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1 Introduction

Property Testings the computational task to decide whether a given object (e.g., a graph,
a function, or a point set) has a certain predetermined property (e.g., bipartiteness, mono-
tonicity, or convex position) or is far away from every object having this property. If the
input object neither has the property nor is far away from it, the algorithm may answer
arbitrarily. In contrast to traditional algorithms a property testing algorithm does not get a
complete description of the object under consideration as input. Instead, it has the ability
to perform queries about the (local) structure of the object. This way it is possible that a
property testing algorithm achieves its goal by looking only at a small (usually randomly
selected) part of the whole object.

The type of query used by a property testing algorithm depends on the object under
consideration. For example, if the object is a (dense) g@ghen the algorithm may
query for entries in the adjacency matrix @f If the object is a functiorf, it may ask
gueries of the form: 'What is the value 6fx) ?* wherex is an element of the domain of
f. For point sets the algorithm may ask for the position ofittie point of the set (given
an arbitrary, fixed, but unknown ordering among the points).

To specify if an object is far away from a property we neelistance measutgetween
objects. The distance between two objedtsand O, is typically given by the 'fraction
of objectO4’ that has to be changed in order to obtain obj@gt For example, in the
adjacency matrix moddbr graphs the distance between two graphs is the fraction of
entries in the adjacency matrix on which the two graphs differ. The distance between
functions is the fraction of domain elements on which the value of the two functions differs
and the distance of points sets is the fraction of points that are contained in one set but not
in the other. To determine when an object is far away from a propeitstance parameter
e is introduced. Given a distance measure and a distance parametesay that an object
is e-far from a property, if the distance to every object having the property is moresthan

The quality of a property testing algorithm is measured bygutsry complexityand its
running time. The query complexity is the number of queries the algorithm asks about the
input. The running time is the time required for additional computations.

The concept of property testing was first explicitly formulated by Rubinfeld and Sudan
mainly in the context of program checking [75]. The study of property testingdar-
binatorial objectswith focus on graphs was initiated by Goldreich et al. [51]. In many
follow-up papers the concept of property testing has been applied to different classes of
objects including graphs, hypergraphs, matrices, formal languages, Boolean expressions,
and point sets.

In this thesis we study geometric problems in the context of property testing and we



1 Introduction

apply concepts from computational geometry to property testing problems. We start our
investigations in Chapter 3 with the development of property testing algorithms for some
fundamental geometric properties [A. Czun@j,Sohler and M. Ziegler, Property testing

in computational geometry, InProceedings of the 8th Annual European Symposium on
Algorithms (ESA)pages 155 - 166, 2000]. We show in particular, that disjointness of a set
of n geometric objects can be tested wid/n/e) query complexity. Next we develop a
property testing algorithm for theonvex positioproperty of point sets in th&<. A point

set is inconvex positiorif every point of the set is a vertex of its convex hull. Our testing
algorithm has a query complexity (ﬁ( ‘”{/nd/e). For both problems we show that our
property testing algorithm is optimal with respect to its asymptotic query complexity. Next
we consider the property that a geometric grapR#n(a graph with vertex set equal to a
point set in theR?) is aEuclidean minimum spanning tre®/e develop a property testing
algorithm with query complexity)(/n/elog(n/e)) for this problem. Our algorithm

is designed in thadjacency list moddbor graphs and it uses an interesting non uniform
sampling technique.

In the next chapter we present a general framework for property testing algorithms with
one-sided error [A. Czumaj ard. Sohler Abstract combinatorial programs and efficient
property testers, InProceedings of the 43rd Annual IEEE Symposium on Foundations of
Computer Science (FOCSb appear, 2002]. Our framework is based on a connection of
property testing with a new class of problems which we abHtract combinatorial pro-
grams Informally, we show that a property can be tested efficiently, if for every problem
instance (no matter, if the instance has the property or not) there is an abstract combinato-
rial program (of small dimension and width) that satisfi€égasibility Preservingroperty
and aDistance Preservingroperty. We apply our framework to a variety of classical com-
binatorial problems. We prove the testability of some clustering properties of point sets,
of the reversal distance property of permutations, andktheloring property of graphs
and hypergraphs [A. Czumaj ail Sohler Testing hypergraph coloring, Ifroceedings
of the 28th Annual International Colloquium on Automata, Languages and Programming
(ICALP), pages 493 - 505, 2001]. Although for most of these properties a property testing
algorithm has been known before, our framework can be used to simplify the correctness
proofs and in most cases it slightly improves the analyzed query complexity. More im-
portant, it shows that our framework is fairly general and can be applied to a couple of
different problems. In the last section of Chapter 4 we continue our investigations in the
generality of the framework and show: Iflereditarygraph property can be tested in
time independent of the size of the graph (for constgnthen there exists a proof for its
testability in our framework. A graph property is called hereditary, if it is closed under
taking induced subgraphs, i.e.,Gf = (V, E) is a graph with a hereditary graph property
then every subgraph @ induced by a se¥ C V has the property, as well. Although the
current formulation of the framework is purely combinatorial and there is no trace of the
geometric origin, its development has been influenced by concepts from geometry such as
the geometry of linear programming and LP-type problems [76].

In Chapter 5 we return to the development of specific property testing algorithms;
this time under a different model of computation [A. Czumaj &dSohler Property
testing with geometric queries, IRroceedings of the 9th Annual European Symposium on



Algorithms (ESA)pages 266 - 277, 2001]. While in the standard testing model considered
in Chapter 3 a testing algorithm for properties of point sets is only allowed to query for
the position of thd-th point of the set we now allow a certain kind géometric queries
when accessing the input point set. In this new model a testing algorithm may specify a
query rangeR and ask for the-th point withinR. Depending on the type of query range
allowed we have different models of computation. The queries we consider are supported
by standard spatial data structures as they appear in many applications. We show that in
the new model it is possible to design more efficient testing algorithms than in the model
considered so far. In particular, we reconsider the convex position property and show that
it can be tested witl¥(logn/e) triangular range queries. Then we show that there is a
property testing algorithm for a basic map labeling property. This algorithm@gbse?)
rectangular range queries. Finally, we visit the clustering properties from Chapter 4 again.

In Chapter 6 we apply property testing in the context of moving objects [A. Czumaj,
C. Sohler Soft kinetic data structures, IRProceedings of the 12th ACM-SIAM Symposium
on Discrete Algorithms (SODApages 865 -872, 2001]. When we consider moving object
like cars, robots, and mobile phones we do not know the future position of an object.
In many situations an object is controlled and moved by a third party which is located
outside of our system. Basically, the only query a system can guarantee to answer correctly
Is for the current position of an object. In Chapter 6 we develop a theoretical model
for this kind of motion. We are interested in combinatorial structures that are uniquely
defined by the current position of all objects. We assume the following: Queries about
the structures we maintain occur subsequently in time. Between two queries the objects
may move arbitrarily. This movement induces combinatorial changes in the maintained
structure because the structure is uniquely defined by the objects’ positions. Before each
query a data structure may spend some time to 'adjust’ its data. The time spentis compared
to the number of 'combinatorial changes’ that occurred in the data structure since the
most recent query. More precisely, we assume that the objects moved on the 'shortest’ (in
terms of combinatorial changes) route to their current position. If we do not want to ask
for the position of every single object before each query, there is no hope to maintain a
combinatorial structure correctly. That is, where property testing can be applied. We only
maintain approximately correct structures (in the property testing sense). If a structure
is far from correct, then the property testing algorithm usually rejects and returns a small
counter example. This counter example is then locally corrected. This procedure is applied
until the property tester accepts. Using this approach we can show that we can maintain
approximately correct data structures spending only slightly more time than the number
of combinatorial changes in the structure during the shortest motion from configuration to
configuration. We illustrate our approach on sorted sequences, binary search trees, range
trees, and the Euclidean minimum spanning tree.

In the remainder of the Introduction we discuss our motivation to consider property
testing in general, and in particular in the geometric context. Lateron we give a brief
summary of the state of the art in property testing.
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1.1 Motivation

Property testing can be viewed as a relaxation of a standard decision procedure: Instead
of deciding whether an object has a given property or not, we only have to distinguish
between the case when the object has the property and the case when the object is far
away from it. This simpler problem can often be solved much faster and by looking only
at a small - sometimes constant - part of the input. For this reason the running time of a
property testing algorithm is usually much smaller than that of the corresponding decision
procedure. Problems that are infeasible in their original formulation as a decision problem
(e.g.,N'P-complete problems) are tractable in the property testing setting. The standard
way to deal with intractable problems would be, of course, to apply an approximation
algorithm (in the classical sense) to the problem. But sometimes polynomial or even linear
time approximation algorithm may also be too slow. In telecommunications, web traffic
analysis, and data mining we have massive data sets that cannot be processed by classical
algorithms. In such cases the only possibility is to use a sublinear time and space algorithm
as provided by property testing.

We also observe that property testing is a natural form of approximation. Whether or
not the approximation provided by a standard approximation algorithm is more useful than
that of property testing depends on the problem at hand. For example, in the case of graph
and hypergraph coloring it might be more useful to obtain a coloring that violates at most
ane-fraction of the edges than a coloring that might use many more colors than necessary.

We remark that property testing can be very useful in the field of program verification.
In software development people often specify interfaces between different program parts.
Even with a correct and complete interface specification it may happen (more often than
not ?) that data is passed through the interface that is not consistent with the specification.
Typically, data is passed internally using pointers and so it is possible to pass huge objects
in constant time. Hence it is infeasible to check the whole object for its correctness without
heavy impact on the running time of the system. In this case a property testing algorithm
provides a useful alternative: If we cannot give a full guarantee that the input is correct
then we can at least detect the case when it is far from correct.

A further reason for the research in property testing algorithms is the fact that in some
situations being close to a property is almost as good as having the property. This can be
seen in the following example from Computer Graphics: One of the major problems in
Computer Graphics is to design efficieahdering algorithmsRendering is the computa-
tional task to display a virtual scene on the screen. Such a virtual scene is typically com-
posed of several millions of polygons. Using nowadays graphics hardware and a standard
z-buffer algorithm it is not possible to render all polygons in a reasonable time. Therefore,
it is necessary to determine in advance if certain parts of the scene cannot be seen from
the current point of view. This process is calstlusion culling Unfortunately, it is very
difficult to compute exactly those polygons that cannot be seen from a certain point of
view. Many approaches have been developed to deal with this problem and some of them
work only for objects that have (roughly) a convex shape (see, e.g., the survey [26]). If we
could determine quickly in advance whether an object is convex or far away from convex
then we could quickly decide if it is useful for the purpose of (online) occlusion culling.



1.2 Related Work

Such a service can be provided by a property testing algorithm. Therefore we consider the
closely related problem, if a point set (possibly the set of vertices of an object used for
culling purposes) is in convex position, in Chapter 3 and 5 under different property testing
models.

One particular situation when property testing can be useful in Computational Geom-
etry is the exact computation of geometric structures. It is well-known that fixed precision
arithmetic leads to serious problems in the design of geometric algorithms. Therefore,
software packages provide efficient algorithms to evaluate geometric predicates exactly.
Unfortunately, precision takes its time and so the exact evaluation of geometric predicates
is usually much slower than what we could achieve by using fixed precision arithmetic.
One approach to deal with these problems is the following: We first compute the geomet-
ric structure using fixed precision arithmetic and then verify the final structure using exact
arithmetic. If we find errors we try to fix them locally. Unfortunately, such a heuristic
has the drawback that an early error in the computation may cause damage to the whole
part of the structure computed later. Therefore, we should make sure that our structure is
not 'too far away’ from the correct structure during the whole computation. This could
be achieved by a property testing algorithm. If the property testing algorithm rejects the
current structure, then we can correct it before we finish the computation.

Another situation when property testing is useful is in the case of continuously chang-
ing data. Continuously changing data arises in applications that deal with moving objects,
e.g., when we want to maintain a mobile ad-hoc network for moving robots. In such a
situation we can query each robot for its current position but such a query may be slow
and each guery increases the network load. It also does not make sense to update the posi-
tion of each robot before a transmission using the network is performed - such an update
would often create much more network load than the transmission itself. Instead we may
use property testing techniques to check the structure of the current network. If we find
errors in the structure we then correct them locally. In Chapter 6 we develop a theoretical
framework for mobile data and we show how to maintain a certain type of approximate
range trees. These range trees may be useful for the problem of maintaining such a com-
munication network.

1.2 Related Work

We now give a brief summary of the state of the art in property testing. Property testing
was first explicitly formulated by Rubinfeld and Sudan in the context of program checking
[75]. In [51] Goldreich, Goldwasser, and Ron initiated the study of property testing for
combinatorial objects. Since then, people designed property testing algorithm for a wide
variety of problems and tried to classify large classes of testable properties. In the follow-
ing we try to summarize the known results in the different areas where property testing
has been applied. We say that a property carebted efficientlyif there is a property
testing algorithm with a query complexity that does not depend on the size of the input (is
constant, if the distance parametes a constant).
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Graph, Hypergraph, and Matrix Properties. Graph properties have been exten-
sively studied in the context of property testing. There are essentially two models for
testing graph properties. Theljacency matrix modébr dense graphs and tlagljacency

list modelfor sparse graphs. In the adjacency matrix model introduced in [51] it is known
that properties that can be formulated as a certain class of graph partitioning properties
can be tested efficiently [51]. Among these properties are clique size, cut size, bisection,
andk-colorability properties of graphs. Colorability properties have received much atten-
tion in subsequent work. The analysis from [51] for the bipartiteness and the (standard)
k-colorability property has been improved in [6]. In [5] Alon et al. used a variant of Sze-
meredi’'s Regularity Lemma to show that a very general graph coloring property can be
tested efficiently. They use this result to prove that every first order logic graph property
without VY3 quantification is efficiently testable. Though the query complexity of their al-
gorithm is independent of the size of the graph its dependenayisrenormous (i.e., a
tower of towers of a polynomial ie). The notion of coloring from [5] has been further
generalized in various ways in [42] and shown to be efficiently testable.

Another general property considered in the research is the propett-fedeness
(graphs not containing a fixed graphas an induced subgraph). Alon proved that the
query complexity of a one-sided error property tester is polynomial, if and orityig
bipartite [3]. The property oH-freeness can also be tested efficientlgianiform hyper-
graphs [62].

In the adjacency matrix model there is alwaysaaonicalproperty testing algorithm as
the following result of Goldreich and Trevisan shows: A property in the adjacency matrix
model can be tested with query complexity independent of the size of the graph, if and
only if there exists a property testing algorithm that samples & sdtvertices of size
independent of the graph uniformly at random and that accepts if and only if the subgraph
induced byS has some fixed graph property (possibly different from the tested one) [54]. In
this work the authors also characterize graph partition problems that are efficiently testable
with one-sided error.

The adjacency list model for graphs has been introduced in [52] by Goldreich and Ron.
They show that some graph properties like connectivity, planarity, and cycle-freeness can
be tested efficiently. In contrast to the adjacency matrix model in the adjacency list model
there is no canonical property testing algorithm known. Typically, non-uniform sampling
strategies that depend on the problem at hand have been applied. For this reason the prop-
erties considered in the adjacency list model seem to be structurally simplier than the ones
analyzed in the adjacency matrix model. Colorability properties have also been considered
in the adjacency list model: In [53] Goldreich and Ron showed that bipartiteness can be
tested with a query complexity @ (poly((logn)/e)+/n/e) using a non-uniform sam-
pling strategy based on random walks. The authors also present an almost matching lower
bound on the query complexity. Very recently, Bogdanov et al. [19] presented a lower
bound ofQQ(n) (for sufficiently smalle) on the query complexity a3-colorability in the
adjacency list model. It is also known that the diameter of graphs [67] and acyclicity of
directed graphs is testable in sublinear time [15].

The popularity of the adjacency matrix model for graphs lead to the question which
matrix properties can be tested efficiently. Fischer and Newman showed that matrix prop-
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erties defined by a finite collection of forbidden induced partially ordered sets (where we
view a matrix as a partially ordered set in the standard way, that is, as a product order of
total orders) are efficiently testable [45]. Parnas and Ron developed property testing algo-
rithms for the problem to test whether a given matrix is a Euclidean metric, a tree metric,
or an ultrametric [68].

Properties of Functions. Monotonicity properties of functions have also received a

lot of attention. Monotonicity of binary function&: {0, 1}™ — {0, 1} can be tested with

a query complexity of2(n/e) [50]. This result has been generalized to functions over

arbitrary finite ordered sets in [37]. Sortedness of a sequenaenaimbers can be tested

in O(logn/e) time [40]. Lower bounds on monotonicity testing have been given in [44].
Properties of Boolean functions that can be tested efficiently are singletons, monomi-

als, and the property thats a monotone DNF formula with at mosterms. [70]. In [43]

Fischer et al. proved that the property that a Boolean function wwariables depends

only onk of them can be tested with a number of queries depending ontyaoile.

Language Properties.  In order to understand the nature of efficiently testable prop-
erties people considered property testing in the context of formal languages. Alon et al.
showed that a regular language seen as a property can be tested efficiently [7] and there
exists a context-free language that cannot be efficiently tested. Further, there is a property
testing algorithm for testing Dyck languages (languages containing strings of balanced
parenthesis) with query complexi€(n?/3/¢) [69]. Newman proved that constant width
oblivious read-once branching programs viewed as properties can be tested efficiently [66].
Recently, Fischer and Newman showed that read-twice constant width branching programs
are not necessarily testable [46].

Other Results.  There are a couple of results on specific topics that do not fit into one
of the three categories above. We summarize them in this paragraph.

Alon and Shapira showed that a general satisfiability problem which includes hyper-
graphk-coloring can be tested efficiently [8].

In the context of clustering Alon et al. considered the radius and diameter clustering
problem, i.e. the problem if a given point set can be partitionedknsabsets such that
the radius of the smallest sphere enclosing each set (the maximum distance between two
points within each set, respectively) is at mbsif we view this problem as a property of
point sets then it can be tested efficiently as proved in [4].

Some results related to statistics have been obtained: In [14] Batu et al. gave a prop-
erty testing algorithm with query complexit®(n?/3/e~*logn) for closeness of distri-
butions. Given a distributio over [n] x [m] it can be tested with query complexity
O(n?3m'3poly(e)) if the distributions obtained by projecting to each coordinate
are independent [13].

Recently, Buhrman et al. introduced the notion of property testing to quantum com-
puting [21].
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Surveys. There are three surveys that summarize some of the work done in the field of
property testing [42, 74, 49].



2 Preliminaries

In this chapter we introduce some notation used throughout this thesis. In particular, we
introduce a formulation of the standard property testing model with one sided error. We
introduce a special class of properties which we call combinatorial properties.

Then we show that if there exists a property tester for a combinatorial property of point
sets then there exists a property tester with the same query complexity that picks a sample
set uniformly at random and decides based on the sample and its internal coin flips. Such a
result is used for lower bound constructions for the query complexity of a property testing
algorithm.

Finally, we prove two auxiliary lemmas. The first lemma gives a lower bound on the
probability that a sample taken uniformly at random from &%ebntains one ok disjoint
sets of sizd. The second lemma gives an upper bound on that probability.

2.1 The Standard Testing Model

We begin with some basic notation and definitions. We usetmtation to hide poly-
logarithmic factors, i.e. we haw@(n polylog(n)) = O(n). We write[n] :={1,...,n}
for the set of integer numbers betwekmandn. Throughout this thesis, 160 denote a
finite set calleddomainand letR denote a (possibly infinite) set calleahge Further let
F denote a set of functions frof to R. For a subse$ C D and a functionf € F let
f|s denote theestrictionof f to S. That is,fjs : S — R with f;s(x) = f(x) forall x € S.
Now we define a property of as a set of functions frorf

Definition 2.1.1 A setlT C F is called aproperty

As already mentioned in the introduction we also need a distance measure between
functions inF to define a property testing problem. In general, such a distance measure
can be an arbitrary function : 7 x F — [0, 1]:

Definition 2.1.2 Given a distance measurebetween functions itfF and a real number
€,0 < e < 1, we say a functiori € F is e-far from (having a property)l if o(f,g) > €
for every functiorng € TT.

Typically, we define the distance between two functiong € F as the fraction of
domain elements on which the two functions differ (see, for example, [51]). Therefore, we
denote this distance measure asdtandard distance measure
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Definition 2.1.3 Given two function$, g € F we definghe standard distance measuse
for functions inF as:

{x € D:f(x) # g(x)]]
D| '

The goal of property testing is to develop efficigmbperty testers A property tester
for TT is an algorithm that gets a distance parametand a (possibly implicit) description
of D (for example, wherD is the set of numbers fromm] it getsn). The property tester
hasoracle accesso the input functionf (for eachx € D it may ask queries of the form:
'What is the value of (x) ?"). A property tester must

0—1(f) g) =

e accept every functiofi € TT, and

e reject every functiorf that ise-far fromTT with probability at Ieas%.

! Notice thatif f ¢ TT andf is note-far fromTT, then the outcome of the algorithm can go
either way

Complexity of Property Testers. There are two types of possible complexity mea-
sures for property testers: Tlygiery complexityand therunning time The query com-
plexity measures the number of queries asked by a property testing algorithm:

Definition 2.1.4 The number of queries to the oracle is tiigery complexityof the prop-
erty tester.

If one counts also the time the algorithm needs to perform other tasks than querying
the input function values (for example, to compute certain combinatorial structures or to
compute a coloring of a graph), then the obtained complexity is calleditiveng timeof
the property tester. Now we present two examples how objects other than functions can be
represented in our model.

Point Sets. When we consider point sets we §et= [n]. Then we can represent a
pointsetP = {p;,--- ,pn}in R4 by a functionf : [n] — Rewith f(i) =p;for1 <i < n.
Throughout the thesis we assume that the input point setgemeral positiorwhen we
deal with property testing algorithms for point sets. General position means that our point
set is not in adegenerateconfiguration. Roughly speaking, we call a configuration of
points degenerate, if it occurs with probabilitywhen the points are subject to small
random perturbations.

To be more precise, when we considertbeavex positioproperty as defined in Chap-
ter 3 then a point se in the R4 is degenerate, if there are more tHar- 1 points in a
k-dimensional affine subspace wikh< d. When we consider the Euclidean minimum
spanning tree, then a point set is degenerate, if the point set does not have a unique min-
imum spanning tree or if it has a subset that does not have a unique minimum spanning
tree.

We consider aone-sided errormodel, though in the literature alsotao-sided errormodel has been
considered. In the two-sided error model the goal is to distinguish with probability at%idMNeen
the casd € TT and the case dfbeinge-far fromTT.

10
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Graphs. In the literature one can find three models for property testing in graphs. The
first (and most widely considered) model is called éldgacency matrix modg¢bl]. Here

one assumes that a gragh = (V,E) is represented as an adjacency matrix, i.e. itis
possible to query for each pdiv, u) with v,u € V, if (v,u) € E or not. Similarly, one

can assume that the graph is represented by a funttidhx V — {0, 1} that encodes the
adjacency matrix. W.l.o.g., we assume that= [n]. Hence when we sédd = [n] x [n]
andR = {0, 1} then we can represent graphs as functions ffdto R as required.

The second model is tHunded length adjacency list modigR]. Here one assumes
that a degree boundlon the maximum degree of the vertices in the input graph is known.
In this case a graph is represented as a fundtiofn] x [d] — [n] U { 0} wheref(1,j)
denotes thé-th neighbor of vertex and wheref(i,j) = 0, if such a neighbor does not
exist.

The third model is theinbounded length adjacency list mof&r]. In this model, the
input is not represented as a function. The model is specified by the different queries that
may be asked about the input graph= (V, E). First of all, the algorithm may ask for the
degreedeg(v) of each vertexw € V. Further it may ask for théth neighbor of vertex
for eachi < deg(v).

2.2 Combinatorial Properties

We now want to introduce a special class of properties that plays an important role in
property testing. We refer to these properties@mbinatorial propertiesCombinatorial
properties are only defined for functions whose donfaiis (isomorphic to) a set of the
form [n]4 for some constant > 1. They are properties that are closed under permutations
(isomorphisms) of the domain. This is typically the case when the function is used to
represent a set of objects or a combinatorial structure such like a graph or hypergraph.

Definition 2.2.1 Let F be the set of functions with domaih= n]< and arbitrary range
R. LetS, denote the set of permutations[af. A propertylT of F is calledcombinatoria|
if it is closed under permutations ofl]. That is, ift € S, is a permutation ofn] then
for everyf € T it holds: 7t(f) € TT wheren(f)(iy,...,1q) := f(7(i1),...,7(iq)) for
i1, ,1q € [n].

Let us consider a few examples for combinatorial properties. If the considered object
is aset of basic object@hat is, there is no ordering among the objects) then every property
must be combinatorial. This is because the property does not depend on the way the object
Is represented as a function. Examples for combinatorial properties of sets of objects
are the disjointness property considered in Chapter 3 or the clustering properties of point
sets in Chapter 4. Other examples are all graph and hypergraph properties (if viewed as
properties of am-vertex graph or hypergraph).

Examples for properties that are not combinatorial are propertiesdikednesscon-
vex polygons and thereversal distancegroperty considered in Chapter 4. These prop-
erties typically depend heavily on the ordering given implicitly by the representation of

2The property that a sequence of points forms a simple convex polygon.

11



2 Preliminaries

the input object as a function. When we design property testers for these properties we
sometimes require non-uniform sampling techniques.

For combinatorial properties of point sets we show in the following section that there is
no chance to improve the query complexity of a property tester by using adaptive sampling.
If we consider combinatorial properties of point sets and we have an arbitrary property
tester with query complexity(n, €) then there is a property tester that samples a set
S C [n] of sizeq(n, €) uniformly at random and decides basedSand its internal coin
flips.

2.3 The Power of Uniform Sampling

We now prove a fundamental lemma that is needed for lower bound constructions. We

show that if there is a property tester for a combinatorial propBryf point sets with

query complexityq(e,n) then there is a property tester for that picks a sample set

S C P of sizeq(e,n) uniformly at random and decides basedSand its internal coin

flips. The proof is almost similar to the proof of Lemma 4.1 in the paper [54] by Goldreich

and Trevisan which is based on an analogous statement proven by Bar-Yossef et al. in [11].
The idea of the proof is simple: There amné¢ different representations of the same

point set, one for each permutation [of]. When we start our algorithm on a random

representation of the same set then choosing the next index adaptively simply means to

pick another element uniformly at random. Indeed we cannot gain anything using adaptive

sampling:

Lemma 2.3.1 LetTT be an arbitrary combinatorial property of point sets and Aebe an
arbitrary property tester fofT with query complexity (e, n). Then there exists a property
tester for propertyT that selects a s&t of (e, n) points uniformly at random and decides
based orb and its internal coin flips.

Proof : Recall that a point s&® = {p;,--- ,p.} in theR% is represented by a function
f: [n] — R4 with f(i) = p;. Sincell is a combinatorial property we know that we can
talk about properties d? rather than properties of the function representing hat is, if
one representation df has propertyiT then every other representation also has property
1. We use this fact in the following to construct a property tester that samples uniformly at
random from an arbitrary property tester for Both property testers have the same query
complexity.

Let A be an arbitrary property tester fdr Wlog., we assume that algorithénoperates
in iterations. In each iteration, depending on its internal coin flips and the answers obtained
in the past iterations, the algorithm selects a new iridiend makes a query for the position
of the pointp;.

Now we obtain a new algorithm’ from A in the following way: WherA’ is started
with input point sef? of sizen (given as an oracle) it first choses a permutatioof [n]
uniformly at random. Then algoritha is invoked with oracle access to the pointsé®)
that is represented by the functiép: [n] — R4 defined byf (i) = f(7(1)). We observe

12



2.3 The Power of Uniform Sampling

that7t(P) has propertyT, if and only if P has propertylT sincent(P) = P and sincdT is
combinatorial. Further we know that is a property tester for property. Thus it must
accept, ifrt(P) has propertyT. It follows thatA’ accepts, if° has propertyT.

If Pis e-far fromTT then so ist(P). By the fact thatA is a property tester it follows
that7t(P) is rejected byA with probability at leasg/3. It follows thatA’ also rejects
with probability at leas2/3. Thus we know thaf\’ is a property tester for properiy.

Our next step is to show that in each iteration of algorithithe next chosen point
is uniformly distributed among all possible choices (among all points that have not been
chosen in a previous iteration). For every sequenaicoin flips letA . denote the deter-
ministic algorithm obtained from by fixing the outcome of the coin flips accordingrto
Further letA! denote the algorithm similar th’ with the exception thad, is invoked in-
stead ofA. We show that for every sequencef coin flips and for every possible sequence
of queries and answers the choice of the point selected next by algakitlisruniformly
distributed among the points not selected so far.

LetiT ,---,if". denote the indices selected hyin iterationsl toj, i.e., the indices se-
lected when., is invoked with oracle access to the pointsgR). FurtherleqT , -, qJ,
denote the points selected By in iterationsl toj, i.e.,q7, = f(if,) for 1 < { <j. The
choice of the index?’ ; , selected byA[ in iterationj + 1 depends only on the previously
selected pointg|7,, ..., q}, . Thus when we conditior by f,(if,) = q7,, 1 < { <j,
the choice of index,, , is deterministic. Further we prove in the following claim that

+1,r
for every fixed index[ ,; . under the same conditioning the pofi{il’; ) is uniformly
distributed among the points not selected so far:
Claim 2.3.2 Letiy,--- ,1; € [n] be distinct indices and lef, - - - , q; € P be the distinct

points. Then for eache [n] \ {iy,--- ,1i;} and eaclp € P\ {q1,--- , q;):

. . . 1
Pr[fﬂ(l) =P | fﬂ(lf,) =( 1 <UL < ]] = Tl——)

Proof : The number of permutations @fi] with f,(i;) = q,for1 < { <jis (n—j).
For eachi € [n] \ {iy,---,1;} and eaclp € P\ {q1,-- -, g;} the number of permutations
of [n] with f (i) = p andf.(i;) = q,for1 <€ <jis(n—j—1).. Thus

m—j—1 1

Prif (i) =p | falie) = g, 1 <L <jl = =
(n—j)! n—j

O

Thus we know that in each iteration of algorith¥) the next chosen point is uniformly
distributed among the points not chosen so far. We use this fact to build an algorithm
A" that has the same output distribution &5 Then we design an algorithh” that
samples a seéf C P of q(e,n) points uniformly at random and then decides based on
internal coin flips and the point positions. We observe that we can execute algarittyn
first choosing a sequencef coin flips uniformly at random and then invoking algorithm
A’. Algorithm A” works in a similar manner. It first chooses a sequenoécoin flips

13
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uniformly at random. Then it invokes algorithia’. Algorithm A behaves similarly to
algorithm A with the exception that in each iteration whén requests the position of

the point with index algorithmA! selects uniformly at random an index not selected so
far and returns the corresponding point. Let us formalize this point and look at iteration
j of both algorithms. Let; denote the index selected by algorith) in iterationj and

let i denote the index selected by algoritbhf. When during iteratior + 1 algorithm

A} requests the position of the point stored at indgx then A selects an index;,
uniformly at random from the sén] \ {ij, - - - ,i;} and answers the query with the position

of pointi/, ;.

Claim 2.3.3 Let P be any point set in th&¢. If algorithmsA” and A’ are invoked with
oracle access to the same function represengirtigen their output distributions are iden-
tical.

