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Introduction

Despite Quantum Field Theory’s (QFT) tremendous successes in predicting

empirical phenomena with unprecedented accuracy and its great importance as

an instrument for planing and evaluating experiments in the area of subatomic

physics, central questions concerning its proper philosophical interpretation are

still not settled. In this context one of the most important questions is clearly

to which ontology QFT gives rise, i.e. of what kinds of fundamental entities

the world probably consists (e.g. particles, fields, events, processes, spacetime

points/regions, etc.), if one assumes that QFT is telling a true story about the

world. The aim of this work is the formulation of an ontological interpretation

of QFT in terms of A. N. Whitehead’s process philosophy. The first, and

up to now, only serious attempt to use Whitehead’s philosophy of process

in an ontological interpretation of QFT is due to H. P. Stapp (1975, 1977,

1979). However, though there are resemblances to the overall aim of Stapp’s

papers, the details of the proposal for a connection of Whitehead’s process

philosophy and QFT presented in this book will be quite different from those

developed by Stapp. In particular, Stapp only used some very general ideas of

Whitehead’s philosophy in his interpretation, whereas the aim of this work is

an interpretation of QFT which incorporates the core concepts of Whitehead’s

ontology–to what extend this aim can be reached will have to be seen.

Whitehead who was familiar with the consequences of the early quantum

theory of N. Bohr developed his process philosophy partly because he recog-

nized that traditional substance ontology cannot account for the indeterminism

and the quantal character of nature introduced by quantum theory. But when

Whitehead developed his process philosophy in the 1920s, as an alternative to

substance ontology, he probably did not know the new quantum theory due to

W. Heisenberg, E. Schrödinger and P. Dirac and he clearly could not know all

ix



x INTRODUCTION

the later developments that finally led to QFT. Thus it is not to be expected

that Whitehead’s ontology can be connected to QFT without modifications.

Furthermore, Whitehead’s philosophy of process is explicitly designed to be

an integrated ontology, that encompasses all different domains of the world,

from the domain of subatomic physics to that of persons to that of cosmology,

whereas this work only aims at a regional ontology for QFT–an ontology for

that part of the world that can be successfully mathematically described by

QFT. Therefore, it is likewise not to be expected that Whitehead’s whole on-

tological system, with all of its complex concepts and details will be relevant

for this work.

This book is structured into three parts. Part I introduces, in a self-

contained way, Whitehead’s process philosophy to the extend relevant for a

connection with QFT. Since Whitehead’s ontological writings, especially his

magnum opus Process and Reality, are often far from being clear it is not sur-

prising that Whitehead’s ontology itself gave rise to many different, competing

interpretations. The interpretation of Whitehead’s philosophy given in Part

I of this book in many respects follows the main lines of the interpretation

proposed by J. Nobo in his book Whitehead’s Metaphysics of Extension and

Solidarity. However, it is also made use of other, competing interpretations

of Whitehead’s ontological writings, when these interpretations seemed to be

better suited for the aim of this work. Besides already existing interpreta-

tions, some of the interpretative claims presented in Part I are grown out of

the author’s own study of Whitehead’s writings. The ontology presented in

Part I of this book is only a simplified version of Whitehead’s full ontological

system. For example, many of the mental aspects Whitehead ascribes to his

basic entities will be ignored and instead the focus is directed towards spa-

tiotemporal and causal aspects, in order to bring Whitehead’s philosophy in

contact with QFT. The neglect of those aspects of Whitehead’s ontology which

are not needed for the connection with QFT is justified, because it makes the

work presented here much easier accessible to readers without, or with very

little, previous knowledge in Whitehead’s philosophy. This is an important

point since this work is not only addressed to philosophers but likewise to

physicists which are interested in the ontology of QFT. Furthermore, it will

be no problem for readers which are familiar with Whitehead’s philosophy to
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identify those aspects of it which have been simplified or neglected in the ver-

sion presented in Part I. Besides some simplifications, the ontology presented

in Part I also includes some supplementary assumptions, not (explicitly) made

by Whitehead. These assumptions have been introduced, on the one hand,

to close some logical gaps between Whitehead’s intentions concerning his the-

ory and his theory as explicitly formulated by him and, on the other hand,

to bring his theory in closer contact to QFT. The latter is necessary because

Whitehead’s ontology is meant to be a metaphysical theory in the sense of

describing the most general aspects of reality. As such it is, however, too far

removed from a physical theory as detailed and specific as QFT to be able to

ground a satisfactory ontological interpretation of the latter.

Part II of this book presents QFT in its algebraic formulation known as

Algebraic QFT (AQFT). A restriction of scope had to be laid upon this pre-

sentation too, because a detailed account of all the interesting mathematical

and physical consequences of QFT is not necessarily needed to enable the un-

derstanding of the main line of argument of this work and, moreover, would

have made the work much more difficult from a mathematical point of view.

However, it is assumed that the reader is familiar with the Special Theory

of Relativity and non-relativistic Quantum Mechanics and that he has some

basic knowledge of QFT. This is because it would go far beyond the scope

of this book to serve the reader who is not familiar with these theories as

an introductory text. Such introductions into modern physical theories are

doubtlessly very important, particularly for a fruitful communication between

physicists and philosophers. Part II of this book, however, is not planed as

such an introductory text into QFT but merely attempts to introduce the

reader who already has some basic knowledge of QFT with the most general

and mathematically rigorous axiomatic formulation of this theory–AQFT.

Finally, in Part III it will be analyzed which structures of Whitehead’s

ontology as presented in Part I can be represented by mathematical structures

available within AQFT.
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Abbreviations

For convenience we will introduce the following abbreviations of books which

are frequently cited in this work:

SMW: A. N. Whitehead (1967): Science and the Modern World. New York:

The Free Press.

AI: A. N. Whitehead (1967): Adventures of Ideas. New York: The Free

Press.

PR: A. N. Whitehead (1978): Process and Reality. Corrected Edition. Eds.:

D. R. Griffin, D. W. Sherburne. New York: The Free Press.

RM: A. N. Whitehead (1996): Religion in the Making. New York: Fordham

University Press.

WM: J. Nobo (1986): Whitehead’s Metaphysics of Extension and Solidarity.

Albany: State University of New York Press.
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Chapter 1

Actuality

In Whitehead’s ontological theory reality is divided into actuality and po-

tentiality. Yet actuality and potentiality are not two disconnected modes of

existence but rather are intimately related to each other. What exists by way

of actuality arises out of what exists by way of potentiality and, on the other

hand, what exist by way of potentiality is limited or conditioned by actuality.

This bipolar structure of reality, i.e. its division into the two modes poten-

tiality and actuality, allows Whitehead to hold that there is a real coming

into being of final actualities–so-called actual occasions or interchangeably

actual entities–and at the same time to deny that these actualities arise out

of nothing, i.e. out of sheer non-being. That actual occasions are the final

actualities means “that whatever exists in the universe by way of actuality is

either itself an actual entity, a constituent aspect of an actual entity or an

interrelated group–technically termed a nexus or society–of actual entities”

(WM, p. 2). Thus actual occasions are the ultimate building blocks of actu-

ality. Clearly, what has to be denied in such a conception of reality is that

what exists by way of potentiality itself becomes, because this would imply

that either these potentials arise out of nothing, or it would necessitate the

postulation of higher grade potentials in which the becoming of lower grade

ones is grounded. Thus one ends up with uncreated, i.e. eternal, potentials

which ground the becoming of actualities. But Whitehead does not only hold

that there is a real coming into being of final actualities which is grounded in

eternal, uncreated potentials. More remarkably, he does not degrade becom-

3



4 CHAPTER 1. ACTUALITY

ing in favour of being. Rather becoming and being are two different modes

of actuality–each actual occasion is both a becoming and being. But how can

each actual occasion at the same time be a becoming and a being? Are not

“becoming” and “being” two disjoint ontological categories, so that no single

entity can belong to both at once? This is indeed the case and Whitehead does

not challenge this categorical distinction. An actual occasion is not literally at

once a becoming and a being, rather it is first a becoming and then the being

that is created in this act of becoming. As J. Nobo puts it,

becoming and being are to be understood as two different modes of

existence [of actual occasions]. An actual occasion ceases to exist

in the former mode only to continue existing in the latter mode.

Its being presupposes its becoming. (WM, p. 38)

How an actual entity becomes creates what that actual entity is

[...]. Its ‘being’ is created by its ‘becoming’. (WM, p. 38)

Thus the existence of an occasion qua being is subsequent to and created

by the existence of the occasion qua becoming. This conception of an actual

occasion as first existing as an act of becoming and then as the being created

in this act of becoming immediately raises two questions. First, what secures

the self-identity of an occasion in the two different stages of its existence that

allows one to speak of the becoming and the being of one single self-creative

entity rather than of two different entities, the former creating the latter? The

second question concerns the precise meaning in which the becoming of an

occasion can be said to create its being. The answers to both question will be

given in the following section.

1.1 The self-creative processes of concrescence

When Whitehead speaks of occasions as self-creating, self-causing or self-

realizing1 he does not mean that an occasion is a cause or reason for its own

becoming. Such a concept of self-creativeness would be hard to defend against

1All of these notions, and even some more which are not mentioned here, are used inter-
changeably by Whitehead.
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the challenge of being self-contradictory. Apart from some scholars of tra-

ditional metaphysics who try to defend the claim that god is the cause or

reason for its own existence, most philosophers would agree that nothing can

be meaningfully said to even partially cause its own existence (see e.g. Mellor

1995, p. 60). Whitehead belongs to the latter group, since he construes the

becoming of his occasions as completely other-created/caused (WM, p. 138

ff). The aggregate consisting of all and only those occasions which are efficient

causes of a new occasion’s phase of becoming is termed the actual world of

the latter occasion (see Section 1.3.1). On the other hand, that the becom-

ing of an occasion is completely other-caused, cannot mean that this whole

becoming is completely other-determined, since in this case there would be no

ground to speak of occasions as self-creative at all. How the compatibility of

the other-createdness with the self-creativeness of each occasion is achieved in

Whitehead’s theory will become clearer in what follows.

First of all, the becoming of an occasion is not construed by Whitehead as

a single act, but rather as a process, a so-called microscopic process of concres-

cence, that consists of different phases which succeed each other. Each phase

of this concrescence process is conditioned but not completely determined by

the forgoing phases. This gives each phase of the concrescence process a cer-

tain freedom to autonomously decide its own outcome that in turn conditions

the following phase and so on. Each phase of a concrescence process can be

analyzed into an active-subphase and the outcome of this activity (WM, p. 72

f). In the former an autonomous decision is settled that decides the latter–the

outcome or product of this active-subphase. This outcome in turn provides

the “material” for the autonomous decision to be settled in the next active-

subphase and so on. The material among which the autonomous decisions

are to be settled are qualitative properties among which the final qualitative

character of the new occasion has to be made determinate. Each becoming of

an occasion starts with a range of alternative qualitative properties that has to

be successively reduced to one coherent complex in the course of the concres-

cence process. At the point where all the phases of the concrescence are run

through, the qualitative character of the new occasion is fixed, i.e. the occa-

sion reaches its final qualitative determinateness. What is other-produced and

thus completely other-determined are the initial ontological constituents of the
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first phase of such a concrescence process. One of these constituent elements

is the initial incomplete qualitative determinateness of the new occasion that

needs to be reduced to the final qualitative character by the autonomous deci-

sions of the following concrescence process. The autonomous decisions settled

in a concrescence establish in part the sense in which occasions are creative

and–provided they are the self-same entities in all their phases of existence–

self-creative. In connection with the doctrine of the autonomous decisions

settled in a concrescence, it is important to emphasize that these decisions

do not necessarily involve consciousness. Rather consciousness only plays a

role in extremely high grade occasions, like those which according to White-

head are involved in the constitution of higher animals (including humans).

Whitehead uses “decision” as a technical term “in its root sense of ‘cutting

off’ ” (PR, p. 43). For Whitehead, decisions are involved in the becoming

of all occasions, whereas conscious decisions emerge out of unconscious ones

only under very special conditions which we do not have to take into account

in connection with Quantum Field Theory (QFT). However, a decision is an

activity, though not necessarily a conscious one, and thus a concrescence pro-

cess presupposes as a further constituent an activity that makes the decisions

in regard to the determination of the final qualitative character of the occasion

qua being (AI, p. 176). The third and last element with which a new occa-

sion is provided from the very first “moment” of its existence on, is a finitely

extended spacetime region that serves as the unalterable spatiotemporal stand-

point during its process of concrescence as well as of the completed outcome of

this concrescence–the occasion qua being. This region is the stable factor in

the ontological make up of an occasion that accounts for the self-identity of the

occasion in all its phases of existence. Thus each occasion is both other-created

and self-creating in that the constituent elements from which the initial phase

of its self-creative process of concrescence takes rise is completely other-created.

A concrescence process is called microscopic, because it is internal to an

occasion, i.e. it is part of the ontological make up of an occasion, namely its

existence qua becoming. As we will see later on in Section 2.4, the mecha-

nism by which the actual world of a new occasion in joint functioning with the

eternal potentials produces the constituent elements for the very first stage

of the new occasion’s self-creative becoming is also a process that consists of
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succeeding phases–a so-called macroscopic process of transition. A transition

process is called macroscopic, because it is not an internal constituent of an

occasion, but rather mediates causal influences between an actual world and

the corresponding new occasion and is thus external to both of them. A new

occasion’s process of concrescence arises from the outcome of the earlier pro-

cess of transition. Contrary to the amount of freedom of the internal concres-

cence process of an occasion, a transition process is completely deterministic,

i.e. its outcome–the initial qualitative character, the spacetime region, and

the activity for the following concrescence–is completely determined by the

corresponding actual world of already actualized occasions. Since processes

of transition are the “points of intersection” between actuality and potential-

ity we can discuss them in detail only after we have discussed the essential

structures of both actuality and potentiality.

1.1.1 Concrescence as creative process

Now we will further qualify the above remark that a concrescence process is

creative in the sense of settling autonomous decisions but not in the sense

of literally creating, producing or bringing about the material of its decisions.

The material among which a concrescence makes decisions is its initial range of

qualitative properties–its initial definiteness. Contrary to this the spacetime

region occupied by a concrescent occasion does not fall under the autonomous

decisions settled in a concrescence. It is the fixed and thus unalterable spa-

tiotemporal standpoint of all phases of concrescence as well as of the completed

outcome–the occasion qua being. Now the initial definiteness of an occasion is

given by a range of qualitative properties. Among these the concrescent occa-

sion has to decide its final qualitative character–its final definiteness–which

is one coherent, complex property.

[The definiteness of each occasion] starts with conditional alterna-

tives, and by successive decisions is reduced to coherence. (PR, p.

224)

Each decision represents a cutting off of some possibility for the

definiteness of that occasion [...]. (WM, p. 156)
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An actual entity’s process of becoming is a process of acquiring

definiteness by a series of decisions to select or reject various forms

of definiteness. (Sherburne 1966, p. 220 f)

The initial definiteness–the initial range of qualitative properties–of an

occasion consists of alternatives which nevertheless can be jointly actualized

in the same occasion, i.e. it consists of compatible alternatives (see Section

2.2.4). The concrescence process of an occasion is a succession of autonomous

decisions by which the occasion deepens its initial definiteness. Thus a concres-

cence process is creative in the sense that it successively makes autonomous

decisions as to the final qualitative make up of its outcome–the completed

occasion. But a concrescence does not literally create, produce or bring about

the properties among which it decides the final definiteness of its outcome.

First of all, as we will see in Section 2.2, these properties are in existence as

possibilities for actualizations independently of any particular occasions, since

they belong to the realm of eternal potentials. Moreover, their status of exis-

tence is not even “improved” in the course of the concrescence. They do not

become “more actual” with each phase of the concrescence. To the contrary,

what happens to some of them during the concrescence is that they are rejected

for entering into the next phase, so that their ontological status changes from

(internal constituents of an) actuality in attainment to impossibilities for be-

coming (internal constituents of) an attained actuality, i.e. for integration into

the occasion’s final definiteness. Only at the point where the concrescence’s ac-

tivity is exhausted, i.e. when the concrescence process is completed, the status

of the final complex of properties as well as that of its spacetime region, change

from actuality in attainment to attained actuality. The attained actuality of a

completed occasion is the end aimed at and actuality in attainment is part of

the means to this end. But it is important to emphasize again, that this does

not mean that the becoming of an occasion is less actual than its being; the

becoming of an occasion is the private side of its actuality and its being is the

public side of its actuality (PR, p. 151, 289; WM, p. 387 ff). In the former

it functions in respect to itself and as such it is closed for anything external

to it–it is alone with itself–whereas in the latter it functions as an efficient

cause for new occasions in its future. Thus when it is said that a completed

occasion is actualized, this does not mean that it was not an actuality in its
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earlier phase of becoming. Rather following the earlier quotation from Nobo,

it means that an occasion ceases to exist in its private, i.e. self-creative, mode

of actuality only to continue existing in its public, i.e. other-creating, mode of

actuality. Thus when we speak of the actualization of the outcome of a con-

crescence process this is to be understood as the transformation from private

actuality to public actuality, and not as a transformation from non-actuality to

actuality. This transformation is what takes place at the “moment” when the

final phase of a concrescence process–the phase of satisfaction–terminates.

This means that the outcome of a concrescence is transformed into a public

fact only at the point where all the phases of the concrescence are run through.

Thus a concrescence process itself is not a gradual or even continuous unfold-

ing from private to public actuality. Rather this transformation from privacy

to publicity is one single undivided–atomic–act, that at once closes up the

concrescence and throws its completed outcome into its public, other-creating

mode of actuality. Since this atomic act of the transformation from private to

public actuality takes place at the point where the activity of the concrescence

is completely exhausted this act cannot meaningfully be attributed to the con-

crescence process itself. Consequently, a concrescence cannot be meaningfully

said to be creative in the sense of itself changing the ontological status of the

involved qualitative properties or the region in which they are instantiated

towards attained actuality.

In sum, then, a concrescence process is creative in the sense of settling

autonomous decisions as to the qualitative determinateness of its outcome

but it is not creative in any stronger sense: it does not create the properties

among which it makes decisions or the region in which it is located nor can

the transformation of its outcome from private to public actuality, i.e. the

actualization of the outcome, be attributed to the concrescence itself. How

this actualization of the outcome of a concrescence, i.e. of the completed

occasion, is to be understood will be seen in Section 2.4.1.

1.1.2 Concrescence as non-spatiotemporal process

Though a concrescence process takes place in a spacetime region, it is neverthe-

less not a spatiotemporal process. For a concrescence to be a spatiotemporal
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process its different phases would have to succeed each other in a spatiotem-

poral sense, i.e. they would have to be ordered in respect to some spatiotem-

poral order relation. Fortunately we need not investigate all kinds of possible

spatiotemporal order relations to see that this is not the case. A necessary

condition for a spatiotemporal order among the phases of a concrescence is

that to each phase can be assigned a unique spacetime region that differs from

the regions of the other phases; otherwise no spatiotemporal order relation

can be applied to them. But even this necessary condition for a concrescence

to count as a spatiotemporal process is not fulfilled, since the entire region

occupied by a concrescence process belongs to each of its phases.

Each phase in the genetic process [i.e. the concrescence] presup-

poses the entire [spatiotemporal] quantum [...]. (PR, p. 283)

Thus since the phases of which a concrescence is made up do not even

belong to different subregions of the entire region, a concrescence cannot be a

spatiotemporal process. Each concrescence process occupies, i.e. takes place

in, a particular spacetime region, but this region is not involved in ordering

the succession of the concrescence’s phases.

But if the different phases of a concrescence do not succeed each other

in any spatiotemporal sense, in which sense do they succeed each other at

all? The same question can be asked for the manner in which the phases of

a process of transition succeed each other and for the manner in which each

process of transition is followed by a process of concrescence, since as we will

see later on a transition is a non-spatiotemporal process, too.

1.1.3 Genetical supersession

Whitehead calls the succession of the different phases of transition- and con-

crescence processes as well as the succession of processes of transition by pro-

cesses of concrescence genetical supersession, but unfortunately the nature of

this genetic order is not clear from Whitehead’s writings. This has led some

interpreters of Whitehead to deny that a concrescence consists of different

phases at all (Hartshorne 1969) or to hold that non-spatiotemporal superses-

sion is a concept sui generis that cannot be explained by recourse to other
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concepts (Christian 1959, p. 80 f). In his analysis of genetical supersession W.

Christian argues that this order relation cannot be understood as a temporal-,

logical- or (non-spatiotemporal) whole-to-part relation. That genetical super-

session cannot be understood as a temporal order is clear from our above

discussion, which showed that it cannot even be a spatiotemporal order. That

the phases of transition and concrescence processes are logically ordered, i.e.

as premise to conclusion, is ruled out by the fact that in a concrescence process

decisions are involved in passing from one phase to another. A logical order

as premise to conclusion, however, would simply left no room for decisions of

any kind (Christian 1959, p. 80 f). Now Christian believes that a whole-to-

part understanding of genetical supersession is not appropriate because “this

construction would seem to eliminate the dynamic character of the process”

(Christian 1959, p. 81). Unfortunately Christian does not explain what he

means by the “dynamic character” of transition and concrescence processes.

Yet if it is the autonomous decisions involved in concrescence processes which

are referred to–which seems to be the most likely candidate–this argument

is not conclusive. For one can explicate the genetic order that obtains between

the phases of transition and concrescence processes as a whole-to-part rela-

tion without doing harm to the ability for autonomous decisions in processes

of concrescence. We will first discuss the case of concrescence processes and

will argue later on that this explication of Whitehead’s notion of genetical

supersession also applies to processes of transition.

Each phase of a concrescence process has, as (part of) its outcome, a cer-

tain definiteness, i.e. a certain range of qualitative properties, and this range

is more and more reduced during the concrescence. Thus the genetical order

of phases in a concrescence can be explicated by reason of the outcome range

of qualities of each phase: a phase is genetically earlier than another iff (if

and only if) the definiteness of the latter is strictly contained in that of the

former. The dynamic character of a concrescence process, if understood in the

sense of its autonomy for decisions, is obviously not eliminated or contradicted

by this understanding of the genetical order of its phases, as it would be the

case with a merely logical order. To the contrary, according to Whitehead the

passage from the definiteness of a given phase to that of one of its successors

requires autonomous decisions–there is no logical way to deduce the definite-
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ness that will be (part of) the outcome of some phase from the outcome of the

preceding phase. Thus it seems very well possible to understand the White-

headian concept of genetic supersession or genetic order among the phases of

a concrescence process in terms of a whole-to-part relation between the ranges

of qualitative properties (see PR, p. 149), which result from the autonomous

decisions in these phases.

The same explication of the concept of genetic order also applies to tran-

sition processes. All we need to know about this second fundamental kind of

processes at this point is that a process of transition consists of two phases and

that the range of qualitative properties that corresponds to the second phase–

the conformal phase–is strictly contained in that corresponding to the first

phase–the dative phase. Therefore, these phases too, are naturally ordered

by the whole-to-part relation obtaining between the corresponding ranges of

qualitative properties. Moreover, since the range of qualitative properties that

is (part of) the outcome of the second (and last) phase of a transition process

is the initial definiteness which is further reduced in the phases of concres-

cence, this same order also accounts for the genetical supersession of processes

of transition by processes of concrescence. Thus it seems fair to conclude that,

contrary to Christian’s pessimistic attitude, it is very well possible to expli-

cate Whitehead’s concept of genetical supersession on the basis of the resources

available within his ontological system.

Finally we have to comment on the second of the above mentioned chal-

lenges, namely the one put forward by Hartshorne, which says that concres-

cence processes do not consist of different phases at all, but rather only of

one act of decision together with the outcome of this act. This challenge is

a substantial one because Whitehead nowhere explicitly formulates a prin-

ciple that blocks the possibility that a concrescence could indeed decide in

one act, which of the initially given qualitative properties shall be rejected

from entrance into the final definiteness of the completed occasion. However,

Whitehead’s ontology provides a natural resource to prohibit this. As will be

seen later on, Whitehead distinguishes between simple and complex properties

(see Section 2.2.2) and holds that the initial range of qualitative properties of

each occasion is solely generated by simple properties (see Section 2.2.5). This

opens up the possibility to answer the present challenge by assuming that in
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each phase of a concrescence only one simple property can be eliminated, i.e.

that in each phase only one simple decision can be made. Together with the

principle that a concrescence process only ends when its creative activity is

completely exhausted, this assumption implies that a concrescence, in general,

will consist of more than one phase. Yet this does not mean that there cannot

be concrescence processes which in fact consist merely of one simple act of de-

cision. But this is only the case if the amount of activity of this concrescence

is contingently such that it only allows one simple decision. Although White-

head never explicitly demanded that in each phase of a concrescence process

only one simple property can be eliminated, it seems that this assumption is

indeed a very natural and straight forward way of answering the challenge of

the non-processual character of concrescences. We will therefore in fact add

this supplementary assumption as to the structure of concrescence processes

to Whitehead’s ontological system, thereby making sense of the Whiteheadian

demand that concrescence processes, in general, do consist of different phases

and thus are in fact processes and not merely single acts.

1.2 A comment on the “birth-date” of occa-

sions

There is some disagreement among interpreters of Whitehead as to the precise

“date of birth” of an occasion. For example W. Christian (1959) as well as

E. Kraus (1998) argue that a new occasion’s existence already starts with the

dative phase, i.e. with the first phase of a new transition process. Yet since

Whitehead is clear in holding that an occasion’s existence starts with the initial

phase of a process of concrescence (PR, p. 210), these interpreters are forced to

hold that there are in fact not two different species of processes–transition and

concrescence–but merely one species–concrescence processes–which, then,

have to include the dative and conformal phase, too. Nobo has shown that such

a reading of Whitehead cannot be upheld. With massive textual support from

PR, Nobo showed that Whitehead holds that there are indeed two different

fundamental kinds of processes–concrescence and transition–which are in-

volved in the creation of each occasion. Furthermore, Nobo’s analysis strongly
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suggests, though Nobo himself is not completely clear about this point, that an

occasion’s existence starts with the first phase of autonomous decisions (WM,

p. 90, 282, 332). This can be concluded from the two facts that occasions are,

by definition, what exists qua actuality2 (WM, p. 2) and that according to

Whitehead only entities which are or have been making autonomous decisions

in respect to their own determinateness, i.e. which are or have been self-

creative, are actual (WM, p. 34 ff). Now in the dative and conformal phase no

autonomous decisions are involved at all, since what happens in these phases

is completely determined by the corresponding actual world, i.e. it is fixed by

the decisions the corresponding settled occasions have felt during their self-

creative modes of existence. Thus neither the dative nor the conformal phase

fulfil the Whiteheadian condition for actuality and thus cannot be construed as

phases in the existence of an actuality. Since, as mentioned above, Whitehead

is clear in demanding that an occasion’s existence begins with the first phase

of concrescence, and as Nobo has shown, that Whitehead moreover holds that

there are in fact two different kinds of processes involved in the creation of

each occasion, both the dative and the conformal phase have to belong to the

other-creating processes of transition and not to the self-creative processes of

concrescence.

1.3 The world-process

The macroscopic processes of transition, which will be discussed in detail later

on, and the microscopic processes of concrescence are the two fundamental

kinds of processes in Whitehead’s ontology.

There are two species of process, macroscopic process, and mi-

croscopic process. The macroscopic process is the transition from

attained actuality to actuality in attainment; while the microscopic

process is the conversion of conditions which are merely real into

determinate actuality. (PR, p. 214)

2Sometimes, also groups of occasions (e.g. actual worlds) or internal constituents of
occasions are said to be actual. But attributing actuality to these entities is only meant in
a derivative sense–what is truly actual are only the occasions themselves.
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In combination processes of the two fundamental species–self-creative pro-

cesses of concrescence and other-creating processes of transition–constitute

the evolving world-process that consists of the coming into being of ever new

causally related actual occasions (PR, p. 60, 210, 215, 286).

The actualities of the Universe are processes [...], each process an

individual fact. The whole Universe is the advancing assemblage

of these processes. (AI, p. 197)

This world-process is moreover the expansion of actuality, because “actual-

ity is cumulative and the number of its concrete components is ever increasing

or shifting, with the emergence of each new creature [i.e. occasion]” (WM, p.

172; see also PR, p. 215). This means that occasions which have been actual-

ized do not disappear when they are superseded by new occasions but remain in

being, i.e. in their static state of attained actuality, so that each actual occa-

sion qua being is “a stubborn fact which cannot be evaded” (PR, p. 43). Yet

this does not merely mean that the world-process is an irreversible evolvement.

It means that at every stage of the world-process “the past” is as actual as

“the present”, though in a different mode of actuality: the past occasions are

attained actualities whereas the present ones are actualities in attainment (PR,

p. 214). How this “objective immortality” of occasions can be understood, will

be discussed in more detail in Section 2.3.4. One consequence of this doctrine

is obviously that the notions “evolvement”and “expansion”, when referring to

the processual character of the world of actualities, are synonymous within

Whitehead’s theory: if in the evolvement of the world every attained actuality

is retained, this evolvement is in fact an expansion.

According to Whitehead the aggregate of all already actualized occasions

at some stage of the world-process is uniquely divided into sub-aggregates–

the actual worlds at that stage. From each of these actual worlds will arise a

single transition process that begets a single new but incomplete occasion that

in turn completes itself in a process of concrescence. Each occasion is thus

efficiently caused by the settled occasions in its corresponding actual world.

All transition processes which arise from the different actual worlds at some

single stage of the world-process are causally independent or isolated from one

another. The same is true for the concrescence processes arising from the
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outcomes of these transition processes. But this mutual isolation does not

mean that jointly becoming occasions do not have common causes. The causes

of a concrescent occasion are the occasions in its actual world and two actual

worlds will, in general, contain common occasions, so that two occasions of the

same stage of the world-process, in general, will have common causes. Thus

it is to be expected that two occasions which arise from minimally different

actual worlds, i.e. which have nearly all their efficient causes in common,

will be quite similar in their initial ontological make up (i.e. their spacetime

regions, their creative activities and their initial definiteness). But nevertheless

the transition processes from which they arose as well as their concrescence

processes are completely isolated from each other in all their supersessional

phases.

1.3.1 Actual worlds

The actual world of an occasion E consists of all and only those occasions

which are efficient causes of E–it is E’s causal past. In Whitehead’s ontology

this means that the actual world of E contains all and only those occasions

which contribute to the transition process by which the initial ontological con-

stituents of E are created (PR, p. 123 f, 320 f; see also Section 2.4). Note

that no occasion belongs to its own actual world because no occasion can be

a cause of its own initial constituents (see Section 1.1). Whitehead demands

that each two different occasions have different actual worlds, i.e. different

causal pasts (PR, p. 22 f, 28), but he makes no demands as to a connection

between the spacetime regions of occasions and those belonging to their actual

worlds. Therefore, one may in the first place expect that this doctrine of ac-

tual worlds, i.e. that different occasions necessarily arise from different causal

pasts, is compatible with any connection between causal and spatiotemporal

properties of occasions. In other words, one would expect that the occasions

belonging to the actual world of some occasion can be spatiotemporally ar-

bitrary scattered. This is, however, not the case, since the demand that two

different occasions necessarily arise from different actual worlds already rules

out some connections of causal and spatiotemporal properties of occasions.

For example, it rules out the causal spacetime structure that follows from the
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assumption that causal influences can be transmitted with an arbitrary finite

(but not with an infinite) velocity, because this assumption allows that the

causal pasts of two simultaneous events coincide.3

Now by reason of the concept of actual worlds Whitehead further defines

the causal future of an occasion and the relation of contemporaneity between

occasions as follows: the causal future of an occasion E consists of all and only

those occasions to whose actual worlds E belongs and two occasions are con-

temporaneous to one another if neither belongs to the actual world of the other

(PR, p. 123, 319). Since solely defined in terms of actual worlds the causal fu-

tures of different occasions will also be different. Moreover, it is clear from the

definitions of “causal past” and “contemporaneity” that in Whitehead’s theory

the latter is synonymous with “causal independence”. Whitehead conceived

the relation of contemporaneity as not being transitive, i.e. two occasions con-

temporaneous to a third occasion need not be contemporaneous to one another

(PR, p. 125, 320). The fact that no occasion can be an efficient cause of it-

self means that the relation of contemporaneity, i.e. causal independence, is

reflexive and that from its very definition it is clear that it is also symmetric

(see also PR, p. 320). Thus contemporaneity is a reflexive and symmetrical

but not a transitive relation.

Two well-known causal spacetime structures that fulfil the Whiteheadian

assumptions on causal pasts and the relation of causal independence are those

of the Special and the General Theory of Relativity (STR and GTR). That

Whitehead intended to incorporate a connection between causal and spa-

tiotemporal properties of occasions analogous to that known from STR or

GTR seems to be obvious from the following quotations.

Curiously enough, even at this early stage of metaphysical discus-

sion, the influence of the ‘relativity theory’ of modern physics is

important. (PR, p. 65)

The differences between the actual worlds of a pair of contempo-

rary entities, which are in a certain sense ‘neighbors’, are negligible
3The notion “event” is used instead of “occasion” when we wish to be neutral in respect to

the many specifically Whiteheadian connotations with which the term “occasion” is loaded
in this work. Thus especially when discussing physical or ontological theories other than
Whitehead’s, we will always speak of “events” instead of “occasions”.
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for most human purposes. Thus the difference between the ‘clas-

sical’ and the ‘relativity’ view [...] only rarely has any important

relevance. I shall always adopt the relativity view; [...] because

with rare exceptions the classical doctrine can be looked on as a

special case of the relativity doctrine–a case which does not seem

to accord with experimental evidence. (PR, p. 66)

Although it is to be expected that because of the greater generality, do-

main of applicability and empirical adequacy Whitehead had GTR in mind

when he designed his concepts of actual worlds and contemporaneity, we will

in what follows only take into account STR when discussing the connection

between causation and spacetime. This is justified by the fact that this work

is concerned with an application of Whitehead’s ontology in QFT, and the

latter in fact incorporates the spacetime structure of STR. However, it is clear

that without further assumptions Whitehead’s doctrine of actual worlds, i.e.

individual causal pasts of occasions, and of the non-transitivity of contempo-

raneity, i.e. causal independence, do not uniquely single out the general or

even special relativistic connection between the spacetime regions of events

and their ability to cause each other–expressed by the lightcone structures

of STR respectively of GTR–other connections are still possible. Yet besides

declaring in the above quoted passage that he “adopts the relativity view”

Whitehead nowhere makes such additional assumptions explicit. That the

mere declaration to “adopt the relativity view” is not sufficient for making

the relativistic connection between the regions of occasions and their ability

to cause each other a generally valid principle of Whitehead’s theory relies on

the fact that not even the spatiotemporal character of the regions of occasions

is a general feature of all parts of the world-process, i.e. it is no “metaphysical

necessity”. As we will learn in Section 2.1, what is metaphysically necessary

is that occasions embody finite regions of the so-called extensive continuum–

but this extensive continuum is not to be equated with physical spacetime. In

contrast to the latter, the extensive continuum is merely topologically struc-

tured and does not have dimensional or even metrical properties. According to

Whitehead these further spatiotemporal structures only emerge contingently

in some parts of the world-process, e.g. in the part that is empirically accessi-

ble to us–in our cosmic epoch. Now we can see why it does not suffice simply
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to say that one adopts the relativistic connection between causal properties of

occasions and their regions within Whitehead’s ontology: if these regions need

not have a definite dimension and need not bear metrical-relations to each

other it is far from clear how the relativistic connection shall be implemented

at all–in fact, it seems that this task is impossible. Therefore, we will assume

in what follows that the relativistic connection between causation and the re-

gions of occasions is not a general feature of all parts of the world-process, but

that it obtains merely contingently in some parts of it. However, until we will

discuss the extensive continuum in detail in Section 2.1, we will for the sake

of simplicity think of the regions of occasions as spatiotemporal regions.

Now in STR the constraints between spatiotemporal regions of events and

their ability to cause each other arise out of the more fundamental assumption

that causal influences are transmitted by reason of spatiotemporally continu-

ous processes whose velocity is limited by a universal maximum velocity–the

velocity of light in the vacuum. Therefore, relativistic causation is local in the

sense that causes and their immediate effects are spatiotemporally contiguous

and that the causes of an occasion E lie within the backward lightcone4 of

E’s region. Yet in Whitehead’s theory there are no spatiotemporal, let alone

spatiotemporally continuous, processes which link cause and effect. Causal

influences between occasions are transmitted by reason of transition processes

and these are, like processes of concrescence, non-spatiotemporal processes (see

Section 2.4). Consequently, there is no reason for Whitehead to demand that

direct causal influences can only obtain between spatiotemporally contiguous

regions. Whitehead in fact adopted the view that each occasion E0 in the
actual world of a given occasion E cannot only causally influence E indirectly,

via a chain of contiguous occasions that reaches from E0 to E, but rather that
E0 can also directly influence E, irrespective of the “spatiotemporal gap” be-
tween E0 and E (PR, p. 307 f; WM, p. 244 f). Therefore, even if Whitehead

had somehow incorporated the relativistic connection between the regions of

occasions and their ability to cause each other–expressed by the lightcone

structure of STR–as a general principle governing the whole world-process,

his ontology would still not be local in the sense explained above, because

4When we speak of the backward- respectively forward lightcone of a region we not merely
mean the surface of this cone but rather its surface plus the whole interior of the latter.
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causation can operate across “spatiotemporal gaps”.

Now apart from the missing link between causation and spacetime White-

head’s doctrine of actual worlds is problematic in its own right, i.e. as the

purely causal concept that it in fact is. As we will see later on, the creation of

a new incomplete occasion via a process of transition from its actual world,

presupposes that this actual world is given in the following sense: before a

transition process can create a new occasion’s initial ontological constituents,

it first of all has to be decided from which groups of occasions from all the

already actualized occasions at the respective stage of the world-process new

transition processes shall arise, i.e. which groups of already actualized occa-

sions shall form the actual worlds from which new occasions will be created.

Put differently, some principle is needed by reason of which the aggregate of all

the occasions already actualized at some stage s of the world-process, i.e. after

the actualization of all occasions of stage s− 1, call it Ws−1, is arranged into
subgroups Ws−1(i)–the actual worlds at stage s (or equivalently, after stage

s− 1)–such that from each of these subgroups a single transition process can
arise that begets the initial components of a new occasion Ei. This is not the

case in STR or any other theory according to which causes are linked to their

effects by spatiotemporally continuous processes. In such a theory one can

hold that a new event is created when two or more causal processes intersect

spatiotemporally. Thereby, on the one hand, the region of the new event is

fixed as the region of intersection and, on the other hand, the direct causes

of the new event are also fixed a forteriori to be those events from which the

intersecting processes took rise. The complete causal past of an event E can

then simply be taken to consist of all and only those events which are direct

causes of E or direct causes of the former and so on. Yet since in Whitehead’s

theory there are no spatiotemporally continuous processes which link causes to

their effects the determination of the causes of an occasion cannot be settled

in this forteriori manner (i.e. “in the moment of intersection” of the corre-

sponding causal processes). Rather which already settled occasions shall form

the actual world of a new occasion needs to be determined (genetically) be-

fore the very transition process that begets the initial constituents of the new

occasion in question can arise from this actual world. Consequently, the deter-

mination of the actual world of an occasion must not depend on any features
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of the new occasion which in the first place have to be created or are otherwise

conditioned by reason of this actual world. However, since all features–all

ontological constituents–of a “newborn” occasion are in fact created in the

transition process arising from its actual world and all later phases of the oc-

casion’s self-creative becoming and thus too of its being are conditioned by its

initial ontological make up (see Section 2.4.3), no such independent features of

an occasion are available by reason of which its actual world could be defined

in a non-circular fashion.

For example, the determination of the actual world of an occasion by way

of its spacetime region is not possible within Whitehead’s ontology, because

the spacetime region of an occasion itself presupposes the occasion’s actual

world as its efficient cause. Such a way of introducing actual worlds could

only succeed if the spacetime regions of occasions would not have to be made

determinate and to be realized by reason of the causal influences of other oc-

casions, e.g. if they were eternally fixed (i.e. pre-determined), independently

existing substances and if moreover this substantival spacetime would come

equipped with metrical-relations between its different regions. In this case

one could define the actual world of an occasion E as that group of already

actualized occasions whose regions bear certain metrical-relations to E’s re-

gion. However, as already mentioned above, we will learn in Section 2.1 that

according to Whitehead metrical relations are not given on the fundamental

ontological level, but rather emerge merely contingently in some parts of the

world-process. Thus for this latter reason alone one cannot, at least not in all

parts of the world-process, introduce the actual world of an occasion by way of

its region. Yet as we have just seen, even in those parts of the world-process in

which appropriate metrical-relations are available this way of singling out the

actual world of an occasion (like any other way that involves E or any features

of E), does not work because the region of an occasion in the first place has

to be created by reason of this very actual world.

But how shall we make sense of the concept of an individual actual world

of each occasion then? Is there another way of implementing this concept

properly intoWhitehead’s theory? Later on in Section 2.5 we will see that there

seems to be no other way of how this could be achieved. More importantly,

we will have to modify Whitehead’s ontology for the sake of eliminating an
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inconsistency from it, and this modification will also undermine the doctrine

of actual worlds. However, until we will eventually give up this doctrine in

Section 2.5.3 we will, for the sake of proceeding with the description of the

philosophy of process as originally intended by Whitehead, assume that one

can make sense of it within Whitehead’s theory.

1.3.2 A comment on the concept of evolvement and the
openness of the future

A core idea of Whitehead’s philosophy of process is that the world of actualized

occasions is not given once and for all as a static whole, but rather that it is

an expanding pattern that grows by reason of the actualization of formerly

potential occasions.

The community of actual things [i.e. actual occasions] is an organ-

ism; but not a static organism. It is an incompletion in process

of production. Thus the expansion of the universe in respect to

actual things is the first meaning of ‘process’; and the universe in

any stage of its expansion is the first meaning of ‘organism’. (PR,

p. 214 f)

The universe is thus a creative advance into novelty. The alterna-

tive to this doctrine is a static morphological universe [...] without

unrealized potentialities; since ‘potentiality’ is then a meaningless

term. (PR, p. 222, 46).

Thus Whitehead follows Aristotle in proposing a theory of an open future

of yet unactualized–potential–entities which can be actualized at later stages

of the world’s evolvement. However, this openness of the future as well as the

corresponding evolving or expanding character of the world are challenged by

the causal spacetime structure of STR which Whitehead intended to integrate,

by reason of his doctrine of actual worlds and the non-transitive relation of

causal independence or contemporaneity, into his theory, too. Let us, for the

sake of argument, assume that the connection between causal and spatiotem-

poral properties of occasions known from STR had really been implemented

into Whitehead’s theory as intended by him. We will see in what follows that
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this causal spacetime structure of STR is still not rich enough to ground the

concept of an open future or the corresponding expansion of actuality. The

same obviously holds for the even weaker, because purely causal, concepts of

actual worlds and the non-transitive relation of causal independence.

The future (past) of an event in STR consists of those events which lie in

its forward (backward) lightcone, so that two different events have different

futures (pasts), even if they are simultaneous with, and thus causally inde-

pendent from, one another. This, however, is not problematic as long as each

event belongs to precisely one simultaneity class of events, i.e. to one and only

one set of events which are mutually simultaneous to each other. In this case

one can merge all the individual futures (pasts) of the events in such a simul-

taneity class into one unique future (past), consisting of the yet unactualized,

i.e. potential, (already actualized) events, relative to this simultaneity class.

Since these simultaneity classes were, by definition, disjoint each could be in-

terpreted as representing the frontier of the corresponding stage of actuality,

that demarcates already actualized from merely potential events. Moreover,

because each event precisely belongs to one simultaneity class the family of all

these classes is linearly orderable by the relation “lies in the future (past) of”.

Therefore, one could consistently interpret this “layer-cake structure” as the

expansion of actuality by reason of the successive actualization of new layers of

formerly potential events. Yet because of the non-transitivity of the relativis-

tic simultaneity relation, that is supposed by Whitehead to be the analog of

his non-transitive contemporaneity relation, each event belongs to (infinitely)

many sets of mutually simultaneous events rather than to precisely one. More-

over, each two such sets L1, L2 to which a given event belongs are not only

non-disjoint but they even cross each other: some events belonging to L1 are

in the future of L2 whereas some other events belonging to L1 are in L2’s

past. Such a structure can, however, hardly be interpreted as an expansion

or evolvement because it is not even linearly orderable. It neither provides us

with a unique open future since the futures of L1 and L2 are not compatible:

some events which are in the future of L2 and thus are potential relative to

L2 are in the past of L1 and thus are actualized relative to L1. This, however,

were still not problematic if one family of disjoint, linearly ordered sets of mu-

tually simultaneous events, i.e. one family of linearly orderable simultaneity
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classes, were somehow privileged over all others. In this case one could still

hold that this distinguished layer-cake structure represents the expansion of

actuality. However, all the incompatible layer-cake structures definable within

the causal spacetime structure of STR are completely on a par with each other.

Therefore, one does not get a unique evolvement or expansion of the world but

rather (infinitely) many different ones–none of which being privileged in any

way over others, so that one is not licensed to speak of one unified evolving

process.

Now without an ontologically distinguished layer-cake structure one can

also argue that it makes no sense in the first place to introduce sets of mu-

tually simultaneous events at all. Rather one could argue that only sets of

mutually timelike separated events, i.e. sets where for each two of their mem-

bers one lies within the backward lightcone of the other and which are therefore

automatically linearly ordered, can be interpreted as evolving or expanding,

since these sets as well as their individual linear orders are uniquely distin-

guished features of the relativistic causal spacetime structure (see e.g. Stein

1991). However, from our above considerations it follows that once two or

more of such “timelike sets” are taken in conjunction this conjunction cannot

be equipped with a unique linear order and therefore cannot be meaningfully

interpreted as forming one expanding structure. Thus in this case the world

could be held to consist of many individually evolving processes, but the latter

could not be combined into one unified world-process. In Section 2.7 we will

see that, at least after our modification of Whitehead’s original theory, there

is a rather natural way of how one can make sense of a unified expansion of

actuality and of stages of this expansion and thus too, of an open future.



Chapter 2

Potentiality and its interplay
with actuality

The central thesis of Whitehead’s philosophy of process is that there is a real

coming into being of ever new causally related, self-completing occasions. But

since these occasions cannot come into being from nowhere, i.e. from non-

being (PR, p. 46), Whitehead incorporated into his system pure potentials

in which resides the unlimited potentiality for the self-creative activity, the

definiteness and the spatiotemporal extensiveness which are the hallmarks of

actuality. In the philosophy of process these pure potentials are necessary

presuppositions of every act of becoming as well as for the definiteness and

the spatiotemporal extendedness of what has become. Thus presupposed, the

pure potentials cannot themselves become, since either they would have to

arise out of non-being and thus nothing would be gained, or there would have

to be higher grade potentials which ground the becoming of the lower grade

potentials. The consequence of this latter position would be an infinite regress

of potentials, which is obviously not a very attractive ontological construction.

Since Whitehead’s pure potentials are presupposed by everything that becomes

and thus do not themselves become (or perish), they are the eternal entities

in Whitehead’s ontology.1 To the three aspects of actual occasions–their self-

1Note that Whitehead’s defintion of the notion “entity” differs from its usual meaning in
ontology. According to the Whiteheadian definition the underlying activity and the extensive
continuum are not literally entities, but rather “realities”–strictly speaking, for Whitehead,
the only eternal entities are the eternal objects. But for reasons of simplicity, we will ignore

25
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completing activity, their definiteness and their spatiotemporal extensiveness–

correspond three pure potentials: the underlying activity, the realm of eternal

objects and the extensive continuum. But these eternal or pure potentials

as such cannot create any particular occasion. The eternal potentials are

necessary but not sufficient for the becoming of finite actualities. The eternal

potentials are the unlimited “sources” out of which a new occasion’s very

first stage of becoming is produced by the limitations laid upon them by the

corresponding actual world. It is an ultimate principle of the philosophy of

process that

what the universe is by way of actuality always conditions and

limits what the universe is by way of potentiality. This means

that the pure potentiality for the becoming of an occasion is al-

ways conditioned and limited by the actual world of that occasion.

The thus limited and conditioned potentiality is the real or nat-

ural potentiality–Whitehead uses both terms indifferently–from

which spring the nascent occasion’s successive phases of [becom-

ing]. (WM, p. 73)

What this principle says is that from the eternal or pure potentials as such,

i.e. in abstraction from their limitations due to attained actualities, can arise

no single occasion. Each becoming of an actual occasion not only presupposes

the eternal potentials but also the attained actualities which condition these

unlimited potentials in such a way that new finite occasions can arise from

the thus created limited or real potentials. This creation of real potentials,

which bridge the gap between pure potentiality and actuality, out of attained

actualities and the pure potentials is what takes place in processes of transition.

Note that this implies that there can be no first occasion (or a first layer of

causally independent, i.e. contemporaneous, occasions), since this occasion

would have no antecedent occasions which could condition the pure potentials

in the required way. Thus since each occasion presupposes already actualized

occasions there can be no beginning of the coming into being of occasions. The

expanding world-process of the coming into being of actual occasions is at every

this subtle point and will use the term “entity” according to its usual ontological meaning,
according to which it indifferently refers to every existent.
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stage of its history already infinitely “old”. Thus Whitehead’s ontology is, in

particular, not compatible with cosmological theories according to which the

world has a temporal beginning, like the popular “big bang” theory. However,

whether Whitehead’s ontology is in accord with certain cosmological theories

about the “origin” of the world is not important for us. We are only interested

in its use as an ontology of QFT and the latter is based on the Minkowski

spacetime of STR which is infinitely extended to the temporal past and thus

fits (at least in this regard) nicely to Whitehead’s ontology.

Now since in isolation from already actualized occasions the pure potentials

cannot account for the becoming of new occasions and thus for the expand-

ing world-process that is the ultimate fact to be explained by Whitehead’s

philosophy of process, we must conclude that the pure potentials are in fact

not isolated from the already actualized occasions. They can be abstracted

by reason from the limitations imposed on them. But as actually involved

as internal constituents of the ever expanding world-process, they are always

and inevitably found as conditioned by the already completed actualities up to

the stage of the world-process in question–they are always found as limited or

real potentials. The thus limited, real potentials are the germs from which new

self-creative actualities immediately arise. Real potentiality is thus the created

and limited mode of potentiality, that bears with it a necessary reference to

a particular group of actualized occasions by the conditioning of which it is

produced from the eternal unlimited potentials, as well as to a particular con-

crescent occasion that will necessarily arise from it (Christian 1959, p. 201).

Pure potentiality, on the other hand, does “not refer to or describe any state

of affairs, actual or hypothetical” it is “a ‘general potentiality’ unrestricted by

any particular state of affairs [in the world of actualized occasions]” (Christian

1959, p. 201). Pure potentiality is merely the realm of hypothetical possibili-

ties without any relation to particular actualities: pure potentiality is neither

produced by, nor is it a potential for, particular occasions. It is only the po-

tentiality for the becoming and being of occasions in general. The term “pure”

is thus to be understood in the sense that these potentials are the uncreated

and unlimited sources for the real, i.e. created and limited, potentials from

which new concrescence processes necessarily take rise. The whole spectrum

of qualitative, spatiotemporal and creative possibilities ever attainable in the
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world-process is grounded in the eternal, pure potentials. On the other hand,

the limited spectrum of qualitative, spatiotemporal and creative possibilities

attainable by each particular occasion is given by the corresponding created,

limited–real–potentials.

Before we start our investigation of the pure potentials by examining the

nature of the extensive continuum, a note on terminology is at stake. Unfortu-

nately Whitehead’s use of the terms “realization” as well as the corresponding

“real”, is not consistent throughout his writings. For example, he speaks of the

realization of some property by an occasion when referring to the actualization

of the property as constituent of the occasion’s final definiteness. To avoid such

ambiguities we will fix the meaning of the terms “real”, “realization”, “actual”

and “actualization” as follows: realization means the transition from pure to

real potentiality–from potentials for occasions in general to potentials for a

particular occasion. That something is real therefore means that it has the

ontological status of a real potential. The further transition from real poten-

tiality to actuality in attainment, as well as from actuality in attainment to

attained actuality is called actualization. This double meaning of actualiza-

tion will not give rise to any confusions since it will always be clear from the

context in which sense it is used.

2.1 The extensive continuum

The extensive continuum is that wherein actual occasions come to be. It can be

understood as infinite and undivided, but infinitely divisible, extension. How-

ever, the infinite divisibility of the extensive continuum does not mean that

it is divisible into points; rather it is merely divisible into finitely extended

regions.2 The reason for this is that Whitehead intends to build up his on-

tology on non-pointlike occasions and therefore a divisibility of the extensive

continuum into points would be quite functionless–it would merely produce

surplus structure. Now the notion of a region of the extensive continuum pre-

supposes a determinate boundary by which this region is demarcated from the

rest of the continuum (PR, p. 301). However, since the extensive continuum

2By “finitely extended” we will always mean bounded and non-pointlike.
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is undivided

in the extensive continuum, considered in itself, there are no bound-

aries. Therefore, the regions into which the extensive continuum is

divisible are not real or proper regions–they are potential regions.

Regions that might be, but are not. [...] The extensive continuum,

then, is a potentiality for regions of itself. (WM, p. 208).

Thus the extensive continuum is the pure potential for the “finite extensive

continua” embodied by occasions (WM, p. 212). The boundary surfaces by

reason of which the, in itself undivided, extensive continuum can be divided

into such finitely extended regions, belong, like the qualitative properties which

make up the definiteness of an occasion, to the realm of eternal objects that will

be investigated in Section 2.2. There we will see that a formerly potential finite

region of the extensive continuum is realized by the incoming or instantiation

of a closed boundary surface into the extensive continuum.

Besides the three ontological properties already mentioned, i.e. infiniteness,

undividedness and infinite divisibility, the extensive continuum has only two

further ontological properties. First, it is equipped with a primitive relation,

among its potential regions, called extensive connection (PR, p. 288, 294). The

relation of extensive connection can be understood as the disjunction of the

three relations inclusion, overlap and contact (PR, p. 66), i.e. two potential

regions of the extensive continuum which stand in the relation of extensive

connection are either overlapping, in contact (i.e. contiguous with each other)

or one of them is included in the other. However, Whitehead’s account of

extensive relations is strictly axiomatic. It presupposes only the relation of

extensive connection as primitive and by demanding certain axioms to hold

for this relation Whitehead introduces all other extensive relations, including

the relations of inclusion, overlap and contact (PR, p. 294 ff). We need not

discuss this axiomatic introduction of extensive relations by Whitehead here.

Rather it is sufficient for our purposes to have an intuitive understanding of the

mentioned relations. All the relations definable from the relation of extensive

connection are purely topological ones, so that the extensive continuum as

equipped with these relations is “merely” a topological structure, too. In

other words, “[extensive] regions are assumed to posses just those properties
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which are invariant with respect to topological transformations” (Palter 1960,

p. 110). Generally, a topological transformation is a bijective, continuous

mapping. For example a deformation that maps a ball to a cube is a topological

transformation. All regions which can be transformed into one another by

reason of topological transformations are topological equivalent.3 However,

since the extensive continuum is not divisible into points the topology it is

equipped with by reason of the relation of extensive connection is a pointfree

topology. In fact Whitehead has been one of the first people who thought about

the possibility of building up a topology on the concept of regions as primitives

and then to construct points a forteriori from certain well behaved collections of

regions, thereby reversing the conceptual order known from usual set-theoretic

topology. Yet it would go far beyond the scope of this work to enter into

a discussion of the differences between set-theoretic and pointfree topologies.

For an introductory survey of this topic the reader is referred to (Casati and

Varzi 1999). Whether equipped with a set-theoretic or pointfree topology,

in a “merely” topologically structured extensive continuum the concept of the

“shape” of a region as far as it goes beyond topological equivalence, is obviously

absent. We will come back to the question of how regions can nevertheless have

characteristics that go beyond topological ones below.

Besides the already mentioned ontological properties of the extensive con-

tinuum, i.e. its infiniteness, undividedness and its infinitely divisibility into

finitely extended regions, there is only one further property termed its separa-

tiveness. The separativeness of the extensive continuum forbids that any two

regions embodied by actual occasions do overlap, i.e. that they are not sep-

arated from each other. Thus the creation of a finite extensive region, which

is part of what takes place in a process of transition, is constraint by the sep-

arative property of the extensive continuum–the region must not overlap any

other real or actual region. By reason of this separativeness of the extensive

continuum, occasions are external to each other–they are discrete entities

(PR, p. 309; WM, p. 220, 223, 232 f). Of course, non-overlapping or sepa-

rated regions can well be contiguous, i.e. in contact, with one another. But

Whitehead did by no means assume that the regions embodied by occasions

3An example of topologically non-equivalent regions are (the surfaces of) a ball and a
torus.
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must always be contiguous to one another (PR, p. 307 f). Although this can

contingently happen, in general, there will be “gaps” of unrealized extension

between the bounded regions of occasions (PR, p. 35 f, 307 f; WM, p. 212).

Thus contrary to the eternal extension that is a continuum, the aggregate of

all the regions embodied by occasions, i.e. of all realized respectively actu-

alized regions, will, in general, not even appear as a continuum. But note

that even if the regions occupied by occasions were always contiguous with

one another, their aggregate would still not be a true continuum since it would

still be divided into discrete regions. Thus as in itself not divided, the exten-

sive continuum is indifferently open to divisions by the instantiation of closed

boundary surfaces, provided the thus created regions do not overlap, thereby

being the unlimited potential for finitely extended and separated regions.

As already mentioned in Section 1.3.1, in contrast to the extensive contin-

uum, spacetime is not a fundamental entity in Whitehead’s ontology. Rather

“physical time and physical space are modifications of extension brought about

by the becoming of actual occasions [...]” (WM, p. 22). The extensive con-

tinuum is a more general ontological concept than physical spacetime, since

“time and space are characteristics of nature which presuppose the scheme of

extension” (PR, p. 289; italics added). For the regions of occasions to be spa-

tiotemporal rather than merely finite extensive regions more is needed than

the instantiation of closed boundary surfaces. Spatiotemporal regions have a

definite dimension (in particular the dimension four) and bear metrical rela-

tions to each other. Like the boundary surfaces these further properties and

relations too are eternal objects which have to be instantiated in the extensive

continuum for the thus realized regions to be spatiotemporal regions. Thus

“all these [spatiotemporal] properties are additional to the more basic fact of

extensiveness” (PR, p. 91). However,

the fact remains that our world is spatio-temporal; but, for White-

head this means only that the actual entities of the contemporary

[...] world inherit from antecedent actualities, and transmit to sub-

sequent ones, the defining characteristics of our cosmic epoch, one

of which characteristics is the four-dimensional structure known to

us as ‘space-time’. In other words, physical space and physical time

are among the abstract constituents of the social order character-
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izing our cosmic epoch–characterizing, that is, what we familiarly

term ‘our world’. (WM, p. 216)

Our cosmic epoch is that part of the overall world-process that is empiri-

cally accessible to us and as such it is that portion of the world-process “whose

detailed investigation is the topic of empirical cosmology” (WM, p. 53). In the

overall world-process, however, there is room for many other cosmic epochs

some of which may be spatiotemporally structured in a way similar to our

epoch whereas others will not. Thus that in some cosmic epochs, and partic-

ularly in ours, spatiotemporality, i.e. four-dimensionality and the existence of

metrical-relations between realized and actualized regions, are pervasive fea-

tures is a contingent fact. The continued reproduction of spatiotemporal struc-

tures by all occasions belonging to our part of the world-process is an instance

of what Whitehead calls a social order. For Whitehead there are no fixed and

unchangeable laws of nature–of course, apart from the general principles gov-

erning his ontological system–that must be obeyed by occasions. According

to Whitehead’s ontological principle, it is in fact just the reverse: the laws of

physics like all other contingent facts arise from the decisions of occasions (PR,

p. 19, 24). Each occasion has a certain freedom in deciding its own final char-

acter and by reason of this final character it causally influences other occasions.

Now the idea underlying Whitehead’s concept of social orders, i.e. of laws of

nature, is roughly that if (nearly all) the occasions in the causal past of a new

occasion share a certain character–the defining characteristics of the social

order–the freedom of the new occasion arising from this past will be strongly

biased towards the reproduction of this character (see also Section 2.3.1). The

spatiotemporal character of the regions of occasions is such a defining char-

acteristic of the social order of our cosmic epoch, so that “spatio-temporality,

though not a true metaphysical category, becomes, nonetheless, a ‘categorial’

feature of the actualities of our world [i.e. our cosmic epoch]” (WM, p. 217).

However, a detailed discussion of Whitehead’s account of the emergence of

stable structures and ultimately of laws of nature would go far beyond the

scope of this work. We will therefore simply introduce some assumptions by

which we restrict the domain of application of Whitehead’s extremely general

theory to the domain we are interested in. Since we have, by definition, no

empirical knowledge of cosmic epochs other than our own (if there are any), it
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is not surprising that our present physical theories, including QFT, with their

laws (i.e. the theories and laws of “empirical cosmology”) are precisely made

for the purpose of describing merely our cosmic epoch. Thus it seems to be

justified to treat in this work at least some of the contingent features–of the

laws and general circumstances–of our cosmic epoch as if they were indeed

true categorial features of Whitehead’s ontological system, i.e. as if they were

metaphysical necessities. In other words, it seems to be justified to restrict the

scope of Whitehead’s ontology to those parts of the world-process which obey

the same laws than our own cosmic epoch. In what follows we will therefore

assume that the extensive continuum has the further ontological property of

four-dimensionality which is one of the most obvious lawlike features of our

cosmic epoch. Since this work moreover is only concerned with an ontological

interpretation of QFT, another simplifying assumption will be made. QFT

does not only presuppose that spacetime is four-dimensional, it also presup-

poses that spacetime is “flat”. More precisely, it presupposes that spacetime is

equipped with the metric, i.e. the spatiotemporal distance measure, of STR.

Therefore, we will deviate from Whitehead’s original theory by also treating

this presupposition of QFT as an ontological property of the extensive con-

tinuum itself.4 Thus we assume that the distance measure–the metric–of

STR is, like the relation of extensive connection and the separative property,

an inherent feature of the extensive continuum, so that the distance between

any two potential regions of the extensive continuum is now well-defined. Note

that the metric of STR is understood here as a purely spatiotemporal–or more

correctly extensive–relation without any causal connotations. That STR need

not be understood as a theory linking causation and spacetime at all will be

discussed later on in Section 2.8.2.

Now if the extensive continuum is equipped with the metric of STR its po-

tential regions are automatically determinate up to metrical properties. Thus

two potential regions of the extensive continuum are distinct iff they are dis-

tinct with respect to any topological or metrical properties. For the boundary

surfaces of regions this means that they are determinate up to Poincaré trans-

formations, which are the invariance transformations corresponding to the rel-

ativistic metric (see Chapter 5). Put differently, two boundaries are distinct

4This assumption will be further refined in Chapter 6.
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iff they cannot be transformed into one another by means of some Poincaré

transformation. To assume that the boundary surfaces contained in the realm

of eternal objects are more determinate than up to Poincaré transformations,

would merely introduce useless surplus structure. For any determinateness of

boundary surfaces that goes beyond Poincaré equivalence, would be meaning-

less as soon as these boundaries where instantiated in the extensive continuum,

because the latter, as equipped with the relativistic metric, is simply not sensi-

tive to such a determinateness. For reasons of ontological economy one should

therefore not postulate the existence of such more determinate boundaries in

the realm of eternal objects.

Note, however, that two (potential) regions of the extensive continuum can

very well differ with respect to metrical properties while being Poincaré trans-

forms of one another. For example, two regions connected by a spatiotemporal

translation bear a non-zero distance to one another and are therefore distinct

regions despite being realized by the instantiation of the same boundary surface.

To sum up our discussion of the extensive continuum, we will assume

throughout this work, that the extensive continuum is not only an uncre-

ated, infinite, undivided, infinitely divisible, separative continuum, but that

it is moreover four-dimensional and that for each two potential regions of it

their distance is quantified by reason of the special-relativistic metric. Yet,

with Whitehead, we do not assume that the regions embodied by occasions

(which due to our assumptions as to the dimensionality and metricity of the

extensive continuum are always spatiotemporalized regions) are also contigu-

ous with one another. In other words, we do not assume that at any stage of

the world-process the aggregate of all the already actualized regions appears

like a continuum. Rather we allow for the possibility that between the spa-

tiotemporal regions of occasions there are “gaps” of unrealized extension. In

Section 3.1 we will see that this further assumption of contiguity is in fact not

suggested by quantum physics.

2.2 Eternal objects

Eternal objects are the pure potentials for the spatiotemporal and qualitative

character of occasions. They provide the properties and relations–understood
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as universals–which can be instantiated in occasions respectively in the ex-

tensive continuum.5 It is quite usual that an entity is called a universal if

it can be instantiated in more than one particular. This loose definition of

universality along with the definition of particularity on which it relies shall

now be specified as follows: an entity is a particular iff it can exist only in one

connected spatiotemporal (or extensive) instance, i.e. if it can occupy, em-

body or be located only in a single connected region of spacetime (respectively

of the extensive continuum).6 ,7 Therefore, an entity is a universal iff it–as

a whole–can exist in more than one separated spatiotemporal (or extensive)

instances, i.e. if it–as the self-same entity–can occupy, embody or be located

in two or more separated regions of spacetime (respectively of the extensive

continuum). Later on in Section 8.1.7 we will strengthen this still very weak

definition of universality. That this understanding of universality is indeed

weak follows from the fact that according to it, substances would also count as

universals. This is because, among other things, substances are usually held to

have diachronic identity and thus can wholly occur in separated regions (see

e.g. Seibt 1990), so that according to the above criterion they would count as

universals. However, for the time being the weak criterion formulated above

serves our purposes.

It is important to notice that not all relations in Whitehead’s ontology

which can obtain between occasions are eternal objects. For example, the re-

5For convenience we will in most cases only speak of “the instantiation of eternal objects
in occasions” rather than more correctly of “the instantiation of eternal objects in occasions

respectively in the extensive continum”.
6As already mentioned, in Whitehead’s original ontology spacetime regions are not nec-

essary features of all occasions (see Section 2.1) so that in this theory one can only speak
of occasions occupying extensive, rather than spatiotemporal, regions when making general
statements about occasions.

7Usually the connectedness of a region O is defined as the property that each pair of
points x, y ∈ O can be connected by a continuous curve that does not leave O. However,
since according to Whitehead extensive regions do not consist of points at all, one cannot

introduce the property of connectedness in a way that presupposes the existence of points.
Whitehead dealed with this problem by simply using the concept of a connected region as a
primitive one. Although Whitehead did not made this explicit it is clear from Part IV of PR
that his primitive concept “region” is in fact what one usually understands as a connected
region.
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latedness of two occasions as cause and effect is not given by, or reducible to,

eternal objects as will become clear when we discuss processes of transition.

Moreover, the primitive relation of extensive connection and all the other ex-

tensive relations defined from it are not eternal objects either. Because of our

simplifying assumption that the extensive continuum comes already equipped

with a fixed distance measure, the distance relations between regions too, are

not given by eternal objects. Since these kinds of relatedness are the funda-

mental ones that can obtain between Whiteheadian occasions and since non

of them is an eternal object we will in what follows only discuss Whitehead’s

theory of eternal objects as far as it is concerned with monadic universals, i.e.

with properties understood as universals.

In itself each eternal object can be instantiated in every occasion what-

soever, i.e. in itself it is completely neutral in respect to its instantiations

in particular occasions. However, not every eternal object is in fact instanti-

ated in every occasion. The instantiation of a particular eternal object in a

particular occasion is a contingent fact that is determined by the occasion’s

actual world via a process of transition. Thus the specific connection of a given

eternal object to a given occasion is not eternally fixed and definite (SMW, p.

163), but is contingent on the actual course of the world-process.

The qualitative determinateness or definiteness of an occasion is a selection

of qualitative properties, which as we will see later on belong to the so-called

subjective species of eternal objects (see Section 2.2.1). Each occasion starts its

becoming already equipped with a certain range of qualitative properties that

is determined by the actual world of this occasion in a process of transition.

In the subsequent phases of concrescence the occasion autonomously decides

which of these initially given properties will be integrated into the final complex

of properties that constitutes the determinate qualitative character–the final

definiteness–of the completed occasion.

Contrary to this an occasion has no freedom to decide which region it will

embody. The bounded spacetime region of an occasion is created already in

the process of transition from whose outcome the self-creative becoming of the

occasion takes rise. It is created by the instantiation of a boundary surface

in the extensive continuum, whereby a potential finitely extended region of

this continuum is transformed into a real or proper finitely extended region
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(WM, p. 219, 247, 314 f). Because of our above assumption on the ontological

properties of the extensive continuum, these boundary surfaces are the only

objective eternal objects needed in the context of this work. More precisely,

only surfaces which demarcate finite, four-dimensional volumes of extension are

needed. In mathematical terms, our boundary surfaces will be closed, four-

dimensional hypersurfaces. Due to the realization (respectively actualization)

of each new region the distances between this region and the already realized

(actualized) regions are also realized (actualized), whereas its distances to all

potential regions are still merely potential distances.

As mentioned above the region of an occasion is that element in its onto-

logical make up that accounts for the self-identity of the occasion in all phases

of its existence. An occasion is numerically one entity in different phases of its

existence because the spacetime region with which it is provided by its actual

world via a process of transition is the fixed spatiotemporal standpoint for

each phase of the occasion’s concrescence as well as for the completed occa-

sion qua attained actuality (PR, p. 283). Because the region of an occasion,

once realized, will therefore necessarily also be actualized as the spatiotem-

poral standpoint of the occasion qua attained actuality, the distinction as to

its ontological status, i.e. real potential, actuality in attainment and attained

actuality, is only of minor importance.

2.2.1 Ingression and the two species of eternal objects

Instead of the instantiation of eternal objects Whitehead speaks of the ingres-

sion of eternal objects into occasions. As will become clear in what follows,

Whitehead’s notion of ingression is somewhat different from the usual notion

of instantiation. What both have in common is that they are supposed to

account for the entrance of universals into the constitution of particulars.

‘Ingression’ [...] is the technical term for the functioning or inclu-

sion of an eternal object within an occasion. (WM, p. 194)

Moreover, like the notion of ingression in Whitehead’s ontology, the notion

of instantiation too is often construed as primitive within an ontological theory,

i.e. as something that is presupposed by other aspects of the theory but that

itself cannot be further analyzed within this theory.
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Now Whitehead differentiates between two kinds of ingression of eternal

objects in occasions–restricted and unrestricted ingression. In general, eter-

nal objects which are ingressed in an occasion are alternatives among which the

occasion can decide its final determinate character. Not all of these alternatives

can be in fact selected and thus integrated into the final determinate character

of the occasion, some of them necessarily have to be rejected, since the aim

of each concrescence process is the intensification–the deepening–of the oc-

casion’s individuality (see Jones 1998). The aim of each concrescent occasion

is a determinate character that is as specific as possible, and the less alter-

natives are integrated into the final determinateness of an occasion, the more

heightened will be its final individuality (see Section 2.3.2). Those alternatives

which are in fact integrated into a particular occasion’s final determinateness,

i.e. which contribute to the individuality of the completed occasion and thus

“remain[ ] as an everlasting feature of the everlasting product [i.e. of the oc-

casion qua attained actuality]” (WM, p. 197), are said to have unrestricted

ingression into that occasion. The eternal objects which are ingressed into

an occasion but are not integrated into the occasion’s final character are said

to have restricted ingression into that occasion (PR, p. 290). Therefore, re-

stricted and unrestricted ingression are not two distinct ways by which eternal

objects initially “enter into the constitution of”, or are “made available to”,

occasions. Rather there is only one such way–ingression. Whether a given

eternal object A has restricted or unrestricted ingression into an occasion into

which it is ingressed is decided by the occasion’s later, self-creative phases of

concrescence. Thus “A has unrestricted (restricted) ingression into occasion

E” merely means that A is ingressed into E and has (not) been integrated into

E’s final determinateness. Thus the usual notion of instantiation corresponds

to Whitehead’s unrestricted ingression, since when a property is instantiated

by a particular it is understood to contribute to the particular’s determinate

character. Restrictedly ingressed eternal objects have been included in, and

evaluated by, the concrescent occasion up to some phase of the concrescence.

But then they have been rejected for entrance into all later phases and thus

especially from conferring their determinate character to the completed occa-

sion, i.e. from unrestricted ingression. Restricted ingression, therefore, is a

genuine Whiteheadian conception that relies on the internal processual char-
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acter of occasions and does not seem to have any parallels in other accounts

of the connection between universals and particulars.

However, there are eternal objects which, if ingressed into occasions (more

precisely into the extensive continuum), necessarily also have unrestricted in-

gression, because they cannot be eliminated in the course of the concrescence.

Whitehead calls such eternal objects objective eternal objects. All others, i.e.

which fall under the autonomous decisions of a concrescent occasion into which

they are ingressed and thus can be withheld from unrestricted ingression, are

called subjective eternal objects (PR, p. 290 f). Therefore, what has been said

above, namely that the eternal objects ingressed into an occasion are alterna-

tives among which the concrescent occasion can decide its final determinateness

does not apply to objective eternal objects–it only applies to subjective ones.

As explained above, in the context of this work the only relevant eternal objects

of the objective species are the boundary surfaces of four-dimensional, finitely

extended regions. That these boundary surfaces have to be objective eternal

objects follows from the fact that one important function of the spacetime re-

gion created in a process of transition is that it secures the self-identity of the

thereof arising occasion in all phases of its becoming and being. Therefore,

this spacetime region is presupposed as the determinate and unalterable basis,

from the very start of the concrescence process of the new occasion. Since

therefore this region cannot be changed without destroying the self-identity

of the occasion, the boundary surface by whose ingression into the extensive

continuum the spacetime region is created clearly cannot fall under the au-

tonomous decisions to be settled by the concrescent occasion. Thus boundary

surfaces are eternal objects of the objective species, because their ingression

necessitates their unrestricted ingression.

