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Abstract

The design of distributed software for embedded systems in products like automobiles,
trains, airplanes, ships, automatic manufacturing lines, robots, telecommunication sys-
tems, etc. becomes incredibly complex due to the huge amount of parallel working and
interconnected microprocessors. Exactly their mutual in/out-dependencies and, there-
fore, their implemented communications make them very complex. It is hard to analyse
and predict their behaviour. But for hard real-time control the guarantee of a special be-
haviour is indispensable. Especially, the operating systems, which are often required to
provide the communication functions, introduce a lot of overhead and non-determinism
into the systems.

In this thesis we develop a methodology to generate the operating systems and the com-
munication system for a distributed embedded real-time application. The operating sys-
tems for each node of the network and the communication system is thereby generated
from a customisable library operating system construction kit. The operating systems for
each microprocessor and the communication system are assembled from tuneable com-
ponents of a library. This is done by a new configuration approach named Puppet Con-
figuration. The final systems are highly adapted to the requirements of the application.
Thus, not required functions are excluded and the remaining functions are optimally
configured to serve the given use case.

Additionally, the behaviour of the finally configured distributed system is analysed in or-
der to ensure a temporal correct behaviour. A new Time-triggered Event Scheduling scheme
is used to attain this information before the system is targeted and implemented. Bottle-
necks, overload conditions, bursts, and also idle phases are detected.

The configuration phase and the analysis phase are embedded into a contemporary de-
sign methodology. The configuration has impacts on the analysis and the analysis influ-
ences the configuration. Both phases are executed alternately until a valid and working
configuration is found (or another configuration cannot be generated).

This innovative design approach of using configuration and prediction of its behaviour
reveals a lot of potential for shortening the design time and, therefore, the time-to-market
of a new embedded real-time system for a distributed controlled product.
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Summary

Nowadays, distributed control replaces more and more centralised control. In modern
products with embedded systems a number of control units are integrated. The commu-
nication aspect between these control units becomes more and more complex and im-
portant. In the past decades the industry and sometimes also the research have ignored
these distributed systems due to their complexity. A lot of efforts had been spent for the
analysis and the design of local systems. However, the research community transferred
its schedulability theory in some aspects to distributed systems. Nevertheless, in practice
a lot of hand work is still done in order to programme distributed systems. Some of the
high-level development tools for real-time control systems, like ASCET-SD [45], StateM-
ate [64], or CAMeL [70, 107, 151], produce target code, but this must often be adapted or
even distributed to the final target by hand. This happens, because the tool does not sup-
port any operating system or the one which is supported cannot be applied to the final
target. For this reason, the operating system services have to be programmed by hand or
the code have to be ported to another operating system or target.

In order to specify inherently parallel working applications, synchronous languages had
been defined. Synchronous languages are based on the simultaneity principle: In reactive
systems multiple actions or computations happen simultaneously. Languages like Lustre
[58] or Esterel [12] handle the communication between parallel and distributed systems
synchronously. All processes compute one discrete time step and then they communicate
at the same time. They simply define a synchronous interleaving between calculation
and communication. Thereby, they assume that the communication overhead is constant
and can be ignored. However, this is a very pragmatic approach and leads to several
problems for their implementation on really distributed systems.

This thesis is related to embedded systems. The development of, especially, distributed sys-
tems is supported. Real-time aspects are additionally considered. Thus, the real-time com-
munication between distributed tasks on several embedded control units is mainly con-
sidered. Especially, the adaptation of the target operating systems for each control unit
with its communication facilities to one specific distributed application is the main topic.
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This goal is achieved by using techniques from the configuration theory. The implementa-
tion of operating and communication services can vary. A specific implementation of a
service can only work, when the environment assures certain properties. Operating sys-
tem code that is written for one specific use case will be reused, whenever that use case
is detected.

Time-Triggered Event

Scheduling

Medium1 trans+ prop

Methodology

Puppet-Configuration

Fine-granular and customisable real-time OS

Configuration

TEReCS

Analysis

Primitives

URSG

Fig. 1.1: TEReCS is mainly built on two basic concepts: configuration and timing analy-
sis.

This goal is achieved by applying new ideas and concepts to the design domain for dis-
tributed embedded applications. A new and contemporary approach to the design of
operating and communication systems has been developed. It is highly flexible and ex-
tensible. Additionally, the memory footprint and the real-time constraints are considered
during the design phase. The design process runs automatically, when the information
about the application’s behaviour and its requirements are specified. The design process
exploits application specific knowledge for the configuration of the operating and com-
munication systems. It reduces dramatically the design time for distributed and efficient
operating and communication systems. This is due to a hierarchical and highly flexible
configuration concept. Additionally, the timeliness execution of all communicating tasks
is checked. On the one hand, this approach supports the application designer with inter-
nal knowledge about the operating systems activities in order to identify bottlenecks of
the system design. On the other hand, the application designer must not be an operating
system expert in order to select or parameterise certain operating system services.

Thus, it becomes possible to support nearly all application scenarios and a huge variety
of hardware platforms with only one operating system library. The final target operating
systems are slim and efficient, because they support exactly the application scenario and
not more. Configuration is a promising approach for software reuse.
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Another very exceptional concept is the integration of the configuration and the timing
analysis. During the automatic design process configuration and timing analysis have
mutual influences on each other. The configuration determines the operating system’s
overhead, which is considered by the timing analysis, and the timing analysis may forbid
certain configuration options due to overload conditions.

All of these aspects led to the development of Tools for Embedded Real-time Communication
Systems (TEReCS) that are described in this thesis. The tool suite consists of the following
tools:

• TGEN is the configurator

• TCLUSTER implements the hierarchical cluster-aided configuration.

• TANA is the timing analyser

• TDESIGN encapsulates the design methodology with its design cycle and calls
TCLUSTER, TGEN, and TANA.

• TEDIT is an graphical editor for the domain knowledge databases that are used for
the configuration.
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CHAPTER 2

Introduction

2.1 Motivation

One of the big challenges for the development of embedded applications these days is the
integration of many co-operating applications into one or even a set of products. Nowa-
days, many applications are distributed over several embedded control units (ECUs). Ex-
amples are the entry of intelligent and fully automatic machines and robots into modern
production processes and also the “computerisation” of classical transportation vehicles,
like trains, airplanes and, especially, automobiles.
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Fig. 2.1: Embedded systems in modern automobiles.

A modern car contains up to 100 microprocessors that control systems like the powertrain
with its motor management, chassis, Anti-lock Braking System (ABS), Electronic Stabilisa-
tion Programme (ESP), suspension, airbag, and gear box control, the body module with its
dashboard, indicating, lighting, seat, door, and key controllers, and the comfort module
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with its air condition, telematics, navigation, radio, video, multimedia, telephone and
Internet connectivity. The ECUs are interconnected via different communication links.
Their integration is complex and sometimes absolutely critical.

All of these systems require different hardware and also different operating and com-
munication services. Due to the general development process in companies, different
versions of these systems in different generations or families of a product and sometimes
also in complete different systems are implemented on top of the same microprocessor
and operating system. This is mainly done in order to reuse the development know-
how of the engineers and to reuse previous software developments. New hardware
(microprocessors and communication links) can often only be used for a new product
version, when a development environment with an appropriate operating system sup-
port is available. Often the operating systems that are used embody the virtual machine
idea. Therefore, they implement a lot of general services and are more or less monolithic
kernel architectures with coarse-grained module extensions.
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Hardware

ApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplication
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Goal:

Optimal adapted
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for each application

Fig. 2.2: From monolithic and static operating systems towards highly flexible and con-
figurable ones.

There is a gap between the flexibility of the application’s specification and the –more or
less– monolithic operating and communication system’s implementation with its kernel,
modules, and drivers. This gap is often closed by implementing the operating and com-
munication system as general as possible. This means that the operating system services
are implemented for the general use case. This results into the well known general pur-
pose operating systems, like Linux or WindowsTM. Their services are implemented in
such a way, so that they can be used for a brought variety of (desktop) applications. This
approach implies that a lot of operating system code is unused or behaves often very inef-
ficiently. A lot of overhead is incorporated into the operating and communication system
in order to handle every use case. Also, a lot of commercial real-time operating systems
are implemented in such a way, so that they can run the most real-time applications (see
Section 3.5.348). But instead of having application specific services, the application pro-
grammers must cope with the predefined ones. Often they suffer from missing features
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of the operating system or they have to adapt the application to the functionalities that
are offered by the communication and operating system.

Only at a very coarse-grained level modules can be integrated or removed. It is desirable
for the development of embedded applications that the operating system can change the
implementation, quality and quantity of its services in the same way as they are requested
by all of the different applications or as they are offered by all of the various hardware
platforms (see Figure 2.3).

For this reason it becomes more and more popular that operating systems for the em-
bedded market are designed to be customisable. A lot of features can be parameterised,
included or excluded. But exactly this job has nearly always to be done manually by
the application programmer. According to the application’s requirements the applica-
tion programmer has to configure the operating system. But it is hard for the application
programmer to identify which selection or option is the best choice.

Each application embodies specific features of an algorithm and –of course– behaves dif-
ferent. Some of these properties can help to implement the operating and communication
system efficiently. A lot of operating and communication system services can be imple-
mented in different ways. Whether the implementation is better or not depends on the
application’s use case. For example, consider the mutual exclusion of processes by a
binary semaphore. The semaphore’s implementation normally requests in the general
case a waiting queue, which handles all blocked processes. If only two processes use
the semaphore, then the waiting queue is superfluous. Only a pointer to the possibly
waiting process is required. The implementation is much simpler. This shows that ad-
ditional knowledge about the application scenario can improve the operating system’s
implementation.

This arises a general problem: The operating system expert knows in which way a cer-
tain service has to be implemented when a specific use case is applied. He can offer a
lot of different implementations of the same general service for different use cases. On
the other hand the application programmer or operating system user knows in which
way the application behaves. But the application programmer normally does not know,
which implementation fits best. There exists a gap between the huge number of pos-
sible application requirements and the customisable options of a flexible operating and
communication system.

The demand to solve this gap between a highly flexible operating system and its opti-
mal implementation according to a specific use case has been the motivation for creating
TEReCS. It is exactly one primary goal of TEReCS to solve the following problem: The
operating and communication system should be as flexible as possible, but its flexibility should be
transparent to the application programmer. Note, that the TEReCS project does not want to
develop a fine-grained customisable operating system. That means that a lot of different
implementations for operating and communication system services already exist. It is
the job of TEReCS to encapsulate the knowledge of the operating system expert in order
to hide the configuration and customisation process from the application programmer.
The application programmer should not deal with operating system services, which he
does not want to use. He should also need not to consider the correct selection for a ser-
vice implementation depending on the use case of the application. Instead, he must tell
TEReCS now, which service is used in which way and when. This description defines the
actual use case of the application. Seen from the operating system’s point of view it de-



10 Chapter 2. Introduction

OS

Design

Space

Application

Design

Space

Hardware

Components

Application

Run-Time

Platform

Communication

System

Hardware

Fig. 2.3: Existence of design freedom for the application, operating system and hardware
platform.

fines in which way the application behaves or wants to act. Depending on this behaviour
TEReCS automatically selects the correct implementations of the required services, which
fit best to that behaviour and produce the overall minimum overhead.

The strong demand for a flexible operating system with different implementations for
its services arises another problem: A lot of operating system services assume that other
specific services are present or behave in a special way. For this reason, a lot of operat-
ing system internal dependencies and requirements exist. In order to assemble a correct
and most efficient operating system with minimal overhead, the application programmer
must normally select the appropriate implementations of the services that are required
for the final application. Additionally, he must also be an operating system expert, so that
he can consider and solve these operating system internal dependencies. This mixture of
external or application specific knowledge and operating system internal knowledge is
strongly separated in TEReCS.

TEReCS requires a description of the application’s behaviour, as well as a description
of the hardware platform (see Figure 2.4). Additionally, TEReCS embodies the expert’s
knowledge about the operating system’s internal dependencies. TEReCS tries to com-
bine these three inputs in order to configure a final operating and communication system,
which serves the application’s demands at a minimum level very efficiently. Exactly this
process of combining knowledge in order to generate the operating and communication
system (see Figure 2.5) is a kind of knowledge transfer from the application further on to
the operating and communication system. Thereby, TEReCS transforms the knowledge
from the application’s domain into knowledge for the operating and communication sys-
tem’s domain (see Section 6.7132).

Nevertheless, when a system is nearly built automatically its correctness must be proven.
The main focus of this work lies on the configuration of a communication platform for a
distributed embedded application. The structural and functional correctness is assured
by the configuration and assemble process. If the structure is wrong, then the assemble
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Fig. 2.4: The reduction of design freedom for the operating system by integrating re-
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Fig. 2.5: The operating system configuration constraints the design space and completes
the operating system description to a final instantiation.

(compile) process will fail. We assume that the design space description of the operat-
ing and communication system only permits the configuration of valid (in the sense of
structural) and correct (in the sense of functionally working) instances. For embedded
applications the real-time domain is often of special interest. The application need not
only to produce correct results, but the results have also to be generated within specific
time intervals (deadlines, see also Chapter 461). For this reason, the timeliness of an ap-
plication has to be checked before the system is implemented. Thus, TEReCS contains
an analysis tool (see Section 6.8133) which checks, whether all tasks meet their deadlines.
Here, the communications between the tasks are considered in detail. The design cycle
of TEReCS specifies a loop. Within this loop a configuration is generated and checked
as long as the check fails. This implies that the configuration has impact on the analy-
sis and the analysis has impact on the configuration. The loop also ends when a new
configuration can not be generated any more.

The concrete problem that is handled in this thesis will be described in the next section.
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2.2 Problem

For each node of the interconnection network of a distributed target system an operating
system has to be generated. This thesis concentrates on the methodology for the configuration
process of a customisable communication system and multiple customisable operating systems.
These operating systems must be able to execute the tasks of each node. They must also
be able to provide the required communication services. The communication and oper-
ating systems have to be built from predefined atomic items, which must be parameterised
and connected appropriately. The totality of all available atomic items represents the com-
ponent database or construction kit library for the operating systems.

The task of TEReCS is to generate for each node of the target system a configuration description.
These configurations describe which atomic items of the component database have to be
integrated into the instance of the operating system of one node. Additionally, the con-
figurations define all missing parameters for these items and they describe in which way
the selected items have to be connected. The main objective is to generate a solution that
is optimal in the sense of resource usage. The memory consumption and the punctual
execution must just fit in the limits that are given by the system engineer.

In order to achieve this goal the application’s requirements and behaviour, and also the
hardware architecture and topology must be described by the system engineer (see Fig-
ure 2.5). TEReCS contains the design space description for all valid and correct operating
system implementations. When the hardware platform contains redundant communica-
tion connections, TEReCS automatically tries to select only the “cheapest” connections
for the routing of the messages that just fulfil the timing constraints.

Hand written code is still dominating for the implementation of embedded real-time ap-
plications. Often, operating system functions (like device drivers and protocols) are man-
ually developed from scratch. This is done in order to have optimally adapted implemen-
tations that just meet the desired requirements and save as much resources (memory and
processor time) as possible. TEReCS tries to bridge from the application’s specification to the
automatic distributed implementation on top of configurable operating systems and an integrated
configurable communication system.

2.2.1 Assumptions and Ignored Issues

During the design process for distributed real-time applications occur obviously two
main problems, which are not covered by TEReCS. First, the load balancing of the tasks
onto the processors is assumed to be done by the engineer or a third-party tool. Second,
the estimation of the average or worst-case execution times of the tasks and also the esti-
mation of the operating system overhead is assumed to be possible with other tools (like
CHaRy [1]). TEReCS assumes that the mapping of the tasks onto the processors and the
worst-case execution times of the tasks and the operating system services are known a
priori.

TEReCS wants to know from the application programmer, which tasks run on which
processors. It wants to known in addition their periods, their worst-case execution times,
and their deadlines. It also wants to know which operating system services are called by
each task. For the timing analysis it is also desirable to know, when these system calls
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occur relatively to the start time of the task. For the definition of these relative start times
all operating system overhead of previous calls is assumed to be zero.

Because TEReCS concentrates on the communication system, the system calls that send or
receive messages have to be marked explicitly. Additionally, the corresponding send()
and receive() of two tasks have to be connected. This connection is assumed to be an
uni-directional message transfer. The maximum size of the message and the period of
the transfer (minimum message inter-arrival time) must also be given. Optionally, the data
structure of the message can be declared. If this is given, TEReCS can automatically inte-
grate protocol code (when the operating system supports this) in order to transform the
endianess of the data for heterogeneous hardware architectures. Also optional protocol
specifications for this communication connection can be specified. These include requests
for error detection and correction, acknowledging, a synchronous send (rendezvous), the
receiver buffer capacity (to be there or not), a list of hardware links not to be used (this
option is internally required between the configuration and analysis phase), and the port
object’s name that is used for the send and receive call.

TEReCS also assumes that the system behaves statically. This means that tasks do not oc-
cur sporadically and are not created and terminated dynamically on demand. Such tasks
can be modelled in TEReCS only when these sporadic tasks are assumed to be always
present; thus resources are wasted. The tasks and the communications are assumed to be
periodic. Aperiodic or sporadic ones must have assigned a minimum period.

TEReCS was designed especially for the generation of configurations for inter-node com-
municating operating systems. It is completely independent of the target operating sys-
tem to be used. The only requirements a target operating system (OS) should fulfil are:

• The OS must be configurable

• The OS should support various communication protocols and devices

• The size of the objects to be configured should be of the same granularity

• The OS should be tunable at a fine-grained level (but this is not a must)

• The configuration objects are atomic

• The objects can be distinguished by type, costs, and their required sub-relationship
dependencies to other objects

• The objects must be parameterised and their dependencies to other objects are to be
configured

• The configuration decisions can be mapped to the selection of concrete choices out
of alternative objects

• The scope of the configuration should be the selection of the objects per processor
and their inter-relationships

• In particular, the objective of the configuration is to build a service platform
for the application from these objects and to map the communications onto ser-
vices/protocols of the operating system, real existing hardware devices, and media
(resource reservation/routing) by producing minimal costs and providing a timeli-
ness execution
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2.3 Extensible µ-Kernels versus Configurable Library Operating Systems

Operating systems can be distinguished into two main categories. The first category com-
prises all operating systems that integrate a kernel. The kernel embodies all basic services
of the operating system. These are mainly the resource management functions like the
dispatching of tasks to the processor, their synchronisation, and the communication. Of-
ten, the code of the kernel is executed in a more privileged level of the processor in order
to maintain specific registers, which are normally protected against the application code.
For this reason, the application requests for operating system functions by traps or system
calls. These mechanisms change the privilege level and enter the kernel. The kernel also
often maintains its own memory area, which cannot be accessed by the application tasks.
This assumes that a memory management unit (MMU) exists, which can be programmed
accordingly. Kernels are distinguished into monolithic, µ-, nano-, femto-, and even pico-
kernels by the amount and quality of services they offer. Additional services can often be
implemented by operating system tasks, which run outside the kernel and behave like
servers.

For configuration purposes such kernel-like operating systems support for modules and
demons that can optionally be integrated. Modules are services that are directly integrated
into the kernel during compile-time or loaded during run-time (see page 48ff.). Demons
are the operating system’s server tasks that run in the background of the applications.
They can be started or terminated on demand. Another configuration option for this
category of operating systems is to change the complete kernel. This can mainly be done
during the compile-time or the load-time of the kernel. The configuration options of
kernel-like operating systems are often limited and act on a very coarse-grained level.

The other category of operating systems implement their services in a code library that
is linked directly to the application code. They miss a kernel and mainly act as a service
platform. Often, such systems are called run-time platform instead of operating system.
Their operating system services are simply requested by a function call. Examples for
such systems are the CTools for Transputers [65] or DREAMS. DREAMS was developed
especially for the purpose to support fine-grained customisation facilities of the run-time
platform. Therefore, DREAMS is configurable in the source code before compile-time at
the object level (for details see page 51 and Section 6.6.1.1127).

DREAMS is used for TEReCS as the target system under consideration. But DREAMS is
used in TEReCS only as a demonstrator [15]. TEReCS is flexible in the way that it can
be adapted to nearly every configurable operating system, which is compliant to the
properties that are mentioned on page 13. Its input language is designed to fit for the
general case and also its output language can be adjusted to the required format.

Because the aspect of a distributed application and the communication dependencies are
in the main focus of TEReCS, the next section will clarify what is meant by the distinction
of operating system and communication system.

2.4 Operating System versus Communication System Configuration

Generally, the communication services are an integral part of the operating system of one
computer. In this case often only the device drivers for the communication links and the
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implemented protocol stacks are considered. The operating system is seen from a local
point of view. The local system is the main service and execution platform, which sup-
ports for communication to externally located services on (sometimes dedicated) servers.
Also the applications are local to one node. Sometimes they act as clients and require
communication to servers.

But in the embedded world a distributed system often implements also a distributed
application. The interconnected network of processor nodes serves as one virtual ma-
chine. Here, the global view onto the whole distributed and parallel working system is
preferred. The client/server aspect plays a minor role. The distributed tasks often have
an equal status. The communication dependencies between the tasks are immanent and
very important for achieving the final goal. The interconnection network between the
processor nodes and the operating system services on each node represent the commu-
nication system. In the real-time domain not only the task scheduling on one processor,
but also the global scheduling on all processors, as well as the scheduling of the mes-
sages on the links have to be considered and analysed in order to assure a temporal
correct behaviour. The view to an operating system, which has a communication system
integrated, can completely be inverted: Here, the communication system of the virtual
distributed machine has many local operating system instances integrated on each pro-
cessor node.

TEReCS uses the second global view. The main focus of TEReCS lies on the generation of
optimally adapted local operating system instances. The communication dependencies
between the distributed tasks are mainly considered. Moreover, it is the main motiva-
tion for TEReCS to support an optimal and temporal correct communication inside the
distributed virtual machine. The communication aspect mainly drives the configuration
and analysis in TEReCS. This is the reason why in this thesis the words operating system
and communication system are often used in conjunction or are explicitly be distinguished.

2.5 Chapter Outline

The following list provides a closer view on the organisation and intentions of each chap-
ter.

Chapter 1 starts with a summary.

Chapter 2 contains an introductive overview over the topic and gives the motivation for
this thesis. The problem, which TEReCS tries to solve, is explained herein.

Chapter 3 refers to “Configuration” in general. In that chapter the general theory about
configuration is presented. Additionally, it gives a short overview about existing
configuration systems, as well as an overview about configurable operating sys-
tems.

Chapter 4 presents a general and brief overview about the state of the art in “Real-time
Analysis”. This chapter presents a reasonable good introduction to the schedula-
bility theory of real-time systems. It is important to have this overview in order to
understand the problem, which TEReCS has to solve in this domain. The theory of
process scheduling is extended by approaches that handle communication aspects.
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Chapter 5 tries to give an answer for the question: How is it possible to come “from
a taxonomy” for operating systems “towards their configuration space”? Such a
complete design space description of the operating system under consideration is
required by our configuration tool TEReCS. The idea of the “Puppet Configuration”
process in TEReCS is developed in this chapter.

Chapter 6 is mainly dedicated to the herein developed tool suite TEReCS. A model and
method is presented for an automatic configuration process (see Section 6.3 and
Section 6.4). In this model the detailed information about the structural proper-
ties of the configurable communication and operating system are hidden from the
user. The configuration process is extended by a hierarchy concept in Section 6.5.
The languages for the inputs of TEReCS’ configurator and analyser are briefly de-
scribed in Section 6.6. Hereafter, the knowledge transfer from the application to
TEReCS in order to configure the operating systems and the communication system
is explained (see Section 6.7). In Section 6.8 the concept of the real-time analysis in
TEReCS is presented. The chapter ends with some examples that show the mutual
influence of the configuration (see Section 6.9) and analysis phase (see Section 6.10)
in TEReCS.

Chapter 7 presents briefly some results that can be achieved by using TEReCS’ method-
ology.

Chapter 8 concludes this thesis with an outlook.

The Appendix refers to a simple configuration example, as well as one for the timing
analysis. A description of the input languages for TEReCS is also given.

Each main chapter ends with a summary that describes the contribution of that chapter
to this thesis.

2.6 Hints for Reading

The Chapter 3 and the Chapter 4 give an introductive overview about configuration and
real-time analysis. Readers who are familiar with these topics can skip the chapters. The
Chapter 2, Chapter 5, Chapter 6, and Chapter 7 should be read in the given order.

The thesis also addresses topics in the fields of operating systems, embedded systems,
real-time control, communication, and object-oriented design. It is assumed that the
reader is familiar with the basic concepts and terms in these areas.

The index register can be consulted to expand abbreviations that are used. Some index
entries may be of special interest:

Operating system contains a list of presented operating systems.

TEReCS contains a list of all explicitly defined new terms concerning TEReCS.

Configuration enumerates several concepts for this topic

Configuration system lists the existing configuration systems that are described in this the-
sis.
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To ease locating references to figures, tables, and subsections, far away references are
indexed by the corresponding page number, like Section 6.9142.

The Appendix A and the Appendix B give two simple examples for the inputs and out-
puts to the configurator TGEN and the timing analyser TANA, respectively.
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CHAPTER 3

Configuration

A configuration system is an expert system which helps to assemble components into
an aggregate according to some goal specification and using expert knowledge.

Bernhard Neumann, 1988 [91, p. 4]

This chapter wants to introduce the theory of configuration and, additionally, some prac-
tical systems are presented. At the beginning the aims and the meaning of configuration
are clarified. The overall goal of configuration in different application domains is de-
scribed. Then, a detailed presentation of the methodologies that can be used for config-
uration are presented. The different approaches are classified after their representation
models and their algorithms. The inputs and outputs to the configuration algorithms are
described in general. A survey of existing configuration systems completes this chapter.
Of coarse, an overview about the advantages and aspects of configuration for operat-
ing systems and for communication systems follow. Herein, also some already existing
operating systems that make use of configuration are presented.

At the end of the chapter the reader will understand the problem that configuration
solves and he will have an overview about the different approaches that can be used to
achieve this goal. He will also have an idea of the aspects where configuration can help
to construct operating and communication systems for special use cases. The first section
of this chapter starts with an overview about the aims in general, why configuration is
used instead of other techniques for building a final tailor-made system.

3.1 Aims of Configuration

The overall aim why a system or a component is designed to be configurable is the strong Meet
Require-
ments

desire to save costs in realising the final system. The scope of costs may comprise of
space, weight, execution time, power, energy consumption or some other resource needs.
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Moreover, it is intended that the system’s properties meet as closely as possible the re-
quirements of an application or an environment. This means a final configuration of the
system measured in terms of a cost function should fit best and should match all struc-
tural, functional, resource and timing requirements.

Additionally, a configurable system can support reuse of its components for differentReuse
Components implementations. All similar implementations serve the general purpose, where the sys-

tem exists for, but can be distinguished in their internal structure, functionality, costs and
quality of service (QoS) they provide. This is based on the idea that different requirements
should be served by different (optimally adapted) systems and, therefore, save resources
(or costs) for unused features.

The requirements that a final system has to comply are specified by a requirements spec-Assemble
System ification. In a formal way all requested final properties that the system has to fulfil are

described herein. It is the task of the configuration process to assemble the correct (and
minimal) set of components with the correct arrangement that has these properties (and
serves for the required functionalities) at minimal costs.

Often the requirements specification evolves dynamically during the configuration pro-Guide User
cess. Thus, the configurator interactively asks for certain properties the final system
should have. In this case it is the task of the configurator to guide the users through
the process. Only valid choices and actually valid property options are presented.

Additionally, the configurator takes care of the correctness, i.e. the final system worksAssure
Correctness and behaves in the appropriate and desired way. This includes that the configurator is

aware of structural inter-component relationships such as “a component A can only work,
if another component B is present” (implication). Such relationships, constraints, or rules
are specified within a database. This database serves as a knowledge base, which stores
all domain specific knowledge about the dependencies and properties of the system’s
components. Within the algorithm of the configuration process the (domain’s) control
knowledge is stored, which defines how a final configuration can be derived by selecting
appropriate components and fulfilling the requirements specification (see Figure 3.1).

A configuration algorithm that dynamically requires user interaction is called interactiveAutomatic
Configuration configuration process. On the other hand, a requirements specification can be provided as

static input to the configuration tool before the configuration process starts. If the config-
urator requires no other user interaction in order to create the configuration of the final
system, it is considered to be an automatic configuration process.

In order to support for a highly flexible system, that can be adapted to certain require-Hide Expert
Knowledge ments, a component library with customisation features and the expert knowledge about

the assembly process is required. This expert knowledge comprises the static informa-
tion about the component’s interrelationships and customisable properties, as well as the
control knowledge of the process. A configuration tool can hide this expert knowledge –
which includes a lot of implementation details of a system – from a user (who wants to
use a finally configured system with certain properties).

In this way configuration provides an abstraction of the system. Thus, just as operatingProvide
System

Abstraction
systems provide a virtual machine (hiding all information of the concrete hardware) by
its API, the configuration tool provides a virtual view to the system by its requirements
specification. Nevertheless, the idea of supporting different resources can be supported
by the configuration tool. The system itself and the application can be planned inde-
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Fig. 3.1: Input/output flow for the configuration of technical systems.

pendently from the present resources. If the system’s component library supports for
different types and amount of resources, then only those components will be considered
while configuring, which satisfies the given resource requirements. Or seen from the
bottom: Only for the present resources the appropriate components are integrated into a
final configuration (if required).

This implies that there exists another specification, which describes the given or existing
resources and constraints that the configuration can use or must satisfy. Obviously, this
specification can be empty. But, often it exists and is also a part of the requirements
specification.

Previously, it was mentioned that the requirements specification defines the properties a Exploit
Application-
internal
Knowl-
edge

final configured system must fulfil and that it can be seen as an abstraction. But where do
these properties/abstractions come from? They are derived from the application. Internal
knowledge about the application forms the basis for the requirements specification. In this
way, the configurator exploits the internal knowledge from the application for generating
an optimal (resource and cost minimal) system. The configuration algorithm –or more
specifically: the control knowledge– defines a knowledge transfer from the application to
the system under consideration (see Section 6.7132).

In a general sense, application’s configuration is used to support users to create newer
and fully specified derivatives from customisable systems. Mainly three fields can be
identified, in which configuration is exploited to its fullest extent. These are “Techni-
cal Systems”, “Software Management” and “Software Synthesis”. Whereas research con-
centrates on the more natural aspect of configuration in the field of “Technical Systems”,
commercial companies develop a huge variety of products in the area of “Software Man-
agement”. In “Software Management” configuration is principally used to support soft-
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ware developer teams to handle big software projects and all of their software fragments.
“Technical Systems” in fact mainly drove the scientists to create a theory about configura-
tion. Mostly, configurators for “Technical Systems” have been created for business services
in order to support sales managers during the creation of (correct) sales offers for cus-
tomers. Configuration for “Software Synthesis” is a quite new research topic. It is inspired
by configuration for “Technical Systems”. The configurator TGEN for TEReCS, which is
developed in this thesis, belongs to this area.

In the next three sections, these three areas are briefly investigated. We present, how they
can exploit configuration for specific purposes. Examples for configuration systems are
given later on in Section 3.441 after the basic ideas and principles have been presented.

3.1.1 Technical Systems

The primary application domain for configuration systems are technical systems. A tech-
nical system often consists of a variety of parts. Each part provides for some properties
or facilities in order to yield the overall objective. Such properties or facilities can be
the component’s spatial design, weight, dimension, energy conversion mechanism (e.g.
from electrical power to a physical force), melting point, thermal conductivity, or other
physical properties. The spatial arrangement of the parts and their connections define
naturally a component structure or hierarchy. Moreover, energy or mass flows and forces
can be observed between their physical connections, which naturally define interrelation-
ships and dependencies among the components.

Furthermore, it is the engineer’s natural view to build complex systems by arranging
components. This procedure is known as constructing. If the components are pre-defined
and are not to be created from scratch, then this procedure becomes identical to the con-
figuration problem.

In fact, technical systems and the manner of their construction have been the reason why
the theory of configuration had been developed. The engineer’s desire to be supported
by a software tool drove the automation of the construction process. The engineers desire
a tool, which takes care of constraints, with respect to the correct arrangement of compo-
nents (by checking the dependencies). And consequently, the engineer will be replaced
by such a tool, when the expert’s knowledge is completely integrated.

Many examples of this kind can be found. Here, the pioneer tool XCON (see page 41),
which configures computer systems at DEC, AKON (see page 41), which configures tele-
phone switchboards at Bosch/Telenorma, and artdeco (see page 44), which configures
hydraulic circuits and had been developed at the University of Paderborn, should be
mentioned.
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3.1.2 Software Management

Configuration management is the key to managing and controlling
the highly complex software projects being developed today.

Clive Burrows, 1999 [24, p. 1]

Most Software Configuration Management (SCM) systems are version-oriented, where each
component exists in several versions organised as variants (alternative versions) or revi-
sions (consecutive versions). But Configuration Management (CM) tools have developed
from simple version-control systems targeted for individual developers into systems ca-
pable of managing developments by large teams operating at multiple sites around the
world. The key capabilities of SCM tools are the identification and control of software
and software-related components as they change over time. The key features supported
by SCM tools are:

Parallel Working. Originally, SCM systems’ primary task is to prevent several users
(programmers) from attempting to change the same component (piece of software
code) at the same time.

Change Management. Version control maintains a history of the changes to a compo-
nent as it evolves over time and allows users to access a particular version – not
just the last version created. Moreover, the problem of tracking, change control,
the presentation, and the analysis of management information derived from these
sources are issues of SCM.

Build and Release Support. An intelligent creation process can reduce build times
dramatically by reusing partially configured items from previous implementations.

Process Management. Many users, particularly those seeking an external quality ap-
proval such as ISO 9000 or from a particular Software Engineering Institute have
standard development processes, which they expect their development teams to
follow. The process management features in SCM tools allow the developer to en-
sure that components progress through chosen lifecycle phases before being re-
leased.

Web Management. SCM support for Web and particularly Intranet pages and their
embedded objects.

Documentation Support. It is a big challenge to support for documentation of the de-
cisions and work done on software projects resulting into different versions and
branches. Document management systems offer facilities to handle large and com-
plex systems and to support users to retrieve special documents, their dependencies
and descriptions from a repository.

In contrast to the configuration problem in this thesis, in SCM the component set, which
makes up the product, is often predefined, e.g. in a makefile. The central configuration
problem there is to select a suitable version for each of the components. Also a funda-
mental difference is that in SCM a component occurs only once in the configuration; in a
generic configuration it can be repeatedly included.
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If variants are regarded as components the two problems become more similar. Never-
theless, in SCM it is easier to select appropriate variants due to an existing version or
release numbering (versions must match).

It is the main concern of SCM to support the component development, whereas in config-
uration it is the main task to search for a valid and appropriate component aggregation.

Because there is a strong need for SCM for commercial and high quality software devel-
opment of large systems, research and the market concentrate on this area. Therefore,
SCM defines its own research field and its community is organising well known work-
shops (like the SCM workshops associated with the IEEE ICSE conferences; though in
their own separate proceedings, or the Software Technology Conference (STC)). An overview
of SCM systems is given in [29]. A nice introduction and tutorial about problems in
SCM – including a sophisticated comparism and classification of SCM systems – is given
by Conradi et al. [30]. A WWW starting point for references and links related to SCM
are Brad Appleton’s “Assembling Configuration Management Environments” (ACME)
project pages [3].

3.1.3 Software Synthesis

In this thesis configuration is used for software synthesis. In more detail, the code for a
distributed run-time system supporting real-time communication can be generated out
of software components. The set of required components, their arrangement and their
parameterisation have to be calculated. In fact, no code (in terms of a programming
languages like C or C++) has to be written, but a configurator has to decide how and
which code blocks it has to select and arrange. Even a programmer has to decide – at
a relative low level – which statements he chooses and he arranges in which manner.
Thus, it exists also a language SCL [42] for the operating system library kit DREAMS, in
which a configuration for the operating system can be described. Such a description is
the output of the configurator for each computer node of a distributed system on top
of which DREAMS should run. The DREAMS toolkit then produces the run-time code of
the operating system for each node. While finalising the operating system source code,
its under-specification is removed by incorporating the configuration description. After
this, the code can be compiled.

What is generated or synthesised by TEReCS is the SCL description for a DREAMS op-
erating system for every node of a distributed system. The main issue considered while
doing this is that the system runs under real-time restrictions and, therefore, the commu-
nications underlie some timing restrictions. This means that the distributed operating
systems must be able to communicate with each other and the time spent for a commu-
nication (end-to-end delay) must not exceed a certain deadline. These constraints are
considered while the configurations are generated. TEReCS supports the reuse of soft-
ware and considers timing constraints during early stages of the system creation.

3.1.3.1 State of the Art

Software synthesis for embedded applications is not a new approach. Commercial soft-
ware synthesis products concentrate on design-tools for the development of prototypes
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or evaluation examples, like STATEMATE [64] for StateCharts [60], or tools like ASCET- STATEMATE

SD [45]. In most of these tools the automatic code generation for the pure application is ASCET-
SDof key concern. Unfortunately, the application often makes use of a more or less static ap-

plication management system or operating system (like ERCOS [45] for ASCET-SDTM

or VXWORKSTM [148] for STATEMATE). The generated code serves only as a starting
point for developing effective production code. An operating system supports multi-
tasking, interrupt management, IO-interfacing and communication in a very overhead-
prone manner to satisfy all the general cases. In [19, 43] it is shown, that a customised
and tailor-made application management system has major advantages regarding per-
formance and resource demands in contrast to a conventional µ-kernel operating system.

In the research field different approaches exist towards automatic generation of embed-
ded real-time applications. The SFB 5011 [9, 10] deals with the synthesis of systems out of SFB 501
ready-made components. The overall goal is to create the application and its tailor-made
runtime-platform out of components. The view of a system is a collection of customised
components. A more narrowed down local sight on the whole system is followed in
this SFB. Each component is developed and described by a so-called value-added inter-
face. This interface describes the component by spreading a design space representing all
possible design decisions. The dimensions of the design space represent the categories
of customisable parameters of the component. Dependencies between components are
regarded as correlations between different categories. Thereby, a component can also
demand another component (or a set of components).

Goossens et al. [31, 138, 139] describe a technique for finding a suitable schedule of com-
peting threads of an application by a so-called MULTI-THREADED GRAPH CLUSTERING. MULTI-

THREADED
GRAPH
CLUSTER-
ING

Their work is representative for all approaches using graphs for creating a proper solu-
tion. Their overall aim is the software synthesis concentrating on applications designed
to run on a single processor. The solution is obtained using a Constraint Graph [75] whose
vertices are threads of the application and the edges describe the precedence relation and
timing constraints between the threads. They concentrate on finding a feasible sched-
ule between threads by clustering threads to disjunctive thread frames. The approach is
based on merging threads (vertices) to a maximal cluster opposite to searching paths in
the graph. A combination of static off-line scheduling and dynamic scheduling at run-
time is used.

The AMPHION [86] is a domain-oriented design environment (DODE). It is based on a AMPHION
formal specification and a deductive programme synthesis. The reuse of problem spec-
ifications –not of programmes– is central for domain-oriented knowledge-based software
engineering (KBSE). For users without background in formal mathematics, developing a
formal problem specification seems to be very difficult. Therefore, AMPHION incorpo-
rates techniques from visual programming in a graphical user interface (GUI). The domain
is specified by defining a domain theory and some theorem-proving tactics. An interface
compiler automatically generates user interface tables for the GUI from the domain the-
ory. A theorem prover (SNARK) uses the domain theory and the theorem-proving tactics
to generate an application programme. SNARK uses first order logic. A specification
checker gives the users aid in developing the specification. The check is done by trying
to solve an abstracted problem. If it cannot be solved, then it employs heuristics to lo-
calize the problem in the specification and to give the user an appropriate feedback. The
general textual specification looks like:

1 Collaborative research centre 501 of the German Research Foundation (DFG)
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lambda (inputs)
find (outputs)

exists (intermediates)
conjunct1 & ... & conjunctN

where conjunct is either a constraint, like P (v1, . . . , vm), or an equality defining a vari-
able through a function, like vk = f(v1, . . . , vm). The substitutions for the output vari-
ables are constrained to be terms in the applicative target language, whose function sym-
bols correspond to the subroutines in a library. The domain theory consists of an abstract
theory, a concrete theory and an implementation relation between them. The abstract
theory needs enough semantics to derive an abstract solution consisting of abstract oper-
ations from an abstract specification. The implementation relation is used to generate a
concrete solution, taking into account subroutine pre-conditions.

3.2 Configuration vs. Customisation and Adaptation

The Online Dictionary of Library and Information Science [106] describes “configuration” as
follows:

“Configuration: The physical arrangement and functional relationships of the var-
ious components of a computer system, usually established to meet the needs and
preferences of its users. The term configurability has been coined to refer to the ease
with which a computer system can be modified or customised to meet changing needs
and requirements.”

A configuration describes how a complete system has to be built out of a set of compo-
nents. It defines which components are part of the system as well as their arrangement,
e.g. structure of the system and the component’s relationships. Additionally, properties
of the system’s components are defined. In this scope a system can be a technical system
(e.g. the hardware of a computer system) or a software system (e.g. a program or sys-
tem software like a middleware or the operating system). The process of creating such a
configuration is called “to configure”. When a system’s aggregation of its components or
their properties can be changed retaining its correctness (i.e. the system still works and
fulfils its general purpose) the system is said to be configurable.

More general in its meaning is the term customisation. A system, a component or an
object is said to be customisable, if some of its properties can be set to specific values out
of a given set of values. For these properties alternative instantiations exist for their final
values. These properties can include also structural or taxonomical information of the
item. Formally the description of a customisable system results into an under-specification
of the system.

The configuration of a customisable system describes a final result where each set of alter-
natives have been pruned to one selection, e.g. all under-specifications were removed.

The term configuration is mostly used for the static case, which means, a configuration will
not change during the lifetime of the customisable item. Whereas it is said to be adaptable,
if the configuration can change dynamically even during the lifetime of the item.
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3.3 Methodologies

The meta-goal of design is to transform requirements, generally termed functions,
which embody the expectations of the purpose of the resulting artifact,

into design descriptions.

John S. Gero, 1990 [48, p. 26]

The overall goal of this work is to support for a method to design and create in a very
fast and optimal way the software for the operating and especially communicating sys-
tem for a distributed embedded real-time application. In order to achieve this we have
to describe the process, the requirements or inputs to the process, and the output, which
describes the resulting end-design. Even more, we have to formulate some constraints or
properties, which have to be considered during the design phase. Obviously, the domain
for which a system should be designed has great impact on these points. Nevertheless,
we can identify general principles that are universally valid. It is the purpose of this
section to structure and to categorise these basic principles. Designers always use a lot
of knowledge about their domain – independently if this is in arts, architecture, con-
struction, engineering or even a domain like economics or literature – in order to create,
respectively design a product, system, or process. Here, we would like to concentrate on
design methods, where this knowledge – often named expert knowledge – is formally de-
scribed and, therefore, is part of the process itself. Often – especially in arts – it is hardly
possible to describe this expert knowledge formally. But, if it is possible, one can benefit
from this in many respects.

One big advantage one can exploit then is that one can make reuse of the expert knowl-
edge very often and very fast. Even more, the process for the creation of a design can be –
more or less – automated. This implies that the overall design process can be accelerated.
Additionally, it follows that the time spent for the design process and consequently the
quality of a product with respect to the time-to-market aspect can be improved.

Even more, if the amount and granularity of the atomic items or parameters, which have
to be arranged during the design, can be limited and are of a certain complexity, then
the design space, which spans the set of all possible solutions or arrangements, becomes
smaller. This is well known in the design of component systems, where the complete sys-
tem is designed out of components, which embodies special and well defined solutions
for a complete subproblem. For example, it makes a difference to create a programme
from scratch in a language like C or to assemble it from JavaTM objects. Thus, the reuse
of already made components reduces the complexity of the design process. Hence, it
becomes possible at all to formally describe the design space and more over, the correct
solutions or the valid paths inside that design space.

B. Stein et al., 1998 [131, p. 1] say

“The purpose of a design process is the transformation of a complex set of functional-
ities D (= demands) into a design description C (= configuration).”

They generally state that a design process has inputs and outputs. The inputs are de-
mands or requirements and the output is the final design description. This design de-
scription can generally be seen as a configuration. But in fact a configuration is a special
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form for an output, where the final design is an arrangement of components, which may
have been enriched by some parameters. The key point is that a configuration deter-
mines the selection of the components from a pool and determines their relationships
(and selected amount).

For a (semi-)automatic design process it is essential that it has – besides requirements – a
second type of input. This is a description of the pool of available components (library)
and additionally a description of the possible relationships or properties or underlying
conceptual structure of the components. These descriptions are seen as the expert knowl-
edge that is required for the configuration process. Sometimes this expert knowledge
also contains a description of all valid configurations or some restrictions or constraints,
which describe what can be configured and what cannot be. All of this information can
be seen as the general domain knowledge including physical laws or industrial standards.
It is valid for all problems of an application domain. On the other hand the requirement
or demand input to the configuration process is called problem-specific domain knowledge.
It helps to restrict the design space. Because sometimes these data are accumulated in
course of the problem solving process, they are sometimes called dynamic. Whereas the
design process itself or in particular the configuration algorithm represents knowledge
about the control of how to achieve a valid configuration. This is sometimes named
problem-solving domain knowledge [91].

The idea of configuring a design is that the overall design process is delayed. In fact, it is
split into two phases: The first is the creation of the knowledge base (containing the gen-
eral domain knowledge) and the definition of the problem-solving domain knowledge
in form of an algorithm. This is done by a domain expert. In the second phase, which
is problem specific, the domain knowledge (requirements) must be formulated and the
configuration algorithm is used to find a solution in terms of a configuration. This second
phase, named configuring, is done more often for a huge variety of problems. Whereas
the first step is done only once and an expert often makes only updates.

While the expert specifies the knowledge base and the algorithm, he always (more or less)
has in mind all possible problems and their solutions. Hence, he describes a solution in
a very general way. More in detail, his description of the general domain knowledge
is a solution to a generalised problem, which has to be extended for a problem specific
solution. Thus, the general domain knowledge is an under-specification of a solution. The
possible solutions of one missing specification are limited and can often be enumerated.
(Explicitly in the description or implicitly in the algorithm.) Therefore, the expert makes
use of non-determinism for the specification of all solutions. This non-determinism spans
the design space. For a final solution it has to be removed by selecting one specific choice
for a missing specification. The under specification is identified and removed by incor-
porating the problem specific knowledge into the general domain knowledge.

But it is essential for configuration problems, that a lot of solutions exist, which have
different costs. What a configuration algorithm in fact does is searching for a cost optimal
solution. This brings up two main peculiarities of configuration: The algorithm defines
a search and evaluates the costs of a possibly found (structural or functional correct)
solution. Hence, configuration can be seen as a combination of search and optimisation
strategies.
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3.3.1 Searching in Graphs

To configure means to search.

Benno Stein, 1997 [127, p. 15]

In this and the following subsections a brief overview about the search theory in graphs
and cost functions is described. This is done, because the algorithm in TEReCS (see Chap-
ter 6105) is strongly dependent on searching in graphs. We will concentrate only on as-
pects that are important for configuration. Most of the theory is taken from [128, 97, 94].
In the following subsections a possible categorisation of approaches, which are used to
implement the search and the optimisation, are given.