Proof : Let us fix the function representirigandr (for both algorithms). We show by
induction on the number of iterations that the output distribution of algoriththand A

are identical. We already proved for a fixed selection of points in iterafidog that the

next point chosen by algorithi! is uniformly distributed among all points not selected so
far. Clearly, the same is true for algorithit} (if the distribution of the indices is uniform

then so is the distribution of the corresponding points). Thus the induction step holds and
thus the output distributions of both algorithms are identical. O

We have already proven that' is a property tester for properfy. Since the output
distributions ofA” andA’ are identical for every input point set we have shown that algo-
rithm A" is also a property tester. B&t” uses a non-adaptive sampling. Finally, we show
that there is an algorithrA”” that samples a sétof q(e,n) points uniformly at random
and decides based Srand its internal coin flips.

Algorithm A" first samples a s&& of (e, n) indices uniformly at random and then
chooses a permutatidmy, - - - ,ig(en)) Of S uniformly at random. It then runs algorithm
A" and answers thith query of algorithmA” by returning the point stored at indéx

Claim 2.3.4 LetP be any point setiiR¢. If algorithmsA”’ andA” are invoked with oracle
access to the same function representripen their output distributions are identical.

Proof: Again we fix the function representing point $etind the random choice of We

show by induction on the number of iterations that both algorithms have the same output
distribution. It suffices to show that the choice of the index in iteragienl is uniformly
distributed among the indices not chosen so far. For every indexn] \ {i,--- ,i;} it

holds that

ale,n)—j (ale,n)—j—1! _ 1
n—j (a(e,mn) —j)t n—j

Thus the index is chosen uniformly at random from the set of remaining indices. Hence,

the output distributions of algorithms” andA” are identical. a

Priijy =i|le#ifor1 <<=

Algorithm A" satisfies the statement of Lemma 2.3.1 and thus the proof is completed.
O
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2.4 Two Probability Lemmas

The first lemma shows that if we take a sample of sii®m a setQ) of n elements, then
with good probability we have at least oneloflisjoint sets (each of siZ@ in our sample.

Lemma 2.4.1 Let Q be an arbitrary set oh elements. Lek andl be arbitrary integers
(possibly dependent on) and lets be an arbitrary integer such that > (ziﬁ Let
Wi, ..., Wy be arbitrary disjoint subsets dD each of sizd. LetS be a subset of) of

sizes which is chosen independently and uniformly at random. Then
Pri3jelk : W;CS)] >~

Proof :  We first observe that we can focus on the clase 7, because ik > 3, then
every setW; contains exactly one element and then we immediatelyPgetj € [k]
(W; C S)] > 3. Further, smcek < L yields1 + < 21 _ it is sufficient to

2k1/1 — (2k1/1’
consider only the case= 1+ Next by Boole-Benferoni inequality (see, e.g., [65,
Proposition C.2]) we obtain

Zk ]/l

Pr(3j e [kl : (W;CS)] ZPrW CSl — > Priwiuw;)cCs] .

1<i<i<k
Further, we observe that for everng [k] it holds that
(Tslj) (m—1)! sln—s)l (m—U!s! +rs—r
Priw; < 81 = () :(s—l)!(n—s)!' n! :n!(s—l)!:gn—r '

Similar arguments can be used to show that for evgrg [k], if i # j, then it holds that

PrWiUW:) s — 2t T ST ST oy leslor
wwres =" = s == H=y=

Hence, Boole-Benferoni inequality implies that

) s k s (s—1)—r
Prified : WCs)] > k-] - -H — 1l
0 r=0
1

n—r

T=
1-1 S T
- k-

n—r
=0
1-1

( :
“I( kir_iz )
-

- s—l)
n

v
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Now, since we assumed that= Zk —n=L_, our calculations above yieler[3j € [k]
(W; C S)] > 1, and thus the Iemmafollows. O

The next lemma is useful for certain lower bound constructions. The lemma gives an
upper bound on the probability that a sample set of sizbosen uniformly at random
contains one ok setsW; completely.

Lemma 2.4.2 LetQ be an arbitrary set ofi elements. Lékt, 1, ands be arbitrary integers
(possibly dependent om). LetW;, ..., W, be any disjoint subsets @} of sizel each.
LetS be a subset of) of sizes which is chosen independently and uniformly at random.
For every realp, 0 < p < 1, (possibly depending on other parameters}, i (n — (1 —
1)) - (p/k)V!, then

Pri3ielkl : W;CS)] <p

Proof : We use the union bound to obtain that

k k11 1

ji=1 r=0

Therefore, ifs < (n — (1—1)) - (p/k)'", then the above inequality is upper bounded by
. 0
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3 Testing Algorithms for Geometric
Properties

In this chapter we design and analyze testing algorithms for fundamental problems from
the area of Computational Geometry. The problems we consider deal with global proper-
ties of geometric objects such as point sets or geometric graphs. We can formulate property
testing in the standard model for geometric objects as follows:

Given a geometric objec€d (for example, a set of points or a geometric graph) and the
ability to perform local queries about the object (e.g. queries of the form: 'What is the
position of thei-th point of the collection ?’, "'What is théth edge incident to vertex
?’, or 'What is the position of vertep ?’) decide whethe© has a certain (predetermined)
property (e.g., whether the set of points is in convex position or whether the geometric
graph is a Euclidean minimum spanning tree) or is far away from every object having this
property.

We assume that our object representation is in the standard testing model. Point sets are
represented in the same way as it has been described in the previous chapter. Other objects
we consider argets of geometric objecémdgeometric graphsThe object representation
is again in the spirit of the standard testing model. We allow only the most basic queries
about the object. It is only required that it is possible to determine the whole structure of
the object using these queries. By allowing only basic queries we ensure that our testing
algorithm is almost independent of the application (almost every structure supports these
basic queries). Later, in Chapter 5 we consider a model where we allow more powerful
gueries.

The first problem we consider is disjointness of geometric objects. Then we design
a property tester for the convex position property of point sets. And finally, we give a
property tester for Euclidean minimum spanning trees.

3.1 Intersection of Geometric Objects

The first problem we consider is to test whether aBet {O;,..., 0.} of n geometric
objects is pairwise disjoint. A geometric object is an (implicitly represented) subset of
R4, Two geometric object®; and O, are said to balisjoint, if O; N 0, = 0. A set

O ={0,,...,0,} of n geometric objects ipairwise disjoin} if each pair of object®;
andO;, T < i,j < n, is disjoint. An equivilant formulation of this problem is to test
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3 Testing Algorithms for Geometric Properties

whether the intersection graph of the objects contains no edges.

We represent sets of geometric objects by a funcfiorm] — R whereR contains
implicit representations of all geometric objects of a certain class of objects, e.g. all line
segments, points, or rectangle. For example, when we consider sets of line segments in the
R4 thenR = R4 x R4. The property tester for disjointness of geometric objects is used
later in this thesis when we design a property tester for the Euclidean minimum spanning
tree. We use the standard distance measure from Definition 2.1.3 which has the following
equivalent formulation:

Definition 3.1.1 A setO ofn objects in theR4 is e-far from beingpairwise disjointif one
has to remove more tham objects fromO to obtain a disjoint set of objects.

The Testing Algorithm. Like many other property testers the tester for disjointness of
geometric objects is very simple. It picks a Seatf 8§,/1/e objects uniformly at random

and computes whether these objects are pairwise disjoint. If they are, then the algorithm
concludes that in this case either the objects are disjoint or at least 'most of the objects of
the input set are disjoint’. Thus in such a case the algorithm can accept the input. If the
sample set contains two or more objects that intersect, then we know for sure that the set of
objects is not disjoint and the algorithm can reject the input. We prove that the following
algorithm is a property tester for disjointness of geometric objects.

DISJOINTNESS ESTERset of objects))
Choose a sé§ C O of size8,/n/e uniformly at random
if S is disjointthen accept
elsereject

Lemma 3.1.2 Algorithm DISJIOINTNESS ESTERIS a property tester for disjointness of
geometric objects. Its query complexityi$,/n/e) and its running time i (8/n/e) +
O(1), whereT(m) is the time to decide whether a setmafinput objects is disjoint.

Proof : We have to prove that (1) algorithm &0INTNESS ESTERaccepts every set of
disjoint geometric objects, and (2) that it rejects every set of geometric objects ¢hfatris
from disjoint with probability at least/3.

Part (1) is immediate: 10 is pairwise disjoint, the every subset@fis also pairwise
disjoint and so algorithm 3JOINTNESS ESTERaccept).

Thus let us suppose thétis e-far from disjoint and prove part (2). Itis easy to see that
we can applyk = en/2 times the following procedure t€: pick a pair of intersecting
objectsW;, i € [k], and remove it fron©. In order to prove that BBJOINTNESS ESTER
is a property tester it is sufficient to show that with probability at |€St at least one
of these pairs is in the sample set We apply Lemma 2.4.1 and standard amplification

IWe do not use the formulation as a graph problem here because our distance measure would be based on
vertex deletion rather than edge deletion as it is usually in the property testing literature (see Section 2.1).
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arguments. We consider the sampleSas four independently selected s&}sS3, S3, S,

each of size52; and then apply Lemma 2.4.1 to obtain:

PriZie: W, CS)] >1—J] (1—=Pr[3ielkl: (W;cs))]) >1-(3/4)*>2/3

1<i<4

O

A Lower Bound on the Query Complexity. We now want to show that the algo-
rithm DISJOINTNESS ESTERIN the general setting of arbitrary geometric objects is op-
timal with respect to its asymptotic query complexity. For this purpose we consider the
problem if a set of unit disks is disjoint. We represent a set ahit disks by their center
points, that is, by a functiofi: [n] — R<. We observe that the disjointness property for
unit disks is equivalent to the followingparsenesproperty of point sets. A point sétin

theR¢ is calledsparse if for each pair of pointg, q we havedist(p, q) > 1. In order to

prove that every property tester for disjointness of geometric objects has query complexity
Q(4/m/e) we show that there is no property tester for sparseness of point sets with query

complexityo(y/n/e).

Lemma 3.1.3 Every property tester for disjointness of sets of geometric objects must have

guery complexitf) (/n/e).

Proof :  As already mentioned above sparseness of point sets is a special case of dis-
jointness of geometric objects. Hence, it suffices to show a lower bound for the sparseness
property of point sets. Let us assume that there is a property tedt@r sparseness of

point sets with query complexity(e, n) = o(y/1/€).

Claim 3.1.4 Let A be a property tester for sparseness of point sets with query complexity
q(e,n). Thenthere is a property test&r” for sparseness of point sets that samples & set

of q(e,n) points uniformly at random and accepts if and only if the point$ &me sparse.
Such a property tester is calletnonical

Proof: By Lemma 2.3.1 we know that there is a property tedtethat samples a set of
q(e,n) points uniformly at random and decides based@md its internal coin flips. Let
A" denote an algorithm that samples a$ef q(e, n) points uniformly at random and that
accepts if and only if is sparse. We want to prove that' is a property tester. Clearly,
algorithm A" accepts every sparse point set. Thus we have to prove that it rejects every
point set that ig-far from being sparse (a point sekidar from sparse if the corresponding
set of unit disks ig-far from disjoint). We show this indirectly by proving that if algorithm
A’ rejects a sample sétthen so does algorithrA”. By definition a property tester has
one-sided error and sb’ must accept if the sample is sparse. But if the sarSpgkenot
sparse the\” rejects and thus it follows that &’ rejects then so does”. SinceA’ is a
property tester it rejects every point $ethat ise-far from sparse with probability at least
2/3. Hence algorithm\” also rejects such a sBtwith probability at leas2/3. SinceA”
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accepts every sparse point set we have shown/tHas a property tester for sparseness.
This proves Claim 3.1.4. O

We construct a s of n points inRR that ise-far from sparse but is not rejected by a
canonical property tester with query complexitye, n) if n is sufficiently large.P is the
union of [en| + 1 pairsW; of points and a séll of n — 2(|en| + 1) points such that the
following condition is satisfied for all points, g € P with p # q: If there is aW; with
W; = {p, q} thendist(p, q) < 1. Otherwise, we havdist(p,q) > 1. We observe that
algorithm A” rejectsP if and only if the sample contains one of the seéts. We apply
Lemma2.4.2withp =1/2, k = en +1,

s — n_—] - Q(M)
Tlen+1)

andl = 2; thus:

Pri3jc[k:(W;CS)] <1/2
Sinceq(e,n) = o(+/n/e) for sufficiently largen we have
on-1
\/3(en+1) .
This proves that there is a point set thatifar from sparse and that is rejected by algorithm

A" with probability at mostl /2. Sincel/2 < 2/3 we conclude thaf\” is not a property
tester. Contradiction. O

q(e,m) <

We also note that the proof of the lower bound for disjointness of unit disks can be
modified to prove lower bounds for other classes of objects including line segments, rect-
angles, etc. This means that we cannot asymptotically improve the query complexity of a
property tester when we use the geometry of the special class of objects.

Summary. We summarize the results from this section in the following theorem:

Theorem 1 There is a property tester for pairwise disjointness of a set of geometric ob-
jects O with query complexity?(y/n/e) and running timeT (8y/n/e) + O(1) where
T(m) denotes the time needed to compute if a set @bjects is disjoint. Every property
tester for disjointness of geometric objects has query compléxityn/e).

3.2 Convex Position

In this section we consider a classical property of point sets: Beingnuex positionLet
P denote a set ofi points in general position in thR9. We say that a point sét is in
convex positionif all points in P are vertices of the convex hull &f
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Definition 3.2.1 LetP be a point set in th&< and letCH(P) denote the convex hull &
A pointp € P is called anextreme poinbf P, if p is a vertex oCH(P). A point sef is in
convex positionf each point inP is an extreme point.

Using our standard representation of point sets we assume that the input p&im set
represented by a functioh: [n] — R9. We also use the standard distance measure from
Definition 2.1.3. In terms of the problem under consideration this can be stated as follows:

Definition 3.2.2 A setP of n points ise-far from convex position, if no s€ of size (at
most)en exists such thak \ Q is in convex position.

In the remainder of this section we prove that the following algorithm is a property
tester for convex position:

CONVEXTESTER(P, €)
let s =16(4 “y/nd/e +2d+2)
Choose a s&8 C P of sizes uniformly at random
if Sisin convex positiorthen accept
elsereject

In order to show that GNVEXTESTERIS a property tester we have to prove that (1)
it accepts every point set in convex position and (2) it rejects every point set thdais
from convex position with probability at leaf 3.

We observe that GNVEXTESTERaccepts every point set in convex position because
every subset of a set in convex position is in convex position, as well.

Thus we only have to prove that a point set that-far from convex position is rejected
with high probability. We make use of the following theorem by Cagattory [23]:

Theorem 2 (Carathéodory’s Theorem) If P C RYandp € CH(P) thenp € CH{po,...,Pd}
for certain affinely independent vectdfs, ..., pq} in P.

Now let us assume th&t is e-far from convex position. We want to prove that algo-
rithm CONVEXTESTERTejectsP with probability at leas2/3. It follows from Theorem 2
that every point set that is not in convex position can be rejected by finding a small set of
d + 2 points that is not in convex position. We refer to such a set@siater example

The idea of the analysis is now to consider 38ts 1 < i < 2(2—1”, of d + 1 points
that can be easily extended to a setof 2 points that is not in convex position. Easily
extendible means that there is a large ldebf points such that for eagh € U; the set
W; U {p}is a counter example. Intuitively, the existence of such a large set means that we
get one of thel + 2 points of the counter example for free because our sample set contains

at least one point dil; with very high probability.
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Figure 3.1: lllustration for the proof of Lemma 3.2.3. One of the coGegthis one is
defined byp; andp,).

Finding Counter Examples. We now want to formalize this idea and prove two tech-
nical lemmas. First we prove that for a given pgpnin the interior of the convex hull of

a point set there exists a s& C P of d points such that there are at lea&t points in

P such that any of them can be added®0U {p} to obtain a point set that is not in convex
position.

Lemma 3.2.3 Let P be a set ofn points inR< and letp € R¢ be a point withp €
CHint(P) and letP U {p} be in general position. Then there exist sétsC P andU C
P\ W with |W| = d and|U| > -2 such thatp € CHi.(W U{q}) for eachq € U.

=

Proof : By Theorem 2 and the general position assumption it follows that there is a set
W+ C P of sized + 1 such thatp € CHine(W*). Let us denote by;, 1 <i < d+1,

the subsets ofV* of sized. We show that one of the subsétg of W* satisfies Lemma
3.2.3. W..o.g., let us assume that= (0,...,0). We now want to partition th&<
intod + 1 cones. LeW,, 1 <1i < d+ 1, denote the set of point$—x4,...,—xq) :
(x1,...,%xa) € W;}. The conic combination of the point vectors in the ¥ét defines a
coneC;,1 <1i < d+1. The union of these con&j covers theR<. Thus there is a cong;,

1 <j < d+1that contains at least points ofP (and also o\ W} sinceW; NC; = 0).

We further observe that for each€ P N Cj it holds thatp € CHin (W] U {q}). We
conclude that the se = W} andU = P N C; satisfy the lemma. O

The second technical lemma shows that if a point setfiar from convex position
then there are many sétg; andU; such thatW; U{q} is not in convex position for every
gqgec U;.

Lemma 3.2.4 Let P be a set oh points in theR¢ that is e-far from convex position and

letk = - Then there exist seW; C P, 1 € [k], and setdl; C P, i € [k], such that the

following properties are fulfilled:

(1) Wil =d+1,1i€ [K],

@)Winw; =0forall i,j € [k] withi # j,
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3.2 Convex Position

(3) W; U{q} is not in convex position for every € U;, and

1— l=en
(4) Ui > 35n

Proof :  We construct point se®; = P, P,,..., P, with W; C P; andP;,; = P; \ W,.
Clearly, our construction satisfies that the défsare disjoint. We show how to construct
W; from the sef;: First of all, observe that for eveiye [k] it holds thatP;| =n — (d +
1)(i—1)and thugPi > n—(d+ 1)(g5 —1). Thisimplies thatP \ P < en and so the
setP; cannot be in convex position (by the definitioneofar we can delete every set of
size at mostn and do not obtain a point set in convex position). SiRcEs not in convex
position there is a point € CH . (Pi). We apply Lemma 3.2.3 with andP; \ {p} and
obtain the set¥V andU. We choos&V; = W U {p} andl; = U. By Lemma 3.2.3 we get
\W;i| = d+ 1 andW;U{q} is not in convex position for eaal € U;. We already observed

that|P; \ >n— (d + 1)(d—+1 —1). Thus we know thafP; \ {p}| > n — en which means
sl d+1“ All properties in Lemma 3.2.4 are satisfied and the lemma is
proven. O

Lemma 3.2.5 Algorithm CONVEXTESTER IS a property tester for the convex position
property. Its query complexity i9( **\/nd/e).

Proof: We have to prove that@VEXTESTERaccepts every point set in convex position
and rejects every point set thategfar from convex position with probabilit/3.

We already observed that algorithno@VvEX TESTERaccepts every point set in convex
position.

Thus we have to show that every point set that-far from convex position is rejected
with probability atleas?/3. Let P be a point set that is-far from convex position and let
k = &5 - Then there exist sed/; andU;, i € [k], with the properties stated in Lemma

3.2.4. Now letS C P be a point set of sizé **{/nd/e + 2(d + 1) chosen uniformly at
random fromP. W.l.0.g., let us assume that< 1/2. We viewS$ as the union of two sets
W andU of size4 ¢*{/nd/e and2(d + 1), respectively. Clearly, we can assume that each
of them is chosen uniformly (and independently) at random fPorWe first observe that
for a fixedU; of size =< o

U

PriUsnU#0] > 1 (1= YW>1-1/e>102

We further know that:

Pr[Pisrejected > Pr[3ie [k]:W;C SandU;NS # 0]
> Pr[3ie kl: W; € WandU;n U # 0]
> Pr3ie k] :W;CcW]-1/2.
To derive a bound ofer[3i € [k] : W; € W] we apply Lemma 2.4.1 witk =
l=d+1,and

d+1 !

d—+ d+ 2TL
s=4"/nd/e > X (d+”/€>(2k)1/1
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3 Testing Algorithms for Geometric Properties

and obtain:
Pridie k] :W; C W] >1/4.

We conclude that
Pr [P is rejected > 1/8.

If algorithm CONVEXTESTERchooses a s&tof size16 - (4 **{/nd/e +2(d + 1)) then
Pr[Pisrejected >1—(1—-1/8)'°>2/3

which proves the query complexity stated in Lemma 3.2.5. a

A Lower Bound on the Query Complexity. We now want to prove that our prop-

erty tester is optimal with respect to the asymptotic query complexity. The proof follows
the same line of thought as the proof of Lemma 3.1.3. We first show that the existence of
a property tester with query complexity e, n) implies that there is a canonical property
tester with the same query complexity, i.e. a property tester that sampleS afsgte, n)

points uniformly at random and accepts, if and only if the samplé& sgtin convex po-
sition. Then we show that for sufficiently largethere is a point seR that ise-far from
convex position such that

Pr[S is in convex positiod > 1/3

holds, if S C P is a set ofq(e,n) = o( **y/n4/e) points chosen uniformly at random
from P. This implies that there is no property tester with query complexity, n).

Lemma 3.2.6 Every property tester (with one sided error) for convex position has query

complexityQ( ¢\ /nd/e).

Proof : The proof is by contradiction. Assume there is a property testir convex
position with query complexity (e, n) = o( ¢*\/n4/e). We first want to prove that there
is a canonical tester with the same query complexity:

Claim 3.2.7 Let A be a property tester for convex position of point sets with query com-
plexity q(e,n). Then there is a property testér” for convex position of point sets that
samples a s€&§ of (e, n) points uniformly at random and accepts if and only if the points
in S are in convex position.

Proof : The proof is similar to the proof of Claim 3.1.4. By Lemma 2.3.1 we know that
there is a property testdy’ that samples a set a@ff e, n) points uniformly at random and
decides based dhand its internal coin flips. Lek” be an algorithm that samples a Sef
q(e,n) points uniformly at random and that accepts if and onlyi$ in convex position.
We want to prove thad” is a property tester. Clearly, algorithéx’ accepts every point set

in convex position. Thus we have to prove that it rejects every point set thatisfrom
convex position. We show this indirectly by proving that if algoritiArhrejects a sample
setS then so does algorithrA”. By definition a property tester has one-sided error and
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3.2 Convex Position

so A’ must accept if the sample is in convex position. But if the sariptenot in convex
position thenA” rejects. It follows thatA” always rejects whei’ rejects. Since\’ is
a property tester it rejects every point $ethat is e-far from disjoint with probability at
least2/3. Hence algorithm\” also rejects such a sBwith probability at leas2/3. Since
A" accepts every point set in convex position we have shownAthas a property tester
for convex position. This proves Claim 3.2.7. O

Let us denote by” the property tester as obtained in Claim 3.2.7. In the remainder of
the proof we construct a point Sebf n points that iss-far from convex position and show
that this point set is accepted By (observe thaf\” is uniquely defined by (e, n)) with
probability at least /2. SinceP is e-far from convex position this is a contradiction to the
fact thatA” is a property tester (which would require ttrats rejected with probability at
least2/3 >1—1/2=1/2).

We start with an overview of our construction and then present it in details. The idea is
to construct a point sétthat consists oén + 1 setsW; of sized + 1 (and some additional
points). Each sétV; consists of a sd; of d extreme points that form a facet of the convex
hull and one pointy; that is located infinitesimally close to the facet but in the interior of
the convex hull. The point set has the property that every s$bseP of size more than
d + 1 is in convex position, if and only if there is a 9t C S.

Figure 3.2: An example for the lower bound construction in 2D.

Now let S be a point set of size chosen uniformly at random froA. We apply
Lemma 2.4.2 withp = 1/2 and obtain that for

1 1/(d+1)

— @( d+1 /nd/e)

our sample sef does not contain one of the s&t4 with probability at least /2. HenceS
is in convex position with probability at leasf2 and thus algorithnd\” is not a property

tester, ifq(e,n) < (n—4d) - Z(e:wﬂ 1/(a+1)

The Detailed Construction. ForaseK and a poinp in R4 letdist(X, p) = min,ex||x—
pl|. Let P; be a set om — d - (en + 1) points in general and convex position and let
e < 1/d — 1/n. Further letP, = {p1,...,px} C P; be a subset of sizk = en + 1.
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3 Testing Algorithms for Geometric Properties

For each pointp € P, let h, denote a hyperplane (a tangentd®{(P;)) such that
h, N CH(Pq) = p. Further letH.], H,  denote the closed halfspaces inducechhysuch
that’; denotes the halfspace containihg(Figure 3.2). Let

H H

Figure 3.3: Step 1. We start with a point set in convex position.

= min distth,,q) .
B P,q€P1,p#q (hqj q)

Observation 3.2.8 Every point seP; obtained fronP; by perturbating each of the points
in P; by a distance of less thgdy/2 is in convex position.

Instead of perturbating the point set we replace each peiatP, by a seff;, 1 € [k], of d
points (Figure 3.4). We do this replacement in such a way that we obtain a pokitiset
general and convex position. For a point R< let B(p, 3/3) denote thel-dimensional
ball with centerp and radiug3 /3. We choose each; such that

e g€ h,NB(p,B/3) for eachq € F;.
e P3 =P\ P,UFisin general position, whefe= J;., Fi

Clearly, we can choose thg such thafP; is in general position because we can move the
points withinB(p;, 3/3) N h,, to destroy every degenerate cases. We observe ihsin
convex position sincé,,, is a witness for the fact that the pointshipare extreme points

in P3. We obtain the sd® from P3 by adding a seQ ={q, ..., qi} of k points toPs. Let

W; = F, U{q;} for eachq; € Q. We want to choose€) in such a way that:

e P =P3UQ is e-far from convex position,

e If a subsetS C P contains no seW;, i € [k], completely, therS is in convex
position.

We now give a construction that satisfies these properties. ForieadR] let q; denote
a point in the interior of the(d — 1)-dimensional) convex hull oF; and letv; denote
a vector pointing fromyg! in the interior ofCH(P3) (Figure 3.5). Letq;(3) denote the
pointq{ + B - vi. Fori € [k] andp € F; let hy, ,(3) denote the hyperplane induced by
F:\ {p} U{qi(B)}. Further Iet’Hgyp(B) andHg, ,(B) denote the halfspaces induced by
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3.2 Convex Position

Figure 3.4: Step 2: We replace some points by &sef d = 2 points.

hr, () such thatHgi‘p(B) containsP for 3 = 0. SinceP; is in general position there is
a valuep* such that for every € [k] and everyp € F; the halfspacé{]fiyp([:’)*) contains
P3 \ {p} and such thaP; U Q is in general position (wher® is defined as follows). We
chooseq; = qi(B*) andQ = [J;cyy di- We now have to prove th& has the required
properties:

Claim 3.2.9 The sef? = P; U Q is e-far from convex position. If a subsgtC P does not
contain a seW; completely, thei$ is in convex position.

Proof :  AssumepP is e-close to convex position. Then there is a Ratf at mosten
points such thaP \ R is in convex position. SinclR| < en there is a seW; completely
contained inP \ R. Further we know that by the size 8fandR there must be at least
one further poing in P \ R. By the choice ofQ we know thatq is in Hg?p([s*) for each
p € Fi. Hencegq; is in the interior ofCH(F; U {q}) which contradict the fact thd \ R is

in convex position.

It remains to prove the second statement. $.&& P a subset that contains no 3&t
completely. W.l.o.g., we assume that it contains exadtpoints of each sétV;. If these
points are the points iR; then by our construction the hyperplaing is a witness that the
points inW; = F; are extreme. Otherwise, one of the point§;ims not inS. Let is call the
missing pointp. Thenhg, ,(3*) is a witness that the points are extreme points. Thus for
every pointp € S we have a witness thatis extreme. Henc8 is in convex position. O

Figure 3.5: Step 3: We place another point in the interio€ &f(F;) and move it slightly
alongv; into the interior of the convex hull.
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3 Testing Algorithms for Geometric Properties

Now we can apply Lemma 2.4.2 with= 1/2 and obtain that for

— Q( d+1 /TL/G)

a sample se$ of sizes chosen uniformly at random from does not contain one of the
W; with probability at least /2. Sinceq(e,n) = o( *"\/nd/e we have for sufficiently
largen

1 1/(d+1)

Sﬁ(n—d)'m

1 1/(d+1)

< — -
ale,n) < (n—d)- 5oy
It follows that there exists a point sBtthat ise-far from convex position and that is ac-
cepted by algorithmA\” with probability at leasfl /2. Since the existence of a property
tester for convex position with query complexigye, n) implies that algorithmA” is a
property tester, it follows that there is no property tester with query complekityy/nd/e).
O

Summary. We summarize the results of this section in the following theorem:

Theorem 3 Let P be a point set ofi points in theR<. Then there is a property tester
for the convex position property with query complexity ¢*\/n4/e) and running time

O(T( *1/nd/e)) whereT(n) = O(n - 1og®" h+ (nh) @47 - 1og® ) n) is the running
time of the fastest known algorithm [24] to decide if a point set is in convex postion (
denotes the number of extreme points of the set). Every property tester for convex position

has a query complexity @d( “*\/nd/e).

Proof : Follows from Lemma 3.2.5 and Lemma 3.2.6. O

3.3 Euclidean Minimum Spanning Tree

We are given a point sét in the R? and a geometric graplé = (P, E) with vertex set

P and edge seE and we want to design a property tester for the property ¢hag a
Euclidean Minimum Spanning Tree (EMS3f)the point set’. A graphG = (P,E) is
called a Euclidean minimum spanning tree of pointBeif G is a minimum spanning
tree of the complete Euclidean graphiaf The complete Euclidean graph is a complete
weighted graph where each edge- (p,q) € P x P has weight equal to the Euclidean
distance betweep andgq.

In this section we make slightly different assumptions on the input representation. We
assume that our property tester has oracle access to poittaset graphG each repre-
sented by a separate function. The point set is represented in a similar way as in the pre-
vious subsection. The graph is represented in the unbounded length adjacency list model
[67]. Details on the input representation follow in Subsection 3.3.1.

For simplicity we assume throughout this section tha in general position, i.e., all
edge weights are distinct and hence the EMST is unique and its maximum degree is five.
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3.3 Euclidean Minimum Spanning Tree

3.3.1 Basic Definitions and Input Representation

Let P denote a set ofi points in general position iR? (we consider only the problem in

two dimensional space) and [Et= (P, E) denote the Euclidean minimum spanning tree

of P. We start with some basic definitions needed in this section before we discuss the
input representation:

Definition 3.3.1 A geometric grapffor P is a weighted graplé = (P, E) with vertex seP

and edge sef C P x P (the edges can be interpreted as straight-line segments connecting
the endpoints). The weight of an edge q) is implicitly given by the Euclidean distance
betweerp and q in R2.

Definition 3.3.2 A geometric graph foP that is the minimum spanning tree of the com-
plete geometric graph foP is called theEuclidean minimum spanning tree (EMSa9)
P.

In this section we do not use the standard distance measure (though the differences are
insignificant), because the input object consists of two parts, the point set and the graph.
Further we use the unbounded length adjacency list model which uses a non-functional
representation of the graph. Our results also hold in the (weaker) bounded degree adja-
cency list model.

Typically, a distance measure for graph properties depends on the number of entries
in the graph representation that must be changed to obtain a graph that has the tested
property. In our case, the size of the graph representation depends on the number of edges
in the graph. Since every EMST has— 1 edges we let our distance measure depend on
the number of vertices instead of the number of edges:

Definition 3.3.3 Let G = (P, E) be a geometric graph foP and letT = (P,[E) denote
the Euclidean minimum spanning treefaf We sayG is e-far from being the Euclidean
minimum spanning tree d (or, in short, e-far from EMST), if one has to modify (insert
or delete) more thamn edges inG to obtainT, that is :

[ENE/ +|E\E|>en .