The only subjective eternal objects needed in this work are qualitative

physical properties. Subjective eternal objects can ingress unrestrictedly as

well as restrictedly. In the second and last phase of a transition process a

selected range of alternative subjective eternal objects, i.e. qualitative prop-

erties, which make up the initial definiteness of the new occasion ingress into

the spacetime region that has already been created in the first phase of the

transition process in question. Those subjective eternal objects which are

selected (rejected) by the concrescent occasion for contributing to its final
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definiteness–and thus to its individuality qua attained actuality–have unre-

stricted (restricted) ingression into that occasion.

Finally, there is another important point in connection with Whitehead’s

notion of the ingression of subjective eternal objects into some region O that

needs to be mentioned here. According to Whitehead, a subjective eternal

object A ingressed (restrictedly or unrestrictedly) into region O indifferently

belongs to the whole region O and not merely to some subregion O0 ⊂ O. This
is important because otherwise, completed occasions were not atomic in the

sense of not being divided into parts which are completed occasions in their

own right (PR, p. 62, 219, 283 ff). For if different subregions Oi of the region

O of an occasion E were endowed with different qualities Ai, each of them

would constitute a completed occasion Ei in its own right, so that occasion E

were in fact divided into these other occasions. Of course, since the region of an

occasion is divisible into subregions an occasion can be thought of as divided

into sub-occasions, each corresponding to a certain subregion. But such a

division is merely a conceptual construct–a division in thought–as long as

it is not grounded in any objective features of occasions. And when each of

the subregions of an occasion is endowed with the same (complex) quality A

as the whole region O, there simply is no ontic feature of the whole occasion
that would provide such an ontic fact of the matter, so that the undividedness

of occasions is not undermined by the conceptual divisibility of their regions.

2.2.2 Simple and complex eternal objects

A complex eternal object, also called a pattern, expresses a relationship, or

as Whitehead calls it, a manner of relatedness, among a definite set of other

eternal objects (PR, p. 114 f; SMW, p. 164 ff). The eternal objects which are

the relata of a given pattern are termed the components of the pattern (WM,

p. 176). Thus the ingression of a complex eternal object is the joint ingression

of all its components according to the manner of relatedness provided by the

complex eternal object. However, qua pure potential, i.e. in abstraction from

its ingressions into occasions, “a complex eternal object merely expresses the

possibility of the joint realization [i.e. ingression], in some actual entity [...]”

(WM, p. 177; see also SMW, p. 164). Eternal objects which are not complex
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but rather are the ultimate components of all the potential relationships estab-

lished by complex eternal objects, are termed simple eternal objects (SMW, p.

166). Thus simple eternal objects are the ultimate spatiotemporal and qual-

itative properties in Whitehead’s ontology. All complex eternal objects can

ultimately be analyzed into relationships among simple eternal objects (WM,

p. 177). As mentioned above, we do not need to discuss complex eternal ob-

jects which are potentials for relations among occasions (more precisely: for

relations among eternal objects ingressed into different occasions). Rather we

merely need to investigate complex eternal objects which can only be real-

ized by ingression into single occasions, i.e. which are potentials for complex

properties of occasions. In other words, we need only discuss those complex

eternal objects which by their ingression can contribute to the determinate

character of single occasions. Furthermore, we need not discuss all simple

eternal objects inherent in Whitehead’s complete theory either. For example,

according to Whitehead, a definite shade of green is a simple eternal object of

the subjective species. But it is clear that such qualities are not qualitative

properties that can contribute to the definiteness of occasions describable by

QFT. Rather the eternal objects of the subjective species relevant in the con-

text of this work are only the physical properties as suggested by QFT, i.e.

the properties connected with definite values of physical magnitudes like mass,

electrical charge, spin, energy, etc.

The only eternal objects of the objective species needed in this work,

namely surfaces of finitely extended four-dimensional regions, are simple. Note

that the simplicity of these boundary surfaces is not an artefact of our simpli-

fying assumption that the extensive continuum comes already equipped with

a dimensional and a metrical structure. Of course, if this assumption had not

been made the distance relations obtaining between the spacetime regions of

occasions would have had to be construed as complex objective eternal ob-

ject. Thus in this case we would have had also to take into account complex

eternal objects of the objective species. But this would have had no effect on

the status of boundary surfaces as simple eternal objects. This is so because

the extensive continuum does not consist of points anyway (see Section 2.1).

Therefore, the boundary surfaces by whose ingression the finitely extended re-

gions of occasions are created, cannot be construed as relations among points,
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but rather have to be itself the ultimate relata of distance relations, regardless

whether the latter are construed as complex eternal objects or as relations

inherent in the extensive continuum itself as done in this work.

Whereas each simple eternal object is either of the objective or of the sub-

jective species this is not the case for each complex eternal object. The reason

is that there are complex eternal objects which have among their components

both objective as well as subjective eternal objects and thus do not belong to

either of these “pure species” of eternal objects. In other words Whitehead’s

distinction between subjective and objective eternal objects is an exhaustive

one only among all simple eternal objects. Complex eternal objects which do

not belong to either of the two pure species will henceforth be referred to as

mixed ones. Mixed eternal objects are needed because otherwise the two pure

species of eternal objects were totally isolated from each other and thus ele-

ments of both species could not jointly ingress into occasions. This, however,

would have the disastrous consequence that occasions could not at the same

time have spatiotemporal and qualitative properties.

Unfortunately, from Whitehead’s writings it is far from clear which “man-

ners of relatedness” can obtain between eternal objects–or in other words and

more correctly (see Section 2.2.4): which (kinds of) complex eternal objects

there are. Yet it is to be expected that for his theory to be applicable to the

domain of physics the two logical connectives ∧, i.e. conjunction/and, and ∨,
i.e. disjunction/or, will be sufficient–in fact we will see later on that only

one of the two connectives ∧ and ∨ is really needed. It is clear that the nega-
tion ¬ cannot be a manner of relatedness among eternal objects, because it
simply does not relate anything at all. In other words, there are no eternal

objects of the form ¬A–no negative eternal objects. According to Whitehead
all propositions, which prima facie seem to assert the existence of some nega-

tive property (or relation) are to be understood and reformulated as asserting

the lack or absence of some positive properties (or relations) (PR, p. 154, 239

f, 267, 273 f; SMW, p. 162). In Section 8.1.3 we will see that, at least for

physical properties, this view is well supported. Generally, the postulation of

negative entities causes trouble because contrary to positive entities, negative

ones have no determinate identity criteria. For example, there is obviously

no non-arbitrary answer to the question “How many ‘non-shortcuts’ did occur
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yesterday?”. On the other hand, it is not clear whether one can generally

avoid an ontological commitment to negative entities like negative properties

or relations by reformulating propositions about them, such that the problem

of negative entities does not reappear in one or another form. For example,

to avoid speaking of the possession of some negative property ¬A one would

like to reformulate all propositions in which the possession of ¬A is asserted

into ones asserting the non-possession of the positive property A. However,

this solution could be charged of making use of the negative relation “non-

possessing”. Moreover, it is a non-trivial task to formulate criteria which in

the first place unambiguously decide whether a given entity is genuinely pos-

itive or negative at all. The most promising criteria for this are either those

which are based on a difference in the specificity of negative and positive en-

tities or on a difference in their logical entailments. For example, positive but

not negative properties entail both properties of the same and of different kinds

as themselves: whereas non-red entails only non-crimson and other properties

of the same kind, red entails both, non-green and colored, where the latter is

a property of another kind than red itself. Since a more detailed discussion

of the topic of negative entities would go far beyond the scope of this work

we will simply assume, with Whitehead, that prima facie negative entities are

ultimately reducible to positive ones. Moreover, as already mentioned above,

we will see later on that this assumption is well supported, at least in regard

to physical properties.

Now we want to point out that there is a tension between the existence of

conjunctive eternal objects, i.e. complex eternal objects of the form C = A∧B,
and Whitehead’s definition of the simplicity of eternal objects by their not

having components. The problem is that it seems that any property can be

written as a conjunction of two (or more) other properties so that Whitehead’s

definition of simplicity turns out to be vacuous. For example, the property C

expressible by the sentence “having a mass of 70kg” can be understood as

the conjunction of the two properties A and B expressible by “having a mass

between 65kg and 70kg” and “having a mass between 70kg and 79kg”. On

the other hand, it is clear that if one of the properties A, B and C deserves

the predicate “simple” at all, it is C but not A or B. This is because we

intuitively understand simplicity as having no disjunctive components rather



44 CHAPTER 2. POTENTIALITY’S INTERPLAY WITH ACTUALITY

than having no conjunctive components. Therefore, it seems reasonable to

bring Whitehead’s incomplete definition of simple eternal objects to an end by

defining: an eternal object is simple iff it does not have disjunctive components

nor do its components have disjunctive components etc. The need for the

iteration in this definition derives from the fact that it is not clear whether

Whitehead conceives the relation of componenthood as transitive, so that the

components of a component of an eternal objectA need not also be components

of A (see SMW, p. 166). However, for convenience we will henceforth speak

as if it were clear that “is a component of” is transitive. For example, instead

of saying that a complex eternal object C has components whose components

have the simple eternal objects A and B among their components, we will

simply say that A and B are simple components of C. Of course, when arguing

for a certain claim we have to be careful not to make use of transitivity in

connection with the relation of componenthood.

Finally a point that will become important later on shall be mentioned.

Without ultimate components–simple eternal objects–of which all complex

eternal objects are “build”, the latter were not fully determinate. For, by

definition, the non-existence of simple eternal objects means that each eternal

object can be written as a disjunction of other eternal objects and thus there

simply is no unique way in which a given eternal object is to be written as

disjunction of others. For example, the complex eternal object C = A∨B could
also be written in the form C = A∨B1∨B2 or C = A1∨A2∨B1∨B2 , if B =
B1∨B2 and A = A1∨A2 also hold, or as some more complicated disjunction, ad
infimum. Moreover, since as argued above each eternal object can be written

as a conjunction of others, without simple eternal objects there would be the

further ambiguity as to the very disjunctive or conjunctive character of a given

complex eternal object. On the other hand, if there is a stock of simple eternal

objects which are the ultimate components of all other eternal objects, then

there is a unique form of each complex eternal object, namely the one in

which only simple eternal objects appear. Later on we will have to discuss this

problem in more detail, since QFT strongly suggests that there are no simple

subjective eternal objects.
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2.2.3 Comparison with two other theories of universals

Platonic forms

Whitehead’s theory of eternal objects in one respect strongly resembles Plato’s

theory of forms or ideas. Like Plato’s forms, Whitehead’s eternal objects are

held to exist independently from the fact whether they are instantiated in some

occasion (WM, p. 214). Thus like Plato and contrary to Aristotle, Whitehead

promotes a strong kind of realism of universals, i.e. of universalia ante res,

according to which universals exist whether they are instantiated in the con-

crete world or not. But in its details Whitehead’s theory of eternal objects is

quite different from Plato’s theory of forms. First of all, unlike Plato’s forms

eternal objects are not the entities which exist in a primary sense, whereas

the existence of all other entities is deficient compared to that of eternal ob-

jects. To the contrary, for Whitehead the fullest sense of existence is actuality,

and this highest grade of existence is only attributed to the self-realizing and

self-realized modes of existence of occasions. All other entities, including eter-

nal objects, are only a means for the becoming and being of ever new actual

occasions. Eternal objects exist as pure potentials for actualization in occa-

sions, i.e. they are “meant precisely for that role of ingression” (Pols 1967,

p. 7). This means that eternal objects, though existing independently from

any ingressions into the concrete world, nevertheless are necessarily related

to occasions in general, since “they are possibilities for actualization, which

any actual entity can take into account, or they are indistinguishable from

non-entity” (WM, p. 176; see also SMW, p. 159). Contrary to this, Plato’s

forms exist in a self-sufficient way with no necessary reference to things be-

yond themselves, i.e. their exemplifications in the concrete world are only

“accidental episodes” in their self-sustained existence. Furthermore, according

to Plato’s account of the participation of concrete things in forms, this partici-

pation is always imperfect, i.e. a concrete thing never exemplifies the forms in

which it participates in their whole perfection. In contrast to this, an eternal

object as ingressed into occasions is the self-same eternal object as existing

apart from these ingressions, i.e. eternal objects are perfectly reproduced in

occasions (SMW, p. 159, 171; WM, p. 191) and thus eternal objects “do not

have another and ideal state of being over against which the definiteness of
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actual entities is somehow deficient” (Pols 1967, p. 164). Thus despite the fact

that Whitehead sometimes explicitly calls his eternal objects “Platonic forms”

(PR, p. 43 ff) there are important differences in the details of Whitehead’s

and Plato’s accounts of universals.

Armstrong’s theory of universals

There are two aspect of D. M. Armstrong’s theory of universals (1978) which

are in agreement with Whitehead’s theory of eternal objects. Since here we

can ignore relations we will only discuss the case of properties. First of all,

Armstrong shares withWhitehead the view that besides simple properties there

have to exist complex ones: for a particular to instantiate both of the simple

properties A and B there has to exist besides A and B, the complex property

C = A ∧B. The second feature Armstrong’s theory shares with Whitehead’s
is the denial of negative properties–negative properties are assumed to be

always reducible to the lack, absence or non-occurrence of positive properties

and thus have no existential status of their own.

However, Armstrong and Whitehead do not agree about the way of ex-

istence of (positive) universals. As we have seen Whitehead follows Plato in

holding that universals, including uninstantiated ones, do exist in a realm sep-

arated from the world of concrete particulars. Armstrong, however, follows

Aristotle in promoting a theory of universalia in rebus. For Aristotle as well

as for Armstrong a universal only exists as far as it is a constituent of at

least one particular. This means that for example the universal roundness can

be eliminated from existence by eliminating all round things in the concrete

world. In other words, for Aristotle and Armstrong the existence of a universal

depends on the existence of its instances. Note that the universalia in rebus

view is not a variant of nominalism. A nominalistic account of universals tries

to eliminate universals as a fundamental ontological category in that they are

reduced, in one way or another, to certain classes of particulars. For example,

according to one variant of nominalism, roundness is simply identified with the

class of all round things in the world. Contrary to this the universalia in rebus

view holds that the fact that there are many round things is explained by the

existence of the universal roundness that is a common ontological constituent
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of all round things.

2.2.4 The compatibility of eternal objects

First of all, two eternal objects A, B are compatible relative to another eternal

object C if both of them are components of C, i.e. if A and B stand in the

manner of relatedness provided by C. Otherwise, A and B are called incom-

patible relative to C. Accordingly two eternal objects are compatible if there

is a complex eternal object C such that A and B are components of C and

incompatible if there is no such complex eternal object that has both A and

B among its components. Now under the reasonable assumption that the log-

ical disjunction ∨ is a manner of relatedness among eternal objects, it seems
that each eternal object A is compatible with each other eternal object B, since

A∨B is always a meaningful property if A and B are, so that the notion of (in-
) compatibility would be vacuous because every two arbitrary eternal objects

are compatible. However, this overlooks that manners of relatedness are not

independently existing entities in Whitehead’s theory of eternal objects–they

do not exist in independence from complex eternal objects. It is just the other

way round: manners of relatedness are merely abstractions from complex eter-

nal objects, e.g. the manner ∨ does not exist as such (in the realm of eternal

objects) but merely “in” complex eternal objects of the form A∨B. Thus com-
plex eternal objects are ontologically prior to the “relations” ∨ and ∧–in fact,
the latter are only concepts derived from certain complex eternal objects by

way of abstraction and generalization. Therefore, the above argument for the

vacuousness of the notion of incompatibility does not go through: whether for

two given eternal objects A andB there exists the complex eternal objectA∨B
cannot be deduced from the mere logical meaningfulness of the latter–not all

logically meaningful complexes of properties need to exist, not even qua pure

potentiality. In other words, pure potentiality can very well be ontologically

more restrictive than logical possibility. As the reader may expect, Whitehead

did not made explicit what the precise relation between logical possibility and

his notion of pure potentiality (in regard to eternal objects) is. However, we

will see in a moment that there is a principle in Whitehead’s ontology that can

be interpreted as implying that pure potentiality is in fact the more restrictive
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mode of possibility compared to logical possibility–at least in regard to mixed

eternal objects. Furthermore, in connection with QFT, it will turn out that

the disjunctive subjective eternal object A ∨ B does not exist for each pair

of subjective eternal objects A and B, so that even in regard to the realm of

subjective eternal objects alone, the notion of incompatibility is not vacuous.

Before we go on to investigate the mentioned principle of Whitehead’s

theory that implies the incompatibility of some subjective eternal objects with

each given objective one, we want to point out that the only mixed eternal

objects needed in Whitehead’s ontology are conjunctive ones, i.e. ones of the

form A∧O. This is because each completed occasion shall have both a definite
qualitative and a definite spatiotemporal character. And this obviously means

that the (complex) subjective eternal object A singled out in the course of

an occasion’s concrescence must be synthesized with the occasion’s objective

eternal object O into the unity of the conjunctive mixed eternal object A∧O.
Thus whenever we speak of mixed eternal objects in what follows we shall

always mean conjunctive ones.

Now a subjective eternal object A is, by definition, compatible with the ob-

jective eternal object O if there is a complex eternal object–of mixed type–

that has both A and O among its components, which means that at least

one mixed eternal object of the form C(. . . , A, . . .) ∧ O, where C(. . . , A, . . .)

is some complex subjective eternal object that has A among its components,

exists (qua pure potentiality). If the compatibility of eternal objects were only

restricted by the requirement of logical consistency, as believed, for example

by Kraus (1998, p. 28 ff, 34), all conjunctions of arbitrary subjective and arbi-

trary objective eternal objects would exist, since there can hardly arise a logical

contradiction from the conjunction of qualitative properties with boundary

surfaces. Yet this stands in opposition to a principle of Whitehead’s ontology

which says that the spatiotemporal standpoint O created in the first phase of a
transition process by way of the ingression of an objective eternal object O into

the extensive continuum, functions as a limitation for the following phases of

transition and concrescence–in particular for the following ingression of sub-

jective eternal objects and thus for the initial definiteness of the new occasion.

Since if all logically possible conjunctions of subjective and objective eternal

objects would really exist in the realm of eternal objects, the region O could
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not be “a limited potentiality for objectifications [i.e. for the ingression of

subjective eternal objects]” (PR, p. 67; see also p. 152, 288). More explicitly,

if each mixed eternal object B ∧O, where B is an arbitrary subjective eternal

object, would be contained in the realm of eternal objects, each subjective

eternal object could ingress into the bounded spacetime region O and thus

this spacetime region O, respectively the objective eternal object O, would
not in any way constitute a limitation for such ingressions. Thus pure poten-

tiality has to be more restrictive than logical possibility–at least in regard to

mixed eternal objects–since otherwise the role of the region that is realized

in a transition process as the first limitation for the ingression of subjective

eternal objects were undermined. Therefore, the Whiteheadian notion of (in-)

compatibility is not vacuous, since at least in regard to mixed eternal objects

not all logical possibilities can in fact exist in the realm of eternal objects.

2.2.5 Abstractive hierachies

The definite status of an eternal object in the realm of eternal objects is given

by its being a component of particular other (more complex) eternal objects

(SMW, p. 164). This status of an eternal object can be further analyzed into its

status in more restricted sub-structures of the realm of eternal objects called

abstractive hierachies. One aspect of the relevance of abstractive hierachies

in the constitution of occasions lies in the fact that the range of qualitative

properties, i.e. the definiteness, in each but the last stage of a concrescence

process is such an abstractive hierachy (see Section 2.2.6). Whitehead defines

abstractive hierachies in the following way:

An ‘abstractive hierachy based upon G’, where G is a group of

simple eternal objects, is a set of eternal objects which satisfy the

following conditions,

(i) the members of G belong to it, and are the only simple eternal

objects in the hierachy,

(ii) the components of any complex eternal object in the hierachy,

are also members of the hierachy, and,

(iii) [the elements of] any set of eternal objects belonging to the
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hierachy [...] are jointly among the components or derivative com-

ponents of at least one eternal object which also belongs to the

hierachy. (SMW, p. 167 f)

From the conjunction of (i) and (ii) it follows that an abstractive hierachy

based upon a set G of simple eternal objects includes only complex eternal

objects whose simple components are all among the members of G. Condition

(iii) is called the condition of connexity because it demands that the elements

of each set of members of a hierachy are again components of at least one other

eternal object in that hierachy. In other words, the condition of connexity not

only demands that each set of members {Ai} of a hierachy are compatible with
one another, but moreover that at least one (more) complex eternal object C

relative to which the Ai are compatible is itself a member of the hierachy. This

condition, for example prohibits that a group G of simple eternal objects is

itself a hierachy, since in this case not all members of the hierachy would be

jointly among the components of another member of the hierachy–G does not

include any complex eternal object at all that could have members of G as its

components, let alone all members of G. It also implies that no element of the

base G is superfluous for a hierachy based on G, i.e. that each member of G is

in fact a component of at least one complex eternal object in the hierachy and

further that a set G of simple eternal objects can only be the base of a hierachy

if all elements of G are compatible. But the conditions (i)-(iii) do not imply

that an abstractive hierachy H(G) contains all complex eternal objects whose

components are in H(G). In particular, they do not imply that H(G) contains

all complex eternal objects whose simple components are members of G. This

means that, in general, many different abstractive hierachies can have the very

same base. Yet in connection with QFT we will only need such hierachies

H(G) which in fact contain all complex eternal objects whose components

are contained in H(G) and thus especially all complex eternal objects whose

simple components are contained in G. Therefore, we will from now on only

take into account those hierachies which are maximal in this sense, i.e. which

besides (i)-(iii) fulfil the further condition that8

(iv) all complex eternal objects whose components are among the

8This condition is not explicitly introduced by Whitehead.
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members of an abstractive hierachy H(G) are themselves members

of H(G).

Now it is easy to see that each set G of compatible simple eternal objects

(a) determines a unique maximal hierachy based upon G and that (b) this

maximal hierachy includes all other hierachies based upon G, which justifies

the qualification “maximal”. For if H(G) is a maximal abstractive hierachy

based upon G, by condition (iv), there can be no complex eternal object C

whose simple components are all in G that is not itself contained in H(G).

Consequently there can be no other hierachy based on G which is not com-

pletely contained in H(G), which at once proofs (a) and (b). From this it

moreover follows that (c) two maximal hierachies are distinct iff their bases

are distinct.9 As mentioned above this need not be the case for non-maximal

hierachies–non-maximal hierachies need not be identical if their bases are.

Altogether a maximal abstractive hierachyH(G) with base G is a substruc-

ture inherent in the overall relational structure of the realm of eternal objects,

with the following properties:

(1) H(G) is uniquely determined by G and contains all (non-maximal) hier-

achies based upon G.

(2) H(G) contains all and only those complex eternal objects whose simple

components are all among the members of the base G.

(3) All members of H(G) are mutually compatible with one another.

(4) For each set of members {Ai} ⊆ H(G) of the hierachy there is at least

one (more complex) eternal object in the hierachy relative to which the

elements of {Ai} are compatible.

Thus a maximal abstractive hierachy H(G) contains all (and only those)

complex eternal objects which are pure potentials for joint ingressions of mem-

bers of its base G. In other words, the maximal hierachy H(G) exactly en-

compasses all the pure possibilities for the joint ingression of arbitrary subsets

9But note that for two maximal (or non-maximal) hierachies to be distinct their bases
clearly need not be disjoint.
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of the set G of compatible simple eternal objects. Since we have restricted

our scope to conjunctive and disjunctive complex eternal objects, the maximal

abstractive hierachy H(G) therefore looks as if it were generated by arbitrary

combinations of disjunctions and conjunctions of elements from G. Of course,

it is not literally “generated” in this way, because this would presuppose the ex-

istence of the manners of relatedness ∧ and ∨ independently from conjunctive
and disjunctive eternal objects. However, to think of a maximal abstractive

hierachy in this way makes its structure more “visible”.

2.2.6 Functioning of eternal objects in the constitution
of occasions

We will now summarize the functioning of eternal objects in the constitution

of occasions as far as relevant for this work. The creation of a new occasion,

though not the self-creation and thus not the genuine existence of a new oc-

casion, starts with the first phase–the so-called dative-phase–of a process

of transition. In this initial phase of a transition process an objective eternal

object O–a boundary surface–and the position for its ingression into the ex-

tensive continuum are determined by the corresponding actual world (WM, p.

313 f, 321). By the ingression of O a finitely extended spacetime region O is

realized as outcome of the dative phase. Furthermore, by reason of compatibil-

ity respectively incompatibility to the objective eternal object O, the region O
constitutes a limitation for the ingression of subjective eternal objects, i.e. of

qualitative properties, thereby being a limited or real potential for all following

phases of transition and concrescence. Only those subjective eternal objects

which are compatible with the objective eternal object O can ingress into the

region O. Recall that the compatibility of two eternal objects, in the present
case of the objective eternal object O and a subjective eternal object A, means

that there exists a complex eternal object, in this case a mixed one, that pro-

vides a manner for the joint ingression of O and A, i.e. that has the objective

eternal object O and, perhaps besides other subjective eternal objects, also A

among its components. Let P (O) denote the set that contains all subjective

eternal objects compatible with O as well as the mixed (and thus complex)

eternal objects relative to which they are compatible with O, i.e. all eternal
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objects of the form A ∧O where A is an arbitrary complex subjective eternal

object compatible with O. Yet, in general, not all of the subjective eternal

objects in P (O), i.e. which are compatible with O and thus can in principle

ingress into the region O, need also compatible with one another. In other
words, the set P (O), in general, contains many distinct (maximal) abstractive

hierachies. In the conformal phase–the second and last phase of a transi-

tion process–one set of mutually compatible simple subjective eternal objects

G(O) is singled out from P (O) and ingresses into the region O. This set G(O),
together with the objective eternal object O, determines a unique maximal ab-

stractive hierachy H(O,G(O)) that provides the complex properties available

for the autonomous decisions in the following process of concrescence. All

subjective eternal objects which are not contained in the hierachy H(O,G(O))

do not contribute to the initial definiteness and therefore cannot contribute to

the final definiteness of the subsequently arising occasion either–they are real

impossibilities for this occasion, but nevertheless pure possibilities for further

occasions. The base {O,G(O)} of H(O,G(O)) contains besides the simple
objective eternal object O only simple subjective eternal objects Ai. And it

is only the latter which fall under the decisions to be felt in the process of

concrescence that takes rise from the outcome of the process of transition.

In this concrescence process the becoming occasion decides which of the

simple qualitative alternatives Ai from G(O) shall contribute to its final def-

initeness. More precisely, in the course of the concrescence the set G(O) is

successively reduced

G(O) ≡ G1(O) ⊃ G2(O) ⊃ . . .

until the activity of the concrescence process has reached the point where

any further reduction of the set G(O) would not left enough activity for the

final phase of the concrescence–the phase of satisfaction. By means of this

reduction the initial maximal hierachy H(O,G(O)) is automatically reduced

H(O,G(O)) = H(O,G1(O)) ⊃ H(O,G2(O)) ⊃ . . .

too, in the course of the concrescence. Let us assume that the concrescence

consists of n phases, i.e. of n decisions as to the elimination of elements from
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G(O),10 so that Gn(O) is the subset of G(O) that contains those simple subjec-

tive eternal objects which are not eliminated in the course of this concrescence,

or put positively, which are selected to contribute to the final definiteness of

the completed occasion.

Now for the integration of the simple subjective eternal objects Ai ∈ Gn(O)

into the unity of one complex subjective eternal object and of the latter into a

unity with the objective eternal object O, a complex mixed eternal object C is

needed, that provides the manner of relatedness for the elements of {O,Gn(O)}
(WM, p. 194). The complex eternal objects which provide a requisite manner

are also members of the maximal abstractive hierachy H(O,Gn(O)) deter-

mined by the reduction of G(O) to Gn(O). However, in general, there will

be more than one pattern in H(O,Gn(O)) that provides a manner for relat-

ing all elements of Gn(O), i.e. that has all elements of the set Gn(O) as its

components. Thus the final decision to be settled in the concrescence pro-

cess concerns the complex mixed eternal object D ∈ H(O,Gn(O)) according

to which the simple properties Ai ∈ Gn(O) shall be synthesized into a unity

with one another and with the objective eternal object O ∈ Gn(O) (PR, p.

154). Yet since the completed occasion shall have a determinate qualitative

and a determinate spatiotemporal character, it is clear that this mixed eternal

object D must be of the form D = C(A1, . . . , Am) ∧ O, where C is its “sub-

jective part”. Thus the final decision as to the pattern D ∈ H(O,Gn(O)) only

concerns the manner of relatedness of its subjective components Ai ∈ Gn(O),

i.e. only the subjective part C of D. This decision is felt in the last phase

of the concrescence–the phase of satisfaction. The outcome of this terminal

phase, i.e. the completed occasion, is the spacetime region O endowed with

the complex quality C(A1, . . . , Am)–it is a qualitatively endowed bounded

spacetime region “that is determinate in every respect and is intolerant of any

10Recall that we have assumed in Section 1.1.3 that each phase of concrescence corresponds
to one simple decision, i.e. to a decision as to the rejection of one simple eternal object for
entrance into the next phase. Although Whitehead did not made this explicit, it seems to

be the only way to support the demand that a concrescence consists of more than one phase,
i.e. that a concrescence is a process of genetically sucessive phases, at all. If a concrescent
occasion would have the ability for more than one simple decision at the same time, it could
decide its final definiteness all at once, thereby eliminating the processual character of its
self-creative becoming.



2.3. THE UNDERLYING ACTIVITY 55

addition” (WM, p. 288; see also p. 266). We will later on in connection with

QFT only need quite specific (maximal) abstractive hierachies, so that there

will always be a unique pattern C that has all and only the simple subjective

elements Ai ∈ Gn(O) as its components. In other words, the final decision

as to the pattern C will be turned into a universal principle applying to each

occasion, and thus need not be construed as a decision at all (see in particular

Section 11.1, equation 11.1). The final phase of the concrescence–the phase of

satisfaction–then simply coincides with the last decision as to the elimination

of some simple eternal object, i.e. with the reduction Gn−1(O)→ Gn(O).

The completed occasion, that can for example be represented by the pair

(O, C(A1, . . . , Am)), is a new limitation laid upon the underlying activity, and

thereby causally influences all future occasions to whose actual worlds it be-

longs. This limiting, respectively conditioning, of the underlying activity by

each completed occasion will be discussed in more detail later on.

2.3 The underlying activity

Besides a spacetime region and a range of qualitative properties the initial stage

of a new occasion’s becoming consists of an activity due to which this becoming

is a creative process. This activity of a concrescent occasion is a limited and

individualized manifestation of the eternal underlying activity, also called the

creativity by Whitehead. This underlying activity or creativity is the pure

potential

for the becoming of determinate occasions, but is itself indetermi-

nate or formless. In itself, then, the creativity is without a character

of its own. It is [...] incapable of characterization in disconnection

from its involvements in the becoming of its creatures [i.e. occa-

sions]. (WM, p. 169)

This does not mean that the underlying activity as such has no determinate

ontological properties–for sure, no entity can be indeterminate or formless in

this radical sense. Rather it means that in itself the underlying activity, term

it ω, though being the unbounded potential for activities, cannot create any

particular occasions because it has no determinate creative character–it is
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a totally “unordered” activity–and therefore in itself cannot settle any deci-

sions for or against particular possibilities. The underlying activity is the pure

potential for the becoming of occasions in general : it functions in the same

way for all occasions without any valuation or decision for or against some

possibility. The characterization of the underlying activity needed for the cre-

ation of particular occasions, i.e. for the realization of particular possibilities,

is due to the limitations laid upon it by the already actualized occasions at the

respective stage of the world-process (WM, p. 161). The formless underlying

activity needs to be manifested in limited forms equipped with determinate

creative characters before it can, by way of this manifestations, contribute to

the creation of particular occasions (WM, p. 308 f). In the following ωWs−1

shall denote the manifestation of the underlying activity ω arising from the

conditioning of the latter by the aggregate Ws−1 of all already actualized oc-
casions at stage s of the world-process.

What has been said so far about the underlying activity strongly resembles

some central aspects of Aristotle’s notion of matter as well as of Plato’s recep-

tacle or chora. The former resemblance is explicitly mentioned by Whitehead

himself:

‘Creativity’ is another rendering of the Aristotelian ‘matter’, and

of the modern ‘neutral stuff’. But it is divested of the notion of

passive receptivity, either of ‘form’, or of external relations; it is the

pure notion of the activity conditioned by the objective immortality

of the actual world [...]. Creativity is without a character of its own

in exactly the same sense in which Aristotelian ‘matter’ is without

a character of its own. It is that ultimate notion of the highest

generality at the base of actuality. (PR, p. 31)

A detailed comparison between the Whiteheadian notion of the underly-

ing activity or creativity and the Aristotelian notion of matter has been given

by R. Fetz (1981). Like Aristotle’s matter, Plato’s chora is also the formless

medium or substrate that is open to receive any forms. However, Plato’s chora

resembles the Whiteheadian underlying activity even to a higher degree, be-

cause it incorporates “tendencies for motions which, however, do not result

in an ordered motion but merely in an indeterminate trembling within the
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chora” by reason of which the chora “supports the appearance of forms in it

[...]” (Böhme 2000, p. 305 f; translation by the present author). If this inter-

pretation is correct, the chora is–at least to a certain degree–also an activity

that supports the actualization of forms. The resemblance of Whitehead’s un-

derlying activity and Plato’s chora with regard to their role as active principles

has also been recognized by Nobo. The conclusion reached by Nobo is that,

although Whitehead when explicitly using the term “receptacle” mostly does

so “as synonymous with ‘extension’ and the ‘extensive continuum’” (WM, p.

256), the Platonic receptacle or chora nevertheless conveys the same principle

as is conveyed by the underlying activity, namely

that the universe is ever advancing beyond every completed multi-

plicity of its achieved elements, yet always retaining the achieved el-

ements as components of the novel elements in achievement. (WM,

p. 257)

How the underlying activity is involved in retaining all achieved elements–

all actualized occasions–and in making them components of, in the sense of

causal factors for, the newly arising occasions will be seen later on. In sum,

one can conclude that Whitehead’s conception of the underlying activity does

not stand as much aside well-known ontological constructions as it may seem

at first sight.

Now according to Whitehead the aggregate Ws−1 of all already actual-
ized occasions at some stage s of the world-process is further divided into

different actual worlds Ws−1(i). Whitehead assumes moreover that the man-
ifestation ωWs−1 of the underlying activity corresponding to Ws−1 is likewise
divided into partial manifestations, term them ωWs−1(i), each being created

from the underlying activity and equipped with a determinate creative char-

acter by the conditioning of the underlying activity due to one of the actual

worlds Ws−1(i) which together make up Ws−1. These partial manifestations
are, though equipped with a determinate creative character, not yet the activi-

ties involved in the concrescence processes of the new occasions of stage s. For

the activities involved in concrescence processes are individualized activities

(SMW, p. 177).
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This individualizing of the partial activities ωWs−1(i) is what happens in

transition processes. Yet before we discuss transition processes in more detail,

we will in the following three sections elucidate the sense in which the activi-

ties involved in concrescence processes are limited and individualized (Section

2.3.1), what this means for the individuality of completed occasions (Section

2.3.2) and how the actualization of completed occasions by which they condi-

tion the underlying activity underlying activity is to be understood (Sections

2.3.3 and 2.3.4).

2.3.1 The limited and individualized activity of a con-
crescence process

Part of the outcome of a transition process arising from an actual worldWs−1(i)
is a limited and individualized manifestation of the underlying activity, term

it ωc
Ws−1(i), that is the activity for a new self-completing concrescent occasion.

That this activity for a new concrescence process is limited means three things.

First, it is only a limited “amount” of activity with which each concrescence

process is provided by the genetically earlier process of transition. This secures

that each concrescence process necessarily comes to an end once its amount of

activity is exhausted.

The second limitation of the activity fromwhich a new concrescence process

arises is due to the restricted range of qualitative properties, i.e. a set of

mutually compatible simple subjective eternal objects (see Section 2.2.6), that

is available for its decisions. Like all components of the initial ontological make

up of a concrescent occasion this range is determined by the occasion’s actual

world and is realized in the genetically earlier process of transition. Thus the

activity of the new occasion is limited in that it can only make decisions among

a restricted range of properties.

However, there is a third limitation of the activity of each concrescent occa-

sion. According to Whitehead the freedom of each activity for decisions within

the given range of properties is restricted too, i.e. its freedom to choose among

the given alternatives is no absolute freedom (PR p. 133; WM, p. 384 ff).

Each activity is the outcome of the conditioning of the underlying activity by

an actual world with a determinate spatiotemporal and qualitative character.
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By reason of this determinate character of this actual world the corresponding

manifestation of the underlying activity thereby produced is equipped with a

determinate creative character, that does not change during the course of the

following concrescence. What changes during the course of a concrescence is

the amount of activity but not the latter’s creative character. That each activ-

ity has such an unchanging creative character means that this activity will, in

general, not be neutral relative to the alternative properties among which it has

to decide during the process of concrescence–its freedom for decisions is a bi-

ased freedom. In other words, depending on the determinate creative character

the activity is provided with by its actual world, some of the possible outcomes

of the corresponding concrescence process will be more likely to be decided for

being integrated into the occasion’s final definiteness, than others. Although

Whitehead did not put it this way, the actual world of an occasion by reason

of its determinate spatiotemporal and qualitative character dictates a partic-

ular chance, tendency or more technically an ontic single case probability–a

propensity–with which each element from the range of alternative qualitative

properties available at the beginning of the concrescence process will be in

fact chosen for integration into its final outcome by the creative activity.11 If

this way of understanding Whitehead is correct, the creative character of an

individualized manifestation of the underlying activity can be understood as

a propensity-measure over the initial range of subjective eternal objects avail-

able for its decisions. That this creative character does not change during

the whole concrescence process, then, means that the propensity-measure is

not conditionalized after a decision has taken place–only its domain, i.e. the

range of still available subjective eternal objects, is reduced by one element.

Thus the third way in which the activity of each concrescence process is limited

is due to the determinate creative character–the determinate propensities for

decisions concerning the available subjective eternal objects–impressed on it

by its actual world in the forgoing transition process. The freedom of each

creative activity is not only restricted as to the range of alternatives among

which it can decide, but also as to the decisions within this range. However,

that Whitehead believed that there is such a freedom of decision of each cre-

11An excellent overview over the merits as well as the problems of propensity interpreta-
tions of probabilities can be found in (Rosenthal 2002).



60 CHAPTER 2. POTENTIALITY’S INTERPLAY WITH ACTUALITY

ative activity, though only a biased one within a restricted range, is clear form

the following statement.

The doctrine of the philosophy of organism is that, however far

the sphere of efficient causation be pushed in the determination

of components of a concrescence [...] beyond the determination of

these components there always remains the final reaction of the

self-creative unity of the universe [i.e. of a concrescent occasion

respectively its creative activity]. (PR, p. 47)

[...] it is to be noted that the ‘decided’ conditions are never such

as to banish freedom. They only qualify it. There is always a

contingency left open for immediate decision. (PR, p. 284)

Thus according to Whitehead no occasion is completely other-caused, ev-

ery occasion is to a greater or smaller amount self-caused, depending on how

strongly the freedom of an occasion’s activity is biased towards a certain out-

come by its actual world–its efficient cause. The stronger this impressed bias

is, the greater is the amount of efficient causation and the smaller is the amount

of self-causation with respect to this occasion. In other words, the closer the

propensity for a certain outcome comes to certainty (i.e. to the value one) the

smaller is the freedom left for the creative activity thus biased. On the other

hand, if all outcomes have the same propensity the freedom of the activity,

and thus the amount of self-causation of the occasion, is as big as it can be

because the actual world did not impress any preference for any possible out-

come onto the creative activity. Thus when Whitehead speaks of the freedom

or the autonomy of an occasion respectively of the occasion’s creative activity,

to decide the final definiteness of the occasion, these notions always have to

be understood as limited by the corresponding actual world.

Yet this demand that no occasion can be completely other-caused, in that

the creative character of its activity is maximally biased towards a certain

quality–a certain element from the initial range of simple subjective eternal

objects available to it–plays no systematically fundamental role for White-

head’s theory. Rather it seems to be completely ad hoc, since nothing else

in Whitehead’s ontology would have to be changed if one would allow for the

more natural possibility of completely other-caused occasions, i.e. occasions
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whose final definiteness is determined by its efficient causes–by the occasions

in its actual world. Since nothing speaks against it, will therefore allow for

this possibility.

Before turning to the discussion of the individuality of the activities of

concrescent occasions, we will introduce a simplifying assumption concerning

a possibility about which Whitehead himself is silent. As mentioned above,

the amount of activity can change whereas its creative character stays fixed.

This is not only the case for the activity involved in a concrescence process

but is likewise the case in the earlier transition process. Thus the activities

involved in a transition and the following concrescence process have the same

creative character (see also Section 2.4). Now since there is no principle that

restricts the “compatibility” of certain amounts of activity and certain creative

characters, each amount is compatible with each creative character. Therefore,

it is very well possible that amount and creative character of an activity are

not determined by the same occasions (from the corresponding actual world).

An occasion E may, for example be an efficient cause of the creative character

of the activity of some other occasion but not for this occasion’s amount of

activity. However, for the sake of simplicity we will henceforth assume that

amount and creative character of an activity always have the same efficient

causes. This assumption will simplify the–already quite involved–discussion

of efficient causation in Whitehead’s ontology in later sections (see particularly

Sections 2.4.3 and 2.6.3).

Now that the limited activity of a concrescent occasion is moreover indi-

vidualized means two things. The first factor of its individuality is its par-

ticularity. According to Section 2.2, an entity is a particular if it can exist

only in one connected spatiotemporal respectively extensive instance, i.e. if it

occupies, embodies or is located in a single connected spatiotemporal or exten-

sive region. Because of our supplementary assumptions as to the ontological

properties of the extensive continuum we need only speak of spatiotemporal

regions in connection with the limited activities of occasions. The particularity

of the activity involved in a concrescence process, therefore, means that it is

located in a single connected spacetime region (WM, p. 278, 282 ff). However,

one can ask what the precise meaning of the locatedness of an activity in a

certain spacetime region shall mean. Since the activity in question is a deci-
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sion making activity, the only reasonable meaning of its locatedness in some

region seems to be that it makes decisions for this and for no other region,

namely decisions as to the subjective eternal objects which will unrestrictedly

ingress into this region. This understanding of the localization of activities is

not in conflict with the fact that the concrescence processes in which they are

involved are not spatiotemporal processes in the sense that their phases cannot

be spatiotemporally ordered. This is because the entire region of an occasion

is created all at once in the first phase of the forgoing process of transition and

the decisions of the limited activity in each phase of the later concrescence

process refer indifferently to this entire region. Therefore, the locatedness of a

decision making activity in a certain region, by reason of its settling decisions

for this (entire) region makes perfect sense.

Now the individuality of the manifestations of the underlying activity in-

volved in concrescence processes means more than their bare particularity. The

second factor that together with their particularity makes them individuals in

Whitehead’s sense is their already mentioned (limited) freedom or autonomy.

Thus the individuality of the creative activity of an occasion is to be under-

stood as its particularity together with the (limited) autonomy of its decisions.

Since the freedom of an activity can be larger or smaller, its individuality too,

varies with the degree of this freedom. In the extreme case, arbitrarily aban-

doned by Whitehead but allowed by us, in which there is no such freedom at

all, because the creative character of the activity is maximally biased towards

one possibility, its individuality is minimal–it just coincides with the activ-

ities particularity. In the other extreme case where the creative character is

not biased at all, but rather is completely indifferent with respect to the dif-

ferent possibilities available to it, its freedom and thus too its individuality are

maximal. In between these two extreme cases, the activity’s creative character

is neither maximally biased nor completely indifferent, corresponding to an

intermediate degree of individuality.

Besides this generally merely limited freedom or autonomy there is also a

sense in which each activity involved in a concrescence process is completely

“autonomous”–the activity of a concrescent occasion is completely causally

independent from all activities of jointly concrescent occasions. As mentioned

in Section 1.3 all contemporary occasions are, by definition, completely causally
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isolated from one another and thus do not influence their mutual decisions in

any way. Thus in regard to their contemporaries Whiteheadian occasions be-

have like windowless Leibnizian monads. In terms of the creative characters

of occasions this therefore means that the creative character of each individ-

ualized activity is completely fixed by the occasions belonging to its own ac-

tual world–by the decisions these occasions settled during their concrescence

processes–and does not depend in any way on the decisions of any contempo-

rary occasions. However, to avoid confusions we will not speak of this causal

independence as “autonomy” or “freedom”. Rather the latter terms will exclu-

sively be used to refer to the above discussed feature of the creative characters

of single activities that contributes to their individuality.

In the following section we will see that the sense in which occasions are

individuals during their becoming and as attained actualities is intimately

related to the individuality of their creative activities.

2.3.2 The individuality of occasions

According to Whitehead occasions are individuals in each phase of their ex-

istence. Their initial constituents are an individualized, i.e. particularized

and (to a certain degree) autonomous, manifestation of the underlying activ-

ity and a range of qualitative properties–the occasion’s initial definiteness.

The individuality of such a newborn occasion is just the individuality of its

creative activity enriched by the initial, though incomplete, qualitative char-

acter. Thus in its initial phase of existence an occasion’s individuality consists

of its particularity, its autonomy and its initial definiteness. As mentioned

earlier, in the following phases of the occasion’s concrescence the initial def-

initeness is successively deepened up to the point where its creative activity

is completely exhausted. Consequently, in the course of the concrescence the

occasion’s individuality is successively deepened, too (WM, p. 285 ff). The

completed occasion’s individuality is the result of this successive deepening.

It consists of the finally attained definiteness and the unaltered particularity

provided by its fixed spatiotemporal standpoint. As completed an occasion

clearly no longer is an autonomous activity, since it lacks any activity at all.

Thus autonomous decisions are features of an occasion’s individuality in its
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phases of becoming, i.e. during its process of concrescence, but not of the

fixed and final individuality of an actualized occasion. The distinction between

the two senses of individuality of an occasion, therefore, directly corresponds

to the distinction between its two modes of existence, i.e. its two modes of

actuality–its dynamic self-creative mode and its static other-creating mode.

An occasion starts its existence as an autonomous, minimally individualized

particular and successively deepens this individuality until its autonomous ac-

tivity is exhausted, thereby attaining the final and fixed individuality it will

exhibit during its subsequent existence qua stubborn fact. Thus the individ-

uality of an occasion in each phase of its existence means strictly more than

bare particularity–it is particularity enriched by autonomously deepened defi-

niteness (WM, p. 285). As mentioned earlier, the unique connected spacetime

region, by reason of which it is a particular is also the unchanging element

in an occasion’s internal constitution that accounts for the self-identity of the

occasion throughout all phases of its existence. Consequently, an “occasion’s

unique and specifiable particularity remains unchanged as the occasion passes

through its successive phases of becoming” (WM, p. 283). An occasion is

the self-same particular, though with a different definiteness and a different

amount of creative activity, in each phase of its existence–it is a particular

that autonomously deepens its individuality.

2.3.3 The envisaging property of the underlying activity

When a concrescence process is completed, its outcome–the completed occa-

sion–is actualized. This act of actualization is the transformation of the

completed occasion from its self-causing to its other-causing mode of existence

and thus marks at the same time the beginning of a new transition process, by

reason of which a new incomplete occasion is created (see Section 2.4). Thus

by means of its actualization a completed occasion is made causally efficient

for all later occasions to whose actual worlds it belongs (PR, p. 29; WM, p.

310). But this act of actualization cannot be ascribed to the individual activity

of the concrescent occasion, simply because this activity is already exhausted

after the last decision as to the qualitative properties of the completed occasion

has been settled, i.e. at the end of the phase of satisfaction. Rather it is to be
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attributed to the underlying activity itself (SMW, p. 105; WM, p. 308).

The ontological property of the underlying activity by reason of which each

completed occasion is actualized is called its envisagement. Envisagement is

the Whiteheadian term for the underlying activity’s taking into account of the

outcome of each completed concrescence process, i.e. of each completed oc-

casion. This taking into account–this envisagement–of the outcome of each

concrescence process by the underlying activity is the act of actualization of

the completed occasion. At the same time it is the act by which a new limited

manifestation of the underlying activity is created from which a new transition

process will take rise (WM, p. 309). Acts of envisagement are therefore the

only acts which can be ascribed to the underlying activity itself (WM, p. 308),

all other acts which occur during processes of transition or concrescence have

to be ascribed to the limited or particularized or even individualized manifes-

tations of the underlying activity. In sum, then, this taking into account by

the underlying activity is the transformation of the completed occasion from

private to public actuality, from actuality in attainment to attained actuality

or equivalently from its self-creative to its other-creating mode of existence,

which at the same time produces a new limited manifestation of the under-

lying activity and thereby marks the beginning of the dative phase of a new

transition process.

This envisaging of completed occasions by the underlying activity, though

acts of it, do, however, not involve any kind of decision or valuation among

the different occasions taken into account. The underlying activity does not

“privilege” any occasion over any other. It indifferently takes into account

each completed occasion in the same way, i.e. it functions in the same man-

ner in respect to every occasion whose concrescence process has terminated.

Decisions do always presuppose an individualized, and therefore autonomous,

manifestation of the underlying activity which settles them–the underlying

activity as such as well as its merely limited and particularized manifesta-

tions, cannot settle any decisions (WM, p. 152 ff, 174; see also Section 2.4).

However, though the underlying activity takes each occasion into account in

the same way, it is nevertheless conditioned by different occasions in different

ways. By reason of their different qualitative and spatiotemporal characters

different occasions, though taken into account in exactly the same manner by
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the underlying activity, lead to different manifestations of it.

2.3.4 The objective immortality of occasions

Since it will not affect any argument of the present section, we will in what

follows simply disregard the fact that the manifestation ωWs−1 of the underlying

activity at a some stage s of the world-process is further divided into partial

manifestations ωWs−1(i), each being determined by one of the actual worlds

Ws−1(i) into which Ws−1 is supposed to be divided.

According to Whitehead the actualization of an occasion makes the latter

objectively immortal. This objective immortality is the reason that “actuality

is cumulative and the number of its concrete components is ever increasing [...]”

(WM, p. 172; italics added). Thus, in particular, the objective immortality of

occasions is the reason for the equivalence of the evolvement and the expansion

in Whitehead’s ontology. How the very idea of an evolvement or expansion

of the world, as discussed in Section 1.3.2, can be made sense of, will be

discussed in Section 2.7. For the moment we will simply take it for granted

that the world exhibits a unique layer-cake structure by reason of which it can

be said to evolve or expand.

However, by objective immortality Whitehead means more than that once

actualized, each occasion is a “stubborn fact which cannot be evaded”. By

reason of this character of a stubborn fact, each actualized occasion is also

said to have “unavoidable consequences” also in the far removed future (PR,

p. 43, 219). In other words, by the objective immortality of an envisaged

occasion Whitehead means that (1) it is somehow retained and that by means

of this, (2) it is available as an efficient cause for occasions at some arbitrary

later stages of the world-process. Now according to Whitehead the reason for

this objective immortality of occasions is that the

creativity is not separable from its creatures [i.e. occasions]. Thus

the creatures remain with the creativity. Accordingly, the creativity

for a creature becomes the creativity with the creature, and thereby

passes into another phase of itself. It is now the creativity for a

new creature. (RM, p. 92; italics added).
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This function of creatures, that they constitute the shifting charac-

ter of creativity, is here termed the ‘objective immortality’ of actual

entities. (PR, p. 32; italics added)

But how is this remaining with the creativity and the latter’s shifting char-

acter, that is supposed to account for the objective immortality of occasions,

to be understood? We will now propose our interpretation of these matters.

This will lead us to the conclusion that the most reasonable way to under-

stand the objective immortality of occasions in sense (1), is to assume that

each completed occasion genuinely remains with, i.e. is retained in, the ex-

tensive continuum and that the objective immortality in the causal sense (2)

should better be given up in its strict form.

First of all, the only reasonable candidate for the “shifting character of

creativity” is the succession . . . , ωWs−1, ωWs , ωWs+1, . . . of manifestations of the

underlying activity corresponding to different stages of the world-process. For

by way of the envisagement of the aggregate of occasions Ws−1 the activity
ωWs−1 for stage s, i.e. “the creativity for the creatures” of this stage, is created

from the in itself formless underlying activity ω. Now each manifestation of

the underlying activity at some stage, ωWs−1 say, is exhausted when all the

occasions begotten in stage s have completed themselves, so that at the end

of stage s the only activity that is left is again the underlying activity ω itself.

To use some familiar physical vocabulary, the underlying activity ω is the

world’s ground state of activity and its manifestations ωWs−1 are excitations of

this common ground state. Yet since at the end of stage s the activity ωWs−1

is exhausted it can hardly retain the occasions belonging to Ws−1 plus the
new occasions created in stage s–it cannot retain anything because it does

no longer exist. The only activity left at this point is again the underlying

activity ω. But the underlying activity cannot retain anything either, because

for retaining each completed occasion the underlying activity itself would have

to undergo successive changes–without any difference between the underlying

activity as such and as already having retained some occasions, it is hard to

see in which sense the latter can be retained at all. Thus something different

from any activity seems to be needed as that wherein all completed occasions

are retained so that they can again be envisaged and thus can contribute to a

new manifestation of the underlying activity.
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Now it is already assumed that (i) each occasion occupies a unique region of

the extensive continuum, (ii) that each two occasions occupy separated regions

and that (iii) the subjective eternal objects constituting an occasion’s definite-

ness ingress into the occasion’s region and thus ultimately into the extensive

continuum. Therefore, the extensive continuum is the most natural candidate

for faithfully retaining not only the spatiotemporal but also the qualitative

character of each completed occasion–and thus each completed occasion it-

self. In fact, it is hard to think of any better candidate for this job. The

actualization of a completed occasion E can then be understood as the first

act of envisagement in which E has been taken into account by the underly-

ing activity, because through this act E “gained” its causal efficiency, i.e. is

transformed from its self-causing to its other-causing mode of existence. With

the extensive continuum as retaining each completed occasion, and the further

assumption that from its first act of being envisaged–its actualization–on,

an occasion will necessarily be taken into account in all following acts of en-

visagement as well (see PR, p. 286), we are then able to give the following

account: when the manifestation ωWs−1 of the underlying activity is exhausted,

the underlying activity ω envisages the aggregate Ws of qualitatively endowed

spacetime regions (including their spatiotemporal relationships to one another)

inherent in the extensive continuum, that consists of the occasions completed

in stage s plus the aggregate Ws−1 of all earlier actualized occasions. By the
envisagement of Ws the new manifestation ωWs is created that “transmits”

the causal efficiency of the occasions from all earlier stages one stage further,

i.e. to stage s + 1. After ωWs is again exhausted the underlying activity ω

envisages the aggregate Ws+1 from which its new manifestation ωWs+1 results

that, accordingly, transmits the causal efficiency of the occasions in Ws+1 to

stage s+2. By further iterating this mechanism, the causal efficiency of some

arbitrary far removed past occasion E is made available to occasions at all later

stages of the world-process and thus gives rise to E’s objectively immortality

as an efficient cause. Moreover, Whitehead’s statement that “the creatures

remain with the creativity” can then be interpreted as meaning that once en-

visaged, an occasion remains a conditioning factor of all later manifestations

of the underlying activity.

However, an assumption implicit in Whitehead’s idea of this causal sense
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of objective immortality, as well as in our above account, is that no occasion

can be completely causally ineffective, in the sense that it is not even available

as an efficient cause to any other occasion, for otherwise it would not be objec-

tively immortal in this causal sense. But this assumption seems to be quite ad

hoc since, prima facie, it seems very well possible that an occasion E makes no

contribution to any later manifestation of the underlying activity, because its

conditioning effect on the underlying activity is rendered irrelevant or screened

off, by the conditioning effect of other earlier or contemporary occasions. In

this case E would not be available as an efficient cause for any occasion since it

does not contribute to the manifestation of the underlying activity from which

this new occasion has been created. The ad hoc character of not allowing for

such “cancellations” is even more strengthened in the light of the fact that the

underlying activity takes into account all occasions indifferently in the same

way and thus cannot account for the prohibition of cancellations. Moreover,

within our above account each occasion, even if rendered completely causally

ineffective, is nevertheless retained in the extensive continuum and thus is

at least objectively immortal in this sense. Therefore, we will–contrary to

Whitehead–allow for the possibility of completely causally ineffective occa-

sions, since it seems to be the more natural option than to stipulate by fiat that

no cancellations of conditioning effects on the underlying activity can happen.

Furthermore, it could likewise be the case that an occasion E is causally effec-

tive with respect to occasions of stages s, s+ 1, . . . , s+ n of the world-process

following the stage (i.e. stage s − 1) in which E has been envisaged for the

first time but that its effectiveness for further occasions is then rendered irrel-

evant by the conditioning effects of occasions belonging to stage s + (n + 1).

Therefore, it is likewise natural to allow for this possibility, too.

Thus what we end up with is essentially the above given account accord-

ing to which at the end of each stage of the world-process all the occasions

belonging to the latter plus the aggregate of all earlier actualized occasions,

is envisaged by the underlying activity, whereby a new manifestation of it is

produced from which the occasions of the next stage are begotten and so on.

However, we will not assume that by reason of this mechanism each actual-

ized occasion necessarily becomes an efficient cause of some other occasion.

Rather we believe that this is only the case if the conditioning effect of the
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occasion is not rendered irrelevant by the conditioning effects of some other

occasions. Note that the act of actualization of an occasion can nevertheless be

understood as the transformation from the occasion’s self-causing to its other-

causing mode of existence–only that “other-causing mode” does no longer

imply that the occasion will in fact become a cause of some other occasion.

Before turning to Whitehead’s account of transition processes, it shall be

pointed out that Nobo, in his interpretation of Whitehead’s ontological system,

also assumes that completed occasions are retained in the extensive continuum

(WM, p. 205 ff). Yet for Nobo the fact that a function originally ascribed by

Whitehead to “the creativity”, namely the function of retaining all completed

occasions, can be systematically much better understood if it is ascribed to the

extensive continuum, is one of the reasons to put forward a more far reaching

interpretational claim. In Chapter 6 of WM, Nobo argues that the underlying

activity and the extensive continuum are not two different entities but rather

merely two aspects of one and the same ultimate reality, termed the extenso-

creative matrix that “is the ultimate ground for the becoming, the being, and

the solidarity of all actual entities” (WM, p. 259). Although Nobo provides

some systematic arguments as well as some textual support from Whitehead’s

writings for this claim, we will nevertheless be content with the orthodox view

according to which extensive continuum and underlying activity are not to be

fused into such an extenso-creative entity.

2.4 Other-creating processes of transition

Transition processes are the deterministic mechanisms whereby causal influ-

ences are transmitted between occasions (see Section 2.4.3). Moreover, they

are non-spatiotemporal processes (see Section 2.4.4) consisting of two geneti-

cally succeeding phases–the dative phase and the conformal phase–which we

will describe in this order in the following two sections.

2.4.1 The dative phase of a transition process

According to Whitehead the aggregate Ws−1 of all actualized occasions at
stage s of the world-process is uniquely divided into sub-aggregates–the actual
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worldsWs−1(i) at that stage. The manifestation ωWs−1 of the underlying activ-

ity created by the envisagement of the occasions belonging toWs−1 is therefore
likewise assumed to be differentiated into corresponding partial manifestations

ωWs−1(i), each solely determined by the conditions imposed on the underlying

activity ω by the occasions in one of the actual worlds Ws−1(i) at stage s

(SMW, p. 106, 177; WM, p. 161, 174, 168). Note that the sub-activities

ωWs−1(i) into which the activity ωWs−1 is supposed to be divided, are not yet

located in a particular region nor do they have the ability for autonomous deci-

sions. These features are further products of the transition process that takes

rise with the creation of each activity ωWs−1(i) by reason of the envisagement of

the corresponding actual worldWs−1(i). The creation of the activity ωWs−1(i) is

at the same time the initial “moment” of the dative phase of a new transition

process (WM, p. 73 f). In this dative phase a new finitely extended, connected

spacetime region is produced by the ingression of a boundary surface–an ob-

jective eternal object–into the extensive continuum (see Section 2.2.6). The

activity for this ingression is supplied by the corresponding limited activity

ωWs−1(i). However, it is not a decision of this limited activity which poten-

tial region of the extensive continuum shall be realized. This is completely

determined by the qualitative and spatiotemporal characters of the occasions

belonging to the corresponding actual world Ws−1(i)–it is a decision “made
by earlier actual things [i.e. occasions] for later actual things [i.e. occasions]”

(WM, p. 156).12 This can be understood as meaning that the creative char-

acter of the limited activity ωWs−1(i), as determined by the conditions imposed

on the underlying activity by the envisaged occasions of the corresponding

actual world Ws−1(i), is maximally biased towards the creation of a particular
region, say Oi. In other words, the creative character of ωWs−1(i) is such that

it only allows the ingression of a particular boundary surface Oi at a particu-

12We have assumed that the ingression of eternal objects into the the extensive continuum
requires an amount of activity even if no decision of this activity is involved, so that the
activity at the end of the dative phase differs by this amount from the activity ωWs−1(i) at

the beginning. However, it is not clear whether this is intended by Whitehead or not. Yet
if an act of ingression that did not involve a decision of the corresponding activity should
not reduce the latter’s amount, this can easily accomodated for: in this case the activities
before and after the ingression are simply identical not only as to their creative character
but also as to their amount.
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lar position within the yet unrealized part of the extensive continuum thereby

creating the particular connected region Oi without involving any decisions of

the activity ωWs−1(i) (WM, p. 159, 162). Thus besides containing propensities

for the decisions as to the elimination of ingressed subjective eternal objects

during the later process of concrescence, the creative character of the activity

ωWs−1(i) also contains the “information” as to which region has to be realized

in the dative phase.

Now the activity left after the creation of the region Oi and thus after the

dative phase, term it ωd
Ws−1(i)(Oi), is supposed to be particularized, i.e. located

in the connected region Oi (WM, p. 288). In Section 2.3.1 we have proposed

that the locatedness of an activity in a region can be understood in the sense

that the activity makes decisions for this and for no other region. However, this

understanding does not apply to the activity in question because during the

phases of transition no decisions of the activities of these phases are involved

at all. Yet in Section 2.5.3 we will, for the sake of resolving two problems of

Whitehead’s ontology (see Sections 2.5.1 and 2.5.2), modify Whitehead’s orig-

inal account by assuming that all the occasions created in the same stage of

the world-process arise from a single transition process involving a single undi-

vided activity. Therefore, we need not try to find some weakened criterion for

the locatedness of activities that would likewise apply to the activities of tran-

sitions. For even if such a weaker criterion could be found, it could certainly

not retain Whitehead’s demand of the particularity of the outcome activities

of the dative phases of the transition processes at a stage of the world-process

since there will not even be distinct activities at all which could moreover be

particularized. However, until we will eventually modify Whitehead’s ontology

in the mentioned way, we will for the sake of proceeding with the description

of transition processes as originally conceived by Whitehead, simply assume

that one can find a reasonable weakening of our criterion for the locatedness

of activities that allows the outcome activity ωd
Ws−1(i)(Oi) of the dative phase

to be particularized.
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2.4.2 The conformal phase of a transition process

In the second and last phase of a transition process–the conformal phase–

the real potential from which the following phases of concrescence will take

rise is completed by the ingression of a range of qualitative properties, i.e.

subjective eternal objects, which will constitute the initial definiteness of the

new becoming occasion (WM, p. 381; see also Section 2.2.6). The activity for

the ingression of these qualitative properties is provided by the particularized

activity ωd
Ws−1(i)(Oi) that is the outcome of the dative phase. As in the case

of the realization of the spacetime region in the dative phase the activity is

again not free to decide which abstractive hierachy of subjective eternal ob-

jects shall ingress into this region. First of all, the range of subjective eternal

objects which can ingress into the already created regionOi is restricted by the

incompatibility of some subjective eternal objects to the objective eternal ob-

ject Oi (see Section 2.2.6). Moreover, which abstractive hierachy H(Oi, G(Oi))

⊂ P (Oi) from the set P (Oi), that contains all subjective eternal objects com-

patible with Oi as well as the mixed complex eternal objects relative to which

they are compatible with Oi, shall ingress into Oi is not decided by the activity

ωd
Ws−1(i)(Oi) of the conformal phase either. Like the realization of the region

Oi in the dative phase this too is completely determined by the corresponding

actual world Ws−1(i). This actual world of already settled occasions maxi-
mally biases the creative character of the corresponding manifestation ωWs−1(i)

of the underlying activity (and thus too the creative character of ωd
Ws−1(i)(Oi))

towards a particular region Oi as well as towards a particular set G(Oi) of

simple subjective eternal objects compatible with Oi, thereby also fixing the

unique maximal abstractive hierachy H(Oi, G(Oi)) ingressing into Oi (see Sec-

tion 2.2.6). Thus the activity involved in both phases of a transition process

is only the vehicle for bringing about what the corresponding actual world, by

way of its determinate spatiotemporal and qualitative character, dictates (WM,

p. 130). The outcome of the conformal phase and thus of the transition pro-

cess, is a maximal abstractive hierachy H(Oi, G(Oi)) that is ingressed into

the finitely extended, connected spacetime region Oi together with the par-

ticularized amount of activity left after the two phases of transition, term it

ωc
Ws−1(i)(Oi).
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Now once the deterministic phases of transition are run through, the ac-

tivity left has a certain freedom to make decisions within the given range of

qualitative alternatives. In other words, it is assumed that the creative char-

acter of each manifestation of the underlying activity as determined by its

corresponding actual world is such that this manifestation has no freedom in

deciding the regionOi and the range of qualitative properties ingressed therein,

but that it may have a limited freedom or autonomy for decisions within this

range (PR, p. 47, 284; see also Section 2.3.1). The first of these decisions is

the first active-subphase of the concrescence process, in the course of which the

definiteness as provided by the conformal phase, i.e. by the “subjective part” of

the hierachy H(Oi, G(Oi)), is successively reduced and thereby becomes more

and more specific (see Section 2.2.6). Thus since the limited activity left at the

end of the conformal phase is not only particularized but also autonomous (to

the degree its fixed creative character allows) it is an individualized activity in

the sense of Section 2.3.1.

The outcome of a transition–the individualized activity13 ωc
Ws−1(i)(Oi) and

the range of qualitative properties, i.e. the subjective part of H(Oi, G(Oi))–

establishes a limited variety of possible ways the following process of concres-

cence can take and in this sense it is the limited or real potential for the

subsequent process of concrescence. What provokes the arising of a concres-

cence process, out of the outcome of a transition process, is the principle that

the end aimed at in each becoming is a definiteness as specific as possible (WM,

p. 288). By reason of this, the range of alternative qualities needs to be fur-

ther reduced to one coherent complex quality, thereby provoking the decision

making process of concrescence. Thus the first phase of a new concrescence

process, which consists of the first autonomous decision of the individualized

activity (the active-subphase) and the deepened definiteness resulting from this

decision (the outcome of this activity), is provoked by the alternatives inherent

in the range of qualitative properties provided by the outcome of the deter-

ministic transition process, and thus ultimately by the corresponding actual

world.

13Note that the individuality of this activity inlcudes its particularity, i.e. its occupying
a bounded, connected spacetime region.
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2.4.3 Transition as deterministic causal process

The following remarks as to Whitehead’s conception of efficient causation may

seem quite vague, but this is because Whitehead did not specify it more pre-

cisely. In particular, Whitehead’s ontology is far from containing a theory of

causation as usually understood. First of all, the term “efficient causation”

is used by Whitehead as a synonym for “other-causation that determines its

effect (at least in part)” (WM, p.32), and thus, in particular, as the opposite

of “self-causation” (PR, p. 24, 150). What is moreover clear is that neither

the underlying activity itself nor its limited manifestations involved in pro-

cesses of transition are the efficient causes of the new incomplete occasions

thus created. Clearly, that occasions become at all can only be understood

by reference to the underlying activity that is the unlimited source for all

the limited activities involved and presupposed by all particular transition (as

well as concrescence) processes (WM, p. 129 ff). But this underlying activity

cannot by itself explain why a given occasion has the initial character that

makes it that becoming occasion rather than another. However, according to

Whitehead, a cause has to do precisely that–a cause has to give a reason for

a particular fact, in this case for the particular initial character of an occasion

(PR, p. 24 f, 215; WM, p. 130). The underlying activity, however, cannot

function as a reason for the particular initial character of a particular occasion.

This is because the underlying activity is involved, by way of one of its lim-

ited manifestation, in the transition process of each new occasion and thus the

underlying activity in itself cannot explain the particular initial character of a

particular new occasion. On the other hand, due to their fixed creative charac-

ters the limited manifestations of the underlying activity which are involved in

transition processes do provide reasons for the initial character of the occasions

thereby created. But these limited manifestations–in particular their creative

characters–are themselves completely determined by the corresponding actual

worlds. Therefore, in the final analysis,

the reasons, or causes, of a particular occasion are to be found, not

in the creativity, but in the completed actualities in that occasions

past [...]. The creativity, on the other hand, is the active vehicle

whereby these passive determinants gain their effectiveness. (WM,
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p. 130)

A transition process, is thus a process whereby the settled occasions of an

actual world deterministically cause the initial ontological constituents of a new

self-completing occasion. That an occasion E0 is an efficient cause of another
occasion E, can therefore be understood as meaning that E0 is a relevant
determining factor for the initial constituents–the initial character–of E.

This determination proceeds via the conditioning of the underlying activity by

E0. In Section 2.3.4 we have argued that it would be quite ad hoc to assume
withWhitehead that the conditioning effect of an occasionE0 on the underlying
activity (due to the envisagement of E0 by the underlying activity) cannot be
rendered irrelevant by the conditioning effects of other occasions. Rather the

more natural position is that it can very well be the case that an occasion E0

is rendered causally ineffective by the conditioning effects of other occasions

on the underlying activity which screen off E0’s conditioning effect. Now if
these other occasions are actualized in an earlier or in the same stage of the

world-process than E0, the latter is obviously completely ineffective for future
occasions. And if this screening off is due to some later occasion E of which

E0 is not an efficient cause, then E0 is causally ineffective from that stage, say
s, on in which the screening occasion E is actualized. On the other hand, if E0

is an efficient cause of the “screening occasion” E, then E0 can reasonably be
called an indirect efficient cause of certain occasions in the future of E, namely

of those which are directly caused by the latter. Accordingly one can introduce

indirect causes of higher grades by their position in a chain of direct causes

leading to the occasion in question. For simplicity we will, however, not make

use of such a finer differentiation. Rather we will simply speak collectively of

the indirect causes of an occasion without further specifying their “grade of

indirectness” with respect to the latter.

The above characterization of “efficient causes” as relevant determining

factors for an occasions initial constitution is therefore correctly to be under-

stood as characterizing an occasion’s direct efficient causes. Only these are

relevant without further qualifications, for their effects. Contrary to this, in-

direct causes of an occasion are screened off from the latter by their (more)

immediate effects. In the following it will be convenient to use the term “indi-

rect efficient cause” exclusive, i.e. as not also including direct efficient causes.
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For the purpose to refer indifferently to both the direct and the indirect causes

of an occasion we will use the term “efficient causes”.

The actual world of an occasion consists of all its direct as well as indirect

causes (PR, p. 284). Note that this way of defining the actual world of an

occasion Ei, suffers from the circularity already discussed in Section 1.3.1,

because it makes use of the initial constituents of occasion Ei. But these

are realized by means of the manifestation ωWs−1(i) of the underlying activity

that, however, presupposes the determinate actual world Ws−1(i) as a given
fact. The actual world Ws−1(i) needs to be singled out somehow from all of

actuality Ws−1 at stage s, for the very existence of the activity ωWs−1(i) and

thus for the creation of (the initial constituents) of occasion Ei to take place.

In Section 2.5 we will come back to this important problem of Whitehead’s

theory.

Direct efficient causes as probabilistic causes of the final definiteness
of occasions

According to Whitehead the efficient causes of an occasion Ei remain condi-

tioning factors for all the later phases of the occasion’s concrescence and thus

ultimately for the completed occasion’s final make up–for its region and its

final definiteness (WM, p. 32; see also PR, p. 47). We will see in the following

that in case of direct efficient causes this can be understood as meaning that

they are deterministic causes of the completed occasion’s region and probabilis-

tic causes of the completed occasion’s definiteness. In case of the region this is

clear because the region of an occasion, as determined in the dative phase of

the corresponding transition process, is fixed once and for all. Therefore, the

direct efficient causes of an occasion, by being deterministically relevant for

this region via the creative character of the corresponding activity (see Section

2.4.1), are also deterministically relevant for the region of the completed oc-

casion, simply because the initial and final region of an occasion are identical.

We will now argue that besides this way in which the direct efficient causes

of an occasion Ei are (trivially) also conditioning factors, here in the sense of

deterministic causes, for Ei’s region qua completed, there is also another sense

in which Ei’s direct efficient causes are causes of Ei as completed–namely as
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probabilistic causes for its final definiteness.

One of the initial ontological constituents of a new occasion Ei is the lim-

ited activity ωc
Ws−1(i)(Oi) left after the conformal phase of the corresponding

transition process. Since the creative character of activities does not change

during transition as well as concrescence processes, the activity ωc
Ws−1(i)(Oi)

has the same creative character as the activity ωWs−1(i) at the beginning and

the activity ωd
Ws−1(i)(Oi) left after the dative phase as well as all the activities

of the later phases of concrescence.14 Therefore, if occasion E0 is a relevant
determining factor–a direct efficient cause–for the creative character of the

activity ωWs−1(i) (and thus of Ei’s initial activity ωc
Ws−1(i)(Oi)), this is also true

in respect to the activities involved in all later phases of concrescence. Note

that we need only be concerned with the creative characters of activities and

not with their amounts here, because we have assumed that the amount and

the creative character of an activity are always determined by the same occa-

sions, i.e. have the same efficient causes (see Section 2.3.1). Now by reason

of the constancy of the creative character during all phases of transition and

concrescence, occasion E0 can also be said to be a relevant factor for the final
definiteness selected in the concrescence process. This is because the decisions

settled during the phases of concrescence are not completely free but rather

are biased by the creative character of the corresponding activity–and the

latter being the same as the creative character of the activities of all earlier

phases, and thus ultimately of ωWs−1(i), is in part determined by occasion E0

(see Section 2.3.1). Since the creative characters of the activities, in general,

merely provide propensities different from zero or one for the available sub-

jective eternal objects, this relevance of occasion E0 will, however, generally
be of a probabilistic rather than a deterministic nature. Thus those occasions

from the actual world of a new occasion Ei which are direct efficient causes

of the latter, by reason of determining Ei’s initial character, are automatically

probabilistic causes for Ei’s final definiteness, in the sense that their hypo-

thetical non-occurrence would either raise or lower the propensities for the

unrestricted ingression of the subjective eternal objects which make up the

14If the ingression of eternal objects not requiring a decision of the activity, does not
reduce the latter’s amount (see Section 2.4.1), the activities ωWs−1(i), ω

d
Ws−1(i) and ω

c
Ws−1(i)

are even identical.



