
Property Testing and Geometry

Dissertation of Christian Sohler

September 30, 2002

Acknowledgments

First of all, I would like to thank my thesis advisor Professor Friedhelm Meyer auf der
Heide for his great support. He showed me in many helpful discussions how to improve
my work and suggested in which direction my research should go. But he also left me the
opportunity to go my own way.

I would also like to thank my ’co-advisor’ Professor Artur Czumaj for doing an excel-
lent job. Artur introduced me to property testing and suggested to consider it in the context
of geometry. His encouragement and ideas were always helpful and it was a pleasure for
me to work with him.

Then I would like to thank Valentina Damerow, Alexander May, Thomas Müller, Har-
ald R̈acke, and Martin Ziegler for carefully reading parts of this thesis and their helpful
suggestions to improve its readability.

Finally, a special thanks to the anonymous person(s) who cheered me up with a gift in
form of a ’SchlagerBild’ music CD during the last phase of writing.

iii

iv

Contents

1 Introduction 1
1.1 Motivation . 4
1.2 Related Work . 5

2 Preliminaries 9
2.1 The Standard Testing Model . 9
2.2 Combinatorial Properties . 11
2.3 The Power of Uniform Sampling . 12
2.4 Two Probability Lemmas . 15

3 Testing Algorithms for Geometric Properties 17
3.1 Intersection of Geometric Objects . 17
3.2 Convex Position . 20
3.3 Euclidean Minimum Spanning Tree . 28

3.3.1 Basic Definitions and Input Representation 29
3.3.2 Testing EMSTs in Well-Shaped Graphs 31
3.3.3 A Simple Property Tester in Well-Shaped Graphs 34
3.3.4 An Improved Property Tester in Well-Shaped Graphs 37
3.3.5 A Property Tester in Graphs with Maximum Degree 5 43
3.3.6 A Property Tester in General Graphs 48

4 Efficient Property Testers 51
4.1 Abstract Combinatorial Programs . 51

4.1.1 Testing Abstract Combinatorial Programs 53
4.2 Property Testing vs. Testing Abstract Combinatorial Programs 56
4.3 Clustering Problems . 57

4.3.1 Radius clustering . 58
4.3.2 Diameter clustering . 60

4.4 Reversal Distance . 64
4.5 Property Testing vs. Testing Abstract Combinatorial Programs(continued) 68
4.6 Graph Coloring . 70
4.7 Hypergraph Coloring . 73
4.8 Testable Hereditary Graph Properties . 78

v

Contents

5 Testing Algorithms with Geometric Queries 83
5.1 Property Testing with Range Queries . 83
5.2 Testing Convex Position with Range Queries 85
5.3 Map Labeling . 89
5.4 Clustering Problems . 93

6 Property Testing and Moving Data 97
6.1 Soft Kinetic Data Structures . 98

6.1.1 Analysis of Soft Kinetic Data Structures 100
6.1.2 Discussion of The Model . 101

6.2 Basic Soft Kinetic Data Structures . 101
6.2.1 Sorted Sequences . 101
6.2.2 Balanced Search Trees . 105
6.2.3 Range Trees . 108
6.2.4 Euclidean Minimum Spanning Trees 111

7 Conclusions 113

vi

1 Introduction

Property Testingis the computational task to decide whether a given object (e.g., a graph,
a function, or a point set) has a certain predetermined property (e.g., bipartiteness, mono-
tonicity, or convex position) or is far away from every object having this property. If the
input object neither has the property nor is far away from it, the algorithm may answer
arbitrarily. In contrast to traditional algorithms a property testing algorithm does not get a
complete description of the object under consideration as input. Instead, it has the ability
to perform queries about the (local) structure of the object. This way it is possible that a
property testing algorithm achieves its goal by looking only at a small (usually randomly
selected) part of the whole object.

The type of query used by a property testing algorithm depends on the object under
consideration. For example, if the object is a (dense) graphG then the algorithm may
query for entries in the adjacency matrix ofG. If the object is a functionf, it may ask
queries of the form: ’What is the value off(x) ?’ wherex is an element of the domain of
f. For point sets the algorithm may ask for the position of thei-th point of the set (given
an arbitrary, fixed, but unknown ordering among the points).

To specify if an object is far away from a property we need adistance measurebetween
objects. The distance between two objectsO1 andO2 is typically given by the ’fraction
of objectO1’ that has to be changed in order to obtain objectO2. For example, in the
adjacency matrix modelfor graphs the distance between two graphs is the fraction of
entries in the adjacency matrix on which the two graphs differ. The distance between
functions is the fraction of domain elements on which the value of the two functions differs
and the distance of points sets is the fraction of points that are contained in one set but not
in the other. To determine when an object is far away from a property adistance parameter
ε is introduced. Given a distance measure and a distance parameterε we say that an object
is ε-far from a property, if the distance to every object having the property is more thanε.

The quality of a property testing algorithm is measured by itsquery complexityand its
running time. The query complexity is the number of queries the algorithm asks about the
input. The running time is the time required for additional computations.

The concept of property testing was first explicitly formulated by Rubinfeld and Sudan
mainly in the context of program checking [75]. The study of property testing forcom-
binatorial objectswith focus on graphs was initiated by Goldreich et al. [51]. In many
follow-up papers the concept of property testing has been applied to different classes of
objects including graphs, hypergraphs, matrices, formal languages, Boolean expressions,
and point sets.

In this thesis we study geometric problems in the context of property testing and we

1

1 Introduction

apply concepts from computational geometry to property testing problems. We start our
investigations in Chapter 3 with the development of property testing algorithms for some
fundamental geometric properties [A. Czumaj,C. Sohler, and M. Ziegler, Property testing
in computational geometry, In:Proceedings of the 8th Annual European Symposium on
Algorithms (ESA), pages 155 - 166, 2000]. We show in particular, that disjointness of a set
of n geometric objects can be tested withO(

√
n/ε) query complexity. Next we develop a

property testing algorithm for theconvex positionproperty of point sets in theRd. A point
set is inconvex positionif every point of the set is a vertex of its convex hull. Our testing
algorithm has a query complexity ofO

(
d+1
√

nd/ε
)
. For both problems we show that our

property testing algorithm is optimal with respect to its asymptotic query complexity. Next
we consider the property that a geometric graph inR2 (a graph with vertex set equal to a
point set in theR2) is aEuclidean minimum spanning tree. We develop a property testing
algorithm with query complexityO(

√
n/ε log(n/ε)) for this problem. Our algorithm

is designed in theadjacency list modelfor graphs and it uses an interesting non uniform
sampling technique.

In the next chapter we present a general framework for property testing algorithms with
one-sided error [A. Czumaj andC. Sohler, Abstract combinatorial programs and efficient
property testers, In:Proceedings of the 43rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), to appear, 2002]. Our framework is based on a connection of
property testing with a new class of problems which we callabstract combinatorial pro-
grams. Informally, we show that a property can be tested efficiently, if for every problem
instance (no matter, if the instance has the property or not) there is an abstract combinato-
rial program (of small dimension and width) that satisfies aFeasibility Preservingproperty
and aDistance Preservingproperty. We apply our framework to a variety of classical com-
binatorial problems. We prove the testability of some clustering properties of point sets,
of the reversal distance property of permutations, and thek-coloring property of graphs
and hypergraphs [A. Czumaj andC. Sohler, Testing hypergraph coloring, In:Proceedings
of the 28th Annual International Colloquium on Automata, Languages and Programming
(ICALP), pages 493 - 505, 2001]. Although for most of these properties a property testing
algorithm has been known before, our framework can be used to simplify the correctness
proofs and in most cases it slightly improves the analyzed query complexity. More im-
portant, it shows that our framework is fairly general and can be applied to a couple of
different problems. In the last section of Chapter 4 we continue our investigations in the
generality of the framework and show: If ahereditarygraph property can be tested in
time independent of the size of the graph (for constantε), then there exists a proof for its
testability in our framework. A graph property is called hereditary, if it is closed under
taking induced subgraphs, i.e., ifG = (V, E) is a graph with a hereditary graph property
then every subgraph ofG induced by a setS ⊆ V has the property, as well. Although the
current formulation of the framework is purely combinatorial and there is no trace of the
geometric origin, its development has been influenced by concepts from geometry such as
the geometry of linear programming and LP-type problems [76].

In Chapter 5 we return to the development of specific property testing algorithms;
this time under a different model of computation [A. Czumaj andC. Sohler, Property
testing with geometric queries, In:Proceedings of the 9th Annual European Symposium on

2

Algorithms (ESA), pages 266 - 277, 2001]. While in the standard testing model considered
in Chapter 3 a testing algorithm for properties of point sets is only allowed to query for
the position of thei-th point of the set we now allow a certain kind ofgeometric queries
when accessing the input point set. In this new model a testing algorithm may specify a
query rangeR and ask for thei-th point withinR. Depending on the type of query range
allowed we have different models of computation. The queries we consider are supported
by standard spatial data structures as they appear in many applications. We show that in
the new model it is possible to design more efficient testing algorithms than in the model
considered so far. In particular, we reconsider the convex position property and show that
it can be tested withO(logn/ε) triangular range queries. Then we show that there is a
property testing algorithm for a basic map labeling property. This algorithm usesO(1/ε3)

rectangular range queries. Finally, we visit the clustering properties from Chapter 4 again.

In Chapter 6 we apply property testing in the context of moving objects [A. Czumaj,
C. Sohler, Soft kinetic data structures, In:Proceedings of the 12th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 865 -872, 2001]. When we consider moving object
like cars, robots, and mobile phones we do not know the future position of an object.
In many situations an object is controlled and moved by a third party which is located
outside of our system. Basically, the only query a system can guarantee to answer correctly
is for the current position of an object. In Chapter 6 we develop a theoretical model
for this kind of motion. We are interested in combinatorial structures that are uniquely
defined by the current position of all objects. We assume the following: Queries about
the structures we maintain occur subsequently in time. Between two queries the objects
may move arbitrarily. This movement induces combinatorial changes in the maintained
structure because the structure is uniquely defined by the objects’ positions. Before each
query a data structure may spend some time to ’adjust’ its data. The time spent is compared
to the number of ’combinatorial changes’ that occurred in the data structure since the
most recent query. More precisely, we assume that the objects moved on the ’shortest’ (in
terms of combinatorial changes) route to their current position. If we do not want to ask
for the position of every single object before each query, there is no hope to maintain a
combinatorial structure correctly. That is, where property testing can be applied. We only
maintain approximately correct structures (in the property testing sense). If a structure
is far from correct, then the property testing algorithm usually rejects and returns a small
counter example. This counter example is then locally corrected. This procedure is applied
until the property tester accepts. Using this approach we can show that we can maintain
approximately correct data structures spending only slightly more time than the number
of combinatorial changes in the structure during the shortest motion from configuration to
configuration. We illustrate our approach on sorted sequences, binary search trees, range
trees, and the Euclidean minimum spanning tree.

In the remainder of the Introduction we discuss our motivation to consider property
testing in general, and in particular in the geometric context. Lateron we give a brief
summary of the state of the art in property testing.

3

1 Introduction

1.1 Motivation

Property testing can be viewed as a relaxation of a standard decision procedure: Instead
of deciding whether an object has a given property or not, we only have to distinguish
between the case when the object has the property and the case when the object is far
away from it. This simpler problem can often be solved much faster and by looking only
at a small - sometimes constant - part of the input. For this reason the running time of a
property testing algorithm is usually much smaller than that of the corresponding decision
procedure. Problems that are infeasible in their original formulation as a decision problem
(e.g.,NP-complete problems) are tractable in the property testing setting. The standard
way to deal with intractable problems would be, of course, to apply an approximation
algorithm (in the classical sense) to the problem. But sometimes polynomial or even linear
time approximation algorithm may also be too slow. In telecommunications, web traffic
analysis, and data mining we have massive data sets that cannot be processed by classical
algorithms. In such cases the only possibility is to use a sublinear time and space algorithm
as provided by property testing.

We also observe that property testing is a natural form of approximation. Whether or
not the approximation provided by a standard approximation algorithm is more useful than
that of property testing depends on the problem at hand. For example, in the case of graph
and hypergraph coloring it might be more useful to obtain a coloring that violates at most
anε-fraction of the edges than a coloring that might use many more colors than necessary.

We remark that property testing can be very useful in the field of program verification.
In software development people often specify interfaces between different program parts.
Even with a correct and complete interface specification it may happen (more often than
not ?) that data is passed through the interface that is not consistent with the specification.
Typically, data is passed internally using pointers and so it is possible to pass huge objects
in constant time. Hence it is infeasible to check the whole object for its correctness without
heavy impact on the running time of the system. In this case a property testing algorithm
provides a useful alternative: If we cannot give a full guarantee that the input is correct
then we can at least detect the case when it is far from correct.

A further reason for the research in property testing algorithms is the fact that in some
situations being close to a property is almost as good as having the property. This can be
seen in the following example from Computer Graphics: One of the major problems in
Computer Graphics is to design efficientrendering algorithms. Rendering is the computa-
tional task to display a virtual scene on the screen. Such a virtual scene is typically com-
posed of several millions of polygons. Using nowadays graphics hardware and a standard
z-buffer algorithm it is not possible to render all polygons in a reasonable time. Therefore,
it is necessary to determine in advance if certain parts of the scene cannot be seen from
the current point of view. This process is calledocclusion culling. Unfortunately, it is very
difficult to compute exactly those polygons that cannot be seen from a certain point of
view. Many approaches have been developed to deal with this problem and some of them
work only for objects that have (roughly) a convex shape (see, e.g., the survey [26]). If we
could determine quickly in advance whether an object is convex or far away from convex
then we could quickly decide if it is useful for the purpose of (online) occlusion culling.

4

1.2 Related Work

Such a service can be provided by a property testing algorithm. Therefore we consider the
closely related problem, if a point set (possibly the set of vertices of an object used for
culling purposes) is in convex position, in Chapter 3 and 5 under different property testing
models.

One particular situation when property testing can be useful in Computational Geom-
etry is the exact computation of geometric structures. It is well-known that fixed precision
arithmetic leads to serious problems in the design of geometric algorithms. Therefore,
software packages provide efficient algorithms to evaluate geometric predicates exactly.
Unfortunately, precision takes its time and so the exact evaluation of geometric predicates
is usually much slower than what we could achieve by using fixed precision arithmetic.
One approach to deal with these problems is the following: We first compute the geomet-
ric structure using fixed precision arithmetic and then verify the final structure using exact
arithmetic. If we find errors we try to fix them locally. Unfortunately, such a heuristic
has the drawback that an early error in the computation may cause damage to the whole
part of the structure computed later. Therefore, we should make sure that our structure is
not ’too far away’ from the correct structure during the whole computation. This could
be achieved by a property testing algorithm. If the property testing algorithm rejects the
current structure, then we can correct it before we finish the computation.

Another situation when property testing is useful is in the case of continuously chang-
ing data. Continuously changing data arises in applications that deal with moving objects,
e.g., when we want to maintain a mobile ad-hoc network for moving robots. In such a
situation we can query each robot for its current position but such a query may be slow
and each query increases the network load. It also does not make sense to update the posi-
tion of each robot before a transmission using the network is performed - such an update
would often create much more network load than the transmission itself. Instead we may
use property testing techniques to check the structure of the current network. If we find
errors in the structure we then correct them locally. In Chapter 6 we develop a theoretical
framework for mobile data and we show how to maintain a certain type of approximate
range trees. These range trees may be useful for the problem of maintaining such a com-
munication network.

1.2 Related Work

We now give a brief summary of the state of the art in property testing. Property testing
was first explicitly formulated by Rubinfeld and Sudan in the context of program checking
[75]. In [51] Goldreich, Goldwasser, and Ron initiated the study of property testing for
combinatorial objects. Since then, people designed property testing algorithm for a wide
variety of problems and tried to classify large classes of testable properties. In the follow-
ing we try to summarize the known results in the different areas where property testing
has been applied. We say that a property can betested efficiently, if there is a property
testing algorithm with a query complexity that does not depend on the size of the input (is
constant, if the distance parameterε is a constant).

5

1 Introduction

Graph, Hypergraph, and Matrix Properties. Graph properties have been exten-
sively studied in the context of property testing. There are essentially two models for
testing graph properties. Theadjacency matrix modelfor dense graphs and theadjacency
list modelfor sparse graphs. In the adjacency matrix model introduced in [51] it is known
that properties that can be formulated as a certain class of graph partitioning properties
can be tested efficiently [51]. Among these properties are clique size, cut size, bisection,
andk-colorability properties of graphs. Colorability properties have received much atten-
tion in subsequent work. The analysis from [51] for the bipartiteness and the (standard)
k-colorability property has been improved in [6]. In [5] Alon et al. used a variant of Sze-
meŕedi’s Regularity Lemma to show that a very general graph coloring property can be
tested efficiently. They use this result to prove that every first order logic graph property
without∀∃ quantification is efficiently testable. Though the query complexity of their al-
gorithm is independent of the size of the graph its dependency onε is enormous (i.e., a
tower of towers of a polynomial inε). The notion of coloring from [5] has been further
generalized in various ways in [42] and shown to be efficiently testable.

Another general property considered in the research is the property ofH-freeness
(graphs not containing a fixed graphH as an induced subgraph). Alon proved that the
query complexity of a one-sided error property tester is polynomial, if and only ifH is
bipartite [3]. The property ofH-freeness can also be tested efficiently in3-uniform hyper-
graphs [62].

In the adjacency matrix model there is always acanonicalproperty testing algorithm as
the following result of Goldreich and Trevisan shows: A property in the adjacency matrix
model can be tested with query complexity independent of the size of the graph, if and
only if there exists a property testing algorithm that samples a setS of vertices of size
independent of the graph uniformly at random and that accepts if and only if the subgraph
induced byS has some fixed graph property (possibly different from the tested one) [54]. In
this work the authors also characterize graph partition problems that are efficiently testable
with one-sided error.

The adjacency list model for graphs has been introduced in [52] by Goldreich and Ron.
They show that some graph properties like connectivity, planarity, and cycle-freeness can
be tested efficiently. In contrast to the adjacency matrix model in the adjacency list model
there is no canonical property testing algorithm known. Typically, non-uniform sampling
strategies that depend on the problem at hand have been applied. For this reason the prop-
erties considered in the adjacency list model seem to be structurally simplier than the ones
analyzed in the adjacency matrix model. Colorability properties have also been considered
in the adjacency list model: In [53] Goldreich and Ron showed that bipartiteness can be
tested with a query complexity ofO

(
poly((logn)/ε)

√
n/ε

)
using a non-uniform sam-

pling strategy based on random walks. The authors also present an almost matching lower
bound on the query complexity. Very recently, Bogdanov et al. [19] presented a lower
bound ofΩ(n) (for sufficiently smallε) on the query complexity of3-colorability in the
adjacency list model. It is also known that the diameter of graphs [67] and acyclicity of
directed graphs is testable in sublinear time [15].

The popularity of the adjacency matrix model for graphs lead to the question which
matrix properties can be tested efficiently. Fischer and Newman showed that matrix prop-

6

1.2 Related Work

erties defined by a finite collection of forbidden induced partially ordered sets (where we
view a matrix as a partially ordered set in the standard way, that is, as a product order of
total orders) are efficiently testable [45]. Parnas and Ron developed property testing algo-
rithms for the problem to test whether a given matrix is a Euclidean metric, a tree metric,
or an ultrametric [68].

Properties of Functions. Monotonicity properties of functions have also received a
lot of attention. Monotonicity of binary functionsf : {0, 1}n → {0, 1} can be tested with
a query complexity ofO(n/ε) [50]. This result has been generalized to functions over
arbitrary finite ordered sets in [37]. Sortedness of a sequence ofn numbers can be tested
in O(logn/ε) time [40]. Lower bounds on monotonicity testing have been given in [44].

Properties of Boolean functions that can be tested efficiently are singletons, monomi-
als, and the property thatf is a monotone DNF formula with at most` terms. [70]. In [43]
Fischer et al. proved that the property that a Boolean function overn variables depends
only onk of them can be tested with a number of queries depending only onk andε.

Language Properties. In order to understand the nature of efficiently testable prop-
erties people considered property testing in the context of formal languages. Alon et al.
showed that a regular language seen as a property can be tested efficiently [7] and there
exists a context-free language that cannot be efficiently tested. Further, there is a property
testing algorithm for testing Dyck languages (languages containing strings of balanced
parenthesis) with query complexitỹO(n2/3/ε) [69]. Newman proved that constant width
oblivious read-once branching programs viewed as properties can be tested efficiently [66].
Recently, Fischer and Newman showed that read-twice constant width branching programs
are not necessarily testable [46].

Other Results. There are a couple of results on specific topics that do not fit into one
of the three categories above. We summarize them in this paragraph.

Alon and Shapira showed that a general satisfiability problem which includes hyper-
graphk-coloring can be tested efficiently [8].

In the context of clustering Alon et al. considered the radius and diameter clustering
problem, i.e. the problem if a given point set can be partitioned intok subsets such that
the radius of the smallest sphere enclosing each set (the maximum distance between two
points within each set, respectively) is at mostb. If we view this problem as a property of
point sets then it can be tested efficiently as proved in [4].

Some results related to statistics have been obtained: In [14] Batu et al. gave a prop-
erty testing algorithm with query complexityO(n2/3/ε−4 logn) for closeness of distri-
butions. Given a distributionA over [n] × [m] it can be tested with query complexity
O(n2/3m1/3poly(ε−1)) if the distributions obtained by projectingA to each coordinate
are independent [13].

Recently, Buhrman et al. introduced the notion of property testing to quantum com-
puting [21].

7

1 Introduction

Surveys. There are three surveys that summarize some of the work done in the field of
property testing [42, 74, 49].

8

2 Preliminaries

In this chapter we introduce some notation used throughout this thesis. In particular, we
introduce a formulation of the standard property testing model with one sided error. We
introduce a special class of properties which we call combinatorial properties.

Then we show that if there exists a property tester for a combinatorial property of point
sets then there exists a property tester with the same query complexity that picks a sample
set uniformly at random and decides based on the sample and its internal coin flips. Such a
result is used for lower bound constructions for the query complexity of a property testing
algorithm.

Finally, we prove two auxiliary lemmas. The first lemma gives a lower bound on the
probability that a sample taken uniformly at random from a setΩ contains one ofk disjoint
sets of sizel. The second lemma gives an upper bound on that probability.

2.1 The Standard Testing Model

We begin with some basic notation and definitions. We use theÕ-notation to hide poly-
logarithmic factors, i.e. we haveO(n polylog(n)) = Õ(n). We write [n] := {1, . . . , n}

for the set of integer numbers between1 andn. Throughout this thesis, letD denote a
finite set calleddomainand letR denote a (possibly infinite) set calledrange. Further let
F denote a set of functions fromD to R. For a subsetS ⊆ D and a functionf ∈ F let
f| S denote therestrictionof f to S. That is,f| S : S → R with f| S(x) = f(x) for all x ∈ S.
Now we define a property ofF as a set of functions fromF :

Definition 2.1.1 A setΠ ⊆ F is called aproperty.

As already mentioned in the introduction we also need a distance measure between
functions inF to define a property testing problem. In general, such a distance measure
can be an arbitrary functionσ : F × F → [0, 1]:

Definition 2.1.2 Given a distance measureσ between functions inF and a real number
ε, 0 ≤ ε < 1, we say a functionf ∈ F is ε-far from (having a property)Π if σ(f, g) > ε

for every functiong ∈ Π.

Typically, we define the distance between two functionsf, g ∈ F as the fraction of
domain elements on which the two functions differ (see, for example, [51]). Therefore, we
denote this distance measure as thestandard distance measure:

9

2 Preliminaries

Definition 2.1.3 Given two functionsf, g ∈ F we definethe standard distance measureσ1

for functions inF as:

σ1(f, g) =
|{x ∈ D : f(x) 6= g(x)}|

|D|
.

The goal of property testing is to develop efficientproperty testers. A property tester
for Π is an algorithm that gets a distance parameterε and a (possibly implicit) description
of D (for example, whenD is the set of numbers from[n] it getsn). The property tester
hasoracle accessto the input functionf (for eachx ∈ D it may ask queries of the form:
’What is the value off(x) ?’). A property tester must

• accept every functionf ∈ Π, and

• reject every functionf that isε-far fromΠ with probability at least2
3
.

1 Notice thatif f /∈ Π andf is notε-far fromΠ, then the outcome of the algorithm can go
either way.

Complexity of Property Testers. There are two types of possible complexity mea-
sures for property testers: Thequery complexityand therunning time. The query com-
plexity measures the number of queries asked by a property testing algorithm:

Definition 2.1.4 The number of queries to the oracle is thequery complexityof the prop-
erty tester.

If one counts also the time the algorithm needs to perform other tasks than querying
the input function values (for example, to compute certain combinatorial structures or to
compute a coloring of a graph), then the obtained complexity is called therunning timeof
the property tester. Now we present two examples how objects other than functions can be
represented in our model.

Point Sets. When we consider point sets we setD = [n]. Then we can represent a
point setP = {p1, · · · , pn} in Rd by a functionf : [n] → Rd with f(i) = pi for 1 ≤ i ≤ n.
Throughout the thesis we assume that the input point set is ingeneral positionwhen we
deal with property testing algorithms for point sets. General position means that our point
set is not in adegenerateconfiguration. Roughly speaking, we call a configuration of
points degenerate, if it occurs with probability0 when the points are subject to small
random perturbations.

To be more precise, when we consider theconvex positionproperty as defined in Chap-
ter 3 then a point setP in the Rd is degenerate, if there are more thank + 1 points in a
k-dimensional affine subspace withk < d. When we consider the Euclidean minimum
spanning tree, then a point set is degenerate, if the point set does not have a unique min-
imum spanning tree or if it has a subset that does not have a unique minimum spanning
tree.

1We consider aone-sided errormodel, though in the literature also atwo-sided errormodel has been
considered. In the two-sided error model the goal is to distinguish with probability at least2

3 between
the casef ∈ Π and the case off beingε-far fromΠ.

10

2.2 Combinatorial Properties

Graphs. In the literature one can find three models for property testing in graphs. The
first (and most widely considered) model is called theadjacency matrix model[51]. Here
one assumes that a graphG = (V, E) is represented as an adjacency matrix, i.e. it is
possible to query for each pair(v, u) with v, u ∈ V , if (v, u) ∈ E or not. Similarly, one
can assume that the graph is represented by a functionf : V ×V → {0, 1} that encodes the
adjacency matrix. W.l.o.g., we assume thatV = [n]. Hence when we setD = [n] × [n]

andR = {0, 1} then we can represent graphs as functions fromD toR as required.
The second model is thebounded length adjacency list model[52]. Here one assumes

that a degree boundd on the maximum degree of the vertices in the input graph is known.
In this case a graph is represented as a functionf : [n] × [d] → [n] ∪ { 0} wheref(i, j)

denotes thej-th neighbor of vertexi and wheref(i, j) = 0, if such a neighbor does not
exist.

The third model is theunbounded length adjacency list model[67]. In this model, the
input is not represented as a function. The model is specified by the different queries that
may be asked about the input graphG = (V, E). First of all, the algorithm may ask for the
degreedeg(v) of each vertexv ∈ V . Further it may ask for thei-th neighbor of vertexv
for eachi ≤ deg(v).

2.2 Combinatorial Properties

We now want to introduce a special class of properties that plays an important role in
property testing. We refer to these properties ascombinatorial properties. Combinatorial
properties are only defined for functions whose domainD is (isomorphic to) a set of the
form [n]d for some constantd > 1. They are properties that are closed under permutations
(isomorphisms) of the domain. This is typically the case when the function is used to
represent a set of objects or a combinatorial structure such like a graph or hypergraph.

Definition 2.2.1 LetF be the set of functions with domainD = [n]d and arbitrary range
R. LetSn denote the set of permutations of[n]. A propertyΠ ofF is calledcombinatorial,
if it is closed under permutations of[n]. That is, ifπ ∈ Sn is a permutation of[n] then
for everyf ∈ Π it holds: π(f) ∈ Π whereπ(f)(i1, . . . , id) := f(π(i1), . . . , π(id)) for
i1, · · · , id ∈ [n].

Let us consider a few examples for combinatorial properties. If the considered object
is aset of basic objects(that is, there is no ordering among the objects) then every property
must be combinatorial. This is because the property does not depend on the way the object
is represented as a function. Examples for combinatorial properties of sets of objects
are the disjointness property considered in Chapter 3 or the clustering properties of point
sets in Chapter 4. Other examples are all graph and hypergraph properties (if viewed as
properties of ann-vertex graph or hypergraph).

Examples for properties that are not combinatorial are properties likesortedness, con-
vex polygons2, and thereversal distanceproperty considered in Chapter 4. These prop-
erties typically depend heavily on the ordering given implicitly by the representation of

2The property that a sequence of points forms a simple convex polygon.

11

2 Preliminaries

the input object as a function. When we design property testers for these properties we
sometimes require non-uniform sampling techniques.

For combinatorial properties of point sets we show in the following section that there is
no chance to improve the query complexity of a property tester by using adaptive sampling.
If we consider combinatorial properties of point sets and we have an arbitrary property
tester with query complexityq(n, ε) then there is a property tester that samples a set
S ⊆ [n] of sizeq(n, ε) uniformly at random and decides based onS and its internal coin
flips.

2.3 The Power of Uniform Sampling

We now prove a fundamental lemma that is needed for lower bound constructions. We
show that if there is a property tester for a combinatorial propertyΠ of point sets with
query complexityq(ε, n) then there is a property tester forΠ that picks a sample set
S ⊆ P of sizeq(ε, n) uniformly at random and decides based onS and its internal coin
flips. The proof is almost similar to the proof of Lemma 4.1 in the paper [54] by Goldreich
and Trevisan which is based on an analogous statement proven by Bar-Yossef et al. in [11].

The idea of the proof is simple: There aren! different representations of the same
point set, one for each permutation of[n]. When we start our algorithm on a random
representation of the same set then choosing the next index adaptively simply means to
pick another element uniformly at random. Indeed we cannot gain anything using adaptive
sampling:

Lemma 2.3.1 Let Π be an arbitrary combinatorial property of point sets and letA be an
arbitrary property tester forΠ with query complexityq(ε, n). Then there exists a property
tester for propertyΠ that selects a setS of q(ε, n) points uniformly at random and decides
based onS and its internal coin flips.

Proof : Recall that a point setP = {p1, · · · , pn} in theRd is represented by a function
f : [n] → Rd with f(i) = pi. SinceΠ is a combinatorial property we know that we can
talk about properties ofP rather than properties of the function representingP. That is, if
one representation ofP has propertyΠ then every other representation also has property
Π. We use this fact in the following to construct a property tester that samples uniformly at
random from an arbitrary property tester forΠ. Both property testers have the same query
complexity.

LetA be an arbitrary property tester forΠ. Wlog., we assume that algorithmA operates
in iterations. In each iteration, depending on its internal coin flips and the answers obtained
in the past iterations, the algorithm selects a new indexi and makes a query for the position
of the pointpi.

Now we obtain a new algorithmA ′ from A in the following way: WhenA ′ is started
with input point setP of sizen (given as an oracle) it first choses a permutationπ of [n]

uniformly at random. Then algorithmA is invoked with oracle access to the point setπ(P)

that is represented by the functionfπ : [n] → Rd defined byfπ(i) = f(π(i)). We observe

12

2.3 The Power of Uniform Sampling

thatπ(P) has propertyΠ, if and only if P has propertyΠ sinceπ(P) = P and sinceΠ is
combinatorial. Further we know thatA is a property tester for propertyΠ. Thus it must
accept, ifπ(P) has propertyΠ. It follows thatA ′ accepts, ifP has propertyΠ.

If P is ε-far from Π then so isπ(P). By the fact thatA is a property tester it follows
thatπ(P) is rejected byA with probability at least2/3. It follows thatA ′ also rejectsP
with probability at least2/3. Thus we know thatA ′ is a property tester for propertyΠ.

Our next step is to show that in each iteration of algorithmA ′ the next chosen point
is uniformly distributed among all possible choices (among all points that have not been
chosen in a previous iteration). For every sequencer of coin flips letAr denote the deter-
ministic algorithm obtained fromA by fixing the outcome of the coin flips according tor.
Further letA ′

r denote the algorithm similar toA ′ with the exception thatAr is invoked in-
stead ofA. We show that for every sequencer of coin flips and for every possible sequence
of queries and answers the choice of the point selected next by algorithmA ′ is uniformly
distributed among the points not selected so far.

Let iπ1,r, · · · , iπj,r denote the indices selected byA ′
r in iterations1 to j, i.e., the indices se-

lected whenAr is invoked with oracle access to the point setπ(P). Further letqπ
1,r, · · · , qπ

j,r

denote the points selected byA ′
r in iterations1 to j, i.e.,qπ

`,r = fπ(iπ`,r) for 1 ≤ ` ≤ j. The
choice of the indexiπj+1,r selected byA ′

r in iterationj + 1 depends only on the previously
selected pointsqπ

1,r, ..., q
π
j,r . Thus when we conditionπ by fπ(iπ`,r) = qπ

`,r, 1 ≤ ` ≤ j,
the choice of indexiπj+1,r is deterministic. Further we prove in the following claim that
for every fixed indexiπj+1,r under the same conditioning the pointfπ(iπj+1,r) is uniformly
distributed among the points not selected so far:

Claim 2.3.2 Let i1, · · · , ij ∈ [n] be distinct indices and letq1, · · · , qj ∈ P be the distinct
points. Then for eachi ∈ [n] \ {i1, · · · , ij} and eachp ∈ P \ {q1, · · · , qj}:

Pr[fπ(i) = p
∣∣ fπ(i`) = q`, 1 ≤ ` ≤ j] =

1

n − j
.

Proof : The number of permutations of[n] with fπ(i`) = q` for 1 ≤ ` ≤ j is (n − j)!.
For eachi ∈ [n] \ {i1, · · · , ij} and eachp ∈ P \ {q1, · · · , qj} the number of permutations
of [n] with fπ(i) = p andfπ(i`) = q` for 1 ≤ ` ≤ j is (n − j − 1)!. Thus

Pr[fπ(i) = p
∣∣ fπ(i`) = q`, 1 ≤ ` ≤ j] =

(n − j − 1)!

(n − j)!
=

1

n − j

. 2

Thus we know that in each iteration of algorithmA ′
r the next chosen point is uniformly

distributed among the points not chosen so far. We use this fact to build an algorithm
A ′′ that has the same output distribution asA ′. Then we design an algorithmA ′′′ that
samples a setS ⊆ P of q(ε, n) points uniformly at random and then decides based on
internal coin flips and the point positions. We observe that we can execute algorithmA ′ by
first choosing a sequencer of coin flips uniformly at random and then invoking algorithm
A ′

r. Algorithm A ′′ works in a similar manner. It first chooses a sequencer of coin flips

13

2 Preliminaries

uniformly at random. Then it invokes algorithmA ′′
r . Algorithm A ′′

r behaves similarly to
algorithmA ′

r with the exception that in each iteration whenA ′
r requests the position of

the point with indexi algorithmA ′′
r selects uniformly at random an index not selected so

far and returns the corresponding point. Let us formalize this point and look at iteration
j of both algorithms. Letij denote the index selected by algorithmA ′

r in iterationj and
let i ′j denote the index selected by algorithmA ′′

r . When during iterationj + 1 algorithm
A ′

r requests the position of the point stored at indexij+1 thenA ′′
r selects an indexi ′j+1

uniformly at random from the set[n]\ {i ′1, · · · , i ′j} and answers the query with the position
of point i ′j+1.

Claim 2.3.3 Let P be any point set in theRd. If algorithmsA ′′ andA ′ are invoked with
oracle access to the same function representingP then their output distributions are iden-
tical.

Proof : Let us fix the function representingP andr (for both algorithms). We show by
induction on the number of iterations that the output distribution of algorithmsA ′′

r andA ′
r

are identical. We already proved for a fixed selection of points in iterations1 to j that the
next point chosen by algorithmA ′

r is uniformly distributed among all points not selected so
far. Clearly, the same is true for algorithmA ′′

r (if the distribution of the indices is uniform
then so is the distribution of the corresponding points). Thus the induction step holds and
thus the output distributions of both algorithms are identical. 2

We have already proven thatA ′ is a property tester for propertyΠ. Since the output
distributions ofA ′′ andA ′ are identical for every input point set we have shown that algo-
rithm A ′′ is also a property tester. ButA ′′ uses a non-adaptive sampling. Finally, we show
that there is an algorithmA ′′′ that samples a setS of q(ε, n) points uniformly at random
and decides based onS and its internal coin flips.

Algorithm A ′′′ first samples a setS of q(ε, n) indices uniformly at random and then
chooses a permutation(i1, · · · , iq(ε,n)) of S uniformly at random. It then runs algorithm
A ′′ and answers thej-th query of algorithmA ′′ by returning the point stored at indexij.

Claim 2.3.4 LetP be any point set inRd. If algorithmsA ′′′ andA ′′ are invoked with oracle
access to the same function representingP then their output distributions are identical.

