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1. EINLEITUNG

Moderne Werkstoff- und Materialtechniken werden in den Industrie-
ldndern in zunehmendem MaBe als wichtige Schlisseltechnologien fir
zukinftige technisch- wirtschaftliche Entwicklungen angesehen.
Diese Einschdtzung basiert auf der Tatsache, daB Materialien als
Konstruktions- und Funktionswerkstoffe flir Maschinen, Gerdte und
Anlagen die materielle Basis der gesamten Technik darstellen. Die
Weiterentwicklung technischer Produkte und die Schaffung neuer
Technologie- und Industriebereiche erfordern damit auch eine sté&n-
dige Fort- und Neuentwicklung von Werkstoffen unter Berilicksichti-
gung der gestiegenen Anspriche an Zuverldssigkeit, Sicherheit,
Wettbewerbsfdhigkeit und nicht zuletzt auch an Umweltschutzerfor-
dernisse. Die grundlagenorientierten Aktivitdten der Materialfor-
schung werden dabei stets durch anwendungsorientierte ingenieur-
maBige Initiativen ergdnzt. Als wesentlicher Forschungs- und Ent-
wicklungsschwerpunkt soll hier der Bereich '"New Materials" genannt

werden, der sich in die Gebiete

High performance ceramics (Hochleistungskeramik),
Synthetic membranes for new separation technology (Mem-
brantechnologie),
High performance plastics (Hochleistungspolymerwerk-
stoffe),
Advanced alloys with controlled crystalline structures
(Legierungen mit besonderen Mikrostrukturen) und
Advanced composite materials (Hochleistungsverbundwerk-
stoffe)

aufteilen 1&Bt /1/.

Auf den letztgenannten Bereich der faserverstarkten Mehrphasen-
werkstoffe bzw. der Faserverbundwerkstoffe soll in der vorliegen-

den Arbeit schwerpunktmdBig eingegangen werden.



2. MEHRKOMPONENTENWERKSTOFFE

Seit der sprunghaften Nachfrage nach Hochleistungswerkstoffen be-
sonders aus den Bereichen der Luft- und Raumfahrt, des Leichtbaus,
der Verkehrstechnik, der Energietechnik, der Antriebstechnik und
der Elektronik ist zu erwarten, daB in vielen Sparten der Technik
die Werkstoffanforderungen =zukilinftig nicht mehr allein durch die
bekannten und gebrduchlichen bzw. allgemein anerkannten Konstruk-
tionswerkstoffe erfiillt werden konnen /2/. In diesem Zusammenhang
wird die Verstdrkung von Werkstoffen mit faserartigen Verstar-
kungsmaterialien schon seit geraumer Zeit als eine der Moglichkei-
ten zur Verbesserung und gezielten Beeinflussung der technischen

Gebrauchseigenschaften erfolgreich angewandt.

2.1 TECHNISCHE RELEVANZ VERSTARKTER MEHRPHASENMATERIALIEN

Unter Verbundwerkstoffen versteht man die aus einer Matrix und
aus eingelagerten Verstdrkungsfasern bzw. -flillstoffen aufgebauten
Materialien. Die Verstdrkungsbestandteile kdnnen anorganischer
oder organischer Natur sein und umfassen heute: Kurz-, Lang- und
Endlosfasern aus Glas, Kohlenstoff und Aramid. Die in der Regel
aus mehreren Phasen mit hdufig extrem unterschiedlichen Werkstoff-
eigenschaften zusammengesetzten Verbundwerkstoffe erhalten durch
ihre individuelle Kombination ein vdllig neues spezifisches Eigen-
schaftsprofil, das unter besonderen Voraussetzungen erheblich von

dem der Einzelkomponenten abweichen kann.

2.2 BEANSPRUCHUNG UND SCHADIGUNG

Durch das Einbetten einer iUblicherweise hochfesten, steifen Ver-
starkungskomponente in das Matrixmaterial werden wesentliche me-
chanische und technische Gebrauchseigenschaften, beispielsweise
der Elastizitdtsmodul, die Festigkeit sowie die thermischen Eigen-
schaften Uber das Niveau des Basismaterials angehoben. Die Verbes-
serung der Werkstoffeigenschaften und die damit verbundene Ver-
stdrkungswirkung wird bei den unidirektional angeordneten Endlos-
fasern speziell bei Belastung in Faserrichtung besonders deutlich.
Im Zusammenhang mit einer Eigenschaftsverbesserung ist zu berilck-
sichtigen, daB diese zwangsldufig eine Flille von Problemen in sich
birgt und dementsprechend eine schwierige Materialhandhabung zur

Folge hat, da die Sensibilitdt der neuen Struktur gegeniliber Be-



schadigungen zunimmt. Die wesentliche Aufgabe bei der Entwicklung
neuer Werkstoffe liegt daher im Studium der Bauteilbelastungen und
der Definition zuldssiger Beanspruchungen. Aufgrund der Vielfalt
der méglichen Belastungsarten und der daraus resultierenden Scha-
digungsmechanismen kann jeweils nur ein Teilbereich der denkbaren
Belastungsspezialfdalle umfassend analysiert werden. Innerhalb der
Palette bekannter Schadensursachen nimmt das Problem des Bauteil-
versagens infolge thermischer Spannungen einen nicht unerheblichen

Platz ein.



3. MODELLBILDUNG UND PROBLEMSTELLUNG

3.1 PROBLEMATIK DER THERMISCHEN EIGENSPANNUNGEN

Eigenspannungen sind auf die verschiedensten Entstehungsursachen
zurickzufihren, z.B. mechanische Verformungen durch Richten, Rek-
ken, Ziehen usw., Oberfldchenbearbeitung, wie Schleifen, Strahlen,
Friasen oder thermische Vorgdnge, wie SchweiBen, Harten, allgemeine
Warmebehandlungen bzw. Herstellungsprozesse selbst /3/. Der KXon-
traktionsprozess im Betonbau wdhrend des Abbindevorgangs in stahl-
armierten Betonbauelementen kann ebenfalls die Ursache fir Eigen-
spannungen sein. Im Bereich der Mehrkomponentenstrukturen ist be-
sonders der fertigungsbedingte Abkihlprozess bei der Herstellung
von Verbundmaterialien verantwortlich zu machen flir den Aufbau in-
nerer Verspannungen. Die gleiche Bedeutung kommt den erheblichen
Temperaturbelastungen im Betriebsfall insbesondere im Bereich der

Nuklear- bzw. der Luft- und Raumfahrttechnologie zu.

Die Behandlung des Versagensverhaltens idealisierter modellhaft
nachgebildeter thermisch belasteter Mehrphasenverbundstrukturen
auf der Grundlage kontinuumsmechanischer Betrachtungen ist Gegen-
stand der vorliegenden Arbeit. Die LOsungsmethoden der Bruchmecha-
nik stehen hierbei als Hilfsmittel zur Untersuchung von RiBproble-
men zur Verfligung und kodnnen insbesondere bei Vorliegen von homo-
genen, isotropen und linear-elastischen Materialien herangezogen
werden /4/. In diesem Zusammenhang wird besonders auf die wechsel-
seitige Beeinflussung von Kombinationen aus gekriimmten Matrix- und
Matrix/Faser-Grenzfldchenrissen unter reiner Eigenspannungsbelast-
ung eingegangen. Neben der numerischen Behandlung mit Hilfe der
Finite Element Methode werden experimentelle Untersuchungen ange-
stellt, wobei als optische Methoden der Spannungsanalyse die Span-
nungs- und Schattenoptik zu Hilfe genommen werden. Es wird weiter
versucht, die zwei wichtigsten Phasen des Bruchvorgangs, die RiB-
initiierung und die VergrdBerung eines Risses am Beispiel von

EigenspannungsrifBproblemen zu beschreiben.



3.2 THERMISCH BELASTETE VERBUNDSTRUKTUR

Bei der bruchmechanischen Untersuchung von Verbundstrukturen kon-
nen grundsdtzlich zwei unterschiedliche Betrachtungsweisen ange-
stellt werden /5/:

o zum einen kann ein Verbundwerkstoff makroskopisch gese-
hen als homogenes, anisotropes Medium beschrieben werden,
so dafB Aussagen in Hinblick auf bruchmechanische Analysen

bezliglich des gesamten Kontinuums gemacht werden konnen;

o zum anderen l&dBt sich die Betrachtung auf Mikrostruktu-
ren anwenden, wobei dann die Werkstoffeigenschaften als
diskontinuierlich inhomogen und phasenweise isotrop anzuse-
hen sind /6/.

Der letztgenannte Weg einer Modellierung bietet die Moglichkeit,
einen realen VerbundkOrper auf eine Basis zu reduzieren, auf der
die einzelnen Komponenten idealisiert nachgebildet werden konnen.
Zum grundlegenden Studium des Einflusses elastischer Materialei-
genschaften und iberlagerter geometrischer Besonderheiten lassen
sich ZweikomponentenkOrper in Form sogenannter Einheitszellen mo-
dellieren, wobei dann auch mehrere dieser Grundtypen zusammenge-
faBt und hinsichtlich ihres Versagensverhaltens untersucht werden
kénnen /7/. Das Bruchverhalten eigengespannter VerbundkdOrper wurde
in jlingerer Zeit in mehreren Arbeiten behandelt /8-14/. In diesem
Zusammenhang wurden bruchmechanische Kennwerte entlang fiktiver
gerader Matrixrisse zwischen 2zwei Einlagerungen sowie gerader
Grenzfldchenrisse bzw. gekrimmter Risse in Mehrschichtenverbunden
vorwiegend numerisch mittels der FE-Methode untersucht. In weite-
ren Untersuchungen wurde das dquasistatische Risswachstum gekrimm-
ter Warmespannungsrisse in der Diskontinuitdtsfldche von eigenge-
spannten Faserverbundwerkstoffmodellen numerisch behandelt und mit

analytischen Ergebnissen verglichen /15-18/.



3.2.1 GEOMETRIE UND ERSATZMODELL

In der vorliegenden Arbeit werden Untersuchungen an thermisch be-
lasteten Faserverbundwerkstoffmodellen vorgestellt, die einen Aus-
schnitt aus einem realen Verbund darstellen. Experimentell beob-
achtete EigenspannungsrifBkonfigurationen werden numerisch und ver-

suchstechnisch nachgebildet und bruchmechanisch untersucht.

Das Modell eines Faserverbundwerkstoffes 1dBt sich als Zusammen-
schluB unidirektional angeordneter =zylindrischer Fasern in einer
hexagonalen Matrixpackung modellieren. Ein solches idealisiertes
Modell mit einem angedeuteten MatrixriBf ist in Abbildung 3.1 sche-

matisch wiedergegeben.

Es stellt ein dreidimensionales Kontinuum dar, das bei einer
angestrebten exakten elastizitatstheoretischen Behandlung der auf-
tretenden RiBprobleme mit Hilfe analytischer LOsungsansdtze zu ei-
ner nahezu uniiberwindlichen Komplexitdt der zugehOrigen gemischten

Randwertprobleme fihren wiirde.

Abb. 3.1: Modell eines faserverstarkten Verbundwerkstoffes mit

MatrixrifB und Fehlstelle



Trotz der Existenz immer leistungsfdhigerer elektronischer Rech-
nersysteme ist das Nachempfinden derartiger Strukturen und die ge-
eignete Nachbildung von komplizierten RiBformen und -verzweigungen
derzeit noch nicht moglich. Um die hier vorgestellten Untersuchun-
gen in einem realistischen Umfang zu halten, beschrdnken sich die
folgenden Betrachtungen im wesentlichen auf eine ebene scheiben-
formige Modellgeometrie, so daB auch die bekannten experimentellen
Methoden der ebenen Spannungsanalyse wie Spannungs- und Schatten-
optik Anwendung finden koénnen. Die Geometrie des fiir experimentel-
le Studien und numerische Simulationen verwendeten reduzierten

ebenen Ersatzmodells ist in Abbildung 3.2 angegeben.

Abb. 3.2: Ebenes Verbundmodell

Wie in Abbildung 3.1 schematisch angedeutet, treten in jedem rea-
len faserverstarkten Verbundwerkstoff Strukturfehler auf, die
ihrerseits makroskopisch als Inhomogenitdten und Mikrokeimzellen
fir Spannungskonzentrationen bzw. -umlagerungen anzusehen sind.
Durch statistisch verteilte Fasern mit unterschiedlichen Durchmes-
sern und nichtkreisfdrmigen Faserquerschnitten oder im Falle ge-
brochener Fasern, die schon wahrend des Herstellungsprozesses oder
unter Lasteinwirkung getrennt wurden, sind eine Vielzahl von Geo-

metriebeeinflussungen denkbar, die in ihrer Vielfalt mikromecha-



nisch nicht mehr behandelbar sind. Aus diesem Grunde wurde in der
vorliegenden Untersuchung eine Auswahl reprdsentativer Geometrie-
variationen vorgenommen und in Form von Strukturfehlerparametern

beschrieben.

3.2.2 STRUKTUREN UND ZUGEHORIGE DEFINITIONEN

Die Packungsdichte der eingebetteten Fasern im Matrixwerkstoff
wird beschrieben durch die Angabe einer Faser/Matrix-Volumenrela-
tion, die flir den Fall unidirektionaler Faserorientierung und ebe-
ner Modellbetrachtungen auch als Faser/Matrix-Flachenverhdltnis

angegeben werden kann.

o Faser/Matrix-Volumen- bzw. Flachenrelation

F F

Q =v / vM

F F

bzw. Q =A /A (3.2-1)

Flir die im Zusammenhang mit der vorliegenden Arbeit betrachteten
Modelluntersuchungen wird dieser Parameter konstant zu Cf‘ = 0,5
gewdhlt, wobei selbstverstdndlich die gemachten Voraussetzungen
und Einschrdnkungen auch auf andere Faser/Matrix-Volumenverhdlt-

nisse zutreffend sind.

Die weitere Definition eines Strukturfehlerparameters gestattet
die umfassende Beschreibung einer Abweichung von der idealen geo-
metrisch reguldren Anordnung durch das Verhdltnis Fehlstruktur/

Matrix- Volumen- bzw. Flachenverhdltnis.

o Fehlfaser/Matrix-Volumen- bzw. Flachenrelation

FS FS M FS _ AFS / AM

0 =V / Vv bzw. 0 (3.2-2)

Zur Verdeutlichung dieser Parameter ist die Bandbreite der Kenn-
groBe in Form einer Modellvariantennomenklatur nachfolgend angege-

ben.
-1 < ofS <1 (3.2-3)

Die Relation (3.2-3) stellt die Bandbreite der Fehlstellengeome-
trie bezogen auf die zugrundeliegende Matrixgeometrie dar. In der
folgenden Abbildung 3.3 sind die auf dieser Vereinbarung aufgebau-
ten und spdter teilweise numerisch und experimentell behandelten

Modellvarianten dargestellt.



MODELLVARIANTEN

REGULARE STRUKTUR
TYP A

FASER

VOLUMENVERHALTNIS

FEHLSTRUKTUR

VOLUMENVERHALTNIS
MATRIX

Abb. 3.3: Bandbreite der Modellgeometrievariationen
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3.2.3 MODELLVERSAGEN UNTER THERMISCHER BELASTUNG

Im Gegensatz zu der gewollten und im gewissen Umfang gesteuerten
MikroriBinitiierung bei keramischen Werkstoffen mit dem Ziel einer
Erhdhung der Bruchzdhigkeit sind Mikrorisse in Verbundmaterialien
grundsadtzlich als Bauteilschwdchung anzusehen. Risse in unter-
schiedlichster Form werden bei vielen Verbundkdrpern schon unmit-
telbar nach deren Herstellung beobachtet. Als wesentliche Ursache
fliir das Auftreten dieser Schaddigungsmerkmale sind die in der Regel
extrem unterschiedlichen thermomechanischen WerkstoffkenngroBen
und dabei insbesondere die thermischen Ausdehnungskoeffizienten
der kombinierten Materialien, speziell bei Verbundwerkstoffen mit
Keramikmatrix, zu sehen. In dhnlicher Weise zeigen Metalle und be-
sonders Kunststoffe bei tiefen Temperaturen wachsende Sprddbruch-
eigenschaften. VerbundkOrper mit Matrixmaterialien auf der Basis
von Epoxidharzen werden mit Glas- bzw. Kohlenstoffasern durchsetzt
und hdrten entsprechend den angestrebten Eigenschaften etwa zwi-
schen 20°C und 180°C aus. Bei der Herstellung und im Betriebsfall
werden Faserverbundmaterialien hdufig extremen stationdren und
instationdren Temperaturlasten ausgesetzt. Das systematische Stu-
dium des Bauteilversagens infolge von Strukturfehlern unter der
Einwirkung quasistatischer Temperaturfelder ist als Voraussetzung
fir einen sicheren Einsatz und eine optimale Dimensionierung
moderner Konstruktionen aus Mehrphasenmaterialien anzusehen, zumal
in fast allen Bereichen der innovativen Technologien vermehrt die
bekannten Werkstoffe durch Kunststoffe auf der Basis faserver-

starkter Kunststoffverbundmaterialien ersetzt werden.

In der vorliegenden Arbeit werden die wechselseitigen Mechanismen
des Eigenspannungsversagens speziell unter negativer Temperaturan-
derung (Abkihlung) am Beispiel ebener Verbundmodelle experimentell
und numerisch untersucht. Als Matrixersatzmaterial kommen hierbei
unterschiedliche optisch aktive Modellwerkstoffe zur Anwendung.
Die idealisierten Fasern werden durch Stahl- bzw. Glasscheiben
oder Keramikmaterialien simuliert. Flir eine spannungsoptische Be-
handlung dieser Problematik wurde fir das Epoxidharz ARALDIT F
eine geeignete Verarbeitungs- und Belastungsprozedur entwickelt,
die der nachgebildeten Matrix extreme Sprodbrucheigenschaften

verleiht. Hierauf wird nachfolgend noch ndher eingegan-
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gen. Bei der Abklhlung eines derartig modellierten Faser(Stahl)-
Matrix(Epoxidharz)-Modells von der spannungsfreien Ausgangstempe-
ratur TO auf die Versagenstemperatur T1 bauen sich infolge der un-
terschiedlichen thermomechanischen Eigenschaften der verwendeten
Modellmaterialien Eigenspannungen auf, die flir Modelle mit Struk-
turfehlern zu reproduzierbaren EigenspannungsriBentwicklungen im

Matrixmaterial fihren.

Nachstehend sind fir die zuvor definierten Modellvarianten B ty-
pische experimentell gewonnene EigenspannungsriBkonfigurationen
dargestellt. Die Abbildungen 3.4 und 3.5 zeigen Kombinationen ge-
krimmter Matrix- und Faser/Matrix-Grenzfldchenrisse in ebenen

thermisch belasteten Verbundmodellen.

Abb. 3.4: Modell eines faserverstarkten Verbundwerkstoffes mit

EigenspannungsriBkonfigurationen; Modell B



12

Abb. 3.5: Modell eines faserverstdrkten Verbundwerkstoffes mit
Eigenspannungsrifkonfigurationen; Modell B mit 18

Fasern
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3.3 FORMULIERUNG DES ZUGEHORIGEN RANDWERTPROBLEMS

Zur Behandlung der vorgestellten Problematik mit den Mitteln der
Thermoelastizitdtstheorie /19,20/ sollen hier zundchst die grund-
legenden Ansdtze formuliert werden. Das betrachtete Verbundsystem
setzt sich im einfachsten Fall aus zwei (oder mehreren) Materi-
alien zusammen, die ladngs kreisformiger (oder beliebiger) Diskon-
tinuitatsfldachen unter der Voraussetzung idealen Kontaktes mit-
einander verbunden sind. Die Abbildung 3.6 zeigt die idealisierte

Geometrie mit den eingeflihrten Konventionen.

Abb. 3.6: Querschnitt des betrachteten inhomogenen isotropen

Kontinuums und eingefilhrte Koordinatensysteme

Ausgehend von den kontinuumsmechanischen Grundgleichungen

vV
Os = 2u{ €0 + — ¢ §.. } (3.3-1)
ij ij 1-2v kk “ij
0 3= O (3.3-2)
€5k €lmn km,3n = "% €iik €1mn T’3n Okm (3.3-3)
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sowie der Beschrdnkung aller Betrachtungen auf den ebenen Span-
nungszustand ist im Falle einer eigengespannten ungerissenen Ver-
bundstruktur das nachstehende Randwertproblem der ebenen Thermo-

elastizitatstheorie zu lOsen.

M  _M M M .
0 (R ,2) =0 (R ,8) = 0 ; (o)< ) (3.3-4)
F F
[0 (£ /@] ¢ p= Lop(r @ 5 p= 0 (o] < 7 ) (3.3-5)
ri- ri_
[u_(£F, Q)] = [u (r', Q)] =0 ;(Rl< T ) (3.3-6)
A A o f A F_oF i < .
i~ i~

Dabei sind die Sprungrelationen an den Faser/Matrix-Grenzfl&chen

SFMi in der nachfolgenden Weise definiert

F F

F M _F .
[OrQ(r ,Q)] F = OrgﬁR ,Q) - OrQ(R , Q) : (IQIi T ) (3.3-7)

ri=R
( i=1,2,3c¢e.7)

Infolge der Abkihlung der Verbundstruktur von einer spannungs-
freien Ausgangstemperatur TO auf eine Belastungstemperatur T1< T0
werden aufgrund der unterschiedlichen thermoelastischen Material-
konstanten Eigenspannungen im Material aufgebaut. Sehr anschaulich
1d4Bt sich das resultierende Spannungsfeld mittels geeigneter Me-
thoden der Spannungsoptik bestimmen und als sogenanntes Hauptspan-
nungstrajektorienfeld angeben, wobei die zwei orthogonalen Scharen
von Hauptspannungstrajektorien der nachstehenden gewdhnlichen Dif-

ferentialgleichung erster Ordnung (3.3-8) genligen.

2 T dy + {(OX

2 2’ - _
Xy —oyy)i/(cyy -0, )% + 41_ %} dx = 0 (3.3-8)

X XX Xy

Zur Beschreibung des 2zugehdrigen Randwertproblems bei Vorliegen
eines in Abbildung 3.7 angegebenen gekrimmten Matrixeigenspan-
nungsrisses sind die Beziehungen (3.3-4) durch die zugehOrigen
Randbedingungen flir die zusdtzlichen freien Oberfldchen zu ergdn-

zZe.

.. n. = 0 ; (i, = x,y) (3.3-9)
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Hierbei ist n. als Normaleneinheitsvektor in einem mitgefihrten
lokalen Koordinatensystem entlang eines gekrimmten Eigenspannungs-
risses auf den RiBufern S und S~ zu verstehen. Bei Annahme der
Bildung von Grenzfdchenrissen entlang der Faser-Matrixgrenzfl&chen
wird das zugehdrige Randwertproblem durch die nachstehenden

Relationen (3.3-10) bis (3.3-12) beschrieben.

o) (R",9) =0l (R ,Q) =0 ; (3=F,M) ; (Qp<Q<Q) (3.3-10)

F F
o, (r D] o 5= lo o, )] o =0 ; (< Q28) (3.3-11)
r.=R r.=R
1 1
F F .
[u_(r ,Q)]rF_ p = luglr ,9)]r _oF =0 po(92,< 8 <85) (3.3-12)
i~ i~

~

-

Abb. 3.7: Elastisches inhomogenes Kontinuum mit Eigenspannungs-

riBsystem
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Eine exakte analytische Beschreibung des gesamten Spannungs- und
Verschiebungszustandes filir eine Geometrie der vorliegenden Art
ist, insbesondere im Falle einer gerissenen Struktur mit einer
oder auch mehreren Kombinationen aus beliebig gekrummten Matrix-
und Grenzfladchenrissen, in Form einer geschlossenen mathematischen
Lésung des vorgestellten Randwertproblems nicht mdglich. Letzteres
kann aber, wie spdter noch gezeigt wird, mit den Methoden der ebe-
nen Spannungsoptik bzw. modernen numerischen Methoden der Kontinu-

umsmechanik geldst werden /21-23/.
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4. LINEAR- ELASTISCHE BRUCHMECHANIK

Da heute im Gegensatz zur Betrachtungsweise der klassischen Fe-
stigkeitslehre davon ausgegangen wird, daB 1in metallischen aber
auch in nichtmetallischen Bauteilen mit der Existenz von Rissen
gerechnet werden muB, die als gemeinsames Schddigungsmerkmal eine
verformungslose Bruchausbildung (Sprédbruch) aufweisen, nimmt die
Bruchmechanik einen =zunehmenden Stellenwert in der FestkOrperme-
chanik ein. Zu den Grundlagen der Bruchmechanik kann an dieser
Stelle auf ein umfangreiches Schrifttum verwiesen werden
/24,25,4,30,33/. Unter einem Sprddbruch versteht man liblicherweise
eine RiBausbildung, die keine oder nur geringe plastische Verfor-
mungsanteile erkennen 13Bt. Die wichtigsten Ursachen fiir diese
Form des Versagens koénnen mehrachsige Spannungszustidnde, hohe Be-
anspruchungsgeschwindigkeiten und tiefe Temperaturen sein /25/.
Die Basis fur eine kontinuumsmechanische Behandlung sprdde
brechender Korper bildet das Gleichgewichts- und Ausbreitungsver-
halten von Rissen unter der Voraussetzung linear-elastischen
Materialverhaltens, so daB in einigen Spezialfallen die
ndherungsweise mathematische Beschreibung des Bruchablaufs
formuliert werden kann. Diese Art der Behandlung wurde erstmals
1921 von A. A. GRIFFITH /28,29/ durch die Gegeniiberstellung der
bei einer RiBausbreitung freiwerdenden elastischen Energie und der
zugehbrigen Oberfldchenenergie der neugebildeten RiBoberflichen
angestellt und als sogenanntes Griffithsches Sprddbruchkriterium

flir ideal spr&de Koérper formuliert.

4.1 SPANNUNGSINTENSITATSFAKTOREN

Der Spannungsintensitdatsfaktor stellt einen fundamentalen bruch-
mechanischen Kennwert dar. Er 1last sich anschaulich am Beispiel
eines Griffith-Risses in einer unendlichen Scheibe im Zugspan-
nungsfeld darstellen. Der Werkstoff der Scheibe wird als ideal
sproéde, homogen und isotrop angesehen, so daB die Bedingungen der

linearen Elastizitdt erfillt sind.



18

T
—
—
—
—
—
—
8

Griffith-RiB in der unendlichen Scheibe

Abb. 4.1:
Hierbei ergeben sich unter Verwendung komplexer Spannungsfunktio-

nen nach KOLOSOV und MUSKHELISHVILI /32/ 1l&ngs der x-Achse die
durch die Beziehungen (4.1-1a-e) gegebenen Spannungsverteilungen.

. _ -0 : lﬁl < a (4.1-1a)
XX le/a
o -1) ;5 |x| > a (4.1-1Db)
© Vix/a)?-1
0 ; !x|<< a (4.1-1c)
O =
Yy |x|/a
o ) i Ix] > a (4.1-14)
© V(x/a)?-7
¥ x (4.1-1e)

T
Xy
In analoger Weise lassen sich unter Verwendung von Bipotentialko-
ordinaten an den beiden RiBspitzen mit Hilfe der Kolosovschen For-

meln die Spannungskomponenten in der gesamten x-y-Ebene beschrei-
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ben, die in RiBspitzenumgebung als Naherungsausdricke formuliert
werden kOnnen. Entsprechend der Abbildung 4.2 kdnnen damit in der
unmittelbaren Umgebung der RiBspitze die Spannungverteilungen

angegeben werden.

Abb. 4.2: RiBspitzenkoordinaten

Unter Benutzung der auf die RiBspitze bezogenen Polarkoordinaten
r und 6 entsprechend Abbildung 4.2 ergeben sich Ndherungsausdrilicke
fiir die Spannungskomponenten im Bereich 0 < r < a nahe der RiB-
spitze. Im Falle groBer Probendicken wird dabei i.a. ein ebener
Verzerrungszustand (EVZ) vorherrschen, bei kleiner Probendicke

wird sich ein ebener Spannungszustand (ESZ) einstellen.

Flir EDZ gilt :

/a 1 1 3

Opy = 9V cos(—0) (1 - sin(—6) sin(—0))- o (4.1-2a)
2r 2 2 2
a 1 1 3

o = g vV — cos(—0) (1 + sin(—6) sin(—98)) (4.1-2b)

Yy © or 2 2 2
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GZZ = v ( OXX + oyy ) (4.1-2c)
/a 1 1 3

T =0 —_ cos(—06) sin(—0) cos(—9) (4.1-24)

Xy © or 2 2 2

sz = Tyz =0 (4.1—2e)

bei Vorliegen von ESZ wird:

o,, = 0 (4.1-2f)

Die Spannungsverlaufe an der RiBspitze sind hierbei in unter-

schiedlicher Form vom Winkel 6 abhdngig.

Typisch flir alle in der linear-elastischen Bruchmechanik betrach-
teten Probleme sind die singuldren Spannungszustdnde an der RiB-
spitze. Das singuldre Verhalten des Spannungsfeldes in der unmit-
telbaren Umgebung der RifBspitze wird beschrieben durch das alle

elastischen RiBprobleme kennzeichnende Glied
1 /Vr

Die " Stdrke " oder " Intensitdt " dieser Spannungskonzentration
hdngt im allgemeinen nur von der RiBanordnung und von der Art der
aufgebrachten Belastung ab. Der Betrag der Spannungskonzentration

wird durch die von r und 6 unabhdngige GroBe
K=o vV T a (4.1-3)

den sogenannten Spannungsintensitdtsfaktor wiedergegeben. Irwin
hat in diesem Zusammenhang die grundlegenden Arten des Deformati-
onsverhaltens an RiBspitzen klassifiziert /27/. Die drei so defi-
nierten RiB&6ffnungsformen werden gewdhnlich mit Mode I, Mode II

und Mode III gekennzeichnet.

Entsprechend den eingefiihrten Konventionen (Abbildung 4.3) lassen

sich die sogenannten Spannungsintensitdtsfaktoren KI ,KII und KIII

angeben.
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Abb. 4.3: Die grundlegenden RiBOffnungsarten

Die Bedingung (4.1-2) kann demzufolge in einer modifizierten

Schreibweise angegeben werden,

KI 1 1 3
Opy = cos(—0) ( 1 - sin(—6) sin(—#8) ) (4.1-4a)
V2 Tr 2 2 2
KI 1 1 3
o = cos(—9© (1 + sin(—6) sin(—9) ) (4.1-4b)
YY  Vorr 2 2 2
KI 1 1 3
= cos(—0) sin(—08) cos(—9) (4.1-4c)
Y Yonr 2 2 2

wobei hier nur die singuldren Terme der Spannungsverteilung be-
riicksichtigt werden. Bei Einfilihrung von Polarkoordinaten r, 6 an

der RiBspitze eines Risses der Ldnge 2a in einem unendlich ausge-

dehnten Kdrper, der unter den gleichfdormigen Spannungen GX:, 0;;,
[ee] o] [ee]
Txy ’ sz ’ Tyz im Unendlichen steht, lautet die Spannungsglei-

chung in RiBspitzenndhe:
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1 I 11 III
%m,n = ( Kp g(8) + Kpp g(8) + Kypo g(6) ) (4.1-5)
2TY mn mn mn

Die Funktionen

i
g(®), mit i = 1,II,IIT und m,n = X,y,2 ,
mn

sind ausschlieBlich winkelabhdngige GrdéBen.

Flir Modellbetrachtungen bei Vorliegen eines ebenen Spannungszu-
standes lassen sich die Spannungsausdriicke (4.1-2) bis (4.1-4)
mittels einer Superposition von Mode I und Mode II Belastung als
Gleichungen (4.1-6) schreiben, wobei nur die flir r » 0 singuléar

werdenden Glieder der Spannungsverteilungen beriicksichtigt werden.

