allows the novel
features of predictably scheduling hybrid (hard periodic and hard ape-
riodic) tasks on uniform multiprocessor platforms and accounting for
changeover time costs.

e Development of a Schedulability Analysis for the On-Line Uniform
Multiprocessor Scheduling of hybrid tasks in o Hard Real-Time Enuvi-
ronment

e Performance Evaluation of the Proposed Scheduling Scheme
Simulation studies of a prototyped multiprocessor platform of a man-
ufacturing system underlying hard real-time constraints are generated
in order to study the performance of the system.

7.9 Hypotheses Evaluation

Since this chapter provides computation techniques for predictable real-time
scheduling of hard periodic and hard aperiodic tasks with a preemptive
setting, it evidently validates almost all hypotheses strived for in this thesis.
These are hypothesis 2, 3, 4, 5.1 and 5.2. The reader should refer to Section
1.5 page 7 of Chapter 1 for a detailed definition of the cited hypotheses.

139

Predictable Multiprocessor Scheduling

140

Bibliography

Abdelzaher, T. and K. Shin (2000, January). Period-Based Load Par-
titioning and Assignment for Large Real-Time Applications. IEEFE
Transactions on Computers 49(1), 81-87.

Proposes an algorithm (heuristic) to the problem of workload partitioning
and assignment of large heterogeneous real-time applications, which groups
tasks by period. Evaluates the presented approach using simulations.

Altenbernd, P. and H. Hansson (1998). The Slack Method: A New Method
for Static Allocation of Hard Real-Time Tasks. Real- Time Systems 15,
103-130.

Presents and evaluates the Slack Method, a constructive heuristic for the
allocation of periodic hard real-time tasks to multiprocessor or distributed
systems.

Anderson, J. and A. Srinivasan (2000, June). Early-Release Fair Schedul-
ing. In Proc. of the EuroMicro Conference on Real-Time Systems,
Stockholm, Sweden, pp. 35-43. IEEE Computer Society Press.
Presents a variant of P-fair scheduling, the early-release fair (ERfair). ER-
fair differs from P-fair scheduling in that it has a lower average job response
times and run-time costs, particularly in a lightly-loaded systems.

Andersson, B., S. Baruah, and J. Jonsson (2001, December). Static-

priority scheduling on multiprocessors. In Proceedings of the Real-Time
Systems Symposium, London, pp. 193-202.
Considers the problem of preempive scheduling of systems of periodic tasks in
multiprocessor identical systems. Proposes a scheduling algorithm for static
priority scheduling of such systems based on the extension of the uniprocessor
rate monotonic scheduling algorithm.

Aydin, H., R. Melhem, S. Mossé, and P. Mejia-Alvarez (1999, December).
Optimal Reward-Based Scheduling of Periodic Real-Time Tasks. In
Proc. of the Real-Time Systems Symposium, Phoenix, Arizona. IEEE

BIBLIOGRAPHY BIBLIOGRAPHY

Computer Society Press.

Addresses the periodic reward-based scheduling problem in the context of
uniprocessor systems. Focuses on linear and concave reward functions, which
adequately represent realistic applications such image and speech processing,
time-dependent planning and multimedia presentations.

Baruah, S., N. Cohen, C. Plaxton, and D. Varvel (1996, June). Propor-

tionate Progress: A notion of Fairness in Resource Allocation. Algo-
rithmica 15(6), 600-625.
Defines a notion of fairness, called P-fairness to be used in a variety of re-
source allocation problems. Shows that P-fair schedules exists for the resource
sharing problem, which is a slight generalization of the periodic scheduling
problem.

Baruah, S., R. Howell, and L. Rosier (1990). Algorithms and Complexity
Concerning the Preemptive Scheduling of Periodic, Real-Time Tasks
on One Processor. Real-Time Systems 2, 301-324.
investigates preemptive scheduling algorithms of periodic real-time task sys-
tems on one processor.

Davari, S. and S. Dhall (1986, December). An On line Algorithm For
Real-Time Tasks Allocation. In Proc. of the 7th Real-Time Systems
Symposium, New Orleans, Louisiana, pp. 194-200. IEEE.

Davis, R., K. Tindell, and A. Burns (1993). Scheduling Slack Time in

Fixed Priority Pre-emptive Systems. In Proc. of the IEEE Real-Time
Systems Symposium, pp. 222-231.
Addresses the problem of jointly scheduling tasks with both hard and soft
time constraints. Determines the maximum processing time which may be
stolen from hard deadline periodic or sporadic tasks, without jeopardising
their timing constraints.

Dhall, S. and C. Liu (1978, February). On a Real-Time Scheduling Prob-
lem. Operations Research 26(1), 127-140.

Forbes, H. and K. Schwan (1994). Rapid - a multiprocessor scheduler for
dynamic real-time applications. Technical Report GIT-C-94-23, Col-
lege of Computing, Georgia Institute of Technology.

Investigates and evaluates operating system support for on-line scheduling of
real-time tasks on shared memory multiprocessors.

Funk, S., J. Goossens, and S. Baruah (2001, December). On-line Schedul-
ing on Uniform Multiprocessors. In Proceedings of the Real-Time Sys-
tems Symposium, London, pp. 183-192.

142

BIBLIOGRAPHY BIBLIOGRAPHY

Considers the on-line scheduling of hard real-time systems on multi-processor
machines. Results are applied to the scheduling of periodic task systems.

Gai, P., G. Lipari, and M. D. Natale (2001, December). Minimizing Mem-
ory Utilization of Real-Time Task Sets in Single and Multi-Processor
Systems-on-a-chip. In Proceedings of the Real-Time Systems Sympo-
stum, London, pp. 73-83.

Presents an algorithm for sharing resources in multi-processor systems by
preemptive tasks. This allows to guarantee the schedulability of hard real-
time task sets while minimizing RAM usage.

Holman, P. and J. Anderson (2001, December). Guaranteeing Pfair Su-
pertasks by Reweighting. In Proceedings of the Real-Time Systems
Symposium, London, pp. 203-212.

Considers the ”supertask” approach, in which a set of Pfair tasks is sched-
uled as a single task in a multiprocessor system. Presents reweighting rules
for both EPDF- and EDF-scheduled component tasks.

Hong, K. and J. Leung (1988, December). On-line Scheduling of real-
time tasks. In Proc. of the Real-Time Systems Symposium, Huntsville,
Alabama, pp. 244-250. IEEE Computer Society Press.

Kalyanasundaram, B. and K. Pruhs (1995, Oktober). Speed is as pow-
erful as clairvoyance. In 86th Annual Symposium on Foundations of
Computer Science, Los Alamitos, pp. 214-223. IEEE Computer Soci-
ety Press.

Introduces the notion of competitive analysis for uniprocessor scheduling,
in which the on-line algorithm is allowed more resources than the optimal
off-line algorithm.

Koren, G. and D. Sasha (1993, November). MOCA: A Multiprocessor
On-Line Competitive Algorithm for Real-Time System Scheduling. In
Proc. of the 14th Real-Time Systems Symposium, pp. 172-181.
Studies on-line scheduling with worst-case guarantees in multi-processor real-
time environments. Considers two memory models: a distributed system
having a centralized scheduler and a shared memory multiprocessor.

Lawler, E. and C. Martel (1981, Februar). A Note on Preemptive
Scheduling of Periodic Real-Time Tasks. Information Processing Let-
ters 12(1), 9-12.

Considers a problem in which periodic tasks are to to be preemptively sched-
uled on a system of parallel processors. Shows that there exists a feasible

143

BIBLIOGRAPHY BIBLIOGRAPHY

schedule if and only if there exists a feasible schedule which is cyclic with
a period equal in length to the least common multiple of the periods of the
individual tasks.

Liu, C. and J. Layland (1973, January). Scheduling algorithms for multi-
programming in a hard real-time environment. J. of the ACM 20(1),
46-61.

Describes the different aspects of scheduling of periodic systems. Presents
the first proof of the optimality of rate-monotonic and Earliest Deadline
First scheduling for periodic systems.

Liu, F., P. Luh, and B. Moser (1998). Scheduling and Coordination of
Distributed Design Projects. CIRPS Annals 47, 111-113.
Studies the scheduling and coordination of distributed design projects with
uncertainties while managing design risks. Presents a mathematical optimiza-
tion model that balances modeling accuracy and computational complexity.
Develops a solution methodology that combines Lagrangian relaxation and
stochastic dynamic programming.

Liu, J. W. S. and R. Ha (1995). Advances in Real-Time Systems (Sang H.

Song ed.)., Chapter 9, Efficient Methods of Validating Timing Con-
straints, pp. 196-220. Prentice Hall.
Presents worst-case bounds and efficient algorithms for determining how late
the completion times of independent jobs with arbitrary release times can be
in a dynamic multiprocessor or distributed system when their release times
and execution times may vary from one instance to another.

Moir, M. and S. Ramamurthy (1999, December). Pfair Scheduling of Fixed

and Migrating Periodic Tasks on Multiple Resources. In Proc. of the
Real-Time Systems Symposium, Phoenix, Arizona. IEEE Computer
Society Press.
Presents a scheduling scheme of periodic preemptable tasks on multiple re-
sources. Considers a task model that allows arbitrary mixes of fixed and
migratable tasks, and prove the existence of an optimal Pfair scheduler in
this model.

Mok, A. (1983). Fundamental Design Problems of Distributed Systems
for the Hard Real-Time Environment. Ph. D. thesis, Massachusetts
Institute of Technology.

(Presents the on-line algorithm Least Laxity Algorithm).

Mok, A. and M. Dertouzos (1978, November). Multiprocessor Scheduling
in a Hard Real-Time Environment. In Proc. of the 7th Texas Confer-

144

BIBLIOGRAPHY BIBLIOGRAPHY

ence on Computer Systems, Houston, Texas. IEEE/ACM.

Mok, A. and W. Wang (2001, December). Window-Constrained Real-

Time Periodic Task Scheduling. In Proceedings of the Real-Time Sys-
tems Symposium, London, pp. 15-24.
Shows that the Dynamic Window-Constrained Scheduling fails for arbitrarily
low aggregate utilization rates of the packet streams. Defines the notion of
Pfairness in relation to the Window-Contrained Scheduling model. Defines
an EDF for the Window-Contrained scheduling problem.

Nissanke, N., A. Leulseged, and S. Chillara (2001, December). A Frame-
work for Probabilistic Analysis of Multiprocessor Scheduling Environ-
ments. In Proc. of the IEEE/EE Real-Time Embedded Systems Work-
shop (Satellite of the IEEE Real-Time Systems Symposium,), London.
Sets up a framework for probabilistic analysis of task scheduling in a multi-
processor environment. Assumes that the tasks are not known precisely and
that they inherently carry an element of uncertainty or unpredictability.

