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Abstract

We provide in this thesis our contribution in the area of reconfigurable system synthesis. We
consider reconfigurable systems constructed from one or more general purpose processors (GPP)
and a set of reconfigurable processing units (RPU). Given an application to be implemented on this
architecture, a hardware/software partitioning step is used to differentiate between the part of the
application to be executed on the hardware and the part to be executed in software. The synthesis
of a reconfigurable system consists of the hardware/software partitioning process as well as the
implementation of the software part on the GPP and the hardware part on the RPU. The part to be
implemented on the RPU is provided as a dataflow graph (DFG). This thesis deals with the part of
the application to be implemented on the RPUs. The RPUs targeted are field programmable gate
arrays (FPGAs). Because the DFGs to be implemented in the FPGAs are usually too large to fit in a
single FPGA, they must be partitioned in to blocks. These blocks are then successively downloaded
in to the FPGA to compute the desired function. If the FPGA can not be partially reconfigured, then
the blocks are used to configure the entire device. In this case, the partitioning process is called
temporal partitioning otherwise it is atemporal placement. Our contribution consists of the
development of various algorithms to solve the temporal partitioning and the temporal placement
problems.
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Chapter 1

Introduction

General purpose processors offer the possibility to implement all kinds of functions using the same
device. Although highly flexible, general purpose computing relies in general on very high clock
rates for performance. Instruction execution incurs significant overhead because of the reliance
on the Von Neumann paradigm. First, an instruction is fetched and decoded, then the operands
are read and the operation coded in the instruction to be executed. Finally, the result is stored in
memory.
When a dataflow oriented function is expected to be too slow on a general purpose processor, it is
time to consider a hardware implementation. This is usually done in an ASIC (Application Specific
Integrated Circuit) in which the function is hardwired once and cannot be changed again. Hardware
implementation on ASICs is usually efficient. First, because the overhead caused by the instruction
fetching and decoding, the reading and storage of data is removed. Second, because the ASIC is
optimized for only one function. ASICs are, in turn, not flexible. Functions implemented in ASIC
devices will remain unchanged for the life of the device. Moreover implementing a function in
ASIC is a long and difficult process which incurs high NRE (non recurring engineering) cost. This
cost can only be amortized for a very high volume production. Ideally, we would like to have the
flexibility of the GPP and the efficiency of the ASIC in one device, which can be used to implement
different functions independently of the volume required to amortize the NRE cost.
Combining the flexibility of the GPP and the efficiency of ASIC in one device has been proven to
be a good solution. A new class of processing unit called a reconfigurable processing unit (RPU)
has been created and their performance has been shown to be far greater than those of the GPP.
RPUs have opened up new possibilities in ASIC emulation by reducing the NRE cost. It has also
spawned a new research field -Reconfigurable Computing- based on the integration of variable
hardware in general purpose computing.

1.1 Early Work

The first work on reconfigurable computing (RC) was done by Gerald Estrin in the 60’s [51, 50,
49]. Estrin designed a system, thefix-plus machine, consisting of 3 elements: a GPP, a variable
hardware and a supervisory unit. The fix-plus machine was intended to be used for accelerating
Eigenvalues computation of matrices [51]. The available technology at that time made the use of
the fix-plus machine difficult. Reconfiguration had to be done by hand, and substantial software
efforts were required to implement applications. In the year 1977, Rammig [114] proposed a
concept for editing hardware. Similar to the today’s Field Programmable Gate Array architecture,
the editor was based upon a set of modules, a set of pins and a one to one mapping function
on the set of pins. A circuitry was then defined as a “string” on an alphabet of two letter (w
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16 CHAPTER 1. INTRODUCTION

= “wired” and u = “unwired”). In order to build the hardware editor, selectors were provided
with the modules output connected to the input of the selectors and the output of the selectors
connected to the input of the modules. This structure was similar to that of switch boxes which
are used inside Complex Programmable Logic Devices (CPLDS) and FPGAs. The introduction of
commercial Field Programmable Gate Arrays by Xilinx in the mid-1980s [28] increased interest in
reconfigurable computing. Since then, many experiments have been done and many reconfigurable
systems have been built. The most popular experiments include the work on the programmable
active memories (PAM) done at the DEC research center in Paris [126, 107], the SPLASH system
of the Supercomputer Research Center, the work of Thomas Kean at the university of Edingburgh
[92] and the XPuter of the university of Kaiserslauten [77, 76].
Many authors use different terminologies to categorize the various types of reconfigurable systems.
A functional classification of reconfigurable systems can proceed as follows:

� Application Specific Processor (ASP): An ASP is a device tailored to compute a type
of application at a given time. ASPs were the first machines to exploit the advantages of
reconfiguration. They were built to perform special purpose computation and not intended
to be very flexible. This programmable device is used for prototyping of ASIC function.
The Ganglion and the RRANN [45] machines are examples of ASPs built for neural network
computations. Other applications of ASPs include, but are not limited to statistical physics,
embedded control and rapid prototyping.

� Custom Instruction Set Processors (CISP): For each application which has to be imple-
mented on this system, an optimal set of instructions for the reconfigurable logic is synthe-
sized. Most of them are used tightly with a GPP. The functions configured into the RPU are
viewed by the host as other instructions available to the processor. It can be replaced indefi-
nitely to accommodate new sets of instructions required by an application. Instructions can
be dynamically replaced by new ones when there is no more need. Among those systems
are, the Processor Reconfiguration trough Instruction Set Metamorphosis (PRISM) [10], the
Xputer [76, 77], the Dynamic Instruction Set Computer (DISC) [128]

� Reconfigurable Supercomputer (RS): These are machines with a large amount of RPUs
connected together in a stand alone system. They are normally connected to a host processor
by a high bandwidth bus. A large amount of memory is available on those systems. Recon-
figurable Supercomputers differ from ASPs only in their scale and the size of applications
they implement. Among those systems we can cite the programmable active memory (PAM)
developed by DEC [126, 107]. The PAM has been successfully tested and provided the
fasted Rivest-Shamir-Adleman (RSA) Cryptography implementation to that date [126]. We
can also cite the SPLASH [24], a systolic array developed by the Supercomputing Research
Center in 1988. SPLAH connects up to 16 boards with an array of up to 16 FPGAs on each
board. The second version, the SPLASH II has been successfully used in many Applications
including searching of a genetic database, fingerprint and text and image processing.

� Reconfigurable System on a Chip (RSoC): A RSoC incorporates a processor, a memory
and a reconfigurable unit on the same die. The first concept for a RSoC was provided in the
Garp [78] architecture and the NAPA 1000 [5]. The first RSoCs on the market were designed
for embedded control processing. On the Atmel FPGA, a processor with a few megahertz
was connected to a small size FPGA and a small size memory. Rapid advancements in
technology have allowed for the immersion of hard core processors with up to a few hundred
megahertz today inside a device with millions of gates. This provides more than 10 times
the performance of a reconfigurable supercomputer on a chip. The most recent examples of
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high performance RSoCs are the Excalibur system of Altera [86] and the Xilinx Virtex II
Pro [4]. In the Xilinx Virtex II pro, up to four 32-bits IBM PowerPC hard-cores with 300
MHZ are immersed in the chip in such a way that the placement of other modules on the
FPGA surface device can not be disturbed. The ARM-based Excalibur of Altera features one
RM922T processor with 200 MIPS performance and integrates on board memory, external
interfaces and standard peripherals.

1.2 Challenges

Most of the successful experiments done with FPGA were limited to the area of Rapid Proto-
typing, focusing on the porting of functions already implemented for ASIC on the FPGAs. The
devices are configured once before the execution of an application. The configuration remains
until the end of the execution. While FPGA performance and flexibility have been aptly demon-
strated, [76, 77, 126, 107, 5], reconfigurable computing has not taken great advantage of these
strengths. Reconfigurable computing is characterized by the integration of the general purpose
computing paradigm and reconfigurability in a computing system to increase performance and the
flexibility. Thus, a typical reconfigurable system will consist of a processor and a reconfigurable
device to work in close cooperation. The processor will not only be used to reconfigure the re-
configurable device and to move data to and from the reconfigurable device, but it will compute in
parallel on a different set of data. The role of a reconfigurable device should not be relegated to
that of a static device which is configured once for each application. The functions implemented
in the reconfigurable device should also change with time to accommodate new functions. The
implementation of functions on such systems requires a viable design methodology and viable
compilers. Further, classes of applications that could benefit from such technology should be iden-
tified and implemented. Although hundreds of reconfigurable systems exist around the world, it
is not always easy to find examples in which the computation takes place on both the processor
and the reconfigurable device, and where the reconfigurable device is partly or fully reconfigured
during computation. This is due to many factors:

� lack of an appropriate design methodology :
The difficulty of understanding both the design process and reconfigurable systems program-
ming is a significant barrier. The capabilities offered by such systems remain unknown by
people unfamiliar with hardware programming. The implementation of algorithms in FP-
GAs is usually done in an ASIC-like fashion. The programmer starts with a specification of
the algorithm in a Hardware description language (VHDL, Verilog, etc). The design has to be
compiled, synthesized, simulated, placed and routed and finally the produced configuration,
or bitstream, is downloaded in the FPGAs. In order to implement efficient designs, issues
like clocking, pipelining, reconfiguration overhead have to be considered. If the FPGAs
are integrated in a reconfigurable computing environment in which they compute in parallel
to the GPP, then a synchronization mechanism should be considered between the processor
and the FPGA. While FPGA-design time remains drastically shorter then ASIC-design time,
implementing a function in FPGA can still take days, weeks, or even months. This is not ac-
ceptable for a software programmer or a mechanical engineer, who is used to implementing
applications on a general purpose computer in few minutes or hours with far less difficulty
and knowledge than required by FPGA programming tools. Applications for which a run-
time reconfiguration is required are those which are too big to fit in the FPGA device. They
must be partitioned in segments which will be successively executed in the FPGA. This pro-
cess is known astemporal partitioning for non partial reconfigurable FPGAs andtemporal
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placement for partial reconfigurable device. Since very little investigation has been done in
temporal partitioning and temporal placement, they represent a great challenge for the future
of reconfigurable computing.

� lack of appropriate compiler :
Ideally, we wish to provide potential programmers of reconfigurable systems with a uni-
versal environment in which all the difficulty of hardware programming is hidden. In such
an environment, when a program is written in a high level language like C and C++, an
equivalent workable and easy to modify code for a given reconfigurable system should be
automatically generated. The user will program for a reconfigurable architecture without
having to deal with issues like hardware/software partitioning, task distribution, simulation,
timing analysis and hardware reconfiguration. The system should do the job for the user. For
a distributed reconfigurable system1, the generation of a parallel program from a sequential
program as well as the task distribution on the computing elements have to be considered.
Systems which offer the capabilities listed here are almost non existent.

� difficulty to modify existing configurations :
The current FPGA design methodologies have been developed for ASIC implementation.
They have the drawback of generating only fixed designs for a variable hardware structure.
The designer cannot modify his design without running the complete steps (HDL-Synthesis-
Place and Route), a process which is too long and difficult to be used in run-time recon-
figurable environments. We would like have the possibility to modify our configurations
quickly and with less effort. In order to be able to partially reconfigure the device, program-
mers should be able to select the part of the device to be replaced at a particularly time.
The design should be placed and routed in such a way that the replacement of a part of the
running code should not affect the rest of the design. That means modules to be replaced
should not share a surface with other modules, a condition which requires great efforts to be
fulfilled when implementing FPGAs with common design tools.

� high reconfiguration overhead :
Until now, very few systems have implemented run-time reconfiguration [82, 66]. Apart
from the lack of compiler and design methodologies, the reconfiguration time of the device
has been a great bottleneck. Due to the large amount of data to be downloaded into the
FPGA, the time needed for full reconfiguration is too high compared to the computation time,
thus making the use of FPGAs for reconfigurable computing difficult. No great investigation
of the partial reconfigurable devices has yet been done in order to reduce the reconfiguration
overhead and increase the overall performance of reconfigurable devices.

� difficulty to identify application domains :
Although the range of applications that could benefit from the reconfiguration is large, few
experiments have shown a workable system integrating computation and reconfiguration
[82, 66]. The inability for researchers to provide applications which justify the use of FPGAs
in reconfigurable computing has hindered investigations in compilers and slowed down the
development of tools to ease the implementation on reconfigurable systems.

The points previously mentioned represent big challenges in reconfigurable computing for which
we provide our contribution in this thesis.

1A distributed reconfigurable system is a one system in which many reconfigurable platforms are connected to-
gether in a network.
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1.3 This Thesis

Our contribution in the field of reconfigurable computing is done in the development of various
algorithms to solve the temporal partitioning and temporal placement problem and the development
of a simple and useful design environment for reconfigurable computing.

� Temporal partitioning and temporal placement :
Functions that are too large to fit in one FPGAs are partitioned in different sections which
are successively downloaded into the FPGA in accordance with a predefine schedule. Tem-
poral partitioning normally targets non partial reconfiguration devices. Temporal placement
defines for each module the time at which it will be mapped into the FPGA for computation.
Additionally the position of the module inside the FPGA is given. Using partial reconfig-
urable devices, parts of the device can be replaced while the remaining part is still active.
This is useful for example in systems which have to implement many modules at different
period of time on the same device. Modules should be exchanged without disturbing the rest
of the design. For temporal partitioning and temporal placement, efficient algorithms are
required. In this work, we provide different solutions for each of those two problems as well
as criteria for choosing the appropriate one.

– Temporal partitioning :
We have developed two methods to solve the temporal partitioning problem and pro-
vide motivations and reasons for choosing one of the solutions. The first one is an
enhancement of the well knownlist scheduling method. A DFG is first partitioned us-
ing a list scheduling approach in which we introduced an area optimization step. The
enhancement selects the next modules to be placed on the FPGA on the basis of the
modules already assigned. The goal is to maximize the coexistence of two consecutive
partitions on the device (configuration switching). After the partitioning process, a two
dimensionalspectral placement method is used to assign modules at their definitive lo-
cations on the FPGA. The second method uses a three dimensional spectral placement
to position the modules in a three dimensional vector space. The partitioning is done
by picking component along the time-axis in increasing order of the time-coordinates.
Since we use an incremental partitioning method which does not guaranty a cycle free
configuration graph, the Kernighan-Lin (KL) [93, 53, 98] algorithm is used to move the
nodes of the graph from one partition to the other to insure an unidirectional partition.
We introduce a modified gain function adapted to our need. The goal is not a minimum
cut size like it is the case in many KL-FM algorithms, but a partition with all the edges
converging in the same direction.

– Temporal placement :
Since partial reconfiguration is device dependent, we first take a look on the practice of
partial reconfiguration on the Virtex FPGA [4] that we target in this work. This helps us
define an implementation scheme based on afirst-fit placement of clusters on the FPGA
on the time-axis. We then provide two methods to compute the clusters of components
to be placed. The first one is a level assignment approach similar to the list scheduling
partitioning method and the second is a spectral clustering method. With the spectral
clustering method, the components of the given DFG are first mapped into a 2-D vector
space. Acluster growth approach is then used to build the clusters which represent the
partitions needed to reconfigure the FPGA. With this method, connected modules are
placed in the same packets which are used to partly reconfigure the device. With our
method, it is not only possible to compute a temporal placement at compile-time, but
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also at run-time. Once a temporal placement is computed, a sequence of packets is
generated for the sequence of configurations. The objective is to compute a sequence
of packets with minimum weight for a given function.

– Evaluation :
We define a measure of quality and use it to evaluate our different methods on a bench-
mark of randomly generated graphs.

� Simple and useful design environment :
We have developed theCoreMap design environment [20] for an easy and fast program-
ming of FPGAs. We follow a coarse grain approach to specify algorithms to be implemented.
Operators, data and control sequences build the kernel of our components. Intellectual prop-
erty (IP) cores implement operators like adders, multiplier, etc.... Control sequences are
implemented using state machines, comparators and multiplexers.
At the moment, the CoreMap provides support for the Xilinx Virtex FPGAs but can easily
be extended to target many other FPGA devices. A design can be captured or loaded in a
graphical editor. Modules can be selected from a library, placed and connected together on
a graphical representation of the FPGA surface. A fast synthesis of the DFG permits the
generation of configurations to program the FPGAs in few seconds. With this, it is possible
for the designer to modify the design and quickly generate a new configuration. CoreMap
also integrates our temporal partitioning and placement methods. Therefore a large design
can be partitioned and successively emulated on one FPGA.

1.4 Structure of the Work

The rest of the thesis is organized as follow: Chapter 2 presents the architecture targeted in this
work and presents a computation flow in which the FPGA and the CPU compute in parallel to
solve a given problem. In chapter 3 we provide the definition of terms which are used in the
thesis. We also provide background and formally state the problems to be solved in this thesis.
The related work is the subject of chapter 4. We present the work of various authors in the area of
temporal partitioning and temporal placement and highlight the advantages of each method as well
as the differences between the different methods. Chapter 5 represents the main part of the thesis.
In this chapter, we present the methods which were developed to solve the temporal partitioning
and temporal placement problem. The result of the implementation of the different method on a
benchmark of randomly generated graphs are presented in chapter 6. The algorithms developed
in chapter 5 are implemented in the CoreMap design environment that we describe in chapter 7.
Chapter 8 concludes the work and gives some indications of future work.



Chapter 2

Target Architectures

This chapter provides a brief overview on the FPGA technologies as well as the implementation
methodologies. We present the target architecture and propose a computation flow in which the
processor is not only used to move data to and from the FPGA, but also to compute with the FPGA
in parallel on a different set of data.