Proof : Again we fix the function representing point setP and the random choice ofr. We
show by induction on the number of iterations that both algorithms have the same output
distribution. It suffices to show that the choice of the index in iterationj + 1 is uniformly
distributed among the indices not chosen so far. For every indexi ∈ [n] \ {i1, · · · , ij} it
holds that

Pr[ij+1 = i
∣∣ i` 6= i for 1 ≤ ` ≤ j] =

q(ε, n) − j

n − j
· (q(ε, n) − j − 1)!

(q(ε, n) − j)!
=

1

n − j

Thus the index is chosen uniformly at random from the set of remaining indices. Hence,
the output distributions of algorithmsA ′′′ andA ′′ are identical. 2

Algorithm A ′′′ satisfies the statement of Lemma 2.3.1 and thus the proof is completed.
2

14

2.4 Two Probability Lemmas

2.4 Two Probability Lemmas

The first lemma shows that if we take a sample of sizes from a setΩ of n elements, then
with good probability we have at least one ofk disjoint sets (each of sizel) in our sample.

Lemma 2.4.1 Let Ω be an arbitrary set ofn elements. Letk and l be arbitrary integers
(possibly dependent onn) and lets be an arbitrary integer such thats ≥ 2 n

(2 k)1/l . Let
W1, . . . , Wk be arbitrary disjoint subsets ofΩ each of sizel. Let S be a subset ofΩ of
sizes which is chosen independently and uniformly at random. Then

Pr
[
∃j ∈ [k] : (Wj ⊆ S)

]
≥ 1

4
.

Proof : We first observe that we can focus on the casek ≤ n
2
, because ifk > n

2
, then

every setWi contains exactly one element and then we immediately getPr[∃j ∈ [k] :

(Wj ⊆ S)] ≥ 1
2
. Further, sincek ≤ n

2
yields l + n−l

(2 k)1/l ≤ 2 n
(2 k)1/l , it is sufficient to

consider only the cases = l + n−l
(2 k)1/l . Next, by Boole-Benferoni inequality (see, e.g., [65,

Proposition C.2]) we obtain

Pr
[
∃j ∈ [k] : (Wj ⊆ S)

]
≥

k∑
j=1

Pr[Wj ⊆ S] −
∑

1≤i<j≤k

Pr[(Wi ∪Wj) ⊆ S] .

Further, we observe that for everyj ∈ [k] it holds that

Pr[Wj ⊆ S] =

(
n−l
s−l

)(
n
s

) =
(n − l)!

(s − l)! (n − s)!
· s! (n − s)!

n!
=

(n − l)! s!

n! (s − l)!
=

l−1∏
r=0

s − r

n − r
.

Similar arguments can be used to show that for everyi, j ∈ [k], if i 6= j, then it holds that

Pr[(Wi ∪Wj) ⊆ S] =

(
n−2 l
s−2 l

)(
n
s

) =

2 l−1∏
r=0

s − r

n − r
=

l−1∏
r=0

s − r

n − r
·

l−1∏
r=0

(s − l) − r

(n − l) − r
.

Hence, Boole-Benferoni inequality implies that

Pr
[
∃j ∈ [k] : (Wj ⊆ S)

]
≥ k ·

l−1∏
r=0

s − r

n − r
−

(
k

2

)
·

l−1∏
r=0

s − r

n − r
·

l−1∏
r=0

(s − l) − r

(n − l) − r

= k ·
l−1∏
r=0

s − r

n − r
·

(
1 −

k − 1

2
·

l−1∏
r=0

(s − l) − r

(n − l) − r

)

≥ k ·
l−1∏
r=0

s − l

n − l
·

(
1 − k ·

l−1∏
r=0

s − l

n − l

)

= k ·
(

s − l

n − l

)l

·

(
1 − k ·

(
s − l

n − l

)l
)

.

15

2 Preliminaries

Now, since we assumed thats = l + n−l
(2 k)1/l , our calculations above yieldPr[∃j ∈ [k] :

(Wj ⊆ S)] ≥ 1
4
, and thus the lemma follows. 2

The next lemma is useful for certain lower bound constructions. The lemma gives an
upper bound on the probability that a sample set of sizes chosen uniformly at random
contains one ofk setsWi completely.

Lemma 2.4.2 LetΩ be an arbitrary set ofn elements. Letk, l, ands be arbitrary integers
(possibly dependent onn). Let W1, . . . , Wk be any disjoint subsets ofΩ of sizel each.
Let S be a subset ofΩ of sizes which is chosen independently and uniformly at random.
For every realp, 0 < p < 1, (possibly depending on other parameters), ifs ≤ (n − (l −

1)) · (p/k)1/l, then
Pr
[
∃j ∈ [k] : (Wj ⊆ S)

]
≤ p .

Proof : We use the union bound to obtain that

Pr
[
∃j ∈ [k] : (Wj ⊆ S)

]
≤

k∑
j=1

Pr[Wj ⊆ S] =

k∑
j=1

l−1∏
r=0

s − r

n − r
≤ k·

(
s

n − (l − 1)

)l

.

Therefore, ifs ≤ (n − (l − 1)) · (p/k)1/l, then the above inequality is upper bounded by
p. 2

16

3 Testing Algorithms for Geometric
Properties

In this chapter we design and analyze testing algorithms for fundamental problems from
the area of Computational Geometry. The problems we consider deal with global proper-
ties of geometric objects such as point sets or geometric graphs. We can formulate property
testing in the standard model for geometric objects as follows:

Given a geometric objectO (for example, a set of points or a geometric graph) and the
ability to perform local queries about the object (e.g. queries of the form: ’What is the
position of thei-th point of the collection ?’, ’What is thei-th edge incident to vertexp
?’, or ’What is the position of vertexp ?’) decide whetherO has a certain (predetermined)
property (e.g., whether the set of points is in convex position or whether the geometric
graph is a Euclidean minimum spanning tree) or is far away from every object having this
property.

We assume that our object representation is in the standard testing model. Point sets are
represented in the same way as it has been described in the previous chapter. Other objects
we consider aresets of geometric objectsandgeometric graphs. The object representation
is again in the spirit of the standard testing model. We allow only the most basic queries
about the object. It is only required that it is possible to determine the whole structure of
the object using these queries. By allowing only basic queries we ensure that our testing
algorithm is almost independent of the application (almost every structure supports these
basic queries). Later, in Chapter 5 we consider a model where we allow more powerful
queries.

The first problem we consider is disjointness of geometric objects. Then we design
a property tester for the convex position property of point sets. And finally, we give a
property tester for Euclidean minimum spanning trees.

3.1 Intersection of Geometric Objects

The first problem we consider is to test whether a setO = {O1, . . . , On} of n geometric
objects is pairwise disjoint. A geometric object is an (implicitly represented) subset of
Rd. Two geometric objectsO1 andO2 are said to bedisjoint, if O1 ∩ O2 = ∅. A set
O = {O1, . . . , On} of n geometric objects ispairwise disjoint, if each pair of objectsOi

andOj, 1 ≤ i, j ≤ n, is disjoint. An equivilant formulation of this problem is to test

17

3 Testing Algorithms for Geometric Properties

whether the intersection graph of the objects contains no edges.1

We represent sets of geometric objects by a functionf : [n] → R whereR contains
implicit representations of all geometric objects of a certain class of objects, e.g. all line
segments, points, or rectangle. For example, when we consider sets of line segments in the
Rd thenR = Rd × Rd. The property tester for disjointness of geometric objects is used
later in this thesis when we design a property tester for the Euclidean minimum spanning
tree. We use the standard distance measure from Definition 2.1.3 which has the following
equivalent formulation:

Definition 3.1.1 A setO of n objects in theRd is ε-far from beingpairwise disjoint, if one
has to remove more thanεn objects fromO to obtain a disjoint set of objects.

The Testing Algorithm. Like many other property testers the tester for disjointness of
geometric objects is very simple. It picks a setS of 8

√
n/ε objects uniformly at random

and computes whether these objects are pairwise disjoint. If they are, then the algorithm
concludes that in this case either the objects are disjoint or at least ’most of the objects of
the input set are disjoint’. Thus in such a case the algorithm can accept the input. If the
sample set contains two or more objects that intersect, then we know for sure that the set of
objects is not disjoint and the algorithm can reject the input. We prove that the following
algorithm is a property tester for disjointness of geometric objects.�

�

�

�

DISJOINTNESSTESTER(set of objectsO)
Choose a setS ⊆ O of size8

√
n/ε uniformly at random

if S is disjointthen accept
elsereject

Lemma 3.1.2 Algorithm DISJOINTNESSTESTER is a property tester for disjointness of
geometric objects. Its query complexity isO(

√
n/ε) and its running time isT(8

√
n/ε)+

O(1), whereT(m) is the time to decide whether a set ofm input objects is disjoint.

Proof : We have to prove that (1) algorithm DISJOINTNESSTESTERaccepts every set of
disjoint geometric objects, and (2) that it rejects every set of geometric objects that isε-far
from disjoint with probability at least2/3.

Part (1) is immediate: IfO is pairwise disjoint, the every subset ofO is also pairwise
disjoint and so algorithm DISJOINTNESSTESTERacceptsO.

Thus let us suppose thatO is ε-far from disjoint and prove part (2). It is easy to see that
we can applyk = εn/2 times the following procedure toO: pick a pair of intersecting
objectsWi, i ∈ [k], and remove it fromO. In order to prove that DISJOINTNESSTESTER

is a property tester it is sufficient to show that with probability at least2/3 at least one
of these pairs is in the sample setS. We apply Lemma 2.4.1 and standard amplification

1We do not use the formulation as a graph problem here because our distance measure would be based on
vertex deletion rather than edge deletion as it is usually in the property testing literature (see Section 2.1).

18

3.1 Intersection of Geometric Objects

arguments. We consider the sample setS as four independently selected setsS∗1, S
∗
2, S

∗
3, S

∗
4,

each of size 2n
(2k)1/2 and then apply Lemma 2.4.1 to obtain:

Pr
[
∃j ∈ [k] : (Wj ⊆ S)

]
≥ 1−

∏
1≤i≤4

(
1−Pr

[
∃j ∈ [k] : (Wj ⊆ S∗i)

])
≥ 1−(3/4)4 ≥ 2/3

2

A Lower Bound on the Query Complexity. We now want to show that the algo-
rithm DISJOINTNESSTESTER in the general setting of arbitrary geometric objects is op-
timal with respect to its asymptotic query complexity. For this purpose we consider the
problem if a set of unit disks is disjoint. We represent a set ofn unit disks by their center
points, that is, by a functionf : [n] → Rd. We observe that the disjointness property for
unit disks is equivalent to the followingsparsenessproperty of point sets. A point setP in
theRd is calledsparse, if for each pair of pointsp, q we havedist(p, q) > 1. In order to
prove that every property tester for disjointness of geometric objects has query complexity
Ω(
√

n/ε) we show that there is no property tester for sparseness of point sets with query
complexityo(

√
n/ε).

Lemma 3.1.3 Every property tester for disjointness of sets of geometric objects must have
query complexityΩ(

√
n/ε).

Proof : As already mentioned above sparseness of point sets is a special case of dis-
jointness of geometric objects. Hence, it suffices to show a lower bound for the sparseness
property of point sets. Let us assume that there is a property testerA for sparseness of
point sets with query complexityq(ε, n) = o(

√
n/ε).

Claim 3.1.4 Let A be a property tester for sparseness of point sets with query complexity
q(ε, n). Then there is a property testerA ′′ for sparseness of point sets that samples a setS

of q(ε, n) points uniformly at random and accepts if and only if the points inS are sparse.
Such a property tester is calledcanonical.

Proof : By Lemma 2.3.1 we know that there is a property testerA ′ that samples a set of
q(ε, n) points uniformly at random and decides based onS and its internal coin flips. Let
A ′′ denote an algorithm that samples a setS of q(ε, n) points uniformly at random and that
accepts if and only ifS is sparse. We want to prove thatA ′′ is a property tester. Clearly,
algorithmA ′′ accepts every sparse point set. Thus we have to prove that it rejects every
point set that isε-far from being sparse (a point set isε-far from sparse if the corresponding
set of unit disks isε-far from disjoint). We show this indirectly by proving that if algorithm
A ′ rejects a sample setS then so does algorithmA ′′. By definition a property tester has
one-sided error and soA ′ must accept if the sample is sparse. But if the sampleS is not
sparse thenA ′′ rejects and thus it follows that ifA ′ rejects then so doesA ′′. SinceA ′ is a
property tester it rejects every point setP that isε-far from sparse with probability at least
2/3. Hence algorithmA ′′ also rejects such a setP with probability at least2/3. SinceA ′′

19

3 Testing Algorithms for Geometric Properties

accepts every sparse point set we have shown thatA ′′ is a property tester for sparseness.
This proves Claim 3.1.4. 2

We construct a setP of n points inR that isε-far from sparse but is not rejected by a
canonical property tester with query complexityq(ε, n) if n is sufficiently large.P is the
union ofbεnc+ 1 pairsWi of points and a setU of n − 2(bεnc+ 1) points such that the
following condition is satisfied for all pointsp, q ∈ P with p 6= q: If there is aWi with
Wi = {p, q} thendist(p, q) ≤ 1. Otherwise, we havedist(p, q) > 1. We observe that
algorithmA ′′ rejectsP if and only if the sample contains one of the setsWi. We apply
Lemma 2.4.2 withp = 1/2, k = εn + 1,

s =
n − 1√

1
2
(εn + 1)

= Ω(
√

n/ε)

andl = 2; thus:

Pr
[
∃j ∈ [k] : (Wj ⊆ S)

]
≤ 1/2

Sinceq(ε, n) = o(
√

n/ε) for sufficiently largen we have

q(ε, n) ≤ n − 1√
1
2
(εn + 1)

.

This proves that there is a point set that isε-far from sparse and that is rejected by algorithm
A ′′ with probability at most1/2. Since1/2 < 2/3 we conclude thatA ′′ is not a property
tester. Contradiction. 2

We also note that the proof of the lower bound for disjointness of unit disks can be
modified to prove lower bounds for other classes of objects including line segments, rect-
angles, etc. This means that we cannot asymptotically improve the query complexity of a
property tester when we use the geometry of the special class of objects.

Summary. We summarize the results from this section in the following theorem:

Theorem 1 There is a property tester for pairwise disjointness of a set of geometric ob-
jectsO with query complexityO(

√
n/ε) and running timeT(8

√
n/ε) + O(1) where

T(m) denotes the time needed to compute if a set ofm objects is disjoint. Every property
tester for disjointness of geometric objects has query complexityΩ(

√
n/ε).

3.2 Convex Position

In this section we consider a classical property of point sets: Being inconvex position. Let
P denote a set ofn points in general position in theRd. We say that a point setP is in
convex position, if all points inP are vertices of the convex hull ofP:

20

3.2 Convex Position

Definition 3.2.1 LetP be a point set in theRd and letCH(P) denote the convex hull ofP.
A pointp ∈ P is called anextreme pointof P, if p is a vertex ofCH(P). A point setP is in
convex positionif each point inP is an extreme point.

Using our standard representation of point sets we assume that the input point setP is
represented by a functionf : [n] → Rd. We also use the standard distance measure from
Definition 2.1.3. In terms of the problem under consideration this can be stated as follows:

Definition 3.2.2 A setP of n points isε-far from convex position, if no setQ of size (at
most)εn exists such thatP \ Q is in convex position.

In the remainder of this section we prove that the following algorithm is a property
tester for convex position:

'

&

$

%

CONVEXTESTER(P, ε)

let s = 16
(
4 d+1
√

nd/ε + 2d + 2
)

Choose a setS ⊆ P of sizes uniformly at random
if S is in convex positionthen accept

elsereject

In order to show that CONVEXTESTER is a property tester we have to prove that (1)
it accepts every point set in convex position and (2) it rejects every point set that isε-far
from convex position with probability at least2/3.

We observe that CONVEXTESTERaccepts every point set in convex position because
every subset of a set in convex position is in convex position, as well.

Thus we only have to prove that a point set that isε-far from convex position is rejected
with high probability. We make use of the following theorem by Carathéodory [23]:

Theorem 2 (Carathéodory’s Theorem) If P ⊆ Rd andp ∈ CH(P) thenp ∈ CH{p0, . . . , pd}

for certain affinely independent vectors{p0, . . . , pd} in P.

Now let us assume thatP is ε-far from convex position. We want to prove that algo-
rithm CONVEXTESTERrejectsP with probability at least2/3. It follows from Theorem 2
that every point set that is not in convex position can be rejected by finding a small set of
d + 2 points that is not in convex position. We refer to such a set as acounter example.

The idea of the analysis is now to consider setsWi, 1 ≤ i ≤ εn
2(d+1)

, of d + 1 points
that can be easily extended to a set ofd + 2 points that is not in convex position. Easily
extendible means that there is a large setUi of points such that for eachp ∈ Ui the set
Wi ∪ {p} is a counter example. Intuitively, the existence of such a large set means that we
get one of thed+2 points of the counter example for free because our sample set contains
at least one point ofUi with very high probability.

21

3 Testing Algorithms for Geometric Properties

p

1 2

3
p

p p

Figure 3.1: Illustration for the proof of Lemma 3.2.3. One of the conesCi (this one is
defined byp1 andp2).

Finding Counter Examples. We now want to formalize this idea and prove two tech-
nical lemmas. First we prove that for a given pointp in the interior of the convex hull of
a point setP there exists a setW ⊆ P of d points such that there are at leastn

d+1
points in

P such that any of them can be added toW ∪ {p} to obtain a point set that is not in convex
position.

Lemma 3.2.3 Let P be a set ofn points in Rd and let p ∈ Rd be a point withp ∈
CHint(P) and letP ∪ {p} be in general position. Then there exist setsW ⊆ P andU ⊆
P \ W with |W| = d and |U| ≥ n

d+1
such thatp ∈ CHint(W ∪ {q}) for eachq ∈ U.

Proof : By Theorem 2 and the general position assumption it follows that there is a set
W∗ ⊆ P of sized + 1 such thatp ∈ CHint(W

∗). Let us denote byW∗
i , 1 ≤ i ≤ d + 1,

the subsets ofW∗ of sized. We show that one of the subsetsW∗
i of W∗ satisfies Lemma

3.2.3. W.l.o.g., let us assume thatp = (0, . . . , 0). We now want to partition theRd

into d + 1 cones. LetW−
i , 1 ≤ i ≤ d + 1, denote the set of points{(−x1, . . . , −xd) :

(x1, . . . , xd) ∈ W∗
i }. The conic combination of the point vectors in the setW−

i defines a
coneCi ,1 ≤ i ≤ d+1. The union of these conesCi covers theRd. Thus there is a coneCj,
1 ≤ j ≤ d+1 that contains at leastn

d+1
points ofP (and also ofP\W∗

j sinceW∗
j ∩Cj = ∅).

We further observe that for eachq ∈ P ∩ Cj it holds thatp ∈ CHint(W
∗
j ∪ {q}). We

conclude that the setsW = W∗
j andU = P ∩ Cj satisfy the lemma. 2

The second technical lemma shows that if a point set isε-far from convex position
then there are many setsWi andUi such thatWi ∪ {q} is not in convex position for every
q ∈ Ui.

Lemma 3.2.4 Let P be a set ofn points in theRd that isε-far from convex position and
let k = εn

d+1
. Then there exist setsWi ⊆ P, i ∈ [k], and setsUi ⊆ P, i ∈ [k], such that the

following properties are fulfilled:

(1) |Wi| = d + 1, i ∈ [k],

(2) Wi ∩Wj = ∅ for all i, j ∈ [k] with i 6= j,

22

3.2 Convex Position

(3) Wi ∪ {q} is not in convex position for everyq ∈ Ui, and

(4) |Ui| ≥ 1−ε
d+1

n.

Proof : We construct point setsP1 = P, P2, . . . , Pk with Wi ⊆ Pi andPi+1 = Pi \ Wi.
Clearly, our construction satisfies that the setsWi are disjoint. We show how to construct
Wi from the setPi: First of all, observe that for everyi ∈ [k] it holds that|Pi| = n − (d +

1)(i − 1) and thus|Pi| ≥ n − (d + 1)(εn
d+1

− 1). This implies that|P \ Pi| < εn and so the
setPi cannot be in convex position (by the definition ofε-far we can delete every set of
size at mostεn and do not obtain a point set in convex position). SincePi is not in convex
position there is a pointp ∈ CHint(Pi). We apply Lemma 3.2.3 withp andPi \ {p} and
obtain the setsW andU. We chooseWi = W ∪ {p} andUi = U. By Lemma 3.2.3 we get
|Wi| = d+1 andWi∪ {q} is not in convex position for eachq ∈ Ui. We already observed
that |Pi| ≥ n − (d + 1)(εn

d+1
− 1). Thus we know that|Pi \ {p}| ≥ n − εn which means

that |Ui| ≥ n−εn
d+1

= 1−ε
d+1

n. All properties in Lemma 3.2.4 are satisfied and the lemma is
proven. 2

Lemma 3.2.5 Algorithm CONVEXTESTER is a property tester for the convex position
property. Its query complexity isO(d+1

√
nd/ε).

Proof : We have to prove that CONVEXTESTERaccepts every point set in convex position
and rejects every point set that isε-far from convex position with probability2/3.

We already observed that algorithm CONVEXTESTERaccepts every point set in convex
position.

Thus we have to show that every point set that isε-far from convex position is rejected
with probability at least2/3. Let P be a point set that isε-far from convex position and let
k = εn

d+1
. Then there exist setsWi andUi, i ∈ [k], with the properties stated in Lemma

3.2.4. Now letS ⊆ P be a point set of size4 d+1
√

nd/ε + 2(d + 1) chosen uniformly at
random fromP. W.l.o.g., let us assume thatε < 1/2. We viewS as the union of two sets
W andU of size4 d+1

√
nd/ε and2(d + 1), respectively. Clearly, we can assume that each

of them is chosen uniformly (and independently) at random fromP. We first observe that
for a fixedUi of size 1−ε

d+1
n :

Pr
[
Ui ∩U 6= ∅

]
≥ 1 −

(
1 −

|Ui|

n

)|U| ≥ 1 − 1/e ≥ 1/2

We further know that:

Pr
[
P is rejected

]
≥ Pr

[
∃i ∈ [k] : Wi ⊆ S andUi ∩ S 6= ∅

]
≥ Pr

[
∃i ∈ [k] : Wi ⊆ W andUi ∩U 6= ∅

]
≥ Pr

[
∃i ∈ [k] : Wi ⊆ W

]
· 1/2 .

To derive a bound onPr
[
∃i ∈ [k] : Wi ⊆ W

]
we apply Lemma 2.4.1 withk = εn

d+1
,

l = d + 1, and

s = 4 d+1
√

nd/ε ≥ d+1
√

(2n)d · (d + 1)/ε ≥ 2n

(2k)1/l

23

3 Testing Algorithms for Geometric Properties

and obtain:
Pr
[
∃i ∈ [k] : Wi ⊆ W

]
≥ 1/4 .

We conclude that
Pr
[
P is rejected

]
≥ 1/8 .

If algorithm CONVEXTESTERchooses a setS of size16 ·
(
4 d+1
√

nd/ε + 2(d + 1)
)

then

Pr
[
P is rejected

]
≥ 1 − (1 − 1/8)16 ≥ 2/3

which proves the query complexity stated in Lemma 3.2.5. 2

A Lower Bound on the Query Complexity. We now want to prove that our prop-
erty tester is optimal with respect to the asymptotic query complexity. The proof follows
the same line of thought as the proof of Lemma 3.1.3. We first show that the existence of
a property tester with query complexityq(ε, n) implies that there is a canonical property
tester with the same query complexity, i.e. a property tester that samples a setS of q(ε, n)

points uniformly at random and accepts, if and only if the sample setS is in convex po-
sition. Then we show that for sufficiently largen there is a point setP that isε-far from
convex position such that

Pr[S is in convex position] > 1/3

holds, if S ⊆ P is a set ofq(ε, n) = o(d+1
√

nd/ε) points chosen uniformly at random
from P. This implies that there is no property tester with query complexityq(ε, n).

Lemma 3.2.6 Every property tester (with one sided error) for convex position has query
complexityΩ(d+1

√
nd/ε).

Proof : The proof is by contradiction. Assume there is a property testerA for convex
position with query complexityq(ε, n) = o(d+1

√
nd/ε). We first want to prove that there

is a canonical tester with the same query complexity:

Claim 3.2.7 Let A be a property tester for convex position of point sets with query com-
plexityq(ε, n). Then there is a property testerA ′′ for convex position of point sets that
samples a setS of q(ε, n) points uniformly at random and accepts if and only if the points
in S are in convex position.

Proof : The proof is similar to the proof of Claim 3.1.4. By Lemma 2.3.1 we know that
there is a property testerA ′ that samples a set ofq(ε, n) points uniformly at random and
decides based onS and its internal coin flips. LetA ′′ be an algorithm that samples a setS of
q(ε, n) points uniformly at random and that accepts if and only ifS is in convex position.
We want to prove thatA ′′ is a property tester. Clearly, algorithmA ′′ accepts every point set
in convex position. Thus we have to prove that it rejects every point set that isε-far from
convex position. We show this indirectly by proving that if algorithmA ′ rejects a sample
setS then so does algorithmA ′′. By definition a property tester has one-sided error and

24

3.2 Convex Position

soA ′ must accept if the sample is in convex position. But if the sampleS is not in convex
position thenA ′′ rejects. It follows thatA ′′ always rejects whenA ′ rejects. SinceA ′ is
a property tester it rejects every point setP that isε-far from disjoint with probability at
least2/3. Hence algorithmA ′′ also rejects such a setP with probability at least2/3. Since
A ′′ accepts every point set in convex position we have shown thatA ′′ is a property tester
for convex position. This proves Claim 3.2.7. 2

Let us denote byA ′′ the property tester as obtained in Claim 3.2.7. In the remainder of
the proof we construct a point setP of n points that isε-far from convex position and show
that this point set is accepted byA ′′ (observe thatA ′′ is uniquely defined byq(ε, n)) with
probability at least1/2. SinceP is ε-far from convex position this is a contradiction to the
fact thatA ′′ is a property tester (which would require thatP is rejected with probability at
least2/3 > 1 − 1/2 = 1/2).

We start with an overview of our construction and then present it in details. The idea is
to construct a point setP that consists ofεn+1 setsWi of sized+1 (and some additional
points). Each setWi consists of a setFi of d extreme points that form a facet of the convex
hull and one pointqi that is located infinitesimally close to the facet but in the interior of
the convex hull. The point set has the property that every subsetS ⊆ P of size more than
d + 1 is in convex position, if and only if there is a setWi ⊆ S.

Figure 3.2: An example for the lower bound construction in 2D.

Now let S be a point set of sizes chosen uniformly at random fromP. We apply
Lemma 2.4.2 withp = 1/2 and obtain that for

s ≤ (n − d) · 1

2(εn + 1)

1/(d+1)

= Θ(d+1
√

nd/ε)

our sample setS does not contain one of the setsWi with probability at least1/2. HenceS
is in convex position with probability at least1/2 and thus algorithmA ′′ is not a property

tester, ifq(ε, n) ≤ (n − d) · 1
2(εn+1

1/(d+1)
.

The Detailed Construction. For a setX and a pointp in Rd letdist(X, p) = minx∈X ||x−

p||. Let P1 be a set ofn − d · (εn + 1) points in general and convex position and let
ε < 1/d − 1/n. Further letP2 = {p1, . . . , pk} ⊆ P1 be a subset of sizek = εn + 1.

25

3 Testing Algorithms for Geometric Properties

For each pointp ∈ P1 let hp denote a hyperplane (a tangent toCH(P1)) such that
hp ∩ CH(P1) = p. Further letH+

p ,H−
p denote the closed halfspaces induced byhp such

thatH+
p denotes the halfspace containingP1 (Figure 3.2). Let

ph

H−
p Hp

+

p

Figure 3.3: Step 1: We start with a point set in convex position.

β = min
p,q∈P1,p 6=q

dist(hp, q) .

Observation 3.2.8 Every point set̃P1 obtained fromP1 by perturbating each of the points
in P1 by a distance of less thanβ/2 is in convex position.

Instead of perturbating the point set we replace each pointpi ∈ P2 by a setFi, i ∈ [k], of d
points (Figure 3.4). We do this replacement in such a way that we obtain a point setP3 in
general and convex position. For a pointp ∈ Rd let B(p, β/3) denote thed-dimensional
ball with centerp and radiusβ/3. We choose eachFi such that

• q ∈ hp ∩ B(p, β/3) for eachq ∈ Fi.

• P3 = P1 \ P2 ∪ F is in general position, whereF =
⋃

i∈[k] Fi

Clearly, we can choose theFi such thatP3 is in general position because we can move the
points withinB(pi, β/3)∩hpi

to destroy every degenerate cases. We observe thatP3 is in
convex position sincehpi

is a witness for the fact that the points inFi are extreme points
in P3. We obtain the setP from P3 by adding a setQ = {q1, . . . , qk} of k points toP3. Let
Wi = Fi ∪ {qi} for eachqi ∈ Q. We want to chooseQ in such a way that:

• P = P3 ∪Q is ε-far from convex position,

• If a subsetS ⊆ P contains no setWi, i ∈ [k], completely, thenS is in convex
position.

We now give a construction that satisfies these properties. For eachi ∈ [k] let q ′
i denote

a point in the interior of the ((d − 1)-dimensional) convex hull ofFi and letvi denote
a vector pointing fromq ′

i in the interior ofCH(P3) (Figure 3.5). Letqi(β) denote the
point q ′

i + β · vi. For i ∈ [k] andp ∈ Fi let hFi,p(β) denote the hyperplane induced by
Fi \ {p} ∪ {qi(β)}. Further letH+

Fi,p
(β) andH−

Fi,p
(β) denote the halfspaces induced by

26

3.2 Convex Position

ph ph

p

Figure 3.4: Step 2: We replace some points by a setFi of d = 2 points.

hFi,p(β) such thatH+
Fi,p

(β) containsP for β = 0. SinceP3 is in general position there is
a valueβ∗ such that for everyi ∈ [k] and everyp ∈ Fi the halfspaceH+

Fi,p
(β∗) contains

P3 \ {p} and such thatP3 ∪ Q is in general position (whereQ is defined as follows). We
chooseqi = qi(β

∗) andQ =
⋃

i∈[k] qi. We now have to prove thatQ has the required
properties:

Claim 3.2.9 The setP = P3 ∪Q is ε-far from convex position. If a subsetS ⊆ P does not
contain a setWi completely, thenS is in convex position.

Proof : AssumeP is ε-close to convex position. Then there is a setR of at mostεn

points such thatP \ R is in convex position. Since|R| ≤ εn there is a setWi completely
contained inP \ R. Further we know that by the size ofP andR there must be at least
one further pointq in P \ R. By the choice ofQ we know thatq is inH+

Fi,p
(β∗) for each

p ∈ Fi. Henceqi is in the interior ofCH(Fi ∪ {q}) which contradict the fact thatP \ R is
in convex position.

It remains to prove the second statement. LetS ⊆ P a subset that contains no setWi

completely. W.l.o.g., we assume that it contains exactlyd points of each setWi. If these
points are the points inFi then by our construction the hyperplanehpi

is a witness that the
points inWi = Fi are extreme. Otherwise, one of the points inFi is not inS. Let is call the
missing pointp. ThenhFi,p(β

∗) is a witness that the points are extreme points. Thus for
every pointp ∈ S we have a witness thatp is extreme. HenceS is in convex position. 2

ph ph

q’i
vi iq

Figure 3.5: Step 3: We place another point in the interior ofCH(Fi) and move it slightly
alongvi into the interior of the convex hull.

27

3 Testing Algorithms for Geometric Properties

Now we can apply Lemma 2.4.2 withp = 1/2 and obtain that for

s ≤ (n − d) · 1

2(εn + 1)

1/(d+1)

= Ω(d+1
√

n/ε)

a sample setS of sizes chosen uniformly at random fromP does not contain one of the
Wi with probability at least1/2. Sinceq(ε, n) = o(d+1

√
nd/ε we have for sufficiently

largen

q(ε, n) ≤ (n − d) · 1

2(εn + 1)

1/(d+1)

.

It follows that there exists a point setP that isε-far from convex position and that is ac-
cepted by algorithmA ′′ with probability at least1/2. Since the existence of a property
tester for convex position with query complexityq(ε, n) implies that algorithmA ′′ is a
property tester, it follows that there is no property tester with query complexityo(d+1

√
nd/ε).

2

Summary. We summarize the results of this section in the following theorem:

Theorem 3 Let P be a point set ofn points in theRd. Then there is a property tester
for the convex position property with query complexityO(d+1

√
nd/ε) and running time

O(T(d+1
√

nd/ε)) whereT(n) = O(n · logO(1) h + (nh)
bd/2c

bd/2c+1 · logO(1) n) is the running
time of the fastest known algorithm [24] to decide if a point set is in convex position (h

denotes the number of extreme points of the set). Every property tester for convex position
has a query complexity ofΩ(d+1

√
nd/ε).

Proof : Follows from Lemma 3.2.5 and Lemma 3.2.6. 2

3.3 Euclidean Minimum Spanning Tree

We are given a point setP in the R2 and a geometric graphG = (P, E) with vertex set
P and edge setE and we want to design a property tester for the property thatG is a
Euclidean Minimum Spanning Tree (EMST)of the point setP. A graphG = (P, E) is
called a Euclidean minimum spanning tree of point setP, if G is a minimum spanning
tree of the complete Euclidean graph ofP. The complete Euclidean graph is a complete
weighted graph where each edgee = (p, q) ∈ P × P has weight equal to the Euclidean
distance betweenp andq.

In this section we make slightly different assumptions on the input representation. We
assume that our property tester has oracle access to point setP and graphG each repre-
sented by a separate function. The point set is represented in a similar way as in the pre-
vious subsection. The graph is represented in the unbounded length adjacency list model
[67]. Details on the input representation follow in Subsection 3.3.1.

For simplicity we assume throughout this section thatP is in general position, i.e., all
edge weights are distinct and hence the EMST is unique and its maximum degree is five.

28

3.3 Euclidean Minimum Spanning Tree

3.3.1 Basic Definitions and Input Representation

Let P denote a set ofn points in general position inR2 (we consider only the problem in
two dimensional space) and letT = (P, E) denote the Euclidean minimum spanning tree
of P. We start with some basic definitions needed in this section before we discuss the
input representation:

Definition 3.3.1 A geometric graphfor P is a weighted graphG = (P, E) with vertex setP
and edge setE ⊆ P×P (the edges can be interpreted as straight-line segments connecting
the endpoints). The weight of an edge(p, q) is implicitly given by the Euclidean distance
betweenp andq in R2.

Definition 3.3.2 A geometric graph forP that is the minimum spanning tree of the com-
plete geometric graph forP is called theEuclidean minimum spanning tree (EMST)of
P.

In this section we do not use the standard distance measure (though the differences are
insignificant), because the input object consists of two parts, the point set and the graph.
Further we use the unbounded length adjacency list model which uses a non-functional
representation of the graph. Our results also hold in the (weaker) bounded degree adja-
cency list model.

Typically, a distance measure for graph properties depends on the number of entries
in the graph representation that must be changed to obtain a graph that has the tested
property. In our case, the size of the graph representation depends on the number of edges
in the graph. Since every EMST hasn − 1 edges we let our distance measure depend on
the number of vertices instead of the number of edges:

Definition 3.3.3 Let G = (P, E) be a geometric graph forP and letT = (P, E) denote
the Euclidean minimum spanning tree ofP. We sayG is ε-far from being the Euclidean
minimum spanning tree ofP (or, in short,ε-far from EMST), if one has to modify (insert
or delete) more thanεn edges inG to obtainT, that is :

|E \ E| + |E \ E| > εn .

We want to design a property tester for the property of being a Euclidean minimum
spanning tree of a point set in the plane. Such a property tester takes as input a point setP

in general position inR2 and a geometric graphG for P, and accepts the input ifG is the
EMST for P and rejects the input with probability at least2

3
if G is ε-far from being the

Euclidean minimum spanning tree ofP.

Input Representation. Our property tester has to verify whether a geometric graph is
the EMST of a point setP. Hence, it must have access to the graph and the point set. Both
the point set and the graph are given as an oracle. Similar to the previous section the point
set is represented by a functionf : [n] → R2. Thus the algorithm may query the oracle for
the value off(i) for somei ∈ [n] and gets in return the position of thei-th point ofP.

29

3 Testing Algorithms for Geometric Properties

The geometric graph is given in theunbounded length adjacency list representation
introduced in [67]. Let us briefly recall the description of the model as given in Chapter
2: The unbounded length adjacency list model is a general model for sparse graphs. The
graph structure is represented by adjacency lists of varying length. Our property tester may
query for the degreedeg(p) of a vertexp and for eachi ≤ deg(p) it may query for the
i-th neighbor ofp. We represent the vertex set of our graph by the set of numbers[n].
Thus we can easily obtain the position of a vertexp from the point set representation by
querying for the value off(p).

Basic Properties of EMSTs. The following claim states some basic (and well-known)
properties about Euclidean minimum spanning trees:

Claim 3.3.4 Every Euclidean minimum spanning tree of a point set in general position
in R2 has maximum degree less than or equal to five, is connected, and its straight-line
embedding is crossing-free.