Oh, Y. and S. Son (1994). Scheduling hard real-time tasks with toler-

ance of multiple processor failures. Microprocessing and Microprogram-
ming 40, 193-206.
Studies the problem of scheduling a set of hard real-time tasks with duplica-
tion. Proves that the problem of scheduling a set of non-preemptive tasks on
m > 3 processors to tolerate one arbitrary processor failure is NP-complete
even when the tasks share a common deadline. A heuritic algorithm is pro-
posed to solve the problem.

Philips, C. A., C. Stein, E. Torng, and J. Wein (1997, May). Optimal

Time-Critical Scheduling via Resource Augmentation. In Proc. of the
29th Annual ACM Symposium on Theory of Computing, El Paso,
Texas, pp. 140-149.
Considers the problem real-time dynamic scheduling in a preemptive multi-
processor setting, and scheduling to provide good response time in a number
of scheduling environments. Uses a relaxed notion of competitive analysis,
in which the on-line algorithm is allowed more resources than the optimal
off-line algorithm to which it is compared.

Poledna, S., A. Burns, A. Wellings, and P. Barrett (2000, February).
Replica Determinism and Flexible Scheduling in Hard Real-Time De-
pendable Systems. IEEE Transactions on Computers 49(2), 100-111.
A method, called timed messages, to avoid the inconsistent order and timing
of replicated tasks in real-time distributed systems is presented. The major
advantage of timed messages is its efficiency and flexibility while guaranteeing

145

BIBLIOGRAPHY BIBLIOGRAPHY

deterministic operation of replicated tasks.

Ramamritham, K. and J. Stankovic (1984). Dynamic Task Scheduling in
Hard Real-Time Distributed systems. IEEE Software 1(3), 65-75.
Deals with multiprocessor scheduling in hard real-time distributed systems.
Uses a uniprocessor scheme for local scheduling, and perform distributed
scheduling for tasks which are potentially subject to timing failures at run-
time.

Ramamritham, K. and J. Stankovic (1994). Scheduling Algorithms and
Operating Systems Support for Real-Time Systems. In Proc. of the
IEEE, Volume 82 of 1, pp. 55-67.

Presents the state of the real-time field in the areas of scheduling and oper-
ating system kernels.

Ramamritham, K., J. Stankovic, and P.-F. Shiah (1990, April). Efficient
Scheduling Algorithms for Real-Time Multiprocessor Systems. IEEE
Transactions on Parallel and Distributed Computing 1(2), 184-194.
Presents a scheduling algorithm, based on heuristics, to schedule a set of tasks
in multiprocessor systems. The approach constructs explicitly task execution
plans. It assumes that non-blocking tasks with known worst case execution
times and resource requirements are the entities being scheduled.

Regehr, J. and J. Stankovic (2001, December). A Framework for Com-
posing Soft Real-Time Schedulers. In Proceedings of the Real-Time
Systems Symposium, London, pp. 3-14.

Presents a hierarchical CPU scheduling to support applications in open sys-
tems. .

Rhee, I. and G. Martin (1995, December). A Scalable Real-Time Synchro-

nization Protocol for Distributed Systems. In Proc. of the Real-Time
Systems Symposium, Pisa, Italy, pp. 21-27.
Proposes a distributed protocol for the synchronization of real-time tasks that
have variable resource requirements. The protocol is intended for large-scale
distributed or parallel systems in which processes communicate by message
passing.

Shih, W.-K., J. Liu, J.-Y. Chung, and D. Gillies (1989, July). Scheduling
Tasks with Ready Times and Deadlines to Minimize Average Error.
Operating Systems Review 23(3), 14-28.

Presents a preemptive optimal algorithm for scheduling n dependent tasks
with rational ready times, deadlines, and processing times on uniprocessor
systems. The tasks are logically decomposed into mandatory and optional

146

BIBLIOGRAPHY BIBLIOGRAPHY

subtasks.

Sprunt, B. (1990, August). Aperiodic Task Scheduling for Real-Time Sys-

tems. Ph. D. thesis, Department of Electrical and Computer Engineer-
ing, Canergie Mellon University.
Develops the Sporadic Server Algorithm for scheduling aperiodic tasks in
real-time systems. Demonstrates that the Sporadic Server algorithm is able
to guarantee deadlines for hard-deadline aperiodic tasks and provides good
responsiveness for soft-deadline tasks.

Stankovic, J. (1988, October). A Serious Problem for Next-Generation
Systems. Computer 21(10), 10-19.

Stankovic, J. and K. Ramamritham (1991, May). The Spring Kernel: A
New Paradigm for Real-Time Systems. IEEFE Software 8(3), 62-72.
Implements and evaluates multiprocessor schedulers running on single, dedi-
cated nodes of small scale parallel embedded systems using a static heuristic
function, which may integrate timing, resource and preceding constraints.

Tia, T.-S. and J.-S. Liu (1995). Assigning Real-Time Tasks and Resources

to Distributed Systems. Special Issue of the International Journal of
Mini and Microcomputers 17(1), 18-25.
Presents a method for allocating periodic tasks where different tasks may
have different deadlines. Graph based heuristics, which attempt to minimize
interprocess communication and based on clustering and graph-bisection, are
used for task assignment.

Tokuda, H., J. Wendorf, and H. Wang (1987, December). Implementation
of a Time-Driven Scheduler for Real-Time Operating Systems. In Proc.
of the 8th Real-Time Systems Symposium, San Jose, California, pp.
271-280. IEEE.

Zhao, W., K. Ramamritham, and J. Stankovic (1987a, August). Preemp-
tive Scheduling Under Time and Resource Constraints. IEEE Trans-
actions on Computers C-36(8), 949-960.

Discusses the use of a heuristic approach for scheduling atsks with timing
and resource constraints. Validates the results through simulation studies.

Zhao, W., K. Ramamritham, and J. Stankovic (1987b, May). Scheduling
Tasks with Resource Requirements in Hard Real-Time Systems. IEEE
Transactions on Software Engineering SE-13(5), 564-577.

Zhu, D.; R. Melhem, and B. Childers (2001, December). Scheduling
with Dynamic Voltage/Speed Adjustment Using Slack Reclamation in
Multi-Processor Real-Time Systems. In Proceedings of the Real-Time

147

BIBLIOGRAPHY BIBLIOGRAPHY

Systems Symposium, London, pp. 84-94.

Focuses on power-aware scheduling for multi-processor real-time systems
based on the idea of slack sharing among processors. Takes into consider-
ation tasks with and without precedence constraints.

148

Chapter 8

Conclusions and Outlook

%
”The best

Way to predict
the future is to
invent it”

&

A. Kay

This chapter starts by giving a summary of the precedent chapters
followed by a summary of the contributions of the thesis. Addition-
ally, it indicates suggestions for future research and development direc-
tions that would help to bring the MaSHReC into industrial practice.
Finally, the complete and alphabetically sorted bibliography without
commentary is produced.

Conclusions and Outlook

8.1 Summary

This work introduced a novel area of application for real-time systems, Man-
ufacturing Systems underlying real-time constraints, which is especially mo-
tivated by the stringent demands of Production Planning and Control Sys-
tems. Understanding basic concepts of task scheduling helps the designer
engineer to guarantee satisfation of deadlines which is why it is essential
to study the scheduling theory. This thesis does the complex interdisci-
plinary work of transferring theoretical real-time scheduling results to prac-
tical, industrial computing applications. In the following the summary of
the different chapters is given.

8.1.1 Chapter 1 ”Introduction”

The first chapter motivates the research presented in this thesis by empha-
sizing the impact of related fields which affected my research. A main object
of this chapter is to present the basic hypotheses concluded from the dif-
ferent observations in several fields of Real-Time Systems and Production
Planning and Control. The evaluation of these hypotheses is the subject of
the following seven chapters.

8.1.2 Chapter 2 "The MaSHReC Architecture”

A profound approach is to construct manufacturing planning and control
systems such that changes can be more easily incorporated and the guarantee
of real-time cosntraints of tasks can be clearly verified. This is the topic of
the first part of this thesis. Therefore, Chapter 2 introduces the architecture
of a Manufacturing System under Hard Real-Time Constraints using the
holonic approach.

8.1.3 Chapter 3 "The MaSHReC Design Model”

Based on the architecture presented in Chapter 2, this chapter develops the
design model of a manufacturing system under hard real-time constraints.
The Unified Modeling Language (UML) is used to model the system struc-
ture, components, relations, data, functions and interactions.

8.1.4 Chapter 4 ” A Local Scheduling Algorithm for MaSHReC”

In the second part of the thesis, the on-line aperiodic scheduling of MaSHReC
is treated. The purpose of this chapter is to develop a local scheduling algo-

150

Conclusions and Outlook

rithm for the model provided in the precedent chapter. Besides developing
the local scheduling technique, Chapter 4 derives an extended schedulabil-
ity test, inclusing changeover time costs, to prove the predictability of the
system.

8.1.5 Chapter 5 ”A Distributed Scheduling Algorithm for
MaSHReC”

Due to the advances in Flexible Manufacturing Systems technologies, dis-
tributed systems have become widespread. It is the purpose of this chapter
to study the scheduling problem for distributed manufacturing systems un-
derlying real-time constraints. This scheduling problem in its general form
is known to be NP-hard. The study of real-time constraints in such systems
increase the complexity of the scheduling problem. Therefore, a heuristic
scheduling scheme is developed and implemented in a prototyped manufac-
turing cell. The performance of the proposed algorithm is examined via
simulation studies.

8.1.6 Chapter 6 ”Predictable Monoprocessor Scheduling”

In order to guarantee hard timing constraints, it is necessary that the
scheduling solution provides predictable response time performance for tasks
with hard deadlines. The unpredicatble nature of aperiodic tasks makes it
difficult to create a predictable scheduling solution that is able to meet hard
timing constraints. This problem is treated by Chapter 6 and Chapter 7.
Chapter 6 provides an extension of a server-based algorithm to decide if
an aperiodic task is feasible on one machine in a production shift. The
extended algorithm retains the advantages of the previous Total Bandwith
Server algorithms, while overcoming their limitations in order to be applied
to manufacturing systems, that is including changeover time overheads. The
predictability of the system is proven through schedulability analysis tech-
niques.

8.1.7 Chapter 7 ”Predictable Multiprocessor Scheduling”

In chapter 7, the scheduling of hard real-time activities is performed on-line
on a uniform multiprocessor platform considering hard periodic and hard
aperiodic tasks and the assignment of changeover time costs. The problem
is studied using a relaxed notion of competitive analysis, in which the on-line
algorithm is allowed faster machines than the off-line algorithm to which it

151

Conclusions and Outlook

is compared. Schedulability analysis techniques are derived to prove the
predictability of the system. The performance of the multiprocessor control
algorithm is analyzed through simulations.

8.2

Achievements of the Thesis

The fundamental goals of this thesis are:

1.

to structure and design a methodology of a manufacturing system
under real-time constraints,

. to thoroughly examine and compare the literature of real-time schedul-

ing theory and its application to Production Planning and Control
Systems, and

to develop computational methods for studying the aperiodic schedul-
ing problem in uni-, multiprocessor and distributed manufacturing sys-
tems under hard real-time constraints.