KI 1 1 3
o x = cos(—8) (1 - sin(—06) sin(—6) ) (4.1-6a)
X 2rr 2 2 2
KII 1 1 3
—— (-sin(—9) ( 2 + cos(-06) cos(-90) ) )
V2mr 2 2 2
KI 1 1 3
o = cos(-6) (1 + sin(-6) sin(-98) ) (4.1-6b)
Yy V2TY 2 2 2
KII 1 1 3
+ — sin(-9) cos(-9) cos(-9)
Varr 2 2 2
KI 1 1 3
T = — cos(-9) sin(-6) cos(-90) (4.1-6¢C)
4 V2mT 2 2 2
KII 1 1 3
+ cos(-6) (1 - sin(-6) sin(-8) )

2 2 2

[\
3
=
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4.2 ENERGIEFREISETZUNGSRATEN

Bei der Entwicklung der Grundgleichungen der linear-elastischen
Bruchmechanik kann von zwei Ansdtzen ausgegangen werden. Zundchst
lassen sich quantitativ die Spannungs- und Verschiebungsfelder um
eine RiBspitze mathematisch formulieren. In einer weiteren Be-
trachtungsweise kann von einer Energiebilanz fiir eine instabile
RiBausbreitung ausgegangen werden. Die unabhdngig voneinander ab-
leitbaren Bruchkriterien lassen sich miteinander in Verbindung

bringen, wie RADAJ /31/ zeigen konnte.

Das von Griffith formulierte Sproddbruchkriterium geht von einer
Gegeniliberstellung der bei einer RiBverldngerung um Sa freigesetz-
ten elastischen Energie eines Korpers und der zur Bildung neuer
RiBoberfldchen bendtigten Oberfldchenenergie aus. In diesem Zusam-
menhang wird wiederum eine unendlich ausgedehnte Scheibe der Ein-
heitsdicke B="1" unter konstanter einachsiger Spannung 0, mit ei-
nem InnenriB der Linge 2a betrachtet. Die Bedingung flir sprdde

RiBausbreitung um da an beiden RiBenden lautet
AU = U(a) - U(a+fa) > 4 Yo Sa (4.2-1)

Uber eine abgebrochene Taylor-Entwicklung kann filir die elastische

Energiednderung

oU

U(a+8a) = U(a) + ~a

da (4.2-2)

geschrieben werden. Damit ergibt sich

oU
AU = - Sa > 4 v Sa
- o
da
mit

o U

- > 4y (4.2-3)
da ©

Der Term Yo stellt darin die spezifische Oberfldchenenergie des
Risses dar. Mit der von IRWIN /26/ eingefiihrten Definition flir die

sogenannte RiBerweiterungskraft oder Energiefreisetzungsrate
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1 30
G = - —— (4.2-4)
2 3a
ergibt sich

als Griffith-Kriterium fir ideal sprdde Korper. Die Energiefrei-
setzungsrate oder RiBerweiterungskraft G ist als fldchenbezogene
Energie oder langenbezogene Kraft mit der Dimension mmN/mm2 oder

N/mm aufzufassen.

Uberschreitet die so definierte RiBerweiterungskraft G einen kri-
tischen materialabhdngigen Wert Gc’ breitet sich ein RiB instabil
im KOrper aus. Die Beziehung

G > G (4.2-6)
- C

stellt demzufolge ein RiBerweiterungskriterium dar.

Bringt man einen EinzeliB der Ldnge 2a in eine unendlich ausge-
dehnte Scheibe, so 148t sich die Anderung der elastischen Energie
in der hier betrachteten Scheibe unter Berilicksichtigung der Bedin-

gungen flir die Behandlung eines ebenen Spannungszustandes (ESZ)

oder ebenen Verzerrungszustandes (EVZ) zu

- AU = ——™ flir ESZ bzw. (4.2-7a)

- AU = fur EVZ (4.2-7Db)

angegeben /4/. Mit der Beziehung (4.2-4) ergeben sich folgende

Ausdrilicke filir die Energiefreisetzungsrate G

G = —9° fiir ESZ  bzw. (4.2-8a)

G = flir EVZ (4.2-8Db)
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Mit der Definition fur den Spannungsintensitdtsfaktor (SIF) K}

K. = 0o vV T oa (4.2-9)

kann abhdngig von der RiBverformungsart die Energiefreisetzungs-

rate bzw. RiBausbreitungskraft G als

2
%1
G, = —— fiir ESZ  bzw. (4.2-10a)
I
E
(1-v%) k2
G, = fiir EVZ (4.2-10b)
I E

geschrieben werden, so daB das Bruchkriterium (4.2-6) in analoger
Weise zu

K. > K

I (4.2-11)

Ic

formuliert werden kann. In analoger Form lauten flr die RiBver-

formungsart II (Mode II) die Gleichungen (4.2-10a-b) dann:

2
KII
G = —== fir ESZ bzw. (4.2-12a)
IT E
(1-v%) k2
G = fur EVZ (4.2-12b)
IT E

An dieser Stelle muB ausdriucklich darauf hingewiesen werden, daB
die zuvor definierten Beziehungen =zwischen der Energiefreisetz-
ungsrate Gi ( i=I,II ) und dem Spannungsintensitidtsfaktor Ki auf-
grund der Herleitung nur flr die Behandlung gerader Risse Gliltig-

keit besitzen.



26

5. NUMERISCHE BEHANDLUNG BRUCHMECHANISCHER PROBLEME

5.1 FINITE ELEMENTE METHODE

Da die vollstdndige analytisch mathematische Losung komplizierter
kontinuumsmechanischer Randwertprobleme, insbesondere dreidimen-
sionaler RiBprobleme in Mehrkomponentenmodellen, wie sie in Ab-
schnitt 3.3 formuliert worden sind, mit den zur Verfligung stehen-
den elastizitdtstheoretischen Methoden nicht méglich ist, muB auf
numerische L&sungswege zurickgegriffen werden. Neben der Differen-
zenmethode, der Randkollokationsmethode und der Methode der Rand-
integralgleichungen stellt die Methode der Finiten Elemente (MFE)
eines der am hdufigsten angewendeten und effektivsten numerischen
Verfahren auch zur Behandlung von RiBrandwertproblemen dar. Auf
die ausflihrliche Beschreibung der grundlegenden Zusammenhdnge, auf
denen die Methode der Finiten Elemente aufbaut, soll an dieser
Stelle weitgehend verzichtet werden, vielmehr kann auf eine um-

fangreiche Literatur verwiesen werden /34-36/.

'}

—
X

Abb. 5.7: Finite Einteilung eines ebenen elastischen Korpers
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Wie der Name Finite Elemente schon andeutet, wird ein beliebiger
KOGrper in eine Anzahl Teilbereiche, die finiten Elemente, zerlegt.
Die Abbildung 5.1 gibt eine derartig =zerlegte Struktur, bestehend

aus Dreieck- bzw. Viereckelementen wieder.

Wird von der Formulierung des gesamten elastischen Potentials n
einer modellierten Struktur ausgegangen, die aus einem Energiean-
teil U infolge thermischer Dehnung und einem Energieanteil W aus
einer Oberfldchenlastverteilung entsprechend Gleichung 5.1-1 be-
steht

m=U - W

1
T = 5 ~[(eij - a6 dij) Oij av - ,/Qi Fi ds , (5.1-1)

\% S

so 1ldBt sich von den méglichen, die Struktur beschreibenden Ver-
schiebungsverteilungen ui(x,y,z) diejenige bestimmen, welche die
geometrischen Randbedingungen des Problems erfiillt und das gesamte

elastische Potential m stationdr macht:
6ﬂ= 0 (5.1—2)

Durch Einteilung der untersuchten Geometrie in eine endliche An-
zahl finiter Elemente und Entwicklung geeigneter Summationskonven-
tionen lassen sich Integralausdriicke finden, die sich nicht mehr
Uiber das Gesamtvolumen, sondern nur mehr Uber die separierten Ele-
mentvolumina erstrecken /7,9/. Diese Vorgehensweise fiihrt auf ein
lineares algebraisches Gleichungssystem, das sich auf die Matrix-

schreibweise reduzieren 1l&RBt.

K - u=p" +p" (5.1-3)
mit
K als Gesamtsteifigkeitsmatrix des Systems
E als Vektor der Knotenpunktsverschiebungen
ET als Vektor der Knotenpunktskrdafte, hervorgerufen
durch thermische Dehnungen
und EL als Vektor der &dquivalenten Knotenpunktskrdfte

aufgrund von Oberfl&dchenlasten.
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Zur Beschreibung der unbekannten Verschiebungen im Jjeweiligen
Element werden Ublicherweise Polynomansdtze in den Koordinaten der
Elementeckpunkte formuliert. Uber die Einfilhrung sogenannter Form-
funktionen konnen die Verschiebungen im gesamten Element durch die
Verschiebungen der Elementeckknotenpunkte ndherungsweise ausge-

drickt werden.

Aus den Knotenpunktsverschiebungen lassen sich dann alle relevan-
ten Felder ndherungsweise ableiten. Das vorgestellte L&sungsver-
fahren ist in der Literatur als Verschiebungsmethode bekannt und
wird z.B. durch das FE-Programmsystem ASKA /37/ realisiert. Die im
Zusammenhang mit der vorliegenden Arbeit durchgefiihrten FE-Unter-
suchungen sind ausschliefflich mit Hilfe des an der PRIME-750 des
Hochschulrechenzentrums der Universitdt Paderborn installierten
Programmsystems ASKA durchgefiihrt worden, wobei ebene Dreiecksele-
mente mit linearem und gquadratischem Verschiebungsansatz zur

Strukturmodellierung verwendet wurden.

5.2 ERMITTLUNG BRUCHMECHANISCHER KENNWERTE

Flir die Analyse von Bruchvorgangen und die Bestimmung zugehdriger
bruchmechanischer Kennwerte stehen heute eine Vielzahl numerischer
Losungsmethoden zur Verfligung. Neben den Extrapolations- und Su-
perpositionsverfahren nehmen energetische Ansdtze zur Untersuchung

von RiBspitzengegebenheiten einen zunehmenden Stellenwert ein.

Mit Hilfe spezieller RiBspitzenelemente ko&nnen durch glunstige
Wahl von Ansatzfunktionen singuldre Nahfeldverh&dltnisse an RiB-
spitzen simuliert und Spannungsintensitatsfaktoren direkt berech-
net werden. Die dabei benbtigten Spezialelemente sind jedoch i.a.

nicht standardmdBig in kommerziellen FE-Systemen implementiert.

Bei Verwendung herkdémmlicher Elementtypen, die abhdngig von der
verwendeten Ansatzfunktion nur endliche Spannungen realisieren,
werden hdufig die asymptotischen Methoden herangezogen. Hierbei
werden die Spannungen in genligender Entfernung von der RiBspitze
bestimmt, zu dieser hin extrapoliert und als N&herungswerte ange-
geben. Dieses Verfahren liefert bei genligend feiner Diskretisier-

ung relativ genaue Ergebnisse.
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Weitere Methoden zur Bestimmung der bruchmechanischen Kennwerte
resultieren aus globalen und lokalen Energiebetrachtungen an riB-
behafteten Strukturen, aus denen sich dann Energiefreisetzungsra-
ten und unter Umstdnden auch Spannungsintensitdtsfaktoren ableiten
lassen.

Das von IRWIN formulierte und zum KIC—Konzept fihrende Bruchkri-
terium berlicksichtigt die bei RiBverldngerung freiwerdende elasti-
sche Energie (Beziehung 4.2-4). Diese Betrachtungsweise setzt vor-
aus, daB die in technischen Werkstoffen unvermeidlichen plasti-
schen Zonen an den RiBspitzen vernachldssigbar klein gegen alle

anderen Abmessungen sind.

Bei Berlcksichtigung elastisch-plastischen Werkstoffverhaltens
wurden Integralausdrlicke hergeleitet, die lokale Beanspruchungs-
gegebenheiten in der N&he von RiBspitzen charakterisieren /38/.
Der Integralausdruck, der am umfassendsten untersucht wurde, ist

das Rice’sche J-Integral, das in der folgenden Form angegeben

wird.
_ ou
J = -/} Udy - o ds ) (5.2-1)
99X
C
Darin bedeuten U : Energiedichte
o ¢ Spannungsvektor
u : Verschiebungsvektor

ds : Linienelement des Integrationsweges
C : Integrationsweg

Das vom Integrationsweg unabhdngige J-Integral kann auch bei
elastisch-plastischem Werkstoffverhalten angewendet werden und
geht im Falle von elastischem Materialverhalten in die bekannte

RiBerweiterungskraft oder Energiefreisetzungsrate
J =G (5.2-2)

uber.
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Abb. 5.2: Integrationsweg fir das J-Integral

Zwei weitere Verfahren auf der Basis energetischer Uberlegungen
stellen die Methoden auf der Grundlage des RiBschlieBungsintegrals
und die direkte numerische Ermittlung der Energiefreisetzungsrate
aus der Anderung des in einer elastischen Struktur gespeicherten
Gesamtpotentials dar. Da diese beiden Wege bei der hier vorgestel-
lten Problematik der Untersuchung von Eigenspannungsrissen benutzt
werden, wird in den folgenden Abschnitten auf diese ndher einge-

gangen werden.
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5.2.1 GLOBALE ENERGIEMETHODE

Ahnlich der Compliance-Methode /39/, bei der flir jeweils zwei
verschiedene RiBldngen die gesamte in einem KOrper gespeicherte
elastische Energie berechnet und hieraus die Energiefreisetzungs-
rate bestimmt werden kann, lassen sich flir eine Serie
verschiedener RiBstadien die elastischen Verzerrungsenergien
bestimmen. Bei einer derartigen Vorgehensweise 1dBt sich das
Gesamtpotential m eines belasteten Korpers in Abhdngigkeit von der

sich einstellenden RiBladnge a schreiben zu
m(a) = U(a) - W(a). (5.2-3)

Darin bedeutet W die Arbeit der &duBeren Lasten und U die elasti-
sche im KOrper gespeicherte Verzerrungsenergie. Betrachtet man,
wie im vorliegenden Fall ausschlieBlich thermische Eigenspannungs-
probleme, so daB keine &duBeren Lasten auf das System wirken, kann
Gleichung (5.2-3) zu

m(a) = U(a) (5.2-4)
geschrieben werden.

Mit der bekannten Beziehung flir die Energiefreisetzungsrate

1 9 U(a)
G(a) = - (5.2-5)
B da

mit B als Strukturdicke kann bei mehrachsiger Beanspruchung eines

riBbehafteten KOrpers fiir die Gesamtenergiefreisetzungsrate auch

1 9 U(a)
G(a) =Z G,(a) = G(a) + G(a) + G(a) = - (5.2-6)
i I II IIT B 5 a

geschrieben werden.
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Die Beziehung (5.2-6) verdeutlicht den wesentlichen Nachteil die-
ser Methode, der darin liegt, daB mit ihr keine Separierung der
einzelnen Mode-Anteile Gi(a) moglich ist. Das in der Literatur als
globale Energiemethode /41/ bezeichnete Verfahren gestattet jedoch
eine sehr gute Kontrolle der mittels lokaler Methoden bestimmten

Gesamtenergiefreisetzungsrate.

Mit Hilfe der Finiten-Elemente Methode 1&dBt sich die durch homo-
gene Temperaturdnderung verursachte elastische Energie in einem

Bauteil nach folgender Beziehung bestimmen /40,41/.

1
T
U(a) = '—-2—- l_l_e (a) i(a) ge(a) (5.2-7)

Darin steht K(a) fir die Steifigkeitsmatrix der Gesamtstruktur
und u, flir den_%ektor der Knotenpunktsverschiebungen (geT transpo-
nierter Vektor) als Differenz zwischen dem aktuellen Verschie-
bungsvektor und dem Gesamtverschiebungsvektor bei thermischer,

aber v6llig unbehinderter Dehnung.

Bei geniigend feiner Diskretisierung entlang der prospektiven RiB-
linie kann somit aus der Veranderung des Gesamtpotentials einer
Struktur bei suksessiver RiBverlangerung um 4a die Gesamtenergie-

freisetzung durch numerische Differentiation ermittelt werden

/40/.

5.2.2 LOKALE ENERGIEMETHODEN

5.2.2.1 RISSCHLIESSUNGSINTEGRAL

Nach IRWIN /42/ ist die flir eine RiBverldngerung um S a notwendige
Energie gleich der Arbeit, die erforderlich ist, um diese RiBver-
ldngerung bis zur Ausgangsldnge zu schlieBen, dh. die RiB3ffnung

rliickgdngig zu machen.
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a

U
|||‘l|!!==i. ) Uy(r=60’x ,a=7r,0+6u)
i
= Y%
N —JU,(r-Go-xﬁ:Jr,mén)

A

Abb. 5.3t RiBschlieBungsintegral
Koordinatensystems an einer belaste-

Bei Einfiihrung eines lokalen
ten RiBspitze, wie sie in Abbildung 5. 3 dargestellt ist, last sich
iben zu

eziehung fir die Energlefrelsetzungsrate schre

die B
da
2 U 1 1
- - G(a) = lim — | 7 5 (r=x,8=0,a) u (r=6a-x,6=ﬂ,a+6a) dx
B da sa~0 da 2 YY Y
x=0 (5.2-8)
Sa

1 1
+ lim — | — ¢ (r=x,0 =0,a) ux(r=6a—

sa-0 da 2
x=0

x,0=T,a+da) ax

Darin bedeuten G(a) die jokalen Werte der Gesamtenergiefreisetz—

ungsrate, die Spannungswerte

(r=x,6=0,a) bzw. Txy(r=x,e=0,a) ,

Oyy
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die Komponenten der Spannungsverteilung in der Ndhe der RiBspitze

und die Verschiebungswerte
uy(r=6a-x,6=w,a+6a) bzw. ux(r=6a—x,6=ﬂ,a+6a) ’

die relativen Normal- und Tangentialverschiebungen zwischen glei-
chen Punkten der durch RiBOffnung voneinander entfernten freien
RiBoberfladchen.

Die beiden Integralausdriicke stellen die separierten Anteile der

Gesamtenergiefreisetzungsrate fir ebene Mixed Mode-Belastung dar:
G(a) = Gy(a) + G;(a) (5.2-9)

Die Beziehung (5.2-8) 1&4Bt sich nunmehr auf die fir eine FE-Ana-
lyse verwendbare Form Uubertragen, die fir Elemente mit linearem
Verschiebungsansatz mit Hilfe der in Abbildung 5.4 vereinbarten

Nomenklatur ausgewertet werden kann.

Abb. 5.4: Topologie um eine RiBspitze
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Die getrennt darstellbaren Gesamtenergiefreisetzungsratenanteile
lassen sich mittels Ersatz von RiBspitzenspannungen durch Kno-
tenpunktskrafte und mittels Ersatz von Verschiebungsverteilungen

durch Knotenpunktsverschiebungen in der Form

Aa 1 1
G . (a+—) = F._ . A . A 5.2-10
1 2) . S aa ( y,l(a) uy,J_1(a+ a)) ( a)
Aa 1 1
G —) = F_o. A . A 5.2-10b
r7ia+ 2) s 2 aa ( X'l(a) uxlj_1(a+ a)) ( )

schreiben. Die Bezeichnung der untersuchten Knotenpunktslagen mit
den Indizes i und j beschreibt zwei unterschiedliche Positionen
der RiBspitze zum Zeitpunkt i und einem spdteren Zeitpunkt j=i+1
mit den zugehdrigen lokalen X, -Ys- und Xj—yj—RiBspitzenkoordina—

tensystemen.

Der berechnete Wert ist hier als mittlerer Wert der lber das fi-
nite Intervall Aa freigesetzten Energie und daher in der Inter-
vallmitte anzusetzen. Diese Methode auf der Basis des RiBschlie-
Bungsintegrals liefert, wie in /41/ am Beispiel einer quasistati-
schen RiBausbreitung flir einen GrenzfldchenriB in einer Faser-Ma-
trix-Einheitszelle bzw. an einem thermisch eigengespannten homoge-
nen Streifen mit Griffith-RiB gezeigt werden konnte, numerisch
sehr genaue Werte flir die separierten Komponenten der Gesamtener-
giefreisetzungsrate. In /41/ ist die Beziehung (5.2-10a-b) fir ho-
herwertige Elementtypen hergeleitet und vorgestellt worden. Die
beschriebene Methode ist, wie ebenfalls gezeigt werden konnte, im
Rahmen der gemachten Voraussetzungen als numerisch exakt anzuse-
hen. Sie bedarf stets zweier Rechenschritte, liefert jedoch im
Falle gemischter Mode-Belastungen an der Rifspitze die separierten
Energiefreisetzungsraten Gi(a), i = I,II,III /41/. Die Methode
wird aufgrund der zwei notwendigen Rechenschritte auch als 2C-

Methode (two-calculation) oder auch R2-Methode bezeichnet.
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5.2.2.2 MODIFIZIERTES RISSCHLIESSUNGSINTEGRAL

Auf den grundlegenden Betrachtungen des IRWIN’schen RiBschlieB-
ungsintegrals wurde von RYBICKI und KANNINEN /43/ eine erweiterte
Methode =zur ndherungsweisen Bestimmung der Energiefreisetzungsra-
ten vorgeschlagen, wobei von folgendem Ansatz ausgegangen wird.
Entsprechend der in Abbildung 5.4 angefiihrten FE-Struktur konnen
fir ein genlgend kleines RiBintervall Aa die an der Spitze eines
Risses der Lange a auftretenden Knotenpunktskrdfte F_ . und F

X,1 ysi

als gute Naherungswerte fur die Krafte F_ . und F_ . angesehen
X,i-1 y,i-1

werden, um die SchlieBung des RifBintervalls Aa mit den Verschie-

bungswerten AuX i1 bzw. Z&uy i.q 2u ermoglichen. Damit ergeben
14 [

sich die "modifizierten" N&herungsausdrilicke flir die numerisch be-

stimmbaren Energiefreisetzungsraten Gi(a).

1 . 1
lim
G.(a) = — — F._ .(a) Au_ . .(a) (5.2-11a)
I B Aas0 2 Aa  Yri yri-i
! lim !
GII(a) = — Fx,i(a) AuX’i_1(a) (5.2-11b)

Als Erweiterung der hier vorgestellten Betrachtung lassen sich
diese auch auf die Verwendung hoherwertiger Elementtypen Uubertra-
gen, wie aus den Arbeiten /44-46/ hervorgeht. Die Methode des
modifizierten RiBschlieBungsintegrals 1liefert aus nur einem Re-
chenschritt und der =zugehbdrigen Kraft- Verschiebungsauswertung an
stationdren RiBspitzen N&herungsausdriicke fur die Komponenten der

Gesamtenergiefreisetzungsrate.

Da fir die in dem ersten Kapitel der vorliegenden Arbeit vorge-
stellten Eigenspannungsrifkonfigurationen in einem idealisierten
Faser/Matrix-Verbundmodell der RiBfortschritt entlang der gesamten
RiBkonfiguration ermittelt werden soll, bietet die Verwendung der
modifizierten Formeln keinen gravierenden Vorteil zu den bereits
erwahnten globalen und lokalen Energiemethoden aus Abschnitt 5.2.1
und 5.2.2.1, so daB flir die hier untersuchten Probleme vorwiegend
die Beziehungen (5.2-10a-b) als Ansatz der sogenannten lokalen
Energie- (2C oder R2)-Methode /41/ bzw. die globale Energie-(EN)-

Methode als Kontroll- oder SteuergrdBe verwendet werden.
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6. OPTISCHE VERFAHREN DER EXPERIMENTELLEN SPANNUNGSANALYSE

Bei der Bestimmung des Spannungs- und Dehnungszustandes und den
bruchmechanischen Untersuchungen zum Versagensverhalten von Struk-
turen unter &duBeren Lasten bzw. inneren thermischen Spannungen ist
neben einer sorgfaltigen mathematischen Durchdringung die experi-
mentelle Behandlung derartiger Probleme unerldBlich. Trotz des
groBen Fortschritts auf dem Gebiet der elektronischen Rechentech-
nik hat die Bedeutung der bekannten Verfahren zur experimentellen
Spannungs- und Verformungsanalyse nicht abgenommen, zumal seit dem
Aufkommen kommerzieller Video- und kostenglinstiger Rechnersysteme
die digitale Bildanalyse ein wesentliches Hilfsmittel zur automa-
tischen Auswertung experimentell gewonnener Interferenzlinien dar-
stellt. Aus diesem Grunde gewinnen die klassischen und neueren op-
tischen Verfahren zur experimentellen Analyse, wie die spannungs-
optische Methode, das Moire-Verfahren, die holografische bzw.

Speckle-Interferometrie, zunehmend an Bedeutung /47/.

Flir die experimentelle Behandlung der auftretenden Eigenspan-
nungsriBprobleme werden vorwiegend die Methode der ebenen Span-
nungsoptik und die schattenoptische Kaustikenmethode herangezogen,
deren grundlegende physikalische Zusammenhdnge und Wirkprinzipien

im folgenden ndher erldutert werden sollen.

6.1 EBENE SPANNUNGSOPTIK

Die Spannungsoptik zdhlt nach wie vor zu den interessantesten
Verfahren der experimentellen Spannungsanalyse. Sie 148t sich in
zwei Anwendungsbereiche, die ebene und die rdumliche Spannungsop-

tik gliedern.

Der infolge mechanischer Beanspruchung auftretende und durch
Lichteinwirkung sichtbare Doppelbrechungseffekt transparenter Ma-
terialien wird hierbei ausgenutzt, um Hauptspannungsdifferenzen

und Haupspannungsrichtungen zu bestimmen.
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6.1.1 PRINZIP DER SPANNUNGSOPTIK

An dieser Stelle soll nur ein kurzer Uberblick iiber die dem Ver-
fahren zugrunde 1liegenden prinzipiellen physikalischen Zusammen-
hdnge gegeben werden. Flir ndhrere Einzelheiten kann auf eine um-

fangreiche Literatur verwiesen werden /47,21,22,23/.

Wird monochromatisches und linear polarisiertes Licht durch ein
ebenes transparentes und belastetes Scheibenmodell M geleitet,
spaltet sich ein senkrecht zur Objektebene ausgerichteter Licht-
vektor A aufgrund des Doppelbrechungseffektes in zwei orthogonale
1 und 52

spannungen 01 und 62 in diesem Punkt zusammenfallen. Die Abbildung

Komponenten A auf, deren Orientierung mit denen der Haupt-

6.1 zeigt schematisch den Strahlengang in einer spannungsoptischen

Apparatur bei belastetem Modell M in linear polarisiertem Licht.

- K

13>

L - Lichtquelle

P - Polarisator

1V - 1 Viertelwellenplatte
2V - 2 Viertelwellenplatte
M - Modell

A - Analysator
F - Modellbelastung

Abb. 6.1: Strahlengang bei belastetem Modell in linear pola-
risiertem Licht und in zirkular polarisiertem Licht

1 und A, durchwandern das Modell mit unterschied-

lichen Geschwindigkeiten und passieren einen senkrecht zur Polari-

Die Teilwellen A

sationsrichtung des Polarisators P angeordneten Analysator A, der
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somit nur noch die betragsmdBig gleichen Horizontalanteile H, und

1
H, durchléast.

Die beiden Schwingungskomponenten A, und A, erfahren bei Durch-
gang durch das Modell M einen optischen Wegunterschied s, der po-
portional der Haupspannungsdifferenz (01 - 02) und der Dicke B des
Modelles ist.

Es ergibt sich fiir den optischen Wegunterschied s

s:(S)\ =CB(G1—G (6-1_1)

2)

bzw. flir die relative Phasenverschiebung § (im BogenmaBR)

C

§ = —B (0, - O

) (6.1-2)

die sogenannte Hauptgleichung der Spannungsoptik /22/.

Die hinter dem gekreuzt zum Polarisator P angeordneten Analysator

A hervorgerufene Lichtintensitat IH ist gegeben durch

2 2

IH = IA sin(2aH) sin(mn) (6.1-3)

Dabei ist IA die Intensitdt des einfallenden Lichtes und Oy der
Winkel, den die Polarisationsrichtung mit einer der Hauptachsen-
richtungen einschlieBt. Bei Verwendung von monochromatischem Licht
ergibt sich vollstdndige Lichtausldschung (IH = 0), falls n ganz-
zahlig, d.h. n = 0, +1, +2, +3 ..... wird. Die daraus resultieren-
den dunklen Linienstrukturen stellen Linien gleicher Hauptspan-
nungsdifferenzen dar, die als Isochromaten bezeichnet werden. Bei
der Verwendung von polychromatischem Licht erfolgt die Ausldschung
flir jeweils eine Wellenldnge, so daB Streifen gleicher Komplemen-
tdrfarben sichtbar werden. Die Variable n ist als bezogene GréRe

dimensionslos und wird als Isochromatenordnung bezeichnet

n =— (6.1-4)
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Das Isochromatenbild wird in der Regel von weiteren dunklen Li-
nien iiberlagert, die gemdB Gleichung (6.1-3) fir ag = 0, +m/2
Lichtausldschung verursachen, dh. die Polarisationsrichtung f&llt
in einem Punkt mit der Haupspannungsrichtung zusammen. Man erhadlt

Linien gleicher Haupspannungsrichtungen, sogenannte Isoklinen.

In der Mehrzahl spannungsoptischer Untersuchungen genligt die Aus-
wertung des Isochromatenbildes. Die Ausschaltung der storenden
Isoklinen wird durch Verwendung zirkular polarisierten Lichtes ge-
maB Abbildung 6.1 ermdglicht, indem zwischen Polarisator P und
Modell M sowie letzterem und dem Analysator A jeweils Viertelwel-
lenplatten um 45° gegen die Polarisationsrichtung gedreht montiert
werden. Die Viertelwellenplatte ist eine Folie mit homogener Kri-
stallstruktur von doppelbrechender Eigenschaft. Die linear polari-
sierte Schwingung A wird in zwei gleichgroBe Komponenten Ax und éy
zerlegt, die eine gegenseitige Phasenverschiebung von w/2 haben,
so daB zirkular polarisiertes Licht auf das Modell trifft. Diese
beiden Teilwellen werden, wie schon oben ausgefihrt, infolge Dop-
pelbrechung in die Hauptachsenrichtungen zerlegt und einer weite-
ren Phasenverschiebung unterworfen, so daB elliptisch polarisier-
tes Licht das Modell verldBt. In der zweiten Viertelwellenplatte
werden die beiden Schwingungskomponenten in die Richtungen v und w
zerlegt, die die gleiche Orientierung haben wie die Hauptrichtun-
gen X und y. Der Anteil der in der Polarisationrichtung des Ana-
lysators schwingenden zirkular polarisierten Lichtvektoren wird
durch den Analysator durchgelassen. Die Intensitdt des bei Verwen-
dung eines Dunkelfeld-Zirkular-Polariskopes durchgelassenen Wel-

lenfeldes 1laBRt sich herleiten zu

2 2

. § ,
IH = IA 51n(—§— = IA sin(mn) (6.1-5)

Gleichung (6.1-5) zeigt nunmehr, daB die Lichtintensitdt nur von
der relativen Phasenverschiebung bzw. von der Isochromatenordnung
und nicht mehr von der Richtung der Hauptachsen abhdngig ist, so

daB die Isoklinen nicht mehr auftreten kénnen.
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Unter Bericksichtigung der Beziehungen flir den Mohrschen Span-
nungskreis und von (6.1-2) ergibt sich die folgende Gleichung fir
die Hauptschubspannung TxyH zur Auswertung eines Isochromaten-
bildes.

2 T = 0 - O = S — (6~1_6)

Die spannungsoptische Konstante S ist als MaterialkenngrdBfe glil-
tig flir die Wellenldnge des verwendeten Lichtes und im allgemeinen
abhdngig von der Belastungs- bzw. Dehnungsgeschwindigkeit und der
Temperatur. Die Bestimmung der spannungsoptischen Konstanten, ins-
besondere deren Temperaturabhdngigkeit erfolgt in einem Eichver-
such mit einem aus der Theorie bekannten Spannungszustand. Die
Isochromatenordnung n erhdlt man durch einfaches Abzdhlen der Iso-
chromaten von der Nullisochromate (bei polychromatischem Licht =

schwarz) aus.