2.4. OTHER-CREATING PROCESSES OF TRANSITION 79

initial definiteness of occasion Ei.

Now an occasion E0 from Ws−1(i) whose occurrence lowers the propensity
for the unrestricted ingression of a particular subjective eternal object A is

usually not called a (probabilistic) cause of A. However, first of all by lowering

the propensity of A (the occurrence of) occasion E0 obviously influences the
final definiteness of the occasion in question, and thus provides a reason for

the latter’s specific character. Thus at least in respect to Whitehead’s un-

derstanding of causes as reasons for the particular character of occasions, it

makes sense to call propensity lowering occasions probabilistic causes of the

final definiteness of other occasions, too. More importantly, W. Salmon has

convincingly argued that direct causes, particularly in the domain of quantum

physics, can in fact lower the probability of their effects (Salmon 1984, p. 200

f; see also Dowe 2000, Chapter II.6). Therefore, it seems that any account of

causation, at least if it shall be applicable to the realm of quantum physics,

has to deal with the possibility of probability lowering causes.

The special case in which the direct efficient causes of Ei already consti-

tute the complete cause of the occasion’s final definiteness–and thus of the

whole completed occasion Ei–obtains if the creative character of ωc
Ws−1(i)(Oi)

is maximally biased towards one of the available alternative subjective eternal

objects–the case where all but one of the propensities for these qualitative

alternatives provided by the creative character of ωc
Ws−1(i)(Oi) are zero (and

consequently the remaining one being one). Thus this possibility, arbitrarily

abandoned by Whitehead (see Section 2.3.4), fits naturally into his theory, too.

Contrary to direct causes, indirect causes of an occasion Ei will not be

probabilistically relevant for Ei’s final definiteness. This is because they are

not even deterministically relevant for Ei’s initial constituents, including its

initial activity. The latter, however, needs to be the case for a probabilistic

relevance on Ei’s final definiteness.

In sum, then, it seems that Whitehead’s claim that the efficient causes

of an occasion remain conditioning factors of all later phases seems to be

justified at least in case of the direct causes, if the phrase “conditioning factors”

is understood generally in a probabilistic rather than a deterministic sense.

For the time being this elaboration of Whitehead’s rather few hints as to his

conception of causation between occasions shall suffice. We will return to this
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important topic in later sections, particularly in Section 2.6.3.

2.4.4 Transition as non-spatiotemporal process

Recall that a process is spatiotemporal if its phases are ordered by some spa-

tiotemporal order relation and moreover that for this to be the case each of

the phases has to belong to a unique spacetime region different from that of

the others (see Section 1.1.2). Now in the first phase of a transition a single

connected spacetime region is produced and thus this region belongs to this

phase as (part of) its outcome. This entire region thus created in the first

phase of the transition serves as the fixed spatiotemporal standpoint of the

second and last phase of the transition as well as for all following phases of

concrescence and for the completed occasion. Thus the entire region belongs

to the transition’s first phase–the dative phase–as part of its outcome and to

its second phase–the conformal phase–as its given unalterable spatiotempo-

ral standpoint. Thus in contrast to the phases of a concrescence process, this

region plays distinct roles for the two phases of a transition: it is presupposed

by the second phase of the transition but not by the first one which produced

it. But is this distinct role the region plays for the two phases of a transition

sufficient for a transition to be a spatiotemporal process? Obviously not, since

these two different roles the same region plays for the first and the second phase

of the transition is irrelevant in respect to any spatiotemporal order relation.

Anything a spatiotemporal order relation is sensitive to is the region itself,

with the consequence that these phases are not spatiotemporally orderable.

Thus both fundamental species of processes, transition and concrescence, are

non-spatiotemporal processes.

2.5 Two problems of Whitehead’s ontology

In this section we will discuss the two main problems of Whitehead’s ontology

as developed so far. The first one has already been discussed in Section 1.3.1.

It consists in the fact that the actual world for a new occasion cannot be

determined a forteriori, i.e. it needs to be determined without making use of

any features of the occasion in question and thus can , in particular, not be
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determined after the occasion or any of its initial features have been created.

In Section 2.5.1 we will review this problem in the light of the structures of

Whitehead’s ontology which have been introduced since its first discussion in

Section 1.3.1. After this we will show in Section 2.5.2 that even if this problem

had been solved, Whitehead’s ontology nevertheless contains another related

problem. A proposal for the resolution of this latter problem will then be put

forward in Section 2.5.3, and as we will see there, this leads to a resolution of

the first problem, too.

2.5.1 The first problem

We have already argued in Section 1.3.1 that the actual world of a particular

occasion Ei, begotten in stage s of the world-process say, needs to be deter-

mined before this occasion or any of its ontological constituents are created.

The reason for this is that the creation of each such feature of occasion Ei is

created by means of a partial manifestation of the underlying activity ωWs−1(i)

and the existence of such a partial manifestation presupposes that there al-

ready is a division of all of actuality up to stage s, i.e. Ws−1, into different
sub-aggregatesWs−1(i) which will be the actual worlds for the new occasions of
stage s. After our discussion in Section 1.3.1 we have introduced some further

features of Whitehead’s ontology: the extensive continuum, the realm of eter-

nal objects and the underlying activity. However, none of them does provide

us with a means for such a division either. First, as already argued in Section

1.3.1, the region an occasion occupies within the extensive continuum–even if

it is a spatiotemporalized region–like any other of its ontological constituents,

cannot be used to single out its actual world from all the occasions so far ac-

tualized. In other words, the extensive continuum, even as equipped with the

supplementary properties of four-dimensionality and metricity we have pro-

vided it with, will be of no help for the present problem. The realm of eternal

objects too, does not supply any means to provide us with the required divi-

sion of actuality either, so that the last candidate for a solution seems to be

the underlying activity. At first sight it even seems to be a good candidate

since it takes into account each completed occasion, thereby actualizing it, and

thus it is in “close contact” with actuality at each stage of the world-process



82 CHAPTER 2. POTENTIALITY’S INTERPLAY WITH ACTUALITY

and thus could perhaps account for its required division into different actual

worlds. Yet the underlying activity itself is unable to make any decisions and

thus envisages all completed occasions in precisely the same way (see Section

2.3.3). As already mentioned, it is an ultimate principle of Whitehead’s onto-

logical system that all kinds of decisions have to be traced back to the decisions

of concrescent occasions (PR, p. 19, 24; WM, p. 151 ff). Consequently, the

underlying activity too, cannot account for the desired differentiation of ac-

tuality at stage s into different actual worlds. To sum up, it therefore seems

that the idea of a division of the world up to some stage of the world-process

into different actual worlds, each constituting the causal past of a single new

occasion, is not properly implementable into Whitehead’s ontology.

2.5.2 The second problem

Since it will not affect the following argument, we will assume for simplicity

that the world-process has a beginning (which cannot actually be the case

(see Section 2)) and that in its first stage only two occasions E0
1 and E0

2 had

been created. Now the regions (as well as the other initial constituents) of the

occasions to be created in the next stage (i.e. in the second), are determined by

the conditioning effects of the occasions E0
1 and E0

2 on the underlying activity

by which the creative character of the activity ωW1 for the second stage is

fixed. The conditioning effects of E0
1 and E0

2 on the underlying activity are

determined by the spatiotemporal and the qualitative determinateness of E0
1

and E0
2, i.e. by their regions and their final definiteness. The regions of E

0
1

and E0
2 are not decided by them during their concrescence processes, but their

final definiteness is. Now assume that the conditioning effect of E0
1 on the

underlying activity due to its final definiteness would lead to the creation of a

region O1 and that due to the final definiteness of E0
2 would lead to a region

O2 for occasions of the second stage.
Now since occasions E0

1 and E
0
2 are created in the same stage of the world-

process, they must be causally independent. This is because the causes of an

occasion must be completely determinate, and thus their concrescence pro-

cesses must have terminated, genetically before the occasion in question can

be created. But the obtainment of such an order of creation among occasions
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created in the same stage of the world-process, would obviously undermine the

very meaning of the latter phrase. Therefore, E0
1 and E

0
2 cannot coordinate the

decisions they settle during their concrescence processes by means of any causal

influences. On the other hand, if their decisions were completely uncoordinated

it could happen that the regions O1 and O2, thus independently determined,
will overlap, thereby conflicting with the separative property of the extensive

continuum (see Section 2.1) that requires the regions of any two occasions to

be non-overlapping.15 This problem does occur in all cases where the initial

definiteness of the occasions E0
1 and E

0
2 is not already coordinated to such a de-

gree that the separateness of the regions for the next stage is thereby secured.

The problem in question has also been recognized by Nobo in his analysis of

Whitehead’s ontology (see WM, p. 307, 413 note 4). However, he does not

propose any solution but merely concludes that some coordination between

the decisions of concrescent occasions like E0
1 and E0

2 is necessary.

2.5.3 A resolution for both problems

Since direct causal influences are ruled out, the only possibility for how the

concrescent occasions E0
1 and E0

2 could coordinate their decisions, seems to

be by means of not having distinct but rather sharing one common activity

that up to some phase of concrescence decides for both. According to this as-

sumption, then, up to some phase of concrescence there are not two distinct

concrescence processes but rather only one such process “driven” by a single

undivided activity. The idea of two or more occasions arising from one undi-

vided concrescence process has first been introduced by S. Malin (1988) as a

possible way to reconcile Whitehead’s ontology with the empirically confirmed

violation of Bell’s inequality. Our following account relies on this basic idea

of Malin, but it will be far more detailed than Malin’s. The most important

point where we will go beyond Malin’s account according to which it is not

clear how more than one occasion arises from a single concrescence process,

15Note that the union of two such overlapping regions cannot simply be taken as the
region of a single occasion, thereby avoiding this conflict. This is because by reason of
the ingressed boundary surfaces of two overlapping regions their union is not one undivided
region as required for it to be the spatiotemporal standpoint of a single occasion (see Section
2.1).
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is by providing the following model for this: we assume that an initially un-

divided activity and with it the collective concrescence process, can bifurcate

into two (or more) distinct activities in some arbitrary phase of transition or

concrescence, provided that the definiteness of the occasions E0
1 and E0

2, are

already coordinated to such a degree that the creation of overlapping regions

for the next stage of the world-process is prohibited. Since the ingression of

these initial definiteness into the regions O0
1 and O0

2 of the occasions E
0
1 and

E0
2 takes place in the conformal phase of transition, the earliest “moment” in

which a bifurcation can take place is therefore at the end of this conformal

phase (see also the last section). Since each of the activities resulting from

such a bifurcation, settles decisions for one and only one of the two regions O0
1

and O0
2, each can meaningfully said to be located in the respective region (see

Section 2.3.1). Later on we will see that this account of generally undivided,

bifurcating activities will eventually allow us to provide an ontological expla-

nation for the violation of Bell’s inequality and even for the different degrees of

“non-separability of quantum states” (see Sections 10.2 and 11.7). Now as long

as there is merely one undivided activity, settling decisions for both regions,

this activity can hardly be said to be located in one of the regions and thus

to be particularized. Consequently, it makes sense to speak of distinct con-

crescent occasions E0
1 and E0

2 only after such a bifurcation of the activity into

two distinct activities, each located in one of the regions O0
1 and O0

2 has taken

place. Moreover, if there is merely one undivided activity up to some phase

of the collective concrescence process of stage s, there has consequently also

been one undivided activity in all earlier phases of concrescence and transition.

Therefore, Whitehead’s demand of the particularity of the activities after the

dative phase of transition is clearly ruled out, too–without distinct activities

(and thus distinct transition processes at that stage of the world-process) there

can hardly be particularized activities (see Section 2.4.1).

Another consequence of the proposed modification is that all the occasions

created in the same stage of the world-process, s say, have all their efficient

causes in common and thus they have the same actual world. This is because

if there is merely one undivided initial activity ωWs−1 for stage s, each occasion

that is relevant for this activity16 is a direct efficient cause of all the regions

16Note that we have assumed that amount and creative character of an activity are always
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created from it. The same argument applies in case of the initial abstractive

hierachies of subjective eternal objects ingressed into these regions–their in-

gression is directly caused by precisely the same occasions from Ws−1. And
since the coincidence of the direct causes of these regions and initial hierachies

implies the coincidence of their indirect causes (see Section 2.4.3), they have

in fact all their efficient causes in common. This moreover implies, that all

occasions created in the same stage of the world-process, i.e. from the same

initially undivided activity, are causally independent, as it must be the case

(see Section 2.5.2). This is because all these occasions have the same causal

past, so that if one of them were a cause of another, it would belong to its

own causal past, i.e. it would be an efficient cause of its own existence, which

cannot be the case (see Section 1.1).

Note that the problem with the determination of actual worlds is thereby

also dissolved (though not in a way intended by Whitehead). First of all,

if all occasions created in the same stage arise from the same actual world,

via a bifurcation activity, there simply is no need for singling out different

actual worlds from Ws−1 for the possibility of more than one occasions to be
created in stage s. According to Whitehead’s original, but completely ad hoc,

assumption that conditioning effects of occasions cannot be rendered irrelevant,

i.e. screened off, by those of other occasions, the whole aggregate Ws−1 of all
so far actualized occasions would therefore constitute the actual world of the

occasions created in stage s. However, we have allowed for the possibility of

causally ineffective occasions (see Section 2.4.3), so that within our account

an occasion E0 from Ws−1 belongs to the actual world for stage s iff it is a
relevant determining factor for the manifestation of the underlying activity

for stage s, i.e. for ωWs−1 . Or more explicitly, iff E0’s conditioning effect on
the underlying activity is not screened off by those of other occasions from

Ws−1. This determination of the (one) actual world for stage s does not pose
any problems of the kind discussed in the last section. The activity ωWs−1 for

stage s is produced by the envisagement of the whole aggregate Ws−1, and
those occasions from it which are irrelevant for the creative character (and the

caused by the same occasions (see Section 2.4.3), so that an occasion cannot be relevant for
some activity by being relevant merely for the amount of this activity. This assumption will
simplify many of the following dsicussions about efficient causation.



86 CHAPTER 2. POTENTIALITY’S INTERPLAY WITH ACTUALITY

amount) of this activity, do not belong to the actual world for stage s. In

other words, the activity and by it also the actual world for the next stage

are determined in the “moment” when the underlying activity envisages the

occasions belonging to Ws−1. And since this actual world need not be further
divided for there arising more than one new occasion, this determination of

the actual world of stage s is not plagued with any circularities.

Before we enter into a more detailed discussion of the consequences the

assumption of initially undivided, bifurcations activities have within White-

head’s ontology, we want to point out that the possibility of there arising more

than one occasion from the same actual world has also been argued for by two

other authors.

Nobo and Stapp on the doctrine of actual worlds

Nobo and Stapp have come to the same conclusion as we did, in regard to

Whitehead’s doctrine of actual worlds that says that the causal pasts of dif-

ferent occasions necessarily have to differ. Yet these authors have not arrived

at this conclusion by way of the above reasoning, rather they attack the doc-

trine of actual worlds by reason of the systematic role it plays in Whitehead’s

ontology. Nobo argues that the doctrine of actual worlds

simply represents an attempt by Whitehead to apply [...] [his the-

ory] to the cosmology of relativity physics. Nothing in Whitehead’s

metaphysics, as I understand it, precludes the possibility of two

contemporaries having identical pasts or identical futures. Indeed,

it is my conviction that the metaphysics of organism gains in coher-

ence and adequacy when it allows for the possibility of two or more

occasions having identical [...] [causal pasts and futures]. (WM, p.

279)

Stapp makes essentially the same point when he says that

Whitehead choose to reconcile his philosophic aims with the em-

pirical facts [of relativity physics] by imposing special ad hoc con-

ditions on his basic ontology, rather than allowing the empirical
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facts to follow from his philosophical principles. (Stapp 1979, p.

22)

[Abandoning the doctrine of actual worlds] restores unity to the

world, thereby eliminating a serious structural and aesthetical de-

fect in Whitehead’s model. (Stapp 1975, p. 270 footnote 1)

Our discussion in Section 2.5.1 strengthens these conclusions as to the ad

hoc and alien character of the doctrine of actual worlds within Whitehead’s

theory. However, as Section 2.5.2 showed, it is not enough simply to abandon

the doctrine of actual worlds, because this does not solve the problem that some

coordination is needed between the decisions of jointly concrescent occasions.

As we have argued, following an idea of Malin, a solution of this difficulty can

be achieved by the postulation of initially undivided, bifurcating activities.

This postulate, then, automatically implies that the doctrine of actual worlds–

apart from being not properly implementable into Whitehead’s theory–has to

be given up.

Now Stapp argued that, besides its ad hoc character, the idea of each two

occasions necessarily arising from different causal pasts has to be given up for

yet another reason:

Whitehead imposed on his model the relativistic requirement that

what happens in any given spacetime region be determined only

by what has happened in its absolute past, i.e. in the backward

light-cone drawn from the region. This requirement must be mod-

ified, for it is inconsistent with the implications of quantum theory

expressed by a generalized version of Bell’s theorem. (Stapp 1979,

p. 2)

Bell’s theorem and its implications for an ontological interpretation of QFT

will be discussed in detail later on in Section 10.2. In that section we will see

that, contra Stapp, it is not implied by QFT nor by Quantum Mechanics

(QM) that the causal past of an event cannot be confined to its backward

lightcone. However, we will see that what Bell’s theorem suggests is the above

assumption of generally undivided, bifurcating activities. Of course, as ex-

plained above, by way of this assumption the doctrine of actual worlds is then
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ruled out, too. However, the validity of this latter consequence relies on White-

head’s conception of efficient causation and will therefore not generally hold

for other conceptions of causation, too. Thus Bell’s theorem in itself does not

imply that the causal pasts of events cannot be confined to their backward

lightcones. Rather the ontological implications of this theorem depend on the

overall interpretational framework one uses for QFT and in particular on ones

conception of causation.

2.6 Bifurcating activities and their consequences

for Whitehead’s ontology

We have argued in the last section that two difficulties of Whitehead’s ontology

can be resolved by the assumption that at each stage s there is merely one

undivided transition process creating the regions, say Oi, i = 1, . . . , N , with

their initially ingressed hierachies of subjective eternal objects, whose outcome

activity, term it ωc
Ws−1 , is generally still not divided into partial activities.

Generally, such a division into partial activities will only take place in some

phase of the initially still undivided concrescence process, that thereby also

bifurcates into partial processes. In the present section we will investigate

some further consequences of the above assumption for Whitehead’s theory.

2.6.1 Consequences for the individuality of occasions

The possibility of more than one completed occasion arising from a single bifur-

cating concrescence process, implies that one has to restrict the sense in which

concrescent occasions are individuals. According to Section 2.3.2 the individu-

ality of a concrescent occasion consists of its definiteness and the particularity

and degree of autonomy of its activity. Consequently, the individuality of a

concrescent occasion Ej with region Oj depends on the degree as to which

the activity ωc
Ws−1 of this concrescence can be regarded as a “sum” of distinct

parts

ωc
Ws−1 = ωc

Ws−1(Oj) + ωc
Ws−1(O1, . . . ,Oj−1,Oj+1, . . . ,ON), (2.1)
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such that one of these–ωc
Ws−1(Oj) in (2.1)–can be regarded as being located

in region Oj. In other words, the individuality of a concrescent occasion de-

pends not only on the degree of autonomy, but also on the degree of partic-

ularity of its activity. In Whitehead’s original theory, each activity involved

in a concrescence process has been assumed to be a particular in the sense

of being located in a single connected region. The introduction of generally

undivided, bifurcating activities therefore introduces another “parameter” on

which the individuality of concrescent occasions depends, namely the degree

of particularity of their activities.

That the particularity of the activities of concrescent occasions comes in

degrees may at first sight look weird. However, particularity has been defined

as the locatedness in a single connected region and the locatedness of a con-

crescent activity in a region has been understood as its settling decisions for

this region (see Section 2.3.1). Therefore, it seems that one can make sense of

the degree of locatedness of a certain activity in a certain region for example by

understanding it in terms of the number of its decisions which exclusively refer

to this region’s final definiteness divided by the number of all its decisions.

This degree of locatedness in the region in question, then, also quantifies the

degree of particularity of the activity in respect to this region. Because of our

assumption that in each phase of concrescence only one (simple) decision is

made (see Section 1.1.3), the degree of particularity with respect to region Oj

can also be expressed by the quotient of the number of concrescence phases in

which the activity ωc
Ws−1 is in fact divided according to (2.1) and the number of

all the phases of the concrescence process. This account will be further refined

in Section 11.3.

Thus if a division like (2.1), according to which already the initial activity

ωc
Ws−1 of the concrescence process is in fact divided into a particularized activ-

ity ωc
Ws−1(Oj) and another partial activity ωc

Ws−1(O1, . . . ,Oj−1,Oj+1, . . . ,ON)

(which need not itself be further divided into partial or even particularized

activities), the concrescent occasion Ej corresponding to ωc
Ws−1(Oj) is an indi-

vidual in the fullest sense, i.e. in the sense appealed to in Whitehead’s original

theory (see Sections 2.3.1 and 2.3.2). As already argued in Section 2.5.3, such

an “early” bifurcation at the end of the conformal phase of the forgoing tran-

sition process, can very well take place without undermining the coordination
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of the determination of the new regions to be created in the next stage (i.e.

stage s+1): for it is possible that already the initial definiteness of the regions

O1, . . . ,ON as determined by the corresponding causal past in the conformal

phase, are already such that no further coordination, at least with respect to

the initial definiteness of region Oj, is required. The other extreme case is that

such a bifurcation does not take place, not even during the following phases

of concrescence, at all. In this case the only individuality attributable to the

concrescent occasion in question is that due to its region and its definiteness.

Thus even in this extreme case one can still say that the individuality of an

occasion Ej is successively deepened during the phases concrescence, but this

deepening is, then, clearly not attributable to “this occasion’s autonomous de-

cisions”. Such talk only makes sense as to the degree as to which the collective

activity is divisible into distinct parts one of which being located in region Oj.

Finally we want to point out that there is no need for assuming that divi-

sions of the kind (2.1) for different regions of a stage of the world-process, do

all occur at once. Rather we can and will allow for the possibility that such

“splitting offs” of partial or particularized activities corresponding to different

(sets of ) regions may occur in different phases.

2.6.2 The creative character of a bifurcating activity

Now we have to answer the question what happens to the creative charac-

ter of an activity when the latter bifurcates into partial activities. The first

possibility is that the creative characters of the resulting partial activities are

always identical with one another as well as with the creative character of their

“mother-activity”. Of course, this is the simplest way of making sense of the

dictum that only the amount of activity but not its creative character changes

during the phases of transition and concrescence (see Sections 2.3.1, 2.4.1 and

2.4.2)). However, this sense of the constancy of creative character seems to be

too restrictive if one allows activities to bifurcate. Rather in the light of this

possibility, the more natural way of how one can understand the constancy

of the creative character of activities “across” bifurcations seems to be the

following: the creative characters of the partial activities of a phase (as far as

there are such partial activities at all), say ωc,n
Ws−1(O1), ω

c,n
Ws−1(O2,O3,O4) and
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ωc,n
Ws−1(O5, . . .,ON) for phase n of concrescence, always combine to the creative

character of the total activity of this phase, here ωc,n
Ws−1 , without being identi-

cal to one another, the latter being the case only for the creative characters of

these total activities. Thus according to this more general understanding, the

constancy of the creative character during all phases of transition and concres-

cence holds for the total activities of these phases, but will generally not hold

for their parts (as far as there are such parts at all). Accordingly, equation

(2.1) is, then, to be understood as expressing the way in which the amounts

as well as the creative characters of partial activities combine or “sum up” to

the total activity of a phase. Later on in connection with QFT we will be able

to make precise the sense of this “sum” in (2.1).

Finally there is the question of how it is decided in which phase a bifurca-

tion takes place and what the resulting activities will look like (as to amount

and creative character). Since according to Whitehead the activity involved

in a transition process is not able to settle any autonomous decisions, bifur-

cations of the initial concrescent activity ωc
Ws−1 , taking place at the end of

the conformal phase of transition, must already be determined by the efficient

causes of this activity. This need not be the case for bifurcations taking place

in the phases of concrescence, because the corresponding activities have the

ability of settling autonomous decisions. However, for reasons of simplicity we

will assume that bifurcations taking place in phases of concrescence are also

completely determined by the efficient causes which have fixed the creative

character of the initial activity ωWs−1 . This determination, like the determi-

nation of the regions Oi, i = 1, . . . , N and the initial abstractive hierachies

of subjective eternal objects to be ingressed into these regions, is therefore

likewise assumed to be “impressed” into the creative character of the activity

ωWs−1 by its causal past.

2.6.3 Bifurcating activities and efficient causation

Causal independence

In Section 2.5.3 we have already shown that the assumption of generally undi-

vided, bifurcating activities implies the causal independence of the occasions

created in the same stage of the world-process. There we have argued that
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otherwise there could be occasions which belong to its own causal past. For

convenience we will begin our present discussion with a more detailed account

of this argument. According to Whitehead, efficient causation proceeds via the

conditioning of activities and therefore presupposes that the “effect-occasion”

has its own activity different from that of the “cause-occasion”. According to

our modification, however, all occasions created in the same stage arise from

one and the same initially undivided activity ωWs−1, so that as long as it is un-

divided, causal influences between the corresponding occasions are impossible.

On the other hand, as soon as two occasions of the same layer have their own

activities–only then the talk of different “occasions”, strictly speaking, makes

sense–there is no way of how one could influence the other either. This is be-

cause the activity of one of the occasions, say Ei, would have to be conditioned

by the other occasion, say Ej, qua completed outcome of its concrescence. But

this presupposes that occasion Ej had conditioned the activity of occasion Ei,

which, however, is only possible via conditioning the undivided activity ωWs−1

from which occasion Ei arose (see Section 2.4.3). But this is likewise the undi-

vided activity from which occasion Ej arose, so that one would end up with a

contradictory kind of self-causation, according to which occasion Ej qua com-

pleted outcome of its concrescence is a cause of its own initial constituents.

Thus, in sum, our modified account of, in general, undivided activities im-

plies the causal independence of occasions created in the same stage of the

world-process.

Causal influences up to some phase of concrescence

In Section 2.4.3 we have seen that within Whitehead’s original account of ef-

ficient causation, each occasion E0 that is a direct efficient cause of another
occasion Ei, i.e. that is a relevant determining factor for Ei’s initial ontological

constituents, is automatically a probabilistic cause of the final definiteness of

Ei. This need no longer be the case in our modified account that includes

undivided, bifurcating activities. In our account it can be the case that E0 is
a direct efficient cause for the region and the initial definiteness of an occasion

without being a cause for any features determined in phases of concrescence

and thus it need, in particular, not be a probabilistic cause for the final defi-
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niteness of that occasion. Let us assume for simplicity that only two occasions,

E1 and E2 with regions O1 and O2, will be created in stage s and let occasion
E0 be a direct efficient cause of both (as already shown in Section 2.5.3, each
occasion E0 that is an efficient cause of one occasion created in some stage
is automatically an efficient cause of all other occasions created in this stage,

too). Now if a bifurcation of the activity takes place already in the conformal

phase of the transition process, i.e. if the activity ωc
Ws−1 is divided into partic-

ularized activities ωc
Ws−1(O1) and ωc

Ws−1(O2), E0 need not be relevant for both
of these resulting activities. This is because the assumed relevance of E0 for the
undivided “mother-activity” ωc

Ws−1 only requires E
0 to be relevant for one of

the resulting activities, but not necessarily for both. Therefore, though E0 is a
direct efficient cause of both occasions with respect to their regions and initial

definiteness, it need not also be a cause of the concrescent activities ωc
Ws−1(O1)

and ωc
Ws−1(O2) of both, and thus need not be a probabilistic cause for the final

definiteness of both occasions. Thus the introduction of, in general, undivided,

bifurcating activities opens up the possibility that an occasion that is a direct

efficient cause of at least two occasions, causes them up to different phases of

their concrescence process(es)–a possibility not inherent in Whitehead’s orig-

inal account. However, note that the original result, namely that an occasion

E0 that is a direct efficient cause of another occasion is automatically also a
probabilistic cause for the latter’s final definiteness, still holds for at least one

of the occasions of which E0 is a direct efficient cause. This is because if E0

has been relevant for an activity before its bifurcation, E0 must also be rele-
vant for at least one of the resulting partial activities–otherwise E0 could not
have been relevant for the activity before the bifurcation in the first place. By

applying this result to each bifurcation of the initially undivided activity one

gets the result in question.

Before we can investigate the important question whether and in what

sense the account of causation presented so far is in conflict with STR, we first

of all have to fix a particular connection between causal and spatiotemporal

properties of occasion–otherwise obviously nothing can be said about super-

luminal causation and the like, at all. This will be done in the following section

in which we will moreover answer another central question that has been left

open up to this point–the question of how one can make sense of an evolving
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world-process.

2.7 The order of envisagement and the expan-

sion of the world

For the very talk of stages and thus of an evolvement of the world or equiv-

alently of the expansion of actuality to make sense, actuality as a whole–

understood as the pattern of all occasions that have been and will ever be

actualized–must exhibit a unique layer-cake structure, i.e. it has to be uniquely

divisible into linearly ordered layers of occasions (see Section 1.3.2). In this

section it will be seen how one can make sense of such a layer-cake structure

and thus of an evolving or expanding world-process.

According to Whitehead

the creativity [is that] whereby the actual world has its character

of temporal passage to novelty. (RM, p. 90)

The reason for the temporal character of the actual world can now

be given by reference to the creativity and the creatures [i.e. the

occasions]. For the creativity is not separable from its creatures.

Thus the creatures remain with the creativity. Accordingly, the

creativity for a creature becomes the creativity with the creature,

and thereby passes into another phase of itself. It is now the cre-

ativity for a new creature. (RM, p. 91 f)

Thus it is fairly clear that according to Whitehead the “temporal passage

to novelty” of the world is grounded in the interplay of occasions and the un-

derlying activity and thus ultimately in the envisagement of the former by the

latter. Unfortunately, Whitehead did not gave a more detailed account of how

this shall be accomplished. In Section 2.3.4 we had to assume that each occa-

sion, once envisaged will also be envisaged in all “later” acts of envisagement,

to make sense of the objective immortality of occasions. In this and in the

following section we will argue that by specifying the “later” relation among

acts of envisagement as a linear order, the spatiotemporal evolvement of the
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world can be grounded in the envisagement of occasions by the underlying

activity.

2.7.1 The order of envisagement and the causal expan-
sion of the world

Let W denote actuality as a whole, i.e. the (hypothetical) aggregate of all the

occasions which have been and will ever be actualized. Moreover, let Ws0 be

the sub-aggregate of W that is taken into account by the underlying activity

in the envisagement act denoted by s0 and Ws the sub-aggregate envisaged

in the later act denoted by s (see Section 2.3.4). Note that at this point Ws

is not already the aggregate of all occasions actualized after stage s of the

world-process. Rather this interpretation of Ws is what shall be justified in

the present section. As we will argue in a moment, each envisaging act has

an immediate predecessor. Now it would be ontologically highly uneconomical

if one would allow for the possibility that in two immediately succeeding acts

of envisagement s0 < s the very same aggregate of occasions Ws0 = Ws is

envisaged, because then act s would simply fulfil no ontological function not

already fulfilled by its predecessor. Therefore, it is highly reasonable to exclude

this logical possibility and to assume instead that the aggregates of occasions

envisaged in immediately succeeding acts of envisagement are always different.

The assumption that an occasion that has been envisaged once is also to be

envisaged in all succeeding acts of envisagement, that had to be made already

in Section 2.3.4, then, implies that each occasion envisaged in act s0 (< s)

is also envisaged in act s, i.e. Ws includes Ws0. Thus there exists a unique

sequence (Ws) of sub-aggregates of W , such that Ws0 ⊂ Ws whenever s0 < s.

The uniqueness of this sequence follows from the simple fact that there is

merely a single underlying activity that envisages occasions, so that in turn

there can only be one such sequence of envisaged aggregates of occasions.

Now since the world-process is infinitely old, i.e. each actualized occasion

has at least one predecessor, actuality as a whole W cannot be a finite aggre-

gate of occasions. On the other hand, occasions are spatiotemporally discrete

and thus W cannot consist of uncountable many occasions, even if it would

cover the whole extensive continuum without leaving any gaps of unactualized
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extension. Therefore, W as well as the sequence (Ws) of sub-aggregates of W

have countably many elements. In other words, there can only be countably

many acts of envisagement of different sub-aggregates ofW . This, then, means

that each act of envisagement s has a unique immediate predecessor s− 1 and
a unique immediate successor s+ 1.17

Because of Ws−1 ⊂ Ws the set Ls ≡ Ws\Ws−1 of occasions belonging to
Ws but not to Ws−1 is non-empty and all occasions in Ls are co-envisaged in

the following sense:

(CO-E) Two occasions E and E0 are co-envisaged iff in each act of envisagement
in which E is envisaged by the underlying activity, E0 is also envisaged
and vice versa.

This notion of co-envisagement is to be distinguished from the sense in

which each two arbitrary occasions from some aggregate Ws are jointly envis-

aged. For, by definition, all occasions ofWs are taken into account together or

jointly in envisaging act s by the underlying activity. Moreover, for each two

arbitrary occasions inW there is at least one act of envisagement in which both

are envisaged together, since W consists, by definition, of all ever actualized

and thus envisaged occasions and each later envisaged aggregate of occasions

includes each earlier envisaged one. But not all occasions in Ws are also co-

envisaged. Rather the latter holds for all and only those occasions which are

jointly envisaged in all their respective acts of being envisaged. Note that,

because of the inclusion of Ws0 in Ws whenever s0 ≤ s, “being co-envisaged”

is moreover equivalent to the fact that the occasions in question have been

envisaged together in their respectively first acts of being envisaged. This is

because in this case they will also be taken into account together in all their

further acts of being envisaged by the underlying activity, so that they are in

fact co-envisaged. On the other hand, if two occasions have not been envisaged

together in their respectively first acts of being envisaged, then, there clearly

has been an act of envisagement in which one of them has been envisaged but

not the other so that (CO-E) is not satisfied. Therefore, “co-envisagement” is

obviously a transitive relation on W : if occasions E00 and E0 have been jointly
17Of course, if the world-process should have an end the latter is only true for all but the

last stage.
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envisaged in their respective first acts of being envisaged and the same is true

for E0 and E, then E00 and E must also be jointly envisaged in their respective
first acts of being envisaged. For otherwise there would have been more than

one first act of being envisaged for occasion E0, namely the one in which it
has been jointly envisaged with E00 and the one in which it has been jointly
envisaged with E, which is logically impossible. Moreover, by definition, each

occasion is co-envisaged with itself (reflexivity) and if E0 is co-envisaged withE
then E is also co-envisaged with E0 (symmetry) so that “being co-envisaged”
is an equivalence relation on W . Therefore, the latter is the disjoint union

of the corresponding equivalence classes Ls = Ws\Ws−1. In other words, W
exhibits a unique layer-cake structure given by layers Ls of co-envisaged occa-

sions. Accordingly, as the notation has already suggested, the aggregate Ws

that is taken into account in envisaging act s of the underlying activity, can

be interpreted as the aggregate of all actualized occasions after stage s of the

world-process. In other words, this means that the stages of the world-process

are in one-to-one correspondence with the acts of envisagement of the underly-

ing activity. Therefore, one can interpret the layer Ls =Ws\Ws−1 as consisting
of just those occasions which are begotten in stage s of the world-process. This

confirms the natural expectation that the occasions arising from the same (ini-

tially) undivided activity ωWs−1, are also co-envisaged when their (bifurcating)

concrescence process(es) are run through. This could be condensed in to the

slogan “jointly begotten–co-envisaged”. Since, as argued earlier, all occasions

begotten in the same stage s of the world-process are causally independent and

have the same causal past (the latter being a subset of all the so far actualized

occasions Ws−1) the same is therefore the case for all co-envisaged occasions,
i.e. for all occasions belonging to the same layer Ls. Therefore, the layer-cake

structure

. . . , Ls−1, Ls, Ls+1, . . . (2.2)

arising from the order of envisagement of the underlying activity establishes

a causal expansion of actuality.18 But note that unlike their common causal

18That the occasions in Ls are mutually causally independent and share a common causal
past, can also be shown from the properties of co-envisaged occasions alone, without invoking
the identity of the layer Ls with the occasions begotten in stage s. For to be co-envisaged
means for two occasions E and E0 that neither of them is ever envisaged before (or after)
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past, not all occasions from the same layer need to have the same causal fu-

ture, since they can be screened off by different occasions and thus can become

causally ineffective at different stages of the world-process. Now the layer-cake

structure (2.2) does not yet provide us with a spatiotemporal expansion of

actuality, since the occasions in a layer Ls could be spatiotemporally arbi-

trarily scattered. Yet by fixing a reasonable connection between causal and

spatiotemporal properties of occasions, we will be able to turn (2.2) into a

spatiotemporal layer-cake structure, too. Yet before we will turn to this topic

in the following section, we will answer the important question of how it is

decided which occasions shall be co-envisaged by the underlying activity and

thus shall form a layer Ls of actuality.

We know from Section 2.3 that the underlying activity itself is not able to

settle any decisions at all and thus in particular cannot account for these deci-

sions. Rather in Whitehead’s ontology decisions are only made by concrescent

occasions, more precisely by their activities, and thus the decisions in ques-

tion also have to be traced back to decisions of concrescent occasions. Each

occasion E has a causal past that begets its initial ontological constituents

in a process of transition and thereby also fixes those occasions which will be

co-envisaged with E when its concrescence process is completed, to be those

occasions which are jointly begotten with E in this collective transition process

(see above). Since this is the case in every stage of the world-process and the

latter, moreover, does not have a beginning, i.e. no first occasion or group

of co-envisaged occasions, the question of how such a “first cause” or “group

of first causes” is begotten without necessitating a decision of the underlying

activity simply does not arise. Therefore, it is fixed which occasions have to

be co-envisaged and thus will belong to the same layer of actuality without the

need for any–non-available–decisions of the underlying activity. Rather in

accord with Whitehead’s ontological principle, these decisions are traced back

to decisions of the respective efficient causes.

Up to this point we have always used the term “causal past” in the sense

of encompassing all and only those occasions which are in fact efficient causes

the other. However, the latter is necessary for one of them to be an efficient cause of the
other. Therefore, they are causally independent. That E and E0 moreover have the same
causal past can be seen equally easily but shall not be shown here explicitly.
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of the occasion in question. In the following it will be convenient to intro-

duce another widespread use of this term, according to which it encompasses

all and only those occasions which could have been causes of an occasion if

the circumstances had been different. To avoid confusions between these two

meanings of “causal past”, let us introduce the term “causal past*” to refer

to the latter meaning. In other words, we will understand the causal past*

of an occasion E to consists of all and only those occasions which would have

been efficient causes of E if their causal influences had not been screened off

by other occasions (see Section 2.4.3). Thus the causal past* of an occasion

in layer Ls consists of all earlier actualized occasions, i.e. of all occasions in

Ws−1. Accordingly let us define the causal future* of E to consist of all those

occasions to whose causal past* E belongs. The causal future* of an occasion

from layer Ls is then given by W\Ws, where W is again the hypothetical ag-

gregate of all occasions that have and will ever be actualized. According this

weaker notions, all occasions of the same layer do not merely have the same

causal past* (as is also the case in the stronger sense) but also the same causal

future*.

2.7.2 The spatiotemporal expansion of the world

Up to this point no constraints as to the region of an occasion and those of

its co-envisaged occasions have been introduced, so that the occasions belong-

ing to a layer Ls of actuality can be quite arbitrarily scattered within the

extensive continuum. Therefore, one cannot yet speak of an extensive or even

spatiotemporal expansion of actuality. Of course, the latter is not assumed by

Whitehead to be the case in the whole world-process because according to him

spatiotemporality itself is merely a contingent feature of some cosmic epochs

(see Section 2.1) and therefore a spatiotemporal expansion can only obtain in

those parts of the world-process in which the extensive regions of occasions

are moreover spatiotemporally structured. Yet an extensive expansion is also

held by Whitehead to be a general feature–a metaphysical necessity–of the

whole world-process. As Nobo puts it,

considered in respect to its real division, however, the extensive

continuum is to be construed as forming an ever-expanding, coher-
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ent system of non-overlapping proper regions or standpoints. This

coherent system of real division is termed [...] ‘the region of actual-

ity’. [...] Moreover, insofar as the actual world is always expanding

through the emergence of new actualities, [...] the boundary of the

region of actuality changes with each expansion of the actual world.

(WM, p. 211)

It is important to notice that not the extensive continuum itself is what

expands–it is the eternally fixed pure potential for actualized regions (see

Section 2.1). Rather only the aggregate of actualized regions of the extensive

continuum expands whenever new occasions are actualized. Fortunately we

need not investigate the question of how one can make sense of an expansion

of the extensive region of actuality within the merely topologically structured

extensive continuum, because we have made the simplifying assumption that

the extensive continuum itself is equipped with dimensional and metrical struc-

tures. More precisely, in the light of the attempted connection with QFT we

have assumed in Section 2.1 that the extensive continuum is four-dimensional

and that it is equipped with the metric of STR and thus we need in what fol-

lows only discuss how one can make sense of a spatiotemporal expansion. Of

course, because the doctrine of actual worlds, and thus in particular the rela-

tivistic connection between causal and spatiotemporal properties of occasions,

is ruled out (see Sections 2.5.3), the assumption that the extensive continuum

is equipped with the relativistic metric seems to be quite arbitrary. In par-

ticular, it would presumably be more natural to choose the metric of classical

Newtonian spacetime. We will return to this topic in Section 2.8. Since the rel-

ativistic metric is presupposed by QFT and assumed by Whitehead to obtain

at least contingently in our cosmic epoch we should, however, try our best to

incorporate it into Whitehead’s theory before we may come to the conclusion

that a different metric would be the better choice.

Since the world does already exhibit a causal expansion we can, by fixing

an appropriate connection between causal and spatiotemporal properties of

occasions turn this causal expansion into a spatiotemporal one, too. There are

many possibilities of how one can connect causal and spatiotemporal proper-

ties of occasions. But the choice of a particular connection is constrained if

the spatiotemporal and the causal expansion of the world do arise from the
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same ontological source. If there is a common ontological source for both ex-

pansions, these expansions should be compatible in the sense that the causal

past* (future*) of an occasion E, i.e. those occasions which could have been

causes of (could have been caused by) E, coincides with its spatiotemporal

past (future). In other words, belonging to the spatiotemporal past (future)

of E should be a necessary condition for being a cause of (being caused by)

E. Consequently, those occasions which can neither cause nor be caused by

E have to be neither spatiotemporally earlier nor later than E–they have

to be in E’s spatiotemporal present. In Whitehead’s theory the causal and

the spatiotemporal expansion of the world are both grounded in the envisaging

property of the underlying activity and therefore should be compatible in this

sense (WM, p. 213 f, 219, 223, 256).

This compatibility of the causal and spatiotemporal expansion can obvi-

ously be restated as follows:

For any two occasions E and E0, occasion E0 is in the causal past*
(future*) of E iff E0 is in the spatiotemporal past (future) of E.

All occasions belonging to the same group of co-envisaged occasions, i.e.

to the same layer, Ls say, of actuality, have the same causal past* and future*

(see Section 2.7.1). From this it follows with the compatibility constraint that

the spatiotemporal pasts and futures, and therefore also the spatiotemporal

presents, of all co-envisaged occasions have to coincide, too. Now since we

have assumed that the extensive continuum is equipped with the metric of

STR, another constraint as to the spatiotemporal pasts, presents and futures

of occasions is that they have to be definable in terms of this metric. To-

gether with the fact that the spatiotemporal pasts, presents and futures of all

co-envisaged occasions have to coincide, the simplest way of introducing the

spatiotemporal past of an occasion seems to be the following:

(SP) The spatiotemporal past of an occasion E is the union of the backward

lightcones of all the regions occupied by occasions which are co-envisaged

with E, i.e. of all occasions belonging to the same layer of co-envisaged

occasions than E.19

19Note that we can make use of the concept of the backward- (as well as the forward-)
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From this definition of the spatiotemporal past it follows that the regions

of all co-envisaged occasions have to be mutually spacelike separated from each

other. For if the region of an occasion E0 that is co-envisaged with E, would

overlap E’s backward lightcone, it would overlap its own spatiotemporal past,

which cannot be the case. For the same reason the region of E cannot over-

lap E0’s backward lightcone. Together with the fact that any two regions of
occasions have to be separated, i.e. non-overlapping, it follows that any two

co-envisaged occasions have to be spacelike separated.

However, one cannot define the spatiotemporal future of an occasion by

simply exchanging backward- by forward lightcones in the above definition

of the spatiotemporal past, because this would lead to a conflict with the

compatibility constraint. To see this we need only discuss the special case

where the layer of occasions co-envisaged with an occasion E merely consists

of E itself, i.e. the case where at some stage of the world-process (contingently)

only one new occasion, E, is created. According to (SP), the spatiotemporal

past of E, then, merely consists of E’s backward lightcone. Now assume that

the spatiotemporal future of E were in fact given by its forward lightcone.

Because of the non-pointlike character of the regions of occasions, there are,

then, potential occasions within E’s spatiotemporal future such that E does

not belong to their spatiotemporal pasts, i.e. to their backward lightcones

(see Figure 2.1 (a), which suppresses two spatial dimensions). Likewise there

can be occasions in E’s spatiotemporal past such that E does not lie in their

spatiotemporal future, i.e. in their forward lightcones (see Figure 2.1 (b)).

However, the compatibility constraint requires that for all occasions E and

E0, E is in the causal future* (past*) of E0 iff E is in the spatiotemporal

future (past) of E0. Furthermore, by definition, an occasion E0 cannot be in
E’s causal past* without E belonging to the causal future* of E0 and vice
versa. Together with the compatibility constraint this implies that E has

lightcone of a region without being committed to the introduction of the surfaces of these
lightcones as objective eternal obejcts which have to ingress into the extensive continuum.

This is because we have equipped the extensive continuum with a metrical structure–
in particular with the spatiotemporal distance measure of STR–so that statements like
“region O0 lies in the backward lightcone of region O” are already made true by reason of
the regions O0 and O together with the metrical relations they bear to each other (for a
refinement of this see the footnote on page 149).
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Figure 2.1: A peculiarity of extended events

to lie in the spatiotemporal future of E0 iff E0 is in E’s spatiotemporal past

and vice versa. However, as shown above this is not generally true if the

spatiotemporal past and future ofE are defined via the lightcones ofE’s region.

Note that this is also the case in Whitehead’s original ontology, at least in our

cosmic epoch for which Whitehead assumed that the spatiotemporal pasts

and futures of occasions are given by their lightcones. The same problem

obviously obtains in STR too, if one allows events to be spatiotemporally

extended instead of idealizing them as pointlike. Therefore, if we introduce

the spatiotemporal past of an occasion E as above, we cannot introduce its

spatiotemporal future simply by exchanging the backward with the forward

lightcones of the occasions co-envisaged with E.

Because of the compatibility constraint the new layer Ls of co-envisaged

occasions has to be such that all the so far actualized occasions, i.e. the ones

in Ws−1, lie in the spatiotemporal past of Ls. Since this constraint has to

be fulfilled for any particular definition of spatiotemporal pasts, presents and

futures of occasions, the most economical–because least restrictive–way of

introducing the spatiotemporal futures of occasions seems to be the following:

(SF) The spatiotemporal future of an occasion E is that part of the extensive

continuum that is disjoint from the regions occupied by the occasions

co-envisaged with E and from their (common) spatiotemporal past.

The spatiotemporal present of E is then given by the regions of the occa-

sions which are co-envisaged, and therefore necessarily causally independent

from, E. Since the present of an occasion E consists of the regions of occasions

which are co-envisaged with E, and thus with one another, all the regions be-
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longing to such a present have to be mutually spacelike separated from each

other (see above).

In sum, then, the creation of a new group of regions–a new present or

spatiotemporal layer of actuality–in the dative phase of the transition process

arising at stage s of the world-process therefore is restricted by the following

two spatiotemporal constraints: (1) the new regions have to be such that their

(common) spatiotemporal past contains the regions of all the occasions so far

actualized and (2) the new regions have to be spacelike separated from each

other. The new group of regions thus created will be the spatiotemporal fron-

tier of attained actuality after stage s of its expansion. As mentioned above,

constraint (1) has to be obeyed independently from the particular definition

of spatiotemporal pasts, presents and futures. Yet constraint (2) is a conse-

quence of our specific definitions and it implies that, in general, the present

of an occasion, unlike its past and future, will be a disconnected region of the

extensive continuum.

Clearly, other ways of defining spatiotemporal pasts, presents and futures

of occasions (by use of the relativistic metric) are possible according to which

the present of each occasion is also a connected region. For example, one

could demand that the regions of co-envisaged occasions lie between two par-

allel spacelike hyperplanes such that each region is in contact with both planes.

The spatiotemporal present of an occasion could then be taken as the whole

extensive region between these two hyperplanes. The spatiotemporal past re-

spectively future of an occasion were then given by that part of the extensive

continuum that lies on one side of the occasion’s spatiotemporal present. Ac-

cording to this definition past, present and future were connected regions and

moreover would have more “regular” shapes as in our above definition. How-

ever, this has to be paid for by a more restrictive assumption as to the creation

of new layers of regions respectively occasions. According to our above defini-

tion the regions of such a layer have to be mutually spacelike separated and the

union of their backward lightcones has to contain the regions of all occasions

in their common causal past*. The second way of defining spatiotemporal

pasts, presents and futures does not require that the regions of a new layer

of occasions are spacelike separated. But it requires that these regions are

in contact with the same pair of parallel spacelike hyperplanes and that each
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two such hyperplane-layers have to be spatiotemporally disjoint. For if they

were not disjoint the present of an occasion could spatiotemporally overlap

with its past and future. This, however, means that all the hyperplane-layers

that have and will ever be created in the course of the world-process have

to be parallel–otherwise they could not be disjoint because each is, by con-

struction, spatially infinite. This second way of explicating the concepts in

question therefore requires the determination and creation of new regions to

be such that thereby a unique family of parallel spacelike hyperplanes is fixed.

Our first definition does not impose such a strong demand on the determina-

tion and creation of new regions. It could at most be used to single out a

family of non-intersecting spacelike hypersurfaces, and even these surfaces will

not be uniquely fixed by these spatiotemporal layers of regions because there

are many different possibilities to define a spacelike hypersurface from a given

group of mutually spacelike separated regions.

Now since for the purposes of this work we do not need any more restric-

tive notions of spatiotemporal pasts, presents and futures than the ones defined

with the help of the lightcones of co-envisaged occasions, we will for the rest

of this work in fact adopt these definitions. Note that independently of which

particular definition of spatiotemporal pasts and presents is adopted, if the

spatiotemporal past or present of an occasion is a connected region (as is the

case, according to our definition, for the past but not generally for the present)

these will, in general, consist, besides the actualized respectively realized re-

gions of past respectively present occasions, also of unrealized extension (the

spatiotemporal future of an occasion obviously consists of unrealized extension

only). This is so because we have, in accord with Whitehead, not demanded

that the regions occupied by occasions have to be contiguous to each other

or even that their aggregate should appear as a continuum (see Section 2.1).

Therefore, it would perhaps be more appropriate to speak of the extensive

pasts, presents and futures of occasions, even if we assume that the regions of

occasions are always spatiotemporalized. However, once this point is noticed

it will not cause any confusion if we simply speak of the spatiotemporal pasts,

presents and futures of occasions.
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2.8 On the compatibility with STR

In this section we will investigate if (the modified version of) Whitehead’s

ontology presented in this and the preceding chapter is in conflict with STR.

2.8.1 Superluminal causation

In Section 2.5.3 we have shown that if a layer of actuality consists of more

than one occasion, these occasions are necessarily causally independent. Thus

the only possibility for superluminal causation is between occasions belonging

to different layers. The untenability of the doctrine of actual worlds that had

been a consequence of our modification of Whitehead’s theory clearly opens

up the possibility for such superluminal causal influences. More precisely,

the fact that all occasions belonging to the same layer of the world-process

have all their efficient causes in common, i.e. arise from the same causal past

(at least with respect to their regions and their initial definiteness) will, in

general, give rise to instances of superluminal causation. However, recall that

independently from our modification, the doctrine of actual worlds has been an

alien element of Whitehead’s original theory anyway (see Sections 2.5.1 and

2.5.2) and without a proper implementation of this doctrine, superluminal

causation could likewise occur according to Whitehead’s original theory.

Thus that there will, in general, be superluminal causal influences between

occasions belonging to different layers of the world-process is fairly clear. And

this conclusion will not merely follow within the (modified) Whiteheadian ac-

count of causation presented here. Rather it is to be expected that many other

theories of causation come to the same conclusion when applied toWhitehead’s

ontology. Such an application, however, will be prima facie quite difficult be-

cause the notion of “occasion” as invoked by Whitehead is quite alien to those

other theories. Most theories of causation take the causal relata to be “events”.

And though there are some differences in the precise understanding of this no-

tion across different theories, most of them understand events either as the

instantiation of properties in spacetime regions or as entities to which proba-

bilities are ascribable. However, both of these notions of events can be made

sense of within Whitehead’s ontology–even by one and the same aspect of

Whiteheadian occasions, namely by the unrestricted ingression of subjective
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eternal objects into the regions of occasions at the end of their concrescence.

That this is a close analog of the instantiation of properties has already been

mentioned in Section 2.2.1. And in Sections 2.3.1 and 2.4.3 we have seen that

to these unrestricted ingressions of subjective eternal objects, propensities (i.e.

ontic single case probabilities) are ascribed within Whitehead’s ontology.

A comparison with Suppes’ probabilistic theory of causation

One of the most influential probabilistic theories of causation is the one due

to P. Suppes. According to Suppes, an event e0 is a cause of another event e
iff the following three conditions are met (Suppes 1970, p. 12 ff):

(1) e0 occurs temporally earlier than e

(2) the probability of e conditional on the occurrence of e0 is higher than the
unconditional one

(3) there are no events which are temporally earlier then e0 which screen off
e0’s probabilistic relevance for e

According to the last section, the Whiteheadian world-process admits a

distinguished foliation of spacetime. This foliation can obviously be inter-

preted as establishing a temporal order among occasions, so that condition (1)

makes sense in Whitehead’s ontology. As argued above, the events e0 and e

referred to in (1)-(3) can be made sense of in Whitehead’s ontology too, by

identifying them with the unrestricted ingression of certain subjective eternal

objects into certain regions. Recall moreover the Whiteheadian characteriza-

tion of efficient causes as relevant determining factors of an occasion’s initial

make up, particularly of the creative character of the occasion’s activity. Since

this creative character provides propensities for the unrestricted ingression of

the available subjective eternal objects, an occasion’s efficient causes there-

fore condition the probabilities for the final unrestrictedly ingressed subjective

eternal objects–for the occasion’s final definiteness.20 The main difference of

20Yet as explained in Section 2.6.3, this need not always be the case due to our postulation
of bifurcating activities. However, as also argued in that section, it need to be the case for
at least one occasion in each layer. And as far as there are occasions in the common causal
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(1)-(3) to Whitehead’s conception of causation stems from condition (2). It

makes Suppes’ notion of “cause” more restrictive than Whitehead’s, because

according to the latter also probability lowering events count as causes.

However, to avoid the conclusion that there is superluminal causation

withinWhitehead’s ontology, from the point of view of Suppes’ theory, it would

have to be the case that all superluminal Whiteheadian causes are probability

lowering ones. Since there is no reason why this should be the case, it is there-

fore to be expected that at least in some cases in which there is superluminal

causation between Whiteheadian occasions E0 and E, the probabilistic theory
of causation due to Suppes will come to the same conclusion in regard to the

corresponding events e0 and e. Moreover, it is to be expected that analog

conclusions can be drawn by comparison with other well-known probabilis-

tic theories of causation, like the ones due to Lewis (1986) and Reichenbach

(1956).

However, one can argue that this does not lead to a genuine conflict with

STR, since the conception of causality invoked in STR is different from such

“merely” probabilistic accounts. In particular, it is commonly hold that what

STR prohibits is a superluminal transfer of energy (more precisely of energy-

momentum). In the following we will argue that it is not clear whether efficient

causation between Whiteheadian occasions involves something like a transfer

of energy, but that it is likewise not clear whether QFT does conform to this

constraint either. We will moreover point out a general argument to the effect

that there is no conflict with STR, even in case of theories implying a genuine

superluminal energy transfer.

Superluminal energy-momentum transfer

Energy in the sense of physics has to be compared to Whitehead’s notion of

activity, because Whitehead conceived his notion of activity as a metaphys-

ical generalization of physical energy (SMW, p. 35 f; AI, p. 184 ff; PR, p.

116 f, 246, 254 f, 315; RM, p. 111 f). To see whether there is something

corresponding to the transfer of physical energy between cause and effect in

past of this layer which are spacelike separated from the occasion in question, they are then
superluminal probabilistic efficient causes of this occasion’s final definiteness.
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Whitehead’s theory, we therefore, have to look at the way the activities of

cause- and effect-occasions are related (see also Kraus 1998, p. 31). First of

all, the “transfer of activity” between cause and effect, cannot be understood

literally, i.e. as if the same activity formerly “inherent” in the cause-occasion

is “given to” the effect-occasion. This is because the cause-occasion exhausts

its activity in the determination of its final definiteness–its activity is suc-

cessively reduced and thereby its definiteness is successively heightened until

the activity is exhausted. By its finally attained definiteness, then, the com-

pleted occasion contributes to the determination of the new manifestation of

the underlying activity for the effect-occasion. Thus the “transfer of activity”

is not to be understood as a flow of a substance from one occasion to another,

but rather as the “annihilation” and “recreation” of different activities from

the underlying activity. Yet in this respect the transfer of activity between

Whiteheadian occasions seems to be in agreement with the account of energy

transfer provided by modern physics, particularly with what QFT is believed

to tell us about this topic (see e.g. Dieks 1986, p. 88 ff; see also below). How-

ever, an important difference between the physical transfer of energy and the

transfer of activity in Whitehead’s ontology is that the latter does not incor-

porate something like a “conservation law for activity” or the like. Perhaps,

Whitehead regarded the conservation of energy (or energy-momentum) as a

contingent feature of our cosmic epoch and not as a metaphysical necessity

governing the whole world-process. Yet without a conservation of the amount

of activity it is hard to see what the rigorous meaning of a “transfer of activity

from cause to effect” could mean at all. Therefore, it is not clear whether

Whitehead’s ontology is in conflict with STR in this respect.

However, it is not at all clear whether QFT itself does satisfy the relativis-

tic constraint on energy—momentum transfer. Often the so-called spectrum

condition belonging to the standard axioms of QFT, is held to prohibit a

superluminal transfer of energy-momentum. However, this seems to be an

overstatement because what the spectrum condition in fact rules out is merely

a specific kind of superluminal energy-momentum transfer, namely a transfer

by means of systems whose quantum states prescribe a non-vanishing probabil-

ity to a superluminal velocity and to a non-zero amount of energy-momentum

(see Appendix C.3). The idea underlying this kind of transfer is obviously
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that of a classical particle carrying some amount of energy-momentum along

its continuous path. However, quantum “particles” do not have continuous

world lines at all (see Section 3.1), so that they do not possess diachronic

identity, for the latter just means that they endure to exist as the self same

entities over some temporal interval. Even worse, they are not even onti-

cally reidentifiable, which means that they cannot exist as the self-same entity

at two different instants of time (or more generally, in two separated space-

time regions) (see e.g. Auyang 1995, Teller 1995, Clifton and Halvorson 2002,

Seibt 2002). This means, however, that if the transfer of energy-momentum

is supposed to involve a spatiotemporally continuous process or a reidentifiable

carrier of energy-momentum (see e.g. Dowe 2000, Chapter 5), then it is ruled

out without the need to mention the spectrum condition at all. If on the other

hand, the transfer of energy-momentum does not involve continuous spatiotem-

poral processes or reidentifiable carriers of energy-momentum, then it is not

clear what the non-existence of “superluminal velocity states” that is in fact

implied by the spectrum condition means for the prohibition of superluminal

energy-momentum transfer at all. For example, within the usual conceptual

minimal understanding of quantum field theoretic systems as spacetime regions

together with their corresponding observable algebras (see Section 10.2.5), it

seems that one can argue that a superluminal energy-momentum transfer is

already constituted by a sequence of spacetime regions such that the states

ascribed to them have the same expectation value of energy-momentum and

the first and the last region in the sequence are spacelike separated. The value

of this expected energy-momentum is obviously irrelevant for such a transfer,

so that the spectrum-condition simply provides no means to prohibit it. Thus

it heavily depends on the particular understanding of the notion of “transfer”,

whether the spectrum condition does in fact prohibit the superluminal transfer

of energy-momentum or not. Moreover, it seems that the kind of transfer that

is in fact prohibited by this condition relies on some classical presuppositions

which are already ruled out in QFT (and QM) without invoking the spectrum

condition (see Section 3.1).

In sum, then, even if our modified version of Whitehead’s ontology can be

blamed to involve a superluminal “transfer of activities” this need not be in

conflict with QFT, because the latter may very well itself admit a superluminal
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transfer of energy-momentum, the latter being the physical counterpart of

Whitehead’s notion of “activity”. Thus if STR in fact constraints the transfer

of energy-momentum to subluminal speeds, perhaps both, our ontology and

QFT are in conflict with STR, depending on the precise notion of “transfer”

that one invokes.

However, even if our ontology or QFT allows (something like) energy-

momentum transfer and thus an undisputable kind of causal influence between

spacelike separated events, this fact need still not necessarily lead to a conflict

between STR. This is because such a conflict can only arise if STR incorporates

claims about spatiotemporal constraints on causation at all. Although it is the

by far most popular way to build up STR explicitly on assumptions as to the

connection between spacetime and causation, so that STR inevitably becomes

a causal-spacetime theory, there are of course other ways which do not rely on

claims about the nature of causation at all, but rather understand STR as a

pure spacetime theory (see e.g. Friedman 1983). In fact one can build up STR

on the special principle of relativity alone, that demands all laws of nature to

be form-invariant with respect to Poincaré transformations (Friedman 1983,

p. 149 ff). According to G. Nerlich one moreover should do it this way, since

special relativity is based on the principle of Lorentz invariance, not

on causality. The limit principle (all causal and signal connections

are slower than light) is not a basic thesis of special relativity [...].

(Nerlich 1982).

Thus if we follow Nerlich it is neither necessary nor desirable to provide

STR with a causal underpinning at all (see also Nerlich 1994, Section 2.3 and

Chapter 3). In this case the resulting theory would be neutral with respect to

any claims about spatiotemporal restrictions on causation. Thus STR need not

in itself be incompatible with theories that allow for superluminal causation,

even in the rather strong sense of involving a transfer of energy-momentum

between cause and effect.

2.8.2 Distinguished foliation of spacetime

Even if one understands STR as a pure spacetime theory, not implying any

spatiotemporal constraints on causation, there is still another source for a con-
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flict with the ontology developed up to this point. For one can object that

the fact that by reason of the spatiotemporal expansion of the world-process

a distinguished family of spacelike hyperplanes, i.e. a distinguished foliation

of spacetime and thus a “preferred reference frame”, is singled out is in con-

flict with STR, in particular, with the relativistic metric and its invariance

group (the Poincaré group), with which the extensive continuum is equipped

according to one of our supplementary assumptions of Section 2.1. Of course,

as explained in Section 1.3.2, these relativistic structures are in fact not rich

enough to single out a distinguished foliation, so that such a foliation is al-

ways underdetermined by the relativistic structures. Thus from the viewpoint

of STR the introduction of a distinguished foliation is in fact unjustified. To

avoid a conflict in this respect, one would have to argue in a first step that

the distinguished foliation of spacetime is not empirically detectable–even in

principle–and in a second step, that STR only describes the, in principle,

empirically detectable structure of spacetime. An interpretation of STR (as

well as of any other physical theory) according to which it does not unveil the

(complete) spatiotemporal structure of the world, but merely describes the

phenomena on the “surface” of a perhaps underlying and completely different

“micro-structure”, is clearly possible. However, such a “peaceful coexistence”

between STR and Whitehead’s ontology has to be paid for by accepting that

an, according to the latter, ontologically fundamental structure of the world–

the distinguished foliation–is in principle empirically inaccessible and thus is

a truly “metaphysical” element of Whitehead’s ontology. Whitehead himself

would probably not have been worried by this consequence. Part I of PR be-

gins with Whitehead’s view of the aims of an ontological theory (he speaks of a

“speculative scheme”) and the methods by which these aims can be attained.

According to Whitehead, the foremost aim of such a scheme is to unify all the

empirical facts within one consistent system. Besides this “empirical complete-

ness” and consistency Whitehead mentions some more aims, but he nowhere

claims that such a scheme must not include elements which are empirically

unknowable (PR, p. 3 ff). However, whether Whitehead was not afraid of the

idea of going beyond the empirically knowable or not, most people, including

the present author, will probably regard the need for the postulation of, in

principle, empirically inaccessible elements within an ontological theory as a
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drawback for the latter.
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Chapter 3

A first comparison with some
results of quantum physics

In this chapter we will point out some first qualitative but nevertheless remark-

able parallels between results of quantum physics and Whitehead’s philosophy

of process.

3.1 Discrete events

Whatever kinds of entities subatomic “particles” like electrons, protons, pho-

tons etc. may be, they definitely cannot have continuous spacetime trajecto-

ries.1 This is a consequence of Heisenberg’s uncertainty relation that implies

that a quantum particle cannot posses a definite position in space and a defi-

nite momentum at the same instant of time. Consequently, quantum particles

cannot posses continuous trajectories because this would obviously force them

to posses a definite position and a definite momentum at each time of their

existence. That Whitehead was aware of this consequence of quantum physics

can be seen from the following passage taken from his book SMW published

in 1925.2

1At least, this is the standard view on that matter, for another interpretation consult
Bohm (1952).

2This awareness of Whitehead is even more remarkable in the light of the following
statement of C. Hartshorne.
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At the present physics is troubled by the quantum theory [...]. But

the point is that one of the most hopeful lines of explanation is to

assume that an electron does not continuously traverse its path in

space. The alternative notion as to its mode of existence is that it

appears at a series of discrete positions in space which it occupies

for successive durations of time. (SMW, p. 34)

But are we not able to directly observe the trajectories of subatomic par-

ticles, for example in a bubble-chamber? At first sight the result one gets

from a bubble-chamber experiment, for example with electrons, might indeed

look like a spatiotemporally continuous trajectory of a classical particle. But

under closer inspection it turns out that this “continuous” trajectory is merely

a succession of discrete, i.e. spatiotemporally non-overlapping, events. Each

of these events–each bubble in the otherwise homogenous fluid with which

the chamber is filled–is usually interpreted as resulting from a collision of

a particle, travelling through the chamber, with one of the molecules of the

fluid. But it is important to notice that in between the spatiotemporally sep-

arated bubble-events there is neither a sign of any continuous trajectory of

some particle nor even some other sign for the concrete (i.e. spatiotemporal)

existence of the hypothetical particle at all. All that the bubble-chamber ex-

periment, in agreement with Heisenberg’s uncertainty relation, shows is that

there is a succession of spatiotemporally discrete, finitely extended and qual-

itatively similar events. But this is precisely what one would expect on the

basis of Whitehead’s ontology in which there are neither enduring substances

(particles) which could produce continuous trajectories nor are there any spa-

tiotemporal processes that connect or produce actual occasions. The only

spatiotemporal consequence to be expected from Whitehead’s ontology is in-

deed the observed succession of spatiotemporally discrete, finitely extended

Early quantum physics (as in Planck, Einstein, and Bohr) probably helped
Whitehead to reach his view on this point, whereas the Uncertainty Principle
came just too late to influence his doctrine of creativity. (I showed him Heisen-
berg’s paper but as he told me, he had by that time given up trying to take
the progress of physics into account because of his obligations to his Harvard
students to learn all he could of the history of philosophy.) (Hartshorne 1979)

I am grateful to Michel Weber for pointing out this statement of Hartshorne to me.
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regions in which certain properties are instantiated. Thus it seems that the

spatiotemporal consequences of Whitehead’s ontology as well as the possibil-

ity of some kind of non-spatiotemporal “transition-processes” that bridge the

spatiotemporal gaps between the discrete, concrete events, seems to find ex-

perimental as well as theoretical support from quantum physics.3 Moreover,

the fact that the properties instantiated in the different regions along “the

trajectory of the particle” are very similar and thus could indeed give rise to

the idea that there is some object that travels through the chamber and causes

the sequence of bubble-events can also be understood within Whitehead’s the-

ory. The impression that the world is made up of objects existing self-identical

in time (like the hypothetical particle in the bubble-chamber) is recovered by

his theory of societies of occasions, which are a kind of “Ersatz-substances”

in Whitehead’s system. A society is a sequence, or more generally, a pattern

of occasions which by reason of the causal influences of their predecessors in

the pattern instantiate (nearly) the same properties and thus give rise to the

impression of objects existing self-identical in time. The mistake to take this

impression as already representing the fundamental ontological level of the

world is what according to Whitehead provided the foundation for the onto-

logical misconception of a world that is made up of independently existing and

enduring substances which move through a pre-existing “container-space”.

3.2 Autonomous decisions

Another important feature of quantum physics that is in agreement with

Whitehead’s ontology is the fact that the actualization of quantum events

can be consistently interpreted to involve an element of free choice. According

3Note that it is not claimed that the bubbles in the described experiment directly corre-
spond to Whitehead’s basic occasions. Rather each bubble is presumably itself a so-called
society consisting of very many Whiteheadian occasions which are themselves too small to be

directly observable. The bubble-chamber experiment is rather a “device” that amplifies the
basic ontological make up of the world–the realm of Whiteheadian occasions–into directly
observable macroscopic events–the bubbles–and it does this amplification presumably in
a way that preserves some of the important structures of the underlying microrealm.
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to the standard view, QM as well as QFT are truly probabilistic theories.4

This means that the probabilities inherent in the formalism of QM are gen-

uine features of this theory which cannot be eliminated–in particular it means

that the probabilistic structure of QM is not a sign of its incompleteness and

thus is not reducible to an underlying “more complete” deterministic theory.

The latter is the case in classical statistical mechanics which is (in principle)

completely reducible to Newtonian mechanics, thereby being not a truly prob-

abilistic but merely a statistical theory. In statistical mechanics probabilities

only show up because for reasons of computability many parameters are ig-

nored as compared to Newtonian mechanics, so that a situation is, in general,

no longer determined by its initial conditions. According to the standard view,

QM predicts, on the basis of the complete state of the world up to some time

t, probabilities for outcomes of measurements made at times later than t. But

which of the possible outcomes of a measurement does in fact occur “may be

regarded as a free choice of nature, limited only by the probability assignment”

(Haag 1996, p. 316). This element of free choice of nature that “cannot be

eliminated” (Haag 1996, p. 316), then, is the reason for the irreducibly prob-

abilistic character of QM. But this limited freedom of nature, that according

to the standard view of QM, is involved in the actualization of each quantum

event, is obviously in agreement with Whitehead’s account of the actualization

of the outcome of a concrescence process. According to Whitehead, which of

the possible properties available to a concrescent occasion are in fact integrated

into the final outcome is an autonomous decision settled solely in the concres-

cence, limited only by the propensities provided by the creative character of

the corresponding individualized manifestation of the underlying activity.

3.3 Atomicity of actualization

The last parallel between quantum physics and Whitehead’s philosophy of pro-

cess that shall be mentioned at this point is the atomic character of the act of

coming into being of concrete quantum events. Concrete quantum events like

the instantiation of “electronic properties”, i.e. of that complex of properties

4Again, this is the conviction of the great majority of physicists and philosophers working
on the foundations of QM. For a different view see Bohm (1952).
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by which the species “electron” is defined,5 do not gradually or even continu-

ously unfold in spacetime. To the contrary, either they occur fully or they do

not occur at all–there is no observational or theoretical evidence for a thing

like a spacetime region containing “half an electron”, i.e. half of the electronic

charge, mass and spin, before there is a bigger region that finally contains the

“whole electron”. Clearly, this fact could also be explained by the assump-

tion that electronic events are pointlike, i.e. electronic properties are always

instantiated at spacetime points rather than in finitely extended regions. Or

put in the terminology of “particles” it could be explained by the assumption

that electrons are “point-particles”. But as we will see later on, QFT only

allows non-trivial properties to be instantiated in extended regions and not

at spacetime points–another important agreement between Whitehead’s view

and quantum physics. Since the move to assume that electronic events are

located at spacetime points is thus prohibited, it seems at least possible that

Whitehead’s solution could be the right one. According to Whitehead’s ontol-

ogy the reason for the fact that we never observe half an electron is grounded

in two things: first, the internal process of concrescence by which the complex

of electronic properties is created is not a spatiotemporal process, so that in

this internal process nothing like an unfolding of properties into a region of

spacetime happens. Second, the way in which the result of this internal pro-

cess is “made available” to the external world, i.e. is actualized, is an atomic

act. Thus too there is no gradual unfolding of electronic properties in this act

either and consequently there can be no thing like a region containing half an

electron, before there is a larger region containing the whole electron.

This remarks show that Whitehead’s ontology is able to capture some im-

portant features of quantum physics. Thus it seems reasonable to investigate

in more detail whether Whitehead’s philosophy of process is able to provide us

with an adequate ontology of QFT; this will be done in Part III of this work.

The following part of it will be devoted to the description of the relevant struc-

tures of the mathematical formalism of QFT, which in this work is taken to

be the algebraic formalism of QFT.