Proof : The EMST is connected since it is a spanning tree of a complete graph. Its
embedding is crossing-free because it is a subgraph of the Delaunay triangulation; see,
e.g., [61]. Assume the EMST has a vertex with degree 6 or larger. Then there are two
edges with an angle less than 60 degree since the point set is in general position. But this
means that at most one of these edges can be in the EMST. Contradiction. 2

Now we want to introduce some additional notation that will be useful to simplify the
description of the algorithm and its analysis. LetG denote a geometric graph forP. The
EMST-completionof G is a geometric graphG ′ over the same point set that contains all
edges fromG and all edges of the EMST (that are missing inG).

Definition 3.3.5 For a given point setP, a geometric graphG = (P, E), and the Euclidean
minimum spanning treeT = (P, E) ofP, theEMST-completionofG is the geometric graph
GC = (P, E ∪ E) that contains all edges that are either inG or in T.

In the next subsection we present a property tester for EMST that works for a special
class of input graphs which we callwell-shaped. A well-shaped graph is a connected graph
with maximum degree 5 that has crossing-free EMST-completion. The restriction to well-
shaped graphs simplifies the analysis of the algorithm and it allows a clear view on the
important features of the property tester.

Definition 3.3.6 LetG be a geometric graph for point setP. We callG well-shaped, if

• it has maximum degree of 5,

• it is connected,

• and the straight-line embedding of its EMST-completion is crossing-free.

30

3.3 Euclidean Minimum Spanning Tree

Later in this section we present a general testing algorithm for EMST. This algorithm first
tests if the input graph is far from a well-shaped graph. If this is the case then we can
reject the graph by Claim 3.3.4. If the input graph passes the test, then we know that with
good probability it is either close to a well-shaped graph or it is well-shaped. If the graph
is well-shaped we can use the testing algorithm for the special case of well-shaped graphs.
At the end of this section we show that for this algorithm it does not matter if the graph is
well-shaped or close to well-shaped. Hence, we can also use the algorithm if the graph is
close to a well-shaped graph.

3.3.2 Testing EMSTs in Well-Shaped Graphs

We now design a property tester for EMST for the case that our input graph is well-shaped.
First, we give an overview of the algorithm:

Let G denote a well-shaped geometric graph with vertex setP. Our property tester uses
the following procedure: We first pick a sample setS ⊆ P using some randomized scheme
to be described later. Next, we find the subgraphGS of G that is induced by the vertex set
S. Then we compute the EMST-completion ofGS. If the EMST-completion has a cycle
then we reject the input, otherwise we accept. Computing the EMST-completion can be
done in timeO(|S| · log |S|). We just have to compute the EMST ofS and insert the missing
edges inGS. The query complexity of the tester isO(|S|).

We first show that we can always reject the input graph, if the EMST-completion ofGS

contains a cycle. We use the following lemma which follows easily from standard theory
of minimum spanning trees (see, e.g., [77, Chapter 6]). It implies that if we sample a set
of verticesS ⊆ P then an edgee cannot be in the EMST ofP if it is not in the EMST ofS.

Lemma 3.3.7 LetS ⊆ P be a subset ofP and letp, q ∈ S. If the edgee = (p, q) does not
belong to the EMST ofS, thene does not belong to the EMST ofP.

Proof : Our proof is by contradiction. Let us suppose thate does not belong to the EMST
of S ande belongs to the EMSTT of P. The removal ofe in T cutsT into two trees. These
two trees induce a partition ofP into two subsetsP1 andP2. Sincee belongs to the EMST
of P, e must also be the shortest edge between these two subsets. LetS1 = P1 ∩ S and
S2 = P2 ∩ S. P1 andP2 are not empty since one vertex ofe is in each of the sets. Then
e is also the shortest edge betweenS1 andS2 and therefore it belongs to the EMST ofS;
contradiction. 2

Lemma 3.3.7 is of major importance for the way we proceed. Therefore we state its
consequences in Corollary 3.3.8 below. First of all, it shows that our property tester always
accepts the EMST ofP (it rejects only, if there is a cycle in the EMST-completion and such
a cycle provides a counter example for the EMST property). Further it can be used to show
that we can reject the input graph, if all vertices of a cycle in the EMST-completion ofG

are contained inS:

Corollary 3.3.8 LetG be a geometric graph forP. LetS ⊆ P be a subset ofP and letGS

be the subgraph induced byS.

31

3 Testing Algorithms for Geometric Properties

• If the EMST-completionG ′ = (P, E ′) of G contains a cycleC = (p0, . . . , pk)
2 of

lengthk ≥ 3 and pi ∈ S for all 0 ≤ i ≤ k, then there is a cycle in the EMST-
completion ofGS.

• If the EMST-completion ofGS contains a cycleC = (p0, . . . , pk) of lengthk ≥ 3,
thenG is not the EMST ofP.

Proof : We have to prove thatC is a cycle in the EMST-completion ofGS, i.e., that every
edge(pi−1, pi + 1) for all i ∈ [k] is in the EMST-completionG ′

S of GS. Every such edge
is either an edge of the EMST or an edge of the input graph. Obviously, the edges of the
input graph are inG ′

S and by Lemma 3.3.8 all EMST edges are also inG ′
S.

Now we prove the second part: Since the EMST-completion ofGS contains a cycle
there is an edgee in GS that does not belong to the EMST ofS. It follows by Lemma 3.3.7
thate is not in the EMST ofP. HenceG is not the EMST ofP. 2

Now we consider the case when the input graphG = (P, E) is ε-far from EMST. Our
goal is to design a randomized sampling scheme such that the EMST-completion of the
subgraph induced by the sample set contains a cycle with high probability. LetT = (P, E)

denote the EMST ofP and letGC = (P, E ∪ E) denote the EMST-completion ofG. In the
following we refer withred edges to the edges inE \ E and with blue edges to the edges
in E. It turns out that it is sufficient to focus on “short” cycles that contain at most two red
edges:

Definition 3.3.9 Let G be a geometric graph forP and letC be a cycle of lengthk in the
EMST-completion ofG. We callC ε-shortif (1) its lengthk is smaller than or equal to72

ε

and (2) it contains at most two red edges.

In our algorithm we try to findε-short cycles that satisfy some additional “topological”
properties. We want to exploit the fact thatG is well-shaped, in particular, that the EMST-
completion ofG has a crossing-free straight-line embedding. Hence we use a topological-
like representation of the geometric graphG to exploit the fact that every minimal cycle
in a (well-shaped) planar geometric graph corresponds to a face in its straight-line embed-
ding. In order to use this approach in a formal framework we will consider the geometric
graphG not only as an undirected graph, but at the same time also using its “directed” rep-
resentation by “replacing” each undirected edge(p, q) by two directed edges[p, q〉 and
[q, p〉.

For every vertexp in G we (cyclically) sort incident outgoing edges in clockwise order
around the vertexp with respect to the Euclidean positions of the edges’ endpoints. (This
sorting is done only implicitly, but since we assume that each vertex has a constant degree,
each time we consider a vertex we can in constant time sort its incident edges.) The
successorof a directed edge[p, q〉 is the edge[q, r〉 wherer is the vertex adjacent toq
that precedesp in the adjacency list ofq (sorted in clockwise order aroundq). With this
definition cycles of succeeding edges correspond to faces of the straight-line embedding.

2Here,C = (p0, . . . , pk) is a cycle (of lengthk) if pi ∈ P for all i ∈ [k], p0 = pk, (pi−1, pi) ∈ E ′ for all
i ∈ [k] andpi 6= pj for all i, j ∈ [k], i 6= j.

32

3.3 Euclidean Minimum Spanning Tree

Figure 3.6: A straight-line embedding and its planar map representation.

Such a representation ofG is called aplanar mapfor the straight-line embedding ofG (see
figure 3.6). We denote it̃G.

Definition 3.3.10 Let G be a well-shaped geometric graph forP and letG̃ be the corre-
sponding planar map. For each edgee = [p, q〉 in G̃ thesuccessorof e is the edge[q, r〉
in G̃ with r being the vertex adjacent toq that precedesp in the adjacency list ofq (sorted
in clockwise order aroundq); if q has degree one, thenr = p.

For edgee = [p, q〉 in G thekth successor, k ≥ 0, is defined recursively as follows:
the0th successor of[p, q〉 is [p, q〉 itself, and fork > 0, thekth successor of[p, q〉 is the
successor of the(k − 1)st successor of[p, q〉.

Similarly, edgee is thepredecessorof edgee ′ if edgee ′ is the successor of edgee, and
e is thekth predecessorof e ′ if e ′ is thekth successor ofe.

We have introduced the planar map representation of a graphG because it describes the
faces of the corresponding embedding in a simple way (using succeeding edges inG̃). We
observe that the correspondence between the faces in the embedding ofG and the cycles
of succeeding edges iñG is one to one. We also note that each (directed) edge is contained
in exactly one cycle of succeeding edges.

Definition 3.3.11 LetG be a well-shaped geometric graph forP and letC = (p0, . . . , pk)

be a cycle in the planar map of the EMST-completion ofG. ThenC is calledtopological,
if for every two consecutive edges on the cycle[pi, pi+1〉 and [pi+1, pi+2〉, [pi+1, pi+2〉 is
the successor of[pi, pi+1〉. We also call the corresponding cycle inG topological.

The following key lemma shows that every well-shaped geometric graph that is far
from EMST must contain many short topological cycles in its EMST-completion.

Lemma 3.3.12 LetG = (P, E) be a well-shaped geometric graph forP. If G is ε-far from
EMST, then there are at leastε n

100
ε-short topological cycles in the EMST-completion ofG.

Proof : Let T = (P, E) denote the EMST ofP and letEB = E\E denote the blue edges of
the EMST-completion ofG that are not inE. Further letER = E \ E denote the red edges

33

3 Testing Algorithms for Geometric Properties

of the EMST-completion ofG. SinceG is ε-far from EMST we have|EB| + |ER| > εn by
definition ofε-far.

Now let H denote the EMST-completion ofG and letH̃ denote the planar map of
its straight-line embedding. Let us denote byρ the number of faces in the straight-line
embedding ofH. HenceH̃ hasρ (disjoint) topological cycles since each face is bounded
by a unique cycle of succeeding edges (which by definition is called topological). Since
H is planar and connected and has more thann − 1 + εn/2 edges we can apply Euler’s
formula to deduce thatρ ≥ εn/2.

Now let s(f) denote the number of (directed) edges in the topological cycle bounding
face f. Since

∑
f s(f) ≤ 6n by Euler’s formula there can be at mostρ

4
facesf with

s(f) ≥ 48
ε

. Thus3ρ
4

facesf haves(f) < 48
ε

.
Since|ER| ≤ ρ the number of directed red edges is at most2ρ. Hence the number of

topological cycles with 3 or more red edges can be at most2ρ
3

. Since we have shown that
there are at least3ρ

4
topological cycles having less than48

ε
edges, at leastρ

12
≥ εn

100
of them

have at most two red edges. 2

Definition 3.3.13 LetG be a well-shaped geometric graph forP. For every vertexp ∈ P,
we define itstopologicalk-neighborhoodas the set of vertices that are the endpoints of the
edges that are either theith successor,0 ≤ i ≤ k, of any edge incident top, or are thejth
predecessor,0 ≤ j ≤ k, of any edge incident top. The topologicalk-neighborhood of a
vertexp is denotedN top

G (p, k).

The following claim follows easily from the fact that our input graph has maximum
degree of 5.

Claim 3.3.14 Let G be a well-shaped geometric graph forP. For every vertexp ∈ P, we
can find its topologicalk-neighborhood in timeO(k). 2

Now, provided thatG is ε-far from EMST (but well-shaped), our first approach is to
sample uniformly at random a sufficiently large setQ of points inP. Then we add for
every point inQ its topological72

ε
-neighborhood to the sample set. Provided that the set

Q is sufficiently large, we prove in Lemma 3.3.18 that ifG is ε-far from EMST, then
the so obtained set will contain all vertices from a certainε-short topological cycle in the
EMST-completion ofG with probability at least2/3. Therefore, this will certify thatG
is not an EMST by Corollary 3.3.8. In Lemma 3.3.24, we tune the sketched algorithm to
slightly improve the complexity bound.

3.3.3 A Simple Property Tester in Well-Shaped Graphs

Now we discuss our first property tester for EMST for well-shaped input graphs. We follow
the approach sketched in the beginning of this subsection. According to that description
the key issue is to describe the algorithm that finds the sample setS and to prove that
with probability at least2

3
the input is rejected ifG is ε-far from EMST. In particular, by

our discussion above we know from Lemma 3.3.12 that if a well-shaped graphG is ε-far

34

3.3 Euclidean Minimum Spanning Tree

from EMST, then there are manyε-short topological cycles in the EMST-completion ofG.
Further, by Corollary 3.3.8, in order to rejectG it is sufficient to prove that with probability
at least2

3
the sampleS contains all vertices from a certainε-short topological cycle in the

EMST-completion ofG. We provide a precise description of this algorithm and its analysis
below. We assume thatG is well-shaped. Everyε-short topological cycle either

1. is a cycle consisting of at most72
ε

blue edges, or

2. is a path consisting of at most72
ε

blue edges having the endpoints connected by a red
edge, or

3. is a path consisting of at most72
ε

blue edges having the endpoints connected by a
path of two red edges, or

4. consists of two paths containing at most72
ε

blue edges that are connected to each
other by two red edges.

Our first observation is that if there are manyε-short topological cycles of type (1) or (2),
then we can easily spot them. Indeed, if there are at leastε n

200
ε-short topological cycles of

type (1) or (2) in the EMST-completion ofG, then it is enough to take a random subsetQ

of P of sizeΘ(1/ε) to ensure that at least one vertex from anyε-short topological cycle
will be in Q with probability at least2

3
.

Lemma 3.3.15 LetG = (P, E) be a well-shaped geometric graph. If the EMST-completion
of G contains at leastε n

200
ε-short topological cycles of type (1) or (2), then a setQ ⊆ P

of size4000/ε chosen uniformly at random contains at least one vertex from anyε-short
topological cycle.

Proof : SinceG is well-shaped it has a maximum degree of5 and so the EMST-
completion ofG has a maximum degree of10. We conclude that every vertexp ∈ P

is contained in at most10 ε-short topological cycles. Furthermore, the setPC of all ver-
tices that are contained in at least oneε-short topological cycle (of type (1) or (2)) has
cardinality at leastε n

2000
. Now let Q ⊆ P denote a set of size4000

ε
taken uniformly at

random fromP. Then

Pr
[
Q ∩ PC = ∅

]
≤ (1 −

|PC|

n
)|Q| ≤ (1 −

ε

2000
)|Q| ≤ 1/3 .

Therefore,
Pr
[
Q ∩ PC 6= ∅

]
≥ 2/3 .

2

Now, we explore the key feature ofε-short topological cycles of type (1) or (2): For
every vertexv from such a cycle all other vertices from the cycle belong to the topological
72
ε

-neighborhood ofv. This motivates us to define the sample setS as the topological72
ε

-
neighborhood of all vertices inQ. Since the setQ contains at least one vertex from any
ε-short topological cycle of type (1) or (2) with probability at least2/3, we can conclude
that S contains all vertices from a particularε-short topological cycle of type (1) or (2)

35

3 Testing Algorithms for Geometric Properties

with probability at least2
3
. Since every vertex of the topological cycle is contained in our

sample set we know by Corollary 3.3.8 that the EMST-completion of the subgraph induced
by our sample contains a cycle. Thus our property tester rejects the input with probability
2
3

if it is ε-far from EMST.
It is easy to see that the procedure for cycles of type (1) and (2) described above has a

query complexity ofO(|Q|
ε

) = O(1
ε2).

Lemma 3.3.16 LetG = (P, E) be a well-shaped geometric graph and letQ ⊆ P be a set
of size4000/ε chosen uniformly at random fromP. If the EMST-completion ofG contains
at leastε n

200
ε-short topological cycles of type (1) or (2), then the set

S =
⋃
p∈Q

N top
G (p,

72

ε
)

contains all vertices of at least oneε-short topological cycle with probability at least2/3.

Proof : Follows from Lemma 3.3.15 and the observation that a cycle of type (1) and (2)
is completely contained inS, if one of its vertices is contained inQ. 2

Theε-short topological cycles of type (3) and (4) are a little bit more difficult to detect.
However, we can still use a very similar approach as for cycles of type (1) or (2), but
this time we must find two vertices that belong to the sameε-short topological cycle.
Suppose that there are at leastε n

200
ε-short topological cycles of type (3) or (4) in the

EMST-completion ofG. As before, we first take a random subsetQ of P, but this time
the size ofQ is Θ(

√
n/ε). Then, we define the sample setS to be the union of the

topological72
ε

-neighborhood of all vertices inQ. We show now that the so defined sample
set is sufficient to certify thatG (if it is ε-far from EMST) is not an EMST by proving an
analogous statement to Lemma 3.3.16 for cycles of type (3) and (4):

Lemma 3.3.17 Let G = (P, E) be a well-shaped geometric graph and letQ ⊆ P be a
set of size80

√
n/ε chosen uniformly at random fromP. If the EMST-completion ofG

contains at leastε n
200

ε-short topological cycles of type (3) or (4), then the set

S =
⋃
p∈Q

N top
G (p,

72

ε
)

contains all vertices of at least oneε-short topological cycle with probability at least2/3.

Proof : For everyε-short topological cycleC of type (3) let us define the setWC to
contain two vertices: one vertex on the blue path inC and the vertex incident to the two
red edges inC. Similarly, for everyε-short topological cycleC of type (4) let us define the
setWC to contain one vertex from the first blue path inC and one vertex from the second
blue path inC.

Since each vertexp ∈ P belongs to at most10 ε-short topological cycles we can select
from the setsWC the setsWi, 1 ≤ i ≤ εn

2000
, such that the setsWi are disjoint and for each

36

3.3 Euclidean Minimum Spanning Tree

i, 1 ≤ i ≤ εn
2000

, there is anε-short topological cycleC with Wi = WC. Then we apply
Lemma 2.4.1 withk = εn

2000
, l = 2, ands = 20n√

εn
= 20

√
n/ε and obtain

Pr
[
∃j ∈ [k] : (Wj ⊆ Q)

]
≥ 1 − (1 − 1/4)4 ≥ 2/3 .

Now observe that all vertices of a cycleC are inS, if WC ⊆ Q. Therefore, the lemma
follows. 2

We prove that the following algorithm is a property tester for EMST:'

&

$

%

EMST-TEST-SIMPLE(G, ε)
s = 80

√
n/ε + 4000/ε

choose a setQ ⊆ P of sizes uniformly at random
S =

⋃
q∈QN

top
G (q, 72

ε
)

compute the subgraphGS induced byS
compute the EMST-completionGC of GS

if GC contains a cyclethen reject
elseaccept

Lemma 3.3.18 Let G be a well-shaped geometric graph forP. Then there is a property

tester that in timeO
(√

n/ε3 · log(n/ε)
)

and with query complexityO(
√

n/ε3) accepts

the input ifG is an EMST ofP and rejects the input with probability at least2
3
, if G is ε-far

from EMST.

Proof : We claim the algorithm EMST-TEST-SIMPLE is a property tester for EMST. By
Corollary 3.3.8 we know that EMST-TEST-SIMPLE accepts, if the input graphG = (P, E)

is the EMST.
Now let us consider the case whenG is ε-far from EMST. Then by Lemma 3.3.12 we

know that there areεn/100 ε-short topological cycles in the EMST completion ofG. It
follows that there areεn/200 cycles of type (1) and (2) orεn/200 cycles of type (3) or
(4). By Lemma 3.3.16 and 3.3.17 we know that the sample taken by EMST-TEST-SIMPLE

contains anε-short topological cycle with probability at least2/3. By Corollary 3.3.8 we
know that then there is a cycle in the EMST-completion of the subgraph induced by our
sample. Hence the algorithm rejects in such a case.

The query complexity of the algorithm is immediate. Its running time follows from
Claim 3.3.14 and the fact that the EMST completion of a graph withm vertices can be
computed in timeO(m logm). 2

3.3.4 An Improved Property Tester in Well-Shaped Graphs

Now we slightly improve the complexity of the property tester described in Lemma 3.3.18.
In our analysis above we were always trying to catch one initially fixed single vertex from
each blue path although anε-short topological cycle can contain as many as72

ε
vertices.

37

3 Testing Algorithms for Geometric Properties

We now want to take the length of the topological cycles into consideration. Further, we
were always taking topological72

ε
-neighborhoods of all vertices. This strategy should be

applied to the cycles that have as many as72
ε

edges, but it is not necessary for shorter cycles.
Our approach now is to improve the complexity of the property tester by combining these
two observations. We want to show that the following algorithm is a property tester for
EMST, if the input graph is well-shaped:'

&

$

%

EMSTTEST(G, ε)
s = 1700

√
n/ε + 192000/ε + 4000/ε

S =FINDCYCLE(G, s, ε)
compute the subgraphGS induced byS
compute the EMST-completionGC of GS

if GC contains a cyclethen reject
elseaccept

Where the procedure FINDCYCLE is the following:'

&

$

%

FINDCYCLE(G, s, ε)
S(0) = ∅
for i = 1 to 2s do

j = 0

pick a vertexp(i) ∈ P uniformly at random
while j ≤ log 72

ε
do

j = j + 1

flip a coin
if headthen exit

S(i) = S(i−1) ∪N top
G (p(i), 2j)

return S(2s)

First of all, we observe that algorithm EMSTTEST accepts every Euclidean minimum
spanning tree by Corollary 3.3.8.

Thus we have to prove that the algorithm rejects, if the input graph isε-far from EMST.
Let us assume thatG is well-shaped andε-far from EMST. Then, by Lemma 3.3.12, there
are at leastε n

100
ε-short topological cycles in the EMST-completion ofG. Let Cj, j =

1, 2, 3, 4, denote the set of allε-short topological cycles of type (j) in the EMST-completion
of G. Now we consider separately cycles inC1∪C2 and cycles inC3∪C4. By our discussion
above we have either|C1 ∪ C2| ≥ ε n

200
or |C3 ∪ C4| ≥ εn

200
.

Cycles of type (1) and (2). Suppose thatG is a geometric graph forP with maxi-
mum degree5 and there are at leastεn ε-short topological cycles of type (1) or (2) in the
EMST-completion ofG for ε = ε

200
. We first consider the probability that a fixedε-short

topological cycleC ∈ C1 ∪ C2 is contained in the sample set. Let` denote the number
of vertices in cycleC. Then the probability that in roundi of the FINDCYCLE procedure

38

3.3 Euclidean Minimum Spanning Tree

vertexp(i) is one of thè vertices of cycleC is `
n

. Further the probability that the topolog-
ical neighborhood ofp(i) is chosen large enough to contain all vertices ofC is at least1

2`
.

Overall, for a fixed cycleC the probability that a vertex ofC is chosen in roundi and that
the topological neighborhood of the vertex is large enough is at least1

2n
. If the cycles are

vertex disjoint then it is simple to prove that afterO(1
ε
) rounds at least one cycle is com-

pletely contained in the sample set with constant probability. Unfortunately, in the general
case the cycles are not vertex disjoint. To overcome this technical problem we use the
planar map representation ofG and the following trick for the analysis: Instead of taking
the whole topological2j-neighborhood of vertexp(i) we assume that our algorithm selects
only one of the outgoing edges (in its planar map representation) uniformly at random.
Then it includes only the2j successors and predecessors of the chosen edge in the planar
map representation ofG. Clearly, this procedure considers only a subset of the vertices
considered in the original procedure. Nevertheless, we can show that the set of vertices
we pick using this procedure is still sufficiently large. We can now use the fact that the
(directed) cycles are edge disjoint. Assume that we pick a vertex that belongs to a cycleC.
Provided that the chosen neighborhood is large enough we still have to choose the correct
outgoing edge to have all vertices ofC in the sample set. Since our graph has a degree
bound of 5 the probability that this edge is chosen is at least1/5. Since type (2) cycles
consist of a path of̀ − 1 (directed) blue edges the probability thatp(i) is one of thè − 1

origins of these edges is`−1
n

≥ `
2n

(a directed edge points from itsorigin to its destina-
tion). Hence the probability that a cycleC of type (1) or (2) is completely contained in the
sample set is at least1

20n
. We know that the cycles are disjoint and so the probability that at

least one cycle is completely contained in the sample set in roundi is at leastεn
20n

= ε
20

. Let
XC denote the indicator random variable for the event that cycleC ∈ C1∪C2 is completely
contained in the sample set. Then we have fors ≥ 20/ε = 4000/ε:

Pr
[
∀C ∈ C1 ∪ C2 : XC = 0

]
≤
(
1 −

ε

20

)2s ≤ 1/3

and hence
Pr
[
∃C ∈ C1 ∪ C2 : XC = 1

]
≥ 2/3

and so we have just proved:

Lemma 3.3.19 LetG be a geometric graph forP with maximum degree5 that has at least
εn = εn

200
topologicalε-short cycles of type (1) or (2). If algorithmFINDCYCLE(G, s, ε)

is invoked withs ≥ 4000/ε then the setS(2s) returned by the algorithm contains anε-short
topological cycle with probability at least2/3. 2

Cycles of type (3) and (4). Let G be a geometric graph with maximum degree 5. Let
us further assume that there are at leastεn topologicalε-short cycles of type (3) and (4) in
the EMST-completion ofG, for ε = ε

200
. We want to show that the sample set computed

by algorithm FINDCYCLE contains every vertex of at least oneε-short topological cycle
with good probability.

Recall that cycles of type (4) consist of 2 paths of blue edges connected by two red
edges. Cycles of type (3) are a special case of type (4) cycles: The shorter path has length

39

3 Testing Algorithms for Geometric Properties

0. For each cycleC ∈ C3 ∪ C4 let X
(i)
C denote the indicator random variable for the event

that all vertices of the longer (blue) path of cycleC are inS(i). LetY(i)
C denote the indicator

random variable for the event that all vertices of the shorter (blue) path of cycleC are in
S(i). Further let∆(i+1) denote the indicator random variable for the event that there is a
cycleC ′ ∈ C3 ∪ C4 with X

(i)
C ′ = 0 andX

(i+1)
C ′ = 1. We say that a cycleC ∈ C3 ∪ C4 is

half-containedin S(i), if X
(i)
C = 1. CycleC is containedin S(i), if X

(i)
C = 1 andY

(i)
C = 1.

We analyze the algorithm in two steps. We first show that with high probability many
(at leastεs/80) topologicalε-short cycles are half-contained in the setS(s). Then we show
that the setS(2s) contains at least one cycleC ∈ C3 ∪ C4 with high probability.

Claim 3.3.20 Let the outcome of the random choices in round1 to i of the for -loop of
FINDCYCLE be fixed. Then it holds that, if∑

C∈C3∪C4

X
(i)
C <

εs

2
(3.1)

then

Pr
[
∆(i+1) = 1

]
≥ ε/40 . (3.2)

Proof : Let us assume that Equation (3.1) is true. Then we observe that:∑
C∈C3∪C4

X
(i)
C <

εs

2
≤ εn

2

sinces ≤ n. We conclude that we have more thanεn/2 cycles inC3 ∪ C4 that are not
half-contained inS(i). If p(i+1) is one of the vertices of the longer path of one of these
cycles and if the topological neighborhood included in FINDCYCLE is large enough then
we have∆(i+1) = 1. To estimate the probability for∆(i+1) = 1 we apply the same trick as
in the analysis for the case of type (1) and (2) cycles. This yields immediately (observing
the fact that we haveεn/2 cycles instead ofεn):

Pr
[
∆(i+1) = 1

]
≥ 1

2`
· `

2n
· 1

5
· εn

2
= ε/40

. 2

Our next goal is to show that there are at leastεs/80 cycles that are half-contained in
S(s).

Claim 3.3.21

Pr
[∑

C∈C3∪C4

X
(s)
C ≤ εs/80

]
≤ e−εs/300 .

40

3.3 Euclidean Minimum Spanning Tree

Proof :

Pr
[∑

C∈C4∪C4

X
(s)
C ≤ εs

80

]
≤ Pr

[∑
1≤i≤s

∆(i) ≤ εs

80

]
≤ Pr

[∑
1≤i≤s

B(i) ≤ εs

80

]
≤ Pr

[∑
1≤i≤s

B(i) ≤ (1 −
1

2
) · εs

40

]
whereB(i) are independent0− 1 variables withPr[B(i) = 1] = ε/40. The latter inequality
follows from Claim 3.3.20. We apply a Chernoff bound [56, Inequality (7)] and it follows
that

≤ e−(1
2
)2 εs

40·2 = e−εs/320 .

2

Let W(i+1) denote the indicator random variable for the event that there existsC ∈
C3 ∪ C4 with X

(i)
C = 1 andY

(i)
C = 0 andY

(i+1)
C = 1.

Claim 3.3.22 Let the outcome of the random choices in round1 to i of the procedure
FINDCYCLE be fixed. If ∑

C∈C3∪C4

X
(i)
C > εs/80

then
Pr
[
W(i+1)

]
≥ εs

1600 · n
.

Proof :
We assume that there are more thanεs/80 cycles that are half-contained inS(i). Again

we use essentially the same trick as in the case of type (1) and (2) cycles. We observe that
there is a little problem with cycles of type (3). Since the length of the shorter path is0 there
is no directed edge in this path. Thus we have to modify our approach slightly. We use
the following sampling scheme for the analysis: Instead of taking the whole topological
2j-neighborhood ofp(i) we choose a numberk between1 and6 uniformly distributed. Ifk
is between1 and5 we include the2j predecessors and successors of thek-th edge incident
to p(i). In the casek = 6 we only include the vertexp(i) in the sample. Then we get that
the probability that a cycleC is contained in the sample is at least1

2`
· `

2n
· 1

6
= 1

24n
. We

have more thanεs/80 cycles that are half-contained inS(i). Therefore we obtain that:

Pr
[
W(i+1)

]
≥ εs

1920 · n
.

2

41

3 Testing Algorithms for Geometric Properties

Lemma 3.3.23 Let G be a geometric graph forP with maximum degree5 that has at
least εn = εn

200
topologicalε-short cycles of type (3) or (4). ThenFINDCYCLE is an

algorithm with (expected) query complexityO(
√

n/ε log(n/ε)) that samples a setS ⊆ P,
|S| ≥ 1700

√
n/ε + 192000/ε, such that the EMST-completion of the subgraphGS(2s)

induced byS(2s) has anε-short topological cycle.

Proof : Let ε = ε/200 and letG be a geometric graph forP with maximum degree5
that has at leastεn topologicalε-short cycles of type (3) or (4).

Pr
[
There is a cycle in the EMST-completion of the subgraph induced byS(2s)

]
≥ 1 −

(
Pr
[1
s

∑
C∈C3∪C4

X
(s)
C ≤ ε

80

]
+
(
1 −

εs

1920n

)s)

by Claim 3.3.22. Choosings ≥ 1700
√

n/ε + 192000/ε it follows together with Claim
3.3.21 forn ≥ 4:

≥ 1 − (e−2 + e−5) ≥ 4

5
.

2

Obtaining Deterministic Query Complexity. It is easy to modify the algorithm
such that the query complexity has an upper bound ofO(

√
n/ε log(n/ε)) by insignifi-

cantly increasing the error of the algorithm. We can do this in the following way: We run
algorithm EMSTTESTand stop, if it either accepts or rejects or if the sample size becomes
too large. LetXS denote the random variable for the size ofS(2s). We stop the algorithm
and accept the input, if we find out that the size ofS(2s) becomes larger than10 ·E[XS]. By
Markov inequality we have:

Pr
[
XS ≥ 10 E[XS]

]
≤ 1/10 .

Hence it follows that our new algorithm rejects a geometric graph that isε-far from EMST
with probability4/5 − 1/10 ≥ 2/3. Thus it is a property tester with a deterministic bound
of O(log(n/ε) ·

√
n/ε) on the query complexity of our algorithm (rather than expected

query complexity).

Lemma 3.3.24 Let G be a well-shaped geometric graph forP. Then there is a property
tester that in timeO(log2(n/ε)·

√
n/ε) and with query complexity ofO(log(n/ε)·

√
n/ε)

accepts the inputG, if G is an EMST ofP and that rejects the input with probability at least
2
3

if G is ε-far from EMST.

Proof : Follows from Lemma 3.3.12, Lemma 3.3.19 and Lemma 3.3.23. 2

42

3.3 Euclidean Minimum Spanning Tree

3.3.5 A Property Tester in Graphs with Maximum Degree 5

Now we want to remove the well-shaped condition for input graphs. In this subsection
we do the first step towards that goal. We develop property tester for connectivity and
crossing-free EMST-completions. Then we replace the well-shaped condition for EM-
STTEST by the assumption that the input graph has maximum degree 5. Before EM-
STTEST is invoked we test if the input graph isε/200-far from connected and if its
EMST-completion has a crossing-free straight line embedding. Thus we may assume that
EMSTTEST gets an input graph that isε/200-close to connected andε/200-close to hav-
ing an EMST-completion with a crossing-free straight line embedding (if this is not the
case, the property testers for connectivity and crossing-free EMST-completions reject).
This way we develop a property tester for graphs with maximum degree 5. The degree
bound is then removed in the last subsection.

Testing Connectivity. In the first phase we test whether the input graph is connected.

Definition 3.3.25 A geometric graphG for P is ε-far from connectedif one has to add
more thanε · n edges toG to obtain a connected graph. IfG is notε-far from connected,
then we call itε-closeto connected.

Remark 1 Let us notice here the equivalent characterization of geometric graphs forP

that areε-far from connected — these are geometric graphs forP having more thanε·n+1

connected components.

Since the property of being connected does not depend on the positions of the input
points inP, we can use a property tester for connectivity in graphs. In [52] it has been
proven that connectivity of bounded degree graphs can be tested efficiently:

Lemma 3.3.26 [52] Let G be a graph with degree boundd. Connectivity ofG can be
tested withO(log2(1/εd)

εd
) time and query complexity in the bounded length adjacency list

model (see Chapter 2)3.

We can immediately apply this result to geometric graphs:

Corollary 3.3.27 Let G be a geometric graph forP with maximum degree 5. There is a
property tester that in timeO(log2(1/ε)

ε
) and with a query complexity ofO(log2(1/ε)

ε
) accepts

the input ifG is connected and rejects the input with probability at least2
3

if G is ε-far
from connected.

Proof : We run the tester from [52] withd = 5 andε ′ = ε/5. 2

3In the bounded degree graph model a graph isε-far from connected if one has to add more thanεdn edges
to obtain a connected graph.

43

3 Testing Algorithms for Geometric Properties

Testing Crossing-Free EMST-Completions. Next, we design a tester that accepts
the input graph, if it is the EMST and rejects it if the straight-line embedding of its EMST-
completion isε-far from crossing-free. We proceed in two steps. First, our property tester
checks for pairs of intersecting blue edges and then it tries to find intersections between
blue and red edges; red edges cannot intersect because they are edges of an EMST. We use
the following distance measure.

Definition 3.3.28 The straight-line embedding of a geometric graphG for P is ε-far from
crossing-freeif one has to remove more thanε · n edges inG to obtain a crossing-free
straight-line embedding. If the straight-line embedding ofG is not ε-far from crossing-
free, then we call itε-closeto crossing-free.

We first use the tester DISJOINTNESSdeveloped in Section 3.1 to find intersections be-
tween blue segments (induced by blue edges). SinceG has maximum degree5 it has at
most5n edges. Therefore, since one can verify in timeO(n logn) if a geometric graph
with n vertices has crossing-free straight-line embedding [16] (the number of edges must
beO(n); otherwise there must be a crossing), Theorem 1 implies the following result.

Lemma 3.3.29 Let G be a geometric graph with maximum degree 5. There is a property
tester that in timeO(

√
n/ε log(n/ε)) and with the query complexity ofO(

√
n/ε) ac-

cepts the input if the straight-line embedding ofG is crossing-free and rejects the input
with probability at least2

3
if the straight-line embedding ofG is ε-far from crossing-free.

2

It remains to design a property tester for red-blue intersections in the EMST-completion
of G 4. A geometric graph with red and blue edges has a straight-line embedding without
red-blue intersections, if there is no intersection between the corresponding red and blue
segments. Similarly, the straight-line embedding of a geometric graph whose edges are
colored blue and red isε-far from having no red-blue intersections, if one has to delete
more than anε-fraction of its edges to remove all red-blue intersections.

The main difficulty with testing for red-blue intersections in the EMST-completion of
G is that the red edges are only defined implicitly. The following lemma shows a relation
between the endpoints of red and blue edge intersecting each other.

Lemma 3.3.30 Let pq be a red andxy be a blue segment in the EMST-completion ofG.
If pq andxy intersect each other, then eitherpq is not in the EMST of every set containing
{p, q, x} or it is not in the EMST of every set containing{p, q, y}.

Proof : The pointsp, q, x, y are in convex position because the segmentspq andxy

intersect. We consider the quadrilateralpxqy (see figure 3.7). Let us call the inner angles
in the quadrilateral at verticesp, q, x, y to beα, β, γ, andδ, respectively. Let us recall that
the longest edge of a triangle is opposite of the largest angle.