The contributions of this thesis, can be summarized in the following.
The location of the contributions is provided in chapters 1 to 7.

Motivation and formulation of the hypotheses for the modeling and
scheduling of Manufacturing Systems under Real-Time Constraints
(Chap. 1).

A complete review of holonic manufacturing architectures (Chap. 2).

Development of an architecture for Manufacturing Systems underlying
real-time Constraints (Chap. 2).

A design methodology of a manufacturing system under real-Time
constraints (Chap. 3).

Definition of a taxonomy for the real-time scheduling problem (Chap.
4).

Review of holonic manufacturing scheduling schemes (Chap. 4).

Development of the local scheduling policy and the schedulability test
for MaSHReC (Chap. 4).

Review of recent distributed scheduling techniques (Chap. 5).

152

Conclusions and Outlook

8.3

A classification and review of real-time distributed scheduling litera-
ture (Chap. 5).

Development of a distributed scheduling scheme for MaSHReC (Chap.
5).

A prototype implementation of the scheduling scheme proposed in
Chapter 5 (Chap.5).

Performance evaluation of the scheduling scheme proposed in Chapter
5.

A review of uniprocessor real-time scheduling algorithms (Chap. 6).
Review and evaluation of server scheduling mechanisms (Chap. 6).

Development of a predictable scheduling scheme upon a monoprocessor
production stage (Chap. 6).

A review of multiprocessor real-time scheduling algorithms (Chap. 7).

Development of a predictable scheduling scheme upon a uniform mul-
tiprocessor production stage (Chap. 7).

Development of a schedulability analysis for the control algorithm pro-
vided in chapter 7 (Chap. 7).

Performance evaluation of the control algorithm provided in chapter

7 (Chap. 7).

Suggestions for Future Research and Develop-
ment

Scheduling is a relevant topic for both domains of real-time systems and
manufacturing systems. This thesis is a contribution to both research fields,
and it provides a conceptual basis, as well as a heuristic and predictable
algorithms as starting points for future work. The following extensions might
be of particular interest in the future.

Assumptions Relazation
Future work is implied from the relaxation of algorithms’ assumptions
defined in Chapters 4, 5, 6, and 7 (Assumptions sections). These are

153

Conclusions and Outlook

not cited in this section. However, new ideas and concepts resulting
from this thesis are provided.

Real-Time Design of MaSHReC

The model presented in Chapter 3 is based on UML. The UML visual
modeling facilities do not provide sufficient means to support real-time
systems. The extension of UML to support real-time constraints is out
of the scope of this thesis. This is reflected in the model presented in
Chapter 3. However, this topic remains a subject of further research
efforts.

Fault Tolerance Support

A desirable feature of manufacturing systems underlying real-time con-
straints is the support of fault tolerance. Providing fault tolerance in
a system allows executing tasks to survive failures within the system.
Without fault tolerance, an application program executing in parallel
on multiprocessors in a distributed system could fail entirely if even
a single processor executing part of it fails. Therefore, it would be
necesssary that critical components of the real-time manufacturing
system are designed to be fault tolerant.

QOwverload Support

Real-time production planning and control systems may suffer from
overload conditions. While overload support is a known problem in
the real-time scheduling theory, a future work would be how to provide
means to support real-time scheduling of manufacturing systems in
overload conditions.

Evaluation of the Heuristic Algorithm for Large Manufacturing Sys-
tems (Chap. 5)

Although numerous experiments have been conducted, further exper-
iments are necessary to investigate the performance of the heuristic
algorithm for large systems. Besides, in the the simulation, only pro-
duction cells with one machine were considered. It remains to be
studied how uniform multiprocessor machines in a production shift
perform when using the presented scheduling technique.

Implication of Transport Costs in the Proposed Predictable Control
Scheme

This thesis provides a predictable scheduling for deciding if an aperi-
odic task is feasible on uniform multiprocessors in a production shift.

154

Conclusions and Outlook

In a manufacturing system, where a substantial amount of time is spent
to transport parts among machines, it would be primary to account
for transport overheads.

e FEzxtension of the Results to Other Real-Time Application Domains
The application focused on in this thesis is manufacturing planning
and control. However, results (or extended results) of this thesis would
be of great interest for a vast array of real-time system applications
underlying hard or firm real-time constraints and/or suffering from
high changeover time costs such as automotive electronics, air traffic
control, railway switching systems, large-scale multiprocessors'.

o Involvement of Further Timing Requirements
A typical characteristic of real-time systems is the concurrent process-
ing of tasks under strict timing requirements. These timing require-
ments may impose not only direct constraints, such as deadlines, but
also indirect timing constraints in terms of inter-task dependencies,
limited buffer capacities, optimization of storage usage, share of com-
mon resources. Theoretical developments are also required to involve
such timing requirements.

Finally, it is anticipated that despite its maturity and development, the
real-time scheduling area will continue to offer challenging open problems
for a long time in the future.

! As multiprocessors grow in size and complexity, latency tolerance of synchronization
faults and remote menory accesses becomes increasingly important. Accounting for these
latencies is crucial when evaluating machine utilization.

155

Conclusions and Outlook

156

Bibliography

Abdelzaher, T. and K. Shin (1995, December). Optimal Combined Task
and Message Scheduling in Distributed Real-Time Systems. In Proc.
of the Real-Time Systems Symposium, Pisa, Italy, pp. 162-171.
Presents an optimal algorithm for combined task and message scheduling in
distributed hard real-time systems. Uses a branch-and-bound technique to
find an optimal solution to the problem.

Abdelzaher, T. and K. Shin (1997, September). Comment on ”A Pre-
Run-Time Scheduling Algorithm for Hard Real-Time Systems”. IEEE
Transactions on Software Engineering 23(9), 599-600.

Shows that the branch-and-bound implicit enumeration algorithm does not
always succeed in finding a feasible solution, and describes the reason why
this algorithm might fail.

Abdelzaher, T. and K. Shin (2000, January). Period-Based Load Par-
titioning and Assignment for Large Real-Time Applications. IEEFE
Transactions on Computers 49(1), 81-87.

Proposes an algorithm (heuristic) to the problem of workload partitioning
and assignment of large heterogeneous real-time applications, which groups
tasks by period. Evaluates the presented approach using simulations.

Altenbernd, P. and H. Hansson (1998). The Slack Method: A New Method
for Static Allocation of Hard Real-Time Tasks. Real- Time Systems 15,
103-130.

Presents and evaluates the Slack Method, a constructive heuristic for the
allocation of periodic hard real-time tasks to multiprocessor or distributed
systems.

Anderson, J. and A. Srinivasan (2000, June). Early-Release Fair Schedul-
ing. In Proc. of the EuroMicro Conference on Real-Time Systems,
Stockholm, Sweden, pp. 35-43. IEEE Computer Society Press.

Presents a variant of P-fair scheduling, the early-release fair (ERfair). ER-

BIBLIOGRAPHY BIBLIOGRAPHY

fair differs from P-fair scheduling in that it has a lower average job response
times and run-time costs, particularly in a lightly-loaded systems.

Andersson, B., S. Baruah, and J. Jonsson (2001, December). Static-

priority scheduling on multiprocessors. In Proceedings of the Real-Time
Systems Symposium, London, pp. 193-202.

Considers the problem of preempive scheduling of systems of periodic tasks in
multiprocessor identical systems. Proposes a scheduling algorithm for static
priority scheduling of such systems based on the extension of the uniprocessor
rate monotonic scheduling algorithm.

Atlas, A. and A. Bestravos (1998, December). Statistical Rate Monotonic

Scheduling. In Proc. of the 19th IEEE Real-Time Systems Symposium,
Madrid, Spain.

Statistical Rate Monotonic Scheduling is a generalization of the classical Rate
Monotonic Scheduling results of Liu and Layland. This algorithm allows the
scheduling of periodic tasks with variable resource requirement to achieve a
requested statistical Quality of Service guarantee. It Yield controllable and
predictable Quality of Service unrelated to the period of a given task.

Audsley, N.; A. Burns, M. Richardson, and A. Wellings (1991). Hard

Real-Time Scheduling: The Deadline Monotonic Approach. In Eighth
IEEE Workshop on Real-Time Operating Systems and Software, pp.
133-137.

Investigates schedulability tests for sets of periodic processes whose deadlines
are permitted to be less than their period. Such a relaxation enables sporadic
processes to be directly incorporated without alteration to the process mod-
els.

Aydin, H., R. Melhem, D. Mossé, and P. Mejia-Alvarez (2001, December).

Dynamic and Agressive Scheduling Techniques for Power-Aware Real-
Time Systems. In Proceedings of the Real-Time Systems Symposium,
London, pp. 95-105.
Addresses power-aware scheduling of periodic hard real-time tasks using dy-
namic voltage scaling.

Aydin, H., R. Melhem, S. Mossé, and P. Mejia-Alvarez (1999, December).

Optimal Reward-Based Scheduling of Periodic Real-Time Tasks. In
Proc. of the Real-Time Systems Symposium, Phoenix, Arizona. IEEE
Computer Society Press.

Addresses the periodic reward-based scheduling problem in the context of
uniprocessor systems. Focuses on linear and concave reward functions, which
adequately represent realistic applications such image and speech processing,

158

BIBLIOGRAPHY BIBLIOGRAPHY

time-dependent planning and multimedia presentations.

Baruah, S. (1995, December). Fairness in Periodic Real-Time Scheduling.
In Proc. of the Real-Time Systems Symposium, Pisa, Italy, pp. 200—
209.

Describes a quantitative measure of temporal fairness ”pfairness” in periodic
real-time scheduling. Presents the Weight-Monotonic scheduling algorithm,
a static priority scheduling algorithm for generating ”pfair” schedules.

Baruah, S., N. Cohen, C. Plaxton, and D. Varvel (1996, June). Propor-

tionate Progress: A notion of Fairness in Resource Allocation. Algo-
rithmica 15(6), 600-625.
Defines a notion of fairness, called P-fairness to be used in a variety of re-
source allocation problems. Shows that P-fair schedules exists for the resource
sharing problem, which is a slight generalization of the periodic scheduling
problem.

Baruah, S., R. Howell, and L. Rosier (1990). Algorithms and Complexity
Concerning the Preemptive Scheduling of Periodic, Real-Time Tasks
on One Processor. Real-Time Systems 2, 301-324.
investigates preemptive scheduling algorithms of periodic real-time task sys-
tems on one processor.

Baruah, S., A. Mok, and L. Rosier (1990, December). Preemptively
Scheduling Hard Real-Time Sporadics Tasks on One Processor. In
Proc. of the Real-Time Systems Symposium, pp. 182-190. IEEE Com-
puter Society Press.

Gives a necessary and sufficient conditions for a sporadic task system to be
preemptively schedulable on one processor.

Bate, I. and A. Burns (1999). A Framework for Scheduling in Safety-
Critical Embedded Control Systems. In Proc. of the 6th International
Conference on Real-Time Computing Systems and Apllications.
Presents a computational model that supports the reuse of legacy systems.
Develops timing analysis that features low pessimism and low computational
complexity.