Flir eine vollstdndige Beschreibung des Spannungszustandes in ei-
nem belasteten spannungsoptischen Modell hat sich die Methode des
Schubspannungsdifferenzenverfahrens (SDV) am weitesten durchge-
setzt /48/. Die Beziehung (6.1-6) und die erwdhnten Mohrschen
Transformationsgleichungen bieten damit die Moglichkeit, aus der
Kenntnis der spannungsoptischen GrdBen o (x,y) (Isoklinenwinkel)
und n(x,y) (Isochromatenordnung) den vollstdndigen Spannungszu-
stand zu berechnen. Das SDV wird an spdterer Stelle ndher erldu-
tert und zur quantitativen Auswertung des Eigenspannungszustandes

in thermisch eigengespannten Verbundmodellen angewendet.
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6.1.2 SPANNUNGSOPTIK IN DER BRUCHMECHANIK

Die experimentelle Ermittlung der Spannungsverteilungen vor Ker-
ben mit endlichem Krimmungsradius mit den Methoden der Spannungs-
optik wird in der Literatur ausflihrlich behandelt /49-51/. Dieses
gilt gleichermaBen fir Risse, die keinen definierten Krimmungsra-
dius besitzen. Erstmals wurde von POST /52/ und POST und WELLS
/53/ zu Beginn der 50-er Jahre die Anwendung der Spannungsoptik am
Beispiel von RiBspitzenspannungsfeldern vorgestellt, worauf IRWIN
/54/ die Ermittlung von Spannungsintensitdtsfaktoren auf span-
nungsoptischem Wege vorschlug. IRWIN konnte zeigen, daB der Span-
nungsintensitatsfaktor KI von einer einzelnen Isochromatenschleife
an der Spitze eines Risses abgeleitet werden kann. Zu diesem Zweck
betrachtet er die Spannungsverteilung an der RiBspitze in einem
Polarkoordinatensystem und erweitert die Gleichung (4.1-4) um ein
weiteres Glied einer Reihendarstellung. Diese Gleichungen, mit dem
nichtsinguldren konstanten Spannungsanteil Gox’ ermoglichen eine
genauere theoretische Beschreibung der realen RiBspitzenspannungs-
zustdnde. Der gewonnene Zusammenhang (6.1-7) besitzt auch in gro-

Berer Entfernung von der RiBspitze seine Gliltigkeit.

KI 1 1 3
Gxx = cos(—0) (1 - sin(—8) sin(—6) ) - o© % (6.1-7a)
V2 2 2 2 ©
KI 1 1 3
o = cos(—86) (1 + sin(—9) sin(—0) ) (6.1-7b)
Yy vV 2T 2 2 2
KI 1 1 3
T = cos(—0) sin(—8) cos(—e8) (6.1-7¢c)
Y /our 2 2 2

Die Spannungsverteilung in der Ndhe einer RiBspitze wird beim
spannungsoptischen Versuch unmittelbar durch die zugehdrige Iso-

chromate dargestellt. Nach der Hauptgleichung der Spannungsoptik
H

sind die Isochromaten proportional der Hauptschubspannung TXy ’

wie aus Gleichung (6.1-6) zu ersehen ist.
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kann aus den Spannungskomponenten

Die maximale Schubspannung Txy
ermittelt werden.

der Beziehung (6.1-7) folgendermaBen

H,2 2 2
(2 Tyy )T o= (OYY—OXX) + (2 Txy) (6.1-8)
In Verbindung mit (6.1-7) ergibt sich
H,2 K% 2 20 OX KI 3 2
(2 Ty )< o= sin 6 + —— sin® sin—90 +<JOX (6.1-9)
Y 2Tmr V2Tr 2
IRWIN beschreibt die maximale Ausdehnung einer Isochromaten-

unter Mode I-Belastung iber die zusatz-

schleife um eine RiBspitze

1iche Bedingung (6.1-10)

BTX

XY _ _ 0 (6.1-10)
20

an der Stelle r = rM und 6 = GM.

r Mode I-

eife um eine RiBspitze unte

Abb. 6.2: Isochromatenschl

Belastung
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Durch eine Auswertung der Gleichungen (6.1-9) und (6.1-10) erhdlt
man die folgenden Ausdriicke flir die nichtsinguldre Spannung O ox

und den Spannungsintensitatsfaktor KI .

- 20 H
O . = XY - (6.1-11)
36 9
M 2
cos—— 1 + —tan eM
2 4
36
tan——
2 2
q T + —
2 TX /ZWrM 3 taneM
K. = Y (6.1-12)
T sinGM //ﬁi 2 é
1T+ (—)
3 taneM
Damit konnen der Spannungsintensitatsfaktor KI und die Spannung
OOX aus den meBbaren GrdBen rM als maximalem Radius und eM als zu-

gehorigem Winkel als Maximalpunkt einer Isochromatenschleife der
Ordnung n bestimmt werden. Die Hauptschubspannung kann nach

Gleichung (6.1-6) ermittelt werden zu

T = (6.1-13)

Dieses Verfahren wird in Anlehnung an die zwei Parameter KI und

Oox als Zwei-Parameter-Methode bezeichnet. In Analogie zur genann-

ten Methode wird von MARLOFF u. a. /55/ eine Ein-Parameter-Methode
vorgestellt, wobei die in Gleichung (6.1-7b) angefiihrte Beziehung
flr Oyy entlang der RiBlinie =zur Bestimmung des Spannungsinten-

sitatsfaktors benutzt wird.

Bei einer modifizierten Methode nach BRADLEY und KOBAYASHI /56/

werden an zwei unterschiedlichen Isochromatenschleifen bei

® =const. die Hauptschubspannungen TXYH1 und TXsz mit den Radien

H1 H2
r

und r bestimmt und der Spannungsintensitdtsfaktor KI ange-

geben. SCHROEDL und SMITH /57/ werten die Isochromatenbilder ent-

lang einer radialen Linie bei 6=90° aus und erhalten damit eine
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vereinfachte Beziehung des zuvor beschriebenen Verfahrens. 1In
einer Arbeit von ETHERIDGE und DALLY /58/ wird gezeigt, daB die
Zwei-Parameter-Methode nur in einem eingeschrdnkten Winkelbereich
73° < Oy < 139° giiltig ist. ETHERIDGE und DALLY /58/ geben daher
eine erweiterte Drei-Parameter-Methode zur Interpretation von Iso-
chromatenschleifen an RiBspitzen und deren bruchmechanische Aus-
wertung an. In der Literatur werden eine Vielzahl modifizierter
Verfahren behandelt, die mehrheitlich von der mathematischen Be-
schreibung des lokalen Nahfeldspannungszustandes um RiBspitzen und
einer vergleichenden Betrachtung zum experimentell beobachteten
spannungsoptischen Effekt ausgehen. Eine umfassende Zusammenstel-
lung der gebrduchlichsten Verfahren ist in /59/ und /60/ wiederge-

geben.
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6.2 SCHATTENOPTISCHES KAUSTIKENVERFAHREN

Neben der spannungsoptischen Methode stellt das schattenoptische
Kaustikenverfahren eine exzellente Moglichkeit zur direkten Sicht-
barmachung und experimentellen Analyse von Spannungskonzentratio-
nen bzw. Spannungsintensitdtsfaktoren dar. Das Verfahren basiert
auf der Ablenkung von Lichtstrahlen, die durch die Anderung der
geometrischen und optischen Materialeigenschaften in der Umgebung
einer belasteten RiBspitze verursacht werden, so daB in einem ge-
wissen Abstand hinter der Probe ein Schattengebiet mit hellem
Saum, der Kaustik, entsteht, deren Abmessungen ein MaB fir die

Spannungsintensitdt darstellen.

Das Kaustikenverfahren wurde 1964 erstmals von MANOGG /61/ flr
bruchmechanische Anwendungen quantitativ formuliert und am Bei-
spiel einer unter Mode I-Belastung stehenden ebenen Platte mit
statischem RiB mathematisch behandelt. Spdter ist von einer Reihe
von Autoren das Verfahren aufgegriffen und erweitert worden, so
daB letzteres heute als eine der elegantesten experimentellen Ana-
lysemdglichkeiten von RiBspitzensingularitdten gilt. Das Verfahren
ist gegenwdrtig eine etablierte Methode zur Untersuchung dynami-
scher RiBvorgdnge /62-65/, bei der Analyse von Mixed-Mode-Proble-
men /66-68/ sowie zum Studium elastisch-plastischer Vorgdnge an
RiBspitzenzonen /69-71/, =zumal die Ubertragung auf nicht transpa-
rente Modellmaterialien mittels der Entwicklung der Reflexions-
schattenoptik /72/ gelungen ist. Auf diese Weise ist auch die Un-

tersuchung technisch relevanter Werkstoffe mdglich geworden.

6.2.1 PHYSTIKALISCHES PRINZIP

Die Entstehung des Schattenflecks in einer ebenen transparenten
Probe, die einen RiB mit gerader Front enthdlt und unter einer
gleichfbrmigen &uBeren Spannung o steht, ist in Abbildung 6.3
schematisch wiedergegeben. Das durchsichtige K&rper durchstrahlen-
de Licht wird durch lokale Anderungen des optischen Weges aufgrund
von Spannungs-, Dicken- und Dichtegradienten aus seiner urspring-
lichen Richtung abgelenkt. Die Ablenkung ist im allgemeinen im
KOrperinneren vernachldssigbar, jedoch in grdBerer Entfernung hin-
ter der Probe, in der sogenannten Referenzebene, als Anderung der

ehemals gleichfdrmigen Lichtverteilung sichtbar.
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Abb. 6.3: Entstehung eines Schattenflecks um eine RiBspitze

Beleuchtet man eine riBbehaftete Probe, die unter einem ebenen
Spannungszustand steht, mit parallelem Licht, erscheint im Abstand
z, von der Probenmittelebene die RiBspitze von einem dunklen Be-
reich, dem sogenannten Schattenfleck, umgeben. Dieser ist von ei-
nem hellen Saum, einer Kaustik, begrenzt. Der Schattenfleck ist
als Folge der Spannungsiiberhdhung in RiBspitzenumgebung anzusehen,
die eine Verringerung der Probendicke sowie des Brechungsindex be-
wirkt. Der RiBspitzenbereich wirkt dadurch &hnlich wie eine Zer-
streuungslinse, d.h. das einfallende Licht wird nach auBen abge-

lenkt.

Betrachtet man einen das Objekt gemd@B Abbildung 6.4 im Punkt
P(r,0) durchsetzenden Lichtstrahl, so trifft dieser die Schatten-
ebene im Punkt Pm' sofern das Modell unbelastet ist. Durch die Be-
aufschlagung der Platte mit der vorgegebenen &uBeren Belastung
wird das Modell in einen ebenen Spannungszustand versetzt. Das
nunmehr einfallende Licht spaltet in Komponenten auf, die in Rich-
tung der lokalen Hauptspannungen linear polarisiert sind, und er-
fdhrt je nach Komponente eine Anderung der optischen Weglénge.
Setzt man linear elastisches und linear elasto-optisches Material-

verhalten voraus, so 188t sich der Zusammenhang zwischen optischer
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Wegdnderung, Spannung und Brechungsindexdnderung in einer mathema-

tisch geschlossenen Form darstellen /61/.

B
651’2(x,y) = —— { (a+b) [ o, (x,y) + 0,(x,y) ]
+ (a-b) [ o,(x,y) - 0,(x,y) 1} (6.2-1)
. a+ b
schattenoptische Konstante c = — (6.2-2)
spannungsoptische Anisotropie X = —g—i—%— (6.2-3)

Die Beziehung (6.2-1) setzt sich aus einem isotropen Anteil, der
proportional der Hauptspannungssumme ist, und einem anisotropen
Bestandteil, der proportional der Hauptspannungsdifferenz ist, =zu-
sammen. Die materialspezifischen Konstanten a und b sind im allge-
meinen wellenldngen- und temperaturabhdngig, sie kdnnen zudem auch

von der Belastungs- und Dehnungsgeschwindigkeit beeinfluBt werden

/66/.

Manogg formuliert die Hauptspannungssumme und -differenz aus den
bekannten Beziehungen flir die Spannungsverteilung an einem statio-

ndren RiB unter einachsiger Zugbelastung.

K

Oxx = L cos(%@) (1 - sin(%e) sin(%e)) + O
V2mr

K

o = l cos(%e) (1 + sin(%e) sin(%@)) (6.2-4)
Yy V2TY
K 1 T 3
Tx = cos(Ee) 51n(§9) cos(fe)
y 2T

Uber die Mohrschen Beziehungen ergeben sich aus (6.2-4) die fol-

genden Zusammenhange
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o, + 0y = Opx * oyy (6.2-5)
/ﬁ o - O 2 T 2’ _
1 5 ( % vy Y o+ 4 xy (6.2-6)

Q
|
Q
1]

und damit fir die Hauptspannungssumme:

K
il cos-62—+0 (6.2-7)

2Tr

bzw. flir die Hauptspannungsdifferenz:

1

2
K /
o - O =//:£— sin26 - KI 2 o] siné-esine +c32 (6.2-8)

2TY rm

2

Lichtstrgh( [

Objekt-
ebene

Referenz-
ebene

Abb. 6.4: Lichtablenkung und Abbildung auf der Referenzebene

Die Lichtablenkung innerhalb der Schatten- bzw. der Referenzebene

ist gegeben nach /61/ zu

v = -z grad(és1,2(x,y)) = -z B ¢ grad(( 61(x,y) + 02(x,y)

* 2 Coq(xy) = 0,(x,y))

1,2 = V4 + vV (6.2-9)



50

Durch Verknlipfen der Beziehungen (6.2-7) bis (6.2-9) ergeben sich
die Abbildungsgleichungen flir einen den Punkt P(r,0) der Proben-
ebene E durchdringenden Lichtstrahl auf der Abbildungsebene E’ in
den Punkten P'1,2(x’,y'), wie in der Abbildung 6.4 angedeutet ist.
Die Abbildungsgleichungen bezogen auf die Ebene E’ lauten damit
nach /63/

. -3/2 34 + 3 .
x1’2 =r cosfO + Cr ( cos3 _ 1 A sin296 )
(6.2-10)
, _ . -3/2 . 3 3 1
y1,2 = r sinf + C r ( s1n26 7 A ( cos26 + 3 ))
. KI
mit C =c B z
© V2T

Jedem Plattenpunkt P des Modells werden durch den Doppelbrech-
ungseffekt ( A # 0 ) zwei Bildpunkte P'1
Gleichung (6.2-10) Dbeschreibt die Abbildung der die Probe durch-

2(x',y’) zugeordnet. Die
4

setzenden Lichtpunkte, wobei die Kaustik als Einhiillende eine sin-
guldre LOsung darstellt. Eine notwendige Bedingung fir die Exis-
tenz einer solchen L&sung ist das Verschwinden der zugehdrigen

Funktionaldeterminante.

d(x",v") ox’ oy’ ox' oy’
A = = - =0 (6.2-11)
o (r,0) or 36 26 Oor
Bei Annahme isotroper Materialeigenschaften d.h. A = 0 flhrt die

Beziehung (6.2-11) auf die Gleichung flir die Urkurve der Kaustik.

3 KI 2/5
r = (——cB z ) = r (6.2-12)
2 m ° Vom ©
22
mit ms= ————— AbbildungsmafBstab
Z_ + z
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Damit enthdlt die Kaustik alle Informationen Uuber den Spannungs-
zustand in einem Kreis um die RiBspitze mit dem Radius ry als so-

genanntem Urkreisradius.

Aus den Relationen (6.2-10) bis (6.2-12) lassen sich die Bestim-

mungsgleichungen fir die Kaustik ableiten.

.o 2 3
x!' =1 | cosf + 3 0052e )
(6.2-13)
. - 2 .3
y' = rg ( sin6 + 3 51n29 )

Der maximale Durchmesser der Kaustik ergibt sich dann als Viel-
faches des Urkreisradius zu

D=fr m (6.2-14)
(o]

mit der dimensionslosen GroBe f, die durch die materialspezifi-
schen Konstanten bestimmt ist. Das Verknipfen der Beziehungen
(6.2-12) und (6.2-14) fiuhrt auf die schattenoptische Auswertefor-
mel, die den experimentell bestimmbaren Kaustikendurchmesser D mit

dem Spannungsintensitatsfaktor K. in Relation setzt.

I
5/2 2V 2w
KI =MD ; mit M = (6.2-15)
3 f5/2 c B z m3/2

(@]

Bei Verwendung von optisch anisotropen Materialien ergeben sich

in analoger Weise flir die Kaustikdurchmesser und die Spannungsin-

tensitatsfaktoren KIa,i die Beziehungen
Da,i = fa,i r, m (6.2-16)
5/2 . 2y 2w
KIa,i= Ma,i D ; mit Ma, = (6.2-17)
3£2/2 ¢ Bz n3/?

a,i o
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6.2.2 VERFAHREN ZUR ELEKTRO-OPTISCHEN ERFASSUNG DES SPANNUNGS-

INTENSITATSFAKTORS

Die Beziehungen (6.2-15) und (6.2-17) stellen einen einfachen
formelmdBigen Zusammenhang zwischen den meBbaren Kaustikendurch-
messern Da,' und dem Spannungsintensitdtsfaktor KI dar. Die Be-
stimmung der Schattenfleckabmessungen erfolgt Ublicherweise durch
direktes manuelles Vermessen auf einer Referenzebene oder durch
nachbereitende Auswertung photographischer bzw. filmischer Aufnah-
men. Im Zusammmenhang mit der vorliegenden Arbeit wurde ein expe-
rimentelles Verfahren entwickelt, mit dessen Hilfe die geometri-
sche Information der Schattenfldche um eine mechanisch belastete
RiBspitze auf berlihrungslosem elektro-optischem Wege in ein analo-
ges Gleichspannungssignal umgewandelt und mittels eines Digital-

rechners weiterverarbeitet werden kann /73/.

6.2.2.1 SCHATTENOPTISCHER AUFBAU

Abbildung 6.5 zeigt das sich hinter einer belasteten ebenen Probe
einstellende Schattengebiet mit dem Lichtsaum, der Kaustik, auf
einer Referenzebene im Abstand z, flir das optisch isotrope Proben-
material PMMA.

Abb. 6.5: Experimentell beobachtete Kaustik um eine RiBspitze
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Nach Gleichung (6.2-10) 1&Bt sich fir optisch isotropes Material
die Lichtverteilung auf der Referenzebene numerisch berechnen.
Wird nun in den Strahlengang zwischen Probe und Ebene E’ eine op-
tische Blende montiert, deren Offnungsdurchmesser DB groBer ist
als der sich maximal einstellende Kaustikendurchmesser des flir das
zugehorige Modellmaterial charakteristischen kritischen Spannungs-

intensitatsfaktor K so laBt sich der in Abbildung 6.6 grafisch

Ic’
wiedergegebene Zusammenhang zwischen Blendenwirkungsgrad und Span-

nungsintensitdtsfaktor K als Ergebnis einer Simulationsrechnung

Ic
angeben. Der Blendenwirkungsgrad ist hierbei als das Verhdltnis
der die Blendendffnung zu der die Probe durchsetzenden Lichtmengen
definiert. Dabei wird deutlich, daB mit steigender Probenbeanspru-

chung, d.h. wachsendem K stets weniger Licht die Blendendffnung

II
passiert. Damit kann das durch die Blende fallende bzw. die Blende
nicht passierende Licht als eine mdgliche MeRBgr6Be zur quantitati-

ven Auswertung der Kaustikeninformation herangezogen werden.

1.0

]
g X - rcose+ cr3? cosg
= 2
Y
X 3
= 2 Yo = FSING + C P2 g
NI 29
~
z C-cBrz —d_
—~ =C zZ
o A
X =
5 ° OBJEKTEBENE ™
g CT-PROBE
g 5 | REFERENZEBENE
%
-]
S

0.5

0 10 20 30 0 K 50 60

SPANNUNGSINTENSITATSFAKTOR K, ( N mu~3/2 )

Abb. 6.6: Blendenwirkungsgrad

Auf der Basis dieser Uberlegungen wurde der in Abbildung 6.7 dar-

gestellte Versuchsaufbau konzipiert.
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Hohlspiegel

Punktlichtquelle

Abb. 6.7: Strahlengang zur elektro-optischen Erfassung des Span-

nungsintensitdatsfaktors K.

Er stimmt in wichtigen Teilen mit dem {liblicherweise verwendeten
konvergenten Strahlengang eines klassischen schattenoptischen Ver-

suchsaufbaus Uberein.

Das von einer Punklichtquelle ausgesandte Laserlicht durchstrahlt
den RiBspitzenbereich einer CT-Probe aus PMMA. Mit Hilfe eines
Strahlungsteilerwlirfels wird der Lichtweg aufgespalten und die ab-
gewinkelte Strahlkomponente auf der zugeordneten Referenzebene ab-
gebildet, auf der sich der bei Belastung der Probe mit einer Kraft
F einstellende Schattenfleck vermessen bzw. photografisch dokumen-
tieren 13aBt. 2Zur analogen berilihrungslosen Verarbeitung der Kau-
stikinformation wird der nicht umgelenkte Teil des Lichtweges iber
ein Linsensystem gebiindelt, durch die oben erlduterte vorjustierte
Offnung einer verstellbaren Irisblende gefiihrt und auf die Sensor-
ebene eines Fotoelementes projiziert. Das Gleichspannungssignal
des Fotoempfangers wird zusammen mit dem analogen Kraftausgangs-
signal der hydraulischen Zugprifmaschine einem MeBwertverstidrker
zugefihrt der, mit einem ProzeBrechner gekoppelt, eine vollstdn-

dige Versuchsvorbereitung, -fihrung und -auswertung ermdglicht.
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6.2.2.2 STANDARDPROBE DER BRUCHMECHANIK

Zur experimentellen Bestimmung der materialspezifischen kriti-
schen KIC—Werte fir unterschiedliche Metalle wird im allgemeinen
die Standardprobe gemdB Abbildung 6.8 verwendet, in die vor dem
Belastungsversuch ein definierter ErmuUdungsriB eingebracht wird.
Der AuslOsepunkt einer instabilen RiBverldngerung wird heute Ub-
licherweise mit RiBOffnungsmessern, die auf das MeBobjekt aufge-
setzt werden und die RiBaufweitung an der Probenoberfldche als
Funktion der Probenbelastung angeben, ermittelt /4,25,33/. Mittels
einer Eichfunktion Y, die flr die verwendete Probengeometrie be-

kannt sein muB, bestimmt sich dann die RiBzadhigkeit zu

Fyma on
K. = — v (6.2-20)
Ic
B w
mit
(6.2-21)
CT 2 3 4
v(CT) _ 16,7 - 104,7 24 369,9 (2)? - 573,8 (2)° + 383,8 (2

w=175mm
B=10mm
0,3<a/w<0,7

Abb. 6.8: Standardprobe der Bruchmechanik
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Die vorbereiteten, mit unterschiedlichen RiBldngen versehenen
Proben, werden in der Belastungsvorrichtung unter konstanter =zeit-
licher Anderung des Spannungsintensitdtsfaktors bis zum Bruch be-
lastet. Die Grenzen filir die =zuldssigen Werte von K(t) liegen im

Intervall von

16,6 (Ns”'mm 3/2) < k(t) < 83,5 (Ns 'mm 3/?). (6.2-22)

Zur Versuchsdurchfiihrung wurde die in Abbildung 6.9 dargestellte
hydraulische Zugprifmaschine entwickelt, die, mit einem hydrosta-
tisch gelagerten Zylinder versehen, das Fahren kleinster Lasten
oder Wege gestattet. Durch die Konzeption als fahrbarer freibeweg-
licher Lastrahmen mit einem Aktionsradius von ca. 4 m von der zen-
tralen Servohydraulik- und elektronischen Steuereinheit aus, las-
sen sich unterschiedliche RiBldngen bzw. die exakten Positio-
nierungen der RiBspitzen in den stationdren Strahlengang eines op-

tischen Versuchsaufbaus sehr leicht und sicher durchfihren.

Abb. 6.9: Servohydraulische transportabele Zugpriifmaschine

Das mechanische Einbringen der fir die nach ASTM-Bestimmungen
normgerechten Versuchsbedingungen notwendigen definierten Ermi-
dungsanrisse erfolgt durch dynamisches Anschwingen in der vorge-
stellten Priifanlage /74/. Hierbei wird ebenfalls die Entwicklung
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des pulsierenden Schattenflecks um die RiBspitze mittels einer
Videoeinrichtung aufgenommen und als KontrollgrdBe herangezogen,

um die unterschiedlichen RiBldngen manuell einzustellen.

6.2.2.3 STEUERUNG UND VERSUCHSDURCHFUHRUNG

Zur technischen Realisierung des MeBverfahrens wurde ein umfang-
reiches Programmpaket flir den installierten ProzeBrechner ent-
wickelt, mit dessen Hilfe eine nahezu automatische Versuchsabwick-
lung bis hin zur vollstdndigen Auswertung mdglich wird. Auf die
detaillierte Beschreibung der einzelnen Systembestandteile muB
hier weitgehend verzichtet werden. Das Kernstiick des angesproche-
nen Software-Pakets bildet die eigentliche Vermessungs- bzw. Eich-
routine. Diese stellt den Zusammenhang zwischen der Information
des auf einem Fotoempfanger abgebildeten Schattenflecks und dem
zugehdrigen Kaustikendurchmesser und damit dem Spannungsintensi-
tdtsfaktor her.

Umax e MeBpunkte 10
— approximierte
Eichkurve 08
bezogenes
Fotosignal 06 Fotosignal
U [mV] 04 U= Sl
—— e A Umgx—Umm
02
.
Umin—f" °

0 3 6 9 12
Kaustikdurchmesser D [mm]

Abb. 6.10: Eich- und Normierungsvorgang

7zu diesem Zweck wird eine riBbehaftete CT-Probe (PMMA) in wenigen
Schritten statisch belastet, der sich auf der seitlichen Refe-

renzebene einstellende Schattenfleckdurchmesser mittels eines
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MeBmikroskops vermessen und gemeinsam mit dem am Fotoempfinger
meBbaren elektrischen Gleichspannungssignal in den ProzeBrechner
eingelesen. Unter Verwendung eines Approximationsalgorithmus 138t
sich aus den gemessenen Wertepaaren eine stetige Eichkurve ermit-
teln, die anschlieBend normiert fir alle folgenden Versuche die
Grundlage des MeBverfahrens darstellt. In Abbildung 6.10 ist der
Eich- und Normierungsvorgang am Beispiel eines aufgenommenen Ver-

suchsprotokolls wiedergegeben.

Zur Uberpriifung des hier vorgestellten Verfahrens werden parallel
zur Kaustikenauswertung die Beziehungen (6.2-20-21) als Referenz-
werte herangezogen. In der Abbildung 6.11 ist beispielhaft fiir
eine gesamte Versuchsphase das Ergebnisprotokoll eines Standard-

Zugversuchs wiedergegeben.

75

I I | [ [ I

PROBENNUMMER BRFE 000- 12050
(=]
© — SYMBOL VERFAHREN
A ELEKTRO-OPTISCHES KAUSTIKENVERFAHREN
2 o ASTM Py

7 el

SPANNUNGS INTENSI TATSFAKTOR K, ( N Ma-3/2 )
30

1.0
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»
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.
.
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KAUST IKENDURCHMESSER KRAFTF ( N) )
D(mM)

Abb. 6.71: Vollstandiges Versuchsprotokoll zur optisch-elektro-
nischen Kaustikenmethode
Das Diagramm I zeigt den durch den Eichvorgang bestimmten Zusam-

menhang zwischen der elektrisch meBbaren Schattenfleckinformation

und dem Kaustikendurchmesser.
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Das Diagramm II beschreibt den von Proben- und Versuchsbedingun-
gen abhdngigen Zusammenhang zwischen Spannungsintensititsfaktor

und Kaustikendurchmesser.

Die Diagramme III und IV verdeutlichen schlieBlich die Abhidngig-
keit des Spannungsintensitdtsfaktors von der &uBeren Last bzw. die
relativen Abweichungen zwischen einer Auswertung nach den Bezieh-

ungen (6.2-20-21) und der optisch-elektronischen Kaustikenmethode.

In dem Diagramm 6.12 ist zudem fir einen Versuch die Abweichung
zwischen den Ergebnissen des elektro-optischen Verfahrens und den
Resultaten gemdB der Referenzauswertung nach den Gleichungen (6.2-
20) und (6.2-21) wiedergegeben. Aus den gemessenen Wertepaaren
wurde eine Ausgleichsgerade gebildet und eine Nuilpunktskorrektur
vorgenommen. Die geringen Abweichungen lassen sich auf die Ver-
letzung des nach ASTM vorgeschriebenen Probendickenverhdltnisses
zurlickfihren, da bei Nichteinhaltung dieser Bedingung die der Me-
thode zu Grunde liegenden Voraussetzungen fir die Nachbildung ei-

nes ebenen Dehnungszustandes nicht hinreichend erfillt sind.

(=]
o

VERSUCHSSERIE O ®
SYMBOL  PROBENNUMMER  a/w B (mM)

- ©  BRFE 001-13000_ 0,37 9.8
ﬁg%ﬁLE ICHSFUNKT ION

45

15

SPANNUNGSINTENSI TATSFAKTOR K| ( N M4~3/2 )
30
x

w=175mm
B=10mm
0,3<a/w<0,7

F

0 200 400 600 800 1000 1200
KRAFT F ( N )

Abb. 6.12: Gegenliberstellung der Ergebnisse fiir eine CT-Probe

elektro-optisches Kaustikenverfahren
ASTM-Verfahren
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In den Abbildungen 6.13 und 6.14 sind die Ergebnisse zweier Ver-

suchsserien angegeben.

(=]
=)

45

VERSUCHSSERIE [
SYMBOL PROBENNUMMER  a/w B (mM) | —

SPANNUNGS INTENSI TKTSFAKTOR K, ( N M4-3/2 )

©  BRFE 000-10000 0.28 10.0
s BRFE 000-10010 Q.34 10.0
+  BRFE 000-10070 0.3 10.0
x  BRFE 000-10130 0.49 10.1
e BRFE 000-10190 0.69 10.0
I |
600 800 1000 1200
KRAFT F ( N )
Abb. 6.13: Ergebnisse der Versuchsserie 10
8
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=] ]
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7 I SYMBOL  PROBENNUMMER  a/w B (mm)

gt’—‘ o  BRFE 000-14000 0.31 9.6 ]

< . BRFE 000-14010 Q.37 9.5
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x  BRFE 000-14040 Q.51 9.6
o £ 000-14050 0.54 9.6

[-]
- | |
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Abb. 6.14: Ergebnisse der Versuchsserie 14
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Hierbei wurden die in die Proben eingebrachten Ermiidungsrisse in
den Bereichen 0,28 < a/w < 0,69 bzw. 0,31 < a/w < 0,54 variiert
und beispielhaft fiir jeweils flinf unterschiedliche RiBl&ngen zu-
sammengestellt. Bei der systematischen Durchflihrung von Reihen-
untersuchungen konnte eine starke Chargenabhidngigkeit der Mate-
rialeigenschaften des untersuchten Probenwerkstoffes festgestellt

werden.

Als ermittelte GroBenordnung flir die RiBzidhigkeit der untersuch-
ten Materialchargen 1laBt sich flir das Modellmaterial PMMA ein
Wert von K. = 42 - 46 Nmm—3/2
Literatur sehr gut {Ubereinstimmt. Von Seidelmann /66/ wurde ein

angeben, der mit den Angaben in der

ebenfalls aus schattenoptischen Untersuchungen gewonnener RiB-

zdhigkeitswert von Kio = 47 N/mm_3/2 ermittelt. Kordisch /75/ gibt
fiir PMMA den Wert von Kio = 47,7 nmm™3/2 an. Die von Williams und

Ewing /76/ durchgefiihrten Untersuchungen mit einem Wert von K =

Ic
43 Nmm_3/2 bestdtigen die groBe Streubreite der RiBzdhigkeit flir
den verwendeten Kunststoff PMMA.