2.1 Field Programmable Gate Arrays

2.1.1 Introduction

Time to market as well as time on the market is crucial in the electronic design business. Electronic
manufacturers should bring their products as fast as possible on the market in order to amortize the
development costs. On the other hand, electronic devices should remain on the market as long as
possible. This requires a fast elaboration of prototypes and the possibility to modify the behavior
of existing systems. FPGAs have emerged as the ultimate solution to reduce the time to market
of electronic products. The supply of skilled hardware programmers capable of dealing with the
complexities of FPGA implementation, constrains the number of potential FPGA applications.
Broad applications are possible, as FPGAs can be used to implement systems which change their
behavior to adapt to new environments. FPGAs can be also be used as stand alone devices to
control a given process, or they can be coupled with other computation modules like processors in
a given system.
FPGAs are a hybrid solution between programmable logic arrays (PLA) and mask programmable
gate arrays (MPGA). Like PLA they are fully electrically programmable by the end user. Like
MPGAs they can implement very complex functions. Since their introduction in 1985 by the
Xilinx company [28], their capacity has increased from a few hundred gates in the last decade, to
a few million gates today. The best known varieties of FPGA technologies are the anti-fuse and
the SRAM based FPGAs. In the first case, special anti-fuses are included at each customization
point. The two-terminal elements are normally disconnected, but by applying a high voltage, the
terminals permanently connected. Since ”blowing” an anti-fuse should be an infrequent operation,
anti-fuse based FPGAs are not suitable for devices which must be frequently reprogrammed, as is
the case in reconfigurable computing. The second and more widely used type of FPGA is SRAM
based. SRAM bits are connected to configuration points in the FPGA. The FPGA is configured or
programmed by setting the desired value of the SRAM to match a given boolean function. In this
way, a SRAM based FPGA can be programmed indefinitely. It is the SRAM based FPGAs that is
the focus of this work.

21
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2.1.2 Architecture

An FPGA is an array of processing elements called a configurable logic block (CLB) which can
be connected via an array of programmable interconnection elements (Fig 2.1).

Switch Box

Routing Resources
Logic Block

IO Block

Figure 2.1: Structure of a FPGA [34]

Configurable Logic Block (CLB)

For the sake of simplicity, we’ve standardized on the Xilinx terminology (CLB) for the processing
elements. This terminology can vary from vendor to vendor, but the meaning is almost the same.
A CLB is constructed from the following components:

1. Look up tables (LUT): A CLB contains a certain number1 of LUTs that are the basic com-
puting elements inside FPGAs. An n-input LUT is an n-address memory used to store the
2n possible values of an n-inputs boolean function. With a n-input LUT it is possible to
implement any function withn variables. The values of the function for any combination of
the n variables is computed and stored in the LUT. The actual variables are used to address
the LUT at the location where the correct value is stored. The result appears at the LUT
output.

2. Flip Flops (FF): Flip flop are used to temporally store values. The value to be store in the
FF can be the LUT-output or a signal with an external source.

3. Multiplexers (MUX) : Multiplexers are used in CLBs to connect the LUT-output or another
CLB-input signal to the FF-input or to a CLB-output

Fig 2.2 shows the Xilinx Virtex CLB which is used as reconfigurable processing unit (RPU) in this
work.

Programmable Interconnections

The routing architecture of FPGAs consists of horizontal and vertical wires to connect the inputs
and outputs of CLBs in different rows and columns. Additionally switch boxes exist to allow the
programming of interconnections (Fig 2.1). The CLBs are embedded in the routing structure. The
switch boxes provide programmable multiplexers, which are used to select the signals in the given
routing channel that should be connected to the CLB terminals. The switch boxes can also connect
vertical and horizontal lines, thus making a routing possible on the FPGA.

1Typically 2 or 4 inputs LUT
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Figure 2.2: A Xilinx Virtex CLB [2]

2.2 Coupling

As explained in section 1.1, reconfigurable devices are often coupled with a host processor. The
”distance”2 between the host processor and the reconfigurable hardware defines the frequency
of the reconfiguration. On one end, we have systems which are designed to be used in stand
alone mode. They are not frequently reconfigured. The host processor is used only to download
the bitstream in to the reconfigurable device. Once the bitstream has been downloaded into the
reconfigurable device, the system is decoupled from the host processor and the reconfigurable
device operates as an ASIC in the new environment. Often the bitstream is kept in an EPROM
from where it is downloaded in the FPGA once the system is switched on. An example of such
system is the rapid prototyping environment for mechatronic systems RABBIT [106]. On the other
end are systems in which the FPGA is frequently accessed by a host processor. The host processor
is not only used to reconfigure the FPGA, but also to manage the data and functions to be computed
in the FPGA. Since the FPGA is viewed as a kind of function accelerator, part of the FPGA can be
reconfigured to accommodate new instructions and functions in the FPGA. Registers are used by
the host processor to access the FPGA and temporally hold the results of computations, when the
device is reconfigured. This is the case in systems like the RC-1000 of Celoxica [1], the RAPTOR
[88] and the Spyder [47]. Between those two coupling strategies exist a large number of coupling
strategies in which the “distance” between the GPP and the FPGA depend on the functionality of
the system.

2.3 Hardware Software Partitioning

For systems that integrate both, a GPP and a reconfigurable hardware, the task of the system
must first be partitioned into two parts. This process is called hardware-software partitioning
or hardware-software co design. One part will be executed on the GPP and the other on the
reconfigurable hardware. In general, complex control sequences are executed on the GPP while
data path operations are more optimally executed in hardware. A considerable amount of work
has been done in the past in the area of hardware-software co design [71, 72, 74, 73, 89, 23]. The
hardware-software partitioning can be done manually or automatically by appropriate compilers
[113]. Hardware-software partitioning is not within the scope of this work. We assume that this

2The term distance is used to express how tightly a processor can cooperate with the FPGA during a computation
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step has been done and that sections of the program to be implemented in software are available,
and the task to be executed on the reconfigurable device is available as a DFG. For the latter, the
following design flow is used in general to program the FPGA.

2.4 Design Flow

The most used methodology to implement FPGA designs is borrowed from the ASIC design flow.
The ususal steps are presented below:

2.4.1 Design Entry

The description of the function is made using a schematic editor, a hardware description language
(HDL), or a finite state machine (FSM) editor. A schematic description is made by selecting
components from a given library and connecting them together to build the function circuitry.
When using a HDL like VHDL or Verilog, which are the most established HDLs, the behavioral
description of the circuit can be done using the available constructs. Control dominated parts of
functions can be entered using a FSM editor, in which states, inputs and outputs as well as the
behavior of the FSM can be described.

2.4.2 Functional Simulation

After the design entry step, the designer can now simulate the design to check the correctness of
the functionally. This is done by providing test patterns to the inputs of the design and observing
the outputs. The simulation is done by tools which emulate the behavior of the components used
in the design in software. During the simulation, the inputs and outputs of the design are shown on
a graphic interface which describes the signal evolution in time.

2.4.3 Logic Synthesis

After the design description and the functional simulation, the design is compiled and optimized.
It is first translated into a boolean equation. Technology mapping is then used to implement the
function with the available modules in the target architecture. For FPGA, this step is called LUT-
based technology mapping, because LUTs are the modules used in the FPGA to implement the
boolean operators. The result of the logic synthesis is called a netlist description of the function.
The net list of a function describes the modules used to implement the function as well as their
interconnection. There exist different netlist formats to help exchange data between different CAD
tools. The most known are the Electronic Design Interchange Format (EDIF) and the Xilinx Netlist
Format (XNF) for the Xilinx FPGAs.

2.4.4 Place and Route

For the netlist generated in the logic synthesis process, operators (LUTs and FFs) should be placed
on the FPGA surface and connected together via routing. Those two steps are normally achieved
by CAD tools provided by the FPGA vendors. After the placement and routing of a netlist, the
CAD tools generate a file called a bitstream. The bitstream provides the description of all the bits
used to configure the CLBs and the interconnection switch boxes of the FPGA.
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2.4.5 Configuration

The FPGA is configured by setting the corresponding bits in the LUTs, FFs, and by setting the right
values for the multiplexers. This is done by downloading the bitstream produced in the preceding
step into the FPGA. This can be done via an IEEE Standard 1149.1 JTAG (Joint Test Action Group)
[4] boundary-scan interface or using another interface like the Peripheral Component Interconnect
(PCI). The former is used for systems in which the reconfigurable device is decoupled from the
host processor and the latter applied for systems in which the reconfigurable logic is tightly coupled
to the host processor.

2.4.6 Design Tools

The design entry, the functional simulation and the logic synthesis are done using the CAD tools
from Xilinx, Synopsys, Synplicity, Cadence, HSPICE, ALTERA MAX+II and Menthor Graphics.
For the place and route, tools from Xilinx, Synplicity, Menthor Graphics can be used, but vendor
tools are preferred. The format compatibility between the logic synthesis tools and the vendor’s
place and route tools makes the translation from one tool to the other sometimes difficult, thus
increasing the learning time for FPGA implementation.

2.4.7 Processor/FPGA Computation Flow

In many experiments done in reconfigurable computing, the host processor was used only to config-
ure the FPGA and control the dataflow between the FPGA and the processor [76, 77, 126, 107, 5].
This is not an efficient way to implement these systems, since the powerful processor is in an idle
state is most of the time. We wish to have the host processor and the FPGA computing in parallel
on different sets of data. For this purpose, we propose the computation flow illustrated in Fig 2.3.
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Figure 2.3: Host-FPGA computing paradigm
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At the beginning of a computation, the host processor configures the FPGA. Then it requests on
board memory and downloads the segment of the data to be processed by the FPGA. The memory
banks are free to allow the FPGA to access data for processing. Via the control port of the FPGA,
the host sends a signal to the FPGA to start processing. From then on, the host and the FPGA
can process their segments of data in parallel. At the end of its computation the host reads the
finish signal of the FPGA from its status port. The data can now be collected from the on board
memory by the processor. A barrier synchronization mechanism should be implemented on the
control and status port. By writing on the control port or reading from the status port of the FPGA,
the processor waits until the FPGA has read the signals from the control port or written the signals
to the status port. Data transfer from the processor memory to the on board memory and vice versa
is done by DMA transfers. In the computation flow presented here, the FPGA is configured only
once. The main steps for the processor are:

1. Start

2. Configure the FPGA

3. Download Data for FPGA computation into on-board memory

4. Computes in parallel with the FPGA

5. Upload the data computed by the FPGA from the on-board memory

6. stop

If the FPGA has to be configured more than once, then steps 2 to 5 should be repeated according
to the number of reconfigurations to be done before step 6.

2.5 Target Architecture

2.5.1 Initial System

When we started working with FPGAs, we had a global view of what level of performance could
be achieved with these devices. Meanwhile, a decision had to be made as to which type of device
to work with. The idea was to connect FPGA boards on each node of a cluster of workstations.
Because the communication overhead between nodes in such a cluster can affect performance if
the number of processors increases too much, our aim was to reduce the communication level
between processors, and to increase computing power at the node level. FPGA reconfigurability
enables us to balance the computational load of time consuming parts of a program across a num-
ber of FPGAs. To test this, we attached sixteen FPGA boards on eight nodes of a cluster. After the
implementation of two applications, we quickly realized the limits of this approach. We discov-
ered that that our high performance computation goals were not be easily reached because of the
following reasons.

� Memory : The amount of on board memory was too small to hold the results of some
computation. This is very important in vector or matrix computation. Much of the time,
a stream of data has to be modified by the same function implemented in the FPGA. This
requires sufficient memory to hold the computation results. The data can then be collected
by the FPGA from host memory, computed in the FPGA and stored in on-board memory.
Finally, results are written back to the host memory.
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� Reconfiguration overhead : As partial reconfiguration was not supported, the reconfigura-
tion overhead of our FPGAs was too high. Configuration can only be done by downloading a
complete bitstream to replace the old one inside the FPGA. This process is time consuming,
because the FPGAs has to be reset before the download and a large amount of configuration
data had to be downloaded trough a serial port.

Because of these two limitations we decided to change our platform by purchasing FPGA boards
with a reasonable amount of memory and partial reconfiguration support. We purchased the Celox-
ica RC1000-PP board [1] to build a one node computing system. The decision to choose a board
containing a Xilinx Virtex FPGA was done because of the granularity of those devices. Using fine
grained CLBs like the Atmel FPGA would have increased the complexity of the functions to be
implemented and slowed down the synthesis and mapping processes. Because we follow a core
based design approach, a coarse grained FPGA best fits our needs. Superior architecture, and sup-
port for partial reconfiguration drove our board selection decision. In fact, the RC1000-PP is one
of the few boards on the market that supports partial reconfiguration. The result of the experiment
on our one node system can be applied to a cluster by replication of the actual system.

2.5.2 Current Experimental Platform

Our current computing platform is based on a Celoxica RC1000-PP board embedded in a personal
computer. The board is connected to the processor via a PCI bus. The RC1000-PP features one
Xilinx 1000 FPGA and 4 memory Banks of 2 Mbytes each. This is not too much, but sufficient
to hold for example a 1000 by 500 dense matrix or a million by million sparse matrix with 24%
non zeros. Furthermore, the four memory banks around the RC1000-PP can be used to increase
the computation on four sets of data in parallel by four different modules inside the FPGA. With
the computational paradigm presented here, the host application is implemented in C/C++. For the
FPGA implementation we use theDK1 [84] design environment of Celoxica, a Handel C design
environment. Functions are implemented in Handel-C [85], a C-like design language which pro-
vides some features to handle parallelism, channels and interfaces. From a Handel-C description
of a FPGA application, the DK1 synthesizes the design and generates a netlist in an EDIF format.
The netlist is then passed to a vendor place and route tool which generates a placement and routing,
and finally a bitstream to configure the device. Because of its high abstraction level, implementing
an application in Handel-C is easier and faster than doing it in VHDL. As is the case with VHDL
compilers, the DK1 generates a netlist in which LUTs and the flip-flops represent operators. The
position of the different LUTs and flip flops are defined by the place and route tool. This can
lead to the loss of regularity structure of the FPGA during the implementation of coarse grained
functions like adders and multipliers.
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Chapter 3

Background and Definitions

This chapter provides some backgrounds and general definitions of terms which will be used in the
rest of the thesis. From the architecture of our target FPGAs, we derive definitions and state the
problems to be solved in the remainder of the thesis.

3.1 General Definitions

Definition 1 (Dataflow Graph) Given a set of tasks T = fT1; ::::; Tkg,

� a dataflow graph is a directed acyclic graph G = (V;E), where V = T is the set of nodes
and E is the set of edges.

� An edge e = (vi; vj) 2 E is defined through the (data)dependence between task Ti and task
Tj .

A DFG represents a function to be implemented inside an FPGA. A taskTi in the DFG is imple-
mented as acore1 Ci.

Definition 2 (Latency, length, height, area, weight of nodes and edges) For a node vi 2 V with
length xi and height yi and an edge eij = (vi; vj),

� xi denotes the length and yi the height of vi.

� ai denotes the area of vi.

� The latency ti of vi is the execution time of vi in the FPGA.

� wij defines the weight of eij . It defines the width of BUS connecting two components vi and
vj .

� The latency tij of eij is the time needed to transmit data from vi to vj .

Definition 3 (Graph Connectivity) Given a DFGG = (V;E), we define the connectivity, con(G) =
2�jEj

jV j2�jV j , of G as the relation of the number of edges in E over the number of all edges which can
be built with the nodes of G.
For a given subset V 0 of V, the connectivity of V 0 is defined as the relation of the number of edges
connecting the nodes of V 0 over the set of all edges which can be built with the nodes of V 0.

1The core we considered are those available in the JBits environment or in the Core generator of Xilinx.
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The connectivity of a set provides is a mean to measure how strongly the components of a set are
connected. High connectivity means a strongly connected set, while low connectivity reflects a
graph in which many modules are not connected together. This will be used later to decide which
algorithm to run, given an instance of a problem.

Definition 4 (Configuration) Given a reconfigurable processing unit H and a set of tasks T =
fT1; ::::; Tng available as cores C = fC1; ::::; Cng,

� we define the configuration �i of the RPU at time ti to be the set cores fCi1; :::; Cikg � C)
running in H at time ti. We set �i = fCi1; :::; Cikg

� The configuration is geographically characterized by the set of positionsP i (= fpi1; :::; pikg)
where pij defines the position2 of the core Cij on H for 1 � j � k.

Definition 5 (Schedule and Ordering Relation) For a given DFG G = (V;E), a schedule is a
function & : V ! N . A schedule & is feasible if: 8eij = (vi; vj) 2 E : &(j) � &(i) + tij .
We define an ordering relation � among the nodes of G. vi � vj () 8 schedule & , &(vi) �
&(vj). It is obvious that � is a partial ordering, since it is not defined for all pairs of nodes in G.

Definition 6 (Partition) A partition P of the graph G = (V;E) is its division into some disjoint
subsets P1; :::; Pm such that 8Pk � P :

�
Sm

k=1 Pk = V

�
P

vi2Pk
ai � Ak where Ak is a limit on the area of Pk.

� 1=2(
P

feij2E:(eij\Pk)6=; and (eij�Pk)6=;g
(wij)) � Tk where Tk is a limit on the terminals of Pk.

We extend the ordering relation � to P as follow: Pi � Pj () 8e = (vi; vj) 2 E with vi 2 Pi
and vj 2 Pj, either vi � vj or � is not defined for vi and vj. The partition P is ordered ()
an ordering relation � exists for P.

The partition is subject to the constraint that the sum of the area of all elements in a partition as
well as the sum of external edges (edge connecting modules in two different partitions) should not
exceed a given limit. The area constraint is the size of the FPGA while the terminal constraint
is the number of FPGA pins. An ordered partition is characterized by the fact that for a pair of
partitions, one can always be implemented after the other with respect to any scheduling relation.

Definition 7 (Temporal Partitioning) Given a DFGG = (V;E) and a reconfigurable processing
unit H , a temporal partition of G on H is an ordered partition P of G for the RPU H .

If a setS (= fH1; :::; Hdg) of identical devicesH is available on which the partitions can be
mapped andd > 1, then we have amulti-RPU or multi-FPGA temporal partition, otherwise
it is a single-RPU or single-FPGA temporal partition. In a single-FPGA temporal partitioning,
only one partition can be downloaded into the FPGA at a time, while in a multi-FPGA temporal
partitioning many partitions can be downloaded at same time into the available FPGAs.

