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ABSTRACT

A lithium niobate-based, integrated optical network analyzer for the vectorial structure
characterization of optical fiber Bragg gratings is reported. Frequency-dependent complex
reflectance Jones matrix is measured by interferometry and transformed into time domain.
From the impulse response matrix, the vectorial grating structure is determined by inverse
scattering. Local dichroic reflectivity and birefringence are derived from this data. Know-
ledge of the vectorial nature of the refractive index modulation depth and phase should
allow an improvement of the ultra-violet (UV) light illumination process and to effectively
correct the phase mask stitch errors by longitudinally selective UV light post-processing,
in order to fabricate chirped and/or apodized gratings which require the highest fabrication
accuracy.

Especially, for vectorial structure characterization, integrated optical circuit based on
X-cut, Z-propagation lithium niobate was proposed and developed in-house. It consists of
a single-mode 1x2 optical power splitter and is integrated with a set of 3 TE-pass polarizers,
a set of 2 phase shifters, and a TE-TM mode converter on each arm of the power splitter.
Topological details of this integrated optical circuit are given in the dissertation. This inte-
grated optical circuit along with a 3x3 fiber coupler forms a Mach-Zehnder interferometer.

A 3x3 fiber coupler with three photodiodes at its output was chosen because it allows the
most accurate phase measurement. Real and imaginary parts of the frequency-dependent
complex reflection coefficient are calculated from two linear combinations of three (three-
phase) photocurrents. The integrated optic phase shifters allow digital phase shifting and
perform AC rather than DC measurement in order to increase sensitivity. On-chip TE-
pass polarizers maintain a reference polarization and ensure that only phase-modulated
light with a single polarization enters the mode converter sections of this integrated optical
circuit. The integrated optical TE-TM mode converters act as calibrated polarization trans-
formers and are used to generate the required polarizations for vectorial measurement. The
reflecting devices under test are connected to the measurement interferometer by means of
an additional coupler. Measurement setup also includes a wavelength meter for frequency
correction. A cleaved bare fiber end has a small reflectivity, which is independent of the fre-
guency and polarization, is used for calibrating the measurement setup. A uniform optical
fiber Bragg grating at 1548.25 nm with a reflectivity95% and a 0.2 nm bandwidth was
characterized. From this the vectorial grating structure was obtained and these results are
summarized in the dissertation.

TE-TM mode converters with endlessly adjustable coupling phases oX-thd, Y-
propagation lithium niobate are optimized by simulation studies for the highest electrooptic
efficiency for distributed PMD compensation. Two-phase and three-phase TE—TM mode
converters are compared, and the latter are found to have a slightly better electrooptic
efficiency. If just a little differential group delay needs to be compensated then the com-
pensation performance can be drastically improved if the compensator is realized in mixed
ferroelectric crystals like lithium—niobate—tantalate where the birefringence can be tuned
by varying the Ta contentin LiNb,_,Ta,O;. A Ta contenty of up to 0.5 is good to realize
a PMD compensator for about 160 Gbit/s. This solution is particularly advisable at data

Xl



rates of 40 Gbit/s and beyond. The above in-house developed integrated optical network
analyzer is also used to measure the frequency-dependent redutled atrix of this
in-house developed distributed PMD compensator. Such a redugker Mhatrix measure-

ment allows to calculate the corresponding Jones matrix and hence the impulse response
of the devices with polarization mode dispersion. From the latter, differential group delay
profiles are determined by the inverse scattering technique. Some interesting DGD profiles
are obtained and are summarized in the dissertation.
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Chapter 1

Introduction

1.1 Background

The history of integrated optics began in 1969 with the paper published in Bell Systems
Technical Journal [1] where S. E. Miller discussed the dreamtefjrated @tical Grcuits
(10C’s) which would use photons instead of electrons. Today’s high-speed electronics
is possible due to technological advances in integrating several electronic components on
to monolithic substrates in an IC form. Similarly, the future of optics could be seen in
an integration of bulky optical components into complicated planner circuits which could
perform various optical functions.

As in the optical fibers, light guiding in integrated optical waveguides is based on the
phenomenon of total internal reflection. Light is confined to an area of high refractive
index, which acts asore, with respect to its surroundings, calledadad. The integrated
optics has not only the potential of generation, manipulation, and detection of optical waves
but also has the capability to couple optical waves into and out of the integrated optical
circuit’s [2, 3].

The I0C'’s offers many significant advantages over their bulk optical counterparts, since
their features are based on guided wave optics. There main advantages are as follows:

(1) Compact and light weight

(2) Stable alignment by integration

(3) Low operating voltages and short interaction lengths
(4) Easy control of guided waves

(5) High-speed operation

(6) Inherent parallel processing capability

The IOC'’s, in principle, consist of optical waveguides and waveguide-based devices.
Passive optical devices includes optical power splitters and combiners [4], polarizers, wave-
length division multiplexers and demultiplexers are developed for passive optical networks.
The 10C’s which could modulate the most important properties of light such as intensity,
phase, polarization, and frequency are realized and are commercially available today as



2 Chapter 1  Introduction

intensity, phase, and polarization modulators, switches, and wavelength converters which
utilizes either electrooptic or acoustooptic or thermooptic or nonlinear optic effects. The
optically active I0C’s such as waveguide amplifiers, lasers, and even the optical parametric
oscillators have also been demonstrated very recently [5].

The materials used for realizing I0C’s should have very low propagation losses at the
operating wavelengths. Many kind of materials and the device fabrication techniques have
been tried for realizing the integrated optical waveguides. The most important techniques
include thin film deposition, ion exchange, thermal diffusion, ion implantation, and the
epitaxial growth. The materials are chosen depending on whether the device is active or
passive. If it is active then it further depends on which effect the device is based on. Based
on design objectives, the material is chosen and, then, the most appropriate technique based
on the waveguide specifications is selected for fabrication.

The principle materials for integrated optics are glass, lithium niobate, and gallium-
arsenide. For glass based devices, ion exchange is the low cost technology. Ti in-diffusion
is the most promising but expensive technology for lithium niobate based devices (a crystal
with high electro-optic coefficients), while MBE and MOCVD is rather the most expensive
technology for the devices which are based on gallium arsenide. The Table 1.1 summarizes
the propagation losses and technology used for these three material systems.

Table 1.1: Materials for integrated optics

Material Glass Lithium Niobate | Gallium Arsenide
Technology | lon-exchange Ti-Indiffusion MBE
CvD Proton exchange MOCVD
Loss (dB/cm) 0.01 0.1 1

1.2 Motivation

The main objective of this entire work is to demonstrate the ability of the lithium niobate
based integrated optical circuits to integrate very basic integrated optical components such
as optical power splitters, polarizers, phase shifters, TE-TM mode converters etc. into
one complex circuit which provides more functionality for optical instrumentation and lat-
ter, their applications to optical communication. Two different application of the lithium
niobate-based integrated optical circuits that are demonstrated in this dissertation includes:

(1) An integrated optical network analyzer icut, Z—propagation lithium
niobate for vectorial structure characterization of optical fiber Bragg gratings

(2) An integrated optical polarization mode dispersion compensatireut,
Y —propagation lithium niobate for the polarization mode dispersion (PMD)
compensation at 40 Gbit/s and beyond
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1.2.1 An Integrated Optical Network Analyzer

Both microwave and optical networks are similar and consist of an assembly of components
which are interconnected using waveguides, and, the signals are very narrowband quasi-
monochromatic electromagnetic fields. Many microwave components have optical analogs
and the list is growing every year. The most striking differences between them are that:

(1) there are only square-law detectors, i.e. the photodiodes

(2) the optical networks offer bandwidths orders of magnitude higher than the
microwave networks

(3) the optical sources may have non-negligible linewidths which influences
the measurement contrast

(4) the optical waveguides are dielectric in nature

(5) there are linear and nonlinear field-matter interactions suBagkeighand
Brillouin scattering

(6) the common “single-mode” optical waveguides are in fact two-moded

In Table 1.2, the frequencies of the most popular bands used for optical network applica-
tions are listed.

Table 1.2: The frequencies of the optical carriers in three most popular optical bands

Wavelength (um) | Frequency (THz)
0.85 353
1.31 229
1.55 194

The linewidths of several common optical sources are listed in Table 1.3 because this
influences the signal-to-noise ratio.

Table 1.3: The linewidths and the coherence lengths of optical sources that are used in the optical network
applications

Type of Source Linewidth | Coherence Length
Light emitting diode ~ 20 THz ~ 15 pm
Superluminescent diode ~ 4 THz ~ 75 pm
Single mode laser diode ~ 1 GHz ~ 30 cm
Distributed feedback laser diode~ 50 MHz ~6m
External cavity laser diode | ~ 50 KHz ~ 6 km

As has been mentioned in the above differences that the two propagating modes that the
single-mode optical waveguide supports are nearly degenerate and differ mainly by their
polarization. Most optical components are sensitive to the state of polarization, and, there-
fore, a full account of its evolution is very much essential in optical network analyses [6].
This implies that the optical network algebra is a matrix algebra. In particular, the transfer
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function in optics becomes a transfer matrix, and the product of such transfer matrices is in
general noncommutative.

We understand optical network analysis to be direct analogon of the electrical network
analysis, which means that optical field transfer functions could be measured directly. It
is suitable for characterizing the linear and time independent optical components such as
Bragg gratings in fibers.

Fiber Bragg gratings are comparatively simple devices and in their most basic form
consist of a periodic modulation of the index of refraction along the fiber core [7,8]. There
are various types of fiber Bragg gratings that differ by application and hence by refractive
index modulation. Of great interest are chirped gratings for dispersion compensation which
require the highest fabrication accuracy [9]. For polarization insensitive operation not only
the desired refractive index modulation must be met precisely but the grating must also be
free from birefringence and dichroism. The fabrication process has, therefore, to be opti-
mized in all these respects. To what extent the specific Bragg grating design and the actual
fabricated device correspond to each other has to be checked by appropriate measurements.

Various interferometric methods such as optical low-coherence interferometry, optical
frequency-domain interferometry and even noninterferometric techniques which includes
time-domain reflectometry or the one that rely on modulation could be denominated as
optical network analysis. Especially, the noninterferometric techniques rely on modulation.
In fact, any direct detection experiment with analog intensity modulation and an electrical
network analyzer connected to the transmitter input and the receiver output yields the elec-
trical transfer function from which magnitude and delay of the optical transfer function
can be obtained. This scheme can be expanded to include different polarizations [10]. Of
course, the sensitivity is limited to the direct-detection process. The phase of the optical
transfer function could be accessible by integrating the group delay over frequency. This
not only limits the accuracy but also does not allow the determination of correct phase
relationship between transfer functions obtained from different polarizations.

Interferometric technique with fixed polarizations is the simplest, one-port form of
optical network analysis [11]. Low-coherence interferometry directly yields the impulse
response of a device with an excellentO0 ;m spatial resolution. In contrast, frequency-
domain interferometry [12] which was used in this work, delivers the frequency-dependent
complex reflection coefficients from which the impulse response is calculated. The laser
tuning range limits spatial resolution, but large grating lengths may be investigated due
to high coherence of a single-mode laser. Impulse response allows us to determine the
complex coupling coefficients and hence longitudinal grating structure [13, 14]. Acquired
knowledge about the vectorial nature of refractive index modulation depth and phase should
allow for a correction of aberrations from the desired structure by effectively correcting the
phase mask errors by longitudinally selective UV light post-processing [15, 16].

Therefore, a lithium niobate-based integrated optical network analyzer is proposed,
designed, and built for longitudinal structure characterization of fiber Bragg gratings. The
functionality of this in-house developed optical network analyzer is demonstrated:
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(1) by measuring the vectorial grating structure of a uniform optical fiber Bragg
grating under test [17] and

(2) by measuring differential group delay profiles of an integrated optical PMD
compensator [18] which is introduced in the next subsection.

1.2.2 An Integrated Optical PMD Compensator

Polarization mode dispersion is caused by the noncircular fiber cores and poses a serious
problem for transmitting 0 Gbit/s over older fiber and0 Gbit/s over any type of fiber.

It can be conveniently modelled as a concatenation of different differential group delay
(DGD) sections connected by variable polarization transformers. It can be compensated if
an appropriately oriented birefringence is added at the receiver side in reverse order [19].
Therefore, a perfect PMD compensator would consist of a large number of short DGD
sections separated by variable polarization transformers. These polarization transform-
ers would be adjusted so that the vectorial DGD profile of the PMD compensator would
follow the DGD profile of the transmission line in reverse order. Implementation of such
polarization transformers with an endlessly adjustable coupling phase was proposed many
years ago by Heismann and Ulrich [20]. Since these polarization transformers require
X-cut, Y-propagation lithium niobate; the natural birefringence (0.22 ps/mm) of this bire-
fringent crystal cut can be used to compensate the DGD at the same time [21]. Since
the function has already been demonstrated by F& 28], the motive behind this work

is to particularly optimize the electrode design for this type of integrated optical PMD
compensator for the highest electro-optic efficiency by simulation studies [23]. This in-
house developed integrated optical PMD compensator is characterized for different DGD
profiles which were measured by the integrated optical network analyzer using inverse
scattering technique [18]. The performance of this distributed PMD compensator can be
pushed towards the highest bit rates if they are implemented in lithium—niobate—tantalate
crystals. A Ta contenj in LiNb,_, Ta,O5 is good to realize a perfect PMD compensator at
160 Gbit/s [24].

1.3 Organization Of Thesis

The dissertation is organized into five chapters. Chapter 1 is an introduction. Chapter
2 explains the design of measurement setup and development of lithium niobate based
integrated optical network analyzer.

Chapter 3 deals with the longitudinal structure characterization of fiber Bragg gratings
by inverse scattering. It also emphasizes on the theory and experimentally obtained results
on scalar as well as vectorial structure characterization of FBG.

Chapter 4 is devoted to design and development integrated optical polarization mode
dispersion compensator whose different differential group delay profiles are determined by
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inverse scattering technique using the above in-house developed integrated optical network
analyzer.

Chapter 5 in short summarizes these two different application of lithium niobate-based
integrated optical circuits to optical communication.



Chapter 2

Measurement Setup: Integrated Optical
Network Analyzer

2.1 Measurement Setup

The measurement setup of our integrated optical network analyzer consist of optics and
electronics. A 10 dB coupler is connected to a tunable laser in order to monitor the
laser power. A 3 dB coupler splits the remaining power between tvaahvFehnder
Interferometers (MZI). The first MZI is a reference interferometer whose optical path
length is adjusted to 0.5 m and acts as a high-resolution wavelength meter for frequency
correction. The second MZI is a hybrid of the fiber- and integrated- optics and serves for
measurement. It consist of an integrated optical network analyzer (ONWA) circuit based
on X -cut, Z-propagation lithium niobate (LiNb£), and a 3x3 fiber coupler. The reflecting
devices under test are connected to this MZI by means of an additional coupler. A 3x3
fiber coupler with 3 photodiodes at its outputs is used because it allows a more accurate
phase measurement than a standard 2x2 coupler [25-28]. The real and imaginary parts
of either frequency-dependent complex reflection coefficient or transmission coefficient of
the cevice under st (DUT) are calculated from two linear combinations of the three-phase
photocurrents obtained from the three photodiodes connected to the outputs of the respec-
tive 3x3 fiber couplers. Optical isolators are used to avoid any stray reflections from the
photodiodes back into the measurement MZI.

The electronic hardware includes in-house developed 8-channel data acquisition system
and 16-channel digital-to-analog converters. The data acquisition system consist of gain
programmable transimpedance amplifiers, inverting voltage amplifiers for additional gain,
integrators, and a high performance analog-to-digital converter (MAX 183) with 12-bit
resolution for each channel. A 16-channel digital-to-analog converter uses high perfor-
mance voltage output digital to analog converter (MAX 547) with 13-bit resolution with
built-in high voltage amplifiers having an output voltage swingtagf V. These are used
to drive phase shifter and TE-to—TM mode converter electrodes under computer control.
The in-house developed proportional-integral temperature controller is used to keep the
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LiNbOs-based 10C temperature constant. Figure 2.1 shows the measurement setup of an
integrated optical network analyzer.

() 05m
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Tunable DFB Polatization M
LD Source  Controller Dolatization
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—==1000 0 Py
(2 4B Measuwrement MZT S’ .

0
DTk

Power Polatization
Motitor Controller Tnpy; FOutput
3d.BC
FEG
- = Pm

Polanzation
Controller ———

16-Channel 13-bit 1111

Dib Converter l [
- 12345678

IBM 8-Charmnel 12-bit

/— W\ | B e

Figure 2.1: Measurement setup of an integrated optical network analyzer

2.2 The DFB Laser

In our transportable integrated optical network analyzeist@iduted £edlack (DFB) laser

diode is used as a tunable laser source. Of couns@pte win—guide (TTG) laser diode

can also be used. TTG has an advantage of having a higher tuning range say 4-5 nm as
opposed to DFB laser, which could be tuned electronically over 100 GHz (0.8-1 nm) at
1550 nm . TTG laser require two currents to operate: one for pump and another for tuning.
On the other hand DFB laser needs only pump current to operate. Only 50 GHz tuning
range is used around the center wavelength of the Bragg gratingn order to keep

the measurement time short. Of course, thermal tuning is also possible to some extent.
Figure 2.2 shows power and wavelength tuning characteristic response of the DFB laser
diode at 1548 nm as a function of pump current.

This DFB laser diode is driven by the programmable constant current source which is
under computer control. It uses high-performance 16-bit digital-to-analog converter from
Analog Devices (AD669). Advantage of this technique is that one can have very high-
resolution wavelength steps within the linewidth of the single-mode DFB laser diode and
at the same time it allows us to do high-speed measurements, the major advantage of using
electronic tuning. This high-speed measurement is a key to the success in such interfero-
metric measurements where thermal noise in fiber limits the signal-to-noise ratio and the
measurement accuracy.
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Figure 2.2: Power and tuning characteristic response of DFB LASER at 1548 nm

2.3 Design and Development of LiNb@-based IOC

The electrooptic control of guided modes is performed by the use of ferroelectric crystals
such as lithium niobate and lithium tantalate. Lithium niobate is certainly one of the most
important material exhibiting the largest Pockel’s effect. It is very often used in integrated
optics to implement intensity, phase, and polarization modulators and switches. A detailed
study of it is thus necessary. It belongs to a crystalline class 3m (noncentrosymmetric) and
has hexagonally closed packed crystal structure. It is a negative uniaxial crystal having
extraordinary refractive index, for the light which is polarized along its optic axis and
ordinary refractive index,, for the light which is polarized along both the axes which are
perpendicular to the optic axis.

Waveguide Fabrication

Three different techniques have been used to form waveguides in lithium niobate. Initially,
waveguides are formed by thermal outdiffusion of@iwhich results in an increased
refractive index for the extraordinary index. In addition to being limited to guiding

light in only one polarization, achievable index change is very small and therefore provides
waveguide modes whose confinement is relatively weak. In addition, channel waveguides
cannot be formed conveniently except by etching ridge waveguides. These problems can
be overcome using waveguides created by indiffusion of a dopant — almost exclusively
titanium — to raise the refractive index. More recently, waveguides have been formed by
an exchange process similar to that used for glass substrates. More specific is the proton
exchange using benzoic acid.
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Based upon the published results, titanium indiffused waveguides are currently preferred
for general device development. This has become a well known and the most standardized
technology in last two decades. One major advantage is that it can guide both polarizations:
ordinary and extraordinary. The fabrication of titanium indiffused waveguides is quite
straightforward. The titanium metal film is deposited onto optical grade lithium niobate
substrates using electron-beam evaporation since the melting point of Ti is as high as
1725°C. This metal film is patterned by photolithography followed by wet etching of Ti
through positive phtotoresist to get Ti stripes of width equal (¥, These Ti stripes are
diffused thermally into lithium niobate a060°C for about 8 hours in moist argon ambient.
Cool down after diffusion is performed in oxygen to allow reoxidation of the crystal to
compensate for the oxygen loss during diffusion. The water vapor treatment was initially
employed to reduce the photorefractive effect but later it was found out that it also helps to
reduce L3O outdiffusion which can cause unwanted planar guiding for the extraordinary
polarization. Steadily this technique is mastered to fabricate very high quality Ti-indiffused
channel waveguides in lithium niobate with propagation losses as low as 0.1 dB/cm.

Post-Waveguide Processing

If an electrode is to be placed on top of the waveguide, an intermediate buffer layer is
needed to reduce propagation losses for TM-polarized modes due to direct metal cladding.
SiG, is frequently employed. 0.2m thick layer of SiQ usually eliminates the measurable
loading loss.

The choice of electrode material depends on the application. For relatively low-speed
application (modulation frequencies below 100 MHz), an evaporated aluminum electrode
(~ 0.5 um thick), with a flash of chrome for adhesion, is sufficient. Initially, aluminum
was employed. Sometimes, it used to get converted to colorless aluminum oxide due to
heating. On the other hand, the most preferred material for very-high-speed devices is the
gold. Gold is a noble metal and has noble properties. Therefore, gold was used in the
fabrication of electrodes, with a flash of titanium for adhesion.

The substrate endface is prepared for either end-fire lens coupling or fiber butt-coupling
by careful lapping and polishing. To eliminate Fresnel back reflections, multilayer anti-
reflection coating made of series of quarter wave optical thickness, or QWOT for short, of
SiO, and TiO, were used on the first IOC which was fiber pigtailed and packaged with
straight end faces. This antireflection coating were not of very good quality, and, there-
fore, this used to introduce undesirable Fabry-Perot noise into measurement system. When
this IOC was particulary used to evaluate the cleaved bare fiber end, which has very small
reflectivity, the Fresnel back reflections became very critical. In fact, it was not possible
to characterize the cleaved bare fiber end. Therefore, the next IOC was fiber pigtailed and
packaged with angled endfaces so as to reduce Fresnel back reflections. This has indeed
improved the overall performance of the integrated optical network analyzer.



2.3 Design and Development of LiINbOs-based IOC 11

Electro-Optic Effect

The linear electroopticRockel’s effeqt effect, which is the basis for active waveguide
device control, provides a change in the refractive index which is proportional to the applied
electrostatic field. A voltagé” applied to the electrodes placed over or alongside the
waveguide, creates an internal electric field of approximate magnjttigde~ V/G, G
being the gap between the electrodes. Since the Pockel’s effect is found in crystals with-
out an inversion symmetry (noncentrosymmetric), such as lithium niobate, the sign of the
induced refractive index change depends on the polarity of the voltage applied to it. On
other hand, in a centrosymmetric crystals, linear electrooptic effect does not exist, while
guadratic electrooptic effecKérr effec) is observed where the induced refractive index
change is proportional to the square of the applied electric field intensity.

The equation of the index ellipsoid in the presence of an applied electric field can be
written as

1 1 !
(g B+ (g B+ (g g By)? 1)

F2yzraj By + 2xz2rs; By + 2vyre By = 1

whereL; (j = 1, 2, 3) is a component of the applied electric field and summation over
repeated indicegis assumed. Here 1, 2, and 3 corresponds to the principal dielectric axes
z, y, z andn,, n,, n. are the principal refractive indices. This new index ellipsoid reduces
to the unperturbed index ellipsoid whéf = 0. In general, principal axes of the perturbed
ellipsoid do not coincide with the unperturbed axesi, z). A new set of principal axes

can always be found out by a coordinate rotation, which is know as principal-axis transfor-
mation of a quadratic form. The dimensions and orientation of the index ellipsoid (2.1) are,
of course, dependent on the direction of the applied electrostatic field as well as 18 matrix
elementsr;;. The linear change in the coefficients of the index ellipsoid due to applied
electric fieldE; along the principal axes is

3 J=3
n
(An); = D) ZrijEja (2.2)
j=1
wherei = 1,2, ..., 6 andr;; is the6 x 3 electrooptic tensor. The form, but not the

magnitude, of the electrooptic tensal can be derived from symmetry considerations,
which dictate which of the 18 electrooptic coefficientsare zero, as well as the relation-
ships that exist between the remaining coefficients. For lithium niobate, the coefficients of
the electrooptic tensot; are in the form

0 —To2 T13

0 T22 T13

0 0 T33

0 i 0 (2.3)
T'51 0 0

—T929 0 0
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The Table 2.1 tabulates the values of thecoefficients which are not zero for the lithium
niobate.