Bernat, G. and C. Cayssials (2001, December). Guaranteed On-Line
Weakly-Hard Real-Time Systems. In Proceedings of the Real-Time
Systems Symposium, London, pp. 25-35.

Presents an on-line scheduling framework called Bi-Modal Scheduler for
weakly hard real-time systems. In a normal mode, tasks can be scheduled
with a generic scheduler. Weakly hard constraints are guaranteed to be sat-

159

BIBLIOGRAPHY BIBLIOGRAPHY

isfied by switching to a panic mode for which schedulability tests exist.

Bestavros, A. and D. Spartiotis (1993, May). Probabilistic Job Scheduling
for Distributed Real-Time Applications. In Proc. of the First IEEE
Workshop on Real-Time Applications, New York, NY.

Describes a heuristic for the dynamic real-time scheduling in a distributed
environment. When a task is submitted to a node, the scheduling software
tries to schedule the task locally so as to meet its deadline. If it fails, it tries
to locate another node where this could be done with a high probability of

success.

Bettati, R. (1994). End-to-End Scheduling to Meet Deadlines in Dis-
tributed Systems. Ph. D. thesis, University of Illinois at Urbana-
Champaign, Zrich.

Presents two algorithms for scheduling flow shops where tasks can be ser-
viced more than once by some processors. Describes a technique to schedule
flow shops that consist of periodic tasks and to analyze their schedulability.

Biyabani, S., J. Stankovic, and K. Ramamritham (1988, December). The
Integration of Deadline and Criticalness in Hard Real-Time Schedul-
ing. In Proc. of the 9th Real-Time Systems Symposium, Los Alamitos,
California, pp. 1562-169. CS Press.

Presents two heuristric approaches for distributed hard real-time computer
systems. The algorithms explicitely account for both deadlines and critical-
ness of tasks when making scheduling decisions.

Bongaerts, L. (1998). Integration of Scheduling and Control in Holonic
Manufacturing Systems. Ph. D. thesis, PMA/K.U. Leuven.
Develops shop floor control algorithms based on the notion of holonic man-
ufacturing systems.

Booch, G. (1991). Object Oriented Design with Applications. Redwood
City, California: Benjamin/Cummings.
Presents a unified notation that incorporates the Boochs notation (first book)
and other methods. Includes several examples of projects implemented in
C++.

Booch, G., J. Rumbaugh, and 1. Jacobson (1999). The Unified Modeling
Language User Guide. Addison-Wesley.
Presents the UML conceptual model and applies UML to series of modeling
problems.

Burns, A. and G. Bernard (2001). Jorvik: A framework for effective
scheduling. Technical Report YCS-334, Department of Computer Sci-

160

BIBLIOGRAPHY BIBLIOGRAPHY

ence, University of York.

Presents a collection of mechanisms that together form a framework for the
support of flexible scheduling with mix hard and soft tasks, periodic and
aperiodic load and intertask relationships.

Burns, A., K. Tindell, and A. Wellings (1995, May). Effective Analysis
for Engineering Real-Time Fixed Priority Schedulers. In IEEE Trans-
actions on Software Engineering, Volume 21 of 5, pp. 475-480.
Presents an analysis that enables the cost of the scheduler (clock overheads,
queue manipulations and release delays) to be factored into the standard
equations of calculating worst-case response times in hard real-time systems.

Buttazzo, G. (1997). Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer academic Publishers.
Introduces basic concepts for real-time computing, with emphasis on pre-
dictable scheduling algorithms. Handles periodic and aperiodic task schedul-
ing, tasks with precedence constraints, access protocols to shared resources,
schedulability analysis, and handling overload conditions.

Buttazzo, G., M. Spuri, and F. sensini (1995, December). Value vs Dead-
line Scheduling in Overload Conditions. In Proc. of the Real-Time
Systems Symposium, Pisa, Italy, pp. 90-99.

Presents a comparative study among scheduling algorithms which use differ-
ent priority Assignments and different guarantee mechanism during overload
conditions.

Caccamo, M., G. Lipari, and G. Buttazzo (1999, December). Sharing Re-
sources among Periodic and Aperiodic Tasks with Dynamic Deadlines.
In Proc. of the IEEE Real-Time Systems Symposium, Phoeniz, Ari-
zona, pp. 284-293.
Addresses the problem of scheduling hybrid real-time task sets consisting of
hard periodic and soft aperiodic tasks that may share resources in exclu-
sive mode in a dynamic environment. Considers that resources are accessed
through the Stack Resource Policy and aperiodic tasks are serviced by the
tunable Total Bandwidth Server.

Caccamo, M. and L. Sha (2001, December). Aperiodic Servers with Re-
source Constraints. In Proceedings of the Real-Time Systems Sympo-
stum, London, pp. 161-170.

Addresses the problem of integrating resource constraints in the execution
of hybrid task sets including hard period and soft aperiodic task sets using
a capacity based server.

161

BIBLIOGRAPHY BIBLIOGRAPHY

Casey, L. (1981). Decentralized Scheduling. The Australian Computer
Journal 13(2).

Chiu, J.-F. and G.-M. Chiu (2001, December). Placing Forced Check-
points in Distributed Real-Time Embedded Systems. In Proc. of the
IEEE/EE Real-Time Embedded Systems Workshop (Satellite of the
IEEE Real-Time Systems Symposium,), London.

Presents a scheme for placing forced checkpoints in a distributed real-time
embedded systems so as to make all checkpoints useful for rollback recovery.

Davari, S. and S. Dhall (1986, December). An On line Algorithm For
Real-Time Tasks Allocation. In Proc. of the 7th Real-Time Systems
Symposium, New Orleans, Louisiana, pp. 194-200. IEEE.

Davis, R., K. Tindell, and A. Burns (1993). Scheduling Slack Time in

Fixed Priority Pre-emptive Systems. In Proc. of the IEEE Real-Time
Systems Symposium, pp. 222-231.
Addresses the problem of jointly scheduling tasks with both hard and soft
time constraints. Determines the maximum processing time which may be
stolen from hard deadline periodic or sporadic tasks, without jeopardising
their timing constraints.

Davis, R. and A. Wellings (1995, December). Dual Priority Scheduling. In
Proc. of the Real-Time Systems Symposium, Pisa, Italy, pp. 100-109.
Presents a strategy for scheduling tasks with soft deadlines in real-time sys-
tems containing periodic, sporadic and adaptive tasks with hard deadlines.

Dhall, S. and C. Liu (1978, February). On a Real-Time Scheduling Prob-
lem. Operations Research 26(1), 127-140.

DiNatale, M. and J. Stankovic (1995, December). Applicability of Simu-
lated Annealing Methods to Real-Time Scheduling and Jitter Control.
In Proc. of the Real-Time Systems Symposium, Pisa, Italy, pp. 190—
199.
Introduces a scheduling approach, which minimizes jitter for periodic tasks
in distributed static systems. Presents a general framework consisting of an
abstract architecture model and a general programming model are .

Dussa-Zieger, K. (1998). Model-Based Scheduling and Configuration of
Heterogeneous Parallel Systems. Ph. D. thesis, University Erlangen-
Niirnberg.

Studies the problem of scheduling in heterogeneous multiprocessor systems.
Uses and implements heuristic algorithms based on genetic algorithms and
tabu search.

162

BIBLIOGRAPHY BIBLIOGRAPHY

Eager, D., E. Lazowska, and J. Zahorajan (1986, May). Adaptive Load

Sharing in Homogeneous Distributed Systems. IEEE Trans. on Soft-
ware Engineering SE-12(5), 662-675.
Uses the system decomposition technique to evaluate three types of load shar-
ing algorithms. This technique enables the entire system to be modeled in
terms of a single node, replying upon the conjecture that the decomposition
method is asymptotically exact as the number of nodes, N, becomes larger.
Concludes that any redistribution strategy was better than none, and that
simple policies were almost as effective as more complex ones.

El-Kebbe, D. A. (2000a, May). Integration of On-Line and Off-Line Sys-
tems in Real-Time Manufacturing. In Proc. of the Workshop of the
Informatics Graduate Colleges, Schloss Dagstuhl, Germany.
Introduces a methodology to integrate off-line and on-line production plan-
ning systems to achieve both flexibility and a guarantee for critical production
tasks.

El-Kebbe, D. A. (2000b, October). Modeling the Manufacturing System
under Hard Real-Time Constraints Using Real-Time UML. In Work-
shop on Formal Design Techniques Using Real-Time UML, York, UK.
Discusses modeling techniques for MaSHReC. Introduces an object oriented

holonic model for a manufacturing system under real-time constraints using
UML.

El-Kebbe, D. A. (2000c, September). Towards a Manufacturing System
under Hard Real-Time Constraints. In Informatik 2000: 30. Jahresta-
gung der Gesellschaft fiir Informatik, Berlin.

Presents the basic concept of a manufacturing system under hard real-time
constraints.

El-Kebbe, D. A. (2001a, April). A Real-Time Holon-Based Architecture
for the Production Planning System: Further Results. In Proc. of the
Workshop on Agent Based Simulation II, Passau, Germany.

Presents the architecture for the manufacturing system under hard real-time
constraints (MaSHReC). Models the structure, bahavior and interactions of
MaSHReC using UML.

El-Kebbe, D. A. (2001b, March). A UML Model for the MaSHReC Archi-
tecture. In Proc. of the International Congress on Information Science
Innovations in Intelligent Automated Manufacturing, Dubai, United
Arab Emirates.

Investigates current holonic manufacturing architectures. The MaSHReC
model is designed using the Unified Modeling Language (UML). UML tem-

163

BIBLIOGRAPHY BIBLIOGRAPHY

plates are provided to allow the design of the system structure, components,
relations, data, functions and interactions.

El-Kebbe, D. A. (2001c, December). Aperiodic Scheduling in a Dynamic

Real-Time Manufacturing System. In Proc. of the IEEE/EE Real-
Time Embedded Systems Workshop (Satellite of the IEEE Real-Time
Systems Symposium,), London.

Addresses the problem of aperiodic scheduling of manufacturing systems un-
der hard real-time constraints. Adopts the extended version of the Total
Bandwidth Server algorithm and extends it to include changeover time costs.

El-Kebbe, D. A. (2001d, October). Findings from Adapting Real-Time

Aperiodic Tasks to Production Planning Systems. In Proc. of the IEEE
Conference on Emerging Technologies and Factory Automation, An-
tibes, France.

Presents some findings from adapting real-time operating systems scheduling
theory to production planning and control. Concludes with the introduction
of server mechanisms to the aperiodic scheduling of manufacturing systems
with the novel feature of including changeover time costs.

El-Kebbe, D. A. (2001e, October). Scheduling of Manufacturing Systems

under Hard Real-Time Constraints. In Proc. of the IEEE Systems,
Man and Cybernetics Conference, Tucson, Arizona.

