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KAPITEL 1

Einleitung

1.1 Biologische Sehsysteme

Das Sehen ist fiir den Menschen eine so alltdgliche F&higkeit, da wir uns gar
nicht oder nur selten tber die ihm zugrunde liegende Komplexitat der neurona-
len Verschaltungen und Prozesse bewul3t werden. Aber ,,unsere Intuition sagt uns,
daB das Gehirn kompliziert sein muR. Wir tun komplizierte Dinge, und das in enor-
mer Vielfalt“ [Hub90]. Mittlerweile weil3 man auch, dal das menschliche Gehirn
in der Tat etwa 102 (Billionen) Nervenzellen besitzt, die auf geschickte Weise
durch 1014 ...10'® Verbindungen miteinander gekoppelt sind. Dieses Wissen ist
das Ergebnis jahrzehntelanger neurophysiologischer Forschung — getrieben von
dem Wunsch die Funktionsweise des menschlichen Sehsystems zu verstehen oder
zumindest ansatzweise erklaren zu kdénnen. So mul3 auch der Nobelpreistrager
DAvID HUBEL zugeben, dal} seine starkste Motivation ,,... die reine Neugier auf
die Arbeitsweise der kompliziertesten Struktur ist, die wir kennen* [Hub90]. Aber
nicht nur das reine Erlangen von Erkenntnissen (ber die Funktionsweise unseres
Gehirns, sondern auch die Moglichkeiten fur Mediziner und Biologen, neurologi-
sche und psychiatrische Krankheiten zu heilen oder zu verhuten, ist (iberzeugen-
der Motor neurologischer Studien. Damit ist die Erforschung des menschlichen
Gehirns sicher eine der ehrgeizigsten Bestrebungen seit jeher und scheint nichts
von seiner Faszination zu verlieren.

Trotz der erwéhnten Komplexitat ist zumindest das visuelle System hoher ent-
wickelter Sdugetiere einer der am besten verstandenen Teile des Gehirns. Hier
kommt der Wissenschaft entgegen, dal? auf das Auge projizierte Lichtreize be-
stimmte Antwortaktivitaten in gewissen Hirnbereichen hervorrufen. Werden die-
se meftechnisch erfaldt, so kdnnen daraus funktionale Zusammenhénge Gber den
Aufbau der neuronalen Verschaltung abgeleitet werden. Modellierungen der vi-
suellen Verarbeitung scheinen daher recht erfolgversprechend. Das menschliche
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2 Kapitel 1 Einleitung

Sehsystem ist zudem offensichtlich in der Lage, relevante Informationen auf du-
Rerst effiziente Weise aus natlrlichen Szenen zu extrahieren, um hiermit eine ro-
buste Reprasentation und Objekterkennung durchzufihren. Die Kenntnisse (ber
neuronale Verarbeitungsstrukturen sind daher, wie sich vielfach gezeigt hat, auch
flr technische Sehsysteme von grolRem Interesse. Biologisch motivierte Methoden
spielen daher zunehmend eine bedeutende Rolle in der industriellen Bildverarbei-
tung [EPdRHO2]. Das ehrgeizige Ziel ist, zumindest Teile der biologischen Me-
chanismen zu beschreiben und fir technische Bilderkennungsaufgaben nutzbar
zu machen. Daruber hinaus kdnnen solche Modellierungen und deren Simulation
auf leistungsfahiger Hardware auch dazu beitragen, biologische Abl&ufe besser
zu verstehen.

1.2 Robuste Bildverarbeitung

Die klassische Bildverarbeitung ist Gegenstand der benachbarten Disziplinen Ma-
thematik, Informatik und der Ingenieurwissenschaften, wobei die Schwerpunk-
te und die Terminologie unter Umstdnden verschieden sein kénnen. Hierbei ist
der Zweck vieler bisheriger und aktueller Forschungsaufgaben die effiziente und
effektive Verarbeitung von Kameradaten einer betrachteten Szene fur die unter-
schiedlichsten Anwendungsgebiete. So ist die robuste Extraktion von Objekt-
merkmalen in einer betrachteten Bildszene, insbesondere Linien- und Konturin-
formationen, offenbar stets ein wichtiges Thema vieler Forschungsgruppen. Denn
nur durch solche robusten Merkmale einer komplexen Szene sind ehrgeizige Sy-
steme realisierbar, welche z. B. durch eine automatische Objekterkennung einer
Maschine eine begrenzten visuelle Wahrnehmung verleihen. Ein Beispiel sei hier
das in der Arbeitsgruppe HARTMANN entwickelte, visuell gesteuerte Robotersy-
stem zur automatisierten Demontage von Altautos [STDH98, GDH98]. So steht
auch in dieser Arbeit die robuste Extraktion von Konturmerkmalen im \order-
grund.