If a solution for a problem cannot be directly derived, then it will be split into sub-
problems (divide-and-conquer), which have to be solved. The sub-problems can also
be non-trivial, that means they will be split into sub-problems in the same way, etc. This
recursive algorithm spans a tree, which is directed from a problem to its sub-problems.
Its starting node (root) represents the original problem and its terminal nodes (or leaves)
define directly solvable or trivial problems (with their solutions attached). The complete,
so-called, solution graph must be known for solving the original problem of the starting
node.

In the previously defined solution graph all successor problems of a node must be ex-
panded and respectively visited. The edges to successors form an AND-relation. But it
is also possible to consider these edges as alternatives leading to any of two or more pos-
sible problems that either have to be solved. These edges will form an OR-relation. Not
every sub-problem must be solvable, leading to dead terminal nodes without having a
solution. In this problem graph a path from the starting node to any solved terminal node
defines a solution.

Normally, these directed graphs do not contain cycles. Often, they are trees. A combina-
tion of these two graphs exists, which is called AND/OR-tree. The edges to successors can
be in an AND- or in an OR-relation. This means that some of the successor nodes must all
be solved and some have to be solved alternatively. There exists a canonical form in which
all successors of a node form either an AND-relation or an OR-relation. The general form
can be transformed to the canonical form by introducing new sub-nodes (see Figure 3.2).
In the canonical form a node that has only successors being in an AND-relation is named
AND-node, whereas a node having only successors being in an OR-relation is named
OR-node. The solution in a canonical AND/OR-tree G is defined by a sub-graph G′,
where

• the starting node s ∈ G′

• ∀ n ∈ G′ and n is an AND-node: ∀ n′ is successor of n in G⇒ n′ ∈ G′

• ∀ n ∈ G′ and n is an OR-node: ∃ exactly one n′ that is a successor of n inG⇒ n′ ∈ G′

• all terminal nodes n ∈ G′ define solved problems
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Fig. 3.2: Example for a transformation of a general AND/OR-tree to its canonical form.

G′ is then the solution graph. A solution-base graph G′′ is defined nearly the same way,
except that each terminal node must possibly be solvable (i.e. is not leading only to dead
nodes).

For example, in the game theory special forms of AND/OR problem graphs are well
known. Each level of the problem tree defines sub-problems or reaction-problems alter-
natively. For instance, in a chess game possible moves define sub-problems and possible
reactions of the adversary define reaction problems. A level of sub-problems contains
only OR-nodes whereas a level of reaction problems contains AND-problems only. This
kind of tree is called problem reduction graph (see Figure 3.3).

A canonical AND/OR-tree can be viewed as a hyper-graph. In a hyper-graph hyper edge
are allowed to connect a set of nodes. If the hyper-graph of an AND/OR-tree is con-
sidered, where all outgoing edges of an AND-node form hyper-edges, then the solution
graph of the AND/OR-tree can be transformed into a solution path in that hyper-graph.

A solution in the solution space of a problem graph or an AND/OR-tree is defined by
a path or a sub-graph, respectively. In order to find the solution the graph must be tra-
versed. Additionally, multiple solutions may exist. The problem is to find a solution,
which is optimal in terms of costs for the solution. Thus, an optimisation problem can
inherently be given.

The configuration problem can also be modelled as an AND/OR-tree or -directed acyclic
graph (and this model is used in this thesis). In the next few paragraphs we discuss search
algorithms to find solutions in the graphs. In order to find a solution the graph must be
traversed starting from the root node to its leaves. Thereby, it has to be decided, which
node of all the successor nodes of the actual visited node has to be visited next. This
procedure of scheduling the sequence is called “expansion” of the node. All expanded,
but not visited nodes, have to be stored in an appropriate order into a so called OPEN-
list. All already visited and fully expanded nodes are stored in a CLOSED-list managed
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Fig. 3.3: Example for a problem reduction graph (see [128, p. 8]).

in FIFO2-strategy as in a queue. Hence, the CLOSED-list stores the traversal path through
the tree.

The graph traversal algorithms can be generally distinguished by the sequence in which
nodes are expanded. They are called to be blind or uninformed, if the sequence only de-
pends on information of previously visited nodes. They are called informed (guided /
directed), if the sequence depends additionally on information about the goal or on gen-
eral domain knowledge.

Two well-known representatives for uninformed traversal algorithms are depth-first-
search and breadth-first-search. In depth-first-search (DFS) the OPEN-list is handled in DFS
LIFO3-strategy and, hence, it is organised as a stack. This means that first all nodes
directly leading to the first (or left most) leaf are visited, then the nodes leading to the
second leaf, etc. Or in other words, sons are preferred for visiting instead of brothers
(see Figure 3.4). Therefore, the CLOSED-list represents the actual traversal path from the
starting node to the actual visited node in the graph. If a leaf with no solution (dead end)
is found, then the next first node of the OPEN-list has to be visited and expanded. This
means to do some backtracking. This strategy of selecting the first alternative node lead-
ing to a possible other solution is called to be monotone. More intelligent or not-monotone
backtracking goes back to a node, which has possibly been responsible for this path that
led to the dead-end. But then a causal dependency management is required to achieve
that. Representatives are dependency-directed and knowledge-based backtracking.

In breadth-first-search (BFS) not yet expanded nodes are handled in FIFO4-strategy. That BFS
means the OPEN-list is managed like a queue. By this strategy brothers are visited before
sons (see Figure 3.4). The strategy will find the solution with minimal depth (i.e. shortest
path from the starting node to the leaf).

2 first-in-first-out
3 last-in-first-out
4 first-in-first-out
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DFS BFS

sub-problem
(inner node)

not solvable problem
(dead node)

solved problem
(terminal node)

Fig. 3.4: Examples for the traversal paths, if depth first search (DFS) or breadth first search
(BFS) is applied to a sample graph until first solution is found (see [128,
p. 17+31]).

All the previously described algorithms try to find a solution, not necessarily an optimal
solution. Assuming that each node produces costs, the optimal criteria is to find a so-
lution path, whose sum over the node’s costs is minimal. The cheapest-first-search (CFS)CFS
selects a member of the OPEN-list first that produces minimal costs.

Another very simple strategy is hillclimbing (HC). The OPEN-list is again handled like aHC
stack. But the nodes are pushed on the stack according to the costs they produce, where
the nodes with higher costs are pushed first. This strategy is often used by humans, if
they search for an optimum. But obviously this strategy does not necessarily lead to a
global optimum; it can result in a local optimum.

Informed strategies promise better search results. All of the following algorithms pre-
sented next are members of this category.

The informed best-first search (BF) makes use of an evaluation function f(n, p, g,K), whichBF
often is an heuristic, in order to determine the potential for finding an optimal solution,
when the node n is visited next. Parameters of this function can be the previously visited
path p, the goal g and general domain knowledge K. The node n from the OPEN-list is
selected for expansion, whose f(n, p, g,K) is maximal.

A generalisation of BF is the general best-first search (GBF). It requires three functionsGBF
f1(G′′), h(n′) and f2(n), because it calculates the most promising node in two steps. (1) It
estimates, for all successors n′ of nodes in the OPEN-list, the total cost for a solution by
a heuristic h(n′). The heuristic h(n′) estimates the expected costs for the sub-problem
graph Gn′ , whose starting node is n′. By integrating these results it calculates the (es-
timated) costs for all possible solution-base graphs G′′ by using f1(G′′), where G′′ is an
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extension of the actual solution-base-graph extended by successor nodes n′. The function
f1(G′′) calculates something like the sum over all edges and nodes ofG′′, expecting that a
small graph (with minimal f1) leads to a better solution. Due to the function f1(G′′) and
h(n′) the most promising new solution-base graph G0 is selected. (2) It will proceed with
the most expensive successor node n′ ∈ G0 (or the node n′ ∈ G0, whose error for esti-
mating h(n′) is maximal). Therefore, it will calculate f2(n) for n ∈ G0 and n ∈ OPEN-list.
Assuming that a costly node (with maximal f2) leads early to a bad solution, it is selected
first for expansion. (A cheap node does not necessarily lead to a better solution, if con-
sidered that the path is long enough.) This algorithm is applicable to problem graphs
and especially to AND/OR-trees. It traverses the complete graphG by making use of the
explicit graph G′, whose nodes are in the OPEN-list (see Figure 3.5).

1. Put start node s −→ OPEN;
2. Based on explicit graph G′, function f1, heuristic

h:
Compute the most promising solution-base graph G0;

3. Based on function f2:
Select a node n that is both on OPEN and and in G0;

4. Expand n;
Add all n′ = successor( n) to OPEN and to G′;
Install back pointers to parent n to all n′;
Compute foreach successor n′ the heuristic h(n′);

5. IF ANY successor n′ is a terminal node THEN
(a) Label n′ "solved" if a goal or "unsolvable" if

not;
(b) Apply the SOLVE-LABELING-PROCEDURE:

i. Set n′ = parent( n′);
ii. IF n′ is an OR-node and one of its successors

is labeled "solved" THEN label n′ also
"solved";

iii. IF n′ is an OR-node and all of its successors
are labeled "unsolvable" THEN label n′ also
"unsolvable";

iv. IF n′ is an AND-node and all of its successors
are labeled "solved" THEN label n′ also
"solved";

v. IF n′ is an AND-node and one of its successors
is labeled "unsolvable" THEN label n′ also
"unsolvable";

vi. IF new labels have been created and n′ 6= s
THEN Goto i;

(c) IF s is labeled "solved" THEN return G0;
(d) IF s is labeled "unsolvable" THEN return

"failure";
(e) Remove from G′ nodes whose label can no longer

influence the label of s;
6. Goto 2;

Fig. 3.5: General Best-First Search (GBF) algorithm.
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GBF does not find the optimal solution. But if the function f1 is optimistic and the termi-
nation criteria of the algorithm is delayed (see Figure 3.6), it will be optimal. Then this
algorithm will be called GBF∗.GBF∗

1. Put start node s −→ OPEN;
2. Based on explicit graph G′, function f1, heuristic

h:
Compute the most promising solution-base graph G0;

3. IF ALL leafs of G0 are labeled "solved" THEN return
G0;

4. Based on function f2:
Select a node n that is both on OPEN and and in G0;

5. Expand n;
Add all n′ = successor( n) to OPEN and to G′;
Install back pointers to parent n to all n′;
Compute foreach successor n′ the heuristic h(n′);

6. IF ANY successor n′ is a terminal node THEN
(a) Label n′ "solved" if a goal or "unsolvable" if

not;
(b) Apply the SOLVE-LABELING-PROCEDURE:

i. Set n′ = parent( n′);
ii. IF n′ is an OR-node and one of its successors

is labeled "solved" THEN label n′ also
"solved";

iii. IF n′ is an OR-node and all of its successors
are labeled "unsolvable" THEN label n′ also
"unsolvable";

iv. IF n′ is an AND-node and all of its successors
are labeled "solved" THEN label n′ also
"solved";

v. IF n′ is an AND-node and one of its successors
is labeled "unsolvable" THEN label n′ also
"unsolvable";

vi. IF new labels have been created and n′ 6= s
THEN Goto i;

(c) IF s is labeled "unsolvable" THEN return
"failure";

(d) Remove from G′ nodes whose label can no longer
influence the label of s;

7. Goto 2;

Fig. 3.6: GBF∗ algorithm, if heuristic h(n) is optimistic.

The BF and GBF algorithms give a framework for defining search strategies. The speci-
fication of the functions f1, f2 and h have great impact on the complexity, efficiency and
overall cost of the algorithm in terms of time that is used and memory that is required. In
the following section we will present some possible function definitions and the resulting
names for the search strategies.
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3.3.2 Special Search Strategies by Defining Cost Functions

In order to select the next node for expansion in the previous section the functions f1 and
f2 have been mentioned. For defining them we will first define a weight or cost function.
Therefore, we introduce local graph properties by assigning a local weight (in terms of
merits Q or costs C) like:

• weights of inner nodes, e.g. calculation costs
• weights of edges, e.g. transport costs
• weights of terminal nodes, e.g. terminal payoffs

By having this we define the weight of a solution graph G with starting node n as

WG(n) = F [E(n),WG(n1),WG(n2), . . . ,WG(nb)]

where
n1, n2, . . . , nb are all direct successors of n,
E(n) calculates the local weight of n and its incident edges to its successors,
F is a function that describes how to allocate and charge the costs or merits.

Such a weight function is considered to be recursive. The assignment ofWG(n) to all nodes
is named cost or merit labelling . The calculation of this labelling can be done “bottom-up”
from the terminal nodes up to the starting node. This means, it has to be done in reverse
order in contrast to the searching. The function f1 can be defined as the labelling of n:
f1(G) = WG(n).

In order to prevent the traversing of the complete graph for the weight labelling, the
weight label of a node is estimated instead of exactly calculated. For this estimation the
heuristic h(n) is used. In a pure OR-graph (problem graph, which is manageable by BF)
the estimated cost label Ĉ(n) is defined as

Ĉ(n) :=





h(n) : n is in OPEN
mini{F [E(n), Ĉ(ni)]} : n is in CLOSED,

ni is successor of n

The costs of a path P (n) from starting node s to a node n is defined by

ĈP (n)(s) := h(n) +
∑

n′∈P (n)

E(n′)

If in BF the function f is defined as f(n) := ĈP (n)(s), then BF is called Z. If additionally Z
the termination criteria of the search algorithm is also delayed, then Z is named Z∗. Z∗

In an AND/OR-graph the estimated cost label Ĉ(n) is defined as

Ĉ(n) :=





h(n) : n is in OPEN
mini{F [E(n), Ĉ(ni)]} : n is OR-node,

n is in CLOSED,
ni is successor of n

F [E(n), Ĉ(n1), . . . , Ĉ(nb)] : n is AND-node,
n is in CLOSED,
ni is successor of n
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If in GBF the function f1 is defined as f1(n) := Ĉ(n), then GBF is called AO. If addition- AO
ally the termination criteria of the search algorithm is also delayed, then AO is named
AO∗.AO∗

Often it is required that the function F is order-preserving. That means that for all possible
heuristics h(n) F always produces the same order of costs. And therefore, the same path
to node n′ will be selected. Formally this means

∀ n1, n2, n
′ is successor of n1 and n2, E, h1, h2 :

F (E(n1), h1(n′)) ≥ F (E(n2), h1(n′))⇒ F (E(n1), h2(n′)) ≥ F (E(n2), h2(n′)).

A summing cost function, i.e. F = c(n, n′) + h(n) like ĈP (n)(s), is order-preserving. The
algorithm Z∗ used with a summing cost function is named A∗.A∗

GBF* AO

GBF

AO*

recursive f
1

applied to hyper graph

recursive f
1

delayed
termination

delayed
termination

BF* Z

BF

Z*

A*

recursive f
1

recursive f
1

delayed
termination

summing
cost function

delayed
termination

Fig. 3.7: Hierarchy of BF algorithms for searching in AND/OR-trees (see [128, p. 26]).

Nilsson found that A∗ always finds an optimal solution, if h(n) is an optimistic function
(Result 4 in [94]). Therefore, for configuration problems mostly A∗ is implemented.

DFS, BFS and CFS strategies are special cases of A∗ or Z∗:

• BFS is A∗ with h(n) = 0, c(n, n′) = 1
• DFS is Z∗ with h(n) = 0
• CFS is A∗ with f(n′) = f(n)− 1, f(s) = 0

The following section tries to show, how search can be used for configuration. Moreover,
other approaches for configuration besides search will be presented. This will result into
a categorisation of configuration strategies.

3.3.3 Overview of Configuration Approaches

This subsection tries to categorise and structure the well-known algorithms used for con-
figuration. It distinguishes the algorithms by their main control flow and the used data
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structure for the domain knowledge.

All configuration problems have a few common characteristics. Günter et al. [50] state
that these are:

• A set of objects of the domain and properties of these objects must be defined (do-
main knowledge).

• A set of relations between these objects (taxonomical or compositional) have to be
defined (domain knowledge).

• A requirements (task) specification (problem specific knowledge) of the demands,
which a final configuration has to accomplish, have to be defined.

• The control knowledge about the configuration process is coded in a configuration
algorithm, which has the above three items as input.

A categorisation of the approaches can follow many aspects. For instance, Stein [126,
127] distinguishes these on the basis of either the structure or the function being of main
interest for the configurable system. Principally, he considered the data structure for the
domain knowledge representation. He derived the following classification:

• Structure-oriented: describe the connections between components. All objects are
seen from a global view of the complete system. Their interrelationships are of
main interest.

– associative: define structural connections of the components. e.g. if component
A and B are present, then component C must also be present and component D must
not be present.

– compositional: describe the aggregation of the system top-down. A typical
AND/OR-tree can represent the structure.

– taxonomical: describe the system by an OR-tree, where each node refines its
parent node.

• Function-oriented: describe the properties or behaviour of the components. The view
to the objects is more local.

– property-based: all objects are defined by pairs of a property type and its con-
crete value.
∗ resource-based: only two types exist: offered and required resources. Re-

quired resources must be delivered by other components, which offer
them.

– behaviour-based: components have ports and constraints besides properties.
Ports are possible connections to other components. A component being
added to a configuration must be connected to a component, which is already
part of the configuration. Constraints can relate properties and ports to each
other and can compare same properties of different ports. Components can
only be connected, if their ports are compatible (or of same type) and all con-
straints are satisfied.
∗ static
∗ dynamic
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Subsequently, Stein et al. [129] propose to distinguish how the model is being formulated.
More precisely they classify after the model calculus. The calculus can also have great
impact on the control algorithm. The model can be refined, compiled or constructed:

Component Model Refinement: At the top level a system description is very abstract and
incomplete. That means a lot of details are over looked (or neglected). Therefore, it
is not yet implementable. In a step-wise and hierarchical procedure missing details
are added and specified until the system can be implemented.

Component Model Compilation: Problem-specific control knowledge (algorithm) is added
to the problem-solving knowledge in such a way, that the configuration process
itself is able to find a solution (in an efficient way).

Component Model Synthesis: The system has to be composed from a set of model frag-
ments. All possible fragments are arranged in a certain topology. Which fragments
have to be arranged in what (sub-)topology, has to be decided.

Besides these theoretical classifications of configuration approaches, I propose the fol-
lowing categorisation for configuration systems that had been developed in research and
industry up to now. The systems can be classified into the following categories:

• using description logics

– rule-based expert systems
– truth maintenance systems

• model-based

– concept hierarchies
– structure-based
– resource-based

• constraint-based
• case-based
• simulation engines

The different categories will be explained in the following paragraphs:

In rule-based configuration the domain knowledge is completely described by rules usingRULE-BASED

a descriptive logic. These systems are developed as expert systems and are influenced in a
major way by the research done in the area of artificial intelligence (AI). Main drawbacks,
which have been found during many implementations, are that the knowledge acquisi-
tion in the sense of coding the domain knowledge into rules is very difficult. Moreover,
it is hard to maintain a big rule set or to keep it consistent5. Also, it is often difficult
to adapt the rules to new cases or application scenarios. The lack of modularity is an-
other reason why users and experts find this way of configuring very complex, unclear
and confusing. Nevertheless, this way of describing domain knowledge is very formal
and, therefore, useful, if special conditions or properties of a final configuration must be
proved formally (validation).

Doing configuration with truth maintenance systems is used to manage beliefs in given sen-TMS
tences. It provides justification for conclusions, recognises inconsistencies and supports

5 Consistent rules require that there does not exist a contradiction between any two rules or their implica-
tions.
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for default reasoning. An explanation of a conclusion can be constructed by tracing the
justification of the assertion. It may tell that some sentences are contradictory. In the
absence of firmer knowledge, it reasons from default assumptions. A truth maintenance
system (TMS) can be categorised as follows:

Justification-Based Truth Maintenance System (JTMS): It is a simple TMS where one
can examine the consequences of the current set of assumptions. The meaning of
the sentences is not known.

Assumption-Based Truth Maintenance System (ATMS): It allows to maintain and reason
a number of simultaneous, possibly incompatible, current sets of assumptions.

Logical-Based Truth Maintenance System (LTMS): Like JTMS it reasons with only one
set of current assumptions at a time. It is more powerful than JTMS, because it
recognises the propositional semantics of sentences, i.e. understands the relations
between p and ¬p, p ∧ q and p ∨ q, and so on.

A sentence and a conclusion representation for TMS is described in [46]. There, labels are
attached to arcs from sentence nodes to justification nodes. This label is either “+” or “–”.
Then, for a justification node we can talk of its in-list, the list of its inputs with “+” label,
and of its out-list, the list of its inputs with “–” label.

Like in object-oriented design in configuration with concept hierarchies the representation CONCEPT
HIERAR-
CHIES

of the object knowledge is structured into a hierarchy. They can mostly be classified
into taxonomical hierarchies, where is-a-relations are predominant, and compositional hi-
erarchies, which describe has-parts-relations. The domain knowledge specifies facets or
skeletons or skeleton plans [47, 102] that describe alternative sets of values, objects, or
properties. Often only this information about selected alternatives is included into the
solution. Whereas is-a-relations (inheritance of properties from its super classes) are used
to structure, to reuse properties, and to support information hiding, has-parts-relations
link aggregates (containers) and their components together.

In structure-based configuration a natural compositional and hierarchical structure of the STRUCTURE-
BASEDobjects serves as a guideline for the control of the problem solution by using a divide-

and-conquer strategy. Mandatory components form AND-related successor nodes of an
aggregated node. Whereas the optional choices for a component form OR-related suc-
cessor nodes. Thus, the solution space spans an AND/OR-tree [102] (and sometimes a
directed acyclic graph) with the final configuration as the root. The AND-relations define
sub-problems in which the OR-relations, which give alternative sub-solutions, have to
be solved. The main distinction within concept hierarchies is that these structures show
directly how to find a solution. They are widely used for technical systems, which can
naturally be structured into components. (Tools: XCON, PLAKON, KONWERK, see Sec-
tion 3.441)

Resource-based configuration means that the components of a configuration are considered RESOURCE-
BASEDto produce and consume resources. The main property exploited is the fact that resources

provide for a specific functionality or some (virtual) raw materials. On the other hand,
the components of a configuration also require or have to import some resources in order
to export their functionalities or raw materials to others. In fact, each component of a
configuration demands resources and at the same time supplies resources. Thereby, dif-
ferent types of resources are distinguished. The primary goal of a valid configuration is
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that in sum all internally supplied resources (of one type) and all demanded resources
(of that type) are of equal amount and are minimal. Exceptionally, the external supplied
resources (or functionalities or raw materials) of the whole configuration have to be ex-
cluded from this sum, because these are the absorbed requirements of the final system.
The aim of the configuration process is to achieve a balanced and minimal demand-and-
supply of all resources. In this way the configuration problem is regarded as a typical
optimisation problem. Between all components of a configuration there exists a compe-
tition for resources. A typical problem solving strategy is to begin with a starting con-
figuration. The deficits are then recognised and thus equated by the instantiation of new
components, and so on.

The main objective regarded in constraint-based configuration is the relationship betweenCONSTRAINT-
BASED an object and its properties. The constraints which can be formulated describe that a

property must or must not be valid, is in a certain range, may be limited, or is of any
other similar constraint. Thus, a constraint restricts the solution space for a local property
of an object (or even of a lot of objects). In [91, 120] a categorisation of constraint types is
given:

synthesis constraints: affect feasible solutions
interaction constraints: arise from interactions between structural subsystems
causal constraints: equations or equilibrium of physical laws
parametric constraints: restrict object attributes
evaluation constraints: rank alternatives
hybrid constraints: combination of the above

An important property of a constraint is that it must be activated before it affects other
object’s properties. Often constraints are attached to the objects and the condition for its
activation is often based on the insertion of this object into the configuration, but can also
reason about other local properties of the object. This fact raises the problem that con-
straints are accumulated incrementally during the configuration process. This is called
constraint propagation. Even more, they form a constraint network because of mutual influ-
ences. The problem is to satisfy all constraints at the same time. This problem is (beyond
configuration) also well known as the Constraint Satisfaction Problem (CSP).

The main idea on which case-based configuration is based assumes that similar demandsCASE-BASED

lead to similar solutions. Hence, by identifying only the changes in a new request com-
pared to an old one, this gives hints on the solution. Moreover, the old solution may be
reused by applying only minor replacements. Or in other words: Sub-solutions must be
repaired according to the changes in the requirements. But this raises some problems: (1)
Old requests and their solutions must be stored in a kind of case repository. (2) How do
changes in the requirements affect an already made (old) configuration? These are the
main topics research is dealing within the area of case-based reasoning (CBR).

When configuration is done by a simulation system the selection of appropriate (sub-)SIMULATION-
BASED solutions is done as mentioned before, but the evaluation of the cost function or even

the proof of correctness of a configuration is done by simulating the configuration in its
environment. A simulator evaluates one or more configurations for their usability in the
future. Like in a chess simulation of a game, the benefit or merit of a specific configuration
is estimated and based on this decision it is used in the future or rejected.

Nevertheless, besides the above given classification of approaches for configuration sys-
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tems there exist programs that are members of more than one category. Because they
make use of more than one approach at the same time or sequentially or periodically.
They are called to be hybrid configuration systems.

A typical representative is XCON (see page 41), which has been one of the first config-
urators on the market. It makes use of rules, but they are grouped into hierarchically
structured rule contexts.

The so called skeleton-based configuration [102] is mostly done by the use of AND/OR-
trees. Therefore, it is a structure-based approach. But inherently the tree also often defines
a hierarchy.

PLAKON and its successor KONWERK follow concerning modelling the structure-based
approach, but for conflict resolving they define a constraint network, which is solved by
constraint propagation.

Also the TEReCS configurator TGEN, which has been developed during this work, is a
structure-based approach that uses an AND/OR-tree for the general domain knowledge
representation. But additionally constraints can be defined, that give powerful hints (or
restrictions) during configuration.

Results of the research community show that some of the approaches are similar in its
expressive power. In [90] it is shown that the skeleton-based configuration can be trans-
formed into a resource-based configuration and vice versa. They show that resource-
based and resource-based configuration plus rules are equivalent and, moreover, both
can be transformed into an AND/OR-tree of a skeleton-based configuration problem.
Additionally, they prove that the problem of finding an optimal configuration for these
two approaches is NP-complete.

3.4 Literature Survey

Configuration is mostly done for technical systems, product data management or cus-
tomer consulting and sales services for business processes. Configurable software sys-
tems can also be found in the area of JavaTM programming (like it is offered by Jini and
Java Enterprise).

One of the first configuration systems, which was commercially used, is R1/XCON R1/XCON
[7, 89]. It was developed at DEC and was used to configure the computer systems, which
were offered by them. The customers had different requirements and in order to have a
computer system as cheap as possible, the purchase orders contained only basic function
units. But it is the vendor’s task to deliver a working and operationally correct com-
puter system. So, additional components must be added in order to have a complete
and correct specification of the system. The decisions to be made were concerning type,
properties, placement, electrical connection, power consumption, etc. In order to make
the orders consistent by adding or substitution of components, DEC’s sales managers
had to check the orders for these. The time and persons spent for this task were incredi-
bly high, because of the huge amount of orders. DEC’s aim was to automate this process.
The result was a rule-based system containing nearly 6,200 rules for over 20,000 parts.

AKON [92] is following the resource-based approach. It is used by Bosch/Telenorma AKON
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and configures telephone switchboards.

Siemens AG developed SICONFEX [61, 78] in order to configure the operating systemSICONFEX
of their SICOMP computers. This configurator program has a lot of similarities with
TGEN, which is developed in this project. Input for SICONFEX is the actual hardware
configuration, on top of which the operating system should run, and application specific
customer requirements. The output are the terms of configuration statements for a gen-
erator program. The static domain knowledge is structured into a universe of physical
objects, existing software modules and hypothetical memory partitions. It uses frame-
like object structures, conceptional taxonomies, inheritance mechanisms, rules, message
passing between objects, active values and LISP functions in order to describe the do-
main knowledge. A hybrid problem solving algorithm uses optimisation, heuristic and
hypothetical decisions and labels for backtracking.

MMC-KON was developed by Baginsky et al. [6] at Siemens AG, Erlangen. It is usedMMC-KON

to configure distributed automation systems based on the SICOMP MMC 216 multi-
microcomputer system. As a first step MMC-KON generates a function plan containing
the processors for the automation functions. Then various criteria have to be taken into
account, e.g. process structure, integrity, inter-process communication, bus capacity, etc.
Next, each processor is configured by selecting suitable modules. The modules are placed
into sub-racks with consideration given to the number of slots, the available power sup-
ply, preferred module locations and combination options. In the next step parameter sets
are assigned to the modules and finally, the sub-racks are arranged to cubicles consid-
ering placement constraints. The modelling is done by object-frames, which are related
to each other by is-a and has-parts relations. The system permits free user interaction at
any time and the changing of configuration steps at any time. These characteristics are in
distinct contrast to XCON (see Section 3.4) where the order is fixed and it precludes user
interaction. Similar to SICONFEX also in MMC-KON the problem specific knowledge
or the so-called task definition is acquired interactively. This phase is supported by the
domain knowledge and the display capabilities of a modern workstation (graphical user
interface).

The ALL-RISE system [120, 121] configures the preliminary structural design of build-ALL-RISE
ings. Its input is the architectural or spatial plan of a building represented by a three-
dimensional grid. The output will be a set of feasible alternative “structural systems”
ranked according to their appropriateness. The internal model is dominated by schemas
(frames) having is-a and has-parts relationships. The top node of this tree represents an ac-
ceptable structural system at its most abstract level. Subordinate nodes represent either
alternative specialisations or partial designs. A complete (successful) design is a sub-
tree with exactly one successor for is-a branches and all successors for has-parts branches
(like it is in a conceptual AND/OR-tree). A lot of the domain knowledge is encoded by
constraints besides alternative is-a and has-parts relationships. But in contrast to other
work done on constraint-based reasoning [52, 55] the developers of ALL-RISE did not
implement an independent constraint propagation algorithm capable of satisfying mul-
tiple constraints simultaneously. They preferred a step-by-step procedure at the domain
knowledge hierarchy. This is very similar to the approach that is used in TEReCS (see
Section 6.3.4110).

The PLAKON shell [34] was mainly developed in 1986 – 1989 in a BMFT6 joint projectPLAKON

6 German department of research and technology
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TEX-K [32, 33, 52, 93] by Battelle Institut (Frankfurt), Siemens AG (Erlangen), Philips
GmbH (Hamburg), URW (Hamburg) and the University of Hamburg. PLAKON seems
to be the most advanced system dealing with configuration tasks. In PLAKON several
complex configuration methods as well as a mighty conception-hierarchy description
language are implemented. PLAKON is designed to support diverse applications among
which are configuration for multi-computer systems (MMC-KON, see page 42), configu-
ration of computer vision systems for quality control in manufacturing, configuration of
automated systems for industrial x-ray analysis, configuration of systems for laboratory
experiments, generating work plans for mechanical manufacturing and configuration of
electrical engineering aggregates using standard components. PLAKON is based on some
general observations [91] for technical systems:

• In technical systems the configuration process is governed by highly structured
knowledge about components and aggregates.
• Domain knowledge is naturally organised into an object-oriented (oo) hierarchy

based on is-a and has-parts relationships and into a constraint network relating ob-
ject properties to each other.
• Constraints require special treatment, because: (1st) They do not conform with the

oo-style and (2nd) constraints tend to affect the order of configuration steps.

Due to these reasons the domain knowledge is represented by a conceptual hierarchy
modelling these oo-relations. Additionally, the control algorithm is built from a global
configuration cycle where various configuration steps are selected according to the con-
straint activation (see Figure 3.8). This shows that in PLAKON the steps of the control flow

1. Determine phase and strategy
2. The strategy determines focus and selection criteria
3. Possible configuration steps are determined and

placed onto an agenda:

(a) Top-down refinement:

i. decomposition along has-parts relationships
ii. specialization along is-a relationships

(b) Bottom-up composition:

i. aggregation along part-of relationships

(c) Parameterization:

i. value assignment or restriction

(d) Instantiation of a new object

4. A configuration step is selected according to a
selection criteria

5. The step is executed in a particular value selection
procedure

6. The constraint net is activated optionally
7. New elaboration is checked for conflicts and

termination
8. Goto 1.

Fig. 3.8: Algorithm of the configuration cycle in PLAKON.
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are highly dynamically ordered and that the order is influenced by the domain knowl-
edge.

KONWERK [56] was developed in a BMFT joint project named PROKON of the Univer-KONWERK
sity Halle, University Hamburg, RWTH Aachen and HTW Zwickau from 1991 – 1995. It
was based on results made with the PLAKON shell [57]. It follows similar approaches and
can be seen as a successor of PLAKON.

An outstanding configuration tool for technical systems in the area of fluidics is artdecoartdeco

[13, 22, 129, 130]. A hydraulic circuit consists of mechanical, hydraulic and electronic
components. The system was developed in order to design a circuit in compliance with
the customers’ demands. Hence, the design process is supported graphically and the
checking of a system is automated. Therefore, in artdeco a graphical as well as a techni-
cal language for the specification of the system and its constraints was developed. All
technical information of an object are described locally. Thus, the user can easily and
independently specify new objects. Moreover, this leads to a second major concept in
artdeco: the global behaviour of a technical system is derived from its local component
descriptions. Their knowledge representation model distinguishes elements, gates, con-
nections and sources (or sinks resp.). These elements will be used to describe a system’s
topology. To describe the technical behaviour of the components, a formal language had
been developed that provides numerical and symbolic description of behaviour as well
as non-continuous descriptions. Additionally, constraints are specified, which have to
be checked for a correct system. These include topological, connection and functional
constraints. Functional constraints are processed using the method of constraint propa-
gation, whereas the others are checked by unification of global variables.

Günter et al. [51] present five commercial configurators for technical systems and mainly
sales services. For detailed information we refer to their article, but in order to give an
overview a brief summary is given here.

The CAS-Konfigurator was developed by SOLYP Informatik GmbH, Nürnberg. The sys-CAS
tem was mainly developed for the generation of technically correct offers where compo-
nents, which have a rich variety of different implementations, are selected from a product
catalogue. The selection and parameterisation is done interactively. The knowledge rep-
resentation is based on a hierarchical frame concept, which allows multiple inheritance.
Additionally, forward-chained rules and decision tables can be used in order to specify
the domain knowledge. All of these have to be specified in C++ templates. During the
interactive selection process the given constraints are checked. Inconsistencies are solved
by chronological backtracking. The result of a configuration can be viewed as a part list,
selection tree or a spatial design.

COSMOS was developed by repas AEG Software GmbH, Berlin. It is based on previousCOSMOS
work [62] done at DaimlerChrysler AG, Research and Technology, Berlin. The system
follows the resource-based approach. The database contains resource descriptions and
component definitions. The authors assume that the lifetime of resources is much greater
than that of components. Thus, the administrative overhead for the management of the
database is less. A property, worth mentioning, is the fact that the configuration process
runs nearly fully automatically.

The TDV GmbH (Karlsruhe) had developed and distributed the ET-EPOS system. ItsET-EPOS
main purpose is to support sales managers. The domain knowledge is specified in the
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R1/ A- SICON- MMC- ALL- PLA- KON- TGEN
System

XCON KON FEX Kon RISE KON WERK
artdeco

(TEReCS)

Primary Application Area:
Sales Offers ×
Technical Systems × × × × × × ×
Software Synthesis × ×
Operating Systems × ×
Techniques:
Objects × × × ×
Modules × ×
Parameters × × ×
Rules × ×
Constraints × × × × ×
Resources ×
Structure × × × × × × ×
Concept Hierarchy × × × ×
Methods:
Interactive × × ×
Automatic ×
Heuristics × ×
Constraint

Propagation
× × ×

User Interaction ×
Change of

Conf. Steps
× × ×

Tab. 3.1: Comparison of some research driven configuration tools.

form of tables in the manner of spreadsheets like they are implemented in ExcelTM. Be-
cause of this smart usability and user-friendliness it is widely accepted among users. The
tables describe decision trees, which are based on the standard DIN 66941. The system is
split into two programs: (a) an administrative tool to maintain the tables and for knowl-
edge acquisition and (b) the user system in order to create configurations.

The SCE (Sales and Configuration Engine) from SAP AG (Walldorf) is a product con- SCE
figurator for sales offers as well as for the configuration of technical systems. It has an
excellent connection and data interface to the SAP R/3 logistics module. It is used in
order to support sales managers for offers of technical complex systems. In SCE a TMS is
used for configuration.

SECON from Camos GmbH (Stuttgart) consists of three programs for the maintenance SECON
of the database, the development of graphical user interfaces for the configuration and
the run-time system for the configuration itself. The knowledge base is represented by
a structure-based approach. A (graphical) class editor helps to organise the inheritance
and aggregations of the classes. The configuration process is also interactive, but it is
supported by automatic checks for consistency. Inconsistencies are displayed by an ex-
planation component. They have to be solved manually by the user.

Nearly all of the commercial systems have a comfortable graphical user interface for the
interactive selection and parameterisation of components. The configuration process is
often done interactively by the user, whereas he is supported by automatic consistency
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System CAS COSMOS ET-EPOS SCE SECON

Application:
Sales Offers × × × ×
Consistency Check × × × × ×
Automatic Process ×
Acquisition Tool × ×
Techniques:
Objects × × × × ×
Parameters × × × × ×
Rules × × ×
Constraints ×
Resources ×
Methods:
Interactive × × × × ×
Heuristic × × ×
Structure-based × ×
Resource-based ×

Tab. 3.2: Comparison of some commercial configuration tools (adapted from [51]).

checks. A summary is given in Table 3.2.

3.5 Advantages of Configuration within a Real-Time Operating System

The main aspect why configuration is required for embedded real-time operating sys-
tems is due to the demand of using minimal resources. A small memory footprint and
the efficiency how fast services are executed are two requirements which lie in the na-
ture of embedded real-time control and are driven by economic and qualitative requests.
Therefore, configuration is an ideal tool to fulfil these requirements in contrast to the re-
quests of the applications. The trade-off between a small and efficient design and the
request for a broad support of a variety of general and special services can be solved by
configuration. The services of operating systems are traditionally designed in a more or
less generic way. This is, because they must cover a lot of different application scenarios.
But for embedded real-time control, services are developed just to support the given sce-
nario in a very efficient way. This leads to a huge variety of different implementations
of the same general service for different pre-requisites. To implement all these services
into a single operating system is not desirable. Here, configuration helps to select the
appropriate services and to create an optimal operating system. Moreover, configuration
not only selects the ideal service but can also help to configure or to build this service out
of a given service skeleton.

3.5.1 Goals of Operating System Configuration

We can identify the main goal for the use of configuration in operating systems. Not all
of the functions and services, which the operating system can support, should be inte-
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grated into the used instance in order to save memory and, because the function is never
required. For example, nearly all of the general purpose operating systems for desktop or
server applications, like WindowsTM or Linux, come along with a broad variety of drivers
for nearly every available hardware device. For example, they support a huge amount
of graphic and communication adapters, other I/O controllers, mass storage systems,
extensions for hot plugging, etc. In the actual system often only one graphic and one
communication adapter is installed. For this reason, only the appropriate drivers for the
present hardware devices have to be loaded into memory.

Often, the presence of a special driver request for further drivers. For instance, when a
hard disk is present, not only the driver for its access is required, but also a driver, which
manages the file system structure on that device. Another example is the communication
adapter. If this is an Ethernet card, then additionally, the Ethernet protocol stack (as a
driver or a set of drivers) is required.

In modern operating systems the size of a configuration item is often the size of a driver
or a module. This means that only complete drivers or modules can be included or ex-
cluded from the operating system’s implementation. This holds especially for commer-
cial systems.

The decision about the integration or exclusion of drivers or modules is mostly done at
the setup or installation time of the operating system on the computer. Moreover, the
setup programme, which is delivered together with the operating system, works like a
simple driver collector. In advanced systems this setup programme detects automatically
the present hardware devices and selects the appropriate drivers for loading during boot-
time or for integration into the kernel. When the automatic hardware detection fails or
is not present, then the user must manually select the required drivers. Additionally, the
previously mentioned course-grained dependencies between the drivers are considered.
These dependencies are often defined as simple implication rules of the form a → b,
which means that the driver b is also required, when the driver a is loaded. A rule of the
form a → ¬b can often not be defined. This rule means that if a is loaded, then b must
not be loaded. The lack of this specification possibility results often into the well-known
driver incompatibilities of simultaneously loaded drivers.

The granularity of configuration is often only at driver or module level. The reason for
this might be the compromise between manageability and resource consumption. But
this granularity level is not sufficient for embedded real-time applications, because they
request for a more efficient resource usage. Even inside a module configuration must be
applied in order to tune its behaviour. This means that an operating system function is
adapted or customised to the given application scenario. For example, if the application
does not use the UDP protocol of the TCP/IP stack, then it possibly can be removed
from the protocol hierarchy. Often, the TCP/IP stack can only be completely included or
excluded. Consequently, the granularity of the operating system’s configuration should
be at functional – or for object-oriented versions – at object level, which means at source
code level.

However, in the embedded world the operating system can be selected for serving only
one application. For desktop or server computers the operating system has to serve a lot
of applications. It is not known in advance, when and in which combination they will
be started. The life-time of the operating system is much greater than the life-time of
an application. But for the embedded scenario, the life-time seems to be identical. The
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operating system and the application exists both as long as the product, in which they
are integrated, works. This offers more potential for an optimal, small and efficient im-
plementation of the operating system. Knowledge about the applications behaviour can
help to configure the operating system’s code more efficiently. The application scenario
should have direct impact on the implementation of an operating system service.

3.5.2 Examples

We will give a few examples, which show what items of the operating system can be
configured in dependency to the application’s requirements or behaviour.

Resource Protection. The use of a resource must normally be protected by one or more
critical sections in the case of simultaneous access (mutual exclusion). But often it is not
known in advance, if this special use case of the resource will be applied or not. So, for the
general case a designer protects the critical section, e.g. by the use of a semaphore. But if
the resource is then not used in parallel, the useless synchronisation creates a non negligi-
ble overhead. Configuration helps to overcome this problem. The use of the semaphore
will be inserted or deleted due to the special use case.

This feature can be generalised to any operating system service. The circumstances, un-
der which the service is used, determine exactly the optimisation potential that can be
exploited for the implementation of the service.

Device Drivers. In general an operating system must support all hardware resources
with drivers. This means to include code and to use memory space in order to manage the
status of the resource. A general-purpose operating system must support a huge variety
of hardware. But, if the hardware resource is not used, then the driver can be eliminated.
This can also be achieved by configuration. Moreover, if not all of the functionalities of
the device are used, then only parts of the driver need to be integrated.

Hardware Architecture. Not only the usage of a hardware device determines, whether
a driver must be loaded or not. But also, whether the device is present in the actual
hardware architecture, should lead to the integration or exclusion of a dedicated driver.

Service Dependencies. The integration or removal of services itself requests for con-
figuration. High-level services depend on low-level services and the existence or non-
existence of a service requests or forbids other services.

3.5.3 State of the Art

Customisation and configuration is not a new approach for adapting a system to the
requirements of an application. In the field of (real-time) operating systems some inter-
esting ideas for customisation can be found. The systems can be classified according to
support for configuration during compile-time and/or run-time. Furthermore, in gen-
eral customisation can be distinguished by its level of manipulation of the system. First,
systems can only select monolithic modules to be included. Examples are LinuxTM [108],
QNX [96] or RTEMS [141]. For instance, device drivers in QNX or Linux can be loaded orQNX
not. In Linux this is even possible at run-time. In RTEMS special functionalities (e.g. rateRTEMS
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monotonic scheduling, etc.) can be added to the system by selecting particular modules.
Additionally, RTEMS provides for dynamic system extension by allowing the applica-
tion to bind special exception handlers to certain kernel events (like the timer interrupt is
bound to the context switching).

Second, systems can be customised by choosing different possible (µ-)kernels. PURE PURE
[114] is an example for an operating system of this class. Actually, PURE provides 6
members of a kernel family supporting for different trade-offs for functionality and over-
head.

Third, systems support customisation at the level of functionality. A representative for
this class is VIRTUOSO [143, 144, 145]. In VIRTUOSO the user can choose among four VIRTUOSO
levels: interrupts are not supported, interrupts are supported, light-weighted threads can
be scheduled by a Round-Robin scheduler, or a preemptive priority scheduling is avail-
able. The choice of a level means that higher levels completely comprise lower levels.

Fourth, customisation is applied at source code level. The ECOS system [35] is a repre- ECOS
sentative for this class. In ECOS the integration and selection of appropriate source code
into the system is chosen at compile-time by setting appropriate pre-processor macros.
This approach is very similar to that in DREAMS [41, 42] (see also Section 6.6.1.1127).

Fifth, customisation can be made at target code level. This normally means that the soft-
ware reconfigures its code at run-time. SYNTHESIS [87, 88] adapts its code by partially SYNTHESIS

evaluating and recompiling condition statements depending on available input data at
run-time. This can result in changing compare instructions and conditional jumps by un-
conditional jumps and vice versa. This eventually leads to the elimination or integration
of complete code fragments.

Most of the systems do not provide customisation tools or assistants. They rely on the
talent of the users to create the best configuration of the system. Only few systems sup-
port customisation frontends that assist the user in creating a configuration. VIRTUOSO
can be customised with the help of SoftStealthTM. SoftStealth allows to select or to remove
particular levels of the kernel automatically considering dependencies between the lev-
els. ECOS comes with a configuration tool that allows to select or deselect particular
components. The selection works in the same way as known from setup programmes
of huge software packets like WindowsTM, Microsoft Office(R) or LinuxTM. In dialog boxes
features can be selected, deselected, or chosen from a set of items in a graphical manner.
Outstanding is that dependencies between the components are automatically considered.
This means, for example, that the selection of a particular component includes the selec-
tion of all required sub-components. However, the choice among alternative items still
must be done by the user. This results in setting up a lot of configuration items. Further-
more, the user must exactly know the meaning of each item in order to have the chance
to select the best alternative.

TEReCS intends to support the user in this way. Only knowledge about the application
has to be specified instead of directly customising the system. So, required knowledge
about internals of the execution platform is reduced to a minimum. The configuration
tool of TEReCS implements rules to translate application properties into configuration
options for customisation. These have to be specified by experts creating the TEReCS
knowledge base. This issue is handled in Chapter 6.4112.
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3.5.3.1 Survey

In LINUX the user can insert or remove special services into the system. But why a ser-LINUX

vice must be integrated or which service should be integrated (see example “Resource
Protection” and “Device Drivers” on page 48), is left to the user. Only operating system
immanent dependencies are considered more or less automatically (see example “Service
Dependencies” on page 48).

CHOICES [26] is one of the first operating systems, which configures the application andCHOICES

the operating system specific functionalities together resulting in mutual influences. The
kernel for a node of the system is selected during boot-time.

SYNTHESIS [101] belongs to the group of so-called adaptive operating systems. Configu-SYNTHESIS

ration takes place during the run-time of the system. Therefore, code of the operating
system will be compiled and linked into the kernel while running. Thus, a run-time
compiler is included in the operating system. This approach is based on the idea that
dynamically available data of the application can be exploited for the operating system
by partial evaluation of application code and its actual input data, i.e. statistical infor-
mation about the input data is used to optimise the code. So, condition checks, jumps
and, therefore, dead code of, for example, if-then-else statements can be removed
by the compiler. This procedure will be activated whenever new information about the
input data is available. This mechanism is not restricted to the application code, but also
applied to parts of the operating system itself (interrupting, context switching).

