Lower Bounds and Exact Algorithms for the
Graph Partitioning Problem using
Multicommodity Flows

il

|
il
LT

ml
LT
1
LT

1
LT

1
LT
1
LT

1
LT
1
L
1
L
il
LT

LT
il
L
It
L

] L] L L] L] N]
[i [} {] {1 {1]
0 i i [} [} [} g
Dissertation
von

Norbert Sensen
Schriftliche Arbeit zur Erlangung des Grades
eines Doktors der Naturwissenschaften

Universitat Paderborn,

Fakultat fur Elektrotechnik, Informatik und Mathematik
Institut fUr Informatik

Paderborn, 15. April 2003

Danksagungen

Zu aller erst méchte ich mich bei Prof. Dr. Burkhard Monien bedanken. Durch seine
Unterstutzung und Kommentare an den richten Stellen wurde ich bei der Erstellung
der vorliegenden Arbeit immer wieder gefordert und motiviert. Zuséatzlich hatte ich
als wissenschaftlicher Mitarbeiter seiner Arbeitsgruppe jederzeit den Freiraum, der
fur die Erstellung einer solchen Arbeit notig ist.

Desweiteren mochte ich mich bei allen aktuellen und ehemaligen Mitgliedern der Ar-
beitsgruppe bedanken. Es herrschte immer ein sehr freundschaftliches und produk-
tives Arbeitsklima, so dass ich einerseits bei inhaltlichen Fragestellungen immer einen
Diskussionspartner hatte und andererseits auch Freundschaften entstehen konnten. Na-
mentlich nennen mdchte ich an dieser Stelle Meinolf Sellmann, Torsten Fahle, Robert
Preis, Robert Elsésser, Manuel Rode und Thomas Decker.

Zu Dank verpflichtet bin ich auch Geraldine Brehony, die mit viel Geduld alle meine
typisch deutschen Sprachfehler aus der Arbeit heraussuchte und korrigierte.

Besonders zu Dank verpflichtet bin ich meiner Frau Britta, die mich immer unterstitze
und den Rickhalt gab, der wahrend der Erstellung einer solchenArbeit notwendig ist.
An dieser Stelle mdchte ich auch meine Eltern danken, die mir die Moglichkeit gaben,
Informatik zu studieren, und die mich jederzeit unterstitzten.

Norbert

— DANKE —

Contents

[List of Figures, Tables and Algorithms 9
(1__Introduction| 13
I Mofivation 13
1.2 Overviewofthiswork 15
I3 Definifions 15
L4 KnownlowerBounds 17
[1.4.1 Classical SpectralMetRod 18
[I.4.2 Tmproved SpectralMethdds 19
[1.4.3 Semidefinite programming L. 19
[1.5 Exact Graph Patrtitioning Algorithins 21
(1.6 Graphsfor Experiments 22
[2__The New Lower Bounds 25
2.1 LeightonsBourld 25
2.2 VarMC-and MVarMC-Bound 26
2.2.1 1dea 26
[2.2.2 Definition of Multicommodity Flows 26
[2.2.3 Lower Bound based on Cut-Flow and Congektion 27
[2.2.4 Definition of varMC and MvarMC 28
............... 29
[2.2.6 Summaryand Outlopk 32
[2.3 Experimental Evaluation of the LowerBouhds 33
[2.3.1 TheExperiments 33

6 CONTENTS
232 BisectionProblems 34
[2.3.3 k-partitioning Problems 35
[2.3.4 Graph Partitioning Problems wikh=2 andM = sn 37
[2.3.5 Summany 38

3__Theoretical [ssues 41

[3.1 Symmetrical Solutions o oo 41
BI11 Definitions 41
[3.1.2 Existence of Optimal and Symmetrical MC-solutjons 43
[38.1.3 Some lImplications 48

[3.2 Some SpecificGraphs o 53
[3.2.1 Bisection of the Complete Bipartite GraRg,| 53
[3.2.2 Thek-partitioning of theaxa-lTorus 60
[3.2.3 Thek-partitioning of theaxa-Grid 67
[3.2.4 BisectionoftheButterfly 71
[3.2.5 Bisection of the BeneS Network 77
[3.2.6 Thek-partitioning of the Hypercub®(d)| 81
[3.2.7 Summary 86

[3.3 Upper Boundsonthe LowerBouhds 87

4 Computation of the Lower Bounds 91

[4.1 Linear Programming 92

[4.2 CostDecomposition. 93
421 ColumnGeneration 94
[4.2.2 Lagrangian Relaxation based Column Generfation 95

[4.3 Approximation Algorithmp Lo 96
431 Lliteratureandldea 96
4.3.2 The Approximation Algorithm 98
[4.3.3 TmplementationDetails 108

[4.4 Experimental Evaluations 110
4.4.1 Cost-Decomposition 111
4.4.2 Approximation Algorithin 112
[4.4.3 Comparison of the different Methéds 112

[A.4.4 Summaly e e e e 114

CONTENTS 7

[0 Branch & Bound Algorithm | 115
.1 Upper Bound and Depth-First-Search 116
[0.2 Realizationof Branchings. 116
.3 Variable FIXIng 122
[0.3.1 Simple Considerations 122
£.3.2 MC-bounds basedMethéds 123
[5.4 Branching Selection 126
[(.4.1 Prediction of the Impact of a Split on the Lower Bdund 126
[6.4.2 Prediction of the Impact of a Join on the Lower Bqund 129
[0.4.5 Making the Branching Selection based on Predictions for the|
I LowerBound 132
[0.5 Experimental Evaluation 137
l6_Conclusion 141
Bibliograp 143

IA Detalls of Experimental Results 149

CONTENTS

List of Figures, Tables and Algorithms

List of Figures

[2.1 Example of the effect of varyingon the MC-bounds
[2.2 Example of the effect of varying on the MC-bounds

[3.1 Example of a graph with two vertex-orbits, one edge-orbit and differ-

49

[3.2 Example of a graph with one vertex-orbit and two edge-orbits where a

| solution using only shortest paths only does not give the best bound 50
[3.3 Example of a vertex- and edge-symmetric graph where the MVarMC-|

| bound is better than the VarMC-bodnd 50
(3.4 lllustration of theKgggrapf 53
[3.5 The error of the MC-bounds Tor the bisection of Kig, 1or a = 100, |

| depending oM e 59
[3.6 TMustration of the & 7-toru$ 60
[3.7 Tiustration of the set of destinations from one sending vertex depend

| Ingonthevariableq. 64
[3.8 lllustration of the behavior insideaax b-torus 66
[3.9 lllustration of the set of destinations from one sending vertex which |

| depends on the variablensideagrid 70
[3.10 Butterflyofdimension|3, 72
[3.11 BeneS network ofdimension3 78
[3.12 Hypercube®(d) of dimensions0....4and 7 82
[3.13 Asymptotic error of the MVarMC-bound for thkepartitioning of the |

| hypercube 86
[3.14 Exact error of the MVarMC-bound for tikepartitioning of the hyper- |

| cubewithd=50 86

10 LIST OF TABLES

|3.l5 [llustration of the degendence of the upper boundisvaitn n = 100, |

| e(G,I) = 2 and with reference to the bisection problem 90
4.1 Comparison of different practical improvements of the approximation |
| Algorithml e 110

[>.1 Example of a Join of two vertices when computing the 1-1-MC-bound |
| on the bisection width of a graph with vertex- and edge-weights . . . 117

[2.2 Example of a graph where keeping split-edges and decreasing the sets
| of destinations improves the VarMC-bound for the bisection proplem . 122

5.3 Visualization ofthe resultsof Tableb.1 1126

[2.4 Predicting the lower bound of a split using the relative distance, with |
| a DeBruijn graph ot dimension 6 and 1000 randomly selected pairs of|
I verticesS 128

[6.5 Tustration of the insight into the branching selection 136

[2.6 Experimental results comparing the different selection-methods with|
| reference to the bisection problem. The upper number IS the average
| running time in seconds, the lower number is the average size of the

| search-freé. 138
6.7 Whatis possible as regards graph bisection problems 139

List of Tables
(1.1 Characteristics of the BCRxangraphs; maxd (mind) IS the maximal |

| (minimal)degree L 23
1.2 Characteristics ofthenehraphs 24

(2.1 Cut-Flows for the different graph partitioning problems and the difter- |
| ent multicommodity Instances 31

2.2 Summary of the lower bounds (upper value) and their computation|
| times (lower value) of bisection problems with differentgraphs 34

[2.3 Summary of the Tower bounds and their computation times of 4-partitioning
| problems with differentgraphs 36

2.4 Summary of the lower bounds and their computation times of graph|
| partitioning problems wittk = 2, M = | £n] and different graphs . . . 37

[3.1 Bounds and their errors on the bisection width otkQg| 59

LIST OF ALGORITHMS 11

[3.2 Summary of the asymptotic results fepartitioning ana x a-torus |

I witha—coandk>6........... 66
[.3 Summarization of the analyzed asymptotic efrors 87
[3.4 Upper bounds on the MC-bounds with reference to the bisection|width 89
[4.1 Sizes of the linear programs for the MC-bounds 93
[4.2 Approximation of the MVarMC-bound for the 6-node-ring wkth=-3 102
[4.3 Tlustration of the resulting flows of Talle .2 [102
(4.4 Average running times in seconds and average number of search nodes

| using cost-decomposition. (1): max-cut-flow-formulation, (2): min- |

| congestion-formulatian Lo 0oL 111
[4.5 Times and sizes of the search-trees of the branch&bound algorithm us-

| Ing the approximation algorithm with differeas. (1): without vari- |

| able fixing, (2): with variable fixing. 112
[4.6 Average running times (seconds) and sizes of the search-trees using

| the different methods for computing the VarMC-bodnd. 113
[4.7 Comparison of the different VarMC bounds with the semi-definite Qound114
[5.1 Examples of the effect of the MC-bound based variable fixing 125
[>.2 Averages of the correlation coefficient of the different methods and|

| graphs used to predict the impactofasplit 129
[.3 Averages of the correlation coefficient for the different methods and|

| graphs predictionajojn 000 131
[5.4 Comparison of the different approaches to exact graph bisection (on

| differentmachine$) oo 137
[>.5 Results on up to now unsolved problems 140

List of Algorithms
(1 Informal approximation Algorithm for the maximum multicommodity |

flow problem dueto Fleischer 97

[2 Approximation algorithm for the MC-bounds 100
[3 route(k,t,l,n): realization of a routing Inside the approxima- |

tionalgorithmpo 101

12

LIST OF ALGORITHMS

Chapter 1

Introduction

1.1 Motivation

Graph partitioning problems occur in a wide range of applications. The task in hand
is to divide the set of vertices of a graph into a given number of parts such that the
number of edges with endpoints in different sets is minimized.

Applications

The efficient use of parallel atistributed processor systensa major application

of graph patrtitioning problems. The work which has to be computed is often subdi-
vided into a number of small tasks which are of different difficulty. These tasks have
to communicate with each other in order to be solvable. This can be modeled as a
graph: the vertices model the tasks of the graphs with weights corresponding to their
difficulty and the edges model the required communication between the tasks. Now, in
order to have an efficient parallelization, the tasks have to be assigned to the different
processors. This assignment corresponds to a graph partitioning problem since on the
one hand every processor should get the same amount of tasks and on the other hand
communication between different processors is expensive. A interesting survey on this
application of graph partitioning is given in [HK0O].

Another very important application of graph partitioning problems arises within the
area ofFinite Element Method6~EM). There, numerical simulations are computed

for problems such as crash-simulations, computational fluid dynamics, weather fore-
casts or earthquake simulations. For the efficient computation of these simulations
parallel systems are needed. The single elements have to be assigned to the differ-
ent processors. Every processor should get an equal part of the elements. However
dependencies between the elements exist and dependencies of elements on different
processors are expensive. A recent survey on this application is given in [SKK0O].

13

14 CHAPTER 1. INTRODUCTION

Within the area ofntegrated circuit layouseveral hundred thousand transistors have
to be placed with their connections. These placements imply a partitioning of the tran-
sistors and of course it is important that there are relatively few connections between
the different parts of the circuit. Therefore, among many other problems, typical graph
partitioning problems have to be solved. A survey on this topic is given in [Llen90].

One last application of graph partitioning problems which we want to mention here
is the computation o$parse-matrix orderingdf large sparse systems of linear equa-
tions (e.g. linear programs) have to be solved, the computation of fill-reducing order-
ings speeds-up the calculation. Finding optimal orderings is an NP-hard problem, so
heuristics are used. One very promising heuristic is based on graph partitioning: The
sparse matrix is regarded as the adjacency matrix of a graph. Therefore, the order-
ing of the rows such that adjacent rows stay together can be carried out using graph
partitioning. More details are given in [Gug97] for example.

Complexity

Due to the importance of graph partitioning problems, they were extensively exam-
ined. Unfortunately, even simplest versions are NP-hard: The problem of the division
of the vertices into an arbitrary number of sets with at ni\stertices per set is NP-
hard [HR73], even wheM = 3. If M = 2, the problem is equivalent to the maximum
matching problem and can be solved in ti@é,/nm) wheren is the number of ver-
tices andm is the number of edges [MV80]. At the other end of graph partitioning
problems, there is the graph bisection problem, which involves the problem of divid-
ing the vertices into two equally sized sets. This is also NP-hard[GJS76]. Itis shown
in [BCLS87] that this also holds for regular graphs. Furthermore, the division of the
vertices into two sets where each set has at mosertices, witha € [0.5,1) constant,

is also NP-hard. The two-partitioning becomes solvable in polynomial time, if one set
has at mosk vertices, for any constakt

It is an open question if the graph bisection problem is NP-hard or solvable in poly-
nomial time if the graplG is planar. It is also unknown if there is a PTAS for the
graph bisection problem. The best approximation algorithm provides us with a ratio
of O(log? n) from the optimum([FKO2].

Solutions

Due to the NP-hardness of graph partitioning problems on the one hand and its im-
portance on the other hand, a lot of work has been carried out on the development of
effective and fast heuristical algorithms for solving the problem. A survey of different
methods is given in [Fja98]. Furthermore, there are a number of libraries which heuris-
tically solve graph partitioning problems, e.g. Chaco [HL94, HL95b, HI.95a], JOS-

1.2. OVERVIEW OF THIS WORK 15

TLE [WCE9S,/WCMO00; WCE97], METIS [KK98a, KK98b], PARTY [PD97, Pre98]
or SCOTCH[PR96].

In comparison with these heuristical approaches, relatively little work has been done in
order to exactly solve graph partitioning problems. In Segtioh 1.5 we give an overview
of the most important or successful approaches. Due to the NP-hardness of the prob-
lem, the exact methods can only handle relatively small graphs, while the heuristics
deal with thousands or even millions of vertices. Nevertheless, the exact methods and
lower bounds are very important for the verification of heuristics. They can be used
in applications with a small number of vertices and finally, their development gives an
insight into the difficulties of the problem.

1.2 Overview of this work

The main theme of this work is the presentation of new lower bounds on graph parti-
tioning problems and their use inside an algorithm which exactly solves graph parti-
tioning problems. These new lower bounds are based on multicommodity-flows and
can be viewed as a generalization of the known Leighton-bound. In the remainder of
this chapter, we will formally define graph partitioning problems and present the best
known lower bounds and their exact approaches.

In Chaptef R, we will present the new bounds and our experiments which will show that
these bounds are often superior when compared to other lower bounds. In Chapter 3 we
will provide theoretical analyses of the new bounds. I.e. we will show that symmetries
inside the graphs can be utilized when calculating the bounds. Furthermore, we will
present the bounds for several well known graphs, e.g. tori and hypercubes. This will
show that the bounds are not only useful for practical computations but that they can
also be used for theoretical analyses.

In Chaptef #, we will present three different methods for the computation of the lower
bounds. We will show that a new approximation algorithm is superior to linear pro-
gramming and cost-decomposition-based algorithms. Finally, in CHapter 5, we will
present a branch&bound algorithm which is based on the new lower bounds. Experi-
ments will show that this algorithm is often superior to other algorithms and that we
were able to solve problems quickly which were, to our knowledge, practically un-
solvable until now.

1.3 Definitions

The main topic of this work is the graph partitioning problem. In literature there are
many different definitions of this problem, so in the following we will present the
definition which we are working on.

16 CHAPTER 1. INTRODUCTION

The most well-known version of the graph partitioning problem is the simple graph
bisection problem: Given a graf, its set of vertices has to be partitioned into two
equally sized sets such that the number of edges which are adjacent to vertices in
different sets is minimized. This minimum number of edges is called the bisection
width of the graph. More formally:

Definition 1.1
Let G= (V,E) be an undirected graph with vertices V and edges E. draph bi-
section problem bisGP=() is the problem of calculating thgisection width bw(G)
with
bw(G):= min |[{{vw}eElveU,wgU}|.
ucv,|ul=r%

If vertex- and edge-weights are given, i.e. =V, E,g, f) with g:V — R>¢ and
f:E — R>o, we use N= S,y g(Vv) and N := 3¢y, 9(v) and the definition can be
generalized as follows:

bw(G) = min > F({vww})
VACVINI=[3| {yw} €E:veVi AwgV,

If vertex-weights are given, the situation can occur that no bisection which fulfills
the balance-constraii; = (%1 exists. In practice, a less strict balance-constraint is
often given in this case. These cases are covered in this work by the general graph
partitioning problem which will be defined in Definitipn 1.3.

The next more general version of the graph partitioning problem i&-fpeatitioning
problem. l.e. the set of vertices is not only partitioned into two sets bukis#is:

Definition 1.2
Let G= (V,E) be an undirected graph,& N and[is the set of all correct partitions,
ie.mem (o mV — {1,...k} with Vi ;= {ve V|m(v) =i} andVi : |Vi| < [¥]. we
use

vmeN: cut(rmG):=|{{vw} € E|n(v) # r(w)}|

and
cut-siz€G, k) := mincut(m, G).
Tl

The kpartitioning problem kGP=(G,K) is the problem of calculating the cut-size{G.

If vertex- and edge-weights are given, i.e. =GV, E, g, f) with g:V — R>¢ and
f:E — R>o, we use N= 3,y 0(v) andVi: N; := 5,y 9(v) and the definition can
be generalized to the balance constraiit N; < [%1 and

cut(rL G) := z f({v,w}).
{v,w}eE;m(v)#£T(W)

1.4. KNOWN LOWER BOUNDS 17

We must point out that a different balance-constraint ofitpartitioning problem is

often used. l.e. instead &f : |Vi| < [%1 the constraint/i, j : [Vi| — |Vj| < 1 is used.
However in our opinion the balance-constraint that we use is more practical, since in a
lot of applications the costs are determined by the biggest partition only, for example
in the case of load-balancing. Of course, applications can also be found where the
other balance-constraint is more realistic.

Finally, the most general version which we deal with allows more unbalanced parti-
tions by giving a maximal siz® to every partition:

Definition 1.3

Let G= (V,E) be an undirected graph, & N and Me R>o. Let[1 be the set of all
correct partitions, i.eme N < m:V — {1,...k} with f :={veV|n(v) =i} and
Vi: Vil <M. We use

vreN: cut(rmG) = [{{v,w} € E|m(V) # (W)} |

and
cut-siz€G,k,M) := mincut(m;, G).
mell

Thegraph partitioning problem GP=G,k,M) is the problem of calculation the cut-
size(Gk, M).

If vertex- and edge-weights are given, i.e. =GV, E,g, f) with g:V — R>¢ and
f:E — R>o, we use N= Y,y 0(v) andVi: N; := ¥y g(v) and the definition can
be generalized to the balance constraiint N; < M and

cut(rL G) := z f({v,w}).
{vw}€E;m(v)#£T(w)

Obviously, the bisection problem is a special case oktpartitioning problem (using
k = 2). And thek-partitioning problem is a special case of the graph partitioning
problem (using = [}7).

1.4 Known Lower Bounds

Since the graph partitioning problem and particularly the graph bisection problem have
been of great interest in the past, several approaches to lower bounds are also known. In
the following we present the most important approaches. Since the following bounds
cannot be used with the most general graph partition prol@&nin this subsection

we focus on thé-partitioning problem with edge-weights but without vertex weights.

18 CHAPTER 1. INTRODUCTION

1.4.1 Classical Spectral Method

Probably the most famous lower bound method for the graph partitioning problem is
based on the eigenvalues of the Laplace maif®) of a graphG:

Definition 1.4
Let G= (V,E) be an undirected graph witl | = n. The nx n Laplace matrix.(G) =
{lyw} is defined as

deqgv) ifv=w
lhwi=¢ —1 ifv£AwA{vw} cE .

0 else
1 ifm(v)=i
0 else '
It becomes clear that a matri corresponds to a correct partition, if and only if
Ya =enAY'en=pecAyij € {0,1}. Then

A nxk-matrixYr = (yi,j) can be used in order to express a partitiog,; :=

cut-sizéG, k) = min{%Tr(YtL(G)Y) |Ya=enAY'en = Ea(/\yi.,j e {0, 1}} (1.1)

follows. By relaxing some constraints ¥f lower bounds are obtained. The first one
was introduced by Donath and Hoffman [DH73]:

H(G,K) = min{%Tr(YtL(G)Y) Y = Elk}

Obviously,DH(G,K) is a lower bound on cut-siz€,k). In the spectral graph theory
the following formula from Fan [Fan49] holds:

Yrrg(lnlk{Tr (YTAY)} = jzlxj(A)

whereAj(A) is the j-th smallest eigenvalue of a matx So the DH-bound can be
calculated with the help of eigenvalues and we have:

<
cut-sizéG, k) < DH(G,k) = > z Aj(

Since the Laplace matrices of graphs are a well-studied area of spectral graph theory,
see e.g..[CDS79, Chu97], this bound can be used with a mass of theoretical graphs.

In general the DH-bound cannot be used with the overall graph partitioning problem.
But when we look at the special casekof 2 and arbitraryM, a bound of

(n—M)M

DH(G,2,M) = A2(L(G))

holds (see e.gl [FRW94, Moh97]).

1.4. KNOWN LOWER BOUNDS 19

1.4.2 Improved Spectral Methods

A strengthened variation of the DH-bound for the graph bisection problem was pro-
posed by Boppana in [BopB87]. Rendl and Wolkowicz [RW95] independently proposed
the same idea for thiepartitioning problem. In[[FRWS4] a practical implementation
which includes an upper bound, i.e. a feasible partitioning, is given. Please notice, that
the years of publications are not in order. [FRW94] is a sequel of [RW95]. Boppana,
Rendl, and Wolkowicz use a more restricted relaxation of Equdtiop (1.1):

BRW(G,K) := min{%Tr(YtL(G)Y) |Ya = enAYie, = Eek AYYY = E"‘}

Again, BRW(G,k) < cut-sizé€G,k) is obvious. Furthermord)H (G,k) < BRWG,K)

is also obvious. The efficient computationBRW G, k) is much more complicated.

In [RW95] it is shown thaBRW(G, k) can be expressed as a formula with a function
s(d), which has to be minimized. As is the case in the DH-bound, eigenvalues are
also used inside the functicsid). This functions(d) is convex, but possibly non-
smooth. In[[FRW94] an iterative procedure is used in the minimization process. It
starts with an initial solution which is equivalent to the DH-bound and then uses the
Bundle Trust method for the optimization process. The Lanczos Algorithm is used for
the computation of the needed eigenvalues.

1.4.3 Semidefinite programming

Firstly, Alizadeh [Ali95] has shown that the eigenvalue-bounds can be viewed as dual
problems of semidefinite relaxations of graph partitioning. Poljak and Rendl [PR95]
derived semidefinite relaxations for the graph bisection problem which yield the same
bound as the BRW-bound. In the case of gen&rpartitioning these equivalences
were obtained by Karisch and Rendl [KR98]. We give a small survey on the different
formulations and relaxations:

Modeling k-partitions

The notation in this part follows [KR98]. THepartitioning problem can be expressed
by

cut-siz€G, k)
(1
mln{éTr(YtLY)! Ya =enAY'en=meaAyij € {0, 1}}

= min{%Tr(LX)] X € con{Y|Ye& = enAY'en = meAyij € {0, 1}})}

20 CHAPTER 1. INTRODUCTION

whereY € {0,1}™K indicates a partition witly, ; = 1 means that vertex belongs to
partitioni. By using this notation, several semidefinite programming based relaxations
arise:

k-GPr1(G,k) = min{;Tr(LX)| X = X' Adiag(x) = en A Xen =Ken AX = O}
k-GPr2(G,k) = min{;Tr(LX)| X = X' Adiag(x) = en A X e, = ken AX > O}

It is shown that thé&-GPr» -bound dominates the DH-bound and even the BRW-bound.

Graph bisection

In the case of the graph bisection problem another model is possible:
bw(G) = min{%xth| Xen=0Axe {1, 1}”}

wherex, = —1(1) indicates that vertex belongs to partition one (two). Then, a relax-
ation of

SDRG) = min{%Tr(LX) | diag(X) = en A€ Xen =0AX = O}

can be used as bound. This formulation provides the same bound as the BRW-bound.
We will not go into more detail of the notation of the semidefinite program here, in-
terested readers are referred(to [PR95, KRCO0O, KR98]. It is already known that com-
bining semidefinite relaxations with polyhedral information provides very tight relax-
ations. Karisch, Rendl and Clausenlin [KRC00] combined3B&(G, k) with triangle
inequalities, this bound is written as

pSDRG) :=
min{$Tr(LX) | diag(X) = en A€, X& =0AX = 0AB(X)+b >0} .

Summary

In order to summarize, we have presented three different lower bounds fdr the
partitioning problem. They are all based on relaxations of the exact cut-size-formula
(1.1). Furthermore, we have seen the following ranking:

DH(G,k) < BRW(G,k) < k-GPr2(G,k) < cut-siz€G, k)
Accordingly, for the graph partitioning problem whke= 2 we have the relations

DH(G,2) < BRW(G,2) < pSDRG) < bw(G).

1.5. EXACT GRAPH PARTITIONING ALGORITHMS 21

In Chaptef 2 we will compare our new bounds to the bounds presented in this section.
In the case of the bisection-problem, we will compare our bounds t®Hwoound,
BRWbound and thegSDRbound. In the case & = 4 we will take theDH-bound

and thek-GPr1(G, k)-bound into consideration and in the caséef 2 andM > 5 we

will use theDH-bound and thegSDRbound. For all these bound-computations, we
have used original code of the authors of the bounds, so that the comparisons will be
fair.

1.5 Exact Graph Partitioning Algorithms

As we have already mentioned, the graph partitioning problem and especially the graph
bisection problem are well known and well studied problems. Therefore, several ap-
proaches which exactly solve the problem have been studied. In the following numer-
ation we list the most important ones:

[JMN93]: This is one of the first published approaches which exactly solves graph
partitioning problems. They focus on the general graph partitioning problem
with relatively largek’s. For the computation of a lower bound, they use a
linear-program-formulation of exponential size. So, column-generation is used
to solve this linear program where one column corresponds to one possible set
of vertices. A branch&bound-framework is used around this lower bound.

[BCR97]: Brunetta, Conforti and Rinaldi presented a branch&cut-algorithm for the
graph bisection problem without vertex-weights. They use a polyhedral descrip-
tion of any bisection of a graph and solve a linear relaxation of the description.
In order to strengthen this lower bound, they add violated inequalities to the lin-
ear program until they do not find any more violated inequalities of the set of
inequalities which they use. Then, if the lower bound is not strong enough to
prune the subproblem, they perform a branching-step and the procedure contin-
ues.

[EMdS™98]: This work introduces a branch&cut-algorithm for theartitioning prob-
lem with vertex-weights. The approach is quite similar to that of [BCR97]: the
polyhedral structure together with violated inequalities are used for the compu-
tation of a lower bound. S branch&cut-procedure is applied around this lower
bound. Unfortunately, they do not compare their results with the results of
[BCR97], so it leaves uncertain which approach gives better results.

[KRCOQOQ]: This approach, which was presented by Karisch, Rendl and Clausen, is the
most recent and successful one. They use the already described pSDP-bound in
order to exactly solve the graph bisection problem. A branch&bound-procedure
is used as the frame around the pSDP-bound.

22 CHAPTER 1. INTRODUCTION

Our approach, which we present in this work, is in close competition with these four
published procedures. Hence, at the end of Chapter 5 we will present experimental
comparisons with these procedures.

1.6 Graphs for Experiments

Throughout this work we will present the results of several experiments on different
graphs. Here we describe the different graphs used. The graphs can be divided into
three different sets: Firstly, there are some theoretically defined graphs (e.g. DeBruijn-
graphs). Secondly, some graphs which were introduced by other researchers are used
and finally we use some random based graphs which we have constructed ourselves.

The first set consists of the following graphs:

DB-d: DeBruijn-graphs of dimensiod. A DeBruijn-graph consists of%®vertices
with in-degree 2 and out-degree 2, so it hds2directed edges. Since we
use undirected graphs only, we ignore the directions of the edges. The exact

bisection width of the DeBruijn-graphs is unknown, asymptotically &)(:%E).
For example, the DeBruijn-graphs are discussed in [Lei92].

SE-d: The Shuffle-Exchange graphs of dimensibithey are also discussed in [Lel92].
They have 2 vertices with degree 3, so they have28~1 edges. Like the
DeBruijn-graphs, the exact bisection width is unknown, asymptotically it is

o%).

Grid- axb: The well known grid-graphs, also known as array. They teveertices
and 2ab— a— b vertices. The bisection width is m{ia, b} + max{a,b} mod 2.

Torus-axb: The well known tori, i.e. girds with wrap-around-edges. They halve
vertices and @b edges. The bisection width is twice the bisection width of the
Grid-axb.

The second set of graphs which have already been introduced and used in different
papers consists of the following graphs:

BCR-axbg: These graphs are introduced in [BCR97]. They are @xidwith edge-
weights from 1 to 10, drawn from a uniform distribution. At present they are
available via anonymous ftfitp.math.unipd.it

BCR-axbt: These graphs are introduced|in [BCR97]. They are Tasswith edge-
weights from 1 to 10, drawn from a uniform distribution. At present they are
available via anonymous ftfitp.math.unipd.it

1.6. GRAPHS FOR EXPERIMENTS 23

Table 1.1: Characteristics of the BCRxiingraphs; maxd (mind) is the maximal (min-
imal) degree

| graph [V[| [E| | maxd| mind | bw(G
BCR-m4.i|| 32| 50
BCR-ma.i|| 54| 72
BCR-me.i|| 60| 96
BCR-m6.i|| 70| 120
BCR-mb.i|| 74| 120
BCR-mc.i|| 74| 125
BCR-md.i|| 80| 129
BCR-mf.i 90 | 146
BCR-m1.i|| 100 | 155
BCR-m8.i || 148 | 265

~—

|

A AN ODBMO
NIERINNDNDNDNPRPO O
N AR ODANWDNO

BCR-axbm: These graphs are introduced in [BCR97]. They are @xid-based
graphs with edge-weights. The edges of the grid receive weights from 10 to
100 uniformly generated and all the other edges receive a weight from 1 to
10, also uniformly generated. At present they are available via anonymous ftp:
ftp.math.unipd.it

BCR-mx.i: Real-world instances first used in [BCR97]. The graphs arise from an ap-
plication of the finite elements method where a factorization of the matrix of the
linear system has to be carried out. The graphs are unweighted. This factoriza-
tion can be modeled as a bisection problem. At present they are available via
anonymous ftpftp.math.unipd.it. Table[1.1 gives some characteristics
of these graphs.

ex36[abc]: These random graphs were introduced by Karisch et al., results are shown
in [KRCOQ]. The graphs have 36 vertices and each pair of vertices is adjacent
with probability 0.5.

cdn: These real-world-graphs were introduced by Johnson et al._in [JMN93], they
arise in compiler-design-problems. Originally, they have vertex- and edge-weights.
However, we will ignore the vertex-weights as it is also doné in [KRCO00]. Table
[1.7 gives some characteristics of these graphs. We have to mention that our ex-
periments gives a bisection width of 2,177 for the cd61-graph, while in [KRCOOQ]
a width of 2,176 is reported.

Finally, the following different classes of random based graphs were generated by
ourselves:

24 CHAPTER 1. INTRODUCTION

Table 1.2: Characteristics of theredraphs

| graph|| V[| [E| | maxf(e) | avgf(e) | bw(G) |

cd30 || 30| 47 368 40.9 302
cd45 || 45| 45 487 63.8 760
cd47al| 47| 101 1,110 70.8 426
cd47b| 47| 99 387 39.4 580
cd6l | 61| 186 6,151 178.9| 2,177

Random-n-p-s. Random unweighted graphs with vertices, where each possible
edge has a probability to be in the graphsis the seed of the random-number-
generation. This set of graphs with= 36 andp = 0.5 corresponds to the
“ex36[abc]” graphs.

RandW-n-mrs: Random graphs with vertices where every edge has a weight from
0 to 9 uniformly generatedsis the seed of the random-number-generation.

RandPlann-p-s. Random planar graphs withvertices. The graphs are generated
using the same principle as the one used in LEDA [MN95]: First a maximal
planar graph witm vertices is constructed. This is reached by starting with a
maximal planar graph with 3 vertices (i.e. a triangle). Then a vertex is added by
randomly selecting one from all the faces and connecting the new vertex with all
three vertices of this face. After having constructed a random maximal planer
graph, each edge is removed with probability p from the graph. Againsis
the seed of the random-number-generation.

RandRegularn-d-s. Random regular graphs witihvertices of degred. They are
generated using the algorithm from Steger and Wormald [SW99]. Agam,
the seed of the random-number-generation.

Chapter 2

The New Lower Bounds

2.1 Leightons Bound

One of the most well-known technique for the proving of lower bounds on the bisection
width of graphs is based on the embedding of a clique into the given graph. This
technique is extensively used by Leighton in his famous bawikdduction to Parallel
Algorithms and Architecturé$Lei92], hence it is often called the “Leighton-Bound”.

The basis of this technique is as follows: We embed the clique graphnwigntices
(K,) into the given graplG, wheren is the number of vertices db. The bisection

width of K, is ”742 (assumingnis even). It is then clear that in every possible bisection

of G at Ieast%2 of the embedded clique-edges are cut. If the congefliaf the
embedding, i.e. the maximal number of clique-edges that are mapped onto one edge
of G, is known it follows that at Ieasg.‘% edges ofs are cut. 802—2 is a lower bound on

the bisection width of5. Using these considerations, every correct embedding gives a
valid lower bound. Obviously, an embedding with a minimal congesiigives the

best lower bound.

In [Lei92] this technique is used in order to show asymptotic or exact lower bounds on
the bisection widths of for examptedimensional arrays, the butterfly, the hypercube,
mesh of trees and the shuffle-exchange graphs. In fact, Leighton often used a small
improvement of the above technique by not embedding a ckgusut by embedding

a graphK, with n vertices where every pair of vertices is connected by exactly two
edges. In so doing, a simple consideration shows%%egives a valid lower bound on

the bisection width.

Another point of view in relation to the embedding of a clique involves viewing it as a
multicommodity flow: Realizing an integral multicommodity flow where every vertex
sends a commodity of size one to every other vertex is identical to the embedding of
the K, graph. Following this view it becomes clear that for any bisection of a graph

25

26 CHAPTER 2. THE NEW LOWER BOUNDS

with n vertices, commodities of at least sime have to cross the cut (since every
vertex sends a commodity of size one to every vertex of the other partition). If the
multicommodity flow is realized with a congesti@) we have a lower bound on the
bisection width of the given grap8 of % which is identical to the embedding-view.
Therefore the computation of this multicommaodity flow with minimal congestion gives
the same lower bound. Unfortunately, the computation of the minimal congestion of
an integral multicommodity flow is an NP-hard problem. So, the calculation of the
Leighton bound for an arbitrary graph is non trivial.

2.2 VarMC- and MVarMC-Bound

2.2.1 Idea

In this section we present the main ideas for the new lower bounds. These new lower
bounds can be seen as a generalization of the Leighton bound or an upgrade of its
multicommodity flow-view:

In the Leighton bound an embedding of a clique is used in order to get a lower bound
on the bisection width. Obviously, the same principle can be used with any host graph
H, it is not restricted to cliques. The only requirement is that we have to know an
(as good as possible) lower bouhz(H) on the bisection width of the host graph.

Following the idea of Leightons bound, we get a lower bounﬁ’-g!ﬁ) on the bisection
width of the guest grap whereC is the congestion of the embedding. However,
keeping in mind our goal of a general lower bound technique for any graph, we do
not want to select an appropriate host graph (with a good lower bound on its bisection
width) for each guest graph.

However, when we concentrate on the multicommodity flow-view of the Leighton
bound, a generalization is more beneficial. Instead of the requirement that all com-
modities have to have the same unit size, we can also look at instances of multicom-
modity flows, where the sizes of the commodities are arbitrary for every pair of source
and destination. If we know an amount of commodities which has to cross the cut of
every possible bisection (in the following we will call this valGeit-Flow), a lower
bound for the bisection width of the graph follows.

In the rest of this section we formalize this idea, adapt it to vertex-, edge-weights and
arbitrary graph partitioning and we prove vatiait-Flows.

2.2.2 Definition of Multicommodity Flows

As previously mentioned, the following ideas are based on multicommodity flows. So
firstly we have to give a definition of multicommodity flows as we will use them.

2.2. VARMC- AND MVARMC-BOUND 27

Definition 2.1

Let G= (V,E,qg, f) be a weighted undirected graph,:% xV — Rx¢ sizes of com-
modities. Thenulticommodity flow problem MCF£G, d) is the problem of computing
flows h:V xV xV — Rso withVe,vyw e V : {v,w} € E = h(c,v,w) = 0 of commodi-
ties on the edges of the graph, such that the demands d are fulfilled, i.e.

ve,veV,v#£c: Z/h(c,w,v)—h(c,v,w):d(c,v), (2.1)

with
1

f({vw})

and the congestion €= maxcg c(e) is minimized.

c({v,w}) := %hcvw +h(c,w,V).

For the purpose of clarification we want to point out that the grgpk undirected
while the flowsh have directions. Obviously, an optimal fldwwhich fulfills the
conditionvc e V,{v,w} € E: h(c,v,w) =0V h(c,w,v) = 0 always exists. Furthermore,
the valuesi(v,v) are never used inside the definition, so they do not matter.

Moreover, it should be noticed that the flows do not need to be integral, as they were in
the interpretation of the clique-embedding. Hence, the multicommodity flow problem
can be solved using linear programming and so it becomes clear that these problems
can be solved in polynomial time. More details of the computation of multicommodity
flows follow in Chaptef .

2.2.3 Lower Bound based on Cut-Flow and Congestion

In the above section we have intuitively used the term Cut-Flow while presenting the
ideas of the new bounds. Here the exact definition follows:

Definition 2.2
Let GP= (G,k,M) be a graph partitioning problem and MCE (G, d) a multicom-
modity flow problem. Then a val@ut-Flow CF must fulfill the condition

vmel: CF< Z d(v,w).
V,WeV :TI(V) £TI(W)

When this definition of Cut-Flow, which corresponds to the intuition given above is
used, the following theorem expresses the connection between the multicommodity-
flow problem and the graph-partitioning problem:

28 CHAPTER 2. THE NEW LOWER BOUNDS

Theorem 2.1
Let GP= (G,k,M) be a graph partitioning problem and MCE (G, d) a multicom-
modity flow problem with Cut-Flow CF and congestioni®en

: CF
cut-sizéG,k,M) > <

holds.

Proof:
Let e M be the partition with the optimal cut-size, i®ut(G,) = cut-sizeG,k,M).
Then we have

C-cut(mG) = C- Z f({v,w})
{v,w}eE;m(v)#£m(w)
d(v,w)
V,WEV TI(V) #TI(W)
CF
CF
C

v

v

v

< cut(r, G)

and the proof is completed. [

2.2.4 Definition of VarMC and MVarMC

The connection between the congestion of a multicommodity flow problem and the
cut-size of a graph partitioning problem is presented above. As a result it becomes
clear that in principle any multicommodity flow problem can be used in order to ob-
tain a lower bound on the cut-size. The only condition is that a correct Cut-Flow has
to be determined. In order to fulfill this we now present three restricted multicommod-
ity flow instances with different levels of restriction and following that we present a
formula for correct Cut-Flows for all variants.

The first and most restricted variant corresponds to the Leighton bound as it is de-
scribed above. The only improvement which is of interest is that it is generalized for
the use of vertex-weights and it does not have to be integral.

Definition 2.3
Let G= (V,E,qg, f) be a graph with weights. The-1-MC is a multicommodity flow
problem with commodity-sizes & xV — R>q of

YwaweV: d(v,w)=g(V)- g(w).

2.2. VARMC- AND MVARMC-BOUND 29

The next variant has more freedom so we have the possibility of selecting an arbitrary
source-strength for any sender:

Definition 2.4
Let G= (V,E,qg, f) be a graph with weights and:8/ — R>¢ a source-strength for
every sender. Th¥arMC is a multicommodity flow problem with commodity-sizes
d:V xV —Rxgof

YWwweV: d(v,w)=g(w)-s(V).

And finally, we define a variant with the highest degree of freedom:

Definition 2.5

Let G= (V,E,qg, f) be a graph with weights and ¥ xV — R a source-strength for
every sender-destination-pair. TharMC is a multicommodity flow problem with
commodity-sizes oV xV — R>q of

YwaweV: d(v,w)=g(w)-s(V,w).

In the following sections we will elaborately compare these three different instances
of multicommodity flows and their eligibility for the computation of lower bounds on
graph partitioning problems.

2.2.5 Cut-Flow of VarMC and MVarMC

The last remaining point in order to use the defined multicommodity flow instances
for lower bound-computations of graph partitioning problems is the determination of
good and valid Cut-Flows. The following theorem gives a formula for the MVarMC
variant.

Theorem 2.2
Let GP= (G, k,M) be a graph partitioning problem and:& xV — R~ the source-
strengths of an MVarMC instance. Then, wih= maxycy S(v,w), a Cut-Flow CF

of
CF = 2 (Evs(v,w)-g(w)—M -§,)

holds.

Proof:
We are looking for a guaranteed Cut-Flow of the commodities with sges/). A
Cut-FlowCF is guaranteed if for any possible partition according to the paraméters

30 CHAPTER 2. THE NEW LOWER BOUNDS

andk the actual flow between the partitions is at least as largd-asSo let us assume
any feasible partitio?vV =V U...UVk. Then

k
CF = i;v;i Weg\\/i s(v,w) - g(w)

53 (3 st -5 3 o)
> ;(;sw,w)-g(w)—s‘v-M)

holds and proves the theorem. []

Y]

Valid Cut-Flows for the VarMC and 1-1-MC follows from the Cut-Flow for the MVarMC
version:

Corollary 2.1
The VarMC instance guarantees a Cut-Flow CF of

CF=(N-M)- X/S(v).

The 1-1-MC instance guarantees a Cut-Flow CF of
CF=N-(N—-M)
Proof:
Let us start with the VarMC variant and Ist V — R>¢ be its source-strengths. In

comparison to the MVarMC, we know that,w €V : s(v,w) = s(v). So,s, = s(V)
follows directly and putting this into Theorgm 2.2 we get

CF = 2<§VSW,W)-9(W)—M-S_V))
= ;(}VS(V)-Q(W)—M-S(V))
= ;S(V)<§VQ(W)—M>

= > SWN-M

ve

and the Cut-Flow of the VarMC is proved.

2.2. VARMC- AND MVARMC-BOUND 31

Table 2.1: Cut-Flows for the different graph partitioning problems and the different
multicommodity instances

| [11-MC | VarMC | MVarMC |
GP [(N=M)N | (N=M)5,S(V) | 3v(ZwS(\W) -g(W) —M-S))
KGP || (1—IN? | (1= INZuS(V) | S (ZwS(wW)-g(w) -

bisGP N2 INT,S(V) Sy (Twsv,w) - g(w) —

NZ | =2
|
SN—

The 1-1-MC is a specialization of the VarMC wit{iv) = g(v). So, putting this into
the formula we get

CF = (N=-M) s(v)
&
= (N—M)-N
and the Cut-Flow of the 1-1-MC is proved. [

The values shown for the Cut-Flows correspond to the general graph partitioning prob-
lem. Of course, they can easily be adapted tctpartitioning problem and the bisec-
tion problem. Tablé 2]1 shows the formulas for all the combinations.

Extension for M > ¢

Finally, we present an extension of Theorlenj 2.2 for the case of the graph partitioning
problem withM > 2. The idea of the Extension is based on the observation, that in
the equationy, (3 S(v,w)-g(w) —M-s,) the worst case that every vertexs in a
partition of maximal size is assumed. Of coursédlif> ¢ is used then not every single
vertex can be in a partition with maximal sikk This leads to the following extension:

Theorem 2.3
Let GP= (G,k,M) be a graph partitioning problem and s the source-strengths of

an MVarMC instance. Then, witg, := maxyey S(v,w), §:= min\,ev% and R:=
N—M|], a Cut-Flow CF of

CF = Z/ < Z/s(v,w) -g(w) —M -§,) +SRM —R)
holds.