We want to design a property tester for the property of being a Euclidean minimum
spanning tree of a point set in the plane. Such a property tester takes as input a goint set
in general position ifR? and a geometric grap@ for P, and accepts the input @ is the
EMST for P and rejects the input with probability at Ie#tf G is e-far from being the
Euclidean minimum spanning tree Bf

Input Representation.  Our property tester has to verify whether a geometric graph is
the EMST of a point se. Hence, it must have access to the graph and the point set. Both
the point set and the graph are given as an oracle. Similar to the previous section the point
set is represented by a functién [n] — R2. Thus the algorithm may query the oracle for

the value off (i) for somei € [n] and gets in return the position of tixh point of P.
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3 Testing Algorithms for Geometric Properties

The geometric graph is given in thabounded length adjacency list representation
introduced in [67]. Let us briefly recall the description of the model as given in Chapter
2. The unbounded length adjacency list model is a general model for sparse graphs. The
graph structure is represented by adjacency lists of varying length. Our property tester may
query for the degredeg(p) of a vertexp and for each < deg(p) it may query for the
i-th neighbor ofp. We represent the vertex set of our graph by the set of nunihérs
Thus we can easily obtain the position of a verpeitom the point set representation by
querying for the value of(p).

Basic Properties of EMSTs.  The following claim states some basic (and well-known)
properties about Euclidean minimum spanning trees:

Claim 3.3.4 Every Euclidean minimum spanning tree of a point set in general position
in R has maximum degree less than or equal to five, is connected, and its straight-line
embedding is crossing-free.

Proof : The EMST is connected since it is a spanning tree of a complete graph. Its
embedding is crossing-free because it is a subgraph of the Delaunay triangulation; see,
e.g., [61]. Assume the EMST has a vertex with degree 6 or larger. Then there are two
edges with an angle less than 60 degree since the point set is in general position. But this
means that at most one of these edges can be in the EMST. Contradiction. O

Now we want to introduce some additional notation that will be useful to simplify the
description of the algorithm and its analysis. l&tdenote a geometric graph fér The
EMST-completiomf G is a geometric grapks’ over the same point set that contains alll
edges fronG and all edges of the EMST (that are missindaj

Definition 3.3.5 For a given point seP, a geometric graplé = (P, E), and the Euclidean
minimum spanning tre® = (P, E) of P, theEMST-completiorof G is the geometric graph
Gc = (P,EUE) that contains all edges that are either@or in T.

In the next subsection we present a property tester for EMST that works for a special
class of input graphs which we calkll-shaped A well-shaped graph is a connected graph
with maximum degree 5 that has crossing-free EMST-completion. The restriction to well-
shaped graphs simplifies the analysis of the algorithm and it allows a clear view on the
important features of the property tester.

Definition 3.3.6 Let G be a geometric graph for point sBt We callG well-shapedif
e it has maximum degree of 5,
e itis connected,

¢ and the straight-line embedding of its EMST-completion is crossing-free.
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3.3 Euclidean Minimum Spanning Tree

Later in this section we present a general testing algorithm for EMST. This algorithm first
tests if the input graph is far from a well-shaped graph. If this is the case then we can
reject the graph by Claim 3.3.4. If the input graph passes the test, then we know that with
good probability it is either close to a well-shaped graph or it is well-shaped. If the graph
Is well-shaped we can use the testing algorithm for the special case of well-shaped graphs.
At the end of this section we show that for this algorithm it does not matter if the graph is
well-shaped or close to well-shaped. Hence, we can also use the algorithm if the graph is
close to a well-shaped graph.

3.3.2 Testing EMSTs in Well-Shaped Graphs

We now design a property tester for EMST for the case that our input graph is well-shaped.
First, we give an overview of the algorithm:

Let G denote a well-shaped geometric graph with vertelPs@ur property tester uses
the following procedure: We first pick a sample Set P using some randomized scheme
to be described later. Next, we find the subgrahof G that is induced by the vertex set
S. Then we compute the EMST-completion @f. If the EMST-completion has a cycle
then we reject the input, otherwise we accept. Computing the EMST-completion can be
done in timeO(|S|-log|S|). We just have to compute the EMST$and insert the missing
edges inGs. The query complexity of the testerd3(|S|).

We first show that we can always reject the input graph, if the EMST-completiGg of
contains a cycle. We use the following lemma which follows easily from standard theory
of minimum spanning trees (see, e.g., [77, Chapter 6]). It implies that if we sample a set
of verticesS C P then an edge cannot be in the EMST dt if it is not in the EMST ofS.

Lemma 3.3.7 LetS C P be asubset d? and letp, g € S. If the edgee = (p, q) does not
belong to the EMST d, thene does not belong to the EMST Ibf

Proof: Our proof is by contradiction. Let us suppose thdbes not belong to the EMST
of S ande belongs to the EMST of P. The removal ot in T cutsT into two trees. These
two trees induce a partition #finto two subset®; andP,. Sincee belongs to the EMST
of P, e must also be the shortest edge between these two subsetS; £eP; N S and
S, = P, N'S. Py andP, are not empty since one vertex ofs in each of the sets. Then
e is also the shortest edge betwegnand$S; and therefore it belongs to the EMST $f
contradiction. O

Lemma 3.3.7 is of major importance for the way we proceed. Therefore we state its
consequences in Corollary 3.3.8 below. First of all, it shows that our property tester always
accepts the EMST dt (it rejects only, if there is a cycle in the EMST-completion and such
a cycle provides a counter example for the EMST property). Further it can be used to show
that we can reject the input graph, if all vertices of a cycle in the EMST-completi@h of
are contained ii:

Corollary 3.3.8 LetG be a geometric graph fdP. LetS C P be a subset o? and letGg
be the subgraph induced By
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o If the EMST-completios’ = (P,E’) of G contains a cycleC = (po,...,px) 2 of
lengthk > 3 andp; € Sforall 0 < i < k, then there is a cycle in the EMST-
completion ofGs.

e If the EMST-completion dbs contains a cycleC = (po,...,px) of lengthk > 3,
thenG is not the EMST oP.

Proof : We have to prove that is a cycle in the EMST-completion &, i.e., that every
edge(pi_1,pi+ 1) for all i € [k] is in the EMST-completiors ; of Gs. Every such edge
is either an edge of the EMST or an edge of the input graph. Obviously, the edges of the
input graph are i and by Lemma 3.3.8 all EMST edges are alsGin

Now we prove the second part: Since the EMST-completios 9ftontains a cycle
there is an edgein G that does not belong to the EMST $f It follows by Lemma 3.3.7
thate is not in the EMST of°. HenceG is not the EMST ofP. a

Now we consider the case when the input gré&pk- (P, E) is e-far from EMST. Our
goal is to design a randomized sampling scheme such that the EMST-completion of the
subgraph induced by the sample set contains a cycle with high probability. £€tP, E)
denote the EMST oP and letG¢ = (P,[E U E) denote the EMST-completion &. In the
following we refer withred edges to the edges i\ E and with blue edges to the edges
in E. It turns out that it is sufficient to focus on “short” cycles that contain at most two red
edges:

Definition 3.3.9 Let G be a geometric graph fo? and letC be a cycle of lengtk in the
EMST-completion ofs. We callC e-shortif (1) its lengthk is smaller than or equal téf
and (2) it contains at most two red edges.

In our algorithm we try to find-short cycles that satisfy some additional “topological”
properties. We want to exploit the fact thatis well-shaped, in particular, that the EMST-
completion ofG has a crossing-free straight-line embedding. Hence we use a topological-
like representation of the geometric gra@ho exploit the fact that every minimal cycle
in a (well-shaped) planar geometric graph corresponds to a face in its straight-line embed-
ding. In order to use this approach in a formal framework we will consider the geometric
graphG not only as an undirected graph, but at the same time also using its “directed” rep-
resentation by “replacing” each undirected edgeq) by two directed edgel, q) and
[a,p)-

For every vertex in G we (cyclically) sort incident outgoing edges in clockwise order
around the vertey with respect to the Euclidean positions of the edges’ endpoints. (This
sorting is done only implicitly, but since we assume that each vertex has a constant degree,
each time we consider a vertex we can in constant time sort its incident edges.) The
successoof a directed edgép, q) is the edgdq, r) wherer is the vertex adjacent tq
that precedes in the adjacency list off (sorted in clockwise order arouny). With this
definition cycles of succeeding edges correspond to faces of the straight-line embedding.

2Here,C = (po, ..., Pk) is a cycle (of lengtfk) if p; € Pforalli € [k], po = px, (pi_1,pi) € E/ for all
i e [kl andp; # p; foralli,j € [k], i #j.
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Figure 3.6: A straight-line embedding and its planar map representation.

Such a representation Gfis called gplanar mapfor the straight-line embedding ¢f (see
figure 3.6). We denote {E.

Definition 3.3.10 Let G be a well-shaped geometric graph fBrand letG be the corre-
sponding planar map. For each edge= [p, q) in G the successoof e is the edgdq, )
in G withr being the vertex adjacent tpthat precedeg in the adjacency list off (sorted
in clockwise order around); if g has degree one, then= p.

For edgee = [p, q) in G thekth successoik > 0, is defined recursively as follows:
the Oth successor db, q) is [p, q) itself, and fork > 0, thekth successor df, q) is the
successor of thek — 1)st successor dp, q).

Similarly, edgee is thepredecessanf edgee’ if edgee’ is the successor of edgeand
e is thekth predecessaf e’ if e’ is thekth successor of.

We have introduced the planar map representation of a gidptause it describes the
faces of the corresponding embedding in a simple way (using succeeding ed)es\ia
observe that the correspondence between the faces in the embeddirandfthe cycles
of succeeding edges (& is one to one. We also note that each (directed) edge is contained
in exactly one cycle of succeeding edges.

Definition 3.3.11 Let G be a well-shaped geometric graph fdand letC = (po, ..., pi)
be a cycle in the planar map of the EMST-completioGofThenC is calledtopological
if for every two consecutive edges on the cyplepi1) and [pii1, Pii2), [Pit1, Pit2) IS
the successor dp;, pi11). We also call the corresponding cycle@topological.

The following key lemma shows that every well-shaped geometric graph that is far
from EMST must contain many short topological cycles in its EMST-completion.

Lemma 3.3.12LetG = (P, E) be a well-shaped geometric graph for If G is e-far from
EMST, then there are at lea§f; e-short topological cycles in the EMST-completiorGof

Proof: LetT = (P, E) denote the EMST of and lettg = E\ E denote the blue edges of
the EMST-completion o6 that are not irE. Further lettr = E \ E denote the red edges
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of the EMST-completion o6. SinceG is e-far from EMST we haveEg| + |[Eg| > en by
definition of e-far. N

Now let H denote the EMST-completion @& and letH denote the planar map of
its straight-line embedding. Let us denote d@yhe number of faces in the straight-line
embedding oH. HenceH hasp (disjoint) topological cycles since each face is bounded
by a unique cycle of succeeding edges (which by definition is called topological). Since
H is planar and connected and has more than 1 + en/2 edges we can apply Euler’'s
formula to deduce that > en/2.

Now let s(f) denote the number of (directed) edges in the topological cycle bounding
facef. Since} ;s(f) < én by Euler's formula there can be at mostfacesf with
s(f) > 2. Thus2® facesf haves(f) < 2.

Since|Eg| < p the number of directed red edges is at mfst Hence the number of
topological cycles with 3 or more red edges can be at ré%sSince we have shown that

there are at Ieas’j,B topological cycles having less théfl edges, at leas§, > 55 of them

have at most two red edges. O

Definition 3.3.13 Let G be a well-shaped geometric graph fér For every vertey € P,

we define itsopologicalk-neighborhoods the set of vertices that are the endpoints of the
edges that are either thigh successof) < i < k, of any edge incident tp, or are thejth
predecessor) < j < k, of any edge incident tp. The topologicak-neighborhood of a
vertexp is denotedV:® (p, k).

The following claim follows easily from the fact that our input graph has maximum
degree of 5.

Claim 3.3.14 Let G be a well-shaped geometric graph f@r For every vertex € P, we
can find its topologicak-neighborhood in time (k). O

Now, provided tha is e-far from EMST (but well-shaped), our first approach is to
sample uniformly at random a sufficiently large €gtof points inP. Then we add for
every point inQ its topological7—€2-neighborhood to the sample set. Provided that the set
Q is sufficiently large, we prove in Lemma 3.3.18 thatGfis e-far from EMST, then
the so obtained set will contain all vertices from a certashort topological cycle in the
EMST-completion ofG with probability at leas2/3. Therefore, this will certify thaG
is not an EMST by Corollary 3.3.8. In Lemma 3.3.24, we tune the sketched algorithm to
slightly improve the complexity bound.

3.3.3 A Simple Property Tester in Well-Shaped Graphs

Now we discuss our first property tester for EMST for well-shaped input graphs. We follow
the approach sketched in the beginning of this subsection. According to that description
the key issue is to describe the algorithm that finds the samplg aatl to prove that

with probability at Ieastg the input is rejected it is e-far from EMST. In particular, by

our discussion above we know from Lemma 3.3.12 that if a well-shaped giapla-far
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from EMST, then there are mamyshort topological cycles in the EMST-completion@®f
Further, by Corollary 3.3.8, in order to rejegtit is sufficient to prove that with probability

at Ieast% the sampleS contains all vertices from a certainshort topological cycle in the
EMST-completion ofG. We provide a precise description of this algorithm and its analysis
below. We assume thé&t is well-shaped. Everg-short topological cycle either

1. is a cycle consisting of at moéj blue edges, or

2. is a path consisting of at mo%t blue edges having the endpoints connected by a red
edge, or

3. is a path consisting of at moéé% blue edges having the endpoints connected by a
path of two red edges, or

4. consists of two paths containing at mée%tblue edges that are connected to each
other by two red edges.

Our first observation is that if there are masnghort topological cycles of type (1) or (2),
then we can easily spot them. Indeed, if there are at Igast-short topological cycles of
type (1) or (2) in the EMST-completion @, then it is enough to take a random subQet

of P of size®(1/¢€) to ensure that at least one vertex from anghort topological cycle

will be in Q with probability at Ieas%.

Lemma 3.3.15LetG = (P, E) be awell-shaped geometric graph. If the EMST-completion
of G contains at least; e-short topological cycles of type (1) or (2), then a &etC P

of size4000/e chosen uniformly at random contains at least one vertex fromeastyort
topological cycle.

Proof :  SinceG is well-shaped it has a maximum degree5o&énd so the EMST-
completion of G has a maximum degree 0. We conclude that every vertgx € P

is contained in at most0 e-short topological cycles. Furthermore, the Betof all ver-
tices that are contained in at least anxghort topological cycle (of type (1) or (2)) has
cardinality at least;;5;. Now let Q C P denote a set of sizéoéﬂ taken uniformly at
random fromP. Then

Therefore,
PriQNPc#0] >2/3 .

O

Now, we explore the key feature efshort topological cycles of type (1) or (2): For
every vertex from such a cycle all other vertices from the cycle belong to the topological
7—€z-neighborhood of. This motivates us to define the sample Seais the topologica?f-
neighborhood of all vertices i. Since the se@ contains at least one vertex from any
e-short topological cycle of type (1) or (2) with probability at ledgs, we can conclude
thatS contains all vertices from a particularshort topological cycle of type (1) or (2)
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with probability at Ieas%. Since every vertex of the topological cycle is contained in our
sample set we know by Corollary 3.3.8 that the EMST-completion of the subgraph induced
by our sample contains a cycle. Thus our property tester rejects the input with probability
2ifitis e-far from EMST.

It is easy to see that the procedure for cycles of type (1) and (2) described above has a
query complexity of0(Y) = O(L).

Lemma 3.3.16 Let G = (P, E) be a well-shaped geometric graph and @tC P be a set
of size4000/ e chosen uniformly at random frofh If the EMST-completion @ contains

at leasts;; e-short topological cycles of type (1) or (2), then the set

top, /2
S= U NGp(p)?)

PeQ

contains all vertices of at least oreshort topological cycle with probability at leagy3.

Proof : Follows from Lemma 3.3.15 and the observation that a cycle of type (1) and (2)
is completely contained i§, if one of its vertices is contained Q. a

The e-short topological cycles of type (3) and (4) are a little bit more difficult to detect.
However, we can still use a very similar approach as for cycles of type (1) or (2), but
this time we must find two vertices that belong to the sasvshort topological cycle.
Suppose that there are at legg} e-short topological cycles of type (3) or (4) in the
EMST-completion ofG. As before, we first take a random subgebf P, but this time
the size ofQ is ©(y/n/e). Then, we define the sample setto be the union of the
topological7—€2-neighborhood of all vertices iQ. We show now that the so defined sample
set is sufficient to certify thab (if it is e-far from EMST) is not an EMST by proving an
analogous statement to Lemma 3.3.16 for cycles of type (3) and (4):

Lemma 3.3.17Let G = (P,E) be a well-shaped geometric graph and @tC P be a
set of size80/n/e chosen uniformly at random from. If the EMST-completion d&
contains at leasty; e-short topological cycles of type (3) or (4), then the set

72
5= JNEp, D)

PeQ

contains all vertices of at least oreeshort topological cycle with probability at leagy3.

Proof :  For everye-short topological cycleC of type (3) let us define the s&V to
contain two vertices: one vertex on the blue pattCiand the vertex incident to the two
red edges irC. Similarly, for everye-short topological cycl€ of type (4) let us define the
setW(, to contain one vertex from the first blue pathGrand one vertex from the second
blue path inC.

Since each vertep € P belongs to at mostO e-short topological cycles we can select

from the setdV the setdV;, 1 <1i < 5555, such that the seld/; are disjoint and for each
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i, 1 <1 < 555, there is are-short topological cycle€ with W; = Wc. Then we apply

Lemma 2.4.1 withk = 5%, 1 =2, ands = 20“ = 20,/1/€ and obtain

Pri3jekl: W, CQ)] >1—-(1-1/4)*>2/3 .

Now observe that all vertices of a cydlgare inS, if W C Q. Therefore, the lemma
follows. O

We prove that the following algorithm is a property tester for EMST:

fMST-TEST—SlMPLE(G, €) \
s = 80y/n/e +4000/¢
choose a s C P of sizes uniformly at random
S = quQNéop(q) 7_62)
compute the subgraphs induced byS
compute the EMST-completio@c of Gg
If G¢ contains a cycléhen reject

\ elseaccept j

Lemma 3.3.18 Let G be a well-shaped geometric graph fBr Then there is a property
tester that in time> (x/n/e3 . Iog(n/e)) and with query complexit§?(/n/e3) accepts

the input ifG is an EMST oP and rejects the input with probability at Iea§1 if Gise-far
from EMST.

Proof: We claim the algorithm EMST-EST-SIMPLE is a property tester for EMST. By
Corollary 3.3.8 we know that EMSTHSTSIMPLE accepts, if the input grap@ = (P, E)
is the EMST.

Now let us consider the case wheéris e-far from EMST. Then by Lemma 3.3.12 we
know that there aren /100 e-short topological cycles in the EMST completion®f It
follows that there aren /200 cycles of type (1) and (2) aen/200 cycles of type (3) or
(4). By Lemma 3.3.16 and 3.3.17 we know that the sample taken by EMET-SIMPLE
contains are-short topological cycle with probability at leakt3. By Corollary 3.3.8 we
know that then there is a cycle in the EMST-completion of the subgraph induced by our
sample. Hence the algorithm rejects in such a case.

The query complexity of the algorithm is immediate. Its running time follows from
Claim 3.3.14 and the fact that the EMST completion of a graph witkertices can be
computed in time)(m logm). O

3.3.4 An Improved Property Tester in Well-Shaped Graphs

Now we slightly improve the complexity of the property tester described in Lemma 3.3.18.
In our analysis above we were always trying to catch one initially fixed single vertex from
each blue path although anshort topological cycle can contain as manyzeé:vertices.
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We now want to take the length of the topological cycles into consideration. Further, we
were always taking topologic%-neighborhoods of all vertices. This strategy should be
applied to the cycles that have as manyzg%\edges, but it is not necessary for shorter cycles.
Our approach now is to improve the complexity of the property tester by combining these
two observations. We want to show that the following algorithm is a property tester for
EMST, if the input graph is well-shaped:

/EMSTTEST(G, €)
s =1700/n/e 4+ 192000/€ + 4000/ €
S =FINDCYCLE(G, s, €)
compute the subgraphs induced byS
compute the EMST-completio@c of Gg
if G¢ contains a cycléhen reject

\ elseaccept

Where the procedurel®D CYCLE is the following:

ﬁNDCYCLE(G,s,e) \
S©

) — ()
fori=1to2sdo
j=0

pick a vertexpY € P uniformly at random
while j < log Z do

j=j+1

flip a coin

if headthen exit
S — gli-1) U,/\/é(’p(p(i),zj)

K return S(2s) j

First of all, we observe that algorithm EMSEST accepts every Euclidean minimum
spanning tree by Corollary 3.3.8.

Thus we have to prove that the algorithm rejects, if the input graptas from EMST.
Let us assume th& is well-shaped and-far from EMST. Then, by Lemma 3.3.12, there
are at least;y; e-short topological cycles in the EMST-completion 6f Let ¢;, j =
1,2, 3,4, denote the set of adl-short topological cycles of type (j) in the EMST-completion
of G. Now we consider separately cyclegifu¢, and cycles irg;U¢,. By our discussion

above we have eith¢€; U &;| > 555 or |€3 U &4 > 7.

Cycles of type (1) and (2). Suppose tha6 is a geometric graph foP with maxi-
mum degreé& and there are at leash e-short topological cycles of type (1) or (2) in the
EMST-completion ofG for e = 55;. We first consider the probability that a fixeeshort
topological cycleC € €; U ¢, is contained in the sample set. Letlenote the number

of vertices in cycleC. Then the probability that in roundof the ANDCYCLE procedure
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vertexpV is one of thel vertices of cycleC is T% Further the probability that the topolog-

ical neighborhood op™ is chosen large enough to contain all vertice€a$ at Ieas%.
Overall, for a fixed cycleC the probability that a vertex af is chosen in round and that

the topological neighborhood of the vertex is large enough is at %as%f the cycles are
vertex disjoint then it is simple to prove that af(é(le) rounds at least one cycle is com-
pletely contained in the sample set with constant probability. Unfortunately, in the general
case the cycles are not vertex disjoint. To overcome this technical problem we use the
planar map representation Gfand the following trick for the analysis: Instead of taking

the whole topological’-neighborhood of verter¥ we assume that our algorithm selects
only one of the outgoing edges (in its planar map representation) uniformly at random.
Then it includes only th@’ successors and predecessors of the chosen edge in the planar
map representation @i. Clearly, this procedure considers only a subset of the vertices
considered in the original procedure. Nevertheless, we can show that the set of vertices
we pick using this procedure is still sufficiently large. We can now use the fact that the
(directed) cycles are edge disjoint. Assume that we pick a vertex that belongs to & cycle
Provided that the chosen neighborhood is large enough we still have to choose the correct
outgoing edge to have all vertices Gfin the sample set. Since our graph has a degree
bound of 5 the probability that this edge is chosen is at I€&st Since type (2) cycles
consist of a path of — 1 (directed) blue edges the probability thdt is one of thel — 1

origins of these edges i@gnl > % (a directed edge points from itgigin to its destina-

tion). Hence the probability that a cyc&of type (1) or (2) is completely contained in the
sample setis at Ieagg;. We know that the cycles are disjoint and so the probability that at
least one cycle is completely contained in the sample set in roisrat leasts- = 5. Let

Xc denote the indicator random variable for the event that oc§cted; U &, is completely
contained in the sample set. Then we havesfor 20/ = 4000/ €:

PI[¥C € € UC: Xe =0] < (1-25)" < 1/3

and hence
PF[HC cCiUl,: Xc= 1] >2/3

and so we have just proved:

Lemma 3.3.19 Let G be a geometric graph fd? with maximum degre®that has at least
en = = topologicale-short cycles of type (1) or (2). If algorithFAINDCYCLE(G, s, €)
is invoked withs > 4000/ then the se$?*) returned by the algorithm contains arshort
topological cycle with probability at leag/3. a

Cycles of type (3) and (4). Let G be a geometric graph with maximum degree 5. Let
us further assume that there are at leastopologicale-short cycles of type (3) and (4) in
the EMST-completion of5, for e = 555. We want to show that the sample set computed
by algorithm ENDCYCLE contains every vertex of at least oaeshort topological cycle
with good probability.
Recall that cycles of type (4) consist of 2 paths of blue edges connected by two red
edges. Cycles of type (3) are a special case of type (4) cycles: The shorter path has length
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0. For each cycl&€ € €3 U &, let X(Ci) denote the indicator random variable for the event
that all vertices of the longer (blue) path of cy€lare inS. Let Y(C” denote the indicator
random variable for the event that all vertices of the shorter (blue) path of Eyale in
SW. Further letA®*! denote the indicator random variable for the event that there is a
cycleC’ € €5 U &4 with XS) =0 andX(éT” = 1. We say that a cycl€ € ¢; U &, s
half-containedn S, if X) = 1. CycleC is containedin ¥, if X! = 1 andY( = 1.

We analyze the algorithm in two steps. We first show that with high probability many
(at leastes/80) topologicale-short cycles are half-contained in the S&t. Then we show
that the se$?*) contains at least one cyog € ¢; U €, with high probability.

Claim 3.3.20 Let the outcome of the random choices in rodntb i of thefor-loop of
FINDCYcCLE be fixed. Then it holds that, if

Yy x2)<§ (3.1)
CedzUey
then
Pria™" =1] > e/40 . (3.2)

Proof : Let us assume that Equation (3.1) is true. Then we observe that:

sinces < n. We conclude that we have more thamn/2 cycles in€3 U ¢, that are not
half-contained inS®. If p(t1) is one of the vertices of the longer path of one of these
cycles and if the topological neighborhood included iNnB-CYCLE is large enough then

we haveA™1) = 1, To estimate the probability fok*+!) = 1 we apply the same trick as

in the analysis for the case of type (1) and (2) cycles. This yields immediately (observing
the fact that we haven/2 cycles instead ofn):

) 1 £ 1 en
) 17> — . . 1.2 =
Pr[A 1} 53 /40

O
Our next goal is to show that there are at least80 cycles that are half-contained in
S,

Claim 3.3.21

Pr| Z XE:S) < e5/80] < e /3%
CecdzUey
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Proof:

; 1
< Pr[ ) B“@U—z)-%}

whereBW are independertt— 1 variables withPr[BY) = 1] = ¢/40. The latter inequality
follows from Claim 3.3.20. We apply a Chernoff bound [56, Inequality (7)] and it follows
that

< e*(%)zﬁ)éz — e €8/320

O

Let W) denote the indicator random variable for the event that there eRists
¢;U & with XY =1andyY = 0andYd"" = 1.

Claim 3.3.22 Let the outcome of the random choices in rountb i of the procedure
FINDCYCLE be fixed. If

Z Xg) > ¢s/80

CeczuUly
then

(i+1)
PriWEH = Ta00 -
Proof :

We assume that there are more thap80 cycles that are half-contained $". Again
we use essentially the same trick as in the case of type (1) and (2) cycles. We observe that
there is a little problem with cycles of type (3). Since the length of the shorter pathese
Is no directed edge in this path. Thus we have to modify our approach slightly. We use
the following sampling scheme for the analysis: Instead of taking the whole topological
2)-neighborhood op Y we choose a numbérbetweenl andé uniformly distributed. Ifk
is betweenl and5 we include the’ predecessors and successors oktlle edge incident
topW. In the casé& = 6 we only include the vertex¥ in the sample. Then we get that
the probability that a cycl€ is contained in the sample is at legst 5= - + = 51—, We
have more thams/80 cycles that are half-contained $". Therefore we obtain that:

(i+1)
PrIW™ 2 1550
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Lemma 3.3.23Let G be a geometric graph foP with maximum degreé that has at

leasten = 535 topological e-short cycles of type (3) or (4). TheANDCYCLE is an
algorithm with (expected) query complexi®y/n/e log(n/e)) that samples a sé&t C P,
IS| > 1700y/1/€e + 192000/€, such that the EMST-completion of the subgrapi.,

induced byS?*) has ane-short topological cycle.

Proof : Lete = €/200 and letG be a geometric graph fdt with maximum degreé
that has at leastn topologicale-short cycles of type (3) or (4).

Pr [There Is a cycle in the EMST-completion of the subgraph induce&ﬁiﬁ

2 1= (g T =gl (1 )

Cedzuly

by Claim 3.3.22. Choosing > 1700y/n/e + 192000/ ¢ it follows together with Claim
3.3.21 forn > 4:

> 1—(e?+e) >

gl ~

Obtaining Deterministic Query Complexity. It is easy to modify the algorithm
such that the query complexity has an upper boun®po{/n /e log(n/e)) by insignifi-
cantly increasing the error of the algorithm. We can do this in the following way: We run
algorithm EMSTTESTand stop, if it either accepts or rejects or if the sample size becomes
too large. LetXs denote the random variable for the sizeS6F). We stop the algorithm

and accept the input, if we find out that the sizeGf) becomes larger thald - E[Xs]. By
Markov inequality we have:

Pr[Xs > 10EXs]] < 1/10 .

Hence it follows that our new algorithm rejects a geometric graph tkeafas from EMST
with probability4/5—1/10 > 2/3. Thus itis a property tester with a deterministic bound
of O(log(n/e) - /n/e) on the query complexity of our algorithm (rather than expected
query complexity).

Lemma 3.3.24 Let G be a well-shaped geometric graph fBr Then there is a property
tester that in time?(log?(n/e)-1/n/¢e) and with query complexity @ (log(n/e)-\/n/e€)

accepts the inpug, if G is an EMST oP and that rejects the input with probability at least
2if G is e-far from EMST.

Proof : Follows from Lemma 3.3.12, Lemma 3.3.19 and Lemma 3.3.23. O
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3.3.5 A Property Tester in Graphs with Maximum Degree 5

Now we want to remove the well-shaped condition for input graphs. In this subsection
we do the first step towards that goal. We develop property tester for connectivity and
crossing-free EMST-completions. Then we replace the well-shaped condition for EM-
STTEST by the assumption that the input graph has maximum degree 5. Before EM-
STTEST is invoked we test if the input graph is/200-far from connected and if its
EMST-completion has a crossing-free straight line embedding. Thus we may assume that
EMSTTESTgets an input graph that &/200-close to connected arel200-close to hav-

ing an EMST-completion with a crossing-free straight line embedding (if this is not the
case, the property testers for connectivity and crossing-free EMST-completions reject).
This way we develop a property tester for graphs with maximum degree 5. The degree
bound is then removed in the last subsection.

Testing Connectivity. In the first phase we test whether the input graph is connected.

Definition 3.3.25 A geometric graplG for P is e-far from connectedf one has to add
more thane - n edges tas to obtain a connected graph. @ is note-far from connected,
then we call ite-closeto connected.

Remark 1 Let us notice here the equivalent characterization of geometric graphB for
that aree-far from connected — these are geometric graph®foaving more thar -n+1
connected components.

Since the property of being connected does not depend on the positions of the input
points inP, we can use a property tester for connectivity in graphs. In [52] it has been
proven that connectivity of bounded degree graphs can be tested efficiently:

Lemma 3.3.26[52] Let G be a graph with degree boundl Connectivity ofG can be

tested withO(°C0/¢4)) time and query complexity in the bounded length adjacency list
model (see Chapter 2)

We can immediately apply this result to geometric graphs:
Corollary 3.3.27 Let G be a geometric graph foP with maximum degree 5. Thereis a
property tester that in timé ('°0/<)) and with a query complexity 6?('°1/<)) accepts
the input if G is connected and rejects the input with probability at Ieést G is e-far

from connected.