Table 2.1: Values of the electrooptic coefficients for lithium niobate

r;; coefficients| Low-frequency valug High-frequency value
33 30.9 pm/V 30.8 pm/V
51 32.6 pm/V 28 pm/V
r13 9.6 pm/V 8.6 pm/V
T9o 6.8 pm/V 3.4 pm/V

By inserting the electrooptic tensgy;, the values ofAn can be written as the elements
of a symmetric3 x 3 matrix. For lithium niobate

3 —roo by + 13k, —Troo kb, r51 B,
(An)y; = —— 19 B, roBy +r3E, 5B, (2.4)
r51by 7"51Ey r33k,

wheren is either the ordinary index, or the extraordinary index, value. By carefully
looking at the above electrooptic tensor of lithium niobate, certain useful conclusions can
be drawn [29]:

[1] 711, 721, 731, 741 are all zero. There will be no stretching of the index
ellipsoid along the principle axes under applied electrostatic figld

[2] r43, 753, 763 are all zero. There will be no stretching of the index ellipsoid
along the principle axes under applied electrostatic field

[3] An applied electric fieldZ, will cause both stretching along the principal-
axes as well as the rotation of the index ellipsoid cross-section ivi fiplane.

Perturbation of the index ellipsoid due to electrooptic effect depends on the relative
orientation of the polarization state of the input optical signal, the axis of propagation,
the crystal cut, and the magnitude and direction or sign of the applied electrostatic field.
Utilization of the diagonal elements 11, 22, and 33 of the perturbed refractive index matrix
results in an index change and therefore, a phase change, for an incident optical field
polarized along the crystallographie, - andz-axes, respectively. The diagonal elements
causes an index change, which are essential for modulators and switches, for the optical
field polarized along the crystallographi@xis, for the given electric field which is applied
in the appropriate direction. The off-diagonal elements, on the other hand, represent an
electrooptically induced mode mixing or conversion between the otherwise orthogonal
polarization components. It represents a rotation of the index ellipsoid that causes a mode
coupling which is proportional to the relevant electrooptic coefficient due to the applica-
tion of electrostatic fields. Utilization of off-diagonal electrooptic elements is necessary to
induce polarization change in Ti:LiNbQvaveguides, i.e. TE-TM mode converters.
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Design Considerations: 1x2 Optical Power Splitter

Single-mode 1x2 optical power splitter is realizedXncut, Z-propagation LiNb@ using
standard Ti-indiffused waveguide technology [30-33]. Scaling laws for the design of
such waveguide based components are derived in [34]. Waveguides are fabricated by in-
diffusing ~ 100 nm thick, 7um wide, Ti-stripes for 7.5 hours in the moist argon ambient at
1060° C. Waveguides propagation losses are measured using the Low-Finesse Method [35]
and are of the order ot 0.1 dB/cm for both TE and TM polarized modes. Power splitting
uniformity of this 3 dB power splitter is withir: 0.5 dB for the TE-polarized modes.

2.3.1 Polarizer

A linear polarizer is an optical device, birefringent or not, that only transmits one linear
state of polarization and suppresses any transmission of the orthogonal state of polarization.
This is of course the definition of an ideal polarizer; a real component always lets through
a fraction of the orthogonal state. An extinction ratio must therefore be defined in order
to characterize such components. A linear analyzer is fundamentally identical to a linear
polarizer. Its particular name stems from the fact that it enables the emerging state of
polarization to be analyzed.

These devices are characterized by a Jones mhgrixhich is expressed with respect
to a reference coordinate systémy. If the phase factor, which simply renders the propa-
gation of the light in the material medium making up the device, is not taken into account,
the Jones matriceb>, andJp, of the polarizers whose principal axes are respectively the
axesOx andQy are given by:

Jo. = ((1) ) ) Jr, = (8 f) 25)

From a mathematical point of view, the Jones matrices of the polarizers are the matrices
associated with projection operatod, (= Jp) whose eigenvalues are 1 and 0. An impor-
tant property of projection operation is that the intensity transmitted by a polarizer is always
less than or at best equal to the incident intensity it receives. The Jones matrices of linear
polarizers cannot be associated with unitary transformation bedausk.) = 0.

Let us consider a linear polarizer whose principal axis is the @tis Whenever this
polarizer is turning in front of the a linearly polarized light having an intensity of 1, its
transmissiory” varies between two values,,., and7,,;,, according to relation

T = (Timax — Tmin) c08% 0 + Ty (2.6)

whered is the angle between the axis: and the azimuth of the polarized light. This law
of transmission is known as Malus’ law.
In the case of an ideal polarizéf,,;, is equal to 0 and},.., is equal to 1, according
to Malus’ law. However, the imperfection of the device and the presence of the parasitic
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light imply that Malus’ law is only partially obeyed. As a general rule, the principal trans-
missions § = 0 andd = 7/2) Ty and Ty, fulfill the relation: T, < Thmax and the
polarization extinction ratio (PER) is defined as

T
PER = =,

(2.7)

min

The value off,,,.. depends on the nature of the material and also on the physical polarizing
effect used by the polarizer. There are several physical effects that allow polarizers to be
made. Among these metallic thin film polarizer that suppresses the TM-polarized mode
by a suitable dielectric/metal overlay due to the resonant coupling with a surface plasmon
mode offers the best compatibility with fabrication process of Ti:LiNm@veguide-based
devices and is a promising option for guided wave optics.

The general principle upon which polarizers in isotropic waveguides are built is based
on a greater loss of a given state (TE- or TM-polarized) with reference to the other during
propagation. The loss of power is not due to a dichroic phenomenon, but to the inability of
a mode to propagate. We know that a mode can only propagate if its normalized frequency
V is larger than its cut-off frequency. The separation of the two fundamental modes TE
and TMy may be done by using a guiding structure containing, for instance, a metal.

Polarizers are used to set a reference polarization and to ensure that phase modulated
light having a single polarization enters the mode converter sections of the IOC. This indeed
suppress the second undesired polarization mode, if any, from being interfered in 3x3 fused
fiber coupler in order to do polarization resolved grating characterization. It is easy to
fabricate TE-pass polarizers than TM-pass polarizers and, therefore, TE-pass metal-clad
polarizers based on the surface plasmon effect are used to suppress the TM-polarized mode
in Ti in-diffused LINbO; waveguides.

04 Alarmimum
Buffer hdetal Cladd
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T

Figure 2.3: Cross section of a metal-clad polarizer &ncut, Z-propagation Ti:LINbQ optical waveguide
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Device structure

Figure 2.3 shows the cross section of polarizer base& exut, Z-propagation lithium
niobate using the thin metals films. It simply consist of metal-cladded optical waveguide
but with a intermediate dielectric buffer layer of right thickness and dielectric constant
to enhance the extinction of the TM-polarized mode due to the resonant coupling with a
surface plasmon mode and to reduce the excess propagation losses for the TE-polarized
mode.

Principle of Operation

Metal behaves as a high loss dielectric material with a ‘-'ve dielectric constant over the
entire frequency range of light, because the inertial effect of the carriers (electrons) inside
the metal becomes dominant when the frequency exceeds the plasma frequency of the
metal itself. Therefore, metal cladding on top of the optical waveguide provides significant
attenuation to the TM-polarized modes. This results from the fact that the TM-polarized
mode penetrates more deeply into metal than does the TE-polarized mode. Metal-clad
waveguide exhibits complex propagation constant for the TM-polarized modes and real
propagation constant for the TE-polarized modes. TM-polarized mode is highly attenuated
while TE-polarized mode pass through the polarizer.

For the design of metal-clad polarizers, it is essential to use an intermediate dielectric
buffer layer with a right dielectric constant and a right thickness between the cladding metal
and the waveguide; and this layer helps to fulfil the phase matching condition between the
TM-polarized mode and the surface plasmon mode. An attenuation coefficient is at it's
peak value and can be as high~-ad400 dB/cm. This completely blocks the TM-polarized
mode and passes TE-polarized mode without a significant attenuation.

Design Considerations

Aluminum is a natural choice as a cladding metal since it has a large *-'ve dielectric constant
(—114—337) and due to the ease of fabrication. There are several choices of buffer materials
including SgNy(n1, ~ 1.89), Ta,Os5(ny, ~ 2.1), and Y;03(ny, ~ 1.795), MgO(ny, ~ 1.75),
Nb,Os5 (n, ~ 1.95) etc. These materials are chosen on the basis that they have a high
refractive index at 1.5xm wavelength and is comparable to that of the lithium niobate
refractive index of 2.2.

Stock [36] realized TE-pass polarizers on Ti:LiNp®aveguides with> 55 dB of PER
using Au, Al, and Ti metal cladding at 780 nm wavelength and has used MgO as a buffer
material. Thyagarajan et al [37] has done numerical modelling of single-mode metal-clad
graded-index waveguides with a dielectric buffer layer Y. Ctyroky and Henning [38]
have realized 2 mm long TE-pass polarizer at;in8using 45 nm thick SN, and 200 nm
thick Al with an extinction ratio> 35 dB. We want to have TE-pass polarizers at 1./5%
wavelength and this wavelength is nearer to the polarizers realiz€ybogky at 1.3um,
and therefore, it was planned to use thg\gias buffer layer and aluminum as a cladding
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metal with a layer thicknesses of 20—30 nm and 500 nm, respectively. The silicon nitride
is an ideal choice since it is the most stable material from technological and physical point
of view. It is decided to optimize the buffer thickness for a 3 mm long angrmOwide
polarizer so that it at least gives 10 dB extinction ratio for TM-polarized modes as compared
to TE-polarized modes.

Realization and Characterization

Initially, in the development of this integrated optical network analyzer circuit, the near-
Z-axis propagation was used to cancel the modal birefringence of the Ti-indiffused optical
channel waveguides i -cut, Z-propagation LINbQin order to make on-chip polarization
transformers more efficient. But this off-axis propagation makes these TE-pass polarizers
nonideal. This is because the TM-polarized mode is regenerated in the waveguide after
the polarizer. This regenerated TM-polarized mode effectively degrades the PER of TE-
pass polarizers. Details of this phenomenon are explained in Section 2.3.4. Therefore, it
was decided to fabricate several polarizers onXkeut, Z-propagation Ti:LINbQ straight
channel waveguides with varying buffer materials and thicknesses in order to optimize the
PER. Thickness of Al was chosen to be sufficiently thick (500 nm) to have a higher at-
tenuation coefficient for a 3 mm long polarizers. Polarization extinction ratio is measured
for these metal-clad polarizers using a pair of Glan-Thompson polarizers having an ex-
tinction ratio> 55 dB. The measured results of the PER for various buffer materials and
thicknesses are summarized in Table 2.2.

Table 2.2: PER of TE-pass polarizers for various buffer materials

Material | Thickness| Length PER Problems

no buffer 0nm 1.5mm| 3dB/mm Poor PER
SizNy 30 nm 4 mm | 2.75 dB/mm| In technology
Ta,O; 35 nm 4mm | 2.50dB/mm| Poor PER
Y105 27nm | 3.8mm| 9.5dB/mm | Good PER

Unfortunately polarizers did not work satisfactorily, even after several trials wjtt,Si
Main problem was in the fabrication of stoichiometrigl$j buffer layer. Next highest
refractive-index material T®5 was tried but performance was more or less the same. Next
obvious and possible choice was to usfY as a buffer material. YO; based polarizers
fortunately worked with an extinction ratio of 9.5 dB/mm. It is very difficult to fabricate
polarizers with very good repeatability because of the stringent requirement on the unifor-
mity of the buffer thickness, buffer stoichiometry and hence on the buffer refractive index.
These parameters are very difficult to control during the fabrication of buffer layer and of
course the buffer layer plays a key role in the realization of integrated optic metal-clad
polarizers with a very high extinction ratio.
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Conclusion

The yttrium oxide based metal-clad polarizers giving PERx0B80 dB for 3 mm long
polarizers with 27 nm thick ¥O; and 500 nm thick aluminum were optimized for our
application.

2.3.2 Phase Modulator

Perhaps, the simplest waveguide electrooptic device is the phase modulator where electro-
optically induced refractive index change causes a phase shift in the guided light. Figure 2.4
shows the Ti:LINbQ waveguide based phase modulator with an applied voltégeas
defined later, is used to characterize the phase modulators.

W
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Figure 2.4: Cross section of phase modulator &rcut, Z-propagation LiNb@ with an applied voltagé’,

Device Structure

Phase modulator simply consist of a Ti in-diffused optical channel waveguide placed in
between the set of uniform electrodes of lendgthseparated by a gap;. The horizontal
y-directed electrostatic field¥,) is produced by applying a voltag¥€, across a gagy, of
uniform electrodes which gives rise to the local electrooptically induced index change and
hence a corresponding phase change.

Principle of Operation

The local electrooptically induced refractive index change for this particular crystal cut and
propagation direction is given by

n3

A?’LQQ = —?07"22Ey. (28)
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However, neither the applied electrostatic field nor the optical field is uniform. It is con-
venient to model the effective applied electrostatic field inside the waveguide by that of
a simple parallel plate capacitor as in the bulk case modulator where the lithium niobate
crystal is sandwiched between two electrodes and both optical and electrostatic fields are
assumed to be uniform. The correction factor from this simple model is given by the field
overlap integral’. The effective electrooptically induced refractive index change is given
by
n3rey V
e (2.9)
wheren, is the ordinary refractive index of LiNbQan interelectrode ga@, andl is the
overlap integral between the applied electrostatic field and the optical mode. The quantity
I is given by

Ang (V) = —

_ gfﬂEo(%y)PEy(x,y, z)dxdy

r (2.10)
Vi [ [ 1Bo(z,y)2dxdy
The total phase shift over the interaction lengtis then
7m37°22 \%
=ApBL=——""?2=—1IT. 2.11
6=Ap e (2.12)

Phase modulators are generally characterized by the voltagehich is defined as the
voltage required to obtain a phase shiftrofad. However, voltage—length product is more
useful to compare the performance of different phase modulators and is defined as

VL= 2 (2.12)

3 )
Tnorol’

Phase modulator is generally represented by a Jones matrix,

etz 0
Jpg = ( 0 ot ) . (2.13)

It is simply modelled as a retarder with a phase agigven by (2.11). Itis very important

to note that, the Jones matrices of phase modulators are unitary matrices i.e. the product
JJ' = I. Mathematically speaking, the polarization transformation done by the phase
modulator is a unitary transformation. The norm and orthogonality of the vectors repre-
senting the incident states of polarization are thus conserved when the device is passed i.e.
the emerging state of polarization is same as the the incident state of polarization.

NS

Design Considerations

Ordinary refractive index of the LINb) n,, equals2.2125 at A = 1.55 um. Relevant
electrooptic coefficientyy,, is 6.8 pm/V. Length and gap of phase modulator electrodes
are 15 mm and 1%m, respectively. The unknown optical and electrostatic field overlap



2.3 Design and Development of LiINbOs-based IOC 19

integral factor][', is used in the calculation gf and hence the voltagé,, which character-
izes the phase modulators. Once the overlap integral fdctas,known, the voltagey;,
required to give a phase shift efrad using this retarder can be calculated.

Electrostatic fieldZ, is only required to compute the field overlap integral faciar,
as defined by Kim and Ramaswamy [39] in (2.10). Software based on the Point Matching
Method (PMM) formulated by Marcuse [40] is developed in Borland C++ to calculate the
electrostatic fields in the LINbO PMM is described in Appendix A. Optical mode is
assumed to Gaussian and Hermite-Gaussian along the width and depth of the single-mode
Ti in-diffused optical waveguide in LiINbOQwith mode field diameters matched to our
experimental values. These experimental values of MFD are used to generate polarization
dependent optical intensity profiles for evaluating the field overlap integrals. Appendix B
gives details of this.

TE-polarized optical mode with full-width-half-maximum @fum and4 pm along the
width and depth of the Ti in-diffused waveguide is assumed in the simulatichum
thick buffer layer of SiQ is used to eliminate the measurable loading looses, due to metal
cladding, especially for the mode converter electrodes. Phase modulator electrodes has
width of 100 pm. If the interelectrode gag;y = 15 um, thenl' ~ 0.51. VoltageV, ~ 40 V
for 15 mm long electrodes.

Realization and Characterization

Realized phase modulators could be conveniently characterized for the measurement of
voltageV,. using the Fabry-Perot technique. Low—Finesse Method proposed by Regener
and Sohler [35] for the measurement of propagation losses in optical waveguides is also
based on the Fabry-Perot technique, where the optical straight channel waveguide with its
end faces polished perpendicular to the waveguide axis forms a optical resonator (Fabry-
Perot etalon). The transmitted intensity of the resonator varies periodically with the optical
phase difference), which can be tuned by the temperature for simplicity, or, in principle,
it can also be tuned by means of an applied electrostatic field. For this particular measure-
ment, it is necessary to use single frequency laser otherwise it is difficult to monitor the
interference fringes. Phase modulator is used to tune the Fabry-Perot cavity and is driven
by a triangular wave obtained from the signal generator. The output intensity is monitored
using the photodiode and an oscilloscope. It is to be ensured that either the two maxima or
two minima of the Fabry-Perot fringes are within the single ramp, either going up or down.
Voltage difference between these two points on ramp corresponding to these two maxima
or minima directly yields the voltagg..

Figure 2.5 shows the response of the phase modulator’s output intensity for the given
input voltage. As it can be seen from the graph~= 40.0 V and this agrees very well with
the theoretically estimated value Bf. Phase modulator with 20 mm long electrodes is
also fabricated to verify the voltage-length produét.= 30.0 V for this phase modulator.
Therefore, the voltage-length produgt.(x L) equals 60 V-cm for both the devices and is
found to be a constant.



20 Chapter 2 Measurement Setup: Integrated Optical Network Analyzer

1.0

o
©

o
o

Intensity [a.u.]

YT TN

-10 0 10 20 30 40 50
Voltage [V]

Figure 2.5: Characteristic response of the phase shifter as a function of input voltage

Conclusion

15 mm long phaser modulator with a gap of i is realized and characterized for the
voltageV, (= 40.0 V) using the Fabry-Perot technique. Voltage-length product equals
60 V-cm for this device and is found to be a constant.

2.3.3 TE—~TM Mode Converter

An electrooptic polarization transformer or converter is a compact device that can provide
an electrical control over the polarization state and can be expected to serve a variety of use-
ful functions. Such devices have been demonstrated with Ti:LiNb&reguides. Optical
polarization state can be defined in a number of bases, for our purpose it is convenient to
define the polarization state in terms of the polarization arigd@d the phase angfe The
normalized TE and TM amplitudes can be written as

Arg \ cos 6
(ATM ) o (eﬂ’ sin ) ’ (2.14)

wheref specifies the relative TE/TM amplitudes whiles the phase difference between
the TE and TM components. Light is linearly polarized at arfgie¢ = 0; 6 = 0 repre-

sent purely TE polarized, while= = /2 is purely TM. Right circularly polarized light, for
example, is represented By= 7/4 and¢ = 7/2. In passive Ti:LINbQ waveguides, light

that is linearly polarized along a principal axis has its polarization maintained for propaga-
tion along a principal axis. Thus, for example, light incident as TE (TM) polarization to
waveguides irx (or z, or y)-cut lithium niobate exits in the same state.
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In order to implement broadband ¥&I'M mode converters, a natural and the best
choice is to us& -cut, Z-propagation LiINbQ crystal [41-44]. Advantage of this particular
crystal cut is that one is free from the material birefringence and can obviously make use
of the wavelength independent uniform electrodes to perform mode conversion. Moreover,
they feature a high optical damage threshold, low temperature dependence and hence little
DC drift as demonstrated by Taniyavaran [45, 46].

Device Structure

Figure 2.6 shows the cross section of uniform electrodes of lehgtked for the imple-
mentation of broadband ¥&TM mode converters oX -cut, Z-propagation LiNbQ with

the applied voltages. A center electrode of width, is directly placed on top of the Ti
in-diffused optical channel waveguide, which may or may not be grounded. Side electrodes
are separated by ga@’, and are sometimes segmented for the implementation of several
electrooptic waveplates.
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Figure 2.6: Cross-section of TE-TM mode converter airCut, Z-propagation LiNb@ with an applied
voltages for compensating modal birefringence and mode conversion

Principle of Operation

If the voltagest(1/2) andVy ¢ are applied to two side electrodes and the center electrode
of the mode converter, respectively, then its Jones matrix is given by

T — cos Y + jcosysin Jsin-y sin (2.15)
Me = Jsiny sin v costp — jcosysing ) - .

The electrostatic field along-axis (horizontal field),E,, generated by applying the bias
voltage Vs to two side electrodes compensates for the modal birefringence by addition-
ally providing the electrooptically induced phase shifts between the TE and TM polarized
modes viars (= —r92) andryy coefficients, and,, = 6.8 pm/V. The electrostatic field
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alongz-axis (vertical field),F,., generated by applying a volta§&,c to central electrode
leads to electrooptically induced TE-TM mode conversionngia(= —rq,) coefficient.

v = VK?+ 62L, tany = k/0, K is the coupling constant, andis the phase mismatch
parameter between TE and TM polarized modes, ansl the length of mode converter
electrodes.x andd are expressed as = wnlrg E,I'/\ andd = (AB3)/2 + &, where

& = mnirpE,T /). ASis the modal birefringence ard is the difference in the propaga-
tion constants of the TE and TM polarized modes induced by the external electric field to
compensate foA /2.

Ti in-diffused waveguide sees the ordinary refractive indgxn both thex (or y)-
direction, since the waveguide is fabricated @ncut, Z-propagation LINbQ. Ideally,
the waveguide is isotropic. However, the residual TE-TM waveguide birefringence (also
known as modal birefringence) is found to be harmful for the operation of some of the
devices such as mode converters. Order of this modal birefringerke s 1.0 x 10~*
at1.55 um wavelength and henc&g (= (27/A)An) is of the order of 4-5 rad/cm. This
residual modal birefringence, in fact, ruins the phase matching condition between the two
polarization modes and therefore limits the efficiency o#+BM mode conversion.

One option is to use nedf-axis propagation, say at an angle26fto regain the phase
matching condition [47]. This happens in Ti in-diffused channel waveguides because the
effective index for a TE-polarized modé/g, is greater than that of a TM mod&/ry;.
Rotation of propagation direction in théZ-plane at an anglé lowers the value oN g to

Nen
N 9 ~ o've
=(0) \/ng cos? 0 + n? sin’ 0, (2.16)

NTM(G) >~ Ny

while leaving Nty unchanged. Second option is to apply high bias voltages to two side
electrodes to compensate a5 [48], as explained above.

