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When you have eliminated the impossible,

whatever remains, however improbable, must be the truth.

Sir Arthur Conan Doyle (1859–1930)
Sherlock Holmes to Dr. Watson

in The Sign of Four[68].

But we all know the world is nonlinear.

Harold Hotelling, (1910–1975)
to George Dantzig, 1947 [59].

Jede Lösung eines Problems ist ein neues Problem.1

Johann Wolfgang von Goethe (1749–1832)
to chancellor von Müller, 1821 [95].

1Every solution of a problem is a new problem. (non-authorized translation)
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1
Introduction

In recent years interest in the integration of techniques from Operations Research (OR) and
Constraint Programming (CP) has been growing enormously. Researchers in both fields

realize that developments made in the other field can be used beneficially in their own area
of work. A prominent example in CP is the work of Régin [172] who showed that matching
algorithms can efficiently and effectively filter domains in the AllDiff constraint. OR on the
other hand has recognized CP’s contributions to systematic tree search and to domain filtering.

Combined CP and OR techniques were shown to be successful in various fields. Scheduling
problems, e.g., can be solved more efficiently when combining linear programming from
OR and domain filtering from CP (see e.g. Baptiste et al. [18]). Other academic or real-
life applications include vehicle routing and dispatching (e.g. in Caseau and Laburthe [49],
Rousseau et al. [179]), staff rostering (e.g. Rousseau et al. [180], Fahle et al. [73]), or air
traffic flow management (Barnier and Brisset [22]), respectively.

1.1 Integrating Concepts from CP and OR

In this thesis we aim to combine OR and CP concepts for solving NP-hard optimization
problems. When speaking of OR approaches, we refer mainly to integer linear program-

ming (ILP). The success story of (integer) linear programming was started after World War II
by the pioneering work of Dantzig (primal simplex, 1947). Many landmark contributions fol-
lowed his work. We refer to Dantzig [58] for an overview of the development up-to 1963, and
to Maros and Mitra [139] for the more recent developments, including interior point meth-
ods (Karmarkar [126]). An overview of integer programming is provided by the books by
Nemhauser and Wolsey [156] and Wolsey [211]. We also refer to Bixby [35] for the exciting
computational progress of ILP during the last decade.

The work of Montanari [153] and Waltz [207] is usually considered as the root of con-
straint programming. Montanari studied properties of constraint networks and provided a
formal treatment of path consistency. Waltz used constraint programming ideas for the scene



2 1 Introduction

labeling problem, i.e. the visual interpretation of line drawings. Later, Mackworth [137] stud-
ied algorithmic aspects of node-, arc-, and path-consistency, respectively. He proposed algo-
rithms AC-1, AC-2 and AC-3 to achieve arc-consistency, and some algorithm for node- and
path-consistency. The book by Tsang [201] gives an introduction to the foundations. Some
interesting and successful new techniques introduced recently include advanced consistency
algorithms like AC-5 (Van Hentenryck et al. [202]) or AC-6 (Bessière [31]), and discrepancy-
based tree traversal techniques like LDS (Harvey and Ginsberg [105]) or DDS (Walsh [206]).

1.1.1 Basic Concepts of Integer Linear Programming and Constraint
Programming

ILP techniques require to model a problemP by linear inequalities bringing down the prob-
lem’s structure to a description suitable to efficient numerical linear algebra methods.

P : minimize ∑n
j�1 cjxj

subject to ∑n
j�1 aijxj � bi, i � 1, . . . , m

xj � N, j � 1, . . . , n
(1.1)

Choosing the right model can make the difference between solving or not solving the prob-
lem (see Williams [209]). We will touch on that topic in Section 2.2.2.2 when discussing
column generation, and in Chapters 7 and 8 when developing a tight formulation for the auto-
matic recording problem.

Efficiency of ILP approaches to (1.1) depends on the bounds found for the problem. Ac-
tually, improving bounds often corresponds to solving the problem more efficiently. Adding
suitable cuts to (1.1) e.g. may improve the lower bound, using primal heuristics may improve
the upper bound of a minimization problem. Given these bounds an ILP can be solved by an
intelligent enumeration of the search space (e.g. by branch-and-bound).

Besides using LP-relaxations, Lagrangian relaxation is quite popular in ILP, since it is sim-
ple and yet provides lower bounds that are at least as tight as LP bounds. Column generation,
to mention another technique used in this thesis, is used to solve huge models for which tight
bounds are known, but which cannot be solved explicitly.

Constraint programming models a problemP as a relation of some (arbitrary) constraints
C1, . . . , Cm over variablesx1, . . . , xn with corresponding domainsD�x1�, . . . , D�xn�. Using
a notation similar to (1.1) we can denote a constraint program as:

P : find x1, . . . , xn
subject to Ci�x1, . . . , xn� � true, i � 1, . . . , m

xj � D�xj�, j � 1, . . . , n
(1.2)

A solution of P is a consistent selection of values for the variables, such that all domains
and all constraints are respected. In order to solve a constraint program, values which are not
consistent with the current domain and constraint structure are removed. Whenever a domain
is not unique1 after eliminating inconsistent values, we branch on that domain within a tree
search.

1If we use set variables, we branch whenever the domain contains values which have not been fixed or excluded
yet. We will later use the notion of arequired setand apossible setto define this in detail.
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CP ILP

Idea:Branch-and-Prune Idea:Branch-and-Bound

Branch: Decompose problem. Use
heuristics based on feasibility information

Branch: Decompose problem. Use infor-
mation from relaxations

Prune: Examine constraints to eliminate
infeasible configurations and to reduce
possible variable values

Bound: Use (linear) relaxation of the
problem (enhanced by additional cuts),
eventually use primal heuristics

Main focus:constraints and feasibility Main focus: objective function and opti-
mality

Table 1.1: A comparison of CP and ILP adapted from Trick [200].

Therefore CP is interested in finding efficient algorithms to detect and remove inconsistent
assignments for different constraint classes. In doing so, CP treats problems combinatorially,
thus preserving much of the problem’s original structure. Not surprisingly, efficient com-
binatorial algorithms were adapted for this particular use. We mentioned already matching
techniques, and we will present domain filtering via a shortest path algorithm in Sec. 4.2.1.
Mehlhorn [149] motivates further incorporation of graph algorithms into CP from an algorith-
mic perspective.

By construction, ILP methods view a problem globally, taking into account all variables
and usually more than one or even most constraints at a time. By calculating upper and lower
bounds on the costs, they show a good ability to identify promising parts of the search space.
However, they often suffer from minor local conflicts, which might prevent a feasible solution
from being found. On the other hand, CP methods can efficiently handle feasibility problems
by resolving local conflicts using algorithms based on arc-consistency and advanced search
techniques. Respectively, CP methods lack the ability to view the variables and constraints of
a problem globally. Therefore, they often have problems when stuck in local optima.

Moreover, ILP methods are good for optimizing. Using the bounds they are guided to the
promising parts of the search space. CP is good for finding feasible solutions. By removing
inconsistent values from the variables’ domain, they quickly find feasible regions of the search
space.

Our discussion is summarized in Table 1.1 adapted from Trick [200]: Branching is a com-
mon idea used in both, CP and ILP. Whereas ILP methods use numerical information (bounds
and estimations) to decide on the next branching step, CP applies heuristics based on feasi-
bility information. ILP does not investigate parts of the search tree which cannot improve the
incumbent solution and is thus focused on optimality. CP on the other hand discards inconsis-
tent regions and enforces feasibility. A more detailed discussion of the concepts, similarities
and differences of CP and OR is given by Heipcke [107].

Having seen the advantages and drawbacks of OR and CP concepts, we aim at combin-
ing ideas from both fields in order to improve on existing algorithms. In this context, two
questions automatically occur, and we will answer them in the next two sections:

• Strategically:What are the benefits of an integration?

• Tactically:What does an integration look like?
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1.1.2 Strategic Considerations

There are several motivations for combining CP and OR methods. The first to mention are:

• Increase efficiency, and thus increase performance of a solution approach.

• Increase robustness, and thus open the approach for a wider range of problem charac-
teristics.

Both topics are driven by the idea that we may compensate for the weakness of the one
method by the merits of the other. We may combine relaxations for finding bounds, and CP
consistency techniques for detecting local conflicts (classical ILP preprocessing follows this
path, see Andersen and Andersen [4], without using the full power of symbolic constraints).
We may use LPs to handle linear constraints of a CP model rather than solving these con-
straints over continuous domains (see Brucker and Knust [41] for an example in scheduling).
Or we may use CP for combinatorial structures which cannot be described well in ILP models
or are known to be numerically instable (Padberg [162] gives examples for numerical insta-
bilities when using cuts in ILPs).

Another motivation is important in many real-life applications where rules and regulations
of a given problem are subject to changes. In crew rostering, e.g., companies have to adapt
their planning tools to frequent changes in legislation and contractual agreements, whereas
the basic planning scenario is not touched. A hybrid CP/OR approach can

• Increase flexibility, and thus reduce maintenance for a software solution.

Since CP supports various (non-linear) constraints and encapsulates them, it is often easier
to change CP constraints than to re-model an ILP. This may imply loosing part of the efficiency
compared to a ’hard-wired’ solution. But we learned from industrial partners that companies
tend to partly sacrifice efficiency for a gain in flexibility.

There are other reasons for combining CP and OR, but we do not consider them here (mod-
eling and software engineering aspects, etc.). Throughout this thesis our major aim is to
increase efficiency and robustness by combining CP and OR methods. Flexibility issues, in
addition, are considered later on in the chapters on crew rostering.

1.1.3 Tactical Considerations

In order to improve on CP’s performance for optimization problems, we can filter domains
according to optimization considerations. I.e., values of a domain are removed if they are
inconsistent with the current domain and constraint structure (classical CP), or if their use will
lead to an objective value which does not improve the incumbent value. This idea is known
ascost based domain filtering. It was introduced by Focacci et al. [81] and later extended
to incorporate bounds as well in Fahle and Sellmann [77]. In this thesis the shortest path
constraint, the knapsack constraint, and the filters for maximum clique follow this idea. Other
approaches embed OR methods in a CP framework, thus using them as specialized constraints
(Beringer and De Backer [28], Bockmayr and Kasper [36], Rodosek et al. [176] did this for a
linear solver).

Column generation can be improved by using CP within the subproblem. Especially, in the
presence of complex side-constraints, leading to a very sparse solution space, CP is a good
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choice to find these few feasible solutions. We will discussCP based Column Generationin
detail for airline crew rostering problems. Cut generation is the dual counterpart of column
generation. Focacci et al. [82] report on generating cutting planes via CP for an ILP to solve
an asymmetric traveling salesman problem. In their approach cuts could be found faster using
domain filtering on the corresponding separation problem.

Often a problem is composed by several different constraint classes.CP based Lagrangian
relaxationallows for relaxing parts of these classes such that only one class remains for which
an efficient (cost based) domain filtering algorithm is available. The technique is suitable for
CP and ILP. The latter benefits from having more variables assigned a correct value which
e.g. leaves less room for wrong branching decisions. We developed CP based Lagrangian
relaxation and applied it to the automatic recording problem.

An integration on a macroscopic level is very often a simple, yet good approach to improve
convergence of either CP or OR. Whenever an OR method requires a starting solution, CP
can be used to deliver a feasible one. Whenever CP requires the improvement of a solution,
OR methods can be used to improve the current solution (e.g. by local search). In Chapter 5
we will discuss how to improve a column generation approach to the airline crew rostering
problem by these two principles.

Many more combinations are possible, especially if we do not insist on exact methods.
E.g., combining metaheuristics and CP is a very promising area. The idea is to control the
search by e.g. Tabu Search and to explore a given neighborhood systematically via CP. If the
neighborhood contains only few feasible solutions, consistency checks typically find these
much more efficiently than less intelligent mechanisms. We refer to Pesant and Gendreau
[166, 167], Caseau and Laburthe [49], Shaw [190], Shaw et al. [191], Prestwich [171] for an
insight into this topic, and to Hooker [112] and Milano [151] for a general overview.

1.2 Contribution of the Thesis

We develop integrated CP and OR approaches and apply them to four optimization prob-
lems. Two of them deal with complex staff rostering problems, one considers a multi-

media application and the last one deals with the maximum clique problem. We study theoret-
ical and numerical aspects of these. We will briefly describe the problems and the approaches
in the next pages. Most of the work has been developed and published in co-operation with
other researchers (see p. 235 in the appendix). Unless otherwise noted, all authors contributed
equally to ideas, further development, implementation and tests in the published work.

1.2.1 Airline Crew Rostering, Shortest Path Constraint and CP based
Column Generation

Within the EU ESPRIT Project PARROT2 we dealt with theAirline Crew Rostering Prob-
lem. Airline crew rostering problems are large-scale optimization problems which can be
adequately solved by column generation. The subproblem is typically a so-called constrained

2See [165]. Industrial partners in the project were: Carmen System (Sweden), Ilog SA (France), Olympic
Airways (Greece) and Lufthansa Systems (Germany). Academic partner was the University of Athens.
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shortest path problem and is solved by dynamic programming. However, complex airline reg-
ulations arising frequently in European airlines cannot be expressed entirely in this framework
and limit the use of pure column generation. We formulate the subproblem as a constraint sat-
isfaction problem, thus gaining high expressiveness. Each airline regulation is encoded by one
or several constraints. An additional constraint which encapsulates a shortest path algorithm
for generating columns with negative reduced costs is introduced. This constraint reduces the
search space of the subproblem significantly. Resulting domain reductions are propagated to
the other constraints which additionally reduces the search space. Numerical results based on
data of a large European airline are presented and demonstrate the potential of our approach.
Chapter 4 will describe this work in detail. The chapter follows our publication

[73] T. Fahle, U. Junker, S. E. Karisch, N. Kohl, M. Sellmann, B. Vaaben. Constraint
Programming Based Column Generation for Crew Assignment.Journal of Heuristics,
2002.

The basic idea of that work is to use CP for modeling complex airline crew planning rules
and to apply column generation for the optimization. This idea was developed within the
PARROT project by Ulrich Junker (Ilog SA) and Niklas Kohl (Carmen Systems). The idea
was further studied by Bo Vaaben and Stefan Karisch (both Carmen Systems) for the CP part,
and by the author of this thesis for the OR part. Later, the approach was combined with
additional modules developed simultaneously in Paderborn. The concept itself was presented
at theCP’99 conferenceas

[125] U. Junker, S. E. Karisch, N. Kohl, B. Vaaben, T. Fahle, M. Sellmann. A Framework
for Constraint Programming Based Column Generation.CP’99.

An introduction to the shortest path constraint developed [125] is given in Sec. 4.2.1.

Within the PARROT project, a different approach to the Airline Crew Assignment problem
was developed by the University of Athens [194]. It performs a CP based heuristic tree search.
In Chapter 5 we present their approach and show how the CP based column generation and
the heuristic tree search approach can be coupled to overcome their inherent weaknesses.
Numerical results show the superiority of the hybrid algorithm in comparison to a CP based
tree search or column generation alone. Concepts for the hybrid approach were developed by
all four authors, the implementation needed for coupling the existing main methods by the
first and the second author of

[189] M. Sellmann, K. Zervoudakis, P. Stamatopoulos, T. Fahle. Crew Assignment via
Constraint Programming: Integrating Column Generation and Heuristic Tree Search.An-
nals of Operations Research, 2002.

1.2.2 Automatic Recording Problem, Knapsack Constraint and CP
based Lagrangian Relaxation

Cost based domain filtering algorithms are only suitable for the problems for which they were
designed. Models for new combinatorial optimization problems can frequently be composed
by a combination of simpler structured problems. Domain filtering techniques for the sub-
structure can be applied in such a case. In so doing, we partly ignore the interference of the
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substructures and therefore a stronger coupling of domain filtering would be desirable. We
show how cost based domain filtering for linear optimization problems can be coupled via
Lagrangian relaxation in Sec. 2.3.3. This method is applied to a multimedia problem incorpo-
rating a knapsack and a maximum weighted stable set problem.

The corresponding domain filtering algorithms for the knapsack constraint are developed
in Chapter 3. They are used as domain filtering routines for the Constraint Knapsack Problem
with Θ�n log n� preprocessing time andΘ�n� time per call. This sums up to an amortized
time Θ�n� for Ω�log n� calls when used within a tree search. These runtimes improve on
other proposals in literature. Chapter 3 is essentially published as:

[77] T. Fahle and M. Sellmann. Cost based filtering for the constrained knapsack problem.
Annals of Operations Research, 2002.

A linear time algorithm for the second substructure of the multimedia problem was devel-
oped by M. Sellmann. It was published together with results of the multimedia application
as

[186] M. Sellmann and T. Fahle. Coupling variable fixing algorithms for the automatic
recording problem.ESA’01.

The presentation in Chapter 7, however, gives more details on the coupling and a deeper
experimental analysis. The corresponding publication is

[187] M. Sellmann and T. Fahle. Constraint programming based Lagrangian relaxation
for the automatic recording problem.Annals of Operations Research, 2003.

Our discussion of the automatic recording problem is finalized by Chapter 8, where we
present alternative approaches to the problem. These very recent results show that dynamic
programming and branch-and-cut, respectively, are substantially faster than CP based La-
grangian coupling approaches. We discuss this result and its implications. Furthermore, we
show how to extend our mathematical model of the automatic recording problem to more
realistic scenarios.

1.2.3 Home Health Care and Domain Filtering for Sequences

Home health care, i.e. visiting and nursing patients in their homes, is a growing sector in
the medical service business. From a staff rostering point of view, the problem is to find a
feasible working plan for all nurses that has to respect a variety of hard and soft constraints,
and preferences. Additionally, home health care problems contain a routing component: A
nurse must be able to visit his/her patients using a car or public transport. It is desired to
design rosters that consider both, the staff rostering and the vehicle routing components while
minimizing transportation costs and maximizing satisfaction of patients and nurses.

In Chapter 6 we present the Home Health Care Problem and a solution approach developed
in the BMBF project PARPAP3. In principle, optimization techniques used in airline crew

3see [164]. Partners in the project are: For the computer based solution approach: Unilog Integrata (Bremen),
SHokWare (Bremen) and the University of Paderborn. Ergonomics are studied by the University of Karl-
sruhe. Three home health care companies located in Bremen act as end-user: Arbeiter Samariter Bund,
Bremer Pflegedienst and Ambulante Kranken- und Seniorenbetreuung Bremen.
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rostering can be adapted to the scenario considered here. Real-world constraints, however,
limit the successful application of column generation in practice. Whereas airline companies
are willing to spend 20 hours of computation time (or more) to find a best possible solution,
home health care companies prefer good solutions within, say, 10–15 minutes. Therefore, a
change in the solution paradigm was necessary.

We develop a generic and flexible mathematical model for home health care problems.
Based on this model an algorithm using CP and LP was built to solve the underlying sequenc-
ing — a constraint traveling salesman problem with time windows. A combination of CP
and Tabu Search is used to efficiently explore the search space of an instance. The overall
concept is able to adapt to various changes in the constraint structure, thus providing the flexi-
bility needed in a generic tool for real-world settings. The model is more generic than models
proposed in literature. Furthermore, much larger problem instances can be tackled by this
approach than by alternative approaches.

The work presented in Chapter 6 was developed by Stefan Bertels and the author of this
thesis. Stefan worked as a student programmer and recently finished his master thesis on this
topic [29]. The chapter is part of a joint paper submitted to a special issue volume on “Staff
Scheduling and Rostering”:

[30] S. Bertels, T. Fahle. A Hybrid Setup for a Hybrid Scenario: Combining Heuristics
for the Home Health Care Problem. submitted to theAnnals of Operations Research.

1.2.4 Maximum Clique and Comparing OR Bounds to CP Domain
Filtering

The last two chapters are dedicated to the maximum clique problem. We develop cost based
filtering techniques for the so-calledcandidate set(i.e. a set of nodes which can possibly
extend the clique in the current choice point) and investigate it theoretically and numerically.

In Chapter 9 we propose a model in which upper bounds used in OR can be compared to
cost based domain filtering techniques from CP. In particular, we can prove that our domain
filtering is as least as tight as 7 out of 8 combinatorial bounds, and we discuss the connection
between domain filtering and LP bounds. Furthermore, we present a taxonomy of 10 upper
bounds used in OR — to our knowledge, such a taxonomy has not been published before.

In a numerical study in Chapter 10 we use two branch-and-bound algorithms from liter-
ature. We enhance them by domain filtering and some lower and upper bounds techniques.
Numerical results demonstrate that the combination of the new cost based filtering and upper
and lower bounds outperforms the original approach as well as approaches that only apply
either of these techniques. Furthermore, the enhanced algorithm is competitive when com-
pared to other recent algorithms for maximum clique. An earlier version of our results was
presented at ESA’02.

[71] T. Fahle. Simple and Fast: Improving a Branch-and-Bound Algorithm for Maximum
Clique.ESA’02.

The theoretical classification of LP bounds, primal heuristics, and the second branch-and-
bound algorithm was later added to the work which then was submitted as

[72] T. Fahle. Domain Filtering for Maximum Clique. submitted to theAnnals of Opera-
tions Research.



2
Basic Concepts

Throughout this thesis, our scenario is the following: We are given a finite number of
constraints and we aim at finding a feasible solution to these constraints. If in addition,

a linear objective function is provided, we aim at finding a best possible feasible solution.
We are interested in NP-hard problems which can be modeled by integer linear or constraint
programs.

This chapter briefly recalls the basic techniques from CP and OR used in later chapters.
We have to refer to relevant literature for a more detailed overview. We start with presenting
concepts of constraint programming and optimization. We define cost based filtering and CP
based optimization technique thereafter and finally, we comment on the experimental method-
ology used in later chapters.

2.1 Constraint Programming

The building blocks of a constraint programming approach areconsistency techniques
which tighten the problem,heuristicswhich guide the search and sometree search con-

trol, that defines the way in which a systematic search is performed. We describe consistency
and tree search ideas in the following pages. More details are given e.g. in the books by Tsang
[201] or by Marriot and Stuckey [140]. Furthermore, we refer to the overview by Smith [192],
Barták [23], [24], Kumar [132], Apt [8]. Our presentation here follows Barták [23], [24] and
Mackworth [137].

Definition 1 Let T � �true, false�. A constraint programconsists of a tuple of variables
� � �x1, . . . , xn�, a setD�xj� denoting the possible set of values (thedomain) of each
variable xj � � , � � �D�x1�, . . . , D�xn��. Furthermore, we are given constraints� �
�C1, . . . , Cm�, Ci : �D�x1�	 
 
 
 	 D�xn�� � T, i � 1, . . . , m. Theconstraint satisfaction
problem (CSP)��,�,� � asks for a vector�ν1, . . . , νn� � �D�x1�	 
 
 
 	 D�xn�� such that

�i � 1, . . . , m Ci : �ν1, . . . , νn� � true.
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Note that the definition above is not limited to special constraint classes (linear, convex,
etc.) as often the case in OR. Values in domains, in addition, do not need to be consecutive
numbers. Infinite domains can be handled, though throughout this thesis domains will be
finite.

Variables can represent integer or float values as well as set or structured data types. CSPs
are usually solved by applying domain reduction techniques. Therefore, each variable has a
current domaindom�x� that is initialized byD�x�. If x is an integer or float variable, we
denote the smallest element of dom�x� by min�x� and the largest element by max�x�. We
also call them thelowerandupper boundsfor x. The value of a set variable is a set of integers
selected from an initially given domain. The current domain of a set variable is defined by a
lower and an upper bound, which are also called required set req�Y� and possible set pos�Y�.
The value of the set variable has to be a superset of req�Y� and a subset of pos�Y�. Set
variables replace an array of boolean variables and lead to more compact constraint models.
We will often usex to denote some feasible value from dom�x� or pos�x�, respectively.

We often neglect those variables from a constraint’s definition that are not affected by the
constraint. E.g. instead of writing

C : D�x1�	 
 
 
 	 D�xn�� T, C�x1, . . . , xn� 
� xi � xj (2.1)

we write

C : D�xi�	 D�xj�� T, C�xi, xj� 
� xi � xj (2.2)

In the remaining of the thesis we will speak of anunary constraint, if the constraint involves
only one variable, or abinary constraint, if it involves two variables after removing unnec-
essary variables. A unary constraint for variablei is denoted byC�i�, and a binary constraint
involving xi, xj, i � j, is denoted byC�i,j�. This labeling is unique since any two constraints
C� : D�xi�	 D�xj� � T, C�� : D�xi�	 D�xj�� T operating on the same variables, can be
replaced by a single constraintC : D�xi�	D�xj�� T, C�xi, xj� 
� C��xi, xj��C���xi, xj�.

CSPs can model various NP-hard problems and thus are NP-hard themselves. They can be
solved via agenerate-and-testapproach, i.e. we enumerate all vectors. We generate a first
vector �ν1, . . . , νn� � �D�x1� 	 
 
 
 	 D�xn�� and if all constraints are satisfied, we stop.
Otherwise we generate the next vector. We can do better by atest-and-generateapproach. I.e.
after each assignment of a value to a variable we check whether this assignment still can be
extended to a feasible solution. If not, we perform abacktracking, which means that we undo
the last decision and continue. According to Barták [23] there are three major obstacles for
pure backtracking (see also Mackworth [137]):

• thrashing, i.e. repeated failure due to the same reason,

• redundant work, i.e. conflicting values of variables are not remembered, and

• late detection of the conflict, i.e. a conflict is not detected before it really occurs.

Consistency techniques provide a means for coping with them all.
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2.1.1 Consistency

A CSP ��,�,� � only consisting of unary and binary constraints is often represented by
a constraint network(Montanari [153]). A constraint network is a labeled, directed graph
N � �V, E�. The variables in� are represented by the nodes inV, each with an associated
set representing the variable’s domain. Every unary constraint is represented by a self-loop.
A binary constraintC�i,j�, i � j, is represented by a labeled arc, directed from nodei to node
j and a labeled, directed arc fromj to i. For convenience we assume that for each constraint
C�i,j� : D�xi�	D�xj�� T, we have defined an artificial constraintC�j,i� : D�xj�	D�xi��

T, C�j,i��xj, xi� 
� C�i,j��xi, xj�. (The latter is needed for an easy notation of consistency
algorithms). Using hyper-arc notation, constraints of higher arity can be treated accordingly.

Definition 2 (node / arc consistency, Mackworth, 1977) Let ��,�,� � denote a CSP, and
N � �V, E� be the corresponding constraint network.

(i) A nodei � N (i.e. variablexi � � ) is callednode consistentif for the unary constraint
C�i� : D�xi�� T it holds: �ν � D�xi� : C�i��ν� � true.

(ii) An arc �i, j� � E is calledarc consistentif

a) the corresponding nodesi and j are node consistent and

b) for the corresponding binary constraintC�i,j� : D�xi�	 D�xj�� T it holds:

�ν � D�xi� �µ � D�xj� : C�i,j��ν, µ� � true.

(iii) A network is said to be node/arc consistent if every node/arc is node/arc consistent.

It is straightforward to extend the notion of arc consistency to constraints of higher arity
which is often referred to ashyper arc consistency. Our definition follows Baptiste et al. [18]:

Definition 3 ((hyper) arc consistency for non-binary constraints) Let ��,�,� � denote a
CSP. LetC � � be a constraint,C : D�x1�	 
 
 
 	 D�xn�� T.

(i) C is called(hyper) arc consistentif

a) all variablesx � � are node consistent and

b) for the constraintC it holds:

�i � 1, . . . , n �ν � D�xi� �j � 1, . . . , n, j �� i �µj � D�xj� :

C�µ1, . . . , µi�1, ν, µi�1, . . . , µn� � true.

(ii) A CSP is said to be (hyper) arc consistent if every variablex � � is node consistent and
every constraintC � � is (hyper) arc consistent.

Other degrees of consistency can be defined via paths in the constraint network (path con-
sistency, see Mackworth [137]) or by enforcing arc consistency for any subset ofk variables
(k-consistency). Barták [24] gives an overview of these and other notions. For the remaining
part of this chapter we will mainly work with (binary) arc consistency, and we define a simple
extension, which allows an easy handling of large domains:
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Definition 4 (bound consistency) Let ��,�,� � denote a CSP, andN � �V, E� be the cor-
responding constraint network. Furthermore, we require an ordering of values for each do-
mainD�xi�, i � 1, . . . , n. We denote the smallest value of a domain bymin�D�xi��, and the
largest value bymax�D�xi��.

(i) A nodei � N is callednode bound consistentif for the unary constraintC �i� : D�xi��
T it holds:

C�i��min�D�xi��� � true and C�i��max�D�xi��� � true.

(ii) An arc �i, j� � E is calledarc bound consistentor bound consistentif

a) the corresponding nodesi and j are node bound consistent and

b) for the corresponding binary constraintC�i,j� : D�xi�	 D�xj�� T it holds:

�ν � �min�D�xi��, max�D�xi��� �µ � D�xj� : C�i,j��ν, µ� � true.

(iii) A network is said to be node (arc) bound consistent if every node (arc) is node (arc)
bound consistent.

Bound consistency thus requires consistency of start and end of an interval rather than of
any value in between. As done for arc consistency, bound consistency can be defined for
non-binary constraints in a canonical way.

2.1.1.1 Consistency Algorithms

Node consistency can be achieved by a simple one-pass algorithm. For all variablesi �
1, . . . , n we calculateD�xi�

� � �ν � D�xi� � C�i��ν� � true� and replace the original
domain by this set:D�xi� � D�xi�

�. Let d � max��D�xi�� � i � 1, . . . , n� be the size of
the largest domain. Then node consistency can be established byO�d�V�� constraint checks.

We assume we have a node consistent network. In order to achieve arc consistency on this
network, we have to ensure arc consistency for every arc.1 We first give a procedure that
makes an arc�i, j� consistent (procedure Revise(i, j) in Alg. 1). As long as it finds a value
in D�xi� that does not have a counterpart inD�xj�, such that the corresponding constraint is
fulfilled, that value is removed. Afterwards, Def. 2(ii) holds for arc�i, j� (but not necessarily
for the reverse arc�j, i�). Each call to Revise(
, 
) producesO�d2� constraint checks.

An arc �i, j� may not remain consistent as subsequent calls to Revise (for some arc�j, k�)
may remove a valueµ � D�xj� that was the onlysupport for someν � D�xi�. Thus,
removingµ requires a further check for arc�i, j�.

Mackworth [137] proposed three different algorithms for establishing arc consistency, called
AC-1, AC-2 and AC-3. All three start with a node consistent networkN � �V, E�. In
each round, AC-1 applies Revise(i, j) for all �i, j� � E. Whenever a domain changes (i.e.
Revise(i, j) returns true), Alg. 1 is called again for all arcs. We stop if we are in a steady state,
i.e. no arc can be revised anymore. AC-1 thus requiresO�d3�V� �E�� constraint checks.

1We present the consistency algorithms for binary arc consistency as done in the original papers. It is straight-
forward, to extend them to constraints of higher arity.
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Algorithm 1 Revise an arc�i, j�
boolRevise (i,j)

1: delete � false
2: for all ν � D�xi� do
3: if ( � � µ � D�xj� such thatC�i,j��ν, µ� � true) then
4: D�xi�� D�xi� � �ν�
5: delete � true
6: return delete

Checking all arcs in each iteration is rarely necessary, especially, if only few domains have
changed. AC-2 and AC-3 reduce the number of checks by testing only those arcs for which
variables have been involved in a domain change in the previous round. AC-2 uses some
special ordering here, whereas AC-3 works with queues. AC-2 is generalized by AC-3 and
we present the latter in Alg. 2.

Algorithm 2 Arc consistency for a network of constraints: AC-3 (Mackworth [137])
AC-3

1: // ensure thatN � �V, E� is node consistent
2: Q � ��i, j� � �i, j� � E�
3: while (Q �� ∅) do
4: select�i, j� � Q
5: Q � Q � ��i, j��
6: if (Revise(i, j)) then
7: // D�xi� was changed
8: Q � Q � ��k, i� � k � 1, . . . , n and �k, i� � E�

AC-3 starts with filling the queueQ with all arcs inE (line 2). Then, each member of
the queue is revised and deleted fromQ. If a domainD�xi� changes, all arcs�
, i� might be
affected by that change and are re-considered (line 8). IfQ is empty, the algorithm terminates.
In line 4 of Alg. 2 various strategies are possible, e.g. select constraints which can be checked
quickly, select those which shrink the domain most, etc. The number of constraint checks for
AC-3 is limited byO�d3�E�� (an analysis is given by Mackworth and Freuder [138]).

AC-3 still performs many unnecessary constraint checks, since often several values of
D�xj� may support a certain value inD�xi�. The first optimal algorithm for arc consistency,
AC-4, was presented by Mohr and Henderson [152] and requiresΘ�d2�E�� constraint evalu-
ations. By maintaining a list ofsupport valuesAC-4 only revises arcs, if for some variable a
value looses all its supports. As a drawback, AC-4 requires additional memory for the book-
keeping, and requires more complex initialization. Later developments like AC-6 (Bessière
[31]) skip the idea of a complete support list. They only maintain one support value per do-
main. If that one is removed, a new support is searched. Thus, the initial effort of AC-4 is
spread over the entire runtime and supporting values are only searched when needed.

Removing inconsistent values from a domain is often referred to asdomain filtering, do-
main reduction, or (from an OR perspective)tightening and variable fixing. When establishing
(arc) consistency constraints filter a domain, and thereby trigger other constraints that subse-
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quently start filtering domains. The activity of transmitting these implications and carrying
out their effects is called(constraint) propagation. Therefore, domain filtering methods are
often referred to aspropagation algorithms.

2.1.2 Tree Search

Arc consistency alone cannot guarantee finding a unique solution to an NP-hard problem.
Therefore, the CP solution approach is typically embedded in a tree search. We start with the
original problem and establish consistency there. If afterwards all domains contain exactly
one value, we found a feasible solution and stop. If some domain is empty after establishing
consistency, the current (sub)problem does not have a solution and we fail. Otherwise, we
partition the current problem��,�,� � into k smaller subproblems

�� � ��1�,�,� �, . . . , �� � ��k�,�,� � (2.3)

such that no two subproblems overlap. More formally, letS���,�,� �� describe the solution
space of��,�,� �. Then we require

k�
i�0

S��� � ��i�,�,� �� � S���,�,� �� and (2.4)

S��� � ��i�,�,� �� � S��� � ��j�,�,� �� �� ∅ �� i � j (2.5)

Using CP terminology such a subproblem is called achoice point2. Within a tree search all
choice points are recursively treated as described above. A tree search in CP (as well as in
OR) is defined by three parameters:

(i) Node ordering:Which subproblem do we explore next?

(ii) Variable ordering:On which variable (domain) do we branch next?

(iii) Value ordering: In which order do we assign the possible values?

We mentioned in the first chapter that tree search in CP is driven by heuristics. These
heuristics are applied for(ii) and(iii) and try to find those assignments that lead to a feasible
solution. For value ordering a typical strategy is to assign values that are more likely to be
part of a feasible solution before assigning less promising values. If an objective is available,
values improving the objective are often considered first.

By assigning more and more values to variables, and thus by diving deeper into the tree,
more information of the problem’s structure is discovered and more variables are fixed by
domain filtering. Therefore a common strategy for variable ordering is to choose the domain
with the smallest size first. In doing so, the upper part of the search tree will be small and
intuitively, less wrong decisions have to be revised in the upper part of the tree.

2The corresponding term used in OR is abranch-and-bound node. We will use both terms synonymously.
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2.1.2.1 Node Ordering

A variety of search methods for traversing the problem tree exists in literature. The oldest,
most popular and, by far, most widely used search method isDepth First Search (DFS). It
explores the ’left’ subproblem3 of any problem first, thus performing a deep dive into the
search tree. DFS is memory efficient as it storesO�t� open problems at most in a search tree
of deptht. The main drawback of DFS is that wrong decisions situated high in the search tree
are revised late. If e.g. the first branching decision was wrong and we produced branches per
node,O�dt�1� steps are required until the initial decision is revised.

The notion ofdiscrepancyaccounts for this phenomena. At a given node, a heuristic func-
tion decides which branch is most likely to contain a feasible solution (or a solution of good
quality in case of an optimization problem). Always following the heuristic advice defines a
unique path that is said to contain no discrepancies. Following the heuristic advice except for
one case defines paths of one discrepancy. Within a tree search the discrepancy of a path from
the root node to a leaf is defined as the number of right branches taken in that path.

Limited Discrepancy Search (LDS)is an iterative search method proposed by Harvey and
Ginsberg [105]. It defines node orderings via discrepancy. In thei-th iteration, it explores all
paths from the root node of the tree to a leaf that havei or less discrepancies. Such a tree
traversal is built on the assumption that the heuristic method choosing the next variable and
assigning the next value is good and produces few wrong decisions compared to an optimal
variable selection. Hence, if we increasei and traverse the tree using LDS, intuitively, we
should find a good or a best solution early.

Depth-Bounded Discrepancy Search (DDS)(Walsh [206]) refines the idea of LDS. In the
i-th iteration, it explores all paths where discrepancies occur before depthi. I.e. a path with
many discrepancies high in the tree is explored before a path with very few discrepancies low
in the tree. This is justified by the assumption that heuristics tend to fail more likely at the top
of the tree where less information of the problem structure is known.

2.2 Operations Research Approaches

Operations Research has developed several approaches for integer linear programs. We
refer to some standard textbooks for the basics of linear programming and branch &

bound (e.g. Papadimitriou and Stieglitz [163], Chvátal [55], Nemhauser and Wolsey [156],
Wolsey [211]). Here, we only introduce some notation needed in succeeding chapters.

Let A � Qn�m be the coefficient matrix,b � Qm the right hand side,c � Qn be the cost
vector andx the solution vector. An integer linear program is given as

min ∑n
i�1 ci 
 xi

s.t. Ax � b
x � Nn

0

(2.6)

We obtain the linear programming (LP) relaxation of (2.6) by relaxingx � Nn
0 to xi � 0,

i � 1, . . . , n. Whereas (2.6) is NP-hard, the LP relaxation of (2.6) can be solved in polynomial
time e.g. by interior point methods (Karmarkar [126]).

3It is common practice to regard the branches under a node as ordered according to a heuristic function. Fol-
lowing the advice of a heuristic function means to go “left” down the search tree.
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2.2.1 LP-based Branch-and-Bound

The termbranch-and-boundwas coined by Little et al. in their paper on the traveling salesman
problem [136]. The method itself was already proposed in 1960 by Land and Doig [133]. They
proposed an LP-based general purpose method for solving IPs like (2.6). LP-based branch-
and-bound solves the LP relaxation of (2.6) and branches on non-integral variables. The
optimal LP-values found are used for pruning. An outline of the method is given in Alg. 3.Q
is the set of active subproblems (calledbranch-and-bound nodes4) together with their lower
bound,x� denotes the best feasible solution andzIP is the corresponding global upper bound.

Algorithm 3 LP-based Branch-and-Bound for a minimization IPP
branch-and-bound

1: Q � �P, ∞�, zIP � ∞, x� � ∅
2: while �Q �� ∅� do
3: select�p, 
� � Q; Q � Q � ��p, 
��
4: if (LP on p is feasible)then
5: zLP � LP-value;x � LP-solution
6: if �zLP � zIP� then
7: if (x is integral)then
8: x� � x; zIP � zLP
9: Q � ��p�, z�� � Q � z� � zLP� // Bounding

10: else
11: Let S�p� denote the solution space ofp.
12: partitionp in subproblemsp1, . . . , pk such thatS�p� �

�k
i�1 S�pi�.

13: Q � Q � ��p1, zLP�� � 
 
 
 � ��pk, zLP�� // Branching
14: return x�

In the branching step quite often a variablexi with a “most fractional” current valuexi ��
N0 is chosen, i.e.i � arg mini�1,...,n���xi�� 1/2� xi��. Two branchesP+”xi � �xi�”
and P+”xi � �xi�”, respectively, are created and stored inQ. Using depth-first-search in
line 3 is very common in LP-based branch-and-bound. It requires only moderate memory
resources, and can often find a good upper bound deep in the search tree. Furthermore, it
allows to use the dual basis of the previous node for computing the LP bound of the current
node, thus speeding up convergence by incremental calculations.Best-first-search (BFS)is
another common node ordering strategy. It selects a node fromQ that has a best lower bound.
BFS often converges much faster than DFS. As a drawback, up-toO�2n� active nodes have to
be stored inQ. More details of the basic LP-based branch-and-bound method are given e.g.
in Nemhauser and Wolsey [156, pp. 355–367].

Many techniques were introduced to accelerate the convergence of LP-based branch-and-
bound approaches. We mention three techniques that we refer to later on.

The first one isreduced cost fixing: Suppose that the LP relaxation ofp is solved and the
optimal value iszLP. Furthermore, we know an integer solution valuezIP � zLP. Let ci
denote the reduced cost of columni � 1, . . . , n. If a non-basic variablexi enters the basis, the

4playing the role ofchoice pointsin CP. We will use both terms synonymously.
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objective value increases by at leastci. Thus, ifzLP � ci � zIP, we can fixxi to zero. Reduced
cost fixing is used before partitioning the problem into smaller ones (line 11 of Alg. 3).

Probing follows a similar path. It considers all variablesxi not fixed so far and tentatively
fixes them to some possible valueα � N0. The resulting model is relaxed and solved as an
LP. If no solution exists, or if the resulting objective value is worse thanz IP, we can exclude
α from the domain ofxi. Probing is very time consuming since it requires to solve many LPs.
Variants of probing consider only some promising candidates, or only perform some iteration
of the LP solver in order to get an estimation of the change in costs. Probing can be applied
only to the initial problem (before line 1 of Alg. 3) or to selected problems (line 12 of Alg. 3).

The third idea used to tighten bounds in branch-and-bound arecuts. Cuts are inequalities
that are valid for the IP formulation, but not for the LP relaxation. Adding cuts thus forces the
LP relaxation towards integral solutions.Branch-and-cutmethods (see e.g. Bixby [35], Elf
et al. [69], Johnson et al. [123], Martin [147], Padberg [162]) combine branch-and-bound with
systematic cut generation. In a branch-and-cut approach new cuts are added to the current LP
before line 4 of Alg. 3.

A detailed description of further techniques used in LP-based branch-and-bound is e.g.
provided by Linderoth and Savelsbergh [135] and Johnson et al. [123].

2.2.2 Column Generation

Column generation is a well-known technique for handling linear programs with a huge
amount of variables:

min
n

∑
j�1

cjxj s.t. A x � b, xi � 0, i � 1, . . . , n, andn is huge (2.7)

Its origins date back to the works of Dantzig and Wolfe [60] and Gilmore and Gomory [88].
The latter paper applies column generation to the classical cutting stock problem where the
subproblem is a knapsack problem. More recent applications include specially structured
integer programs such as the generalized assignment problem and time constrained vehicle
routing, crew pairing, crew assignment and related problems. We refer to Desrosiers et al.
[65] for a survey.

Due to its size it is often impossible to solve the large system (2.7) directly. Column gen-
eration provides a way for obtaining the solution of this system indirectly. Therefore, a much
smaller systemA� x � b is considered whereA� contains only few columns ofA. An opti-
mal basic solution of therestricted master problemA � x � b provides dual valuesλi of each
constrainti of the linear system.

Now we pose the question: Which columns must be added toA � yielding a linear system
with the same solution value as the original problem (2.7)? Linear programming duality theory
tells us that only columns withnegative reduced costcan be candidates for entering the basis
(see Papadimitriou and Stieglitz [163], Theorem 2.8). This is the way the simplex algorithm
chooses columns for its basis internally. But this fact can also be applied for the external
generation of columns. Similar to the simplex algorithm, column generation can be stopped
as soon as no further columns with negative reduced costs exist. Therefore, in thesubproblem
of column generation it is sufficient to search for a columnα � �α1, . . . , αm�

T that obeys the
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negative reduced cost inequality

cα �
m

∑
i�1

λi 
 αi � 0 (2.8)

wherecα denotes the cost coefficient for columnα. α then is added toA�.
Theoretically, it may still be necessary to generate all possible columns before terminating

the generation phase but in practice this rarely happens. Typically, only a small subset of all
possible columns will be needed. Algorithm 4 describes the column generation idea. There,
we assume that functionsolveSubproblem() returns new columns�α�1�, . . . , α�k�� which
are valid solutions to the subproblem, or an empty set, if no more solutions that respect (2.8)
exist. An initial matrixA� is returned bygetInitialColumns(). solveLP() solves the
LP given byA� x � b and returns the corresponding dual valuesλ. FunctionaddColumn-
sToMatrix() extendsA� by the columns generated.

Algorithm 4 Outline of the Column Generation
A� �getInitialColumns()
repeat

λ � solveLP(A�) // get new duals
�α�1�, . . . , α�k�� � solveSubproblem(λ) // solve subproblem, respecting Equ. (2.8)
A� � addColumnsToMatrix(A�, α�1�, . . . , α�k�)

until (�α�1�, . . . , α�k�� � ∅)

2.2.2.1 Column Generation and Integer Programming

Many problems can be modeled by an IP if we use (2.7) and add integrality requirements for
some variables:

min
n

∑
j�1

cjxj s.t. A x � b, xi � N0, i � 1, . . . , n, andn is huge (2.9)

Unfortunately, we cannot apply column generation directly to (2.9) as linear programming
duality theory is not valid for IPs. In this case, two general approaches are possible:

The first approach is to ignore that fact: One solves the continuous relaxation of the problem
first, and then applies branch-and-bound to obtain an integer solution. For a range of IP
problems it is known that the remaining gap between the solution values of LP and IP is
small enough to be neglected. We use a variant of this approach for the airline crew rostering
problem in Chapter 4.

Another possibility is to usebranch-and-pricewhere columns are generated in every nodes
of a branch-and-bound tree and optimality can be proven. We refer to Barnhart et al. [19] for
further information of this topic.

2.2.2.2 Why Column Generation Models?

Barnhart et al. [19] list four reasons for preferring a potential exponential number of variables
to compact IP models:
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• A compact formulation of a MIP may have a weak LP relaxation. Frequently the relax-
ation can be tightened by a reformulation that involves a huge number of variables.

• A compact formulation of a MIP may have a symmetric structure that causes branch-
and-bound to perform poorly because the problem barely changes after branching. A
reformulation with a huge number of variables can eliminate these symmetries.

• Column generation provides a decomposition of the problem into master and subprob-
lem. This decomposition may have a natural interpretation in the contextual setting
allowing for the incorporation of additional important constraints.

• A formulation with a huge number of variables may be the only choice [as no compact
linear model is known].

2.2.3 Lagrangian Relaxation

Lagrangian Relaxation provides a means for calculating lower bounds on an optimization
problem. Whereas linear relaxation drops the integrality requirement from an IP, Lagrangian
relaxation relaxes parts of the constraints. These relaxed constraints are used as a penalty term
in the objective function. Geoffrion [87], Held and Karp [108, 109] are classical references
on Lagrangian relaxation and IPs. A good introduction into Lagrangian Relaxation in an IP
context is given by Fischer [79]. Lagrangian Relaxation can be applied, however, to more
general constraint classes. We refer to Lemaréchal [134] for details.

We start our introduction by a refinement of (2.6). Suppose, (2.6) consists of two constraint
families, the one describing a simple structure (Dx � d), the other one describing a difficult
structure (Ex � e):

min ∑n
i�1 ci 
 xi

s.t. Dx � d
Ex � e
x � Nn

(2.10)

We removeEx � e from the constraint set and introduce it into the objective as a penalty
term. ALagrangian multiplierλ � �λ1, . . . , λm�

T � Rm
�0 is used to adjust the impact of the

penalty term.

z�λ� � min ∑n
i�1 ci 
 xi � λ�e� Ex�

s.t. Dx � d
x � Nn

(2.11)

Given someλ, we can solve (2.11) by some suitable algorithm and obtain a solutionx �
�x1, . . . , xn�. It is easy to see that (2.11) is in fact a relaxation of (2.10) and that each choice of
λ provides a lower bound on the original problem. We are interested in someλ� that provides
the tightest lower bound. Thus, we have to solve theLagrangian dual problem:

max
λ�0m

z�λ� (2.12)

Sincez�λ� is a convex function,subgradient methodscan be used to solve (2.12). The idea of
subgradient methods is to start with someλ and to move thatλ into the direction of the steepest
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ascent. Subgradients are used to guide the search since they point to the right direction. A
subgradientg � �g1, . . . , gm�

T � Rm is defined as

gi � ei �
n

∑
j�1

Eijxj, i � 1, . . . , m. (2.13)

Held and Karp [109] proposed the following update step:

λ
�k�1�
i � max

�
0, λ

�k�
i � α

�ub� lb�gi

�g�2

�
, i � 1, . . . , m (2.14)

Using (2.14) it is easy to calculate a sequenceλ�1�, λ�2�, . . . of Lagrangian multipliers that
converges towards an optimal solution to (2.12). The initial multiplierλ �0� is chosen arbitrar-
ily. The gap�ub � lb� between upper and lower bound of the original problem adapts the
update step to the progress of the optimization algorithm. The parameterα is halved ifub and
lb have not changed for longer time. Whenever�g� � 0, or α is smaller than some predefined
constant, the iterative generation of new multipliers (2.14) stops and the best solution to (2.12)
is returned as a lower bound.

Detailed studies on subgradient methods are given in Held et al. [110], Goffin [92] and
Fischer [79] .

2.2.3.1 Why Lagrangian Relaxation?

The popularity of Lagrangian relaxation stems from several facts. Firstly, the bound found
by Lagrangian relaxation is at least as good as the bound found by LP relaxation. This result
is due to Geoffrion [87] who also showed that the Lagrangian bound equals the LP bound
if (2.11) has the integrality property, i.e. if the LP relaxation of (2.11) is always integral.
Secondly, Lagrangian relaxation methods are simpler than LP methods. They can be easily
implemented and do not suffer as much from numerical problems as LP methods often do.
Finally, Lagrangian relaxation methods are fast if the relaxed system (2.11) can be solved
fast. This is in particular the case for 0-1 IPs that allow to relaxing all constraints (i.e. the
constraint set “Dx � d” is empty). Then the remaining minimization problem

z�λ� � min ∑n
i�1 ci 
 xi � λ�e� Ex�

s.t. x � �0, 1�n (2.15)

can be solved via simply checking the sign ofxi’s coefficient. The best currently available
solvers for set covering problems are based on this idea (e.g. Beasley [25], Caprara et al. [44],
see also Beasley [26] for the basics).

2.3 Integrated Approaches

Domain filtering in CP is derived from feasibility considerations and removes values from
domains that cannot lead to a feasible solution.Cost based filteringextends this idea

using optimality criteria. It removes values that cannot lead to an improving solution.
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2.3.1 Cost Based Filtering

Cost based filtering was introduced in a CP context by Focacci et al. [81]. The basic idea
has been knowing in OR for much longer time. We mentioned already probing and reduced
cost fixing in a previous section. Some LP/IP preprocessing techniques (see Andersen and
Andersen [4]) follow this path as well. The novelty in the work by Focacci et al. [81] lies in
the fact, that (a) it combines traditional OR ideas with CP and proves them to be superior to
pure CP and pure OR techniques, and (b) it allows for using specific optimization algorithms
rather then generic LP-tools and thus can offer much tighter pruning than e.g. reduced cost
fixing. As defined in [81], the costs or bounds for a cost based filtering algorithm are derived
from exact methods for the underlying constraint structureP.

Obviously, if obtaining a solution toP is difficult (e.g. if P is NP-hard, or if a polynomial
running time algorithm forP is too slow) a fast variable fixing algorithm is desired. In the
next definition we formalize the concept of usingrelaxationsfor cost based domain filtering.
This concept was first mentioned in Fahle and Sellmann [77].

2.3.1.1 Optimization Constraints

We start with a formal concept of optimization constraints. To our knowledge, this has not
been done before in literature, though optimization constraints were recently used by many
authors, see e.g. Focacci et al. [81, 82], Junker et al. [125], Ottosson and Thorsteinsson [159].

Givenn � N, let x1, . . . , xn denote some variables with finite domainsD�x1�, . . . , D�xn�.
Furthermore, given a constraintC : D�x1� 	 
 
 
 	 D�xn� � T, and an objective function
Z : D�x1�	 
 
 
 	 D�xn�� Q.

Definition 5 Let B � Q denote an upper/lower bound on the objectiveZ to be optimized.

(i) ϑC,Z�B� : D�x1�	 
 
 
 	 D�xn�� T is calledminimization constraintif

�i � 1, . . . , n �vi � D�xi� :

ϑC,Z�B��v1, . . . , vn� � true �� C�v1, . . . , vn� � true and Z�v1, . . . , vn� � B

(ii) ϑC,Z�B� : D�x1�	 
 
 
 	 D�xn�� T is calledmaximization constraintif

�i � 1, . . . , n �vi � D�xi� :

ϑC,Z�B��v1, . . . , vn� � true �� C�v1, . . . , vn� � true and Z�v1, . . . , vn� � B

(iii) A minimization or maximization constraint is also called anoptimization constraint.

The next definition couples optimization constraints and relaxations.

Definition 6 Given an optimization constraintϑC,Z�B� : D�x1� 	 
 
 
 	 D�xn� � T, let
∆ :� 2D�x1� 	 
 
 
 	 2D�xn�, where2D denotes the set of all subsets ofD.

(i) We say that an optimization constraintϑC,Z�B� is consistent, iff for any given1 � i � n
andvi � D�xi�, there existsvj � D�xj�, j �� i, such thatϑC,Z�B��v1, . . . , vn� � true.
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(ii) Let ϑC,Z�B� be a minimization constraint, and letL : ∆ � Q such that for allMi �
D�xi�, 1 � i � n,

L�M1 	 
 
 
 	Mn� � min�Z�v1, . . . , vn� � C�v1, . . . , vn� � true, vi � Mi,
1 � i � n�,

wheremin ∅ � ∞. We say thatϑC,Z�B� is relaxedL-consistent, iff for any given1 �
i � n andvi � D�xi�, L�D�x1�	 
 
 
 	 �vi� 	 
 
 
 	 D�xn�� � B.

(iii) Analogously, letϑC,Z�B� be a maximization constraint, and letU : ∆ � Q such that for
all Mi � D�xi�, i � 1 . . . n,

U�M1 	 
 
 
 	 Mn� � max�Z�v1, . . . , vn� � C�v1, . . . , vn� � true, vi � Mi,
1 � i � n�,

wheremax ∅ � �∞. We say thatϑC,Z�B� is relaxedU-consistent, iff for any given
1 � i � n andvi � D�xi�, U�D�x1�	 
 
 
 	 �vi� 	 
 
 
 	 D�xn�� � B.

When solving an optimization problem,B is used as a no-good and is usually determined
as the value of the incumbent solution. As the quality ofB is crucial for the effectiveness of
the domain filtering algorithm, in practice a primal heuristic is often applied to determine a
fairly good solution prior to the tree search.

From the definition, relaxedL-consistency (relaxedU-consistency follows analogously)
can the easier be achieved the weakerL is. For L  �∞, any domain filtering algorithm
has nothing to do, whereas the tightest “relaxation” is achieved whenL�M1 	 
 
 
 	 Mn� �
min�Z�v1, . . . , vn� � C�v1, . . . , vn� � true, vi � Mi, 1 � i � n�. That is, the choice of
L determines the degree of domain filtering and thus the degree of consistency. Usually,L is
chosen as a tight bound that can be computed quickly.

Clearly, optimization constraints are closely related to global constraints and generalized
arc-consistency (e.g. Régin [172]) as they link a (global) constraint together with the restric-
tion to improve on the objective function. The main contribution here consists of the definition
of relaxed consistency that has been widely used in the OR community before to prune in the
search tree. The idea is similar to the definition of bound consistency that can also be achieved
more easily than general arc consistency, and that was proved valuable for many applications.

2.3.2 CP Based Column Generation

Column generation divides a given problem into a master problem and a subproblem. Espe-
cially in real-world applications the subproblem contains a large number of non-linear con-
straints and it is therefore not so well suited for traditional OR algorithms. We propose to
apply a CP approach instead to solve the subproblem.

Using an arbitrary CSP as the subproblem has two major advantages. Firstly, it generalizes
the class of subproblems and thus allows to use column generation even if the subproblem does
not reduce to a MIP. Secondly, it allows to exploit constraint satisfaction techniques to solve
the subproblem. CP-based column generation is particularly well-suited for subproblems that
can partially, but not entirely be solved by a polynomial OR methodM. In this case, some
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constraints do not fit and have to be treated separately. In the CSP approach, the optimization
algorithmM, as well as the algorithms of the other constraints will be used in a uniform way,
namely to reduce the domains of variables. We can also say that the CSP-approach allows
different algorithms to communicate and to co-operate via domain reduction.

Compared to traditional approaches of generating columns, the CP framework combines a
high expressiveness with the domain reduction capabilities of CP algorithms. In particular, the
CP framework allows to encapsulate traditional generation techniques (e.g.M) inside a con-
straint and to exploit them for domain reduction. We can also say that additional constraints
will cut illegal choices as early as possible when searching for best columns. Thus, constraint
programming based column generation can be seen as a way of enhancing or extending tradi-
tional approaches to column generation.

In Chapter 4 we will apply this framework to complex airline crew rostering problems
where the core constraint is a shortest path problem. Before that, we will present a knap-
sack constraint in Chapter 3. In many applications of column generation the subproblem is
either a constraint knapsack problem or a constraint shortest path problem. Thus, we have the
ingredients to model and solve a large class of real-world problems by a column generation
approach.

2.3.3 CP Based Lagrangian Relaxation

We consider an integer linear optimization problemP consisting of the two constraint families
!: Ax � b, x � Nn

0 , and": Bx � d, x � Nn
0 :

P : max pTx
s.t. Ax � b

Bx � d
x � Nn

0

(2.16)

Further, we assume that domain filtering algorithms DF(!) and DF(") exist for each of
the two families. Then, an obvious approach to solveP exactly is to apply an LP based
branch-and-bound algorithm. Linear relaxation bounds can easily be obtained by applying a
standard LP solver. That bound often yields a good estimate on the objective value that can
(still) be reached. However, it is not straightforward to see how this value could be exploited
for efficient domain filtering. Applying conventional reduced cost propagation only indirectly
exploits the structure of the problem and therefore appears ineffective, whereas to perform
probing via full re-optimization can be very costly and thus inefficient.

We can do better if we use the existing domain filtering algorithms DF(!) and DF(") to
tighten the problem formulation in every choice point. Even though DF(!) and DF(") may
be efficient and effective for the substructures they have been designed for, their application
for the combined problem is usually not. Due to the fact that tight bounds on the objective
cannot be obtained by taking only a subset of the restrictions into account. An accurate bound
on the overall problem can only be computed by looking at the entire problem, i.e., it cannot
be achieved by only looking at either one constraint family alone.

Lagrangian relaxation allows us to bring together the advantages of a tight continuous
global bound and the existing domain filtering algorithms that exploit the special structure of



24 2 Basic Concepts

their respective constraint families. We introduce non-negative Lagrangian multipliersλ i � 0
and define the Lagrangian subproblem

L��λ� : max z�λ� :� pTx� λT�Ax� b�
s.t. Bx � d

x � Nn
0

(2.17)

Then, the Lagrangian multiplier problem is to solve

min z�λ�
s.t. λ � 0 (2.18)

For everyλ � 0, z�λ� is a valid upper bound on the objective. Therefore, we can apply
DF(") on the constraint family" each time we solve the Lagrangian subproblemL��λ�.
After we have found optimal Lagrangian multipliersλ�, i.e. z�λ�� � z�λ� � λ � 0, we use
the (optimal) dual informationπ on the constraint family" to perform cost based filtering
with respect to substructure!. By relaxing the second constraint family and using multipliers
π � 0, we obtain:

L��π� : max pTx� πT�Bx� d�
s.t. Ax � b

x � Nn
0

(2.19)

Analogously, we can apply DF(!) now.

To summarize: two linear optimization constraint families! and" for which efficient do-
main filtering algorithms DF(!) and DF(") are known can be combined effectively by com-
puting Lagrangian multipliers for!, using DF(") for filtering in each Lagrangian subproblem
L��λ�, and then handing back dual information of the optimalL��λ�� on" to propagate!
with the corresponding (optimal) reduced cost objective, i.e. we apply DF(!) on L��π�. This
procedure even strengthens the bound on the objective, as domain reduction is also performed
during bound computation. However, one problem arises: If domains are reduced during the
process of finding optimal Lagrangian multipliers, the algorithm that solves the Lagrangian
dual must be aware of this. It is subject of further research, how e.g. subgradient methods
must be adapted to be able to cope with that situation.

Later in this thesis we will apply CP based Lagrangian relaxation to a multimedia applica-
tion. Before, we present some extensions and generalizations of the concept presented above.

2.3.3.1 Coupling more than Two Optimization Constraints

The procedure sketched can easily be generalized if the coupling of more than two constraints
is desired. All we need to do is to select the substructure that determines the Lagrangian sub-
problem, i.e., the one that has to be solved several times with changing objective functions.
After we have computed (nearly) optimal Lagrangian multipliers, we apply the domain filter-
ing algorithm for the other substructures with a modified objective function. That modification
is determined by the dual values of the family of constraints in the Lagrangian subproblem
and the Lagrangian multipliers for the remaining substructures.
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2.3.3.2 Linear Relaxations

If continuous bounds are preferred to bounds based on Lagrangian relaxations, it is also pos-
sible to use dual values instead of Lagrangian multipliers to modify the objective functions
for the respective subproblems we want to apply a domain filtering algorithm to. We still use
the terminology of a coupling method based on Lagrangian relaxation, as we use Lagrangian
objectives for cost based filtering.

Notice that this method can also be used in combination with tightening algorithms such
as cut generators. We simply incorporate all additional cuts as a new family of constraints
for which we have to find Lagrangian multipliers (or dual values). This method is known as
Relax-and-Cut(see e.g. Guignard [102], Porto et al. [170]).

2.3.3.3 Binary IPs

Interestingly, we achieve a domain filtering algorithm for binary IPs as a special case. Given
A � Qm�n, b � Qm, andp � Qn, we consider the following binary program:

max pTx
s.t. Ax � b

x � �0, 1�n
(2.20)

The problem can be viewed as a combination ofm knapsack problems. Assuming that we
solve the continuous relaxation to compute an upper bound, letπ � Qm andµ � Qn denote
the optimal solution to the dual problem, i.e.,π andµ solve the following linear problem:

min bTπ � 1Tµ
s.t. ATπ � µ � p

π, µ � 0
(2.21)

Let 0 � i � m, and letiA � Q�m�1��n denote the matrix that evolves fromA by erasing
row i, andib, iπ � Qm�1 are the vectors that evolve by erasing componenti from b andπ,
respectively. Furthermore, letai denote theith row of matrixA. Then, for every0 � i � m
we perform domain reduction with respect to the following knapsack problem:

max �pT � iπTiA�x � iπTib
s.t. aix � bi

x � �0, 1�n
(2.22)

Thus, as a special application of CP based Lagrangian relaxation, we achieve an effective
filtering algorithm for binary IPs that runs inΘ�mn log n� (using the domain filtering algo-
rithm for knapsack problems presented in Chapter 3) after we have found some optimal dual
values of the continuous relaxation.

A different way of using cost based filtering for binary IPs will be presented in Section 3.2.

2.4 Experimental Methodology

Several results in this thesis are supported by numerical evaluation. The underlying algo-
rithms were coded in C++ as well as commercial software packages for CP and IP/LP
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problems. Whenever applicable, we used a hardware environment best suited to the experi-
ments. E.g. for crew rostering (Chapters 4 and 5), we used large Sun Sparc compute-servers.
This kind of computer is widely used in production systems in airline companies. In the real-
world set-up for nurse scheduling (Chapter 6), and the automatic recording problem (Chap-
ters 7, 8), on the other hand, low-end architectures are in use. Hence, our experiments were
performed on standard PCs.

2.4.1 Software Packages

For the numerical tests in this thesis we used ILOG SOLVER whenever CP functionality (con-
sistency, advanced tree search) was needed.5 And we applied ILOG CPLEX to obtain LP
solution or LP-based IP solutions.

ILOG SOLVER is a commercial software package that provides data structures for variables
and domains, several basic constraints, an arc-consistency method, a tree search module (e.g.
DFS, LDS, DDS) and some global constraints (see [120]). SOLVER thus offers all the prim-
itives needed to implement efficient CP approaches. Furthermore, it is based on many years
of experience and “know-how” in CP. This allows the user to concentrate on the problems to
be solved rather than on details of the solution technology. A drawback is the fact, that it is
sometimes difficult to analyze what’s going on “behind the scenes”. E.g. it is not documented
which arc-consistency algorithm is internally used.

ILOG CPLEX is a well-established commercial software package which is used for solving
LPs and IPs. It provides simplex and interior point methods and a tree search mechanism. Fur-
thermore, primal heuristics and cutting plane methods are integrated (see [119]). This sums
up to a very efficient and fast software solution (see Bixby [34] for examples and figures). On
the other hand CPLEX does not provide a full documentation of the internals which hampers
the analyzation of some phenomena.