Proof: We run the tester from [52] witd = 5 ande’ = €/5. O

3In the bounded degree graph model a graphfar from connected if one has to add more tham edges
to obtain a connected graph.
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Testing Crossing-Free EMST-Completions. Next, we design a tester that accepts

the input graph, if it is the EMST and rejects it if the straight-line embedding of its EMST-
completion ise-far from crossing-free. We proceed in two steps. First, our property tester
checks for pairs of intersecting blue edges and then it tries to find intersections between
blue and red edges; red edges cannot intersect because they are edges of an EMST. We use
the following distance measure.

Definition 3.3.28 The straight-line embedding of a geometric graplfior P is e-far from
crossing-freaf one has to remove more than- n edges inG to obtain a crossing-free
straight-line embedding. If the straight-line embeddingGofs not e-far from crossing-
free, then we call ie-closeto crossing-free.

We first use the tester IBJOINTNESSdeveloped in Section 3.1 to find intersections be-
tween blue segments (induced by blue edges). Sihbas maximum degreeit has at
most5n edges. Therefore, since one can verify in ti@enlogn) if a geometric graph

with n vertices has crossing-free straight-line embedding [16] (the number of edges must
be O(n); otherwise there must be a crossing), Theorem 1 implies the following result.

Lemma 3.3.29 Let G be a geometric graph with maximum degree 5. There is a property
tester that in timeD(/n/elog(n/e)) and with the query complexity @¢?(,/n/€) ac-
cepts the input if the straight-line embedding@fs crossing-free and rejects the input
with probability at Ieast% if the straight-line embedding @& is e-far from crossing-free.

O

It remains to design a property tester for red-blue intersections in the EMST-completion
of G 4. A geometric graph with red and blue edges has a straight-line embedding without
red-blue intersections, if there is no intersection between the corresponding red and blue
segments. Similarly, the straight-line embedding of a geometric graph whose edges are
colored blue and red is-far from having no red-blue intersectioni$ one has to delete
more than are-fraction of its edges to remove all red-blue intersections.

The main difficulty with testing for red-blue intersections in the EMST-completion of
G is that the red edges are only defined implicitly. The following lemma shows a relation
between the endpoints of red and blue edge intersecting each other.

Lemma 3.3.30 Letpq be a red andky be a blue segment in the EMST-completiosof
If pq andxy intersect each other, then eitheg is not in the EMST of every set containing
{p, q,x} oritis notin the EMST of every set containifig q, y}.

Proof :  The pointsp, q, x,y are in convex position because the segmemtsandxy
intersect. We consider the quadrilatepalqy (see figure 3.7). Let us call the inner angles
in the quadrilateral at vertices q, x,y to bex, 3, v, andd, respectively. Let us recall that
the longest edge of a triangle is opposite of the largest angle.

“More precisely, we do not design a property tester for the property of having no red-blue intersections. Our
algorithm might reject an input graph if its EMST-completion has no red-blue intersections. However, if
the input graph is the EMST then it is always accepted by our algorithm.
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Figure 3.7: A red blue intersection. The red edge is dotted.

If « < Zandp < 7 theny ord is larger tharg becausex + 3 +y + 6 = 2 7. Without
loss of generality, leyy > 7. Then, segmeniq is the longest edge of triangteqx and
thus is cannot be the EMST @f, g, x}. By Lemma 3.3.7 this is a contradiction to the fact
that(p, q) is an EMST edge. Hence we must have eitker 5 or 3 > 7.

If « > 7 then segmenty is the longest edge in triangtecy. Hence edgéx, y) is not
contained in the EMST gf, x,y. By Lemma 3.3.7 it is also not contained in every EMST
of a subset oP that containg, x, y.

If 3 > 7 then segmenty is the longest edge in triangtecy. Hence edgéx, y) is not
contained in the EMST of, x,y. By Lemma 3.3.7 it is also not contained in every EMST
of a subset oP that containgy, x, y. O

This lemma shows that each red-blue intersection has a “witness” consisting of one
point and one edge of the input graph. Our property tester for red-blue intersections is
similar to the DsJOINTNESsStester. We modify the disjointness property in the following
way: We say that two points, g € P intersect, if there is an (blue) edge= (p, x) (or
e = (q,x)) incident top (or q) such that the other point is a witness tlds not in the
EMST of P, that ise is not in the EMST ob, q, x. The following algorithm is a property
tester for red-blue intersections:

REDBLUETEST(G, €)
Choose a sé§’ C P of size16,/5n/€ uniformly at random
LetS = S"UN(S’) whereN (S’) denotes the set of neighbors of pointsSin
Let Gs denote the subgraph induced &y
if the EMST-completion 0G5 has a cycleéhen reject
elseaccept

The analysis of the algorithm is similar to the analysis of the algorithBUDINTNESS

If the input graph is the EMST then there are no intersections among the points in
If the EMST-completion of the input graph ésfar from having no red-blue intersections
then by Lemma 3.3.30 it follows that the point gets e-far from being disjoint, if the
EMST-completion is:-far from having no red-blue intersections. Thus we have:
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Lemma 3.3.31Let G be a geometric graph foP with maximum degree 5. Algorithm
REDBLUETESTruns intimeO(+/n/elogn) and with the query complexity 6f(/n/e)

and accepts the input grap@ if it is the Euclidean Minimum Spanning Tree and rejects
the input with probability at Ieas§ if the straight-line embedding of the EMST-completion
of G is e-far from having no red-blue intersection.

Proof : If G = (P,E) is the EMST then its EMST-completion is crossing-free. Thus
algorithm REDBLUETEST acceptss.

Let G¢ denote the EMST-completion & and let us assume thé&ic is e-far from
having no red-blue intersections. By Lemma 3.3.30 we can apply the following procedure
k = en/20 times: pick a pair of intersecting (with the definition from above) points
{p,q} = Wi, 1 € [k], and remove all edges incidentjpoand q from G¢. By the degree
bound, we have to remove at mdst edges for each of the two vertices. Therefore, we
can apply this procedure at ledstimes.

In order to prove that RDBLUETEST rejectsG with probability at leas2/3 if G¢ is
e-far from having no red-blue intersections we show that with probability at Bx@sbne
of the pairsW;, i € [k], isinS’. We apply Lemma 2.4.1 and obtain:

Pridjelkl: (W;CS)]>1-(1-3/4)">2/3

It remains to show that the algorithm rejects, if there isaWailC S’. If W; ={p,q} C S’
then there exists = (p, x) (or e = (q, x)) such that is not in the EMST ofp, q,x. By
Lemma 3.3.7 is not in the EMST ofS. HenceS must have a cycle andE®BLUETEST
rejects. O

Finally, we can combine Lemma 3.3.29 and Lemma 3.3.31 to obtain.

Lemma 3.3.32Let G be a geometric graph foP with maximum degree 5. There is an
algorithm that in timeO(\/n/elog(n/e)) and with a query complexity aP(,/n/e)
acceptsG, if G is the EMST oP and rejectsG with probability at Ieast% if the straight-
line embedding of its EMST-completioreigar from crossing-free.

Proof : Let G be e-far from having a crossing-free EMST-completion. Then, either the
straight-line embedding d& is 5-far from crossing-free or the EMST-completion Gfis

s-far from having no red-blue intersections. Applying Lemma 3.3.29 and Lemma 3.3.31
with e = 5 shows thaiG is rejected with probability at Ieaét Since the tester for blue-

blue intersection and the tester for red-blue intersections both accept the EMST we have
completed the proof of Lemma 3.3.32. a

Extension to Degree Bounded Graphs. Now we want to design a property tester

for arbitrary degree bounded input graphs. We first extend the planar map representa-
tion for well-shaped graphs to@anar map likerepresentation for general graphs in the
following straightforward way:

For every vertex in G we (cyclically) sort incident outgoing edges in clockwise order
around the vertey with respect to the Euclidean positions of the edges endpoints. For
sake of completeness we restate Definitions 3.3.10, 3.3.11, and 3.3.13 for general graphs
(these generalizations are immediate):
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Definition 3.3.33 Let G be a geometric graph fat and letG be the corresponding planar
map like representation. For each edge= [pq) in G thesuccessoof e is the edgéq, 1)
in G withr being the vertex incident t@ that precede$ in the adjacency list of (sorted
in clockwise order around); if g has degree one, than= p.

For edgee = [p, q) in G thekth successoik > 0, is defined recursively as follows:
the Oth successor db, q) is [p, q) itself, and fork > 0, thekth successor dfp, q) is the
successor of thék — 1)st successor dp, q).

Similarly, edgee is thepredecessanf edgee’ if edgee’ is the successor of edgeand
e is thekth predecessasf e’ if e’ is thekth successor of.

Definition 3.3.34 Let G be a geometric graph foP and letC = (po,p1,...,px) be a
cycle in the planar map of the EMST-completionGf ThenC is calledtopological if
for any two consecutive edges on the cyplepi1) and [pii1, Pit2), [Pit1, Pis2) IS the
successor ofp;, pi+1). We also call the corresponding cycle@topological.

Definition 3.3.35 Let G be a geometric graph foP. For any vertexp € P, we define

its topologicalk-neighborhoodhs the set of vertices that are the endpoints of the edges
that are either theith successo) < i < k, of any edge incident tp, or are thejth
predecessoK) < j < k, of any edge incident tp. The topologicak-neighborhood of a
vertexv is denotedV:? (v, k).

Then we recall that Lemmas 3.3.19 and 3.3.23 do not requirealimttonnected not
that the EMST-completion. Hence it suffices to show that the bound of Lemma 3.3.12
carries over to general graphs:

Lemma 3.3.36Let G = (P, E) be a geometric graph foP that is € /200-close to con-
nected and:/200-close to having a crossing-free straight-line embeddingG I e-far
from EMST, then there are at leagf; e-short topological cycles in the EMST-completion
of G.

Proof : Let G denote the EMST-completion & = (V,E). SinceGc is €/200-close

to crossing-free we can delete a g of at mosten/200 edges fromG¢ to make it
crossing-free. Then we can insert a Eebf at mosten /100 edges to maké& connected

(and still keep its EMST-completion crossing-free). This is always possible since we can
insert EMST edges to connect the disconnected components. Let us denote the resulting
graphG- = (V,E\ Ep U Ey).

Using the same arguments as in the proof of Lemma 3.3.12 we obtain that there are at
leasten/24 e-short topological cycles it. Now we reverse our modifications of the
EMST-completion and we remove the edgggrom G.. We observe that the removal of
a single edge can destroy at most two cycles since the cycles are disjoint (in their planar
map representation). Hence the removdl gfdestroys at mosin /50 e-short topological
cycles. Then we reinsert the removed edggs Now each edge can destroy at mast
cycles. Hence the re-insertion bf; destroys at mostn /100 e-short topological cycles.
Counting the remaining cycles we get that at least100 e-short topological cycles are
in Ge. (Il

We conclude:
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Lemma 3.3.37 Let G be a geometric graph foP with maximum degree 5. Then there
is a property tester that in tim&(log*(n/e) - v/n/e) and with query complexity of
O(log(n/e€) - v/n/e) accepts the input iG is an EMST of? and rejects the input with
probability at Ieast%if G is e-far from EMST.

Proof: Follows from Lemma 3.3.19, Lemma 3.3.23, and Lemma 3.3.36. O

3.3.6 A Property Tester in General Graphs

It remains to remove the degree bound condition for the input graph. In order to do this,
we first describe a low degree tester:

A property tester for low degree. We first define when a graph is far from having
low degree vertices:

Definition 3.3.38 A geometric graplG = (P, E) for P is e-far from having low degreé
one has to remove more than n edges inG to obtain a graph having maximum degree
smaller than or equal to five.

If G is note-far from having low degree, then we calkitcloseto having small degree.

It is easy to see that i€ is e-far from having small degree, then there are at least
V€ - n vertices inG either having degree greater than five or having an adjacent vertex
with degree greater than five. Therefore the simple algorithm that picks a randSrofset
4 /m/e points inP and tests if every point € S has the degree smaller than or equal to
5 and if so then it tests if every neighborpfc S has degree smaller than or equabtt
will detect with probability greater than or equal%cevery geometric grap@ that ise-far
from having small degree.

Lemma 3.3.39 Let G be a geometric graph foP. There is a property tester that in time
O(y/n/e) and with the query complexity @ (/n/e) accepts the input ifs has the
maximum degree smaller than or equabtand rejects the input with probability at least
% if G is e-far from having small degree.

Proof : Clearly, our algorithm accepts every graph having maximum degree of five. Let
us assume thag is e-far from having small degree. A vertex that has degree more than
five or that is adjacent to a vertex with degree more thacalled aheavy vertexLet S
denote a sample of sizZg/en chosen uniformly at random fro

Pr[S contains no heavy vertéx< (1 —1/y/n/e)*V™/e <1/3 .

It follows that
Pr[S contains a heavy vertgx- 2/3

Hence our algorithm rejects every graph that-far from having small degree with prob-
ability at least2/3. Thus it is a property tester. a

5Since the degree of evepyc S is less than or equal t§ such a test can be performed in a constant time
per vertexp.
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The Tester for General Graphs.  To obtain a tester for general graphs we have to
modify the tester for graph with degree bound5oin the following way: We first test
whether the input graph is/2-far from having low degree (using the tester described be-
low). Then we run the property tester for graphs with maximum degréafiér applying

the following modifications and with distance parametet € /2:

¢ If during the course of the algorithm we encounter a vertex with degree more than 5,
we immediately reject.

e For each vertex € S we also include every neighbor ofin G into the sample
set. This can be done without asymptotically increasing the running time of the
algorithm (because we reject, if we encounter a vertex with degree more than 5).

Clearly, the above modifications do not affect the case when the input graph is the
EMST of the point set: The algorithm will still accept the input graph. Thus let us consider
the case when the input graghis e-far from EMST. If the low degree tester rejects the
input graph, we are done. Thus let us assume that the input graph passes this test (and thus
is € /2-close to having low degree):

Let us assume tha& is e€/2-close to having low degree batfar from EMST. We call
a vertex ofG a distinguisher if it either has degree more than 5 or if it has a neighbor
whose degree is greater than 5. Now we define the g&pb be a graph obtained from
G by deleting a minimal set of edges such tlkdthas a maximum degree of 5. Since we
deleted less thaan/2 edges fromG to obtainG’ we conclude thaG’ is e/2-far from
EMST.

In order to analyze the behavior of the modified algorithm we consider the (unmodified)
algorithm for graphs with maximum degree 5. First of all, we observe that the modified
algorithm always rejects, if there is a distinguisher in the sample chosen by the unmod-
ified algorithm. But if there is no distinguisher in the sample chosen by the unmodified
algorithm then the graph 'looks’ like the grag’ which has maximum degree 5 and is
e/2-far from EMST. If we run the unmodified algorithm on inp@at it rejects with prob-
ability 2/3. Thus the modified algorithm always rejects when the unmodified algorithm
rejectsG’. We conclude that the modified algorithm reje@tsvith probability at leas? /3
because it either rejects or it behaves like the unmodified algorithm with (aputdence
we proved:

Theorem 4 There is a property tester for the EMST property with a running time of
O(y/en) - log*(n/e)) and with a query complexity @ (/e n - log(n/e)). O
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In the previous chapter we have seen some property testers and their analyses. This leads
to the general question if it is possible to characterize all properties of a certain class of
objects (e.g., all properties of point sets) that can be tested efficiently. First of all, it is
necessary to specify what is meant by “efficiently testable”. A propBrig efficiently
testable if there is a property tester faf that has query complexity independent of the
size of the input (for constant distance paramejefOne of the major open questions in the
field is to characterize for certain classes of objects all properties that are efficiently testable
and there has been some effort to achieve this goal: For graph properties it is known that
all first order graph properties that do not havé-aguantification are efficiently testable

in the adjacency matrix model [5]. In the same model it has also been proven that a large
class of graph partitioning problems can be tested efficiently [51]. For matrix properties it
is known that certain monotonicity properties can be tested efficiently [45].

In this chapter we try to find a characterization of efficiently testable properties for
functions from an arbitrary finite domaiP into an arbitrary rang&k. Using the very
general formulation of a property (see Definition 2.1.1) we can use our framework for a
large class of objects and - as shown in this chapter - also for a large class of properties. In
particular, we show that our framework can be used to prove that certain clustering prop-
erties over point sets, a reversal distance property over permutations, andaleing
property over-uniform hypergraphs can be tested efficiently. For some of these problems
a property testing algorithm has been analyzed before [4]. Our goal is here to show that
our framework is fairly general and that it leads to elegant proofs that highlight the combi-
natorial features of the problems. We can also show that every hereditary graph property
(every graph property that is closed under taking induced subgraphs) is efficiently testable,
if and only if there is a proof of its testability using our framework.

We emphasize that our results only hold for property testersavighisided errarOur
result for hereditary graph properties is existential. It shows that our framework can be
applied to a large variety of problems. It would be very interesting to show that our charac-
terization can be used to show that certain large classes of functions are efficiently testable.
This is one of the major open questions regarding our framework.

4.1 Abstract Combinatorial Programs

In this section we introducabstract combinatorial programsAn abstract combinatorial
program (ACP) is a combinatorial structure defined ovgraund setof atom items In
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this combinatorial structure atom items may be arranged into sets. These sets describe
possible "basic” configurations and they are calledithsesof the abstract combinatorial
program. Further there is a relationship between atom items and bases: Each atom item
is eitherconsistenwith a given basis or iviolatesit. This relationship is described by a
violation function.

ACPs can be used to highlight combinatorial features of property testing problems.
In typical applications the ground set depends on the problem under consideration and
corresponds in a natural way to the basic items of the considered problem. When we want
to apply ACPs to graph problems then the ground set may be the set of vertices of the graph
and when we consider properties of point sets the ground set may be the set of points.

The set ofbasesdescribes possible “basic” configurations of the corresponding prob-
lem. If we consider a graph coloring problem then a basis may correspond to a subset of
verticesW together with an associated coloringWf. For technical reasons we define
every basis as a paiWV, {), whereW is a subset of the ground set abht an index de-
scribing a configuration oYV (for example, in the graph-coloring example above, it is a
coloring of vertices inWV).

Theviolation functiondescribes for each bagisand each atom itemif x is consistent
with b or not. If x is not consistent witfb then we say violatesb. If every atom item
is consistent with a basis then we call this bdsasible Normally, the violation function
depends on the input instance. For the graph-coloring example above one could define the
violation function such that a vertexviolates a basis (colored vertex 3&1) if and only
if in the input graph theék-coloring of W cannot be extended to a propgercoloring of
WU {v}.

Formally, we define an abstract combinatorial program in the following way.

Definition 4.1.1 Anabstract combinatorial prograACP) is a triple(C, B, @), where
e (Cis afinite set callegyround set
e BC{(W,{): W C(C,{ e N}is aset ofbasesand

e @ : B — 2¢is aviolation function For each basid € B the setw(b) is the set of
atom items violating.

A basisb is feasibleif @ (b) = (). An abstract combinatorial program feasibleif it has
a feasible basis.

We also would like to remark here that in the context of randomized incremental algorithms
configuration spacebave been introduced as an analysis tool (e.g., see [35]). Although
the structure of a configuration space is similiar to that of an ACP it would be misleading
to describe our framework in terms of configuration spaces as the intuitive meaning of the
corresponding components of the definitions differs widely.

We are now interested in the problem of testing the feasibility of ACPs. In order to do
so we need some further definitions. The first definition introduces thedignensiorto
denote the maximum number of atom items involved in a basis. Then we denote by the
width of an ACP the maximum number of different bases with the same set of atom items:
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Definition 4.1.2 (ACP Dimension) LetP be an abstract combinatorial program. The
dimensionof P (denoteddim(P)) is defined asnaxX|W/| : (W, {) € B}. Thewidth of P
denoted (widthP)) is defined amax( : (W, ) € B}.

Since we are interested in property testing we want to investigate in "local” properties
of ACPs to conclude if the ACP as a whole is feasible or not. For this purpose we need
some further definitions. We say that a basifessiblefor a set of atom items, if none
of these items violates the basis. A basisaseredby a set of atom items, if the basis
contains only atom items from this set. And a set of atom items contase#f-feasible
basis if there is a feasible basis that is covered by the set:

Definition 4.1.3 (Self-feasible bases) LetP? = (C, B, @) be an abstract combinatorial
program. We say a basts = (W, {) € B is coveredby a subseC* C Cif W C C*. We
say that a basi$ is feasiblefor a subseC* C C, if noc € C* violatesb. We say a subset
C* C C contains a self-feasible basighere is a basid that is covered by’ * and that is
feasible forC*.

In the next section we want to design a property tester for feasibility of ACPs. We
assume that the algorithm has the possibility to determine for & se€ if S has a self-
feasible basis or not. The size of the Sezhould be as small as possible (the size of this
set could be seen as the query complexity of the algorithm). Since a property tester has
1-sided error it is necessary that we can always determine if the input ACP is feasible.
But then this would require that an ACP that consists of a single feasible basis is always
accepted. The only chance to ensure this is td5set C. Therefore, we consider only
monotoneACPs. If a monotone ACPP with dimension dinfP) is feasible then every
S C C with |S| > dim(P) has a self-feasible basis.

Definition 4.1.4 (Monotonicity) LetP = (C, B, @) be an abstract combinatorial pro-
gram with dimensionlim(7). P is calledmonotonéf it is either not feasible, or if (it is
feasible and) every subsgtC C with |S| > dim(P) contains a self-feasible basis.

4.1.1 Testing Abstract Combinatorial Programs

In this section we design a property tester for monotone ACPs. We first have to define when
an ACP is far from feasible. We do this directly without specifying a distance measure
between ACPs:

Definition 4.1.5 An abstract combinatorial program is-far from feasibleif every basis
is violated by more than - |C| objects from the ground sét

A property tester for ACPs is an algorithm that (i) accepts every feasible ACP and (ii)

rejects with probability at Ieaé every ACP that is=-far from feasible. In the following
theorem we analyze a property tester for certain ACPs:
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Theorem 5 (Testing ACPs)Let P = (C,B, @) be an abstract combinatorial program
with dimension at most and width at mosp. Then there exists with

s=0(e " (5-In(d/€e) +1Inp))

such that the following algorithm

ACP-TESTERP, €)
Sample a sef of s objects fronC uniformly at random
if S contains a self-feasible badisen acceptP
elserejectP

1. acceptsP, if P is monotone and feasible,

2. and rejectsP with probability at leas®/3, if P is e-far from feasible .

Proof : LetP = (C,B,®) be an ACP that is-far from feasible. Further |eéP have
dimension at mosé and width at mosp. For a basid = (W, () let &, be the random
event (with respect to the random choiceSptthatW C S and that none of the elements
from @(b) isin S. Now, in order to prove the theorem it is sufficient to show that with the
probability larger than or equal t%,)for none ofb € B the event, holds.

For everyr, 0 < r < §, letA, be the set of alb = (W, £) € B with |W| = r. Let us fix
an arbitraryb € A,. Then we have

Pr[gb] < (5—**

SinceP has dimension at mostand width at mosp, we havelA,| < p - (T;) for every
r > 0. Furthermore, we have\,| = 0 for all r > . Therefore, by the union bound we
obtain

5

Pr@beB:&] < Y Prigel = ) > Pri&

beB =0 bEA:

105

IA
°

54



4.1 Abstract Combinatorial Programs

13
_ p.Z(S>_((1—e)n—r)---m—e)n_sm

Mm—r)---(m—s+1)

where we assume in the last inequality that 25. Then we set’ := (6e'In(36 - p))?
and
s=2e¢ '(8Ins’"+1In(35-p)) .

With these choices we have

2¢ '(5Ins’ +1n(35 - p))
2¢ 1-5-Ins"-In(36 - p)
2(e7'51In(36 - p))?
(5e7'In(386-p))> =5’

S

VAN VANV

We further conclude

p_é_sé‘e—e(s—s/Z) p-6-86-(s’)_6-(36-p)_1

<
< 1/3

Hence, with probability at Ieaétall b = (W, {) € Bwith W C S are violated bys, which
completes the proof of the first part of the theoremPIfs monotone and feasible then
every seiX C C of size at leastliim(P) contains a self-feasible basis. Therefdrenust
contain a self-feasible basis becayse dim(P). Hence the tester accepts the input. It
remains to show that

s=0(e " (§-In(d/€) +1Inp))

We have

s = 2e '(5Ins’ +1In(38-p))

= (e '(5(In(d5e™ ") +InIn(8p)) + In(5p))
= O(e '(8(In(de ") +InInp) +Inp))
= Oe - (5-In(5/€e) +1Inp))

by the observation that fdr > /In p we haved Inlnp = O(5In(8/¢)) and fors < /Inp
we haved Inlnp = o(In p). O

Corollary 4.1.6 AlgorithmACP-TESTERIs a property tester for monotone abstract com-
binatorial programs.

Proof : Follows immediately from Theorem 5. O
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4.2 Property Testing vs. Testing Abstract
Combinatorial Programs

Our motivation to introduce abstract combinatorial programs was to study its relation to
property testing problems. We now prove a theorem that shows how we can use abstract
combinatorial programs to prove for certain properties that there is an efficient property
tester. Roughly speaking, a property can be tested with small query complexity, if for
every problem instance there is an equivalent (in the sense of property testing) abstract
combinatorial program of small dimension and width.

We now present a first (simple) variant of the main theorem of this chapter. Then
we give some examples and discuss in detail how our theorem can be used to prove the
existence of a property tester with small query complexity. In most examples the obtained
algorithm has also a small running time.

Our approach of using the framework of abstract combinatorial programs to study
property testers of function € F is to reduce testing of to testing certain ACPs. In
this section we consider only ACPs whose ground’sistthe domairD of the function
f. Later in Section 4.5 we show how to deal with other cases. In order to show that a
propertylT can be tested with low query complexity we construct for eegys an ACP
P:. Pr must satisfy the following constraints: ffis e-far from TT thenP; must bee-far
from feasible. The second constraint requires that if the function valué®nfa setX
can be extended to a functionlih(and if X has a certain size) theticontains a feasible
basis. We now want to prove a special case of the main theorem of this chapter. We only
consider ACPs whose ground gkis the domairD of the tested functioffi.

Theorem 6 Let F be a set of functions from a finite sBtto a setR and letTT be a
property of 7. Let0 < € < 1 and letd, p € N. If for everyf € F there exists an ACPs
with dim(Ps) < & and width{P;) < p such that the following two conditions are satisfied:

(Distance Preserving) if f is e-far fromTT thenP is e-far from feasible and

(Feasibility Preserving) for everyX C C with [X| > &: If there existsg € TT with
fix = gix, thenX contains a self-feasible basis,

then there exists = (e~ " - (5 -In(5/€¢) + Inp))) such that the following algorithm is a
property tester for propertifi:

TESTER(f, €)
Sample a sef of s elements irD uniformly at random
if f;s = g;s for someg e TT then acceptf
elserejectf

Proof : In order to show that ESTER(f, €) is a property tester fdl, we have to prove
that every function having properiy is accepted by the tester, and every function that is
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e-far from having propertyl is rejected with probability at Ieaét If f € TT then for every
X C C we havefx = gx with g = f € TI. This immediately implies that everfy e TT
is accepted by ESTER(f, €). Therefore, it remains to prove thatfiis e-far fromTI, then
the algorithm rejects the input with probability greater than or equél tdve prove this
by relating ACP-ESTERP, €) to TESTER(f, €) and by applying Theorem 5.

By the Distance Preserving propertyf ifs e-far fromTT thenP; is e-far from feasible.
Furthermore, by Theorem 5, R; is e-far from feasible then ACP-ASTERPs, €) rejects
‘P: with probability greater than or equal %) Ps is rejected by ACP-ESTER Py, €)
only if the chosen sample s8tcontains no self-feasible basis. But now the Feasibility
Preserving property implies that if theregsc TT that agrees withi on the sample set then
every seiX C C with [X] > & > dim(Ps) contains a self-feasible basis. By the fact that
IS| > & we can conclude th& contains a self-feasible basis, if there existg a TT that
agrees withf on the sample sei. Therefore, we can conclude thatfiis e-far from IT
then with probability at Iea§ there is no sucly € TT with fs = g;s. Hencef is rejected
by TESTERf, €) with probability at Ieas%. This implies that ESTER(f, €) is a property
tester forll. O

4.3 Clustering Problems

So far we have introduced a framework that can be used to prove that certain properties can
be tested efficiently. Although in principle we can model many different property testing
problems in terms of our framework, it is not clear that we can use our framework to
prove that these properties have efficient property testers. For this reason we now consider
problems from different fields and show that our framework can be used to design and
analyze efficient property testers.

The first class of problems we consider are clustering problems. Clustering deals with
the problem to partition a set of items into different groups catladterssuch that a given
optimization function is minimized. If we consider the corresponding decision problem we
want to know if a clustering with a given optimization value exists.

We consider two clustering problems of point sets iniR4e The first problem is called
radius k-clustering Here the goal is to partition a point set in tR¢ into k different
clusters such that the maximum cost of helusters is minimized. The cost of a cluster is
given by theradiusof the smallest ball enclosing the cluster. The second problem is called
diameterk-clustering Again the goal is to minimize the maximum cost among a sét of
clusters but this time the cost of a cluster is given by the maximum distance between any
two points within a cluster.

Both problems have been analyzed in the context of property testing and it is known
that there are efficient property testers [4]. We merely want to show that these results
can also be achieved using our framework. The proofs we present are in the spirit of the
proofs from [4]. Yet we think that our proofs might give a clearer view of the important
combinatorial aspects that make these problems testable. In case of the diameter clustering
problem we also slightly improve the query complexity.
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4.3.1 Radius clustering

The decision version of thedius k-clusteringproblem in the Euclidean spaf& [4, 41]

[57, p. 325] (sometimes also called the Euclid&acenter problem) is to verify whether a

given setP of n points inR¢ can be partitioned intk sets such that the points in each set

are contained in a unit ball. If such a partition exists, we say Rhatk-clusterable We
assume thaP is in general position and, as usual, that the poinfPsistrepresented as a
functionf : [n] — R<. Let F denote the set of functions representing point sets of size

n and letlT C F denote the set of functions representing point sets th&t-ahasterable.

The distance between two point sets is given by the standard distance measure between
functions (see Definition 2.1.3) which is consistent with the following definition:

Definition 4.3.1 A setP of n points inR¢ is e-far from beingk-clusterabldf more than
€ n points must be deleted fromto obtain a point set that ik-clusterable.

Now, in order to use our framework from Theorem 6 we have to describe for every input
point setP in R¢ an ACPP = (C, B, @) with C = [n] that satisfies the two conditions
of the theorem. Before we start thinking about the constructioR afe observe that the
radiusk-clustering property is a combinatorial property. This means that the 'number’
of a point in the representation is irrelevant for the property. Thus we can identify the
ground set’ of the ACP with the point set. Hence a basis of such an ACP consists of a
small set of points fron® (formally, of their corresponding indices) and some additional
information (formally encoded as an integer number).

Now we are ready to talk about how to construct the ACPs. Usually, the hard part is
to find the right set of bases. Typically, a basis is used to represent implicitly a "possible
solution” to the problem. Usually, it should be the case that the set of bases corresponds
to the set of possible solutions of the problem. Additionally, it is required that this implicit
representation can be done in the form of some atom items from the ground set of the ACP
(in our case these items correspond to points fR)rand some "additional information”.