32 CHAPTER 2. THE NEW LOWER BOUNDS

Proof:
The theorem can be proved using the same ideas as in the proof of Ttjeofem 2.2 but
with a more careful calculation:

CF = _iez/ g\vs(v,w)'g(w)

:i ; (EVS(V,W) g(W) —S, _Q(W)>

k

— Z/ (Z/s(v,w) -g(w) —§,-M> +;(M L\ %SKW

> v; (W;s(v,W) g(w) —sy- M) +§é(M —Nj)

It remains to be shown thal_; (M —N;) > R(M —R) holds for every feasible partition.
A feasible partition fulfillsvi : Ni <N A $¥ N =N, so

v

k k

‘Z(M —-N) = MN—.ZlNiZ
MN—L%jMZ—RZ
= RM-R)

follows. u
As in the case of Theorem 2.2, Cut-Flows for the VarMC and 1-1-MC follow:

Corollary 2.2
The VarMC instance guarantees a Cut-Flow CF of

CF=(N—M)- Z/s(v)+§R(M—R)

with §:= minyey %. The 1-1-MC instance guarantees a Cut-Flow CF of

CF=N-(N-M)+RM—R).

2.2.6 Summary and Outlook

Summarizing, in this section we have presented how multicommodity flows can in
general be used for the computation of lower bounds on the graph partitioning problem.

2.3. EXPERIMENTAL EVALUATION OF THE LOWER BOUNDS 33

The main formula for this lower bound is based on the Cut-FIdwand the congestion
C and we have

CF < cut-size
c =

Three multicommodity-flow instances, 1-1-MC, VarMC and MVarMC, each with a
different degree of freedom were introduced. Theorgmis 2.2 and 2.3 and Corollaries
[2.2 and Z.]L provide formulas for valid Cut-Flows for the three different instances.
So, in order to compute good lower bounds for a given graph, we have to determine
good source-strengtlss V — R>g ors:V xV — R for the VarMC and MVarMC
instances respectively and we have to compute flosx V xV — R~ such that the
congestion is minimized. A lower bound with computed strengtasd flowsh will

be called aiMVarMC(1-1-MC, VarMC)-solutionOf course we want to maximize the
lower bounds, so we are looking for the best strengths and flows. The resulting bounds
which are achievable with the best strengths and flows will be caledrMC(1-1-

MC, VarMC)-bound If we want to say something about all three variations (1-1-MC,
VarMC and MVarMC) we will sayMC-solutionor MC-bound In the next section we
reveal some experimental results for these MVarMC-, VarMC-, and 1-1-MC-bounds.
In Chaptef B we will present some theoretical observations on these bounds. In Chapter
[4 methods for the efficient computation of the bounds for arbitrary graphs are presented
and in Chaptef]5 an approach to the exact calculation of the cut-size based on the
MVarMC-, VarMC- and 1-1-MC-bounds is presented.

2.3 Experimental Evaluation of the Lower Bounds

2.3.1 The Experiments

We have carried out a large amount of experiments in order to discover the strengths
and weaknesses of the three proposed lower bounds. On the one hand, we show how
these three bounds compare to each other on the different graphs and on the other
hand we compare them to the three known lower bounds DH-bound, BRW-bound and
pSDP-bound, as they are presented in Se€tign 1.4.

Until now, we have not stated how the MC-bounds are calculated. In order to compute
these lower bounds, we have to select the best commodity-sizes for the VarMC and
MVarMC instances and we have to calculate the minimal congestion. Fortunately, the
selection of the best commodity-sizes can be inserted into the linear program which is
used for solving Multicommodity-Flow-problems with given commodity-sizes. More
details of these linear programs and their computation will be provided in Chapter 4.

The results which we present here are computed by solving these linear programs
with the barrier algorithm of CPLEX [ILOQO], version 7.0. The computation of the

34 CHAPTER 2. THE NEW LOWER BOUNDS

Table 2.2: Summary of the lower bounds (upper value) and their computation times
(lower value) of bisection problems with different graphs

graph | 1-1-MC | VarMC | MVarMC || pSDP | BRW | DH || Opt.
DB.7 275 29.0 29.0][22.0] 15.0] 9.7] 30
30 53 1:00 || 1:24
. 10.1| 11.0 11.0 88| 4.0 22| 11
Grid-11x10 9 13 16 51
. 3.0 3.2 3.4 29| 11| 03 4
BCR-mf. 4 10 1] 26
13.6| 183 20.1|| 19.3| 10.9| 45| 23
BCR-7x10g 5 5 s 9
15.2| 154 154 125| 85| 6.7| 16
RandRegular-100-3-1 16 55 35 31
24.7| 35.1 35.1| 34.7| 21.1|12.1| 38
RandPlan-100-1-0 11 18 o5 34
12.8] 25.0 34.0| 325| 226] 72| 34
Random-100-0.05-3 12 3t 131 30
Random-32-0.5-0 76.5| 87.2 87.2|| 95.3| 90.6|67.1] 96
3 5 5 <1

DH-bound involves the calculation of the smallest eigenvalues of the Laplace ma-
trix. This is done using the standard software-package LAPACK [Dém89] and BLAS
[CHL"94]. The computation of the BRW-bound is carried out using a package pro-
vided by the authors of [FRW94]. The computations of the DH-bound and BRW-
bound last clearly less than one second on all the graphs tested. For this reason we
have not given the times of these computations. The pSDP-bound is computed using
a package provided by the authors lof [KRCO00], see also [Kar98]. All calculations
are done on the same system with a Pentium-Ill, 937 MHz, processor with 1GB main
memory. All packages are compiled with the gcc-compiler, version 2.95, with the
same level of optimization (-O 3).

The best bound in every row is printed bold faced. The column “Opt.” gives the
optimal cut-size or, if the value is parenthesized, the best known value. Some missing
entries of the 1-1-MC-, VarMC- and DH-bound (e.g. the BCR-m4.i graph) indicate
that the graph is not connected.

2.3.2 Bisection Problems

The first set of experiments is applied to the graph bisection problem. The details of
all results are presented in the Appendix in Table§ A.1] A.6. In Table 2.2 we give a
summary which shows the typical behavior of the different bounds.

2.3. EXPERIMENTAL EVALUATION OF THE LOWER BOUNDS 35

When we compare the three different MC-bounds, the following conclusions ca be
drawn:

e The 1-1-MC bound gives worse bounds on the majority of the graphs, except
those graphs where this bound is already exact.

e The computation time of the 1-1-MC is shorter than the times of the VarMC and
MVarMC bounds. Surprisingly, the computation times of these two bounds are
comparable.

e Onthe “more structured” graphs (e.g. DeBruijn graphs) the VarMC and MVarMC
bounds are nearly identical. However, the MVarMC bound is better on some
“unstructured” and “sparse” graphs (e.g. BCR-mf.i).

So we can conclude that the 1-1-MC bound is a little bit faster but clearly worse than
the other bounds. The VarMC bound is nearly as good as the MVarMC bound, but it is
not faster. So the use of the MVarMC bound is therefore preferable since it is at least
as good as the VarMC bound is, sometimes clearly better, and comparably fast.

When we take the DH-bound, BRW-bound and pSDP-bound into consideration, we
can see that the gap between these three bounds is surprisingly large. Finally, when
the two possibly best bounds MVarMC and pSDP are compared, it becomes clear that
the MVarMC-bound is better on the more “structured” graph, e.g. DeBruijn, grids,
random planar, random regular graphs. On the other hand, the pSDP-bound is superior
on random dense graphs, e.g. Random-32-0.5 graphs.

2.3.3 k-partitioning Problems

The second set of experiments is done withkfpartitioning problem using = 4. In

order to avoid problems with the different bounds, we have used instanceg|with
only. Unfortunately, the package we use for the computation of the BRW-bound can
only handle the graph bisection problem. So we cannot present results of this bound.
Furthermore, the computation of tkeGPr,-bound inside the is CUTSDP-package is
faulty, so we use thk-GPr1-bound.

Table[2.8 shows an extract of the resulting bounds. Tablgs A.7-A.12 show the detailed
results. Furthermore, Figure P.1 show the effect of an increasing number of partitions
onto the quality of the bounds. The value of the three MC-bounds are shown and
an upper bound on the cut-size is given which is computed using the PARTY-library

[PD96]. The figure shows the results on one random planar graph with 60 vertices (i.e.
RandPlan-60-1-0).

The following conclusions can then be drawn:

36 CHAPTER 2. THE NEW LOWER BOUNDS

Table 2.3: Summary of the lower bounds and their computation times of 4-partitioning
problems with different graphs

graph | 1-1-MC | VarMC | MVarMC || GPr; | DH || Opt.

23.8| 254 27.2| 154 13.6 32
DB-6 3 9 10 <1

. 13.5] 135 21.1| 58| 51| (23)
Grid-12x9 - 3 33 1

. 10.5] 105 20.7| 41| 35 22
BCR-m8. 22| 19| 253| 6

] 28.6| 375 51.2| 20.4| 16.7| (59)
BCR-6x10g 1 3 4 <1

anad 106] 117 15.1] 7.1| 6.6] (18)
RandRegular-60-3-(1 4 5 1

. 26.8| 38.1 455 31.4| 18.8| (47)
RandPlan-60-1-0 5 11 11 1

Random-60-0.05-0 ' - 1861 1090 - (18)
8 <1

Random-32-05.0 | 114.8] 130.8] 135.5] 137.0/ 108.1| (153)
3 6 7 <1

Figure 2.1: Example of the effect of varyikgn the MC-bounds

160 T T T

‘MvVarMC —e—

140 | VarMC --@-- S e
1-1-MC =+-%-= [

upper bound - -e- - e

120

100

80

60

40 | e B E

lower (or resp. upper) bound

20

0

2 4 6 8 10 15 20 25 30

2.3. EXPERIMENTAL EVALUATION OF THE LOWER BOUNDS 37

Table 2.4: Summary of the lower bounds and their computation times of graph parti-
tioning problems wittk=2,M = L%nj and different graphs

graph | 1-1-MC | VarMC | MvarMC || pSDP| DH || Opt.
DB.7 245] 245 245] 189] 65| 26

30 32 28| 1:19
Grid-11x10 9-90 9-§ 91-8 74% 15[10
BCR-mf.i Z-Z 21-1 2-; 12$ 02| 3
BCR-7x10g 12.§ 12.85 12.;3 12.$ 31| 14
RandRegular-100-3-1 131675 13;‘3; 13&1 1(;; 46 14
RandPlan-100-1-0 221§ 2425 24‘:32 24{)’3 8.3 27

114} 17.0 26.8| 26.6| 49| 32
13 52 1:31 29
69.0| 723 73.5| 81.8|46.1| 82
3 6 6 <1

Random-100-0.05-3

Random-32-0.5-0

e The MVarMC-bound is generally the best one on all types of graphs. The only
exceptions are the random dense graphs, wherke-t18Pr1-bound is better or
at least as good as the MVarMC-bound.

e However, the computation times for the MVarMC-bound are now generally
longer than the times for the other MC-bounds.

2.3.4 Graph Partitioning Problems withk=2andM = %n

Finally, the last set of experiments concentrates on the general graph partitioning prob-
lem. In order to concentrate on the effects of unbalanced partitions we have done ex-
periments withk =2 andM = %n. Again, the BRW-bound could not be computed. The
results of the multicommodity-based bounds are attained using the Cut-Flow Theorem
[2.3 or Lemm4 2]2 respectively. Taljle 2.4 shows an extract of the resulting bounds.
Table§ A.1§-A.1IB give the detailed results.

The following conclusions can then be drawn:

¢ In these graph partitioning instances, the MC-bounds are much more similar
when compared to the bisection problems. The MVarMC-bound is only better
for the random graphs .

38 CHAPTER 2. THE NEW LOWER BOUNDS

Figure 2.2: Example of the effect of varyig on the MC-bounds

T
SRS et : MVarMC —<—
.\’\L\! MVarMC ext. —&—
18 Ce-e-e .
ISR 11-MC X
16 oo EN LA 1-1-MC ext. (O]
4 G0 X Q ‘® optimal ---@--
(O S 3
b B¢ .
s % L9 e
z 12 S ST
S RS GB
[S] \ AN
% 10 L eewe 3
) g Q. “
5 X w
8 K < @
E o CTeUY
o D "
6 SV X o
g e R °
4 2one & ®\
@\ .
2 < @ <
DAY
o X
25 30 35 40 45 50
M

e The pSDP-bound is superior to the MVarMC bounds on dense random graphs.
These two bounds are approximately equal on the sparse random graphs, e.qg.
Random-100-0.05 or RandPlan-100-1.

Furthermore, Figuré 2.2 displays the results of the different MC-bounds with one
graph,k = 2 and varying\. For this example a random planar graph with 50 vertices
(and seed 0) is used. The bounds with “ext.” refer to the extension on the Cut-Flow
formula as it is given in Theorem 2.3. The data of the MVarMC-bound are not visible
since they are always identical to the VarMC in this example. The data of the extended
MVarMC and extended VarMC are not visible whih> 40, since they are identical

to the extended 1-1-MC-bound in these cases.

The figure shows on the one hand that the superiority of the MVarMC-bound is the
smaller the biggeM is. On the other hand, the practical superiority of the extension on

the Cut-Flow formula is shown. Furthermore, the figure illustrates that the MVarMC-

bound can utilize the Cut-Flow extension more than the VarMC-bound.

2.3.5 Summary

To sum up the results of all the experiments, we feel the following two main conclu-
sions can be drawn:

2.3. EXPERIMENTAL EVALUATION OF THE LOWER BOUNDS 39

Observation 2.1
From the experiments it can be concluded:

e The MVarMC-bound is preferable when compared to the other MC-bounds. Its
bounds are always as good as the other bounds and sometimes much better.
The running times are comparable to the times of the VarMC and 1-1-MC if the
bounds are identical. The instances where the running times of the MVarMC-
bound are longer than the other times, correspond to the instances where the
bound is also better.

e When the MVarMC-bound is compared to the pSDP-bound, it becomes clear that
both have the right to exist. The MVarMC-bound is better on more “structured”
or sparse graphs while the pSDP-bound is better on random dense graphs.

40

CHAPTER 2. THE NEW LOWER BOUNDS

Chapter 3

Theoretical Issues

In this chapter we will present some analyses of the 1-1-MC, VarMC and MVarMC
bounds. In Sectign 3.1 we will show how symmetries of the graphs can be used for the
construction maximal bounds. Based on this, in Se¢tign 3.2 the MC-bounds for several
graphs will be developed. Finally, in Sectipn]3.3 some upper bounds on the MC-
bounds which are based on edge-expansion-properties of the graphs will be presented.

Since most defined graphs have no vertex- and edge-weights, we do not use weighted
graphs in this chapter. However there is no doubt that all definitions and conclusions
can be adapted to weighted graphs.

3.1 Symmetrical Solutions

3.1.1 Definitions

Before we can present the results, first of all we have to give some basic definitions
of symmetries in graphs. These symmetries are well known in algebraic graph theory,
see e.g..[Whi84].

Definition 3.1
Let G= (V,E) be a graph. Arautomorphismp : V — V is a bijective function of the
vertices with

YwaweV:{vw} cE < {d(v),d(w)}ecE

Aut(G) denotes the set of all automorphisms of the graph G.

For ease of notation, we will usig(v1),...,¢(v;) = ¢(va,...,Vi). Itis widely known
that Aut(G) is a group under the function composition. The relatiog onV with

41

42 CHAPTER 3. THEORETICAL ISSUES

vi ~g V2 if and only if 3¢(G) : ¢(v1) = o, is an equivalence relation . This relation
partitionsV into equivalent classes, we refer to a class as a vertex-orbit. Similarly, a
corresponding equivalence relation partitions the e@igeso equivalent classes. Here

a class is referred to as an edge-orbit.

A graph is called vertex-symmetric or edge-symmetric, if there are appropriate auto-
morphisms:

Definition 3.2
Let G= (V,E) be a graph. G isvertex-symmetridf and only if

YWaweV:3p € Aut(G) : d(v) = w.

G isedge-symmetrid and only if

Ve,d cE:Jb € Aut(G) : d(e) = €.

Note that these definitions can also be given in terms of vertex- and edge-@lots:
vertex-symmetric if and only is has exactly one vertex-orbiG is edge-symmetric if
and only ifG has exactly one edge-orbit.

Now that we have introduced the basic terms of symmetrical graphs, we will define
the terms of symmetrical multicommodity-based lower bounds. The idea behind the
following definitions is that symmetrical solutions comply with the symmetries in the
graph:

Definition 3.3

Let MVarMC= (G, s,h) be an MVarMC-solution on graph & (V,E) with source-
strengths sV xV — R>g and flows iV xV xV — R>o. We call this solution a
symmetric MVarMC-solutionf and only ifvV{v,w},{V.wW} eV xV :

3¢ € Aut(G) : p(v,w) = {V, W'} (3.1)
= s(v,w)=s(V,w)
andv{c,v,w},{c,V.W} eV xV xV:
3¢ € Aut(G) : d(c,v,w) = {c/,V,w'} (3.2)
= h(c,v,w) =h(c,V,w)
Accordingly, let VarMC= (G, s,h) be an VarMC-solution on graph & (V,E) with

source-strengths:sv — R>p and flows 'V xV xV — R>o. We call this solution a
symmetric VarMC-solutionf and only if

YW,V eV :dd € Aut(G): p(v) =V (3.3)
= s(v) =s(V)

3.1. SYMMETRICAL SOLUTIONS 43

and Equation[(3]2) holds.

Accordingly, let 1-1-M& (G, h) be an 1-1-MC-solution on graph & (V,E) with
flows h:V xV xV — R>o. We call this solution @ymmetric 1-1-MC-solutioff and
only if Equation[(3.2) holds.

Obviously, the definitions lead to equal congestion on symmetrical edges, which sug-
gests that the definitions are sensible:

Corollary 3.1

Leth:V xV xV — R>q be the flow of a symmetrical MC-solution. Then
Ve cE: e~g€ =c(e)=c(¢)

holds.

Proof:

We look ate = {v,w} and€ = {V,w'} with e ~g €, let ¢ € Aut(G) be the auto-
morphism with¢(e) = €. Then from Equation[(3]2) if follows:vu : h(u,v,w) =
h(d(u,v,w)) =h(¢(u),v,w). So we have

cle) =c({vw}) = Z/h u,V,w) + h(u,w, V)
= Z/h u),v,w)+h(d(u),w,Vv)
= Z/h (u,vV,wW)+h(u,w,Vv)

= c({v,W})=c(€)
which holds sincé is bijective, i.e{¢(V)lveV} =V.]

3.1.2 Existence of Optimal and Symmetrical MC-solutions

The main point which we would like to state here is that there is always a symmetrical
MC-solution which gives the maximal lower bound. So, we can restrict ourselves to
symmetrical MC-solutions if the symmetries of the graphs are known.

Theorem 3.1
Let GP= (G, k,M) be a graph partitioning problem. A symmetrical MVarMC-solution
= (GP s, h) with source-strengths s and flows h with maximal bound exists, i.e.

MVarMC-bound = %

a
where Ck is the Cut-Flow of the MVarMC-solution and,& its congestion.

44 CHAPTER 3. THEORETICAL ISSUES

Proof:
Let the source-strengths or the flows of an MVarMC-solutiea (GP.§, ﬁ) with max-
imal lower bound be, 'h respectively. Then we assign

1 ~
and

If we can show that the MVarMC-solutiom= (GP s, h) is feasible, symmetrical and
optimal, then the theorem is proved.

¢ Firstly, we concentrate on the feasibility. In order to be feasible, the constraints

(2.7) of Definitior{ 2.1 must be fulfilled. We hagv,w) = s(v,w) and sovu,v €
V,V£U:

th(u,w, v) —h(u,v,w)

1 ~
- W& |AU(G)| ¢eA%t(G) o) =
= m Z Z/F](q) (U,W,V)) —F]((I)(LLV,W))

| deAut(G) we

1 .
T h
|AUt(G)‘ sefic) ((I)(U,W, V))

1 ~
_ |AUt<G)| ¢6A%t(6) S<¢(U7V))

= s(u,v)
holds which proves that the pds, h) is a feasible multicommodity-flow.

e In order to be symmetrical the constrairjts [3.1) (3.2) of Defiritign 3.3 must
be fulfilled. Firstly, we look at any pairsv,w}, {V,w'} with ¢(v,w) = {V,wW'}.
Then we have

SEW) = |Aut1(G)\¢EA%(G)§(¢($(V’W)>)
1 ~
= |AUt(G) ‘ ¢€%:(G) S(q) (V7 W))

= s(v,w)

which holds sinceAut(G) is a group under composition, so the constraints (3.1)
are fulfilled. Now we look at any triple$u,v,w}, {U’,V,w'} with ¢(u,v,w) =

3.1. SYMMETRICAL SOLUTIONS 45

{U,v,w}. Then we have

n@luww) = ,Autl(%e/gt(ol vm)
1 -
= AWG)‘q)e/gt h(d(u,v,w))
= h(u,v,w)

which holds sinceAut(G) is a group under composition, so the constraints (3.2)
are fulfilled.

¢ Finally, we have to show that the constructed MVarMC-solution gives the max-
imal lower bound. So we must look at the Cut-FIGK, and the congestioG,
of the constructed MVarMC-solution. In the following steps we will show that
CFR, > CH andC, < Cj, so that the bound of the constructed symmetric solution
is at least as good as the bound of the given solwion ~

— We begin with the congestion. Let be the edge of solutioa with the

maximal congestion, 96, = c(e;). Let E. be the edge-orbit witle; € Ec.
Then we will show, that(e;) = ﬁ S eck, C(6):

&) = 3 hive)

1 .
= h
A Wé o)
1
= h
1

—(@ ~
|A1|+-..+|Ak| 'thvae h(v, ¢ (ec))

—(b) k|A | Zl’Aﬂ ;h v,6)

= c(v e)
| EC| ec

In equation(a) we have used a disjoint partition 8Lt(G) = UX_;Aj with

A ={d € Aut(G)|p(ec) =g} andE; = {ey,...,&}. In equation(b) we
have used the fact that : |Ai| = |A1]; this can be shown for example with
the help of a bijective functioa; : Ai — Ay with j(¢) = ¢i1 0§ wheredis

is any automorphism witlhi1(g) = €. It is then straightforward to show
thato; is bijective.

46 CHAPTER 3. THEORETICAL ISSUES

Therefore,c(e;) = ﬁze@c €(e) holds and it follows:Je € E; : €(e) >
c(e), soCy < C4 becomes clear, i.e. the congestion of the constructed
symmetrical solution is not bigger than the congestion of solwion

— Secondly, we concentrate on the Cut-FIG®&, with

CR= Z (Z s(v,w) — M mwaxs(v,w)) .

In order to show thaEF, > CR; we showy, 3, s(v,w) > 5, 3 S(v,w) and
S vMmaxys(v,w) < 5, MmaxyS(Vv,w):

1 ~
v; w;/ s = V; W; [AUt(G)| ¢€A%(G) 3(0(v.w))

= EZ/ ; §(v,w)

and

maxs(v,w) =

maxX——— S(d(v,w
Ky wev v;/ wevV |Aut(G)\¢€/_\zm(G) (0w w))

< max———— max§(¢(v),w
- v;/ weV |Aut(G)| q)GA%t(G)W’GV (6(v), W)

1
e maxs(9 (v), w)
AUG)] o LBy WV

= maxS(v, w)
VE weV

So,CF, > CHR is then proved.

So, altogether we have shown that the constructed solution is feasible, symmetric and
has no bound which is worse than any other MVarMC-solution. Therefore, the theorem
is proved. u

According to Theorern 31 we can also show that there is always a symmetrical VarMC-
solution with a maximal bound:

Corollary 3.2
Let GP= (G,k,M) be a graph partitioning problem. There is a symmetrical VarMC-
solution a= (GP, s, h) with source-strengths s and flows h with a maximal bound, i.e.

VarMC-bound = %

a

where Ck is the Cut-Flow of the VarMC-solution ang, & its congestion.

3.1. SYMMETRICAL SOLUTIONS a7

Proof:
Let the source-strengths or the flows of the VarMC-solutiea (GP.§, h) with maxi-
mal lower bound be, h, respectively. Then we assign

1 ~
s(v,w) = W¢GA%(G) §¢(v)) (3.4)
and
1 .
h(U,V,W) = ‘AUt(G)| pe G h((l)(U,V, W))

If we can show that the VarMC-solutiom= (GP,s,h) is feasible, symmetrical and
optimal, the Corollary is proved. From the proof of Theofen 3.1 we know that solution
a is a feasible, symmetrical and optimal MVarMC-solution. In fact it remains to be
shown that the solution is a VarMC-instance, and not an MVarMC-instance. From the
above assignment fa&(v,w) it follows directly thatvv,w,w €V : s(v,w) = s(v,w/),
which is the condition for a VarMC-instance. The Corollary is then proved. =

And finally, the same applies to 1-1-MC-instances:

Corollary 3.3
Let GP= (G,k,M) be a graph partitioning problem. A symmetrical 1-1-MC-solution
a= (GP h) with flows h and maximal bound exists, i.e.

1-1-MC-bound= %

a

where CFk is the Cut-Flow of the VarMC-solution ang,& its congestion.

Proof:
Let h be the flows of an VarMC-solutioa= (GP, h) with maximal lower bound. Then
we assign

h(d(u,v,w)).

h(u,v,w) =

(AU(G)] 4 (o)

If we can show that the 1-1-soluti@n= (GP,h) is feasible, symmetrical and optimal,

the Corollary is proved. From the proof of Corolldry|[3.2 we know that solugids
feasible, symmetrical and optimal VarMC-solution according to the assigned source-
strength in equatiorj (3.4). In fact it remains to be shown that these source-strengths
represent a 1-1-MC instance. However, this is trivial since all source-strengths are
equal to one in the given solutian so the equation (3.4) leads to source-strengths of
size one. [

48 CHAPTER 3. THEORETICAL ISSUES

3.1.3 Some Implications

Now that we have shown that there are always symmetrical MC-solutions with a max-
imal lower bound, we can describe some simple implications. The first implication
discusses the relation between the 1-1-MC-bound and VarMC-bound:

Corollary 3.4
If a graph G is vertex-symmetric, the 1-1-MC-bound and the VarMC-bound are iden-
tical for any graph partitioning problem on this graph.

Proof:

The Corollary follows directly from the definition of symmetrical solutions and also
from the fact, that there are always symmetrical solutions with maximal lower bound.
A symmetrical solution of the VarMC-bound requires thatw € V : s(v) = s(w) if

the graph is vertex-symmetric. Therefore, a symmetrical VarMC-solution on a vertex-
symmetric graph is a 1-1-MC-solution (except for a scaling-factor). [

So, ifagraph is vertex-symmetric, the larger degree of freedom of the VarMC-instances
does not have any advantage over the 1-1-instances.

The next Corollary restricts the possible flows which can be used in optimal MC-
solutions:

Corollary 3.5
If a graph G is edge-symmetric, the flows of an optimal symmetrical MC-solution of
any graph partitioning problem on this graph correspond to shortest paths.

Proof:
From Corollary 3.1 we can deduce that € € E : c(e) = c(€/). So, if the flow of a
commodity from vertex to vertexw uses a path of lengith,,, we have

2 dyws(v,w) = EEc(e)

v,weV

1
= C — jry— dvﬁwS(V, W)
‘ E | \/,WZEV

and it becomes obvious that the congestion is minimal if minials are used. =

As a result, if a graph is edge-symmetric, we can focus our attention on symmetrical
solutions which use shortest paths.

The two Corollaries above make use of the condition that the graph is vertex- or edge-
symmetric. In both cases we can show that the used conditions are sharp in some sense
of symmetry: It will be shown that only a slightly less symmetry does not be sufficient:

3.1. SYMMETRICAL SOLUTIONS 49

Figure 3.1: Example of a graph with two vertex-orbits, one edge-orbit and different
1-1-MC- and VarMC-bounds

el [e] [e] [s] [8]

Theorem 3.2
There is a graph with exactly two vertex-orbits and one edge-orbit where the VarMC-
bound for the bisection problem is better than the 1-1-MC-bound.

Proof:

The theorem is proved by giving an example, this example is illustrated in Figdre 3.1.
Obviously, the graph has two vertex-orbits (vertex A and the vertices B) and is edge-
symmetric. The 1-1-MC-bound on this graph for the bisection proble%(since

CF =18 andC = 10). The VarMC-bound is achieved wistA) = 1A s(B) = 0, which

gives a lower bound of 3 (siné&F = 3 andC = 1). []

In the next theorem we show that nearly edge-symmetry is not sufficient for the re-
striction on shortest paths:

Theorem 3.3

There is a graph with exactly one vertex-orbit and two edge-orbits where a symmetrical
MC-solution using shortest paths does not give the best lower bound for the bisection
problem.

Proof:

The theorem is proved by giving an example, this example is illustrated in Figdre 3.2.
Obviously, the graph has one vertex-orbits and two edge-orbits (the inner- and the
circle-edges). We look at 1-1-MC-solutions (Since the graph is vertex-symmetric, the
VarMC-bound is identical). The use of only shortest paths results in a congestion of
4 on the circle-edges and 6 on the inner-edges. Wkh= 32 we have a bound of

%2 ~ 5.33. However, any flow which uses an inner-edge could also be routed over two
circle-edges. If we do this witi% of the 6 flows on every inner-edge it results in a
congestion of % on the inner- and circle-edges. So, with this improvement we get a

bound of% = 6, which corresponds to the bisection width. [
3

In Corollary[3.4 the relation of the 1-1-MC-bound to the VarMC-bound if the under-
lying graph is vertex-symmetric is discussed. It would be convenient if we could say

50 CHAPTER 3. THEORETICAL ISSUES

Figure 3.2: Example of a graph with one vertex-orbit and two edge-orbits where a
solution using only shortest paths only does not give the best bound

Figure 3.3: Example of a vertex- and edge-symmetric graph where the MVarMC-
bound is better than the VarMC-bound

L]

something similar about the MVarMC-bound. However the same statement does not
apply:

Theorem 3.4
The MVarMC-bound can be better than the 1-1-MC-bound and VVarMC-bound, even if
the graph is vertex-symmetric and edge-symmetric.

Proof:

We give a simple example which proves this the theorem. We look at the graph in Fig-
ure[3.3 and the 4-partitioning problem. Since the graph is vertex-symmetric, we have
1-1-MC-bound = VarMC-bound. The 1-1-MC-bound is 3 (sie 4 andCF = 12).

The optimal MVarMC-bound is achieved if every vertex sends a commodity of size
one to its two adjacent vertices. In doing this we get MVarMC-bound = 4 (€ine&
andCF = 8). []

Note that we have used the 4-partitioning problem in order to prove the theorem above,
while in previous examples we always have used the simpler graph bisection problem.

3.1. SYMMETRICAL SOLUTIONS 51

In fact, it is an open problem if there is a vertex-symmetric and edge-symmetric graph
where the MVarMC-bound is better than the 1-1-MC-bound in the case of the graph bi-
section problem. However, we can show that the MVarMC-bound is identical to the 1-
1-MC-bound for graph bisection problems if the graph is vertex- and edge-symmetric
if the following Conjecture is true:

Conjecture 3.1
Let G= (V,E) be a vertex-symmetric graph. Letlme the number of vertices with
distance i from one fixed vertexaN . Let D be the diameter of the graph. Then

X_ 1 X
VO<x<D: Zl-niz—xz Zni
i= i=

holds.

We were not able to find any counter-example of this conjecture, but we also were not
able to prove it.

Firstly, one general theorem is presented which we will use often:

Theorem 3.5
Let f(x) : D — R be any function of the form (%) = % with & b,C1,C; € R
and DC R. Then fx) has its global maximum and minimum main{x|x € D} or

max{x|x € D}.

Proof:
The derivation off (X) is

a(bx+Cy) —b(ax+Cy)

/ —_—
Fe) = (bx+Cy)2
o aC — bC1
B (bx—+ C2)2

Obviously, the derivation has no zero-point for: f/(x) = 0). So,f(x) is monotonic
increasing or decreasing. As a result of this it becomes clear that the global maximum
and minimum have to be at the endpoints of the raDgs X. [

Now:

Theorem 3.6
The MVarMC-bound for the graph bisection problem is identical to the 1-1-MC-bound
on vertex- and edge-symmetric graphs if Conjedturg 3.1 is true.

52 CHAPTER 3. THEORETICAL ISSUES

Proof:
Firstly, the graph is edge-symmetric, so we use only shortest paths and get

C = 1ZZS(V,W)-d(VW)
= —stw) WeV

whered(v,w) is the distance of the verticasandw. Secondly, we can assume that
all maxys(v,w) are equal since the graph is vertex-symmetric, and since the any MC-
solution is scalable we assume makv,w)=1. Then we have

CF = ZZSVW _E
2

=n Z s(v,w) — 5
If we put this together we have an MVarMC-bouBd of
zWS(V7 W) - g

Bd=m

ZWS<V> W) ’ d(V7 W) ‘
This formulation directly shows that(v,w) > d(v,w) = s(v,w) < s(v,w’). Further-
more, it becomes clear that the formulations corresponds to that one of THeotem 3.5
and we can follow thas(v,w) € {0,1}. If we put this together we see that we can
express the boundd as a function of a variabbewheres(v,w) =1 < d(v,w) < x. If
we do this we get

N
Bd(X)— ZI =0'"
Z| OI nl
and we can follow that

Bd(x+1) > Bd(x)
Ny+1 ZiX:O n—3
X+~ Sioi-ni

X X n
& i-nm > (x+1) n—=1\.
= = 2
Now, if Conjecturg 3]L is true we know thed < x <D : 3¥ji-n > 15X

and we have
X
Z}i n >
i=

V

X

(A4
I\)‘-}- I\)‘-i-

(.i“'t%“'—“)

> 1)
> (x+ (, nj — 2)

x+1
n

3.2. SOME SPECIFIC GRAPHS 53

Figure 3.4: lllustration of th&4 g graph

and the theorem is proved. []

3.2 Some Specific Graphs

3.2.1 Bisection of the Complete Bipartite GraphK, p,

In this subsection we analyze the bounds for the Graph Bisection problem of the com-
plete bipartite graptKap. Figure[3.4 shows th&,g graph. TheK,p is generally
defined as:

Definition 3.4
The complete bipartite graphgs = (V,E) is an undirected graph with

and
E={{vww}|lveVaAweVW}.

So, theKy, hasn = a+ b vertices andab edges. For simplification purposes, in the
following we concentrate on the case of an even number of vertices. Itis clear that the
Kab graph is edge-symmetric and has at most two vertex-orbits (exactly one vertex-
orbit if and only ifa = b). The optimal bisection width of thi€, , is:

54 CHAPTER 3. THEORETICAL ISSUES

Theorem 3.7
The bisection width of theds, graph is

bW(Ka,b) = fa?bW

and is reached with a partition of the vertices, such that there are one half of the
vertices of Y and 4 in both partitions.

Proof:

We look at any partitiotV = Vy UV, with V1 NV,| = %+x with x € Z (if ais even,
otherwisex= X+ % AX € Z). Then it follows thatVi NVp| = & —xand|VaNVy| = g—x
and|VaNVp| = g + X. With this partition, a cut-size of

a b b a

(§+X)(§+X)+(§—X)(§ —X)

1

= Zab+2x

2a +2X
follows. Obviously, this is minimal witk =0 orx = % respectively and the theorem
is proved. [
1-1-MC-Bound

Now we examine the 1-1-MC-bound for thg, graph. From Corollary 35 it follows
that we only have to look at shortest paths. So, the congestion can be easily computed:

Lemma 3.1
The congestion C of a symmetrical 1-1-MC-solution orngg graph which uses only
shortest paths is

2 2 2 o
C_ab(a +b“+ab—a-—b).

Proof:
From Corollar it follows that = % S vwev Gyw. Using

0 ifv=w
duw=<¢ 1 veVaAweW
2 else

3.2. SOME SPECIFIC GRAPHS 55

and|E| = abwe have

c- 21y
E V
ab ve WEV,, w;év WZ/ ; WEV, weVyp, WAV
1
= % 2(a—1)+b)+b(a+2(b—1)))
= a_lb (2a2 —2a+ab-+ab-+ 2b? — 2b)
and the lemma is proved. [

With this congestion the 1-1-MC-bound follows:

Theorem 3.8
The 1-1-MC-bound for the & graph and the graph bisection problem is
1 (a+b)?
4 "a?+b?+ab—a-b’
Proof:
From Corollary{ 2.l we hav€F = 3(a+b)2. Together with the congestion of the
lemma above, the theorem follows. [

VarMC-bound

Now, we consider the VarMC-bound. In contrast to the 1-1-MC-bound we also have to
determine the source-strengths. From the vertex-symmetry of the graph it follows that
we can look at restricted strengths with w € V; : s(v) = s(w) andVv,w € V : S(V) =

S(w). Sowe use, € R>pandsy € R>gwith VW e V,:s(v) =saandvw e Vi S(V) = S.
Furthermore, since any MC-solution is scalable, wesyse 1 and the best, remains

to be determined (if, = O is optimal,s; — o will follow). Firstly, we present the
resulting congestion:

Lemma 3.2
Any symmetrical VarMC-solution for the K graph withvv € V, : S(v) = s andWv €
V@ s(v) = 1 which uses only shortest paths, has a congestion C of

C= a—lb(saa(Za—2+ b)+b(2b—2+a)).

56 CHAPTER 3. THEORETICAL ISSUES

Proof:
As was the case with the 1-1-MC-solution, the lemma follows from Cordflafy 3.5 and
the known distances of th&, , graph. [

With this congestion the VarMC-bound follows:

Theorem 3.9

The VarMC-bound for the 44 graph with a> b and the graph bisection problem is
1, (a+b)
2®Par2m-2

and it is reached by a VarMC-solution where the vertices of the larger part of the
bipartite graph send nothing.

Proof:
Using the source-strengtisg ands, = 1, we have a Cut-Flow ai@F = %’(asmt b).
When we use the congestion of the lemma above, a bBd(&},) follows with

1 (a+b)(asa+D)

Bd(sa) = Eabsaa(Za—Z—i—b)—i-b(Zb—Z—i—a)

with s, € R>. In order to achieve the maximal bound, we look at the first derivative:

1 (a+b)(b—a)
Bd = —ab
(%) = 530 aZa—2+b) + b(2b—2+)2
Since the enumerator &d'(s,) is independent of; andBd'(s;) <0< b < ait fol-
lows that a minimas, gives the maximal bound, &> b. As a result of this we choose

sa =0 and a bound ofab;2:> follows. -

MVarMC-bound

Now, we consider the MVarMC-bound. Again, due to the symmetries of the vertices,
we can restrict the possible set of source-strengths to the four varsaligs, Soa Sob €

R>0 with Yv € Vx,w € Vy 1 s(v,w) = s,y With X,y € {a,b}. Without loss of generality,

we assumea > b. This leads to a further restriction on the source-strengths:

Lemma 3.3
Let Sia, Sab, Sva Sob € R>0 be source-strengths of an MVarMC-instance for thg iith
a > b. Then for every optimal MVarMC-instance
Sab<Saa A\ Sob= Spa
holds.

3.2. SOME SPECIFIC GRAPHS 57

Proof:
We look at any MVarMC-instance which does not fuléi, < sza. Using our Cut-Flow
Theorenmi 2.2 we have

n n

CF = a(asia+bsp— ésab) + b(aga+ bsp— 5 max{Spa, Sob})-
Sincea > b we haveg > b. Therefore, decreasingy, increases the Cut-Flow and
decreases the congestion, which means that the bound is increased. Therefore, if the
conditionsyy < Saa is not fulfilled, an MVarMC-solution with a better bound exists.
The same considerations can be applied tsthec sy condition. m

Now, using this restriction, a closed form of the Cut-Flow and the congestion can be
given. Combining these together, we get the following bound:

Lemma 3.4

Let Sia, Sab: Soa Sob € R>0 be source-strengths of an MVarMC-instance for thg iith
a>b and gp < Saa\A b < Sa- This instance gives a lower bound on the bisection
width of

a(2-Ps5a+ bsup) + b(352spa + bsyp)

D a(2a Dat) + b(asa +-2(0 - L))

Proof:
If we use a Cut-FlovCF and a congestio@ the bound isCC—F. Using the given source-
strengths the Cut-Flow follows directly from Theorgm|2.2 with

a—b a—b
CF = a(——Saa+bSin) +b(——%a+bsp).
In order to get the congestion, we use the fact that the graph is edge-symmetric. There-
fore, shortest-paths gives the best congestion and the congestion can be calculated
using the distances of the graph and we get

1
C= %a<2(a— 1)Saa+ Sab) + b(aa+ 2(b— 1)Spp) -

So, we now have an exact formula for the bound of an MVarMC-solution using source-
strengthSsaa, Sab, Sa, Sob € R>0. The source-strengths, such that the bound is maxi-
mized, remain to be selected.

With the help of Theorem 3.5 we can determine the best source-strengths for the
MVarMC-bound. The following theorem summarizes the result:

58 CHAPTER 3. THEORETICAL ISSUES

Theorem 3.10
The MVarMC-bound for the bisection width of thgggraph is identical to the VarMC-
bound.

Proof:
From Lemmd 34 we know that the bound for any MVarMC-solution with the corre-
sponding source-strengths is

a(25Saa -+ bsap) + b(2525pa + bsyp)
a(2(a—1)saa+ Sab) +b(apa+2(b— 1)spb)

a2-Ps,o + absgp + b33 Psy, + bPsyp
2a(a— 1)Saa+aSp+baga+2b(b— 1)spp’

Bd(Saa, Sab, Sob, Sva) = ab-

ab.

With Sap < Saa A Sob < Spa- The functionBd(Saa, Sab, Sob, Sha) takes the form as it is
required in Theorem 3.5 for each of the four variabdgs Sap, Sob, and spa. SO,
Bd(Saa, Sab, Sob, Sba) IS Maximal at the endpoints of the ranges of the four variables.
We know, that the case &z — © (Sa —) corresponds to the case with, = 0
(saa=0). So we only have to compare the following four cases:

1. Saa= Sap= 0 andspa = Spp = 1 givesBdy = Jab_ 22
2. Saa= Sab= 0 andsya = 1 A spp = 0 givesBd, = Sab2-P

3. Sha= Sop = 0 andsaa = Sap = 1 givesBds = Jab 22

4. Spa= Spb= 0 andsaa = 1A Sap = 0 givesBdy = Jab 2

Then, the MVarMC-bound is mg)Bdy, Bdy, Bds, Bds }. Firstly, since we assume with-
out loss of generality that> b, it is obvious thaBd; > Bds. Secondly, sinca> 1, it
is also obvious thaBd, > Bds. Bd; andBd, remain to be compared:

Bd; Bd,
1 a+b 1 ba b
2% w2 a
a+b a—b
< a+2b-2 a
& (a+Db)a (a—b)(a+2b—2)

=0 —2a—-2b%+2b

v

v

v

(AVARAY

So,Bd; is always at least as big 8sb. Therefore, MVarMC-bound Bdy = 2aba+""2+bb 5

which is equal to the VarMC-bound, as we already know from The¢rem 3.9. =

3.2. SOME SPECIFIC GRAPHS 59

Table 3.1: Bounds and their errors on the bisection width oK

result asympt. error asympt. error
b=aa b=o(a)
LIMC | fab iy | 2 | 2
VarMC | dabg P, L
MvarMC | Zab 2P L2 1

Figure 3.5: The error of the MC-bounds for the bisection of Kag for a = 100,
depending ot

2
1.9 B+ 1-1-Il\/|C-boundI —t]
' ~ VarMC-bound ------

18 ~
1.7 e
. g L

1.6 S
15 e e [|
& R KRR R 0 el
¥ e X XXX

' e xe XX o
1.2 S
11 e

1 ke

error

10 20 30 40 50 60 70 80 90 100

Summary

In conclusion, we have shown the 1-1-MC-bound, VarMC-bound and MVarMC-bound
for the bisection width of th&, , graph. In order to complete the analyses, we would
also like to give the asymptotic errors of the bounds using two cases, firstly when
b = aa with a € (0,1] and secondly wheib = o(a). The error of a bound is the
relation "Eg%“, so an error of 1 means that the bound is exact while the bigger the
error is, the worse the bound is. Table|3.1 summarizes the results while Figure 3.5

illustrates the dependence of the errordon

In order to sum up the results of the bisection width of Kag graph, the following
observations can be made:

e The MVarMC-bound is identical to the VarMC-bound.

e The VarMC-bound is asymptotically optimal whén= o(a), while it has an
error of 15 whenb = a.

60 CHAPTER 3. THEORETICAL ISSUES

Figure 3.6: lllustration of the % 7-torus

)) o,) {1 3 Ch

0 1 il r
) LT LI L.

il
)

{1

LT
1
LT
u

1
LI
il
LI
u
L.
il
LI
il
LI
u
L.
r
LI

LT
1
LT
1
LT
1
LT
1
LT
1
LT

1
LT

1
(i
1
LT
-
LT
1
LT
1
LT
-
LT
(-
LT

1
LI
il
LI
u
L.
r
LI
-
LI
u
L.
r
LI

e The 1-1-MC-bound has an error of 20f=0(a) and 15 if b=a.

Finally, it is interesting to note the fact, that the VarMC-bound and the 1-1-MC-bound
are identical in the case bf= a could be concluded directly from the fact, that g,

graph is vertex-symmetric in this case. Therefore khggraph is a good example for

the fact that the VarMC-bound could be the better the less vertex-symmetric the graph
is when compared to the 1-1-MC-bound.

3.2.2 Thek-partitioning of the a x a-Torus

In this section we present the MC-bounds for kkgartitioning problem with tha x a-
torus. Figuré 3]6 shows thex77-torus. Firstly we give a definition of the well-known
torus:

Definition 3.5
The ax a-torus= (V, E) is an undirected graph with the set of vertices

V= {(X7y)‘x7y€ {0,...,3— 1}}
and the set of edges

E ={xy),®,y)}| (x—x|mod(a—2)=1ry=Y)
V(x=XAly—y|mod(a—2) =1)}.