4More precisely, we do not design a property tester for the property of having no red-blue intersections. Our
algorithm might reject an input graph if its EMST-completion has no red-blue intersections. However, if
the input graph is the EMST then it is always accepted by our algorithm.

44

3.3 Euclidean Minimum Spanning Tree

p

q

y
x

α

β

δ
γ

Figure 3.7: A red blue intersection. The red edge is dotted.

If α < π
2

andβ < π
2

thenγ or δ is larger thanπ
2

becauseα+β+γ+δ = 2π. Without
loss of generality, letγ > π

2
. Then, segmentpq is the longest edge of trianglepqx and

thus is cannot be the EMST of{p, q, x}. By Lemma 3.3.7 this is a contradiction to the fact
that(p, q) is an EMST edge. Hence we must have eitherα ≥ π

2
or β ≥ π

2
.

If α ≥ π
2

then segmentxy is the longest edge in trianglepxy. Hence edge(x, y) is not
contained in the EMST ofp, x, y. By Lemma 3.3.7 it is also not contained in every EMST
of a subset ofP that containsp, x, y.

If β ≥ π
2

then segmentxy is the longest edge in triangleqxy. Hence edge(x, y) is not
contained in the EMST ofq, x, y. By Lemma 3.3.7 it is also not contained in every EMST
of a subset ofP that containsq, x, y. 2

This lemma shows that each red-blue intersection has a “witness” consisting of one
point and one edge of the input graph. Our property tester for red-blue intersections is
similar to the DISJOINTNESStester. We modify the disjointness property in the following
way: We say that two pointsp, q ∈ P intersect, if there is an (blue) edgee = (p, x) (or
e = (q, x)) incident top (or q) such that the other point is a witness thate is not in the
EMST ofP, that ise is not in the EMST ofp, q, x. The following algorithm is a property
tester for red-blue intersections:'

&

$

%

REDBLUETEST(G, ε)
Choose a setS ′ ⊂ P of size16

√
5n/ε uniformly at random

Let S = S ′ ∪N (S ′) whereN (S ′) denotes the set of neighbors of points inS ′

Let GS denote the subgraph induced byS

if the EMST-completion ofGS has a cyclethen reject
elseaccept

The analysis of the algorithm is similar to the analysis of the algorithm DISJOINTNESS.
If the input graph is the EMST then there are no intersections among the points inP.

If the EMST-completion of the input graph isε-far from having no red-blue intersections
then by Lemma 3.3.30 it follows that the point setP is ε-far from being disjoint, if the
EMST-completion isε-far from having no red-blue intersections. Thus we have:

45

3 Testing Algorithms for Geometric Properties

Lemma 3.3.31 Let G be a geometric graph forP with maximum degree 5. Algorithm
REDBLUETEST runs in timeO(

√
n/ε logn) and with the query complexity ofO(

√
n/ε)

and accepts the input graphG if it is the Euclidean Minimum Spanning Tree and rejects
the input with probability at least2

3
if the straight-line embedding of the EMST-completion

of G is ε-far from having no red-blue intersection.

Proof : If G = (P, E) is the EMST then its EMST-completion is crossing-free. Thus
algorithm REDBLUETEST acceptsG.

Let GC denote the EMST-completion ofG and let us assume thatGC is ε-far from
having no red-blue intersections. By Lemma 3.3.30 we can apply the following procedure
k = εn/20 times: pick a pair of intersecting (with the definition from above) points
{p, q} = Wi, i ∈ [k], and remove all edges incident top andq from GC. By the degree
bound, we have to remove at most10 edges for each of the two vertices. Therefore, we
can apply this procedure at leastk times.

In order to prove that REDBLUETEST rejectsG with probability at least2/3 if GC is
ε-far from having no red-blue intersections we show that with probability at least2/3 one
of the pairsWi, i ∈ [k], is in S ′. We apply Lemma 2.4.1 and obtain:

Pr
[
∃j ∈ [k] : (Wj ⊆ S ′)

]
≥ 1 − (1 − 3/4)4 ≥ 2/3

It remains to show that the algorithm rejects, if there is a pairWi ⊆ S ′. If Wi = {p, q} ⊆ S ′

then there existse = (p, x) (or e = (q, x)) such thate is not in the EMST ofp, q, x. By
Lemma 3.3.7e is not in the EMST ofS. HenceS must have a cycle and REDBLUETEST

rejects. 2

Finally, we can combine Lemma 3.3.29 and Lemma 3.3.31 to obtain.

Lemma 3.3.32 Let G be a geometric graph forP with maximum degree 5. There is an
algorithm that in timeO(

√
n/ε log(n/ε)) and with a query complexity ofO(

√
n/ε)

acceptsG, if G is the EMST ofP and rejectsG with probability at least2
3

if the straight-
line embedding of its EMST-completion isε-far from crossing-free.

Proof : Let G beε-far from having a crossing-free EMST-completion. Then, either the
straight-line embedding ofG is ε

2
-far from crossing-free or the EMST-completion ofG is

ε
2
-far from having no red-blue intersections. Applying Lemma 3.3.29 and Lemma 3.3.31

with ε = ε
2

shows thatG is rejected with probability at least2
3
. Since the tester for blue-

blue intersection and the tester for red-blue intersections both accept the EMST we have
completed the proof of Lemma 3.3.32. 2

Extension to Degree Bounded Graphs. Now we want to design a property tester
for arbitrary degree bounded input graphs. We first extend the planar map representa-
tion for well-shaped graphs to aplanar map likerepresentation for general graphs in the
following straightforward way:

For every vertexp in G we (cyclically) sort incident outgoing edges in clockwise order
around the vertexp with respect to the Euclidean positions of the edges endpoints. For
sake of completeness we restate Definitions 3.3.10, 3.3.11, and 3.3.13 for general graphs
(these generalizations are immediate):

46

3.3 Euclidean Minimum Spanning Tree

Definition 3.3.33 LetG be a geometric graph forP and letG̃ be the corresponding planar
map like representation. For each edgee = [pq〉 in G̃ thesuccessorof e is the edge[q, r〉
in G̃ with r being the vertex incident toq that precedesp in the adjacency list ofq (sorted
in clockwise order aroundq); if q has degree one, thenr = p.

For edgee = [p, q〉 in G thekth successor, k ≥ 0, is defined recursively as follows:
the0th successor of[p, q〉 is [p, q〉 itself, and fork > 0, thekth successor of[p, q〉 is the
successor of the(k − 1)st successor of[p, q〉.

Similarly, edgee is thepredecessorof edgee ′ if edgee ′ is the successor of edgee, and
e is thekth predecessorof e ′ if e ′ is thekth successor ofe.

Definition 3.3.34 Let G be a geometric graph forP and letC = (p0, p1, . . . , pk) be a
cycle in the planar map of the EMST-completion ofG. ThenC is called topological, if
for any two consecutive edges on the cycle[pi, pi+1〉 and [pi+1, pi+2〉, [pi+1, pi+2〉 is the
successor of[pi, pi+1〉. We also call the corresponding cycle inG topological.

Definition 3.3.35 Let G be a geometric graph forP. For any vertexp ∈ P, we define
its topologicalk-neighborhoodas the set of vertices that are the endpoints of the edges
that are either theith successor,0 ≤ i ≤ k, of any edge incident top, or are thejth
predecessor,0 ≤ j ≤ k, of any edge incident top. The topologicalk-neighborhood of a
vertexv is denotedN top

G (v, k).

Then we recall that Lemmas 3.3.19 and 3.3.23 do not require thatG is connected not
that the EMST-completion. Hence it suffices to show that the bound of Lemma 3.3.12
carries over to general graphs:

Lemma 3.3.36 Let G = (P, E) be a geometric graph forP that is ε/200-close to con-
nected andε/200-close to having a crossing-free straight-line embedding. IfG is ε-far
from EMST, then there are at leastε n

100
ε-short topological cycles in the EMST-completion

of G.

Proof : Let GC denote the EMST-completion ofG = (V, E). SinceGC is ε/200-close
to crossing-free we can delete a setED of at mostεn/200 edges fromGC to make it
crossing-free. Then we can insert a setEI of at mostεn/100 edges to makeG connected
(and still keep its EMST-completion crossing-free). This is always possible since we can
insert EMST edges to connect the disconnected components. Let us denote the resulting
graphG ′

C = (V, E \ ED ∪ EI).
Using the same arguments as in the proof of Lemma 3.3.12 we obtain that there are at

leastεn/24 ε-short topological cycles inG ′
C. Now we reverse our modifications of the

EMST-completion and we remove the edgesEI from G ′
C. We observe that the removal of

a single edge can destroy at most two cycles since the cycles are disjoint (in their planar
map representation). Hence the removal ofED destroys at mostεn/50 ε-short topological
cycles. Then we reinsert the removed edgesED. Now each edge can destroy at most2

cycles. Hence the re-insertion ofED destroys at mostεn/100 ε-short topological cycles.
Counting the remaining cycles we get that at leastεn/100 ε-short topological cycles are
in GC. 2

We conclude:

47

3 Testing Algorithms for Geometric Properties

Lemma 3.3.37 Let G be a geometric graph forP with maximum degree 5. Then there
is a property tester that in timeO(log2(n/ε) ·

√
n/ε) and with query complexity of

O(log(n/ε) ·
√

n/ε) accepts the input ifG is an EMST ofP and rejects the input with
probability at least2

3
if G is ε-far from EMST.

Proof : Follows from Lemma 3.3.19, Lemma 3.3.23, and Lemma 3.3.36. 2

3.3.6 A Property Tester in General Graphs

It remains to remove the degree bound condition for the input graph. In order to do this,
we first describe a low degree tester:

A property tester for low degree. We first define when a graph is far from having
low degree vertices:

Definition 3.3.38 A geometric graphG = (P, E) for P is ε-far from having low degreeif
one has to remove more thanε · n edges inG to obtain a graph having maximum degree
smaller than or equal to five.

If G is notε-far from having low degree, then we call itε-closeto having small degree.

It is easy to see that ifG is ε-far from having small degree, then there are at least√
ε · n vertices inG either having degree greater than five or having an adjacent vertex

with degree greater than five. Therefore the simple algorithm that picks a random setS of
4
√

n/ε points inP and tests if every pointp ∈ S has the degree smaller than or equal to
5 and if so then it tests if every neighbor ofp ∈ S has degree smaller than or equal to5 5,
will detect with probability greater than or equal to2

3
every geometric graphG that isε-far

from having small degree.

Lemma 3.3.39 Let G be a geometric graph forP. There is a property tester that in time
O(
√

n/ε) and with the query complexity ofO(
√

n/ε) accepts the input ifG has the
maximum degree smaller than or equal to5 and rejects the input with probability at least
2
3

if G is ε-far from having small degree.

Proof : Clearly, our algorithm accepts every graph having maximum degree of five. Let
us assume thatG is ε-far from having small degree. A vertex that has degree more than
five or that is adjacent to a vertex with degree more than5 is called aheavy vertex. Let S
denote a sample of size4

√
εn chosen uniformly at random fromP.

Pr
[
S contains no heavy vertex

]
≤ (1 − 1/

√
n/ε)4

√
n/ε ≤ 1/3 .

It follows that
Pr
[
S contains a heavy vertex

]
≥ 2/3

Hence our algorithm rejects every graph that isε-far from having small degree with prob-
ability at least2/3. Thus it is a property tester. 2

5Since the degree of everyp ∈ S is less than or equal to5, such a test can be performed in a constant time
per vertexp.

48

3.3 Euclidean Minimum Spanning Tree

The Tester for General Graphs. To obtain a tester for general graphs we have to
modify the tester for graph with degree bound of5 in the following way: We first test
whether the input graph isε/2-far from having low degree (using the tester described be-
low). Then we run the property tester for graphs with maximum degree of5 after applying
the following modifications and with distance parameterε = ε/2:

• If during the course of the algorithm we encounter a vertex with degree more than 5,
we immediately reject.

• For each vertexv ∈ S we also include every neighbor ofv in G into the sample
set. This can be done without asymptotically increasing the running time of the
algorithm (because we reject, if we encounter a vertex with degree more than 5).

Clearly, the above modifications do not affect the case when the input graph is the
EMST of the point set: The algorithm will still accept the input graph. Thus let us consider
the case when the input graphG is ε-far from EMST. If the low degree tester rejects the
input graph, we are done. Thus let us assume that the input graph passes this test (and thus
is ε/2-close to having low degree):

Let us assume thatG is ε/2-close to having low degree butε-far from EMST. We call
a vertex ofG a distinguisher, if it either has degree more than 5 or if it has a neighbor
whose degree is greater than 5. Now we define the graphG ′ to be a graph obtained from
G by deleting a minimal set of edges such thatG ′ has a maximum degree of 5. Since we
deleted less thanεn/2 edges fromG to obtainG ′ we conclude thatG ′ is ε/2-far from
EMST.

In order to analyze the behavior of the modified algorithm we consider the (unmodified)
algorithm for graphs with maximum degree 5. First of all, we observe that the modified
algorithm always rejects, if there is a distinguisher in the sample chosen by the unmod-
ified algorithm. But if there is no distinguisher in the sample chosen by the unmodified
algorithm then the graph ’looks’ like the graphG ′ which has maximum degree 5 and is
ε/2-far from EMST. If we run the unmodified algorithm on inputG ′ it rejects with prob-
ability 2/3. Thus the modified algorithm always rejects when the unmodified algorithm
rejectsG ′. We conclude that the modified algorithm rejectsG with probability at least2/3

because it either rejects or it behaves like the unmodified algorithm with inputG ′. Hence
we proved:

Theorem 4 There is a property tester for the EMST property with a running time of
O(
√

ε n) · log2(n/ε)) and with a query complexity ofO(
√

ε n · log(n/ε)). 2

49

3 Testing Algorithms for Geometric Properties

50

4 Efficient Property Testers

In the previous chapter we have seen some property testers and their analyses. This leads
to the general question if it is possible to characterize all properties of a certain class of
objects (e.g., all properties of point sets) that can be tested efficiently. First of all, it is
necessary to specify what is meant by ”efficiently testable”: A propertyΠ is efficiently
testable, if there is a property tester forΠ that has query complexity independent of the
size of the input (for constant distance parameterε). One of the major open questions in the
field is to characterize for certain classes of objects all properties that are efficiently testable
and there has been some effort to achieve this goal: For graph properties it is known that
all first order graph properties that do not have a∀∃ quantification are efficiently testable
in the adjacency matrix model [5]. In the same model it has also been proven that a large
class of graph partitioning problems can be tested efficiently [51]. For matrix properties it
is known that certain monotonicity properties can be tested efficiently [45].

In this chapter we try to find a characterization of efficiently testable properties for
functions from an arbitrary finite domainD into an arbitrary rangeR. Using the very
general formulation of a property (see Definition 2.1.1) we can use our framework for a
large class of objects and - as shown in this chapter - also for a large class of properties. In
particular, we show that our framework can be used to prove that certain clustering prop-
erties over point sets, a reversal distance property over permutations, and thek-coloring
property over̀ -uniform hypergraphs can be tested efficiently. For some of these problems
a property testing algorithm has been analyzed before [4]. Our goal is here to show that
our framework is fairly general and that it leads to elegant proofs that highlight the combi-
natorial features of the problems. We can also show that every hereditary graph property
(every graph property that is closed under taking induced subgraphs) is efficiently testable,
if and only if there is a proof of its testability using our framework.

We emphasize that our results only hold for property testers withone-sided error. Our
result for hereditary graph properties is existential. It shows that our framework can be
applied to a large variety of problems. It would be very interesting to show that our charac-
terization can be used to show that certain large classes of functions are efficiently testable.
This is one of the major open questions regarding our framework.

4.1 Abstract Combinatorial Programs

In this section we introduceabstract combinatorial programs. An abstract combinatorial
program (ACP) is a combinatorial structure defined over aground setof atom items. In

51

4 Efficient Property Testers

this combinatorial structure atom items may be arranged into sets. These sets describe
possible ”basic” configurations and they are called thebasesof the abstract combinatorial
program. Further there is a relationship between atom items and bases: Each atom item
is eitherconsistentwith a given basis or itviolatesit. This relationship is described by a
violation function.

ACPs can be used to highlight combinatorial features of property testing problems.
In typical applications the ground set depends on the problem under consideration and
corresponds in a natural way to the basic items of the considered problem. When we want
to apply ACPs to graph problems then the ground set may be the set of vertices of the graph
and when we consider properties of point sets the ground set may be the set of points.

The set ofbasesdescribes possible “basic” configurations of the corresponding prob-
lem. If we consider a graph coloring problem then a basis may correspond to a subset of
verticesW together with an associated coloring ofW. For technical reasons we define
every basis as a pair(W, `), whereW is a subset of the ground set and` is an index de-
scribing a configuration ofW (for example, in the graph-coloring example above, it is a
coloring of vertices inW).

Theviolation functiondescribes for each basisb and each atom itemx if x is consistent
with b or not. If x is not consistent withb then we sayx violatesb. If every atom item
is consistent with a basis then we call this basisfeasible. Normally, the violation function
depends on the input instance. For the graph-coloring example above one could define the
violation function such that a vertexv violates a basis (colored vertex setW) if and only
if in the input graph thek-coloring of W cannot be extended to a properk-coloring of
W ∪ {v}.

Formally, we define an abstract combinatorial program in the following way.

Definition 4.1.1 Anabstract combinatorial program(ACP) is a triple(C,B,$), where

• C is a finite set calledground set,

• B ⊆ {(W, `) : W ⊆ C, ` ∈ N} is a set ofbases, and

• $: B → 2C is a violation function. For each basisb ∈ B the set$(b) is the set of
atom items violatingb.

A basisb is feasibleif $(b) = ∅. An abstract combinatorial program isfeasibleif it has
a feasible basis.

We also would like to remark here that in the context of randomized incremental algorithms
configuration spaceshave been introduced as an analysis tool (e.g., see [35]). Although
the structure of a configuration space is similiar to that of an ACP it would be misleading
to describe our framework in terms of configuration spaces as the intuitive meaning of the
corresponding components of the definitions differs widely.

We are now interested in the problem of testing the feasibility of ACPs. In order to do
so we need some further definitions. The first definition introduces the termdimensionto
denote the maximum number of atom items involved in a basis. Then we denote by the
width of an ACP the maximum number of different bases with the same set of atom items:

52

4.1 Abstract Combinatorial Programs

Definition 4.1.2 (ACP Dimension) LetP be an abstract combinatorial program. The
dimensionof P (denoteddim(P)) is defined asmax{|W| : (W, `) ∈ B}. Thewidth of P
denoted (width(P)) is defined asmax{` : (W, `) ∈ B}.

Since we are interested in property testing we want to investigate in ”local” properties
of ACPs to conclude if the ACP as a whole is feasible or not. For this purpose we need
some further definitions. We say that a basis isfeasiblefor a set of atom items, if none
of these items violates the basis. A basis iscoveredby a set of atom items, if the basis
contains only atom items from this set. And a set of atom items contains aself-feasible
basis, if there is a feasible basis that is covered by the set:

Definition 4.1.3 (Self-feasible bases) LetP = (C,B,$) be an abstract combinatorial
program. We say a basisb = (W, `) ∈ B is coveredby a subsetC∗ ⊆ C if W ⊆ C∗. We
say that a basisb is feasiblefor a subsetC∗ ⊆ C, if no c ∈ C∗ violatesb. We say a subset
C∗ ⊆ C contains a self-feasible basisif there is a basisb that is covered byC∗ and that is
feasible forC∗.

In the next section we want to design a property tester for feasibility of ACPs. We
assume that the algorithm has the possibility to determine for a setS ⊆ C if S has a self-
feasible basis or not. The size of the setS should be as small as possible (the size of this
set could be seen as the query complexity of the algorithm). Since a property tester has
1-sided error it is necessary that we can always determine if the input ACP is feasible.
But then this would require that an ACP that consists of a single feasible basis is always
accepted. The only chance to ensure this is to setS = C. Therefore, we consider only
monotoneACPs. If a monotone ACPP with dimension dim(P) is feasible then every
S ⊆ C with |S| ≥ dim(P) has a self-feasible basis.

Definition 4.1.4 (Monotonicity) LetP = (C,B,$) be an abstract combinatorial pro-
gram with dimensiondim(P). P is calledmonotoneif it is either not feasible, or if (it is
feasible and) every subsetS ⊆ C with |S| ≥ dim(P) contains a self-feasible basis.

4.1.1 Testing Abstract Combinatorial Programs

In this section we design a property tester for monotone ACPs. We first have to define when
an ACP is far from feasible. We do this directly without specifying a distance measure
between ACPs:

Definition 4.1.5 An abstract combinatorial program isε-far from feasibleif every basis
is violated by more thanε · |C| objects from the ground setC.

A property tester for ACPs is an algorithm that (i) accepts every feasible ACP and (ii)
rejects with probability at least2

3
every ACP that isε-far from feasible. In the following

theorem we analyze a property tester for certain ACPs:

53

4 Efficient Property Testers

Theorem 5 (Testing ACPs)Let P = (C,B,$) be an abstract combinatorial program
with dimension at mostδ and width at mostρ. Then there existss with

s = Θ(ε−1 · (δ · ln(δ/ε) + ln ρ))

such that the following algorithm

�

�

�

�

ACP-TESTER(P, ε)
Sample a setS of s objects fromC uniformly at random
if S contains a self-feasible basisthen acceptP
elserejectP

1. acceptsP, if P is monotone and feasible,

2. and rejectsP with probability at least2/3, if P is ε-far from feasible .

Proof : Let P = (C,B,$) be an ACP that isε-far from feasible. Further letP have
dimension at mostδ and width at mostρ. For a basisb = (W, `) let Eb be the random
event (with respect to the random choice ofS) thatW ⊆ S and that none of the elements
from $(b) is in S. Now, in order to prove the theorem it is sufficient to show that with the
probability larger than or equal to2

3
for none ofb ∈ B the eventEb holds.

For everyr, 0 ≤ r ≤ δ, let∆r be the set of allb = (W, `) ∈ B with |W| = r. Let us fix
an arbitraryb ∈ ∆r. Then we have

Pr[Eb] ≤
(

(1−ε) n−r
s−r

)(
n
s

) .

SinceP has dimension at mostδ and width at mostρ, we have|∆r| ≤ ρ ·
(

n
r

)
for every

r ≥ 0. Furthermore, we have|∆r| = 0 for all r > δ. Therefore, by the union bound we
obtain

Pr[∃b ∈ B : Eb] ≤
∑
b∈B

Pr[Eb] =

δ∑
r=0

∑
b∈∆r

Pr[Eb]

≤ ρ ·
δ∑

r=0

(
n

r

)
·
(

(1−ε) n−r
s−r

)(
n
s

)
= ρ ·

δ∑
r=0

(
n
r

)(
n
s

) · ((1 − ε)n − r

s − r

)

= ρ ·
δ∑

r=0

(
s

r

)
(n − s)!

(n − r)!
· ((1 − ε)n − r)!

((1 − ε)n − s)!

54

4.1 Abstract Combinatorial Programs

= ρ ·
δ∑

r=0

(
s

r

)
· ((1 − ε)n − r) · · · ((1 − ε)n − s + 1)

(n − r) · · · (n − s + 1)

≤ ρ ·
δ∑

r=0

sr · (1 − ε)s−r ≤ ρ ·
δ∑

r=0

sr · e−ε(s−r)

≤ ρ · δ · sδ · e−ε(s−δ) ≤ ρ · δ · sδ · e−ε(s−s/2) ,

where we assume in the last inequality thats ≥ 2δ. Then we sets ′ := (δε−1 ln(3δ · ρ))3

and
s = 2ε−1(δ ln s ′ + ln(3δ · ρ)) .

With these choices we have

s = 2ε−1(δ ln s ′ + ln(3δ · ρ))

≤ 2ε−1 · δ · ln s ′ · ln(3δ · ρ)

≤ 2(ε−1δ ln(3δ · ρ))2

≤ (δε−1 ln(3δ · ρ))3 = s ′

We further conclude

ρ · δ · sδ · e−ε(s−s/2) ≤ ρ · δ · sδ · (s ′)−δ · (3δ · ρ)−1

≤ 1/3

Hence, with probability at least2
3

all b = (W, `) ∈ B with W ⊆ S are violated byS, which
completes the proof of the first part of the theorem. IfP is monotone and feasible then
every setX ⊆ C of size at leastdim(P) contains a self-feasible basis. Therefore,S must
contain a self-feasible basis becauses ≥ dim(P). Hence the tester accepts the input. It
remains to show that

s = Θ(ε−1 · (δ · ln(δ/ε) + ln ρ))

We have

s = 2ε−1(δ ln s ′ + ln(3δ · ρ))

= Θ(ε−1(δ(ln(δε−1) + ln ln(δρ)) + ln(δρ))

= Θ(ε−1(δ(ln(δε−1) + ln ln ρ) + ln ρ))

= Θ(ε−1 · (δ · ln(δ/ε) + ln ρ))

by the observation that forδ ≥
√

ln ρ we haveδ ln ln ρ = O(δ ln(δ/ε)) and forδ <
√

ln ρ

we haveδ ln ln ρ = o(ln ρ). 2

Corollary 4.1.6 AlgorithmACP-TESTERis a property tester for monotone abstract com-
binatorial programs.

Proof : Follows immediately from Theorem 5. 2

55

4 Efficient Property Testers

4.2 Property Testing vs. Testing Abstract
Combinatorial Programs

Our motivation to introduce abstract combinatorial programs was to study its relation to
property testing problems. We now prove a theorem that shows how we can use abstract
combinatorial programs to prove for certain properties that there is an efficient property
tester. Roughly speaking, a property can be tested with small query complexity, if for
every problem instance there is an equivalent (in the sense of property testing) abstract
combinatorial program of small dimension and width.

We now present a first (simple) variant of the main theorem of this chapter. Then
we give some examples and discuss in detail how our theorem can be used to prove the
existence of a property tester with small query complexity. In most examples the obtained
algorithm has also a small running time.

Our approach of using the framework of abstract combinatorial programs to study
property testers of functionsf ∈ F is to reduce testing off to testing certain ACPs. In
this section we consider only ACPs whose ground setC is the domainD of the function
f. Later in Section 4.5 we show how to deal with other cases. In order to show that a
propertyΠ can be tested with low query complexity we construct for everyf ∈ F an ACP
Pf. Pf must satisfy the following constraints: Iff is ε-far from Π thenPf must beε-far
from feasible. The second constraint requires that if the function values off on a setX
can be extended to a function inΠ (and if X has a certain size) thenX contains a feasible
basis. We now want to prove a special case of the main theorem of this chapter. We only
consider ACPs whose ground setC is the domainD of the tested functionf.

Theorem 6 Let F be a set of functions from a finite setD to a setR and let Π be a
property ofF . Let0 < ε < 1 and letδ, ρ ∈ N. If for everyf ∈ F there exists an ACPPf

with dim(Pf) ≤ δ and width(Pf) ≤ ρ such that the following two conditions are satisfied:

(Distance Preserving) if f is ε-far fromΠ thenPf is ε-far from feasible and

(Feasibility Preserving) for everyX ⊆ C with |X| ≥ δ: If there existsg ∈ Π with
f|X = g|X, thenX contains a self-feasible basis,

then there existss = Θ(ε−1 · (δ · ln(δ/ε) + ln ρ))) such that the following algorithm is a
property tester for propertyΠ:�

�

�

�

TESTER(f, ε)
Sample a setS of s elements inD uniformly at random
if f|S = g|S for someg ∈ Π then acceptf
elserejectf

.

Proof : In order to show that TESTER(f, ε) is a property tester forΠ, we have to prove
that every function having propertyΠ is accepted by the tester, and every function that is

56

4.3 Clustering Problems

ε-far from having propertyΠ is rejected with probability at least2
3
. If f ∈ Π then for every

X ⊆ C we havef|X = g|X with g = f ∈ Π. This immediately implies that everyf ∈ Π

is accepted by TESTER(f, ε). Therefore, it remains to prove that iff is ε-far fromΠ, then
the algorithm rejects the input with probability greater than or equal to2

3
. We prove this

by relating ACP-TESTER(P, ε) to TESTER(f, ε) and by applying Theorem 5.
By the Distance Preserving property, iff is ε-far fromΠ thenPf is ε-far from feasible.

Furthermore, by Theorem 5, ifPf is ε-far from feasible then ACP-TESTER(Pf, ε) rejects
Pf with probability greater than or equal to2

3
. Pf is rejected by ACP-TESTER(Pf, ε)

only if the chosen sample setS contains no self-feasible basis. But now the Feasibility
Preserving property implies that if there isg ∈ Π that agrees withf on the sample set then
every setX ⊆ C with |X| ≥ δ ≥ dim(Pf) contains a self-feasible basis. By the fact that
|S| ≥ δ we can conclude thatS contains a self-feasible basis, if there exists ag ∈ Π that
agrees withf on the sample setS. Therefore, we can conclude that iff is ε-far from Π

then with probability at least2
3

there is no suchg ∈ Π with f|S = g|S. Hence,f is rejected
by TESTER(f, ε) with probability at least2

3
. This implies that TESTER(f, ε) is a property

tester forΠ. 2

4.3 Clustering Problems

So far we have introduced a framework that can be used to prove that certain properties can
be tested efficiently. Although in principle we can model many different property testing
problems in terms of our framework, it is not clear that we can use our framework to
prove that these properties have efficient property testers. For this reason we now consider
problems from different fields and show that our framework can be used to design and
analyze efficient property testers.

The first class of problems we consider are clustering problems. Clustering deals with
the problem to partition a set of items into different groups calledclusterssuch that a given
optimization function is minimized. If we consider the corresponding decision problem we
want to know if a clustering with a given optimization value exists.

We consider two clustering problems of point sets in theRd. The first problem is called
radius k-clustering. Here the goal is to partition a point set in theRd into k different
clusters such that the maximum cost of thek clusters is minimized. The cost of a cluster is
given by theradiusof the smallest ball enclosing the cluster. The second problem is called
diameterk-clustering. Again the goal is to minimize the maximum cost among a set ofk

clusters but this time the cost of a cluster is given by the maximum distance between any
two points within a cluster.

Both problems have been analyzed in the context of property testing and it is known
that there are efficient property testers [4]. We merely want to show that these results
can also be achieved using our framework. The proofs we present are in the spirit of the
proofs from [4]. Yet we think that our proofs might give a clearer view of the important
combinatorial aspects that make these problems testable. In case of the diameter clustering
problem we also slightly improve the query complexity.

57

4 Efficient Property Testers

4.3.1 Radius clustering

The decision version of theradiusk-clusteringproblem in the Euclidean spaceRd [4, 41]
[57, p. 325] (sometimes also called the Euclideank-center problem) is to verify whether a
given setP of n points inRd can be partitioned intok sets such that the points in each set
are contained in a unit ball. If such a partition exists, we say thatP is k-clusterable. We
assume thatP is in general position and, as usual, that the point setP is represented as a
function f : [n] → Rd. Let F denote the set of functions representing point sets of size
n and letΠ ⊆ F denote the set of functions representing point sets that arek-clusterable.
The distance between two point sets is given by the standard distance measure between
functions (see Definition 2.1.3) which is consistent with the following definition:

Definition 4.3.1 A setP of n points inRd is ε-far from beingk-clusterableif more than
ε n points must be deleted fromP to obtain a point set that isk-clusterable.

Now, in order to use our framework from Theorem 6 we have to describe for every input
point setP in Rd an ACPP = (C,B,$) with C = [n] that satisfies the two conditions
of the theorem. Before we start thinking about the construction ofP we observe that the
radiusk-clustering property is a combinatorial property. This means that the ’number’
of a point in the representation is irrelevant for the property. Thus we can identify the
ground setC of the ACP with the point setP. Hence a basis of such an ACP consists of a
small set of points fromP (formally, of their corresponding indices) and some additional
information (formally encoded as an integer number).

Now we are ready to talk about how to construct the ACPs. Usually, the hard part is
to find the right set of bases. Typically, a basis is used to represent implicitly a ”possible
solution” to the problem. Usually, it should be the case that the set of bases corresponds
to the set of possible solutions of the problem. Additionally, it is required that this implicit
representation can be done in the form of some atom items from the ground set of the ACP
(in our case these items correspond to points fromP) and some ”additional information”.

For simplicity, let us first consider the radius1-clustering problem. If the point setP
is 1-clusterable then by definition it is contained in some unit ball. Vice versa, we can
describe every ’possible solution’ of the problem implicitly by the position of such a unit
ball. In a similar way we can consider every ball with radius at most1 as a possible
solution. Our goal is to describe a subset of these balls implicitly in terms of atom items
(points). IfP is 1-clusterable then this subset must contain a ball that contains every point
in P.

In the following we use the fact that every finite point set is contained in a unique
(closed) ball of smallest radius (see, e.g., [78]). We denote this ball bysball(P). With
every subsetW ⊆ P we associate its smallest enclosing ball. If the radius ofsball(W)

is at most1 then this ball can be interpreted as a ’possible solution’ of the problem and
W (formally, the pair(W,1)) as a basis. So we could say that for eachW ⊆ P the pair
(W, 1) is a basis, if and only if the radius ofsball(W) is at most1. But to get a query
complexity independent ofn from our framework we need to reduce the number of atom
items involved in a basis. To do this we use the fact that there is always a subsetW ⊆ P

of cardinality at mostd + 1 such thatsball(W) = sball(P) [78].

58

4.3 Clustering Problems

We say that(W, 1) is a basis, if the following two conditions are satisfied:

• |W| ≤ d + 1,

• the radius ofsball(W) is at most1.

We can now define a natural violation function in the following form: A basis(W, 1)

is violated by all points that are not contained insball(W). Using this definition we know
(a) thatP has a feasible basis ifP is 1-clusterable and (b) that every basis inP is violated
by more thanεn points, ifP is ε-far from1-clusterable.

We can easily extend this definition of a basis tok clusters: A basis for the radius
k-clustering problem consists ofk bases for single clusters. Formally, a basis consists
of at mostk(d + 1) points fromP and an integer number that encodes a partition of the
k(d + 1) points intok sets (of size at mostd + 1). The violation function is defined in the
straightforward way: A point violates a basis, if it is not contained in any of the smallest
enclosing balls defined by the bases. We have now done the ”tricky part” of the proof -
the design of the bases - what remains is straightforward verification of the requirements
of our framework.

Bases for radius clustering: We define the bases to specify all possible representa-
tions of feasiblek-clusterings. Formally, we define the set of basesB = {(W, `) : W ⊆
[n], |W| ≤ (d + 1)k, 1 ≤ ` ≤ k(d+1) k}, where the pair(W, `) ∈ B should be interpreted
as follows:

• W is the set of points definingk smallest enclosing balls (clusters), and

• ` is represented as a vector〈ν1, . . . , ν(d+1) k〉 of length(d + 1)k such that for1 ≤
i ≤ |W|, the ith point in W defines the smallest enclosing ball containing cluster
numberνi ∈ [k].

We say a basisb ∈ B is valid if every setW ′ of points defining one of thek smallest
enclosing balls inb satisfies that the radius ofsball(W ′) is at most1.

It is easy to see that with such a definition of the bases, the abstract combinatorial
program designed for the radius clustering problem has dim(P) = (d + 1)k =: δ and
width(P) = k(d+1) k =: ρ.

Violation Function for Radius Clustering. We sayp ∈ C = [n] violates a basis
b ∈ B if b is not valid or the pointp (located atf(p)) is not contained in any of thek balls
defined byb. Furthermore, all non-valid bases are violated by all ground set elements.

Now, once we have defined formally the abstract combinatorial programP for every
instance of the radius clustering problem, we have to verify the prerequisites of Theorem 6:
The Distance Preserving and the Feasibility Preserving properties.

59

4 Efficient Property Testers

Distance Preserving Property. If P is ε-far from beingk-clusterable, then for every
set ofk balls inRd of radius at most one there is always a set of more thanε n points in
P that are not contained in any of the balls. By definition every basis corresponds to such
a set of smallest enclosing balls and the violation function is defined according to these
balls. Thus every basisb ∈ B must be violated by more thanε n elements fromC. This
implies the Distance Preserving property.

Feasibility Preserving Property. Every setS, |S| ≥ δ, that isk-clusterable is con-
tained ink unit balls. Thus we can partitionS into k clustersS1, . . . , Sk each of which is
contained in a unit ball. Further there exists setsWi ⊆ Si with sball(Wi) = sball(Si) and
|Wi| ≤ d+ 1. The setsWi define a certain basis inB which is covered byS and is feasible
for S. This implies the Feasibility Preserving property. Therefore, we can apply Theorem
6 to obtain a property tester for the radius clustering problem with a query complexity of
Õ(d k/ε).

Implementation. We also observe that we can implement the second statement of the
algorithm TESTER(f, ε) efficiently in the following way: We compute whether the sample
setS is k-clusterable. If it is, we accept the input. If it is not we reject. The correctness
follows immediately from the fact that if a point setS is k-clusterable then there exists a
superset ofS with sizen that is alsok-clusterable. We summarize our discussion in this
section with the following theorem.