2.4.2 Benchmarks

For knapsack (Chapter 3) or maximum clique (Chapter 10) standard benchmarks exist and
are widely used. In the area of airline crew scheduling (Chapters 4, 5) there is no general
benchmark set. Huge variations in the requirements of different airline companies are the
one, confidentiality the other reason for this situation. Fortunately, we were provided with
real-world data by our industrial partners.

The home health care problem (Chapter 6), as well as the automatic recording problem
(Chapters 7, 8) were barely considered before and no established benchmark data is available.
We designed some synthetic benchmarks in both cases, closely following the requirements
from the respective real-world scenarios.

5The only exception is the domain filtering for the clique problem. We can prove (Lemma 6) that one pass
through our constraints is sufficient to ensure consistency and therefore we did not apply any generic consis-
tency method.
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2.4.3 Measuring Runtime

Our runtime is measured as original process time. Theoretically, this provides the correct
runtime, independent of any other process on the machine. In practice, two problems remain
and should be mentioned here:

(i) Solaris as well as Linux systems provide a clock resolution of1
100 sec for process time.

Thus, we cannot safely distinguish two runtimest1, t2 that differ in less than 2
100 sec.

For the same reason, short run times may differ by large relative gaps. For long running
processes, the relative deviation in runtime can be neglected.

(ii) Other processes still indirectly affect our runs, since each task-switch invalidates the
caches. Thus, the more processes compete for the processor, the more often a program
has to request data from slow memory instead of using prefetched information. Since
the operating system (OS) itself starts actions at some arbitrary points in time, we cannot
completely discard these effects.

To cope with situations like these a typical work around would be to repeat experiments
for a certain number of times and use some appropriate measure for the mean value. Unfor-
tunately, this was not possible here: The experiments presented in Chapter 10 were run on 9
computers and each of them took 400h (# 17 days) for the DIMACS benchmark and addi-
tional 2 month for the tests on random graphs. Evidently, a reasonable number of repetition
would require to bind the same computers for more than a year.6 The experiments in Chapter
7 used accumulated runtimes in the same order of magnitude.

On the other hand, we are only focusing some small deviations. Furthermore, these devia-
tions seem to be bounded: We never produced deviations between best and worst runtime of
more than 1.5% if some benchmark was running for more than 60 sec. Therefore, when in-
terpreting experimental data, we take into account that runtime may be up to 1.5% faster than
the time measured, and rank results accordingly. Regarding(i) we also consider a1

100sec dif-
ference. That is, in order to compare two timest1, t2, we say “t1 is better thant2” (“ t1 � t2”),
or “t1 is equal tot2” (“ t1 � t2”) if

“t1 � t2
�� :�� t1 �

1
100 �

t2�
1

100
1.015

“t1 � t2
�� :�� �

t1�
1

100
1.015 , t1 �

1
100 � � �

t2�
1

100
1.015 , t2 �

1
100 � �� ∅

(2.23)

The number of iterations, or branch-and-bound nodes is treated analogously when being ana-
lyzed.

6It is more than likely that we willnot get identical results for identical runs over a time period of more than a
year since kernel updates and changes in the infrastructure will virtually produce “different” computers.
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3
Cost Based Filtering for Knapsack
Constraints

An effective way of combining the advantages of Constraint Programming (CP) and Op-
erations Research (OR) techniques is the development of optimization constraints that

perform cost based filtering (Focacci et al. [81]). Optimization constraints are used for prun-
ing and to include (exclude) items that must (cannot) be part of any improving solution. We
introduce propagation algorithms to perform pruning and cost based filtering for Constrained
Knapsack Problems (CKPs).

In every tree search, there is a trade-off between the quality of the bounds (i.e. the time
saved due to effective pruning) and the time needed for their computation. When solving
pure KPs, a big effort to tighten the problem in every search node does not usually pay off.
However, in the presence of additional constraints that have to be propagated in addition to the
optimization constraint, the total cost per choice point is usually much bigger. Thus, the gain
due to effective bounding and tightening is higher, and better bounds can be used profitably
for pruning and domain reduction. On the other hand, fast KP reduction algorithms using
weak bounds, such as the algorithm developed by Dembo and Hammer [62], are not effective
enough for more complex CKPs.

Based on reduction techniques for KP, we develop propagation routines for knapsack con-
straints. We present several new propagation algorithms using bounds of different quality.
The method considered the most interesting — both theoretically and practically — is based
on a bound proposed by Martello and Toth [142]. By reusing information gained in an initial
preprocessing step taking timeΘ�n log n�, the actual reduction per choice point only requires
linear time. We experimentally compare two of the new methods with two other reduction
algorithms which have been proposed earlier in the KP literature.

Trick recently proposed a dynamic programming approach for propagation of knapsack
constraints [199]. We compare this approach to the one presented here in section 3.3.

CP based column generation describes a generic way of how to treat arbitrary constraints
for the constrained subproblem in the column generation phase. This approach has been
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successfully applied to the Crew Assignment Problem, where the subproblem is a Constrained
Shortest Path Problem (Fahle et al. [73], see Chapter 4).

Another important class of subproblems that evolves when following a column generation
approach are (Constrained) Knapsack Problems. They evolve for example when solving a
(Constrained) Cutting Stock problem. To motivate the work presented, we show exemplary
how CKPs can be used when generating columns for this problem.

3.1 Constrained Knapsack Problems

The CKP is a knapsack problem with additional constraints. We do not require these ad-
ditional constraints to be linear. Nevertheless, the objective function and the knapsack

constraint itself have to be linear. Formally, the CKP is defined as follows:

Definition 7 Let C, n, w1, . . . , wn � N; p1, . . . , pn � Z. C is the capacity of the knapsack,
n the number of items, andwi the weight of itemi with profit pi � 1 � i � n. Moreover, let
w :� �w1, . . . , wn�

T, andp :� �p1, . . . , pn�
T.

1. LetB :� �0, 1�, andG :� �x � Bn � wTx � C�.

2. Letk � N, andR :� �r1, . . . , rk � rj : Bn � B � 1 � j � k�. Everyr � R is called
a (knapsack) ruleandR is called a(knapsack) rule set.

3. Everyx � G is calledfeasible (with respect to a given rule setR), iff r�x� � 1 � r � R.
F�R� :� �x � G � x is feasible� is called theset of feasible constrained knapsacks
(with respect to rule set R). To simplify the notation, we often writeF instead ofF�R� if
R is known from the context.

4. TheConstrained Knapsack Problemis then to

maximizepTx, x � F.

Notice, that for the unconstrained KP it holds,F � G. Here, we investigate the general
case ofF � G. Generally, algorithms for the unconstrained KP are not able to solve the CKP,
because they do not allow the incorporation of additional constraints. Moreover, algorithms
designed to solve pure KPs make certain assumptions that do not hold for CKPs. E.g., it is not
clear with the CKP that we can require the profits to be non-negative (as is the case for KP),
because the strategy to omit items with positive weight and negative profit (see Martello and
Toth [145]) may not yield feasible knapsacks at all.

In the following, with identifiersB, C, n, w, p, G, R, andF we refer to the above definition.
We will sometimes need to refer to reduced CKPs where an itemi � �1, . . . , n� is either
included or excluded in any feasible solution. We refer to those problems with CKP�xi � 1�
or CKP�xi � 0�, respectively.
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3.2 Applications for Constrained Knapsack Problems

Constrained Knapsack Problems appear in various application areas. In the following, we
sketch four examples.

When applying the Constraint Based Column Generation paradigm to appropriate optimiza-
tion problems, CKPs occur as subproblems. For example, when applying Column Generation
to theConstrained Cutting Stock Problem– a Cutting Stock Problem with additional con-
straints on the cutting patterns – results in a CKP subproblem. Additional constraints usually
stem from real-world applications (an example of real-world constraints is given by Chu and
Antonio [53]) and may be non-linear.

In the context of the CP-based Column Generation, we search for feasible knapsacks with
negative reduced costs. In the Constrained Cutting Stock Problem, for instance, each cutting
pattern has cost 1 since we try to minimize the number of rolls needed to cover the specified
demand. Thus, the objective in the subproblem is to minimize1� π Tx (i.e. to minimize the
reduced costs of the cutting pattern), whereπ is the vector of dual values corresponding to the
current optimal solution of the continuous relaxation of the master problem. Our objective in
the CKP then is to maximizeπTx with an initial lower bound of1.

TheQuadratic Knapsack Problem (QKP)calls for maximizing a quadratic boolean objec-
tive function subject to a linear knapsack constraint. The relax and cut algorithm of Porto
et al. [170] computes bounds of the QKP by linearizing the problem to KP, then tightening the
problem by adding three families of valid inequalities, and finally solving the resulting linear
program (LP) by Lagrangian relaxation. Thus, a series of KPs has to be solved in every search
node. The authors note that fixing variables was vital to their approach. Filtering algorithms
for KP are typically used to reduce the size of the given QKP (see e.g. Caprara et al. [46]).
The algorithms proposed in Sections 3.4 and 3.5 may help to increase the performance of the
overall approach by Porto et al. [170].

In section 2.3.3.3 we have seen how to formulate a domain filtering algorithm for binary
IPs based on Lagrangian coupling. An alternative approach is to usesurrogate relaxationand
knapsack constraints instead. As before, letA � Qm�n, b � Qm, and p � Qn, and we
consider the following binary program:

Maximize pTx
subject to Ax � b

x � �0, 1�n
(3.1)

Let µ � Rm
�0 be a vector, andx � Bn be a feasible solution to (3.1). Thenx is also a solution

to
Maximize pTx
subject to �µT A�x � �µTb�

x � �0, 1�n
(3.2)

Surrogate relaxation has been proposed by Glover [89]. It is known to be at least as tight
as Lagrangian relaxation (see Greenberg and Pierskalla [97]) and thus as least as tight as
LP bounds (Geoffrion [87]). There is no general theory on how to find optimal surrogate
multipliers, though for some models corresponding methods are known (see e.g. Martello
and Toth [143]). Still, computing the surrogate bound (3.2) exactly, is NP-hard in general
as it remains to solve a knapsack problem. Using the methods developed in this chapter, it
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is however possible to perform domain filtering based on (3.2). The resulting runtime for
a givenµ is O�mn� for transforming (3.1) to (3.2), andO�n log n) per domain filtering.
Whether to apply Lagrangian coupling or surrogate relaxation and knapsack constraints for
domain filtering depends on the problem’s characteristic and cannot be decided in general.

Finally, theautomatic recording problem, that we will focus on in Chapters 7 and 8, can
be solved via a combination of knapsack and shortest path or weighted maximum stable set
constraints.

3.3 Constrained Knapsack vs. Pure Knapsack Problems

For pure knapsack problems without additional constraints, the state-of-the-art solving
techniques would focus on a so calledcore problem, which may be extended during the

optimization process (Martello et al. [141], Pisinger [168]). For these algorithms it is difficult
to foresee how the reduction algorithm we present in the following could be efficiently inte-
grated. However, in the context of this chapter we focus on Constrained Knapsack Problems,
where a branch-and-bound tree search framework is needed to find feasible solutions with
respect to additional constraints, and where algorithms tailored for the pure KP are likely to
fail. This motivates the decision to make use of efficiency orderings of the knapsack items
in an algorithm for CKP, although it is already known that the calculation of those orderings
does not often pay off when solving pure KPs.

Trick [199] derives a hyper-arc-consistency approach from some dynamic programming
method designed for pure KPs. The problems considered in that paper differ from the ones
described in this chapter: the input is atwo sided knapsack, i.e. a linear constraint of the
form L � ∑i Wi xi � C. The running time depends heavily onC and L in practice, and
is theoretically bounded inO�nC2� only. That is, the algorithm is pseudo-polynomial inC.
Also, the space requirement ofO�nC� depends onC. The advantage of this approach is that
it works independently of the type of objective function.

In contrast, the approach presented here considersone sided knapsackswith ∑i Wi xi � C,
runs in amortized linear time, usesO�n� space, and is tailored to linear cost functions only.

3.3.1 Variable Fixing for the Constrained Knapsack Problem

In a canonical IP formulation of the knapsack problem, there is one variablexi for each item
i � �1, . . . , n�. The domain of each variable is defined asD�xi� :� B. Furthermore, the
knapsack constraint is modeled by a functionω : Bn � B with ω�x� � ω�x1, . . . , xn� � 1
iff wTx � C. Finally, the objective function isP : Bn � Q with P�x� � P�x1, . . . , xn� :�
pTx. Given any lower boundB � 0, we consider the maximization constraintϑω,P�B�. Items
of the CKP fall into either one of the following classes:

• items i that can be excluded from further investigation as they cannot be part of any
improving solution, i.e.

P�x� � B � x � �y � G � yi � 1� (3.3)
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• items i that can be included in the knapsack as they must be part of any improving
solution, i.e.

P�x� � B � x � �y � G � yi � 0� (3.4)

• items that cannot be decided at the moment.

Propagation is expected to include or remove items that do not fall into the last class. Since
showing that either (3.3) or (3.4) holds for an itemi (i.e. to check the satisfiability ofϑω,P�B�)
generally requires solving a KP itself, complete propagation here is an NP-hard task. There-
fore, we only check if the inequality holds for an upper boundU on KP[xi � b], b � 0 or
b � 1, i.e., if U�B 	 
 
 
 	 �b� 	 
 
 
 	B� � B. Then, we writeU�KP�xi � b�� � B.1

In the KP literature, this idea has been used to reduce problem sizes initially or in selected
nodes of a branch-and-bound tree. Variable fixing is of great importance especially when
solving complex problems such as quadratic knapsack problems [170]. In the next section,
we give the definitions of some bounds that have been developed for the KP.

3.3.2 Upper Bounds for Knapsack Problems

The effectiveness of a knapsack constraint propagation algorithm relies heavily on the quality
of the bounds calculated. Following the presentation given in Chapter 2 by Martello and Toth
[145], we present some upper bounds that have been originally developed for the maximiza-
tion problem KP. They also apply to the CKP by relaxing it to a KP first. Obviously, ignoring
all additional constraints does not often yield tight bounds on the objective. However, if the
additional constraints satisfy certain properties, they can be incorporated into the objective
function of a pure KP using Lagrangian relaxation. For additional linear constraints, there are
ways of doing this effectively (see Focacci et al. [82], Sellmann and Fahle [185]). Notice,
that dropping all additional constraints allows to setxi :� 0 � pi � 0 and1 � i � n. We
therefore require all items to have positive profits.

Without loss of generality, we may assume that the items are ordered according to decreas-
ing efficiency, i.e.p1

w1
� p2

w2
� 
 
 
 � pn

wn
. We define thecritical item s of a knapsack problem

as the first item that overloads the knapsack, that iss � min j�∑
j
i�1 wi � C� (we omit the

trivial case here where no suchs exists). Dantzig [57] showed that the linear relaxation of
the 0-1 knapsack has the optimal value∑s�1

j�1 pj � c ps
ws

, wherec is defined as the remaining

capacity of the knapsack after filling in the firsts� 1 items:c � C� ∑s�1
j�1 wj.

Let ∅ �� M1, . . . , Mn � B. Denote withli :� min�Mi� the minimum, and withri :�
max�Mi� the maximum ofMi, 1 � i � n. The first upper bound on KP is defined as
U1 : 2Bn

� Q with

U1�M1 	 
 
 
 	Mn� :� max�P�x1, . . . , xn� � ω�x1, . . . , xn� � 1, xi � �li, ri�, 1 � i �
n��.

It holds,

U1 :� U1�KP� �
s�1

∑
j�1

pj �

�
c

ps

ws

�
. (3.5)
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Figure 3.1: The width of each element is proportional to its weight. The elements are ordered with
respect to the efficienciespi/wi. The leftmost element has the biggest efficiency, and the rightmost the
smallest one.s marks the critical item inU1.

A second boundU2 was introduced by Martello and Toth [142]. It imposes the integrality
of the critical items. Item s either belongs to the optimal solution (leading to a valueU 1) or
not (leading to a valueU0):

U0 �
s�1

∑
j�1

pj �

�
c

ps�1

ws�1

�
. (3.6)

U1 �
s�1

∑
j�1

pj �

�
ps � �ws � c�

ps�1

ws�1

�
. (3.7)

DefiningU2 as the maximum ofU0 andU1 results in a bound dominatingU1. Formally,
let ∅ �� M1, . . . , Mn � B, and denote withs the critical item with respect to necessarily
included and excluded items implicitly defined by theMi. We setU2 : 2Bn

� Q with
U2�∅� :� �∞, and

U2�M1 	 
 
 
 	 Mn� :� max�U0, U1��∑i�s,Mi��0	 pi � ∑i�s,Mi��1	 pi.

It holds,
U2 :� U2�KP� � max�U0, U1� � U1. (3.8)

Instead of estimating the loss caused by the integrality of items by the efficiency of the
neighboring items ofs, an even tighter bound can be obtained by calculating boundsU1 on
KP�xs � 0�, and KP�xs � 1� (Fayard and Plateau [78], Hudson [113], Villela and Bornstein

[205]). LetU
0 :� U1�KP�xs � 0��, andU

1 :� U1�KP�xs � 1��. Then,U3 :� max�U0, U1
�

dominatesU1 andU2. An even tighter bound could be obtained by usingU2 instead ofU1 in

the definition ofU
0

andU
1

and so on.
Fig. 3.1 and 3.2 give graphical interpretations of the boundsU1 andU3. Obviously, all

three boundsU1, U2, U3 can be computed in timeO�n� after a preprocessing step of sorting
the items according to decreasing efficiencies. This requires timeΘ�n log n�. Balas and
Zemel [17] developed an algorithm for the calculation ofs using linear time without any

1To improve the readability, here and in the following we write CKP or KP instead ofB n, and identify
CKP[xi � b] as well as KP[xi � b] with B � � � � � �b� � � � � �B, where�b� is theith factor.
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Figure 3.2: U3 requiress � �0, 1�. The figures showU1�KP�xs � 0��, andU1�KP�xs � 1��.

preprocessing. But for the reduction algorithm that we present in the following – just as
in former reduction algorithms for the KP – the efficiency ordering is needed anyway. In
addition, we use an ordering of the items with respect to increasing weights.

In a tree search, both orderings can be calculated in an initial preprocessing step. After
that, they can be reused in every search node. Within a column generation context, the weight
ordering only has to be calculated once, but the efficiency ordering has to be recomputed every
time new dual values of the master problem lead to a change of the objective in the successive
CKPs.

3.3.3 Reduction Techniques for Knapsack Problems

A first reduction algorithm for KPs based on upper boundU1 has been proposed by Ingargiola
and Korsh [121]. In a loop over all itemsi � 1, . . . , n, the algorithm determinesU1�KP�xi �
b��, b � �0, 1�. Since each bound calculation takes linear time, the worst case complexity of
this algorithm isΘ�n2�.

If bound U2 is used instead ofU1, more effective pruning can be achieved in the same
asymptotic running time. Martello and Toth [144], showed that the running time can be re-
duced toO�n log n� while keeping the solution quality of boundU2. The key idea of their
algorithm is to compute the critical items by binary search. We refer to the methods of
Ingargiola and Korsh, and Martello and Toth as IKR, and MTR, respectively.

Dembo and Hammer [62] proposed a reduction algorithm (DHR) that runs in linear time
Θ�n�. They calculate the critical items only once for the original problem. Within a loop they
estimate the loss when removing/including itemi � 1, . . . , n by extrapolating the efficiency
of item s, which allows them to perform this step in constant time. As this extrapolation is
less accurate thanU1, their method is not as effective as IKR or MTR.

Though they were developed a decade or more ago, DHR or MTR are still vital ingredients
in state-of-the-art solvers for pure KP or quadratic KP (see e.g. Pisinger [168],[169], Porto
et al. [170]).

The algorithm we present in the following does not improve on the running time of reduc-
tion techniques based on the more efficient boundsU1, U2, if the reduction algorithm is only
called once. For such an application, the new method presented and the one developed by
Martello and Toth both use the same asymptotic timeΘ�n log n�.
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However, the situation changes if a reduction method is called many times for similar knap-
sack instances, as is the case when applying a tree search. Within a tree search, we try to prune
the search or to apply domain filtering after every branching step. The subsequent instances
only differ with respect to the sets of variables that have already been fixed. As we will see in
the next section, such a situation allows to hide parts of the work in a preprocessing step that
takes timeΘ�n log n�. When provided with the information gathered in this preprocessing,
every call to the reduction routine requires linear time only.

3.4 A Fast Filtering Algorithm based on Bound U1 and U2

We will now show how to reduce the running time of IKR and MTR toΘ�n� by making
use of information generated in a preprocessing step requiring timeΘ�n log n�. The

bounds obtained are of the same quality as in the original algorithms. Again, let KP�x j � b�
denoteB	 
 
 
 	 �b�	 
 
 
 	B, b � �0, 1�, ands�M1	 
 
 
	Mn� � minj�∑i
j � Mi�B wi �

C �∑i � Mi��1	 wi� denote the critical item of KP�xj � b�. The key idea of the routine is to
calculate the bounds of the reduced problemsU�KP�xj � b�� in an order of increasing weight
of the itemsj. Thereby, we obtain a sequence of critical items that are monotonically increas-
ing. Thus, the critical item and the upper bound for thejth item (with respect to the weight
ordering) can be transformed into the critical item and upper bound for the�j � 1�th item by
starting the calculation ofs�KP�xj�1 � b�� at s�KP�xj � b��.

The time consuming step in reduction algorithms using boundU1, U2, resp., is to determine
the critical itemss�KP�xi � b�� � 1 � i � n, andb � �0, 1�. Once these values are known,
the calculation of the upper bounds and the reduction itself only requires linear time. (In fact,
in the following algorithm the bounds can be computed at the same time as the critical items.
To clarify the argumentation, however, we just show how to calculate the latter.) By omitting
the fractional parts, it is also possible to calculate lower bounds for the KP. Reduction should
only take place, after all lower bounds have been calculated [144]. For the CKP, however, the
necessary checking of feasibility with respect to additional constraints makes the generation
of lower bounds more complicated.

Although calculatings�KP�xi � b�� for each singlei � �1, . . . , n�, b � �0, 1�, generally
takes linear time, the calculation ofall these values also only requires timeΘ�n� once we
know an orderingσ � �σ1, . . . , σn� of the items according to their weight, i.e.wσi � wσj iff
i � j. The efficiency ordering of the items as well as the the permutationσ can be obtained in
a sorting step prior to any reduction and requiring timeΘ�n log n�.

Givens � s�KP�, we know thatU�KP�xi � 1�� � U�KP� � i � s, andU�KP�xi � 0�� �
U�KP� � i � s. Thus, we only need to calculate the arraysS1 :� �s�KP�xi � 1�� � i � s�,
andS0 :� �s�KP�xi � 0�� � i � s�. We describe how to determineS0 in the following. The
calculation ofS1 is done analogously.

We iterate over all itemsi � s in increasing order of weight. In doing so, we can be sure
that s�KP�xi � 0�� increases monotonically with growingi � �0, . . . , s� 1�. Thus, we can
start the search for the next critical item at the position of the previous one.

The following book keeping argument shows that this procedure only takes linear time. We
estimate the computational effort of the reduction algorithm by assigning a unit cost (say, 1€)
to the items causing it:
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• Every itemj � s that is being passed is charged 1€. By “passed” we mean, that the
item is being included entirely when iterating from one critical item to the other.

• Every item is charged 1€ each time it is included fractionally.

The first group of items causes at mostn € costs as the critical items are monotonically in-
creasing: every item is being passed once at most. It remains to estimate the effort for all
items that are being included fractionally. Obviously, there are as many fractionally included
items as critical items at most. Therefore, this group of items also costs not more thann €.
Thus, the costs for the entire computation are inO�n�.

Finally, the calculation ofs�KP�xs � 0�� can be performed in a time that is linear in the
number of items also. Another possibility of calculating this value is to insert items at the
position corresponding toc in the weight ordering of items and to calculates�KP�xs � 0��
just like the critical items for the exclusion of the other items.

Obviously, the above algorithm can be applied with boundsU1 andU2. As a consequence,
we have shown the following

Theorem 1 After a Θ�n log n� preprocessing step,relaxedU2-consistencyfor a knapsack
constraint can be obtained in timeO�n� per choice point.

It is easy to see that, for a constant number of choice points, MTR and the algorithm given
above need the same running time ofΘ�n log n�. If Ω�log n� choice points have to be in-
vestigated, however, the time spent in preprocessing is dominated by the accumulated time
needed in the choice points. In that case, Theorem 1 implies

Corollary 1 If propagation is triggered inΩ�log n� search nodes,relaxedU2-consistency
for a knapsack constraint can be obtained in amortized timeO�n� per choice point.

Thus, in a typical CP search tree withΩ�log n� search nodes, the method presented here is
asymptotically optimal and superior to the algorithms proposed previously.
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Figure 3.3: The figure illustrates the proceeding of the reduction algorithm presented for KP�xi � 0�.
The weight ordering in which the items are tested ensures that the critical item moves monotonically
to the right.
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3.5 More Effective Cost Based Filtering using Bound U3

To strengthen the propagation abilities of the optimization constraint, we can use the
stronger boundU3:

U3�KP� is obtained by calculating boundU1 on KP�xs � 0�, and KP�xs � 1�. For prop-
agation based on that bound, we need to computesb

i , b � �0, 1�, the critical items of those
restricted KPs for whichxi � b: Let 1 � i � n, b � �0, 1�. Then, s0

i :� s�KP�xi �

b, xs�KP�xi�b�� � 0��, ands1
i :� s�KP�xi � b, xs�KP�xi�b�� � 1��.

To do so efficiently, we first determine the valuess�KP�xi � b�� using the algorithm in
Section 3.4. Then, we apply a binary search to determines0

i ands1
i for all 1 � i � n. This

leads to a running time ofΘ�n log n�. A similar idea has been introduced by Martello and
Toth [144].

Corollary 2 RelaxedU3-consistency for a knapsack constraint can be obtained inO�n log n�
time per choice point.

For real-world instances, using a binary search to determine the critical item of KP�xs �
b2, xi � b1� for b1, b2 � �0, 1�, usually does not pay off as it is likely to be “close” tos. Thus,
we consider this result to be of theoretical interest only. However, the algorithm above leads
to another propagation algorithm that is asymptotically as efficient as the one presented in
Section 3.4 (that runs in amortized linear time), but is even more effective. In fact, the bound
it uses to perform cost based filtering is at least as good asU2, but for some items it is even
U3:

Let 1 � i � n, b � �0, 1�, s :� s�KP�, s0
i :� s�KP�xi � b, xs � 0��, and s1

i :�
s�KP�xi � b, xs � 1��. In contrast to the sequence of critical items that is computed forU3,
the second variablexs that is fixed remains the same for alls0

i , ands1
i . Again by using the

algorithm in Section 3.4, we determineU2�KP�xs � 0, xi � b�� � 1 � i � n, and then
U2�KP�xs � 1, xi � b�� � 1 � i � n. For any given1 � i � n, we check whether
max�U2�KP�xs � 0, xi � b��, U2�KP�xs � 1, xi � b��� � B. If so, we fix the value ofxi to
1� b.

It is easy to see that the bound calculated is at least as good asU2. For itemsi � s with
s�KP�xi � 0�� � s and itemsi � s with s�KP�xi � 1�� � s, however, propagation is even as
effective as for boundU3. Hence, we achieve an amortized linear time algorithm based on a
’mix’ of U2 andU3 bounds.

3.6 Cost Based Filtering for Special Constrained Knapsack
Problems

Before we evaluate the propagation algorithms empirically, we would like to discuss their
applicability to two special variants of the (constrained) knapsack problem that have been

introduced in the literature.
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3.6.1 Multi-Dimensional Knapsack Problems

The multi-dimensional knapsack problem consists of the maximization of a given profit func-
tion with respect to two or more given capacity constraints. The problem can be viewed as a
collection ofm pure knapsack problems sharing one objective:

max ∑j pj xj
s.t. ∑j wi,j xj � Ci, i � 1, . . . , m

xj � �0, 1�
(3.9)

Thus, for each of the capacity constraints we can define an optimization constraint and
perform cost based filtering using the propagation algorithms we have just presented. This
approach, however, suffers a setback from the fact, that the bounds computed in each opti-
mization constraint ignore all constraints except one. Therefore, the bounds are not tight, and
filtering is less effective than it could and should be.

In Sellmann and Fahle [185], we developed a generic method for the coupling of linear
optimization constraints to one global optimization constraint, theCP-based Lagrangian Re-
laxation. When applied to multi-dimensional knapsack problems, the filtering algorithm for
the composite constraint uses the propagation routines of the individual knapsack constraints
incorporating the other constraints in a Lagrangian objective. We have shown that this ap-
proach is clearly favorable compared to the loose connection of optimization constraints that
interact by domain reduction only.

Note, however, that the asymptotic complexity improvements we introduce in this chapter
are lost when applying the knapsack filtering algorithm in the context of CP-based Lagrangian
relaxation, because for each Lagrangian subproblem the objective changes. Thus, the effi-
ciency ordering has to be recomputed which then dominates the algorithmic complexity. It
should be mentioned that this problem does not occur when the filtering algorithms presented
here are applied to column generation subproblems (as in CP-based column generation), be-
cause the objective remains fixed for the entire tree search that is applied to compute a new
column. Thus, the efficiency ordering of the knapsack items has to be recomputed only when
a new subproblem is set up.

3.6.2 Bounded Knapsack Problems

Bounded knapsack problems generalize the 0-1 KP by defining individual bounds on the so-
lution vector:

max ∑j pj xj
s.t. ∑j wj xj � C

xj � �0, 1, 2, . . . , uj�
(3.10)

Obviously, (3.10) can be transformed into a CKP by replacing one originalxj by uj new

variablesx�j,k � �0, 1�, k � 1, . . . , uj. (Notice, that a finiteuj always exists, asxj � �
C
wj
�.).

Then the algorithms presented before could be applied. This approach, however, artificially
enlarges the number of variables and completely ignores the additional structure of (3.10).

We can do better by extendingU1 andU2 to general integer bounds for KP. That is, we
chose the critical item ass :� minj�∑

j
i�1 ui 
 pi � C�. Then U1 can be re-written as



40 3 Cost Based Filtering for Knapsack Constraints

U1�KP� � ∑s�1
j�1 uj 
 pj �

�
c ps

ws

�
, wherec � C � ∑s�1

j�1 uj 
 wj. For a detailed discussion of

such generalizations, and an extension ofU2, we refer to Martello and Toth [145, pp. 84ff.].
Taking these extended bounds, efficient propagation for the bounded knapsack problem is then
easily achieved by the algorithms proposed in Sec. 3.4, 3.5.

3.7 Numerical Evaluation

After we theoretically analyzed the new algorithm in Section 3.4, we now compare it nu-
merically to different methods that were derived from KP reduction techniques presented

in the literature. All experiments were run on a Sun Enterprise 450 Model 4300 (296 MHz)
with 1 GB RAM, under Solaris 2.6. The reduction algorithms were implemented in C++ on
top of Ilog Solver 5.0 [117].

3.7.1 Test Environment

To show the potential of the new propagation techniques, and to avoid cross talking with
other constraints, we decided to base the experiments on pure knapsack problems only. In
doing so, we get a clear view of the performance of each filtering algorithm without disturbing
interferences that can evoke easily when using more complex settings incorporating additional
constraints. (see also Chapter 7). Accordingly, we also omitted specially tailored tree search
or branching strategies for pure KPs. Instead, we used the default settings of the underlying
CP library.

A word of warning is necessary here: even though our experiments are based on pure KP
data, the filtering algorithms we developed are not suited for state-of-the-art KP solvers. Also,
we do not claim that the solvers we implemented are in competition with the best KP solvers
(see Section 3.3). Our focus here is clearly on constrained knapsack problems.

A weak propagation algorithm, if started from scratch, will obviously need more choice
points to find an optimal or near optimal solution of the problem than a strong one. Therefore,
to make the comparison fair, we initialize the lower bound with the optimal objective value
B � Q and just measure the time and the number of choice points that each approach requires
to prove optimality.

The generator code of David Pisinger [168] was used to produce random instances of
two different classes of knapsack problems where the weightswj are randomly distributed
in [1,1000], and the profitspj are chosen as given below:

– uncorrelated: pj randomly distributed in [1,1000],
– weakly correlated: pj randomly distributed in

�wj � 100, wj � 100� � �1, 1100�

In all cases, the knapsack capacity is chosen asC � 1
2 ∑n

j�1 wj. The problem sizes range
from 10 to 20 000 items, and 100 knapsack problems were generated for each size and class.

We omit the classes ofstrongly correlateddata (pj � wj � 10) andsubset-sumdata (pj �
wj). It is known that the bounds described in Section 3.3.2 are not suited to these classes
(which is easy to see as� k : pk/wk # 1). For them, bounds based on cardinality constraints
have shown to be effective(Martello et al. [141], Martello and Toth [146]).2. In the application

2Cardinality constraints are a restricted form of cover inequalities which we will briefly discuss in section 8.1.1
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Name see Bound preproc time time per node
DHR Sect. 3.3.3, D/H � bound – Θ�n�
MTR Sect. 3.3.3, U2 Θ�n log n� Θ�n log n�
linU1 Sect. 3.4 U1 Θ�n log n� Θ�n�
linU2 Sect. 3.4 U2 Θ�n log n� Θ�n�

Table 3.1: Characteristics of the four algorithms used in the experiments.

area that we focus on (see Sec. 3.2), however, it is justified to assume that the evolving KPs
are more likely to fall into one of the classes that we used for our tests.

3.7.2 The Opponents

The algorithms referred to as linU1 and linU2 are based on the amortized linear time reduction
method described in Section 3.4, and they use boundsU1 andU2, respectively. Methods DHR,
and MTR have been described already in Section 3.3.3. We implemented all algorithms in the
same CP environment. Table 3.1 summarizes the major characteristics of the candidates used
in the experiments. All methods needO�n� memory for the propagation stack and for the
different orderings used. OnlyO�1� additional memory is required within a choice point.

Notice, that in our experiments we do not evaluate the filtering algorithm based on a mixture
of boundU2 andU3 which was sketched in Section 3.5. The propagation algorithm based on
this mixed bound visits only slightly fewer choice points than linU2, but therefore requires a
much higher computation time. Remember from Section 3.4 that the amount of work required
to perform propagation using boundU2 is almost the same as using boundU1. But when
using the mixed bound, the workload is twice as large as that for boundU1.

As we will show in this Section, we are facing a trade-off between the time needed per
choice point and the reduction in choice points that can be achieved by using tighter bounds.
Within the test environment that we have chosen for our experiments, a slight reduction in
choice points does not justify a much higher effort undertaken in each choice point. Therefore,
the propagation algorithm based on the mixed bound is only of interest in the context of a
more complex CKP incorporating additional and possibly hard side constraints that would
make even small reductions in the number of choice points more favorable. However, the
algorithm developed in Section 3.5 is not competitive in the KP setting we use here where we
try to avoid cross talking with additional constraints and to evaluate the pure performance of
the different propagation algorithms.

3.7.3 Experimental Results

The simple approach for solving a CKP in a CP context would be to introduce a sum-constraint
(i.e. ∑j wjxj � C) plus a constraint stating that we are only looking for improving solutions
(i.e. ∑j pjxj � B). However, as shown in Table 3.2, this approach cannot compete with the
other propagation methods at all. Both the number of choice points and the CPU time grow
exponentially as the problem size increases. A dash means that the average calculation for a
test instance takes more than two hours. Only small problems with not more than 40 items
can be solved within that time limit for both classes. The poor performance of the pure CP
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Size uncorrelated weakly correlated
n cp time cp time

10 37.77 0.01 73.74 0.01
20 1 455.80 0.16 28 736.07 2.91
30 141 338.82 15.50 16 771 406.92 1641.94
40 10 311 820.44 1410.07 — —

Table 3.2: The pure CP approach for both problem classes.cp is the average number of choice points,
time the average time in seconds for 100 instances of the given size.

Size DHR linU1 linU2 MTR
n cp time cp time cp time cp time
10 2.43 0.00 0.87 0.00 0.67 0.00 0.67 0.00
20 5.47 0.00 2.68 0.00 2.35 0.00 2.35 0.00
40 7.20 0.00 3.61 0.00 3.22 0.00 3.22 0.00
60 10.18 0.00 6.07 0.00 5.26 0.00 5.26 0.00
80 13.96 0.01 8.43 0.00 7.04 0.00 7.04 0.00

100 14.21 0.01 8.20 0.00 6.75 0.00 6.75 0.00
200 24.85 0.02 17.16 0.02 14.47 0.01 14.47 0.01
300 32.47 0.04 22.57 0.03 18.76 0.02 18.76 0.02
400 38.19 0.05 27.69 0.04 23.28 0.04 23.28 0.04
500 46.50 0.08 33.64 0.06 28.68 0.05 28.68 0.05
600 63.61 0.11 48.67 0.09 40.95 0.08 40.95 0.08
700 54.67 0.11 41.16 0.09 34.53 0.08 34.53 0.08
800 69.92 0.16 51.76 0.13 42.38 0.11 42.38 0.11
900 68.89 0.17 51.76 0.14 42.35 0.13 42.35 0.12

1000 97.83 0.26 72.38 0.21 59.73 0.17 59.73 0.18

Table 3.3: Uncorrelated data instances. We give the average numbers for 100 test sets per size.time is
the time in seconds,cp the number of choice points.

approach highlights the need for sophisticated filtering techniques when knapsack constraints
occur in a CP model. As will be shown in the following, more elaborate techniques are able to
tackle problems of several 1000 items in a few seconds, generating only relatively few choice
points.

3.7.3.1 Small Instances

Tables 3.3 and 3.4 show the average results of 100 different instances of the same data sizen.
We present the running time in seconds, and the number of choice pointscp which the method
visits. Table 3.5 shows a comparison of the different methods regarding the time per choice
point for uncorrelated and weakly correlated data.

The Dembo/Hammer based propagation method needs to visit the largest amount of choice
points among the four propagation algorithms tested. This matches the expected behavior
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Size DHR linU1 linU2 MTR
n cp time cp time cp time cp time
10 10.42 0.00 6.31 0.00 5.42 0.00 5.42 0.00
20 20.41 0.00 13.82 0.00 11.35 0.00 11.35 0.00
40 33.26 0.01 23.42 0.01 19.87 0.01 19.87 0.00
60 37.69 0.01 26.69 0.01 22.52 0.01 22.52 0.01
80 56.07 0.02 40.10 0.01 33.21 0.01 33.21 0.01

100 61.60 0.02 45.49 0.02 37.94 0.02 37.94 0.02
200 103.85 0.06 77.05 0.05 64.33 0.05 64.33 0.04
300 162.20 0.13 123.11 0.11 99.67 0.10 99.67 0.09
400 202.23 0.21 151.50 0.17 118.71 0.15 118.71 0.14
500 226.36 0.29 161.80 0.23 122.57 0.19 122.57 0.18
600 286.40 0.42 207.56 0.33 158.92 0.27 158.92 0.26
700 345.28 0.58 252.25 0.45 185.42 0.36 185.42 0.35
800 314.00 0.61 214.64 0.44 151.34 0.34 151.34 0.33
900 428.16 0.89 300.34 0.67 210.06 0.51 210.06 0.49

1000 451.74 1.04 313.50 0.78 220.33 0.60 220.33 0.57

Table 3.4: Weakly correlated data instances. We give the average numbers for 100 test sets per size.
time is the time in seconds,cp the number of choice points.

of a method that prunes with respect to weaker bounds. Due to the short time per choice
point, though, it is only slightly slower than the other methods on uncorrelated data. Thus, the
results obtained reflect the expected trade-off between an effective domain filtering and the
time needed for it. In the presence of additional constraints (causing higher times spent per
choice point than is needed for propagation), it is likely that a smaller number of choice points
will result in a faster overall computation. linU1 uses fewer choice points than DHR, but is
not as effective as theU2 based algorithms, MTR and linU2. For the big instances, these two
algorithms only visit between 50% and 65.6% of the choice points needed by DHR.

For weakly correlated data, linU2 only visits 69.7% of the choice points of the DHR routine
at most. Moreover, linU2 slightly outperforms DHR with respect to the total running time.
Notice that the time spent per choice point by linU2 for weakly correlated instances is less than
for uncorrelated data. The reason for this is, that the preprocessing time taken for initializing
the more complex data structures for linU2, and for sorting the items according to weight and
efficiency is spread over a much higher amount of choice points.

3.7.3.2 Big Instances

To get a clearer insight into the characteristics of the different algorithms, we performed some
tests on bigger instances. Going up to 10 000 items, the disadvantages of the poor bounds
used by linU1 and especially DHR become obvious. Due to a much larger amount of choice
points, the total running times exceed those of linU2 and MTR (see Table 3.6).

Still, MTR and linU2 need on average about the same time. We assume that for smaller test
instances, the binary search performed by MTR is faster than the more complex book keeping
of linU2. As the problem size increases, however, the difference in efficiency becomes more
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Size DHR linU1 linU2 MTR
n

Type
time/cp time/cp time/cp time/cp

500 uncorrelated 1.72 1.78 1.74 1.74
500 correlated 1.28 1.42 1.55 1.47

1000 uncorrelated 2.66 2.90 2.85 3.01
1000 correlated 2.30 2.49 2.72 2.59

Table 3.5: Uncorrelated and weakly correlated data instances. We give the average time per choice
point in milliseconds for 100 test sets per size.

Size DHR linU1 linU2 MTR
n cp time cp time cp time cp time

1000 97.83 0.26 72.38 0.21 59.73 0.17 59.73 0.18
2000 161.48 0.79 120.64 0.65 100.38 0.51 100.38 0.56
3000 202.34 1.59 148.43 1.31 118.90 1.00 118.90 1.06
4000 291.00 3.17 205.16 2.43 146.58 1.73 146.58 1.82
5000 360.47 4.82 245.32 3.79 184.83 2.65 184.83 2.98
6000 534.61 9.46 376.69 7.81 197.43 3.84 197.43 4.30
7000 620.48 12.90 431.55 10.11 294.18 6.78 294.18 7.57
8000 823.34 21.08 567.43 16.47 285.22 8.19 285.22 9.23
9000 1051.72 31.76 712.51 23.74 435.65 14.50 435.65 15.46

10000 1143.54 38.39 797.58 30.21 620.35 22.71 620.35 24.99

Table 3.6: Uncorrelated data. Comparison of running times for the new amortized linear time prop-
agation algorithms and implementations of DHR, and MTR. We give the average time in seconds as
well as the number of choice points for 100 test sets per size.
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Size n linU2 (time per cp) MTR (time per cp)
500 1.74 1.74

1000 2.85 3.01
2000 5.08 5.58
4000 11.80 12.42
8000 28.71 32.36

16000 71.71 75.42

Table 3.7: Uncorrelated data. Comparison of running times per choice point for the new amortized
linear time propagation algorithm based on boundU2 and the implementation of MTR. We give the
average time per choice point in milliseconds for 100 test sets per size.

uncorrelated weakly correlated
Size linU2 MTR linU2 MTR
n cp time time cp time time

10 000 620.35 22.71 24.99 1626.78 60.98 66.58
11 000 629.43 26.38 28.76 2572.45 110.47 121.08
12 000 604.87 28.04 32.31 2590.45 125.40 137.21
13 000 1341.42 69.30 77.31 2694.07 142.13 156.26
14 000 875.71 50.42 56.96 3520.18 206.68 228.54
15 000 1041.80 64.60 70.74 2818.97 185.33 204.80
16 000 1256.73 90.12 94.78 2164.99 154.56 172.14
17 000 1670.81 124.53 139.63 3145.36 250.59 276.93
18 000 2580.28 205.81 227.81 2980.91 251.43 279.63
19 000 2870.68 243.05 274.93 4871.67 435.33 476.97
20 000 2750.36 256.88 288.15 4319.27 405.56 452.50

Table 3.8: Comparison of running times of linU2 and MTR on uncorrelated and weakly correlated
data.cp is the number of choice points,time the running time in seconds.

apparent, and linU2 outperforms MTR (see Tables 3.7 and 3.8).
One drawback of the new methods is the need for an initial sorting step in the preprocessing

in which a profit and a weight ordering of all items are calculated. However, timing experi-
ments show, that this initial step costs about 0.06 seconds for 10 000 items and takes less than
0.01 seconds for 1000 items. According to Table 3.6, the total running time for these problem
sizes is much higher. Hence, the preprocessing time can be neglected in practice.

3.8 Conclusions

We proposed a formal definition of optimization constraints and relaxedL/U-consistency.
Propagation based on these concepts has proved to be quite successful in recent years.

Based on relaxation bounds for KP, we introduced a new reduction algorithm that runs in
amortized timeΘ�n� for Ω�log n� calls. This algorithm can be used efficiently as a propaga-
tion routine when solving the CKP in a CP context.
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In a CP search, the efficiency of the algorithm developed depends on the number of choice
points and the time needed per choice point: The more choice points are investigated during
the search, the less dominant the preprocessing times for initialization and sorting. If other
routines that propagate additional constraints of the CKP or calculate expensive bounds on
the objective require more time per choice point, an effective pruning behavior that justifies a
higher effort spent per choice point becomes more important.

Experiments show that in a tree search the algorithm is as effective as another method based
on a reduction technique previously proposed by Martello and Toth for KP. However, theoret-
ical analysis and experimental comparisons show, that the new method is asymptotically more
efficient. Finally, the routines presented have already been used successfully in combination
with other constraints in a Lagrangian relaxation based approach for a multimedia application,
see Chapter 7.



4
Airline Crew Rostering

Routing and scheduling of crews and equipment in large public transportation networks
such as airlines, railways, and bus companies has been a major field for optimization for

a long time. Different planning problems such as fleet assignment, aircraft routing, and crew
scheduling have been addressed by numerous research papers. A recent book by Yu [213] and
the article by Rushmeier et al. [181] give examples of problems and solution approaches in
the airline industry.

Optimizing crew scheduling problems is highly motivated by the potential cost savings
in this area. According to Anbil et al. [3], published in 1991,“a one percent increase in
[American Airlines’] crew utilization translates into US-$ 13 million savings each year”.1

The“total crew cost [. . . ] exceeded US-$ 1.3 billion every year and was second only to fuel
cost”. For United Airlines Graves et al. [96] report“savings of US-$ 16 million annually in
crew scheduling costs”after switching to some crew planning system. Deutsche Lufthansa
reported crew costs of€922 million for the passenger segment for the first half of 2002 (see
[66]), which is almost one fifth of all expenses in that segment (€5.2 billion).

Nowadays most large airline companies use optimization in crew planning. Nevertheless,
improving the underlying algorithms or models can still result in savings of some million Euro
per year.

4.1 Solving Airline Crew Rostering Problems

In theairline crew scheduling problema set of basic activities or tasks2 – typically, to fly an
aircraft from A to B – has to be assigned to a set of crew members such that all basic ac-

tivities are covered. Additionally, complex rules and regulations coming from legislation and
contractual agreements have to be met by the solutions. Different objectives like minimizing
overall costs and maximizing crew satisfaction are of interest. The latter objective is chosen in

1At that time, American Airlines employed more than 8 300 pilots and 16 200 flight attendants [3].
2We will useactivity andtasksynonymously.
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so-called preferential bidding systems where crew members are allowed to express their likes
and dislikes for certain activities (see, e.g., Gamache et al. [84]).

In larger airlines the crew scheduling problem is decomposed into a crew pairing and a crew
assignment (or rostering) problem. In the crew pairing problem the basic activities,flight legs
(flight without stopover), are grouped into so-calledpairings. A pairing is a sequence of
flight legs usually starting and ending at the same home base and is considered one single
“piece” of work. A pairing corresponds to one or more days of work and will be assigned as
a whole to one or more named individuals. However, in the crew pairing problem the pairings
remain anonymous. Pairings have to respect certain rules, e.g., connection time between flight
legs and rest time between duty days. The crew pairing problem has been studied by several
authors (see, e.g., Andersson et al. [5], Barnhart and Shenoi [20], Chu et al. [54], Desaulniers
et al. [63]).

The topic of this chapter is thecrew assignment problem(CAP). In the CAP the pairings
together with other activities such as ground duties, reserve duties, and off-duty blocks must
be assigned to named individuals. The outcome of this is a so-calledroster for each crew
member. Rosters must respect rules and regulations additionally to those considered in the
pairing problem. These rules can be classified intosingle crew member rulesandmultiple
crew member rules. The rules of the first class only influence the legality of a single roster,
whereas those of the second class express regulations on combinations of rosters or crew
members. Crew assignment is considered to be a large scale optimization problem, as in
practice several thousand pairings and other activities have to be assigned to hundreds or
possibly even thousands of crew members. The number of rules and regulations which must
be respected can be up to one hundred and the number of possible rosters is gigantic.

4.1.1 The Airline Crew Assignment Problem

Given a set of crew members, a set of pairings, a set of rules and a cost function, aroster
is an assignment of a subset of pairings to one specific crew member. Ascheduleis a set
of rosters such that all rules are obeyed and every pairing is assigned to exactly one crew
member. Rules may concern asingle crew memberor multiple crew members. Single crew
member rules regard each individual crew member’s roster, stating for example that no two
temporally overlapping pairings can be assigned to the same crew member. Multiple crew
member rules aim at more than one crew member, stating for example that two given pairings
must be assigned to two crew members out of which at least one must have a certain level of
experience. The cost function associates a cost with every legal schedule, and its minimization
is desired.

In our case, every rule in the rule set only deals with just one single crew member, and the
objective function is linear over the rosters. That means that only single crew member rules
can be modeled and that the cost of the entire solution to the CAP is defined as the sum of the
costs of the selected rosters. More formally:

Definition 8 Let k, m, n � N and letC :� �1, . . . , m� theset of crew membersand T :�
�1, . . . , n� theset of pairings.

1. LetR :� C 	 2T. Everyr � R is called arosterandR is called theset of all possible
rosters.
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2. LetB :� �0, 1� and H :� �h1, . . . , hk � hi : R � B � 1 � i � k�. Everyh � H is
called a(single crew member) ruleandH is called arule set.

3. A rosterr � R is called legal (with respect to a rule setH) iff h�r� � 1 � h � H.
L�H� :� �r � R; r is legal� is theset of legal rosters (with respect to the rule setH).

4. f : R � Q� is called acost function.

5. TheCrew Assignment Problem (CAP)is to minimize∑1
i
m f ��ci, ti��, where�ci, ti� �
L�H� � 1 � i � m s.t.

a) �c1, . . . , cm� � C

b)
�

1
i
m

ti � T whereti � tj �� ∅ � i � j � 1 � i, j � m

The model as stated above neither allows non-linear objectives when combining rosters,
nor permits to restrict the combination of rosters by additional multiple crew member rules
one might be interested in when tackling real life applications. Nevertheless, the methods we
present to solve the above problem allow to treat linear multiple crew member rules as well.

4.1.2 Current Solution Methods

To our knowledge, all published work on the airline CAP follows the idea of generate-and-
optimize or column generation, see Gamache and Soumis [84], Day and Ryan [61], and Ryan
[182] for examples. The problem is divided into a subproblem where a subset of all legal
rosters is generated, and a master problem where some of these rosters, one for each crew
member, are selected. The master problem is a linear integer program whereas the structure
of the subproblem is dependent on the rules, regulations, and objectives of the underlying
CAP. Usually, one iterates between the master problem and the subproblem, thus gradually
improving the solution quality.

The generation of legal rosters in the subproblem is either done by partial enumeration
based on propagation and pruning techniques [131] or by solving a resource constrained short-
est path problem where the constraints ensure that only legal rosters are generated. The ob-
jective function measures the reduced costs of the roster with respect to the solution of the
continuous relaxation of the master problem defined on the previously generated rosters [84].
The latter approach is known as resource constrained shortest path column generation. In this
approach, the subproblem can be solved optimally and one can prove that it is possible to
obtain the optimal solution to the entire (relaxed) problem without explicit enumeration of all
possible rosters.

Resource constrained shortest path column generation is a very powerful technique but it is
only useful if rules, regulations and objectives satisfy certain properties (see Desrosiers et al.
[65] for an overview). Especially for European airlines though, there are very strict rules
enforced by legislation, unions, etc. that define the feasibility of schedules. Propagation and
pruning techniques do not depend on particular assumptions on the problem, and thus seem
to be a good choice for highly constrained rostering problems.

Several alternative approaches have been proposed for solving the railway CAP, which dif-
fers slightly from the airline crew assignment, but also has to model rules and regulations.
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Caprara et al. [47] gave an algorithm that uses information from a Lagrangian lower bound
based on the solution of an assignment problem to guide a heuristic. Their algorithm won
the first prize in a competition organized by the Italian Railway Company. For the Lisbon
Underground, Cavique et al. [50] used a Tabu Search procedure working on the entire so-
lution. The contractual and operational rules in this case consist mainly of time limits for
minimum/maximum work time and for meal breaks.

For the approach presented here, the work of Caprara et al. [45] is of certain interest. Their
approach is mainly based on the constraint logic programming (CLP) paradigm enhanced
with a lower bounding procedure taken from the operations research field. This is the natural
choice since good and fast bounding procedures were available from [47]. The efficiency
of the approach is supposed to be due to the existence of these bounding procedures for the
case considered. Thus, a generalization to the generic airline CAP considered here is not
straightforward.

4.1.3 The Airline Test Case

For our experiments, we use data for several 4 week planning periods of Spring and Summer
1998 from a major European airline (companyA). The problem instances consider cockpit
crew at one crew base and consist of around 400 crew members and around 1000 activities
which have to be assigned.

For the crew assignment, the airline is interested in fair rosters which minimize overall
costs. The costs are represented by a linear objective function on the rosters and the unas-
signed activities. The main costs of each roster depend on the total flight time (or block time)
and costs on extra days off.

In the production system of that airline, around 90 single crew member rules are imple-
mented. Representative subsets of rules and regulations have been chosen for our experiments.
However, certain issues such as individual rule relaxations or restrictions are not considered.

The following lists seven rules which have been implemented for the test case presented
here. The formulations of some rules use the termairline daywhich is a 24 hours period not
corresponding to a calendar day. It starts at timeτ on one day and ends one minute beforeτ
on the next day.

(R1) Minimum Rest at Home Base:A crew member gets at least anη1-hour rest period at
his/her home base between two activities.

(R2) Minimum Rest for One Day Off:If a crew member has one complete airline day off, i.e.,
the rest between two activities contains one airline day, the rest period must be at least
η2 hours.

(R3) Minimum Rest for Two Days Off:If a crew member has two complete airline days off,
i.e., the rest between two activities contains two airline days, the rest period must be at
leastη3 hours.

(R4) Minimum Rest for Three Days Off:If a crew member has three complete airline days
off, i.e., the rest between two activities contains three airline days, the rest period must
be at leastη4 hours.
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(R5) Latest Check-out for Two Days Off:If an activity is followed by a rest period containing
two airline days, the activity is not allowed to end in anight period, i.e., the period
defined by an interval [τ1, τ2].

(R6) No Early Briefing After Five/Two:After a 5-day working period followed by two airline
days off, a crew member cannot be assigned an activity starting before timeτ3.

(R7) No two trips on the same day:Except for preassignments, it is not allowed to have two
flight trips on the same day.

Additionally, crew members are required to have special activities like simulator training,
medical checks, etc. during the planing period under consideration. These activities usually
require interaction with resources that are not necessarily known in the planning system (e.g.,
slots for the simulator, medical personal, etc.). Therefore, in the present work they are not
handled as special rules but simply by assigning these activities to a crew member in advance.
We refer to these activities aspreassignments.

Note, that due to the generic approach based on CP, the rule set can easily be extended and
modified without significantly changing the algorithms described in the following sections.

For the column generation approach used in this work, we decompose the CAP into a
subproblem, where legal rosters that obey (2.8) are generated, and a set partitioning master
problem ensuring that all activities are assigned exactly once.

4.2 A Column Generation Model for the CAP

The definition of the CAP as stated above allows to apply the column generation principle,
i.e., it can naturally be decomposed into thesubproblemof generating legal rosters and

the set partitioningmaster problem. The latter one is an integer program (IP) that ensures 5a
and 5b of Definition 8.

4.2.1 The Subproblem

For each crew member we generate a set of rosters. A roster for crew memberc is a set of
activitiesY that contains the chosen and possibly preassigned activitiesP of the crew member
and that satisfies all single crew member rules. Each generated roster leads to the introduction
of a new column in the master problem. For this purpose, we need the cost coefficientcY that is
defined by this roster, as well as the coefficientsai,Y for each constraint of the master problem.
These coefficients are uniquely defined by a roster and will be calculated when generating the
roster. They also allow to check (2.8) and to generate only rosters with negative reduced costs.

The subproblem for each crew member consists of generating a set of rosters. For each
roster we have to find a setY of activities, a cost coefficientcY, and the coefficientai,Y for the
master constraint such that the following conditions are satisfied:

1. P � Y � T, whereT is the set of all tasks that have to be assigned,

2. Y satisfies the single crew member rules, and

3. obeys the negative reduced cost constraintcY �∑i λi 
 ai,Y � 0.
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In the following, we introduce a constraint programming approach in Sect. 4.2.1.1 and show
how costs and reduced costs can be determined by finding a path in a graph (Sect. 4.2.1.2). We
introduce and show how to encode the reduced cost constraint in this approach (Sect. 4.2.1.3).
In order to obtain a powerful propagation, we additionally exploit the path-finding algorithm
and encapsulate it in a path constraint (Sect. 4.2.1.4). Section 4.2.2 shows how the propa-
gations of this constraint can be computed efficiently in linear time. Since the path finding
approach alone does not take into account all airline rules, we introduce these additional con-
straints into the constraint model in Sect. 4.2.2.1. Finally, Sect. 4.2.2.2 presents some search
heuristics for solving the subproblem.

4.2.1.1 Formulation as a CSP

In this section, we formulate the subproblem as a constraint satisfaction problem allowing us
to express complex airline rules and regulations.

For the roster generation problem of crew memberc, we introduce a single set variableY
denoting the (unknown) set of tasks ofc. The value ofY has to be a subset of the set of tasks
T. Initially, the possible set pos�Y� contains all tasks and the required set req�Y� contains all
preassigned tasks of the crew member. During roster generation, the required set contains all
tasks that have already been assigned to the considered crew member, whereas the possible set
contains activities that are still candidates to be assigned. Constraint propagation and search
decisions will then remove tasks from the possible set or assign new tasks by adding them to
the required set. If the required set is equal to the possible set, the set variable is bound and a
solution has been found.

Most rules and regulations require the introduction of further constrained variables. For
example, for ensuring a minimal rest time after a given number of days off we introduce a
constrained integer variabledi for each taskti that represents the number of days off directly
after this task.

We now give a small example illustrating effects of domain reduction during roster genera-
tion. Consider the set variableY of a crew memberc and suppose that its possible set pos�Y�
initially contains the four taskst1, t2, t3, t4 satisfying following properties:

0 � start�t2�� end�t1� � η1
1day � start�t3�� end�t1� � η2

η2 � start�t4�� end�t1�
(4.1)

If crew memberc has no preassigned tasks then the required set req�Y� is empty initially.
Now we start the roster generation procedure which explores different search decisions. For
example, it assigns taskt1 to crew memberc by adding it to req�Y�. This search decision
leads to following domain reductions, which are all executed before another search decision
is made.

1. Sincet1 is in req�Y� and the rest betweent1 andt2 is smaller than the minimal rest time
η1, the minimal rest time rule removest2 from pos�Y�.

2. The earliest task that can followt1 is nowt3. Since the rest time between these tasks is
greater than 1 day the lower bound min�d1� of the variabled1 representing the number
of days off aftert1 is set to1.
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3. Since the rest time betweent1 andt3 is smaller than the minimal rest timeη2 after 1
day off, the minimal rest time rule for 1 day off removest3 from pos�Y�.

Table 4.1 summarizes these domain reductions.

Initial domain Add t1 to Y Reduced domains
req�Y� ∅ �t1� �t1�
pos�Y� �t1, t2, t3, t4� �t1, t2, t3, t4� �t1, t4�

Table 4.1: Domain reductions after an assignment

4.2.1.2 Shortest Path Problems

So far, we have not discussed how to calculate the coefficientscY andai,Y (as introduced in
Sect. 4.2.1). In CAPs, the costcY of a roster is often determined by an additive cost function,
and in cases where the cost is not completely additive, an additive function will usually be a
good approximation. Furthermore, the dominating terms in (2.8) tend to be those associated
with theλ coefficients, as there is a strong feasibility component in the problem. These terms
are always additive. For each taskt selected inY, we obtain a costct and the resulting cost
of the roster is the sum of thect’s of all selected tasks. The costct does not only depend on
taskt, but also on the next taskt�. For example,ct can depend on the rest time aftert which
depends on the arrival time oft and the departure time oft�. In the following, we assume that
roster costs are in fact defined by a sum of task costsct which depend on the selected taskst
and their successorst� (but not on any other tasks).

Due to this assumption, we can model the problem of finding a cheapest set of tasks by the
problem of finding a shortest path in a weighted graphG � �V, E�. The nodes of the graph
are the tasks plus an additional sources and an additional sinks �.

V � T � �s, s�� (4.2)

If taskt� has a start timestart�t�� that is greater than the end timeend�t� of taskt we introduce
an edge�t, t��. Furthermore, we introduce an edge from the sources to any taskt and an edge
from any taskt to the sinks�:

E � ��t, t�� � T 	 T � end�t� � start�t��� � ��s, t�, �t, s�� � t � T� (4.3)

Hence, the graphG is a directed acyclic graph and if we order the tasks inT by increasing
start time we obtain a topological orders, t1, . . . , tn, s� on the nodes (see Fig. 4.1).

Each legal roster corresponds to a path from source to sink. The roster costs are obtained
as the path costs if the edge weights are given as follows:

1. An edge from sources to nodet is labeled with costsωs,t :� 0.

2. An edge from nodet to nodet� is labeled with the costsωt,t� that present the costs for
executingt� directly aftert.

3. An edge from nodet to the sink nodes� is labeled with the costs thatt will have if it is
the last task in the roster.
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Figure 4.1: An optimal and legal roster is equivalent to a constrained shortest path in a weighted DAG.

We can also represent the reduced costs of a roster in this way. We distinguish two kinds of
constraints in the master problem. The first kind of constraint ensures that exactly one roster
is selected for each crew member. We know a-priori that the coefficientai is 1, if constraint
i concerns the considered crew memberc and0 otherwise. The second kind of constraint
ensures that each task is covered by the required number of crew members. The coefficientai
of the latter constraint will be1, if the constraint concerns taskt and if taskt belongs to the
selected path. Otherwise it will be0. We can therefore simplify (2.8) as

�λc � ∑
t�Y

�ωt,t� � λt� � 0 (4.4)

whereλt is the dual value of master constraint for taskt andλc is the dual value of master
constraint for crew memberc. Edge weights are then adapted correspondingly.

1. For edges from the sources to any taskt we only add the negative dual of the crew
member, i.e.,

c�s,t � �λc. (4.5)

2. Edges from nodet to nodet� (or to sinks�) are labeled with the difference of the initial
costsωt,t� and the dual value of taskt:

c�t,t� � ωt,t� � λt (4.6)

These new costsc�t,t� reflect the reduced costs for performing activityt� after t. We call them
also reduced costs of activityt and we distinguish them from the initial costsc t,t� of taskt.
Each roster with negative reduced costs then corresponds to a path from source to sink with
negative costs in the graph with weightsc �t,t�. However, not every path from source to sink is a
legal roster. We can already reduce a large number of illegal paths in a preprocessing step by
removing edges. If taskt� cannot follow taskt since this violates some rule (e.g., on minimal
rest time) we suppress the edge�t, t�� in the graph. Rules that depend on more than two tasks
cannot be treated in this way. For example rule (R6) requiring a day off after 5 days of work
depends on more than two successive tasks. In the next sections, we show how constraint
satisfaction techniques can be exploited to obtain dynamic reductions of the graph.

4.2.1.3 A Negative Reduced Cost Constraint

We show how to encode the negative reduced cost condition in the CSP-framework. The first
idea is to use (4.4) and to directly encode it by a sum-over-set constraint. For the sake of
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readability we do not specify the relation of the constraints, but just give the condition that the
constraint is imposing on the value ofY.

�λc � ∑
t�Y

c�t � 0

where c�t � ct � λt

(4.7)

The initial costsct of taskt and its ‘reduced costs’c�t are represented by constrained variables.
The variablect can have a more complex definition involving next-in-set constraints (which
will be explained in Sect. 4.2.2.1).

Although this is a straightforward way to express the negative reduced cost constraint, we
have to analyze how effective it is. The negative reduced cost constraint is a very tight con-
straint. If it does not reduce the domains sufficiently early during the search, much search
effort will be spent in subtrees of the search space which will not contain any roster of nega-
tive reduced cost.

We only have an upper bound on the reduced costs of a roster, namely0. The sum-over-
set constraint uses this upper bound as follows. First, it determines a necessary lower bound
lb by summing up the lower bounds min�c �t� of the tasks. Iflb is strictly greater than0
an inconsistent search state is reached and backtracking occurs. Otherwise, if the boundlb
is smaller than0 the constraint checks for each elementt in pos�Y� � req�Y� whether its
selection would make the lower bound greater than0. If so, the taskt will be removed from
the possible set.