The a x a-torus hasa? vertices and 8 edges. The asymptotic cut-size for tke
partitioning of thea x a-torus is 2k, which is shown in[[BR97]. It is vertex-
symmetric and edge-symmetric. So the VarMC-bound is equal to the 1-1-MC-bound.

3.2. SOME SPECIFIC GRAPHS 61

We can therefore restrict our examinations to shortest paths and we can calculate the
congestions by simply using the distances.

In the following we often need to know how many vertices with a specific distance to
a given vertex exist. So first of all, we will present a result in relation to this:

Lemma 3.5
Let Da(X): {1,...,a} — N be the number of vertices with distance x to any fixed vertex
inside the ax a-torus. Then

4 ifx<$
2a—2 ifx=%
da—4x f§<x<a

1 ifx=a

Da(x) =

holds if a is even. Anidx < § : Da(x) = 4x also holds if a is odd.

Proof:

We start with the case when< 5. We look at vertexv = {Ii(vli(} The vertices
{§+s£+1} with —x < st < xand|s| + |t| = x are the set of vertices which have
distancex to the vertexv. There are # possible pairs,t, soDa(X) = 4x is shown if

x < §. Obviously, this is also true #is odd.

If x= 2 the same considerations as above can be applied. We only have to consider
the fact that the vertices witht = & do not exist. There are exactly two such vertices,
sowe haveDy(5) =4-§-2=2a-2.

If £ <x< a, the same considerations as in the case-of§ can be applied. Now we
have restrictions-5 < s,t < § and|s| + |t| = x. So there are&— 4x pairs ofs,t which
fulfill these conditions.

Finally, if x = a only the vertex{0,0} has distance from vertexv = {X k1. o

1-1-MC-bound

We start with an examination of the 1-1-MC-bound. Since shortest paths are used the
congestion can be calculated using the number of vertices in the different distances:

Lemma 3.6
A symmetrical 1-1-MC-solution on thexaa-torus using only shortest paths has con-
gestion C with

if ais even.

62 CHAPTER 3. THEORETICAL ISSUES

Proof:
The congestion can be calculated using

1 a
C=-— a°§ x-Da(X).
2a2 X;

A careful examination of this sum give€s= 3a>. =

With this congestion, the bound follows immediately:

Theorem 3.11
For the k-partitioning of an a« a-torus when a is even andi

1-1-MC-bound= (1— }) -4a

k
holds.
Proof:
The Cut-Flow of an 1-1-MC-solution i€l — %)a"’. Using the congestion of the lemma
above the theorem follows immediately. []

MVarMC-bound

In the following we present the analysis of the MVarMC-bound forkkmartitioning

of ana x a-torus. We have to determine source-strengths and the resulting congestion
so that the bound is maximized. From the edge-symmetry it follows that the congestion
can be computed using only the distances, which we have already done for the 1-1-
MC-bound. From the vertex-symmetry it follows that we can restrict our exploration
to determining the source-strengths of only one sender-vertex.

The following Lemma is the first step in determining the source-strengths:

Lemma 3.7
Any symmetric MVarMC-solution for thexaa-torus with maximal bound fulfills

vwaww eV d(v,w) >d(v,w) = s(v,w) < s(v,w)

where dv,w) is the distance of the vertices v and w

3.2. SOME SPECIFIC GRAPHS 63

Proof:

We assume we have an MVarMC-solution which does not fulfill the condition above,
i.e. vww eV : d(v,w) > d(v,w)As(v,w) > s(v,w). Letv,w,w be such a triple of
vertices. From the edge-symmetry a congestiomth

1
C=— d(v,w) - s(v,w)
2 2.2

follows. So, if we exchangs(v,w) ands(v,w), the congestion will decrease. Fur-
thermore, the Cut-Flow will not change. Therefore, this exchange would give an
MVarMC-solution with a better bound. n

The next lemma shows that the source-strengths depend only on the distance of the
two vertices. And it shows that we can restrict the source-strengths onto ti& spt

Lemma 3.8
A symmetrical MVarMC-solution with maximal bound which fulfills

YWwweV: s(v,w) = f(d(v,w))

with f: N — {0,1} exists.

Proof:

In order to prove the lemma we look at the Cut-Flow and congestion of a symmetrical
MVarMC-solution. Since any MVarMC-solution is scalable we can restrict the source-
strengths such thatv,w e V : s(v,w) < 1 andvv: 3w:s(v,w) = 1. As we have seen in

the proof of the previous lemma, we hawe- %‘ Svywd(v,w)-s(v,w). The Cut-Flow
CFis ,

CF = 2 (Z/s(v,w) — %)

using the above restrictions on the source-strengths. So, altogether the bound is

CF _ ., Svev (Swevsvw) — §
Bd=—=2 .
C aZVEV ZWEV d(V> W) ' S(V7 W)

Obviously, this formula fulfills the condition of Theorgm B.5 for each of the source-
strengthss(v,w). So,Vv,w €V : s(v,w) € {0,1} follows directly for a solution with
maximal bound.

Furthermore, the derivation for every singl@, w) is

. Crest— d(V,W) - CFest
— 2

Bd'(s(v,w))

64 CHAPTER 3. THEORETICAL ISSUES

Figure 3.7: lllustration of the set of destinations from one sending vertex depending
on the variable

D LN Ly LN LN LN D\
E—\ 1 1 1 1 1 F]
-l L L] LJ Lt L \7
x=2
E—\ 1 I 1 1 1 F]
-l LI LI LI LJ LI \7
x=1
E—\]] 1 1] F]
| LI LI L] L] LI \j
1 1 1 ' 1 1 I
[L] L} L1 L] L] {]
E—\ 1 1 1 1 1 F]
J L L] LJ Lt L \7
[F (] i i i (] g

whereCiest(CFest) is the congestion (Cut-Flow) without the summand which contains
s(v,w). If Bd'(s(v,w)) > 0 we have to uss(v,w) = 1 and ifBd'(s(v,w)) < O we have

to uses(v,w) = 0 in order to maximize the bound. As you can see in the formula, the
sign of Bd'(s(v,w)) only depends oml(v,w), Crest andCFest. S0, a pair of vertices
with the same distance has the same sign. The lemma follows. [

The following corollary sums up the results above:

Corollary 3.6
There is a symmetrical MVarMC-instance with maximal bound for the k-partitioning
of the ax a-torus with source-strengths

1 ifd(vw) <x

YwweV: s(v,w):{ 0 else

with xe {1,...,a}.

Figure[3.7 illustrates what happens inside the torus concentrating on one sending ver-
tex. Thex which gives the maximal lower bound remains to be quantified. In order to
do this, we present a closed form of the bound:

3.2. SOME SPECIFIC GRAPHS 65

Lemma 3.9
The bound Bk) of an MVarMC-solution with source-strengths which correspond to
Corollary[3.8 is
a?(2x%k + 2xk— a2 + k)
kx(x+1)(2x+1)

Bd(x) =3
ifx < 3.

Proof:
The bound is given with Cut-Flow/congestion. The Cut-FloR(x) is

X a2
CF(x) = a <.Z\Da(i) +1— ?>
2

— 2(2x(x+1)— a? +1)

if x < &, using the number of vertices with distaridg(x) according to Lemm.5.
Correspondingly, congestidXx) is

a2 X
CX) = 5z ¥ 1+Dall)
= %x(x+1)(2x+1)

Finally, we can give asymptotic results for the MVarMC-bound:

Theorem 3.12
The asymptotic MVarMC-bound for the k-partitioning of ar a-torus with ka is

MVarMC-bound= gka-l— 0O(1)

if k > 6. It is reached by a solution corresponding to Corollary|3.6 with

[./%a
a ak |
Proof:

The theorem can be proved by a careful analysis of the bBudi(x) of Lemmd 3.9.m

So, we have seen that thex a-torus is an example of a vertex-symmetric and edge-

symmetric graph where the MVarMC-bound is up to a factov@ better than the
1-1-MC-bound and VarMC-bound.

66 CHAPTER 3. THEORETICAL ISSUES

Table 3.2: Summary of the asymptotic results kgpartitioning ana x a-torus with
a— o andk > 6

| method | result] error |
optimal V/4ka

1-1-MC-bound 4a | \/3k =05-vk

VarMC-bound 4a | \/3k =05-vk

8 3
MVarMC-bound| | /3ka | /3 ~122

Figure 3.8: lllustration of the behavior insidex b-torus

Summary and Outlook

Table[3.2 summarizes the results in this section. It demonstrates that the MVarMC-
bound is definitely superior to the 1-1-MC-bound and VarMC-bound. The l&rgger
the bigger the superiority of the MVarMC-bound.

Furthermore, we have also lookedaat b-tori anda®-tori. We do not give the details
on those analysis but we want to briefly introduce the main results: First of all, both
are vertex-symmetric, so the VarMC-bound is equal to the 1-1-MC-bound.

When we look at x b-tori, the behavior of the MVarMC-bound is similar to tae a-
torus if k is large. l.e. with large every vertex sends commodities of unit size to
every other vertex up to an distanke This x increases whil&k decreases. At the
point wherex = %b, where we assume< a, this behavior changes. In the next phase
every vertexv = (ay,by) send commodities of unit size to every vertex= (ay, bw)

if |ay—aw| < g and distancel(v,w) < x wherex increases whild decreases. Now,
this behavior changes at the point where %(a—i— b). In the following final phase
every vertexy = (ay,by) sends commodities of unit size to every vertex (ay, by)

3.2. SOME SPECIFIC GRAPHS 67

if |ay — aw| < X wherex increases whildk decreases. This behavior is illustrated in
Figure[3.8.
When we look at th@d-torus, the behavior of the MVarMC-bound corresponds to the

behavior inside @ x a-torus: Every vertex sends commodities of unit size to every
other vertex up to a distance This distancex increases whil&k decreases. This

behavior gives an MVarMC-bound afad-1 ¢/ (dfl)!k. The asymptotic cut-size of

an ad-torus isda®~1v/k; therefore, the MVarMC-bound has an asymptotic error of
Y %(d +1)!. Compared to this, the 1-1-MC-bound and VarMC-bound have an asymp-
totic error of zd V/k.

3.2.3 Thek-partitioning of the a x a-Grid

Now that we have examined the quadratic torus, the grid suggests itself for examination
since it is very similar to the torus. Unfortunately, the analysis of the MC-bounds are
more complex since the grid is neither vertex-symmetric nor edge-symmetric.

Definition 3.6
The ax a-grid= (V,E) is an undirected graph with the set of vertices

V= {(X,y)‘X,yE {0,...,3— 1}}
and the set of edges

E= {{(x,y),(x’,y)}](\x—x’\ = 1/\y:y,)\/ (X:X//\’y—)/’ = 1)}

Thea x a-grid hasa? vertices and &a— 1) edges.

1-1-MC-bound and VarMC-bound

Since the grid is not vertex-symmetric, we cannot directly conclude that the VarMC-
bound is equal to the 1-1-MC-bound. But of course, VarMC-boxtrit 1-MC-bound

holds, as it always does. We will show in this section, that the VarMC-Bound is equal
to the 1-1-MC-bound in the case of the quadratic grid. In order to do this, we first give
an upper bound on the VarMC-bound and then a lower bound on the 1-1-MC-bound.
Since the upper and lower bounds are identical, the exact bounds are shown. In order
to simplify the formulas, we assume in this subsection #iateven and|a’.

Lemma 3.10
For the k-partitioning of an a a-grid it holds that

VarMC-bound< (1— %)Za.

68 CHAPTER 3. THEORETICAL ISSUES

Proof:

Let s(v) be the source-strengths of any VarMC-solution. Now we look at &Set
of edges withE’ = {{(x,y),(x,Y)}ly=3—1AY = 3}. Removing these edges par-
titions the grid into two sub-grids of siz@x §. So, for any sendev there are%a2
vertices in the other partition which have to rece$fe) of the commodity each. So
we can sum up a minimal flow over the edge&af

Y cle) > %az Z/s(v)

ecE’
This gives us the following lower bound on the congestion:

cC > %Zc(e)

ecE’

> %a ;s(v)

For the Cut-FlowCF of the VarMC-solution it holds thaF = (1— £)a? ¥, s(V). So
for the boundd of any VarMC-solution it holds that

CF

T

(1-$)a23,s(v)
fayys(v)

1
= (1- R)Za

which proves the lemma. n

Bd =

Next, we give a lower bound on the 1-1-MC-bound.

Lemma 3.11
For the k-partitioning of an & a-grid it holds that

1-1-MC-bound> (1— %)Za.

Proof:

In order to prove the lemma we give an 1-1-MC-solution with bo(hé %)Za. An
1-1-MC-solution is given by determining the paths of the commodities. We use only
shortest paths where every commodity first uses the edgesiBf aatl then the edges

of setEy with Ex = {{(x,y), (X,y)} € E} andE, = {{(x,y), (Xx,Y')} € E}. In order to
analyze the congestion, we use an additional partition of the edges with

vic{l,...,a—1}: Exi = {{(xy),(X,y)} € Exx=i—-1AX =i}
A EByii={{(xy),xY)} eEly=i—1AYy =i}.

3.2. SOME SPECIFIC GRAPHS 69

With this partitioning and the used paths given we have
Vze {x,y}Vie{1,...,.a—1}: ecE;=c(e)=2i(a—i)a

Therefore, the maximal congestion exists at the edges Wwheh and when we have
C = a3 With the Cut-FlowCF of CF = (1 $)a* of any 1-1-MC-instance, we have
a bound of L
L 1
——=(1--)2
%a?) (k) a

which proves the lemma. [
So, the exact 1-1-MC-bound and VarMC-bound follow with:

Theorem 3.13
For the k-partitioning of an & a-grid it holds that

1-1-MC-bound= VarMC-bound= (1— %)Za.

Proof:
The theorem follows directly from the two previous lemmas. [

MVarMC-Bound

Now we analyze the MVarMC-bound for thepartitioning of ana x a-grid. Our main

goal is to provide asymptotic results, since the exact formulas are quite complex and
give no further understanding of what is happening. We start with the presentation of
an upper bound on the MVarMC-bound:

Lemma 3.12
Let Bds be the MVarMC-bound for the k-partitioning of anxaa-grid and Bd the
MVarMC-bound of an & a-torus. Then

Bds < Bdr
holds.
Proof:

Since thea x a-grid is a subgraph of tha x a-torus with the same vertices, any MC-
solution for thea x a-grid can be applied to tha x a-torus and the same bound will

70 CHAPTER 3. THEORETICAL ISSUES

Figure 3.9: lllustration of the set of destinations from one sending vertex which de-
pends on the variabbeinside a grid

Il
)
>
1
| l\
L
11
1L

1
LT
1
LT
LT
LT

be delivered. So, the MVarMC-solution with maximal bound can also be applied, and
the lemma follows. [

A direct conclusion which can be taken from the above lemma is that the asymptotic

MVarMC-bound for thek-partitioning of ana x a-grid is at most, / %ka Next we give
a lower bound on the asymptotic MVarMC-bound:

Lemma 3.13
For the k-partitioning of an & a-grid it holds that

MVarMC-bound> (1 / gk+ \/ 9—k6 - 8) a+0(1)
Proof:

We present an MVarMC-solution which also provides a corresponding bound. In prin-
ciple we apply the optimal MVarMC-solution of thex a-torus, i.e. every vertex
sends a commodity of size one to every other vertex with a distance which is less than
or equal tox. Figure[3.9 illustrates this. We also apply the paths of the commodities
of thea x a-torus. Obviously, the resulting congestion on the edges cannot be bigger
than the congestion in the case of the torus, since any commaodity which is routed on
the grid is also routed on the identical edges of the torus. In fact, the congestion on the
grid could actually be smaller, since less commodities have to be routed at the border
of the grid . So we have

Co(x) <Cr(x) = %x(x+ 1)(2x+1)

3.2. SOME SPECIFIC GRAPHS 71

whereCg(X) is the congestion on the grid afi (x) is the corresponding congestion
on the torusCr (x) is known from Lemma 3]9.

On the other hand, the Cut-FldBfs of the grid is less than the corresponding Cut-
Flow CFr of the torus. But we give a lower bound on {G&g by taking into account
only those vertices with a distance of at leafitom the border of the grid. So we have

2

CRs(X) > (a— 2X)2(2x(x+1) — a? +1)

which follows directly from theCFr in Lemmég3.9.

If we put the congestion and the Cut-Flow together andxusexa, we have a bound
Bdg on the grid of

(a—20a)2(2aa(aa+1) — £ +1)
oa(aa+1)(2aa+1)
which gives an asymptotic behavior of

Bds > <\/§<+ @—8) a+0(1)

with a = %, the same selection as for the torus. m

Bds >3

So, we have presented upper and lower bounds on the MVarMC-bound fér the
partitioning of thea x a-grid. The following theorem sums up the results:

Theorem 3.14
For the MVarMC-bound Bg for the k-partitioning of the & a-grid with ka

<\/§<+ @—8) a+0(1) <Bds < \/§<a+ O(1)

holds if k> 6.
So, ifk = w(1) the asymptotic bound is shown exactly, and it is identical to the asymp-
totic bound for thek-partitioning of ana x a-torus.

3.2.4 Bisection of the Butterfly

In this section we present analyses of the butterfly network. The butterfly network is a
very well known graph. There are two versions, one with wraparound-edges and one
without wraparound-edges. With wraparound-edges the network is vertex- and edge-
symmetric, while the butterfly-network without wraparound-edges is neither vertex-
nor edge-symmetric. We will focus on the version without wraparound-edges in the
following.

72 CHAPTER 3. THEORETICAL ISSUES

Figure 3.10: Butterfly of dimension 3

row 000 001 010 011 100 101 110 111

level O D\D]% D§ g I
level 1
level 1r C

level 2

LI
LI

LI

level 21] L

level 3

level 3

Definition 3.7
The d-dimensional butterfly BH) = (V, E) is an undirected graph with vertices

V= {(w,i)\i €{0,....,d} Awe {o,...,zd_l}}
and edges

E= {{(w,i),(w,i')}u =i 1A W=W V]w—W| zzd*ifl)}.

The butterfly hagd + 1)2¢9 vertices andi2?+* edges. FigurO shows the butterfly

of dimension three. The vertices of the butterfly can be divided into “rowsihd
levelsi. It is often very helpful to look at the rows as their binary number, as we
have done in the figure. Furthermore, the edges can be divided into levels which is
also shown in the figure.

It is known that the vertices in one level are symmetric. Vertices of iemetid —i are
also symmetric. Furthermore, edges inside one level are symmetric and edges of level
i andd —i+ 1 are also symmetric.

The butterfly has a simple bisection with bisection-width\rtices of rows Q... ,29-1—

1 form the one patrtition. A better bisection had not been discovered for a very long
time until Bornstein et al. showed in [BLM28] that the bisection width of theF (d)

is 2(v/2—1)29 4 0(29) ~ 0.82- 29, In the following we present the MC-bounds for the
bisection-width of the butterfly.

In order to determine the MC-bounds, firstly we show that we can restrict the flows to
shortest paths, even though the butterfly is not edge-symmetric:

Lemma 3.14
There are optimal symmetrical MC-solutions on the butterfly graph which only use
shortest paths.

3.2. SOME SPECIFIC GRAPHS 73

Proof:

Firstly, from the symmetry of the edges inside one level we can conclude that we only
have to count the number of uses of edges of the different levels in order to calculate
the congestion. Secondly, from the construction of the butterfly it becomes clear that
every path from a vertef, i) to a destinatioiw/,i’) has to use edges of leveglsif w

andw differ in the j’th bit. The minimal usage of the different levels of edges of any
path follows directly from this fact. So, any path generates at least as much flow on
each level as shortest paths do. As a result of this we can restrict our considerations to
shortest paths. [

Next, we give a lemma which states how much flow is generated on the different levels
of edges:

Lemma 3.15
Let Loady(k,I) be the sum of the flows on edges of level k, if all vertices of level | send
a commodity of size one to every other vertex using only shortest paths. Then

_o2d J Xa ifk>1
Loady(k,|) = 2 {kad ols

with X g :=d+k+1—k-2¢9and Y g = 2d —k+2— (d — k+1)27* holds.

Proof:

Firstly, from the symmetry of the butterfly it follows thbady(k, 1) = Loady(d — k+

1,d —1) holds. So, we only have to look at the cdse |, the else-case will then
follow when we use this symmetry. Again, due to the symmetry of the vertices inside
one level, we look at one specific sender-vertex. Firstly, there are the destinations on
levelsi with i > k: the commodities have to use edges of ldvekactly once for these
destinations. They ar@ — k-+1)29 destinations. Secondly, we look at destinations on
leveli with i < k: Flows to vertices on these levels with rows which do not differ in any
bit j with j > k do not have to use levéledges at all. These ar&2 vertices on each
level. The flows for all other destinations have to use lévetiges in two instances:
going up and going down. These at-22¢"1 vertices. Altogether we have

Loady(k,l) = 2¢ ((d—k+1)2d+2k<2d—2k—1))
_ o <d+k+ 1—k-2'<—d) = 220, 4

which proves the lemma.]

74 CHAPTER 3. THEORETICAL ISSUES
1-1-MC-bound
Using the instrument of the above lemma the 1-1-MC-bound follows:

Theorem 3.15
The 1-1-MC-bound for the bisection width of the butterfly is
1

1
1-1-MC-bound= é2"' +0(azd).

Proof:
The Cut-Flow of any 1-1-MC-solution for the bisection of the butterfly(g + 1)222d.
The congestior(k) of the edges on levddis

1 d
ck) = 2071 go Load (k)

= 297 1(kXa + (d —k+1)Yeq)
So, the 1-1-MC-bounéd is
(d+1)22%
min ———~ —
ke{l...d} 2c(K)
. (d41)22d
min
ke{l,...d} KXca+ (d —K+1)Yid

Exploring the asymptotic behavior of the formula provides us with the result of the
theorem. [

Bd =

VarMC-Bound and MVarMC-Bound

The determination of the VarMC-bound is more complex than the determination of
the 1-1-MC-bound, since we also have to find the optimal source-strengths. Firstly,
we present a lemma which will provide us with an argument for choosing the right
source-strengths:

Lemma 3.16
Let be X% 4 and ¥ 4 according to Lemm@5 with< k< d. Then

d+1
kz%@xk,d > Yid

holds.

3.2. SOME SPECIFIC GRAPHS 75

Proof:
We substituté = 952 + x with =9~ < x < 9> insideX 4 andYi 4 and we get:

1 —
Xed(X) = > (3d+3+2x- (d+1+ 2X)2X+¥>

% 3d+3-2x— (d+1—2x)2—x+¥>
which shows thaX q(X) = Y 4(—x) holds. Therefore, the lemma is proved it 0=

Xid(X) > Yicg(x) holds. With 0< x < 951 we have

Yid(X) =

/N

Xed(X) > 5 (d+3+2x)

NI NI

A Yid(X) < (3d +3-2x— 2d+2>

SO
Xid(X)
(d+3+2x)
2X+ 2d+1

v

Yid(X)

% <3d £3—2x— 2d+2)

d

=

v

1
2
&

(Y

which is true. u
Now, the following theorem gives the bound:

Theorem 3.16
The VarMC-bound for the bisection width of the butterfly is
24 1.4
VarMC-bound = §2 +0(52)
and can be accomplished by an instance where only vertices ofOesadl d send
commodities to all other vertices.

Proof:

Due to the symmetry of the vertices, we only have to determine source-strengths for
every level of vertices. Let(l) be the source-strength of the vertices of ldvelhen

we have congestiot(k) on the vertices of levek :

d
2d—1+1 Z)s(l) -Loady(k,I)

ck) =

Furthermore, an analysis &foady(k,I) and Lemm.G shows that < % vk :
Loady(k,l) > Loady(k,0) andVI > d : Vk : Loady(k,l) > Loady(k,d) hold. So, if

76 CHAPTER 3. THEORETICAL ISSUES

A 0<I<d:s(l)#0 then we could change the corresponding VarMC-solution by
decreasing(l) and increasing(0) or s(d) respectively accordingly. This modified
VarMC-solution has the same Cut-Flow and lesad on every edge-leved. Finally,

due to the symmetry of level 0 and lextlwe haves(0) =s(d) =1andvl 0< | <d:

s(l) = 0. This gives a VarMC-bound of

VarMC-bound = (d+1)2%"1min

k Xed+ Yed
2 4 1.4
= 2"4+0(=2
32 + (d)
where the minimum is reached whkna= %. m

Therefore, the asymptotic VarMC-bound is a factor%olbetter than the asymptotic
1-1-MC-bound. Finally, we present the results of the more general MVarMC-bound:

Theorem 3.17
The MVarMC-bound for the bisection width of the butterfly is identical to the VarMC-
bound.

Proof:
We prove the theorem by looking at any MVarMC-solution and we show that it can
be adapted to an VarMC-solution while not worsening the bounds betthe source-
strengths of the MVarMC-instance. Any MVarMC-instance is a VarMC-instance if
and only ifvv,w: s(v,w) = S, (with S, according to Theorefn 2.2). We will show that if
Jv,w: s(v,w) < S, we can increass(Vv,w) to s, while not worsening the bound. Since
we can restrict our calculations to symmetrical solutions, we do this for all vertices in
one level at the same time. Let= s, — s(v,w), Bd (Bd') be the bound of the original
(adapted) solutionCF (CF’) be the Cut-Flow of the original (adapted) solution and
c(k) (c'(k)) be the congestion of levédedges of the original (adapted) solution. Then
we have
/
, .
Bd = mkln 0
. CF+2d.a
= min

k' c(k) + 5129 - a- X

wherexy is the usage of levet-edges in the given case. From the proof of Lemma
we know thak| € {0,1,2}. We already know from the minimization inside the

formula above thaBd > Bd < Vk: cc’:TFk/) > % So, we have to show that
/ d
e CF _ CF+2% S CF

(k) c(k) + i 2daxg ~ c(k)

3.2. SOME SPECIFIC GRAPHS 77

holds. Generally‘;ig > 2 & &> 2holds. So we have

Bd > Bd
2da CF
& vk: T > 0
20+1 ax|
d-+1
& vk 2 > CF
X c(k)
and sincex| € {0,1,2} we havevk : % >2d, Since% is a valid bound and there
is a bisection with cut-size%2we have% < 29, So,Vk: % > % is true and
Bd' > Bd follows. ' n

3.2.5 Bisection of the BeneS Network

In this section we will present analyses of the BeneS network. The BeneS network
is very similar to the butterfly network, in fact the BeneS network consists of back-
to-back butterflies, as shown in Figuyre 3.11. The Bene$ network is famous for the
fact that it is a rearrangeable network, i.e. for any mapping of the level-0 to level-2
vertices (input and output vertices), edge-disjoint paths which connect the pairs can be
constructed.

Definition 3.8
The d-dimensional Benes$ Bi) = (V,E) is an undirected graph with vertices

V= {(vv,i)|i €{0,...,2d} Awe {o,...,zd—l}}

and edges
d-1-i s
e~ ({001 (wowviwwi = { 25 <4)L

The Benes network hd&d -+ 1)29 vertices andi29+2 edges. The vertices of the Béne
network can be divided into “rowsiy and levels. It is often very helpful to look at

the rowsw as their binary number, which has been done in the figure. Furthermore,
the edges can be divided into levels which is also shown in the figure. The first and
lastd 4 1 levels form ad-dimensional butterfly.

The Benes network has similar symmetries to the butterfly: Vertices and edges inside
one level are symmetric. Vertices of leveand 21 — i are symmetric and edges of

78 CHAPTER 3. THEORETICAL ISSUES

Figure 3.11: Benes network of dimension 3

row 000 001 010 011 100 101 110 111

|

level 3¢]
level 4
level 4r

level 5

level 5[4

level 6

level 6L L— L

?

leveli and 21 — i+ 1 are symmetric. As with the butterfly the BenesS network has a
simple bisection with cut-size?2*. In the following we present the MC-bounds for
the bisection-width of the butterfly. The analysis are quite similar to the analysis of the
butterfly.

Lemma 3.17

Let Loady(k,I) be the sum of the flows on edges of level k2ohd k+ 1 if all vertices

of level | and2d — | send a commodity of size one to every other vertex. Then with
l1<k<dando<l<d

220+ (2% g — 1+ k29) ifk > 1
Loady(k,1) = ¢ 2291 (2%, q—2-2vK) ifk<IAl <d
220 (2Yg—2-2%) ifl =d

with X4 and ¥ ¢ according to Lemmf 3.15 holds.

Proof:
The proof corresponds to the proof of Lemma B.15. Since the vertices inside these two
levels are symmetrical, we only look at vertgx|).

We start by looking at the case kf> |: Firstly, all destinations in levelswith i €
{k,...,2d —k} have to use levdledges exactly once. These are altogetBdr 2k +

3.2. SOME SPECIFIC GRAPHS 79

1)29 destinations. Secondly, we look at destinations in levalgh i € {0,... , k—1},
these are levels altogether. Vertices inside these levels on rows which do not differ
in bitsk, ..., d do not use levek edges at all, they a®<~1 vertices. The other paths

to vertices inside these levels have to use lévetiges exactly twice, so they generate
a usage of R(29 — 2-1). Thirdly, paths to destinations in levalsvith 2d — k+ 1 <

i < 2d have to use levet-edges exactly twice, so they generate a usag&ast. S0,
altogether we have flows of

p0+1 ((2d — 2k 1)29 4 2k(24 — 2% 1) ¢ 2k2d>
= g+l (2d +2k+1— kzk*d)
2201 (2% g — 1+ k2k79).

Next, we look at the case & < I: Firstly, paths to destinations on levelsvith i €
{0,...,k—1,2d —k+1,...,2d} use levelk edges exactly once. So they generate a
flow of 2k29. Secondly, we look at destinations on levelsith i € {k,...,2d — Kk},
they are 2 — 2k+ 1 levels. Paths to destinations on rows which do not differ in bits
0,...,.k—1 do not have to use lev&ledges, they are92vertices per level. Paths to
the other vertices on these levels use ldveldges twice, so they generate a flow of
2(2d — 2k + 1)(29 — 29-%). Altogether we have

2k29 4 2(2d — 2k + 1) (29 — 297K
. <2d —2k+2—(2d—2k+ 1)21—k>

= (Mg —2+2%)
flows per sender. If < d, there are 21 senders and if= d there are 2 senders. =

The high similarity of the loads of the Benes network to the load of the butterfly sug-
gests that the bounds and their proofs are also very similar. In fact, they are very
similar, so we can leave out some details in the following. We begin with the 1-1-MC-
bound:

Theorem 3.18
The 1-1-MC-bound for the bisection width of the BenesS network is

1 1
1-1-MC-bound= é20'+1+0(620‘+1).

Proof:
The Cut-Flow of an 1-1-MC-solution i&d + 1)2224-1, Let ¢(k) be the congestion of

80 CHAPTER 3. THEORETICAL ISSUES
levelk edges, then we have
1 d
ck) = WI;Loadd(k,l)

= 2 (Zk(ZXk,d — 14+ k) 4 (2d — 2k + 1) (2Ykg — 2+ 21*'<)> .

So, for the 1-1-MC-bounéd
) (Zd_’_l)ZZdel

Bd = mkm =0
o (2d +1)229+1
— M ~ 1 gok=d-1y 4 (d—k+L1)(Yg—14+2K
(Xed—3+)+ (+5) (Y —14+27K)
1 1
_ _2d+1 _2d+l
> +O(O|)
holds. m

And for the VarMC-bound we have:

Theorem 3.19
The VarMC-bound for the bisection width of the BenesS network is

VarMC-bound= §2d+1+0(§2d+1).
Proof:
The proof is similar to the proof of the VarMC-bound for the butterfly. Firstly, due to
the symmetry of the vertices we can restrict the source-strengths for every vertex to
source-strengths(l) for every level 0< | < d. Secondly, since levels in the middle
are worse than levels at the end we h&@e< | < d: (1) = 0. Due to the scalability
of solutions, we can sat0) = 1 and the optimas(d) has to be determined. A careful
examination of the resulting formulas show te@d) = 2 gives the best bound. In this
case, the edges of Iev%lhave the maximal congestion and the asymptotic behavior of

1

VarMC-bound = %2‘”1 - O(azd“)

follows. n

And finally, for the MVarMC-bound we have:

Theorem 3.20
The MVarMC-bound for the bisection width of the BeneS network is identical to the
VarMC-bound.

3.2. SOME SPECIFIC GRAPHS 81

Proof:
The proof of this theorem can be done similarly to the proof of The¢ren 3.17. m

3.2.6 Thek-partitioning of the Hypercube Q(d)

The hypercube is one of the most versatile and efficient networks which has yet been
discovered for the purpose of parallel computation. It can efficiently simulate any
other network of the same size. The hypercube has a low diameter) @og a high
bisection width §).

Definition 3.9
The hypercube @) = (V,E) of dimension d is an undirected graph with

V ={0,1}¢

and
E = {{u,v}: u,veV differs in exactly one bjt

The Q(d) hasn = 29 vertices, degred and thereforal2d-1 edges. It is vertex- and
edge-symmetric. Figufe 3]12 illustrates the hypercubes of dimensjons®and 7.

The cut-size of the hypercube ¥ logk if kin. Since the optimal partitions fulfill

the property that every vertex has the same number of adjacent edges which cross
the cut, the eigenvalue-based bounds are exact. We will later see that the Leighton-
bound (i.e. 1-1-MC-bound) has an error of aboutlogTherefore we see it as a
challenge to achieve a better result using the MVarMC-bound. In the following firstly
we will present an exact formula for the MVarMC-bound. Since a lot of considerations
which we have used in the development of this formula are identical to the ones which
we have already presented for other graphs, we will not give many details of this
development. Secondly, we will give an asymptotic analysis of this formula.

Lemma 3.18
The MVarMC-bound Bfor the k-partitioning of the Q) is

x (dy_
By =291 max Z—oE.)d_l K
i) i3 (0
Proof:

Firstly, since the hypercube is edge-symmetric, the congestion can be computed by
adding the distances of the vertices. Therefore, with the help of Th¢orém 3.5 we know

82 CHAPTER 3. THEORETICAL ISSUES

Figure 3.12: Hypercubel(d) of dimensions 0...,4 and 7

110 111

0 10 " 100 101
L]
010 011
1 00 01 000 001
Q(0) Q(1) Q) Q@)
(a)d=0,...,3
(b)d=4

|

I

©d=7

3.2. SOME SPECIFIC GRAPHS 83

that we can assunmsgv,w) = {0, 1} and thats(v,w) is monotonically decreasing with
the distance o andw. So, every vertex sends commodities of size one to every
vertexw with dist(v,w) < x and the determination of the optimatemains. There are
(d) vertices with distancg from any specific vertex. This reveals a Cut-FIGW of

X
X d
CF=2d <Z><d> —2—>
L\ k
and a congestio@ of
20 X (d) x1 (d - 1)
C=——=VYi(.]=2 .
d2d-1 i;) ! i;) !

and withBy = % the lemma is proved. [

2d

x (dy_
Unfortunately, the expressio%;?—l('(z,% cannot be given in a closed form. There-

i=0 i
fore, the analysis is difficult. However, the asymptotic behavior can be almost exactly
analyzed. Using the following theorem, we present an upper bound on the MVarMC-
bound:

Theorem 3.21
Let By be the MVarMC-bound of the(@), then

Bq 2 1
4142 Lo=
20-1 — +1—0(+ (d)

holds for the k-partitioning with k= 299 with o € (0,1), k|29 and d— o.

Proof:
In this proof we concentrate on the teBg(x) with

X (@ 2
o =2

We can transform and estimag(x):

84 CHAPTER 3. THEORETICAL ISSUES

Obviously, lim21-®)4 < lim (9-1) must hold for thec which maximizesBy. If we use
X =f(d—1)+1 we achieve

m (1) = ™ (g)

= p(end-1)(Bt-1))

NI

'C(B_l)d_l
with C(b) := bb (52) ® . If we use this, we have

lim21-09d < |im (d - 1)

x—1
PN 2170(< C(Bfl)
l1-a
> =
= B> >
So, we have«> 158 (d — 1) + 1 and
By = 2d‘1m)9de(x)

(1-a)d
< 20t <1+9 - Zd—l)
X (x—l)

2 1
< 2 (1+—1_G+O(d))

and the theorem is proved. [

Similar estimates provide us with a lower bound on the MVarMC-bound:

Theorem 3.22
Let By be the MVarMC-bound of the(@), then

Bd>2 1

12 1o Ol

holds for the k-partitioning with k= 299 with a € (0,1), k|29 and d— oo.

Proof:
We again use

_ Yo H-%

A S TC

3.2. SOME SPECIFIC GRAPHS 85

We can transform and estima®g(x) usingx = p(d — 1) + 1:

(d—l) _ o(1-ayd

X

> (47

(dfl) _ 2(1-a)d

> 2+ ﬁ =
1-28 (B(d—l))

1-2B 2(1-ayd
1 1B/ d-1
a1tP 1—_2[33 (B(dfl)>

Ba(X) = 2+

= 2+

Now, we choose & such that im 2~ < |lim (dejll d holds. We have seen in the
—a

)
previous proof, that this is fulfilled by usirf§= 17 With this 3, we achieve

Ba > 2°'By(B(d—1)+1)
ol (iw(%))

l1-a

and the theorem is proved. [

Altogether, we now have asymptotic lower and upper bounds on the MVarMC-bound
which are almost identical:

Corollary 3.7
Let By be the MVarMC-bound of the(@), then
2 1 By 2 1
_c < S <1 =
1-a +O(d) s R gy +O(d)

holds for the k-partitioning with k= 2°9 with a € (0,1), k|29 and d— oo.

Figure[3.1B illustrates the asymptotic error of the MVarMC-bound depending on
while Figure[3.14 illustrates the exact error with= 50. Both figures show that the
maximal error is obtained witlx ~ 0.5, there we have a maximal asymptotic error
of 0.125d while the example witld = 50 gives a maximal error of about0B5d.
Furthermore, both figures also show that wiken- 0 ora — 1, the error decreases.

This can be substantiated by an analysis of the formula of Lemma 3.18. If we use
x = d, the MVarMC-bound is equal to the 1-1-MC-bound. Then we have an error of

2(";9"1), so if k = 2 the bound is equal to the cut-size andt i constant, the error is
—k

constant. On the other hand if we use 1, the bound is equal to the cut-sizdif 29
ork =29-1 and it is asymptotically exact lzka is constant.

86 CHAPTER 3. THEORETICAL ISSUES

Figure 3.13: Asymptotic error of the MVarMC-bound for tkepartitioning of the
hypercube

0.14 T T T

i | : upleerbound
0.012 [T TR ~

0.1 f e e
0.08 [e pro——— e e 7

error / d

0.06 [e b b N g
0.02 |- N

0 | | | |

alpha

Figure 3.14: Exact error of the MVarMC-bound for tki@artitioning of the hypercube
with d =50

4.5 T T T T T T T T T

At —— _ : : :

Al ,*f*’i_ﬁ\w [
‘ ‘ ‘ ‘ ‘ .

error

2
R

1

3.2.7 Summary

Table[3.8 summarizes the results which we have proved in the preceding sections.
It can be seen that we have obtained an enhancement of all bounds on the bisection
width by using the VarMC-bound instead of using the 1-1-MC-bounki-gértitioning
problems have been looked up, we have obtained an drastic enhancement by using the
MVarMC-bound instead of the 1-1-MC-bound or VarMC-bound.

We have also included the errors of the classical eigenvalue-bound, the DH-bound.
The second smallest eigenvalig of the K5, graph ish, = b if b < a. Using this

we obtain the results. The second smallest eigenvalue of the butterfly network is
A =4-— 40052d’11 — 2d(7(-j[2+1)’ this provides us with an asymptotic bound @2".

The calculation of the DH-bound for thepartitioning of the hypercub@(d) is com-
plicated, we have to use the fact that @) has(?) eigenvalues with a value of .2

3.3. UPPER BOUNDS ON THE LOWER BOUNDS 87

Table 3.3: Summarization of the analyzed asymptotic errors

| problem | 1-1-MC | VarMC | MVarMC || DH |
Kab, b=0(a), k=2 2 1 1 2
2 1—
Ka7b,b:aa,k:2 Z—ﬁz 1+(}L+l 1+(XL+1 1+1+—g
butterfly,k = 2 ~ 1.64 ~ 1.23 ~ 1.23 ~ 0.66-d
BeneSk =2 <2 <15 <15 n.a.
ax a-torus 0.5vk | 0.5vk ~122 || (~1436ifk=6)
ax a-grid 0.5vk | 0.5vk ~1.22 n.a.
hypercubeQ(d), k = 29 sad sad | 3a(l1-a)d constant

Therefore, a sum kg ;i (‘Ij) has to be analyzed. If we do this we obtain an con-
stant asymptotic error K = 299 js assumed. Finally, the DH-bound for the a-torus

gives very bad result. The quoted term is based on an improvement of the DH-bound
which can be applied for graphs with a special structure,see [EI.M01]. You cannot
give a closed form of this improved bound for arbitr&ty, therefore we have quoted

the bound fok = 6.

The comparison of the presented MC-bounds with the eigenvalue-based bounds show
that the new bounds are very competitive. In the presented example the DH-bound is

only superior when the hypercube is regarded. On the other hand it delivers clearly

worse bounds regarding the butterfly network orahea-torus.

3.3 Upper Bounds on the Lower Bounds

In this section we will present upper bounds on the MC-bounds. These upper bounds
are based on the edge-expan(08, k) of a graphG. The edge-expansion is a known
attribute of graphs in the graph-theory, see e.g. [B198,/[Nog93]. For ease of nota-

tion in this section, we do not use vertex- and edge-weights.

Definition 3.10
Theedge-expansioa(G, 1) of an unweighted graph & (V,E) is defined as

: eG,l):= min cU,VAU)

V1
ucVv,ul=l I

IN

I <

NI S

88 CHAPTER 3. THEORETICAL ISSUES
with c(U,V\U) = [{{vw} e E:veUAwgU}|.

By using this edge-expansion, the following theorem provides us with an upper bound
on the 1-1-MC-bound:

Theorem 3.23
Let GP= (G, k,M) be a graph partitioning problem. Then

© 1-1-MC-bounc n(n—M)

<< N 7
Vi<l < 20

e(G,l)

NI S

holds.

Proof:

The Cut-Flow of any 1-1-MC-instance i§n— M). We get a lower bound on the
congestion if we look at the edges which correspond(@ |): The number of com-

modities which have to cross this cut algrP—1), there ard - e(G,|) edges crossing
this cut, so these edges have a congestion of at F&%%% = i((?a]l))- If we put the

Cut-Flow and congestion together, we get a boBrud

B CutFIow< n
~C ~2(n-D

and the theorem is proved. [

B -(n—M)-e(G,I)

In contrast to the 1-1-MC-bound, the VarMC-bound can react more flexibly on a pos-
sible bottle-neck. The following theorem gives an upper bound on the VarMC-bound:

Theorem 3.24
Let GP= (G, k,M) be a graph partitioning problem. Then

Vi<I< g . VarMC-bound< (n—M) -e(G, 1)

holds.

Proof:

We concentrate on the congestion of the edges which correspond to the edge-expansion
e(G,l). In order to minimize this congestion, it is optimal if the vertice¥/ofU only

send commodities. If we do so, we can achieve a Cut-FlognefM)(n—1) and a

congestion of at Iea&;% = e?é.ln- If we put the Cut-Flow and congestion together,
we get a bounds of /

B CutFIow< (n—=1)(n—M)
- Cc - n—I

B e(G,l)=(n—M)-e(G,l)

3.3. UPPER BOUNDS ON THE LOWER BOUNDS 89

Table 3.4: Upper bounds on the MC-bounds with reference to the bisection width

| MC-bound| upper bound
1-1-MC s - 6(G)
VarMC 2-e(G,!)
MVarMC | 3(n—1)(5—1)+1-€(G,1)
and the theorem is proved. []

If we refer to the MVarMC-bound, we realize that the considerations which we have
used for the 1-1-MC-bound and VarMC-bound do not give us any upper bound on the
MVarMC-bound. This is due to the fact that MVarMC-instances are not forced to send
any commodities across the cut of the edge-expansion. However, if we restrict our
considerations to the graph bisection problem, we can provide an upper bound on the
MVarMC-bound:

Theorem 3.25
Let bisGP<G) be a graph bisection problem. Then

Vi<I< o MVarMC-boundg%(n—l)(g—l)H-e(G7I)

NI S

holds.

Proof:

Since MC-instances are scalable, we restrict our considerations on MVarMC-instances
with a congestion of one. This means that at nhes{G,|) commodities can cross the

cut of the edge-expansion. If we assume the best cas¥ tfdtis a clique-graph, the
vertices inside this clique can send commodities of %imeeach other. So a Cut-Flow

CF of

CF = I-e(G,I)+g—I+%(n—|+1)(2—|—1)
< %(n—l)(g—l)Jrl-e(G,l)

is possible. Since the congestion is one, the theorem follows. []

90 CHAPTER 3. THEORETICAL ISSUES

Figure 3.15: lllustration of the dependence of the upper boundsvath n = 100,
e(G,l) = 2 and with reference to the bisection problem

1-1-MC ——

100, e(G,ly:

1024 |- MVarMC -+ -

512

256

128

64

32

20 24 28 32 36 40 44 48

upper bound on MC-bounds with n

Table[3.4 summarizes the upper bounds and Figuré 3.15 illustrates the upper bounds
with n = 100,e(G,l) = 2 andM = 50. The figure clarifies once more the superiority

of the VarMC-bound when compared to the 1-1-MC-bound and the superiority of the
MVarMC-bound when compared to the VarMC-bound and 1-1-MC-bound:

If | =50= 3, the edge-expansion corresponds to a bisection width, so all upper bounds

which are based on the edge-expansion have to be identical and correspond to the exact
value. Then, whet is decreasing the differences between the abilities of the MC-
bounds to react on bottle-necks inside graphs are illustrated in the figure. However,
we have to annotate that while the upper bounds on the 1-1-MC-bound and VarMC-
bound are realistic, the upper bounds on the MVarMC-bound are very optimistic and
only hold, if the graph is very dense except for the one cut which corresponds to the
edge-expansion.