APERTOS [149] is designed in an object-oriented manner. It belongs to the group of so-APERTOS

called reflective operating systems. Each configurable object has a companion in the form of
a meta-object. The meta-object observes the actual object implementation and its status
and replaces the functional object by another implementation out of its assigned object
hierarchy when certain conditions are true. This means, the exchange of behaviour is
the result of the exchange of an object’s implementation triggered by the assigned meta-
object. By this way functionality and implementation are strictly distinguished in this
meta-object/object hierarchy. All objects belonging to a specific meta-object are spanning
the meta-object’s design space and implement the same functionality.

Inside the CHAOS system [49] the operating system functionality is adapted to the actualCHAOS

real-time constraints. The complete system is transaction-based. The language COLD,
which specifically was designed for CHAOS, describes the control flow of the application
by defining nested transactions.

EXOKERNEL [44] basically consists only of a driver for the processor supporting contextEXOKERNEL

save/restore, interrupting and functions for status evaluation and change. Extensions to these
can be loaded as pre-compiled code into the kernel during run-time by dynamic linking.
The extensions will be picked from a library.

A very well-known and widely used commercial operating system is VXWORKSTM [148],VXWORKS

which was specially designed for embedded systems. It is built highly modular. For
a lot of operating system services multiple alternative implementations with different
behaviours exist. A configuration of the operating system is to be designed manually
under a graphical user interface (Tornado Design Suite) during a so-called setup phase.
That way modules like schedulers, synchronisation primitives, drivers, special hardware
services, etc. can be selected from a list and thereby integrated into a final configuration.
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Dependencies between the modules, in the meaning that a moduleA only works, if mod-
ule B is also selected, are automatically checked by the tool. Additionally parameters for
the modules are assigned by filling out special dialog boxes. Such parameters can be the
base address, where a driver can find its device, the interrupt number, baudrate, etc.

The PEACE operating system [11, 113] was originally developed for massively parallel PEACE

architectures. The design of PEACE is extremely fine-grained. It supports the transparent
loading of higher services during run-time. PEACE is extraordinary in many respects:
An incremental loading mechanism for a multi-processor architecture is combined with
a distributed object management system. Objects can be instantiated on every node and
then they can communicate with other objects by Remote Object Invocation (ROI) [95].
PEACE is built on basis of a variety of alternatively selectable µ-kernels. A consequence
of this kernel family concept is that each node of the system can have other operating
system characteristics. The kernels mainly differ in their functionality, i.e. if they support
for multi-tasking, memory protection, synchronisation, local or external communication,
ROI, etc. Which kernel has to be used for a node is determined by explicit selection
during boot-time of the node.

PURE [114] is quite new library-based construction kit for operating systems. It has PURE
been developed from its predecessor PEACE. Therefore, PURE has a lot of similarities
with PEACE, e.g. the kernel family concept. But the so-called nucleus family of PURE
consists of 6 members, which were especially developed for embedded systems. They
differ in their functionality and the overhead they spend. The nucleus family is organised
in nearly 100 classes and 14 levels. The simplest family member merely supports for
asynchronous interrupt handling. Additional functionalities are integrated step-by-step
on higher levels comprising synchronisation, multi-threading, preemption, etc.

The real-time operating system AMBROSIA [99] had especially been developed for con- AMBROSIA

trollers in the automotive industry. Its exceptional property is its possibility to scale its
functionality on two levels. By the selection of required modules it is macroscopically
scaled. Additionally, the modules itself can be adapted to the requirements of the appli-
cation. This mechanism is called microscopic scalability there. In order to support for these
scalability features, the modularisation language AML and a configuration tool EOS had
been developed. Although AMBROSIA is called to be a real-time operating system, it
only implements a heuristic priority-based preemptive scheduler. The priority inversion
problem is not considered. Likewise, there is no support for the priority ordering of the
processes. In contrast to this, it supports for the periodical activation of processes. Ad-
ditionally, timer handling for temporary process deactivation is implemented. So, pro-
cesses can sleep for a relative period or until an absolute time. For inter-process commu-
nication AMBROSIA supports for a rendezvous mechanism for synchronisation purposes
or an asynchronous procedure. The communication is purely packet-oriented. Concrete
hardware drivers only exist for serial communication via RS-232 or via a CAN bus, which
is widely used in automotive applications.

DREAMS7 [39, 40, 41, 43] is a library-based construction kit for embedded operating sys- DREAMS

tems and run-time platforms. It has been developed during several projects and had
been completed during a Ph.D. thesis [42]. The complete system had been designed
object-oriented in C++. Operating systems and run-time platforms for even heteroge-

7 Distributed Real-Time Extensible Application Management System
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neous processor architectures can be constructed from customisable components (skele-
tons) out of the DREAMS’s kit. This construction process is also called “configuration
process” in DREAMS, although it is originally done completely by hand. This process is
done a priori during the design phase of a system. By creating a configuration description
all desired objects of the system have to be interconnected (by Inheritance) and afterwards
fine-grained customised (by defining Aggregation, Linking, Membership, and Life-Time of
the skeleton objects). For details of the customisation features of DREAMS please refer to
Section 6.6.1.1127. The possibility to customise objects had been integrated into DREAMS

on the basis of the pre-processor and was named Skeleton Customization Language (SCL).
The primary goal of that process is to add only those components and properties that
are really required by the application. Therefore, a run-time library is built instead of a
kernel. The construction kit DREAMS strictly distinguishes between optional and manda-
tory components. The creation of a final configuration description for DREAMS has been
automated during the DFG project TEReCS 8 [14, 15, 16, 19] and this thesis. During that
project a methodology was developed in order to synthesise and configure the operating
and communication system for distributed embedded applications. The basic idea for
TEReCS is the description of services and their dependencies among each other and to
the hardware of the system. The configuration descriptions have to be generated for the
operating system of each node of a distributed system. Thereby, only those services must
be integrated into the run-time platform that are really required by the application and
that produce minimal costs in terms of memory consumption and execution time.

3.6 Advantages of Configuration within a Real-Time Communication
System

Also within the real-time communication system configuration makes sense. Services
like routing, (de-)fragmentation of messages, congestion control, error correction, ac-
knowledging or bandwidth management are parts of the communication system. Con-
sidering the OSI model [66] of the ISO these services are implemented as layers of a
protocol stack. Each entity of a protocol layer may depend on a lower level and requests
for an appropriate implementation on the other side of the communication line. Each
protocol layer consists of services for sending and receiving, which forward the data
downwards (to the hardware) or upwards (to the application) in the stack. Whether a
service (or layer) is requested and how it can be implemented best, is mainly determined
by the Quality-of-Service that is requested by the application and by the properties of
the underlying hardware of the network. Nevertheless, nearly the same type of rules
can be applied for the configuration of those communication services of a protocol stack.
A side effect will be that the protocol stack will become more flexible. Not only the in-
tegration or exclusion of layers and, therefore, functionalities can be achieved, but also
more flexible combinations can be obtained. Their order can be changed or layers of
originally independently designed protocol stacks can be easily combined, because con-
figuration demands for compatible interfaces or ports for alternative implementations
(see “behaviour-based configuration” on page 37).

The potential of configuring the communication system is as high as that of the operating
system. While the present task set on a processor and the present hardware determines

8 Tools for Embedded Real-Time Communication Systems
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the required characteristics of the operating system, this is also true for the communica-
tion connections established between all the distributed processes. But also the routing,
which means the resource allocation for the data transfer on its way from the source to
the destination, has a huge effect and influence on the required communication services
per node of the network.

An optimisation criterion for the creation of a good configuration is not only the mapping
of the processes onto the processors, but also the routing of the messages through the
network. But routing is an integral part of the communication system. Thus, resource
allocation must be taken into account during its configuration.

3.6.1 Goals of Communication System Configuration

The primary goal for configuring the communication system is to minimize the system
overhead and the delays of the communications. For real-time applications it is sufficient
to assure that no delay leads to a deadline miss (see Section 4.4 76). Nevertheless, the
demand for a minimum system overhead is universal.

The system overhead is mainly determined by the operating system’s implementations of
the communication drivers and protocols. Which protocol (respectively, which protocol
driver) has to be selected, is not trivial. This strongly depends on the requirements of the
application and the available communication device. For instance, on the one hand, the
application may require for encryption of the messages. This request for a protocol layer
to code and decode the messages. On the other hand, a low level protocol, for example,
one for error detection, can already be installed in hardware inside the communication
device. Thus, it must not be installed as a software protocol layer service.

3.6.2 Examples

Further examples for the request to configure the communication system are the follow-
ing:

Resource allocation for the routing of the messages. The routing of the messages
through the interconnection network must be considered during configuration. On each
node, which has to forward the message, resources are required in order to fulfil this
service. Especially, one or more routing tasks are required, that receive the messages
and send them out on the appropriate link. Often, a router task per incoming connec-
tion exists. The configurator has to establish these tasks. Additionally, these router tasks
must be considered during the timing analysis, because they require processing time and
cause buffer delays for the message transfer. The configurator possibly can eliminate
such tasks, when the routing is not required for specific paths. That way, resources can
be saved.

Meet application demands for the message transfer and storage. The application can
require special services for the message transfer, like encryption, error correction, ac-
knowledgments, order preserving, synchronous or asynchronous sending, buffering, etc.
These can be modelled as requirements that have to be matched during the configuration
process. Therefore, the configurator has to include appropriate protocol drivers into the
sender’s and receiver’s protocol stacks.
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Implementation of implicit constraints. These constraints arise, when there is a gap be-
tween the application demand for the message transfer and the physical capability of the
link and media. For example, the packet size, which can be transfered by a specific hard-
ware link, can be smaller then the message, which is to be transfered via that link. Then,
the message has to be split into several packets at the sender’s side. At the receiver’s side
the packets have again to be assembled to the original message. This means that a frag-
mentation and de-fragmentation protocol has to be integrated into the protocol stacks.

Combination of different protocol layers. Inside a heterogeneous interconnection net-
work, the links vary in their physical hardware and require different (low-level) protocols
for the message transfer. For instance, serial connections, CAN busses, Ethernet lines, to-
ken rings, etc., can be mixed. When a messages is to be routed through such a network,
then the message has to pass different protocol stacks. Then, a kind of bridge is required,
which receives messages from one protocol stack and sends the message to another pro-
tocol stack. This bridge works similar to a routing service, except that it receives and
sends messages on different protocol stacks. Therefore, they embody a protocol layer
conversion service. The configurator has to assure the interface compatibility between
the different protocol stacks.

Compatibility of the partner’s protocol stacks. The configuration process have to as-
sure that the protocol stacks of the sender’s and receiver’s sides of every message transfer
are compatible.

Interference with the operating system. The protocol drivers for the message transfer
have multiple interconnections to the operating systems. The previously mentioned
router or bridging tasks have to be appropriately scheduled by the local operating sys-
tems. The configurator has to specify correct priorities, deadlines , periods or activation
intervals for those tasks upon the messages’ interarrival times (message periods). Some
communication devices produce interrupts, which have to be served by the operating
system. Sometimes, the drivers have also to poll the devices. Both, interrupting and
polling, produce system overhead and require special services (interrupt or timer man-
agement). Additionally, messages have to be stored locally, before they are forwarded or
delivered to the receivers. This means, that memory buffers for the temporary storage of
messages have to be created and managed.

Bandwidth allocation or time slot reservation. Bandwidth allocation or the reservation
of time slots for the message transfer (in classical communication known as congestion
control and media access) are indispensable for real-time communication. The routing al-
gorithm and the real-time analysis for the communication both must deal with these
problems. Therefore, it is recommended that both modules are part of the configuration
phase. When the media access is not possible or leads to delays that produce not feasible
schedules, then the configuration is invalid. Thus, another configuration (possibly with
another routing) has to be created.

3.6.3 State of the Art

In some communication systems, which are mainly part of a real-time operating sys-
tem, (offline) configuration is used in order to create appropriate and efficient operat-
ing system support and to optimise the overall system during a detailed analysis (see
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AMBROSIA/MP). Other systems use the configurability in order to adapt ports and to
connect them appropriately (see CHIMERA). Yet in other systems (like REGIS) the layers
of an application specific protocol stack become configurable. Specific protocols can be
integrated or removed from the stack, whereas the protocol stack compatibility of the
sender’s and receiver’s site are automatically maintained. In the following subsection
these systems will be described in more detail.

3.6.3.1 Survey

Ingo Stierand developed the AMBROSIA/ MP extension [135] to the operating system AMBROSIA/
MPAMBROSIA (see page 51). It extends AMBROSIA by the possibility to generate the oper-

ating system and the interconnection network for a distributed application. It defines an
execution and communication model for simultaneously running processes on a multi-
processor (MP) platform. It solves the problem of the process placement and the routing
of the messages. Therefore, a detailed schedulability analysis of the processes and the
communications is integrated. Blocking times due to the use of global semaphores and
the communication of messages –unfortunately only of fixed length– are considered. The
optimisation of the placement and the routing problem are solved by a genetic algorithm.

A simple static process model with fixed priorities is used in AMBROSIA/MP, so that the
simple rate monotonic (RM) scheduling approach can be used for each processor. Only,
the linear ordering of the priorities had been weekend to a partial ordering. For a process
a priority interval is defined, in which its final priority will be. For each processor, a strict
order for the priorities of the processes is defined in order to apply the Rate Monotonic
scheduling (see page 72). But the priorities of processes of different processors define no
order. Instead a precedence graph is defined according to the communication dependen-
cies.

Stierand defines a global schedule to be feasible, if, and only if, all response times Ri
of each process τi are lower or equal than their deadlines Di. He slightly defines the
response time different to the classical approach:

Ri = Ci +Bi +
∑

j∈hp(i)

⌈
Ri
Tj

⌉
Cj

︸ ︷︷ ︸
∀ processes j with a higher local priority

+

new︷ ︸︸ ︷∑

k∈ep(i), k 6=i
Ck

︸ ︷︷ ︸
∀ processes k with the same local priority

where Ci is the execution time and Bi is the blocking time of task τi. The blocking time
Bi is defined by the maximum hold time zi,j of any semaphore σk with higher ceiling
priority than the priority of process τi and, which is used by any process τj that has the
same or a lower local priority:

Bi = max(zj,k ∈ βi)

where

βi = {zj,k | j ∈ lp(i)
new︷ ︸︸ ︷

∪ ep(i) \ {i} ∧ ceiling(σk) ≥ Pi}
Stierand also considers the operating system overhead for acquiring and releasing of
semaphores. The communication time, which is used for the remote procedure calls when
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global semaphores are used, is also considered:

Ci = CCOMP
i +

∑

j

nLij(C
L P
i + CL V

i )

︸ ︷︷ ︸
use of local semaphores

+
∑

k

nGik(C
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ik + CG V

ik )

︸ ︷︷ ︸
use of global semaphores

CG P
ik = CRPC IN + CSENDik + CL P

k + CSENDki + CRPC OUT

CG V
ik = CRPC IN + CSENDik + CL V

k + CSENDki + CRPC OUT

For the analysis of the communications AMBROSIA/MP defines uni-directional commu-
nication channels between two communicating processes. It is assumed, that all mes-
sages over the channels have the same size. This restriction was made due to the fact that
AMBROSIA only supports communications via a CAN bus. CAN messages can contain
a maximum of 8 bytes. Outstanding is that AMBROSIA/MP handles communications,
which have to be routed over several nodes (hops) when no direct link exists between
the nodes where the communication partners have been placed. It is also considered that
the communication capacity (bandwidth) of a link is limited. For a successful routing it
has to be checked, whether no link is overloaded and all communication delays are lower
than their defined maximum deadline: RSENDij ≤ DSEND

ij .

The modelling and implementation of the communication is made with buffers (mail-
boxes) and dedicated communication processes that forward and receive the messages
over the communication links. There, all user processes, communication processes,
buffers, and communication links are modelled as the nodes of a communication graph.
Its edges define the communication paths and will be labeled with the required capaci-
ties. The capacities and buffer sizes are determined during the optimisation phase. For
the reservation of the bandwidth a special token protocol is implemented.

During the optimisation phase the mapping of the processes onto the processors and the
routing of the messages over the communication links is determined. Additionally, the
local priorities of the processes, the activation intervals of the communications for the
token protocol and the required buffer sizes are calculated. The placement and routing
problem is defined by the DNA of a genetic algorithm. Therefore, Stierand also defines
a quality function, which represents the quality of a solution. It is important for the
genetic algorithm that the quality function also ranks impossible solutions. For instance,
the quality function will just give a negative value, when any deadline is not met. The
overall quality function is the weighted sum of the three quality functions that rank the
process mapping, the priority assignment and the routing.

After a feasible mapping and routing is found, the operating systems of each processor
node in the system have to be configured. A configuration is described by the instanti-
ation of components for the operating system in the AMScribe language. For each user
and communication process a process component will be instantiated on the appropriate
node. For each message a routing component with the routing information as a param-
eter is instantiated on every node, over which the message is routed. Additionally, on
every node some system components are instantiated, which represent all the system
calls to the operating system. A system call can be the sending or receiving of a message
to or from a communication controller, as well as the acquiring or releasing of a local
semaphore. Whether a component must be instantiated or not, is simply evaluated over
a logical existence term. For example, the code for the semaphore σi has to be integrated
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into the operating system for processor P , when there exists a process τi on P that uses σi.
A component can also be instantiated more than once. The instantiation can be relative
to the amount of already installed objects of a concrete type. For instance, assume there
already exist four objects of type S1 and three objects of type S2 in the configuration. The
following definition

COMPONENT C IF (EXISTSS1 and EXISTS S2) THEN PAR(a) END;

results into the integration of 12 instances of the component of type C, where the param-
eter PARof all components will be set to a. This is done, because for all combinations of
instances of the types in the condition the instantiation is made.

The automatic calculation of the process placement and the routing are two positive as-
pects of AMBROSIA/MP. Limitations of AMBROSIA/MP are the fixed message size and
the use of a fixed communication protocol. Also, only four system calls, which are the
acquire() and release() of a semaphore and the send() and receive() via a
CAN controller, are handled by the analysis.

The CHIMERA Methodology [132, 133, 134] is a software engineering paradigm for the CHIMERA

implementation of real-time software for multi-sensor systems. It supports the devel-
opment of dynamically reconfigurable component-based real-time software. CHIMERA

combines the port automaton theory with object-based (not object-oriented) design, which
results in objects that are called port-based objects. These objects have input, output, and
resource ports. Each object represents a single task. The communication between local
instances is done by connecting output ports to input ports. External communication
is done via resource ports, which access appropriate devices. The ports are named and
only such ports with identical names can be connected. A final configuration of all par-
ticipated objects is legal, if, and only if, all input ports are connected to only one output
port. It is allowed to fan an output to multiple inputs. In CHIMERA exists join connectors
(with the semantic of calculating the average) in order to combine several outputs to one
input.

All communications in CHIMERA are done via a global state variables table. The port au-
tomaton theory assumes that the most recent data is always present at the input ports.
Message queues are not appropriate, because they accumulate the data in their queue and
the next data retrieved is not the most recent received one. So, connections of ports are
implemented by state variables. But reading or writing state variables by asynchronous
parallel tasks cause integrity problems, which must be solved by using critical sections
during the access. These synchronisation mechanisms cause dependencies between the
objects. These dependencies are not allowed in the port-automaton model (autonomous
execution). Therefore, each port-based object gets its own copy of its referenced state
variables in a local state variables table. The key is to ensure that updates between both
tables are done only, when the task does not access its local table. Updates are done, when
the task is not executing. This way, CHIMERA uses an inside-out method of programming,
rather than the software invokes the operating system via system calls.

The CHIMERA real-time operating system provides tools to support the software mod-
els defined by the CHIMERA methodology, so that real-time software can be executed
predictably using common real-time scheduling algorithms. The operating system ser-
vices are always executing and invoke methods of the port-based objects. By this way,
programmers have not to take into account communication and synchronisation. The
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model assumes port-based objects can be in one of four states: NOT CREATED, OFF, ON
and ERROR. The state transitions are results of signals, which are sent to the tasks, like:
spawn , on , wakeup , off , re-init , kill , and clear . Each transition is done via calling
a method of the object: init() , on() , cycle() , off() , kill() , error() , clear() ,
re-init() , and sync() . Before and after each method call the table data are updated,
distinguishing in/out constants and in/out variables. A two-step initialisation and ter-
mination is used to support dynamic reconfiguration. High overhead initialisation and
termination code is performed during the init() and kill() methods, whereas tasks
can be activated or suspended quickly using the on() and off() methods.

The tool suite DAVINCI [142, 147, 146] from Vector Informatik GmbH, Germany, supportsDAVINCI

the developer of distributed automotive applications. The Vector Informatik GmbH has
great knowledge and experience in this area and especially with tools for the design and
analysis of communication infrastructure and software for the CAN bus. DAVINCI seems
to be the most recent commercial development in the area of design and communication
support for distributed embedded control applications. DAVINCI supports the reuse of
control software, the exchange of data via different networks, and the automatic design
of the run-time environment for the distributed embedded control units. DAVINCI in-
cludes a methodology for the developmnet of control applications. The development of
the application software is based on the specification of software components. A software
component encapsulates the control algorithm, which can be specified in form of a finite-
state-machine or in native C code. All information flow into the component and from this
component is modelled by in/out signals. A software component is handled as a black
box. The input and output signals can be connected with signals of the same type of
other components. Then the components form a network. Additionally, they can build a
hierarchy. A component can consist of sub-components. Hereby, the signals of the super-
component are redirected to the signals of its sub-components. A complete network of
sub-components can be integrated into a super-component.

In order to develop the overall functionality of an automotive software components have
to be assembled to a complete software application. Hereby, the components must ap-
propriately be connected to each other. Still open signals have to connected to so-called
Device Accessors. The device accessor represents an abstract sensor or actuator.

Before the complete code of the automotive application can be generated, the topology
of the hardware platform must be described. Hereby, the different available embedded
control units are described together with the available actuators and sensors. Also the
available communication busses between the controllers and sensors/actuators have to
be described. Actually, DAVINCI supports CAN and LIN.

In a third step of the applicaion development the software components have to be
mapped onto the available embedded control units. This defines precisely which signals
have to transferred via messages over the buses and which signals can be exchanged by
inter-process communication of the operating system. DAVINCI automatically incorpo-
rates appropriate decice driver code for the communication buses, as well as appropriate
system calls to the operating system. The priority of the messages and the transfer modes
and protocols are automatically determined. Also the firmware in order to access the sen-
sors and actuators is generated. It is worth to note that a sensor/actuator can be placed
on another controller, as on which the software component is mapped, which uses this
sensor/actuator.
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DAVINCI also automatically configures an OSEK compatible operating system for each
embedded control unit. DAVINCI incorporates a design methodology for closed dis-
tributed control applications for automotives. It is the goal of DAVINCI to find and to
define reusable and sharable software components. The communication matrix of the
components will be automatically generated. The application specific code for each em-
bedded control unit is also automatically generated. The bus communication and also
the access to sensors and actuators is generated. The operating system of each embed-
ded control unit is parameterized and configured in order to run the required tasks and
communication drivers.

Thus, DAVINCI shares the ideas of the automatic code generation and the reusability
with TEReCS. However, the automatic check of the timing requirements of a real-time
application is not done. Nevertheless, DAVINCI embodies a variety of diagnostic inter-
faces and functionalities, which allow to test the complete system or a component offline
on a PC or during run-time on the embedded control unit. But the configuration of the
operating and communication system is limited. The configuration aspect is far away
from the fine-grained approach that is used in TEReCS.

The REGIS system [100] is a distributed programming platform which adds protocol REGIS

stacks to communication endpoints. The system is more general and not only appli-
cable to real-time applications. It uses standard transport layers (like UDP/IP or ATM)
as the basis for data transportation. The basic (low-level) protocols and devices are still
managed by an operating system. Its key task is to describe a user-defined protocol stack
by a graphical or textual representation. This is done in the language DARWIN. The basic
idea is a strict hierarchical protocol stack through which data travel up- or downwards.
Each layer has a well-defined interface. REGIS distinguishes between provision and re-
quirement interfaces. Possible connections are only allowed between a provision and a
requirement interface. By this means, REGIS defines services that have providing and
requiring dependencies between protocol layers. The system is implemented in object-
oriented C++. One of the main advantages is the support for dynamic protocol stacks.
Layers in the hierarchy can be introduced or removed during the lifetime of a connec-
tion. This provides for dynamic binding of protocols during run-time. Predefined layers
exist for sequencing, time-out, fragmentation, etc., resulting in the support for reliable
protocols. Code reuse is supported on the layer level.

3.7 Contribution of the Chapter

This chapter has characterised the problem which is solved by configuration. The con-
figuration aspect is central to this thesis. Therefore, some of the advantages and disad-
vantages of the existing approaches have been discussed. The different principles for the
configuration have been introduced. This should help to select or adapt an appropriate
algorithm for the automatic configuration of operating systems and one communication
system. This chapter should also serve as a motivation for the idea that configuration is
appropriate for the construction of such systems.
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CHAPTER 4

Real-Time Analysis

. . . a sufficiently fast computer can satisfy the (timing) requirements,
hence real-time computing is equal to fast computing. This is wrong.

John A. Stankovic, 1998 [125, p. 4]

Subject to this thesis is the configuration of embedded real-time operating and commu-
nication systems. For this reason, “real-time” plays a crucial role for the correctness of
the system. It is essential that the overall configuration process considers the real-time
aspect. This chapter will give a brief introduction into the theory of real-time analysis. Af-
ter real-time is defined the basic approaches in the research for the analysis of the process
scheduling are presented. The main goal that is handled by the schedulability analysis
is the verification that all tasks will execute completely within a fixed and specified in-
terval. Different assumptions about the task set’s properties lead to various algorithms
that assure this timeliness execution. After the basic concepts of the process scheduling
are presented the main approaches that have been transfered to the communication case
are briefly explained. For a nearly complete overview about this topic also the server
approach for the process scheduling of sporadic tasks and the synchronisation problems
due to resource access constraints are briefly described.

It should be mentioned that this chapter only presents the algorithms and achieved re-
sults. The proofs for their correctness will not be given here. For these the interested
reader will be referred to the literature that is referenced in the appropriate sections.

4.1 Real-Time versus Non-Real-Time

Normal “visible” computers are equipped with an user interface (display, keyboard,
mouse, joystick, touch-screen, etc.) and mainly run applications for the user’s sake. Of-
ten, they present calculations or retrieval results or final layouts to the user according
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to some given inputs. In order to hold the response time for their reaction to the user’s
input as short as possible, their computing power has to scale accordingly to the prob-
lem’s complexity. The performance of such computers is measured by the execution time
in which they produce their results. In the case of serving multiple applications or user
requests in parallel (or semi-parallel) fairness and throughput become additionally im-
portant. For all of these reasons a lot of resources are given to such computers (many
CPUs, high clock frequencies, huge memory, high speed communication adapters, etc.).

These characteristics become less important in the field of real-time computing. Real-time
applications are mainly implemented for “embedded systems”. An embedded system typ-
ically consists of a controlling system and a controlled system [125, p. 1]. Often, the con-
trolling system is not visible. For example, the computers inside a washing machine or
the motor management for the engine inside an automobile are not directly visible to an
user of the controlled system. They are “embedded” into a technical system. Thus, the
controlled system can be seen as the environment for the computer. The controlling sys-
tem’s main purpose is the interaction with the controlled system. Thereby, it supports
the controlled system in achieving its prime function.

The interaction of the controlling system with its environment is done by observing and
manipulating. Information is collected via several attached sensors. Upon this informa-
tion a representation of the state of the environment is created inside the computer. Based
on this representation reactions to these, so-called stimuli, are calculated. These reactions
are manifested by generated output values, which are transmitted to the controlled sys-
tem via actuators. Therefore, such a controlling system is also called reactive system.

Often, the phases of reading information, calculating reactions and writing output values
is periodically done. Moreover, the controller is embedded into a closed loop, because its
output values have directly physical impact on the controlled system. Hence, the status of
the controlled system normally changes and new input values have to be read. In order
to create correct control signals it is imperative that the state of the controlled system,
as perceived by the sensors, is consistent with the actual state of the real environment.
This implies that the internal time representation of the controlling system is equal to the
external or “real” time of the environment.

Moreover, it is essential for real-time systems that their reactions take place within a
certain time period or before a certain time limit expires. Thus, an upper time bound for
their response time exists, which is called deadline.

Systems or applications can be distinguished in non-, soft-, firm- or hard-real-time systems.
They are classified by the utility that the output values have. The generation time of an
output value is thereby related to its deadline [25, p. 230-232]. In non-real-time systems
the utility stays constant over the time. In a soft real-time system the utility function stays
constant until the deadline is reached. Then, it decreases linear to zero. That means, af-
ter the deadline is reached, the results become more and more useless until they expire
totally. In a firm real-time system the utility function or usage of the values immediately
becomes zero after the deadline is reached. In a hard real-time system the utility function
goes immediately towards the negative infinity. This means that the profit or usage of the
values turns into impairment, damages or defects of the controlled system and, maybe, of
its environment. Often, this means that catastrophic consequences can result from miss-
ing a deadline. For instance, the system crashes or it seriously damages its environment
or even humans. In soft or firm systems it might be tolerable that a deadline is missed.
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Typical examples for hard-real-time systems can be found in transportation vehicles like
automobiles, trains, aircrafts and ships in their power-train control, engine control or in
systems like steer-by-wire and brake-by-wire. Mostly, malfunctions of these systems ob-
viously lead to severe problems, which are menacing even human’s lives. A malfunction
in real-time systems happens, when an actuator is not set in its predefined time window
accordingly to the required value due to timing problems in the calculation path.

The weather forecast or the decision on stock exchange orders can be seen as firm-real-
time systems. If their results are produced too late, then their usage might be worth
nothing. Moreover, it is widely accepted that this can happen, respectively that their
results can be wrong.

In the field of transmitting real-time video or audio data soft deadlines are defined. If the
data are received too late, then the display or their play back might be disturbed. This
results into jitters or artificial artifacts. But nevertheless, the information that is contained
in the stream is transmitted. Only the quality of the stream might be decreased. In this
context the term Quality of Service (QoS) is often used in order to specify the probability or
the estimated average amount of probably missed deadlines (and its standard deviation
and related values).

It is the primary goal of real-time systems that all tasks meet their deadlines. And it
should be mentioned clearly, that the fact how fast they execute is (nearly) of no interest;
but that they will never reach the deadline! Ditze [42, p. 10] stated:

“Timeliness is the dominating QoS requirement here, which fundamentally differs
from the aim of HPC applications. Performance and fairness properties are regarded
less important.”

Buttazzo summarizes the basic properties that real-time systems must have to support
critical applications [25, p. 12]:

Timeliness. Results have to be correct not only in their value but also in the time do-
main.

Design for peak load. Real-time systems must not collapse when they are subject to
peak load conditions, so they must be designed to manage all anticipated scenarios.

Predictability. To guarantee a minimum level of performance, the system must be able
to predict the consequences of any scheduling decision. If some task cannot be
guaranteed within its time constraints, the system must notify this fact in advance,
so that alternative actions can be planned in time to cope with the event.

Fault tolerance. Single hardware and software failures should not cause the system to
crash. Therefore, critical components of the real-time system have to be designed
fault tolerant.

Maintainability. The architecture of a real-time system should be designed according
to a modular structure to ensure that possible system modifications are easy to per-
form.

In order to achieve the timeliness, hard real-time systems are designed under the as-
sumption that everything is known what can happen and when it happens. This means
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everything is predictable. In fact, that all tasks will meet their deadlines under these
assumptions, will be predicted (verified or falsified). More in detail, this is done by a
so-called formal real-time analysis. In the past decades a lot of research have been done in
this field. Because the configurator, which had been developed in this thesis, deals with
real-time communication, also a simple real-time analysis approach has been integrated
into TEReCS (see page 133). For this reason in this chapter some basic and important
research results for the real-time analysis will briefly be presented.

The request for maintainability of a real-time system can easily be handled by configu-
ration. Configuration is an appropriate way in order to maintain all options of a cus-
tomisable system. But configuration and real-time analysis must be integrated. Both
they cannot be seen isolated. Real-time analysis should steer the configuration or the
configuration must qualify its solution by an analysis. This is ensured in TEReCS (see
Section 6.9142 and Section 6.10147).

4.1.1 Definition of Real-Time System

Because the configuration of a real-time system is the main topic of this thesis, a definition
of a real-time system will be given. In order to clarify the sketched picture of the previous
section a few definitions from researchers of the real-time community are presented here.
Often Young is cited, who defined a real-time system as

“ . . . any information processing activity or system which has to respond to externally
generated stimuli within a finite and specified period.” S. Young, 1982 [150]

A quite similar definition had been provided later by Randell:

“A real-time system is a system that is required to react to stimuli from the environ-
ment (including the passage of physical time) within time intervals dictated by the
environment.” B. Randell, 1995 [105]

These two definitions define a real-time system by its reactions to external stimuli and
– that is important – by the definition of a time bound (deadline), which defines when
this reaction has to take place after their appearance. Stankovic [122] and Kopetz got the
heart of these properties:

“A real-time computer system is a computer system in which the correctness of
the system behaviour depends not only on the logical results of the computations,
but also on the physical instant (deadline) at which these results are produced. ”
Hermann Kopetz, 1997 [72]

It should again be realised that the timeliness is an essential property of real-time systems.
Moreover, the system’s behaviour might be incorrect, if some deadlines are missed. Be-
cause timing faults may cause severe damages or injuries, the correctness of a real-time
system must be guaranteed. The deadlines define timing constraints, that the system must
satisfy. The correctness is formally verified by a so-called schedulability test. This test
checks, whether for all possible execution orders of the system’s processes and threads
the reactions will be before their deadlines. This test can only be done, if the worst-case
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execution time of the processes and threads, their communication delay and their resource
and precedence constraints are known in advance (are predictable). Resource constraints
arise because of mutual exclusion and precedence constraints arise because of output-to-
input dependencies. Normally, this test is done for static systems (i.e. changes of these
assumptions do not occur during execution) before their run-time (offline). If these as-
sumptions change during execution, because new processes have to be started or their
execution time or their resource and precedence constraints change, then this system is
known to be dynamic. Then, the so-called acceptance test for new processes or constraints
has to be done during run-time (online).

An overview about these schedulability and acceptance test will be given in Section 4.2
and Section 4.476.

4.2 Real-Time Analysis for Process Scheduling

In the past decades excellent results are produced in the area of real-time analysis for pro-
cess scheduling. Due to the fact that the configuration developed in this thesis also deals
with a complete customisable operating system and a lot of the results can –more or less–
directly applied to real-time communication, some of the basic and most important re-
sults will shortly be introduced in this chapter.

For predictable real-time systems, i.e. all of its properties are well known, various algorithms
had been developed in order to proof formally whether all tasks will meet their deadlines
under all circumstances. In detail this means that each process of the system will termi-
nate before its deadline. Therefore, the order of execution of each task is constrained in a
certain manner by the task scheduler. Nevertheless, a lot of remaining possible execution
orders exists. It is the task of a so-called schedulability test to verify or falsify upon the
given properties and constraints, if a concrete and given set of processes will meet their
deadlines or not. Input to this test are the task set and all of the system’s properties. The
test will mostly be done offline before the system is implemented. But if the system’s
properties will change during run-time or the task set will change, then the test must be
done online during execution in order to allow the change or not. Only if changes do
not lead to deadline misses, they can be accepted. Thus, the online test is often called
acceptance test.

As previously mentioned the execution order of the tasks is constrained. That means
that the scheduling of the task set underlies some restrictions. For this reason a variety of
scheduling algorithms had been developed. The scheduling algorithm and its schedula-
bility test should guarantee the timeliness execution of a given task set (feasible schedule).
This must formally be proofed. An algorithm and its schedulability test are only cor-
rect, if under all circumstances and for all possible task sets a feasible schedule will be
executed when the schedulability test accepts the task set.

This means that real-time analysis defines proofs on two levels: On the higher level the
scheduling algorithm and its schedulability test must be verified and on the second level
the formal schedulability or acceptance test is identifying only valid task sets. A schedul-
ing algorithm and its schedulability test are called to be optimal, if they accept the task
set when there exist at least one valid schedule so that all deadlines are met and the
scheduler will execute this schedule.
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4.2.1 Definitions

Before some analysis approaches for real-time systems will briefly be presented, we will
give some definitions of characteristics and parameters of a real-time computing sys-
tem. Most of these are timing constraints or properties because timeliness is the cru-
cial characteristic of a real-time system. Processes or tasks are the basic items, which
carry out the calculation paths of the implemented algorithms. Therefore, a set of tasks
Γ = {τi | i = 1, 2, . . . , n} is identified to be subject of the analysis.

The following properties of a task τi are of interest for the real-time analysis:

• Arrival time ai: is the time at which the task becomes ready for execution; it is also
referred as request time or release time indicated by ri.

• Computation time Ci: is the time necessary to the processor for executing the task
without preemption. The worst case execution time of a task is denoted by WCET .

• Deadline Di: is the time before a task should be completed.

• Start time si: is the time at which the task starts execution.

• Finishing time fi: is the time at which the task finishes execution.

• Response timeRi: Ri = fi−ri is the time, measured from the release time, at which
the task is finishing.

• Lateness Li: Li = fi − di represents the delay of a task completion with respect
to its deadline. Note, that if a task completes before its deadline, its lateness is
negative. Often scheduling algorithms try to minimize the lateness of each task or
the maximum lateness Lmax of all tasks.

• Tardiness or Exceeding timeEi: Ei = max(0, Li) is the time a task stays active after
its deadline.

• Laxity or Slack time Xi: Xi = di − ai − Ci is the maximum time a task can be
delayed on its activation to complete within its deadline.

In general, a task set can consist of tasks with different characteristics. Often, for the
analysis only specific characteristic are allowed in order to simplify the implementation
or the analysis itself. A task set can be classified by

Periodic or aperiodic tasks. The instances of a periodic task τi are regularly activated at
a constant rate. The interval Ti between two consecutive activations is the period
of the task. A periodic task set consists only of periodic tasks. An algorithm that
is implemented only (!) of periodic tasks is often called to be time-driven (see Sec-
tion 4.4.2.384). If there exists aperiodic tasks or interrupts (a special kind of a low-
level aperiodic task), then the system is modelled event-driven. Periodic tasks are
activated synchronously while aperiodic tasks have an asynchronous activation.

Independent tasks or tasks with resource or precedence constraints. Precedence con-
straints arise because of output-to-input dependencies between the tasks. That
means that a task τi cannot run before task τj , because τj produces an output, which
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is required as input for task τi. All dependencies of such a kind can be modelled in
a directed precedence graph. Resource constraints occur when tasks must have exclu-
sive access to resources, because they have to run critical sections in order to protect
the integrity of the resource. The mutual exclusion let tasks block other tasks so that
they cannot proceed with their calculations. If this happens, a task switch have to
be done, which has direct implications onto the schedule. If there exists no resource
or precedence constraints, then the tasks are said to be independent.

Preemptive or non-preemptive execution. A task τi can be assigned a priority pi. A
higher priority of a ready task means that the task must be executed before all other
lower-priority tasks that are ready. This implies that if a higher-priority task be-
comes ready while a lower-priority task is actually executed, then the lower-priority
task must be suspended and the execution of the higher-priority task must imme-
diately be continued. This fact is known as preemption. (In non-priority systems
preemption often denotes the fact that a task is suspended because its time slice
of being executed is expired. Then the next task is executed by a so-called Round-
Robin scheme.)

Static or dynamic priority assignments. The priorities of the tasks can be assigned stat-
ically so that they never change during the run-time of the system or they can be
modified while execution and are therefore dynamic.

Soft, firm or hard real-time tasks. The criticalness is a parameter related to the conse-
quences of missing a deadline (see page 62).

Deadline or period driven analysis. The deadlines define a border for the maximum ex-
ecution time of a task. Thus, the deadline relative to the last task activation must
obviously not be greater than the period of the task. But they can be identical. If
they are equal, then the analysis identifies the periods with the deadlines. Under
this assumption it is often enough to analyse the processor utilisation. Otherwise,
the response time or processor demand have to be analysed (see Table 4.274).

For a periodic task set the hyperperiod H can be defined as the least common multiple of the
periods of all tasks. This is important, because the execution order of all tasks (which is
named schedule) will obviously be repeated after a multiple of H .

These additional assumptions are often made for periodic tasks:

• All instances of a periodic task have the same worst case execution time Ci.

• All instances of a periodic task have the same deadline di relative to the beginning
of a period.

For a periodic task τi the phase Φi can be defined as the release time of the first instance
of the task. The task identifier τi,j , the release time ri,j , the absolute deadline di,j =
Φi + (j − 1)Ti + di, the start time si,j , and the finishing time fi,j are sometimes supplied
with an additional index j denoting the jth instance.

Very important for real-time systems is often the so-called absolute release jitter ARJi =
maxj(si,j − ri,j) −minj(si,j − ri,j). It is the maximum deviation of the start time among
all instances. The absolute finishing jitter AFJi = maxj(fi,j − ri,j)−minj(fi,j − ri,j) is the
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maximum deviation of the finishing time among all instances. These values must stay
constant over time and should be minimal for real-time control.

In this context, a task set is said to be feasible or schedulable if all tasks finish within their
deadlines:

∀ i = 1, 2, . . . , n ∀ j : fi,j ≤ di,j .

Optimality criterions or cost functions can be given, which define metrics for a perfor-
mance evaluation. These functions allow to compare the performance of different sched-
ules. According to one function a schedule can be optimal or not. Common optimality
criterions are (see [25, p. 41]):

• Average response time:

R̄i =
1
n

n∑

i=1

(fi − ri)

• Total completion time:
tc = max

i
(fi)−min

i
(ri)

• Weighted sum of completion times:

tw =
n∑

i=1

wifi

• Maximum lateness:
Lmax = max

i
(fi − di)

• Maximum number of late tasks:

Nlate =
n∑

i=1

miss(fi, di)

where

miss(fi, di) =

{
0 if fi ≤ di
1 otherwise

4.2.2 Approaches

All of the approaches for achieving a feasible schedule can be categorised by the proper-
ties that a given task set must fulfil, for which environment they are written, and which
property of the schedule they try to optimise. Graham et al. [54] proposed a notation for
such a classification. They classify all algorithms by using three fields α β γ (see [25,
p. 51]), that have the following meaning: The first field α describes the machine environ-
ment on which the task set has to be scheduled (uniprocessor, multiprocessor, distributed
architecture, and so on). The second field β describes the task and resource characteris-
tics (preemptive, independent, precedence constraints, synchronous activation, and so
on). The third field γ indicates the optimality criterion to be followed in the schedule.
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In the following paragraphs the most important scheduling algorithms for real-time sys-
tems are presented. Only the basic idea of the algorithm and a motivation for its correct-
ness will be given. For details and formal proofs we would like to refer to the literature
and especially to the book “Hard Real-Time Computing Systems” from Buttazzo [25].

In general, the algorithms can be classified by the prerequisites, which they demand.
The algorithms can primarily be classified whether they can handle periodic or aperi-
odic tasks. The first section describes algorithms for aperiodic tasks, the second section
algorithms for periodic tasks.

4.2.2.1 Aperiodic Task Sets

Earliest Due Date (EDD). This algorithm is also known as Jackson’s Algorithm. All
tasks for this algorithm have to arrive synchronously, that means at the same time, and
run only once, but can have different execution times and deadlines. Neither they must
have precedence constraints, nor they must use resources in exclusive mode. It is also
assumed that all tasks must run on a single processor. The algorithm proposed by Jack-
son [68] minimizes the maximum lateness. (Graham’s class: 1 sync Lmax)

By EDD the tasks have to be executed in the order of increasing deadlines. For proofing
the correctness assume that exchanging the order of two consecutive tasks in any sched-
ule will not increase the maximum lateness of the complete schedule. But the maximum
lateness of these two tasks will be smaller if they are ordered appropriately.

Earliest Deadline First (EDF). This algorithm had been proposed by Horn [63] and han-
dles tasks with arbitrary arrival times. This is especially the case when tasks arrive dy-
namically during execution of other tasks. It is very easy to find a feasible schedule, if
preemption is allowed. That means that the actual task can be suspended in order to exe-
cute a more important task. A feasible schedule and minimizing the maximum lateness
can be achieved if always the task with the earliest deadline is executed. Dertouzos [37]
showed that EDF is optimal in the sense of feasibility. (If there exists a feasible schedule,
then it will be found. Graham’s class: 1 asynch → preem Lmax → feasible) In fact, an
algorithm that minimizes the maximum lateness is also optimal in the sense of feasibility.
The contrary is not true.

The acceptance test for a task must certify that for all tasks its worst case finishing time
fi is before its deadline di. The worst case dynamic finishing time of task τi is equal to
the sum of the worst case dynamic finishing time of task τi−1 with next lower deadline
and the remaining worst case execution time ci(t) of task τi. (Thus, all tasks τi are always
ordered by increasing deadline: di < dj ⇔ i < j.) Notice, that ci(t) has an initial value
equal to its computation time Ci and can be updated whenever the task τi is preempted.

∀ i = 1, . . . , n : fi = fi−1 + ci(t) =
i∑

k=1

ck(t) ≤ di

Tree search. If the tasks arrive asynchronously but preemption is not allowed, then EDF
is no longer optimal. The problem of minimizing the maximum lateness and the problem
of finding a feasible schedule become NP-hard [71, 82, 83]. For this category branch-and-
bound algorithms search in all possible schedules for a feasible schedule. They perform
well in the average case but degrade to exponential complexity in the worst case. The
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structure of the search space is a tree, where in each level a new task is introduced into
the schedule. This results to a tree depth on n for n tasks and a tree with n! (n factorial)
leaves. The branch-and-bound technique proposed by Bratley et al. [20] stops searching
a path from the root to a leave, when adding a task to the actual schedule will lead to
a missed deadline. This reduces dramatically the search space but the algorithm has in
worst case still a complexity of O(n n!). (Graham’s class: 1 no preem feasible)

Spring. This algorithm had been created for the SPRING kernel [123, 124] designed at
the University of Massachusetts by Stankovic and Ramamritham. The algorithm belongs
also to the tree search algorithms, but it uses a heuristic function in order to determine
the task for extending the schedule. Thereby, only one path of the tree is evaluated, but
for each extension of the schedule the heuristic function have to be evaluated for all tasks.
Thus, the complexity reduces to O(n2), but it is not guaranteed that the algorithm will
find the feasible schedule if it exists (it is not optimal in finding).

The heuristic function in Spring can be set to the minimal arrival time (resulting into
scheduling after First Come First Served), the computation time (resulting into schedul-
ing after Shortest Job First) or the deadline (resulting into scheduling after EDF). In order
to handle additionally tasks with exclusively used resources the heuristic function can be
set to the minimum estimated starting time Test(i). Test is the maximum of the arrival time
and all of its earliest available resource times (EAT ) for all of its required resources. EAT
for a resource k is determined upon the already defined partial schedule. Additionally, in
Spring precedence constraints can be considered. Thus, the heuristic function only selects
a task, when all of its predecessors are already scheduled and executed.