Definition 8 (Quality) Given a DFG G = (V;E) and a partitioning P = fP1; :::; Png of G,
we define the quality Q(P ) = 1

n
�
Pn

i=1(con(Pi)) of P as the average connectivity over all the
partitions Pi (1 � i � n) .

2The position of a core on a device is given by the coordinates of the lower left corner of it’s bounding-box
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The quality of a partition is a mean to find out how good a partition is for our purpose. If an algo-
rithm assigns connected modules to the same partition, then the quality of the resulting partition
will be high. Otherwise, the quality will be low.
We target architectures in which the FPGA is connected to a host processor by a bus like the
PCI-Bus. The number of BUS lines is limited. Therefore, the communication has to be time-
multiplexed on the bus if many data have to be transported on the processor-FPGA bus. This
happens for example when a partition has to be replaced in the FPGA. Because the communica-
tion between the partitions is done by a set of registers inside the FPGA, all the temporary data
in those registers have to be saved in the processor’s address space before reconfiguration. The
device is then reconfigured and the data are copied back into the FPGA registers. Our goal during
the temporal partition will be to minimize the set of registers needed to communicate between the
generated partitions. This goal is likely to be reached if highly connected components are placed
in the same partition. After a partitioning by a given algorithm, the quality of the partition will de-
termine if the algorithm performed well or not. If a graph is highly connected and the partitioning
algorithm performs with low quality, then there will be more edges connecting different partitions
and therefore more data exchange among the partitions. But if the graph is highly connected and
the partitioning algorithm performs with high quality, then the components in the partitions are
highly connected and therefore there will be fewer edges connecting the partitions. Figures 3.1
and 3.2 illustrate the connectivity of a graph and the quality of an algorithm. In figure 3.1 a graph
with a connectivity of 0.24 is partitioned by an algorithm which produces a quality of 0.25. The
same graph is partitioned by another algorithm in figure 3.2 with a quality of 0.45. In the first
case, we have 6 edges connecting the two partitions, while there are only two edges connecting
the partitions in the second case. The second case is, therefore, better than the first case for data
communication between the partitions.
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Figure 3.1: Partitioning of a graph with connectivity 0.24 and quality 0.25
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Figure 3.2: Partitioning of a graph with connectivity 0.24 and quality 0.45

Definition 9 (Configuration Graph) Given a DFG G = (V;E) and a temporal partition P =
fP1; :::; Png of G, we define

� a Configuration graph of G relative to the partition P with notation �(G=P ) to be the
graph �(G=P ) = (P;EP ) in which the nodes are partitions in P . An edge e = (Pi; Pj) 2
EP () 9e = (vi; vj) 2 E with vi 2 Pi and vj 2 Pj.
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� Each node Pi 2 P has an associated configuration �i that is the implementation of Pi for the
given FPGA. The communication between the partitions is done via the interconfiguration
registers (figure 3.3).

The interconfiguration registers are registers inside the FPGA which are mapped in the processor
address space. On configuration, the contents are saved on the processor address space. After
reconfiguration, their contents are copied back inside the FPGA for further computation. The goal

registers
Inter Configuration

P1

P5

P4

P3

P2

Figure 3.3: A Configuration Graph

of the temporal partitioning is the computation and scheduling of a configuration graph on one or
many FPGAs. In this thesis we consider single-FPGA temporal partitioning. Graphs which con-
tain bidirectional edges or cycles are not within the scope of this work. In the configuration graph,
nodes represent the partitions and edges the external edges to the partitions. In the case of a multi-
FPGA temporal partitioning, bidirectional edges and cycles can be allowed in the partition graph.
In this case, the partitioning should be done with the additional constraints that nodes connected
by bidirectional edges or nodes on the path of a cycle should remain in a group of partitions which
can be downloaded at the same time into the available FPGAs.
In applications which require modules to be exchanged while the rest of the modules are still run-
ning, temporal partitioning is not adequate. Temporal placement that will be defined next should
be applied in this case.

Definition 10 (Temporal placement) Given a DFG G = (V;E) and a device H with the size
(hx; hy),

� a temporal placement is a three dimensional vector function p = (px; py; pt) : V ! N3 such
that pt defines a feasible schedule.

� The values px(vi), py(vi) and pt(vi) denote the coordinates of the node vi in the a 3 dimen-
sional vector space. px(vi) and py(vi) define the coordinate of vi inside the device H , while
pt(vi) defines the time at which vi will be mapped in H .

3.1.1 Application Domains

ASIC fabrication requires a lot of testing to ensure high quality and to guard against defects. Test-
ing can be done by intensive simulation of the design. Simulation is usually accomplished by
software tools that emulate the design. Large design simulation is normally too slow and insuffi-
cient to ensure final product quality. For this reason, simulation must be supported by emulation.
Emulation speeds design testing because it uses real hardware. FPGAs offer the possibility of im-
plementing a design and testing the hardware before production. The major problem with FPGAs
emulation lies in size. Because ASICs are normally larger than than FPGAs, ASIC designs have to
be partitioned across many FPGAs for emulation. Expensive equipment is required to realize emu-
lation of large circuits, resulting in higher development costs for the final product. Using temporal
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partitioning, the circuit can be “temporally” partitioned and the partitions can be used to program
the FPGAs. In this case, the partitions are successively downloaded inside the FPGAs, and the
complete circuit is computed in sequence. Temporal partitioning can therefore be used as a cheap
solution in circuit emulation. In our environment in which the FPGA is embedded in a computer
system, the circuit under test in the FPGA is accessed via input/output registers that are mapped
in the processor address space. During the reconfiguration, the values of the input/output registers
are temporally stored in the processor registers. Therefore, the need to minimize the amount of
data exchange is high.
Temporal placement can play a great role in systems which require a great amount of flexibility. In
mobile communication for example, the growing number of protocols and multimedia applications
requires flexible, efficient and low cost devices. In order to integrate all the modules required in
a system on chip, a large area is required for the devices. If an application allows only a small
amount of modules to be executed at the same time, then chip area and power consumption can
be saved. Using a reconfigurable device and a temporal placement algorithm will allow a large
amount of modules to be executed on the same device. Temporal placement can also be very
useful for systems for which a physical upgrade is impossible or too expensive. If we consider a
system built on earth and stationed on another planet, the system offers no possibility for a physical
upgrade. A reconfigurable device can play a great role here. The functionality of the system can
be modified directly from the earth by sending a corresponding sequence of packets to the device.
The device will partially be reconfigured without interruption of operation.

To illustrate the concept of temporal placement, let us consider an application taken from [25]
and illustrated in figure 3.4. A number of objects moving on a conveyor belt must be recognized
using a stereo vision system, consisting of two cameras. Suppose that the recognition process

Figure 3.4: Industrial application which requires the visual recognition of object on a conveyor
belt.

is carried out by integrating the two-dimensional features of the top view of the objects with the
height information extracted by the pixel disparity on two images. As a consequence, the compu-
tational activities of the application can be organized by defining the following tasks:

� Two tasksacq1, acq2 (each for one camera) dedicated to image acquisition, transfer images
from the cameras to the memory.

� Two tasksedge1, edge2 (each for one camera) dedicated to low level image processing. The
operations performed here are digital filtering for noise reduction and edge detection.

� A taskshape for extracting two-dimensional features from the object contours
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� A taskdisp for computing the pixel disparities from the two images.

� A taskH for determining the object height from the results achieved by the taskdisp.

� A taskrec performing the final recognition.

¿From the logic relation existing among the computations, the precedence graph of fig 3.4 can be
derived.
For this application, one partial reconfigurable device can be used to save space and power. Since
the objects arrive on the conveyor over a given period, the device can be periodically and partially
reconfigured to execute the different tasks. A possible temporal placement can then be computed as
shown in figure 3.6 with the coresacq, edge, shape, H andrec on a partially reconfigurable FPGA.
The FPGA is successively and partially reconfigured to execute two instancesacq1 andacq2 of
the coreacq for the two cameras, two instancesedge1 andedge2 of the coreedge, one instance
of the coresdisp, shape, H andrec. With the computed temporal placement, the complete visual
recognition application can be implemented in only one device. The modules will successively be
downloaded onto the device according to the computed temporal placement.

acq1 acq2

rec

H

disp

edge1 edge2

shape

Figure 3.5: Precedence Graph of the corresponding industrial application.
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Figure 3.6: Temporal placement of the precedence graph of figure 3.5

Definition 11 (Some Operation on Cores) Given a set of cores 
, we define the following oper-
ations:

� Membership: A core C1 is a member of a core C2 (C1 � C2) iff the functionality of C1 is
implemented in C2.
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� Union: Union on cores is defined as follow:
C1 [ C2 = C3 iff the functionality of C3 can be obtained by merging the functionality of C1

with that of C2.

� Subtraction: Subtraction is the inverse of the union. C1 � C2 = C3 iff the functionality of
C3 can be obtained by removing the functionality of C2 from that of C1.

� Intersection : Two cores C1 and C2 intersect if a core C exists such that C 2 C1 and
C 2 C2.

� Size : The value AC = Cx � Cy (with Cx being the length and Cy the height of the core C)
is called the size of the core C. It is the area of the bounding box defined by C.

3.2 Practical Considerations

In this section we will investigate the practice of reconfiguration. This will help us define the basis
for our theoretical formulation of the problem to be solved in partial reconfiguration as well as the
optimization to do on possible solutions.
The practice of reconfiguration is device dependant. It is therefore difficult to develop a general
method for partial reconfiguration to be applied on each device type. We decided to consider the
architecture of the Virtex FPGA in the development of our method, because it is one of the few
coarse grained FPGA with large capacity to provide partial reconfiguration capabilities.
The partial reconfiguration support for the Virtex is provided by the tool JBits [63]. JBits permits
arbitrarily small changes to be made directly to the Virtex device configuration data quickly and
without interruption of operation. The Virtex FPGAs like other FPGAs are organized as a two
dimensional array of CLBs containing a certain amount of logic. They are configured with con-
figuration data called abitstream which can be downloaded in the device. While many FPGAs
do not allow partial configuration, the JBits-Virtex adopts a different approach [104, 3]. The idea
behind partial reconfiguration is to realize reconfiguration by only making the changes needed to
bring the device in the desired configuration. Fragments of the complete bitstream (packets) are
sent to the device in order to reconfigure the needed part of the device. A copy of the last con-
figuration is maintained in a dedicated part of the processor memory. This part of the memory
is called theconfiguration memory. Partial reconfiguration is done by synchronization between
the configuration memory and the device. Changes made between the last configuration and the
present one is marked as packets which are then sent to the device for partial reconfiguration. A
packet is a sequence of (command, data) pairs of varying length which are used to read or write
internal registers and configuration state data. The Virtex is organized inframes or column-slices
(figure 7.3). A frame is the smallest addressable unit. Because a frame occupies a column and the
minimum width of the operators we consider is one CLB, we assume that the size of a frame is a
column of FPGA’s CLBs. In the following we consider a column and a frame as equivalent. In
order to implement a reconfigurable application, packets needed during the computation will be
recomputed by masking the differences between consecutive bitstreams. Sending a packet to the
device for partial reconfiguration can be done in two ways:

� Offline Schedule : The sequence for sending the packets to the device is recomputed by a
temporal placement algorithm.

� Online Schedule : Packets are requested and dynamically scheduled on the device for exe-
cution. The schedule is determined at run-time. In this case, many mechanisms like real-time
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reconfiguration defragmentation and relocation of modules on the device can also be con-
sidered.

We propose the organization of a partial reconfigurable system illustrated in figure 3.7. Aconfig-
uration manager is responsible for sending packets which are stored in memory to configure the
device. On request, the configuration manager loads the packets needed to partially reconfigure the
device and carry the reconfiguration by sending those packets to the device. In this work we are
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Figure 3.7: Model of a Partial Reconfigurable System

seeking the computation of the optimal sequence of configurations which is needed to implement a
given set of tasks as defined in a DFG. We first provide a formulation of this optimization problem.
Our approach for computing a solution will be provided in section 5.2. The definitions provided
here rely on the Virtex architecture which was presented before.

Definition 12 (Packet) Given a reconfigurable device H in which the smallest exchangeable part
is one column or frame, we define a packet Pi to be the sum of all frames fj or columns contained
in the packet Pi.

Pi =
kX

j=0

fij with fij

(
1 if fj 2 Pi;

0 otherwise
(3.1)

We also define the weightw(fj) of a framefj to be the amount of data in the framefj. The weigth
w(Pi) of a packetPi is the sum of the weight of all frames inPi. Because the amount of data in a
frame is the same for all frames in a device, the weigth of a Packet can be seen as the number of
frames in that packet.

w(Pi) =
kX

j=0

w(fij) = K � ni (3.2)

WhereK is a constant value for the weight of a frame andni is the number of frames in the packet
Pi. A packetPi as defined in this work is the amount of data necessary to move the device from
the configuration�i to configuration�i+1. Therefore we have:Pi = �i+1 � �i. With this, we can
define the reconfiguration problem.

Definition 13 (Partial Reconfiguration Problem) Given a reconfigurable processing unit H and
a DFG G = (V;E) where the set of tasks are available as cores C = fC1; ::::; Cng, compute the
sequence of configurations �0; :::; �k which minimize:Pk�1

i=0 w(Pi) =
Pk�1

i=0 w(�i+1 � �i).
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Figure 3.8: Clustering of modules on a partial reconfigurable device

Given a set of tasks to be implemented on a reconfigurable device, we seek a sequence of configu-
rations which places the components to be reconfigured on the best locations. That means:

1. The placement of a component to be replaced produces the minimum amount of packets.

2. The replacement of a set of modules does not alter the work of the rest of components during
reconfiguration.

To illustrate this, consider the two configurations of figure 7.3, in which the components 2, 4, 5,
6, 8 have to be changed. Replacing the components in the first case will lead to the replacement
of five frames. Moreover, the operation of components 1, 3 and 9 will be interrupted during
reconfiguration. In the second case the components 2, 4, 5, 6, 8 are placed in such a way that
only one frame has to be exchanged and the operations of all other components are not disturbed.
Reconfiguration is done by replacing a certain number of frames. If different modules located in
different frames have to be replaced, all the frames containing those modules will be sent to the
device as packets. This increases the reconfiguration overhead. Instead of sending many frames
with only small valid parts, we seek the grouping of modules to be replaced in a minimum number
of frames (figure 7.3).

Definition 14 (Packet By Frames Matrix) For a sequence of configurations � = �0; :::; �k, we
defined the Packet By Frames Matrix of � as the matrix M in which the entry mij is either 0 or 1
and mij = 1 () fj 2 Pi. M is a k � n matrix where n is the number of the frames or columns
in the given reconfigurable device.

Our objective in partial reconfiguration is reduced to the minimization of the sum of all entries of
the Packets by Frames Matrix over all sequences of configuration. Since all the entries inM are
positive numbers, the partial reconfiguration problem is then equivalent to theminimization of the
1-norm of the packet by frames matrix M .
So far we have provided most of the definitions we needed in the work and explain the goal of our
work. Before providing our methods to solve the problems stated in this chapter, pause to consider
the work done by others in the past.



38 CHAPTER 3. BACKGROUND AND DEFINITIONS



Chapter 4

Related Work

This chapter provides an overview of the previous work done in hardware reconfiguration in gen-
eral. It presents various techniques and methodologies for temporal partitioning and temporal
placement on partial and non partial reconfigurable FPGAs. Although the terms “temporal parti-
tioning” and “temporal placement” are not always used by the authors, their works can be classified
in those two categories. Some of the authors have developed methodologies for efficient recon-
figuration and online temporal placement and proposed new FPGA architectures adapted to their
methodologies.

4.1 Temporal Partitioning

In section 3.1 we provided a formal definition of the temporal partitioning problem and defined
our goal as well as the quality of a partition in term of graph connectivity. In this section, we
present some methods developed in the past by different authors to solve the temporal partitioning
problem.

4.1.1 ASAP/ALAP-List Scheduling

The most used and perhaps the simplest approach used to solve the temporal partitioning problem
is the list scheduling (LS) method [110, 27, 108, 30, 123, 112]. The idea behind the LS approach
is first to place all the nodes of a DFG representing the problem to be solved in a list. A new
partition (also called configuration) is built stepwise by removing nodes from the list and allocat-
ing them to the partition until the size of the partition reached a given size limit (the size of the
FPGA). A new partition is then created and the process is repeated until all the nodes from the list
are placed in partitions. The list is ordered either by an ASAP (As Soon As Possible) mechanism
[112, 123, 110, 108, 44, 91] which puts a node in the list as soon as all it’s predecessors have been
placed in the list, or an ALAP (As Late As Possible) [110, 123, 91] paradigm which places a node
in the list as soon as all it’s successors have been assigned. Some methods combine the ASAP and
ALAP in a precomputation step to determine the mobility range of the nodes [123] before applying
optimization methods to select the best position of nodes in their interval range. The optimization
process is problem and architecture dependant. In [110] for example, the goal is the minimization
of the overall computation time of the given function through the generation of a minimum number
of segments. For this purpose, a trade-off is performed between the number of segments and the
latency of each segment during the exploration of the design space. A sharing of functional units
is used to reduce the number of partitions. In [123], the optimization goal is the reduction of the
number of LUTs, the number of nets and pins. After the list scheduling partitioning, a pair-wise

39
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interchange is done between adjacent segments in order to minimize a cost function defined as
the sum of squares of the number of nets in each segments. Pandey et al [110] and Chang et al
[30] use an enhanced version of the force directed list scheduling algorithm of Paulin and Knight
[111] to optimize their list scheduling based partitioning algorithm. Based on the probability of
each node being placed at a specific time step, they compute a distribution graph that indicates the
concurrency of similar operations. The force is then computed in such a way, that the operation
that produces the lowest global increase in concurrency is selected.
The main advantage of the list scheduling method is its linear run-time. Many authors use this
method to compute the mobility range of the components before optimizing their solutions. Fur-
thermore the LS method allows for local optimizations while selecting the nodes to be placed in
partitions. The main disadvantage of the algorithm is thelevelization 1 effect of the partitioning.
The connectivity in the original graph is not preserved in the partitions. This is due to the fact that
modules are assigned to partitions based more on their level number, rather than their interconnec-
tivity. With this, the goal of minimizing the number of nets connecting two different partitions,
i.e. the minimization of the data exchange among partitions becomes difficult to reach. In figure
4.1 a graph is partitioned using the list scheduling method while in figure 4.2 the same graph is
partitioned with a spectral method which better preserves the graph connectivity. The partitioning
in 4.2 results in less communication among the partitions than the partition in figure 4.1.