Theorem 7 There is a property tester for the radius clustering problem with query com-
plexity of

O(d kε−1 ln(d k/ε)) = Õ(d k/ε) .
2

Finally, let us discuss what we learned from this example with respect to our frame-
work. We have seen that the bases of the constructed ACP correspond to possible solutions
of the problem. If we generalize this observation we can say, roughly speaking, that prop-
erties are testable if every possible (global) solution to the problem can be encoded using
a few ”atom items” (of the problem instance) and some additional information. Unfor-
tunately, things are not always that simple. In this first example we have a one-to-one
correspondence between the clustering problem and the ACP, i.e., a sampleS ⊆ C has a
self-feasible basis if and only if the corresponding point set isk-clusterable. This is not
always the case as we see in the next section.

4.3.2 Diameter clustering

The decision version of the diameterk-clustering problem ([4], [9, Problem ND54], [48,
Problem MS9], [57, p.326]) is defined as follows: Given a point setP in Rd and a positive
integerk, canP be partitioned intok disjoint sets (clusters)C1, . . . , Ck such that for every
i, 1 ≤ i ≤ k, and everyx, y ∈ Ci it holds thatdist(x, y) ≤ 1. If such a partition exists,
we say thatP is k-clusterable. As always, we assume in the property testing setting that the

60

4.3 Clustering Problems

point set is represented by a functionf : [n] → Rd. In this case wedo not usethe standard
distance measure. It has been shown in [4] that under the standard distance measure every
property tester must have a query complexity ofΩ(

√
n). Instead we use the bicriteria

distance measure proposed in [4] which is defined in the following way:

Definition 4.3.2 [4] Let P be a point set inRd and k be a positive integer. We sayP
is (ε, β)-far from beingk-clusterableif for every partition ofP into setsC0, C1, . . . , Ck

satisfyingdist(x, y) ≤ 1 + β for all 1 ≤ i ≤ k andx, y ∈ Ci, it holds that|C0| > ε · |P|.

It is known that under this distance measure there is a property tester with query com-
plexity Õ

(
k2

ε
·
(

2
β

)2d)
for the diameterk-clustering problem [4]. Again our goal in this

section is to show that we can prove this result using our framework and improve the query
complexity ofÕ

(
k
ε
·
(

2
β

)d)
. Our proof uses combinatorial arguments that appear implicitly

in the proof presented in [4]. Our goal is to design an efficient property tester that for given
k, ε andβ > 0 (i) accepts every point set that isk-clusterable and (ii) rejects with proba-
bility at least2

3
every input that is(ε, β)-far from beingk-clusterable. Again we denote by

F all functions representing point sets of sizen and byΠ ⊆ F all functions representing
point sets that arek-clusterable.

As in the case of the radius clustering problem we begin our discussion with the con-
struction of bases for a single cluster. We will see that we can generalize this definition
to the case ofk-clusters in a similar way as in the radius clustering problem. We use the
following notation: AclusterC is a non-empty set of points inRd with dist(x, y) ≤ 1 for
everyx, y ∈ C.

Definition 4.3.3 LetC be a cluster. Thekernelkern(C) of C is defined as the intersection
of unit balls with centers at the points inC.

We use the following simple properties of a kernel:

Claim 4.3.4 LetC be a cluster. Then we have:

1. C ⊆ kern(C).

2. There exists a unit ball containing all the points inC.

3. If p ∈ kern(C) thendist(x, y) ≤ 1 for everyx, y ∈ C ∪ {p}.

Proof : (1) Sincedist(x, y) ≤ 1 for everyx, y ∈ C, each pointx ∈ C is contained
in every unit ball with the center at any other pointy ∈ C, and hence,x is contained in
kern(C). (2) SinceC 6= ∅, from the previous property we getkern(C) 6= ∅. Let us pick
any pointx ∈ kern(C). Sincex is contained in all unit balls with centers at the points
in C, it is at the distance at most1 from every point inC. Therefore all points inC are
contained in the unit ball with the center atx. (3) If p ∈ kern(C), thenp is contained in
all unit balls with centers at the points inC and thus its distance to every point inX is at
most1. 2

61

4 Efficient Property Testers

Now, in order to use our framework from Theorem 6 we have to describe for every
input setP of n points in Rd an ACPP = (C,B,$) with C = [n] that satisfies the
preconditions of the theorem. Following the arguments from the radius clustering case we
can again identify the ground setC of the ACP with the input point setP. Thus we can
again construct our bases using points fromP as atom items. We first consider the case
k = 1:

We start by making an observation about the kernel of a clusterC: If we add a point
p to C thenC remains a cluster (i.e., the pairwise distance between points fromC is at
most1) if and only if p is in the kernel ofC. Thus a good basis would contain exactly
those elements fromC that define the boundary ofkern(C). Unfortunately, it might be
the case that almost every element ofC defines the boundary ofC. So this approach is
doomed to failure. But we can do the following: We can find a small set of pointsW in C

that approximates the kernel ofC. We choose a basis for a clusterC to be every maximal
subsetW ⊆ C with the property that all points inW have a mutual pairwise distance of
more thanβ. This way, we ensure that (a) the kernel is well approximated and (b) that the
number of points defining the kernel of a cluster is small. We now prove that every basis
for a single cluster is defined by no more than(1 + 2

β
)d points.

Lemma 4.3.5 LetC be a cluster and letW be a subset ofC such that for everyp, q ∈ W

dist(p, q) > β > 0. Then|W| ≤ (1 + 2/β)d.

Proof : Let C andW be as stated in the lemma. If we draw balls of radiusβ/2 centered
at every point inW, then all these balls are pairwise disjoint. By Property 2 in Claim
4.3.4, all points inW are contained in some unit ball becauseW ⊆ C andC is a cluster.
Therefore, if we draw balls of radiusβ/2 centered at every point inW, then all these balls
are contained in a ball of radius1 + β/2. Since all these small balls are disjoint, we have
the following upper bound for the size ofW:

|W| · Vol(ball of radiusβ/2) ≤ Vol(ball of radius1 + β/2) ,

whereVol() denotes the volume of the object. Since the volume of ad-dimensional ball of
radiusr is equal to1 rd·πd/2

Γ(1+d/2)
, we obtain an upper bound for the size ofW of (1 + (2/β))d.

2

To formalize our definition of bases we need:

Definition 4.3.6 Let P be a point set inRd, and β a positive real. LetC be a cluster.
We say a pointp ∈ P is β-coveredby C if p ∈ kern(C) and there isq ∈ C such that
dist(p, q) ≤ β.

Similar to the radius clustering problem we want to represent every possible solution
to the diameter1-clustering problem by a basis. As already mentioned we can do this

1Here,Γ() is Euler’s Gamma (factorial) function, that is formally defined asΓ(x) =
∫∞

0
tx−1 e−t dt for all

positivex. It is well known thatΓ(x + 1) = x Γ(x) and that for integerx ≥ 0 we haveΓ(x + 1) = x! and
Γ(x + 1

2)! =
√

π · ((2 x)!)/(x! · 4x).

62

4.3 Clustering Problems

only approximately. Therefore we say that a pairb = (W, `) is a basis for the diameter
1-clustering problem ifW is a subset ofP of size at most(1 + 2

β
)d and` = 1. We say

that a basis isvalid, if for all p, q ∈ W we haveβ ≤ dist(p, q) ≤ 1. It remains to define
the violation function. If a basis is not valid it is violated by every point inP. If a basis
is valid, we have two different types of violation: First of all a pointp violates a basis
b = (W, 1), if p /∈ kern(W). This is the straightforward type of violation. If a point
is not in the kernel ofW then it cannot belong to the same cluster. The second type of
violation is different. A pointp ∈ kern(W) violatesb, if p is notβ-covered byW. Here
a point violates a basis if it is consistent with the current basis of the cluster, but it changes
the kernel significantly. But if the kernel is changed significantly then the basisb is no
longer ”a good implicit description of the solution of the clustering problem”. In this case,
we can obtain a new basisb ′ = (W ∪ {p}, 1) from b that approximates the new kernel.

Bases for diameter clustering. We can extend our definition of bases for the diam-
eter1-clustering problem to arbitraryk in the following way: A basis for the diameterk-
clustering problem is an encoding ofk setsW1, . . . , Wk ⊆ P each of size at most(1+ 2

β
)d.

A basis isvalid if for every p, q ∈ Wi, 1 ≤ i ≤ k, it holds thatβ ≤ dist(p, q) ≤ 1.
Formally, a basis is a setW =

⋃
i Wi with an integer encoding the partition ofW in the

setsWi.

Lemma 4.3.7 Any ACPP for the diameterk-clustering problem has dimension at most
k · (1 + 2/β)d and width at mostkk·(1+2/β)d

.

Proof : The dimension of the ACP follows immediately from the definition of the bases.
The width follows from the fact that every point of a basis can belong to one ofk sets, that
is, we have (at most)k choices for each point of the basis. 2

Violation function for diameter clustering. A basisb that is an encoding of the
setsW1, . . . , Wk is violated by a pointp ∈ P, if b is not valid or ifp violates everyWi

(seen as a basis for the1-clustering problem),1 ≤ i ≤ k.

Feasibility Preserving property. In order to show the Feasibility preserving prop-
erty we have to show that everyk-clusterable setS ⊆ P of size at leastδ := k·(1+2/β)d ≥
dim(P) has a self-feasible basis. IfS is k-clusterable then there exists a partition ofS into
k clustersC1, . . . , Ck. Since for everyWi ⊆ Ci it holds thatkern(Ci) ⊆ kern(Wi)

we know that there exists setsWi with the property that for eachp, q ∈ Wi we have
β ≤ dist(p, q) ≤ 1 and for eachp ∈ Ci andq ∈ Wi we havedist(p, q) ≤ β. By
Lemma 4.3.5 and the size of the bases the Feasibility Preserving property follows.

Distance Preserving property. We prove the Distance Preserving property by con-
tradiction. Let us assumeP is (ε, β)-far from beingk-clusterable and suppose there is a
basisb encoding the setsW1, . . . , Wk that is violated by less thanε n points. We delete
all points inP that violateb and letP∗ be the remaining point set. Since all the points in

63

4 Efficient Property Testers

P∗ areβ-covered by someWi, for each pointp ∈ P∗ there is aWi with p ∈ kern(Wi)

and for which there existsqp ∈ Wi with dist(p, qp) ≤ β. We assign each such a point
p to the cluster corresponding toWi. Observe that all points in the cluster are contained
in kern(Wi). Furthermore, for every pointr ∈ kern(Wi) the distance betweenp and
r is not larger than the distance fromp to qp plus the distance fromqp to r. Hence, we
can conclude that the distance between two points in the cluster (both of which must be
contained inkern(Wi)) is at most1 + β. This implies thatP∗ can be partitioned intok
clusters of diameter at most1 + β each, which is a contradiction.

Implementation. Similar to the radius clustering problem we can implement the sec-
ond statement of the algorithm TESTER(f, ε) by checking if the sample setS isk-clusterable.
This follows from the fact that every setk-clusterable setS of size at mostn can be ex-
tended to a setP of sizen that is clusterable. On the other hand, every setS that is not
k-clusterable cannot be extended to a setP that isk-clusterable. Now, by our discussion
above, we can apply Theorem 6 to obtain the following result.

Theorem 8 There is a property tester for the diameterk-clustering problem with a query
complexity of

Õ(k · ε−1 · (1 + (2/β))d)

4.4 Reversal Distance

In the previous section we have seen how to apply our framework to certain clustering
problems. We have seen that a clustering problem is efficiently testable, if we have an im-
plicit characterization of the cluster consisting of a small number of input objects and some
additional information. We now want to consider a different problem which is called the
reversal distance problem. Determining the reversal distance between two permutations is
a fundamental problem in computational biology. It has been introduced in the pioneering
works by Sankoff and later on many researchers have investigated in this problem (see,
e.g., the survey in [71, Chapter 10]). The problem to compute the reversal distance be-
tween two permutations can be reduced to the problem of computing the distance between
one permutation and the identity permutation (details below). Therefore, the problem is
also called ’sortingby reversals’.

In sorting by reversals one is asked to compute the shortest sequence of (interval)
reversalsthat transforms a given permutationπ into the identity permutation. The number
of reversals that are necessary is called thereversal distancebetweenπ and the identity
permutation. Because of its applications in computational biology, sorting by reversals has
been widely studied in the recent years (see, e.g., [10, 17, 22, 59, 71, 72]). It is known that
sorting by reversals isNP-hard [22], its optimization version is MAX -SNP-hard [18], and
that there exits a polynomial-time1.375-approximation algorithm [17] (see also [10, 59]).

We now introduce the reversal distance problem, formally. LetSn denote the set of all
permutations of[n].

64

4.4 Reversal Distance

Definition 4.4.1 A reversalρ〈i, j〉 of an interval[i, j], 1 ≤ i ≤ j ≤ n, is the permutation(
1 2 . . . i − 1 i i + 1 . . . j − 1 j j + 1 . . . n

1 2 . . . i − 1 j j − 1 . . . i + 1 i j + 1 . . . n

)
.

That is, for a permutationπ = (π1, . . . , πn) ∈ Sn, ρ〈i, j〉 has the effect of reversing
the order of(πi, πi+1, . . . , πj) and transformingπ into

π · ρ〈i, j〉 = (π1, . . . , πi−1, πj, πj−1, . . . , πi, πj+1, . . . , πn)

.

The reversal distance between two permutationsπ andσ is the minimum number of
reversals that is necessary to transformπ into σ.

Definition 4.4.2 Given a pair of permutationsπ = (π1, . . . , πn), σ = (σ1, . . . , σn) ∈ Sn,
the reversal distancedrev(π, σ) betweenπ and σ is the minimum number of reversals
needed to transformπ into σ (that is, the minimum numberk such that there exists a
sequence of reversalsρ1, ρ2, . . . , ρk with π · ρ1 · ρ2 · · · ρk = σ).

Equivalently, we can compute the number of reversals necessary to transformσ−1π into
the identity permutationid. Therefore, we are interested in the reversal distance between
a given permutationπ and the identity permutation. We want to consider the decision
version of the reversal distance problem.

Definition 4.4.3 Thereversal distanceproblem is to decide for a given permutationπ ∈
Sn and an integerk if the reversal distancedrev(π, id) betweenπ and the identity permu-
tation id is at mostk.

We now want to formulate the problem as a property testing problem that fits into our
framework. The set of functionsF we want to consider is the set of permutations of[n],
that is,F = Sn. We are interested in all permutations that have a reversal distance of at
mostk to the identity permutation. We can write this as a propertyΠ as follows:

Π = {π ∈ Sn : drev(π, id) ≤ k}.

Now that we have defined the property we need a distance measure between permuta-
tions. Here we can use the standard distance measure from Definition 2.1.3. Equivalently,
we can use the following definition:

Definition 4.4.4 A permutationπ ∈ Sn is ε-far from having reversal distance smaller
than or equal tok if for every sequence ofk reversalsρ1, ρ2, . . . , ρk the permutation
π · ρ1 · ρ2 · · · ρk disagrees with the identity permutation on more thanε · n places, that is,
if π · ρ1 · ρ2 · · · ρk = (σ1, . . . , σn) then|{i ∈ {1, 2, . . . , n} : σi 6= i}| > ε · n.

65

4 Efficient Property Testers

In contrast to the clustering problems the reversal distance property is obviously not
combinatorial. We conclude that we have to take the domain of the function into account.
For a permutationπ = (π1, · · · , πn) we denote atom items byπi. This notion covers the
fact that the value of domain elementi is πi = π(i). Hence it captures also the domain of
a value off.

Let us notice that we can encode an interval[i, j] by the two domain elementsπi and
πj (using the fact thatπ−1(πi) = i andπ−1(πj) = j). If we apply a reversalρ to π then
πi andπj inducethe interval

[
((π · ρ)−1)(πi), ((π · ρ)−1)(πj)

]
(for this reason we want to

work with πi rather than withi). We denote the interval induced by two elementsπi and
πj by [πi, πj].

We say a reversalρ〈r, s〉 splitsan interval[πi, πj], if i < r ≤ j or i ≤ s < j (or both).

Definition 4.4.5 Letπ = (π1, . . . , πn) be a permutation and let[πi, πj] denote an interval.
We say that a reversalρ〈k, `〉 splitsan interval[πi, πj], if i < k ≤ j or if i ≤ ` < j.

We generalize this notion tok-reversals:

Definition 4.4.6 Let π = (π1, . . . , πn) be a permutation. Ak-reversalρ = ρ1 · ρ2 · · · ρk

splitsan interval[πi, πj], if there exists̀ , 0 ≤ ` < k, such thatρ`+1 splits

[(π · ρ1 · · · ρ`)
−1(πi), (π · ρ1 · · · ρ`)

−1(πj)] .

If ρ does not split[πi, πj] then we sayρ is safefor [πi, πj].

Notice that ifρ1, . . . , ρk is safe for [πi, πj] then each of the reversalsρ1, . . . , ρk either
entirely contains[πi, πj] or it does not contain anyπ` ∈ [πi, πj]. Therefore, in this case,
after applyingρ1, . . . , ρk the positions ofπi+1, . . . , πj−1 are determined by the position of
πi andπj.

Bases for the k-reversal problem: The idea is now to define a basis as a set of
2k + 1 intervals induced by pairs of the atom items of the basis. For each such set we then
consider only reversal that are safe for these intervals. We say that a set of2k+ 1 intervals
is a basis if a sequence ofk reversalsρ1, . . . ρk exists such that for each atom itemπi of
the basis it holds that(π · ρ1 · · · ρk)

−1(πi) = πi and if ρ1, . . . ρk is safe for all intervals
induced by the elements involved in the basis.

Definition 4.4.7 (Bases for k-reversal distance)Let π = (π1, · · · , πn) ∈ Sn. A setI of
2 k + 1 intervals is a valid basis for the reversal distance problem if there is a sequence
ρ1, . . . , ρk of k reversals such that

• (π · ρ1 · · · ρk)
−1(πi) = πi and(π · ρ1 · · · ρk)

−1(πj) = πj for each interval[πi, πj] ∈
I, and

• no interval[πi, πj] ∈ I is split byρ1, . . . , ρk.

If the set of intervals is a basisb, then we associate with it thek-reversalρb = ρ1 · · · ρk

(in case that there are different sequences that witness the basis property we choose an
arbitrary one).

66

4.4 Reversal Distance

Formally, a basis consists of4k + 2 atom items and an integer number encoding the
2k + 1 pairs of atom items (an atom item may be paired with itself). The integer number
can be seen as a vector of length2k+1 having entries with values from[4k+2]× [4k+2]

to specify each of the2k + 1 pairs.

Lemma 4.4.8 For each instance of the reversal distance problem the corresponding ACP
P hasdim(P) ≤ 4k + 2 and width(P) ≤ (4k + 2)4k+2.

Proof : By definition a basis consists of4k + 2 atom items. Thus we have dim(P) ≤
4k+2. Each vector of length2k+1 with values from[4k+2]× [4k+2] can be encoded as
an integer number between1 and(4k + 2)4k+2. Thus we havewidth(P) ≤ (4k + 2)4k+2.
2

Violation function for k-reversal distance: Let b be a basis and letρb = ρ1 · · · ρk

be thek-reversal associated with basisb. We sayb is violated byπi ∈ C, if (π·ρb)
−1(πi) 6=

πi, that is,πi is not moved to positionπi whenρb is applied toπ.

Distance Preserving Property: We have associated ak-reversalρb to each basis.
An atom item violates a basis, if it is not at the correct position whenρb is applied toπ. If
a permutation isε-far from having reversal distance smaller than or equal tok then every
k-reversal puts more thanεn elements to the wrong position. Hence every basis is violated
by more thanε n elements. Therefore, the distance preserving property is satisfied.

Feasibility Preserving Property: The hard part in this case is to prove the Feasibility
Preserving property. LetS ⊆ C be a set of atom items and letρ = ρ1 · · · ρk be ak-reversal
with (π · ρ)−1(πi) = πi for eachπi ∈ S. We show that in this caseS has a self-feasible
basis. First we want to construct a set of2k + 1 intervals that are safe forρ1, . . . ρk. We
start with the set ofs − 1 intervals induced byS. now we observe that each reversalρi can
split at most2 of these intervals. We conclude that at most2k of these intervals are split by
ρ1, . . . ρk. We can merge adjacent intervals not split byρ1, . . . ρk and obtain a set of2k+1

intervals that are not split byρ1, . . . ρk. Hence there exists a sequence ofk reversals that
is safe for each of our intervals. Thus these intervals form a basisb. It remains to prove
that this basis is not violated (thek-reversal associated with the basis must not be thek-
reversalρ). By our construction of the intervals eachπi ∈ S is contained in a safe interval.
Therefore, its position after applying the reversal is uniquely determined by the positions
of the endpoints of the interval. LetSI ⊆ S denote the set of endpoints of intervals of the
basisb. Sinceb is a basis there is ak-reversalρb with

(π · ρb)
−1(πi) = πi = (π · ρ)−1(πi) for eachπi ∈ SI

Since the endpoints are mapped to the same places whenρb andρ are applied toπ we can
conclude that each other point inS is also mapped to the same place. Hence noπi ∈ S

violatesb and we have shown the Feasibility Preserving property.
Once we have proven the Distance and the Feasibility preserving property, Lemma

4.4.8 and Theorem 6 allow us to conclude with the following theorem.

67

4 Efficient Property Testers

Theorem 9 There exists a property tester for thek-reversal distance property with query
complexityÕ(k/ε). 2

4.5 Property Testing vs. Testing Abstract
Combinatorial Programs (continued)

In Section 4.2, we described a framework for testing problems via testing abstract combi-
natorial programs. We only considered ACPs whose ground set is equivalent to the domain
of the tested function. Although we showed that this framework can be applied to differ-
ent problems, it is not always powerful enough. In some cases it is necessary to consider
ground sets different from the domain of the tested function. For example, when we con-
sider graph problems we want to identify the ground set with the set of vertices of the
graph. If we consider the adjacency matrix model using the approach from Section 4.2 and
we represent a graph by a functionf : V × V → {0, 1} then the ground set would be a set
of entries in the adjacency matrix. But sampling entries of the adjacency matrix results in
a disconnected set of edges, if the size of the sample set iso(

√
n) [51]. In order to have a

more flexible model we introduceinterpretations.

Interpretations. Interpretations are functions that map each subset of the ground set of
the ACP to a subset of the domain of the tested function. Given a sample set S of ground
set items we use the interpretation to determine a set of domain elementsDS. Then we
query for the valuef(x) for eachx ∈ DS.

Definition 4.5.1 An interpretationof C in D is a functionI : 2C → 2D.

To investigate quantitative properties of the reduction we need the following definition.

Definition 4.5.2 For a functionh : N → N, we say an interpretationI of C in D is h-
boundedif for everyX ⊆ C it holds |I(X)| ≤ h(|X|). (We write in that case thatI is
h(N)-bounded, withN being the formal input variable.)

The main idea behind introducing these notions is to allow a more general analysis of
algorithm TESTER(f, ε) from Section 4.2. Similarly to the proof of Theorem 6, we want
to test an input functionf ∈ F via testing a related ACPP = (C,B,$). SinceP is now
allowed to be an ACP with arbitrary ground setC, we use the interpretationI of C in D
to link the domains off andP in the reduction. The notion ofh-bounded functions in
Definition 4.5.2 is used to describe the size of the random sample in the tester. That is, if
the interpretationI is h(N)-bounded and if our algorithm samples a setS ⊆ C then we
query for the value off(x) for everyx ∈ I(S) ⊂ D and the restriction|I(S)| ≤ h(s) yields
an upper bound on the query complexity.

68

4.5 Property Testing vs. Testing Abstract Combinatorial Programs (continued)

Distance Preserving Property. In Theorem 6 we used the Distance Preserving prop-
erty that requires that if a functionf is ε-far from propertyΠ then the ACP isε-far from
feasible. In general, however, one can parameterize this property and require the(ε, λ)-
Distance Preservingproperty: if f is ε-far from property Π then the ACP is λ-far from
feasible.

Now, in the framework defined above, it is easy to see that Theorem 6 can be general-
ized to the following theorem, which describes our framework in its full generality.

Theorem 10 Let F be a set of functions from a finite setD to a setR, and letΠ be a
property ofF . Let 0 < ε, λ < 1 and letI : 2C → 2D be anh-bounded interpretation of
C in D. If for everyf ∈ F there exists an ACPPf with dim(Pf) ≤ δ and width(Pf) ≤ ρ

such that:

((ε, λ)-Distance Preserving) if f is ε-far from Π then every basis inPf is λ-far from
feasible, and

(Feasibility Preserving) For everyX ⊆ C with |X| ≥ δ: If there existsg ∈ Π with
f|I(X) = g|I(X) thenX contains a self-feasible basis,

then there existss = Θ(λ−1 · (δ · ln(δ/λ) + ln ρ)) such that the following algorithm is a
property tester forΠ with query complexityh(s):�

�

�

�

TESTER(f, ε)
Sample a setS of s elements inC uniformly at random
if f|I(S) = gI(S) for someg ∈ Π then acceptf
elserejectf

Proof : In order to show that TESTER(f, ε) is a property tester forΠ, we have to prove
that every function having propertyΠ is accepted by the tester, and every function that is
ε-far from having propertyΠ is rejected with probability at least2

3
. If f ∈ Π then for every

X ⊆ C we havef|I(X) = g|I(X) with g = f ∈ Π. This immediately implies that everyf ∈ Π

is accepted by TESTER(f, ε). Therefore, it remains to prove that iff is ε-far fromΠ, then
the algorithm rejects the input with probability greater than or equal to2

3
. We prove this

by relating ACP-TESTER(P, ε) to TESTER(f, ε) and by applying Theorem 5.
By the Distance Preserving property, iff is ε-far fromΠ thenPf is ε-far from feasible.

Furthermore, by Theorem 5, ifPf is ε-far from feasible then ACP-TESTER(Pf, ε) rejects
Pf with probability greater than or equal to2

3
. Pf is rejected by ACP-TESTER(Pf, ε)

only if the chosen sample setS contains no self-feasible basis. But now the Feasibility
Preserving property implies that if there isg ∈ Π that agrees withf on the interpretation of
the sample set then every setX ⊆ C with |X| ≥ δ ≥ dim(Pf) contains a self-feasible basis.
By the fact that|S| ≥ δ we can conclude thatS contains a self-feasible basis, if there exists
ag ∈ Π that agrees withf on the sample setS. Therefore, we can conclude that iff is ε-far
from Π then with probability at least2

3
there is no suchg ∈ Π with f|I(S) = g|I(S). Hence,f

is rejected by TESTER(f, ε) with probability at least2
3
. This implies that TESTER(f, ε) is

a property tester forΠ. 2

69

4 Efficient Property Testers

4.6 Graph Coloring

In this section we apply Theorem 10 to graph coloring. Ak-coloring of a graphG = (V, E)

is an assignmentχ : V → {1, . . . , k} of colors to the vertices of the graph. A coloring is
proper if there is no edgee = (v, u) ∈ E such thatχ(v) = χ(u). If G has a properk-
coloring, thenG isk-colorable. The graphk-coloring problem is to decide whether a given
graph isk-colorable. It is a classical problem in algorithmic graph theory. It is known that
for k ≥ 3 the problem of verifying if an input graph isk-colorable isNP-complete (see,
e.g., [48, Problem GT4] or [9, Problem GT5]). It is also well known that this problem is
very hard to approximate, and so, for example, it isNP-hard to 4-color 3-colorable graphs
and it is hard to colork-colorable graphs with approximation withinn1−ε, and even within
n1−O(1/

√
log logn) [38] wheren denotes the number of vertices in the graph. The best known

approximation bound for arbitraryk is ofO(n (log logn)2/ log3 n) [9, Problem GT5].
We want to consider the graph coloring problem in the adjacency matrix model. That

is, the input graphG = (V, E) is given as a functionV × V → {0, 1} representing the
adjacency matrix of the graph. Thus we havef(u, v) = 1, if and only if (u, v) ∈ E.
W.l.o.g. we assume thatV = [n]. Let Π denote alln-vertex graphs that have a proper
k-coloring. We use the standard distance measure between graphs (see Definition 2.1.3)
which is equivalent to the following definition:

Definition 4.6.1 A graphG is ε-far from beingk-colorableif in order to transformG into
a k-colorable graph one has to modify more thanε n2 entries in the adjacency matrix of
G.

It is known that graph coloring in the adjacency model can be tested efficiently [51] and
the proof we present uses combinatorial arguments that essentially appear in the proof
presented in [51]. The achievement of our framework is again a clear and elegant proof
that highlights the combinatorial aspects of the problem and a slight improvement in the
query complexity that matches fork > 2 the bounds from [6] in thẽO-notation.

For thek-coloring problem, we identify the ground setC with the set of verticesV
of the input graphG = (V, E). Since in our frameworkG can be viewed as given by its
adjacency matrix representation, we define the interpretationI to map each set of vertices
to the submatrix induced by these vertices. That is, for everyW ⊆ V , we haveI(W) =

W ×W. Clearly, the interpretation isN2-bounded.
The bases of the coloring problem are formed by some properly colored sets of vertices.

That is, every basis corresponds to a pair(W,χ∗), whereW ⊆ V = C andχ∗ is an encoding
of a properk-coloring ofW (here, one can think that ak-coloring ofW is represented by
a vector of length|W| with values inkW). Notice that with this definition, if for each
(W, χ∗) ∈ B we have|W| ≤ δ, then so defined abstract combinatorial programP has
dim(P) ≤ δ andwidth(P) ≤ kδ.

Before we define the bases formally, we need some more definitions:

Definition 4.6.2 LetS ⊆ V be a set of vertices and letχ be a properk-coloring ofS. Let

Vi =
{
v ∈ V : ∃u ∈ S with χ(u) = i and(v, u) ∈ E

}

70

4.6 Graph Coloring

be the set of vertices that cannot be properly colored in colori using any extension ofχ
to V . We call a vertexv ∈ V \ S heavyfor 〈S, χ〉 if there is a proper extension ofχ to
S ∪ {v}, but every extension increases the number of vertices in certainVi, 1 ≤ i ≤ k, by
at leastε n/3 (that is, (i) there exists1 ≤ j ≤ k, with v /∈ Vj and (ii) ∀1≤j≤k if v /∈ Vj then∣∣{w /∈ Vj : (v,w) ∈ E}

∣∣ ≥ ε n/3).
A vertexv ∈ V \ S that cannot be properly colored by any extension of the coloringχ

(that is,v ∈
⋂k

i=1 Vi) is called aconflictvertex for〈S, χ〉.

Bases for k-coloring: For the graph coloring problem we define the bases inductively:

• {∅, 1} is a basis (where1 is the encoding of the coloring of the empty set of vertices)
and

• if b = (K, χ) is a basis,v is a heavyvertex forb andχ∗ is an encoding of the
previous coloringχ of K extended by a proper coloring ofv, then(K ∪ {v}, χ∗) is a
basis.

Our next step is to show that the ACP we define this way has small dimension and
width:

Lemma 4.6.3 For every input instance of the graph coloring problem the corresponding
abstract combinatorial programP hasdim(P) ≤ 3k/ε and width(P) ≤ k3 k/ε.

Proof : Since everyk-coloring of a set ofr vertices can be encoded using an integer
number between 1 andkr, it is enough to show that|K| ≤ 3 k/ε for every basisb = (K, χ).

Let b = (K, χ) be a basis with|K| = r. Sinceb is a basis, there must exist a sequence
of bases(K0, χ0), (K1, χ1), . . ., (Kr, χr) with (K0, χ0) = (∅, 1), (Kr, χr) = (K, χ), and
such that for every1 ≤ i ≤ r we have|Ki| = i and the only vertex inKi \ Ki−1 is heavy
for 〈Ki−1, χi−1〉.

Let V (i)
1 , V

(i)
2 , . . . , V

(i)
k , 0 ≤ i ≤ r, be the sets of vertices such that each vertexv ∈ V

(i)
j

cannot be properly colored in colorj if we want to extend coloringχi to the setKi ∪ {v}.
That is,

V
(i)
j =

{
v ∈ V : ∃u ∈ Ki with χi(u) = j and(v, u) ∈ E

}
.

It is easy to see that for everyi, j we haveV (i)
j ⊆ V

(i+1)
j . Furthermore, by the definition of

heavy vertices, we know that for everyi, 1 ≤ i ≤ r, there is certainj, 1 ≤ j ≤ k, such
that |V (i)

j | ≥ |V
(i−1)
j | + ε n/3. Therefore, since we haveV (0)

j = ∅ for everyj, 1 ≤ j ≤ k, it

must hold that
∑k

j=1 |V
(i)
j | ≥ i ε n/3 for everyi, 1 ≤ i ≤ r. Finally, since|V (r)

j | ≤ n for
everyj, 1 ≤ j ≤ k, we conclude thatr ≤ 3 k/ε. 2

Violation function for k-coloring: A basis b = (K, χ) is violatedby a vertex v ∈ V

if either (i) v is a heavy vertex for 〈K, χ〉 or (ii) v is a conflict vertex for 〈K, χ〉.
Once we have describedk-coloring in our framework, in order to apply Theorem 10,

we must show that the(ε, λ)-Distance Preserving and the Feasibility Preserving properties
hold. We begin with the proof of the following lemma that implies the(ε, λ)-Distance
Preserving property withλ = ε/3.

71

4 Efficient Property Testers

Lemma 4.6.4 ((ε, ε/3)-Distance Preserving property) Let G = (V, E) be a graph that
is ε-far from beingk-colorable and letS ⊆ V be any set of properlyk-colored vertices
with a proper coloringχ. Then,V contains more thanε n/3 conflict vertices for〈S, χ〉 or
V has more thanε n/3 heavy vertices for〈S, χ〉.

Proof : Our proof is by contradiction. AssumeG isε-far from having a properk-coloring
and there are less thanε n/3 conflict vertices for〈S, χ〉 and less thanε n/3 heavy vertices
for 〈S, χ〉. Then, we show that there is ak-colorable graphG∗ that is obtained fromG by
removing less thanε n2 edges. This is a contradiction.

Let X be the set of all conflict vertices for〈S, χ〉, let Y be the set of all heavy vertices
for 〈S, χ〉, and letZ be the set of remaining uncolored vertices (i.e.,Z = V \ (S∪X∪ Y)).
For everyi, 1 ≤ i ≤ k, let Vi be the set of vertices inV such that for everyv ∈ Vi the
extension ofχ by coloringv with color i is not a proper coloring (cf. Definition 4.6.2).

We first construct a graphG ′ by removing all edges incident to the vertices inX ∪ Y

and extend the coloringχ of S to a k-coloring of S ∪ X ∪ Y by coloring the vertices in
X ∪ Y arbitrarily. Since|X ∪ Y| < 2ε n/3, less than2 ε n2/3 edges are removed fromG
in this way. Furthermore, since all vertices inX ∪ Y are isolated, the obtained coloringχ ′

is a properk-coloring ofS ∪ X ∪ Y.
Now, we modifyG ′ to extend the coloringχ ′ to all vertices inZ. For eachv ∈ Z, let

τ(v) be a color that satisfies the following two constraints:

• If we extendχ ′ to S ∪ {v} and we colorv with τ(v) then the resultingk-coloring is
proper, and

• If we extendχ ′ to S ∪ {v} and we colorv with τ(v) then the absolute increase in the
size ofVτ(v) is minimal (among all possible choices that satisfy the first constraint).

In other words,v /∈ Vτ(v) and for everyi, 1 ≤ i ≤ k, if v /∈ Vi then|{w /∈ Vi : (v,w) ∈
E}| ≥ |{w /∈ Vτ(v) : (v,w) ∈ E}|.) Sincev is not a conflict vertex for〈S, χ〉, such a color
τ(v) always exists (but is possibly not unique). By the fact thatv is not a heavy vertex for
〈S, χ〉, we know that|{w /∈ Vτ(v) : (v,w) ∈ E}| < ε n/3. Therefore, if we remove from
G ′ for everyv ∈ Z all edges(v,w) ∈ E with w /∈ Vτ(v), then the resulting graphG∗ is
obtained fromG by removal of less thanε n2 edges. It remains to show that the following
coloring of G∗ is proper: We color each vertexv ∈ S ∪ X ∪ Y with color χ ′(v). Each
vertexv ∈ Z is colored with colorτ(v). Now assume that this coloring is not proper. Then
there must be an edge(v, u) such thatv andu are colored in the same color. Sinceχ is
proper, all vertices inX andY are isolated, and by the definition ofτ(v) it is immediate
that such an edge can only be between vertices inZ. But then we have thatu /∈ Vτ(v) and
this implies that(v, u) has been removed fromG ′. Contradiction. 2

It remains to prove the Feasibility Preserving property:

Lemma 4.6.5 (Feasibility Preserving property) If for someS ⊆ V every basis covered
by S is violated by certainv ∈ S then the subgraph ofG induced by vertices inS cannot
be properlyk-colored.

72

4.7 Hypergraph Coloring

Proof : The proof is by contradiction. Let us suppose there is a properk-coloringχ of the
subgraph ofG induced by the vertices inS. For everyU ⊆ S, let χU denote the coloringχ
restricted to vertex setU.