Latest Deadline First (LDF). If the given task set has also precedence constraints, i.e.
tasks must be executed before other tasks, then it becomes more difficult to find a fea-
sible schedule. In general the problem becomes also NP-hard. But if we can assume that
all tasks arrive at the same time (synchronously), then Lawler [76] found the algorithm
called Latest Deadline First also to be optimal in minimizing the maximum lateness (Gra-
ham’s class: 1 prec, sync Lmax) and it can be computed in O(n2) time. LDF builds the
schedule from the tail to the head. Among all tasks with no successors or whose suc-
cessors have already been all selected, LDF selects the task with the latest deadline to be
scheduled last. That means at run-time the task which is inserted last into the schedule
will be executed first. The proof for the correctness is done similar to the one for the EDD
algorithm.

EDF∗. Chetto, Silly and Bouchentouf [27] found a very elegant way to schedule a task
set with precedence constraints with a modified EDF algorithm. Thus, the task set must
be preemptable (Graham’s class: 1 prec, preem Lmax). Their idea is to transform the
dependent task set into an independent task set by modifying the timing constraints.
In fact, if the timing constraints are met, then it must follow that also the precedence
constraints must by obeyed. In detail the minimal start time (or release time) and the
deadline for the tasks have to be modified. Assume, that task τi must precede task τj ,
then the start time of τj must not be before the end time of τi: rj = max(rj , ri + Ci).
Additionally, the task τi must finish before task τj . This can be achieved by modifying
the deadline of τi: di = min(di, dj − Cj). These modifications can both be computed in
O(n2) time. (The precedence graph must be traversed appropriately and for each task
the maximum, respectively minimum must be found.)
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For aperiodic task sets various algorithms had been given which are applicable under dif-
ferent terms of assumptions on the task set (synchronous, preemptive, precedence con-
straints). The algorithms also differ in their computational complexity. A summary of
these algorithms can be found in Table 4.1.

sync. activation
preemptive

async. activation
non-preemptive
async. activation

EDD
(Jackson ’55)

EDF
(Horn ’74)

Tree search
(Bratley ’71)

independent O(n log n) O(n2) O(n n!)

Optimal Optimal Optimal

LDF
(Lawler ’73)

EDF∗

(Chetto et al. ’90)

Spring
(Stankovic &

Ramamritham ’87)
precedence
constraints

O(n2) O(n2) O(n2)

Optimal Optimal Heuristic

Tab. 4.1: Scheduling algorithms for aperiodic tasks. (see [25, p. 75])

4.2.2.2 Periodic Task Sets

The basis for the schedulability test in the periodic case is the processor utilisation factor U .
Since Ci/Ti is the fraction of the processor time spent in executing task τi, the utilisation
factor for n tasks as originally given by Liu and Layland in 1973 is defined by the equation

U =
n∑

i=1

Ci
Ti

[85].

Obviously, any task set that has an utilisation factor greater than one is infeasible, because
the utilisation factor is a measure of the computational load of the processor and that can-
not exceed 100%. On the other hand for each task set Γ and for each scheduling algorithm
A exists another upper bound Uub (0 < Uub ≤ 1) for which the task set is schedulable and
any increase in the utilisation of any task will make the schedule infeasible. With such
an Uub(Γ, A) the set Γ is said to fully utilise the processor. For a given scheduling algo-
rithm A, the least upper bound Ulub(A) of the processor utilisation factor is defined as the
minimum of all Uub(Γ, A) for all task sets Γ, which fully utilise the processor.

That means that a task set Γ is certainly feasibly schedulable if its processor utilisation
factor is below the least upper bound [U(Γ, A) ≤ Ulub(A)], but it need not to be schedu-
lable if it is greater as the least upper bound [Ulub(A) < U(Γ, A) ≤ 1], and it is absolutely
not schedulable if it is greater than one [U(Γ, A) > 1].

Various algorithms had been defined for different assumptions made for the task set.
Each algorithm A defines its own least upper bound Ulub(A). In the following the most
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important and widely used algorithms for aperiodic task scheduling will be shortly pre-
sented.

Rate Monotonic (RM). This algorithm assigns priorities to the tasks. Thereby, tasks with
shorter periods will be given higher priorities. Since periods are constant, RM assigns the
priorities statically before run-time and the priorities will never change. RM is intrinsi-
cally preemptive. Thus, an actually running task is preempted by a newly arriving task
with shorter period. In 1973, Liu and Layland [85] showed that RM is optimal among all
fixed-priority algorithms. That means that no other fixed-priority algorithm can feasibly
schedule a task set, which cannot be scheduled by RM. They also derived the least upper
bound for the processor utilisation factor. A generic task set of n tasks has

Ulub(Γn, RM) = n(21/n − 1).

For any task set with an unlimited amount of tasks this is often also given as

Ulub(Γ, RM) = lim
n→∞n(21/n − 1) = ln 2.

A detailed derivation of this can be –of course– found in [85] and in [25, p. 82]. It should
clearly be mentioned here, that this schedulability condition is sufficient to guarantee the
feasibility of a task set, but it is not necessary. That is, if the utilisation factor is between
Ulub and 1, then nothing can be said about the feasibility of the set. However, since RM
is optimal an improvement can only be achieved by using dynamic-priority assignment
algorithms.

Earliest Deadline First (EDF). The EDF algorithm –as already presented in Sec-
tion 4.2.2.169– is also applicable for periodic tasks. EDF selects tasks according to their ab-
solute deadline, which means that the task with an earlier deadline will be executed first.
Thus, the priority will be assigned dynamically during execution to the tasks. Thereby,
EDF is intrinsically preemptive. The optimality criterion also holds for periodic tasks.
Moreover, EDF can be used to schedule aperiodic and periodic tasks at the same time.
Based on the results achieved by Liu and Layland [85], Spuri, Buttazzo, and Sensini
showed in [119] and [25, p. 93] that the least upper bound for the processor utilisation
factor under EDF is one:

Ulub(Γn, EDF ) = 1.

Deadline Monotonic (DM). The Deadline Monotonic priority assignment algorithm
weakens the “period equals deadline” constraint. Each task τi of the task set may have
an arbitrary deadline Di ≤ Ti. But Di stays constant for all instances of τi. According to
the DM algorithm, each task is assigned a priority inversely proportional to its deadline.
Since deadlines are constant, DM is also a fixed-priority assignment algorithm. In 1982,
Leung and Whitehead [84] proposed this algorithm as an extension for the RM. They
showed in a similar way compared to RM, that DM is also optimal for fixed-priorities and
deadlines lower than their periods. The sufficient schedulability test for RM can be ap-
plied for DM, if the periods are replaced by their deadlines:

∑n
i=1(Ci/Di) ≤ n(21/n− 1).

However, such a test is not optimal as the workload on the processor is overestimated.
A less pessimistic and also sufficient schedulability test calculates the maximum inter-
ference Ii of higher priority tasks on the lower priority task τi. Assuming that the tasks
are ordered by increasing relative deadlines (i < j ⇔ Di < Dj), then this interference
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is Ii =
∑i−1
j=1dDi/Tje Cj . The schedulability test has to assure for all tasks that the fin-

ishing time is before the deadline: ∀i : 1 ≤ i ≤ n Ri = Ci + Ii ≤ Di. This test
assures that a higher prioritised task τj interferes task τi in every of its periods Tj . But
this might not be true, if the execution time of task τi is so small, that its finishing time or
response time Ri < (dDi/Tje − 1)Tj . That means, if at least in the last period of τj , which
covers the deadline of τi, task τj does not interfere (preempt) τi, then the interference is
overestimated. That means that also this test is only sufficient but not necessary.

In 1992/1993, Audsley et al. [5, 4] proposed a sufficient and necessary schedulability test
for DM. They propose to use the response time Ri of task τi instead its deadline Di for
the calculation of the number of interferences. Thus the equation, which is to be checked
for all tasks is

∀i : 1 ≤ i ≤ n Ri = Ci + Ii = Ci +
i−1∑

j=1

⌈
Ri
Tj

⌉
Cj ≤ Di.

The problem in calculating the response time is that Ri appears on both sides of the
equation. Fortunately, Ri can be computed stepwise from the first to the last interference
[25, p. 101]:

schedulability test(DM) :=





R0
i = Ci, I

−1
i = 0

do

Rk+1
i = Iki + Ci with Iki =

∑i−1
j=1

⌈
Rki
Tj

⌉
Cj

until Ik+1
i + Ci ≥ Rk+1

i

Rk+1
i ≤ Di ⇔ feasibility

Moreover, in the calculation of this recurrent formula the task set is not feasible, if ∃ k :
Rki > Di.

EDF∗. Also EDF with its dynamic-priority assignment approach is again applicable to
periodic task scheduling when deadlines are less to periods. Only the schedulability test
has to be adapted. Baruah, Rosier, and Howell [8] proposed in 1990 to use the processor
demand criterion. The processor demand of any task set during the interval [0, L] is defined
as the cumulative processing time CP (0, L) that is required by tasks with deadlines less
or equal to L: CP (0, L) =

∑n
i=1bL/TicCi. In 1993, Jeffay and Stone [69] stated that a set of

periodic tasks with deadlines equal to periods is schedulable under EDF, if and only if

∀L ≥ 0 : L ≥
n∑

i=1

⌊
L

Ti

⌋
Ci.

It should be noticed that it suffices to test the equation only for values ofL equal to release
times less than the hyperperiod H , because ∀L ∈ [rk, rk+1), bL/Tic = brk/Tic. Moreover,
it is enough to test the equation for values of L for release times less or equal to the busy
periodBP = min{L W (L) = L}withW (L) =

∑n
i=1dL/TieCi. During the busy period the

processor is fully utilised. It ends either with an idle time, or with the start of a release of
a new periodic instance.

Baruah, Rosier, and Howell [8] showed that for periodic tasks with deadlines less than
periods the processor demand can still be used, if considered that the last interval cov-
ering L must be taken into account, if the deadline is before L (Di ≤ L, see Figure 4.1).
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2

Fig. 4.1: Processor demand when deadlines are less than periods (from [25, p. 106]).

Thus, if D = {di,k di,k = kTi + Di, di,k ≤ min(BP ,H), 1 ≤ i ≤ n, k ≥ 1}, then a set of
periodic tasks with deadlines less than periods is schedulable by EDF if and only if

∀L ∈ D L ≥
n∑

i=1

(⌊
L−Di

Ti

⌋
+ 1

)
Ci.

A summary of scheduling algorithms for periodic tasks can be found in Table 4.2. No-
tice, that the algorithms for deadlines equal to periods can be solved by the processor
utilisation approach and therefore, they can be computed in linear time (O(n)), whereas
the processor demand approach for task sets with deadlines less than periods requires
pseudo-polynomial time.

Di = Ti Di ≤ Ti

RM DM

Static
priority Processor utilisation approach Response time approach

U ≤ n (21/n − 1) ∀ i : Ri = Ci +
i−1∑
j=1

⌈
Ri
Tj

⌉
Cj ≤ Di

EDF EDF∗

Dynamic
priority Processor utilisation approach Processor demand approach

U ≤ 1 ∀L ≥ 0 L ≥
n∑
i=1

(⌊
L−Di
Ti

⌋
+ 1

)
Ci

Tab. 4.2: Summary of guarantee tests for periodic tasks. (see [25, p. 107])

4.3 Servers for Aperiodic Tasks

In most real-time applications periodic and aperiodic tasks have to be executed in parallel
(or quasi-parallel). Typically, the periodic tasks are time-driven and underlie hard real-
time constraints, whereas the aperiodic tasks are event-driven and have soft or firm and
rarely hard real-time constraints. The main objective of the real-time operating system is
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to guarantee the hard real-time tasks and to provide a good average response time and
minimal deadline misses for soft and firm real-time tasks.

Often, aperiodic tasks are characterised by a minimum inter-arrival time, which defines
a kind of maximum probable period. For this reason they are also called sporadic tasks.
In the scheduling theory aperiodic tasks are handled in another way than periodic tasks.
Whereas in the previous sections some basic techniques for hard real-time scheduling had
been discussed, in this section some principles for real-time scheduling with combined
periodic and aperiodic task sets will be presented.

The so-called server technique is an appropriate approach to handle aperiodic real-time
tasks in the case when a periodic scenario is assumed. A specific periodic task is re-
sponsible to service all pending aperiodic requests. This special task is called server. The
server approach tries to optimise the processor utilisation bound and tries to minimize
the response time for aperiodic requests in contrast to non-server techniques.

Background Scheduling. In Background Scheduling soft aperiodic tasks are handled in
the background behind periodic tasks. They will be executed after all hard real-time
tasks had run and still some processor time is left. Therefore, aperiodic real-time tasks
will get assigned a priority just lower than the priority of any periodic real-time task.

Fixed Priority Servers. A representative for a Fixed Priority Server is the so-called Polling
Server (PS). The server task has (as any periodic task) a period Ts and a maximum com-
putation time Cs. The computation time is called capacity of the server. The server is
scheduled like any other periodic real-time task, not necessarily at lowest priority. The
schedulability test for a combination of PS under RM can be guaranteed if

Up + Us =
n∑

i=1

Ci
Ti

+
Cs
Ts
≤ Ulub(n+ 1) = (n+ 1)(21/(n+1) − 1) .

The finishing time fa of an aperiodic request τa = (ra, Ca, Da) can be computed as

fa =
⌈
ra
Ts

⌉
Ts +

⌊
Ca
Cs

⌋
Ts + (Ca −

⌊
Ca
Cs

⌋
Cs) .

This results into a schedulability test for aperiodic tasks: fa ≤ ra +Da [25, p. 111 ff.].

Another Fixed Priority Server is the Deferrable Server (DS) proposed by Lehoczky, Sha, and
Strosnider [79, 136]. Unlike the Polling Server, DS preserves its capacity until the end of
its period. Only, when aperiodic tasks are served, the capacity is decreased accordingly.
With the beginning of each server’s period, the capacity is replenished at its full value.
Thus, future aperiodic requests can be served until the capacity is exhausted during the
whole period of the server. The schedulability test for a combination of DS under RM can
be guaranteed if

Up ≤ ln
(
Us + 2
2Us + 1

)
.

Note, that if Us < 0.4 Up, then the RM bound (ln 2) gets worser, but for Us ≥ 0.4 the
presence of DS improves the Ulub(DS) = Us+ln( Us+2

2Us+1) (see [25, p. 119 ff.]). The finishing
time of an aperiodic request under DS can be computed to

fa =

{
ra + Ca if Ca ≤ cs(t)⌈
ra
Ts

⌉
Ts +

⌊
Ca−∆a
Cs

⌋
Ts + (Ca −∆a −

⌊
Ca−∆a
Cs

⌋
Cs) otherwise,
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where ∆a = min[cs(t), (
⌈
ra
Ts

⌉
Ts − ra)] [25, p. 116 ff.].

Priority Exchange Server. The Priority Exchange Server (PE) had been introduced in 1987,
by Lehoczky, Sha, and Strosnider [79]. The PE algorithm also uses a periodic server
task (usually at a high priority) for servicing aperiodic requests. The capacity of the
server is not preserved at the server’s priority while no aperiodic request are pending.
However, the capacity is divided into capacities on all priority levels. At the beginning
of the server’s period its capacity is replenished at its full value. If no aperiodic requests
are pending and a periodic task have to be executed, then the capacity is borrowed or
transfered to the capacity of the periodic task’s level. Otherwise, (that means an aperiodic
request can be executed, due to having capacity on any level, or the processor is idle) the
capacity degrades linear from level to level. By this, the server’s priority is virtually
exchanged with a scheduled periodic task. By this rule, the capacity is preserved at the
periodic task’s priority level and can be consumed later if required. The capacity is only
consumed by idle times or serving aperiodic requests. The least upper bound for the
processor utilisation factor, when PE is combined with RM for the periodic tasks, is

Up ≤ ln
(

2
Us + 1

)
[25, p. 125 ff.].

Other examples for servers are the Sporadic Server (SS) [116] and the Slack Stealing Method
[81]. Appropriate adaptations of all these Fixed Priority Servers to the dynamic case,
where the periodic tasks are scheduled using EDF, are made by Buttazzo et al. [117, 118].
The Dynamic Priority Servers are the Dynamic Priority Exchange Server (DPE), the Dynamic
Sporadic Server (DSS), the Total Bandwidth Server (TBS) and the Earliest Deadline Late Server
(EDL).

4.4 Real-Time Analysis for Communication

When we have a distributed system, tasks run on different processors. They often com-
municate via communications links. Tasks will send and receive data from other tasks.
This defines in/out dependencies between the tasks. These in/out dependencies can be
modelled by precedence constraints. But, in fact, a receiving task can execute until it re-
quires input from another task. If this input is not present, the task will be blocked. This
is the normal case. It is also possible that the receiving task continues execution, although
input data are not present. This is called asynchronous receive, whereas the normal one is
called synchronous receive. Also the sending of data can be asynchronous or synchronous.
Here, the normal case is the asynchronous case, where the sender task continues with its
execution directly after the data are sent. In the synchronous case the sender task will
be blocked until the receiver task has received the data. Therefore, an acknowledgement
has to be sent back. The synchronous send and the synchronous receive define a so-called
rendezvous.

Because the synchronous send and the asynchronous receive play a minor role for com-
munications, often only the synchronous receive is investigated for real-time analysis.
The early receive, which means that the data are not present, causes delays for the re-
ceiver task due to the blocking. It is the task of the real-time analysis for communication
to determine the maximum blocking delay. This maximum blocking delay has then to be
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incorporated into the schedulability analysis for the task set. The maximum blocking de-
lay contains the message transfer time. For this reason, the message transfer times must
be calculated. Additionally, the message transfer exclusively occupies the communica-
tion link during its transfer. Thus, the scheduling of the message transfers onto the links
has to be analysed.

In order to define a model for the real-time analysis for communications a lot of concepts
for the task scheduling are re-used. The main idea is to replace the task characteristics by
communication characteristics of the message transfer.

4.4.1 Definitions

Before we present some analysis concepts for the real-time communication, a few defini-
tions have to be given in order to clarify their meaning.

Communication. Communication means the exchange of information. In the case of pro-
cess communication data will be sent from one sender task to one receiver task. This
will be an uni-directional communication. If the sender and receiver have to setup
a connection between each other before they communicate, then they establish a
so-called channel. Communication via channels is indispensable for real-time com-
munication, because resources have to be reserved and the schedulability have to
be verified. In contrast to channel-oriented communication, in packet-oriented commu-
nication a so-called datagram is sent from the sender to the receiver. The datagrams
are often delivered only by a best-effort strategy. If the sender sends the data to
multiple receivers, we speak from multi-cast communication. If the data is sent to all
other possible receivers, then this is a broadcast. It is often assumed that the task set
is periodic and, therefore, also the messages will periodically be sent.

Message. The message is the portion of information, which have to be sent. For real-
time communication it is essential that a message has a limited size, as tasks have a
worst-case execution time.

Packet. The messages have to be enriched by protocol information (so-called headers and
footers). A message plus this protocol information can result into one or more pack-
ets. If the physical size of the packet, which can be delivered at once over a physical
connection, is limited, then a message must be split into several packets. This is
known as fragmentation. The protocol is responsible to fragment the message at the
sender’s site and to de-fragment the packets accordingly at the receiver’s site.

Link. Link refers to the physical connection between to nodes of the communication
network. This can be a point-to-point connection, like a serial RS-232 connection, a
bus like an Ethernet line or a backplane, or it can be a ring, like a Token Ring as
it used in the FDDI. When a packet has to cross several links until it reaches its
receiver (or its destination), we speak from a multi-hop connection.

Path. The sequence of links that a packet has to take for a (multi-hop) connection is
named the path or route of the packet.

Network. The processor nodes together with their physical communication links form
the communication network. It can be described by a graph. Here, the nodes represent
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the processors and the links. An edge of the graph represents a physical connection
of a processor to a link. Therefore, the graph is bi-partide. This graph then defines
the topology of the network.

Routing. The path that a packet takes is determined by the routing. A routing algorithm
calculates this path. The routing table on each processor node contains information
for the routing algorithm in order to determine the route. The routing algorithm
often tries to calculate an optimal route according to, for example, the shortest-path,
the fastest connection, or an optimal load distribution for every link, etc.

The following properties of an uni-directional communication Vk are of interest for the
real-time analysis:

• Sending task τsk: is the task which sends the message

• Receiving task τek: is the task which receives the message

• Sending node Ssk: is the node from which the message is sent

• Receiving node Sek: is the node on which the message is received

• Size Mk: is the maximum size of the message

• Period Pk: is the interval between two consecutive message transfers and is also
called minimal message interarrival time

• Deadline Dk: defines the maximum delay of the message, that is allowed

• Worst-case response time Rk or End-to-end delay Ek: is the maximum time be-
tween the send event and when the receiver is unblocked

• Jitter Jk: is the maximum difference between any two response times

4.4.2 Approaches

In the following sections two basic and outstanding approaches for applying real-time
analysis to communication systems are presented. The first approach uses the utilisation
factor, whereas the second approach analyses the response times. As a third approach
the Time-triggered Protocol with its reservation mechanism will briefly be described.

4.4.2.1 Utilisation Approach

In 1994, Sathaye and Strosnider [112] proposed a framework about reasoning of the tim-
ing correctness of messages in a network. Therefore, they defined a communication request
Vk as a tuple:

Vk = (Ssk, Sek,Mk, Pk, Ek, Jk)

They applied the generic schedulability test approach, which checks that the utilisation is
not exceeding 100%, to a communication network. They directly identified the communi-
cation requests to be the tasks. The computation times has been replaced by the message
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size. With this assumptions they defined, that a set of network requests is transmission-
schedulable (t-schedulability), if and only if the maximum saturation of the networkSmax
is not greater than one:

Smax ≤ 1 ⇒ t-schedulability.

The maximum saturation is defined as the maximum over all saturations Si, which each
communication request produces:

Smax = max{Si | 1 ≤ i ≤ n}.

The saturation of a communication request is thereby defined as the minimum of all
cumulative workloads Wi(t) during the interval (0, Di] normalised by time:

Si = min
0<t≤Di

Wi(t)
t

The workload is defined as

Wi(t) =
i∑

j=1

(Cj +Ovhj)

⌈
t

Tj

⌉
+Ovhsysi(t) +Bi , where

Cj is the time for which the network is occupied due to the message size.
Ovhj is the time for which the network is occupied due to the transmission of extra

headers, trailers, or acknowledgements. Assuming that messages have to
be split into several packets and an extra acknowledgement message in one
packet has to be transmitted before a new message can be sent, the packet
overhead Ovhj is defined as follows:

Ovhj = (Ch + Ct + Cack)
⌈

Cj
Pmax − (Ch + Ct)

⌉
where

Cx is the time spent for transmitting the message, header, trailer or ac-
knowledgement, respectively and

Pmax is the maximum size for a packet on the link.

Ovhsysi(t) captures communication request independent system overhead, like media
access delays and overhead because of unsynchronised clocks (If the desti-
nation station’s clock is ahead, then the message must be delivered with a
shortened deadline):

Ovhsysi = OMAC +Oclock

Bi is the time the communication request Vi is delayed, because of the actual
transmission of a (possibly) lower priority packet due to non-preemption of
packets on the network (priority inversion problem).

Tj is the period of consecutive message transmissions.

Sathaye and Strosnider define Smax as the “degree of schedulable saturation” metric.
It can be observed that Smax is monotonically non-decreasing, if either the number of
connections increase or each Ci or Ovhsysi or Bi increases. For this reason 1 − Smax can
be considered to be the amount of high-priority work that can be added to the system per
unit time without missing a deadline.
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For a network consisting only of a single link, the above presented “schedulable satu-
ration” metric can directly be applied. But additionally, Sathaye and Strosnider applied
this uniform schedulability framework to three different network types by modifying
the above described parameters. These networks are a dual link network, a token ring
network and a multi hop network.

Node 1 Node 2 Node n

Slot

Generator A

Slot

Generator B

...

Fig. 4.2: The DQDB network topology.

4.4.2.1.1 IEEE 802.6 DQDB The IEEE 802.6 DQDB is a dual link network, where all
stations are arranged in a line with two slot generators at the ends and the links are work-
ing in opposite directions (see Figure 4.2). No trailers or acknowledgments are required.
But for transmitting a message a slot has to be reserved by requiring a free slot from the
appropriate slot generator. A request has to be sent to the slot generator and the slot has
to arrive at the station before the message can be sent. This results into a delay of 2di, if
di is the time for transmitting a slot between station i and the appropriate slot generator.
Preemption is originally not defined in the standard, but can be achieved, because each
station reads from the incoming link and sends the data forward on the outgoing link.
Thereby, the station is able to replace the incoming packet by a new one. Thus, Ovhj ,
Ovhsysi and Bi can be defined as follows:

Ovhj = Ch

⌈
Cj

Pmax − Ch

⌉

Ovhsysi = 2di
Bi = 0

4.4.2.1.2 IEEE 802.5 FDDI The IEEE 802.5 FDDI is a Token Ring (see Figure 4.3) where
for each station k a certain bandwidth Hk is allocated. The bandwidth is normally calcu-
lated as

Hk =
Uk
Unet

(TTRT −WT ),

where Uk is the network utilisation of station k and Unet =
∑n
i=1 Ui is the network utilisa-

tion. TTRT is the target token rotation time and WT is the walk time (the token rotation
time when the network is idle). A trailer and acknowledgment before sending a new
message is not required. Assuming that a message cannot be sent while not having the
token and while a packet is actually be transmitted (no preemption), the parameters have
to be defined as follows:

Ovhkj = Ckh

⌈
Ckj

P kmax − Ckh

⌉

Ovhksysi = (TTRT −Hk)
⌈

t

TTRT

⌉
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Node 1
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Node 3Node 4
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Fig. 4.3: The FDDI token ring topology.

Bk
i = P kmax

Due to the fact, that each station can have a different Hk a new index k for the station is
introduced. Therefore, the maximum saturation Smax must be calculated over the maxi-
mum saturations Skmax of all stations, which are calculated over the saturations Ski of each
message transmitted from this station.

...

Bus

Peer-To-Peer Link

Network Node

Ring

Fig. 4.4: An example for a multi-hop network.

4.4.2.1.3 Multi Hop Network In a multi hop network messages have to be routed
through several stations from the source to the destination (see Figure 4.4). Each link that
the message has to follow is named hop. The sequence of links (or stations) from the
source to the destination is named path. The transmission schedulability approach must
be adapted by assuring that for the paths of all messages the saturation of each hop of
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the path P is not grater than one:

∀j ∈ P ∀i = 1, 2, . . . , nj min
0<t≤Di,j

Wi,j(t)
t

≤ 1,

where j refers to a link on the path and nj is the number of connections on that link.
There exists only a small problem: When messages are scheduled on multiple links in
series, they may arrive at the next link before their deadline on the current link. If the
messages are scheduled upon their arrival, they lose their periodic characteristics. This
undesirable effect can be prevented, if messages arriving in a given period become eli-
gible for transmission only at the beginning of the next period. This is known as double
buffering or stop-and-go queuing [53]. This is often implemented by having an in-queue
and an out-queue. Messages arriving at a station are inserted into the in-queue. Mes-
sages that have to be transmitted are taken from the out-queue. Every time a period is
over, the appropriate messages in the in-queue are transfered into the out-queue. This
procedure is known as promotion. The time between two promotions of message i on link
j of the path at station k is Ei,j + Ti,jdφpropj/T ki,je. The promotion at each station on the
path increases the end-to-end delay for the message. The end-to-end delay Ei for the
complete message transfer on the path is not only the sum of all promotion delays on
each station, but must be calculated as:

Ei = hkE
k
i,j +

hk∑

j=1

T ki,j

⌈
φpropj
T ki,j

⌉
,

where hk is the number of hops on the path and φpropj is the propagation delay on link j.
Thus, it should be additionally checked, whether

Ei ≤ Di.

4.4.2.2 Response Time Approach

In 1995, Tindell, Burns, and Wellings [140] considered m messages, which have to be
separated into Cm packets of constant size in each period. They tried to bound the time
between the arrival of the sender task and the time at which the destination task is un-
blocked. This time is said to be the worst-case response time Rm. They separated this time
into different timing intervals:

Rm = Jm +Qm + ρtrans + φprop + τnotif ,

where

Jm is the generation delay, which is equal to the WCET of the sending task.
Qm is the queuing delay, which is caused by previous transmission of former packets.

ρtrans is the transmission delay for one packet.
φprop is the electrical propagation delay on the physical line1.
τnotif is the notification delay until the receiving task really is consuming the message.

1 The electrical propagation delay may be small for a local area network, or may be very large if, say, a
satellite link is part of the network.
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The transmission, propagation and notification delay are assumed to be constant for each
message and are worst-case estimations depending on the operating system and the com-
munication link and protocol.

Because the queuing delay can change in every period, Tindel, Burns, and Wellings de-
fined the queuing delay Qm,q,k and therefore also the worst-case response time Rm,k of
the k-th packet of message m as the maximum over all q-th multiples of the period Tm:

Rm,k = max
q∈IN0

(Jm + wm,q,k − qTm + ρtrans + φprop + τnotif )

Hereby, wm,q,k is the width of the level i busy period [80]. The busy period is defined as

wm,q,k = qCmρ+ (k − 1)ρ+Bm +


 ∑

∀h∈hp(m)∩ out(p)
Ih


 ρ+

⌈
wm,q,k
Ttoken

⌉
(Ttoken −Hp)

In this equation ρ is the worst-case transmission time for one packet and Bm is the delay
caused by priority inversion2 and Ih is the interference (i.e. total preemption) by mes-
sages with higher priority than m (hp(m)) and sent from the same processor p (out(p)).
The interference is thereby defined as

Ih =
⌈
wm,q + Jh

Th

⌉
Ch with wm,q = wm,q,Cm

Obviously, the worst-case response time of the message is then equal to the worst-case
response time of the last packet of the message: Rm = Rm,Cm .

Tindel, Burns, and Wellings state that the calculation of the busy period wm,q,k can be
done by the following and simple recurrent formula:

w0
m,q,k = 0

wn+1
m,q,k = wm,q,k(wnm,q,k)

This formula should converge, if the utilisation is not greater than 100%:

wm,q,k = lim
n→∞w

n
m,q,k

The above given formulas can be applied not only to token protocols, but also to priority
busses (see Figure 4.5), like for example CAN3. For priority busses set Ttoken = Hp, so
that there is no delay caused by not having a token.

Node 1 Node 2 Node 3 Node n...

Fig. 4.5: The topology of a communication bus, like CAN. A message that is sent by one
station can be received simultaneously by all stations.

For the schedulability test it must be checked, if for all messages the worst-case response
time is lower or equal than the maximum end-to-end delay:

∀i = 1, 2, . . . , n : Ri ≤ Di

2 The formula can be simplified if assumed that Bm = ρ.
3 Controller Area Network, see [67]
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4.4.2.3 Time-Triggered Approach

One of the main problems that causes delays for the communication is the media access.
When a packet is already transfered via the link, another packet cannot be transmitted
simultaneously. However, if this is still done, the transmission of both packets will be
corrupted. For this reason, a variety of media access protocols has been developed. A
possible categorisation can be the one that is presented in Table 4.3.

Time-multiplexed Frequency-

Isochronous Asynchronous multiplexed

Controlled Accidental

Centralised/Master De-centralised/Ring CSMA CD Repetition

Single Multiple Logical Physical Priority

ATM USB VME Token bus FDDI CAN Ethernet ALOA Wireless
TTP Bitbus Profibus Interbus VAN Wireless

DQDB J1850

Tab. 4.3: Possible categorisation of media access protocols and examples for their imple-
mentation.

For the real-time communication mainly three media access protocols are used: isochronous
time-multiplexed protocols, token-based protocols, and priority-based protocols. The last two
ones have been briefly described in the previous sections. The time-multiplexed TDMA
(Time Devision Multiple Access) protocols grant each communication request or station one
or more time slots, when they are allowed to send messages. For this reason, the complete
available time is divided into intervals (time slots). Often they are of equal size. The
assignment of time slots to messages will be done during a reservation phase.

Often the slot assignment is done statically before the run-time of the system. Thus, the
times when communication can occur is pre-defined. This can be extended to the com-
plete execution model: Also the processes are scheduled by such a fixed assignment. The
schedule is fixed and pre-defined. The execution order and the activation times for each
task must be calculated in advance and will not change during execution. Thus, the sys-
tem behaves totally deterministic and always in the same way. A famous representative
for this technique is the Time-triggered Protocol (TTP), which had been investigated in de-
tail and implemented at the university of Vienna by Prof. Kopetz et al. [72]. Because
every action of the system is pre-defined and happens during a certain time interval,
these systems are sayed to be time-driven systems. On the contrary, systems that re-act on
events are known as event-driven systems.

The MARS4 operating system [36, 73, 74] implements the TTP approach. The commu-MARS
nication as well as the process scheduling are time-triggered. Thus, priorities are not re-
quired. The complete time slot assignment is calculated offline during the design-phase
of the system. For the communication is assumed that all stations are attached to one bus
(Ethernet or CAN). The communication in MARS is based on state messages. State mes-
sages represent a kind of shared and distributed variable. Its value can be overwritten

4 MAintainable Real-time System
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from a remote site during its pre-defined time slot. But only the actual state, which rep-
resents the last write, can be read. The update of the states happens periodically. MARS
does not offer synchronisation primitives like semaphores or a rendesvouz principle. In
MARS synchronisation as well as precedence constraints must be considered during the
time slot assignment.

One of the biggest drawbacks of this approach is the request for a global clock synchroni-
sation: Each station must identify the same time slot at the same time. Additionally, those
systems are failure-prone during overload situations. Slightly shifts or moves, when spe-
cific event handlings are required, are not possible. In this sense token-based systems are
more robust.

Often the periodical and static appearance of message transfers is not found in the reality.
Here, often only a certain bandwidth is required, which must be mapped onto the TDMA
scheme. Cruz and Turner developed a so-called leaky bucket model [77], which is used,
for instance, in the ATM (Asynchronous Transfer Mode) protocol [111] in order to weaken
the synchronous TDMA scheme to an asynchronous bandwidth allocation scheme.

4.5 Resource Constraints

All the previously described scheduling algorithms assume that the tasks are indepen-
dent from each other. But in most cases this is wrong. Often, tasks claim for exclusive
access to resources. Semaphores [21, 38, 98] or monitors [137] are used to protect such a
critical section of the tasks, when it accesses the shared resource in exclusive mode. For
this reason a task must be blocked, if the required resource is already used by another
task. But this leads to delays of the task, which extend the finishing time. If it is known in
advance, which task claims for which resource, then the blocking times Bi for each task
can be computed. But there exists another problem that is more severe:

The Priority Inversion Phenomenon: Assume that task τ1 has higher priority than task τ2.
Despite this fact τ1 may be blocked by task τ2. If there exists a task τ3 with intermediate priority,
then τ3 preempts τ2 while holding the resource, that is also claimed by τ1. The result is that task τ3

runs before τ1! Moreover, the blocking time of τ1 is unbounded if more intermediate tasks arrive.

For RM or EDF and related algorithms this means that the execution order of the tasks
can be completely corrupted. The fact that a lower priority task blocks a higher priority
task, because of requiring the same resource, is the semantic of mutual exclusion. But the
problem of the priority inversion and the unbounded delay can be solved.

Priority Inheritance Protocol. In 1990, Sha, Rajkumar, and Lehoczky [115] proposed the
Priority Inheritance Protocol (PIP). The basic idea of this protocol is, when a task τi blocks
one or more higher priority tasks, it temporarily inherits the highest priority of the
blocked tasks. This prevents medium priority tasks from preempting τi and, therefore,
they will not prolong the blocking period.

Theorem 4.1 (Sha, Rajkumar, and Lehoczky): Under the Priority Inheritance Protocol, a
task τi can be blocked for at most the duration of min(n,m) critical sections, where n is
the number of lower-priority tasks that could block τi and m is the number of distinct
semaphores that can be used to block τi.
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Out of this theorem the schedulability test for rate monotonic scheduling [remember∑n
i=1(Ci/Ti) ≤ n(21/n − 1)] can be extended to

Theorem 4.2: A set of n periodic tasks using the Priority Inheritance Protocol can be
scheduled by the Rate-Monotonic algorithm if

∀j, 1 ≤ j ≤ n,
j∑

k=1

Ck
Tk

+
Bi
Ti
≤ i(21/i − 1).

Here, the tasks are ordered by their priority: j > i⇔ Pj < Pi. Observe, that the equation
now must be solved for all tasks. The equation can be interpreted as follows. In order to
guarantee a task τi, we have to consider the effect of preemptions from all higher-priority
tasks (

∑i−1
k=1Ck/Tk), the execution of the task itself (Ci/Ti), and the effect of blocking due

to all lower-priority tasks (Bi/Ti).

What still is to be done, is the computation of the blocking time Bi for each task τi. We
can define the ceiling C(Sk) to be the priority of the highest-priority task that may use the
semaphore Sk. With this and the definition of the Priority Inheritance Protocol we can
follow:

Lemma 4.3: In the absence of nested critical sections, a critical section of τj guarded by
Sk can block τi only if Pj < Pi ≤ C(Sk).

The idea for the proof is the following: If Pi ≤ Pj ⇒ τi cannot preempt τj ⇒ τi cannot be
blocked by τj directly.

The blocking time Bi of a task τi can then be defined as the minimum of two different
sums of durations of longest critical sections:

Bi = min(Bl
i, B

s
i ),

where

Bl
i =

n∑

j=i+1

max
k

[Dj,k : C(Sk) ≥ Pi]

is the sum of durations Dj,k of the longest critical sections for any task τj with priority
lower than Pi that can block τi, and

Bs
i =

m∑

k=1

max
j>i

[Dj,k : C(Sk) ≥ Pi]

is the sum of durations Dj,k of the longest critical sections for any semaphore Sk that can
block τi.

An algorithm for the computation of this blocking times is presented in [25, p. 197] and
has a complexity of O(mn2). The upper bounds for the Bl

i and Bs
i are not very tight,

because two or more critical sections guarded by the same semaphore may be summed.
But, if two critical sections of different tasks are guarded by the same semaphore, then
they cannot be both blocking simultaneously. An algorithm based on exhaustive search,
where all possible combinations of blocking critical sections are considered, was pre-
sented by Rajkumar [103], but it has an exponential complexity.
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The Priority Inheritance Protocol is a good solution for the problem of unbounded de-
lays due to exclusive resource access. But it has two drawbacks: It does not prevent the
formation of chained blocking and –as a reason of this– it does not prevent the formation
of a deadlock.

Priority Ceiling Protocol. The Priority Ceiling Protocol (PCP) was also proposed by Sha,
Rajkumar, and Lehoczky [115] in 1990 as an improvement of the PIP. It solves additionally
the drawback of chained blocking and prevents deadlocks. The idea of the PCP is that it
extends PIP by a special granting rule for locking a free semaphore. The rule says: A task
is not allowed to enter a critical section, if there exists other locked semaphores which
can block the task.

This is achieved by assigning to each semaphore Sk a priority ceiling C(Sk) equal to the
priority of the highest-priority task that can lock the semaphore. A task τi is allowed
to enter a critical section only if its priority is greater than the ceiling of all semaphores
currently locked by other tasks than τi. If the entering of the critical section is denied,
then the task τi is said to be blocked on semaphore S∗ by the task τj that holds that
semaphore S∗. (Note: S∗ is the semaphore with the highest ceiling of all currently locked
semaphores by tasks other than τi.) When the task τi is blocked by task τj , task τj inherits
the priority of task τi. In general, a task inherits the highest priority of all tasks it blocks.
When a task exits a critical section, then its priority is updated as follows: If no other
tasks are blocked by the task τj , it is set to its nominal priority Pj ; otherwise, it is set to
the highest priority of the tasks blocked by τj . The priority inheritance is transitive; that
is, if a task τ3 blocks a task τ2, and τ2 blocks task τ1, then τ3 inherits its priority from τ1

via τ2.

A theorem, which was given by Sha, Rajkumar, and Lehoczky, says that under the Prior-
ity Ceiling Protocol, a task τi can be blocked for at most the duration of one critical section.
Additionally, it follows that a critical section Zj,k (belonging to task τj and guarded by
semaphore Sk) can block a task τi only if Pj < Pi and C(Sk) ≥ Pi. From this observation
we can follow, that the maximum blocking time of a task can be computed as follows:

Bi = max
j,k
{Di,j | Pj < Pi, C(Sk) ≥ Pi}.

Remark, that the calculation of the blocking times under PCP is much easier than under
the PIP. But in order to implement the PCP and to calculate the ceilings of the semaphores,
all critical sections, which can be entered by any task, must be known in advance. Be-
cause this is impossible for a general implementation of an operating system, nearly all
operating systems do not implement PCP.

But in TEReCS the requirement specification contains also the information about critical
sections, because the system calls on the semaphores have to be modelled in order to
configure DREAMS correctly and to insure a more detailed timing analysis. Thus, the
critical sections are known in advance and the PCP can be implemented in DREAMS and
configured by TEReCS.

Another quite interesting resource management protocol is the Stack Resource Policy
(SRP), which will not be described here. The interested reader may be referred to the
literature (for example [25, p. 208]).
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Implementation Considerations
All of these resource management protocols are implemented by different signal() and
wait() methods. Also, the PCP does not require a waiting queue per semaphore as it
would be required in the normal case. The reason is that the task can be kept in the ready
queue since the other tasks will have higher priority. But the semaphore requires an extra
field for storing the ceiling and the process control block (PCB) requires an extra field for
storing the task’s active priority. It would be also convenient to have a field in the PCB
for the semaphore on which the task is blocked. Generally, the operating system should
maintain for the PCP a list of all currently locked semaphores ordered by their ceilings.

You see that the different protocols require different implementations of the operating
system internal data structures and functions, which are not directly related to the syn-
chronisation primitives signal() and wait() . Thus, it is highly recommended to have
a configuration management that takes care for a valid and working implementation of
the operating system.

4.6 Contribution of the Chapter

This chapter gave a brief survey about the real-time problems and their solutions in the
case of scheduling, communication, and resource access.

All the different implementations of scheduling algorithms, communication protocols,
resource management protocols, and their schedulability tests allow a brought variety
of combinations and selections. It should be the task of a configuration management to
select the appropriate methods and data structures in order to maintain the complex-
ity of their combinations. All the different requirements of the applications and all the
possible implementations inside the operating and communication system should be de-
scribed within a concept that allows to derive a description for the configurator’s domain
knowledge bases. This task is the motivation for the next chapter.
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From Taxonomy Towards Configuration Space

In this chapter the attempt is made to identify characteristics of real-time systems by
which they can be categorised. These characteristics are ordered within a taxonomy. This
taxonomy is important for the completeness of this thesis. It can give hints, where con-
figuration of a run-time platform for a real-time system makes sense, i.e. where con-
figuration should be done in order to improve the system’s efficiency. The dimensions
or domains that span the taxonomy can define the items of a run-time platform, which
are configurable. It should be clearly mentioned that the taxonomy, which is developed
here, is especially designed for this purpose. That means that there may exist other tax-
onomies, which are designed for other reasons.

The Table 5.1 on the following page is an attempt to identify properties by which a dis-
tributed real-time system can be classified. The different properties describe different
operating system implementations, whereas for one class of properties all operating sys-
tem implementations are equal. Formally speaking, the taxonomy defines equivalent
classes of real-time systems, where for each class the operating system is fixed and does
not change.

Obviously, the taxonomy can describe systems that are impossible to implement and,
therefore, an operating system that ensures a temporal execution does not exist. For
example, the precedence constraints of the tasks define a deadlock or the cumulative
workload of a processor is exceeded. Thus, a system including the final operating system
should be analysed for its correct execution. This analysis phase should be done after the
configuration phase, because configuration decisions have impact on the execution, i.e.
the operating system overhead can differ.

In the next few sections the impact of the taxonomy items on the operating system con-
figuration will be described in more detail.
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5.1 Taxonomy for Real-Time Systems

In order to identify configuration items for an operating and communication system the
properties and characteristics and even implementation possibilites of distributed real-
time applications should be investigated in general. In the following sections some di-

Global System Model and System Behaviour

• time driven vs. event driven (polling vs. interrupts)
•mono-programming vs. multi-programming
• static vs. dynamic (creation of new tasks)
• deterministic vs. non-deterministic

(worst-case execution time vs. average execution time,
connection- vs. packet-oriented communication)
• distributed vs. local vs. centralised

Task Characteristics

• periodic vs. aperiodic vs. sporadic
• preemption vs. no-preemption
• constraint types:
− resource constraints

(critical sections)
− precedence constraints

(communication, priority)
− timing constraints (deadlines)
− criticalness:

? hard, firm, soft

Communication Characteristics

• periodic vs. aperiodic vs. sporadic
• channel- vs. packet-oriented
• preemption vs. no-preemption
• constraint types:
− resource constraints (bandwidth,

time slots)
− precedence constraints (priority)
− timing constraints (deadlines

end-to-end delays)
− criticalness:
? hard, firm, soft

• peer-to-peer vs. broadcast vs. multi-
cast (1 : 1, 1 : m, n : 1, n : m)
• buffered vs. unbuffered (size)
•maximum message size
• no loss of message order
• guaranteed transmission (acknowledgements)
• error detection
• error correction

Machine and Hardware Properties

• single-processor vs. multi-processor
• homogeneous vs. heterogeneous processors (endianess, speed, memory size)
• shared vs. distributed memory
• interconnection network:
− topology (peer-to-peer, bus, ring, etc.)
− unidirectional vs. bidirectional links
− neighboured communication vs. multi-hops
− homogeneous vs. heterogeneous links
−media access protocol per link
−maximum packet size per link
− delay of packet per link
− transfer time of packet per link

Tab. 5.1: Dimensions of a taxonomy for real-time systems.
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mensions will be presented, for which the implementation differs in order to meet special
properties of the application. These application properties can form the dimensions of a
taxonomy, by which the implementations can be classified. That means, if the value of a
taxonomy’s dimension differs for different applications, then the implementations of the
operating and communication system will be different, too. Therefore, on the one hand
the implementations will belong to different classes of applications. On the other hand,
if the values of all dimensions are the same for different applications, then the imple-
mentation of the operating and communication system will also be the same. Thus, the
applications belong to the same taxonomy class.

The dimensions of the taxonomy can be categorised into four different major domains.
These domains group dimensions concerning properties of the system model and the
system’s behaviour, task characteristics, communication characteristics, and properties of
the distributed machine (hardware) on which the system should run. These domains had
been identified, because they tackle different aspects of the application’s implementation.
Moreover, we will see later that these taxonomy domains will result into different parts
of a requirements specification.

5.1.1 System Model and System Behaviour

Time driven or event driven: Time driven means that inputs are regarded at fixed ab-
solute times (i.e. the system is polling). Event driven considers events to be taken at
their arrival. Thus, the system has to handle interrupts. To have interrupts or not makes
a big difference for the operating system, because interrupts require a special treatment
like saving the context and restoring it. In contrast, time driven systems require a global
clock in order to synchronise.

Mono-programming or multi-programming: This property defines whether the pro-
grammer specifies a single task or has multiple tasks running simultaneously. If this
property is regarded per node (processor) of the system, then obviously, the question for
requiring a task switching mechanism (scheduler) per node can be answered.

If the system behaviour can be regarded to be static (the task set and its properties do
not change during execution), then the scheduling algorithm can be simpler and the task
set’s feasibility test can be done offline. For example, the simplest scheduling scheme
applied to a static task set is a fixed activation order. On the other hand, if tasks can arrive
dynamically, then the operating system must integrate an acceptance test and possibly,
the scheduling algorithm requires preemption, which requires again saving the context
and its restoration.