This method is only efficient, if a good lower bound is computed. The lower bound is
defined as follows:

lb :� �λc � ∑
t�req�Y�,min�c�t��0

min�c�t� � ∑
t�pos�Y�,min�c�t��0

min�c�t� (4.8)

Suppose that almost all tasks could have negative reduced costsc �t. The sum-over-set con-
straint does not know any incompatibilities between tasks and assumes that all tasks in pos�Y�
could be selected. In this case, we obtain a very small negative lower bound, which probably
will not lead to any domain reductions. Domain reductions will only occur deep in the search
tree when the size of the possible set comes close to the size of the required set.

The graph introduced in Sect. 4.2.1.2 avoids a large number of incompatible tasks. If task
t� cannot follow taskt there is no edge fromt to t�. A path of the graph never contains two
successive tasks that are incompatible. As a consequence, a shortest path in the graph leads to
a much tighter lower bound and to better propagation.

In the next section, we introduce a path constraint that implements this approach and that
provides a significant improvement over the sum-over-set constraint. We nevertheless keep the
sum-over-set constraint in order to be able to measure the improvements. In our experiments
we use a simplified implementation of this sum-over-set constraint that avoids all calculations
for propagations which will probably not be effective anyway. It just provides the basic prun-
ing rule that compares the calculated lower boundlb with the given upper bound0. Hence,
no domain reduction is caused by this constraint. It thus provides an interesting basis for
comparisons, because it is fast and does not lead to any computational overhead.
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4.2.1.4 Cost based Filtering for Shortest Paths on DAGs

In this section, we introduce a path constraint for acyclic graphs that provides a powerful
propagation for the negative reduced cost condition.

The path constraint is defined for a directed acyclic graphG � �V, E�, the edge costsci,j, a
set variableY, and a variablez. The graphG has the same form as in Sect. 4.2.1.2 except that
we use numbers for representing the nodes. If the tasks are ordered by increasing start time as
follows t1, . . . , tn we replaceti by i, s by 0, ands� by n � 1. Since there is no edge fromi to j
if j � i, the node numbers represent a topological order.

To simplify the notation we definet0 :� s andtn�1 :� s�. The path constraint then has the
variablesY andz and is defined by two conditions:

1. Y represents a path in the graph from sources to sinks�, i.e.,Y � T and

��i, j� � ti � Y � �s�, tj � next�ti, Y�� � E (4.9)

2. z is the sum of the edge costs

z � ∑
ti�Y
�s	,

tj�next�ti,Y�

ci,j (4.10)

where next�t, Y� denotes the successor oft on the pathY. Since we have a topological order
on G, this successor is uniquely defined as

next�t, Y� � min�t� � Y � �s�� � t� � t� (4.11)

where tj � ti iff j � i.

In the following, we introduce propagations of the path constraint that are important for
roster generation. In this case, we just have the upper bound0 on the path costsz. The
propagations require the calculations of paths from source to sink that contain all required
tasks and only possible tasks (i.e., the set of nodesY of such a path has to satisfy req�Y� �
Y � pos�Y�). We call such a pathadmissible. The propagation rules are:

1. If the bound min�z� is smaller than the costslb of the shortest admissible path (or�∞
if there is no admissible path) we replace it bylb. If the new bound is strictly greater
than the upper bound max�z�, a failure is obtained as a consequence.

2. If the costs of the shortest admissible path through nodei for i � pos�Y� are strictly
greater than the upper bound max�z� we can removei from pos�Y�.

In the next section, we show how shortest admissible paths can be computed efficiently. Fur-
thermore, we discuss how to maintain these paths when incremental updates occur.
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4.2.2 Implementation

To compute a lower bound on the reduced costs, we just have to solve thesingle source
shortest path problem(SSSP) starting with nodes. We denote the single source shortest path
distance froms to s� by ys

s� and call it theSSSP-distance. The SSSP-distance is the desired
lower bound on the reduced costs of all legal rosters, as each of them can be identified with a
�s, s��-path.

To solve the SSSP, we apply an algorithm that makes use of the acyclic structure of the
graph. It visits nodes in topological order and thus runs in linear timeO��V�� �E��. Further-
more, it does not require that edge costs are positive (see Cormen et al. [56] for details).

However, we have to ensure that the algorithm determines only nodes which are subsets of
pos�Y� and supersets ofreq�Y�. For this purpose, we consider only nodes inpos�Y� and we
ignore all edges�i, j� that go around a node ofreq�Y�. That means, if there is ak � req�Y� s.t.
i � k � j we do not consider�i, j�. This can be done efficiently by determining the smallest
elementk � req�Y� that is strictly greater thani and ignoring all edges�i, j�, � j � k.

During the search for a legal roster, the domain ofY changes frequently, which means that
many and often similar SSSPs have to be solved. We therefore developed an incremental
version of the algorithm that computes the differences in the domains of the current and the
last iteration. The required set may have grown and the possible set may have shrunken. If
a new node became required, we need to restart the SSSP-algorithm with this node and can
stop when we first run over an already formerly required node; its difference in distance then
applies to all following nodes as well. The algorithm follows the support idea in the style of
AC-6 (Bessière [31]). If a nodei� left the possible set, we check if any adjacent nodei is
affected by that change. We calli� thesupport nodefor i.

If the nodei is affected, its support may be replaceable by another node without a change
in the distanceys

i to the start nodes. If this is not the case, we need to do the distance update
and mark the successors of nodei for a continuing update on all affected nodes. Notice, that
the updates for all nodes can be done in one pass.

Of course, if the lower bound becomes greater than zero, the search for a legal roster with
negative reduced costs fails and we backtrack. If not, we can use the distance information just
computed to reduce the domain ofY further.

To eliminate activities frompos�Y�, we must determine the cost of a shortest admissible
path going through nodei � pos�Y�. For directed acyclic graphs, this cost is simply the sum
of the costsys

i of the shortest path from the sources to nodei and the costsys�
i of the shortest

path fromi to the sinks�. The latter can be computed with the same algorithm by just inverting
all the edges and by applying it to the sinks �. If ys

i � ys�
i is non-negative, we removei from

the possible set. This idea was originally proposed by Aneja et al. [6].
We summarize our discussion in Alg. 5. To have a compact representation we omit the

technical details of the incremental variant.

4.2.2.1 Single Crew Member Rules

The rules and regulations coming from legislation and contractual agreements are formulated
by constraints over set variables, such as cardinality constraints, sum-over-set constraints,
next- and previous-in-set constraints, or set-of constraints. Most of them are provided by the
constraint library ILOG SOLVER, others have been implemented as extensions of SOLVER.
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Algorithm 5 (Non-Incremental) Shortest Path Constraint
for all i � T do

ys
i � ∞; ys�

i � ∞;
ys

s � 0; ys�
s� � 0 // Init source and sink

k � 0;
// determining shortest path from sources to all nodes
for all i � V taken in increasing topological orderdo

if (k � i) then
k � min�l � req�Y� � l � i�; // get next required node in the top. ordering

for all j � pos�Y� s.t. �i, j� � E and j � k do
if (ys

j � ys
i � ci,j) then

ys
j � ys

i � ci,j

// determining reverse shortest path from sinks� to all nodes
k � 0;
for all i � V taken in decreasing topological orderdo

if (k � i) then
k � max�l � req�Y� � l � i�; // get next required node in the top. ordering

for all j � pos�Y� s.t. �j, i� � E and j � k do
if (ys�

j � ys�
i � cj,i) then

ys�
j � ys�

i � cj,i

if (ys
s� � min�z�) then

min�z� � ys
s� // propagate new lower bound on costs

for all i � pos�Y� do
if (ys

i � ys�
i � max�z�) then

pos�Y� � pos�Y� � �i� // exclude nodes that are too expensive

Given the flight timeft (block hours) of each taskt and a maximal flight timeF, we can
express a maximal flight time rule by a sum-over-set constraint

∑
t�Y

ft � F. (4.12)

In order to express a minimal rest time rule between two successive tasks, we need the arrival
timeend�t� of a taskt and the departure timestart�t�� of the next taskt�. Given a minimal rest
time η between two tasks, the minimal rest time rule can then be expressed by the next-in-set
constraint (4.11) as follows:

start�next�t, Y�� � end�t� � η (4.13)

where next�t, Y� is defined as in (4.11).
Regulations on days off, maximal duration of working periods, and so on, can be expressed

as well, but usually lead to more complex constraint models. In order to facilitate this model-
ing task, a specific ROSTERLIBRARY has been developed in the scope of the PARROT project
[165]. Complex crew regulations that have been formulated by expressions of the ROSTER

LIBRARY are automatically translated into compact constraint models of SOLVER.
In real-world CAPs the rules and regulations will vary from crew member to crew member.

Quite often individuals only differ with respect to parameters (e.g. reduced flying time). This
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does not affect the number of rules or the structure of these. It may also be, that there has
to be some kind of compatibility between attributes (e.g. qualifications) of the crew member
and attributes (requirements) of the tasks. This is also modeled with generic rules, where
the results clearly depend on the crew member in question. A common rule requires that
the aircraft type flown must be in the set of aircraft types, for which the crew member is
qualified. We may have cases where different crew members work under completely different
agreements. This increase the number of rules, but not necessarily the number of constraints,
as some rules will not apply to all crew members.

Since the resulting models become quite complex, we illustrate the possible propagations
just for two rules, namely (R1) and (R2). For (R1) (Minimum Rest at Home Base) we get a
constraint model that excludes all those activities from the possible set ofY that cannot follow
legally any already required activity. Rule (R2) (Minimum Rest for One Day Off) is modeled
such that any possible activity that follows a required one with one airline day in between is
excluded from further search, if the rest time is less thanη2. The corresponding propagation
rules are given in Alg. 6.

Algorithm 6 Propagation Algorithm for Rules (R1) and (R2)
for all t � req�Y� do

for all t� � pos�Y� � req�Y� do
if (start�t��	 end�t� � η1) then

pos�Y� � pos�Y� � �t�� // Rule R1

for all t � req�Y� do
for all t� � pos�Y� � req�Y� do

if (one_airline_day�t, t�� AND (start�t� �	 end�t� � η2)) then
pos�Y� � pos�Y� � �t�� // Rule R2

4.2.2.2 Search Heuristics

The shortest path constraint and the negative reduced cost constraint help to reduce the search
effort in pruning parts of the search tree without using the special structure of the underlying
problem. However, for moderate to large size real-world problems this pruning alone is not
sufficient for finding promising rosters. Heuristics designed for the special structure of the
CAP are needed to prune further and/or guide the search to promising regions of the search
space. The search space is explored by Alg. 7.

Algorithm 7 A Non-Deterministic Algorithm Describing the Search Tree
while �pos�Y� 
� req�Y�� do

1: select a taskt � pos�Y� � req�Y� s.t.t is on a shortest admissible path
2: chose�req�Y� � req�Y� � �t�� OR �pos�Y� � pos�Y� � �t��
3: apply constraint propagation algorithm

The task selection (Step 1 in Alg. 7) should take care of first selectingthe bestactivity from
the possible set. It is often possible to sort activities during preprocessing (static ordering). In
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case the order of activities depends on the search history, the ordering can also be carried out
during the search (dynamic ordering).

As static ordering method one can choose the first possible successor of the last activity that
is already required. This first activity first approach is believed to be good at generating pro-
ductive rosters with only little idle time between activities. In general, these rosters have a low
cost, due to the fact that airlines typically prefer such rosters to those with much unproductive
time between two activities. This static ordering is also used by Ryan [182].

We get a dynamic ordering when using the shortest path constraint and choosing the pairing
on the path that contributes the lowest value to the path costs. TheLowest Reduced First
(LRF) method selects a task with the lowest reduced cost and proves to be superior in our
experiments. The advantage of LRF is that the costs contributed by the pairing to the resulting
costs of the roster are also taken into account.

For the branching order (Step 2 in Alg. 7) we try to add the selected task to the required set
of Y in the first branch and to remove it from the possible set ofY on the second branch.

4.2.3 The Master Problem

To combine the rosters generated by solving the subproblem to one entire work plan, the
master problem has to be solved. It consists of minimizing the total cost (the sum of all
chosen rosters) by choosing exactly one line of work for each crew member, such that all
pairings are assigned exactly once. This problem can be stated asset partitioning problem
(SPP).

SPP: min c x, s.t. A x � 1, x binary (4.14)

We are also interested in theset covering problem (SCP)as we use it as a relaxation of the
SPP:

SCP: min c x, s.t. A x � 1, x binary (4.15)

whereA is a 0-1 matrix, andc is the cost vector for the columns. Both problems are well
studied and good algorithms solving (4.14), (4.15) can be found in the literature (see e.g.,
Caprara et al. [43, 44], Hoffman and Padberg [111], Wedelin [208]).

A legal rosterY for a crew member is translated into a column of matrixA by inserting 1’s
into the row corresponding to the crew member and into all rows that correspond to activities
used inY. Especially in the beginning, however, it is unlikely and hard to guarantee that the
columns generated so far will fit together exactly. Havingn crew members andm activities,
we extendA by unit-vectorsei, i � 1, . . . , n � m, ensuring that the resulting set partitioning
problem always has a feasible solution. The so-calleddummy rosterscan be interpreted as
crew members without work (i � 1, . . . , n), and uncovered activities (i � n � 1, . . . , n �
m), respectively. To find meaningful solutions, we have to penalize uncovered pairings by
assigning high costs to the columns representing them.

Obviously, solutions consisting of many dummy rosters are not of interest. Therefore we
relax the lastn constraints to SCP constraints, i.e., every activity must be coveredat least
once. Due to the high costs of the dummy rosters, a solution will contain few or even no
dummy rosters. But in the solution some of the chosen columns might collide in the sense
that there are activities that are assigned more than once. Then, a solutions respecting SPP
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constraints is heuristically obtained by adding new legal subrosters extracted from colliding
ones.

However, in some cases it is not possible to simply fix collisions without generating new
rosters in the subproblem. E.g., a rule limiting the minimum working time for a roster might
not allow to build subrosters of a colliding roster. In such a case, the solution of the SPP will
contain dummy rosters and the subproblem has to generate different rosters from scratch using
new dual information. In Chapter 5 we present a systematic way to master this problem.

4.2.3.1 Multiple Crew Member Rules

In real world applications of crew assignment, there is also a class of multiple crew member
rules that involve properties ofseveralrosters. E.g., for cabin crew it might be necessary
to have at leastn1 people speaking a certain language on a certain flight. Another typical
example is to have at mostn2 unexperienced persons in the cockpit. As the subproblem only
handles single rosters, these rules have to be handled in the master problem.

A simple way of integrating linear multiple crew member constraints (as the ones sketched
above) is to extend the SPP by additional constraints. These constraints are usually expressed
by a weighted sum over some attributes of the crew members. The only complication arising
then is to compute the reduced costs when generating rosters in the subproblem. To do this,
the column generator just needs to have knowledge about the coefficients of the multiple crew
member constraint that will arise when adding an activity to a roster. In essence (4.8) is
adapted by adding dual values of all those multiple crew member rules in which the current
crew member provides a nonzero attribute.

Therefore, multiple crew member rules do not change the behavior of the negative reduced
cost constraint in principal. Thus to keep the setting simple we will not use multiple crew
member rules in the experiments (Sect. 4.4).

4.3 Overview of the Entire Approach

With the different components discussed before, we are now able to describe their inter-
action. First, we set up the master problem and add dummy rosters (i.e., crew members

without work and unassigned activities) to ensure the existence of a solution. We addition-
ally append a certain number of initial rosters for each crew member. Then we initialize the
column generator and define the search strategies to be used.

Entering the (outer) loop ofmaster iterations(see Fig. 4.2), we solve the current SPP-
IP and get a first current solution and new dual values of the LP-relaxation. The column
generator then defines the next subproblem to be solved by picking a crew member and maybe
additionally applying other search limitations as, e.g., fixing some assignments according to
a time window focus and the current SPP solution. We start generating a specified number
of rosters, then add the corresponding columns to the master problem, solve its continuous
relaxation, and update the current dual values. This inner loop corresponds to Alg. 4.

After rosters have been generated for all crew members, we solve the set covering relaxation
of the SPP master problem and generate subrosters of the rosters used in the SCP optimal
solution to resolve collisions in the SPP. Afterwards, the SPP itself is being solved and a new
loop begins.
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Constraint Model for Airline rules

Figure 4.2: The entire approach: The inner loop generates columns using dual information, the outer
loop solves the master problem.

This process is either interrupted after a given time limit has been exceeded or when no
more rosters have been generated that yield to an improvement of the LP-relaxation in any of
the subproblems.

4.4 Numerical Results

In this section, we show that constraint programming based column generation is able to
solve non-trivial crew assignment problems. In particular, we demonstrate the effect ob-

tained by the propagation of the path constraint.
As mentioned before, the problem instances used for the experiments stem from a major

European airline. The rules, regulations, and objective function have directly been abstracted
from the real-world case and preserve the essential characteristics of this case. The data
sets are sufficiently large to measure the effects of constraint propagation, but they are small
enough to run experiments in a reasonable time frame.

To characterize an instance, we specify the number of crew members, the number of pre-
assigned activities, and the number of activities to be assigned. For example, an instance of
type 67-165-280 consists of 67 crew members, 165 preassignments, and 280 tasks. All exper-
iments were run on a SUN Ultra 4 with 296 MHz CPU and 1024 MB main memory. For the
constraint model of the CAP, the ROSTER LIBRARY [165] based on ILOG SOLVER 4.4 [116]
was used. The LP and IP problems were solved with ILOG PLANNER 3.3 [115].

It is important to note that the size of a problem instance is not only determined by the
number of crew members and tasks, but also by the number of subtasks (e.g. flight legs and
ground duties) and the number of attributes per tasks. In the example above, the 280 tasks
consist of 1422 sub-tasks. The given rules and regulations are formulated with the help of
66 attributes per task,32 per sub-task, and7 per crew member. A part of these attributes is
translated into constrained variables.

In the experiment for Fig. 4.3 we show the effects of negative reduced cost constraint (NRC)
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Figure 4.3: Number of choice points versus master iteration (left), and running time versus master
iteration (right) for SPC, NRC, and total enumeration. The tests were run with a data instance of
type 10-0-20 that was solved to optimality. (Lines connecting measuring points are given for easier
readability and do not mark intermediate values.)

and shortest path constraint (SPC). We compare both results with a total enumeration, where
neither NRC nor SPC is used to reduce the search space. The left picture shows the reduction
in choice points. In the end SPC used less than half the number of choice points than the NRC.
This gain is not consumed by a significant increase in computation time per choice point. As
shown in the left figure the decrease in running time is quite similar to the decrease in the
number of choice points. As expected, total enumeration is not competitive at all.

To demonstrate the superiority of the shortest path constraint against the negative reduced
cost constraint in more detail we run a test on a small instance where in each master iteration
the number of choice points was noted. Figure 4.4 again shows that the shortest path constraint
uses much less choice points than the negative reduced costs constraint. Furthermore, in the
last iteration the shortest path constraint does not find any columns with negative reduced costs
anymore, thus proving optimality for the continuous relaxation of the master problem. The
negative reduced cost constraint, however, still visits an increasing number of choice points
per iteration.

One reason for the efficiency of the shortest path constraint and the reason why there is
almost no gap between the reduction in choice points and the reduction in time is the use of
the incremental version as mentioned in Sect. 4.2.2. In Fig. 4.5 we compare a non-incremental
version of the shortest path constraint with an incremental one. For a fixed time of10 000
sec. for the entire optimization the faster incremental version uses only 2 000 seconds for the
propagation, whereas for the non-incremental version almost 60% of total calculation time
goes into that part of the algorithm. Thus, the incremental version allows to perform nearly
3 times as many propagations as the non-incremental version and hence helps to improve
solution quality.

Figure 4.6 shows a time versus quality comparison of NRC and SPC. After a first big drop
in the objective, the NRC falls into huge search trees that only consist of rosters with non-
negative reduced costs. The SPC can prune those search trees much earlier and therefore
continuously reduces the objective without stalling.

The numerical results clearly prove the potential of SPC and that the overhead created in
the subproblem pays off when comparing it to NRC. However, our experiments also showed
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Figure 4.6: Time versus quality on a data instance of type 67-165-280. The picture shows a comparison
of NRC (upper curve) and SPC (lower curve).

that there is room for improving the generation subproblem, using various techniques to limit
the search.

4.5 Conclusions

We have introduced a CP-based column generation approach for the airline CAP. For
the case of European airlines with complex rules and regulations common approaches

using constrained shortest path algorithms to solve the subproblem in a column generation
framework are limited. We therefore formulated the subproblem as a constraint satisfaction
problem. Tests with real data from a major European airline showed that the development of a
new shortest path constraint combining methods from CP and OR yields a significant decrease
in the number of choice points during the generation. An incremental update implementation
of this constraint reduces the computational effort per choice point, such that overall compu-
tation times are reduced significantly as well. Branching variable selections based on shortest
path information further improve the performance.

The presented approach is an example of a successful integration of CP and column gener-
ation. We believe that this approach will prove useful for a number of important optimization
problems which are currently solved using only OR or only CP methods. There are still
refinements and improvements to be done, but this work demonstrates the applicability and
efficiency of the approach.
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5
Hybrid Approaches for Airline Crew
Rostering

Within the PARROT-Project, we developed two different approaches to tackle the Airline
Crew Assignment Problem (CAP):

• One following the CP based Column Generation Framework (CGA) (Junker et al. [125],
Fahle et al. [73]). We presented that one in the previous chapter,

• and another based on heuristic tree search approach (HTS). This one was designed and
implemented by the University of Athens (see Stamatopoulos et al. [194]).

We have seen in the previous chapter that the first one was able to produce reasonably good
solutions for airline companyA. For two other European companies (companiesB andC),
results of the CP based column generation approach were not satisfying. Also a CP based
heuristic tree search approach was not able to tackle those problems successfully. In this
chapter, we show how to combine the two approaches to overcome their inherent limitations.
The resulting hybrid approach is able to solve problems of companiesB andC, and we present
experimental results for these two test cases.

5.1 The Airline Test Cases

We consider test cases stemming from two European airline companies. The instances
of companyB consist of 50–65 crew members and 766–959 pairings. CompanyC has

7–30 crew members and 129–279 pairings. CaseB covers a planning period of one calendar
month, while data sets forC cover two weeks. While caseC incorporates mainly 1–2 day
pairings,B considers pairings of duration less than 24 hours.

The objective of companyC is to achieve a fair distribution of activities over all crew mem-
bers, whereas inB we aim at satisfying as many preferences expressed by the crew members
as possible by minimizing dissatisfaction.



68 5 Hybrid Approaches for Airline Crew Rostering

Importantly, the rule sets in both cases are distinct. InB, typical rules such as succession
rules and rest time rules, but also more complicated ones like rules ensuring a minimum of
days off within gliding windows of variable lengths are incorporated. Also, rules guaranteeing
minimum and maximum flight time are enforced. All rules inB are hard constraints, meaning
that if they are violated, the solution is considered infeasible.

In C, we consider flight time rules that limit the time actually flown by the crew within
certain time periods. These rules are also strict.

The main difference between the two test cases regarding the algorithms we developed is
due to the fact that companyC does not insist on a partitioning of the work, i.e. in that test case
restriction 5b (definition 8) is relaxed to

�
1
i
m

ti � T. Obviously, this difference requires that

our algorithm is able to incorporate two different types of master problems.

5.2 Heuristic Tree Search Constraint Programming Approach

In the the heuristic tree search CP approach (HTS), each complete feasible solution of the
CAP is constructed by solving the corresponding constraint satisfaction problem — see

Stamatopoulos et al. [194]. The problem is modeled by a set of variables, which correspond
to assignable pairings. For each pairing, there is a variable the domain of which represents
the crew members that can possibly be assigned to the pairing.1 For each constrained vari-
able representing the assignment of a pairing, its initial domain comprises all available crew
members. The posting of the appropriate constraints reduces the domains of these variables
by removing crew members that cannot be allocated to the corresponding pairings. This is
possible, for example, due to preassigned activities, or to regulation violations because of the
crew member’s history, etc. The search tree of the problem is created by iterating over pairings
in some specific way and assigning each pairing to a crew member.

Each level of the tree corresponds to the assignment of a pairing. The branch followed from
a node represents the allocated crew member to the pairing. Each non-leaf node corresponds
to a partial assignment, identified by the path from the root to the node. Leaf nodes correspond
to complete legal assignments, i.e. (not necessarily optimal) feasible solutions of the problem.
Each allocation of a crew member to a pairing activates the constraint propagation mecha-
nism. More branches of the tree are pruned, as values which are inconsistent with the posted
constraints are removed from variables’ domains. For example, the assignment of a pairing to
a crew member causes the removal from the domain of the crew member of all other pairings
that overlap with the one just assigned. When a node is proved to be a dead-end, which means
that one or more pairings cannot be assigned to any crew member, backtracking occurs, and
decisions taken before are reconsidered.

The constraints of the problem are the regulations of the airline at hand that dictate which
rosters are acceptable and which are in violation of the airline rules. A solution to a constraint
satisfaction problem is any assignment of values to variables that respects all constraints. A
feasible solution to the CAP, formulated as a constraint satisfaction problem, is any assignment

1It is assumed that every pairing can only be assigned to one crew member. In case there are more than one
crew members necessary to staff a pairing, copies of the pairing are created, and each copy can again only be
assigned to a single crew member.



5.3 Constraint Programming based Column Generation Approach 69

of crew members to pairings such that all airline rules and regulations are respected. Then,
the objective function is optimized by searching for improving solutions only.

5.2.1 Tree Traversal

A variety of search methods for traversing the problem tree exists in the literature and we
will use DDS and a variant of LDS in this chapter. In addition, we use Large Neighborhood
Search.

5.2.1.1 Modified Exact Discrepancy Search

We implemented a variant of LDS (Harvey and Ginsberg [105]). Our variant searches paths
with discrepancies lower down the tree before ones with discrepancies higher. Its advantage
is that time consuming descends from near the root towards the leaves are avoided. Also, our
variant is not iterative. It searches those paths havingi or less discrepancies and then exits.
Thus, it is not complete. Practically, however, the parameteri can be chosen so that a big
enough portion of the tree is explored. In our experiments, this portion of the tree was much
bigger than a modern computer could explore in a reasonable amount of time. We call this
variantmodified Exact Discrepancy Search(mEDS).

5.2.1.2 Large Neighborhood Search

Large Neighborhood Search (LNS), introduced by Shaw [190], incorporates local search tech-
niques within the CP framework. The idea is to restrict the search within a fragment of the
problem search space. In this way, minor local improvements can be made, which would
go unnoticed by most search methods. A reduced search space for a problem with a set of
unknown variablesV and a known feasible assignment! can be created as follows: A large
subsetV1 of V is selected. All assignments in! for variables inV are fixed and thus a
partial solution is created. Search is performed in the remaining variables with any of the
above search methods. After this search is finished (either because the search subspace has
been exhausted or any other termination criterion is met), another subspace is selected and the
process is repeated. The advantage of LNS is that local improvements are discovered easily,
and the objective value is improved quickly. The disadvantage is that the search space cannot
be viewed globally. Thus, it is likely that important improvements are missed. A rational
strategy when using LNS is to use one of the search methods above in the beginning to guide
the search towards a promising area of the search space and to use LNS afterwards to resolve
minor local conflicts.

5.3 Constraint Programming based Column Generation Ap-
proach

The CP based column generation approach (CGA) was described in the previous section.
It divides the airline crew rostering problem into a master problem and a subproblem.

The master problem is a set covering or a set partitioning problem. Since we will modify the
master problem for the hybrid approaches, we start with a more detailed definition of it:
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Figure 5.1: Conflicting columns in the CGA when considering a set partitioning problem as the master
problem

The set partitioning problem used in airline crew assignment can be formulated as:

min ∑
i�1,...,k

f ��cϕ�i�, ti�� xi

s.t. ∑
i�1,...,k

and ϕ�i��j

xi � 1 j � 1, . . . , m (5.1)

∑
i�1,...,k

and s belongs to ti

xi � 1 s � 1, . . . , n (5.2)

xi � �0, 1�

whereϕ : �1, . . . , k� � �1, . . . , m� maps a columnid to a crew member. Them constraints
in (5.1) assign exactly one line of work to each crew member. Then constraints in (5.2) ensure
that all activities are covered exactly once. In this model, every (legal) roster corresponds to a
0-1 column.

5.3.1 Problems with Column Generation

When being applied to instances of companiesB or C two drawbacks of the column generation
approach were identified:

Firstly, CGA has difficulties in finding feasible set partitioning (SPP) solutions to the master
problem (see Figure 5.1). Finding a feasible solution to the SPP is NP-hard already, see Garey
and Johnson [85]. Moreover, the dual information gained from equation constraints is more
difficult to exploit than that of cover or packing constraints. Therefore, we would like to
relax the master problem to a set covering formulation (that remains an NP-hard problem but
can be solved much more easily in our case) by only requiring the pairings to be flown by
oneor morecrew members, i.e., we relax (5.2) to∑i xi � 1. Then, however, to compute a
legal schedule, we need a repair mechanism that decides which crew member finally gets an
overcovered pairing assigned.

Secondly, dual information is rather poor in the initial master iterations, and thus, conver-
gences is bad. This is due to the fact that we use so calleddummy columnsin the initial master
problem. They are needed to obtain a formulation that is guaranteed to contain a feasible
solution. The first type of dummy columns covers exactly crew memberi, the second exactly
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one activityj, for all i � 1, . . . , m andj � 1, . . . , n. That is, we allow empty rosters and unas-
signed activities in intermediate steps. By setting the costs for choosing a dummy column to
an arbitrary high value, we make sure that they only become part of an optimal solution if the
original master problem was infeasible.

Although this procedure works, to achieve meaningful dual information of the master prob-
lem, the solution should not be spoiled by dummy costs. Thus, it would be better to generate
an initial set of rosters that contains an entire work partitioning schedule.

5.4 Integrating the Approaches

We present two ways of integrating both methods each one motivated by different prob-
lem cases. In the first problem case, the construction of a feasible schedule is difficult

due to very strict rules called for by the airline company.
We observe that CGA eventually gets close to solutions of good quality, but minor incon-

sistencies delay it disproportionately long. We show that this can be overcome effectively by
letting the CGA approach solve a relaxed (that is Set Covering) version of the problem and
then handing possibly overcovered (and thus infeasible) solutions to the HTS approach for
fixing.

In the second problem case, the rule set is not that strict. The CGA approach alone proceeds
as expected. However, the initial time spent for driving dummy columns out of the basis is
considerable. In this phase, dual values are not very meaningful, because penalties dominate
the objective. We show how the HTS method can help attacking the problem.

The issue that arises is that of the general applicability of each hybrid method and the
possibility of them being combined to one single meta-hybrid, which would be generally
applicable. We address these issues in the end of Sec. 5.5.

5.4.1 First Way of Integration: Transforming a Set Covering into a Set
Partitioning Solution

The first method is applied on caseB. In this company, no pairing can be left unassigned.
Moreover, there is a relatively large number of pairings with respect to the number of crew
members (for example 959 pairings/65 crews on a typical monthly problem). These condi-
tions make finding a feasible solution difficult for the CGA approach. On the other hand, the
HTS approach is able to construct feasible solutions by using sophisticated search methods
and heuristics tailored for the specific problem. However, after a short while no improving
solutions can be found.

We overcome the problems of both methods by letting the CGA approach findSet Covering
instead of Set Partitioning Solutions. That is, we relax the pairing partitioning constraints (5.2)
by only requiring that every pairing is assigned toat leastone crew member. The columns
generated by the CGA approach are much more easily combinable to SCP solutions. Then,
the conversion of SCP to SPP solutions is assigned to the HTS approach, which can resolve
local conflicts efficiently by using sophisticated propagation algorithms (see Figure 5.2). An
outline of the procedure is shown in Algorithm 8. Here,V is the set of all variables,!X
is a tuple of assignments� v, xv � of valuesxv to variablesv generated by approachX,
a�!, v� is a function which returns the value of variablev in assignment!, DEFAULTSVAR
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Algorithm 8 Top level algorithm for the first method
1: !HTS � HTSOPTIMIZE(V, DEFAULTSVAR, DEFAULTSVAL)
2: repeat
3: !CGA � CGAOPTIMIZE

4: �V1, V2, V3�� PARTITION(!HTS , !CGA)
5: for all v � V3 do
6: v � a�!CGA, v�
7: !HTS � HTSOPTIMIZE(V1 �V2, REPAIRSVAR(V1 � V2, !CGA, V2),

REPAIRSVAL(V1 �V2,!CGA, V2)))
8: !HTS � LNSOPTIMIZE(V, REPAIRSVAR(V, !CGA, V1 � V2 � V3),

REPAIRSVAL(V, !CGA, V1 � V2 � V3),!HTS�
9: until (stopping condition)

>

1
0
1
1
1
1
1

0

1

0
1

1
0

0

1

1
2
1
1
2

1
CGA

HTS

1

1

1
1

1

Figure 5.2: Schematic view on the first way of integrating column generation and heuristic tree search
via a set covering approach on the one, and a repair method on the other side. Column from overcovered
rows are deassigned, and the remaining information is used to guide the search in the HTS (gray
triangle). If the solution cannot be repaired, backtracking allows to deassign more (dashed lines).

and DEFAULTSVAL are the variable and value selection functions normally used by the HTS
approach respectively, REPAIRSVAR and REPAIRSVAL are the corresponding heuristics used
for repairing Set Covering solutions and HTSOPTIMIZE, and CGAOPTIMIZE are the HTS
and CGA optimization functions. PARTITION is a function which will be explained shortly.
LNSOPTIMIZE performs optimization using the LNS method. The time span of the entire
schedule is divided into successive time windows. All activities within such a window form a
search subspace.

We now explain this algorithm in greater detail. In the first line, one or more initial solutions
are found by the HTS approach. This initialization step provides the algorithm with a set of
columns, which can be combined to feasible solutions. Not much time is devoted to this
phase. The variable and value selection heuristics that would normally be used by the HTS
approach are applied here. Any of the methods presented in the previous sections can be
plugged in. However, we found mEDS to perform best in our case. The columns constituting
these solutions are handed to the CGA approach for optimization in Line 3. The solution
produced in this step is correct except for the fact that some pairings are assigned to more
than one crew member, which is not legal.

The next task is to use the information found in!CGA to construct a feasible solution. Let
V1 be the set of variables which correspond to overcovered pairings. One optimistic approach
would be to assign the values of the assignment!CGA to all the variables inV �V1 and let the
HTS approach perform a search in the space of the variables inV1. This, however, could lead
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to a failure, since it is not known that the partial solution obtained is expandable to a feasible
solution.

Algorithm 9 Heuristics for the first method
REPAIRSVAR�S,!, V�

1: v � NIL

2: for all unbound variablesv � V do
3: if (a�!, v� � Dv) then
4: return v
5: return DEFAULTSVAR(S)

REPAIRSVAL �S,!, V, v�
1: if (v � V anda�!, v� � Dv) then
2: return a�!, v�
3: else
4: return DEFAULTSVAL �S, v�

For some scheduling problems, such as the vehicle routing problem with time windows
(see e.g. [184]), a partial solution can easily be extended by removing entries for overcovered
rows from all but one of the corresponding columns. In our case, though, this approach is not
generic enough, as certain rules may cause the resulting rosters to be infeasible. For example,
a minimum flight time rule might be violated if a pairing is removed from an otherwise feasible
roster. We say that such a rule destroys thelegal subroster propertyof a rule set.

We can distinguish three subsets of variables inV: The setV1 that consists of variables that
correspond to overcovered pairings in!CGA, the setV2 that consists of variables which have
different values in!CGA and!HTS, and the setV3 which corresponds to variables having the
same value in both assignments.

Function PARTITION partitionsV in exactly this manner. Assignments of variables inV3
are known to be expandable to a full solution, since one has already been found. Thus, because
there is no information which suggests the contrary, they are realized as soon as possible in
each iteration. Assignments in setV2 may be considered as almost certain. However, they
should be realized in a manner that allows backtracking. These issues are handled in Line 7
with respect to the search method and the heuristics used. CGA does not provide meaningful
information for variables inV1, so HTS performs the search for assignments to these variables
using the default heuristics.

The variable and value selection functions are modified as shown in Algorithm 9. There,
the variables that will be taken into account are variables inS. V is a subset ofS for which
assignments exist in!. For example, when the variable selection rule is invoked in Line 7 of
Algorithm 8, S is V1 � V2, V is V2 and! is!CGA. In this case, the variable to be assigned
next is any variable inV2 for which its suggested value exists in its domain. In other words, all
possible assignments in!CGA are realized as soon as possible, in accordance to the intuitive
belief that they would most probably lead to an area containing improving solutions. If this is
not possible, then a variable inV1 is selected, and the default heuristic is used.

Whenever possible, the value selection heuristic assigns the value suggested by CGA to
each variable. Two important details are worth noting:
1. The variable selection heuristic is consultedevery timea new assignment has to be made in
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the HTS search. That is, if a variablev is selected (becausea�!CGA, v� � Dv) and then, for
any reason, the search backtracks beyond that point (removinga�!CGA, v� from Dv), then
another variable might be selected instead ofv. Like this,assignmentsand not just variables
are dynamically orderedthroughout the search process in such a way that those decisions
contained in!CGA will always be taken as early as possible.
2. Discrepancy-based search methods are used to express the belief that the assignments in
!CGA are probably good ones. That is, we try to stick to the decisions made by CGA, and
we would like to make only few deviations. In our implementation, this issue is handled
by using a variant of the LDS search method. In the original LDS proposal, based on the
assumption that heuristic decisions are less accurate high in the search tree, early decisions
are reconsidered first. But in our case, the assignments for variables inV2 are realized in the
beginning, thus the contrary holds. Therefore, we prefer to use mEDS in this phase, too.

We should also note that the functionHTSOPTIMIZE in Line 1 of Algorithm 8 might or
might not use LNS. That also holds for Line 8, where LNS is mentioned explicitly. That
choice should be tuned towards the specific case. LNS as a stand-alone method is not pre-
ferred due to the fact that it is likely to get stuck in a local optimum, soon. However, for
our purposes the most reasonable choice would be to use LNS after finding only one solution
with a global tree search method. The local optimum will not be a problem, since the main
optimization steps will follow, and much time will be gained. In any case, the user should
use the method that provides a relatively good solution in the shortest time possible. We show
the effect of such a choice in our experimental results. We also use it in Line 8 to overcome
a problem that might arise when bounding the values of the variables inV3: Variables inV3
belong to assignments which have the same values in both!HTS and!CGA. And they are
bound to their values as proposed by CGA to explore promising regions of the search space.
However, this might not be true in all cases. Thus, using LNS onV1 � V2 � V3 instead of
only V1 � V2 might help on reviewing some almost certain decisions that might not be as ac-
curate. Of course, it is still a matter of choice to use or not to use LNS and if so, to use it on
V1 �V2 �V3 or only onV1 �V2. In our experiments, we used LNS with mEDS as the subtree
search method.

5.4.2 Second Way of Integration: Generating Combinable Columns
and Exploiting Dual Values

Algorithm 10 Top level algorithm for the second method
1: � � HTSTREESEARCH�V, DEFAULTSVAR , DIVERSESVAL �
2: repeat
3: !, duals � CGAOPTIMIZE(�)
4: HTSPOSTNRC�duals�
5: � � HTSLNSTREESEARCH�V, MAX DUALVAR ,

MAX DUALVAL , !�
6: until (stopping condition)

We propose a second integration strategy, that is applied on companyC. In this case, the
convergence of the CGA approach towards an optimal solution is assisted by HTS first by
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Figure 5.3: Schematic view on the second way of integrating column generation and heuristic tree
search: HTS provides an initial solutions, and thus, meaningful dual values. During optimization,
CGA provides new dual values and requests solutions from HTS that respect an objective which is
based on reduced costs.

constructing a set of initial columns that are combinable to complete partitioning solutions in
a startup phase, and secondly by constructing columns with negative reduced costs during the
main optimization phase (Figure 5.3). These columns are guaranteed to be expandable to a
feasible solution, since they are extracted from one. A top level sketch of this method appears
in Algorithm 10. � is a set of rosters,! is an assignment, andduals are the dual values
corresponding to this assignment (obtained by the CGA). HTSPOSTNRC posts a constraint
on the number of rosters with negative reduced costs.

5.4.2.1 Startup Heuristic

In the CGA, columns are generated for each crew member sequentially. By using dual in-
formation, columns with negative reduced costs are generated. Thus, when the problem is
non-degenerate, they lead to a decrease in the continuous relaxation of the master problem.
Therefore, to find high quality rosters, “good” dual values are needed. Especially in the be-
ginning, the information contained in the dual values is very poor. This is because usually no
feasible solution is known at this point, and penalties stemming from dummy columns (that
have to be introduced in the master problem to guarantee the existence of a solution) have a
great impact on the dual values. We need to find a set of rosters that can legally be combined
to form a set partitioning solution to the CAP. However, the column generator of the CGA is
hardly able to produce such a solution, as it computes one roster at a time and is only indirectly
aware of colliding pairings in different rosters.

Algorithm 11 Modified value selection heuristic for the second method
DIVERSESVAL �V, v, A, k�

1: val � NIL

2: repeat
3: val � DEFAULTSVAL �S, v�
4: if (the assignment� v, val � appears more thank times inA) then
5: removeval from Dv
6: else
7: return val
8: until (val �� NIL or Dv is empty)

HTS can help here. In an integrated approach, it is used to generate a bunch of complete
feasible solutions in the beginning, thereby providing one column for each crew member with
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every schedule found. Thus, a first set of columns that we know can be feasibly combined to
a complete Set Partitioning Solution provides the CGA with the necessary “grip” to acceler-
ate towards promising parts of the search space with respect to the “real” objective without
disturbing penalties.

Line 1 of the Algorithm 10 realizes this idea. HTS searches for an initial number of solu-
tions without performing optimization. The number of solutions to be found is a parameter
that has to be tuned with respect to the time spent in this phase and the quality of the initial
dual values.

Another parameter that has to be taken into concern is the diversity of the columns gen-
erated. It may be desirable to have many diverse rosters at hand that allow more and more
profitable combinations in the master problem. One rule of thumb used in practice is that no
crew-pairing assignment should appear more than a certain number of times in these columns.
This restriction is taken into account by the slightly modified value selection heuristic DI-
VERSESVAL, which appears in Algorithm 11. It works exactly as the value selection heuristic
that would normally be used, but it also records the assignments made and limits the number
of times a crew member can be assigned to a pairing.

In Algorithm 11, A is the current set of solutions. Each time a solution is found by HTS,
this solution is stored inA. Before assigning the value that would normally be selected by
DEFAULTSVAL in Line 3, it is checked whether the assignment appears less thank times inA.
Otherwise, the value is removed fromv’s domain. This heuristic, in coordination with Depth-
Bounded Discrepancy Search, see Walsh [206], guarantees that columns will be adequately
different from each other to make the CGA method even more efficient.

Especially for large data sets, many initial solutions are needed. To speed up their com-
putation, we try to shrink the search space: First, only one solution is computed. Then, the
LNS search procedure is applied to obtain solutions that satisfy the diversity conditions only
in local areas of the search space. For example, time windows can be used to limit the search
space.

5.4.2.2 Main Optimization Loop

As shown in Line 3 of Algorithm 10, CGA performs an optimization run taking the columns
produced by HTS as input. It returns an assignment! as well as the corresponding dual values
for the crews and pairings. The solution returned is feasible with respect to all the company’s
rules and regulations. Then, starting from this point, HTS performs a locally limited search
for columns with negative reduced costs.

The constraint posted in Line 4 of the algorithm asserts that a certain number of the columns
corresponding to each solution found will have negative reduced costs. This number is defined
empirically. Finding a schedule that consists of columns with negative reduced costs only is
rather unlikely. On the other hand, producing only few such columns is a wasted effort.
Our experiments showed that schedules consisting of 30% columns with associated negative
reduced costs can be achieved for our test set. But that does not mean that 70% of the columns
produced are garbage! Instead, those columns guarantee that all newly generated columns can
be extended to a feasible solution. Thus, the additional columns produced are important with
respect to integer feasibility, whereas the columns with negative reduced costs reflect our
search for improving solutions with respect to a linear objective.

Line 5 performs an LNS search with few deviations regarding the solution provided by
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Figure 5.4: Data set with 65 crew members and 959 pairings. Column generation fails to find a solution
within 120 000 sec.

CGA. The pairing with the maximum dual is assigned to the crew with the maximum dual as
long as this crew member’s reduced cost is not guaranteed to be negative already. Again our
search method of choice is mEDS.

5.5 Numerical Results

To demonstrate the superiority of combined approaches integrating CP and OR techniques,
we applied the hybrid algorithms as presented above to real-world crew assignment prob-

lems (see Sec. 5.1). Both the CGA and the HTS are prototype implementations only. Within a
research project, it is not realistic to develop implementations for the CAP that could compete
with the best industrial codes regarding overall speed, because those codes were produced
during hundreds of person-years. Therefore, we just try to highlight the gain in efficiency that
can be obtained when combining methods from OR and CP.

We applied each method integrating HTS and CGA on the airline cases that motivated
their development. All algorithms were implemented in C++ on top of Ilog software [114,
116]. The first integration strategy was applied on two monthly data sets from companyB.
Experiments for this case were performed on a 640 MB, 296 MHz SUN UltraSPARC-II, with
a time limit of 120 000 seconds.2 The efficiency of our algorithm improves on the production
system which companyB currently uses.

Figure 5.4 is a cost (i.e., dissatisfaction) versus time graph showing the performance of the
hybrid and the pure HTS methods applied on a monthly data set containing 959 pairings and
65 crew members. The problem is a minimization problem. The curve marked “LNS-HTS”
corresponds to a hasty strategy in which, after one solution is obtained, LNS is used to achieve
some good solutions quickly. The “HTS” curve shows a more mature strategy, where the
search finds several good solutions before LNS is applied to locally optimize them. The curve

2Curves stopping before this threshold indicate that no better solution was found from the moment correspond-
ing to the end of the curve until the time limit has been reached.
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Figure 5.5: Data set with 50 crew members and 766 pairings. Column generation fails to find a solution
within 120 000 sec.

marked “hybrid” shows the performance of the hybrid approach, which clearly outperforms
both. Interestingly, the pure CGA cannot detect any feasible solution at all. Within 120 000
seconds, it was not able to remove all dummy columns from the solution, i.e., the original
master problem without dummy columns still is infeasible.

In these specific experiments, for exhibition purposes only, we call the HTS strategy in Line
1 of Algorithm 8 to show that it would have the best performance regardless of the startup
phase. That is the reason why “LNS-HTS” outperforms “hybrid” in the beginning. Of course,
we repeat that a reasonable choice for the startup phase of Algorithm 8 would be a strategy
more like “LNS-HTS”. This strategy is used in the experiments of Figure 5.5, which shows
the performance of the same methods on another companyB monthly data set containing 766
pairings and 50 crew members.

The following set of experiments is carried out to investigate the second way of integra-
tion. Experiments for the companyB data were performed on a 128 MB, 143 MHz SUN
UltraSPARC, with a time limit of 20 000 or 70 000 seconds depending on the problem size.
Figure 5.6 shows the costs versus time plot for CGA, HTS and the second, so called,consoli-
dated approachfor a data set with 7 crew members and 129 pairings. Initially, HTS generates
a solution and passes it over to CGA, which performs one optimization iteration. The result-
ing schedule is passed back to HTS, which rebuilds it and then locally searches for solutions
containing as many rosters with negative reduced costs as possible. The POSTNRC constraint
guarantees that an adequate number of such rosters will be returned. These rosters are then
passed back to the CGA, and the process is repeated.

The same approach is used on a bigger problem instance, as shown in Figure 5.7. The plots
depict the expected behavior of CGA and HTS. CGA steadily optimizes the objective, but
the quality of the initial solution is poor. Moreover, the time needed to find a first solution
grows with the problem size. On the other hand, HTS finds relatively good solutions quickly
by using heuristic information, but soon gets stuck. The consolidated approach benefits from
both approaches: it finds good solutions quickly because of HTS and then steadily continues
to refine the solutions due to the help of CGA.
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Figure 5.6: Data set with 7 crew members and 129 pairings.

It can also be seen that the integrated approach is slower than HTS early in the experiments.
During that time, the hybrid approach is using the HTS module to create an initial set of
columns according to the startup heuristic. The reason why HTS is slower in the consolidated
case is that the goal is not to find better and better solutions, since the main optimization
burden lies on the CGA side. Instead, HTS rather tries to find diverse rosters, which help
CGA to find better solutions in the following.

The experiments regarding the second way of integration show that it is always useful to
assign the task of finding a set of initial solutions to the HTS approach. The best number of
solutions computed initially depends on the rule set as well as on the characteristics of the
instance. Assigning the main optimization burden to CGA is the default choice, as it views
the problem globally taking into account all variables and constraints at a time. If minor lo-
cal adjustments can lead to quality improvements, then having HTS perform LNS searches
throughout the process is cost effective. Furthermore, if the column generation process gets
stuck, i.e., if a significant number of columns with negative reduced costs proves not be com-
binable to an IP solution, then having HTS generate solutions incorporating columns with
negative reduced costs is cost effective, too.

5.6 Combining Both Hybrid Methods

Experimental results clearly show that each hybrid approach is successful on the airline
case on which it is applied in our experiments. The question that arises is whether the two

hybrids can generally be combined or not.
We believe that orthogonality generally holds: A meta-hybrid could start off by having the

HTS construct a set of solutions out of which diverse and feasibly combinable columns can
be extracted. Then, the CGA approach can be used to improve on a relaxed version of the
problem, which is repaired by the HTS approach.

We found that whether or not the use of one of the hybrid approaches we presented can
speed up the computation of a good solution is problem dependent:
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Figure 5.7: Data set with 30 crew members and 279 pairings.

• Of course, the first hybrid can only be applied profitably, if the master problem is hard
enough to justify the use of a relaxation that must be repaired at some point. Regarding
airline caseC, this precondition is not fulfilled, which is why we cannot apply hybrid 1
on this case.

• Using initial solutions provided by the HTS approach, in order to speed up the starting
phase of CGA, only pays off when the CGA approach alone has difficulties in driving
dummy columns out of the basis or spends too much time on this phase of the process.
This is not given in airline caseB, which causes that hybrid 2 cannot be used profitably
here.

We conclude that generally the two hybrids can be combined, but the usefulness of a meta-
hybrid is problem dependent. And its tuning heavily relies on inherent problem properties,
which might not be known a priori.

5.7 Conclusions

For the CAP as an example, we have shown how CP and OR techniques can help each
other to overcome their fundamental weak points. We believe that the ideas discussed in

this chapter can be generalized for other problems as well, especially in connection with (CP
based) column generation. We presented results on large scale real world CAP data, which
show clearly visible improvements in performance of the hybrid approaches compared to the
solitary methods.

While OR methods view a problem globally and show a good ability to detect promising
regions of the search space, CP methods can efficiently handle feasibility problems and are
well suited to resolve local conflicts. The first way of integration tries to combine these ad-
vantages. It uses the CP based Column Generation approach (CGA) to compute cost efficient
yet relaxed solutions to the problem, and then resolves conflicts of overcovered pairings by
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applying a heuristic CP tree search (HTS). The synergy effects are particularly visible if a lot
of work has to be grouped in relatively few partitions. Then, column generation alone often
fails to generate combinable rosters, and the use of HTS as a repairing module helps a lot to
increase the overall performance.

The second way of integration that we introduced concerns the use of dual values. We
showed how column generation approaches can profit from CP via the computation of diverse
combinable initial columns. On the other hand, the use of dual information in a CP based
heuristic tree search has shown to be very efficient. It allows to laden the optimization burden
on the OR part and away from CP, which then can focus on what it was designed for originally,
namely to solve constraint satisfaction problems.
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6
Home Health Care

6.1 Introduction

Home health care (HHC), i.e. visiting and nursing patients in their homes, is a growing
sector in the medical service business. More and more private companies are now work-

ing in this area. As the nursing companies get larger, the problem of how to schedule the
nursing staff arises. The challenge of this problem is to combine aspects of vehicle routing
and staff rostering. Both are well known combinatorial optimization problems, and good al-
gorithms for each of these two problems are known (see e.g. Toth and Vigo [198] for vehicle
routing, and e.g. Barnhart et al. [21], Caprara et al. [45], Fahle et al. [73] for staff rostering
in different application fields). To obtain good solutions, however, it is crucial to solve the
nurse scheduling problem as a whole due to the high inter-dependencies of optimized routes
and rostering constraints. Additionally, soft constraints and preferences require the use of
specially designed algorithms.

Rostering constraints include hard ones like qualification requirements or work time limita-
tions and soft ones. Soft constraints are especially difficult to handle, but have to be considered
for applicable schedules. Typical examples of soft constraints are:

• patients prefer certain time intervals for being served,

• the right “chemistry” between patients and staff has to be ensured,

• patients do not like frequent changes of nursing staff,

• staff satisfaction concerning e.g. work load and work time should be maximized.

The vehicle routing aspect of the problem has to take time windows, travel times and dis-
tances, and inhomogeneous fleets (bicycles, public transport, cars) into account. In Figure 6.1
we present a more detailed view of constraints relevant to the HHC problem.
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− always the same nurse
− male/femal/language
− always the same time
− time for talking
− ...

Preferences of Patients Preferences of Nurses

− ...

− days off
− late start (children)
− weekend shifts
− few ’difficult’ patients

− ...

Legal Aspects
− working time

− service duration
− cost structure (partly)

− ...

− over−qualified?

− languages
− ... − ...

− shift plans
− light/heavy patients
− cooperative service
− stress reduction

− vehicles
− traffic situation

− right ’chemistry’

− qualification/graduation

− special experiences?

− nurse/civil service/

− contracts

Home Health Care

Qualification/Experience Ergonomics others...

Figure 6.1: An overview of constraints relevant to the home health care problem.

The solutions with minimal costs and maximal patients/staff satisfaction are of most interest
for companies. Costs in this context may reflect expenses for fuel, etc. or costs of the staff.
In countries, where health services are partially included in the social system, a company
typically gets a fixed amount of money for a given service—independent of the income of the
nurse providing the service. Hence, companies prefer schedules where highly qualified staff
are only assigned to patients that need that high qualification. Simpler jobs should be assigned
to less skilled, and hence less expensive employees.

Respecting preferences is the second important parameter to be considered in HHC roster-
ing. Patients will simply change to a different health care company if their wishes are not
met. For the staff, considering their preferences increases motivation, which on the one hand
impacts on the patients, and on the other hand helps to deal with many stressful situations
(death, terminal illnesses, late jobs, etc.).

6.1.1 Specific Requirements

The project PARPAP1 brings together end users (home health care companies), universities
(computer science and ergonomics) and partners from software industries to develop an opti-
mization and planning tool for the highly constrained problem of staff rostering and routing in
the home health care industry. The aim of the project is to model the problem accurately and
to develop suitable algorithms for finding good rosters respecting all hard and soft constraints
mentioned above. Since rules and regulations for home health care change frequently, and
company philosophies differ also, there is a need for flexibility in both, modeling capability
and algorithmic approaches.

Apart from the problem’s constraints we experienced that people in the health care busi-
ness keep a critical distance from fully automated decision or planning systems. One idea
of PARPAP therefore is to build an optimization system that presents several possible solu-
tions and allows the dispatcher to interact with the system in order to select one plan, or to
re-calculate parts of the solution.

1see footnote 3 on page 7
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Another real-world requirement in the context of PARPAP is runtime limitation. In the ap-
plication scenario, planners like to have a good solution after at most 10–15 minutes runtime.
From the experiments presented in previous sections this obviously excludes column genera-
tion approaches for the HHCP. Instead, we will apply Tabu Search, Simulated Annealing or
CP, respectively, to assign staff to jobs. For optimizing an individual work-plan, we will use a
hybrid linear and constraint programming module.

All in all, the software prototype consists of a database and a GUI component, as well as a
planning and optimization module. This chapter, however, is only dedicated to the optimiza-
tion modules.

6.1.2 Literature Review

To our knowledge, there are only a few publications on the topic of optimization and schedul-
ing in home health care: Cheng and Rich describe a combined mixed-integer programming
(MIP) and heuristics approach [52]. Numerical results for up-to 4 nurses and 10 patients are
presented. In Begur et al. [27] a decision support system that is based on simple scheduling
heuristics is proposed.

Two related topics, however, have attracted more researchers: Planning systems for hos-
pitals model some aspects that are also needed for home health care. We only mention Ab-
dennadher and Schlenker [2], Burke et al. [42], Cheng et al. [51], Mason and Smith [148] as
examples. Most of these use constraint programming techniques in order to model and solve
the nurse rostering problem. Vehicle Routing with Time Windows (see e.g. Fisher [80], Gen-
dreau et al. [86]) reflects the mobility aspect of the problem, but ignores any further restriction.

In Sec. 6.2 we will describe how we model the home health care problem. For this pre-
sentation, a more compact model than the one in the industrial prototype will be used. The
simplified model still reflects the key characteristics of the original problem, but allows us
to ignore certain technical details when presenting the algorithms. In brief we present exten-
sions of that model in Sec. 6.2.1.4. Section 6.3 is dedicated to the heuristics developed for
the problem, and we will show how to combine these methods in a powerful hybrid approach
in Sec. 6.4. Section 6.5 presents numerical results of the various methods, and finally we
conclude.

6.2 A Mathematical Model for the Home Health Care Prob-
lem

Staff rostering describes the process of assigning staff to tasks. In HHC, the staff consists of
employers with various skills, and the tasks are the services to be provided to the patients,

training, etc. Timing rules, qualification rules, relationship rules, and structural rules, as well
as routing information dictate the way, a “good” roster should look. The “cost” of a roster
depends on real costs for wages and transportation, as well as on artificial costs introduced as
penalty terms for modeling certain characteristics and preferences.
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Figure 6.2: Penalty concept for Time Windows. Arriving beforehard_begin produces waiting time,
arriving afterhard_end is infeasible. Penalties proportional to earliness or lateness are used for arrivals
within the hard, but before or after the soft time window.

6.2.1 Parameters and Notation

We are givenN nurses$ � �1, . . . , N�, P patients% � �1, . . . , P�, and a set ofJ jobs
& � �1, . . . , J�. Jobs represent either a certain service to be provided to a certain patient, or
a task to be performed by a nurse during her working hours (like training, breaks, emergency
service, etc.). Thus, there is a fixed location for each of these jobs.

For each patientp � % there is a subset&p � & such that these jobs involve patientp, and
it holds:

�
p�� &p � & , and&p � &q �� ∅ �� p � q. Since jobs are patient related, we

can always identify the patient corresponding to a job. In the following, we will only speak of
jobs, and bypreferences of a jobwe refer to the preferences of the patient corresponding to
the job.

A time windowrepresents the time interval in which a job has to be started, or describes
the working time interval of a nurse. We distinguish betweensoft time windows andhard
time windows. Whereas a soft time window is only a preference, which we may violate at the
expense of penalty costs, any hard time window has to be met. Waiting time before a hard
time window is allowed, beginning service after the hard time window leads to an infeasible
roster. The following functions represent the hard and soft time windows of nurses and jobs,
respectively:

• hb� : & � Q, he� : & � Q, describe start and end, resp. of a job’shard time
window.

• sb� : & � Q, se� : & � Q, describe start and end, resp. of a job’ssofttime window.

• d� : & � Q is the duration of the job, i.e. the time needed to complete a job.

• hb� : $ � Q, he� : $ � Q, sb� : $ � Q, se� : $ � Q, represent the start and
end of thehard andsoft time window of a nurse.

• min_time� : $ � Q andmax_time� : $ � Q give minimal and maximal working
time of a nurse.

Obviously, for a jobj � & we havehb� �j� � sb� �j� � se� �j� � he� �j�. The same holds
for time windows of nurses. Figure 6.2 shows an example for these time windows.

Qualificationsare the skills possessed by a nurse, or required by a job, respectively. As we
will see later, the concept of qualifications offers a rather flexible tool for modeling various
characteristics of the HHC problem.
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Let S be a set of all qualifications:

• quali� : & � 2S are the required qualifications for a job.

• quali� : $ � 2S are the qualifications possessed by a nurse.

Hard qualifications are those that are vitally required for the job and include e.g. graduation.
Soft constraintsembrace preferences of nurses and patients, and may be ignored at the expense
of penalty costs. We model preferences of patients for certain nurses, preferences of nurses
for certain patients, experiences for certain jobs, and factors that guide a fair distribution
of difficult jobs over all nurses (over some time period). Also, we allow soft qualifications
and requests for those. In the compact model, all these parameters are accumulated into one
function, which gives the soft constraint penalty value for assigning nursen to job j:

• sc : $ 	& � �0 . . . 1�.

The last group of functions provides geographical information. Therouting aspects con-
sider travel time between two jobsj, j�. Since each job has a fixed location, we use the travel
time between these locations:

• tr_time : & 	 & � Q, travel time between the locations of two jobs.

(In the industrial prototype also travel distances are used.)

6.2.1.1 Core Optimization Problem

In the HHC problem we are looking for an assignment of job schedules to nurses, such that all
jobs are taken care of, all hard constraints are respected, only few soft constraints are violated,
and such that the overall cost for that assignment is minimal and the number of preferences
satisfied is maximal. To be more specific, we formulate the following:

A sequenceR � ��j1, t1�, . . . , �jk, tk��, jl � & , tl � Q, l � 1 . . . k is called aroster and
containsk jobs and a starting timetl for each jobjl. We assume that the sequence is ordered
in increasing times, that istl � tl�1 for l � 1 . . . k� 1.

We need to find asolutionS � �R�1�, . . . , R�N�� consisting ofN rosters, whereR�n� �

��j�n�1 , t�n�1 �, . . . , �j�n�kn
, t�n�kn

�� is the roster for nursen, such that:

N�
i�1

ki�
l�1

�j�i�l � � & (6.1)

�1 � i, i� � N, 1 � l � ki, 1 � l� � ki� : �j�i�l � j�i
��

l � � � �i � i� � l � l�� (6.2)

hb� �j
�i�
l � � t�i�l � he� �j

�i�
l �, i � 1 . . . N, l � 1 . . . ki (6.3)

t�i�l � d� �j
�i�
l � � tr_time�j�i�l , j�i�l�1� � t�i�l�1, i � 1 . . . N, l � 1 . . . ki � 1 (6.4)
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min_time� �i� � t�i�ki
� d� �j

�i�
ki
�� t�i�1 , i � 1 . . . N (6.5)

max_time� �i� � t�i�ki
� d� �j

�i�
ki
�� t�i�1 , i � 1 . . . N (6.6)

hb� �i� � t�i�1 and t�i�ki
� d� �j

�i�
ki
� � he� �i�. (6.7)

quali� �j
�i�
l � � quali� �i�, i � 1 . . . N, l � 1 . . . ki (6.8)

These hard constraints can be explained as follows: We need to cover all jobs by our sched-
ules (6.1), but none of them more than once (6.2). Any starting point for a job has to respect
the hard time window (6.3). In (6.4) we require enough time to provide the service and to
travel to the next job before the next job starts. (6.5) and (6.6) define lower and upper bounds
on the working time, and (6.7) ensures that no job is carried out outside the work time inter-
val of the nurse. Finally, we insist on having all hard qualifications of a job covered by the
assigned nurse (6.8).

6.2.1.2 Cost Function

In order to model the cost function, we have to define our measure for violating soft con-
straints. Any violation of a soft time window will be penalized by a factor proportional to the
earliness or lateness. For all jobsj � & let tj be the time assigned to jobj. Then

early� �j� :�

	
0, sb� �j� � hb� �j�

sb� �j��tj
sb� �j��hb� �j� , else

(6.9)

late� �j� :�

	
0, he� �j� � se� �j�

tj�se� �j�
he� �j��se� �j� , else

(6.10)

p� �j� � max�early� �j�, late� �j�, 0� (6.11)

Sincetj is within the soft time window (� early� �j� � 0 andlate� �j� � 0), before the
soft time window (� early� �j� � 0 andlate� �j� � 0), or after it (� early� �j� � 0 and
late� �j� � 0), choosingp� �j� as in (6.11) gives the correct penalty (see Fig. 6.2).