Because of its linear time, the list scheduling algorithm remains a good temporal partitioning

I1

ADD1
I2

I3

I4

I5

ADD2

ADD3

CMP1

ADD5 MUL1 O1

MUX1

Level 1 Level 2 Level 3 Level 4

Figure 4.1: ASAP partitioning of a DFG
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Figure 4.2: Spectral Partitioning of the DFG of figure 4.1

candidate, in particular for low-connected graphs. For this reason, we used it as a basis for our first
1Levelization means that the partitions are built on the basis of the level number of the DFG component.
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temporal partitioning method and made some enhancements aimed at reducing the total number of
generated configurations. While selecting the components to be placed in partitions, we do some
local optimizations by allowing two configurations to reside on the device at the same time. This
helps to reduce the number of configurations and therefore the overall computation time of the
given function.

4.1.2 Integer Linear Programming

Integer Linear Programming (ILP) methods for temporal partitioning are used in [90, 91, 108, 44].
Kaul et al [90, 91] presented a combined ASAP/ALAP and ILP method. For a set of tasks to be
partitioned for a given device, a fast list scheduling algorithm is used to estimate the upper bound
of the latency and the size of a partition. Many 0-1 variables are then defined and several con-
straints are formulated as equations. The fundamental system modeling 0-1 variables are those
which define the assignment of a task to a partition, the assignment of an operator to a functional
unit, and the placement order of two variables in two different partitions. The constraints imposed
are those aimed at defining a feasible schedule as well as the memory restrictions. The defini-
tion of the fundamental variables and constraints is derived from the fact that each task should be
placed in a partition and that the placement should reflect the precedence order between two tasks
as specified in the DFG. The objective is the minimization of the overall latency of the function to
be implemented. The constraints and variables generate a 0-1 non-linear equation model which is
solved using a linearization method. Similar to the former approach, the feasible constraints are
defined by Ejioui et al [44] to determine the equations to be solved. The objective function is the
minimization of the micro cycle2 in a so called time multiplexed FPGA.
The general problem of the ILP approaches for partitioning a DFG is the size of the computation
model which grows very fast and, therefore, the algorithm can only be applied to small examples
[57]. To overcome this problem, some authors [95, 57] reduce the size of the model by reducing
the set of constraints in the problem formulation, but the number of variables and precedence con-
straints to be considered still remain high. FPGAs are no longer small devices which could not hold
more than four multipliers. Their sizes have increased very fast in the past and this will continue in
the future. Temporal partitioning algorithms should therefore be able to partition very large graphs
(graphs with thousands of nodes). Trying to formulate all the precedence constraints with the ILP
approach will drastically increase the size of the model, thus making the algorithm intractable. On
the other hand the authors requested that the amount of intermediate data stored between partitions
should not exceed the available memory. This constraint is unlikely to help minimize the data
exchange between partitions, since the processor will always have enough memory to store the
data from the FPGA. Given the limitation that the goal of minimizing the data exchange between
partitions cannot be satisfied by the ILP method, and that the algorithm becomes intractable for
large graphs, ILP methods are not appropriate for solving our problem.

4.1.3 Network Flow

The network flow methodology is based on the Ford and Fulkerson min-cut max-flow theorem
[54]. This method has been used in circuit partitioning by Yang [130] and Cong [83]. Liu et al
[100, 99] applied the network flow method to find a solution of the temporal partitioning problem.
The objective here is the minimization of the cut-size of the partitions as well as the minimiza-
tion of the maximum partition size. As in the ILP methods, the precedence relation as well as
the FPGA size defines the constraints for the algorithm. From a task graphG, a network graph

2In the so called time multiplexed FPGFA, the loading and execution time of a configuration is called a micro cycle
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G0 = (V 0; E 0) is constructed as illustrated in figure 4.3 (a). The nodes ofV are introduced inV 0.
For an edge(v1; v2) 2 E two edgese1 = (v1

0; v2
0) with capacity ofc1 = 1 ande2 = (v2

0; v1
0)

with capacityc2 = 1, are added toE 0. For a multi terminal edge inE, a bridging node is added
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Figure 4.3: The networkflow modell for temporal partitioning

to V 0. An edge weighted with 1 connects the source node with the bridging node inE 0. For each
sink nodes in the multi terminal net, an edge weighted with1 is added between the bridging edge
and the sink nodes and between the sink nodes and the source node. After the computation of a
max-flow which produces a min-cut(X 0; X 0) of the networkG0, all the forward edges (fromX 0 to
X 0) must be saturated (flow equal to the capacity) and all backward edges (fromX 0 to X 0) have
zero amount of flow. If a net is cut, then only bridging edges can connectX 0 toX 0, thus preserving
the precedence constraints. For a computed min-cut(X 0; X 0) in G0, the corresponding cut(X;X)
is computed inG by inserting the equivalent nodes from(X 0; X 0) in (X;X) (figure 4.3 (b)).
The min-cut max-flow theorem of Ford and Fulkerson is a powerful tool to minimize the commu-
nication in a cut. But the model is constructed by inserting a great amount of nodes and edges in
the original graph. The resulting graphG0 becomes too big3 and difficult to handle, thus making
the method not suitable to our purpose.
The three approaches (list scheduling, integer linear programming, and network flow)presented
here all suffer from the limitation that their authors have primarily focused on the overall latency
minimization of the design, while neglecting reconfiguration overhead and data exchange. In prac-
tice the reconfiguration overhead of FPGAs is very high. The reconfiguration overhead ranges from
milliseconds to seconds depending on the type of port used. Neglecting such large values will lead
to incorrect temporal partitions. Further, these approaches suffer from the drawback that they do
not consider the geometrical properties of the modules to be mapped into the FPGA. In practice
high level description languages and synthesis tools are used to specify and solve these problems.
This leads to a non efficient use of the regularity structure of the FPGAs [26] and resources.

3In the worst case, the number of nodes in the new graph can be twice the number of the nodes in the original
graph. The edges number of additional edges also grows dramatically.
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4.2 Context Switching and Time Multiplexing

Reconfiguration time has always been a major problem in reconfigurable computing. Switching
from one configuration to the next can take up to a few seconds, thus often making the reconfigura-
tion time larger than the computation time in applications which reconfigure FPGAs [19, 110, 67].
In order to decrease reconfiguration overhead, the architectural concepts of time-multiplex and
context switching FPGAs have been proposed[123, 117]. The general idea behind those two con-
cepts is to store a given number of configurations directly on the chip. This avoids the downloading
of a large amount of reconfiguration data when required. Time-multiplexed FPGA have been pro-
posed by several authors. The best known one is the Trimberger’s architecture [123]. Trimberger
proposed an FPGA architecture in which designs are modeled as Mealy state machines. Micro
registers are used to temporally hold computation data when switching from one configuration to
the next. The combinational logic receives its inputs from the device inputs and from the flip-flop
outputs, and the device outputs come from combinational logic and from flip-flops outputs. In
logic engine mode, the device emulates a large design in manymicrocycles. In each micro cycle,
resources are allocated to a new configuration. A similar architecture has been proposed by Scalera
et al [117]. Data pipes are used here to exchange data between different configurations also called
context. A data pipe contains a plurality of context switching logic arrays (CSLA) which can be
used to process two 16-bit words. An incoming context, then, can pick its input data where its
predecessor left off by acquiring the intermediate data deposited on the rightmost portion of the
pipe and processing it in a pipeline from right to left. Unfortunately, the methods developed have
remained in a conceptual stage. Neither time multiplexing nor context switching FPGAs have ever
been commercialized.

4.3 Temporal placement

In 1996, Xilinx brought the famous FPGA 6000 [121, 37] series to the market. It was possible
with those devices to carry only small modifications to the design, leaving the rest of the circuitry
unchanged. Based on this architecture, some researchers made considerable progress in partial
reconfiguration,[124, 121, 37]. After the disappearance of this device from the market, research in
partial reconfiguration also slowed down. A couple of years ago, a new class of FPGA, the Virtex
series which supports partial reconfiguration, has been brought to the market. Although this device
has been used very successfully in different experiments, and despite the fact that it will remain on
the market for a while, they have received little research or experimental focus. However, some
authors have have managed to provide important contributions in partial reconfiguration [121, 52].
We present the work of Teich et al [121, 52] which reveals a strong formal basis for analysis and
discussion.
In Teich et al [121, 52], a task is represented by a cube in which thex and they coordinates
represent the width and the height of the task in the given FPGA. Thez coordinates represents the
latency of the task. Given a precedence graph, the objective is either:

1. to finds the minimal execution time of the precedence graph on a fixed-size FPGA, or to

2. to finds the FPGA of minimal size to accomplish the tasks within a fixed limit of time

The authors modeled the problem as a three-dimensionalorthogonal packing problem (OPP)
which is the problem of deciding if a given set of boxes can be placed within a given container of
size (hx; hy; ht). The objective of finding the FPGA with minimal size to accomplish the given set
of task in a time slot is reduced to the baseminimization problem (BMP), i.e the minimization
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of hx for a givenht and a container with size (hx; hx; ht) with quadratic base. The objective
of minimizing the execution time of the graph given a fixed-size FPGA is reduced to thestrip
packing problem (SPP) which is the problem of minimizinght for a given base (hx; hy) such that
all boxes fit in a container of size (hx; hy; ht). The BMP and SPP problems are then optimally
solved using the so called packing classes. A three-dimensional packing is first reduced to three
one-dimensional packings. Then a set ofinterval graphs Gi = (V;Ei) are constructed on the
basis of the overlapping between components in the i-th dimension. An edge(u; v) belong toE i,
iff the projection of u and v overlap in the i-th direction. A powerful tool, thepacking class, is
then used to reduce the search space for a feasible packing. A packing class is defined as a 3-tuple
of interval graphs satisfying the following conditions:

1. Any independent set ofGi is admissible, i.e all boxes in S must fit in the i-th dimension.

2. There must be at least one dimension in which the corresponding boxes do not overlap.

The search procedure is a branch and bound algorithm which works on the packing classes. To
explain how it works the following terminology is used:

� An induced cycle in the graphG = (V;E) is defined as a set of verticesU = fu1; :::; ukg �
V , such that the cycleC =< u1; u2; :::; uk; u1 > of edges is contained inE. The length of
the cycleC in this case isk.

� An induced cycle is said to beChordless if only the edges(ui; ui+1) are contained inE. If
none of the edges(ui; ui+2) is contained inE, the induced cycleC is a2-Chordless.

The search tree is traversed by depth first search and the branching is done by fixing an edge
fb; cg 2 Ei or fb; cg =2 Ei. After each branching step, it checks to see if one of two conditions
(1 or 2) previously defined is violated or if a violation can be avoid by fixing further edges. The
branch and bound method is used to eliminate a particular type of configuration in the search
space. Those are the induced chordless cycles of length four inEi, the 2-chordless odd cycles
in the set of edges not belonging toEi and the infeasible stable sets inEi (Those for which an
overlapping occurs in each of the three dimensions). Each time such a subgraph is detected in
the search tree, the algorithm abandons the search on the corresponding node. With the temporal
placement constraint, all the edges of the graphEt are implicitly defined. Only the nodes of the
graphsEx andEy have to be constructed. This simplifies the problem from a three-dimensional to
a two-dimensional problem for which a solution can be found more efficiently.
The work of Teich et al is a great reference in temporal placement, due to the amount of theorems
and the power of the model used. However, the approach has some limitations for our purpose.

1. The method has been modeled with the Xilinx 6000 architecture in mind. Since these de-
vices have disappeared from the market, it is difficult to apply the results in practice. As
we mentioned in section 3.2 we target Virtex devices in which reconfiguration is done by
changing frames. Because a frame occupies a complete column, modifications need to be
done in the model in order to tackle this problem. Because the height of the components is
unlikely to be a complete column size, a grouping of components in column is better adapted
for our target device.

2. The connection between the components, i.e. the communication between the nodes of the
given DFGs does not play a role in this method. The method works on a pure packing basis
aimed at place cubes not necessarily connected together in a container. Recall that our goal
is to have connected components placed in the same area. This is not likely to happen with
this method.
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3. The method provided by Teich et al is to be applied at compile time on given precedence
graphs. The method provides an optimal solution for such kind of “fixed problem” with
the goals defined by the author. Meanwhile we would like to have a method able to deal
with online problems, i.e. dynamic precedence graphs, even if the solution produced by
the method is not optimal at all. In this work we provide a simple algorithm able to deal
with dynamic task graphs. The goal is the computation of a minimum amount of packets to
partially reconfigure the device at run-time. This can be done by grouping the components
in clusters which will then be placed on the slots of an FPGA, previously divided in slots to
accommodate one cluster.

4. The objective is either to find a FPGA with minimal size to accommodate a set of tasks
given a fixed time or to minimize the computation time of a given function, with a fixed
FPGA size. The first objective is not interesting for us, since the size of our device is fixed
for a given problem. The second objective comes close to our goal, but we formulate our
goal in terms of the volume of packets to be sent to device during the computation of a
complete precedence graph.

Before explaining our work in the next chapter, we present two conceptual works done in online
temporal placement.

4.4 Defragmentation and Relocation

So far we have considered only problems in which all the operators and their schedules are known
at compile time. Online scheduling and placement of operators have been considered in [33, 37,
39, 38, 67, 68, 45]. The idea behind online scheduling is to plan the allocation of tasks not at
compile time, but at run-time. Incoming modules are normally placed in a “ready to execute”
list. Free spaces on the FPGA are allocated to the modules in the list on the basis of priorities
previously defined. As modules are put on the device or removed from the device, holes are built
on the surface. Ready tasks have to wait for enough free contiguous space before being scheduled
for execution. This can lead to very long waiting time and affect the real time aspect of some
algorithms. To solve this problem, some authors [33, 37, 39, 38, 67, 68, 45] have proposed the use
of defragmentation and relocation. Their goal is to rearrange the task on the FPGA, in such a way
that the holes become contiguous and provide enough space for the execution of more modules.
Diesel et al [37, 39, 38] extracted two sub problems which first have to be solved in order to satisfy
the next allocation request to a dynamically reconfigurable FPGA. The first one is to identify a good
allocation site for the incoming task and the second is to calculate a schedule for the compaction
that:

1. frees the allocation site of other executing tasks as quickly as possible,

2. delays the tasks that are to be moved as little as possible and

3. completes the compaction of the tasks as quickly as possible.

A visibility graph, defined as the graph in which the nodes are the executing tasks is used to de-
termine the cost of freeing the executing tasks from each candidate inO(n) time. An edge(t1; t2)
exists in the visibility graph if the nodet2 dominates nodet1, i.e t1 and t2 overlap in the row
direction andt2 is placed on a column greater thant1. It can be determined inO(n3) time if an
incoming task can be allocated with compaction. Atop cell interval and aright cell interval for
each executing task are defined when a request arrives. Thetop cell interval of an executing task
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t is the set of possible locations where the bottom edge of the incoming taskt i will abut the top
edge oft. Thetop right interval of an executing task t is similarly defined as the set of possible
locations where the left edge of the incoming taskti will abut the right edge oft. The set of cells
at the intersection of the set of top and right cell intervals is a setB, which definesthe minimum
cost locations for placing the incoming task if it is to be allocated in the neighborhood oft.
The visibility graph is built in timeO(n2). The list of executing tasks is first sorted in column
order. Vertex insertion is done in linear time by a depth-first search of vertices not visited before
determining whether the task is to the right of the sub-graph or not. For each edge inserted, the
distance from the parent to the newly added child is computed. After building the graph, each node
is stored with the maximum distance the task can be moved to the right by summing the distance in
a bottom-up fashion. The need to determine the compaction cost for the sites that cannot be freed
of executing tasks is eliminated by the final step which takesO(n) time. A more accurate search
for the best site to place an incoming task, based on a genetic algorithm, is described in [39].
Compton et al [33] suggested the modification of existing FPGA architecture to support defrag-
mentation and relocation. Their architecture, theR/D-FPGA is based on a partially reconfigurable
FPGA. The column decoder, the multiplexer and the input tri-state drivers of the traditional FPGA
have been replaced by a structure called astaging area. The staging area is a small SRAM buffer
equal in size to one full row of programming bits. It acts as a buffer between the CPU and the
FPGA. Once the information in the staging area is complete, the staging area is written in a single
cycle at the row location indicated by the row address. A BUS architecture is used to permit mod-
ule movement without affecting their I/O pins connections and causing a re-route of the signals.
In order to reduced the complexity of the problem, single dimension of reconfiguration is targeted,
i.e. modules can be relocated only in a given row or column (in this case it is a row). The chip row
decoder has two additional registers and two inputs/one output multiplexer. This allows a vertical
offset loaded in one or more registers, to be added to the incoming row address, resulting in the
new relocated row address. One of the offset registers is a “read” register used during defrag-
mentation for reading a relocated configuration off of the array and the other register is a “write”
offset register, which holds the relocation offset used when writing a configuration. The original
row address supplied to the reconfiguration hardware is simply the row address of that particular
row within the reconfiguration. A column decoder between the staging area and the array is not
necessary since the staging area is equal in width to the array and therefore each bit of the staging
area is sent out on exactly one column.
The major problem of the R/D-FPGA architecture is the bus structure adopted to solve the I/O
problem of moving components. While providing great flexibility, the arbitration of a bus connect-
ing hundreds of modules becomes complex and slows down design.
The described work in temporal placement targets devices that permit a fine grained partial re-
configuration, i.e. any cell or CLB can be replaced without affecting their neighbors. Since the
praxis is different, we believe that most of the related work helps us develop methods for specific
devices, but can not be applied as presented by their authors. In practice, little work has been
done in implementing partial reconfigurable systems. The partial reconfiguration capabilities of
the Xillinx Virtex devices as well as the maturity of those devices have increased interest in using
partial reconfiguration on practical cases. Systems allowing partial reconfiguration at run-time just
started to appear [82, 66]. Examples of such are the implementation of a dynamic reconfigurable
network packet processing application [82] and the implementation of a dynamic reconfigurable
red Solomon decoder [66].