Chapter 4

Computation of the Lower Bounds

Until now, we have not commented on how we can efficiently compute the MC-
bounds. We have already presented computational results mainly in §ection 2.3 with-
out giving details of how the bounds are computed. So in this chapter we will present
different methods which can be used for the computation of the MC-bounds.

The standard-method is using linear programming. So in the Sgctibn 4.1 we will
present and compare the linear programs which we have used. In Section 4.2 we
will present cost-decomposition based methods which can be used for computing the
MC-bounds and finally in Sectidn 4.3 we will present an approximation algorithm for
it. At the end of this chapter we will present the results of some experiments which
compare the three methods.

Of course, the faster the methods are the better they are. However besides of the run-
ning times, the linear programming approach has two disadvantages, which hopefully
can be avoided by using the other approaches. These two disadvantages are on the one
hand the fact that the linear programming solver is very memory consuming. For ex-
ample, the computation of an MC-bound for the DeBruijn graph of dimension 9 with
CPLEX requires more than 2 GByte of main memory. Therefore, if we want to tackle
graphs of this size we need to use methods which require less memory. On the other
hand we will use a branch&bound approach for the computation of the exact cut-size.
In a branch&bound approach there is always a valid upper bound and the computa-
tion of a lower bound in a specific subproblem can be stopped if the lower bound is
bigger than the upper bound or if it becomes clear that the lower bound will not reach
the upper bound. Therefore, we want to have methods that deliver lower and upper
bounds on the current MC-bound while they compute this bound. These lower and
upper bounds on the MC-bound directly correspond to primal and dual values of the
linear programs. Unfortunately, in a run of the barrier algorithm or other interior point
algorithms the actual primal and dual solutions are infeasible for a long time. So, we
cannot trust them and cannot prune the computation of the MC-bounds.

Consequently, beside of the running time we hope that the cost-decomposition method

91

92 CHAPTER 4. COMPUTATION OF THE LOWER BOUNDS

and the approximation algorithm are less memory-consuming and deliver feasible pri-
mal and dual solutions more quickly.

4.1 Linear Programming

The use of linear programming for solving multicommodity-flow problems is a stan-

dard method. One side-effect of the linear programming formulations is that they di-
rectly prove that the computation of the MC-bounds can be done in polynomial time.
Furthermore, they allow the use of highly tuned software-packages for solving the
problems, e.g. CPLEX.

The main idea which should be taken into account as regards the linear programs is the
fact that any MC-solution is scalable without changing the bound. This means that we
can change all flows, source-strengths, congestions and the Cut-Flow by any factor.
So, we can fix the congestion to be at most one and the cost-function of the linear
program corresponds to the maximization of the Cut-Flow.

If we use the notation of the general graph partitioning problem (Defirfitign 1.3) with
vertex- and edge-weights, we get the following linear program for the 1-1-MC-bound:

maximize N(N—M)-s

subject to YuveV,u#v: s-g(u)gv) — h(u,w,v) —h(u,v,w) =0

{vw}eE

V{v,w} € E: ;h(u,v,w) +h(u,w,v) < f({v,w})

With variabless € R andh € V3 — Rsq. The first constraints ensure that every
destination-vertex receives the right amount of commodities, and the second con-
straints provide a congestion of at most one. The linear progranrmas 2 variables

(with n=|V| andm = |E|) andn(n— 1) + m constraints.

For the VarMC-bound we have a linear program of

maximize (N—M)- Y v S(u)

subjectto \eviusty: s(u) - g(v) — h(u,w,v) —h(u,v,w) =0

{vw}eE

V{vw} € E: Z/h(u,v,w) +h(u,w,v) < f({v,w}).

It hasn(2m+- 1) variables anah(n— 1) +mconstraints. And finally, the following lin-
ear program can be used for the MVarMC-bound:

4.2. COST DECOMPOSITION 93

Table 4.1: Sizes of the linear programs for the MC-bounds

| | variables| constraints | non-zeros |
1-1-MC | 2nm+1 nn—1)+m| n(n—1)+2m(3n—2)
VarMC | 2nm+n nin—1)+m| n(n—1)+2m(3n—2)
MVarMC | 2nm+n? | 2n(n—1)+m | 2n(n— 1) +2m(3n—2)
| al | ohm | o(n%) | o(nm) |

maximize S, > wS(V,w)g(w)— (M —g(v))s,

SUbIECtto v veviugv: suv)-gv)— Y h(u,wv) —h(u,v,w) =0

{vw}eE
V{v,w} € E: Z/h(u,v,w) +h(u,w,v) < f({v,w})
ue

YuveV: s —s(uv)>0

It hasn(n+ 2m) variables and 2(n — 1) + m constraints.

Table[4.1 summarizes the sizes of the linear programs. In addition to the number of
variables and constraints, the number of non-zero entries in the constraint-matrix is
given. The table illustrates that the sizes are asymptotically identical for all three MC-
bounds. Therefore, we do not expect different orders of sizes for the costs of solving
the linear programs. However since specific implementations of linear program solvers
behave differently on different linear programs, we cannot predict the differences be-
tween the costs of solving the linear programs. On the other hand the fact that the
number of variables and non-zeros dependmmvolves that the computation of the
MC-bounds will last clearly longer on dense graphs.

As we have stated in Sectipn P.3, we used the linear programs presented above for
the experimental results presented there. The barrier algorithm of CPLEX was used in

the calculation of these results. The use of primal or dual based simplex algorithms

lead to running times which are orders of magnitude larger than the use of the barrier

algorithm.

4.2 Cost Decomposition

Another way of computing the MC-bounds is the use of cost-based decomposition
techniques, which were originally developed for the min-cost multicommodity flow
problem. The idea is to relax the capacity constraints (another term used in literature
is bundle constraingsin order to decompose the problem into a set of shortest path

94 CHAPTER 4. COMPUTATION OF THE LOWER BOUNDS

problems. In the following we will only discuss the VarMC-bound.

In this section we will develop an approach on this problem which uses an integration
of column generation and Lagrangian relaxation. We assume that the reader is familiar
with these two concepts. As an introduction, we refer you to [AMO93]. The following
methods are based on the linear program of the VarMC-bound as it has been presented
in the Section 4l1.

4.2.1 Column Generation

In principle, a path-based formulation could be be used to build on a column generation
approach. This would mean that we would not have variables for every edge and
commodity, but that we would have variables which represent whole paths. However,
taking into account the large number of source-sink pairs that we are faced with, when
computing the VarMC-bound (it is abonf) we would have to cope with an LP with a
large number of constraints. For example, for the DeBruijn of dimension 9 the simplex
tableau would have more thatf2ows. These are exactly the same rows as they appear

in the linear programs of the preceding section and we have already seen there that we
have®(n?) constraints.

In contrast to the number of columns that can be controlled firstly by generating
columns with only negative reduced costs and secondly by successive matrix com-
pressions, such a huge number of rows cannot be handled efficiently. Thus, in practice
we cannot afford to generate columns that represent paths in the graph, even though
this would be advantageous with respect to the total number of columns that have to
be generated in order to achieve a near optimal solution. For the same reason, a master
problem consisting okey pathsandcycleswhich was proposed in [BHJS95] cannot

be handled efficiently using our application. Thus, we will use a master problem that

is based on trees.

LetT, = {tv,1,~--,tv,|Tv\} denote the set of all trees rootedvaand routing the com-
modities from this sender to its sinks. Defifie=J, Ty and letvve V,t € Ty :cyt(e) =

> wet(e) 9(W) denote the congestion on an edge E with t(e) being the set of all ver-
tices which are “under” the edgeinside the tree (it ¢ E thent(e) = 0). Then, the
problem can be written as

minimize C
subjectto f(e)-C— S S s(ty)-cyi(e) >0 VeecE
veViyeTy
st) >0 WweViteT,
(N-M) 3y 5 s(t) >CF
veVteTy

Note that we have used a fixed Cut-FI@¥ in this formulation and that we minimize
the congestion instead of fixing the congestion and maximizing the Cut-Flow as we
have done in the preceding section.

4.2. COST DECOMPOSITION 95

Starting with a subset’ ¢ T, we solve the reducenhaster problem Using dual
variablesre < 0 for the capacity constraints, we generate new columns with negative
reduced costs by solving the subproblem

minimize duev Z{v,w}eE(h(u»V; w) +h(u,w,v)) - (_r{v,w})
subjectto ¥ e h(U,w,v) —h(u,vw) =g(v) vuveV
h(uvyw) >0 YueV,¥{vw} €E.

Note that the subproblem decomposes msingle-source shortest path problems with
non-negative edge costs. We can prune the search inside the branch&bound, if the
congestion of the master problem is small enough.

The process of generating columns and solving the master problem is iterated until we
can no longer compute trees with associated negative reduced costs or until a master
iteration limit is reached. The number of columns in the master matrix is controlled
by a frequent compressing step that reduces the number of columns with respect to
the current associated reduced costs. However, our experiments have shown that the
compression must not be carried out too aggressively, because we need a significantly
large number of columns in the master matrix in order to keep the total number of
master iterations within reasonable limits. This is a clear drawback of the tree-based
formulation of the master problem which results in a relatively high solution time for
the master problem.

4.2.2 Lagrangian Relaxation based Column Generation

Thus, we try to keep the number of master iterations to a minimum by adding a whole
set of columns between two master problem solutions. The only question that remains
to be answered is how meaningful new columns can be generated without the help
of new dual variables. We use Lagrangian relaxation for this purpose, firstly on a
min-congestion formulation of the problem, and secondly, on a max-Cut-Flow repre-
sentation. The idea to use Lagrangian relaxation to generate new columns is motivated
by the fact that the optimal Lagrangian multipliers in the min-congestion formulation
are also optimal dual values for the column generation procedure and vice versa.

The whole procedure works as follows: we start a subgradient optimization of the La-
grangian dual and we achieve an upper bound for the Cut-Flow or a lower bound on the
congestion, respectively. At the same time, we feed the tree-flows which are computed
in the successive Lagrangian subproblems into the matrix of the master problem. If the
upper bound on the maximum Cut-Flow is smaller than a specific threshold or if the
lower bound on the minimum congestion is greater than a specific threshold, respec-
tively, we have proved that the VarMC-bound will not allow the current search node
to be pruned and we can therefore branch right away. Otherwise, we solve the master
problem and achieve a feasible flow which yields an upper bound on the congestion.
If we achieve a flow with an associated congestion that is small enough, we can prune

96 CHAPTER 4. COMPUTATION OF THE LOWER BOUNDS

the current search node. Otherwise, we must restart the Lagrangian subroutine again
with the current dual values. This process is iterated until we find optimal flows or
until an iteration limit is reached.

To complete the description, we will briefly present in more detail the two Lagrangian
relaxations which we used to generate columns in a column generation framework.
By relaxing the capacity constraints in the linear program of the VarMC-bound using
Lagrangian multiplierse < 0, we get a max-Cut-Flow formulation of

maximize Suev S(U) + 3 puwy e (MU, V, W) +h(U, W V)T gy
subjectto ¥ rywyee h(U,W,v) —h(u,v,w) =s(u)g(v) vuveV
h(u,v,w) >0 VueV,v{vw} € E
Or, we can aim for a min-congestion formulation of
minimize dueV z{\I,W}GE(h(uv Vv, W) +h(u,w,v)) - (_r{v,w})
Z{V,W}EE h(U,W,V) - h(U,V,W) = S(U)g(V) VU,V eV
subject to h(u,v,w) >0 YueV,v{vw} € E
>vs(v) =CF

In both cases, we need to soluesingle-source shortest path problems again. Thus,
both formulations allow us to use the shortest path trees which were computed in the
Lagrangian subproblems to generate columns for the master problem. Note, that both
Lagrangian subproblems may be unbounded. This problem is overcome by setting
upper bounds ta(v) (for example the out-capacity @) or to C (for example 11-
branch), respectively.

The Lagrangian multipliers can be updated by different subgradient algorithms using
different formulas for the computation of the new search direaffonLet s denote

a subgradient in iteration We can setl! = & (pure subgradient); ad' = adt~1 +

d, whereby 0< a < 1 is fix (so calledCrowder rule[Cro76]); or we may setl! =
ald=t + &, with o = ||'||/||dtL|| if (§)Td!"! < 0, anda = O otherwise hodified
Camerini-Fratta-Maffioli rule[CEM75]); another possibility is settind' = ad'~! +
(1-a)d, whereby 0< a < 1 is fix (so calledvolume AlgorithniBAQQ]). All variants

will be evaluated in the Sectidn 4.4.

4.3 Approximation Algorithm

4.3.1 Literature and ldea

There are a couple of results that deal with the approximation of multicommaodity flow
problems. In the following we give a small survey on the most important results for our
application. There are a lot of different versions of multicommodity flow problems.
For our application of computing the MC-bounds, thaximum multicommodity flow
problem and thenaximum concurrent floproblem are the most interesting ones since

4.3. APPROXIMATION ALGORITHM 97

they have the biggest similarity to the computation of the MC-bounds. In both prob-
lems a set of commoditid€ (which are pairs of vertices with a demaaig and a bound

on the congestion for every edge is given. In the maximum multicommodity flow prob-
lem the sum of all flows of the commodities has to be maximized, i.e. ¥paxs(k).

In the maximum concurrent flow problem a specific quntaf all commodities has to

be satisfied, this quota has to be maximized, i.e. maith vk : s(k) = ady.

Obviously, the 1-1-MC-bound can directly be expressed as a maximum concurrent
flow problem. The VarMC-bound is a mixture of the maximum multicommaodity flow
problem and the maximum concurrent flow problem: Some commodities from the
same sender are connected so that they must be satisfied with the same portion (i.e.
maximum concurrent flow), while the sum of all these portions has to be maximized
(i.e. maximum multicommodity flow).

One of the most recent work on these problems is done by Fleischer [Fle00]. In con-
trast to our problems these results concern directed graphs. For the maximum multi-
commodity flow problem they give amapproximation algorithm in tim@*(s~2m?).
Notice, that the running time is independent from the number of commodities. For the
maximum concurrent flow problem an algorithm with running ti@ige~?m(m+Kk))
is given. The notatio®* is theO-notation where logarithmic factors are omitted.

Algorithm 1: Informal approximation Algorithm for the maximum multicommodity
flow problem due to Fleischer
1: initVee E: I(e) < 9;
2. repeat
3: for all commoditiek do
P < shortest path for commodityaccordind (e);
if costP) small enougtthen
includeP into solution;
updatd (e);
end if
9: end for
10: until finished;
11: scale solution such that congestion is fulfilled;

© N o gk

Both algorithms are based on similar ideas, we present the ideas for the maximum
multicommodity flow problem: Algorithm]1 illustrates the main procedure of the al-
gorithm. The solution is built iteratively, i.e. we start with no flow at all and add
commodities with their paths to the current solution. This is done again and again
until a specific end-criterion is reached. Furthermore, edge-lengths are used where
heavily used edges have a big length. In every iteration the commodity which has
lowest cost is taken with an according path and this commodity with the path is added
to the solution and the edge-lengths of the used edges are increased accordingly. The
cost of a specific commodity with its path is the sum of the lengths of the used edges.

98 CHAPTER 4. COMPUTATION OF THE LOWER BOUNDS

Furthermore, by relaxing that not the commodity with the path with minimal cost has
to be used but a commodity with a path with nearly minimal cost can be used, the
running time is improved.

The adaption of this algorithm to the VarMC-bound is done by not routing only one
commodity with its path in every iteration but by routing all the commodities from one
sender to all destinations according a shortest-path tree in one iteration. The adaption
of this to the MVarMC-bound is done by allowing to use parts of the shortest-paths
tree (which corresponds to parts of the set of destinations). The selection of the best
part is done according a specific cost-term.

4.3.2 The Approximation Algorithm

In this section we present the approximation algorithm for the VarMC-bound and
MVarMC-bound. As we will see in Chaptef 5 the bounds which have to be computed
inside the branch&bound algorithm are not the clean VarMC- or MVarMC-bounds as
they are define in Chaptef 2 but a kind of mixture of these variants has to be computed.
Due to this we present an approximation algorithm for a more general problem. It
will be obvious that the VarMC-bound and MVarMC-bound are covered in this more
general model.

The following table shows the input of a bound computation:

G=(V,E) the given directed graph

g:V—N vertex-weights

f:E—R>p edge-weights

K =KiUK> set of commodities

0:K—-V origin of commodities

D:K —2¥ destinations of commodities

F1:Ki — N Cut-Flow-factor for VarMC

F K> — N negative Cut-Flow-factor for MVarMC

Additionally, we useKa v := {k € Ka|ox = vAw e Dy} with ae {1,2}. We point out

that we use a directed graph in this model. However, since in the graph-partitioning
problem the graphs are undirected, we assume that any edge is either present in both
direction in the graph or it is not present at all. The following formulation of the
bound-computation as a linear program uses variables:

s1:Ki— R>p sender-strength for VarMC-commaodities
S Ko xV —R>o sender-strength for MVarMC-commodities
$:Ky—R>p maximal strength of MVarMC-commodities

hi2:V xE —R>o flow of sourcevon an edge

4.3. APPROXIMATION ALGORITHM 99
Primal Formulations

Using this the linear program is:

maximize § Fix-si(k) + Y ov-S2(k,v) — Fok- S (K)

keKq keK, veDy
with
VecE: Svevhi(v.e) +ho(vie) < fe

WWEV,VEW: Feo yw hi(v,€) —ha(v,€)
+ ze:(w,u) hZ(V, e) - hl(V7 e)

Y

Ow ZKE Kyvw Sl(k>
+Ow ZkEszv_’W SQ(k7 W)
Vk € Ko,w € Dy : s(kw) < §(k)

Throughout this section we use a notation with underscore indices if variables are
involved which are part of the input (e.@y). In contrast to this we use a functional
notation if variables of the linear program or of the algorithm are involved &(§)).

It is clear that the above formulation of the problem includes the VarMC-bound and
the MVarMC-bound. For example, if the VarMC-bound for a bisection problem has to
be computed we hau€, =0, Vk: Dy =V AFyx = 5.

The above primal linear program is edge-based. It can also be expressed in a tree-based
form. Then we use

Tey: setof all trees with root, and destination® with V C Dy

Additionally, we useg : 2 — Rxg with gy := Syey Qv andg: Ty X E — R>o with
Ote ‘= Yvev .9 With Vi e is the set of vertices which uses edgor their path inside
treet. Only two variables are necessary:

s1: Tyy — R0 sender-strength, withe K1,V CV
s2: Tyy — R>0 sender-strength, witke Ko,V CV

The linear program has the form:

maximize Z Frk Z si(t) + z Z (g7 — F2k) S(t)
keKy telkp,

KEK2VCDy te KV

with Vec E : Z Ore(si(t) + (1)) < fe
te KV

100 CHAPTER 4. COMPUTATION OF THE LOWER BOUNDS

Algorithm 2: Approximation algorithm for the MC-bounds
1: VecE:l(e) <&

2: Init @; /laccording Lemma 4.1
3: repeat
4. forall ke Kdo
5: t «— RelShortPath(k,l);
6: while cost(t,k) < min{1,(1+¢€)a} do
7 route(k,t,l,h); //realize flow according t
8: t «— RelShortPath(k,l);
9: end while
10: end for

11: G« a(l+e);
12: until & > 1;
13: scale solution such that congestion is fulfilled;

Dual formulation

Using the tree-based primal formulation, the following dual form arises:

minimize) fel(e)
2

with Vk e Kq,t € Tk,Dk : > ect gLeI (e) > F17|(
Vke Ko,V C Dy with gy > Pkt € Tyyt SectOtel(€) > Gy —Fak

Notice, that the restrictions are equivalentwioc Ky @ ¥cp, gvdist () > Frx and
Vk € K2,V C Dy with gy > Foi @ 3 ey Gudistcv(l) > gy — Fax with disty(l) is the
distance of vertexy to vertexv corresponding to the length-functibfe).

The Algorithm

Algorithm[J is the approximation algorithm for the VarMC- and MVarMC-bound.

The initial value ofa has to be smaller than the minimal cost of any routing tree. The
function RelShortPath(k,l) computes the shortest-path-tree from sowicéo

all destination®y; additionally, ifk € K a subseV C Dy with gy > F»x is computed
and used as set of destinations such tuet (t,k) is minimized. Following the dual
linear program, we use

1
cost(t,k) := Wee Otel ()

4.3. APPROXIMATION ALGORITHM 101

Algorithm 3: route(k,t,I,h): realization of a routing inside the approximation
algorithm

1: @< MiNgcy %; whereh is the flow in opposite direction than in

2: forall ec Edo

3: Ae<— min{h(gk,e),(pg[,e};

4: Do @ e— D,
5 if Ae—DAe>0then
6: I(e) — 1(e)(1+e82e);
7. endif
8: h(o€)+ = A
9. h(ok,e)— =Ag;

10: end for

with

N L Fik if ke Ky
vkt e Tv! factor(t,k) := { gy — Pk ifkeKo.

Therefore, the computed tréevith minimal costs corresponds to that tree whose vio-
lation of the constraint in the dual formulation is the “biggest”.

The realizatiorroute(k,t,l,h) of a given treet, commodityk, edge-lengths
and flowsh is done by Algorithnj B.

Table[4.2 illustrates a run of the algorithm, in this example the MVarMC-bound is
computed for a 3 -partitioning problem and the graph is a 6-node-circle. Every row in
the table corresponds to a commodity which is realized witlidbiée() -procedure.

The column ¥ gives the sender-vertex of a realized flow, “dest.” is the set of destina-
tions, "¢’ is the amount of flow which is realized according Algorithin 3, “obj.” gives
the primal value which is obtained after the actual commodity is routed l&fwhtf)”

gives the length-function of the corresponding edge Witaw) - & = I(v,w). You

can see that the solution which will be computed by the algorithm corresponds to the
one which is illustrated in Figufe 4.3. However, the approximation algorithm makes
a “mistakes” by its first realized routing. All subsequent routings correspond to the
illustrated one and the objective approaches three, which is the exact MvVarMC-bound.

This example also demonstrates, that the resulting MC-solution depends on the order-
ing of the vertices in the graph. If the graph in the example would be ordered, such
that the vertices 0, 2, 4 would be the first, the algorithm would produce an instance
where these three vertices send commodities of unit size to their neighbors. Doing so,
the primal value would already be optimal after the first round.

102 CHAPTER 4. COMPUTATION OF THE LOWER BOUNDS

Table 4.2: Approximation of the MVarMC-bound for the 6-node-ring wita 3

v|dest.| @ | obj | I'(0,1) [1'(1,2) | I'(2,3) | I'(3,4) | I'(4,5) | I'(5,0)
0| 1,5 | 1.0/ 1.00 1.10 1.00 1.00 1.00 1.00 1.10
1/0,23/05]|1.33 1.16 1.10 1.05 1.00 1.00 1.10
312,45|0.5]|2.00 1.16 1.10 1.10 1.10 1.05 1.10
0]1,45]|0.5]| 2.00 1.21 1.10 1.10 1.10 1.10 1.21
1/0,2,3/05]|2.00 1.27 1.21 1.16 1.10 1.10 1.21
31245|05]| 2.40 1.27 1.21 1.22 1.21 1.16 1.21
0/1,45| 05| 2.33 1.34 1.21 1.22 1.21 1.22 1.33
1/0,2,3] 05| 2.29 1.40 1.33 1.28 1.21 1.22 1.33
31245|05]| 257 1.40 1.33 1.34 1.33 1.28 1.33
0
1
3
0
1
3
0
1
3

1,45/ 05| 250| 1.47 1.33 1.34 1.33 1.34 1.46
0,23 05| 244 1.55 1.46 1.41 1.33 1.34 1.46
245 05]267| 1.55 1.46 1.48 1.46 1.41 1.46
1,45/ 05| 260| 1.63 1.46 1.48 1.46 1.48 1.61
0,2,3| 05| 255| 1.71 161 1.55 1.46 1.48 1.61
2451 05| 273 1.71 161 1.63 161 1.55 161
1,45/ 05| 267 1.79 161 1.63 161 1.63 1.77
0,2,3| 05| 2.62| 1.88 1.77 1.71 1.61 1.63 1.77
2451 05| 277| 1.88 1.77 1.80 1.77 1.71 1.77

Table 4.3: lllustration of the resulting flows of Taple}4.2

Cut-FlowCF =3-2=6
congestiorC =2
— bound=3

VERY
N

4.3. APPROXIMATION ALGORITHM 103

Correctness of the Algorithm

Now, we look at the correctness of running time of the algorithm. The first lemma
shows a valid initial value fo@:

Lemma 4.1 .
An initial value ofd with & = 6min{mink€Kl EFﬂ,minkeK2 (1— @) } is a lower
1k 9oy
bound on the cost of every routing with edge-lendgths
Proof:
Firstly we look atk € K1, let 3 be the minimal cost then
1 .
B = min— gvdistcy(1(0))
keKy F]_’k vEDy
>d min 9ox
kGKl Fl,k
Accordingly, fork € K let 3 be the minimal cost then
1
= min min ———— distcy(1(0
B KCKay oDy 07 — 7kvg/gv tk.,v(0))
> dmin min _W
keKavepy, Oy — P2k
= dmin
keKo 1— @
9oy,
Putting this together proves the lemma. [

The next lemma shows that every realization usmgie() generates not too much
and not too less load on some edges:

Lemma 4.2

In every iteration where the current flow is changed according a tree t
a)Veect: Ne—Ne < fe

b)Jdeet: Ae—De= fe

holds.

Proof:

Let k be the commaodity which is realized by treeWe look at an edge, leth(e) be
the flow of commodityk of the already computed solution on edg@hich goes in the
opposite direction as it goes in tree

The algorithm calculatee — Ae = @0t e — 2e = @Gt e — 2Min{h(€), g e}. SO

104 CHAPTER 4. COMPUTATION OF THE LOWER BOUNDS

caseh(e) < @gte: Thenle—Ae = @gt e — 2h(€) < 2h(e) + fe— 2h(e) = fe.
caseh(e) > @gte: ThenAe—Ae = Qe — 200 e = —@0te < fe. (clear, sincep > 0

andgt e > 0).
Now look at edges with minimal %. Then@g e = 2h(e) + fe, the first of the two
above cases enters and we have equality instead of lower-equal. []

The next lemma shows that we get a feasible flow using a scaling depending on the
values ofl (e):

Lemma 4.3
Let X () := maxl(e). Then we get a feasible flow if we use a scaling factn% ofith

o = logy ¢ 4.

Proof:

Let T be the set of all trees which are routed inside the algorithmALg} be the flow
on edgee regarding tre¢ according to Algorithnj [3. We have to show thé& e E :

c_ltheT DNe(t) — Ag(t) < fe. It we look atl(e) and use/0 < x < 1:(1+ex) > (14¢)X

we have

VecE: I(e) > 6I‘It(1+sw)
De(t)—De(t)

> 6|_|t(1+ 8) e

5<1+€)%ZtAe(t)—Ke(t)

— I
= teere(t)_Ae(t) < feloglﬁg

SinceX; (I) = maxl(e) the lemma is proved.]

Looking at the given restriction of the dual linear program, we have upper bounds on
| (e) after the algorithm has terminated:

Lemma 4.4
Let be X := (1+ &) max{maxck, {FLk}, MaXek,{9(Dk) — Fox}}. At the end of the
algorithm X (1) < X; holds.

Proof:
Just before any edgeis used for the last time in realizing the flow of a trte@vith
eect), cosi(t,k) < 1 must hold. So, since e > 1, it follows thatl(e) < Fyx or resp.

4.3. APPROXIMATION ALGORITHM 105

I(e) < gy —F2k. Considering the last increaselgg) realizing the treg, the lemma
follows. u

The next two lemmas together give bounds on the goodness of the computed solution
of the algorithm.

Lemma 4.5
Using a(l) := min; cost(t,k), Xo = nmax{max(eKl{ng} MaXek,{F2k +1}} and
let 1(i) be the length function of the algorithm after i flow realizations. Then

a(l(i)=1(0)) > a(l(i)) — 8%z
holds.

Proof:
First look atk € K1. Then we have

_ 1
alli)-10) = i min

. 1 . .
© D Tactor g gy, & (e (O)

th e(le(i) —1e(0))

Ov - (disty(le(i)) —an)

k

. ng
= a(l(i))— 6nL2§i(F1k

min—————
kek; factor(t, k) 4

Secondly we look &t € K:

a()-1(0) = minmin min S g lleli) - 1e(0)

= Igg:(r;vrgltl)‘lk o — v;/ gvdistiy(le(i) —le(0))
> Igg:(rgvrrcngk T V;/ Ov(distcy(le(i)) —an)
> a(l(i)) — maxmax N5

keKoVeDy Oy — I:2,k
> a(l(i)) —dnmaxkk+1
keKy

Putting this together, the lemma is proved. []

Now:

106 CHAPTER 4. COMPUTATION OF THE LOWER BOUNDS

Lemma 4.6
Using 8 = X; - (X1%2) Y/, the final flow scaled by = g%, IS optimal with a
relative error of at mosBe.

Proof:

We prove the desired accuracy of the solution computed by comparing it against the ob-
jective valueD of a dual feasible solution, which our algorithm produces as a byprod-
uct, and which gives us a valid upper bound on the primal optimal solution ¥gjie

For any given length functioh: E — R, denote witha the minimal routing costs
of all commodities, i.e.o = a(l) = ming;cosi(t,k). Further, denote witld(l) the
dual objective value corresponding to the current choidg ioé.,D(l) = S .g fel (€).
Then, the optimal dual objective valuedgp: = min D(l) /a(l).

Consider iteration, and denote with(i), k, @, andt the current choice of the length
function, commaodity, scaling factor, and routing tree, respectively. For ease of no-
tation, we seti(i) = a(l(i)), D(i) = D(I(i)), anddisty(i) = disty(I(i)). For any
edgee € E, definels = max{A¢(i) — Ae(i),0}. Note, that in every iterationit holds

Me < @gte. Then,

D(i) = D(i—l)+SZrele(i_1>
< D(i—l)—l—SZ(Pgt,e'e(i_l)

= D(i—1)+¢eo- factor(t,k) - cost(t, k)
< D(i—1)+e¢q- factor(t,k)(1+¢€)a(i—1)

Denote withZ(i) the primal objective value (corresponding to the — possibly infea-
sible — flowsh) after the iterationi (Z(0) = 0). Obviously, it holdsZ(i) > Z(i —

1) + factor(t,)@« @< ZLZ05 Thus,D(i) < D(i— 1) +&(1+€)(Z(i) — Z(i -
1))a(i — 1), and therefore

D(i) <D(0)+€(1+¢) Z (Z(i)—Z(i—1))a(i—1). (4.1)
1<h<i
Consider the length functiol{i) —1(0) = I(i) — &. Then, for the dual objective we

haveD(l(i) —1(0)) = D(i) — D(0). For the primal objective we hawg(l (i) —1(0)) =
a(i) — 0Xp. Hence,

D(1(i)~1(0)) _ D(t) - D(0)
2B G(I1)-1(0)) = a(i)— %
And thus,
g(1+¢)

G(i) < OXo +

Z (Z(h)—z(h—1))a(h—1) (4.2)
Pt 1<R<i

4.3. APPROXIMATION ALGORITHM 107

Denote withA(i) the right hand side of inequality 4.2. Then,

Al) = A(i—1)+£(%;€)(2(i)—Z(i—l))a(i—l)
< A(i—l)(l+M(Z(i)—Z(i—l))) sincea(i—1) <A(i—1)

pt

< Ali—1)e Zon Z0-20-1)

e(14+¢)Z(i)

= A(O)e “m since Z0) =

since 14+x < e€vx e R

Now consider the last iteratian Then,a (i) > 1. With A(0) = &X, we get

e(1+€)Z(i)

1<a(i) <A(i) < dXe “ont (4.3)
And thus Z, 1
i)> _OPt |
Z(i) > e1te) In e (4.4)
In order to getZ > ZoptsllfE In(1+¢€) we look at
Zop’[1 . 1—8
e1+e) In % ozopt€(1+s) In(1+¢) (4.5)
1
0 = 4.6
< So(1+£)902) (46)
with o = IogHs% (4.7)
& 3 = Xi(XgXo) Y/E (4.8)
So we have
Z(i) 1-¢ Z(i)
5 > Zopt8(1+8) Inl1+¢e = 5 > Zopt(1—3¢), (4.9)
forall € < 1. n

Therefore, so correctness of the approximation is shown. It remains to show the run-
ning time:

Lemma 4.7
The Algorithn P runs in time @e~2n¥), if g(V) = poly(m) and vk : F = poly(m).

Proof:
Obviously, the running time of the algorithm is dominated by the calculation of the

108 CHAPTER 4. COMPUTATION OF THE LOWER BOUNDS

shortest path trees. Lgtbe the number of tree-computations without a following
route() , and letqbe the number of tree-computations with a follownogite()

Then the total algorithm needs tir®(p+q) Tspt) whereTspis the time for computing

a shortest-path-tree.

Firstly, we look atp: The initial valuedg of & is known from Lemma 4]1. And at the
enda < (1+¢) is clear. So, for the numbéof iterations of the outer repeat-until-loop
holds

do(1+¢) < 1+¢

1+¢
= 1 < Iogl+sai:0*(e‘2).
0

At a first glance we havp = O*(¢~2|K|). But, by ordering the commodities according
their origin and using the fact that succeeding calculations of shortest-path-tree from
the same origin can be done together, we haveO* (s~2n).

Secondly, we look at: At the beginning we havee: | (e) = 3, and according Lemma
at the end of the algorithive: | (e) < X; holds. Furthermore, in everpute()
there is at least one edge witte) =1 (e)(1+¢). So we have

S(1+e)¥m < X
X
= g = m|091+s€120*(5_2m)

Finally, with m = Q(n) and Tspt = O(mlogm) using the Dijkstra-algorithm, a total
running time ofO* (e~2n?) is shown. n

The following theorem sums up the results:

Theorem 4.1
Algorithm[2 is able to compute arapproximation of the VarMC-bound and MVarMC-
Bound in time O(s~2n?).

4.3.3 Implementation Details

Three main practical improvements have been suggested for approximation algorithms
for multicommodity flow problems, see e.g. [GOPS98, Rad00, Fle00]:

e Firstly, it is suggested to use a better estimation foretivnich is used in the al-
gorithm instead of using the theoretical approach. This makes sense if you want
to compute a solution with a given maximal error as fast as possible. But in our
context we have to select anwhich fits best for the branch&bound algorithm,
this fitting is a practical trade-off and we will have to carry out experiments in
order to quantify the best anyway. Therefore, this suggestion is of no use for
us.

4.3. APPROXIMATION ALGORITHM 109

e Secondly, in[[Rad00, Fle00] it is suggested to use a different length-function-
update: Instead of usirige) — I (e)(1+ sfée), as itis done in line 6 of Algorithm

, you can also uske) — I(e)esfée. This modified length-function-update does
not change the analysis of the algorithm but it is reported that the algorithm
behaves better.

e Thirdly, it is proposed to use a varialan the realization of the actual routing
tree instead of the fixeglas it is given in the Algorithi|3 (line 1). This sugges-
tion comes from approximation algorithms for multicommodity flow problems
previous to[[GK938] and [Fle00] which work slightly different. There it is sug-
gested to choose such that a specific potential function is minimized. This
corresponds to a minimization of the dual value of the problem. However, in
our algorithm it is not possible to efficiently compute thevhich minimizes the
dual value. Instead, it is possible to compute ¢ghehich maximizes the primal
value; so we have tested this variation.

Beside these suggestions we present another practical improvement of the approxima-
tion algorithm, we call itenhanced scalingDuring the algorithm we obtain for each
commodityk a flow h(ox) and also a contribution to the Cut-Flow Bfk). In order

to construct a feasible flow, instead of scalingtdth) andF (k) equally as it is done
according to Lemmp 4.6, we could also set up another optimization problem to find
scalars\(k) that solve the following LP:

Maximize S A(K)F (k)
subjectto SiA(K)(hi(ok,e) +hp(ok,e) < fe VecE
AKk) > 0 vk

Like that, the bound obtained can be improved in practice. However, this gain has to
be paid for by an additional computational effort that, in theory, dominates the overall
running time. So the question how often we use this scaling is a trade off. Experiments
have shown that using this scaling after every 100th iteration is a good choice. Notice
that we use this scaling only in order to get a feasible solution value; the primal solution
which is used while the algorithm goes on is not changed. Indeed, we have also tried
to take over the scaled solution into the further flow of the algorithm, but this variant
performs quite bad.

Figure[4.1 shows the effect of the three different improvements. In this example the
VarMC-bound for the bisection-width of the DeBruijn graph of dimension 8 was com-
puted ance = 0.1 was used. We have carried out similar tests with a couple of dif-
ferent settings, so we can say that the behavior in Figufe 4.1 is typical. It shows the
error which comes from the difference of the actual primal and dual solution of the
algorithm depending of the running time. For the application in a branch&bound algo-
rithm we can stop the calculation as soon as the primal or dual value reaches a specific
threshold, so the quality over the whole running time is of interest.

110 CHAPTER 4. COMPUTATION OF THE LOWER BOUNDS

Figure 4.1: Comparison of different practical improvements of the approximation Al-
gorithm

0.04

EoAN. T T T T T T
; : : | : normal —+—
; @ 3 3 3 3 3 best phi ---x---
. A T I T length fct. ------ |
0.035 CR Y % % ; % enh. scaling -8
0.03 —
S
6 H t‘\ ;:‘ H
0.025 | B R ey u
0.02 f e g _
0015 ; ; ; ; ; ; ;

200 400 600 800 1000 1200 1400
seconds

The main result is that the improvement of the enhanced scaling, as it is described
above, generally gives the best results over the total run of the algorithm. We have also
carried out experiments with all different combinations of the three improvements.
But no combination is as good as the variant with enhanced scaling only is. Therefore,
in all following experiments we use this variant. By the way, the results which are
presented in Figufe 4.1 also show, that the real €rodthe bound which is computed

with the approximation algorithm is much smaller than ¢hee have entered into the
algorithm.

4.4 Experimental Evaluations

In this section we present experimental results regarding the different methods for
computing the MC-bounds. Firstly, we will compare the different settings for the cost-
decomposition approaches. Secondly, we will present the results of the experiments
that we have carried out in order to quantify the tedfstr the approximation algorithm
when itis used inside the branch&bound algorithm. And thirdly, we show comparisons
of the different methods.

Most of the experiments already use the branch&bound procedure we have devel-
oped for computing exact solutions of graph partitioning algorithms. Details on this
branch&bound procedure are given in Chapler 5. Furthermore, the experiments con-
centrate on the bisection problem, since firstly, the problem is the most important one
and secondly, the results regarding the comparison of the three different methods are
typical for all graph partitioning problems.

4.4. EXPERIMENTAL EVALUATIONS 111

Table 4.4: Average running times in seconds and average number of search nodes using
cost-decomposition. (1): max-cut-flow-formulation, (2): min-congestion-formulation
pure subgr. Crowder mod. CFM Volume

graph time subp.| time subp. time subp. time subp.

RandPlan| 11318 _ 85| 6626 85| 24986 85 7752 85
RandReg| 1192 38| 589 28| 737 29| 568 32
(1) Random| 748 117| 694 119| 722 116/ 849 127
Randw | 151 11| 128 11| 134 10| 166 17
RandPlan| 2032 85| 1276 85| 1831 85| 1307 85
RandReg| 3768 64| 17320 299 4374 72| 17633 292
(2) Random|| 1776 160| 3366 239 1941 169 6211 418
RandW || 1710 183 1394 139| 1591 166/ 3661 588

4.4.1 Cost-Decomposition

In Sectiorj 4. we have presented cost-decomposition based methods for computing the
VarMC-bound. There we have presented the use of Lagrangian relaxation for the gen-
eration of new columns. This relaxation can be done with a max-Cut-Flow-formulation
or a min-congestion-formulation. Furthermore, four different methods for the compu-
tation of a new direction inside the subgradient algorithm have been presented: pure
subgradient, Crowder rule, the modified Camerini-Fratta-Maffioli rule and the Volume
algorithm.

Tablg 4.4 summarizes the results of the experiments which we have carried out in order
to compare all combination of the different possibilities. Each given value is the aver-
age of the results with 20 generated graphs. The details on the experiments are given in
Tableg A.1§-A.2B. The bold-faced entry in every row is the one with minimal running
time. In order to concentrate on the effect of the different cost-decomposition possi-
bilities, no variable fixing is used inside the branch&bound procedure (see Chppter 5
for more details).

Results

Both, the running times and the sizes of the search-trees produced by the various sub-
gradient algorithms and Lagrangian formulations differ considerably on the different
benchmark sets. Thus, it is not an easy task to draw valid conclusions out of these
experiments. As a tendency, the max-Cut-Flow formulation looks better than the min-
congestion formulation (except for the random planar graphs). And when using the
max-Cut-Flow formulation, the Crowder rule gives a good overall performance.

112 CHAPTER 4. COMPUTATION OF THE LOWER BOUNDS

Table 4.5: Times and sizes of the search-trees of the branch&bound algorithm using
the approximation algorithm with differests. (1): without variable fixing, (2): with
variable fixing.

€=0025 | €=0.05 =01 €=025 €=05 €=0.75
graph || time subp/ time subp/time subp,time subp|time subp, time subp.

RandPlan| 6395 461 2158 461 962 463K 587 557| 450 1466| 562 5273
RandReg| 2192 22| 1107 23 561 26| 196 37| 126 90| 163 489
(1) Random || 2620 113 525 114 228 118 98 139 80 280| 186 2188
RandWw || 1383 37 472 46| 176 62| 76 150 85 7788|1289 3859
RandPlan| 3013 412 1009 406 587 381 133 239 54 117 35 78
RandReg| 2186 22,1083 23 622 25| 181 34| 117 67| 160 173
() Random || 2249 107 465 108 209 111 83 121| 49 164| 47 328
Randw || 737 14| 283 17) 122 25| 44 54| 35 188 41 582

4.4.2 Approximation Algorithm

The best choice of for the use in a branch&bound environment is a trade-of If

is too large, the computed bound is too bad, and the number of subproblems in the
search-tree explodes. On the other hand,i& chosen too small, the computation of

the bound is too time consuming.

Table[4.5 shows the resulting running times and the number of subproblems of the
branch&bound algorithm using approximated bounds. The results are the averages
on all 20 instances for every set of graphs. The results without variable fixing show
the expected behavior for the choicesofThe smallek is, the smaller is the number

of search nodes. This rule is not strict when using variable-fixing: looking at the
random planar graphs, we see that less good solutions of the VarMC-bound can result
in stronger variable fixings so that the number of subproblems may even decrease. The
table also shows that the effects of variable fixing are different for the different classes
of graphs and also for changii{g. Altogether, the experiments show that settirtg

0.5 only is favorable.

4.4.3 Comparison of the different Methods

Finally, we give a comparison of the results of the branch&bound algorithm with vari-
able fixing using the following three different methods for computing the VarMC-
bound:

1. Standard barrier LP-solver (CPLEX, Version 7.0)
2. The approximation algorithm with= 0.5 and enhanced scaling

3. The cost-decomposition routine using the max-Cut-Flow formulation and the
Crowder rule.

4.4. EXPERIMENTAL EVALUATIONS 113

Table 4.6: Average running times (seconds) and sizes of the search-trees using the
different methods for computing the VarMC-bound.

CPlex Approx. Cost-Dec.
graph || time subp.| time subp.| time subp.

RandPlan| 74 7| 54 117 | 889 26
RandReg| 993 21| 117 67 | 557 28
Random | 350 99| 49 164| 612 106
RandwW 30 9| 35 188| 120 11

200
T8O o B]
) R ., B ks
T ————_l .- - . —. -PL
L e A .
200 [B B
BO | E e D
B0 | BB S
AQ oo B R
20 [B

subp.

F
ik
-
IIIiIIII

1008 T T T
900 ‘ - 1
800
700
600
BO0Q [fe e - e i ;
400 | S — B —— S ——— N —— -
300 - ‘
200 f
100 fo

seconds

RandPlan RandReg Random RandwW

Table[4.6 shows the results on the four different benchmark sets. In general, the ap-
proximation algorithm with the enhanced scaling gives the best running times, even

though the search-trees are largest. We also experimented with primal and dual sim-
plex algorithms, but they take much more running time and cannot compete with the

three approaches presented here.

Note that, with respect to the memory consumption, approximation and cost-decom-
position are preferable to the barrier algorithm: When the graphs we consider become
larger, for DeBruijn 9 of Shuffle-Exchange 9, for example, 2 GB main memory are not
enough to allow the application of CPLEX. Thus, it cannot be applied to compute the
corresponding bisection width, whereas both cost-decomposition and approximation
allowed us to proof a bisection width of 92 and 48, respectively.