Presents a real-time distributed scheduling scheme for a manufacturing sys-
tem underlying real-time constraints based on bidding and focused address-
ing.

El-Kebbe, D. A. (2002, April). Predictable Multiprocessor Scheduling in

Manufacturing Systems underlying hard Real-Time Constraints. In
Proc. of the AIPS Workshop on On-line Planning and Scheduling,
Toulouse, France.

Presents the Total Bandwidth server algorithm and its schedulability analysis
upon uniform multiprocessor platforms.

El-Rewini, H. and H. Ali (1995). Scheduling of Conditional Branches in

Parallel Program. Journal of Parallel and Distributed Computing 24,
41-54.

Feng, W. and J. W.-S. Liu (1997, February). Algorithms for Scheduling

Real-Time Tasks with Input Error and End-to-End Deadlines. Trans-
actions on Software Engineering 23(2), 93-106.

Describes algorithms for scheduling preemptive, imprecise, composite tasks in
a real-time system. Extends the imprecise computation technique to account

164

BIBLIOGRAPHY BIBLIOGRAPHY

for input error and end-to-end timing constraints. Develops five algorithms
to minimize the output error of each composite task.

Fidge, C. (1998, January). Real-Time Schedulability Tests for Preemptive
Multitasking. J. of Real-Time Systems 14 (1), 61-93.
A tutorial acting as a guide to the major schedulability tests available for
preemptive multi-tasking applications.

Fohler, G. (1995, December). Joint Scheduling of Distributed Complex
Periodic and Hard Aperiodic Tasks in Statically Scheduled Systems.
In Proc. of the Real-Time Systems Symposium, Pisa, Italy, pp. 152—
161.
Presents an algorithm for the joint scheduling of periodic and aperiodic tasks
in statically scheduled distributed real-time systems.

Forbes, H. and K. Schwan (1994). Rapid - a multiprocessor scheduler for
dynamic real-time applications. Technical Report GIT-C-94-23, Col-
lege of Computing, Georgia Institute of Technology.

Investigates and evaluates operating system support for on-line scheduling of
real-time tasks on shared memory multiprocessors.

Funk, S., J. Goossens, and S. Baruah (2001, December). On-line Schedul-
ing on Uniform Multiprocessors. In Proceedings of the Real-Time Sys-
tems Symposium, London, pp. 183-192.

Considers the on-line scheduling of hard real-time systems on multi-processor
machines. Results are applied to the scheduling of periodic task systems.

Gai, P., G. Lipari, and M. D. Natale (2001, December). Minimizing Mem-
ory Utilization of Real-Time Task Sets in Single and Multi-Processor
Systems-on-a-chip. In Proceedings of the Real-Time Systems Sympo-
sium, London, pp. 73-83.

Presents an algorithm for sharing resources in multi-processor systems by
preemptive tasks. This allows to guarantee the schedulability of hard real-
time task sets while minimizing RAM usage.

Ghosh, S., R. Melhem, and D. Mousse (1995, December). Enhancing Real-
Time Schedules to Tolerate Transient Faults. In Proc. of the Real-Time
Systems Symposium, Pisa, Italy, pp. 120-129.

Presents a scheme that can be used to guarantee that the execution of real-
time tasks can tolerate transient und intermittent faults. The scheme is based
on reserving sufficient slack in a schedule such that a task can be re-executed
before its deadline without compromising the guaranteed given to other tasks.

Gou, L., T. Hasegawa, P. Luh, S. Tamura, and J. Oblak (1994, Oc-

165

BIBLIOGRAPHY BIBLIOGRAPHY

tober). Holonic Planning and Scheduling for a Robotic Assembly
Testbed. In Proc. of the Rensselear’s fourth International Conference
on Computer Integrated Manufacturing and Automation Technology,
New York. Rensselear Polytechnique Institute.

Applies the holonic concept to a simple robotic assembly testbed. Establishes
cooperation mechanisms for planning and scheduling among holons based on
an adaptive consistency algorithm and the Lagrangian relaxation technique.

Gou, L. and P. Luh (1997, June). Holonic Manufacturing Scheduling:
Architecture, Cooperation, Mechanism and Implementation. In Proc.
of IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, Tokyo, Japan.

Models a Holonic Manufacturing System with its key elements such as ma-
chines, cells, factories, parts, products, operators, teams, etc. having au-
tonomous and cooperative properties.

Holman, P. and J. Anderson (2001, December). Guaranteeing Pfair Su-
pertasks by Reweighting. In Proceedings of the Real-Time Systems
Symposium, London, pp. 203-212.

Considers the ”supertask” approach, in which a set of Pfair tasks is sched-
uled as a single task in a multiprocessor system. Presents reweighting rules
for both EPDF- and EDF-scheduled component tasks.

Hong, I., M. Potkonjak, and M. Srivastava (1998, November). On-Line
Scheduling of Hard Real-Time Tasks on Variable Voltage Processor.
In Proc. of the International Conference on Computer-Aided Design.
Considers the problem of scheduling hard periodic and firm sporadic tasks
on variable voltage processor to optimize power consumption.

Hong, K. and J. Leung (1988, December). On-line Scheduling of real-
time tasks. In Proc. of the Real-Time Systems Symposium, Huntsville,
Alabama, pp. 244-250. IEEE Computer Society Press.

Hsueh, C.-W., K.-J. Lin, and N. Fan (1995, December). Distributed Pin-
wheel Scheduling with End-toEnd Timing Constraints. In Proc. of the
Real-Time Systems Symposium, Pisa, Italy, pp. 172-181.

Presents an end-to-end scheduling model for real-time distributed system
based on the pinwheel scheduling algorithm.

Isovic, D. and G. Fohler (1998). Handling Sporadic Tasks in Off-line
Scheduled Distributed Real-Time Systems. In Proc. of the 11th Fu-
romicro Conference on Real-Time Systems. IEEE.

166

BIBLIOGRAPHY BIBLIOGRAPHY

Presents an algorithm to handle event-triggered sporadic tasks in the context
of time-triggered, off-line scheduled systems. Provides off-line schedulability
test for sporadic tasks.

Jonsson, J. (1998). Compile-Time Scheduling of Real-Time Threads on
Multi-Level-Context Architectures. In Proc. of the Seventh Swedish
Workshop on Computer System Architecture.

Addresses the problem of how to schedule periodic, real-time threads on a
class of architectures referred to as multi-level-context (MLC) architectures
such as real-time operating system architectures.

Kédar, B., L. Monostori, and E. Szelke (1997). An object-oriented
framework for developing distributed manufacturing architectures. In
L. Monostori (Ed.), Proc. of the Second World Congress on Intelli-
gent Manufacturing Processes and Systems, Budapest, Hungary, pp.
548-554.

Kalyanasundaram, B. and K. Pruhs (1995, Oktober). Speed is as pow-
erful as clairvoyance. In 86th Annual Symposium on Foundations of
Computer Science, Los Alamitos, pp. 214-223. IEEE Computer Soci-
ety Press.

Introduces the notion of competitive analysis for uniprocessor scheduling,
in which the on-line algorithm is allowed more resources than the optimal
off-line algorithm.

Koestler, A. (1967). The Ghost in the Machine. London: Hutchinson &
Co. (Second Edition: Arkana Books, London, 1989)
Observes a dichotomy of wholeness and partness in living organisms and
social organisations. Uses the ” Janus Effect” as a metaphor for this dichotomy
of wholeness and partness. Suggests a new term "holon” to describe the
members of these systems.

Kopetz, H. (1997). Real-Time Systems: Design Principles for Distributed
Embedded Applications. Kluwer Academic Publishers.
This book treats issues of hard real-time distributed systems with fault tol-
erance aspects.

Koren, G. and D. Sasha (1992, December). D-over: An Optimal On-Line
Scheduling Algorithm for Overloaded Real-Time Systems. In Proc. of
the Real-Time Systems Symposium, Phoenix, Arizona, pp. 290-299.
TEEE.

Presents an optimal on-line algorithm for overloaded systems. Optimal means
that the algorithm gives the best competitive factor possible relative to an

167

BIBLIOGRAPHY BIBLIOGRAPHY

off-line scheduler.

Koren, G. and D. Sasha (1993, November). MOCA: A Multiprocessor
On-Line Competitive Algorithm for Real-Time System Scheduling. In
Proc. of the 14th Real-Time Systems Symposium, pp. 172-181.
Studies on-line scheduling with worst-case guarantees in multi-processor real-
time environments. Considers two memory models: a distributed system
having a centralized scheduler and a shared memory multiprocessor.

Koren, G. and D. Shasha (1991). An optimal scheduling algorithm with

a competitive factor for real-time systems. Technical Report TR572,
Department of Computer Science, New York University.
Presents an algorithm for a possibly overloaded system which behaves like
the EDF algorithm when the system is underloaded, and obtains at least a
quarter of the maximum value that an optimal clairvoyant algorithm could
obtain even when the system is overloaded.

Koren, G. and D. Shasha (1995, December). Skip-Over: Algorithms and
Complexity for Overloaded Systems That Allow Skips. In Proc. of the
Real-Time Systems Symposium, Pisa, Italy, pp. 110-117.

Investigates the problem of uniprocessor scheduling of occasionally skippable
periodic tasks (tasks with acceptable deadline missing).

Kouiss, K., H. Pierreval, and N. Mebarki (1997). Using multi-agent ar-
chitecture in FMS for dynamic scheduling. J. of Intelligent Manufac-
turing 8, 41-47.

Presents a multi-agent system for dynamic scheduling in Flexible Manufac-
turing Systems.

Kriz, D. (1995). Holonic Manufacturing Systems: Case study of an IMS
Consortium. http://hms.ifw.uni-hannover.de.
Presents motivational and implementation issues for Holonic Manufacturing
Systems.

Kiister, J. (2001, September). Towards Behavior Consistent Modeling in
UML-RT. In Proc. of the Forum on Design Languages (FDL’01).

Kiister, J. and J. Stroop (2001). Consistent Design of Embedded Real-
Time Systems with UML-RT. In Proc. of the 4th IEEE Interna-

tional Symposium on Object-Oriented Real-Time Distributed Comput-
ing (ISORC 2001), pp. 31-40. IEEE Computer Society.

Kiister, J. M. and J. Stroop (2000, October). Towards Consistency of
Dynamic Models and Analysis of Timing Constraints. In Workshop
on Formal Design Techniques Using Real-Time UML, York, UK.

168

BIBLIOGRAPHY BIBLIOGRAPHY

Introduces the notion of consistency for sequence diagrams and state-charts
to the domain of real-time modeling using UML/UML-RT.

Lamastra, G., G. Lipari, and L. Abeni (2001, December). A Bandwidth

Inheritance Algorithm for Real-Time Task Synchronization in Open
Systems. In Proceedings of the Real-Time Systems Symposium, Lon-
don, pp. 151-160.
Presents the BandWidth Inheritance (BWI) scheduling strategy that extends
the bandwidth reservation approach to open systems where tasks can inter-
act through shared resources. Off-line sched anal. not possible. Arrival Time
unknown.