5The properties by which the different species of “elementary particles” are defined and
distinguished are the electrical charge, the rest-mass and the spin-value.
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Part II

Algebraic Quantum Field
Theory
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Chapter 4

The role of the algebraic
approach within Quantum Field
Theory

Today QFT is taken to be a milestone towards the formulation of a fundamen-

tal physical theory of matter and its interactions. Being a synthesis of QM

and STR, QFT is the first physical theory capable of describing three out of

the four fundamental interactions of matter–gravitational-, electromagnetic-

, weak- and strong interaction. From these four fundamental forces which

are today believed to act in nature, only the gravitational force is excluded

from a successful description within the conceptual framework of QFT. This

is because on the microscopic level an influence of gravitationally interacting

matter on the structure of spacetime, like the one described in the macrorealm

by the GTR, is to be expected. But since QFT presupposes a given spacetime

as a fixed, unchangeable background structure, its conceptual framework is

simply too narrow for being able to include also the gravitational interaction.

To formulate a unified theory that encompasses all four kinds of fundamental

interactions and to put it to empirical tests is surely one of the great challenges

of physics in the present century. However, although QFT cannot count as a

fundamental physical theory, within its domain of applicability it is neverthe-

less the empirically best confirmed physical theory ever, so that one can expect

that at least some of its structures will remain features of a future and more
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fundamental theory.

One major obstacle for anyone who is interested in the ontological impli-

cations of QFT is that there are many different mathematical approaches to

QFT which differ significantly in the mathematical objects and methods on

which they are based and in turn could suggest very different ontologies. Thus

if one wants to investigate ontological questions concerning QFT, one first of

all has to choose a particular formalism from which to proceed. The by far

most popular formalism of QFT is the Lagrangian formalism.

4.1 The Lagrangian approach

In this approach one starts from a classical field theory (e.g. electrodynamics),

specified by a concrete Lagrangian, and tries to “quantize” it following rules

similar to those which have been proved to be successful in the transition from

classical mechanics to QM. This scheme has been successful in the free case,

i.e. in the case of classical systems consisting of non-interacting fields. Each

such field can be decomposed into a positive and negative frequency part, so

that after the quantization procedure has been carried through one gets anni-

hilation and creation operators for some type of “particle”, or better for some

type of field-quanta, defined on a common Hilbert space H whose unit vectors

ϕ ∈ H represent the physical states of systems of field-quanta. Such a model of
QFT then describes an arbitrary number of non-interacting, indistinguishable

field-quanta of a given type, say electrons or photons (see e.g. Teller 1995).

However, there has been no easy way to extend this approach to a theory of

interacting fields or field-quanta respectively. The only way to obtain results

about interacting systems seemed to be by way of perturbative methods. How-

ever, perturbation theory has shown to have its own peculiar problems within

QFT. The most prominent problem is the appearance of infinities within the

perturbation expansions which have to be removed by procedures subsumed

under the heading “renormalization”. Although some of the numbers which

have been calculated by use of perturbative methods based on the Lagrangian

approach are the empirically best confirmed quantitative predictions a phys-

ical theory has ever yield, from a conceptual point of view the status of the

Langrangian approach is merely that of a useful tool-box rather than that of a
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consistent theory. This conclusion as to the conceptual role of the Lagrangian

approach has been further strengthened by Haag’s theorem which states that a

non-perturbative interacting QFT as well as the very interaction picture which

is the starting point of perturbation theory do not exist in a rigorous mathe-

matical sense within the framework used in the Lagrangian approach (see e.g.

Haag 1996, p. 53 ff, Streater and Wightman 2000, p. 161 ff). Moreover, it

turned out that one of the central ideas underlying the Lagrangian approach

to QFT, namely the very idea of a quantum field (i.e. a “quantized” classical

field) as an assignment of an operator Ψ(x) to each spacetime point x is not

tenable from a mathematical point of view. Frustrating results like these, to-

gether with the problems with renormalization, led a large part of the physics

community in the 1950s to a rather negative attitude towards the formula-

tion of QFT as a rigorous theory. However, instead of further investigating

specific models by way of the perturbative tools of the Lagrangian approach

some physicists tried to clarify the conceptual status of QFT with the hope

of removing at least some of its basic problems and inconsistencies. Their

strategy was to isolate those features of QFT which could be stated in mathe-

matically rigorous terms and to extract those general postulates which looked

trustworthy in the light of the lessons learned from the Lagrangian approach.

4.2 The axiomatic approach

This enterprise known as Axiomatic QFT finally led to the so-called Wightman

axioms in which the assumed physical core of QFT had been summarized

in a mathematically consistent way. In particular, the axiomatic approach

did not start from the ill-defined notion of a quantum field as an assignment

of operators to spacetime points but rather from the mathematically correct

treatment of quantum fields as operator-valued distributions which become

well-defined operators in the Hilbert space of state vectors H only when being

“smeared” with an appropriate test function f with support1 in an extended

1The test functions dealed with in QFT are usually taken to be infinitely often differen-
tiable functions which together with all their derivatives decrease faster than any power of
x as |x| goes to infinity. The support of a test function f is that subset of spacetime for
which f(x) is non-zero.
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region O of spacetime

Ψ(f) =

Z
Ψ(x)f(x) dx.

Thus within the axiomatic approach it is assumed from the outset that it is

meaningless to ask for the value of a quantum field at a spacetime point x.

What is meaningful is the smeared “value” of the field Ψ (i.e. the operator

Ψ(f)) in as small a neighborhood O of each spacetime point x as one likes

by letting it act on test functions f whose supports are contained in the cho-

sen neighborhood O. Thus within the axiomatic approach the fields Ψ are no

longer assumed to be entirely local in the sense of specifying a well-defined op-

erator Ψ(x) for each spacetime point x. However, quantum fields understood

as operator valued distributions, though less familiar mathematical objects

than operators themselves serve all purposes needed from a physical point of

view. In particular, the observable consequences are not affected by the loss of

the localization of the fields at spacetime points. This is because each physi-

cally realizable measurement procedure requires some finitely extended region

of space V and some finitely extended interval of time T to be carried out–in

other words, it requires a finitely extended region T ×V of spacetime. Now in

the axiomatic approach the measurable physical magnitudes or observables of

the theory are constructed as linear combinations of products, i.e. as polyno-

mials, of the smeared field operators Ψ(f) and since the latter are well-defined

for test-functions f with supports in spacetime regions O as small as one likes
the observables are also well-defined for each arbitrarily small but non-pointlike

spacetime region.

Therefore, the fact forced on QFT by mathematical rigor, namely that

quantum fields are at most localizable in finitely extended spacetime regions

(rather than at spacetime points), does no harm to the observational content

of QFT. Moreover, Axiomatic QFT has been successful in providing rigorous

proofs of some important results like the spin-statistics theorem that expresses

the connection between the spin of systems (i.e. integer or half-odd-integer)

and the statistics obeyed by them (i.e. Bose-Einstein or Fermi-Dirac), which

has had to be put in by hand in the Lagrangian approach.

However, another result obtained by H.-J. Borchers in 1960 indicated that

the very notion of a quantum field is probably not a physically basic concept.
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Borchers’ result showed that different quantum fields Ψ, Φ can very well lead

to the same sets of observables. Since in such a case the observable content of

the theory does not depend on the choice of the underlying quantum field Ψ

or Φ, this result indicates that a formulation of QFT based on quantum fields

contains essential redundancies.

4.3 The algebraic approach

In the 1960s R. Haag, D. Kastler and H. Araki initiated an approach to QFT–

known as Algebraic QFT (AQFT)–that can be seen as a direct advancement

of the algebraic formulation of QM proposed in the late 1920s by J. von Neu-

mann and that is not based on the concept of quantum fields. AQFT also being

formulated in a strictly axiomatic manner gained its name from the fact that

the fundamental mathematical structure on which it is based is a correspon-

denceO 7→ R(O) between bounded spacetime regionsO and operator algebras
R(O), the self-adjoint elements of which are interpreted as the physical magni-
tudes or observables measurable within spacetime region O. All other axioms
which are assumed to build the basis of QFT within this approach are also of

a very general nature and are expressible in the form of specifications of this

fundamental correspondence. One of the ideas of the founders of AQFT was

to base QFT directly on observables without the need of constructing them

from underlying but, in general, unobservable quantum fields.

However, the algebraic approach is even more radical because it assumes

that no other characteristics of observables, besides their localization, is needed

for a complete description of relativistic quantum systems. In other words, it

is assumed that the whole content of relativistic quantum physics is encoded

in the correspondence O 7→ R(O) together with the axioms imposed on it. In
particular, from this perspective quantum fields are to be understood merely

as more or less convenient ways to coordinatize the algebrasR(O), as has been
suggested by the mentioned result of Borchers. Thus the relation between ap-

proaches based on the concept of quantum fields and the algebraic approach

“may be compared with the concrete and abstract approaches to differential

geometry. If one is dealing with concrete (computational) problems in geom-

etry, it is natural to use coordinates, tensor fields, Christoffel symbols etc,
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whereas in the general structural analysis one relies on intrinsic concepts such

as the notions of manifold, fiber bundle, connection etc.” (Buchholz 2000). In

the years following the first appearance of AQFT it gradually became more

and more clear that the ideas underlying AQFT were in fact deep insights.

That all relevant physical information is contained in the axioms of AQFT,

and thus ultimately in the correspondence between spacetime regions and alge-

bras of observables, has been confirmed by numerous results. One of the most

startling of these results is of course that one can even recover the concept of

quantum fields within the algebraic approach.

Because of its precise axiomatic formulation and the great generality of its

axioms, AQFT seems to be best suited for the aim of this work. Especially

the generality of AQFT is an advantage in the search for an ontology of QFT.

Using the most general mathematical framework for QFT one need not fear

that the mathematical objects eventually singled out to take the burden of

representing ontological structures, are merely ephemeral consequences stem-

ming from special assumptions made in a narrower mathematical framework.

Therefore, in this work the algebraic formalism of QFT will be used. More

precisely, we will use the algebraic formalism in its “concrete” version. In this

concrete version the algebras R(O) are assumed to be algebras of bounded
operators on a Hilbert space, whereas the “abstract” version starts with so-

called C*-algebras A(O) which are not from the start realized as operator

algebras on some Hilbert space (see Appendix B.3). One of the virtues of the

abstract approach is that it provides the natural framework for the explana-

tion of the origin of superselection rules by reason of the different unitarily

inequivalent representations of the abstract algebras A(O) on concrete Hilbert
spaces. However, for reasons of simplicity we will use the concrete version

of AQFT in this work thereby avoiding, for example, the need to discuss the

representation theory of C*-algebras.



Chapter 5

Algebraic Quantum Field
Theory and its physical
interpretation

We will now give a brief overview over the formalism of AQFT together with

its usual physical interpretation. The term “physical interpretation” is meant

to refer to any interpretation of a physical theory whose main aim is to extract

numbers from the formalism of the theory which can be compared to the

outcomes of experiments and not to make claims about the underlying ontology

of the theory. The usual physical interpretation of AQFT is in fact quite

neutral in respect to ontological claims since it does not even specify the nature

of relativistic quantum systems (see also Rédei 2002). From the point of view

of this work, the usual physical interpretation of AQFT therefore provides an

unsuspicious framework for more specific interpretations of the formalism like

the ontological interpretation that will be put forward in Part III. Since for

the connection with Whitehead’s philosophy of process not all aspects of the

formalism of AQFT are needed, we will for the sake of simplicity discuss only

those axioms of AQFT which are of direct importance for our later purposes.

For a comprehensive account of all the standard axioms of AQFT as well

as their physical interpretation the reader is referred to Appendix C and, in

particular, to the excellent books of Haag (1996) and Horuzhy (1990). A brief

summary of the basic concepts of the theory of operator algebras on Hilbert
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spaces is given in Appendix B. For a systematic study of this important area of

mathematics the reader is referred to (Kadison and Ringrose 1983 and 1986).

All mathematical notions not explicitly defined in the following can be found

in one of the appendixes.

In the following M denotes Minkowski space, i.e. R4 equipped with the
metric g : R4 × R4 → R, that assigns to each pair of points x = (x0,x) ≡
(x0, x1, x2, x3), y = (y0,y) ≡ (y0, y1, y2, y3) ∈ R4 their Minkowski distance

g(x, y) ≡ (x0 − y0)2 − (x− y)2

where

(x− y)2 ≡
3X

i=1

(xi − yi)2

is the square of the Euclidean distance in R3.1 A subset ofM is called an open

double cone if it is the intersection of the open backward lightcone V−(z) ≡
{x ∈M : z0−x0 > |x− z|} of a point z ∈M with the open forward lightcone

V+(y) ≡ {x ∈M : x0− y0 > |x− y|} of a point y ∈ V−(z). The set of all open
double cones in M will be denoted by D(M).

5.1 Local observables

The fundamental mathematical structure upon which AQFT is erected is a

map

O 7→ R(O) (5.1)

that assigns to each open, bounded, connected regionO of Minkowski spaceM
an algebra of linear, bounded operators R(O) on a common Hilbert space H.
Thus all the algebrasR(O) are assumed to be subalgebras of the algebra B(H)
of all bounded operators on a single Hilbert space H. Moreover, the Hilbert
space H is assumed to be separable and the algebras R(O) are assumed to be
von Neumann algebras (see Appendix B). The points of Minkowski space are

1Throughout this book natural units will be used, so that the speed of light in the
vacuum c as well as Planck’s constant ~ have the numerical value 1. With a choice of
units such that the value of c differs from 1, the Minkowski distance between x and y reads
g(x, y) ≡ c2(x0 − y0)2 − (x− y)2.
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interpreted as spacetime points and the square root of the Minkowski distance

g(x, y)1/2 is accordingly interpreted as their spatiotemporal distance. Since in

the fundamental correspondence (5.1) only bounded and connected spacetime

regions do appear, the corresponding algebras are called local algebras. The

underlying idea of the correspondence (5.1) is that the operators of the lo-

cal algebra R(O) represent physical operations that can be performed within
spacetime region O (Haag and Kastler 1964; Hellwig and Kraus 1969, 1970).

The physically most important operations are those which result in a measure-

ment of some physical magnitude or observable and as is usual practice, we will

restrict the discussion to this class of operations.2 The problems with point-

like fields in the Lagrangian approach have indicated that one should better

build up the theory on non-pointlike quantities. Moreover, it is clear that no

“real” measurement can be carried out at a spacetime point. Therefore, in the

fundamental correspondence (5.1) only open regions are appealed to, which

automatically rules out pointlike ones. Of course, it would make no difference

to take closed regions with non-empty interior instead of open ones as the do-

main of the map (5.1), because from the physical viewpoint it is reasonable to

expect that the operations performable within an open region determine the

operations performable within its closure. Yet the choice of open regions has

turned out to be the usual one and we will follow this trend.

Now we could proceed by stating the axioms usually required to hold for

the fundamental correspondence (5.1). Yet the study of AQFT is much more

simplified if one adopts some further restrictions on the set of regions appealed

to in (5.1). This is because an open, bounded, connected region ofM may still

be of quite involved geometry and topology, which makes many investigations

much more difficult. Since our primary interest are the structural properties

of AQFT the optimal choice for a set of regions O ⊂ M would be one that

facilitates the study of such structural properties, but is at the same time large

enough to cover or approximate any open, bounded, connected region, so that

nothing essential gets lost by this restriction of the domain of the map (5.1).

Both conditions are perfectly met by the set of open double conesD(M), which

is the reason why this set is so often used especially in the study of structural

2For a philosophically enlightening discussion of general operations, see (Clifton & Halvor-
son 2001).
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properties of local algebras and the relationships among them. Therefore, we

will in what follows restrict the domain of the map O 7→ R(O) to the set of
open double conesO ∈ D(M). For convenience we will often omit the adjective

“open” and simply speak of double cones. In contexts in which it will not give

rise to confusions, we will moreover often simply speak of (bounded) regions.

The observables which can be measured within O ∈ D(M)–the local ob-

servables in region O–are represented by the self-adjoint elements of R(O),
i.e. by those A ∈ R(O) which coincide with their adjoint operator A∗. The
most elementary observables are those which can take only two different val-

ues. These observables are called simple and are represented by projection

operators, i.e. self-adjoint operators P ∗ = P which are moreover idempotent

P 2 = P . The most important structural feature of self-adjoint operators is

that each such operator A has a unique spectral decomposition, which in the

most simple case reads (see Appendix B.2)

A =
X
i

aiPai . (5.2)

The real numbers ai are the distinct eigenvalues of A and they are interpreted

as the possible values which the corresponding observable can take in single

measurements. For convenience we will in what follows simply speak of self-

adjoint operators themselves as “observables” or “physical magnitudes” rather

than as “operators representing observables/physical magnitudes”. The set

{Pai} of so-called eigenprojections of A is uniquely determined by the latter

and constitutes a resolution of the identity operator 1, which means that the

eigenprojections corresponding to distinct eigenvalues are orthogonal in the

sense that their product vanishes, i.e. PaiPaj = 0 whenever ai 6= aj, and the

Pai sum up to the identity operator, i.e.
P

i Pai = 1. As will be seen below this

allows one to assign probabilities to the possible values ai of observable A. On

the other hand, given an arbitrary resolution of the identity {Pi} one can, by
combining its members with real numbers {ai} construct a self-adjoint operator
according to (5.2). Projection operators have only two eigenvalues 1 and 0,

and thus represent the conceptually simplest observables. Instead of “simple

observables” projection operators are also often referred to as properties. Part

of the reason for this is provided by the fact that because of the spectral
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decomposition (5.2) the occurrence of value ai in a measurement is equivalent

to the occurrence of value 1 of Pai and therefore Pai is taken to represent the

property expressed by the sentence “observable A has the value ai”. More will

(and has to) be said about properties in QM and QFT in Section 8.

5.2 States and probabilities

Now we turn to the representation of states of relativistic quantum systems.

The notion of the “state” of a system suggests something like the specification

of the “mode of existence” of a system and thus seems to be an ontologically

much more interesting concept than that of an observable. However, from

the viewpoint of physics the “mode of existence” of a quantum system is only

interesting in so far as it allows the prediction of the probabilities for all the

possible measurement results of each observable. The mathematical device

that does precisely this is that of a state on B(H) as defined in Appendix B.3
(note that this time the term “state” refers to a purely mathematical object).

The defining properties of a state ρ on B(H) imply that it is a probability
measure over each resolution {Pi} of the identity:

(i) ρ(Pi) lies between 0 and 1,3

(ii) ρ is countably additive over each subset {Pik} ⊆ {Pi}, i.e. ρ(
P

k Pik) =P
k ρ(Pik)

and finally,

(iii) the sum over all ρ(Pi) is 1, i.e.
P

i ρ(Pi) = 1.

As explained above, the eigenprojections of a self-adjoint operator A form

a resolution of the identity and each eigenprojection Pai is in one-to-one cor-

respondence to a possible value ai of A. Consequently, every state defines

a probability measure over the possible values of each observable. Therefore,

one assumes that the physical states of systems are represented by the math-

ematical states on B(H). Then the probability for the occurrence of value ai

3Since ρ(Pi) ≥ 0 together with (iii) automatically implies ρ(Pi) ≤ 1 it is sufficient to
require that ρ(Pi) is non-negative.



134 CHAPTER 5. AQFT AND ITS PHYSICAL INTERPRETATION

of observable A upon measurement on a system in state ρ, abbreviated by

probρ(A = ai), is given by ρ(Pai), i.e.

probρ(A = ai) = ρ(Pai). (5.3)

In Section 8.1.5 we will see how this probability ascription can be extended

to the case in which the value of an observable lies within a certain range of

values, rather than the observable taking a single such value.

From the possible values ai together with their probabilities probρ(A =

ai) = ρ(Pai) one can furthermore build the weighted sumX
i

ai probρ(A = ai) =
X
i

aiρ(Pai)

which is accordingly interpreted as the expectation value of observable A upon

measurement on a system in state ρ. Making use of the linearity of state ρ and

the spectral decomposition (5.2) the expectation value of A in state ρ simply

turns out to be the value of A in state ρ, i.e.

expρ(A) = ρ(A).

Note that this implies that for simple observables P the expectation value

expρ(P ) = ρ(P ) coincides with the probability probPρ (1) = ρ(P ) for the occur-

rence of value 1 of P–or in terms of properties with the probability for the

occurrence of property P .

Of course, probabilities and expectation values cannot be observed in single

measurements. Rather the connection of these theoretical notions with empir-

ical results has to proceed via relative frequencies and mean values in large

ensembles of identically prepared systems. The probability ρ(Pai) with which

value ai of observable A will occur upon a measurement on a system in state

ρ has to be compared with the relative frequency N(ai)
N

with which value ai oc-

curs in a large series of measurements of A in an ensemble of N À 1 systems

in state ρ. Accordingly, the expectation value ρ(A) has to be compared with

the mean value
P

i ai
N(ai)
N

of ai in the ensemble.

Next we will further investigate the structure of states. As is well-known

from QM each state ρ on B(H) can be represented by a density operator W
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(i.e. by a positive operator W ∈ B(H) with trace Tr(W ) = 1; see Appendix
B.2) via the standard formula

ρ(A) = Tr(WA). (5.4)

A pure state on B(H) is one that is not a convex combination

ρ =
X
i

ciρi with ci ≥ 0 and
X
i

ci = 1 (5.5)

of other states. It is represented via (5.4) by a one-dimensional projection op-

erator P ∈ B(H). Since for a one-dimensional projection operator Tr(PA) =
hψ,Aψi, where ψ ∈ H is the unit vector that spans the one-dimensional sub-

space of H onto which P projects, each pure state ρ on B(H) can equivalently
be represented by a unit vector ψ ∈ H via the special case ρ(A) = hψ,Aψi
of formula (5.4). Pure states are often held to be the “true” physical states

of quantum systems–the ontic states–whereas non-pure states4 are supposed

to describe our ignorance as to the true pure state of a system. However, such

an ignorance interpretation of non-pure states cannot be upheld.

According to this ignorance interpretation, the numbers ci in a convex

combination like (5.5), where all the ρi are pure states, are to be interpreted

as epistemic probabilities–probabilities due to our imperfect knowledge. More

precisely, ci is the epistemic probability for finding the system in question in

the pure states ρi. However, it is well-known that each given non-pure state

ρ can, in general, be written as a convex combination of (infinitely) many

different sets {ρi}, {φj}, . . . of pure states

ρ =
X
i

ciρi =
X
j

djφj = . . . .

This, however, undermines the interpretation of such a non-pure state ρ as

representing merely our ignorance as to the true pure state. For if the system

under study were really in a pure state that is merely unknown to us, this

pure state had better to be unique. But since the sets of pure states {ρi},
4It is usual to speak of “mixed states” or “mixtures” instead of “non-pure states”. How-

ever, such talk is quite missleading because, as we will see below, it is justified in only very
special situations.
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{φj}, . . . are different, this is not generally the case (see Ochs 1981; Rédei
1985). However, this argument against the ignorance interpretation of non-

pure states is not yet conclusive. For it could be the case that there is a

distinguished set of pure states {ρi} into which the given non-pure state ρ can
be decomposed according to (5.5). In fact it is often argued that in case the

spectral decomposition

W =
X
i

ciPi (5.6)

of the density operator W corresponding to the state ρ is non-degenerate,

which means that all its eigenprojections Pi are one-dimensional and distinct

from one another, a distinguished set of pure states is provided by the states

ρi ≡ Tr(Pi·) corresponding to the projections Pi in (5.6). This set of pure

states is distinguished from all others by the fact that the projections Pi are

mutually orthogonal. Thus it seems that in case of a non-degenerate spectral

decomposition of the density operator W the corresponding non-pure state

ρ = Tr(W ·) admits an ignorance interpretation.
What has been said so far already shows that if there is really a difference

between certain states as to their ontological status, the dividing line cannot

simply be drawn between pure and non-pure states. We will argue now that a

peculiar feature of QFT, not inherent in QM, further undermines the ignorance

interpretation of non-pure states and thus too, undermines any claim for an

ontologically distinct status of pure states over non-pure ones. The feature in

question is that the local algebras R(O) of QFT are von Neumann algebras of
type III (Haag 1996, p. 118, 267 ff; Horuzhy p. 29, 35) which implies that they

neither contain non-zero, finite-dimensional projections nor density operators

(see e.g. Clifton 2000, p. 4). However, the latter means that a state on a

local algebra R(O) is not generated by a density operator from R(O) via ρ =
Tr(W ·). Consequently, one cannot exploit any features of W–in particular,
the fact that W may have a non-degenerate spectral decomposition–to single

out a distinguished convex decomposition of ρ. Moreover, even if there were

such a distinguished convex decomposition of the non-pure state ρ, this would

not be a decomposition into pure states, because the lack of finite-dimensional

projections in R(O) rules out the existence of any pure states on R(O). Thus
there is simply no ground for any claims as to a distinct ontological status
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of pure and non-pure states on a local algebra, simply because there are no

pure states at all (see also Clifton and Halvorson 2001). Now an ignorance

interpreter may object that, though there are no pure states and no density

operator representations of states on any local algebra, these concepts are

nevertheless available for the algebra B(H) that includes all the local algebras
as subalgebras. And therefore, one may reason, the ignorance interpretation

can still be applied to those states on B(H) which have a distinguished convex
decomposition into pure states. However, a state on B(H) is a purely global
concept–it ascribes probabilities to the possible values of each observable

A ∈ R(O) for all regions O ⊆ M . Thus the system to which such a state

can be reasonably ascribed is merely the universe as a whole. However, if the

ignorance interpretation is only applicable to (certain states of) the universe

as a whole, it is rather uninteresting. For the conclusion that the universe as

a whole may be in a pure state about which we are ignorant, can already be

drawn on the basis of the fact that we, as finite observers, can merely know

the restriction ρ|R(O) of a global state to the algebra of some finite spacetime
region O, i.e. the state induced on R(O) via R(O) 3 A 7→ ρ(A). And only

if this restriction were a pure state (on R(O)), we could be sure that the
corresponding global state is also pure. However, there are no pure states on

any local algebra R(O) at all, so that on the basis of the state ρ|R(O) we can
never be sure whether the global state ρ of the universe is pure or not. In

sum, then, the ignorance interpretation of non-pure states, already severely

challenged in QM, is ruled out for all interesting cases in QFT.

Note, however, that this does not mean that QFT is not able to describe

systems belonging tomixtures. A mixture is an ensemble of systems, a fraction

0 < pi < 1 of which is in state ρi. However, if we do not know which system

is in which state, the best we can do is to describe each system by the convex

combination of the states ρi, i.e. by

ρ =
X
i

piρi. (5.7)

The numbers pi give then the probabilities with which a system described by

(5.7) is in the (non-pure) state ρi. Thus the probabilities pi are due to our

ignorance with respect to the true state of the system in question. But this

is an ignorance interpretation of the non-pure state ρ. How does this relate
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to our above criticism? The main point of the above critic was that on the

basis of a given non-pure state ρ alone, there is no fact of the matter as to the

“true” set of component states of ρ about one could be ignorant. However,

now we are discussing the “inverse” situation, in which a set of states {ρi}
together with their probabilities {pi} in an ensemble are given. And on the
basis of this information it makes sense to use the state ρ in (5.7) as a descrip-

tion of a system belonging to the ensemble in question. Thus given enough

information about the preparation of systems makes the ignorance interpreta-

tion of some non-pure state admissible. In the literature such non-pure states

are often called proper mixtures whereas other non-pure states are called im-

proper mixtures (see e.g. d’Espagnat 1995). However, this terminology is not

very fortunate because by definition of improper mixtures they do not describe

mixtures of systems, as defined above, at all. Therefore, we will not make use

of this terminology. Moreover, within an ontological interpretation of QFT,

epistemic deficiencies as to the true state of a system belonging to a mixture

are of no interest at all. Therefore, mixtures and the corresponding ignorance

interpretation of the non-pure states used to describe them will not play any

role in an ontological interpretation.

Now being equipped with the fundamental correspondence (5.1) and the

concepts of local observables and states we can go on to discuss those of the

standard axioms of AQFT which will later on turn out to be of direct im-

portance for the connection with Whitehead’s ontology. The other axioms of

AQFT not mentioned in the following, are discussed in Appendix C. We will

henceforth follow the common sloppy practice of simply referring to all oper-

ators in R(O) as “observables measurable within O”–despite the fact that
only self-adjoint operators deserve this interpretation. Furthermore, when we

speak of “(pure) states” without mentioning any algebra on which they are

defined, we always mean “(pure) states on B(H)”.

5.3 Further important axioms of AQFT

The first axiom to be mentioned is called isotony and requires that the map

(5.1) is “inclusion preserving” in the sense that the inclusion of regions implies

the inclusion of the corresponding local algebras.
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Isotony: For all O1, O2 ∈ D(M), O1 ⊆ O2 implies R(O1) ⊆ R(O2).

This assumption is very natural in the light of the interpretation of the

operators from R(O) as observables measurable within region O, because it
simply says that in a larger region there are more (or at least: not less) ob-

servables to be measured. Mathematically this isotony-property turns the set

of local algebras {R(O)}D(M) ≡ {R(O) : O ∈ D(M)} into a so-called net of
von Neumann algebras, which in particular means that whenever O1∪O2 ⊆ O
then R(O1) ∪R(O2) ⊆ R(O) holds, too.
Up to this point only topological properties of spacetime have been ap-

pealed to. The following axiom makes also use of the metrical structure of

spacetime.

Spacelike Commutativity: For all O1, O2 ∈ D(M), if O1 andO2 are space-
like separated from one another then all operators A1 ∈ R(O1) commute

with all operators A2 ∈ R(O2).

One can show that spacelike commutativity is equivalent to the inde-

pendence of the probabilities for measurement outcomes of an observable

A1 ∈ R(O1) (in any arbitrary state ρ) from the choice of the observable

A2 ∈ R(O2) measured in a spacelike separated region O2 (see e.g. Butter-
field 1994, p. 769 f). Thus the spacelike commutativity axiom can be regarded

as expressing the demand of the absence of causal influences from the choice

of observable to be measured in region O2 on the outcome of a measurement
in the spacelike separated region O1, since for such an influence the choice
in O2 should at least be probabilistically relevant for the result in O1. How-
ever, as we will see later on, from this one cannot infer that there is no causal

influence between spacelike separated regions on the level of individual mea-

surement results, too. In other words, spacelike commutativity does not rule

out causal influences between the outcomes of measurements carried out in

spacelike separated regions. Thus if one believes that STR requires that there

are no superluminal causal influences simpliciter and not merely that they are

absent between the choice of the observable to be measured and the outcomes

of all spacelike separated measurements, the spacelike commutativity axiom

may not be the proper way of implementing this stronger restriction on cau-

sation (see e.g. Horuzhy 1990, p. 20 f). Clearly all this heavily depends on
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ones concept of causation. For example, if one believes that causal influences

require the transfer of some amount of energy-momentum then QFT may be

free of any kind of superluminal causal influences, depending, however, on the

notion of “transfer” one invokes (see Section 2.8.1). However, within a weaker

conception of causation, e.g. a purely probabilistic account, one can quite eas-

ily come to the conclusion that there are in fact superluminal causal influences

on the level of individual measurement results (see Section 10.2.3).

Besides the restriction to at most luminal causal influences, commonly at-

tributed to STR, the latter says that the symmetry transformations of space-

time are given by the Poincaré group P↑+. The Poincaré group consists of
(1) spatiotemporal translations x → x + a by an arbitrary 4-vector a =

(a0, a1, a2, a3) ∈M , where a0 corresponds to the time shift and a ≡ (a1, a2, a3)
to the spatial shift, (2) spatial rotations x→ Rx leaving the time coordinate x0

unchanged, (3) Lorentz boosts, i.e. spatiotemporal rotations which correspond

to velocity changes v→ v+u and (4) all combinations of (1)-(3). That these

transformations are symmetry transformations of spacetime means that they

do not change the spatiotemporal distance g(x, y)1/2 = ((x0−y0)2−(x−y)2)1/2

between any two spacetime points, i.e. g(x, y)1/2 = g(g(x), g(y))1/2 for all

g ∈ P↑+ and all x, y ∈M .

The sets of spatiotemporal translations (in short: translations) T , spatial
rotations R as well as the set of spatial rotations combined with translations

and the set of spatial rotations combined with Lorentz boosts, i.e. the set

of Lorentz transformations L↑+, are subgroups of the Poincaré group. This
means that each of these subsets is again a group such that (1) it has the

same neutral element e as P↑+, defined by eg = ge = g for all g ∈ P↑+ that as a
transformation maps each spacetime point into itself x→ x, and (2) it is closed

with respect to combinations g1g2 of the transformations it contains, i.e. each

such combination is again an element of this subset. Unlike spatial rotations

and Lorentz transformations the subgroup of translations T is moreover a

commutative or Abelian group which means that for each two translations

g1g2 = g2g1 holds. The Lorentz boosts alone do not form a subgroup of P↑+
because a combination of two Lorentz boosts can be a spatial rotation and

thus does not again belong to the set of Lorentz boosts. Note furthermore

that our restriction to double cones as admissible regions for the fundamental
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correspondence (5.1) is not flawed by the action of the Poincaré group because

the Poincaré transform of a double cone is again a double cone.5

That Poincaré transformations are symmetry transformations of spacetime

means for QFT that a simultaneous application of such a transformation to

the source by which a system in a certain state is prepared and to the mea-

suring device by which a certain observable is to be measured does not change

the result of the measurement. However, since the result of an individual

measurement of an observable A is not reproducible–QFT is a probabilistic

theory–the latter cannot mean that the results of individual measurements

are invariant under the simultaneous application of a Poincaré transformation

g ∈ P↑+ to the system and the measurement device. Rather what needs to be

invariant in such a case are the relative frequencies of measurement results. On

the side of the formalism this means that under a simultaneous transformation

of state ρ→ ρg and observable A→ Ag the probabilities ρ(Pai) of all possible

values ai of A have to be invariant. Since this obviously implies that the expec-

tation value ρ(A) =
P

i aiρ(Pai) of A is also invariant and, on the other hand,

the probabilities ρ(Pai) are nothing else than the expectation values of the

simple observables Pai one can equally well state the requirement of Poincaré

invariance by saying that the expectation values ρ(A) of all observables A in

all states ρ must not be affected by the simultaneous transformations ρ→ ρg
and A→ Ag, i.e.

ρg(Ag) = ρ(A), for all g ∈ P↑+.

In Appendix C it is explained in detail how this invariance condition together

with the requirement that the action of Poincaré transformations on the local

observables be compatible with the inherent spatiotemporal structure of the

net {R(O)}D(M), leads one to require:

Covariance: There exists a representation of the Poincaré group P↑+ by a
group U(P↑+) ≡

n
U(g) : g ∈ P↑+

o
of unitary operators in B(H),6 such

that for all O ∈ D(M) and all g ∈ P↑+

U(g)R(O)U(g)−1 = R(g(O)).
5In fact, the whole set of double cones can be generated from each single double cone O0

by acting on it with all Poincaré transformations, i.e. P↑+(O0) = D(M).
6Moreover, this representation is assumend to be continuous (see Appendix C).
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In the following we will simply speak of the elements of U(P↑+) themselves
as Poincaré transformations rather than as representatives of the latter.

A problem in connection with the genuinely relativistic part of the Poincaré

group, namely the subset of Lorentz boosts, is that it is parameterized by a

vector v that is usually interpreted as a classical velocity (see above). The

problem this causes for any ontological interpretation of QFT is that the lat-

ter does not justify the postulation of entities to which one can reasonably

attribute a classical velocity at all. The attribution of a classical velocity to

some entity seems to presuppose that this entity exists as the self-same entity

over some (spatio-) temporal interval, i.e. possesses diachronic identity like it

is believed to be the case for classical particles and macroscopic objects, or at

least that it can be said to exist at two different spacetime points (or more

generally, in two separated spacetime regions) and thus is ontically (but not

necessarily epistemically) reidentifiable. If even this minimal requirement of

ontic reidentifiability is not fulfilled, the entity in question could hardly be said

to move (perhaps non-continuously) from one place to another and thus could

not reasonably be attributed with a velocity. Yet as already mentioned in Sec-

tion 2.8.1 it is well-known that relativistic quantum systems do not fulfil even

this minimal requirement for attributing classical velocities to them. However,

ontological interpretations of QFT cannot simply introduce non-quantum ob-

jects like macroscopic measuring devices, observers or reference frames, which

cannot be described by QFT itself, and attribute the velocities occurring in

Lorentz boosts to them. Of course, it is not claimed that it is in principle

impossible to treat macroscopic objects within the conceptual framework of

QFT. Rather the problem is that if this is rigorously done, i.e. if they are

regarded as large quantum systems described by quantum states, then they

too do no longer possess diachronic identity or are ontically reidentifiable in

the strict sense. Thus one is faced with the dilemma that, on the one hand, it

is a point in favour of an ontological theory if it does not incorporate reidenti-

fiable or diachronically identical entities because this fits to what QFT seems

to tell us. But, on the other hand, this same fact seems to make it impossible

to make sense of an (at least) conceptually central piece of the formalism of

QFT, namely its covariance with respect to the Poincaré group and the fact

that the vacuum state of QFT is defined by its invariance with respect to the
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Poincaré group (see below), because the genuinely relativistic part of the latter

is constituted by the Lorentz boosts.

We will later on interpretWhiteheadian occasions as the fundamental quan-

tum systems. Since Whiteheadian occasions are not reidentifiable or even in

possession of diachronic identity (since in each phase of their existence they

occupy their whole spatiotemporal location) Whitehead’s ontology thus con-

forms well to what QFT is supposed to say in this respect. But for the same

reason it is not to be expected that it provides us with an interpretation of

Lorentz boosts and the classical velocity-parameter occurring in them.

The last axiom of AQFT to be mentioned here, is concerned with the

structure of the vacuum. In classical, i.e. non-quantum, physics as well as in

QM the vacuum is identified with “empty space”. Two characteristics which

are naturally to be expected from this point of view of the vacuum are that

(1) the vacuum has the lowest possible amount of energy-momentum of all

physical systems and that (2) it is invariant with respect to the spatiotemporal

invariance group–in our case the Poincaré group. These assumptions on the

vacuum are also made in QFT. However, in QFT the vacuum is regarded as

a non-trivial physical system in its own right and thus it is associated with a

non-zero state ω. In Appendix C it is explained that assumptions (1) and (2)

(in fact even (2) alone) imply that the vacuum state is generated by a unit

vector Ω ∈ H, according to ω = hΩ, · Ωi, which is invariant with respect to
the Poincaré group

U(g)Ω = Ω for all g ∈ P↑+.

Moreover, as known from the treatment of free fields within the Lagrangian

approach, each “material system”–understood as a system consisting of a

certain number of “stable particles”–can be regarded as an excitation of the

vacuum. More generally, each vector ψ ∈ H can be approximated as closely as

one likes (in the norm of H) by the application of appropriate polynomials of
the local fields Ψ(x), to the vacuum state.7 In other words, the set of vectors

generated by the application of polynomials of local fields to the vacuum vector

is a dense subset of H. This property of the vacuum is assumed to hold

7Of course, as mentioned in Chapter 4 the local fields have to be “smeared” over some
non-pointlike region before they are well-defined operators that can be applied to vectors
from H.
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also in the presence of interactions and therefore it is incorporated as a basic

assumption into the formalism of AQFT as well. Since in AQFT there are

no local fields from which the local observables are constructed, one assumes

accordingly that (3) the set of vectors generated by the application of arbitrary

local observables

A ∈ Aloc ≡
[

O∈D(M)

R(O)

to the vacuum vector Ω is a dense subset of H. A vector ϕ ∈ H from which,

by the application of operators from a set S ⊆ B(H), a dense subset of H can

be generated is called cyclic with respect to S. Thus we can also state the
assumption in question by saying that Ω is cyclic with respect to the algebra

of all local observables Aloc.8 Together with the further physically reasonable

assumption that the vacuum is unique, one therefore assumes the following:

Vacuum: In H there exists a unique unit vector Ω, that is invariant with

respect to U(P↑+) and cyclic with respect to Aloc.

We are now equipped with the relevant principles of AQFT and their phys-

ical interpretation so that we could proceed by stating those consequences of

the axioms which are important for the connection with Whitehead’s process

philosophy. However, the author believes that it will be more instructive and

probably more convenient simply to start with developing the interpretation

of AQFT in terms of Whitehead’s ontology and to discuss implications of the

formalism of AQFT within the relevant interpretational context.

8Why the set Aloc is indeed a subalgebra of B(H) is explained in Appendix C.
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Chapter 6

The representation of the
extensive continuum

According to Section 2.1 the extensive continuum is an infinite, undivided but

infinitely divisible continuum that is equipped with the primitive relation of

extensive connection, the property of separativeness and that, according to our

supplementary assumptions, is moreover four-dimensional and equipped with

the spatiotemporal distance measure, i.e. the metric, of STR. The connection

of this extensive continuum with the formalism of AQFT is quite straight for-

ward because the only reasonable candidate for its representation is Minkowski

space M . Since, according to Whitehead, the potential regions into which the

extensive continuum can be divided–the potential regions of occasions–are

non-pointlike, bounded and connected it would be most natural to represent

them by the corresponding regions of Minkowski space M . However, for rea-

sons of simplicity we have restricted the class of admissible regions for the

correspondence O 7→ R(O) to a special subset of all non-pointlike, bounded,
connected regions namely to the set D(M) of double cones. Consequently, we

will only use these double cones for the representation of the potential bounded

regions into which the extensive continuum is divisible. However, once the met-

ric of STR is assumed to be given it is very natural to assume that it is double

cones into which the extensive continuum is divisible and which therefore can

serve as the regions of occasions: double cones are obviously those bounded

subsets ofM which are most tightly connected with the relativistic metric g1/2

147
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because they are simply given as the intersection of lightcones and the latter

directly express the structure of g1/2. Thus in an extensive continuum that

is structured by the metric of STR it seems natural to give double cones the

privileged role as regions of the ultimate entities. For convenience we will,

however, often simply speak of (bounded) regions instead of double cones.

But shall we take closed or open double cones (or such which are neither

closed nor open) to represent (potential) regions of the extensive continuum?

Since the realization of a potential region of the extensive continuum takes

place by the ingression of a boundary surface into the extensive continuum,

the potential regions of the latter are best represented by open subsets of M

whereas the realized or actualized regions of the extensive continuum are best

represented by closed subsets of M . This is because like the potential regions

of the extensive continuum, open sets do not include their boundaries and

like the realized or actualized regions of occasions closed sets do include their

boundaries. Since, by definition, the set D(M) consists of open double cones

it is ready made for the representations of the potential regions into which

the extensive continuum can be divided. The realized or actualized regions of

occasions are accordingly to be represented by elements from the corresponding

set of closed double cones. However, for convenience we will not complicate our

interpretation by the explicit introduction of an own set of closed double cones.

Rather we will simply represent realized or actualized regions too by elements

of D(M)–knowing that the closure O of the respective region O ∈ D(M) is

the correct representative.

Now there is a potential problem with the second of our above mentioned

supplementary assumptions, namely that the extensive continuum is equipped

with the relativistic metric g1/2, i.e. the distance measure (x, y) 7→ g(x, y)1/2.

According to Whitehead the extensive continuum is not divisible into points

but merely into finitely extended regions, so that it seems that the expression

g(x, y)1/2 is not meaningful if M is interpreted as the extensive continuum

because in this case one cannot make use of any expressions relying on the

existence of points within M . Moreover, this divisibility of M into points

is an instance of mathematical surplus structure, i.e. structure appearing in

the formalism of AQFT that has no counterpart in Whitehead’s ontology and

therefore does not represent any ontological structure. NowWhitehead himself
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has shown in Part IV of PR how, by means of the primitive relation of ex-

tensive connection that is supposed to obtain between potential regions of the

extensive continuum, one can recover potential points as limits of decreasing

sequences (Oi), Oi ⊃ Oi+1 of potential regions. Therefore, one can interpret

(x, y) 7→ g(x, y)1/2 as the limiting case of some distance measure g̃ : (O,O0) 7→
g̃(O,O0) between bounded regions O,O0 ∈ D(M).

Of course, once a distance measure between points is given it is natural to

expect that the distance between two bounded regions is the infimum of the

distances between their points. In other words, for the two distance measures

g̃ and g1/2 to count as compatible it is not sufficient that g1/2 merely arises as a

limiting case from g̃ but that the natural extension of g1/2 to bounded regions,

coincides with g̃. Yet one cannot simply define g̃(O,O0) by the infimum of

the distances between the points of O and O0 because then g̃ would ontolog-
ically presuppose the point measure g1/2 which would be in conflict with the

assumption that g(x, y)1/2 merely arises as the limiting case O → x, O0 → y

from g̃(O,O0), i.e. that g1/2 presupposes g̃ and not the other way round. For-
tunately, for the compatibility in the above sense it is sufficient that g̃(O,O0)
coincides with (without being defined by) the distance between regions given

by the infimum of
©
g(x, y)1/2 : x ∈ O, y ∈ O0ª. This moreover automatically

secures that g(x, y)1/2 arises in the limiting caseO→ x, O0 → y from g̃(O,O0).
Therefore, we assume that the extensive continuum comes equipped with a dis-

tance measure g̃ between double cones O,O0 ∈ D(M) that coincides with

inf
©
g(x, y)1/2 : x ∈ O, y ∈ O0ª ,

but is not defined by this coincidence.1 Since we have now sufficiently clarified

1In the footnote on page 101 it has been said that the truthmakers of statements of
the form “region O0 lies in the backward lightcone of region O” are the regions O0 and O
together with the metrical relations obtainting between them, so that there is no need for the
introduction of the surfaces of lightcones as objective eternal objects. But from the distance
relation ĝ(O,O0) alone one cannot infer whether the above statement is true or not, so that
it may seem that the point measure g1/2 is still needed to do this job. However, this is not
the case because the above statement is true if for all bounded regions O1 included in O
and all bounded regions O2 included in O0, ĝ(O1,O2) ≥ 0 holds. Thus for our definition
of spatiotemporal pasts, presents and futures we neither need to postulate lightcones as
objective eternal objects nor the existence of the point measure g1/2.



150 CHAPTER 6. THE EXTENSIVE CONTINUUM

the relation between g̃ and g1/2 we will for convenience henceforth only speak

of the point measure g1/2.

Now what about the primitive relation of extensive connection itself? As

mentioned in Section 2.1 the obtainment of the relation of extensive connection

between two bounded regions O, O0 means that they either overlap, one of
them is included in the other or that they are in contact, i.e. contiguous to

one another. These relations are given in M by reason of the set-theoretic

relations ⊆ and ∩ as follows: O is included in O0 iff O ⊆ O0, O and O0 overlap
iff O∩O0 6= ∅, and finally O and O0 are in contact iff they overlap but there is
no region O00 ∈ D(M) that is included in their overlap, i.e. O00 ⊆ O∩O0. Note
that like the relation “contact” has been defined in terms of “inclusion” (i.e.

⊆) and “overlap” (i.e. ∩) each of the two latter can solely be defined in terms
of the other so that one in fact only needs to assume the existence of ⊆ or ∩,
which seems to be superior to Whitehead’s way of starting with the relation

of extensive connection because the latter corresponds to the disjunction of all

three relations “inclusion”, “overlap” and “contact”and thus seems to rely on

stronger presuppositions. Yet recall that the systematic introduction of the

fundamental relation of extensive connection by Whitehead did not proceed

by defining it in terms of, or even by merely pointing to the analogy with,

the disjunction of the relations “inclusion”, “overlap” and “contact”. Rather

Whitehead proceeded in the opposite direction by introducing the relation

of extensive connection in a purely axiomatic manner and then defining the

relations “overlap”, “inclusion” and “contact” from “extensive connection”.

Therefore, the fact that one can also start from the relation “inclusion” and

then define “overlap”, “contact” and finally “extensive connection” from it,

does not show that this latter way is preferable to Whitehead’s (see also PR, p.

294). Rather the problem we are faced with is that the set-theoretic relations

⊆, ∩ and “contact” as constructed from these are defined for arbitrary subsets
of M and thus in particular for pointlike subsets {x} ⊂ M . Therefore, one

cannot make sense of the relation of extensive connection within the framework

of AQFT by simply defining it in terms of the set-theoretic relations available

in M because then “extensive connection” would presuppose the existence of

points x ∈ M right from the start. However, since Whitehead has shown

how points can be recovered as limits when starting from bounded regions
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as primitives, we can again assume that the set-theoretic relations ⊆, ∩ and
“contact” arise as limiting cases from the relation of extensive connection.2

The last property of the extensive continuum is its separativeness, by reason

of which no two overlapping regions can be realized (or even actualized). Un-

fortunately, this property cannot be represented by any feature of Minkowski

space M . Therefore, we have to introduce it as an independent principle, not

ontologically grounded in the properties of the extensive continuum. However,

Whitehead did not made clear either how this separativeness can be under-

stood as a genuine feature of the extensive continuum, so that the lack of some

feature of Minkowski space that could account for it, is far from being a major

drawback for our attempted Whiteheadian interpretation of QFT.

2Note that the coincidence of “extensive connection” with the disjunction of ⊆, ∩ and
“contact” (as defined from the former two) on bounded regions need not be assumed in-
dependently because Whitehead defined “extensive connection” in such a way that this is
automatically the case.
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Chapter 7

The representation of objective
eternal objects

As we know there are two fundamental species of eternal objects–objective

and subjective ones–as well as eternal objects which are complexes of com-

ponents from both fundamental species, which we have called mixed eternal

objects. In the light of what has been said so far about objective eternal ob-

jects, their representation in the formalism of AQFT should be almost obvious

so that we need not say much about it. This will be different in the case of

subjective and mixed eternal objects whose representation will turn out to be

more difficult.

The only eternal objects of the objective species relevant in this work are

the boundary surfaces by whose ingression into the extensive continuum the

regions of occasions are created (see Section 2.2.1). As explained in Section

2.2.2 these boundary surfaces are moreover simple eternal objects, i.e. they

have no other eternal objects as components, so that we can postpone the

discussion of how to represent complex eternal objects and the related notion

of compatibility until we discuss the representation of subjective and mixed

eternal objects. According to the last section the potential regions of occasions

are represented by the elements of the setD(M). As explained in Section 2.1, it

makes no sense to distinguish between boundary surfaces which arise from one

another by means of Poincaré transformations–in the extensive continuum as

equipped with the relativistic metric, boundary surfaces are only determined
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up to Poincaré transformations.1 Consequently, objective eternal objects have

to be represented by equivalence classes of regions O ∈ D(M) with respect to

Poincaré transformations, i.e. by

bO ≡ ng(O) : g ∈ P↑+o . (7.1)

That the set bO is indeed an equivalence class follows directly from the group

properties of P↑+. The elements O0 of the class bO that represents the boundary
surface O, then, represent the possible instances of the universal O–or in

Whiteheadian terms, the possible or potential ingressions of the eternal object

O.

Thus objective eternal objects are represented by the very same mathe-

matical objects than their classes of possible ingressions. A nominalist could

therefore argue that what AQFT tells us about objective eternal objects is

that they are not really universals but rather classes of particulars, namely of

regions O ∈ D(M). And since there seems to be no way to represent objective

eternal objects more “directly” in the formalism of AQFT, without introduc-

ing an ontologically meaningless difference between those which are connected

by Poincaré transformations, this is in fact a point where QFT seems to speak

against Whiteheadian ideas. In Section 8.1.7 and 8.2 we will moreover see that

the situation is no better for subjective eternal objects. They too can merely

be represented via their classes of possible ingressions. Thus QFT seems not

to be very willing to oblige the existence of universals.

1As also mentioned in Section 2.1 this is not the case for the regions themselves because
two regions which are connected by a Poincaré tranmsformation can nevertheless be distin-
guished by means of metrical (or even toplogical) relations when the latter inhere in the
extensive continuum itself.



Chapter 8

The representation of subjective
and mixed eternal objects

Subjective eternal objects are the qualitative properties, understood roughly

as Platonic universals, which by their ingression into occasions constitute the

qualitative characters of the latter (see Section 2.2). For this work only those

physical properties are relevant, that are provided by QFT. Now in our expo-

sition of the formalism of AQFT and its physical interpretation we have only

briefly mentioned properties at all. The reason for this is that this important

topic deserves a more detailed investigation that would have overloaded the

exposition of the formalism of AQFT and its physical interpretation. In the

following Sections 8.1.1-8.1.6 we will explain why and in what sense properties

of quantum systems can be represented by projection operators and what dif-

ferences to classical properties obtain. In Section 8.1.3 it will be argued that

there is no need for the postulation of negative properties, both in the case

of classical physics as well as in the quantum case. This result will support

Whitehead’s dictum against negative eternal objects (see Section 2.2.2). Sec-

tion 8.1.7 will be central for the later connection with Whitehead’s ontology,

since it will show that the usual interpretation of single projection operators

as properties has the consequence that properties, then, could not be under-

stood as universals. However, Whiteheadian subjective eternal objects are

supposed to be properties understood as universals. A proposal for the solution

of this problem, consisting in a more indirect way of representing subjective
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eternal objects in the formalism of AQFT, similar to the one used to represent

objective eternal objects, will then be put forward in Section 8.2.

However, until we eventually reach the result that single projections cannot

be taken to represent subjective eternal objects, we will for the sake of argu-

ment tentatively speak as if subjective eternal objects could be represented by

single projection operators. This is justified because the essential aspects of

what will be said in the following for single projection operators, will also be

true in a similar form for the classes of projections which we will finally use

as representatives of subjective eternal objects. Whenever in the following a

claim is valid in QM as well as in QFT we will refer to both theories collectively

as Quantum Theory (QT).

8.1 Properties in quantum physics

8.1.1 From classical to quantum properties

Generally, in physics a property refers to a physical magnitude A and a set

of real numbers D. It can be described by the sentence “the value of A lies

in D”. Thus a physical magnitude taking on a particular value or, more

generally lying in some range of values, is what is meant by a physical property.

Now in classical mechanics the state of a system is given by its position and

momentum. The set of all states the system can be in is called its phase

space and is denoted by Γ. Thus, for example the phase space of a point

particle in one-dimension is given by Γ = R2. The physical magnitudes of
a classical system are represented by the real-valued functions on its phase

space Γ.1 This means that the state γ of a system fixes the values A(γ) of all

physical magnitudes A : Γ 3 γ 7→ A(γ), which will no longer be true in QT

(see Section 8.1.6). Physical properties are represented by the idempotent real-

valued functions on phase space, i.e. by those functions A with A(γ)2 = A(γ)

for all γ ∈ Γ (see e.g. Griffiths 2002; Bub 1997). For convenience idempotent

functions are henceforth denoted by P . This idempotence is equivalent to

the fact that the function P can only take the two different values 0 and 1,

so that P (γ) = 1 (0) can be taken to represent the fact that a system in

1In other words, all magnitudes are functions of position and momentum.
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state γ does (not) possess the property represented by P . The connection

between properties and physical magnitudes is established by the fact, well-

known from elementary analysis, that each (sufficiently well behaved) real-

valued function can be approximated by linear combinations of idempotent

functions. In particular, a function A on Γ that can take at most countably

many different values, i.e. whose range R(A) ≡ {A(γ) : γ ∈ Γ} is a finite
or countably infinite subset {ai} of R, can uniquely be written as a linear
combination of idempotent functions {Pai}

A =
X
i

aiPai , (8.1)

such that (1) the sum
P

i Pai over all values ai ∈ R(A) of A equals the identity

function 1Γ : Γ → {1} on Γ and (2) for each two different values ai 6= aj the

product of Pai and Paj yields the zero function 0Γ : Γ → {0} on Γ. A set

of idempotent functions on Γ with these two properties is called a resolution

of the identity function 1Γ. Now the decomposition (8.1) of A by means of a

unique resolution of the identity 1Γ is in the first place a purely mathematical

fact. Yet its physical relevance is that the idempotent functions belonging

to the resolution {Pai} are just those properties expressible by “the value
of magnitude A is ai”.2 Moreover each property of the form “the value of

magnitude A lies in the set D”, where D = {aik} ⊆ {ai} = R(A) is some

subset of values of A, can also be expressed by means of the Pai, namely as

the sum of all Pai for which the value ai belongs to the set D = {aik}, i.e. by

PD ≡
X
k

Paik
. (8.2)

2This is because according to (8.1) the fact that the value of the magnitude A for a
system in state γ is A(γ) = ai is equivalent to Pai(γ) = 1 and Paj (γ) = 0 for all aj 6= ai.

Thus all the Pai in (8.1) are properties of the form “the value of magnitude A is ai”. Now

assume there were a property P that is not contained in the above set {Pai} but is of this
form for some value ak of magnitude A. This means that P (γ) = 1 (0) iff A(γ) = ak (6= ak)
must hold. But according to (8.1) A(γ) = ak (6= ak) iff Pak(γ) = 1 (0) so that one also has
P (γ) = 1 (0) iff Pak(γ) = 1 (0). However, since this must be the case for all phase space
points γ one gets P = Pak .
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The trivial property “the value of A lies in the whole range of possible values

of A”, is then given in terms of the Pai by

PR(A) =
X
i

Pai , (8.3)

which according to (1), is just the identity function 1Γ, so that this property is

always possessed by each system. The second trivial property is the one that

can never be possessed by any system. It is represented by the zero function

on Γ. It can also be expressed in terms of the Pai namely by a product of

two of these properties corresponding to different values ai 6= aj of A because

according to (2) such a product coincides with the zero function PaiPaj = 0Γ.

Thus 0Γ can be understood as representing the property that a system possesses

at the same time two different values of one and the same magnitude which is

impossible.

From the representation (8.2) of properties of the form “the value of mag-

nitude A lies in the set D”, one can easily calculate that the product PD1PD2

of two such properties is an idempotent function that takes value 1 iff the value

of A lies in the intersection D1 ∩D2. Therefore, PD1PD2 should correspond to

the conjunction PD1 ∧ PD2 of the two properties PD1 and PD2 . Moreover, the

expression PD1+PD2−PD1PD2 is the idempotent function that takes value 1 iff

the value of A lies within the union D1 ∪D2 of the sets D1and D2 and should

therefore correspond to the disjunction PD1 ∨ PD2 of the properties PD1 and

PD2. Finally, 1Γ−PD is identical with the idempotent function PR(A)\D of the
complement of the set D in the range of possible values R(A) of magnitude

A and thus takes value 1 respectively 0 iff PD takes value 0 respectively 1.

Therefore, it should represent the negation ¬PD of the property PD.

Now operations on some set can be interpreted as the connectives “con-

junction/and”, “disjunction/or” and “negation/not” of standard logic between

elements of this set just in case the set equipped with these operations forms

a Boolean algebra (see e.g. Halmos and Givant 1998; Boolean algebras are

defined in Appendix A). As one can easily proof, the set of “A-properties”

{PD : D ⊆ {ai} = R(A)}

equipped with the above operations ∧,∨ and ¬ forms a Boolean algebra with
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zero element 0Γ and unit element 1Γ.3 Therefore, PD1 ∧ PD2 = PD1PD2,

PD1∨PD2 = PD1+PD2−PD1PD2 and ¬PD = 1Γ−PD can indeed be understood

as the conjunction, disjunction and negation of the involved properties. How-

ever, note that the mere fact that conjunctions, disjunctions and negations of

properties can be defined does not mean that we are automatically committed to

the existence of conjunctive, disjunctive and negative properties. Rather which

of the formal expressions PD1∧PD2 = PD1PD2 , PD1∨PD2 = PD1+PD2−PD1PD2

and ¬PD = 1Γ − PD have to be taken ontologically serious, i.e. as representa-

tives of genuine properties, will have to be seen. In Section 8.1.3 it will in fact

turn out that negative properties are indeed not needed in classical as well as

in quantum physics. Moreover, we will see that only disjunctive or conjunctive

properties but not both, seem to be needed in an ontology of QFT. Yet for the

moment let us simply refer to all of the above expression as “properties”.

Now the set of all idempotent functions on the phase space of a classical

mechanical system, denoted by P(Γ), is a Boolean algebra, too. Thus all the
individual Boolean algebras consisting of the properties of single magnitudesA,

areBoolean subalgebras of P(Γ). This means that conjunction, disjunction and
negation are defined for all (pairs of) properties irrespective of the magnitudes

and thus the Boolean algebras to which they belong. This is the reason why

in classical mechanics–and more generally in classical physics–disjunctions,

conjunctions, negations (and all other operations definable from these) can be

universally applied to any set of properties. We will see below that this is no

longer the case in QT–the reason for this is that not all self-adjoint operators

commute with one another.

Yet our first task is to explain why in QT physical magnitudes and prop-

erties are assumed to be represented by self-adjoint operators and projection

operators at all. The reason for this is that many of the structural features

of classical physical magnitudes and properties also obtain for self-adjoint and

projection operators. In fact, if in the above exposition the following formal

3If the possible values of magnitude A form a continuum (e.g. in case of position and
momentum), then (8.1) goes over into an integral A =

R
R a dPa, where each continuous

range of values D ⊆ R is associated with a characteristic function PD on phase space and
dPa denotes the measure given by the map D 7→ PD. With analogous definitions as above
the A-properties of a continuous magnitude A also form a Boolean algebra.
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replacements are made

• phase space Γ −→ Hilbert space H

• point γ ∈ Γ −→ vector ψ ∈ H

• subset of Γ −→ subspace of H

• characteristic function −→ projection operator

• real-valued function −→ self-adjoint operator

• range R(A) of values of function A −→ spectrum of eigenvalues σ(A) of

operator A

then, apart from effects due to non-commutativity, it would also go through

as a description of the quantum theoretical case. But let us look more closely

at the situation in QT.

Instead of phase space one deals with a Hilbert space H whose unit vectors

are in one-to-one correspondence with the pure states of systems.4 As already

pointed out in Section 5.1, a self-adjoint operator A–at least in the most

simplest case that is the only one that needs to be discussed in this work–can

be decomposed into its eigenprojections Pai according to

A =
X
i

aiPai (8.4)

which has the same structure as (8.1) in the classical case. However, the

structural similarity to the classical case goes much further. If one associates

to each subset of eigenvalues D = {aik} ⊆ {ai} = σ(A) of A the spectral

projection5

PD ≡
X
k

Paik

4We do not discuss non-pure states here since they are of minor importance for the
present argument.

5Note that apart from the case where the set D = {aik} contains only a single element
the spectral projection PD is not an eigenprojection of A. This is because it projects onto
the smallest subspace ]kKaik

of H that contains the set-theoretic union of the eigenspaces
Kaik

onto which the eigenprojections Paik project individually (see Appendix B.2). As a sub-
space, ]kKaik

contains in particular all linear combinations of eigenvectors to the different
eigenvalues from {aik} and these are not themselves eigenvectors of A.
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this automatically yields Pσ(A) =
P

i Pai = 1, Pσ(A)\D = 1−PD and 0 = PaiPaj

for ai 6= aj because {Pai} is a resolution of the identity (see Appendix B.2).
Moreover, one can show that the resulting set

{PD : D ⊆ σ(A)}

of spectral projections of A, equipped with the operations PD1∧PD2 ≡ PD1PD2,

PD1 ∨ PD2 ≡ PD1 + PD2 − PD1PD2 and ¬PD ≡ 1 − PD, is a Boolean algebra

with zero element 0 and unit element 1.6

Because of these structural similarities between classical mechanical mag-

nitudes and their corresponding properties, on the one hand, and self-adjoint

operators and their spectral projections, on the other hand, it is quite reason-

able to interpret self-adjoint operators as physical magnitudes, their spectral

projections as the corresponding properties expressible by “the value of mag-

nitude A lies in D” and PD1∧PD2 ≡ PD1PD2 , PD1∨PD2 ≡ PD1+PD2−PD1PD2

and ¬PD ≡ 1 − PD as conjunction, disjunction and negation of the involved

properties.

8.1.2 Consequences of non-commutativity

Up to this point we have only considered the case of mutually commuting

projection operators, namely the spectral projections of a single magnitude. In

classical mechanics all Boolean algebras of properties of individual magnitudes

A are embedded in the “universal” Boolean algebra P(Γ). This is no longer
true in QT. The set of all projection operators in B(H), denoted byP(H), is not
a Boolean algebra. As we will explain now, this has important consequences

for conjunctions and disjunctions of quantum properties and thus too, for the

6The structural similarities between classical mechanical magnitudes and their corre-
sponding properties, on the one hand, and self-adjoint operators and their spectral projec-
tions, on the other hand, also extend to self-adjoint operators with a continuous spectrum
of possible values a ∈ R. For them one has a unique spectral decomposition in form of

an integral A =
R
R a dPa, where each continuous range of values D ⊆ R is associated

with a projection operator PD, also called a spectral projection of A, and dPa denotes the
projection-valued measure given by the map D 7→ PD (see e.g. Reed and Simon 1980).
Analogous to the discrete case one can also equip the set of spectral projections PD of a
continuous self-adjoint operator with a Boolean structure.
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possibility of representing conjunctive and/or disjunctive eternal objects in

QFT. The reason for the non-Boolean structure of the set P(H) of projection
operators is that it contains elements which do not commute P1P2 6= P2P1.

Yet the product P1P2 (respectively P2P1) of two projections P1, P2 is again a

projection iff P1, P2 commute (and in this case P1P2 = P2P1). Consequently,

for non-commuting projections P1 ∧ P2 = P1P2 and P1 ∨ P2 = P1 + P2 −
P1P2 are not projections (in fact they are not even self-adjoint) and thus

cannot be interpreted as properties. Moreover, this definition would turn ∧
and ∨ into non-commutative operations, which completely undermines their
interpretation as the intended connectives of standard logic.

However, one may think that there are other ways of defining P1 ∧ P2 and
P1 ∨P2 that do not lead to these unwelcome consequences for non-commuting
projections. For example, one can define P1 ∧ P2 as the projection operator

PK1∩K2 that projects onto the intersection of the subspaces K1 and K2 of H
onto which P1 and P2 project individually and, accordingly, P1 ∨ P2 as the

projection PK1]K2 that projects onto the smallest subspace of H containing K1
and K2, denoted by K1 ] K2 (see also Appendix B.2). And indeed with these
definitions, ∧ and ∨ are commutative operations and again yield projection
operators. Moreover, for commuting projections one has PK1∩K2 = P1P2 and

PK1]K2 = P1 + P2 − P1P2 and therefore this alternative definition of ∧ and ∨
even retains P1∧P2 = P1P2 and P1∨P2 = P1+P2−P1P2 whenever P1 and P2
commute. However, P(H) equipped with these operations and the operation
¬P = 1 − P , in general called orthocomplementation, is still not a Boolean

algebra but merely an orthocomplemented lattice (see Appendix A). What

distinguishes a lattice, and also an orthocomplemented lattice, from a Boolean

algebra is that in the latter, ∧ and ∨ are distributive over one another, i.e. for
all P1, P2, P3 one has

P1 ∧ (P2 ∨ P3) = (P1 ∧ P2) ∨ (P1 ∧ P3) (8.5a)

P1 ∨ (P2 ∧ P3) = (P1 ∨ P2) ∧ (P1 ∨ P3), (8.5b)

whereas in a mere (orthocomplemented) lattice this is not the case. But with-

out distributivity, ∧ and ∨ clearly cannot be interpreted as the connectives
“conjunction/and” and “disjunction/or” of ordinary logic (see e.g. Thirring

1981, Example (2.2.37)).
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Now it is important to notice that P(H) and more generally any of its
subsets N that contains non-commuting elements cannot be turned into a

Boolean algebra by whatever definition of ∧ and ∨ one might try. This follows
from the fact that the validity of (8.5a) and (8.5b) in an orthocomplemented

lattice is equivalent to the possibility of expressing ∧ and ∨ by P1∧P2 = P1P2

and P1 ∨ P2 = P1 + P2 − P1P2 for all P1, P2 ∈ N (see e.g. Grätzer 1998,

Theorem II.9). Therefore, though P1 ∧ P2 = PK1∩K2 and P1 ∨P2 = PK1]K2 are
defined for all projections P1, P2 ∈ P(H), they can only be interpreted as the
conjunction and disjunction of standard logic in the framework of a Boolean

algebra generated by mutually commuting projections.7

From what has been said so far, it is clear that there is no way to evade

the fact that quantum properties cannot always be thought of in the same

way as classical properties. The question is how one should deal with this

fact when it comes to the interpretation of the formalism of QT. One way

of dealing with the non-Boolean structure of P(H) could be to give up the
requirement of distributivity for the connectives ∧ and ∨ of standard logic
and instead creating a non-standard alternative. This route has in fact been

taken by G. Birkhoff and J. von Neumann when they proposed their version

of such a quantum logic (Birkhoff and von Neumann 1936). However, despite

the great deal of effort of “quantum logicians” since the pioneering work of

Birkhoff and von Neumann, this approach has not turned out to be of much

help for resolving the interpretational difficulties of QT, and we shall not make

use of it. The other possibility–the one taken by us–is to leave the rules

of ordinary logic unchanged but restrict their applicability to sets of mutually

commuting projections respectively to the Boolean algebras generated by them.

However, this poses the problem that there are many different non-commuting

Boolean algebras within P(H), so that the question arises how an appropriate
Boolean framework is to be singled out for a given state of affairs–which in

our interpretation means at a given stage of the world-process.

Now in Section 8.1.7 we will see that subjective eternal objects cannot be

represented by single projection operators, because the latter cannot be inter-

7Below we will see that the Boolean algebras of properties of a magnitude A are such
that ∧ and ∨ can be interpreted as ordinary conjunction and disjunction without the need
for a negation ¬.
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preted as universals. Rather similar to the representation of objective eternal

objects (see Section 7), we will take certain classes of projections as represen-

tatives of subjective eternal objects. In Section 8.3.2 we will, however, be able

to show that abstractive hierachies of subjective (as well as mixed) eternal

objects can be represented by Boolean algebras consisting of such classes of

projection operators. The question of how at each stage of the world-process a

single Boolean framework of commuting Boolean algebras, each corresponding

to one of the regions created at that stage, is singled out will eventually be

answered in Section 10.4. The rule for this determination is then a concrete ex-

plication of Whitehead’s demand that the already actualized occasions at each

stage of the world-process determine the abstractive hierachies of subjective

eternal objects, available for the new occasions which arise at that stage.

This way of dealing with the problem can be understood as a particular

“ontological version” of the solution upheld by N. Bohr that has since then been

adopted in most physical interpretations of QT. According to this approach,

the choice of a single Boolean framework (in particular the Boolean algebra

generated by the properties of a single magnitude A or more generally by a

set of mutually commuting magnitudes), is delegated to external, i.e. non-

quantum, agents–the so-called observers. Since, therefore, the choice of a

particular magnitude by an observer is a necessary precondition for a system

to possess one of the corresponding properties, magnitudes are more frequently

called observables and the choice of the observer is understood as the initial

stage of the measurement of the chosen observable that terminates with the

possession of one of its corresponding properties by the system. Yet it is clear

that the introduction of an external agent, not represented in the formalism of

QT, is a rather ad hoc move that is moreover inappropriate if one is in search

for an ontological interpretation of QT. However, until we have developed our

own interpretation of these matters to an appropriate degree, we will simply

follow the usual talk of measurements etc.

As explained in Section 2.2.2, according to Whitehead there are no negative

eternal objects and more generally, no negative entities at all. We will argue in

the following section that this dictum gains support at least in case of physical

properties.
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8.1.3 Against negative properties

In the following B(N ) denotes the Boolean algebra generated from the set

of mutually commuting projections N ⊂ P(H) by means of conjunctions,
disjunctions and negations of the elements of N . As a first step it will be
shown that the Boolean algebra B({PD}) of A-properties (with zero and unit
element 0 and 1), henceforth also be denoted by B(A), is generated by the set

of eigenprojections {Pai} of magnitude A, so that

B(A) ≡ B({PD}) = B({Pai}). (8.6)

This is because each non-zero A-property PD is the sum of the eigenprojections

Pai corresponding to the eigenvalues ai ∈ D, i.e.

PD =
X
ai∈D

Pai .

Since the eigenprojections of A form a resolution of the identity (i.e. they are

mutually orthogonal and sum up to the identity) one has Pai∧Paj = PaiPaj = 0

for i 6= j and thus too Pai ∨ Paj = Pai + Paj . Therefore, each non-zero

property PD, including P{ai} = 1, is just a disjunction of eigenprojections, i.e.
PD = ∨ai∈DPai. Since moreover, 0 is obtained from the set of eigenprojections

by ∧ai∈DPai = 0, the Boolean algebra B({PD}) is in fact generated by the set
of eigenprojections {Pai} of A so that (8.6) indeed holds.
Yet this, moreover, shows that the Boolean algebra B({Pai}) generated

from a resolution of the identity coincides, as a set, with the distributive lattice,

term it D({Pai}), generated from the same resolution of the identity. In gen-

eral, a distributive lattice is a lattice in which the operations ∧ and ∨ obey the
distributive laws (8.5a) and (8.5b), but it is distinguished from a Boolean alge-

bra by the fact that there exists no negation ¬ (see Appendix A). Therefore,
the generation of the distributive latticeD(N ) from a setN proceeds by taking

all combinations of conjunctions and disjunctions of elements from the latter,

whereas the Boolean algebra generated from the same set moreover includes

the negations of all combinations of conjunctions and disjunctions of elements

from N . However, because of the properties of a resolution of the identity, in
the special case of a distributive lattice D({Pai}) generated from such a reso-

lution, a negation can always be defined within D({Pai}) without adding any
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new elements, so that D({Pai}) and the Boolean algebra B({Pai}) consist of
precisely the same elements. This follows directly from what has been shown

above, because in generating the Boolean algebra B(A) = B({Pai}), only dis-
junctions and conjunctions of elements from the resolution {Pai} have been
used and thus B({Pai}) contains indeed the same elements as the distributive
lattice D({Pai}).