Let us observe that the set of bases covered byS is not empty, because it contains
the “empty set” basis(∅, χ∅). Therefore, there exists a basis (possibly one of many)b =

(U, χU) covered byS having the maximum size of setU. Sinceb is violated by certainv ∈
S, eitherv is a conflict vertex for〈U, χU〉 or v is a heavy vertex for〈U, χU〉. Furthermore,
sinceχ was assumed to be a properk-coloring of S, v cannot be a conflict vertex for
〈U, χU〉 and therefore it must be a heavy vertex for〈U, χU〉. But this implies that(U ∪
{v}, χU∪{v}) is a basis that is moreover covered byS. This yields a contradiction, because
we assumed that there is no basis(K, χK) covered byS having|K| > |U|. 2

Therefore, we summarize our discussion in this section with the following theorem that
follows directly from Theorem 10 and Lemmas 4.6.4 and 4.6.5.

Theorem 11 There is a property tester for the graphk-coloring property with a query
complexity of

O
(
(k ε−2 ln(k/ε2))2

)
= Õ(k2/ε4) . 2

4.7 Hypergraph Coloring

We now want to extend the analysis from Section 4.6 to obtain an efficientproperty tester
for hypergraph coloring. A hypergraphis a pairH = (V, E) with a finite vertex setV
and the edge setE ⊆ 2V . A hypergraphH is `-uniform if |e| = ` for all e ∈ E. (Notice
that a2-uniform hypergraph is a graph.) Ak-coloringof a hypergraphH is an assignment
χ : V → {1, . . . , k} of colors to the vertices of the hypergraph. A coloring isproper if
no edge inE is monochromatic, that is, if for every edgee ∈ E there arev, u ∈ e with
χ(v) 6= χ(u). If H has a properk-coloring, thenH isk-colorable. Thek-coloring problem
for hypergraphs is to decide whether a given hypergraph isk-colorable.

Hypergraph coloring is a well studied problem in the literature in discrete mathemat-
ics, combinatorics, and computer science. In contrast to graphs, where one can decide in
linear time if a graph is2-colorable (or equivalently, bipartite), deciding if a given hyper-
graph is2-colorable isNP-complete even for3-uniform hypergraphs [64]. In [63], it is
shown that unlessNP ⊆ ZPP, for every fixed̀ ≥ 3, it is impossible to approximate in
polynomial time the chromatic number of`-uniform hypergraphs within a factorn1−ε for
every constantε > 0. See also [55, 60] for further inapproximability results. The property
of hypergraph2-colorability has been also extensively studied in combinatorics (see, e.g.,
[28, 29, 39, 73]), and for example, the study of this problem led to the discovery of the
celebrated Lov́asz Local Lemma [39].

We want to design a property tester for thek-coloring problem iǹ -uniform hyper-
graphs. Aǹ -uniform hypergraph can be represented by a functionf : V` → {0, 1} that
encodes its adjacency matrix. We use the standard distance measure (Definition 2.1.3) to
measure the distance between hypergraphs. In terms of hypergraphs we can express this
distance measure as follows:

73

4 Efficient Property Testers

Definition 4.7.1 An `-uniform hypergraphH = (V, E) is ε-far from having a properk-
coloring, if we have to remove more thanεn` edges fromH to obtain a hypergraph that
has a properk-coloring.

Now, we discuss how to apply our framework to hypergraph coloring. Similarly to
the graph coloring problem, we identify the ground setC with the set of verticesV of
the input hypergraphH = (V, E). Since in our representationH can be viewed as given
by its adjacency matrix representation, we define the interpretationI to map each set of
vertices to the submatrix induced by these vertices. That is, for everyS ⊆ V , we have
I(S) = S×S×· · ·×S. Clearly, the interpretation isN`-bounded. Let〈S, χ〉 be a pair with
S ⊆ V andχ a properk-coloring of vertices inS.

Definition 4.7.2 We say a vertexv is i-colorablewith respect to〈S, χ〉 if for everye ∈ E

with v ∈ e, either (i) there exists a vertexu ∈ (S ∩ e) with χ(u) 6= i or (ii) there exists a
vertexw ∈ e \ (S ∪ {v}).

We want to extend our approach for graph coloring to hypergraphs. Again we use a
recursive definition of bases that is based onheavyvertices andconflictvertices. In order
to define heavy vertices we introduce a potential function. A vertex is a heavy vertex if
its coloring increases the potential significantly (very much in the spirit of graph coloring;
further motivation behind the definition of the potential function can be found in the proof
of Lemma 4.7.7.)

Definition 4.7.3 Let H = (V, E) be a hypergraph. LetS ⊆ V and letχ be a proper
k-coloring of vertices inS. Thepotentialof 〈S, χ〉 is defined as

ΦH(〈S, χ〉) :=

k∑
i=1

`−1∑
j=1

nj−1 · |ϕ(〈S, χ〉, i, j)|

where

ϕ(〈S, χ〉, i, j) =
{
W ⊆ V : |W| = ` − j & ∃e ∈ E (W ⊆ e & ∀v∈e\W χ(v) = i)

}
.

Hence ifW ∈ ϕ(〈S, χ〉, i, j), then coloring all vertices inX with color i creates a
monochromatic edge. Our next step is to extend the notion of heavy and conflict vertices
to hypergraphs:

Definition 4.7.4 A vertexv ∈ V \ S is heavywith respect to〈S, χ〉 if (i) there is ani,
1 ≤ i ≤ k, such thatv is i-colorable and (ii) for everyi, 1 ≤ i ≤ k, if v is i-colorable and
χ ′ is the extension ofχ to S ∪ {v} by coloringv with color i then

∆ΦH(〈S, χ〉, v, i) := ΦH(〈S ∪ {v}, χ ′〉) − ΦH(〈S, χ〉) >
εn`−1

3
.

Definition 4.7.5 A vertexv ∈ V \ S is a conflict vertexwith respect to〈S, χ〉 if for every
i, 1 ≤ i ≤ k, v is not i-colorable.

The bases and the violation function are defined in the same way as for graph coloring:

74

4.7 Hypergraph Coloring

Bases for k-coloring:

• {∅, 1} is a basis (where1 is the encoding of the coloring of the empty set of vertices)
and

• if b = (K, χ) is a basis,v is aheavyvertex forb andχ ′ is an encoding of the previous
coloringχ of K extended by a proper coloring ofv, then(K ∪ {v}, χ ′) is a basis.

Violation function for k-coloring: A basis b = (K, χ) is violatedby a vertex v ∈ V

if either (i) v is a heavy vertex for 〈K, χ〉 or (ii) v is a conflict vertex for 〈K, χ〉.
In a similar way as for the graph coloring problem we can give an upper bound for the

dimension of the constructed ACP:

Lemma 4.7.6 For every problem instance of the hypergraphk-coloring problem the cor-
responding abstract combinatorial programP has dim(P) ≤ 3k`/ε and width(P) ≤
k3k`/ε.

Proof : Since everyk-coloring of a set ofr vertices can be encoded using an integer
in the range between 1 andkr, it is enough to show that|K| ≤ 3 k `/ε for every basis
b = (K, χ). To show this, let us recall that the bases are defined inductively by adding a
heavy vertex to another basis. By definition, a heavy vertex increases the potential of the
corresponding basis by more than1

3
ε n`−1. The maximum potential of every basis is less

thank ` n`−1 and the starting potential is 0. Thus, it follows for every basisb = (K, χ) that
|K| ≤ 3 k `/ε. 2

Our next step is to prove the Distance Preserving property.

Lemma 4.7.7 ((ε, ε/3)-Distance Preserving property) LetH = (V, E) be a hypergraph
that isε-far from beingk-colorable and letS ⊆ V be an arbitrary set of vertices colored
according to a properk-coloring χ. Then, eitherV contains more thanε n/3 conflict
vertices with respect to〈S, χ〉 or V has more thanε n/3 heavy vertices for〈S, χ〉.

Proof : Our arguments are similar to those used in the proof of Lemma 4.6.4. The proof
is by contradiction. Let us assume there are less than or equal toε n/3 heavy vertices
and less than or equal toε n/3 conflict vertices with respect to〈S, χ〉. Then, we show
that it is possible to extend coloringχ of S to a coloringχ∗ of V that has at mostε n`

monochromatic (violating) edges inH. This will yield contradiction.
We defineχ∗ as follows:

χ∗(v) =



χ(v) for everyv ∈ S

1 if v ∈ V \ S andv is a heavy vertex or a conflict vertex with respect to
〈S, χ〉

i if v ∈ V \ S is i-colorable with respect to〈S, χ〉 andi minimizes (over
all possible choices of proper coloringi) the increase in the
potential, that is,∆ΦH(〈S, χ〉, v, i) ≤ ∆ΦH(〈S, χ〉, v, j) for every
proper coloringj of v

75

4 Efficient Property Testers

Now, we give an upper bound on the number of monochromatic edges in coloringχ∗

of H. Let us first consider heavy and conflict vertices. By our assumption, the number of
such vertices is upper bounded by2

3
ε n. Therefore, the number of edges incident to these

vertices is upper bounded by2
3
ε n`. Hence, it is sufficient to show that there are at most

1
3
ε n` monochromatic edges inH that are not incident to heavy or conflict vertices. We

show this indirectly by defining a setED ⊆ E of at most1
3
ε n` edges. Then we prove that

this set contains all monochromatic edges for the coloringχ∗. Let Vlight denote the set of
all vertices inV \ S that are neither heavy nor conflict vertices for〈S, χ〉.

For a vertexv ∈ Vlight let us define

∆ϕ(〈S, χ〉, v, i, j) := ϕ(〈S ∪ {v}, χ ′〉, i, j) \ ϕ(〈S, χ〉, i, j)

whereχ ′ is the extension ofχ to S ∪ {v} by coloring vertexv with color i. We further
denote byE(X, v) = {e ∈ E : v ∈ e & X ⊆ e} all edges of the hypergraph that contain
X ∪ {v}. Now we make a simple but important observation:

Claim 4.7.8 If E(X, v) = ∅ thenX /∈ ∆ϕ(〈S, χ〉, v, χ∗(v), j).

Proof : Follows immediately from the definition of∆ϕ(〈S, χ〉, v, χ∗(v), j). 2

We want to define the set
ED :=

⋃
v∈Vlight

⋃
j∈[`−1]

E
(v)
D,j

using setsE(v)
D,j that determine for each vertexv a set of edges that is responsible for the

sets in∆ϕ(〈S, χ〉, v, χ∗(v), j). As we will see later these edges are the only edges that may
possibly be monochromatic inχ∗. We define the setE(v)

D,j as follows:

E
(v)
D,j :=

⋃
X∈∆ϕ(〈S,χ〉,v,χ∗(v),j)

E(X, v)

Claim 4.7.9 Lete ∈ E be a monochromatic edge in the coloring〈V, χ∗〉. Thene ∈ ED.

Proof : If e is monochromatic then there isi ∈ [k] such thatχ∗(u) = i for all u ∈
e. Further we conclude that for eachu ∈ e we have{u} ∈ ϕ(〈V, χ〉, i, ` − 1). Now
we distinguish between two cases. First let us consider the case when there is au ∈ e

with {u} ∈ ϕ(〈S, χ〉, i, ` − 1). In this caseχ∗(u) 6= i by the definition ofχ∗. In the
second case such au does not exists but we have{u} ∈ ϕ(〈V, χ〉, i, ` − 1). But - as
can be seen from Claim 4.7.8 - we definedED in such a way that there cannot be an
X ∈ ϕ(〈V, χ〉, i, ` − 1) that is not contained inϕ(〈S, χ〉, i, ` − 1). Hence, ife is not inED

it cannot be monochromatic. 2

It remains to show that the size ofED is small enough. By definition we have

∣∣ED

∣∣ = ∑
v∈Vlight

`−1∑
j=1

∣∣E(v)
D,j

∣∣

76

4.7 Hypergraph Coloring

and it is easy to see that for theE(v)
D,j it holds∣∣E(v)

D,j

∣∣ ≤ ∣∣∆ϕ(〈S, χ〉, v, χ∗(v), j)
∣∣ · nj−1

because of the fact that|E(X, v)| ≤ n`−(|X|+1). We conclude that we have

∣∣ED

∣∣ ≤ ∑
v∈Vlight

`−1∑
j=1

∣∣∆ϕ(〈S, χ〉, v, χ∗(v), j)
∣∣ · nj−1

Since all considered vertices are light we also have for everyv ∈ Vlight

∆ΦH(〈S, χ〉, v, χ∗(v)) =

`−1∑
j=1

∣∣∆ϕ(〈S, χ〉, v, χ∗(v), j)
∣∣ · nj−1 ≤ 1

3
εn`−1 .

This finally gives us ∣∣ED

∣∣ ≤ 1

3
εn` .

Together with Claim 4.7.9 we get a contradiction to the fact thatH is ε-far from being
k-colorable. This proves the lemma. 2

The proof of the following lemma is essentially the same as the proof of Lemma 4.6.5
and we present it here for the sake of completeness only.

Lemma 4.7.10 (Feasibility Preserving property) If for someS ⊆ V every basis covered
by S is violated by certainv ∈ S, then the sub-hypergraph ofH induced by vertices inS
cannot be properlyk-colored.

Proof : The proof is by contradiction. Let us suppose there is a properk-coloringχ of the
subgraph ofH induced by the vertices inS. For everyU ⊆ S, let χ|U denote the coloring
χ restricted to vertex setU.

Let us observe that the set of bases covered byS is not empty, because it contains
the “empty set” basis(∅, χ∅). Therefore, there exists a basis (possibly one of many)b =

(U, χ|U) covered byS having the maximum size of setU. Sinceb is violated by certainv ∈
S, eitherv is a conflict vertex for〈U, χ|U〉 or v is a heavy vertex for〈U, χ|U〉. Further, since
χ was assumed to be a properk-coloring ofS, v cannot be a conflict vertex for〈U, χU〉
and therefore it must be a heavy vertex for〈U, χ|U〉. But this implies that(U∪ {v}, χ|U∪{v})

is a basis that is moreover covered byS. This yields a contradiction, because we assumed
that there is no basis(K, χ|K) covered byS having the size ofK greater than|U|. 2

The three lemmas above combined with our framework from Theorem 10 imply the
following result.

Theorem 12 There is a property tester for the hypergraphk-colorability with the query
complexity

O
(
(k ` ε−2 ln(k/ε))`

)
= Õ((k `/ε2)`) . 2

77

4 Efficient Property Testers

4.8 Testable Hereditary Graph Properties

In this section we consider arbitraryhereditary graph properties. A graph propertyΠ
is a family of graphs that is preserved under graph isomorphism (that is, ifG satisfies
propertyΠ andG ′ is a graph isomorphic toG thenG ′ has propertyΠ, too). A graph
propertyΠ is hereditaryif it is closed under taking induced subgraphs, that is, if graph
G = (V, E) hasΠ then every subgraphGS induced by a setS ⊆ V has propertyΠ (see,
e.g., [20]). Similarly as in Section 4.6, we consider undirected graphs that are represented
by a functionf : V × V → {0, 1} that encodes the adjacency matrix of the graph. W.l.o.g.
we assumeV = [n]. When we talk about graph properties we have to observe that in
our framework a property is defined as a subset of the set ofn-vertex graphs. When no
confusion can arise we useΠ to denote the graph propertyΠ as well as the corresponding
set ofn-vertex graphs (which is the formal definition of a property in this thesis). Our
main result is that a hereditary graph property is efficiently testable if and only if it can be
reduced to an abstract combinatorial program of dimension that is independent of the size
of the input graph.

For every graphG = (V, E) and every subsetU ⊆ V we denote byGU the subgraph of
G induced byU.

We use the standard distance measure from Definition 2.1.3 for testing graph proper-
ties:

Definition 4.8.1 Let Π be an arbitrary graph property. A graphG is ε-far from (satisfy-
ing) Π if in order to transformG into a graph satisfyingΠ one has to modify more than
ε n2 entries in the adjacency matrix ofG.

Now, we can formally state the main result of this section.

Theorem 13 LetΠ be a hereditary graph property. Let0 < ε < 1. LetG be the set of all
graphs on the vertex setV = [n]. Then,Π is efficiently testableif and only if there are
δ = δ(ε), ρ = ρ(ε) andλ = λ(ε), such that everyG ∈ G can be mapped to an abstract
combinatorial programPG = ([n],B,$) with dim(PG) ≤ δ(ε) andwidth(PG) ≤ ρ(ε)

satisfying the following two properties:

((ε, λ)-Distance Preserving) if G is ε-far from Π then every basis inPG is λ-far from
feasible, and

(Feasibility Preserving) for everyS ⊆ V with |S| ≥ δ(ε): If there is G ′ ∈ Π with
GS = G ′

S then there is a self-feasible basis forS in PG.

The remaining part of this section is devoted to the proof of Theorem 13. We begin with
the following lemma that simplifies the analysis of property testers for graph properties. By
this lemma, if a hereditary graph propertyΠ has a property tester with a query complexity
of q(ε) then it has property tester that samples a setS of r(q(ε)) vertices and accepts, if
and only if the subgraph induced byS hasΠ.

78

4.8 Testable Hereditary Graph Properties

Lemma 4.8.2 (Alon, In Appendix E of [54]) Let Π be a hereditary graph property.
Suppose there is a property tester for propertyΠ with query complexityq(ε). Then, there
is a property tester for propertyΠ that selects uniformly at random a set ofr(q(ε)) vertices
and accepts the input graph if and only if the corresponding induced subgraph satisfies
propertyΠ. 2

In order to prove Theorem 13, we must prove that our condition is both necessary and
sufficient for efficient testability of any propertyΠ. We first observe that our proof of The-
orem 10 with the interpretationI as defined in Section 4.6 implies directly the sufficiency
of our conditions. Now, we prove the necessity of our condition.

Lemma 4.8.3 (Necessary Condition)LetΠ be a hereditary graph property. Let0 < ε <

1. Suppose there is a property tester for propertyΠ with query complexityq(ε) ≤ 1
4
n and

let us setr = r(q(ε)). Let G be the set of all graphs on the vertex setV = {1, . . . , n}.
Let λ = λ(ε) = 1

3·2r . Then, for everyG ∈ G there exists an abstract combinatorial
programPG = ([n],B,$) with dim(PG) ≤ 2r =: δ and width(PG) = 1 satisfying the
(ε, λ)-Distance Preserving and the Feasibility Preserving properties.

Proof : Let us fix an arbitrary graphG = (V, E) for which we describe ACPPG satisfying
the required properties.

Bases for graph properties: We define the bases ofPG to be of the form(K, 1) where
K ⊆ V . We first give a set of basis candidatesBC and then show how to obtain the set of
bases from this set of candidates.

We define the set ofbasis candidatesBC as follows:

• (∅, 1) is a basis candidate,

• if K is a set of vertices of sizer andGK (the subgraph induced byK) does not satisfies
Π, then(K, 1) is a basis candidate, and

• if (K, 1) is a basis andK ′ ⊆ K, then(K ′, 1) is a basis candidate.

We also define the notion ofviolatorsandlight bases:

Definition 4.8.4 LetBC be a set of basis candidates and letb = (K, 1) ∈ BC. The set of
violatorsViolBC(b) of b with respect toBC is defined as follows:

• if |K| = r then ViolBC(b) = V \ K, and

• if |K| < r then ViolBC(b) = {v ∈ V \ K : there exists a basis candidateb ′ =

(K ∪ {v}, 1)}.

Definition 4.8.5 LetBC be a set of basis candidates and letb ∈ BC. We callb light (with
respect toBC) if |ViolBC(b)| ≤ 3

2
λn. If b is not light then it isheavy.

79

4 Efficient Property Testers

Now, we define theset of basesB as the output of the following algorithm COMPUTE-
BASES: �

�

�

�

COMPUTEBASES(Set of candidatesBC)
while there is a light basisb (with respect to the currentBC) do
BC = BC \ {b}

return B := BC ∪ {(∅, 1)}

Violation function for graph properties: A basis b ∈ B is violated by its violators, that
is, by all vertices contained in ViolB(b).

Notice that our construction of bases and the definition of the violation function implies
that every basisb ∈ B is heavy, that is, it is violated by more than3

2
λn vertices inV .

Now, the following claim follows trivially from our construction.

Claim 4.8.6 PG has dimension(r, 1). 2

(ε, λ)-Distance Preserving Property: We prove now that the ACPPG defined above
satisfies the (ε, λ)-Distance Preserving Property, that is, that ifG is ε-far from Π then
every basis inPG is λ-far from feasible, whereλ = λ(ε) = 1

3·2r . Notice that by the
definition of bases, every basis except for(∅, 1) is violated by more thanλn ground set
elements. Therefore, what remains to be proven is that also the basis(∅, 1) is violated by
more thanλn ground set elements. Our proof of this fact is via a sequence of claims that
top-down establish lower bounds for the number of bases of given size.

For a basisb = (K, 1), let |K| be called itssize. We begin with the following simple
claim about bases of sizer.

Claim 4.8.7 Supposer < (1 − 2
3
λ)n. If G is ε-far from Π, then the number of bases of

sizer in B is bigger than2
3
·
(

n
r

)
.

Proof : The proof follows directly from the definition of the bases and from Lemma
4.8.2. Indeed, Lemma 4.8.2 implies that for a graph that isε-far from Π, if one picks at
random a set ofr vertices inV , then with probability at least2

3
the subgraph induced by

these vertices does not satisfyΠ. This is equivalent to say that the number of subsets ofV

of sizer for which the induced subgraph does not satisfyΠ is bigger than2
3
·
(

n
r

)
. By the

definition of the basis candidates, for every setK ⊆ V of sizer, (K, 1) ∈ BC. Moreover,
the setV \ K is the set of violators ofK. Hence(K, 1) is a basis that is violated byn − r

violators, and thus(K, 1) is heavy. Thus,(K, 1) belongs toB. Therefore, the number of
bases of sizer in B is bigger than2

3
·
(

n
r

)
. 2

The next claim deals with the relation between the number of bases of sizek and of
sizek − 1.

Claim 4.8.8 Suppose thatn ≥ 2 r. Letζ, 0 ≤ ζ ≤ 1, and letk, 1 ≤ k ≤ r, be an integer.
If there are more thanζ ·

(
n
k

)
bases of sizek in B then the number of bases inB of size

k − 1 is bigger thanζ−3·λ
2

·
(

n
k−1

)
.

80

4.8 Testable Hereditary Graph Properties

Proof : Recall thatB contains only heavy bases. Furthermore, if(K, 1) is a basis then our
construction of bases ensures that for everyu ∈ K, (K \ {u}, 1) is a basis (in the following
we refer with basis also to basis candidates) and that this basis is violated byu. Thus,
every basis of sizek definesk violators for bases for sizek − 1. We conclude that overall,
there are more than

k · ζ ·
(

n

k

)
= (n − k + 1) · ζ ·

(
n

k − 1

)
>

1

2
· n · ζ ·

(
n

k − 1

)
violators for bases of sizek − 1. Observe that every light basis has at most3

2
λn violators.

Therefore, the number of violators of all light bases of sizek − 1 is at most3
2
λn
(

n
k−1

)
. It

follows that the number of violators of heavy bases of that size is bigger than

1

2
· n · ζ ·

(
n

k − 1

)
−

3

2
· λ · n ·

(
n

k − 1

)
=

1

2
· (ζ − 3 λ) · n ·

(
n

k − 1

)
.

Since each basis has at mostn violators it follows that the number of heavy bases is larger
than

1

2
· (ζ − 3 λ) ·

(
n

k − 1

)
,

which completes the proof of our claim. 2

The next claim gives a lower bound for the number of bases of given size (bigger than
0).

Claim 4.8.9 Let1 ≤ k ≤ r be an integer. Then the number of bases of sizer − k is bigger
than (

1

3 · 2k−1
−

3

2
λ

(
2 −

1

2k−1

))
·
(

n

r − k

)
.

Proof : The proof is by induction onk. Fork = 1 the claim follows directly from Claims
4.8.7 and 4.8.8. Now, let us assume the claim is true fork = k ′, for certain1 ≤ k ′ < r,
and we show that this implies that the claim is true also fork = k ′ + 1. By induction, this
will yield the claim.

By the induction hypothesis, the number of bases inB of sizer − k ′ is bigger than(
1

3 · 2k ′−1
−

3

2
λ (2 −

1

2k ′−1
)

)
·
(

n

r − k ′

)
=

(
1

3 · 2k−2
−

3

2
λ

(
2 −

1

2k−2

))
·
(

n

r − k + 1

)
.

Therefore, by Claim 4.8.8, the number of bases inB of sizer − k = (r − k ′) − 1 is bigger
than(

1
3·2k−2 − 3

2
λ
(
2 − 1

2k−2

))
− 3 λ

2
·
(

n

r − k

)
=

(
1

3 · 2k−1
−

3

2
λ

(
2 −

1

2k−1

))
·
(

n

r − k

)

81

4 Efficient Property Testers

and the claim follows. 2

Now, we are ready to complete the proof of the (ε, λ)-Distance Preserving Property for
PG. By our discussion above, we only must show that the basis(∅, 1) is violated by more
thanλn ground set elements. By Claim 4.8.9, the number of bases inB of size1 is bigger
than (

1

3 · 2r−2
− 3 · λ

)
·
(

n

1

)
=

(
4

3 · 2r
− 3 · λ

)
· n ≥ λ · n ,

by our assumption thatλ = 1
3·2r . Each of the bases of size1 is of the form({u}, 1) for some

u ∈ V and by the definition of violation, such a vertexu violates(∅, 1). Since the number
of such verticesu is bigger thanλ · n, this completes the proof of the (ε, λ)-Distance
Preserving Property forPG.

Feasibility Preserving Property: We prove now that the ACPPG satisfies the Feasi-
bility Preserving Property. We prove that for everyS ⊆ V , |S| ≥ δ, if the subgraphGS

satisfiesΠ then there is a self-feasible basis forS in PG. This implies the Feasibility Pre-
serving Property becauseΠ is hereditary and so: IfGS does not have propertyΠ thenG

cannot haveΠ, as well.
Our arguments are roughly the same as in the proof of Lemma 4.6.5. The proof is

by contradiction. Let us suppose that the subgraphGS satisfiesΠ, but every basis inS
is violated. Observe that the set of bases covered byS is not empty, because it contains
the “empty set” basis(∅, 1). Therefore, there exists a basisb = (K, 1) covered byS
maximizing the size of setK. Sinceb is violated by certainv ∈ S and sinceK is of
maximum size, we conclude that|K| = r. It follows that the subgraphGK induced by
K does not have propertyΠ. SinceΠ is hereditary, it is closed under taking induced
subgraphs, and hence we conclude thatGS does not have propertyΠ.

If n < 2r then we use the following simple ACP: The ACP has a single basis(V, 1)

which is violated by all ground set elements, ifG is ε-far fromΠ and which is not violated
otherwise. This completes the proof of Lemma 4.8.3. 2

Now, we can conclude our discussion to complete the proof of Theorem 13.
Proof : The “only if” part follows from Lemma 4.8.3 and the “if” part follows from
Theorem 10 with the interpretationI as defined in Section 4.6. 2

82

5 Testing Algorithms with
Geometric Queries

In Chapter 3 we considered Property Testing in the ’standard model’ for geometric objects
such as point sets. This means that the property testing algorithm is only allowed to ask
basic queries about the given object. In the case of point sets, our algorithm was allowed
to ask queries of the form ’What is the position of thei-th point of the point set ?’.

In this section we want to introduce a new type of query for point sets: Range queries.
Range queries are of the form: ’What is thei-th point in a query rangeR ?’ whereR

is a range in theRd (typically, an axis parallel rectangle or a simplex). Such queries are
efficiently supported by basic spatial data structures, e.g. range trees and partition trees
[1].

Later in this section we show that the property of being in convex position (in theR2)
can be tested withO(logn/ε) triangular range queries. This stands in contrast to the lower
bound ofΩ(d+1

√
nd/ε) on the query complexity in the standard model from Chapter 3. We

also consider two other examples, labeling and clustering, and show that we can achieve
much better results in the new model than it would be possible in the standard model.

5.1 Property Testing with Range Queries

Many fundamental data structures for point sets are designed to efficiently answerrange
queries(cf. [1]), i.e. queries that ask to return all points (or just their number) located in
a given query range. Usually, the shape of a query range is restricted to a certain class of
ranges, e.g. axis parallel rectangles or simplices. This way it is possible to answer queries
much more efficient than it would be possible for arbitrary query ranges.

In this section we introduce models of computation whose basic operations are range
queries. All models are defined for point sets in theRd. Let P denote the point set under
consideration.

The Simplex Range Query Model . In theSimplex Range Query Modela Property
Testing algorithm is allowed to ask the following types of queries:

• ’What is the number of points ofP contained in a (possibly degenerated) simplexS

?’.

83

5 Testing Algorithms with Geometric Queries

• ’What is the position of thei-th point of P contained in a (possibly degenerated)
simplexS ?’ The ordering of the points ofP contained in simplexS is fixed but
unknown to the property testing algorithm. Ifi is bigger than the number of points
contained inS then the symbol∅ is returned to denote that such a point does not
exist.

• ’What is the position of thei-th point ofP ?’ The ordering of the points ofP is fixed
but unknown. Ifi is bigger than|P| then the symbol∅ is returned. Such a query
could be realized using the second type of query with a sufficiently large simplex.
For convenience in notation we introduce this as a separate type of query.

Of course, the simplexS specified by the property testing algorithm may differ from
query to query. This model is motivated by the large number of efficient data structures
that support triangular range queries such as partition trees and cutting trees. The most
efficient data structure for simplex range counting queries requiresO(nd+ε) space (for
anyε > 0) and supports queries in timeO(logd n) [1].

The Rectangle Range Query Model . In theRectangle Range Query Modela prop-
erty testing algorithm is allowed to ask the following types of queries:

• What is the number of points ofP contained in a (possibly unbounded) axis parallel
rectangleR ?’

• ’What is the position of thei-th point ofP contained in a (possibly unbounded) axis
parallel rectangleR ?’ The ordering of the points ofP contained in rectangleR is
fixed but unknown to the Property Testing algorithm. Ifi is bigger than the number
of points contained inR then the symbol∅ is returned to denote that such a point
does not exist.

• ’What is the position of thei-th point ofP ?’ The ordering of the points ofP is fixed
but unknown. Ifi is bigger than|P| then the symbol∅ is returned. Similar to the
Simplex Range Query Model such a query could be realized using the second type
of query with a sufficiently large rectangle.

Orthogonal range queries are supported by many fundamental data structures such
as range trees,R-tree, and quad trees. The most efficient data structure for orthogonal
range counting queries in the RAM model supports queries inO(logd−1 n) time and uses
O(n logd−2 n) space [1].

The Mixed Range Query Model. In the Mixed Range Query Modelthe property
testing algorithm may ask every query that is allowed in the Simplex Range Query Model
as well as every query that is allowed in the Rectangle Range Query Model.

Some further definitions. In all three models thequery complexityof a property
testing algorithm is the number of queries asked about the point set. The sizen = |P| of
the point set is known to the testing algorithm.

84

5.2 Testing Convex Position with Range Queries

5.2 Testing Convex Position with Range Queries

In Chapter 3 we designed a property tester for convex position in the standard property
testing model. Its query complexity wasO(d+1

√
nd/ε). We also proved a matching

lower bound on the query complexity of every testing algorithm in the standard testing
model. Obviously, the simplex range query model is more powerful than the standard test-
ing model. But how much does the possibility to use simplex range queries help us when
we want to design property testing algorithms ?

We first design and analyze a property tester for convex position in the simplex range
query model. We only consider the 2-dimensional case when the point setP is in the
R2. Again we assume that the input point set is in general position. We prove that in
the simplex range query model there is a property tester for convex position with query
complexityO(logn/ε). Hence it is possible to achieve an exponential improvement in
the number of queries using this new model.

Our algorithm is based on a randomized test for extremality of points. Hence, we first
have to prove that many points of a point set are not extreme, if the set isε-far from convex
position. This is done in the following Proposition:

Proposition 5.2.1 LetP be a point set that isε-far from convex position. Then more than
ε|P| points inP are not extreme.

Proof : Let P beε-far from convex position. Assume less thanε|P| points inP are not
extreme. Then we can delete these points fromP to obtain a point set in convex position.
Hence the point setP cannot beε-far from convex position. This is a contradiction. 2

Our next step is to show that the simple algorithm ISFACET decides if two points are
the vertices of the same facet (segment) of the convex hull.

p

q

Figure 5.1: If two pointsp andq belong to the same facet of the convex hull then one of
the halfspaces induced by a line throughp andq contains exactly 2 points.

'

&

$

%

ISFACET(p, q)

LetH+ andH− denote the two halfspaces induced by the line throughp andq

if H+ contains exactly 2 points fromP then accept
if H− contains exactly 2 points fromP then accept
reject

85

5 Testing Algorithms with Geometric Queries

p

r

q

Figure 5.2: A circular ordering for all points in a halfspace induced by a line throughp

andr.

We show the following lemma:

Lemma 5.2.2 Let p, q ∈ P be two points from a point setP ⊆ R2. Then algorithm
IsFacet(p, q) decides whetherp andq are the vertices of the same facet of the convex hull
of P. The algorithm uses2 simplex range queries.

Proof : First of all, let us observe that two pointsp, q ⊆ P are the vertices of the
same facet of the convex hull ofP, if and only if one of the closed halfspaces induced
by a line throughp andq contains exactly the pointsp andq. A halfspace range query
is a degenerated triangular range query and so we are allowed to use such a query in the
simplex range query model. Hence the algorithm is correct and obviously uses at most 2
queries. 2

So far, we can only find out whether two points belong to the same facet of the convex
hull of P. This would imply that both of them are extreme points. We use this possibility
to design an algorithm that finds out whether a single pointp is extreme. Ifp is extreme
(and if |P| > 1) then there is a pointq ∈ P such thatp andq are vertices of the same facet
of the convex hull ofP. Thus we have to design a procedure that finds such a pointq, if p

is extreme.
The idea of our procedure is simple: Given an extreme pointp we pick another point

r uniformly at random fromP. If pr is a facet of the convex hull ofP then we have a
witness thatp is extreme. If not we select one of the halfspaces induced by a line through
p andr. Let us call the selected halfspaceH (see Figure 5.2). Then we observe that the
point p induces a circular ordering among the points in halfspaceH. The ’last’ point in
this ordering is the pointq we are looking for. We can find this point efficiently using a
randomized binary search-like procedure on the points within the halfspace.

86

5.2 Testing Convex Position with Range Queries

'

&

$

%

EXTREMECHECK (P, p)

Choose a pointr ∈ P uniformly at random
if ISFACET(p, r) then return p is extreme
LetH denote a closed halfspace induced by the line throughp andr

Let τ1 denote the (degenerated) triangleH
i = 1

while τi contains more than2 points andi ≤ 100 logn do
Choose a pointsi ∈ τi uniformly at random
if si 6= p andsi 6= r then

LetH(i)
s denote the halfspace induced by a line throughp andsi

that does not containr
Let τi+1 denote the intersection ofH andH(i)

s

i = i + 1

if τi contains more than 2 pointsthen return don’t know
else if ISFACET(p, si) then return p is extreme

else returnp is not extreme

We first show that the algorithm is correct, if it returns an answer other than ”don’t
know”.

Lemma 5.2.3 Let p be an extreme point inP. If algorithm EXTREMECHECK is started
with inputp then the algorithm returns either ”p is extreme” or ”don’t know”.

Proof : We first observe thatp is incident to two facets of the convex hull ofP sincep

is an extreme point. The segmentpr is not a facet of the convex hull ofP, since otherwise
the algorithm had accepted the input in the firstif -statement by Lemma 5.2.2. Now let
q1 andq2 denote the points ofp that share a facet withp in the convex hull ofP. Then
either one of the points must be in halfspaceH. If τi+1 contains more than 2 points then
we know thatsi cannot share a facet withp because both closed halfspaces induced by a
line throughp andsi contain at least 3 points. One of the halfspaces containsp, si, and
r and the other one contains all points inτi+1. Hencesi can only share a facet withp, if
τi+1 contains exactly2 points. If the algorithm does not answer ”don’t know” it computes
a triangle that contains exactly2 points. As we already observed there is a point inH that
shares a facet withp it must be the computed point. 2

Lemma 5.2.4 Letp be a point inP that is not extreme. If algorithmEXTREMECHECK is
started with inputp then the algorithm returns either ”p is not extreme” or ”don’t know”.

Proof : By Lemma 5.2.2 we know that the algorithm only return ”p is extreme” ifp is a
vertex of a facet of the convex hull ofP. The lemma follows sincep cannot be a vertex of
a facet of the convex hull, if it is not extreme. 2

Then we show that the algorithm typically returns an answer other than ”don’t know”.

87

5 Testing Algorithms with Geometric Queries

Lemma 5.2.5 LetP be a point set ofn points in theR2. LetXp
i denote the random variable

for the number of points in triangleτi when running algorithmEXTREMECHECK with
input p ∈ P. LetZi denote the indicator random variable for the event thatX

p
i+1 ≤ 2

3
X

p
i .