If the system is deterministic, then it is said to be predictable. In this case the conven-
tional management strategies (like RM, DM, LDF, EDD, EDF, etc.) for the task set can
be applied. But, if some of the system’s tasks are not deterministic, then assumptions or
probabilities about their properties are made. In this case the so-called server algorithms
for aperiodic task scheduling should be considered.

A centralised distributed system requires more powerful hardware for the server and,
therefore, other system services than a homogeneously distributed system. A client/server
implementation has other requirements than distributed agents. Especially, the bottle-
neck of a centralised server with applied high performance services or the load balancing
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service for a highly dynamic system should be considered.

5.1.2 Task Characteristics

A task set can be regarded periodic, aperiodic, or additionally contains sporadic tasks.
This has direct impact on the schedules for a timeliness execution. Obviously, for this
reason the scheduling algorithms, which had been introduced in Chapter 461, had been
developed.

Additionally, all the task properties themselves allow or forbid a specific scheduling al-
gorithm. These are especially properties classifying the algorithms into categories (see
Table 4.171 and Table 4.274). If a task allows preemption, has precedence, resource, or
timing constraints, then these properties demand for a special treatment by the sched-
uler. Moreover, synchronisation by signal() and wait() or semaphores has to be
considered. Thus, PIP, PCP, or SRP come into the picture.

When tasks run quasi-parallel on a processor, because they can be preempted, then mu-
tual access to shared resources is requested. The internal state of a resource must not
be changed by more than one task simultaneously. Otherwise, data integrity or correct
behaviour is not guaranteed. Thus, tasks use operating system primitives for synchro-
nisation and protection, like semaphores, monitors, or simple signal() and wait()
primitives. The usage of these primitives requests for a special functionality of the op-
erating system. Additionally, these synchronisation primitives have great impact on the
scheduling, because tasks might be delayed (blocked). In order to assure a special be-
haviour the synchronisation protocols PIP, PCP or SRP had been designed.

Many scheduling algorithms and their analysis assume that the given tasks are indepen-
dent from each other. But when a single application is split into several tasks in order to
exploit inherently possible parallelism, then these tasks work normally on data, which is
forwarded and manipulated from task to task in a pipelined manner. Examples may be
streaming applications, where filter, conversion, and Fourier transformation algorithms
are sequentially ordered. Other examples may be control algorithms, where subsequent
controllers read input values that had been produced by other controllers. Controllers
can also be arranged hierarchically, where top-level controllers (e.g. the body control
of a car) have influence on low-level controllers (e.g. active suspension) by generating
appropriate control values. These in/out dependencies between tasks request for com-
munication. Thus, communication demands should very carefully be investigated and
can have great impact on the running task set.

If these tasks are local to a processor and, for example, use shared memory communica-
tion, then the communication problem can be transformed into a resource and synchroni-
sation problem. But when the task set is distributed over several processor nodes, which
are interconnected by communication links, then the calculation of the delays become
more complex. This is because of mutual influences of tasks that are not directly commu-
nicating but acquiring shared resource access of the links. The situation becomes more
severe, when for the message transfer several links have to be traversed, because there is
no direct connection between the sending and receiving processor. For this reason, the
communication in a distributed real-time system should be investigated in detail.
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5.1.3 Communication Characteristics

As seen from the analysis of communication systems the properties of a task set can
be transferred to a set of messages. Messages can be periodic, aperiodic, or sporadic.
This mainly has impact on the reservation scheme for the bandwidth (which is equal to
the processor allocation). Periodic messages often have to be established by channels.
Thereby, bandwidth or time slots of the links are reserved. This allocation scheme is
named channel-oriented communication. This method is also recommended, if the maxi-
mum delay of a message transfer should be predictable. So, real-time messages should
be handled always channel-oriented. On the other hand, packet-oriented communication
exists. This method is to be preferred, if no reservation has to be done or the message
transfer time cannot have unlimited delays. Unbounded delays occur, when the message
traffic in the network is not predictable. Often, packet-oriented communication works
only with a best-effort strategy for delivering messages.

Another very interesting property of a message transfer is, that a message can be pre-
empted during the transfer. Here, preemption is relatively more severe, because the mes-
sage again has to be completely transferred after a preemption occurred. Thus, preemp-
tion destroys a message transfer. For this reason, protocols often do not allow preemp-
tion.

Precedence constraints also exists for messages. Often for communication, the sending
and receiving of messages have to preserve the message order. This means, if a mes-
sage a was sent before a message b, then the message a should arrive before message b.
This can either be assured by the rule, that messages cannot overtake other messages,
or the receiver protocol stack delivers unordered received messages only ordered to the
application, by considering message numbers and buffering of orderless messages.

Resource constraints of messages have to be considered implicitly, if the channel-oriented
communication is used. Here, the route and, therefore, the links that the message has to
take for each hop are fixed. Routing has a major impact on the resource constraints of
a message. The routing is steered by the origin and destination of the message. If the
sender is fixed, we distinguish peer-to-peer (1 : 1), multi-cast (1 : m, m < n), or broadcast
(1 : n) messages (where n is the total number of all destinations). If we do not have the
classical peer-to-peer (P2P) case, then it depends on the topology, if messages have to be
duplicated and have to be sent simultaneously on multiple links. Often ignored is the
case, when several sources send messages to a single destination (m : 1), like clients send
messages to a server. The receiver must have the ability to await messages from different
sources.

If messages have to take several links in order to reach their destination, then the mes-
sages sometimes have to be stored into buffers on intermediate nodes, before they are
forwarded (see “stop-and-go queueing” on page 82). For embedded systems with hard
resource constraints, the maximum required buffer size must be known in order to save
memory and to guarantee no message loss.

Another problem arises and has to be investigated, when the maximum packet size on a
link is smaller than the message size. Then, a message has to be split into several packets
on the sender side and the packets have to be assembled to the original message on the
receiver side. Here, problems like ordering, buffer size, and preemption have again to be
considered. Even, if a packet on a link cannot be preempted, the complete message can
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be delayed, because the sending of a packet can be delayed by packets of other messages
due to media access problems. These media access problems occur, because during the
required setup-delay for a new packet, another node can acquire the media. If packets
have priorities, then this problem can be much more worse and can result into priority
inversion.

Sometimes the transmission of a message cannot be guaranteed by the physical architec-
ture of the link. A message can be completely lost or is partly corrupted during the trans-
fer. But the application demands for correct transmissions and no message loss. Then,
the communication protocol has to assure error detection and correction. This sometimes
requires the re-transmission of a previously corrupted or lost packet. Thus, positive or
negative acknowledgements are sent in the opposite direction than the communication
itself. For this reason backwards channels have to be established. These channels acquire
additionally bandwidth and have to be handled not only by the protocol, but also by the
analysis.

5.1.4 Machine and Hardware Properties

Characteristics of the machine and hardware have also impact on the configuration. The
processor architecture itself selects or forbids services, because the services are using a
concrete assembler dialect or other hardware specific features. Moreover, processor ar-
chitectures might use different orderings for storing their high and low bytes of words
(big or little endian storage). If packets are transmitted between tasks running on such
different processors, the byte ordering of the packet for each number compound, which
is greater than a byte, must be changed at the sender’s or receiver’s side. Thus, one pro-
tocol stack has to deal with this conversion and has to be enriched by an appropriate
functionality.

The processor architecture is also of great interest for the analysis . The same service can
have different worst case execution times due to different processor speeds, caching, or
pipelining, etc.

Not only the processor architecture, but also the concrete devices, which have to be man-
aged by the operating system, require specialised device drivers. This problem is already
well known for general purpose operating systems like WindowsTM or Linux. But it be-
comes more difficult for embedded and real-time operating systems. Even for the same
device the driver implementation should differ due to different use cases. The commu-
nication devices and protocol stacks are considered especially in this thesis, because of
the distributed aspect of the targeted application scenarios. It is the primary goal of the
configuration aspect to support the application with the optimally adapted services with
the best efficiency and to remove unnecessary features from the operating and commu-
nication system. Additionally, it should be tolerable to specify a lot of services, devices,
and/or connected links per processor. The final application requirements should deter-
mine, which services, devices, and links are really used and which are not. This implicitly
determines whether a driver is required or is not required.

A very important property of the hardware, which has impact on the link usage, is the
topology of the interconnected processors and links (media). Required communication
is routed through the network by determining a path that the message has to use. Such
a path describes the resources, which has to handle the message. These are devices for
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the sending and receiving, as well as media for the transport. Additionally, processors
are specified for the sender and receiver and for intermediate nodes (hops), at which the
message has to be forwarded. The topology greatly determines whether forwarding is
required or not. Forwarding of messages often requires dynamic routing and buffering
of the messages. If forwarding can be omitted, then the system overhead due to commu-
nication can dramatically be reduced.

If forwarding is required, then another problem arises. Each communication media de-
fines its own protocol stack, which is used for the sender and receiver side. If on the
path different in- and out-links are used, then on such intermediate nodes two differ-
ent protocol stacks have to be bridged. Bridging means protocol transformation, which
additionally leads to system overhead and have to be coped by the involved protocol
stacks.

Each type of hardware link and protocol stack require special communication drivers.
Thus, the system overhead is different. Moreover, each link architecture and its media
access protocol cause different transmission times and delays for the packets. This has to
be considered by the analysis.

5.2 Configuration Items

Until now the different requirements that an application may seek for have been iden-
tified. These requests form the dimensions of the previously presented taxonomy. The
primary goal is to identify items or entities within an operating and communication sys-
tem that have other implementations in different taxonomy classes. These changes from
one taxonomy class to another and the reason for these changes have to be formally de-
scribed. This formal description spans the configuration space for the operating and
communication system.

But, how do we identify different implementations for other taxonomy classes? Fortu-
nately, this is easy. Researchers have already identified properties of different applica-
tions, which in fact define the taxonomy, and, therefore, they “invented” different im-
plementations leading to better results for the concrete case (taxonomy class). For ex-
ample, there exist different implementations for scheduling algorithms, because special
task set properties require special treatment in order to achieve the best performance.
There we find the relationship between properties or requirements of the application and
exchangeable items inside the operating system.

Implicitly, these relations have been mentioned while the different properties, character-
istics, and requirements of the taxonomy were presented. These items have been gath-
ered in Tab. 5.2 on the following page. On a very high level some areas of an operating
system can be identified by grouping exchangeable items together, which are influenced
by the same characteristics of the taxonomy. For instance, all the scheduling algorithms
are grouped into the group of scheduler services, because they depend on the properties of
the given task set.

Yet another example would be the protocol services that depend on the properties, which
must be assured during the message transfer. In fact, the protocol does not only depend
on the required quality of service (QoS) for the message transfer, but it also depends on
the hardware capabilities of the communication link. This is an example where more



96 Chapter 5. From Taxonomy Towards Configuration Space

than one taxonomy dimension (QoS of message transfer and hardware properties) have
impact on the same item (protocol). Two dimensions have to be matched by the config-
uration, that means by the final implementation. The solution employs protocol stacks,
where on each level the protocol can be exchanged in order to achieve the desired QoS.
Moreover, the application can access the protocol stack at different levels or the hardware
requests for a special low level protocol. Additionally, the protocols rely hierarchically
on each other. Each demand for a specific quality for the communication service requests
for a specific protocol. Each protocol itself requests for an appropriate lower level proto-
col, until a protocol is reached, which handles the communication link. This is the lowest
level of a protocol stack, which is often named link layer (e.g. see OSI model [66]). This is a

Global Services

• interrupt management (context saving)
• synchronisation (signal and wait)
• scheduling
•memory management
• communication
• repositories/databases/lists/arrays
• timer management (task suspension by timer sleeps)

Task Scheduling
(per processor)

• off-line schedulability vs. on-line
acceptance test
• global policy (deadline, slack, remaining,

execution time, dynamic, server, etc.)
•multi-level hierarchy (per level):
− algorithm (EDD, LDF, EDF,

DM, RM, PS, DPE, etc.)
− ordering (deadline, priority,

remaining execution time,
slack time, FIFO, criticalness, etc.)

• dispatching scheme
− context switch time (> 0 ?)

• real-time support yes/no
• critical section yes/no
− algorithm (semaphore, mutex, monitor,

etc.)

Communication Scheduling
(per link)

• off-line vs. on-line
− bandwidth/time slot reservation
− channel establishment

•multi-level hierarchy (per level of
protocol stack):
−max. packet size
− protocol:
? preserving message order
? error detection/acknowledging
? error correction
? buffering
? forwarding (device usage)
? reception (device usage)
? splitting
? duplicating
? delivering
? routing
? conversion (bridging)

− protocol overhead
−maximum delay

Hardware Interface

• resource usage
− device interrupts
− exclusive device access
− device parameters (address, baud rate, memory usage, etc.)

Tab. 5.2: Configuration items.
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step-wise refinement of the requests, where the requests that are leading to sub-requests
of the sub-layer are transitive.

At a very high level the services of an operating and communication system that are
influenced by a certain domain inside the taxonomy can be grouped into:

• interrupt management services
• scheduling services
• synchronisation services
• memory management services
• communication services
• repository services
• time management services

Each of these groups can be divided into sub-groups, which depend on a different do-
main of the taxonomy’s dimension. A domain of the taxonomy is defined as a specific
set of properties, characteristics, or requests. The different values or instances of this do-
main directly lead to different implementations of a specific operating system function.
For instance, the domain to implement the system time driven or event driven, requests
for timers or interrupt functions (or both, if time driven and event driven is mixed). The
domain of tasks that have critical sections requests for synchronisation mechanisms like
they are supported by semaphores, mutexes, monitors, etc.

In Table 5.2 on the preceding page, besides the high level service groups, the sub-groups,
for example, for task scheduling and for the communication services, have been sketched.
At the bottom of all configurable (selectable) items we find the hardware. Here, the hard-
ware resources are enumerated, which can alternatively be used. The demands of the
taxonomy for special hardware domains requires specific resources to be present or not.

The resources are not only defined by the required hardware dimensions, but also by the
application’s dimensions (demands). The application’s demand for a broadcast prefers
a communication bus in contrast to a peer-to-peer network. Nevertheless, the applica-
tion demands and the hardware properties define a trade-off, which has to be solved by
the configuration process. Besides the resource selection, parameters for the resources
must be determined. The resource itself as well as its parameters can be identified as
configuration items that have to be assigned to concrete values.

5.3 Creating the Configuration Space

Previously, we have identified a taxonomy, which led directly to the configuration items
in an operating and communication system. Now, we need to develop a formal represen-
tation for the configuration items and their dependencies. This description should span
the design space of all operating system classes that are formed by the taxonomy.

The alternatives of a dimension in the taxonomy identify exchangeable items in the im-
plementation. Such alternatives naturally define an OR-group. For example, the dimen-
sion of scheduling services contains all alternative scheduling algorithms. But only one
algorithm should be implemented. Another example is the critical section domain, which
consists of alternative synchronisation algorithms. On the one hand, either one item of a
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set of alternatives is required or none of the items are availed. Thus, the OR-group should
allow no selection. On the other hand, sometimes more than one alternative should be se-
lectable. An example can again be the critical section domain. Because tasks differ in their
implementation model, the tasks can request different synchronisation algorithms. This
implies, that for instance, the operating system has to support semaphores and monitors
at the same time. Thus, side constraints can have impact on the domain’s value selection.

If a value in a domain is another domain, then this is a transitive request. In the previous
section we said this to be a refinement of a request. For example, a scheduler can be a
non-real-time scheduler or a real-time scheduler. Both requests or items can be refined as
shown in Table 5.3103 and form a domain by themselves. This directly defines a transitive
dependency between two domains (OR-groups).

Often, the dependencies between values of the taxonomy domains and other domains
are manifold. For instance, the Round-Robin scheduler is a value of the scheduler do-
main and, therefore, it is part of an OR-group of all scheduler services. If the preemp-
tive Round-Robin scheduler will be selected, then it requires a periodic timer interrupt
and a queue in order to manage the FIFO list of all the ready tasks. This is a classical
AND-group of simultaneously required sub-services. Here, these sub-services are items
of other domains. In this case these domains are time management, interrupt management
and repository. For this reason, if all AND/OR-dependencies have been found, then not
a tree will be the result, but an AND/OR-DAG (Directed Acyclic Graph) will describe the
design space of all configurable items.

driver a driver ddriver b driver c

link layer

message splitting

routing

endianess conversion

bandwidth allocation

unreliable send reliable send

TouCAN
Addr. 1

TouCAN
Addr. 2

CAN 82825
Addr. 3

Serial RS232
Addr. 4

Firewire
Addr. 5

message parameter:
size
sender
receiver
driver address

processor(all receivers) <> constant

endianess (processor(sender)) <> endianess (processor(receiver))

driver address (message)

error correction

packet size (driver(driver addr.))
< size (message)

Fig. 5.1: OR-DAG that is representing one possible real-time communication stack.

In Figure 5.1 an example for a customisable real-time communication stack is sketched.
Only the sender side of the protocol stack is displayed. Each oval node of the graph
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represents a protocol layer, respectively a software service of the operating system. The
rectangles at the bottom of the graph represent hardware devices, via which the messages
can physically be sent. At the top of the graph the two nodes unreliable send and reliable
send are the interface functions of the API (Application Programming Interface). These
functions can be called from the application in order to send a message. Because they
serve as root nodes of the graph, they are called primitives in this thesis.

The directed edges between the nodes describe the calling dependencies within the pro-
tocol hierarchy. That means, if there exists an edge from a protocol A to a protocol B (or
to a device b), then protocolA requests for protocolB (or the device b) in order to achieve
its function. When more edges are leaving a node, then all sons form an OR-group. All
nodes of an OR-group can alternatively be selected in order to serve for the function of
the father-node. Therefore, the graph in Figure 5.1 on the facing page is only an OR-DAG.
There does not exist any AND-relation.

The OR-group can be an exclusive OR, which means only one successor must be selected,
or a normal OR, which means that at least one successor must be selected. All ORs that
are depicted in Figure 5.1 on the preceding page are exclusive ORs, except the ORs of the
link layer and its drivers.

It can be observed that the protocol services endianess conversion, routing, message splitting
and error correction can be omitted from the protocol stack. In Figure 5.2 a simple example
for a service that can possibly be omitted is depicted. Assume that service A is always
required. The service B can be ommited, because for service A the services B or C can
be alternatively be selected. The service C is always requested, either directly by A or
indirectly by B. Thus, in a final configuration either all three services must be present
or only A and C. If each service produces costs, then selecting only A and C is cheaper.
But side constraints can additionally request for service B. For that case, B cannot be
omitted.

The protocol services in Figure 5.1 that can be omitted are only requested, if special con-
straints of the messages, which are all sent via the two sending primitives, hold. The
constraints are shown by the rectangles with one marked corner. The text inside the
rectangle describes briefly and informally the constraint. Therefore, we assume that mes-
sages have certain parameters, like the sender and receiver node identification, and the
size of the message. The driver address, which is to be used in order to send the message
physically, is determined by the routing protocol.

The configuration problem is to select only the minimal set of required services and de-
vices of the OR-DAG in Figure 5.1. This is to be done in a way, that all messages, which
will be sent via the two root primitives, can be delivered to their receivers. For exam-

A

B

C

Fig. 5.2: Technique in an OR-DAG for eventually omitting a service B.
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ple, the protocol service error correction is not required, if no message will be sent via the
primitive reliable send. Or, the protocol routing is not required, if all messages that will be
sent, must be sent via the same device. Thus, during configuration for each message a
path from the used sending primitive down to the appropriate device have to be found.
Additionally, all constraints must be considered. The services and devices of all paths
must be selected for the final configuration.

The description of the OR-DAG in Figure 5.198 is done on a very high level of abstrac-
tion. For a real usable configuration space description it has to be refined and must be
described more formally. One possible way for such a description will be developed in
Section 6.3108. Additionally, for real message transfers the receiver’s protocol stack must
be considered similarily. Moreover, there will exist constraints between the services of
both protocol stacks, respectively OR-DAGs. For instance, if the protocol service message
splitting on the sender’s side is selected, then on the receiver’s side the opposite protocol
combining packets must be selected. Or none of these protocols at all must be selected on
both sides.

5.4 “Puppet Configuration”

As we have seen in the sections before, a taxonomy for distributed real-time systems can
define the requirements, properties, and characteristics, which split the implementations
of an operating and communication system into different classes. These requirements,
properties, and characteristics can be interpreted as the demands of the application of
a real-time system. For this reason, these items define a requirements catalogue. This
catalogue is the basis for a requirements specification.

We have also seen that the domains of this taxonomy (requirements specification) natu-
rally define an AND/OR-DAG by refinement. The refinement of domains leads to the
identification of configuration items (alternative services) inside the operating and com-
munication system. Sometimes, they classify the operating and communication system’s
implementations into instances, where a special service must be present, or is not re-
quired. Often, they define alternatives. Either the alternatives of an implementation are
already known (because of research, e.g. in the area of real-time analysis) or they can
easily be identified. By definition a property of the taxonomy splits the implementations
into (at least) two different instances. Thus, this entails that implementations handle this
special aspect of the taxonomy in appropriate ways.

During this refinement process some sub-domains have to be created, which result into
additional requirements. They have only to be evaluated, if the top-level-domain is also
required. Hence, these sub-domains have to be evaluated during the refinement of the
configuration. While questions are answered, additional questions arise, which also have
to be answered. This is a sort of depth-search in the AND/OR-DAG until we have
reached domains with no sub-domains. In this sense, configuration means to find ap-
propriate paths from each top-level domain to sub-domains, which are not again refined.
Thereby, the selection of one or a set of values for a domain leads to a specific sub-domain.
Only sub-domains of selected branches will be taken into consideration.

The AND/OR-DAG, which is the result of the refinement process for the demanded
properties of all applications, spans the complete design space of the operating and com-
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munication system. This design space describes by its alternatives all the different imple-
mentation classes. In fact, there can be a lot of classes.

The top-level domains of the taxonomy (primitive usages defined in the requirements
specification) serve as starting points for the search in the AND/OR-DAG of one oper-
ating and communication system’s design space (see Section 6.4.3115 and Figure 6.5116).
The fixing of a domain’s property to a concrete value is possible by answering the ap-
propriate question of the requirements specification. Thus, by giving answers to those
questions, the alternatives inside the AND/OR-DAG can be selected. This is similar to
playing a puppet (see Figure 5.3).

Application uses Primitives of the Design Space

Pulling the Strings of a Puppet

Puppet Configuration

Primitives

USG

Fig. 5.3: The basic idea of “Puppet Configuration”.

The puppet player pulls the strings of the puppet in order to change the spatial arrange-
ment of the puppet’s skeleton. If we would take a picture of a puppet, then this pic-
ture would show one specific configuration of all possible arrangements of the puppet’s
pieces. We can transfer this example to the taxonomy’s AND/OR-DAG. While a spe-
cial property of the taxonomy is selected and instantiated with a concrete value, we di-
rectly select one alternative of an OR-group. This way, we have captured a special aspect,
which, for example, means the move of an arm of the puppet. But in order to touch an
item with the puppet’s hand, we have also to move the hand. This is similar to the re-
quest for a sub-domain of the taxonomy to be answered. Moreover, by pulling one string
of a puppet, more than one “bone” of the puppet will be moved. This is also true for
the AND/OR-DAG and the taxonomy. Inside the DAG hierarchy the selection of one
special property to a concrete value can have impact on more than one domain, because
the domains are members of a transitive relation. The joints in-between the bones of the
puppet are representing this transitive relationships and some side-constraints inside the
AND/OR-DAG.

The AND/OR-relationships are not sufficient to describe the design space of an oper-
ating and communication system. This we have seen in the example in Figure 5.1 98.
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Additionally, constraints have been defined. The AND- and OR-relations describe only
the alternatives of a configuration. The constraints describe, which alternatives have to
be taken upon some parameters of primitive usages. Although, the selection of the prim-
itives determines which sub-graphs have to be considered, the constraints determine the
selection of the correct branches in this sub-graphs.

The constraints can be categorised into different types. The first type that we have ob-
served in the protocol hierarchy has been the costs per selected service. The overall costs
for a complete path down from the primitive to the devices have to be minimised. Other
constraints had been defined for parameters of the primitive usages. Thus, certain condi-
tions defined upon properties of the messages that are sent via that primitives force the
selction of specific alternatives. Besides forcing a service also the deny of the selection
of a service in an OR-group is possible. Additional types of constraints might be useful.
They will be described in Section 6.3.4110.

5.5 Conclusion

The taxonomy of Table 5.190 is neither complete nor the only possible solution. It had
been organised to have a first starting point for the design of a configuration description
of a customisable operating and communication system. The domains of the taxonomy
precisely describe the questions of the requirements specification that must have impact
on configuration decisions. This led to the idea of “Puppet Configuration”, which is de-
scribed in Section 5.4100. Moreover, the taxonomy’s dimensions give very good abstrac-
tions for the configuration decisions.

Other taxonomies contain the configuration items itself. They contain the instantiated
scheduling scheme, synchronisation algorithm, driver, or protocol. Here, these items
are regarded implicitly on the lowest level. Hence, they are candidates for configuration.
Thus, the taxonomy presented here and their configuration items are often mixed in other
taxonomies, although they have direct or indirect impact on the operating and communi-
cation system. The taxonomy presented here contains only indirect properties which are
candidates for a requirements specification, whereas the direct properties are candidates
for the description of the configuration space. The dependencies from indirect to direct
properties can be regarded as the strings that have to be pulled in order to change from
one configuration to another.

Pulling the strings of a puppet can be compared to answering questions of the require-
ments specification. The string is replaced by a user primitive that will be used by the ap-
plication. In order to change the configuration of a puppet the strings have to be pulled.
For the AND/OR-DAG this means to select appropriate user primitives. The distance with
which the string is pulled can be compared to the parameters of the user primitive’s usage
or the number of a specific user primitive call.

In this chapter we presented a motivation for the graph- and structure-based configura-
tion approach in TEReCS. We argued that the refinement of requests from the require-
ment specification leads naturally to sub-requests. Hereby, the sub-requests can be alter-
natively be solvable or they must all be solved, like in a problem reduction graph. The
natural representation for this in general is an AND/OR-DAG. The sub-requests form
again other dimensions of the taxonomy. Mutual influences between different dimen-
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interrupts/polling ⇒ context saving for interrupts yes/no

task creation ⇒ online acceptance test =⇒ EDF, EDF∗, server

guarantee/best effort ⇒ hard/firm scheduling

multi-/mono-programming ⇒ scheduler yes/no

scheduler ⇒ Non-RT scheduler, RT scheduler

Non-RT scheduler ⇒ FIFO, RR

RT scheduler ⇒ RM, DM, EDD, LDF, EDF, EDF∗, server

periodic tasks ⇒ timers and periodic scheduling

timing constraints ⇒ synchronous activation , periodic tasks, ape-
riodic tasks, mixed periodic/aperiodic, dead-
line, preemption, precedence constraints

timeouts/sleeps ⇒ timers

periodic scheduling ⇒ RM, DM, EDF, EDF∗

deadline = period ⇒ RM, EDF

aperiodic tasks ⇒ EDD, LDF, EDF, EDF∗

synchronous activation ⇒ EDD, LDF

preemption ⇒ EDF, EDF∗, dynamic server

precedence constraints ⇒ LDF, EDF∗

mixed periodic/aperiodic ⇒ EDF, EDF∗, server

response time improvement for aperiodic
tasks

⇒ server

server ⇒ fixed priority or dynamic server

resource constraints ⇒ PIP, PCP, SRP

periodic messages ⇒ channel-oriented

channel-oriented ⇒ bandwidth allocation and management

aperiodic messages ⇒ packet-oriented, channel-oriented

message preemption ⇒ detection, acknowledgement

order preserving ⇒ sequencing, FIFO

peer-to-peer ⇒ fixed routing

multi-cast ⇒message duplication or bus

broadcast ⇒message duplication or bus

client/server model ⇒ alternative receive on multiple input channels

packet size < message size ⇒ splitting

guarantee ⇒ acknowledgement and error correction

graph mapping: communications into topol-
ogy→ hopping

⇒ routing

hopping ⇒ forwarding

message buffering ⇒mailboxes

dynamic channel creation ⇒ online bandwidth management

Tab. 5.3: From taxonomy to configuration items.
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sions of the taxonomy exist. This is the reason, why additionally constraints must be
integrated into the model. They help to solve alternative requests and to correlate the
taxonomy’s dimensions.

5.6 Contribution of the Chapter

This chapter presented a taxonomy for real-time systems that leads to a model for the
design space description for the configurable options of a real-time operating and com-
munication system. It motivates why the solution, which is used in TEReCS and that is
presented in the next chapter, uses a graph- and structure-based configuration approach
besides the integration of constraints. Additionally, the idea of the integration of ap-
plication specific knowledge into the configuration process is presented as the “Puppet
Configuration” approach. This seems to be very suitable for the configuration of service
platforms like operating and communication systems.



CHAPTER 6

TEReCS

The real-time system’s designer now has the techniques available to engineer systems
rather than just to build them and then see if they meet their requirements

during extensive (and expensive) testing.

Alan Burns, 1993 [23]

This is the main chapter of the thesis. Herein, all of the new ideas and concepts of TEReCS
(Tools for Embedded Real-Time Communication Systems) are presented. Also, the solu-
tion for the problem of Section 2.212 is given.

The main objective of TEReCS is the generation of optimally adapted operating system
instances for a parallel service platform, which serves a distributed embedded applica-
tion. The communication dependencies between the distributed tasks are mainly consid-
ered. Moreover, in the focus of TEReCS lies the desire to support an optimal and temporal
correct communication inside the distributed parallel machine of the embedded control
units.

In the first two sections of this chapter an overview about TEReCS and its concept is
given. The model and the method for the description of the knowledge bases and the in-
puts for the configuration process are presented in Section 6.3. In this model the detailed
information about the structural properties of the configurable communication and op-
erating system are hidden from the user. The configuration process, which is described
in Section 6.4, is extended by a hierarchy concept in Section 6.5. After the basic concepts
have been presented the languages for the inputs to TEReCS are defined (see Section 6.6).
Additionally, it will be explained in which way TEReCS is applied to the customisable op-
erating system library DREAMS. Hereafter, the knowledge transfer from the application
to TEReCS in order to configure the operating systems and the communication system is
explained (see Section 6.7). In Section 6.8 the concept of the real-time analysis in TEReCS
is presented. The chapter ends with some examples that show the mutual influence of
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the configuration (see Section 6.9) and analysis phase (see Section 6.10) in TEReCS.

6.1 Overview

TEReCS covers two main aspects for the development of embedded real-time systems.
First, TEReCS is a software synthesis system for the generation of distributed (multi-
processor) real-time operating systems (RTOS) and a real-time communication system
(RCOS) from an operating system library kit. Second, it supports and ensures real-time
properties of the system. The main goal of the system is the generation of an individual
RTOS for each node of the target system. The RTOS should be optimally adapted to the
requirements of the application. Additionally, real-time requirements of the RCOS are
verified before the final code for the target of the system is generated. This helps to save
test runs and shortens dramatically the design cycle of an application.

Based on the formal description of the complete valid design space of the RTOS/RCOS
the system tries to enrich the under-specification of this design space by integrating a
requirements specification. This is done by creating a valid configuration for all required
components of the system. Thus, the generator of the system, in fact, is a configurator.
The description of the design space is given in an AND/OR-graph which is based on the
idea of AND/OR-trees (modelling paradigm). Nodes of this graph represent services of
the RTOS/RCOS. The directed edges stand for dependencies between them. By this way
the graph models the dependencies between all RTOS/RCOS services with all it valid
alternatives. These alternatives are the basis for generating different configurations from
different requirements specifications. The configuration process´ main task is to get rid
of all OR-dependencies, i.e. alternatives of the graph.

This means, a final configuration is a sub-graph of the design space description without
any alternative. The OR-decisions are solved on the basis of costs, priorities, resource
accessibility and the total amount of processes and communications, which make use of
the services. In addition, special edges in the graph represent constraints like forcing,
preferring, or prohibiting the use of a service under special conditions.

The methodology to achieve these configurations is to integrate step-wise knowledge
from the application into the under-specification of the RTOS design space. This knowl-
edge is seen as a requirements specification to the RTOS/RCOS and is used as an input
for the configurator. The requirements specification describes internal knowledge about
the distributed application, which can be exploited in order to optimise the RTOS/RCOS.
The requirements specification consists of:

• Description of the hardware components and its topology of the target system (pro-
cessors, devices, media)

• Process mappings of the application tasks onto processors

• Demands of RTOS services (application programming interface [API] accesses) of
all processes and the properties of these

• List of all communications between the processes with its properties

All these inputs can also be modelled as graphs having processes, processors and API
user primitives as nodes and their interdependencies as edges with assigned properties.
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The algorithm for the generation of a configuration comprises mainly the following two
main goals:

1. Search for a functional correct configuration for the RTOS of each processor

2. Validate the real-time constraints of the application for services of the RCOS

If the validation fails, another valid and correct configuration will be searched. Thereby,
the correct configurations will be generated with increasing costs. If no valid configura-
tion exists, the system fails, but it gives hints to the user indicating for which reasons it
has failed.

In order to find a correct configuration the algorithm combines all graphs to a super-
graph (see Figure 6.2). This super-graph should then contain all required information
and is optimised. Here, optimisation means to find a minimal and cost optimal sub-
graph that fulfils all functional and temporal requirements and contains no alternatives.
Such a sub-graph describes a valid configuration.

In order to make a temporal validation of a correct configuration the timing constraints
for all communications in the system are checked. Therefore, as a first step, a schedu-
lability test must ensure that the load of all communications devices and media is less
than a certain individual limit. If this passes, then for each communication connection
its end-to-end communication time is calculated. This end-to-end communication time
must be lower than or equal to its specified deadline. Schedules of messages for all com-
munication devices and media are created in order to precisely calculate the end-to-end
communication latencies.

6.2 Concept

A communication system like an operating system can be seen as a service platform.
But on the other hand it should not be modelled in the classical way of a monolithic
client/server architecture but as a very fine granular adaptable system with a lot of de-
pendencies between its service components. In this model, all services, their dependen-
cies and properties must be specified. All this information is stored into a database. A
service platform can be built from components in this database.

Besides the model of software components, the hardware also has to be described. Both
models, the one for software and the one for hardware components, are not considered
in isolation. Instead, the connections and transitions from one into the other description
are modelled, too. Thus, one can calculate resource loads and delays caused by services
mapped onto the hardware.

The overall synthesis process works as follows: Starting with a specification of the re-
quired communication behaviour (Process and Communication Graph (PCG)) and the given
hardware topology, that is defined in the Resource Graph (RG), a generator and configu-
ration tool tries to assemble an execution platform from the components of the database.
The description and specification of software and hardware components as well as their
relationships form a sort of expert knowledge.

In order to describe the experts knowledge and to define the requirements specification
and the hardware topology, a model for the communication, the software, and the hard-
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ware has to be developed. In the next few sections the models for hardware, software,
and their inter-relationships are presented.

6.3 Model

The model must describe the expert’s domain knowledge. The data model, which defines
this database, must be able to describe the hardware components, the software (skeleton)
services, their dependencies, and the requirements of the application.

6.3.1 Hardware

A real system consists not only of software but also of hardware components. We distin-
guish three different types of hardware components:

• central processing units (CPUs)
• devices
• media (physical communication links)

Each type of a CPU (Central Processing Unit), device, or medium is represented by a node
in the Universal Resource Graph (URG). The nodes are regarded as resources. Edges be-
tween resources show that these resources can be connected, meaning they are compat-
ible. Only one restriction exists: CPUs cannot be connected to media. Edges within this
graph are directed showing the possible direction of data flow. Each CPU, device or
medium type used in a system must have a representation as a node in the URG. Ev-
ery hardware entity is regarded as a resource with ports of different types. Ports are the
coupling points for connecting resources with each other.

Programmable resources (CPUs) are hardware entities for which software has to be gen-
erated. All entities have special characteristics, which have to be stored and validated by
the tool, too. For example, ports of the type CAN (Controller Area Network) bus can be
connected, provided that they operate with the same bit rate and data protocol. These
are parameters of the port-type and have to be checked during configuration.

6.3.2 Software

Each fragment of the communication software is regarded as a service. This fragment is
normally a function or a method of an object. The methods/functions are cross-linked by
method/function calls. This network of dependencies has to be represented so that only
permissible combinations can be synthesised.

Like hardware entities, software services are modelled by service objects with two types
of interface points. The entry point is the Service Access Point (SAP). A service demands
other services by its Service Request Points (SRP). SRPs are connected to SAPs. They can
only be connected if the SAP and SRP are of compatible type, e.g. if the signatures are
compatible. A SRP can have multiple connections to several SAPs, representing usable
alternatives. The SAP can be seen as the signature of a function and the SRP as a call of
the referenced function.
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A special kind of software are the device drivers and interrupt handlers. They are the con-
nections from software to hardware. Device drivers read/write controller registers in-
stead of calling functions. Interrupt handlers are activated by hardware instead of being
called. These relationships are modelled by dependencies between software services and
hardware resources. Device driver services have a Hardware Request Point (HRP) instead
of a SRP to represent their dependability to a hardware component. This is modelled by a
usage-relation between the HRP and a special type of port. On the other hand, hardware
can have a special port, connected to an Hardware Access Point (HAP) of a service. This is
to specify the demand for activating a kind of interrupt handler service.

6.3.3 Inter-Component Model Structure

The graph of the services together with the SAPs, SRPs, HAPs and HRPs is named Uni-
versal Service Graph (USG). Within this graph all interdependencies between all software
components are described by special edges; including:

• calling dependencies: a service calls another service,

• activating sequence dependencies: a service must run before/after another service,

• excluding/including features: the use of a special service excludes/includes the
use of another service (without calling it).
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Fig. 6.1: Example for an Universal Resource Service Graph.

The USG is a directed graph of all permissible calls and alternatives of services and calling
paths including connections to the hardware (see Fig. 6.1). The USG can even be seen
as a demand graph: a service needs other services or hardware resources. This graph
represents the overall expert knowledge about the services, their properties, and their
inter-relationships.
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Additionally, we have defined user primitives that have only a User Access Point (UAP)
as the root and leaf nodes of the USG. These primitives are specified for sending and
receiving, and represent well defined API (Application Programming Interface) functions.
Each of those primitives is assigned to a special type of SAP. The root nodes of the graph
are the send primitives, whereas the leaves are the receive primitives. Both form the
communication API.

The USG and the URG are the basic data structures which describe all components out
of which a system can be build. The combination of the USG and the URG leads to the
Universal Resource Service Graph (URSG) (see Figure 6.2). Within this Graph the attributes
HAP and HRP of a service have directed edges to ports of devices. The graph represents
a network of software services and hardware entities. The OSI reference model [66] for
communication software with one sender and one receiver can be unfolded in the same
way. The application calls a service of the API, the message passes down the communi-
cation stack to the physical layer and goes up again through the layers to the receive-API.

6.3.4 Constraints

Another very powerful mechanism in TEReCS is the constraint definition. Besides the
service dependency description of the AND/OR-Graph and the solving of the OR-groups
based on the cost function also constraints can influence the decision about the selection
of appropriate alternatives of an OR-group.

Technically, a constraint in TEReCS defines a dependency between an item of the URSG
and the selection of an alternative service in an OR-group. In TEReCS the source of a
constraint can be a service, an SAP, or the port of any device. The OR-group is repre-
sented by an SRP with multiple outgoing connections to SAPs. Such SRP is then also
identified to be a choice object. Each of the SRP to SAP connections is identified to be a
choice element. For this reason, in TEReCS constraints are visualised as directed edges be-
tween the source item and the edge of an SRP to SAP connection. The SRP must define
an OR-group. Therefore, edges from the SRP to multiple SAP must exist. Each of these
edges (choice elements) can be the destination of a constraint edge.

Semantically, a constraint in TEReCS is guarded by its source item. This means that the
constraints is activated if, and only if, the source item has a special status. When the
constraint is not active, then it has no impact on the selection of the alternatives. The
status of the source item can be that

• it is selected to be used in the configuration
• it requires a special architecture, which have to be provided by the CPU for which

it has to be selected
• it (a service) requires different I/O ports
• it (an in-port) requires only the same out-port

The constraint can also be activated, when the above described guard is negated. For
example, when the source item is not selected to be used in a configuration. Especially,
the last two states of the source item are used to configure the communication system.
For instance, a routing service is not required, when all messages using a specific service
or in-port also use the same out-port.
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If the constraint is activated, then it can influence the selection of the specific SRP to SAP
alternative in four different ways:

Prefer: Increments the primary priority of the choice element by one.
Favour: Sets the primary priority of the choice element to the maximum priority of the

service, which belongs to the SAP. The maximum priority is defined a priori in the
URSG and per service.

Force: Sets the primary priority of the choice element to the maximum priority plus one
of all elements of the choice object. Thus, this choice element will be selected in any
case.

Prohibit: The choice element is marked “erased”, which means that it cannot be selected.

If the constraint is deactivated, then the priority of the choice element is restored to its
original value and it is again marked eligible for selection. After a constraint is activated
or deactivated, the appropriate choice object is again solved. In the Subsection “Config-
uring Means Choosing of Alternatives” on page 118 we describe in more detail, in which
way a choice object is solved, i.e. the appropriate alternatives of the OR-group are chosen.

By using these constraint types the selection of one alternative of an OR-group can be
preferred, favoured, forced or prohibited. This can depend on the use of another specific
service, the access of an used service by a specific SAP, or the request of a service or
in-port for the same or different out-ports.

The constraint solving algorithm in TEReCS is very simple. After all services are selected
and all choice objects are solved, the activated constraints are handled and the choice
element, which is influenced by the constraint, is again solved. Because other services
are selected due to the constraint activation, all successors of deselected services must
be deselected and successive services of selected ones must also be selected. This im-
plies that complete sub-graphs must be de-selected or re-selected. This again implies
that other constraints may be activated or deactivated. Thus, the activation or deacti-
vation of the constraints and the de-/re-selection of services must be repeated in a loop
until no constraint changes. Fortunately, the amount of iterations for this loop is lim-
ited by the number of services of the URSG. If more iterations would be executed than
services are present, then the definition of the constraints in the URSG contains at least
two constraints, which mutually influence each other. For instance, the activation of con-
straint a implies the deactivation of constraint b. The deactivation of constraint b implies
the deactivation of constraint a. The deactivation of constraint a implies the activation
of constraint b, that again implies the activation of constraint a. Thus, we have a cyclic
dependency and at least two services that are controlled by the constraints a and b are pe-
riodically selected and deselected. However, such a miss-specification, which eventually
spans over several constraints and services, will be detected and an error will be printed.

6.3.5 Specification of System Requirements

The Process and Communication Graph (PCG) describes the distribution and the communi-
cation behaviour of the application. Each node of the graph represents a process of the
application. An attributed directed edge within the graph shows a possible communica-
tion connection between these processes: The process at the beginning of the edge acts as
a sender and the process at the end of the edge acts as a receiver. The edge is attributed
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by two user primitives (the sending and receiving one), the amount (and eventually the
type and layout) of the data and the period or maximal allowed latency for the commu-
nication.

6.3.6 Example
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Fig. 6.2: Example for the integration of Universal Service Graph, Universal Resource
Graph and Resource Graph.

In Fig. 6.2 a simple example for an USG, an URG, RG, and their interconnections is given.
The system hardware consists of two CPUs connected via a CAN medium. The URG
describes not only the types of the used resources, but contains also other CPU and device
types. For this reason, the USG contains alternative calls of device drivers for writing
messages to and reading messages from different device types. That way, appropriate
services (using existing devices) have to be selected during the search of feasible calls.
Furthermore, in combination with the RG the routing problem in the resource topology
can be solved.

6.4 Design Process

This section is divided into three subsections. In the first subsection the methodology is
presented, which is the basis for the design process in TEReCS. In the second subsection
the synthesis process is explained. The synthesis of code for the operating and commu-
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nication system of each node of the system is implemented as a configuration problem.
Here, configuration will be described as a graph problem (with a structure-based con-
cept hierarchy, see Section 3.3.129 and page 39), since dependencies of software parts can
often be represented by dependency graphs (like used in UML specifications [109]). The
second subsection contains a quite abstract description of the configuration. In the third
subsection the configuration algorithm is described in more detail.

6.4.1 Methodology
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Fig. 6.3: Methodology in TEReCS for creating a configuration and assembling the code
for a run-time system.

Central to our methodology (see Fig. 6.3) is the library representing a knowledge base.
The library consists of three sections: The description of objects, the URSG and the im-
plementations for each service (maintained in source or object code format).

Experts are responsible for creating new services. They describe them with basic descrip-
tions taken from the library, insert them into the URSG and define their properties, rela-
tions and implementation. Supported by the database management tool TEDIT, experts
are enabled to manipulate and edit the library.

The library with its URG (which is a subgraph of the URSG) serves for users of the system
as a basis for modelling the RG and as a source for the synthesis process. In order to start
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the synthesis process they have to define the communication behaviour of the distributed
application and the hardware topology. From the hardware description a concrete RG is
derived. The communication demands (PCG), the RG, and the URSG, as well as the
implementations of the services are the inputs for the synthesis.

6.4.2 Synthesis

After presenting the basic data structures used for the description of the SW-components
the synthesis process (see Fig. 6.4) is briefly introduced.
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Fig. 6.4: Synthesis process in TEReCS.

The first step (graph composition) of the process combines all these three graphs (URSG,
RG and PCG) to one hybrid Resource Service Graph (RSG) for the required system. This is
done in the following manner:

• All resources in the RG are connected to their corresponding types in the URG, resp.
URSG.

• Each user primitive in the PCG is assigned to its corresponding user primitive in the
USG, resp. URSG.

• All paths in this graph starting in a user primitive that is not used are deleted.
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• All paths in this graph with services leading to resource types that are not connected
to resource instances of the RG are also deleted.

This strategy results in a graph where all non-accessible services are erased. The resulting
RSG consists only of probably required services and resources for the demanded system.

The second step of the synthesis process contains the main algorithm for finding the re-
ally needed services and resources. The main idea is that this step works like hardware
synthesis. For this reason, the synthesis is divided into the following sub-processes: se-
lection and allocation of services, configuration, validation, and code generation. Here
scheduling means selecting hardware alternatives or planning communication slots onto
the media, which allow a more detailed analysis of latencies and delays.

The first sub-step (Selecting & Allocating) determines the really needed services and re-
sources. This is done by finding an optimal path in the graph from the sending user
primitive to the receiving user primitive along each edge of the PCG. User primitives lead
to services, services lead to other services or device types, device types lead to concrete
devices on this CPU, devices lead to media, media again to devices, devices to device
types, device types to services and services again to user primitives (see Fig. 6.1). That
way, by searching a path through this graph, also the routing-problem is solved. Because
of possibly existing alternatives in the USG and in the RG more than one path can be
found. The optimal path is chosen by using a cost function or because services in a path
are excluded by already selected services. Thus, the order of the communication edges
that are visited has an impact on the solution. By finding a path the selected services
can be allocated onto the corresponding CPUs. Furthermore, it is known which services
and resources are used by which communication connection. Thus, the resource loads
of all devices and media (and even CPUs, if we know the generated load by each ser-
vice) can be determined. This information has to be validated in order to ensure the de-
manded functionality, to guarantee that all resource-loads are lower than a given bound
(e.g. 100%), and to meet all communication deadlines.