Yet this undermines the ontological interpretation of the expression ¬PD

as a genuine negative property, because it can simply be understood as the

disjunction of positive properties, namely of those Pai with ai ∈ D. Thus, at

least as far as physical properties are concerned, there seems to be no need

for including negative properties into the ontology of the world, at all. Since,

moreover, the structure of D({Pai}) and B({Pai}) in regard to ∧ and ∨ are
identical it is clear that these operations can still be interpreted as ordinary

conjunction and disjunction within D({Pai}), too.8 Note that the above rea-
soning includes no specific “quantum-assumptions” but rather is likewise valid

in the classical case.9

On the other hand, this result makes the use of Boolean algebras B({Pai})
instead of distributive lattices D({Pai}) in case the generating set {Pai} is a
resolution of the identity totally harmless from an ontological point of view, be-

cause by introducing the operation ¬ no new elements are added to D({Pai}),
at all. Rather the difference between B({Pai}) and D({Pai}) can be seen as
merely consisting in mathematical surplus structure, namely in the ontologi-

cally irrelevant operation ¬ (see e.g. Grätzer 1998, p. 63). Whenever possible,
we will therefore make use of the more common Boolean algebras B({Pai})
instead of the corresponding distributive lattices. Moreover, if not mentioned

otherwise {Pai} or {Pi} will always refer to resolutions of the identity.

8This need, however, not be the case for more general distributive lattices, i.e. in partic-
ular for distributive lattices not generated from a resolution of the identity.

9For a continuous (classical or quantum) magnitude A, there is no unique set {Pai} such
that each PD can be written as a disjunction of elements from {Pai}. However, one can
show that in this case too, each A-property PD is a disjunction of others, namely of all PD0

with D0 ⊂ D. Therefore, in the continuous case too, each prima facie negative property can
in fact be understood as a (in general non-unique) disjunction of positive ones.



8.1. PROPERTIES IN QUANTUM PHYSICS 167

8.1.4 On conjunctive and disjunctive properties

One may think that the argument just given can also be used for arguing

against the existence of non-trivial conjunctive properties. For we have shown

that each non-zero element and thus, in particular, each non-zero conjunction

PD1 ∧ PD2 ∈ B({Pai}) can likewise be written as a disjunction of elements
from {Pai}. Thus by simply including 0 in the resolution {Pai},10 in fact each
element of B({Pai}) can be written in the form of a disjunction of elements

from {Pai}. Therefore, if complex properties are needed at all (which will be
argued for in connection with QFT in Section 8.3) it seems that for reasons of

ontological economy there is no need to include, besides disjunctive ones, also

conjunctive ones.

However, this argument for the ontological priority of disjunctive over con-

junctive properties would only be conclusive if the Boolean algebra B(A) =

B({Pai}) (or likewise the distributive latticeD(A) = D({Pai})) ofA-properties
could not also be generated by only using conjunctions of the elements from

a subset of B(A).11 Yet it is easy to see that this is always possible, so that

disjunction and conjunction again stand on equal footing and therefore there

is no fact of the matter for the priority of disjunctive over conjunctive proper-

ties (nor vice versa).12 Note that this “symmetry” between conjunction and

disjunction does not only hold for Boolean algebras and distributive lattices

10This is possible because the zero operator is orthogonal to all other projections and
adding it clearly does not change the result of the sum

P
i Pai = 1 either, so that the

defining characteristics of a resolution of the identity are not affected by the inclusion of 0.
11Of course, this subset will not coincide with {Pai}, i.e. with the set from which B(A)

can be generated by disjunctions only.
12For example, consider the distributive lattice generated from a resolution of the identity

consisting of three elements P1, P2 and P3. Besides P1, P2 and P3, D(P1, P2, P3) contains
the following elements: Q1 = P1 ∨ P2, Q2 = P2 ∨ P3, Q3 = P1 ∨ P3, 0 = P1 ∧ P2 ∧ P3

and 1 = P1 ∨ P2 ∨ P3. Thus by understanding resolutions of the identity as contain-
ing 0, all elements of D(P1, P2, P3) are in fact generated by disjunctions of P1, P2, P3 and
0. That D(P1, P2, P3) can also be generated by conjunctions of elements from the subset

{Q1, Q2, Q3,1} ⊂ D(P1, P2, P3) now easily follows from the application of the distributive
laws (8.5a) and (8.5b) to Q1 ∧Q2 = (P1 ∨P2)∧ (P2 ∨P3), Q2 ∧Q3 = (P2 ∨P3)∧ (P1 ∨P3),
Q1 ∧Q3 = (P1 ∨ P2) ∧ (P1 ∨ P3) and Q1 ∧Q2 ∧Q3 = (P1 ∨ P2) ∧ (P2 ∨ P3) ∧ (P1 ∨ P3). By
doing so one gets Q1 ∧ Q2 = P2, Q2 ∧ Q3 = P3, Q1 ∧ Q3 = P1 and Q1 ∧ Q2 ∧ Q3 = 0, so
that in fact D(P1, P2, P3) is generated from {Q1, Q2, Q3,1} by use of conjunctions only.
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generated from a resolution of the identity 1, but also in more general cases.

For us the only more general case that will play a role in connection with

Whitehead’s ontology (see Section 8.4) is that the generating set {Pai} is a
set of mutually orthogonal projections whose disjunction is not identical to 1,

i.e. {Pai} is derived from a resolution of 1 by removing some elements. In this
case too, the symmetry between conjunction and disjunction holds true.13 But

note that in case of a set {Pai} of mutually orthogonal projections that is not
a resolution of the identity, the distributive lattice generated from {Pai} does
not coincide with the Boolean algebra generated from the same set. As already

mentioned in the last section, this is because the latter will contain negations

of elements which cannot be generated by disjunctions (and/or conjunctions)

from elements of {Pai}. For example, if {Pai} is derived from a resolution of the
identity by removing one element, say Pak , then the Boolean algebra B({Pai})
does contain the latter because of Pak = ¬∨ai 6=ak Pai, whereas the distributive

lattice D({Pai}) does not, since the operation ¬ needed to construct Pak from

the elements of {Pai} is not available.
In sum, then, the structure of the sets of properties corresponding to some

(classical or quantum) magnitude A alone, does not provide any argument

for whether conjunctive or disjunctive properties should be included in ones

ontology–B(A) (and thus too D(A)) is completely “symmetric” in respect

to conjunctions and disjunctions. Moreover, such an argument can neither be

derived in the slightly generalized case (needed later on) of Boolean algebras

and distributive lattices, not generated by resolutions of the identity 1, but

13For example, consider again the distributive lattice generated from the set of mutually
orthogonal projections P1, P2 and P3, but this time assume P1 ∨ P2 ∨ P3 < 1. Besides
P1, P2 and P3, D(P1, P2, P3) contains the following elements: Q1 = P1 ∨ P2, Q2 = P2 ∨ P3,
Q3 = P1 ∨P3, 0 = P1 ∧P2 ∧P3 and Q4 = P1 ∨P2 ∨P3. Thus by adding the trivial element
0 to the generating set {P1, P2, P3}, all elements of D(P1, P2, P3) are in fact generated by
disjunctions of P1, P2, P3 and 0. That D(P1, P2, P3) can also be generated by conjunctions
of elements from the subset {Q1, Q2, Q3Q4} ⊂ D(P1, P2, P3) again easily follows from the

application of the distributive laws (8.5a) and (8.5b) to Q1 ∧ Q2 = (P1 ∨ P2) ∧ (P2 ∨ P3),
Q2 ∧ Q3 = (P2 ∨ P3) ∧ (P1 ∨ P3), Q1 ∧ Q3 = (P1 ∨ P2) ∧ (P1 ∨ P3) and Q1 ∧ Q2 ∧ Q3 =

(P1 ∨ P2) ∧ (P2 ∨ P3) ∧ (P1 ∨ P3). By doing so one gets Q1 ∧ Q2 = P2, Q2 ∧ Q3 = P3,
Q1 ∧ Q3 = P1 and Q1 ∧ Q2 ∧ Q3 = 0, so that in fact D(P1, P2, P3) is generated from
{Q1, Q2,Q3, Q4} by use of conjunctions only.
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merely by sets of mutually orthogonal projections.

In the following two sections, we will exploit some important consequences

of the non-Boolean (or better the non-distributive) structure of P(H), deriving
from its non-commutativity. In particular for the assignment of probabilities

to quantum properties and for the related question as to when a system can be

said to possess some property. In Section 8.3.3 we will return to the question

for the ontological priority of disjunctive or conjunctive properties.

8.1.5 Probabilities for quantum properties

We have interpreted the creative characters of the activities in Whitehead’s

ontology as propensities, i.e. as ontic single case probabilities, for the deter-

mination of the abstractive hierachies of subjective eternal objects available

to new occasions and for the decisions of concrescent occasions among the ele-

ments of these hierachies (see in particular Sections 2.3.1 and 2.4.2). Therefore,

probabilities for subjective eternal objects play an important in Whitehead’s

ontology. We will now investigate how probabilities can be systematically as-

signed to quantum properties. This section extends the probability ascription

introduced for the case of the eigenprojections of some magnitude (see Section

5.2) to the general case.

Whether the values p(a) that a map p, defined on a set S, assigns to the

elements a ∈ S are probabilities of the latter, depends on the behavior of

p under taking disjunctions of exclusive elements of S, i.e. of a, b ∈ S with

a∧b = 0, and on the value p assigns to the unit element 1 of S. More precisely,
for p(a) to be the probability of a ∈ S, the following conditions have to be

satisfied by the map p:

(1) p(a) lies between 0 and 1

(2) p has to assign the value 1 to the unit element 1 ∈ S

(3) p is countably additive, i.e. for each countable subset {ai} ⊆ S with

∧iai = 0 one has p(∨iai) =
P

i p(ai).

Whenever (1)-(3) hold for a map p on a set S it is called a probability mea-

sure. Thus for the values p(a) to be probabilities, disjunctions and conjunctions
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need to be defined on S and S has to include a zero and a unit element. In

other words, S must be a distributive lattice with zero and unit element in

which ∧ and ∨ can be interpreted as ordinary conjunction and disjunction,
i.e. a distributive lattice that coincides, as a set, with a Boolean algebra.14

However, the requirements (1)-(3) moreover imply that if a negation is defined

on S then p automatically satisfies p(¬a) = 1− p(a). Therefore, one can also

assume from the start that S is a Boolean algebra instead of a distributive

lattice, since the existence of the operation ¬ within S has no effect on the

probability measure.

Now if a Boolean algebra B is even generated by a countable set {ai} of
mutually exclusive elements whose disjunction equals the unit element 1 ∈ B,
i.e. by a resolution of the unit element of B, then B is itself countable and p

is called a discrete probability measure. In this discrete case the requirements

(1)-(3) are obviously equivalent to the conditions (i)-(iii) we have referred to

14To get a feeling why these probability assignments cannot be extended beyond Boolean
algebras without leaving the realm of standard probability theory the following simple ex-
ample may be instructive. Suppose P1 and P2 are non-commuting projections with corre-
sponding subspaces K1 and K2. As explained above, in this case P1 ∧ P2 can be defined by
the projection PK1∩K2 onto the intersection of K1 and K2 and P1 ∨ P2 by the projection
PK1]K2 onto the smallest subspace including K1 and K2, but ∧ and ∨ cannot be interpreted
as the conjunction and disjunction of the properties represented by P1 and P2.
However, one may hope that at least in caseK1∩K2 = {0}, and thus P1∧P2 = PK1∩K2

= 0,
one can interpret P1 and P2 as exclusive possibilities, in the sense that ρ(P1 ∨ P2) is the

sum of their individual probabilities ρ(P1), ρ(P2), so that P1 ∨ P2 = PK1]K2 would share
at least this property with a true disjunction. Yet this is not the case as one can easily
see in the following simple example of a two-dimensional Hilbert space H: let P1 be the
projection onto the one-dimensional subspace K1 = {cψ1 : c ∈ C} and P2 the projection
onto the one-dimensional subspace K2 = {cψ2 : c ∈ C}, where the unit vectors ψ1 and
ψ2 are neither parallel nor orthogonal. Then one obviously has K1 ∩ K2 = {0} and thus
too P1 ∧ P2 = PK1∩K2 = 0. Now take ρ to be the state generated by the unit vector
ψ1, so that ρ(P1) = hψ1, P1ψ1i = 1. Since ρ(P1 ∨ P2) = ρ(P1) + ρ(P2) ≤ 1 has always
to hold if ρ(P1 ∨ P2) shall be interpretable as a probability, this necessitates ρ(P2) = 0.
Yet since ψ1 and ψ2 are not orthogonal one has kP2ψ1k > 0 and P2ψ1/ kP2ψ1k = ψ2 and

thus hψ1, P2ψ1i / kP2ψ1k = hψ1, ψ2i. Because of the non-orthogonality of ψ1 and ψ2 their
scalar product hψ1, ψ2i is also non-zero so that ρ(P2) = hψ1, P2ψ1i = kP2ψ1k hψ1, ψ2i > 0, in
contradiction to ρ(P1∨P2) = ρ(P1)+ρ(P2) ≤ 1. Thus for non-commuting projections P1 and
P2, P1∨P2 = PK1]K2 cannot be interpreted as their disjunction even if P1∧P2 = PK1∩K2 = 0

holds–at least not if one believes that probabilities must not exceed the value 1.
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as constitutive for the concept of probability when we ascribed probabilities

to properties represented by the eigenprojections of a magnitude A in Section

5.2.

Since, as just explained, probabilities can be consistently ascribed to all

elements of a Boolean algebra we can now extend the probability ascription

to all properties PD corresponding to a magnitude A (and thus to arbitrary

conjunctions, disjunctions and negations of them). Let A be some magnitude,

ρ be some state and PD ∈ B(A). Then the probability for finding the value of
A in the set D upon measurement of A on a system in state ρ, abbreviated by

probρ(A ∈ D), is given by ρ(PD), i.e.

probρ(A ∈ D) = ρ(PD). (8.7)

Accordingly, the probability for finding the value of A in D1 and D2, respec-

tively in D1 or D2, upon a measurement of A on a system in state ρ, is

by

probρ(A ∈ D1 ∧A ∈ D2) = ρ(PD1 ∧ PD2) = ρ(PD1PD2), (8.8)

and

probρ(A ∈ D1 ∨A ∈ D2) = ρ(PD1 ∨ PD2) = ρ(PD1 + PD2 − PD1PD2). (8.9)

Moreover, since the commutativity of two magnitudes A and B is equivalent to

the commutativity of their associated Boolean algebras of properties B(A) and

B(B), the latter generate the Boolean algebra B(A,B) ≡ B(B(A) ∪ B(B))
that contains besides all properties from B(A) and B(B) also all combinations

of conjunctions, disjunctions and negations of the latter. Therefore, one can

define the probability for finding the value of A in the set D and the value of

B in the set E, upon a joint measurement of A and B on a system in state

ρ, by

probρ(A ∈ D ∧B ∈ E) = ρ(PA
D ∧ PB

E ) = ρ(PA
DP

B
E ). (8.10)

There have been various proposals for extending the probability assignment

in QT beyond Boolean algebras, in particular by introducing special “quantum

probabilities” not obeying the rules of ordinary probability theory in one or

another way. For example, some authors have given up the requirement that

all probabilities have to be non-negative or even that they have to be real
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numbers, to be able to extend the assignment of such “probabilities” beyond

Boolean algebras. Yet up to now none of these proposals has been proven to be

helpful in clarifying the conceptual difficulties of QT. Perhaps this situation will

change someday, but until then there seems to be no reason to go beyond the–

both formally and intuitively–well understood realm of standard probability

theory.

8.1.6 Definite, indefinite and possible quantum proper-
ties

Whiteheadian occasions can be said to possess those subjective eternal objects

which are not eliminated during its process of concrescence and thus have

unrestricted ingression into this occasion (see Sections 2.2.1 and 2.2.6). We

will now discuss the important question when a quantum property can be said

to be possessed respectively not possessed by a system in a given state. This

question is rarely discussed in connection with interpretations of QT which

are orientated towards the physical applicability of the formalism, i.e. physical

interpretations, but it is clearly of great importance for each interpretation that

attempts to unveil the ontological basis of QT. We will see that the question

which properties can be said to be possessed by a system in a given state, leads

to the result that in a Whiteheadian interpretation of QFT one has to adopt

one part of the well-known eigenvalue-eigenstate rule whereas the other part

has to be given up.

The eigenvalue-eigenstate rule

A widely held view that can be traced back at least to von Neumann (1932) is

that a system in state ρ does (not) possess the property P iff the probability

ρ(P ) assigned to P by the state ρ is 1 (0). Since in the special case where P

is a one-dimensional projection ρ(P ) = 1 (ρ(P ) = 0) is equivalent to ρ being

an eigenstate to eigenvalue 1 (0) of the projection P , this assumption has also

become known as eigenvalue-eigenstate rule.

In the following we will argue that in our Whiteheadian interpretation of

QFT,
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(1) the “only-if-part”, i.e. the implication from “P is (not) possessed by a

system in state ρ” to “the probability of P in state ρ is 1 (0)”

has to be adopted, whereas

(2) the “if-part”, i.e. the implication from “the probability of P in state ρ

is 1 (0)” to “P is (not) possessed by a system in state ρ”

has to be denied.

Adoption of the “only-if-part” of the eigenvalue-eigenstate rule

The “only-if-part” of the eigenvalue-eigenstate rule has given rise to much

dispute. As a starting point for recognizing in what respect the “only-if-part”

of the eigenvalue-eigenstate rule may be regarded as dissatisfactory, note that

it rules out the property definiteness known from classical physics. Property

definiteness means that for each state ρ and each property P a system in state

ρ either possesses P or not. However, if the “only-if-part” is adopted a system

in state ρ with 0 < ρ(P ) < 1 neither possesses nor does it not possess P . Thus

a property need not either be possessed or not possessed by a system in a given

state but can have a third ontological status, unknown in classical physics, of

being indefinite with respect to the system in this state.

For the following discussion it will be convenient to introduce a certain

amount of terminology: let R be some rule which singles out possessed and

not possessed properties with respect to a given state and let us denote the

corresponding set of properties which are definite, i.e. either possessed or not

possessed, for a system in state ρ by DR
ρ . Then the rule R can be expressed

by a map

possRρ : DR
ρ → {0, 1},

such that possRρ (P ) = 1 means “a system in state ρ possesses property P (ac-

cording to R)” and possRρ (P ) = 0 means “a system in state ρ does not possess

property P (according to R)”. The eigenvalue-eigenstate rule, abbreviated by

RE, can then be expressed by

possRE
ρ (P ) = 1 iff ρ(P ) = 1
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and

possRE
ρ (P ) = 0 iff ρ(P ) = 0.

Now most people who challenge the “only-if-part” of these equivalences do

not do so merely because it leads to the ascription of the classically unknown

status of being indefinite with respect to a given state to some properties.

This is because S. Kochen and E. Specker have shown that this is necessarily

the case for any rule R that selects the properties which are definite with

respect to a given state ρ in such a way that the values possRρ (P ) satisfy the

classical logical relations for conjunctions, disjunctions and negations (Kochen

and Specker 1967; see also Bub (1997) for an extensive discussion of this so-

called Kochen-Specker theorem).15 This is the case iff the map possRρ satisfies

possRρ (¬P1) = 1− possRρ (P1) (8.11a)

possRρ (P1 ∧ P2) = possRρ (P1) · possRρ (P2) (8.11b)

possRρ (P1 ∨ P2) = possRρ (P1) + possRρ (P2) (8.11c)

−possRρ (P1) · possRρ (P2)

for all P1, P2 ∈ DR
ρ , since then ¬P1 expresses the non-possession of P1, P1 ∧P2

is possessed iff both P1 and P2 are possessed and P1 ∨ P2 is possessed iff P1 is

possessed or P2 is possessed or both are possessed. Note that ifDR
ρ were a set of

propositions the map possRρ , obeying (8.11a)-(8.11c), would just be a classical

truth-functional, that ascribes to each proposition in DR
ρ the predicate “true”

(= 1) or “false” (= 0). Now we already know that for pairs of non-commuting

projections, the operations ∧ and ∨16 cannot be interpreted as conjunction
and disjunction at all. Thus if (8.11b) and (8.11c) would be required to hold

for non-commuting projections it would be no great surprise that a map with

these properties cannot exist on the set P(H) of all projections on Hilbert
space H. However, the Kochen-Specker theorem only presupposes that (8.11b)
and (8.11c) hold for commuting projections P1 and P2. The importance of the

15More precisely, the Kochen-Specker theorem applies only in Hilbert spaces of dimension
strictly larger than 2. Yet since the descritpion of any realistic quantum system always

requires a Hilbert space of infinite dimension this restriction is of minor interest and need
not be discussed here.
16Defined for projections which do not commute by P1 ∧ P2 = PK1∩K2 and P1 ∨ P2 =

PK1]K2 (see Section 8.1.2).
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Kochen-Specker theorem lies in the fact that even under this initially plausible

conditions, no such map possRρ can exist on P(H). In other words, under the
assumptions (8.11a)-(8.11c) there is no rule R such that the corresponding set

DR
ρ of definite properties with respect to a given state ρ includes all properties

P ∈ P(H). Thus property definiteness cannot be retained if one is not willing
to give up ordinary logical reasoning even in case of commuting properties as

expressed by the map possRρ . Therefore, the “only-if-part” of the eigenvalue-

eigenstate rule can hardly be challenged for leading to the ascription of the

classically unknown status of being indefinite to some properties. Rather peo-

ple who challenge it do so because one can in fact formulate alternative rules

which allow more (though not all) properties to be definite with respect to a

given state (by obeying (8.11a)-(8.11c)) than allowed by the “only-if-part” of

the eigenvalue-eigenstate rule. Thus this “only-if-part” is challenged because

it is held to lead to the ascription “indefinite” to too many properties.

However, the enlargement of the set of definite properties of a state has

its prize. Any rule that does not incorporate the “only-if-part” and therefore

ascribes to some property P with 0 < ρ(P ) < 1 the status “definite” with

respect to ρ, has the consequence that ρ(P ) cannot have the status of an ontic

probability, and thus in particular of a propensity. This is obvious since, for

example to hold that a P with 0 < ρ(P ) < 1 is not possessed by a system in

state ρ is clearly not consistent with holding at the same time that ρ(P ) > 0

measures the likeliness with which P is possessed by the system in question.

Therefore, ρ(P ) can merely be some kind of epistemic probability that arises

from our ignorance as to the true ontological status of P in respect to the

system in question. Thus to deny the “only-if-part” means to give up the

ontological relevance of the probabilities assigned to properties on the basis of

quantum states. The situation is then as follows: one can associate a certain

set DR
ρ of definite properties to a system in state ρ, that will generally be

larger than the set assigned by rules accepting the “only-if-part”, but the

probabilities ρ(P ) of the properties from DR
ρ will, in general, not mirror the

ontological status of the latter. Thus each property P from DR
ρ is determinate

as to its being possessed or not possessed by the system in question, but

this ontological status of P is, in general, not correlated with the value of

the probability ρ(P ) that merely expresses our knowledge, rational believe or
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something the like about the true ontological status of P . Thus any attempt to

enlarge the set of definite properties for a given state ρ beyond those selected by

the eigenvalue-eigenstate rule (by abandoning the “only-if-part”) undermines

the interpretation of the probabilities ρ(P ) as indicating the true ontological

status of properties relative to a system in state ρ.

Yet for the attempted connection with Whitehead’s ontology the abandon-

ment of the “only-if-part” would be rather unfortunate because, as argued in

Section 2.3, the creative character of the underlying activity can be under-

stood as providing propensities (i.e. ontic single case probabilities), for the

actualization of eternal objects by concrescent occasions. Therefore, on the

side of the formalism of QFT one needs probabilities that can be reasonably

interpreted as ontic rather than merely epistemic in nature. And as argued

above, this is only possible if one accepts the “only-if-part”.

Of course, this need of the “only-if-part” of the eigenvalue-eigenstate rule is

not a specific feature arising in connection with Whitehead’s ontology. Rather

everyone who believes that QT is complete, in the sense that it cannot ul-

timately be reduced to some more fundamental deterministic theory, has no

other choice than to accept the ontic nature of (at least some) quantum proba-

bilities. For to interpret all quantum probabilities epistemically means nothing

else than to hold that they merely arise out of our ignorance with respect to

some yet unknown parameters, not inherent in the formalism of QT and there-

fore usually called hidden parameters (see also Section 10.2), whose knowledge

would retain determinism.

Abandoning the “if-part” of the eigenvalue-eigenstate rule

We will now argue that every interpretation of QT that (i) accepts the “only-if-

part” of the eigenvalue-eigenstate rule, (ii) does not leave the realm of ordinary

probability theory and (iii) that incorporates the idea of the “actualization

of possibilities” with respect to properties, has to deny the “if-part” of the

eigenvalue-eigenstate rule. As we have just argued, in a Whiteheadian inter-

pretation the “only-if-part” has to be accepted, so that (i) is satisfied. More-

over, as mentioned in Section 8.1.5 our interpretation will stay within the

realm of ordinary probability theory–therefore (ii) will likewise hold. “Actu-
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alization of possibilities with respect to properties” here means that properties

have to have the ontological status of possibilities or potentialities for a system

in some state ρ before they can become definite properties of that system in

some later state ρ0, where “later” need not necessarily mean (spatio-) tempo-
rally later, but rather can also refer to some other order, like e.g. the genetic

order in Whitehead’s ontology (see Section 1.1.3). Note that for convenience

we also call the transition from “possible” to “not possessed”, “actualization”.

Thus “actualization” as understood here means the transition from “possi-

ble” to “definite”. Whitehead’s ontology clearly contains such actualizations:

transitions from real potentiality, i.e. ingressed subjective eternal objects,

to possessed, i.e. unrestrictedly ingressed, ones and likewise transitions from

“ingressed” to “not unrestrictedly ingressed”, i.e. not possessed, subjective

eternal objects. Therefore, assumption (iii) will also to be incorporated into

our interpretation, so that all three assumptions (i)-(iii) will in fact be satisfied

by it.

Now the states ρ and ρ0, relative to which the possible respectively definite
properties are defined can be different for two reasons. First, if the actualiza-

tion of possibilities is a temporal or more generally a spatiotemporal process,

the state of the system may “dynamically develop” during this process accord-

ing to

ρ→ ρ0 = ρ(U(a)−1 · U(a)) (8.12)

where U(a) is the corresponding (spatio-) temporal translation. Yet in AQFT

this form of dynamic development is incorporated by reason of the covariance

condition

U(a)R(O)U(a)−1 = R(O + a)

in the structure of the fundamental map O 7→ R(O) and thus as a transforma-
tion of observables and not as a transformation of states. Therefore, this kind

of state change that could in principle occur during a spatiotemporal process

of actualization in fact does not occur in AQFT. Yet it does occur in QM if the

latter is formulated in the so-called Schrödinger picture in which the temporal

development is described by unitary transformations of the states according

to ρ→ ρt = ρ(U(t)−1 ·U(t)). However, QM can equivalently be formulated in

the so-called Heisenberg picture in which the temporal evolution is described
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by unitary transformations of observables A → A(t) = U(t)AU(t)−1. There-
fore, QM need not be treated separately in what follows–we merely need to

understand the occurring unitary operator U(a) as representing a temporal

translation instead of a spatiotemporal one.

The second possibility for a change of the state of a system is known as

state-collapse. Such a collapse is any transformation of a state that is not of

the form (8.12), with U(a) a (spatio-) temporal translation. Therefore, it can

in particular not be interpreted as a dynamic development, but rather is an

extra hypothesis not to be explained by the dynamics of QT itself. Interpre-

tations of QT which make use, in one way or the other, of state-collapses are

collectively called collapse interpretations. Our Whiteheadian interpretation

of QFT will be a collapse interpretation which does not incorporate a further

spatiotemporal process in the actualization of possibilities.

Yet the most general scheme for the actualization of possible properties

in QT incorporates both, a spatiotemporal process and a non-spatiotemporal

collapse. Let Pρ ⊂ P(H) be the set of possible properties with respect to
a system in state ρ and let DR

ρ0 be the set of definite properties at the end

of the actualization process. Let the actualization involve a spatiotemporal

process, whose “duration” can be represented by the timelike vector a. The

demand that all definite properties of the system at the end of this process

have been possible properties of the system before they became definite, then,

means that the set DR
ρ0 of definite properties at the end of this process, when

“translated back” in (space-) time by the timelike vector −a to the process’
beginning, would be a subset of the set of possible properties at this beginning.

Formally this can be expressed by U(−a)DR
ρ0U(−a)−1 ⊆ Pρ or because of

U(−a) = U(a)−1 by
U(a)−1DR

ρ0U(a) ⊆ Pρ, (8.13)

where ρ0 differs from ρ iff the actualization does moreover involve a state-

collapse. If each of the possible properties P ∈ Pρ becomes definite, i.e. none

becomes indefinite, one has “=” instead of “⊆” in (8.13). The special case in
which the actualization of possible properties does not incorporate a (spatio-)

temporal process, as in case of Whitehead’s ontology, is included in the above

account by letting a = 0, so that U(a) = 1 and therefore (8.13) simply becomes

DR
ρ0 ⊆ Pρ.
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Before we can proceed to show that the above assumptions (i)-(iii) together

with the “if-part” of the eigenvalue-eigenstate rule lead to an inconsistency,

we have to say when a property P ∈ P(H) shall have the ontological status
“possible” with respect to a given system in state ρ. Since QT is a theory

that incorporates probabilities it seems natural to assume that a property is

possible with respect to a system in state ρ just in case ρ ascribes a probability

to this property that, then, measures the strength of this possibility. More

precisely, in interpretations of QT which do not leave the realm of standard

probability theory, i.e. which satisfy (ii), it is reasonable to hold that a property

P ∈ P(H) has the ontological status “possible” with respect to a system in state
ρ, i.e. P ∈ Pρ, iff ρ(P ) is a standard probability. Note that for convenience we

do allow the probability ascribed to a possible property to be zero. In other

words, in what follows we will simply treat the impossibility with respect to ρ

as if it were a special case of possibility with respect to ρ, namely the special

case ρ(P ) = 0. If one feels scruples with this wider use of the term “possible”

that also includes impossibility as a special case, the term “possible” may

be replaced by “possible or impossible” wherever it occurs in the rest of this

section.

Now one can show that the eigenvalue-eigenstate rule RE yields a set of

definite properties DRE
ρ0 for a system in state ρ0 that will, in general, not be

embeddable into a Boolean algebra because it contains projections not com-

muting with one another (see Bub 1997, p. 122 f; Vermaas 1999, p. 77). Since

non-commutativity is invariant under unitary transformations the same is true

for the translated set U(a)−1DR
ρ0U(a). However, according to the idea of the ac-

tualization of possibilities as expressed by (8.13), the set U(a)−1DR
ρ0U(a) must

be included in the set Pρ of possible properties at the beginning of the actual-

ization process. Therefore, this set Pρ too, contains non-commuting elements

and thus cannot be embedded into any Boolean algebra, thereby undermining

the assumption (ii) that the state ρ defines an ordinary probability measure on

Pρ, for this would require Pρ to be Boolean (see Section 8.1.5 and e.g. Auletta

2001, p. 194 f). Thus the eigenvalue-eigenstate rule is not compatible with the

idea of the actualization of possibilities with respect to properties (assumption

(iii)) and ordinary probability theory (assumption (ii)). Since the eigenvalue-

eigenstate rule is just the conjunction of its “only-if-part” with its “if-part”,
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we therefore have shown that any interpretation that satisfies (ii), (iii) and

accepts the “only-if-part” (assumption (i)) must abandon the “if-part” of the

eigenvalue-eigenstate rule.

In sum, then, we have shown that, in particular, a Whiteheadian inter-

pretation of QT has to obey the following constraints: it has to accept the

“only-if-part” of the eigenvalue-eigenstate rule for allowing for an ontic inter-

pretation of quantum probabilities, and it must at the same time deny the

“if-part” of the eigenvalue-eigenstate rule for being able to make sense of the

Whiteheadian idea of the actualization of possibilities with respect to subjec-

tive eternal objects. We will conclude this section by taking a look at how the

usual physical interpretation of QT deals with possible and definite properties

relative to the state of a system.

Possible and definite properties in the usual physical interpretation

As mentioned earlier, in physical interpretations of QT the choice of a par-

ticular Boolean algebra of possible properties Pρ for a system in state ρ is

usually delegated to an external observer and the measurement is assumed

to incorporate a state-collapse. In terms of the scheme presented above this

amounts to the following: the observer sets up a measuring device to mea-

sure a particular magnitude or observable A on a system in state ρ thereby

fixing the Boolean algebra of possible properties to be Pρ = B(A). At the

end of the measurement thus set up the system possesses one of the properties

PD ∈ B(A) and its state has collapsed from ρ to ρ0 = ρ(PD ·PD)/ρ(PD), so that

ρ0(PD) = 1. More precisely, all PD0 ∈ B(A) for which either ρ0(PD0) = 1 or

ρ0(PD0) = 0 holds, are taken to be definite at the end of the measurement. This

is just the eigenvalue-eigenstate rule with respect to the state ρ0 but restricted
to properties from Pρ = B(A), term this restricted eigenvalue-eigenstate rule

RA
E. As argued above, an unrestricted application of the eigenvalue-eigenstate

rule, i.e. its application to all P ∈ P(H), in general, leads to collections of
definite properties which are not embeddable into any Boolean algebra, and

thus in particular not into B(A), so that either one has to leave the realm of

ordinary probability theory or the measurement process cannot be understood

as involving an actualization of possibilities. Since the set DRA
E

ρ0 of definite
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properties at the end of a measurement is a subset of the set Pρ = B(A)

of initially possible properties, the actualization process involved in a mea-

surement cannot be a (spatio-) temporal process (see (8.13) above). In QM

it is usual to idealize the whole measurement as instantaneous and thus to

identify measurement, state-collapse and actualization, thereby making them

all instantaneous and thus in particular non- (spatio-) temporal. However,

in AQFT measurements cannot be idealized as instantaneous–at least not if

one does not go beyond the spatiotemporal relations provided by STR. In the

spacetime structure provided by STR there is no objective notion of instanta-

neity or equivalently simultaneity available, apart from the uninteresting one

according to which each spacetime point is instantaneous with itself and with

nothing else. Thus the instantaneity of measurements would imply that they

are pointlike thereby undermining one of the central ideas underlying the al-

gebraic approach, namely to build up the theory on non-pointlike quantities

(see Section 4.3). More importantly, one can in fact proof that the axioms

of AQFT imply that there are no non-trivial observables at spacetime points

at all, i.e. if the region O “shrinks” to a point x ∈ M the corresponding

local algebras R(O) converge to the trivial algebra C1 ≡ {c1 : c ∈ C} consist-
ing merely of multiplies of the identity operator (see e.g. Baumgärtel 1995,

Corollary 1.4.3). Since the usual physical interpretation of AQFT does not go

beyond the spacetime structure provided by STR, it therefore cannot idealize

measurements as instantaneous. Therefore, it incorporates the spatiotemporal

extendedness of measurements but assumes at the same time that the actual-

ization involved in a measurement is not a spatiotemporal process. Later on

these somewhat strange features of the physical interpretation will be rein-

terpreted within the framework of non-spatiotemporal actualization processes

provided by Whitehead’s ontology.

8.1.7 Quantum properties as universals?

In this section we will argue that quantum properties as represented by sin-

gle projection operators cannot be universals. This is an important result in

connection with Whitehead’s ontology since the latter does treat properties as

universals. Therefore, our Whiteheadian interpretation of QFT cannot simply
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make use of single projection operators for the representation of Whitehea-

dian property-universals, i.e. subjective eternal objects. Since the presented

argument will make use of specific structures of QFT not present in QM, the

conclusion we arrive at will also be restricted to the former theory. How-

ever, since our interest in this work is QFT and not QM we will not discuss

whether the arguments for the “non-universality” of properties can somehow

be extended to QM or not.

Recall that according to Section 2.2 an entity is a universal iff it can oc-

cupy, embody or be located in two or more non-overlapping spacetime regions.

Since AQFT is build upon the very correspondence between spacetime regions

and operator algebras it is natural to hold that a property represented by the

projection operator P ∈ P(H) can occur in region O ⊂ M only if P belongs

to the algebra R(O) associated with O. Note that the region O need not be

bounded, since as explained in Appendix C, von Neumann subalgebras R(O)
of B(H) can also be associated in a canonical way with unbounded regions
O ⊂ M , given the fundamental correspondence O 7→ R(O) for bounded re-
gions. Thus from the above criterion for the universality of an entity we get

the following necessary condition for universality of properties in AQFT: a

property represented by the projection operator P is a universal only if it

belongs to at least two algebras R(O1) and R(O2) such that O1 and O2 are
(not necessarily bounded) regions which are disjoint.

Let us begin by discussing the case where both regions are bounded, which

here always means that they are double cones.17 L. Landau (1969) has shown

that in this case the disjointness of the closures of O1 and O2, i.e. O1 ∩
O2 = ∅, implies that the intersection of the local algebras R(O1) and R(O2)

corresponding to O1 and O2 consists merely of multiplies of the identity, i.e.
R(O1)∩R(O2) = C1, so that the only properties contained in both algebras are
the trivial ones 0 and 1. This means that no non-trivial property P ∈ P(H)
can occur in any two double cones whose closures are disjoint. Now one could

ask whether a property can occur in two double cones which are disjoint but

17The following discussion is an example of the earlier mentioned fact that the restriction
to double cones simplifies many investigations in AQFT. For certain more general bounded
regions one could reach similiar conclusions but the way to do so would be much more
complicated and loaded wih many more technical assumptions.
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whose closures are not, since this case is not covered by the result of Landau

that only applies if the closures are disjoint. Although no general answer to

this question is known (at least to the best knowledge of the author), it seems

that even if this were generally true it would not be of much help to proponents

of property-universals in QFT. In this case a property could occur in disjoint

double cones whose closures are not disjoint, but not in disjoint double cones

whose closures are disjoint. But it seems to be extremely unreasonable that

the minor difference between regions that are not closed and, on the other

hand, their closures should have so much weight as to make a difference to

the answer of the crucial ontologically question whether quantum properties

can be universals or not. Therefore, we conclude from what has been said so

far that if a property P ∈ P(H) shall be a universal and thus has to have
the ability to occur in at least two disjoint regions, (at least) one of these

regions has to be unbounded. Note that in so far one is merely interested in the

interpretability of projection operators as subjective eternal objects this result

already provides a negative answer. This is because according to Whitehead,

subjective eternal objects are universals which do, however, exclusively occur

in bounded regions (because occasions only occupy bounded regions), which,

as just shown, is not possible if subjective eternal objects were represented by

single projection operators.

We will now argue that under a natural and often adopted strengthening

of the above criterion of universality, a non-trivial P ∈ P(H) can only be
universal if it cannot occur in any bounded region but merely in unbounded

ones. But this is a rather high ontological cost for every interpretation of

AQFT that wants to hold that quantum properties are universals. Especially in

the light of the “smallness” of typical quantum systems it seems quite absurd to

hold that the properties these systems can possess can only occur in unbounded

regions. We therefore conclude that quantum properties cannot be understood

as universals, independently from the particular interpretational framework

one likes to choose. Now what is the strengthened criterion for universality?

It says that if a universal can occur in some region O it should also have

the ability to occur in a region spacelike separated from O. This assumption
is a strengthening of the more liberal criterion for universals formulated in

Section 2.2 and restated above, because according to the latter, it would be
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sufficient if the entity in question could occur in two arbitrarily separated

regions, whereas the strengthened criterion requires that if it can occur in

some region O than it can also occur in a region spacelike separated from O.
However, this strengthened criterion is just the relativistic formulation of the

way universals are often defined in the first place, namely as entities which

have the ability for occurrences in separated spatial regions at each instant of

time (at which they can have concrete occurrences at all) (see e.g. Loux 1998,

p. 23, 54f).18

That this strengthened notion of universality implies that quantum proper-

ties can only be regarded as universals if one is willing to accept that they can

merely occur in unbounded regions, is a consequence of the following result

(Baumgärtel and Wollenberg 1992, Proposition 7.3.15): let O1 be a double
cone and O2 be an arbitrary (possibly unbounded) region such that the clo-
sures of O1 and O2 are spacelike separated then R(O1) ∩R(O2) = C1. This
result is an extension and at the same time a restriction of the above result of

Landau. It is an extension because now one of the two regions involved can

be unbounded and it is a restriction since it only applies to spacelike sepa-

rated instead of merely disjoint regions. It says that if a non-trivial property

P ∈ P(H) can occur in the bounded region O ∈ D(M) then it cannot occur

in any other region whose closure is spacelike separated from the closure of O,
even if this other region is allowed to be unbounded.19 Thus if one agrees to

the widely accepted requirement that for being a universal, a property that

can occur in some region O must also have the ability for occurrences in re-

gions spacelike separated from O, as we will do, then, a non-trivial property
P ∈ P(H) can only be a universal if one is willing to accept that it can exclu-
sively occur in unbounded regions. But since this seems to be too high a price

for its universality, we conclude that non-trivial projections cannot reasonably

be interpreted as property-universals. Note that in the above discussion we

have not made use of any particular feature of projection operators. There-

18In ontological theories which incorporate substances this strengthened criterion is espe-
cially important, because our more liberal criterion, tentatively introduced earlier, does not

allow to distinguish substances from universals (see Section 2.2).
19At this point one could again try to exploit the fact that two open regions can be

spacelike separated even if their closures are not. But, as above, we do not believe that any
proponent of property-universals in QFT could reasonably argue along these lines.
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fore, all claims are equally valid for arbitrary operators A ∈ B(H), so that one
cannot hope to make sense of property-universals in QFT by way of “simply”

representing them by other operators than projections.

We are now confronted with the dilemma that, on the one hand, the only

reasonable candidates for the representation of properties in QFT are projec-

tion operators but these cannot be understood as representing universals which

can have local instances, and on the other hand, subjective eternal objects are

just such property-universals. What to do? In the following we will propose

the same solution as in case of objective eternal objects namely to represent

each subjective eternal object indirectly by the representative of its class of

possible ingressions. Of course, this does again open the door for nominalist

attacks against universals in QFT. However, since Whitehead conceived his

eternal objects as universals, we have to deal with this unfortunate state of

affairs and try to make some sense of it in connection with QFT.

8.2 The “indirect” representation of subjec-

tive and mixed eternal objects

If one wants to interpret projection operators as possible instances or possi-

ble occurrences of property-universals–or in Whiteheadian terms, as possible

ingressions of subjective eternal objects–one needs to group them into collec-

tions with a unity that allows for such an interpretation. In other words, and

perhaps less cryptically, one clearly cannot simply take any set of projections

to represent the possible instances of a single property-universal but rather

only such sets whose members bear sufficient similarities to each other, i.e.

which resemble one another to a sufficient degree. Generally “resemblance to

a certain degree” need not be transitive. For example, if Peter resembles his

sister Anne quite closely, and Anne resembles her mother quite closely, it is

very well possible that Peter has no close resemblance to his mother. This is

because Peter may resemble Anne closely only in respect of looks, while Anne

resembles her mother only in respect to character, while Peter does not resem-

ble his mother in respect to character or any other relevant feature. However,

if resemblance is grounded in the fact that the resembling entities instantiate
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the same property-universal A, their resemblance is always transitive. This is

because in this case the resemblance of, say a1 and a2 just means that “a1
and a2 instantiate A”, and this latter relation is obviously transitive. Thus

if the properties {Pi} shall be interpretable as possible instances of the same
property-universal A, then their resemblance must also be transitive. Other-

wise the resemblance of the systems possessing properties from the set {Pi}
would not be transitive and thus could not be grounded in the Pi’s being

possible instances of the same property-universal. Besides the requirement

that the resemblance relation used to construct the sets of possible instances

of property-universals has to be transitive and thus to be an equivalence re-

lation,20 there is still another constraint that has to be obeyed by a set of

projections to be interpretable as the class of possible instances of a single

property-universal. According to our understanding of universality (see the

last section), if the class contains a possible instance in some region O, it must
also contain a possible instance in a region spacelike separated from O.
Moreover, apart from these general requirements there are two further

specifically Whiteheadian assumptions on eternal objects which are important

for our present task. And these will lead us almost directly to the resemblance

relation and thus the classes we are searching for. First, since Whiteheadian

occasions always occupy bounded regions, subjective eternal objects too, need

only be ingressible into bounded regions. Therefore, we need only take into

account classes of local projections. Second, subjective and objective eternal

objects are eventually to be “brought together” as components of mixed eter-

nal objects (see Sections 2.2.2 and 2.2.4). And since objective eternal objects

have already been represented by equivalence classes of regions with respect to

Poincaré transformations, it seems tempting to use these transformations for

the construction of the classes of possible ingressions of subjective eternal ob-

jects, too. Moreover, because Poincaré transformations form a group, each set

of local projections connected by Poincaré transformations were automatically

an equivalence class as required for its interpretation as the class of possible

ingressions of a single subjective eternal object.

Furthermore, the usual interpretation of the action of a Poincaré trans-

20That resemblance is always reflexive and symmetrical–not only in case it is grounded
in the instantiation of the same universal–is obvious (see also Armstrong 1989, p. 40).
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formation on an operator A ∈ R(O) also supports the view that two pro-

jections connected by a Poincaré transformation are instances of one and the

same property-universal. Usually the operator U(g)AU(g)−1 is taken to repre-
sent a measurement of the same magnitude as A merely carried out in region

g(O) instead of region O. Taking this seriously means nothing else than the
commitment to the assumption that magnitudes, and thus too the properties

P ∈ B(A) connected with them, are universals and that the operators A and
U(g)AU(g)−1 represent the possible instances of this magnitude in the regions
O and g(O).
In sum, we therefore propose to interpret each equivalence class

P̂ ≡
n
U(g)PU(g)−1 : g ∈ P↑+

o
, (8.14)

where P ∈ Ploc ≡ P(H) ∩ Aloc is some local projection, as representing the

possible ingressions of a single subjective eternal object. Moreover, since there

seems to be no way how the subjective eternal objects corresponding to these

classes can be represented more directly in the formalism of AQFT, we take

these classes also as the representatives of subjective eternal objects themselves.

Next we will discuss how the ability of a subjective eternal object (repre-

sented by) P̂ to ingress into some region O ∈ D(M) can be represented in the

formalism of AQFT. Recall from Section 2.2.1 that a subjective eternal object

P̂ ingressed into some region O belongs indifferently to the whole region and

not merely some subregion O0 ⊂ O. This secures the atomicity of occasions
in the sense of not being divided into parts which are completed occasions in

their own right.

Therefore, the ability of the subjective eternal object P̂ to ingress into

region O cannot merely be expressed by the existence of a projection P 0 ∈ P̂

such that

P 0 ∈ R(O). (8.15)

This is because the isotony property of the net of local algebras {R(O)}D(M),

i.e. the property O0 ⊆ O⇒ R(O0) ⊆ R(O), implies that P 0 ∈ R(O) is already
satisfied if P 0 ∈ R(O0) for some subregion O0 ⊂ O. But then P 0 would belong
to a subregion of O, thereby undermining its role as the possible ingression of
the corresponding subjective eternal object P̂ (with P 0 ∈ P̂ ) in O. Therefore,
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the condition P 0 ∈ R(O) has to be supplemented by the further condition

P 0 /∈ R(O0) for all O0 ⊂ O, (8.16)

to express the ingressibility of P̂ into region O. Thus if there is no projection
P 0 ∈ P̂ such that (8.15) and (8.16) are satisfied, P̂ cannot be interpreted

as ingressible into region O. However, under certain technical supplementary
assumptions on the structure of the correspondence O 7→ R(O) one can show
that in fact for each non-trivial local projection P 0 there are regions such that
(8.15) and (8.16) are satisfied (Kuckert 2000). Yet there may nevertheless

be no unique region O ∈ D(M) for which these conditions hold for a given

projection P 0. But this does not undermine the interpretation of P 0 as a
possible ingression of a subjective eternal object P̂ 3 P 0. For since eternal
objects are universals anyway there is no need for the possible ingressions of a

single subjective eternal object in different regions to be different. In sum, we

therefore propose that the ability for ingression of subjective eternal objects

into regions of the extensive continuum is expressed by

(ING) The subjective eternal object P̂ can ingress into the region O ∈ D(M)

iff there is a P 0 ∈ P̂ such that P 0 ∈ R(O) and P 0 /∈ R(O0) for all
O0 ∈ D(M) with O0 ⊂ O.

Thus the fundamental correspondence O 7→ R(O) between spacetime re-
gions and operator algebras on which AQFT is erected, is likewise fundamental

for expressing the ingressibility of subjective eternal objects into regions of the

extensive continuum, within the formalism of AQFT. We will see in the follow-

ing section that by reason of its role in grounding (ING), the correspondence

O 7→ R(O) will also turn out to be fundamental for the mathematical expres-
sion of the compatibility of subjective and objective eternal objects as well as

the compatibility of subjective eternal objects among each other.

Compatibility, complex subjective and mixed eternal objects

Complex subjective eternal objects The only complex eternal objects

we are interested in are conjunctive and disjunctive ones (see Section 2.2.2),

so that one may think that the eternal object P̂ is complex if P = P1 ∧ P2
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or P = P1 ∨ P2 holds for two other local projections P1 and P2. We will only

discuss this initially appealing mathematical criterion for the complexity of

subjective eternal objects in the disjunctive case because the conjunctive case

is then implicitly clear. If P is the disjunction of P1 and P2 one has21

P̂ = \P1 ∨ P2
=

n
U(g)(P1 ∨ P2)U(g)−1 : g ∈ P↑+

o
and by P1 ∨ P2 = P1 + P2 − P1P2 and the fact that U(g)−1U(g) = 1 for all

g ∈ P↑+ it easily follows that

P̂ =
n
(U(g)P1U(g)

−1) ∨ (U(g)P2U(g)−1) : g ∈ P↑+
o
. (8.17)

And since this seems to be the only reasonable way to define P̂1 ∨ P̂2, one gets
the desired result P̂ = P̂1 ∨ P̂2.
However, there is a reason why not each P̂ that can be written in the

form P̂1 ∨ P̂2 or P̂1 ∧ P̂2 respectively, can be regarded as a complex eternal

object with components P̂1 and P̂2. Or put differently, there is a reason why

the expression (8.17) (as well as the corresponding expression with ∧) cannot
represent a disjunctive (conjunctive) subjective eternal object for two arbitrary

commuting local projections P1 and P2. The reason for this is that P̂ = P̂1∨P̂2
(as well as P̂ = P̂1 ∧ P̂2) according to (8.17) does nothing to secure that there
is at least one region into which both P̂1 and P̂2 can in fact ingress. For,

according to (ING) from the last section, a subjective eternal object P̂i can

ingress into region O ∈ D(M) iff there is a P 0
i ∈ P̂ such that P 0

i ∈ R(O) and
P 0
i /∈ R(O0) for all O0 ∈ D(M) with O0 ⊂ O. Therefore, the two subjective
eternal objects P̂1 and P̂2 can both ingress into a common region just in case

(CO-ING) There is a region O ∈ D(M), a P 0
1 ∈ P̂1 and a P 0

2 ∈ P̂2, such that

P 0
1, P

0
2 ∈ R(O) and P 0

1, P
0
2 /∈ R(O0) for all O0 ∈ D(M) with O0 ⊂ O.

Now for two arbitrary local projections P1, P2 there is always a region

O ∈ D(M) such that both belong to R(O): that P1 and P2 are local means

that there are bounded regions O1,O2 ∈ D(M) such that Pi ∈ R(Oi) and

because of the isotony property of the net of local algebras both R(O1) and
21Recall that this implies that P1 and P2 commute.
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R(O2) are included in each algebra R(O) corresponding to some O ∈ D(M)

with O1 ∪O2 ⊆ O. But the second requirement, namely that for one of these
regions O to whose algebra both P1 and P2 belong also “P1, P2 /∈ R(O0) for
all O0 ∈ D(M) with O0 ⊂ O” holds, is not satisfied by two arbitrary local
projections. Thus if P = P1 ∨ P2 (or P = P1 ∨ P2 respectively) holds, without
this supplementary requirement being fulfilled by P1 and P2 the corresponding

“complex subjective eternal object” P̂ = P̂1∨ P̂2 (or P̂ = P̂1∧ P̂2 respectively)
could not even ingress into a single region and thus not into a single occa-

sion. But in this case the existence of the eternal object P̂ could hardly be

justified. Note that by “existence” we here mean the existence of an eternal

object qua pure potentiality and that this existence of an eternal object as

such does not presuppose that there is an occasion into which this eternal

object is actually ingressed–according to Whitehead there can very well be

contingently uninstantiated universals. But if it is even impossible that a given

eternal object ingresses into any occasion at all, i.e. if the eternal object is

“necessarily” uninstantiated, there is no reason in the first place to postulate

this eternal object–it would simply not be a potential for the determinateness

of any occasion. Thus for the interpretation of P̂ = P̂1 ∨ P̂2 (or P̂ = P̂1 ∧ P̂2
respectively) as disjunctive (conjunctive) eternal object with components P̂1
and P̂2, the projections P1 and P2 must not merely commute but rather the

condition (CO-ING) has also to be satisfied.

Note that the satisfaction of the latter condition by P1 and P2 with re-

spect to region O ∈ D(M) is equivalent to its satisfaction by their Poincaré

transforms P 0
1 = U(g)P1U(g)

−1 and P 0
2 = U(g)P2U(g)

−1 with respect to the
transformed region g(O) ∈ D(M). Thus, we always have P̂ = P̂1∨P̂2 = P̂ 0

1∨P̂ 0
2

as well as P̂ = P̂1∧ P̂2 = P̂ 0
1∧ P̂ 0

2 which means that the fact that P̂ is a disjunc-

tive or conjunctive subjective eternal object with components P̂1 and P̂2 does

not depend on the chosen representatives P 0
i ∈ P̂i of the classes P̂i. There-

fore, one can calculate with conjunctions and disjunctions (and of course also

with negations) of classes P̂ , Q̂, . . . in the same way as with these operations

in case of single projections P,Q, . . .. Yet we will see in Section 8.3 that there

is a fundamental ambiguity in the way a P̂ can be written as a disjunction

or a conjunction, which stems from the fact that according to QFT there are

probably no simple subjective eternal objects at all. Before we come to this
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important topic we will, however, first of all find mathematical expressions

for the compatibility of subjective eternal objects among each other and of

subjective and objective eternal objects and thus too of the existence of mixed

eternal objects.

Compatibility and mixed eternal objects Recall from Section 2.2.4

that two subjective eternal objects P̂1 and P̂2 are compatible iff there is a

complex subjective eternal object P̂ of which both are components. The upshot

of the above discussion has been that we assume that the subjective eternal

object P̂ is complex iff there are local projections P1 and P2 and a region

O ∈ D(M) such that P = P1∧P2 or P = P1∨P2 as well as P1, P2 ∈ R(O) and
P1, P2 /∈ R(O0) for all O0 ∈ D(M) with O0 ⊂ O, hold. Therefore, the following
reformulation of this criterion provides us with the mathematical expression

for the compatibility of P̂1 and P̂2:

(CS) The subjective eternal objects P̂1 and P̂2 are compatible iff P̂1 and P̂2

contain elements P 0
1 and P 0

2 such that

(CS1) P 0
1 and P 0

2 commute and

(CS2) there exists a O ∈ D(M) such that P 0
1, P

0
2 ∈ R(O) and P 0

1, P
0
2 /∈

R(O0) for all O0 ∈ D(M) with O0 ⊂ O.

As explained in Section 8.1.2, the commutativity of the projections P 0
1 and

P 0
2, i.e. condition (CS1), is necessary and sufficient for the existence of P

0
1∧P 0

2

and P 0
1 ∨ P 0

2. Condition (CS2) expresses that the condition (CO-ING) holds

for the corresponding subjective eternal objects P̂1 and P̂2, i.e. that there is a

region into which both can ingress.

Now the existence of a possible ingression of the subjective eternal object

P̂ in region O, i.e. the fulfillment of (ING) by P̂ with respect to region

O, is a reasonable necessary and sufficient condition for the existence of the
conjunctive mixed eternal object P̂∧ bO. This is because the covariance property
of the net of local algebras (i.e. U(g)R(O)U(g)−1 = R(g(O)) for all g ∈ P↑+)
implies that the fulfillment of (ING) by P̂ with respect to region O, i.e.

P 0 ∈ R(O) and P 0 /∈ R(O0) for all O0 ∈ D(M) with O0 ⊂ O
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is equivalent to

U(g)P 0U(g)−1 ∈ R(g(O)) and U(g)P 0U(g)−1 /∈ R(O0)

for all O0 ∈ D(M) with O0 ⊂ g(O) and all g ∈ P↑+

which just means that each possible ingression of P̂ is into a region from the

class bO = {g(O) : g ∈ P↑+} representing the corresponding objective eternal
object. Thus all possible ingressions of the subjective eternal object P̂ are

in regions whose common boundary surface is (represented by) bO. What else
should one want for the existence of the conjunctive mixed eternal object

P̂ ∧ bO?
In Section 2.2.4 we have explained why only conjunctive mixed eternal

objects, but no disjunctive ones, are needed. Therefore, the only possibility for

the compatibility of P̂ and bO is by way of the existence of the conjunctive mixed
eternal object P̂ ∧ bO. Consequently, the fulfillment of (ING) by P̂ with respect
to some region O0 ∈ bO which has just been seen to be a reasonable criterion

for the existence of P̂ ∧ bO is moreover already the mathematical expression for
the compatibility of the subjective eternal object P̂ and the objective eternal

object bO. Explicitly, one therefore has:
(CSO) The subjective eternal object P̂ and the objective eternal object bO are

compatible iff there is a P 0 ∈ P̂ with P 0 ∈ R(O) and P 0 /∈ R(O0) for all
O0 ∈ D(M) with O0 ⊂ O.

Thus the fundamental correspondence O 7→ R(O) between spacetime re-
gions and operator algebras on which AQFT is erected, also grounds the math-

ematical representation of the Whiteheadian notion of compatibility between

subjective and objective eternal objects. Note, moreover, that requirement

(CS2) (i.e. the condition (CO-ING)) in the expression for the compatibility

of two subjective eternal objects just says that P̂1 and P̂2 are both compatible

with at least one common objective eternal object, i.e. that both P̂1 and P̂2

fulfil (CSO) with respect to the same objective eternal object bO. Thus to ex-
press the compatibility of subjective eternal objects among each other in the

formalism of AQFT, one has to make use of the expression for the compat-

ibility of objective and subjective eternal objects. This shows that the corre-

spondence between regions and operator algebras is not only fundamental for
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the compatibility of objective and subjective eternal objects, but also for the

compatibility of subjective ones. In sum, then, the conceptually fundamental

correspondence O 7→ R(O) of AQFT, also plays an ontologically fundamental
role in connection with many central aspects of Whitehead’s theory of eternal

objects.

8.3 No simple properties in QFT

In this section we will argue that according to AQFT there are no simple

local projections, i.e. local projections which are not disjunctions of others.

In the following section we will then discuss the consequences of this state

of affairs for the existence of simple subjective eternal objects. We will see

that probably there are no simple subjective eternal objects at all. As already

mentioned in Section 2.2.2 this leads to an indeterminateness as to the very

form of subjective eternal objects. However, this is not merely a problem for

a Whiteheadian interpretation of QFT, but rather for any interpretation that

uses local projections as representatives of properties or property instances.

The ultimate reason for all this lies in the fact that the local algebras of

AQFT are von Neumann algebras of type III, which implies that they do not

contain atomic projections (see also Section 5.2). That a projection P 6= 0

from a von Neumann algebra R is atomic means that there is no projection

Q 6= 0 in R with P > Q, i.e. with P ≥ Q and P 6= Q (“≥” is the usual partial
order among projections on a Hilbert space as introduced in Appendix B.2).

Thus atomic projections are the smallest non-zero elements of the lattice of

projections in R. That R does not contain atomic projections therefore, in

particular, implies that for each P ∈ R there is an infinite sequence of smaller

and smaller projections: P > Q with Q 6= 0 implies that there is another non-
zero projection F with Q > F since otherwise Q were atomic. By iterating

this argument one ends up with an infinite sequence of smaller and smaller

projections. In general, there will even be many such infinite sequences for a

given projection P such that projections belonging to different sequences will

not commute with one another.22

22Of course, contrary to the local algebras R(O), the global algebra R(M) = B(H),
associated with the whole Minkowski space M (see Appendix C) is not of type III but
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In Section 8.1.3 it had been shown that each projection contained in the

Boolean algebra B(A) (or the corresponding distributive lattice D(A)) corre-

sponding to some magnitude A, can be written as a disjunction of eigenprojec-

tions of A. Now we will show that the non-existence of atomic local projections

implies that every local projection P ∈ R(O) can be written as a disjunction
of other local projections from R(O). The connection with the former result
is, then, that all eigenprojections of an arbitrary local magnitude A ∈ R(O)
can also be written as disjunctions of other projections from R(O).23

Let P be an arbitrary non-zero projection from the local algebra R(O).
Since P is not atomic there is another non-zero projection Q ∈ R(O) with
P ≥ Q. Now P ≥ Q implies PQ = Q,24 because if the subspace KQ of H onto

which Q projects is included in the subspace KP of H onto which P projects,

the further application of P to a vector Qψ ∈ KQ does not affect the latter

any more, i.e. PQψ = Qψ for all ψ ∈ H, and thus PQ = Q. By the same

kind of reasoning it follows moreover that QP = Q holds too,25 so that P ≥ Q

implies PQ = Q = QP and thus, in particular, that P and Q commute. Now

from PQ = Q and the identity P = Q + P − Q it follows P = Q + P − PQ

and thus P = Q+P (1−Q). Since P and Q as well as P and 1−Q commute,

we get P = Q+Q0 with Q0 ≡ P (1−Q) where the latter projection commutes

with both P and Q. Since Q and Q0 are moreover orthogonal (i.e. QQ0 = 0)

rather of type I. This means, in particular, that it contains atomic projections (Haag 1996,
p. 117). However, as also explained in Appendix C, local projections are conceptually
more fundamental then global ones, because the latter are merely idealizations arising as
limits of sequences of the former. More importantly, global projections are by definition,
not contained in any algebra R(O) corresponding to a finite region, and thus can hardly
be used for the representation of properties if the latter shall be able to occur in finitely
extended regions and not merely in infinitely extended ones. Since this latter option seems
to be absurd, it seems that any interpretation of QFT that incorporates properties at all,
will somehow have to use local projections for their representation and thus will be faced
with the problems we discuss in what follows.
23When we speak in the following of disjunctive or conjunctive components of a projection

P we always mean non-trivial ones, i.e. ones that are different from P itself as well as from
0 and 1.
24Both conditions are even equivalent, but the implication from the latter to the former

is not needed here.
25This can also be seen by taking the adjoint of both sides of the equation PQ = Q.

Because of (PQ)∗ = Q∗P ∗ and the self adjointness of P and Q one indeed gets QP = Q.
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we have P = Q + Q0 − QQ0 and thus in fact P = Q ∨ Q0. Since P had been

arbitrary, in fact every projection in R(O) can be written as the disjunction
of other projections in R(O). In particular, Q and Q0 can also be written as
disjunctions of other projections from R(O) and since this can be iterated ad
infinitum one ends up with the result that there is no limit to the disjunctive

complexity of any local projection.

But this means that the form of local projections–and thus of the prop-

erties or property instances they are supposed to represent–is indeterminate

in the sense that there is no “finest resolution” of a given projection into dis-

junctive components–for every such resolution P = ∨iQi there are always

infinitely many finer ones, i.e. P can also be written in the form P = ∨jFj

such that each Qi is itself a disjunction of Fj’s and so on. But this is not the

only indeterminacy as to the form of a given local projection P . For, in general,

P can also be written as a disjunction of merely two other projections in many

different ways, i.e. one has, in general, P = Q ∨Q0 = F ∨ F 0 = G ∨G0 = · · · ,
where none of the pairs of projections need commute with the others. But

even if they would all commute with one another there is no way of singling

out one of these representations as somehow privileged over the others, thereby

eliminating this ambiguity.

In Section 8.1.4 it had been shown that each non-zero projection contained

in the Boolean algebra B(A) (or the corresponding distributive lattice D(A))

associated with some magnitude A, can also be written as a conjunction of

elements from a subset of B(A) (respectively D(A)). The non-existence of

atomic local projections leads to an analog of this result on the level of the set of

all projections in R(O) too, that shall be stated here without proof: each non-
zero P ∈ R(O), different from 1, cannot only be written as a disjunction P =
Q∨Q0 of other projections fromR(O) but also as a conjunction P = J∧J 0. And
again this conjunctive form of P is not unique; but what is even more important

is that now a given P is not even determinate as to whether it is conjunctive

or disjunctive since one has P = Q∨Q0 = J ∧J 0. Thus every interpretation of
QFT that makes use of local projections in representing properties or property

instances will be faced with the fact that they are infinitely complex and that

QFT itself seems not to provide us with a fact of the matter as to whether a

given one is disjunctive or conjunctive. We will now see which consequences
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this state of affairs has for our account of property-universals, i.e. of subjective

eternal objects.

8.3.1 Consequences for subjective eternal objects

So far we have shown that every non-zero projection P from a local algebra

R(O) can be written as the disjunction P = Q ∨Q0, as well as a conjunction
P = J ∧J 0, of other projections from R(O) which commute with one another,
and that both of these representations are not unique. However, this does

not by itself imply that each subjective eternal object is also plagued with

these ambiguities. In particular, it does not by itself imply that there are no

simple subjective eternal objects. This is because for P̂ with P = Q∨Q0 to be
interpretable as a disjunctive eternal object, Q̂ and Q̂0 have to be compatible.
And this does not merely mean that the corresponding local projections Q

and Q0 need to commute (i.e. condition (CS1)), but rather that they must
also fulfil condition (CS2) (namely that there exists a O ∈ D(M) such that

Q,Q0 ∈ R(O) and Q,Q0 /∈ R(O0) for all O0 ∈ D(M) with O0 ⊂ O), for

P̂ = \Q ∨Q0 = Q̂ ∨ Q̂0 (8.18)

to make sense as a subjective eternal object. Thus unless one shows that

condition (CS2) is always satisfied by at least one pair of projections Q and

Q0 for which P = Q ∨ Q0 holds, it could be the case that the corresponding
subjective eternal object P̂ cannot be written as a disjunction (8.18) at all and

thus could be held to be simple. Unfortunately, the present author has not been

able to proof or disproof this proposition. Yet, as shown in the last section,

there are always infinitely many projections which are smaller than a given one

P . Therefore, it seems highly probable that one of these infinitely many smaller

projections Q, together with the corresponding projection Q0 = P (1 − Q),

satisfies condition (CS2). If this were indeed the case, each subjective eternal

object could in fact be written as a disjunction of others and thus there were

no simple subjective eternal objects at all. Moreover, if more than one of

the infinitely many projections which are smaller than P , say Q and F , would

satisfy condition (CS2), P̂ could be written as P̂ = Q̂∨Q̂0 as well as P̂ = F̂∨F̂ 0

(where Q and Q0need not commute with F and F 0). Since this possibility too,



8.3. NO SIMPLE PROPERTIES IN QFT 197

seems to be highly probable, we should better ground our further discussions

on the “worst case scenario” according to which there are no simple subjective

eternal objects and all subjective eternal object are indeterminate as to their

“true” disjunctive form. Note that this latter problem would not obtain if

there were a stock of simple eternal objects which are the ultimate disjunctive

components of all others. For in this case the true disjunctive form of a given

P̂ were simply that in which only these ultimate components would appear.

Now each non-zero projection P ∈ R(O) with P < 1 cannot only be

written as a disjunction of others in infinitely many different ways, but there

are also infinitely many pairs of projections J and J 0 in R(O) (with P < J, J 0

< 1) such that P can be written as their conjunction P = J ∧ J 0. By an
analogous reasoning as above, this makes it at least highly probable that each

subjective eternal object P̂ can also be written in many different conjunctive

forms

P̂ = Ĵ ∧ Ĵ 0 = Ĝ ∧ Ĝ0 = . . . . (8.19)

If, however, each subjective eternal object P̂ can indeed be written at the same

time as a disjunction and as a conjunction of other subjective eternal objects,

this would undermine the very ontological distinction between disjunctive and

conjunctive subjective eternal objects. And, again, without simple subjective

eternal objects which are the ultimate components of all other subjective eter-

nal objects, one cannot write P̂ in the unique form in which only these ultimate

components appear and hold that this is the true form of P̂ .

On the other hand, as soon there is a fact of the matter that breaks this

symmetry between disjunctions and conjunctions, one of these two possibilities

can be regarded as ontologically superfluous. In Section 8.3.3 we will in fact

give an argument for only including disjunctive subjective eternal objects into

our ontology, thereby regarding the possibility of conjunctive representations

(8.19) as mere mathematical surplus structure. The argument for taking only

disjunctive subjective eternal objects ontologically serious derives from the

fact that subjective eternal objects only ingress into occasions as members

of definite (maximal) abstractive hierachies. The latter shall be reexamined

in the light of the non-existence of simple subjective eternal objects in the

following section.
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8.3.2 Consequences for abstractive hierachies

The lack of simple subjective eternal objects also affects abstractive hierachies,

since each such substructure of the realm of eternal objects is based upon a

definite set of compatible simple eternal objects (see Section 2.2.5). However,

nothing essential about the structure of an abstractive hierachies gets lost if we

allow its base G to consist of a definite set of complex eternal objects instead

of simple ones. What is important is that there are no eternal objects in the

hierachy which are components of members of G–otherwise G could hardly

be called the base of this hierachy. Therefore, we have to modify conditions

(i) and (ii) in the original definition of abstractive hierachies which say that

(i) the members of the base G belong to the hierachy, and are the only

simple eternal objects in the hierachy, and

(ii) the components of any complex eternal object in the hierachy, are also

members of the hierachy.

Instead of (i) and (ii) we will require:

(H1) The members of the base G belong to the hierachy, and are the only eter-

nal objects in the hierachy whose disjunctive components do not belong

to it.

The appearance of disjunctive instead of conjunctive components in this

condition derives from the fact that we naturally understand a property as

more simple than another if the former is a disjunctive component of the

latter but not vice versa (see the example in Section 2.2.2). Thus condition

(H1) means that the members of G are simple relative to the hierachy based

on G, since none of the other eternal objects contained in a hierachy based on

G are disjunctive components of members of G.

The third defining condition of an abstractive hierachy–the condition of

connexity–requires that

(iii) the elements of any set of eternal objects belonging to the hierachy are

jointly among the components or derivative components of at least one

eternal object which also belongs to the hierachy.
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Since we will not exclude the case that the trivial subjective eternal ob-

ject 1̂ belongs to a hierachy, we have to modify (iii) too, because 1̂ is not a

disjunctive component of another subjective eternal object (different from it-

self) as necessary for the satisfaction of condition (iii). However, this problem

can easily be remedied by a harmless modification of (iii) that restricts this

condition to those subsets of a hierachy not containing the trivial element 1̂:

(H2) Any set of eternal objects belonging to the hierachy and not containing

1̂ are jointly among the components or derivative components of at least

one eternal object which also belongs to the hierachy.

In the light of condition (H2) condition (H1), moreover, means that relative

to a given hierachy the elements of its base are the ultimate components of all

other eternal objects contained in this hierachy.

Now recall that a hierachy is maximal if it satisfies the further condition

(that has earlier been denoted by (iv)):

(HM) All complex eternal objects whose components are among the members

of an abstractive hierachy H(G) are themselves members of H(G).

In case of the original definition of maximal abstractive hierachies we were

able to show that each set G of compatible simple eternal objects (a) deter-

mines a unique maximal hierachy based upon G, that (b) this maximal hier-

achy includes all other (non-maximal) hierachies based upon G and that (c)

two maximal hierachies are distinct iff their bases are distinct. It is easy to see,

and shall therefore not explicitly proven here, that the analogous proposition

stating the fulfillment of (a)-(c) by each set G of compatible eternal objects,

follows from our modified conditions, too. As in the case of the original def-

inition, it therefore also holds for our modified definition that the maximal

hierachy based on a set G of compatible eternal objects looks as if it were gen-

erated by arbitrary combinations of disjunctions and conjunctions from the

basic elements provided by G. Although, it is not literally “generated” in this

way at all, because this would require the existence of the manners of relat-

edness ∧ and ∨ independently from conjunctive and disjunctive eternal objects
(see Section 2.2.5). However, a set (on which ∧ and ∨ are defined) that looks
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as if it were generated from one of its subsets by arbitrary combinations of

conjunctions and disjunctions, is a distributive lattice. Thus in restriction to

conjunctive and disjunctive complex eternal objects, maximal abstractive hier-

achies are distributive lattices. In particular, the maximal abstractive hierachy

H(G) based on G coincides with the distributive lattice D(G) generated from

G. Altogether, it seems that replacing (i) and (ii) by (H1) and (iii) by (H3)

leads to a reasonable generalization of the concept of a (maximal) abstractive

hierachy as originally conceived by Whitehead, that pays tribute to the fact

that probably there are no simple subjective eternal objects simpliciter.

8.3.3 Against conjunctive subjective eternal objects

The introduction of the notion of relative simplicity for subjective eternal ob-

jects, as a partial substitute for the non-available notion of simplicity sim-

pliciter, provides a reason for breaking the symmetry between disjunction and

conjunction that would obtain otherwise (i.e. in the absence of any notion

of simplicity). This is because like the non-available notion of the simplicity

of eternal objects simpliciter, the simplicity of an eternal object P̂ relative to

some hierachy too, is naturally tight to P̂ ’s not having disjunctive components

(see the last section). In other words, for the notion of relative simplicity to

mean what it is supposed to mean, only disjunctive eternal objects are needed.

And since we already know that only either disjunctive or conjunctive eternal

objects but not both are needed anyway, it seems natural to discard conjunc-

tive ones. Thereby, the ambiguity between the conjunctive and disjunctive

forms in which each subjective eternal object can be written is removed. The

conjunctive form in which a subjective eternal object may be representable is

therefore regarded as mere mathematical surplus structure without any onto-

logical meaning.