Then we have

Pr[Zi = 1] ≥ 1

4

Proof : Let Qi denote the set of points that are contained in triangleτi. We observe
thatPr[si = q] = 1

|Qi|
for each pointq ∈ Qi. For the sake of analysis we enumerate all

points inQi butp according to their circular ordering aroundp. Then it is immediate that
X

p
i+1 ≤ 2

3
X

p
i holds, ifsi belongs to the lastb2

3
|Qi|c− 1 points in this particular ordering. It

follows for |Qi| > 2 that

Pr[Zi = 1] ≥ b2/3|Qi|c− 1

|Qi|
≥ 1

4
.

2

Lemma 5.2.6 Algorithm EXTREMECHECK returns the answer ”don’t know” with prob-
ability less than1/3.

Proof : We first observe that

Pr[EXTREMECHECK returns ”don’t know”] ≤ Pr
[∑

1≤i≤100 logn

Zi ≤ log3/2 n
]

Now let Yi be a 0-1 random variable withPr
[
Yi = 1

]
= 1/4. Then by Lemma 5.2.5 we

observe that

Pr
[∑

1≤i≤100 logn

Zi ≤ log3/2 n
]
≤ Pr

[∑
1≤i≤100 logn

Yi ≤ log3/2 n
]

= Pr
[∑

1≤i≤100 logn

Yi ≤
4 logn

log(3/2)
E[Yi]

]
≤ Pr

[∑
1≤i≤100 logn

Yi ≤ 8 lognE[Yi]
]

≤ Pr
[∑

1≤i≤100 logn

Yi ≤ (1 −
9

10
)100 logn · E[Yi]

]
We apply a Chernoff bound [56] to the last inequality and obtain:

Pr
[∑

1≤i≤100 logn

Yi ≤ (1 −
9

10
)100 logn · E[Yi]

]
≤ e−(9/10)225 logn/2 ≤ e−10 logn ≤ 1/3

2

Now we can come up with the testing algorithm:

88

5.3 Map Labeling

'

&

$

%

CONVEXTESTER-C(P, ε)

for i = 1 to 6ε−1 do
choose a pointp from P uniformly at random
if EXTREMECHECK(P, p) returns ”p is not extreme”then reject

accept

Theorem 14 AlgorithmCONVEXTESTER-C is a property tester for convex position in the
plane in the simplex range query model. Its query complexity isO(logn/ε).

Proof : We observe that the algorithm only rejects a point set, if algorithm EXTREME-
CHECK returns that the point is not an extreme point. By Lemma 5.2.3 algorithm EX-
TREMECHECK always returns ”p is extreme” or ”don’t know” ifp is extreme. Hence
every point set in convex position is accepted because every point is an extreme point.

It remains to prove that a point setP is rejected, ifP is ε-far from convex position.
When a pointp is chosen uniformly at random fromP then by Proposition 5.2.1 the
probability thatp is not extreme is at leastε. By Lemma 5.2.6 we have that the prob-
ability that EXTREMECHECK answers ”don’t know” is at most1/3. We conclude that the
probability that a point chosen uniformly at random by EXTREMECHECK is not extreme
and EXTREMECHECK rejects it, is at least2ε/3. Hence the probability that algorithm
CONVEXTESTER-C does not reject a point set that isε-far from convex position is at least

Pr
[
CONVEXTESTER-C accepts

]
≤ (1 − 2ε/3)6ε−1 ≤ e−4 ≤ 1/3

and hence,
Pr
[
CONVEXTESTER-C rejects

]
≥ 2/3

2

5.3 Map Labeling

We continue the investigations in the power of our new model. We now consider a basic
map labelingproblem. Map labeling in general deals with problems where to place labels,
e.g. names of towns, rivers, mountains, and oceans, on a geographic map. The constraints
for such a placement of labels are fairly obvious: Labels should be close to the labeled
feature and labels should not intersect. A basic map labeling problem can be formulated
in the following way [47]:

Let P be a set of n points in the R2. Decide whether it is possible to place n axis-
parallel unit squares such that

• all squares are pairwise disjoint (labels do not overlap),

• each point is a corner of exactly one square (each point is labeled), and

• each square has exactly one point on its corners (each point has a unique label).

89

5 Testing Algorithms with Geometric Queries

If a setS of n squares satisfies the conditions above, thenS is called avalid labeling
for P. The map labeling problem is known to beNP-complete and the corresponding
optimization problem (with the goal to maximize the label size) is known to have no ap-
proximation algorithm with ratio better than2, unlessP = NP [47].

Our goal is to design a property testing algorithm for the above labeling problem. We
use the standard distance measure from Definition 2.1.3. In terms of map labeling this can
be formulated as follows:

Definition 5.3.1 A setP of n points in the plane isε-far from having a valid labeling, if
we have to delete more thanε n points to obtain a set of points that has a valid labeling.

Before we consider the map labeling problem in the orthogonal range query model, we
prove a strong lower bound on the query complexity in the standard testing model. This
bound shows that we cannot hope for a property testing algorithm that haso(n1−δ) query
complexity for every constantδ > 0.

Theorem 15 For every constantδ, 0 < δ < 1, there is a positive constantε such that
there is no property tester for the labeling problem witho(n1−δ) query complexity in the
standard testing model.

Proof : For a givenδ let us definec = d1−δ
2δ
e and letε = 1

2(2c+1)
. We observe that by the

chosen value ofc it holds thatδ ≥ 1
2c+1

. We construct a point set that isε-far from having
a valid labeling. The set consists ofn/(2c+ 1) copies of a setQc of 2c+ 1 points.Qc has
the property that it does not have a valid labeling but if we delete one point from it, then it
always has a valid labeling. A property tester with query complexityo(n1−δ) that samples
a subset of points uniformly at random cannot reject such a point set with probability2/3.

Therefore, we first show that the existence of a property tester for a point setP implies
the existence of a property tester with similar query complexity that selects a sample setS

from P uniformly at random and accepts if and only ifS has a valid labeling:

Claim 5.3.2 LetA be a property tester for the map labeling problem with query complexity
q(n, ε). Then there exists a property testerA ′′ for the map labeling problem that sample a
setS of q(ε, n) points uniformly at random and accepts if and only if the points inS have
a valid labeling. Such a property tester is calledcanonical.

Proof : By Lemma 2.3.1 we know that there is a property testerA ′ that samples a setS of
q(ε, n) points uniformly at random and decides based onS and and its internal coin flips.
Let A ′′ be an algorithm that samples a setS of q(ε, n) points uniformly at random and that
accepts if and only ifS has a valid labeling. We want to prove thatA ′′ is a property tester.
Clearly, algorithmA ′′ accepts every point set having a valid labeling. Thus it remains to
prove that it rejects every point set that isε-far from having a valid labeling. We show this
indirectly by proving the following statement: If algorithmA ′ rejects a sample setS then
so does algorithmA ′′. By definition a property tester has one-sided error and soA ′ must
accept if the sample set has a valid labeling. But if the sampleS does not have a valid

90

5.3 Map Labeling

labeling we know thatA ′′ rejects the input. Hence,A ′′ always rejects, ifA ′ rejects. Since
A ′ is a property tester it rejects every point setP that isε-far from having a valid labeling
with probability at least2/3. Thus algorithmA ′′ is a property tester. This proves Claim
5.3.2. 2

Now we show that there exists a point set that isε-far from having a valid labeling
and that is not rejected by a canonical property tester with query complexityo(n1−δ) with
probability more than1/3. Our construction is based on a point setQc of size2c + 1 with
the following two properties:

• Qc does not have a valid labeling,

• for everyp ∈ Qc the setQc \ {p} has a valid labeling.

Label:

Does not have a valid labeling

Figure 5.3: The lower bound construction. If one point is missing then the set has a valid
labeling (right figure).

Claim 5.3.3 For everyc ≥ 2 there exists a setQc of 2c + 1 points such that the setQc

does not have a valid labeling and such thatQc\{p} has a valid labeling for everyp ∈ Qc.

Proof : For a givenc ≥ 2 we constructQc. W.l.o.g. we assume that two squares intersect
if and only if their interiors intersect. We place pointslc andrc at position(1, 0) and(c, 1),
respectively, a setUc of c points at the position(1, 1), . . . , (c, 1), and a setLc of c−1 points
at positions(1.5, 0.5), . . . , (c − 0.5, 0.5). We claim that the setQc = Uc ∪ Lc ∪ {lc, rc}

does not have a valid labeling. This is because we have only|Lc|− 1 label positions for the
points inLc that do not necessarily intersect with points fromUc ∪ {lc, rc}. Hence there
cannot be a valid labeling forQc. On the other hand, for everyq ∈ Qc the setQc \ {q} has
a valid labeling as one easily verifies by a case distinction (see also the figure above):

• In the first case we either haveq = lc or q = rc (these cases are symmetric). Wlog.
let q = lc. Then we choose the upper left square for all points inUc, the lower left
square for all points inLc and the lower right square forrc.

• Now let q be in Lc and letq have the position(i, 0.5). We choose the upper left
square for all points inUc, the lower right square for all pointsr = (j, 0.5) ∈ Lc

with j < i and the the lower left square for the remaining points inLc. For the points
lc andrc we choose the lower left and lower right square, respectively.

91

5 Testing Algorithms with Geometric Queries

• It remains to consider the caseq ∈ Uc. Let us assume thatq has position(i, 1).
Then we pick the upper left square for all pointsr = (j, 1) ∈ Uc with j < i and the
upper right square for the remaining points inUc. For all pointsr = (j, 0.5) ∈ Lc

with j < i − 1 we choose the lower right square. For(i − 0.5, 0.5) ∈ Lc we choose
the upper right square, and for the remaining points fromLc we choose the lower
left square. For the pointslc andrc we choose the lower left and lower right square,
respectively.

In all cases we easily verify that the labels do not intersect. Hence Claim 5.3.3 follows.
2

Now we can construct a setP of n points that consists ofk = b n
2c+1

c translated copies
W1, . . . , Wk of the setQc (such that their possible labelings do not intersect). In order to
obtain a set with a valid labeling fromP we must delete at least one point from eachWi,
1 ≤ i ≤ k. Thus we have thatP is ε-far from having a valid labeling. Further a canonical
property tester can rejectP only if the sample setS contains at least one of the setsWi. If
we now apply Lemma 2.4.2 withl = 2c + 1 andp = 1/2 then we obtain that

Pr
[
∃j ∈ [k] : (Wj ∈ S)

]
≤ 1/2

if the sample size is less than(n−2c) ·
(

1
2εn

) 1
2c+1 = Ω(n1−δ). Hence there is no canonical

property tester with query complexityo(n1−δ) and so there cannot be any property tester
with that query complexity. 2

We show now that if we use the computational model that allows range queries we can
design a tester withO(1/ε3) query complexity. It is based on the approach developed in
[36] and [58].'

&

$

%

LABELTEST(P):
choose a sample setS of size4/ε uniformly at random fromP

for eachp ∈ S do
i = 0, T = ∅
Let R be the axis parallel square with centerp and side length20d1/εe
while i ≤ (20d1/εe+ 2)2 do

Let q be thei-th point in the query rangeR
if q 6= ∅ then T = T ∪ {q}

i = i + 1

if T does not have a valid labelingthen reject
accept

Theorem 16 Algorithm LABELTEST is a tester for the labeling problem that has query
complexityO(1/ε3) and running timeexp(O(1/ε2)).

Proof : First of all, let us observe that algorithm LABELTEST accepts every input point
set that has a valid labeling. Thus we have to show that every instanceP that isε-far

92

5.4 Clustering Problems

from having a valid labeling is rejected with probability at least2/3. Let us assume that
P is ε-far from having a valid labeling. Now we partition the plane into grid cells of side
length10d1/εe such that at mostεn/2 points ofP are within a distance of1 or less to the
boundary of the grid cell they are contained in. Such a partition can be constructed in the
following way: We start by partitioning the plane into vertical stripesAi = {(x, y) ∈ R2 :

2.5i ≤ x < 2.5(i + 1)}. For j ∈ [k], with k = 4d 1
ε
e, let Rj =

⋃
i:imodk=j Ai. Then we

have that there ism ∈ [k] with |Rm ∩ P| ≤ εn/4. If we put the vertical lines of the grid
cells in the middle of the stripes inRm then at mostεn/4 points are within a distance of1

to these vertical lines. A similar argument applied to horizontal lines gives us the desired
grid partition.

For the analysis we delete all points that are within a distance of1 or less to the bound-
ary of their grid cell from the point setP. This way we obtain the point setP ′. Let
Xconfl ⊆ P ′ be a minimal-size set of points such thatP ′ \Xconfl has a valid labeling. Since
P is ε-far from having a valid labeling we know thatXconfl > εn/2. Now we consider a
single grid cellC. By the construction ofP ′ we know that the labeling of the points inC
cannot intersect with labels from points outside ofC.

Claim 5.3.4 If S ∩ Xconfl 6= ∅ then algorithmLABELTEST rejects.

Proof : Let x be a point fromXconfl that is contained inS and letC denote the grid cell
containingx. Thewhile-loop either adds all points inR to T or it finds out that more than
(20d1/εe+2)2 points are contained inR. In the case thatT contains all points inR it must
also contain all points fromC. Thus the points inT do not have a valid labeling. In the
case when we have more than(20d1/εe+ 2)2 points inT we would have to fit more than
(20d1/εe+ 2)2 unit square labels on an area of size(20d1/εe+ 2)2. Thus there cannot be
a labeling in this case, either. Hence the algorithm rejects, ifS ∩ Xconfl 6= ∅. 2

By Claim 5.3.4 the theorem follows with

Pr
[
S ∩ Xconfl = ∅

]
≤ (1 − ε/2)4/ε ≤ 2/3

and so
Pr
[
S ∩ Xconfl 6= ∅

]
≥ 2/3 .

2

5.4 Clustering Problems

In this section we revisit the radius and diameter clustering problem as defined in Chapter
4. Recall that the goal of a clustering problem is to decide whether a set ofn pointsP in
Rd can be partitioned intok subsets (calledclusters) S1, . . . , Sk such that thecostof each
cluster is at mostb. There are several different ways to define the cost of a cluster. LetS

be a set of points inRd. In the radius clustering problem the costcostR(S) of a clusterS
is twice the minimum radius of a ball containing all points of the cluster. In the diameter

93

5 Testing Algorithms with Geometric Queries

clustering problem the costcostD(S) of a clusterS is the maximum distance between a
pair of points of the cluster.

The goal of our property tester is to accept all instances that admit a clustering intok

subsets of costb and to reject with high probability those instances that cannot be clustered
into k subsets of cost(1 + ε)b. Note that this distance measure is different from the one
used in Chapter 4.

Definition 5.4.1 A point setP is (b, k)-clusterable for a cost measurecost(), if there is a
partition of P into setsS1, . . . Sk such thatcost(Si) ≤ b for all 1 ≤ i ≤ k. A point setP
is ε-far from being(b, k)-clusterable, if for every partition ofP into setsS1, . . . Sk at least
one setSi has cost larger than(1 + ε)b.

Let us assume, without loss of generality, thatb = 1 and thus we want to design a
tester for the problem whether a point setP is (1, k)-clusterable for the two cost measures
above. We partitionRd into grid cells of side lengthε/(3

√
d). For each cell containing an

input point, we choose an arbitrary input point from the cell as its representative. Then, we
compute whether the set of representatives is(1, k)-clusterable. If it is so, then we accept
it, if it is not so, then we reject it. Clearly, every set of points that is(1, k)-clusterable
is accepted by the algorithm. On the other hand, every instance that isε-far from (1, k)-
clusterable will be rejected. (This approach has been introduced in [2] to obtain a(1 + ε)-
approximation algorithm for the radius clustering problem.)

Our algorithms starts with an empty box with vertices at infinity. Then we query for
a point in this box. This point is located in a grid cellC. We will use the point as repre-
sentative for this cell. The bounding hyperplanes ofC induce a partition of the space in
3d boxes (one of them being the grid cell). We mark all empty boxes and the grid cell.
Then we continue this process with an unmarked box. If there are only marked boxes the
algorithm terminates.

So far, our partition into grid cells works fine, only if there are many points in a single
cell. On the other hand, if no two points are in the same grid cell, the algorithm hasΩ(n)

query complexity. Thus we need an upper bound on the number of representatives that are
(1, k)-clusterable. Similar to Chapter 4 we use a volume argument to show that we can
stop the process when we find a set of representatives of sizek · (6

√
d/ε)d.

Lemma 5.4.2 LetS be a set of points inRd no two points of which belonging to the same
cell of a grid of sizeε/(3

√
d) < 1. If cost(S) ≤ 1 for any of the two cost measures

described above, then|S| ≤ (6
√

d/ε)d, wherecost(·) ∈ {costR, costD}.

Proof : We first observe that ifcost(S) ≤ 1 thenS is contained in a hypercube with
side length1. We show that a no setS of size more than(6

√
d/ε)d that satisfies the

precondition of Lemma 5.4.2 is contained in a hypercube with side length1. A hypercube
with side length 1 can contain at most(1

ε/(3
√

d)
+ 2)d ≤ (6

√
d/ε)d grid cells. This proves

Lemma 5.4.2. 2

Let V = k · (6
√

d/ε)d the maximum number of cells that can contain points that
belong to one of thek clusters. We observe that we can stop our procedure if the number

94

5.4 Clustering Problems

of representatives is more thanV . Thus, we can guarantee that the algorithm requires at
mostV · 3d range queries.

Theorem 17 There is an property tester for the radius clustering and diameter clustering
problem that uses at mostk · (18

√
d/ε)d orthogonal range queries.

Proof : We first describe the algorithm:'

&

$

%

CLUSTERTEST(P, k, b, ε):
B = infinite box
S = ∅
Initialize empty queueQ
insertB into Q

while Q is not emptydo
B = Q.head()
if B contains a pointp then

find the grid cellC that containsp
S = S ∪ {p}

split B into 3d sub-boxes using the bounding hyperplanes ofC

insert all sub-boxes (except forC) into Q

if there are more thanV cells with representativesthen
reject

if S is (k, b)-clusterablethen accept
elsereject

We charge to each pointp ∈ S the3d − 1 range queries that have to be done to check
the 3d − 1 new boxes (other than the grid cell containingp) that are created whenp is
selected to be the representative for a grid cell. Thus the overall number of range queries
is at mostV · 3d = k · (18

√
d/ε)d.

Now we have to prove that our algorithm is a property tester. Clearly, ifP is (k, b)-
clusterable then so is every subset ofP and so the algorithm accepts. If the algorithm
rejects because there are too many cells with representatives then by Lemma 5.4.2 the
input points set is not(k, b)-clusterable. Thus it remains to show that the algorithm rejects
every point set that isε-far from (k, b)-clusterable.

Let us assume thatP is ε-far from (k, b)-clusterable. Then for every partition into sets
C1, . . . , Ck there is a setCi with cost(Ci) > (1 + ε)b. By definition of the diameter
clustering problem this means that there are two pointsp, q ∈ Ci such thatdist(x, y) >

(1 + ε)b. Since the diagonal of a grid cell is at mostεb/3 the distance between the
representatives of the cells ofp andq is at least(1 + ε/3)b. Thus the setS cannot be
clustered and the algorithm rejects.

Similar arguments show that everyε-far instance of the radius clustering problem is
rejected. 2

95

5 Testing Algorithms with Geometric Queries

96

6 Property Testing and Moving Data

In this chapter we apply the concept of property testing in the context of moving data. We
develop a theoretical model for the analysis of approximate combinatorial structures under
a very general type of motion. Then we illustrate our model on some examples. Among
these examples are range trees and the Euclidean minimum spanning tree of objects mov-
ing in theR2. We consider the following general scenario: We are given a setO of n

objects and these objects are moving in theRd. We assume that the objects are moved by
a third party. We haveno information about the future movementof the objects. The only
thing we are allowed to do is to update the current position of an object at certain points of
time and at unit cost per update. Such an update is also called anupdate query. Our goal
is to approximately maintain a combinatorial structure defined uniquely by the positions
of these objects. At certain points of time there are queries to the combinatorial structure
we maintain. Before we answer such a query we may update some (possibly all) object
positions and perform some additional computations. After these updates we require that
our structure (which we callhypothesis) is close to correctwith probability at least2/3.
Then the query is answered. The combinatorial structure we maintain together with the
update scheme we use is called asoft kinetic data structure. The quality of a soft kinetic
data structure is measured by a form ofcompetitive analysis. For every possible (non de-
generate)continuous motionof the objects we compare the number of updates made by
our algorithm against thedynamics of the motion. The dynamics is measured in terms
of combinatorial changesthat occur if the combinatorial structure is correctly maintained
for the complete motion. The worst case ratio (over all continuous motions) between the
number of updates and the dynamics is called thedynamic efficiencyof a soft kinetic data
structure.

Our strategy to design a soft kinetic data structure is the following: We first design a
property tester for the combinatorial structure we want to maintain. If this property tester
rejects a hypothesis it should provide a witness that this hypothesis is not correct. Then we
try to find a strategy that fixes such a witnessed error by applying some local changes in
the structure.

Each time before we have to answer a query we run the property tester. If the property
tester rejects, it provides a witness. The witnessed error is then corrected and we invoke
the property tester again. In order to show that this process terminates we have to prove
that every error correction brings the combinatorial structure closer to the correct structure.
In order to analyze the dynamic efficiency of such a soft kinetic data structure we have to
relate the number of corrections we do to the number of combinatorial changes induced by
the underlying motion.

97

6 Property Testing and Moving Data

Our model is partly inspired by the framework of kinetic data structures by Basch et
al. [12]. In their framework Basch et al. make different assumptions on the motion of the
objects than we do. In particular, they assume that there is aflight plan that describes the
near future motion of every object. This flight plan is known to the algorithm and changes
in the flight plan are passed to the algorithm. The information provided by the flight plan
results in a completely different model of computation. The analysis of a kinetic data
structure is in terms of combinatorial changes of the maintained structured and inspired
our way to analyze the dynamics.

6.1 Soft Kinetic Data Structures

In this section we describe the framework of soft kinetic data structures.

Moving Objects. We first introduce some terminology used to describe objects and
their motion. We are given a setO = {O1, . . . , On} of n objects (e.g., points, balls, cubes)
that move in theRd. The motion of the objects is described by amotion plan. A motion
plan contains the positionpi(t) of each objectOi ∈ O at every point of timet ≥ 0. The
entity of all positions of objectsP(t) = {p1(t), . . . , pn(t)} is called theconfigurationof
O at timet. With this definition amotion planis a function that assigns a configuration to
each point of timet ∈ R, t ≥ 0. We assume that the motion plan is fixed but unknown to
what we later define as asoft kinetic data structure. The way we can access the positions
of our objects is similar to property testing: If we fix a point of timet then the current
configuration of the objects can be seen as a point set. We may then update the position of
every point by specifying its index. This is similar to our representation of point sets used
in the context of property testing. We may update the position of an object certain points
of time.

We say that a motion plan iscontinuousif for eacht, δ ∈ R, t ≥ 0, there exists anε0

such that|pi(t) − pi(t + ε)| ≤ δ holds for eachi, 1 ≤ i ≤ n, and everyε ≤ ε0.

Hypotheses. In our model each of then objects is represented by a uniqueobject
identifierwhich is a number from[n]. At every point of timet the soft kinetic data struc-
ture may update the current positionpi(t) of objectOi using the object identifieri. We
introduce object identifier to syntactically distinguish between objects and their current
position. That is, we may, for example, compute a combinatorial structure defined over
the objects without knowing their current positions. In our framework we are interested in
combinatorial structures that are uniquely defined by the objects’ positions. When the set
of objects is a point set then some examples for such structures could be sorted sequences
in 1D, Voronoi diagrams, or the Euclidean minimum spanning tree. We use the fact that
we can build such a structure over a given set of objects even if we do not know the current
object configuration. In such a case we make a guess about the position of each object
and then we compute the structure. These guesses are usually based on the past config-
urations of the point set and on additional information obtained by update queries. The
computed structure may or may not be consistent with the current object configuration.

98

6.1 Soft Kinetic Data Structures

Therefore, we call such a structure ahypothesis. Given a distance measureσ a hypothesis
H is calledε-close to correct if the distanceσ(H, H∗) to the correct hypothesis is at most
ε. Otherwise, we say thatH is ε-far from correct.

Now we want to illustrate our definitions on the example of a point set in 1D and the
combinatorial structure ’sorted sequence’. When we consider point sets then at every fixed
point of timet the current configurationP(t) is a point set represented essentially in the
same way as in the context of property testing in the previous chapters. In particular, we
have that the object identifiers are the numbers from[n] and the current position of each
point can be accessed by an update query for the value ofpi(t). Since we consider a point
set in one dimension we have a total ordering defined by the positions of the points. This
total ordering corresponds to a permutation of[n] which in turn can be viewed as a sorted
sequence. Now assume we do not know the positions of the points at a fixed point of time
t. Then we can still make some guesses (e.g. based on the past configurations we know)
about the positions of the points and compute a permutationπ of [n]. Such a permutation
is a hypothesis for the sorted sequence defined by the configurationP(t).

The Objective of Soft Kinetic Data Structures. The objective of a soft kinetic
data structure is to maintain a hypothesis for a predetermined combinatorial structure un-
der an unknown motion plan. At certain points of time the soft kinetic data structure has
to answer a query about the hypothesis it maintains. Such a query is usually the standard
query supported by the combinatorial structure (typically, some kind of access or search
query). In our example of the sorted sequence a query may ask for thei-th item in the
sorted sequence. Each time before a query is processed, an algorithm called thereorga-
nizer is invoked. This algorithm may perform update queries about the current position
of some objects (we assume that the time does not proceed as long as the reorganizer is
working) and perform changes in the hypothesis. Technically, a reorganizer consists of a
property tester for the combinatorial structure and a procedure that corrects all errors in the
hypothesis that are detected by the property tester. After the reorganizer finished its work
the hypothesis should beε-close to correct with probability at least2/3. Then thequery
algorithm is invoked and answers the query.

We assume that the soft kinetic data structure has to process a sequence ofm chrono-
logical queries〈Q〉 = (Q1, . . . , Qm). QueryQi takes place at timeti and we associate
with each query the point of time when it takes place.

Soft Kinetic Data Structures. Now we can say that a soft kinetic data structure con-
sists of

• ahypothesisfor a predetermined combinatorial structure of a set ofn points,

• a reorganizerthat is invoked each time before a query to the hypothesis has to be
processed,

• aquery algorithmthat processes the queries to a hypothesis.

99

6 Property Testing and Moving Data

6.1.1 Analysis of Soft Kinetic Data Structures

In this section we explain how to evaluate the quality of a soft kinetic data structure. Our
concept is to apply competitive analysis. That is, for every sequence of queries and every
continuous motion planM we compare the number of update queries made by our soft
kinetic data structure against the number of combinatorial changes that occur in a correct
hypothesis when the points move according toM.

Let M denote an arbitrary motion plan describing a continuous motion and letCS
denote a combinatorial structure uniquely defined by a configuration ofO. The dynamics
dynCS(M) of M w.r.t. CS is defined as the number of combinatorial changes inCS when
we move the objects according toM from time0 to ∞. The term combinatorial change
depends on the problem at hand. For example, when the objects are points moving in the
R and the combinatorial structureCS is a sorted sequence then a combinatorial change
takes places at each point of timet when the ordering in the sorted sequence changes.
When the objects are points and the structure is a Euclidean minimum spanning tree then
a combinatorial change takes place when the graph structure changes. We always assume
that the motion plan is non degenerate, that is, at a fixed point of time there can be at most
one combinatorial change in the structure.

Now let us considered a given soft kinetic data structureDS. For a given sequence
〈Q〉 of m queriesQ1, . . . , Qm taking place at timet1, . . . , ti and a motion planM we
denote theupdate cost cost(〈Q〉,M) of DS to be the number of update queries done
by the reorganizer when the objects move according toM. Thedynamic efficiencyof a
soft kinetic data structure is roughly the worst case ratio between the update cost and the
dynamics.

Definition 6.1.1 Thedynamic efficiencydeff of a soft kinetic data structure is defined as
follows:

deff := sup
〈Q〉,M

cost
(
〈Q〉,M

)
dynCS

(
M
)

+ m

where the supremum is taking over all non-degenerate motion plansM describing a con-
tinuous motion and all possible sequences ofm queries〈Q〉.

A second quality measure for soft kinetic data structures is theupdate time. The up-
date time is the worst case ratio between overall running time of the reorganizer and the
number of update queries. We denote bytime(〈Q〉,M) the overall running time used by
the reorganizer for sequence〈Q〉 under a motion planM.

Definition 6.1.2 Theupdate timeof a soft kinetic data structure is defined as

tu := sup
〈Q〉,M

time
(
〈Q〉,M

)
cost

(
〈Q〉,M

)
+ m

where the supremum is taking over all non-degenerate motion plansM describing a con-
tinuous motion and all possible sequences ofm queries〈Q〉.

100

6.2 Basic Soft Kinetic Data Structures

6.1.2 Discussion of The Model

There are a few points in our model that require a further discussion. First of all, let us
make some notes on the assumption that the points do not move while the reorganizer
works. We made this assumption because we have no other restrictions on the motion. As
soon as we allow the points to move during this process in a theoretical model there is no
real chance to make reasonable statements about the quality of the structure. In an im-
plementation the reorganizer is a continuous process typically running in the background.
When a query arrives we stop the reorganizer and answer the query. Typically, the changes
that occur during the time when the query is processed are neglectable.

A second point that requires discussion is the distance measure needed to evaluate the
quality of a hypothesis. Unlike in the case of property testing we want to use our soft
kinetic data structure to answer queries. Therefore, a distance measure should reflect the
’correctness of a hypothesis w.r.t. the query algorithm’ rather than the pure combinatorial
distance to a correct combinatorial structure. For example, if we consider soft kinetic
search trees then a query could be an access operation to an item stored in the tree. In such
a case a single error at the root of the tree can make almost every access operation fail.
Although the combinatorial distance to a correct structure would be rather small in such
a case, a hypothesis for a balanced search tree having such an error should beε-far from
correct. In general, we want to have a distance measure that guarantees that, typically, an
access operation works correctly.

6.2 Basic Soft Kinetic Data Structures

In this section we describe how to apply our framework to some combinatorial structures
like sorted sequences, balanced search trees, range trees and Euclidean minimum spanning
trees.

6.2.1 Sorted Sequences

The first example for a soft kinetic data structure we consider is that of a sorted sequence.
W.l.o.g., we assume that our set of objectsO is a set ofn points moving inR. We assume
that the total order induced by the positions of the objects at a fixed point of time is always
unique. That is, we never have two objects with the same position. We can achieve this
by using an arbitrary tie-breaker (e.g., the object number). The object identifiers ofO
are stored in an arrayA[1 . . . n]. When we consider continuous motion the topological
structure of a sorted sequence changes when the positionsv1, v2 of two points change from
v1 < v2 to v1 > v2. We say that a permutationA(t) = (A[1], . . . , A[n]) of [n] stored in
A at timet is a hypothesis that isε-close to correct, if the sequencepA[1](t), . . . , pA[n](t)

has edit distance (see Definition 6.2.1 for an equivalent definition) at mostεn to a sorted
sequence. We use the following definition:

Definition 6.2.1 LetpA[1](t), . . . , pA[n](t) denote a sequence stored in an arrayA[1 . . . n]

at timet. We say thatpA[1](t), . . . , pA[n](t) is ε-close to sorted, if the longest increasing

101

6 Property Testing and Moving Data

subsequence inpA[1](t), . . . , pA[n](t) has length at least(1 − ε)n. Otherwise, we say that
pA[1](t), . . . , pA[n](t) is ε-far from sorted.

Now we are given a sequence ofm access queries〈Q〉 = (Q1, . . . , Qm) to our array
and we assume that queryQi takes place at timeti. Before the query is processed the
reorganizer is invoked. This algorithm checks whether the current hypothesis isε-close to
correct. In order to do so, it invokes a property tester SORTEDTEST for sorted sequences
from [40]. This property tester checks, if a sequence of numberpA[1](t), . . . , pA[n](t) is a
sorted sequence orε-far from sorted (where the distance is measured according to the edit
distance).

If this algorithm rejects it returns two indicesk, l with k < l andpA[k](t) > pA[l](t).
We then use a binary search like procedure to find an indexk ′ such thatpA[k ′](t) >

pA[k ′+1](t) and swap the object identifier stored inA[k ′] andA[k ′ + 1]. Then we make
two recursive calls to the reorganizer:'

&

$

%

ARRAYREORGANIZER(A, t, ε)
if SORTEDTEST

((
pA[1](t), . . . , pA[n](t)

)
, ε
)

rejectsthen
Let (k, l) be the pair returned by SORTEDTEST

((
pA[1](t), . . . , pA[n](t)

)
, ε
)

k ′=FIND INVERSION(A, k, l)
swap(A[k ′], A[k ′ + 1])
ARRAYREORGANIZER(A, t, ε)
ARRAYREORGANIZER(A, t, ε)

From the pair of indices(k, l) returned by the property tester SORTEDTEST from [40]
algorithm FIND INVERSION can compute a pair(k ′, k ′ + 1) with pA[k ′](t) > pA[k ′+1](t)

by a binary search like procedure in the following way: As longk 6= l − 1 we compute
m = dk+l

2
e and proceed either with(k,m) or with (m, l) depending on the value of

pA[m](t).
We now want to prove that algorithm ARRAYREORGANIZER computes a hypothesis

that isε-close to correct.

Lemma 6.2.2 Let A(t) =
(
A[1], . . . , A[n]

)
be ε-far from a correct hypothesis for a

sorted sequence. Then algorithmARRAYREORGANIZER computes with probability at
least2/3 a hypothesis that isε-close to correct.

Proof : We start with a simple claim about the edit distance:

Claim 6.2.3 Let k ′ denote an index such thatpA[k ′](t) > pA[k ′+1](t). If we swapA[k ′]

andA[k ′+1] then the edit distance ofpA[1](t), . . . , pA[n](t) to a sorted sequence does not
increase.

Proof : pA[1](t), . . . , pA[n](t) has edit distancek, if and only if the longest increasing
subsequence ofpA[1](t), . . . , pA[n](t) has lengthn−k. The length of the longest increasing
subsequence cannot decrease when we swapA[k ′] andA[k ′+1] and hence the edit distance
cannot increase. 2

102

6.2 Basic Soft Kinetic Data Structures

Now we want to analyze the probability that ARRAYREORGANIZER stops when the
hypothesis isε-far from correct. We assume that the probability that SORTEDTESTaccepts
a sequence that isε-far from sorted is less than1/10. If the probability is larger then we can
use standard amplification arguments to get the desired probability. Now we observe that
for the case that ARRAYREORGANIZER terminates when the input isε-far from correct
there is a witness in form of a binary tree. Each node of this tree corresponds to a call
of ARRAYREORGANIZER that rejects the current hypothesis and it has a left (right) child
if the first (second) recursive call rejects the hypothesis. For example, if the first call to
ARRAYREORGANIZER accepts the hypothesis, then the corresponding tree is the empty
tree and it appears with probability1

10
. It is well known that the number of binary trees

with k nodes is less than4k.
Now let us fix a binary treeT with k nodes and analyze the probability that the be-

havior of the algorithm is according to the witnessT . We observe that the probability that
ARRAYREORGANIZERbehaves according toT is at most(1

10
)k+1 because each binary tree

with k nodes hask + 1 empty leafs and each empty leaf corresponds to a call to the reor-
ganizer that accepted a sequence that isε-far from sorted. The overall probability that the
process stops before the hypothesis isε-close to correct is bounded from the above by

∑
0≤i≤∞ 4i(

1

10
)i+1 ≤ 1

10

∑
0≤i≤∞(

2

5
)i ≤ 1

3

This proves Lemma 6.2.2. 2

LetM denote an arbitrary non-degenerate continuous motion plan. In the following we
want to make some observations w.r.t. the combinatorial changes induced by the motion
plan. First let us observe that any combinatorial change in the sorted sequence can be
written as a reversalσ〈i, i + 1〉 for somei ∈ [n − 1] (unless we have a degenerate case
where more than 2 points are at the same position). Such a reversal is called atransposition.
Now let 〈Q〉 = (Q1, . . . , Qm) denote a sequence ofm queries and let us denote byti the
time when queryQi takes place andt0 = 0. Now we derive a lower bound on the number
of combinatorial changes that can be expressed in terms of the configurations of the point
set at timesti, 1 ≤ i ≤ m. For this purpose let us introduce some notation. For a number
πi in a permutationπ = (π1, . . . , πn) of [n] let us define therank(πi) as the number of
elementsπj with πj < πi andj > i. Then we define the weightw(π) of a permutationπ
as

∑
i∈[n] rank(πi). It is well known that we can write every permutationπ as a sequence

of w(π) transpositions and that every sequence of transpositions equal toπ has length at
leastw(π).