Ein Verfahren soll hier robust genannt werden, wenn es unempfindlich gegen-
uber daufleren Veranderungen oder Storeinfliissen ist, wie z. B. einer schlechten
Beleuchtung und dem damit verbundenen Bildrauschen. Verwendet z.B. eine au-
tomatische Objekterkennung die extrahierten Objektkonturen aus einer Bildszene,
so ist meist die Objekterkennung selbst nur robust, wenn die Konturen ebenfalls
robust extrahiert wurden. Fur die Gewinnung stabiler Objektkonturen ben6tigt
man folglich die unverzichtbare Vorverarbeitung, welche die Bilddaten von evtl.
Stoérungen im Vorfeld bereinigt. Erst durch diese Malinahmen kdnnen robuste in-
telligente Systeme entwickelt werden. Exemplarisch sei an dieser Stelle die Un-
terdriickung bzw. Minderung von Stérungen bei bildgebenden Verfahren fir die
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medizinische Diagnostik genannt. Hier erfolgt nicht unbedingt eine automatisierte
Auswertung der Daten durch einen Computer. Der Mediziner wird hier die Dia-
gnose stellen. Allerdings kann es dennoch nitzlich sein, die Bilddaten zuvor vom
Computer aufbereiten zu lassen und in einer verbesserten Qualitat dem Mediziner
fir die weitere Auswertung zur Verfligung zu stellen. Die Erforschung und die
Entwicklung neuer Verfahren zur Rauschunterdriickung scheint daher stets ein
aktuelles Thema zu sein.

Die Entwicklung leistungsféhiger Algorithmen fir die Bildverarbeitung erfordert
aber i.d. R. ein solides theoretisches Fundament, welches durch die (Bild-) Si-
gnalverarbeitung geschaffen wird. Durch diese meist theoretische Beschreibung
der zu manipulierenden Bilddaten und den gewtinschten Funktionen kénnen dann
z. B. sogenannte Operatoren oder Digitalfilter entwickelt werden, die auf Stan-
dardrechnern eingesetzt werden kdnnen. Als Werkzeug in der Bildverarbeitung ist
eine detaillierte Kenntnis iber den theoretischen Hintergrund oft nicht mehr not-
wendig. Neben der klassischen Signalverarbeitung konnte sich auch die Theorie
der neuronalen Netze, deren Urspriinge in der Informatik liegen, fur den Einsatz
in der Bildverarbeitung durchaus etablieren. Man erhofft sich hierdurch, wie oben
erwéhnt, wichtige vorteilhafte Eigenschaften und Strukturen des tiberlegenen bio-
logischen Vorbildes nutzbar machen zu kénnen. Somit ist sowohl mittels der Di-
gitalfilter einerseits als auch mittels neuronaler Netze andererseits eine Verarbei-
tung von Bilddaten moglich. Die Verwandtschaft dieser beiden Herangehenswei-
sen verdeutlicht das folgende Kapitel, in dem die Analogie zwischen bestimmten
Digitalfiltern und kiinstlichen neuronalen Netzen aufgezeigt wird. Daraus kénnen
sich Vorteile bei der Entwicklung neuronaler Netze ergeben, wenn man diese z.B.
als Digitalfilter interpretiert. So wird im Rahmen der Arbeit konsequent sowohl
die systemtheoretische als auch die neuronale Terminologie parallel verwendet,
um jeweils die Vorteile beider Betrachtungsweisen auszunutzen.