For simplicity, let us first consider the radidisclustering problem. If the point sé
is T-clusterable then by definition it is contained in some unit ball. Vice versa, we can
describe every 'possible solution’ of the problem implicitly by the position of such a unit
ball. In a similar way we can consider every ball with radius at moas a possible
solution. Our goal is to describe a subset of these balls implicitly in terms of atom items
(points). IfP is T-clusterable then this subset must contain a ball that contains every point
in P.

In the following we use the fact that every finite point set is contained in a unique
(closed) ball of smallest radius (see, e.g., [78]). We denote this babbifP). With
every subseWw C P we associate its smallest enclosing ball. If the radiushail( W)
is at mostl then this ball can be interpreted as a 'possible solution’ of the problem and
W (formally, the pair(W, 1)) as a basis. So we could say that for ed¢hC P the pair
(W, 1) is a basis, if and only if the radius gball(W) is at mostl. But to get a query
complexity independent af from our framework we need to reduce the number of atom
items involved in a basis. To do this we use the fact that there is always a 3\UbSeP
of cardinality at mostl 4 1 such thasball W) = sball(P) [78].
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We say thatW, 1) is a basis, if the following two conditions are satisfied:
o W <d+1,
¢ the radius ofball(W) is at mostl.

We can now define a natural violation function in the following form: A b4%i51)
is violated by all points that are not containedsimall( W). Using this definition we know
(a) thatP has a feasible basis¥is 1-clusterable and (b) that every basisArns violated
by more tharen points, if P is e-far from 1-clusterable.

We can easily extend this definition of a basiskt@lusters: A basis for the radius
k-clustering problem consists &f bases for single clusters. Formally, a basis consists
of at mostk(d + 1) points fromP and an integer number that encodes a partition of the
k(d + 1) points intok sets (of size at most + 1). The violation function is defined in the
straightforward way: A point violates a basis, if it is not contained in any of the smallest
enclosing balls defined by the bases. We have now done the "tricky part” of the proof -
the design of the bases - what remains is straightforward verification of the requirements
of our framework.

Bases for radius clustering: We define the bases to specify all possible representa-
tions of feasiblek-clusterings. Formally, we define the set of baBes {(W,{) : W C

], [W| < (d+ 1)k, 1 < € < k@& where the paifW, {) € B should be interpreted

as follows:

e W is the set of points defining smallest enclosing balls (clusters), and

e ([ is represented as a vector;, ..., vk Of length(d + 1) k such that forl <
i < |W], theith point in W defines the smallest enclosing ball containing cluster
numberv; € [k].

We say a basid € B is valid if every setW’ of points defining one of th& smallest
enclosing balls irb satisfies that the radius eball(W’) is at mostl.

It is easy to see that with such a definition of the bases, the abstract combinatorial
program designed for the radius clustering problem hag®im= (d + 1)k =: 6 and
width(P) = kld+Dk —: o,

Violation Function for Radius Clustering. We sayp € C = [n] violates a basis

b € Bif bis not valid or the poinp (located aff(p)) is not contained in any of thie balls

defined byb. Furthermore, all non-valid bases are violated by all ground set elements.
Now, once we have defined formally the abstract combinatorial progtdor every

instance of the radius clustering problem, we have to verify the prerequisites of Theorem 6:

The Distance Preserving and the Feasibility Preserving properties.
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Distance Preserving Property. If P is e-far from beingk-clusterable, then for every

set ofk balls inRR¢ of radius at most one there is always a set of more tharpoints in

P that are not contained in any of the balls. By definition every basis corresponds to such
a set of smallest enclosing balls and the violation function is defined according to these
balls. Thus every basis € 5 must be violated by more thaam elements fronC. This
implies the Distance Preserving property.

Feasibility Preserving Property. Every setS, |S| > b, that isk-clusterable is con-
tained ink unit balls. Thus we can partitio®iinto k clustersS;, ..., Sy each of which is
contained in a unit ball. Further there exists 38tsC S; with sballlW;) = sball(S;) and

Wi < d+ 1. The setdV; define a certain basis Ifi which is covered by and is feasible

for S. This implies the Feasibility Preserving property. Therefore, we can apply Theorem
6 to obtain a property tester for the radius clustering problem with a query complexity of
O(dk/e).

Implementation.  We also observe that we can implement the second statement of the
algorithm TESTER(f, €) efficiently in the following way: We compute whether the sample
setS is k-clusterable. If it is, we accept the input. If it is not we reject. The correctness
follows immediately from the fact that if a point sgtis k-clusterable then there exists a
superset o6 with sizen that is alsok-clusterable. We summarize our discussion in this
section with the following theorem.

Theorem 7 There is a property tester for the radius clustering problem with query com-
plexity of

O(dke ' In(dk/e)) = O(dk/e) . -

Finally, let us discuss what we learned from this example with respect to our frame-
work. We have seen that the bases of the constructed ACP correspond to possible solutions
of the problem. If we generalize this observation we can say, roughly speaking, that prop-
erties are testable if every possible (global) solution to the problem can be encoded using
a few "atom items” (of the problem instance) and some additional information. Unfor-
tunately, things are not always that simple. In this first example we have a one-to-one
correspondence between the clustering problem and the ACP, i.e., a samplehas a
self-feasible basis if and only if the corresponding point sét-gdusterable. This is not
always the case as we see in the next section.

4.3.2 Diameter clustering

The decision version of the diameferclustering problem ([4], [9, Problem ND54], [48,
Problem MS9], [57, p.326]) is defined as follows: Given a pointsigt R¢ and a positive
integerk, canP be partitioned intd disjoint sets (clusters), ..., Cy such that for every

i, 1 <1 <k, and every,y € C; it holds thatdist(x,y) < 1. If such a partition exists,

we say thaP is k-clusterable. As always, we assume in the property testing setting that the
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point set is represented by a functibn[n] — R<. In this case welo not usehe standard
distance measure. It has been shown in [4] that under the standard distance measure every
property tester must have a query complexity(df,/n). Instead we use the bicriteria
distance measure proposed in [4] which is defined in the following way:

Definition 4.3.2 [4] Let P be a point set inR¢ and k be a positive integer. We s&
is (e, p)-far from beingk-clusterabléaf for every partition ofP into setsCy, Cq,...,Cx
satisfyingdist(x,y) <14+ p forall 1 <i < kandx,y € C;, it holds that/Cy| > € - |P|.

It is known that under this distance measure there is a property tester with query com-
plexity O(k—e2 - (%)Zd) for the diametek-clustering problem [4]. Again our goal in this
section is to show that we can prove this result using our framework and improve the query

complexity ofO (¥- (%) d). Our proof uses combinatorial arguments that appear implicitly
in the proof presented in [4]. Our goal is to design an efficient property tester that for given
k, e and3 > 0 (i) accepts every point set thatksclusterable and (ii) rejects with proba-
bility at Ieast% every input that ige, 3)-far from beingk-clusterable. Again we denote by

F all functions representing point sets of sizend bylT C F all functions representing
point sets that ark-clusterable.

As in the case of the radius clustering problem we begin our discussion with the con-
struction of bases for a single cluster. We will see that we can generalize this definition
to the case ok-clusters in a similar way as in the radius clustering problem. We use the
following notation: AclusterC is a non-empty set of points ¢ with dist(x,y) < 1 for

everyx,y € C.

Definition 4.3.3 LetC be a cluster. Th&ernelkern(C) of C is defined as the intersection
of unit balls with centers at the points (@

We use the following simple properties of a kernel:

Claim 4.3.4 Let C be a cluster. Then we have:
1. C C kern(C).
2. There exists a unit ball containing all the pointsin

3. Ifp € kern(C) thendist(x,y) < 1 for everyx,y € CU{p}.

Proof : (1) Sincedist(x,y) < 1 for everyx,y € C, each pointx € C is contained
in every unit ball with the center at any other pointe C, and hencex is contained in
kern(C). (2) SinceC # (), from the previous property we gkern(C) # (). Let us pick
any pointx € kern(C). Sincex is contained in all unit balls with centers at the points
in C, it is at the distance at mo$tfrom every point inC. Therefore all points irC are
contained in the unit ball with the centerat(3) If p € kern(C), thenp is contained in
all unit balls with centers at the points hand thus its distance to every pointinis at
most]T. O
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Now, in order to use our framework from Theorem 6 we have to describe for every
input setP of n points inR4 an ACPP = (C,B,®) with C = [n] that satisfies the
preconditions of the theorem. Following the arguments from the radius clustering case we
can again identify the ground sétof the ACP with the input point s®. Thus we can
again construct our bases using points frBras atom items. We first consider the case
k=1.

We start by making an observation about the kernel of a clistdf we add a point
p to C thenC remains a cluster (i.e., the pairwise distance between points frasnat
most1) if and only if p is in the kernel ofC. Thus a good basis would contain exactly
those elements from@ that define the boundary éfern(C). Unfortunately, it might be
the case that almost every element(btliefines the boundary &. So this approach is
doomed to failure. But we can do the following: We can find a small set of puihiss C
that approximates the kernel 6f We choose a basis for a clustetto be every maximal
subsetW C C with the property that all points il have a mutual pairwise distance of
more than3. This way, we ensure that (a) the kernel is well approximated and (b) that the
number of points defining the kernel of a cluster is small. We now prove that every basis
for a single cluster is defined by no more tHan+ %)d points.

Lemma 4.3.5 Let C be a cluster and Ie¥V be a subset of such that for everyp,q € W
dist(p,q) > B > 0. ThenW| < (1 +2/B)4.

Proof : Let C andW be as stated in the lemma. If we draw balls of ragiy& centered

at every point inW, then all these balls are pairwise disjoint. By Property 2 in Claim
4.3.4, all points inW are contained in some unit ball becaweC C andC is a cluster.
Therefore, if we draw balls of radiys/2 centered at every point W, then all these balls
are contained in a ball of radids+ 3/2. Since all these small balls are disjoint, we have
the following upper bound for the size ¥

W/ - Vol(ball of radius /2) < Vol(ball of radiusl + 3/2)

whereVol() denotes the volume of the object. Since the volumedtimensional ball of

radiusr is equal td 7>, we obtain an upper bound for the sizeWfof (1 + (2/8))<.

1+d/2)
O
To formalize our definition of bases we need:

Definition 4.3.6 Let P be a point set ifR¢, and § a positive real. LetC be a cluster.
We say a poinp € P is 3-coveredby C if p € kern(C) and there isq € C such that

dist(p,q) < B.

Similar to the radius clustering problem we want to represent every possible solution
to the diametefl -clustering problem by a basis. As already mentioned we can do this

IHere,I'() is Euler's Gamma (factorial) function, that is formally defined &s) = fgo t*~Te~tdtforall
positivex. Itis well known thatl"(x + 1) = xI'(x) and that for integex > 0 we havel'(x + 1) = x! and

Flx+ 1= ym- ((2x)1)/(x! - 4%).
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only approximately. Therefore we say that a gaie= (W, {) is a basis for the diameter
1-clustering problem iW is a subset oP of size at most1 + %)d and{ = 1. We say

that a basis isalid, if for all p, g € W we havep < dist(p, q) < 1. It remains to define

the violation function. If a basis is not valid it is violated by every poinPinlf a basis

is valid, we have two different types of violation: First of all a ponwviolates a basis
b= (W1),if p € kern(W). This is the straightforward type of violation. If a point

is not in the kernel oW then it cannot belong to the same cluster. The second type of
violation is different. A pointp € kern(W) violatesb, if p is not 3-covered byw. Here

a point violates a basis if it is consistent with the current basis of the cluster, but it changes
the kernel significantly. But if the kernel is changed significantly then the bagso
longer "a good implicit description of the solution of the clustering problem”. In this case,
we can obtain a new basis = (W U {p}, 1) from b that approximates the new kernel.

Bases for diameter clustering. We can extend our definition of bases for the diam-
eter1-clustering problem to arbitrark in the following way: A basis for the diamet&r
clustering problem is an encodinglobetsWy, ..., Wy C P each of size at mosi + %)d.

A basis isvalid if for everyp,q € W;, 1 < i < k, it holds thatp < dist(p,q) < 1.
Formally, a basis is a s& = | J, W; with an integer encoding the partition & in the
setsWi.

Lemma 4.3.7 Any ACPP for the diameterk-clustering problem has dimension at most
k- (14 2/p)% and width at mosk* (1+2/8)"

Proof : The dimension of the ACP follows immediately from the definition of the bases.
The width follows from the fact that every point of a basis can belong to okesefs, that
IS, we have (at mos#) choices for each point of the basis. O

Violation function for diameter clustering. A basisb that is an encoding of the
setsW;, ..., Wy is violated by a poinp € P, if b is not valid or ifp violates everyW;
(seen as a basis for theclustering problem)] <i <k.

Feasibility Preserving property. In order to show the Feasibility preserving prop-
erty we have to show that evekyclusterable se§ C P of size atleast := k-(1+2/8)¢ >
dim(P) has a self-feasible basis.dfis k-clusterable then there exists a partitiorSahto

k clustersCy, ..., Cy. Since for everyW; C C; it holds thatkern(C;) C kern(W;)
we know that there exists seW®; with the property that for each,q € W; we have

B < dist(p,q) < 1 and for eaclp € Cyandq € W; we havedist(p,q) < . By
Lemma 4.3.5 and the size of the bases the Feasibility Preserving property follows.

Distance Preserving property. We prove the Distance Preserving property by con-
tradiction. Let us assumRis (e, 3)-far from beingk-clusterable and suppose there is a
basisb encoding the set®/,, ..., W, that is violated by less thaann points. We delete

all points inP that violateb and letP* be the remaining point set. Since all the points in
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P* are3-covered by som&V;, for each pointp € P* there is aW; with p € kern(W;)

and for which there existg, € W; with dist(p, q,) < 3. We assign each such a point

p to the cluster corresponding W;. Observe that all points in the cluster are contained

in kern(W;). Furthermore, for every point € kern(W;) the distance betweemn and

1 is not larger than the distance fromto q,, plus the distance from,, to r. Hence, we

can conclude that the distance between two points in the cluster (both of which must be
contained inkern(W;)) is at mostl + (3. This implies thatP* can be partitioned int&
clusters of diameter at most+ 3 each, which is a contradiction.

Implementation.  Similar to the radius clustering problem we can implement the sec-
ond statement of the algorithnESTERf, €) by checking if the sample s8&tis k-clusterable.
This follows from the fact that every s&tclusterable se$ of size at mosh can be ex-
tended to a sek of sizen that is clusterable. On the other hand, everySs#tat is not
k-clusterable cannot be extended to aB¢hat isk-clusterable. Now, by our discussion
above, we can apply Theorem 6 to obtain the following result.

Theorem 8 There is a property tester for the diameteclustering problem with a query
complexity of

Ok-e™" - (1+(2/8))9

4.4 Reversal Distance

In the previous section we have seen how to apply our framework to certain clustering
problems. We have seen that a clustering problem is efficiently testable, if we have an im-
plicit characterization of the cluster consisting of a small number of input objects and some
additional information. We now want to consider a different problem which is called the
reversal distance problenDetermining the reversal distance between two permutations is
a fundamental problem in computational biology. It has been introduced in the pioneering
works by Sankoff and later on many researchers have investigated in this problem (see,
e.g., the survey in [71, Chapter 10]). The problem to compute the reversal distance be-
tween two permutations can be reduced to the problem of computing the distance between
one permutation and the identity permutation (details below). Therefore, the problem is
also called sortingby reversals’.

In sorting by reversals one is asked to compute the shortest sequence of (interval)
reversalghat transforms a given permutatiarinto the identity permutation. The number
of reversals that are necessary is calledréhwersal distancéetweenrt and the identity
permutation. Because of its applications in computational biology, sorting by reversals has
been widely studied in the recent years (see, e.g., [10, 17, 22,59, 71, 72]). Itis known that
sorting by reversals i&P-hard [22], its optimization version is Mx-SNP-hard [18], and
that there exits a polynomial-timie375-approximation algorithm [17] (see also [10, 59]).

We now introduce the reversal distance problem, formally.d.etlenote the set of all
permutations ofn].
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Definition 4.4.1 A reversalp(i,j) of an intervalli,jl, 1 <1i <j <mn, is the permutation

12 ...i—=1T 1 i4+1 ... jJ—=1 3 j+1 ... n
12 ...i—=1 3 3§j—=1 ... i+41 1 j+1 ... n
That is, for a permutatiom = (7tq,...,7,) € Sy, p(i,j) has the effect of reversing
the order of(mt;, 7titq, . .., ;) and transformingr into
ﬂ'p<i>j>:(T[])"')T[i—bﬂ]')ﬂj—])"')T[ivﬂj+1)"'>7-[n)

The reversal distance between two permutatiorad o is the minimum number of
reversals that is necessary to transferinto o.

Definition 4.4.2 Given a pair of permutations = (mty,...,7T,.),0 = (01,...,0,) € S,
the reversal distancél,., (7, 0) betweenrt and o is the minimum number of reversals
needed to transformx into o (that is, the minimum numbét such that there exists a
sequence of reversats, pz, ..., px With - p1 - p2- -+ px = O).

Equivalently, we can compute the number of reversals necessary to tramsfbirimto
the identity permutationd. Therefore, we are interested in the reversal distance between
a given permutationt and the identity permutation. We want to consider the decision
version of the reversal distance problem.

Definition 4.4.3 Thereversal distancproblem is to decide for a given permutatianc
S, and an integek if the reversal distancd.,., (7, id) betweent and the identity permu-
tationid is at mostk.

We now want to formulate the problem as a property testing problem that fits into our
framework. The set of function® we want to consider is the set of permutationsraf
that is,F = S,,. We are interested in all permutations that have a reversal distance of at
mostk to the identity permutation. We can write this as a prop&rys follows:

M={meSn:dremid) <k}

Now that we have defined the property we need a distance measure between permuta-
tions. Here we can use the standard distance measure from Definition 2.1.3. Equivalently,
we can use the following definition:

Definition 4.4.4 A permutationt € S,, is e-far from having reversal distance smaller
than or equal tok if for every sequence & reversalspq, pa, ..., px the permutation
- p1 - P2 - - Py disagrees with the identity permutation on more tlkam places, that is,
if w-p1-p2---px=1(07,...,0x)thenl{ie{1,2,... , n}:0; #1i}f > € -n.
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In contrast to the clustering problems the reversal distance property is obviously not
combinatorial. We conclude that we have to take the domain of the function into account.
For a permutatiom = (mtq, - - - , 71,) we denote atom items by;. This notion covers the
fact that the value of domain elemeiris 7t; = 7t(i). Hence it captures also the domain of
a value off.

Let us notice that we can encode an inteffigj] by the two domain elements; and
7; (using the fact thatt ' (7;) = i andn'(7;) = j). If we apply a reversap to 7t then
m; andry; inducethe interval[((n~ p) N (m), (- p) ") (nj)} (for this reason we want to
work with 7t; rather than with). We denote the interval induced by two elememtsand
T by [7'[1, T(j].

We say a reversal(r, s) splitsan interval[rt;, ;] if i < <jori <s <j (or both).

Definition 4.4.5 Letwt = (m,, ..., m,) be a permutation and létt;, 7t;] denote an interval.
We say that a reversal(k, {) splitsan interval(m;, 7], if i <k <jorifi <€ <j.

We generalize this notion fo-reversals:

Definition 4.4.6 Letnt = (m,,...,m,) be a permutation. A-reversalp = py - p2---px
splitsan interval[r;, 7], if there existd, 0 < £ < k, such thatp,; splits

(7t p1-pe) (1), (- pr---po) ()]

If p does not splitrt, 7t;] then we say is safefor [, ;).

Notice that if py,..., px is safefor [m;, ;] then each of the reversafs, ..., px either
entirely containgr, 7i;] or it does not contain amy, € [, 7i;]. Therefore, in this case,
after applyingpy, . . ., px the positions ofr;, 4, ..., 7;_; are determined by the position of
us andT[)'.

Bases for the k-reversal problem: The idea is now to define a basis as a set of
2k + 1 intervals induced by pairs of the atom items of the basis. For each such set we then
consider only reversal that are safe for these intervals. We say that a2&et-dfintervals

is a basis if a sequence bfreversals;, .. . px exists such that for each atom item of

the basis it holds thatt - p;--- px) ' () = m; and if py, ... py is safe for all intervals
induced by the elements involved in the basis.

Definition 4.4.7 (Bases for k-reversal distancellet = (71, -+ ,7,) € S. A setZ of
2k + 1 intervals is a valid basis for the reversal distance problem if there is a sequence
1, ..., px Of k reversals such that

o (m-p1---pp) ' (m) =mand(m- pr- - pi) " (7r;) = m for each intervalm, ;] €
Z,and

e no interval[m;, ;] € Tis split bypq, ..., pk.

If the set of intervals is a basts, then we associate with it tHereversalpy, = p1-- - px
(in case that there are different sequences that witness the basis property we choose an
arbitrary one).
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Formally, a basis consists dk + 2 atom items and an integer number encoding the
2k + 1 pairs of atom items (an atom item may be paired with itself). The integer number
can be seen as a vector of lengi+ 1 having entries with values frofdk + 2] x [4k + 2]
to specify each of thek + 1 pairs.

Lemma 4.4.8 For each instance of the reversal distance problem the corresponding ACP
P hasdim(P) < 4k + 2 and widt{P) < (4k + 2)%+2,

Proof : By definition a basis consists dk + 2 atom items. Thus we have diR) <
4k + 2. Each vector of lengtBk + 1 with values from4k + 2] x [4k+ 2] can be encoded as
an integer number betwedrand (4k + 2)*+2, Thus we havevidth(P) < (4k + 2)%+2,

O

Violation function for  k-reversal distance: Letb be a basis and lgt, = p7-- - px
be thek-reversal associated with basisWe sayb is violated byr; € C, if (7r-py) 7' (1) #
7, that is,7t; is not moved to positiom; whenpy, is applied tor.

Distance Preserving Property: We have associatedlareversalp, to each basis.
An atom item violates a basis, if it is not at the correct position whers applied tor. If

a permutation i-far from having reversal distance smaller than or equél titen every
k-reversal puts more thaam elements to the wrong position. Hence every basis is violated
by more thare n elements. Therefore, the distance preserving property is satisfied.

Feasibility Preserving Property: The hard part in this case is to prove the Feasibility
Preserving property. L&t C C be a set of atom items and let= p; - - - py be ak-reversal
with (7t - p)~'(m;) = m; for eachm; € S. We show that in this casg has a self-feasible
basis. First we want to construct a set2&f+ 1 intervals that are safe far, ... px. We
start with the set of — 1 intervals induced bg. now we observe that each revergatan
split at mos® of these intervals. We conclude that at mtisof these intervals are split by
p1, - .. px. We can merge adjacent intervals not splitly. . . p and obtain a set afk + 1
intervals that are not split by, ... px. Hence there exists a sequenceéaokversals that

is safe for each of our intervals. Thus these intervals form a lbadisremains to prove
that this basis is not violated (thereversal associated with the basis must not bethe
reversabp). By our construction of the intervals eagh € S is contained in a safe interval.
Therefore, its position after applying the reversal is uniquely determined by the positions
of the endpoints of the interval. L8t C S denote the set of endpoints of intervals of the
basisb. Sinceb is a basis there islareversalp,, with

(70 pp) (i) =1 = (7~ p) ' (7y) for eachm; € S

Since the endpoints are mapped to the same places pyemdp are applied totr we can
conclude that each other point $nis also mapped to the same place. Hencetpe S
violatesb and we have shown the Feasibility Preserving property.

Once we have proven the Distance and the Feasibility preserving property, Lemma
4.4.8 and Theorem 6 allow us to conclude with the following theorem.
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Theorem 9 There exists a property tester for thereversal distance property with query
complexityO(k/e). O

4.5 Property Testing vs. Testing Abstract
Combinatorial Programs  (continued)

In Section 4.2, we described a framework for testing problems via testing abstract combi-
natorial programs. We only considered ACPs whose ground set is equivalent to the domain
of the tested function. Although we showed that this framework can be applied to differ-
ent problems, it is not always powerful enough. In some cases it is necessary to consider
ground sets different from the domain of the tested function. For example, when we con-
sider graph problems we want to identify the ground set with the set of vertices of the
graph. If we consider the adjacency matrix model using the approach from Section 4.2 and
we represent a graph by a functiénV x V — {0, 1} then the ground set would be a set

of entries in the adjacency matrix. But sampling entries of the adjacency matrix results in
a disconnected set of edges, if the size of the sample sé{/a) [51]. In order to have a

more flexible model we introduaaterpretations

Interpretations.  Interpretations are functions that map each subset of the ground set of
the ACP to a subset of the domain of the tested function. Given a sample set S of ground
set items we use the interpretation to determine a set of domain elefeniBhen we

query for the valué(x) for eachx € Ds.

Definition 4.5.1 Aninterpretatiorof C in D is a functionl : 2¢ — 27,

To investigate quantitative properties of the reduction we need the following definition.

Definition 4.5.2 For a functionh : N — N, we say an interpretatiot of C in D is h-
boundedif for every X C C it holds |[I(X)| < h(|X]). (We write in that case that is
h(N)-bounded, witiN being the formal input variable.)

The main idea behind introducing these notions is to allow a more general analysis of
algorithm TESTERf, €) from Section 4.2. Similarly to the proof of Theorem 6, we want

to test an input functior € F via testing a related ACP = (C, B, @). SinceP is now
allowed to be an ACP with arbitrary ground gktwe use the interpretatiohof C in D

to link the domains off andP in the reduction. The notion di-bounded functions in
Definition 4.5.2 is used to describe the size of the random sample in the tester. That is, if
the interpretatior is h(N)-bounded and if our algorithm samples a Set C then we
query for the value of (x) for everyx € I(S) C D and the restrictiofl(S)| < h(s) yields

an upper bound on the query complexity.
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4.5 Property Testing vs. Testing Abstract Combinatorial Programs (continued)

Distance Preserving Property. In Theorem 6 we used the Distance Preserving prop-
erty that requires that if a functiofis e-far from propertylT then the ACP is:=-far from
feasible. In general, however, one can parameterize this property and requiegXhe
Distance Preservingproperty: if f is e-far from property T1 then the ACP is A-far from
feasible.

Now, in the framework defined above, it is easy to see that Theorem 6 can be general-
ized to the following theorem, which describes our framework in its full generality.

Theorem 10 Let F be a set of functions from a finite sBtto a setR, and letlT be a
property of 7. Let0 < €,A < 1 and letl : 2° — 2P be anh-bounded interpretation of
C in D. If for everyf € F there exists an ACP; with dim(P;) < & and widthPs) < p
such that:

((e,A)-Distance Preserving) if f is e-far fromTT then every basis iP; is A-far from
feasible, and

(Feasibility Preserving)  For everyX C C with [X] > &: If there existsg € TT with
flix) = g1x) thenX contains a self-feasible basis,

then there exists = ©(A~" - (5 - In(8/A) + In p)) such that the following algorithm is a
property tester fof T with query complexitir(s):

TESTER(, €)
Sample a sef of s elements i€ uniformly at random
if sy = gis) for someg € T then acceptf
elserejectf

Proof : In order to show that ESTER(f, €) is a property tester fail, we have to prove
that every function having property is accepted by the tester, and every function that is
e-far from having propertyl is rejected with probability at Ieaét If f € TT then for every
X C C we havef|x) = gix) With g = f € TI. This immediately implies that evefye TT
is accepted by ESTER(f, €). Therefore, it remains to prove thatfiis e-far fromTT, then
the algorithm rejects the input with probability greater than or equél tave prove this
by relating ACP-ESTERP, €) to TESTER(f, €) and by applying Theorem 5.

By the Distance Preserving propertyfifs e-far fromTT thenP; is e-far from feasible.
Furthermore, by Theorem 5, H; is e-far from feasible then ACP-ASTERPs, €) rejects
Pr with probability greater than or equal %) Ps is rejected by ACP-ESTER Py, €)
only if the chosen sample s8tcontains no self-feasible basis. But now the Feasibility
Preserving property implies that if theregse TT that agrees witli on the interpretation of
the sample set then every sét_ C with [X| > 6 > dim(Py) contains a self-feasible basis.
By the fact thatS| > 6 we can conclude tha&t contains a self-feasible basis, if there exists
ag € TTthat agrees witli on the sample sé&t Therefore, we can conclude thatif e-far
from TT then with probability at least there is no sucly € TT with f;s) = gjiis). Hence f
is rejected by ESTER(f, €) with probability at Ieas%. This implies that ESTER(f, €) is
a property tester foif. O
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4 Efficient Property Testers

4.6 Graph Coloring

In this section we apply Theorem 10 to graph coloring-8oloring of a graptG = (V, E)

is an assignment : V — {1,...,k} of colors to the vertices of the graph. A coloring is
proper if there is no edge = (v,u) € E such thaty(v) = x(u). If G has a propek-
coloring, thenG is k-colorable The graplk-coloring problem is to decide whether a given
graph isk-colorable. It is a classical problem in algorithmic graph theory. It is known that
for k > 3 the problem of verifying if an input graph iscolorable is\VP-complete (see,
e.g., [48, Problem GT4] or [9, Problem GT5]). It is also well known that this problem is
very hard to approximate, and so, for example, iti®-hard to 4-color 3-colorable graphs
and it is hard to colok-colorable graphs with approximation withid—¢, and even within
n!-01/vieglogn) 138] wheren denotes the number of vertices in the graph. The best known
approximation bound for arbitrafyis of O (n (loglogn)?/log®>n) [9, Problem GT5].

We want to consider the graph coloring problem in the adjacency matrix model. That
is, the input graptG = (V,E) is given as a functio’V x V — {0, 1} representing the
adjacency matrix of the graph. Thus we hdye,v) = 1, if and only if (u,v) € E.
W.l.o.g. we assume that = [n]. LetTT denote alin-vertex graphs that have a proper
k-coloring. We use the standard distance measure between graphs (see Definition 2.1.3)
which is equivalent to the following definition:

Definition 4.6.1 A graphG is e-far from beingk-colorableif in order to transformG into
a k-colorable graph one has to modify more than? entries in the adjacency matrix of
G.

It is known that graph coloring in the adjacency model can be tested efficiently [51] and
the proof we present uses combinatorial arguments that essentially appear in the proof
presented in [51]. The achievement of our framework is again a clear and elegant proof
that highlights the combinatorial aspects of the problem and a slight improvement in the
query complexity that matches far> 2 the bounds from [6] in th€-notation.

For thek-coloring problem, we identify the ground setwith the set of verticey/
of the input graphG = (V, E). Since in our frameworks can be viewed as given by its
adjacency matrix representation, we define the interpretatiomap each set of vertices
to the submatrix induced by these vertices. That is, for eVerZ V, we havel(W) =
W x W. Clearly, the interpretation isl2-bounded.

The bases of the coloring problem are formed by some properly colored sets of vertices.
Thatis, every basis corresponds to a & x* ), whereW C V = C andx* is an encoding
of a properk-coloring of W (here, one can think thatlacoloring of W is represented by
a vector of lengthW| with values ink""). Notice that with this definition, if for each
(W, x*) € B we have|lW| < b, then so defined abstract combinatorial progr&rhas
dim(P) < & andwidth(P) < k°.

Before we define the bases formally, we need some more definitions:

Definition 4.6.2 LetS C V be a set of vertices and Igtbe a properk-coloring ofS. Let

Vi={veV:Jue Swithx(u) =iand(v,u) € E}
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be the set of vertices that cannot be properly colored in colesing any extension ¢f
to V. We call a vertew € V '\ S heavyfor (S,x) if there is a proper extension gf to
S U {v}, but every extension increases the number of vertices in cévtain< i < k, by
at leaste n/3 (that s, (i) there existd <j <k, withv ¢ V; and (ii) Vi<j<x if v € Vj then
{w ¢ Vj:(v,w) € E}| > en/3).