114 CHAPTER 4. COMPUTATION OF THE LOWER BOUNDS

Table 4.7: Comparison of the different VarMC bounds with the semi-definite bound

Graph CPLEX Decomp. Approx. pSDP
Bound | Time || Bound | Time || Bound | Time || Bound | Time

Grid 10x11 11.00 13 || 11.00 54| 10.59 2 8.84 51
Torus 10x11|| 20.17 12 || 20.17 48 || 19.66 2| 17.33 47

SE 8 26.15| 485|| 25.69| 244 | 24.94 16 || 18.14| 943
DB 8 49.54| 613 49.05| 322| 46.95 21| 35.08| 1031
BCR m8 7.00 22 7.00 64 6.96 5 5.98 80

Moreover, recall from the formulation of the the master problem in Section 4.2, that the

cost-decomposition approach was especially designed to be memory efficient, which
makes it less competitive with respect to the running time. In any case, apart from
being more memory efficient, we observe that cost-decomposition does not allow us
to solve a generalized maximum multicommodity flow problem much faster than stan-

dard LP methods.

Finally, we present a comparison of the different methods for computing the VarMC-
Bound with a lower bound on the graph bisection problem based on semi-definite
programming. In Tablé 47 the results are presented. The results show the power
of the approximation algorithm in the application of graph bisection. Its bounds are
nearly as good as the optimal bounds of the VarMC method computed with CPLEX
and much better then the semi-definite bounds. And the running times are clearly the
smallest ones of the four compared methods.

4.4.4 Summary

To sum up the results of the experiments, we feel the following main conclusions can
be drawn:

e The decomposition-approach gives nearly the same bounds as the bounds which
are computed with CPLEX. The computation time of the decomposition-approach
is longer on small instances and shorter on large instances.

e Surprisingly largee’s have to be used in order to get the best branch&bound
performance when the approximation algorithm is used.

¢ If thoseg’s are used, the computed bounds are visibly smaller than the optimal
bounds. However, the computation times are clearly shorter when compared to
CPLEX.

e Both alternatives to CPLEX are clearly less memory-consuming than CPLEX.

Chapter 5

Branch & Bound Algorithm

In this chapter we present the algorithm for computing exact solutions of graph par-
titioning problems. This algorithm is a branch&bound algorithm which uses the pre-
sented MC-bounds for the bounding of subproblems. We assume that the reader is
familiar with the concepts for branch&bound; for introduction we refer to [Mit70,
Kum87,1ba88].

In implementing a branch&bound procedure we must make many design decisions.
These design decisions include questions like:

e How can we obtain a good upper bound, i.e. a small feasible value for the cut-
size?

Which subproblem is computed next?

How problems are divided into subproblems?

How lower bounds on subproblems are computed, such that the lower bounds
utilize the restrictions of the branchings?

Which branching is selected?

How can subproblems we further restricted without losing a possibly best solu-
tion?

In the following sections we will describe the design decisions we have made. In
Sectior] 5.]1 we will present methods for calculation very good feasible partitions. In
Sectior] 5. we will introduce the technique that we have used for generating subprob-
lems and computing good lower bounds on these restricted subproblems. In Section
5.3 we illustrate very effective methods which further restrict subproblems without
losing possibly optimal solutions. And in Section]5.4 we explain a procedure which
exactly decides which parts of the solutions are fixed in order to get subproblems.

115

116 CHAPTER 5. BRANCH & BOUND ALGORITHM
5.1 Upper Bound and Depth-First-Search

The task of our branch&bound algorithm is to compute the optimal cut-size of the
given graph partitioning problem. For the efficiency of every branch&bound algo-
rithm it is crucial that there are very good upper bounds. The best what could happen
is that the initial upper bound corresponds to the optimal cut-size. In this case the
branch&bound “only” has to prove that the upper bound is indeed optimal.

Fortunately, there exists a large number of algorithms for computing good solutions
of graph partitioning problems. These algorithms are very fast and are often designed
such that they can handle graphs with thousand and millions of vertices. In contrast
to this we can only look at graphs with at most some hundreds of vertices, since the
problem to compute the exact cut-size is theoretically NP-hard and also practically
very difficult. Therefore, we can use different heuristics for computing an upper bound
at the beginning of the branch&bound algorithm. Doing this the upper bound we got
from the heuristical algorithms are optimal in nearly all cases. We use the PARTY-
library [Pre98| PD96] for the computation of the upper bound.

The goodness of the heuristical solution implies that we do not have to think on the or-
der we use to work on the open subproblems. Therefore we can simply use depth-first-
search. This simplifies the code and above all this drastically decreases the number of
subproblems we have to store.

5.2 Realization of Branchings

A branch inside a branch&bound procedure means that the solution-space, which is
represented by the actual search-node, is divided into at least two parts. These parts
then represent new subproblems. It is crucial for the efficiency of the whole approach
that the lower bounds which are used can take an advantage out of the restriction of
the solution-space.

In our branch&bound algorithm we divide the solution-space of a search-node such
that we select a pair of vertices and in the one newly generated subproblem we fix this
pair of vertices to be in the same partition and in the other newly generated subproblem
we fix this pair to be in different partitions. Therefore, every search-node which cannot
be pruned because the lower bound is not large enough is divided into two new search-
nodes. In the following we name the fixing of a pair of vertices to be in the same
partition ajoin while the fixing of a pair to be in different partitionssalit.

Utilization of a Join

In order to utilize a join of two vertices; andv, for the computation of the lower
bound we could insert a new edge;, v} into the graph with an infinite capacity.

5.2. REALIZATION OF BRANCHINGS 117

Figure 5.1: Example of a join of two vertices when computing the 1-1-MC-bound on
the bisection width of a graph with vertex- and edge-weights

1-1-MC-bound = 50/21=2.38

G
1-1-MC-bound =3
G’
1-1-MC-bound = 3
G’

Obviously, since we restrict the search-space such that this pair of vertices are in the
same partition, this does not change the cut-size. Furthermore, the insertion of this
new edge probably increases the lower bound since this new edge can be used as an
abbreviation which does not cause any costs for the flows inside the graph. In order to
simplify the computation of the MC-bounds, we could left out the capacity-constraint

of this inserted edge. However, we can even do something better to compute the MC-
bounds for this subproblem:

It can be seen that inserting an edge with an infinite capacity gives the same MC-bound
as if we modify the graph such that the two joined vertices are indeed joined into one
vertex of the graph. l.e. |6 = (V,E,qg, f) be the graph and we look at a join of

118 CHAPTER 5. BRANCH & BOUND ALGORITHM

verticesvy, Vv, € V. Then we construct a gragdl = (V',E’,d, f') with

V' = V\{(vz)}
I agw if w=£ v
A YweV :d(w) = {g(vl)+g(v2) clse 1
A E" = (E\{{v2,u} € E}) U{{vi,u}[{vz,u} € E}
f({u,w}) if U#ViIAW#Vvp
A Y{uw}eE: f'({uw}) = f({vi,u})+ f({vo,u}) ifw=vivw=wv,

f({vi,w})+ f({vo,w}) ifu=vivVu=vs.

Figure[5.1 gives an example of this processing for a small graph and demonstrates
the possibility of an increment of the bound. Without the join, there is a bottle-neck
inside the graph between the three rightmost vertices and the other vertices. Includ-
ing the edge with infinite capacity or joining the corresponding vertices dissolves the
bottleneck.

Utilization of a Split

Removing Split-Edges. In order to utilize a split of verticeg;, v, € V for the com-
putation of the lower bound we could remove the edggv,} from the graph if
{v1,v2} € E. Then we can compute the bound on the remaining graph andiadgd,

to the bound. Unfortunately, if we use this method there is no increase of the bound if
the vertices/; andv, are not adjacent. In the following we present two other methods

for the utilization of a split. On the one hand, these methods can increase the bound
even if the vertices are not adjacent and on the other hand, these methods can possibly
increase the bound more than just removing the edge.

Split-Commodities. The first thing we can do is based on the ideas of the MC-
bounds. One main idea of these bound was the consideration that we send commaodities
through the graph and know that a specific portion of these commaodities has to cross
every possible feasible cut. Now, we are looking at a subproblem where we only want
to consider solutions where the pair of vertiagsandv, are in different partitions.

This means that all commodities which are routed from vevieo vertexvo have to

cross the cut! Hence, we can include such a commodity of variablesgizeto our
MC-bounds. This commodity has the originand the destinatiom, and it can totally

be counted into the Cut-Flow. LBtC V2 be a set of pairs of vertices which are split in

the current subproblem. Then the linear program for the VarMC-bound as it has been
given in Sectiof 4]1 is expanded to

5.2. REALIZATION OF BRANCHINGS 119

maximize 25 ,eps(p) +(N—M) -5, s(v)
subject to
Ve,deV,c£d,{c,d} ¢ P:
S(C) ’ g(d> - Z{v,d}eE h(C7 \Z d) - h(C7 d,V) =0
Ve,deV,c#d,{c,d} €P:
S<{C7 d}) + S(C) ’ g(d> - Z{v,d}eE h<C7 \Z d) - h(C> d,V) =0

V{v,w} € E: S cev h(c,v,w) +h(c,wv) < f({v,w}).

According expansions can be done for the 1-1-MC-bound and the MVarMC-bound. Further-
more, these expansions are obviously linear programs and more important, they are covered by
the bound model for the approximation algorithm in Sedfioh 4.3.

Obviously, the use of these split-commodities is always at least as good as not using them, since
the linear program always has the freedom of seledtimg P : s(p) = 0 and the standard MC-
bounds are achieved. Furthermore, by using split-commaodities we can show that not removing
split-edges is always at least as good as removing split-edges:

Theorem 5.1

When split-commodities are used, the MC-bounds with retained split-edges are at least
as good as the MC-bounds with removed split-edges. This holds for the general graph
partitioning problem and therefore this also holds for the specialized versions.

Proof:
We look at an instanck of an MC-bound with maximal lower bour8ld where we
have removed a split-edgawith weight f¢ from the graph. Then we know that

3= i,
holds, whereCF andC are the Cut-Flow and congestion, respectively. Now we look
at possible MC-instances where edgis not removed. Obviously, we can take over
the flows of instancé and get the same Cut-FId@F and congestio@. Furthermore,
these flows do not use edgeso we can increase the split-commodity of the corre-
sponding split-pair by a value & - fe without increasing the total congesti@n The
MC-instance which is constructed in this way has boBdtwith

_CF4C-fe CF .
—T—?‘i‘fe—Bd

and the theorem is proved. []

Bd'

120 CHAPTER 5. BRANCH & BOUND ALGORITHM

Decreasing Set of Standard-Destinations. The second thing we can do is restricted
to graph partitioning problems witk= 2. Then it follows that if we look at a split
pair {v,w} and any vertexi € V, exactly one of the verticesw must be in the same
partition asu and exactly one must be in the other partition. Normally when calculating
the Cut-Flow, we apply the consideration that if a vertex sends commodities of unit size
to all other vertices, at least— M of these commodities has to cross any cut. Now, we
also know that if a vertex sends commodities of unit size to all other vertices except
verticesv,w, at leastn— M — 1 of these commaodities has to cross any cut. Notice
that even though the number of destinations is decreased by two, the commodities
which are counted into the Cut-Flow are decreased by only one. The following linear
program corresponds to the VarMC-bound with Split-Commodities and the decreased
set of standard-destinations:
maximize 2y pepS(p) + (N =M —|P|) - T ey S(V)
subject to
Ve, d eV withcAdAVpeP:d¢ p:
s(c)-9(d) — ¥ jvayee h(c,v,d) —h(c,d,v) =0
ve,d € V with {c,d} € P:
S({C7 d}) - Z{V,d}eE h(C7 Vvd) - h(C,d,V) =0

v{v,w} € E: Seevh(e,vw) +hicwy) < f({vw}).
The same adaptations can be applied to the 1-1-MC-bound and the MVarMC-bound.
Again, we can show that the use of these decreased sets of destinations delivers bounds
which are at least as good as the normal sets:

Theorem 5.2

When split-commodities are used and when we look at graph partitioning problems
with k= 2, the MC-bounds with decreased sets of destinations as described above are
at least as good as the MC-bounds without this decrease.

Proof:

We are going to prove the theorem of the VarMC-bound, but all the considerations used
can also be applied to the 1-1-MC-bound and MVarMC-bound. We look at an instance
L of an MC-bound with maximal lower bourt8id where the set of destinations is not

decreased. Then we know that
Bd=""
C
holds, where€€CF andC are the Cut-Flow and congestion, respectively. Now we look at
possible MC-instances where the set of destinations are decreased. We can take over
the flows of instancé if we omit all flows from all verticesu to all split pairs. Then

we get the same congesti@while the Cut-Flow is decreased to

CF =CF—|P|Y} s(v).
2

5.2. REALIZATION OF BRANCHINGS 121

Furthermore, there is some space left on the edges since we have omitted all flows
to split pairs. To be more precise, we have omitted flows from all sowree¥ to

all split pairs{v,w} € P. So, we can increase the Split-Commodit&év,w}) =
s({v,w}) + %Zuev s(u) and use the space left on the edges for these commodities.

Then we get
=CF—|P| V)+2-P|-=) s(u)=CF
U
which proves the theorem. [

For simplification purposes, we have not considered vertex-weights in the above cal-
culations. If we take vertex-weights into consideration, the situation becomes more
complex. Then, for any split-paifv,w} € P we have to determingp({v,w}) :=
min{g(v),g(w)}. The standard set of destinations is decreased such that for any
{v,w} € P, the vertexv with g(v) = gp({v,w}) is totally removed from the set of
destinations while for the other vertexthe portion of the normal commaodity to this
vertex is decreased fros{c) - g(w) to s(c) - (g(w) — gp({v,w}). Furthermore, the fac-

tor of the normal commaodities inside the Cut-Flow has to be changedireril — |P|
toN—-M—75,pgp(p). If all vertices have weight one, this procedure results in the
same bound-computation as described above. The proof of Thgorem 5.2 can therefore
be adapted.

Summary. We have presented three different possibilities for the utilization of a split
in order to increase the MC-bounds. The most effective possibility is the introduction
of split-commodities. It is quite obvious that these split-commodities increase the
bounds if there is no bottle-neck in the graph between the split vertices. Furthermore, if
split-commodities are used we have shown that the simplest possibility which involves
removing the split-edges from the graph and adding them to the bound after calculating
the flows is not as effective as keeping the split-edges in the graph. Finally, if we look at
graph partitioning problems with= 2 we have presented the possibility of decreasing
the set of destinations which is, if combined with the split-commodities, always at least
as good as not decreasing them.

At last, we present an example which demonstrates that keeping split-edges in the
graph can increase the VarMC-bound and that decreasing the set of destinations in-
creases the VarMC-bound even more. In Fidure 5.2 such a graph with its VarMC-
bounds is illustrated. The VarMC-bound on this graph without any split§.i$fzplit

{A,C} is introduced we see that removing the split-edge decreases the bound, keep-
ing the split-edge does not change the bound and decreasing the sets of destinations
increases the bound. This is typical behavior if there is a bottle-neck between the split
edges. In contrast to this, if we split verticé&, B} there is no bottle-neck and the
bound grows to the exact cut-size which is reached by using only the split-commodity.

122 CHAPTER 5. BRANCH & BOUND ALGORITHM

Figure 5.2: Example of a graph where keeping split-edges and decreasing the sets of
destinations improves the VarMC-bound for the bisection problem

| situation | VarMC-Bd.| reached by
without any split 8=22 | sA)=95B)=1
split A,C and remove split-edge | 3+1=21 s(B) =1
split A,C and keep split-edge 8=2% |sA)=sB)=1
split A,C, keep split-edge and de- 6_ B B
crease sets of destinations 2=3 | s(A)=s(B)=1
split A,B, keep split-edge 2=5| s({AB})=5

5.3 \Variable Fixing

In this section we will present some techniques which can be used inside the branch&bound
search in order to restrict the search-space without losing optimal solutions. |.e. there

are situations where a join or split of a pair of vertices leads to infeasible or non-
optimal solutions. Then we can split or join this pair respectively without looking at

the other branch. Firstly, we will present simple situations which would lead to infea-

sible solutions. Secondly, we will present methods which are based on the computed
MC-bounds and which can show that specific splits cannot lead to optimal solutions.

5.3.1 Simple Considerations

There are some situations where a simple consideration shows that a pair of vertices
has to be split or joined:

e If Jv,w eV with g(v) +g(w) > M then we can spliv andw, as otherwise a

5.3. VARIABLE FIXING 123

partition which includes both vertexandw violates the given maximal size of
the partitions.

o If 3I{v,u},...,{v,u} € Pandwe V with g(w)+S!_; g(uj) > (k—1)-M we can
join v andw, as otherwise vertexhas no possibility of being part of a partition
with the minimal partition size. The minimal partition silkin is not explicitly
given in the graph partitioning problems but it follows from the given data with
Mmin=N—(k—1)-M.

e If k=2 and3v,u,w eV with {v,w} € Pand{u,w} € P then we can joitvandu.
This rule is obvious as otherwise it is impossible to partition the set of vertices
into two sets with respect to the set of splits. Furthermore when this rule is used,
it follows that there is at most one split for every vertex.

e The rule above can be generalized to arbittésy If IV’ C V with |V/| = k+1
andvl<i<j<k+1:({w,vj} €PV(i=1A]=2))withV'={va,...,Vit1},
then we can join the verticeg andv.. Otherwise, we would have+ 1 vertices
where every pair is split, so we would not be able to generate a partition of the
graph intok parts without violating at least one of the splits.

All these rules can be checked using a very small amount of computational power in
comparison to the calculation of the MC-bounds. So in any node of the search-tree we
check the rules and perform joins or splits accordingly.

5.3.2 MC-bounds based Methods

Here we present more powerful methods which are based on the computed MC-bound
of the actual sub-problem. These methods utilize the fact that there is always a thresh-
old L inside the branch&bound procedure and we are only interested in solutions with
a cut-size of at modt. The methods detect the fact that a split of a pair of vertices
would result in solutions with a cut-size greater tharSo, all those pairs of vertices

can be joined without losing optimal solutions.

Edge based

The first method is more simple and is only based on edges. The following theorem
outlines its basis:

Theorem 5.3
Let B be the MC-bound of the actual subproblem, C its congestion @dhe con-
gestion of the edges. Then, if verticesare split with{v,w} = e € E it holds that
any solution has a cut-size of at least

c(e)

B+ fe(1— (T)

124 CHAPTER 5. BRANCH & BOUND ALGORITHM

Proof:

We prove the theorem by constructing an MC-instance which gives a lower bound of
B+ fe(1— @). Letl be the MC-instance which gives bouBan the actual subprob-

lem. We take over instandeand add a flow of sizé<(C — c(e)) on edgeg, this flow

is counted as a split-commodity as we have presented it in S¢ctijon 5.2. This addition
of the flow results in a congestion Gfon edgee. Therefore, this constructed instance
has congestio@ and the Cut-FlovCF is increased byfe(C — c(e)) in comparison to
instancd . Therefore, the bounB’ of the constructed instance is

, CF+fe(C—c(e)) c(e)
B C <

which proves the theorem. []

B

The method for fixing a join is now obvious: We check if there is any exige{v,w}

with B+ fe(1— @) > L. If such an edge exists, we can join the vertizas without
losing any solution with cut-size of at molst We do this check after every bound-
computation. The running time for this is negligible. If the calculated MC-bdaind
is very close to the threshold then the method is very strong. For example, in the
extreme case @ = L, every edgewhich is not totally loaded (i.ec(e) < C) produces

a join of the adjacent vertices.

Max-Flow based

The ideas behind the edge-based method above can be expanded to a method which not
only looks at single edges but which computes the maximal flow between two vertices
with reference to the space which is left on the edges while computing the MC-bound.
The following theorem outlines the basis of this method:

Theorem 5.4
Let B be the MC-bound of the actual subproblem of a grapk &/,E,qg, f), C its
congestion and(@) the congestion of the edges. Lét-5(V,E, g, f') be a graph with

f'(e) = fe(1— @) and mfv,w) be the maximal flow between the vertices v.and w on
graph G. Then, if vertices,w are split, it holds that any solution has a cut-size of at
least

B+ mf(v,w).

Proof:

We expand the MC-instance with bouBan the original subproblem by adding a flow

of total sizeC - mf(v,w) from vertexv to vertexw. Since this flow can be realized using
only the space left on the edges, this can be done without increasing the congestion.
The added flow is counted as split-commodity and so the Cut-Flow is increased by

5.3. VARIABLE FIXING 125

Table 5.1: Examples of the effect of the MC-bound based variable fixing

graph B | bw without edge-based| Max-Flow
time | subp. | time | subp. || time | subp.

BCR-6x10g 26.2| 28 84 93 3 5 3 5
BCR-9x6m 789.8| 792 || 938 78 || 433 25| 310 21

Random-50-0.2-3 63.6| 71| 529| 237| 466 | 211\ 437| 197
RandW-32-10-0 922.5| 944 | 134 67 || 127 53 96 35
RandPlan-100-1-1 || 30.6| 32| 464| 120 45 11 23 6
RandRegular-100-4-§ 27.7| 30 64 7 64 7 65 7

C-mf(v,w). Therefore, if a splifv,w} was added to the subproblem, a lower bound
of B+ mf(v,w) holds which therefore proves the theorem. [

Now, the method for determining pairs of vertices which can be joined is obvious: We
compute the max-flow values for all pairs of vertices on the gi@pand check if

B+ mf(v,w) > L. However in contrast to the edge-based method, the computation of
all (2) max-flow values requires a notable amount of computational power. From the
well known MaxFlow-MinCut-Theorem it is known that the maximal flow between
two vertices is identical to a minimal cut which divides the two vertices. So we have to
compute the minimal cut for all pairs of vertices of a graph. This problem was firstly
introduced in 1961 by Gomory and Hu [GH61]. They called it¢hétreeproblem, as

the results for all pairs can be presented in a tree. Goldberg and Tsioutsiouliklis present
a recent survey on different implementations of the cut-tree problem in [GTO01]. We
use an implementation which was introduced by Gusfield [Gus90].

Summary

We have presented two methods for the fixing of joins which are based on the com-
puted MC-bound and which utilize the space left on the edges. Both are very effective
if the computed bounds are very close to the actual thredhot@f course, their suc-

cess depends highly on the actual graph and MC-bound. [aljle 5.1 gives examples
of the success of the methods for several graphs and the graph bisection problem,
Figure[5.3 illustrates these results. The examples were computed with the MVarMC-
bound using the approximation algorithm of Section 4.3 with 0.5 and with the
enhanced scaling. The colunghgives the bound on the root probleimy gives the

exact bisection-widthitjmegives the total time of the branch&bound algorithm in sec-
onds andsubp.gives the number of nodes of the branch&bound-tree.

It is obvious that the effect of the variable fixing is drastic on some graphs, e.g. for the
“BCR-6x10g” and the “RandPlan-100-1-1" graphs. On the other hand there are some

126 CHAPTER 5. BRANCH & BOUND ALGORITHM

Figure 5.3: Visualization of the results of Taple]5.1

edgle—based _I o

(o]
NS
T

w
N
T
I

factor of speedup
=
o
T

BCR-6x10g BCR-9x6m Random Randw RandPlan RandRegular

graphs where the variable fixing has almost no influence. e.g. the “RandRegular-
100-4-3" graph. Furthermore, the examples show that the edge-based method already
gives good results. When compared to the step from no variable fixing to edge-based
method, the step from edge-based method to the max-flow method improves the effect
only slightly. But nevertheless, the max-flow based method gives the best results.

5.4 Branching Selection

One crucial aspect of every branch&bound algorithm is the branching: if a node of the
search tree cannot be bounded, the corresponding feasible region has to be divided into
at least two regions which become son-nodes of the original node in the search-tree.
We do this branching by fixing the relation of a pair of vertices: two vertices have to be
in the same partition (join) or they have to be in different partitions (split). For the size
of the search-tree and therefore for the running time of the branch&bound algorithm,
itis crucial that the selected pair of vertices leads to search-nodes with improved lower
bounds such that they can be bounded quickly. So, in order to make a good selection,
we try to predict the value of the lower bound in the case of a split or join of pairs of
vertices respectively. Using these predictions, we finally have to select an appropriate
pair. So in this section firstly we present methods of prediction and secondly we show
how the selection can be carried out based on these predictions.

5.4.1 Prediction of the Impact of a Split on the Lower Bound

Firstly, we look at methods of predictions of the lower bound in the case of a split of
a pair of vertices. We firstly give different ideas for heuristical values which could be
used in our predictions and then we show their effectiveness.

5.4. BRANCHING SELECTION 127
Ideas for Values which can be used for Prediction

We have tested a number of different possible values of prediction. The most interest-
ing or successful ones are the following:

Distance: A first obvious idea involves the use of tliéstanceof two vertices as a
method of prediction. It could be expected that the smaller the distance of two
vertices, the bigger the increase of the lower bound if these two vertices are split.
In order to consider edge-weightge) : E — N of the given graph, we use edge
lengthsl (e) := 1/w(e) for the calculation of the distance. This follows from the
idea that an edge with a big weight can transport a lot of commodities so, as
regards a flow problem, the two adjacent vertices have a small distance.

MaxFlow: A second more sophisticated idea involves the use oft&elow of two
vertices: the bigger the MaxFlow, the more commaodities can be routed from
one of the two split vertices to the other. And since in the case of a split the
total amount of this commodity can be counted into the Cut-Flow, this should
increase the lower bound.

rel. MaxFlow: Both of the ideas above have the disadvantage that they do not con-
sider the possible impact of the split-flow on the rest of the multicommodity
flow. Clearly, in both cases it can occur that the idea of increasing the lower
bound does not work as the edges are heavily loaded by other commodities.
Therefore we suggest a third possible method of prediction: The idea is to take
the multicommaodity flow which is used for the computation of the lower bound
of the actual search-node into consideration. Using the maximal congestion of
the multicommodity flow of the computed lower bound, we get a “free” amount
for each edge. The idea now is to use the MaxFlow value on the graph with
edge-weights equal to the reciprocal of the free amount for each edge. Pairs
of edges with a big MaxFlow on this graph should clearly increase the Lower
Bound since a commodity can be sent between them without disturbing the other
commodities. We call this methodlative MaxFlow

rel. distance: We can also use the idea of the relative MaxFlow for the calculation of
the distance. So we call the distance of the vertices with regard to edge lengths
which correspond to the reciprocal of the free amount of the computed multi-
commodity flowrelative distance

log(rel. distance): Finally, as you will see in the following experiments, very satisfac-
tory results can be achieved if we use the logarithmic of the above rel. distance
in order to achieve a linear correlation.

128 CHAPTER 5. BRANCH & BOUND ALGORITHM

Experiments

In order to evaluate the effectiveness of the different values , we have carried out a
number of experiments whose results are presented now. The main principle of the
experiments is to take a set of pairs of vertices, compute the different values of pre-
diction and then compute the lower bounds which would be reached if the actual pair
of vertices were split. We use the MVarMC bound and the approximation algorithm
of Sectior] 4.B for the computation of the lower bound. Figuré 5.4 shows the results
of 1000 randomly selected pairs of vertices of a DeBruijn graph of dimension 6 while
using the relative distance as a method of prediction.

Figure 5.4: Predicting the lower bound of a split using the relative distance, with a
DeBruijn graph of dimension 6 and 1000 randomly selected pairs of vertices

19 p

185 &

18

17.5

lower bound

17

16.5

16

0 50 100 150 200 250 300 350 400 450 500
relative distance

In this Figure we can see that the relative distance somehow correlates to the possible
lower bound. However, for further comparison we need some type of measurement of
this correlation. For the use of the prediction which follows it would be helpful if there
was a linear correlation between the prediction value and the lower bound. So we use
Pearson’s correlation coefficientas it is presented by Kenney and Keeping [KK54,

p. 258] for this purpose. Givempairs ofx’s andy’s, r is defined as

DS

wherex (y) is the average of thes (y's) andsy (s) is the standard deviation. The value
of r ranges from -1 to 1 . Large absolute values indicate strong linear correlation. (E.g.
the correlation coefficient of the data in Figlire|5.4 gives—0.83)

In order to consider all circumstances in the graph partitioning algorithm, we compare
different situations: Firstly, we take bisectioning (p2) and four-partitioning (p4). Fur-
thermore, we look at the situation of a graph at the root of the search-tree, a graph with

5.4. BRANCHING SELECTION 129

Table 5.2: Averages of the correlation coefficient of the different methods and graphs
used to predict the impact of a split

DB6 SE6 Grid ex36 RPlah Avg
dist. -0.56 -0.57 -0.54 -0.18 -0.48-0.46
MaxFlow -0.02 -0.00 -0.01 -0.08 +0.18+0.00
rel.MaxFlow | +0.50 +0.59 +0.73 -0.01 +0.73+0.51
rel.dist. -0.80 -0.81 -0.77 -0.38 -0.70-0.69
log(rel.dist.) | -0.88 -0.91 -0.90 -0.41 -0.83-0.79

5 randomly selected joins (J), with 5 randomly selected splits (S) and finally a graph
with 5 randomly selected joins and splits (IN). In Taple A.39 the detailed results of
Pearson’s correlation coefficient for 5 different graphs are given: the DeBruijn graph
of dimension 6, the shuffle-exchange graph of dimension 6, an 6x10 grid, the ex36-
graph and a random maximal planar graph with 60 vertices and 90% of edges. For
each variation of the graph the predictor with the best correlation coefficient is printed
in bold face. For better oversight the averages of the different methods and graphs are
given in Tablg 5.p.

Some obvious conclusions can be drawn from the experiments:

e The distance already gives a good correlation

e The correlation of MaxFlow is very bad, whereas the correlation of the relative
MaxFlow is better than that of the distance.

e The correlation of the relative distance is the best one and is even improved when
the logarithmic is used.

e These rankings are nearly independent of the graph.

e The “ex36” graph is the most difficult one for prediction. But as you can see in
the detailed results, the prediction becomes easier as we move down the search-
tree (i.e. some joins and splits are performed).

Taking everything into account, the logarithmic of the relative distance is quite good
predicting value for the lower bound, if a split is performed.

5.4.2 Prediction of the Impact of a Join on the Lower Bound

Here, we look at the methods of prediction of the lower bound in the case of a join
of a pair of vertices. Again, firstly we give different ideas for heuristical values which
could be used in our predictions and then we show their effectiveness.

130 CHAPTER 5. BRANCH & BOUND ALGORITHM

Ideas for Values which can be used for Prediction

We have tested a number of different possible values of prediction. The most interest-
ing or successful ones are the following:

Distance: As in the case of a split, we could use the distance between two vertices
for the prediction of the lower bound. The bigger the distance, the bigger the
increase of the lower bound in the case of a join of these two vertices. Edge-
weights are considered in the same way as they are for split-prediction.

max11UB: Using the distances:V xV — R of all pairs of vertices, a simple upper
boundub on the lower boundb of the 1-1-MC-bound can be computed:

n/2
2 Zuwd (W)

The formula corresponds to the bisection problem without vertex- and edge-
weights. The case d¢partitioning can be easily considered (l.i":ié-n2 instead

of n?/2). If vertex-weights are givem has to be the sum of all vertex-weights
and the distances have to be multiplied by the product of the two corresponding
vertex-weights. Edge-weights can be considered such that the distance is cal-
culated using the reciprocate of the edge-weights of each edge as its length (the
same method which is used for the Distance above).

A value of prediction is computed for each pair of vertieedb by computing

the upper boundb(a, b) using distances which would be true if the two vertices
were joined. The computation ob(a,b) for all a,b € V involves the calcula-

tions of all 3, dap(v,W) whered, (v, w) is the distance of the verticesand

w if the verticesa andb are joined. We do not have to compute all distances
dap(V, W) totally new but can use

dap(v,w) = min{d(v,w),d(v,a) +d(b,w),d(v,b) +d(a,w)}.

Therefore in order to computgb(a,b) for all a,b € V, we could compute all
dap(v,w) which would result in an effort o®(n*). Experiments show that
this computational effort can be neglectedhik 200. However, if we look

at graphs with 500 or 1000 vertices (DeBruijn 9 or 10), the computation of
the dap(v,w)’s dominate the overall running time of the branch&bound pro-
cedure. However, we can look at only those distaridesvhich differ, i.e.

D’ = {(a,b,v,w)|d(v,w) # da p(V,W) }. Experiments show that we ha\#| ~ n®.

And in fact we can organize the computation of all the sgmgdap(v, W) such

that we need tim®(|D’|).

Ib <ub=

rel. distance: Again, it is possible to utilize the multicommodity flow of the current
search-node already calculated. We use the “free” amount of the edges as a
reciprocal of the edge-length and compute the distances using these edge lengths
(compare the predictors for split).

5.4. BRANCHING SELECTION 131

Table 5.3: Averages of the correlation coefficient for the different methods and graphs
prediction a join

DB6 SE6 Grid ex36 RPlan Avg

dist. 0.58 054 064 034 0.270.47
max11UB 0.65 059 0.72 040 0.520.58
rel.dist. 0.82 0.84 0.81 049 0.640.72

log(rel.dist.) 0.74 0.72 0.74 048 0.620.66
rel.max11UB | 0.85 0.84 0.83 0.48 0.740.75
adv.rel.max11UB 0.88 0.89 0.88 0.55 0.810.80

log(rel. distance): As in the case of the split-prediction, we can also use the logarith-
mic of the relative distance as a method of prediction.

rel. max11UB: Of course, we can also use the edge-lengths of the rel. distance to
compute the min11UB.

adv.rel.max11UB: One disadvantage of the rel. min11UB-value is the fact, that the
use of only the free amoumte) of an edge for the edge-lengdtte) (until now:
I(e) = 1/a(e)) leads to a lot of edges with very long lengths (which corresponds
to a small amount of free space on this edge). This is somehow misleading, so it
is a good idea to assign a small free amount to every edge. This means that we
use the formuld(e) = W}ra(e) for the computation of the edge-lengths.

Experiments

In order to show the effectiveness of the different values of prediction, the same exper-
iments as in the split-case are carried out. Table]A.40 shows the detailed results while
Table[5.8 shows a summary of the results.

Some conclusions can be drawn from the experiments:

e The distance on its own can already be used as a method of prediction.
e The max11UB has a better correlation coefficient than the simple distance-value.

¢ Asin the case of join-predictions, the relative distance clearly improves the cor-
relation coefficient clearly when compared to the simple distance. But, in the
case of join-prediction, the use of the logarithmic of the relative distance is a
worse method of prediction.
This can be explained by the fact that in the case of a split, small distances give
good lower bounds while the logarithmic has its main effect on the large values.

132 CHAPTER 5. BRANCH & BOUND ALGORITHM

So, in the case of a split, the logarithmic mainly packs the large number of bad
values. But, in case of a join, large distances give good lower bounds. Therefore
the logarithmic packs the good ones and they are less distinguishable, what is
bad of the correlation coefficient.

e The relative max11UB increases (as expected) the coefficient when compared to
the simple max11UB. And the advanced relative max11UB is even better than
all the other methods.

Taking everything into account, the logarithmic of the advanced relative max11UB is
guite a good predicting value for the lower bound, if a join is performed.

5.4.3 Making the Branching Selection based on Predictions for the
Lower Bound

As we have already said in the introduction of this section, the branching selection is
very crucial to the running-time of a branch&bound algorithm. Our goal is to make
good selections based on the prediction values which we have presented in the two
previous Subsections. Here we present methods of making the selection decision based
on the predicted values.

Literature

Surprisingly, relatively little work has been presented on the topic of making the selec-
tion decision based on prediction-values. Eckstein [Eck94] deals with mixed integer
branch&bound algorithms and presents a formula where the predicted values of the
two sub-nodes are combined using a linear combination and two parametardas,

which have to be fixed:

oj = oarmin{D;,D; } +azmax{D;,D; } (5.1)

where D! and Dy correspond to the predicted change of the objective-value; the
branching-possibilityj with maximalgj is selected. In fact, Eckstein uses an addi-
tional addendxomin{dj*,dj*}, however we have omitted it as it is a mixed integer
specific one. Unfortunately, Eckstein gives no evidence of the best set of parameters
but simply states the parameters which he has usge: 1, a1 = 10, anda, = 1.

Linderoth and Savelsbergh [LS99] present some experiments which compare different
parameter-settings of the above Equafion 5.1 and they come to the conclusion that the
settingo; = 2 anda, = 1 gives the best performance for the mixed integer instances
tested. The same setting is used by Gunlik [Giin99] who compares it to other, ob-
viously worse, methods. Finally, Martin [MarO1] presents a recent survey on mixed
integer programming including branching selection.

5.4. BRANCHING SELECTION 133

Own Approach

Of course, we can also use Equatfior] 5.1 and in the following experiments we will test
the combinationgas,a2) € {(8,1),(4,1),(2,1),(1,1),(3.1)}.

Additionally, we present a new idea for the branching-selection using predicted lower
bounds: We are somewhere inside the branch&bound-tree and the actual lower bound
has a difference af to the threshold at which we could prune the actual node. We
introducef as the expected number of leaves of this subtree. If we now use branchings
with an increase ole+ orDj on the lower bound respectively, we define:

f(8,D},D;) =

f(A—DT,DT,Dj‘)Jr f(A—Dj‘,DT,Dj‘) if A>0
1 else

So, f(A, Dj+,DJ-*) is the exact number of leaves of the search tree, if we would use
a branching withDT andD; at every node of the tree. This function can be used
for branching selection by selecting the one branching-possibilityith minimal

f(A, DJ*,DI-‘).

For practical purposes, we have to explain how we can omaw, andDJ-‘ exactly.
Assuming we use the approximation algorithm of Sedftiof 4.3 with the MVarMC, we

have a correct upper boundl) and lower boundlp) on the MVarMC. In order to get
an estimation ol we now simply use

A_ipr] 95® ifub<thr
N Ib else

with thr is the actual threshold value at which we can prune a subproblem. If we have
not computed any bound, we simply guess that 10.

Of course the estimations of tliy’s have to be based on the prediction-values. How-
ever, we cannot directly use the prediction-values, since they only fulfill the property
to have a good linear correlation to thg’s while their pure value can be different.
Nevertheless, we know that there are probably many pairs of vertices which do not
increase the lower bound at all. So we can assume that the worst prediction-value cor-
responds t@; = 0. On the other hand, experience shows that even the best branchings
only increase the lower bound by a value of abo%u Of course, this depends highly

on the graph, but nevertheless the ratio of different values is most important for the
branching decision, so the error which we make using this assumption is small. There-
fore, we useDj = 1% for the pair with the best prediction-value and all other values
are calculated linearly.

Efficient calculation of f(A,D;",D;)

The efficient calculation of (A, DJ-+, Dj) is not trivial. If we use the recursive structure
for a simple recursive procedure, this procedure will have exponential complexity (e.qg.

134 CHAPTER 5. BRANCH & BOUND ALGORITHM

if D =2 andD; = 1 thenf(A,D,D;) will correspond to the Fibonacci-number of
A). Another possibility for the computation df(A, DT ,Dj) involves the use of dy-

namic programming. If we use this we will get a running tim@é%). However,
I

there are always tuples with nﬂﬁjﬂDj‘} — 0, so the complexity of the dynamic
approach is still too large for these tuples. Our goal is to find a method for the com-
putation of f (A, DT,DJ-*) whose running time only depends on n@m{?Dj*}. The
following theorem provides us with the basic of such an approach:

Theorem 5.5
Leth= 2 and k= 2- and we assume £ k without loss of generality. Then
]]
lh]+1 K
fia0f o) = 3 (T

£ a
holds.
Proof:

First of all, the parameters of the functidrare scalable without changing the result.

Therefore
A A

f(A,DF,D7) = f/(—, —
(7J7J) (Di|»7DJ

)

holds with

th | F(=LE0=1)+F(f(k=1).k=1) if h>0nk>0
o 1 else

We prove the theorem by examinirf§(h,k). Without loss of generality we assume
h <k and use an induction ovér Firstly leth < 1, then we have

Fhi = 14 F((k-1),k-1)

K
= 2+f’(E(k—2),k—2)
- i+f’(E(k—i),k—i) VO<i<k+1ieNg

= f'(hk) = |k+1]+1=k]+2

Now, looking atzgij;{ ! (aﬂ"*ﬁ(a””) with h < 1 we have

L:il(aﬂk_ag(a_m) _ 1+(1+Lk—'1ﬁ(1_1)J)

= 1+(1+[K))=|k|+2

5.4. BRANCHING SELECTION 135

and therefore, the equation of the theorem is provéxkifl. Next, we look ah > 1.
By using induction we have

L(k=1).k=1)

f'(hk) = f'(h—
N rat [K(h—1)—K@-1)]

Ko+
k

&= a
S (et hen)
a_Lh%Hz a-1

Now, the theorem is proved if

|h|+1 <a—1+Lk—'ﬁ‘(a—1)J) lhj+1 (a+Lk ﬁ(a 1)J)
a—1 a

a= LthlJ) —Lh;klﬁz

a:
holds. Itk > hitis

k—1 1 1
LhTJ +2=1h (1—|—()J +2> Lh(l—ﬁ)J +2=1|h|+1
and so the sums above have no summand. It remains to ldok=dt. Then, both
sums have only one summand with- | h| + 1 and the equality of the sums follows if

[k— £ h]] = 0. Withk = h we have

k= K[h)J = Lh—[h)] =0

and the theorem is proved. []

+2

If we use the theorem above for the computatior @, DJr D;), we will end up with

a procedure which has to compu{ew binomial- coefﬂ(:lents. The computation

of a binomial-coefficien{]) can be done in tim&(min{y,x—y}), therefore:

136 CHAPTER 5. BRANCH & BOUND ALGORITHM

Figure 5.5: lllustration of the insight into the branching selection

Corollary 5.1

. e o A 2
The function {A,Dj",D;) can be computed in tlme((ranm) .

Experimental Results

Figure[5.% gives an insight into the differences between Ecksteins formula and our
recursive function. It exemplary shows the situation of one specific graph with com-
puted prediction-values. Every possible branching is plotted in this figure with one
point corresponding to its predicted vaIuesDjTandDj‘. If we use Ecksteins formula
with a; = 10 we will always select that one point which first touches the plotted line
when we move this line from the right upper corner to the left lower corner. As you
can see in the figure, the usewf = 2 means that this line has a different gradient. So,
with a1 = 10 we would select a point WitDJJ-r ~ 0.62 andDj* ~ 0.32 whereas with

o1 = 2 we would select a point WitDJJ-r ~ 1.49 andDj‘ ~ 0.06.

In contrast to Ecksteins formula, the use of our recursive function means that instead of
having straight lines, we have a curve. The use of a curve seems intuitively better than
the use of straight lines because we do not have the conﬁ)s]*r atDj. Furthermore,

this curve depends oh and it changes slightly with the distance of the pdiditO).
Unfortunately, there is no closed form which generally describes this curve; the curve

5.5. EXPERIMENTAL EVALUATION 137

Table 5.4: Comparison of the different approaches to exact graph bisection (on differ-
ent machines)

graph MVarMC [KRCOQ] [BCRY7] [FMdS+98T
time | subp.|| time | subp.|| time | subp.]| time | subp.
BCR-6x10g 1 7 319 57| 17,994 31 n.a.
BCR-7x10t <1 1 572 47 || 28,297 33 n.a.
BCR-13x4m| 172 26 34 5 5,105 5 n.a.
BCR-m6.i <1 1 37 1 5737 55 103 ‘ 1
DB-7 3 1| 32,000 195 n.a. n.a.
ex36b 122 | 125 5 1 n.a. n.a.
cd47b 1 18 112 35 n.a. n.a.

in the figure was determined by experiments uging 9.

In Figure[5.6 the results of the experiments which we have carried out in order to
determine the best selection-strategy are given. The detailed data is given in Tables
[A.41{A.43. The experiments were performed with the graph-bisection problem using
the approximation algorithm with= 0.5 without variable fixing. You can see that the
runs using the recursive function generally give the best results. For eyehere is

also a type of graph where the recursive function is much better.

Finally, we can summarize by saying that the use of the recursive function presented
is a good alternative to the simple formula presented by Eckstein. We have shown that
the function can be computed very efficiently and the experiments show that the use of
this function delivers very satisfactory results. This idea can generally be used if strong
branching is used. Its main problem is the computation of the vaﬂué)%*and Dy

On the other hand, if Ecksteins formula is usBd,and Dy also have to be computed

and furthermore an appropriate has to be fixed.

5.5 Experimental Evaluation

In this section we present experimental results which were achieved using the branch&bound-
procedure previously described. In all the results which follow we use the setting

which seems most promising: The approximation algorithm with 0.5, the sug-

gested alternative length-function-update and enhanced scaling are all used. The MVarMC-
bound, the Max-Flow based variable fixing and the functfgn, D-*,DJ-*) are also

used.