We further observe that at every point of timet there is a unique permutationπ =

(π1, . . . , πn) such thatpπ1
(t) < · · · < pπn(t). Thus we can writeπi = (πi

1, . . . , π
i
n) to

denote the permutation that satisfiespπi
1
(ti) < · · · < pπi

n
(ti), that is,πi denotes the sorted

sequence at the time when thei-th query takes place. Then we can define permutations
σ1, . . . σm by the equation:

πi · σi = πi+1 .

103

6 Property Testing and Moving Data

Now we can give a lower bound on the dynamicsdyn(M) of the motion planM w.r.t. the
combinatorial structure sorted sequence:

dyn(M) ≥
∑

1≤i≤m

w(σi) .

We use this lower bound to show that the number of errors corrected by the reorganizer is
at most the dynamics of the motion planM.

Lemma 6.2.4 Let〈Q〉 = (Q1, . . . , Qm) be an arbitrary sequence ofm queries and letM
be an arbitrary non-degenerate continuous motion plan. If queryQi takes place at timeti

and the reorganizer corrects err(i) errors at timeti, then we have:∑
1≤i≤m

err(i) ≤ dyn(M)

where dyn(M) denotes the dynamics of the motion planM w.r.t. the combinatorial struc-
ture sorted sequence.

Proof : For a given point of timeti let A(ti) = (A[1], . . . , A[n]) denote the permutation
defined by the elements of arrayA at timeti. Further let us define the permutationσC(ti)

in the following way:
A(ti) · σC(ti) = πi .

Hence the permutationσC(ti) denotes the changes that must be performed to transform
the array at timeti into a sorted sequence. The weightw(σC(ti)) denotes the minimum
number of transpositions necessary to transform the array into a sorted sequence. We prove
by induction on the number of queries that fork ≤ m the following inequality holds:∑

1≤i≤k

err(i) + w(σC(tk)) ≤
∑

1≤i≤k

w(σi) .

Since every permutation can be expressed as a sequence of transpositions we know that
we can apply the triangle inequality to the weight of permutations. This way, we observe
that the number of errors corrected in the(k + 1)-st call of the reorganizer is at most

err(k+1) ≤ w(σC(tk) ·σk+1)−w(σC(tk+1)) ≤ w(σC(tk))+w(σk+1)−w(σC(tk+1)) .

And hence
err(k + 1) − w(σC(tk)) + w(σC(tk+1)) ≤ w(σk+1) .

This proves the induction hypothesis for everyk ≤ m and we get∑
1≤i≤m

err(i) ≤
∑

1≤i≤m

err(i) + w(σC(tm)) ≤
∑

1≤i≤m

w(σi) ≤ dyn(M)

which completes the proof of Lemma 6.2.4. 2

Now we are ready to prove:

104

6.2 Basic Soft Kinetic Data Structures

Theorem 18 There is a soft kinetic sorted array with dynamic efficiencyO(logn
ε

) and up-
date timeO(1). It answers queries about thei-th object in the soft kinetic sorted array in
timeO(1).

Proof : By Lemma 6.2.2 we know that our reorganizer satisfies the requirements of a soft
kinetic data structure, that is, with probability at least2/3 the sorted sequence maintained
in the array isε-close to correct (after the reorganizer has been invoked). Thus we only
have to analyze the dynamic efficiency and update time of the data structure. The property
tester SORTEDTEST makesΘ(logn/ε) (update) queries and has the same running time.
The procedure FIND INVERSION makesO(logn) update queries and its running time is
proportional to the number of performed update queries. For a sequence of queries〈Q〉 =

(Q1, . . . , Qm) the number of calls to the reorganizer ism+’twice the number of errors
corrected by the reorganizer’. Thus, together with Lemma 6.2.4 we get that the dynamic
efficiency of the data structure isO(logn/ε). The update time and the query time ofO(1)

are immediate because for each update we do only a constant amount of work and the
query algorithm just has to return one entry in the array. 2

6.2.2 Balanced Search Trees

The next structure we want to look at is a binary search tree. A (balanced) binary search
tree is a rooted tree. At each nodev of the tree a keyKEY(v) is stored. For every nodev in
the tree and every nodeu in the left (right, respectively) subtree ofv it holds thatKEY(v) ≥
KEY(u) (KEY(v) < KEY(u)). In the case of soft kinetic data structures each node stores
an object identifier. The key of a node is the position of the corresponding object (w.l.o.g.,
we assume that the objects are points). Again we assume that every configuration of points
induces a unique ordering among the objects (that is, the case ’=’ does not occur). We want
to consider standard access (search) queries in binary trees. At first glance the problem
seems to be similar to the case of soft kinetic arrays. The combinatorial structure we use
for the analysis is (essentially) a sorted sequence. Thus we have a combinatorial change in
the search tree, if there is a combinatorial change in the sorted sequence. The difference
lies in the distance function used for soft kinetic balanced search trees. In the case of
binary trees the edit distance to a sorted sequence is not a good distance measure w.r.t. the
functionality of the trees. If only a single object is not at its correct position in the sorted
sequence and this object is stored at the root of the tree then it might be the case that a huge
fraction of access operations fails. Therefore, we consider a different distance measure:

Definition 6.2.5 A search tree isε-far from correct, if more thanε n access operations
fail.

With this new distance measure we also need a new property tester for the invariant
of the search tree. But this is simple for balanced search trees with the distance measure
from above. We store all nodes of the search tree in an array such that we can pick a
node uniformly at random in constant time. Then fors ≥ 2/ε the following algorithm
is a property tester for the invariant of a search treeT w.r.t. the distance measure from
Definition 6.2.5:

105

6 Property Testing and Moving Data

'

&

$

%

TREETEST(T, s, ε)

for i = 1 to s

pick a nodev of the search tree uniformly at random
if nodev cannot be accessedreject

accept

The test whether a node can be accessed can be implemented by walking from nodev

to the root and checking the invariant at each node of the search path. We show that for
s ≥ 2/ε algorithm TREETEST is a property tester.

Lemma 6.2.6 For s ≥ 2/ε algorithm TREETEST is a property tester for correctness of
balanced binary search trees. Its query complexity and running time isO(logn/ε).

Proof : Clearly, the algorithm accepts every correct search tree. Thus we assume that the
tree isε-far from correct. Then the probability that we find a node that cannot be accessed
is more thanε in each pass of thefor -loop. Hence the overall probability that the algorithm
reject is

Pr
[
Algorithm TREETEST rejects

]
≥ 1 − (1 − ε)2/ε ≥ 1 − e−2 ≥ 2/3 .

The query complexity and running time follow immediately from the fact that the search
tree is balanced. 2

If an object in the search tree cannot be accessed there must be an error on the search
path (the path from the object’s node to the root). We conclude that algorithm TREETEST

rejects, only if it finds two objects whose current position is inconsistent with the tree
order. Thus we are basically in the same situation as in the case of the sorted arrays. We
therefore maintain an arrayA[1 . . . n] where the items are stored in the ordering induced
by the search tree (this can be the same array that is used for the sampling). Then we
can proceed similarly to the sorted arrays. We use a binary search to find two adjacent
array entries whose ordering is inconsistent with the corresponding object positions. Then
we swap these entries in the array and we swap the entries in the corresponding nodes in
the tree (these nodes mustnot be adjacent in the tree). Unfortunately, the change of the
distance function makes the proof for the sorted arrays invalid for the search trees. This is
because of the fact that reducing errors in the tree order by swapping two objects (in the
way just explained) does not necessarily decrease the distance to a correct data structure
in terms of the distance measure from Definition 6.2.5. In fact, in situations it can even
increase this distance. We must apply a different technique. We therefore change the
sample size of algorithm TREETEST in such a way that it accepts an input that isε-far
from correct with probability at most1

3n2 :

Lemma 6.2.7 Let s ≥ 2 ln(3n)/ε. Then the probability that algorithmTREETEST ac-
cepts an input that isε-far from correct is at most 1

3n2 .

Proof : For the cases ≥ 2 ln(3n)/ε we get:

Pr
[
Algorithm TREETEST accepts

]
≤ (1 − ε)2 ln(3n)/ε ≤ 1

3n2
.

106

6.2 Basic Soft Kinetic Data Structures

2

Then we use the following reorganizer:

'

&

$

%

TREEREORGANIZER(T, t, ε)

if TREETEST(T, 2 ln(3n)/ε, ε) rejectsthen
Let (k, l) be the pair returned by TREETEST(T, 2 ln(3n)/ε, ε)

k ′=FIND INVERSION(A, k, l)
swap(A[k ′], A[k ′ + 1])
swap the corresponding tree nodes
TREEREORGANIZER(T, t, ε)

Now we prove that the probability that the reorganizer terminates when the tree isε-far
from correct is at most1/3.

Lemma 6.2.8 The probability thatTREEREORGANIZER stops when the hypothesisT is
ε-far from correct is at most1/3.

Proof : Let A denote the array in which the object identifiers are stored with respect
to the tree order. LetA(t) = (A[1], . . . , A[n]) denote the permutation of[n] induced
by arrayA at time t. Further letπ = (π1, . . . , πn) denote the permutation such that
pπ1

(t) < · · · < pπn(t). Let
A(t) · σ = π .

Then we have thatw(σ) ≤ n2 − 3 by the definition of the weight of a permutation. We
further observe that each call of the reorganizer decreases the weight ofσ by 1. In the case
thatT is ε-far from correct we know that the reorganizer has to reject at mostn2 times. Let
X denote the indicator random variable for the event that algorithm REORGANIZER does
not stop whenT is ε-far from correct. Then we have:

Pr
[
X = 1

]
≥ (1 −

1

3n2
)n2−3 ≥ 1

3
√

e
≥ 2/3

since

Pr
[
Algorithm TREETEST accepts

]
≤ 1

3n2
.

2

Lemma 6.2.4 holds also for trees because it does only assume that errors are corrected
by swapping two adjacent objects in the maintained sorted sequence (which is equivalent
to the tree order and is maintained in arrayA). Therefore we can conclude:

Theorem 19 There is a soft kinetic balanced search tree with dynamic efficiencyO(log2 n/ε)

and update timeO(1). It answers access queries in timeO(logn).

107

6 Property Testing and Moving Data

Proof : By Lemma 6.2.8 we know that our reorganizer satisfies the requirements of a
soft kinetic data structure. The number of update queries made by the property tester is
again proportional to its running time ofO(log2 n/ε). For a sequence of queries〈Q〉 =

(Q1, . . . , Qm) the number of calls to the reorganizer ism+’the number of errors corrected
by the reorganizer’. Together with Lemma 6.2.4 we get that the dynamic efficiency of the
data structure isO(log2 n/ε). The update time ofO(1) is immediate. The query algorithm
needs timeO(logn) for an access query because the tree is balanced. 2

6.2.3 Range Trees

We now want to focus on structures from computational geometry. We first consider range
trees in one and two dimensions. Then we design soft kinetic Euclidean minimum span-
ning trees.

1D Range Trees. 1D range trees are balanced binary search trees (see [1] for a formal
definition of range trees). The only difference to a standard search tree lies in the type of
query. A query to a range tree specifies a query range[x, y] and the answer should return
all points within the interval[x, y]. The standard way to answer such queries is to search
for x andy in the range tree and then to report all points on the search paths that are within
the query range as well as all points between the two search paths. Obviously, we can
apply the analysis of soft kinetic search trees to range trees. So the only question is what
time is needed to answer a query. A query to a soft kinetic range tree works in a similar
way as a standard query to a range tree. But in soft kinetic range trees it may be the case
that a point whose position is not within the query interval is stored between the two search
paths (because there is an error in the structure). In such a case we do not report this point.
For each point between the two search paths that is not contained in the query interval
we can find an error in the data structure. This way we can amortize the time needed to
process those points against the dynamics of the system.

We can use soft kinetic data structures for binary search trees to obtain the following
result (see [1] for a formal definition of range trees):

Theorem 20 There is a soft kinetic 1D-range tree with dynamic efficiencyO(log2 n/ε)

and update timeO(1). The soft kinetic range trees supports 1D-range queries inO(logn+

k) time, wherek is the number of reported points (a point is reported, only if it is within
the query range). Ifk∗ denotes the number of points in the query range (at the time the
query is processed) then it holds with probability at least2/3 thatk ≥ k∗ − ε n.

Proof : We have to show thatk ≥ k∗ − ε n holds with probability2/3 and we have
to prove the running time for the range queries. The other results follow from the binary
search trees. First of all, we can assume that the data structure isε-close to correct with
probability2/3 when the query is processed. This follows from Lemma 6.2.8 because the
reorganizer is called before a query is answered.

A range query for a one dimensional range tree is answered in the following standard
way: we search for the right and the left end of the query interval and output all nodes

108

6.2 Basic Soft Kinetic Data Structures

that are between the search paths. Before we report a point we check if it is contained
inside the query interval. If it is, we output it. If it is not we have found a conflict with
some node on the search paths. After all nodes inside the query interval have been reported
we partition the set of pointsPerr whose position is not in the query interval but that are
located between the two search paths into two sets. The first setP<x contains all points
of Perr whose position is smaller thanx. The second setP>y contains all points ofPerr

whose position is larger thany. We pick the larger set of these two and correct an error for
each point in this set. W.l.o.g. let us assume thatP<x is the larger set. In the following we
identify the point with the node where it is stored. We observe that there are two different
orders among the points. The standard ’<’-relation and the tree order≺T . We observe that
each pointp in P<x is either stored in a right subtree of a node of the left search path or
in a left subtree of a node of the right search path. These are the two cases we consider.
Let us start with the case whenp is stored in a right subtree of a pointq on the left search
path. Then we observe thatq must be larger thanx (because the search path took the left
edge). Therefore, we havep < q but q ≺T p. This is a conflict. In the second case, the
pointp is stored in a left subtree of a point on the right search path. Then we know that the
point q stored at the split node (the node where the two search paths split) lies within the
search interval[x, y]. Sincep is stored in a left subtree of the right path it must be larger
thanq. But this is not the case. Hence there is a conflict becauseq ≺T p. For each point
we use the standard procedure to find two points that are adjacent in the tree order and we
swap them. Since we process the points in increasing order none of the conflicts of the
remaining points is resolved (though the ’conflict partner of a point may be moved in the
tree order).

The number of inversions corrected in this process is at least half the number of points
in the search interval that are not reported. Therefore we can amortize the update queries
and the time needed to deal with these points against the dynamics of the motion.

Now assume that less thank∗ − ε n points are reported. Then there are more thanεn

nodes that cannot be accessed, because every access operation to one of the missing nodes
will end either on the search paths or between them. But the nodes that can be accessed
this way are the nodes reported by the query algorithm. Thus we have that the tree isε-far
which occurs with probability at most1/3. 2

2D-Range Trees. In this section we describe and analyze 2-dimensional soft kinetic
range trees (see, e.g., [1] for a formal definition). We consider a standard implementation
of 2D-range trees. A 2D-range tree for a set ofn points inR2 is a two level data structure.
The first level consists of a binary search tree (a 1D-range tree) sorted according to the
x-coordinate. The second level consists ofn trees (one for each node in the first level tree)
sorted according to they-coordinates of the points. (see, e.g., [1] for more details).

Similar to the binary search trees we want to have a data structure that supports range
queries in a reasonable way. That is, we want to make sure that, if a structure isε-close to
correct, it cannot happen that almost every range query fails.

We say that a point is accessible in a 2D range tree, if it can be accessed in the first
level tree using itsx-coordinate as key and it can be accessed inall second level trees on

109

6 Property Testing and Moving Data

the search path using itsy-coordinate.

Definition 6.2.9 A 2D range tree isε-far from correct, if there are more thanεn points
that are not accessible.

Similar to the binary search trees we can design a simple property tester. We sample a set
of O(1/ε) nodes and check whether they are accessible by following the parents pointers
in the trees. We also use two arrays as auxiliary data structures. ArrayAX is used to define
the order of objects in the first level of the range tree and arrayAY defines the order in
the second level. We maintain the invariant that at any time the order of the objects in
both levels is according to the order of the corresponding array. A combinatorial change
in a range tree takes places when the there is a change in the sorted sequence w.r.t. the
x-coordinate or in the sorted sequence w.r.t. they-coordinate.

When the property tester rejects, it provides a proof that one of these arrays is not in
the correct order and we can find an adjacent pair that is in the wrong order (using the
same procedure as in the case of arrays and trees). Then we swap these two objects in the
corresponding array and we adjust the range tree to the changes we made. The adjustment
in the second level is done by deleting and reinserting the objects. This can be done in
O(log2 n) time.

If we swap two objects in the first level tree, we delete all occurrences in the second
level trees. For this purpose we maintain pointers to all occurrences of an object in the
second level trees. Then we swap the two nodes in the first level tree and reinsert the objects
into the second level trees (using the ordering maintained in arrayAY for comparisons).
This procedure can be done inO(log2 n) time.

Now we can proceed in a similar way as for the search trees. We first show that the
following algorithm is a property tester for correctness of range trees that accepts a range
tree with probability at most1

6n2 if it is ε-far from correct.'

&

$

%

RANGETREETEST(T, s, ε)

for i = 1 to s

pick a nodev of the search tree uniformly at random
if nodev is not accessiblethen reject

accept

Lemma 6.2.10 Let s ≥ 2 ln(6n)/ε. Then algorithmRANGETREETEST is a property
tester. If an input treeT is ε-far from correct then it is accepted with probability at most

1
6n2 .

Proof : Since algorithm RANGETREETEST accepts every correct tree we only have to
analyse the probability of rejectance. LetT be a range tree that isε-far from correct. Then
we have

Pr
[
algorithm RANGETREETEST accepts

]
≤ (1 − ε)2 ln(6n)/ε ≤ 1

6n2

2

110

6.2 Basic Soft Kinetic Data Structures

We already explained the way the errors are corrected by the reorganizer. The remain-
ing part of the reorganizer is similar to the one for search trees.�

�

�

�

RANGETREEREORGANIZER(T, t, ε)

if RANGETREETEST(T, 2 ln(3n)/ε, ε) rejectsthen
correct the detected error
RANGETREEREORGANIZER(T, t, ε)

Lemma 6.2.11 The probability thatRANGETREEREORGANIZERstops when the hypoth-
esisT is ε-far from correct is at most1/3.

Proof : The distance between the hypothesis and a correct range tree is at most two times
the distance in the one dimensional case (because we have two sorted sequences instead
of one). In the case thatT is ε-far from correct we know that the reorganizer has to reject
at most2(n2 − 3) times. LetX denote the indicator random variable for the event that
algorithm REORGANIZERdoes not stop whenT is ε-far from correct. Then we have:

Pr
[
X = 1

]
≥ (1 −

1

6n2
)2(n2−3) ≥ 1

3
√

e
≥ 2/3

since

Pr
[
Algorithm RANGETREETEST accepts

]
≤ 1

6n2

2

Checking whether a point is accessible takesO(log2 n) time. We conclude:

Theorem 21 There is a soft kinetic 2D-range trees with dynamic efficiencyO(log3 n/ε)

and update timeO(1). The soft kinetic range tree supports 2D-range queries inO(log2 n+

k) time wherek is the number of reported points in the given query range. Ifk∗ denotes
the number of points in the given query range then it holds with probability2/3 than
k ≥ k∗ − εn.

Proof : The analysis of the running time of the queries is similar to the 1D case. And
again, if there is a query that returns less thank∗ − ε n points, then the structure must be
ε-far which is a contradiction. 2

6.2.4 Euclidean Minimum Spanning Trees

The last structure we consider is a Euclidean minimum spanning tree of a point set in the
R2. In order to design a soft kinetic Euclidean minimum spanning tree we use the property
tester and the distance measure from Section 3.3. Recall that this property tester only
rejects, if it finds a cycle in the EMST-completion of the input graph. The longest edge
of such a cycle cannot be in the EMST of the underlying point set. We use the following
reorganizer:

111

6 Property Testing and Moving Data

'

&

$

%

EMSTREORGANIZER(T, t, ε)

if EMSTTESTER(T, ε) rejectsthen
Let e denote the edge that is not in the EMST
marke as deleted
increase counter for deleted edges by 1
if εn/200 edges have been deletedthen

recompute the EMST from scratch (query all point positions)
set counter to0

EMSTREORGANIZER(T, t, ε)

Here EMSTTESTER(T, ε) denotes the property tester for EMSTs in degree bounded
graphs from Section 3.3 with the exception that we do not test the connectivity of the
tree. In the algorithm EMSTTESTERmarked edges will be treated as missing edges. Since
the number of marked edges is at mostεn/200 our graph is alwaysε/200-close to con-
nected. By the analysis from Section 3.3 it follows that algorithm EMSTTESTER rejects
the hypothesis with probability at least2/3, if it is ε-far from EMST.

Theorem 22 There is a soft kinetic Euclidean minimum spanning tree with dynamic effi-
ciencyO(

√
n/ε · log(n/ε)) and update timeO(logn/ε). Queries about incident edges

to a vertexv can be answered in timeO(1).

Proof : We first observe that the number of calls to the reorganizer is at mostm+

’number of detected errors’. If we foundεn/200 errors then we correct all of them at
once by recomputing the EMST from the scratch. This requiresn update queries and
O(n logn) time. We observe that for each of theεn/200 errors there must be a change
in the combinatorial structure of the Euclidean minimum spanning tree. Therefore, we
can amortize the number of update queries and the running time over theεn/200 errors.
We obtain that the dynamic efficiency is dominated by the property tester and therefore
O(
√

n/ε · log(n/ε)). The update time is dominated by the time needed to recompute the
EMST and thereforeO(logn/ε). 2

112

7 Conclusions

In this thesis we studied geometric problems in the context of property testing and we
applied concepts from geometry to property testing. In Chapter 3 we designed property
testing algorithms for specific problems including disjointness of geometric objects, con-
vex position, and the Euclidean minimum spanning tree. Our algorithms have sublinear
query complexity and for some of them we give matching lower bounds. We also believe
that every property tester for the Euclidean minimum spanning tree in 2D has a query
complexity ofΩ(

√
n) though we do not have a proof of that.

We think that property testing is an interesting concept, i.e., if applied to geometric
problems. We hope that further research in this area will provide new insights into the
structure of geometric properties. Besides the development of new property testing algo-
rithms it could be also an interesting problem to use existing property testers in the de-
sign of sublinear algorithms for geometric problems. For example, in the recent sublinear
approximation algorithm for the weight of a minimum spanning tree in degree bounded
graphs by Chazelle, Rubinfeld, and Trevisan [25] a property tester for connectivity in
graphs has been used as a subroutine.

In Chapter 4 we designed a framework for property testing algorithms with one-sided
error. The achievement of our framework is a nice decoupling of the probabilistic and
the combinatorial aspects of property testing. As a consequence of this, a proof using our
framework is usually elegant and gives a clear view of the important combinatorial features
of the problem. We applied our framework to analyze a couple of different property testers
and we showed that a large class of graph properties can be tested efficiently, if and only
if there is a proof using our framework. There are several open problems regarding our
framework and we want to mention two of them here:

The first problem is to extend the framework to algorithms with2-sided error. The
question is here, if it is possible to formulate a framework for a2-sided error model and if
such a model is useful for the design and analysis of property testing algorithms. Another
interesting problem is to prove in our framework that triangle-free graphs can be tested
efficiently. Although it is known that triangle-free graphs can be tested efficiently, the only
known proof uses Szemerédi’s Regularity Lemma. A proof using other techniques might
provide new insights into property testing and the structure of dense graphs.

Chapter 5 and 6 were devoted to the design of new models that involve property test-
ing. In Chapter 5 we introduced the possibility of range queries to property testing and
showed that the query complexity for some problems can be dramatically improved, if
range queries are allowed. Very recently, in a related model a sublinear time approxima-
tion algorithm for the weight of the Euclidean minimum spanning tree of a point set in

113

7 Conclusions

theRd has been developed [27]. Is it possible to find other sublinear time approximation
algorithms in such a model ?

In Chapter 6 we designed a model (called soft kinetic data structures) to analyze the
maintainance of combinatorial structures under a very general model of motion. We ana-
lyzed some basic soft kinetic structures. Besides the obvious problem to design other soft
kinetic data structures it would be very interesting to further develop models for moving
data. Keeping the results from Chapter 5 in mind an interesting direction of research is to
find out which queries should be supported by mobile objects in order to design efficient
algorithms for mobile data.

114

Bibliography

[1] P. Agarwal. Range searching.Handbook of Discrete and Computational Geometry,
1997.

[2] P. Agarwal and C. Procopiuc. Exact and approximation algorithms for clustering.
In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 658–667, 1998.

[3] N. Alon. Testing subgraphs in large graphs. InProccedings of the 42nd Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 434 – 441, 2001.

[4] N. Alon, S. Dar, M. Parnas, and D. Ron. Testing of clustering. InProceedings of the
41st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
240–250, 2000.

[5] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large
graphs.Combinatorica, 20(4):451 – 476, 2000.

[6] N. Alon and M. Krivelevich. Testingk-colorability. SIAM Journal on Discrete Math-
ematics, 15:211 – 227, 2002.

[7] N. Alon, M. Krivelevich, I. Newman, and M. Szegedy. Regular languages are testable
with a constant number of queries.SIAM Journal on Computing, 30(6):1842 – 1862,
2001.

[8] N. Alon and A. Shapira. Testing satisfiability. InProceedings of the 13th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2002.

[9] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and approximation. combinatorial optimization problems
and their approximability properties. Springer, New York, NY, 1998.

[10] V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by reversals.SIAM
Journal on Computing, 25(2):272 – 289, 1996.

[11] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Sampling algorithms: Lower bounds
and applications. InProceedings of the 33th Annual ACM Symposium on Theory of
Computing (STOC), pages 266–275, 2001.

115

Bibliography

[12] J. Basch, L. Guibas, and J. Hershberger. Data structures for mobile data.Journal of
Algorithms, 31(1):1 – 28, 1999.

[13] T. Batu, E. Fischer, L. Fortnow, R. Kumar, R. Rubinfeld, and P. White. Testing
random variables for independence and identity. InProceedings of the 42nd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 442 – 451,
2001.

[14] T. Batu, L. Fortnow, R. Rubinfeld, W. Smith, and P. White. Testing closeness of
distributions. InProceedings of the 41st Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 259 – 269, 2001.

[15] M. A. Bender and D. Ron. Testing acyclicity of directed graphs in sublinear time. In
Proceedings of the Annual Interrnational Colloquium on Automata, Languages and
Programming (ICALP), pages 809–820, 2000.

[16] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric
intersections.IEEE Trans. Comput., C-28:643 – 647, 1979.

[17] P. Berman, S. Hannenhall, and M. Karpinski. 1.375-approximation algorithm for
sorting by reversals.Electronic Colloquium on Computational Complexity, Technical
Report Series, 8(47), 2001.

[18] P. Berman and M. Karpinski. On some tighter inapproximability results, further
improvements. InProceedings of the 26th Annual Interrnational Colloquium on
Automata, Languages and Programming (ICALP), pages 200 – 209, 1999.

[19] A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for testing 3-colorability
in bounded-degree graphs. InProceedings of the 43th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 93–102, 2002.

[20] B. Bollobás. Hereditary properties of graphs: Asymptotic enumeration, global struc-
ture, and colouring.Documenta Mathematica, III:333 – 342, 1998.

[21] H. Buhrman, L. Fortnow, I. Newman, and H. Röhrig. Quantum property testing.
In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2003.

[22] A. Caprara. Sorting permutations by reversals and Eulerian cycle decompositions.
SIAM Journal on Discrete Mathematics, 12(1):91 – 110, 1999.

[23] C. Carath́eodory. Über den Variabiliẗatsbereich der Fourierschen Konstanten von
positiven harmonischen Funktionen.Rendiconto del Circolo Matematico di Palermo,
32:193–217, 1911.

[24] T. M. Chan. Output-sensitive results on convex hulls, extreme points, and related
problems.Discrete & Computational Geometry, 16(3):369–387, 1996.

116

Bibliography

[25] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum spanning
tree weight in sublinear time. InProceedings of the 28th Annual Interrnational Collo-
quium on Automata, Languages and Programming (ICALP), pages 190 – 200, 2001.

[26] D. Cohen-Or, Y. Chrysanthou, C. T. Silva, and F. Durand. A survey of visibility
for walkthrough applications. to appear in: IEEE Transactions on Visualization &
Computer Graphics.

[27] A. Czumaj, F. Erg̈un, L. Fortnow, A. Magen, I. Newman, R. Rubinfeld, and C. Sohler.
Sublinear approximation of Euclidean minimum spanning tree. InProceedings of the
14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 813–
822, 2003.

[28] A. Czumaj and C. Scheideler. An algorithmic approach to the general Lovász local
lemma with applications to scheduling and satisfiability problems. InProceedings of
the 32th Annual ACM Symposium on Theory of Computing (STOC), pages 38 – 47,
2000.

[29] A. Czumaj and C. Scheideler. Coloring non-uniform hypergraphs: A new algorithmic
approach to the general Lovász Local Lemma.Random Structures and Algorithms,
17(3 - 4):213–237, 2000.

[30] A. Czumaj and C. Sohler. Property testing with geometric queries. InProceedings of
the 9th Annual European Symposium on Algorithms (ESA), pages 266 – 277, 2001.

[31] A. Czumaj and C. Sohler. Soft kinetic data structures. InProceedings of the 12th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 865 – 872,
2001.

[32] A. Czumaj and C. Sohler. Testing hypergraph coloring. InProceedings of the
28th Annual Interrnational Colloquium on Automata, Languages and Programming
(ICALP), pages 493 – 505, 2001.

[33] A. Czumaj and C. Sohler. Abstract combinatorial programs and efficient property
testers. InProceedings of the 43rd Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 83–92, 2002.

[34] A. Czumaj, C. Sohler, and M. Ziegler. Property testing in computational geometry.
In Proceedings of the 8th Annual European Symposium on Algorithms (ESA), pages
155 – 166, 2000.

[35] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.Computational
Geometry: Algorithms and Applications. Springer-Verlag Berlin Heidelberg, 1997.

[36] S. Doddi, M. Marathe, A. Mirzaian, B. Moret, and B. Zhu. Map labeling and its gen-
eralizations. InProceedings of the 8th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 148 – 157, 1997.

117

Bibliography

[37] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorod-
nitsky. Improved testing algorithms for monotonicity. InProceedings of the 3rd In-
ternation Workshop on Randomization and Approximation Techniques in Computer
Science, pages 97 – 108, 1999.

[38] L. Engebretsen and J. Holmerin. Clique is hard to approximate withinn1−o(1). In
Proceedings of the 27th Annual Interrnational Colloquium on Automata, Languages
and Programming (ICALP), pages 2 – 12, 2000.

[39] P. Erd̋os and L. Lov́asz. Problems and results on3-chromatic hypergraphs and some
related questions.Infinite and Finite Sets (to Paul Erdős on his 60th birthday), II:609
– 627, 1975.

[40] F. Erg̈un, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers.
J. Comput. Syst. Sci., 60:717–751, 2000.

[41] T. Feder and D. H. Greene. Optimal algorithms for approximate clustering. InPro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC), pages
434 – 444, 1998.

[42] E. Fischer. The art of uniformed decisions. a primer to property testing.Bulletin of
the European Association for Theoretical Computer Science, 75:97 – 126, 2001.

[43] E. Fischer, G. Kindler, D. Ron, S. Safra, and A. Samorodnitsky. Testing juntas.
In Proceedings of the 43th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 103–112, 2002.

[44] E. Fischer, E. Lehman, I. Newman, S. Rashkodnikova, R. Rubinfeld, and
A. Samorodnitsky. Monotonicity testing over general poset domains. InProceed-
ings of the 34th Annual ACM Symposium on Theory of Computing (STOC), 2002.

[45] E. Fischer and I. Newman. Testing of matrix properties. InProceedings of the 33rd
Annual ACM Symposium on Theory of Computing (STOC), pages 286 – 295, 2001.

[46] E. Fischer and I. Newman. Functions that have read-twice constant width branching
programs are not necessarily testable. InProceedings of the 17th Conference on
Computational Complexity, 2002.

[47] M. Formann and F. Wagner. A packing problem with applications to lettering of
maps. InProceedings of the 7th Annual ACM Symposium on Computational Geom-
etry (SoCG), pages 281 – 288, 1991.

[48] M. R. Garey and D. S. Johnson.Computers and intractability: A guide to the theory
of NP-completeness. Freeman, New York, NY, 1979.

[49] O. Goldreich. Combinatorial property testing (a survey). InProceedings of DIMACS
Workshop in Randomization Methods in Algorithm Design, pages 45 – 59, 1997.

118

Bibliography

[50] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky. Testing
monotonicity.Combinatorica, 20(3):301 – 337, 2000.

[51] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to
learning and approximation.Journal of the ACM, 45(4):653 – 750, 1998.

[52] O. Goldreich and D. Ron. Property testing in bounded degree graphs. InProceedings
of the Annual ACM Symposium on Theory of Computing (STOC), pages 406–415,
1997.

[53] O. Goldreich and D. Ron. A sublinear bipartiteness tester for bounded degree graphs.
Combinatorica, 19(3):335–373, 1999.

[54] O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties.
In Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 460–469, 2001.

[55] V. Guruswami, J. H̊astad, and M. Sudan. Hardness of approximate hypergraph color-
ing. InProceedings of the 41st Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 149 – 158, 2000.

[56] T. Hagerub and C. Rub. A guided tour to chernoff bounds.Information Processing
Letters, 33:305 – 308, 1989.

[57] D. S. Hochbaum.Approximation algorithms forNP-hard problems. PWS Publish-
ing Company, Boston, MA, 1996.

[58] H. H. III, M. Marathe, V. Radhakrishnan, D. R. S. Ravi, and R. Stears. Nc-
approximation for np- and pspace-hard problems for geometric graphs.Journal of
Algorithms, 26(2):238 – 274, 1998.

[59] J. D. Kececioglu and D. Sankoff. Exact and approximation algorithms for sorting by
reversals, with application to genome rearrangement.Algorithmica, 13(1/2):180 –
210, 1995.

[60] S. Khot. Hardness results for approximate hypergraph coloring. InProceedings of
the 34th Annual ACM Symposium on Theory of Computing (STOC), 2002.

[61] D. Kirkpatrick and J. Radke. A framework for computational morphology.Compu-
tational Geometry, pages 217 – 248, 1985.

[62] Y. Kohayakawa, B. Nagle, and V. Rödl. Efficient testing of hypergraphs. InPro-
ceedings of the Annual Interrnational Colloquium on Automata, Languages and Pro-
gramming (ICALP), pages 1017–1028, 2002.

[63] M. Krivelevich and B. Sudakov. Approximate coloring of uniform hypergraphs. In
Proceedings of the 6th Annual European Symposium on Algorithms (ESA), pages 477
– 489, 1998.

119

Bibliography

[64] L. Lovász. Coverings and colorings of hypergraphs. InProceedings of the 4th South-
eastern Conference on Combinatorics, Graph Theory and Computing, pages 3 – 12,
1973.

[65] R. Motwani and P. Raghavan.Randomized algorithms. Cambridge University Press,
New York, NY, 1995.

[66] I. Newman. Testing of function that have small width branching programs. InPro-
ceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 251 – 258, 2000.

[67] M. Parnas and D. Ron. Testing the diameter of graphs. InProceedings of the
RANDOM-APPROX’99, pages 85–96, 1999.

[68] M. Parnas and D. Ron. Testing metric properties. InProceedings of the 33rd Annual
ACM Symposium on Theory of Computing (STOC), pages 276 – 285, 2001.

[69] M. Parnas, D. Ron, and R. Rubinfeld. Testing parenthesis languages. InProceedings
of the 5th International Workshop on Randomization and Approximation Techniques
in Computer Science, pages 261 – 272, 2001.

[70] M. Parnas, D. Ron, and A. Samorodnitsky. Proclaiming dictators and juntas or testing
boolean formulae. InProceedings of the 5th International Workshop on Randomiza-
tion and Approximation Techniques in Computer Science, pages 273 – 284, 2001.

[71] P. A. Pevzner.Computational Molecular Biology. MIT Press, 2000.

[72] P. A. Pevzner and M. S. Waterman. Open combinatorial problems in computational
molecular biology. InProceedings of the 3rd Israel Symposium on Theory of Com-
puting and Systems, pages 158 – 173, 1995.

[73] J. Radhakrishnan and A. Srinivasan. Improved bounds and algorithms for hypergraph
two-coloring. InProceedings of the 39th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 684 – 693, 1998.

[74] D. Ron. Property testing. InHandbook of Randomized Algorithms. Kluwer Academic
Publishers, 2001.

[75] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applica-
tions to program testing.SIAM Journal on Computing, 25(2):252 – 271, 1996.

[76] M. Sharir and E. Welzl. A combinatorial bound for linear programming and related
problems. InProceedings of the 9th Annual Symposium on Theoretical Aspects of
Computer Science (STACS), pages 569 – 579, 1992.

[77] R. E. Tarjan. Data structures and network algorithms. InCBMS-NSF Regional Con-
ference Series in Applied Mathematics, volume 44. Society for Industrial and Applied
Mathematics (SIAM), 1983.

120

Bibliography

[78] E. Welzl. Smallest enclosing disks(balls and ellipsoids. In H. Maurer, editor,New
Results and New Trends in Computer Science, number 555 in LNCS. Springer, 1991.

121