A vertexv € V '\ S that cannot be properly colored by any extension of the coloxing
(thatis,v € N}, V;) is called aconflictvertex for(S, x).

Bases for k-coloring:  For the graph coloring problem we define the bases inductively:

e {(,1}is a basis (wher@ is the encoding of the coloring of the empty set of vertices)
and

e if b = (K,x) is a basisy is aheavyvertex forb andx* is an encoding of the
previous coloringg of K extended by a proper coloring of then(K U {v}, x*) is a
basis.

Our next step is to show that the ACP we define this way has small dimension and
width:

Lemma 4.6.3 For every input instance of the graph coloring problem the corresponding
abstract combinatorial prograr® hasdim(P) < 3k/e and widtHP) < k3¥/e,

Proof :  Since everyk-coloring of a set ofr vertices can be encoded using an integer
number between 1 arid, it is enough to show thdk| < 3 k/e for every basid = (K, x).
Letb = (K, x) be a basis withK| = r. Sinceb is a basis, there must exist a sequence
of bases(Ko, Xo), (K1,X1), - (Kp, %) With (Ko, x0) = (0,1), (Ki, %) = (K,x), and
such that for every < i < r we havegK;| = i and the only vertex ifK; \ K;_; is heavy
for <Ki_1 R .Xi—1>.- . .
LetV;Y, Vi¥ ..., Vi¥, 0 < i < 1, be the sets of vertices such that each vertexV,"
cannot be properly colored in colpif we want to extend coloring; to the set; U {v}.
That s, _
V].(‘) ={v e V: JueKwithxi(u) =jand(v,u) € E} .

Itis easy to see that for evetyj we haveV;" C V""", Furthermore, by the definition of
heavy vertices, we know that for everyl < i < r, there is certain, 1 < j < k, such
that|V].“)\ > IVJ.“_”\ + en/3. Therefore, since we ha\)g[o) = () for everyj, 1 <j <k, it
must hold thatZ}‘:1 |V].“)| > 1ien/3 foreveryi, 1 < i < r. Finally, sincelvj“)\ < n for
everyj, 1 <j <k, we conclude that < 3k/e. O

Violation function for  k-coloring: A basis b = (K, x) is violatedby a vertex v € V
if either (i) v is a heavy vertex for (K, X) or (ii) v is a conflict vertex for (K, x).

Once we have describédcoloring in our framework, in order to apply Theorem 10,
we must show that thie, A)-Distance Preserving and the Feasibility Preserving properties
hold. We begin with the proof of the following lemma that implies tleeA)-Distance
Preserving property with = ¢/3.
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4 Efficient Property Testers

Lemma 4.6.4 (€, €/3)-Distance Preserving property) LetG = (V, E) be a graph that
is e-far from beingk-colorable and letS C V be any set of properli-colored vertices
with a proper coloringx. Then,V contains more thae n/3 conflict vertices forS, x) or
V has more thare n/3 heavy vertices fofS, x).

Proof: Our proofis by contradiction. Assuntgis e-far from having a propek-coloring
and there are less tham /3 conflict vertices forS, x) and less tham n/3 heavy vertices
for (S,x). Then, we show that there iskacolorable graplG* that is obtained fronG by
removing less thaa n? edges. This is a contradiction.

Let X be the set of all conflict vertices fd6,x), let Y be the set of all heavy vertices
for (S,x), and letZ be the set of remaining uncolored vertices (iZe5 V \ (SUXUY)).
For everyi, 1 < i <k, letV; be the set of vertices i such that for every € V; the
extension ofy by coloringv with colori is not a proper coloring (cf. Definition 4.6.2).

We first construct a grap8’ by removing all edges incident to the verticesxinu Y
and extend the coloring of S to ak-coloring of S U X U Y by coloring the vertices in
X UY arbitrarily. SincgX U Y| < 2en/3, less thar2 e n?/3 edges are removed frof
in this way. Furthermore, since all verticesXru Y are isolated, the obtained colorigg
is a properk-coloring of SU X U'Y.

Now, we modifyG’ to extend the coloring’ to all vertices inZ. For eachv € Z, let
7(v) be a color that satisfies the following two constraints:

e If we extendy’ to S U {v} and we colow with t(v) then the resultindc-coloring is
proper, and

e If we extendy’ to S U {v} and we colow with t(v) then the absolute increase in the
size of V) is minimal (among all possible choices that satisfy the first constraint).

In other wordsy ¢ V., and for everyi, 1 <i <Xk, if v ¢ Vithen{{w ¢ V;: (v,w) €
E}l > [{w ¢ Vi) : (v,w) € E}|.) Sincev is not a conflict vertex fo(S, x), such a color
7(v) always exists (but is possibly not unique). By the fact thetnot a heavy vertex for
(S, %), we know thatiw ¢ V., : (v,w) € E}| < en/3. Therefore, if we remove from
G’ for everyv € Z all edges(v,w) € E with w ¢ V., then the resulting grapG* is
obtained fromG by removal of less thaan? edges. It remains to show that the following
coloring of G* is proper: We color each vertaxc S U X U Y with color x’(v). Each
vertexv € Z is colored with colorr(v). Now assume that this coloring is not proper. Then
there must be an edde, u) such thatv andu are colored in the same color. Singes
proper, all vertices irX andY are isolated, and by the definition ofv) it is immediate
that such an edge can only be between vertices iBut then we have that ¢ V., and
this implies that v, w) has been removed fro@’. Contradiction. a

It remains to prove the Feasibility Preserving property:
Lemma 4.6.5 (Feasibility Preserving property) If for someS C V every basis covered

by S is violated by certainy € S then the subgraph d& induced by vertices i§ cannot
be properlyk-colored.
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Proof: The proofis by contradiction. Let us suppose there is a priojmeioringx of the
subgraph ofs induced by the vertices ifi. For everyll C S, letx denote the coloring
restricted to vertex séi.

Let us observe that the set of bases covered Iy not empty, because it contains
the “empty set” basi$l), xg). Therefore, there exists a basis (possibly one of many)
(U, xu) covered bys having the maximum size of skt Sinceb is violated by certaiw €
S, eitherv is a conflict vertex fofU, xy) orv is a heavy vertex fofU, xy). Furthermore,
sincex was assumed to be a propeicoloring of S, v cannot be a conflict vertex for
(U,xu) and therefore it must be a heavy vertex {bf, xu). But this implies tha{U U
{v},xuuny) is @ basis that is moreover covered hyThis yields a contradiction, because
we assumed that there is no bad{sx k) covered byS having|K| > [U]. a

Therefore, we summarize our discussion in this section with the following theorem that
follows directly from Theorem 10 and Lemmas 4.6.4 and 4.6.5.

Theorem 11 There is a property tester for the grapficoloring property with a query
complexity of N
O ((ke % In(k/€?))?) = O(k*/e*) . O

4.7 Hypergraph Coloring

We now want to extend the analysis from Section 4.6 to obtain an effigreperty tester
for hypergraph coloring A hypergraphis a pairH = (V,E) with a finite vertex seV
and the edge sé C 2V. A hypergraphH is ¢-uniformif |e| = { for all e € E. (Notice
that a2-uniform hypergraph is a graph.) icoloring of a hypergrapli is an assignment
x : V — {1,...,k} of colors to the vertices of the hypergraph. A coloringrisper if
no edge int is monochromaticthat is, if for every edge < E there arev,u € e with
x(v) # x(u). If H has a propek-coloring, thertH is k-colorable Thek-coloring problem
for hypergraphs is to decide whether a given hypergraphaslorable.

Hypergraph coloring is a well studied problem in the literature in discrete mathemat-
ics, combinatorics, and computer science. In contrast to graphs, where one can decide in
linear time if a graph i2-colorable (or equivalently, bipartite), deciding if a given hyper-
graph is2-colorable isN"P-complete even foB-uniform hypergraphs [64]. In [63], it is
shown that unles8/P C ZPP, for every fixedl > 3, it is impossible to approximate in
polynomial time the chromatic number &lniform hypergraphs within a facter'—¢ for
every constant > 0. See also [55, 60] for further inapproximability results. The property
of hypergraph2-colorability has been also extensively studied in combinatorics (see, e.g.,
[28, 29, 39, 73]), and for example, the study of this problem led to the discovery of the
celebrated Lo&sz Local Lemma [39].

We want to design a property tester for tkeoloring problem in¢-uniform hyper-
graphs. Anl-uniform hypergraph can be represented by a funcfiov' — {0, 1} that
encodes its adjacency matrix. We use the standard distance measure (Definition 2.1.3) to
measure the distance between hypergraphs. In terms of hypergraphs we can express this
distance measure as follows:
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Definition 4.7.1 An {-uniform hypergrapiH = (V,E) is e-far from having a propei-
coloring, if we have to remove more than' edges fron#{ to obtain a hypergraph that
has a properk-coloring.

Now, we discuss how to apply our framework to hypergraph coloring. Similarly to
the graph coloring problem, we identify the ground Sewith the set of verticed/ of
the input hypergrapi = (V,E). Since in our representatidi can be viewed as given
by its adjacency matrix representation, we define the interpretatiormap each set of
vertices to the submatrix induced by these vertices. That is, for &vgryV, we have
I(S) =S xS x---xS. Clearly, the interpretation i ‘-bounded. LetS, x) be a pair with
S C V andy a properk-coloring of vertices irf.

Definition 4.7.2 We say a vertex is i-colorablewith respect tqS, x) if for everye € E
with v € e, either (i) there exists a vertax € (S N e) with x(u) # i or (ii) there exists a
vertexw € e\ (S U {v}).

We want to extend our approach for graph coloring to hypergraphs. Again we use a
recursive definition of bases that is basedheavyvertices anctonflictvertices. In order
to define heavy vertices we introduce a potential function. A vertex is a heavy vertex if
its coloring increases the potential significantly (very much in the spirit of graph coloring;
further motivation behind the definition of the potential function can be found in the proof
of Lemma 4.7.7.)

Definition 4.7.3 Let’ H = (V,E) be a hypergraph. Lef C V and letx be a proper
k-coloring of vertices irb. Thepotentialof (S, x) is defined as

k-1

(DH(<SaX>) = Z Z nj_] |@(<S>X>ala])’

i=1 j=I
where
e((S$,x),1,i) ={WCV :[W=(—j &FecE(WCe & Vicaw x(v) =1} .

Hence ifW € ¢((S,x),1,j), then coloring all vertices XX with color i creates a
monochromatic edge. Our next step is to extend the notion of heavy and conflict vertices
to hypergraphs:

Definition 4.7.4 A vertexv € V \ S is heavywith respect to(S, x) if (i) there is ani,
1 <1<k, such thaw is i-colorable and (i) for every, 1 < i <k, if v isi-colorable and
x' is the extension of to S U {v} by coloringv with color1i then

-1
3

Definition 4.7.5 A vertexv € V' \ S is a conflict vertexwith respect to(S, x) if for every
i, 1 <1i <k, visnoti-colorable.

AD3((S,x),v,1) = Qy((SU{VLX)) — Dx((S, X)) >

The bases and the violation function are defined in the same way as for graph coloring:
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Bases for k-coloring:

e {(,1}is a basis (wheré is the encoding of the coloring of the empty set of vertices)
and

e if b = (K, x)is abasisy is aheavyertex forb andy’ is an encoding of the previous
coloringy of K extended by a proper coloring of then(K U {v}, x’) is a basis.

Violation function for  k-coloring: A basis b = (K, x) is violatedby a vertex v € V
if either (i) v is a heavy vertex for (K, X) or (ii) v is a conflict vertex for (K, x).

In a similar way as for the graph coloring problem we can give an upper bound for the
dimension of the constructed ACP:

Lemma 4.7.6 For every problem instance of the hypergraplcoloring problem the cor-

responding abstract combinatorial prograf hasdim(P) < 3k{/e and widtHP) <
k3k€/e_

Proof :  Since everyk-coloring of a set ofr vertices can be encoded using an integer

in the range between 1 and, it is enough to show thdK| < 3k{/e for every basis

b = (K,x). To show this, let us recall that the bases are defined inductively by adding a
heavy vertex to another basis. By definition, a heavy vertex increases the potential of the
corresponding basis by more thére n*'. The maximum potential of every basis is less
thank £ n*" and the starting potential is 0. Thus, it follows for every basis (K, x) that

K| <3k{/e. 0

Our next step is to prove the Distance Preserving property.

Lemma 4.7.7 (€, €/3)-Distance Preserving property) Let’H = (V, E) be a hypergraph
that is e-far from beingk-colorable and letS C V be an arbitrary set of vertices colored
according to a properk-coloring x. Then, eitherV contains more thare n/3 conflict
vertices with respect t(S, x) or V has more thare n/3 heavy vertices fofS, x).

Proof : Our arguments are similar to those used in the proof of Lemma 4.6.4. The proof
IS by contradiction. Let us assume there are less than or equaht8 heavy vertices
and less than or equal ton/3 conflict vertices with respect t(5,x). Then, we show
that it is possible to extend coloring of S to a coloringx* of V that has at most n'
monochromatic (violating) edges . This will yield contradiction.

We definex* as follows:

(

x(v) foreveryv €S

1 if ve V\ S andvis a heavy vertex or a conflict vertex with respect to
($,%)
Xv)=< 1 if v e V\ Sisi-colorable with respect t(S, x) andi minimizes (over

all possible choices of proper colorinpgthe increase in the
potential, that isA®((S,x),v,1) < ADx((S,x),Vv,]j) for every
proper coloring of v
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Now, we give an upper bound on the number of monochromatic edges in cojgring
of H. Let us first consider heavy and conflict vertices. By our assumption, the number of
such vertices is upper bounded ?y n. Therefore, the number of edges incident to these
vertices is upper bounded @/e n'. Hence, it is sufficient to show that there are at most
% e n! monochromatic edges iK that are not incident to heavy or conflict vertices. We
show this indirectly by defining a séfp C E of at most% en‘ edges. Then we prove that
this set contains all monochromatic edges for the cologing-et Vy;4n denote the set of
all vertices inV'\ S that are neither heavy nor conflict vertices {6rx).

For a vertex € Vygn let us define

A@((S,x),v,1,7) == @((SUM}LX), 1,3\ @((S,%),1,)

wherey’ is the extension ok to S U {v} by coloring vertexv with colori. We further
denote byE(X,v) ={e € E:v € e & X C e} all edges of the hypergraph that contain
X U{v}. Now we make a simple but important observation:

Claim 4.7.8 If E(X,v) = 0 thenX € A ((S,X),v,x*(V),j).

Proof : Follows immediately from the definition &f¢ ((S,x), v, x*(v),j). O

b= U U Ev;

vEVight jell—T1]

We want to define the set

using setig?j that determine for each vertexa set of edges that is responsible for the
setsinA@((S,x),v,x"(v),j). As we will see later these edges are the only edges that may

possibly be monochromatic ii. We define the s.e]'i'g’]j as follows:

By = U E(X,V)

XEAQ((S,x)v,x* (v))))
Claim 4.7.9 Lete € E be a monochromatic edge in the colorifig x*). Thene € Ep.

Proof : If e is monochromatic then there ise [k] such thaty*(u) = i for all u €

e. Further we conclude that for each € e we have{u} € ¢((V,x),i,{ —1). Now
we distinguish between two cases. First let us consider the case when theredsea
with {u} € @((S,x),1,£ — 1). In this casex*(u) # i by the definition ofx*. In the
second case suchwadoes not exists but we haye} € ¢((V,x),1,£ — 1). But - as
can be seen from Claim 4.7.8 - we defined in such a way that there cannot be an
X e e((V,x),1,£— 1) thatis not contained ip((S,x),1,{ — 1). Hence, ife is notinEp

it cannot be monochromatic. O

It remains to show that the size Bf, is small enough. By definition we have

1
Eol= > D [Es)]

VEViight j=1
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and it is easy to see that for tlﬁé;fj it holds

[ES] < |A@((S,%), v, X (v),§)] - ™!

because of the fact thd(X,v)| < n*~(*+1) We conclude that we have

01
Eol< D D [Ae((S,x),v\x (v),))] -

vEMight j=1
Since all considered vertices are light we also have for ewery,;gn:

—1

A(DH(<S»X>>V>X*(V)) - Z ‘A@(<S)X>)V,X*(V),])‘ . lei] S

=1

€TL€71 .

W[ —

This finally gives us
1
|ED‘ < gene .

Together with Claim 4.7.9 we get a contradiction to the fact tas e-far from being
k-colorable. This proves the lemma. O

The proof of the following lemma is essentially the same as the proof of Lemma 4.6.5
and we present it here for the sake of completeness only.

Lemma 4.7.10 (Feasibility Preserving property) If for someS C V every basis covered
by S is violated by certainv € S, then the sub-hypergraph &t induced by vertices i§
cannot be properlk-colored.

Proof: The proofis by contradiction. Let us suppose there is a priojmeioringx of the
subgraph ofH induced by the vertices if.. For everyll C S, letx, denote the coloring
X restricted to vertex séd.

Let us observe that the set of bases covere® liy not empty, because it contains
the “empty set” basi$l), xg). Therefore, there exists a basis (possibly one of many)
(U, xju) covered bys having the maximum size of skt Sinceb is violated by certaiw €
S, eitherv is a conflict vertex fofLL, xu) or v is a heavy vertex fofl, x,u). Further, since
X was assumed to be a progecoloring of S, v cannot be a conflict vertex fail, x )
and therefore it must be a heavy vertex fol, x ). But this implies thatU U{v}, x;uuny)

Is a basis that is moreover covered$yThis yields a contradiction, because we assumed
that there is no basi¥, x k) covered by5 having the size oK greater thatl|. a

The three lemmas above combined with our framework from Theorem 10 imply the
following result.

Theorem 12 There is a property tester for the hypergragfcolorability with the query
complexity B
(@) ((k(Ze_2 In(k/e))e) =0O((kt/e?)"Y) . O
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4.8 Testable Hereditary Graph Properties

In this section we consider arbitrahereditary graph properties A graph propertyTlT
is a family of graphs that is preserved under graph isomorphism (that @ sHtisfies
propertyTT and G’ is a graph isomorphic t& then G’ has propertyl1, too). A graph
propertyTT is hereditaryif it is closed under taking induced subgraphs, that is, if graph
G = (V,E) hasIT then every subgrap@is induced by a se$ C V has propertyT (see,
e.g., [20]). Similarly as in Section 4.6, we consider undirected graphs that are represented
by a functionf : V x V — {0, 1} that encodes the adjacency matrix of the graph. W.l.0.g.
we assumé&/ = [n]. When we talk about graph properties we have to observe that in
our framework a property is defined as a subset of the sat\wdrtex graphs. When no
confusion can arise we u$kto denote the graph properityas well as the corresponding
set of n-vertex graphs (which is the formal definition of a property in this thesis). Our
main result is that a hereditary graph property is efficiently testable if and only if it can be
reduced to an abstract combinatorial program of dimension that is independent of the size
of the input graph.

For every graplc = (V, E) and every subsél C V we denote byGy, the subgraph of
G induced byll.

We use the standard distance measure from Definition 2.1.3 for testing graph proper-
ties:

Definition 4.8.1 LetTT be an arbitrary graph property. A grap8 is e-far from (satisfy-
ing) TT if in order to transformG into a graph satisfyindT one has to modify more than
e n? entries in the adjacency matrix 6.

Now, we can formally state the main result of this section.

Theorem 13 LetTT be a hereditary graph property. Lét< € < 1. LetG be the set of all
graphs on the vertex s& = [n]. Then,IT is efficiently testabl& and only if there are

0 =208(e), p = p(e) andA = A(€), such that everys € G can be mapped to an abstract
combinatorial programPg = ([n], B, @) with dim(Pg) < 6(e) andwidth(Pg) < p(e€)
satisfying the following two properties:

((e, A)-Distance Preserving) if G is e-far fromTT then every basis iPg is A-far from
feasible, and

(Feasibility Preserving) for everyS C V with |S| > 6(¢€): If there isG’ & TT with
Gs = Gg then there is a self-feasible basis in Pg.

The remaining part of this section is devoted to the proof of Theorem 13. We begin with
the following lemma that simplifies the analysis of property testers for graph properties. By
this lemma, if a hereditary graph propefiyhas a property tester with a query complexity
of q(€) then it has property tester that samples aSset r(q(e)) vertices and accepts, if
and only if the subgraph induced ByhasIT.
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Lemma 4.8.2 (Alon, In Appendix E of [54]) LetTT be a hereditary graph property.
Suppose there is a property tester for propéityith query complexity(e). Then, there

is a property tester for propertiyl that selects uniformly at random a setr¢fj(e)) vertices

and accepts the input graph if and only if the corresponding induced subgraph satisfies
propertyTl. O

In order to prove Theorem 13, we must prove that our condition is both necessary and
sufficient for efficient testability of any property. We first observe that our proof of The-
orem 10 with the interpretatiohas defined in Section 4.6 implies directly the sufficiency
of our conditions. Now, we prove the necessity of our condition.

Lemma 4.8.3 (Necessary Condition)etTT be a hereditary graph property. Lét< e <

1. Suppose there is a property tester for propéftwith query complexity(e) < %n and
let us setr = r(q(e)). LetG be the set of all graphs on the vertex 3¢t= {1,...,n}.
LetA = A(e) = 3‘2 Then, for everyG € G there exists an abstract combinatorial
programPg = ([n], B, @) with dim(Pg) < 2r =: & and widtHPg) = 1 satisfying the
(e, A)-Distance Preserving and the Feasibility Preserving properties.

Proof: Letusfix an arbitrary graps = (V, E) for which we describe ACP satisfying
the required properties.

Bases for graph properties: We define the bases &g to be of the formK, 1) where
K C V. We first give a set of basis candidat®s and then show how to obtain the set of
bases from this set of candidates.

We define the set diasis candidate8C as follows:

e (0, 1) is a basis candidate,

e if Kis aset of vertices of sizeandG (the subgraph induced i) does not satisfies
IT, then(K, 1) is a basis candidate, and

e if (K, 1)is abasis ani’ C K, then(K’, 1) is a basis candidate.

We also define the notion efolatorsandlight bases:

Definition 4.8.4 Let BC be a set of basis candidates andtet= (K, 1) € BC. The set of
violatorsViol®¢ (b) of b with respect td3C is defined as follows:

e if [K| = r then Viof¢(b) = V\ K, and

e if K| < rthen Viof°(b) = {v € V\ K : there exists a basis candidaé =
(Ku{v}, Dk

Definition 4.8.5 Let BC be a set of basis candidates andbet 5C. We callb light (with
respect ta3C) if [Viol®“(b)| < 2 An. If b is not light then it isheavy
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Now, we define thaet of base# as the output of the following algorithmdPUTE-
BASES

CoMPUTEBASEYSet of candidateB()
while there is a light basib (with respect to the curreifC) do
BC = BC \ {b}
return B := BCU{(0,1)}

Violation function for graph properties: A basis b € B is violated by its violators, that
is, by all vertices contained in Viol° (b).

Notice that our construction of bases and the definition of the violation function implies
that every basiy € B is heavy, that is, it is violated by more thémn vertices inV.

Now, the following claim follows trivially from our construction.

Claim 4.8.6 Pg has dimensiotfr, 1). O

(e, \)-Distance Preserving Property: We prove now that the ACP; defined above
satisfies the €, A)-Distance Preserving Property, that is, thaGifis e-far from TT then
every basis inPg is A-far from feasible, whera = A(e) = % Notice that by the
definition of bases, every basis except fdr1) is violated by more thai n ground set
elements. Therefore, what remains to be proven is that also the(Bakjds violated by
more tham n ground set elements. Our proof of this fact is via a sequence of claims that
top-down establish lower bounds for the number of bases of given size.

For a basi® = (K, 1), let |K| be called itssize We begin with the following simple

claim about bases of size

Claim 4.8.7 Suppose < (1 — %)\) n. If G is e-far fromTT, then the number of bases of
sizer in B is bigger thans - (7).

Proof :  The proof follows directly from the definition of the bases and from Lemma
4.8.2. Indeed, Lemma 4.8.2 implies that for a graph thatfigr from IT, if one picks at
random a set of vertices inV, then with probability at Iea% the subgraph induced by
these vertices does not satisty This is equivalent to say that the number of subselg of
of sizer for which the induced subgraph does not satisfis bigger than?% . (f) By the
definition of the basis candidates, for every ket V of sizer, (K, 1) € BC. Moreover,

the setV \ K is the set of violators oK. Hence(K, 1) is a basis that is violated by — r
violators, and thusK, 1) is heavy. Thus(K, 1) belongs toB. Therefore, the number of
bases of size in B is bigger tharg - (7). O

The next claim deals with the relation between the number of bases of sind of
sizek — 1.

Claim 4.8.8 Suppose that > 2r. Let(,0 < ¢ < 1, and letk, 1 < k < r, be an integer.
If there are more thar - (‘;) bases of siz& in B then the number of bases B of size

k — 1is bigger thans=2 - (| ).
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Proof : Recall that3 contains only heavy bases. FurthermoréKif1) is a basis then our
construction of bases ensures that for ewery K, (K \ {u}, 1) is a basis (in the following
we refer with basis also to basis candidates) and that this basis is violated Dlus,
every basis of sizk definesk violators for bases for size— 1. We conclude that overall,
there are more than

n n 1 n
o (D) = o () s b ()

violators for bases of sie— 1. Observe that every light basis has at ma}mtn violators.
Therefore, the number of violators of all light bases of $ize 1 is at most An (™). It
follows that the number of violators of heavy bases of that size is bigger than

1 n 3 n 1 n
PR (k—1>_§')"“' (k—]) =z e=30 (k—]) '

Since each basis has at mastiolators it follows that the number of heavy bases is larger

than 1
n
z'“—“)'(k_J ,

which completes the proof of our claim. O

The next claim gives a lower bound for the number of bases of given size (bigger than
0).

Claim 4.8.9 Let1 < k < r be an integer. Then the number of bases of sizé is bigger

than ] 3 1
n
Gz () (1)

Proof: The proofis by induction ok. Fork = 1 the claim follows directly from Claims
4.8.7 and 4.8.8. Now, let us assume the claim is truéfer k', for certainl < k’ < r,
and we show that this implies that the claim is true alsdfer k’ + 1. By induction, this
will yield the claim.

By the induction hypothesis, the number of baseB of sizer — k' is bigger than

1 3 1 n
- _IA(2=— -
(- 5) ()
1 3 1 n
N (3-2k—2_§?‘ (Z_F»'(r—kﬂ) '

Therefore, by Claim 4.8.8, the number of baseB iof sizer —k = (r —k’) — 1 is bigger
than

(M%—%A(zz—zk‘—z))—“.(rfk) = (ﬁ_gk (2_%))'(31)
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and the claim follows. O

Now, we are ready to complete the proof of tkeX)-Distance Preserving Property for
Ps. By our discussion above, we only must show that the Hésik) is violated by more
thanA n ground set elements. By Claim 4.8.9, the number of basBiisize1 is bigger

than 1 A
n
— 3. . — — 3. . > .
(3'2T_2 3?\) <1) (3'2T 3?\) n>An,

by our assumption that = 3% Each of the bases of si2as of the form({u}, 1) for some
u € V and by the definition of violation, such a vertawiolates((), 1). Since the number
of such verticeat is bigger tham\ - n, this completes the proof of the,(\)-Distance

Preserving Property foPg.

Feasibility Preserving Property: We prove now that the ACP¢ satisfies the Feasi-
bility Preserving Property. We prove that for eveéfyC V, |S| > b, if the subgraphGs
satisfiedT then there is a self-feasible basis fom Pg. This implies the Feasibility Pre-
serving Property becaugeéis hereditary and so: I6s does not have properfy thenG
cannot havél, as well.

Our arguments are roughly the same as in the proof of Lemma 4.6.5. The proof is
by contradiction. Let us suppose that the subgr@glsatisfiesiT, but every basis irb
is violated. Observe that the set of bases coverefl Isynot empty, because it contains
the “empty set” basis(),1). Therefore, there exists a bagis= (K, 1) covered byS
maximizing the size of sei{. Sinceb is violated by certainv € S and sinceK is of
maximum size, we conclude th&| = r. It follows that the subgrapksk induced by
K does not have propertf. Sincell is hereditary, it is closed under taking induced
subgraphs, and hence we conclude thatloes not have property.

If n < 2r then we use the following simple ACP: The ACP has a single ha4ib)
which is violated by all ground set elementsGiis e-far fromTT and which is not violated
otherwise. This completes the proof of Lemma 4.8.3. O

Now, we can conclude our discussion to complete the proof of Theorem 13.
Proof :  The “only if” part follows from Lemma 4.8.3 and the “if” part follows from
Theorem 10 with the interpretatidras defined in Section 4.6. a
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5 Testing Algorithms with
Geometric Queries

In Chapter 3 we considered Property Testing in the 'standard model’ for geometric objects
such as point sets. This means that the property testing algorithm is only allowed to ask
basic queries about the given object. In the case of point sets, our algorithm was allowed
to ask queries of the form "What is the position of ith point of the point set ?’.

In this section we want to introduce a new type of query for point sets: Range queries.
Range queries are of the form: 'What is th¢h point in a query rang® ?° whereR
is a range in théR4 (typically, an axis parallel rectangle or a simplex). Such queries are
efficiently supported by basic spatial data structures, e.g. range trees and partition trees
[1].

Later in this section we show that the property of being in convex position (iiRthe
can be tested witth (logn/e) triangular range queries. This stands in contrast to the lower
bound ofQ( **{/nd/e) on the query complexity in the standard model from Chapter 3. We
also consider two other examples, labeling and clustering, and show that we can achieve
much better results in the new model than it would be possible in the standard model.

5.1 Property Testing with Range Queries

Many fundamental data structures for point sets are designed to efficiently aasger
queries(cf. [1]), i.e. queries that ask to return all points (or just their number) located in
a given query range. Usually, the shape of a query range is restricted to a certain class of
ranges, e.g. axis parallel rectangles or simplices. This way it is possible to answer queries
much more efficient than it would be possible for arbitrary query ranges.

In this section we introduce models of computation whose basic operations are range
queries. All models are defined for point sets in kfé Let P denote the point set under
consideration.

The Simplex Range Query Model . In the Simplex Range Query ModalProperty
Testing algorithm is allowed to ask the following types of queries:

e 'What is the number of points df contained in a (possibly degenerated) sim@ex
?.
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e 'What is the position of the-th point of P contained in a (possibly degenerated)
simplexS ?° The ordering of the points d? contained in simplexX is fixed but
unknown to the property testing algorithm.ilfs bigger than the number of points
contained inS then the symbol is returned to denote that such a point does not
exist.

e 'What is the position of thé-th point of P ?” The ordering of the points df is fixed
but unknown. Ifi is bigger thanP| then the symbol is returned. Such a query
could be realized using the second type of query with a sufficiently large simplex.
For convenience in notation we introduce this as a separate type of query.

Of course, the simpleg specified by the property testing algorithm may differ from
query to query. This model is motivated by the large number of efficient data structures
that support triangular range queries such as partition trees and cutting trees. The most
efficient data structure for simplex range counting queries req@ies' <) space (for
anye > 0) and supports queries in tin@(log®n) [1].