6.2.2.4 MODIFIZIERTE STANDARDPROBE

Im Zusammenhang mit dem Studium des Versagensverhaltens von Ver-
bund-Strukturen und um Aussagen Ulber die erweiterte Anwendbarkeit
der schattenoptischen Kaustikenmethode zu erlangen, wurde die in
Abbildung 6.8 angefiihrte Standardprobe der Bruchmechanik verifi-
ziert und als modifizierte Probe mit dem erlauterten elektro-opti-
schen Verfahren untersucht. In der Abbildung 6.8 ist diese abge-
wandelte Verbund-CT-Probe ebenfalls angegeben. Als Einlagerung
dient das Epoxidharz Araldit F. In den folgenden Abbildungen 6.15
bis 6.17 ist der Vergleich im Spannungsintensitdtsfaktor-Kraft-
Verlauf flir Proben mit (Versuchsserie 13) und ohne EinschluB (Ver-

suchsserie 14) dargestellt.

Die Rissldngen wurden hier zu a/w=0,31, 0,37 und 0,54 ausgewdhlt.
Der EinfluB der Einschlliisse auf den Spannungsintensitdtsfaktor-
Kraft-Verlauf zeigt sich in Abhdngigkeit von der variierten RiB-

ldnge in einer durchweg erhdhten Versagenslast.
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Abb. 6.15: Gegenliberstellung der Ergebnisse einer CT-Probe und

einer modifizierten CT-Probe
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einer modifizierten CT-Probe



63

SYMBOL  PROBENNUMMER a/w B (mm)

BRFE 001-13050 0,54 10,1
2 BRFE 000-120%0 0.34 9.6
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Abb. 6.17: Gegenliberstellung der Ergebnisse einer CT-Probe und

einer modifizierten CT-Probe

Das vorgestellte berlihrungslose Verfahren =zur Ermittlung von
Spannungsintensitatsfaktoren unter Mode I-Belastung, das mittels
eines einfachen Sensors die Informationen einer Schattenfldche
hinter einer riBbehafteten Probe in ein elektrisch verarbeitbares
analoges bzw. digitales Signal umwandelt, gestattet die automati-

sche Bestimmung der RiBzdhigkeit K unter Beibehaltung konstanter

Versuchsbedingungen. Die Untersuchiﬁgen lassen den SchluB zu, daRB
die schattenoptische Kaustikenmethode, die entsprechend ihres phy-
sikalischen Prinzips ausschlieBlich Informationen aus dem Span-
nungszustand des unmittelbaren RiBspitzennahfeldes bezieht, auch
in der ndheren Umgebung von Inhomogenitdten, die in Form von ma-
kroskopischen Einschlliissen modelliert wurden, Anwendbarkeit finden

kann.
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7. EXPERIMENTELLE UNTERSUCHUNGEN ZUM VERSAGENSVERHALTEN
VON MEHRKOMPONENTENMODELLEN

Die mikromechanischen Methoden zur Behandlung des Festigkeits-
und Bruchverhaltens von Verbundwerkstoffen sind in einem umfang-
reichen Schrifttum niedergelegt. Das Studium des Versagens von
Mehrkomponentenverbunden infolge thermisch induzierter Eigenspan-
nungen ist in einer Reihe von Arbeiten von HERRMANN und Mitarbei-
tern /77-81,16,8,18,6/ und HERRMANN und MIHOVSKY /82,12/ behandelt
worden. Weiterhin ist es gelungen, neben der analytischen und nu-
merischen LOsung der entsprechenden Randwertprobleme /83,7/ Eigen-
spannungsrisse in Zweikomponentenglasmodellen als Folge unter-
schiedlicher thermomechanischer Materialkennwerte in einem homoge-
nen Temperaturfeld auszuldsen und mit experimentellen und nume-
rischen Methoden zu untersuchen /9-11,84,85/. Durch Einsatz der
Spannungs- und Schattenoptik sind dabei sowohl Hauptspannungstra-
jektorienfelder als auch bruchmechanische Kennwerte angegeben wor-
den. Aufgrund der verwendeten optisch inaktiven Modellmaterialien
und der geringen Modellabmessungen konnten spannungsoptische Un-
tersuchungen unter Angabe quantitativer Spannungsverldufe nicht

angestellt werden.

Die quasistatische Ausbildung von Wdrmespannungsrissen, die an
den Modellgrenzflachen eines Zweikomponentenverbundes, bestehend
aus einer ebenen kreisfdormigen Kunststoffmatrix (Araldit B) mit
einem zentrischen StahleinschluB, starten und sich in das Innere
des Matrixmaterials ausbreiten, ist sowohl theoretisch als auch

experimentell von HERRMANN et. al. /86/ untersucht worden.

In einer Studie von FRITZ et. al. /87/ werden mit Hilfe des
Schubspannungs-Differenzen-Verfahrens (SDV) Spannungsverldufe zwi-
schen zwei und drei eingeschrumpften Aluminium-Einschliissen in
photoelastischem Material ermittelt und in Relation zu den Unter-
suchungen eines Modells mit nur einem zentrischen EinschluB ge-

setzt.

In einer Arbeit von CUNNINGHAM et. al. /88/ werden Untersuchungen
an unidirektional orientierten Fasern in einem Verbundmodell vor-
gestellt. Die Fasern werden in einem Glasrohr mit Epoxidharz
(Araldit MY753) ummantelt und bei ca. 60°C ausgehirtet. Aus den
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Modellen werden orthogonal =zur Faserorientierung diinne Scheiben
geschnitten und mit den Methoden der Spannungsoptik analysiert.
Ein 4-tdgiges Lagern der Verbundmodelle in destilliertem Wasser
bei ca. 80°C fiihrt zur Risseinleitung in dem die Probe ummanteln-

den Glasrohr, ausgehend von dessen Endfl&chen.

Mehrere Arbeiten von HERRMANN und FERBER /13,89-91/ gehen auf
eine Methode zur Modellierung und die Versagensanalyse von schei-

benfdrmigen ebenen Verbundmodellen ein.

Abb. 7.1: Isochromatenverteilung in einem thermisch eigenge-
spannten Verbundmodell Typ A1 mit reguldrer Struktur

bei einer Temperaturdifferenz von A T=-40°C

Abbildung 7.1 gibt die spannungsoptische Aufnahme einer Isochro-
matenverteilung eines solchen ebenen Verbundmodells mit einer uni-
direktionalen Faserorientierung in einer hexagonalen Packung mit

reguldrer Struktur wieder.
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7.1 MODELLHERSTELLUNG UND VERARBEITUNGSPROZEDUR

In Analogie zu einer von FICKER /92/ angegebenen Technik zur Ver-
arbeitung von Kunststoffen bzw. deren Einsatz bei spannungsopti-
schen Modellstudien und einer von BRAUN /7/ beschriebenen Prozedur
zur Herstellung von ebenen scheibenfdrmigen Verbundmodellen wurde
ein modifiziertes GieBverfahren erarbeitet. In Abbildung 7.2 sind
eine komplett montierte GieBform und deren Einzelkomponenten ge-

meinsam mit einem Verbundmodell wiedergegeben.

Abb. 7.2: GieBform zur Herstellung ebener Verbundmodelle

Die Form besteht aus einer Spannvorrichtung, in die ein Paket aus
Deck- und Formplatten variabler Dicke eingebracht werden kann. In
die Formplatte sind AnguB, Steiger und die Modellkontur eingear-
peitet. Als Form- und Deckplattenwerkstoff dient das teilkristal-
line Thermoplast Polyathylen PE, da die benutzten Epoxidharze bei
Verwendung geringer Mengen geeigneter Trennmittel mit diesem Mate-
rial keine Haftung eingehen. Die zur Simulation der Fasern verwen-
deten geschliffenen Stahlscheiben werden in die Form mit Hilfe ei-
ner Justierschablone eingelegt und zwischen den Deckplatten ver-

spannt.



67

Als Modellwerkstoff fir die nachzubildende Matrix wurde das warm-
hdrtende Epoxidharz ARALDIT F (Araldit 6020) in Kombination mit
dem H&arter HY2954 der Firma Ciba AG verwendet /22/. Die montierte
Form wird zusammen mit dem Harz (100 Gewichtsanteile) und dem Har-
ter (30 Gewichtsanteile) im Ofen bei 60°C fiir die Dauer von 60 Mi-
nuten vortemperiert. AnschlieBend werden Harz und Harter miteinan-
der gemischt, bei 60°C ca. 2 Minuten gerthrt und wiederum 5 Minu-
ten bei 60°C nachgewdrmt. Nach dem Einfillen des blasenfreien
Harzgemisches in die GieBform wird diese im Ofen je nach Anwen-
dungsfall und Zielsetzung zwischen 3 und 24 Stunden bei 60°C Pro-

benaushdrtungstemperatur gehalten.

7.2 MODELLBELASTUNG UND APPARATIVER AUFBAU

Nach dem Ausformen des fertigen Modells aus der GieBform wird
ersteres in einer Temperierkammer von der Aushdrtetemperatur bzw.
bei Zwischenlagerung von der Raumtemperatur weiter abgekiihlt, so
daB je nach der Vorgeschichte des zu untersuchenden Modells dieses
bis zum Versagen, d.h. Einleiten thermischer Eigenspannungsrisse,

belastet werden kann.

In Abbildung 7.3 ist die speziell flir die hier besprochenen Un-

tersuchungen entwickelte Temperiereinrichtung wiedergegeben.

Die Kammer kann ilber eine Regel- und Steuereinrichtung im Tempe-
raturbereich von +80°C bis -190°C mittels einer elektrischen Heiz-
einrichtung bzw. fllissigem Stickstoff temperiert werden. Sie
gestattet die Beobachtung der Modelle bis 2zu einem ModellauBen-
durchmesser von DM = 300 mm und ist mit einer schrittmotorbetrie-
benen spannungsoptischen Apparatur ausgestattet. Die spannungs-
freien Mehrfachverglasungen sind mit einer Evakuieranlage gekop-
pelt und konnen von auBen zusdtzlich Uber ein Ringdilisensystem
mittels eines Warmluftstroms beschlagfrei gehalten werden. Die
gesamte Kammer ist isoliert und seitlich mit einer ebenfalls mit
PU-Schaum ausgefiillten Tir versehen. Ein verschieblicher Rahmen
mit integrierter HOhen- und Seitenverstellung der Klimaeinrichtung
gestattet das exakte Positionieren der Gesamtanlage. Eine spezi-
elle Probenhaltevorrichtung schafft eine =zentrische verspannungs-
freie Arretierung des Modells mit automatischem Ausgleich des Tem-

peratureinflusses. Die Kammer ist mit mehreren Filihlern zur Rege-
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lung der Innentemperatur und zur Uberwachung der Modelloberfléa-

chen- bzw. Kerntemperatur ausgestattet und verflgt {ber weitere

MeBkabeldurchfiihrungen, um zusdatzliche Triggerkontaktsignale aus

dem temperierten Innenraum herausleiten zu konnen.

Tl v

R

Abb. 7.3: Temperierkammer
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7.3 MODELLMATERTIALIEN UND DEREN TEMPERATURVERHALTEN

Die quantitative Beschreibung des Spannungszustandes in Verbund-
modellen setzt den Einsatz geeigneter Modellwerkstoffe und die
Kenntnis ihrer charakteristischen mechanischen und insbesondere

thermischen Eigenschaften voraus.

Die ersten experimentellen Modelluntersuchungen wurden 1815 durch
D. BREWSTER /93/ an Glas als Modellwerkstoff vorgenommen. Ein we-
sentlicher Fortschritt in der Entwicklung der experimentellen
Spannungsanalyse wurde 1930 durch die Einflhrung des Kunststoffes
Bakelite BT 61893 durch FROCHT /94/ erreicht. Die flir spannungs-
optische Modellstudien wichtigsten Materialien, insbesondere fir
dreidimensionale Untersuchungen, sind heute die Epoxidharze. Sie
ermdglichen eine nahezu problemlose Versuchsdurchfihrung und er-
o6ffnen neue Techniken, wie das GieBen komplizierter raumlicher Mo-
delle und die Anwendung des Oberfldchenschichtverfahrens. In einer
umfangreichen Literatur ist der gegenwdrtige Wissensstand dokumen-
tiert /21-23/. Gleiches gilt flir die derzeit gebrduchlichen Mo-
dellmaterialien. Uber den Einsatz und die Zuhilfenahme der Span-
nungsoptik als Analyseverfahren =zur Untersuchung des Spannungs-
und Dehnungszustandes von Verbundstrukturen ist nur wenig bekannt.
Zur Nachbildung thermischer Eigenspannungen und deren Analyse mit-
tels der Spannungsoptik ist von C.P. BURGER /95/ eine Zusammen-
stellung angegeben worden. Die allgemeinen Eigenschaften der wich-
tigsten spannungsoptischen Modellmaterialien sind z. B. in W. WOLF
/22/ zusammengestellt, wobei ebenfalls Aussagen Uber deren Tempe-
raturabhdngigkeit vorwiegend im Bereich erhdhter Temperaturen =zu
finden sind. Flr den Temperaturbereich oberhalb Raumtemperatur
sind von H. BRAUN /7/ in eigenen Untersuchungen fir das Epoxidharz
ARALDIT B Werkstoffkennwerte angegeben worden. Von J.T. METCALF
et. al. /96/ wurde fir ARALDIT B und HOMALITE 100 der Elastizi-
tdtsmodul bis =zu einer Temperatur von -100°¢ gemessen. Fur eine
fundierte experimentelle Auswertung bzw. die numerische Aufberei-
tung des thermischen Eigenspannungszustandes sowie des Versagens-
verhaltens von modellhaften ebenen Faserverbundstrukturen ist die
Kenntnis des Verhaltens der zugehdOrigen Werkstoffparameter unter
Temperatureinwirkung unumganglich. Um den der vorliegenden Arbeit
zugrundeliegenden Versuchsbedingungen Rechnung zu tragen, wurden

eigene umfangreiche Untersuchungen zum Studium der thermischen Ab-



70

hangigkeit relevanter Werkstoffparameter angestellt. In diesem Zu-
sammenhang wurden fir die Epoxidharze ARALDIT B und ARALDIT F
(Ciba-Geigy), fir das Acrylharz PMMA (Plexiglas, RoOhm) und ver-
schiedene andere Kunststoffe (z. B. PL1, Material flr das span-
nungsoptische Oberfldchenschichtverfahren, Vishay) der Elastizi-
tdtsmodul E, die Querdehnzahl v , der lineare Warmeausdehnungsko-
effizient 0 und die spannungsoptische Konstante S in Abhdngigkeit
von der Temperatur und flir das Modellmaterial ARALDIT F auch von

der Zeit bestimmt.

7.3.1 APPARATIVE ENTWICKLUNGEN

Nachfolgend sollen kurz der flir eine systematische Versuchsdurch-
fihrung notwendige apparative Aufbau und die unterschiedlichen zur
Anwendung gelangten MeBprinzipien erldutert werden. In Abbildung
7.4 sind schematisch der Versuchsaufbau und die verschiedenen Vor-
richtungen zur manuellen bzw. prozeBrechnergestiitzten Bestimmung

der oben genannten Werkstoffparameter angegeben.

Das realisierte Temperaturintervall ist durch die unterschiedli-
chen Modellwerkstoffe und die mdglichen Temperiermedien bzw. -ein-
richtungen begrenzt und liegt fir die nachfolgenden Untersuchungen

im Bereich von -195°C bis 100°C .

In der in Abbildung 7.4 dargestellten isolierten Temperierkammer
mit Sichtfenstern sind {iber eine Durchfilhrung unterschiedliche Be-
lastungsvorrichtungen montierbar. Die Temperierung erfolgt {ber
eine Widerstandsheizeinrichtung und eine stickstoffbetriebene
Tieftemperatursteuerung. Alle PriifkOrperbelastungen erfolgen iber
ein Spindelsystem, das gemeinsam mit einer KraftmeBeinrichtung au-
Berhalb der Kammer angeordnet ist. Die Kammer ist auf einer opti-
schen Bank montiert und mit einer spannungsoptischen Apparatur

versehen.

Die Temperaturabhdngigkeit der Materialien wurde speziell nach
den folgenden MeBprinzipien und mittels der in Abbildung 7.4 sche-

matisch wiedergegebenen Vorrichtungen (a) bis (d) ermittelt:
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o Elastizitdtsmodul E

(b) Biegebalken mit aufgebrachtem Biegemoment:
manuelle Auswertung der Durchbiegung und des Biegemoments

(c) Zugstab:
Dehnungsmessung mit DehnungsmeBstreifen (DMS) auf dem

Zugstab

(d) Vierpunktbiegebalken:
Dehnungsmessung mit DehnungsmeBstreifen (DMS) auf der

Balkenoberseite, rechnergestilitzte Auswertung

O QUERDEHNZAHL

(c) Zugstab:
Dehnungsmessung mit DMS ldngs und quer zur Zugrichtung,

Rechnerauswertung

(d) Vierpunktbiegebalken:

Messung der Querdehnungen mit DMS, rechnergestilitzte Aus-

wertung

o LINEARER WARMEAUSDEHNUNGSKOEFFIZIENT

(c,d) mechanisch unbelastete Kreisscheibe (nicht darge-
stellt):

thermische Dehnung einer Scheibe aus Probenmaterial mit-
tels DMS, Vergleich zu gleicher Scheibe aus Reinstsilizi-
um zur Temperaturkompensation mit ProzeBrechnerauswer-

>> o,

tung, %probe Si

O SPANNUNGSOPTISCHE KONSTANTE S

(a) Kreisscheibe mit Punktlast:

manuelles Abzdhlen der Isochromatenordnung

(c,d) Kreisscheibe mit Punktlast:
prozeBrechnergefihrte vollstdandige Auswertung eines Foto-

signals im spannungsoptischen Aufbau.
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Die Entwicklung der letztgenannten Methode zur automatischen Be-
stimmung der spannungsoptischen Konstante S hat sich als notwendig
erwiesen, da insbesondere filir das schon bei geringen Lasten zum
Sprédbruch neigende ARALDIT F und durch die zusdtzliche Verspro-
dung bei tiefen Temperaturen nur eine niedrige Zahl an Isochroma-
tenordnungen erzielt werden konnte und eine visuelle Auswertung,
auch mit Unterstiitzung eines grauwertunterdriickenden Videosystems,

nicht zu hinreichend genauen Werten fihrte.

20 — 7 l

|14
<
2 12
T 1 |
mit C=18,9 —N
8 mm-Ordng.
und k=0,92
6 1 1 | 1 L 1 1

0 1 2 3 L 5 6 1 8 9 0 1
—— Isochromatenordnung n [Ordngl

Abb. 7.5: Spannungsoptische Konstante S als Funktion der

Isochromatenordnung fiir T = -20°C

In Abbildung 7.5 ist die Abhangigkeit der spannungsoptischen Kon-
stanten S von der visuell ermittelten Isochromatenordnung fir ei-
nen Temperaturwert beispielhaft wiedergegeben. Die MeBpunkte wur-
den durch eine geeignete Funktion approximiert und der temperatur-
abhdngige Wert flir die spannungsoptische Konstante mittels des Ko-

effizienten C ermittelt.

Durch das in Abbildung 7.4 wiedergegebene Verfahren wird in einem
spannungsoptischen Aufbau der gebilindelte Laserstrahl durch den
MeBpunkt im Abstand D’ einer punktformig belasteten Kreisscheibe
geleitet und auf ein Fotoelement projiziert. Bei stetiger Bela-

stung der Probe 'wandern' die Isochromaten durch den MeBpunkt und
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fiihren zu einer Abdunkelung des Fotoempfdngers und zum Abfall des

Spannungssignals.

In Abbildung 7.6 ist das gemessene Ausgangssignal am Fotoelement
iber der ebenfalls gemessenen Punktlast F aufgetragen.

g | I
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8 1§(m)o
B e R R ssER
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’ 2RO
g 2F
5
n D
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FOTOSIGNAL U ( mV )
200
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v U

n- GANZZAHLIG ( n=1;2;3:; ..)

0 200 400 600 800 1000
KRAFT F ( N )

Abb. 7.6: Ausgangssignal am Fotoelement

Uber geeignete Rechnerprogramme kann durch das Auffinden der lo-
kalen Extremwerte sowie die Zuordnung ganz- und halbzahliger Iso-
chromatenordnungen zur aufgebrachten Last die spannungsoptische
Konstante S bestimmt werden. Es hat sich gezeigt, daB, sofern die
Probe frei von Randeffekten ist, schon ab der Ordnung n = 3 sehr

genaue Ergebnisse erreicht werden.



75

7.3.2 TEMPERATURVERHALTEN SPEZIFISCHER WERKSTOFFKENNWERTE
SPANNUNGSOPTISCHER MATERIALIEN

Die Abbildungen 7.7 bis 7.10 zeigen die mit Hilfe der in Kapitel
7.3.1 vorgestellten Versuchsanordnung gewonnenen Verlaufe des Ela-
stizitdtsmoduls E, der Querdehnzahlv , des linearen Warmeausdeh-
nungskoeffizienten a und schlieBlich der spannungsoptischen Kon-
stanten S in Abhdngigkeit von der Temperatur fir die beiden Mo-
dellwerkstoffe ARALDIT B und ARALDIT F.

In den Diagrammen 7.7 und 7.9 sind die aus der Literatur entnom-
menen temperaturabhdngigen Werte angegeben. Sie decken gemeinsam
mit den aus eigenen Messungen stammenden filir den Modellwerkstoff
ARALDIT B den gesamten versuchstechnisch relevanten Temperaturbe-

reich ab.

Fir das Epoxidharz ARALDIT F werden in der Literatur stark char-
genabhdngige Angaben gemacht, so daB flir diese Materialien aus-

schlieBlich eigene MeBergebnisse angegeben werden.

Fiir die Kunststoffe PL1 ( Material fir das spannungsoptische
Oberflichenschichtverfahren, Vishay), PMMA ( Plexiglas, ROhm) und
EN-30 (Polyurethan-GieBharz-System, Lieferant Kager) wurde die
spannungsoptische Einsetzbarkeit untersucht. Nachfolgend ist flir
die Modellmaterialien EN-30, PL1 und PMMA die spannungsoptische

Konstante angegeben.
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7.3.3 SPRODBRUCHEIGENSCHAFTEN DES EPOXIDHARZES ARALDIT F

Von den im vorangegangenen Abschnitt analysierten Modellmateri-
alien, die systematisch auf ihre Verwendbarkeit als Werkstoff =zur
Herstellung von Verbundmodellen hin untersucht wurden, =zeigt das
Epoxidharz ARALDIT F in Kombination mit dem H&rter HY 2954 unter
bestimmten Versuchsrandbedingungen eine starke Neigung zum Sprod-
bruch. In umfangreichen Untersuchungen konnte eine Verarbeitungs-
und Belastungsprozedur entwickelt werden, die in einer aus Stahl-
Fasern und ARALDIT F-Matrix nachgebildeten Verbundstruktur ent-
sprechend dem oben eingefilhrten Modelltyp B, d. h. einer ebenen
reguldren Faser /Matrix-Struktur mit einer fehlenden Mittelfaser,
unter ausschlieBlich thermischer Belastung eine reproduzierbare

Kombination von Eigenspannungsrissen entstehen 1laBt.

Die Risse verlaufen in der Epoxidharz-Matrix und setzen sich ent-
lang der Faser/Matrix-Grenzfl&chen fort, um sich schlieBlich von
der Faser wieder abzuldsen und erneut in das Matrixmaterial =zu
verlaufen. In den Abbildungen 3.4 und 3.5 sind derartige typische
RiBkombinationen angegeben. In weiteren Untersuchungen konnte
nachgewiesen werden, daB das genannte Bruchphidnomen bei Konstanz
aller Modellherstellungs- und Belastungsparameter nur von der Aus-
hdrtezeit, d.h. von der zeitlichen Differenz zwischen der begin-
nenden Polymerisation und dem Ausformzeitpunkt bzw. dem Beginn der
thermischen Modellbelastung in der Temperiereinrichtung, abhdngig

ist.

In den folgenden Diagrammen 7.73 und 7.14 sind der Elastizitats-
modul E fir den Werkstoff ARALDIT F und die spannungsoptische Kon-
stante S in Abhdngigkeit von der Temperatur und der Aushirtezeit
angegeben. In einer Arbeit von KUFNER /97/ werden ebenfalls zeit-
abhdngige Werte der spannungsoptische Konstanten fiir ARALDIT F

vorgestellt.

In Abbildung 7.15 ist der Temperatur-/Zeit-Verlauf filir den gesam-
ten Modellherstellungs- und Belastungszyklus schematisch wiederge-

geben.
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Fir alle weiteren experimentellen Untersuchungen wurden die in
Kapitel 7.1 angegebenen Verarbeitungsbedingungen konstant gehalten
und flir eine quantitative Bestimmung des Spannungszustandes die
spannungsoptische Konstante S aus EichkOrpern ermittelt, die pa-
rallel zum jeweiligen Verbundmodell erstellt und zeitlich synchron

untersucht wurden.
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Abb. 7.15: Temperatur-/Zeit-Verlauf
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7.4 UNGERISSENE VERBUNDSTRUKTUR

Experimente von HIEKE /84/ und HIEKE und LOGES /85/ sowie Unter-
suchungen von HERRMANN und GREBNER /10/ haben gezeigt, daB sich
Warmespannungsrisse entlang ausgezeichneter Hauptspannungstrajek-
torien ausbreiten, was durch analytische und numerische Methoden

sehr gut bestdtigt wurde.

In Abschnitt 3.3 dieser Arbeit wurde das fir eine vollstandige
Behandlung der vorgestellten Problematik eines thermischen Eigen-
spannungszustandes in der hier untersuchten Verbundstruktur zu 16-
sende Randwertproblem der ebenen Thermoelastizitdt formuliert. Wie
bereits erwdhnt, ist die vollstdndige Bestimmung des Spannungs-
und Verschiebungszustandes flur die vorgestellte komplexe Struktur
in Form einer geschlossenen mathematischen Beschreibung nicht mehr
mdéglich. Die LOsung des entsprechenden Randwertproblems 13dBt sich

jedoch mit den Methoden der Spannungsoptik angeben.

7.4.1 EIGENSPANNUNGSZUSTAND IN EBENEN VERBUNDMODELLEN

Man erhdlt das Netz der Hauptspannungstrajektorien, indem fir un-
terschiedliche Polarisationsrichtungen in einer spannungsoptischen
Apparatur das Isoklinenfeld aufgezeichnet und mittels eines grafi-
schen Verfahrens aufbereitet wird /22/. Die Eigenschaften der so-
genannten Isoklinen- (Richtungs-)felder sind in Abschnitt 6.1.1
und in /22/ erldutert. Vollstdndige Isoklinenfelder sind in den
folgenden Abbildungen fir die zuvor definierten Verbundmodellvari-
anten A bis D wiedergegeben. Sie zeigen ebenfalls die zugehdrigen
mittels der grafischen Auswertung gewonnenen Hauptspannungstrajek-
torienfelder. Die in den Abbildungen 7.17-a bis -d dargestellten
Hauptspannungstrajektorienfelder machen deutlich, daB Jjeweils zwei
orthogonale Scharen von Hauptspannungstrajektorien existieren, die
am Modellrand unter einem Winkel von a=90° auftreffen. Die in den
Abbildungen 7.16-a bis -d angegebenen zugehOrigen Isoklinenvertei-
lungen weisen an ausgeprdgen Stellen auf den Symmetrielinien iso-
trope Punkte aus, die die Hauptspannungsgleichheit an diesen Stel-

len wiederspiegeln.
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Abb. 7.17-b: Verbundstruktur; Typ B



Abb. 7.17-c: Verbundstruktur; Typ C

Abb. 7.17-d: Verbundstruktur; Typ D

Abb. 7.17a-d: Hauptspannungstrajektorienfelder filir unterschied-
liche Verbundstrukturen (durchgezogene Linien: Zug-

spannungen, unterbrochene Linien: Druckspannungen)
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Abb. 7.18: RiBmuster in einer ReiBlackschicht, thermisch

belastete Verbundstruktur, Typ B

Bei der Ermittlung der Hauptspannungstrajektorienfelder (Abbil-
dung 7.17a-d) hat sich das ReiBlackverfahren als wertvolles Hilfs-
mittel zur qualitativen Uberpriifung der grafischen Isoklinenfeld-
auswertung erwiesen. In Abbildung 7.18 ist eine Detailaufnahme
einer thermisch belasteten Verbundprobe mit dem resultierenden
RiBmuster in der aufgebrachten ReiBlackschicht wiedergegeben, aus
dem die infolge einer positiven Normalspannung resultierende Schar

von Trajektorien unmittelbar abgelesen werden kann.

Zur Ermittlung der Spannungsverteilungen langs ausgewdahlter Mo-
dellschnitte zwischen zwei Fasern wird das Schubspannungsdifferen-
zen-Verfahren (SDV) angewendet. Dieses integrale Verfahren gestat-
tet die vollstdndige Bestimmung des ebenen Spannungszustandes in
einer diinnen Scheibe, wobei 1ldngs gerader Schnitte schrittweise
vom Rand ins Innere einer Probe gerechnet wird. Die Anwendung des
SDV setzt die Kenntnis der Isoklinen- und Isochromatenverteilung
Uber den gewdhlten Modellschnitt voraus. Die Abbildungen 7.19a-d
zeigen exemplarisch Isochromatenverteilungen in den schon mehrfach

vorgestellten Strukturvarianten Typ A bis D.
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Abb. 7.19-a: Isochromatenverteilung in einer Verbundstruktur;

reguldre Struktur; Typ A

Abb. 7.19-b: Isochromatenverteilung in einer Verbundstruktur;

Typ B
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Abb. 7.19-c: Isochromatenverteilung in einer Verbundstruktur;

Typ C

Abb. 7.19-d: Isochromatenverteilung in einer Verbundstruktur;

Typ D
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7.4.2 SPANNUNGSVERTEILUNGEN ENTLANG RADIALER SCHNITTE

Im Innern eines spannungsoptischen Modells erhdlt man mit den
bisher angefiihrten Verfahren lediglich mittels der Isoklinen das
globale Hauptspannungstrajektorienfeld und iUber die Isochromaten-
information den Spannungszustand an freien R&ndern. Innerhalb der
belasteten Struktur lassen sich aus den Isochromatenparametern die
Hauptspannungsdifferenzen ermitteln. Bei einer Vielzahl prakti-
scher Anwendungen reichen aber diese Informationen flUr eine Fe-
stigkeitsanalyse nicht aus, so daB zumindest in ausgewdhlten Be-
reichen der vollstdndige Spannungszustand bekannt sein muB. Inner-
halb der Vielzahl von Verfahren zur quantitativen Spannungsermitt-
lung hat sich das Schubspannungsdifferenzenverfahren (SDV) durch-
gesetzt. Ausgehend von bekannten Randspannungen erfolgt die Span-

nungsbestimmung durch schrittweise Integration.

dy2 X
, dy/2

Abb. 7.20: Gleichgewicht am Fldchenelement flir das Schubspan-

nungsdifferenzenverfahren

Durch eine einfache Gleichgewichtsbetrachtung an einem entlang
der Auswertelinie mitbewegten Flachenelement (AA = A x.Ay) ergibt

sich der folgende formelmd@Bige Zusammenhang.
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bo = -( T - Ty ) (7.4-1)

Darin stellen AOX, Ta und Th Mittelwerte Uber die Langenelemente

dar.

Ausgehend von einer bekannten Randspannung Gxo' die z. B. mit der
sogenannten 'Nagelprobe" bestimmt werden kann, erhdlt man an einer

beliebigen Stelle x auf dem Integrationsweg die lokale Spannung GX

Ax
O, = 90 - I ( Tn - Tp by

(7.4-2)
Die Schubspannungen entlang der Hilfsschnitte A und B lassen sich
mit Hilfe der Isoklinenparameter aj aus der folgenden Beziehung

ermitteln.

1 . . .
Tj = -3 ( o, -0, ) sin 2aj ; mit j = A, B (7.4-3)

Die Hauptspannungsdifferenzen sind {iber die Isochromatenordnungen
nj bestimmt. Die Schubspannung im Schnitt x errechnet sich als

arithmetischer Mittelwert der Elementrandschubspannungen Tj zu

1
TXy =5 ( TA + TB ) (7.4-4)

Die gesuchte NormalspannungOy 14Bt sich schlieBlich Uber die

Mohrschen Formeln bestimmen.