The second sub-step (Configuring) generates data which are needed for the services (e.g.
a routing table for a routing service) and assigns concrete values to free parameters of the
services (e.g. the baud rate used for a medium).

The third and last sub-step (Generating & Compiling) assembles the code for each CPU.
This is accomplished by generating Makefiles, which compile the needed services and
generated data into a library, for each CPU.

6.4.3 Configuration Algorithm

In this section the configuration algorithm is described in more detail. Especially, the
sub-steps “Selecting & Allocating” and “Configuring”, that have been presented in the
previous section, are explained. This section describes in which way the Universal Re-
source Service Graph (URSG) is traversed in order to select all required services for the
configuration of the operating and communication system of each processor node in the
system. We also define the cost function that is used in order to solve the selection of the
alternatives of all OR-dependencies in the URSG.

The configuration algorithm works in four phases:
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1. Initialisation and input of the service database, the hardware topology, and the re-
quirement specification

2. Selection of all possibly required services for each processor node
3. Make decisions for the OR-groups and the constraints for each processor node
4. Generate the configuration description for each processor node

In phase 1, which is the initialisation, the service database with its Universal Resource
Service Graph (URSG) is read from a text file. Also in phase 1, the hardware and topology
description within the Resource Graph (RG) is read from a text file, and, last but not least,
the requirement specification within the Process and Communication Graph (PCG) is also
read from a text file.

In phase 2, which is repeated for each processor node (CPU), the possibly required ser-
vices are marked for selection (“Selecting & Allocating”). They are selected for being
implemented on a specific processor node. This phase is named “selecting phase”. This
is mainly done by traversing each path from a primitive, which is used in the require-
ments specification, down to every reachable leaf (which is a service that requests for no
sub-service, see Figure 6.5). Thereby, all alternatives of one OR-group in the URSG are
stored in a choice object for the specific processor node. Additionally, each defined con-
straint, which possibly must be solved, is stored as an inhibitor object. (For the definition
of the constraints see Section 6.3.4110.) The result of this selection is a specific sub-tree
of the complete URSG for each processor node. Note, that this sub-tree contains still all
possible alternatives of OR-groups.

Primitives:

Service
Dependencies:

Devices:

Fig. 6.5: “Puppet Configuration” finds a solution by traversing all paths from selected
primitives down to all terminal nodes, whereby all OR alternatives are resolved.

In the 3rd phase all OR-alternatives of the choices are determined. This means, that only
as many services remain in each OR-group as required (often only one). This phase is the
“configuration phase”. For each service A of an OR-group, which has not been selected,
all successive sub-services, which can only be reached via that service A, must also be
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deselected. Additionally, all constraints are handled in this phase. Only activated con-
straints must be solved. A constraint is activated, if its source item, which controls the
constraint as a guard (and which can be any service, a Service Access Point (SAP), or an
in-port of a device), is selected. A constraint is not considered, which means it is deac-
tivated, when its source item is not selected. Constraints influence alternatives of OR-
groups (choices) to be selected or not. The constraint solving has already been described
in Section 6.3.4110.

In the last and 4th phase the configurator writes the configuration description for each
processor node, the makefile for each processor node and the net description for the
routing of the communications onto the links into text files (“generating phase”).

The reason for splitting the main configuration algorithm into the two phases for “select-
ing” and “configuring” is the following. In order to decide for an OR-group (choice object),
which alternatives have to be chosen, a cost function is required. This cost function de-
termines the alternatives of an OR-group that must be selected. It is the main part of the
“selecting” phase to determine the costs of each selected service and SAP. Additionally,
it determines the number of request for each service. This is the number of tasks and
communication requests, which require that service.

Cost Function

The cost function is hierarchically defined. Each service and each SAP of the URSG have
assigned some initial costs. They produce this initial cost, when they are possibly selected
for a configuration. The total costs of a service or an SAP are defined as the sum of the
initial costs of all it succeeding services and their used SAPs of its sub-tree of the URSG.
This means that for each path from a service down to every reachable leaf service the
initial costs of each SAP and each service on that path are added to its own initial costs.
This results into a cost labeling of each possibly selected service. A service may only be
possibly selected, because in this phase all alternative services of a OR-group are selected.
If a service refers to an OR-group, then it inherits the maximum costs of the alternatives
of this OR-group (see Figure 6.6). The services may be deselected during the solving of
the choice objects (“configuration phase”).

While the maximum of the total costs of each service are determined, also the depth of
each service is calculated. The depth is defined by the maximum path length of a path
from this service down to any leaf service. The path length is defined as the number
of services that are visited on the path. An OR-group is modelled as a Service Request
Point (SRP), which refers to more than one SAP. The depth of the corresponding choice
object, which represents this SRP, is defined as the minimal depth of a service to which it
belongs.

After the “selecting phase” all choice objects are handled during the “configuration
phase”. The choice objects are handled according to their depth, starting with the highest
depth. This is done, because the costs of the service A, which owns the SRP that defined
the choice object, are re-calculated upon the actual selection of the choice. That means,
that the costs of the deselected and succeeding services are removed from the total costs
of the service A. This assures that the cost labeling contains only costs of the selected
services after each choice object is handled.
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Fig. 6.6: Example for the calculation of the costs (C) and the depth (D) of each service
assuming each service has the initial (self) costs of 1 and each SAP costs 0. The
bold lines refer to the longest path. The dashed lines refer to the same OR-group.

Configuring Means Choosing of Alternatives

The “handling” a choice object means to determine the minimal set of required services
(often this is only one) from the complete OR-group. The decision about which services
should be chosen is made on different levels. On each level some services are removed
(deselected) from the OR-group. If there are still too much services selected, then the next
level is applied. Actually, TEReCS defines six levels for the deselection of services from a
choice object. Each service is assigned an initial primary and an initial secondary priority.
The first level deselects all services, which do not have the highest primary priority of all
the services in this OR-group. At the second level only that services remain selected,
which have the highest number of requests by communications that are defined in the
requirement specification. At the third level all services are deselected, which do not
have minimal total costs of the cost labeling. At the fourth level all services are deselected,
which do not have minimal costs that are defined locally by their choice object. This are
the minimal total costs of all services that use the SRP that defines this choice object.
At the fifth level only that services remain selected, which have the highest number of
requests from tasks. If there are still too much services selected, then at the sixth level
all services are deselected, which do not have the highest secondary priority of all the
services in this OR-group.

After a level is applied, too less services might remain in that OR-group. In this case all
services with minimal total costs are again selected. After this procedure it can still occur
that the number of selected services is either too less than the defined minimal number
or too high than the defined maximum number. In this case TEReCS does not succeed to
solve the choice. A warning will be given. But the practice showed that the URSG can be
defined in such a way, so that always the choices can be solved.
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Considering Communications

The communications, which are defined in the requirement specification, request for two
primitives that are used for the sending and receiving of the message, respectively. Both
primitives can be required on two different processor nodes. Thus, it is the task of the
configurator in TEReCS to select all required services on the sending node, the receiving
node, and eventually on all intermediate nodes (hops). For this reason, the configurator
of TEReCS determines the routing of that communication, which determines all used
nodes. Additionally, the devices are determined that have to be used for the local sending
and receiving of the message on each node. The configurator selects the services for a
path through the URSG from the sending primitive to the first sending device (out-port).
On every intermediate node it selects the services of the path from the incoming device
(in-port) to the next outgoing device. On the receiver’s node the configurator selects a
path from the receiving primitive to the receiving device (in-port). Remember, that the
ports of the devices are connected to a Hardware Access Point (HAP) or a Hardware Request
Point (HRP) of a service in the URSG.

The path selection on the last hop is made from the receiving primitive down to the in-
port. This is opposite to the message flow and can arise a problem. An incoming message
is read by the device driver, which has been activated by an interrupt of the in-port. The
message is then stored into a kind of mailbox. Therefore, the device driver requests for
some sub-services until a service of the mailbox stores the message into the memory. At
the other end of the communication, the receiving primitive requests for some services
until it reaches the read service of the mailbox in order to retrieve the message. Thus, we
have to follow the service dependencies on the receiving node from both directions. This
case is also handled by TEReCS. The store service of the mailbox have to be marked as a
server service for the read service of the mailbox. The read service have to be marked as
a client service of the store service. In this way, TEReCS can select the services of a path
from the receiving primitive down to a client service, and the services of a path from the
in-port to the appropriate server service.

In some environments the communication is handled by some dedicated communica-
tion co-processors. In this scenario the message is stored on the co-processor’s memory
and has to be explicitly requested from there. TEReCS is also able to handle this. The
TEReCS’s specification model allows to place the server service for a receiving primitive
to any directly neighboured node. Then, TEReCS routes a path from the client service
over the communication link to the server service on the neighboured node and back to
the client service.

The modelling of a real client/server-communication between two not directly neigh-
boured nodes is yet not possible in TEReCS. However, it is intended by TEReCS to model
each directed communication separately. The above presented functionality is only in-
tended to be used for a scenario with a communication co-processor.

6.5 Hierarchical and Dynamic Configuration

Up to now the configurator requires the complete design space description of the sys-
tem, which should be customised. This is provided by the Universal Service Graph (USG).
The USG is flat and can be very huge. Thus, the process, respectively the scanning and
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traversing of the graph can use a lot of time. For example, think of a graph, which does
not only describe one operating system but a lot of different operating systems and even
some middleware software like CORBA services, protocol stacks, database systems, ap-
plication specific domain services (video/audio codecs, controllers), etc. Therefore, a
methodology was developed to prompt how the configuration process can be acceler-
ated.

Hierarchy is a very powerful structuring paradigm for information hiding. If the USG
is extended by hierarchy, then this can be exploited during configuration. When a well-
defined hierarchical clustering mechanism for the object graph joins the process preced-
ing the configuration step, the advantages are manifold. The rules of clustering aid the
configuration process by not only encapsulating the objects as clusters and sub-clusters
but also streamlines the configuration process. The configurator chooses optimised paths
by taking advantage of having clustered objects, for a given set of reasonably complex re-
quirements. Also, when a change in the set of requirements takes place, it directly attacks
the cluster in question with the aid of rules instead of doing the global search for iden-
tification of the involved objects. Added advantages result from keeping the rules of
clustering inline with the configuration process itself. In this case the entire process is
able to support different clusters for different applications.

Hence, a need for a specific hierarchy or clustering mechanism, which is based on the con-
nectivities and types of relationships of the USG is felt, which tries to improve the process
of configuration in totality. The relationships, inheritance, membership, using, and the con-
straints form the basis for the connectivity, form clusters and further form the configura-
tion. The rules governing the cluster formation, which are mentioned later in this section,
weight each relationship against others, resolve conflicts and provide a connected clus-
ter. The basic idea behind the novel tool-oriented clustering paradigm is the following:
Any small change in the requirements specifications will affect in visiting the particular
cluster(s) alone instead of the whole USG.

While formulating the rules for clustering, which support the configuration process, care
has been taken not to encroach into the process of configuration. That means, it is man-
ifest that both the process of configuration as well as the hierarchical clustering process
have distinct objectives and functions.

6.5.1 Hierarchical Clustering

Services of the USG can be grouped to many clusters based on their connectivity. The
graph can be transformed in that way, that all services of a cluster are represented only
by one higher-level service. This service of a higher level is called super-service or cluster.
All relations connected to a service of the cluster and any service outside of the cluster are
redirected to the super-service. All services and relations inside the cluster are completely
hidden. In order to support unlimited levels a cluster on level n can consist of normal
services (at lowest level 0) and super-services of level n and is represented by a super-service
at level n+ 1 (see Figure 6.7).

At the lowest level the graph represents the original flat graph and consists of all user
primitives described there. Because super-services are handled by the configurator equally
to normal services, all customisable items of this level (visible alternatives) will be config-
ured, when this graph is used as input for the configurator. Additionally, the configurator
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Fig. 6.7: Using hierarchy for hiding cluster graphs for super-services. The super-services
are abstractions of cluster graphs.

gives the output, which cluster is required and which is not required. This means that
only the required clusters need to be configured at their higher level. This works as fol-
lows: The SRPs of all incoming relations into this cluster are replaced by user primitives.
All outgoing relations can nearly be ignored, because they are already configured at the
higher levels. The newly and temporarily created user primitives and the sub-graph inside
the cluster are used as input for the normal configurator. A new requirements specifica-
tion is created from the configuration at the higher levels, by the rule: The primitive
inherits its usages from the SRP. After the configuration for this cluster is ready, it can be
integrated into the higher-level configuration by simple insertion (see Figure 6.8).

This methodology dramatically decreases the time for configuration, if a lot of clusters
need not to be considered. Therefore, it is inherently important to have a good clustering
of the original flat graph. But this strongly depends upon the requirements specification
and the graph itself. Thus, rules are required that describe the way to define cluster
borders or whether (super-) services should be joined into the same cluster or not. It
has to be decided whether a dependency should cross such a border or not. This can
be decided upon the properties of this dependency and the impact of the requirements
specification onto this dependency and vice versa.

The rules resulting from our investigation are given as follows:

R1 Do not separate services, which are tied to another service with OR relationship.
Because OR relationships are resolved by the configurator.

R2 Join services by looking for inheritance relationship first, if not membership rela-
tionship next. Consider using relationship only when no other relation exists. (This
rule is purely heuristic.)
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R3 If R1 and R2 are conflicting and both inheritance and membership carry equal
weight (that means, the cost of both the relationships is same), then resolve the
conflict by referring to rule R4 and R5.

R4 In conflict, if the involved relationships are of the same type, the small segment
joins the bigger one. While partitioning, when a service in question faces a conflict,
whether to join this cluster or that cluster when the costs involved are same, this
rule becomes active.

R5 In conflict, a constraint edge or simply constraint, which prohibits or prefers or
forces prioritised relationships, is used to decide the place of services under consid-
eration. This rule gets priority over rule R4 when constraints are involved.

The configurator-supporting-clustering is dynamic in the sense that a service attached to
one cluster for one set of a requirements specification would be placed in another cluster,
which corresponds to another set of requirements specification.

Procedure Cluster-Configuration (graph USG, requirement
specification RS):

1. // Clustering phase:
2. Create set of clusters SC for graph USG taking RS

into account;
3. Remove all not required clusters (not touched by

requirement specification RS) from SC;
4. // Configuration phase:
5. If SC has only 1 cluster then

(a) G := Graph in Cluster C from SC;
(b) USG.Configuration := Configure ( G, RS);

6. Else
(a) Foreach graph G in cluster C from SC do

(1) R := all requirements from RS touched by
primitives in G;

(2) RS := RS - R;
(3) C.Configuration := Cluster-Configuration ( G, R);
(4) USG.Configuration += C.Configuration;

(b) Enddo
(c) G := Graph describing cluster connectivity in SC

according USG;
(d) USG.Configuration += Configure ( G, RS);

7. Endif
8. Return USG.Configuration;

Fig. 6.8: Algorithm of the hierarchical (recursive) configuration process.

6.5.2 Dynamic Aspect

The hierarchical configuration process can be divided into two general steps: (1) Generate
a good clustering and hierarchy for a flat graph. (2) Configure the system by following
the hierarchy and exploiting the clustering. Even these two phases of configuring can
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alternate in a hierarchical (recursive) algorithm. It means, after clustering and configura-
tion have taken place at a certain level, both phases will be applied to the clusters of the
next level, and the process continues up to the highest level (see Figure 6.8).
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Fig. 6.9: Design flow for hierarchical clustering and configuring

The hierarchy and clustering of a given service graph has been designed not to be static
for all given application scenarios. If it would be static, then the information covered by
the hierarchy and clustering structure would just be redundant. This means that the hier-
archy and clustering can be obtained before configuration by applying the partitioning al-
gorithm. In contrary to this, in our approach clustering also depends on the requirements
specification, because constraints are strongly influenced by the requirements specifica-
tion. Thus, different requirements specifications result into different clustered hierarchi-
cal graphs providing additional information for the control of the configuration process.

This can also be achieved by giving a clustering which is not complete, respectively,
which contains non-determinism in form of design freedom. For example, a service can
be selected to be a member of more than one cluster (dynamic or fluidic cluster border).
But for configuration it must be uniquely assigned to only one cluster. So, there exists an
open problem, which still must be solved before the basic configuration can start. This
incomplete or non-deterministic dynamic hierarchy and clustering must be transformed
into a static and well defined hierarchy and clustering. This can be done by applying also
application specific knowledge from the requirements specification, like rule R5.
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6.5.3 Results of Clustering

The purpose of the clustering phase is to support the configuration phase for faster ex-
ecution and to support for the reuse of already made sub-configurations. This is a sort
of case-based configuration, where similarities to previously made configurations are ex-
ploited. Any modification in the requirements specification would not necessitate the
configurator to re-run the whole process, instead it simply localize the change in a cluster
or a sub-cluster with the help of the configurator-aided-clustering.

A first version of the clustering algorithm has been applied to the USG of DREAMS. It
resulted in a hierarchy of 3 levels where the clusters per tier are ranging from 2 to 8.

You can observe that heuristic knowledge did play a role in clusterings for supporting
the configurator. The first-level clusters that have been obtained from the clustering sup-
porting the configurator are very similar to those clusters, which would have been built
by the operating system experts for documentation purposes. The clusters naturally em-
body all services that belong to the same general operating system function family, like
board & devices, core DREAMS functions, memory management, communication, synchronisa-
tion & scheduling, exception handling and data structures (see Figure 6.10).
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Fig. 6.10: Top-level clusters of DREAMS.

Another major impact of having hierarchical clusters in the process of configuration,
when a reasonably complex system is under consideration, is the expected reduction
in the configuration time. It paves a new way to re-configuration. Another advantage
includes customising one cluster at a time instead of the whole flat graph, which not only
reduces the required memory size, but also makes the configurator to manage bigger
systems.

6.6 Description Languages

In this section we will describe the languages that are used in order to describe the general
domain knowledge, the hardware and the topology, and the application specific domain
knowledge (requirements specification). A detailed description of the languages is given
in Appendix C. There, we will explain the semantical meaning of the statements.

The general domain knowledge describes the Universal Resource Service Graph (URSG),
which is one input to the configurator TGEN. The software model (USG) and the hard-
ware model (URG) are both integrated in the URSG. Another input for TGEN is the
Resource Graph (RG) that defines the hardware and topology description, for which the
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operating systems and the communication system should be generated. Last but not
least, the application specific knowledge defines the requirements specification and is the
Process and Communication Graph (PCG), which must also be an input to the configurator
TGEN.

The grammars of the languages were designed to be context-free in order to build sim-
ple parsers (in contrast to context-sensitive grammars). Each description of an item
of the databases, respectively graphs, is introduced by a type identifier keyword, like
“SERVICE”, which is followed by the name of that item in brackets (<service-name >)
and several property statements. The description of an item of the databases is ended by
the same type identifier keyword, which has the prefix “END”. A property statement is
defined by a property identifier keyword, like “VISIBILITY ”, which is only followed
by a parameter list in brackets. An example can be found in Figure 6.11.

SERVICE(<service-type-name>)
VISIBILITY(<num>,<num>,<num>)
POSITION(<x>,<y>)
COSTS(<int>)
REQUIRES(<cpu-type-name>)
PRIORITY(<num>)
PRIORITY2(<num>)
MAXPRIORITY(<num>)
ORDER(<num>)
PREFIX("<string>")
SUFFIX("<string>")
PATH(<path-name>)
FILE(<file-name>)
[ IN(<sap-type-name>) [ FIXED AT(<x>,<y>) ] ]*
[ OUT(<srp-type-name>) [ FIXED AT(<x>,<y>) ] ]*
[ NEEDS(<hap-type-name>) [ FIXED AT(<x>,<y>) ] ]*
[ TRIGGEREDBY(<hrp-type-name>) [ FIXED AT(<x>,<y>) ] ]*
[ ASYN CLIENT OF(<service-type-name>) ]*
[ SYNC CLIENT OF(<service-type-name>) ]*
[ INHIBITS(<srp-type-name>,<sap-type-name>) ]*
[ FAVOURS(<srp-type-name>,<sap-type-name>) ]*
[ FORCES(<srp-type-name>,<sap-type-name>) ]*
[ FORCEHWUSE(<srp-type-name>,<sap-type-name>) ]*
[ INHIBITS AT MULTI NEED(<srp-type-name>,<sap-type-name>) ]*
[ SAY("<string>") ]*
[ NEGSAY("<string>") ]*

ENDSERVICE

Fig. 6.11: Description of a declaration for a service in the specification file for the USG.

For a better readability each property statement should be placed into a single line; but
this is not a must. All of the property statements are optional. If one is missing, then
a default value is assumed. Some property statements can be multiply defined with
different parameter lists per database item.

It would have also been possible to define the input languages to be compliant with the
XML (eXtensible Markup Language) specification. But XML would introduce some non-
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negligible overhead, which makes the reading of the declarations difficult for humans.
An advantage of using XML would have been that a lot of parsers for the development
of the software tools could have been used and also other tools could read the languages.

General Domain Knowledge

The general domain knowledge for the configuration process is defined in a database, in
which all configuration items are stored. It defines a kind of knowledge base, because all
properties of the configuration items, like their dependencies, the alternative selections
and the constraints, are described herein. The configurator TGEN reads this database
from a text file. The definition of the database starts with the keyword DATABASEand
ends with the keyword ENDDATABASE. Every line before and after this keywords are ig-
nored. Inside the database definition all IPORTs, OPORTs, IOPORTs, SAPs, SRPs, HAPs,
HRPs, PRIMITIVEs , SERVICEs, EXECUTIONBLOCKs, CPUs, DEVICEs, and MEDIAs
have to be declared. Thereby, exactly this order have to be used, because, for instance,
before an SAP can be referenced in a service, it must have been declared.

The central definitions of the general domain knowledge are the declarations of services,
execution blocks, and user primitives (see Section 6.3108 and Section 6.8.1135).

Hardware and Topology

In the hardware and topology description, which is the Resource Graph (RG), only two
statements are allowed. This is the HARDWAREstatement and the TOPOLOGYstatement.
They also have to be placed in the given order.

Inside the HARDWAREstatement concrete instances of CPUs, DEVICEs and MEDIAs are
created. Therefore, Each instance have an unique identifier as its name and is of a specific
type, which must have been declared in the general domain knowledge of the Universal
Resource Service Graph (URSG).

The TOPOLOGYstatement mainly defines connections between the CPUs and the devices
and between the devices and the media. For each connection a port type name must be
given. A port of exactly this name must be present in both connected resources. That
means that only those ports can be connected, which have the same name! Remark, that
the direction of the connection is defined by the ports and not by this statement.

Requirements Specification

The requirements specification allows only five different statements. With these state-
ments the tasks, their system call events, their communications, and their placement onto
the CPUs can be described.

6.6.1 Describing the Design Space of DREAMS with the TEReCS Model

This section shows in which way very fine granular customisation of a run-time platform
can be exploited. The configuration tool of TEReCS is applied to a customisable library-
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based construction kit for embedded operating systems. We report on the use of the
TEReCS configuration approach to the object-oriented and at source code level customis-
able application management system DREAMS (see page 51). We demonstrate that the
universal configuration approach of TEReCS is applicable to object-oriented paradigms
and that this leads to fine-grained and tunable systems that avoid overhead.

First, a brief introduction to the customisation facilities of DREAMS is given. Some of
the internal concepts of DREAMS are presented. Second, some major aspects of how the
configuration model of TEReCS is applied to DREAMS are considered.

6.6.1.1 Customisation Features of DREAMS

DREAMS is a construction kit for embedded real-time operating systems. It supports for
memory management, device access, multi-threading (scheduling), resource allocation,
mutual exclusion, synchronisation and communication for embedded real-time applica-
tions. Its advantages are the flexibility of customisation, the availability of its source code,
the extensibility, and the hardware support of different target architectures. DREAMS is
an object-oriented system written entirely in C++ (except some very few lines in assem-
bler for context switching). Thus, the class structure of DREAMS is the basis for its cus-
tomisation. Classes of DREAMS objects can be configured. Such configurable classes are
named skeletons. For providing configuration facilities C++ was extended by a Skeleton
Customisation Language (SCL) [42].

Customisation within DREAMS is applied during compile-time. Therefore, SCL is trans-
lated into pre-processor commands, which are finally handled in the compilation pro-
cess. A customisation description in SCL and an appropriate makefile is required in
order to generate an execution platform (kernel-like virtual machine) from all skeletons
of DREAMS. The task of TEReCS’ configuration tool TGEN is to support these files.

As mentioned before, customisation within DREAMS is applied at class level. Mainly,
there are four class properties, which can be configured:

Inheritance: The base classes
Aggregation: The components which are part of a class identified with their type
Polymorphism: Choice of a specific method during run-time (virtual concept)
Construction: Allocation method for objects and when they are created

The first and second property are the most important ones. This means that they are
used more often than the other ones. This is not surprising, because with these design
decisions the main properties of an object get defined.

Now, we shall give a brief introduction to some meta customisation concepts in DREAMS.
This basically helps to sketch the general possibilities of customisation in DREAMS, and
to show the complexity of the design decisions and their results in a more or less concep-
tual way. Mainly, we present the two categories of customisable objects, which belong
to different levels of abstraction in DREAMS: Skeletons and Application Programming Inter-
faces (APIs). Further, we introduce the concept of synchronisation for mutual exclusion.
Finally, we give an idea of how overhead is avoided by customisation.
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APIs and Skeletons. Customisation in DREAMS is not only applied at the class or ob-
ject level, but also at the interface level. Not only concrete properties of an object are
configurable, but also the access interface is adaptable. The interface level of the inheri-
tance hierarchy (class), on which an object is accessed or used by others, can be changed.
This is done by declaring stub-classes, named APIs. For example, if class A is derived
from class B, then the API of an instance of class A may be the interface of A or B. If B is
chosen, A may have virtual functions, which need not to be accessed. The API of class A
defines the access interface to concrete instances of the object.

Resource Protection. If an object is shared by multiple processes, the access to the
object normally must be protected using synchronisation by locking. This is done in
DREAMS by deriving an object from the base class Resource instead of the base class
Object . It is left to the configuration to determine if an object is a Resource or a simple
Object , which must be protected or not.

Avoiding overhead. Avoiding overhead means normally to avoid each source code
line that produces some “never used” code, i.e. code which is useless and code that has
no effect but occupies valuable resources. In an object-oriented specification paradigm
this means to eliminate classes from the class hierarchy, and also to eliminate aggregated
members which are not demanded. Replacing a simpler function by a more complex
one often means to exchange the base class, which owns this function. These concepts
request for an extension to the object-oriented paradigm that allows to specify inheritance
and aggregation at a meta-level. Exactly this and a few more things are done by the SCL.

The classes of DREAMS can be divided into eleven families: classes that represent special
operating system levels, classes that reflect the hardware architecture of the board, pro-
cessor and its devices, classes for memory management, object representation, database
management, device drivers, process management, exception handling, scheduling, mul-
tiplexing, synchronisation and communication.

The class diagrams for each of these groups in DREAMS were extended by additional
information about the configuration options of these classes. That means that different
alternatives for inheritance and aggregation etc. are modelled by the SCL. This was nec-
essary to model the complete design knowledge and to get the overall view of DREAMS.
Valid alternatives were distinguished from invalid ones by examining various customi-
sation examples of predefined execution platforms constructed from DREAMS (and by
a lot of discussions with the DREAMS developer Carsten Ditze). Invalid configuration
options had been eliminated by the definition of constraints between mutual dependent
OR-groups. This led to a description of the valid design space of DREAMS.

6.6.1.2 From DREAMS’ Skeletons to TEReCS’ Service Dependencies

The procedure of applying the TEReCS approach to the DREAMS system can be divided
into the following steps:

1. Investigate configuration options of DREAMS.
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2. Analyse the DREAMS class structure.
3. Examine predefined customisation examples of DREAMS for special run-time plat-

forms.
4. Search for customisation rules.
5. Define transformations from DREAMS’ customisation facilities into the TEReCS

model.
6. Apply transfer rules to all DREAMS classes considering all valid customisation op-

tions.

We have already had a look at the DREAMS system and the TEReCS concepts. Now, we
want to present the main ideas of integrating DREAMS into TEReCS. In order to describe
the customisation facilities of DREAMS with the TEReCS model a set of transfer rules
(from one model to the other) have to be developed. The basic rules are the following:

• Each skeleton and API in DREAMS is viewed as a service.
• For each functionality of DREAMS a “virtual service” is being introduced.
• The inheritance relation of a skeleton or an API is modelled by an SRP that references

all possible SAPs of valid base classes.
• For each configurable aggregated member of a skeleton an SRP is made available.

This SRP contains all possible SAPs of valid types for this member. This includes
eventually an SAP of a particular empty service indicating that the aggregated
member is not required.

• The SAPs being used in inheritance SRPs and the SAPs being used in aggregation
SRPs are different ones.
• The SAP used for an aggregation relation additionally determines the construction

method and its polymorphism.

The major transfer rules have been illustrated in Figure 6.12 on the following page. They
show in what way the inheritance and aggregation dependencies are modelled in the de-
terministic as well as in the non-deterministic case. The non-deterministic case is exactly
the case, where the alternatives for the customisation are described within the SCL.

Now, let us take a detailed look at some concrete examples that are taken from the ex-
tended DREAMS class hierarchy.

Example 1
In DREAMS the class Task can be derived from the class Thread or from the class
MultiThread . The class MultiThread is required, when multiple threads are cre-
ated for the task. For this reason, the access interface API Thread for the thread struc-
ture in DREAMS can either be of type Thread or of type MultiThread . Multiple
threads can only be created, if the task calls the primitive CreateThread() . These
dependencies are modelled and shown in Figure 6.13131. The configuration procedure
works as follows on this model: The SAP of service Thread is limited by one entry.
Therefore, either API Thread or MultiThread can use the service Thread . Normally,
the service Thread is chosen, because of its lower costs (MultiThread inherits costs
from Thread plus its own costs). But, if MultiThread is also used by the virtual ser-
vice MultiThreading (requested by the use of the primitive CreateThread() ), then
MultiThread must be chosen, because of more requests. For a detailed description of
the selection mechanism of alternatives please refer to Section 6.4112.
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Fig. 6.12: Illustration of the major transfer rules for the modelling of DREAMS’ object-
oriented customisation features within the TEReCS’ model.

Example 2
The class Processor in DREAMS has an optional timer component. This represents the
concrete device driver for accessing the hardware timer of the processor. Depending
on which processor is used, the correct driver must be set in an appropriate manner.
This includes, that the timer can be unused and, therefore, the driver can be excluded
in order to save space for the representation of the class Processor . The model for
these service dependencies is given in Figure 6.14 on the next page. In the normal case
the component is chosen to be “empty”. But if the service TimerInterrupt is also
selected, it prohibits the aggregation SRP of the class Processor to choose “empty”.
Two possibilities exist for using a service as the device driver for the timer: Either the
class PowerPCTimerDevice or the class CToolsTimerDevice . The selection will be
made according to the present hardware. The service PowerPCTimerDevice can only
be chosen, if the processor is a PowerPC. Likewise, service CToolsTimerDevice can
only be chosen, if the processor is a Transputer . Thus, the choice is unique.



6.6. Description Languages 131

--

SAP

Part of

Task

API_Thread

Multithread

Thread

SRP is

SRP is

SRP is

SRP is

SAP

SAP

SAP max=1

SAP

the Task

Hierarchy

Multithreading

SRP

SAP

CreateThread

forces
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Fig. 6.14: TEReCS model for the integration of timers into DREAMS.

These two examples illustrate major underlying concepts of coding the configuration
options of DREAMS into the TEReCS’ model.
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6.7 Knowledge Transfer from the Application to the Configurator

This section tries to explain briefly in which way knowledge about the application can
be transferred to the configurator and in which way it can there be exploited for the
operating and communication system’s configuration. The requirements specification (as
described in Section 6.6124) defines the behaviour of the application. When this behaviour
is known a priori, then the operating and communication system can be implemented
appropriately. This means that specific services are implemented in such a way, so that
they cope only with the required use case. They do not produce any overhead, because
they need not to handle excluded use cases of the application. The code of a service
can often be simplified, if assumed that special restrictions hold. These restrictions are
defined by the application programmer and are often directly intended. The restrictions
define a special behaviour of the application or they define that the application must
behave in a special way.

An example is a specific scheduling scheme, which depends on the task set’s proper-
ties. Another example is the synchronisation of a resource access. The synchronisation
must only be implemented, if the resource is really shared simultaneously between dif-
ferent processes. If the resource is not shared or the resource is never accessed during
the same time slot (implicit synchronisation), then the explicit synchronisation by using
a semaphore, for example, is not required. Additionally, if a resource is accessed only by
two processes, then the synchronisation code can be simpler, as if it would be, when it is
accessed by an unknown number of processes.

Specific knowledge about the application is used during the configuration of the operat-
ing systems in order to simplify the implementations of certain operating and commu-
nication system services. Because of this additional knowledge about the behaviour of
the application, the operating and communication system functionality can be adapted
to the special requirements of the application. Or, expressed from another point of view:
The operating system specification is enriched by specifications about the application.
Thus, this additional knowledge can be exploited for optimising the implementations
of operating and communication system services. This process of integrating additional
knowledge into the operating and communication system’s specification is a knowledge
transfer from the application’s domain into the operating and communication system’s
domain.

The configurator is responsible to integrate this additional knowledge correctly. In
TEReCS the functional correctness of the generated operating systems is assured man-
ually. The operating system designer, who integrates new services into the knowledge
base for operating system services (USG), must assure that these services correspond to
the other services and that they will only be selected, if the correct use case, for which
the service had been developed, is applied. This can be done by the use of constraints.
Often, virtual services, that represent those use cases, are defined and must explicitly be
activated by the use of primitives in the requirements specification. The activation of
those “virtual” services control the correct selection of the other services by constraints.
However, these constraints must be correctly defined by the operating system engineer.

In this way the knowledge about special use cases is integrated into the operating and
communication system: The application demands for specific primitives that request for
(virtual) services that again activate certain constraints, which control the correct selec-
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tion of services from their alternatives. This is exactly the idea of puppet configuration (see
Section 5.4100).

Besides information about the application’s behaviour also information about the ex-
pected temporal correct execution of the application is provided to the configuration
process. This information comprises worst-case execution times of the processes, their
expected maximum finishing and response times (deadlines) and the relative event times,
when a process calls special operating system services. These relative event times are
measured from the start of the process. During the configuration the implementation of
those operating system calls (represented by the use of primitives) is determined. The
overhead for each implementation of an operating system service is known, because it
had been also specified by the operating system engineer while he integrated that service
into the USG. To determine the overheads is not part of this thesis. Already existing tools,
like CHaRy [1], can do that. These already known overheads are forwarded together with
the timing information of the application to a real-time analysis of the application’s be-
haviour in co-operation with the operating and communication system’s behaviour (see
Section 6.8).

When the timing analysis detects failures of the timeliness behaviour (deadline misses),
then mainly the configuration of some operating systems or the configuration of the com-
munication system must change. This is mainly done by selecting other communication
paths (change in routing) or other task mappings onto processors. In this way, the cre-
ation of a functional correct configuration and the timing analysis is executed alternately
unless both succeed or the configuration does not find any more valid configuration.

The process of the timing analysis is described in the next Section 6.8. Section 6.9142 and
Section 6.10147 explain, in which way the configuration and the timing analysis interact.

6.8 Real-Time Analysis

For real-time analysis mainly two approaches exist. The first approach is the workload
analysis, in which the cumulative workload of the processors, devices, and communi-
cation links must not exceed 100% or even a lower limit. The second approach is the
response time analysis, in which the overall sum of all delays of an action (including its
execution) between the arrival of a request and the time to finish servicing it must not
be greater than the deadline. In this case all the possible orders of the delays (runs of a
schedule) must be considered. Therefore, an analysis has to take care of all possible in-
terruptions and disturbances in an execution path. For complex systems, and even more
for heterogeneous systems, this becomes very hard to solve. For example, in a communi-
cation system, which consists of several different communication links, the transmission
and queuing delays differ. Moreover, if the protocols are different on the paths, then the
blocking delays have to be calculated appropriately. Thus, the analysis has to cope with
a lot of different formulas according to the path of the message.

Other problems for the analysis of distributed communicating processes are the mutual
influences of the process scheduling and the communication delays. The process schedul-
ing determines the relative and absolute times of sending and receiving events. This
forms the basis of the calculation of the end-to-end communication delay. But the com-
munication delays have again impact on the blocking delays of the process schedules.
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Thus we have a cyclic dependency. Real-time analysis often assumes that this will result
into a stable state, where the mutual influences are broken. This means that a slightly
different process schedule does not change the blocking delays or vice versa. Often, real-
time analysis assumes that the blocking times are independent of the schedule and, there-
fore, they can be determined a priori. This results into worst-case timings for the blocking
delays, which are often too pessimistic (see PIP, PCP, SRP). In real-time analysis also the
precedence constraints between tasks are ignored or require a complex analysis scheme
(see EDF∗ or Spring). But in this thesis precedence constraints due to communications
are assumed to be absolutely indispensable for distributed embedded systems.

For this reason, in TEReCS another approach is followed. Assuming, that the execution
delays of all atomic actions can be calculated very precisely, and their order can also be
determined precisely, then an execution model of the final application can be created.
From this execution model all deadline misses can be observed. Additionally, if a dead-
line miss occurs, then the actions responsible for delays can be identified. Consequently,
if we have an execution model of all atomic actions, then their execution can be visualised
in form of a Gantt diagram. This can give a deeper insight into the application for the
engineers. They can realise, what happens when on the target system. This approach is
similar to a simulation of the application.

In contrast to a simulation the code will not be executed or analysed. Control structures of
the code, like condition statements or loops, will not be considered. Execution blocks are
defined instead. An execution block represents the execution time of a code sequence.
All loops in the code are assumed to be unrolled. For a condition statement only one
execution path is considered.

In order to achieve the schedule of the final execution, certain execution blocks must
be arranged in the form of a schedule. This means that the execution blocks are placed
chronologically onto the time line. An execution block can be interrupted by an event. To
each event a certain sequence of other execution blocks is assigned. The occurrence of
an event means that the assigned sequence of execution blocks must be planned imme-
diately. Thus, an execution block can be divided into interrupted sub-blocks, which we
call runs.

A process (task or thread) of the system is represented by one execution block. Each call
of a primitive (system call) of the operating system or a real interrupt of a processor will
be interpreted as an event. Therefore, each execution block contains a time-ordered list
of events. These events have to be planned relatively to the starting time of the execution
block. Each execution block can again invoke other events at its end. In this way a Time-
triggered Event Scheduling of the execution blocks is realised. This is similar to the TTP
approach of Kopetz (see Section 4.4.2.384). The main difference is that the realisation (see
Section 6.8.4139) is not seen as strict as the TTP does.

In order to manage a distributed system consisting of parallel executing processors, for
each processor (CPU) one time line exists. Thus, for each processor a schedule of runs
will be planned. For controlling the event flow, like operating systems do, an event will
be inserted into a time-ordered global event list, when it is invoked. But the occurrence of
the event can be delayed into the future. Additionally, execution blocks can wait for cer-
tain events to be present in that event list. An execution block, which waits for events, can
only be planned for a schedule, when the events are already in the event list and the time,
when the events will occur, are reached. The event can only be taken (planned/executed),
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when it is enabled and when there is an execution block, which waits for that event, in
order to be placed onto the schedule. For this reason the subsequent planning of execu-
tion blocks can be interrupted, when events are missing. Such waiting execution blocks
are inserted into a waiting list per processor. Besides the waiting list a ready list exists.
Execution blocks that have to be planned are inserted into the ready list or waiting list of
each processor accordingly.

The complete timing analysis is implemented by the tool TANA of TEReCS. In the follow-
ing sections the execution model and the planning, respectively scheduling algorithm of
the execution engine will be presented in detail.

6.8.1 Scheduling Model

First, we will define some basic items, which are used for the simple scheduling model.

Resource
Normally, each Resource contains a waiting queue, whose items (processes that wants
to access that resource) are ordered by a priority and by a FIFO ordering. For this schedul-
ing engine the local waiting queues of all the Resources are integrated into one single
global waiting list (WL).

A Resource defines several Events that can be executed on this resource. For example,
this can be up() or down() for the corresponding semaphore.

Whenever a Resource is defined, we also define the number of units available. This
shall be referred to as the amount of resources available. These units can be produced and
consumed by signals() and waits() . A Resource can be disabled, which means
that no units can be consumed thereafter.

All Resources must be placed onto a CPU or onto GLOBAL. A Resource can be placed
simultaneously on different CPUs and on GLOBAL. GLOBAL is an implicitely defined
“virtual” CPU.

The following items of an execution model are derived from Resource :

• CPU – is representing a processor node of the network
• Task – is representing a process or thread of the system
• Semaphore – used for synchronisation of tasks
• ComLine – used for communication between tasks
• Timer – used for time management of tasks, like sleeping

Thereby, the scheduler of an operating system and also interrupts have to be modelled as
tasks.

Event
An Event can be called asynchronously by a Task . Each Event defines a sequence of
Execution Blocks that must be planned subsequently in the defined order when the
Event occurs. Thus, an Event delays the execution of a task .



136 Chapter 6. TEReCS

An Event is always part of a Task and is always executed on a Resource . The Event
normally represents the execution of operating system services.

Execution Block
An Execution Block is an instance, which can be planned for a schedule. Never-
theless, an Execution Block can be preempted by another ready Execution Block
with higher priority. Execution Blocks can define their own priority or inherit it from
the Task that is calling the Event to which the Execution Block belongs.

CPU1

t1 t2

signal

Duration(l)

1) wait

3) disable

2) signalWait

4) killSignal 

5) signal

6) enable

CPU1 or orther CPU

transfer(t)

t3

7) sync_starttime

Fig. 6.15: Illustration of timings and execution points of the signal handling for an exe-
cution block

At the end of each Execution Block several signals() can be emitted. This means
that they are inserted into a global pending signals queue. These signals have to be
activated immediately, or in the future. If a signal() is activated, then the items of the
assigned Resource are increased by the specified amount.

At the beginning of each Execution Block several waits() can be defined to be con-
sidered. A wait() consumes the specified amount of items of a Resource , which is
assigned to that wait() . But items can only be consumed, if enough items are present
(see Section 6.8.2 on the next page).

Additionally, at the beginning of each Execution Block some Resources can be dis-
abled. At the end of an Execution Block some Resources can again be enabled.

Execution Blocks can be preempted by other Execution Blocks with higher pri-
ority because of the occurrence of Events or signals() . Therefore, Execution
Blocks are divided into Runs. An Execution Block is always part of an Event or
Task .

Run
A Run is the smallest instance that will be planned and mapped into a schedule. It is
always a part of an Execution Block .

The duration and, therefore, its ending time is explicitly not known, but must be calcu-
lated by the scheduling engine (see Section 6.8.2 on the facing page).
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A Run is terminated if its Execution Block ends or if another Execution Block
with higher priority can consume all of its Waits and, therefore, preempts the actual
Run. The preemption can only occur when a signal is emitted.

Task
A Task is derived from a Resource . By this the Task can wait for itself. This is required
in order to simulate a sleep by waiting for itself.

The complete run-time of a Task is defined as one master Execution Block . The com-
plete master Execution Block of the task can be split into several Runs. In-between
the Runs the Events of the Task occur. Before and after each Run of the Task only one
Event of this Task is allowed to occur at a time. That means that there must not exist
two Events of the same Task , which have to occur at the same time.

All Tasks are modelled as periodic tasks. At the end of their Execution Block , their
execution starts all over from the beginning. This helps in scheduling periodic tasks or
tasks that loop forever. If a Task wants to terminate, then it has to wait forever for a
signal.

6.8.2 Time-triggered Event Scheduling Engine

All ready Execution Blocks are maintained by the ready queue (RQ). If an Execution
Block has to be executed, then this Execution Block is marked ready and is inserted
into the ready queue of the appropriate CPU.

Before an Execution Block can be executed, all its waits() must match the available
units of the Resources , which are assigned to that wait() . All waits() must be ful-
filled. That means that all units of the Resources of all waits() for the Execution
Block are consumed or none of them. If they are consumed, then the Execution
Block is marked ready. If they cannot be consumed, then the Execution Block is
marked waiting and inserted into the waiting queue. Additionally, the Task , to which the
Execution Block belongs, is marked blocked. A wait() matches, if and only if, there
are enough free units in the referred Resources and if the Resources are enabled.

If an Execution Block is completely executed, then all signals() defined for this
Execution Block must be emitted. That means that they are inserted into the global
queue for pending signals (PS). If a signal() from this PS list has to be activated, then
all waiting Execution Blocks of the waiting list WL (and blocked Tasks ), which are
waiting for this signal() and that can receive enough units now, will be set to ready.

If there exists no active Event of a Task , then the master Execution Block of the
Task has to be executed until the next Event occurs or the task terminates.

When an Event occurs, the Event is marked active. Then the next Execution Block
of this Event has to be executed and, therefore, that Execution Block must also be
marked ready. If an Event is marked active and none of its Execution Blocks can be
marked ready, then the Event is finished and deactivated.

An Execution Block is executed until it either terminates or the occurrence of a
signal() of the PS queue. If the Execution Block is the master Execution Block
of a Task , then it possibly has to be executed until the occurrence of the next Event of
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that Task . The execution is performed by planning a Run of that Execution Block
into the final schedule.

After a Run is planned into the schedule, the next ready Task with highest priority is
selected from the ready queue. If this Task has an active Event , then the next Run of
the ready Execution Block of that Event will be executed. If there exists no active
Event of the Task , then the master Execution Block of the Task will be executed.
To execute means here that a new Run of the Execution Block is planned until the
end of the Execution Block or until the occurrence of the next signal() in the PS
queue, or the next Event of that Task . If no Run can be executed, then no output will be
given. There exists implicitly no “idle” task.

6.8.3 Example for a Time-triggered Event Schedule

In Figure 6.16 an example for the output of a time-triggered event scheduling is given. Three
schedules are illustrated: Two schedules for two processor nodes (CPUs) and one sched-
ule for the communication link between these two CPUs. The two tasks task 1 and task 2
are modelled. Task 1 runs on CPU 1 and task 2 runs on CPU 2. Both tasks have a period
of 340 time units. Task 1 has an execution time of 80 time units and a priority of 1. Task 2
has an execution time of 90 time units and also a priority of 1. The formal specification
of this example, which is written in TEReCS’s requirements language, can be found in
Appendix B.

Because the scheduling model assumes that a task starts over its execution immediately
after the task’s execution block terminates, both tasks execute a start() event at their
beginning (relative starting time 0) and an end() event at their end. The event start()
executes the execution block start and the event end() executes the execution block end.
Whereas start waits for a signal on the task’s resource, end emits this signal at its end
for x time units delay into the future. Here, x is the result of the task’s period minus
the already executed time of the task since its last activation. Thus, both tasks will be
activated really periodically within their defined period.
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Fig. 6.16: Example for a time-triggered scheduling.
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In order to model a communication the resource Comline1 is defined. Comline1 declares
two events, which can be executed: send() and receive() . The event send() exe-
cutes sequentially the two execution blocks pre-send and post-send. The event receive()
executes sequentially the two execution blocks pre-recv and post-recv. The execution block
pre-send emits at its end one signal on the resource Comline1. The execution block post-recv
awaits this signal at its beginning. The signal will be delayed on the resource Comline1
by 30 time units. This delay represents the media access time plus the transmission time
plus the response time of the receiving CPU.