Firstly, we present results of graph bisection problems which have already been stud-
ied by other researchers. TabJes A[44-A.48 give the detailed results,[Table 5.4 gives

138 CHAPTER 5. BRANCH & BOUND ALGORITHM

Figure 5.6: Experimental results comparing the different selection-methods with ref-
erence to the bisection problem. The upper number is the average running time in
seconds, the lower number is the average size of the search-tree.

graph rec. f o1

05| 1] 2] 4] 8
180 | 197 | 198 | 186 | 183 | 186
242 | 300 | 297 | 260 | 245 | 248
176 | 342 | 308 | 315| 278 | 199
182 | 272 | 252 | 270 | 195| 171
527 | 723 | 607 | 533 | 752 | 840
126 | 235| 195| 149 | 187 | 210

Random-30-0.5

RandPlan-100-1

RandReg-100-4

200
195

190

seconds

185
180

175

0.5 1 2 4 8 rec. function
a4

(a) Random-graphs

360
320
280
240
200
160
120

seconds

0.5 1 2 4 8 rec. function
Oq

(b) RandPlan-graphs

900
800
700
600
500
400

seconds

0.5 1 2 4 8 rec. function
o8]

(c) RandReg-graphs

5.5. EXPERIMENTAL EVALUATION 139

Figure 5.7: What is possible as regards graph bisection problems

10000

T T 3

* RandPlanar —+— |
{ RandRegular ---x--- 1
Random ¥]
1000

100 o A

H —
-
¥/
B
S
S
Sy

avg. time in seconds

10

40 60 80 100 120 140 160 180

an excerpt which demonstrates the typical behavior. The quoted results of [KRCO0O0],
[BCR97] and [FMdS 98] are the original values as they are presented in the corre-
sponding publications. Therefore, the computational environments are all different,
in [KRCOQ] a HP 9000/735 was used, (n [BCR97] a SPARC 10/41 was used and in
[EMdST98] a Sun 4/50 was used. We have used a SunFire 3800 system with 900
MHz UltraSparc-1ll processors. Therefore, it is difficult to produce reliable statements
from the comparison between the running-times. Nevertheless, we feel that we can say
safely that our approach is superior on the more sparse graphs such as the BCR-girds,
BCR-tori and DeBruijn-graphs while the pSDP-bound-based approach is superior on
the dense graphs such as the BCR-misti and ex36-graphs.

Secondly, we have performed a set of experiments in order to get an idea of the sizes
of graphs which can be exactly solved in reasonable time using our MVarMC-based
branch&bound procedure. Therefore, we have taken instances of RandPlan-graphs
with p= 1, RandRegular graphs with= 4 and Random graphs with= 0.05 and we

have solved the bisection-problem on always 10 instances. Tablej$ A.49-A.51 give the
details on the results, Figure b.7 illustrates the averages of these runs.

Of course, these 10 runs are not sufficient for the production of reliable statements.
However, in our opinion more runs are not useful, as firstly we get an idea of what is
going on and secondly real instances will behave differently in any case. Therefore,
the figure shows that the running times strongly depend on the class of graphs that
we use. Totally random graphs prove to be the most difficult when our approach is
used, random-regular graphs are easier and random-planar graphs are the easiest. If
we have a running time of at most 100 seconds, we can solve random instances with
up to 80 vertices, random-regular instances of degree 4 with up to 90 vertices and
random-planar graphs with up to 150 vertices.

Thirdly, we can report that we were able to solve instances which to our knowledge
had remained unsolvable until now. I.e. we have exactly computed the bisection-width

140

CHAPTER 5. BRANCH & BOUND ALGORITHM

Table 5.5: Results on up to now unsolved problems

| graph | n| [E[|bwG) | time | subp.]
DB-8 256 | 509 54| 1:56:01| 148
DB-9 512 | 1,025 92 | 82:44:00| 3,719
SE-9 512| 762 48 | 3:30:59 38
SE-10| 1,028 1,534 82| 5:09:58 19

of the DeBruijn-graphs of dimension 8 and 9 and of the Shuffle-Exchange-graphs of
dimension 9 and 10. All four instances were unsolved until now. Table 5.5 gives
the details of these computations. For both graphs we have taken advantage of the
symmetry inside the graphs, e.qg. if a pair of verti¢es w1 } is symmetric to{ v, wo }

and we have done a branch of splitfv1) on one side, we can fix a join dfg,w; }
and{vz,w,} on the other branch inside the branch&bound-algorithm. This symmetry-
breaking saves about one half of the subproblems.

Chapter 6

Conclusion

In this elaboration we have introduced new lower bounds on graph partitioning prob-
lems. These new bounds are based on multicommodity-flows. The experiments pre-
sented show that the new bounds are superior when compared to other lower bounds on
relatively sparse or structured graphs. The semidefinite-based bounds generally only
give better results with dense random graphs.

Furthermore, we have shown that the new bounds can also be used for theoretical
analyses. This is a big advantage in comparison to the semidefinite-based bounds. The
analyses presented show that the VarMC-bound often gives improved results when
the bisection problem is treated, while the MVarMC-bound is clearly superidt-for
partitioning problems. Furthermore, we have also seen that these analyses often pro-
duce better results when compared to eigenvalue-based analyses.

In order to be able to quickly compute the bounds, we have compared linear pro-

grams, cost-decomposition based methods and an approximation algorithm. Experi-
ments show that linear programs should be used in order to exactly compute the lower
bounds. However the approximation algorithm is more effective if the bounds are used

inside a branch&bound-procedure.

Finally, we have presented a branch&bound-procedure. Due to the very strong variable-
fixing strategy that we have developed, the general usable branch-selection method
that we have presented and of course due to the strength of the new bounds, the
branch&bound-procedure is as a whole very efficient. In comparison to other ap-
proaches, our procedure is clearly superior on more dense or structured graphs. Fi-
nally, with the help of this program we were able to exactly compute the up to now
unknown bisection width of the DeBruijn-graphs of dimension 8 and 9 and Shuffle-
Exchange-graphs of dimension 9 and 10.

141

142 CHAPTER 6. CONCLUSION

Bibliography

[Ali95]

[AMO93]

[BAOO]

[BCLS87]

[BCR97]

[BHJSO5]

[BLM *98]

[Bop87]

[BR97]

F. Alizadeh. Interior point methods in semidefinite programming with ap-
plications to combinatorial optimizatio®IAM Journal on Optimizatign
5(1):13-51, 1995.

R.K. Ahuja, T.L. Magnati, and J.B. OrlimNetwork Flows Prentice Hall,
1993.

F. Barahona and R. Anbil. The Volume Algorithm: producing primal
solutions with a subgradient algorithmMathematical Programming
87:385-399, 2000.

T.N. Bui, S. Chaudhuri, F.T. Leighton, and M. Sipser. Graph bisection
algorithms with good average case behavidambinatorica 7(2):171—
191, 1987.

L. Brunetta, M. Conforti, and G. Rinaldi. A branch-and-cut algorithm for
the equicut problemMathematical Programming’8:243-263, 1997.

C. Barnhart, C.A. Hane, E.L. Johnson, and G. Sigismondi. A column
generation and partitioning approach for multi-commodtiy flow prob-
lems. Telecommunication Systen3s239-258, 1995.

C. Bornstein, A. Litman, B. Maggs, R. Sitaraman, and T. Yatzkar. On the
Bisection Width and Expansion of Butterfly Networks. Rnoceedings

of the 1st Merged International Parallel Processing Symposium and Sym-
posium on Parallel and Distributed Processing (IPPS/SPDR-papes
144-150. IEEE Computer Society, 1998.

R. B. Boppana. Eigenvalues and graph bisection: An average-case analy-
sis. In Ashok K. Chandra, editdProceedings of the 28th Annual Sympo-
sium on Foundations of Computer Sciengages 280285, Los Angeles,

CA, October 1987. IEEE Computer Society Press.

S. Bezrukov and B. Rovan. On patrtitioning grids into equal p&tsn-
puters and Artificial Intelligencel6(2):153-165, 1997.

143

144

[CDS79]

[CFM75]

[CHL*94]

[Chu97]

[Cro76]

[Dem89]

[DH73]

[Eck94]

[ELMO1]

[Fan49]

[Fja98]

[FKO2]

BIBLIOGRAPHY

D.M. Cvetkovic, M. Doob, and H. SacHspectra of Graphs: Theory and
Application Academic Press, Inc., New York, 1979.

P. Camerini, L. Fratta, and F. Maffioli. On Improving Relaxation methods
by Modified Gradient Techniqueblath. Programming Studie8:26-34,
1975.

S. Carney, M. A. Heroux, G. Li, R. Pozo, K. A. Remington, and K. Wu.
A revised proposal for a sparse BLAS toolkit. Preprint 94-034, Army
High Performance Computing Research Center, Minneapolis, Minnesota,
1994.

R.K. Chung.Spectral Graph TheotyAmerican Mathematical Society,
November 1997.

H. Crowder. Computational improvements for subgradient optimization.
Symposia MathematicX1X:357-372, 1976.

J. Demmel. LAPACK: A portable linear algebra package for supercom-
puters. InProceedings 1989 IEEE Control Systems Society Workshop
on Computer-Aided Control System Desigages 1-7, Tampa, Florida,
December 1989.

W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of
graphs.IBM Journal of Research and Developmgeht:420-425, 1973.

Jonathan Eckstein. Parallel Branch-and-Bound Algorithms for general
Mixed Integer Programming on the CM-%IAM Journal on Optimiza-
tion, 4(4):794-814, November 1994.

R. Elsésser, T. Lucking, and B. Monien. New Spectral Bounds on k-
Partitioning of Graphs. Iroc. of the Thirtheenth ACM Symposium on
Parallel Algorithms and Architecturepages 255-262, 2001.

K. Fan. On a theorem of weyl concerning eigenvalues of linear trans-
formations. Ininternational Proceedings of the National Academy of
Sciencesvolume 35, pages 652-655, 1949.

P.-O. Fjallstrom. Algorithms for graph partitioning: A survey. Linkdping
Electronic Articles in Computer and Information Science, 1998.

Uriel Feige and Robert Krauthgamer. A Polylogarithmic Approximation
of the Minimum Bisection. SIAM Journal on Computing31(4):1090-
1118, 2002.

BIBLIOGRAPHY 145

[Fle00]

[FMdS*+98]

[FRW94]

[GH61]

[GIST76]

[GK98]

[GOPS98]

[GTO1]

[GUN99)

[Gup97]

[Gus90]

[HKOO]

L. K. Fleischer. Approximating fractional multicommodity Flow inde-
pendent of the Number of CommoditiesSIAM Journal on Discrete
Mathematics13(4):505-520, 2000.

C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel, and L. A.
Wolsey. The node capacitated graph partitioning problem: a computa-
tional study.Mathematical Programming1:229-256, 1998.

Julie Falkner, Franz Rendl, and Henry Wolkowitz. A computational study
of graph partitioningMathematical Programming6(2):211-239, 1994.
Also University of Waterloo Tech.Report CORR-92-25, 1993.

R. E. Gomory and T. C. Hu. Multi-terminal network flow3ournal of
the Society for Industrial and Applied Mathemati®¢4):551-570, De-
cember 1961.

M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-
complete graph problemsTheoretical Computer Sciencé:237-267,
1976.

Naveen Garg and Jochen Konemann. Faster and Simpler Algorithms
for Multicommodity Flow and other Fractional Packing Problems. In
Proceedings of the 39th Annual Symposium on Foundations of Computer
Science (FOCSpages 300-309, November 1998.

A.V. Goldberg, J.D. Oldham, S.A. Plotkin, and C. Stein. An Implemen-
tation of a Combinatorial Approximation Algorithm for Minimum-Cost
Multicommodity Flows. InProceedings of Integer Programming and
Combinatorial Optimization (IPCQ)olume 1412, pages 338-352, June
1998.

Andrew V. Goldberg and Kostas Tsioutsiouliklis. Cut tree algorithms: an
experimental studyJournal of Algorithms38(1):51-83, 2001.

Oktay Gunlik. A Branch-and-Cut Algorithm for Capacitated Network
Design ProblemsMathematical Programming86(1):17—-39, 1999.

A. Gupta. Fast and effective algorithms for graph partitioning and
sparse matrix ordering.IBM Journal of Research and Development
41(1/2):171-184, 1997.

Dan Gusfield. Very simple methods for all pairs network flow analysis.
SIAM Journal on Computind 9(1):143-155, February 1990.

Bruce Hendrickson and Tamara G. Kolda. Graph Partitioning Models for
Parallel ComputingParallel Computing26:1519-1534, 2000.

146

[HL94]

[HL95a]

[HLO5b]

[HR73]

[Iba88]

[ILO00]

[JMN93]

[Kar9g]

[KK54]

[KK98a]

[KK98b]

[KR98]

BIBLIOGRAPHY

B. Hendrickson and B. Leland. The chaco user’s guide: Version 2.0.
Technical Report SAND94-2692, Sandia National Laboratories, Albu-
querque, 1994.

Bruce Hendrickson and Robert Leland. An improved spectral graph par-
titioning algorithm for mapping parallel computatior8lAM Journal on
Scientific Computingl6(2):452—-469, 1995.

Bruce Hendrickson and Robert Leland. A multilevel algorithm for par-
titioning graphs. InProceedings of the 1995 ACM/IEEE conference on
Supercomputing (CDROMpage 28. ACM Press, 1995.

L. Hyafil and R.L. Rivest. Graph partitioning and constructing optimal
decision tress are polynomial complete problems. Technical Report 33,
IRIA-Laboria, Rocquencourt, France, 1973.

T. Ibaraki. Enumerative approaches to combinatorial optimisatan.
nals of Operations Researchl(1-4), January 1988.

ILOG. CPLEX 7.0 Reference Many&000.

E. Johnson, A. Mehrotra, and G. Nemhauser. Min-cut clusteMagh-
ematical Programming62:133-151, 1993.

S. Karisch. CUTSDP - A toolbox for a cutting-plane approach based on
semidefinite programming, User’s guide, Version 1.0. Technical Report
10/98, Department of Mathematical Modelling, Technical University of
Denmark, www.imm.dtu.dk/ sk/cutsdp/, 1998.

J.F. Kenney and E.S. Keepin@lathematics of Statistics - Part On®.
van Nostrand Company, Inc., 3 edition, 1954.

G. Karypis and V. Kumar. METIS - A Software Package for Partitioning
Unstructed Graphs, Partitioning Meshes, and Computing Fill-Reducing
Orderings of Sparse Matrices. Technical report, University of Minnesota,
September 1998.

G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint
graph partitioning. Technical Report TR 98-019, Dept. of Computer Sci-
ence, Univ. of Minnesota, 1998.

S. E. Karisch and F. Rendl. Semidefinite programming and graph
equipartition. In P. M. Pardalos and H. Wolkowicz, editofepics in
Semidefinite and Interior-Point Methgd®lume 18, pages 77-95. AMS,
1998.

BIBLIOGRAPHY 147

[KRCOO]

[Kum87]

[Lei92]

[Len90]

[LS99]

[Mar01]

[Mit70]

[MNO5]

[Moh97]

[MV80]

[Nog93]

[PD96]

S. E. Karisch, F. Rendl, and J. Clausen. Solving graph bisection prob-
lems with semidefinite programmingNFORMS Journal on Computing
12(3):177-191, 2000.

Vipin Kumar. BRANCH-AND-BOUND SEARCH. In Stuart C. Shapiro,
editor,Encyclopaedia of Artificial Intelligence: Vol pages 1000-1004.
John Wiley and Sons, Inc., New York, 1987. Revised version appears in
the second edition 1992.

F. T. Leighton. Introduction to Parallel Algorithms and Architectures
Morgan Kaufman, 1992.

T. LengauerCombinatorial algorithms for integrated circuit layauVi-
ley - Teubner, 1990.

Jeff T. Linderoth and Martin W.P. Savelsbergh. A Computational Study
of Branch and Bound Search Strategies for Mixed Integer Programming.
INFORMS Journal on Computing1(2):173-187, 1999.

Alexander Martin. General Mixed Integer Programming: Computational
Issues for Branch- and-Cut Algorithms. In Michael Jiinger and Denis
Naddef, editorsComputational Combinatorial Optimization, Optimal or
Provably Near-Optimal Solutiongolume 2241 of_ecture Notes in Com-
puter Sciencgpages 1-25, 2001.

L. G. Mitten. Branch-and-bound methods: General formulation and
properties.Operations Researcii8:24—-34, 1970.

K Mehlhorn and S. Nahler. LEDA: A Platform for Combinatorial and Ge-
ometric ComputingCommunications of the ACN38(1):96—-102, 1995.

Bojan Mohar. Graph Symmetry: Algebraic Methods and Applications
chapter Some Applications of Laplace Eigenvalues of Graphs, pages
225-275. NATO ASI Ser. C 497. Kluwer, 1997.

S. Micali and V.V. Vazirani. Ano(/nm) algorithm for finding maximum
matchings in general graphs. 2ist Annual Symposium on Foundation
of Computer Scien¢c@ages 17-27, 1980.

A. Noga. On the edge-expansion of grapembinatorics, Probability
and Computing11:1-10, 1993.

R. Preis and R. Dieckmann. The PARTY Partitioning — Library User
Guide — Version 1.1. SFB 376 tr-rsfb-96-024, University of Paderborn,
1996.

148

[PD97]

[PRO5]

[PR96]

[Pre98]

[Rad00]

[RWO5]

[SKKOO]

[SW99]

[WCE95]

[WCE97]

[WCMOO]

[Whig4]

BIBLIOGRAPHY

R. Preis and R. Diekmann. PARTY - A Software Library for Graph Parti-
tioning. In B.H.V. Topping, editorAdvances in Computational Mechan-
ics with Parallel and Distributed Processingages 63—71. Civil-Comp
Press, 1997.

S. Poljak and F. Rendl. Nonpolyhedral relaxations of graph-bisection
problems.SIAM Journal on Optimizatiqrb(3), 1995. 467-487.

F. Pellegriniand J. Roman. SCOTCH: A software package for static map-
ping by dual recursive bipartitioning of process and architecture graphs.
In Proc. HPCN'96 pages 493-498, 1996.

Robert Preis. The PARTY Graphpartitioning-Library, User Manual - Ver-
sion 1.99, October 1998.

T. Radzik. Experimental study of a solution method for the multicom-
modity flow problem. InProceedings of the 2nd Workshop on Algorithm
Engineering and Experiments (ALENEXages 79—-102, January 2000.

F. Rendl and H. Wolkowicz. A projection technique for partitioning the
nodes of a graphAnnals of Operations ReseardB:155-180, 1995.

Kirk Schloegel, George Karypis, and Vipin Kum&RPC Parallel Com-
puting Handbookchapter Graph Partitioning for High Performance Sci-
entific Simulations. Morgan Kaufmann, 2000.

A. Steger and N.C. Wormald. Generating random regular graphs quickly.
Combinatorics, Probab. and Compu8:377-396, 1999.

C. Walshaw, M. Cross, and M. Everett. A localised algorithm for optimis-
ing unstructured mesh partitionkt. J. Supercomputer AppB(4):280—
295, 1995.

C. Walshaw, M. Cross, and M. G. Everett. Parallel Dynamic Graph Parti-
tioning for Adaptive Unstructured Meshes. Parallel Distrib. Comput.
47(2):102-108, 1997. (originally published as Univ. Greenwich Tech.
Rep. 97/1M/20).

C. Walshaw, M. Cross, and K. McManus. Multiphase Mesh Partitioning.
Appl. Math. Modelling 25(2):123-140, 2000. (originally published as
Univ. Greenwich Tech. Rep. 99/IM/51).

A.T. White. Graphs, Groups and SurfaceNorth-Holland, 1984.

Appendix A

Detalls of Experimental Results

graph| 11-MC | VarMC | MvarMC || pSDP| BRW | DH || Opt.

4.0 4.0 40[4.0 23] 23] 4
DB-3 <1 <1 <1 <1
5.9 6.0 60| 60| 31| 31 6
DB-4 <1 <1 <1 <1
99| 100 10.0] 9.7| 6.8 43| 10
DB-5 <1 <1 <1 <1
15.9] 17.0 17.0| 149| 84| 63| 18
DB-6 3 8 6 8
DB.7 | 275 29.0 29.0| 22.0] 15.0] 9.7 30
30 53 1:00 1:24
DB.g | 485 495 495| 350| 22.8|15.4| 54
4:51| 10:13| 12:13| 17:11
2.0 2.0 20/ 20| 09| 09 2
SE-3 <1 <1 <1 <1
3.0 3.1 31| 35| 1.2 12| 4
SE-4 <1 <1 <1 <1
5.0 5.2 521 51| 30| 1.7 6
SE-S <1 <1 1 <1
8.4 8.9 89| 74| 41| 25| 10
SE-6 2 6 6 9
sg7|| 143 151 151 10.9| 7.1| 4.0 16
15 35 41| 1:55
segl|l 249 261 26.1|| 18.1| 10.8| 6.4| 28
2:54| 805 9:43 || 15:43

Table A.1: Different bounds and their computing-time for graph bisection problems
with the DeBruijn and Shuffle-Exchange networks (Sedtion 2.3.2)

149

150 APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

graph | 11-MC | VarMC | MVarMC || pSDP | BRW | DH || Opt.

Grid-8x10 8.2 8.§ 8.?(3 722 36| 20 8

Grid-9x10 Q.g 912 Q.g 732 38|22 9
Grid-10x10 10.;) 1013 10.;) 832 39|24 10
Grid-11x10 10.;. 1]:.L§ 1]:.Lé) 85? 40| 22| 11
Grid-12x10 1(:)|_]C_) 101(0) 1%3 1808 20| 20| 10
Torus-8x10 16.:1) 16;(()) 16.:1) 1512 76| 76| 16
Torus-9x10 18.;) 1813 18.é) 122 86| 86| 18
Torus-10x10 20.;) ZO.g 20.;) 1732 95|95 20
Torus-11x10 2%5 2(15 qu 1743 8.7|8.7| 22
Torus-12x10 201;) 2013 2012 1.602 8.0/ 80| 20

Table A.2: Different Bounds and their computing-time for graph bisection problems
with several grids and tori (Sectign 2.3.2)

151

graph || 11-MC | VarMC | MvarMC | pSDP| BRW | DH || Opt.
13.0] 176 176] 19.2] 11.1] 40| 20

BCR-9x4g <1 <1 1 <1
13.6] 216 218| 205| 111| 43| 22

BCR-5x10g o 5 " 5
19.0] 25.0 2621 23.4| 134| 52| 28

BCR-6x10g : " : ?
13.6| 183 201 19.3| 109| 45| 23

BCR-7x10g 5 : : ;
scrowt | 25| 254| 254| 257| 145 126| 26

<1| <1 1 <1
soR10vat|| 250 288 288| 28.7| 142| 125| 30

<1 1 2 1
13.0| 135 136| 141 87| 38| 15

BCR-10x5t : 5 - ,
BCR.10c6t || 385| 40.7| 408| 364| 195 182| 42

2 7 6 5
375 41.0| 410| 39.7| 227 191| 43

BCR-10x8t ; - ; "
360.4| 3645| 364.5| 369.0 3503 333.8| 369

BCR-9x4m 27 30 20 <1
783.7| 789.8| 789.8| 790.4| 755.6| 743.7| 792

BCR-9x6m || o5 645 3:28 3
670.0| 670.0] 670.0] 670.0] 652.8] 636.0] 670

BCR-10xSm| 7351 .48 2:02 2
954.0| 954.0] 954.0| 954.0] 913.4| 913.2| 954

BCR-10x6m| “2.cc | “7.59 5:26 3
1288.0] 1288.0 1288.0| 1288.0| 1258.5| 1240.4| 1288

BCR-10X7TM| “19.04| 17:49| 11:41 8

Table A.3: Different bounds and their computing-time for graph bisection problems
with several randomized grids and tori from [BCR97] (Secfion 2.3.2)

152 APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

graph || 11-MC | VarMC | MVarMC || pSDP | BRW | DH || Opt.

BCR-mMA | - i 58] 57| 36| -| 6
1 <1
BCR-ma.i - - 1-2 1.?? 0.7] - 2
BCR-me.] 3-? 3-2 3.(2) 3.2 12/ 04| 3
BCR-m6.i 5-123 6-;1 6-8 5.3 29| 14| 7
BCR-mb.i 3-‘23 3-71 3-§ 31.1 11]04| 4
BCR-mc.| 3-; 5-71 5; 51.;1 23/ 06| 6
BCR-md.i 3-‘33 3-§ 3-3 323 11/ 04| 4
BCR-mf. 3-2 31-3 31-411 22.2 11|03 4
BCR-mL1.i - - 212 23.3 09| - 4
BCR-m8.i 722 71-8 71-8 2%2 27110 7

Table A.4: Different bounds and their computing-time for graph bisection problems
with some real-world instances from [BCR97] (Secfion 2.3.2)

153

graph | 11-MC | VarMC | MVarMC | pSDP| BRW | DH || Opt.
Random-100-0.05-() - - illg 423-2 32.8 - 47
Random-100-0.05-1 252f ‘1‘233 425-623 413-% 329 11.9] 43
Random-100-0.05-2 ~] izog 41;-3 308 - (48)
Random-100-0.05-3 121-;3 253-2 i‘gg’ 323-3 226| 72| 34
Random-100-0.05-4 " - 425-3 4?;3 33.8 - 48
Random-50-0.2-0 38.§ 641.2 64;.;) 66.;3 59.8| 33.4| 67
Random-50-0.2-1 51-? 711-; 7121 76.5 69.2| 408 78
Random-50-0.2-2 51-? 6812 6822 73.22 66.6| 42.4| 75
Random-50-0.2-3 38.; 631.2 631.76 69.;) 62.7] 31.6| 71
Random-50-0.2-4 25.: 5o.§ 671.5 71.;) 65.3| 22.4| 74
Random.32.0.5.0| 65| 872 87.2] 95.3| 90.6] 67.1| 96

3 5 5 <1

Random-32-0.5-1 82.35 87.§ 871.3 91.]6.3 89.5| 68.8] 96
Random-32-0.5-2 66.; 84.54 841.81 9i.l7 88.3| 58.7| 93
Random-32-0.5-3 79-5 831-3 831-3 83-17 85.4] 66.1] 90
Random-32-0.5-4 74-?? 80-? 801-123 Si-f 80.7| 61.8] 85
RandW-32-10-0 8831.;3 92’{3 9221.55 94if 921.6| 812.0][944
RandW-32-10-1 7431-5 9191-55 913.65 953.10 928.2| 707.2|[959
RandW-32-10-2 875;-3 93(1-: 9301.;5 96310 940.9| 791.5| 962
RandW-32-10-3 8011.8 949158 943.98 971.10 956.8| 748.2|| 977
RandW-32-10-4 8661.01 9771.?? 9772.3 1023.13 997.5| 826.8]| 1026

Table A.5: Different bounds and their computing-time for graph bisection problems
with some randomly generated graphs (Sedtion .3.2)

154 APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

graph | 11-MC | VarMC | MvarMC || pSDP | BRW | DH || Opt.
RandPlan-100-1-0 241: 351-81 3522 34}3-1 211]12.1] 38
RandPlan-100-1-1 201-8‘ 302-8 3%-? 2%2 19.8] 11.3] 32
RandPlan-100-1-2 181-5 251-?? 272-2 283-2 181 88| 31
RandPlan-100-1-3 | 190| 278|295/ 288/ 18.61 89/ 30
RandPlan-100-1-4 251-§ 3%-5 3% 26}3-919 175/ 112 32
RandRegular-100-3-(12.81 1233 1223 1%2 71| 54| 14
RandRegular-100-3-1 151-§ 1%; 153-; 123? 85| 6.7] 16
RandRegular-100-3-2 141f Mé? Méf 123% 83| 6.2| 16
RandRegular-100-3- 141-2 i:%i 1‘;-3 123; 79] 67] 16
RandRegular-100-3-4 11-? 13;2 131-3 1(;-523 69 51| 14
RandRegular-100-4-(272; 2743 2743 zgf 20.4] 18.0] 32
RandRegular-100-4-1 2722 274§ 273§ 253; 18.9| 16.2| 30
RandRegular-100-4-3 272$ 274;3 27518 Z%S 20.1] 15.3| 32
RandRegular-100-4-3 2722 274; 273; Zgg 20.3]16.1| 30
RandRegular-100-4-4 2525 2%; 264; 2‘;529 18.7| 13.6|| 28

Table A.6: Different bounds and their computing-time for graph bisection problems
with some randomly generated planar or respectively regular graphs (Section 2.3.2)

155

graph|| 11-MC | VarMC | MVarMC || GPr; | DH || Opt.

DB-3 i-i’ i-‘f fi-g iz 72 9
DB-4 i-f i-‘f 1i-f if 79| 14
DB-5 1i-f 135 17.i3 12.f 9.9 19
DB-6 23.;3 25.; 271.C2) 13;1 13.6] 32
SE-3 if if i-g ig 34 6
SE-4 i-f iz if if 33| 8
SE-5 if if 10.12 i.f 45 11
SE-6 12-;3 13-; 15.: if 6.3| 18

Table A.7: Different bounds and their computing-time for 4-partitioning problems with
the DeBruijn and Shuffle-Exchange networks (Sedtion 2.3.3)

graph || 11-MC | VarMC | MVarMC || GRr; | DH | Opt.

Grid-8x13 12.;3[1?:1](? 2(213 5.]5- 55| (23)
Grid-10x10 15.;) 1518 2(;8 6.](? 491 20
Grid-12x9 13.75 13.85 22;;. 5.? 51| (23)
Torus-8x13 24.;. 24.;3]. Bﬁg 8<f 13.6 | (38)
Torus-10x10 BO.g 30.;) 32.97 1if 14.3 || (40)
Torus-12x9 271](? 2711(-) 33;;1 10.f 13.6 || (36)

Table A.8: Different bounds and their computing-time for 4-partitioning problems with
several grids and tori (Sectipn 2.[3.3)

156 APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

graph H 11-|v|c\ VarMC \ MVarMC H GPRl\ DH H Opt.

] 28.6] 37.5 51.2 20.4] 16.7 (59)
BCR-6x10g 1 3 p -1

BCR-10x4t 375 432 65.0 21.4| 34.6 (69)
<1 1 4 <1

] 57.8] 61.1 75.9 29.3] 34.0 (79)
BCR-10x6t) Z 10 -1

] 540.7| 546.8 591.8| 525.5| 533.6] (621)
BCR-9x4m 25 33 30 <1

] 1431.0] 1431.0] 1490.5|] 1398.5| 1399.4 (1494)
BCR-10x6m| =0 05|~ 752 | 10110/ <1

Table A.9: Different bounds and their computing-time for 4-partitioning problems with
several randomized grids and tori from [BCR97] (Secfion 2.3.3)

graph || 11-MC | VarMC | MVarMC || GPg; | DH || Opt.

BCR-MA.i - i 11.4] 55|24 12
1 <1
BCR-me.i 4-f 4-3 10-§ if 26| 10
BCR-md.i 4-523 4-; 91-2 i18 21| 11
BCR-mL1.i - - 823 1.f 0.8 11
BCR-m8.i 102-523 101-3 ;%; 4.é 35| 22

Table A.10: Different bounds and their computing-time for 4-partitioning problems
with some real-world instances from [BCR97] (Secfion 2.3.3)

graph | 11-MC | VarMC | MVarMC || GPry| DH | oOpt.

Random-60-0.05-0 | 166) 109 | 18
8| <1

Random-60-0.05-1 | 188 114 o @2
6 <1

Random-60-0.05-2 - | 164y 102 | 20
5| <1

Random-60-0.05-3 | 2 109 | 20
7| <«

Random-60-0.05-4 | el 140 | (26)
6 <1

andom32.05.0 1148| 130.8| 1355 137.0| 108.1| (153)
3 6 7 <1

andoma2.05.4] 1237 130.9| 1340| 1355 1143| (152)
3 6 10 <1

e 99.1] 126.7] 1305| 132.7] 99.4| (149)
Random-32-0.5-2 3 5 12 1

andoma2.05.3 1185| 1249 128.0| 1286| 108.2] (146)
2 8 9 <1

andoma2.05.4 11L5| 1205 1228 121.2| 102.0] (141)
3 6 s s

| 1325.4 1383.8] 1402.0| 1385.5| 1249.0| (1477)
Randw-32-10-0 | 13254/ 1383 D) 985

o | 1114.8[1379.3] 1399.0| 1395.4| 1192.7| (1487)
Randw-32-10-1 | H119.8) 13795 00 st

o | 1319.8[1395.7] 1412.8| 1413.0| 1262.6] (1506)
Randw-32-10-2 | 13195/ 1395 7

oo o | 12015 1424.7] 1441.0| 1436.8| 1245.9] (1519)
RandW-32-10-3 10 16 15 -1

o, | 1299.2[1466.8] 14915| 1498.6| 1296.5] (1586)
RandW-32-10-4 10 13 21 -1

Table A.11: Different bounds and their computing-time for 4-partitioning problems

with some randomly generated graphs (Sedtion .3.3)

157

158 APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

graph | 11-MC | VarMC | MvarMC || GPr; | DH || Opt.
RandPlan-60-1-0 26-;3 38& 451? 33 18.8] (47)
RandPlan-60-1-1 23-; 371-3 431-I 3215 17.5] (45)
RandPlan-60-1-2 27;’ 361-f 421-2 3i15 18.2 (44)
RandPlan-60-1-3 30-2 36-5 471-3 3i-f 20.8]| (51)
RandPlan-60-1-4 29.2 32.6 39.7|| 26.7|16.1| (42)

3 9 8 <1

RandRegular-60-3-(1gf 11'} 15'é zi 6.6 || (18)
RandRegular-60-3-1 14'f 15.6? 16-75 if 7.9 (19)
RandRegular-60-3-2 13'f 151g 16-52 9<S 8.2 (19)
RandRegular-60-3-3 14'5 14'77 15Z if 7.3 (18)
RandRegular-60-3-4 12'f 12'3? 16'2 zz 8.3 | (18)
RandRegular-60-4-(28'56 2813 30';; Zilz 20.5| (37)
RandRegular-60-4-1 27'§ 281Z 30-? ng 19.5| (35)
RandRegular-60-4-2 24'27 27&’ 29-;1 1if 19.3 | (34)
RandRegular-60-4-3 275 2815 29-5 1316 18.4| (34)
RandRegular-60-4-4 25':(3) 2612 27'79 1215 16.8 | (32)

Table A.12: Different bounds and their computing-time for 4-partitioning problems
with some randomly generated planar or respectively regular graphs (Section 2.3.3)

graph|| 11-MC | VarMC | MVarMC || pSDP| DH || Opt.

3.7 3.8 3.8 38| 1.8 4
DB-3 <1 <1 <1 <1
55 55 55 56| 2.3 6
DB-4 <1 <1 <1 <1
i 8.9 8.9 9.0 8.1| 2.9/ (10)
DB-5 <1 <1 <1 <1
i 14.3 14.4 14.4| 12.3| 4.4 (16)
DB-6 4 14 7 6
DB-7 245 24.5 245| 189| 6.5 26
30 32 28| 1:19
DB-8 43.2 43.3 43.4| 30.8|10.4| (48)
6:37 8:47 16:25|| 14:31
1.9 1.9 1.9 19| 0.7 2
SE-3 <1 <1 <1 <1
2.9 2.9 2.9 28| 0.9 3
SE-4 <1 <1 <1 <1
4.5 4.5 4.5 39| 11 5
SE-S <1 <1 <1 <1
7.6 7.6 7.6 6.2| 1.7 8
SE-6 2 4 3 6
sg7 | 127] 127 127 9.3] 27| 14
15 13 21 1:20
SE-8 22.2 22.2 22.2| 149| 43| (24)
2:24 2:32 3:25|| 15:03

159

Table A.13: Different bounds and their computing-time for partitioning problems us-
ingk =2 andM = L%nj with the DeBruijn and Shuffle-Exchange networks (Section

[2.3.4)

160

APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

graph || 11-MC | VarMC | MVarMC || pSDP| DH || Opt.
Grid-8x10 7.2 7.5 7.2 61.2, 1.3] 8
Grid-9x10 8.(5) 81.2 8.(5) 72§ 1.5] (9)
Gid-10q0| 90| 90| 90/ 68/ 17(10)
Gid-awo| 90| 90| 90 7I[15] 10
cioizao| 53 59 S esTie[O
Torus-8x10 14.; 141.2. 14.; 1?12 5.2 (16)
Torus-9x10 16.;) 162.3 16.;) 142.3 5.7 (18)
Torus-10x10 18.g 18.8 18.8 163.(1)3 6.5 (20)
Torus-11x10| 180| 180]" 180/ 158/ 55 (20
Torus-12x10| 178 178|178/ 14554/ (20)

Table A.14: Different bounds and their computing-time for partitioning problems us-

ing k=2 andM = | n| with several grids and tori (Sectipn 2.8.4)

161

graph | 11-MC | VarMC | MvarMC | pSDP| DH | oOpt.
BCR-9x4g 123 12-f 12-12 1if 271 (14)
BCR-5x10g| 47| 1031 105 1Sb 29 (19)
BCR-6x10g| 00| TRl 178 170 351 (20)
BCR-7x10g 12.5, 12.85 12.;3 12.;3 3.1 14
BCR-9x4t Zif Zz-f 22-f Zi-f 84| 23
BCR-10xat || 228| 228 228 227] 88| (24

<1 1 1 <1

BCR-10x5t 1i17 11-27 11-27 11-;1 26 (13)
BCR-10x6t | 2| 543 34-?1)3 30-3 12.2](37)
BCR-10x8t 33-65 331-3 33-: 3LO) 129 (36)
BCR-9x4m 32%‘ 32%-;‘ 32(1;1 322-11 2225| (324)
BCR-9x6m 63:62-2 659:64.53 62:65.85 696.21 495.8| (702)
BCR-10x5m 6;):15-;1 6;):10.;1 6;):15.3 601.21 432.5[(615)
BCR-10x6m 8;1:81-5 8;1:80.3 8;1:80.2 846f 608.8]| (863)
BCR-10x7m 1;8:01.? 1213%3 1;2:01.3 1157£ 850.6 || (1176)

Table A.15: Different bounds and their computing-time for partitioning problems us-
ingk=2andM = L%nj with several randomized grids and tori from [BCR97] (Section

2.3.3)

162 APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

graph || 11-MC | VarMC | MVarMC || pSDP| DH || Opt.
- - 50 4.8[00] (6)

BCR-mA4.i ol
BCR-ma.i - - 1-3 1.2 - 2
BCR-me.i Z'I 2-; 2-; 2-41r 0.3 3
BCR-mS.| 4-f 4-? 4-3 4.3 09| 5
BCR-mb.i 2-; Z-Z 2-; 21.2 03| 3
BCR-mc.| 3-3 3-? 3.2 21.3 04| 4
BCR-md.i 2-; 2-; 2-1 11.2 03| 3
BCR-mf.i ZZ 21-1 2-; 125 02| 3
BCR-m1.i ‘ - 21-; 132 00[3
BCR-m8.i 62-2 62-323 62-2 zfldé 07| 7

Table A.16: Different bounds and their computing-time for partitioning problems us-
ingk=2andM = L%nj with some real-world instances from [BCR97] (Sec.3.4)

163

graph | 11-MC | VarMC | MvarMC || pSDP| DH || Opt.
100 i - - 31.3|| 337 0.0|| (38)
Random-100-0.05-(1:42 o8
100 i 22.7 30.3 34.0(344 8.1|| (38)
Random-100-0.05-1 20 1-40 153 27
) - - 32.7| 35.0] 0.0 (41
-100- -2
Random-100-0.05 1-38 28
. 11.4 17.0 26.8 26.6 4.9 32
Random-100-0.05-3 13 5o 131 59
100, i - - 315| 345 0.0|| (39
Random-100-0.05-4 1:92 29
EALA 5. 34.3 45.9 53.7|| 57.6| 22.7| (62)
Random-50-0.2-0 5 17 13 1
EALA 9. 45.8 54.8 60.3|| 64.9| 27.7| (68)
Random-50-0.2-1 s 20 15 >
EALA 5. 45.8 53.1 57.1|| 62.1| 28.9| (64)
Random-50-0.2-2 . 17 17 1
EALA 5. 34.3 45.7 51.8|| 58.1| 21.5| (63)
Random-50-0.2-3 5 16 15 1
EALA 5. 229 34.0 55.3|| 60.9| 15.3| (65)
Random-50-0.2-4 . 11 19 1
Random-32-0.5-0 69.0 72.3 73.5| 81.8| 46.1 82
3 6 6 <1
Random-32-0.5-1 74 .4 74.4 74.4) 83.2| 47.3| (87)
3 3 6 <1
Random-32-0.5-2 59.6 67.1 71.3|| 80.0| 40.3 80
4 6 6 <1
71.3 71.3 71.3| 78.3| 454 79
Random-32-0.5-3 3 3 5 1
67.1 68.3 68.8 745 42.5 75
Random-32-0.5-4 3 4 5 1
2910, 797.3| 8115 820.0| 845.9| 558.3|| (860)
RandW-32-10-0 12 18 14 -1
670.6| 750.5 807.6| 834.9| 486.2|| 835
RandW-32-10-1 11 20 15 1
2510 794.0| 810.3| 814.9(841.4] 544.2| (844)
RandW-32-10-2 11 16 21 1
2910, 722.8| 789.7 836.8|| 865.4| 514.4| (867)
RandW-32-10-3 11 21 17 -1
2910, 781.5| 830.0 862.0|| 889.9| 568.4| (894)
RandW-32-10-4 10 18 19 -1

Table A.17: Different bounds and their computing-time for partitioning problems us-
ingk=2andM = L%nj with some randomly generated graphs (Se.3.4)

164 APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

graph | 11-MC | VarMC | MvarMC || pSDP| DH || Opt.
RandPlan-100-1-0 221§ 2‘}2-5 2‘;-2 24;-2 83[27
RandPlan-100-1-1 181-f 212-2 212-3 22;3-3 7.7 (25)
RandPlan-100-1-2 161-f 171-§ 182-3 1%; 6.0 (22)
RandPlan-100-1-3 | 77| 53 198 1%? 6.1 (1)
RandPlan-100-1-4 221-3 232-3 23;3 2251 7.6 (25)
RandRegular-100-3-(10.88 1%5 1012 92; 3.7 (12)
RandRegular-100-3-1 1:1; 13;; 132I 102; 46| 14
RandRegular-100-3-2 121f 1253 1232 1023 4.2 (14)
RandRegular-100-3-3 13’12 13’3; 13’1-81 102.;1 45| 14
RandRegular-100-3-4 10-77 102-3 101-3 %g 34 (12)
RandRegular-100-4-(223 24&3 Zdéf 23;:73 12.2| (28)
RandRegular-100-4-1 223 22;’ 223 22? 11.0| (26)
RandRegular-100-4-3 ztg 2298 223 23;:,3 10.4 | (28)
RandRegular-100-4-3 223 223 223 2{”2; 10.9| (28)
RandRegular-100-4-4 232i 22; 2322 2132 93] 24

Table A.18: Different bounds and their computing-time for partitioning problems us-
ingk=2andM = L%nj with some randomly generated planar or respectively regular

graphs (Section 2.3.4)

165

pure subgr. | Crowder | mod. CFM | Volume

graph time subp. | time subp. | time subp. | time subp.
RandPlan-0 40:52 15 22:37 15 1:15:02 15 50:40 15
RandPlan-1 19:50 19 17:15 19 32:22 19 18:27 19
RandPlan-2 2:56:20 51 2:18:02 51 6:34:11 51 4:03:19 51
RandPlan-3 39:54 11 23.03 11 1:11:02 11 15:40 11
RandPlan-4 7:51 7 4:09 7 9:30 7 5:44 7
RandPlan-5 48 1 31 1 50 1 25 1
RandPlan-6 21:52:27 443| 11:06:40 443| >48:00:00 443| 13:38:02 443
RandPlan-7 4:21:26 91 2:36:35 91 8:41:30 91 2:48:38 91
RandPlan-8 7:35 5 3:28 5 7:36 5 3:34 5
RandPlan-9 48 1 1.07 1 1:24 1 1:13 1
RandPlan-10 1:30 1 41 1 1:32 1 52 1
RandPlan-11 16:10:39 581| 10:03:31 581| 40:28:25 581| 6:33:41 581
RandPlan-12 38:30 13 17.06 13 45:53 13 20:27 13
RandPlan-13 33:09 13 12:29 13 22:54 13 40:51 13
RandPlan-14 54 1 33 1 44 1 47 1
RandPlan-15 34 1 45 1 47 1 35 1
RandPlan-17 6:12:15 219 | 3:47:48 219 11:52:41 219| 7:58:43 219
RandPlan-18 4:44:18 147 3:14:13 147 11:34:59 147| 3:04:06 147
RandPlan-19 14:31 5 7:38 5 11:02 5 9:04 5
Median 1989 13 1026 13 1942 13 1107 13
Maximum 78747 581 40000 581 172800 581 49082 581
Minimum 34 1 31 1 44 1 25 1
Avg. 11318.5 85.5 6625.8 85.5 24986.5 85.5 7752.0 85.5
Std. Deviation 21512.6 162.7| 119335 162.7 49657.7 162.7| 13138.3 162.7
rel. Dev. [%)] 190.1 190.2 180.1 190.2 198.7 190.2 169.5 190.2
Skewness 2.5 2.4 2.2 2.4 2.4 2.4 2.2 2.4

Table A.19: Results of Cost-Decomposition with the max-Cut-Flow formulation (Sec-

tion[4.4.1)

pure subgr. Crowder | mod. CFM | Volume

graph time subp.| time subp.| time subp.| time subp.
RandRegular-0 23:45 49 | 12:23 43| 14:31 43| 13:50 45
RandRegular-1 7:15 13 1:55 7 2:25 7 1:31 7
RandRegular-2 30:04 57| 12:29 37| 18:04 41| 14:43 47
RandRegular-3 6:30 9 1:57 5 1:55 5 2:42 7
RandRegular-4 3:13 3 21 1 23 1 21 1
RandRegular-5 5:33 9 2:18 5 2:25 5 1:41 5

RandRegular-6 12:18 21| 4:37 13| 6:13 13| 412 11
RandRegular-7 24:21 49 | 12:35 37| 15:48 41| 9:16 39