Larsson, E. (1994). The Scheduling Tool. Technical report ProVia-DoCs-
94204, Department of Computer Sytems, Uppsala University.
Presents an off-line scheduling tool that maps a set of process graphs onto a
particular system configuration. The tool accept as input process graphs of
the RED processes to be scheduled, together with a target system description,
and produces as output one schedule for each node executing RED processes.

Lawler, E. and C. Martel (1981, Februar). A Note on Preemptive

Scheduling of Periodic Real-Time Tasks. Information Processing Let-
ters 12(1), 9-12.
Considers a problem in which periodic tasks are to to be preemptively sched-
uled on a system of parallel processors. Shows that there exists a feasible
schedule if and only if there exists a feasible schedule which is cyclic with
a period equal in length to the least common multiple of the periods of the
individual tasks.

Lee, S., S. Min, C. Kim, C.-G. Lee, and M. Lee (1999). Cache-Conscious
Limited Preemptive Scheduling. Real-Time Systems 17, 257-282.
Proposes a scheduling scheme, called Limited Preemptive Scheduling, to ad-
dress the problem of inter-task cache interference due to preemptions in
multi-tasking real-time systems.

Lehoczky, J. and S. Ramos-Thuel (1992, December). An Optimal Algo-

rithm for Scheduling Soft-Aperiodic Tasks in Fixed-Priority Preemp-
tive Systems. In Proc. of the IEEE Real-Time Systems Symposium,
Phoenix, Arizona, pp. 110-123.
Presents an approach (Slack Stealing) for servicing aperiodic requests within
the context of a hard real-time system by making any spare processing time
available as soon as possible. A means of determining the maximum amount
of slack which may be stolen, without jeopardising the hard timing con-
straints, is thus the key to the operation of the algorithm.

169

BIBLIOGRAPHY BIBLIOGRAPHY

Leung, J. and M. Merril (1980). A Note on Preemptive Scheduling of
Periodic Real-Time Tasks. Information Processing Letters 11(3), 115
118.

Leung, J. and J. Whitehead (1982, December). On the complexity of
fixed priority scheduling of periodic, real-time tasks. In Performance
Evaluation, Volume 2 of 4, Netherlands, pp. 237-250.

Formulates an alternative priority assignment policy, where task deadlines
can be less than the period of a task. Provides simple analysis to determine
the schedulability of such tasks.

Liu, C. and J. Layland (1973, January). Scheduling algorithms for multi-
programming in a hard real-time environment. J. of the ACM 20(1),
46-61.

Describes the different aspects of scheduling of periodic systems. Presents
the first proof of the optimality of rate-monotonic and Earliest Deadline
First scheduling for periodic systems.

Liu, C., J. Liu, and A. Liestman (1982). Scheduling with Slack-Time. In
Acta Informatica, Volume 17, pp. 31-41.

Liu, F., P. Luh, and B. Moser (1998). Scheduling and Coordination of
Distributed Design Projects. CIRPS Annals 47, 111-113.
Studies the scheduling and coordination of distributed design projects with
uncertainties while managing design risks. Presents a mathematical optimiza-
tion model that balances modeling accuracy and computational complexity.
Develops a solution methodology that combines Lagrangian relaxation and
stochastic dynamic programming.

Liu, J., K.-J. Lin, and S. Natarajan (1987, December). Scheduling Real-
Time Periodic Jobs Using Imprecise Results. In Proc. of the 8th Real-
Time Systems Symposium, San Jose, California, pp. 252-260. IEEE.
Outlines an approach to design general purpose real-time computer systems
that can skip non-critical portions of scheduled jobs in order to avoid missed
deadline during system overloads.

Liu, J. W. S. and R. Ha (1995). Advances in Real-Time Systems (Sang H.

Song ed.)., Chapter 9, Efficient Methods of Validating Timing Con-
straints, pp. 196-220. Prentice Hall.
Presents worst-case bounds and efficient algorithms for determining how late
the completion times of independent jobs with arbitrary release times can be
in a dynamic multiprocessor or distributed system when their release times
and execution times may vary from one instance to another.

170

BIBLIOGRAPHY BIBLIOGRAPHY

Livny, M. and M. Melman (1982, April). Load balancing in homogeneous

broadcast distributed systems. In ACM Computer Network Perfor-
mance Symposium, pp. 47-55.
Studies the probability that in a homogeneous distributed computing system,
a customer waits for service at one node while at least one node is idle. Shows
that for a wide range of system traffic intensity, this probability is close to
one.

Lu, C., J. Stankovic, G. Tao, and S. Son (1999, June). Design and Eval-
uation of a Feedback Control EDF Scheduling Algorithm. In Proc. of
the Real-Time Systems Symposium.

Presents and evaluates the feedback control real-time scheduling.

Miérkus, A., T. Kis, J. Vancza, and L. Monostori (1996). A market ap-
proach to holonic manufacturing. CIRP Annals 45(1), 433-436.
Introduces a market mechanism for coordinating the activities of intelligent
agents that pursue their own interest by operating under bounded rationality
in a changing, hardly predictable environment.

Maérkus, A. and J. Véancza (1996, September). Are manufacturing agents
different? In S. B. S. Albayrak (Ed.), Proc. of the European Workshop
on Agent-Oriented Systems in Manufacturing, Berlin, Germany, pp.
86-103. Daimler-Benz AG and T.U. Berlin.
outlines a prototype of an order-processing and scheduling system that has
been built on a market mechanism.

Marti, P., J. Fuertes, F. Fohler, and K. Ramamritham (2001, December).
Jitter Compensation for Real-Time Control Systems. In Proceedings
of the Real-Time Systems Symposium, London, pp. 39-48.
Proposes an approach for real-time scheduling of control systems by com-
pensating for sampling jitter and sampling-actuation delay through the ad-
justment of controller parameters.

Martins, E., L. Almeida, and J. Fonseca (2001, December). Integrating
Traffic Scheduling and Schedulability Analysis in an FPGA-based Co-
processor. In Proc. of the IEEE/EE Real-Time Embedded Systems
Workshop (Satellite of the IEEE Real-Time Systems Symposium),
London.

Presents a dedicated coprocessor to support the traffic management in
the communication system. The coprocessor integrates both scheduling and
schedulability analysis functions.

Moir, M. and S. Ramamurthy (1999, December). Pfair Scheduling of Fixed

171

BIBLIOGRAPHY BIBLIOGRAPHY

and Migrating Periodic Tasks on Multiple Resources. In Proc. of the
Real-Time Systems Symposium, Phoenix, Arizona. IEEE Computer
Society Press.

Presents a scheduling scheme of periodic preemptable tasks on multiple re-
sources. Considers a task model that allows arbitrary mixes of fixed and
migratable tasks, and prove the existence of an optimal Pfair scheduler in
this model.

Mok, A. (1983). Fundamental Design Problems of Distributed Systems
for the Hard Real-Time Environment. Ph. D. thesis, Massachusetts
Institute of Technology.

(Presents the on-line algorithm Least Laxity Algorithm).

Mok, A. and D. Chen (1997, October). A Multiframe Model for Real-Time
Tasks. IEEE Transactions on Software Engineering 23(10), 635-645.
Presents a multiframe real-time task model which allows the execution time
of a task to vary from one instance to another by specifying the execution
time of a task in terms of a sequence of numbers.

Mok, A. and M. Dertouzos (1978, November). Multiprocessor Scheduling
in a Hard Real-Time Environment. In Proc. of the 7th Texas Confer-
ence on Computer Systems, Houston, Texas. IEEE/ACM.

Mok, A. and W. Wang (2001, December). Window-Constrained Real-

Time Periodic Task Scheduling. In Proceedings of the Real-Time Sys-
tems Symposium, London, pp. 15-24.
Shows that the Dynamic Window-Constrained Scheduling fails for arbitrarily
low aggregate utilization rates of the packet streams. Defines the notion of
Pfairness in relation to the Window-Contrained Scheduling model. Defines
an EDF for the Window-Contrained scheduling problem.

Moriwaki, T., N. Sugimura, Y. Martawirya, and S. Wirjomartono (ASME
1992). Production scheduling in autonomous distributed manufactur-
ing system. Quality Assurance Through Integration of Manufacturing
Processes and Systems PED-Vol. 56, 175-186.

Nishi, T., A. Sakata, S. Hasebe, and I. Hashimoto (2000). Autonomous
Decentralized Scheduling System for Just-in-Time Production. In
Proc. of the Tth International Symposium on Process System Engi-
neering, pp. 345-351.

Proposes an autonomous decentralized scheduling system for just-in-time
production. The goal for each sub-system scheduling includes the storage
costs for intermediate and final products in addition to the changeover costs

172

BIBLIOGRAPHY BIBLIOGRAPHY

and the due date penalties.

Nissanke, N., A. Leulseged, and S. Chillara (2001, December). A Frame-
work for Probabilistic Analysis of Multiprocessor Scheduling Environ-
ments. In Proc. of the IEEE/EE Real-Time Embedded Systems Work-
shop (Satellite of the IEEE Real-Time Systems Symposium,), London.
Sets up a framework for probabilistic analysis of task scheduling in a multi-
processor environment. Assumes that the tasks are not known precisely and
that they inherently carry an element of uncertainty or unpredictability.

Oh, Y. and S. Son (1994). Scheduling hard real-time tasks with toler-

ance of multiple processor failures. Microprocessing and Microprogram-
ming 40, 193-206.
Studies the problem of scheduling a set of hard real-time tasks with duplica-
tion. Proves that the problem of scheduling a set of non-preemptive tasks on
m > 3 processors to tolerate one arbitrary processor failure is NP-complete
even when the tasks share a common deadline. A heuritic algorithm is pro-
posed to solve the problem.

Oliveira, R. and J. Fraga (1996). Scheduling Imprecise Computation
Tasks with Intra-Task / Inter-Task Dependence. In Proc. of the 21st
IFAC/IFIP Workshop on Real-Time Programming, pp. 51-56.
Presents two heuristics to be used as admission policy when the system is
made of imprecise tasks. The objective of the admission policy is to max-
imize system utility through the selection of optional parts for execution.
These heuristics are supposed to be used combined with off-line schedulabil-
ity tests and on-line acceptance tests already described in the literature.

Orozco, J., R. Santos, J. Santos, and E. Ferro (2001, December). Hybrid
Rate-Monotonic/Reward-Based Scheduling of Real-Time Embedded
Sytems. In Proc. of the IEEE/EFE Real-Time Embedded Systems Work-
shop (Satellite of the IEEE Real-Time Systems Symposium,), London.
Studies the on-line scheduling of periodic, independent, preemptable real-
time sets of tasks consisting of a mandatory and an optional part. Presents
a scheduling method allowing a rearrangement of slack time based on the
detection of singular instants during the processing.

Padreiras, P. and L. Almeida (2001, December). A Practical Approach to
EDF Scheduling on Controller Area Network. In Proc. of the IEEE/EE
Real-Time Embedded Systems Workshop (Satellite of the IEEE Real-
Time Systems Symposium), London.