Of course, the ambiguity as to the (infinitely) many different disjunctive

forms of each subjective eternal objects still remains. But this ambiguity too,

is at least softened by the fact that, relative to a given abstractive hierachy,

the form of an subjective eternal object is uniquely determined: let P̂ be a

member of the maximal hierachyH(G) whose base G consists of the subjective

eternal objects P̂i, i = 1, . . . , 10. Then it makes sense to hold that, relative
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to this hierachy, each of its members P̂ is of the unique (disjunctive) form

in which only elements of the base G = {P̂i} appear, e.g. P̂ = P̂1 ∨ P̂6 ∨
P̂9. Clearly the subjective eternal object P̂ will, in general, belong to many

different hierachies and moreover the P̂i are themselves disjunctions of other

eternal objects. Because of these two facts there is still no true disjunctive

form of P̂ , independently from a given hierachy. But in restriction to the

hierachy H(G) the above disjunctive form of P̂ is unique, since none of the

disjunctive components of the P̂i belongs to H(G) (see condition (H1)). Thus

the indeterminateness of subjective eternal objects as to their “true” form qua

pure potentiality is clearly not removed–more correctly, there simply is no

such “true” form. This would require the existence of simple eternal objects

simpliciter, which were the ultimate components of all other eternal objects–it

would require that there is a limit to the disjunctive complexity of qualities–

but as we know from Section 8.3.1 this is probably not the case. However,

since a subjective eternal object P̂ ingresses into an occasion only qua member

of a definite maximal abstractive hierachy (see Sections 2.2.6 and 2.4.2), at

least in respect to P̂ ’s ingression into a given occasion, its form is completely

fixed. We will now argue that this uniqueness relative to each occasion into

which a subjective eternal object ingresses, is sufficient to secure the processual

character of concrescence processes.

8.3.4 Simple decisions revisited

In Section 1.1.3 we have defended the very processual character of concrescence

processes by introducing the demand that in each phase of a concrescence only

one simple decision can be felt and that a decision is simple if it eliminates

one simple eternal object from incorporation into the following phases. Now

since subjective eternal objects only ingress into occasions as members of some

definite hierachy, it is, in particular, fixed whether a given subjective eternal

object is simple relative to this hierachy and thus too relative to this occa-

sion. This relative simplicity, however, seems to be sufficient to ground the

concept of simple decisions of occasions and thus too, the processual nature of

concrescence processes. For a simple decision of a given concrescent occasion

could very well be understood as one in which one eternal object belonging to



202 CHAPTER 8. SUBJECTIVE AND MIXED ETERNAL OBJECTS

the base G of the ingressed hierachy is eliminated, even if the base does not

consist of simple eternal objects simpliciter. The reason for this is that for this

concrescent occasion only the eternal objects ingressed into it are available, so

that the disjunctive substructure of the most simple ones of these–the ones

belonging to the base G–simply does not matter for this occasion. Thus by

demanding that the decisions of concrescent occasions are just of this type,

i.e. decisions as to the elimination of one eternal object that is simple relative

to the hierachy ingressed into this occasion, we can still make sense of simple

decisions of concrescent occasions and thus too, of the processual character of

concrescences without there being simple subjective eternal objects simpliciter.

8.4 The representation of abstractive hierachies

As mentioned above, the structure of a maximal abstractive hierachy H(G) of

subjective eternal objects is that of a distributive lattice. However, not every

distributive lattice D({P̂i}) does represent a maximal abstractive hierachy of
subjective eternal objects with the set {P̂i} of mutually compatible elements as
its base. The interpretation of the distributive lattice D({P̂i}) as the maximal
abstractive hierachy based on {P̂i} furthermore requires the set {P̂i} to be at
most countable. The problem is that the only reasonable way of defining a

disjunction on a set of uncountable many projections {Pi} (which is obviously
necessary for the definition of a disjunction on the corresponding uncountable

set of classes {P̂i}), namely by means of an integral of the form

∨
i∈J

Pi ≡
Z
J

dPi, (8.20)

where J is a subset of the continuous set of all indices i, requires {Pi} to
lie within the range of a projection-valued measure J 7→ PJ . This, however,

implies that all elements of {Pi} are themselves disjunctions (in the sense of
(8.20)) of other elements from {Pi} (see e.g. Reed and Simon 1980, Chapter
VII.3). But this means that {Pi}, and thus too, the corresponding set of
classes {P̂i}, cannot be interpreted as the base of an abstractive hierachy,
since requirement (H1) on abstractive hierachies is not fulfilled.
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Note that the fulfillment of this requirement is moreover necessary for our

answer to the challenge of the non-processuality of concrescence processes to go

through. For if all disjunctive components of each element of the set {P̂i} are
themselves contained in the latter, an occasion to which {P̂i} is available, were
not able to settle simple decisions (as defined at the end of the last section),

because no element of {P̂i} were simple relative to this occasion. Thus for this
reason too, only countable sets {P̂i} are reasonable candidates for representing
the bases of abstractive hierachies of subjective eternal objects.

On the other hand, it is easy to see that in fact each countable set {P̂i}
whose elements are mutually compatible generates a distributive latticeD({P̂i}),
so that the latter can be interpreted as the maximal abstractive hierachyH(G)

based upon G, such that this base is represented by {P̂i}.

Maximal hierachies of mixed eternal objects

So far we have represented maximal abstractive hierachies solely consisting of

subjective eternal objects in the formalism of AQFT. However, the bases of

the complete maximal abstractive hierachies H(O,Gn(O)) of the succeeding

phases n = 1, 2, . . . in the concrescence process of an occasion with region

O (see Sections 2.2.6), not only contain subjective eternal objects but also

the (simple) objective eternal object O (represented by the class bO) that has
already been unrestrictedly ingressed into the extensive continuum in the da-

tive phase of the forgoing process of transition. Since there are no disjunctive

mixed eternal objects (see Section 2.2.4) and no conjunctive subjective ones

(see Section 8.3.2), the structure of such a hierachy is such as if it were gener-

ated from its base {O,Gn(O)} by arbitrary disjunctions of subjective eternal
objects from Gn(O) and by conjunctions of the thus “created” subjective eter-

nal objects with the simple objective eternal object O. And since by arbitrary

disjunctions of elements from Gn(O) the “subjective part” H(Gn(O)) of the

hierachy H(O,Gn(O)) is generated, the latter can always be “separated” into

its subjective and objective part–it is their conjunction in the sense

H(O,Gn(O)) = H(Gn(O)) ∧O ≡ {A ∧O : A ∈ H(Gn(O))} . (8.21)

Since moreover conjunctions of disjunctions of subjective eternal objects with

the same objective oneO can be resolved into disjunctions of mixed conjunctive
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ones, i.e.

(A ∨B) ∧O = (A ∧O) ∨ (B ∧O)

for all A,B ∈ H(Gn(O)), (8.21) is identical with the distributive lattice gen-

erated from the set Gn(O) ∧O, i.e.

H(O,Gn(O)) = D(Gn(O) ∧O). (8.22)

Thus the complete maximal abstractive hierachies of mixed eternal objects

involved in the concrescence processes of occasions–and not merely their sub-

jective parts–have the structure of distributive lattices.

Now let us denote the set of classes of projections representing the subjec-

tive part Gn(O) of the base of H(O,Gn(O)) by {P̂i}n. According to (8.22) the
hierachy H(O,Gn(O)) is then represented by the distributive lattice

D({P̂i}n ∧ bO)
or according to (8.21) equivalently by the set

D({P̂i}n) ∧ bO ≡ nP̂ ∧ bO : P̂ ∈ D({P̂i}n)
o
. (8.23)

Since each maximal hierachyH(O,Gn(O)) of mixed eternal objects can always

be split into its subjective and objective part, and since the latter does not

fall under the decisions to be settled in the concrescence at all, but is constant

throughout it, we can henceforth concentrate on the subjective part H(Gn(O))

only. In the following paragraph we will argue that under a reasonable assump-

tion on the subjective parts of the initial hierachies H(O,G(O)) of concrescent

occasions, their bases G(O) can be used for a reinterpretation of the notion of

“local observables”.

Reinterpretation of local observables

The assumption to be made on the subjective part H(G(O)) of the initial

hierachy H(O,G(O)) of a concrescent occasion is that it has the structure of a

distributive lattice that is generated by a resolution of the identity 1̂, i.e. by a

set of classes {P̂i} whose elements are mutually exclusive (P̂i∧P̂j = 0̂ for i 6= j)
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and their disjunction ∨iP̂i equals 1̂.26 In this case we are able to reinterpret

“local observables” in Whiteheadian terms. Since nothing speaks against this

structural assumption on the subjective partH(G(O)) of the initial hierachy of

each concrescent occasion, we will in fact make it. H(G(O)) can therefore be

represented by a distributive lattice D({P̂i}) such that {P̂i} is a resolution of
1̂. However, for such distributive lattices we have shown in Section 8.1.3 that

they coincide, as sets, with the corresponding Boolean algebras generated from

the same resolution. Thus we can equally well use Boolean algebras B({P̂i})
generated by resolutions of 1̂ as representatives of the initial hierachies of

subjective eternal objects–this merely introduces the ontologically harmless

operation ¬.
Note, however, that the subjective part H(Gn(O)) of the maximal hier-

achy H(O,Gn(O)) of some later phase n ≥ 2 of a concrescence process can-
not be represented by a Boolean algebra. This is because the reduced base

Gn(O) ⊂ G(O), represented by {P̂i}n ⊂ {P̂i}, does no longer contain all the
elements of the initial base (represented by {P̂i}), and thus does not have the
structure of a resolution of the identity–in particular the disjunction ∨{P̂i}nP̂i

of all its elements does not equal 1̂. This has the consequence that the Boolean

algebra generated from the reduced set {P̂i}n will contain elements–in partic-
ular the negation of all elements from {P̂i}n–not contained in the distributive
lattice generated from {P̂i}n. Therefore, H(Gn(O)) is to be represented by

the distributive lattice D({P̂i}n) generated from the set {P̂i}n rather than by
the Boolean algebra B({P̂i}n) since the latter is strictly larger than D({P̂i}n)
and thus its use would not be compatible with Whitehead’s dictum against

negative eternal objects (see Sections 2.2.2 and 8.1.3).

Now each self-adjoint operator A ∈ R(O) represents some local observable
and is in one-to-one correspondence with a resolution {Pi} ⊂ R(O) of the
identity 1. Thus if the resolution {P̂i} of the identity class 1̂, build from {Pi},
represents the base G(O) of a hierachy of subjective eternal objects, we have

26Note that each countable set {P̂i} with mutually compatible elements is itself included
in a distributive lattice based on such a resolution of 1̂: take, for example the most simple
case of two compatible elements P̂1 and P̂2, such that P̂1 ∧ P̂2 6= 0̂ and P̂1 ∨ P̂2 6= 1̂. Then
Q̂1 ≡ P̂1 ∧ P̂2, Q̂2 ≡ P̂1 ∧ (1̂−P̂2), Q̂3 ≡ P̂2 ∧ (1̂−P̂1) and Q̂4 ≡ 1̂− (P̂1 ∨ P̂2) are easily seen
to form a resolution of 1̂ from which P̂1 and P̂2 can be generated (as disjunctions of the Q̂i).
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reinterpreted the local observable in Whiteheadian terms, namely as the set

of possible ingressions of the subjective eternal objects belonging to the base

G(O). However, this reinterpretation is not possible for every local observable:

first of all, we have only taken into account discrete local observables, i.e. those

whose corresponding Boolean algebra of spectral projections is at most count-

able and thus is generated by a resolution of the identity. The reason for this

is that we have already argued above that only such distributive lattices or

Boolean algebras respectively, can be used to represent abstractive hierachies

of subjective eternal objects. Besides this general restriction of the reinter-

pretability of local observables to discrete ones, there is a second restriction.

For it can be the case that the resolution {P̂i} of the identity class 1̂, build
from {Pi}, does not represent the base of some hierachy at all. This is the
case if some of the subjective eternal objects in the set {P̂i} are not compatible
with one another. Recall from Section 8.2 that two subjective eternal objects

P̂1 and P̂2 are compatible iff there are projections P 0
1 ∈ P̂1, P 0

2 ∈ P̂2 such

that P 0
1 and P 02 commute (condition (CS1)) and there is at least one region

O ∈ D(M) such that both P̂1 and P̂2 can ingress into it, which means formally

that P 0
1, P

0
2 ∈ R(O) and P 0

1, P
0
2 /∈ R(O0) for all O0 ∈ D(M) with O0 ⊂ O holds

(condition (CS2)). As also argued in Section 8.2, the compatibility of subjective

eternal objects is necessary for the very existence of disjunctive eternal objects

having the former as components. Now that condition (CS1) is fulfilled by

the eternal objects {P̂i} is clear from the fact that the corresponding set of

projections {Pi} is a resolution of the identity and thus particularly a set of
mutually commuting projections. But condition (CS2) need not be fulfilled for

all pairs of subjective eternal objects in {P̂i}. And in case not all subjective
eternal objects in the set {P̂i} are mutually compatible with one another, they
simply do not constitute the base G(O) of a hierachy of subjective eternal

objects, whereas to the resolution {Pi} of the identity 1 corresponds a unique
local observable A, which therefore is not reinterpretable. Since it is not to

be expected that all commuting projections P1, P2 in R(O) fulfil the second
requirement (CS2) for the compatibility of the corresponding subjective eter-

nal objects P̂1 and P̂2, not all local observables will therefore be ontologically

relevant in our interpretation. Rather only those local observables–or bet-

ter: only those local self-adjoint operators–can be taken ontologically serious,
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which arise from a resolution {Pi} that gives rise to a set {P̂i} of compatible
subjective eternal objects.

However, such a restriction is not in itself a drawback for an interpreta-

tion of QT. Rather the usual interpretational assumption that each self-adjoint

operator does in fact represent some physically meaningful magnitude or ob-

servable is only made for mathematical convenience and because one simply

does not have any clear-cut criterion for singling out physically meaningful

operators from those which are not. Whether the restriction obtaining in our

interpretation can, however, be seen as (part of) such a criterion shall not be

discussed here. It should have merely been pointed out that the existence of

such a restriction on the ontological relevance of the whole set of self-adjoint

operators, does not in itself speak against an interpretation of QT.
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Chapter 9

The representation of the
underlying activity and its
manifestations

9.1 The underlying activity itself

As explained in detail in Section 2.3 and Section 2.4, the underlying activity

is the pure potential for all the activities involved in the other- as well as the

self-creative phases in the constitution of occasions. In itself this underlying

activity is formless, which means that it has no determinate creative character

and therefore cannot create any particular occasions. Put differently, the un-

derlying activity in itself cannot make any decisions for or against different spa-

tiotemporal or qualitative possibilities–it is the potential for the becoming of

occasions in general. The conditioning of the underlying activity–the “ground

state of activity”–needed for the production of one of its manifestation–an

“excitation” of this ground state–having a determinate creative character, is

due to the limitations laid upon it by its envisagement of the already actualized

occasions at the respective stage of the (infinitely old) world-process.

We have interpreted the creative character with which each manifestation

of the underlying activity is equipped due to its envisagement of occasions in

terms of propensities, i.e. objective single case probabilities. This means, in

particular, that the manifestation of the underlying activity arising from the

209
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latter’s envisaging of actuality Ws−1 at stage s of the world-process, i.e. the
activity ωWs, has to be represented in such a way that probabilities can be

assigned to subjective eternal objects P̂ . Therefore, the natural way of repre-

senting ωWs is by means of some state ρ. In this case one can (under certain

further constraints) interpret the value ρ(P 0) of P 0 ∈ P̂ as the propensity for

the ingression of P̂ into the corresponding region of the extensive continuum.

Moreover, all the conditioned activities

. . . , ωWs−1 , ωWs , ωWs+1 , . . .

each corresponding to some stage of the world-process, ultimately arise from

the conditioning of the one underlying activity ω by the aggregates of actual-

ized occasions

· · · ⊂Ws−1 ⊂Ws ⊂Ws+1 ⊂ · · · .

Therefore, the states which represent these activities should also arise by way

of a conditioning from one and the same state ρ0. Next we will argue that the

best choice for this state ρ0 is the vacuum state of QFT, that has been denoted

by ω (see Section 5.3).

First, the complete qualitative formlessness of some state ρ, i.e. its com-

plete indifference with respect to subjective eternal objects, would mean that

the value ρ(P ) is the same for all local projections. Yet each state is a prob-

ability measure over each Boolean algebra of projections which, in particular,

means that the values ρ(Pi) sum up to 1 for each resolution of the identity

{Pi}. But in case {Pi} is not finite, the latter is clearly not possible if ρ as-
signs the same value to each element of {Pi}. Thus there is no state that is
completely formless in regard to all qualitative possibilities, i.e. all subjective

eternal objects. Yet the vacuum state ω is among those states which come

closest to this desired qualitative formlessness. One can show that the vacuum

state assigns to each local projection a value strictly between 0 and 1, i.e.

0 < ω(P ) < 1 for all P ∈ Ploc (see e.g. Redhead 1995). Thus by reason of the

“only-if” part of the eigenvalue-eigenstate rule that says that P is definite with

respect to ω only if ω(P ) = 0 or 1, and that has to be accepted if ω(P ) shall

be interpretable as an ontic probability (see Section 8.1.6), and thus in partic-

ular as a propensity, every subjective eternal object is indefinite with respect to

ω. Therefore, the vacuum state is indifferent in respect to subjective eternal
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objects at least in the sense that all of them are alike indefinite. However, ω is

not the only state in respect to which all P ∈ Ploc are indefinite–all so-called

states of bounded energy are of this type (see Haag 1996, Theorem 5.3.2).1

Nevertheless, the vacuum state is among the states which seem to be the best

available choices for making sense of the formlessness Whitehead attributes to

the underlying activity in respect to subjective eternal objects.

What distinguishes the vacuum state ω from all other states which are

maximally qualitatively formless is the fact that it is the unique state which is

maximally–though again not completely–formless with respect to spatiotem-

poral regions. Because of its Poincaré invariance the vacuum state is indifferent

with respect to all regions connected by Poincaré transformations. However,

since the Poincaré invariance of ω does not say anything about regions not

connected by such transformations, the vacuum state cannot be said to be

completely formless in this spatiotemporal sense. Yet it is the only Poincaré

invariant state on B(H), so that each different state is spatiotemporally less
indifferent and therefore the vacuum state is the best choice in this respect.

Moreover, the Poincaré invariance of the vacuum state ω makes it the unique

energetic ground state of the world (see Appendix C), which is another reason

for representing the underlying activity–the “activity ground state” of the

world–by the vacuum state.

A further argument for this interpretive claim is the fact that each pure

state ρ on B(H) can be approximated as closely as one likes by the conditioning
of some (fixed) state of bounded energy by an appropriate local operator A ∈
R(O), where O is an arbitrary bounded region (Reeh and Schlieder 1961).

This result, known as the Reeh-Schlieder theorem, in particular implies that

any given pure state can be approximated to any degree of accuracy by a

conditioning of the vacuum state due to an appropriate local operator A ∈
R(O). Disregarding the arbitrarily

1A state of bounded energy is one for which the expected value of the energy-momentum
operator is finite.
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small error, one can thus interpret each pure state as being just an excita-

tion of the vacuum state produced by the latter’s conditioning

ω → ω(A∗ ·A)
ω(A∗A)

by some appropriate A ∈ Aloc (see e.g. Redhead 1995 and Clifton and Halvor-

son 2001). Since each limited activity involved in the world-process can likewise

be understood as an excitation of the underlying activity (see Section 2.3.4),

this is another point in favour for the representation of the underlying activity

by the vacuum state. In sum, then, it seems that the vacuum state is indeed

the best available choice for representing Whitehead’s underlying activity.

The conditioning of the underlying activity due to its envisaging a com-

pleted occasion E whose spacetime region is O and whose definiteness is given
by the subjective eternal object P̂ can thus be represented by the conditioning

of the vacuum state ω by the projection that represents the ingression of P̂ in

region O. For notational simplicity we assume that it is the projection P that
is used to denote P̂ that also represents P̂ ’s possible ingression in region O.
Then the conditioning of the underlying activity due to its envisaging occasion

E is represented by the state-collapse2

ω → ωP ≡
hPΩ, ·PΩi
hPΩ, PΩi =

ω(P · P )
ω(P )

. (9.1)

Recall that the act of envisagement of a completed occasion by the underly-

ing activity is at the same time the formers actualization (see Section 2.3.3).

Therefore, state-collapses (9.1) are the representatives for acts of actualization,

too.

The envisaging and thus the actualization of yet another completed occa-

sion E0 = (O0, P̂ 0) thus leads, via the collapse ω → ωP 0P , to the state

ωP 0P =
ω(PP 0 · P 0P )
ω(PP 0P )

(9.2)

representing the activity arising from the joint envisagement of the occasions

E and E0 by the underlying activity. Note that because of the self-adjointness

2The denominator hPΩ, PΩi = hΩ, PΩi = ω(P ) merely accounts for the normalization
(i.e. ωP (1) = 1) of the collapsed state.
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and idempotence of projections (i.e. P = P ∗ = P 2) one can (by noting that

PP 0 = P ∗P 0∗ = (P 0P )∗) also write (9.2) in the form

ωP 0P =
ω((P 0P )∗ · P 0P ))
ω((P 0P )∗(P 0P ))

(9.3)

which will turn out to be convenient below, when we will generalize (9.3) to

infinitely many occasion.

9.2 The manifestation of the underlying activ-

ity at some stage of the world-process

We will now show how one can represent the aggregate of all the actualized

occasions and the thereby produced manifestation of the underlying activity

corresponding to some stage of the world-process. Since the world-process is

infinitely old, actuality at each of its stages consists of infinitely many occa-

sions. Assume that actuality Ws−1 at stage s of the world-process consists

of the occasions Ei(t) = (Oi(t), P̂i(t)), where the argument t of the index indi-

cates the stage to which the occasion belongs (i.e. −∞ ≤ t ≤ s− 1) and the
index i(t) itself numbers the occasions belonging to stage t (i.e., in general,

i(t) ∈ N). The aggregateWs−1 of all the actualized occasions at stage s is then
represented by the sequence

Ws−1 =
¡©
Ei(t)

ª¢
−∞≤t≤s−1 . (9.4)

That all occasions belonging to the same stage of the world-process are co-

envisaged by the underlying activity, i.e. have been and will ever be envisaged

together, so that no order of envisagement is defined among them, is displayed

by representing each single stage t by a set {Ei(t)} and not by a sequence of
occasions.

Now by generalizing (9.3), the conditioned activity ωWs−1 at stage s of

the world-process is therefore to be represented by the state arising from the
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vacuum state ω due to the latter’s conditioning by the infinite product3

W (s−1) ≡
Y

−∞≤t≤s−1

Y
i(t)

Pi(t)

 =

Y
i(s−1)

Pi(s−1)

Y
i(s−2)

Pi(s−2)

 · · · (9.5)
of the corresponding projections, where Pi(t) represents the ingression of the

subjective eternal object P̂i(t) into the region Oi(t).4 However, because of the

spacelike commutativity the order of two projections Pi(t0) and Pi(t) in this

product is only important if one region, Oi(t0) say, belongs to the backward

lightcone of the other Oi(t),5 in which case Pi(t0) has to appear to the right of

Pi(t) in the product (9.5). Thus even if t0 < t but Oi(t0) and Oi(t) are spacelike

separated, Pi(t0) and Pi(t) will commute and one can easily show that (9.5) is in

fact independent of their order. Consequently, (9.5) does not incorporate the

full structure inherent in (9.4). In other words, the spacelike commutativity

axiom of QFT does not fit quite well with the idea of the world as consist-

ing of layers, for it does not distinguish between spacelike separated occasions

belonging to different layers. However, this does not introduce a new tension

into our Whiteheadian interpretation of QFT. This is because the spacelike

commutativity axiom is motivated by the relativistic metric, and as already

argued earlier, the relativistic metric neither distinguishes between spacelike

separated regions. Therefore, the root of the loss of structure in the transition

from the sequence (9.4) to the operator (9.5) relies on the use of the relativis-

tic metric in QFT. Therefore, it does not introduce a new problem into our

interpretation, over and above the ones stemming from the conflict with STR

(see Section 2.8).

That the operator W (s − 1) in (9.5) does not reveal the full structure of
(9.4), implies that this is likewise the case for the corresponding manifestation

ωWs of the underlying activity, which (by generalizing (9.3)) is to be represented

3Note that W (s−1) will not itself be a self-adjoint operator (i.e. W (s−1)∗ 6=W (s−1))
or even a projection operator, since it will, in general, contain non-commuting projections.

4For the sake of notational simplicity, we again assume that the projection Pi(t) used to
denote the class P̂i(t), is already the one that represents the possible ingression of P̂i(t) into

region Oi(t).
5Note that the case of occasions overlapping the backward lightcone of other occasions

without being included in it, is excluded by our definiton of the spatiotemporal past together
with the corresponding assumptions made in Section 2.7.2.
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by the state

ωs−1 ≡
ω(W (s− 1)∗ ·W (s− 1))
ω(W (s− 1)∗W (s− 1)) . (9.6)

Thus according to (9.6) only the occasions’ final qualitative determinateness–

its final definiteness–represented by the corresponding projections and their

relatedness as spacelike or timelike separated from one another, matters for

ωs−1. Since the activity ωWs−1 is the “vehicle” by which the causal influences

from those occasions from Ws−1 which are relevant for ωWs−1, i.e. which are

not causally ineffective, are “transmitted” to their effects, only these aspects

of actualized occasions are therefore causally relevant.

However, this does not mean that the causally irrelevant aspects of occa-

sions, i.e. their spatiotemporal determinateness as far as it goes beyond their

relatedness as timelike or spacelike separated, get lost when the occasions get

actualized. For we have argued in Section 2.3.4 that one can consistently hold

that completed occasion are faithfully retained within the extensive contin-

uum rather than in some activity. Thus QFT seems to support the view, also

proposed by Nobo in WM, that Whitehead’s doctrine that every completed

occasion “remain[s] with the creativity” (RM, p. 92) has to be modified.

As already mentioned in Section 2.3.4 for Nobo this is the starting point for

the more far reaching interpretational claim according to which the underlying

activity and the extensive continuum are not two different entities but rather

merely two aspects of one and the same ultimate reality, termed the extenso-

creative matrix. However, we will not enter into the discussion whether this

further claim can also be supported by the formalism of AQFT. Only one

point shall be mentioned here, namely that the defining characteristics of the

vacuum state ω (the representative of the underlying activity) is its Poincaré

invariance, so that by letting the extensive continuum be equipped with the

relativistic metric, there is indeed a very intimate connection between the

extensive continuum (represented by Minkowski space) and the underlying

activity, that can count as supporting Nobo’s claim.
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9.3 Reinterpreting probability statements of

the physical interpretation

Together with the representation of abstractive hierachies from Section 8.3.2,

we are now in a position to reinterpret the probability statements provided

by the physical interpretation of AQFT (see Section 8.1.5). However, such a

reinterpretation is not possible in every case. First, we have argued in Section

8.3.2 that not every local observable is ontological meaningful within our inter-

pretation. Consequently, we can only reinterpret those probability statements

involving meaningful ones, i.e. local observables A ∈ R(O) whose correspond-
ing resolution of the identity {Pi} is such that the corresponding subjective
eternal objects {P̂i} can all ingress into region O (i.e. fulfil condition (CS2)

from Section 8.2 with respect to O) and thus are mutually compatible as well
as compatible with the objective eternal object bO.
Above we have moreover seen that not all states either are ontologically

meaningful within our interpretation. Only those states which arise form the

vacuum state by a conditioning of the from (9.6) have an ontological mean-

ing, namely as manifestations of the underlying activity at some stage of the

world-process. Thus there is another restriction on the reinterpretability of

probability statements arising from the restriction to a certain subset of states.

However, if the resolution {Pi} of the identity 1 corresponding to the local ob-
servable A ∈ R(O) is ontologically meaningful, so that the Boolean algebra
B({P̂i}) represents the subjective part H(G(O)) of the initial hierachy in-
gressed into some region of some stage s of the world-process, and the state ρ

represents the initial activity ωc
Ws−1 for the corresponding concrescence process

at the same stage, the probability for finding the value of A in the set D upon

measurement of A on a system in state ρ, i.e.

probρ(A ∈ D) = ρ(PD), (9.7)

can be reinterpreted as the propensity provided by the creative character of the

activity ωc
Ws−1 (represented by ρ) for the unrestricted ingression of the sub-

jective eternal object represented by P̂D ∈ B({P̂i}) into the region O, given
that the region and the hierachy H(G(O)) (represented by B({P̂i})) have been
realized in the forgoing transition process. The reinterpretation of joint prob-
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abilities proceeds analogously. However, a joint probability such as

probρ(A ∈ D ∧B ∈ E) = ρ(PA
DP

B
E ) (9.8)

is only ontologically meaningful if the two occasions/regions referred to belong

to the same layer of the world-process, for otherwise the same activity, repre-

sented by the state ρ, could not provide propensities for both. If this is the

case, (9.8) can be reinterpreted as the propensity provided by the creative char-

acter of the activity ωc
Ws−1 (represented by ρ) for the unrestricted ingression of

the subjective eternal object represented by P̂A
D ∈ B({P̂A

i }) into the region O
and for the unrestricted ingression of the subjective eternal object represented

by P̂B
E ∈ B({P̂B

i }) into the region O0, given that these regions and the hier-
achies H(G(O)) and H(G(O0)) (represented by B({P̂A

i }) and B({P̂B
i })) have

been realized in the forgoing collective transition process.

Thus we have reinterpreted certain probability statements of the physical

interpretation of QFT by means of the propensities provided by the creative

characters of the activities at the first phase of concrescence processes. What

about the later phases of concrescence? Can the creative character of the ac-

tivities corresponding to these later phases also be interpreted as providing

propensities for the unrestricted ingression of the subjective eternal objects

not eliminated up to that phase? The particular states that will be used to

represent the activities ωc,n
Ws−1 (n ≥ 1) for the different phases of a concrescence

process need not be discussed here. This topic can be postponed to Chapter

11, where the representation of concrescence processes will be investigated sys-

tematically. For even without this information, it seems already clear at this

point that strictly speaking probability statements do not make sense for con-

crescence phases other than the initial one. This is because the corresponding

hierachies of subjective eternal objects H(Gn(O)) (n ≥ 2) are not represented
by Boolean algebras or by distributive lattices coinciding as sets with Boolean

algebras (see Section 8.4), so that the states representing the corresponding ac-

tivities will not be probability measures on them (see Section 8.1.5). However,

this would mean that the creative character of the corresponding activities can-

not be interpreted as providing propensities for the unrestricted ingression of

the elements of H(Gn(O)), at least if propensities are understood as a special
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kind of probabilities.6

Yet there are two reasons why we should think of this topic in a more lib-

eral way, allowing to speak of the creative characters of these later activities as

likewise providing propensities. First of all, the non-Boolean structure of the

hierachies H(Gn(O)) for n ≥ 2 has a quite harmless origin. It simply stems
from the fact that the base Gn(O)) contains less elements than the base G(O)

of the initial hierachy and not from a severe structural deficit like the non-

definability of disjunctions of certain elements of Gn(O))–H(Gn(O)) has still

the structure of a distributive lattice and thus is embeddable into a Boolean

algebra, particularly into the initial hierachyH(G(O)) that is Boolean. There-

fore, the only requirement on standard probabilities not satisfied by the values

a state ρ ascribes to the elements of the distributive lattice D({Pi}n), that
is assumed to represent the possible ingressions of elements of the hierachy

H(Gn(O)) into region O, is that ρ(∨iPi) < 1 instead of = 1, whereas the

other two requirements on standard probabilities are still satisfied (see Section

8.1.5). Since moreover the creative character of the activity at the beginning

of the concrescence is the same as the creative character of all later phases,

each element of H(Gn(O)) has the same “likeliness” for its final unrestricted

ingression than it had qua member of the initial hierachy H(G(O)). And in

case of the latter this same “likeliness” could been interpreted as a propensity.

Therefore, it seems reasonable still to speak of the creative characters of the

activities of later phases of concrescence as providing propensities for the unre-

stricted ingression of the elements of the corresponding hierachies of subjective

eternal objects–despite the fact that strictly speaking such an interpretation

is not possible if propensities are supposed to be a special kind of standard

probabilities.

However, it is clear that this more liberal understanding of propensities does

not enlarge the class of probability statements of the physical interpretation

which can be reinterpreted in the framework of Whitehead’s ontology. This

is because in the physical interpretation, probability statements are bound to

Boolean algebras of projections corresponding to observables, so that they can

only be reinterpreted in terms of the propensities provided for the subjective

eternal objects of the initial hierachies of concrescent occasions.

6For a different understanding of propensities see e.g. (Salmon 1984).



Chapter 10

The representation of transition
processes

10.1 The dative phase I

Transition processes are the non-spatiotemporal, mechanisms by which the

causal efficiency of occasions is transmitted to the future. A transition process

takes rise from the limited manifestation ωWs−1 of the underlying activity ω

produced by the latter’s envisagement of (and thus conditioning by) actuality

Ws−1 at some stage s. The activity for the transition process leading to stage s
of the world-process is therefore ωWs−1 . In the first phase, the dative phase, of

this transition process a new spatiotemporal layer of actuality is created, i.e. a

new group of mutually spacelike separated, bounded spacetime regions Oi(s),

i(s) = 1, 2, . . . , N .1 These regions are determined by Ws−1 via the creative
character impressed on ωWs−1 and each of the new regions Oi(s) has to belong

to the spatiotemporal future of Ws−1. Therefore, we have to find a mechanism
within the formalism of AQFT that can account for the determination of such

a group of regions on the basis of a given state of the form ωs−1 (see equation
(9.6)).

Now there is no a priori connection between states and (subsets of) Minkowski

space M , that could be used to single out subsets of M from a given state ρ.

This is because states are defined as certain maps from B(H) into the complex
1N may be finite or infinite.
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numbers and thus the only way of singling out subsets of M on the basis of a

given state ρ is via its restriction ρ|R(O) to the subalgebras R(O) ⊆ B(H) asso-
ciated with regions O ⊆M . But singling out a region O via the restriction of

a state ρ to the algebra R(O) associated to this region, is clearly only possible
if fixing the algebra R(O) also fixes a unique O ⊂M . In other words, it pre-

supposes that O1 6= O2 implies R(O1) 6= R(O2), i.e. that the correspondence

O 7→ R(O) is one-to-one. We are only interested in bounded regions and have
moreover restricted the domain of the correspondence O 7→ R(O) to the set
of double cones D(M). We will now show that in this case the correspondence

O 7→ R(O) is in fact one-to-one, so that fixing the local algebra R(O) also
fixes a unique O ∈ D(M). We therefore have to show that from O1 6= O2
(O1,O2 ∈ D(M)) it follows R(O1) 6= R(O2). Now O1 6= O2 implies that there
exists a O ∈ D(M) such that either O ⊂ O1 and the closures of O and O2 are
disjoint, i.e. O∩O2 = ∅, or O ⊂ O2 and O∩O1 = ∅. Let us assume that the
first case obtains; the second one can obviously treated in complete analogy. As

already mentioned in Section 8.1.7, O∩O2 = ∅ implies R(O) ∩R(O2) = C1.
But then R(O1) 6= R(O2) must hold too, because otherwise one would have

R(O) ⊂ R(O1) = R(O2), so that with R(O) ∩R(O2) = C1 it would follow
that R(O) = C1. The latter can, however, not be the case for any O ∈ D(M)

(see e.g. Horuzhy 1990, Lemma 1.3.10).

Now since we have represented subjective eternal objects by certain classes

of local projections, only the projections contained in the local algebra of region

O should be relevant for the question whether the latter will be realized in some
stage of the world-process. That this is indeed the case stems from the fact

that the set of all projections in a von Neumann algebra already generates the

latter (Kadison and Ringrose 1983, p. 326), so that the set of projections in

R(O), term it P(O), is already sufficient for the unique determination of the
region O ∈ D(M).

Now one may think that the setP(O) of all local projections associated with
regionO ∈ D(M) still contains elements which will not be relevant for question

whether region O will be realized in some stage of the world-process. Put

conversely, one may think that only those projections in P(O) will be relevant
for this question, which represent possible ingressions of subjective eternal

objects in region O. That, in general, not all projections in P(O) do represent
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such possible ingressions into region O, stems from the Whiteheadian demand
that subjective eternal objects which are ingressed into a region do indifferently

belong to the whole region and not merely to one of its subregions (see Section

2.2.1). We have argued in Section 8.2 that therefore a local projection can

only represent a possible ingression of a subjective eternal object in region

O if, besides belonging to R(O), it does not belong to the algebra of any
subregion O0 ⊂ O. In other words, not all classes P̂ where P (or another

element P 0 ∈ P̂ ) belongs to P(O) represent subjective eternal objects which
can ingress into region O, but only those classes which contain a projection
from P(O) that does not also belong to any subregion of O. This expression
of the ingressibility of subjective eternal objects into regions had been called

(ING) in Section 8.2. Let us denote the subset of local projections of region

O which give rise to classes representing subjective eternal objects which can

ingress into this region by PING(O).
Yet we cannot simply use the restriction of a state to the sets PING(O)

for singling out the regions to be realized in the dative phase of a transition

process. This is because it is to be expected that the set PING(O) will generally
be too small to uniquely determine the set of all projections associated with

region O ∈ D(M) and thus will not be sufficient to uniquely determine the

region O. Therefore, in singling out the regions to be realized in the dative
phase of the transition process at stage s of the world-process, we have to

use the restrictions of the state ωs−1 (representing the relevant activity ωWs−1)

to the set of all projections in the corresponding algebra R(O). Thus what
QFT tells us is that for the determination of a region in the dative phase

of a transition process it is not sufficient to know all the subjective eternal

objects which can ingress into this region; rather one has to know likewise

which subjective eternal objects can ingress into its subregions.

Therefore, the state ωs−1 and its restrictions ωs−1|P(O) to the sets of all
projections associated with double cones O ∈ D(M) will be the basic ingredi-

ents in singling out a unique set {Oi(s)} of mutually spacelike separated double
cones in the future of Ws−1. However, contrary to the state ωs−1 (on B(H)),
its restrictions (to subsets of B(H)) are not yet supplied with any ontological
meaning. As shall be argued next, some such restrictions can be interpreted

as spatiotemporal perspectives onto the undivided activity ωWs−1 represented
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by the state ωs−1 and others as the activity arising from a reduction of the

amount of the activity ωWs−1 .

The doctrine of perspectiveness and the reduction of the amount of
an activity

Whitehead’s original theory incorporates a doctrine that has not been dis-

cussed so far, but is important for our present task. For reasons that will

become clear in a moment we will call this doctrine the doctrine of perspective-

ness. It says that two (or more) occasions, even if they arise from the same

causal past can nevertheless be causally influenced by this common past in

different ways. This is what Whitehead tells us in the following quotation.

[According to the doctrine of actual worlds] it is not wholly true

that two contemporaries A and B enjoy a common past. [But] even

if the occasions in the past of A be identical with the occasions

in the past of B, yet A and B by reason of their difference of

[extensive] status, enjoy that past under a difference of perspective

[...]. Thus the objective immortality of the past in A differs form

the objective immortality of the same past in B. (AI, p. 196; italics

added)

Thus the reason for the difference in the objective immortality of the same

past lies in the different extensive respectively spatiotemporal relations the

different regions OA and OB of the occasions A and B bear to the occasions

in their common past–in the different extensive respectively spatiotemporal

perspective on the same past (see also PR, p. 61, 67). Now the objective im-

mortality of past occasions is their being restored in the extensive continuum

together with their thereof resulting ability to contribute to the manifestations

of the underlying activity at each later stage of the world-process, that makes

them available as causes for far removed future occasions (see Section 2.3.4).

As a consequence of our postulation of generally undivided, bifurcating activi-

ties all occasions belonging to the same stage, s say, of the world-process have

the same causal past, given by some subset of Ws−1. The manifestation of the
underlying activity produced by the envisagement of this past is ωWs−1. The
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contribution to this manifestation ωWs−1 is the objective immortality of the

past occasions for the new occasions to be created in stage s. Therefore, the

different restrictions ωs−1|P(Oi(s))
of the state ωs−1 to the sets of projections of

regions Oi(s) ∈ D(M) in the future of Ws−1 make sense of the statement that
the new occasions of stage s “by reason of their difference of [extensive or spa-

tiotemporal] status, enjoy that past under a difference of perspective”. In other

words, the restrictions ωs−1|P(Oi(s))
can naturally be interpreted as arising from

the different spatiotemporal perspectives onto the same activity ωWs−1 produced

by this common past. However, such perspectives obviously presuppose that

the corresponding regions Oi(s) are already realized. And since this is the case

only after the dative phase of transition, the restrictions ωs−1|P(Oi(s))
cannot

be interpreted as perspectives onto the initial activity ωWs−1 at the beginning

of the dative phase, but rather have to be understood as perspectives onto the

activity ωd
Ws−1 at its ending.

For the latter activity itself, i.e. the outcome activity ωd
Ws−1 of the dative

phase, we propose the following representation (that will be motivated below):

it shall be represented by the restriction of the state ωs−1 (representing the
initial activity ωWs−1 at stage s) to the product, or what amounts to the same,

to the conjunction Q
i(s)P(Oi(s)) = ∧i(s)P(Oi(s))

of the sets P(Oi(s)) corresponding to the new regions {Oi(s)} created in the
dative phase of stage s, i.e. by

ωs−1|∧i(s)P(Oi(s)). (10.1)

That products of projections from different sets P(Oi(s)) are well-defined and

can moreover be interpreted as conjunctions, relies on the mutual spacelike

separateness of the regions {Oi(s)} that implies the mutual commutativity of
the sets P(Oi(s)). That only conjunction of projections associated with dif-

ferent regions Oj, Ok of the same layer of the world-process is of interest in

what follows, but not their disjunction, is because the latter does contain “less

information” about the the actual definiteness of regions Oj and Ok than the

conjunction, so that only the conjunction is of ontological interest. In other

words, what matters for the world-process in connection with the subjective
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eternal objects ingressed into the regions Oj, Ok, is the answer to the ques-

tion “what is the definiteness of region Oj and the definiteness of region Ok

”, but not the question what the definiteness of region Oj or the definiteness

of region Ok is, since an answer to this latter question only contains more

information than the answer to the question for the definiteness of a single of

these regions if the answer to the “conjunctive question” is also given. Note

that a conjunction of projections belonging to different regions does not repre-

sent a possible ingression of a conjunctive subjective eternal object. We have

restricted our scope to subjective eternal objects which are monadic, i.e. non-

relational, universals and thus do only characterize single occasions/regions

(see Section 2.2).2 Thus contrary to the case where Pj ∧ Pk represents a pos-

sible ingression of a single (conjunctive) subjective eternal object, in case Pj

and Pk do represent possible ingressions of different subjective eternal objects

in different regions, their conjunction does not have an existential status that

goes beyond that of the possible ingressions Pj and Pk in isolation from each

other (see also Section 2.2.3).

Now why should we represent the activity at the end of the dative phase

by the restriction (10.1) of the state ωs−1 at all? First, the difference between
the activities before and after some phase of transition or concrescence is just

the reduced amount of the latter activity, whereas the creative character is un-

changed (see also Section 2.3.1 as well Section 2.6.2). And since the restriction

of a state to a subset of its domain does not change the states functional form,

such a restriction will arguably not involve a change in the creative charac-

ter of the corresponding activity. Moreover, what takes place in all phases of

transition and concrescence, is in effect a reduction of possibilities. In par-

ticular, in the dative phase of the transition process at stage s, a single set

{Oi(s)} of mutually spacelike separated regions in the future of Ws−1, out of
the uncountable infinity of other such sets, is realized, whereby all other ini-

tially possible sets are ruled out for realization. And according to Section 2.4.1

each such act of reduction of possibilities involves a reduction of the amount

of the corresponding activity, even if it does not involve a genuine decision

of this activity. The operation of restricting the domain of the corresponding

2Apart from this we have for reasons of ontological economy abandoned conjunctive
subjective eternal objects anyway–even monadic ones (see Section 8.3.3).
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state quite nicely reflects such a reduction of possibilities, because the elements

which are eliminated from its domain are no longer ascribed probabilities to by

this state and thus they are no longer possibilities. Now, as explained above,

there is no direct connection between states on B(H) and spacetime regions.
Rather the best such connection is the one mediated by the one-to-one corre-

spondence between double cones and their local algebras or equivalently the

sets of projections included in the latter. Therefore, it seems quite reasonable

to represent the realization of the set of regions {Oi(s)} by the restriction of
the state ωs−1 on B(H) (representing the activity at the beginning of the da-
tive phase) to the conjunction of the sets of projections P(Oi(s)) which are in

one-to-one correspondence with these regions, i.e. by (10.1).

The further restriction of the state ωs−1|∧i(s)P(Oi(s)) to one of the setP(Oi(s)),

say P(Oj), results in the state

(ωs−1|∧i(s)P(Oi(s)))|P(Oj)
= ωs−1|P(Oj)

,

which is, however, not interpreted as a further reduction of the amount of activ-

ity. Rather, as proposed above, the resulting state ωs−1|P(Oj)
is interpreted as a

perspective onto the undivided activity ωd
Ws−1 represented by ωs−1|∧i(s)P(Oi(s)).

Note that this different interpretation of the restriction of a state to some sub-

set of its domain, does not introduce an inconsistency into our interpretation.

Nor is it an exceptional case that one and the same mathematical object or

operation is used to represent different physical structures. Rather it is quite

usual that one and the same mathematical structure is interpreted in different

ways within one and the same physical theory (see e.g. Schröter 1996). For

example, think of the different interpretations of the real numbers within QM

or QFT: they are interpreted as the possible values of (infinitely many) dif-

ferent magnitudes and moreover as time points, which is especially interesting

because time is not a magnitude at all and thus belongs to a completely differ-

ent ontological category. Moreover, projection operators too, have a bivalent

interpretation. On the one hand, they represent properties and on the other

hand states via the formula ρ = Tr(P ·). Our bivalent use of the restriction of
states, in some cases as perspectives onto an activity and in other cases as an

activity reduced in amount, seems therefore likewise justified.
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It is important to notice that the interpretation of the restrictions ωs−1|P(Oi(s))

as perspectives onto one and the same activity, does not presuppose that this

activity is divided into partial activities, let alone particularized ones. This

is important, because we have assumed that such a division is at the earli-

est possible for the activity ωc
Ws−1 left after the transition process. Thus the

perspectives (represented by) ωs−1|P(Oi(s))
are not distinct parts of the activity

ωd
Ws−1 (represented by ωs−1|∧i(s)P(Oi(s))) and thus are not themselves activities.

Rather they are relations between the regions Oi(s) and the activity ωd
Ws−1,

which express the causal efficiency of the common past for each of these re-

gions abstracted from that for all the other regions. As we will moreover see

in the following section, QFT allows for an interpretation of an activity as

divided into partial activities only under very special circumstances, whereas

in the generic case such an interpretation is not possible. Thus, quite sur-

prisingly, though Whitehead did not envisage the need for undivided activities

within his ontology, his original theory includes a doctrine that seems to be

ready made for such a conception.

The formulation of the doctrine of perspectiveness by Whitehead is, how-

ever, far more surprising–even puzzling–in the light of the fact that White-

head did not even believe in the possibility of two (or more) contemporary

occasions arising from the same past (see e.g. the above quote). He introduced

his doctrine of actual worlds precisely to abandon this possibility from his on-

tology. And if the doctrine of actual worlds is valid, the further doctrine of

perspectiveness is rendered completely functionless. For if Ws−1 were divided
into different actual worldsWs−1(i) each giving rise to its own distinct manifes-
tation ωWs−1(i) of the underlying activity, i.e. if ωWs−1 were simply the “sum”

of these distinct partial activities ωWs−1(i), there were no need for further spa-

tiotemporal perspectives. This is because, according to Whitehead, after the

dative phases of the corresponding transition processes, these partial activities

are even particularized ωd
Ws−1(Oi), so that ωd

Ws−1 is the “sum” of spatiotempo-

rally localized parts (see Section 2.4.1). But then each of these parts already

provides much more than a mere a spatiotemporal perspective onto the past–

it is a spatiotemporal part of the activity produced by this past. Therefore, it

is quite puzzling what the genuine function of the doctrine of perspectiveness

shall be if at the same time the stronger doctrine of actual worlds is upheld.



10.2. BELL’S THEOREM, NON-SEPARABILITY, AND ALL THAT 227

Before we can return to the main question of the present section, namely

how one can single out a set of spacelike separated regions in the future ofWs−1,
we have to discuss in some detail when QFT allows for the interpretation of

states as consisting of distinct parts. This is because the mechanism we will

propose for the determination of such regions in Section 10.3, will refer to the

divisibility of the activity ωd
Ws−1 into partial activities. The following discussion

will show that our modification of Whitehead’s ontology by means of generally

undivided, bifurcating activities is well supported by the formalism QFT.

10.2 Bell’s theorem, non-separability, and all

that

For convenience we will start the present investigation within the framework

of QM and explain later on how the obtained results take over to QFT.

10.2.1 The EPR-experiment

In QM the Hilbert space of a system consisting of two distinguishable subsys-

tems, i.e. to systems which differ in their state independent properties like

mass, charge etc., is the tensor product H1⊗ H2 of the Hilbert spaces asso-

ciated with system 1 and 2 respectively (see Appendix B.1). The algebra of

all observables of the total system is thus given by B(H1 ⊗H2) and the ob-

servables of system 1 and 2 alone are given by the commuting subalgebras

B(H1) ⊗ 12 and 11⊗ B(H2) where 11 and 12 are the identity operators in

B(H1) and B(H2) respectively. Since in what follows it will always be clear

which observable belongs to which of the two subsystems we will simply omit

the trivial tensor product factors 11 and 12 in all operators.

Now let us consider the following experimental setup, known as EPR-

experiment named after the physicists A. Einstein, B. Podolsky and N. Rosen

who first introduced it into the discussion about the interpretation of QM

(Einstein, Podolsky and Rosen 1935):3 consider two distinguishable systems,

for simplicity henceforth called particles, with spin 1/2 (e.g. an electron and
3In fact the experimental situation conceived by them sligthly differs from the one we will

investigate here, which is the version of the EPR-experiment due to (Bohm 1951) involving
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a muon) which are prepared in the so-called singlet state ρS ≡ hψS, ·ψSi gen-
erated by the unit vector

ψS ≡
1√
2
(ψ↑1 ⊗ ψ↓2 − ψ↓1 ⊗ ψ↑2), (10.2)

where ψ↑i , ψ
↓
i are the two orthogonal eigenstates of spin 1/2-systems, corre-

sponding to spin up ↑ and down ↓ in some given direction. The factor 1/
√
2 is

merely needed for the normalization of the resulting state ρS = hψS, ·ψSi. Two
particles in this state can be prepared by a suitable decay of a spin 0-system.

After this preparation the two particles move in opposite directions, so that at

some time t after their emission they are spacelike separated from one another.

Thus if causal influences are believed to propagate at most with the speed of

light, the two particles are causally independent from each other. Now suppose

each particle reaches a measurement device (i.e. a Stern-Gerlach magnet) by

which the spin in some direction perpendicular to its path is measured. The

probability prescribed by the singlet state ρS to the possible results (up and

down) of a measurement of the spin of particle i in some arbitrary direction

is 1/2. Assume that both measurements are made in the same direction, the

z-direction with respect to a fixed spatial reference frame say. Then, if the

measurement of the spin of particle 1 leads to the result up, corresponding to

the projection P ↑z1 , that of particle 2 must give the result down P ↓z2 , and vice
versa, since the joint probabilities ρS(P

↑z
1 P ↓z2 ) and ρS(P

↓z
1 P ↑z2 ) prescribed by

the singlet state are 1. Thus the results of spin measurements of the two par-

ticles in direction z are strictly anticorrelated. This result may seem obvious

because of the conservation of the total angular momentum, that in our case,

coincides with the zero total spin of the compound system. But this overlooks

two points: first, the spin of a spin 1/2-system can only take the to values up

or down–there are no “intermediate” possible values. Thus unlike a classical

angular momentum, the result of a spin measurement in some direction always

leads to the spin being parallel or antiparallel to this direction. And second,

the state ρS is rotational invariant, so that if instead of the z-direction the spin

of the two particles had been measured in any other direction, the x-direction

say, the same anticorrelation, this time between P ↓x1 , P ↑x2 and P ↑x1 , P ↓x2 respec-

tively, would obtain. Therefore, the fact that the results of spin measurements

spin instead of position and momentum.
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of particles 1 and 2 are always antiparallel to one another, independently from

the chosen direction in which spin is measured is indeed strange. For if the

spacelike separation between the two measurements prohibits the propagation

of causal influences, and thus too of signals, between them, how can the two

particles always manage to show antiparallel spins regardless of the (common)

direction in which their spins are measured?

Now there is a possibility for how the particles can do the trick: it may be

the case that the quantum mechanical description of the situation is not com-

plete in that there are further parameters, not accounted for by the formalism

of QM, which can explain the strict anticorrelations in the EPR-experiment.

That the quantum mechanical description of the world is incomplete in this

sense is the conclusion Einstein, Podolsky and Rosen have drawn from the

above situation, albeit by a slightly different line of argument. Since such

hypothetical supplementary parameters are not accessible within the concep-

tual framework of QM, they are termed hidden parameters or interchangeably

hidden variables. Since QM is empirically well confirmed, hidden parameter

theories (HP-theories) must, however, reproduce the empirical predictions of

QM (see e.g. Auletta 2001, p. 543 f). However, it is quite easy to conceive

such a HP-model for the EPR-experiment. Each of the two particles could

come equipped with spin values (up or down) in any arbitrary direction, and

to account for the strict anticorrelations, the values assigned to the two par-

ticles for a given direction must be different. To account for the probability

1/2 prescribed by QM on the basis of the state ρS to the results of the in-

dividual spin measurements on each particle, one can assume that the source

that emits the particles produces the same fraction of particles equipped with

the value up for a given direction as particles with the value down for this

direction. Note that this HP-theory goes beyond QM in that it assumes that

a particle can possess definite values of non-commuting observables, namely

of the spin observables corresponding to different directions, at the same time.

However, it provides an explanation for the strict anticorrelations predicted by

QMwithout introducing any superluminal influences between the two particles

or the measurements carried out in the spacelike separated regions O1 and O2.
Rather it provides a common cause for the anticorrelated measurement results

that is located in the intersection of the backward lightcones of the regions O1
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and O2. This common cause is the preparation of the particles by the source
that emitted them and equipped each of the them with the appropriate spin

values in all directions perpendicular to its paths. Thus this HP-model of the

EPR-experiment obeys two principles which are presuppositions of classical

physics and were, in particular, the pillars of Einstein’s world view (Howard

1985). The first is the principle of locality requiring that

Locality: All causes of an event lie in its backward lightcone.4

The fulfillment of this locality principle by the above HP-model has already

been made explicit. The second principle is termed separability and asserts

that

Separability: Each of two spatiotemporally separated systems 1 and 2 pos-
sesses its own distinct physical state, such that the physical state of the

compound system 1 + 2 is wholly determined by the states of 1 and 2

(Primas 1981, p. 294; Howard 1989, p. 225 f).

That our above HP-model of the EPR-experiment is also separable is due

to the fact that the physical state this model ascribes to each of the particles is

just the set of spin values for all directions,5 so that the state of the compound

system 1 + 2 is simply the set-theoretic union of the states of particle 1 and

particle 2 and thus is wholly determined by them. Thus the EPR-experiment

as above described admits a local and separable HP-model. However, in 1964

the physicist J. S. Bell proved a theorem (Bell 1964)–today known as Bell’s

theorem–from which one can conclude that, for a slightly more general situa-

tion as the one considered in the original EPR-experiment, no local, separable

HP-model can exist. And since QM can obviously be regarded as a HP-theory

4Note that locality, as formulated here, does not require that causes and their immediate
effects are also spatiotemporally contiguous. The conjunction of the latter requirement with
the locality principle had been termed “local causation” in Section 1.3.1. In what follows
the term “local” will, however, always be used to refer to the locality principle alone and

not the stronger condition of local causation.
5Permanent–state independent–properties like mass and charge are irrelevant for the

EPR-experiment but can clearly also be incorporated into the HP-model–as “non-hidden
parameters”.
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of itself, namely as the trivial HP-theory that supplements no further parame-

ters to the quantum mechanical description, Bell’s theorem likewise shoes that

QM itself cannot be both local and separable.

10.2.2 Bell’s theorem

The generalization investigated by Bell is that the directions in which the spins

of the two particles are measured are not identical and that (at least) three

different directions are taken into account. Let the directions in the plane nor-

mal to the paths of the particles in which their spins are measured be denoted

by unit vectors a,b, . . . . Further, let λ denote the hidden parameter state of

the compound two particle system. Thus, in general, λ may include a state

prescribed by QM as well as supplementary parameters not inherent in the QM

formalism. The probabilities prescribed by λ to the possible results ra ∈ {+1
(= up),−1 (= down)}, given a measurement on particle i in direction a are
denoted by pλ(ra|a) and the joint probability for results ra and rb given the

direction of the spin measurements on particle 1 and 2 are a and b respec-

tively, will be denoted by pλ(ra, rb|a,b). The central assumption for the proof
of Bell’s theorem is the following factorizability condition

pλ(ra, rb|a,b) = pλ(ra|a) · pλ(rb|b). (10.3)

This condition says that given the state λ of the compound system, the prob-

ability for outcome ra of the spin measurement in direction a on particle 1

is probabilistically independent from the direction b as well as from the out-

come rb of the spacelike separated measurement on particle 2, and vice versa.

How this condition is related to the locality and separability principle will be

discussed below.

Now one can show that under the assumption (10.3), the expectation val-

ues, term them E(a,b), E(a, c) and E(b, c), calculated from the joint prob-

abilities pλ(ra, rb|a,b), pλ(ra, rb|a, c) and pλ(ra, rb|b, c) for three directions
a,b, c must satisfy the following inequality

|E(a,b)− E(a, c)|−E(b, c) ≤ 1. (10.4)

This is the first of a whole family of similar inequalities known today and

collectively referred to as Bell inequalities.
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Now if λ is taken to be the singlet state of QM and a,b and c are chosen

in such a way that the angle between a and b as well as the one between

b and c is 30◦ (an thus the angle between a and c is 60◦), the left hand
side of (10.4) becomes 1.5. Thus QM violates the above Bell inequality for a

certain choice of directions a,b and c. One can show that 1.5 is at the same

time the largest value the left hand side of (10.4) can take for any quantum

state λ and any choice of directions. Thus the singled state maximally violates

Bell’s inequality. However, a non-maximal violation of this inequality occurs

for many other quantum states. Bell’s inequality has today been tested in

numerous experiments, all of which not merely show its violation but confirm

with accuracy the quantitative predictions of QM (see e.g. Aspect 2002). We

will now discuss the meaning of the crucial factorizability condition (10.3).

10.2.3 Analyzing the factorizability condition

In his paper from 1964 Bell himself called the factorizability condition alter-

nately the condition of locality, of causality and of separability (Bell 1964, p.

195), which shows that at this time Bell did not regard these terms as referring

to ontologically distinct features. His view was that (10.3) is the mathematical

expression for the requirement “that the result of a measurement on one system

be unaffected by operations on a distant system with which it has interacted

in the past” (Bell 1964, p. 195). This statement, however, can be interpreted

in quite different ways depending on the meaning one gives to the term “oper-

ation”. However, the meaning of the factorizability condition became clearer

when J. Jarrett showed that it is the conjunction of two logically independent

conditions (Jarrett 1984), today usually called parameter independence and

outcome independence. Parameter independence is the following condition:

pλ(ra|a,b) = pλ(ra|a) (10.5)

pλ(rb|a,b) = pλ(rb|b), (10.6)

where

pλ(ra|a,b) ≡
X

rb∈{+1,−1}
pλ(ra, rb|a,b)

pλ(rb|a,b) ≡
X

ra∈{+1,−1}
pλ(ra, rb|a,b)
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are the marginal probabilities derived from the joint probability pλ(ra, rb|a,b).
Parameter independence therefore says that given the total state λ of the

compound system, the result ra of a measurement on particle 1 is independent

from the direction b of the measurement on particle 2 and vice versa. The

term parameter independence stems from the fact that the directions a,b, . . .

are the parameters by which the experimenters in the EPR-experiment choose

the observables to be measured on the particles–by a certain choice of these

parameters the measuring devices for the two particles are set to measure the

corresponding spin observables. Thus parameter independence does not refer

to any hidden parameters possibly be included in the state λ. If parameter

independence holds the choice of the observable to be measured on particle 2

is probabilistically irrelevant for the result of the measurement on particle 1,

given the total state and the parameter setting for the measurement on particle

1 and vice versa. Thus parameter independence is a screening off condition–

the total state and the observable measured on one of the particles screens

off any probabilistic relevance that the choice of the observable measured on

one particle might otherwise have for the result of the measurement on the

other particle (Butterfield 1989). Since probabilistic relevance (in one form or

another), and thus the obtainment of correlations, is commonly held to be a

necessary condition for causal influences (see e.g. Reichenbach 1956, Suppes

1970, Lewis 1986, Mellor 1995), parameter independence is usually taken to

prohibit causal influences from the choice of the observable for one particle on

the result of the observable measured on the other particle (see e.g. Jarrett

1984; Shimony 1993).

Outcome independence can be formulated as follows:

pλ(ra|a,b) = pλ(ra|a,b, rb) (10.7)

pλ(rb|a,b) = pλ(rb|a,b, ra). (10.8)

Thus given the state and both directions a,b for the measurements on particle

1 and 2, the result ra of the measurement on particle 1 is independent from the

result of the measurement on particle 2 and vice versa. In other words, outcome

dependence too, is a screening off condition, this time the total state together

with the parameter settings a,b, i.e. with the choice of the observables to be

measured on both of the particles, renders the results of the measurements on
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the particles probabilistically independent from one another. Thus by denying

any probabilistic relevance of these results, outcome independence in particular

prohibits causal influences between these results themselves. In sum then, both

parameter and outcome independence seem to be locality criteria, i.e. concrete

mathematical expressions of the locality principle that denies causal influences

between spacelike separated events. In case of parameter independence the

events for which locality is secured are the choice of the observable to be

measured on one particle and the result of the measurement on the other

particle and in case of outcome independence it is the two results. However,

as we will see below, outcome independence can and should be interpreted in

a different way, namely as an expression for the separability principle.

The equivalence of the conjunction of parameter and outcome independence

to the factorizability assumption (10.3) leading to Bell’s inequality means that

each theory–may it a HP-theory or not–that reproduces the empirically con-

firmed predictions of QM, must violate either parameter or outcome indepen-

dence or both. This reduces the initial appeal of HP-theories because it shows

that no such theory can reconcile the empirical data with a classical world view

according to which all correlations between spacelike separated events can be

explained in a locally and separable way. In the following discussion we will

concentrate on QM and mention HP-theories only occasionally.

Now the real importance of the fact that factorizability can be dissected

into parameter and outcome independence lies in the fact that one can locate

QM’s violation of Bell’s inequality in its violating outcome independence. This

is because QM satisfies parameter independence: let λ be an arbitrary quantum

state, A and B observables of particle 1 and 2 respectively and let a and b be

possible values corresponding to the eigenprojections PA
a and P

B
b of A and B.

Because A and B are observables of different systems, they commute (and so

do the sets of eigenprojections {PA
a } and {PB

b }). The joint probability of the
results a and b–corresponding to pλ(ra, rb|a,b) in the special case where A
and B are the spin observables in directions a and b–is then given by

λ(PA
a P

B
b ).

Now summing this joint probability over all possible values of observable B
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and A respectively gives the marginal probabilitiesX
b

λ(PA
a P

B
b ) and

X
a

λ(PA
a P

B
b )

corresponding to pλ(ra|a,b) and pλ(rb|a,b) from above. Now the sets of eigen-
projections {PA

a } and {PB
b } are resolutions of the identity and thus sum up to

1. Therefore, one gets X
b

λ(PA
a P

B
b ) = λ

¡
PA
a

¢
(10.9)X

a

λ(PA
a P

B
b ) = λ(PB

b ). (10.10)

The right hand side of equation (10.9) ((10.10)) is, however, just the probability

for result a (b) given a measurement of observable A (B) on particle 1 (2),

corresponding to pλ(ra|a) (pλ(rb|b)), so that we have in fact proven parameter
independence to hold in QM for two arbitrary observables A and B of particles

1 and 2 and an arbitrary quantum state λ. As mentioned above, this means,

in particular, that one cannot influence the outcome of any measurement on

particle 2 by the choice of observable to be measured on particle 1 and vice

versa.

Yet this satisfaction of parameter independence by QM implies that QM

must violate outcome independence–otherwise it could not violate Bell’s in-

equality. Thus in QM a violation of outcome independence is a equivalent

to violation of Bell’s inequality. Therefore, the result of a measurement on

particle 1 will, in general, be probabilistically relevant for the result of a mea-

surement of particle 2 (and vice versa) even given the total state and the

observables to be measured. In other words, the total state and the choice

of the two observables do not screen off the results from one another. Thus

since according to QM there are no other causally relevant factors, it seems

tempting to conclude that there is indeed a direct causal influence between

the two spacelike separated results. As J. Butterfield as well as T. Maudlin

have shown within the framework of Lewis’ counterfactual theory of causation

(Lewis 1986), outcome dependence can in fact be seen as being grounded in a

direct causal link between the outcomes rb and ra (Butterfield 1992; Maudlin

1994, Chapter 5). However, there are good reasons not to think of the violation

of outcome independence in terms of causal influences.



236 CHAPTER 10. REPRESENTING TRANSITION PROCESSES

Outcome independence as a separability criterion

First of all, unlike the violation of parameter dependence, QM’s violation

of outcome independence cannot be utilized for any kind of (superluminal)

signalling between the two spacelike separated experimenters involved in the

EPR-experiment. To see why this is impossible it is instructive to first ex-

plain how one could exploit a failure of parameter independence for sending

superluminal signals. The parameters a and b are under the control of the ex-

perimenters. Now if parameter independence (10.5) were violated, there were

different parameters b and b0 such that

pλ(ra|a,b) 6= pλ(ra|a,b0).

Thus by an appropriate choice of the parameter for the measurement on parti-

cle 2, b0 say, experimenter 2 could raise or lower the probabilities of the results
obtained from measurements on particle 1. Of course, a single run of such an

experiment may not give the other experimenter very much to go on. But with

sufficient repetitions (i.e. by performing a large ensemble of such experiments

(nearly) simultaneously) experimenter 1, will with great reliability, be able to

detect a relative frequency different from the one he would find if experimenter

2 had chosen a different parameter b 6= b0. Contrary to this, failure of outcome
independence cannot be used for such a superluminal signaling. The crucial

point is that, unlike the parameters a and b, the outcomes ra and rb are not

under the control of the experimenters–their occurrence is totally random. A

violation of outcome independence

pλ(ra|a,b) 6= pλ(ra|a,b, rb)

can therefore not be exploited by experimenter 2 to systematically change the

probabilities and thus the relative frequencies seen by experimenter 1. A. Shi-

mony therefore also spoke of the failure of outcome independence as allowing

some kind of “uncontrollable influences” between the two measurements (Shi-

mony 1984). Now the fact that a failure of outcome independence cannot be

used for superluminal signalling is clearly only an operational argument against

seeing it as a kind of causal connection. For there is no need that all causal

connections in nature must also be exploitable by us in such a way (not even
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in principle)–from the point of view of ontology it does not matter whether a

causal influence has operational consequences or not–such as the possibility

of signalling.

Yet if one interprets outcome dependence in terms of causal influences, one

has to admit that these influences go in both directions, i.e. from outcome ra
to outcome rb and vice versa. This is because by using the definition of the

conditional probabilities

pλ(ra|a,b, rb) ≡
pλ(ra, rb|a,b)
pλ(rb|a,b)

and

pλ(rb|a,b, ra) ≡
pλ(ra, rb|a,b)
pλ(ra|a,b)

outcome independence, i.e. the conjunction of (10.7) and (10.8), turns out to

be equivalent to6

pλ(ra, rb|a,b) = pλ(ra|a,b) · pλ(rb|a,b). (10.11)

This, however, means that the violation of one of the two conditions (10.7)

and (10.8) implies (via the violation of (10.11)) that the other condition must

also be violated. This in turn means that if ra is a cause of rb then also

vice versa, so that a failure of outcome independence implies the existence

of causal loops. Note that this state of affairs cannot be remedied even if

there were a preferred reference frame, for example in form of a distinguished

foliation of spacetime as in our version of Whitehead’s ontology. For whenever

the two measurements were simultaneous with respect to this preferred frame,

there were no way of distinguishing them by any further spatiotemporal means

whatsoever. In this case, however, one ends up with the contradictory kind of

self-causation according to which an entity can be a cause of its own existence

(see also Section 1.1 where the difference between this inconsistent kind of

self-causation and the one inherent in Whitehead’s ontology is discussed). For

if the occurrence of outcome ra is a cause (not necessarily the only one) for the

occurrence of rb and the latter is at the same time a cause for the occurrence of

ra, then, ra by (partially) causing rb also (partially) causes its own occurrence.

6We always assume that pλ(ra|a,b) and pλ(rb|a,b) are non-zero.
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The last two arguments against interpreting outcome dependence as in-

volving a direct causal link between the results of the two measurements–and

thus as a violation of locality–derive form the fact that it can likewise be

interpreted as expressing the non-separability of the two particles–and thus

as involving a violation of separability. The possibility of understanding out-

come independence as a separability criterion, i.e. a concrete instance of the

separability principle, speaks against the rival interpretation as a locality cri-

terion for the following two reasons: first, separability is ontologically more

fundamental than locality since the very formulation of the latter presupposes

the satisfaction of the first part of the former, namely the possession of dis-

tinct states by two spatiotemporally separated systems. For if spatiotemporally

separated systems would not have such distinct states, but rather would all

share one common state, the talk of causal influences among them would be

meaningless. This is because however the notion of the “physical state of a

system” may be concretized in a particular (HP-) theory, it seems that if states

are ascribed to systems at all, a causal influence on a system must lead to a

change in the system’s state. In other words, the system’s state is that on

which causal influences “register”. Consequently, two systems 1 and 2 sharing

one and the same state, cannot causally influence one another, for if system 1

would causally influence system 2, it would inevitable also causally influence

itself via the change in the common state. Thus if causation is understood

as not necessarily involving self-causation, there must be systems with dis-

tinct states. Therefore, the first part of the separability principle has to hold

for the usual talk of causation between spatiotemporally separated systems

to make sense. Consequently, without the satisfaction of the first part of the

separability principle, the locality principle were completely vacuous (see also

Esfeld 2001). Thus if outcome independence can be interpreted as a concrete

instance of the separability principle it should be understood in this way, be-

cause without such a separability criterion at hand, all talk of locality may be

vacuous.7 Secondly, as will be argued below, that two particles in the quantum

mechanical singlet state violate the separability principle can be seen indepen-

7An argument as to the epistemologically more fundamental status of separability over
locality has been given in (Howard 1989). A critizism of the latter can be found in (Belousek
1999).



10.2. BELL’S THEOREM, NON-SEPARABILITY, AND ALL THAT 239

dently from the route via a violation of outcome independence. Therefore, if

the understanding of outcome independence as a separability criterion is pos-

sible, this understanding gains independent support at least in the case of the

quantum mechanical singlet state.

Now let us start by investigating the premise for the last two arguments,

namely that outcome independence can be taken as expressing the separability

of the two particles involved in the EPR-experiment. The separability principle

consists of two parts: first, it requires the two particles in the EPR-experiment

to have distinct states and second, these distinct states must wholly determine

the total state λ. Now assume that our two particles have distinct states λ1,

λ2 as required by the principle of separability. This means that the probability

pλ(ra|a,b) prescribed by the total state λ for the outcome of a measurement on
particle i coincides with the probability pλi(ra|a,b) for this outcome prescribed
by the state λi of this particle alone, i.e. it means that the following equalities

hold for all parameter settings a,b and all possible results ra and rb of the

measurements on particle 1 and 2 respectively (see e.g. Howard 1989)

pλ1(ra|a,b) = pλ(ra|a,b) (10.12)

pλ2(rb|a,b) = pλ(rb|a,b). (10.13)

The occurrence of the parameters a and b means that the particles can be

regarded as having the distinct states λ1 and λ2 conditional on the choice of

the total measurement context, i.e. the observables to be measured on both

particles. Thus (10.12) and (10.13) do not require that each particle can be

regarded as having its own state if only the observable to be measured on it

(or even if no observable at all) is fixed. This makes sense for two reasons:

first, outcome independence (as well as parameter independence and factoriz-

ability) are formulated as conditions on probabilities and not as conditions on

states. This is because they are intended to apply not only to QM but also

to a range of HP-theories as wide as possible. Now the concept of a state of

a system may vary in different HP-theories, so that the conditions on these

states leading to a Bell inequality will likewise vary from one theory to an-

other. However, all these HP-theories shall reproduce the predictions of QM

and since the latter are predictions of probabilities, all HP-theories must be
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able to produce probabilities as outputs. Therefore, it is very convenient to

formulate the conditions in question as conditions on probabilities and not as

conditions directly constraining the states of systems. Now in case of QM a

state prescribes probabilities only within a fixed Boolean framework provided

by the Boolean algebra(s) of projections of some (set of mutually commuting)

observable(s) (see Section 8.1 in particular 8.1.5). This, then, necessitates the

conditionalizing on the observable to measured on a particle to produce prob-

abilities from its state. That in (10.12) as well as in (10.13) the observables

to be measured on both particle occur, via the parameters a and b, is because

otherwise these conditions would already imply that parameter independence,

and thus the form of locality expressed by it, likewise holds. For example, if

one would define the state λ1 of particle 1 by means of

pλ1(ra|a) ≡ pλ(ra|a),

this would imply that the result of the measurement on this particle is not only

independent from the result of the measurement on particle 2 but also from

the observable measured on particle 2, i.e. from the parameter b. However,

parameter and outcome independence are logically independent constraints,

so that in arguing for the interpretability of the latter as an expression of the

separability principle, one has to conditionalize on both parameters a and b

in the definition of each of the distinct states of the particles.