Using the coupled mode theory, one can immediately write the expressions for the
power in TE and TM polarization modes as

2
PTE =1- I{K—_I_(SZSiI]?(V K2 + 52.[/)

2

2 . (2.17)
— in2 (/2 2
PTM 2 +525m ( K +6 L)

For complete TE to TM mode conversion, boundary condition becofgs= 0 and
Pry = 1 for the given TE input. If§ = 0, then this boundary condition simplifies to
sin?(kL) = 1. The voltage required for full TE to TM mode conversion and vice-versa
which characterizes the mode converters is given by

G

VAIG = ———.
Me QTLgTGlFL

(2.18)
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Design Consideration

Ordinary refractive index of LINbQ n,, equals 2.2125 ak = 1.55 ym. The relevant
electrooptic coefficients; = —ry = —6.8 pm/V. The only unknown field overlap integral
factorI' is used in calculation of coupling constanand hence in the calculation of voltage
required for full mode conversiowyc.

Mode converters witR5 mm long electrodesl0 ym wide central electrode, and an in-
terelectrode gap of 6 and8n are designed. The electrostatic field,, is calculated using
the PMM to calculate the unknown field overlap integral fadforin the simulation, same
parameters for FWHM of the TE-polarized optical mode were used. Table 2.3 summarizes
the simulation results for the calculation of overlap integral fatt@nd V4 for 25 mm
long mode converters with different interelectrode gaps.

Table 2.3: Simulation results for the calculation Bfand V¢

Gic [pm] I Ve [V]
6 ~ 0.26 9.75

8 ~0.33 | 10.25

Realization and Characterization

Therefore, two devices each havingfamm long electrooptic mode converter as shown in
Figure 2.6, with a center electrode width iéf xm, gap of6 ym, and0.3 pm thick buffer
layer of SiGQ were fabricated in house. The first device ugéaff-axis propagation to
cancel the modal birefringence, with a device lengtod7 mm and the second device
used principal axis propagation.

No operational voltages were applied to the mode converter on the first device. This
device by default gave 8 % TE to TM static mode conversion for pure input TE mode at
1550 nm. Very similar results were also reported in [47,49]. This phenomenon was later
found to be length—dependent.

The second device needed bias voltages to operate as it needs to cancel the modal or
TE-TM waveguide birefringence. When no voltages were applied either to compensate
for the modal birefringence or to operate the mode converter, there was no static TE-TM
polarization mode conversion, as was observed in the first device. Bias voltages which were
applied to the two side electrodes were varied so as to maintain zero waveguide birefrin-
gence and to obtain the smallest possible voltage required for full TE to TM mode con-
version. This phase matching condition must be fulfilled in addition to mode coupling due
to the principal axis rotation of the index ellipsoid in order to reagt % mode conver-
sion. Bias voltages wer¢V /2 = +38 V. The voltage required for full TE to TM mode
conversion was$/,;c = 9.75 'V, as seen from the mode converter switching curves shown
in Figure 2.7 and it agrees well with the theoretically estimated value of 9.75 V. When
the mode conversion voltage was switched off (remember that the bias voltages were still
switched on) the device gave 5 % TE to TM static polarization mode conversion for the
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input TE mode. When the bias voltages were varied, the coupling was found to vary and
it was found that this time static mode coupling was dependent on the electrostatic field
strengths which were used to compensate the modal birefringence. When bias voltages
were also switched off the entire power was present in the input TE mode as expected.

-
o

o
o

o
o

TE/TM Intensity [a.u.]
o
N

o
(N

o
o

Voltage [V]

Figure 2.7: Characteristic response of the mode converter as a function of input voltage

Result Discussion

These experiments confirms that there is a change in the state of polarization of light and
this was interpreted as a rotation of the polarization plane [50]. After compensating the
modal birefringence which is linear, the circular birefringence may become the next hurdle
to make mode converters ideal. This may be called as a form of static polarization mode
coupling and is observed in both devices using either off-axis or principal-axis propagation.
In the off-axis case, static mode coupling is length-dependent and in the principal-axis case
it depends on the applied electrostatic field strengths which were used to compensate the
modal birefringence. Both experiments reveal that there exists a phenomenon of static
polarization mode conversion.

A symmetric 3x3 dielectric tensor generally characterizes the optical properties of
anisotropic crystals such as LiNh@nd is given by

€11 0 0
8(0) = 0 €929 0 . (219)
0 0 £33

In the off-axis propagation case, we rotate the direction of propagation ilf fhplane
about theX -axis in order to compensate for the modal birefringence. So the off-diagonal
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terms involvingY and Z components of electromagnetic fields are responsible for this
static mode coupling. To find these off-diagonal terms, one needs to carry out the simple
coordinate transformatioR(¢)s(0) R(—#) using a rotation matrix

1 0 0
R(#)= 1[0 cosf —sind |, (2.20)
0 sinf cosf

wheref = 2°. The rotated dielectric tensor is given by

€11 0 0
(@)= | 0 e2c08?0 +e335in*0 (g9 — €33)cosfsind | . (2.21)
0 (g92 — e33)cos@sind egosin® § + £33c08% 0

The perturbation if\e = (99 — £33)cos @ sin§. The input is TE mode with electric field
distribution (0, E, 0) and the output is the TM mode with electric field distribution, (&
E.). Once we knowAe, we can immediately calculate the coupling coefficient

k=K + K, (2.22)

%)

which characterizes this static polarization mode coupling, whexedr are TE and TM
polarized modes involved in the coupling process, respectively. The tangential coupling
coefficients!, , is zero. The longitudinal coupling coefficiestt , is found to be responsible

for this type of static mode coupling. This is tihare caseof transverse—longitudinal
coupling and the power is coupled to the output TM mode from the input TE mode via
longitudinal component Eof the TM mode. Equation (46) in [51] tells which of the
electromagnetic field components are involved in the coupling process if we insert our
dielectric tensor given in (2.21) having off-diagonal terms. The coupling coeffigjgnts

we ;
Ky, = TO/ELTA»S(L y, 2)E*dxdy, (2.23)

which is formally derived by Marcuse in [51]. Above equation simplifies to

WEp
R _
K=K,, = —AeT

(2.24)

T = /ELTE,zjdxdy

In the simplified case of pure TM mode thl, component i9E, /0x. The normalized
field overlap integral,r, as defined in (2.24) between the transverse component of TE
mode and the longitudinal component of TM mode is not zero. Once we knewe can
quickly calculate the power in TE and TM modesRs; = cos’ kL and Pry = sin® kL,
respectively using the well known “Coupled Mode Theory”, assuming that there is no
residual modal birefringencé. is the length of the I0C in the off-axis propagation case or
the mode converter electrode length in the principal-axis propagation case. Remember that
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there is a phase shift of/2 between the transverse and the longitudinal components and
hence the coupling coefficientis not real as in the case of transverse—transverse coupling,
but it is imaginary in the case of transverse—longitudinal coupling.

For example Ae = 0.0024, 7 = 0.248, andx = 595.2 m~! is obtained forn, =
VEIL = /22 = 2.2125 andn, = /e33 = 2.1446 at A\ = 1550 nm, 0 = 2°, andL =
47 mm. The respective power in TE and TM mode comes out t0.9828 and0.0872.
This well confirms the experimental results Bf10 % static mode coupling that occurs
between the TE and TM modes in the off-axis propagation case.

For the principal-axis propagation case, we use the basic equation of index ellipsoid

1 e 2 1 e 2 22 e
(n—g - T‘QQEy)X + (n—'73 + ’I“QQEy)Y + (n—g) + 27“51EyYZ =1 (225)

under the applied electrostatic field. The electric field is applied alogis to compen-
sate for the modal birefringence using = —ry,. Indeed this equation also contains the
term involvingY Z and X, Y, Z are no longer the principal axes. To find the new principal
axes, one need to eliminate th&Z term appearing in (2.25). This can be done by rotating
the index ellipsoid by an angle

1

0° = —tan~! 2T51E§
2

(ng? —ng?)

(2.26)

in theY Z-plane using the rotation matrix given in (2.20).

If we apply, say,V = (38 — (—38)) V = 76 V to compensate for the modal birefrin-
gence across a gap 22 ym (G = (10 + 6 + 6) um), then we know the field strength
By =V/G causeg* = 0.4254°. Angle¢* replaced in (2.21) to get off-diagonal termie,
andAe = 0.0005. » simply equalsl14 m~! as explained above for the off-axis propaga-
tion case, and hence we can calculate the amount of static polarization mode coupling in
principal-axis propagation case.

The coupled modeg andv obey the coupled mode equations

8%(2) — ZHEueszA,Bz
z
7 (2.27)
8EU(Z) _ Z/Q*EV€21A5Z
0z

wherer is the coupling coefficient between the two modes antl= (5, — 3,)/2 is phase
mismatch parameter. Above coupled differential equation (2.27) reduces to

(2.28)

with matrix M given by
NI =, (P “). (2.29)
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A solution of the above coupled differential equations is assumed to be of the form
E(z) = E(0)e"? (2.30)

and results in 3
ME = 1/E (2.31)

This is a standard matrix algebra eigenvalue problem, wReiethe eigenvector andy

is the eigenvalue of the matrixI. Since the coupling coefficient is imaginary, the super-
modes of the waveguide or the eigensolution of the above coupled differential equations
are therefore circularly polarized modes [52]

E* 1 /1
()= (4) —
and this confirms the speculations@tyroky [49].

Conclusion

The only option to reduce this undesired mode coupling is to fabricate optical waveguides
along the principal axis. It is to be ensured that the waveguide is exactly parallel ¥e-the
axis during photolithography. Otherwise, the LiNpb@nisotropy will play the undesired
role. Of course a relatively highi will result.

Whether one physically rotates the direction of propagation i'tdeplane globally or
rotates the index ellipsoid electrooptically in theZ-plane locally, the net modal birefrin-
gence (typicallyl.1 x 10~*) compensation has the same effect. In this compensation pro-
cess, one always ends up with the undesired imaginary coupling coefficient between the two
orthogonally polarized modes, and this makes mode converters nonideal. If one compen-
sates the modal birefringence globally then phenomenon is length-dependent and beyond
any physical control due to the inherent LiNb@nisotropy. If one compensates it locally
then it is field—dependent. If the waveguide is exactly parallel tothaxis then the volt-
ages required for the compensation are ideally symmetric, otherwise they are asymmetric
in practice. This effect resembles more like a optical activity even though there are no
optical active chiral molecules present in LiNbBecause it gives rise to an apparent circu-
lar birefringence when such devices are characterized using polarimeter. This phenomenon
is found to be reciprocal because the waveguide itself is reciprocal.

25 mm long TE-TM mode converter with a gap of 6m are designed, realized, and
characterized for the mode conversion efficiency and voltage required for full mode con-
version. TE-to-TM mode conversion efficiencys 99 % and voltage required for full
mode conversion isz 10 V. Needed bias voltages wete38 V.

2.3.4 Pl Temperature Controller

Temperature of the LiNbObased I0C was kept constant during measurements in order to
get repeatable and reproducible results, especially from phase shifters and mode converters.
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This is because the LiNb(has small but finite thermooptic coefficient®/ 0t = +5.3 x

1075 for n, anddn /0t = +0.56 x 10> for n,,) and it can cause the considerable refractive
index change say x 10~ when the crystal temperature changes from room temperature
to 100° C.

Therefore, a simple temperature controller based on proportional and integral control
(Pl) is designed and developed in-house, and is used to keep the temperature of thg LINbO
based 10C constant to sa@° C within +0.1° C. It uses thermistor from Siemens which
has a resistance of 10Xkat 25° C and a set of two Peltier elements from Melcor to either
heat or cool the copper block on which the 80 mm long LiNdfased 10C is mounted.

Figure 2.8 shows the photograph of the fiber pigtailed and packaged lithium niobate-
based IOC. This device was fabricated by the Applied Physics group of Prof. W. Sohler,
here at the University of Paderborn.

Figure 2.8: Photograph of the fiber pigtailed and packaged LiNd@ased I0C

2.4 The 3x3 Fiber Coupler

Use of 3x3 fused fiber optic coupler (FOC) as an interfering device, in the field of fiber sen-
sors is becoming more popular. The advantage of 3x3 coupler is that the three output signals
are available. The three output intensities are sinusoidal function of the optical path length
difference between the any two arms of the interferometer. With the proper design of the
3x3 FOC, there exist 820° phase difference between any two of the three output sinusoids.
This phase difference can be exploited in electronic signal processing for avoiding the DC
thermal drift and to generate two signals which a0é out of phase with each other by
taking the linear combinations of these three 3-phase output sinusoids. This in principle
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allows us to perform more accurate phase measurement than a standard 2x2 coupler. This
is because the conventional 2x2 coupler needs a nonreciprocal phase/Bisad), other-

wise the sensitivity is zero at initial operating point. Another reason is as the differential
phasep fluctuates in the conventional 2x2 coupler causes corresponding fluctuations in the
device sensitivity. Therefore 3x3 coupler is recommended over 2x2 coupler. Of course
the performance of the interferometer depends sensitively on the characteristics of the 3x3
FOC. In principle the operation of the 3x3 FOC can be predicted using the “Coupled Mode
Theory”. In practice, the coupling coefficients and the required geometric parameters are
neither known nor can be easily determined.

2.4.1 Analysis of 3x3 Fiber Coupler

Optical power transfer properties of the 3x3 FOC are characterized by the transfer matrix

a b ¢
M=|d e f], (2.33)
g h k

which itself is 3x3 [26]. There is a reference point for each input fiber lead and the each
output fiber lead. The positions of these reference points can be so adjusted that the matrix
elementsa, b, ¢, d, and g are all real and positive numbers while f, h, and k& are the
complex numbers. Energy conservation principle results in

MM* =M™ =L (2.34)

On expanding above equation into elemental equations, it is found that there are 9 con-
ditions on the 13 parameters (one each for the real components, 2 each for the others).
Therefore, 4 independent parameterg, g and h characterizes the optical power transfer
properties of the 3x3 FOC. The convenient choices are the modulus of the complex pa-
rametere, f, gand h. The elemental equations derived from above equation yields the real
parameters as

a?=e+ fA+h+k* -1

B2 =1-¢2— R
A=1-—k2— f2 (2.35)
P =1-¢*— f2

92:1—k2—h2
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in terms of the modulus of, f, gand h. The phase of the complex elements

2 f2 — a2d? — bPe?

cos(¢e) = 2adbe ) $e>0

b2e2 — a2d2 — 2 2

62k‘2 . a292 - b2h2 (236)
cos(¢y) = 2agbh , ¢ <0

b2h2 _ CL2 2 CQkQ
cos(¢x) = 2aggck , x>0

can also be derived from the elemental equations. Note that these phases depend only on
the modulus of the matrix elements®f. The modulus of the matrix elements are directly
related to the splitting ratios. For example, if the power is applied to the input arm 1 only,
then powers measured at the three output arms will be in theafatioc?. The modulus of
all the elements oM can be determined in principle from the splitting ratio data.

In the case of the completely symmetric 3x3 coupler, the square of the modulus of each
elements oM is equal tol /3. For this special case of symmetric couplgr— ¢. = 120°
ando¢, — ¢, = 120°. In summary, it has been shown that only 4 parameters are required to
characterize the power transfer properties of the lossless 3x3 coupler. These parameters can
be very easily obtained from the measurement of the splitting ratio data, and there exists
a phase difference df20° between any two outputs of the symmetric 3x3 coupler. It can
also be shown in the next section 2.4.2 that how the performance of a fiber interferometer
incorporating a 3x3 fiber coupler can be predicted from this splitting ratio data.

2.4.2 Basic MZI Using 3x3 Fiber Coupler

A typical all-fiber interferometer configuration is shown in the Figure 2.9. The interfero-
meter is of a Mach-Zehnder type and is the fiber analog of the classical, bulk optic version
of the Mach-Zehnder interferometer. It simply consist of the input 2x2 fiber coupler and
the output 3x3 fiber coupler. The coherent single-mode laser source (both transverse and
longitudinal modes) is used as a source in the MZI. The input light is then divided into two
beams with nominal equal intensity by the input 2x2 fiber coupler (referred to as divider),
part being sent through the measurement arm, the remainder through the reference arm.
These two outputs, after passing through the measurement and reference arms, are recom-
bined by the output 3x3 fiber coupler (referred to as recombiner). An interference signal
between the two beams is then formed which, after propagating the length of the output
fiber, is detected by the photodiodes.

Mathematically, the operation of such a interferometer can be described in terms of the
product of transfer matrices (2.37) of each of the component used to construct the interfero-
meter. First, 3x3 transfer matrix characterizes the output 3x3 fiber coupler. Second, transfer
matrix characterizes both the reference and measurement arm of the interferometer. The
p is the magnitude and can be set to 1 for this simplified casepaaghase difference
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Figure 2.9: Basic Mach-Zehnder interferometer utilizing 3x3 fiber coupler

between the two arms of the interferometer. Third, transfer matrix characterizes the input
2x2 fiber coupler. Fourth, column vector characterizes the input sigpalpplied to this
interferometer. Input powel,, can be set to 1 without the loss of generality.

« a b ¢ 1 0 O A 0 B VP
Bl=1\|d e f 00 0 0 0 0 0
y g h k 0 0 pe? B 0 —-A 0 (2.37)
1 1
a=b=c=d=e=f=g=h=k=— and A=B=—
=9 V3 V2

«, (3, v characterizes the output amplitudes of the interferometer
a = \/Pu(aA + cBpe'?)
3 = \/Pu(dA+ fBpe'?). (2.38)
¥ = V/Pu(gA + kBpe”)
The output intensitie$;, I, and I3 are given by
I, = aa®=Py[a*A® + *B® + 4aAcBpcos(¢)]
I = 33" =Pu[d*A* + f*B* + 4dAf Bp cos(¢ + 2%)]. (2.39)
Iy = 77" =Pulg’A> + k* B* + 4g Ak Bp cos(¢ — 2%)]

+27 /3 phase shifts are added due to the fact that the symmetric 3x3 fiber coupler has any
two of its three output signals phase shiftedlBg° with respect to each other.

Lea=Ins=0*A*=C*B*=d*A*= f?B*=¢*A*=k* B* :% : %:0.1666 (2.40)
Therefore, the output intensities now become
It = Puliet + Imes + 41ret esp c0s(9)]
Iy = Pallut + Lues + ALt c05(+ ) (2.41)

2
Iy =P [[ref + Lies + 4Iref[mespcos(¢ - ?77)]
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The output fringe visibility of the interferometer is given by

]max - ]min
V=" 2.42
[rnax + ]min ( )

It should be noted that two effects have been ignored in this calculations; the polarization
effects and the effects of the finite source coherence length. Here it is assumed that only
co-polarized signals interfere in output coupler. If one assumes a Lorentzian line shape, the
normalized self-coherence functioefir) is given by~(7) = exp(—|7|/7), wherer is the
differential propagation time delay between the measurement and reference optical paths
andr; is the source coherence time. Thus the actual valué of a factory(7) smaller
thanV itself. For this reason, the differential propagation delay between the measurement
and reference fiber arms is usually adjusted to be much less than the source coherence time
(i.e. 7 < 73); thenvy(7) — 1 and output fringe visibility equalg’.

Two signals which ar®0° out of phase with each other can be easily generated from
the linear combinations of the three output intensifiesl,, and I3 as2l; — I, — I3 and
I, — I3. For example, these two linear combinations yields

2 1 _1 I
<IRe<p)) _ (8 b ) I (2.43)
Hl(p) 2¢/3 2¢/3 13

the real and imaginary part of the measured complex reflection coeffic@the DUT’s
such as FBG's.

2.4.3 Advanced MZI Using LINbO;-based IOC and 3x3 Fiber Coupler

Figure 2.10 shows the advanced Mach-Zehnder interferometer configuration using inte-
grated optical circuit based oxi-cut, Z-propagation LINbQ@ instead of the input 2x2 fiber
coupler as shown in Figure 2.9 and the output 3x3 fiber coupler. This I0C utilizes 1x2
optical power splitter to split the input power in the ratio of 1.1 between the reference and
measurement arms of the hybrid MZI. It also has two sets of electrooptic phase modulators
on each arm of the interferometer which facilitates the digital phase shifting of the input
signal in both arms of the MZI with respect to each other and a TE-TM mode converter
which facilitates polarization change, under computer control.

The power transfer matrix of the input 2x2 fiber coupler is modified to take into account
the facility of digital phase shifting. The signal in the reference arm may be phase shifted
by the phases, while the signal in the measurement arm may be phase shifted by the
phasep,,. The operation of this hybrid MZI can be described once again in terms of the
product of the transfer matrices (2.44) of each of the component used to construct this
hybrid interferometer with the modified matrix for the input 2x2 fiber coupler which now
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Figure 2.10: Measurement set-up, integrated optical network analyzer using LjMia®ed 10C and 3x3
fiber coupler

takes into account the possibility of digital phase shifting.

0 O Ae'*s (0 Be'm v P,

o a b ¢ 1
l=1|d e f 00 O 0 0 0 0
0 g h k 0 0 pe? Bem () —Aer 0 (2.44)
1 1
a=b=c=d=e¢e=f=g=h=k=— and A=B=—
=g 7 7

«, (3, v characterizes the output amplitudes of the interferometer

a = +/Py( aAe'’r + cBe'm ,06”5)
B =/ Pul dAe’r + fBe'’= pe'? ) (2.45)
a=+\P, gAe’¢’ + kBe'm pe? )

The output intensitie;, 15, and I3 are given by

L = OéOé*:Pin[Cle2 +*B? + 4aAcBpcos(¢y — dm — ¢)]
2

Iy = BBF=PuL[d*A® + f?B* + 4dAfBpcos(¢r — ¢ — ¢ + ?ﬁ)] (2.46)
2

I; = yy=Pyu[g?A® + K*B? + 4gAkBp cos(¢y — ¢m — ¢ — ?ﬂ)]

+27/3 phase shifts are added due to the fact that the symmetric 3x3 coupler has any two
of its three output signals phase shiftedi2¢° with respect to each other.

]ref:Imes:a2A2:CQB2:d2A2:f2B2:gQA2:k232: =0.1666 (247)

N)I»—l

1
3
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Therefore, the output intensities now become
Il = Pl [[ref + Imes + 4Iref[mesp COS(¢r - ¢m - ¢)]
2m

I, = Pin[]ref + Ies + 4Iref]mesp COS(¢r - qu - ¢ + ?)] (248)

2
13 = Pin[[ref + Imes + 4Iref[mesp COS(¢r - ¢m - ¢ - ?ﬂ-ﬂ

Phase angle, is setto—7/2, 0, 7/2, = while phase anglé,, is set to—3r/4 —n /4 7 /4,

3w /4, respectively. There are 16 linear combinations of these 4 phase ghdtsd ¢,,,,

which are successively applied to interferometer. This fact can be exploited to generate
two signals which aré0° out of phase with each other using

4 3

3 4
Re(p) = ¢ D DD Licos(de, + br, — Gmp — )
3 kjl jjl ljl (2.49)
Im(p) = é Z Z [z COS<¢CZ' + (brj - ¢mk - (b - g)
k=1 j=1 i=1

The phase angleé. in (2.49) takes into account the phase difference introduced by the out-
put 3x3 fiber coupler and is either settor 27 /3 or —27/3. Index: represents the intensi-

ties at the output of the 3x3 coupler and goes from 1 to 3 while indexdk represents the
phase angleg,, and¢,, , and both the indexes goes from 1 to 4. For example, this again
gives the real part and imaginary part of the measured quantity using this interferometer
such as a complex reflection coefficignof the DUT’s such as FBG’s.

The advantage of this technique is that the DC thermal drift in the fiber interferometers
could be avoided to some extent. This is because the digital phase shifting is done elec-
trooptically using the LiNb@-based I0C which has typically a response time of 1 ns and
the very fast measurements are possible in principle. This is a kind of AC measurements
where we change the optical path lengths in both arms of the interferometer in a pre-
determined manner and sample the data so that the effects of power fluctuations could
be averaged out.