The Rectangle Range Query Model . IntheRectangle Range Query Modeprop-
erty testing algorithm is allowed to ask the following types of queries:

e What is the number of points &f contained in a (possibly unbounded) axis parallel
rectangleR ?’

e 'What is the position of thé-th point of P contained in a (possibly unbounded) axis
parallel rectangl® ?’ The ordering of the points d? contained in rectangI® is
fixed but unknown to the Property Testing algorithmi i§ bigger than the number
of points contained iR then the symbof is returned to denote that such a point
does not exist.

e 'What is the position of thé-th point of P ?° The ordering of the points df is fixed
but unknown. Ifi is bigger thanP| then the symbol is returned. Similar to the
Simplex Range Query Model such a query could be realized using the second type
of query with a sufficiently large rectangle.

Orthogonal range queries are supported by many fundamental data structures such
as range treeX-tree, and quad trees. The most efficient data structure for orthogonal
range counting queries in the RAM model supports querigd(log? ' n) time and uses
O(nlog®?n) space [1].

The Mixed Range Query Model. In the Mixed Range Query Modehe property
testing algorithm may ask every query that is allowed in the Simplex Range Query Model
as well as every query that is allowed in the Rectangle Range Query Model.

Some further definitions. In all three models theuery complexityof a property
testing algorithm is the number of queries asked about the point set. The sizZ@®| of
the point set is known to the testing algorithm.
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5.2 Testing Convex Position with Range Queries

In Chapter 3 we designed a property tester for convex position in the standard property
testing model. Its query complexity wag( ¢*{/nd/e). We also proved a matching
lower bound on the query complexity of every testing algorithm in the standard testing
model. Obviously, the simplex range query model is more powerful than the standard test-
ing model. But how much does the possibility to use simplex range queries help us when
we want to design property testing algorithms ?

We first design and analyze a property tester for convex position in the simplex range
guery model. We only consider the 2-dimensional case when the poift isein the
R2. Again we assume that the input point set is in general position. We prove that in
the simplex range query model there is a property tester for convex position with query
complexity O(logn/e). Hence it is possible to achieve an exponential improvement in
the number of queries using this new model.

Our algorithm is based on a randomized test for extremality of points. Hence, we first
have to prove that many points of a point set are not extreme, if the séardrom convex
position. This is done in the following Proposition:

Proposition 5.2.1 Let P be a point set that is-far from convex position. Then more than
€|P| points inP are not extreme.

Proof : Let P bee-far from convex position. Assume less thaR| points inP are not
extreme. Then we can delete these points fiota obtain a point set in convex position.
Hence the point sét cannot bes-far from convex position. This is a contradiction. O

Our next step is to show that the simple algorithéRACET decides if two points are
the vertices of the same facet (segment) of the convex hull.

Figure 5.1: If two point® andq belong to the same facet of the convex hull then one of
the halfspaces induced by a line throyghndq contains exactly 2 points.

| SFACET(p, q)
Let ™ and’H~ denote the two halfspaces induced by the line thrgughdq
if H* contains exactly 2 points from then accept
if H~ contains exactly 2 points frofi then accept
reject
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Figure 5.2: A circular ordering for all points in a halfspace induced by a line thrpugh
andr.

We show the following lemma:

Lemma5.2.2Letp,q € P be two points from a point s& C R?. Then algorithm
IsFacetp, q) decides whethgs and q are the vertices of the same facet of the convex hull
of P. The algorithm use2 simplex range queries.

Proof :  First of all, let us observe that two pointsq C P are the vertices of the

same facet of the convex hull & if and only if one of the closed halfspaces induced

by a line throughp and g contains exactly the points andq. A halfspace range query

is a degenerated triangular range query and so we are allowed to use such a query in the
simplex range query model. Hence the algorithm is correct and obviously uses at most 2
queries. O

So far, we can only find out whether two points belong to the same facet of the convex
hull of P. This would imply that both of them are extreme points. We use this possibility
to design an algorithm that finds out whether a single ppirst extreme. Ifp is extreme
(and if|P| > 1) then there is a poin € P such thap andq are vertices of the same facet
of the convex hull of?. Thus we have to design a procedure that finds such a gpihp
IS extreme.

The idea of our procedure is simple: Given an extreme powve pick another point
r uniformly at random fromP. If pr is a facet of the convex hull d? then we have a
witness thap is extreme. If not we select one of the halfspaces induced by a line through
p andr. Let us call the selected halfspatg(see Figure 5.2). Then we observe that the
pointp induces a circular ordering among the points in halfsgdcerhe ’last’ point in
this ordering is the poing we are looking for. We can find this point efficiently using a
randomized binary search-like procedure on the points within the halfspace.
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é(TREMECHECK (P,p) \

Choose a point € P uniformly at random
if ISFACET(p, r) then return p is extreme
Let H denote a closed halfspace induced by the line thrqughdr
Let T, denote the (degenerated) triangle
1i=1
while t; contains more thai points and. < 100logn do
Choose a poing; € T; uniformly at random
if s; # p ands; # r then
Let #.” denote the halfspace induced by a line thropginds;
that does not contain
Let ;1 denote the intersection &{ andH?)
i=1i+41
if T; contains more than 2 pointisen return don’t know
else ifISFACET(p, s;) then return p is extreme
\ else returnp is not extreme /

We first show that the algorithm is correct, if it returns an answer other than "don’t
know”.

Lemma 5.2.3 Letp be an extreme point iR. If algorithm EXTREMECHECK is started
with inputp then the algorithm returns eitheng’is extreme” or "don’t know”.

Proof :  We first observe that is incident to two facets of the convex hull Bfsincep

IS an extreme point. The segmantis not a facet of the convex hull &, since otherwise
the algorithm had accepted the input in the fifsstatement by Lemma 5.2.2. Now let
d; and g, denote the points g that share a facet with in the convex hull ofP. Then
either one of the points must be in halfsp&¢elf T;,; contains more than 2 points then
we know thats; cannot share a facet withbecause both closed halfspaces induced by a
line throughp ands; contain at least 3 points. One of the halfspaces containg and

r and the other one contains all pointstin ;. Hences; can only share a facet with, if
Ti11 contains exactly points. If the algorithm does not answer "don’t know” it computes
a triangle that contains exactlypoints. As we already observed there is a poirfithat
shares a facet with it must be the computed point. O

Lemma 5.2.4 Letp be a point inP that is not extreme. If algorithrBXTREMECHECK is
started with inpup then the algorithm returns eitherg’is not extreme” or "don’t know”.

Proof: By Lemma 5.2.2 we know that the algorithm only retugnis extreme” ifp is a
vertex of a facet of the convex hull & The lemma follows since cannot be a vertex of
a facet of the convex hull, if it is not extreme. O

Then we show that the algorithm typically returns an answer other than "don’t know”.
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Lemma 5.2.5 LetP be a point set oft points in theR2. LetX! denote the random variable
for the number of points in triangle; when running algorithmfEXTREMECHECK with
inputp € P. LetZ; denote the indicator random variable for the event tN%y < %Xf.

Then we have |
Priz,=1]> -
rl ]_4

Proof : Let Q; denote the set of points that are contained in triangleWe observe
thatPr[s; = q] = @ for each pointg € Q;. For the sake of analysis we enumerate all
points inQ; butp according to their circular ordering aroupd Then it is immediate that

X, < %Xf holds, ifs; belongs to the Ias{t%!QiU — 1 points in this particular ordering. It

follows for |Q;| > 2 that

priz, =1 > 2B3QU=T 1

Qs

&~

|

Lemma 5.2.6 Algorithm EXTREMECHECK returns the answer "don’t know” with prob-
ability less thant /3.

Proof : We first observe that

Pr[EXTREMECHECK returns "don’t know? < Pr| Z Z; < log; ,m]
1<i<100logn

Now letY; be a 0-1 random variable witRr [Yi = 1} = 1/4. Then by Lemma 5.2.5 we
observe that

Pr| Z Z;<log;,n] < Pr| Z Y; < log; ;]

1<i<100logn 1<i<100logn
4logn
= Prl ) Vi< = E[V{]
1<i<100logn |Og(3/2)
< Pr[ > Y;<8lognE[Y]]
1<i<100logn
9
< Pr| .Z Yi§(1—ﬁ)1OOIogn~E[Yi]}
1<i<100logn

We apply a Chernoff bound [56] to the last inequality and obtain:

Pl > vwi<(1- %)1OOIogn CE[Y{]] < e (/107 25logn/2 < o=l0logn < /3
1<i<100logn

Now we can come up with the testing algorithm:
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CONVEXTESTERC(P, €)
fori=1to6e ' do
choose a poinp from P uniformly at random
if EXTREMECHECK(P, p) returns b is not extreme'then reject
accept

Theorem 14 Algorithm CONVEXTESTERC is a property tester for convex position in the
plane in the simplex range query model. Its query complexif)(lesgn/e).

Proof : We observe that the algorithm only rejects a point set, if algorithtmAEME-
CHECK returns that the point is not an extreme point. By Lemma 5.2.3 algoritkm E
TREMECHECK always returns g is extreme” or "don’t know” ifp is extreme. Hence
every point set in convex position is accepted because every point is an extreme point.
It remains to prove that a point sBtis rejected, ifP is e-far from convex position.
When a pointp is chosen uniformly at random fro then by Proposition 5.2.1 the
probability thatp is not extreme is at least By Lemma 5.2.6 we have that the prob-
ability that EXTREMECHECK answers "don’t know” is at mogt/3. We conclude that the
probability that a point chosen uniformly at random byTREMECHECK is not extreme
and EXTREMECHECK rejects it, is at leas?e/3. Hence the probability that algorithm
CONVEXTESTERC does not reject a point set thatadar from convex position is at least

Pr[CONVEXTESTERC accepts < (1 —2¢/3)% ' <e™*<1/3

and hence,
Pr[CONVEXTESTERC rejectg > 2/3

5.3 Map Labeling

We continue the investigations in the power of our new model. We now consider a basic
map labelingporoblem. Map labeling in general deals with problems where to place labels,
e.g. names of towns, rivers, mountains, and oceans, on a geographic map. The constraints
for such a placement of labels are fairly obvious: Labels should be close to the labeled
feature and labels should not intersect. A basic map labeling problem can be formulated
in the following way [47]:

Let P be a set of n points in the R?. Decide whether it is possible to place n axis-
parallel unit squares such that

e all squares are pairwise disjoint (labels do not overlap),
e each point is a corner of exactly one square (each point is labeled), and

e cach square has exactly one point on its corners (each point has a unique label).
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If a setS of n squares satisfies the conditions above, théncalled avalid labeling
for P. The map labeling problem is known to BéP-complete and the corresponding
optimization problem (with the goal to maximize the label size) is known to have no ap-
proximation algorithm with ratio better thay unlessP = NP [47].

Our goal is to design a property testing algorithm for the above labeling problem. We
use the standard distance measure from Definition 2.1.3. In terms of map labeling this can
be formulated as follows:

Definition 5.3.1 A setP of n points in the plane ig-far from having a valid labeling, if
we have to delete more tham points to obtain a set of points that has a valid labeling.

Before we consider the map labeling problem in the orthogonal range query model, we
prove a strong lower bound on the query complexity in the standard testing model. This
bound shows that we cannot hope for a property testing algorithm that(h&s®) query
complexity for every constarat > 0.

Theorem 15 For every constand, 0 < & < 1, there is a positive constat such that
there is no property tester for the labeling problem witth'—°) query complexity in the
standard testing model.

1

Proof: For agiverd let us define = [12] and lete = 73T We observe that by the

chosen value of it holds thatd > %ﬂ We construct a point set thatdsfar from having

a valid labeling. The set consistsof (2c + 1) copies of a se@. of 2c + 1 points. Q. has

the property that it does not have a valid labeling but if we delete one point from it, then it

always has a valid labeling. A property tester with query complexity' —°) that samples

a subset of points uniformly at random cannot reject such a point set with probdpdity
Therefore, we first show that the existence of a property tester for a poiriregties

the existence of a property tester with similar query complexity that selects a sample set

from P uniformly at random and accepts if and onl\sihas a valid labeling:

Claim 5.3.2 LetA be a property tester for the map labeling problem with query complexity
qd(n, €). Then there exists a property testef for the map labeling problem that sample a
setS of q(e,n) points uniformly at random and accepts if and only if the pointS irave

a valid labeling. Such a property tester is calleanonical

Proof: ByLemma 2.3.1 we know that there is a property testethat samples a s&tof
q(e,n) points uniformly at random and decides based@nd and its internal coin flips.
Let A” be an algorithm that samples a Seif (e, n) points uniformly at random and that
accepts if and only i has a valid labeling. We want to prove thi&t is a property tester.
Clearly, algorithmA” accepts every point set having a valid labeling. Thus it remains to
prove that it rejects every point set thatigar from having a valid labeling. We show this
indirectly by proving the following statement: If algorithAY rejects a sample s&tthen

so does algorithnd”. By definition a property tester has one-sided error andl’smust
accept if the sample set has a valid labeling. But if the sarfplees not have a valid
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5.3 Map Labeling

labeling we know thaf\” rejects the input. Hencdé\,” always rejects, i\’ rejects. Since
A’ is a property tester it rejects every point Bahat ise-far from having a valid labeling
with probability at leas2/3. Thus algorithmA” is a property tester. This proves Claim
5.3.2. O

Now we show that there exists a point set that-far from having a valid labeling
and that is not rejected by a canonical property tester with query comptgixity®) with
probability more thari /3. Our construction is based on a point gtof size2c + 1 with
the following two properties:

e Q. does not have a valid labeling,

e for everyp € Q. the setQ. \ {p} has a valid labeling.

7WE

Does not have a valid labeling

Figure 5.3: The lower bound construction. If one point is missing then the set has a valid
labeling (right figure).

Claim 5.3.3 For everyc > 2 there exists a s . of 2c + 1 points such that the s€.
does not have a valid labeling and such tkat\ {p} has a valid labeling for every € Q..

Proof: Foragiverc > 2 we construct).. W.l.0.g. we assume that two squares intersect
if and only if their interiors intersect. We place poihtsandr. at position(1,0) and(c, 1),
respectively, a séil . of ¢ points at the positiofl, 1),...,(c, 1), and asek. of c—1 points

at positions(1.5,0.5),...,(c — 0.5,0.5). We claim that the se®. = U, U L. U {l., 7.}
does not have a valid labeling. This is because we have/bgly 1 label positions for the
points inL. that do not necessarily intersect with points frehp U {1, r.}. Hence there
cannot be a valid labeling fa@.. On the other hand, for everye Q. the setQ.\ {q} has

a valid labeling as one easily verifies by a case distinction (see also the figure above):

¢ In the first case we either hawe= 1. or q = r. (these cases are symmetric). WIlog.
let g = l.. Then we choose the upper left square for all pointdinthe lower left
square for all points ih.. and the lower right square fog.

e Now let g be inL. and letq have the positiorii, 0.5). We choose the upper left
square for all points inl., the lower right square for all points= (j,0.5) € L.
with j < i and the the lower left square for the remaining pointsinFor the points
1. andr. we choose the lower left and lower right square, respectively.
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e It remains to consider the cagec U.. Let us assume thaj has position(i, 1).
Then we pick the upper left square for all poimts- (j, 1) € U, with j < i and the
upper right square for the remaining pointslip. For all pointsr = (j,0.5) € L.
with j < i — 1 we choose the lower right square. For 0.5,0.5) € L. we choose
the upper right square, and for the remaining points figmve choose the lower
left square. For the poinis andr. we choose the lower left and lower right square,
respectively.

In all cases we easily verify that the labels do not intersect. Hence Claim 5.3.3 follows.
O

Now we can construct a sBtof n points that consists & = | ;5 | translated copies
Wi, ..., W, of the setQ. (such that their possible labelings do not intersect). In order to
obtain a set with a valid labeling frofd we must delete at least one point from eath
1 < i < k. Thus we have that is e-far from having a valid labeling. Further a canonical
property tester can rejeBtonly if the sample sef contains at least one of the s&t4. If
we now apply Lemma 2.4.2 with= 2c + 1 andp = 1/2 then we obtain that

Pr[3jelkl: (W;eS)] <1/2

_1 . .
if the sample size is less than —2¢) - (55-) 7" = Q(n'"%). Hence there is no canonical
property tester with query complexityn'—®) and so there cannot be any property tester
with that query complexity. O

We show now that if we use the computational model that allows range queries we can
design a tester witlD(1/e®) query complexity. It is based on the approach developed in
[36] and [58].

ﬁBELTEsﬂP): \

choose a sample sgwf size4/e uniformly at random fron?
for eachp € Sdo
i=0,7=0
Let R be the axis parallel square with centeand side lengt20[1/¢€]
while i < (20[1/€] +2)* do
Let q be thei-th point in the query rangR
if qA0then7 =7 U{q}
i=1+1
if 7 does not have a valid labeliniigen reject

accept /

Theorem 16 Algorithm LABELTEST is a tester for the labeling problem that has query
complexityO(1/e3) and running timeexp(O(1/¢€2)).

Proof : First of all, let us observe that algorithrmABELTEST accepts every input point
set that has a valid labeling. Thus we have to show that every instaticat is e-far
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from having a valid labeling is rejected with probability at leasgd. Let us assume that
P is e-far from having a valid labeling. Now we partition the plane into grid cells of side
length10[1/€e] such that at mosin /2 points of P are within a distance of or less to the
boundary of the grid cell they are contained in. Such a partition can be constructed in the
following way: We start by partitioning the plane into vertical striges= {(x,y) € R?:
251 < x < 25(i+ 1)} Forj e [k], with k = 417, et R; = Usimoar; Ai- Then we
have that there isn € [k] with |[R,, N P| < en/4. If we put the vertical lines of the grid
cells in the middle of the stripes Ry, then at mostn /4 points are within a distance &f
to these vertical lines. A similar argument applied to horizontal lines gives us the desired
grid partition.

For the analysis we delete all points that are within a distandeoofess to the bound-
ary of their grid cell from the point seé®. This way we obtain the point s&’. Let
Xeonft € P’ be a minimal-size set of points such ti®at X...s has a valid labeling. Since
P is e-far from having a valid labeling we know thxt.,.ri > en/2. Now we consider a
single grid cellC. By the construction oP’ we know that the labeling of the points (b
cannot intersect with labels from points outsideCof

Claim 5.3.4 If SN Xconst # 0 then algorithmLABELTEST rejects.

Proof : Letx be a point fromX ,q that is contained ii$ and letC denote the grid cell
containingx. Thewhile-loop either adds all points iR to 7 or it finds out that more than
(20[1/€] +2)? points are contained iR. In the case thdl contains all points iR it must
also contain all points fron€. Thus the points ir¥” do not have a valid labeling. In the
case when we have more th@®[1/¢] + 2)? points in7 we would have to fit more than
(20[1/€] + 2)? unit square labels on an area of s{26[1/¢e] + 2)2. Thus there cannot be
a labeling in this case, either. Hence the algorithm rejectsniX onn 7 0. O

By Claim 5.3.4 the theorem follows with
Pr{SnNXeonn =0] < (1—¢€/2)¥<2/3

and so
Pr [S N Xconfl 7 @} >2/3 .

5.4 Clustering Problems

In this section we revisit the radius and diameter clustering problem as defined in Chapter
4. Recall that the goal of a clustering problem is to decide whether a sepointsP in

R¢ can be partitioned intk subsets (calledlusters Sy, . .., S, such that theostof each
cluster is at mosb. There are several different ways to define the cost of a clusteiS Let

be a set of points iiR<. In the radius clustering problem the caesistr(S) of a clusterS

is twice the minimum radius of a ball containing all points of the cluster. In the diameter
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clustering problem the cosbstp(S) of a clusterS is the maximum distance between a
pair of points of the cluster.

The goal of our property tester is to accept all instances that admit a clusteririg into
subsets of cogt and to reject with high probability those instances that cannot be clustered
into k subsets of codtl + €) b. Note that this distance measure is different from the one
used in Chapter 4.

Definition 5.4.1 A point sefP is (b, k)-clusterable for a cost measutest(), if there is a
partition of P into setsS;, ... Sy such thatcost(S;) < bforall 1 <1 < k. A point set?
is e-far from being(b, k)-clusterable, if for every partition d? into setsS;, ... Sy at least
one sefS; has cost larger thari1 + €) b.

Let us assume, without loss of generality, that= 1 and thus we want to design a
tester for the problem whether a point a6 (1, k)-clusterable for the two cost measures
above. We partitiofR4 into grid cells of side length /(3 v/d). For each cell containing an
input point, we choose an arbitrary input point from the cell as its representative. Then, we
compute whether the set of representatived j&)-clusterable. If it is so, then we accept
it, if it is not so, then we reject it. Clearly, every set of points thatlisk)-clusterable
is accepted by the algorithm. On the other hand, every instance thdaidrom (1, k)-
clusterable will be rejected. (This approach has been introduced in [2] to olthin a)-
approximation algorithm for the radius clustering problem.)

Our algorithms starts with an empty box with vertices at infinity. Then we query for
a point in this box. This point is located in a grid c€ll We will use the point as repre-
sentative for this cell. The bounding hyperplaneahduce a partition of the space in
34 boxes (one of them being the grid cell). We mark all empty boxes and the grid cell.
Then we continue this process with an unmarked box. If there are only marked boxes the
algorithm terminates.

So far, our partition into grid cells works fine, only if there are many points in a single
cell. On the other hand, if no two points are in the same grid cell, the algorithr2 has
query complexity. Thus we need an upper bound on the number of representatives that are
(1, k)-clusterable. Similar to Chapter 4 we use a volume argument to show that we can
stop the process when we find a set of representatives ok sige\/d/¢)q.

Lemma 5.4.2 LetS be a set of points ifk¢ no two points of which belonging to the same
cell of a grid of sizee/(3v/d) < 1. If cost(S) < 1 for any of the two cost measures
described above, the| < (6 v/d/e)4, wherecost(-) € {costg, costp}.

Proof :  We first observe that i€ost(S) < 1 thenS is contained in a hypercube with
side lengthl. We show that a no set of size more thar{6+/d/e)? that satisfies the
precondition of Lemma 5.4.2 is contained in a hypercube with side lehgdrypercube
with side length 1 can contain at mcﬁ%t/(;—f(i) +2)4 < (6+/d/e)? grid cells. This proves
Lemma 5.4.2. a

Let V = k- (6v/d/e)? the maximum number of cells that can contain points that
belong to one of th& clusters. We observe that we can stop our procedure if the number
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of representatives is more thdh Thus, we can guarantee that the algorithm requires at
mostV - 34 range queries.

Theorem 17 There is an property tester for the radius clustering and diameter clustering
problem that uses at mokt (18 v/d/e)? orthogonal range queries.

Proof : We first describe the algorithm:

ELUSTERTEST(P, Kk, b, €): \
B = infinite box
S=0

Initialize empty queu&)
insertB into Q
while Q is not emptydo
B = Q.head()
if B contains a poinp then
find the grid cellC that containg
S=SU{p}
split B into 3¢ sub-boxes using the bounding hyperplane€ a
insert all sub-boxes (except f@) into Q
if there are more tha¥f cells with representativalen
reject
if Sis (k, b)-clusterablghen accept

k elsereject j

We charge to each poipt € S the3¢ — 1 range queries that have to be done to check
the 3¢ — 1 new boxes (other than the grid cell containipgthat are created whem is
selected to be the representative for a grid cell. Thus the overall number of range queries
is at mostV - 34 =k - (18+/d/e)<.

Now we have to prove that our algorithm is a property tester. ClearR,isf(k,b)-
clusterable then so is every subsetPoind so the algorithm accepts. If the algorithm
rejects because there are too many cells with representatives then by Lemma 5.4.2 the
input points set is natk, b)-clusterable. Thus it remains to show that the algorithm rejects
every point set that is-far from (k, b)-clusterable.

Let us assume th&is e-far from (k, b)-clusterable. Then for every partition into sets
Cq,...,Cx there is a seC; with cost(C;) > (1 + €)b. By definition of the diameter
clustering problem this means that there are two paints € C; such thatdist(x,y) >
(1 + €)b. Since the diagonal of a grid cell is at masth/3 the distance between the
representatives of the cells pfandq is at least(1 + €/3)b. Thus the sef cannot be
clustered and the algorithm rejects.

Similar arguments show that eveeyfar instance of the radius clustering problem is
rejected. O

—h
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In this chapter we apply the concept of property testing in the context of moving data. We
develop a theoretical model for the analysis of approximate combinatorial structures under
a very general type of motion. Then we illustrate our model on some examples. Among
these examples are range trees and the Euclidean minimum spanning tree of objects mov-
ing in theR2. We consider the following general scenario: We are given asef n
objects and these objects are moving inlitfe We assume that the objects are moved by

a third party. We haveo information about the future movemefthe objects. The only

thing we are allowed to do is to update the current position of an object at certain points of
time and at unit cost per update. Such an update is also callepgdate query Our goal

is to approximately maintain a combinatorial structure defined uniquely by the positions
of these objects. At certain points of time there are queries to the combinatorial structure
we maintain. Before we answer such a query we may update some (possibly all) object
positions and perform some additional computations. After these updates we require that
our structure (which we caltypothesisis close to correcwith probability at leas2/3.

Then the query is answered. The combinatorial structure we maintain together with the
update scheme we use is calledddt kinetic data structureThe quality of a soft kinetic

data structure is measured by a forncofmpetitive analysisFor every possible (non de-
generateontinuous motiorof the objects we compare the number of updates made by
our algorithm against thdynamics of the motionThe dynamics is measured in terms

of combinatorial changethat occur if the combinatorial structure is correctly maintained
for the complete motion. The worst case ratio (over all continuous motions) between the
number of updates and the dynamics is calleddyr@amic efficiencgf a soft kinetic data
structure.

Our strategy to design a soft kinetic data structure is the following: We first design a
property tester for the combinatorial structure we want to maintain. If this property tester
rejects a hypothesis it should provide a witness that this hypothesis is not correct. Then we
try to find a strategy that fixes such a witnessed error by applying some local changes in
the structure.

Each time before we have to answer a query we run the property tester. If the property
tester rejects, it provides a witness. The witnessed error is then corrected and we invoke
the property tester again. In order to show that this process terminates we have to prove
that every error correction brings the combinatorial structure closer to the correct structure.
In order to analyze the dynamic efficiency of such a soft kinetic data structure we have to
relate the number of corrections we do to the number of combinatorial changes induced by
the underlying motion.
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Our model is partly inspired by the framework of kinetic data structures by Basch et
al. [12]. In their framework Basch et al. make different assumptions on the motion of the
objects than we do. In particular, they assume that therdligha planthat describes the
near future motion of every object. This flight plan is known to the algorithm and changes
in the flight plan are passed to the algorithm. The information provided by the flight plan
results in a completely different model of computation. The analysis of a kinetic data
structure is in terms of combinatorial changes of the maintained structured and inspired
our way to analyze the dynamics.

6.1 Soft Kinetic Data Structures

In this section we describe the framework of soft kinetic data structures.

Moving Objects.  We first introduce some terminology used to describe objects and
their motion. We are given a sét={0;,..., 0.} of n objects (e.g., points, balls, cubes)
that move in theéR¢. The motion of the objects is described bynation plan A motion
plan contains the positiop;(t) of each objecO; € O at every point of time > 0. The
entity of all positions of object®(t) = {pi(t),...,pn(t)} is called theconfigurationof
O at timet. With this definition anotion planis a function that assigns a configuration to
each point of time € R, t > 0. We assume that the motion plan is fixed but unknown to
what we later define assft kinetic data structureThe way we can access the positions
of our objects is similar to property testing: If we fix a point of timé¢hen the current
configuration of the objects can be seen as a point set. We may then update the position of
every point by specifying its index. This is similar to our representation of point sets used
in the context of property testing. We may update the position of an object certain points
of time.

We say that a motion plan ontinuousf for eacht,d € R,t > 0, there exists an,
such thatp;(t) — pi(t + ¢)| < & holds for each, 1 <1i < mn, and everg < .

Hypotheses. In our model each of the@ objects is represented by a unigobject
identifierwhich is a number fronin]. At every point of timet the soft kinetic data struc-

ture may update the current positipg(t) of objectO; using the object identifier. We
introduce object identifier to syntactically distinguish between objects and their current
position. That is, we may, for example, compute a combinatorial structure defined over
the objects without knowing their current positions. In our framework we are interested in
combinatorial structures that are uniquely defined by the objects’ positions. When the set
of objects is a point set then some examples for such structures could be sorted sequences
in 1D, Voronoi diagrams, or the Euclidean minimum spanning tree. We use the fact that
we can build such a structure over a given set of objects even if we do not know the current
object configuration. In such a case we make a guess about the position of each object
and then we compute the structure. These guesses are usually based on the past config-
urations of the point set and on additional information obtained by update queries. The
computed structure may or may not be consistent with the current object configuration.
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Therefore, we call such a structuréygpothesisGiven a distance measusea hypothesis
H is callede-close to correct if the distanag H, H*) to the correct hypothesis is at most
€. Otherwise, we say thad is e-far from correct.

Now we want to illustrate our definitions on the example of a point set in 1D and the
combinatorial structure 'sorted sequence’. When we consider point sets then at every fixed
point of timet the current configuratioR(t) is a point set represented essentially in the
same way as in the context of property testing in the previous chapters. In particular, we
have that the object identifiers are the numbers ffafrand the current position of each
point can be accessed by an update query for the valpgof. Since we consider a point
set in one dimension we have a total ordering defined by the positions of the points. This
total ordering corresponds to a permutatiorirdfwhich in turn can be viewed as a sorted
sequence. Now assume we do not know the positions of the points at a fixed point of time
t. Then we can still make some guesses (e.g. based on the past configurations we know)
about the positions of the points and compute a permutatioih[n]. Such a permutation
is a hypothesis for the sorted sequence defined by the configuPdtion

The Objective of Soft Kinetic Data Structures. The objective of a soft kinetic
data structure is to maintain a hypothesis for a predetermined combinatorial structure un-
der an unknown motion plan. At certain points of time the soft kinetic data structure has
to answer a query about the hypothesis it maintains. Such a query is usually the standard
guery supported by the combinatorial structure (typically, some kind of access or search
query). In our example of the sorted sequence a query may ask faottthikem in the
sorted sequence. Each time before a query is processed, an algorithm caleardgae
nizeris invoked. This algorithm may perform update queries about the current position
of some objects (we assume that the time does not proceed as long as the reorganizer is
working) and perform changes in the hypothesis. Technically, a reorganizer consists of a
property tester for the combinatorial structure and a procedure that corrects all errors in the
hypothesis that are detected by the property tester. After the reorganizer finished its work
the hypothesis should keclose to correct with probability at lea3f3. Then thequery
algorithmis invoked and answers the query.

We assume that the soft kinetic data structure has to process a sequencarino-
logical queries(Q) = (Qg,...,Qm). QueryQ; takes place at timg;, and we associate
with each query the point of time when it takes place.

Soft Kinetic Data Structures. Now we can say that a soft kinetic data structure con-
sists of

e ahypothesidor a predetermined combinatorial structure of a set gbints,

e areorganizerthat is invoked each time before a query to the hypothesis has to be
processed,

e aquery algorithnmthat processes the queries to a hypothesis.
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6.1.1 Analysis of Soft Kinetic Data Structures

In this section we explain how to evaluate the quality of a soft kinetic data structure. Our
concept is to apply competitive analysis. That is, for every sequence of queries and every
continuous motion plat\ we compare the number of update queries made by our soft
kinetic data structure against the number of combinatorial changes that occur in a correct
hypothesis when the points move accordinguo

Let M denote an arbitrary motion plan describing a continuous motion andSet
denote a combinatorial structure uniquely defined by a configurati¢h dhe dynamics
dyn.s(M) of M w.r.t. CS is defined as the number of combinatorial change&&Smwhen
we move the objects according fal from time0 to co. The term combinatorial change
depends on the problem at hand. For example, when the objects are points moving in the
R and the combinatorial structutS is a sorted sequence then a combinatorial change
takes places at each point of timevhen the ordering in the sorted sequence changes.
When the objects are points and the structure is a Euclidean minimum spanning tree then
a combinatorial change takes place when the graph structure changes. We always assume
that the motion plan is non degenerate, that is, at a fixed point of time there can be at most
one combinatorial change in the structure.