Compares Earliest Deadline First algorithm with the rate monotonic ap-
proach on a FTT CAN protocol. Concludes that using EDF, a higher bus

173

BIBLIOGRAPHY BIBLIOGRAPHY

utilization and a reduced jitter and delay time for messages with long periods
are achieved.

Parunak, H., A. Baker, and S. Clark (1997, February). The AARTA Agent

Architecture. In Proc. of the International Conference on Autonomous
Agents, Marina del Rey, CA.

Presents an architecture for a full Enterprise Resource Planning anf Manu-
facturing Execution System.

Peng, D.-T., K. Shin, and T. Abdelzaher (1997, December). Assignment

and Scheduling Communicating Periodic Tasks in Distributed Real-
Time Systems. IEEE Transactions on Software Engineering 32(12),
745-758.

Presents an optimal solution to the problem of allocating communicating
periodic tasks in a distributed real-time systems. The task system is modeled
with a task graph and are assigned to processing nodes by using a branch &
bound search algorithm.

Philips, C. A., C. Stein, E. Torng, and J. Wein (1997, May). Optimal

Time-Critical Scheduling via Resource Augmentation. In Proc. of the
29th Annual ACM Symposium on Theory of Computing, El Paso,
Texas, pp. 140-149.

Considers the problem real-time dynamic scheduling in a preemptive multi-
processor setting, and scheduling to provide good response time in a number
of scheduling environments. Uses a relaxed notion of competitive analysis,
in which the on-line algorithm is allowed more resources than the optimal
off-line algorithm to which it is compared.

Poledna, S., A. Burns, A. Wellings, and P. Barrett (2000, February).

Replica Determinism and Flexible Scheduling in Hard Real-Time De-
pendable Systems. IEEE Transactions on Computers 49(2), 100-111.
A method, called timed messages, to avoid the inconsistent order and timing
of replicated tasks in real-time distributed systems is presented. The major
advantage of timed messages is its efficiency and flexibility while guaranteeing
deterministic operation of replicated tasks.

Ramamritham, K. and J. Stankovic (1984). Dynamic Task Scheduling in

Hard Real-Time Distributed systems. IEEE Software 1(3), 65-75.
Deals with multiprocessor scheduling in hard real-time distributed systems.
Uses a uniprocessor scheme for local scheduling, and perform distributed
scheduling for tasks which are potentially subject to timing failures at run-
time.

174

BIBLIOGRAPHY BIBLIOGRAPHY

Ramamritham, K. and J. Stankovic (1994). Scheduling Algorithms and
Operating Systems Support for Real-Time Systems. In Proc. of the
IEEE, Volume 82 of 1, pp. 55-67.

Presents the state of the real-time field in the areas of scheduling and oper-
ating system kernels.

Ramamritham, K., J. Stankovic, and P.-F. Shiah (1990, April). Efficient
Scheduling Algorithms for Real-Time Multiprocessor Systems. IEEE
Transactions on Parallel and Distributed Computing 1(2), 184-194.
Presents a scheduling algorithm, based on heuristics, to schedule a set of tasks
in multiprocessor systems. The approach constructs explicitly task execution
plans. It assumes that non-blocking tasks with known worst case execution
times and resource requirements are the entities being scheduled.

Ramamritham, K., J. Stankovic, and W. Zhao (1989, August). Dis-
tributed Scheduling of Tasks with Deadlines and Resource Require-
ments. IEEE Transactions on Computers 38(8), 1110-1123.
Evaluates four algorithms for cooperation in a distributed real-time system.
They differ in the way a node treats a task that cannot be guaranteed locally.

Ramos, C. (1996). A Holonic Approach for Task Scheduling in Manu-
facturing Systems. In Proc. of the IEEE International Conference on
Robotics and Automation.

Ramos, C. and P. Sousa (1996, September). Scheduling Orders in Man-
ufacturing Systems using a Holonic Approach. In S. B. S. Albayrak
(Ed.), Proc. of the European Workshop on Agent-Oriented Systems in
Manufacturing, Berlin, Germany, pp. 80-85. Daimler-Benz AG and
T.U. Berlin.

Presents an approach to resource allocation in holonic manufacturing based
on the contract net protocol.

Randell, B., J.-C. Laprie, H. Kopetz, and B. Littlewood (1995). Pre-
dictably Dependable Computing Systems. Springer-Verlag.
Contains a selection of papers on main topics in Predictable Dependable
Computing Systems: fault prevention, fault tolerance, fault removal, and
fault forecasting.

Regehr, J. and J. Stankovic (2001, December). A Framework for Com-
posing Soft Real-Time Schedulers. In Proceedings of the Real-Time
Systems Symposium, London, pp. 3—14.

Presents a hierarchical CPU scheduling to support applications in open sys-
tems. .

175

BIBLIOGRAPHY BIBLIOGRAPHY

Rhee, I. and G. Martin (1995, December). A Scalable Real-Time Synchro-

nization Protocol for Distributed Systems. In Proc. of the Real-Time
Systems Symposium, Pisa, Italy, pp. 21-27.
Proposes a distributed protocol for the synchronization of real-time tasks that
have variable resource requirements. The protocol is intended for large-scale
distributed or parallel systems in which processes communicate by message
passing.

Ripoll, I., A. Crespo, and A. Garcia-Fornes (1997, June). An Optimal Al-

gorithm for Scheduling Soft Aperiodic Tasks in Dynamic-Priority Pre-
emptive Systems. IEEE Transactions on Software Engineering 23(6),
388-400.
Presents the theoretical foundations for the EDF Exact Slack Stealer algo-
rithm which provides a solution to the problem of jointly scheduling hard
periodic tasks and aperiodic tasks. Is optimal for periodic tasks since it is
based on EDF and optimal for aperiodic tasks since it gives the shortest
response time to aperiodic tasks.

Rumbaugh, J., M. Blaha, W. Premerlani, S. Eddy, and W. Lorensen
(1991). Object Oriented Modeling and Design. New York, USA: Pren-
tice Hall, Englewood Cliffs.

Explores the Object Modeling Technique (OMT), a generic method of rep-
resenting objects and their relationships.

Santos, J., E. Ferro, J. Orozco, and R. Cayssials (1997). A Heuristic
Approach to the Multitask-Multiprocessor Assignment Problem using
the Empty Slots Method and Rate Monotonic Scheduling. Real-Time
Systems 13, 167-199.

Presents a heuristic approach to the problem of assigning a set of preemptable
resource-sharing and blockable real-time tasks to be executed in a set of
heterogeneous processors communicated through an interprocessor network.

Schneider, U. (1996). Fin formales Modell und eine Klassifikation fir die
Fertigungssteuerung. Ph. D. thesis, Heinz-Nixdorf Institut / Univer-
sitdt Paderborn.

Presents a methodology for the construction of production planning and
control systems based on a classification of production control tasks and
production control procedures.

Selic, B. (1998). Using UML for modelling complex real-time systems.
Lecture Notes in Computer Science 1474, 250-260.

Selic, B. (1999, October). Turning Clockwise: Using UML in the Real-

176

BIBLIOGRAPHY BIBLIOGRAPHY

Time Domain. Communications of the ACM 42(10), 46-54.

Discusses modeling of real-time systems using UML.

Serlin, O. (1972, May). Scheduling of Time Critical Processes. In Proc. of
the Spring Joint Computer Conference, Atlantic city, New Jersey, pp.
925-932. Montvale, NJ: American Federation of Information Process-
ing Societies.

(First algorithm to handle periodic tasks.).

Sha, L. and S. Sathaye (1993). Distributed real-time system design: Theo-
retical concepts and applications. Technical Report CMU/SEI-93-TR-
2 ESC-TR-93-179, Software Engineering Institute, Canergie Mellon
University.

Describes the use of generalized rate monotonic scheduling theory for the
design and analysis of a distributed real-time system.

Shih, W.-K., J. Liu, J.-Y. Chung, and D. Gillies (1989, July). Scheduling

Tasks with Ready Times and Deadlines to Minimize Average Error.
Operating Systems Review 23(3), 14-28.
Presents a preemptive optimal algorithm for scheduling n dependent tasks
with rational ready times, deadlines, and processing times on uniprocessor
systems. The tasks are logically decomposed into mandatory and optional
subtasks.

Shin, K. G. and Y.-C. Chang (1995, December). A reservation-based al-
gorithm for scheduling both periodic and aperiodic real-time tasks.
IEEFE Transactions on Computers 44, 1405-1419.

Shirazi, B., A. Hurson, and K. Kavi (1995). Scheduling and Load Balanc-
ing in Parallel and Distributed Systems. New York: IEEE Computer
Society Press.

Smith, R. (1980, December). The Contract Net Protocol: High-Level
Communication and Control in a Distributed Problem Solver. IEEE
Transactions on Computers C-29(12), 1104-1113.

Pioneers the research in communication among cooperating distributed
agents with the contract net protocol.

Sousa, P. and C. Ramos (1997). A Dynamic Scheduling Holon for Man-
ufacturing Orders. In L. Monostori (Ed.), Proc. of the Second World
Congress on Intelligent Manufacturing Processes and Systems, Bu-
dapest, Hungary, pp. 542-547.

Sprunt, B. (1990, August). Aperiodic Task Scheduling for Real-Time Sys-
tems. Ph. D. thesis, Department of Electrical and Computer Engineer-

177

BIBLIOGRAPHY BIBLIOGRAPHY

ing, Canergie Mellon University.

Develops the Sporadic Server Algorithm for scheduling aperiodic tasks in
real-time systems. Demonstrates that the Sporadic Server algorithm is able
to guarantee deadlines for hard-deadline aperiodic tasks and provides good
responsiveness for soft-deadline tasks.

Sprunt, B., J. Lehoczky, and L. Sha (1988, December). Exploiting Unused
Periodic Time For Aperiodic Service Using the Extended Priority Ex-
change Algorithm. In Proc. of IEEE Real-Time Systems Symposium,
pp- 251-258.

Presents an extended version of the priority exchange server algorithm for
exploiting unused periodic time.

Sprunt, B., L. Sha, and J. Lehoczky (1989). Aperiodic Task Scheduling
for Hard Real-Time Systems. In J. of Real-Time Systems, pp. 27-60.
Develops the Sporadic Server algorithm for scheduling aperiodic tasks in real-
time systems. This algorithm extends the rate monotonic algorithm which
was designed to schedule periodic tasks. It guarantees deadlines for hard
periodic tasks and provide good responsiveness for soft aperiodic tasks.

Spuri, M. and G. Buttazzo (1994, December). Efficient Aperiodic Service
under Earliest Deadline Scheduling. In Proc. of the 15th IEEE Real-
Time Systems Symposium, Portorico, pp. 2-11.

Proposes and studies server algorithms under earliest deadline first schedul-
ing. Studies the performance of the Improved Priority Exchange algorithm.