2.5 Conclusion

In summary, the measurement setup of an integrated optical network analyzer is developed
using fiber and the lithium niobate based integrated optical circuit. The basic integrated
optical components such as polarizers, phase modulators, ardlWVEmode converters

are all integrated on to a single I0OC to get more functionality. Each of these basic integrated
optical components are designed, fabricated, and characterized independently so as to get
an optimum performance before integration. The integrated optical network analyzer is also
interfaced to a computer system. Analog—to—digital converters are used for data acquisition.
Digital-to—analog converters are used to drive phase modulatersTINE mode converter,
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and programmable constant current source which is interfaced to tuneable DFB laser diode,
under computer control. Proportional integral temperature controller is implemented to
keep the temperature constant of the integrated optical network analyzer circuit. Finally, the
operation of basic and advanced Mach-Zehnder interferometer using fiber and integrated
optics is explained. Moreover, the use of digital phase shifters to implement AC rather than
DC measurement is described.
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Chapter 3

Longitudinal Structure Characterization
of FBG

3.1 Fiber Bragg Gratings: An Introduction

Fiber Bragg gratings represent a key element in the established fields of optical communi-
cations, optoelectronics, and optical sensors. Bragg Gratings allows to implement various
primary functions such as reflection, diffraction, and filtering in a highly efficient, low-loss
manner in single-mode optical fibers. Their unique filtering properties and versatility as in-
fiber component is illustrated by their use in a wavelength stabilized semiconductor lasers,
fiber lasers, tuneable wavelength filters, optical fiber polarization mode converters, gain
equalizers for Boium Doped Fber Amplifiers (EDFA), to improve the pump efficiency of
EDFA’s, dispersion compensators, wavelength division multiplexers and demultiplexers,
add or drop multiplexers, and optical sensors etc. These are comparatively simple device
and in their most basic form consists of a periodic modulation of the index of refraction
along the fiber core. Different types of fiber Bragg gratings are proposed and realized de-
pending on the function and hence by refractive index modulation. These includes uniform,
nonuniform, chirped, apodized, and blazed gratings.

Nobel Laureates Sir W. H. Bragg (1862—-1942) and his son Sir W. L. Bragg (1890—
1971) discovered the well known Bragg diffraction conditidn ¢in © = n ), in 1913, for
the X-ray diffraction from the periodic crystal lattice. Diffraction can be considered as a
reflection of the incident X-ray beam from a series of lattice planes. In the Bragg condition,
A is the periodicity of the atomic plane®, is the angle of incidence) is the wavelength
of X-rays, andn is the order of diffraction. Fo® = 90° andn = 1, the Bragg diffraction
condition simplifies t2A = A. The periode\ of the refractive index modulation of an
optical fiber Bragg grating is set equal to half of the wavelength the light propagating
in the fiber. It is this phase matching condition between the grating planes and incident
light that results in coherent back reflection. Reflectivities approaching 100 % are possible
with grating bandwidth A \) tailored from 0.1 nm to in excess of 100 nm.

Figure 3.1 shows the uniform fiber Bragg grating along with the incident, diffracted,

37
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Figure 3.1: lllustration of a uniform grating with constant amplitude of refractive index modulation and
grating period

and grating wavevectors. The Bragg condition is simply the requirement that satisfies both
energy and momentum conservation principles. The energy conservation prihciple (
hw,) requires that the frequency of the incident and the reflected light must be the same.
The momentum conservation principle requires that the incident wavevigt@ius the
grating wavevectorK, equal the wavevector of the scattered radiation, This would
mean

ki + K =k,, (3.1)

where the grating wavevectoK, has a direction normal to the grating planes with a
magnituder /A. The diffracted wavevector is equal in magnitude, but opposite in direction
to the incident wavevector. Therefore, the momentum conservation principle

2mng, 27
simplifies to first order Bragg diffraction condition
)\B = 2”0A7 (33)

where the Bragg wavelengthg, is the free space center wavelength of the input light that
will be reflected back from the Bragg grating, amgis the effective refractive index of the
fiber core at the free space center wavelength.

Figure 3.2 shows the grating structure and physical grating parameters that determines
the spectral response of the optical fiber Bragg gratings. The refractive index modulation
n(z) of the Bragg grating is written as

n(z) =ng+ %Anpp(z) cos(%z + ¢(2)), (3.4)
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Figure 3.2: lllustration of peak to peak refractive index modulatin,;, and grating periock

whereAn,,(z) is the gratings peak to peak refractive index modulation amplitude (typical
values107° to 1073), and ¢(z) is the grating phase.L is the grating length, and is

the distance along the fiber longitudinal-axis. Using the “Coupled Mode Theory” of Lam
and Garside [53] that described the reflection properties of Bragg grating, reflectivity and
transmissivity of a uniform fiber Bragg grating with constant refractive index modulation
amplitude and period is given by the following expressions:

#?sinh?(sL
R(L, )‘> = 2 . 19 ( 5 ) 2
Ak*sinh*(sL) + s? cosh”(sL)
2 : (3.5)
T(L,\) =

Ak? sinh®(sL) + s2 cosh®(sL)

whereR(L, ) andT'(L, \) is reflectivity and transmissivity as a function of grating length
L and the incident wavelength. & is the coupling coefficientAk = k£ — 7/\ is the
detuning wavevectork = (27/\)ny is the propagation constant, artl = x? — Ak?.
Gratings local coupling coefficient(z), is directly proportional to the peak refractive
index modulation amplitude)n, and may be written as

TAn(z)

K(z) = "

MP7 (36)

wherel/, is the fraction of the fiber mode power contained by the fibre core. On the basis
that the grating is uniformly written through the fibre cord, can be approximated by

1 — V2, whereV is the normalized frequency of the fibeV. = (27/)\)d\/n2, —n3
whered is radius of the fiber corey., andn,, are the core and cladding refractive indices,
respectively. The productL gives the grating strength. At the Bragg gratings center
wavelength \g, there is no wavevector detuning and = 0; therefore, the expressions

for peak reflection and peak transmission of the uniform fiber gratings simplifies to

R(L, \g) = tanh®xL

. 3.7
T(L, \g) = sech®sxL S

Depending on the application, fiber Bragg gratings with varying periods and as well as
depths of refractive index modulation have been proposed and fabricated. To what extent
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the specific fiber Bragg grating design and the actual fabricated device correspond to each
other has to be checked by the suitable characterization methods. So far very few studies
have been done in an area of reconstructing the longitudinal grating structure from the
experimental data. Here we would like to apply the concepts of optical network analysis
in order to efficiently characterize the fiber Bragg gratings and at the same time we would
like to demonstrate the versatility and functionality of the lithium niobate-based integrated
optical network analyzer.

3.2 Longitudinal Structure Characterization of FBG

Scalar characterization is the fastest and simplest method to characterize optical fiber Bragg
gratings for longitudinal structure characterization. To perform this, we need to correctly
measure either the frequency-dependent complex reflection or transmission coefficients of
the FBG in the frequency domain and then use the inverse Fourier transform to get the time
domain impulse response of the FBG. From the latter, the longitudinal grating structure
could be determined either by using the inverse scattering algorithms or by using layer-
peeling methods [54, 55].

3.2.1 Measurement of Complex Reflection Coefficient

Optical frequency domain interferometry was used to measure the frequency-dependent
complex reflection coefficieni( /). The optical frequency is scanned symmetrically over

~ 50 GHz optical bandwidth with the Bragg waveleng#ty (= 1548.25 nm) being at the

scan center, of a given FBG under test. The DFB laser diode was used as a tuneable laser
source with a resolution e 25 MHz. Number of measurement pointsvere equal to the

m'™ power of2 andm was set tdl 1, i.e 2048 points.

Thermal noise ultimately represents the fundamental noise limit in fiber-optic interfero-
metric sensors which affects the signal-to-noise ratio (SNR) of the measurement system.
Thermal processes in the fiber modulate the refractive index of the fiber which again causes
phase modulation of the signals propagating in the fiber. There are two basic causes of
refractive index modulation, namely, temperature and density fluctuations. The former
dominate at low frequencies while later dominate at high frequencies with a cross-over
point of 1 MHz. The frequency range of interest for most fiber sensor applications is be-
low 1 MHz and therefore, in that frequency interval, it is the temperature fluctuations that
ultimately limits the signal-to-noise ratio of the system [56, 57]. In a MZI, the signals
in the two arms are exposed to two different random processes, and both arms contribute
to the thermally induced phase noise. Therefore, very fast measurements must be done
in order to combat the thermal drift in the fiber-optic interferometers. The measurements
are done using the programmable constant current source and the DFB laser diode which
is used as a narrowband tuneable laser source. Typical tuning slope is of the order of
~ 10 pm/mA of pump current. This static wavelength shift also affects the laser power.
The optical power received by all photodiodes in the measurement setup, therefore, must
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be normalized. This power normalization, for example, can be achieved by monitoring the
laser power as function of frequency by means of an additional 10 dB coupler connected
to the power monitor photodiode. The transmission coeffici€ifiy of the FBG is given

by \/14/1s. Two linear combinations of the three three-phase photocurrents yields the real
and imaginary parts of the frequency-dependent complex reflection coeffi¢ciEnof the

FBG under test a8/, — I, — I3 andl, — I3, respectively, as described in section 2.4.2.

3.2.2 Calculation of Impulse Response

The frequency-dependent complex reflection coefficigifj and the real transmission
coefficientr(f) of FBG under test must satisfy the lossless relation

R+T<1 (3.8)

in frequency domain where the reflectivity and the transmissivity of the FBG is given by
R = |p(f)|* andT = |7(f)|?, respectively.

The frequencies obtained from the reference interferometer were used to resample
(linearly interpolate) both magnitude and argument of the measured frequency-dependent
complex reflection coefficient, independently, so that, this frequency correction creates an
accurate and equidistant frequency grid for inverse Fourier transform which enables us to
calculate the impulse response,

h(t) <= p(f), (3.9)

of the DUT. This inverse Fourier transform is calculated using the standard Inverse Fast
Fourier Transform algorithm (IFFT). For the inverse Fourier transform, the number of
Fourier stepsV = 2! = 4096. Therefore, we shifp(f) so that it is at the center in the
frequency domain. The First and the last 1024 points are padded with 0’s, so that the total
number of Fourier stepd” equals4096 together withp(f) sampled at 2048 points. The
frequency domain results were multiplied by@? window to suppress errors introduced

by the discontinuous borders. This scheme is implemented due to the fact that 62.5 GHz
(=~ 0.5 nm at 1550 nm) is scanned in the frequency domain and we wanted to convert it to
125 GHz, so that, the corresponding time step becomes

1 1

At = N-Af 125 GHz

= 8 ps. (3.10)

This time step is equal to the reciprocal of the product of the number of Fourier Bteps
and the corresponding frequency st&g used during the measurement qff), in the
frequency domain. Once the impulse response of the Bragg grating under test is known
accurately in the time domain, then the job of calculating the longitudinal grating structure
is straightforward.



42 Chapter 3  Longitudinal Structure Characterization of FBG

3.2.3 Calculation of Longitudinal Grating Structure

A second order differential equation governing two independent state variables one dimen-
sional (1-D) space coordinate,and time¢,

O’E 1 0*E

02 o -
generally, characterizes the propagation of electromagnetic waves, in the medium with
constant material parameters. The solutions of (3.11) are the waves having electii¢ field
propagating with speedalong thetz-direction. Our aim is to know what happens when an
electromagnetic wave propagates in a medium (single mode fiber) with constant material
parameters (refractive index) and then the wave suddenly encounters an abrupt change,
or a discontinuity in the material parameters of the medium such as a periodic refractive
index change (fiber Bragg grating) as a functionzof This is an ideal case for inverse
problems. In inverse problems, the unknown properties of the medium are found out by
applying some input (say a delta functiéft)) to the medium and measuring some output
(impulse responsk(t)). A pair of first-order coupled differential equations, as derived in
the Appendix C,

0 ned .
(& FE)D(Z’t) = r"(2)U(z,1) 3.12)
0 n, 0 ’ ’
(& — FE)U(ZJ) = r(2)D(z,1t)

whereD is the electric field matrix of the forward (Down), akdis the electric field matrix
of the backward (Up) propagating waves that governs the propagation of an electromagnetic
waves in timet and 1-D space coordinatefor such a medium.x(z) in (3.12) is the
coupling coefficient between the forward and backward propagating waves. When the
system parameter such as refractive index do not vary with 1-D space coorditlaés
k(z) = 0 and the above two first-order coupled differential equations decouples. The
physical meaning of the decoupling &f and U is that the two waves do not interact.
When the refractive index changes either continuously or discontinuously, th&hdhne
U waves do interact. These waves had the property that they do not interact unless there
is a change in the value of at least one of the material parameters of the medium. It is this
interaction that complicates the problem of transmission and reflection of electromagnetic
waves from the medium with periodically varying refractive index change such as the Bragg
gratings in fibers. Therefore we need to analyze the waves in two situations:
(1) as they travel along the region where material parameter is constant;
(2) as they cross the region where material parameter is discontinuous.

Inverse problem assumes that the systems impulse respanse= h(t) is known
in addition to the given Dirac impulsB, ; = 16(¢). It is assumed that the outpdt], ;
(impulse response) is caused by the iny,; (delta function) by the fundamental concept
of casualty. Principle of casualty states that the cause must precede the effect. Therefore,
it is possible to find the whole casual solutiobs, ,, U, ,,, and in addition, be able to
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find x(z). In order to calculate:(z), we discretize (3.12) using a time stég and a
corresponding position stepz = (¢/n,)At. A pair of discrete equations

DM,V = T;:—ll(k;i—lqul,wrl + Duflyl/fl) (3 13)
U,u,,zl - Tu__ll (U[,L—l,l/-‘rl + k,u—lD,u,—l,V—l)

are derived from the piecewise solutions of (3.12) under the assumption of locally constant
k = kAz as derived in Appendix D.

AL, Embm
T I\E—Snlutinn SEUELICE
AR ky b
£ L
=
]
=
2 AF Ky
[
I
Dy 0 At 2At 2wt 2m At
Durac Impulse Response U
[tnpulze P d ¥ 1y forward wave

Time Step — U : backward wawve

Figure 3.3: Wave propagation and solution sequence for inverse scattering algorithm

Figure 3.3 shows wave propagation and solution sequence given by dashed arrow in a
grid of time and space. Solution starts from the knowledge of incident unity nmiatyix
(the only nonzero component of a discretiZdd ; = 15(¢)) and the measured impulse
response matribU, , (discretizedU,; = h(t)). WavesD, ,, U, , and as far as yet
unknown matrixs(z) are calculated in a sequence given by the dashed arrow.

-DAL  vAt (v+D) At

(LDAZ 5 Ky
Oyat,p1™ <Dy
pAL O = ky
Dy v Uy

Figure 3.4: Calculation ofD,, ,, andU,, , for one position stef\ 7

Mathematically speaking for calculation &f,, all £, with 0 < px < m must be
known. This is automatically the case if one starts with= 1. Each solution steps
then requires (3.13) to be solved successivelyfer 1 ---m, v = 2m.
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Figure 3.4 shows the quantities required to calculafg, andU, , for one position
stepAZ. The transmission coefficient, and the coupling coefficiert, in (3.13) is given

by
Tu =1/ I |ku|2
U . (3.14)
k,u — _ My B
D, .

The refractive index modulatior\n(z) which is directly proportional to the complex
coupling coefficient:(z) of the FBG under test is

A k
An(z) = ?BK(Z) where k(z) = A_Hz

Therefore peak to peak amplitude and phase of the refractive index modulation equals

(3.15)

Any(z) =2 - An(z)

3.16
arg[Anp (2)] = arglk,] - (3-16)

S

3.2.4 Scalar Measurements

Fiber Bragg grating of reflectivity: 95% andA\ ~ 0.2 nm atAg = 1548.25 nm, is used

as an object for the longitudinal structure characterization, in forward as well as backward
direction. Temperature of the fiber Bragg grating is kept constant during experiment by
mounting it on to an aluminium plate whose temperature is sensed using a thermistor and
kept constant using a set of Peltier elements and a simple proportional integral temperature
controller. For scalar measurement, the manual polarization controllers (in Figure 2.1)
are adjusted for the maximum interference contrast assuming that only co-polarized waves
interferes in the output 3x3 fiber coupler of the measurement interferometer. As it has been
mentioned in section 3.2.1, the optical frequency is symmetrically scanned to measure
the complex reflection coefficien{ f) at 2048 points. The inverse Fourier transform and
inverse scattering algorithm mentioned in section 3.2.2 and 3.2.3 are used to determine the
longitudinal grating structure. Results for the forward as well as backward measurement
are summarized below.

Forward Measurement

Figure 3.5(a) shows the magnitude of the measured frequency-dependent complex reflec-
tion coefficient|p( f)| while Figure 3.5(b) shows the magnitude of the scalar transmission
coefficient|r(f)| of the FBG in forward direction.

Figure 3.6(a) shows the impulse respohgg while Figure 3.6(b) shows the longitu-
dinal grating structuré\n(z) with a corresponding grating burst for this FBG in forward
direction.
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Figure 3.5: (a) Complex reflection coefficienp(f)| and (b) scalar transmission coefficignt f)| of this
FBG in forward direction
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Figure 3.6: (a) Impulse responsk(t) and (b) longitudinal grating structuegn(z) of this FBG in forward
direction
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Figure 3.7: (a) Complex reflection coefficienp(f)| and (b) scalar transmission coefficignt f)| of this
FBG in backward direction
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Figure 3.8: (a) Impulse respongig(t) and (b) longitudinal grating structuesn(z) of this FBG in backward
direction
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Backward Measurement

Figure 3.7(a) shows the magnitude of the measured frequency-dependent complex reflec-
tion coefficient|p( f)| while Figure 3.7(b) shows the magnitude of the scalar transmission
coefficient|7(f)| of the FBG in backward direction.

Figure 3.8(a) shows the impulse respohgg while Figure 3.8(b) shows the longitu-
dinal grating structuré\n(z) with a corresponding grating burst for this FBG in backward
direction.

Conclusion

This validates the measurement principle and grating structure since “forward” and “back-
ward” measurement results agree very well. This grating is a very strong one and has a
single burst in its longitudinal grating structure.

3.3 Vectorial Structure Characterization of FBG

Grating behavior is dependent on polarization, at least when the period of a grating and
wavelength of the incident light are of the same order. Consequently the best scalar theories
are often unable to predict the efficiencies of modern gratings since they have not taken
the vectorial character of light into account. During the last decade, new techniques have
been derived from Maxwell’s equations [58]. One of the method that is used here is briefly
outlined, then studied in grater depth and applied for the vectorial structure characterization
of fiber sensor grating.

3.3.1 Concept of Birefringence and Dichroism

The propagation of monochromatic plane electromagnetic waves in an infinite isotropic
dielectric media is characterized by their refractive indexor a monochromatic plane
wave with an angular frequency, the wave vector of the plane waveks= (nw/c)u,
whereu is a unit vector. The plane wave is related to a notion of light ray whose direction
is given by the direction of the Poynting vect®r= E x H. In isotropic media the vectors

k andS are parallel no matter what the direction of propagation is. In general, this does
not hold true for anisotropic media.

Generally, optical properties of an anisotropic dielectric medium are determined by its
refractive index, as seen by a plane electromagnetic wave passing through it and depend on
its direction of propagation. In fact, it can be shown, for a given direction of propagation,
that two refractive indices may co-exist. The latter are associated with electromagnetic
waves having states of polarization that can propagate without any alteration. These partic-
ular states of polarization are called eigenstates for the considered direction of propagation.

Usually, two different kinds of optical anisotropy can be considered:
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—The linear anisotropy, whose eigenstates of propagation are the linear states
of polarization.

—The circular anisotropy, whose eigenstates of propagation are the circular

states of polarization.

—These two kinds of anisotropy can coexist in the media and in such a case, the
eigenstates of polarization are in general elliptical.

Whenever an electromagnetic wave passes through a material medium, it induces an
electric polarizatio! which is added to the vacuum polarizatiPf, defined by:P°? =
goE. The total polarizatio® = PY + P! is represented by a vectorial functi®h(E),
wherekE is the exciting field of the electromagnetic wave. Thus, in the approximation of
low electric field intensities, the induced polarization

P! = g [x|E (3.17)

is a linear function oE where|x] is the first-order electric susceptibility tensor. Since the
electric displacement vect® is such thaD = ¢([¢]E + P! we get:

D = c[e]E (3.18)

where[e] is the relative permittivity tensor and is related to the electric susceptibility tensor
[x] through the relationfe] = [I] + [x], wherel is the identity matrix.

As the electric permittivity of materials is closely related to the notion of the refractive
index € = n?), the properties of the dielectric tensiaf are immediately translated to
the optical properties of the materials. With the exception of some peculiar cases, the
considered media are non-magnetic, i.e. their magnetic permeability copssaaqual to
to. The relative permittivity tensde] is symmetrical for non-absorbent materials, i.e.

€ij = &ji- (319)
It can also be shown that, in the case where the terms of the tefsoe complex numbers,
without the medium being absorbent, the previous relation would become:

£ij = €5 (3.20)

Jt

which more generally shows that the permittivity tensor is Hermitian. Only the media
possessing circular anisotropy exhibit this special property.

The case of absorbent media is non-negligible complication because they exhibit not
only the linear anisotropy but also an absorption related anisotropy. The latter phenomenon
is known as dichroism.

The electric field associated with a monochromatic plane electromagnetic waves with
an angular frequency = 27 and a wavevectdk, propagating through a non-absorbent
medium exhibiting a linear anisotropy are characterized by the dielectric tehsanich
can be expressed using the complex notation:

E = Eq exp[—i(wt — kr)] (3.21)
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The other components of the electromagnetic fiédd,B, and H, naturally exhibit the
same spatio-temporal dependency. Without any source term, the solution of Maxwell’s
equations in terms of fielD by eliminating the field and by introducing a unit vectar

in the direction of propagation of the wave phase,ke- ku, we obtain:

2
D=
W= Ho

E - (G.E)d (3.22)

It is useful to note, in more general case, that the velbtas not parallel to vectoE any
more. Therefore, the scalar producE is not null and the electric field is not transverse
as was the case with an isotropic medium. Only the fi€)d#1 (or B) are transverse, i.e.
perpendicular to the wave vectkr The electric fieldt usually is not.

The solutions to Maxwell’'s equations as plane waves of wave victoku for which
the components of the vectarare[«, 3, +| are given by the Fresnel’s equation:

2 2 2 32 2,2
nia ny n2y

2 2 _ 2 2 _ 2
n, Nt —ng

=0 (3.23)

n?—n2 n
Fresnel's equation leads to concept of birefringence and to following conclusions.

—For a given direction of propagatiai there are two solutions for?, lets say+n, and

+ns. The+ sign corresponds to the two possible directions of propagation along the unit
vectoru. The positive values; andn, are the solutions of Fresnel’s equation and existence
of these two values and therefore, their differende & n, — n,) gives the birefringence.
—Each of the two values of refractive index is related to a plane wave characterized by
its electric displacement vect® and its phase velocity. Hence, for a given direction
propagationu, there are two plane waves characterizedayand D, which are orthog-

onal to vectora. Moreover, they travel with phase velocities = ¢/n; andvy = ¢/no,
respectively.