RandRegular-8 20:43 39| 11:11 29| 15:30 31| 9:28 35
RandRegular-9 45:48 95| 27:36 69 | 31:23 75| 25:56 87
RandRegular-10| 14:23 27| T7:50 21| 10:11 23| 7:30 27
RandRegular-11| 24:04 41| 12:37 25| 15:26 29| 9:18 27
RandRegular-12| 11:13 23| 3:39 13| 4:.07 13| 4:50 17
RandRegular-13| 24:47 43| 9:03 25| 15:05 31| 9:34 31
RandRegular-14 3:52 7 2:13 3 2:51 5 43 3

RandRegular-15| 15:13 35 9:48 25| 13:08 25| 9:04 29
RandRegular-16| 24:36 41| 8:09 25| 12:31 27| 6:53 25

RandRegular-17| 5:32 7 1:59 5 3:36 7 2:31 7
RandRegular-18| 4:56 9 1:25 5 2:30 5 1:06 5
RandRegular-19|| 1:29:23 191| 52:11 165| 57:40 159 | 54:20 189
Median 863 27 470 21 611 23 413 25
Maximum 5363 191| 3131 165| 3460 159 | 3260 189
Minimum 193 3 21 1 23 1 21 1
Avg. 1192.5 38.4| 588.8 27.9| 737.1 29.3| 568.5 32.2
Std. Deviation 1183.9 42.5| 711.9 36.5| 792.6 35.6| 733.3 42.3
rel. Dev. [%)] 99.3 110.6| 120.9 130.7| 107.5 121.6| 129.0 1314
Skewness 25 2.7 2.7 3.1 2.4 2.8 2.9 3.0

Table A.20: Results of Cost-Decomposition with the max-Cut-Flow formulation (Sec-

tion[4.4.1)

166 APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

pure subgr. | Crowder mod. CFM | Volume

graph time subp.| time subp. time subp.| time subp.
Random-0 12:33 87 9:48 87 11:34 85 23:04 87
Random-1 1:36 7 31 7 33 7 35 7
Random-2 1:00 7 54 7 53 7 37 7
Random-3 5:42 37 5:37 41 4:44 37 5:56 51
Random-4 2:45 27 2:12 29 1:37 27 2:53 37
Random-5 10:18 61 11:26 69 8:51 59 9:32 93
Random-6 56 9 32 9 31 9 32 9
Random-7 7:44 53 8:09 61 7:25 49 6:43 65
Random-8 3:05 17 3:04 19 2:08 15 2:35 23
Random-9 3:50 39 3:08 39 4:00 37 3:53 45
Random-10 7:13 35 4:51 35 6:01 33 5:11 47
Random-11 2:23:10 1625| 2:21:27 1625| 2:32:51 1625| 2:58:43 1625
Random-12 5:54 35 5:04 35 3:58 31 5:07 43
Random-13 22 5 21 5 21 5 19 5
Random-14 8:17 69 6:49 69 6:30 63 7:20 91
Random-15 3:36 19 2:15 17 2:39 17 2:29 23
Random-16 5:01 31 4:09 31 4:11 31 4:49 39
Random-17 11:02 71 10:09 77 9:28 67 9:58 93
Random-18 5:02 33 2:54 33 4:04 33 3:32 37
Random-19 10:21 81 8:11 87 8:24 77 9:23 109
Median 302 35 249 35 244 33 289 43
Maximum 8590 1625 8487 1625 9171 1625 10723 1625
Minimum 22 5 21 5 21 5 19 5
Avg. 7484 117.4 6945 119.1 722.1 1157 8495 126.8
Std. Deviation 1858.3 355.7| 1845.5 355.5| 1998.3 356.1| 2344.1 354.1
rel. Dev. [%)] 248.3 303.0 265.7 2985 276.7 307.7 275.9 279.3
Skewness 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4

Table A.21: Results of Cost-Decomposition with the max-Cut-Flow formulation (Sec-

tion[4.4.1)

pure subgr. Crowder mod. CFM Volume

graph time subp.| time subp.| time subp.| time subp.
RandW-0 2:53 13| 2:35 13| 3:.03 13| 252 19
RandW-1 1:27 3| 1.08 3 52 3 1:17 5
RandW-2 1:52 1 57 1 58 1 51 3
RandW-3 2:56 5| 1:.00 3| 1.06 3| 215 7
RandwW-4 2:32 11| 1:44 11| 2:43 11| 331 17
RandW-5 1:44 11| 1:26 11| 1:26 11| 2:21 13
RandW-6 36 1 28 1 9 1 35 1
RandW-7 9 1 14 1 18 1 7 1
RandW-8 4:32 19| 3143 21| 4:08 21| b5:15 37
RandwW-9 1:40 3| 1:50 3| 1:35 3| 1:26 5
RandW-10 1:05 9 58 9 55 9 52 9
Randw-11 2:22 9| 2:00 9| 218 9| 329 17
Randw-12 2:41 23| 3:.07 23| 325 23| 5:08 35
RandwW-13 1:44 3| 1:36 3| 154 3| 1:30 5
Randw-14 4:00 19| 3:08 19| 3:58 17 | 4:29 29
RandW-15 3:57 21| 354 27 | 3:46 21| 5:32 37
RandW-16 4:12 19 2:57 19 3:24 15 3:25 23
RandwW-17 3:46 13| 3:05 15| 3:13 13| 2:58 23
Randw-18 4:13 17| 412 15| 3:49 15| 3:46 23
RandW-19 1:57 11| 2:44 13| 1:50 11| 3:34 23
Median 142 11 110 11 114 11 172 17
Maximum 272 23 252 27 248 23 332 37
Minimum 9 1 14 1 9 1 7 1
Avg. 150.9 10.6| 128.3 11.0| 1345 10.2| 165.7 16.6
Std. Deviation 76.8 73| 70.8 81| 779 7.1| 98.0 12.0
rel. Dev. [%] 50.9 68.9| 55.2 73.2| 57.9 70.1| 59.1 72.2
Skewness -0.0 0.1 0.1 0.3 -0.0 0.2 0.1 0.3

Table A.22: Results of Cost-Decomposition with the max-Cut-Flow formulation (Sec-

tion[4.4.1)

167

pure subgr. | Crowder mod. CFM | Volume

graph time subp.| time subp. time subp.| time subp.
RandPlan-0 8:12 15 12:09 15 8:18 15 10:05 15
RandPlan-1 12:06 19 12:45 19 11:43 19 11:38 19
RandPlan-2 31:57 51 17:56 51 29:51 51 15:33 51
RandPlan-3 7:57 11 7:08 11 7:19 11 6:03 11
RandPlan-4 4:35 7 6:34 7 5:04 7 6:16 7
RandPlan-5 56 1 55 1 38 1 46 1
RandPlan-6 3:25:40 443 | 1:23:08 443 | 3:16:58 443 | 1:53:56 443
RandPlan-7 41:30 91 21:02 91 38:53 91 23:34 91
RandPlan-8 3:38 5 3:18 5 3:13 5 2:36 5
RandPlan-9 44 1 55 1 35 1 39 1
RandPlan-10 54 1 46 1 21 1 31 1
RandPlan-11 2:39:35 581| 1:57:37 581 | 2:06:15 581 | 1:45:46 581
RandPlan-12 9:10 13 8:52 13 7:27 13 7:15 13
RandPlan-13 8:34 13 6:04 13 6:26 13 5:31 13
RandPlan-14 46 1 43 1 30 1 37 1
RandPlan-15 51 1 36 1 27 1 28 1
RandPlan-17 1:23:10 219| 1:05:26 219| 1:15:05 219 59:52 219
RandPlan-18 1:00:16 147 34:05 147 57:03 147 38:56 147
RandPlan-19 2:59 5 4:.07 5 3:53 5 3:43 5
Median 492 13 428 13 439 13 376 13
Maximum 12340 581 7057 581 | 11818 581 6836 581
Minimum 44 1 36 1 21 1 28 1
Avg. 2032.1 85.5| 1276.1 85.5| 1831.5 85.5| 1306.6 85.5
Std. Deviation 3456.7 162.7| 1944.6 162.7| 3122.0 162.7| 2072.3 162.7
rel. Dev. [%)] 170.1 190.2 1524 190.2 170.5 190.2 158.6 190.2
Skewness 2.2 2.4 2.1 2.4 2.4 2.4 2.0 2.4

Table A.23: Results of Cost-Decomposition with the min-congestion formulation

(Sectiorf 4.4.1)

pure subgr. | Crowder | mod.CFM | Volume

graph time subp. | time subp.| time subp.| time subp.
RandRegular-0 || 1:31:37 91| T7:47:27 477| 1:50:24 107 | 7:45:13 447
RandRegular-1 18:10 19 1:37:58 99 19:21 19 1:19:54 71
RandRegular-2 || 1:26:04 91| 7:39:05 483 | 1:48:16 109| 7:22:46 427
RandRegular-3 10:08 9 49:11 47 10:13 9 33:33 29
RandRegular-4 1:29 1 18:59 19 1:37 1 9:41 9
RandRegular-5 15:01 15 1:02:44 61 14:37 13 52:01 45

RandRegular-6 22:24 21| 1:42:43 105| 24:36 23| 1:21:39 79
RandRegular-7 || 1:22:22 83| 6:51:21 415| 1:35:14 91| 7:06:02 413

RandRegular-8 || 1:09:50 69| 6:11:52 373| 1:16:18 73| 5:41:41 329
RandRegular-9 || 2:29:54 155| 10:35:20 661| 2:49:36 173| 11:06:13 687
RandRegular-10| 46:37 47| 4:32:35 273 54:08 51| 4:02:56 227
RandRegular-11 33:30 37| 2:11:44 141 41:20 43| 2:07:28 129
RandRegular-12 28:43 31| 2:31:36 157 33:37 33| 2:19:45 133
RandRegular-13 47:54 51| 3:08:45 201 50:53 55| 2:56:50 181
RandRegular-14 7:35 7 42:01 43 8:11 7 24:45 21

RandRegular-15 52:27 51 4:16:58 253| 1:06:27 63| 4:00:43 233
RandRegular-16 43:15 45| 3:21:01 211 50:17 51| 2:57:.07 177
RandRegular-17 7:38 7 49:21 51 8:19 7 34:45 33
RandRegular-18 15:13 15| 1:11:44 73 17:35 17 50:22 45
RandRegular-19|| 7:06:06 431| 28:50:53 1839| 8:17:03 501 | 34:24:16 2135

Median 2010 37 9096 157 2480 43 8385 133
Maximum 25566 431| 103853 1839| 29823 501| 123856 2135
Minimum 89 1 1139 19 97 1 581 9
Avg. 3767.8 63.8| 17319.9 299.1| 4374.1 72.3| 17633.0 2925
Std. Deviation 5594.2 94.5| 22879.3 404.4| 65348 110.0/ 27271.0 4703
rel. Dev. [%] 148.5 148.2 132.1 135.2 149.4 152.2 154.7 160.8
Skewness 3.4 3.4 3.1 3.2 3.4 3.4 3.4 35

Table A.24: Results of Cost-Decomposition with the min-congestion formulation

(Sectiorf 4.4.11)

168 APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

pure subgr. | Crowder | mod.CFM | Volume

graph time subp.| time subp.| time subp.| time subp.
Random-0 8:08 89 12:52 107 9:00 93 18:58 125
Random-1 4:14 11 12:01 33 5:42 13 25:24 e
Random-2 4:24 13 11:42 33 5:03 17 20:54 61
Random-3 28:25 97 | 1:01:02 195 30:02 101 | 1:52:34 391
Random-4 18:34 63 43:21 133 19:46 67 | 1:22:37 271
Random-5 43:05 149 | 1:27:04 283 51:32 173 | 2:56:52 661
Random-6 4:53 15 13:07 43 5:05 15 21:15 67
Random-7 33:34 105 | 1:14:06 233 36:54 113 | 2:04:55 437
Random-8 9:29 31 25:49 73 10:39 31 51:23 161
Random-9 24:01 75 55:50 177 29:36 91| 1:43:29 365

Random-10 28:06 91 55:56 175 30:52 101 | 1:49:16 375
Random-11 2:09:44 1625| 2:24:41 1633| 2:08:17 1625| 3:13:47 1717
Random-12 28:36 87 | 1:06:32 197 31:19 97 | 2:15:50 455
Random-13 3:33 11 9:35 31 3:52 11 17:22 53
Random-14 43:33 165| 1:30:58 327 49:42 183 | 2:53:18 697
Random-15 13:17 39 30:07 87 12:55 41 57:27 187

Random-16 25:51 81 52:46 155 28:44 87 | 1:37:59 301
Random-17 1:01:30 183 | 1:53:33 323| 1:10:15 207 | 3:41:23 697
Random-18 26:14 91 56:54 189 28:40 97 | 1:54:56 417
Random-19 52:41 181 | 1:43:59 345 58:59 211 | 3:30:49 853
Median 1551 87 3350 175 1724 93 6209 365
Maximum 7784 1625 8681 1633 7697 1625| 13283 1717
Minimum 213 11 575 31 232 11 1042 53
Avg. 1775.6 160.1| 3365.8 238.6| 1940.7 168.7| 6211.4 418.4
Std. Dev. 1733.1 349.1| 2288.2 343.2| 1775.8 348.4| 4016.1 386.6
rel. Dev. [%] 97.6 218.0 68.0 143.9 915 206.5 64.7 92.4
Skewness 2.3 4.3 0.6 3.9 1.9 4.2 0.3 2.1

Table A.25: Results of Cost-Decomposition with the min-congestion formulation

(Sectiorf4.4.1)

pure subgr. | Crowder | mod. CFM Volume

graph time subp.| time subp.| time subp. time subp.
RandW-0 27:23 175 21:44 139| 27553 179 57:53 571
RandW-1 24:53 143 18:39 99 20:13 115 54:04 509
RandW-2 18:36 103 14:16 77 15:57 85 40:35 331
RandW-3 23:38 137 19:28 103 | 20:50 113 53:49 479
RandWw-4 34:43 225 | 26:56 145| 30:02 189 | 1:09:33 679
RandW-5 32:45 211 25:51 155| 30:15 191 | 1:03:55 635
RandW-6 19:46 113 16:21 85 18:20 97 46:43 413
RandW-7 15:03 79 11:43 57 14:43 73 34:46 283
RandW-8 31:42 219 24:04 143 | 29:45 195 1:03:19 603
RandW-9 20:50 125 15:49 87 17:39 95 42:43 403
RandW-10 23:13 141 19:01 109 | 22:34 131 49:47 459
Randw-11 29:10 195 24:08 151| 27:07 179 59:37 595
RandW-12 43:36 313| 38:59 273| 43:45 305| 1:35:13 981
RandW-13 15:00 83 12:29 67 14:25 77 33:50 283
Randw-14 34:39 223 28:53 173 | 32:44 211 | 1:15:16 717
RandW-15 35:34 249 | 31:37 199 | 35:28 243 | 1:28:02 917
RandW-16 32:28 215 26:09 161| 31:35 205 | 1:04:47 635
RandW-17 32:17 215 25:25 165| 27:44 179 | 1:09:15 705
Randw-18 41:54 295 | 35:17 229 | 3754 255 | 1:23:42 851
RandW-19 32:45 209 28:00 169 | 31:34 197 | 1:13:25 707
Median 1750 195 1444 143 1664 179 3577 595
Maximum 2616 313 2339 273 2625 305 5713 981
Minimum 900 79 703 57 865 73 2030 283
Avg. 1709.8 183.4| 13945 139.3| 1591.3 165.7| 3660.7 587.8
Std. Dev. 491.1 66.1| 443.8 55.5| 490.0 64.8| 1026.6 197.5
rel. Dev. [%] 28.7 36.1 31.8 39.8 30.8 39.1 28.0 33.6
Skewness -0.0 0.1 0.3 0.6 0.2 0.2 0.2 0.2

Table A.26: Results of Cost-Decomposition with the min-congestion formulation

(Sectiorf 4.4.11)

169

L'E €€ ov 8¢ [6'C A4 ov vy 8'¢ vy v SSaUMBXS
L'T19¢C ¥'0EC |6°¢8¢C €9 |STTE 6'evc |L'09€ ¥'qG¢ |Z'V9€ '8¢ |9'G99€ 0'88¢ [%] "Ae@ “jal
¥'€20ST tv°L0CT [G9veEr <2'6/0T OTI8T 80PST [8'889T 9'T0LZ [9'989T G'CEBS P'L89T <¢'GG/.8T |juoheirsQ 'pIS
Z0r.S Tv2S |€9€ST 2'8ev |9'T8S 9'T€9 [2'89%F 8/S0T [T'€9¥ T'0S€Z [9'T9¥ 92CTS9 By
6¢T 9T 6¢ 1¢ 1 8¢ T 9 T 6 T 9T wnwiuy
TS99 190G €0E6T VL.V 6ET8 GE89 T19. 09TCT |L6GL 8/9G¢ |L6G.L 1,28 wnuixew
€TS T9 69T S/ T8 T6T 1 TLT €T 451> €T 08T uelpsiy
€TS 121 €eT ¢TT S 8¢ S LET] 6T-T] 65T 6T-ue|dpuey
€0TE yASH 4 GE8 eEvv 16T ST-T LT 16:¢ YT -8 YT 00:6¢ 8T-ue|dpuey
1A LA N4 c¢rov |TTTC ad T€E €0:8 6T¢ /T8 6T¢ 0T-9T 6TC 25997 LT-ue|dpuey
TS99 LCVCT |E0E6T VEBT-T |6ET8 GG:€Q'T [TT9L 0v:¢c-€ |L6SL 8G:/0:L |16S. TEVZ:€EC || 9T-ue|dpuey
ST 9T .8 v 18 6¢2:€ G9 0g:¢e € 148 T 9G'T GT-ue|dpuey
6¢T |4 6¢ 1¢ L 6¢ T 8 T 4 T (44 v1-ue|dpuey
€9¢ 51} [70T 18 ce.€ €T ov €T LS €T 6¢-T €T-ue|dpuey
625 121 €8T 9¢T 19974 av.¢ €T 16:¢ €T 6T-L 1) 6T-9¢ Z1-ue|dpuey
L0CET 6V:LT |66TS Lcve |GSST 168 |16S I8y |S89 9G:v¢:¢ |18S [ARVAN 4 TT-ue|dpuey
L0¢ 0¢ T0T °1% 68 L0:€ T 9 T 6 T 9T OT-ue|dpuey
e 9€ G6 6V 6L 16€ LT 106 ST /S:EE T 16T 6-ue|dpuey
11174 l4% LT1¢ T¢T 18 0g-¢ S 1C'T] o€ S 1% 8-ue|dpuey
6.7 ocv YAYA 8¢€'T TLT 6S.€ 1A TT:GT 11T €e.or |T0T LC€CT L-ue|dpuey
€GT¢ Sv-v LS6 ov-v Tev yASHA 197474 TT:9T 1397474 8T.Tv |EvP GT:62:¢ 9-ue|dpuey
€89 €5 6T G§ 6. YR T 8T T €T T 6T G-ue|dpuey
T9¢€ LS LCT 70T €c 9€T L LET L 99 L LCT v-ue|dpuey
66TT STAYA 1S6€ LEC L€ 6T:¢ 1T 18T 1T €T-¢ 1T [A4 g-ue|dpuey
474 10T 69T ST-T T0T TT-€ T8 vS.€ 1§ yASHA) 19 0¢-:00:T c¢-ue|dpuey
€TE 1N% TET 00T S6 1484 6T ov-6 6T ce6c |67 6T-LT'T T-ue|dpuey
GSEC Ev:S 68T or:T €c VET ST S0:€ ST GE'S ST 00:€ Q0-ue|dpuey
'dgns awn 'dgns awn 7 ‘dgns awn 7 ‘dgns awn 'dgns awn 7 ‘dgns awn ydelb
G/0=3 G0=3 | gzo=3 | T0=3 G00=3 | G200=3

Table A.27: Results of the Approximation Algorithm without scaling and variable

fixing (Sectior] 4.4.2)

APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

170

€c S¢ 4 G'¢ 8¢ 8¢ 8¢ 8¢ o€ o€ T€ V'e SSaUMBS
0’88 ¥'06 TT6 ¢v6 V90T ¥'90T |€CTT L'90T |8°€ZT O'STT |61 V'EET [%6] ‘na@ “[a4
168 6'6.0T |T'€0S 9819 |¥'Z0T G'GS9S [8'Tv €'890T |V'GE ¥'/.8T¢ |V'T€ 9'¢l6V uoneinsd pis
8290y EVv6TT |[¥'¢SS 9°0SS [6'00T 0'¢¢s |¢'L€ S'TOOT [9'8¢ 8'TO6T [E'¥C 1'82.€ By
T€S 9T 59 /9 YA ov T ST T 14 T 1474 wnwiulN
GCEIT L6V LTEC 88EC |E€6¥ 69G¢ |T6T ceo6Y 19T LTT0T |EVT G50¢e¢ wnwixepw
GE8E £00T 16V 961 6. (4974 I¢ 798 €¢ 99€T €T £66¢ uelpsiy
GCEIT /G ¢¢:T |LT€C 8V:6E |E6V 6€:¢y |T6T €T:¢¢:T |T9T LE8V:¢ |EVT GT:¥2:9 |pT-reinBaypuey
COVT 9¢:/ L.T 10:€ |/¢ g¢¢c |11 Sy YA 6¢:9 S ST-TT BT-re|nbaypuey
EEVT 91:9 1€ LT:€ |/ €T¢ | L Ty] LE9 S €E€8T) T-re[nBaypuey
196€ GE8T €T1S 9T:8 |S6 90:8 |S€ €€9T S¢ 8G:/¢ €c €€:9G |pT-re|nbaypuey
L06€ OT:6T 699 ST:6 |T<CT 6596 |GE 0SG:.T 14 01:8¢ 1¢ €2:Sy |gT-re|nbaypuey
€G0T 0€:9 ectT 0T:¢ |61 ov:T |9 €G:¢ S 818 € T0:8 pT-re|nBaypuey
€9€9 GT:¢¢ 199 o6 |60T 8 |1y 0€:8T 14 VA4 14 €y |ET-reinbBaypuey
G9€¢ 80:¢T 10€ 62§ |SS GGy | T¢ G0:8 ST ISTAYA 1T 81.GE gT-re|nBaypuey
€9EY ev9T /T9 ¢e8 |ETT GG8 |6€ €0:0¢ €¢ TT:G€ €T 8T:GS TT-reinBaypuey
GEQE ¢S61 16V 9€'8 |61 ¢T:L |T€ vevT G¢ 9v:¢¢ 1¢ 6T:0S |pT-reinBaypuey
1,06 ¢viey |TI8TT 0SG:6T |6TC 0€:8T |18 80:G€ |19 YT:L0:T |€S 22:90:¢ || 6-rejnbaypuey
LE9Y 7G:€¢C T€9 8G.0T |STT 60:0T |6€ T0O:8T GE 1€ 01 yx4 SY:ST:T || 8-re|nbaypuey
19059 G0:9¢ GclL ¢e¢T |S¢T 6T-TT |V 917:0¢ 6€ €S 1v GE 1€:1€T || L-reinBaypuey
JASI YA 0T STV T1€:9 |TS L¢Vv |T¢ €T-0T €T v1:0C 6 2S.0¢€ 9-re|nbaypuey
S6ET 9T:.L LLT €0:€ |€¢ 60:¢ |6 14°8% S 0€:. S 08T G-re|nbaypuey
T€S 1444 G9 10T YA ov T ST T 14 T 14% y-rejnbaypuey
CEVT €0:L 6€T 0€¢ |S¢ 60:¢ | /L ¢S€ S ceq S TT: LT g-re|nbaypuey
€999 25:8¢ yAYA ¢vcT |€ECT 8E:TT |S9S 6T:¢¢ 6€ SO:1v GE 9Z:0T:T || ¢-re|nbaypuey
18.T Y16 Tc¢ 79 € |6E 62:€ |€T LT:9 6 vZ.€T L LT:6 T-re|nbaypuey
£46¢S ¥0:/2 192 ETET |EVT /2T |SS 6c:¢¢ 1914 0S:ey 6€ 67:22:T || 0-reinBaypuey
‘dgns ewn [dgns awn ‘ -dgns awn ‘ ‘dgns awn ['dgns ewn [dgns awn ydeib
G/0=3 | g0=3 GZ0=3 T0=3 | S00=3 | gzoo=3

Table A.28: Results of the Approximation Algorithm without scaling and variable

fixing (Sectior{ 4.4.2)

171

G0 0 S0 70 (0% 1T 1A% L'C A% V'e VA% VA% SSaUMINS
9'T. 699 |0¢.L €/9 |€€9T 8'G. |8%.Z €00T [T86¢ <¢'€CT |L'TIE 8T.C [9%6] "AeQ 12l
¥'99/.0T ¥°¢¢S |5'608 T'GST |V'OrE G'CET |9°€GE 8'VEE |V'GSE 1’668 [€°99€ <¢'V9./. ||uoleiraq "pIS
0'8E0ST T'1I8L |SVCIT €0E¢C |¢¢Td 8V.T [L'8CT 8'E€EE [¢6IT 0.2, [EVIT 89582 By
/08T 90T lCT 8¢ ¢ 44 YA 6¢] ov S 0S wnwiuiN
G0.9€ 668T |T18S¢ GZs 6€9T 679 |[G¢9T 9VST |SC9T 0Zcv GZ9T 0Z.S€ wnwixew
16,21 . GE8 €02 121 ST 14 862 19 [4%°] €e PSTT ueipsiy
£€8¢e G0:/¢ |€8Y¢C 9T:8 |€6¢ ¢¢'S |STT 876 |68 ¢T:6T =7A €e:6¢ 6T-wopuey
€968T 9T:GT |€SCT 1T |TCT 6T:¢ |.€ 7€ |S€ T0:8 1€ VT:6T 8T-wopuey
G0.9€ 6€-T€ |6CEC S8 |L9¢ VeSS |SG6 8T:6 |G. S.6T 65 6€:G¢ LT-wopuey
6917071 67:0T |9S. 60:€ |11 6¢:¢ |EV ey |S€ ¢S:8 €e ¢ 1¢ 9T-wopuey
6veEL 59 |09 ¢l:¢ |99 9¢'T |T¢ 1T:¢ |6T 9T:q /T STAYAN GT-wopuey
T1296¢ 8T:¢¢ |180¢ 629 |68¢ 00:S |S6 668 |€L 12:8T 59 €T:9¢ PT-wopuey
/08T or:T | /22T 8¢ ¢ [44 YA 6¢ g ov S 0s ET-wopuey
16002 /€8T |ECET G0:§ |649T ST:€ | €9 1¢'S |GV vETT €e vT-€C ¢T-wopuey
Tceee GT:6T |T8SC 0€'9 |6€9T 606 |SC9T 9P:GC |G¢9T O0¢:0T:T |SC9T 0<Z:5S9:6 TT-wopuey
JAYRAN 8€:¢T |S€E8 €ce |TcT 6¢:¢ |Sv vy |GE 6 1€ S9:G¢ OT-wopuey
G8GET T1¢:CT | 626 €¢:e |€EeT 8¢:¢ |19 8TV |EV V16 L€ 65:8T 6-wopuey
6TV8 ¢S, |T16S 1T:¢ |€.L 9¢:'T |S¢ 1€ LT 9cv ST c0:¢T g-wopuey
€eenc €€:9T |G/9T oS |S0¢ S0 |69 ve:L |Lvy 80:¢CT 6¢ 8¢ /T J-uopuey
VWAL l¢:¢ |60¢ 12174 LE oY 1T 65 6 8¢:T 6 ¥G.€ 9-wopuey
GE6SC 8€T¢ |T16T 1€9 |G€¢ 6ev |18 0T:8 |19 S:9T €S 12:8€ G-wopuey
6ETOT ¢¢:6 6.9 0g:¢ |56 /7T |6€ l¢:€ |T€ 9g:L 1 YAZYA -wopuey
/908T EV.GT |ECET 6E Y |G.T €2:e |19 0TS |1V 00:0T GE 0G:¢c g-wopuey
6170¢ v0:€ |€ZC ot 6¢ €€ 1T €S9 YA 1T L vv.€ c-uopuey
798¢ 80:€ |.1¢2¢ 1] L€ ot 1T ET:T | L G¢:¢ L 6¢:L T-wopuey
8€€EC 8S'T |6c€ 0S EET SO0'T |68 /0:¢ |S8 0TS €8 0€:6T Q-wopuey
-dgns awn [dgns awn [dgns ewn |dgns ewn [dgns ewn [dgns ewn ydeib
g,0=3 | g0=3 | szo=3 | T10=3 | S00=3 | Gzo0=3

Table A.29: Results of the Approximation Algorithm without scaling and variable

fixing (Sectiorf 4.4.2)

APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

172

90 €0 S0 20 L0 7’0 00 7’0 €0 A0 TT 7T SSauUMaS
Ty S'0¢ |8°0S ¥'8¢ |60S SVvy |§LE <22y |00€ 8¢t |T'8 €'GE [%] neq 8!
6'GL0S C'9¢ [9'CE0T €6€ |6'0ST T8y |€€€ 9T6 |08T €'GLT |T'€T L'G¢S ||uoneinsq 'pI1s
6'L6VTT S'8TT |[€¥€0Z €£'20T |9'96¢ ¢2'80T |8'88 ¢'LTZ |009 OVES |99F 0°.8YT By
177A74% 09 969 Ly .8 LE 6€ L 198 0.2 |T€ 00. wnwiui
8TECC /8T |G86¢E €.T |€€9 L0Cc |0ST ey | L6 L.8 |08 T90¢ wnwixen
6096 0TT |¥P.LT 66 €9¢ S0T [<Z6 €T¢ |.S T9S |S¥ 69€T uelpasiy
12291 €e¢ |ecoe T2C¢ |6vy vvie |2ct 2es | vS V'8 |TY €G:9T 6T-Mpuey
08/.T Zvie |€29e geC |€g9 l2:€ |0ST c0:L |28 LEWT |28 9€:/l¢ 8T-Mpuey
L768 ¢t |0T9T 82:T |T0¢E VT |€6 LS'€ |99 0C'TT |.€ 6v:¢¢ LT-Mpuey
1ZATY) /ST |E€6EC €8T |¥eEP L2 |02t v2'S | .S 0€6 |Lv TG:GC 9T-Mpuey
L6/L.T evi¢ | 26SE 6€:¢ |V1S Lv¢ |6ET GZ'S |.6 GZ:¢T |08 9G:0¢€ ST-Mpuey
9t88T TG'¢ |080¢ 9z'¢ |1g€€ 9T:¢ |¥8 8v'c |89 TT:0T |SP¥ veee vT-Mmpuey
0T.9 02T |veoT 8§ 28T 8G Z6 9€:¢ |49. 196 |.S T2:9¢ €T-Mpuey
8TECC L0:€ |G86E €92 |0gs v0:€ |911T TT:S |¥9 SS6 |Lv TE'TC ¢T-Mpuey
6096 0S'T |vV.lT VT |29¢ 8v'T |8 9T:€ |V 6T:L |.€ 16:¢¢ TT-Mpuey
20¢8 €eT |TOVT 6T:T |66T 8T:T |€9 12 | Ly 80§ |GE ov:TT 0T-Mpuey
1"7A 4% 00T |69. YA 9.1 70T |96 LE€ |98 GGET |0L TO'TS 6-Mpuey
90¢ST Z2¢ie |l0l2 S0:Z |99¢ 80:¢ |.11T TO'v |29 226 |99 €9:0¢ 8-Mpuey
T9TS OT:T |969 8t .8 LE 6E ¢T'T |S€E oev |eg 0S:LT L-Mpuey
2199 9¢'T |6T6 00T |SOT 174 6€ 8T:T |.€ vy |s€ GE8T 9-Mpuey
EVTTT ¥0:¢ |T18.1T 6E'T |cl¢ or:'T |€TT 00 |18 /T:0T |09 20:6¢ S-Mpuey
096¢€T vZ:'¢ |999¢ TT:¢ |€9¢ 9G:T |99 e | 6E 859 |T¢E [AS/A) 7-Mmpuey
1€S6 6T |€¢ST TET |21 2eT |19 6G'C¢ |€V vel |SE fANAS €-Mpuey
TETL G2 T |¥60T ¢0:T |6ST 8S 99 8€:¢ |99 126 |S¥ €0:TE Z-Mpuey
L8Y.) €eT |L.0T 80T |9VT €0:T |TY 9€'T |.€ oev |Lg TT:ST T-Mpuey
€6TTT TO:Z |086T ¢riT | 0TE ST | ¥6 €EE | ¥9 6v:L |€S 0] 44 0-Mpuey
‘dgns awn |dgns awn |dgns oawn |'dgns awn Eg:m awn |'dgns awn ydelb
G.0=3 g0=3 GZ20=3 T0=3 7 S00=3 §200=3

Table A.30: Results of the Approximation Algorithm without scaling and variable

fixing (Sectior{ 4.4.2)

173

15074 1A% 1A% 1A% 1A% 1974 1A% 1744 A% 1A% 1A% 1904 SSaUM3XS
8'GTE G'T6¢C |L'9S€ 8't6¢ |T'Lve <C'¢6¢ |¢'/9¢ T'O0TE |§°/9¢ <C'STE |0'99€ 6'TEE [%] neq j8!
€Vv9¢ 6°¢CTT |9'G¢y 8'¢LT |9'T¢8 G'18€ [¢'60vYT €'T.CT B'88FT L'SECE |DE0ST L'8Y66 uoneinsq "p1s
L'€8 88 |€6TT 885 [L9€C¢ 9'0ET |8'€8E 00TFr [T'SO¥ 9'9¢0T |6'TT¥r £.66Z "By
Z Z Z € T 0T T 9 T 6 T 9T wnwiuiy
96TT STS |TZ6T 88L |S0LE €ELT |LvE9 v..S |S0L9 €L9YT |69.9 98811 wnwixepy
TT 0] 9 TT S T4 6 T8 6 TS¢ 6 08T uelpsiy
. 0T 9 9T Z €T Z 10T g 6T'T g 69T 6T-ue|dpuey
8¢ 1T €§ 4> TET qS LET 0ST LET 6V 6€T [AHA) gT-ue|dpuey
61 €S G§ 1474 T9T 0c:c |L61 vy L0¢ 6€6 60¢ 8Y:T¢ LT-ue|dpuey
96TT G€:8 |T¢6T 8O€T |S0LE €G:8C |L¥E9 7T:9¢'T |S0.9 €ev0'v 16929 90:8¢:CT || 9T-ue|dpuey
4 € 4 1% T oT T ST'T T v1:S T GG'1T GT-ue|dpuey
S 14 Z 14 T T T A T A T TC vT-ue|dpuey
4 8 S 8 €T 158 €T ov €T 99 €T 82T €T-ue|dpuey
1T L 8 8 S 6T L 7T 6 Ty 6 60T cT-ue|dpuey
09 A) Z8 LS 60¢g 62:€ |G¢v 67:8 LS geile |T1S 70:6ET TT-ue|dpuey
Z c c € T 0T T 9 T 6 T 9T 0T-ue|dpuey
14 9 € L Z 9T T 12T T 6€'G T 18T 6-ue|dpuey
S g € S € €T 14 €T'T S (01 S 174 8-ue|dpuey
€e 6T 69 TS 12 oy 98 [AH) 88 19N 74 16 28T L-ue|dpuey
6TT 0§ ¢eT 80:T |T.L¢ 6v:'¢ |18€ 9t'8 Tov 0T:9T |eov ey 9-ue|dpuey
1% L € 1% T 1T T 8T T €T T 6T G-ue|dpuey
€T 14 6 ac S 8¢ L ve'T L 9% L 921 y-ue|dpuey
0T 8 S 8 € qT 6 veT 1T €T¢ TT TT:€ g-ue|dpuey
1T 0T €T 1T Gg 8¢ LE 20T LE 52 LE 8T:0T Z-ue|dpuey
6 A) L ac 9 T4 6 8E'T 9 0T:9 8 TELT T-ue|dpuey
VT 6T 9 VT S 1€ 0T LCT 0T LCV ST 00:€ O-ue|dpuey
'dgns awn ‘ 'dgns awn ‘ 'dgns awn 7 ‘dgns awn 7 ‘dgns awn ‘dgns awn yde.b
G.0=3 g0=3 G20=3 7 T0=3 7 S00=3 G200=3

Table A.31: Results of the Approximation Algorithm with scaling and without variable

fixing (Sectiorf 4.42)

APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

174

YAYA L'Z YAYA YAYA o€ o€ 6¢ oe T€ T€ Te v'eE SSaUMBS
G'G6 L'/6 |0v0T 60T OvTT TVIT |[8TT €TTT |¥'9¢T 00ZT |[L'6ZT 6VET [%] Ae@ “jal
¢'SvST L'9G/L |€'8TE TVv9€ |6'V8 Eery |6'6€ 17986 |6V€ 9'L¥vTC |0'TE G'8E8Y uoneinsg pi1s
G'8T9T 8%/, |[090E€ +'0S€ |G, 9'88€ |8'€E 0988 (9.2 S'68.T |6'€EC 2'98SE By
00¢ g8 (0] (4 g o€ T GT T 92 T 14% wnwiuy
0TZ.L GEGe |T9YT G/9T |T6€E 8€0¢ |28T T9GY 65T LV66 T T.Lvic wnuixen
786 8Sr |602 l2¢ | /.S €8¢ |92 vT. 6T eeeT €T L0S2 uelpsiy
0TZ.L G689 |T9VT GG:.C |T6€E 8G.€€ |Z8T TO:9T:T |6ST Ly:ave TVl TEYT9 |pT-1eInbaypuey
899 ¢¢:q |€1T 1T:¢ |T¢ 65T |6 43874 L 8¢9 1 V1T BT-re|nBaypuey
09g o€y |61 0e'T |6T veT | L TTv] €€.9 € or.GT) T-rejnbaypuey
6€CT vE6 |V¥e eV | .S Eviv |GE ceEVT G¢ TT:G9¢ €¢c 20¥S |oT-reinbaypuey
ceLT SP:€T |L0€ 179 |18 G619 |€€ G0:9T 1¢c 90:€¢ |4 G0:Sy |GT-re|nBaypuey
8.V 9G:€ (€L 0e'T |9T LTT |S €G:¢] €498 € 65, pT-re|nbaypuey
12T 6T:6 |LEC Gcv |99 2¢:'s |9¢ VS 1T €¢c v2.G¢ 14 YTV |ET-reinBaypuey
186 L€, |97 €E.€ |6E G¢.€ |61 YRAYA a1 LE9T 1T LE:GE |gT-reinbBaypuey
¢l6 8€:L |60¢ L€ |29 GG | L¢C €0vT 6T ¢S:G¢ €T v0:vS |[T-reinBaypuey
8G8T OT:ST |0T€ ¢0:9 |69 70:9 |T€ 00T 14 €r.¢¢ |4 vZ:ly |pT-TeinBaypuey
9.0¢g L0:vC |¥¥9 0T-CT |€9T TO¥T |61 €eee (€9 0t:€0:T |€S 12:90'2 || 6-re|nBaypuey
66TC €T:LT |60V 6L |.8 G0:8 |.€ 00:LT Ge V1.6 |/L¢C 6T:ST:T || 8-reinBaypuey
T0OEC EV:8T |TEY €€:8 |86 8 |EV 9G:.T 6€ ¢TIy |TE G¥:GT.T || L-reinBaypuey
€28 €19 |8ET v¢ |cZ¢€ 0T-€ [T GG 1T 6E-LT 6 61-62 9-re|nbaypuey
€v9 ¢S |S6 /ST |T¢ IS8T |6 esv S og:L S G981 G-le|nbaypuey
00¢ S2'T |0€ Ze S o€ T 1) T 9¢ T 14% y-re|nbaypuey
1859 vev |G6 vl | LT 6T-T |G 8¢-€] €9 S 80:LT g-le|nBaypuey
68€¢ 6T-:6T |T9V GZ:8 |L0T 9T:6 |19 00:6T LE 100V |GE 8G:/0:T || ¢-reinBaypuey
8L ¢¢:'9 8T vec | 1€ vee |€T .29 6 G0-ET L V1.6 T-le|nbaypuey
[4°144 9¢:6T |0 8G:8 |OTT €56 |V V16T 1914 S0:¢r |6€ /¥:92:T || 0-rejnbaypuey
‘dgns awn 7 'dgns awn 7 'dgns awn |'dgns awn 7 ‘dgns swn 'dgns awn ydeub
G,0=3 | <g0=3 | gGzo=3 T0=3 | G00=3 G200 =3

Table A.32: Results of the Approximation Algorithm with scaling and without variable

fixing (Sectior{ 4.4.2)

175

S0 S0 Gc L0 eV 8'T vy €c vy 8¢ vy vy SSaUMBXS
2’99 729 |9€E6 2’99 (Z2'e0¢ 0€8 |¥'18C 8T6 |966C¢ <C'VOT |80 'GP [%] "ne@ “jod
TT9TT P¥TTIT |T'LGE€ 899 |€'vZE V'LOT [9°€EEE 0LLZ |OVEE L'T/L9 |[P'CEE 9°0L09 |juoheirsq PIS
9VvS.T G'6.T |[L'T8E O'TOT |96ST V6T |S8TT 8'TOE |STTT Svv9 |8L0T 6'S.¥C By
144 T4 69 qT €T LT L 6€] (0)74] 0s wnwiuiN
11017 Yoy |€99T 0GZ |6TST €. |T€ST T9ZT (LZST ¥Z1€ |LTST 9018¢ wnuixew
09T V.1 T0€ 6 8 4% v 1S¢ G€E 61S €€ 8ETT uelpsiy
G68€ v2:9 |T.9 60:€ |SG6T G0 | S6 8178 |8 9G6:8T |T.L L0 TV 6T-wopuey
89T¢ GZ-:€ |0€EE cET |61 GET | L€ e |€EE 8G6:L |T¢€ LT-6T gT-wopuey
STOVY 79 |90L LEE |TLT €0y | .8 G0:6 |19 8€:8T |69 6E-T€ LT-wopuey
0.9T 80:¢ |T0E 6cT |¥8 6G'T |6¢€ vy | € 6E:8 |€E 70:T¢ 9T-wopuey
988 1T |99 14°] YA GO:T |T1¢ ¢l:¢ |61 9T [T 0c¢:¢T GT-wopuey
¢1a¢ ¥S9.€ |ECS 1¢:¢ |€91 ¢T:€ |€8 6S:L |19 9¢:GT |19 IR NAS vT-wopuey
144 T4 69 a1 €T LT L 6€] (0)74] 0s €T-wopuey
99€¢ ETv |TEY LT:¢ |TTT l¢¢ |6V €29 |LE vv.0T |EE 60-€¢C ¢T-uopuey
[STA 80:G |€99T OT:v |6TST €S:L |TEST TO:TC |L¢ST ¥0:¢S |LTST 9¢:8V:.L TT-wopuey
ViVT ve¢ |Sl¢ 9¢'T |.. QT | TV 8T:'v |S€ 9¢:6 |6¢ 0S:v¢ OT-wopuey
89T vS:¢ | ¥eE €eT (90T 90:¢ |Lv ITv |1V 768 |.LE€ 8G:8T 6-wopuey
186 €GT |28T 89 6€ €9 6T G0:¢ |9T ¢ty |61 ¥0:CT g-wopuey
09T¢ cEE |8vP ¢l:¢ |ETT 8€:¢ |49 LE9 |GP 8€'TT |6€ 6€-LT /-wopuey
08¢ 19974 68 LZ 14 8¢ I 89 6 8¢'T |6 4B 9-wopuey
8¥6¢ 9G¥ |€99 6£¢ |TVT Z¢re |69 0Z:L |6S 0T:9T |19 ,0:8¢ g-wopuey
60CT TT:¢ |84S¢ ST T |69 GZ'T |S€E LT:€ |/l c0:L |L¢ 8v:L p-wopuey
98T 6T-:€ |6.E ¢S'T |TTT €ce |Lv 8G.v | L€ €6 |GE [4 A4 g-wopuey
ey 18 =72 14 6T ve 6 6V L 6T |S vZ-€ c-wopuey
699 60T |S6 €e 6T (0] 6 L[0T | L YRATAR WA 6¢-L T-wopuey
LLE 1914 LTT 9Z 16 6€ 08 ¢S T |81 10:7 9L T10:8T O-wopuey
‘dgns awn 7 'dgns awn 7 'dgns awn 7 'dgns awn 7 'dgns awn |'dgns awn ydelb
6,0=3 | <go=3 | Gz0o=3 | T1T0=3 | G00=3 G200 =3

Table A.33: Results of the Approximation Algorithm with scaling and without variable

fixing (Sectior{ 4.4.2)

APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

176

S0 €0 |10 0 |L0 S0 |€0 7’0 90 00- |90 S0 SSaUMBS
gov 0'cE |96V L'6E |26V 6'vy |8¢r GO |96E CE€E |09E G'GE [%] ‘ne@ I8l
JACTAS] L'9¢ |¢0v¢ 6°0C (205 L',¢ |§ST 269 |€6 €GTT |€9 ¢'0TE ||uoneinaq "pIs
8'9€0¢ O0'T8 |9¥8y L'¢S |0¢0T 8'T9 |9€ T9vT |[v'€C 9/.LvE |V'.LT SV.8 "By
008 LE LT 14 6€ T4 1T 1474 6 9€T 6 16€ wnuwiuliN
8T.E TET |96 68 96T OTT |49 6592 5174 G9g 1€ 9611 wnuwixew
ST8T 9L |20F 9 | €6 .S |9¢ LET | €C Gee | ST 0z8 uelpsiy
ov.lc YT | LE9 L0:T |GST eeT |EV OT:€ |6T Geg |GT 8¢.0T 6T-Mpuey
9¢TE GG T | 028 vZ-T |81 0S:T | SS9 OT:v |€€ G266 |T¢ G1:0¢ 8T-Mpuey
414" €0:T | Cov 6V L6 65 8y 8G.¢ |v¢ 0€:9 |61 ¢T:97 LT-Mpuey
G9T¢ 9¢'T |66S COT |91 0C'T |vv V1€ |€¢ 109 |6T ov:ET 9T-Mpuey
Svce 8G.T (796 6¢:T |06T VT | €9 GG € |av 0S8 |T€ 90:6T ST-Mpuey
S00€ 98T |TEL 9T:T |GET LCT | L€ evi¢ | 1€ oL |T¢ 79.GT vT-Mpuey
1921 €S 9/¢ 1€ €L GEg 1944 G0:¢ |6¢ o9 |€¢ G2 T¢ ET-Mpuey
8T.E TT-C |8€6 6¢-T |96T 67T | L9 6T |SE 9€:L | /L2 ¢¢9T ZT-Mpuey
8T.T ¢TT |29¢ Sy S8 T0:T |€¢ IS8T | LT 8Sv |ST ocvT TT-Mpuey
LV9T 80T |89¢€ 1944 79 15474 v VT |€T 6E€C |€T 156G 0T-Mpuey
008 LE | LLT vZ¢ |8 G |€g 0g¢ |¢€c¢ 9T:L |8T 9G:¥7¢ 6-Mpuey
€v9¢ 6€-T |86S €0:T |¥CT OT:T | TV ev.¢ |9¢ LT, |8¢ ¢T-€c 8-Mpuey
T10T Ly /8T T4 6€ G¢ 1T 144 6 9T:¢ |6 -8 L-Mpuey
89¢T 99 1444 6¢ €S o€ 6T 90:T |6T 16:€ |TT 0c.0T 9-Mpuey
1502 GZ'T |097 €9 €6 Zs 8V 6¢:¢ |Lc v€9 |GT 7€:0T S-Mpuey
6.v¢ 6E'T |€6S 90T | S6 LOT |62 60:¢ |€T LEYV |ET ov:0T 7-Mpuey
GT8T 9T:T |¥9€ 1474 19 1% LT VT |€T oy |TT T1S€T €-Mpuey
78¢T 89 192 €e LS 9€ 1¢ ¢ T |61 g |6 9G6.¢T Z-Mpuey
GTET 65 G8¢ 9€ Zs e e¢c ET-T | LT Gc:€ |€T 80:6 T-Mpuey
9G6T 8T'T | I¢v °14 6 .S 9€ LT:¢ |VC €T'S (8T 6S:CT 0-Mpuey
'dgns awn Eg:m awn 7 'dgns awn Eg:m awn 7 'dgns awn |'dgns awn ydeib
G,0=3 | g0=3 | Gz0o=3 | T0=3 | go0=3 G200 =3

Table A.34: Results of the Approximation Algorithm with scaling and without variable

fixing (Sectior{ 4.4.2)

177

vy A4 vy A4 vy eV vy A vy vy vy (o4 SSaUMBYS
TVEE G'QTE |G'89€ 6'VCE |6'9¥E 8'TOE |6'99€ 2'eqe |L719€ 7'62€ |0'G9€ G'8EE [%] Aeq@ ‘I8l
¢'6G¢ €0TT |[v'¢er 9PLT |¢6¢8 T'T0V [C'L6ET 0¢CL0C |L'€6vT L'E€ECEE GEOST 9TOZOT ||uoheirnsd pIS
9L, 0Gg |g€LTT 8'E€ES |06EC 6'CET |8°08E 998G [2°90¥ 0'600T |6'TT¥r SG'E€TOE "By
T T T 4 T T T 4 T € T L wnwiuiin
0LTT TOS |6V6T 6L |6ELE 9OT8T (€629 09€6 YRAA] GZ0ST [TL.9 T.6GY wnuwixen
L L S 8 S 8T L 08 6 9TT 6 6ST uelpsiy
] L € 8 4 1T € L0:T S IT'T 1 eVl 6T-uUe|dpuey
14" 9 €S (4 TET 89 LET 18T LET 14744 6€T 6G:¢T 8T-ue|dpuey
S0T ve 18 6V T9T 6T-¢ |.L6T 187 L0¢ 256 60¢ 9G:T¢ LT-ue|dpuey
0LTT T¢'8 |6V6T CT:€T |6ELE 9T:0E €629 00:9€:¢ [L2¢/9 GZ:0T:v [TL19 TT:9:¢CT || 9T-ue|dpuey
T T T 4 T T T e T € T L GT-ue|dpuey
4 S T € T 1% T 4 T] T 6 v1-ue|dpuey
L 6 1% L €T €e €T 8¢ €T ov €T 70T €T-ue|dpuey
8 8] €] 9T L 00T 6 L0V 6 T¢vT ¢T-ue|dpuey
1% 6 147 8¢ 6T€ 0S:€ |T¢v 0v:0T 1°1°17 60:8¢ |TTS TT:9€T TT-ue|dpuey
e T T 4 T T T € T 1% T 8 0T-ue|dpuey
Z c c € T A T [4) T 6T T GE 6-ue|dpuey
1% T € € € €T 1% 0¢-1] 8¢] 1% g8-ue|dpuey
T4 4 99 o€ 172 8¢ 98 VT 88 6Ev 16 Y9 L-ue|dpuey
8TT 1% T€T G0:T |[€LC GG:¢ |18€ €8 10174 9G:vT 130174 [4°B 4% 9-ue|dpuey
4 T 4 € T € T S T 8 T T G-ue|dpuey
8 GT] 14’ S ec L GeT L 14> L 6V -ue|dpuey
]] € 1% € €T 6 LET 1T 96T 1T 6€-¢ g-ue|dpuey
L] 1T 0T ge 6¢ LE 10T LE 9G6.¢ L€ 1¢.0T c¢-ue|dpuey
0T VT L 8 L 8T L A 9 2¢.9 8 9G.6T T-ue|dpuey
4" LT S 6 S S¢ 6 LCT 0T l44% ST Ly C O-ue|dpuey
'dgns awn 7 'dgns awn |'dgns awn 7 ‘dgns awn 7 ‘dgns awn ‘dgns awn yde.b
G/0=3 | go0=3 GZ0=3 | 10=3 | gso0=3 G200 =3

Table A.35: Results of the Approximation Algorithm with scaling and variable fixing

(Sectiorf 4.4.2)

APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

178

9¢C LC 6'¢ 8¢ 8¢ 8¢ TE 6'¢C TE €€ TE 7'e SSaUMaS
9'TOT ¢°00T |6'80T L'90T |8'VTT 980T |€°2¢T <¢OTT [TCET 6°0ST |CTET <T'€EST [%] neq j8!
6'GLT L'09T |€€L 0'GCT |€6E 996T |T2¢ 9G89 [TOE O0O8IYT |06 S'6VEE uoneinsq "p1s
TELT V09T |2/9 T.TT |cvE T'TI8T |2GC 2'¢Z9 |82 CZ€80T |T'¢¢ 8'S8T¢C By
T LT 9 6 T 9 T €c T 9T T 6¢ wnwiui
€08 ev. |LEE €.S |LLT 668 |LVT GGTE |LET €159 €T 2eest wnwixepy
T4} [49} TS T6 8¢ T |97 eer |11 €L TT 8¢t uelpasiy
€08 €2¢T | L€ €E6 (LT 6GVT |LVT Gges (/€T €e6v T |TET ZS €Ty |pT-reInbaypuey
29 LS TC €e 6 6G L ov:’e |S 0G'T S LS¢ BT-Ie|nbaypuey
61 6E 9T 6¢ L (A7 S Sv¢ |€ 9G:¢ € 9¢v) T-Te|nbaypuey
/ST €eg |19 €8T |0¢ | {ATAR R Y4 8G:8 |€¢ 6G:8T |61 G0:TE |9T-teinbaypuey
7.1 €ee |1 0T:Z |€¢€ 8592 |¢Z¢ G568 |61 oav:vT |61 1T0:9Z |gT-teinbaypuey
6E 6E €T ac S 4> € GT'¢ |€ 1€S € ¥70:2 pT-le|nbaypuey
191 ¢tic |29 8c'T |0€ TG¢ |€¢ v2'8 |€¢ ZT:8T |€¢ ov:ee |[ET-TeinBaypuey
16 ST:¢ |8¢ v2'T |67 ev'T |€T e |11 e TT 1€:2Z |gT-teinbaypuey
1A 90:¢ |19 TET |8¢C €ee |97 €T:L |11 yT:2T |TT 0€:82 |[T-teinbaypuey
/ST 0¢:¢ |SS VT |6¢ ov:¢ |T¢ /€8 |11 1T'S LT 9T:8 DT-re|nbaypuey
08¢ s | LYT 6TV |Z8 LE9 |€S e 1 | €9 ev.ee |€S 9z:€€'T || 6-re|nBaypuey
80¢ S0'€ |92 €0:¢ |.l€ €T:e |6¢ 9eTT | /2 6G:G¢ |S¢ v0:Lv g-le|nbaypuey
€G6¢ ¢S |S8 8g¢ |sb 00 |S€E 8T:TT |62 TO:¥¢ |62 [ASHA L-Te|nBaypuey
9. L2T |T€ LS LT LET |TT 'S |6 6G¢T |6 8¥:e¢ 9-rejnbaypuey
8G 0S T4 Gg 6 Zs S €er |§ 02§ S 78T G-rejnbaypuey
L1 LT 9 6 T 9 T o T 9T 1 6¢ -re|nbaypuey
0§ 374 /T 4> . 14% S 92'S |§ 8G:Y € LTS g-rejnbaypuey
€G6¢ av'e |86 €G¢ |€9 ey (L€ Zv1e | €€ 8:¢¢ |g€€ [ARA Y Z-fe|nbaypuey
v. YT:T |S¢ ot €T 02T |L. 00:L |. 129 L GS:¢ T-rejnbaypuey
29¢ 9G'¢ |¥0T 9582 | €S gsy | Tv 60:2T |S€ lv:lZ |SE JAIA 0-fejnbaypuey
'dgns awn 7 'dgns awmn |'dgns ewn |['dgns awn 7 'dgns awn 'dgns awn ydeub
G.0=3 7 §0=3 G20=3 T0=3 7 S00=3 G200=3

Table A.36: Results of the Approximation Algorithm with scaling and variable fixing

(Sectiori 4.4.2)

179

o€ 6T |E€P 9t VA% 9'€ 1A% €€ VA% 9'¢€ 1A% 1A% SSaUMBYS
6'0TT €'G8 |[T'¢0¢ 8'€lTl |5€L¢ 9TET |§2¢0€ T .LIT [TTTIE <Z'VCT |E'CTE 9'68¢ [%] 'Ao@ "Jad
EV9E €0F |€2EE 609 |00EE €'60T [T'GEE €VvvZ (9'GEE €°L.SG |6'VEE L'CTG9 ||uollelinsq 'PIS
7’82 €.y |[VV9T <Z6¥ [L'0¢T 0€8 |80TT /.'80¢ |6°Z0T L'¥9¥ |6'90T T'6¥cc By
12174 YA 6T YA 6 1T 9 14 S oT S 144 wnwiuliN
069T 6.T |999T T6¢ LTST LTS |T€ST VSTIT |TEST €S9/¢ |LZST 9186< wnwixey
A4 8¢ 6. 19 474 09 €e ¢ST 6¢ [4°19) 62 66/, uelpain
819 vZ:T |00 /T'T |60T 9T:¢ |18 6§ |T. ¢v1T |TL 2:9¢ 6T-wopuey
€8¢ v /8 €e 6€ 0s €e 8¢ |6¢ T0:9 |6¢ veEVT 8T-wopuey
[A] GZ:T [69T ET-T |68 TIT:¢ |€9 €€:9 |6S T¢2:0T |99 €2.:6T LT-wopuey
LT¢C 8¢ 6. yAS 6¢ 00T |€€ 6¢:¢ |6¢ 12'S |6¢ 6T:€T 9T-wopuey
9¢T ve 6V [44 1¢ [4% LT €T |LT €0 LT Sv:0T GT-wopuey
VES LT'T [€8T 0T |16 9G'T |¥9 9G¥ |09 6¢-TT |89 0T:S¢ vT-wopuey
12174 YA 6T YA 6 1T 9 14 S oT S 144 ET-wopuey
G8¢ (614 17T YA 6V OT:T |.€ 65:¢ |T€ ¢S'§ |TI¢€ €eeT ¢T-wopuey
069T 6S:¢ |999T TS¥v |[LZTST /€8 |TEST PT6T |TEST €SS¥ (LCST 9¢:.T8 TT-wopuey
S0¢ 149 6. Ge 144 T0:T |€€ 16¢ |/1¢ 6¢:L |/l¢ 6T OT-wopuey
YALA ov €0T 1N% 61 €0:T |6€ ce¢ |LE 609 |G€ 44874 6-wopuey
1A ¢ VA4 12 € (49 /T 9¢:'T |ST 6T:€ |TT T0:6 g-uiopuey
097 SO:T |TVT GG S9 ee1T | Iy 807 |6€ ¢¢9 |LE T€:0T /-uiopuey
65 0T 1€ ¢t 1T ST 6 1474 6 L0:T |6 €E.€ 9-uiopuey
08 ST:T [8ST 0T |€. VT |99 Svv |6V ¢¢ 1T |6V 10:8¢ G-wopuey
LLT (0] 69 8¢ Ge 1914 LZ 18T |/¢ 84y |/¢ evy -uopuey
0ce €9 STT VA4 (5174 60:T | /€ €T'€ |S€ 0€:9 |€€ €T:9T €-wopuey
€9 1T € oT 1T T L 1€ S 1] S 80:T c-uopuey
19 1T 12 0T 6 ST L 14 L /ST | L 60:.L T-wopuey
/8 [4) 8v 14" 18 [4% 8. GZ'T |92 o' |92 /0:8T O-wopuey
‘dgns awn ‘ -dgns awn ‘ -dgns awn ‘ ‘dgns awn [dgns ewn [dgns awn ydeib
G10=3 G50=3 G20=3 T0=3 | S00=3 | G200=3

Table A.37: Results of the Approximation Algorithm with scaling and variable fixing

(Sectiorf 4.4.2)

APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

180

S0 €0 (90 20 (V0 ¥’0 |20 ¢0 80 00 L0 90 SSaUMB)S
60V Tve |Tey L'SE |§qyr €Ty |[¥'6E <20r |TEF 6'GE |96E G'GE [%] ‘Ae@ “[al
8'.ec¢ TVl |T18 ¥Ztl |92 €8T |86 687 |G'L 9'T0T |9°'G ¥'T9¢ ||uoheirnsd 'pIS
¢'¢8S CZ'Tv | 88T 6VE |0VS Ty |61V L'TCT |S'LT 7'€8C |EVT 9'9€L "By
ove 0¢ 0L 9T LT LT 6 ov 6 14" L 162 wnuwiuiin
vYITT 69 0LE 09 90T 18 v [AY4 G¢g 121747 Lc VTET wnuwixey
7SS oy LLT €e Zs [4% [44 90T ST v.Z €T 999 uelpain
88/ Zs G9¢ YA 0L LS 62 cee |€T ¢re | 2T c0:L 6T-Mpuey
66 T0:T |ETE €9 .8 V1T | LE T¢:€ |¢€¢ 80:L LT Gv.GT 8T-Mpuey
14531 ov c0c 9€ 1L 6V Ge 8¢.¢ |T¢ e VT ST-€T LT-Mpuey
789 8v e 1547 99 99 8¢ JAZTARNY) 60:S |[.T €ect 9T-Mpuey
988 TOT | 8¢ 67 16 60T | LE v¢ |S€ 8¢:L |€¢ 19T ST-Mpuey
128 89 61¢ 1% S9 65 €e L2 |/l¢C Ge9 |T¢ ¢T.ST vT-Mpuey
oce v GOT 0¢ €e T4 1¢ 8¢ T |VT 8¢y |TT €0:GT ET-Mpuey
YTTT 60T |0LE 00:T |90T ¢T | TV T0:€ |6¢ 8¢9 |/L¢ VEET ZT-Mpuey
0114 €€ 9GT €e 1% [474 (44 ov'T |ST veEVY |ST SEVT TT-Mpuey
oev ce 124" 8¢ ov Ve €T OT'T |€T L0¢ |CT 1A% 0T-Mpuey
L9¢ Z¢ |00T 6T |0V Ze |€cC ¢S T 9T 7€9 €T 79:T¢ 6-Mpuey
¢/l9 Ly 14A%4 6€ 9/ GS €e TT:¢ |8¢ 79 |€¢ 8G:0¢ 8-Mpuey
ove 0c 0L 9T LT LT 6 ov 6 v0:¢ | L G0-8 L-Mpuey
viv (4 0T (44 (44 6T €T 99 6 €ed |6 G466 9-Mpuey
28s ey c6T 8¢ qS 15417 ve 9T |ST 00 |€T L0:0T S-Mpuey
€€9 1% L0¢ (017 s 1% 1c ST |ST eV |ET ¢¢.0T -Mpuey
15174°] 6€ 16T 6¢ 1€ 1€ 9T 6T |6 Gee |1 90:TT €-Mpuey
€G€ 8¢ €0T 0¢ (0] 9c 8T GeT |6 62:€ |L €T.0T ¢-Mpuey
6S€ 8¢ 91T 14 6¢ LZ VT T0:T | 2T 9G.¢ |0T ce L T-Mpuey
€09 v LT €e | €9 ¢ |0¢C 82:¢ |67 8ey |ST 60:6 0-Mpuey
‘dgns ewn |'dgns awn 7.o_nsm awn Eg:m awn |'dgns awn Ep:m awn yde.b
GL0=3 g0=3 | Szo=3 | TO0=3 S00=3 | G200=3

Table A.38: Results of the Approximation Algorithm with scaling and variable fixing

(Sectiori 4.4.2)

181

p2 p4
| J [s | N | J] s | N
DeBruijn 6
dist. -0.53 | -0.51| -0.46| -0.42 | -0.55| -0.65 | -0.70 | -0.62

MaxFlow | -0.12 | 0.11 | -0.03| 0.02 | -0.15| 0.04 | -0.07 | 0.00
rel MaxFlow | 0.58 | 0.65| 0.62 | 0.45 | 052 | 0.39 | 0.44 | 0.38
rel. dist. -0.83 | -0.82| -0.80| -0.76 | -0.72| -0.79 | -0.83 | -0.81
log(rel. dist.)| -0.88 | -0.88| -0.83| -0.83 | -0.87 | -0.92 | -0.91 | -0.92

Shuffle-Exchange 6
dist. -0.56 | -0.52| -0.46| -0.48 | -0.68 | -0.64 | -0.64 | -0.61
MaxFlow | -0.07 | 0.09 | -0.02 | 0.02 | -0.08| 0.06 | -0.05| 0.01
rel MaxFlow | 0.65 | 0.65 | 0.78 | 0.66 | 0.43 | 0.54 | 0.55 | 0.48
rel. dist. -0.80 | -0.81| -0.88| -0.85| -0.80 | -0.74 | -0.76 | -0.80
log(rel. dist.)| -0.92 | -0.88| -0.91| -0.89 | -0.93 | -0.92 | -0.93 | -0.93

6x10 Grid
dist. -0.60 | -0.48 | -0.57| -0.42| -0.67 | -0.52 | -0.60 | -0.49
MaxFlow 0.07 | 0.04 | -0.01| 0.03 | -0.02| -0.07 | -0.07 | -0.07
rel MaxFlow | 0.82 | 0.85| 0.63 | 0.76 | 0.58 | 0.81 | 0.67 | 0.73
rel. dist. -0.91 | -0.82| -0.68| -0.80| -0.78 | -0.71 | -0.79 | -0.65
log(rel. dist.)| -0.93 | -0.92| -0.84 | -0.87| -0.92 | -0.93 | -0.94 | -0.89

ex36
dist. 055 | 0.28 | -0.16| -0.57| -0.37| -0.53 | -0.64 | -0.01
MaxFlow 0.08 | -0.13| -0.06| 0.21 | -0.31| -0.06 | -0.21 | -0.17
rel MaxFlow | 0.23 | -0.10| -0.24| -0.21| -0.11| 0.09 | -0.11 | -0.08
rel. dist. 0.10 | 0.10 | -0.15| -0.50| -0.53| -0.65| -0.71 | -0.71
log(rel. dist.)| 0.16 | 0.07 | -0.17 | -0.58| -0.54| -0.74 | -0.73 | -0.73

random planar
dist. -0.42 | -0.44| -0.41| -0.36 | -0.45| -0.47 | -0.47 | -0.39
MaxFlow 0.17 | 0.18 | 0.16 | 0.19 | 0.06 | 0.11 | 0.10 | 0.10
rel MaxFlow | 0.62 | 0.79 | 0.73 | 0.77 | 0.73 | 0.70 | 0.70 | 0.79
rel. dist. -0.72 | -0.78 | -0.46| -0.83 | -0.71 | -0.63 | -0.72 | -0.75
log(rel. dist.)| -0.78 | -0.87 | -0.76 | -0.84 | -0.85| -0.83 | -0.85| -0.84

Table A.39: Pearson’s correlation coefficient for the split-prediction with different
graphs and predictors (Section 5/4.1)

182 APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

p2 p4
\ J\ S\ IN \ J\ S\ IN
DeBruijn 6
dist. 0.64| 0.54|0.39| 0.41|0.81|0.62| 0.76| 0.51
max11UB 0.80| 0.60| 0.51| 0.23| 0.86| 0.76| 0.80| 0.63
rel.dist. 0.81/0.85|0.79| 0.77|0.81| 0.83| 0.88| 0.82

log(rel.dist) |0.70| 0.77] 0.71| 0.63]0.76| 0.77| 0.81] 0.75
rel.max11UB | 0.84| 0.86| 0.85| 0.87| 0.84| 0.85| 0.82| 0.84
adv.relmax11UB 0.90| 0.89| 0.86| 0.86| 0.89| 0.90| 0.86| 0.86

Shuffle-Exchange 6

dist. 0.64] 0.37|0.36| 0.28| 0.80| 0.62| 0.71| 0.54
max11UB 0.83] 0.37| 0.42| 0.23|0.89| 0.67| 0.73| 0.57
rel.dist. 0.83| 0.80| 0.89| 0.87|0.85|0.84| 0.79| 0.84

log(rel.dist.) 0.63| 0.63| 0.77| 0.72]0.76| 0.75| 0.74| 0.74
rel.max11UB | 0.92| 0.89| 0.92| 0.91| 0.82| 0.73| 0.70| 0.80
adv.rel.max11UB 0.93| 0.92| 0.92| 0.90| 0.90| 0.86| 0.85| 0.81

6x10 Grid
dist. 0.65] 0.58| 0.64| 0.38| 0.79| 0.69| 0.75| 0.62
max11UB 0.89] 0.72| 0.71| 0.50| 0.84| 0.70| 0.80| 0.63
rel.dist. 0.90| 0.82| 0.61| 0.81|0.85|0.88| 0.84| 0.73

log(rel.dist.) 0.87| 0.67| 0.60| 0.67|0.80| 0.79| 0.79| 0.70
rel.max11UB | 0.94| 0.90| 0.84| 0.90| 0.71| 0.85| 0.69| 0.81
adv.rel.max11UB 0.95| 0.92| 0.82| 0.91| 0.85| 0.90| 0.87 | 0.82

ex36
dist. 0.46| 0.31| 0.42| -0.07| 0.59| 0.52| 0.56 | -0.04
max11UB 0.68] 0.23(0.51| 0.12| 0.66| 0.11| 0.64| 0.25
rel.dist. 0.46| 0.46| 0.55| 0.49| 0.57| 0.49| 0.58| 0.29

log(rel.dist.) 0.48| 0.46| 0.54| 0.47]0.57| 0.50| 0.58| 0.28
rel.max11UB | 0.23| 0.38| 0.58| 0.58| 0.69| 0.06| 0.67| 0.64
adv.rel.max11UB 0.63| 0.42| 0.63| 0.60| 0.70| 0.07| 0.70| 0.66

random planar

dist. 0.31/0.35/0.25| 0.12|0.32| 0.29| 0.28| 0.24
max11UB 0.51| 0.45|0.32| 0.28| 0.67| 0.66| 0.71| 0.56
rel.dist. 0.73| 0.74| 0.34| 0.67| 0.68| 0.68| 0.58| 0.70

log(rel.dist.) 0.69| 0.62| 0.52| 0.58| 0.66| 0.65| 0.56| 0.65
rel.max11UB | 0.75| 0.72| 0.64| 0.88| 0.66| 0.61| 0.82| 0.80
adv.rel.max11UB 0.82| 0.77| 0.68| 0.89| 0.80| 0.79| 0.84| 0.88

Table A.40: Pearson’s correlation coefficient for the join-prediction with different
graphs and predictors (Section 5|4.2)

183

TT'T- 6071 |8C'T- 9€T- |ET'T- 6Z1T- |6T'T- 8¢'T- |9T'T- TET- |0C'T- €EE€T- SSauMaXS
6L, 9G.L |c08 6/.. |66,L 69. |T'T8 G8L |€6L 9/.L |66, 6L [%]ne@ "ms I8l
L'/yZ 8'G8T |0G¥Z +'€8T [#¥'09¢ 098T |996¢ 96T [866C 1+.6T |6 T¥c 86.T By

6 9 6 9 6 9 6 9 6 9 6 9 WinWIUIN
69. 795 |608 €09 |6T8 ¢6S |T.6 v9 |696 ev9 |19. 8.S wnwixeny
8T vvT |T8T ovT | TLT €ET [LTC €ST [.0¢ ovT | 19T 8cT ueipsiy

€GT TET |T9T 2eT |19T €eT |12 8GT |S6T ovT |€ST 9¢T |6T-G'0-0c-wopuey
€T 66 TET ¥0T |TET 66 GeT 00T |6¥T 90T |€¢1T ¥6 BT-G'0-0c-wopuey
gee 98T |S0¢ 29T |66T 09T |SS¢ 88T |6¢¢ 96T |€6T 8YT |LT-G'0-0g-wopuey
€0T Zs8 G6 Gl 60T g8 S8 99 L0T 08 S6 S/ DT-G'0-0g-wopuey
STE L€C |S6¢ LTC |EVE vee |11V eve |18¢ S |€TE 82¢ |GT-G'0-0g-wopuey
LEV €Te |6EV L0E | LY 8TE |T¢S 62€ | 999 114 5 WA 774 €TE |[PT-G0-0g-wopuey
8T YT |T8T ovT |TLT ¢ET |TTC €9T |.L0¢ evT |T9T 8¢T |ET-S'0-0¢c-wopuey
6 9 6 9 6 9 6 9 6 9 6 9 £T-G0-0g-wopuey
69. 7SS |608 €09 |6T8 ¢6S |T.6 9 | 696 ev9 |19. 8.5 |IT-S0-0g-wopuey
6S TS 6S TS 69 6S T9 174 6. 1S €9 12°] DT-G'0-0g-wopuey
T8¢ 88¢ |67E 8G¢ |68€ 9.¢ |Lv¥ €0e | LSV oce |€le Z¢lZ ||6-9'0-0c-wopuey
€9 TS G9 ¥S G/ 09 TOT 19 G6 T9 T. 839 8-G'0-0E-wopuey
S09 ¥Sv | €SS STy |T129 sey |S.9 6SY |.99 6¢7 | S8S 6Z ||L-9°0-0E-Wwopuey
ST¢ ¥ST |S0¢C 0ST |S¢¢ 89T |S¢¢ 8T |TG¢ 29T |S0¢ ovT ||9-9°0-0E-wopuey
€L €9 €L €9 €L 09 68 g9 TOT 172 T. 29 G-G'0-0g-wopuey
6E ve 147 1% 74 14 6t 1A% T9 174 o1 144 ¥7-G'0-0g-wopuey
S0¢g T2¢ |10¢€ 9T¢ |gge 92¢ |SSE 8¢¢ |18¢ €eC |€lc /6T ||€-9°0-0E-Wwopuey
62¢ eve |69¢€ 9/¢ |T9¢ 0S¢ |6tV G8¢ |SSP €82 |&eve 6vC ||¢-9'0-0E-Wwopuey
6TT L6 TET ¥0T |€€T SO0T | VT ¢0T |SET G6 1T 66 T-G'0-0g-wopuey
Ty 60€ |62F TOE |9V 80€ |6¢S ¥Ze | €¢S 8TE |.LTV T6Z ||0-S'0-0E-wopuey
'dgns awn |'dgns ewn |'dgns ewn |'dgns oawn |'dgns awn |‘dgns awn yde.b

g8=1p =10 Z=10 T=10 Ggo="o ‘43l

Table A.41: Results of the different branching-selection strategies with random graphs

and bisection (Sectidn

2.3)

APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

184

9g'e- 8T'¢- |€6'¢c- 6Z'¢C |v2'e- LO'E- |08¢- 99¢ |08'¢- GL'¢- |8L¢C- 6g¢€- SSauMaXs
L'¥6T VvVET [P'SST 9°22T |S2IZ T'ELT |068T S¥ST |€26T L'89T [¥'8TZ 8'6LT || [%]nreq 'ps ‘|8l
60T 8'86T [¥'S6T ¥'8.¢C |S°0/LZ 6F%TE |025C €80€ 6 TLC 6TvE 8 T8T €9.T By
T Z T Z T Z T ¢ T [T [WinWIUIN
I8YT €90T |TTET 9SET |6¢vc 9T€C |SSLT <CLLT |6T6T L6TC |LSVT veEVT wnwixeny
TC 8. 60T TTZ |60T €0C¢ |60T 6TC |60T TT¢ |6 143 uelpsiy
T € T € T € T € T € T € 6T-T-00T-ue|dpuey
TET 792 |60T 6TC |60T 0¢Zg |60T 6TC¢ |60T 6TC |./8 86T [BT-T-00T-ue|dpuey
609 ¢SL |LSL 680T |6¢¥C 9T€C |SS.LT ¢L.T |ST8T L.8T |LSPT VeEVT |LT-T-00T-ue|dpuey
18YT €90T |TTET 99€T |TOPT ¢Z¢vT |€LST VE9T |6T6T L6TC |SPCT LES |DT-T-00T-ue|dpuey
€ 0T 60T I8T |SET l2¢ |LlgT T€C |60T Zce |16 98T |[GT-T-00T-ue|dpuey
€ 0T T, 06T |GG 29T | SS 29T |SS 291 € 0T ¥T-T-00T-ue|dpuey
T 99 10T ove |56 6¢¢ |16 oeg |16 T1¢ | S ac cT-T-00T-uUe|dpuey
LT 99 €G6¢ €y |6l cee |SPT €eec | lat eve |6 e ¢T-T-00T-uUe|dpuey
€c¢ 02T |69T7 ¢vT |69T €0C¢ |gg¢ 0se |gg¢ €59€ |6¥¢C c¢ve [IT-T-00T-ue|dpuey
T I4 T 4 T c T c T [T [DT-T-00T-ue|dpuey
GST (44 6ET LEC LT 6€¢ T.T eve T.T eve L T€ 6-T-00T-ue|dpuey
L .2 10T TT¢ |TVT 122 |TVT l2¢ |TVT l2¢ |6 €e 8-T-00T-ue|dpuey
69¢ 60€ |S9¢ vy |LST T | 19T 9¢T |191T G¢T |SET €.2 ||L-T-00T-ue|dpuey
611 92¢ |S6T ¢ |SeT 0s GeT 0s GeT 9g 69T 86 9-T-00T-Ue|dpuey
€ AN € A) € A €) € 4) € €T G-T-00T-ue|dpuey
TC Zs8 6 4% LZ 16 14 8ET |61 99 TT 174 7-T-00T-ue|dpuey
€ 9T € 9T € €T € €T € €T € 9T €-T-00T-ue|dpuey
G991 v6e |TIT ggC |S0T 6¢¢ |SOT TeC |91 86¢ | T¢ L ¢-T-00T-uUe|dpuey
6T Svec |18T 8.¢ |GST 292 |TLT L9¢ |69T 99¢ |€cT v¥Z |[T-T-00T-ue|dpuey
Tc 8. L .2 € 9T S 144 6 14 L 8¢ 0-T-00T-Ue|dpuUEey
'dgns ewn |'dgns own |'dgns awn |‘dgns awn |dgns awn |'dgns awn yde.b
g8=1p =10 Z=1 T=10 g0="o 43l

Table A.42: Results of the different branching-selection strategies with planar Graphs

and bisection (Sectidn 5.4.3)

185

v,'e- 0L¢ |Lc'e- €'~ |69¢- T8¢ |6V'E- €9c- |08'e- T8¢ |8T'E- <ZT'¢- SSauMaXs
8'69T SV9T |6'9¥PT T'evT [TOET T'LET |L'¥9T 8'L9T |S°€8T T'¥8T |6¢vT 6'8ET [%]nea "ms I8l
G'0T¢ S'0v8 |9'98T 0'¢SL |06¥T <2'€ES |[2G6T 6909 |[L'vEC 0'€Cl |6'SCT L'9¢S By
€ €T € €T € 0T q oT g 9T € oT WinWIuIN
€89T TZG9 |/9¢T 186V |6S8 ¢Sce |S8¥T 60.LF |STOC C€C9 |6¢8 0.e€ wnwixeny
TTT ¢l |T0T ¢S |ETT 00 [S6 L. |61 0ce |99 T6¢ ueipsiy
€89T T¢G9 |/9¢T 186V |6S8 ¢Gce |G8YT 60.F |GTOC ¢2EC9 |6¢8 0.€€ BI-¥-00T-re|nbaypuey
L€ €GT |S¢E SYT |€T 89 6€ LET | LV 83T | T¢ 68 BT-7-00T-le|nbaypuey
S¢ OTT |T¢ 26 qT €9 €c .8 €c T6 6T €8 U T-7-00T-re|nbaypuey
TTT ¢ly |12t GeEG |/LTT 00E |6TT LTE |GCT 0zce |99 162 9T-7-00T-re|nBaypuey
6171 T29 |6ET €.9 |ETT Sl |19 1.2 |STT Sovr | /0T 29% GT-¥-00T-re|nBaypuey
GT 99 LT €L L (014 6 LE GT 8§ €T 9g T-7-00T-Te|nbaypuey
vl 885 |60T 89t |€ST ¢6E | 99T 09€ |./ST 98¢ | /9 962 ET-7-00T-re|nBaypuey
G/ 0 |19 [ASTARE DA 79T |G8 0l¢ |€0T oce |19 GSZ gT--00T-re|nBaypuey
€eT 885 |TOT ¢S |SST c0e |€sqt 6T |/ST LSE |69 6TE [T--00T-1e|nBaypuey
S0¢ 228 |66T ¢6L |67T 229 |96 0se |6TT ocyr |STT 06% DT-7-00T-reinbaypuey
ecv 9/9T |T¢v T69T |62V LTST |SES T29T |.6S ¢L.T |SS¢ ¥90T |B--00T-re|nBaypuey
TOC G08 |66T ¢18 |691 T0L |66T T99 |T6T 8v9 |€8T 2S. |B-v-00T-re|nBaypuey
TG¢ €86 |T.l¢ 2G0T |TET €99 |TT¢ vT.L |6¥¢ 788 |91 TIT. |L-7-00T-rejnbaypuey
6t ST¢ |TS 8T¢ |S0OT ¢le |1aT Slc |lat 6.C |€¢€ EYT |9-7-00T-re|nbaypuey
ST 79 LT cL €T 1S 1T 14 €T 1S LT 0L G-7-00T-re|nBaypuey
€ €T € €T € 0T S 9T g 9T € 0T -¥-00T-1re|nbaypuey
6¢ Q2T |€¢ €0T |€T o1 €T TS €T 0§ 6 1A% €-7-00T-re|nbaypuey
18¢ TGTT |T¢E 62T |.0¢ ev. €l ¢l8 |.l62 Ze6 68T €6, |--00T-rejnbaypuey
LE T9T |L© 96T | LT ZL Tc 88 Se ovT |€¢€ ZvT |T-7-00T-re|nBaypuey
e €LET |E0€E L1221 |S/.¢C Ce0T |S/¢ €6 |T6¢ cv6 |€9¢ /60T |0-7-00T-rejnbaypuey
'dgns eswn |'dgns oewn |'dgns awn |‘dgns awn |dgns awn |'dgns awn yde.b

g8=1p =10 ¢=1 T=10 g0="o 43l

Table A.43: Results of the different branching-selection strategies with regular graphs

and bisection (Sectign

2.3)

186

APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

graph MVarMC [KRCOQ] [BCRY7]
time | subp. || time | subp.|| time | subp.

BCR-10x2g <1 3 1 1 6 1
BCR-5x6g <1 6 3 1 61 1
BCR-2x16g <1 3 4 1 108 3
BCR-18x2g <1 3 2 1 262 3
BCR-2x19g|| <1| 12| 55| 49| 788| 3
BCR-5x8g <1 1 2 1 851 7
BCR-3x14g <1 3 18 5 1256 5
BCR-5x10g <1 1 9 1 2843 3
BCR-6x10g 1 71| 319 571 17994| 31
BCR-7x10g <1 51 557 61 n.a.

Table A.44:

Results on the exact bisection width of the BCR-grid graphs (Sgctjon 5.5)

graph MVarMC [KRCOQ] [BCRI7]
time | subp.]| time | subp.|| time | subp.

BCR-4x5t <1 1 1 1 3 1
BCR-6x5t <1 3 3 1 45 1
BCR-8x5t <1 1 6 1 494 7
BCR-21x2t <1 1 5 1 1061 3
BCR-23x2t <1 13| 125 33 2788 3
BCR-4x12t <1 1 17 3 3012 5
BCR-5x10t 1 3 6 1 2031 13
BCR-10x6t 2 31| 350 43 6517 3
BCR-7x10t <1 1| 572 47 || 28297| 33
BCR-10x8t 4 31| 944 45 n.a.

Table A.45:

Results on the exact bisection width of the BCR-tori graphs (Séctjon 5.5)

187

graph MVarMC [KRCOQ] [BCR97]
time | subp.| time | subp.|| time | subp.

BCR-2x10m <1 1 1 1 3 1
BCR-6x5m <1 1 1 1 28 1
BCR-2x17m 22 29 29 21 235 3
BCR-10x4m 2 1 2 1 315 1
BCR-5x10m 7 2 2 1 3212 5
BCR-4x13m| 225 36 34 5 5702 7
BCR-13x4m| 172 26 34 5 5105 5
BCR-9x6m || 201 26 12 1 n.a.

BCR-10x6m 13 2 8 1 12920 9
BCR-10x7m 21 3 14 1 127297, 13

Table A.46: Results on the exact bisection width of the BCR-mixed-grid graphs (Sec-
tion[5.5)

graph MVarMC [KRCOQ] [BCRY7] [FMdS'99] |
time | subp.|| time | subp.|| time | subp.| time | subp.
BCR-m4.i[<1 1 1 1 56| 1 5 | 1
BCR-ma.i <1l 1 3 1| 3218| 29 n.a.
BCR-me.i|| <1 1 4 1|| 6505| 37 n.a.
BCR-m6.i|| <1 1] 37 1] 5737] 55 [103]| 1
BCR-mb.i <1 1 28 1| 3772 33 n.a.
BCR-mc.i <1 1 46 1| 27712 53 n.a.
BCR-md.i|| <1 1 29 1| 86140| 57 n.a.
BCR-mf.i <1 1 24 1| 14659| 47 n.a.
BCR-m1.i 4 3 || 1095 15 || 97271 101 n.a.
BCR-m8.i|| <1 1 321 1 n.a. 851 \ 1

Table A.47: Results on the exact bisection width of the BCR-real-world graphs (Sec-

tion[5.5)

188 APPENDIX A. DETAILS OF EXPERIMENTAL RESULTS

graph MVarMC [KRCOQ]
time | subp.|| time | subp.
DB-5 <1 1 <6 <3
DB-6 <1 1 <469 | <55
DB-7 3 1] 32,000 195
DB-8 || 6,961| 148 n.a.
ex36a 250| 279 3 1
ex36b 122 | 125 5 1
ex36¢c 98 101 2 1
cd30 <1 1 2 1
cd45 <1 3 7 1
cd47a <1 3 10 1
cd47b 1 18 112 35
cd61 1 8 20 1
Table A.48: Comparison with [KRCO0O] with respect to the graph bisection problem
(Sectior{ 5.p)
n 120 130 140 150 160 170
graph time subp.| time subp.| time subp.| time subp.| time subp.| time subp.
0 12 3 33 8 20 5 56 11 41 9 40 6
1 26 16 43 21 76 34 47 10 27 3 4 1
2 40 15 24 7 35 12 76 20 215 63 335 71
3 1 1 2 1 2 1 22 3 11 1 41 11
4 15 5 27 11 76 28 67 15 64 13 54 10
5 39 52 2 1 6 1 7 1 3 1 4 1
6 0 0 198 662 | 248 795 | 307 1018 928 3243 17 6
7 12 3 37 15 29 11 44 12 124 40 107 20
8 17 9 28 9 188 191 147 152 263 142 536 280
9 13 3 1 1 2 1 2 1 3 1 4 1
Median 13 3 27 8 29 11 47 11 41 9 40 6
Maximum 40 52 198 662 | 248 795 | 307 1018 928 3243 536 280
Minimum 0 0 1 1 2 1 2 1 3 1 4 1
Avg. 17.5 10.7| 39.5 73.6| 68.2 107.9| 77.5 124.3| 167.9 351.6| 114.2 40.7

Table A.49: Solving bisection problems on maximal RandPlan-grdps; 3n— 6

(Sectiori 5.p)

189

n 80 90 100 110
graph time subp.| time subp.| time subp.| time subp.
0 0 1 327 107 505 131 24 5
1 1 1 250 85 73 19 | 1134 229
2 16 7 46 13 510 133 539 105
3 1 1 0 1 33 7 266 55
4 0 1 41 13 9 3 84 17
5 0 1 279 89 35 9 517 105
6 0 1 523 179 73 19 99 19
7 48 21 186 61 481 125 627 125
8 0 1 56 19 396 101 177 35
9 0 1 308 107 735 185 465 97
Median 0 1 186 61 73 19 266 55
Maximum 48 21 523 179 735 185 | 1134 229
Minimum 0 1 0 1 9 3 24 5
Avg. 6.6 36| 201.6 67.4| 2850 73.2| 3932 79.2

Table A.50: Solving bisection problems on RandRegular-graphs of degjieg42n
(Sectior{ 5.p)

n 60 70 80 90

graph time subp.| time subp.| time subp. time subp.
0 0 1 0 1 0 1 588 189

1 1 3 1 1 94 65 35 11

2 0 1 0 1 6 3 354 109

3 3 5 2 3 97 89 111 37

4 1 3 0 1 0 1 1268 419

5 4 5 0 1 76 35 26 9
6 0 1 2 3 99 43 | 50004 25781

7 4 16 17 11 5 3 32 11

8 0 1 0 1 28 11 155 53

9 10 18 8 7 16 7 246 83
Median 1 3 0 1 16 7 155 53
Maximum 10 18 17 11 99 89 | 50004 25781

Minimum 0 1 0 1 0 1 26 9
Avg. 2.3 5.4 3.0 30| 421 25.8| 52819 2670.2

Table A.51: Solving bisection problems on Random-graphs with edge-probability
0.05,|E| =~ % (Sectio)

	List of Figures, Tables and Algorithms
	Introduction
	Motivation
	Overview of this work
	Definitions
	Known Lower Bounds
	Classical Spectral Method
	Improved Spectral Methods
	Semidefinite programming

	Exact Graph Partitioning Algorithms
	Graphs for Experiments

	The New Lower Bounds
	Leightons Bound
	VarMC- and MVarMC-Bound
	Idea
	Definition of Multicommodity Flows
	Lower Bound based on Cut-Flow and Congestion
	Definition of VarMC and MVarMC
	Cut-Flow of VarMC and MVarMC
	Summary and Outlook

	Experimental Evaluation of the Lower Bounds
	The Experiments
	Bisection Problems
	k-partitioning Problems
	Graph Partitioning Problems with k=2 and M=23n
	Summary

	Theoretical Issues
	Symmetrical Solutions
	Definitions
	Existence of Optimal and Symmetrical MC-solutions
	Some Implications

	Some Specific Graphs
	Bisection of the Complete Bipartite Graph Ka,b
	The k-partitioning of the aa-Torus
	The k-partitioning of the aa-Grid
	Bisection of the Butterfly
	Bisection of the Beneš Network
	The k-partitioning of the Hypercube Q(d)
	Summary

	Upper Bounds on the Lower Bounds

	Computation of the Lower Bounds
	Linear Programming
	Cost Decomposition
	Column Generation
	Lagrangian Relaxation based Column Generation

	Approximation Algorithm
	Literature and Idea
	The Approximation Algorithm
	Implementation Details

	Experimental Evaluations
	Cost-Decomposition
	Approximation Algorithm
	Comparison of the different Methods
	Summary

	Branch & Bound Algorithm
	Upper Bound and Depth-First-Search
	Realization of Branchings
	Variable Fixing
	Simple Considerations
	MC-bounds based Methods

	Branching Selection
	Prediction of the Impact of a Split on the Lower Bound
	Prediction of the Impact of a Join on the Lower Bound
	Making the Branching Selection based on Predictions for the Lower Bound

	Experimental Evaluation

	Conclusion
	Bibliography
	Details of Experimental Results