Violating nurses’ soft time window is treated similarly, besides taking care of both, the soft
time window’s beginning and end. Letkn denote the last job assigned to nursen, n � 1 . . . N:

early� �n� :�

	
0, sb� �n� � hb� �n�

sb� �n��t1
sb� �n��hb� �n� , else

(6.12)

late� �n� :�

	
0, he� �n� � se� �n�

tkn�d� �jkn��se� �n�
he� �n��se� �n� , else

(6.13)

p� �n� �
1
2


max�early� �n�, 0�� max�late� �n�, 0�

�
(6.14)
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Let R � ��j1, t1�, . . . , �jk, tk��, jl � & , tl � Q, l � 1 . . . k, be a roster assigned to nurse
n. Any violated soft qualification is penalized by adding extra costs stemming from assigning
these jobs to nursen, and normalizing them by the number of jobs assigned:

psc�n� :�
1
k



k

∑
l�1

sc�n, jk� n � 1 . . . N (6.15)

Having defined a solution of the HHC problem and knowing the measure for soft con-
straints, we are now able to construct the objective function. In order to reflect both, the
routing and the rostering aspects, we combine them into a weighted sum of the total travel
time needed for the schedule and the sum of all penalties:

minimize obj�R�1�, . . . , R�N��, where

obj�R�1�, . . . , R�N�� � α1 

∑n

i�1 ∑ki�1
l�1 tr_time�j�i�l , j�i�l�1�� LBtraveltime

UBtraveltime � LBtraveltime � ε
(6.16)

�α2 

1
N

∑n��

�
t�n�kn

� d� �j
�n�
kn

�� t�n�1



� LBworktime

UBworktime � LBworktime � ε
(6.17)

�α3 

1
J ∑

j��
p� �j� � α4 


1
N ∑

n��
p� �n� (6.18)

�α5 

1
N ∑

n��
psc�n� (6.19)

and α1 � 
 
 
� α5 � 1, αi � 0 (6.20)

Whereas (6.18) and (6.19) only sum up all penalties, and normalize these numbers, (6.16)
and (6.17) are a slightly more complicated. In (6.16), the double sum accumulates the travel-
times needed to travel between any two consecutive jobs for all schedules. We normalize that
value by relating it to some upper and lower bounds for the total travel-time of a given instance.
E.g. we can setLBtraveltime equal to the sum of theJ � n smallest travel-times calculated
between jobs, and accordingly, we use theJ � n largest travel-times forUBtraveltime. The ε
ensures a valid fraction in case the lower and upper bound overlap. Similarly, (6.17) models
the total working time of a nurse. We can setUBworktime � ∑n�� max_time� �n� and
LBworktime � ∑n�� min_time� �n�.

The model defined above can represent several NP-hard optimization problems. E.g. we get
a multi-TSP (see Toth and Vigo [198]) with time windows, even if we ignore qualifications
(6.8), (6.15), (6.19), work time limits (6.5), (6.6), and soft time windows (6.11), (6.18). Sim-
ilar adaptations lead to multi-processor scheduling or set covering problems (see Garey and
Johnson [85]).

6.2.1.3 Modeling Different Characteristics

Hard and soft time windows and especially the concept of qualifications allow the modeling
of various different situations which occur in typical real-world situations. If patients prefer
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to be only served by selected nurses, we can model this via soft constraints. A “qualification
tag” can be used to distribute staff over several districts. Language requirements can also be
modeled by qualifications. Also, different starting and ending locations can be described by
introducing dummy jobs that can only be performed by a specific nurse. Thereby we can
model starting or ending at the nurse’s home, at a patient, or at the care company’s office, re-
spectively. Since the preferences of nurses are modeled analogously we have already covered
a major part of the constraints presented in Fig. 6.1.

6.2.1.4 Extensions of the Model

In the extended model underlying the industrial prototype, we provide some more expressive-
ness. E.g. for all time windows, there are factors which adjust the penalty term, thus allowing
more emphasis on “critical” patients or staff. Different experience is reflected by the fact that
the time needed to serve a patient depends not only on the job, but also on the assigned nurse.
Moreover, we distinguish between several classes of vehicles and use different routes, travel
times and distances for these classes. Finally, the objective of the extended model includes
additional terms for travel distance.

Some requirements cannot be formulated only by parameters. E.g. by only using parame-
ters we cannot formulate: “No two consecutive jobs should require lifting a heavy patient”.
However, we can easily deal with such a requirement within our algorithmic framework and
the extended model provides rules to efficiently handle these special constraints.2

6.3 Solving Home Health Care Problems

Our model defined above is a hybrid of a rostering model and a routing model. Good
approaches were presented for both models in literature, and we will re-use some of the

ideas presented previously to build our heuristics. However, it is not possible to use a two-
stage approach that first generates feasible routes, and then assigns nurses to them (violation of
hard/soft qualification and nurses’ time window constraints). Also the vice versa approach —
assigning jobs to nurses and then generating routes — will more than likely produce infeasible
or disproportionally expensive routes. Therefore, only an integrated approach that considers
time scheduling, rostering, and route planning simultaneously is appropriated for the HHC
problem as a whole.

Our approach divides the model into two parts: (a) finding a partition of jobs to nurses, and
(b) finding an optimal sequencing for each such partition. The latter one contains in our case
a TSP with time windows and is therefore NP-hard.

We have three different approaches to (a): Initial heuristics that quickly generate an initial
solution and two improvement heuristics which take a solution and try to improve it via local
exchanges. All of these need information regarding a good sequence of jobs within a roster
(part (b)), which we determine via a combined CP and LP approach (Section 6.3.2). As a first
step, however, we try to reduce the data complexity of a given instance.

2Basically, one has to adapt lines 19,20 in Alg. 12. There, we only extend a roster if the structure is feasible
according to the additional requirements.
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6.3.1 Preprocessing

During the initial data preprocessing step, we determine which job/nurse pair is compatible
with the hard qualification constraint (6.8) and time window constraint (6.7), and we store
this information. Should there exists a job that can be done by only one nurse, we fix this
assignment (without fixing the time at which this job has to be done). Also, we compute the
soft constraint values that include all preference parameters. Time windows of jobs can then
be shrunk to the earliest or latest time at which a nurse is available (6.7).

In the last step we determine precedences implied by the time windows. That is, for any
two jobs we store if they have to be performed in parallel or in an induced order or if they are
not related, respectively.

6.3.2 Sequencing a Roster

Sequencing consists of ordering the jobs and assigning starting times. Due to time windows
constraints, in the HHC only few permutations correspond to feasible orderings. In our ap-
proach we enumerate those orderings by a CP approach, and we use an LP to find optimal
start times with respect to the objective.

6.3.2.1 Optimal Start Times for a valid Ordering

Given a set�j1, . . . , jk� and a nursen we need to find an optimal sequencing (i.e. an ordering
of these jobs and an assignment of a start time to each of the jobs) such that the sum of
travel times and penalties for not hitting the soft time window is optimal for nursen. For a
given ordering and a given nurse, we can easily calculate penalties by applying (6.9)–(6.11).
Moreover, a simple LP can be used to optimize the starting timestl of each jobjl, l � 1 . . . k
(see (6.21)).

We explain LP (6.21) in more detail: Forl � 1 . . . k variabletl corresponds to the starting
time of job l andxl accounts for soft time window violations at jobl. y1, y2 is the penalty for
violating the nurse’s soft time window andw accounts for working time. The first constraint
class corresponds to (6.4), the three lines usingxl refer to (6.9)–(6.11), lines 5,6 limit the
starting time to the hard time window (6.3). The nurse’s soft time window ((6.12)–(6.14)) is
respected by lines 7–9 and the corresponding hard time window (6.7) in lines 13,14. Finally,
lines 10–12 correspond to the minimal and maximal work-time constraints (6.5) and (6.6),
and to work time minimization. If we use the LP in a setting where sets of jobs are generated
incrementally we have to replace�#� by w � 0 to ensure feasibility.

In the LP objective we use the weight factorsα2, α3, andα4 of the HHC problem. Worktime
w is rated by the global bound on working time.

As stated before, for a given order of jobs the starting times found by the LP are optimal
with respect to time window penalties and working time.

6.3.2.2 Generating valid Orderings

The generation of all feasible orderings for jobs�j1, . . . , jk� now remains. Theoretically,
this involves solvingO�k!� many LPs. In our case, due to precedence constraints and time
windows, very few permutations correspond to feasible orderings, though. If there are two
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min α2
UBworktime


 w � α4
2�N 
 �y1 � y2� �

α3
J 
∑

k
l�1 xl

1: s.t. tl�1 � tl � d� �jl� � tr_time�jl, jl�1� l � 1 . . . k� 1
2: sb� �jl�� tl � xl�sb� �jl�� hb� �jl��

��������� l � 1 . . . k
3: tl � se� �jl� � xl�he� �jl�� se� �jl��
4: xl � 0
5: tl � hb� �jl�
6: tl � he� �jl�
7: sb� �n�� t1 � y1 
 �sb� �n�� hb� �n��
8: tk � d� �jk�� se� �n� � y2 
 �he� �n�� se� �n��
9: y1, y2 � 0
10: min_time� �n� � w �#�
11: max_time� �n� � w
12: tk � d� �jk�� t1 � w
13: t1 � hb� �n�
14: tk � d� �jk� � he� �n�

(6.21)

Figure 6.3: LP (6.21): Finding optimal starting times for a given sequence

distinct jobs that have to be done in parallel, there is no feasible ordering at all for the given set
of jobs. Otherwise, we calculate all permutations that correspond to feasible orderings of jobs
via a recursive function. We found through experimental analysis, that very few permutations
are valid and thus the algorithm is very fast with typical input (see Sec. 6.5.1). This is due to
the fact that in home health care many jobs have to be performed in the morning, after lunch
and at bedtime. Hence, there is a lot of overlapping at these times. Intensive care, on the other
hand, is provided all day, but usually takes much longer time and thus also overlaps with other
long running jobs.

Algorithm 12 describes the procedure: Initially called withS � ∅, U � �j1, . . . , jk�, the
algorithm moves an element ofU to any feasible position inS, and recursively checks for
possible extensions ofS (lines 15–20). (To ease the notation assumed that inserting before
the first or after the last element ofS can also be represented by an insertion between two
consecutive elements). IfU becomes empty,S is a valid ordering, and (6.21) provides optimal
starting times for that ordering (lines 12,13). After termination,bestSol contains the best
ordering found.

We use constraint programming ideas to fix any job that needs to be included between two
other jobs (lines 1–11) and we stop the current recursion as soon as we find a job for which we
cannot fulfill the precedence constraints in the scheduleS currently under construction (lines 6
and 10,11). I.e. we have to revise an earlier branching decision, if inserting a job at a required
position is not possible because some other time window on the schedule or the nurse’s time
window will be violated. Basically, such a test requires checking (6.3), (6.4), (6.7) and it
can be improved by applying forward and backward push information (see Solomon [193]).
Additional constraints on the roster’s design may be included in this algorithm as well, and
they will further reduce the search space.

To avoid repeated calculations for identical job-sets, we use a cache that stores all optimal
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Algorithm 12 Find best sequence for setU
generateSequence (sequenceS, setU)

1: // try to fix some jobs
2: for i � 1 . . . length�S� � 1 do
3: if (U � ∅) then goto 12
4: for all j � U do
5: if (precedence forj is: afterSi�1 and beforeSi) then
6: if (insertingj betweenSi�1 andSi does not violate any time window)then
7: U � U � �j�
8: insertj betweenSi�1 andSi
9: goto 4// restart loop at first element inU

10: else
11: return // infeasible
12: if (U � ∅) then
13: solve LP (6.21), and eventually updatebestSol
14: else
15: selectj � U
16: for i � 1 . . . length�S� � 1 do
17: if (insertingj betweenSi�1 andSi does not violate any time window)then
18: S� � S;
19: insertj betweenS�i�1 andS�i
20: generateSequence (S�, U � �j�) // recursive call

schedules found. In the experiments, only some thousand different sequences are determined,
whereas some million requests are answered by the cache (see Sec. 6.5.1).

6.3.3 Initial Solutions via Constraint Programming

Initial heuristics are used in obtaining a first solution quickly. They provide us with the first
rosters, and if the dispatcher allows more time for optimization, they serve as a starting point
for improvement heuristics. Our first approach was to adapt insertion and scheduling heuris-
tics developed for the vehicle routing with time windows (Solomon [193]). Though they are
very fast — usually only a split second — the solutions obtained turned out not to be applica-
ble, as in most cases not all jobs could be covered by nurses. Therefore, we decided to follow
a CP approach within an incomplete tree search. On typical instances, we usually obtain very
good starting solutions within a few seconds. Furthermore, we may trade time vs. quality with
such an approach. We can simply stop at any time after having found the first solution and
take the best one produced so far.

6.3.3.1 Formulation

We use a redundant modeling for the HHC problem. We represent the roster for nursen by a
setR�n�, n � 1 . . . N and each jobj � & by an integer variablei j. In a solution, the setR�n�

contains all jobs assigned to nursen, and variablei j is the nurse who has to serve jobj. The
fact that we have to cover all jobs (6.1) is implied by this model, since each job is linked to a
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nurse. Initially,

pos�R�n�� � �j � quali� �j� � quali� �n��, n � $ , req�R�n�� � ∅, (6.22)

pos�ij� � �n � quali� �j� � quali� �n��, � j � & , req�ij� � ∅, (6.23)

which already covers (6.8). Next, we state that then rosters must not intersect (6.2) by a global
cardinality constraint (Régin [173]). We force consistency between roster and job variables
by stating

� n � $ , j � & : j � R�n� �� ij � n. (6.24)

We can improve this model by providing redundant information. If we know from prepro-
cessing that two jobsj, j� have to be served in parallel, they cannot be assigned to just one
nurse. Hence, we add

ij �� ij� �j, j� � & that have to be in performed in parallel. (6.25)

Using the sequencing cache, we can add a forward checking. Whenever the shifting of jobj
to the current required set of a nurse would result in an infeasible ordering, we can remove
that job from the nurse’s domain:

� n � $ :
�j � pos�R�n�� � req�R�n�� :

req�R�n�� � �j� infeasible� pos�R�n��� pos�R�n�� � �j�
(6.26)

6.3.3.2 Branching and Tree Traversal

If domain filtering alone does not provide a solution or failure, we have to branch. Our strategy
here is to select a jobj for which the possible setpos�j� is the smallest, and to first choose a
nurse assignment which will result in the best overall improvement.

Algorithm 13 Goal 1: Branch on job with smallest domain, and assign best nurse first
goal1

1: j � job with minimal domain, that is not yet fixed.
2: n � nurse inpos�j� with best improvement value
3: left branch: (ij � n)
4: right branch: (ij �� n)

Having produced two new subproblems, we have to select the next one to process. We use
Limited Discrepancy Search (LDS) (Harvey and Ginsberg [105]) to traverse the search tree.

6.3.4 Improvement Heuristics

A solution can often be improved by applying local changes. Metaheuristics, like Simulated
Annealing (Kirkpatrick et al. [128], van Laarhoven and Aarts [203]) and Tabu Search (Glover
[90, 91]) are widely used and have been shown to produce good solutions in a reasonable
amount of time.
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In our approach, both metaheuristics are based on a simple1-shift, i.e. removing a job
from one place and inserting it elsewhere. To flexibly the operator we allow an insertion at
a different set of jobs as well as an insertion at a stockΓ. Accordingly, we may remove a
job from a set of rosters or from the stock. Of course, deleting a job and re-inserting it in the
same set again is prohibited. Moving a job to the stock is highly penalized by adding +1 to
the objective.

Thecostsof a 1-shift are defined as the gain from deleting jobj from a roster or the stock
minus the loss resulting from inserting it again into a certain position in a roster or into the
stock.

Using the stock we can start withΓ � & and apply the metaheuristics to an empty solution,
or we can use a solution found earlier and try to improve on that. Notice, that we allow
intermediate steps with a non-empty stock (i.e. we relax (6.1)). Any solution returned by
either metaheuristics, however, requires all jobs to be assigned to nurses.

Since we calculate optimal sequences via the approach presented in Sec. 6.3.2, it suffices
to partition& into good subsets. As with the constraint programming approach, LP (6.21)
can only be applied, if we replace the minimum work time constraint�#� for subsets under
construction byw � 0.

6.3.4.1 Simulated Annealing

Simulated Annealing (SA) tries to randomly pick good moves and to improve the current
solution by applying these moves. To escape from local optima, deteriorating moves are ac-
cepted with a certain probability which is gradually decreased during the optimization process.
Because of its similarity to smelting processes, this probability is called temperature. The al-
gorithm terminates, if the system is regarded as “frozen” – either by a low temperature, or by
not moving to a better state.

In our implementation, the starting temperature is determined automatically, using a method
by Aarts et al. [1]. We start with some 1-shifts at a low temperatureT and increaseT until an
acceptance rate of 100% is reached. This temperature is then used as the starting point for the
cooling scheme.

The next move is determined by choosing a job and a nurse randomly. Improving moves
are always accepted, whereas deteriorating moves are only accepted with probabilitye�

∆C
T ,

where∆C is the cost change resulting from the current move (see Kirkpatrick et al. [128], van
Laarhoven and Aarts [203]). After 1000 iterations we decrease the temperature by a factor of
0.9. Should our time limit exceed or the acceptance rate drop below 0.1% we stop. Simulated
Annealing is sketched in Alg. 14.

6.3.4.2 Tabu Search

The Tabu Search (TS) used follows the ideas proposed by Glover [90, 91]. The general strat-
egy of Tabu Search is to systematically explore all possible moves from the current to a neigh-
boring solution. The move leading to the best (non-tabu) neighboring solution is accepted,
even if this results in a deterioration of the objective function. To prevent the search from
cycling, a tabu list which stores the inverse move for a certain number of iterations is used.
Thus, all solutions which can be obtained by applying a move stored in the tabu list are not
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Algorithm 14 Simulated Annealing
SimulatedAnnealing

1: T � initial temperature
2: repeat
3: iterations � 0
4: repeat
5: iterations � iterations � 1
6: select next move randomly
7: probe that move; call Algorithm 12 (sequencing) for sets changed
8: ∆C � cost change caused by that move
9: if ((∆C � 0) or (e�

∆C
T � rand��)) then

10: perform that move, update current solution
11: if (improved globally)then
12: update best solution;
13: until (iterations � 1000)
14: T � 0.9 
 T
15: until ((acceptance rate too low)or (time()� limit))

considered. An aspiration criterion allows us to override this rule, if a move improves the best
global solution known so far.

We perform the best 1-shift among all possible ones (in the above sense) to obtain a dif-
ferent solution. I.e., we have to find an optimal sequencing for each member of the 1-shift
neighborhood. We set the inverse of that move tabu for the next 10 iterations and update a
table f r counting how often a certain job is assigned to a nurse.f r is used fordiversification
by adding a specific penalty for frequently used moves. By doing so, we gradually manipulate
the cost function into moving the search away from some hot spots. The penalty term repre-
sents the additional costs incurred by moving jobj to nursen. It was originally proposed by
Taillard et al. [195]:

p�j, n� � ∆max 

f r�j, n�
f rmax

, (6.27)

where f r�j, n� is the frequency of moving jobj to nursen, f rmax is the maximal frequency
over all nurses and jobs, and∆max is the maximal absolute difference between two consecu-
tive moves performed so far (excluding moves from/to the stock because of their high extra
penalty).

Diversification penalties are added to the original objective if no global improving solution
is found for some iterations (e.g. 2000). As soon as we find an improving solution we switch
back to the original objective function. Should we stall for longer time, we terminate the
search. Algorithm 15 sketches the procedure.

We do not consider any specific intensification within the pure Tabu Search. The hybrid
approach described in the next section will introduce such a technique.
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Algorithm 15 Tabu Search
TabuSearch

1: iterations � 0
2: while ((iteration � max_iter) and (time()� limit�) do
3: if (diversification required)then
4: select best neighbor using diversification, (non-tabu or global improvement)
5: else
6: select best neighbor, (non-tabu or global improvement)
7: perform move
8: iterations � iterations � 1; updatef r, tabu
9: if (improved globally)then

10: update best solution

6.4 A Hybrid Solution Approach

As we will see in the experimental evaluation, the approaches we have just presented are
able to quickly find good operational solutions. There are two points, which can be

improved further: Firstly, if time allows, we would like to optimize more, and achieve better
plans than those found so far. And secondly, we would like to collect several diverse plans:
We experienced that the acceptance of computer generated solutions increases if not only one
optimized plan is presented, but also some alternative plans, and dispatchers as well as nurses
know that the final decision is made by a human.

In this section we discuss a hybridization technique which accounts for both points. The
approach offers a diverse variety of very good solutions to the dispatcher and lets him/her
decide which roster is best.

Before presenting this approach, let us summarize some characteristics of the approaches
presented in the previous section:

(i) Different approaches emphasis on different parts of cost- or constraint structure.

(ii) Having found several starting solutions, it is not clear at all which one will be the best
starting point for improvement heuristics.

(iii) In many cases improvement heuristics stop because they are trapped in local optima. A
different method may easily escape from such an optima.

As a result, applying only one improving algorithm to only the best initial solution is not
likely to produce the best possible solution. This problem has been recognized in several
application fields and approaches based on the concept of a solution pool have been presented.
These strategies turn out to be quite powerful in practical experiments (see Taillard et al. [196]
for examples of different heuristics and different problems).

6.4.1 The Solution Pool Concept

The idea of a solution pool is to store some intermediate solutions generated via the improve-
ment heuristics and exploit the stored “know-how” for designing new solutions. In a Tabu
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Search context, such an approach refers to the utilization of long term memory (see Glover
[90]). Three different approaches can be identified within such a framework:

Combine parts of old solutions into a new solution: For the VRPTW, Rochat and Tail-
lard [175] collect intermediate solutions of Tabu Search. They periodically pick some
of the generated routes at random (giving higher probability to routes from good so-
lutions) and combine them with a new solution. For customers not covered by this
method, they add new routes, each containing only one of these customers. The newly
generated solution is the starting point for the next Tabu Search optimization. Schulze
and Fahle [184] improved on this by using a deterministic set covering heuristics. There,
all solutions are divided into routes, and a set covering heuristics is used to select those
routes that cover all customers at minimal costs. Customers covered on more than one
route are deleted from all but one route, thus improving the solution’s quality further.

Similar techniques were used in Chapter 5 for airline crew rostering

Apply different heuristics to the solutions in the pool: A bunch of heuristics is applied to
all solutions stored in the pool. Caused by different characteristics of the heuristics used,
solutions trapped in a local optima via one heuristic method can often be improved in
turn by subsequent heuristics (Bouthillier et al. [39]).

Extract statistical data from the pool as a guidance for heuristics: We count how often
a certain assignment occurs in the solutions found so far. Then we prefer assignments
which occur often to rare ones. Such an approach is very similar to the “fitness” idea
used in genetic algorithms (see Goldberg [93]).

In our approach, we combine two of these ideas, namely applying different heuristics to the
solutions in the pool and using statistical measures for good solutions. We do not consider
the first approach which produces very good solutions, but needs a considerable amount of
running time. Thus it is not feasible in the planning environment we are focusing on, where
dispatchers like to see a solution within a few minutes.

6.4.2 Using a Good Solution to Improve the Search

Let Ω be a set of solutions found by some heuristics. In the beginningΩ contains solutions
found by initial heuristics (IH). In the optimization loop, we apply our improvement heuristics
to each solution inΩ, and replace the old solution by the improved one (see Alg. 16).

Whereas Tabu Search and Simulated Annealing simply start with the solutionL provided by
the pool, the CP approach has to be adapted slightly. We use the general settings described in
Section 6.3.3, and change the branching scheme of goal 1 (Algorithm 13) to consider decisions
in L as well. The idea is to select the next jobj as before, and to use the same nursen
assigned toj as in solutionL. The ratio behind this is that in a good solution many assignments
already correspond to assignments in an optimal solution, and we will use as many of these
assignments as possible. If the nurse used inL is not available (e.g. because some propagation
or earlier branching has assigned her elsewhere), we select the next nurse as in goal 1. The
corresponding goal 2 is described in Alg. 17.

Furthermore, we try to improve the CP approach by modifying the search order with respect
to soft constraint satisfaction (provided by the input solution). Given a solutionL, we can sort
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Algorithm 16 A pool Ω stores initial and improved solutions found during optimization
1: P � problem instance
2: Ω � ∅
3: while (Ω not full) do
4: S � IH�P�; Ω � Ω � �S�
5: repeat
6: selectS � Ω; Ω � Ω � �S�
7: select a heuristic methodh � �TS, CP, SA�
8: S� � h�S, P�; Ω � Ω � �S��
9: until (termination criterion)

10: return all solutions inΩ

SA

TS

CP

IH

IH

Ω

Algorithm 17 Goal 2: Branch on job with smallest domain and assign the nurse that was also
used in solutionL
goal2

1: j � job with minimal domain, that is not yet fixed
2: n � nurse that was also used in solutionL for job j if possible
3: elsen � nurse inpos�j� with best improvement value (as in goal 1)
4: left branch: (ij � n)
5: right branch: (ij �� n)

thesc�n, j� values of that solution in a preprocessing step. In goal 3, we chosej as the first
job in this order that is not yet assigned, and we determine the nurse as in goal 2. Goal 3 is
described as Alg. 18.

Algorithm 18 Goal 3: Branch on job with best soft constraint values first, and assign the nurse
that was also used in solutionL
preprocessing-step

1: sortsc�n, j� for all �j, n� pairs found inL
goal3

1: j � first job in sorted list that is not yet fixed
2: n � nurse that was also used in solutionL for job j if possible
3: elsen � nurse inpos�j� with best improvement value (as in goal 1)
4: left branch: (ij � n)
5: right branch: (ij �� n)

6.4.3 Using the Essence of All Solutions

A further solution improvement is gained by using statistical information from the solution
pool to guide the constraint programming approach. The idea is to detect job/nurse pairs,
that often occur in solutions with high quality, and to consider those assignments early in a
systematic search. Vice versa, pairs occurring in low quality solutions only should be consid-
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ered late in a systematic search. This idea leads to a modified variable ordering and variable
assignment goal within the CP approach.

Let Ω � �S1, . . . , Sk� be a pool ofk (diverse) solutions,v�S� be the value of solutionS.
For any nursen � 1, . . . , N and any jobj � 1, . . . , J, let µ�n, j� be the accumulated objective
value of all solutions inΩ assigning jobj to nursen. Accordingly, letκ�n, j� be a counter for
the number of solutions containing such an assignment. We consider those assignments that
have a low value ofµ�n,j�

κ�n,j� as “good”. This value is the average quality of solutions containing

an assignment ofj to n. We order the pairs�n, j�, n � 1, . . . , N, j � 1, . . . , J according

to increasing valuesµ�n,j�
κ�n,j� . In the branching decision described in Sec. 6.3.3 we replace the

variable selection by a selection step which takes the first pair�n, j� for which an assignment
is possible. Then we assignj to nursen on the left branch, and we excludej from the possible
set ofn on the right branch.

Since we usually only perform an incomplete search, it is likely that assignments made in
the first part of the search tree will be included in the best solution found after interrupting the
search. To prevent the statistical information gathered inµ�n, j� andκ�n, j� from being part
of a self-stabilizing process, we refine the collection process as follows: We increase the value
µ�n,j�
κ�n,j� by an additional penalty depending on the frequency of a certain assignment. The more
often an assignment is used, the higher the penalty added. We use

µ�n, j�
κ�n, j�

�

�
κ�n, j�

maxn�,j��κ�n�, j���



�
max
n�,j�

�µ�n�, j��� �min
n�,j�
�µ�n�, j���

��
. (6.28)

In doing so, high quality parts are still assigned first, but rarely used parts are preferred to
more frequently used ones. We assume this strategy produces more diverse solutions than the
pure quality ordering alone. The algorithmic framework is presented in Alg. 19.

Algorithm 19 Goal 4: Branch on job/nurse pairs that occur in good solutions found earlier
preprocessing-step

1: sort�n, j� according to increasing values obtained by (6.28)

goal4
1: select�n, j� as the first in the previously sorted list that is not yet fixed.
2: if no such pair exists, select�n, j� as in goal 3
3: left branch: (ij � n)
4: right branch: (ij �� n)

6.5 Numerical Evaluation

All algorithms were coded in C++ and compiled by the GNU g++ 2.95.3 compiler using
full optimization. Our benchmark tests were run on a Pentium III-933 PC with 512MB

RAM operating Linux kernel 2.4.19. For solving LP (6.21) we use ILOG CPLEX 7.5 [119],
and for the constraint programming approach we apply ILOG SOLVER 5.2 [120]. Simulated
Annealing was implemented using PARSA [130].
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roster size recursive calls LP calls
2 1.094 0.962
3 1.356 1.028
4 1.443 1.015
5 1.665 1.073
6 2.057 1.139
7 2.837 1.344
8 3.986 1.555
9 6.548 2.585
10 7.936 2.988
11 6.566 1.882
12 7.342 1.911
13 18.398 4.162
14 24.560 4.317
15 36.350 3.649

Table 6.1: Sequencing algorithm efficiency

We used 10 synthetic test scenarios, containing between 20 and 50 nurses, and between 111
and 326 jobs. The data was generated according to real-world input. Each job lasts between
6 and 72 minutes, nurses’ hard time windows between 5 and 9 hours. Locations were chosen
randomly, and euclidean distances were calculated between these locations. Also, the soft
constraint factor for each job was selected randomly.

The tables and figures presented in the following show the quality value as defined by the
objective. It contains routing quality, time window penalties as well as the soft qualification
measure. All terms were equally weighted byαi � 1

5 . The run times are given in seconds.
To reflect a real-world setting, all run times are limited to 600sec or 840sec, respectively. A
deeper experimental analysis of our methods is given by Bertels [29].

6.5.1 Optimal Sequences

Table 6.1 shows that enumerating all possible orderings for a given set of jobs does not dras-
tically boost the computing time, if we use time window constraints and job precedences to
limit the enumeration tree. Algorithm 12 builds only few sequences and even less LPs have to
be solved. Notice, that a complete enumeration for a roster of sizek would result ink! recur-
sive calls. E.g. there are6 227 020 800 possible permutations for a 13-job-roster whereas we
need less than 19 calls on the average. An even smaller number corresponds to valid orderings
(which have to be processed by the LP).

In Fig. 6.4 the efficiency of the sequence cache for the basic solution methods is shown.
We can see that CP generates many identical rosters due to the systematic search. TS benefits
considerably from the cache when enumerating the neighborhood. Due to its randomness SA
arbitrarily jumps around in the solution space. SA is forced to behave more locally only after
a decrease in temperature and thus can benefit from previously optimized rosters. The peak
of the CP+TS curve results from a series of diversification steps that guide the search to a new
part of the search space. The small bend of the CP curve is due to the internal implementation
of LDS in ILOG SOLVER, see [120, Ref. Manual, p. 90].
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Figure 6.4: Sequencing cache fail rate

6.5.2 Initial Solutions via Constraint Programming

In Table 6.2 we show results obtained for the initial solution. That is, we applied CP (using
goal 1) to each benchmark set until the first solution was found. Whenever the first solution
was found in less than 10 seconds, we also show the best value found after 10sec. (To get an
idea of the quality obtained, these results can be compared to those in Table 6.3).

As can be seen in Table 6.2, a good starting solution can be found in a short time even for
larger instances. Typically, the first solution, and the one found after 10sec are of the same
quality. The 50 nurse instances take considerably longer than the smaller ones. There are
two possible reasons for this: The CP heuristics might be bad, making many wrong decisions
before finding the first solution, or the time used in each choice point may be high. When

sizes first solution after 10sec
�� �-���-�� � time in sec. objective objective

20-40-111 1.70 0.201277 0.175840
20-60-123 2.70 0.224217 0.218209
20-80-137 3.49 0.198873 0.187321
30-60-184 5.14 0.196026 0.195011
30-90-184 6.34 0.192929 0.188494
30-120-177 6.02 0.182207 0.179576
30-150-195 7.36 0.188585 0.185647
50-100-304 15.16 0.181553 —
50-150-319 20.19 0.169044 —
50-200-326 22.45 0.171422 —

Table 6.2: Finding initial solutions via CP
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analyzing the results in more detail we found that the number of choice points explored, and
the number of failures encountered were reasonable. The time spent for sequencing sets,
however dominates the overall running time. In the beginning sequencing rosters is quite
expensive in terms of computing time, since no information is stored in the cache. Later
on, many sequencing requests can be answered by the cache. Thus succeeding computations
benefit greatly from the bigger effort required in the beginning.

6.5.3 Comparing the Heuristics

Unfortunately, if CP continues running for 10min, the good start is not followed by a good
convergence. The first column in Table 6.3 gives solution values which are only slightly better
than the initial ones found by CP within the first few seconds. Simulated Annealing (started
on an empty initial solution) produces better solutions than CP, but cannot compete against
Tabu Search (also started on an empty solution) as can be seen in column three of that table.
Tabu Search outdoes both of the previously mentioned approaches — if it can find a solution
at all. In three cases Tabu Search seems to be too aggressive, and it is not able to generate a
feasible solution at all within 600 seconds.

Interestingly, although Simulated Annealing and Tabu Search are both based on the same
1-shift neighborhood, their solution quality differs significantly. Such a behavior seems to be
partly approach immanent (see e.g. Osman [157]). Another reason is, again, the sequencing.
Whereas TS and CP systematically check their neighborhood and thus can reuse previously
generated sequencing information, SA “jumps” randomly, resulting in much more cache fails
and thus, much more calculations of sequences (see Fig. 6.4).

Motivated by the success of TS we started TS on the first solution found by CP (we refer to
this approach as CP+TS). Not only does this approach ensure obtaining a feasible solution, it
also appears to be the best approach in this test. Except for the smallest instances, it surpasses
all other methods.

Figure 6.5 shows a typical plot comparing our four approaches. SA when starting from
scratch takes quite some time to improve the solution. SA does not reach the solution quality
of TS, or CP+TS. CP quickly finds a solution, but has difficulties improving it. TS needs
some time to find a valid starting point which it then quickly improves. Combining CP and
TS brings together the advantages of both approaches.

6.5.4 Combining Approaches

Instead of stopping the search after the termination of TS, we can also trade our computing
time differently. In one test we ran CP for two minutes to find 10 different initial solutions
which we stored inΩ. Then each of these solutions was optimized via a Tabu Search limited
to one minute each (starting diversification after 500 non-improving rounds). Finally, all
information collected in theµ�n, j�, andκ�n, j� tables was used to run CP using goal 4 for
additional two minutes.

The other test consists of running CP for an initial solution (goal 1), followed by alternating
runs of TS and CP on the best solution found (we used goal 2 which produced a similar
solution quality as goal 3). The time limit of a round was raised whenever the previous round
did not improve the global best solution.
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Figure 6.5: Comparison of the heuristics

sizes objective after 600sec
�� �-���-�� � CP SA TS CP+TS

20-40-111 0.171069 0.1401140.130188 0.132068
20-60-123 0.207763 0.1696430.153611 0.159384
20-80-137 0.185795 0.140229 —0.131078
30-60-184 0.190910 0.157389 —0.130886
30-90-184 0.186522 0.137593 0.1224360.119256
30-120-177 0.176804 0.139311 0.1219890.121133
30-150-195 0.183405 0.141220 0.1213860.120928
50-100-304 0.174755 0.143110 0.1195500.116424
50-150-319 0.163636 0.135278 0.1105720.108694
50-200-326 0.167059 0.137677 —0.115819

Table 6.3: Results for constraint programming (CP), Simulated Annealing (SA), and Tabu Search (TS)
started from an empty solution, and for Tabu Search started on the first solution found by constraint
programming (CP+TS). A dash indicates that no solution was found. Each approach ran for 600sec.
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sizes objective
�� �-���-�� � CP+TS CP+TS loop 10 * CP+TS

20-40-111 0.132068 0.136548 0.130534
20-60-123 0.159384 0.158962 0.153450
20-80-137 0.131078 0.130157 0.129449
30-60-184 0.130886 0.132782 0.129801
30-90-184 0.119256 0.118036 0.118690
30-120-177 0.121133 0.125103 0.120917
30-150-195 0.120928 0.121823 0.120806
50-100-304 0.116424 0.113853 0.115200
50-150-319 0.108694 0.108091 0.107043
50-200-326 0.115819 0.113778 0.115029

Table 6.4: Comparing combined approaches. Results for CP+TS, alternating CP and TS (CP+TS loop),
and applying TS to 10 initial CP solutions (10* CP+TS). Running times between 600sec and 840sec.

In Table 6.4 we present the results obtained by these two methods. Evidently, applying short
optimization runs to a larger set of solutions outperforms both, the simple approach (CP+TS)
considered in the previous section, as well as the alternating approach. Goal 4 was seldom
able to find even better solutions.

Figure 6.6 compares the CP+TS method vs. alternating CP and TS vs. TS alone on 10
solutions.

6.6 Conclusions

We presented a compact model to the home health care problem which is flexible enough
to break down most real-world HHC problems of different characteristics. Further-

more, we developed several solution approaches for the model. The approaches find good
quality rosters that satisfy routing, qualification, time windows and soft constraints.

We combined the effectiveness of LP for finding optimal starting points of jobs and the
effectiveness of CP for generating feasible ordering. This module is utilized by CP and lo-
cal search methods. We can offer several good solutions to the end users by using a pool of
solutions, and we can use information collected in the pool to improve the quality of these
solutions. Experimental results show significant gains when these different methods are com-
bined.

The industrial prototype is currently undergoing intensive user evaluation, where solutions
generated by our optimization methods are competing in real-world scenarios. In a second
step, requests for additional legal and company constraints, or credit point systems (con-
tributed by researchers from ergonomics) may be integrated into our algorithmic framework.

Furthermore, it would be interesting to investigate the experimental behavior of our methods
when allowing more computing time and different solution techniques.
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7
The Automatic Recording Problem

The Automatic Recording Problem (ARP)is an example of a problem that is constituted
by two simpler constraints. We focus on algorithms that solve the problem exactly and

give a tightened formulation of the ARP as an integer program (IP). Especially, we test the
method of coupling domain filtering algorithms via Lagrangian relaxation on this multimedia
application.

The technology of digital television offers new possibilities for individualized services that
cannot be provided by analog broadcasts nowadays. Additional information like the classifi-
cation of content, or starting and finishing times can be submitted within the digital broadcast
stream. With this information at hand, new services that make use of individual profiles and
maximize customer satisfaction can be provided.

One service – which is available already today – is an “intelligent” digital video recorder
that is aware of its user’s preferences and records automatically [10]. Such a recorder tries to
match a given user profile with the information submitted by the different TV channels. E.g.,
a user may be interested in thrillers, the more recent the better. The digital video recorder
is supposed to record programs so that the users’ satisfaction is maximized. As the number
of channels may be significant (more than 100 digital channels are possible), a service that
automatically provides an individual selection seems to be reasonable and is in the center of
current research activities e.g. within theUP-TV project1 or theTV-Anytime Forum2.

In this context, two restrictions have to be met. First of all, the storage capacity is limited
(10 hours of MPEG-2 video need about 18 GB). And secondly, only one video can be recorded
at a time (see Fig. 7.1). We define the problem more formally as follows:

Definition 9 Let n � N, V � �1, . . . , n� the set of programs,start�i� � end�i� � i �
V the corresponding starting and finishing times.w � �w1, . . . , wn� � Qn

� the storage
requirements,K � Q� the storagecapacity, andp � �p1, . . . , pn� � Nn the profit vector.

1Commission of the European Union, IST program, project number 1999-20751
2“The global TV-Anytime Forum is an association of organizations which seeks to develop specifications to

enable audio-visual and other services based on mass-market high volume digital storage in consumer plat-
forms” (cited fromhttp://www.tv-anytime.org/)
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Figure 7.1: The scenario for the Automatic Recording Problem.

We say that the intervalIi :� �start�i�, end�i�� correspondsto programi � V, and call two
programsi, j � V overlappingwhose corresponding intervals overlap, i.e.Ii � Ij �� ∅. For
X � V we call pX :� ∑i�X pi theuser satisfaction (with respect toX).

TheAutomatic Recording Problem (ARP)then is to find a subsetX � V such that

(a) X can be stored within the given disk size, i.e.∑i�X wi � K.

(b) one program at most must be recorded at a time, i.e.Ii � Ij � ∅ � i �� j � X

(c) X maximizes the user satisfaction, i.e.pX � pY � Y � V, Y respecting (a) and (b).

Obviously, even if all programs are pairwise non-overlapping (i.e., if restriction (b) is ob-
solete), it remains to solve a knapsack problem. Thus, the ARP is NP-hard. But it can be
approximated to arbitrary precision, since there is a simple fully polynomial time approx-
imation scheme (FPTAS) for the ARP (a description can be found in Sellmann and Fahle
[186]). Basically it is a slight extension of the well-known FPTAS for knapsack problems
(see e.g. Martello and Toth [145]).

In the ARP’s original setting, resources for solving the problem are limited. A typical VCR
will have some megabytes of RAM and a simple processing unit. Approaches requiring huge
amounts of memory, or high-end CPUs are not suited in such a scenario.

We will ignore that fact for a moment, and discuss several approaches for the ARP, among
them three based on Lagrangian coupling (this chapter), and two alternative approaches in
Chapter 8.

7.1 An Integer Linear Programming Formulation

Linear programming based branch-and-bound approaches have proved to be efficient, widely
applicable and thus are quite commonly used. In every choice point, a bound based on

the LP relaxation is being computed. If that bound is worse than the objective valueB of the
incumbent solution, backtracking occurs.

The ARP can be modeled straightforwardly as an ILP. We use a vectorx � �x1, . . . , xn� of
binary variables to describe whether moviei is selected in an optimal solution (xi � 1) or not
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(xi � 0). Thus, definition 9(a) is directly translated into a knapsack constraint (∑i xi 
 wi �
K). Def. 9(b) corresponds to a bundle of constraints enforcing that at most one variable may
be set to one if the corresponding movies overlap in time. And the objective is to maximize
∑i pi 
 xi:

Maximize ∑n
i�1 pixi

subject to xi � xj � 1 � i �� j � V Ii � Ij �� ∅
∑n

i�1 wixi � K
x � �0, 1�n

(7.1)

The objective function maximizes the user satisfaction. Constraints of the formxi � xj � 1
ensure that for any two overlapping intervalsIi, Ij at most one program can be selected. Stor-
age restrictions are enforced by the last row. The formulation can be tightened by replacing
the “non-overlapping” constraints with maximal conflict clique constraints.

Definition 10 A setC � V is called aconflict clique, if Ii � Ij �� ∅ � i, j � C. A conflict
clique C is called maximal, if � D � V, D conflict clique: C � D � C � D. Let
M :� �C1, . . . , Cm� � 2V denote the set of maximal conflict cliques.

Then, restrictions of the form∑i�Cp
xi � 1 p � 1, . . . , m imply that xi � xj � 1 for all

nodesi, j � V whose corresponding intervals overlap. On the other hand, ifxi � xj � 1
for all overlapping intervals, it is also true that∑i�Cp xi � 1, p � 1, . . . , m. We will detail
our discussion on maximal clique constraints in section 8.1.1. Here, we continue with the
resulting IP, which is

Maximize ∑n
i�1 pixi

subject to ∑i�Cp
xi � 1 p � 1, . . . , m

∑n
i�1 wixi � K

x � �0, 1�n

(7.2)

7.2 Solving the ARP via CP based Lagrangian Relaxation

Domain reduction can help to improve the performance of a branch-and-bound search if
the filtering is both, effective and efficient. Effective means, that it has to be able to filter

many values, whereas efficiency measures how quickly the routine works.
We therefore solve the ARP via a constraint programming based branch-and-bound ap-

proach that enables us to add (real-world) constraints to the problem without changing the
core ideas.

The effectiveness of a filtering algorithm depends mainly on the quality of the bounds it uses
to estimate the impact of fixing a variable to one of its values. For the ARP, our experiments
show that the continuous relaxation bound yields a good estimate of the solution quality that
can be reached. Thus, it can be used for pruning purposes in a branch-and-bound approach.
But it is not obvious to see, how this bound could be used effectively for filtering purposes,
that is, other than by probing via full re-optimization, which is inefficient. On the other hand,
domain reduction with respect to reduced cost information can be done quickly, but is not very
effective.
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7.2.1 Substructures of the ARP

The ARP can be viewed as a combination of two simpler optimization constraints: a knap-
sack constraint and a shortest path constraint. The latter requires to move costs of a node to
the outgoing edges and to revers their sign. A different view on ARP allows us to identify
another possible combination of simpler optimization constraints: a knapsack constraint, and
a maximum weighted stable set constraint on an interval graph.

Therefore two possible CP models are available. The first model uses the shortest path
constraint presented in Chapter 4 and the knapsack constraint for which a domain filtering
algorithm is described in Chapter 3. The shortest path constraint needs timeO��V�� �E�� and
on a dense graph like in our application this results to a running time ofO��V�2� per choice
point.

The second model also relies on the knapsack constraint and a constraint specially devel-
oped for maximum weighted stable set substructure (MWSSP) of the ARP (see Sellmann and
Fahle [186]). It runs in timeΘ�n log n�, and in amortized linear time forΩ�log n� choice
points.

7.2.2 CP based Lagrangian Relaxation for the ARP

In the remaining, we show how to apply CP based Lagrangian relaxation to the ARP. Asymp-
totic running time of the more general shortest path constraint is higher than of the specially
designed maximum weighted stable set constraint. Thus, we will use the maximum weighted
stable set constraint in the descriptions and in the experiments. The idea of that constraint is to
use apply the simplex algorithm to the weighted stable set problem. Using a problem specific
pivot strategy it is possible to achieve the running time mentioned above. This idea is due to
M. Sellmann and we refer to Sellmann and Fahle [186] for technical details.

With the two domain filtering algorithms at hand, we are able to perform domain reduction
on the two natural substructures of the ARP. According to the abstract description in Sec. 2.3.3,
we will now tie the two filtering algorithms together:

As the domain filtering algorithm for MWSSP allows us to incorporate changing objectives
at a low computational cost, we decide to relax the capacity constraint. We introduce a non-
negative Lagrangian multiplierλ � 0 and define the Lagrangian subproblem

Maximize z�λ� :� z L�λ�
subject to z � ∑n

i�1�pi � λwi�xi � λK
∑i�Cp

xi � 1 p � 1, . . . , m
x � �0, 1�n

The Lagrangian multiplier problem then is to solve Minimizez�λ�, such thatλ � 0. For
everyλ � 0, z�λ� is a valid upper bound on the objective. Therefore, we can apply cost
based filtering for the MWSS constraint on interval graphs each time we solve the Lagrangian
subproblem. After we have found an optimal Lagrangian multiplierλ�, we now use dual infor-
mationπ � Qm from the corresponding stable set subproblem to perform variable fixing with
respect to the knapsack substructure. By (Lagrangian) relaxing the maximal clique constraints
with multipliersπ � 0, we obtain a knapsack problem. Letµ i :� ∑j : i�Cj

πj i � 1, . . . , n
andπ :� ∑m

j�1 πj. The problem then is to
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Maximize ∑n
i�1�pi � µi�xi � π

subject to ∑n
i�1 wixi � K

x � �0, 1�n

Relaxations of this problem again yield a valid upper bound, and we can apply domain
filtering of the knapsack optimization constraint using the modified objective.

7.2.3 Implementation Details

We use four different approaches for our experiments: the first is a pure branch-and-bound
algorithm without any problem tightening (referred to asLG-0). The second applies the do-
main filtering algorithms for knapsack and maximum weighted stable set problems on the
original objective (LG-1). The third and the fourth approach (LG-2andLG-3) realize the idea
of coupling domain filtering algorithms for linear optimization constraints via Lagrangian re-
laxation: LG-2 calls for domain reduction only after the Lagrangian dual has been solved,
whereasLG-3 also applies domain filtering on the maximum weighted stable set constraint
during the search for optimal Lagrangian multipliers.

7.2.3.1 Continuous Bound Computation

For pruning, the computation of a linear bound on the objective is needed.LG-2 andLG-3
obviously use the objective value corresponding toL��λ�� for this purpose. As the computa-
tion via Lagrangian relaxation with stable set subproblems turned out to be very efficient, we
used that algorithm for all four approaches.

7.2.3.2 Computation of λ�

To determineλ�, we used a method based on the golden section to maximize one-dimensional
concave functions. We obtain a sequence ofλk, k � N. Let emax :� max�pi/wi � i �
1, . . . , n�. Then, for allε � 0 there exists a constantc � 0 such that

�λk � λ�� � ε � k � c 
 log emax

Thus, afterO�log emax� iterations we can numerically approximate the optimal Lagrangian
multiplier λ�. Each iteration cost amortized linear time for at leastΩ�log n� choice points.
Finally, in every choice point we addO�n log n� for the succeeding knapsack domain filtering
algorithm. Therefore, the coupled domain filtering algorithm for the tight global continuous
relaxation bound runs in timeO�n log emax � n log n�.

Notice, that the Lagrangian subproblem is totally unimodular. Thus, the Lagrangian relax-
ation bound has the same value as the bound that evolves from a linear continuous relaxation.

7.2.3.3 Branching Variable Selection

All algorithms choose the first node on the shortest path3 with maximal efficiencypi/wi as
the branching variable.

3according to the optimal reduced costs objective∑n
i�1�pi � λ�wi�xi � λ�K
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7.3 Numerical Results

All algorithms described above were tested on some synthetic benchmark sets. The exper-
iments were performed on a PC with an AMD-Athlon 600 MHz processor and 256 MB

RAM running Linux 2.2. The implementation was done in C++ and compiled by gcc 2.95
with maximal optimization (O3). The constraint programming based algorithms were built
on top of ILOG SOLVER 5.0 [117], the linear integer programming approach utilized ILOG

CPLEX 7.1 [118].
One major outcome of the experimental study is the ranking of the approaches described

previously. We will see in Chapter 8 that other approaches are significantly superior to all
four CP based Lagrangian variants. Nevertheless, we present a detailed interpretation for all
approaches here. There are two reasons for this:

(i) Our aim is to show the effects of CP based Lagrangian relaxation when using different
strategies within this setting.

(ii) Additional constraints may prevent the use of the approaches of Chapter 8, thus more
flexible alternatives are required. We will discuss some of these constraints in Sec. 8.5.

7.3.1 Test Instance Generation

The tests were conducted on several sets of randomly generated instances. In order to achieve
scenarios which we believe to be of relevance to the real-world application, each set of in-
stances is generated by specifying the time horizon (half a day to 3 days) and the number of
channels (20 – 100). The generator sequentially fills the channels by starting each new pro-
gram one minute after the previous. For each new program aclassis randomly chosen. That
class then determines the interval from which the length is randomly chosen. We consider ei-
ther 3, 5, or 7 different classes, respectively. The lengths of programs in the classes vary from
5'2 minutes to 150'50 minutes. The disk space necessary to store each program equals its
length, and the storage capacity is randomly chosen as 45%–55% of the entire time horizon.

To achieve a complete instance, we must choose the associated profits of programs. For the
experiments, we used four different strategies for the computation of an objective function:

• For theclass usefulness (CU)instances, the associated profit values are determined
with respect to the chosen class, where the associated profit values of a class can vary
between zero and 600'200.

• In thetime correlated (TC)instances, each 15 minute time interval is assigned a random
value between 0 and 10. Then, the profit of a program is determined as the sum of all
intervals with which the program has a non-empty intersection.

• For theweakly correlated (TWC)instances, the TC value is perturbed by a noise of
'20%.

• Finally, in thesubset sum (SSS)data, the profit of a program simply equals its length.

The different objectives try to emulate some effects we believe to occur real-world instances.
In the CU instances for example, programs of the same class cause similar attractions. And
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the TC and TWC instances cause many conflicts regarding the choice of programs that are
being broadcasted at the same time. However, the different strategies we considered are only
intuitively justified. The feasibility of our approach for real-world instances can only be con-
cluded from the fact that we achieve similar results for all choices of the objective.

We identify a test set by the parameters with which the generator was started. According to
the above description those parameters are:

• time horizon in hours [6h, 12h, 24h, 72h, or 120h],

• number of channels [5ch, 20ch, 50ch, or 100ch],

• number of different classes [3, 5, or 7], and

• objective type [CU, TC, TWC, or SSS].

7.3.2 Numerical Results for Lagrangian Coupling

The numerical results presented in the following tables were ran on different test sets, each
consisting out of 50 random instances. For each instance, our four approaches were run to
find and prove an optimal solution. The tables present various characteristics found during
the tests. We refer to Appendix A for a complete list of all results obtained. We protocol
running times and the number of choice points needed for an exhaustive search. For an easier
reference we start with a summary of the Lagrangian coupling approaches:

Name Description
LG-0 Lagrangian bound, branch-and-bound, no domain filtering
LG-1 Lagrangian bound, branch-and-bound, domain filtering on origi-

nal objective
LG-2 Lagrangian bound, branch-and-bound, Lagrangian relaxation

based domain filtering after Lagrangian dual has been solved
LG-3 Lagrangian bound, branch-and-bound, Lagrangian relaxation

based domain filtering during search for optimal Lagrangian mul-
tipliers.

7.3.2.1 Initial Solutions

Our approachesLG-0 – LG-3do not use any primal heuristics. Nevertheless, they do find good
solutions early on, indicating that the branching variable selection we used supports finding
near-optimal solutions efficiently in a non-exhaustive search.

These observations indicate that for the ARP the majority of the work lies in the proof of
optimality rather than in the construction of the solution.

In the following tables, numbers are printed in boldface when the corresponding approach
was the best (according to Def. 14) among all seven approaches for the ARP (i.e. the La-
grangian approaches in this chapter as well as the two alternative approaches in Chapter 8).
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LG-0 LG-1 LG-2 LG-3
5 . . .

time nodes time nodes time nodes time nodes
CU 9.5 519.4 5.2 295.5 7.0 198.5 8.6 184.0
TC 441.8 40155.7 67.2 4525.8 18.0 696.5 28.4 575.6

TWC 15.5 1136.1 12.0 802.6 6.2 339.9 9.5 321.2

Table 7.1: Test sets with 5 classes, 12 hours, 20 channels and different objectives. Times in seconds
and choice points are averages for 50 randomly generated instances. The average number of programs
per instance is between 607.6 and 612.6.

7.3.2.2 Impact of the Objective

Table 7.1 shows the performance of all seven approaches on test sets generated with a time
horizon of 12 hours and 20 channels using 5 different program classes and CU, TC, and TWC
to determine the objective function.

When comparing the different types of objectives, we find that for all fourLG approaches
the TC instances are much harder than CU and TWC, which are comparably difficult to solve.
This is a general observation we made for all kinds of different test sets using 3 or 7 classes
as well as different time horizons and numbers of channels.

7.3.2.3 Impact on Number of Choice Points

For the Lagrangian approaches we observe that a higher degree of coupling between the two
optimization constraints results in a partially drastic reduction in the number of choice points
of up to a factor of about 70 in the difficult time correlated instances. Regarding the compu-
tation time, there is a trade-off between the reduction in choice points and the time spent per
choice point(TpCP). The TC and TWC instances show, thatLG-2 can outperformLG-3 be-
cause of the shorter TpCP that is needed for that degree of integration. When comparingLG-1
andLG-3 in the CU instances, the reduction in choice points is not large enough to justify the
bigger TpCP needed, andLG-1 is the approach that takes the least computation time.

Generally, a greater reduction in choice points is more likely to pay off when the abso-
lute TpCP needed is rather high. This particularly holds for applications where additional
constraints have to be handled on top of the objective constraint itself. For the ARP, the op-
timization constraint is the only active constraint. Therefore, to justify the high TpCP caused
by the more complicated filtering algorithm, a noticeable reduction in the number of choice
points must be achieved. TheLG-2 and LG-3 approaches obtain a sufficient reduction in
choice points in the more difficult TC test sets, and also for larger test instances.

7.3.2.4 Different Instances within Class 5 CU

Table 7.2 shows the performance of all approaches in test instances that were generated using 5
different program classes with different time horizons and numbers of channels. The objective
was computed according to the chosen classes, i.e., according to CU. As expected, for the
larger instances with a time horizon of 72 hours (3 days) and 20 channels, the two coupling
approachesLG-2andLG-3outperformLG-1by a factor of roughly 4 in relation to the number
of choice points and almost a factor of 2 with respect to the computation time needed. The
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LG-0 LG-1 LG-2 LG-3
5 CU

time nodes time nodes time nodes time nodes

12h
20ch

avg
min
max

std

2.4
0.1

25.4
4.2

238.3
5.0

2216.0
396.8

1.3
0.1

15.1
2.3

129.9
5.0

1531.0
243.6

1.4
0.1

12.9
2.5

108.6
5.0

1269.0
206.5

2.1
0.1

24.2
4.0

89.9
5.0

1045.0
173.5

12h
50ch

avg
min
max

std

16.5
0.1

167.3
30.8

741.9
3.0

7058.0
1377.6

8.2
0.2

82.6
14.5

370.1
3.0

3615.0
658.9

9.9
0.2

154.1
22.9

272.0
3.0

2664.0
506.9

14.2
0.2

156.5
26.8

250.5
3.0

2664.0
465.0

24h
20ch

avg
min
max

std

9.5
0.5

87.5
15.2

519.4
21.0

4416.0
829.9

5.2
0.4

59.6
9.3

295.5
13.0

3762.0
587.6

7.0
0.3

93.4
17.2

198.5
10.0

2094.0
377.8

8.6
0.5

98.1
17.7

184.0
10.0

2067.0
374.9

24h
50ch

avg
min
max

std

1104.9
0.8

31045.5
4448.4

24301.4
12.0

675235.0
97121.0

585.2
1.0

15625.2
2272.6

14219.3
12.0

368440.0
54288.6

883.3
0.7

33281.3
4662.0

8371.9
9.0

292753.0
41139.4

921.5
1.1

31573.5
4441.2

8286.8
9.0

292753.0
41121.2

72h
20ch

avg
min
max

std

2627.7
2.0

32751.9
5514.7

40901.5
29.0

460350.0
85325.8

1786.7
2.4

30520.3
4543.1

27662.0
29.0

412421.0
65188.4

920.4
3.0

11766.0
1996.8

6674.7
29.0

90397.0
14515.9

990.9
5.5

13724.7
2189.7

6514.7
29.0

89589.0
14379.4

Table 7.2: Test sets with 5 classes, objective CU for various time horizons (in hours) and channel
numbers (ch). Italic numbers give the average (avg) time and nodes, resp., of 50 instances. Numbers
below are: minimum (min), maximum (max), and standard deviation (std) for these 50 instances. The
average number of programs per instance is 315.2 for (12h/20ch), 793.5 (12h/50ch), 607.6 (24h/20ch),
1512.1 (24h/50ch), and 1782.6 (72h/20ch), resp.

minimal, maximal and standard deviations indicate that the average numbers presented are
not biased by very few outliers, but represent meaningful values for the evaluation of the
algorithms performance.

7.3.2.5 A Vertical View

In Table 7.3 we compare the different approaches in 150 instances that were generated using
very different parameters and objective functions. Again, relevant and partially significant
reductions in the number of choice points can be obtained by CP based Lagrangian relaxation
realized inLG-2 andLG-3.

7.3.2.6 Subset-Sum Instances

So far, we have left out comparisons regarding the choice of the objective according to SSS.
Table 7.4 shows the results obtained for a collection of very different test sets generated with
SSS. Two facts stand out:

Firstly, a comparison with Table 7.1 shows, that the SSS instances are much easier to solve
than for other choices of the objective. On the first view this result is striking, since the
knapsack LP bound for strongly correlated, or subset-sum data is known to be weak, or mean-
ingless, respectively (as discussed in section 3.7.1). However, if length of and profit for a
movie coincide, any solution completely filling the disk’s capacityK is already optimal and
we can stop searching.
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LG-0 LG-1 LG-2 LG-3
test set

time nodes time nodes time nodes time nodes
3 CU

120h 20ch
5210.3 60839.2 1734.4 30676.4 455.9 3433.9 490.1 2945.1

5 TWC
72h 20ch

11600.1 293386.8 1526.8 35718.4 261.0 3683.6 411.7 3134.5

7 TC
24h 50ch

8349.0 250367.1 4066.3 105572.6 403.4 6235.4 533.0 4219.1

Table 7.3: Effectiveness of the different approaches for different benchmark classes. We have an
average of 1956.7 programs for the 120h/20ch test, 1782.6 for 72h/20ch, and 1423.3 for 24h/50ch.

LG-0 LG-1 LG-2 LG-3
5 SSS

time nodes time nodes time nodes time nodes
12h 20ch 316.4p 0.2 23.1 0.2 15.2 0.2 15.2 0.3 15.2
12h 50ch 792.4p 0.5 18.8 0.5 13.9 0.5 13.9 0.8 13.9
24h 20ch 611.2p 0.5 26.9 0.6 21.9 0.6 21.9 1.0 21.9
24h 50ch 1527.3p 1.6 29.1 1.8 23.2 1.7 23.2 3.0 23.2
72h 20ch 1778.3p 3.5 53.4 4.6 51.7 5.0 51.7 8.7 51.7
72h 50ch 4464.3p 11.0 54.4 14.4 52.8 15.4 52.8 27.2 52.8

Table 7.4: Subset sum data sets for 12 hours, 20 channels, up to 72 hours and 50 channels. The average
number of programs is given as parameter p in the upper table.

Secondly,LG-1 achieves only a slight reduction in choice points compared toLG-0 which
cannot be improved byLG-2 andLG-3 at all. The effect is not surprising: We considered the
somewhat artificial SSS test sets because of their obvious relation to subset sum benchmarks
for knapsack problems. Because of the equal efficiencypi/wi of all programs, the knapsack
optimization constraint has great difficulties in including or excluding programs. Thus, that
constraint is not effective, and the burden of domain reduction lies only on the MWSSP op-
timization constraint. In total, using the optimization constraint for pruning purposes only is
most time efficient here.

7.3.2.7 Varying Time Horizon and Number of Channels

Finally, we investigate the impact of the number of channels. Table 7.5 shows a comparison
of three different test sets that were generated using 3 different program classes and CU ob-
jectives. All instances have a similar size and contain roughly 1000 – 1200 programs. We
observe that the instances become more difficult to solve for all Lagrangian approaches when
the number of channels decreases. This surprising result may be caused by the fact that a
smaller number of channels increases the relative importance of the knapsack optimization
constraint which is more difficult than the MWSSP constraint. However, a reliable answer to
that question can only be given by further extensive investigation. We must also note that for
TC data sets, we observed a converse behavior: The instances become more difficult the more
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avg. no LG-0 LG-1 LG-2 LG-3
3 CU

of programs time nodes time nodes time nodes time nodes
12h 100ch 1048.3 18.8 680.8 9.1 326.3 5.1 108.6 7.6 95.5
24h 50ch 1013.4 37.8 1461.1 19.5 734.4 11.1 187.9 13.8 178.5
72h 20ch 1175.0 177.4 3003.1 111.7 1897.2 36.6 468.4 42.9 401.2

Table 7.5: Different benchmark sets for� 1000 – 1200 programs for 3 classes and objective CU.

channels are involved, which is obviously caused by many temporally conflicting programs
of similar value.

7.4 Conclusions

Motivated by current research activities in the area of digital television, we formalized a
simple mathematical model for the automatic recording problem (ARP).

We studied the idea of coupling (cost based) domain filtering algorithms via Lagrangian
relaxation (see Sect. 2.3.3). It allows us to combine several domain filtering algorithms de-
signed for linear optimization constraints. Thereby, we obtain effective and efficient filtering
algorithms based on tight global bounds. We believe, that this idea is generic and indepen-
dent of the specific application we presented on which an empirical evaluation is based. The
numerical results show a significant improvement due to the coupling method with respect
to the computation time and the number of choice points. The method is suitable for linear
optimization problems for which bounds based on continuous or Lagrangian relaxations can
be effectively used.

As an open topic in this context it remains to investigate, how general algorithms for the
solution of the Lagrangian dual (such as subgradient or multiplier adjustment algorithms) must
be adapted to enable domain reductions during the search for optimal Lagrangian multipliers.
Taking subgradient algorithms as an example: Is it really necessary to reset the iteration limit
and the step length after every domain reduction that has taken place, or can convergence still
be proved for more optimistic strategies?
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8
More Efficient Approaches for the
Automatic Recording Problem

In the previous chapter we demonstrated how the concepts of Section 2.3.3 can be success-
fully applied to the ARP. A tighter Lagrangian coupling allows us to use a more effective

domain filtering which then prunes the search space more effectively.
This chapter is devoted to two alternative approaches that do not rely on Lagrangian cou-

pling ideas, and that solve the ARP significantly faster than the Lagrangian approaches. The
first one is based on branch-and-cut, the second one on dynamic programming. CP is not used
in these approaches but could be used at least in the branch-and-cut method. Both approaches
are based on known results. Nevertheless, we present them here in order to show that the ARP
can be solved a lot faster than by methods presented before.

8.1 Solving the ARP via Branch-and-Cut

A successful application of the LP-based branch-and-bound paradigm relies heavily on
tight LP bounds that can be quickly computed. The LP relaxation of (7.1) is obtained

by relaxingx � �0, 1�n to x � �0, 1�n. Using some well-known results on valid inequalities,
we can tighten that LP formulation, thus speeding up convergence in a branch-and-bound
approach.

We rewrite then-dimensional solution space(ARP of the LP relaxation of (7.1) as

(ARP � (K �(VC, where (8.1)

(K � �x � �0, 1�n �
n

∑
i�1

wixi � K� (8.2)

(VC � �x � �0, 1�n � xi � xj � 1, � 1 � i � j � n, Ii � Ij �� ∅� (8.3)

and obtain the LP relaxation value as

max
x
�

n

∑
i�1

pixi � x � (ARP�.
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Figure 8.1: The polytope of (a)�x � �0, 1�3 � x1 � x2 � 1 
 x1 � x3 � 1 
 x2 � x3 � 1� and the
corresponding valid inequality (b)�x � �0, 1�3 � x1 � x2 � x3 � 1�.