2 2
Oy = OX i v/(:j1 _02) - 4 TXY (7.4-5)

Das Verfahren ist 1in den Standardwerken der Spannungsoptik
/21,22/ ausflihrlich dokumentiert und erldutert, so daB an dieser

Stelle auf eine weitere Vertiefung verzichtet werden kann.

Flir die hier vorgestellten Untersuchungen wurde der Integrations-
weg entlang der Symmetrielinie zwischen zwei Fasern eines ebenen
Verbundmodells auf einem radialen Schnitt von dem freien Modell-
rand zur Mitte gewdhlt, so daB zumindest fiir die Betrachtungen an
ungerissenen Modellen die ermittelten Spannungskomponenten gleich-

zeitig die Hauptspannungen entlang der x-Achse darstellen.
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Nachfolgend sind die Ergebnisse fir verschiedene Modelltypen bei
unterschiedlichen Modelldicken und Belastungstemperaturen angege-
ben. Die zur Angabe der Spannungswerte notwendige spannungsopti-
sche Konstante wurde, entsprechend der in Abschnitt 7.3.1 be-
schriebenen Verfahren, in Abhdngigkeit von der Temperatur und der

Probenvorgeschichte bestimmt /98/.

Es sind jeweils die experimentell gefundenen Isochromaten- und
Isoklinenverteilungen in der Umgebung zweier bzw. dreier Einlage-
rungen von thermisch belasteten Verbundgeometrien angegeben. Dabei
wurden die Isoklinenparameter in die Darstellungen aufgenommen und
mit der zugehoOrigen Winkelangabe versehen. Die Isochromatenver-
teilungen sind als breite Linienzlige kenntlich gemacht, die je-
weils ganzzahlige Isochromatenordnungen reprdsentieren, sofern

keine abweichenden Angaben gemacht werden.

7.4.2.1 REGULARE STRUKTUR MIT SIEBEN FASERN; TYP A

Abb. 7.21-a: Isochromaten- und Isoklinenverteilung in der

Umgebung dreier Einlagerungen; Modelltyp A
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7.4.2.2 STRUKTUR MIT FEHLENDER MITTELFASER; TYP B
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Abb. 7.22-a: Isochromaten- und Isoklinenverteilung in der

Umgebung zweier Einlagerungen; Modelltyp B
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bzw. der x-Achse; Modelltyp B
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7.4.2.3 STRUKTUR MIT KLEINER MITTELFASER; TYP C
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Abb. 7.23-a: Isochromaten- und Isoklinenverteilung in der

Umgebung dreier Einlagerungen; Modelltyp C

a1 : -67.5°Ic
[ %
mm o?
T Drd
. L_r "9'1‘ /\ Oy
; \ | /
|
o 0 B \
- \
Vozal \ /N
_[‘r_ 1= /)-_—_(\\ \
_4\’)_-—{‘ \ \
= @
@
-2_ \)__—J/
-gL 4
-
0 1 2 3 A 5 6 7 8 9¢
— Teilpunkte
L L |
0 25 50

x—» [mm]

Abb. 7.23-b: Normalspannungsverteilung langs der x-Achsej;

Modelltyp C



100

7.4.2.4 STRUKTUR MIT ZENTRISCHER BOHRUNG; TYP D

>
~
w

Abb. 7.24-a: Isochromaten- und Isoklinenverteilung in der

Umgebung zweier Einlagerungen; Modelltyp D
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7.5 VERSAGEN EBENER VERBUNDMODELLE MIT STRUKTURFEHLERN

7.5.1 VERSAGENSVERHALTEN UND SPANNUNGSOPTISCHE UNTERSUCHUNGEN

In den Abbildungen 3.4 und 3.5 sind exemplarisch typische Eigen-
spannungsriBkonfigurationen in ebenen Verbundmodellen dargestellt,
die sich einstellen, wenn die Modellherstellungsprozedur entspre-
chend den in Abschnitt 7.1 angegebenen Bedingungen erfolgt und die
Modellbelastung nach den in Abschnitt 7.3.3 Abbildung 7.15 vorge-

stellten Abklhlungskurven vorgenommen wird.

Unter den genannten Bedingungen stellen sich reproduzierbare RiB-

geometrien ein, die sich in die folgenden Sequenzen aufgliedern

lassen:
I : Initiierung eines Matrixrisses
II : Ausbreitung eines gekrimmten Matrixrisses zur benachbarten

Faser

IITI : RiBarrest auf der Faser/Matrix-Grenzflache

IV : Ausbildung gekrimmter Faser/Matrix-Grenzfl&chenrisse
\Y : RiBarrest in den Faser/Matrix-Grenzfldchen
VI : Erneute Initiierung eines Matrixrisses vom RiBarrestpunkt

in der Grenzfldche aus
VII : Ausbreitung gekrimmter Matrixrisse zu benachbarten Fasern

VIII: Stadien III,

. uswe.

ii : VOlliges Umlaufen der RiBsequenzen und RiBarrest

In der Abbildung 7.25 ist ein Modell wiedergegeben, in dem Eigen-

spannungsrisse die oben genannten Phasen durchlaufen haben.
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Abb. 7.25: RiBkombination in einem Faserverbundwerkstoffmodell

7.5.2 EIGENSPANNUNGSVERTEILUNGEN ENTLANG RADIALER SCHNITTE
ZWISCHEN ZWEI FASERN FUR GERISSENE VERBUNDMODELLE MIT
STRUKTURFEHLERN

In den nachfolgenden Abschnitten sind flr die im Kapitel 7.4.2
vorgestellten Modellvarianten, d.h. Typ B, -C und -D der einge-
flihrten Nomenklatur, in analoger Weise Spannungsverldufe entlang
radialer Schnitte zwischen zwei Fasern und {lber einen Eigenspan-
nungsriB hinweg mittels des Schubspannungsdifferenzenverfahrens

angegeben.
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7.5.2.1 STRUKTUR MIT FEHLENDER MITTELFASER; TYP B

Abb. 7.26-a: Isochromaten- und Isoklinenverteilung in der

Umgebung zweier Einlagerungen; Modelltyp B
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Abb. 7.26-b: Isochromatenordnungen ldngs der Hilfsschnitte A, B
bzw. der x-Achse; Modelltyp B
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7.5.2.2 STRUKTUR MIT KLEINER MITTELFASER; TYP C

o

Abb. 7.27-a: Isochromaten- und Isoklinenverteilung in der

Umgebung zweier Einlagerungen; Modelltyp C
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Abb. 7.27-b: Normalspannungsverteilung langs der x-Achse;

Modelltyp C
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7.5.2.3 STRUKTUR MIT ZENTRISCHER BOHRUNG; TYP D

Abb. 7.28-a: Isochromaten- und Isoklinenverteilung in der

Umgebung zweier Einlagerungen; Modelltyp D
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Abb. 7.28-b: Normalspannungsverteilung lings der x-Achse;

Modelltyp D
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7.5.3 REDUKTION AUF EINE EINZELRISSKONFIGURATION

Die in den vorausgegangenen Ausflihrungen vorgestellten Untersu-
chungen lassen eine systematische Durchdringung des beschriebenen
Phanomens des Eigenspannungsbruches von modellierten ebenen Faser-
verbundwerkstoffmodellen mit Strukturabweichungen von der reguld-
ren Anordnung mit den bisherigen Mitteln nicht zu, da die in Ab-
schnitt 7.5.17 angegebenen Rifsequenzen nicht in einer Minimalkom-
bination bestehend aus einem Einzel-MatrixriB-GrenzfldchenriB-

system auftreten.

Um dennoch, nicht zuletzt in Hinblick auf eine liberschaubare nu-
merische Modellierung und RiBsystemsimulation des besprochenen Ei-
genspannungsrif3problems, die RiBsequenz auf die Folge I bis V zu
reduzieren, wurden die im folgenden Abschnitt verdeutlichten Mo-

dellmodifikationen vorgenommen.

7.5.3.1 MODELLIERUNG UND RISSINITITERUNG

In Abbildung 7.29 ist eine Kombination aus lediglich einem ein-
zelnen MatrixriB mit angrenzenden arretierten Faser/ Matrix-Grenz-

flachenriBsequenzen angegeben.

Abb. 7.29: Faser/Matrix-GrenzfldchenriBkonfiguration
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Die Reduktion der RiBstadien wurde durch einen manuell einge-
brachten kurzen AnriB erreicht. Eine dinne nichthaftende Folie
wurde entsprechend der RifBeinleitungsposition und der RiBanfangs-
richtung in die Faser (Stahlscheibe) eingebracht und mit dem Ma-
trixmaterial (Araldit F) umgossen. Die thermische Belastung er-

folgt in gleicher Weise wie die einer nicht manipulierten Probe.

7.5.3.2 HAUPTSPANNUNGSTRAJEKTORIENFELD FUR EINE EINZELRISSKONFI-

GURATION

Die Abbildungen 7.30 und 7.31 zeigen die mit dem oben angefiihrten
Verfahren aufgenommenen Isoklinenverteilungen und die resultieren-
den Hauptspannungstrajektorienfelder flir eine Kombination aus ei-
nem Einzel-MatrixriB und zweier angrenzender Faser/Matrix-Grenz-

flachenrisse.

Abb. 7.30: Isoklinenverteilung in einer Verbundstruktur mit

EinzelriB



Abb. 7.37: Hauptspannungstrajektorienfeld in einer Verbundprobe
mit EinzelriB (durchgezogene Linien: Zugspannungen,

unterbrochene Linien: Druckspannungen)

7.5.3.3 EIGENSPANNUNGSVERTEILUNG IN EINER EINZELRISSKONFI-

GURATION

Fir die in diesem Abschnitt behandelten RiBkonfigurationen wurden
ebenfalls mittels des Schubspannungsdifferenzenverfahrens die
Spannungsverteilungen entlang radialer Modellschnitte - Uber einen
zwischen zwei Fasern verlaufenden EinzelriB - ermittelt. Die Ab-
bildungen 7.32 und 7.33 geben den Spannungszustand fiur den unge-

rissenen und gerissenen Zustand zweier Verbundmodelle wieder.
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zwischen zwei Fasern eines ungerissenen Verbundmo-
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Abb. 7.33-a: Isochromaten- und Isoklinenverteilung in der Nahe

zweier Einlagerungen einer gerissenen Verbund-
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7.5.4 EIGENSPANNUNGSZUSTAND FUR EINEN ARRETIERTEN MATRIXRISS

Durch Einarbeitung einer sehr dinnen und mit einem geeigneten
Trennmittel bestrichenen, der RiBkontur entsprechend geformten,
Aluminiumfolie wurde ein arretierter MatrixriB simuliert, der
etwa die halbe Lange des vollstdndigen Matrixrisses aufweist. Die
Abbildungen 7.34 und 7.35 zeigen die sich bei thermischer Bela-

stung einstellenden Isoklinen- und Hauptspannungstrajektorienfel-

der.

Abb. 7.34: Isoklinenverteilung in einem Modell mit arretiertem

MatrixriB



Abb. 7.35: Hauptspannungstrajektorienfeld in einem Modell mit
arretiertem MatrixriB (durchgezogene Linien: Zug-

spannungen, unterbrochene Linien: Druckspannungen)



7.6 VERSAGEN RAUMLICHER VERBUNDMODELLE

Die unmittelbare spannungsoptische Untersuchung rdumlicher Span-
nungszustdnde ist, &hnlich wie in der ebenen Spannungsoptik, nur
in einigen Spezialfdllen mdglich. Vollstdndige Spannungsanalysen
rdumlicher EigenspannungsriBprobleme in Verbundstrukturen sind

bisher nicht bekannt.

In eigenen Modelluntersuchungen an dreidimensionalen Faserver-
bundwerkstoffmodellen wurden kompakte Verbundkdrper mit unidirek-
tionaler Orientierung zylindrischer Fasern in hexagonaler Anord-
nung hergestellt und hinsichtlich ihres Versagensverhaltens unter-
sucht. Die bei der Untersuchung ebener Modelle festgestellte ex-
treme Sprodbruchneigung des Epoxidharzes Araldit F wurde hierbei
ebenfalls ausgenutzt, um im Innern von Kompaktstrukturen wiederum
ausschlieBlich durch Temperatureinwirkung Eigenspannungsrisse zu
initiieren. Die ModellabmaBe der kompakten Faserverbundwerkstoff-
modelle entsprechen bis auf die Modellhohe H denen der ebenen
Scheibenmodelle (siehe Abbildung 3.2).

Abb. 7.36: Kompaktes Faserverbundwerkstoffmodell mit Fehlstruktur
und Modellschnittebenen mit einer HOhe H=150 mm bzw.
h=H/2; Modelltyp B-3D
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Innerhalb einer Vielzahl von Modelluntersuchungen wurde eine ge-
eignete Modellherstellungs- und -belastungsprozedur entwickelt,
mit deren Hilfe flr Modelle mit einer Araldit F-Matrix und Kera-
mik-Fasern Eigenspannungsrisse zwischen benachbarten Fasern und

entlang der Faser/Matrix-Grenzflichen induziert werden k&nnen.

In den Abbildungen 7.37-a-b sind beispielhaft dreidimensionale
Faserverbundwerkstoffmodelle mit EigenspannungsriBkonfigurationen
dargestellt. Die Risse weisen wiederum einen stark gekriimmten Ver-
lauf zwischen den Fasern im Bereich der Modelldeck- und -boden-
flachen auf. Im Modellmittelbereich verlaufen die Risse zwischen

den Fasern.

Bemerkenswert ist, daB die RiBkonfigurationen ausschlieBlich im
Modellinneren auftreten und kein Heraustreten an die Modellober-

fldchen erfolgt.

Abb. 7.37-a: Schnitt durch ein kompaktes Faserverbundwerkstoff-
modell; Schnitt a-a



Abb. 7.37-b: Schnitt durch ein kompaktes Faserverbundwerkstoff-
modell; Schnitt b-b



8. NUMERISCHE UNTERSUCHUNGEN ZUM EIGENSPANNUNGSVERHALTEN
EBENER FASERVERBUNDWERKSTOFFMODELLE

Die im Abschnitt 7.6 vorgestellten Versagensmerkmale r&dumlicher
Faserverbundwerkstoffmodelle zeigen in allen Phasen eine gute
Ubereinstimmung mit denen ebener Modellstudien, sie sind jedoch
aufgrund erhOhter Komplexitdt wesentlich komplizierter. Es ist
festzustellen, daB im Falle einer Verletzung der urspriinglichen
reguldren Faseranordnung sowohl bei dreidimensionalen als auch bei
ebenen Modellierungen stets ein gekrUmmter MatrixriB zwischen zwei
benachbarten Fasern auftritt, an den sich Grenzfl&dchenrisse
innerhalb der beteiligten Faser/Matrix-Grenzflidchen anschlieBen,
die bei Erreichen geometriespezifischer Endlagen arretieren. In
der Abbildung 8.1 sind fir einen Modellausschnitt die eingefiihrten
globalen und lokalen Koordinatensysteme mit Angabe der eine voll-

stdndige RiBkonfiguration beschreibenden Parameter zu sehen.

Abb. 8.1: Globale und lokale Koordinatensysteme in einer
eigengespannten riBbehafteten Verbundgeometrie
Modelltyp B
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Darin verl&duft ein schematisch angedeuteter MatrixriB von dem
RiBanfangspunkt A2 zum Punkt A1 der Faser 1. Die beiden Faser/Ma-
trix-Grenzfldchenrisse sind durch die Strecke A1-E1 entlang der
Faser 2 angedeutet und durchlaufen die Winkelbereiche in den zuge-
ordneten lokalen kartesischen Fasermittenkoordinatensystemen X.1Yy

von aA1 bis aE1 bzw. aAZ bis aEZ'

Die im Punkt A2 eingefithrten lokalen Koordinatensysteme beschrei-
ban den bezogenen RiBinitiierungspunkt (RF,GAZ) in einem N-T-Koor-
dinatensystem und das ebenfalls 1lokale, jedoch um den WinkelOﬁH
gedrehte RiBfortschrittskoordinatensystem, das dem Hauptachsensys-

tem im Punkt A2 entspricht.

Zur numerischen Nachbildung des Spannungs- und Verformungszustan-
des und der Simulation der RiBausbreitung wurde eine Vielzahl sich
experimentell einstellender EigenspannungsriBkonfigurationen gra-
fisch aufgenommen und zusammengestellt. In Abbildung 8.2 sind ex-
emplarisch finf Eigenspannungsrisse aus unterschiedlichen Verbund-

proben zusammengefaBt.

MATRI X

Abb. 8.2: Eigenspannungsrif in der Matrix aus unterschiedlichen

Faserverbundwerkstoffmodellen ; Modelltyp B
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Es wird deutlich, daB alle Risse in einem engen Band auf der Fa-
ser 2/Matrix-Grenzfldche entstehen und sich in die Matrix ausbrei-
ten. Die RiBanfangs- und Endrichtungen sind nicht senkrecht zu den
Fasern orientiert. Die Verlaufe aller Risse sind stark asymme-

trisch.

8.1 TOPOLOGISCHE UMSETZUNG DER GEOMETRIE EBENER VERBUND-

MODELLE

Um die systematische numerische Untersuchung des Spannungs- und
Verformungszustandes vornehmen zu konnen, ist eine fir die Ziel-
setzung geeignete topologische Modellierung erforderlich. In Ab-
bildung 8.3 ist die Aufspaltung der im folgenden vorgestellten FE-
Untersuchungen in einen globalen und lokalen Zweig schematisch
dargestellt. Die globalen Modellstudien dienen hierbei in erster
Linie der groBfladchigen Nachbildung des Eigenspannungszustandes in
der vorgestellten Struktur und dem Vergleich zu den auf spannungs-
optischem Wege ermittelten Ergebnissen. Zur Erlangung einer aus-
reichenden Genauigkeit ist in diesem Fall eine feine homogene FE-
Netzdiskretisierung notwendig. Auf Grund der damit verbundenen
groBen Datenmengen ist die numerische Behandlung des gesamten Ver-
bundkOrpers nicht praktikabel. Durch Ausnutzung aller vorhandenen
Symmetrieeigenschaften der angegebenen Modellgeometrie 1ldBt sich
die numerische Berechnung auf ein 300—Segment reduzieren. Die ge-
wonnenen Ergebnisse kénnen durch 'Spiegeln' an den Symmetrielinien

flir die gesamte Geometrie rekonstruiert werden.

Die Ermittlung bruchmechanischer Kennwerte flir sich quasistatisch
ausbreitende Eigenspannungsrisse, die wie im vorliegenden Fall be-
liebig gekrlimmt innerhalb eines homogenen Matrixmaterials bzw.
kreisfdrmig in den Diskontinuitdtsfldchen eines Faser/Matrix-Ver-
bundes verlaufen, setzt eine geeignete lokale Modellierung der
RiBkontur entlang der prospektiven RiBlinienkonfiguration voraus.
In Abbildung 8.3-a ist ebenfalls eine Netzstruktur fiir die lokalen
RiBspitzenuntersuchungen wiedergegeben. Zur Durchflihrung der FE-
Berechnungen steht das am Hochschulrechenzentrum der Universitat-
GH-Paderborn installierte Programmsystem ASKA /99,100/ zur Verfi-
gung. Die beiden grundsdtzlich unterschiedlichen Netzeinteilungen

wurden parallel entwickelt und mittels ebener, in ASKA verfligbarer
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die einen quadratischen Verschiebungsan-

TRIM6-Elemente aufgebaut,

satz realisieren.
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Die aus TRIM6-Elementen aufgebauten globalen (Netztyp G6) und lo-
kalen (Netztyp L6) FE-Netze sind in unterschiedliche Elementgrup-
pen unterteilt. Durch Zuordnung werkstoffspezifischer Modellkenn-
werte konnen auf diese Weise die unterschiedlichsten geometrischen
und werkstofftechnischen VerbundkOrperpaarungen baukastenartig

kombiniert werden.

Die diskrete Modellstruktur besteht schlieflich aus mehreren Ein-
zelnetzen, die sich wiederum aus Elementgruppen zusammensetzen,
wobei die Teilnetzgrenzen beim Netztyp G6 entlang der Faser/Ma-
trix-Grenzfldche und beim Netztyp L6 entlang der zu simulierenden
RiBlinie verlaufen. Auf Grund einer Minimierung des Rechenzeitbe-
darfs bei den RiBsimulationsrechnungen wurde fir die definierten
und topologisch beschriebenen Netztypen G6 und L6 ein umfangrei-
ches Generierungs- und Manipulationsprogrammsystem entwickelt.
Uber ein Rechnerprogrammsystem lassen sich aus den Original-FE-To-
pologien und -Daten die Elementtypen verandern, die Elementgruppen
beliebig kombinieren, die Werkstoffkennwerte variieren und die
Elementknotenpunktskoordinaten manipulieren. Auf diese Weise sind
verschiedene Netzvarianten erstellt und fir spezielle Fragestel-
lungen aufbereitet worden. Die Netzvarianten L3RE-Typ-B, -C und -D
sind entstanden aus einer Reduktion des Netzes L6 durch Beschrei-
bung mittels der TRIM3-Elemente sowie Expansion aller an die RiB-
kontur angrenzenden Elemente und einer automatischen topologischen
Anpassung an das reduzierte Grundnetz. Mit jeder programmseitigen
Verdnderung der Ausgangsnetze (G6 und L6) wird eine automatische
Knotenpunktsumnumerierung- und -optimierung vorgenommen. In einem
Strukturorganisationsdatensatz ist zu Jjeder Netzmanipulation die
Zuordnung zwischen den Originalnetzparametern und den optimierten
Netzparametern abgelegt. Im Bereich der prospektiven Rifllinie wird
die Elementeinteilung programmseitig homogenisiert, dieses ist
Voraussetzung flir das Ausschalten bzw. Minimieren numerischer
Einflisse bei der Simulation einer quasistatischen RiBausbreitung
und Auswertung der numerisch bestimmten Knotenpunktskrdfte und
Knotenpunktsverschiebungen mittels der Methode des RifschlieBungs-

integrals.
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Uber die Einfliisse des verwendeten Elementtyps und inhomogener
Elementeinteilungen auf die durch lokale Energiemethoden
bestimmten bruchmechanischen Kennwerte wird in der Literatur be-
richtet /17,101,46/. Flir die FE-Untersuchungen wurden in Anlehnung
an die bereits vorgestellten experimentellen Untersuchungen hin-
sichtlich des Eigenspannungszustandes und der Bruchphdnomene fol-

gende Belastungsparameter und Materialkennwerte realisiert.

MATRIX FASER
Elastizitdtsmodul E
( N mm 2 ) 2583,0 2,1 *10°
Querdehnzahl v
0,4 0,3
Lin. Warmeausdehnungs-
koeffizient o ( K| ) 37,5 .10°° 12,0 *107°

Tabelle 8.1: Thermoelastische Materialkennwerte

Die den Rechnungen =zugrunde gelegte Temperaturdifferenz von
AT= —67,50C entspricht einer Modellabkihlung vom spannungsfreien
Ausgangszustand TO= 60°C auf die Belastungs- bzw. Versagenstempe-

ratur T, = -7,5%%.
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8.2 GLOBALE MODELLSTUDIEN

Aus dem Spektrum der Modellvariationen sollen einige reprdsenta-
tive Beispiele vorgestellt werden. In Abbildung 8.4 ist die Ele-
menteinteilung fir das Netz G3E-90-TYP-B dargestellt. Es besteht

aus drei Teilnetzen und wurde mittels TRIM3-Elementen modelliert.
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Abb. 8.4: Elementeinteilung flir das Netz G3E-90-TYP-B

8.2.1 SPANNUNGSVERTEILUNG ENTLANG RADIALER SCHNITTE

Entlang der radialen Schnittlinien O-M und O-F wurden die Eigen-
spannungsverteilungen bestimmt. Flir den gleichen Modelltyp wurden
Topologievariationen simuliert und ebenfalls ausgewertet. Fehl-
strukturen im Sinne des Modelltyps D, d.h. einer reguldren Struk-
tur mit zentrischer Fehlstelle, wurden unter Ver&dnderung des Bohr-
ungsdurchmessers untersucht. In den Abbildungen 8.5-a bis 8.5-f
sind die Normalspannungen entlang der Symmetrielinie zwischen zwei

Fasern angegeben.
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Abb. 8.5-c: Normalspannungsverteilung zwischen zwei Fasern,

Modelltyp D; Bohrungsdurchmesser RFS = 5,0 mm
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Abb. 8.5-d: Normalspannungsverteilung zwischen zwei Fasern,

Modelltyp D; Bohrungsdurchmesser RFS = 7,5 mm
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Die Abbildung 8.6 zeigt den Verlauf der Vergleichsspannungen ent-
lang eines radialen Schnittes zwischen zwei Fasern. Die Berechnung
der Vergleichsspannungen erfolgte nach der Gestaltsdnderungsener-

giehypothese.

/2

0V=(1/2((cx-oy)2+(cy-oz)2+(oz—ox)2)+3(rx 241 2+TZX2))1 (8.1)

Yy yz
Die einzelnen Spannungskomponenten wurden zur nachbereitenden
Verarbeitung knotenpunktsweise aus dem ASKA-Ergebnisdatenfeld her-
ausgelesen und in die 1lokale Knotenpunktsvergleichsspannung umge-

rechnet.

o T
1 DM = 150,0 MM
~ RF = 12,5 mM
o~ syMBoL RS (mM )  NETZTYP
o o 0.0 G3E-90-TYP-B
A 2.5 3€-90-TYP-D-1
z + 5.0 G3E-90-TYP-D-2
- X 7.5 G3E-90-TYP-D-3
- ® 10,0 G3€-90-TYP-D-4
s 4 125 G3E-90-TYP-D-5
(4]
s
2
&

-—-—-—-—)—.—.—-—i-—-—-—-q

0 8 16 24 32 40 48 56 64 72 80
X (mm)

Abb. 8.6: Vergleichsspannung entlang radialer Schnitte fir meh-

rere Fehlstrukturen, Typ-D

In diesem Zusammenhang ist bemerkenswert, daB die Randspannungs-
werte und die Vergleichsspannungen mit grdBer werdendem Fehlstel-
lendurchmesser stark zunehmen und bei Erreichen wvon RFS: 7,5 mm
einen Maximalwert Uberschreiten. Die Spannungsspitzen zwischen den
Fasern nehmen mit wachsendem Fehlstellendurchmesser geringfligig
ab. In den Abbildungen 8.7-a-f sind die Verteilungen der Normal-
spannungen entlang des Radialschnittes O-F wiederum in Abh&dngig-

keit vom Fehlstrukturradius angegeben.
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Die Abbildungen 8.7-a-f stellen die Spannungsverteilungen entlang
radialer Modellschnitte O-F flir den Modelltyp D dar. Es wurden
ausschlieBlich die matrixseitigen Spannungszustdnde analysiert, da
die innerhalb der Fasern vorherrschenden keinen Beitrag zur Beur-
teilung des Matrixversagens liefern. Die Wechselwirkung zwischen
Faser- und Matrixspannungszustanden bedarf einer gesonderten wei-
terfihrenden Untersuchung, aus der fir das Versagensstudium von

Verbundmaterialien wertvolle Hinweise erwartet werden.

8.2.2 SPANNUNGSVERTEILUNG AM FASERUMFANG

Um Aussagen Uber das Versagen von Verbundmodellen, die RiBiniti-
ierung aus Grenzfldachen und den RiBfortschritt im homogenen Ma-
trixmaterial bzw. innerhalb der Diskontinuitdtsfldche von Faser
und Matrix machen zu konnen, sind die Spannungsverteilungen ent-
lang der Grenzfldche einer Faser ermittelt worden. In den Abbil-
dungen 8.8-a-c sind fur die Modellvariante TYP-B die Komponenten
der Normal- und Tangentialspannungen sowie die mittels der Mohr-
schen Formeln ermittelten Hauptspannungen und der lokale Haupt-

spannungswinkel in Abhdngigkeit vom Umfang der Faser aufgetragen.
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Abb. 8.8-a: Faserumfangsspannungen entlang der Grenzfldche; Typ-B
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Um wiederum einen vollstdndigen Uberblick iber die Einflilisse aus

Fehlstrukturvariationen zu geben, sind die Spannungskomponenten in

Abhdngigkeit vom Bohrungsdurchmesser angegeben.
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8.2.3 EBENE MODELLBETRACHTUNGEN

8.2.3.1 FUNKTIONSWERTVERDICHTUNG UND ISOLINIENDARSTELLUNG

Zur Veranschaulichung des Spannungs- und Dehnungszustandes inner-
halb einer belasteten Struktur reicht die Angabe von Spannungsver-
laufen entlang ausgewdhlter Modellschnitte im allgemeinen nicht
aus, um einen fldchenhaften Uberblick iiber die Beanspruchungsgege-
benheiten zu bekommen. Die quasidreidimensionale Darstellung eines
reprasentativen Parameters gemdB Abbildung 8.10 vermittelt jedoch
einen guten qualitativen Eindruck. Abbildung 8.10 zeigt dabei die
aus Knotenpunktsspannungen ermittelten Vergleichsspannungen ©

\
Uber der x-y-Ebene aufgetragen.

»»»»»

METZ G3E-90-TYP-D-§

RS=12,5 mm

Abb. 8.10: Vergleichsspannungsverteilung

8.2.3.2 EBENE SPANNUNGSVERTEILUNG

Zur Dokumentation der aus FE-Berechnungen gewonnenen Funktions-
werte wurde ein Programmsystem =zur Funktionswertverdichtung in
Verbindung mit einer Isoliniendarstellung erarbeitet. Aus einer
beliebig verteilten Anzahl von Stitzwerten, die homogen in einem
Bearbeitungsgebiet liegen, konnen tiber einen geeigneten Interpo-

lationsalgorithmus die Funktionswerte auf ein quadratisches bzw.
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rechteckiges Abbildungsraster transformiert werden. Das Verfahren
basiert auf einer von DREIER /102/ vorgeschlagenen Methode. Zur
Interpolation von Gitterpunkten wird zundchst an jedem Stilitzpunkt
unter Ausnutzung der Information umliegender Stitzwerte die Tan-
gentialebene an die Funktion bestimmt. AnschlieBend wird zu den
Rasterpunkten der angenaherte Funktionswert als gewichtetes Mittel
aus den Tangentialebenenschnittpunkten an der Rasterposition er-
mittelt. Auf eine vertiefende Erlduterung des Verfahrens wird hier
verzichtet, vielmehr kann auf die Literatur /102-105/ verwiesen

werden.

+ + + + F
R T T SR

Abb. 8.11: Stilitzwertverteilung im Transformationsraster

Am Beispiel der oben definierten FE-Netzvariante G3E-Typ-B, wel-
che die kleinste, alle Symmetrieeigenschaften der bearbeiteten
Verbundstruktur ausnutzende diskretisierbare Einheit darstellt,
soll die Leistungsfahigkeit des Programmsystems verdeutlicht wer-

den.

In Abbildung 8.11 ist die Stiltzwertverteilung im Transformations-
gebiet markiert angegeben. Durch zweifaches 'Spiegeln' der aus ei-
ner FE-Rechnung gewonnenen Knotenpunktsspannungen an den Symme-
trielinien (300— und 6OO—Linie) wurden Funktionswertdateien fir

ein 90°—Segment ermittelt.
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In Abbildung 8.12 ist die gemdB Gleichung 8.1 aus den Spannungs-
komponenten der Stutzpunkte errechnete Vergleichsspannungsvertei-
lung fir die gesamte Verbundprobengeometrie angegeben. Sie zeigt
die Linien konstanter Vergleichsspannungen. Die Isolinienparameter
kdnnen aus der Vergleichsspannungsverteilung entlang der Symme-
trielinie zwischen zwei Einlagerungen der Abbildung 8.6 fiir den

Netztyp G3E-90-TYP-B entnommen werden.