3.3.2 Birefringence and Dichroism in Optical FBG

As it has been mentioned in the previous section that any birefringent medium can be
characterized by the dielectric tenggr The electric displacement vectbris not parallel
to the electric field vectoE and this relation, in general, is written as

Eraz Eray  Eraz

D=ce,E=¢ |€rys Eryy Ery:| E. (3.24)

Erza Erzy Erzz

The vector electromagnetic wave equation now has the dielectric tepswtead of rela-
tive permittivity ¢, and is written as

2
VE = HoEOEr <%) E. (325)
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Since the quantities, = ¢,(z, y) and hence the transverse field componéhts: (E,, E,)
are independent aof, one can write

2\’ 2\
(&) E_MOEOET (&) E. (326)

For source free mediury - D = 0 and moreover, there is M@, component. It can be
shown that it is indeed zero as follows:

E
’ rszx rz E
Dz =¢&o |:6r,zz Er,zy 57-,,34 Ey =0« Ez = _g . te A (327)
Ez 87‘,zz

Therefore, the three dimensional vector wave equation reduces to two dimensional one with
only transverse componeriis:

E
8 2 E o £ y o a 2 T
== | = R N = B 3.28-a
(82) |:Ey:| Iuoeo |:67”7y33 6T,yy 5T,yz :| (375) Ey ( )
with
E, 1 0 B
E, =10 1 [ E} (3.28-h)
E, _Erzz  _ Erzy Yy

Er,zz Er,zz

Inserting 3.28-b into 3.28-a, we get

1 0 2
O\E € Erzy € 0 E
T — r,2xr r,x 7,z O 1 . x . 329
(8Z> {Ey} MO&OLT,W Eryy Eryz |\ _Eres Erzy ot) | Ey ( )

Er,zz Er,zz

The matrix multiplication in (3.29) gives
8 2 E:p 5r,xm - z:: gr,wz gr,my - %gr,x'y (9 2 Ex
0z Ey — Hoco Eryr — i:’%er,yz Eryy — i:j—izgr,yy ot Ey
e |G Em| (O ‘B,
flozo Eyz Eyy|\Ot) By
The refractive index matrix is directly related to the dielectric tensei(n = /€). This
refractive index matrixa will have to eigen values, sayn; and+n,. If one considers only

positive eigen values, say andn, along the positive:- andy- direction, respectively, then
their difference with respect to the average refractive indgives the birefringence

(3.30)

An =2 % M oand m=2 ;n2. (3.31)
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Due to birefringence, Bragg grating with the given refractive index modulatiom,)
and the grating period will always reflect two discrete wavelengths say,; and g,
corresponding to these two eigenvalues, and are equal to

)\B 1,2 = 277,172/\. (332)

Therefore, there will be two reflectivitigg andp, and two eigenvectors, s&; andE,,
corresponding to these two eigenvalues of the refractive index matriXhe resultant
electric field of the output wave reflected by the grating depends on the polarization or the
electric field of the input wave that is parallel to one of the eigenvectors. This resultant
electric field could then be written as

Eowt = p1Ein 1B + p2 By 2 Eo. (3.33)

The reflection coefficient is no more a scalar quantity. It represents a 2x2 Jones reflectance
matrix:

Eou = pEi, = [p” 912] E... (3.34)
P21 P22

3.3.3 Polarization Mode Coupling

For the medium with no birefringence, the dielectric tensor obeys the relatioa’. With
eigenvalue decomposition the dielectric tens@ decomposed into

_ et 0\ ot
e=E. (0 . ) E; (3.35)

with £; » € R and orthogonal eigenvectois = [E;, E,| with scalar product equal to the
Kronecker deltalg; - E; = d;)).
The dielectric tensor for anisotropic optical grating with a periodic modulation of refractive
index is written as
e(2) = eo&p + €467 + g%, (3.36)

The first terme, comes from the static birefringence while the second and third term comes
from the grating structure that couples the forward and the backward propagating modes.
SinceAn is directly proportional td\¢; the above equation directly transforms into

An(z) = Any + Ange?s* 4 Anje o7 (3.37)

where the birefringence and refractive index modulation matrices are

. A’nu An12
Anb N (ARIQ —Anll

An :1€J¢k Anppll A?’Lpplg .
"4 Anppor  Angyyoo

(3.38)
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The electric field of the forward and backward propagating waves is given by

Ef(Z, t)

D(Z)@Jwt_kz ' w
with k= —n(z), (3.39)
Eb(Z, t)

U(Z)ejwt-‘rk’z o

while there superposition gives the total field as
E(z, t) = D(2)e’ % + U(z)e =, (3.40)

The electromagnetic wave equation with this electric field and refractive index modulation

IS written as ) ) 9
(@ me0-(2) (3 w0 o

Simplification of this equation similar to the one derived in Appendix C yields

LD(2) = —iB(ID() + K (e U )
; , (3.42)
5. U() = 1B(:)U(2) + K(2)e 7" D(z)
with
B(z) = n%Anb(Z)
. (3.43)
z) = ﬁAnk(z)
no

3.3.4 Measurement of Complex Reflectance Jones Matrix

Any birefringent or dichroic optical device like FBG has the frequency-dependent reflection

coefficientp(f) which depends on the input polarization and the reference polarization

which is analyzed at its output. An interferometric measurement determines a complex
reflection coefficient

p(f) = PEY,Em(f) (3.44)

whereE, is the Jones vectors in theference branch whilE,, is the Jones vector in the
measurement branch where the device under test is inserted. The interference contrast is
at its maximum when the polarizations in the reference and measurement branch of the
interferometer are identical.

In order to determine the complete 2x2 Jones reflectance matthe four combina-
tions of p, ,,, have to be measured and these will be the elemengs dihe above scalar
equation for the complex reflection coefficient is modified to

p(f) =Bl prm(f)En (3.45)
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whereE, andE,, are the two pairs of Jones vectors. Even if Jones vdct@ndE,, are
unknown the knowledge of elements of the transformedatrix is generally sufficient to
reveal the birefringence and dichroism because the transfopnmedtrix is no more than
the originalp matrix which is pre- and post- multiplied by the unitary matridés , E, |
and [EmH, E,. |, respectively. It is indeed difficult to generate such orthogonal pairs of
polarization by using the calibrated polarization transformers based on LiNb©to DC
drift. The polarization orthogonalization scheme derived by Sandel [16] which makes use
of Poincaé’s sphere based tetrahedrons is used here to measure the complete reflectance
Jones matrix of the device under test which is complex.

To use orthogonalization scheme, it is necessary to generate two sets of four arbitrary
polarizations which form a tetrahedron with nonzero volume on the Pd@rsgrere: one
for reference- and another for measurement- branch. These polarizations are generated
using the calibrated polarization transformers that are based -@nt, Z-propagation
LiNbO; (see Figure 2.1).

The transformed elements pf ,, corresponding to orthogonal pairsBf andE,, can
be deduced from 16 reflectances

Pri,mj(f) = PE:;,Em; — E:;pi,j(f>Emj (NS {0 T 3} (3.46)
measured with four arbitrarl,, and four arbitrarys,,,,. These two sets of four arbitrary
polarizations enable us to derive two sets of orthogonal polarization pairs:

E. ,E, with E -E, =0

, . (3.47)
E., En, with E, E, =0

With this orthogonal pairs of polarization, the measured 2x2 Jones reflectance matrix now
becomes

PErH,EmH(f) ﬂErH,Eml(f)
PErL,EmH(f) PErL,EmL(f)

E. ~
N [E l] P [Emu EmJ =Rp-p-Rr=p, (3.48)
Ty

where the subscript$ and L refers to orthogonal pairs of polarizations, both at the input

of the device under test which is inserted in the measurement branch and in the reference
branch. Polarization transformers which generates these waves must operate reproducibly
but calibration is not needed. The rotation matrifesandRy are in fact unitary. This
frequency-dependent transformpdmatrix enables us to calculate the impulse response
and hence vectorial grating structure.

3.3.5 Polarization Orthogonalization

For some special cases which are excluded here, every polarifgtiandE,,; in section
3.3.4 can be expressed by a linear combination of two others (see Figure 3.9), for example,

Emo — 7-91Em1 —|— 7-92Em2 - flEml + £3Em37 (349)
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whered,, 9y, &, & are scalers. For fixed the reflectancep; ; can also be expressed
using the same scalers, for example,

0 ="11pi1+V2pi2=Epi1 +Epis (3.50)

This is obvious because the same polarizations are used during the measurepent of

Eg

E, E,
Figure 3.9: Schematic of a Poincarsphere-based tetrahedron

One possibility to determined the coefficients 1., &, and & from the measured
frequency-dependent reflection coefficiepts(f) is to effectively use (3.50). In fact, this
can be easily done by integrating the matrix produqb;bj(f) andp; ;(f) where '+’ sign
indicates the Hermitian conjugate over the whole frequency range; geing from 0 to
N.

hOO hOl h02 h03 N
th hll h12 h13 / +

H= = () pii(fo)d 3.51
hao hoi haa  hos V0 pm(f ) pis(Fo)df ( )
hso hsi hsa hss

where each element &1 is given by

3 N
= Zzpfk (fo)psx(f)df. (3.52)
=0

v=0

For any Hermitian matrix, sald, the eigenvalues df are real H is diagonalizable,
eigenvectors corresponding to distinct and nonzero eigenvalues are orthogonal, and the
matrix H possesses a complete orthonormal set of eigenvectors. Eigenvalue decomposition
of this H matrix yields four eigenvaluex; (wherej = 0- - - 3) and the corresponding four
eigenvectorsy, (wherej = 0---3). The two out of four eigenvalues should come out
to be identically zero because two out of four polarizations which are used during the
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measurement g, ; are linearly dependent on two other polarizations and hence two out
of four columns and rows op; ; are also linearly dependent on two other columns and
rows of p; ;. In practice, the two out of four eigenvalues are not identically zero but are
rather close to zero due to measurement errors and polarization drift. It is indeed possible
to select two eigenvectors corresponding to two eigenvalues which are close to zero, say
for example,\; and \,, because these two eigenvectors are linearly dependent on each
other. One linear combination of these two eigenvectors yi¢Jdsnd, when first and

last element is set to -1 and 0, respectively, while their second linear combinationgyields
andé; when first and third element is set to -1 and 0, respectively. Therefore, one can write

—1 —1
Uil a |9 = 3.53
9y | = a1Xa + a2X)y, an ol = Bixa + B3X s (3.53)
0 &3

whereay, as, 31, andj; are two set of constants. EveBy,, can be further expressed by
the desired orthogonal peiirmH andE,, as

En, = CjEn, + DEn, (|G +|D;P =1, j=1---3). (3.54)

Forj =0, letE,, = En, by definition. There are nine degrees of freedom in the choice
of C; andD;. The eight real equations in (3.49) balance them except for the phase of one
of the component oE,, , which can be freely chosen. For exampl®, can be set to a

real positive number. FdE,,, andE,,, polarization components, the insertion of (3.54)
into (3.49) results in

1 =0,C, +19:,0y 1=¢§C) +&0Cs (3.55)
and
0=0D1+09:D; 0=&D,+E&Ds (3.56)
respectively. This allow§’, C3, D5, and D5 to be expressed in terms 6f andD; as
Cy = 1_79101 Cy = 1_5101, (3.57)
Vo &3
D2 = —ﬁDl D3 = —éDl (358)
Vs &3

The expression§C;|* + |D;|* =1, j = 1---3) with (3.57) and (3.58) inserted fgr= 2
and3 lead to a set of two equations linear in(Rg) and Im(C;) whose solution is

mich] -3 e Tme] BTRRTEE e

The positive real scalap, can be derived from the compléX as

D1 =V 1 - ’Cl|2. (360)
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In principle, the scaler€’, and D, are sufficient to calculatg,,, from E,,, andE,,, and
corresponding reflection factors:

Emj - OlEmo . pri,m]’ - Clpri,mo
T y Pri,m = Dl

In practice, there are always some random errors in every measured This lead errors

in py, m, Which are enhanced by the factotD;. SinceCs, Cs, Dy, and D3 can be easily

derived fromC; andD; using (3.57) and (3.58). The indgx= 1in (3.61), may be replaced
by k going from2 to 3 or an average over gl = 1-- - 3 is taken which is in fact a better
choice. The weighted averages| 6f;|* results in

E,, = (i=0---3,j=1).  (3.61)

3 En. . —Ci1Enm
_— > i | D P ==
m; — 3 D 2
Zj:l ’ j‘ (3.62)
S |DA|2—pri’“‘j_Clpfi’m0 '
=1 J
pri,ml = ] 3 fl
Ej:l ‘Dj|

with minimum errors for a given set df,,; for j = 0---3. An analogous process
would orthogonalize the reference polarization and a (transformed) 2x2 Jones reflectance
matrix would result (3.34). This polarization orthogonalization scheme was proposed and
successfully used by D. Sandel [16].

3.3.6 Calculation of Impulse Response Matrix

For vectorial grating structure characterization, the matrix impulse response

hn(t) h12(t) 11(f> 12<f)
h(t) = [hm(t) h22(75)} el = [521(f) Pp22(f)} (3.63)

is calculated by inverse Fourier transform of each of the reflectances
hi j(t) = F~(pi (). (3.64)

3.3.7 Calculation of Vectorial Grating Structure
The difference equations which are discretized using the positiod\stepd corresponding
time stepAt = (ny/c)Az are derived in
Dy, = T;il(_b;ilk:—lqul,uH + buleufl,vfl)
U,u7u = T;il(b;ilUu—l,u—&-l + bu—lku—lD,u—LV—l)

whereD is the electric field matrix of the forward- arld the electric field matrix of the
backward-propagating waves from piecewise solutions of

(3.65)

(% + %%)D(zi) = —18(2)D(z,t) + k*(2)U(z,t)
. (3.66)
(72 — —3)U(2,1) = 18(2)U(2,t) + k(2)D(z,1)
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under the assumptions of locally constanand 3 matrices which are given here in the
diagonalized form

k:nAz:Ek(/Bl k?)E;
2

b0 , (3.67)
b = cap(—)8Az) = E, (0 - ) E/

represents the grating coupling coefficient and birefringence, respectively, for one position
stepAz. Transmission matrix must satisfy the lossless relation

Tt +kkt =1 (3.68)

This matrix is Hermitian and has same eigenvectors as tHat lofthe calculation of

T =VI-kkt =E, (tl 0 ) El (4, ts >0) (3.69)

0 to

positive signs must be chosen for its real eigenvatygs.

Figure 3.3 shows the wave propagation and solution sequence in a grid of tiare]
one-dimensional space coordinate Solution starts from the knowledge of incident the
unity matrixD,  (the only nonzero component of a discretided= 15t) and the measured
impulse response matrid, , (discretizedU,,=h(t)). WavesD,,, andU,, ,, and as far as
yet unknownsk andb are calculated in a sequence given by dashed arrow. For calculation
of k,, andb,,, all k, andb,, with 0 < 1 < m must be known. This is automatically the
case if one starts witlhh = 1. Each solution step requires the difference equations to be
successively solved for = 1---m andv = 2m — p. D,, ,, andU,, ,,, are obtained as an
intermediate result and the matrix quotient

Q= —Um,mD,;}m = b, kb (3.70)
has to be decomposed in such way that the first product
Q" Q = (bkb)"bkb = b"E A AE/b (3.71)
delivers|k,|, | k2| as the square root of its eigenvalues. The missing argument is
arg(ky) = arg(ks) = %arg(det(k)) or %arg(det(k)) + 7. (3.72)
Second eigenvector matrib™E;) of (3.71) allows for the calculation of matrix
(bEy) = Q(b*Ex)A; " (3.73)

Third, now, we can obtain
b = y/(bE;)(E;b) (3.74)
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which successively leads to

—_ ht

Er, = b (bEx) (3.75)
k = E;AE]

Expecting a small retardation due lbowithin Az, the ambiguities of (3.75) an®?) can
be settled so that the argument of eigenvalueb aire closest to zero. Finally, locally
varyingk = k/Az and@3 = yIn(b)/Az are calculated to yield the gratings peak-to-peak
refractive index modulation amplitudes , grating phase, and refractive index differences
(birefringence).

3.3.8 Vectorial Measurements

Fiber Bragg grating of reflectivity- 95% and A\ ~ 0.2 nm at\g = 1548.25 nm is used

as an object for the vectorial structure characterization in both forward as well as back-
ward direction. During the measurements, the temperature of the fiber Bragg grating’s is
kept constant by mounting it on to a aluminium plate whose temperature is sensed using a
thermistor and kept constant using a Peltier element and a simple proportional integral tem-
perature controller. Initially, for vectorial measurement, manual polarization controllers (in
Figure 2.1) are adjusted for the maximum interference contrast assuming that only copo-
larized waves interfere in the output 3x3 fiber coupler of the measurement interferometer.
For vectorial structure characterization, the broadband polarization transformers which are
on the lithium niobate-based integrated optical network analyzer circuit are initially used to
generate the two sets of four arbitrary polarizations for the implementation of orthogonal-
ization scheme. Number of trials has been made to implement this scheme with available
DFB laser. Main problem in implementing this scheme is that DFB laser was never sta-
ble during the scan and from scan to scan. Therefore, these polarization transformers are
calibrated using the commercial rotating quarter waveplate polarimeter to generate the pair
of orthogonal polarizations for vectorial measurement. This scheme has worked positively.
The results of vectorial structure characterization are summarized below. Scattering pa-
rameters, impulse response matrix elements and derived grating structures were essentially
identical when like measurements were performed from both sides of the same grating.

Forward Measurement

Figure 3.10(a) shows the magnitude of the elements of the measured frequency-dependent
complex reflectance matriy( f)| while Figure 3.10(b) shows the magnitude of the scalar
transmission coefficient (f)| of this FBG in forward direction.

Figure 3.11(a) shows the impulse response matrix elenigntsvhile Figure 3.11(b)
shows the longitudinal grating structuen(z) with the corresponding grating burst for
this FBG in forward direction.
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Figure 3.10: (a) 2x2 Jones reflectance matrix elemgpts/)| and (b) scalar transmission coefficiént f)|
of FBG in forward direction
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Figure 3.11: (a) Impulse response matrix elemehts) and (b) vectorial grating structuren(z) of FBG in
forward direction
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Figure 3.12: (a) 2x2 Jones reflectance matrix elemdgpts/)| and (b) scalar transmission coefficiént f)|
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Figure 3.13: (a) Impulse response matrix elemehts) and (b) vectorial grating structuren(z) of FBG in
backward direction



3.4 Conclusion 61

Backward Measurement

Figure 3.12(a) shows the magnitude of the elements of the measured frequency-dependent
complex reflectance matridp(f)| while Figure 3.12(b) shows magnitude of the scalar
transmission coefficient(f)| of the FBG in backward direction.

Figure 3.13(a) shows the impulse response matrix elenigntsvhile Figure 3.13(b)
shows the longitudinal grating structuen(z) with the corresponding grating burst for
this FBG in backward direction.

Conclusion

This validates the measurement principle and the vectorial grating structure since “for-
ward” and “backward” results agree very well. This grating is a very strong one and the
calculated birefringence (not shown) of this commercial fiber Bragg grating was negligi-
ble. This commercial Bragg grating was also free from dichroism. The vectorial structure
characterization results are summarized in [59].

3.4 Conclusion

The given FBG is evaluated for both scalar and vectorial structure characterization using
the in-house developed integrated optical network analyzer. This would demonstrate the
functionality and versatility of integrated optical circuits in lithium niobate and their direct
application to optical instrumentation and communication.
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Chapter 4

Integrated Optical PMD Compensator

4.1 Design Issues for Integrated Optical PMDC

Integrated Optical PMD compensatoriitcut, Y -propagation lithium niobate is designed,

and characterized for different differential group delay profiles. It is based on cascaded

TE—TM mode converters with endlessly adjustable coupling phases. The natural birefrin-

gence (0.22 ps/mm) of this birefringent crystal cut can be used to compensate the DGD at
the same time. Operational principle of this type of PMD compensator is described in the

next section.

4.1.1 Operational Principle

The operational principle is based on the spatially weighted coupling between two waves
with different propagation constants [20]. The phase difference between one mode and
the coupled mode therefore depends on the position where coupling occurs and is periodic
with the beat lengtth = A/An. The TE-TM refractive index difference in a Ti-indiffused
waveguide inX-cut, Y-propagation LiINb@ is An = 0.0679 at a free space wavelength
A = 1550 nm, thereby giving\ = 22 ym. The interdigital electrodes are needed for
phase matching with a period equal to one optical beat lengthThe widths and gaps
are equal td /4 of the optical beat length, and subsequent electrode pairs are additionally
spaced by3/4 of the optical beat length which allows mode coupling to be adjusted in
both quadratures endlessly via the electrooptic coeffigigntThe coupling coefficient
is given by

k2 D(r/2)n’rs (V/G)ATY, (4.1)

wherel is a weighted field overlap integral factor as defined latersard 2.1785 is the
average refraction index of the waveguideg. = 28-10~2 m/V is the relevant electrooptic
coefficient and/ is the interelectrode voltage.

Figure 4.1 shows the schematic of such PMD compensator N thet, Y -propagation
LiNbOs. VoltageV;,, acts on one set of comb electrodes and performs mode conversion in
phase. Voltag#&’,, acts on another set of comb electrodes which are translatedimf the

63
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Figure 4.1: Schematic of PMD compensator oftrcut, Y -propagation LiNbQ

optical beat length with respect to the first and performs mode conversion in quadrature.
The resulting complex coupling coefficient is proportionalliq + V5, for n in-phase

and quadrature electrode pairs. The need2fquadratures at least doubles the necessary
chip length. The longitudinal electrode cross-section as well as local field overlap integral
factorsl'(y) for one quadrature dphase TE-TM mode converter electrodes that are used
in [22] are shown in Figure 4.2.
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Figure 4.2: 2—phase electrodes with corresponding voltages and local field overlap integral factors vs nor-
malized longitudinal coordinates

4.1.2 Twovs. Three Phases

As has been mentioned in [20], tisphase implementation is not the only possible choice.
If isolated electrode crossings are availaBlephase electrodes can be used with electrode
widths and gaps equal tb/6. In-phase and quadrature mode conversion can be produced
by the linear combinations of the “cosine” and “sine” cases as shown in Figure 4.3 and
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Figure 4.4. Even and odd voltage distributions are applied by choosing electrode voltages
Vof(y) whereV; serves as a reference voltage ani the longitudinal position of the
center of an electrode. Hepy) = cos(2ry/A) and f(y) = sin(2wy/A) are structure
functions needed for cosine and sine cases, respectively.

The Point Matching Method [40] has been chosen to calculate the electrostatic fields
of these periodic electrode structures. The transversal opticaHiglsl, z) is assumed to
be Gaussian and Hermite-Gaussian along width and depth of the single-mode Ti-indiffused
waveguide in LINbQ with mode field diameters matched to our experimental values. The
position-dependent overlap integidly) [39] must be multiplied byf(y), integrated over
one beat length and normalized to obtain the weighted overlap integral factor

A
f=5 [ Ty it

_ G [ [|Eo(x,2)*Ex(x,y,2z)dzdz
F<y) N V ff ‘EO(Xv Z)|2d$d2

(4.2)

=011
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Figure 4.3: 3—phase cosine electrodes with corresponding voltages and local field overlap integral factors vs
normalized longitudinal coordinates

For cosine and sine casésis the real orimaginary part of the spatial Fourier coefficient
of I'(y), respectivelyE, (x, y, z) is the vertical component of the electrostatic field in the
crystal. In'(y) we have multiplied by the applicable gépand divided by the maximum
interelectrode voltag®” as defined in (4.2). Figure 4.2 shows the local overlap factors
['(y) for one quadrature of the—phase TE-TM mode converter. For the two cases of
the 3—phase TE-TM mode convertelgy) is shown in Figure 4.3 and Figure 4.4. The
resulting weighted overlap factors afe= 0.198, 0.11 and 0.096, respectively. The
2—phasel' is resized to an effective value of 0.086...0.098, if one takes into account
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the fact that two quadratures of tRephase design need at least twice the length of the
3—phase design. If the maximum permissible field strength limits the design, the factor
V/G in k as defined in (4.1) is replaced by a constant. Fhphase design performs in

its worst casé).096 roughly equal or slightly better than tRephase design. If the output
range of the voltage sources is the limiting factogs defined in (4.1) is obtained through

a multiplication by the sam& /G (8/A, 9/A, 6v/3/A) by which we have divided in
calculatingl’(y) as defined in (4.2). This yields equalalues for bottB—phase cases, and
these ard .26 ... 1.44 as high as: in the 2—phase case. The above simulation results are
published in [60].