We also define the corresponding integral points sets which contain the solution of (7.1)
when solved as an IP.

)ARP � )K � )VC, where (8.4)

)K � (K � �0, 1�n (8.5)

)VC � (VC � �0, 1�n (8.6)

The sets(K and(VC are subsets ofRn and can be described by a finite number of linear in-
equalities. Furthermore, thex-variables are bounded, and hence,(K and(VC arepolytopes.
The same holds for(ARP and the convex hullsconv�)ARP�, conv�)KP� andconv�)VC�, as
they are intersections of a finite number of polytopes. (We useconv�A� to denote the convex
hull of some finite setA.)

The vertex cover polytope(VC and theknapsack polytope(K have been studied inten-
sively in recent years. For both polytopes valid inequalities are known that describe (parts of)
the convex hull of)VC and)VC, respectively. Sinceconv�)ARP� is the intersection of these
two polytopes, we can (partly) describeconv�)ARP� by describing the convex hulls of)VC
and)K. We refer to the book by Nemhauser and Wolsey [156] for an introduction on the topic
and for further reading on results that we only briefly present in the following sections.

8.1.1 Valid Inequalities for the Vertex Cover Polytope

The structure of the vertex cover polytope has been studied intensively during the 1970s by
Fulkerson, Padberg, Nemhauser and Trotter jr. and others. Fulkerson [83] and Padberg [160]
discovered the result on valid clique inequalities that we are going to use in the context of the
ARP. We refer to Nemhauser and Wolsey [156] and the references given there for a deeper
insight into the polyhedral structure of vertex cover.

It is known (see Grötschel et al. [99, Prop. 1.3]) that(VC as given in (8.3) is sufficient to
describe the vertex cover polytopeconv�)VC� of a graphG if and only if G is bipartite. We
aim at getting a tighter formulation for the graphG used in the ARP.

Lemma 1 Let �C1, . . . , Cm� be the set of all maximal conflict cliques of an ARP. Define
(�

VC � �x � �0, 1�n � ∑i�Cp
xi � 1, p � 1, . . . , m�. Then
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(i) (�
VC � (VC, and(�

VC * (VC if there is a conflict clique with more than 2 members.

(ii) (�
VC and(VC contain the same integral points.

Proof:

(i) Let x � (�
VC. Then∑i�Cp xi � 1, p � 1, . . . , m. Especially for any two overlapping

moviesmi, mj there exists ap such thatmi, mj � C. That is: xi � xj � 1, showing
x � (VC.

Let y � � 1
2 , . . . , 1

2� � Rn. Theny � (VC since the sum of any two entries ofy is one.
Let C be a largest conflict clique. We have∑i�C yi �

1
2 �C� � 1 �� �C� � 2. Thus,

y �� (�
VC �� �C� � 2.

(ii) Let y � (VC � �0, 1�n and assumey �� (�
VC � �0, 1�n. That is, there is a conflict

cliqueC such that∑i�C yi � 1. Sinceyj � �0, 1� there are at least two indicess, t � C,
s �� t such thatys � yt � 1. All movies indexed byC are pairwise overlapping,
henceyt � ys � 1 is valid for(VC. This contradicts our initial assumption. Therefore
�(VC � �0, 1�n� � �(�

VC � �0, 1�n�. Applying (i) now completes the proof.

Though finding maximum cliques is NP-hard on general graphs (Garey and Johnson [85]),
it is simple on the graph defined by our application: We can record two moviesmi, mj only if
they do not overlap in time. The graph defined by the broadcast contains arcs from nodei to
nodej if and only if Ii � Ij � ∅. Complements of theses graphs are known as interval graphs:

Definition 11 A graphG � �V, E� is called aninterval graphiff intervals I1, . . . , I�V� * Q

exist such that� vi, vj � V : �vi, vj� � E �� Ii � Ij �� ∅.

Definition 12 A graphG � �V, E� is called aperfect graphif ω�G�H�� � χ�G�H�� for
each H � V. I.e. the chromatic numberχ�G�H�� equals the size of a maximum clique
ω�G�H��.

Remark 1 Interval graphs as well as their complements belong to the family ofperfect
graphs(see Golumbic [94]).

Many hard problems are rather easy to solve on perfect graphs. On interval graphs, in par-
ticular, the computation of all maximal cliques can be performed in timeΘ�n log n� using
a simple scan-line algorithm (Gupta et al. [103]). After sorting the nodes according to in-
creasing starting times the algorithm pushes a node into a priority queueH when the node’s
interval starts, and removes it when the interval ends. Just before a node is removed fromH,
all nodes inH form a maximal clique. Hence, if we have to report all cliques (rather than only
detecting them), we need timeO�n2� to printO�n� times the content ofH.

Using(�
VC thus gives tighter bounds when considering LP-based solution approaches (see

Figure 8.1 for an example). Consequently, we reformulate (7.1) by using conflict cliques as

Maximize ∑n
i�1 pixi

subject to ∑i�Cp xi � 1 p � 1, . . . , m
∑n

i�1 wixi � K
x � �0, 1�n

(8.7)

and obtain the following
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Corollary 3 IP (8.7) can be formulated in polynomial time. It contains�V� conflict cliques at
most.

Finally, we note that for the vertex cover polytope, a valid inequality derived from a conflict
cliqueC is facet definingif and only if C is maximal (see Nemhauser and Wolsey [156] for a
simple proof). Facet defining inequalities are the most helpful ones when looking for integral
solutions: They describe parts of the convex hull of feasible integral points.

On general graphs, conflict cliques do not describe the convex hullconv�)VC� completely.
Fortunately, perfect graphs play a different role in this context:

Lemma 2 (Grötschel et al., 1986) The inequalities∑i�Cp
xi � 1 for all maximal cliques

C1, . . . , Cp of G are sufficient to describe the vertex cover polytope if and only ifG is perfect.

Proof: see Grötschel et al. [99], Theorem 1.5.

8.1.2 Valid Inequalities for the Knapsack Polytope

Next, we will tighten the polytope(K � �x � �0, 1�n � ∑n
i�1 wixi � K� given in (8.2).

We use a well-known result on the knapsack polytope that was published by several authors:
Balas [13], Hammer et al. [104], Padberg [161], Wolsey [210]. Our presentation here partly
follows Nemhauser and Wolsey [156] and Johnson et al. [123].

Without loss of generality, we assumewi � 0 (wi � 0 can be ignored and ifwi � 0 we
can replacexi by 1� xi), andwi � K (aswi � K impliesxi � 0).

Definition 13 A setC � �1, . . . , n� is called aminimal coverif ∑i�C wi � K and for all
j � C: ∑i�C��j	 wi � K

Let C be a minimal cover. From those variables that are indexed byC, �C� � 1 variables at
most can have the value one, which allows us to derive the valid inequality

∑
i�C

xi � �C� � 1 (8.8)

In fact, (8.8) is not only a valid inequality. On a�C�-dimensional subspace of�0, 1�n it is
as tight as possible. To be more precise: It is facet defining for the convex hull of the0� 1
knapsack set defined by

�x � �0, 1�n � ∑
i�C

wixi � K, xj � 0 + j �� C� (8.9)

(see Cor. 2.4, p. 267 in [156]).
Figure 8.2 shows an example on a polytope that was tightened by a cover inequality. Un-

fortunately, there may beO�2n� different minimal covers and we cannot generate them all in
a preprocessing step as we did for(�

VC. We can, however, generate those inequalities that
are violated by the current LP solution and add them to our LP in order to strengthen it.
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Figure 8.2: The polytope of (a)�x � �0, 1�3 � 2x1 � 3x2 � 4x3 � 7� and the tighter representation (b)
�x � �0, 1�3 � 2x1 � 3x2 � 4x3 � 7 
 x1 � x2 � x3 � 2�.

8.1.2.1 Generating Violated Inequalities

Let x � arg max�∑n
i�1 pixi � ∑n

i�1 wixi � K, x � �0, 1�n� be an optimal linear program-
ming solution to the knapsack problem. If the LP solutionx satisfies a minimal coverC then
∑i�C xi � �C� � 1, which means∑i�C�1� xi� � 1. Vice versa, if for some minimal cover
C � �1, . . . , n� it holds ∑i�C�1 � xi� � 1, then the cover inequality corresponding toC
is violated. This gives rise to an ’automatic’ detection of a violated cover inequality via the
following linear integer program:

Minimize ∑n
i�1�1� xi�yi

subject to ∑n
i�1 wiyi � K

y � �0, 1�n
(8.10)

If the optimal value of (8.10) is smaller than one,C � �i � yi � 1� is the minimal cover
most violated by the current solutionx of the original LP. We are not helped if we have to
solve the separation (8.10) via an exact approach, since (8.10) is of the same computational
complexity as (8.7). As we do not need an exact solution of (8.10) (any violated minimal
cover is fine), and also as we do not require all inequalities to be found (we can always branch
on a fractional variable), (8.10) is usually solved via some greedy heuristic.

As mentioned above, (8.8) is facet defining only for the subspace given in (8.9). In order
to obtain a facet-defining inequality for the original space, we have to lift (8.8) to then-
dimensional space.

Lifting is done by introducing a single variable not already included in the inequality and
adjusting its coefficient such that a new valid inequality is obtained, that is facet defining on
the next higher dimensional space. This procedure is performed until alln variables have
been taken into account. A formal description and proof of this technical procedure is given
in Nemhauser and Wolsey [156, pp. 261–265], see also Gu et al. [100, 101] for details on
efficient computational handling. The result of lifting (8.8) to then-dimension space is

∑
i�C1

xi � ∑
i��1,...,n	��C1
C2	

αixi � ∑
i�C2

γixi � �C� � 1 � ∑
i�C2

γi (8.11)

whereC1 � �i � C � xi � 1�, C2 � C � C1, and coefficientsαi, γj are determined during
lifting.
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(a) (b) (c)

Figure 8.3: A well-known problem: Extreme points may occur in the intersection of polytopes. (a)
shows the initial LP inequalities (green/magenta) of two substructure and the convex hull of feasible
integer points (blue). Using tight cuts for the two substructures we find the convex hull of either
substructure (b). When intersecting these regions (c), new fractional extreme points occur (arrows).

8.1.2.2 An Integer Linear Programming Approach

Modern Branch-and-Cut systems (see e.g. Bixby [35], Elf et al. [69], Johnson et al. [123], Mar-
tin [147]) are well-suited to solve the model described above. Indeed, we obtained very good
numerical results for the ARP using a branch-and-cut approach based on CPLEX 7.1 [118].
We used the strong formulation (8.7) for the ARP, where the maximal cliques were determined
via a scan-line algorithm. That model was then transferred to CPLEX.

CPLEX provides heuristics for automatically separating and lifting violated cover inequali-
ties. These cuts are generated and added to the model whenever CPLEX considers it helpful.
Furthermore, CPLEX utilizes powerful primal heuristics that find near optimal solutions to the
ARP model in the root node of the branch-and-bound-tree. In most cases an optimal solution
to the ARP was found and proved within a few seconds.

Some benchmark instances required long running times and — since CPLEX applied best-
bound-search at default — huge amounts of memory. In the experiments, we therefore limited
the available memory to 128 MB. After reaching that limit, we switched the node selection
strategy to depth-first-search, and allowed a further500 000 branch-and-bound nodes to be
explored. After reaching that limit, we stopped the search without proving optimality. The
latter happened in eleven out of 4150 benchmark tests.

One problem that is partly responsible for these long running times is the fact, that not all
fractional extreme points in the intersection of two polytopes are eliminated by tight cuts on
either polytope (see Fig. 8.3). When intersecting the two sets, new fractional extreme points
may occur. If many of these new points appear in the area of an optimal integer solution, the
LP relaxation will find these instead and additional branching is required to eliminate them.
This problem is well-known in IP theory.

Before discussing the numerical results in detail, we define the second approach.

8.2 Solving the ARP via Dynamic Programming

Solution approaches for the ARP can also be defined via dynamic programming. The key
to two dynamic programming approaches is again the ARP’s knapsack substructure. Our

dynamic programs differ only slightly from well-known algorithms for knapsack problems
(see e.g. Papadimitriou and Stieglitz [163, Sec. 17.3]). One of the approaches was presented
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in Sellmann and Fahle [186]. It runs inO�n2pmax�, wherepmax :� max�pi � i � 1, . . . , n�,
and it requires spaceO�n2pmax�. Furthermore, an FPTAS can be derived easily from that
dynamic program (see [186]).

We define an alternative approach in the following. This one needsO�nK� space, and runs
in timeO�cnK�, wherec is the number of channels. Notice that typicallyc � n for the ARP,
as each channel will broadcast several movies over some time period.

In our application scenario a running time ofO�cnK� and a memory requirement ofO�nK�
seems to be more desirable than the previously mentionedO�n2pmax�. ParametersK andc,
as well aspmax can be considered as fixed in the application scenario —pmax is limited by
the measure for users’ satisfaction,K is bounded by the VCR’s hard disk capacity, andc is
the number of channels provided. Thus, forn increasing,O�cnK� scales linearly, whereas the
O�n2pmax� approach depends quadratically onn.

8.2.1 A Simple Approach

We start with the basic definition of the new approach. Letδ�i, k� denote an optimal solution
to an ARP that has disk sizek � K, and that considers the firsti � n movies at most, i.e.

δ�i, k� � max�∑i
j�1 pjxj � ∑i

j�1 wjxj � k,
�xr � 1 � xq � 1�� Ir � Iq � ∅, � r �� q � i
x � �0, 1�n�

(8.12)

We assume that�start�i�, end�i� � i � 1, . . . , n� contains exactly2n elements, i.e. all times
are unique. We order all movies according to increasing starting times. To ease the notation
we add two artificial movies “0” and “-1” toV. Both end before the earliest moviem1 starts,
i.e. end��1� � end�0� � start�m1�. For i � V we define

, �i� � �� � V � end��� � start�i�� (8.13)

as the set of movies that finish before moviei starts. Now,δ�i, k� can be computed by the
following recursion:

δ�i, k� �

�����
�∞, k � 0

0, i � �1, 0 andk � 0
max
j�� �i�

�δ�j, k�, δ�j, k� wi� � pi�, else
(8.14)

This recursion is almost identical to the classical recursion for knapsack problems (see
Martello and Toth [145]). The only difference is that (8.14) checks the Bellman-equation for
all non-overlapping movies in, �i�. Dynamic program (8.14) requires spaceO�nK�, and can
be computed in timeO�n2K�. The latter results from the fact that for everyδ�i, k� we have to
consider allj such thatend�j� � start�i�.

8.2.2 An Improved Dynamic Program

In the ARP, only one of thec channels can be selected at each time step. Instead of iterating
overall programsj that finish before moviei starts, it suffices to check the current program
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j of each channel. Thus, through some small changes, we can replacen by c in the running
time for (8.14).

For eachi � V we consider all movies that end before moviei starts. Letσ�i� denote the
movie that starts latest among all these movies, and let��i� denote the set of movies ending
between the start ofσ�i� and the start ofi. In other words,

σ�i� � arg max
j

�start�j� � end�j� � start�i�� (8.15)

��i� � �j � start�σ�i�� � end�j� � start�i�� (8.16)

These values can be calculated by a simpleO�cn � n log n� preprocessing step. Notice that

, �i� � ��i� � , �σ�i�� and ��i� � , �σ�i�� � ∅ (8.17)

In order to improve on the simple dynamic program (8.14) we need to consider moviesj �
��i�, rather thanj � , �i�:

µ�i, k� �

�����
�∞, k � 0

0, i � �1, 0 andk � 0
max
j���i�

�µ�j, k�, µ�j, k � wi� � pi�, else
(8.18)

In comparison to (8.14), the space requirement is not affected by our small change, whereas
the running time is improved:

Lemma 3 The dynamic programs (8.14) and (8.18) compute the same values for a state�i, k�,
i � V, k � 1, . . . , K. The running time of (8.18) (after preprocessing) isO�cnK�, wherec
denotes the number of different broadcast channels.

Proof: First, we prove�-�:
�

j�� �i� , �j� �
�

j���i� , �j�.

“.” Because of (8.17) it holds
�

j�� �i� , �j� .
�

j���i� , �j�.

“�” Now, selectα �
�

j�� �i� , �j�� � j � , �i� : end�α� � start�j� � end�j� � start�i�.
Especially, as�j � T�i� : start�j� � start�σ�i�� we obtainend�α� � start�σ�i��.
Sinceσ�i� � ��i� it follows α �

�
j���i� , �j�.

We prove correctness of the lemma by induction. Fori � �1 and for i � 0 it holds:
µ�i, k� � δ�i, k�. Our hypothesis is that we have shownµ�i �, k� � δ�i�, k� for all moviesi�

that finish before a certain moviei � V � ��1, 0� starts. We have to show, that equality also
holds fori, i.e.µ�i, k� � δ�i, k�:

µ�i, k� � max
j���i�

�µ�j, k�, µ�j, k � wi� � pi� (8.19)

It holdsstart�j� � end�j� � start�i� � j � ��i� and we can apply our inductive hypothesis

� max
j���i�

�δ�j, k�, δ�j, k� wi� � pi� (8.20)
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We apply the definition ofδ�j, k�.

� max
j���i�

���
max
��� �j�

�δ��, k�, δ��, k� wj� � pj�,

max
��� �j�

�δ��, �k� wi��, δ��, �k� wi�� wj� � pj�� pi

��� (8.21)

Using�-� gives

� max
j�� �i�

���
max
��� �j�

�δ��, k�, δ��, k� wj� � pj�,

max
��� �j�

�δ��, �k� wi��, δ��, �k� wi�� wj� � pj�� pi

��� (8.22)

� max
j�� �i�

�δ�j, k�, δ�j, k� wi� � pi� (8.23)

� δ�i, k� (8.24)

The running time of (8.18) isO�K�∑i�V ���i����. From its definition in (8.16)��i�
collects movies that start before and end after timestart�σ�i��. As each channel can only
broadcast one movie at a time it follows���i�� � c, and we obtainO�K�∑i�V ���i���� �
O�K�V�c�.

8.3 Results

Numerical evaluations on the three methods discussed above were performed in the same
setting as those in the previous chapter. I.e. we used the same computer hardware (Athlon

600 MHz PC) and the same benchmark files. In this section we present selected tables that
correspond to those presented in the previous chapter. Thus, runtime for branch-and-cut and
dynamic programming is directly comparable to the runtime for the Lagrangian coupling ap-
proaches. We use the following abbreviations:

Name Description
BC CPLEX based branch-and-bound, using clique

and cover inequalities.
DP dynamic program (8.14), running inO�n2K�
DP� dynamic program (8.18), running inO�cnK�

8.3.1 Numerical Results for Branch-and-Cut and Dynamic
Programming

8.3.1.1 Initial Solutions

Using rounding heuristics,BC always finds a first solution in the root node. Typically, that
solution is less than 0.5% away from the optimal solution value. (Tables are given in Appendix
A). Even when runningBC without primal heuristics, the first solution is found early by the
first deep dive into the search tree — a technique often used in branch-and-bound. In general,
the overall running time is only slightly affected by turning off heuristics.
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DP DP� BC
5 . . .

avg. (max) time avg. (max) time avg. (max) time
CU 1.16 (1.67) 0.08 (0.11) 0.21 (1.59)
TC 1.20 (1.86) 0.08 (0.13) 0.10 (0.28)

TWC 1.16 (1.72) 0.08 (0.11) 0.10 (0.28)

Table 8.1: Test sets with 5 classes, 12 hours, 20 channels and different objectives. Times in seconds
and choice points are averages for 50 randomly generated instances. The average number of movies
per instance is between 607.6 and 612.6.

8.3.1.2 Impact of the Objective

Table 8.1 shows the performance ofBC, DP, andDP� on test sets generated with a time
horizon of 12 hours and 20 channels using 5 different program classes and CU, TC, and TWC
to determine the objective function.

In theBCapproach the running time varies slightly. The ranking given in Table 8.1 is typical
also of other benchmark instances: Class CU has a longer running time than the other classes.
In fact, the only runs that were interrupted (because more than500 000 branch-and-bound
nodes were needed) occurred on the 20h and 50h CU instances.

Our dynamic programs are not at all affected by the characteristics of the objective. Their
running time only depends on the values ofK, n, andc. This behavior obviously appears on
all instances.

8.3.1.3 Different Instances within Class 5 CU

Table 8.2 shows the performance ofBC, DP, andDP� test instances using 5CU. Also on these
instances,DP, DP�, and BC are significantly superior (compared to Table 7.2), especially
when size increases. The theoretical factor between runtime ofDP andDP� is O� c

n�, and
indeed,DP� is significantly faster thanDP. However, runtime is also affected by various
compiler and machine dependent effects. E.g. we expectDP� to have an increased cache hit
rate compared toDP as the latter has to checkall movies that finish before the current one. On
the other hand, data-structures forDP� are less regular. Thus, the concrete factor is deviating
from its theoretical value when changing the instances.

In 5CU, BC is less effective than the best dynamic program. This is often the case for the
CU instances, whereas for the other three classes (TC, TWC, SSS),BC may be slightly better
thanDP�, though their ranking is quite similar.

8.3.1.4 A Vertical View

In Table 8.3 we compare the different approaches on 150 instances that were generated using
very different parameters and objective functions. Even the slowest dynamic program (DP)
still beats the fastest Lagrangian approach in one case, andDP� outperforms them all by a time
factor of 32, 39, or 171, respectively (compared to Table 7.3).BC prevails in this comparison.
When supported by its primal heuristics, CPLEX finds optimal solutions already in the root
node in most cases. In the remaining nodes, it basically performs a proof of optimality.BC is
1.5 – 7.5 times faster thanDP� in these sample sets.
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DP DP� BC
5 CU

time time time nodes

12h
20ch

avg
min
max

std

1.16
0.69
1.67
0.20

0.08
0.05
0.11
0.01

0.21
0.06
1.59
0.28

37.82
0.00

484.00
99.55

12h
50ch

avg
min
max

std

8.44
6.34

11.09
1.13

0.44
0.35
0.58
0.05

1.08
0.36
9.11
1.41

103.98
0.00

1312.00
240.16

24h
20ch

avg
min
max

std

10.28
8.06

13.48
1.08

0.47
0.39
0.57
0.04

1.38
0.18

43.64
6.06

234.96
0.00

7618.00
1074.40

24h
50ch

avg
min
max

std

70.46
56.41
87.90
7.36

2.40
1.94
3.11
0.26

176.54
0.86

4357.75
715.71

8851.52
0.00

235195.00
37095.52

72h
20ch

avg
min
max

std

295.83
256.36
360.12
24.21

6.60
5.69
7.86
0.47

516.96
0.54

7650.35
1658.57

52576.38
0.00

1498720.00
223318.36

Table 8.2: Test sets with 5 classes, objective CU for various time horizons (in hours) and channel
numbers (ch). Italic numbers give the average (avg) time and nodes, resp., of 50 instances. Numbers
below are: minimum (min), maximum (max), and standard deviation (std) for these 50 instances. The
average number of movies per instance is 315.2 for (12 h/20 ch), 793.5 (12 h/50 ch), 607.6 (24 h/20 ch),
1512.1 (24 h/50 ch), and 1782.6 (72h/20 ch), resp.

DP DP� BC
test set

avg. (max) time avg. (max) time avg. (max) time avg. (max) nodes
3 CU

120h 20ch
630.21 (723.36) 14.21 (15.83) 1.92 (7.56) 18.28 (180.00)

5 TWC
72h 20ch

297.63 (364.60) 6.62 (7.85) 0.97 (5.41) 48.32 (785.00)

7 TC
24h 50ch

62.51 (76.67) 2.35 (2.86) 1.51 (4.88) 32.18 (370.00)

Table 8.3: Effectiveness of the different approaches for different benchmark classes. We have an
average of 1956.7 programs for the 120h/20 ch test, 1782.6 for 72h/20 ch, and 1423.3 for 24 h/50 ch.
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DP DP� BC
5 SSS

avg. (max) time avg. (max) time avg. (max) time avg. (max) nodes
12h 20ch 1.16 (1.55) 0.08 (0.10) 0.15 (0.41) 6.60 (63.00)
12h 50ch 8.45 (10.62) 0.44 (0.68) 0.62 (2.32) 7.88 (74.00)
24h 20ch 10.41 (12.85) 0.46 (0.57) 0.37 (1.23) 11.08 (89.00)
24h 50ch 72.54 (93.84) 2.42 (2.92) 1.62 (6.85) 9.34 (78.00)
72h 20ch 290.84 (347.07) 6.46 (7.60) 1.33 (3.98) 7.00 (74.00)
72h 50ch 2232.33 (2581.61) 32.54 (37.04) 6.84 (32.29) 9.94 (89.00)

Table 8.4: Subset sum data sets for 12 hours, 20 channels, up to 72 hours and 50 channels.

DP DP� BC
3 CU

avg. (max) time avg. (max) time avg. (max) time
12h 100ch 14.63 (16.91) 0.94 (1.09) 1.40 (3.22)
24h 50ch 30.32 (36.25) 1.47 (2.05) 1.03 (2.87)
72h 20ch 127.99 (148.24) 4.29 (4.98) 1.04 (3.12)

Table 8.5: Different benchmark sets for� 1000 – 1200 programs for 3 classes and objective CU.

8.3.1.5 Subset-Sum Instances

The comparison on SSS date is given in Table 8.4. ForBCpotentially weak LP bounds on SSS
data are compensated by cover inequalities that improve the LP relaxation. Martello and Toth
have observed these effects in [146] for cardinality constraints which are a restricted form of
cover inequalities.

A direct comparison to the corresponding Table 7.4 shows that on SSS instances the La-
grangian approaches are somewhat competitive. I.e. for 12 h/50 ch and for 24 h/50 ch they
run as fast as the fastest of the formerly prevailing approaches. They even beatDP� on larger
instances. Still, they cannot compete againstBC. We believe that theBC approach benefits
from its primal heuristics here, and that a combination of a primal heuristic andLG-0or LG-1
would be a good alternative to the branch-and-cut approach on SSS data.

8.3.1.6 Varying Time Horizon and Number of Channels

Finally, in Table 8.5 we investigate the impact of the number of channels for a sample set
containing about 1000 – 1200 programs each. ForDP andDP� the increase in running time
follows the increase in the disk’s capacity. As mentioned in Sec. 7.3.1, we chooseK as 45% –
55% of the entire time horizon. TheBCapproach is not really affected by changed parameters.
The largest computing time of 1.40 sec in the 12 h/100 ch case is produced by some longer
preprocessing times. In fact, the number of branch-and-bound nodes is comparable to the
other two samples (see tables in Appendix A).
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8.3.1.7 Robustness within a Test Set

All benchmark data presented in the last two chapters are average values of a sample of 50
individual random instances. As indicated already in Table 8.2 (and in the appendix) run time
is smooth forDP andDP�, whereas min, max, and standard deviation for the other approaches
show some variation within each test set. Figure 8.4 gives the run time for each individual
instance in the set 5CU, 24 hours, 50 channels for all approaches considered. Both dynamic
programs basically have the same run time in each instance, and vary only slightly.BC needs
less time than the best dynamic program in many case. However, some few long-running test
sets negatively impact on the average runtime, andBC comes second in this competition.

For theLG instances we have much more variation in runtime than forBC. Noteworthy,
the LG approaches react similarly, i.e. in many cases a high or a low runtime occurs for
all approaches simultaneously. We assume that primal heuristics inBC and different node
selection strategies forBC andLG cause this striking difference. Whereas CPLEX finds a
good solution in the root node already, and then applies best-first-search, theLG-approaches
use depth-first-search. The latter requires long running times if a good solution is not found
in the left part of the search tree.

It should be noted that the plots are representative: Except for some SSS instances, where
figures tend to be more smooth, all other runtime plots show about the same behavior as
Figure 8.4.

8.3.2 Comparing the Approaches

For the ARP we used 4150 benchmark instances grouped in 83 classes. When comparing
the approaches developed in this and in the previous chapter we find thatBC is among the
fastest on 50 benchmark classes,DP� wins on 35 (with respect to our runtime measure, see
Sec. 2.4.3). In 7 classesLG-2 is among the best approaches, followed byLG-0 andLG-1
each being among the best in 5 classes (see tables in Appendix A). Notice, that the runtime is
often less than half a second, when theLG-approaches are among the best results, whereas for
harder and long running instances they never excel. Furthermore, theLG-approaches cannot
finalize 8 out of 83 benchmark classes. This clearly shows that the ARP as defined in Def. 9
should be solved by branch-and-cut or dynamic programming. Quantitative differences in
runtime (up to a factor of more than 200) are documented in Appendix A.

8.4 Conclusion

For the ARP, constraint programming based Lagrangian relaxation is clearly beaten by dy-
namic programming and branch-and-cut in three out of four benchmark categories. Only

for the somewhat artificial SSS data is the runtime for the CP approach sometimes competitive.
While this does not in general question the idea of improving domain filtering via Lagrangian
coupling, it shows that without additional complex constraints, the ARP should not be solved
via reduction techniques + bounding alone. As we have seen in the previous chapter, using
CP based Lagrangian relaxation is much better than not using it, but the clear structure of the
ARP allows for more efficient algorithms to be used.

On the other hand, the CP approach finds near optimal solutions quickly, thus allowing us
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to work with heuristics solutions rather than optimal ones. Furthermore, the approach does
not require large memory resources. As an advantage over branch-and-cut, the CP technology
for the ARP is less complex. Finally, among the three approaches tested, the CP approach
is open to non-linear constraints, whereas branch-and-cut or dynamic programming can only
handle subclasses of non-linear constraints.

8.4.1 The Branch-and-Cut Approach

Together with the dynamic programming approach branch-and-cut is the fastest method in
almost all instances. Furthermore, it can provide a very good (often optimal) solution in
the root node. Without affecting the structure of valid inequalities used, additional linear
constraints can be added to the model. These include the extensions mentioned in Sec. 8.5.

Branch-and-cut requires a state-of-the-art CPU with high precision floating point support.
In some cases a huge amount of memory is required, too. It is doubtful that a typical digital
VCR would satisfy these requirements in the near future. Furthermore, efficient branch-and-
cut systems, and numerically stable LP solvers are highly complex technologies that may be
too expensive for electronic mass products.

Valid inequalities for the vertex cover and the knapsack polytope were used to tighten the
LP relaxation. Unfortunately, even if all fraction extreme points in either of the two polytopes
are eliminated, there fractional extreme points in the intersection of both polytopes may exist.
Further studies could concentrate on how to eliminate these fractional points efficiently by
using additional cuts.

8.4.2 The Dynamic Programming Approach

The improved dynamic program is able to solve many instances to optimality significantly
faster than any other approach. It is not affected by any data characteristics, and its runtime is
predictable. The dynamic program depends on the disk sizeK, both in runtime as well as in
memory consumption. During our tests, up to 120 MB of RAM were needed by the dynamic
program.

For dynamic programs in the digital VCR setting there is a trade-off between the accuracy
of K and the runtime needed. Using only approximated values forK requires only few states
in the dynamic program, but does not guarantee an optimal solution. On the other hand, ifK
is very accurate (which meansK is large), runtime is negatively affected. Label dominance
approaches (see Desrochers and Soumis [64]) might be the right choice here as they eliminate
useless states during calculation, thereby reducing runtime and memory requirements.

8.5 Extending the Basic Model

Several extensions of the basic ARP model are possible on the application level. We present
three of them here and show how they can be integrated into the Lagrangian coupling, or

the BC approach. We have not investigated how to integrate the extensions into dynamic
programs.
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8.5.1 Avoiding Multiple Copies

A user usually does not want to have the same movie recorded several time (when repeated or
offered by different channels). This requirement is easy to integrate into the linear program
(7.1) by addingxi � xj � 1 whenever the content of moviesi and j is identical,i, j � V.
We can do better by using the idea of conflict cliques again. After some appropriate ordering,
we can assume that indices1, . . . , r correspond to pairwise different broadcasts, and that any
moviei � r � 1, . . . , n is already contained in the firstr movies. We define

/i � �j � moviesi, j are identical, j � 1, . . . , n�, i � 1, . . . , r (8.25)

as the representative classes for each moviei � 1, . . . , r. From each class/i, i � 1, . . . , r,
one broadcast at most can be recorded. Thus, the indices in/i correspond to a valid conflict
clique. Furthermore,/i is maximal, and the resulting valid inequality is facet-defining. We
obtain

Maximize ∑n
i�1 pixi

subject to ∑i�Cp xi � 1 p � 1, . . . , m
∑j��i

xj � 1 i � 1, . . . , r
∑n

i�1 wixi � K
x � �0, 1�n

(8.26)

The branch-and-cut approach can cope directly with the additional constraints. Both fami-
lies of conflict cliques tighten the LP relaxation. The number of additional constraints is low
asr � n. It is obvious see that the additional computational effort for finding these sets is
O�n log n� when using a priority queue and the contentid as the key.

It should be mentioned that an even tighter LP relaxation can be obtained by combining
both families of valid inequalities. This however, requires some more computational effort in
the preprocessing, and the number of valid inequalities will also grow.

The sets/i can also be used for filtering in the Lagrangian approaches. We can define
additional artificial intervals for then movies: To eachj � /i we assign the interval�3 
 i, 3 

i � 1�, i � 1, . . . , r. Thus, we can apply the MWSS constraint used in Sec. 7.2 in this context
as well. A CP based Lagrangian relaxation then copes with three families of constraints rather
than two.

8.5.2 Using Multiple Recording Units

A digital video recorder may have multiple recording units which allow the recording of a
limited numberb of channels simultaneously. Again, in an IP context, this modification can
be easily introduced. We change the right hand side of each non-overlapping constraint from
1 to b:

Maximize ∑n
i�1 pixi

subject to ∑i�Cp
xi � b p � 1, . . . , m

∑n
i�1 wixi � K

x � �0, 1�n

(8.27)

For the Lagrangian coupling approaches, a fast and efficient domain filtering algorithm for
this type of relaxed non-overlapping constraint is subject to further research.
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8.5.3 Using Multiple Storage Units

Finally, our VCR may haved hard disks instead of just one. As we can split a video stream
at some point, and store it in parts on different disks, this specification does not require fur-
ther attention. Things change, if hard disks are available ond individual recorders, and a
global plan for all machines is required. We can model this situation by using multi-knapsack
constraints (see [145]) that respect individual disk capacitiesKh, h � 1, . . . , d. Furthermore,
multi-knapsacks ensure storing a moviei on at most one recorder. Again, this modification is
easy to implement in a linear programming context:

Maximize ∑n
i�1 pixi

subject to ∑i�Cp
xi � d p � 1, . . . , m

∑d
h�1 yih � xi i � 1, . . . , n

∑n
i�1 wiyih � Kh h � 1, . . . , d

x � �0, 1�n, y � �0, 1�n�d

(8.28)

Variablesyih are used for selecting the storage unit for moviei in case it should be recorded
(i.e. xi � 1). In that caseyih � 1 if storage unith was selected, andyiq � 0 for all q �� h.
Notice, thatd � 1 impliesyi1 � xi for all i � V. Thus, (8.28) reduces to (8.7).

Within a CP approach, Lagrangian coupling could be used to cope with the this requirement.
If we relax all but one of the knapsack constraints, and also all of the constraints linking∑h yih
to xi, the remaining IP has the same structure as (8.7). This allows the use of all techniques
described previously.
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Figure 8.4: Robustness of the approaches for all 50 instances in 5CU, 24 h, 50 ch. Runtime is given
on a logarithmic scale. Figures for other classes look similar. (Lines connecting measuring points are
given for easier readability and do not mark intermediate values.)
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9
Domain Filtering for Maximum Clique

A Cliqueis an undirected graphC � �VC, EC� where all nodes inVC are pairwise adjacent.
The Maximum Clique Problem (MC)on a graphG � �V, E� asks for a cliqueC �

�VC, EC� in G having a largest node setVC.
MC was among the first problems shown to be NP-hard on general graphs (Karp [127]).

Håstad [106] proved that MC is not approximable within�V�1/2�ε for any ε � 0. An
O��V�/ log �V�2� approximation was developed by Boppana and Halldórsson [38]. On re-
stricted graph families (e.g. perfect graphs) polynomial-time algorithms for MC are known.
We refer to e.g. Golumbic [94] for an overview.

The maximum clique problem is important in many fields. Cliques are used in integer
programming for presolving [183] or deriving valid cuts [9]. Air traffic control problems can
be modeled using conflict cliques (see Barnier and Brisset [22]). Maximum cliques appear in
coding theory, fault diagnostics, or pattern recognition. Details on these as well as on other
prominent applications of MC are given in Bomze et al. [37].

9.1 Introduction

In this chapter, we introduce some simple cost based domain filtering techniques [81]. Later,
we will test these techniques on two branch-and-bound algorithms: One was proposed by

Carraghan and Pardalos [48]. Their algorithm is still believed to be one of the fastest clique
solver for sparse graphs. It recursively enlarges a clique by adding nodes of acandidate
set (i.e. a set of nodes that can possibly extend the clique in the current choice point) to it.
Pruning based on simple bounds is used to cut off useless parts of the search tree. The other
algorithm considered was recently introduced by Östergård [158]. It starts on an one-node
graph and adds more and more nodes to it until it works on the entire problem. Cliques found
on intermediate graphs are used for an efficient bounding.

Our domain filtering tightens the candidate set by removing or fixing certain nodes. We
analytically show that this domain filtering is in a sense as tight as typical upper bounds for
MC. As we will see later, our filtering dominates 7 out of 8 combinatorial bounds proposed
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for MC. Furthermore, we analyze the relation between LP bounds and domain filtering. The
bounds that are not dominated in certain cases are the vertex coloring bounds and the LP
bounds.

We add domain filtering, coloring bounds and a primal heuristic to the Carraghan and
Pardalos algorithm and achieve a significant improvement on the DIMACS benchmark set.
Within a 6 hours time limit the enhanced algorithm can prove optimal results for 46 out of
66 benchmark instances, whereas the original approach is only able to finalize 33 instances.
Furthermore, it turns out that domain filtering improves 44 out of 66 test cases compared to
applying coloring bounds alone. Similar improvements can be found when introducing these
techniques in an algorithm based on Östergård’s idea [158].

9.1.1 Literature Review

The maximum clique problem has been attracting the attention of researchers in computer
science, operations research and other fields for many years. We can therefore only mention
some results and have to refer to a recent overview by Bomze et al. [37] for further details.
Some results refer to close relatives of the maximum cliques problem, namely thevertex cover
(VC) or independent set (IS)problem. They stem from simple transformations:VC � V
defines a MC ofG � �V, E� + VC defines a maximum IS inG � �V, �V 	 V� � E� +
V �VC is a minimum VC ofG.

Tarjan and Trojanowski [197] gave a recursive algorithm for the vertex cover problem that
runs in timeO�2n/3� # O�1.26n�. This result was later improved and the asymptotically
fastest algorithm is due to Robson [174] and has a time complexity ofO�20.276n� # O�1.22n�.

Branch-and-Bound algorithms were contributed by many researchers. Balas and Yu [16]
introduced a new idea for implicitly enumerating cliques. They search for a maximal induced
triangulated subgraphT of G in which a maximum cliqueC is then searched. In the second
phase they extendT in a way that does not enlarge the maximum clique. When applied in a
branch-and-bound scheme their approach was quite successful as the bounds generated turned
out to be quite tight.

The methods of Carraghan and Pardalos [48] and Östergård [158] are of certain interests
for this work. We will return to those algorithms in Sec. 9.2. A branch-and-bound algorithm
using vertex coloring bounds was proposed by Wood [212].

A quadratic programming approach was proposed by Caprara et al. [46]: They developed
a solver for the quadratic knapsack problem. The method was also applied to the maximum
clique problem. As it was not designed for MC, their approach was inferior to specialized
algorithms for MC.

9.1.2 Notation

Throughout this chapter we denote the neighborhood of a nodev � V as N�v� � �u �
V��u, v� � E� and the degree of a nodev � V as δ�v� � �N�v��. Given a node set
U, the graphGU � �U, E � �U 	 U�� is the graphinducedby U. We write NU�v� �
�u � U��u, v� � �U 	U� � E� andδU�v� � �NU�v�� if we speak of the neighborhood,
or degree, respectively, of a nodev in the subgraph ofG induced byU. For a cliqueC
we call P �

�
v�C N�v� the candidate set ofC. A clique �C is an extensionof a clique
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C if C � �C. (To ease the notation, we often identify a cliqueC with its set of nodes.)
0�G� � �I � V � GI is a connected component inG� contains thenode sets of connected
componentsof the graphG � �V, E�. Finally, ω�G� denotes the size of a maximum clique
in G, andχ�G� refers to the chromatic number ofG.

9.2 Branch-And-Bound Algorithms for Maximum Clique

9.2.1 The Carraghan/Pardalos Algorithm

Carraghan and Pardalos [48] enumerate the cliques of a graphG � �V, E� according to some
lexicographical order. Without pruning, the algorithm finds the largest clique inGV containing
nodev1, then the largest clique inGV��v1	 containingv2, etc. A candidate setP �

�
v�C N�v�

containing all nodes that are adjacent to the cliqueC currently under construction is used for
bounding. A simple depth-first-search and static variable ordering is used to guide the branch-
and-bound (Alg. 20). The well-knowndfmax [7] program by D. Applegate and D. Johnson
is an efficient implementation of this idea.

Algorithm 20 The Carraghan/Pardalos Algorithm for Finding a Maximum CliqueC�

function findClique(setC, setP)

1: if ��C� � �C��� then
2: C� � C
3: if ��C�� �P� � �C��� then
4: for all p � P in predetermined order:do
5: P � P � �p�
6: C� � C � �p�
7: P� � P � N�p�
8: findClique(C�, P�)

function main( )

1: C� � ∅
2: findClique(∅, V)
3: returnC�

9.2.2 The Östergård Algorithm

Östergård [158] developed a variant of the previous method. (We present this approach as
Alg. 21 with some slight adaption to our notation). Instead of determining the cliques in a
decreasing node set, his algorithm starts on the graph induced by�vn� and finds the largest
clique on that graph. Then it considers the graph induced by�vn�1, vn� and searches the
largest clique there. By adding more and more nodes, and determining cliques in each of
those sets, it ends up with a maximum clique inG. During this incremental process, bounds
β�vi� on the largest cliques containing a certain nodevi can be determined as a by-product
(line 5 of main()). With these bounds at hand, Östergård can significantly speed up finding
cliques (line 9 of findClique(
, 
)). As each call of the recursion (line 4 in main()) increases
C by one node, the search for an improved solution can be stopped as soon as an increased
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clique is found (lines 4, 12 in findClique(
, 
)). The idea of finding bounds on small instances
of a problem and using them for larger ones is similar to the so-called “Russian Doll Search”
of Verfaillie et al. [204].

Algorithm 21 The Östergård Algorithm for Finding a Maximum CliqueC�

function findClique(setC, setP)

1: if ��P� � 0� then
2: if ��C� � �C��) then
3: C� � C
4: f ound � true
5: else
6: if ��C�� �P� � �C��� then
7: while (P �� ∅) do
8: selectp � P in some predetermined order:
9: if ��C�� β�p� � �C��� then

10: P � P � �p�
11: findClique(C � �p�, P � N�p�)
12: if ( f ound) then break
function main( )

1: C� � ∅
2: for i � n down to 1 do
3: f ound � f alse
4: findClique(�vi, . . . , vn� � N�vi�, �vi�)
5: β�vi�� �C��
6: return C�

9.3 Domain Filtering for Maximum Clique

Both algorithms sketched above share the idea of a candidate setP �
�

v�C N�v� contain-
ing only those nodes that may extend the cliqueC currently under construction.P can

also be used for pruning, since the largest clique which can be discovered in the current part
of the search tree can contain�C� � �P� nodes at most. We will now show that two simple
observations can help to tighten the candidate set, and thus, potentially reduce the number of
choice points explored.

Looking at the nodes inP in more detail, we can characterize those that can never extend a
given clique to a maximum clique:

Lemma 4 LetG � �V, E� be a graph,C be a clique onG, andP be a candidate set, i.e.P ��
v�C N�v�. Moreover, letσ � N be a lower bound on the size of a maximum clique inG.

Then, for everyv � P such that�C�� δP�v� � σ� 1, v cannot extendC to a maximum clique
of G.

Proof: Assume we have a nodev � P such that�C� � δP�v� � σ � 1, andv extends
C to a maximum cliqueC� . C with �C�� � k nodes. Then for allu � C� we have:
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δC��u� � k � 1. Sinceσ is a lower bound on�C�� it holds σ � 1 � k � 1 � δC��v�.
The degrees inC� can be partitioned intoδC��v� � δC�v� � δC��C�v�. Hence, we obtain
σ � 1 � k � 1 � δC��v� � δC�v� � δC��C�v� � �C� � 1 � δP�v� � σ � 1 which is a
contradiction.

The next lemma identifies nodes that will be part of any extension of the current clique to a
maximum one:

Lemma 5 LetG � �V, E� be a graph,C be a clique onG, andP be a candidate set, i.e.P ��
v�C N�v�. Then, everyv � P such thatδP�v� � �P� � 1, is contained in any maximum

clique ofG that also containsC.

Proof: Let C� be a maximum clique andC � C�. ThenC� � C � P (by definition ofP).
Assume,v � P such thatδP�v� � �P� � 1, but v �� C�. By construction,v is adjacent to
all nodes inC (because it is a member of the candidate set) and all nodes inP (because of its
degree inP). Hence,v is also adjacent to any nodeu in C� � C � P which meansC� � �v�
is a clique containingC, but being larger thanC�. This contradicts the choice ofC� as a
maximum clique.

9.3.1 A Domain Filtering Algorithm

With these observations at hand we are ready to present a domain filtering procedure for MC
(Alg. 22 ). For Lemma 4, we useσ � ��C��� 1� as a lower bound for the necessary checks
in line 2. Afterwards, Lemma 5 fixes those nodes required in any maximal clique extending

Algorithm 22 Domain Filtering for Maximum Clique Problem
function DomainFilter(setC, setP)

1: // reduce possible set
2: while (� v � P : degP�v� � �C� � �C

��) do
3: P � P � �v� // lemma 4
4: // increase required set
5: while (� v � P : degP�v� � �P� � 1) do
6: C � C � �v� // lemma 5
7: P � P � �v� // lemma 5
8: return (C, P)

C. We show correctness and running time of Alg. 22 by

Lemma 6 LetG � �V, E� be a graph,C be a clique onG, andP be a candidate set, i.e.P ��
v�C N�v�.

(i) If Lemma 4 and Lemma 5 are applicable simultaneously, i.e. there isv � P such that
�P� � 1 � δP�v� andδP�v� � �C� � �C��, then a maximal clique inC � P is not larger
than the incumbent maximum cliqueC�.

(ii) Domain filtering can be done in one single round, i.e. after first applying Lemma 4, then
Lemma 5 it holds:�v � P : ��C�� � �C�� � degP�v� � ��P� � 1� and neither Lemma
can be applied again.
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(iii) The result of Alg. 22 is independent of the order in which nodes are considered within
each of the two while-loops (lines 2,5).

(iv) Alg. 22 terminates after timeO��P�2�.

Proof:

(i) Let v � P such that�P� � 1 � δP�v� andδP�v� � �C� � �C��. Then�P� � 1 � �C� �
�C�� � �P�� �C� � �C��, hence we cannot find a larger clique than�C�� in C � P.

(ii) After leaving the loop in lines 2,3 it holds�v � P : degP�v� � �C� � �C��. Now,
any nodep that meets the condition in the while-loop of line 5 is deleted fromP, and
added toC. This reducesdegP�u� by one for all nodesu � P � �p� (p is adjacent to
all nodes inP) and increases�C� by one (P andC are disjoint). Hence,�v � P � �p� :
degP��p	�v� � �C � �p�� � degP�v�� 1 � �C� � 1 � �C�� and thus, the condition in
line 2 is not fulfilled.

(iii) Let v, w � P be two nodes that fulfill the condition of the while-loop in line 2, i.e.
degP�v� � �C� � �C�� anddegP�w� � �C� � �C��. We have to show that both nodes
will be removed, no matter which one is considered first. W.l.o.g. we start withv:
If v is removed fromP, the degree of any other node inP remains the same, or de-
creases by one:degP�w� � 1 � degP��v	�w� � degP�w�. Hence, after the removal,
degP��v	�w� � �C� � �C��, andw will also be removed.

Similarly, let v, w � P fulfill the condition of the while-loop in line 5, i.e.degP�v� �
�P� � 1 anddegP�w� � �P� � 1. W.l.o.g. we removev first. The degree of all nodes inP
is decreased by exactly one (sincev was adjacent to all nodes inP). Also, the candidate
set’s size decreases by one. Hence,degP��v	�w� � degP�w� � 1 � �P� � 1 � 1 �

�P � �v�� � 1, andw will be removed as well.

(iv) Any nodev in P is adjacent to�P� � 1 other nodes inP at most. Removingv therefore
requires�P� � 1 updates of degree values at most. AsP decreases monotonically within
the while-loops,�P� removals at most are possible, summing up to a total number of
O��P�2� removals and updates.

In order to support an efficient handling, we use a queueQ here. Each deletion of an
element fromP is recorded by storing its neighbors intoQ. We perform a degree update
on all elements ofQ, and check whether domain filtering would fix that element. If so,
that element is removed, thus its neighbors are stored into the queue, and we continue
until the queue is empty. In so doing, we achieve the running time claimed.

In chapter 10 we will introduce our domain filtering into some branch-and-bound approach
and use it within each branch-and-bound node. According to lemma 6(iv) the running time
per node then isO��P�2�. But as we cannot continue searching afterP is empty, running time
for the entire search path from the root node to a leaf in the search tree is also bounded by
O��P�2�.

Corollary 4 When applied in a tree search the accumulated running time of algorithm 22 for
an entire search path from the root node to a descended node in the search tree isO��P�2�.
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C P P�

C� C�
P�

(a) (b) (c)

Figure 9.1: (a) a cliqueC and its candidate setP. (b) applying lemma 5 fixes one more node. (c) as a
result, two nodes now have degree zero, and can be eliminated according to lemma 4.

Finally, we illustrate the behavior of Algorithm 22 in Figure 9.1: (a) represents the settings
without domain filtering, (b),(c) sketches situations when domain filtering can be applied
successfully.

9.4 Upper Bounds vs. Domain Filtering: Analytical Results

As an upper bound, the branch-and-bound approach of Carraghan and Pardalos [48], as
well as the one of Östergård [158], uses�C�� �P�, the size of the clique currently at hand

plus the size of the candidate set. The approach of Wood [212] mentioned in the introduction
uses coloring bounds. In this section we analytically study the power of domain filtering
compared to several upper bounds used in OR approaches. We show in particular that some
upper bounds for MC used in OR methods are already dominated by the domain filtering.

9.4.1 Integer Programming Models for Maximum Clique

The maximum clique problems can be adequately modeled by linear integer programs. Pos-
sibly the simplest way is provided by the so-callededge-formulation. It uses one 0-1 variable
for each node inV and a constraint for each edge not presented inG. The idea is to search
for the largest number of nodes such that no two non-adjacent nodes are selected. This corre-
sponds exactly to an independent set problem onG � �V, E�, whereE � ��i, j� � �i, j� �
�V 	V� � E, i �� j�:

max ∑n
i�1 xi

s.t. xi � xj � 1 � �i, j� � E
x � �0, 1�n

(9.1)

A branch-and-cut approach based on this integer programming formulation has been investi-
gated in [14]. We mentioned already in a previous chapter that the LP relaxation of (9.1) is
tight if and only if G is bipartite (see Grötschel et al. [99, Prop. 1.3]). A tighter formulation is
based on the fact that from any independent set inG one node at most can be part of a clique.
Let IG denote the set of all maximal independent sets ofG. Then MC can be described as:

max ∑n
i�1 xi

s.t. ∑i�S xi � 1 � S � IG
x � �0, 1�n

(9.2)
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Unfortunately,�IG� is exponential, and in fact Grötschel et al. [98] showed that even the LP
relaxation of (9.2) is NP-hard on general graphs. Furthermore, it is polynomially solvable on
perfect graphs, andG is perfect if and only if the optimal solution of the LP relaxation of (9.2)
always is integral (Grötschel et al. [99]).

In both models we can replace the integrality constraintxi � �0, 1� by 0 � xi � 1
and obtain linear programming bounds for MC. We start our discussion with the LP bounds
derived from (9.1).

9.4.1.1 Linear Programming Bounds

In both models we can replace the integrality constraintxi � �0, 1� by 0 � xi � 1 and obtain
linear programming bounds for MC. We start our discussion with the LP bounds derived from
(9.1).

It is easy to see, thatxi �
1
2 is always a feasible, but not necessarily optimal solution to the

LP relaxation of (9.1). This fact will be used in some of our arguments if an exact solution
to the LP is not needed. Surprisingly, even the exact value of an optimal solution to the LP
relaxation of (9.1) is rather simple: Any variable is assigned either0, 1

2 or 1:

Theorem 2 (Nemhauser and Trotter jr., 1974) Let G � �V, E� be an unweighted graph,
and letx � arg maxx�∑i�V xi � xi � xj � 1 � �i, j� � E, 0 � xi � 1, �i � V� be an

optimal solution to the LP relaxation of (9.1). Thenxi � �0, 1
2 , 1�, i � 1, . . . , n.

Proof: (see [154, Proposition 2.1])

An interesting theoretical property of the edge formulation is that variables assigned to one
in the LP relaxation can be fixed without loosing an optimal IP solution:

Theorem 3 (Nemhauser and Trotter jr., 1975) Supposex is an optimum�0, 1
2 , 1�-valued

solution to the linear relaxation of�9.1�, and% � �i � xi � 1�. Then an optimal (integer)
solutionx� to �9.1� exists such thatx�i � 1 �i � % .

Proof: (see [155, Theorem 2])

Only few variables, though, tend to have the value one in an LP relaxation. E.g. in 63
out of the 66 benchmark instances considered in our benchmark tests, all variables of the LP
relaxation had a value of12 . Thus, the above theorem rarely helps to reduce the problem in
practical applications. Moreover, the LP/IP gap can be large:

Remark 2 Consider a graphG with no edges:V � �1, . . . , n� andE � ∅. Then the optimal
IP solution is 1. Let us consider the LP relaxation: Settingxi � 1

2 , �i � V is a feasible

solution to the edge-formulation, and∑i�V xi � �V�
2 . The resulting LP/IP gap therefore is

∑i�V xi�1
1 � �V�

2 � 1 � O��V��.

Now, let us consider (9.2). From its definitions, the linear relaxation of (9.2) is at least as
tight as that of (9.1), since all constraints of (9.1) are also contained in (9.2). In fact, the LP
relaxation of (9.2) always gives a value that is at most as large as the chromatic numberχ�G�
of the graph currently at hand:
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Lemma 7 Let G � �V, E� be an unweighted graph, and consider the valuez of the LP
relaxation of (9.2):z � maxx�∑i�V xi � ∑i�� xi � 1 � ) � IG, 0 � xi � 1, �i � V�,
whereIG is the set of all independent sets ofG. Thenω�G� � z � χ�G�.

Proof:

ω�G� � max
x
�∑

i�V
xi � ∑

i��
xi � 1 � ) � IG, xi � �0, 1�, �i � V� (9.3)

� max
x
�∑

i�V
xi � ∑

i��
xi � 1 � ) � IG, 0 � xi � 1, �i � V� (9.4)

� min
y
� ∑
��IG

y� � ∑
��IG

s.t. i��

y� � 1 � i � V, y� � 0, �) � IG� (9.5)

� min
y
� ∑
��IG

y� � ∑
��IG

s.t. i��

y� � 1 � i � V, 0 � y� � 1, �) � IG� (9.6)

� min
y
� ∑
��IG

y� � ∑
��IG

s.t. i��

y� � 1 � i � V, y� � �0, 1�, �) � IG� (9.7)

� χ�G� (9.8)

Equation (9.3) is the initial IP formulation used in (9.2). In (9.4) we relax the integrality
constraints which may increase the optimal value. (9.5) is the dual formulation of the previous
line, and both terms have the same optimal values due to strong duality.

In the next step, we addy� � 1 and claim that the optimal value does not change: Assume,
there is any� � α � 1 in an optimal solution to (9.5). Any constraint met byy� � α will
also be met byy� � 1. Furthermore, since we minimize the sum over ally� decreasingy�
down to1 will improve the objective. This contradicts our assumption that we started with an
optimal solution.

Finally, we introduce integrality again in (9.7) and obtain the column generation description
of the chromatic number problem (see Mehrotra and Trick [150]).

Corollary 5 Whenever the largest independent set inG contains two nodes at most, (9.1) and
(9.2) are identical. In that case, the LP relaxation of (9.1) is at least as good as the chromatic
number bound on that graph.

Corollary 6 If G is a perfect graph, i.e.ω�G� � χ�G�, then the optimal solution value of
the LP relaxation of (9.2) as well as the optimal IP value are equal toω�G�.

As mentioned before, on general graphs the LP relaxation of (9.2) is NP-hard (Grötschel
et al. [98]). Its exponentially many constraints make this formulation a good candidate for
branch-and-cut approaches. Branch-and-cut is designed to exploit this special structure with-
out necessarily generating the entire IP model (see e.g. [19, 69, 123, 147]).

9.4.2 Combinatorial Bounds

To introduce some combinatorial bounds, we assume the setting presented in Sec. 9.2:C is the
clique currently under construction,P �

�
v�C N�v� the corresponding candidate set. The

following lemma lists some well-known upper bounds� i�C, P� for a maximal cliqueC� . C
(see also Bomze et al. [37]):



146 9 Domain Filtering for Maximum Clique

Lemma 8 (Upper Bounds for MC) The following upper bounds hold for MC:

1. Only nodes from the candidate set can extendC: �1�C, P� � �C�� �P�.

2. A node with a maximum degree inP limits the size of any extension ofC to a maximal
clique: �2�C, P� � �C�� max�δP�v� � 1 � v � P�.

3. Only one connected component inP can extendC: �3�C, P� � �C� � �Imax�, where
Imax denotes the node set of the largest connected component in0�GP�

4. Ak-clique requiresk nodes with a degree of at leastk� 1:
�4�C, P� � �C�� max�k � � v1 � 
 
 
 � vk � P, δP�vi� � k� 1�

5. A k-clique hask�k � 1�/2 edges:�5�C, P� � �C� � max�k � N � k�k�1�
2 � �EP��,

whereEP is the edge set of the graphGP � �P, EP� induced byP.

6. Apply�4�C, P� only to connected components ofGP:
�6�C, P� � �C�� maxI���GP� max�k � � v1 � 
 
 
 � vk � I, δP�vi� � k� 1�

7. Apply�5�C, P� only to connected components ofGP:

�7�C, P� � �C�� maxI���GP� max�k � N � k�k�1�
2 � �EI ��,

whereEI is the edge set of the graphGI � �P, EI� induced byI.

8. Anyk-clique needsk colors in a vertex coloring:�8�C, P� � �C� � χ�GP�, where
χ�GP� denotes the (vertex) chromatic number of the graph induced byP.

(Correctness of these bounds follows directly from their description. For applications of these
bounds and further information we refer to [48] for�1, to [16, 212] for�8, and [37] for some
bound similar to�5. The other bounds are simple extensions of�1.)

Some of these bounds are obviously contained in others. We will present a taxonomy of
these combinatorial bounds and the LP bounds of the previous section. To our knowledge,
such a taxonomy has not been presented before, though some relations are obvious and have
probably been used earlier.

Lemma 9 (Taxonomy of Bounds) Let G � �V, E� be a graph,C a (not necessarily maxi-
mal) clique inG, and P �

�
v�C N�v� the corresponding candidate set. With�1 – �8, we

refer to the bounds mentioned in Lemma 8,ω�G� is the clique number ofG, and�LP�9.1�
and�LP�9.2� refer to the respective LP relaxation discussed in section 9.4.1. Whenever the
best value obtainable by a bound is never smaller than the best value of another bound
(�i�C, P� � �j�C, P�), we note that as�i �j

� . Then we get the following picture:

�1

�3 �2 �4

�5 �7

�6 �8

�LP�9.1�

w�G��LP�9.2�
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(we have left out transitive dominance, e.g.�3�C, P� � �6�C, P�)

Proof:

�1�C, P� � �3�C, P�: For any connected componentGI of P it holds�P� � �I�.

�3�C, P� � �2�C, P�: Let k :� max�δP�v� � 1 � v � P�. Then there exists a connected
component with at leastk nodes� �Imax� � k.

�2�C, P� � �4�C, P�: Let k� :� max�k � � v1 � 
 
 
 � vk � P, δP�vi� � k� 1�

� max�δP�v� � 1 � v � P� � �k� � 1� � 1 = k�.

�4�C, P� � �6�C, P�: max�k � � v1 � 
 
 
 � vk � P, δP�vi� � k� 1�

� max
I���GP�

max�k � � v1 � 
 
 
 � vk � I, δP�vi� � k� 1�

�6�C, P� � �8�C, P�: Let k� :� max
I���GP�

�max�k � � v1 � 
 
 
 � vk � I, δP�vi� � k� 1��.

Assume,χ�GP� � k�� � k�. As different connected components can be independently
colored, anI � 0�GP� exists, such thatχ�GI� � χ�GP� � k��. ThenGI contains
k�� � k� nodes of degreek�� � 1 � k� � 1, hencek� is not maximal — a contradiction.

�8�C, P� � �LP�9.2��C, P� and�LP�9.2��C, P� � ω�G�: follows directly from Lemma 7.

�1�C, P� � �5�C, P�: Let GP � �P, EP� � �EP� �
�P���P��1�

2 � max�k � N � k�k�1�
2 �

�EP�� � max�k � N � k�k�1�
2 � �P���P��1�

2 � � �P�.

�5�C, P� � �7�C, P�: max�k � N � k�k�1�
2 � �EP�� � max

I���GP�
max�k � N � k�k�1�

2 �

�EI ��

�5�C, P� � �4�C, P�: Let k� :� max�k � � v1 � 
 
 
 � vk � P, δP�vi� � k � 1�. Then

�EP� �
k��k��1�

2 � max�l � N � l�l�1�
2 � �EP�� � k�.

�7�C, P� � �6�C, P�: Let I be the node set, where the maximum of bound�6�C, P� �: k
is found. On a connected component,�6�C, P� and�4�C, P�, as well as�7�C, P� and
�5�C, P� are the same. As proved above�5�C, P� � �4�C, P�. Therefore,�7�C, P� �
�6�C, P� on that component and (sincek is optimal forP) also onP.

�1�C, P� � �LP�9.1��C, P�: We apply the LP relaxation of (9.1) to the graph induced byC, P.
This LP contains�C� � �P� variables. These variables have a value between zero and
one. Hence,�1 � �C�� �P� � max

x
��C�� ∑i�P xi � xi � xj � 1 � �i, j� � EP, xi �

�0, 1
2 , 1�, �i � P�.

�LP�9.1��C, P� � �LP�9.2��C, P�: follows directly from the definition of both LPs (all con-
straints of (9.1) are contained in (9.2)).

The following calculations show that there is no general dominance than those described
above:
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j-many

P

(a)

P

(b)

Figure 9.2: (a)�2 versus�5, (b)�4 versus�7

P

(a)

P

(b)

P

(c)

Figure 9.3: Three graphs showing that�LP�9.1� can be (a) worse than�3, (b) worse than�5, or (c)
better than�8, respectively.

�2�C, P� � �5�C, P� and�3�C, P� � �5�C, P�: Consider the candidate set of Fig. 9.2(a).
There,�2�C, P� � �C� � 4 and�3�C, P� � �C� � 4 because of the “star” inP. We

have�EP� � 3 � j, so we get�5�C, P� � �C� � max�k � N � k�k�1�
2 � 3 � j�.

If j � 1 we have�5�C, P� � �C� � 3 � �2�C, P�,�3�C, P�. If j � 7 we have
�5�C, P� � �C� � 5 � �2�C, P�,�3�C, P�. Hence, there is no general dominance
between�5�C, P� and�2�C, P�,�3�C, P�.

�4�C, P� � �7�C, P�: Consider the candidate set of Fig. 9.2(b). There,�4�C, P� � �C�� 5
and�7�C, P� � �C�� max�k � N � k�k�1�

2 � 4� � �C�� 3. In this case,�4�C, P� �
�7�C, P�. Now, consider someP that only contains a single connected component.
Then�7�C, P�  �5�C, P� and as proved above:�5�C, P� � �4�C, P�. Again, we
cannot show general dominance between two bounds.

�2�C, P� � �7�C, P� and�3�C, P� � �7�C, P�: In the single connected component case
it holds �7�C, P�  �5�C, P�. But as proved earlier:�2�C, P� � �5�C, P� and
�3�C, P� � �5�C, P�, hence�2�C, P� � �7�C, P�.