Now equations (10.12) and (10.13) only express the fact that each particle

has its own state distinct from the state of the other particle. But the separa-

bility principle moreover requires that these distinct states do wholly determine

the total state λ. This is obviously the case if the product of the two proba-

bilities pλ1(ra|a,b) and pλ2(ra|a,b) equals the joint probability pλ(ra, rb|a,b)
prescribed by the total state λ (see e.g. Howard 1989), i.e. if

pλ(ra, rb|a,b) = pλ1(ra|a,b) · pλ1(ra|a,b) (10.14)

holds. However, according to (10.12) and (10.13), pλ1(ra|a,b) equals pλ(ra|a,b)
and pλ2(ra|a,b) equals pλ(rb|a,b). Therefore, (10.14) is just the statement of
outcome independence (10.11). Thus the separability principle, via its concrete

manifestation in form of the requirements (10.12), (10.13) and (10.14), implies

outcome independence. On the other hand, if outcome independence holds,



10.2. BELL’S THEOREM, NON-SEPARABILITY, AND ALL THAT 241

one can read the requirements (10.12) and (10.13) as definitions of the distinct

states of the two particles which determine the total state via (10.14). In sum,

then, outcome independence can be interpreted as a separability criterion, i.e.

as a concrete mathematical expression of the separability principle. And thus,

following the above argument from the more fundamental character of the sep-

arability over the locality principle, outcome independence therefore should be

interpreted as a separability criterion.

With this interpretation of outcome independence as a separability rather

than a locality criterion, its failure means that the two particles in the EPR-

experiment either do not have distinct states or that the distinct states do not

determine the total state. We will now argue that this interpretation of the

failure of outcome independence, besides avoiding the difficulties with the com-

peting interpretation in terms of a direct causal link between the measurement

results, moreover fits smoothly to the formalism of QM.

Generally, in QM the state of a subsystem 1 is given by the restriction

of the state of the total system 1 + 2 to the subsystem’s observable algebra

B(H1), i.e. by ρ|B(H1)
where ρ is the state of the compound system. On the

level of the density operators by which these states are generated (see Section

5.2), this means the following: the density operator W1 generating the state

of subsystem 1 via

ρ|B(H1)
= Tr1(W1·),

where Tr1 stands for the trace with respect to the Hilbert space H1 of sub-

system 1, is obtained from the density operator W corresponding to the total

state ρ = Tr(W ·) by taking the trace of W with respect to the Hilbert space

of subsystem 2, i.e. by

W1 = Tr2(W ) =
X
i


φi2,Wφi2

®
,

where {φi2} is an orthonormal basis of the Hilbert space of subsystem 2. Ap-

plying this to our two particle system in the singlet state ρS = Tr(WS·) =
hψS, ·ψSi, yields the result that the restricted states ρS|B(H1)

and ρS|B(H2)
cor-

responding to particles 1 and 2, are generated by the trivial density operators

W1 = 11 and W2 = 12 respectively. Therefore, one can argue that the two

particles do not have distinct states at all, since the states ρS|B(H1)
and ρS|B(H2)
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have essentially the same structure and are merely distinguished by means of

the indices 1 and 2.8 This can also be seen directly from the structure of the

singlet state vector

ψS =
1√
2
(ψ↑1 ⊗ ψ↓2 − ψ↓1 ⊗ ψ↑2),

since it obviously doe not allow to associate one of the two state vectors ψ↑,ψ↓

to each particle. Thus in case of the singlet state, one can argue that even

the first part of the separability principle, requiring the two particles to have

distinct states, is violated. However, even if one could regard the states of

particles 1 and 2 as distinct, the second part of the separability principle

is violated anyway, because the states ρS|B(H1)
= Tr1(W1·) and ρS|B(H2)

=

Tr2(W2·) of particles 1 and 2 do not wholly determine the total state ρS =
Tr(WS·). This is obvious since the density operators W1 = 11 and W2 = 12

can likewise be obtained by the above procedure of “partial tracing” from

the total density operator W = 11 ⊗ 12 = 1 rather than from WS = PψS .

Therefore, the states of particle 1 and 2 are also compatible with the joint

state being the trivial one ρ = Tr(1·) instead of the singlet state. Thus at
least the second part of the separability principle is certainly violated by a two

particle system in the singlet state, so that it is natural also to interpret the

latter’s violation of Bell’s inequality and thus of outcome independence as a

violation of separability.

10.2.4 Non-separability in QM

As just argued, one can come to the conclusion that certain quantum states

violate the separability principle independently from the route through the

violation of Bell’s inequality. However, the great value of Bell’s work has been

to proof that no alternative theory whatsoever can reproduce the empirically

verified predictions of QM while at the same time satisfying both locality

and separability. Since QM satisfies parameter independence, the violation

of outcome independence, and thus of separability, in the EPR-experiment

is equivalent to the violation of Bell’s inequality. And since the latter holds

8In case of “indistinguishable particles”, i.e. particles with the same permanent properties
(charge, mass and spin-value), this argument exerts its full force, for then the indices 1, 2
are arguably completely meaningless (see e.g. Dieks 1990).
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iff the factorizability condition (10.3) is satisfied, in the case of QM outcome

independence just tests whether a state ρ is a product state across the Boolean

algebras of properties of the involved observables: if the observables to be

measured on particle 1 and 2 are A ∈ B(H1) and B ∈ B(H2) respectively, then

outcome independence just means that ρ(PAPB) coincides with the product

ρ(PA)ρ(PB), where PA and PB are arbitrary spectral projections of A and

B respectively. Thus in this case outcome independence tests the following

equality

ρ(PAPB) = ρ(PA)ρ(PB) (10.15)

for all PA ∈ B(A) and PB ∈ B(B) which, however, is just the defining equation
for a product state across the Boolean algebras B(A) and B(B). Up to this

point, we have a separability criterion that applies only relative to a particular

choice of observables. The criterion (10.15) can, however, easily be generalized

to a criterion that is free of such a restriction. Instead of the Boolean algebras

of two observables of particle 1 and 2 one can define a product state across the

whole observable algebras B(H1) and B(H2) of the two particles by

ρ(AB) = ρ(A)ρ(B) (10.16)

for all A ∈ B(H1) and B ∈ B(H2). One can then speak of the separability

of two systems in a state ρ simpliciter, without mentioning any measurement

context, iff ρ is a product state across the algebras B(H1) and B(H2) of the two

systems.9 For convenience we will in the following simple speak of the (non-)

separability of states and not of “systems in a state”.

We will now argue that (10.16) is already the most general ontological sepa-

rability criterion for quantummechanical system. More precisely, we will argue

that the “more general” criterion, often to be found in the literature (see e.g.

Auletta 2001, p. 53, Werner 1989, Clifton and Halvorson 2000), according to

which a state ρ is separable even if ρ is a convex combination of product states

across B(H1) and B(H2), either does not faithfully express the separability

principle at all, or is not a generalization of the above separability criterion

9This makes sense because if, according to this criterion, two systems are non-separable,
there are (at least) two observables A and B of systems 1 and 2 such that their spectral
projections do not satisfy equation (10.15) and thus the two systems are not separable with
respect to A and B.
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in an ontologically interesting sense. First, if ρ is a convex combination of

product states across B(H1) and B(H2), there are states ρ
1
1, ρ

1
2 on B(H1) and

ρ21, ρ
2
2 on B(H2) such that

ρ(AB) = cρ11(A)ρ
2
1(B) + (1− c)ρ12(A)ρ

2
2(B) with 0 ≤ c ≤ 1 (10.17)

for all A ∈ B(H1) and B ∈ B(H2). In the trivial case c = 0 (1), ρ(AB) equals

ρ12(A)ρ
2
2(B) (ρ

1
1(A)ρ

2
1(B)), so that the states ρ

1
2 and ρ

2
2 (ρ

1
1 and ρ21) are just ρ’s

restrictions to the algebras of system 1 and 2 respectively. Thus in this case

ρ is itself a product state, so that henceforth we need only discuss the case

0 < c < 1. In this case the restrictions of ρ, representing the states of the

subsystems 1 and 2 respectively, are given by

ρ|B(H1)
= cρ11 + (1− c)ρ12 (10.18)

ρ|B(H2)
= cρ21 + (1− c)ρ22. (10.19)

Thus (10.18) and (10.19) are the states ascribed to the systems 1 and 2 which

together are in the total state ρ (see also the end of the last section). Now

the separability principle requires that these states of 1 and 2 are distinct and

together wholly determine the total state. Yet at least the last requirement is

not fulfilled because the restrictions (10.18) and (10.19) are also compatible

with the total state being the product state

ρ0(AB) ≡ ρ|B(H1)
(A)ρ|B(H2)

(B) (10.20)

build from ρ|B(H1)
and ρ|B(H2)

instead of being the convex combination (10.17).10

Thus the only way to safe the generalized criterion from not being expressing

the separability principle at all, seems to invoke an ignorance interpretation.

This is to say that the convex combination (10.17) is not the true state of a

single (compound) system 1 + 2, but merely describes a mixture of such com-

pound systems, a fraction c of which is in the product state ρ11(A)ρ
2
1(B) and

a fraction 1− c of which is in the product state ρ12(A)ρ
2
2(B). This is moreover

the way the generalized criterion (10.17) is usually motivated: one acknowl-

edges that systems in product states are separable and then argues that a

10That the product state (10.20) in fact differs form the convex combination (10.17) can
easily be seen by inserting (10.18) and (10.19) into (10.20) and multiply them together.
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classical mixing procedure by which an ensemble of such systems is build does

not change the individual states of the systems and thus their separability by

reason of being in a product state (see e.g. Auletta 2001, p. 53; Werner 1989).

This is certainly true, and in case of such a mixture an ignorance interpretation

is obviously appropriate (see also Section 5.2). But then this generalization

of the separability criterion (10.16) is merely a conceptual one without any

further ontological consequences, since each individual system of the mixture

is judged to be separable by reason of the above criterion (10.16).

The way in which the criterion (10.16) is generalized by invoking convex

combinations of product states, is therefore, in particular, of no use for our

purposes because states of the form referred to in (10.17) cannot be used to

represent Whiteheadian activities. For this to be possible, the probabilities

ascribed on the basis of a state need to be interpretable as ontic single case

probabilities–as propensities. And this is clearly in conflict with an ignorance

interpretation as just mentioned.

10.2.5 Non-separability in AQFT

A general difference to QM is that in QFT the total Hilbert space H does,

in general, not possess a tensor product structure. This particularly prohibits

the common conceptual minimal understanding of a “system” in terms of a

tensor product factor Hi of the total Hilbert space H together with the for-

mer’s corresponding observable algebra B(Hi) as known from QM. Because of

the lack of this structure, in QFT the conceptual minimal understanding of

a system is usually taken to be provided by a spacetime region O together

with its associated algebra of observables R(O) (see e.g. Dieks 2000 and

2001). Note that the region O need not be bounded, since as explained in

Appendix C, von Neumann subalgebras R(O) of B(H) can also be associated
in a canonical way with unbounded regions O ⊆ M , given the fundamental

correspondence O 7→ R(O) for bounded regions. The analog of a quantum
mechanical system consisting of two subsystems is thus, in general, provided

by two separated (not necessarily bounded) regions O1 and O2 whose algebras
R(O1) and R(O2) commute. The total algebra of the compound system is

then given by the smallest von Neumann algebra generated by R(O1) and
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R(O2), i.e. by R(O1 ∪O2) = (R(O1) ∪R(O2))
00 (see Appendix C). Note that

the commutativity of two algebras with one another is generally secured only

if the corresponding regions are spacelike separated to one another. Therefore,

mutual commutativity has to be required independently if the regions are not

spacelike separated. Without the commutativity ofR(O1) andR(O2) with one

another, the regions O1 and O2 together with the algebras R(O1) and R(O2),

would not provide adequate substitutes for two quantum mechanical systems

as defined by the tensor product structure of a quantum mechanical Hilbert

space H = H1 ⊗H2, because the algebras B(H1) and B(H2) corresponding to

the latter do always commute.

As already mentioned in Section 5.2, the algebras R(O) corresponding to
bounded regions O are von Neumann algebras of type III and therefore do not
contain any non-zero, finite-dimensional projections, which in turn implies that

there cannot be pure states on local algebrasR(O). For the existence of a pure
state ρ on R(O) would imply that there is a one-dimensional projection P ∈
R(O) that generates ρ via ρ = Tr(P ·) or equivalently via ρ = hψ, ·ψi where
ψ is the unit vector that spans the one-dimensional subspace of H onto which

P projects. Thus all states on any local algebra are non-pure. Furthermore,

a non-pure state on such a local algebra R(O) is not generated by a density
operator belonging to R(O), because R(O) does not contain such operators
either. In sum, then, each state ρ on a local algebra R(O) is non-pure (i.e.
there are other (non-pure) states ρ1 and ρ2 onR(O) such that ρ is their convex
combination), but there is no density operator W ∈ R(O) that generates ρ
via ρ = Tr(W ·).11 For unbounded regions O to which an algebra R(O) can
be associated no general result concerning their type is known. However, one

knows that some of these algebras are also of type III whereas others are

not. Thus not only for bounded but also for some unbounded regions, the

corresponding algebras do not possess any pure states nor are their states

generated by projections or, more general, by density operators contained in

them.

11Yet, as already mentioned in Section 5.2, it is nevertheless true that each extension of ρ
to B(H) is generated by some density operator W ∈ B(H) or even by some one dimensional
projection P ∈ B(H), the latter being the case if ρ is the restriction of a pure state on B(H)
to R(O).
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However, these conceptual differences to QM do not affect the conclusions

about Bell’s inequality and its violation, drawn in the last sections. As in QM,

in QFT too, there are many states leading to a violation of Bell’s inequality

and such a violation can likewise by understood as a violation of the separa-

bility principle. In particular, it has been shown that QFT obeys parameter

independence but violates outcome independence (see e.g. Butterfield 1994).

In a sense non-separability is even more generic in QFT than in QM. One

of the ontologically most interesting aspects of this is that according to QFT

even the vacuum violates Bell’s inequality and thus is non-separable (Summers

and Werner 1985 and 1987). In QM this is trivially not the case because QM

simply does not contain a non-trivial vacuum state at all. The only candi-

date for a quantum mechanical description of the vacuum is the trivial state

ρ = h0, ·0i (which is obviously separable)–QM treats the vacuum purely clas-

sically, as “empty nothingness”. Contrary to this, QFT shows that the world

is non-separable even in the absence of any “stable configurations of matter”.

Now let us see how the separability criterion (10.16) can be reformulated

within the framework of AQFT. Since this criterion does not make use of

any density operator or even vector representation of states it is quite easy to

accommodate it to the situation in QFT. Let us begin with the simplest case of

two bounded regions. In this case we need only replace the commuting algebras

B(H1) and B(H2) of the subsystems 1 and 2 referred to in (10.16) by the

commuting local algebras of two separated regions O1,O2 ∈ D(M). Moreover,

since each von Neumann algebra is generated by the projections it includes,

and it is only these operators we are interested in, we can and will replace

the algebras B(H1) and B(H2) by the commuting sets of local projections

P(O1) and P(O2) corresponding to these regions (see also Section 10.1).
12 An

appropriate quantum field theoretic reformulation of the separability criterion

(10.16) for this case then reads:

(SEP1) Let the sets of projections P(O1) and P(O2) corresponding to the sepa-

rated regionsO1,O2 ∈ D(M) commute, then a state ρ is separable across

12Commutativity is required for the very notion of a product state to make sense at all,
since ρ(PQ) = ρ1(P )ρ2(Q) implies ρ(PQ) = ρ2(Q)ρ1(P ) and thus too, ρ(PQ) = ρ(QP )

which will generally not be satisfied for all non-commuting projections P and Q from B(H1)

and B(H2) or R(O1) and R(O2) respectively.
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O1 and O2 iff ρ is a product state across P(O1) and P(O2), i.e. iff there

are states ρ1 on P(O1) and ρ2 on P(O2), such that

ρ(PQ) = ρ1(P )ρ2(Q)

for all P ∈ P(O1) and Q ∈ P(O2).

It is clear that the states ρ1 and ρ2 are just the restrictions of ρ to the sets

P(O1) and P(O2), i.e. ρi = ρ|P(Oi)
.

Equipped with this criterion of separability we can now express in a mathe-

matical rigorous way when an activity is (in-) divisible (see particularly Section

2.6.1). We assume that the activities which are divisible are just those which

are represented by separable states, or more precisely, an activity represented

by the state ρ is divisible into two partial activities iff there are spacelike sep-

arated regions O1,O2 ∈ D(M) such that ρ is separable across the associated

sets of projections.13 The partial activities into which a divisible activity will

be in fact divided after this division in fact took place, are then represented by

the restrictions ρ|P(O1) and ρ|P(O2) of ρ to the projections of these regions. On
the other hand, we have argued in Section 2.4.1 that the restrictions ρ|P(Oi)

can generally be interpreted as perspectives onto the activity represented by ρ,

and that the stronger interpretation as distinct parts of this activity is allowed

by QFT only under certain specific conditions. These specific conditions are

just given by the separability of ρ across the spacelike separated regions O1
and O2. In this case ρ|P(O1) and ρ|P(O2) can be interpreted as distinct parts of,
rather than merely as perspectives onto, the activity represented by ρ. This,

moreover, means that the activities ρ|P(O1) and ρ|P(O2) can be understood as
being located in the regions O1 and O2 respectively: according to Section 2.3.1
an activity can be said to be located in a particular region if the activity makes

decisions for this and no other region. And since ρ|P(O1) and ρ|P(O2) are dis-
tinct activities their decisions are completely independent from one another

and thus each settles decisions for precisely one of the two regions O1 and O2
13Note that since the (in-) divisibility of activities always refers to the spacetime regions

belonging to a single layer of actuality, we need only investigate spacelike separated regions
(see Section 2.7.2). And in this case the spacelike commutativity axiom of AQFT automat-
ically secures that the local algebras associated with these regions do always commute with
one another, so that this commutativity need not be required independently.
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only. Thus as soon as the activity ρ is divided across the regions O1 and O2,
i.e. as soon as it is bifurcated, the corresponding partial activities ρ|P(O1) and
ρ|P(O2) can be said to be located in the regions O1 and O2 respectively. And
since each of these regions is in fact a single connected region, the activities

ρ|P(O1) and ρ|P(O2) are then also particularized. Note that it makes no sense
to speak of the locatedness of the activities represented by ρ|P(O1) and ρ|P(O2)
before the bifurcation of ρ actually occurs. Of course, the phase in which this

bifurcation occurs and the partial activities which will result from it are com-

pletely determined by the respective efficient causes of ρ. But as long as ρ is

not actually divided, ρ|P(O1) and ρ|P(O2) are not distinct activities at all, but
merely different perspectives–corresponding to the regions O1 and O2–onto
the one undivided activity ρ (see Section 10.1). And it makes no sense to

speak of the “locatedness of the perspective ρ|P(O1) in the region O1”, because
a perspective is a genuinely relational entity, and as a relation between the

region O1 and the undivided activity ρ, ρ|P(O1) can hardly be located in O1.
Now (SEP1) can be generalized to countably many regions in the following

way:

(SEP2) Let the sets of all projections P(Oi) corresponding to the separated re-

gions {Oi} ⊂ D(M) mutually commute with one another, then a state

ρ is separable across {Oi} iff ρ is a product state across {P(Oi)}, i.e. iff
there are states ρi on P(Oi), such that

ρ(
Y
i

Pji) =
Y
i

ρi(Pji)

for all Pji ∈ P(Oi) and all i.

Again it is clear that ρi is just the restriction of ρ to the local algebra

of region Oi. Now the first activity that can be divided into partial or even

particular activities is the activity ωc
Ws−1 at the beginning of the concrescence

process of stage s. The earlier activities ωWs−1 and ω
d
Ws−1 are necessarily undi-

vided for otherwise one could not account for the necessary coordination of the

regions for the next stage, i.e. s + 1, of the world-process (see Sections 2.5.3

and 2.6.1). By means of the separability criterion (SEP2) and the represen-

tations of the activities ωWs−1 and ωd
Ws−1by the state ωs−1 and its restriction
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ωs−1|∧i(s)P(Oi(s)) (see Section 10.1), this assumption of our modified version

of Whitehead’s ontology is thus, in principle, testable within the formalism

of AQFT. Unfortunately, no general results about the (non-) separability of

states of the form ωs−1 across spacelike separated regions is known. But there
are some indications pointing into the direction of their non-separability (see

Clifton and Halvorson 2001, p. 26 ff), so that our assumption in regard to this

point seems not to be unjustified.

In Section 11.1 we will generalize the separability criterion (SEP2), so that

it also covers the case of an activity that is divisible into partial but not neces-

sarily particularized activities. However, for the following investigation of the

question that has been left unanswered in Section 10.1, namely how a set of mu-

tually spacelike separated regions {Oi(s)} in the future of Ws−1 is determined
in the dative phase of the transition process at stage s of the world-process,

(SEP2) is sufficient.

10.3 The dative phase II

In Whitehead’s original theory already the activity ωs−1 at the beginning of
the dative phase at stage s of the world-process is supposed to be divided

into partial activities ωWs−1(i) according to the division of actuality Ws−1 into
different actual worlds Ws−1(i). Whitehead’s intention, at least with respect
to our cosmic epoch, was that these assumptions would reconcile his theory

with the prohibition of superluminal causal influences, assumed to be implied

by STR. As we have argued in Sections 2.5.1 and 2.5.2 this hope is flawed.

According to our modified version of Whitehead’s ontology the activity ωs−1
at the beginning of the dative phase is indivisible (see Sections 2.5.3 and 2.6.1).

In this section we are searching for a rule that allows the determination of a

collection of spacelike separated regions {Oi} in the future ofWs−1 on the basis
of this activity. Note that such a set {Oi} can consist of at most countably
many regions because all of them are finitely extended.

In the following we will propose a rule that, in a sense, makes the gap

between our modified ontology, on the one hand, and Whitehead’s original

theory and STR, on the other hand, as small as possible. As just mentioned

Whitehead’s original theory assumes that the initial activity ωWs−1 (as well
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as all later activities) at stage s are divided into partial activities ωWs−1(i). If

moreover superluminal causation shall be prohibited, the corresponding actual

world Ws−1(i) must contain only those occasions from Ws−1 which lie within
the backward lightcone V−(Oi) of region Oi. The activity ωWs−1(i) for the da-

tive phase of the i-th transition process has therefore to be represented by the

restriction of the state ωV−(Oi)
s−1 to set of projections P(Oi) associated with re-

gion Oi, where ω
V−(Oi)
s−1 denotes the state that is created from the vacuum state

due to the conditioning by (the projections representing the final definiteness

of) those occasions fromWs−1 which lie within the backward lightcone V−(Oi)

of region Oi. Thus the partial activity ωWs−1(i) is to be represented by the

state

ω
V−(Oi)
s−1 |P(Oi)

. (10.21)

Since according to Whitehead the total activity ωWs−1 for the dative phases

of all transition processes at stage s is supposed to be divided into the partial

activities ωWs−1(i), it has accordingly to be represented by the product state

across the regions {Oi} build from the states (10.21) for all i, i.e. by the state14Y
i

ω
V−(Oi)
s−1 |P(Oi)

. (10.22)

Thus in this case the restricted states (10.21) do not merely represent perspec-

tives onto the total activity ωWs−1 (represented by (10.22)) but rather parts

of it (see also Section 10.1)–though not yet particularized parts, because the

latter require the realization of the corresponding regions Oi.

Our proposal for the choice of regions is now as follows: from all the sets of

mutually spacelike separated regions in the future ofWs−1, that set shall be re-
alized in the dative phase of the collective transition process at stage s, across

which the initial activity ωWs−1 is “as close as possible” to the hypothetical

divided activity represented by the product state (10.22). The closeness of two

activities can be mathematically expressed by means of the norm distance be-

tween the representing states (see Appendix B.3). Since the undivided activity

ωWs−1 at the beginning of the dative phase of the one collective transition pro-

cess that actually takes place instead of the hypothetical, distinct processes,

14The arguments Pi ∈ P(Oi) of the partial states ω
V−(Oi)
s−1 |P(Oi)

need not be mentioned
explicitely here, because this information is already inherent in the restrictions “. . . |P(Oi)

”.
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is represented by the state ωs−1, we end up with the following mathematical
expression of this proposal:

(REG) Let Ss be the set of all sets of mutually spacelike separated regions from
D(M), which lie in the future ofWs−1. Then that set of regions {Oi} ∈ Ss
shall be realized in stage s, for which°°°°°ωs−1 −

Y
i

ω
V−(Oi)
s−1 |P(Oi)

°°°°° (10.23)

is minimal.15

Thus this rule says that the new regions {Oi(s)} of layer Ls are to be chosen

in such a way that the initial activity ωWs−1 (represented by the state ωs−1)
at stage s is “as classical as possible”, in the sense of being capable of ap-

proximation by a divided activity (represented by the product state (10.22))

whose partial activities are moreover caused subluminally. If (REG) is in fact

the rule according to which nature determines the regions of occasions, this

could explain why the superluminal causal influences obtaining according to

our ontology (see Section 2.8.1) have not yet been observed. For the smaller

the value of (10.23), the harder will be the empirical detection of such a su-

perluminal causal link. And (REG) just requires this value at each stage of

the world-process to be as small as possible.

Now one may object that this rule at best determines a set of local al-

gebras of which we only know that they correspond to spacelike separated

double cones in the future of Ws−1. However, as shown in Section 10.1 the
algebra corresponding to a double cone fixes the latter completely. Therefore,

this objection can be refuted, since if (REG) determines a unique set of local

15Since the product state (10.22) is only defined on operators of the form
Q

i Pi with
Pi ∈ P(Oi), i.e. on ∧iP(Oi), (10.23) likewise only evaluates the closeness of the two involved
states on this domain. Thus what matters for (REG) is not the whole state ωs−1 but
merely its restriction to ∧iP(Oi). This restriction ωs−1|∧iP(Oi)

is then to be interpreted

as the perspective of the union ∪iOi of the regions onto the activity ωWs−1 . It does not
represent the activity ωdWs−1 left after the dative phase here, because the existence of this
activity presupposes the realization of the regions {Oi} and thus must not be used for their
determination. However, for the sake of not further complicating the present discussion, we
did not mention this interpretational subtlety in the main text.



10.4. THE CONFORMAL PHASE 253

algebras corresponding to spacelike separated double cones in the future of

Ws−1, this also uniquely fixes these double cones. Nevertheless, there is in fact
a problem with (REG), stemming from the question whether (10.23) possesses

a minimum at all, i.e. whether the approximation problem (10.23) possesses a

unique solution. Unfortunately, the approximation problem (10.23) is not cov-

ered by known theorems, because all of them require the set of approximating

objects to be convex (see e.g. Heuser 1986, p. 339, 574 ff). In our case this

approximating set is given by the set of product states of the form (10.22) for

all sets of mutually spacelike separated regions in the future of Ws−1, i.e. by
the set (Y

i

ω
V−(Oi)
s−1 |P(Oi)

: {Oi} ∈ Ss

)
.

However, this set is obviously not convex because convex combinations of prod-

uct states are not themselves product states (see also Section 10.2.4). There-

fore, it is not secured that (REG) will in fact be able to determine a unique set

{Oi(s)} ∈ Ss. Clearly, if it should turn out that (REG) is not able to fulfil its
task, some other rule has to be found. On the other hand, as long as (REG)

is not disproved we will for the sake of argument assume that it works in the

required way.

10.4 The conformal phase

In the conformal phase of the collective transition process at stage s of the

world-process each of the regions Oi(s) realized in the forgoing dative phase is

provided with an initial definiteness, i.e. with a maximal abstractive hierachy

of subjective eternal objects ingressed into it. The determination of this hi-

erachy proceeds via the creative character of the activity ωd
Ws−1 left after the

dative phase. In Section 8.4 we have seen that the initial maximal abstractive

hierachy H(G(Oi(s))) of subjective eternal objects compatible with the (objec-

tive eternal object Oi(s) corresponding to) region Oi(s), is to be represented

by a Boolean algebra B({P̂i}) where the classes of projections denoted by P̂i

(representing the subjective eternal objects which form the base G(Oi(s)) of

the hierachy) satisfy the compatibility condition (CSO) with respect to the

region Oi(s) and thus can according to condition (ING) ingress into this region
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(see Section 8.2). Condition (CSO) says that the subjective eternal object P̂i

is compatible with (and thus can ingress into) region Oi(s) iff there is a P 0
i ∈ P̂i

with P 0
i ∈ P(Oi(s)) and P 0

i /∈ P(O0) for all O0 ∈ D(M) with O0 ⊂ Oi(s). The

fulfillment of this condition by all the classes of projections {P̂i}, then, auto-
matically implies their mutual compatibility with one another as expressed by

the condition (CS) of Section 8.2. Therefore, our task in this section will be the

formulation of a rule that determines, on the basis of the state ωs−1|∧i(s)P(Oi(s))
representing the relevant activity ωd

Ws−1 , a Boolean algebra B({Pi}) of local
projections for each of the regions Oi(s) realized in the forgoing dative phase,

such that all the projections Pi satisfy Pi ∈ P(Oi(s)) and Pi /∈ P(O0) for all
O0 ∈ D(M) with O0 ⊂ Oi(s). In this case the corresponding subjective eternal

objects represented by the classes

P̂i =
n
U(g)PiU(g)

−1 : g ∈ P↑+
o

(10.24)

build from these projections (see Section 8.2) are compatible with region Oi(s)

and thus too, mutually compatible with one another, so that the correspond-

ing Boolean algebra of classes B({P̂i}) can be taken to represent the unique
maximal hierachy of subjective eternal objects ingressed into the region Oi(s)

in the conformal phase of the transition process at stage s.

First of all, there is a well-known rule, formulated by R. Clifton in the

context of a proposal for a modal interpretation of AQFT, that uniquely de-

termines a Boolean algebra of local projections from P(O) on the basis of a
given state ρ (Clifton 2000). This rule makes use of the so-called centralizer,

term it Cρ,P(O), of the state ρ with respect to the set of all projections in the
local algebra R(O), consisting of all P ∈ P(O) such that

ρ(PQ) = ρ(QP ) for all Q ∈ P(O).

The center of the centralizer Cρ,P(O), term it Z(Cρ,P(O)), consists of all elements
of Cρ,P(O) which commute with all other elements in Cρ,P(O), i.e.

Z(Cρ,P(O)) =
©
P ∈ Cρ,P(O) : PQ = QP for all Q ∈ Cρ,P(O)

ª
,

and is a commutative subset of P(O). Each commutative set of projections
determines a unique Boolean algebra, namely the smallest Boolean algebra in-

cluding this set. Therefore, the smallest Boolean algebra including Z(Cρ,P(O)),
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term it Bρ,P(O), is uniquely determined by P(O) and the state ρ. Because of
the one-to-one correspondence between double cones and the sets of projec-

tions contained in their local algebras, in case of O being a double cone, this

Boolean algebra is therefore in effect solely determined by O and ρ. Thus by

letting ρ be the state ωs−1|∧i(s)P(Oi(s)) representing the activity ω
d
Ws−1 after the

dative phase and O be one of the regions Oi(s) realized in this dative phase, we

get a unique Boolean algebra of local projections for each of the regions Oi(s).

However, this rule does not already satisfy all our needs. First, the Boolean

algebra Bρ,P(O) determined by this rule, will, in general, not be generated by
a resolution of the identity {Pi} and thus will not contain at most countably
many elements. But as explained in Section 8.4 uncountable Boolean algebras

cannot be used for the representation of abstractive hierachies. Thus we have

to supplement the “Clifton-rule” by the constraint that the Boolean algebra

Bρ,P(O) is generated by a resolution of the identity or equivalently that it con-
tains at most countably many elements. A second problem concerns the fact

that the Clifton-rule only secures that the projections in Bρ,P(O) are contained
in P(O) but not that they are not also contained in the local algebra of any
subregion O0 ⊂ O. The latter is, however, needed for the compatibility of
the subjective eternal objects P̂ build from the projections P ∈ Bρ,P(O) with
the region O (see above). Thus the Clifton-rule has to be supplemented with

this further requirement too, for being able to satisfy the needs of our inter-

pretation. The two supplementary requirements needed to accommodate the

Clifton-rule to our interpretational framework obviously have the effect that

some regions to which a Boolean algebra Bρ,P(O) would be associated accord-
ing to the bare Clifton-rule will not get one. Thus some of the regions created

in the dative phase may not in fact get an initial and thus too not, a final defi-

niteness, or equivalently, they are merely equipped with the trivial definiteness

provided by the trivial subjective eternal object 1̂. Consequently, no decisions

have to be settled for them during the following phases of concrescence–it is

already decided that they will merely be empty spacetime regions devoid of

any qualitative character. Note that such empty spacetime regions are nev-

ertheless distinct from mere unrealized extension–contrary to the latter the

former have a definite boundary surface by reason of which they are relata of

metrical relations to other regions (see Sections 2.1, 2.2.1 and 2.2.2). Although
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the possibility of occasions which are merely empty spacetime regions devoid

of any qualitative determinateness has probably not been intended by White-

head (see PR, p. 56, 92, 314), the existence of such occasions seems not to be

in conflict with any other aspects of his ontology or with empirical facts.

However, there is still another problem with the Clifton-rule, that has been

pointed out by Clifton himself (Clifton 2000, p. 13 ff). For there is a whole

class of states ρ for which the Boolean algebra Bρ,P(O) consists merely of the
trivial projections 0 and 1. The states in question are those which are ergodic

with respect to P(O). Such states have the property that their centralizer
with respect to P(O) is trivial, i.e. Cρ,P(O) = {0,1}. Consequently, the center
Z(Cρ,R(O)) of the latter is likewise trivial, so that the only projections con-
tained in it, and thus too in Bρ,P(O), are in fact 0 and 1. The all important
question is therefore whether the state we are using to represent the activity

ωd
Ws−1 after the dative phase is ergodic with respect to the sets of all projec-

tions P(Oi(s)) or equivalently the local algebrasR(Oi(s)) of the regions {Oi(s)}.
Now it is known that the vacuum state itself is ergodic with respect to the al-

gebras associated with certain unbounded regions, so-called Rindler wedges

(Longo 1979). In two special cases (namely, for free and conformal models of

QFT) this ergodicity of the vacuum can even be shown to hold with respect

to the algebras associated with double cones (Longo and Hislop 1982). How-

ever, whether this is generally the case is not known. More importantly, it is

likewise unknown whether states which are created from the vacuum state by

a conditioning due to local projections are ergodic with respect to double cone

algebras. Since the states we are using to represent Whiteheadian activities

are of the latter form (see Section 9), it is therefore an open question whether

they are ergodic with respect to the local algebras of double cones (or any

other regions). If these states were ergodic with respect to double cone alge-

bras, the Clifton-rule were of no use for our interpretation, because it would

merely associate the trivial Boolean algebra {0,1} to every region created in
the course of the world-process. In this case clearly some other rule had to be

formulated that determines non-trivial Boolean algebras of local projections

at least for some regions O ∈ D(M). However, for the sake of argument (and

the lack of any better alternative) we will assume that the Clifton-rule is not

rendered irrelevant for our interpretation by the structure of the states we use
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to represent activities.

The activity that is relevant for the determination of the abstractive hi-

erachies of subjective eternal objects to the regions {Oi(s)} is the outcome
activity ωd

Ws−1 of the dative phase. Therefore, what is relevant for the deter-

mination of the abstractive hierachy for a single of these regions, Oi(s) say, is

the perspective of Oi(s) onto the undivided activity ωd
Ws−1 , because it expresses

the causal efficiency of the common past for region Oi(s) abstracted from that

for all the other regions (see Section 10.1). Thus from the point of view of our

interpretation as put forward so far, only the state

(ωs−1|∧i(s)P(Oi(s)))|P(Oi(s)) = ωs−1|P(Oi(s))

representing this perspective onto the activity ωd
Ws−1 (where the latter is rep-

resented by the state ωs−1|∧i(s)P(Oi(s))) should matter for the determination of

the Boolean algebra of region Oi(s). And as is clear from the construction

of the Boolean algebra Bρ,P(O) due to the Clifton-rule, it is in fact only the
restriction of the state ρ to the set P(O) that matters for Bρ,P(O).

Therefore, we propose as the rule for the determination of abstractive hier-

achies of subjective eternal objects–of the initial definiteness–for the regions

{Oi(s)} created in the dative phase, the Clifton-rule supplemented by the two
further constraints mentioned above:

(DEF) The maximal abstractive hierachy H(G(Oi(s))) of subjective eternal ob-

jects ingressed into the region Oi(s) in the conformal phase of the transi-

tion process at stage s is represented by the Boolean algebra consisting

of all classes P̂ (of the form (10.24)) build from projections

P ∈ Bωs−1|∧i(s)P(Oi(s)),P(Oi(s))
(10.25)

provided that (1) the latter Boolean algebra is generated by a resolu-

tion of the identity16 included in P(Oi(s)), term it {Pi}Oi(s)
and (2) its

elements are not contained in a local algebra R(O0) of any subregion
O0 ⊂ Oi(s).

16As metnioned above this is equivalent to Bωs−1|∧i(s)P(Oi(s)),P(Oi(s))
’s consisiting of at

most countably many projections.
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Since according to (1) the Boolean algebra Bωs−1|∧i(s)P(Oi(s)),P(Oi(s))
is gener-

ated by the resolution of the identity {Pi}Oi(s)
and thus is simply B({Pi}Oi(s)

).

It represents the possible ingressions into region Oi(s) of the subjective eternal

objects contained in H(G(Oi(s))). The set of classes, term it {P̂i}Oi(s)
, that

corresponds to the resolution {Pi}Oi(s)
of the identity 1, then, represents the

base G(Oi(s)) of the hierachy H(G(Oi(s))) and the hierachy itself is accordingly

represented by the Boolean algebra

B({P̂i}Oi(s)
)

generated from {P̂i}Oi(s)
.

In the terminology of Section 8.1.6, the Boolean algebra B({Pi}Oi(s)
) is just

the set of possible properties Pωs−1|P(Oi(s)) for a system in state ωs−1|P(Oi(s)). In

that section we have argued why, in an interpretation of QT like ours that does

not leave the realm of ordinary probability theory, that interprets probabilities

ontically and that incorporates the conception of an actualization of possibil-

ities, this set of possible properties has to be (embeddable into) a Boolean

algebra. What happens in the following phases of concrescence is, again in the

terminology of that earlier section, the selection of those possible properties

which will in fact be “possessed respectively not possessed by the region Oi(s)”

at the end of this non-spatiotemporal actualization process.

Now a possible objection that could be put forward against (DEF) is that

the Boolean algebra B({Pi}Oi(s)
), singled out according to the supplemented

Clifton-rule, represents already a set of definite rather than genuinely possible

properties. In other words, the challenge is that each element of B({Pi}Oi(s))
is either already actualized (or at least determined for actualization) or ruled

out for actualization respectively, rather than being a genuine possibility as

required for the Whiteheadian idea of a concrescence process as a genuine

actualization of formerly ontic possibilities to make sense.

First of all, since at the end of the concrescence process to follow, each

element of B({Pi}Oi(s)
) will either definitely be possessed or definitely not pos-

sessed by the regionOi(s), but will not have the status “indifferent” with respect

to this region, the set B({Pi}Oi(s)
) in fact coincides with the set of “definite

properties” at the end of the concrescence. But this does not mean that it is

already determined at the concrescence’s beginning that a particular element of
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B({Pi}Oi(s)
) will be possessed respectively not possessed at its ending. However,

for this to make sense the concrescence process has to be genuinely indeter-

ministic. In other words, the probabilities for the elements of B({Pi}Oi(s)
)

impressed into the creative character of the corresponding activity have to be

ontic probabilities. Yet this latter point that may be challenged, since one

can show that each Boolean algebra Bρ,P(O) determined by the Clifton-rule
on the basis of a state ρ is such that this state is a convex combination of

dispersion-free states on Bρ,P(O) (Clifton 2000, p. 8). Generally, that a state σ
is dispersion-free on a Boolean algebra B of projections means that the prob-

ability it ascribes to each projection in B is either 0 or 1. And in this case

each of the properties in B were in fact definite, i.e. either possessed or not

possessed, by a system in state σ.17 Thus if the state ρ were in fact always

dispersion free on Bρ,P(O) there would be no room for a further actualization

process to follow. Of course, Whitehead himself believed that this can never

be the case (PR, p. 47, 284). But as already remarked in Section 2.3.1 it seems

that it will not cause any damage to his theory if we allow for the possibility

that some occasions may be completely other-caused. In other words, the con-

crescence process of some occasions may merely consist of a single phase, the

phase of satisfaction, where those of the subjective eternal objects ingressed

in the conformal phase which are moreover determined for unrestricted ingres-

sion, are unrestrictedly ingressed. Such an occasion comes close to an event

as usually understood, because it does not include a non-spatiotemporal ac-

tualization process in its ontological constitution; rather its ontological status

changes directly from possibility to (attained) actuality without the generi-

cally Whiteheadian route through actuality in attainment. Yet if this were

always the case (DEF) were clearly undermined, because it would have the

consequence that one of the genuine features of Whitehead’s ontology would

not be represented in the formalism of QFT. However, the Clifton-rule does

not imply that the state ρ is always dispersion-free on Bρ,P(O) but merely that
it is always a convex combination of such states. And only if this convex com-

bination would admit an ignorance interpretation the challenge against (DEF)

would be substantial. This is because in this case one could hold that each of

17We assume for the sake of simplicity that B is at most countable as required for the
application in our interpretation by (DEF).
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the properties in Bρ,P(O) is still either possessed or not, but that this ontolog-
ical status is not faithfully revealed by the probabilities 0 < ρ(P ) < 1 because

they are merely epistemic, i.e. include some measure of ignorance, rather than

ontic (see Section 5.2). However, such an ignorance interpretation is hardly

possible because every state can be written as such a convex combination of

dispersion-free states on each commutative subalgebra of B(H) and thus in
particular on Bρ,P(O) (Clifton 2000, p. 8). Therefore, if the probabilities ρ as-
cribes to the elements of Bρ,P(O) would be interpreted as epistemic rather than
ontic on the basis of the fact that ρ is a convex combination of dispersion-free

states on Bρ,P(O), this ignorance interpretation would apply to each state on
any Boolean algebra of projections. Consequently, all probabilities provided by

the formalism of QFT, were epistemic rather than ontic. This, however, means

nothing else than that there is some underlying (not necessarily deterministic)

HP-theory, that (at least in principle) eliminates the epistemic deficiencies we

are committed to due to the generically incomplete description provided by

QFT. Put conversely, as far as one believes that the formalism of QFT is not

generically incomplete in this sense, one cannot conclude from the fact ρ is a

convex combination of dispersion-free states on Bρ,P(O), that the probabilities
the state ρ ascribes to the elements of the Boolean algebra Bρ,P(O) are merely
epistemic. We therefore conclude that the mentioned challenge to (DEF) does

not go through.

Before we can turn to the representation of concrescence processes we have

to fix the representation of the outcome activity ωc
Ws−1 of the conformal phase,

and thus of the whole transition process at stage s of the world-process. In

Section 10.1 we have proposed to represent the reduction in the amount of

activity due to the dative phase and thus the transition from the activity

ωWs−1 at the beginning of the dative phase to the activity ωd
Ws−1 after this

phase, by the restriction of the state ωs−1 (on B(H)), representing the activity
ωWs−1 , to the conjunction ∧i(s)P(Oi(s)) of the sets of projections corresponding

to the regions created in the dative phase, i.e. by

ωs−1 → ωs−1|∧i(s)P(Oi(s)).

Accordingly we will now represent the reduction in the amount of activity due

to the conformal phase and thus the transition from the activity ωd
Ws−1 at the
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beginning of the conformal phase to the activity ωc
Ws−1 after this phase, by

the restriction of the state representing the activity ωd
Ws−1 to the conjunction

∧i(s)B({Pi}Oi(s)
) of all the Boolean algebras B({Pi}Oi(s)

) ingressed into the

regions {Oi(s)} in the conformal phase:

ωs−1|ωs−1|∧i(s)P(Oi(s)) → (ωs−1|∧i(s)P(Oi(s)))|∧i(s)B({Pi}Oi(s) ) (10.26)

Since the individual Boolean algebras B({Pi}Oi(s)
) are included in the sets of

all projections of regions Oi(s), so that their conjunction is likewise included

in the conjunction ∧i(s)P(Oi(s)), the state on the right hand side of (10.26) is

simply

ωs−1|∧i(s)B({Pi}Oi(s)). (10.27)

In other words, the outcome activity ωc
Ws−1 of the conformal phase, which is

at the same time the activity for the initial phase of the following concres-

cence process, is represented by the restriction of the state ωs−1 to the set
∧i(s)B({Pi}Oi(s)

).
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Chapter 11

The representation of
concrescence processes

The final task for completing our Whiteheadian interpretation of QFT is the

representation of what takes place in concrescence processes.

11.1 The hierachies and activities involved in

concrescence processes

In the concrescence process–that will generally start as one undivided pro-

cess bifurcating into partial or particularized processes in later phases–the

maximal hierachies H(G(Oi(s))) of subjective eternal objects ingressed into

the regions Oi(s) are successively reduced until the initial activity ωc
Ws−1 for

the concrescence process is exhausted. Let us assume that the concrescence

process of stage s of the world-process consists of M phases. In each phase of

this concrescence process one of the eternal objects of the initial base G(Oi(s))

is eliminated for unrestricted ingression into the corresponding region Oi(s)–

in other words, one of the basic elements is decided to have merely restricted

ingression into that region (see Section 2.2.1). Let Gn(Oi(s)) for 1 ≤ n ≤ M

denote the base of the hierachy for phase n or equivalently after phase n− 1.1

The base of the hierachy left at the end of the last phase (here phase number

1The phrase “after phase 0 of concrescence” occuring in case n = 1 is to be understood
as meaning “after the conformal phase of transition”.

263
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M) of the concrescence is denoted by GM+1(Oi(s)). It is the range of subjective

eternal objects which have not been eliminated in the course of the concres-

cence and thus have unrestricted ingression into region Oi(s) (see below). By

means of the successive reduction

G1(Oi(s)) ⊃ G2(Oi(s)) ⊃ · · · ⊃ GM(Oi(s)) ⊃ GM+1(Oi(s))

of the initial base G1(Oi(s)) ≡ G(Oi(s)), consisting of those subjective eternal

objects which are simple relative to the hierachy H(G(Oi(s))) (see Section

8.3.2), the latter is successively reduced too,2

H(G1(Oi(s))) ⊃ H(G2(Oi(s))) ⊃ · · · ⊃ H(GM(Oi(s))) ⊃ H(GM+1(Oi(s))).

As proposed in Section 8.4, the base G1(Oi(s)) of the initial hierachy is to be

represented by a resolution of the identity 1̂. The reduced bases Gn(Oi(s))

for 2 ≤ n ≤ M + 1 are therefore not represented by such resolutions and

as explained in Section 8.4, this implies that, contrary to the initial hier-

achy H(G1(Oi(s))), the later ones H(Gn(Oi(s))) can merely be represented by

distributive lattices not coinciding (as sets) with Boolean algebras. More pre-

cisely, according to the last section, the initial hierachy H(G1(Oi(s))) is to be

represented by the Boolean algebra B({P̂i}Oi(s)
). If {P̂i}nOi(s)

denotes the set

representing the reduced base Gn(Oi(s)) for 2 ≤ n ≤ M + 1, obtained from

{P̂i}Oi(s) by removing n − 1 elements–each eliminated in one of the phases
preceding phase n–then the hierachy H(Gn(Oi(s))) is represented by the dis-

tributive lattice generated from {P̂i}nOi(s)
(by disjunctions of elements of the

latter (see Section 8.3.3)). Let us denote this distributive lattice accordingly

by D({P̂i}nOi(s)
). Note that according to the notion just introduced, the set

{P̂i}Oi(s) representing the initial base G1(Oi(s)) = G(Oi(s)) is also denoted by

{P̂i}1Oi(s) .
Because of the non-existence of conjunctive subjective eternal objects (see

Section 8.3.3) the only available complex subjective eternal in the hierachy

H(GM+1(Oi(s)) that has all the elements of the finally left set GM+1(Oi(s)) as

its components, is the one represented by the disjunction

P̂i(s) ≡ ∨{P̂i}M+1
Oi(s)

P̂i (11.1)

2Recall that H(Gn(Oi(s))) concides with the distributive lattice generated from the base
Gn(Oi(s)) (see Sections 2.2.6 and, in particular, Section 8.4).
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of all these elements.3 The subjective eternal object represented by (11.1) is

therefore the one that has unrestricted ingression into the region Oi(s) (see

Section 2.2.6), and thus makes up the final definiteness of the corresponding

occasion. Accordingly, the subjective eternal objects which have restricted in-

gression into region Oi(s), i.e. which have been ingressed but are eliminated in

later phases of the concrescence process are those contained in the initial hi-

erachy H(G1(Oi(s))) different from P̂i(s). In other words, the set of “possessed

properties” of region Oi(s) is the singleton set consisting merely of the subjec-

tive eternal object (represented by) P̂i(s) and the set of not possessed ones is

given by H(G1(Oi(s))) without P̂i(s). Thus the set of definite, i.e. possessed or

non-possessed properties, coincides with the initial hierachy H(G1(Oi(s))), i.e.

with the set of initially possible properties.

However, this does not mean that there has been no genuine “actualization

of possibilities”–this would only be the case if the probabilities of the elements

of H(G1(Oi(s)) would admit an ignorance interpretation and, as argued in the

last section, this is not the case. All other subjective eternal objects, i.e. which

do not belong to the initial hierachy H(G1(Oi(s)) are indefinite with respect

to region Oi(s) (see Section 8.1.6).

The unrestricted ingression of the subjective eternal object (represented

by) P̂i(s) into the region Oi(s) is at the same time the actualization of the com-

pleted occasion, represented accordingly by Ei(s) = (Oi(s), P̂i(s)), by which this

occasion contributes to the new manifestation ωWs of the underlying activity

(see Sections 2.3.3 and 2.3.4). According to Section 9.2 this new manifestation

is therefore represented by the state

ωs =
ω(W (s)∗ ·W (s))
ω(W (s)∗W (s))

,

where the operator W (s) is given by

W (s) =
Y

−∞≤t≤s

Y
i(t)

Pi(t)

 =

Y
i(s)

Pi(s)

Y
i(s−1)

Pi(s−1)

 · · · .
In Section 9.3 we have argued that although the hierachies H(Gn(Oi(s)))

for 2 ≤ n ≤ M are not Boolean algebras, we should nevertheless be licensed

3It is just the unit element of the distributive lattice D({P̂i}M+1
Oi(s)

) representing the final
hierachy H(GM+1(Oi(s))).
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to interpret the creative character of the corresponding activities ωc,n
Ws−1 as

providing propensities (perhaps within a slightly more liberal understanding

of the term) for the unrestricted ingression of the eternal objects contained in

H(Gn(Oi(s))). For n =M+1 there is no corresponding activity, because at the

end of the last phase M of concrescence, there is no activity left. Therefore,

ωc,M+1
Ws−1 is simply to be represented by the trivial state ρ = 0. Now by which

states shall the activities ωc,n
Ws−1 for 2 ≤ n ≤M be represented?

Generalizing our claim as to the representation of the reduction of the

amount of an activity due to a phase of transition, that has led us to the

representation of the activity left after the dative phase and the activity left

after the conformal phase respectively (see Sections 10.1 and 10.4), we pro-

pose to represent the activity ωc,n
Ws−1 for phase n, i.e. the one left after phase

n − 1, of concrescence by the appropriate restriction of the state representing
the outcome activity ωc,n−1

Ws−1 of the immediately preceding phase. According to

equation (10.27) of Section 10.4 the initial activity for the concrescence process

ωc,1
Ws−1 is to be represented by the state

4

ωs−1|∧i(s)B({Pi}1Oi(s) ).

Consequently, the activity left after the first phase of concrescence is to be

represented by the restriction of this state to the conjunction of the distribu-

tive lattices D({Pi}2Oi(s)
) (representing the hierachies after this first phase of

concrescence) obtained from the Boolean algebras B({Pi}1Oi(s)) (which repre-
sent the initial hierachies) by removing one element from the generating set

{Pi}1Oi(s) of each, i.e. by a state of the form
5

(ωs−1|∧i(s)B({Pi}1Oi(s) ))|∧i(s)D({Pi}2Oi(s) ). (11.2)

Because of the inclusionsD({Pi}2Oi(s)
) ⊂ B({Pi}1Oi(s)

) the state (11.2) simplifies

to

ωs−1|∧i(s)D({Pi}2Oi(s)).

By iteration, the activity ωc,n
Ws−1 for the n-th phase of concrescence is therefore

represented by the state

ωs−1|∧i(s)D({Pi}nOi(s)).

4Recall that {Pi}1Oi(s) is just another denotation for {Pi}Oi(s)
.

5Which particular element is removed from each generating set is not important here.
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In sum, then, we have represented all the abstractive hierachies and activities

involved in the succeeding phases of a concrescence process by means of objects

available within the formalism of AQFT.

However, a question that has been left unanswered up to this point is

how we can mathematically express the divisibility or separability of an activ-

ity ωc,n
Ws−1 into partial but not necessarily particularized activities. In Section

10.2.5 we have discussed the divisibility of an activity into two partial ac-

tivities which are also particularized. Thus in this simplest case, divisibility

coincides with particularizability. Yet this need not generally be the case. As

discussed in Section 2.6.2, generally the activity ωc,n
Ws−1 may be divided into

two parts ωc,n
Ws−1(O1, . . . ,Ok) and ωc,n

Ws−1(Ok+1, . . . ,ON) none of which is par-

ticularized, because each makes decisions for more than one region (namely

for the regions O1, . . . ,Ok and Ok+1, . . . ,ON respectively) and thus cannot be

said to be located in a single such region. As we will argue now, this more gen-

eral possibility for the divisibility of activities can, however, also be rigorously

expressed in terms of the separability of the corresponding states.

The separability criterion (SEP1) from Section 10.2.5 identifies separable

states across the regions O1 and O2 with the product states across the sets
of all projections P(O1) and P(O2) associated with the regions. Now the

generalization of this criterion to more than two regions, termed (SEP2) in

Section 10.2.5, is obviously not the right kind of generalization to be able to

cover the case in question, because it simply requires that the state repre-

senting the activity ωc,n
Ws−1 is a product state across P(O1), . . . ,P(ON). But

a product state across P(O1), . . . ,P(ON) just represents an activity that is

divisible into N particularized activities, rather than an activity divisible into

two partial but non-particularized activities. However, it is clear how the lat-

ter can be expressed mathematically: one need only require that the state in

question is a product state across the sets of all projections contained in the

algebras R(∪ki=1Oi) and R(∪Ni=k+1Oi) associated with the union of the regions

O1, . . . ,Ok and Ok+1, . . . ,ON respectively (see Appendix C). For if this is

the case it is divisible into two parts such that one corresponds collectively

to the regions O1, . . . ,Ok and the other corresponds collectively to the regions

Ok+1, . . . ,ON , without presupposing anything about a further divisibility with

respect to the members of the sets {O1, . . . ,Ok} and {Ok+1, . . . ,ON}.



268 CHAPTER 11. REPRESENTING CONCRESCENCE PROCESSES

Now the activities in question

ωc,n
Ws−1 , ω

c,n
Ws−1(O1, . . . ,Ok) and ωc,n

Ws−1(Ok+1, . . . ,ON)

are represented by the states

ωs−1|∧N
i(s)=1

B({Pi}Oi(s) ), ωs−1|∧k
i(s)=1

B({Pi}Oi(s) ) and ωs−1|∧N
i(s)=k+1

B({Pi}Oi(s)) (11.3)

in case n = 1, and for 2 ≤ n ≤M by the states

ωs−1|∧N
i(s)=1

D({Pi}nOi(s) )
, ωs−1|∧k

i(s)=1
D({Pi}nOi(s))

and ωs−1|∧N
i(s)=k+1

D({Pi}nOi(s) )
(11.4)

(see Sections 10.4), and thus by restrictions to domains already strictly con-

tained in the sets of all projections in R(∪ki(s)=1Oi(s)) and R(∪Ni(s)=k+1Oi(s))

respectively. As explained above, these more restricted domains represent the

sets of possible unrestricted ingressions of the subjective eternal objects in

the hierachies H(Gn(Oi(s))) (i(s) = 1, . . . , N ) of phase n of the concrescence

process in question. Consequently, the divisibility of the activity ωc,n
Ws−1 need

only refer to these smaller domains instead of referring to the whole sets of

projections contained in the algebras R(∪ki=1Oi) and R(∪Ni=k+1Oi). Therefore,

the activity ωc,n
Ws−1 is divided into the partial activities ω

c,n
Ws−1(O1, . . . ,Ok) and

ωc,n
Ws−1(Ok+1, . . . ,ON) iff, in case n = 1, the corresponding state is a product

state across

(∧ki(s)=1B({Pi}1Oi(s)
)) and (∧Ni(s)=k+1B({Pi}1Oi(s)

))

and, in case 2 ≤ n ≤M , across

(∧ki(s)=1D({Pi}nOi(s)
) and (∧Ni(s)=k+1D({Pi}nOi(s)

),

i.e. iff, in case n = 1,

ωs−1|∧N
i(s)=1

B({Pi}1Oi(s))
= ωs−1|∧k

i(s)=1
B({Pi}1Oi(s) )

· ωs−1|∧N
i(s)=k+1

B({Pi}1Oi(s) )

and in case 2 ≤ n ≤M

ωs−1|∧N
i(s)=1

D({Pi}nOi(s) )
= ωs−1|∧k

i(s)=1
D({Pi}nOi(s))

· ωs−1|∧N
i(s)=k+1

D({Pi}nOi(s))

holds respectively. Since the generalization of this criterion for the divisibility

of activities into partial, non-particularized activities, to more than two partial

activities is straightforward, it shall not be demonstrated here explicitly.
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11.2 The degree of divisibility of activities

According to Section 2.5.3 (see also Section 2.6.1), the activities ωc,n
Ws−1 (1 ≤

n ≤M) involved in the phases of concrescence can bifurcate into particularized

or partial activities. Section 10.2.5 and the last section have provided us with

mathematical expressions for the dividedness of activities into particularized or

partial activities. However, it is well-known that separability/non-separability

is not an “all or nothing” alternative, rather (non-) separability of states comes

in degrees. There have been a lot of different proposals for quantitative mea-

sures of the (non-) separability of states (see e.g. Auletta 2001, Section 42.8;

Vedral and Plenio 1998). But none of them has become universally accepted

so far. Therefore, we will not enter into the discussion which of these differ-

ent proposals may quantitatively fit best to the measure of (in-) divisibility of

activities we will propose below. Rather we will only attempt to give a qual-

itative explanation for the different degrees of (non-) separability of quantum

states by means of our ontology. And for this we need not know much more

than that there are such different degrees.

In Section 2.6.1 we have already argued that one can quantify the degree

of particularity of an activity with respect to a certain region, by use of the

number of concrescence phases in which the activity is divided such that one

of its parts is located in this region. We will now generalize this proposal to

the case where none of the partial activities need to be particularized. First

of all, note that because of our assumption that the “phase of bifurcation” is

impressed into the creative character of the activity in question and the con-

stancy of this creative character throughout all phases of concrescence (in the

sense explained in Section 2.6.2), one can “read off” the phase of a bifurcation

already from the (creative character of the) activity ωc
Ws−1 at the beginning of

the concrescence process. In fact one can even read off this “information” from

the earlier activities ωd
Ws−1 and ωWs−1 after and at the beginning of the dative

phase of transition, because they too, have the same creative character as the

outcome activity ωc
Ws−1 of the conformal phase of transition. But contrary

to the two former activities the latter is the first activity that can in fact be

divided, so that it makes sense to refer to this activity when discussing degrees

of (in-) divisibility.
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Now let O1, . . . ,ON be the regions created in the transition process of

stage s. The divisibility of the activity ωc
Ws−1, across the two subsets of re-

gions {O1, . . . ,Ok} and {Ok+1, . . . ,ON} say, is the higher the earlier the phase
in which it bifurcates into the partial activities corresponding to these subsets

of regions. If this bifurcation takes place in the n − 1-th phase of concres-
cence6 then the resulting partial activities are accordingly ωc,n

Ws−1(O1, . . . ,Ok)

and ωc,n
Ws−1(Ok+1, . . . ,ON). Note that the explicit reference to the subset of

regions across which the activity ωc
Ws−1 has a certain degree of divisibility is

needed because bifurcations into partial or particularized activities with re-

spect to different subset of the regions O1, . . . ,ON can take place in different

phases (see Section 2.6.1). Therefore, it makes, in general, no sense to speak

of the degree of divisibility of an activity simpliciter, without the mentioning

of regions.

For convenience let us start by introducing a measure for the degree of

indivisibility of an activity. A measure for the divisibility of activities will then

easily be derivable from the latter. Prima facie, a good candidate for the degree

of indivisibility of the activity ωc
Ws−1across {O1, . . . ,Ok} and {Ok+1, . . . ,ON},

term it

N(ωc
Ws−1; {O1, . . . ,Ok}, {Ok+1, . . . ,ON}),

is the quotient of the number of the phase in which the activity in fact bifur-

cates into the partial activities ωc,n
Ws−1(O1, . . . ,Ok) and ω

c,n
Ws−1(Ok+1, . . . ,ON)–

here phase number n − 1–and the total number of phases of the complete
concrescence process, here M , so that in this case

N(ωc
Ws−1; {O1, . . . ,Ok}, {Ok+1, . . . ,ON}) =

n− 1
M

. (11.5)

However, this value has to be compared with the degree one’s preferred non-

separability measure for states assigns to the state representing the activity

ωc
Ws−1 . Now there are two conditions to be fulfilled by every reasonable non-

separability measure for states. Each such measure should assign the value 0

to product states and should be normalizable to a maximum value of 1. These

6As already mention in the footenote on page 263, that in case n = 1 the bifurcation takes
place in the “0-th phase of concrescence”, simply refers to a bifurcation in the conformal
phase of the forgoing transition process.
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extreme cases correspond to the cases where, on the one hand, already the

initial activity ωc
Ws−1 = ωc,1

Ws−1 for the concrescence process is in fact divided

and where, on the other hand, even the activity ωc,M
Ws−1 of the last phase of

concrescence is still undivided with respect to the the above sets of regions.

Now for the first of these extreme cases, (11.5) does produce the required

output

N(ωc
Ws−1; {O1, . . . ,Ok}, {Ok+1, . . . ,ON}) =

1− 1
M

= 0.

But for the second case, where even the activity ωc,M
Ws−1 is still undivided across

the sets of regions in question, (11.5) does not produce the required value 1,

but rather the value (M−1)/M that is obviously smaller than 1. However, this

already suggests how to modify (11.5), so that one gets a normalized measure

for the degree of indivisibility of activities–we simply have to take

N(ωc
Ws−1; {O1, . . . ,Ok}, {Ok+1, . . . ,ON}) ≡

n− 1
M − 1 . (11.6)

This definition covers both extreme cases because (1 − 1)/(M − 1) = 0 and

(M − 1)/(M − 1) = 1. Whether it is also empirically adequate in the general
case, depends on the choice of one’s preferred measure of non-separability for

states, with which to compare (11.6). However, it is clear that there is a

wide range of freedom for further modifications of (11.6) to accommodate the

values prescribed by a particular non-separability measure of states, without

undermining the underlying ontological idea that it is the quotient (n−1)/(M−
1) of phases that matters. For example, one can take polynomials or, more

generally, real-valued functions of this quotient.7 Thus (11.6) in fact merely

represents the simplest of all the possible choices.

Now whatever further modification one may introduce into (11.6), with 1

as the maximum and 0 as the minimum value of indivisibility, a reasonable

measure for the degree of divisibility of the activity ωc
Ws−1across {O1, . . . ,Ok}

and {Ok+1, . . . ,ON}, is in any case simply given by

D(ωc
Ws−1; {O1, . . . ,Ok}, {Ok+1, . . . ,ON}) ≡ (11.7)

1−N(ωc
Ws−1; {O1, . . . ,Ok}, {Ok+1, . . . ,ON}).

7Provided that the range of these polynomials or functions lies in the interval [0, 1].
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The generalization of the degree of (in-) divisibility of activity ωc
Ws−1 across

more than two subsets of the set {Oi(s)} = {O1, . . . ,ON} of all regions of
stage s, say across {O1, . . . ,Ok}, Ok+1, {Ok+2, . . . ,Ol}, . . . , {Ol+1, . . . ,ON},
is straightforward and need therefore not be discussed here explicitly.

If our interpretation is correct, the different degrees of (non-) separability

of quantum states–at least of those representing Whiteheadian activities–

stem from the internal processual structure of Whiteheadian occasions. Put

conversely, that there are such different degrees is a point in favour of our

modified version of Whitehead’s ontology, since one of its genuine features is

an important factor in the explanation of this fact.

As already noted in Section 2.6.1 the fact that activities come in different

degrees of divisibility also has important consequences for the individuality

of occasions. This will be our final topic before we summarize the essential

results of this work in Chapter 12.

11.3 The degree of individuality of occasions

According to Sections 2.3.1 and 2.3.2 the individuality of a concrescent occa-

sion consists of (1) its definiteness, together with (2) the particularity and (3)

the autonomy of its activity. Since the activity is exhausted in the course of

the concrescence process, the individuality of a completed occasion accordingly

consists of the particularity due to its region and the (disjunctive) subjective

eternal object unrestrictedly ingressed therein–the final definiteness of this

occasion. Unfortunately, the present author has no idea for how one could

quantify the degree of definiteness of an occasion–either concrescent or com-

pleted. Therefore, we have to be content with the purely qualitative idea that

the definiteness will be the higher the less subjective eternal objects contribute

to it (as disjunctive components). Contrary to this, we will show in the fol-

lowing how the contributions to the individuality of concrescent occasions due

to their activities (i.e. (2) and (3) above) can be quantified.

The last section has provided us with a means to quantify the individuality

of a concrescent occasion due to the particularity of its activity. This contribu-

tion to the individuality of a concrescent occasion with region Oj belonging to

stage s, depends on the degree as to which the activity ωc
Ws−1 for this concres-
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cence is divisible into distinct parts, such that one of these, i.e. ωc
Ws−1(Oj), can

be regarded as being located in region Oj, and thus as being particularized.

And since this divisibility comes in degrees, that aspect of the individuality of

a concrescent occasion that comes from the particularity of its activity comes

in degrees, too. More precisely, the individuality of the concrescent occasion

with region Oj ∈ {Oi(s)} = {O1, . . . ,ON} due to the particularity of its ac-
tivity, coincides with the degree of divisibility of the activity ωc

Ws−1 across the

region Oj and the subset {Oi(s)}i(s)6=j of the other regions of stage s, i.e. with
the value of

D(ωc
Ws−1;Oj, {Oi(s)}i(s)6=j). (11.8)

If already the activity ωc
Ws−1 is thus divided the individuality of the occasion

in question due to the particularity of its activity is the maximum allowed by

Whitehead’s theory (see Sections 2.3.1 and 2.3.2), which is nicely reflected by

D(ωc
Ws−1;Oj, {Oi(s)}i(s)6=j) = 1.

And if such a bifurcation does not take place at all, i.e. if even the activity

ωc,M
Ws−1 of the terminal phase of the concrescence process of stage s is undivided

across Oj and {Oi(s)}i(s)6=j, then, there simply is no particularized activity for
region Oj and thus no individuality due to it. This too is nicely reflected by

the value of (11.8) for this case, which is just

D(ωc
Ws−1;Oj, {Oi(s)}i(s)6=j) = 0.

In general, the individuality of a concrescent occasion due to the particularity

of its activity will lie in between these two extreme cases.

The last contribution to the individuality of a concrescent occasion with

region Oj comes from the autonomy or freedom of its activity for decisions

among the range of subjective eternal objects available to it. As explained in

Section 2.3.1 this freedom also comes in degrees. It is the higher the less the

creative character of the activity ωc
Ws−1 is biased towards certain possibilities.

In other words, it is the higher the more the propensities provided by the

creative character of the activity ωc
Ws−1 are equally distributed over the qual-

itative possibilities given by the base G1(Oj) = G(Oj) of the corresponding

initial hierachy H(G1(Oj)) of subjective eternal objects and it is accordingly
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minimal if the propensity for one of the possibilities from G1(Oj) is 1 and all

others are 0. In this latter case, the activity ωc
Ws−1 simply has no freedom or

autonomy for decisions within the range G1(Oj) at all. Rather the subjective

eternal object that will constitute the final definiteness of the completed oc-

casion, i.e. that will unrestrictedly ingress into the region of the occasion, is

already completely determined by the occasion’s efficient causes (see Section

11.1). Now according to Section 10.4 the base G1(Oj) is represented by a res-

olution of the identity 1̂, say {P̂k}Oj , and according to Section 11.1, the state

representing the activity ωc
Ws−1 is given by ωs−1|∧N

i(s)=1
B({Pi}1Oi(s) )

. For simplicity

of notation we will simply abbreviate the latter by ρ. The propensities for the

unrestricted ingression of the subjective eternal objects from G1(Oj) into re-

gion Oj are accordingly given by ρ(Pk), where Pk is a projection representing

the possible ingression of the subjective eternal object P̂k in region Oj. A

quantitative measure for the freedom or autonomy of the activity ωc
Ws−1 with

respect to the subjective eternal objects in G1(Oj) can be constructed from

the so-called Shannon entropy of the probability distribution {ρ(Pk)}, defined
by (see e.g. Busch et al. 1995, p. 140 ff)

H({ρ(Pk)}) ≡ −
X
k

ρ(Pk) ln(ρ(Pk)).

H({ρ(Pk)}) measures the deviation of the probability distribution {ρ(Pk)}
from the case where one of the Pk is certain (has probability one) and all others

are impossible (have probability zero). A probability distribution of the latter

type has Shannon entropy zero and corresponds to the case where the activity

ωc
Ws−1 has no freedom at all for decisions among the range of subjective eternal

objects G1(Oj). In case where the set {Pk} is finite, consisting of n elements
say, H({ρ(Pk)}) is maximal in case of the equal distribution ρ(Pk) = 1/n for

all Pk, where it takes the value ln(n). However, the Shannon entropy is a

sensible measure of the degree of non-equality of the values {ρ(Pk)} also in the
infinite case where no equal distribution exists. This is because any change

toward the equalization of the probabilities increases the Shannon entropy. And

a higher degree of equalization of the probabilities {ρ(Pk)} corresponds to a
higher degree of freedom of decisions of the activity ωc

Ws−1 among the elements

of G1(Oj). Therefore, the Shannon entropy H({ρ(Pk)}) provides a reasonable
measure for the freedom or autonomy of the activity ωc

Ws−1 for decisions among
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the subjective eternal objects in G1(Oj). However, since in the infinite case

H({ρ(Pk)}) can vary between zero and infinity, it is not yet normalized. This
can, however, easily be remedied by taking for example,

F (ωc
Ws−1;G1(Oj)) ≡ 1− e−H({ρ(Pk)})

instead of H({ρ(Pk)}), as the measure in question.
Since the measure (11.8) for the divisibility of the activity ωc

Ws−1 is likewise

normalized, we can also quantify the total or net contribution to the individu-

ality of the concrescent occasion Ej due to its activity. This contribution can

simply be measured by the product of the degree of particularity of the activity

ωc
Ws−1 with respect to region Oj and the degree of freedom with respect to the

set G1(Oj), i.e. by

I(ωc
Ws−1;Oj) ≡ D(ωc

Ws−1 ;Oj, {Oi(s)}i(s)6=j) · F (ωc
Ws−1 ;G1(Oj)),

which is obviously normalized, too.
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Chapter 12

Summing up

In this work we have developed an interpretation of Whitehead’s writings on

his “philosophy of process” and have proposed a connection of the resulting

ontology with the algebraic formalism of QFT. Apart from some minor mod-

ifications and simplifications of Whiteheadian ideas, the main result of our

investigation of Whitehead’s philosophy has been that the ontology as origi-

nally intended by him contains an inconsistency. This inconsistency consists in

the fact that the principle of the separateness of all realized (and thus too, of all

actualized) regions will generally not be satisfied in the causally local and sep-

arable ontology as conceived by Whitehead. Rather to secure the separateness

of all realized regions, one has to give up either the requirement of the causal

independence of occasions belonging to the same layer of the world-process or

the requirement of the distinctness of their concrescence processes. We have

argued that the second alternative is the more appropriate one within the

framework of Whitehead’s ontology and have accordingly modified the latter.

The most important differences of the ontology resulting from incorporating

generally undivided, bifurcating activities, compared to Whitehead’s original

ontology have been that

(1) all occasions belonging to the same layer of the world-process have the

same causes, which, in particular, rules out Whitehead’s doctrine of ac-

tual worlds

(2) like the individuality of concrescent occasions due to the freedom of their

277
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activities, the individuality due to the particularity of their activities too,

becomes a matter of degree.

A consequence of (1) is that there will generally be superluminal causal

influences between occasions belonging to different layers of the world-process.

Whether this gives rise to a genuine conflict with STR depends on the under-

standing of the latter theory. In particular, if STR is understood as a pure

spacetime theory, not making any claims about causation at all, then there

is obviously no such conflict. On the other hand, if STR is believed to pro-

hibit superluminal causation, but presupposes that causal influences involve

a transfer of energy-momentum, it depends on the crucial concept of “trans-

fer” and on the question whether the Whiteheadian notion of activity can be

understood as an analog of physical energy, whether there is such a conflict.

However, even if STR is not understood as making any claims about cau-

sation, there is another source for a conflict. A central assumption of White-

head’s ontology is that the world is an expanding process. This requires that

occasions are grouped into linearly ordered layers, which in turn give rise to a

distinguished foliation of spacetime–a “preferred reference frame”. We have

shown how such a layer-cake structure can be established, by means of the

underlying activities envisagement of occasions. To avoid a conflict between

the thereby implemented distinguished foliation of spacetime and the Poincaré

invariance implied by STR, one has to admit that STR does not deserve an

ontological interpretation and that the distinguished foliation of the White-

headian world-process is not empirically detectable–not even in principle.

Yet the fact that one can avoid a conflict with STR only if a central feature

of Whitehead’s ontology is empirically unknowable, is clearly a drawback for

our Whiteheadian interpretation of QFT, since the latter incorporates the rel-

ativistic spacetime structure with Poincaré transformations constituting the

spatiotemporal invariance group.

Our introduction of generally undivided, bifurcating activities into White-

head’s original theory has been seen to fit quite smoothly to what QFT seems

to tell us by way of its violation of Bell’s inequality. We have argued that the

latter should be interpreted as a stemming from the non-separability of states

across spacelike separated regions. The different degrees of non-separability of

states can then be understood as stemming from an earlier or later bifurcation
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of the activities they represent, into distinct partial or particularized activities

and thus from the different degrees of individuality of concrescent occasions

(see (2) above).