Chapter 5

Temporal Partitioning and Placement

In the first part of the chapter, we present three methods that we developed to compute the temporal
partitioning of a given DFG. The first approach is an enhancement of the list scheduling method.
A local optimization step is used to generate a minimum number of partitions through the use of
the so calledconfiguration switching. The second and completely novel approach uses a three di-
mensionalspectral placement method to position the modules of the DFGs in a three dimensional
vector space in such a way that the sum of the distance among the modules is minimized. A recur-
sive bipartition approach is used to separate the partitions.
The second part of the chapter deals with two methods we developed to compute the temporal
placement of the nodes of a DFG. The two methods are based on the placement ofclusters1 of
components in a three dimensional vector space. The two approaches differ only in the compu-
tation of the clusters from a DFG. The first approach uses a level based assignment to cluster
the components of the graph, while the second one relies on two dimensional spectral placement
followed by a cluster growth method to build the clusters.

5.1 Temporal Partitioning

5.1.1 List Scheduling Based Approach

Traditional list scheduling based temporal partitioning algorithms can produce a series of con-
figurations based on the same set of operators if the components are “well ordered”2 in the list.
For example, for two consecutive configurations�i = fC1; :::; Ckig and�i+1 = fC10; :::; Cki+10g
representing two partitionsPi andPi+1, one can be the subset of the other one, i.e:

� �i � �i+1, or

� �i+1 � �i

If one of those two situations arises, then the reconfiguration overhead can be reduced by imple-
menting the two partitionsPi andPi+1 in one configuration�new = �i [ �i+1. The components of
�new will the be shared among the two partitionsPi andPi+1. That means, the modules required
for both configurations are placed on the device and wired in two different ways. Each way cor-
responds to one configuration. Figure 5.1 shows a partitioning of a graph in two partitionsP0 and
P1. The set of components required to implementP1 is a subset of the set of components required
to implementP0.

1A cluster defines a set of modules to be placed together on the FPGA.
2A well order defines the way components with the same level number should be place in the list before partitioning.
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Figure 5.1: Partitioning of a graph in two set with a common set of operators

Without loss of generality, we will consider that none of the following conditions is met:� i � �i+1

or �i+1 � �i. In this case the modules in�i [ �i+1 build the set of operators to be implemented
on the device. With the use of multiplexers on the inputs of the operators in�i \ �i+1 and the use
of selection signals to connect the corresponding signals to the module inputs, it is then possible
to implement the connection defined in configuration�i as well as those defined in�i+1 together.
Switching from the configuration�i to the configuration�i+1 can be done by setting the corre-
sponding value of the selection signals. The device is therefore reconfigured without changing the
physical configuration. We call this processconfiguration switching. With configuration switching
there is no need to save the registers of the FPGA in the processor address space during reconfig-
uration because no register is altered. Therefore, configuration switching helps to reduce the data
exchange between the processor and the FPGA.
For a series of configurations�1; :::; �r we could extract the small amount of common operators
needed to implement all the configurations and implement the configuration switching on�1; :::; �r.
But the amount of multiplexers needed to assign the operators to a particular configuration as well
as the difficulty to route all the possible configurations can jeopardize the implementation of con-
figuration switching for the configurations�1; :::; �r. Therefore, we will limit the number of con-
figurations to be implemented simultaneously on a device to two. This choice is probably not the
optimal one, but it is the one which intuitively provides us with a greater chance of having many
configurations being switched. The search for a tradeoff between the number of configurations to
reside in the FPGA and the complexity of the final design is an optimization problem that we do
not address in this work.
Figure 5.3 illustrates the implementation of configuration switching on a device for the two par-
titions of figure 5.2. During reconfiguration, the corresponding values for the selection signal are
set on the multiplexers. The output of the corresponding partitions are then selected and sent to
the operators. Although configuration switching can save time and reduce the data transfer be-



5.1. TEMPORAL PARTITIONING 49

Add

Add

Sub

b

f

a

b c d e

Mult

(a)�1 = f+; �;+;�g

Add

Mult

Sub

f

g h

i

j

(b) �2 = f+;�; �g

Figure 5.2: Example of two configurations�1 and�2 with �1 2 �2

tween the processor and the FPGA, it’s implementation usually requires additional resources. If
the additional resource becomes too great, then it makes no sense to have a smaller number of
components implemented, and a larger logic area on the device just to realize the switch. The
tradeoff between the number of additional resources and the number of configurations to be imple-
mented has to be chosen carefully. If we take a close look at the way operators are implemented
in FPGA3, then we will find that many resources are left unused. Therefore, they can be used
to implement the additional resources required for the multiplexers. Because the size of a multi-
plexer is the same as that of an adder, a subtractor or a register, one may be tempted to think that
using one of those operators in configuration switching would double the operator size. This is
not true. In fact adders, subtractors and registers require almost no additional resource in a FPGA
to be implemented as shared components in configuration switching. If a register, for example,
has to be shared in two configurations�1 and�2, then we need a conditioncond to assigned it
either to�1 or �2. Each bit of the register is normally implemented in a half FPGA slice using
one input of the corresponding LUT and the corresponding flip-flop. IfI0 is the input andO0

the output of the register in the first configuration andI1 its input andO1 its output in the second
configuration, then the logic required for configuration switching is defined via the following code
segment:if cond = 1 then (O0 = O1) = I0 else (O0 = O1) = I1. The output is the same since
only one resource is used. This code segment will be synthesized to produce the boolean equation
(O0 = O1) = I0 � cond + I1 � (not(cond)) which can be implemented in a 3 inputs LUT. Since
a physical register will need a minimum of a half slice of the FPGA to implement one bit, at least
one 4-input LUT will be available meaning that we can implement configuration switching without
additional physical resource. This is llustrated in figure 5.4, where the InputI0 is attached to theF1

input of the LUT in the half slice used by one bit of the register,I1 is attached toF1 and the outputs
O0 andO1 are attached to the flip-flop outputXq. The switching conditioncond is attached toF3.
If cond = 0, then the register is available for the first configuration, otherwise it is available for the
second configuration.
In many cases, the great part of the additional resources needed to implement configuration switch-
ing will be taken from the unused resources of the implemented operators. Because of the pos-
sibility of carrying out local optimizations during the partitioning process, we use list-scheduling
and enhance it to implement configuration switching.

3We consider the operators available in the Xilinx Core Generator or in the JBits environment.
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Figure 5.3: Implementation of configuration switching with the partitions of figure 5.2

The List Scheduling Based Algorithm

We now provide the description of our enhanced list scheduling based temporal partitioning al-
gorithm. The methodgenerate partitions (Alg. 1) takes as inputs a DFGG and a devicedev
and returns a list of all partitionslist partitions. All the nodes of the DFG are first inserted in
list nodes in order according to the precedence constraints of the DFG (line 2). The algorithm
builds at each iteration step a pair of partitions (first part; second part) and tries to find out if
it is possible with the set of operators in the two partitions to implement configuration switching.
This is done by filling the partitionfirst part with the nodes of the DFG until the limit is reached
(line 3 to 10). The second partitionsecond part is then built in the same way (line 11 to 18). The
algorithm tests if the context switching can be implemented between these two partitions (line 19).
This is done with the functionunion fits on dev by checking if the union of their components

FFLUT
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Figure 5.4: Sharing a register in two configurations without additional resource
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Alg. 1 The LS-based temporal partitioning algorithm
1: Algorithm generatepartitions(DFG G, DEVICE dev)
2: list nodes := generate nodes list with priority(G);
3: first part:reset();
4: for (i := 1; i < list nodes:size();i++) do
5: choosed node := get next node without pred(list node);
6: if ((first part:size() + choosed node:size()) < dev:size()) then
7: first part:insert(choosed node);
8: end if
9: end for

10: list partitions:insert(first part);
11: second part:reset();
12: for (i := 1; i < list nodes:size();i++) do
13: choosed node := get next node without pred(list node);
14: if (second part:size() + choose node:size()) < dev:size()) then
15: second part:insert(choosed node);
16: end if
17: end for
18: list partitions:insert(second part);
19: if (union fits on dev(first part; second part) � dev:size()) then
20: implement config switch(first part; second part);
21: if (list node:empty()) then
22: GOTO 3:
23: else
24: Sop
25: end if
26: else
27: first part = second part
28: if (list node:empty()) then
29: GOTO 11:
30: else
31: Sop
32: end if
33: end if
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will fit on the device. If so, then the functionimplement config switch is called on line 20 to
realize this. Multiplexers are added on the inputs of the common operators and the inputs for the
two partitions are wired to the inputs of the multiplexers. The outputs of the common operators are
connected on one side to the inputs of the operators as defined in the first partition and on the other
side to the inputs of the operators as described in the second partition (figure 5.3). A new pair of
partitions is generated and the process repeats. If context switching cannot be implemented, then
the second partitionsecond part becomes the first onefirst part and a new second partition is
filled with the nodes from the DFG (line 26 to 32). The algorithm stops when the list of nodes
list nodes is empty.
The positions of the components inlist nodes play a great role in this algorithm. Normally, the
components are placed in the listlist nodes in increasing DFG level number order. For maximum
resource sharing between the partitionsfirst part andsecond part, components of the same type
and with the same precedence level should not be placed consecutively in the list. For example,
if we have four multipliers and four adders with the same level number to be placed on the list,
then we should not place all the multipliers before placing the adders. If we do this, then the list-
scheduling method will first remove all the multipliers in front of the list and place them in the
first partition before placing the adders in the second partition. This leaves no way to implement
configuration switching. To avoid this, the positions of the operators should be mixed in the list. A
reasonable ordering places one multiplier, then one adder, then one multiplier and then one adder
and so on. In this way, the two partitionsfirst part andsecond part will contain both multi-
pliers and adders. This allows us to implement configuration switching on these two partitions
more efficiently. The functiongenerate nodes list with priority orders the components in the
list list nodes as described here.

Example: Numerical Solution of a Differential Equation

To illustrate and show the efficiency of the method described in this section, a numerical method
for solving a differential equation as described in [121] is considered. Fig 5.5 shows the DFG for
solving a differential equation of the formy00 + 3xy0 + 3y = 0 in the interval[x0; a] with step
sizedx and initial valuesy(x0) = y0, y0(x0) = u0, using Euler’s method. The VHDL specification
of the equation solver is given in Alg. 2 and the corresponding DFG in figure 5.5. We consider
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Alg. 2 VHDL specification of the differential equation algorithm
1: ENTITY DGL IS
2: port(xin; yin; uin; dxin; ain): IN REAL;
3: act:IN Bit; yout: OUT REAL;
4: END DGL;
5: ARCITECTURE Behave of DGL is;
6: Begin
7: Process(act)
8: Variablex; y; u; dx; a; x1; y1; u1: REAL;
9: Begin

10: x := xin; y := yin; u := uin;
11: dx := dxin; a :=ain;
12: LOOP
13: x1 := x + dx;
14: u1 := u - 3*x*u*dx - 3*y*dx;
15: y1 := y + u*dx;
16: x := x1; y := y1; u := u1;
17: EXIT WHEN x1 > a;
18: END LOOP
19: yout <= y;
20: END PROCESS;
21: END Behave;

the worst case, where multiplexers have to be added for each operator. The size (in CLBs) of the
different modules for the Xilinx Virtex architecture is given in table 5.1. As we can see, the

Cores X Size Y Size
16-Bit Adder 8 1

16-Bit Subtractor 8 1
16-Bit Comparator 8 1

2 In/1-Out 16-Bit MUX 10 1
16-Bit Multiplier 5 20

Table 5.1: Cores Size (in CLB) for the Xilinx Virtex Architecture

size of a 2-inputs/ 1-output 16-Bits-Multiplexer is (8 � 1). Since the size of a 16 Bit-multiplier
is (5� 20), sharing a multiplier module in two configurations will halve the size of the multiplier
(5 � 10) and double the size of the multiplexer (2 � (8 � 1)) on the resulting configuration. The
net gain is about 80 CLBs. Given the number of multipliers in the design, configuration switching
can be expected to perform well. When targeting the Virtex FPGA family above the Virtex 300
with a minimum area of (32� 48), the design will completely fit in. It requires only one partition
and reconfiguration is not needed. But, if we target the smaller Virtex 100 with size (20� 30), we
must limit the configuration to three simultaneous multipliers in order to preserve enough space for
routing. Without configuration switching, a temporal partitioning algorithm produces a minimum
of two configurations in order to implement the DFG (figure 5.5).
For a thousand iterations of the DFG computations, the device must be configured a thousand
times. FPGA reconfiguration time is typically measured in milliseconds. The resulting overhead
incurred for reconfiguration alone is measured in the thousands of milliseconds. Configuration
switching obviates the need for physical reconfiguration. We simply switch from one configura-
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Figure 5.6: Implementation of configuration switching for the differential equation integrator DFG

tion to the next by setting the corresponding value of the selection signals. This has the effect of
reducing reconfiguration time, and driving the level of data exchange to zero. The device will con-
tain three multipliers, two subtractors, one adder, one comparator and three registers to temporally
hold the computation result on reconfiguration. In the worst case4, 8 additional multiplexers will
be required. The total number of CLBs needed in this case is 420, i.e the design easily fits in the
target device (Virtex 100). It occupies about 70% of the device size. The resulting configuration is
given in figure 5.6.
The example we have presented here shows that the number of physical configurations can be
halved by our enhancement. This situation will arise if two consecutive partitions share the same
set of components. Our enhancement is therefore important when partitioning a graph using the
list scheduling method.

5.1.2 Spectral Methods

In chapter 3 we defined our goal in temporal partitioning as the minimization of data exchange
between the processor and the FPGA during the computation of a DFG. The minimization of
data exchange between the processor and the FPGA also means minimization of communication
between partitions, since the communication between the partitions is done via the processor which
temporally holds the content of the interconfiguration registers during the reconfiguration. We saw
that this goal could be reached by placing connected components in the same partition. For this
purpose we defined the connectivity of a graph as the function to be optimized. The connectivity
of a graph can be minimized by placing components in ann dimensional space in such a way
that the sum of the distance between component pairs is minimized. This approach is called the
wire length model. Since the sum of the distances between component pairs can be minimized if
connected components are placed in close proximity, the wire length model is likely to provide an
optimal placement of the components in ann dimensional space. Our problem can be solved using
the wire length if the following two sub problems are solved:

4Worst case means, that the CLBs occupied by the operators do not have free resources to implement the multi-
plexing logic.
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1. Placement of the components in ann dimensional vector space to minimize the sum of the
distance between the components.

2. Derivation of a partition from an optimal placement which minimizes the sum of the distance
between the components.

We start with the first problem by considering the one dimensional5 version as defined by Hall in
[69] and illustrated in figure 5.7. (The subfigure (a) shows an example of a directed graph with 4
nodes and 3 edges, while subfigure (b) shows the one-dimensional placement on a line. The small
black squares represent the centers of the logic cells. Subfigure (c) shows the two-dimensional
placement of the same nodes. The eigenvalue method takes no account of the logic cell sizes or
actual location of logic cell connectors. The scaling of the computed position (by the width and
height of the node bounding box) must be done. In subfigure (d) a complete layout is made by
placing the logic cells on valid locations, leaving room for the routing). Given a DFGG = (V;E),
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Figure 5.7: 1-D and 2-D spectral-based placement of a graph.

find locations for thejV j nodes which minimize the weighted sum of squared-distances between
the nodes. Ifxi denotes theX-coordinates of nodevi 2 V andr denotes the weighted sum of
squared distances between the nodes, then the 1-dimensional problem is to find the row vector
XT = (x1; x2; :::; xn) which minimizes:

r =
nX

i=n

nX
j=n

(xi � xj)
2wij (5.1)

To avoid the trivial case in whichxi = 0 for all i, we impose the following condition (normaliza-
tion):

XTX = 1 (5.2)

We assume that the non interesting solutionxi = xj (for all i; j 2 f1; ::; ng) is to be avoided.
We first define the connection matrix, the degree matrix and the Laplacian or disconnection matrix
of G as follows:

5Placement on a line
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Definition 15 (Connection Matrix, Degree Matrix, Laplacian Matrix) Gievn a DFGG = (V;E),
we define:

� The connection matrix of G as the symmetric matrix C = (ci;j) with (1 � i; j �j V j) and
ci;j = 1 if (vi; vj) 2 E and ci;j = 0 otherwise.

� The degree matrix of G as the diagonal matrix D = (di;j), (1 � i; j �j V j) with i 6= j !

di;j = 0 and di;i =
PjV j

j=1 ci;j.

� The Laplacian matrix of G as the matrix B = D � C.