0.0 0.2 0.4 0.6 0.8 1.0
yIA

Figure 4.4: 3—phase sine electrodes with corresponding voltages and local field overlap integral factors vs
normalized longitudinal coordinates

Figure 4.5 shows the photograph of a portion of the chip used in [22]. This device
was fabricated by the Applied Physics group of Prof. W. Sohler, here at the University of
Paderborn. This device was fiber pigtailed and packaged with slanted endfaces to improve
the input/output optical return loss. The insertion loss was 4 dB and PDL 1.2 dB. Operating
voltages were< 50 V. Thermal tuning is possible with00 GHz/K.

4.1.3 New Proposals for High-Bit Rate PMD Compensators

This type of lithium niobate-based integrated optical PMD compensator (PMDC) should
work up to at least 40 Gbit/s. At 160 Gbit/s a poor performance is to be expected because
the experimentally needed length for one full mode conversion is on the order of 5 mm.
This means that the corresponding DGD of about 1.2 ps is only partly orientable. How-
ever, PMD compensation at 160 Gbit/s or beyond seems to be mandatory to maximize
dispersion-shifted fiber capacity, for example, in particular in all Japan. To reach higher
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Figure 4.5: Photograph of in-phase and quadratureTBM mode converter electrode pairs (in dark) on
Ti:LINbO 3 PMD compensator

and higher bit rates one needs to tailor the birefringence of lithium niobate. This is possi-
ble in principle in two ways: one possibility is to use tilted waveguid& iti-plane which

will reduce the birefringence and hence the differential group delay. The other possibil-
ity is to use the mixture of lithium niobate (LN) and lithium tantalate (LT) also known as
lithium—niobate—tantalate (LNT).

Tilted Waveguide

We have also investigated the case of a largefor largeA the electrical field reaches
deeper into the waveguide and are also more uniform, thereby increasing the overlap in-
tegral as shown in Figure 4.6. Similar characteristics are found for all three cases. The
weighted field overlap integral factdrgrows almostx A in the range considered.
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Figure 4.6: Weighted field overlap integral factdras a function of beat length in zm

A high A x cos~ 29 can be achieved in LiNbQIf the waveguide is tilted by an
angled in the YZ plane. The coupling factor then becomés) =I'(7/2)n? (rsicosd —
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T295in9) (V/G)A™t with n = n, + (1/2)(ne — no)cos®d andryy = 6.8 - 10712 m/V. To

give an example, fo# = —x /4 the waveguide runs halfway between +Y and +Z axes.
doubles]" more than doubles, and—=/4) = 1.75- x(0) in the field strength limited case.
Furthermore, since the DGD per length is halved the DGD spent to implement a full mode
conversion is~ 3.5 times smaller than for Y—axis propagation. This mearissaimes

more accurate PMD compensation becomes possible. However, twice as high a Voltage
is required to keepy/G constant. Furthermore, a PMD compensator with a given length
can compensate only half as much DGD. A larges particularly advantageous if neither
available driving voltages nor total chip length are limiting factors. This is the case at high
bit-rates, say> 40Gbit/s, where truly bad fibers have to be ruled out anyway.

It is indeed necessary to consider the substrate radiation modes which may cause high
propagation losses in tilted waveguides. They may become significant when the waveguide
is tilted in practice because the propagation constants of the guided mode and the substrate
radiation mode may become identical. However no attempt has been made to verify this
possibility independently as it is clear from [61, 62].

Lithium—Niobate—Tantalate Crystals

The mixed ferroelectrics have been the focus of intensive fundamental and applied research
for many years. Interest in the study of these materials arises from the fact that the physical
properties of crystalline materials are governed to a large extent by the composition of the
crystals. Therefore, the physical properties can be tuned by varying the composition. One
of the simplest ferroelectric mixed crystal systems is lithium—niobate—tantalate, as both end
members exhibit the same crystal structure (space gra3gpwith only slight differences
in the lattice and positional parameters. The physical properties can be very easily tuned
by varying the parametey in the composition of LNT crystals. To a certain degree, the
mixed system yields a simple crystal modelling that may lead to functional materials and
devices, which has direct implication for PMD compensation in optical communication.
Lithium niobate is a slightly nonstoichiometric, typically Li-deficient, preferably grown at
the congruently melting composition with 48.5 Mol% of Li20. A large variety of dopants
ranging from +1 valent state H+ to the +3 valent state such as rare earth cations can be
introduced into the crystal structure frame of lithium niobate. Most are known to occupy
Li-sites. In contrast to these Li-site dopants, tantalum is isomorphic to niobium and replaces
niobium when introduced into the crystal structure frame of LN. Tantalum can substitute
niobium up to 100%. Any changes in the crystal composition will finally affect all physical
properties of the crystal such as the linear dielectric response, i.e. refractive index, electro-
optic coefficients and so on. It has been shown in [63] that refractive index and electro-optic
coefficients depend linearly on the Ta contgnibh LNT crystals. Therefore one can tailor
the birefringence of this mixed crystal especially for PMD compensation at higher bit rates.
The ordinary refractive index, and the relevant electro-optic coefficient depend
linearly on the Ta contenj in LNT crystals: n, = 2.2125 — 0.07y, andrs; = 28 — 8y.
Figure 4.7 shows the calculated optimum weighted field overlap integral facasrdefined
in [60], for 2-phase as well as two representative cases of 3-phase TE-TM mode converters
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Figure 4.7: Weighted field overlap integral factbras a function of Ta contentin lithium—niobate—tantalate
crystals

with interdigital electrodes. The numbers can be directly compared if the 2-jphhas

been halved due to the fact that the 2-phase design need at least twice the length of the
3-phase design. Using thisand assuming 2-phase electrodes, the achievable number of
full mode conversions per DGD at electric field strength near breakdown (10 V/mm), and
the required length per DGD have been calculated as a function of the Ta coimethie

LNT crystals (Figure 4.8). Pure LN allows fet 8 full mode conversions / ps in theory if

' = 1, and~ 0.8/ps experimentally, in agreement with theofy£ 0.1). Pure LT allows

for 20 time more mode conversions/DGD. The length/DGB:id.2 mm/ps in LN, and

~ 42 mm/ps in LT. But this should not be problematic since less PMD may be expected
in links for highest bit rates. LT alone should work in principle up to at least 640 Gbit/s.
Appreciable advantages over pure LN with the potential of reaching 160 Gbit/s can also
be expected for low y which may be accessible either by incorporating Ta into LN during
crystal growth or later by thermal in-diffusion. An interesting situation occursmeas.9

where the sign reversal dn promises Thit/s PMD compensation. A major problem for
large y in LNT and pure LT are the large beat lengths, which scale proportional to the
length/DGD. High voltages are required to reach fields near breakdown, even for 3-phase
electrodes where the gaps are smakeB(0 V in LT).

4.1.4 Conclusion

We found that @—phase TE-TM mode converter can (but need not in all cases) outperforms
a2—phase one. Tilting the waveguide in the YZ plane can drastically increase the efficiency
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Figure 4.8: Mode Conversion/DGD and length needed/DGD for a3 BM in LNT crystals as function of
Ta contenty

but the leaky modes losses are the main issues involved in its realization. The other possi-
bility is to use mixed ferroelectric crystals such as the lithium—niobate—tantalate to realize
high bit rate PMD compensators where just a little DGD needs to be compensated. The
birefringenceAn and electrooptic coefficient; decreases linearly with increasing the Ta
contenty in LNT crystals. A Ta contenj of up to 0.5 is good to realize a PMD compensator

at about 160 Gbit/s. These two possibilities are explored and the simulation results are sum-
marized in [24]. These solutions combines optimum performance and high-speed with a
high degree of integration and hence low cost potential.

4.2 DGD Profile Characterization

Different kinds of PMD compensators (PMDCs) based on all optical as well as electrical
filters have been demonstrated or proposed. Most of these were designed for first-order
PMD compensation. PMDCs suitable for higher order compensation like the one described
above is proposed by R. ®d19]. Experimental validation of such a filter is not have been
reported so far nor a PMD medium with complicated structure have been analyzed. B. L.
Heffner first demonstrated the use of Jones matrix eigenanalysis technique to accurately
measure both the PSP and DGD as a function of optical frequency. This has allows to
verify the structure with only known DGS section which were precharacterized [64, 65].

On the other hand, L. Bller from Bell Labs has synthesized a 2x2 Jones matrix filter
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for broadband PMD compensation [66] generalizing the basic work done by S. E. Harris
and his coworkers [67]. Later on A. Eyal and A. Yariv also simulated this concept for
minimization of the maximum differential group delay within a given frequency band for
broadband PMD compensation filters [68]. IrON&r's paper, a synthesis algorithm and

a design concept that descends directly from Ozeki [69] is described. Filter types which
were proposed by R. Nocan not only be represented but also analyzed by means of this
algorithm. Therefore, we proposed a nondestructive method based on this algorithm for
determining the DGD profiles. This method would be of particular help for identification,
emulation, and compensation of higher-order PMD effects that persists after compensation
of first-order PMD.

4.2.1 Measurement Setup

A measurement setup consist of external cavity tuneable laser source, an integrated optical
network analyzer circuit having on chip broadband electrooptic polarization transformers
which are based oX -Cut, Z-propagation LINb@ and a set of two polarimeters. External
cavity tunable laser source is connected to the input of the fiber pigtailed and packaged
integrated optical network analyzer circuit. This integrated optical circuit is used to split
the laser signal between the reference and measurement branch. Electrooptic polarization
transformer which is on the measurement branch is used to geRelifferent polarization

states that are equally distributed onto the Poincar sphere. These output polarization states
are given as input to the device under test. The output of the reference branch is given to
reference polarimeter through 25 ps DGD section and it works as a frequency meter for
frequency correction. A measurement polarimeter is connected to the output of the device
under test. The laser is swept in the stepd®GHz between thé525 nm and1545 nm

where it had no mode hops. Figure 4.9 shows the measurement setup.
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Figure 4.9: Measurement setup for DGD profile characterization
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The frequency-dependent 3x3 rotation makiof the device, i.e. rows and colums
to 4 of its Muller matrix are thereby measured. Each ofthe 8 in our case) normalized
input (in) Stokes vectors results in corresponding output (out) Stokes vectors. Both vector
groups are arranged in form of a matrix

Sout = RSin. (4.3)
The rotation matrixXR is then obtained by
R = S,u:Si (SinSi) ™t (4.4)

Compared to a more compact method [70] with two launched polarizations this gives a
better immunity against polarization measurement errors. Any existing nonorthogonality
of R is removed by singular value decomposition of R according to

R = usv', (4.5)

whereu, andv are orthogonal (or more generally: unitary) matrices amsla diagonal
matrix with the singular valuedR is then redefined as an orthogonal matrix

R =uv'. (4.6)

From this frequency-dependent rotation matkx,the frequency-dependent Jones matrix,
J, is obtained in the form

A B
1= (—B* A*) AP+ IBE =1 (4.7)

The frequency domain results are multiplied by@? window centered at535 nm to
suppress errors introduced by the discontinuous borders. The inverse Fourier transform
yields the time-dependent Jones matrix with impulse response as elements. Its first column
is the finite impulse response to a horizontally polarized pulse while last column is the finite
impulse response to an orthogonally polarized pulse (vertical). It is sampled with a 785 fs
period. The structure is analyzed on the basis of sections having DGDs equal to this value.
The following section gives the core of the inverse scattering algorithm.

4.2.2 Inverse Scattering Algorithm

Analysis by means of an impulse response is a concept that is familiar to the electrical
engineers. If an impulse i.e. a Dirac delta function is applied to a linear time independent
network, the Fourier transform of the impulse response of the network is the frequency
domain transfer function of the network.

We first consider the impulse response of the single birefringent crystal (e. g. polarization
maintaining fiber) of Figure 4.10. The crystal is cut with its optic axis perpendicular to its
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Figure 4.10: Impulse response of a single birefringent crystal

length and with end faces flat and parallel. A linearly polarized impulse of the optical elec-
tric field is assumed to be normally incident on the crystal. Since the incoming signal is
normally incident, double refraction will not occur. The impulse will divide into two or-
thogonally polarized impulses whose amplitudes depend on the polarization of the incident
impulse with respect to the principle axes of the crystal. These two impulses travel with
different velocities and therefore, emerge at different times. The difference in time at which
they emerge from the crystal is given by

LAn

tp —lg = o (4.8)

whereAn is the birefringence of the crystal of length andv is velocity of the light in the
crystal.

Next, we would like to consider the impulse responsendfirefringent crystals of
arbitrary birefringence, lengths, and orientations. In general, we can draw some conclu-
sions: Impulse response ofirefringent crystals is a set @f impulses of finite duration.

The magnitude and polarization of these impulses are determined by the crystal orientations
while their relative times of emergence is determined by birefringence and lengths of the
crystals used. The most important conclusion is that the impulse response of series of bire-
fringent crystals is a train of impulses of finite duration. In contrast, the impulse response
of Fabry-Perot and multilayer dielectric-film filters consist of infinite train of impulses.

At the outset, two points should be stressed. First, it is assumed that the birefringent
crystals within the network are lossless. This means that at all points between first and last
crystal energy must be conserved. Energy conservation principle puts certain restrictions
on the impulse which have travel along fast'] and slow G)) axes respectively. This
condition is give by

FyE? |+ 57S, =0. (4.9)
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Second, it should be noted that

By

=S =0,
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(4.10)

This is just the statement of the fact that the first and last impulses ot afystal must
have propagated along its fast and slow axes, respectively.

To do analysis of such a chain of crystals of arbitrary birefringence, orientation, and
lengths, one can write an expression relating the input and output of each crystals. Angle
(©) represents the input coupling ratio and is known as orientation angle while angle (
represents the retardation or the differential phase. Therefore, one can write for the output
of the first (4.11-a), second (4.11-b), and third (4.11-c) crystals, respectively.

(5t)=(

cos ©,e "1

F? cos Oqe Y2 0

FEl 0 — 8in Oqe 172

S? sin ©ye 772 0

S3 0 cos Oge 772
F} cos O4et7¥s 0 0
F} 0 cos Oset7¥3  — gin Oge V3
Bl 0 0 0
S3 sin ©ze 7773 0 0
S3 0 sin ©4e77Y3  cos O4e77Y3
53 0 0 0

—sin @M1

) @)

Fy
Si

0
0

— sin O@get7¥s

0
0

cos O4e™ Y3

(4.11-a)

(4.11-b)

(4.11-c)

Since the pattern has be established, one can write an expression for the output from

then'® crystal (4.11-d).

cos ©,eVr

?12 0 cosO,eVn .
: 0
F;l;_l _ 0 :
g?l | sin Qe ¥ 0

:2 0 sin®,e ¥ .
sn : 0
0 0

0 0
O Fgl_l
. —sin ©,,et?¥n 0 :
0 —sin Q¥ || F=)
0 i
0 ' 5
SZ_I
cos O, Wn !
0 cos ©,e 7¥n

(4.11-d)

This is a set of non-homogeneous equations and has a solution if and only if the rank
of the matrix of the coefficients is equal to the rank of the augmented matrix. Several
possibility exists for determining the rank of the matrix. Applying one of these criteria, we
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get an expression
i

Sn
that relates orientation and retardation angles with the impulse response elements. The
calculation is an easy one, involving for any stage no more than the solution of only two
simultaneous equations.

Our procedure is to start with the output from thé crystal. From these two impulse
response elements’ ; andS;, we can calculate the crystal angtesand¥,, or the mode
conversion effect and the input to this crystal’(! andS”~!). Since the input to the®™®
crystal is nothing but the output of tHe — 1)*® crystal. Thus we work our way back
through the entire network alternately finding crystal angles and crystal inputs. Successive
repetition of this procedure yields the input vector which is two element smaller than the
output vector. Finally, when all crystal angles are found out, one is left with a two element
vector with one zero element that describes the input signal.

We have used a matrix of an elliptical retarder to describe the mode conversion effect
instead of the one used by S. E. Harris [67] or LolMr [66] because transmission fiber
can have not only linear birefringence (due to core ellipticity, micro-bending, transverse
stress) but also circular birefringence (due to fiber twist) and may vary along the fiber [18].
Single-mode fiber must, therefore, be represented by an elliptical retarder matrix at a given
optical frequency.

Our inverse scattering algorithm can display a full length DGD profile with 40 sections.
Experimentally inverse scattering range was chosen te B&.5 ps.

tan ©,,e?¥" =

(4.12)
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Figure 4.11: DGD profile for back-to-back measurement

4.2.3 DGD Profiles in Fibers

At first a back-to-back measurement without DUT was performed. In this case, all DGD
sections (= rods) should be cancelled by oppositely directed adjacent ones. This is indeed
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the case in the above Figure 4.11. The DGD profile travels 20 sections forth, then another
20 sections back on the same path, as if returning from a dead end. As a consequence, one
has the impression to see only 20 sections, which in reality hide the other 20 sections. Input
arrow tip and output arrow back end coincide witkin 00 fs which is a measurement error
since the true DGD was 0 fs. So the simplified back-to-back DGD profile is a frequency-
independent polarization transformation specified by the arrows where input and output
arrows indicates the local principle states of polarization of the relevant DGD-sections.

Next DUT was a~ 11 m long polarization maintaining fiber (PMF) with 25 ps of
DGD. It yielded a straight25.12 ps long line (32 sections) followed by a short dead end of
2 x 4 sections (Figure 4.12).

)
[ps] 5|

175 075 0%
-+ (1 [ps]

Figure 4.12: DGD profile of onex 25 ps DGD section

Figure 4.13 shows a DGD profile when two pieces of PMF each with2 ps and
~ 6 ps of DGD are concatenated wild % mode conversiord§° rotation) in between.
The long section and the short section which also contains a short deadZrd skction
are clearly identified. Angle between the sections wa¥)° as expected.
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Figure 4.13: DGD profile of two & 22 ps and~ 6 ps) DGD sections with 58 mode conversion in between
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4.2.4 DGD Profiles of Distributed PMD Compensator in LINbO;

Fiber-pigtailed and packaged-cut, Y -propagation LiINb@-based PMD compensator was
fabricated in-house, similar to that in [22]. Abadtitin-phase and quadrature TE-TM mode
converters were distributed over 95 mm long waveguide. An average DGD was about
25 ps. Without any applied voltages the DGD profile was similar to that of Figure 4.10.
Figure 4.14 shows the DGD profile bent into a full circle when two full mode conversions
were distributed over the whole chip occur in one quadrature. A dead end with approx-
imately 2 x 4 sections is also seen because the total DGD value of the chip is less than
inverse scattering range. Pigtail-shaped profile of Figure 4.15 results when only one and
half mode conversions occur in one quadrature, but they were concentrated & /albaofut

the total DGD. This demonstrates the versatility of the distributed PMD compensator with
respect to emulation and compensation of higher-order PMD effects which persists after
compensation of first-order PMD.

Figure 4.14: DGD profile of LINbO; PMDC with 2 full mode conversions distributed over whole chip length
in one quadrature

4.2.5 Conclusion

The frequency-dependent reducedlIMr matrix measurement enables us to calculate the
corresponding Jones matrix and hence the impulse response of the devices with polarization
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1 [ps]

Figure 4.15: DGD profile of LINbO; PMDC with 1 and 1/2 mode conversions distributed over whole chip
length in one quadrature

mode dispersion. From the latter, the differential group delay profiles are determined by
inverse scattering. These results are summarized in [71]. These allow to identity, emulate
and compensate the effects of higher-order PMD that persists after compensation of first-
order PMD.

4.3 Conclusion

An integrated optical PMD compensator is designed and optimized for maximum electro-

optic efficiency. PMD compensator for high bit rate applications are not only proposed but

also evaluated for their performance. This includes the use of tilted waveguides or mixed
ferroelectric materials such as lithium—niobate—tantalate crystals where birefringence and
hence DGD can be tailored. This is particulary advisable at data rates of 40 Gbit/s and
beyond where small DGD needs to be compensated. An inverse scattering algorithm is
implemented for characterizing the devices with PMD. Some fiber and integrated optical

devices with PMD are characterized for different DGD profiles using in-house developed

integrated optical network analyzer. The versatility of such a PMDC is demonstrated and
is found to be suitable for generation and compensation of higher-order PMD effects.
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Result Discussion and Future Scope

The integrated optical network analyzer basedXotut, Z-propagation lithium niobate

for the vectorial structure characterization of optical fiber Bragg gratings is reported. The
frequency-dependent complex reflectance Jones matrix is measured by interferometry and
transformed into time-domain. From the impulse response matrix, the vectorial grating
structure is determined by inverse scattering. Optical network analyzer was also used to
measure frequency-dependenildr matrix of the optimized polarization mode dispersion
compensator inX-cut, Y-propagation lithium niobate and its different differential group
delay profiles are determined by inverse scattering using time domain impulse response.

5.1 Characterization of LINbO;3-based IOC

On this integrated optical circuit several optical components such as polarizers, phase
shifters, and broadband FeTM mode converters are integrated onto each branch of the 3
dB optical power splitter. This IOC together with the 3x3 fiber coupler forms a measure-
ment interferometer. Initially, all of the above mentioned components are integrated onto a
test substrate. This test circuit was used to evaluate the performance of each of these inte-
grated optical components. Indeed this has complicated the whole work. Several problems
were encountered during the entire development of this integrated optical circuit and are
listed below.
(1) Higher propagation losses for TE-polarized modes
(2) Poor power splitting uniformity of the 3 dB optical power splitter
(3) Poor polarization extinction ratio of on-chip TE-pass polarizers
(4) Static TE-TM mode conversion
(5) Nonideal behavior of on-chip TE-TM mode converters

Step by step the characterization data was analyzed. Latter on, the device fabrication
steps were also reviewed. It was found from the device fabrication history that this test
integrated optical circuit was not realized using the principal-axigsXis) propagation but
was realized to use neai-axis propagation. Specifically, the substrate was cut an angle
of 2° degrees with respect to the princigalaxis. This off-axis propagation was used to

79
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compensate the modal birefringence and to make the on-chip TE-TM mode converters
more efficient.

Ti-indiffused channel waveguides in LiNgGQhemselves were having low propaga-
tion losses. But the developed device shows very high insertion loss due to the fact that
1.5 mm long TE-pass polarizes were realized directly on top of the waveguide using an
aluminum as a cladding metal. This not only gave excess propagation losses (first issue)
but also the differential propagation losses for TE-polarized modes. This resulted into poor
power splitting ratios for the TE-polarized modes (second issue), due to nonuniform metal
cladding. It also resulted in poor polarization extinction ratios for the TM-polarized modes
(third issue).