Before leaving this section we would like to give two examples of graphs where�LP�9.1� is
weaker than bounds�3 and�5, respectively, and another graph, where�LP�9.1� is better than
�8. In other words:

Remark 3 There is no tighter classification of�LP�9.1� than the one given in Lemma 9.

Proof: Let us start with Fig. 9.3(a):�3�C, P� � �C� � 3, since the largest connected com-
ponent inP contains three nodes. A feasible solution to (9.1) is to assign1

2 to all nodes
in P, thus�LP�9.1��C, P� � �C� � 9

2 � �3�C, P�. Analogously, in Fig. 9.3(b) the LP ap-

proach can assign12 to all three nodes, resulting in an LP based bound of�C� � 3
2 . �5 will

choosek � 1 as the maximal possible number that meetsk�k�1�
2 � �EP� � 0. As a result,

�LP�9.1��C, P� � �C�� 1 � �5�C, P�.
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On other graph structures LP (9.1) can provide fairly tight bounds. The graph in Fig. 9.3(c)
needs at least four1 colors for a feasible node coloring. For LP (9.1) there is no constraint
involving the variable assigned to the middle node. Therefore, this variable will be set to
one in an optimal LP. The remaining nodes will get1

2 , resulting in an LP value of31
2 . Using

Lemma 2 it is easy to see that this is indeed the optimal LP value. In this case�LP�9.1��C, P� �
�C�� 31

2 � �8�C, P� � 4.

9.4.3 Upper Bounds Dominated by Domain Filtering

We are now able to prove our main result on the connection between domain filtering and
upper bounds: We show that the domain filtering described in Sec. 9.3 dominates bounds�1
– �7. I.e. after applying Alg. 22 to�C, P� and obtaining a new�C�, P��, those bounds cannot
prune the current part of the subtree.

Our dominance model is thus the ability of either technique to shrink the search space —
either by using bounds and pruning useless parts of the search tree, or by domain filtering,
and fixing variables. We believe that a direct comparison of the pruning-power of OR bounds
with the effectiveness of cost based filtering techniques is a good model in this context.

Theorem 4 Let G � �V, E� be a graph,C be a clique onG, and P be a candidate set,
i.e. P �

�
v�C N�v�. Furthermore, letσ � N0 be a lower bound on the size of a maximum

clique inG. Let �C�� �P� � σ and letC� andP� be the node sets after applying the domain
filtering of Algorithm 22. Then,�i�C�, P�� � σ for i � 1, . . . , 7.

Proof: According to lemma 9 it is sufficient to prove�6�C�, P�� � σ. So let us assume,
�6�C�, P�� � σ, i.e. �C��� max

I���GP��
max�k � � v1 � 
 
 
 � vk � I, δP��vi� � k� 1� � σ.

After applying Alg. 22 it holds:� v � P � : �σ� �C��� � δP��v� (according to Lemma 6(ii ))
� � v � P� : �C�� � δP��v� � σ � �C�� � max

I���GP��
max�k � � v1 � 
 
 
 � vk �

I, δP��vi� � k� 1�
� � v � P� : δP��v� � max

I���GP��
max�k � � v1 � 
 
 
 � vk � I, δP��vi� � k� 1��: k�

So the degree of all nodes inP� is at leastk�. Especially, as there is a connected component
in P� having at leastk� � 1 nodes with degree larger thank�. This contradicts the maximality
of �6�C�, P��.

9.4.4 Upper Bounds Not Dominated by Domain Filtering

Bound�8 is not included in the above theorem. The following examples show that depending
on the situation domain filtering may be as good as this bound, or the bound may be more
accurate than filtering:

Assume, the candidate set after domain filtering is given as sketched in the Fig. 9.4(a).
Furthermore, we know a lower bound of�C�� � 3, thus,σ � 4 and we have already�C�� � 1.

1Color the middle node with color 0, the remaining nodes form a ring with an odd number of nodes. Hence
they need three colors, and since all nodes on the ring are adjacent to the middle node these three colors have
to be different from color 0.
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P�

P�

(a) (b)

Figure 9.4: Graphs used for illustrating the connection between domain filtering and�8.

P� cannot be reduced further by domain filtering, as� v � P� : σ� �C��� �� �
�3

� δP��v�� �� �
�4

� �P�� � 1� �� �
�15

.

Now, asχ�GP�� � 2 we get�8�C�, P�� � 3 � σ. Consequently, applying the coloring bound
here can prune parts of the search tree which would still be considered when using filtering
alone.

Things change when considering Fig. 9.4(b): When havingσ � 5 and �C �� � 1, domain
filtering can remove all nodes inP� asσ � �C�� � 4, but the degree of the white node in (b)
is only 3. First, the white node is removed, decreasing the degree of its neighbors to 3. These
two nodes disappear next, and in a last step the remaining 4 nodes are eliminated as well.
Domain filtering has removed all potential nodes, and search backtracks.

Exact coloring bounds are not as successful: Becauseχ�GP�� � 4, we obtain�8�C�, P�� �
5 � σ showing that in this case the coloring bound cannot prune the remaining subtree. A
branch-and-bound algorithm would start new branches on this subproblem.

9.4.5 Computational Complexity

Better accuracy of bounds usually requires higher running time when calculating these bounds.
As benchmark graphs for cliques are typically rather dense, we assume that the graphG is
stored as an adjacency matrix. Also, we assume, that�C�� can be determined inO��C���. �1
requires the size ofP, which can be determined inO��P�� within a reasonable data structure.
Also the max. degree, required by�2, can be determined in that time if degree-information is
available (otherwise:O��P�2�).

A largest connected component inP can be detected by a DFS in a dense graph in time
O��P�2�. However,�4 being tighter than�3 can be computed in timeO��P� log �P�� if degree
information is available (or in quadratic time otherwise). Similarly,�6 and�7 base their in-
formation on connected components, and need therefore timeO��P�2�. If degree information
is at hand, bound�5 can be determined inO��P��, otherwise this bound needs to checkG
completely, giving time complexityO��P�2�.

Exact vertex coloring, needed for�8 is in generalNP-hard. For bound calculation, how-
ever, heuristics are used. They visit each node and each edge a constant number of time,
giving running timeO��P�2� in a dense graph (see e.g. [40, 16, 212]). As a drawback, heuris-
tic values may not be optimal, and the resulting bounds are not as tight as in the theoretical
analysis. We will elaborate more on coloring heuristics in Section 10.1.

Linear programming bounds are typically solved using a simplex algorithm. This approach
is known to have an exponential worst case running time (Klee and Minty [129]). Interior
point methods (Karmarkar [126]) overcome this weakness, and can solve polynomially sized
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linear programs in polynomial time.2 �LP�9.2� still requires exponential running time com-
pared to the original inputG unless some structure inG allows the building of a model that
uses only a polynomial number of constraints (see e.g. Grötschel et al. [99]).

We proved the running time of our domain filtering in lemma 6(iv) to beO��P�2�. Thus we
can conclude: Domain filtering is at least as accurate as bounds�1–�7, and asymptotically
does not require more running time than the more effective of these seven bounds. The only
bounds that outdo domain filtering in certain situation require higher running times.

9.5 Conclusions

We presented some simple domain filtering that tightens the candidate set used in algo-
rithms for solving maximum clique problems. Using a taxonomy of linear program-

ming and combinatorial bounds for MC we were able to prove that the tightened candidate set
is in a sense as least as tight as seven of these bounds. To our knowledge, the taxonomy of
bounds was not presented before. A brief complexity analysis furthermore showed, that the
asymptotic running time of domain filtering is comparable to the more elaborated bounds.

The quality of domain filtering strategies is often measured by the notion of consistency.
We believe that a direct comparison to the pruning-power of OR bounds is more appropriate
in the case of cost based filtering techniques. Our proposal thus is to compare OR bounds and
cost based filtering techniques by their ability to prune the search tree.

We showed in Sec. 9.4.4 that domain filtering can outdo�8 and Lemma 9 showed that
�LP�9.2� is as least as good as�8. As an open question it remains to investigate the relation
between domain filtering and�LP�9.2�, i.e. is�LP�9.2� at least as good as domain filtering or
are there any counterexamples?

9.5.1 Extensions to the Weighted Case

TheWeighted Maximum Clique Problem (WMC)is a canonical extension of MC where each
nodev � V is assigned a weightw�v�, wherew : V � N0 is a weight function.

We can extend our domain filtering quite easily to the weighted case. Instead of counting
the number of neighbors (degree), we have to use the sum of weights of all neighbors. Most
proofs can be easily adapted. The taxonomy of bounds, and the relation between bounds and
domain filtering, however, needs some more care, as some dominance relations change.

2The original algorithm of Karmarkar requiresO�n 3.5L� arithmetic operations onO�L� bit numbers, wheren
is the number of variables andL is the number of bits in the input (see [126]).
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10
Two Adapted Branch-and-Bound
Algorithms for Maximum Clique

The results of the previous chapter suggest the beneficial use of domain filtering in an
enumeration algorithm for MC. As it does not always dominate the coloring bound�8

we may improve convergence further by introducing some coloring heuristics that provide us
with a valid upper bound. In so doing, we can also get a lower bound heuristic “almost for
free”. We will discuss these two coloring based ingredients first.

10.1 Upper and Lower Bounds by Coloring Heuristics

Determining the chromatic number is NP-hard on general graphs, and various proposals
for heuristics and exact algorithms were made in literature. We refer to Johnson and

Trick [122] for a recent overview, and mention two important approaches developed in the
meantime: The exact branch-and-price algorithm of Mehrotra and Trick [150], and the frac-
tional coloring heuristic of Balas and Xue [15]. Both solve the column generation model for
the chromatic number problem (9.7) which was already mentioned in the proof of lemma 7.

In our approach, we use two different and fast running heuristics for the coloring prob-
lem. The first one follows the idea of the DSATUR approach of Brélaz [40], and was used
in the clique algorithms of Babel [11], Babel and Tinhofer [12], Balas and Xue [15], and
Wood [212]. It chooses a node with a maximum number of colored neighbors and assigns the
smallest unused color to that node (see Algorithm 23). Line 5 allows different tie breaking
strategies. The one originally proposed is to choose a node with a highest degree in case of a
tie. We found in our experiments that on some instances, the opposite strategy i.e. choosing a
node with a lowest degree is more helpful. To embrace both situations, we ran the algorithm
twice, changing the tie breaking strategy in between both runs.

In the root node, we additionally use a randomized tie breaking strategy. In both sorting
orders, we pick a node uniformly at random from those with the same number of colored
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Algorithm 23 DSATUR greedy method
function ColorBound(graphG � �V, E�)

1: for all v � V do
2: color�v� � 0 // initialize colors
3: coloredNeighbors�v� � 0 // initialize colored neighbors counter
4: while (not all nodes colored)do
5: v � arg max�coloredNeighbors�u� � color�u� � 0, u � V�
6: color�v� � min�k � k � 1 � k �� color�u� ��u, v� � E�
7: // Update colored neighbors info
8: for all �u, v� � E do
9: coloredNeighbors�v� � coloredNeighbors�v� � 1

10: return max�color�v� � v � V�

neighbors. We run the resulting algorithms�V�/100 times in order to obtain a good initial
bound. We found that we can usually improve the incumbent upper bound once or twice.
Unfortunately, we cannot use this approach in other nodes of the search tree as it is too time
consuming.

The other coloring method was developed by Biggs [33], and has also been used in the
clique solvers of Balas and Xue [15] and Wood [212]. It heuristically partitions the given
graph into a small number of maximal independent sets. Assigning each set a different color
yields an upper bound on the chromatic number. The algorithm starts with an empty setI1
and includes nodes in this set until no more nodes can be included. Each time a setIk cannot
be extended, a new setIk�1 is opened and the algorithm continues until all nodes have been
accounted for (see Alg. 24).

Algorithm 24 Bigg’s Greedy Method for Graph Coloring
function ColorBound(graphG � �V, E�)

1: for all v � V do
2: color�v� � 0 // initialize colors
3: k � 0
4: while (not all nodes colored)do
5: k � k � 1 // we need one more color
6: W � �v � V � color�v� � 0�
7: Ik � ∅ // next independent set
8: for v � W in predetermined orderdo
9: color�v� � k

10: Ik � Ik � �v�
11: W � W � �NG�v� � �v��
12: return k

The order in which nodes are arranged has some impact on the bounds’ quality. Therefore,
in line 8 of algorithm 24 we apply nodes in increasing and in decreasing order of degrees, and
obtain two different variants of the heuristic.

Both algorithms can be implemented such that their running time isO��V�2� which is op-
timal on dense graphs. The final upper bound is taken as the minimum number found by any
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of the four variants sketched above.

Findings of Balas and Xue [15] and Wood [212] show that Alg. 23 outperforms Alg. 24 with
respect to quality in many cases, but is slower than the latter one. Within a branch-and-bound
approach, and in combination with other methods, the interference is more complicated. Our
experiments showed that using both methods costs more running time in some cases, but in
the majority of cases it helps to improve convergence.

10.1.1 Lower Bounds

Algorithm 23 can also produce lower bounds, i.e. primal solutions to the clique problem. The
idea is that each time we have to open a new color class (lines 5–7), the nodes inW are in
conflict with all their neighbors.

Starting with color class1, we store those nodes opening the next color class that are also
adjacent to all other nodes stored so far. All additional checks for the upper bound can be
performed inO��V�2�, and the overall complexity of Alg. 23 remains unchanged. As a result,
a lower bound on a maximum clique is found. This idea was already used by Wood [212].

10.2 Improving the Algorithms

10.2.1 Adapting the Carraghan and Pardalos Algorithm

Using the domain filtering introduced in chapter 9 and the coloring heuristics discussed before,
we are able to improve the Carraghan and Pardalos algorithm:

Just before branching (line 8 of the Alg. 20) we call our domain filtering. We know that the
next improvement has to be better than the best clique found so far. Hence, we use��C��� 1�
as a lower bound for the necessary checks. If stillP� �� ∅ we calculate the coloring bounds
(both, upper and lower) as described above. If the upper bound prunes the current part of the
search tree, we skip the next recursive call.

10.2.2 Adapting the Östergård Algorithm

Similarly, we can adapt Östergård’s method: We use domain filtering just before line 11 in
Alg. 21 and use coloring bounds afterwards ifP still contains some elements. However,
it is not straightforward to use lower bound information in Östergård’s approach. In fact,
Östergård addresses this as a problem in [158] but does not come up with a solution (nor
do we). The critical point is the fact that the valuesβ�v� will loose their significance when
using additional lower bounds: Assume we found a clique of sizek by some heuristic. Now,
if we stop searching for all subgraphs of a smaller or equal size thank the corresponding
boundsβ�v� do not contain helpful information for subsequent iterations, and convergence
slows down.

10.2.3 The Implementation

An efficient implementation makes use of some more “tricks” than those visible in the al-
gorithmic descriptions 20 and 21. The gains are constants only. But neglecting those might
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make the difference between solving or not solving a problem within a time limit.
When determiningP� � P � N�v�, we use a loop running over all elementsp � P. If

�p, v� � E, p is copied toP�. For non-adjacent elements we decrease a counterm that
contains the number of elements still needed in order to obtain�C ��� �P�� � �C��. Shouldm
ever be decremented below zero we immediately skip that recursion-level. (We refer to [7] for
more details).

For the domain filtering algorithm we also update degree information on the subgraph in-
duced byP. That is, we decrease the degree of a nodep� � P� if an adjacent nodep � P
is not copied toP�. By keeping a copy ofP in each recursion level we can easily perform
incremental updates on the degrees before entering the next recursion level.

10.3 Numerical Results on Benchmark Graphs

Obviously, as the tighter bounds need some more computational effort, there is a trade-off
between the effectiveness of pruning techniques and the overall efficiency of the ap-

proach. In this section we examine the empirical behavior of the new approaches and we
compare our results with those of some recent solvers for MC.

We use the well-established DIMACS benchmark set [122, 67] for our comparison. It con-
sists of 66 instances, ranging from 28 – 3361 nodes, and 420 – 11 million edges. The density
of the underlying graphs ranges from 3.5% – 99.8%. More details are given in Appendix B.1.
To our knowledge optimal solutions have not yet been proved for some of these instances. A
second set of numerical tests was performed on random graphs.

All algorithms were coded in C++ and compiled by the GNU g++ 2.95.3 compiler using
full optimization. Our benchmark tests were run on a Dual-Pentium III-933 PC with 512MB
RAM operating Linux 2.4.19. We stopped each run after 6 hours (21 600 sec). Only one
processor per machine was used during the tests.

Definition 14 We say that on a graphG an algorithmA is better than an algorithmB if

(i) A found a larger clique thanB, or

(ii) cliques found have equal size, butA terminates faster thanB, or

(iii) clique size and runtime forA and B are identical, butA found a best solution earlier
thanB.

The latter case usually occurs if both approaches do not terminate within the given time limit.
All runtimes are measured as process times. Regarding the remaining timing problems (see
Sec. 2.4.3) we use (2.23) in the comparisons.

10.3.1 Domain Filtering

Our first set of experiments only considers the effects of domain filtering and coloring bounds.
In tables 10.1 and 10.2 we compare our implementation1 of dfmax using bound�1 (Alg. 20)

1For a fair comparison, we decided to use identical subroutines for all implementations. We adapteddfmax to
our settings resulting in a slightly faster algorithm than the originaldfmax
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only, an implementation using coloring bounds only (χ), another using domain filtering only
(DF), and a fourth using both (χ � DF).

As expected, the number of choice points decreased considerably when domain filter-
ing was applied. The savings range from a factor of 3.6 (MANN_a9) to a factor of 30.4
(p_hat1500_1) when comparing puredfmax to dfmax+DF. In contrast, in many cases the
running time of the current code is twice as slow as of thedfmax code. Here, domain filter-
ing is computationally too expensive compared to the simple�1 bound: It is still cheaper to
traverse large useless parts of the search tree than to detect these parts. These observations
are confirmed by numerical results of Alg. 21.2 Though the numbers vary, the general effects
are the same: The number of choice points is considerably reduced. On the other hand, the
original approach is usually faster than the same approach plus domain filtering. Interestingly,
Table B.2 shows that the pure approach alone as well as the pure approach enhanced by either
coloring or domain filtering finds a total clique size of about 3840. Only when combining
Alg. 21 with coloring bounds and domain filtering the accumulated clique size goes up to
over 4000 (this improvement is due to small improvements on several instances and thus is
not a singular effect). Detailed tables are given in Appendix B.2.

The c-fatxxx instances play a special role in this context. They are quite easy to solve using
domain filtering. Each instance requires only 5 choice points to prove optimality, with running
time being negligible. Algorithm 20 alone uses dramatically more choice points (a factor of
more than one million in the case of c-fat200-5, and more than109 for c-fat500-10). Coloring
bounds reduce the number of choice points in these instances as well, but are not as efficient
as domain filtering. This corresponds to the findings of Wood [212] who also reports only
a small number of choice points (1–27) for his approach on those instances. For algorithm
21 the number of choice points decreases, when using domain filtering, and for c-fat200-2 at
least, the resulting gain is substantial.

10.3.2 Coloring Bound �8

The use of vertex color bounds significantly helps to detect useless parts of the search tree. Out
of the 66 benchmark instances, 46 could be solved to optimality when using coloring bounds,
whereas only 33 can be finalized by Alg. 20, and 34 by Alg. 21, respectively. Again, it turns
out thatDF helps to reduce choice points. Additionally, a positive impact on running time
is observed. Since the coloring bounds are rather expensive to compute, any reduction in the
remaining graph improves the overall running time. As a result,DF � χ finds larger cliques in
three cases, and in 44 out of 66 cases domain filtering shows improvements over those which
do not use domain filtering (according to Def. 14). We applying Östergård’s idea plusDF � χ
two larger cliques are found than by running that setting without domain filtering. All in all,
40 instances benefit from additional domain filtering (measured as described above).

It should be noted that for simple instances especially running time is negatively affected by
more sophisticated approaches (e.g. some of the p_hatxx instances). For those cases a control
mechanism that switches off expensive techniques should be used.

2We used our own implementation in the tests. Östergård provides his implementation of Alg. 21 only for the
more general case ofweightedcliques.
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Alg. 20 Alg. 20+DF Alg. 20+χ Alg. 20+DF+χ
Instance

�C�� time BB nodes �C�� time BB nodes �C�� time BB nodes �C�� time BB nodes
brock200_1 21 26.58 38043497 21 54.60 3350353 21 83.36 32847 21 73.99 30811
brock200_2 12 0.04 54314 12 0.17 3539 12 0.49 323 12 0.52 285
brock200_3 15 0.37 453265 15 1.04 32170 15 3.15 1418 15 2.68 1356
brock200_4 17 1.61 2161909 17 3.87 167750 17 9.73 4442 17 10.09 4169
brock400_1 �27 �21600 23223752963 �25 �21600 1022982977 �25 �21600 6477006 �25 �21600 5677245
brock400_2 �29 �21600 20089180565 �29 �21600 760111221 �29 �21600 4976220 �29 �21600 4429451
brock400_3 �31 �21600 25770803689 �24 �21600 1057635922 �24 �21600 6672788 �24 �21600 5830338
brock400_4 33 19773.90 20152485865 �25 �21600 935193147 �25 �21600 5851408 �25 �21600 5153284
brock800_1 �21 �21600 21101899632 �21 �21600 546659121 �21 �21600 6705439 �21 �21600 5862067
brock800_2 �21 �21600 23496231361 �20 �21600 636709653 �20 �21600 7261032 �20 �21600 6381751
brock800_3 �21 �21600 22124014822 �20 �21600 602902311 �20 �21600 7089985 �20 �21600 6112439
brock800_4 �26 �21600 21662133367 �21 �21600 606259112 �20 �21600 7239813 �20 �21600 6176011
c-fat200-1 12 0.01 52 12 0.01 5 12 0.01 34 12 0.01 5
c-fat200-2 24 0.01 444 24 0.01 5 24 0.01 70 24 0.01 5
c-fat200-5 58 1207.72 268435599 58 0.01 5 58 0.08 172 58 0.01 5
c-fat500-1 14 0.01 71 14 0.05 5 14 0.05 40 14 0.05 5
c-fat500-10 �124 �21600 15858231004 126 0.07 5 126 0.68 376 126 0.07 5
c-fat500-2 26 0.01 683 26 0.05 5 26 0.06 76 26 0.07 5
c-fat500-5 64 4.92 5703074 64 0.06 5 64 0.15 190 64 0.03 5
hamming10-2 �512 �21600 3366474297 �512 �21600 770355321 512 0.76 513 512 0.67 257
hamming10-4 �32 �21600 36567495385 �32 �21600 2815903831 �33 �21600 5237411 �33 �21600 4495000
hamming6-2 32 0.01 42787 32 0.01 1891 32 0.01 33 32 0.01 17
hamming6-4 4 0.01 221 4 0.01 47 4 0.01 129 4 0.01 25
hamming8-2 �128 �21600 14850398859 �128 �21600 1375703771 128 0.01 129 128 0.01 65
hamming8-4 16 4.06 3742143 16 7.89 252418 16 3.29 585 16 5.44 570
johnson16-2-4 8 1.54 4177630 8 3.62 904446 8 11.21 123282 8 17.73 57912
johnson32-2-4 �16 �21600 49208418864 �16 �21600 4929133669 �16 �21600 228095779 �16 �21600 70631873
johnson8-2-4 4 0.01 90 4 0.01 21 4 0.01 50 4 0.01 11
johnson8-4-4 14 0.01 12544 14 0.01 1205 14 0.03 27 14 0.01 17
keller4 11 0.74 1275236 11 1.56 107086 11 2.58 1598 11 3.65 1476
keller5 �24 �21600 26405722472 �24 �21600 787089454 �26 �21600 2844759 �26 �21600 2423520
keller6 �43 �21600 19876767579 �43 �21600 574383274 �43 �21600 1695034 �43 �21600 1341291
MANN_a27 �116 �21600 17111883459 �116 �21600 22543342098 126 3627.65 31978 126 3046.67 31240
MANN_a45 �220 �21600 12427538213 �234 �21600 22952851665 �334 �21600 26007 �336 �21600 24794
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Alg. 20 Alg. 20+DF Alg. 20+χ Alg. 20+DF+χ
Instance

�C�� time BB nodes �C�� time BB nodes �C�� time BB nodes �C�� time BB nodes
MANN_a81 �438 �21600 6433965301 �467 �21600 22372923762 �998 �21600 33067 �998 �21600 9637
MANN_a9 16 0.09 329235 16 0.11 92210 16 0.01 46 16 0.01 28
p_hat1000-1 10 2.05 1801019 10 9.74 81573 10 27.45 14082 10 35.28 13303
p_hat1000-2 �42 �21600 20151659983 �41 �21600 1095205574 �44 �21600 1003624 �44 �21600 1341279
p_hat1000-3 �49 �21600 22757998877 �47 �21600 1426408001 �50 �21600 921339 �52 �21600 1274139
p_hat1500-1 12 18.28 13825580 12 92.85 454914 12 292.45 104668 12 380.57 101895
p_hat1500-2 �46 �21600 24297112095 �46 �21600 1848437250 �52 �21600 673044 �52 �21600 783463
p_hat1500-3 �53 �21600 27789610940 �53 �21600 2097394574 �58 �21600 983802 �58 �21600 1148829
p_hat300-1 8 0.01 11634 8 0.07 450 8 0.19 237 8 0.36 212
p_hat300-2 25 1.00 1553140 25 2.67 182168 25 2.38 647 25 3.61 438
p_hat300-3 36 1492.43 1960518988 36 2729.49 251846120 36 508.07 79793 36 482.81 71863
p_hat500-1 9 0.08 89908 9 0.51 4978 9 1.21 493 9 1.46 475
p_hat500-2 36 240.41 292274682 36 502.24 35324032 36 128.09 16235 36 128.32 15101
p_hat500-3 �44 �21600 25719412910 �43 �21600 1873805007 �49 �21600 1052581 �49 �21600 1218440
p_hat700-1 11 0.36 343857 11 2.00 20630 11 3.96 871 11 5.14 815
p_hat700-2 44 9742.35 10969888234 44 18281.20 1394776054 44 1129.18 89869 44 1091.35 79390
p_hat700-3 �50 �21600 24323367924 �49 �21600 1554061118 �54 �21600 801496 �56 �21600 943799
san1000 �10 �21600 12277896744 �9 �21600 179990506 15 895.33 35573 15 1141.11 31477
san200_0.7_1 30 5466.91 14265131069 30 9273.97 3805796652 30 0.90 389 30 0.89 268
san200_0.7_2 �18 �21600 31159815462 �18 �21600 4588848753 18 0.58 277 18 0.60 176
san200_0.9_1 �48 �21600 47701178923 �48 �21600 14808252136 70 30.97 5308 70 24.54 4291
san200_0.9_2 �41 �21600 48882914444 �41 �21600 3462650501 60 628.92 85085 60 600.46 72365
san200_0.9_3 �36 �21600 2192973297 �44 �21600 1651744796 44 57.87 12622 44 71.55 11830
san400_0.5_1 13 916.73 1414713059 13 2255.23 155275559 13 2.59 2470 13 3.64 739
san400_0.7_1 �22 �21600 87494021010 �22 �21600 16652377204 40 123.09 7438 40 150.44 8576
san400_0.7_2 �17 �21600 61966653095 �17 �21600 7525272755 30 44.96 6497 30 62.94 10129
san400_0.7_3 �22 �21600 26018343618 �17 �21600 1972475939 22 290.52 65466 22 367.05 84602
san400_0.9_1 �49 �21600 54964009156 �49 �21600 6047721579 100 2310.99 144664 100 2033.07 120402
sanr200_0.7 18 5.83 7985123 18 12.15 665013 18 27.65 12985 18 28.05 12246
sanr200_0.9 �40 �21600 29331657711 �40 �21600 2144307525 42 11884.40 1733080 42 10263.50 1421500
sanr400_0.5 13 4.06 4283999 13 12.16 251463 13 41.43 18084 13 44.22 17439
sanr400_0.7 21 4587.91 5624332491 21 9373.51 408188818 21 14585.70 5067837 21 14900.60 4783079
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10.3.3 Primal Heuristics

Compared to the original algorithm lower bound heuristics improve in 52 out of 66 cases. The
gain in runtime, though, is not very dramatic (197 hours versus 217 hours, accumulated for all
66 instances). Using primal heuristics, benchmark instances c-fat500-10, hamming10-2, and
hamming8-2 can be solved in in a fraction of a second. The heuristics find the optimal clique
size already in the root node. The original approach cannot finalize its runs within a time limit
of 6 hours. Instance p_hat700-2, on the other hand, is solved in less than 10 000 seconds by
the original approach, but cannot be solved to optimality when using lower bound heuristics.

In 43 cases using the primal heuristic is best, in 23 not using it is best (according to Def. 14).
Improvements stem from two facts: Primal heuristics provide a good primal solution and thus
support pruning. They also provide tight bounds for being used in domain filtering, thus
making the filtering more effective.

By combining primal heuristics with domain filtering and coloring (see table 10.3) we can
produce the best results.

10.3.4 Comparison to other Algorithms

We also compare our results to some recent results presented in literature. We compare the re-
sults of Wood [212], Balas and Xue [15], and Östergård [158] with ourχ+DF+primal heuris-
tics results (Table 10.3). Since the results in the first column of tables 10.1 and 10.2 correspond
to the Carraghan/Pardalos algorithm, we have already shown, that we outdo that algorithm in
many cases.

Unfortunately, different machines as well as different time limits were used for the other
approaches. Hence, we can only try to show a general tendency, rather than comparing de-
tails. Also, the papers mentioned do not present results on all 66 instances, whereas we have
good results on some of the omitted instances. Using the ingredients described above, e.g.,
best clique size found increases from 220 to 342 for MANN_a45 and from 438 to 1096 for
MANN_a81, respectively. Instances sanr200_0.9 and san200_0.9_3 cannot be finalized by the
original algorithm, whereas our combined approach proves optimality within a short space of
time. It would therefore be interesting to see the performance of other approaches on the
omitted instances as well.

Wood’s approach is a branch-and-bound using fractional coloring and lower bound heuris-
tics. Results for 38 DIMACS instances are presented and solved within running times of up
to 19 hours on a SUN S10. In 30 cases our approach uses fewer choice points than his fastest
method (MCC), the typical factor being 4–8. In 4 cases we use more, in another 4 cases we
need the same number of choice points. When considering MCD (the approach using the least
number of choice points), our approach is better in 19 cases, MCD has less choice points in 9
cases, the remaining 10 cases all solve the problem in the root node. However, in at least 28
cases the running time is higher than ours.3 In 6 cases we need more computing time.

Balas and Xue developed a heuristics to determine fractional coloring bounds within a
branch-and-bound framework. They used a DEC Alpha 300–400 AXP and time limit of 5
hours. In 29 out of 48 cases we use fewer choice points than their approach. Assuming that
their computer is about 4 times slower than ours, we outperform that algorithm in 11 cases.

3A SUN Sparc 10/51 is about 10 times slower than our computer, and we transformed the running times by this
factor
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Alg. 20+ DF+χ+Heuristic
Instance

�C�� time BB nodes time best
brock200_1 21 83.81 30694 16.10
brock200_2 12 0.54 272 0.14
brock200_3 15 3.26 1356 0.01
brock200_4 17 10.02 4123 7.29
brock400_1 �25 �21600 6032026 16099.20
brock400_2 �29 �21600 4583263 8746.22
brock400_3 �24 �21600 6074490 52.50
brock400_4 �25 �21600 5309119 1245.55
brock800_1 �21 �21600 6108652 12905.80
brock800_2 �20 �21600 6699015 1662.42
brock800_3 �20 �21600 6504352 560.13
brock800_4 �20 �21600 6571649 190.12
c-fat200-1 12 0.01 0 0.01
c-fat200-2 24 0.01 0 0.01
c-fat200-5 58 0.01 1 0.01
c-fat500-1 14 0.01 0 0.01
c-fat500-10 126 0.01 0 0.01
c-fat500-2 26 0.01 0 0.01
c-fat500-5 64 0.01 0 0.01
hamming10-2 512 0.04 0 0.03
hamming10-4 �33 �21600 4692037 17301.70
hamming6-2 32 0.01 0 0.01
hamming6-4 4 0.01 22 0.01
hamming8-2 128 0.01 0 0.01
hamming8-4 16 3.75 556 0.01
johnson16-2-4 8 12.39 57881 0.01
johnson32-2-4 �16 �21600 72262348 0.01
johnson8-2-4 4 0.01 11 0.01
johnson8-4-4 14 0.01 11 0.01
keller4 11 2.66 1457 0.03
keller5 �26 �21600 2490605 18977.10
keller6 �43 �21600 1344053 796.79
MANN_a27 126 2984.11 30458 283.11

Alg. 20+ DF+χ+Heuristic
Instance

�C�� time BB nodes time best
MANN_a45 �342 �21600 11883 0.05
MANN_a81 �1096 �21600 462 0.43
MANN_a9 16 0.01 18 0.01
p_hat1000-1 10 32.57 13282 2.71
p_hat1000-2 �44 �21600 1263289 4680.78
p_hat1000-3 �57 �21600 658102 0.08
p_hat1500-1 12 341.15 101886 67.74
p_hat1500-2 �54 �21600 616341 0.11
p_hat1500-3 �75 �21600 266476 0.12
p_hat300-1 8 0.24 207 0.15
p_hat300-2 25 2.41 333 1.59
p_hat300-3 36 487.80 71384 484.66
p_hat500-1 9 1.46 462 0.18
p_hat500-2 36 127.90 14585 127.88
p_hat500-3 �49 �21600 1108105 9059.61
p_hat700-1 11 5.69 802 5.43
p_hat700-2 44 1111.40 76079 1048.25
p_hat700-3 �56 �21600 577935 14274.40
san1000 15 1476.19 31290 1476.17
san200_0.7_1 30 0.58 154 0.58
san200_0.7_2 18 0.51 107 0.51
san200_0.9_1 70 7.13 465 7.12
san200_0.9_2 60 651.72 71274 651.70
san200_0.9_3 44 86.09 11602 80.90
san400_0.5_1 13 4.95 694 4.89
san400_0.7_1 40 168.33 8449 168.31
san400_0.7_2 30 63.87 9062 63.86
san400_0.7_3 22 403.95 84522 403.95
san400_0.9_1 100 2011.49 85997 2010.11
sanr200_0.7 18 29.23 12198 8.69
sanr200_0.9 42 11082.70 1421874 7516.34
sanr400_0.5 13 45.72 17424 23.78
sanr400_0.7 21 15357.30 4783053 43.39
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Balas and Xue’s approach is faster in 29 cases. A closer analysis indicates that their primal
heuristic is much better than ours.

Östergård’s approach was already described in Sec. 9.2. We compare our results to those
published in Östergård [158], since results of our own implementation deviates from those
given there. As no numbers of choice points are given, we can only compare running times.
The computer used is a 500 MHz PC, roughly 2 times slower than ours. Östergård considers 38
DIMACS instances, of which we can solve 17 faster than his approach, whereas his approach
is faster in 16 cases. On a majority of instances our own implementation of his idea is up
to an order of magnitude slower than Östergård’s original code. However the speed-up when
combined with coloring bounds and domain filtering is significant. Thus, we expect to speed-
up the original code of Östergård by combining it with coloring bounds and domain filtering.

10.3.5 Statistics on Large Sample Sets

In order to get a better idea of the impact of different techniques we also performed some
statistical evaluation based on the entire data found when running our different algorithms on
the DIMACS benchmark set. I.e. we accumulate data using a certain technique and compare
it to a collection of data which does not use that technique. Detailed tables for all tests are
given in Appendix B. Data stems from the tests presented in this thesis as well as from 8 tests
using different node orderings. Node reordering follows an idea presented in Fahle [70]. In
a more intensive study it turned out to have only a minor impact on the overall convergence
when combined with additional techniques.4

As usual, some care is needed when interpreting statistics like these, since the experimental
setting (time limit, good improvement on single instances only, etc.) influences results.

10.3.5.1 Domain Filtering versus no Domain Filtering

There are ten settings using domain filtering, and another ten not using it. This results in a
sample of 660 experiments for either test class. The table in Appendix B.4 shows no clear
difference in runtime or accumulated clique size, when these two categories are compared
(using DF gains# 25h, but on some instances worse solutions are found). A few more best
results are found by DF (639 vs. 606), and DF clearly needs fewer branch and bound nodes
for these results (in 418 cases, whereas not using DF is better in 88 cases). Overall, DF is
better in 426 cases, not using DF pays off in 274 cases.5

10.3.5.2 Coloring Bounds versus no Coloring Bounds

Coloring bounds have a stronger influence on the numerical results than domain filtering. In
Appendix B.4 the difference in runtime and clique size is obvious and is due to a significant
decrease in running time for long running instances. On short running instances, however,
coloring bounds have a negative impact — the best clique sizes are more often found by
algorithms not using coloring bounds (481 vs. 292 cases). On the other hand, the number of

4Therefore, we do not present details on this idea here. Appendix B.3 contains some more insight.
5In some cases, both strategies produce identical numbers which explains that the sum of these values is larger

than 660.
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branch-and-bound nodes decreases. Overall, coloring bounds find better results in 424 cases,
whereas not using them proves to be better in 304 cases.

10.3.5.3 Domain Filtering plus Coloring Bounds versus Either of Both

The results presented before suggest the investigation of the combination of DF and coloring
bounds. 330 instances either use both or exactly one of the techniques in question, and the
results are presented in Appendix B.4. Clearly, coloring bounds turn out to be the most impor-
tant aspects. When not using them runtime goes down from 1010.65 hours to 649.49 hours.
Also, quality of the solutions increases. However, not using domain filtering reduces the num-
ber of cases, where fewer branch-and-bound nodes are needed. More importantly, only 126
of the best results are found by using coloring bounds without domain filtering, whereas 226
are found using both techniques.

10.3.5.4 Lower Bound Heuristics

When analyzing the 528 tests using or not using heuristics, respectively, it turns out that the
overall runtime does not differ much (Appendix B.4). The quality of solutions, on the other
hand, benefits from using heuristics. 389 of the best solutions are found using heuristics,
but only 142 when not applying them. Slightly more benchmark instances terminate ear-
lier without primal heuristics showing that heuristics produce a significant runtime overhead.
All in all, lower bound heuristics are helpful, if they find a good or optimal solution rather
early. In other cases, they slow-down convergence. Also, the positive impact of lower bound
heuristics diminishes when other techniques are combined with the approach. Using domain
filtering and bound�8 in addition, lower bound heuristics can only improve clique size in five
cases, whereas they slow others down. Using the heuristics in that setting is still better in 43
cases, but accumulated runtime is slightly lower, when heuristics are not used (see tables in
AppendixB.3).

10.4 Numerical Results on Random Graphs

By running experiments on random graphs of varying density, we can perform scaling
tests. This allows a different view of the characteristics of algorithmic techniques. In

particular, for eachd � �0, 2, 4, . . . , 100� we ran our algorithms on 50 different random
graphs of densityd.6 By drawing the arithmetical mean of running time and branch-and-
bound nodes, respectively, we can illustrate the characteristics of the techniques discussed
before.

We present some results for graphs with 100 and 150 nodes, respectively.7 For each instance
a maximum of 90 000 seconds was allowed, and some dense graphs could not be solved within

6The random graphs were constructed by a simple scheme: We ran over all possiblen�n�1�
2 edges and installed

an edge with probabilityd.
7A larger sample size, as well as larger graphs would be desirable for this test. Unfortunately, running times

for graphs with the 150 node were considerably large already. Ten computers took about two months of
computing time each. Some initial experiments with graphs having 200 nodes each gave running time up
to 12 times larger than for the small graphs. Thus, about 120 computers would be needed to finalize that
experiment in a reasonable amount of time.



164 10 Two Adapted Branch-and-Bound Algorithms for Maximum Clique

these 25 hours. In that case, we used 90 000 seconds, and the number of branch-and-bound
nodes used so far in the statistics.

The upper diagram in figure 10.1 shows runtime and the number of branch-and-bound nodes
for random graphs having 100 nodes each. There are two general tendencies: Methods not
using coloring bounds have a high peak on graphs with densityd � 96. Using coloring
bounds, runtime grows slower, and the peak of that curve is at aboutd � 90. For graphs
having density of about 85% or less, overall runtime is lower when not calculating coloring
bounds. In other words: Determining coloring bounds (on these graphs) pays off only, if they
can help to reduce the number of branch-and-bound nodes by more than a factor of 100 –
1000 (lower diagram). The same diagram also shows a significant difference for approaches
using simple bounds together with domain filtering and those not using domain filtering. Also
conspicuous is the impact of domain filtering on low density graphs. Approaches not using
domain filtering do use a higher amount of branch-and-bound nodes for graphs having density
d � 15. The pure coloring approach, as well as the “coloring+heuristics” approach show an
interesting up-and-down of the number of branch-and-bound nodes needed. These effects
also occur for larger graphs (see figures 10.2,10.3). The reason is that on sparse graphs wrong
decisions made by the coloring heuristics cannot be balanced later.

Graphs with 150 nodes (Figures 10.2,10.3) show the effects described above, too. For
a better readability, we reduced the number of approaches not using coloring bounds. The
upper part shows two diagrams corresponding to the 100 node graphs. The vertical line for
the Östergård approaches is due to the fact that Alg. 21 performs a search for each node in
the graph. Thus, at least 150 branch-and-bound nodes are required for these approaches. On
sparse graphs, 150 – 200 branch-and-bound nodes are also sufficient to finalize a complete
search.

In the lower part, runtime and number of branch-and-bound, respectively for the faster
approaches is drawn on a linear-scaledy-axis. This allows us to investigate the slight differ-
ences between the faster approaches. Our implementation of Östergård approaches seems to
be fastest if being combined with coloring bounds and domain filtering. Dfmax + domain
filtering and coloring is as good as the same combination using lower bound heuristics in
addition on random graphs.

For Figures 10.1 and 10.2, detailed diagrams for each method are given in Appendix B.5.

10.5 Conclusions

In an experimental study we investigated the impact of domain filtering on two different
branch-and-bound approaches proposed for MC. We showed significant reduction in the

number of choice points when using the new approach. As a drawback, we observed that
domain filtering is time consuming and does rarely pay off when being applied alone. In
combination with tight upper bounds, however, it is an important technique. Domain filtering
then supports finding best solutions and accelerates search: Any node fixed by domain filtering
needs not to be colored by the heuristics. As their running time isO��P�2� this directly impacts
on the overall running time. Moreover, any node fixed cannot be assigned a wrong color, thus
the heuristics tend to produce tighter bounds which improves the search.

Using primal (lower bound) heuristics further improves the algorithm, and the combination
of tight lower and upper bounds, and domain filtering is the most promising approach tested
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in this thesis. The combination of a simple branch-and-bound, domain filtering, and lower
and upper coloring bounds hence defines a simple and fast solution algorithm for MC.

Primal heuristics though seem to be the weakest part in the tests. It remains as an open
question whether applying lower bound heuristics only in selected nodes of the branch-and-
bound tree still preserves the positive impact while in general speeding up convergence. Also,
we may improve the algorithms by using the stronger primal heuristic proposed by Balas and
Xue [15].

Tests on random graphs indicate that domain filtering stabilizes the search for low degree
graphs. A combination of domain filtering and coloring bounds is the best approach to high
degree random graphs. As regards runtime, the more sophisticated techniques pay off only on
high degree graphs. For random graphs with 100 or 150 nodes, respectively, a density of more
than 85% is sufficient to justify the additional effort of filtering and bounding.



11
Conclusions and Open Questions

The integration of concepts from Constraint Programming and Operations Research algo-
rithms has emerged in recent years. In this thesis we contributed some new techniques to

the field. We developed integrated CP and OR techniques and applied them to

• the Airline Crew Rostering Problem,

• the Home Health Care Problem,

• the Automatic Recording Problem and

• the Maximum Clique Problem.

11.1 Conclusions

Solution approaches to theAirline Crew Rostering Problembenefit from CP based column
generation. Complex airline rules and regulations can be treated efficiently by this frame-

work. Also, we showed that the pure approach can be accelerated further by additional CP
heuristics.

Carmen Systems, our industrial partner in PARROT, use some ideas from CP based column
generation in their crew assignment software. They observed significant reductions in runtime
when using improved IP heuristics, better constraint checking and the ideas from CP based
column generation.

The concept of the CP based column generation framework was also used by Rousseau
et al. [177]. They successfully applied it to the vehicle routing problem with time window
constraints. Also their hybrid approach improved on a pure CP as well as on a pure column
generation approach.

We conclude that CP based column generation is a very promising extension of the tradi-
tional column generation framework. Whenever column generation is appropriate for a prob-
lem, and when in addition the subproblem is described by complex constraints CP techniques
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should be considered. When using the shortest path constraint or the knapsack constraint
presented in previous chapters of this thesis quite a lot of subproblems can be modeled.

For theHome Health Care Problemwe proposed a generic mathematical model. Based
on this model we developed a combined CP and Tabu Search approach. CP provides feasi-
ble solutions quickly, whereas Tabu Search can easily improve them. In order to solve the
sequencing subproblems we applied a combined CP and LP approach. CP searches for valid
orderings of tasks and the LP assigns the optimal start time to each task in that ordering.

All in all the combined approach was better than Tabu Search or CP alone: Whereas Tabu
Search had difficulties in finding an initial solution, a pure CP approach was hardly able to
improve one. Thus, the mixture of techniques accelerated convergence in this real-world
application.

For theAutomatic Recording Problemwe used CP based Lagrangian relaxation. When
a given problem is composed of different substructures for which efficient domain filtering
techniques are known, CP based Lagrangian relaxation allows us to reformulate the problem
such that these filtering techniques can be efficiently applied. The concept was evaluated in
Chapter 7. There, CP based Lagrangian relaxation was superior to pure Lagrangian relaxation
and also to an approach that used the domain filtering without separating the substructures.
The succeeding chapter, however, showed that the clear mathematical structure of the ARP
can be tackled more efficiently by other OR approaches. With growing insight into the ARP’s
structure new approaches are likely to outdo the latter approaches as well.

Finally, we considered a prominent problem taken from computer science. We proposed
domain filtering techniques for theMaximum Clique Problemand we were able to present a
model in which domain filtering from CP and bounding techniques from OR can be compared.
Using two different branch-and-bound methods from literature we were able to demonstrate
the efficiency of domain filtering for maximum clique problem. Enhanced by additional tech-
niques, a fast branch-and-bound algorithm was found and numerically investigated.

11.2 Open Questions

Goethe’s quote on page iii is not only appropriate for politics. It is also valid in science.
New insights into problems, new techniques or new numerical evaluations raise new

questions. We mentioned some specific ones already in preceding chapters. Furthermore, we
see two additional challenges:

• A deeper experimental foundation for the generic techniques presented, and

• a general theory for understanding the relation between CP domain filtering and OR
bounding techniques.

CP based column generation as well as CP based Lagrangian relaxation provides some
promising extensions of their classical roots. Using domain filtering while solving the result-
ing subproblem is likely to speed-up convergence. Using CP in the subproblems allows us to
use a broad class of constraints. Finally, from a software engineering perspective, CP encap-
sulates logical constraints in simple building blocks, whereas IP approaches must model them
via linear inequalities that are hard to maintain if requirements change.
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Despite these advantages, both techniques need some more experimental evaluation from
different application fields before declaring them superior or inferior to the standard ap-
proaches.

What is currently missing in the field of CP and OR integration is some generic description
of effects resulting from the respective techniques. In polyhedral theory e.g. a notion of cut
dominance is known and used to classify cuts. CP uses different levels of consistency to
describe dominance of filtering techniques. However, there is — to our knowledge — no
comprehensive theory for comparing domain filtering and bounds.

It might be helpful to interpret domain filtering for IPs as a kind of local cuts and then use
methods from polyhedral theory for a classification. It is not clear, though, whether this is
a successful path to follow. For the simple structure of the clique problem we were able to
compare domain filtering and bounds and it is subject of further research whether these ideas
can be applied to more complex settings.
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A
Numerical Results for the ARP

We give numerical results for all ARP benchmark classes tested. In section 7.3.1 we describe
how these instances have been generated, and we also explain the different parameters for each
class. Numbers given in boldface mark the approach that has been fastest on the corresponding
instance. We use average runtime for 50 instances per set set for this comparison (respective
numbers given in italic).

Whenever the runtime for a single instance took more than 200 hours (720 000 sec), the
entire test set was not considered further. This only happened for tests on CP the based
Lagrangian Relaxation. Therefore, results for

(5CU / 72h / 50ch) (5TSC / 24h / 50ch) (5TSC / 72h / 20ch) (5TSC / 72h / 50ch)
(5TWC / 72h / 50ch) (7CU / 72h / 50ch) (7TSC / 72h / 50ch) (7TWC / 72h / 50ch)

are missing in section A.1. Nevertheless, they appear in section A.2 where all results were
found within this time limit. In fact, neither of the prevailing approaches (DP, DP� andBC)
was ever using more than 55 000 secs in our tests.

The fastest approach for a test class (measured over all seven approaches) is typed boldface.
If numbers differ in less than2

200 sec. both numbers are given in boldface (see section 2.4.3
for a more detailed explanation).

A.1 CP based Lagrangian Relaxation

LG-0 LG-1 LG-2 LG-3
Instance

time ch pts time ch pts time ch pts time ch pts

6h
5ch

3 CU

avg
min
max
std

0.1
0.0
0.3
0.1

27.2
2.0

136.0
22.1

0.1
0.0
0.2
0.0

15.6
2.0

70.0
12.7

0.0
0.0
0.1
0.0

14.6
2.0

55.0
9.9

0.0
0.0
0.1
0.0

10.9
2.0

32.0
6.1
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LG-0 LG-1 LG-2 LG-3
Instance

time ch pts time ch pts time ch pts time ch pts

6h
20ch
3 CU

avg
min
max

std

0.4
0.0
3.8
0.6

49.9
8.0

409.0
63.2

0.2
0.0
1.1
0.2

32.3
6.0

127.0
28.6

0.1
0.0
0.6
0.1

24.2
6.0

172.0
26.7

0.2
0.1
0.7
0.1

17.3
6.0

66.0
10.6

6h
50ch
3 CU

avg
min
max

std

1.1
0.2
5.4
0.9

52.5
8.0

267.0
47.8

0.8
0.2
3.8
0.6

37.3
8.0

208.0
33.7

0.3
0.1
1.6
0.3

25.7
8.0

92.0
17.9

0.5
0.1
1.9
0.4

22.1
8.0

89.0
16.1

6h
100ch
3 CU

avg
min
max

std

2.9
0.3

10.5
2.4

96.7
10.0

726.0
108.0

2.1
0.3
7.9
1.5

67.9
10.0

210.0
52.8

0.8
0.2
2.9
0.6

36.7
10.0

131.0
26.7

1.2
0.4
5.0
0.9

30.0
10.0

119.0
19.8

12h
5ch

3 CU

avg
min
max

std

0.1
0.0
1.7
0.2

69.3
7.0

982.0
137.9

0.1
0.0
0.3
0.1

33.3
7.0

128.0
25.4

0.1
0.0
0.2
0.0

26.0
7.0

99.0
18.9

0.1
0.0
0.2
0.0

17.6
7.0

42.0
7.8

12h
20ch
3 CU

avg
min
max

std

0.6
0.1
3.2
0.6

91.7
9.0

517.0
95.9

0.4
0.1
2.1
0.4

69.0
9.0

403.0
74.3

0.3
0.1
0.9
0.2

36.5
9.0

121.0
20.4

0.4
0.1
1.0
0.2

29.4
9.0

68.0
11.3

12h
50ch
3 CU

avg
min
max

std

4.2
0.3

47.8
7.2

305.5
18.0

4144.0
612.6

2.4
0.4

18.4
3.1

166.6
16.0

1503.0
248.2

1.3
0.3
6.2
1.1

58.7
16.0

234.0
43.4

2.0
0.6
6.4
1.3

52.3
16.0

182.0
37.2

12h
100ch
3 CU

avg
min
max

std

18.8
0.8

109.4
27.9

680.8
25.0

4748.0
1128.4

9.1
0.9

78.4
13.1

326.3
25.0

3158.0
529.6

5.1
1.1

30.5
5.7

108.6
23.0

512.0
112.9

7.6
1.4

34.6
7.9

95.5
23.0

437.0
97.4

24h
5ch

3 CU

avg
min
max

std

0.8
0.1

11.3
1.6

130.4
21.0

1211.0
182.3

0.7
0.1
9.9
1.4

98.2
20.0

1164.0
165.3

0.2
0.1
1.4
0.2

48.0
17.0

331.0
46.0

0.4
0.1
2.0
0.3

38.5
17.0

186.0
25.7

24h
20ch
3 CU

avg
min
max

std

7.9
0.8

90.3
13.8

479.6
32.0

9362.0
1312.1

5.3
0.8

47.9
7.5

306.1
28.0

4638.0
663.0

1.6
0.5

11.1
1.8

103.0
34.0

938.0
138.3

2.5
0.9

18.6
2.8

81.9
32.0

640.0
95.9

24h
50ch
3 CU

avg
min
max

std

37.8
1.1

551.7
85.1

1461.1
34.0

24461.0
3711.4

19.5
1.4

281.2
42.8

734.4
34.0

11580.0
1768.6

11.1
1.5

173.5
24.5

187.9
34.0

2411.0
344.1

13.8
2.7

177.8
25.6

178.5
34.0

2367.0
336.9

24h
100ch
3 CU

avg
min
max

std

291.0
3.1

1798.5
466.0

5351.2
50.0

34034.0
8758.5

108.2
4.0

813.7
187.9

2028.1
50.0

15199.0
3606.2

55.6
4.2

626.3
102.0

530.2
43.0

8796.0
1260.6

71.0
6.8

1020.4
149.9

439.9
43.0

6259.0
922.3

72h
5ch

3 CU

avg
min
max

std

4.7
0.4

23.6
4.9

508.2
53.0

2213.0
520.0

6.0
0.8

41.0
6.8

327.3
53.0

1678.0
338.5

2.0
0.7
5.4
1.2

138.9
53.0

592.0
99.0

3.1
1.3

14.1
2.1

121.6
53.0

563.0
80.6

72h
20ch
3 CU

avg
min
max

std

177.4
5.1

1596.4
310.0

3003.1
111.0

31675.0
5677.8

111.7
5.9

1260.9
200.2

1897.2
105.0

29942.0
4363.8

36.6
5.6

543.3
81.5

468.4
104.0

5335.0
827.3

42.9
11.4

577.4
84.3

401.2
104.0

5335.0
792.6
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LG-0 LG-1 LG-2 LG-3
Instance

time ch pts time ch pts time ch pts time ch pts

72h
50ch
3 CU

avg
min
max
std

12227.8
11.8

142593.9
24875.2

149877.2
110.0

1750902.0
304985.5

5647.5
15.1

72763.9
12170.8

67864.5
110.0

869643.0
147372.8

1191.5
17.3

14733.4
2503.1

4744.5
110.0

53173.0
9484.5

1197.3
34.9

14733.8
2494.3

4703.5
110.0

53171.0
9480.3

120h
5ch

3 CU

avg
min
max
std

64.0
1.6

1305.4
217.1

3272.2
114.0

52821.0
9746.8

43.5
2.0

774.6
144.2

2705.4
114.0

46513.0
8810.8

17.5
2.5

380.2
55.5

878.0
114.0

23323.0
3344.4

17.9
4.5

308.5
44.5

434.5
113.0

8464.0
1201.9

120h
20ch
3 CU

avg
min
max
std

5210.3
14.4

120587.0
17395.6

60839.2
182.0

1163526.0
180210.1

1734.4
14.5

24954.8
4642.7

30676.4
182.0

465090.0
85554.5

455.9
16.0

7518.4
1203.2

3433.9
167.0

46040.0
8133.8

490.1
34.8

7314.1
1202.1

2945.1
166.0

46044.0
7594.8

12h
20ch
3 SC

avg
min
max
std

0.1
0.1
0.2
0.0

19.7
5.0

41.0
8.7

0.1
0.0
0.2
0.0

11.9
5.0

23.0
3.9

0.1
0.0
0.1
0.0

12.0
5.0

23.0
3.9

0.2
0.1
0.3
0.0

11.9
5.0

23.0
3.9

12h
50ch
3 SC

avg
min
max
std

0.3
0.1
0.7
0.1

17.1
5.0

51.0
11.0

0.3
0.1
0.5
0.1

10.6
5.0

23.0
4.3

0.2
0.1
0.4
0.1

10.6
5.0

23.0
4.3

0.4
0.2
0.7
0.1

10.6
5.0

23.0
4.3

24h
20ch
3 SC

avg
min
max
std

0.3
0.1
0.5
0.1

22.0
9.0

48.0
8.4

0.3
0.2
0.4
0.1

16.2
9.0

27.0
3.9

0.3
0.1
0.4
0.1

16.2
9.0

27.0
3.9

0.5
0.2
0.7
0.1

16.2
9.0

27.0
3.9

24h
50ch
3 SC

avg
min
max
std

0.7
0.3
1.4
0.2

19.4
7.0

50.0
8.0

0.8
0.4
1.2
0.2

15.7
7.0

31.0
4.6

0.7
0.3
1.2
0.2

15.7
7.0

31.0
4.6

1.2
0.6
2.1
0.3

15.7
7.0

31.0
4.6

72h
20ch
3 SC

avg
min
max
std

1.6
1.1
3.1
0.4

39.1
25.0
85.0
12.1

1.9
1.3
2.9
0.3

35.5
25.0
57.0
6.7

2.0
1.4
3.2
0.4

35.5
25.0
57.0
6.7

3.5
2.7
5.1
0.6

35.5
25.0
57.0
6.7

72h
50ch
3 SC

avg
min
max
std

4.8
2.8

15.0
1.7

39.5
23.0

131.0
14.9

5.9
3.8

12.3
1.2

36.0
22.0
79.0
8.0

6.1
3.6

10.8
1.1

36.0
22.0
79.0
8.0

10.7
6.7

18.5
2.0

36.0
22.0
79.0
8.0

12h
20ch

3 TSC

avg
min
max
std

0.4
0.0
1.6
0.3

52.1
4.0

225.0
45.9

0.3
0.0
1.4
0.3

44.0
4.0

183.0
38.6

0.2
0.0
0.9
0.2

25.6
3.0

131.0
22.6

0.3
0.1
1.6
0.3

17.7
3.0

67.0
13.7

12h
50ch

3 TSC

avg
min
max
std

1.7
0.1
5.7
1.3

92.7
3.0

306.0
70.7

1.5
0.1
5.2
1.1

81.9
3.0

296.0
65.6

0.9
0.1
3.9
0.7

45.0
3.0

158.0
35.4

1.3
0.1
5.3
1.1

30.5
3.0

127.0
26.9

24h
20ch

3 TSC

avg
min
max
std

5.8
0.3

142.6
20.0

613.3
21.0

17894.0
2514.6

2.6
0.3
9.9
2.5

194.3
17.0

1111.0
214.2

0.9
0.2
4.9
0.9

60.4
11.0

228.0
51.5

1.3
0.3
5.1
1.2

40.2
10.0

154.0
34.5

24h
50ch

3 TSC

avg
min
max
std

25.6
0.4

193.3
39.6

974.6
10.0

10215.0
1896.1

15.8
0.5

112.7
21.1

479.2
10.0

4594.0
760.7

6.3
0.5

42.9
7.9

125.5
10.0

788.0
138.6

8.1
0.7

46.8
9.8

93.9
10.0

582.0
115.1
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LG-0 LG-1 LG-2 LG-3
Instance

time ch pts time ch pts time ch pts time ch pts

72h
20ch

3 TSC

avg
min
max

std

77.7
0.8

567.0
118.9

2334.1
24.0

19530.0
4147.6

56.8
1.1

307.5
60.6

1432.7
24.0

9434.0
1769.1

12.5
1.4

56.7
12.3

197.8
24.0

740.0
172.9

16.4
2.3

58.8
14.3

153.8
24.0

617.0
136.5

72h
50ch

3 TSC

avg
min
max

std

3186.4
46.1

77889.6
11252.4

37460.3
359.0

968689.0
141270.4

1401.0
46.9

19507.8
2957.2

13926.7
346.0

232819.0
34516.9

211.1
12.0

1667.3
337.7

949.2
64.0

9940.0
1619.8

248.8
18.4

2286.0
421.6

815.7
54.0

8280.0
1451.7

12h
20ch

3 TWC

avg
min
max

std

0.3
0.0
2.1
0.3

41.5
5.0

377.0
52.9

0.2
0.1
0.9
0.2

30.1
4.0

125.0
23.7

0.2
0.0
0.5
0.1

19.4
3.0

52.0
13.2

0.2
0.1
0.7
0.2

13.4
3.0

34.0
7.8

12h
50ch

3 TWC

avg
min
max

std

0.7
0.1
2.2
0.6

37.3
4.0

154.0
33.4

0.6
0.1
2.1
0.5

30.3
4.0

106.0
26.0

0.4
0.1
2.0
0.3

20.2
4.0

121.0
19.6

0.6
0.1
4.4
0.7

15.2
4.0

91.0
13.9

24h
20ch

3 TWC

avg
min
max

std

1.0
0.1
3.9
0.8

77.7
9.0

275.0
60.9

0.9
0.1
4.3
0.7

64.8
8.0

271.0
52.8

0.5
0.1
2.3
0.4

30.2
8.0

91.0
18.8

0.7
0.2
2.5
0.5

22.3
7.0

81.0
13.4

24h
50ch

3 TWC

avg
min
max

std

6.0
0.4

30.0
6.8

190.8
10.0

1198.0
265.7

4.5
0.5

14.4
3.5

128.9
9.0

527.0
117.0

2.1
0.4
5.8
1.3

50.6
9.0

146.0
33.3

3.1
0.7
8.8
2.0

36.0
9.0

104.0
22.7

72h
20ch

3 TWC

avg
min
max

std

102.4
0.9

3167.4
442.1

3707.0
23.0

122104.0
17081.6

32.9
1.2

306.4
58.0

1014.0
23.0

12033.0
2322.7

8.2
1.4

54.6
8.9

147.6
23.0

1711.0
243.1

11.9
2.4

111.5
16.1

113.4
22.0

1231.0
172.2

72h
50ch

3 TWC

avg
min
max

std

274.1
5.8

5825.0
828.6

3206.3
50.0

76170.0
10816.2

116.9
6.3

714.6
151.8

1094.9
49.0

8129.0
1699.4

22.0
4.1

92.1
19.1

150.6
25.0

1031.0
157.3

32.3
7.2

179.4
28.6

110.8
25.0

730.0
111.1

12h
20ch
5 CU

avg
min
max

std

2.4
0.1

25.4
4.2

238.3
5.0

2216.0
396.8

1.3
0.1

15.1
2.3

129.9
5.0

1531.0
243.6

1.4
0.1

12.9
2.5

108.6
5.0

1269.0
206.5

2.1
0.1

24.2
4.0

89.9
5.0

1045.0
173.5

12h
50ch
5 CU

avg
min
max

std

16.5
0.1

167.3
30.8

741.9
3.0

7058.0
1377.6

8.2
0.2

82.6
14.5

370.1
3.0

3615.0
658.9

9.9
0.2

154.1
22.9

272.0
3.0

2664.0
506.9

14.2
0.2

156.5
26.8

250.5
3.0

2664.0
465.0

24h
20ch
5 CU

avg
min
max

std

9.5
0.5

87.5
15.2

519.4
21.0

4416.0
829.9

5.2
0.4

59.6
9.3

295.5
13.0

3762.0
587.6

7.0
0.3

93.4
17.2

198.5
10.0

2094.0
377.8

8.6
0.5

98.1
17.7

184.0
10.0

2067.0
374.9

24h
50ch
5 CU

avg
min
max

std

1104.9
0.8

31045.5
4448.4

24301.4
12.0

675235.0
97121.0

585.2
1.0

15625.2
2272.6

14219.3
12.0

368440.0
54288.6

883.3
0.7

33281.3
4662.0

8371.9
9.0

292753.0
41139.4

921.5
1.1

31573.5
4441.2

8286.8
9.0

292753.0
41121.2

72h
20ch
5 CU

avg
min
max

std

2627.7
2.0

32751.9
5514.7

40901.5
29.0

460350.0
85325.8

1786.7
2.4

30520.3
4543.1

27662.0
29.0

412421.0
65188.4

920.4
3.0

11766.0
1996.8

6674.7
29.0

90397.0
14515.9

990.9
5.5

13724.7
2189.7

6514.7
29.0

89589.0
14379.4
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LG-0 LG-1 LG-2 LG-3
Instance