For two nodesvi andvj of the DFG connected by an edge the matrix the connection matrix will
have an entry one in linei and columnj. The degree matrix is a diagonal matrix. An entry in the
diagonal (linei, columni) correspond to the number of nodes adjacent tovi. The Laplacian matrix
is simple the difference between the degree and the connection. Hall has proved in [69] that:

r = XTBX (5.3)

Since B is positive semi-definite (B � 0) andB is of rankjV j � 1, wheneverG is connected [69],
the initial problem is now reduced to the following:(

minimizer = XTBX with B � 0

subject toXTX = 1
(5.4)

This is a standard constraint optimization problem which can be solved using the method of the
Lagrange multipliers. This is a standard method used to find the extrema of a functionf(x1; :::; xn)
subject to a constraintg(x1; :::; xn) = 0. An extrema exists if equations (5.5) and (5.6) are satisfied.

df =
@f

@x1
dx1 + � � �+

@f

@xn
dxn = 0 (5.5)

dg =
@g

@x1
dx1 + � � �+

@g

@xn
dxn = 0 (5.6)

Now if we multiply (5.6) by a parameter� to be determined and subtract the result from (5.5), we
obtain equation (5.7):

(
@f

@x1
� �

@g

@x1
)dx1 + � � �+ (

@f

@xn
� �

@g

@xn
)dxn = 0 (5.7)

Because the differentials are all independent, we can set any combination equal to zero and the
remainder must still give zero. This requires:

(
@f

@xk
� �

@g

@xk
)dxk = 0 8k 2 1; :::; n (5.8)

The constant� to be computed is called theLagrange multiplier .
To solve problem 5.4, we apply the method of the Lagrange multipliers withf = X TBX and
g = XTX � 1. We introduce the Lagrange multiplier� and form the LagrangianL = XTBX �
�(XTX � 1) as shown in equation 5.7. Taking the first partial derivative ofL with respect toX
and setting the result equal to zero yields to equation 5.9

2BX � 2�X = 0 () (B � �I)X = 0 (5.9)
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Multiplying equation (5.9) byXT and applying the constraint (5.2), equation (5.9) yields a non
trivial solution if and ondly ifX is the Eigenvector ofB which minimizesr and� (= r) is the
corresponding Eigenvalue. Because the minimum Eigenvalue�0 = 0 yields the non interesting
solutionXT = (1; 1; :::; 1)=

p
(n), the second smallest Eigenvalue�1 should be chosen. The

EigenvectorX1 related to the Eigenvalue�1 is the solution to the one dimensional problem (5.4).
For a placement in ak-dimensional vector space, the problem is formulated similar to the one
dimensional version. The entire dimensions involved have to be considered:(

minimizeR = X1
TBX1 +X2

TBX2 + ::: +Xk
TBXk

subject toX1
TX1 = X2

TX2 = ::: = Xk
TXk = 1

(5.10)

(Xi defines the coordinates of the nodes ofV in the i � th dimension) has to be solved. Analog
to the 1-dimentional case, the Lagrange multiplier method will be applied with the r (each for
one dimension) Lagrange multipliers�1; �2; ::::; �k. The solution are the Eigenvectors associated
to the r smallest non zero Eigenvalues�1; �2; ::::; �k. This approach is known in the literature
as spectral method. Spectral methods have been widely used in the past for partitioning and
placement [8, 9, 79, 29, 41, 40]. It’s run-time is dominated by the computation of the eigenvalues
for which can be done using various methods on different architectures. The most used algorithm
for computing the eigenvalues of a matrix is the Golub-Kahan [58] method. It needsO(n3) on
a single processor to compute the eigenvalues of an by n matrix. UsingO(n) processors, the
eigenvalues can be compute with a parallel version of the Hestenes method [122, 109, 81, 22] in
O(n2S) where S is the number of so called sweeps [81, 22]. Brent and Luk [22] conjectured that
S = log(n) and thereforeS � 10 in general. For sparse and quadratic matrices, the eigenvalues
can be computed inO(n1:4) using a more efficient Lanczos method [58, 8].

5.1.3 Application to the Temporal Partitioning Problem

So far we have shown that the spectral method can be use to solve the first part of our problem.
The second part, the generation of partitions from a placement with minimum wire length, has yet
been considered.
We consider the placement of the components in a three dimensional space in which the X axis and
Y axis represents the FPGA surface and the Z axis represent the time at which each component
should be mapped inside the FPGA. With the spectral approach we are able to generate a place-
ment with minimum wire length. In the time dimension, the precedence constraints between the
components of the DFG define the following additional constraints for the problem (5.10).

8e = (vi; vj) 2 E; zi � zj (5.11)

For large graphs, the number of constraints which can be formulated in (5.11) can be too high.
Therefore, solving (5.10) with the additional constraints (5.11) becomes too complex for large
graphs. We overcome this difficulty by solving problem (5.10) in a 3 dimensional vector space
without taking the constraints (5.11) into consideration. Then we select the nodes for each partition
using an iterative approach.
Once a 3 dimensional spectral placement of the component is computed, we need to build the
partitions. We do this by incrementally generating the partitionsP0; P1; :::; Pk using recursive
bisection of the sets~Pi, which are the set of the modules to be partitioned. Initially we set~P0 = V .
At step i, the Partition ~Pi is divided into two partitionsPi and ~Pi+1. This process is repeated
unstill ~Pi+1 = ;. The partitionPi is built at stepi by picking components along the Z-axis and
placing them inPi until the size ofPi reaches a given limit (the device size). This process creates
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a bipartition(Pi; ~Pi�Pi = ~Pi+1) of the set of components not yet assigned to a partition. For each
computed bipartition(Pi; ~Pi+1), we seek exactly one of the following situations:

1. (Pi � ~Pi+1)

2. ( ~Pi+1 � Pi)

3. There is no relation betweenPi and ~Pi+1

This means that either no edge exists that connects a component of one partition with a component
of another partition, or all the edges connecting components between the two partitions have the
same direction. This is not always true, since we have used an undirected graph for the placement,
and we did not consider the precedence constraints of (5.11). The bisection has to be improved to
fit the cycle free constraint. We do this by moving nodes from one side of the bisection to the other
until a strict order is reached betweenPi and ~Pi+1.

Example

Nop

Add Add

Add

Sub

a
fb

c

e g h

Mult

Mult

a

Figure 5.8: DFG for the computation of ((a+b)*c) - ((e+f)+(g*h))

To illustrate our temporal partitioning using the spectral method, we consider the graph of
figure 5.8. The following matrix represents the laplacian matrix D of the given graph as described
in section 5.1.2. Using this, we computed the three smallest Eigenvalues and the three Eigenvectors
related to them. The results are given in figure 5.9. Using those three Eigenvectors we computed
the 3-D placement of figure 5.10. By picking the component along the Z-axis in increasing order
of their Z-coordinates, we constructed the two partitionsP0 andP1 of figure 5.11. This partition
is not ordered since the edges(3; 6) and(4; 6) have their source inP0 and their destination inP1,
while the edge(5; 3) has it’s source inP1 and it’s destination inP0. This produces a configuration
graph with a cycle. By exchanging the nodes 3 and 5 fromP0 toP1 and vice versa, the partitioning
becomes an ordered one. Our spectral method for temporal partitioning is self explained and
described in algorithm 3.

5.1.4 Elimination of Cycles in the Configuration Graph

As stated earlier, the resulting bisections are not always cycle free, since we are working on an
undirected graph model. In the previous example we could solve the problem easily by manually
exchanging two nodes. This is not possible for large graphs. Therefore we would like to compute
the lines 7 to 9 of algorithm 3 automatically. To do this we rely on a well known tool: theiterative
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0
BBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 �1 0 0 0 0
0 1 0 0 0 0 0 �1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 �1 0 0
0 0 0 1 0 0 0 0 0 0 �1 0 0 0
0 0 0 0 1 0 0 0 0 0 �1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 �1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 �1 0
0 0 0 0 0 0 0 3 �1 �1 0 0 0 0
0 0 0 0 0 0 0 �1 3 0 �1 �1 0 0
�1 0 0 0 0 0 0 �1 0 3 0 0 �1 0
0 0 0 �1 �1 0 0 0 �1 0 3 0 0 0
0 0 �1 0 0 �1 0 0 �1 0 0 3 0 0
0 0 0 0 0 0 �1 0 0 �1 0 0 3 �1
0 0 0 0 0 0 0 0 0 �1 0 0 �1 1

1
CCCCCCCCCCCCCCCCCCCCCCA

Table 5.2: Laplacian matrix of the graph of figure 5.8

Alg. 3 The spectral-based temporal partitioning algorithm
1: Place all the components in a 3-D using a spectral method
2: while not (all component have been allocated to a partition)do
3: Initialize a new partition
4: while (not exceed device size)do
5: Select components by increasing order along the Z-axis and place them in the partition
6: end while
7: while (the bipartition is non ordered)do
8: Exchange the nodes connected by the crossing edges until an ordered bisection is pro-

duced.
9: end while

10: end while

improvement procedure of Kernighan and Lin (KL) described in [93, 53, 98]. Since the KL-
algorithm deals only with undirected graphs and because we target directed graphs in this work,
some modifications have to be done on the original KL algorithm.
The fundamental idea behind the KL-algorithm is the definition of acut of a bisection as well
as the notion of thegain of moving a vertex from one side of the bisection to the other. For an
undirected graph, a cut is defined as the weighted sum of all the edges crossing from one partition
to another. By moving a node from one partition into the other, the number of crossing edges is
also modified and the value of the cut changed. The KL-algorithm allows a series of moves which
reduce the bisection cut. If the gain of moving a vertex is positive, then making that move will
reduce the total cost of the cut in the partition. During one iteration of the KL-algorithm, nodes are
moved from one side of the bisection and locked on the other side. The cost of swapping unlocked
nodes in opposite parts is then computed and the nodes with the best gain (greatest decrease or less
increase of the cut) are swapped. If all the nodes are locked, the lowest cost partition is set to the
current computed partition, if it improves the cost of the cut. One iteration of the KL-algorithms is
called apass. After one pass, all the nodes are unlocked and a new pass is computed. The iteration
terminates if a pass produces no further improvement on the cut. For a more detailed description
of the KL-methods and it’s extension by Fiduccia and Mattheyses, refer to [93, 53, 98].
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(a) 3 smallest Eigenvalues of the graph of figure 5.8

(b) Corresponding Eigenvectors

Figure 5.9: 3 smallest Eigenvalues and the related Eigenvectors of the laplacian matrix

Since the graphs targeted in the original approach are undirected, it doesn’t matter if an edge
crosses from the first partition to the second partition or vice versa. In our case, directed graphs
are targeted and the original algorithm has to be modified to fit our needs. To better explain how
the modification is done, we first provide more definitions.

Definition 16 We now consider the original directed graph G = (V;E). For two nodes vi and vj
in V and a bipartition P;Q of G, we have:

� EP (vi) =
P

(vi;vj)jvj2P
wij is the weighted sum of the edges from vi to P , i.e edges connect-

ing vi to nodes in P. (figure 5.12)

� IP (vi) =
P

(vj ;vi)jvj2P
wji is the weighted sum of the edges from P to vi, i.e edges connecting

nodes in P to vi(figure 5.12) and

� Let EP;Q = f(vi; vj) 2 E j vi 2 P and vj 2 Qg is the set of edges crossing from partition P
to partition Q, i.e. edges having their sources in P and their destination in Q.

Recall that at stepi of the temporal partitioning (Alg. 3), a bipartition (Pi; ~Pi+1) is generated. Our
goal is to have eitherEPi; ~Pi+1

= ; or E ~Pi+1;Pi
= ;. Intuitively we would like to combine the two
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Figure 5.10: 3-D spectral placement of the DFG of figure 5.8

Figure 5.11: Derived partitioning from the spectral placement of figure 5.10
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Figure 5.12: Internal and external edges of a given nodes

variablesEPi; ~Pi+1
andE ~Pi+1;Pi

in the definition of our cut and try to decrease one of them to zero
using the KL-algorithm. But decreasing one variable could have a negative effect of increasing the
second one, thus producing a cycle of improvement and alteration on the cost of the cut. To avoid
this we apply two instances of the KL-algorithm on the same bisection in parallel. The objective is
to haveEPi; ~Pi+1

= ; on the first computation path andE ~Pi+1;Pi
= ; on the second one. Obviously

the cut is set tojEPi; ~Pi+1
j on the first path andjE ~Pi+1;Pi

j on the second path. After one pass on
each path, we check if the objective has been reached on one path. If this is the case, then the
result is set to be the partition generated on that path. Otherwise, a new pass is computed on the
two computation paths (see Alg. 4). The gain of moving a node is defined differently on the two

Alg. 4 The modified KL-algorithm for the nodes arrangement
1: Initialize two computation paths
2: while (jEPi; ~Pi+1

j 6= 0 andjE ~Pi+1;Pi
j 6= 0) do

3: Compute a new KL-pass on the first path
4: Compute a new KL-pass on the second path
5: end while
6: if (jEPi; ~Pi+1

j = 0) then
7: result of partition = result of first path
8: end if
9: if (jE ~Pi+1;Pi

j = 0) then
10: result of partition = result of second path
11: end if

computation path.

� On the first path where the goal is to havejEPi; ~Pi+1
j = 0, the gain of moving a nodej

from Pi to ~Pi+1 is IPi(vj) � E ~Pi+1
(vj) and the one of moving a nodek from ~Pi+1 to Pi is

E ~Pi+1
(vk)� IPi(vk).

� On the second path where to goal is to havejE ~Pi+1;Pi
j = 0, the gain of moving a nodej

from Pi to ~Pi+1 isEPi(vj)� I ~Pi+1
(vj) while the gain of moving a nodek from ~Pi+1 to Pi is

I ~Pi+1
(vk)� EPi(vk).
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The gain defined on each computation path is the same like the one defined in the original KL-
algorithm. The modified version of the KL-algorithm presented here will produce the desired
result on one path. Because the targeted graphs are acyclic DFGs, there exists a partition in which
all the edges cross from the first one to the second (such a partition is provided for example by a
list-scheduling algorithm). The cost of the cut is 0 in this case. By decreasing the value of the cut
of the initial partition on both computation paths, the pair wise interchange algorithm of Kernighan
and Lin will compute on one path a partition with edges having the same direction.
Applying our method to the partition of figure 5.11, a pair wise interchange of the nodes 3 and 5
generates the desired result. The algorithm finds this solution in only one pass.

5.2 Temporal Placement

If the device has partial reconfiguration capabilities, then partial reconfiguration will help reduce
the data exchange between the processor and the FPGA. As stated in section 3.2 reconfiguration
is made by exchanging frames. We seek the sequence of configurations which minimizes data
exchange between the processor and the device. This goal can be reached if modules which should
be reconfigured at the same time are placed in consecutive frames. This requires a viable clustering
strategy on the given DFG. Our strategy is a two-step method based on:

1. The computation of the clusters of components to be placed at the same time on the device,
and

2. The temporal placement of the computed clusters on the device.

While the second step can be computed by a fast and easy procedure, step one requires a more
careful clustering strategy. Therefore we first explain how a set of clusters produced in step one is
temporally placed before explaining how the clusters are extracted from a DGF.
A cluster is a set of components to be placed at the same time on the device. To be able to free the
space occupied by the components of a cluster, those components should have approximately the
same run-time. We first provide some definitions that will be used in the rest of the chapter.

Definition 17 (Clustering) Given a DFG G = (V;E),

� a clusteringC = fC1; :::; Cng is a partition of G = (V;E) into the disjoint subsetsC1,...,Cn.

� The run-time t(C) of a cluster C is the maximal run-time over all it’s components, i.e.
t(C) = maxftijvi 2 Cg.

Definition 18 (Cluster Graph) Given a DFG G = (V;E) and a clustering C = fC1; :::; Cng of
G, the cluster graph Cl(G) of G is the graph in which the nodes are the clusters. An edge exists
between two nodes Ci and Cj of Cl(G) if an edge exists in E which connects a component of Ci

with a component of Cj .

Similar to the temporal partitioning problem (def. 7) in which the goal is the computation and
scheduling of a configuration graph (def. 9), our goal in temporal placement is the computation
and temporal placement of a cluster graph.
Given DFGG = (V;E) and a clusteringC = fC1; :::; Cng which is a partition ofG = (V;E),
we can temporal placed the clustersC1; :::; Cn in a first-fit fashion. For each clusterCact ready6 to
be placed on the device, the first space which can holdCact is chosen to placeCact. That means,

6If all the predecessors of a cluster in the cluster graph are placed, then the cluster is said to be ready.
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the clusterCtop with the minimum run-time among the clusters already placed in the FPGA is
selected andCact is placed on topCtop, if doing so will not lead to an overlapping betweenCact

and other some clusters already placed on the device. The method is similar to the first-fit memory
allocation method. If the clusters have different sizes, then the first-fit method is likely to produce
holes during temporal placement. To avoid this situation, we require the same size for all the
clusters. It will therefore be possible to place any ready cluster on top of the cluster with the
earliest finishing-time.
Given a DFGG = (V;E) and a clusteringC = fC1; :::; Cng of G where all the clusters have
the same size, algorithm Alg. 5 computes a temporal placement ofC in a first-fit manner. For
a new clusterCact to be placed on the device, the algorithm checks for the clusterCtop with the
minimum run-time among the clusters allocated to the device. The clusterCact is placed on top of
Ctop. PlacingCact on topCtop simply means that the finish time ofCtop is the starting time ofCact.
The algorithm stops when all the clusters have been placed. Figure 5.13 illustrates the temporal

Alg. 5 A simple procedure to temporal place clusters on an FPGA
1: while All the clusters are not placeddo
2: Select the next clusterCact to be placed
3: From the clusters already placed, select the oneCtop with the smallest run-time.
4: place the clusterCact on top ofCtop

5: end while
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Figure 5.13: Temporal placement of a set of clusters

placement of a set of ten clusters. At initialization the clustersC0,C1, C2,C3 toC4 are completely
placed on the device. In order to place clusterC5, clusterC0 with the earliest finish time is selected
and clusterC5 is placed on top ofC0. ClusterC6 occupies the space freed by clusterC2 and cluster
C7 occupies the space freed byC3. C8 is then placed on top ofC4, C9 on top ofC1 andC10 on
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top ofC5. The configuration path produced by this example is(f0; 1; 2; 3; 4g ! f5; 1; 2; 3; 4g !
f5; 1; 6; 7; 4g ! f5; 1; 6; 7; 8g ! f5; 9; 6; 7; 8g ! f10; 9; 6; 7; 8g). If we assume that each cluster
consists of three columns or frames, then the cost of this computation is12+3+6+1+1+1 = 24
frames.
The method we presented here is a heuristic for which we cannot prove the efficiency. But, the fact
that components which can be downloaded and replaced at the same time are grouped in clusters
before being “temporally” placed is not only likely to reduce the total volume of packets needed
during the computation of a given function, but guarantees that no component will be disturbed
during the partial reconfiguration of the device. The method we provided is similar to the memory
allocation method in traditional general purpose computer. It can also be used for online temporal
placement of tasks on a partial reconfigurable FPGA.
We now present the two methods we developed for computing the clusters from a given a DFG.
The first approach is a “level-based” clustering and the second one is spectral clustering based on
the computation of the Eigenvalues of the Laplacian matrix of the given graph.