Now let us considered a given soft kinetic data strucfée For a given sequence
(Q) of m queriesQy, ..., Q. taking place at time,,...,t; and a motion plao\l we
denote theupdate cost co$t{Q), M) of DS to be the number of update queries done
by the reorganizer when the objects move accordinggto The dynamic efficiencpf a
soft kinetic data structure is roughly the worst case ratio between the update cost and the
dynamics.

Definition 6.1.1 Thedynamic efficiencydeff of a soft kinetic data structure is defined as
follows:

deff:= sup cost(Q), M)
(@M dynes (M) +m

where the supremum is taking over all non-degenerate motion pldmescribing a con-
tinuous motion and all possible sequencesoflueries(Q).

A second quality measure for soft kinetic data structures isigtate time The up-
date time is the worst case ratio between overall running time of the reorganizer and the
number of update queries. We denotetioye((Q), M) the overall running time used by
the reorganizer for sequen(®) under a motion plavm1.

Definition 6.1.2 Theupdate timeof a soft kinetic data structure is defined as

- time((Q), M)
b= <S>Lf£l cost((Q), M) + m

where the supremum is taking over all non-degenerate motion gldmkescribing a con-
tinuous motion and all possible sequencesoflueries(Q).
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6.1.2 Discussion of The Model

There are a few points in our model that require a further discussion. First of all, let us
make some notes on the assumption that the points do not move while the reorganizer
works. We made this assumption because we have no other restrictions on the motion. As
soon as we allow the points to move during this process in a theoretical model there is no
real chance to make reasonable statements about the quality of the structure. In an im-
plementation the reorganizer is a continuous process typically running in the background.
When a query arrives we stop the reorganizer and answer the query. Typically, the changes
that occur during the time when the query is processed are neglectable.

A second point that requires discussion is the distance measure needed to evaluate the
quality of a hypothesis. Unlike in the case of property testing we want to use our soft
kinetic data structure to answer queries. Therefore, a distance measure should reflect the
‘correctness of a hypothesis w.r.t. the query algorithm’ rather than the pure combinatorial
distance to a correct combinatorial structure. For example, if we consider soft kinetic
search trees then a query could be an access operation to an item stored in the tree. In such
a case a single error at the root of the tree can make almost every access operation fail.
Although the combinatorial distance to a correct structure would be rather small in such
a case, a hypothesis for a balanced search tree having such an error shedii frem
correct. In general, we want to have a distance measure that guarantees that, typically, an
access operation works correctly.

6.2 Basic Soft Kinetic Data Structures

In this section we describe how to apply our framework to some combinatorial structures
like sorted sequences, balanced search trees, range trees and Euclidean minimum spanning
trees.

6.2.1 Sorted Sequences

The first example for a soft kinetic data structure we consider is that of a sorted sequence.
W.l.0.g., we assume that our set of obje€ss a set ofn points moving inR. We assume

that the total order induced by the positions of the objects at a fixed point of time is always
unique. That is, we never have two objects with the same position. We can achieve this
by using an arbitrary tie-breaker (e.g., the object number). The object identifi€ds of
are stored in an arraj[1...n]. When we consider continuous motion the topological
structure of a sorted sequence changes when the positipnsof two points change from

v; < vy tovy > v,. We say that a permutatioh(t) = (A[l],..., A[n]) of [n] stored in

A at timet is a hypothesis that is-close to correct, if the sequenpgp(t),...,pam(t)

has edit distance (see Definition 6.2.1 for an equivalent definition) at emosi a sorted
sequence. We use the following definition:

Definition 6.2.1 Letpap(t), ..., pam(t) denote a sequence stored in an ardayl ... nJ
at timet. We say thabapi(t),...,pam(t) is e-close to sorted, if the longest increasing
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subsequence ipaj(t), ..., pami(t) has length at leastl — e)n. Otherwise, we say that
Pam(t), ..., pam(t) is e-far from sorted.

Now we are given a sequence of access querie§Q) = (Qq,..., Q) to our array
and we assume that que€); takes place at time;. Before the query is processed the
reorganizer is invoked. This algorithm checks whether the current hypotheswase to
correct. In order to do so, it invokes a property testeREEDTEST for sorted sequences
from [40]. This property tester checks, if a sequence of numhar(t), ..., pam(t) isa
sorted sequence aerfar from sorted (where the distance is measured according to the edit
distance).

If this algorithm rejects it returns two indicésl with k < L andpapg(t) > pan(t).
We then use a binary search like procedure to find an indesuch thatpAp(t) >
pax+1(t) and swap the object identifier storedAik’] and Ak’ 4+ 1]. Then we make
two recursive calls to the reorganizer:

ﬂRRAYREORGANlZER(A,t, €) \
if SORTEDTEST((pap(t),...,Pam(t)), €) rejectsthen
Let (k, 1) be the pair returned bydRTEDTEST ((pap(t), ..., Pam(t)), €)
k’=FINDINVERSION(A, k, 1)
swap@Al[k'], Ak’ + 1])
ARRAYREORGANIZER(A, t, €)

k ARRAYREORGANIZER(A, t, €) J

From the pair of indicesk, 1) returned by the property testeoSTEDTEST from [40]
algorithm ANDINVERSION can compute a paik’, k' + 1) with pap(t) > paperi1(t)
by a binary search like procedure in the following way: As ldng- 1 — 1 we compute

m = [‘%‘1 and proceed either witfk, m) or with (m,1) depending on the value of

PAm(t).
We now want to prove that algorithmRRAYREORGANIZER computes a hypothesis

that ise-close to correct.

Lemma6.2.2Let A(t) = (A[H, . ,A[n]) be e-far from a correct hypothesis for a
sorted sequence. Then algorit®'RRAYREORGANIZER computes with probability at
least2/3 a hypothesis that is-close to correct.

Proof : We start with a simple claim about the edit distance:

Claim 6.2.3 Let k'’ denote an index such thatap(t) > paxr+1(t). If we swapAlk’]

andA[k’+ 1] then the edit distance @fap(t), ..., pam(t) to a sorted sequence does not
increase.
Proof :  pam(t),...,pami(t) has edit distancg, if and only if the longest increasing

subsequence @fa;1i(t), ..., pami(t) has lengtm—k. The length of the longest increasing
subsequence cannot decrease when we aflaphandA [k’+1] and hence the edit distance
cannot increase. a
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Now we want to analyze the probability thaRRAYREORGANIZER stops when the
hypothesis ig-far from correct. We assume that the probability thaR$SEDTESTaccepts
a sequence that ésfar from sorted is less thay10. If the probability is larger then we can
use standard amplification arguments to get the desired probability. Now we observe that
for the case that RARAYREORGANIZER terminates when the input isfar from correct
there is a witness in form of a binary tree. Each node of this tree corresponds to a call
of ARRAYREORGANIZERthat rejects the current hypothesis and it has a left (right) child
if the first (second) recursive call rejects the hypothesis. For example, if the first call to
ARRAYREORGANIZER accepts the hypothesis, then the corresponding tree is the empty
tree and it appears with probabilitﬂé. It is well known that the number of binary trees
with k nodes is less thadt.

Now let us fix a binary tred with k nodes and analyze the probability that the be-
havior of the algorithm is according to the witnéissWe observe that the probability that
ARRAYREORGANIZERbehaves according is at most( -5 )' because each binary tree
with k nodes hak + 1 empty leafs and each empty leaf corresponds to a call to the reor-
ganizer that accepted a sequence thatfar from sorted. The overall probability that the
process stops before the hypothesis-tdose to correct is bounded from the above by

This proves Lemma 6.2.2. O

Let M denote an arbitrary non-degenerate continuous motion plan. In the following we
want to make some observations w.r.t. the combinatorial changes induced by the motion
plan. First let us observe that any combinatorial change in the sorted sequence can be
written as a reversaf(i,i + 1) for somei € [n — 1] (unless we have a degenerate case
where more than 2 points are at the same position). Such a reversal is ¢dediesi@sition
Now let(Q) = (Qq, ..., Q) denote a sequence of queries and let us denote bythe
time when queng); takes place anth = 0. Now we derive a lower bound on the number
of combinatorial changes that can be expressed in terms of the configurations of the point
set attimeg;, 1 <1 < m. For this purpose let us introduce some notation. For a number
71, in a permutationt = (my,...,7,) of [n] let us define theank(rt;) as the number of
elementsy; with 7t; < 7r; andj > i. Then we define the weight(7t) of a permutationt
as) iy rank(m). Itis well known that we can write every permutatiaras a sequence
of w(7) transpositions and that every sequence of transpositions equdide length at
leastw ().

We further observe that at every point of tirhghere is a unique permutation =
(7t1,...,7) such thatp,, (t) < -+ < pn, (t). Thus we can writet' = (7},... 7}) to
denote the permutation that satisfi%(ti) <o < Ppg(ti), that is,t* denotes the sorted
sequence at the time when tixh query takes place. Then we can define permutations
o',...o™ by the equation:
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Now we can give a lower bound on the dynandgs(M ) of the motion planM w.r.t. the
combinatorial structure sorted sequence:

dyn M) > > w(o

1<i<m

We use this lower bound to show that the number of errors corrected by the reorganizer is
at most the dynamics of the motion plan.

Lemma 6.2.4 Let(Q) = (Qq,..., Q) be an arbitrary sequence of queries and lei\
be an arbitrary non-degenerate continuous motion plan. If qugsyakes place at time;
and the reorganizer corrects dfir) errors at timet;, then we have:

> err(i) < dynM)

1<i<m

where dyfiM) denotes the dynamics of the motion plahw.r.t. the combinatorial struc-
ture sorted sequence.

Proof : For a given point of time; let A(t;) = (A[1],..., A[n]) denote the permutation
defined by the elements of arrdyat timet;. Further let us define the permutatioa(t;)
in the following way:

Aty) - oc(ty) =t .

Hence the permutatiooc(t;) denotes the changes that must be performed to transform
the array at timet; into a sorted sequence. The weightoc(t;)) denotes the minimum
number of transpositions necessary to transform the array into a sorted sequence. We prove
by induction on the number of queries that oK m the following inequality holds:

Z err(i) + w(oc(ty)) < Z w(

1<i<k 1<i<k

Since every permutation can be expressed as a sequence of transpositions we know that
we can apply the triangle inequality to the weight of permutations. This way, we observe
that the number of errors corrected in ftke+ 1)-st call of the reorganizer is at most

err(k+1) <w(oc(t) - o) —w(oc(tiir)) < wloe(te)) +w(o™) —w(oc(tii)) -

And hence
err(k+1) —w(oc(t)) + wloc(ti)) < w(e*H) .
This proves the induction hypothesis for evéryg m and we get
Z err(i) < Z err(i) + w(oc(tm)) < Z w(c) < dyn(M)

1<i<m 1<i<m 1<i<m

which completes the proof of Lemma 6.2.4. a

Now we are ready to prove:
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Theorem 18 There is a soft kinetic sorted array with dynamic efficiefﬂi;l’%‘) and up-
date timeO(1). It answers queries about theth object in the soft kinetic sorted array in
timeO(1).

Proof: ByLemma 6.2.2 we know that our reorganizer satisfies the requirements of a soft
Kinetic data structure, that is, with probability at le2gd the sorted sequence maintained

in the array ise-close to correct (after the reorganizer has been invoked). Thus we only
have to analyze the dynamic efficiency and update time of the data structure. The property
tester ®RTEDTEST makesO(logn/e) (update) queries and has the same running time.
The procedure IRDINVERSION makesO(logn) update queries and its running time is
proportional to the number of performed update queries. For a sequence of g@eries
(Q1,...,Qm) the number of calls to the reorganizerrnst’twice the number of errors
corrected by the reorganizer’. Thus, together with Lemma 6.2.4 we get that the dynamic
efficiency of the data structure@@(logn/e). The update time and the query time®@fT1)

are immediate because for each update we do only a constant amount of work and the
guery algorithm just has to return one entry in the array. O

6.2.2 Balanced Search Trees

The next structure we want to look at is a binary search tree. A (balanced) binary search
tree is a rooted tree. At each nodef the tree a kekEeY (v) is stored. For every nodein

the tree and every nodein the left (right, respectively) subtreewft holds thatkey (v) >

KEY(u) (KEY(v) < KEY(u)). In the case of soft kinetic data structures each node stores
an object identifier. The key of a node is the position of the corresponding object (w.l.o.g.,
we assume that the objects are points). Again we assume that every configuration of points
induces a unique ordering among the objects (that is, the case '=" does not occur). We want
to consider standard access (search) queries in binary trees. At first glance the problem
seems to be similar to the case of soft kinetic arrays. The combinatorial structure we use
for the analysis is (essentially) a sorted sequence. Thus we have a combinatorial change in
the search tree, if there is a combinatorial change in the sorted sequence. The difference
lies in the distance function used for soft kinetic balanced search trees. In the case of
binary trees the edit distance to a sorted sequence is not a good distance measure w.r.t. the
functionality of the trees. If only a single object is not at its correct position in the sorted
sequence and this object is stored at the root of the tree then it might be the case that a huge
fraction of access operations fails. Therefore, we consider a different distance measure:

Definition 6.2.5 A search tree is-far from correct, if more thare n access operations
fail.

With this new distance measure we also need a new property tester for the invariant
of the search tree. But this is simple for balanced search trees with the distance measure
from above. We store all nodes of the search tree in an array such that we can pick a
node uniformly at random in constant time. Then o> 2/e the following algorithm
is a property tester for the invariant of a search ffee.r.t. the distance measure from
Definition 6.2.5:
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REETEST(T, s, €)
fori=1tos
pick a nodev of the search tree uniformly at random
if nodev cannot be accessegject
accept

The test whether a node can be accessed can be implemented by walking from node
to the root and checking the invariant at each node of the search path. We show that for
s > 2/e algorithm TREETESTIs a property tester.

Lemma 6.2.6 For s > 2/¢ algorithm TREETEST is a property tester for correctness of
balanced binary search trees. Its query complexity and running tiréglsgn/e).

Proof : Clearly, the algorithm accepts every correct search tree. Thus we assume that the
tree ise-far from correct. Then the probability that we find a node that cannot be accessed
is more thare in each pass of thier -loop. Hence the overall probability that the algorithm
reject is

Pr[Algorithm TREETESTrejecty > 1—(1—¢e)¥*>1—e*>2/3 .

The query complexity and running time follow immediately from the fact that the search
tree is balanced. O

If an object in the search tree cannot be accessed there must be an error on the search
path (the path from the object’s node to the root). We conclude that algoritteaTIEST
rejects, only if it finds two objects whose current position is inconsistent with the tree
order. Thus we are basically in the same situation as in the case of the sorted arrays. We
therefore maintain an arraq[1 .. .n] where the items are stored in the ordering induced
by the search tree (this can be the same array that is used for the sampling). Then we
can proceed similarly to the sorted arrays. We use a binary search to find two adjacent
array entries whose ordering is inconsistent with the corresponding object positions. Then
we swap these entries in the array and we swap the entries in the corresponding nodes in
the tree (these nodes musit be adjacent in the tree). Unfortunately, the change of the
distance function makes the proof for the sorted arrays invalid for the search trees. This is
because of the fact that reducing errors in the tree order by swapping two objects (in the
way just explained) does not necessarily decrease the distance to a correct data structure
in terms of the distance measure from Definition 6.2.5. In fact, in situations it can even
increase this distance. We must apply a different technique. We therefore change the
sample size of algorithm REETEST in such a way that it accepts an input thakigar
from correct with probability at mo%‘?:

Lemma6.2.7 Lets > 2In(3n)/e. Then the probability that algorithfiREETEST ac-
cepts an input that is-far from correct is at mosﬂm.

Proof: Forthe case > 2In(3n)/e we get:

. 1
Pr[Algorithm TREETESTaccept$ < (1 —¢)?"PW/e < —
3n?
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O

Then we use the following reorganizer:

/ﬁzEEREORGAMZER(T, t,¢€) \
if TREETEST(T,2In(3n)/€, €) rejectsthen
Let (k, 1) be the pair returned byREETEST(T, 2In(3n) /€, €)
k’=FINDINVERSION(A, k, 1)
swap@l[k'], Ak’ + 1])
swap the corresponding tree nodes

\ TREEREORGANIZER(T, t, €) j

Now we prove that the probability that the reorganizer terminates when the trdaris
from correct is at most/3.

Lemma 6.2.8 The probability thafTREEREORGANIZER stops when the hypothesisis
e-far from correct is at most/3.

Proof : Let A denote the array in which the object identifiers are stored with respect
to the tree order. LeA(t) = (A[l],...,A[n]) denote the permutation ¢fi] induced
by array A at timet. Further letm = (m,...,7m,) denote the permutation such that
P (t) < <Pm (t) Let

At)-o=m .

Then we have that(c) < n? — 3 by the definition of the weight of a permutation. We
further observe that each call of the reorganizer decreases the wewghydf. In the case
thatT is e-far from correct we know that the reorganizer has to reject at mosines. Let

X denote the indicator random variable for the event that algoritlmoHGANIZER does
not stop wher is e-far from correct. Then we have:

Prix=1]>(1- L)nz% >

3n? > 2/3

3

sl-

since ]
Pr |Algorithm TREETEST accepts < — .
[Alg Pt < 5

O

Lemma 6.2.4 holds also for trees because it does only assume that errors are corrected
by swapping two adjacent objects in the maintained sorted sequence (which is equivalent
to the tree order and is maintained in arfay Therefore we can conclude:

Theorem 19 There is a soft kinetic balanced search tree with dynamic efficiéng’n/e)
and update timé(1). It answers access queries in tirgglogn).
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Proof : By Lemma 6.2.8 we know that our reorganizer satisfies the requirements of a
soft kinetic data structure. The number of update queries made by the property tester is
again proportional to its running time @¥(log”n/e). For a sequence of querié®) =
(Qq,...,Qm) the number of calls to the reorganizemist-'the number of errors corrected

by the reorganizer’. Together with Lemma 6.2.4 we get that the dynamic efficiency of the
data structure i€ (log” n/e). The update time af(1) is immediate. The query algorithm
needs tim&)(logn) for an access query because the tree is balanced. O

6.2.3 Range Trees

We now want to focus on structures from computational geometry. We first consider range
trees in one and two dimensions. Then we design soft kinetic Euclidean minimum span-
ning trees.

1D Range Trees. 1D range trees are balanced binary search trees (see [1] for a formal
definition of range trees). The only difference to a standard search tree lies in the type of
qguery. A query to a range tree specifies a query rangg and the answer should return
all points within the intervalx, y]. The standard way to answer such queries is to search
for x andy in the range tree and then to report all points on the search paths that are within
the query range as well as all points between the two search paths. Obviously, we can
apply the analysis of soft kinetic search trees to range trees. So the only question is what
time is needed to answer a query. A query to a soft kinetic range tree works in a similar
way as a standard query to a range tree. But in soft kinetic range trees it may be the case
that a point whose position is not within the query interval is stored between the two search
paths (because there is an error in the structure). In such a case we do not report this point.
For each point between the two search paths that is not contained in the query interval
we can find an error in the data structure. This way we can amortize the time needed to
process those points against the dynamics of the system.

We can use soft kinetic data structures for binary search trees to obtain the following
result (see [1] for a formal definition of range trees):

Theorem 20 There is a soft kinetic 1D-range tree with dynamic efficie@yog®n/e)

and update timé(1). The soft kinetic range trees supports 1D-range queri€3(iogn+

k) time, wherek is the number of reported points (a point is reported, only if it is within
the query range). lk* denotes the number of points in the query range (at the time the
query is processed) then it holds with probability at le3& thatk > k* — en.

Proof :  We have to show that > k* — e n holds with probability2/3 and we have
to prove the running time for the range queries. The other results follow from the binary
search trees. First of all, we can assume that the data structenelase to correct with
probability2/3 when the query is processed. This follows from Lemma 6.2.8 because the
reorganizer is called before a query is answered.

A range query for a one dimensional range tree is answered in the following standard
way: we search for the right and the left end of the query interval and output all nodes
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that are between the search paths. Before we report a point we check if it is contained
inside the query interval. If it is, we output it. If it is not we have found a conflict with
some node on the search paths. After all nodes inside the query interval have been reported
we partition the set of pointB... whose position is not in the query interval but that are
located between the two search paths into two sets. The firBtLgatontains all points

of P, whose position is smaller than The second sel-,, contains all points 0P,

whose position is larger than We pick the larger set of these two and correct an error for
each point in this set. W.l.0.g. let us assume thatis the larger set. In the following we
identify the point with the node where it is stored. We observe that there are two different
orders among the points. The standat@relation and the tree ordex+. We observe that

each pointp in P_, is either stored in a right subtree of a node of the left search path or

in a left subtree of a node of the right search path. These are the two cases we consider.
Let us start with the case whenis stored in a right subtree of a poigqton the left search

path. Then we observe thatmust be larger thar (because the search path took the left
edge). Therefore, we haye< q butq <t p. This is a conflict. In the second case, the
pointp is stored in a left subtree of a point on the right search path. Then we know that the
point g stored at the split node (the node where the two search paths split) lies within the
search intervalx, y]. Sincep is stored in a left subtree of the right path it must be larger
thanq. But this is not the case. Hence there is a conflict becgquse p. For each point

we use the standard procedure to find two points that are adjacent in the tree order and we
swap them. Since we process the points in increasing order none of the conflicts of the
remaining points is resolved (though the 'conflict partner of a point may be moved in the
tree order).

The number of inversions corrected in this process is at least half the number of points
in the search interval that are not reported. Therefore we can amortize the update queries
and the time needed to deal with these points against the dynamics of the motion.

Now assume that less th&h — e n points are reported. Then there are more téan
nodes that cannot be accessed, because every access operation to one of the missing nodes
will end either on the search paths or between them. But the nodes that can be accessed
this way are the nodes reported by the query algorithm. Thus we have that thectiiae is
which occurs with probability at mogt/3. O

2D-Range Trees. In this section we describe and analyze 2-dimensional soft kinetic
range trees (see, e.g., [1] for a formal definition). We consider a standard implementation
of 2D-range trees. A 2D-range tree for a sehgfoints inR? is a two level data structure.

The first level consists of a binary search tree (a 1D-range tree) sorted according to the
x-coordinate. The second level consistaudfees (one for each node in the first level tree)
sorted according to thg-coordinates of the points. (see, e.g., [1] for more details).

Similar to the binary search trees we want to have a data structure that supports range
gueries in a reasonable way. That is, we want to make sure that, if a structuciie to
correct, it cannot happen that almost every range query fails.

We say that a point is accessible in a 2D range tree, if it can be accessed in the first
level tree using its-coordinate as key and it can be accessedllisecond level trees on
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the search path using itscoordinate.

Definition 6.2.9 A 2D range tree is:-far from correct, if there are more thaem points
that are not accessible.

Similar to the binary search trees we can design a simple property tester. We sample a set
of O(1/€) nodes and check whether they are accessible by following the parents pointers
in the trees. We also use two arrays as auxiliary data structures. Agra/used to define

the order of objects in the first level of the range tree and afraylefines the order in

the second level. We maintain the invariant that at any time the order of the objects in
both levels is according to the order of the corresponding array. A combinatorial change
in a range tree takes places when the there is a change in the sorted sequence w.r.t. the
x-coordinate or in the sorted sequence w.r.t.yhsoordinate.

When the property tester rejects, it provides a proof that one of these arrays is not in
the correct order and we can find an adjacent pair that is in the wrong order (using the
same procedure as in the case of arrays and trees). Then we swap these two objects in the
corresponding array and we adjust the range tree to the changes we made. The adjustment
in the second level is done by deleting and reinserting the objects. This can be done in
O(log*n) time.

If we swap two objects in the first level tree, we delete all occurrences in the second
level trees. For this purpose we maintain pointers to all occurrences of an object in the
second level trees. Then we swap the two nodes in the first level tree and reinsert the objects
into the second level trees (using the ordering maintained in a&kafor comparisons).

This procedure can be donedlog”n) time.

Now we can proceed in a similar way as for the search trees. We first show that the
following algorithm is a property tester for correctness of range trees that accepts a range
tree with probability at mosg# ifitis e-far from correct.

RANGETREETEST(T, s, €)
fori=1tos
pick a nodev of the search tree uniformly at random
if nodev is not accessibléhen reject
accept

Lemma6.2.10Lets > 2In(én)/e. Then algorithmRANGETREETEST is a property
tester. If an input tred is e-far from correct then it is accepted with probability at most
1

6n? "

Proof :  Since algorithm RNGETREETEST accepts every correct tree we only have to
analyse the probability of rejectance. ebe a range tree that ésfar from correct. Then
we have

Pr[algorithm RANGETREETESTaccepts < (1 — e)?"em/e < i
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We already explained the way the errors are corrected by the reorganizer. The remain-
ing part of the reorganizer is similar to the one for search trees.

RANGETREEREORGANIZER(T, t, €)
if RANGETREETEST(T, 2In(3n)/e, €) rejectsthen
correct the detected error
RANGETREEREORGANIZER(T t, €)

Lemma 6.2.11 The probability thaRANGETREEREORGANIZERStops when the hypoth-
esisT is e-far from correct is at most /3.

Proof: The distance between the hypothesis and a correct range tree is at most two times
the distance in the one dimensional case (because we have two sorted sequences instead
of one). In the case thdtis e-far from correct we know that the reorganizer has to reject

at most2(n? — 3) times. LetX denote the indicator random variable for the event that
algorithm REORGANIZERdoes not stop wheh is e-far from correct. Then we have:

1 2
Prix=1] > (1——)23> >2
rX=1 > ( e >—5=22/3

3

-

since
1
Pr |Algorithm RANGETREETESTaccepts < —
[Alg P <

Checking whether a point is accessible tak¥og”n) time. We conclude:

Theorem 21 There is a soft kinetic 2D-range trees with dynamic efficieB¢pg® n/e)
and update timé(1). The soft kinetic range tree supports 2D-range queri&s (tog” n+
k) time wherek is the number of reported points in the given query rangé* ifienotes
the number of points in the given query range then it holds with proballi}iBythan
k> k' —en.

Proof : The analysis of the running time of the queries is similar to the 1D case. And
again, if there is a query that returns less than- € n points, then the structure must be
e-far which is a contradiction. O

6.2.4 Euclidean Minimum Spanning Trees

The last structure we consider is a Euclidean minimum spanning tree of a point set in the
R2. In order to design a soft kinetic Euclidean minimum spanning tree we use the property
tester and the distance measure from Section 3.3. Recall that this property tester only
rejects, if it finds a cycle in the EMST-completion of the input graph. The longest edge
of such a cycle cannot be in the EMST of the underlying point set. We use the following
reorganizer:
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EMSTREORGANIZER(T, t, €) \
if EMSTTESTER(T, €) rejectsthen
Let e denote the edge that is not in the EMST
marke as deleted
increase counter for deleted edges by 1
if en/200 edges have been deletiéndn
recompute the EMST from scratch (query all point positions)
set counter t@
\ EMSTREORGANIZER(T t, €) /

Here BMSTTESTERT, €) denotes the property tester for EMSTs in degree bounded
graphs from Section 3.3 with the exception that we do not test the connectivity of the
tree. In the algorithm ESTTESTERmMarked edges will be treated as missing edges. Since
the number of marked edges is at meat/200 our graph is always /200-close to con-
nected. By the analysis from Section 3.3 it follows that algorithesETESTERrejects
the hypothesis with probability at leakt3, if it is e-far from EMST.

Theorem 22 There is a soft kinetic Euclidean minimum spanning tree with dynamic effi-
ciencyO( /n/e - log(n/e)) and update tim& (logn/e). Queries about incident edges
to a vertexv can be answered in tim@(1).

Proof :  We first observe that the number of calls to the reorganizer is at mast
'number of detected errors’. If we foungh /200 errors then we correct all of them at
once by recomputing the EMST from the scratch. This requiragpdate queries and
O(nlogn) time. We observe that for each of tka /200 errors there must be a change

in the combinatorial structure of the Euclidean minimum spanning tree. Therefore, we
can amortize the number of update queries and the running time ovenf2€0 errors.

We obtain that the dynamic efficiency is dominated by the property tester and therefore
O(+/n/e-log(n/e)). The update time is dominated by the time needed to recompute the
EMST and therefor@(logn/e). O
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7 Conclusions

In this thesis we studied geometric problems in the context of property testing and we
applied concepts from geometry to property testing. In Chapter 3 we designed property
testing algorithms for specific problems including disjointness of geometric objects, con-
vex position, and the Euclidean minimum spanning tree. Our algorithms have sublinear
query complexity and for some of them we give matching lower bounds. We also believe
that every property tester for the Euclidean minimum spanning tree in 2D has a query
complexity of Q(y/n) though we do not have a proof of that.

We think that property testing is an interesting concept, i.e., if applied to geometric
problems. We hope that further research in this area will provide new insights into the
structure of geometric properties. Besides the development of new property testing algo-
rithms it could be also an interesting problem to use existing property testers in the de-
sign of sublinear algorithms for geometric problems. For example, in the recent sublinear
approximation algorithm for the weight of a minimum spanning tree in degree bounded
graphs by Chazelle, Rubinfeld, and Trevisan [25] a property tester for connectivity in
graphs has been used as a subroutine.

In Chapter 4 we designed a framework for property testing algorithms with one-sided
error. The achievement of our framework is a nice decoupling of the probabilistic and
the combinatorial aspects of property testing. As a consequence of this, a proof using our
framework is usually elegant and gives a clear view of the important combinatorial features
of the problem. We applied our framework to analyze a couple of different property testers
and we showed that a large class of graph properties can be tested efficiently, if and only
if there is a proof using our framework. There are several open problems regarding our
framework and we want to mention two of them here:

The first problem is to extend the framework to algorithms vitkided error. The
guestion is here, if it is possible to formulate a framework f@rsaded error model and if
such a model is useful for the design and analysis of property testing algorithms. Another
interesting problem is to prove in our framework that triangle-free graphs can be tested
efficiently. Although it is known that triangle-free graphs can be tested efficiently, the only
known proof uses Szenti’'s Regularity Lemma. A proof using other techniques might
provide new insights into property testing and the structure of dense graphs.

Chapter 5 and 6 were devoted to the design of new models that involve property test-
ing. In Chapter 5 we introduced the possibility of range queries to property testing and
showed that the query complexity for some problems can be dramatically improved, if
range queries are allowed. Very recently, in a related model a sublinear time approxima-
tion algorithm for the weight of the Euclidean minimum spanning tree of a point set in
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theR¢ has been developed [27]. Is it possible to find other sublinear time approximation
algorithms in such a model ?

In Chapter 6 we designed a model (called soft kinetic data structures) to analyze the
maintainance of combinatorial structures under a very general model of motion. We ana-
lyzed some basic soft kinetic structures. Besides the obvious problem to design other soft
kinetic data structures it would be very interesting to further develop models for moving
data. Keeping the results from Chapter 5 in mind an interesting direction of research is to
find out which queries should be supported by mobile objects in order to design efficient
algorithms for mobile data.
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