time ch pts time ch pts time ch pts time ch pts

12h
20ch
5 SC

avg
min
max
std

0.2
0.1
0.7
0.1

23.1
4.0

88.0
17.0

0.2
0.1
0.5
0.1

15.2
4.0

47.0
7.5

0.2
0.1
0.5
0.1

15.2
4.0

48.0
7.6

0.3
0.1
1.0
0.1

15.2
4.0

47.0
7.5

12h
50ch
5 SC

avg
min
max
std

0.5
0.1
1.3
0.2

18.8
4.0

55.0
10.0

0.5
0.2
0.9
0.2

13.9
4.0

28.0
4.6

0.5
0.2
0.9
0.1

13.9
4.0

28.0
4.6

0.8
0.3
1.6
0.3

13.9
4.0

28.0
4.6

24h
20ch
5 SC

avg
min
max
std

0.5
0.3
1.4
0.2

26.9
10.0
69.0
11.6

0.6
0.3
1.2
0.2

21.9
10.0
50.0
7.0

0.6
0.3
1.1
0.2

21.9
10.0
50.0
7.0

1.0
0.6
1.9
0.3

21.9
10.0
50.0
7.0

24h
50ch
5 SC

avg
min
max
std

1.6
0.6
4.5
0.9

29.1
9.0

90.0
18.8

1.8
0.8
3.9
0.7

23.2
9.0

55.0
10.4

1.7
0.8
3.3
0.6

23.2
9.0

55.0
10.4

3.0
1.3
5.9
1.2

23.2
9.0

55.0
10.4

72h
20ch
5 SC

avg
min
max
std

3.5
2.4
6.0
0.8

53.4
35.0
99.0
12.0

4.6
2.9
6.3
0.9

51.7
35.0
72.0
9.3

5.0
3.2
7.0
0.9

51.7
35.0
72.0
9.3

8.7
5.7

13.2
1.7

51.7
35.0
72.0
9.3

72h
50ch
5 SC

avg
min
max
std

11.0
6.2

21.9
3.1

54.4
32.0

107.0
15.6

14.4
8.8

23.6
3.1

52.8
32.0
89.0
12.0

15.4
9.4

24.0
3.4

52.8
32.0
89.0
12.0

27.2
16.4
41.0
5.7

52.8
32.0
89.0
12.0

12h
20ch

5 TSC

avg
min
max
std

10.9
0.1

415.2
57.9

1573.0
9.0

62816.0
8767.4

4.7
0.1

127.5
17.7

597.4
8.0

18607.0
2588.8

1.6
0.1

26.4
4.0

144.2
8.0

3236.0
454.4

3.3
0.2

78.9
11.1

125.3
8.0

3031.0
426.3

12h
50ch

5 TSC

avg
min
max
std

5667.7
0.3

157597.0
23764.0

346435.2
12.0

9718051.0
1463794.5

5119.1
0.4

135791.1
21251.3

306369.3
12.0

8752271.0
1318189.3

332.2
0.4

7229.1
1051.8

6292.3
12.0

114820.0
17169.1

372.3
0.6

7209.1
1070.1

5839.0
9.0

114747.0
17081.8

24h
20ch

5 TSC

avg
min
max
std

441.8
0.3

19371.5
2706.0

40155.7
18.0

1829155.0
255669.8

67.2
0.4

1255.8
184.6

4525.8
18.0

98915.0
14343.6

18.0
0.4

226.7
43.3

696.5
18.0

9207.0
1789.2

28.4
0.7

364.8
75.7

575.6
18.0

7888.0
1555.7

12h
20ch

5 TWC

avg
min
max
std

1.4
0.1

11.1
1.9

167.1
8.0

1615.0
265.6

0.9
0.1
5.2
1.0

95.0
8.0

543.0
109.5

0.4
0.1
2.5
0.4

37.2
6.0

279.0
42.5

0.7
0.1
6.5
0.9

28.7
6.0

243.0
35.7

12h
50ch

5 TWC

avg
min
max
std

130.5
0.2

2884.7
466.4

8749.1
9.0

198292.0
32541.8

62.1
0.3

1225.0
197.8

3966.5
9.0

83713.0
13705.2

9.1
0.3

211.8
29.6

217.2
9.0

3579.0
531.7

11.3
0.5

221.3
32.2

187.3
9.0

3579.0
529.2

24h
20ch

5 TWC

avg
min
max
std

15.5
0.2

201.8
39.4

1136.1
14.0

18359.0
3236.1

12.0
0.3

142.0
29.8

802.6
14.0

12113.0
2246.5

6.2
0.3

185.0
25.8

339.9
14.0

12579.0
1751.9

9.5
0.6

301.8
42.0

321.2
14.0

12376.0
1724.8

24h
50ch

5 TWC

avg
min
max
std

790.0
2.2

9770.2
1964.3

23226.4
46.0

272945.0
58445.8

283.0
2.6

4505.2
703.3

7796.7
46.0

126052.0
20049.1

62.9
1.3

981.6
165.7

788.8
20.0

15246.0
2320.4

79.1
2.1

1412.5
219.5

687.9
17.0

12997.0
2006.4
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LG-0 LG-1 LG-2 LG-3
Instance

time ch pts time ch pts time ch pts time ch pts

72h
20ch

5 TWC

avg
min
max

std

11600.1
2.5

231048.7
38598.8

293386.8
45.0

5883904.0
991575.0

1526.8
3.4

19584.2
3349.5

35718.4
45.0

537840.0
87056.2

261.0
3.8

2977.7
617.1

3683.6
43.0

55820.0
10463.8

411.7
6.8

5509.4
1078.7

3134.5
43.0

45286.0
8618.2

12h
20ch
7 CU

avg
min
max

std

1.3
0.3
5.8
1.1

134.3
32.0

546.0
101.0

1.1
0.3
4.6
0.8

119.8
32.0

537.0
95.9

0.6
0.4
1.3
0.2

48.7
32.0
73.0
8.5

1.0
0.6
1.9
0.3

44.2
32.0
58.0
5.5

12h
50ch
7 CU

avg
min
max

std

7.9
1.3

63.4
10.7

305.6
53.0

2283.0
397.5

6.6
1.3

55.2
9.5

278.5
53.0

2272.0
390.6

2.1
1.5
5.3
0.8

68.3
53.0

111.0
13.8

3.7
2.8
6.5
0.7

62.3
50.0
97.0
9.0

24h
20ch
7 CU

avg
min
max

std

8.0
1.1

69.8
11.1

449.0
70.0

4570.0
684.0

6.7
1.4

40.4
7.5

375.6
70.0

2198.0
429.5

2.4
1.6
4.5
0.7

97.6
70.0

177.0
23.8

4.5
2.9
6.7
0.9

88.8
69.0

125.0
12.6

24h
50ch
7 CU

avg
min
max

std

67.0
5.5

771.2
115.5

1451.9
109.0

18584.0
2731.6

46.6
5.8

313.5
61.8

1034.3
109.0

7290.0
1374.4

10.8
6.5

35.1
5.2

162.4
109.0
331.0
56.2

19.3
14.0
47.0
6.6

141.7
106.0
281.0
39.9

72h
20ch
7 CU

avg
min
max

std

689.3
12.1

18704.6
2670.4

13135.8
234.0

358404.0
51441.3

490.2
15.6

12983.2
1868.2

9272.8
234.0

243556.0
35342.8

60.4
19.4

655.5
98.4

426.1
228.0

3093.0
476.6

81.1
43.5

646.1
95.8

387.5
222.0

3018.0
443.3

12h
20ch
7 SC

avg
min
max

std

0.2
0.1
0.6
0.1

18.4
5.0

76.0
13.6

0.2
0.1
0.4
0.1

12.7
5.0

39.0
5.9

0.1
0.1
0.4
0.1

12.7
5.0

40.0
6.1

0.3
0.1
0.6
0.1

12.7
5.0

39.0
5.9

12h
50ch
7 SC

avg
min
max

std

0.5
0.2
0.9
0.2

18.7
8.0

46.0
7.9

0.5
0.2
0.8
0.1

13.1
6.0

26.0
4.0

0.4
0.2
0.8
0.1

13.1
6.0

26.0
4.0

0.7
0.4
1.4
0.2

13.1
6.0

26.0
4.0

24h
20ch
7 SC

avg
min
max

std

0.5
0.2
1.5
0.2

26.3
11.0
93.0
15.2

0.5
0.2
1.1
0.2

21.2
7.0

53.0
8.2

0.5
0.2
1.0
0.2

21.2
7.0

53.0
8.2

0.9
0.3
1.7
0.3

21.2
7.0

53.0
8.2

24h
50ch
7 SC

avg
min
max

std

1.2
0.7
2.8
0.4

22.0
12.0
59.0
9.2

1.3
0.8
2.9
0.4

18.5
11.0
43.0
5.4

1.3
0.8
2.7
0.3

18.5
11.0
43.0
5.4

2.3
1.3
4.3
0.6

18.5
11.0
43.0
5.4

72h
20ch
7 SC

avg
min
max

std

3.2
2.3
4.7
0.6

52.3
39.0
75.0
8.9

4.1
2.8
5.2
0.6

50.1
37.0
65.0
6.6

4.4
2.8
5.6
0.7

50.1
37.0
65.0
6.6

7.6
4.7

10.1
1.2

50.1
37.0
65.0
6.6

72h
50ch
7 SC

avg
min
max

std

9.8
6.6

16.6
2.0

52.8
35.0
93.0
11.7

12.5
9.6

18.4
1.7

50.0
35.0
69.0
7.1

13.6
9.5

18.7
1.8

50.0
35.0
69.0
7.1

23.9
17.4
35.0
3.4

50.0
35.0
69.0
7.1

12h
20ch

7 TSC

avg
min
max

std

2.7
0.1

38.2
6.1

377.2
7.0

6599.0
1015.6

1.6
0.1

12.3
2.1

183.6
7.0

1609.0
280.9

0.6
0.1
3.3
0.6

47.7
7.0

167.0
37.1

0.8
0.1
3.4
0.7

32.8
7.0

158.0
28.3
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LG-0 LG-1 LG-2 LG-3
Instance

time ch pts time ch pts time ch pts time ch pts

12h
50ch

7 TSC

avg
min
max
std

235.8
0.3

4529.1
688.1

15278.3
14.0

342700.0
50867.3

112.1
0.4

1218.6
227.6

6169.5
14.0

76353.0
13576.3

28.5
0.3

538.3
80.0

655.5
10.0

8619.0
1486.5

32.6
0.5

540.5
83.6

496.0
8.0

8614.0
1309.1

24h
20ch

7 TSC

avg
min
max
std

29.6
0.3

470.5
80.4

2335.5
19.0

42780.0
7243.9

22.7
0.4

393.8
64.1

1596.4
19.0

30321.0
5129.7

3.7
0.4

36.2
6.2

132.3
19.0

854.0
179.0

4.9
0.8

36.6
6.7

105.2
17.0

847.0
150.0

24h
50ch

7 TSC

avg
min
max
std

8349.0
0.9

156559.0
24549.2

250367.1
20.0

5194747.0
786477.6

4066.3
1.2

44659.5
9903.9

105572.6
20.0

1196233.0
247724.9

403.4
1.2

8794.1
1290.3

6235.4
18.0

198714.0
27833.6

533.0
2.2

14067.3
1990.2

4219.1
18.0

104481.0
14959.6

72h
20ch

7 TSC

avg
min
max
std

4229.7
2.9

41811.7
8760.7

96482.8
54.0

1027702.0
208251.1

3430.5
3.7

28476.6
7012.0

74021.0
54.0

671850.0
161117.5

297.8
4.6

4476.5
708.7

2121.0
54.0

28015.0
4603.9

327.9
8.3

4889.7
768.2

2062.8
54.0

28003.0
4605.1

12h
20ch

7 TWC

avg
min
max
std

0.7
0.1
5.0
1.0

77.7
6.0

621.0
108.8

0.7
0.1
4.8
0.9

68.8
6.0

557.0
101.4

0.3
0.1
2.1
0.3

27.0
6.0

131.0
22.9

0.5
0.1
2.4
0.5

20.6
6.0

80.0
16.0

12h
50ch

7 TWC

avg
min
max
std

20.9
0.3

467.3
68.5

1338.9
10.0

35241.0
5143.9

9.0
0.3

82.3
15.4

447.0
10.0

5948.0
976.1

2.7
0.3

21.4
4.1

84.0
10.0

797.0
128.1

4.0
0.5

36.4
6.4

66.3
10.0

650.0
107.6

24h
20ch

7 TWC

avg
min
max
std

26.9
0.2

1022.3
142.5

2371.1
11.0

96320.0
13440.0

8.2
0.2

196.6
27.3

561.7
11.0

15804.0
2194.8

2.0
0.2

13.8
2.5

87.8
11.0

1012.0
147.9

3.3
0.5

39.3
5.7

71.8
11.0

966.0
137.0

24h
50ch

7 TWC

avg
min
max
std

172.3
0.8

1532.9
338.4

5066.3
18.0

50612.0
10792.1

117.1
1.1

1092.9
235.8

3086.5
18.0

34787.0
6788.0

17.1
1.1

127.6
21.4

193.6
18.0

840.0
182.7

21.2
2.1

120.1
21.9

168.9
18.0

804.0
169.9

72h
20ch

7 TWC

avg
min
max
std

569.2
1.8

13906.8
1979.2

13333.6
40.0

323678.0
46478.2

384.8
2.6

9552.0
1361.7

8518.1
40.0

218748.0
31389.7

55.4
3.1

763.9
123.4

430.8
40.0

5057.0
851.1

58.2
5.9

650.1
111.6

417.1
40.0

5052.0
852.4
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A.2 Dynamic Programming and Branch-and-Cut

DP DP� BC BC 1st solution
Instance

time time time BBnodes time gap

6h
5ch

3 CU

avg
min
max
std

0.00
0.00
0.01
0.00

0.00
0.00
0.01
0.00

0.02
0.00
0.04
0.01

3.40
0.00

24.00
5.38

0.01
0.00
0.03
0.01

0.43
0.00
3.40
0.88

6h
20ch
3 CU

avg
min
max
std

0.04
0.02
0.06
0.01

0.01
0.00
0.01
0.00

0.05
0.02
0.12
0.03

5.84
0.00

61.00
10.38

0.04
0.02
0.07
0.01

0.50
0.00
3.24
0.84

6h
50ch
3 CU

avg
min
max
std

0.27
0.18
0.43
0.05

0.03
0.02
0.05
0.01

0.17
0.06
0.41
0.07

8.26
0.00

84.00
16.37

0.13
0.06
0.19
0.03

0.42
0.00
2.65
0.67

6h
100ch
3 CU

avg
min
max
std

1.26
0.88
1.82
0.19

0.12
0.08
0.16
0.02

0.53
0.22
2.12
0.28

15.38
0.00

184.00
35.75

0.39
0.21
0.56
0.07

0.68
0.00
3.47
0.86

12h
5ch

3 CU

avg
min
max
std

0.02
0.01
0.04
0.01

0.01
0.00
0.01
0.00

0.02
0.00
0.07
0.02

6.28
0.00

76.00
15.01

0.02
0.00
0.03
0.01

0.16
0.00
1.76
0.36

12h
20ch
3 CU

avg
min
max
std

0.44
0.30
0.64
0.07

0.05
0.03
0.06
0.01

0.11
0.04
0.39
0.07

12.82
0.00

236.00
34.94

0.08
0.04
0.12
0.02

0.25
0.00
1.30
0.37

12h
50ch
3 CU

avg
min
max
std

3.37
2.59
4.23
0.35

0.26
0.21
0.34
0.03

0.47
0.19
1.25
0.23

16.42
0.00

83.00
22.51

0.32
0.18
0.42
0.06

0.25
0.00
1.25
0.32

12h
100ch
3 CU

avg
min
max
std

14.63
12.79
16.91
1.23

0.94
0.78
1.09
0.08

1.40
0.70
3.22
0.55

17.38
0.00

140.00
30.64

1.05
0.70
1.33
0.14

0.35
0.00
1.16
0.38

24h
5ch

3 CU

avg
min
max
std

0.24
0.16
0.35
0.04

0.03
0.02
0.05
0.01

0.06
0.00
0.19
0.04

14.80
0.00

100.00
24.83

0.02
0.01
0.05
0.01

0.22
0.00
1.35
0.31

24h
20ch
3 CU

avg
min
max
std

4.43
3.71
5.71
0.44

0.30
0.24
0.37
0.03

0.24
0.07
0.62
0.12

12.92
0.00

140.00
24.26

0.16
0.09
0.21
0.03

0.12
0.00
0.80
0.15
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DP DP� BC BC 1st solution
Instance

time time time BBnodes time gap

24h
50ch
3 CU

avg
min
max

std

30.32
25.71
36.25
2.60

1.47
1.24
2.05
0.15

1.03
0.45
2.87
0.62

18.86
0.00

146.00
35.87

0.68
0.44
0.91
0.13

0.12
0.00
0.56
0.16

24h
100ch
3 CU

avg
min
max

std

134.49
117.56
152.79

8.50

5.23
4.53
5.90
0.37

2.81
1.48

10.20
1.47

13.74
0.00

228.00
34.41

2.16
1.51
2.72
0.30

0.14
0.00
0.64
0.20

72h
5ch

3 CU

avg
min
max

std

7.18
5.46
8.68
0.82

0.45
0.36
0.54
0.04

0.17
0.03
0.46
0.10

22.68
0.00

113.00
26.31

0.07
0.03
0.13
0.02

0.11
0.00
0.49
0.11

72h
20ch
3 CU

avg
min
max

std

127.99
105.52
148.24
10.47

4.29
3.64
4.98
0.33

1.04
0.33
3.12
0.64

24.58
0.00

260.00
48.70

0.57
0.34
0.73
0.09

0.06
0.00
0.25
0.06

72h
50ch
3 CU

avg
min
max

std

925.62
807.64

1125.99
67.74

20.05
17.76
22.85
1.30

3.74
1.63

19.51
3.37

22.52
0.00

392.00
66.10

2.36
1.65
3.01
0.42

0.05
0.00
0.30
0.07

120h
5ch

3 CU

avg
min
max

std

34.36
29.02
44.09
3.32

1.59
1.37
1.86
0.12

0.28
0.05
1.22
0.23

22.92
0.00

170.00
37.33

0.13
0.05
0.17
0.03

0.05
0.00
0.59
0.09

120h
20ch
3 CU

avg
min
max

std

630.21
521.38
723.36
45.47

14.21
12.23
15.83
0.90

1.92
0.65
7.56
1.36

18.28
0.00

180.00
32.13

1.02
0.64
1.28
0.15

0.04
0.00
0.12
0.03

12h
20ch
3 SC

avg
min
max

std

0.44
0.32
0.62
0.08

0.05
0.03
0.06
0.01

0.12
0.05
0.25
0.05

12.92
0.00

64.00
13.84

0.07
0.03
0.09
0.01

0.50
0.00
1.83
0.54

12h
50ch
3 SC

avg
min
max

std

3.42
2.54
4.69
0.44

0.26
0.20
0.35
0.03

0.39
0.18
0.81
0.18

8.20
0.00

43.00
11.73

0.27
0.16
0.33
0.04

0.49
0.00
7.03
1.04

24h
20ch
3 SC

avg
min
max

std

4.53
3.40
5.42
0.49

0.31
0.25
0.36
0.03

0.28
0.11
0.73
0.15

13.78
0.00

67.00
17.54

0.16
0.11
0.21
0.02

0.25
0.00
0.82
0.25

24h
50ch
3 SC

avg
min
max

std

30.10
24.15
36.17
2.52

1.47
1.19
1.77
0.12

1.02
0.38
4.15
0.71

10.46
0.00

82.00
16.58

0.61
0.38
0.72
0.08

0.16
0.00
0.67
0.21
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DP DP� BC BC 1st solution
Instance

time time time BBnodes time gap

72h
20ch
3 SC

avg
min
max
std

127.02
103.21
150.58

9.28

4.28
3.57
4.95
0.28

0.95
0.35
3.17
0.61

9.28
0.00

90.00
18.51

0.61
0.37
0.90
0.09

0.07
0.00
0.30
0.10

72h
50ch
3 SC

avg
min
max
std

916.12
771.82

1091.52
70.08

20.00
17.60
23.13
1.46

3.70
1.53

11.67
2.77

8.42
0.00

65.00
16.07

2.29
1.53
3.09
0.44

0.04
0.00
0.20
0.06

12h
20ch

3 TSC

avg
min
max
std

0.44
0.32
0.62
0.08

0.05
0.03
0.06
0.01

0.09
0.04
0.27
0.05

10.18
0.00

60.00
17.09

0.06
0.04
0.09
0.01

0.98
0.00
6.77
1.71

12h
50ch

3 TSC

avg
min
max
std

3.42
2.54
4.67
0.44

0.26
0.20
0.35
0.03

0.46
0.25
1.13
0.19

14.26
0.00

101.00
22.95

0.34
0.25
0.47
0.04

0.96
0.00
5.08
1.37

24h
20ch

3 TSC

avg
min
max
std

4.55
3.41
5.60
0.51

0.31
0.25
0.36
0.03

0.24
0.10
1.02
0.14

24.70
0.00

224.00
36.06

0.14
0.10
0.17
0.01

0.95
0.00
3.77
0.95

24h
50ch

3 TSC

avg
min
max
std

30.13
24.48
36.40
2.61

1.47
1.20
1.78
0.12

1.15
0.54
2.77
0.50

23.44
0.00

135.00
33.26

0.77
0.50
0.94
0.08

0.73
0.00
3.38
0.90

72h
20ch

3 TSC

avg
min
max
std

127.12
103.65
150.05

9.23

4.29
3.62
4.97
0.29

0.90
0.32
3.95
0.65

33.50
0.00

300.00
57.21

0.46
0.32
0.55
0.05

0.24
0.00
0.89
0.26

72h
50ch

3 TSC

avg
min
max
std

918.16
770.61

1075.28
72.07

20.07
17.67
23.20
1.44

4.86
2.02

13.11
2.66

35.86
0.00

277.00
57.24

2.76
2.00
3.18
0.20

0.32
0.00
1.17
0.30

12h
20ch

3 TWC

avg
min
max
std

0.45
0.33
0.57
0.07

0.05
0.04
0.06
0.01

0.09
0.04
0.22
0.04

9.94
0.00

58.00
12.92

0.07
0.04
0.09
0.01

1.33
0.00
8.03
1.87

12h
50ch

3 TWC

avg
min
max
std

3.39
2.50
4.47
0.39

0.26
0.20
0.33
0.03

0.40
0.25
0.80
0.12

5.38
0.00

50.00
10.15

0.34
0.24
0.55
0.05

0.61
0.00
4.85
1.20

24h
20ch

3 TWC

avg
min
max
std

4.46
3.64
5.64
0.45

0.30
0.25
0.35
0.02

0.24
0.09
1.31
0.19

24.60
0.00

212.00
38.36

0.13
0.09
0.18
0.02

0.76
0.00
3.07
0.87
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DP DP� BC BC 1st solution
Instance

time time time BBnodes time gap

24h
50ch

3 TWC

avg
min
max

std

30.91
26.13
37.75
2.47

1.50
1.26
1.73
0.11

1.11
0.58
3.39
0.46

20.00
0.00

130.00
27.61

0.78
0.56
0.95
0.08

0.71
0.00
2.73
0.78

72h
20ch

3 TWC

avg
min
max

std

126.74
105.23
147.63

9.54

4.30
3.73
5.00
0.32

1.06
0.33
5.00
0.74

52.86
0.00

330.00
65.17

0.46
0.29
0.55
0.04

0.33
0.00
1.14
0.32

72h
50ch

3 TWC

avg
min
max

std

916.37
806.85

1066.29
66.17

20.08
17.68
22.46
1.29

3.92
2.19

13.31
2.05

19.72
0.00

151.00
37.20

2.70
2.24
2.96
0.18

0.26
0.00
1.08
0.30

12h
20ch
5 CU

avg
min
max

std

1.16
0.69
1.67
0.20

0.08
0.05
0.11
0.01

0.21
0.06
1.59
0.28

37.82
0.00

484.00
99.55

0.11
0.06
0.19
0.02

0.12
0.00
0.96
0.20

12h
50ch
5 CU

avg
min
max

std

8.44
6.34

11.09
1.13

0.44
0.35
0.58
0.05

1.08
0.36
9.11
1.41

103.98
0.00

1312.00
240.16

0.51
0.36
0.68
0.07

0.12
0.00
0.78
0.20

24h
20ch
5 CU

avg
min
max

std

10.28
8.06

13.48
1.08

0.47
0.39
0.57
0.04

1.38
0.18

43.64
6.06

234.96
0.00

7618.00
1074.40

0.23
0.17
0.30
0.03

0.09
0.00
0.74
0.14

24h
50ch
5 CU

avg
min
max

std

70.46
56.41
87.90
7.36

2.40
1.94
3.11
0.26

176.54
0.86

4357.75
715.71

8851.52
0.00

235195.00
37095.52

1.15
0.88
1.53
0.13

0.16
0.00
2.24
0.34

72h
20ch
5 CU

avg
min
max

std

295.83
256.36
360.12
24.21

6.60
5.69
7.86
0.47

516.96
0.54

7650.35
1658.57

52576.38
0.00

1498720.00
223318.36

0.82
0.55
1.00
0.09

0.05
0.00
0.24
0.06

72h
50ch
5 CU

avg
min
max

std

2213.63
1893.86
2510.56
169.45

32.81
28.84
36.75
2.21

4876.28
3.17

54911.78
12616.56

97985.80
0.00

507614.00
193458.00

3.91
3.21
5.20
0.40

0.04
0.00
0.14
0.04

12h
20ch
5 SC

avg
min
max

std

1.16
0.85
1.55
0.19

0.08
0.05
0.10
0.01

0.15
0.07
0.41
0.07

6.60
0.00

63.00
13.64

0.11
0.06
0.14
0.02

0.36
0.00
1.18
0.39

12h
50ch
5 SC

avg
min
max

std

8.45
6.22

10.62
0.92

0.44
0.33
0.68
0.06

0.62
0.24
2.32
0.45

7.88
0.00

74.00
13.62

0.37
0.26
0.49
0.06

0.31
0.00
1.54
0.40
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DP DP� BC BC 1st solution
Instance

time time time BBnodes time gap

24h
20ch
5 SC

avg
min
max
std

10.41
7.51

12.85
1.00

0.46
0.36
0.57
0.04

0.37
0.14
1.23
0.26

11.08
0.00

89.00
21.52

0.23
0.13
0.31
0.04

0.15
0.00
0.60
0.18

24h
50ch
5 SC

avg
min
max
std

72.54
53.62
93.84
7.32

2.42
1.86
2.92
0.22

1.62
0.62
6.85
1.56

9.34
0.00

78.00
19.96

0.90
0.64
1.18
0.13

0.08
0.00
0.43
0.14

72h
20ch
5 SC

avg
min
max
std

290.84
242.46
347.07
26.05

6.46
5.58
7.60
0.52

1.33
0.54
3.98
0.81

7.00
0.00

74.00
14.30

0.91
0.54
1.35
0.15

0.04
0.00
0.17
0.05

72h
50ch
5 SC

avg
min
max
std

2232.33
1882.83
2581.61
178.88

32.54
28.25
37.04
2.30

6.84
2.31

32.29
6.45

9.94
0.00

89.00
18.98

3.51
2.37
4.44
0.56

0.04
0.00
0.15
0.05

12h
20ch

5 TSC

avg
min
max
std

1.20
0.71
1.86
0.20

0.08
0.06
0.13
0.01

0.10
0.05
0.28
0.05

13.64
0.00

149.00
30.07

0.08
0.05
0.10
0.01

0.60
0.00
3.27
0.90

12h
50ch

5 TSC

avg
min
max
std

8.43
6.88

10.14
0.81

0.45
0.37
0.54
0.04

0.81
0.30
6.78
1.16

73.40
0.00

1164.00
217.47

0.41
0.30
0.47
0.04

0.50
0.00
2.96
0.65

24h
20ch

5 TSC

avg
min
max
std

10.44
8.80

13.26
1.09

0.47
0.40
0.57
0.04

0.27
0.10
1.34
0.22

30.52
0.00

307.00
63.06

0.16
0.11
0.20
0.02

0.36
0.00
1.72
0.40

24h
50ch

5 TSC

avg
min
max
std

71.63
60.16
84.99
5.53

2.45
2.07
2.92
0.19

1.34
0.72
3.93
0.71

27.50
0.00

330.00
58.50

0.92
0.71
1.06
0.07

0.36
0.00
2.29
0.49

72h
20ch

5 TSC

avg
min
max
std

297.37
246.82
351.63
24.14

6.63
5.77
7.60
0.46

1.07
0.36
3.67
0.72

35.34
0.00

228.00
56.89

0.56
0.37
0.67
0.06

0.16
0.00
0.63
0.18

72h
50ch

5 TSC

avg
min
max
std

2226.48
1782.29
2581.23
166.35

32.85
27.83
37.21
2.06

6.85
2.34

25.51
5.79

110.54
0.00

1083.00
232.14

3.15
2.40
3.62
0.35

0.13
0.00
0.52
0.16

12h
20ch

5 TWC

avg
min
max
std

1.16
0.71
1.72
0.20

0.08
0.05
0.11
0.01

0.10
0.05
0.28
0.04

11.16
0.00

119.00
22.40

0.07
0.04
0.10
0.01

0.63
0.00
4.40
1.07
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DP DP� BC BC 1st solution
Instance

time time time BBnodes time gap

12h
50ch

5 TWC

avg
min
max

std

8.44
6.37

11.05
1.11

0.45
0.35
0.59
0.05

0.57
0.29
1.23
0.21

27.34
0.00

341.00
57.50

0.42
0.30
0.50
0.04

0.70
0.00
4.14
0.90

24h
20ch

5 TWC

avg
min
max

std

10.32
8.10

13.59
1.06

0.47
0.38
0.58
0.04

0.26
0.10
1.10
0.19

25.04
0.00

258.00
46.76

0.16
0.10
0.20
0.02

0.36
0.00
1.60
0.48

24h
50ch

5 TWC

avg
min
max

std

71.09
57.22
88.59
7.35

2.41
1.96
3.12
0.26

1.28
0.67
2.98
0.60

26.44
0.00

344.00
58.96

0.91
0.67
1.03
0.08

0.37
0.00
1.60
0.49

72h
20ch

5 TWC

avg
min
max

std

297.63
257.14
364.60
24.66

6.62
5.71
7.85
0.47

0.97
0.40
5.41
0.86

48.32
0.00

785.00
127.72

0.53
0.39
0.64
0.06

0.14
0.00
0.68
0.17

72h
50ch

5 TWC

avg
min
max

std

2226.73
1891.13
2512.74
164.03

32.87
28.79
36.93
2.19

3.62
2.35

12.10
1.49

5.36
0.00

90.00
13.84

3.05
2.37
3.49
0.29

0.09
0.00
0.59
0.15

12h
20ch
7 CU

avg
min
max

std

0.98
0.71
1.21
0.12

0.07
0.06
0.10
0.01

0.12
0.06
0.19
0.03

1.70
0.00

13.00
3.24

0.11
0.07
0.15
0.02

0.09
0.00
0.65
0.18

12h
50ch
7 CU

avg
min
max

std

7.10
5.81
8.32
0.68

0.41
0.33
0.50
0.04

0.55
0.39
0.84
0.12

1.28
0.00

17.00
3.03

0.52
0.38
0.72
0.08

0.05
0.00
0.71
0.13

24h
20ch
7 CU

avg
min
max

std

9.02
6.92

11.25
1.03

0.46
0.37
0.56
0.05

0.26
0.12
0.46
0.07

1.86
0.00

28.00
4.61

0.24
0.16
0.34
0.04

0.05
0.00
0.40
0.09

24h
50ch
7 CU

avg
min
max

std

61.57
51.70
75.76
4.99

2.27
1.99
2.73
0.17

1.29
0.87
1.92
0.27

2.98
0.00

31.00
6.17

1.19
0.89
1.39
0.13

0.03
0.00
0.28
0.06

72h
20ch
7 CU

avg
min
max

std

262.63
209.71
322.56
23.28

6.54
5.32
7.46
0.51

0.98
0.57
1.67
0.26

1.90
0.00

19.00
4.42

0.89
0.59
1.14
0.14

0.01
0.00
0.10
0.02

72h
50ch
7 CU

avg
min
max

std

1951.64
1664.09
2188.43
135.84

32.02
27.58
36.89
2.22

4.69
2.98
9.53
1.32

4.98
0.00

56.00
10.17

4.02
2.96
5.03
0.52

0.03
0.00
0.20
0.06
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DP DP� BC BC 1st solution
Instance

time time time BBnodes time gap

12h
20ch
7 SC

avg
min
max
std

1.00
0.62
1.44
0.16

0.08
0.06
0.10
0.01

0.17
0.07
0.47
0.10

11.02
0.00

85.00
17.60

0.10
0.06
0.17
0.02

0.34
0.00
4.41
0.65

12h
50ch
7 SC

avg
min
max
std

7.36
6.09
8.77
0.61

0.43
0.35
0.51
0.04

0.61
0.24
1.71
0.36

10.42
0.00

55.00
14.53

0.37
0.25
0.45
0.05

0.30
0.00
0.85
0.32

24h
20ch
7 SC

avg
min
max
std

8.99
7.32

11.69
0.98

0.45
0.36
0.55
0.04

0.29
0.12
0.95
0.16

7.16
0.00

73.00
13.19

0.20
0.12
0.28
0.04

0.12
0.00
0.56
0.16

24h
50ch
7 SC

avg
min
max
std

61.89
50.96
73.17
5.01

2.32
1.94
2.65
0.18

1.66
0.60
9.06
1.44

11.44
0.00

148.00
23.06

0.90
0.59
1.12
0.13

0.13
0.00
0.46
0.15

72h
20ch
7 SC

avg
min
max
std

257.46
216.54
291.83
20.20

6.53
5.54
7.44
0.48

1.45
0.54
3.58
0.77

9.54
0.00

57.00
14.48

0.89
0.55
1.18
0.13

0.04
0.00
0.14
0.05

72h
50ch
7 SC

avg
min
max
std

1961.56
1759.07
2194.47
123.54

32.06
28.65
35.92
1.93

5.97
2.28

47.87
7.01

8.68
0.00

129.00
21.63

3.36
2.27
4.20
0.39

0.04
0.00
0.15
0.05

12h
20ch

7 TSC

avg
min
max
std

1.01
0.75
1.37
0.14

0.08
0.06
0.10
0.01

0.12
0.04
0.43
0.07

13.30
0.00

94.00
23.73

0.09
0.06
0.12
0.02

0.69
0.00
2.42
0.78

12h
50ch

7 TSC

avg
min
max
std

7.17
5.70
8.60
0.70

0.42
0.34
0.51
0.04

0.60
0.33
1.94
0.32

20.44
0.00

247.00
50.99

0.44
0.31
0.52
0.05

0.54
0.00
3.87
0.93

24h
20ch

7 TSC

avg
min
max
std

9.12
7.02

10.70
0.85

0.46
0.38
0.54
0.04

0.29
0.12
1.17
0.20

27.90
0.00

259.00
56.31

0.18
0.11
0.22
0.03

0.37
0.00
1.63
0.43

24h
50ch

7 TSC

avg
min
max
std

62.51
50.70
76.67
5.66

2.35
2.00
2.86
0.21

1.51
0.70
4.88
0.90

32.18
0.00

370.00
72.48

0.99
0.73
1.23
0.11

0.37
0.00
1.29
0.41

72h
20ch

7 TSC

avg
min
max
std

261.83
226.57
306.24
20.69

6.61
5.70
7.58
0.49

1.11
0.44
3.53
0.78

30.22
0.00

345.00
62.37

0.62
0.43
0.76
0.08

0.15
0.00
0.73
0.18
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DP DP� BC BC 1st solution
Instance

time time time BBnodes time gap

72h
50ch

7 TSC

avg
min
max

std

1910.72
1662.03
2227.28
136.56

31.54
27.76
36.17
2.15

6.75
2.52

37.28
6.66

61.22
0.00

1267.00
189.83

3.43
2.55
4.00
0.33

0.18
0.00
0.54
0.17

12h
20ch

7 TWC

avg
min
max

std

0.99
0.72
1.22
0.12

0.08
0.06
0.10
0.01

0.12
0.05
0.37
0.07

14.74
0.00

165.00
30.58

0.08
0.06
0.11
0.01

0.67
0.00
5.03
0.98

12h
50ch

7 TWC

avg
min
max

std

7.15
5.83
8.47
0.68

0.42
0.34
0.52
0.04

0.52
0.31
1.16
0.17

9.26
0.00

116.00
20.98

0.44
0.35
0.53
0.04

0.58
0.00
2.99
0.89

24h
20ch

7 TWC

avg
min
max

std

9.07
6.94

11.30
1.07

0.46
0.37
0.56
0.05

0.27
0.11
0.75
0.14

21.02
0.00

146.00
36.31

0.17
0.10
0.22
0.02

0.39
0.00
1.44
0.44

24h
50ch

7 TWC

avg
min
max

std

61.76
52.12
75.72
5.06

2.29
2.00
2.76
0.17

1.54
0.70
4.11
0.73

32.52
0.00

276.00
59.75

1.01
0.70
1.15
0.10

0.46
0.00
1.83
0.46

72h
20ch

7 TWC

avg
min
max

std

259.47
209.39
301.36
21.65

6.57
5.34
7.52
0.51

1.00
0.42
2.79
0.59

21.54
0.00

141.00
35.72

0.60
0.42
0.74
0.08

0.15
0.00
0.57
0.16

72h
50ch

7 TWC

avg
min
max

std

1956.43
1630.04
2270.47
138.10

32.21
27.80
36.79
2.20

4.85
2.53

13.25
2.69

17.44
0.00

140.00
32.68

3.32
2.49
3.99
0.35

0.12
0.00
0.65
0.16
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B
Numerical Results for Maximum Clique

B.1 Characteristics of the DIMACS Benchmark Set

The DIMACS benchmark set for cliques [122, 67] consists of 66 instances, ranging from 28
– 3361 nodes and 420 – 11 million edges. The table below presents number of nodes (�V�),
number of edges (�E�), resulting graph density in percent (density), and smallest and largest
node degree (∆min, ∆max), respectively, of the 66 instances in the DIMACS test set.

Instance �V � �E� density ∆min ∆max
brock200_1 200 14834 74.54% 130 165
brock200_2 200 9876 49.63% 78 114
brock200_3 200 12048 60.54% 99 134
brock200_4 200 13089 65.77% 112 147
brock400_1 400 59723 74.84% 272 320
brock400_2 400 59786 74.92% 274 328
brock400_3 400 59681 74.79% 275 322
brock400_4 400 59765 74.89% 275 326
brock800_1 800 207505 64.93% 477 560
brock800_2 800 208166 65.13% 472 566
brock800_3 800 207333 64.87% 474 558
brock800_4 800 207643 64.97% 481 565
c-fat200-1 200 1534 7.71% 14 17
c-fat200-2 200 3235 16.26% 32 34
c-fat200-5 200 8473 42.58% 83 86
c-fat500-1 500 4459 3.57% 17 20
c-fat500-10 500 46627 37.38% 185 188
c-fat500-2 500 9139 7.33% 35 38
c-fat500-5 500 23191 18.59% 92 95
hamming10-2 1024 518656 99.02% 1013 1013
hamming10-4 1024 434176 82.89% 848 848
hamming6-2 64 1824 90.48% 57 57
hamming6-4 64 704 34.92% 22 22
hamming8-2 256 31616 96.86% 247 247
hamming8-4 256 20864 63.92% 163 163
johnson16-2-4 120 5460 76.47% 91 91
johnson32-2-4 496 107880 87.88% 435 435
johnson8-2-4 28 210 55.56% 15 15
johnson8-4-4 70 1855 76.81% 53 53
MANN_a9 45 918 92.73% 40 41
MANN_a27 378 70551 99.01% 364 374
MANN_a45 1035 533115 99.63% 1012 1031
MANN_a81 3321 5506380 99.88% 3280 3317

Instance �V � �E� density ∆min ∆max
keller4 171 9435 64.91% 102 124
keller5 776 225990 75.15% 560 638
keller6 3361 4619898 81.82% 2690 2952
p_hat1000-1 1000 122253 24.48% 105 408
p_hat1000-2 1000 244799 49.01% 232 766
p_hat1000-3 1000 371746 74.42% 582 895
p_hat1500-1 1500 284923 25.34% 157 614
p_hat1500-2 1500 568960 50.61% 335 1153
p_hat1500-3 1500 847244 75.36% 912 1330
p_hat300-1 300 10933 24.38% 23 132
p_hat300-2 300 21928 48.89% 59 229
p_hat300-3 300 33390 74.45% 168 267
p_hat500-1 500 31569 25.31% 52 204
p_hat500-2 500 62946 50.46% 117 389
p_hat500-3 500 93800 75.19% 293 452
p_hat700-1 700 60999 24.93% 75 286
p_hat700-2 700 121728 49.76% 157 539
p_hat700-3 700 183010 74.80% 408 627
san1000 1000 250500 50.15% 445 550
san200_0.7_1 200 13930 70.00% 125 155
san200_0.7_2 200 13930 70.00% 103 164
san200_0.9_1 200 17910 90.00% 159 191
san200_0.9_2 200 17910 90.00% 169 188
san200_0.9_3 200 17910 90.00% 166 187
san400_0.5_1 400 39900 50.00% 174 225
san400_0.7_1 400 55860 70.00% 257 301
san400_0.7_2 400 55860 70.00% 257 304
san400_0.7_3 400 55860 70.00% 250 307
san400_0.9_1 400 71820 90.00% 341 374
sanr200_0.7 200 13868 69.69% 120 161
sanr200_0.9 200 17863 89.76% 166 189
sanr400_0.5 400 39984 50.11% 161 233
sanr400_0.7 400 55869 70.01% 252 310
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B.2 Detailed Results for the DIMACS Benchmark Set

In the following two tables we summarize the major characteristics of Tables 10.1, 10.2 and
Tables B.1, B.2, respectively. “Instances” gives the number of instances tackled, “within time
limit” gives the number of those that could be solved within 21 600 sec. “best�C��” refers to
the number of best clique sizes found among the four approaches. The next three rows show
how often the best clique size was found fastest, or with fewest branch-and-bound nodes, or
simultaneously fastest and with fewest branch-and-bound nodes, respectively. Row “overall
best” rates the results according to Def. 14. Finally, “total time” accumulates the running time
over all instances and “total size” accumulates the best clique sizes found.

Summary for Tables 10.1 and 10.2 (pages 158 and 159)

Alg. 20 Alg. 20+DF Alg. 20+�8 Alg. 20+DF+�8

Instances: 66 66 66 66
within timelimit: 33 33 46 46
best�C��: 46 41 57 60
fastest termination for best�C��: 42 33 23 26
best�C�� with fewest bb nodes: 5 22 0 45
fastest termination for best�C��
with fewest bb nodes: 0 3 0 25
fastest best�C�� found: 36 22 17 20
overall best: 26 4 7 33
total time : 210.08 h 209.84 h 130.21 h 129.72 h
total size : 3103 3121 3928 3934

Summary for Tables B.1 and B.2 (pages 193 and 194)

Alg. 21 Alg. 21+DF Alg. 21+�8 Alg. 21+DF+�8

Instances: 66 66 66 66
within timelimit: 34 34 46 46
best�C��: 49 48 62 64
fastest termination for best�C��: 54 42 29 30
best�C�� with fewest bb nodes: 4 25 5 44
fastest termination for best�C��
with fewest bb nodes: 0 12 3 28
fastest best�C�� found: 48 36 16 29
overall best: 21 12 11 34
total time : 197.75 h 199.01 h 127.46 h 127.13 h
total size : 3840 3841 3844 4077
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Alg. 21 Alg. 21+DF Alg. 21+χ Alg. 21+DF+χ
Instance

�C�� time BB nodes �C� � time BB nodes �C�� time BB nodes �C�� time BB nodes
brock200_1 21 40.99 40763864 21 52.65 3809437 21 91.26 42767 21 92.73 40856
brock200_2 12 0.08 47946 12 0.13 3088 12 0.24 377 12 0.27 312
brock200_3 15 0.56 568162 15 0.92 47432 15 3.49 2839 15 3.65 2694
brock200_4 17 1.26 1058449 17 1.99 82857 17 4.63 2457 17 4.92 2295
brock400_1 �25 �21600 16744343445 �25 �21600 1047235395 �25 �21600 5998687 �25 �21600 5705834
brock400_2 �25 �21600 17624720710 �25 �21600 1185423407 �25 �21600 6710250 �25 �21600 6428350
brock400_3 �24 �21600 17960143939 �24 �21600 1191320924 �24 �21600 6745388 �24 �21600 6504665
brock400_4 �25 �21600 16569459718 �25 �21600 1019550053 �25 �21600 5902546 �25 �21600 5702967
brock800_1 �21 �21600 15763475452 �20 �21600 694985151 �20 �21600 7531481 �20 �21600 7062587
brock800_2 �21 �21600 15364807482 �21 �21600 703074375 �20 �21600 7516642 �20 �21600 7019896
brock800_3 �22 �21600 12984394338 �22 �21600 499594513 �22 �21600 5747476 �22 �21600 5381786
brock800_4 �20 �21600 16035660281 �20 �21600 709682147 �20 �21600 7490461 �20 �21600 6979390
c-fat200-1 12 0.01 266 12 0.01 211 12 0.01 266 12 0.01 211
c-fat200-2 24 0.01 476 24 0.01 223 24 0.03 476 24 0.01 223
c-fat200-5 58 1822.34 268437253 58 0.01 257 58 0.53 1853 58 0.01 257
c-fat500-1 14 0.05 591 14 0.05 513 14 0.06 591 14 0.04 513
c-fat500-10 126 0.12 8375 126 0.11 625 126 9.65 8375 126 0.13 625
c-fat500-2 26 0.05 825 26 0.05 525 26 0.08 825 26 0.06 525
c-fat500-5 64 0.07 2516 64 0.08 563 64 0.80 2516 64 0.06 563
hamming10-2 512 6.19 131840 512 5.16 1535 512 2425.72 131840 512 5.22 1535
hamming10-4 �32 �21600 32259594986 �32 �21600 5396081984 �32 �21600 5939826 �32 �21600 5795183
hamming6-2 32 0.01 560 32 0.01 95 32 0.06 560 32 0.01 95
hamming6-4 4 0.01 230 4 0.01 67 4 0.01 230 4 0.01 67
hamming8-2 128 0.07 8384 128 0.07 383 128 10.29 8384 128 0.07 383
hamming8-4 16 5.80 3742273 16 7.85 252454 16 2.75 862 16 3.20 733
johnson16-2-4 8 2.09 4177665 8 3.63 904465 8 11.10 122781 8 12.23 58009
johnson32-2-4 �16 �21600 46937027805 �16 �21600 7962372028 �16 �21600 15120429 �16 �21600 14886797
johnson8-2-4 4 0.01 99 4 0.01 31 4 0.01 99 4 0.01 31
johnson8-4-4 14 0.01 8416 14 0.01 1084 14 0.01 164 14 0.01 92
keller4 11 0.63 1003121 11 0.92 133911 11 2.01 2947 11 1.99 3043
keller5 �20 �21600 34083725546 �20 �21600 5207232560 �20 �21600 13132294 �20 �21600 13350366
keller6 �31 �21600 40974572043 �31 �21600 23153877676 �39 �21600 1306103 �39 �21600 1170365
MANN_a27 �117 �21600 8925632960 �117 �21600 23181265259 126 887.82 26396 126 1833.36 25867
MANN_a45 �330 �21600 3033506091 �330 �21600 22952138384 �342 �21600 107901 �342 �21600 17512
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Alg. 21 Alg. 21+DF Alg. 21+χ Alg. 21+DF+χ
Instance

�C�� time BB nodes �C� � time BB nodes �C�� time BB nodes �C�� time BB nodes
MANN_a81 �1080 �21600 907536555 �1080 �21600 23566687196 �848 �21600 360102 �1080 �21600 5143
MANN_a9 16 0.08 274543 16 0.13 138787 16 0.01 178 16 0.01 129
p_hat1000-1 10 3.17 1686442 10 8.45 75156 10 19.10 13404 10 22.46 12837
p_hat1000-2 �46 �21600 15833817626 �46 �21600 2235855371 �46 �21600 1379492 �46 �21600 1386354
p_hat1000-3 �60 �21600 19385985248 �61 �21600 8438845622 �64 �21600 1200137 �65 �21600 1183638
p_hat1500-1 12 27.54 15753173 12 84.23 703941 12 235.02 107530 12 274.43 106328
p_hat1500-2 �61 �21600 16053867267 �62 �21600 4575631546 �65 �21600 844836 �65 �21600 835237
p_hat1500-3 �85 �21600 13435662980 �85 �21600 11872713614 �92 �21600 443039 �92 �21600 412249
p_hat300-1 8 0.04 8428 8 0.05 363 8 0.04 328 8 0.05 309
p_hat300-2 25 1.23 944950 25 1.90 107966 25 0.83 630 25 0.92 361
p_hat300-3 36 1071.48 774525947 36 1365.33 95821409 36 165.33 18873 36 166.16 17439
p_hat500-1 9 0.20 83943 9 0.40 4821 9 0.29 560 9 0.44 529
p_hat500-2 36 159.23 100476737 36 225.26 11681596 36 34.57 4163 36 36.35 3579
p_hat500-3 �50 �21600 15316807664 �50 �21600 2396804695 �50 �21600 1183948 �50 �21600 1134209
p_hat700-1 11 0.59 187935 11 1.29 10591 11 0.73 758 11 1.26 721
p_hat700-2 44 7857.52 5022334663 44 9758.65 628055012 44 447.60 30107 44 456.30 27572
p_hat700-3 �62 �21600 14841334382 �62 �21600 3073251854 �62 �21600 941276 �62 �21600 939722
san1000 �8 �21600 40251583444 �8 �21600 3826623750 15 101.81 8185 15 142.59 9769
san200_0.7_1 �15 �21600 72167962008 �15 �21600 23884042229 30 0.43 675 30 0.41 440
san200_0.7_2 �12 �21600 73596061385 �12 �21600 21011103362 18 0.26 358 18 0.29 386
san200_0.9_1 �45 �21600 26762063204 �45 �21600 21781906220 70 1.88 2615 70 0.90 726
san200_0.9_2 �35 �21600 36870465389 �35 �21600 22185945440 60 2.06 2078 60 1.64 827
san200_0.9_3 �24 �21600 54510972529 �24 �21600 22523065742 44 449.27 69006 44 447.97 66651
san400_0.5_1 13 3257.59 4714133041 13 4876.80 450539488 13 1.23 525 13 1.61 714
san400_0.7_1 �20 �21600 63144249943 �20 �21600 22963713648 40 13.14 3017 40 14.24 2570
san400_0.7_2 �15 �21600 73952176568 �15 �21600 23623596407 30 97.36 11358 30 114.90 12762
san400_0.7_3 �12 �21600 76892809612 �12 �21600 21108189660 22 606.96 145060 22 766.37 178388
san400_0.9_1 �50 �21600 24266146323 �50 �21600 22766607890 100 534.17 35170 100 493.40 27224
sanr200_0.7 18 7.37 6506241 18 10.35 530953 18 21.38 9449 18 21.82 8887
sanr200_0.9 �41 �21600 17875107504 �41 �21600 2160419473 42 7010.62 1007007 42 6853.37 859718
sanr400_0.5 13 3.80 2902155 13 7.89 178928 13 25.41 12476 13 27.65 12097
sanr400_0.7 21 6432.37 5226950345 21 8831.31 376886905 21 13619.40 4762337 21 13877.50 4531210
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B.3 Single Statistics

The following tables present the results of 20 different combinations of techniques and algo-
rithms for the maximum clique problem. Boldface numbers indicate that the corresponding
method found a best result (according to Def. 14) among these 20 competitors.

In Tables B.11 – B.18 we usereorderingin addition to techniques described before. Node
reordering follows an idea presented in Fahle [70]. In a more intensive study it turned out to
have only a minor impact on the overall convergence when combined with other techniques.

For the same reasons that prevent the use of primal heuristics in Östergård’s approach,
reordering cannot be applied in Alg. 21. Thus, we only test it on Alg. 20.

Reordering is introduced in Alg. 20 just before the next recursion is called. There, we sort
the nodes according to the remaining degree inP in decreasing order. In doing so, dynamic
reordering ensures that the most interesting nodes are considered first for branching in each
part of the search tree. Notice that the original algorithm sorts nodes according to their original
degree inG only at the beginning and thus uses a static ordering of variables.

Reordering is done by a standard quicksort algorithm, or — if�P �� � 100 — by an insertion
sort. This switching parameter was determined empirically and reflects the fact that insertion
sort benefits from only a few elements changing their relative position after the update step.
By switching the sorting algorithms, we often gain some running time.

Reordering has a lesser impact on the overall quality than the other techniques considered
before. On selected instances, reordering can significantly improve convergence. Over the
entire benchmark set, this effect diminishes, although reordering occurs alongside with some
reduction in branch-and-bound nodes. Apparently, reordering nodes makes sense whenever
the initial static ordering would give bad advice for branching. This is usually the case in the
right part of the search tree. Since domain filtering and heuristics tend to support finding good
solutions early and since sorting produces a time overhead the impact of reordering should
not be overestimated. Indeed, the accumulated clique size is often smaller when comparing
the experiments using reordering with their counterparts using only static ordering.
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Instance �C�� time BB node time best
brock200_1 21 26.58 38043497 4.46
brock200_2 12 0.04 54314 0.01
brock200_3 15 0.37 453265 0.01
brock200_4 17 1.61 2161909 1.13
brock400_1 �27 �21600.00 23223752963 15951.80
brock400_2 �29 �21600.00 20089180565 4015.51
brock400_3 �31 �21600.00 25770803689 18788.40
brock400_4 33 19773.90 20152485865 13264.70
brock800_1 �21 �21600.00 21101899632 2828.48
brock800_2 �21 �21600.00 23496231361 18899.50
brock800_3 �21 �21600.00 22124014822 12254.90
brock800_4 �26 �21600.00 21662133367 20245.20
c-fat200-1 12 0.01 52 0.01
c-fat200-2 24 0.01 444 0.01
c-fat200-5 58 1207.72 268435599 1207.72
c-fat500-1 14 0.01 71 0.01
c-fat500-10 �124 �21600.00 15858231004 0.01
c-fat500-2 26 0.01 683 0.01
c-fat500-5 64 4.92 5703074 4.91
hamming10-2 �512 �21600.00 3366474297 0.20
hamming10-4 �32 �21600.00 36567495385 0.01
hamming6-2 32 0.01 42787 0.01
hamming6-4 4 0.01 221 0.01
hamming8-2 �128 �21600.00 14850398859 0.01
hamming8-4 16 4.06 3742143 0.01
johnson16-2-4 8 1.54 4177630 0.01
johnson32-2-4 �16 �21600.00 49208418864 0.01
johnson8-2-4 4 0.01 90 0.01
johnson8-4-4 14 0.01 12544 0.01
keller4 11 0.74 1275236 0.01
keller5 �24 �21600.00 26405722472 3151.67
keller6 �43 �21600.00 19876767579 11626.10
MANN_a27 �116 �21600.00 17111883459 11539.70

Instance �C�� time BB node time best
MANN_a45 �220 �21600.00 12427538213 1364.73
MANN_a81 �438 �21600.00 6433965301 42.34
MANN_a9 16 0.09 329235 0.01
p_hat1000-1 10 2.05 1801019 0.16
p_hat1000-2 �42 �21600.00 20151659983 11737.90
p_hat1000-3 �49 �21600.00 22757998877 17131.10
p_hat1500-1 12 18.28 13825580 3.25
p_hat1500-2 �46 �21600.00 24297112095 11607.90
p_hat1500-3 �53 �21600.00 27789610940 8036.53
p_hat300-1 8 0.01 11634 0.01
p_hat300-2 25 1.00 1553140 0.56
p_hat300-3 36 1492.43 1960518988 1469.14
p_hat500-1 9 0.08 89908 0.01
p_hat500-2 36 240.41 292274682 240.23
p_hat500-3 �44 �21600.00 25719412910 15486.00
p_hat700-1 11 0.36 343857 0.34
p_hat700-2 44 9742.35 10969888234 8534.67
p_hat700-3 �50 �21600.00 24323367924 21101.60
san1000 �10 �21600.00 12277896744 10265.60
san200_0.7_1 30 5466.91 14265131069 4713.39
san200_0.7_2 �18 �21600.00 31159815462 70.94
san200_0.9_1 �48 �21600.00 47701178923 1063.20
san200_0.9_2 �41 �21600.00 48882914444 12808.90
san200_0.9_3 �36 �21600.00 2192973297 657.81
san400_0.5_1 13 916.73 1414713059 49.51
san400_0.7_1 �22 �21600.00 87494021010 3512.73
san400_0.7_2 �17 �21600.00 61966653095 9542.01
san400_0.7_3 �22 �21600.00 26018343618 13896.70
san400_0.9_1 �49 �21600.00 54964009156 183.34
sanr200_0.7 18 5.83 7985123 1.25
sanr200_0.9 �40 �21600.00 29331657711 6979.29
sanr400_0.5 13 4.06 4283999 2.05
sanr400_0.7 21 4587.91 5624332491 9.70
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Instance �C�� time BB node time best
brock200_1 21 54.60 3350353 9.02
brock200_2 12 0.17 3539 0.03
brock200_3 15 1.04 32170 0.01
brock200_4 17 3.87 167750 2.72
brock400_1 �25 �21600.00 1022982977 14507.30
brock400_2 �29 �21600.00 760111221 7438.01
brock400_3 �24 �21600.00 1057635922 38.56
brock400_4 �25 �21600.00 935193147 955.69
brock800_1 �21 �21600.00 546659121 6339.46
brock800_2 �20 �21600.00 636709653 693.76
brock800_3 �20 �21600.00 602902311 227.53
brock800_4 �21 �21600.00 606259112 18028.90
c-fat200-1 12 0.01 5 0.01
c-fat200-2 24 0.01 5 0.01
c-fat200-5 58 0.01 5 0.01
c-fat500-1 14 0.05 5 0.05
c-fat500-10 126 0.07 5 0.07
c-fat500-2 26 0.05 5 0.05
c-fat500-5 64 0.06 5 0.06
hamming10-2 �512 �21600.00 770355321 0.48
hamming10-4 �32 �21600.00 2815903831 0.45
hamming6-2 32 0.01 1891 0.01
hamming6-4 4 0.01 47 0.01
hamming8-2 �128 �21600.00 1375703771 0.01
hamming8-4 16 7.89 252418 0.01
johnson16-2-4 8 3.62 904446 0.01
johnson32-2-4 �16 �21600.00 4929133669 0.06
johnson8-2-4 4 0.01 21 0.01
johnson8-4-4 14 0.01 1205 0.01
keller4 11 1.56 107086 0.01
keller5 �24 �21600.00 787089454 5057.18
keller6 �43 �21600.00 574383274 8096.65
MANN_a27 �116 �21600.00 22543342098 2926.39

Instance �C�� time BB node time best
MANN_a45 �234 �21600.00 22952851665 6605.06
MANN_a81 �467 �21600.00 22372923762 2924.38
MANN_a9 16 0.11 92210 0.01
p_hat1000-1 10 9.74 81573 1.27
p_hat1000-2 �41 �21600.00 1095205574 13548.50
p_hat1000-3 �47 �21600.00 1426408001 5481.57
p_hat1500-1 12 92.85 454914 20.08
p_hat1500-2 �46 �21600.00 1848437250 17558.20
p_hat1500-3 �53 �21600.00 2097394574 7264.97
p_hat300-1 8 0.07 450 0.05
p_hat300-2 25 2.67 182168 1.61
p_hat300-3 36 2729.49 251846120 2689.14
p_hat500-1 9 0.51 4978 0.12
p_hat500-2 36 502.24 35324032 501.96
p_hat500-3 �43 �21600.00 1873805007 11546.10
p_hat700-1 11 2.00 20630 1.96
p_hat700-2 44 18281.20 1394776054 16148.50
p_hat700-3 �49 �21600.00 1554061118 11807.10
san1000 �9 �21600.00 179990506 407.10
san200_0.7_1 30 9273.97 3805796652 7670.94
san200_0.7_2 �18 �21600.00 4588848753 80.54
san200_0.9_1 �48 �21600.00 14808252136 743.49
san200_0.9_2 �41 �21600.00 3462650501 1123.33
san200_0.9_3 �44 �21600.00 1651744796 14325.50
san400_0.5_1 13 2255.23 155275559 102.52
san400_0.7_1 �22 �21600.00 16652377204 1554.65
san400_0.7_2 �17 �21600.00 7525272755 15565.60
san400_0.7_3 �17 �21600.00 1972475939 5246.27
san400_0.9_1 �49 �21600.00 6047721579 5.23
sanr200_0.7 18 12.15 665013 2.56
sanr200_0.9 �40 �21600.00 2144307525 10452.20
sanr400_0.5 13 12.16 251463 6.21
sanr400_0.7 21 9373.51 408188818 19.28
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Instance �C�� time BB node time best
brock200_1 21 83.36 32847 16.10
brock200_2 12 0.49 323 0.13
brock200_3 15 3.15 1418 0.01
brock200_4 17 9.73 4442 7.13
brock400_1 �25 �21600.00 6477006 16084.70
brock400_2 �29 �21600.00 4976220 8808.90
brock400_3 �24 �21600.00 6672788 52.58
brock400_4 �25 �21600.00 5851408 1235.66
brock800_1 �21 �21600.00 6705439 12402.80
brock800_2 �20 �21600.00 7261032 1623.76
brock800_3 �20 �21600.00 7089985 547.95
brock800_4 �20 �21600.00 7239813 180.93
c-fat200-1 12 0.01 34 0.01
c-fat200-2 24 0.01 70 0.01
c-fat200-5 58 0.08 172 0.08
c-fat500-1 14 0.05 40 0.05
c-fat500-10 126 0.68 376 0.68
c-fat500-2 26 0.06 76 0.06
c-fat500-5 64 0.15 190 0.15
hamming10-2 512 0.76 513 0.75
hamming10-4 �33 �21600.00 5237411 17194.30
hamming6-2 32 0.01 33 0.01
hamming6-4 4 0.01 129 0.01
hamming8-2 128 0.01 129 0.01
hamming8-4 16 3.29 585 0.01
johnson16-2-4 8 11.21 123282 0.01
johnson32-2-4 �16 �21600.00 228095779 0.08
johnson8-2-4 4 0.01 50 0.01
johnson8-4-4 14 0.03 27 0.01
keller4 11 2.58 1598 0.03
keller5 �26 �21600.00 2844759 19070.30
keller6 �43 �21600.00 1695034 1269.69
MANN_a27 126 3627.65 31978 383.88

Instance �C�� time BB node time best
MANN_a45 �334 �21600.00 26007 13816.70
MANN_a81 �998 �21600.00 33067 17009.30
MANN_a9 16 0.01 46 0.01
p_hat1000-1 10 27.45 14082 1.99
p_hat1000-2 �44 �21600.00 1003624 5044.39
p_hat1000-3 �50 �21600.00 921339 1552.40
p_hat1500-1 12 292.45 104668 57.33
p_hat1500-2 �52 �21600.00 673044 2849.27
p_hat1500-3 �58 �21600.00 983802 15063.80
p_hat300-1 8 0.19 237 0.11
p_hat300-2 25 2.38 647 1.71
p_hat300-3 36 508.07 79793 504.61
p_hat500-1 9 1.21 493 0.14
p_hat500-2 36 128.09 16235 128.07
p_hat500-3 �49 �21600.00 1052581 9766.99
p_hat700-1 11 3.96 871 3.79
p_hat700-2 44 1129.18 89869 1064.31
p_hat700-3 �54 �21600.00 801496 2854.44
san1000 15 895.33 35573 895.33
san200_0.7_1 30 0.90 389 0.90
san200_0.7_2 18 0.58 277 0.58
san200_0.9_1 70 30.97 5308 30.97
san200_0.9_2 60 628.92 85085 628.92
san200_0.9_3 44 57.87 12622 53.09
san400_0.5_1 13 2.59 2470 2.59
san400_0.7_1 40 123.09 7438 123.09
san400_0.7_2 30 44.96 6497 44.96
san400_0.7_3 22 290.52 65466 290.52
san400_0.9_1 100 2310.99 144664 2308.99
sanr200_0.7 18 27.65 12985 7.44
sanr200_0.9 42 11884.40 1733080 7932.39
sanr400_0.5 13 41.43 18084 21.63
sanr400_0.7 21 14585.70 5067837 40.76
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Instance �C�� time BB node time best
brock200_1 21 73.99 30811 16.68
brock200_2 12 0.52 285 0.15
brock200_3 15 2.68 1356 0.01
brock200_4 17 10.09 4169 7.53
brock400_1 �25 �21600.00 5677245 16179.00
brock400_2 �29 �21600.00 4429451 8665.44
brock400_3 �24 �21600.00 5830338 53.22
brock400_4 �25 �21600.00 5153284 1239.64
brock800_1 �21 �21600.00 5862067 12967.00
brock800_2 �20 �21600.00 6381751 1646.71
brock800_3 �20 �21600.00 6112439 567.43
brock800_4 �20 �21600.00 6176011 183.07
c-fat200-1 12 0.01 5 0.01
c-fat200-2 24 0.01 5 0.01
c-fat200-5 58 0.01 5 0.01
c-fat500-1 14 0.05 5 0.05
c-fat500-10 126 0.07 5 0.07
c-fat500-2 26 0.07 5 0.07
c-fat500-5 64 0.03 5 0.03
hamming10-2 512 0.67 257 0.66
hamming10-4 �33 �21600.00 4495000 17099.10
hamming6-2 32 0.01 17 0.01
hamming6-4 4 0.01 25 0.01
hamming8-2 128 0.01 65 0.01
hamming8-4 16 5.44 570 0.03
johnson16-2-4 8 17.73 57912 0.01
johnson32-2-4 �16 �21600.00 70631873 0.11
johnson8-2-4 4 0.01 11 0.01
johnson8-4-4 14 0.01 17 0.01
keller4 11 3.65 1476 0.05
keller5 �26 �21600.00 2423520 19297.40
keller6 �43 �21600.00 1341291 879.56
MANN_a27 126 3046.67 31240 327.21