5.2.1 Level-based clustering

The level-based approach is similar to the list-scheduling temporal partitioning. Because the algo-
rithm is based on the computation of a level number, we will first provide the definition of a level
number before explaining how the algorithm works.

Definition 19 (Level Number) For a given node vi in the DFG G = (V;E), we define the level
number level(vi) of vi (figure 5.14):

� level(vi) = 1, if vi has no predecessor, and

� level(vi) = (maxflevel(vi1); :::; level(vik)g+ 1) if vi1; :::; vik are the predecessors of vi.

7
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9 11

12 13
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4 5 6
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14 16
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Level 3
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Level 5

Figure 5.14: Level assignment

Our level-based clustering method (Alg. 6) first assigns a level number to all the components of
the given DFG. The nodes with the same level-number are then assigned to a common agroup
labeled with the common level-number of its components. The clusters are now built from the
groups by putting components with the same run-time together, until the limit on the size of the
clusters is reached.
In this form, the algorithm will put components whose run-time is different from that of all other
components in their own clusters, thus wasting device space. To avoid this, we will place com-
ponents with approximately the same run-time in the same clusters. Anomalous components that
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Alg. 6 The level-based clustering algorithm
1: Assign a level number to each component of the graph
2: Place the components of the graph in groups according to their level-number and assign the

common level number of the components to the groups they belong to.
3: for each groupG do
4: initialize a new clusterC
5: select a new componentvi fromG and place it inC
6: while (size(C < limit)) do
7: select a componentvj ausG
8: if ti = tj then
9: removevj fromG and place it inC

10: end if
11: end while
12: end for

do not group are merged into larger clusters. In level-based clustering, the two main criteria for
belonging to a cluster are the level number and the run-time. The algorithm can be applied as well
for run-time clustering. Incoming nodes will be assigned a level number and put in the available
groups. The run-time of the incoming components will then determine in which cluster the com-
ponents should be placed. Since all the components are not arriving at the same time, a time period
for checking the available components should be set. The algorithm will then run periodically to
allow new components to be considered during the clustering.
Because the interconnections between the components in the DFG are not the decisive factor dur-
ing the clustering, this method is suitable for DFGs with few interconnections among the modules.
If the graph has a lot of interconnections between the nodes, then the interconnections among the
components should intuitively govern the clustering rather than the level number of the compo-
nents. When clustering the graph of figure 5.14 using the level-based approach, the nodes 1, 2, 3,
4, 5 and 6 will be first grouped together and then placed in the same cluster depending on their
run-time. Intuitively, we prefer to compute a more efficient clustering in which components 2, 3
and 8 belong to a first cluster, components 4,5 and 7 to the second cluster, components 6 and 16 in
a third clusters and so on. As stated in 5.2.3, the construction of the spectral method presented in
this chapter insures that connected components are placed nearby each other before partitioning.
Therefore, the spectral method will place the tightly connected components 2, 3 and 7 together in
one cluster, and components 4,5 and 8 will appear in the second cluster.

5.2.2 Spectral Based Clustering

The objective of a clustering algorithm is the computation of compacts and well separated clusters.
That means a clustering in which two connected components appear in the same cluster while two
unconnected components appear in different clusters. If we define thediameter of a set Cas:

diam(C) = max
u;v2C

(dist(u; v)) (5.12)

and thesplit of two setsC1 andC2 as:

split(C1; C2) = min
u2C1;v2C2

(dist(u; v)) (5.13)

Wheredist(u; v) is the Euclidian distance between two componentsu andv, then we can say that
clusters with small diameter are compacted while clusters with large splits are well separated. In
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order to compute compacted and well separated clusters, we define three possible objectives for a
clustering algorithm. For a clusteringC = fC1; C2; :::; Ckg, we define:

� Max-Min-Split : Maximize

f(C) = min
1�i<j�k

(split(Ci; Cj)) (5.14)

� Min-Max-diameter : Minimize

f(C) = max
1�i�k

(diam(Ci)) (5.15)

� Min-Sum-diameters: Minimize

f(C) =
kX
i=1

(diam(Ci)) (5.16)

Objective (5.14) is used to compute a well separated set of clusters, while objectives (5.15) or
(5.16) seek the computation of compact clusters. We learn from [8] that objective (5.14) can be
optimally solved in polynomial time for anyk and any dimension, while objective (5.15) and (5.16)
are NP-complete for anyk > 2 and any dimensiond > 1.
Our strategy consists of:

1. using the spectral method to compute a compact cluster. This will help to fulfill objectives
(5.15) or (5.16).

2. using an optimal method to separate the clusters and fulfill objective (5.14)

The computation of compact clusters in step one is done by placing the components of the graph in
a two dimensional vector space in such a way as to minimize the sum of the distances among all the
components. The objective function defined in equation 5.1 ensures that the connected modules
are placed in the same area by a spectral method, thus leading to the fulfillment of objectives (5.15)
and (5.16). Apart from the fact that components of a cluster should be connected, we prefer to have
components with approximately the same run-time belonging to the same cluster. The connectivity
factor is captured in the connection matrix used for the spectral placement while the time is not.
We therefore propose a formula to capture the time and connectivity factors together inside the
connection matrix. An entrycij in the connection matrix is defined in equation (5.17).

cij =

(
�wij + � if ti = tj

�wij + � 1
jti�tj j

otherwise
with �+ � = 1 (5.17)

The factor� captures the importance of the connectivity of two components, while the factor�
captures the importance of the run-time difference between two components. If the run-time dif-
ference between two components is large, then those two components should not be placed in the
same cluster. This explains the fraction based on the run-time difference of components.
For the separation of clusters and therefore the fulfillment of objective (5.14), we use a so called
cluster-linkage or cluster grow method which optimally solve objective (5.14) [8]. The starting
point of the algorithm is the 2-D placement computed by the spectral method. Having the 2-D
placement, the method begins with each component in its own cluster. The clusters are then suc-
cessively merged to form a larger one. At each step of the merging process, a pair of clusters with
minimum distance is merged together. The algorithm terminates when a given limit7 is reached.
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Alg. 7 The spectral-based clustering algorithm
1: Compute a 2-D spectral placement
2: Set the limit criterion for the merging of clusters
3: for each component i in the graphdo
4: Create a clusterCi and assign i toCi.
5: PutCi in the listL of clusters to be merged
6: end for
7: while L not emptydo
8: Select a pair of clusters (Ci, Cj) with minimum distance
9: if (Ci; Cj) fulfill the limit criterion then

10: mergeCi andCj in one new clusterCk and putCk in L
11: removeCi andCj fromL
12: end if
13: end while

C1

C2

C3

C4

C5

C6

Figure 5.15: A spectral-based clustering

Algorithm Alg. 7 computes a clustering with the spectral method for a given DFGG and a limit
on the size of the clusters. Figure 5.15 shows a clustering example with clusters (C1; C2; :::; C6)
built from a 2-D placement of the nodes of a graph. A limit of 7 nodes8 is set on the number of
nodes in a cluster.
The spectral clustering method presented in this section has the advantage of directly providing
the relative position of the components in their clusters. Further, the compaction of components
in clusters is guaranteed by the 2-D spectral placement. In order to ensure a good separation of
clusters, a minimum distance can be imposed for each pair of clusters. In practice we found that
it was difficult to define a formula for a minimum distance. We prefer a limit on the size of the
clusters which is helpful for temporal placement.

5.2.3 Selection and Evaluation

So far we have presented two different approaches for computing a temporal partitioning and two
different approaches for computing the temporal placement of a given DFG. Having a problem
instance, we should be able:

1. to choose the best method for the temporal partitioning or temporal placement, and
7The limit on the size of the cluster
8It’s assumed that all the nodes have the same size
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2. to evaluate the results of the partitioning or placement produced by the method used.

In chapter 3, we defined the connectivity of a graph as the instrument to measure how strong the
components of the graphs are interconnected. In section 4.1.1, one limitation of the list-scheduling
and the level-based clustering methods has been shown to be the assignment of modules to parti-
tions or clusters primarily on the basis of their level number, rather on than their interconnectivity.
The construction of the spectral method presented in this chapter ensures that connected compo-
nents are placed proximate to one another before partitioning or clustering. A connected group of
components is therefore likely to be placed in the same partition or cluster. In this case we can
apply list-scheduling or level-based on a graph only if its connectivity is very low, i.e. the compo-
nents of the graph are not tightly connected. Under these conditions, the quality of list-scheduling
and level-based approaches will not differ too much from that of the spectral approach. Therefore,
it is more reasonable to choose the list-scheduling for temporal partitioning and the level-based
method for temporal placement since they normally perform faster than the spectral method. If
the graph is tightly connected, then we will have high connectivity. The quality of list scheduling
for temporal partitioning, or level-based techniques for temporal placement, are low relative to the
spectral method.
For a given DFG and a limit on the connectivity, the list-scheduling or level-based methods are best
if the connectivity of the graph is below the given connectivity threshold, otherwise the spectral
method works best.
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Chapter 6

Results

In this chapter we evaluate the temporal partitioning and temporal placement methods which were
developed and presented in chapter 5. To do this, we randomly generated a set of dataflow graphs,
let the algorithms run on them and measured the performance of the algorithms according to the
quality criteria introduced in definition 8. We introduced a second evaluation criteria that we call
thewasted resource (wr)of a cluster and show how it’s influenced by the weighting of the time
factor in the spectral method. Due to the lack of a universal benchmark for algorithms working
on dataflow graphs, we generated a set of fifteen graphs with various numbers of nodes and edges.
A technique commonly used is replication where a basic graph is built and replicated to generate
a larger one. Edges and nodes can be added or removed in order to increase or decrease the
connectivity of the graph. The basic graphs which were replicated and modified are the dataflow
graphs for computing the singular value decomposition [19] and the dataflow graph for computing
the Fourier summation [48]. The results of the computation on the benchmark as well as the
comparison of the different methods are presented below. We do not provide a comparison of our
implementation with other methods for two reasons.

1. As we explained in chapter 4 our goal in temporal partitioning and temporal placement is
different from those of many authors working in the same field.

2. The lack of a universal basis for evaluation of dataflow graph algorithms makes it difficult to
compare the different methods.

Our temporal partitioning and temporal placement methods were evaluated separately on the basis
of the benchmark.

6.1 Temporal Partitioning

Table 6.1 shows the result of the temporal partitioning with the list-scheduling method and the
spectral method. For each graph, we listed the number of nodes, the number of edges, the connec-
tivity of the graph (Definition 3), the quality of partitioning with list-scheduling and the quality of
partitioning with the spectral method (Definition 8). Evident in this benchmark (table 6.1) is that
the connectivity of a graph becomes smaller as the graph grows. This is due to the fact that, for a
graphG = (V;E), the connectivity is computed on the basis of number(jV j2 � jV j) of edges in
the corresponding complete graph. This number grows quadratically with the number of nodes. In
our benchmark, the dataflow graph’s nodes are operators like adder multipliers, dividers, constant
multipliers, constrained to two data inputs. Operator output can be sent to many nodes. This has
the potential to increase the number of adjacent edges to that node, making it difficult to build very
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Graph Name #(Nodes) #(Edges) Connectivity Quality SP Quality LS

svd complex6 173 257 0.0172738 0.0211765 0.0160372
svd complex7 174 288 0.0191349 0.0824392 0.0813421
svd complex3 115 158 0.0241037 0.0500857 0.0380134
svd complex2 115 174 0.0265446 0.0163934 0.00633176
svd complex4 107 171 0.0301534 0.018 0.00595943
svd complex1 122 224 0.0303482 0.0163934 0.00898308

Fourier2 80 97 0.0306962 0.128689 0.1181489
svd complex5 91 136 0.0332112 0.115052 0.101334

Fourier1 77 100 0.0341763 0.0976741 0.0876887
medium3 122 293 0.0396965 0.025 0.0160667
Fourier4 84 167 0.0479059 0.138539 0.121685
Fourier3 83 171 0.0502498 0.113115 0.100857
medium2 73 154 0.0585997 0.0277778 0.00757663
medium4 79 186 0.06037 0.025 0.011365
medium1 80 205 0.0648734 0.0305556 0.00989011

Table 6.1: Benchmark for the temporal partitioning methods

dense networks using two input - one output nodes. Therefore, the ratio of the number of existing
edges over the number of “possible” edges in the graph will be low for large graphs. The re-
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Figure 6.1: Result of the LS and spectral partitioning on the benchmark

sults provided in table 6.1 and illustrated in figure 6.1 confirm the assumption we made in section
5.2.3, i.e. that spectral partitioning should be preferred over list-scheduling for highly connected
graphs. The graph shows the quality of the list-scheduling method and the spectral method as a
function of graph connectivity. As we can see, for graphs with low connectivity, the quality of
partitioning with list-scheduling is close to the quality of the partitioning with the spectral method
(the two curves are very close at the beginning). The quality of the spectral method is better, but
the difference with list-scheduling is too small. Because of its run-time, list-scheduling should be
used in this case. As the connectivity of the graphs grows, the spectral method becomes better and
the difference of quality for the two methods also grows. This is better illustrated in figure 6.2
which displays the quality difference between the spectral method and the list-scheduling method
as function of the graph connectivity. The curve is very irregular, but it shows a general growth in
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Figure 6.2: Difference of quality between the spectral and the list scheduling method

the quality difference between the spectral method and list-scheduling.
Figure 6.1 also shows an irregularity in the evolution of the quality curves for the two methods.
We can explain this irregularity only by providing the quality of a partition as a function of the
connectivity. This was not the goal sought by the benchmark. We made the assumption that the
spectral method performs better than list-scheduling for highly connected graphs. The result of the
benchmark shows that the spectral method is in general better than list-scheduling and therefore
confirmed our assumption.
For large graphs which are generally low connected, list-scheduling will be preferred over the
spectral method because the spectral method provides a narrow improvement in connectivity for
a higher run-time. As the size of the graph decreases, the connectivity increases and the spectral
method delivers better performance.

6.2 Temporal Placement

As in the case of temporal partitioning, we will not present the results of the comparison between
our methods and other approaches. To our knowledge, the only work which dealt with this problem
is the work of Teich et al [121, 52] that was presented in section 4.3. They used an optimal
algorithm for a 3-D packing of the nodes of a dataflow such as to minimize the FPGA area of
the run-time. Contrary to these objectives, our goal is neither the computation of the FPGA with
minimal size to compute a set of tasks, nor the computation of the minimal run-time for a set of
tasks given a fixed-size FPGA. The objective of computing a minimal size FPGA for a given set
of tasks is not interesting for us, since the size of our device is fixed. The objective of minimizing
the run-time of all the tasks for a given FPGA comes closer to our goal, but we focused on the
minimization of communication as well as the reconfiguration overhead which was not considered
in [121, 52]. We formulated our objectives in section 3.2 and the importance of clustering was
proven through figure 7.3 to be high. Therefore, the benchmark will be used to highlight the
advantages of each of the methods we have developed and explain the influence of weighting
connectivity by the factor� and time by the factor� in equation 5.17. Recall that this equation
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was defined in section 5.2.2 as follow:

cij =

(
�wij + � if ti = tj

�wij + � 1
jti�tj j

otherwise
with � + � = 1 (6.1)

with cij being an entry in the connection matrix used to compute the eigenvalues used for the spec-
tral method.
The superiority of the spectral method relative to list-scheduling in temporal partitioning has been
proven in the previous section. This superiority is expressed in term of the quality of the algorithm
for a given connectivity. We have shown that the spectral method out performs list-scheduling for
graphs with high connectivity. This result can be transfered to temporal placement because the
clustering of a graph in temporal placement is nothing else than graph partitioning, except that
the size of the partitions (clusters in this case) are just a portion of the FPGA size. Because the
level-based clustering works on the same basis as list-scheduling partitioning and the spectral par-
titioning works on the same basis like the spectral clustering, the results (superiority of the spectral
method toward list-scheduling for highly connected graphs) obtained in the previous section hold
for this section.
We will now investigate the influence of weighting the connectivity by the factor� and time by
the factor� in Equation 6.1 on spectral method clustering. As explained in the previous chapter,
robust clustering groups connected components in the same cluster. Because all the components
of a cluster are replaced at the same time, the run-time difference of the components belonging
to the same cluster should not be too high. Otherwise, components with shorter run-times will
remain idle for a longer period of time, resulting in a waste of FPGA resources. Equation 6.1 was
developed to capture the time factor as well as the connectivity factor in the connection matrix.
The goal was not only to group connected components in the same clusters, but also components
with approximately the same run-time. To compare the level of wasted resources for each of the
two methods, we first have to define what a wasted resource of a partitioning is.