Abb. 8.12: Vergleichsspannungsverteilung innerhalb einer ebenen

thermisch belasteten Verbundstruktur

Die Abbildung 8.13 gibt die aus den FE-Rechnungen nach Gleichung

8.2 ermittelten Hauptspannungen

1

/ : 2 2
+0, ) #1/2/ (o, ~0 ) +dT (8.2)

o} =1/2(c5X v

1,2 bl

bzw. deren Differenz wieder

(o —Oé):n S/B (8.3)

1
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Die Differenz der Hauptspannung ist nach Gleichung 8.3 der Iso-
chromatenordnung n direkt proportional, so daB die sich im Experi-
ment einstellende Isochromatenverteilung numerisch simuliert wer-
den kann. Der qualitative Vergleich zur Abbildung 7.19-b ergibt
eine recht gute Ubereinstimmung mit der dort wiedergegebenen expe-
rimentell beobachteten Isochromatenverteilung in einer thermisch

belasteten Verbundprobe.

Abb. 8.13: Hauptspannungsdifferenzenverteilung innerhalb einer

ebenen thermisch belasteten Verbundstruktur

8.2.3.3 VERZERRUNGSENERGIEDICHTEVERTEILUNG

Zur quantitativen Beurteilung des Beanspruchungszustandes und des
Versagensrisikos einer belasteten Struktur wird in der Bruchmecha-
nik neben der Analyse und Bewertung von Spannungsverteilungen bzw.
deren Gradienten und Formulierung der in einem Bauteil gespeicher-
ten Verzerrungsenergie die Darstellung der Verzerrungsenergiedich-
te herangezogen. Um einen Einblick in den Verzerrungszustand einer
thermisch belasteten Verbundgeometrie 2zu bekommen, wurde mittels
des Verfahrens =zur Funktionswertverdichtung die Verzerrungsener-
giedichte aus den mittels der FE-Rechnung gewonnenen Spannungskom-
ponenten berechnet, auf ein &dquidistantes ebenes Raster transfor-

miert und als Isoliniendarstellung angegeben.
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Die Bestimmung der Verzerrungsenergie erfolgt {liber die an den
Elementknoten einer FE-Struktur bestimmten Spannungstensoren. Nach
/106/ 18Rt sich die spezifische Volumendnderungsenergie w dar-
stellen als

dw 1

W = = — z( eik—u(T-To) Sik) Oi

K (8.4)

mit i,k = x, y, z.

Unter der Voraussetzung des Vorliegens isotropen, linear-thermo-
elastischen Materials und der Gultigkeit des verallgemeinerten

Hookschen Gesetzes ergibt sich dann die Beziehung 8.5:

1 2 2 2
W = = 3% {(0X +0y +0, )—2v(0xoy+oxoz+cyaz)}+ (5.5)

+ 1 2 2 2
26 (Txy *Txz *Tyz )

Mit Gleichung (8.5) lassen sich die spezifischen Formdnderungs-
energien an den Knotenpunkten der Finiten Elemente aus den vorlie-
genden Spannungskomponenten berechnen. Die Abbildung 8.14 =zeigt
die aus einem 3OO—Segment bestimmten und durch Funktionswertver-
vielfachung und -verdichtung interpolierte Energiedichteverteilung

als Isoliniendarstellung.

Es wird deutlich, daB, bedingt durch die Wahl der kombinierten
Modellwerkstoffe, die negative Temperaturbelastung und die damit
verbundene Kontraktion der Matrix, die durch die eingelagerten
Einschlisse behindert wird, zwischen den Fasern das Maximum der
Energie gespeichert wird. Die gr8Bten Energiedichtednderungen tre-
ten unmittelbar an den Faser/Matrix-Grenzfldchen mit Extremwerten

zwischen den Fasern auf.

Weiterhin kann gesagt werden, daB die Vergleichsspannungs-, die
Energiedichte- und die Hauptspannungsdifferenzen- bzw. Isochroma-
tenverteilungen qualitativ gleiche Verldufe aufweisen, so daB die
experimentell beobachtete, spannungsoptische Isochromatenvertei-
lung schon einen sehr guten Einblick in den Verzerrungszustand ei-
ner belasteten Struktur gibt. Es kOnnen jedoch keine Aussagen uber

den Entstehungsort oder die lokalen Bereiche einer moglichen RiB-
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einleitung gemacht werden, da sich die in den Abbildungen 8.1 und
8.2 angegebenen engen RiBinitiierungsgebiete in den Isoliniendar-
stellungen nicht als ausgeprdgte Extremwerte oder spezielle Gra-

dienten widerspiegeln.
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Abb. 8.14: Spezifische Formdnderungsenergieverteilung innerhalb

einer thermisch belasteten Verbundstruktur
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8.3 LOKALE MODELLSTUDIEN

Zur Bestimmung bruchmechanischer Kennwerte wurde die FE-Topologie
Netz-L6 aufgebaut (siehe Abb. 8.3). Dabei sind die verwendeten FE-
Netze aus Teilstrukturen aufgebaut. Die prospektive RiBlinie wird
jeweils durch zwei aneinandergrenzende Substrukturen nachgebildet.
Das fir die Simulation eines quasistatischen RiBfortschritts suk-
sessive Aufldsen der zu einem Hauptnetz angekoppelten Teilnetzkno-
ten erfolgt durch schrittweises Aufldsen der Verbindung zwischen
Netzknoten gleicher Koordinaten, wodurch dann Risse unterschiedli-
cher Li&nge dargestellt werden kodnnen. Eine geeignete Nomenklatur
der Elementknotenpunktsnummern gestattet die automatische Haupt-
netzgenerierung mittels eines Programmsystems bis zur vollstadndi-
gen Aufbereitung der Hauptnetztopologien, dem selbstdndigen Start
der FE-Rechnungen und der Erstellung der Routinen fir die Auswer-

tungsalgorithmen.
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Abb. 8.15: Finite Element Netz flir eine eigengespannte Verbund-

struktur
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In Abbildung 8.15 ist die FE-Struktur angegeben,

kale RiBspitzenuntersuchungen verwendet worden ist. Der Netztyp L6

wurde aus TRIM6-Elementen mit quadratischem Verschiebungsansatz

aufgebaut.

Die MatrixriBkontur ist den experimentell gewonnenen Eigenspan-

nungsriBverlaufen entnommen und durch Geraden- und Kreissegmente

mit stetigen Ubergdngen nachgebildet worden.

Der RiBstartpunkt
wurde aus ersten Testrechnungen ermittelt,

da zu Beginn der FE-
Studien die RiBinitiierungslage nicht eindeutig lokalisierbar war.
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Abb. 8.16: Lokalisierung der RiBstartposition

Von den untersuchten mdéglichen RiBstartpositionen ist,
rimentell bestdtigt werden konnte,
(siehe Abb. 8.1)

wie expe-

nur der unter dem Winkel aH
an der Faser/Matrix-Grenzfldche entstehende und

in die Matrix einlaufende RiB sinnvoll, da alle anderen Startposi-

tionen keine RiB6ffnung zur Folge haben und somit physikalisch un-

realistisch sind. Um die Variationsvielfalt der RiBfortschritts-

moglichkeiten zu minimieren, wurde der RiBverlauf in zwei Varian-

ten mit jeweils drei Phasen unterteilt.

wie sie flUr lo-
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Phase Variante 1 Variante 2

1 MATRIXRISS
Beginn an Faser 2 und

Arretieren auf Faser 1

2 GRENZFLACHENRISS
RiBfortschritt entlang der Faser/Matrix-

Grenzflache der

Faser 2 Faser 1

3 GRENZFLACHENRISS
RiBfortschritt entlang der Faser/Matrix-

Grenzfldche der

Faser 1 Faser 2

Tabelle 8.2: Variation der RiBsequenzfolge mit den einzelnen RiB-

phasen

8.3.1 SPANNUNGSVERTETILUNG ENTLANG RADIALER SCHNITTE

8.3.1.1 UNGERISSENE VERBUNDSTRUKTUR

Nachfolgend sind die Spannungsverldufe zwischen zwei Fasern auf-
getragen. Die Abbildungen 8.17-a und -b zeigen die Normalspannun-
gen und transformierten Hauptspannungen entlang der Linie y=0. Sie
zeigen eine gute Ubereinstimmung mit den Verldufen der aus dem

Netztyp G3E-90-TYP-B ermittelten Spannungen der Abbildung 8.5-a.
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8.3.1.2 GERISSENE VERBUNDSTRUKTUR

Die zugehOrigen Spannungsverteilungen entlang eines Radialschnit-
tes flir die sich quasistatisch ausbildende EigenspannungsriBkon-
figuration sollen exemplarisch an ausgewdhlten Positionen des RiB-
wachstums verdeutlicht werden. Die Abbildungen 8.18-a-n beinhalten
die Verladufe der Spannungskomponenten und die Hauptspannungsver-
teilungen. Der Bereich des RiBdurchtritts, d.h. des Bereichs der
Spannungssingularitdt um die bewegte RiBspitze durch die x-Achse,

ist markiert angegeben.

In der Abbildung 8.18-o0 ist flir eine Verbundprobe mit zentrischer
Bohrung der Verlauf der Spannungsverteilungen entlang eines Radi-
alschnittes {ber einen numerisch simulierten EigenspannungsrifB

hinweg dargestellt.
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gerissenen Verbundstruktur
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gerissenen Verbundstruktur
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gerissenen Verbundstruktur
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Abb. 8.18-f: Hauptspannungsverlauf zwischen zwei Fasern einer
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8.3.2 BERECHNUNG BRUCHMECHANISCHER KENNWERTE

8.3.2.1 EIGENSPANNUNGSMATRIXRISS

In der Abbildung 8.19 sind die mittels der lokalen bzw. globalen
Methode bestimmte Gesamtenergiefreisetzungsrate G(a) (Gleichung
5.2-5 und 5.2-9 ) bzw.ihre separierten Anteile GI(a) und GII(a)
(Gleichungen 5.2-10a-b) flir den MatrixriB wiedergegeben.
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Abb. 8.19: Energiefreisetzungsrate als Funktion der RiBl&nge

Es ist deutlich zu sehen, daB sich die dem Experiment nachempfun-
dene RiBausbreitung Uberwiegend unter Mode I-Belastung vollzieht.
Da die RiBgeometrie mittels einer Geraden und zweier Kreisbogen-
segmente angendhert wurde, zeigen sich geringe Mode II-Anteile im
Bereich der Segmentilibergdnge. Wie in frilheren Untersuchungen von
HERRMANN und GREBNER /10/ gezeigt werden konnte, vollzieht sich
die Ausbreitung schwach gekrimmter Warmespannungsrisse in sprdden
Materialien nach dem Normalspannungskriterium. Der RiBfortschritt
erfolgt dabei entlang der 1lokalen, zur RiBspitze orientierten
Hauptspannungstrajektorie. Der im vorliegenden Fall deutlich asym-
metrische MatrixriBverlauf 138t sich durch die Verdnderung des
globalen Spannungsfeldes in der N&he der sich quasistatisch aus-

breitenden RiBspitze zwischen den Fasern und der stets Neu- und
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Umorientierung des zugehOrigen Hauptspannungstrajektorienfeldes
erkldren. In diesem Zusammenhang sei nochmals auf die im Abschnitt
7.5.4 angegebene experimentell ermittelte Hauptspannungstrajek-
torienverteilung fir einen arretierten EigenspannungsriB verwie-
sen. 2Zu den in /10/ vorgestellten Untersuchungen gekriimmter War-
mespannungsrisse, deren Ausbreitungsverhalten dem Normalspannungs-
kriterium unterliegt, 1&4Bt sich der Spannungsintensitadtsfaktor K,
mit der Gleichung (4.2-10-a) in Zusammenhang mit der Energiefrei-
setzungsrate bringen. In Abbildung 8.20 ist der Spannungsintensi-

tatsfaktor K. fir den MatrixriB angegeben.

NETZTYP L6

( Nw-3/2 )

SPANNUNGS INTENSI TATSFAKTOR K,
4

Abb. 8.20: Spannungsintensitdtsfaktor K. in Abhd&ngigkeit von der

I
RiBladnge a flir einen WadrmespannungsrifB
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8.3.2.2 RISSAUSBILDUNG ENTLANG DER FASER/MATRIX-GRENZFLACHE

In Tabelle 8.2 sind die Varianten der RiBsequenzfolge der beiden
dem MatrixriB nachfolgenden Grenzfldchenrisse definiert. Die Ab-
bildungen 8.21-a-d zeigen, entsprechend der Variationsdeklaration,
die Verl&dufe der separierten Energiefreisetzungsraten und der Ge-
samtenergiefreisetzungsrate in Abhdngigkeit von der GesamtriBlan-

ge.
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Abb. 8.21-a: Energiefreisetzungsraten entlang der Grenzfldche der

Faser 2 (Variante 1, Phase 2)
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Abb. 8.21-b: Energiefreisetzungsraten entlang der Grenzfldche der

Faser 1 (Variante 1, Phase 3)
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Abb. 8.21-c: Energiefreisetzungsraten entlang der Grenzfldche der

Faser 1 (Variante 2, Phase 2)
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Abb. 8.21-d: Energiefreisetzungsraten entlang der Grenzfl&che der

Faser 2 (Variante 2, Phase 3)

Die Abbildungen 8.21-c-d geben die Energiefreisetzungsraten der

zweiten Variante fuUr die Phasen 2 und 3 wieder.

Aus den Abbildungen 8.21-a-d geht hervor, daB mit wachsender
GrenzflachenriBlange die Energiefreisetzungsratenanteile fiir alle
Phasen der beiden Varianten asymptotisch verschwinden, was gleich-
bedeutend mit der Arretierung beider Grenzflichenrisse ist und
eine gute Ubereinstimmung mit den experimentell beobachteten

GrenzfldchenriBendlagen liefert.
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8.3.2.3 ABSCHATZUNG DER RISSFOLGE

Durch die Festlegung der simulierten Folge von Matrix- und
GrenzfldchenriBsequenzen kann an dieser Stelle lediglich eine gro-
be Abschdtzung einer RiBfolge getroffen werden. Vergleicht man die
Verldufe der Gesamtenergiefreisetzungsraten aus Abbildung 8.21-a
und 8.22-c, so l1laBt sich fir die Variante 1, d.h. GrenzfldchenriB
entlang der Faser 2, ein groBerer Anfangswert bei beginnender Ab-
13sung ablesen als bei dem dquivalenten Zustand der Variante 2, so
daB unter der Annahme einer =zundchst vollstdndigen Ausbildung des
Matrixrisses die anschlieBend einsetzende Grenzfldchenabldsung an

der Faser 2 zu erwarten ist.

8.3.3 EINFLUSS DES ELEMENTTYPS UND DER RISSGEOMETRIE AUF
BRUCHMECHANISCHE KENNWERTE

Die Verwendung hoherwertiger Membranelemente (TRIM6) mit quadra-
tischem Verschiebungsansatz hat sich flir die Berechnung der bruch-
mechanischen Kennwerte als &duBerst speicherplatz- und rechenzeit-
intensiv erwiesen, so daB Vergleichsrechnungen mit TRIM3-Elementen
angestellt wurden. In Tabelle 8.3 ist eine Gegenilberstellung der

Netztypen L6 und L3R wiedergegeben.

Netztyp
Netzbezeichnung L6 L3R
Elementtyp TRIM6 TRIM3
Verschiebungsansatz quadratisch linear
Teilnetzunbekannte 3403 779
Hauptnetzunbekannte 336-482 170-248
Speicherplatzbedarf ca 14900 ca 2500

(Records)

Tabelle 8.3: Gegenliberstellung flir verschiedene Elementtypen

In den Abbildungen 8.22-a-b ist das Ergebnis einer Vergleichs-

rechnung vorgestellt.
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Aus den in der Abbildung 8.2 angegebenen experimentell beobachte-
ten MatrixriBverldufen wurde flir die Risse 1 bis 3 durch Mittel-
wertbildung und Approximation eine neue, den realen RiBverlauf ex-
akter nachbildende RiBkontur ermittelt. In dem Diagramm 8.23 wird
der Vergleich zwischen der RiBkontur durch eine Geraden- und
Kreissegmentnachbildung und eine Beschreibung mittels eines Poly-

noms gezogen.

12

10

O SEGMENTIERT
A APPROXIMIERT [ ~

Y (M)

MATRIX

e e ——— °

-6

-8

-30 -28 -26 -24 -22 -20 -18

X (m)

Abb. 8.23: Vergleich der verwendeten RiBkontur

Es wird hierbei deutlich, daB die ohnehin schon geringen GII—An—
teile in Abbildung 8.22-b in den Bereichen gr6Bter Abweichung von
der durch ein geeignetes Polynom nachmodellierten RiBgeometrie
auftreten. Die aus einem reduzierten Netz mit dem verwendeten Ele-
menttyp (TRIM3-Elemente) und einer verdnderten RiBgeometrie resul-
tierenden Energiefreisetzungsraten sind in Abbildung 8.24 wieder-

gegeben.
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Abb. 8.24: Energiefreisetzungsraten entlang eines durch ein
Polynom angendherten MatrixriBverlaufs, (TRIM3-Ele-

mente)

Angesichts der enormen Speicherplatzersparnis, verbunden mit der
Absenkung des Rechenzeitbedarfs und durchaus vertretbarer Abwei-
chungen der bruchmechanischen Kennwerte bei einer Strukturmodel-
lierung durch einen reduzierten Elementtyp, werden die nachfolgen-

den Modellrechnungen mit TRIM3-Elementen vorgenommen.

8.3.4 MODELLUNTERSUCHUNGEN FUR EINE STRUKTUR MIT ZWEI
MATRIXRISSEN

Durch definierte thermische Belastung der experimentell unter-
suchten Mehrphasenmodelle ergeben sich die in Abschnitt 7.5.1 er-
lduterten Einzelsequenzen der RiBeinleitung, des RiBfortschritts
und der RiBfolge. In Abbildung 7.25 ist eine RiBkombination vorge-
stellt, die alle Phasen der RiBkonfiguration durchlaufen hat. Das
vollstdndige numerische Nachvollziehen einer derart komplexen RiB-
problematik unter Berlicksichtigung aller Kombinationsmdglichkeiten
ist nicht Gegenstand der vorliegenden Untersuchungen. Jedoch soll
der Versuch unternommen werden, =zusdtzlich zu den in Tabelle 8.2

definierten Varianten einer EinzelriBfolge einen weiteren Schritt
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der im Experiment auftretenden RiBstadien nachzuvollziehen. In Ab-
bildung 8.25 ist das verwendete FE-Netz (L3R-TYP-B-2M) angegeben.

Abb. 8.25-a: Topologie fir das Netz L3R-TYP-B-2M

Abb. 8.25-b: Topologie flr das Netz L3R-TYP-B-2M
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In den experimentellen Untersuchungen wurde das Auftreten einer
einzelnen aus Matrix- und anschlieBendem GrenzflichenriB bestehen-
den RiBkombination nur sehr selten und dann auch nur kurzzeitig
beobachtet. Die in der Abbildung 8.26 angegebenen, den auftreten-
den Stadien der RiBentwicklung zugeordneten Energiefreisetzungsra-
ten machen deutlich, daB nach dem erstmaligen Modellversagen durch
die Entspannung des ganzen Modells ein erhdhtes Reservoir an frei-
zusetzender Verzerrungsenergie vorliegt und ein RiBarrest nicht
moglich ist, ja sogar mit zunehmendem RiBfortschritt immer unwahr-
scheinlicher wird. Die mittels des als 'globale Energiemethode'
bezeichneten Verfahrens berechneten Gesamtenergiefreisetzungsra-
ten sind in Abhdngigkeit von der RiBl&nge in der Abbildung 8.26
dargestellt. Diese gibt den Verlauf fir den MatrixriB und den
nachfolgenden GrenzfldchenriB entlang der Faser 1 wieder. Bemer-
kenswert hierbei ist der Verlauf der Energiewerte filir einen weite-
ren, sich aus der Endlage des arretierten Grenzflichenrisses in
das Matrixmaterial ablosenden, ebenfalls gekriimmten Eigenspan-

nungsrifl.
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Abb. 8.26: Gesamtenergiefreisetzungsraten flir eine Kombination

aus mehreren Grenzflachen- und MatrixriBsequenzen
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Es wird der nach erfolgter RiBinitiierung aus einem Grenzfl&chen-
riB wesentlich schnellere Anstieg und das Erreichen der um etwa
30% hdheren Spitzenwerte deutlich. In der Abbildung 8.27 ist fir
den 2. MatrixriB die Aufspaltung der durch die sogenannte 1lokale

(2C- oder R2-) Methode ermittelten G_- und GI

- -Komponenten aufge-

I
tragen.

Der Vergleich der aus der Aufsummierung der GI— und GII—Anteile
gebildeten Gesamtenergiefreisetzungsraten ist in Abbildung 8.28 zu
sehen. Die aus der globalen Auswertemethode gewonnene Gesamtener-
giefreisetzungsrate zeigt eine sehr gute Ubereinstimmung der bei-
den in Abschnitt 7.5 erlduterten Methoden zur numerischen Bestim-
mung bruchmechanischer Kennwerte. Die Kurvenziige sind nahezu deck-
ungsgleich, obwohl den Verfahren zwei v&llig unterschiedliche An-

satze zugrunde liegen.
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9. UNTERSUCHUNGEN ZUR RISSINITIIERUNG

Die in diesem Abschnitt beschriebenen Untersuchungen sollen Auf-
schluB iUber die einzelnen innerhalb der behandelten Verbundstruk-
tur vorliegenden Modellversagens-, RiBausbreitungs- und RiBver-

zweigungsphdnomene geben.

Bei der Analyse der RiBentstehungsursachen im mikrostrukturellen
Bereich von Werkstoffen, insbesondere Verbundmaterialien, kann von
einer statistischen Fehlstellenverteilung in einem ansonsten ma-
kroskopisch homogenen Material ausgegangen werden /107/. Unter der
Annahme, daB diese Fehlstellen als Mikrorisse interpretiert werden
kobnnen, deren Orientierung und Ausdehnung gleichermaBen statisti-
schen GesetzmdBigkeiten unterliegen, kommt es zum mikroskopischen
Strukturversagen, falls die 1lokalen SpannungsgréBen in Fehlstel-
lenndhe kritische Werte erreichen. Die RiBkeimbildung und der Zu-
sammenschluB mehrerer Mikrorisse flhren somit zur RiBvergrdBerung
und Ausbreitung, eventuell bis zum vollstdandigen oder teilweisen

Bauteilversagen.

Diese Uberlegungen k&nnen auf den Grenzflidchenbereich eines Fa-
ser/Matrix-Verbundmodells ibertragen werden. Die Oberflache und
die Faser/Matrix-Grenzfldchenbereiche einer simulierten Verbund-
struktur sind herstellungsbedingt als unstetiger, in gewissem MafRe
rauher Diskontinuitdtsbereich zu betrachten, in dem sich gleichmd-
Big verteilte Kerben, Einschllisse und Hohlrdume befinden, die als
MikroriBinitiierungskeime interpretiert, bei Uberlagerung eines
thermischen Eigenspannungsfeldes und bei Uberschreitung kritischer
Spannungsspitzen zum lokalen Werkstoffversagen und schlieBlich zur

MakroriBbildung flihren koénnen.

Bei Vorliegen makroskopischer RiBzustdnde lassen sich wiederum
die eigentlichen Aussagen der klassischen Bruchmechanik heranzie-
hen, um den weiteren RiBverlauf mittels geeigneter Verzweigungs-
und RiBfortschrittskriterien zu beschreiben. Bei der Untersuchung
der Bruchphdnomene kann man sich aufgrund der experimentell beob-
achteten Versagensmerkmale auf die Faser/Matrix-Diskontinuitats-
flache bzw. deren matrixseitige Umgebung beschrdnken. In den fol-
genden Ausfihrungen werden daher Spannungs- und Energiebetrachtun-

gen entlang der Faser/Matrix-Grenzfldche angestellt, um gegebenen-
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falls Aussagen Uber die Art und die Richtung einer RiBeinleitung

machen zu konnen.

9.1 SPANNUNGSZUSTAND ENTLANG DER FASER/MATRIX-GRENZFLACHE

Die Abbildung 9.1 zeigt den Ausschnitt einer Faserverbundstruktur
(TYB B) und einen angedeuteten MatrixriBf mit eingefiihrten globalen
und lokalen Koordinatensystemen. Darin sind speziell die vom Win-
kel 8 abhdngigen Hauptspannungswinkel a}ﬂe) sowie die Hauptspan-

nungsrichtungen H1(6) und H2(6) angefihrt.

<

MATRIX

Abb. 9.1: Koordinatensysteme in der Faser/Matrix-Diskontinuitdts-
flache

Die aus den FE-Rechnungen mittels des Netzes G3E-90-TYP-B bestim-
mten und in ein N-T-Umfangskoordinatensystem transformierten Span-
nungskomponenten wurden bereits in den Abbildungen 8.8-a-c vorge-
stellt. Zur Untersuchung der RiBeinleitung aus der Grenzfladche in
das Matrixmaterial sind zusdtzlich die Spannungswerte auf einem
Radius RB= RF+ARM um die Faser in Abhdngigkeit vom Winkel 6 aufbe-

reitet worden.
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In der Abbildung 9.2 erscheinen die relevanten Zusammenhadnge,
d.h. Spannungskomponenten und lokale Hauptachsenwinkel entlang der

Faser/Matrix-Grenzfldche als Funktion des Faserumfangswinkels.

16
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Abb. 9.2: Hauptspannungen und Hauptachsenwinkel auf dem Faser-

umfang

Die Verl&dufe der Hauptspannungen o4 und o, zeigen deutlich die
Trennung in Zug- und Druckbeanspruchung auf dem Faserrand. W&hrend
in der H2-Hauptachsenrichtung ausschlieBlich Druckspannungen vor-
liegen, unterliegt die H1-Richtung durchweg Zugspannungen. Der
Hauptachsenwinkel aH(e) zeigt einen symmetrischen Verlauf mit
Nulldurchgingen bei 6= 0°; 180°; 130O und etwa 1580. Die als Vor-
aussetzung flir eine RiRinitiierung notwendigen positiven Spannun-

gen o weisen im Winkelbereich 6 122,5O ausgeprdgte Maximalwerte

aus, s; daB ein Versagen auf Grund erreichter und iberschrittener
kritischer Normalspannungswerte bei Vorliegen von kleinsten, homo-
gen verteilten Fehl- bzw. Mikrokeimstellen im Grenzfldchennahfeld
wahrscheinlich wird und im betrachteten Modellfall als Ursache fir
die Entstehung und Einleitung des Matrixrisses angesehen werden
muB. Der weitere RiBfortschritt erfolgt nach dem Normalspannungs-
kriterium und verlduft schlieBlich auf einer asymmetrisch gekrim-

mten Bahn entlang der sich bei quasistatischer RiBausbildung lokal
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an der RiBspitze ausbildenden Hauptspannungstrajektorie durch die
Matrix.

9.2 SPEZIFISCHE VERZERRUNGSENERGIE IN DER UMGEBUNG EINES
EINSCHLUSSES

Neben der Erkldrung der RiBeinleitung mittels des Haupt- bzw.
Normalspannungskriteriums lassen sich analog zu dem bekannten, von
SIH /108/ formulierten Kriterium =zur RiBausbreitungsvorhersage
energetische Betrachtungen im Grenzbereich des Faser/Matrixiiber-
gangs anstellen. In Abschnitt 8.2.3.3, Abbildung 8.24 ist die Ver-
teilung der spezifischen Verzerrungsenergie fiir die gesamte ther-
misch belastete Verbundstruktur angegeben, wie sie durch eine FE-
Analyse unter Verwendung der Gleichung 8.5 bestimmt worden ist.
Die Abbildung 9.3-a zeigt die auf gleiche Weise bestimmte Verzer-
rungsenergiedichteverteilung innerhalb der in Abbildung 9.1 ange-
gebenen Faser/Matrix-Grenzfldche bzw. entlang einer in deren Nahe
innerhalb der Matrix verlaufenden Kreisbahn im Abstand RB= RF+ARM

um einen EinschluB herum.

i . \ R /
o "\\_FASER z\nn>/
ANG |

SPEZIFISCHE VERZERRUNGSENERGIE W ( 1073 N / 1 )

D" = 150.0 mm
RF = 12,5 mm
RFS= 0,0 MM

) I\ - W
NETZTYP G3E-90-TYP-B |
I
I
]

| I

-180 -135 -90 -45 0 45 90 135 180 225 210
FASERUMFANGSWINKEL 6 ( )

Abb. 9.3-a: Verzerrungsenergiedichte in der Umgebung einer

Einlagerung
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Geht man wiederum von einer mikromechanischen Betrachtungsweise
und statistisch auf dem Faserumfang verteilten Fehlstellen, d.h.
Keimzellen zur RiBinitiierung, aus und setzt voraus, daB nach ei-
nem lokalen Materialversagen der weitere RiBfortschritt nach dem
Haupt- bzw. Normalspannungskriterium erfolgt, dann 1&Bt sich ab-
hdngig vom Faseranfang die Anderung der Verzerrungsenergiedichte
in Richtung orthogonal zur lokalen positiven Hauptspannung 0. als

]
*
GroBe W (6) in der folgenden Weise formulieren.

. W, (RT, 0)-W, (R°=R" +aR™ 8 %)
W(e) = ; mit 6</m/ (9.1)
1
ARM —)
cos(aH(R ; 0))

2 f ——— EXPERIMENTELL [ !
- HAUPTSPANNUNGSMAX UM s y
F . 8 - 8 - 23,10 ENERGIEDICHTENNDERWNG
; - . 7
7 | "
- - ! i' ! MATRIX
. 1] :
§ . N .

i w

g -]
@ =] 7 Y
2
é . NETZTYP G3E-90-TYP-B

s oS .05

. ¥ oIne

S l RFS = 0,0 m

i
e ——

-180 -135 -90 -45 0 45 90 135 180 225 210

FASERUMFANGSWINKEL 6 ( ©)

Abb. 9.3-b: Anderung der Verzerrungsenergiedichte in Richtung

einer lokalen Hauptachse

* . .
In Abbildung 9.3-b ist der Verlauf der GroBe W abhdngig vom Fa-
serumfangswinkel 6 angegeben. Es zeigen sich bei einer Winkellage
von eI= i23'1o ausgeprdgte Maxima , die gerade mit den Positionen

maximaler positiver Hauptnormalspannung zusammenfallen.
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In der Abbildung 9.3-b sind zusdtzlich zu den auf numerischem
Wege ermittelten Winkelbereichen die sich experimentell einstel-
A2 (siehe Abb. 8.2) markiert, die alle im

angegebenen Intervall in der N&he der WinkelpositioneI liegen.

lenden RiBstartwinkel o
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10. AUSBILDUNG VON KOMBINATIONEN AUS MATRIX/FASER-
GRENZFLACHENRISSEN

In Abschnitt 8.3 dieser Arbeit sind die in Tabelle 8.2 angegebe-
nen Variationen moglicher RiBsequenzen mit den einzelnen RiBphasen
bruchmechanisch untersucht worden, wobei vereinfachende Annahmen
Uber die Folge der Teilrisse gemacht worden sind. Erste qualitati-
ve Abschdtzungen zur physikalisch realistischen Aneinanderreihung
des vollstdndig ausgebildeten Matrixrisses und der nachfolgenden
Grenzfldchenrisse wurden dabei Uber die Beurteilung der grdBten
freigesetzten Verzerrungsenergie zweier relevanter RiBspitzenposi-
tionen angegeben. Im folgenden Abschnitt wird in einer tieferge-
henden Studie die RiBfolge zweier gleichzeitig vorliegender RiB-
spitzen und die numerische Simulation des quasistatischen Fort-
schreitens der beiden RiBpositionen behandelt. Fir den sich aus
einer Faser/Matrix-Grenzfldche entwickelnden MatrixriB erfolgt die

Computersimulation mit Hilfe von FE-Untersuchungen.

10.1 FORMULIERUNG EINES GEEIGNETEN RISSFOLGEKRITERIUMS

Die Vorhersage des Verlaufs bewegter RiBspitzen und die Abschéat-
zung der Richtungsdnderung wird in der Literatur ausfihrlich be-
handelt.