That a concrescent occasion has a certain degree of freedom or autonomy

for decisions among a range of possibilities, limited only by the creative char-

acter of its activity (understood as providing a range of propensities), nicely

fits to the widely held view according to which the actualization of a possi-

ble measurement outcome involves “a free choice of nature, limited only by

the probability assignment [due to the respective state]” (Haag 1996, p. 316).

Measurable magnitudes or observables have been reinterpreted within our in-

terpretation in terms of abstractive hierachies of subjective eternal objects.

However, this reinterpretation, like the one of states in terms of activities,

does not work in each case. Thus not all observables and states are ontolog-

ically meaningful within our Whiteheadian interpretation. This is, however,

not in itself a drawback, as long as there are “enough” ontologically meaning-

ful observables and states to secure the empirical adequacy of the interpreta-

tion. Our interpretation of the creative character of an activity as providing

propensities for the ingression of subjective eternal objects, moreover allows to

construct a quantitative measure for the degree of freedom of the activity by

means of the Shannon entropy of the corresponding probability distribution

provided by the state representing this activity.

The very Whiteheadian conception of eternal objects as universals is, how-

ever, not supported by QFT. To the contrary, we have seen that the formalism

of AQFT neither provides natural candidates for a representation of objec-

tive eternal objects (i.e. boundary surfaces) nor of subjective eternal objects

(i.e. qualitative properties) if these are understood as universals. Rather we

had to be content with a more indirect representation of these entities by cer-

tain classes of regions and local projections respectively. This suggests that

QFT is more sympathetic to a conception in which properties are not treated

as universals but rather as particulars–good news for nominalists. In case of

subjective eternal objects, their representation had moreover been complicated

by the fact that, because of the lack of atomic local projections in QFT, there

are probably no simple subjective eternal objects at all. We have partially

remedied this unfortunate state of affairs by introducing the notion of “sim-
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plicity relative to an abstractive hierachy”. Since subjective eternal objects

only ingress into occasions as members of particular hierachies, this weaker

notion is, however, sufficient to ground the idea of “simple decisions” of con-

crescent occasions, that had been introduced to safe Whitehead’s ontology

from the challenge that concrescence processes are not genuine processes at

all, but merely single acts.

The Whiteheadian idea that the abstractive hierachy of subjective eternal

objects, ingressing into a particular region, is determined by the corresponding

causal past via the creative character of the corresponding activity, has been

concretized by a particular mathematical rule we have formulated for this

purpose. However, we have not been able to guaranty that this rule will in

fact work appropriately. If the states which represent the relevant activities

should turn out to be ergodic with respect to the local algebras of double

cones, then, the rule will merely single out abstractive hierachies consisting of

the two trivial subjective eternal objects represented by 0̂ and 1̂ respectively.

In this case clearly some different rule has to be found, because otherwise the

world would lack any (non-trivial) qualitative properties.

In case of the determination of the regions of occasions by their causal

pasts via the creative character of the corresponding activities, the situation

is similar. We have proposed a mathematical rule for how this determination

shall proceed, but it is not clear whether this rule will appropriately work in

all cases. This is because our rule constitutes an approximation problem in the

space of states on B(H) that seems not to be covered by the known theorems
of this branch of mathematics. Therefore, in this case too, the proposed rule

has merely a tentative character. However, in case our proposed rules will in

fact turn out to be untenable, the ideas underlying them may nevertheless be

helpful to inspire some more sophisticated proposals.

The final task of fixing the degree as to which our project of establishing an

adequate ontological interpretation of QFT in terms of Whitehead’s philosophy

of process has been successful, is left to the reader. However, we hope that

those who are not satisfied with the result of this project feel encouraged

to work out a more satisfactory ontology for QFT, may it be inspired by

Whiteheadian ideas or not.



Appendix A

Lattices and Boolean algebras

A partially ordered set is a set S equipped with a relation ≤ such that for all
a, b, c ∈ S

(P1) a ≤ a (reflexivity)

(P2) a ≤ b and b ≤ a implies a = b (antisymmetry)

(P3) a ≤ b and b ≤ c implies a ≤ c (transitivity).

The relation ≤ is called a reflexive partial order. Given such a relation ≤
one can define another relation < by a < b :⇔ (a ≤ b and a 6= b) with the

following properties:

(P1´) a ≮ a (irreflexivity)

(P2´) a < b implies b ≮ a (asymmetry)

(P3´) a < b and b < c implies a < c (transitivity)

The relation < is called irreflexive partial order. Given such an irreflexive

partial order, one can obviously define a reflexive partial order by means of

a ≤ b :⇔ (a < b or a = b). Thus partially ordered sets can equally well be

defined by a relation satisfying (P1)-(P3) or (P1´)-(P3´) because one always

has both partial orders. Since the signs ≤ respectively < have become “rigid”
denotations for reflexive and irreflexive partial orders respectively one usually

omits the qualifications “reflexive” and “irreflexive” when these signs are used.
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A partially ordered set S possesses a minimal or zero and a maximal or unit

element, denoted by 0 and 1 respectively, if 0 ≤ a and a ≤ 1 respectively, holds
for all a ∈ S. An element a 6= 0 is called atomic or an atom of S if there is no

element b 6= 0 with b < a. Thus atoms are the smallest non-zero elements of a

partially ordered set (with zero element).

A lattice L is a partially ordered set such that for each two a, b ∈ L there

exists a supremum a∨b and an infimum a∧b, where the former is the smallest
element c with respect to the partial order such that a ≤ c and b ≤ c and the

latter is the greatest element c with respect to ≤ such that c ≤ a and c ≤ b. If

supremum and infimum exist for every subset of L then L is called complete.

A lattice is called atomic if for each b ∈ L there is an atom a such that a ≤ b.

A lattice can also be algebraically defined as a set L together with two

binary operations ∧ and ∨, called meet and join, such that for all a, b, c ∈ L

(L1) a ∧ a = a and a ∨ a = a (idempotence)

(L2) a ∧ b = b ∧ a and a ∨ b = b ∨ a (commutativity)

(L3) a ∧ (b ∧ c) = (a ∧ b) ∧ c and a ∨ (b ∨ c) = (a ∨ b) ∨ c (associativity)

(L4) a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a (absorption laws).

Accordingly, L is complete if meet and join exist for every subset of L. If

the two operations satisfy these algebraic rules then they define a partial order

on L by

a ≤ b :⇔ b = a ∨ b. (A.1)

Note that b = a∨b is equivalent to a = a∧b so that the latter can also be used
to define the same partial order. L together with the partial order thus defined,

will then be a lattice in the above order-theoretic sense. Conversely, infimum

and supremum in an order-theoretically defined lattice fulfil the axioms (L1)-

(L5) of an algebraically defined lattice so that it is simply a matter of taste

how one introduces the concept of a lattice. Because of (A.1) the existence of

a zero and unit element in L are expressed algebraically by the requirements

a = 0 ∨ a and 1 = a ∨ 1 for all a ∈ L.

If meet and join ∧, ∨ satisfy
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(D1) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (distributivity of ∧ over ∨)

(D2) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (distributivity of ∨ over ∧),

for all a, b, c ∈ L, then the latter is called a distributive lattice.

If each a ∈ L has a complement ¬a ∈ L, defined by

(C) a ∧ ¬a = 0 and a ∨ ¬a = 1

then L is a complemented lattice and if the complement of each a ∈ L

satisfies

(OC) ¬(¬a) = a and a ≤ b⇔ ¬a ≤ ¬b

L is called an orthocomplemented lattice and ¬a is then termed the ortho-
complement of a. The orthocomplement of each a ∈ L is unique.

The set L(H) of all subspaces of a Hilbert space H is a complete, ortho-

complemented, atomic lattice with zero element {0} and unit element H; but
it is not distributive. Supremum and infimum are given for each subset {Ki} ⊆
L(H) by ∧iKi ≡ ∩iKi, ∨iKi ≡ ]iKi and the orthocomplement of K ∈ L(H)
is ¬K ≡ K⊥, where ]iKi is the smallest subspace of H including ∪iKi (see

Appendixes B.1 and B.2). The corresponding partial order is given by set-

theoretic inclusion ⊆. The atoms of L(H) are the one-dimensional subspaces
or rays {cψ : c ∈ C} and obviously each K ∈ L(H) includes (at least) one ray.
Finally a Boolean algebra B is a distributive, orthocomplemented lattice.

A Boolean algebra is atomic respectively complete if it has these properties

as a lattice. In a Boolean algebra ∧, ∨ and ¬ fulfil all the requirements on
the connectives conjunction/and, disjunction/or and negation/not of ordinary

logic. This is not surprising because Boolean algebras were in the first place

invented to capture the essence of these logical operations.
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Appendix B

Operator algebras on Hilbert
spaces

B.1 Hilbert spaces

A linear space or vector space V over the complex numbers C is a set on which
a sum + : V × V → V, (ψ, ϕ) 7→ ψ + ϕ = ϕ+ ψ and a product with complex

numbers V ×C→ V, (ψ, c) 7→ cψ is defined, such that

(V1) 1ψ = ψ,

(V2) c1(c2ψ) = (c1c2)ψ,

(V3) c(ψ + ϕ) = cψ + cϕ,

(V4) (c1 + c2)ψ = c1ψ + c2ψ.

A scalar product space is a vector space V, on which there is a map (a
scalar product) h·, ·i : V × V → C, (ϕ,ψ) 7→ hϕ, ψi such that

(S1) hψ,ψi ≥ 0 (positivity),

(S2) hϕ, ψi = hψ, ϕi (hermiticity),

(S3) hϕ, c1ψ1 + c2ψ2i = c1 hϕ,ψ1i+ c2 hϕ, ψ2i (linearity),

(S4) hψ,ψi = 0⇔ ψ = 0.
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The bar denotes the complex conjugate a+ ib = a − ib of the complex

number c = a+ ib ∈ C (a, b real numbers). From the hermiticity (S2) and the
linearity in the second argument (S3) the anti linearity in the first argument

hc1ϕ1 + c2ϕ2, ψi = c̄1 hϕ1, ψi + c̄2 hϕ2, ψi follows. From positivity (S1) one

obtains the Cauchy-Schwartz inequality |hϕ, ψi|2 ≤ hϕ, ϕi hψ,ψi for all ϕ,ψ ∈
V. Using the basic properties of the scalar product and the Cauchy-Schwartz
inequality one can define a norm k·k : V → R+ ≡ {c ∈ R : c ≥ 0} on V by

kψk ≡ hψ,ψi1/2 (B.1)

and proof its characteristic properties

(N1) kψk ≥ 0 (positivity)

(N2) kψ + ϕk ≤ kψk+ kϕk (triangle inequality),

(N3) kcψk = |c| kψk (where |c| is the absolute value of c ∈ C, i.e. |c| = c̄c),

(N4) kψk = 0⇔ ψ = 0.

Thus by reason of (B.1) each scalar product space is also a normed space.

A sequence of vectors from a normed space for which limm,n→∞ kψm − ψnk = 0
is called a Cauchy sequence. For a scalar product space V to be a Hilbert space,
it moreover has to be complete which means that each Cauchy sequence from

V converges to some vector ψ ∈ V, i.e. limn→∞ kψ − ψnk = 0. Thus a Hilbert
space, which in the following will usually be denoted by H, is a scalar product
space over the complex numbers that is complete with respect to the norm

defined from its scalar product.

A subset K of a Hilbert space H that is closed under taking linear combina-
tions, i.e. for any two vectors ψ1, ψ2 ∈ K and c1, c2 ∈ C the vector c1ψ1+ c2ψ2
is again in K, is called a linear subset of H. If K is moreover complete and

thus is itself a Hilbert space it is called a subspace of H. Note that the com-
pleteness of a subset K ⊆ H is equivalent to its closedness with respect to the

norm topology of H, i.e. to the property that the limit ψ

lim
n→∞

kψ − ψnk = 0
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of a sequence (ψn) ⊆ K again belongs to K (and not merely to H). Whereas
the intersection of two (or more) subspaces ∩iKi is again a subspace of H their
union ∪iKi is obviously not even a linear subset because it does not contain

linear combinations of vectors from different Ki. Thus for ∪iKi to “become”

a subspace of H one first of all has to add all linear combinations of vectors

from different Ki and secondly all limits of sequences from the thus enlarged

set. In other words, one has to take the closure of ∪iKi with respect to linear

combinations and the closure of the resulting set with respect to the norm

topology of H. The subspace of H generated in this way from ∪iKi is denoted

by ]iKi, it is the smallest subspace of of H including ∪iKi.

In each Hilbert space, there exists a subset of vectors {φi} ⊂ H satisfying

the following conditions

(B1) kφik = 1 (normalization),

(B2)

φi, φj

®
= 0 for i 6= j (orthogonality),

(B3) Each vector ψ ∈ H can be approximated as closely as one likes (in the

norm k·k) by finite linear combinations
Pn

k=1 cikφik of vectors from {φi},
i.e. the set of finite linear combinations of vectors from {φi} is dense in
H.

A set of vectors for which (B1)-(B3) hold is called an orthonormal basis of

H. One can show that each vector ψ ∈ H can be written as an (infinite) sum

of the basis vectors {φi} with coefficients given by the scalar products hφi, ψi,
i.e. as

ψ =
X
i

hφi, ψiφi

. Moreover, all orthonormal bases of H have the same cardinality, i.e. the

same number of elements, that is therefore called the dimension of H. If the
dimension of H is n ∈ N, H is given by Cn equipped with the scalar product

hψ,ϕi ≡
Pn

i=1 aibi for ψ = (a1, . . . , an), ϕ = (b1, . . . , bn) ∈ Cn. Hilbert spaces

whose dimension is at most countable, i.e. finite or countably infinite, are

called separable. In QM as well as in QFT only separable Hilbert spaces do

appear.
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For a subset K of H, the set of all vectors in ϕ ∈ H which are orthogonal

to any vector in K, i.e. hϕ,ψi = 0 for all ψ ∈ K, is denoted by K⊥. Such an
K⊥ is always a subspace of H. A necessary and sufficient condition for the set
K itself to be a subspace of H is

(K⊥)⊥ = K. (B.2)

If K is a subspace of H, K⊥ is called its orthogonal complement. Because of
(B.2) the orthogonal complement is always unique. Generally, two subspaces

K1, K2 ⊆ H are called orthogonal iff every vector in K1 is orthogonal to every
vector in K2, i.e. iff K1 ⊆ K⊥2 or equivalently K2 ⊆ K⊥1 . Every vector ψ ∈ H
can be uniquely decomposed as ψ = ψk + ψ⊥ where ψk ∈ K is the projection
of ψ onto K and ψ⊥ ∈ K⊥ is the projection of ψ onto K⊥.
Given two Hilbert spaces H1 and H2 and orthonormal bases {φ1i } ⊂ H1,

{φ2j} ⊂ H2 we can define the Hilbert space H1⊗H2, called the tensor product

of H1 and H2, as follows: a basis of H1 ⊗ H2 shall be given by {φ1i ⊗ φ2j}
(where any combinations of i, j are considered) and the expression

ψ =
X
i,j

cijφ
1
i ⊗ φ2j

be a general vector in H1 ⊗H2 wheneverX
i,j

|cij|2 <∞

for the set of complex numbers {cij}. Linear combinations and scalar product
are defined by

a
X
i,j

cijφ
1
i ⊗ φ2j + b

X
i,j

dijφ
1
i ⊗ φ2j ≡

X
i,j

(acij + bdij)φ
1
i ⊗ φ2j

respectively *X
i,j

cijφ
1
i ⊗ φ2j ,

X
i,j

djiφ
1
i ⊗ φ2j

+
≡
X
i,j

c̄ijdij . (B.3)

Finally, for the general vectors ϕ =
P

i ciφ
1
i ∈ H1 and χ =

P
j djφ

2
j ∈ H2 we

define their tensor product ϕ⊗ χ ∈ H1 ⊗H2 by

ϕ⊗ χ ≡
X
i,j

cidjφ
1
i ⊗ φ2j . (B.4)
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Then this tensor product ϕ⊗ χ is linear in both arguments, i.e.

(aϕ1 + bϕ2)⊗ χ = a(ϕ1 ⊗ χ) + b(ϕ2 ⊗ χ),

ϕ⊗ (aχ1 + bχ2) = a(ϕ⊗ χ1) + b(ϕ⊗ χ2),

and is associative with respect to multiplication with complex numbers

(aϕ)⊗ χ = ϕ⊗ (aχ) = a(ϕ⊗ χ).

Furthermore, the scalar product (B.3) of two tensor products ϕ⊗χ and η⊗ ζ

turns out to be the product of the scalar product hϕ, ηi1 in H1 with the scalar

product hχ, ζi2 in H2, i.e.

hϕ⊗ χ, η ⊗ ζi = hϕ, ηi1 hχ, ζi2 . (B.5)

It follows that for any orthonormal bases {ξ1i } and {ξ2j} ofH1 andH2, {ξ1i⊗ξ2j}
constructed according to (B.4) becomes an orthonormal basis of H1⊗H2 and

thus the latter does not depend on the choice of the orthonormal bases used

in the above definition.

B.2 Bounded operators

A map A : H→ H, ψ 7→ A(ψ) that satisfies

(O1) A(c1ψ1 + c2ψ2) = c1A(ψ1) + c2A(ψ2) for all c1, c2 ∈ C

and ψ1, ψ2 ∈ H (linearity),

(O2) kA(ψ)k ≤ a kψk for some a ∈ R+ (boundedness)

is called a linear, bounded operator on H. The set of all linear, bounded
operators on H will be denoted by B(H). The restriction to linear maps A :

H → H is natural because of the linear structure of the domain H. At first
sight the requirement that only linear, bounded maps which are defined on

the whole space H are taken into account may seem to be a severe restriction.

However, one can show that each linear, bounded map with domain D ⊂ H
can be uniquely extended to all of H so that one can without loss of generality
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require D = H. This is no longer true for linear, unbounded maps for which
kA(ψ)k =∞ for some ψ ∈ H, which makes their study much more difficult (see
e.g. Reed and Simon 1980, Chapter VIII). Since in what follows we will only

deal with linear, bounded operators the adjectives “linear” and “bounded” will

often be omitted. Moreover, it is usual to simply write Aψ instead of A(ψ).

The most trivial operators are the zero operator 0 that maps each vector ψ to

0 ∈ H, i.e. 0ψ = 0, and the identity operator 1 that maps each vector onto
itself, i.e. 1ψ = ψ.

For A,B ∈ B(H) there is a natural notion of a product be given by their
combination as maps, i.e. AB is defined as the map ψ 7→ A(Bψ) and BA as

the map ψ 7→ B(Aψ). Both AB and BA are again linear, bounded operators

but in general AB will be different from BA. Therefore, it makes sense to

define the commutator of A and B by

[A,B] ≡ AB −BA.

Two operators whose commutator vanishes are called commuting.

For each operator A ∈ B(H) there exists a unique operator A∗ satisfying

hA∗ϕ,ψi = hϕ,Aψi for all ϕ, ψ ∈ H

which is called the adjoint of A. The adjoint of A is unique and one has

(A∗)∗ = A. Furthermore, one can show that (AB)∗ = B∗A∗ and (aA+ bB)∗ =
āA∗ + b̄B∗ (a, b ∈ C) hold. The latter property of the map A 7→ A∗ is called
antilinearity.

Operators which are identical with their adjoints, i.e. A∗ = A, are called

self-adjoint. The product of two self-adjoint operators A and B is obviously

again self-adjoint, i.e. (AB)∗ = (BA)∗, iff A and B commute.

If for A ∈ B(H) there exists a B ∈ B(H) such that

AB = BA = 1

thenB is called the inverse of A. If A has an inverseB it is unique andA is the

inverse of B so that, denoting the inverse of A by A−1, one has (A−1)−1 = A.

Furthermore, one can show that (AB)−1 = B−1A−1 and (A∗)−1 = (A−1)∗ hold.
An operator U ∈ B(H) whose inverse is identical to its adjoint

U−1 = U∗
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is called unitary. This condition is equivalent to

hUϕ,Uψi = hU∗Uϕ, ψi =

U−1Uϕ,ψ

®
= hϕ,ψi for all ϕ,ψ ∈ H, (B.6)

so that unitary operators preserve all the structures of a Hilbert space. Inter-

estingly, (B.6) is also equivalent to the prima facie weaker condition

kUψk = hUψ,Uψi1/2 = hψ,ψi1/2 = kψk for all ψ ∈ H,

so that the unitary operators in B(H) can also be characterized as the norm-
preserving or isometric, bijections of H. For each two orthonormal bases {φi}
and {ϕj} of H there is a unique unitary operator such that {Uφi} = {ϕj} and
thus too, {U−1ϕj} = {φi}.
The map PK : H → K that assigns to each vector ψ = ψk + ψ⊥ ∈ H

its unique projection ψk ∈ K onto the subspace K ⊆ H is a linear, bounded

operator. It is obvious geometrically that it is moreover idempotent P 2
K = PK

in the sense PK(PKψ) = PKψ. Moreover, one can easily see that it is also self-
adjoint, i.e. P ∗K = PK. Conversely, for each self-adjoint, idempotent operator,
i.e. P 2 = P = P ∗, the range of P

K = PH = {Pψ : ψ ∈ H}

is a subspace of H and P = PK. Thus the subspaces of H are in a one-to-one

correspondence with the self-adjoint, idempotent operators on H. Because of
their geometrical interpretation the latter are called projection operators or in

short projections. The zero and the identity operator are also projection oper-

ators which project onto the trivial subspaces {0} respectivelyH. A projection
is called n-dimensional just in case the dimension of the subspace onto which

it projects has dimension n, where n ∈ {0, 1, 2, . . . ,∞} and the zero operator
is the unique projection of dimension 0.

The product of two projection operators P1 and P2 is again a projection op-

erator iff P1 and P2 commute. The resulting projection P1P2 = P2P1 projects

onto the subspace K1 ∩ K2, i.e. onto the intersection of the subspaces onto
which P1 and P2 project individually. Thus, if two subspaces K1,K2 ⊆ H
are orthogonal and thus K1 ∩ K2 = {0} the product of the corresponding
projections vanishes, i.e. P1P2 = 0. Therefore, one also calls two projec-

tions whose product vanishes orthogonal. Note that P1P2 = 0 implies via
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(P1P2)
∗ = P ∗2P

∗
1 = P2P1 that P2P1 = 0, so that two orthogonal projections are

always commuting. The sum of two projection operators P1 and P2 is again

a projection operator iff P1 and P2 are orthogonal. The resulting projection

P1 + P2 projects onto K1 ] K2, i.e. onto the smallest subspace including the
union K1 ∪K2 of the subspaces onto which P1 and P2 project individually.

The spectrum of an operator A is defined as the set of complex numbers a

for which the operator a1−A does not have an inverse, i.e.

σ(A) ≡
©
a ∈ C : (a1−A)−1 /∈ B(H)

ª
.

Thus, in particular, all values a for which a1−A is not injective (i.e. if there

is a ψ ∈ H such that (a1−A)ψ = 0) belong to σ(A). Such an a with Aψ = aψ

is called an eigenvalue of A and ψ is called eigenvector of A to eigenvalue a.

Another reason why (a1−A)−1 may not be a linear, bounded operator on H
is that although a1−A is injective it is not surjective and thus (a1−A)−1 is
simply not defined for some ψ ∈ H. Therefore, the spectrum of an operator A
generally consists of two parts, a part σd(A) consisting of the eigenvalues of A

and a part σc(A) that consists of those values a ∈ C for which a1−A is injective
but not surjective. One can show that the set σd(A) is always countable, i.e.

it is a discrete set, whereas the set σc(A) can also be uncountable. Note that

in case H is finite-dimensional, i.e. H = Cn for some n ∈ N, σc(A) is always
empty and σd(A) is finite, so that the spectrum of each operator (which in this

case is simply an n× n-matrix) coincides with its finite set of eigenvalues.

The spectrum of a self-adjoint operator is always a subset of the real num-

bers and conversely each operator with a real spectrum is self-adjoint. More-

over, for self-adjoint operators σc(A) is always purely continuous, i.e. a union

of intervals from R. A self-adjoint operator whose spectrum is non-negative,

i.e. σ(A) ⊆ R+, is called positive. Because of the spectrum of the trivial

projections 0 and 1 is given by σ(0) = {0} and σ(1) = {1} and that of each
non-trival one P by σ(P ) = σd(P ) = {0, 1}, projection operators are exam-
ples of positive operators. One can show that the positivity of an operator is

equivalent to the condition hψ,Aψi ≥ 0 for all ψ ∈ H. By reason of

B ≥ A :⇔ hψ,Bψi ≥ hψ,Aψi for all ψ ∈ H

one can therefore introduce a partial order (see Appendix A) among posi-

tive operators. For projection operators this partial order has a geometrical
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interpretation in terms of the corresponding subspaces because P2 ≥ P1 is

equivalent to K2 ⊇ K1, where Ki is the subspace of H onto which Pi projects.

Now there is an intimate connection between general self-adjoint and pro-

jection operators, called the spectral decomposition of self-adjoint operators.

Since the set of eigenvalues σd(A) of an operator is always countable, self-

adjoint operators whose spectrum coincides with their set of eigenvalues, i.e.

σ(A) = σd(A), are called discrete. For reasons internal to Whitehead’s ontol-

ogy we will only need discrete self-adjoint operators. For this reason we will

not discuss the spectral decomposition of self-adjoint operators with contin-

uous spectra (apart from some scattered remarks). In this simplest discrete

case the spectral decomposition of a self-adjoint operator A reads

A =
X
i

aiPai . (B.7)

The ai are the distinct eigenvalues and the Pai are the corresponding eigen-

projections of A, i.e. Pai is the projection operator that projects onto the

subspace Kai of H that consists of all the eigenvectors of A to eigenvalue ai
(i.e. the vectors ψi ∈ H with Aψi = aiψi). The eigenprojections corresponding

to two different eigenvalues are always orthogonal, i.e. PaiPaj = 0 if i 6= j, and

since they are projection operators, so that Pai
2 = Pai, one has PaiPaj = δijPai

(where δij = 1 if i = j and 0 otherwise). Moreover, the sum over all eigenpro-

jections of a self-adjoint operator is identical with the identity operator, i.e.P
i Pai = 1. Thus the set {Pai} of eigenprojections of a self-adjoint operator

constitutes a resolution of the identity operator 1. On the other hand, given

an arbitrary resolution of the identity {Pi} one can, by combining its members
with real numbers {ai} construct a self-adjoint operator according to (B.7).
Each projection operator is itself self-adjoint and thus has also a unique spec-

tral decomposition. However, the spectral decomposition of a projection P is

merely of the trivial form P = 1 · P + 0 · (1−P ).
Given a positive operator A and an orthonormal basis {φi}, the trace of A

is defined by

Tr(A) ≡
X
i

hφi, Aφii

and is independent from the particular orthonormal basis {φi}. The trace of a
positive operator can take any value in [0,∞], in particular, one has Tr(1) =
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∞. However, if for some positive operator Tr(A) is finite one has

(T1) Tr(AB) is finite for every B ∈ B(H) (finiteness)

(T2) Tr(A(b1B1 + b2B2)) = b1Tr(AB1) + b2Tr(AB2) for all b1, b2 ∈ C

and B1, B2 ∈ B(H) (linearity)

(T3) Tr(AB) = Tr(BA) for all B ∈ B(H) (cyclic invariance)

Form the cyclic invariance (T3) it follows

Tr(U−1ABU) = Tr(ABUU−1) = Tr(AB)

for all unitary operators U ∈ B(H), so that the trace is unitarily invariant.
If the Hilbert space H is the tensor product of the Hilbert spaces H1 and

H2, i.e. H = H1 ⊗H2, then each bounded operator C ∈ B(H) can be written
in the form

C =
X
i,j

cijA
1
i ⊗A2j

where the A1i and A
2
j are bounded operators on the Hilbert spaces H1 and H2

respectively, and A1⊗A2 is the tensor product of A1 ∈ B(H1) and A
2 ∈ B(H2)

defined on each vector ψ ∈ H = H1 ⊗H2 by

(A1 ⊗A2)ψ = (A1 ⊗A2)ψ

= (A1 ⊗A2)
X
i,j

dijφ
1
i ⊗ φ2j

=
X
i,j

dij(A
1φ1i ⊗A2φ2j).

Thus like each vector ψ ∈ H = H1 ⊗H2 is a (countable) linear combination

of tensor product vectors φ1i ⊗ φ2j , each bounded operator C ∈ B(H1 ⊗H2) is

a (countable) linear combination of tensor product operators A1i ⊗ A2j . One

can show that the thus defined tensor product A ⊗ B of bounded operators

respects the factoring of scalar products (see (B.5)) in the following sense

hϕ⊗ χ, (A⊗B)ϕ0 ⊗ χ0i = hϕ,Aϕ0i hχ,Bχ0i .
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B.3 Algebras of bounded operators

An algebra A is a vector space (over C) on which there is moreover a map–a
product–A×A→ A, (A,B) 7→ AB such that for all A,B,C ∈ A, c ∈ C

(A1) A(BC) = (AB)C (associativity)

(A2) (A+B)C = AC +BC and A(B + C) = AB +AC (distributivity)

(A3) (cA)B = A(cB) = cAB.

If there is furthermore a unit element 1 ∈ A, such that for all A ∈ A

(A4) A1 = 1A

then A is called a unitial algebra. In QM and QFT only unitial algebras

are considered. An algebra in which AB = BA holds for each two of its

elements is called commutative or Abelian. B(H) with the usual operator
product and the identity operator as unit element is an unitial algebra that

is not commutative. Furthermore, each subset S ⊆ B(H) that contains with
A,B ∈ S also aA + bB ∈ S and AB ∈ S (and the identity 1 ∈ S) is a
(unitial) algebra. Each subset of B(H) that is itself a (unitial) algebra is called
a (unitial) subalgebra of B(H).
A *-algebra is an algebra A on which there is a map ∗ : A → A, A 7→ A∗

termed involution, such that for all A,B ∈ A, c ∈ C

(*1) (AB)∗ = B∗A∗

(*2) (A+B)∗ = A∗ +B∗

(*3) (cA)∗ = c̄A∗

(*4) (A∗)∗ = A

Because of (*3) the involution is not linear but antilinear (aA + bB)∗ =
āA∗ + b̄B∗. On B(H) an involution is given by the map that assigns to each
operator A its adjoint A∗ and each subalgebra of B(H) that contains with A

also its adjoint A∗ is itself a *-algebra and thus a *-subalgebra of B(H).
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A *-algebraA that is at the same time a Banach space (i.e. a normed vector
space that is complete with respect to its norm k·k), and for all A,B ∈ A one
has moreover

(B) kABk ≤ kAk kBk,

is called a Banach algebra. If A is at the same time a *-algebra and a

Banach algebra, such that for all A ∈ A

(C*) kA∗Ak = kAk2

then it is a C*-algebra. B(H) equipped with the operator norm

kAk ≡ sup
½
kAψk
kψk : ψ ∈ H, ψ 6= 0

¾
,

where the norm inside the supremum is that of H, is a C*-algebra. Moreover,
each *-subalgebra A of B(H) that is closed with respect to the operator norm
topology, i.e. for which the limit A

lim
n→∞

kA−Ank = 0

of a sequence (An) ⊆ A is again in A (and not merely in B(H)), is itself a
C*-algebra and thus a C*-subalgebra of B(H).
Another important topology on B(H)–the weak operator topology–is de-

fined by means of seminorms. A seminorm p(A) obeys the properties (N1)-(N3)

of a norm but not (N4), so that p(A) = 0 does not imply A = 0. Neverthe-

less, a topology can be generated by a (not necessarily countable) system of

seminorms {pi} for which (∀i : pi(A) = 0) ⇒ A = 0. However, for topolo-

gies generated by a system of seminorms it is not enough to consider only the

convergence of sequences. Rather the closure of a set is obtained by adding

the limit points of all “generalized sequences”–of all so-called nets. Yet for

the understanding of this work this subtlety is not important, so that we will

speak only of ordinary sequences. The weak operator topology is obtained if

one uses the absolute values of “matrix elements” |hψ,Aϕi| between arbitrary
unit vectors ψ,ϕ ∈ H, kψk = kϕk = 1, as a set of seminorms. Thus a sequence
(An) ⊂ B(H) converges weakly to some A ∈ B(H) iff

lim
n→∞

|hψ,Aϕi− hψ,Anϕi| = 0, for all ψ,ϕ ∈ H.
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The weak operator topology is weaker than the operator norm topology which

means that each norm convergent sequence of operators also converges weakly

but the converse is not generally true.

Now a von Neumann algebra is defined to be a unitial *-subalgebra R
of B(H) that is closed with respect to the weak operator topology, i.e. that
contains all weak limits of sequences (An) ⊂ R. Interestingly, one can also
characterize von Neumann algebras solely by algebraic means without the use

of any topological considerations. The concept needed for this is that of the

commutant S 0 of a set S ⊆ B(H) of operators. S 0 consists of all operators in
B(H) which commute with each member of S, i.e.

S 0 ≡ {A ∈ B(H) : [A,B] = 0, ∀B ∈ S} .

Accordingly, the bicommutant of S is the set of all operators in B(H) which
commute with all operators in S 0, i.e. S 00 ≡ (S 0)0. Now von Neumann’s famous
bicommutant theorem implies that a unitial *-subalgebra A of B(H) is a von
Neumann algebra iff it coincides with its bicommutant, i.e. A = A00 (see e.g.
Haag 1996, Theorem 2.1.4).

Moreover, like C*-algebras, von Neumann algebras can also be defined

“abstractly”, i.e. by not defining them as special subalgebras of B(H) (see
e.g. Kadison and Ringrose 1986, p. 498). However, this will not be done here

because it would require the introduction of further technical concepts and is

of no importance for this work.

Since the operator norm topology is stronger than the weak operator topol-

ogy, each weakly closed subset is also strongly closed because with decreasing

strength of the topology one gets more and more limit points. Thus each von

Neumann algebra is also a C*-algebra but in general the converse is not the

case. Besides the weak operator topology one can define some other important

topologies on B(H) by means of systems of seminorms: the ultra weak and
the strong operator topology. All the topologies mentioned so far are different

and thus one would expect that one gets different kinds of *-algebras by tak-

ing closures of *-subalgebras of B(H) with respect to each of these topologies.
However, von Neumann has shown that on *-subalgebras of B(H) the closures
with respect to the ultra weak, the strong operator and the weak operator

topology coincide. Therefore, from the mentioned topologies one gets only two
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different kinds of *-algebras: C*-algebras and von Neumann algebras and it is

only the latter which are considered in this work.

Finally we will consider the notion of a state on a von Neumann algebra

R. A map
ρ : R 7→ C

such that

(S1) ρ(aA+ bB) = aρ(A) + bρ(B) for all a, b ∈ C and A,B ∈ R (linearity)

(S2) ρ(A) ≥ 0 for all positive operators A ∈ R (see Appendix B.2) (positivity)

(S3) ρ(1) = 1 (normalization)

(S4) ρ(
P

i Pi) =
P

i ρ(Pi) for each countable set of mutually orthogonal pro-

jections {Pi} (countable additivity)

is called a state on the von Neumann algebra R. Usually a state is char-
acterized by requirements (S1)-(S3) only and if (S4) is moreover satisfied one

speaks of a normal state. However, since only normal states are regarded as

physically meaningful (see e.g. Haag 1996, Chapter III.2.2), we will simply

include the countable additivity (S4) into the characterization of a state.

Now the set of all states on R is convex, which means that with ρ and σ

also their convex combination

cρ+ c0σ with c, c0 ≥ 0 and c+ c0 = 1

is a state on R. If R1 is a von Neumann subalgebra of R, the restriction of a
state ρ on R to R1 defined by

ρ|R1 : R1 3 A 7→ ρ(A)

is a state on R1. In general, there is more than one extension of a state on

R1 to R, or in other words, a state on R1 is the restriction of more than one

state on a larger von Neumann algebra to R1. More generally, a state on R
can be restricted to an arbitrary subset S ⊂ R not being an algebra or even a

von Neumann algebra. In this more general case too, the same symbol ρ|S is
used to denote the restriction of the domain of the state in question.
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The set of states on a von Neumann algebraR can be equipped with several
different topologies. We will, however, only need the topology induced by the

norm distance

kρ− σk ≡ sup
½
|ρ(A)− σ(A)|

kAk : A ∈ R
¾
,

where kAk is the operator norm of A ∈ R as introduced earlier. Thus kρ− σk
is the lowest bound for the number c, such that |ρ(A)− σ(A)| ≤ c kAk holds
for all operators in R.
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Appendix C

The standard axioms of AQFT
and their physical interpretation

All mathematical notions not explicitly defined in the following can be found

in one of the earlier appendixes. In the followingM denotes Minkowski space,

i.e. R4 equipped with the metric g : R4 × R4 → R, that assigns to each pair
of points x = (x0,x) ≡ (x0, x1, x2, x3), y = (y0,y) ≡ (y0, y1, y2, y3) ∈ R4

their Minkowski distance g(x, y) ≡ (x0 − y0)2 − (x − y)2 where (x − y)2 ≡P3
i=1(x

i − yi)2 is the square of the Euclidean distance in R3.1 A subset of M
is called an open double cone if it is the intersection of the open backward

lightcone V−(z) ≡ {x ∈M : z0−x0 > |x− z|} of a point z ∈M with the open

forward lightcone V+(y) ≡ {x ∈ M : x0 − y0 > |x− y|} of a point y ∈ V−(z).
The set of all open double cones in M will be denoted by D(M).

C.1 Local observables

The fundamental mathematical structure upon which AQFT is erected is a

map

O 7→ R(O) (C.1)

1Throughout this book natural units will be used, so that the speed of light in the
vacuum c as well as Planck’s constant ~ have the numerical value 1. With a choice of units
such that the value of c is differs from 1, the Minkowski distance between x and y reads
g(x, y) ≡ c2(x0 − y0)2 − (x− y)2.

301
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that assigns to each open, bounded, connected region O of Minkowski space

M a von Neumann algebra R(O) on a common Hilbert space H. Thus all
the algebras R(O) are assumed to be subalgebras of the algebra B(H) of all
bounded operators on a single Hilbert space H. Moreover, the Hilbert space
H is assumed to be separable. The points of Minkowski space are interpreted

as spacetime points and the square root of the Minkowski distance g(x, y)1/2

is accordingly interpreted as their spatiotemporal distance. Since in the fun-

damental correspondence (C.1) only bounded and connected spacetime regions

do appear, the corresponding algebras are called local algebras. The underly-

ing idea of the correspondence (C.1) is that the operators of the local algebra

R(O) represent physical operations that can be performed within spacetime
region O (Haag and Kastler 1964; Hellwig and Kraus 1969 and 1970). The

physically most important operations are those which result in a measurement

of some physical magnitude or observable and as is usual practice, we will

restrict the discussion to this class of operations. The problems with point-

like fields in the Lagrangian approach have indicated that one should better

build up the theory on non-pointlike quantities. Moreover, it is clear that no

“real” measurement can be carried out at a spacetime point. Therefore, in the

fundamental correspondence (C.1) only open regions are appealed to, which

automatically rules out pointlike ones.. Of course, it would make no difference

to take closed regions with non-empty interior instead of open ones as the do-

main of the map (C.1), because from the physical viewpoint it is reasonable to

expect that the operations performable within an open region determine the

operations performable within its closure. Yet the choice of open regions has

turned out to be the usual one and we will follow this trend.

Now we could proceed by stating the axioms usually required to hold for

the fundamental correspondence (C.1). Yet the study of AQFT is much more

simplified if one adopts some further restrictions on the set of regions appealed

to in (C.1). This is because an open, bounded, connected region ofM may still

be of quite involved geometry and topology, which makes many investigations

much more difficult. Since our primary interest are the structural properties

of AQFT the optimal choice for a set of regions O ⊂ M would be one that

facilitates the study of such structural properties, but is at the same time large

enough to cover or approximate any open, bounded, connected region, so that
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nothing essential gets lost by this restriction of the domain of the map (C.1).

Both conditions are perfectly met by the set of open double conesD(M), which

is the reason why this set is so often used especially in the study of structural

properties of local algebras and the relationships among them. Therefore, we

will in what follows restrict the domain of the map O 7→ R(O) to the set of
open double conesO ∈ D(M). For convenience we will often omit the adjective

“open” and simply speak of double cones. In contexts in which it will not give

rise to confusions, we will moreover often simply speak of (bounded) regions.

The observables which can be measured within O ∈ D(M)–the local ob-

servables in region O–are represented by the self-adjoint elements of R(O).
The important properties of self-adjoint operators in respect to their inter-

pretation are that they are those operators whose spectrum solely consists of

real numbers and that each self-adjoint operator A has a unique spectral de-

composition. For reasons internal to Whitehead’s ontology we will only need

self-adjoint operators with a completely discrete spectrum, i.e. a spectrum σ(A)

solely consisting of eigenvalues (see Appendix B.2). In this simplest case the

spectral decomposition reads

A =
X
i

aiPai .

Since all the eigenvalues ai of a self-adjoint operator A are real they are

interpreted as the possible values which the corresponding observable can

take in single measurements. For convenience we will in what follows sim-

ply speak of self-adjoint operators themselves as “observables” or “physical

magnitudes” rather than as “operators representing observables/physical mag-

nitudes”. From their idempotence P = P 2 together with their self-adjointness,

it follows that projection operators have only two eigenvalues 1 and 0,2 and

thus represent the conceptually simplest observables. Instead of “simple ob-

servables” projection operators are also often referred to as properties. Part of

the reason for this is provided by the fact that because of the unique spectral

decomposition of each self-adjoint operator A, the occurrence of the possible

value ai in a measurement of the observable A is equivalent to the occurrence
2More precisely, apart form the zero and the identity operator which project onto the

trivial subspaces {0} and H of H, every projection operator has precisely the two eigenvalues
1 and 0.
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of value 1 of the corresponding eigenprojection Pai and therefore Pai is taken to

represent the property expressed by the sentence “observable A has the value

ai”.

Since by reason of the unique spectral decomposition of self-adjoint oper-

ators, the discussion of observables can be reduced to the discussion of simple

observables or properties represented by projection operators, this suggests to

specify the local algebras R(O) to be von Neumann algebras. This is because
a von Neumann algebra is generated by the projections it contain in the sense

that it is the weak closure of the set of all polynomials of the projections it

contains (see e.g. Emch 1972, p.116). This then guaranties that the proper-

ties {Pai} corresponding via the spectral decomposition to the local observable
A ∈ R(O), measurable in region O, do also belong to R(O) (and not merely
to B(H)), and thus can in fact occur in region O as it should be the case.3

C.2 States and probabilities

Now we turn to the representation of states of relativistic quantum systems.

The notion of the “state” of a system suggests something like the specification

of the “mode of existence” of a system and thus seems to be an ontologically

3Moreover, that the algebras R(O) contain sufficiently many projections makes the lim-
itation to bounded operators less restrictive. Prima facie this is a restriction because one

knows from QM that some important observables like position, momentum and in many
cases also the energy of systems have to be represented by unbounded self-adjoint operators.
In contrast to bounded operators, for unbounded operators kAψk is not bounded for all
ψ ∈ H. Therefore, an unbounded operator is not defined on the whole Hilbert space H but
merely on the subset of those vectors for which kAψk < ∞. This fact makes the theory
of unbounded operators much more complicated than that of bounded operators. However,
if the subset of H on which kAψk < ∞ is dense in H one can generalize all physically
relevant concepts known from bounded operators to unbounded ones. In particular, one
can generalize the concepts of self-adjointness, of the spectrum and of the spectral decom-
position to unbounded densely definend operators. Since all physically relevant statements

about unbounded self-adjoint operators can also be expressed by means of their spectral
projections which, as projections are always bounded operators, it suffices for an unbounded
observable A to count as measurable within region O that all its spectral projections be-
long to R(O). Unbounded self-adjoint operators whose spectral projections belong to a von
Neumann algebra R are said to be affiliated with R.
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much more interesting concept than that of an observable. However, from

the viewpoint of physics the “mode of existence” of a quantum system is only

interesting in so far as it allows the prediction of the probabilities for all the

possible measurement results of each observable. The mathematical device

that does precisely this is that of a state on B(H) as defined in Appendix B.3
(note that this time the term “state” refers to a purely mathematical object).

The defining properties of a state ρ on B(H) imply that it is a probability
measure over each resolution {Pi} of the identity:

(i) ρ(Pi) lies between 0 and 1,4

(ii) ρ is countably additive over each subset {Pik} ⊆ {Pi}, i.e. ρ(
P

k Pik) =P
k ρ(Pik)

and finally, because of (ii),
P

i Pi = 1 and the normalization ρ(1) = 1,

(iii) the sum over all ρ(Pi) is 1, i.e.
P

i ρ(Pi) = 1.

Since the eigenprojections {Pai} of a self-adjoint operator A form a reso-

lution of the identity and each eigenprojection Pai is in one-to-one correspon-

dence to a possible value ai of A, every state ρ defines a probability measure

over the possible values of each observable. Therefore, one assumes that the

(physical) states of systems are represented by the mathematical states on

B(H). Then the probability for the occurrence of value ai of observable A

upon measurement on a system in state ρ, abbreviated by probρ(A = ai), is

given by ρ(Pai), i.e.

probρ(A = ai) = ρ(Pai).

From the possible values ai ∈ σ(A) together with their probabilities probρ(A

= ai) = ρ(Pai) one can furthermore build the weighted sumX
i

ai probρ(A = ai) =
X
i

aiρ(Pai)

which is accordingly interpreted as the expectation value of observable A upon

measurement on a system in state ρ. Making use of the linearity of state ρ and

4Since ρ(Pi) ≥ 0 together with (iii) automatically implies ρ(Pi) ≤ 1 it is sufficient to
require that ρ(Pi) is non-negative.
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the spectral decomposition of A, the expectation value of A in state ρ simply

turns out to be the value of A in state ρ, i.e.

expρ(A) =
X
i

ai probρ(A = ai) =
X
i

aiρ(Pai)

= ρ

ÃX
i

aiPai

!
= ρ(A).

Note that this implies that for simple observables P the expectation value

expρ(P ) = ρ(P ) coincides with the probability probPρ (1) = ρ(P ) for the occur-

rence of value 1 of P–or in terms of properties with the probability for the

occurrence of property P . It shall be mentioned that the countable additivity

of a state is equivalent to its continuity with respect to the weak operator

topology: if the sequence (An) converges weakly to an operator A then the

sequence of numbers ρ(An) converges to the number ρ(A). In other words, the

expectation values of two operators which are close to one another with respect

to the weak operator topology are also close to each other. Therefore, one can

approximate the expectation value of the limit operator of a weakly converging

sequence (An) by the expectation values of elements of this sequence such that

the approximation is the better the closer the chosen element An is to the limit

operator A.

Of course, probabilities and expectation values cannot be observed in single

measurements. Rather the connection of these theoretical notions with empir-

ical results has to proceed via relative frequencies and mean values in large

ensembles of identically prepared systems. The probability ρ(Pai) with which

value ai of observable A will occur upon a measurement on a system in state

ρ has to be compared with the relative frequency N(ai)
N

with which value ai oc-

curs in a large series of measurements of A in an ensemble of N À 1 systems

in state ρ. Accordingly, the expectation value ρ(A) has to be compared with

the mean value
P

i ai
N(ai)
N

of ai in the ensemble.

As is well-known from QM each state ρ on B(H) can be represented by a
density operator W (i.e. by a positive operatorW ∈ B(H) with trace Tr(W ) =
1; see Appendix B.2) via the standard formula

ρ(A) = Tr(WA). (C.2)
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A pure state on B(H) is one that is not a convex combination

ρ =
X
i

ciρi with ci ≥ 0 and
X
i

ci = 1 (C.3)

of other states. It is represented via (C.2) by a one-dimensional projec-

tion operator P ∈ B(H). Since for a one-dimensional projection operator

Tr(PA) = hψ,Aψi, where ψ ∈ H is the unit vector that spans the one-

dimensional subspace of H onto which P projects, each pure state ρ on B(H)
can equivalently be represented by a unit vector ψ ∈ H via the special case

ρ(A) = hψ,Aψi of formula (C.2).
Now being equipped with the fundamental correspondence (C.1) and the

concepts of local observables and states we can go on to introduce the fur-

ther standard axioms of AQFT. We will henceforth follow the common sloppy

practice of simply referring to all operators in R(O) as “observables measur-
able within O”–despite the fact that only self-adjoint operators deserve this
interpretation. Furthermore, when we speak of “(pure) states” without men-

tioning any algebra on which they are defined, we always mean “(pure) states

on B(H)”.

C.3 The further axioms of AQFT

The first axiom to be mentioned is called isotony and requires that the map

(C.1) is “inclusion preserving” in the sense that the inclusion of regions implies

the inclusion of the corresponding local algebras.

Isotony: For all O1, O2 ∈ D(M), O1 ⊆ O2 implies R(O1) ⊆ R(O2).

This assumption is very natural in the light of the interpretation of the

operators from R(O) as observables measurable within region O, because it
simply says that in a larger region there are more (or at least: not less) observ-

ables to be measured. Mathematically this isotony-property turns the set of

local algebras {R(O)}D(M) ≡ {R(O) : O ∈ D(M)} into a so-called net of von
Neumann algebras, which in particular means that wheneverO1∪O2 ⊆ O then
R(O1)∪R(O2) ⊆ R(O) holds, too. As a consequence of this the set-theoretic
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union

Aloc ≡
S

O∈D(M)

R(O)

of all local algebras itself becomes a *-subalgebra of B(H), termed the algebra
of all local observables. Without the isotony-property this would not be the

case, because for A1 ∈ R(O1), A2 ∈ R(O2) with O1 6= O2 nothing would
secure that their products A1A2 respectively A1A2 and their sum A1+A2 be-

long to R(O1) ∪R(O2) or R(O1 ∪O2) or any other local algebra R(O) with
O ⊃ O1 ∪ O2. However, in general Aloc will not already be a von Neumann

algebra, since it will not be closed with respect to the weak operator topology

or equivalently it will not coincide with its bicommutant. The weak closure

Aloc
w
or equivalently the bicommutant A00loc of Aloc is a von Neumann algebra,

denoted by R(M), that is assumed to be the algebra of all observables associ-
ated to the whole Minkowski space. The algebraR(M) contains, by definition,
besides all local observables also all the weak limits of sequences of local ob-

servables and as far as these “limit operators” arise from sequences (Ai) of local

observables such that there is no region O ∈ D(M) with (Ai) ⊂ R(O), they
do not themselves belong to any local algebra. For this reason the operators

in R(M)\Aloc are called global observables and the algebra R(M) in which
they are contained is termed the global algebra. Since global observables are

not measurable in any bounded spacetime region and are moreover merely a

forteriori “constructs” from the basic local observables they are only regarded

as physical idealizations.

That the same construction principle by which the global algebraR(M) has
been defined from the local algebras {R(O)}D(M), namely to take a covering of

M by double cones {Oi} and to define the algebra corresponding to M as the

uniquely determined weak closure or bicommutant of the set-theoretic union

of the corresponding local algebras {R(Oi)}, can also be used to associate a
von Neumann algebraR(O) ⊂ B(H) to unbounded regions O ⊂M other than

M itself, is implied by the next axiom termed additivity.

Additivity: To O ⊆ M with O = ∪iOi, {Oi} ⊂ D(M) corresponds the von

Neumann algebra

R(O) =
µS

i

R(Oi)

¶00
.
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Thus additivity allows the extension of the correspondence O 7→ R(O) to
all spacetime regions which are arbitrary unions of double cones. This includes

also disconnected regions, like O = O1∪ O2 with O1 and O2 disjoint.
Up to this point only topological properties of spacetime have been ap-

pealed to in the axioms. The following axiom makes also use of the metrical

structure of spacetime, because it says that all operators A1 ∈ R(O1) commute

with all operators A2 ∈ R(O2), i.e. [A1, A2] = 0, if the regions O1 and O2 are
spacelike separated from each other.

Spacelike Commutativity: For all O1, O2 ∈ D(M), if O1 andO2 are space-
like separated from one another then R(O1) ⊆ R(O2)

0.

One can show that spacelike commutativity is equivalent to the inde-

pendence of the probabilities for measurement outcomes of an observable

A1 ∈ R(O1) (in any arbitrary state ρ) from the choice of the observable

A2 ∈ R(O2) measured in a spacelike separated region O2 (see e.g. Butter-
field 1994, p. 769 f; and also Section 10.2.3).

Now according to STR the symmetry transformations of spacetime are

given by the Poincaré group P↑+. The Poincaré group consists of (1) spatiotem-
poral translations x→ x+ a by an arbitrary 4-vector a = (a0, a1, a2, a3) ∈M ,

where a0 corresponds to the time shift and a ≡ (a1, a2, a3) to the spatial shift,
(2) spatial rotations x → Rx leaving the time coordinate x0 unchanged, (3)

Lorentz boosts, i.e. spatiotemporal rotations which correspond to velocity

changes v → v + u and (4) all combinations of (1)-(3). That these transfor-

mations are symmetry transformations of spacetime means that they do not

change the spatiotemporal distance g(x, y)1/2 = ((x0 − y0)2 − (x− y)2)1/2 be-
tween any two spacetime points, i.e. g(x, y)1/2 = g(g(x), g(y))1/2 for all g ∈ P↑+
and all x, y ∈M .

The sets of spatiotemporal translations (in short: translations) T , spatial
rotations R as well as the set of spatial rotations combined with translations

and the set of spatial rotations combined with Lorentz boosts, i.e. the set

of Lorentz transformations L↑+, are subgroups of the Poincaré group. This
means that each of these subsets is again a group such that (1) it has the

same neutral element e as P↑+, defined by eg = ge = g for all g ∈ P↑+ that as a
transformation maps each spacetime point onto itself x→ x, and (2) it is closed



310 APPENDIX C. THE STANDARD AXIOMS OF AQFT

with respect to combinations g1g2 of the transformations it contains, i.e. each

such combination is again an element of this subset. Unlike spatial rotations

and Lorentz transformations the subgroup of translations T is moreover a

commutative or Abelian group which means that for each two translations

g1g2 = g2g1 holds. The Lorentz boosts alone do not form a subgroup of P↑+
because a combination of two Lorentz boosts can be a spatial rotation and

thus does not again belong to the set of Lorentz boosts. Note furthermore

that our restriction to double cones as admissible regions for the fundamental

correspondence (C.1) is not flawed by the action of the Poincaré group because

the Poincaré transform of a double cone is again a double cone.5

That Poincaré transformations are symmetry transformations of spacetime

means for QFT that a simultaneous application of such a transformation to

the source by which a system in a certain state is prepared and to the mea-

suring device by which a certain observable is to be measured does not change

the result of the measurement. However, since the result of an individual

measurement of an observable A is not reproducible–QFT is a probabilistic

theory–the latter cannot mean that the results of individual measurements

are invariant under the simultaneous application of a Poincaré transformation

g ∈ P↑+ to the system and the measurement device. Rather what needs to be

invariant in such a case are the relative frequencies of measurement results.

On the side of the formalism this means that under a simultaneous transfor-

mation of state ρ → ρg and observable A → Ag the probabilities ρ(Pai) of

all possible values ai ∈ σ(A) of A have to be invariant. Since this obviously

implies that the expectation value ρ(A) =
P

i aiρ(Pai) of A is also invariant

and, on the other hand, the probabilities ρ(Pai) are nothing else than the ex-

pectation values of the simple observables Pai one can equally well state the

requirement of Poincaré invariance by saying that the expectation values ρ(A)

of all observables A in all states ρ must not be affected by the simultaneous

transformations ρ→ ρg and A→ Ag, i.e.

ρg(Ag) = ρ(A), for all g ∈ P↑+. (C.4)

5In fact, the whole set of double cones can be generated from each single double cone O0
by acting on it with all Poincaré transformations, i.e. P↑+ (O0) = D(M).
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Now for the terms ρg and Ag to make mathematical sense, one needs a repre-

sentation6 of the group P↑+ that implements the transformations g ∈ P↑+ on the
level of observables and states. Moreover, this implementation must be such

that the invariance condition (C.4) is fulfilled. Under the assumption that the

global algebraR(M) coincides with the algebra B(H) of all bounded operators
on H, which will be discussed at end of this appendix, one can (without loss
of generality) implement P↑+ by means of a weakly continuous group of unitary
operators

U(P↑+) ≡
n
U(g) : g ∈ P↑+

o
from B(H), such that the observables transform like

Ag ≡ U(g)AU(g)−1 (C.5)

(Horuzhy 1990, p. 17). That U(P ↑+) is a representation of the Poincaré group
means that it is the image of a map U : P↑+ → B(H) that “models” the
group P↑+ within B(H), i.e. U(P↑+) is the image of P↑+ under a map that pre-
serves all group structures–a so-called group-homomorphism. In particular,

this means that to the identity transformation e ∈ P↑+ corresponds the iden-
tity operator (i.e. U(e) = 1 ∈ U(P ↑+)), to the inverse transformation g−1 of g
corresponds the inverse of the operator U(g) (i.e. U(g−1) = U(g)−1) and to
the product of two transformations g2g1 corresponds the product of the corre-

sponding operators (i.e. U(g2g1) = U(g2)U(g1)). The “weak continuity of the

group U(P↑+)” is to be understood as the weak continuity of the corresponding
group-homomorphism U : g 7→ U(g). This means that if the sequence (gn)

⊂ P↑+ converges to g̃ ∈ P↑+ then (U(gn)) ⊂ U(P↑+) converges to U(g̃) where

the latter convergence is with respect to the weak operator topology. One can

show that each such limiting operator U(g̃) is again unitary and belongs to

U(P↑+), so that the weak continuity of the group-homomorphism U : g 7→ U(g)

secures that U(P↑+) is closed with respect to limiting processes within P↑+.7

6Note that the term “representation” is meant this time in the mathematical sense of there
being a group-homomorphism h : G → N (i.e. a map that preserves all group structures
and thus makes the image h(G) ⊆ N a “model” of the group G within the set N), and not

in the sense of an interpretation of mathematical objects by non-mathematical ones as in
case of the representation of observables by self-adjoint operators etc.

7In the overwhelming part of the literature it is said that U(P↑+) respectively U : g 7→ U(g)

has to be strongly continuous, i.e. continuous with respect to the so-called strong operator
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Now one can show that the transformation law for observables under the

representation U(P↑+), i.e. (C.5) together with the invariance condition (C.4)
already fixes the transformation law for states to be of the form

ρg = ρ(U(g)−1 · U(g)), (C.6)

so that the latter need not be assumed independently.8 That (C.5) together

with (C.6) in fact fulfil the invariance condition (C.4) immediately follows by

inserting Ag according to (C.5) into ρg according to (C.6)

ρg(Ag) = ρ(U(g)−1U(g)AU(g)−1U(g)) = ρ(A).

Thus the existence of the unitary representation U(P↑+) of the Poincaré group
in fact secures the Poincaré invariance of the theory expressed by (C.4).

We will now see that for the action of the representation U(P↑+) of the
Poincaré group on the local observables to be compatible with the inherent spa-

tiotemporal structure of the net {R(O)}D(M), the former has to act covariantly

on the latter, which means that the Poincaré transform Ag = U(g)AU(g)−1

of a local observable A ∈ R(O) has to belong to the local algebra R(g(O))
of the Poincaré transformed region g(O). To see that this has to be the case,
let us consider for example a translation ga by a 4-vector a ∈ M . It trans-

forms a spacetime region O into the region ga(O) = O + a. Now if for a local

observable A ∈ R(O) the transformed observable U(ga)AU(ga)−1 would not
belong to the local algebra R(O+a) of the transformed region it would not be

measurable within this region O+a. However, in this case the transformation

A → U(ga)AU(ga)
−1 could hardly count as a proper implementation of the

translation by 4-vector a on the level of local observables. Since an analog line

of thought applies in regard to all Poincaré transformations, one altogether

requires that the following holds:

topology. Of course, this is true because the weak limit of a sequence of unitary operators
will not be unitary if the sequence is not also strongly converging (see e.g. Thirring 1994,
p. 16). However, since von Neumann has shown that for von Neumann algebras the weak-
and strong operator toplogies are equivalent, i.e. each weakly converging sequence is also

strongly converging and vice versa, there is no need to complicate the present exposition by
further introducing the strong operator topology.

8Equivalently, (C.6) together with the invariance condition (C.4) fixes (C.5) (Boguliubov
et al. 1990, p. 249 ff).
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Covariance: There exists a weakly continuous unitary representationU(P↑+) ⊂
B(H) of the Poincaré group P↑+ such that for all O ∈ D(M) and all

g ∈ P↑+
U(g)R(O)U(g)−1 = R(g(O)).

We will now investigate more closely the representation of the translation

group T ⊂ P↑+; this will lead us to the formulation of the last two axioms of
AQFT. Since the translation group is a commutative subgroup of the Poincaré

group its representation U(T ) ≡ {U(g) : g ∈ T } is a commutative subgroup of
the representation U(P↑+) of the Poincaré group. Moreover, each translation
g ∈ T is in one-to-one correspondence to a 4-vector a ∈ M–the vector by

which g translates. Therefore, the translation group T as well as its repre-

sentation U(T ) ≡ {U(g) : g ∈ T } can be parameterized by four real numbers
aµ–the components of a 4-vector a = (a0, a1, a2, a3) ∈ M–so that we can

simply write a or U(a) respectively when referring to an element of T or U(T )
respectively. Thus altogether the representation U(T ) of the translation group
is a commutative, weakly continuous, four-parameter group of unitary oper-

ators. According to the so-called SNAG theorem9 each element of U(T ) can
therefore be written in the form10

U(a) = eia•P (C.7)

where P is a 4-vector whose components P µ, µ = 0, . . . , 3, are commuting self-

adjoint operators–the so-called generators of U(T )–and “•” stands for the
Minkowski scalar product, which in terms of a ∈M and P = (P 0, P 1, P 2, P 3)

reads a •P ≡ a0P 0−a ·P, where a ·P ≡ a1P 1+ a2P 2+ a3P 3 is the Euclidean

scalar product in R3.11 Because of the operators P µ are pairwise commuting,

the unitary operator

U(a) = eia•P = ei(a
0P 0−a1P 1−a2P 2−a3P 3)

9“SNAG” stands for Stone, Naimark, Ambrose and Godement which were primarily
involved in the elaboration of this theorem.
10With a choice of units such that the value of ~ differs from 1, (C.7) would read U(a) =

exp( i~ a • P ).
11One can show that the Pµ are necesarily unbounded self-adjoint operators. However, as

mentioned in the footnote on page 304, unbounded self-adjoint operators also have a unique
spectral decomposition, so that one can make sense of functions of unbounded self-adjoint
operators, like the exponential exp(ia • P ), too (see e.g. Reed and Simon1980).



314 APPENDIX C. THE STANDARD AXIOMS OF AQFT

can also be written as a product

U(a) = eia
0P 0e−ia

1P 1e−ia
2P 2e−ia

3P 3

of the pairwise commuting unitary operators

U(a0) = eia
0P 0 , U(aj) = e−ia

jP j

( j = 1, 2, 3).

Thus with respect to some fixed inertial reference frame the zeroth component

P 0 is the generator of temporal translations

U(a0) = eia
0P 0

and the remaining three components P j (j = 1, 2, 3), collected up to the

3-vector P ≡ (P 1, P 2, P 3), generate spatial translations

U(a) = e−ia·P.

The zeroth component P 0 of P is therefore interpreted as the energy- and

P ≡ (P 1, P 2, P 3) as the momentum observable with respect to the chosen

inertial reference frame.12 Consequently, P = (P 0,P) represents the energy-

momentum observable of the kind of systems in question. Since the P µ are

pairwise commuting each of them also commutes with each translation U(a)

(and not merely with the translation U(aµ) generated by P µ itself) so that

energy P 0 and momentum P are translation invariant, i.e.

U(a)P 0U(a)−1 = P 0 and U(a)PU(a)−1 = P, for all a ∈M .

Thus in particular both energy and momentum are conserved quantities be-

cause they are invariant under all timelike translations.

Physically it is to be expected that, in general, the spectrum of the energy-

momentum observable P will have a discrete as well as a continuous part.

For example, for systems which consist of subsystems attracting each other

by electromagnetic forces, the discrete part of the spectrum will correspond

to the regime where the subsystems are bound together by reason of their at-

tracting interactions, whereas the continuous part of the spectrum corresponds

12For a more detailed discussion and justification of this interpretation, see (Araki 1999,
p. 75 ff) and (Thaller 1992, Chapter 2).
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to the regime where the kinetic energy of the subsystems is large enough to

separate and eventually behave like non-interacting, i.e. free, systems. So far

we have only discussed observables with a purely discrete spectrum. However,

all that we need to now at present about non-discrete observables is that the

values from the continuous part of their spectrum are also regarded as possible

values which the observable can take upon measurement. This leads to some

important physical restrictions on the spectrum of the energy-momentum ob-

servable. First of all, the spectrum of the energy has to be bounded from

below, i.e. there has to be a number E ∈ R such that σ(P 0) ≥ E,13 for oth-

erwise one could (in principle) arbitrarily lower the energy of a system and

transfer this energy to its environment, thereby using the system as an in-

finite reservoir of energy. A particular choice of E merely fixes the scale of

possible energy values and thus from the standpoint of physics each choice is

as good as any other–however, for convenience one takes E = 0. Now from

the relativistic kinematical connection between energy p0, momentum p and

rest mass m given by (p0)2 = p2 +m2, together with the relativistic identity

p2 = p • p = (p0)2 − p2, it follows that the square of the energy-momentum
of a system equals its rest mast, i.e. p2 = m2. Therefore, in QFT the op-

erator
√
P 2 =

p
(P 0)2 −P2 is interpreted as the rest mass observable. For

the physical interpretation of
√
P 2 as the observable of rest mass (as well as

for it to be a well-defined self-adjoint operator), the spectrum of P 2 has to to

be positive, i.e. σ(P 2) ≥ 0, because otherwise one could get negative values
for the square of the rest mass and thus imaginary values for the rest mass

itself. The condition σ(P 2) ≥ 0 implies that the spectrum of P does not

simply coincide with the full Cartesian product ×µσ (P
µ) of the spectra of its

components Pµ as it were to be expected from a purely mathematical point

of view, but rather that it is a proper subset of the Cartesian product. More

precisely, the two requirements σ(P 0) ≥ 0 and σ(P 2) ≥ 0 taken together say
that only those energy-momentum values p = (p0,p) ∈ R4 are possible for
which p0 ≥ 0 and p2 = (p0)2 − p2 ≥ 0 or equivalently for which p0 ≥ 0 and
p0 ≥ |p|, where |p| =

p
(p1)2 + (p2)2 + (p3)2 is the Euclidian length of the

vector p ∈ R3. Thus the spectrum of the energy-momentum observable is con-

13Since the Pµ are unbounded operators, this condition is not automatically fulfilled, as
in case of bounded operators (see also the footnote on page 304).
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fined to the closed forward cone V + ≡ {p = (p0,p) ∈ R4 : p0 ≥ 0, p0 ≥ |p|}.
This requirement is known as the

Spectrum condition: σ(P ) ⊆ V +.

The spectrum condition is often held to prohibit a superluminal transfer

of energy-momentum. However, this seems to be an overstatement because

what the spectrum condition in fact rules out is the existence of states ρ with

a non-zero expectation value of energy-momentum and a non-zero expectation

value for a superluminal velocity. Now for the latter to make sense one first of

all needs a self-adjoint operator that can reasonably be taken to represent a ve-

locity observable of relativistic quantum systems. Since the task to introduce

such a relativistic quantum velocity operator is mathematically quite involved

(see e.g. Thaller 1992), we will–as it is quite usual–only give an heuris-

tic argument for the claim in question. According to relativistic kinematics,

energy p0, momentum p and rest mass m are connected with the velocity v

via p0 = mγ and p = mγv, where γ ≡ (1 − |v|2)−1/2,14 so that the velocity
is given by v = p/p0. But this means that p0 ≥ |p| and |v| > 1 are incon-

sistent, so that if there were some state ρ to which a superluminal velocity

|v| > 1 could be ascribed with some non-zero probability this state would vio-
late the spectrum condition because it would prescribe a non-zero probability

to energy-momentum values with p0 < |p|. Yet this merely rules out a certain
kind of superluminal energy-momentum transfer, namely a transfer by means

of systems which are in the described superluminal velocity states (see also

Section 2.8.1).

The last axiom of AQFT is concerned with the structure of the vacuum.

One characteristic of the vacuum is that it the system with the lowest possible

amount of energy-momentum. This means that the state that represents the

vacuum is a pure state on B(H) whose generating unit vector Ω ∈ H–the vac-
uum vector–is an eigenvector of P to eigenvalue 0, i.e. PΩ = 0 or equivalently

P µΩ = 0 for µ = 0, . . . , 3. Because of

PΩ = 0

⇔ eia•PΩ = Ω, for all a ∈M

14Remember that we are using natural units, so that c = 1.
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⇔ U(a)Ω = Ω, for all a ∈M

this is equivalent to the fact that Ω is an eigenvector of all translations U(a) ∈
U(T ) to eigenvalue 1 and thus is translation invariant. Yet the vacuum is

not only expected to be translation invariant but also to be invariant under

Lorentz transformations U(g) ∈ U(L↑+) and thus under the whole Poincaré
group U(P↑+).15 A further physically reasonable assumption is that the vacuum
is unique, which formally means that the vacuum vector Ω is the only vector

(up to an irrelevant phase factor c ∈ C, |c| = 1) that is invariant under the

Poincaré group. The assumptions as to the properties of the vacuum so far

mentioned, namely that it is Poincaré invariant (or equivalently that it has

zero energy-momentum and is Lorentz invariant) and that it is unique, would

have been assumed in any classical, i.e. non-quantum, theory, too. However,

classically the vacuum simply coincides with “empty space” so that there is no

need to regard and study it as a physical system in its own right. This attitude

towards the vacuum has dramatically changes since the advent of QFT. As is

known from the treatment of free fields within the Lagrangian approach, each

“material system”–understood as a system consisting of a certain number

of “stable particles”–can be regarded as an excitation of the vacuum. More

generally, each vector ψ ∈ H can be approximated as closely as one likes (in

the norm ofH) by the application of appropriate polynomials of the local fields
Ψ(x), to the vacuum state.16 In other words, the set of vectors generated by

the application of polynomials of local fields to the vacuum vector is a dense

subset of H. This property of the vacuum is assumed to hold also in the

presence of interactions and therefore it is incorporated as a basic assumption

into the formalism of AQFT. Since in AQFT there are no local fields from

which the local observables are constructed, one assumes accordingly that the

set of vectors generated by the application of arbitrary local observables

A ∈ Aloc =
[

O∈D(M)

R(O)

15We will simply call U(T ), U(L↑+) and U(P
↑
+) translation-, Lorentz- and Poincaré group

because this will not cause any confusions but enhanches the readability of the text.
16Of course, as mentioned in Chapter 4, the local fields have to be “smeared” over some

non-pointlike region before they are well-defined operators that can be applied to vectors
from H.
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to the vacuum vector Ω is a dense subset of H. A vector ϕ ∈ H from which,

by the application of operators from a set S ⊆ B(H), a dense subset of H can

be generated is called cyclic with respect to S. Thus we can also state the
assumption in question by saying that Ω is cyclic with respect to Aloc. The

assumptions in regard to the vacuum can therefore be summarized as follows:

Vacuum: In H there exists a unique unit vector Ω (up to a phase factor),

that is invariant with respect to U(P↑+) and cyclic with respect to Aloc.

In what follows we will denote the vacuum state, i.e. the pure state hΩ, · Ωi
on B(H) generated by the vacuum vector Ω, by ω. In connection with the

implementation of the Poincaré group we have made the assumption that the

global algebraR(M) coincides with the algebra B(H) of all bounded operators
onH. However, one can show thatR(M) = B(H) is equivalent to the cyclicity
and uniqueness of the vacuum vector (Horuzhy 1990, p. 107), so that one need

not assume the coincidence of R(M) and B(H) independently.
As explained above, because of spatiotemporal translations U(a) = exp(ia•

P ) are generated by the energy-momentum operator P , the latter is automat-

ically translation invariant. Now one can show that no non-trivial operator A

(i.e. A 6= λ1, λ ∈ C) that is translation invariant (i.e. U(a)AU(a)−1 = A, for

all a ∈ M) can belong to any local algebra R(O) (Landau 1969). That the
energy-momentum observable cannot be of the trivial form P = λ1 follows for

example, from the requirement that the vacuum vector Ω is an eigenvector of P

to eigenvalue 0. This could only be the case if λ = 0 and thus only if P would

be the zero-operator, which means that such a theory only describes the vac-

uum and thus is quite uninteresting. Therefore, the energy-momentum P has

to be a global observable, not measurable in any bounded region of spacetime.

However, each global observable is the weak limit of a sequence (Ai) of

local observables, and thus should at least be “approximately measurable” in

bounded spacetime regions by means of the measurement of appropriate local

observables from (Ai). Moreover, because of the continuity of normal states

with respect to the weak operator topology it is secured that the expectation

value of a global observable A is also approximated the better the closer A is

approximated by some local observable. As the great accuracy between the-

oretical predictions and experimental results concerning the energy-momenta
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and rest masses of elementary particles show, sufficiently good local approxi-

mations to measurements of P (respectively
√
P 2) seem to be experimentally

available. Yet the fact remains that if one takes the very idea underlying

AQFT serious, that says that only local observables should be regarded as

physically meaningful, energy-momentum and with it all global observables

are only idealizations.17

17There is a further respect in which the energy-momentum observable is merely an ideal-
ization. As mentioned in the footnote on page 313, P is necessarily an unbounded self-adjoint
operator. One consequence of this is that P ’s spectrum can only be bounded from above
or from below but not both ways. Since for physical reasons the spectrum of P has to
be bounded from below it therefore cannot also be bounded from above. But this means
that the energy-momentum of a system can (in principle) become infinite, which is another

idealization concerning P .
Note furthermore that since P is an unbounded operator it cannot belong to the algebra

R(M) = B(H) because the latter, by defintion, only contains bounded operators. Yet all
spectral projections of P belong toR(M) = B(H), so that P is affiliated withR(M) = B(H)
(see the footnote on page 304).
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