Definition 20 (Wasted Resource)Given a DFG G = (V;E) and a cluster Ci = fvi1 ; ::; ving, we
define the wasted resource wr(Ci) of Ci (figure 6.3) as the unused FPGA area occupied by Ci

during it’s computation. Recall that t(Ci) = maxftj jvj 2 Cig was defined as the run-time of
cluster Ci. With this, the wasted resource can be formally defined as follow:

wr(Ci) =
Pn

j=1(t(Ci)� tj)� aj
The wasted resource of a node vj in a cluster is the idle time of vj in the cluster multiply by its

area. The wasted resource of a cluster is the sum of the wasted resource of its components.
Given a DFG G = (V;E) and a clustering C = fC1; :::; Ckg of G, we define the wasted resource

of C as the sum of the wasted resource of all it’s cluster.

wr(C) =
Pk

i=1wr(Ci)

The investigation of the influence of equation 6.1 on clustering with the spectral method has been
done using different values for the pair (�, �). For each pair of values, we computed the quality
difference between the spectral and level-based methods and the wasted resource difference be-
tween the two methods. The level-based method first assigns components of the same level to a
common group. Inside a group, components are placed in clusters on the basis of their run-time.
Therefore the level-based method is likely to waste fewer resources than the spectral method if
the time factor is not considered in the connection matrix. If the time-factor is considered in the
connection matrix (by the use of equation 6.1), then the spectral method wastes fewer resources.
These assumptions should be supported by our benchmark. We ran the benchmark for the follow-
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Figure 6.3: The wasted resource of a cluster.
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Figure 6.4: Influence of equation 6.1 on the quality difference between between the spectral and
the level based clustering methods

ing pair of values:(� = 9=10; � = 1=10), (� = 5=10; � = 5=10) and(� = 1=10; � = 9=10). In
other words, we weighted the connectivity with a factor of 9/10 and the time with a factor of 1/10
in the first case. In the second case we weighted the time and connectivity with the same value
and in the third case, the time was weighted with higher value (9/10) than the connectivity (1/10).
As expected, the quality difference between the spectral and the level-based methods decreases as
the weight of the connectivity decreases. This is illustrated in figure 6.4. The figure shows that
the curve comes closer to the x-axis while the connectivity weight� decreases. In the last curves,
where the connectivity weight is only 1/10, is too close to the x-axis, i.e. the difference on the
quality of the spectral method an the level-based method is close to zero.
As the weight of connectivity� decreases and the weight of time� increases, the wasted resource
difference between the spectral and the level-based methods also decreases, meaning that the run-
time becomes important in the spectral clustering method. This is illustrated in figure 6.5 in which
the curve comes closer to the x-axis as the time weight� grows.
The last curves for which the time is highly weighted (9/10) relative to the connectivity (1/10)
shows a very narrow wasted resource difference between the spectral and the level-based methods.
We conclude this chapter by saying that the benchmark has provided strong support for the analysis
of the method developed in the previous chapter. Further, the argument we made for choosing one
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method over the other has been substantiated. The methods we have developed are implemented
in the CoreMap design environment that we present in the next chapter.



Chapter 7

The CoreMap Design Environment

This chapter presents our design tool called CoreMap which was developed to ease implementation
on a reconfigurable device. The CoreMap provides many features for fast and easy implementation
and modification of FPGA designs.
With common design tools it is difficult to carry out modifications on a design without running the
entire tool on the design chain. A fast modification or implementation is therefore difficult. To be
able to modify the design quickly, a geometrical control of the modules and their interconnection
by the designers is required. This functionality is not available in most of the commercial FPGA
design tools. Some vendors (like Xilinx) provide tool functionality to assign a portion of the FPGA
to a computing block. But the effort that a designer has to spend for implementation is high. To
overcome these difficulties, we follow a core based approach. IP (intellectual Property) cores, that
we simply call cores, are developed and provided via internet and other channels by companies
specializing in particular functional implementation for FPGAs. They are designed by teams of
experts, who have a high degree of understanding of the FPGA’s structure, and who make their best
efforts to provide the user with efficient blocks. These blocks can be combined together to generate
algorithms which can be configured at run-time, and directly mapped to the FPGA. Using a core
based implementation allows designers operate at a higher level of design abstraction. They save
time and effort because they can automatically map dataflow graphs to the given architecture. The
CoreMap design environment provides designers with the functionality to geometrically control
the position of the modules on the FPGAs. This is helpful if partial reconfiguration has to be
implemented. The main modules of the CoreMap are shown in figure 7.1.

7.1 The Graphical Editor

In the graphical editor of common CAD tools, components can be selected from a library, placed
on a surface, and connected together to build complex modules. After this step, technology map-
ping, placement and routing are then required to provide a final implementation of the design.
Generally, the design is flattened before mapping and placement. This step can alter the placement
of a core at a contiguous location in the FPGA, thus making it difficult to locate modules on the
FPGA surface. Moreover, all the steps required from synthesis to implementation are NP-complete
problems which require long optimization times which increase compilation time. The CoreMap
graphical editor follows the WYSIWYG (what you see is what you get) approach. The surface of
the target FPGA is presented to the user as a grid. Each point on the grid represents a CLB in the
FPGA (Fig 7.2). Operators like adders, multipliers, subtractors, multiply-accumulators (MAC),
CORDIC (Coordinate Rotation Digital Computer) are pre-synthesized and kept in a library. The
user can now select the pre-synthesized components from the library, place them on the FPGA
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Figure 7.1: The CoreMap design flow

surface, and connect them together to build his design. The design is implemented on the FPGA
and the components are placed at the locations chosen by the user. The resulting designs are stored
either in the GML (Graph Modeling Language) or the XML (Extended Markup Language) format
to allow their use in third party tools.

7.2 The Bitstream Compiler

The Bitstream compiler is the central module in the CoreMap. It takes a description of a design in
GML or XML format and produces the bitstream needed to program the FPGA. A design descrip-
tion consists of the modules description, their position, their orientation and their interconnection.
These are the parameters required to configure the pre-synthesized modules which are stored as
skeletons in the library. The FPGA is programmed by setting the correct values for the function
into the LUTs and connecting the inputs and outputs as specified in the boolean equation of the
function to be implemented. The bitstream compiler uses the Xilinx JBits API [63] to generate the
bitstream which will be used to program the FPGA.

7.3 Temporal Partitioning and Temporal Placement

The CoreMap features a temporal partitioning and temporal placement modules.

7.3.1 Temporal Partitioning

Temporal partitioning is computed by the methods described in chapter 5. The input is a dataflow
graph in GML format. The user can choose to partition the DFG either with list-scheduling or
with the spectral method or to let the system automatically choose the best method for temporal
partitioning. In this case the system will decide which methods should be used on the basis of the
connectivity of the dataflow graph. For each component, the partitioning procedure determines
the partition the component belongs to as well as its position on the FPGA. For graphs computed
with the spectral method, the definitive positions of component on the FPGA are determined by
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Figure 7.2: The CoreMap Graphical Design Environment

a procedure which scales the x and y-coordinates of the components by the values of their width
and height. This is done because the spectral placement method does not take the bounding box of
the component into account during the partitioning. If list-scheduling was used, a two dimensional
spectral placement will be used to place the component of each partition on the FPGA surface.
Once the definitive positions are computed, the JBits API is used to generate a java program which
contains the instructions used to produce a bitstream for each partition. The bitstreams are then
generated by compiling and running the java program.

7.3.2 Temporal Placement

The temporal placement can be applied only if a device supports partial reconfiguration. If this is
the case, then a tool which implements the temporal placement should provide a way to implement
partial reconfiguration. We will first explain how CoreMap implements partial reconfiguration.

Support for Partial Reconfiguration

For two consecutives configurations�i and�i+1, the system should be able to compute the set of
packets needed to move from�i to �i+1 without reconfiguring the entire device. This set of packets
is computed on the basis of the difference�i+1� �i. This is done in the CoreMap by placing the set
of clusters required in any configuration together. For each configuration, a bitstream is generated.
The set of packets needed to partially reconfigure the device is then computed by a subtraction of
the two consecutive bitstreams. The example in figure 7.3 illustrates this approach. In this example,
a fix module (FM) for computing the matrix multiplication is placed on the FPGA together with a
first reconfigurable module (RM1) for computing the Fourier summation in the first configuration.
In the second configuration, the fix module is placed on the FPGA with a second reconfigurable
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(a) Modules of the first bitstream (b) Modules of the second bitstream

Figure 7.3: Implementation of partial reconfiguration in the CoreMap

module (RM2) which replaces the Fourier summation. By computing the difference between the
two bitstreams the system is able to generate the partial bitstream needed to move from the first
configuration to the next. In this case, only the marked column in the second configuration will be
computed as a packet to be sent to the device for partial reconfiguration.

Temporal Placement

As in temporal partitioning, the input for temporal placement is a dataflow graph. The user can
choose to cluster his design by one of the methods described in chapter 5 (level-based or spectral)
or to let the system choose the appropriate method for the design. Additionally the user can provide
the value of� and� as described in equation 5.17 and the number of slots (cluster blocks) on the
FPGA. The default values are� = 2=3 and� = 1=3. The system is actually able to compute the
set of clusters to be “temporally” placed on the slots of the FPGA. The generation of the partial
bitstream for the partial reconfiguration as explained earlier must be done by hand, but we are
working on the automation of this step.

7.4 Circuit Emulation

CoreMap allows the user to test his design inside the FPGA. The input and output signals of a
design are connected to register in the FPGA. These registers are mapped in the processor address
space and can be accessed for writing or reading a signal (Fig 7.4). CoreMap provides a graphical
user interface in which the input registers can be written and the output registers can be read.
Register values can be displayed in different formats (binary, hexadecimal, decimal).

7.5 Multiprocessor Support

Additionally, CoreMap supports remote management of workstations equipped with an FPGA-
board. Thus, it is possible to share expensive FPGA hardware within one working group. Bit-
streams can be uploaded to a remote machine and tested with an interface developed for hardware-
in-the-loop simulation. To establish a simple way of communication, CoreMap relies on TCP-
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sockets. A small server socket is running on each of the remote machines and listens for com-
mands from a CoreMap client. To guarantee the correctness of commands and data packages,
a CRC-checksum (cyclic redundancy check) is used. This helps to avoid data corruption during
transmission and errors which can destroy the FPGA hardware.

7.6 Behind the CoreMap: The JBits API

CoreMap supports the Xilinx Virtex FPGAs [2] which are the most established and widely avail-
able Xilinx FPGAs. It uses the JBits library to generate the bitstream to program the FPGA. JBits
is an application interface developed by Xilinx to allow the end user to set the content of the LUT
and make connections inside the FPGA without the need for other CAD tools. JBits allows for very
fine grained programming of FPGA. It has great potential for reconfigurable computing, since the
problems with the current design methodologies (section 1.2) can partly be solved by full control
of single bit and connection inside the FPGA.
The JBits API is constructed from a set of java classes, methods and tools which can be used to

BitstreamCoreMap
Java

Programm

JBitsUser’s
Java classes

Description
XML

Figure 7.5: The CoreMap bitstream generation flow.

set the LUT-values as well as the interconnections. This is all that’s required to implement our
function in a FPGA. JBits provides functions to read back the content of a FPGA currently in use.
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The content of a LUT can be set in using the set function:

set(row; col; SliceNumber Type; value) (7.1)

which means that the content of the LUTType (Type is either F or G (Fig 2.2)) in the sliceNumber
(number can be 0 or 1) of the CLB in positionrow andcol should be set to the value of the array
value. The Virtex LUTs have four inputs and 16 entries representing the 16 possible values a
4-inputs function can take. A connection is defined using the function connect:

connect(outpin; inpin) (7.2)

This function uses the JBits routing capabilities to connect the pinoutpin to the pininpin anywhere
inside the FPGA.outpin andinpin should be one of the CLB terminals. Connecting the output of
a LUT to a CLB terminal can be done with the function.

set(row ; col ; terminal control ;LUT output) (7.3)

whereterminal control set the correct terminal to be connected to the outputLUT output of the
corresponding LUT. JBits provides hundreds of predefine cores like adders, subtractors, multipli-
ers, CORDIC Processor, encoder and decoders, network modules, etc... which can directly be used
in designs. They can also be combined to generate more complex cores.
As stated in section 1.2, implementing a function in FPGA with current design tools is a diffi-
cult task which can take days, weeks, or even months. Apart from the learning curve imposed on
designers to master programming tools, incompatibility arising between the various tools needed
from synthesis through programming remains a major problem. Experience is required to solve
the problems arising during the design flow. In light of this, people not familiar with HDL, like
mechanical engineers and computer scientists, must spend too much time learning HDL and com-
plex CAD tools, thus neglecting the tasks that make best use their highest competencies. CoreMap
[20] provides a simple design environment (Fig 7.1) which can help beginners, software engineers,
and people not familiar with HDL to program FPGAs with less effort.



Chapter 8

Conclusion and Outlook

8.1 Summary

In this thesis we have investigated the synthesis of dataflow graphs for reconfigurable systems. Af-
ter a brief overview on the evolution of reconfigurable devices in the last decade in chapter 1, we
identified the challenges for the future of reconfigurable systems and defined the aims of our work.
In chapter 2 we gave a brief introduction to the target reconfigurable devices (FPGAs) and defined
our target platform in which the processor and the FPGA compute in parallel and exchange com-
puting data as well as reconfiguration data. We formally defined the minimization of the amount of
data exchange between the FPGA and the processor as the optimization goal for the problems to be
solved in this thesis, i.e. the temporal partitioning and temporal placement that we stated in chapter
3. Since temporal placement can be done only if a device is partially reconfigurable, a temporal
method has to be developed with the reconfiguration capability of the target device in mind. In
our case, the target devices are the Xilinx Virtex FPGAs for which partial reconfiguration can be
done only by exchanging complete columns. By exploiting this characteristic of the Virtex , we
proved that grouping the components of a dataflow graph in clusters is very important in temporal
placement. Our survey of previous work, reviewed in chapter 4, revealed that no other authors have
stated the problem in this way. We showed that none of the earlier approaches was well suited to
our needs. This motivated us to develop a fresh approach for solving the temporal partitioning and
temporal placement problems. We made our contribution in chapter 5 through the development of
various algorithms to solve the temporal partitioning and temporal placement problems. For each
of the problems, we developed two methods, and provided criteria for selecting one method over
the other.
To solve the temporal partitioning problem, we provided two methods. The first one is an en-
hancement of the well knownlist scheduling method for area optimization by the use of the so
called configuration switching which maintain two configurations in the device and uses a con-
dition signal to switch from one to the other. The second and completely novel method uses a
three dimensional spectral placement to position the modules in a three dimensional vector space.
The partitioning is done by picking component along the time-axis in increasing order of the time-
coordinates. This approach is incremental and does not guaranty a cycle free configuration graph.
Therefore, we used the Kernighan-Lin [93, 53, 98] algorithm to move the nodes of the graph from
one partition to the other and insure a unidirectional partition. We introduce a modified gain func-
tion adapted to our need. The goal is not a minimum cut size like it is the case in many KL-FM
algorithms, but a partition with all the edges converging in the same direction.
For temporal placement, the device is first divided in to slots. A slot is a set of consecutive columns.
The dataflow graph is then divided in to clusters to be placed on the slots. A first-fit approach is
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used to place the clusters on the slot at different times. For the computation of clusters, we provide
two methods. The first one is a level-based clustering approach similar to list-scheduling parti-
tioning, and the second is a spectral clustering method. With the spectral clustering method, the
components of the given dataflow graph are first mapped into a 2-D vector space. A cluster growth
approach is then used to build the clusters.
To evaluate the different methods, we defined two main criteria. The first one, the connectivity, is
used to evaluate how strongly connected the components are in partitions or in clusters. If the com-
ponents of a partition are strongly connected, then most of the edges will be inside the partitions,
and therefore the communication among the clusters or partitions will be minimized. If this is not
the case, then the edges will be outside of the clusters and therefore the communication among
the clusters will be high. The second evaluation criterion is the wasted resource of a partitioning.
This is defined as the surface occupied by the inactive components inside the clusters. For a given
cluster, the greater the difference between the run-time of the cluster (this is the largest run-time
over all its components) and the run-time of a given component, the greater the component wasted
resource. Therefore, the need to place both components connected in the same cluster and compo-
nents with approximately the same run-time is high. The construction of the level-based method
made in chapter 5 ensures that components with approximately the same run-time are placed in the
same cluster. The level-base method is likely to provide clustering with fewer wasted resources.
To ensure that the spectral performs as well, we provided a formula (equation 6.1) to capture the
time factor in the connection matrix used for the spectral placement.
Based on a benchmark of randomly generated graphs, we provided an evaluation of our methods
in chapter 6. the results support the different assumptions we made in chapter 5 and 6 on the con-
nectivity and the level of wasted resource of the developed method.
The methods developed are integrated in a simple and useful design environment, called CoreMap,
that we presented in chapter 7.

8.2 Outlook

So far we have dealt with the synthesis of directed acyclic graphs. But algorithms are not restricted
to dataflow graphs. Control mechanisms should also be considered. The extension of this work can
proceed by the temporal partitioning of control dataflow graphs containing bidirectional edges. As
we explained in chapter 3, a multi-FPGA temporal partitioning should be targeted in this case. If
the generated configuration graph contains bidirectional edges or cycles, then all the nodes of the
configuration graph in the path defined by the cycle should be placed at the same time on the set of
available FPGAs. Using this approach, we can divide any kind of circuit for temporal partitioning.
This allows us to provide a fast and cheap emulation solution by partitioning very large designs
on to a small set of FPGAs. We believe that FPGAs will remain one of the preferred solutions for
circuit emulation in the future. This suggests that temporal partitioning and temporal placement
will continue to be hot topics going forward. As the trend towards falling FPGA prices and rising
capacities continue, and new tools are delivered to implement partial reconfiguration, FPGAs will
become increasingly attractive for mass production. Today, a partially configurable Xilinx FPGA
can be purchased for less than 10 USD. This opens many possibilities in mechatronics, where
adaptive and intelligent controllers can be exchanged without interrupting the control system, and
in consumer electronics, where it drives single chip functional versatility across game, music and
video product lines. Partial bitstreams can be generated for each module required. Our temporal
placement algorithm is useful for clustering and the temporal placement of the clusters at different
times on the FPGA.
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