Zur Beurteilung der RiBfolge zweier RiBspitzen und der Simulation
einer quasistatischen RiBverldngerung entlang einer vorgegebenen
im Experiment beobachteten EigenspannungsriBkonfiguration wurde in
Anlehnung an das von STRIFORS /109/ vorgeschlagene RiBausbrei-

tungskriterium ein RiBfolgekriterium formuliert.

Das von STRIFORS benutzte Fortschrittskriterium besagt, daB ein
RiB sich in die Richtung verldngern wird, die ein Maximum an Ener-
giefreisetzung zulaBt. In Abbildung 10.1 ist der Ausschnitt eines
Faser/Matrix-Verbundmodells mit einer Matrix/GrenzfldchenriBkonfi-
guration angegeben. Weiterhin sind RiBschritte in Richtung der Fa-

F1

ser 1 mit der RiBverldngerung A a und entlang der Grenzfldche an

Faser 2 mit Aan angedeutet.

Flir das vorliegende Problem einer RiBverzweigung wurde das RiB-

folgekriterium formuliert, welches davon ausgeht, daB diejenige



175

der beiden RiBverldngerungen AaF1 bzw. AaF2 den weiteren RiBfort-
schritt bewirkt, welche die groBere Energie flir den betreffenden
RiBschritt freisetzt.

Abb. 10.1: RiBfolgekriterium

Die numerische Umsetzung dieses Kriteriums erfolgt Uber die Be-
trachtung der gesamten, in einer thermisch belasteten und riBbe-
hafteten Verbundstruktur gespeicherten, elastischen Verzerrungs-
energie U(a), die mittels der in Abschnitt 5.2.1 vorgestellten
globalen Energiemethode bestimmt werden kann. Die verwendeten FE-
Strukturen besitzen entlang der prospektiven RiBlinie homogene
Elementeinteilungen und 4&dquidistante Elementseitenldngen, so daB
das RiBfolgekriterium in der in Gleichung 10.1 angegebenen Weise

formuliert werden kann.

G(a+AaF1) g G(a+AaF2) (10.1-a)
U(a)—U(a+AaF1) < U(a)—U(a+AaF2)
> (10.7-b)
B AaF1 B AaF2

1

Bei gleichen Elementseitenldngen AaF ’ AaF2

und konstanter Mo-

delldicke B sind lediglich die Betrdge der in der FE-Struktur ge-
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speicherten Restverzerrungsenergien ausschlaggebend, um {liber die

weitere RiBfolge zu entscheiden.

1

U(a+AaF ) 2

; U(a+AaF ) (10.1-c)
Die Untersuchungen wurden mit dem FE-Programmsystem ASKA durch-
geflihrt, dessen verfligbare Version die Behandlung von Kontaktpro-
blemen nicht vorsah. Da, wie in Abbildung 8.16 gezeigt wurde, be-
reits bei den ersten Testrechnungen physikalisch nicht sinnvolle
Elementiberschneidungen festgestellt wurden, sind bei der selb-
standigen numerischen Nachbildung des quasistatischen RiBR-
fortschritts Durchdringungen in der gesamten Verbundstruktur nicht

zuldssig und miissen programmtechnisch erkannt und bewertet werden.

10.2 PROGRAMMTECHNISCHE REALISTERUNG

Zur numerischen Bestimmung der Folge von EinzelriBsequenzen mit-
tels der Methode der Finiten Elemente kommen die zuvor definierten
Netztypen L3R und L3RE-TYP-B, -C und -D zur Anwendung. Die in Ab-
schnitt 8.1 definierte Netzstruktur filir lokale FE-Studien sowie
die erarbeiteten Mdglichkeiten der FE-Netz Manipulations- und
Hauptnetzgenerierungsprogramme und die Verwendung eines Struktur-
organisationsdatensatzes, der alle Informationen liber Element- und
Koordinateneinteilung bzw. Hauptnetz/Teilnetz-Substrukturkoordina-
tion enthdlt, sind Voraussetzungen fir eine selbstdndige numeri-
sche Modellierung der Folge von Matrix/Grenzfldchen- bzw. Grenz-

flachen/GrenzfldchenriBkombinationen.

Im Zusammenhang mit der behandelten Fragestellung wurde ein iUber-
geordnetes, in der Programmiersprache CPL (PRIME-750) verfaBtes
Programmsystem erstellt, das bei Vorgabe der RiBkontur und der
Startposition die eigenstdndige Simulation einer RiBausbreitung
entlang der prospektiven RiBlinie erlaubt und selbstandig mittels
des RiBfolgekriteriums Uber den lokalen RiBfortschritt entscheidet
/110/. Das automatische Erstellen relevanter Hauptnetztopologien,
das Anlegen bzw. Anstarten von FE-Startprozeduren, das Uberpriifen
der verformten FE-Strukturen auf Elementliberschneidungen, das Auf-
bereiten der FE-Ergebnisdateien und die Entscheidung lber den wei-

teren RiBfortschritt mittels des RiBfolgekriteriums mit der not-
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wendigen Steuerdateiprotokollierung und die Ergebnisdatenreduzier-
ung erfolgt mit Hilfe sequentieller Programme, die in der Program-
miersprache FORTRAN77 entwickelt und in das ibergeordnete Steuer-
programm (RISSWEG.CPL) eingebunden worden sind. In Abbildung 10.2
ist ein vereinfachtes FluBdiagramm angegeben, aus dem die we-

sentlichen Stadien der Simulation hervorgehen.

START

JA EINEN )
\D > ERSTELLEN DER HAUPTNETZE - ERSTELLEN DES HAUPTNETZES
W N2 L]
STEUERDATE — MIT HNET.SEG HIT HNET.SEG
NE ] I
.
DURCHFUHRUNG DER DURCHF UHRUNG DER
FE-BERECHNUNGEN MIT FE-BERECHNUNG MIT
HNILASKA UND  HN2.ASKA HN.ASKA
ORGANISAT IONSDATE | T
ORG.DAT v l
AUFSUCHEN VON AUFSUCHEN VON
NETZDURCHDRINGUNGEN NETZDURCHDRINGUNGEN
IN HN1.ASKALIST MIT IN HN.ASKALIST MIT
USR. SEG USR.SEG
ERGEBNISDATE | l
HN1.ASKALIST L ]
AUFSUCHEN VON
g NETZDURCHDRINGUNGEN
IN HN2.ASKALIST MIT
USR. SEG

sToOP

ERGEBNISDATE
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DURCHDRINGUNGEN IN
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?

FORTSETZUNG FORTSETZUNG
DER DER

RISSFOLGESIMULATION
IN RICHTUNG F2

RISSFOLGESIMULATION
IN RICHTUNG F1

L.___] BESTIMMING DER VERZERRUNGSENERGIE |__—.
S

ENERHN1.ASKALIST UND ENERHNZ.ASKALIST
UND BERECHNUNG DER RESTENERGIEN

:

RISSFOLGEKRITERIUM

e oaF1 ) = uc 0af2 )
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DER DER
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Abb. 10.2: Programmsystem zur automatischen RiBfolgesimulation
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Flir jede RiBfortschrittsentscheidung sind zwei FE-Programml&ufe
notwendig. Zur Minimierung des Speicherplatzbedarfs werden alle
RiBschrittparameter in einer Steuerdatei protokolliert, die zuge-
horigen Ergebnisdateien reduziert und fiir eine spitere nachberei-
tende Auswertung gespeichert.

10.3 RISSFOLGESIMULATION

Flir die Uberpriifung des Programmsystems wurde das FE-Netz L3R-

TYP-B verwendet, welches als reduzierte Variante aus dem Original-
netz L6 entstanden ist. Die RiBlinie ist in 37 gleichlange Teil-
ldngen Aa eingeteilt, wobei 17 Teilstilicke den MatrixriB bilden und
die Grenzfldchen in jeweils 10 Bereiche eingeteilt sind. Zur Beur-
teilung des RiBfortschritts und Darstellung des Simulationsergeb-
nisses anhand der filir das Kriterium ausschlaggebenden Entschei-

dungsgroRe

1
AU = U(a+AaF2)—U(a+AaF ) S 0 (10.2)

ist das Ergebnis einer Testrechnung in Abbildung 10.3-a wieder-

gegeben.

T T

0.4

AU>0 FASER 2
RISSFORTSCHRITT IN RICHTUNG
AU<0 FASER 1

0.2

-0.2

0.4

RESTENERGIEDIFFERENZ AU ( 1072 N MM / MM )
0.6

-0.8

-1.0

-1.2

0 4 8 12 16 20 24 28 32 36 40
SIMULATIONSSCHRITT J ( - )

Abb. 10.3-a: Restenergiedifferenz filir eine Simulationsrechnung
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Die Art der Auftragung der beil der Simulationsrechnung ermittel-
ten Restenergiedifferenzen gestattet einen schnellen Uberblick
iber das Ergebnis einer solchen Rechnung. Da das Vorzeichen des
Wertes AU Uber die RiBfortschrittsrichtung entscheidet, 13Bt sich
diese aus Abbildung 10.3-a sofort ablesen. So weisen negative Dif-
ferenzen den RiBfortschritt in die Richtung F1 und positive den in
der Grenzfldache F2 aus. Die zu Simulationsbeginn ausschlieBlich
negativen Werte beschreiben demzufolge die Ausbildung des gesamten
Matrixrisses, wobei durch eine Beurteilung des Betrages der Ener-
giedifferenzen eine zwischenzeitliche RiBinitiierung an der Grenz-
flache der Faser 2 zunehmend unwahrscheinlicher wird, so daB die
in Abschnitt 8.3.2 beschriebenen Ergebnisse filir den MatrixriB ihre
Glltigkeit behalten. Nach Arretieren des Matrixrisses auf der
Grenzfldche der Faser 1 erfolgt die RiBabldsung entlang der Grenz-
flidche der Faser 2, wodurch die in Abschnitt 8.3.2.4 diskutierte
Abschdtzung zumindest im Anfangsgrenzfldchenbereich zutreffend
ist, da nach weiteren 5 Simulationsschritten ein Wechsel des RiB-
fortschritts zur Faser 1 ablesbar wird und die in 8.3.2.2 vorge-
stellten Ergebnisse nicht weiter bestdtigt werden, =zumal anschlie-
Bend ein alternierendes Fortschreiten der RiBspitzen auf beiden

Grenzfldchen prognostiziert wird.

I~

4,0

3.5

3.0

2.5

2.0

RESTENERGIE U ( 107" Newe/s )

1.0 1

NETZTYP L3
of -0.5
M - 150.0 m

RF = 12,5 m
RFS - o.0m

0.5

0.0

f y r y y y g y r y Y ' y ' y y y y \
0 4 8 12 16 20 24 28 32 36 40

RISSLANGE A (mm )

Abb. 10.3-b: Im System gespeicherte Verzerrungsenergie
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In Abbildung 10.3-b ist die gesamte, in der FE-Struktur gespei-

cherte Restenergie als Funktion der GesamtriBldnge dargestellt.

Durch Zuordnung der mit Hilfe des RiBfolgekriteriums ermittelten,
im simulierten Systemstadium gespeicherten lokalen Verzerrungs-
energien zum zugehdrigen RiBspitzenfortschritt lassen sich die
mittels der globalen Energiemethode berechneten Gesamtenergie-

freisetzungsraten fiir die einzelnen RiBsequenzen angeben.

N
3

NETZTYP L3
,: : O 6 6LOBALMATRIX
£ o -os A G g opaL-FASERT
Ni o - 150,0 + 6 guoaL-FASER2
> < AR - 25w
- RS- o.0m r
L)
w <
= ~
g
g <
g - MATRIX FASER/MATRIX-GRENZFLACHEN
-

;

i N

0.8

0.4

N

T u Y y y T T y Y ' ' ' " Y y y u ¥ u \
0 4 8 12 16 20 24 28 32 36 40

0.0

RISSLANGE A (mv)

Abb. 10.3-c: Gesamtenergiefreisetzungraten G flir eine voll-

stdndige EigenspannungsriBfolgesimulation

In Abbildung 10.3-c ist der gesamte Verlauf der drei Teilphasen
einer RiBfolgesimulation abgebildet, wobei die ermittelten Gesamt-
energiefreisetzungsraten Ulber der sich einstellenden RiBldnge auf-
getragen wurden. Man erkennt deutlich das spatere Einsetzen des
Grenzfladchenrisses entlang der Faser 1 und das alternierende, fast
synchrone Fortschreiten beider RiBspitzen bis =zur geometrischen
Endlage.

Auf der Basis der vorgestellten Untersuchungen wurden filir die
Fehlstrukturvarianten Typ-B, -C und -D Simulationen durchgeflihrt,

wobei die RiBgeometrie jeweils aus den experimentell erhaltenen
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RiBkonturen der entsprechenden Modelle abgegriffen und in ein mo-

difiziertes FE-Netz integriert wurden.

Abb. 10.4-a: EigenspannﬁngsriBkombinatibn in einer Verbundprobe

mit Strukturfehle;;rTypr

Abb./10:4;bﬁ”ElqéhSpanhungsriBkombinétion'in einer Verbundprobe

mit Strukturfehler; Typ-C
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Abb. 10.4-c: EigenspannungsriBkombination in einer Verbundprobe
mit Strukturfehler; Typ-D

In den Abbildungen 10.4-a, -b und -c sind derartige Modelle eines
Faserverbundwerkstoffes mit Strukturfehlern und EigenspannungsriB-

konfigurationen angegeben.

10.3.1 SIMULATION DER RISSFOLGE FUR EINE STRUKTUR MIT SECHS
FASERN UND FEINER ELEMENTEINTEILUNG

Zur Erzielung verbesserter Ergebnisse und zur Abschdtzung des
Einflusses der Feinheit einer Diskretisierung wurde fiir die wei-
teren Simulationsstudien der Netztyp L3RE-TYP-B benutzt. In Abbil-
dung 10.5 ist das durch Elementerweiterung entlang der prospekti-

ven RiBlinie entstandene Netz angefiihrt.

In Abbildung 10.6 ist der Verlauf der Restenergie in Abhidngigkeit
von der Gesamtrifldnge einer RiBfolge-Simulationsrechnung wieder-
gegeben, der sich von Abbildung 10.3-b nur durch die Verdoppelung

der auswertbaren RiBschrittweiten unterscheidet.
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Abb. 10.5: FE-Struktur fir eine RiBfolgesimulation mit homogener

Elementeinteilung entlang der prospektiven RiBlinie

2
<

3.5
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2.5
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“ " om
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=
o m‘ y y - y y - ’ " ‘r-iv

|
0 4 8 12 16 20 24 28 2 36 40

RISSLANGE A (1w )

Abb. 10.6: Im System verbliebene Restenergie in Abhangigkeit von

der RiBlé&nge



184

Die Darstellung der RiBfolge anhand der Restenergiedifferenzen
nach dem RiBfolgekriterium ist in Abbildung 10.7 zu sehen, wobei
deutlich der EinfluB der Netzverfeinerung im Betrag der Restener-
giedifferenzen und in deren Verlauf zu erkennen ist. Nachdem der
MatrixriB wiederum vollstandig ausgebildet ist, erfolgt die RiB-
verlangerung entlang der Faser 2 mit nachfolgendem GrenzfldchenrifR
entlang der Faser 1. AnschlieBend bewegen sich beide RiBspitzen
synchron entlang der Grenzfldchen der Fasern 1 und 2. Die durch
die globalen Energiemethode bestimmten Gesamtenergiefreisetzungs-
raten fur die einzelnen RiBabschnitte im Matrix- und Grenzflachen-
bereich sind der Abbildung 10.8 2zu entnehmen. Auch hier ist die
verbesserte Nachbildung des gleichzeitigen Fortschreitens der bei-

den GrenzfldchenriBspitzen zu beobachten.

T
FASER 2

RISSFORTSCHRITT IN RICHTUNG

RESTENERGIEDIFFERENZ AU ( 1073 N/t )

f y y y y y y y y ' y y y u u y y y y n
0 8 16 24 32 40 48 56 64 72 80

SIMULATIONSSCHRITT ~ J

Abb. 10.7: Restenergiedifferenz flir eine Simulationsrechnung mit

einem Netz mit feiner Elementeinteilung
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Abb. 10.8: Gesamtenergiefreisetzungsraten G fiir eine vollstdndige

EigenspannungsriBfolgesimulation
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Abb. 10.9: Gesamtenergiefreisetzungsrate und separierte Anteile

Zur Separierung der Energiefreisetzungsratenanteile wurden mit
Hilfe der lokalen Energiemethode entlang der gesamten simulierten
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RiBphase die GI— und GII—Komponenten in Abhdngigkeit von der RiB-
ldnge ermittelt und in Abbildung 10.9 aufgetragen. Die Abbildun-
gen 10.10-a-d geben eine Serie markanter Stadien widhrend der RiB-

bildung wieder.

—~

Abb. 10.10-a

Abb. 10.10-b
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10.10-c

Abb.

10.10-d

Abb.

Verformte Verbundstruktur

10.10-a-d:

Abb.
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Abb. 10.11: RiBspitzenwinkel

Zur besseren Verdeutlichung geometrischer Gegebenheiten bei der
Ausbildung der beiden Grenzfldchenrisse sind die lokalen RiBspit-
zenpositionen in Form von bezogenen Faserumfangswinkeln in Abbil-

dung 10.11 aufgetragen worden.

Die Art der Darstellung zeigt deutlich die GrenzflichenriBent-
wicklung an der Faser 2, deren Fortschreiten Ulber die geometrische
Symmetrie hinaus, das Arretieren in der Grenzfldche, den Beginn
des Grenzfldchenrisses an der Faser 1 und das synchrone Fort-
schreiten der beiden RiBspitzen bei Erreichen der geometrischen

Symmetrie.

In Abbildung 10.12 ist die RiBuferverschiebung in Abhdngigkeit
von der RiBspitzenposition fir alle sich wdhrend der RiBsimulation
einstellenden RiBldngen dargestellt. Es ist deutlich der RiBfort-
schritt in der Matrix und das alternierende Fortschreiten entlang

der Grenzfldchen an Faser 1 und Faser 2 zu sehen.
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10.12: RiBuferverschiebung
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10.3.2 SIMULATION DER RISSFOLGE FUR EINE STRUKTUR MIT SECHS
FASERN UND ZENTRISCHER FEHLFASER, TYP C

Flir eine Modellstruktur mit einer zentrischen Fehlfaser und einem
Fehlfaser/Matrix-Verhdltnis von 0OF°= 0,125 (d.h. R'°= 1/2 RY)
stellte sich im Experiment ebenfalls eine stabile gekrimmte Ma-
trix/GrenzfldchenriBkombination ein, wie sie exemplarisch in Ab-

bildung 10.4-b angegeben worden ist.

Abb. 10.13: Topologie einer Verbundstruktur mit kleiner

Mittelfaser; Typ-C

Die Abbildung 10.14 =zeigt wiederum den Verlauf der im Gesamt-
system gespeicherten Verzerrungsenergie in Abhdngigkeit von der
sich bei der automatischen Simulationsrechnung einstellenden Ge-

samtriBlange.
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Abb. 10.14: Restenergie in der Struktur in Abhdngigkeit von der
RiBldnge flir die Modellvariante Typ-C mit QFS = 0,125

Die Restenergiedifferenzen, die zur RiBfortschrittsbeurteilung
herangezogen werden, sind in Abbildung 10.15 Uber den Simulations-
schritten aufgetragen. Es stellt sich wiederum zuerst der gesamte

MatrixriB ein.

Erst nachdem sich der GrenzflachenriB auf der Faser 2 lber einen
relativ groBen Winkelbereich erstreckt hat und einen &hnlich lan-
gen Abschnitt auf der Faser 1 durchlaufen hat, stellt sich sehr
viel spdter als bei der friher vorgestellten Variante gemdB Abbil-

dung 10.7 das gleichformige Alternieren beider RiBspitzen ein.
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In Abbildung 10.16 ist die Trennung der Komponenten der Gesamt-

energiefreisetzungsrate vorgenommen und dargestellt worden.
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Die mit der lokalen Energiemethode R2 ermittelten separierten
GI— und GII—Anteile sind wiederum fir den Matrixbereich und die
GrenzfldchenriBkombination wiedergegeben werden. Die GII—Anteile
sind fir den MatrixriB auch im vorliegenden Fall vernachl&ssigbar
klein. Fir die hier behandelte Fehlstrukturvariante kann der in
Abbildung 10.11 deutlich geometrisch synchrone RiBfortschritt
nicht bestdtigt werden, wie aus Abbildung 10.17-a ersichtlich ist.
Es ist jedoch eine konstante Abweichung in der RiBspitzenposition

feststellbar.

Im Bereich der Matrixanfangs- und Endwerte der in Abbildung
10.17-b dargestellten RiBuferverschiebung u zeigen sich deutlich
Spitzenwerte, die durch die Behinderung der Strukturverformung in

der Modellmitte hervorgerufen werden.
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Abb. 10.17-a: RiBspitzenwinkel
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10.3.3 SIMULATION DER RISSFOLGE FUR EINE STRUKTUR MIT SECHS
FASERN UND ZENTRISCHER BOHRUNG, TYP D

In Abbildung 10.18 ist abweichend von der reguldren Anordnung der
Einschlisse die topologisch nachgebildete Geometrie eines Verbund-
modells mit einer fehlenden mittleren Faser, d.h. zentrischen
Bohrung, dargestellt. Das Fehlstruktur/Matrix-Verhdltnis ist =zu
QFS= -0,5 gewdhlt worden. Fur ein derartiges Modell stellt sich im
Experiment die in Abbildung 10.4-c wiedergegebene RiBkonfiguration

ein.
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Abb. 10.18: Topologie einer Verbundstruktur mit zentrischer

Bohrung; Typ-D

In Abbildung 10.19 ist der Verlauf der im System gespeicherten
Restenergie und deren Verdnderung mit wachsender RiBldnge angege-
ben. Abbildung 10.20 gibt die Veranderung der Restenergiedifferen-
zen in Abhdngigkeit vom Simulationsschritt wieder. Auch in dieser
Modellvariante ist der MatrixriB voll ausgebildet, bevor sich der
GrenzflachenriBf an der Faser 2 bildet, um nach einigen RiBschrit-
ten zu arretieren. Das anschlieBende Debonding an Faser 1 wird
nach einigen Schritten unterbrochen. Es schlieBt sich das gemein-
same synchrone Fortschreiten beider Grenzfldchenrifspitzen bis zur

Arretierung beider RiBspitzen an.
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zeigt filir eine vollstdndige Simulationsrechnung

die separierten Anteile der Gesamtenergiefreisetzungsrate.
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Abb. 10.22: RiBspitzenwinkel
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Abb. 10.23: RiBuferverschiebung u

Die Darstellung der RiBwinkel fiur die bewegten GrenzfldchenriB-
spitzen ist in Abbildung 10.22 wiedergegeben. Die Auftragung der
RiBuferverschiebung ilber den zugehOrigen RiBspitzenpositionen ist

der Abbildung 10.23 zu entnehmen.
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10.4 GEGENUBERSTELLUNG DER SIMULATIONSERGEBNISSE

In der Abbildung 10.24 sind die drei flir die Simulationsrech-
nungen verwendeten, experimentellen RiBverldufen entnommenen RiB-

konturen zusammengestellt.
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Abb. 10.24: RiBverliufe fiir die Simulationsrechnungen

Die RiBverldufe zeigen deutlich geometrische Unterschiede in Ab-
hdngigkeit von der Strukturmodellierung, d.h. der Fehlstrukturva-

riante.

10.4.1 RISSUFERVERSCHIEBUNGEN

Um einen Uberblick iiber die Verformung infolge eines fortschrei-
tenden Eigenspannungsrisses 2zu erhalten, wurden die RiBuferver-
schiebungen in einer quasidreidimensionalen Darstellungsweise als
Funktion der RiBspitzenpositionen und des Simulationsschrittes in

den Abbildungen 10.25-a,-b und -c wiedergegeben.
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10.4.2 ENERGIEFREISETZUNG ENTLANG GEKRUMMTER RISSKONFI-
GURATIONEN

Die gesamte in einer thermisch belasteten Verbundstruktur gespei-
cherte Verzerrungsenergie und deren Verdnderung mit wachsender
RiBausbreitung bildet die Grundlage zur Bestimmung der Gesamtener-
giefreisetzungsrate. In Abbildung 10.26 sind die Restenergien iiber
der RiBlédnge fiir drei verschiedene Modellvarianten in Abh&ngigkeit

von der RiBldnge dargestellt.
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Abb. 10.26: Im Verbundmodell gespeicherte Verzerrungsenergie als
Funktion der RiBl&nge

Die durch Differentiation ermittelten Gesamtenergiefreisetzungs-
raten sind in der Abbildung 10.27 in Abhdngigkeit von den Matrix-
riBldangen flir die betrachteten Fehlstrukturvarianten zusammenge-
stellt.
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Abb. 10.27: Gesamtenergiefreisetzungsraten filir die Matrixrisse
ermittelt mit der globalen bzw. lokalen Energie-

methode

Zusatzlich zu den aus globalen Modellbetrachtungen gewonnenen Er-
gebnissen sind die mittels der lokalen Energiemethode R2 bestimm-
ten Energiefreisetzungsraten angegeben, deren Lage nahezu dek-
kungsgleich mit denen einer globalen Betrachtungsweise ist, obwohl

die Verfahren auf vdllig unterschiedlichen Ansdtzen basieren.

Die Verladufe der Gesamtenergiefreisetzungsraten, die mit der glo-
balen sowie lokalen Auswertemethode bestimmt wurden, und deren se-
parierte Anteile sind fur die GrenzfldchenriBentwicklungen {liber
der GesamtriBldnge aufgetragen worden. Aus der Abbildung 10.28
sind fiur die Strukturvarianten Typ-B, -C und -D die einzelnen Kom-

ponenten der Gesamtenergiefreisetzungsraten zu entnehmen.
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10.4.3 SPANNUNGSINTENSITATSFAKTOREN ENTLANG GEKRUMMTER
MATRIXRISSE

Die Abbildungen 10.29-a-d zeigen die aus den berechneten Energie-
freisetzungsraten resultierenden Spannungsintensitatsfaktoren in
Abhdngigkeit von der RiBldnge entlang der gekriimmten Warmespan-
nungsrisse. Die angegebenen Werte flir den Spannungsintensitéats-
faktor K wurden dabei unter Verwendung der Irwinschen Formel

I

(siehe 4.2-12.a) aus der Energiefreisetzungsrate GI errechnet.

Untersuchungen von HAYASHI und NEMAT-NASSER /111/ und von ICHIKAWA
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und TANAKA /112/ weisen die Anwendbarkeit der Irwinschen Formel

auch fur abknickende Risse @}trigf}nitesimal kurzem Knick nach.
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10.5 EXPERIMENTELLE ABSCHATZUNG DER RISSFOLGE

Die bei der numerischen Simulation einer Ausbildung von Eigen-
spannungsriBkombinationen festgestellte vollstdndige Entwicklung
des Matrixrisses zwischen zwei Fasern wurde in einer Vielzahl von

Versuchen bestatigt.

Die Dokumentation der nachfolgenden GrenzfldchenriBentstehung ist
in einer gesonderten Untersuchung behandelt worden. Durch Einbrin-
gen eines kurzen Anrisses konnte ein einzelner MatrixriB induziert
und als solcher konserviert werden. In der Abbildungsserie 10.30-
a-f sind die einzelnen Stadien der nachfolgenden Grenzfl&chenriB-
entstehung anhand spannungsoptischer Aufnahmen niedergelegt wor-
den. Der MatrixriB ist vollstdndig ausgebildet bevor an der links
dargestellten Initiierungsfaser die Grenzfdchenabldsung beginnt
und sich wechselseitig entlang beider Faser/Matrix-Grenzfldchen
fortsetzt.
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Abb. 10.30-a: Entwicklung einer Grenzflichenrifkombination

e
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Abb. 10.30-b: Entwicklung einer GrenzflichenriBkombination
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Abb. 10.30-c: Entwicklung einer GrenzflichenriBkombination

Abb. 10.30-d: Entwicklung einer GrenzflichenriBkombination
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Abb. 10.30-f: Entwicklung einer GrenzfldchenriBkombination
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11. UNTERSUCHUNGEN ZUR MATRIXRISSAUSBILDUNG

11.1 RISSFORTSCHRITT INFOLGE THERMISCHER EIGENSPANNUNGSFELDER

In experimentellen und numerischen Untersuchungen von GREBNER
/9/, HERRMANN und Mitarbeitern /6/ wurde am Problem einer ther-
misch belasteten Zweikomponentenverbundstruktur nachgewiesen, daB
sich Eigenspannungsrisse entlang einer speziellen Hauptspannungs-
trajektorie ausbreiten. Die RiBvorhersage erfolgte dabei anhand
der in der Literatur angegebenen Kriterien, von denen hier die

folgenden genannt sein sollen.
a) Minimum der Verzerrungsenergiedichte; SIH /108/
b) Maximum der Energiefreisetzungsrate; STRIFORS /109/
c) Haupt- und Normalspannungskriterium; ERDOGAN und SIH /113/
d) Reine Mode I-Ausbreitung; KALTHOFF /114/
e) Symmetrie der Spannungsverteilung; PARLETUN /115/

Alle Kriterien gehen dabei von dem Nahfeld des Spannungs- und
Verschiebungszustandes in der wunmittelbaren RiBspitzenumgebung

aus.

Fiir den vorliegenden Fall eines gekrlimmten Eigenspannungsrisses
in einer modellierten Verbundgeometrie kann, wie in Abschnitt 8.3
gezeigt, von einer RiBausbreitung unter reiner Mode I-Belastung

ausgegangen werden.

Zur experimentellen Ermittlung bruchmechanischer Kennwerte werden
die in Abschnitt 6 vorgestellten Methoden der optischen Spannungs-
analyse herangezogen, insbesondere werden die bekannten Verfahren
der Spannungs- und Schattenoptik verwendet, um entlang eines sich
im Experiment gquasistatisch ausbreitenden gekriimmten Matrixrisses
Spannungsintensitdtsfaktoren zu bestimmen. Dabei sind diesen Un-

tersuchungen umfangreiche Vorstudien vorausgegangen /116/.
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11.2 EXPERIMENTELLE BESTIMMUNG DES SPANNUNGSINTENSITATS-
FAKTORS FUR EINEN GEKRUMMTEN EIGENSPANNUNGSMATRIXRISS

11.2.1 MODELLHERSTELLUNGS—- UND BELASTUNGSPROZEDUR

Die modellierten ebenen Verbundmodelle aus ARALDIT F-Matrix und
Stahl-Fasern, deren ausgepragte Neigung zum Sprddbruch beschrieben
und zur Eigenspannungsrifinitiierung ausgenutzt worden ist, =zeigen
lediglich dynamische RiBentwicklungen. Um vergleichbare Zustadnde
zu dem auf numerischem Wege simulierten Eigenspannungsverhalten zu
gewdhrleisten, wurde flr eine modifizierte Modellvariante eine
geeignete Herstellungsprozedur und Belastungstechnik erarbeitet.
Von den in Abschnitt 7.3 vorgestellten Modellmaterialien Kkonnte
das Epoxidharz ARALDIT B als Matrixmaterial in Kombination mit
einem gieBfdhigen kunststoffveredelten Keramikprodukt zur Faser-
nachbildung Verwendung finden, da diese optimales Verhalten hin-
sichtlich optischer und mechanischer Modelleigenschaften aufweist.
Die verwendete Keramikmasse ist ein pulverfdrmiges, chemisches
Produkt auf der Basis von A1203 bzw. Si02, das in Verbindung mit
Wasser als viskose Masse 1in beliebige Formen gieBbar ist und in
der Industrie zur Modellierung komplizierter Strukturen eingesetzt

wird.