This off-axis propagation results in the undesired static mode conversion. This not
only makes the polarizers but also mode converters nonideal. This is because the TM-
polarized mode is regenerated in the waveguide after TE-pass polarizers. This regenerated
TM-polarized mode degrades the polarization extinction ratio of the on-chip polarizers
(third issue). Whether one physically rotates the direction of propagation iy the
plane globally or rotate the index ellipsoid electro-optically in th&-plane locally, the
net modal birefringence compensation effect is the same. In this compensation process,
one always ends up with the undesired imaginary coupling coefficient between two, other-
wise, orthogonally polarized modes and this mode coupling results in the undesired static
mode conversion (fourth issue). If one compensates for this modal birefringence globally,
then the phenomenon is length-dependent and beyond any physical control due to inher-
ent lithium niobate anisotropy. If one compensates for it locally, then it is field-dependent
(fifth-issue). In principle, it is possible to compensate for this undesired polarization mode
coupling electro-optically.

The only option to reduce this undesired static mode coupling is to fabricate optical
waveguides along the principal axis. Itis to be ensured that the waveguide is exactly parallel
to the Z—axis during photolithography. Otherwise, the LiNp@nisotropy will play the
undesired role. If the waveguide is exactly parallel to hexis then the voltages required
for compensation are ideally symmetric; otherwise, they are asymmetric in practice. Of
course a relatively high bias voltages will result.

Therefore, in the next generation of these integrated optical circuits, principal-axis
propagation was used. Each component is fabricated separately on a Ti in-diffused optical
channel waveguide in lithium niobate and characterized rigorously to give feedback to
device fabrication steps and for the design of new versions of the mask plates. Three design
iterations were done including the mask design in order to achieve the target specifications
set for this integrated optical circuit. The issues which were resolved and gave significant
improvement are summarized below.

The only remedy to improve the performance of the polarizers was to use principal-axis
propagation for device development. The other possibility was to introduce a buffer layer
of right dielectric constant and right thickness in between the waveguide and aluminum
metal cladding so as to improve the phase matching condition between the surface plasmon
mode and the TM-polarized mode. Both options were implemented. They have drastically
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improved the polarization extinction ratio of the TE-pass polarizers and minimized the
excess propagation losses for the TE-polarized modes. Several materials have been tried
out. It was found out experimentally that 27 nm thick yttrium oxide based polarizers gave
an extinction ratio o 30 dB for 3 mm long polarizers with 500 nm thick aluminum metal
cladding. To some extent, this solution has also improved uniformity of power splitting for
the TE-polarized modes.

Several 15 mm and 20 mm long phase shifters were realized on straight optical channel
waveguides. They were characterized using the Fabry-Perot technique. Voltage x length
product for these phase shifters was found out to be 60 V-cm.

The mode converters with 30 mm long electrodes with 6 apth&aps were charac-
terized. The voltage required for full TE-to-TM mode conversion and vice-versa was 10 V.
Needed bias voltages wet€e38 V.

5.2 Longitudinal Structure Characterization

Optical frequency domain interferometry was used in the longitudinal structure charac-
terization of optical fiber Bragg gratings. Once the frequency-dependent complex reflec-
tion coefficient for reflective devices or complex transmission coefficient for transmissive
devices under test are measured correctly in the frequency domain then the task of deriving
the longitudinal structure is straight forward. This type of optical characterization method
needs high-speed, single-frequency, broadband tunable laser. The tuning range limits the
spatial resolution but large grating lengths may be investigated due to high coherence of a
single-mode laser. Such type of lasers are very difficult to find in the shops. External cavity
single-frequency tunable lasers with sweeping option are now commercially available in
the shops but are very expensive.

The integrated optic on-chip phase modulators are used for digital phase shifting and
performs AC rather than DC measurement in order to increase sensitivity. In fact, these
phase modulators ak-cut, Z-propagation lithium niobate are also not ideal if the polarity
of the applied voltages is such that it reduces the modal birefringence then the net effect is
that this applied voltages creates an electric ffg|dvhich will cause both stretching of the
index ellipsoid along the principal-axes as well as the rotation of the index ellipsoid cross-
section in theyz-plane. This indeed gives undesired static mode conversion. There are
polarizers after the phase shifters which are used to suppress negative frequencies generated
due to serrodyne modulation; in fact, these polarizers do convert these polarization changes
into undesirable intensity changes. One solution was to found out the correct polarity
of the applied voltages so that only phase is modulated and not the polarization. These
measures were taken into account while configuring the hardware of the network analyzer.
This concept of digital phase shifting to increase sensitivity was successfully demonstrated
but finally was not used for measurement because it simply took more recording time.
Especially, for such interferometric measurements, the measurement time has to be shortest
in order to minimize the DC thermal drift. There is always a trade off between sensitivity
and DC thermal drift.
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Initially, tunable twin-guide laser was employed as tunable laser sources for measure-
ments. Unfortunately, this laser died due to malfunction in the laser control unit. In fact,
the temperature controller failed to work. Latter on, narrow linewidth DFB lasers from
two well known companies were tried out during this work. The Furukawa laser was hav-
ing very strange behavior and could not be used even for scalar measurement. On the other
hand, JDS-uniphase laser worked satisfactorily for scalar measurements. But JDS-uniphase
laser was never stable within the scan and from scan-to-scan. Moreover, the TE-TM mode
converters also had severe DC drift. This gave lot of problems in finding the common
phase for implementing the orthogonalization scheme devised by D. Sandel. Therefore,
instead of using this scheme, the on-chip TE-TM mode converters were calibrated with
respect to the commercial rotating waveplate polarimeter to generate orthogonal pairs for
the vectorial measurements.

One uniform fiber Bragg grating at 1548.25 nm »f 95% reflectivity and 0.2 nm
bandwidth is characterized for longitudinal structure in order to demonstrate the utility of
this integrated optical network analyzer. The results are summarized in chapter 3. The
longitudinal structure of this commercial fiber Bragg grating showed a single burst. This
was also free from birefringence and dichroism. Shortcoming of this method is that it needs
single-frequency, broadband, and high-speed, tunable laser source. Future scope would be
either to realize it somehow or to buy such laser with sweeping option and integrate it with
the integrated optical network analyzer to complete this work.

5.3 Integrated Optical PMD Compensator

The integrated optic TE-TM mode converters are optimized to have highest electro-optic
efficiency by simulation studies. Two-phase verses three-phase TE-TM mode converters
are compared and latter outperform the former one but need not in all cases. Frequency-
dependent reduced iMMer matrix of the fabricated, fiber pigtailed, and packaged PMD
compensator is measured using the integrated optical network analyzer from which the
Jones matrix is calculated and hence the impulse response of the devices with polarization
mode dispersion. Differential group delay profiles of this device are determined from the
time domain impulse response by inverse scattering. This allows to identify, emulate, and
compensate the effects of higher-order PMD that persists after compensation of first-order
PMD.

Distributed PMD compensator performance can be pushed toward highest bit rates if
they are implemented in mixed ferroelectric crystals like lithium—niobate—tantalate. A Ta
contenty in LiNb,_,Ta,O3 of up to 0.5 is good to realize a PMD compensator for about
160 Gbit/s. Future scope would be to try this option.
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5.4 Conclusion

This chapter has summarized these two application of the lithium niobate-based integrated
optical circuits to optical communication. In this chapter, some of the fundamental and
engineering problems encountered during this work, are described, in details. Moreover,
the attempt has been made to systematically analyze and solve most of these problems.
Future scope of this work is also presented.
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Appendix A
Point Matching Method

Point Matching Method proposed by Marcuse [40], in 1989, is an effective method for
solving the Laplace equation for the electric fields in inhomogeneous medium by employ-
ing a series expansion of the potential in terms of functions that are themselves the solution
of Laplace equation for a homogeneous medium. The solution for stratified dielectric in-
homogeneous medium is found by matching the solutions in the different homogenous
layers with the help of boundary (continuity) conditions at a finite set of discrete points
(Point Matching). This yields solution with a sufficient accuracy with series expansion
method that does not involve any iteration.

A.1 Formulation

Figure A.1 shows the geometry of the problem. It consists afaut, z-propagation
LiNbO; crystal €, = 43 ande, = 28) that extends fromx = —D to z = —d. From
x = —d tox = 0 there exists a buffer layer withy, = ¢, = 3.8 (typically Si0,), and at
x = 0, plane metal electrodes are deposited which are assumed to be infinitely thin and per-
fectly conducting. A medium with dielectric constant= «,;, = 1 (usually air), infinitely
extends itz direction fromz = 0 plane. The number of contacts are arbitrary, but they
are assumed to be parallel and to extend infinitely in positive and negativection.

The electrostatic field vectdt, generated by potentials applied to the electrodes, can
be expressed in terms of potential functioms

E = -V (A.1)

In each dielectric region, the potential must be a solution of Laplace equation, which in
anisotropic medium assumes the form,

&0 O
g, 02 Oy?

In the isotropic regions 1 (air) and 2 (silicon dioxide buffer layer), we have: ¢, = ¢;
with j = 1or?2.

0. (A.2)
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Figure A.1: Schematic of a typical electrode structure (CPW) on top of the layered dielectric substrate like
LINbO3

The electric potentials applied to the metal electrodes imposes a dgfoefgendence
on the potential function in the plane = 0. This field variation could be described by
the Fourier integral, but for numerical calculations the discrete series are easier to handle
than integrals. Therefore, potential function is expanded in terms of cosine functions. The
functionscos(v(m/L)y) forms a complete orthogonal set over the dontain y < L for
integral values of. The functions

O, = exp(jzwi(%)x) cos(l/(%)y) (A.3)
oy = COSh(I/FL(%)ZE) cos(l/(%)y)
G3, = Sinh(um(%)x) cos(v (%)y)

¢4 = a+bxr with
€
kK = /2

Ex

are the solutions of Laplace equation (A.2). Thus, one may express a potential fupction
in region 1 and 2 as follows:

00 o -
Y = ag + Z: a,e 1) COS(I/(Z)y) for >0 (A.4)

Py = by + cox + Z T 4o,enD)e ]Cos(y(%)y) for 0>x>-d (A.5)

v=1

In region 3, the form of potential function depends on whether the region is infinitely
extended or it is terminated by a ground plane. In Case of an infinitely extended medium,
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Figure A.2: Potential and electric fields of a two-electrode (CS) phase shifter computed using PMM in the
plane of electrodedd/ps = 50 um, Gps = 15 pm, 0.3 pm thick buffer withey, = 3.8. (a)¢ (b) £y (c) E,

potential function is expressed as
Y3 =do + ;d,,e”“(z)(”d)cos(u(%)y) for x < —d. (A.6)

The different forms of the series expansions in (A.4)—(A.6) are dictated by the boundary
conditions. Since potential can not become infinitgads— oo, the linear term inz
is absent from (A.4) and (A.6). For the same reason, only the exponential function whose
value decreases with increasing valuéxois permitted in the series expansion of (A.4) and
(A.6). Since the functioros(v(7/L)y) is an even function, the potential is automatically
continued as an even function in the domaih < y < 0. Moreover, it is periodic with a
period2L and implies that the solution behaves as though the structure were continued as
a mirror images, imaged on the plape= 0 and as if this extended system is periodically
repeated with periodL.
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Figure A.3: Potential and electric fields of a coplanar-electrode (CPW) mode converter computed using
PMM in the plane of electrode$¥Vy;c = 10 um, Gyi¢c = 6 pm, 0.3 pm thick buffer withe, = 3.8. (@) ¢

(b) Ey (c) Ex

A.2 Satisfying Boundary Conditions

At dielectric interfaces, the electric field must satisfy two boundary conditiongyj.and

e, E, must pass continuously through the interface. The continuity,0f= —0v/0y ev-
erywhere in the plane = constant is assured if) is continuous at the interface. Therefore,
we may replace the condition for continuity Bf, by the requirement that is continuous

at the dielectric interfaces. Continuity gfi.e. (i) = ¥3 atz = —d) ande,0¢/0x i.e.
(€20vn/0x = £,015/0x atx = —d) for all values ofy requires that the coefficients of
corresponding termss(v(w/L)y) of the expansions (A.5) and (A.6) are identical at plane

Tr =

—d. This leads to two simultaneous equations expressimand ¢, coefficients in

terms ofd, coefficients and leads to the following expressions for a structure without a
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ground plane:

1 s
b, = 5(1—Hi—2)e”<ﬁddy (A.7)
6, = S(1+rZ)eDg (A.8)
v 2 o v .
bo = do and (Ag)
Ch = 0.

The boundary condition in the plane of the (vanishingly thin) electrodes-ab requires
that x assumes same value on either side of the interface. This requirethendf =
O, /dy at x=0) immediately leads to the conditions

a = b,+c¢, for v=12,--- (A.10)
apg = b(). (All)

On the electrode, we require instead that the potential funetishould be equal to the
applied voltage¥ (y) (v1 = V (y) at x=0). We write the electrode potential as a function of

y to indicate that its value is different on different electrodes even théigh is constant

on each individual electrodes. Therefore, one obtains (A.12) directly with the help of
(A.10) and (A.11). But the continuity of,.0v/0x now holds only in the gaps between
the electrodes and not on the electrodes themselves i.e. te,8ay (Ox = £,0v,/0z at

x = 0) and therefore one obtains (A.13)

bo + Z v+ ¢)cos( (Z)y) = V(y;) ontheelectrodes (A.12)
L ity 5 m
Zeo+ > V(2 =1)b, + (2 +1)eJeos(v(5)y) =0 inthe gaps (A.13)
s €9 €9 L

The labelj is attached tq, coordinate to indicate that the one satisfies the boundary
conditions in the plane = 0 only at a finite set of discrete poinis= y,. If there areN
points in planer = 0, there will be/N terms in the series expansion in order to provide as
many equations as there are unknown coefficiéntdt is necessary to calculate only
coefficients since,, b,, andc, all depend oni,. There are onlyV equations since (A.12)
is used only on electrodes and (A.13) is used in the gaps. Therefore, one needs only to
compute the elements of matu;, in the system of equations given by (A.14).
i, on the electrodes

in the gaps (A-14)

Ajudl/ — |: g(yj)

v=0



90 Appendix A Point Matching Method

Matrix inversion of A;, leads to the determination of the unknown coefficiefitsvia
(A.15).

N-1
- -1y | V(y;) ontheelectrodes
dv = Zo (A7) [ 0 in the gaps (A.15)

The matrix inversion can, of course, be done numerically with the help of computer.

A.3 Computation

Depending upon the device geometry, the electrode structure is defined and a volt array
V (y;) is assigned with appropriate voltages akg, matrix is generated with the help of
(A.12 and A.13). Thedx = B type of matrix equation is solved numerically with the
help of computer by using lower upper (LU) triangularization and lower upper (LU) back
substitution subroutines. The solution array replaces the volt affgy). Once thed,
coefficients are known, themn,, b,, andc, can be calculated. After this the potentials

19, andiy are generated with the help of (A.4)—(A.6). The electric field compongnts

and £, are calculated by analytically taking the first derivatives/ef ¢, and;s with
respect tar andy. This completes the computation of electrostatic fields in air, buffer and
lithium niobate regions of a layered dielectric structure.

Figure A.2 above shows the potential, electrostatic figldV/um, and electrostatic
field £, V/um calculated for the realized phase shiftey & 40 V) on X-cut, Z-propagation
LiNbO3, where y-directed fieldr, is used for the phase modulation.

Figure A.3 above shows the potential, electrostatic figldV /um, and electrostatic
field £, V/um calculated for the realized TE-TM mode convertéy{ = 10 V) on X-cut,
Z-propagation LINbQ@, where x-directed field, is used for the mode conversion.
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Generation of Optical Fields

Optical fields within the titanium (Ti) in-diffused optical waveguides in X-cut, Z-propagation
LiNbO; are well approximated by Gaussian and Hermite-Gaussian functions in width and
depth directions, respectively [72]. Electric fiel)(x, y) becomes

[§)

g2 y

x 2= Y
Eo(z,y) =(—)ex e (B.1)

Wy

wherew, andw, are the(1/e) widths of the electric field profiles in width and depth
directions, respectively. In the computation of field overlap intedrags defined in [39],
one needs to use the normalized intengifyz, y). It is possible to measure only the Full
Width Half Maximum (FWHM) of the intensity profiles,, , andwy,,  along the width
and depth of the Ti in-diffused waveguides in LiNb&xperimentally. One needs to fit,
andw, to experimentally measured valueswf, , andw,, of the measured intensity
profiles.

For Gaussian approximation, one can wrig = e 2w/ = 1/2 for the half

of the maximum intensity ang,, = wy+/In2/2. Butwy,, = 2y,,» and therefore,
wy = wyfwhm/ v 21112'

For Hermite-Gaussian approximation, the situation is little bit different, one can write
E? = (22 /w?)e*/) for the intensity as before. This function will have a maximum
value atz = (1/2)e~'. For half of the maximum valuey? = (xf/Q/wi)e_2(x?/2/w3) =
(1/4)e~!. There are two solutions:; = 1.1572w, andx, = 0.34056w, if one solves this
for z1 /5. FOrwy,,,.. = v1 — x2 andwy = wy,,,,./0.81667.

It is necessary to adjust the peak of the optical intensity at right position along the
width and depth of the Ti in-diffused optical waveguide. Therefore, one can introduce the
normalization constants, andC, as well as the p and q variables for the optical intensity
as

E2(x, y) = C2(F—1)2e 2050 2200, (B.2)
Wy
The p value shifts the peak position B (z, y) along width of the waveguide while the q
value shifts the peak position @ (z, y) along the depth of the waveguide.

91
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It is essential to take into account the boundary conditions imposed ab, that the
interface between the lithium niobate and buffer layer, which is usually, a silicon dioxide
layer. The reason because optical index of lithium niobate is 2.2 and that of silicon dioxide
is 1.46. Due to this large discontinuity in the optical refractive indices of these two ma-
terials, the optical field intensity decays exponentially in the buffer layer regardless of the
thickness of the buffer layer. In the buffer layer, the optical figld obeys the equation

OF,,
ox

wherey = ky/NZ; — N2 andk = 27 /.

Boundary conditions imposed dn,_, for the TE-polarized optical field are

—E,, (B-3)

B, = B, (B.4-a)
OF,, OF, .
or  Ox (B.4-b)

whereF,, andE,, _ are the optical fields in the buffer layer and in the LiNh@espec-
tively. If one solves (B.3) therk,, = e~ for the fields in the buffer region. Since,
one needs to use the normalized intensity, a normalization corfstasintroduced in the
solution of (B.3) andE? = CZe **. One has to apply the second boundary condition
(B.4-b) aty = 0, to get the relation between the two normalization constap@sndC;, as

— _C‘r

C, = (B.5)
YW,

To find the value of;, one has to apply the boundary condition (B.4-a) at 0 to get the
equation
BV |

gewi — = =0. (B8
7
Solving for g, one gets
1
q=— -
7e(iLgmfti)))ert[w(gz—wg{)})125 5 (B.7)
Lambert w(z) =2 — 2? + ng - §x4 + ﬂxB and & = (72%2()

Similarly the boundary conditions imposed 6, for the TM-polarized optical mode
are

ngOxb = gLNEOXLN (B8'a)
OE,,, OF,,, .
€p ay = fNT (B.8-b)
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wheree;, ande, are the dielectric constants of the buffer and the X-cut lithium niobate
respectively. These conditions modifies the equation (B.7) to

-2 1
Sgewf — = =0 (B.9)

wheree;, = N2 ande, = N2. Solving for g, one gets

Ny
q:N2 e(lLambert[w(ﬂ)])
T e ) (8.10)
3 8 125 —2N,
Lambert w(z)—a*+ 50" gu'+ Spatand e=(3g ).

For normalization of the Gaussian profile, one uses the condition

C’?/ |Eoy|2dy =1
- (B.11)

1 2
Cy=]—1/=

Wy ™

For normalization of the Hermite-Gaussian profile, one uses the condition

0 00
C? E, |*dx + C} B, |*dr = 1.
X X b 0 X

c 1
= — (B.12)
\/QV;w}% + %wx 2
Cx
Chp=—
TWx

These normalization constartts, C,, andCy are used to generate the normalized polarization
dependent optical intensity profiles in the buffer region and lithium niobate region, respec-

tively.

E%(x, y) :C’I?)e_h(dﬂ”)C’y2672(%)2 buffer region

(B.13)

d - z—q —o(¥=p
E%(x, y) :C’f(u)%_g(dtvx )QC’}?@ 205 LiNbOg region

X
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Appendix C

Derivation of Coupled Differential
Equations for FBG

C.1 Maxwell Equations

Lightis an electromagnetic wave phenomenon. Its electric and magnetic field is represented
by the four electromagnetic field vectors that are functions of positigm] and time

t [s]. The four vectors — electric fiel@ [V/m], magnetic fieldH [A/m], electric flux
densityD [C/m?], and magnetic flux densi$ [Wb/m?| governs the well known Maxwell
equations:

VXE——%—]?
D (C.1)
VXH:J‘FE

HereJ [A/m?] is the current density an¥l = (9/0x, 9/dy, 0/9=) is the del operator.
The following continuity equation governs the current denditgnd the charge density

p [C/m?]:

V= (C.2)

Use of (C:1) and (C:2) and the vector idenfity- V x a = 0 one gets

V-B=0
: (C.3)
V-D=p
Fields are assume to have a periodic time dependence and are written as
E(r, t) = Re[E(r)e’@ %] ete. (C.4)

95
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C.2 Constitutive Relations

If the polarization generated in the light transmitting mediu® i€’ /m?| and the magneti-
zation isM [A/m], the electric flux densityD and magnetic flux densifi are, respectively,

D=cE+P

B = po(H+ M) (€5)

Heree, [F/m] and i [H/m] are the permittivity of vacuum and the permeability of free
space, respectively and their values are as follows.

g0 = 8.8541878 x 102 [F/m]

o = 47 x 1077 [H/m] (€.6)

If the medium is isotropic, linear, and non-dispersive, the polarizai@mnd the magneti-
zationM are obtained as follows:

P = 2gOXe:E

(C.7)
M = IuOXmH-

Herey. andy,, are the electric susceptibility and the magnetic susceptibility respectively.
If equations (C:7) are substituted into equations (C:5), respectively, then we get the relative
permittivity e, and the relative permeabilify, as follows.

r =14 Xe
c Xe (C.8)
Hr = 1+ Xm
Therefore the permittivity and permeability, are
€ = E0&r
0 (C.9)
b= ok
The constitutive relations are as follows:
D=c¢cE and
(C.10)
B=uH

The refractive index can be obtained from

n = \/Erhs. (C.11)

But for most optical materials, (say glasg),= o andu, = 1, the refractive index:
simply becomes

n = \/e. (C.12)
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C.3 Wave Equation

For deriving the vector wave equation for the electric figldfor an isotropic lossless
medium with no wave sourced & 0 andp = 0) with uniform permeability.y, one has to
take the curl of the above Maxwell equation (C:1) and make use of (C:10) to get

VXVXEZVX—a—B:—QVXB:—/LOQVXH
ot ot ot (C.13)
9*°D O’E '

= TMGE T T

The equation (C:3) for the source free medium becorResI) = 0) and making use of
the following vector identities

V-(ab) = a(V-b) + b - (Va)

C.14
VxVxa=—-V?a+ V(V-a) ( )

one gets the wave equation
VE+V(E-Vine) = Hof o and € = goe,. (C.15)

C.4 Coupled Differential Equations for FBG

One can note that the quantities= ¢, (x, y) and hence the transverse compondgjts-
(E,, E,) are independent of.

Ercore fOr % +y° < R?