Spuri, M. and G. Buttazzo (1996). Scheduling aperiodic tasks in dynamic
priority systems. Real-Time Systems Journal 10, 179-210.

Spuri, M., G. Buttazzo, and F. Sensini (1995, December). Robust Ape-
riodic Scheduling under Dynamic Priority Systems. In Proc. of the
IEEE Real-Time Systems Symposium, Pisa , Italy, pp. 210-219.
Extends the Total Bandwidth Server algorithm to handle firm aperiodic tasks
and then integrates a guarantee mechanism that allows to achieve degrada-
tion in case of transient overload.

Stankovic, J. (1984, June). Simulation of Three Adaptive Decentralized
Controlled Job Scheduling Algorithms. Computer Network 8(3), 199
217.

Stankovic, J. (1985a, February). An application of bayesian decision the-
ory to decentralized control of job scheduling. IEEE Transactions on
Computers C-84(2), 117-130.

The delay in transferring state information and tasks makes it impossible for

178

BIBLIOGRAPHY BIBLIOGRAPHY

a node scheduler to obtain the necessary data to take an optimal decision.
The Bayesian decision based algorithm tries to reduce uncertainty through
estimates based on information provided by the exchange of messages.

Stankovic, J. (1985b). Stability and Distributed Scheduling Algorithms.
IEEE Transactions on Software Engineering SE-11(10), 1141-1152.
Lists two scheduling methods. The first is adaptive with dynamic reassign-
ment, and is based on broadcast messages and stochastic learning automata.
The second method uses bidding and one time-assignment in a real-time
environment.

Stankovic, J. (1988, October). A Serious Problem for Next-Generation
Systems. Computer 21(10), 10-19.

Stankovic, J., T. He, T. Abdelzaher, M. Marley, G. Tao, S. Son, and C. Lu
(2001, December). Feedback Control Scheduling in Distributed Real-
Time Systems. In Proceedings of the Real-Time Systems Symposium,
London, pp. 59-70.

Presents a framework (Distributed Feedback Control Real-Time Scheduling)
for developing software control algorithms based on a theory of feedback
control to a distributed open system.

Stankovic, J., C. Lu, S. Son, and G. Tao (1999, June). The Case for
Feedback Control Real-Time Scheduling. In Proc. of the Euromicro
Conference on Real-Time Systems.

Studies the use of feedback control concepts in soft rea-time scheduling
systems, with the goal of the development of a theory of feedback control
scheduling.

Stankovic, J. and R. Mirchandaney (1986, December). Using stochastic
learning automata for job scheduling in distributed processing systems.
J. of Parallel and Distributed Computing 3, 527-552.

Stankovic, J. and K. Ramamritham (1988a). Tutorial Hard Real-Time
Systems. IEEE Computer Society Press.

Stankovic, J. and K. Ramamritham (1988b). Tutorial Hard Real-Time
Systems (J. A. Stankovic and K. Ramamritham ed.)., Paper: Schedul-
ing Algorithms for Hard Real-Time Sytems - A Brief Survey, pp. 150—
173. IEEE Computer Society Press.

Stankovic, J. and K. Ramamritham (1988c). Tutorial Hard Real-Time
Systems, Paper: Evaluation of a Flexible Task Scheduling for Dis-
tributed Hard Real-Time Systems, pp. 273-286. IEEE Computer So-
ciety Press.

179

BIBLIOGRAPHY BIBLIOGRAPHY

Stankovic, J. and K. Ramamritham (1991, May). The Spring Kernel: A

New Paradigm for Real-Time Systems. IEEE Software 8(3), 62-72.
Implements and evaluates multiprocessor schedulers running on single, dedi-
cated nodes of small scale parallel embedded systems using a static heuristic
function, which may integrate timing, resource and preceding constraints.

Stankovic, J. and K. Ramamritham (1993). Advances in Real-Time Sys-

tems, Article: Misconceptions About Real-Time Computing, pp. 17—
25. IEEE Computer Society Press.

Stewart, D. and P. Khosla (1991, May). Real-Time Scheduling of Sensor-

Based Control Systems. In Proc. of the Eighth IEEE Workshop on
Real-Time Operating Systems and Software, Atlanta, pp. 144-150.
Proposes the maximum urgency first algorithm, which is a mixed priority
real-time scheduling algorithm (combination of fixed and dynamic priority
scheduling). The motivation behind this algorithm is to provide guaranteed
soft real-time scheduling.

Streich, H. (1995). TaskPair-Scheduling: An Approach for Dynamic Real-

Time Systems. Int. Journal of Mini € Microcomputers 17(2), 77-83.
Presents an on-line scheduling approach which merges the concepts of guar-
anteeing (an activity) and exception handling (due to time outs). It gives a
guarantee, when the task is accepted, that the TaskPair will hold its time
constraints.

Strosnider, J. (1988, August). Highly Responsive Real-Time Token Rings.

Ph. D. thesis, Department of Electrical and Computer Engineering,
Canergie Mellon University.

Develops the deferrable server algorithm. The execution of the deferrable
server is replenished periodically. Unlike a poller, when a deferrable server
finds no aperiodic jobs for execution, it preserves its budget.

Sun, J. and J. Liu (1996, May). Synchronization Protocols in Distributed

Real-Time Systems. In Proc. of the 16th International Conference on
Distributed Computing Systems, pp. 38—45.

Focuses on distributed real-time systems that contain independent, periodic
tasks scheduled by fixed priority scheduling algorithms. Describes three syn-
chronization protocols together with algorithms to analyze the schedulability
of the system when these protocols are used.

Sun, J. and M. G. J. Liu (1997, October). Bounding Completion Times

of Jobs with Arbitrary Release Times, Variable Execution Times,
and Resource Sharing. IEEE Transactions on Software FEngineer-

180

BIBLIOGRAPHY BIBLIOGRAPHY

ing 23(10), 603-615.
Presents three algorithms for computing upper bounds on the completion
times of jobs that have arbitrary release times and priorities.

Swaminathan, V. and K. Chakrabarty (2000, November). Real-Time Task
Scheduling for Energy-Aware Embedded Systems. In Proc. of the
IEEFE Real-Time Systems Symposium.

Presents an approach for scheduling periodic tasks in real-time systems. The
presented approach minimizes the total energy consumed by the task set and
guarantees that the deadline for every periodic task is met.

Tia, T.-S. and J.-S. Liu (1995). Assigning Real-Time Tasks and Resources

to Distributed Systems. Special Issue of the International Journal of
Mini and Microcomputers 17(1), 18-25.
Presents a method for allocating periodic tasks where different tasks may
have different deadlines. Graph based heuristics, which attempt to minimize
interprocess communication and based on clustering and graph-bisection, are
used for task assignment.

Tindell, K. and J. Clark (1994). Holistic Schedulability Analysis for Dis-

tributed Hard Real-Time Systems. Microprocessing & Microprogram-
ming 40, 117-134.
Performs an early work on an event-driven model for scheduling of distributed
systems. Analyses schedulability for distributed systems where tasks with
arbitrary deadlines communicate by message passing and shared data areas.
Uses periodic tasks for the first task in the transaction. Subsequent tasks are
triggered as sporadic tasks when the preceding task has been completed.

Tokuda, H. and C. Mercer (1989, July). Arts: A Distributed Real-Time

Kernel. In Operating Systems Review, Volume 23 of &, pp. 29-53. ACM
Press.
Introduces a real-time object model and the integrated time-driven schedul-
ing model to develop real-time computing systems in a distributed environ-
ment. Describes the Advanced Real-Time Technology (ARTS) kernel and the
real-time toolset consisting of schedulability analyzer, Scheduler 1-2-3, and
the real-time monitor/debugger.

Tokuda, H., J. Wendorf, and H. Wang (1987, December). Implementation
of a Time-Driven Scheduler for Real-Time Operating Systems. In Proc.
of the 8th Real-Time Systems Symposium, San Jose, California, pp.
271-280. IEEE.

Tonshoff, H. and M. Winkler (1995). Shop Control for Holonic Manufac-

181

BIBLIOGRAPHY BIBLIOGRAPHY

turing Systems. In Proc. of the 27th CIRP International Seminar on
Manufacturing Systems, Michigan, USA, pp. 329-336. Ann-Arbor.

Valckenaers, P., H. V. Brussel, L. Bongaerts, and J. Wyns (1997). Holonic
Manufacturing Sytems. Integrated Computer-aided Engineering 4(3),
191-201.

Valckenaers, P., J. Wyns, H. V. Brussel, L. Bongaerts, and P. Peeters
(1998). Reference Architecture for Holonic Manufacturing Systems:
PROSA. Computers in Industry, Special Issue on Intelligent Manu-
facturing Systems 37(3), 255-276.

Presents the PROSA reference architecture for holonic Manufacturing Sys-
tems. This architecture consists of three types of holons: product, resource
and order with the assistance of staff holons.

Véancza, J. and A. Mérkus (1998). Holonic manufacturing with economic
rationality. In E. W. G. on IMS & EPFL (Ed.), Proc. of the Furopean
Workshop on Intelligent Manufacturing Systems (IMS-EUROPE-98),
Lausanne, Switzerland, pp. 383-394.

Wellings, A., L. Beus-Dukic, and D. Powell (1998, December). Real-Time
Scheduling in a Generic Fault-Tolerant Architecture. In Proc. of the
19th IEEE Real-Time Systems Symposium, Madrid, Spain.

Presents a real-time scheduling for Generic Upgradable Architecture for
Real-Time Dependable Systems (GUARDS). Uses an extended response-time
analysis to predict the timing properties of replicated real-time transactions.

Young, M. and L.-C. Shu (1991). Hybrid online/offline scheduling for hard
real-time systems. Technical Report SERC-TR-100-P, Software Engi-
neering Research Center, Department of Computer Sciences, Purdue
University.

Constructs an off-line scheduler that optimally allocates idle time to improve
rate-monotonic schedulability.

Young, S. (1982). Real-Time Languages: Design and Development. Ellis
Horwood.

Zhao, W., K. Ramamritham, and J. Stankovic (1987a, August). Preemp-
tive Scheduling Under Time and Resource Constraints. IEEE Trans-
actions on Computers C-36(8), 949-960.

Discusses the use of a heuristic approach for scheduling atsks with timing
and resource constraints. Validates the results through simulation studies.

Zhao, W., K. Ramamritham, and J. Stankovic (1987b, May). Scheduling
Tasks with Resource Requirements in Hard Real-Time Systems. IEEFE

182

BIBLIOGRAPHY BIBLIOGRAPHY

Transactions on Software Engineering SE-13(5), 564-577.

Zhu, D.; R. Melhem, and B. Childers (2001, December). Scheduling
with Dynamic Voltage/Speed Adjustment Using Slack Reclamation in
Multi-Processor Real-Time Systems. In Proceedings of the Real-Time
Systems Symposium, London, pp. 84-94.

Focuses on power-aware scheduling for multi-processor real-time systems
based on the idea of slack sharing among processors. Takes into consider-
ation tasks with and without precedence constraints.

183