Additionally, in this example it is specified that task 1 executes the send() event rela-
tively after 50 time units. Also task 2 executes the receive() event after 20 time units.
With this we have defined a communication between task 1 and task 2.

In order to model a Round-Robin scheduler of an operating system for both CPUs a
second task scheduler with the highest priority 0 and a period of 500 time units is defined.
It specifies the execution block dispatch, which waits at the beginning for one signal on its
own resource and emits this signal at its end in order to generate its periodical execution.
The duration of the execution block dispatch is 30 time units.

When the execution block post-recv has to be scheduled, but when no signal on the re-
source ComLine1 is present, then post-recv has to wait and the execution block and its par-
ent task will be blocked. Additionally, a signal without any delay will be sent to the task
scheduler of the same CPU. Therefore, we have defined a so-called wait-and-signal() ,
which emits a signal, if and only if, the wait will result into a blocking. By this way, the
task scheduler can proceed immediately. The pending signal for the scheduler, which was
sent by itself for its periodic activation, will be explicitly be consumed by the execution
block dispatch. With these definitions we attain that directly after the execution block pre-
recv, the execution block dispatch is scheduled. This is because the post-recv is too early
(the pre-send was not already done) and, therefore, post-recv must be blocked.

6.8.4 Schedulability Analysis

If all the durations of the execution blocks, the relative occurrences of the events, and the
delays of the signals, as well as the model of all tasks and their dependencies correspond
to the reality, then the schedules will represent the original execution on the CPUs and
links. But when only one timing is wrong, the complete schedule can be different (see
Section 6.10147). Thus, the finishing time of a task can be extremely delayed or shortened.

Taking the worst-case timings does not solve the problem, because the finishing time of
a task is not calculated upon worst-case assumptions. Under worst-case assumptions,
like traditional real-time analysis does, the finishing time is calculated by considering all
possible worst-case delays. Here, only the worst-case timing of one, or a limited set of
specific delays, is considered.

Nevertheless, in order to achieve good results for the timing analysis in TEReCS the
model is extended in the following way: Instead of one time for a duration, an event
occurrence, or a signal delay, two times can be specified. These two times define an in-
terval, in which the real event can happen. For this reason, the time-triggered scheduling
must be calculated for all times of this interval (because for each time the schedule can
possibly change). Moreover, if two intervals are given, then the schedules for all pairs of
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all time combinations must be calculated.

A schedule is considered to be feasible, if for all tasks, their finishing time is equal or
lower than their deadline. This is the classical definition. A time interval is valid, if the
schedules for all times of the interval are feasible. If more intervals are given, then all
schedules for all combinations of times from these intervals must be feasible. This results
into the calculation of more than 2n schedules for n given intervals. (In fact, it would
be Πn

i=1mi schedules, where mi is the number of times that have to be considered per
interval i.) This would lead to an exponential run-time for the real-time validation.

To minimize the run-time for the timing validation, in TEReCS not all schedules will be
considered. Only the schedules for the minimum and maximum times of the interval
(the two specified limits) will be considered. The schedulability test will be done upon
an heuristic, which estimates, whether another time in-between the interval can possibly
change the schedule or not. In this way, the run-time is still exponential, but the number
of considered schedules is really reduced to 2n schedules. If the heuristic schedulability
analysis with time intervals is used, then its result can be wrong. For this reason, the
time-triggered scheduling, which is used in TEReCS for the real-time validation, is – for
the first view – only an estimation for the timing validation, but it is not a proof for its
correctness.

Nevertheless, it is a very practical approach. If the heuristic detects always a deadline
miss, if and only if, such a deadline miss exists, then TEReCS’ timing analysis works
correctly (see Section 6.8.4.1). So, the value of TEReCS’s timing validation depends on the
quality of this heuristic function. In practice it could be shown that the defined function
achieves good results. But the real advantage of this approach is that the engineer, who
plans the system, can see the bottlenecks and timeliness arrangement of all modelled
events of the system. In this way he can gain additional information about the effects of
his specifications onto the scheduling.

But TEReCS offers another advantage. The configurator of TEReCS can assure that the
real execution will be exactly that of the time-triggered scheduling. This will be achieved
by integrating guards into the code for each event (system call). The guard is additional
code, which assures that the event is taken at its expected absolute time. Eventually,
the guard will delay the execution until the specified time is reached. Otherwise, if the
estimated and expected time of the event was missed, the guard will complain and a
fall-back function can be activated. Thus, possible deadline misses can be detected much
earlier.

The execution time for the additional code of the guard, which is produced in order
to verify the event times, is considered during the time-triggered scheduling. But in
TEReCS the guard for an event must explicitly be activated in the requirement specifica-
tion. It is the engineer’s task to select appropriate events that should be guarded.

6.8.4.1 Heuristic Selection of Schedules

As already mentioned, whenever an interval is specified for the appearance of an event
or a delay, then all schedules have to be created. Each schedule implements the use of
one set of discrete times of the intervals. The purpose of the heuristic function is to select
one discrete time of the interval, for which the schedule has to be checked. Hereby, it is
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essential to select a candidate, if possible, for which the schedule is not feasible. Then, a
negative answer can immediately be issued and no further investigations are required.
All schedules for an interval must be feasible, in order to allow that interval.

Before we describe the heuristic selection of schedules that have to be tested for feasibility,
we define the direct and indirect influence of a time for a message transfer. If the time
belongs to any execution block that is executed by a sending task and that is executed
before the real send of the message, then the change of this time can immediately change
the transfer time of the message, which is issued by that task. Then, this time directly
influences that message transfer of that task. The message transfer and the time always
belong to the same sending task. If they belong to different tasks and additionally, the
change of the time changes the message transfer time, then the time indirectly influences
that message transfer.

The heuristic function will make use of the following observations:

1. The end time of an interval will produce the maximum delay for the executing task
and the directly influenced receiving task.

2. The start time will produce the minimum delay for the executing task and the di-
rectly influenced receiving task.

3. Any time of the interval can have impact on the delay of another task. Whether this
delay will be extended or reduced for an earlier or later time, cannot be answered.

4. If for any two times the order of the messages of two communications on a media
changes, then any time in-between these times will cause an interference between
those two communications.

5. For two times the order of a message between a directly influenced message and an
indirectly influenced message can only change once. Here, during an hyperperiod
corresponding message transfers have to be considered.

From these observations we can derive the following: If for the schedules of the start and
end time of an interval an interference between a directly and indirectly influenced mes-
sage transfer exists, then the response time of the indirectly influenced message transfer
have to be increased by the transfer time of the directly influenced message transfer. If the
finishing time of the receiving task, which receives that indirectly influenced message, is
still equal or lower than its deadline, then all of the schedules for all times of the interval
are regarded to be feasible. Otherwise a negative answer can be issued.

By this selection, only two times (the start and the end time) of a given interval must be
considered. Of course, the run-time will be still exponential for the combinations of all
start and end times. But, (1) only two times per interval are considered, and (2) this is
only done for a positive answer.

Two rules help to prevent a lot of overhead:

1. Where possible, intervals should not be specified ⇒ less intervals reduce the
amount of start and end time combinations.

2. An interval should be specified as small as possible ⇒ the probability of interfer-
ences is less.
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These rules should be followed, when a requirement specification is created.

An advantage of this approach, which allows the definition of timing intervals, is that
between the schedules jitters can be observed.

6.9 Impact of the Configuration on the Timing Analysis

In this section we will demonstrate that the results of the estimated time-triggered
scheduling are often more accurate than those of a traditional worst-case analysis. Addi-
tionally, we identify the influences of the configuration on the timing analysis by inspect-
ing a few examples.

Task A Task B Task C Task D

CAN

Fig. 6.17: Hardware architecture and task mapping, where four tasks on four processor
nodes communicate via one single CAN bus.

We assume the following application scenario: The hardware of the target system is as-
sembled of four homogeneous processor nodes, which are connected via four devices to
one single CAN (Controller Area Network) [67] bus (see Figure 6.17). One general feature
of a CAN bus is that the maximum size of a packet, which is sent over the bus, cannot
exceed eight bytes. Therefore, messages often have to be split into several packets. On
each of the four processor nodes one task runs. Task A sends a message to task B. This
message must be divided into four packets of maximum size. Task D sends a message
to task C by transmitting three packets. The run-time of task A without any operating
system overhead takes 32 time units. The run-time of task B takes 16 time units, that
of task C takes also 16 time units, and that of task D takes 24 time units. The operating
system call for sending a message (send event) is assumed to occur 13 time units after
task A has started its execution. For task D this send event is assumed to be after 17 time
units. The receive events for the tasks B and C are both assumed to be after 8 time units.
The requirement specification looks like the following:

Task A : CA = 32, Esend(A) = 13
Task B : CB = 16, Erecv(B) = 8
Task C : CC = 16, Erecv(C) = 8
Task D : CD = 24, Esend(D) = 17

Communication 1 : Task A −→ Task B with nA,B = 4 packets
Communication 2 : Task D −→ Task C with nD,C = 3 packets

During the configuration of the operating systems for all four processor nodes the con-
figurator determines the overhead of the operating system for the sending and receiving
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of these messages. The execution time for the system call send (send primitive) has to be
split into four phases. During the first phase the message is split and prepared for the
transmission. This phase has a duration of 7 time units. After this, each of the packets
is sent in the second phase by a device driver call, which takes 2 time units. After the
complete message is sent an interrupt of the device driver, which lasts for 5 time units,
informs the operating system in the third phase to proceed the sending task. In the fourth
phase the operating system call needs for this 8 time units before the sending task is re-
activated. Thus, the complete operating system overhead for sending n packets takes
7 + (n ∗ 2) + 5 + 8 time units. The system call for receiving of a message (receiving prim-
itive) is similarly split into such four phases. The complete operating system overhead
for receiving n packets takes 13 + (n ∗ 2) + 5 + 8 time units. The configurator gives the
following operating system overheads, which had been assigned by the operating system
expert to the appropriate services:

OvhSys[pre-send] = 7
OvhSys[dd-send](n) = 2n

OvhSys[irq-send] = 5
OvhSys[post-send] = 8
OvhSys[pre-recv] = 13

OvhSys[dd-recv](n) = 2n
OvhSys[irq-recv] = 5

OvhSys[post-recv] = 8

OvhSys[send](n) = OvhSys[pre-send]
+OvhSys[dd-send](n)
+OvhSys[irq-send]
+OvhSys[post-send]

OvhSys[recv](n) = OvhSys[pre-recv]
+OvhSys[dd-recv](n)
+OvhSys[irq-recv]
+OvhSys[post-recv]

The physical transmission timeϕpacket for a packet of 8 bytes on the CAN bus is calculated
upon the bit rate and takes 6 time units. The overall transmission delay ϕsendtrans for n
packets for a sending task lasts for (n − 1) ∗ 2ϕpacket time units. The sending task has to
wait only for (n− 1) packets to be transmitted. This is defined by the final configuration
architecture of the operating system’s implementation. For the receiving task the overall
transmission delay ϕrecvtrans for n packets takes n ∗ 2ϕpacket time units, because the driver
has to wait for the reception of all packets. The transmission delays are worst-case values,
because the transmission delay for each packet is assumed to be twice of the physical
transmission delay. This is, because potentially the transmission of a packet must be
delayed by the media access, while actually another packet is on the bus.

ϕpacket = 6
ϕsendtrans(n) = (n− 1) ∗ 2ϕpacket
ϕrecvtrans(n) = n ∗ 2ϕpacket
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A traditional worst-case analysis normally does not consider the times of the appearances
of the system calls. Simply the worst-case delays and execution times are summed. For
the classical worst-case approach we obtain the following results:

RA = CA +OvhSys[send](nA,B) + ϕsendtrans(nA,B) = 96
RB = CB +OvhSys[recv](nA,B) + ϕrecvtrans(nA,B) +RA = 194
RC = CC +OvhSys[recv](nD,C) + ϕrecvtrans(nD,C) +RD = 158
RD = CD +OvhSys[send](nD,C) + ϕsendtrans(nD,C) = 74

The finishing times for the receiving tasks B and C contain the finishing times for their
sending tasks. This has been done, because of the in-out dependency between a receiving
and a sending task. For the classic worst-case analysis (e.g. see EDF∗ on page 70) the
sending task is assumed to finish, before the message is transferred to the receiving task,
which then can start its execution.

These results of the classical analysis can dramatically be improved, if the times, when
the send and receive events occur, are considered. Especially, the response times of the
receiving processes can be calculated more accurate. In fact, the destination process can
continue its execution, when the process received the message. This time also depends on
the time when the source process sends the last packet. For this reason, the time until the
data are received have to be calculated as the maximum of either the destination process’
execution time til the receive event plus n times of the time that is spent for the device
driver’s receive interrupt. Or it has to be calculated as the time of the source process’
execution time til the send event plus the overall transmission delay ϕsendtrans for a sending
task plus the time that is spent for the device driver’s receive interrupt:

R′B = max(Erecv(B) +OvhSys[pre-recv] +OvhSys[dd-recv](nA,B) ,
Esend(A) +OvhSys[pre-send] + ϕrecvtrans(nA,B)
+OvhSys[dd-send](nA,B) +OvhSys[dd-recv](1) )

+OvhSys[irq-recv] +OvhSys[post-recv] + (CB −Erecv(B))
= 99

R′C = max(Erecv(C) +OvhSys[pre-recv] +OvhSys[dd-recv](nD,C) ,
Esend(D) +OvhSys[pre-send] + ϕrecvtrans(nD,C)
+OvhSys[dd-send](nD,C) +OvhSys[dd-recv](1) )

+OvhSys[irq-recv] +OvhSys[post-recv] + (CC − Erecv(C))
= 89

These results can again be improved, if considered that the device driver’s sending inter-
rupt will be executed parallelly to the media access delay:

ϕrecvtrans
′′(n) =

{
n ∗ 2ϕpacket : OvhSys[dd-send](1) ≤ ϕpacket
n ∗

(
ϕpacket +

⌈
OvhSys[dd-send](1)

ϕpacket

⌉
ϕpacket

)
: OvhSys[dd-send](1) > ϕpacket

R′′B = max(Erecv(B) +OvhSys[pre-recv] +OvhSys[dd-recv](nA,B) ,
Esend(A) +OvhSys[pre-send] + ϕrecvtrans

′′(nA,B)
+OvhSys[dd-recv](1) )
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+OvhSys[irq-recv] +OvhSys[post-recv] + (CB − Erecv(B)) (6.1)
= 91

R′′C = max(Erecv(C) +OvhSys[pre-recv] +OvhSys[dd-recv](nD,C) ,
Esend(D) +OvhSys[pre-send] + ϕrecvtrans

′′(nD,C)
+OvhSys[dd-recv](1) )

+OvhSys[irq-recv] +OvhSys[post-recv] + (CC − Erecv(C)) (6.2)
= 83

A time-triggered scheduling of the events and execution blocks from the model above
is depicted in Figure 6.18. The results of the conservative worst-case approach could
again be improved remarkably. This could be achieved, because for the receiver tasks the
worst-case assumption of the media access delay for the first packet could be decreased.
Task A needs no blocking for the media access for the first packet (6 time units). But, the
device driver overhead for the first packet must be incorporated (2 time units). For this
reason, the overall improvement consists of 4 time units compared to R′′B . This is similar
for Task C and D. The blocking time for the media access for the first packet of task D
are only 4 time units (instead of the worst-case assumption of 6 time units). But, again
the device driver overhead have to be included. Thus, we achieve an improvement of
4− 2 = 2 time units compared to R′′C .
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Fig. 6.18: Example 1 for the time-triggered scheduling where four tasks communicate
via one single CAN bus.

But the real advantage of these time-triggered schedules is that the engineer sees what
happens on each CPU and link. He can realise that the messages of both senders are really
disturbing each other. A worst-case analysis only assumes this behaviour. By knowing
this behaviour the engineer can re-programme the application. The re-programming can
be required, if task C misses its deadline, while task B has enough time until its deadline
is reached. He may choose the following solution: On the one hand he lets task D send
its message much earlier. On the other hand, task A will send its message much later. All
the execution times, the communication protocols, the routing and the placement will be
the same. Thus, he specifies the following requirement specification:

Task A : CA = 32, Esend(A) = 29
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Task B : CB = 16, Erecv(B) = 8
Task C : CC = 16, Erecv(C) = 8
Task D : CD = 24, Esend(D) = 1

Communication 1 : Task A −→ Task B with nA,B = 4 packets
Communication 2 : Task D −→ Task C with nD,C = 3 packets

Because the same tasks will send the same messages, the configurator will give the same
operating system overheads. With this inputs the worst-case analysis of Formula 6.1 and
6.2 will yield to:

R′′B = 107
R′′C = 67

The time-triggered scheduling achieves much better results (R′′′B = 91, R′′′C = 55), which
are taken from Figure 6.19. The calculated finishing times of the tasks are much better,
because the worst-case assumption that a media access delay is as long as a complete
message transfer time (6 time units) need not to be considered for this example. We can
easily observe that no packet will be delayed, because the transmissions take place at
different time intervals.

= 78

= 91

= 62

= 55

A

CAN

D

B

C

A B, D     C

Fig. 6.19: Example 2 for the time-triggered scheduling where four tasks communicate via
one single CAN bus, but the event of the second communication starts much
earlier.

We can summarise that the configuration determines the following inputs for the timing
analysis:

• Implementation of system calls (primitives)

– Protocol and/or device driver that is used

– Sequence of execution blocks to be executed per primitive

– Duration of primitive (operating system overhead)

• Routing

– Resource usage
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It should clearly be stated that TEReCS, in fact, determines the primitive implementation
from a set of a priori defined ones. These primitive implementations including the se-
quence and duration of their execution blocks for the timing analysis had been defined
by operating system experts for different use cases. They had been integrated into the
USG. TEReCS determines the correct use case upon the overall primitive usage of the
complete application (see “Puppet Configuration” in Section 5.4100) and some side con-
straints. Each primitive implementation is assigned a sequence of pre-defined execution
blocks. Thus, TEReCS need neither to invent new execution blocks nor their sequence.
TEReCS only selects the appropriate pre-defined set. This means that the sequence and
duration of the execution blocks have to be defined in advance by the operating system
experts (see Section 6.4.1113).

6.10 Impact of the Timing Analysis on the Configuration

The results that are received from the previously presented time-triggered event scheduling
of execution blocks have –of course– impact on the generation of a final configuration for
the operating and communication system.

In the last example of the previous section (see Figure 6.19) the finishing time of the
receiver task B was extremely prolonged, because the send event of task A was nearly
moved to its end. For this reason, task B can miss its deadline.

Let us now additionally specify that a RS-232 peer-to-peer link exists between the pro-
cessor nodes on which task C and D are placed (see Figure 6.20). Assume also that the
requirement specification is the same as in the first example on page 142.

Task A Task B Task C Task D

CAN

RS-232

Fig. 6.20: Hardware architecture and task mapping, where four tasks on four processor
nodes communicate via one CAN bus and one serial RS-232 peer-to-peer con-
nection.

First, the router module of the TEReCS’ configurator will map all communications of
the example onto the CAN bus (because it is the fastest link). Thus, the timing analysis
based on the time-triggered scheduling will receive the results from Figure 6.19. Let us
assume again a deadline miss of task B. For this reason, the configuration has to be
changed. This is primarily done by mapping other communications, which delay taskB,
onto other communication links if possible. In that example task B will be delayed by
the communication between task C andD. But for exactly this communication the router
can choose the other path via the RS-232 link. Thus, the configuration is again started,
where it is prohibited to map the communication between task C and D onto the CAN
bus. As a consequence the routing will change. Also the operating system overhead
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and the protocol will change for the communication between task C and D. The time-
triggered schedules for the new configuration are depicted in Figure 6.21. The finishing
times of all tasks are decreased; but unfortunately, more resources have to be spent for
the configuration.
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Fig. 6.21: Example 3 for the time-triggered scheduling where four tasks communicate
via one CAN bus and one serial RS-232 connection.

This example shows in which way the timing analysis influences the configuration pro-
cess. In order to exploit this feature, a lot of communication links have to be specified for
the target hardware. The configuration process tries to use only a minimal set of these
links for the application’s communications. Which link has to be chosen first is deter-
mined by giving costs to each link. These can be direct or indirect costs. Direct costs can
be, for instance, the price of the hardware. Indirect costs are produced by the software
services that have to be selected in order to manage the link.

As we have seen, an additional link is used, if a communication that produces a deadline
miss must be newly routed. In TEReCS communications are distinguished that directly
or indirectly produce a deadline miss. A communication directly causes the deadline
miss, if, for instance, the communication is between tasks A and B and task B misses its
deadline. The communication indirectly causes a deadline miss, if the communication
is between task A and B, but it delays another communication between tasks C and D,
so that task D misses its deadline. When a deadline miss occurs, first a communication
that directly causes the miss is tried to be re-mapped. If this is not possible or does not
achieve success, then the communications that indirectly cause the miss are tried to be
re-mapped.

In this way, TEReCS can determine the minimal set of required communication links
between the processor nodes. TEReCS implements and routes all communications in
such a way that they do not cause a deadline miss of any task. But obviously, this can be
impossible, if there are not enough resources available.

The routing of all communications is one main part of the final configuration. Whereas
this is nearly done automatically in TEReCS, the mapping of the tasks onto the processor
nodes must manually be done by the engineer. But when no solution can be found, the
engineer can identify tasks from the time-triggered schedules, which can be re-mapped
onto other processors in order to eliminate a resource overload condition.
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Besides the automatic communication link selection, the routing, and the manual task
mapping, also parameters, properties, or modes of the communication links can be de-
termined. For example, the baud-rate should be selected for a RS-232 serial peer-to-peer
link. This can be done in TEReCS by specifying two RS-232 links between the same pro-
cessor nodes, where one link transmits the bits with, for instance, 9600 Baud and the
second link uses 38400 Baud. If a lower baud-rate is preferred (because the link is then
less susceptible to electro-magnetic disturbances), then the link with the lower baud-rate
should cause lower direct costs.

In the same sense as TEReCS selects the appropriate communication links, TEReCS se-
lects appropriate devices in order to access the links from the processors. For instance,
the devices for a CAN bus access vary in their performance and, therefore, also in their
costs.

Besides these more or less direct influences of the timing analysis onto the final con-
figuration, there also exists indirect influences. Indirect influences have impact on the
operating system of a processor node. This is obvious, since the change of a communi-
cation link and/or a device means also to change the device driver inside the operating
system. But, additionally, the access to the device can change. That means, for instance,
the access must be protected, if more than one task uses simultaneously the driver. Or
the buffering scheme for the messages must change, because the messages have the same
or different priorities. Also the buffer size depends on the number of messages that are
mapped onto a certain connection. All these indirect impacts on the software architecture
change the operating system’s overhead. This can also help to find a feasible schedule
over all processors.

We can summarise that the timing analysis has the following influences on the final con-
figuration:

• Direct impacts:

– Prohibiting certain communications to be mapped onto specific links and/or
devices (−→ automatic re-routing)

– Manual re-mapping of tasks onto processors

• Indirect impacts:

– Parameter or mode changes of the links and devices
– Change of the software architecture of the operating system
– Change of the overhead of the operating system services

These impacts represent some of the main advantages of TEReCS. TEReCS determines a
valid communication system, which means that all communications and, therefore, also
the tasks can feasibly be scheduled. For this reason, the appropriate links, devices, and
operating system services per processor are selected, respectively configured.

6.11 Contribution of the Chapter

In this chapter we have presented a new methodology for the automatic configuration
of operating and communication systems. Atomic services of the operating systems can
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be included or excluded from the final implementations. This is primarily done to save
memory. Also, there exists multiple implementations for the same service. Each service
implementation is only applicable to a specific use case. Thus, the lack of a service A
can result to force service B to be implemented in a special way. Or, it is known that
the application behaves in a certain way, then a service C can ignore a special use case
and may be implemented more efficiently. By this way, the integration of application
specific knowledge about its behaviour into the operating system can save memory for
the services’ implementation as well as execution overhead. The approach that is used
here is named “Puppet Configuration”.

Similar benefits can be achieved for the communication system. It is the task of the con-
figuration process to determine the routing of the messages through the network and to
integrate or exclude link device drivers into the appropriate operating system of each
node. The routing tables have to generated and the existing device drivers must be pa-
rameterised (address, port, protocol, access protection, etc.). It is also the task of the
configuration process to determine the minimal required links of the network, so that
the timeliness transfer of all messages is just possible. Because we assume to have a dis-
tributed real-time application, the check for deadline misses must be done. Therefore,
TEReCS has also integrated a verification tool for the timeliness execution of all commu-
nication tasks. The maximal communication end-to-end delays are determined as well
as the schedules of all the messages on the media and of all the processes on the nodes.
This is done by a so-called “Time-triggered Event Scheduling”.

The configuration algorithm of TEReCS follows a structure-based approach. In fact the
knowledge base representation is modelled as an AND/OR-DAG with a top-down con-
cept. It supports for constraints, which are in TEReCS a powerful mechanism to deter-
mine the correct choice for alternative implementations upon a specific use case. The
model also supports the specification of parameters, which are used for a concrete selec-
tion. The Puppet Configuration approach assumes that (due to the constraints) only valid
and functionally correct configurations can be generated. Thus, only the real-time as-
pect must be verified. The configuration works without user interaction and, therefore,
is automatic. The user only has to provide a requirements specification of the applica-
tion. Operating system details are completely hidden from the user. The configuration
algorithm implements a design space exploration of the operating system under consid-
eration. The modelled graph is traversed and the selection of alternative paths are made
upon a cost function and the constraints. Here, the graph is traversed in a top-down
manner for each required primitive to the required hardware. For the communication
services the routing is considered. Here, also hops for messages in a multi-hop network
may occur. The graphs of each node of a message path is traversed accordingly from
the send primitive to a device, from a device to another device, or from the device to the
receive primitive.

The configuration model and also the configuration algorithm allow hierarchy. There-
fore, a graph can be clustered. A cluster represents a sub-graph and appears to be a sim-
ple service node in the graph of the next hierarchy level. By this way, the complexity of a
graph can dramatically be reduced. Additionally, this supports a faster re-configuration.
If the requirements specification is only slightly changed, then only those cluster-graphs
have to be re-configured that are involved into those changes. This is especially true for
the configuration loop of the configuration and analysis phase. The hierarchy also helps
to minimize the memory that is used during the configuration. A cluster-graph, which
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is not selected, must not be loaded for the configuration into the memory (information
hiding). Another advantage of the clustered hierarchy is that it can help to steer the con-
figuration algorithm. When the clustering and, therefore, also the hierarchy is calculated
just before the configuration. Then also the requirements specification can be integrated.
Thus, different requirements specifications can lead to different clusterings, which may
result into different configuration runs.

The primary goal of the Time-triggered Event Scheduling for the timing analysis is to check,
whether all tasks meet their deadlines. The aspects of considering distributed commu-
nication systems and the configuration itself arise some problems that are often ignored
in the classical and theoretical timing analysis. Precedence constraints have to be consid-
ered due to the complex in/out-dependencies. Also the resource access constraints on
the links (media access) result into unknown blocking delays. Their calculation is very
complex and is often very pessimistic. These reasons make the analysis quite complex
and lead often to very pessimistic assumptions. Additionally, the classical timing anal-
ysis ignores the system overhead (task switching, etc.). But in TEReCS it is essential to
incorporate this, because it can change due to different configurations. That means that
the configuration has impact on the timing of the system. A solution for this problem was
presented in form of the optimistic Time-triggered Event Scheduling scheme. Although the
results of that analysis may not exactly reflect the real task execution, they can give hints
for the detection of bottlenecks in the system. However, by the integration of event guards
the execution can follow the time-triggered approach and will match the analysed sched-
ules. Additionally, the possibility to define event intervals, the heuristic evaluation, and
the very exhaustive search (exponential) on all possible schedules achieves in practice
good results. They are seldomly too optimistic.
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CHAPTER 7

Results

Currently, DREAMS consists of about 280 classes out of which about 100 classes are cus-
tomisable class skeletons. These led to approximately 200 services that are modelled with
about 220 SAPs and 300 SRPs. The reason for having twice more services than skeletons
is based on the fact that every Skeleton has an API (Application Programming Interface)
symbol, which defines the access interface to that type of skeleton. This complexity makes
it quite difficult to create manually a good and working configuration. TEReCS can man-
age this very easy. A user of DREAMS need not to be an expert for all of the configuration
items of DREAMS.

After modelling DREAMS several application scenarios with different demands to the
operating system were defined. These scenarios include different memory management
strategies and use or exclude interrupt facilities, multi-threading, multiplexing of shared
resources, local or external communication, debugging facilities, terminal output, etc.,
on different hardware architectures. The resulting configurations for each scenario were
valid and no mal-configurations could be detected by an “expert” for DREAMS. On the
contrary, some configurations were better than manually made ones. There were some
surprising decisions of which the expert had not thought of, but led to better implemen-
tations.

Moreover, the configuration was developed nearly 120 times faster than doing it manu-
ally (in the worst-case the manual configuration needs approx. 60 min; automatic approx.
30 sec). Additionally, it could be verified that the target code size of the systems varied
very much. The minimal system reached a size of about 2.4 KBytes whereas the biggest
one (using all features of the system) required about 150 KBytes of memory for code and
data. Both systems were made for a 32 Bit processor (PowerPC). This shows impressively
the great impact of configuration on the size of the system. Likewise, it is expected that
the execution time also differs much [43]. Therefore, a demonstration scenario had been
developed. The communication system had been configured differently (mainly by using
other protocols). The end-to-end delay of a communication and the service intervals had
been measured by software monitors.
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7.1 Demonstrator

In order to measure quantitative benefits of the operating and communication system’s
configuration, DREAMS was extended by special customisable options. For the test sce-
nario the rapid-prototyping hardware USAP from the ETAS GmbH, Germany, was used.
This hardware comprises a 19 inch rack with power-supply and a proprietary backplane
and up to 6 extension slots. It is extended by 4 processor boards that are equipped with
a 20 MHz PowerPC 604 with 8 MBytes DRAM memory in combination with a 10 MHz
Transputer T805 with an extra 1 MByte SRAM. The 8 MBytes DRAM are implemented
as shared memory between the two processors. The backplane connects the Transputers
of each slot in a sequential manner. The first slot is equipped with a single Transputer
T405 and only 256 KBytes of memory. One of the links of this Transputer can be reached
from outside, for example, from a host system. The hardware topology of this system is
described in TEReCS’ notation in Figure A.1166 in Appendix A.

DREAMS can actually be customised to run on Transputers and on PowerPC 60x, Pow-
erPC 509, and PowerPC 555. The communication system supports for Transputer links,
for serial RS-232 interfaces, like the TL16C552A chip (used in the PowerPC 509) or the
SCI (Serial Communication Interface) of the PowerPC 555, for CAN devices, like the one
which is used in the PowerPC 555 chip, and for a shared memory interface in order to
exchange messages. Device drivers for these devices can be integrated accordingly to the
usage and present hardware. The device driver can be enabled or disabled to listen for
incoming messages. The listening for each device is implemented as a virtual interrupt
service routine. An optional routing service can be integrated into the operating system,
which selects the appropriate outgoing device upon a routing table. The routing service
is implemented as a single task. Incoming messages will be redirected to the internal
mailboxes, if addressed, or to the routing service, if present. Each communication de-
vice, each mailbox and the routing service are implemented as ports, which provide a
unified message exchange interface. This provides for universally connected ports. Thus,
the in-port of a communication device can be connected directly to the out-port of an
internal mailbox, to another communication device, or to the routing service. Each port
can be implemented as a resource or not. When the port is implemented as a resource,
each access (of send() and receive() ) is protected by a semaphore (mutual exclusion).

For the serial links (Transputer and RS-232) three different protocols are alternatively
selectable:

Generic. The first protocol variant is a generic protocol. It transfers a header before the
user data (message body) are transmitted. The header contains information about
the destination node, the destination mailbox, and the size of the user data. The
header’s size and structure is fixed. The size of the user data can vary, but must be
a multiple of one byte. The header can be received asynchronously to the message
body. But each user data must be preceded by one header. Thus, after receiving a
header, the memory for the user data (which can be of different size) are allocated
in order to store and forward the message.

Maximum Size. The second protocol variant transmits the header and body at once as
one packet. Both must be received in one stream. The size of the packet and, there-
fore, also of the message (user data) is constant per link. The header also contains
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Fig. 7.1: Measured schedule for the transfer of 64 Bytes user data over four processor
nodes. The Transputer link must be requested and the Generic protocol is used.

a size field, because the user data of the message can be less than the size of the
packet’s body. The advantage is, that the memory for a message can be allocated
asynchronously before a packet is received. Additionally, the sender must not ac-
cess the media twice: for the header and for the body. The send delay will dramat-
ically be reduced.

Constant. The third protocol variant does not transmit any header before the user data
are sent. This assumes that each received packet has the same destination, which is
statically known, and always has the same size.

Other protocols (like mixtures of these protocol variants) can possibly be requested; but
are actually not implemented. The configuration for each node of the target system must
determine the following items:

• Processor type
• List of the required communication devices that defines per device:

– Identifier

– Type

– Base address

– Boolean flag for the resource protection

– The protocol variant that is to be used for the send() and receive() meth-
ods

– The local out-port to which the in-port of this device is connected

• Routing table which contains for each destination (node or channel identifier) the
local outgoing device identifier

These things are automatically determined by the configurator tool TGEN of TEReCS for
DREAMS. This comprises especially, whether all messages that are sent via one specific
link have a maximum or fixed size and, additionally, have the same destination. Thus,
one of the three protocol variants can be selected. Whether the communication device
is used exclusively by one task or whether it is used simultaneously by multiple tasks is
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Fig. 7.2: Measured schedule for the transfer of 64 Bytes user data over four processor
nodes. The Transputer link is not requested and the Generic protocol is used.

noticed (interrupt service routines are also seen as tasks). Thus, the resource protection
can be selected or removed. All these things are described within alternatives of the
URSG.

It is also recognised that all messages that are received from the same in-port must possi-
bly be redirected to the same local out-port. This means that the in-port will be connected
to that out-port or, if they do not have the same destination, it will be connected to the
out-port of the routing service. It is also recognised that all messages that have to be sent
via one out-port have a maximum or fixed message size. For these reasons, the protocol
variant can be determined to be chosen.

For the example a task A on the PowerPC 5 wants to transmit 64 Bytes of user data to
the task B on the PowerPC 3 (see Figure A.1166 and Figure A.3175). Therefore, the data
must be routed via the shared memory interface (SMI) to the board’s communication proces-
sor, which is the Transputer 4. This Transputer has to forward the data to its neighboring
Transputer 2, which then stores the message. The message is stored here, because it has to
be delivered via the SMI to its assigned PowerPC 3. When the taskB wants to receive the
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Fig. 7.3: Measured schedule for the transfer of 64 Bytes user data over four processor
nodes. The Transputer link is not requested and the Maximum Size protocol is
used.
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Fig. 7.4: Measured schedule for the transfer of 64 Bytes user data over four processor
nodes. The Transputer link is not requested and the Constant protocol is used.

message, the client service receive() has to contact the server service deliver() on
its assigned Transputer 2. Then the message is transfered over the SMI (for the definition
of neighbouring client/server communication see paragraph “Considering Communica-
tions” on page 119).

No other communications occur in the system. For this reason, the handleTP() service
of the SMI of the first Transputer can be directly connected to the device driver put()
for the appropriate out-link. A routing service need not to be used, because there is
only one message, which always has the same destination. Similar, the get() service
of the in-link on the second Transputer is connected directly to the deliver() service.
The deliver() service forwards the message on demand as a server via the SMI to its
assigned PowerPC. The Universal Service Graph (USG) and the final configuration result
are described in Appendix A.

The put() and get() services of the device driver for the Transputer link can also be
configured to implement one of the three previously described protocol variants. We
have measured on each processor the start and end times of certain communication ser-
vices.

Four different scenarios had been considered:

A The send link on the first Transputer is protected by a semaphore and, therefore,
must be requested. Also, the first protocol “Generic” is used. The overall end-to-
end delay from the start of the send() on the first PowerPC until the end of the
receive() on the second PowerPC is 448 µsec (see Figure 7.1).

B The link of the first Transputer is not protected. The protocol variant “Generic” is
still used. Because of omitting the link request the overall end-to-end delay can be
reduced to 336 µsec (see Figure 7.2).

C The link of the first Transputer is not protected and the second protocol variant
“Maximum Size” is used. The memory allocation service on the second Transputer
is re-arranged. This saves 30 µsec (see Figure 7.3).

D The link of the first Transputer is still not protected and the third protocol variant
“Constant” is used. Here, the sending of a header is eliminated. In this case the
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overall end-to-end delay takes only 262 µsec (see Figure 7.4).

These examples show impressively that the communication delay can dramatically be
influenced by different configurations due to different application scenarios. It is the task
of the configuration process to determine the best implementation by considering the
application’s behaviour.

These examples only consider the serial link communication of the Transputers. How-
ever, this example can directly be applied to a serial RS-232 communication and it can
be adapted to other communication devices with other protocol variants. For instance,
when a CAN bus is considered, protocol variants with and without message fragmenta-
tion can be assumed, etc.
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Conclusion

The tool suite that has been developed for TEReCS consists of the configurator TGEN, the
timing analyser TANA, the creator TCLUSTER for the creation of a requirement specific
cluster hierarchy and its configuration with TGEN, the editor TEDIT for the maintenance
of the URSG and RG, and the design tool TDESIGN, which implements TEReCS’ design
cycle. TDESIGN calls TGEN and TANA until a valid configuration could be found. TDE-
SIGN also edits appropriately the routing constraints of the requirement specification due
to the timing problems detected by TANA.

TGEN implements a very flexible and powerful method for the application specific de-
sign of operating and communication systems for distributed embedded systems. The
configuration approach helps to reuse software services and to maintain different pos-
sible implementation alternatives. Configuration with highly flexible service dependen-
cies and an appropriate cost function can optimise the operating system overhead and its
memory footprint.

During the exploration of this approach it had been revealed that configuration of soft-
ware components increase dramatically their reuse. Contradictory goals, respectively
trade-offs, for example, between performance and flexibility, become highly adjustable.
Additionally, the use of design principles for the automated configuration process of run-
time platforms, which are well known for the high-level hardware design, showed that
operating systems need not to be considered as statically fixed monolithic systems. In-
stead, they can be seen as appropriate mediators between the hardware and the appli-
cation. The operating and communication system can be individually adapted to the
concrete demands of the application. Hereby, the overall performance of the operating
and communication system can be optimised.

A very contemporary approach is the configuration of very fine-grained tunable operat-
ing systems. Only the customisation at object-level in the source code makes it possible
to handle the trade-off between optimality and flexibility. However, the huge amount of
customisable options increases the complexity of a system extremely. It could be verified
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that TEReCS with its configuration approach is able to handle this complexity. Moreover,
the automatic configuration process requires significant less knowledge from the applica-
tion programmer about the customisable operating system. Operating system internals
can completely be hidden from the user.

Additionally, the description of the valid design space of the operating system within
TEReCS’ (hierarchical) URSG can serve as a fine-grained documentation for the operat-
ing system. Thus, the integration and development of extensions to the system is more
easier. The operating system experts can use TEDIT also as a tool for the exploration of
the operating system’s internal structures, capabilities, and restrictions. For this reason,
TEReCS also supports the operating system experts to maintain the operating systems
immanent complexity due to the configuration aspect.

The analyser TANA inspects the final configuration before it is targeted. By using atomic
executions and their arrangement into a schedule sophisticated statements about the sys-
tem behaviour can be made. The Time-triggered Event Scheduling of execution blocks cre-
ates a lot of information that can help to re-configure the system more optimal. Bottle-
necks, overload conditions, bursts, and also idle phases are detected and influence the
configurator. The mutual influences between the configurator TGEN and the analyser
TANA are managed by TDESIGN. Moreover, the load distribution or routing of messages
through the (static and fixed) network can be automated in the way that all timing con-
straints are just met.
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Fig. 8.1: The design cycle of specification, configuration and analysis in TEReCS.

This innovative design cycle (see Figure 8.1) for the targeting of distributed real-time
applications with its software reuse and its pre-implementation analysis dramatically
decreases the development time of embedded applications and their operating and com-
munication systems. This is an important factor to speed-up the time-to-market of a
product.
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TEReCS can serve as a front-end for any customisable real-time operating system. Espe-
cially, it is very adequate for object-oriented modelled systems. For the timing analysis
it is desirable that the atomic operating system services assure a deterministic worst-case
execution time that is very similar to the average case. When enough operating system
services for different hardware architectures exist as alternatives, TEReCS can help to
develop hardware independent embedded applications and their execution platforms,
which are comparable to hand-written code.

TEReCS is conceptually integrated into a more general design framework (see Figure 8.2)
for the development of distributed embedded applications that is called PARADISE
[2, 59]. PARADISE supports also for the development of hardware implementations in
ASICs or FPGAs. An Internet-based repository for Intellectual Property (IP) cores and
software services supports the protection of the IP of third-party companies that offer
operating system or application extensions as software or hardware services.
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Fig. 8.2: TEReCS is conceptually embedded into an Internet-based framework for sup-
porting third-party developments.

TEReCS had also been applied to a very special application scenario. While TEReCS had
been applied to the DREAMS operating system library, TEReCS was responsible to gener-
ate an execution platform for Pr/T-net-based applications for distributed embedded con-
trol units [18, 110]. Applications, which are specified in an extended version of predicate
transition nets, have been targeted to an embedded processor network. The back-end
and code generator for the Pr/T-net specifications had been adapted to TEReCS. Then
TEReCS constructed an optimal run-time platform for the execution of the distributed
Pr/T-net. A very deep integration of the application (Pr/T-net) and the operating system
in form of a Pr/T-net Execution Engine could be achieved.
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It has been shown that the TEReCS approach makes the modelling of the configuration
options of a customisable object-oriented execution platform possible. The design cycle
for the development of a nearly optimal adapted run-time platform could extremely be
shortened. The reuse of hardware independent software for different applications, as
well as hardware dependent software when changing the target system, is excellently
supported. The design methodology suggested by TEReCS works fine.

8.1 Overview of Publications of the Author Related to this Work

The overall concept that led to the current implementation of TEReCS had first been pub-
lished in 1997 within the first research proposal “Entwurf konfigurierbarer, echtzeitfähiger
Kommunikationssysteme” [104] for the priority programme 1040 “Entwurf und Entwurf-
smethodik eingebetteter Systeme”, which has been founded by the Deutsche Forschungs-
gemeinschaft (DFG). A summary of the developed concepts of that proposal could also
be found in an article of the journal Informationstechnik und Technische Informatik (it+ti, no.
2, 1999) [19].

Major parts of the Sections 6.2, 6.3, and 6.4 had been published in the proceedings of the
6th Annual Australasian IFIP Conference on Parallel Real-time Systems (PART’99) [14] and in
the proceedings of the Forum of Design Languages (FDL’99) [16].

Section 6.5 is mainly based on an article that had been presented at the 5th IEEE Interna-
tional Symposium on Object-oriented Real-time Distributed Computing (ISORC’02) [28].

The main concept that is presented in Section 6.6 about the data model had been pub-
lished on the Workshop on Architectures of Embedded Systems (AES 2000) [15].

Some of the results that are presented in Section 7.1 had been taken from a publication of
the proceedings of the 15th IFAC Workshop on Distributed Control Systems (DCCS’98) [43].

The integration of TEReCS into the overall design framework PARADISE was published
in the proceedings of the International IFIP WG 10.3/WG 10.5 Workshop on Distributed Par-
allel Embedded Systems (DIPES’98) [2] and in the EUROMICRO Journal in 2000 [59].

The design of a Pr/T-Net Execution Engine had been presented on the International Eu-
ropean Simulation Multi-Conference (ESM 2000) [18] and on the International Conference on
Application and Theory of Petri Nets (ICATPN’01) [110].

Further application scenarios for (re-)configurable operating systems had been presented
on the Workshop of Object-oriented Real-time Dependable Systems (WORDS’03) [17].

8.2 Outlook

There are still some open problems and things to be done for TEReCS. Up to now it is left
open to show the formal correctness of the generated configuration or of the generator
tool itself. Up to now, TEReCS assumes that the domain knowledge description (URSG)
allows only valid and “correct” configurations to be built. Actually, the real correctness is
validated manually by “inspection” of the result by an expert. If an error is found, then a
new constraint is integrated into the URSG in order to prevent the wrong configuration.
By this way, the problem of generating a correct configuration is transformed into the
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problem to specify a correct knowledge base. TEReCS assumes that this problem must
be handled by the operating system expert. Nevertheless, TEReCS supports the expert
in some ways. For example, cyclic (or contradictory) constraints are detected during the
configuration and syntactical wrong configurations are detected by the compiler during
the generation phase.

A possible extension to TEReCS would be the integration of dynamic dependencies be-
tween the services. Actually, there are only static dependencies allowed. Dynamic rela-
tionships between the services should comprise temporal orders of sub-service requests
or even the specification of repeated requests as they occur in loops. Additionally, the re-
quests may depend on parameters that have been assigned to the primitive calls. These
dynamic dependencies should allow to specify the control flow of the services. Thus, the
timing analysis can more specifically model the system’s behaviour.

The timing analysis can also be improved. Before the schedules are calculated the load of
the resources should be checked to be less than 100% or another specified limit. By this
way, overload conditions can be detected much faster. Moreover, the schedules need not
to be calculated when the maximum capacity is exceeded.

The design loop of TEReCS already determines the routing of the messages through the
network. If alternatives exist, then the cheapest routes will be chosen first. A re-routing
and the use of additional links is required when the timing analysis detects problems.
By this way, a minimum set of communication links can be determined. Of course, this
simple mechanism of “error and try” can be improved by a better routing and cost func-
tion for the selection of the links. Additionally, also the mapping of the tasks onto the
processors can be determined similarly. This had been excluded from TEReCS, because
there exists good tools, which especially handle this problem.

Another possible enhancement for TEReCS would be a visualisation tool for the presen-
tation of the schedule outputs after the analysis. Actually, the analyser TANA generates
only textual descriptions of the schedules. A presentation in form of a Gantt diagram
would be more user friendly.

The most interesting extension of TEReCS is to develop a methodology in order to cope
with the configuration of an operating and communication system during its run-time.
This dynamic configuration approach is a major topic in the Special Research Initiative
SFB 614 “Self-optimising Concepts and Structures in Mechanical Engineering” of the
Deutsche Forschungsgemeinschaft, which is implemented at the University of Paderborn,
Germany. Herein, the project C2 “Self-optimising Operating System” deals with this
problem. The project C2 can be seen as the successor of the TEReCS project. The project
goes towards a reflective and self-adaptive operating system in order to support chang-
ing application scenarios and changing hardware resources due to self-optimisation.

Another very challenging vision for future research in the area of TEReCS would be the
generalisation of the configuration for the operating system’s domain towards the appli-
cation domain. The software synthesis approach of TEReCS should not only be applied
to the operating system but also to the complete development process of the application.

However, the work on TEReCS had been a great inspiration and led to a lot of new ideas
and also to some further questions.