Er,clad for 1‘2 —+ y2 > R2 ’ (C16)

e =¢e(z, y) =
whereR is the core radius of the single mode fiber. Therefore, for the fiber Bragg grating,
the above vector wave equation (C:15) Wik, t) ande, = ¢,.(z) simplifies to

o 0?
For Bragg grating,(z) = n*(z) from where

1 2
n(z) =ng + éAnpp(z) COS(KZ + or(2))
1 2
= no + Rel 5 Any, (2) B )] and - &, = KW . (C.18)

1
= ng + Re[Ang(2)e*9?] and  Ang(z) = §Anpp(z)ej¢k(z)
Peak to peak refractive index modulation amplitude satisfies the condition

Any, << Neg. (C.19)
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Using the nomenclature [54], electric field of the forwdll(z, ¢) and backwardEy(z, t)
propagating waves in the Bragg grating are written as

E 1) = RelD J(wt—kz)] _ Reld J(wt—kz)

(5 1) = ReDECCI = R0 e o

Ey (2, t) = Re[U(2)e!@HF)] = Re[u(z)e’@++2)] Co
wheren, is the effective refractive index of the grating ands the free space velocity of
light. Taking the second derivatives of (C:20) with respect to tinone gets

2

8_2Ef(27 t) = Re[—w?d(2)e’ @+
ot (C.21)

2
ﬁEb(z, t) = Re[—w?u(z)e! @ik

Similarly by taking the second derivative of (C:20) with respect to one dimensional space
coordinatez, one gets

0? 0 0?

B — — 2d — 2k—d —d J(wt—kz)

52 Br(2 £) = Rel[(=k2d(2) — 2k-d(2) + 5 d(2))e ") o2
82 a 82 . .
@Eb(% t) = Re[(—k*u(z) + j2k‘£u(z) + @u(z))ej(wt—&-kz)]

Term with second order derivative of fields with respect to one dimensional space coordi-
natez are so small that these terms can be neglected to give

2
7 Ei(z, t) = Re[(—k*d(2) —Jngd(z)))ej(wt—kz)]
o 0 C.238
7 2 4 (wt+kz) ' ( ' )
= — . 2w 2
5. Ey(z, t) = Re[(—k*u(z) +‘72k8zu(z))e ]

Total fieldE is the superposition of the forwalg (2, ¢) and backward,,(z, t) propagat-
ing fields in the wave equation (C:17).

;—Z(Ef(z, t) + Ey(z, 1) = ”(2)2 g—;mf@, t) + Eu(z, 1)) (C.24)
ya CO

Substituting for the second derivativeskf( z, ¢) andE, (z, ¢) with respect ta andz from
(C:21) and (C:22) into (C:24) yields
Rd(—k*d(2) —j2k§d(z)))e](m_kz)] + Re[(—k:2u(z)+j2k§u(z))ej(m+kz)] =
z z

1
g(ng + 2noRe[Any(2)e’*?)])Re[—w?d(2)e’ @ %) £ Re[—w?u(z)e! @),
0

Simplification of (C:25) using (C:20) gives

(C.25)

- j2k§d(z)e_ﬂ“ + j2k§u(z)eﬂ“z =
, 77 & (C.26)

ad 2noRe[Any(2)e?*s2)](d(2)e ™% + u(z)e’).

2
Co
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Grating constant, as defined in (C:27) is approximately equal to twice the propagation

constant: of the wave [ = 27 /).
kg ~ 2k (C.27)

Equation (C:26) contains to first order differential equations:

) w?

—2k—e**d(z) = —noe’™[Anj(2)e " ]u(z)
0z ch
; o (C.28)
]Zkaeﬂwu(z) = —C—gnoe_ﬂ”[Ank(z)e]kgz]d(z)
Simplification of (C:28) delivers
9 4() = 3 [Ang ()" u(z)
0z 2¢o
5 b . (C.29)
I — ., —1(2k—kg)z
5ou(e) = 1y [Am(2)e ld(2)
The coupling coefficient
K(z) = jiAnk(z) (C.30)

260
modifies the simplified expressions for the coupled differential equations for the fiber Bragg
grating as

0

&d@) = K*(2)e? PRy (2)
94
0z

The forward and backward propagating waves are also the functions of. thbhéhe Bragg

wavelengthw = wy and the propagation constant kq,

. (C.31)
(2) = k(z)e 7 H%d(z)

Ef(Z, t) = Re[a<z7 t)ej(wot—koz)]

C.32
Ey(z, t) = Re[t(z, t)e/wottko?)] ( )
Subtracting (C:20) from (C:32) respectively,
a(z t>ej[(w07w)t7(kgfk)z] _ a<z t>e][(w0*w)(tf:—8z)] _ d(Z t)
’ ’ no ’ (C.33)
ﬁ(z, t>€][(wo—w)t+(ko—k)z} _ ﬁ(z, t>6J[(w0*w)(t+az)} — u<Z7 t)
Differentiating (C:33) with respect to 1-D space coordingte
9 (A(e, et = L)
0z 0z (C.34)

0 [~ wo—w 20,
o (u(z, t)ellom )+ gg ”) = —u(z)
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Simplification of (C:34) gives

o) (t-202) (0 ~ Mo g 9
: (52e. )+ 22— w0ie, 1)) = £-d)

Co

(C.35)

j[(wo w)(t+ z)] 0 . @ _ 3 _
(3 )= 2~ )iz ) ) = (e

The terms containing(w — wo)d(z, t) andj(w — wp)u(z, t) are obtained if one differen-
tiates (C:33) with respect to time
~ O ~
Jw—wo)d(z, t) = =d(z, t)
ot (C.36)

Jw—wo)u(z, t) = gtﬁ(z, t)
Therefore (C:35) becomes

Meo—)t-202)]r O 5 0y _9
¢ (57d(z D)+ - 5pd(z O] = 5-d(2)

wo—w LZ 8 ~ 8 ~ a ’
6][( 0—w)(t+3¢ )][ o (2)

The equations (C:35) and (C:37) into (C:31) gives

(C.37)

wo—w)(t—20 2 n d
Nwo—w)(t=27 )1[%+C_8%]d(z t) =
K(2)* R (2, 1)e!

eJ[(WO—w)(tJrLZ)][ 9 _ mg 8]6(27 t) = .

=
€
=)
|
£
-
—~
~ <
+
‘3
=)
i3
=

(C.38)

0z c_oa

ko (2)eI2h—ke)2 d(z t)ej[(wow)(t*%Z)]
Simplification of (C:38) yields the equations (3.12) used in chapter 3.

(%+%%ﬂ@w:m@m%w

0 n08

(5 — 222z ) = w2 1)

(C.39)
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Derivation of Discrete Equations for
FBG

D.1 S-Matrix Characterization of Optical Components

At network level, a component is considered as a “black box”, isolated from rest of the
world except for a few designated ports that are accessible for external connection. For
network analysis purpose, a component is completely characterized by the relations be-
tween the signals or fields available at these ports. This type of component characterization
is called port characterization. In the frequency domain, the relations between the various
fields at the ports of a linear, time-independent optical component such as a FBG are es-
sentially a set of linear equations. These linear equations are algebraically represented by
a matrix. For the characterization of active component, an extra vector describing a signal
generator may be needed.

The S-matrix characterization is well suited as a port characterization of optical com-
ponents. However, due to the fact that in optical waveguides there are two guided modes,
each physical port of an optical component is actually equivalent to two strictly single mode
ports. An optical component could be treated in exactly same fashion as a microwave com-
ponent by separating logically two virtual single mode ports that corresponds to each one
of the physical ports. This logical separation is a problematic and confusing and therefore,
itis better to regard each port both physically and logically as a single entity. This approach
is more promising, but there is a price to it: the scattering parameters become 2x2 matrices
and theS-matrix becomes a “super matrix”, i.e. a matrix whose elements are 2x2 matrices
instead of regular numbers. This is most fundamental difference between the Sptical
matrix as will be presented here and the correspon8intatrix used in microwave theory.

If the optical component is linear and time-independent, then in the frequency domain,
the input and output Jones vectgk$andA are related by a set of linear equations

A =SA +C, (D.1)

whereS is a complex 2x2 matrix an@ is a complex 2 element vector, both independent
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of A. The matrixS is called the Scattering-matrix (S-matrix) of the compon&nmay be
regarded as a Jones matrix of the component. The Jones ¥ect@y represent optical
field generators that may be present in the component. It has a significant value only in the
active components. In passive components such as EB&normally neglected, since at
the frequencies that are currently used in the optical network applications, the blackbody
radiation at room temperature is negligible.

Some important properties 8fmatrices are derived from the energy conservation con-
siderations. The input and output powéts and P,,; are give by

Pun=|A’Py and P, =|A']*Py =|SA + C|?P, (D.2)

whereF, is a unit power. For passive compone@t—= 0, and energy conservation implies
that P, > P,., SO that
ATI—|SHA >0 (D.3)

for any A. For passive component, the matfix- |S|? is semipositive. Component for
which the power is conserve®( = P,,;), S-matrix is unitary:

S]? =L (D.4)

Power loss can occur as result of absorption,scattering, and coupling to radiation modes.
Under normal conditions, optical components may be considered as a reciprocal and are
characterized by the symmetematrix:

S =8T. (D.5)

D.2 Calculation of S-matrix for FBG

In FBG, the forward,d(z), and backwardu(z), propagating waves obeys the coupled
differential equations (as derived in Appendix C):

%d(z) = m(z)*e](%_kg)zu(z) o
0 . —](Qk—k:g)zd ( . )
au(z) = Kk(2)e (2)

Fiber Bragg Grating is a reciprocal{; = Sy, andS;» = S»1) and lossless optical network,
and therefore characterized by the scattering matrix:

Sll 512
S = . D.7
[ So1 Sno ] (D7)

For the Bragg grating of length, i.e. 0<z<L one can write:

a0 =s[m ][ 2 [e] e
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Now one needs to solve the above coupled differential equations given in (D:6) with appro-
priate boundary conditions in order to calculate individual elements of the scattering matrix
S. The exponential term in above coupled differential equations

2k — k, =0, (D.9)

if the forward,d, and backwardy, propagating waves are phase matched. This condition

is called the longitudinal phase matching. This condition is a spatial analogue of conser-
vation of energy in time-dependent perturbation theory and therefore, may be called as
conservation of momentum. This is a special case of resonant coupling. For significant
mode coupling to takes place between the forward and backward propagating modes, two
conditions must be satisfied. The first is kinematical condition expressed by (D:9). Second,
the coupling coefficient(z) in (D:6) must not vanish. The later is also called as dynamical
condition, since it depends upon the characteristics of the waves such as polarization and
mode profiles, etc. The termt  k,/2 = AJ3) and it represents the detuning factor which

is proportional to difference between the incident frequency and resonant frequency. The-
oretically Ag is defined in same units as that«afThe coupled mode equations becomes

gd(z) = k(2)* B0y ()

%Z (D.10)
&u(z) = k(2)e 2B2q(2).

Since the coupling coefficientis complex, the sign of the right hand side of both the cou-
pled differential equations is different and is very important. This sign will determine the
behavior of the coupling. These signs, of course, depends on the direction of propagation
of the coupled modes. The coupling is therefore divided into two categories: codirectional
and contradirectional. In FBG, as the coupled modes travels in opposite direction, we are
dealing with the contradirectional coupling. Boundary conditions that are used to solve the
contradirectional coupled mode equationsdfe) = 1 atz = 0 andu(L) =0 atz = L.

The net power flow intz direction for this case igl|? — |u|*. The coupled mode equations

are again consistent with the conservation of energy, which requires that

a 2 2\
—(ldP? — fuf*) = 0. (0.11)

The field amplitudes are say constants, D for the forward and U for the backward propa-
gating waves and therefore, one can write:

d(z) = D-(-129)2

u(z) = U-els=188)z (D.12)
Differentiating above with respect to 1-D space coordinatge get
gd(z):gp.e(sﬂAﬁ)z:(s + JAﬁ),e(sﬂAﬁ)Z:H*U.G(S—JAB)zeﬂ(AB)Z

0 —EU.Q(S—]A@Z:(S — JAB)U-e7180)i=y D.e(s+18B)2 o =52(AB)2

%u(z)_az
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Multiplication of these two equations in (D:13) and its simplification gives:

= |k 2 A 2
Il VAYC) (D.14)
s =TV I[? = (AF)%
Both the equations in (D:13) together yields:
K* K
D=——"——U&U=—"D. D.15
(s +JAB) (s —JAB) (19
Therefore, we can writd(z) andu(z) in terms of a single constai as
d(z) = D.e(sT1AB)z
K _ D.16)
ulz) = —D.e(s jAﬁ)Z. (
) (s —JAB)

The common solution of these two first order coupled differential equation contains two
constants corresponding ¢and—s, therefore, we can write,

d(z) = Dy-e5Hi80)z 4 D,y.e(=5t1A0)z
K K
wz)= ——~  _DiesA®z
D=6 mn " (=5 —00)
Once the constant®,; and D, are calculated, one can immediately calculate the elements
of the scattering matri$® for the FBG. As the grating physically exists betwees 0 and
z = L, we can apply these boundary conditions to (D:17) to get

D2_e(fsfjAﬁ)z' (D17)

d(()) = Dl "‘ D2
K K
u(0) = D+ + D
® (s —7A8) " (=s—yAB) 7
d(L) = D1.6(5+3AB)L + DQ,G(—sﬂAﬁ)L

K K
u(ll) = — D,.esIABL e
N (s —20)
Expression fod(0) andu(L) forms the simultaneous equations. These are solved simul-
taneously to obtain the unknown constants:

(D.18)

Dy-el =580 L

D [me”%“}d(m —u(L)
V™ k o(—s—AB)L _ e(s—3AB)L
(=s—2AB) (s— ) (Dlg)
b laame L5I(0) + ()
2= K s— s— '
e i o L

These recently calculated constants and D, in (D:19) are substituted into the expres-
sions foru(0) andd(L). After simplification, we directly get th8-matrix (D:20) for the
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FBG.
{—/ﬁ sinh(sL)e /(AL s }
u(0) g d(0)] s k" sinh(sL)e? % | Tq(0) (D.20)
d(L)] "|u(L)]  (scosh(sL)+ jABsinh(sL)e=2(A0L  |u(L) '
If the term A = 0 thens = £k = |k| and therefore we can write
u(0) Trtanh(s|L) d(0)
{ d(L) 1 | ok 2 tanh(slz) | | u(z) (D.21)

We experimentally measured the local reflectivity and hence locally conssaattdiscrete
points,n, as a function of 1-D space coordinatever the whole grating length (= puAz)
andu = n. As the incremeni\z in z approaches, the limit of above scattering matri
asAz—0 reducesitto

S, = Alim0 S with k(uAz)Az =k, = constant, and (D.22)
—fu tanh(|k L
Slu — IHH‘ ) (‘ /"D K:l CObh(‘Kp,‘) ) (D.23)
cosh(|kul) Trul tanh("%#‘)
The local reflectivityp,, equals
Ky
pp = —=tanh(|k,|) ~ [k, (D.24)

|’iu|

and the local transmission coefficientequals

1
R S suerorr N s
= cosh(|ru]) V1= tanh2 () = /1= [, (D.25)

Therefore, now we can write the locally constant scattering mafyis a simplified form
as

_ | 7hu T
S, = { " ] : (D.26)
From this we can see that the power exchange between the forward and backward propagat-
ing modes in the region between the= 0 andz = L where the Bragg grating physically
exists is given by
|k|? sinh?(sL)

s2 cosh?(sL) + (9AB)2 sinh?(sL)’
We notice that the fractional power exchange decreas@g@screases. A complete power
exchange for contradirectional coupling, however, only occurs when the phase matching
condition is satisfiedA5 = 0) and L is infinite. This situation is different from that
of codirectional coupling, where the complete power is periodically exchanged (back and
forth) between the coupled modes as a function of 1-D space coordipateidedAS =
0. Fiber Bragg grating is a typical example of contradirectional coupling.

(D.27)
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D.3 Down-Up Difference Schemes

Instead of constructing difference schemes in terms of input Dirac impulse unity matrix
and the output impulse response matrix, we will use the down and up combinations of
propagating waves.

For example, the medium in which the wave travels is specified by a single system
parameter, the impedancs, as function of 1-D space coordinate These waves has a
property that they do not interact unlesschanges it's valueD(z, t) andU(z, t) waves
are only discontinuous at= Az where there exists a discontinuity #y otherwise they
are continuous.

Suppose thaf (=) is piecewise constant, with possible discontinuities onkxat2Az,

-+ uAz etc. Thus, we have,

Z(z) =2, z€[pA, (n+1)A] (D.28)

Therefore, we need to analyze the waves into two situations:
1. as they travel along a part whefe= constant;
2. as they cross the discontinuity ih

(-DAL  vAt (w+]) At

(WAL = 01
UL-L+1,i!.-'-1+ {_D'Lt+1,i!.-'+1
pa o = ky,
Dy » U, v

Figure D.1: Calculation ofD,, ,, andU),,_, for one position steg\Z

Figure D.1 shows the quantities required to calculatddendU waves for one posi-
tion stepAz. Suppose € [uA, (1 + 1)A], thenZ =constant and the waves are separated
into down-wave (right moving) and up-wave (left moving) and are defined as

D(z, t) = f(z — t),

Uz, t) =g(z — ). (D-29)

Figure D.2 shows the down and up wavBsandU, in a piecewise constant portion of the
medium.

Above equations states that down-wave just to the left of the discontinuify+at ) Az
at any given time must have departed fromAz at the instant — A. Since the wave
travels without any change of shape, we can write

D[(pn+ 1)Az—, ] = D[pAz+, t — Al. (D.30)
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Dp. u Uu.,u

2

pho (prllA

Figure D.2: D andU waves in a piecewise constant portion of the medium

This wave on the right hand side of above equation is obtained from the left hand side wave
by just operating on it by a delay operathrand thisA has a property such that

Af(t) = f(t—A), (D.31)
so that we can write equation (D:30) as
D[(1 4 1)Az—, t] = AD[pAz+, t]. (D.32)

We can also say that the up-wavei@kz+ and timet must be that which departed from
(u+ 1)Az— attimet — A. Thus we can write

UlpAz+, t] = U[(p+ 1)Az—, t — Al = AU[(p + 1)Az—, t], (D.33)
which we may invert it to give,
Ul(p + 1)Az—, ] = AU [pAz+, t]. (D.34)

The last equation must be used with care since it exprdsg§gs+ 1)Az—, t] in terms

of UluAz+, t + Al, i.e. in terms of an event in the future. It is a non-casual relation and
therefore we will work with the previous version of it. We can combine these two equations
into one matrix equation

ket | I Y [kt | R

This is the first of two equations that well describes the evolution of waves. It expresses the
fact thatD, U wave travel without any change of shape in the parts of the medium where
Z is constant. The second evolution equationlirU to accompany (D:35), describes
how these waves interact as they pass through the discontinuity befyesmd 7, , at
(e +1)Az.
D[(p+ DAz+,t] | Di(u+ 1)Az—, t]
l Ul(p + 1) Az, 1] } =6 { Ul(p+1)Az—, 1] 1 ' (D.36)
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where®,, is given

_(ZL_Zu+1)
0,=——r— Iut O ! i) | (D.37)

(Zp—Zp+1)
NN e v B
If we defineuth local reflection and transmission coefficient as
P (Zu — ZuH)
l (Zu + Z/H-l)
Zu + Zu+1

2\/Z_M\/Zu+17

(D.38)

Ty =
then the matrix®,, becomes

B 1 1 —Ky
O, = a [ ke 1 } ) (D.39)

The matrix®,,, which describes how thB, U waves interact as they cross the discon-
tinuity, is called a scattering matrix. The pair of equations (D:35) and (D:36) completely
describes the evolution of the wavBsandU. They may be combined into one equation

B ce [t o] [MAT] ew

Equation (D:40) is easy to use; it expresses the quantities at one discontinuity in terms
of those at the previous one (in space). This means that we can obtain quantities at
1)A(z+) in terms of quantities di+ simply by multiplying the appropriate operators:

U Zil)Aw, ] AT T AT | Ulo, ] '
[D& 1)Az+, t]} o [A } o {A HD{0+, t]} (D.41)

We can call such a composition rule as a natural cascade rule. Second line of (D:40) is a
non-casual relation because it expredsésAz—, t] in terms ofU[(x — 1)Az+, t + A,

i.e. in terms of a quantity in future. In order to obtain a casual relationship, we need to
rearrange it as follows. We uge= vA in (D:40) and drop the suffixedz+ and At and

rewrite (D:40) as

Du+17V _ A DM,V

(D)o, [ ][ 2] 042
In full this equation is

D1, = Tﬁl(ADu,v - Ail“uUu,V)

I

1 . (D.43)
Upi1,, = Ty (—ArDy, +ATU,,)

EliminatingA—'U,, , from (D:40), we get one casual relation as

D1, =A7.D, — 6,Uq1,0. (D.44)
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Similarly solving (D:40) simultaneously fak—'U, ,,, we get second casual relations as

H, v

U,,=A%%,D,,+A7,U,.1,. (D.45)

Equations (D:44) and (D:45) can be written into the matrix form as

Dy, | | A1, —kK, D,.
[ U, }_ {AZIQN AT, Ui | (D.46)
The matrix operator in (D:46) may be factorized in the form
At, =k, | |1 Ty —Ku A
{AQ’W AT, } a { A } { R Ty 1 (D-47)
Therefore we can rewrite (D:46) as
Dy, | |1 Ty —HKy A D,.
Rl et N 1 s e G

This equation (D:48) fits our intuition. ThB wave moves down so that it will reach
(1 + 1)Az+ after uAz+; the U waves moving up so that it reachgs+ 1)Az+ before
uAz+. Multiply (D:48) on left by the matrix operator

AT (A
[
to obtain
AT Dypiw | _ |1 Tu —hu D,y
T i I A A e P G0
Carrying out the matrix operator multiplication in (D:50) and is rearranged to get
U,., —Ky T, D, } { D, }
' = ’ =S e . D.51
|:D,u+1,z/+1:| [ Ty fiu] |:U,u+1,1/—1 g Ui, ( )

S, is a scattering matrix for FBG as derived in (D:20). In full, the final expression for the
inverse problem is

Du—‘,—l,l/—i—l = TMDIU,7V + HMU[L+1,V—1 (D 52)
U%l, = —KJHDH’V + T#U‘u‘_l'.l’y_l.

Simplification of (D:52) gived,, , andU,, , interms ofD,, 41,41 andU,;; ,_; as

-1
Ty (_HMDU+17V+1 + UIH-LV—l)

U,
o ' (D.53)
D, = Ty (Dprt,vi1 = £, Upg1,0-1)-
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(D:54) can be written in matrix form as

ol TR e

D/%V Ty [T HRu 1 U/Hrlvl/*l

Therefore, we can write fdD,,+,,,+, andU,, ,_; in terms ofD,, , andU,, , as

|:Du+l7u+1} _ i { 1 _“u} - {U%V} , (D.55)

U101 T L=hku 1 D,

Simplification of (D:55) withu andv replaced by, — 1 by v — 1 in the first row, and: and
v replaced by: — 1 and byv + 1 in the second row of the matrix equation (D:48) gives the
output waved,, , andU,, , (D:49) in terms of input waves &, ,—; andU,_; 1.
UN v 1 /{u_l 1 :| |:DM_1 ,/_1:|
= ’ : D.56
lD ] Tu—1 [ L Kua| [ Up1,0m1 ( )

v

Hence we can write the discrete equations from (D:56) and are used as it is to construct the

downward continuation down-up algorithm for the solution of inverse scattering problem

(3.13) in chapter 3, which enables us to calculate the coupling matsfunction of 1-D

space coordinate for FBG under test and as well as the whole casual solufiyns and

U, ., where it is assumed that the measured impulse response matrix of FBG under test is

as an output if the given input is Dirac impulse unity matrix.
U,u,z/ = 7;31 (’i,ule,ufl,zzfl + U,ufl,lﬂrl)
DM,V - Tl:_ll (Du—l,u—l + /f:(_lUu—l,V—i-l)-

(D.57)
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