1.3 Ziel der Arbeit

Ziel der Arbeit ist eine systemtheoretische Beschreibung fundamentaler Verar-
beitungspfade hoher entwickelter biologischer Sehsysteme. Hier scheint es sehr
attraktiv und lehrreich, Hypothesen zu biologischen Strukturen systemtheoretisch
zu modellieren und vorteilhafte Strukturen in geeigneter Form technisch umzu-
setzen. Diese konnen dann einen Beitrag zum Verstdndnis der neurologischen
Mechanismen liefern oder als Grundlage fiir neurophysiologische Simulationen
und Experimente dienen, wobei die positiven Eigenschaften des biologischen Vor-
bildes hinsichtlich der Extraktion von orientierten Konturmerkmalen aufgezeigt
werden. Da die Photorezeptoren des menschlichen Auges im Bereich des scharf-
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sten Sehens eine hexagonale Anordnung aufweisen, wie in [Yel81] gezeigt, bil-
det solch ein hexagonales Abtastraster die grundlegende Basis fur die dargestell-
ten Betrachtungen. Diese Form der Signalabtastung liefert eine Giberlegene Sym-
metrie, eine einfache, wohl definierte Nachbarschaftsbeziehung und eine Daten-
reduktion im Vergleich zu einer gewohnlichen Repréasentation unter Einhaltung
des Abtasttheorems von SHANNON. Des weiteren werden aus der biologischen
Modellierung Algorithmen fir technische Bildverarbeitungssysteme und fir ei-
ne Spezialhardware, die der Simulation grof3er neuronaler Netze dient, abgeleitet.
Um robuste Merkmale aus den Bilddaten zu extrahieren, werden schlieRlich Me-
chanismen untersucht, die eine adaptive Rauschunterdriickung ermdglichen.

1.4 Gliederung und Abgrenzung

In Kapitel 2 folgen zunéchst die systemtheoretischen Grundlagen fir eine allge-
mein mehrdimensionale Signalverarbeitung, soweit sie fur das Verstandnis der
Ausfiihrungen notwendig sind. Ein Abschnitt widmet sich insbesondere der he-
xagonalen Abtastung und Verarbeitung, da dies die wesentliche Eigenschaft al-
ler entwickelten Strukturen und Algorithmen dieser Arbeit ist. Darauf werden
die neurophysiologischen Zusammenhénge und die formale Analogie zwischen
klnstlichen neuronalen Netzen und Digitalfiltern bzgl. der Ortskoordinaten der
Bilddaten beschrieben.

Das Kapitel 3 stellt ein massiv paralleles Modell der friihen visuellen Verarbeitung
im menschlichen Sehsystem vor, welches orientierte Konturmerkmale in einem
Bild extrahiert. Das beschriebene Modell stellt eine Hypothese auf, welches zu
erklaren vermag, wie die Zellen in der Netzhaut (Retina) und in der GroRhirnrinde
(Cortex), moglicherweise in einer kaskadierten Struktur von Neuronenschichten
organisiert sein konnten. Darlber hinaus werden die Vorteile der Architektur fur
biologische und technische Sehsysteme herausgearbeitet.

Existierende Ansétze fir ahnliche Zielsetzungen betrachten meist nur sehr ein-
geschrankte Bereiche, wie z.B. die Retina, oder sind nicht systemtheoretisch fun-
diert. Unter diesen sei die recht detaillierte Abhandlung tber die Netzhaut des Pri-
maten [SL96a, SL96Db] hervorzuheben, welche sowohl drtliche Filtercharakteristi-
ka als auch das zeitliche Verhalten bertcksichtigt. Einige grundlegende Ideen wur-
den hieraus fur die vorliegende Arbeit tibernommen, um eine neue Hypothese der
biologischen Signalverarbeitung von der Abtastung durch die Rezeptoren bis hin
zu den Verknipfungsschemata im visuellen Cortex aufzubauen. Im Unterschied
zu anderen retinalen Modellen wird hierbei ein hexagonales Abtastraster der Pho-
torezeptoren auf der Netzhaut biologisch und signaltheoretisch motiviert, welches
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somit ein wesentliches Merkmal der vorliegenden Arbeit darstellt. Die Verbin-
dungsgewichte der retinalen Neuronenstruktur werden dann anhand von neuro-
physiologischen Fakten durch ein Approximationsproblem gefunden. Fir die Zu-
sammenhéange in der Grol3hirnrinde werden im wesentlichen die anerkannten For-
schungsarbeiten von POLLEN und RONNER [PR81, PR82, PR83] zugrunde ge-
legt, welche die Existenz sogenannter simpler Zellen im priméaren visuellen Cortex
nachgewiesen haben. Die rezeptiven Felder dieser Neuronen kdnnen naherungs-
weise durch GABOR-Funktionen [Gab46] beschrieben werden und weisen ein si-
gnifikantes Antwortverhalten auf orientierte Linien oder Kanten auf (siehe auch
[Dau80, Mar80, KMB82, JP87]). Aus diesen Erkenntnissen heraus hat sich eine
neue Klasse der Digitalfilter, die GABOR-Filter, etabliert, deren Vorteile fir viele
Bildverarbeitungsaufgaben genutzt werden. Die Realisierungen bei technischen
Systemen, wie z.B. [Tra98, LVB*93, WFKvdM97, Wis97, Bie87, SvdM97], fin-
den allerdings weder auf einem hexagonalen Abtastschema, noch in Verbindung
mit neuronalen Vorverarbeitungsstufen, wie sie in der Retina zu finden sind, statt.