Instance �C�� time BB node time best
MANN_a45 �336 �21600.00 24794 14973.50
MANN_a81 �998 �21600.00 9637 7482.24
MANN_a9 16 0.01 28 0.01
p_hat1000-1 10 35.28 13303 4.22
p_hat1000-2 �44 �21600.00 1341279 4794.00
p_hat1000-3 �52 �21600.00 1274139 17507.80
p_hat1500-1 12 380.57 101895 79.79
p_hat1500-2 �52 �21600.00 783463 2614.38
p_hat1500-3 �58 �21600.00 1148829 12700.10
p_hat300-1 8 0.36 212 0.22
p_hat300-2 25 3.61 438 2.58
p_hat300-3 36 482.81 71863 479.61
p_hat500-1 9 1.46 475 0.19
p_hat500-2 36 128.32 15101 128.30
p_hat500-3 �49 �21600.00 1218440 9000.27
p_hat700-1 11 5.14 815 4.96
p_hat700-2 44 1091.35 79390 1032.19
p_hat700-3 �56 �21600.00 943799 20078.10
san1000 15 1141.11 31477 1141.11
san200_0.7_1 30 0.89 268 0.89
san200_0.7_2 18 0.60 176 0.60
san200_0.9_1 70 24.54 4291 24.54
san200_0.9_2 60 600.46 72365 600.44
san200_0.9_3 44 71.55 11830 66.28
san400_0.5_1 13 3.64 739 3.64
san400_0.7_1 40 150.44 8576 150.44
san400_0.7_2 30 62.94 10129 62.94
san400_0.7_3 22 367.05 84602 367.05
san400_0.9_1 100 2033.07 120402 2031.89
sanr200_0.7 18 28.05 12246 7.57
sanr200_0.9 42 10263.50 1421500 6949.09
sanr400_0.5 13 44.22 17439 22.28
sanr400_0.7 21 14900.60 4783079 41.62

T
able

B
.6:

A
lg.20

+
D

om
ain

F
iltering

+
�

8



200
B

N
u

m
ericalR

esu
lts

fo
r

M
axim

u
m

C
liq

u
e

Instance �C�� time BB node time best
brock200_1 21 42.15 38042992 6.98
brock200_2 12 0.08 54309 0.01
brock200_3 15 0.58 453265 0.01
brock200_4 17 2.47 2161899 1.75
brock400_1 �25 �21600.00 17509992712 11529.80
brock400_2 �29 �21600.00 13717772679 5983.55
brock400_3 �24 �21600.00 17849569194 31.30
brock400_4 �33 �21600.00 16095315583 20293.10
brock800_1 �21 �21600.00 14474127602 4156.91
brock800_2 �20 �21600.00 15934828100 464.66
brock800_3 �21 �21600.00 15528515213 18057.50
brock800_4 �21 �21600.00 15218342908 11858.00
c-fat200-1 12 0.01 0 0.01
c-fat200-2 24 0.01 0 0.01
c-fat200-5 58 1845.75 268435427 0.01
c-fat500-1 14 0.01 0 0.01
c-fat500-10 126 0.01 0 0.01
c-fat500-2 26 0.01 0 0.01
c-fat500-5 64 0.01 0 0.01
hamming10-2 512 0.04 0 0.04
hamming10-4 �32 �21600.00 26701433927 0.04
hamming6-2 32 0.01 0 0.01
hamming6-4 4 0.01 219 0.01
hamming8-2 128 0.01 0 0.01
hamming8-4 16 5.84 3742134 0.01
johnson16-2-4 8 2.05 4177628 0.01
johnson32-2-4 �16 �21600.00 39916006041 0.01
johnson8-2-4 4 0.01 88 0.01
johnson8-4-4 14 0.01 12536 0.01
keller4 11 1.05 1275235 0.01
keller5 �24 �21600.00 16696020061 4716.59
keller6 �43 �21600.00 13238117569 17796.50
MANN_a27 �125 �21600.00 10300735430 0.01

Instance �C�� time BB node time best
MANN_a45 �342 �21600.00 3467302536 0.05
MANN_a81 �1096 �21600.00 972062172 0.39
MANN_a9 16 0.12 329210 0.01
p_hat1000-1 10 3.23 1800820 0.65
p_hat1000-2 �42 �21600.00 13536058039 17341.00
p_hat1000-3 �57 �21600.00 9165352377 0.04
p_hat1500-1 12 28.66 13825474 6.21
p_hat1500-2 �54 �21600.00 9513755020 0.11
p_hat1500-3 �75 �21600.00 6725356212 0.11
p_hat300-1 8 0.03 11602 0.03
p_hat300-2 25 1.63 1378757 0.88
p_hat300-3 36 2340.66 1958377489 2302.61
p_hat500-1 9 0.19 89900 0.08
p_hat500-2 36 382.84 290559086 382.56
p_hat500-3 �44 �21600.00 16480493753 21171.00
p_hat700-1 11 0.69 343852 0.68
p_hat700-2 �41 �21600.00 4241515523 1266.67
p_hat700-3 �55 �21600.00 10897648442 0.01
san1000 �10 �21600.00 8541223897 13781.40
san200_0.7_1 30 7569.35 14265131068 6432.11
san200_0.7_2 �18 �21600.00 26707614335 94.98
san200_0.9_1 �48 �21600.00 31846126072 100.23
san200_0.9_2 �41 �21600.00 36295036841 17862.90
san200_0.9_3 �44 �21600.00 15617446544 13812.50
san400_0.5_1 13 1407.06 1414712955 65.02
san400_0.7_1 �22 �21600.00 68294511591 4593.51
san400_0.7_2 �17 �21600.00 49132455738 11965.30
san400_0.7_3 �22 �21600.00 19318251314 20240.40
san400_0.9_1 �49 �21600.00 40400910354 230.02
sanr200_0.7 18 8.52 7985056 1.78
sanr200_0.9 �40 �21600.00 18830466170 10837.30
sanr400_0.5 13 5.69 4283902 2.90
sanr400_0.7 21 6871.77 5624332477 14.45
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Instance �C�� time BB node time best
brock200_1 21 55.66 3350276 9.17
brock200_2 12 0.17 3534 0.01
brock200_3 15 1.06 32169 0.01
brock200_4 17 3.92 167745 2.75
brock400_1 �25 �21600.00 802043069 15547.30
brock400_2 �29 �21600.00 578464091 7608.22
brock400_3 �24 �21600.00 642974556 33.85
brock400_4 �25 �21600.00 804732848 957.49
brock800_1 �21 �21600.00 438408850 6309.47
brock800_2 �20 �21600.00 483525994 711.95
brock800_3 �20 �21600.00 521912459 246.56
brock800_4 �20 �21600.00 507024368 76.96
c-fat200-1 12 0.01 0 0.01
c-fat200-2 24 0.01 0 0.01
c-fat200-5 58 0.01 1 0.01
c-fat500-1 14 0.01 0 0.01
c-fat500-10 126 0.01 0 0.01
c-fat500-2 26 0.01 0 0.01
c-fat500-5 64 0.01 0 0.01
hamming10-2 512 0.04 0 0.04
hamming10-4 �32 �21600.00 2102894087 0.04
hamming6-2 32 0.01 0 0.01
hamming6-4 4 0.01 45 0.01
hamming8-2 128 0.01 0 0.01
hamming8-4 16 8.06 252416 0.01
johnson16-2-4 8 3.69 904444 0.01
johnson32-2-4 �16 �21600.00 3905097678 0.01
johnson8-2-4 4 0.01 19 0.01
johnson8-4-4 14 0.01 1202 0.01
keller4 11 1.57 107084 0.01
keller5 �24 �21600.00 612982816 5156.58
keller6 �43 �21600.00 422477378 8293.01
MANN_a27 �125 �21600.00 6773339145 0.01

Instance �C�� time BB node time best
MANN_a45 �342 �21600.00 1584836740 0.03
MANN_a81 �1096 �21600.00 509194829 0.35
MANN_a9 16 0.13 92204 0.01
p_hat1000-1 10 10.13 81542 1.28
p_hat1000-2 �41 �21600.00 1123297576 11542.10
p_hat1000-3 �57 �21600.00 645646229 0.04
p_hat1500-1 12 97.35 454901 21.10
p_hat1500-2 �54 �21600.00 732702539 0.10
p_hat1500-3 �75 �21600.00 379259450 0.09
p_hat300-1 8 0.07 442 0.05
p_hat300-2 25 2.51 160836 1.40
p_hat300-3 36 2734.96 251602128 2693.99
p_hat500-1 9 0.53 4971 0.13
p_hat500-2 36 512.17 35122029 511.89
p_hat500-3 �43 �21600.00 1845348113 8498.38
p_hat700-1 11 2.13 20625 2.07
p_hat700-2 44 18369.00 1387618978 16213.60
p_hat700-3 �55 �21600.00 948549946 0.01
san1000 �9 �21600.00 161897446 403.41
san200_0.7_1 30 9238.11 3805796650 7685.40
san200_0.7_2 �18 �21600.00 5002801923 80.63
san200_0.9_1 �48 �21600.00 16362350308 60.72
san200_0.9_2 �41 �21600.00 3562188013 1103.38
san200_0.9_3 �44 �21600.00 1670536852 14220.30
san400_0.5_1 13 2252.10 155275555 102.37
san400_0.7_1 �22 �21600.00 17778266595 1551.15
san400_0.7_2 �17 �21600.00 8111510989 15057.30
san400_0.7_3 �18 �21600.00 2039144714 21269.30
san400_0.9_1 �49 �21600.00 6094343540 3.00
sanr200_0.7 18 12.36 665002 2.61
sanr200_0.9 �40 �21600.00 2194582435 10370.70
sanr400_0.5 13 12.52 251449 6.42
sanr400_0.7 21 9427.26 408188809 19.74
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Instance �C�� time BB node time best
brock200_1 21 83.67 32765 16.19
brock200_2 12 0.49 289 0.13
brock200_3 15 3.15 1402 0.01
brock200_4 17 9.46 4373 6.86
brock400_1 �25 �21600.00 6566602 16035.30
brock400_2 �29 �21600.00 5024485 8736.53
brock400_3 �24 �21600.00 6629519 53.16
brock400_4 �25 �21600.00 5836585 1246.54
brock800_1 �21 �21600.00 6802768 12384.00
brock800_2 �20 �21600.00 7483625 1602.05
brock800_3 �20 �21600.00 7288740 544.57
brock800_4 �20 �21600.00 7351531 181.23
c-fat200-1 12 0.01 0 0.01
c-fat200-2 24 0.01 0 0.01
c-fat200-5 58 0.01 1 0.01
c-fat500-1 14 0.01 0 0.01
c-fat500-10 126 0.01 0 0.01
c-fat500-2 26 0.01 0 0.01
c-fat500-5 64 0.01 0 0.01
hamming10-2 512 0.04 0 0.04
hamming10-4 �33 �21600.00 5182900 17465.10
hamming6-2 32 0.01 0 0.01
hamming6-4 4 0.01 125 0.01
hamming8-2 128 0.01 0 0.01
hamming8-4 16 3.28 553 0.01
johnson16-2-4 8 11.27 123168 0.01
johnson32-2-4 �16 �21600.00 224623978 0.01
johnson8-2-4 4 0.01 52 0.01
johnson8-4-4 14 0.01 11 0.01
keller4 11 2.57 1556 0.03
keller5 �26 �21600.00 2837055 19125.70
keller6 �43 �21600.00 1602673 1220.17
MANN_a27 126 3545.72 30250 360.67

Instance �C�� time BB node time best
MANN_a45 �342 �21600.00 9280 0.04
MANN_a81 �1096 �21600.00 344 0.40
MANN_a9 16 0.01 18 0.01
p_hat1000-1 10 27.34 14024 1.98
p_hat1000-2 �44 �21600.00 1391266 4590.68
p_hat1000-3 �57 �21600.00 725698 0.04
p_hat1500-1 12 290.96 104610 57.15
p_hat1500-2 �54 �21600.00 710845 0.11
p_hat1500-3 �75 �21600.00 293927 0.10
p_hat300-1 8 0.20 212 0.12
p_hat300-2 25 2.09 345 1.42
p_hat300-3 36 510.82 78958 507.28
p_hat500-1 9 1.21 458 0.16
p_hat500-2 36 126.73 15228 126.71
p_hat500-3 �49 �21600.00 1224756 9443.06
p_hat700-1 11 3.94 842 3.77
p_hat700-2 44 1137.19 85853 1071.19
p_hat700-3 �56 �21600.00 827848 14607.20
san1000 15 875.01 22118 875.00
san200_0.7_1 30 0.70 135 0.70
san200_0.7_2 18 0.50 102 0.50
san200_0.9_1 70 6.83 544 6.83
san200_0.9_2 60 659.15 82932 659.13
san200_0.9_3 44 74.23 12338 69.30
san400_0.5_1 13 2.49 403 2.48
san400_0.7_1 40 123.60 7219 123.60
san400_0.7_2 30 44.80 5894 44.79
san400_0.7_3 22 291.47 65118 291.46
san400_0.9_1 100 1984.76 100519 1982.67
sanr200_0.7 18 27.79 12930 7.49
sanr200_0.9 42 11804.90 1731560 8049.09
sanr400_0.5 13 41.48 18057 21.65
sanr400_0.7 21 14630.90 5067745 40.92
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Instance �C�� time BB node time best
brock200_1 21 83.81 30694 16.10
brock200_2 12 0.54 272 0.14
brock200_3 15 3.26 1356 0.01
brock200_4 17 10.02 4123 7.29
brock400_1 �25 �21600.00 6032026 16099.20
brock400_2 �29 �21600.00 4583263 8746.22
brock400_3 �24 �21600.00 6074490 52.50
brock400_4 �25 �21600.00 5309119 1245.55
brock800_1 �21 �21600.00 6108652 12905.80
brock800_2 �20 �21600.00 6699015 1662.42
brock800_3 �20 �21600.00 6504352 560.13
brock800_4 �20 �21600.00 6571649 190.12
c-fat200-1 12 0.01 0 0.01
c-fat200-2 24 0.01 0 0.01
c-fat200-5 58 0.01 1 0.01
c-fat500-1 14 0.01 0 0.01
c-fat500-10 126 0.01 0 0.01
c-fat500-2 26 0.01 0 0.01
c-fat500-5 64 0.01 0 0.01
hamming10-2 512 0.04 0 0.03
hamming10-4 �33 �21600.00 4692037 17301.70
hamming6-2 32 0.01 0 0.01
hamming6-4 4 0.01 22 0.01
hamming8-2 128 0.01 0 0.01
hamming8-4 16 3.75 556 0.01
johnson16-2-4 8 12.39 57881 0.01
johnson32-2-4 �16 �21600.00 72262348 0.01
johnson8-2-4 4 0.01 11 0.01
johnson8-4-4 14 0.01 11 0.01
keller4 11 2.66 1457 0.03
keller5 �26 �21600.00 2490605 18977.10
keller6 �43 �21600.00 1344053 796.79
MANN_a27 126 2984.11 30458 283.11

Instance �C�� time BB node time best
MANN_a45 �342 �21600.00 11883 0.05
MANN_a81 �1096 �21600.00 462 0.43
MANN_a9 16 0.01 18 0.01
p_hat1000-1 10 32.57 13282 2.71
p_hat1000-2 �44 �21600.00 1263289 4680.78
p_hat1000-3 �57 �21600.00 658102 0.08
p_hat1500-1 12 341.15 101886 67.74
p_hat1500-2 �54 �21600.00 616341 0.11
p_hat1500-3 �75 �21600.00 266476 0.12
p_hat300-1 8 0.24 207 0.15
p_hat300-2 25 2.41 333 1.59
p_hat300-3 36 487.80 71384 484.66
p_hat500-1 9 1.46 462 0.18
p_hat500-2 36 127.90 14585 127.88
p_hat500-3 �49 �21600.00 1108105 9059.61
p_hat700-1 11 5.69 802 5.43
p_hat700-2 44 1111.40 76079 1048.25
p_hat700-3 �56 �21600.00 577935 14274.40
san1000 15 1476.19 31290 1476.17
san200_0.7_1 30 0.58 154 0.58
san200_0.7_2 18 0.51 107 0.51
san200_0.9_1 70 7.13 465 7.12
san200_0.9_2 60 651.72 71274 651.70
san200_0.9_3 44 86.09 11602 80.90
san400_0.5_1 13 4.95 694 4.89
san400_0.7_1 40 168.33 8449 168.31
san400_0.7_2 30 63.87 9062 63.86
san400_0.7_3 22 403.95 84522 403.95
san400_0.9_1 100 2011.49 85997 2010.11
sanr200_0.7 18 29.23 12198 8.69
sanr200_0.9 42 11082.70 1421874 7516.34
sanr400_0.5 13 45.72 17424 23.78
sanr400_0.7 21 15357.30 4783053 43.39

T
able

B
.10:

A
lg.20

+
D

om
ain

F
iltering

+
�

8 +
Low

er
B

ound
H

euristics



204
B

N
u

m
ericalR

esu
lts

fo
r

M
axim

u
m

C
liq

u
e

Instance �C�� time BB node time best
brock200_1 21 65.51 49899719 10.40
brock200_2 12 0.11 63604 0.03
brock200_3 15 0.83 538998 0.01
brock200_4 17 3.52 2615053 2.43
brock400_1 �24 �21600.00 15257627938 2647.41
brock400_2 �29 �21600.00 12580370063 9965.22
brock400_3 �24 �21600.00 15059690473 41.74
brock400_4 �25 �21600.00 13903077839 1291.18
brock800_1 �21 �21600.00 12784917881 6051.07
brock800_2 �20 �21600.00 14202981566 656.16
brock800_3 �20 �21600.00 13795314603 511.79
brock800_4 �21 �21600.00 13642131003 17512.80
c-fat200-1 12 0.01 110 0.01
c-fat200-2 24 0.01 1029 0.01
c-fat200-5 58 1844.93 268435599 1844.93
c-fat500-1 14 0.05 218 0.05
c-fat500-10 �124 �21600.00 5797086125 0.04
c-fat500-2 26 0.04 2019 0.04
c-fat500-5 64 6139.54 1050334958 6139.54
hamming10-2 �512 �21600.00 179480844 0.69
hamming10-4 �32 �21600.00 18984190137 0.42
hamming6-2 32 0.04 33963 0.01
hamming6-4 4 0.01 246 0.01
hamming8-2 �128 �21600.00 9104272282 0.01
hamming8-4 16 13.54 7376228 0.01
johnson16-2-4 8 3.03 5283608 0.01
johnson32-2-4 �16 �21600.00 36678118580 0.05
johnson8-2-4 4 0.01 120 0.01
johnson8-4-4 14 0.03 21362 0.01
keller4 11 1.67 1730662 0.01
keller5 �24 �21600.00 13816583527 8329.70
keller6 �42 �21600.00 14157491075 16329.10
MANN_a27 �103 �21600.00 42444002454 268.52

Instance �C�� time BB node time best
MANN_a45 �173 �21600.00 2908205213 12940.10
MANN_a81 �303 �21600.00 326992131 505.26
MANN_a9 16 0.37 914643 0.01
p_hat1000-1 10 3.54 1915766 0.58
p_hat1000-2 �40 �21600.00 13834984821 18592.50
p_hat1000-3 �47 �21600.00 13254199985 5961.59
p_hat1500-1 12 31.24 14911533 7.17
p_hat1500-2 �45 �21600.00 16486749297 18027.40
p_hat1500-3 �53 �21600.00 17135763325 19437.10
p_hat300-1 8 0.03 12580 0.03
p_hat300-2 25 2.72 2130446 1.70
p_hat300-3 36 5114.76 3803115648 5045.63
p_hat500-1 9 0.21 97060 0.08
p_hat500-2 36 760.18 517465338 744.70
p_hat500-3 �43 �21600.00 15547363258 17471.50
p_hat700-1 11 0.76 369843 0.74
p_hat700-2 �43 �21600.00 14317764838 19005.10
p_hat700-3 �48 �21600.00 16341797661 13361.10
san1000 �10 �21600.00 6684993940 15589.30
san200_0.7_1 30 9644.26 15173779791 7755.11
san200_0.7_2 �18 �21600.00 28710609315 125.18
san200_0.9_1 �48 �21600.00 28958805857 3984.80
san200_0.9_2 �40 �21600.00 29097836649 203.70
san200_0.9_3 �41 �21600.00 14428331418 16720.30
san400_0.5_1 13 2966.84 1792740152 68.64
san400_0.7_1 �21 �21600.00 51670924049 0.05
san400_0.7_2 �17 �21600.00 41949116241 13695.40
san400_0.7_3 �18 �21600.00 17835622461 19626.10
san400_0.9_1 �51 �21600.00 52202587417 0.04
sanr200_0.7 18 13.12 9990289 2.04
sanr200_0.9 �38 �21600.00 17545633580 14753.40
sanr400_0.5 13 7.18 4704750 3.21
sanr400_0.7 21 10454.50 7297779227 31.43
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Instance �C�� time BB node time best
brock200_1 21 38.66 2313467 6.05
brock200_2 12 0.17 3518 0.03
brock200_3 15 0.93 31515 0.01
brock200_4 17 3.31 132692 2.21
brock400_1 �27 �21600.00 1068560780 16278.60
brock400_2 �29 �21600.00 704686356 4019.71
brock400_3 �25 �21600.00 1132438178 17689.20
brock400_4 �33 �21600.00 814076134 13772.50
brock800_1 �21 �21600.00 648946316 4906.81
brock800_2 �20 �21600.00 838024469 125.29
brock800_3 �21 �21600.00 718383093 15806.50
brock800_4 �21 �21600.00 722796727 11363.30
c-fat200-1 12 0.01 5 0.01
c-fat200-2 24 0.01 5 0.01
c-fat200-5 58 0.01 5 0.01
c-fat500-1 14 0.06 5 0.06
c-fat500-10 126 0.06 5 0.06
c-fat500-2 26 0.06 5 0.06
c-fat500-5 64 0.08 5 0.08
hamming10-2 �177 �21600.00 2804846620 10695.90
hamming10-4 �28 �21600.00 1840652559 321.98
hamming6-2 32 0.01 827 0.01
hamming6-4 4 0.01 36 0.01
hamming8-2 �107 �21600.00 627098542 8880.29
hamming8-4 16 6.94 325951 0.03
johnson16-2-4 8 4.49 1176074 0.01
johnson32-2-4 �16 �21600.00 5251127543 0.05
johnson8-2-4 4 0.01 18 0.01
johnson8-4-4 14 0.01 1913 0.01
keller4 11 1.36 111284 0.01
keller5 �26 �21600.00 1723730978 77.08
keller6 �49 �21600.00 1278951020 13521.10
MANN_a27 �114 �21600.00 15175132797 29.80

Instance �C�� time BB node time best
MANN_a45 �220 �21600.00 21302355103 7277.84
MANN_a81 �438 �21600.00 15014846089 66.25
MANN_a9 16 0.27 214424 0.01
p_hat1000-1 10 9.68 76995 1.06
p_hat1000-2 �41 �21600.00 1080580618 10416.30
p_hat1000-3 �46 �21600.00 1473328818 2035.68
p_hat1500-1 12 91.63 303225 22.57
p_hat1500-2 �46 �21600.00 1919302398 8323.22
p_hat1500-3 �53 �21600.00 1968529256 9462.90
p_hat300-1 8 0.07 406 0.05
p_hat300-2 25 2.56 161080 1.69
p_hat300-3 36 2102.16 189101562 2070.93
p_hat500-1 9 0.49 4954 0.11
p_hat500-2 36 436.28 30222902 427.51
p_hat500-3 �44 �21600.00 1724527301 11578.40
p_hat700-1 11 1.98 22538 1.94
p_hat700-2 44 11630.70 802206146 7551.13
p_hat700-3 �49 �21600.00 1511133978 17864.80
san1000 �10 �21600.00 34213044 0.51
san200_0.7_1 30 12139.10 3005157489 8189.47
san200_0.7_2 �18 �21600.00 3712593410 90.31
san200_0.9_1 �48 �21600.00 14174388128 0.22
san200_0.9_2 �50 �21600.00 8865107251 13181.50
san200_0.9_3 �44 �21600.00 3405968720 4177.24
san400_0.5_1 13 3257.63 87018003 103.91
san400_0.7_1 �22 �21600.00 22523343854 0.05
san400_0.7_2 �30 �21600.00 2809429031 466.56
san400_0.7_3 �17 �21600.00 2332887030 37.93
san400_0.9_1 �51 �21600.00 14561425978 4315.51
sanr200_0.7 18 9.53 549887 1.42
sanr200_0.9 �40 �21600.00 2124394795 3439.17
sanr400_0.5 13 10.65 263245 4.86
sanr400_0.7 21 6135.33 281397941 59.55
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Instance �C�� time BB node time best
brock200_1 21 91.14 34628 17.75
brock200_2 12 0.54 349 0.17
brock200_3 15 3.35 1424 0.01
brock200_4 17 10.83 4672 7.85
brock400_1 �24 �21600.00 6771369 3125.74
brock400_2 �29 �21600.00 5310557 10337.80
brock400_3 �24 �21600.00 6596686 49.62
brock400_4 �25 �21600.00 5817543 1488.90
brock800_1 �21 �21600.00 6807032 14849.10
brock800_2 �20 �21600.00 7288864 1891.66
brock800_3 �20 �21600.00 7156255 1501.81
brock800_4 �20 �21600.00 7177430 193.44
c-fat200-1 12 0.01 34 0.01
c-fat200-2 24 0.01 70 0.01
c-fat200-5 58 0.06 172 0.06
c-fat500-1 14 0.05 40 0.05
c-fat500-10 126 0.69 376 0.69
c-fat500-2 26 0.06 76 0.06
c-fat500-5 64 0.15 190 0.15
hamming10-2 512 0.83 513 0.83
hamming10-4 �32 �21600.00 5491919 0.53
hamming6-2 32 0.01 33 0.01
hamming6-4 4 0.01 153 0.01
hamming8-2 128 0.03 129 0.03
hamming8-4 16 6.33 792 0.01
johnson16-2-4 8 7.94 150523 0.01
johnson32-2-4 �16 �21600.00 252894845 0.08
johnson8-2-4 4 0.01 65 0.01
johnson8-4-4 14 0.01 23 0.01
keller4 11 3.65 2181 0.03
keller5 �26 �21600.00 3228220 19937.40
keller6 �43 �21600.00 2958575 21370.90
MANN_a27 126 3171.52 25184 372.04

Instance �C�� time BB node time best
MANN_a45 �336 �21600.00 26634 18642.10
MANN_a81 �998 �21600.00 33075 14108.50
MANN_a9 16 0.01 41 0.01
p_hat1000-1 10 28.69 14599 1.61
p_hat1000-2 �44 �21600.00 1432135 6687.41
p_hat1000-3 �51 �21600.00 1315718 15166.80
p_hat1500-1 12 302.30 106659 67.42
p_hat1500-2 �52 �21600.00 848691 2974.68
p_hat1500-3 �58 �21600.00 1275562 17717.10
p_hat300-1 8 0.20 225 0.12
p_hat300-2 25 2.63 724 1.99
p_hat300-3 36 590.09 91974 586.01
p_hat500-1 9 1.25 500 0.14
p_hat500-2 36 145.01 18886 143.75
p_hat500-3 �49 �21600.00 1304510 16032.90
p_hat700-1 11 4.15 964 3.99
p_hat700-2 44 1100.18 87090 863.46
p_hat700-3 �55 �21600.00 997373 16883.60
san1000 15 880.21 29848 880.21
san200_0.7_1 30 0.63 353 0.63
san200_0.7_2 18 0.52 273 0.52
san200_0.9_1 70 27.24 4969 27.24
san200_0.9_2 60 509.80 64745 509.44
san200_0.9_3 44 305.33 26767 79.88
san400_0.5_1 13 2.81 2348 2.81
san400_0.7_1 40 1803.00 271353 1803.00
san400_0.7_2 30 41.68 5625 41.68
san400_0.7_3 22 296.98 62370 296.98
san400_0.9_1 100 2699.95 173619 2667.88
sanr200_0.7 18 30.26 13663 6.15
sanr200_0.9 42 13876.00 2073152 9291.64
sanr400_0.5 13 43.43 18444 20.55
sanr400_0.7 21 16335.00 5543348 67.83
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Instance �C�� time BB node time best
brock200_1 21 72.66 26428 13.45
brock200_2 12 0.56 302 0.16
brock200_3 15 3.34 1406 0.01
brock200_4 17 8.91 3308 6.03
brock400_1 �27 �21600.00 5276922 20561.50
brock400_2 �29 �21600.00 4038248 5937.40
brock400_3 �24 �21600.00 5609626 236.52
brock400_4 33 18115.70 3555795 14776.80
brock800_1 �21 �21600.00 5193115 11232.40
brock800_2 �20 �21600.00 6220132 391.73
brock800_3 �20 �21600.00 5756986 359.41
brock800_4 �20 �21600.00 6092696 1144.56
c-fat200-1 12 0.01 5 0.01
c-fat200-2 24 0.01 5 0.01
c-fat200-5 58 0.01 5 0.01
c-fat500-1 14 0.06 5 0.06
c-fat500-10 126 0.07 5 0.07
c-fat500-2 26 0.06 5 0.05
c-fat500-5 64 0.07 5 0.07
hamming10-2 �206 �21600.00 759969 19311.10
hamming10-4 �28 �21600.00 3298069 72.94
hamming6-2 32 0.01 26 0.01
hamming6-4 4 0.01 20 0.01
hamming8-2 128 5.21 206 5.21
hamming8-4 16 6.12 1199 0.07
johnson16-2-4 8 7.22 27231 0.01
johnson32-2-4 �16 �21600.00 42369132 0.08
johnson8-2-4 4 0.01 9 0.01
johnson8-4-4 14 0.04 32 0.01
keller4 11 1.99 934 0.01
keller5 �27 �21600.00 1419794 13055.40
keller6 �53 �21600.00 162325 3877.37
MANN_a27 126 2668.57 22895 286.52

Instance �C�� time BB node time best
MANN_a45 �336 �21600.00 24116 16384.60
MANN_a81 �998 �21600.00 9378 6722.11
MANN_a9 16 0.01 27 0.01
p_hat1000-1 10 30.40 11975 1.86
p_hat1000-2 �44 �21600.00 1269513 5762.59
p_hat1000-3 �52 �21600.00 1132211 11534.30
p_hat1500-1 12 338.35 110362 76.45
p_hat1500-2 �52 �21600.00 726728 2216.56
p_hat1500-3 �59 �21600.00 874841 17595.50
p_hat300-1 8 0.22 211 0.14
p_hat300-2 25 2.60 461 1.97
p_hat300-3 36 477.52 67826 474.19
p_hat500-1 9 1.45 434 0.16
p_hat500-2 36 132.98 15529 131.87
p_hat500-3 �49 �21600.00 1123599 13108.90
p_hat700-1 11 4.80 659 4.63
p_hat700-2 44 947.95 63467 760.73
p_hat700-3 �56 �21600.00 843109 17171.80
san1000 15 40.84 3959 40.84
san200_0.7_1 30 0.28 110 0.28
san200_0.7_2 18 0.59 170 0.59
san200_0.9_1 70 4.28 472 4.28
san200_0.9_2 60 92.10 8273 91.41
san200_0.9_3 44 317.33 22622 44.96
san400_0.5_1 13 0.88 289 0.88
san400_0.7_1 40 19.87 1846 19.87
san400_0.7_2 30 0.61 230 0.61
san400_0.7_3 22 69.50 31739 69.50
san400_0.9_1 100 2879.44 140049 2863.05
sanr200_0.7 18 23.09 8716 4.84
sanr200_0.9 42 7218.59 889090 4705.64
sanr400_0.5 13 39.87 13893 16.77
sanr400_0.7 21 12116.70 3945222 142.56
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Instance �C�� time BB node time best
brock200_1 21 65.62 49898591 10.42
brock200_2 12 0.09 63601 0.01
brock200_3 15 0.83 538998 0.01
brock200_4 17 3.55 2615051 2.45
brock400_1 �24 �21600.00 14490277876 2727.23
brock400_2 �29 �21600.00 12406507816 10024.70
brock400_3 �24 �21600.00 14167561520 43.71
brock400_4 �25 �21600.00 13252428065 1306.64
brock800_1 �21 �21600.00 11924335269 6186.32
brock800_2 �20 �21600.00 12770853038 661.74
brock800_3 �20 �21600.00 12614398127 516.45
brock800_4 �21 �21600.00 12759647069 18007.20
c-fat200-1 12 0.01 0 0.01
c-fat200-2 24 0.01 0 0.01
c-fat200-5 58 1610.14 268435427 0.01
c-fat500-1 14 0.01 0 0.01
c-fat500-10 126 0.01 0 0.01
c-fat500-2 26 0.01 0 0.01
c-fat500-5 64 0.01 0 0.01
hamming10-2 512 0.04 0 0.04
hamming10-4 �32 �21600.00 18303870490 0.04
hamming6-2 32 0.01 0 0.01
hamming6-4 4 0.01 244 0.01
hamming8-2 128 0.01 0 0.01
hamming8-4 16 13.67 7376219 0.01
johnson16-2-4 8 3.12 5283606 0.01
johnson32-2-4 �16 �21600.00 34855051398 0.01
johnson8-2-4 4 0.01 118 0.01
johnson8-4-4 14 0.03 21354 0.01
keller4 11 1.65 1730661 0.01
keller5 �24 �21600.00 12915872520 8441.08
keller6 �42 �21600.00 12874864511 16587.20
MANN_a27 �125 �21600.00 11643988970 0.01

Instance �C�� time BB node time best
MANN_a45 �342 �21600.00 161508694 0.04
MANN_a81 �1096 �21600.00 38270592 0.44
MANN_a9 16 0.37 914618 0.01
p_hat1000-1 10 3.58 1915600 0.59
p_hat1000-2 �41 �21600.00 13065534082 18375.60
p_hat1000-3 �57 �21600.00 8160533842 0.05
p_hat1500-1 12 33.01 14911432 7.46
p_hat1500-2 �54 �21600.00 9656215811 0.13
p_hat1500-3 �75 �21600.00 5710919557 0.09
p_hat300-1 8 0.04 12547 0.03
p_hat300-2 25 2.64 1875236 1.57
p_hat300-3 36 5130.16 3799786469 5060.56
p_hat500-1 9 0.21 97051 0.08
p_hat500-2 36 765.82 514123160 750.23
p_hat500-3 �43 �21600.00 14493361208 10507.70
p_hat700-1 11 0.77 369836 0.75
p_hat700-2 �43 �21600.00 13757000221 19388.70
p_hat700-3 �55 �21600.00 10018477007 0.03
san1000 �10 �21600.00 6778283814 15857.60
san200_0.7_1 30 9612.04 15173779790 7732.43
san200_0.7_2 �18 �21600.00 28862178896 125.52
san200_0.9_1 �48 �21600.00 28704419610 188.12
san200_0.9_2 �40 �21600.00 29184881874 149.41
san200_0.9_3 �41 �21600.00 14529190629 16681.00
san400_0.5_1 13 2959.04 1792740016 67.86
san400_0.7_1 �21 �21600.00 52122147749 0.01
san400_0.7_2 �17 �21600.00 42222707651 13552.50
san400_0.7_3 �18 �21600.00 18086248245 19524.60
san400_0.9_1 �51 �21600.00 53335357925 0.04
sanr200_0.7 18 12.87 9990266 1.99
sanr200_0.9 �38 �21600.00 17874776383 14637.60
sanr400_0.5 13 7.10 4704664 3.16
sanr400_0.7 21 10424.60 7297779208 31.15
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Instance �C�� time BB node time best
brock200_1 21 38.48 2313406 6.04
brock200_2 12 0.18 3513 0.04
brock200_3 15 0.93 31506 0.01
brock200_4 17 3.31 132683 2.21
brock400_1 �27 �21600.00 1047423133 16374.90
brock400_2 �29 �21600.00 739862823 4016.16
brock400_3 �25 �21600.00 1110106412 17712.80
brock400_4 �33 �21600.00 777584470 13970.40
brock800_1 �21 �21600.00 594675470 4962.09
brock800_2 �20 �21600.00 841028383 125.13
brock800_3 �21 �21600.00 642964603 15813.70
brock800_4 �21 �21600.00 701700371 11533.30
c-fat200-1 12 0.01 0 0.01
c-fat200-2 24 0.01 0 0.01
c-fat200-5 58 0.01 1 0.01
c-fat500-1 14 0.01 0 0.01
c-fat500-10 126 0.01 0 0.01
c-fat500-2 26 0.01 0 0.01
c-fat500-5 64 0.01 0 0.01
hamming10-2 512 0.05 0 0.04
hamming10-4 �32 �21600.00 1020866809 0.04
hamming6-2 32 0.01 0 0.01
hamming6-4 4 0.01 33 0.01
hamming8-2 128 0.01 0 0.01
hamming8-4 16 6.89 325009 0.01
johnson16-2-4 8 4.48 1176072 0.01
johnson32-2-4 �16 �21600.00 5329632229 0.01
johnson8-2-4 4 0.01 16 0.01
johnson8-4-4 14 0.01 1583 0.01
keller4 11 1.35 111281 0.01
keller5 �26 �21600.00 1732864000 77.07
keller6 �49 �21600.00 1288361166 13549.00
MANN_a27 �125 �21600.00 9041109994 0.01

Instance �C�� time BB node time best
MANN_a45 �342 �21600.00 2543670765 0.04
MANN_a81 �1096 �21600.00 131373252 0.40
MANN_a9 16 0.26 214418 0.01
p_hat1000-1 10 9.58 76968 1.03
p_hat1000-2 �41 �21600.00 1075709310 9191.15
p_hat1000-3 �57 �21600.00 686310486 0.04
p_hat1500-1 12 89.99 303215 22.06
p_hat1500-2 �54 �21600.00 573466783 0.11
p_hat1500-3 �75 �21600.00 115546349 0.11
p_hat300-1 8 0.07 396 0.05
p_hat300-2 25 2.36 141798 1.50
p_hat300-3 36 2089.43 188956559 2058.52
p_hat500-1 9 0.47 4949 0.10
p_hat500-2 36 432.19 30040329 423.45
p_hat500-3 �43 �21600.00 579118281 1552.59
p_hat700-1 11 1.97 22531 1.93
p_hat700-2 44 11511.00 797879323 7454.47
p_hat700-3 �55 �21600.00 255147097 0.03
san1000 �10 �21600.00 9715727 0.53
san200_0.7_1 30 12273.60 3005157458 8311.43
san200_0.7_2 �18 �21600.00 3699741669 90.64
san200_0.9_1 �48 �21600.00 14109733959 0.05
san200_0.9_2 �50 �21600.00 8644288228 13274.60
san200_0.9_3 �44 �21600.00 3364353803 4190.53
san400_0.5_1 13 3268.03 87018003 104.32
san400_0.7_1 �22 �21600.00 22309757207 0.05
san400_0.7_2 �30 �21600.00 2792819630 467.83
san400_0.7_3 �17 �21600.00 2256258217 38.98
san400_0.9_1 �51 �21600.00 14466752588 4187.63
sanr200_0.7 18 9.47 549793 1.40
sanr200_0.9 �40 �21600.00 2164491186 3444.67
sanr400_0.5 13 10.63 263236 4.88
sanr400_0.7 21 6102.07 281397830 59.25
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Instance �C�� time BB node time best
brock200_1 21 101.91 34433 19.88
brock200_2 12 0.61 304 0.19
brock200_3 15 3.79 1443 0.01
brock200_4 17 11.99 4660 8.78
brock400_1 �24 �21600.00 6437702 3177.50
brock400_2 �29 �21600.00 5169019 10605.70
brock400_3 �24 �21600.00 6132721 50.07
brock400_4 �25 �21600.00 5372791 1517.32
brock800_1 �21 �21600.00 6376737 15218.20
brock800_2 �20 �21600.00 7063522 2034.61
brock800_3 �20 �21600.00 6865329 1513.72
brock800_4 �20 �21600.00 6805505 197.59
c-fat200-1 12 0.01 0 0.01
c-fat200-2 24 0.01 0 0.01
c-fat200-5 58 0.01 1 0.01
c-fat500-1 14 0.01 0 0.01
c-fat500-10 126 0.01 0 0.01
c-fat500-2 26 0.01 0 0.01
c-fat500-5 64 0.01 0 0.01
hamming10-2 512 0.03 0 0.03
hamming10-4 �32 �21600.00 5274425 0.04
hamming6-2 32 0.01 0 0.01
hamming6-4 4 0.01 151 0.01
hamming8-2 128 0.01 0 0.01
hamming8-4 16 7.06 780 0.01
johnson16-2-4 8 8.88 151187 0.01
johnson32-2-4 �16 �21600.00 249525359 0.01
johnson8-2-4 4 0.01 63 0.01
johnson8-4-4 14 0.01 9 0.01
keller4 11 4.04 2137 0.04
keller5 �26 �21600.00 3179801 20082.10
keller6 �42 �21600.00 2676541 4068.44
MANN_a27 126 3215.23 23600 355.40

Instance �C�� time BB node time best
MANN_a45 �342 �21600.00 8657 0.04
MANN_a81 �1096 �21600.00 354 0.41
MANN_a9 16 0.01 13 0.01
p_hat1000-1 10 32.89 14555 1.82
p_hat1000-2 �44 �21600.00 1220347 6755.36
p_hat1000-3 �57 �21600.00 615050 0.06
p_hat1500-1 12 349.32 106611 77.79
p_hat1500-2 �54 �21600.00 596413 0.11
p_hat1500-3 �75 �21600.00 239075 0.12
p_hat300-1 8 0.23 195 0.14
p_hat300-2 25 2.61 397 1.87
p_hat300-3 36 670.13 91129 665.56
p_hat500-1 9 1.42 464 0.16
p_hat500-2 36 162.02 17853 160.61
p_hat500-3 �49 �21600.00 1178875 16212.30
p_hat700-1 11 4.76 920 4.58
p_hat700-2 44 1231.92 82805 961.12
p_hat700-3 �56 �21600.00 817371 17204.10
san1000 15 949.91 16632 949.89
san200_0.7_1 30 0.62 116 0.62
san200_0.7_2 18 0.48 103 0.48
san200_0.9_1 70 6.78 534 6.78
san200_0.9_2 60 516.05 63344 515.62
san200_0.9_3 44 307.38 25862 80.80
san400_0.5_1 13 2.86 409 2.85
san400_0.7_1 40 1848.61 269278 1848.61
san400_0.7_2 30 42.29 5155 42.27
san400_0.7_3 22 301.67 62033 301.67
san400_0.9_1 100 2768.34 171221 2735.33
sanr200_0.7 18 30.55 13650 6.33
sanr200_0.9 42 14301.40 2070622 9581.30
sanr400_0.5 13 43.49 18403 20.62
sanr400_0.7 21 17177.00 5543268 68.43
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Instance �C�� time BB node time best
brock200_1 21 73.67 26370 13.63
brock200_2 12 0.57 292 0.17
brock200_3 15 3.41 1408 0.01
brock200_4 17 9.01 3284 6.09
brock400_1 �27 �21600.00 5453784 20564.90
brock400_2 �29 �21600.00 4051058 5967.43
brock400_3 �24 �21600.00 5624812 238.21
brock400_4 33 18159.10 3555730 14828.00
brock800_1 �21 �21600.00 5343415 11248.50
brock800_2 �20 �21600.00 6253697 392.92
brock800_3 �20 �21600.00 5786058 360.20
brock800_4 �20 �21600.00 6119490 1147.72
c-fat200-1 12 0.01 0 0.01
c-fat200-2 24 0.01 0 0.01
c-fat200-5 58 0.01 1 0.01
c-fat500-1 14 0.01 0 0.01
c-fat500-10 126 0.01 0 0.01
c-fat500-2 26 0.01 0 0.01
c-fat500-5 64 0.01 0 0.01
hamming10-2 512 0.05 0 0.05
hamming10-4 �32 �21600.00 2167384 0.05
hamming6-2 32 0.01 0 0.01
hamming6-4 4 0.01 17 0.01
hamming8-2 128 0.01 0 0.01
hamming8-4 16 6.15 1147 0.01
johnson16-2-4 8 7.32 27155 0.01
johnson32-2-4 �16 �21600.00 42409426 0.01
johnson8-2-4 4 0.01 7 0.01
johnson8-4-4 14 0.03 12 0.01
keller4 11 2.01 926 0.01
keller5 �27 �21600.00 1425874 13052.20
keller6 �53 �21600.00 161322 3890.13
MANN_a27 126 2642.58 22057 266.29

Instance �C�� time BB node time best
MANN_a45 �342 �21600.00 10980 0.04
MANN_a81 �1096 �21600.00 478 0.39
MANN_a9 16 0.01 17 0.01
p_hat1000-1 10 30.50 11947 1.87
p_hat1000-2 �44 �21600.00 1189604 5798.74
p_hat1000-3 �57 �21600.00 627630 0.05
p_hat1500-1 12 343.22 110341 77.94
p_hat1500-2 �54 �21600.00 576100 0.10
p_hat1500-3 �75 �21600.00 245262 0.14
p_hat300-1 8 0.22 194 0.14
p_hat300-2 25 2.32 345 1.70
p_hat300-3 36 484.77 67445 481.38
p_hat500-1 9 1.44 422 0.17
p_hat500-2 36 133.47 14933 132.37
p_hat500-3 �49 �21600.00 1074573 13236.00
p_hat700-1 11 4.85 640 4.68
p_hat700-2 44 944.18 60713 753.65
p_hat700-3 �56 �21600.00 674314 12134.00
san1000 15 43.24 3919 43.24
san200_0.7_1 30 0.30 61 0.28
san200_0.7_2 18 0.62 124 0.62
san200_0.9_1 70 4.35 289 4.35
san200_0.9_2 60 97.01 8071 96.34
san200_0.9_3 44 334.02 22297 47.19
san400_0.5_1 13 0.83 288 0.83
san400_0.7_1 40 21.04 1751 21.01
san400_0.7_2 30 0.65 160 0.65
san400_0.7_3 22 74.18 31701 74.18
san400_0.9_1 100 2904.94 137044 2891.18
sanr200_0.7 18 23.38 8656 4.92
sanr200_0.9 42 7366.73 888517 4794.17
sanr400_0.5 13 40.25 13921 16.95
sanr400_0.7 21 12282.50 3945125 145.01
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Instance �C�� time BB node time best
brock200_1 21 40.99 40763864 39.03
brock200_2 12 0.08 47946 0.08
brock200_3 15 0.56 568162 0.56
brock200_4 17 1.26 1058449 0.74
brock400_1 �25 �21600.00 16744343445 1205.77
brock400_2 �25 �21600.00 17624720710 17604.70
brock400_3 �24 �21600.00 17960143939 57.82
brock400_4 �25 �21600.00 16569459718 3120.70
brock800_1 �21 �21600.00 15763475452 19926.40
brock800_2 �21 �21600.00 15364807482 11196.20
brock800_3 �22 �21600.00 12984394338 1519.60
brock800_4 �20 �21600.00 16035660281 1682.35
c-fat200-1 12 0.01 266 0.01
c-fat200-2 24 0.01 476 0.01
c-fat200-5 58 1822.34 268437253 0.01
c-fat500-1 14 0.05 591 0.05
c-fat500-10 126 0.12 8375 0.07
c-fat500-2 26 0.05 825 0.05
c-fat500-5 64 0.07 2516 0.06
hamming10-2 512 6.19 131840 2.23
hamming10-4 �32 �21600.00 32259594986 0.47
hamming6-2 32 0.01 560 0.01
hamming6-4 4 0.01 230 0.01
hamming8-2 128 0.07 8384 0.03
hamming8-4 16 5.80 3742273 0.01
johnson16-2-4 8 2.09 4177665 0.01
johnson32-2-4 �16 �21600.00 46937027805 0.06
johnson8-2-4 4 0.01 99 0.01
johnson8-4-4 14 0.01 8416 0.01
keller4 11 0.63 1003121 0.39
keller5 �20 �21600.00 34083725546 5854.36
keller6 �31 �21600.00 40974572043 13.46
MANN_a27 �117 �21600.00 8925632960 0.04

Instance �C�� time BB node time best
MANN_a45 �330 �21600.00 3033506091 0.90
MANN_a81 �1080 �21600.00 907536555 33.57
MANN_a9 16 0.08 274543 0.08
p_hat1000-1 10 3.17 1686442 0.45
p_hat1000-2 �46 �21600.00 15833817626 565.30
p_hat1000-3 �60 �21600.00 19385985248 3082.38
p_hat1500-1 12 27.54 15753173 26.98
p_hat1500-2 �61 �21600.00 16053867267 1.57
p_hat1500-3 �85 �21600.00 13435662980 630.48
p_hat300-1 8 0.04 8428 0.01
p_hat300-2 25 1.23 944950 0.03
p_hat300-3 36 1071.48 774525947 9.62
p_hat500-1 9 0.20 83943 0.07
p_hat500-2 36 159.23 100476737 0.39
p_hat500-3 �50 �21600.00 15316807664 6671.02
p_hat700-1 11 0.59 187935 0.19
p_hat700-2 44 7857.52 5022334663 356.73
p_hat700-3 �62 �21600.00 14841334382 9158.72
san1000 �8 �21600.00 40251583444 0.46
san200_0.7_1 �15 �21600.00 72167962008 0.01
san200_0.7_2 �12 �21600.00 73596061385 0.01
san200_0.9_1 �45 �21600.00 26762063204 0.01
san200_0.9_2 �35 �21600.00 36870465389 0.01
san200_0.9_3 �24 �21600.00 54510972529 0.01
san400_0.5_1 13 3257.59 4714133041 3257.58
san400_0.7_1 �20 �21600.00 63144249943 0.04
san400_0.7_2 �15 �21600.00 73952176568 0.04
san400_0.7_3 �12 �21600.00 76892809612 0.04
san400_0.9_1 �50 �21600.00 24266146323 0.03
sanr200_0.7 18 7.37 6506241 0.33
sanr200_0.9 �41 �21600.00 17875107504 6838.80
sanr400_0.5 13 3.80 2902155 2.67
sanr400_0.7 21 6432.37 5226950345 110.21
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Instance �C�� time BB node time best
brock200_1 21 52.65 3809437 49.99
brock200_2 12 0.13 3088 0.13
brock200_3 15 0.92 47432 0.92
brock200_4 17 1.99 82857 1.15
brock400_1 �25 �21600.00 1047235395 1444.47
brock400_2 �25 �21600.00 1185423407 21303.80
brock400_3 �24 �21600.00 1191320924 68.33
brock400_4 �25 �21600.00 1019550053 3801.54
brock800_1 �20 �21600.00 694985151 1830.39
brock800_2 �21 �21600.00 703074375 16067.30
brock800_3 �22 �21600.00 499594513 2190.91
brock800_4 �20 �21600.00 709682147 2368.43
c-fat200-1 12 0.01 211 0.01
c-fat200-2 24 0.01 223 0.01
c-fat200-5 58 0.01 257 0.01
c-fat500-1 14 0.05 513 0.05
c-fat500-10 126 0.11 625 0.07
c-fat500-2 26 0.05 525 0.05
c-fat500-5 64 0.08 563 0.06
hamming10-2 512 5.16 1535 1.24
hamming10-4 �32 �21600.00 5396081984 0.43
hamming6-2 32 0.01 95 0.01
hamming6-4 4 0.01 67 0.01
hamming8-2 128 0.07 383 0.01
hamming8-4 16 7.85 252454 0.01
johnson16-2-4 8 3.63 904465 0.01
johnson32-2-4 �16 �21600.00 7962372028 0.06
johnson8-2-4 4 0.01 31 0.01
johnson8-4-4 14 0.01 1084 0.01
keller4 11 0.92 133911 0.55
keller5 �20 �21600.00 5207232560 5602.99
keller6 �31 �21600.00 23153877676 13.26
MANN_a27 �117 �21600.00 23181265259 0.03

Instance �C�� time BB node time best
MANN_a45 �330 �21600.00 22952138384 0.67
MANN_a81 �1080 �21600.00 23566687196 22.86
MANN_a9 16 0.13 138787 0.13
p_hat1000-1 10 8.45 75156 0.47
p_hat1000-2 �46 �21600.00 2235855371 522.98
p_hat1000-3 �61 �21600.00 8438845622 16736.60
p_hat1500-1 12 84.23 703941 82.78
p_hat1500-2 �62 �21600.00 4575631546 17992.60
p_hat1500-3 �85 �21600.00 11872713614 171.21
p_hat300-1 8 0.05 363 0.01
p_hat300-2 25 1.90 107966 0.04
p_hat300-3 36 1365.33 95821409 10.16
p_hat500-1 9 0.40 4821 0.07
p_hat500-2 36 225.26 11681596 0.43
p_hat500-3 �50 �21600.00 2396804695 6468.78
p_hat700-1 11 1.29 10591 0.21
p_hat700-2 44 9758.65 628055012 367.07
p_hat700-3 �62 �21600.00 3073251854 7635.24
san1000 �8 �21600.00 3826623750 0.47
san200_0.7_1 �15 �21600.00 23884042229 0.01
san200_0.7_2 �12 �21600.00 21011103362 0.01
san200_0.9_1 �45 �21600.00 21781906220 0.01
san200_0.9_2 �35 �21600.00 22185945440 0.01
san200_0.9_3 �24 �21600.00 22523065742 0.01
san400_0.5_1 13 4876.80 450539488 4876.79
san400_0.7_1 �20 �21600.00 22963713648 0.05
san400_0.7_2 �15 �21600.00 23623596407 0.05
san400_0.7_3 �12 �21600.00 21108189660 0.04
san400_0.9_1 �50 �21600.00 22766607890 0.04
sanr200_0.7 18 10.35 530953 0.45
sanr200_0.9 �41 �21600.00 2160419473 6823.89
sanr400_0.5 13 7.89 178928 5.38
sanr400_0.7 21 8831.31 376886905 141.77
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Instance �C�� time BB node time best
brock200_1 21 91.26 42767 87.42
brock200_2 12 0.24 377 0.24
brock200_3 15 3.49 2839 3.49
brock200_4 17 4.63 2457 3.02
brock400_1 �25 �21600.00 5998687 1649.73
brock400_2 �25 �21600.00 6710250 20981.70
brock400_3 �24 �21600.00 6745388 68.26
brock400_4 �25 �21600.00 5902546 3721.87
brock800_1 �20 �21600.00 7531481 3743.90
brock800_2 �20 �21600.00 7516642 885.72
brock800_3 �22 �21600.00 5747476 4013.31
brock800_4 �20 �21600.00 7490461 4766.56
c-fat200-1 12 0.01 266 0.01
c-fat200-2 24 0.03 476 0.03
c-fat200-5 58 0.53 1853 0.51
c-fat500-1 14 0.06 591 0.05
c-fat500-10 126 9.65 8375 9.61
c-fat500-2 26 0.08 825 0.07
c-fat500-5 64 0.80 2516 0.78
hamming10-2 512 2425.72 131840 2421.76
hamming10-4 �32 �21600.00 5939826 0.49
hamming6-2 32 0.06 560 0.06
hamming6-4 4 0.01 230 0.01
hamming8-2 128 10.29 8384 10.24
hamming8-4 16 2.75 862 0.01
johnson16-2-4 8 11.10 122781 0.01
johnson32-2-4 �16 �21600.00 15120429 0.06
johnson8-2-4 4 0.01 99 0.01
johnson8-4-4 14 0.01 164 0.01
keller4 11 2.01 2947 0.94
keller5 �20 �21600.00 13132294 1846.73
keller6 �39 �21600.00 1306103 1744.38
MANN_a27 126 887.82 26396 167.96

Instance �C�� time BB node time best
MANN_a45 �342 �21600.00 107901 2032.58
MANN_a81 �848 �21600.00 360102 21224.50
MANN_a9 16 0.01 178 0.01
p_hat1000-1 10 19.10 13404 0.49
p_hat1000-2 �46 �21600.00 1379492 6.54
p_hat1000-3 �64 �21600.00 1200137 1973.85
p_hat1500-1 12 235.02 107530 234.21
p_hat1500-2 �65 �21600.00 844836 8819.92
p_hat1500-3 �92 �21600.00 443039 7084.69
p_hat300-1 8 0.04 328 0.01
p_hat300-2 25 0.83 630 0.05
p_hat300-3 36 165.33 18873 0.61
p_hat500-1 9 0.29 560 0.07
p_hat500-2 36 34.57 4163 0.19
p_hat500-3 �50 �21600.00 1183948 38.64
p_hat700-1 11 0.73 758 0.20
p_hat700-2 44 447.60 30107 11.51
p_hat700-3 �62 �21600.00 941276 2.53
san1000 15 101.81 8185 101.60
san200_0.7_1 30 0.43 675 0.43
san200_0.7_2 18 0.26 358 0.25
san200_0.9_1 70 1.88 2615 1.88
san200_0.9_2 60 2.06 2078 2.05
san200_0.9_3 44 449.27 69006 449.27
san400_0.5_1 13 1.23 525 1.22
san400_0.7_1 40 13.14 3017 13.13
san400_0.7_2 30 97.36 11358 97.36
san400_0.7_3 22 606.96 145060 606.96
san400_0.9_1 100 534.17 35170 534.16
sanr200_0.7 18 21.38 9449 1.03
sanr200_0.9 42 7010.62 1007007 5937.11
sanr400_0.5 13 25.41 12476 19.10
sanr400_0.7 21 13619.40 4762337 254.64
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Instance �C�� time BB node time best
brock200_1 21 92.73 40856 88.77
brock200_2 12 0.27 312 0.27
brock200_3 15 3.65 2694 3.65
brock200_4 17 4.92 2295 3.20
brock400_1 �25 �21600.00 5705834 1607.69
brock400_2 �25 �21600.00 6428350 20814.80
brock400_3 �24 �21600.00 6504665 67.62
brock400_4 �25 �21600.00 5702967 3704.13
brock800_1 �20 �21600.00 7062587 3779.79
brock800_2 �20 �21600.00 7019896 894.75
brock800_3 �22 �21600.00 5381786 4083.26
brock800_4 �20 �21600.00 6979390 4839.30
c-fat200-1 12 0.01 211 0.01
c-fat200-2 24 0.01 223 0.01
c-fat200-5 58 0.01 257 0.01
c-fat500-1 14 0.04 513 0.04
c-fat500-10 126 0.13 625 0.08
c-fat500-2 26 0.06 525 0.05
c-fat500-5 64 0.06 563 0.05
hamming10-2 512 5.22 1535 1.27
hamming10-4 �32 �21600.00 5795183 0.42
hamming6-2 32 0.01 95 0.01
hamming6-4 4 0.01 67 0.01
hamming8-2 128 0.07 383 0.01
hamming8-4 16 3.20 733 0.01
johnson16-2-4 8 12.23 58009 0.01
johnson32-2-4 �16 �21600.00 14886797 0.05
johnson8-2-4 4 0.01 31 0.01
johnson8-4-4 14 0.01 92 0.01
keller4 11 1.99 3043 0.94
keller5 �20 �21600.00 13350366 1619.28
keller6 �39 �21600.00 1170365 1493.98
MANN_a27 126 1833.36 25867 324.82

Instance �C�� time BB node time best
MANN_a45 �342 �21600.00 17512 1753.16
MANN_a81 �1080 �21600.00 5143 22.95
MANN_a9 16 0.01 129 0.01
p_hat1000-1 10 22.46 12837 0.50
p_hat1000-2 �46 �21600.00 1386354 5.11
p_hat1000-3 �65 �21600.00 1183638 20679.90
p_hat1500-1 12 274.43 106328 272.96
p_hat1500-2 �65 �21600.00 835237 6833.05
p_hat1500-3 �92 �21600.00 412249 5213.79
p_hat300-1 8 0.05 309 0.01
p_hat300-2 25 0.92 361 0.01
p_hat300-3 36 166.16 17439 0.51
p_hat500-1 9 0.44 529 0.08
p_hat500-2 36 36.35 3579 0.11
p_hat500-3 �50 �21600.00 1134209 32.67
p_hat700-1 11 1.26 721 0.23
p_hat700-2 44 456.30 27572 9.88
p_hat700-3 �62 �21600.00 939722 1.43
san1000 15 142.59 9769 142.30
san200_0.7_1 30 0.41 440 0.41
san200_0.7_2 18 0.29 386 0.28
san200_0.9_1 70 0.90 726 0.90
san200_0.9_2 60 1.64 827 1.62
san200_0.9_3 44 447.97 66651 447.97
san400_0.5_1 13 1.61 714 1.60
san400_0.7_1 40 14.24 2570 14.23
san400_0.7_2 30 114.90 12762 114.90
san400_0.7_3 22 766.37 178388 766.37
san400_0.9_1 100 493.40 27224 493.37
sanr200_0.7 18 21.82 8887 1.03
sanr200_0.9 42 6853.37 859718 5798.95
sanr400_0.5 13 27.65 12097 20.62
sanr400_0.7 21 13877.50 4531210 255.15
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B.4 Combined Statistics

When collecting all results of the previously presented tables, we have a database of more than
1300 different experiments. The following tables analyze the collected data. We group those
of the 1300 experiments that have used a certain technique and compare them to those that
have not used it (see also Sec. 10.3.5). The classification categories are described in Sec. B.2.

Summary: Domain Filtering versus no Domain Filtering

domain filtering no domain filtering
Instances: 660 660
within timelimit: 401 395
best�C��: 639 606
fastest termination for best�C��: 447 532
best�C�� with fewest bb nodes: 560 140
fastest termination for best�C��
with fewest bb nodes: 418 87
fastest best�C�� found: 440 446
overall best: 426 274
total time : 1657.14 h 1682.17 h
total size : 37394 37461

Summary: Coloring Bounds versus no Coloring Bounds

using �8 not using �8

Instances: 660 660
within timelimit: 461 335
best�C��: 641 490
fastest termination for best�C��: 343 537
best�C�� with fewest bb nodes: 490 245
fastest termination for best�C��
with fewest bb nodes: 343 74
fastest best�C�� found: 292 481
overall best: 424 304
total time : 1298.26 h 2041.06 h
total size : 39623 35232
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Summary: Domain Filtering plus Coloring Bounds versus Either of
Both

�8 + DF �8, no DF
Instances: 330 330
within timelimit: 231 230
best�C��: 328 314
fastest termination for best�C��: 238 250
best�C�� with fewest bb nodes: 274 78
fastest termination for best�C��
with fewest bb nodes: 216 59
fastest best�C�� found: 237 215
overall best: 226 126
total time : 646.49 h 651.77 h
total size : 19800 19823

�8 + DF not using �8, but DF
Instances: 330 330
within timelimit: 231 170
best�C��: 322 247
fastest termination for best�C��: 177 271
best�C�� with fewest bb nodes: 247 129
fastest termination for best�C��
with fewest bb nodes: 177 45
fastest best�C�� found: 151 246
overall best: 217 158
total time : 646.49 h 1010.65 h
total size : 19800 17594

Summary: Heuristics versus no Heuristics

using heuristics not using heuristics
Instances: 528 528
within timelimit: 323 313
best�C��: 524 468
fastest termination for best�C��: 408 444
best�C�� with fewest bb nodes: 400 133
fastest termination for best�C��
with fewest bb nodes: 342 75
fastest best�C�� found: 398 354
overall best: 389 142
total time : 1311.35 h 1376.61 h
total size : 31970 27283



218 B Numerical Results for Maximum Clique

Summary: Reordering versus Static Order

re-ordering static ordering
Instances: 528 528
within timelimit: 318 318
best�C��: 485 491
fastest termination for best�C��: 380 397
best�C�� with fewest bb nodes: 316 277
fastest termination for best�C��
with fewest bb nodes: 291 247
fastest best�C�� found: 336 357
overall best: 276 313
total time : 1348.22 h 1339.74 h
total size : 29214 30039

B.5 Random Graphs

We presented diagrams for convergence of various techniques on random graphs in Sec. 10.4.
In the following figures we split these diagrams, thus allowing a more detailed view of the
behavior of each individual technique.
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So eine Arbeit wird eigentlich nie fertig,

man muß sie für fertig erklären,

wenn man nach Zeit und Umständen

das möglichste getan hat.6

Johann Wolfgang Goethe (1749 – 1832),
Italienische Reise, 16. März 1787 [32].

6Such work is never finished; one must declare it so when, according to time and circumstances, one has done
one’s best. (non-authorized translation)
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