* * *
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APPENDIX A

Simple Configuration Example

Hardware and Topology Description

The hardware for the configuration example consists of 4 Transputers and 3 PowerPCs.
The Tranputers are interconnected in the given topology by their Transputer Links. Three
of the four Transputer boards have also a PowerPC processor on board. The Transputer
and its neighbouring PowerPC are connected via a shared memory interface (see Fig-
ure A.1).

The following text describes the Resource Graph (RG) of Figure A.1:

// ---------------------------------------------------------------------------
// declaration and instantiation of hardware components:
// ---------------------------------------------------------------------------

HARDWARE
DEF_CPU(0,0,0,Transputer)
DEF_CPU(2,2,0,Transputer)
DEF_CPU(4,4,0,Transputer)
DEF_CPU(6,6,0,Transputer)
DEF_CPU(3,3,1,PowerPC)
DEF_CPU(5,5,3,PowerPC)
DEF_CPU(7,7,5,PowerPC)
DEF_MEDIA(0,shared_memory)
DEF_MEDIA(1,shared_memory)
DEF_MEDIA(2,shared_memory)
DEF_MEDIA(3,link)
DEF_MEDIA(4,link)
DEF_MEDIA(5,link)
DEF_MEDIA(6,link)
DEF_MEDIA(7,link)
DEF_MEDIA(8,link)
DEF_DEVICE(0,PPCMemDev)
DEF_DEVICE(1,PPCMemDev)
DEF_DEVICE(2,PPCMemDev)
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Fig. A.1: Example for a Resource Graph (RG).

DEF_DEVICE(3,TPMemDev)
DEF_DEVICE(4,TPMemDev)
DEF_DEVICE(5,TPMemDev)
DEF_DEVICE(6,LinkInDev)
DEF_DEVICE(7,LinkInDev)
DEF_DEVICE(8,LinkInDev)
DEF_DEVICE(9,LinkInDev)
DEF_DEVICE(10,LinkInDev)
DEF_DEVICE(11,LinkInDev)
DEF_DEVICE(12,LinkOutDev)
DEF_DEVICE(13,LinkOutDev)
DEF_DEVICE(14,LinkOutDev)
DEF_DEVICE(15,LinkOutDev)
DEF_DEVICE(16,LinkOutDev)
DEF_DEVICE(17,LinkOutDev)

END_HARDWARE

// ---------------------------------------------------------------------------
// declaration and instantiation of the topology:
// ---------------------------------------------------------------------------

TOPOLOGY
CONNECT_CPU_DEV( 0, 12, link_out, 2)
CONNECT_CPU_DEV( 2, 13, link_out, 0)
CONNECT_CPU_DEV( 2, 14, link_out, 1)
CONNECT_CPU_DEV( 2, 16, link_out, 2)
CONNECT_CPU_DEV( 4, 15, link_out, 0)
CONNECT_CPU_DEV( 6, 17, link_out, 3)

CONNECT_CPU_DEV( 0, 6, link_in, 2)
CONNECT_CPU_DEV( 2, 7, link_in, 0)
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CONNECT_CPU_DEV( 2, 8, link_in, 1)
CONNECT_CPU_DEV( 2, 10, link_in, 2)
CONNECT_CPU_DEV( 4, 9, link_in, 0)
CONNECT_CPU_DEV( 6, 11, link_in, 3)

CONNECT_CPU_DEV( 2, 3, TP_SM, 4)
CONNECT_CPU_DEV( 4, 4, TP_SM, 4)
CONNECT_CPU_DEV( 6, 5, TP_SM, 4)

CONNECT_CPU_DEV( 3, 0, PPC_SM, 0)
CONNECT_CPU_DEV( 5, 1, PPC_SM, 0)
CONNECT_CPU_DEV( 7, 2, PPC_SM, 0)

CONNECT_DEV_MED(12, 4, OutLinkP)
CONNECT_DEV_MED(13, 3, OutLinkP)
CONNECT_DEV_MED(16, 8, OutLinkP)
CONNECT_DEV_MED(17, 7, OutLinkP)
CONNECT_DEV_MED(14, 6, OutLinkP)
CONNECT_DEV_MED(15, 5, OutLinkP)

CONNECT_DEV_MED( 7, 4, InLinkP)
CONNECT_DEV_MED( 6, 3, InLinkP)
CONNECT_DEV_MED(10, 7, InLinkP)
CONNECT_DEV_MED(11, 8, InLinkP)
CONNECT_DEV_MED( 8, 5, InLinkP)
CONNECT_DEV_MED( 9, 6, InLinkP)

CONNECT_DEV_MED( 3, 0, IO2SMP)
CONNECT_DEV_MED( 4, 1, IO2SMP)
CONNECT_DEV_MED( 5, 2, IO2SMP)

CONNECT_DEV_MED( 0, 0, IO1SMP)
CONNECT_DEV_MED( 1, 1, IO1SMP)
CONNECT_DEV_MED( 2, 2, IO1SMP)

END_TOPOLOGY

Domain Knowledge Database

For the example the application tasks can only be implemented on the PowerPC pro-
cessors. The Transputers act as communication co-processors. TEReCS is responsible to
generate appropriate communication services on the PowerPCs and Transputers. Mes-
sages, which have to be transferred from one PowerPC to another, will be stored in the
Transputer’s memory of the last Transputer on the path. The message will be stored
there until the message is requested from the receiving task on the assigned PowerPC.
Messages will also be routed and forwarded through the Transputer network.

The only two user primitives that can be called from applications on the PowerPCs are
send() and receive() . Both services will call the service informTP of the device
driver for the shared memory interface. The use of this service will always activate
the service handleTP of the coresponding device driver interface on the Transputer.
A message that has to be sent can possibly transferred by using three alternative sub-
services route , deliver , or put . The service deliver transfers the message directly
via informPPC and handlePPC to the accompanied PowerPC. The sub-service put
sends the message on the appropriate out-going link of the Transputer. The message will
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then be received by the incoming device driver service get of the neighbouring Trans-
puter. The service get makes again use of the same three alternative sub-services route ,
deliver , or put in order to forward the message. The service route routes the mes-
sage through the network by determing the out-going link or shared memory interface.
The services handleTP and get can only directly use the service put when all messages
have to use the same out-going device.

send receive

informTP

handleTP

route

deliver put

get informPPC

handlePPC

SAP

SRP

HRP

HAP

SSP

Service

SW-Use

HW-Use

PowerPC

Transputer

Transputer B

Transputer A

Client

Server

Fig. A.2: Example for an Universal Service Graph (USG).

The following text defines the Universal Resource Service Graph (URSG), which is partly
presented in Figure A.2:

// ---------------------------------------------------------------------------
// begin of database declarations:
// ---------------------------------------------------------------------------
DATABASE

// ---------------------------------------------------------------------------
// definition of types for ports, SAPs, SNPs, HNPs and services:
// ---------------------------------------------------------------------------
// declaration of ports:

IOPORT(PPC_SM)
END_PORT

IOPORT(TP_SM)
END_PORT

IOPORT(IO1SMP)
END_PORT

IOPORT(IO2SMP)
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END_PORT

IPORT(link_in)
END_PORT

OPORT(link_in)
END_PORT

OPORT(link_out)
END_PORT

IPORT(link_out)
END_PORT

IPORT(InLinkP)
END_PORT

OPORT(OutLinkP)
END_PORT

OPORT(InLinkP)
END_PORT

IPORT(OutLinkP)
END_PORT

// ---------------------------------------------------------------------------
// declaration of SAPs:

SAP(ai_send)
END_SAP

SAP(ai_receive)
END_SAP

SAP(ai_informPPC)
END_SAP

SAP(ai_informTP)
END_SAP

SAP(ai_routeA)
END_SAP

SAP(ai_routeB)
END_SAP

SAP(ai_put)
END_SAP

SAP(ai_deliver)
END_SAP

SAP(ai_block)
BLOCKS

END_SAP

SAP(ai_activate)
ACTIVATES(receive)
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END_SAP

// ---------------------------------------------------------------------------
// declaration of SUPs, SCPs and SNPs:

SNP(ni_send)
SELECT(ai_informTP)

END_SNP

SNP(ni_receive1)
SELECT(ai_informTP)

END_SNP

SNP(ni_receive2)
SELECT(ai_block)

END_SNP

SNP(ni_deliver)
SELECT(ai_informPPC)

END_SNP

SNP(ni_decide)
SELECT(ai_routeA)
SELECT(ai_routeB)
SELECT(ai_put)
SELECT(ai_deliver)
SELECT_MIN(1)
SELECT_MAX(1)

END_SNP

SNP(ni_routeA1)
SELECT(ai_put)

END_SNP

SNP(ni_routeA2)
SELECT(ai_deliver)
SELECT_MIN(0)
SELECT_MAX(1)

END_SNP

SNP(ni_routeB)
SELECT(ai_put)

END_SNP

SNP(ni_handlePPC)
SELECT(ai_activate)

END_SNP

// ---------------------------------------------------------------------------
// declaration of HAPs:

HAP(hi_handleTP)
USES_IPORT(TP_SM)

END_HAP

HAP(hi_handlePPC)
USES_IPORT(PPC_SM)

END_HAP
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HAP(hi_get)
USES_IPORT(link_in)

END_HAP

// ---------------------------------------------------------------------------
// declaration of HNPs:

HNP(hi_informPPC)
USES_OPORT(TP_SM)
OPORTPREFERS(TP_SM, 0, ni_decide, ai_deliver)
OPORTPREFERS(TP_SM, 0, ni_decide, ai_routeA)

END_HNP

HNP(hi_informTP)
USES_OPORT(PPC_SM)

END_HNP

HNP(hi_put)
USES_OPORT(link_out)
OPORTPREFERS(link_out, 0, ni_decide, ai_put)
OPORTPREFERS(link_out, 1, ni_decide, ai_routeA)
OPORTPREFERS(link_out, 2, ni_decide, ai_routeB)

END_HNP

// ---------------------------------------------------------------------------
// declaration of services:

SERVICE(deliver)
IN(ai_deliver)
OUT(ni_deliver)

END_SERVICE

SERVICE(send)
IN(ai_send)
OUT(ni_send)
ASYN_CLIENT_OF(deliver)

END_SERVICE

SERVICE(receive)
IN(ai_receive)
OUT(ni_receive1)
OUT(ni_receive2)
SYNC_CLIENT_OF(deliver)

END_SERVICE

SERVICE(informPPC)
IN(ai_informPPC)
NEEDS(hi_informPPC)

END_SERVICE

SERVICE(informTP)
IN(ai_informTP)
NEEDS(hi_informTP)

END_SERVICE

SERVICE(get)
TRIGGEREDBY(hi_get)
OUT(ni_decide)

END_SERVICE
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SERVICE(put)
IN(ai_put)
NEEDS(hi_put)
INHIBITS_AT_MULTI_NEED(ni_decide, ai_put)

END_SERVICE

SERVICE(routeA)
COSTS(3)
IN(ai_routeA)
OUT(ni_routeA1)
OUT(ni_routeA2)

END_SERVICE

SERVICE(routeB)
COSTS(2)
IN(ai_routeB)
OUT(ni_routeB)

END_SERVICE

SERVICE(handleTP)
TRIGGEREDBY(hi_handleTP)
OUT(ni_decide)

END_SERVICE

SERVICE(handlePPC)
TRIGGEREDBY(hi_handlePPC)
OUT(ni_handlePPC)

END_SERVICE

// ---------------------------------------------------------------------------
// definition of types for CPUs, devices and media:
// ---------------------------------------------------------------------------
// declaration of CPUs:

CPU(Transputer)
PROVIDES(handleTP)
PROVIDES(put)
PROVIDES(get)
PROVIDES(deliver)
PROVIDES(routeA)
PROVIDES(routeB)
PROVIDES(informPPC)
HAS_IPORT(link_in)
HAS_OPORT(link_out)
HAS_IOPORT(TP_SM)

END_CPU

CPU(PowerPC)
PROVIDES(send)
PROVIDES(receive)
PROVIDES(informTP)
PROVIDES(handlePPC)
HAS_IOPORT(PPC_SM)

END_CPU

// ---------------------------------------------------------------------------
// declaration of devices:
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DEVICE(PPCMemDev)
HAS_IOPORT(PPC_SM)
HAS_IOPORT(IO1SMP)

END_DEVICE

DEVICE(TPMemDev)
HAS_IOPORT(TP_SM)
HAS_IOPORT(IO2SMP)

END_DEVICE

DEVICE(LinkInDev)
HAS_OPORT(link_in)
HAS_IPORT(InLinkP)

END_DEVICE

DEVICE(LinkOutDev)
HAS_IPORT(link_out)
HAS_OPORT(OutLinkP)

END_DEVICE

// ---------------------------------------------------------------------------
// declaration of media:

MEDIA(shared_memory)
HAS_IOPORT(IO1SMP)
HAS_IOPORT(IO2SMP)

END_MEDIA

MEDIA(link)
HAS_OPORT(InLinkP)
HAS_IPORT(OutLinkP)

END_MEDIA

// ---------------------------------------------------------------------------
// end of database declarations:
// ---------------------------------------------------------------------------
END_DATABASE

Requirements Specification

The requirements specification defines two tasks A and B. Task A is placed on the Pow-
erPC 5 and the task B is placed on the PowerPC 3. Only one communication (ComLine1)
is specified. The task A wants to send a message to the task B (see Figure A.3).

# The resources define the tasks, their events,
# and the communication mailboxes:

RESOURCE(Mailbox1)
DELAY(5)
HAS(0)
EVENT(send, ai_send)
EVENT(receive, ai_receive)

END_RESOURCE

RESOURCE(TaskA)
IS_TASK(80, 250, 1)
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EXECUTES(send, Mailbox1, 50) IS SEND(1)
END_RESOURCE

RESOURCE(TaskB)
IS_TASK(100, 250, 1)
EXECUTES(receive, Mailbox1, 50) IS RECEIVE(1)

END_RESOURCE

# The place statements map the tasks onto the CPUs
# and specify the source files:

PLACE
RESOURCE(TaskA)
CPU(3)
FILE(mainA.c)

END_PLACE

PLACE
RESOURCE(TaskB)
CPU(5)
FILE(mainB.c)

END_PLACE

# The communication statements connect the appropriate send
# and receive events:

COMLINE(ComLine1)
SENDTASK(TaskA,1)
RECVTASK(TaskB,1)

END_COMLINE

END
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Configuration Result

PPC 3

TP 2

PPC 5

Task B

receive(ppc3)

Task A

send(ppc5)

TP 4

send

informTP

handleTP

put get

handleTP informPPC

deliver

informTP handlePPC

receive

Fig. A.3: Example for the final configuration according to the requirement specification
on page 173.

The final configuration, which is depicted in Figure A.3, shows the expected result. The
service receive is not required for the PowerPC 5 and the service send is excluded from
the PowerPC 3. The service handleTP on Transputer 4 calls directly the service put ,
because all messages –here, in fact, only one– have to be sent directly on the first link. the
services get and handleTP on Transputer 2 use directly the service deliver in order
to store and forward the message to the accompanied PowerPC. All other processors do
not require any service.
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APPENDIX B

Example for the Timing Analysis

This chapter contains the source code of the requirement specification for the scheduling
example, which had been described on page 138.

Input

# ExecutionBlocks ----------------------

EXECUTION-BLOCK(t-dispatch)
WAIT(OWNRES, 1)
KILL_SIGNAL(OWNRES, ALL)
DURATION(30)
# restart Round-Robin scheduler with its timeslice (340):
SIGNAL(OWNRES, 1, 340)

END_EXECUTION_BLOCK

EXECUTION_BLOCK(pre-send)
DURATION(30)
SIGNAL(OWNRES, 1, TRANSFER)

END_EXECUTION_BLOCK

EXECUTION_BLOCK(post-send)
DURATION(30)

END_EXECUTION_BLOCK

EXECUTION_BLOCK(pre-receive)
DURATION(30)

END_EXECUTION_BLOCK

EXECUTION_BLOCK(post-receive)
DURATION(20)
# wait on resource, iff waiting then immediately signal scheduler:
SIGNALWAIT(OWNRES, 1, scheduler(OWNCPU), 1, 0)

END_EXECUTION_BLOCK
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# General Tasks ------------------------

RESOURCE(scheduler)
IS_TASK(0,340,0)
CRITICALNESS(NO)
EVENT(dispatch, t-dispatch)
HAS(1) # scheduler has immediately a signal and can run
UNITS(1)
EXECUTES(dispatch, scheduler, 0)

END_RESOURCE

RESOURCE(idle)
IS_TASK(100,100,100)
CRITICALNESS(NO)

END_RESOURCE

# CPU1 ---------------------------------

RESOURCE(cpu1)
IS_CPU
HAS(1) # CPU has immediately a signal
UNITS(1)

END_RESOURCE

# CPU2 ---------------------------------

RESOURCE(cpu2)
IS_CPU
HAS(1)
UNITS(1)

END_RESOURCE

# comLine1 Resource --------------------

RESOURCE(comLine1)
EVENT(send, pre-send, post-send)
EVENT(receive, pre-receive, post-receive)
DELAY(30) # the time required for the transfer
UNITS(5) # e.g. comLine can buffer 5 messages
HAS(0) # at begin there is no message

END_RESOURCE

# task on CPU1 -------------------------

EXECUTION_BLOCK(t1-start)
# wait on resource, iff waiting immediately signal scheduler:
SIGNALWAIT(OWNRES, 1, scheduler(OWNCPU), 0, 1)
DURATION(30)

END_EXECUTION_BLOCK

EXECUTION_BLOCK(t1-end)
DURATION(10)
SIGNAL(OWNRES, 1, PERIOD)
SIGNAL(scheduler, 1, PERIOD, NO_KILL)
SYNC_STARTTIME(PERIOD)

END_EXECUTION_BLOCK

RESOURCE(t1)
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IS_TASK(80, 340, 1)
HAS(1) # task has immediately a signal and can run
UNITS(1)
EVENT(start, t1-start)
EVENT(end, t1-end)
EXECUTES(start, t1, 0)
EXECUTES(send, comLine1, 50)
EXECUTES(end, t1, 80)

END_RESOURCE

# task on CPU2 -------------------------

EXECUTION_BLOCK(t2-start)
# wait on resource, iff waiting immediately signal scheduler:
SIGNALWAIT(OWNRES, 1, scheduler(OWNCPU), 0, 1)
DURATION(20)

END_EXECUTION_BLOCK

EXECUTION_BLOCK(t2-end)
DURATION(10)
SIGNAL(OWNRES, 1, PERIOD)
SIGNAL(scheduler, 1, PERIOD, NO_KILL)
SYNC_STARTTIME(PERIOD)

END_EXECUTION_BLOCK

RESOURCE(t2)
IS_TASK(90, 340, 1)
HAS(1) # task has immediately a signal and can run
UNITS(1)
EVENT(start, t2-start)
EVENT(end, t2-end)
EXECUTES(start, t2, 0)
EXECUTES(receive, comLine1, 20)
EXECUTES(end, t2, 90)

END_RESOURCE

# place tasks onto cpus ----------------

PLACE
RESOURCE(t1)
CPU(cpu1)

END_PLACE

PLACE
RESOURCE(scheduler)
CPU(cpu1)

END_PLACE

PLACE
RESOURCE(idle)
CPU(cpu1);

END_PLACE

PLACE
RESOURCE(t2)
CPU(cpu2)

END_PLACE

PLACE
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RESOURCE(scheduler)
CPU(cpu2)

END_PLACE

PLACE
RESOURCE
CPU(cpu2)

END_PLACE

PLACE
RESOURCE(comLine1)
CPU(GLOBAL)

END_PLACE

# EOF ----------------------------------

Output

# scheduler, t1 and t2 have immediately signals!

# Schedule of cpu1:
0 EBLOCK t-dispatch OF RESOURCE scheduler FROM TASK scheduler;

CONSUMES (scheduler, 1)
KILLS (scheduler, 0)
SIGNALS (scheduler, 1, 530)

30 TRY EBLOCK t-dispatch OF RESOURCE scheduler FROM TASK scheduler;
WAIT (scheduler, 1)

30 EBLOCK t1-start OF RESOURCE t1 FROM TASK t1;
CONSUMES (t1, 1)

60 TASK t1;
110 EBLOCK pre-send OF RESOURCE comLine1 FROM TASK t1;

SIGNALS (comLine1, 1, 170)
140 EBLOCK post-send OF RESOURCE comLine1 FROM TASK t1;
170 TASK t1;
200 EBLOCK t1-end OF RESOURCE t1 FROM TASK t1;

SIGNALS (t1, 1, 340)
SIGNALS (scheduler, 1, 340)
SYNC_STARTTIME (t1, 680)

210 TRY EBLOCK t1-start OF RESOURCE t1 FROM TASK t1;
WAIT (t1, 1)
SIGNALS (scheduler, 1, 210)

210 EBLOCK t-dispatch OF RESOURCE scheduler FROM TASK scheduler;
CONSUMES (scheduler, 1)
KILLS (scheduler, 1)
SIGNALS (scheduler, 1, 740)

240 TRY EBLOCK t-dispatch OF RESOURCE scheduler FROM TASK scheduler;
WAIT (scheduler, 1)

240 TASK idle;
# 340 (END OF HYPERPERIOD OF THIS CPU)

# Schedule of cpu2:
0 EBLOCK t-dispatch OF RESOURCE scheduler FROM TASK scheduler;

CONSUMES (scheduler, 1)
KILLS (scheduler, 0)
SIGNALS (scheduler, 1, 530)

30 TRY EBLOCK t-dispatch OF RESOURCE scheduler FROM TASK scheduler;
WAIT (scheduler, 1)
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30 EBLOCK t2-start OF RESOURCE t2 FROM TASK t2;
CONSUMES (t2, 1)

50 TASK t2;
70 EBLOCK pre-receive OF RESOURCE comLine1 FROM TASK t2;
90 TRY EBLOCK post-receive OF RESOURCE t2 FROM TASK t2;

WAIT (comLine1, 1)
SIGNALS (scheduler, 1)

90 EBLOCK t-dispatch OF RESOURCE scheduler FROM TASK scheduler;
CONSUMES (scheduler, 1)
KILLS (scheduler, 1)
SIGNALS (scheduler, 1, 460)

120 TRY EBLOCK t-dispatch OF RESOURCE scheduler FROM TASK scheduler;
WAIT (scheduler, 1)

120 TASK idle;
170 EBLOCK post-receive OF RESOURCE t2 FROM TASK t2;

CONSUMES(comLine1, 1);
190 TASK t2;
260 EBLOCK t2-end OF RESOURCE t2 FROM TASK t2;

SIGNALS (t2, 1, 340)
SIGNALS (scheduler, 1, 340)
SYNC_STARTTIME (t2, 680)

270 EBLOCK t-dispatch OF RESOURCE scheduler FROM TASK scheduler;
CONSUMES (scheduler, 1)
KILLS (scheduler, 1)
SIGNALS (scheduler, 1, 640)

300 TRY EBLOCK t-dispatch OF RESOURCE scheduler FROM TASK scheduler;
WAIT (scheduler, 1)

300 TASK idle;
# 340 (END OF HYPERPERIOD OF THIS CPU)

CPU1 t1 post-send t1 t-dispatch idle

send

start

receive

t2 pre-re t-dispatch idle post-re t-dispatch idlestartt-dispatchCPU2 end

end

30 60 110 140

30 2600

end

end

start; ts

start; ts

0 170 210200 240

50 70 90 120 170 190 270 300 340

340

signal

t-dispatch

te

te

pre-send

t2

Fig. B.1: Visualisation of the schedules from the output of the timing analysis on page
180f.
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APPENDIX C

Language Descriptions

In the next sections we will define, which item types can be declared per database, respec-
tively graph, which order should be used, and which property statements are allowed
for a specific item type. Moreover, the semantical meaning of the declarations will be
explained.

In the given examples below, the statements, which can be multiply defined, are sur-
rounded by “[...]* ”. The other property statements must occur only once per database
item.

Comments are allowed in the form that any text after the character ’#’ followed by a
white space is ignored until the end of the line.

C.1 General Domain Knowledge

The general domain knowledge for the configuration process is defined in a database,
in which all configuration items are stored. It defines a kind of knowledge base, be-
cause all properties of the configuration items, like their dependencies, the alternative
selections and the constraints, are described herein. The configurator TGEN reads this
database from a text file. Comments are allowed in the form that any text after the charac-
ter ’#’ followed by a white space is ignored until the end of the line. The definition of the
database starts with the keyword DATABASEand ends with the keyword ENDDATABASE.
Every line before and after this keywords are ignored. Inside the database definition
all IPORTs, OPORTs, IOPORTs, SAPs, SRPs, HAPs, HRPs, PRIMITIVEs , SERVICEs,
EXECUTIONBLOCKs, CPUs, DEVICEs, and MEDIAs have to be declared. Thereby, ex-
actly this order have to be used, because, for instance, before an SAP can be referenced in
a service, it must have been declared.
The database should start with the declaration of ports. The port declarations have the
following form:
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IPORT(<iport-type-name>)
VISIBILITY(<num>,<num>,<num>)

ENDPORT

OPORT(<oport-type-name>)
VISIBILITY(<num>,<num>,<num>)

ENDPORT

IOPORT(<ioport-type-name>)
VISIBILITY(<num>,<num>,<num>)

ENDPORT

The VISIBILITY statement, which is used for nearly every item of the database that is
possibly the source or destination of an edge (dependency relation), defines whether all
the assigned edges are visible at different levels inside the editor. This statement is only
managed by the editor tool. The ports have no other property. The port statements only
declare the appropriate type names as an in-port, an out-port, or an in/out-port.

After the port declarations the declaration of SAP types follow:

SAP(<sap-type-name>)
VISIBILITY(<num>,<num>,<num>)
PREFIX("<string>")
SUFFIX("<string>")
BLOCKS
ACTIVATES(<service-type-name>)
COSTS(<int>)
SELECTEDBY MAX(<num>)
[ SAPFORCES(<srp-type-name>,<sap-type-name>) ]*
[ SAPFAVOURS(<srp-type-name>,<sap-type-name>) ]*
[ SAPINHIBITS(<srp-type-name>,<sap-type-name>) ]*

ENDSAP

The strings that are defined in the PREFIX and SUFFIX statements will be used, when the
description of a final configuration is generated and this SAP is referred. The keywords
BLOCKSand ACTIVATES show, that the service, which has this SAP assigned, works
as a client or server service, respectively (see “Considering Communications” on page
119). The keyword COSTSdefine the costs of this SAP for the configuration (see “Cost
Function” on page 117). The keyword SELECTEDBY MAXdefines that this SAP can only
be accessed from a maximum of <num> SRPs. The keywords SAPFORCES, SAPFAVOURS
and SAPINHIBITS define constraints for the appropriate SRP to SAP alternatives (see
Section 6.3.4110). More than one constraint of each type can be declared.

After the SAP declarations the declaration of SRP types follow:

SRP SNP SUP SCP (<srp-type-name>)
VISIBILITY(<num>,<num>,<num>)
SELECTMIN(<num>)
SELECTMAX(<num>)
[ SELECT(<sap-type-name>) ]*

ENDSRP ENDSNP ENDSUP ENDSCP

Instead of the keyword SRPalso the keywords SNP, SUPand SCPcan be used. They will
be handled identically by the configurator TGEN. With the different keywords the expert
can distinguish different types of service dependencies. In the case of the description of
an object-oriented model (as we have in the case of DREAMS) this can be, for example,
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the inheritance (SNP), the member (SCP) and the calling (or usage) dependency (SUP)
between the service that contains this SRP and the service that contains the referenced SAP.
But remember, the configurator TGEN handles them identically. The SELECTstatement
refers to an SAP. Thereby, an edge between the service that contains this SRP and the
service that contains the referenced SAP is defined. This edge represents the directed
dependency between these services. Because the dependency is defined between the SRP
and SAP of a service, the same dependency relation can be defined for another service,
when it simply contains also this SRP. If more than one SELECTstatement is given, then
this defines an OR-group of alternative dependencies. If a service wants to define an
AND-group of dependencies, then it must contain one SRP per dependency. Thereby,
an AND/OR-relationship can be defined. All required SRPs (AND-group) of a service
defines possibly an OR-group. By the optional keywords SELECTMIN and SELECTMAX
the minimum and maximum number of services, which must be selected from this OR-
group, can be specified. By default both values are assumed to be 1.

After the SRP declarations the declaration of HAP types follow:

HAP(<hap-type-name>)
VISIBILITY(<num>,<num>,<num>)
[ USES IPORT(<iport-type-name>) ]*
[ USES IPORT(<ioport-type-name>) ]*
[ IPORTPREFERS(<iport-type-name>,<num>,<srp-type-name>,<sap-type-name>) ]*
[ IPORTINHIBITS(<iport-type-name>,<num>,<srp-type-name>,<sap-type-name>) ]*
[ IPORTFORCES(<iport-type-name>,<num>,<srp-type-name>,<sap-type-name>) ]*
[ IPORTPREFERS(<ioport-type-name>,<num>,<srp-type-name>,<sap-type-name>) ]*
[ IPORTINHIBITS(<ioport-type-name>,<num>,<srp-type-name>,<sap-type-name>) ]*
[ IPORTFORCES(<ioport-type-name>,<num>,<srp-type-name>,<sap-type-name>) ]*

ENDHAP

The HAP of a service is used in order to indicate that the service requires a hardware de-
vice. The software service can bee seen as a device driver. Additionally, it is indicated
that the direction of the data flow is from the software to the device. Devices have as-
signed ports. The HAP can be connected to this ports by the use of the USESIPORT
statement. Thereby, the HAP can be connected to an in-port and to an in/out-port. The
IPORTPREFERS, IPORTFORCESand IPORTINHIBITS statements define constraints,
which are guarded by this HAP.

After the HAP declarations the declaration of HRP types follow:

HRP(<hrp-type-name>)
VISIBILITY(<num>,<num>,<num>)
[ USES OPORT(<oport-type-name>) ]*
[ USES OPORT(<ioport-type-name>) ]*
[ OPORTPREFERS(<oport-type-name>,<num>,<srp-type-name>,<sap-type-name>) ]*
[ OPORTINHIBITS(<oport-type-name>,<num>,<srp-type-name>,<sap-type-name>) ]*
[ OPORTFORCES(<oport-type-name>,<num>,<srp-type-name>,<sap-type-name>) ]*
[ OPORTPREFERS(<ioport-type-name>,<num>,<srp-type-name>,<sap-type-name>) ]*
[ OPORTINHIBITS(<ioport-type-name>,<num>,<srp-type-name>,<sap-type-name>) ]*
[ OPORTFORCES(<ioport-type-name>,<num>,<srp-type-name>,<sap-type-name>) ]*

ENDHRP

The HRP is defined similar to the declaration of a HAP. The HRP of a service indicates,
that this service also requires for a hardware device. But the data flow is from the device
to the service. The service can also be seen as a device driver; but more specifically it
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receives the data by the device or it is activated by the device, like an interrupt service
routine. For this reason, the HRP can be connected to an out-port or to an in/out-port by
the USESOPORTstatement. The OPORTPREFERS, OPORTFORCESand OPORTINHIBITS
statements define again constraints, which are guarded by this HRP.

After the HRP declarations the declaration of user primitives follow:

PRIMITIVE(<primitive-type-name>)
VISIBILITY(<num>,<num>,<num>)
POSITION(<x>,<y>)
OUT(<srp-type-name>) [ FIXED AT(<x>,<y>) ]

ENDPRIMITIVE

A user primitive can be requested by an application in the requirement specification. The
keyword POSITION with its two parameters x and y will be ignored by the configurator
TGEN. It is managed by the editor tool and indicates the position of this node in Carte-
sian coordinates inside the visualised Universal Resource Service Graph (URSG). The OUT
statement defines an edge to an SRP. Only one of this statements per user primitive is al-
lowed. The OUTstatement can optionally be extended by a FIXED AT statement. This is
also ignored by TGEN. It indicates to the editor tool TEDIT, at which position this SRP
have to be placed for this user primitive.

After the user primitive declarations the declaration of services follow:

SERVICE(<service-type-name>)
VISIBILITY(<num>,<num>,<num>)
POSITION(<x>,<y>)
COSTS(<int>)
REQUIRES(<cpu-type-name>)
PRIORITY(<num>)
PRIORITY2(<num>)
MAXPRIORITY(<num>)
ORDER(<num>)
PREFIX("<string>")
SUFFIX("<string>")
PATH(<path-name>)
FILE(<file-name>)
[ IN(<sap-type-name>) [ FIXED AT(<x>,<y>) ] ]*
[ OUT(<srp-type-name>) [ FIXED AT(<x>,<y>) ] ]*
[ NEEDS(<hap-type-name>) [ FIXED AT(<x>,<y>) ] ]*
[ TRIGGEREDBY(<hrp-type-name>) [ FIXED AT(<x>,<y>) ] ]*
[ ASYN CLIENT OF(<service-type-name>) ]*
[ SYNC CLIENT OF(<service-type-name>) ]*
[ INHIBITS(<srp-type-name>,<sap-type-name>) ]*
[ FAVOURS(<srp-type-name>,<sap-type-name>) ]*
[ FORCES(<srp-type-name>,<sap-type-name>) ]*
[ FORCEHWUSE(<srp-type-name>,<sap-type-name>) ]*
[ INHIBITS AT MULTI NEED(<srp-type-name>,<sap-type-name>) ]*
[ SAY("<string>") ]*
[ NEGSAY("<string>") ]*

ENDSERVICE

The service is the central type definition. It defines an item that is subject to the config-
uration. The services can be included or excluded from a final configuration. The con-
figurator determines, which service is part of the configuration and which is not part
of the configuration. Remark, that each CPU will have its own configuration. For this
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reason, the service can have assigned costs, a primary and a secondary priority, and a
maximum priority, that can be reached by preferring in an OR-group (see “Configuring
Means Choosing of Alternatives” on page 118). The ORDER, PREFIX, SUFFIX, PATH,
FILE , SAYand NEGSAYstatements define strings that can be referred during the gener-
ation of this service for a final configuration. When the service is selected to be part of
the configuration the SAYstatement will be evaluated and printed. If the service is not
part of the configuration, then the NEGSAYstatement will be evaluated and printed. The
services are sorted after the value of the ORDERstatement and then they are printed into
the configuration description.

The IN , OUT, NEEDSand TRIGGEREDBYstatements indicate, which SAPs, SRPs, HAPs
and HRPs are connected to this service. The statements ASYNCLIENT OF and SYNC-
CLIENT OFdefine that this service is a client service for the server service, which is given
in the argument. There, synchronous means that the client will be blocked and asyn-
chronous means that the client will not be blocked. The synchronous client will require
for a service that will have assigned an SRP, which requests for an SAP with an BLOCK
statement. The server service will request for a service that will have assigned an SRP,
which requests for an SAP with an ACTIVATE statement. By this way, the server ser-
vice activates the synchronous client service. The asynchronous client sends messages
to the server service, whereas the synchronous client receives messages from the server
service. In Appendix A a configuration example with such a client/server dependency
is described.

The FAVOURS, FORCESand INHIBITS statements define again constraints. The FORCE-
HWUSEstatement identifies the specified choice element (SAP) to be chosen in an OR-
group, if the service, which is assigned to that choice element, requests a specific CPU
type or a specific architecture that is provided by the CPU for which it should be se-
lected. The REQUIRESstatement defines that this service possibly requires a specific
CPU type to be instantiated on. This statement is referenced by the FORCEHWUSEstate-
ment. The INHIBITS AT MULTI NEEDstatement prohibits the selection of the specified
choice element, if this service is used by more than one communication or task.

After the service declarations the declaration of execution blocks follow:

EXECUTIONBLOCK(ebName)
DISABLE(resourceName)
ENABLE(resourcename)
PRIORITY(p)
DURATION(l)
[ WAIT(resourceName, n) ]* # resourceName can be keyword OWNRES
[ KILL SIGNAL(resourceName, n) ]*

# resourceName can be keyword OWNRES, n can be keyword ALL
[ SIGNAL(resourceName[(CpuResourceName)], n, t, [NOKILL] ) ]*

# resourceName can be keyword OWNRES, cpuResourceName can be keyword OWNCPU,
# t can be keyword PERIOD or TRANSFER

[ SIGNALWAIT(resourceName, n, resourceName[(CpuResourceName)], sn, st) ]*
# wResourceName can be keyword OWNRES, sCpuName can be keyword OWNCPU,
# st can be keyword PERIOD or TRANSFER

SYNCSTARTTIME(t) # t can be keyword PERIOD
ENDEXECUTIONBLOCK

The EXECUTIONBLOCKstatement defines the timing behaviour of a task and mainly of a
system call to the operating system. These statements are only considered by the timing
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analysis. Its properties and semantic are described in Section 6.8133. The definition of an
execution block is also allowed to occur in the requirements specification.

Up to now all items of the Universal Service Graph (USG) are defined. Now, we will
describe the declarations for the resource types, that can be used in the hardware and
topology description, which is the Resource Graph (RG) (see Section C.2). These resource
types are also part of the knowledge base and have connections to the services. They
will have attached ports that are used in the HAPs and HRPs of the services. A resource
can be of the type CPU, DEVICE or MEDIA, which is indicated by the use of the appro-
priate keyword. These resource type declarations extend the previously defined USG to
the Universal Resource Service Graph (URSG). The resource type statements look like the
following:

CPU(<cpu-type-name>)
VISIBILITY(<num>,<num>,<num>)
POSITION(<x>,<y>)
ARCHITECTURE(<architecture-type-name>)
[ HAS IPORT(<iport-type-name>) [ FIXED AT(<x>,<y>) ] ]*
[ HAS OPORT(<oport-type-name>) [ FIXED AT(<x>,<y>) ] ]*
[ HAS IOPORT(<ioport-type-name>) [ FIXED AT(<x>,<y>) ] ]*
[ PROVIDES(<service-type-name>) ]*

ENDCPU

DEVICE(<device-type-name>)
VISIBILITY(<num>,<num>,<num>)
POSITION(<x>,<y>)
[ HAS IPORT(<iport-type-name>) [ FIXED AT(<x>,<y>) ] ]*
[ HAS OPORT(<oport-type-name>) [ FIXED AT(<x>,<y>) ] ]*
[ HAS IOPORT(<ioport-type-name>) [ FIXED AT(<x>,<y>) ] ]*

ENDDEVICE

MEDIA(<medium-type-name>)
VISIBILITY(<num>,<num>,<num>)
POSITION(<x>,<y>)
[ HAS IPORT(<iport-type-name>) [ FIXED AT(<x>,<y>) ] ]*
[ HAS OPORT(<oport-type-name>) [ FIXED AT(<x>,<y>) ] ]*
[ HAS IOPORT(<ioport-type-name>) [ FIXED AT(<x>,<y>) ] ]*

ENDMEDIA

The PROVIDESstatement of the CPUdeclaration enumerates all services that can be in-
stantiated for this CPU type. A service, which is not mentioned, will never be selected
for a configuration for this CPU type. The ARCHITECTUREstatement of the CPUdecla-
ration can enumerate some architecture names, which can be referenced by a REQUIRES
constraint of a service. Remember, that the REQUIRESconstraint can also directly refer-
ence a CPU type. Additionally remark, that the REQUIRESconstraint is only evaluated,
if the FORCEHWUSEconstraints is activated.

After all resources are declared the specification of the knowledge base must be termi-
nated by the use of the keyword ENDDATABASE.

C.2 Hardware and Topology

In the hardware and topology description, which is the Resource Graph (RG), only two
statements are allowed. This is the HARDWAREstatement and the TOPOLOGYstatement.
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They also have to be placed in the given order. The HARDWAREstatement, which must
come first, has the following form:

HARDWARE
[ DEF CPU(<cpu-name>,<cpu-num>,<domain-num>,<cpu-type-name>) ]*
[ SET VARCPU(<cpu-name>,<variable-name>,"<string>") ]*
[ OUTPUT CPU(<cpu-name>,<file-name>) ]*
[ MKFILE CPU(<cpu-name>,<file-name>) ]*
[ DEF MEDIA(<medium-name>,<medium-type-name>) ]*
[ DEF DEVICE(<device-name>,<device-type-name>) ]*

ENDHARDWARE

Inside the HARDWAREstatement concrete instances of CPUs, DEVICEs and MEDIAs are
created. Therefore, Each instance have an unique identifier as its name and is of a specific
type, which must have been declared in the general domain knowledge of the Universal
Resource Service Graph (URSG). A CPU have additionally assigned a unique CPU number
and a domain number, which defines the address of the CPU in the network. To each
CPU there can be assigned some variables of the type string, which will be printed into
a special output file per CPU. The name of this output file and the name of the makefile
for this CPU is defined in two extra statements.

After the HARDWAREstatement the TOPOLOGYstatement follows:

TOPOLOGY
TOPOLOGYFILE(<file-name>)
[ CONNECTCPUDEV(<cpu-name>,<device-name>,<port-type-name>,<num>) ]*
[ CONNECTDEVMED(<device-name>,<medium-name>,<port-type-name>) ]*
[ SAYONCE("<string>") ]*
[ SAY("<string>") ]*

ENDTOPOLOGY

The TOPOLOGYstatement mainly defines connections between the CPUs and the devices
and between the devices and the media. For each connection a port type name must be
given. A port of exactly this name must be present in both connected resources. That
means that only those ports can be connected, which have the same name! Remark, that
the direction of the connection is defined by the ports and not by this statement. Addi-
tionally, a filename can be specified. In this file the topology and other information about
the communications will be printed. Additionally, a topology file will be printed for each
CPU. From this files other tools can generate the routing tables for each CPU. The SAY
and SAYONCEstatements contain the strings, which will be printed into these files. The
strings of the SAY statement will be printed in all files, while the SAYONCEstatements
will be printed only in the files per CPU. Inside the strings special identifiers are recog-
nised. All these special identifiers must start with the ’%’ character. These identifiers are
replaced in the output by ID numbers or lists of ID numbers of the CPUs or domains.
The following identifiers are allowed:

• %CPUID()
• %DOMAIN()
• %LIST(DOMAINS)
• %LIST(CPUS)
• %LIST(CPU DOMAINS)
• %LIST(LOCAL CPUS)
• %LIST(LINKS TO CPU)
• %LIST(LINKS ADDR)
• %LIST(LINKS NCPU)
• %LIST(LINKS NLINK)
• %LIST(GATES OUT)
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• %LIST(GATES TO CPU)
• %LIST(GATES TO LINK)

C.3 Requirements Specification

The requirements specification allows only five different statements. With these state-
ments the tasks, their system call events, their communications, and their placement onto
the CPUs can be described.
The PACKETstatement defines the data structure of a message that will be used by a com-
munication connection. It is assumed that all messages, which are sent via one specific
communication connection between two tasks, have the same data structure.

PACKET(name)
[ INT8(name) ]*
[ INT16(name) ]*
[ INT32(name) ]*
[ INT64(name) ]*
[ UINT8(name) ]*
[ UINT16(name) ]*
[ UINT32(name) ]*
[ UINT64(name) ]*
[ FLOAT32(name) ]*
[ FLOAT64(name) ]*
[ ARRAY8(name, size) ]*
[ ARRAY16(name, size) ]*
[ ARRAY32(name, size) ]*
[ ARRAY64(name, size) ]*
[ UARRAY8(name, size) ]*
[ UARRAY16(name, size) ]*
[ UARRAY32(name, size) ]*
[ UARRAY64(name, size) ]*
[ FARRAY32(name, size) ]*
[ FARRAY64(name, size) ]*
[ CSTRING(name, maxlen) ]*
[ PSTRING16(name, maxlen) ]*
[ PSTRING32(name, maxlen) ]*
[ PACKET(name) ]*

ENDPACKET

The PACKETdeclaration is the definition of a compount type. There, basic data types,
like integers or unsigned intergers and floating point types, which all can be of different
bit width, can be used. Also arrays of these basic data types can be defined. Additionally,
strings can be defined, which have a maximum length and consist of a sequence of 8 Bit
unsigned integers (chars). The CSTRINGis null terminated, whereas the PSTRINGs are
preceeded by an unsigned integer value, which represents their length. Inside the packet
it is assumed that the string consumes maxlen size. Another packet declaration can be
specified to be a sub-type of the actual packet declaration.

The PACKETdeclaration have two major reasons: (1) the maximzum size of a message
that is sent is specified, and (2) an algorithm can be given these information as input
in order to change automatically the endianess of the message. Thereby, the tasks of
a communication can be placed on processors with different endianess (low/high-byte
order).
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The most important definition in the requirement specification is the declaration of a
resource:

RESOURCE(resourceName)
IS TASK(runtime, period, priority) IS CPU
CRITICALNESS(NO SOFT FIRM HARD)
DELAY(delay)
UNITS(items)
HAS(items)
[ EVENT(eventName, [ ebName ]+ ) [ IS SEND(num) RECEIVE(num) ] ]*
[ EXECUTES(eventName, resourceName, time [ , delay [ , items ]] )

[ IS SEND(num) RECEIVE(num) ] ]*
# delay and items can be keyword DEFAULT

ENDRESOURCE

A resource is subject to the signal() and wait() procedures of the behaviour descrip-
tion of an execution block for the timing analysis. With the property statements IS TASK
or IS CPUthe resource can be qualified to be a task or a CPU. Only one of these state-
ments must be used and they are optional. Each resource has a counter for items and
it works like a counting semaphore. The items which are initially present, are specified
with the HASproperty statement. Each signal() and wait() , which is executed on
this resource, will increment or decrement these counter accordingly. The DELAYprop-
erty specifies that the increment will be delayed for a specific time. Thus, between the
production and a possible consume of the items must be at least delay time units. If the
delay is not given for a resource, then it will be assumed to be zero. Each resource must
define some events, that are regarded as system calls. Each of these events is attached
a list of execution blocks. A task or any other execution block can execute these events.
An execution block can emit a signal() to any other resource or can execute a wait()
for a specified number of items on any resource. With these declarations the behaviour
in form of sequentially executing atomic blocks with an signal/wait mechanism can be
specified (see Section 6.8133).

When the resource is specified to be a task, then the EXECUTESproperties are allowed to
be specified. These properties of a task define when a task calss which system call. In fact,
the system call must be the name of an event, which is executed on a specific resource.
Additionally, the name of the event is assumed to be a primitive of the Universal Service
Graph (USG), which is required by the task.

The communication between two tasks has to be modelled in the following way: The
sender task has to call a SENDevent. The receiver task has to call a RECEIVEevent. Both
Events are marked by specific keywords and are identified by a number. For the routing
a connection, respectively an in/out-dependency between two tasks will be defined by a
COMLINEdeclaration:

COMLINE(comName)
SENDTASK(name1,num 1)
RECVTASK(name2,num 2)
PACKET(name3)

ENDCOMLINE

This declaration defines that task name1 sends the message name3 to the receiving task
name2. Hereby, the numth

1 send event of the sender task and the numth
2 receive event

of the receiver task will be used. The period of this connection or the minimal message
interarrival time is specified by the minimum of the sender’s and receiver’s period.
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Last but not least, for the routing the placement of the tasks onto the CPUs must be
specified. This is done by a PLACEdeclaration:

PLACE
RESOURCE(resourceName)
CPU(CpuResourceName)
[ FILE(filename) ]*

ENDPLACE

Each task must be placed on a CPU. Optionally, some file names can be specified, which
identify the source files that define the task’s source code. These will be used for the
generation of the Makefiles for each CPU.
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