Zur Nachbildung des Matrixrisses wird analog zu der in Abschnitt
7.5.3 beschriebenen Methode zur AnriBbildung in das Matrixmaterial
(ARALDIT B Plattenmaterial) auf mechanischem Wege ein kurzer
StartriB eingebracht, der hinsichtlich seiner geometrischen Lage
und Richtung einem in einer Fasergrenzflache startenden, sich
selbstdndig ausbildenden Matrixrif der unmanipulierten Verbund-
struktur entspricht. Auf diese Weise 14Bt sich in einem ebenen
Verbundmodell mit einer modellierten ARALDIT B-Matrix und Keramik-
Fasern durch thermische Belastung eine RiBerweiterung aus dem

StartriB mit quasistatischem RiBfortschritt produzieren.

In der Abbildung 11.1 ist ein Modellausschnitt der Matrix mit

Sicht in die vorbereitete Faserdffnung wiedergegeben.
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Abb. 11.1: Mechanisch eingebrachter StartriB aus einer Faseroff-

nung in einer ARALDIT B-Matrix

Eine symmetrische RiBform und eine gerade RiBfront sind Voraus-
setzung flir einen reproduzierbaren MatrixriB. Um eine mdglichst
groBe Differenz zwischen Verbundherstellungs- und Versagenstempe-
ratur zu gewdahrleisten, wurde mit spannungsoptischen Untersuchun-
gen die optimierte Modellherstellungsprozedur entwickelt, welche

die folgenden wesentlichen Merkmale besitzt.

Die Faseroffnungen der auf etwa T0=6OOC vorgewdrmten, mit dem
StartriB versehenen ARALDIT B-Matrix werden mit dem bei Raumtempe-
ratur aufbereiteten Keramikmaterial ausgefiillt. Durch dessen exo-
therme Reaktion stellt sich der Temperaturausgleich der beiden Mo-
dellkomponenten ein, so daB sich der spannungsfreie Ausgangszu-
0= 60°C ergibt. Nach der Ab-
kiihlung des Mehrphasenmodells setzt im Temperaturbereich von T, =

1

-40°C bis T1= -60°C eine quasistatische RiBausbreitung ein. Die

thermische Belastung erfolgt in der in Abbildung 7.3 vorgestellten

stand ebenfalls bei der Temperatur T

Temperiereinrichtung, die mit einer spannungsoptischen Apparatur

versehen ist.

In den Abbildungen 11.2-a-d sind exemplarisch einzelne Phasen der
Modelluntersuchung aufgezeigt.
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Abb. 11.2-a:

Abb. 11.2-b:
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Abb. 11.2-c:

Abb. 11.2-d:
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Abb. 11.2-a: Spannungsoptische Aufnahme eines Verbundmodells aus
ARALDIT B-Matrix und Keramik-Fasern nach der Her-
stellung bei beginnender thermischer Belastung bei

T=60°C und nahezu spannungsfreiem Ausgangszustand

Abb. 11.2-b: Isochromatenverteilung in einer thermisch belasteten
Verbundprobe mit AnriB bei einer Temperatur von

T=0°C bzw. einer Temperaturdifferenz von A T=-60°C

Abb. 11.2-c: Spannungsoptische Aufnahme eines Verbundmodells mit
einem durch thermische Belastung induzierten, ge-
krimmten EigenspannungsriB in der ARALDIT B-Matrix
und angrenzenden Grenzfldchenrissen entlang der be-
teiligten Fasern bei der Versagenstemperatur von

T1=—39OC

Abb. 11.2-d: Gekrimmter Eigenspannungsrif in einer ARALDIT B-Ma-

trix infolge einer Temperaturdifferenz von AT=-99°C

Die Probenabmessungen wurden zum Zwecke optimal erzielbarer RiB-
lidngen entsprechend den in Abschnitt 3.2.1 definierten Geometrie-

relationen gewdhlt.

11.2.2 SPANNUNGSOPTISCHE MODELLUNTERSUCHUNGEN

Die grundlegenden physikalischen Zusammenhdnge zum Verfahren der
ebenen Spannungsoptik sowie die Anwendung der Spannungsoptik in
der Bruchmechanik wurden in Abschnitt 6.1 bereits vorgestellt. Da-
bei wurden auch die verschiedenen Methoden zur Ermittlung des

Spannungsintensitdtsfaktors K_ aus den spannungsoptischen Informa-

I
tionen, den Isochromatenverteilungen an Riflspitzen, diskutiert.

Die Gleichung 6.1-12 bietet die Mdglichkeit, flir einen RiB in ei-
ner unendlich ausgedehnten ebenen Scheibe aus den Isochromatenpa-

rametern eM, r.,, und der Ordnung n den Spannungsintensitdtsfaktor

M

KI zu bestimmen. Die Zwei-Parameter-Methode 1liefert KI

ren Genauigkeit +5% betrdgt, sofern das Verhdltnis rM/a<O,O3 er-

-Werte, de-

fillt ist und ry und 6, fehlerfrei abgelesen werden kénnen /117/.

Die Abbildungen 11.3-a-f geben in Form einer Fotoserie die zuge-
hdrigen Isochromatenverteilungen fiur den Bereich quasistatischer

EigenspannungsriBausbreitung wieder.
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Abb. 11.3-a: Isochromatenverteilung nach erfolgter RiBinitiierung
aus einem StartriB bei einer Temperatur T1=—39OC und
einer RiBldnge von a=5,6 mm fir ein Modell mit

M
D "=300 mm

Abb. 11.3-b: RiBverldngerung des gekrlimmten Eigenspannungsrisses

auf die RiBldnge a=7,9 mm
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Abb. 11.3-d: Erreichen der geometrischen Symmetrie mit deutlich
erkennbarer Asymmetrie der zugehOrigen Isochroma-

tenverteilung
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Abb. 17.3-e: Beginn der dynamischen RiBverldngerung bei der RiB-

ldnge a=16,1 mm

Abb. 11.3-f: Vollstdndige EigenspannungsriBkonfiguration nach der

dynamischen RiBverldngerung
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Deutlich sind an beiden Fasern die entstandenen Grenzfldchenrisse
zu erkennen. In der Abbildung 11.4 ist der aus der Bildserie 11.3-
a-f ermittelte Geschwindigkeitsverlauf in Abhdngigkeit wvon der

RiBlange dargestellt.

Die auf numerischem Wege erhaltene vollstdndige Ausbildung des
Matrixrisses bestatigt sich in der Abbildung 11.3-e, da zu diesem
Zeitpunkt der RiBausbildung ein Grenzfldchenabldsen an der Faser 2

noch nicht erkennbar wird.

-] 1
PROBEN NR. : 001 I
- D’: = 300,00 M / -
3 R - 25,00 Y
£ RM - 38,88 'Y
= B - 5,00 ™

v

=
g . - 0,50
FS
= Q - 0,00
=
5
T = v
o~
™ RISSE INLE | TUNG
T - -39,0 Oc
L 4]

0,0 2,5 5,0 7.5 10,0 12,5 15,0 17,5 20,0 22,5 25,0
RISSLANGE A (mm)
Abb. 11.4: Geschwindigkeitsprofil eines Eigenspannungsrisses in

Abhdngigkeit von der RiBRldnge a

Der aus den Isochromatenparametern mit der Zwei-Parameter-Methode

gewonnene Spannungsintensitdtsfaktor K_ ist in Abbildung 11.5 zu-

I
sammen mit dem Glltigkeitsparameter rM/a ebenfalls in Abhdngigkeit

von der RiBldnge a dargestellt.
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Abb. 11.5: Spannungsoptisch bestimmte Spannungsintensitats-
faktoren KI und die dimensionslose KenngroBe rM/a in
Abhdngigkeit von der RiBldnge a flur die Eigenspan-
nungsriBausbildung in einer Verbundgeometrie bei

einer Temperatur wvon T1=—39,OOC

Trotz der relativ groBen Probenabmessungen von DM=300 mm Proben-
auBendurchmesser und einer damit erreichbaren GesamtriBl&nge von
a=29 mm ist die geforderte Bedingung rM/a £ 0,03 an keiner Stelle
des RiBverlaufs erreicht worden, so daB mit der spannungsoptischen

Methode deutlich zu hohe Werte erzielt werden.

An dieser Stelle muB festgestellt werden, daB die Darstellung der
Spannungsumlagerung bei fortschreitender RiBspitze in einem eigen-
gespannten Verbundmodell mittels der spannungsoptischen Methode
einen anschaulichen Uberblick liefert. Riickschliisse auf zugehdrige
bruchmechanische Kennwerte sollten jedoch nur mit &duBerster Sorg-
falt und unter zundchst qualitativen Gesichtspunkten gezogen wer-
den, da sich bei der gekrimmten RiBgeometrie und der vorliegenden
Komplexitdt des Spannungsfeldes im Fernfeld um die RiBspitze bzw.
in der Umgebung der Einschliisse 3duBerst komplizierte Wechselwir-
kungsmechanismen einstellen, die mit der verwendeten einfachen

spannungsoptischen Auswertebeziehung nicht zu erfassen sind.
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Als Konsequenz der Einschridnkungen zur Anwendbarkeit der Span-
nungsoptik als globale Interpretationsmethode von RiBspannungs-
zustdnden wird die im nachfolgenden Abschnitt vorgestellte schat-
tenoptische Kaustikenmethode herangezogen, um den bewegten Eigen-
spannungsrif in einer Araldit B-Matrix bruchmechanisch zu untersu-

chen.

16

\
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Abb. 11.6: Spannungsverlauf entlang eines radialen Schnittes
zwischen zwei Einlagerungen in der ARALDIT B-Matrix

einer Verbundstruktur; TYP-D

In Abbildung 11.6 ist der Quervergleich zwischen den numerisch
mittels der Finiten Element Methode gewonnenen und den auf experi-
mentellem Wege durch das Schubspannungsdifferenzen-Verfahren er-
haltenen Spannungsverteilungen entlang radialer Schnitte innerhalb
der Matrix flir eine gerissene Verbundstruktur mit zentrischer Boh-

rung angestellt worden.
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11.2.3 SCHATTENOPTISCHE MODELLUNTERSUCHUNGEN

Die physikalischen Grundlagen und die mathematischen Zusammenhan-
ge zur schattenoptischen Kaustikenmethode sind im Abschnitt 6.2
vorgestellt und am Beispiel einer Standardprobe aus PMMA verdeut-
licht worden. Mittels einer durch Einbringen von Einschliissen mo-
difizierten CT-Probe konnte gezeigt werden, daB die Kaustikenme-
thode auch flir RiBspitzenuntersuchungen in der N&he von Diskonti-
nuitdtsstellen ihre Gliltigkeit beh&lt. In den Abbildungen 6.15-17
zeigen die Kraft-Spannungsintensitdtsfaktorverldufe flir CT-Proben
mit Einschlliissen den gleichen linearen Verlauf wie die der &aquiva-
lenten Proben ohne Fehlstellen. Da auf Grund des schattenoptischen
Prinzips die Kaustik alle Informationen {iber den Spannungs- und
Verformungszustand aus der unmittelbaren RiBspitzenndhe bezieht,

ist diese Methode der spannungsoptischen liberlegen.

11.2.3.1 TRANSMISSIONSSCHATTENOPTIK

Flir schattenoptische Modelluntersuchungen an eigengespannten Fa-
serverbundwerkstoffmodellen mit gekrimmten Matrixrissen wurden die
Modelle aus ARALDIT B-Matrix und Keramik-Fasern mit einem manuell

eingebrachten Anrif verwendet.

In Abbildung 11.7 ist der Versuchsaufbau zur Transmissionsschat-
tenoptik wiedergegeben. Die zu untersuchende Verbundprobe befindet
sich in der mit Stickstoff betriebenen Temperierkammer. Die Film-
ebene stellt gleichzeitig die Referenzebene dar, da das schatten-
optische Bild unmittelbar auf die Filmebene einer Kamera proji-

ziert wurde.

Flir das optisch anisotrope Modellmaterial ARALDIT B sind in der
Bildfolge 11.8-a-f exemplarisch verschiedene Stadien des RiBfort-
schritts einer MatrixriBentwicklung dargestellt. Das Verbundmodell
FS F

= R ) und meh-

rere Markierungslinien entlang der Symmetrieschnitte.

Nr. 103-TYP-D besitzt eine zentrische Bohrung (R
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Punktiicht

Relerenzebene
Filmebene

Objektebene

Abb. 11.7: Versuchsaufbau zur Durchlichtschattenoptik mit Punkt-

lichtquelle, Hohlspiegel und Temperierkammer

Abb. 11.8-a
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Abb. 11.8-b

Abb. 11.8-c
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Abb. 11.8-d

Abb. 11.8-e
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Abb. 11.8-f

Abb. 11.8-a-f: Schattenoptische Aufnahmen zu den Phasen einer Ma-
trixriBentwicklung in einem Verbundmodell mit
Bohrung (QFS = -0,5) aus ARALDIT B-Matrix und

Keramik-Fasern

Die Abbildungen 11.8-a-f zeigen auBerdem die aus der optischen
Anisotropie des verwendeten Modellwerkstoffs ARALDIT B resultie-
renden Doppelkaustiken, die signifikante Abweichungen von der ib-
licherweise beobachteten symmetrischen Epizykloidenform um die
RiBspitze eines geraden Risses aufweisen. Die Form der beobachte-
ten Schattenflache entspricht nicht der einer unter gemischter Be-
anspruchung stehenden gedrehten Kaustik, sondern weist deutliche
Deformationen auf, die unter der Voraussetzung des Vorliegens rei-
ner Mode I-EigenspannungsriBausbreitung nur aus der lokalen Krim-

mung der RiBgeometrie ableitbar sind.

In eingehenden analytischen Untersuchungen /118/ ist zudem der
EinfluB der RiBkrimmung auf die =zugehdrigen bruchmechanischen
Kennwerte am Beispiel homogener elastischer Materialien =zur
Verbundsimulation wuntersucht worden. Hierbei konnte eine Nahe-

rungslosung zur Beschreibung der Beziehung zwischen dem Spannungs-

intensitdtsfaktor K; und der RiBkriimmung im homogenen Kontinuum



227

angegeben werden. Darauf aufbauend ist mit Hilfe komplexer Span-
nungsfunktionen und numerischer Berechnungen die Entstehung eines
Schattenflecks um eine gekrlimmte unter Mode I-Belastung stehende

RiBspitze simuliert worden.

In den Abbildungen 11.9-a-f sind fur realistische Modellgegeben-
heiten numerisch bestimmte Kaustiken dargestellt, wobei von einem
-3/2

15 Nmm

Spannungsintensitdtsfaktor K ausgegangen wurde. Die

Krimmung des Risses ist dabef variiert worden. Flir optisch isotro-
pes Modellmaterial zeigen sich ebenso wie im Experiment nur sehr
geringe Abweichungen von der Kaustik eines geraden Risses (Abb.
11.9-a-f, links). Die Schattenbilder flir den Werkstoff mit aniso-
tropen (A=0,288) Eigenschaften weisen jedoch die gleichen Deforma-
tionen wie die experimentell beobachteten auf. In einer Fehlerbe-
trachtung lieB sich die geometrische Abweichung der Urkreisradien
ry der zugehOrigen gekrimmten (r= O,1mm_1) und geraden Risse bei
ansonsten identischen Geometrie- und Belastungsparametern zu 2,5%

abschidtzen.

isotrop Krimmung k = 0,1 mm~ anisotrop

Abb. 11.9-a Abb. 11.9-b
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isotrop Krimmung k = 0,3 mm~ anisotrop

Abb. 11.9-c Abb. 11.9-d

isotrop Krimmung k = 1,0 mm anisotrop

Abb. 11.9-e Abb. 11.9-f

Abb. 11.9-a-f: Numerisch bestimmte Kaustiken fir unterschiedliche

RiBkrimmungen k

In Abbildung 11.10 ist eine Zusammenstellung der Ergebnisse fir

einen EigenspannungsrifB wiedergegeben.
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intensitdatsfaktor KI in Abh3dngigkeit von der RiBléange

a flir einen gekrliimmten EigenspannungsriB in der Matrix

eines Verbundmodells

11.2.3.2 REFLEXIONSSCHATTENOPTIK

Der Versuchsaufbau filir die Bestimmung von Spannungsintensitats-
faktoren mittels der schattenoptischen Reflexionsmethode ist in

Abbildung 11.11 wiedergegeben.
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Punktlicht

Temperisrkammer

Hohispiegel

Abb. 11.11: Versuchsanordnung zum Reflexionskaustikenverfahren

mit einer oberfléchenverspiegelten Verbundprobe aus

ARALDIT B-Matrix bzw. Keramik-Fasern

Als reflektierende Spiegelfl&dche dient eine auf die ARALDIT B-Ma-
trix aufgedampfte Silberschicht. Die Modellbelastung erfolgt wie-

derum in der Temperiereinrichtung mittels fllissigen Stickstoffs.

Der Versuchsaufbau unterscheidet sich von dem der Transmissions-
schattenoptik in erster Linie durch einen neuen Kamerastandort und
die Fokussierung auf eine virtuelle Referenzebene hinter der Pro-
be. Die Abbildungen 11.,12-a-f zeigen unterschiedliche Stadien des
RiBfortschritts eines Matrixrisses.
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Abb. 11.12-a-f: Experimentell beobachtete Kaustiken flir verschie-
dene RiBspitzenpositionen entlang eines sich qua-
sistatisch ausbreitenden Eigenspannungsrisses in

einer reflexionsschattenoptischen Versuchsanord-

nung

Die Versuchsergebnisse fir einen gekrlimmten Eigenspannungsrif in-
nerhalb der Matrix eines Verbundmodells sind in Abbildung 11.13

zusammengestellt.
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Abb. 11.13: RiBgeschwindigkeit v, Urkreisradius ry und Spannungs-
intensitdtsfaktor K in Abhdngigkeit von der RiBl&nge
a flir einen gekrimmten EigenspannungsriB in der Ma-

trix eines Verbundmodells
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11.2.3.3 VERGLEICH DER NUMERISCH UND EXPERIMENTELL ERMITTELTEN

SPANNUNGSINTENSITATSFAKTOREN

Nachfolgend ist der Vergleich der auf experimentellem Wege durch
die schattenoptischen Transmissions- und Reflexionsverfahren ge-
wonnenen Spannungsintensitdtsfaktoren mit denen auf numerischem
Wege mittels des Verfahrens der Finiten Elemente bestimmten ange-
stellt worden. Mit Hilfe des Netztyps L3RE-TYP-B und einer an die
im Experiment verwendete Verbundprobe angepaften Geometrie wurde
flir den MatrixriB die Energiefreisetzungsrate ermittelt und mit-
tels der Gleichung (4.2-10a) der Spannungsintensitatsfaktor KI als
Funktion der RiBldnge bestimmt. Diese und die auf experimentellem
Wege gewonnenen Spannungsintensitatsfaktoren sind in Abbildung
11.14 aufgetragen. Es wurden hierbei die Ergebnisse aus einem
transmissions- und reflexionsschattenoptischen Versuch gegeniber-
gestellt, wobei die Ergebnisse aus Versuchen mit vergleichbaren
RiBinitiierungs- bzw.-starttemperaturen ausgewdahlt wurden. Die
temperaturabhdngigen Stoffwerte flir die FE-Analyse sind fir den
relevanten Temperaturbereich aus den in Abschnitt 7.3 vorgestell-
ten Untersuchungsergebnissen ermittelt worden. Von KORDISCH /75/
wird flir die Bruchzdhigkeit des Modellmaterials ARALDIT B der Wert

Kio = 25,2 + 4,3 (N/mm3/2) angegeben. Die Spannungsintensitdtsfak-
toren KI in Abbilung 11.14 liegen im Bereich der stabilen RiBaus-
breitung, d.h. flir RiBldngen bis a = 7,5 mm, deutlich unter den

fir Raumtemperatur kritischen RiBzdhigkeitswerten. Da {lber die

Temperaturabhdngigkeit der KenngrdBe K keine Aussagen gemacht

werden koénnen, lassen sich mit den derzﬂitigen Mitteln noch keine
fundierten Angaben {iber den Instabilitdtspunkt bzw. den Bereich
des instabilen RiBfortschritts machen. Es ist jedoch zu vermuten,
daB KIc wie bei einer Vielzahl von Werkstoffen zu tiefen Tempera-
turen hin erheblich fallende Werte aufweist. Daher bedarf es zur
Beurteilung der ab einer gewissen RiBldnge stets einsetzenden Dy-
namik der RiBerweiterung noch weiterer experimenteller Untersu-

chungen.
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12, ZUSAMMENFASSUNG

Das Studium des Warmespannungsbruchs von Verbundmaterialien be-
sitzt in der derzeitigen Materialforschung einen besonderen Stel-
lenwert, da hochfeste Mehrphasenwerkstoffe bei ihrem vielfdltigen
Einsatz insbesondere in der Luft- und Raumfahrt sowie der Nuklear-
technik héaufig speziellen instationdren Temperaturfeldern ausge-

setzt sind.

In der vorliegenden Arbeit werden experimentelle und numerische
Untersuchungen zum Problem des Wdrmespannungsbruchs von faserver-
starkten Verbundwerkstoffen vorgestellt, wobei insbesondere auf
das Versagen unter dem EinfluB von Storstrukturen innerhalb einer
ansonsten reguldaren Anordnung eingegangen wird. Zudem wurde eine
Beschrankung auf die Untersuchung der matrixseitigen Bruchphdnome-
ne einer Verbundstruktur vorgenommen, da auf Grund der gewdhlten
Materialkombinationen ausschlieBlich ein Versagen im Matrixmate-
rial und in der Faser/Matrix-Grenzfldche beobachtet wurde. In die-
sem Zusammenhang wird flir einen Ausschnitt aus einem realen Ver-
bundwerkstoff ein &dquivalentes Modell vorgestellt, das ein dreidi-
mensionales Kontinuum darstellt, bestehend aus einer Matrix und in
hexagonaler Packung angeordneten zylindrischen Verstdrkungsfasern.
Die Reduktion auf einen scheibenfdrmigen Ausschnitt dieser Modell-
struktur gestattet ferner eine {Uberschaubare experimentelle und
numerische Handhabbarkeit. Flir ein derartig modelliertes Verbund-
modell sind Strukturvarianten definiert worden, die die Beschrei-
bung aller wesentlichen Strukturabweichungen durch die Angabe des
Parameters QFS gestatten, der als Verhdltnis des Fehlstellenvolu-

mens zum Matrixvolumen definiert wurde.

Flir ein Faser/Matrix-Volumenverhdltnis der ungestdrten Anordnung
von QF = 0,5 und einem Fehlstruktur/Matrix-Volumenverhdltnis von
QFS = 0, was dem Fehlen einer Faser entspricht, stellen sich bei
Verwendung geeigneter Modellmaterialien und Anwendung einer spezi-
ellen Belastungsprozedur definierte reproduzierbare Eigenspan-
nungsrifBkombinationen innerhalb der nachmodellierten Matrix und

entlang der vorhandenen Faser/Matrix-Grenzfldchen ein.
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Flir das Epoxidharz ARALDIT F als Matrixmodellwerkstoff und Stahl-
scheiben zur Fasernachbildung konnte in umfangreichen Untersuchun-
gen ein spezieller Handhabungsablauf erarbeitet werden, mit dessen
Hilfe ein reproduzierbares Eigenspannungsversagen unter aus-
schlieBlich thermischer Belastung der Struktur mit Kombinationen
aus gekrlimmten asymmetrisch verlaufenden Matrixrissen und nachfol-
genden GrenzfldchenriBkonfigurationen nachgebildet werden. Voraus-
setzung flr experimentelle und numerische Studien zur RiBausbil-
dung und zum Spannungszustand innerhalb der Matrix eines model-
lierten Faserverbundwerkstoffmodells ist die Kenntnis der thermi-
schen und der =zeitlichen Abh&dngigkeit der relevanten Werkstoff-
kenngroBen. Aus diesem Grund sind spezielle Vorrichtungen und Ver-
suchseinrichtungen zur Bestimmung der genannten Abhadngigkeiten
entwickelt und als Hilfsmittel zur quantitativen Angabe der Tempe-
ratur- und Zeitabhadngigkeit von Werkstoffkennwerten benutzt wor-
den. Ferner wurde eine spezielle Temperierkammer mit vollstadndiger
spannungsoptischer Apparatur konzipiert und fir die vorgestellten

Betrachtungen eingesetzt.

Das Matrixmodellmaterial besitzt eine ausgezeichnete spannungsop-
tische Aktivitat, so daB mittels des Schubspannungsdifferenzen-
Verfahrens (SDV) entlang radialer Modellschnitte =zwischen zwei
bzw. drei Einlagerungen flir Modelle mit unterschiedlichen Struk-
turparametern QFS Spannungsverteilungen sowohl fir den ungerisse-
nen als auch den zugehdrigen gerissenen Modellfall ermittelt wer-
den konnten. Aus globalen Isoklinenverteilungen wurden mittels der
klassischen spannungsoptischen Methode Hauptspannungstrajektorien-
felder konstruiert, die Rlckschliisse Ulber den Verlauf der gekriUmm-
ten Eigenspannungsrisse im Matrixwerkstoff zulieBen, die mit fru-
heren Ergebnissen zum Problem des Warmespannungsbruches von Mehr-

komponentenmedien in Einklang stehen.

Als Vorbereitung flir numerische Betrachtungen und zur Beurteilung
der Gliltigkeit ebener Modellbetrachtungen wurden dreidimensionale
Verbundmodelle erstellt und in analoger Weise bis zum thermischen
Versagen belastet. Es zeigen sich auch in diesem Modelltyp ge-
krimmte Eigenspannungsrisse in der Matrix zwischen zwei benachbar-
ten Fasern, so daB die ebenen Modellvarianten als reprdsentativer
Spezialfall von Faserverbundwerkstoffen mit wunidirektionaler Fa-

seranordung anzusehen sind.
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Mit Hilfe der Methode der Finiten Elemente wurden flir eine Kombi-
nation aus einem MatrixriB und zwei sich anschlieBenden Faser/Ma-
trix-Grenzfldchenrissen bruchmechanische Kennwerte und Spannungs-

verteilungen in einer modellierten Verbundstruktur bestimmt.

Fir die numerisch nachgebildete quasistatische MatrixriBentwick-
lung konnte gezeigt werden, daB diese weitgehend unter Mode I-Be-
lastung und damit nach dem Haupt- bzw. Normalspannungskriterium
erfolgt. Die Angabe von Eigenspannungsverteilungen entlang ausge-
wahlter Modellschnitte gestattet einen guten Einblick in den Bean-
spruchungszustand thermisch eigengespannter Strukturen, zumal auch
die Abhdngigkeiten von den verschiedenen Strukturvarianten angege-

ben werden kdnnen.

Die Nachbildung eines doppelten Matrixrisses und die Angabe von
Energiefreisetzungsraten entlang dieser EigenspannungsrifBkombina-
tion bestatigen das im Experiment beobachtete Phdnomen der Mehr-
fachmatrixrisse, die sich bis zum vollstdndigen Umlaufen der RiB-

sequenzen auszubilden vermdgen.

Einen weiteren Schwerpunkt der vorliegenden Arbeit bildet die
Analyse der Versagensmerkmale wie RiBinitiierung, RiBfortschritt
und RiBfolge.

Flir das Phi&nomen der RiBinitiierung aus einer Faser/Matrix-Grenz-
flache in das Matrixmaterial hinein wurden mit Hilfe einer FE-Ana-
lyse von Energiedichtednderungen im Grenzfldchen- und im Matrixbe-
reich um einen EinschluB einer Verbundstruktur RiBstartpunkte in
Form von Faserumfangskoordinaten vorausgesagt, die sehr gut mit
experimentell beobachteten RiBinitiierungspositionen und lokalen

Hauptspannungsverteilungen zusammenfallen.

Dem Studium des Matrix- und simultanen GrenzfladchenriBfort-
schritts zweier gleichzeitig vorliegender Eigenspannungsriflspitzen
in einem Faserverbundwerkstoffmodell und der Aufstellung eines ge-
eigneten RiBfolgekriteriums kam eine besondere Bedeutung zu. Mit-
tels des Kriteriums der maximalen Energiefreisetzungsrate konnten
flir unterschiedliche Modellstrukturen vollstdndige RiBfolgesimula-
tionen durchgefiihrt werden. Fir das vorliegende Problem wurde da-
von ausgegangen, daB diejenige der beiden mbglichen RiBverldnge-

rungen den weiteren RiBverlauf beschreibt, welche flir einen
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schritt das Maximum an elastischer Verzerrungsenergie freisetzt.
Bei konstanter Modelldicke und &quidistanten RiBverldngerungs-
schritten muBte fir die betrachtete Modellstruktur lediglich die
Verdnderung der in einer belasteten Struktur gespeicherten Gesamt-
verzerrungsenergie in Abhdngigkeit vom Simulationsschritt als Be-
urteilungskriterium herangezogen und programmtechnisch realisiert

werden.

Es wurde ein umfangreiches Programmsystem entwickelt, mit dessen
Hilfe das automatische Erstellen der relevanten FE-Strukturen, das
Anlegen sowie selbstdndige Anstarten von FE-Prozeduren in Verbin-
dung mit allen notwendigen Kontroll- und DokumentationsmaBnahmen
sowie eine automatische Simulation der EigenspannungsriBentwick-
lung bei gleichzeitigem Vorliegen eines Matrixrisses und eines
partiellen Grenzfldchenrisses ermdglicht wurde. Das Aufbereiten
der FE-Ergebnisdateien und die Entscheidung ilber den weiteren RiB-
fortschritt mittels des RiBfortschrittkriteriums erfolgte dabei
automatisch. In sehr guter Ubereinstimmung mit experimentellen Be-
funden zeigte sich dabei fir alle simulierten Verbundvarianten die
zundchst vollstdndige Ausbildung des Matrixrisses und das an-
schlieBende variantenabhdngige Debonding an der RiBinitiierungsfa-
ser mit nachfolgendem alternierenden und nach Uberschreiten von
Symmetriegrenzen synchronem RiBspitzenfortschritt entlang beider
Matrix/Faser-Grenzfldchen bis zur wiederum beidseitigen Arretie-

rung der entsprechenden Grenzfladchenrisse.

Weitere experimentelle Untersuchungen zur quasistatischen RiBver-
ldngerung innerhalb der Matrix eines idealisierten Verbundmodells
lieferten mittels der bekannten Methode der Spannungsoptik und der
Transmissions- und Reflexionsverfahren der Schattenoptik bruchme-
chanische Kennwerte in Form von Spannungsintensitdtsfaktoren KI'
Zu diesem Zweck wurde eine modifizierte Modelltechnik erarbeitet
und verfeinert. Das Epoxidharz ARALDIT B und eine gieBfdhige Kera-
mikmasse dienten dabei zur Modellierung der Matrix und der Fasern
einer Verbundgeometrie. Durch deren Abkiihlung von der spannungs-
freien Ausgangstemperatur von To =60°C auf die Versagenstemperatur
-4O°C:>T1> -60°C stellte sich als Verldngerung eines zuvor mecha-
nisch eingebrachten Startrisses, der nach Initiierungsort und

-richtung dem Anfangszustand einer unmanipulierten Struktur ent-
spricht, RiBfortschritt entlang eines gleichermaBen gekrimmten
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RiBweges durch die Matrix ein. Die sich im Bereich quasistatischen
RiBfortschritts einstellenden Isochromatenverteilungen im span-
nungsoptischen Versuch bzw. die Kaustiken im schattenoptischen Ex-
periment wurden zur Bestimmung bruchmechanischer Kennwerte heran-

gezogen und diskutiert.

Die Abweichungen von den flr einen geraden RiB sich symmetrisch
zur RiBverldngerungslinie ausbildenden schattenoptischen Grenzkur-
ven wurden mittels analytischer Ansdtze fur den gekrimmten Eigen-
spannungsriB nachvollzogen und fir unterschiedliche Geometrie- und

Modellverhaltnisse numerisch simuliert.

In einer abschlieBenden Betrachtung ist der mit der Methode der

Finiten Elemente bestimmte Spannungsintensitdtsfaktor K, fir das

Verbundmodell mit einer ARALDIT B-Matrix den experimentell ermit-

telten KI—Werten gegeniibergestellt worden. Sie zeigen gute Uber-

einstimmung im Bereich stabilen RiBfortschritts.
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