Die theoretisch fundierte Arbeit von SABATINI [Sab96] sollte in diesem Zusam-
menhang nicht ungenannt bleiben, in der ein Modell simpler Neuronen auf der
Basis interkortikaler inhibitorischer Kopplungen vorgestellt wird. Die rezeptiven
Felder von Neuronen im seitlichen Kniehdcker (Corpus geniculatum laterale) sind
hier allerdings der Einfachheit halber orientiert gaul’férmig ausgepréagt. Es ent-
steht eine rekursiv gekoppelte Struktur simpler Neuronen, deren sich ergebenden
rezeptiven Felder - je nach Umgebungseinflu} - den zweidimensionalen orien-
tierungsselektiven GABOR-Funktionen sehr &hnlich sein kénnen. Im Gegensatz
zu einer realitatsnahen biologischen Modellierung zeigt die Studie vielmehr auf,
welche rezeptiven Felder simpler Zellen mit der Hilfe interkortikaler Einfllisse
entstehen kénnen, wobei ein gaboréhnliches Verhalten als Sonderfall betrachtet
werden kann. Hier bleibt aber die berechtigte Frage offen, ob dieses Ergebnis
immer noch gultig ist, wenn die rezeptiven Felder der Neuronen im seitlichen
Kniehdcker Zentrum-Umfeld-Charakter haben, wie es bei den Gangliensignalen
tatséchlich der Fall ist. Dennoch er6ffnen die Betrachtungen rekursiver Strukturen
neue Mdoglichkeiten, die es noch im Detail zu erforschen gilt. Die Interpretation
als rekursive Digitalfilter kdnnen sicher auch hier hilfreich und ratsam sein.

In Kapitel 4 wird gezeigt, wie das zuvor entwickelte visuelle neuronale Netz-
werk soweit erweitert werden kann, dal3 ab den Gangliensignalen in der Retina
eine pulscodierte Verarbeitung stattfindet. Damit gewinnt die Modellierung wei-
ter an Biologienédhe. Die Informationsverarbeitung bis zu den Ganglienzellen ist
meist durch kontinuierliche Signale modelliert, die die Erregungen der Zelle re-
prasentieren. Jedoch wird die Verarbeitung im Gehirn nach den Ganglienzellen als
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pulscodiert angenommen. In einigen Untersuchungen konnte gezeigt werden, daf3
neben der Pulsrate dieser Signale auch insbesondere die Phaseninformation fur
visuelle Aufgaben genutzt wird [ERAD89, ERAD90]. Neuronen, welche ahnli-
che Merkmale reprasentieren wie z.B. eine kontinuierliche Linie in ihren rezepti-
ven Feldern, synchronisieren beispielsweise ihre Pulse. Dieser Mechanismus birgt
potentielle Vorteile fir viele Wahrnehmungsprozesse, wie der Objektsegmentati-
on. Wegen dieser Tatsache wird in diesem Kapitel das vorhandene Netzwerk zu
einem pulscodierten neuronalen Netzwerk ausgebaut. Die Ganglienzellen kon-
vertieren dabei ihre Aktivitat in eine Pulsrate und die simplen Zellen werden als
pulscodierte ECKHORN-Neuronen entworfen [ERAD89, ERAD90]. Die auf diese
Weise erzielte Kombination eines gaborahnlichen Verhaltens auf einem hexago-
nalen Abtastraster mit einer pulscodierten Informationsverarbeitung wurde eben-
falls auf einer Spezialhardwarearchitektur implementiert und simuliert. Die damit
verbundenen Ergebnisse und Erkenntnisse werden hier ebenfalls dargestelit.

Wie eingangs erwahnt, rufen variierende Beleuchtungsbedingungen meist Schwie-
rigkeiten hervor, wenn reale Szenen mit einem Digitalrechner verarbeitet werden
sollen. Besonders Rauschprozesse, die mit der Bildentstehung selbst einhergehen,
kdnnen bei dunklen Lichtverhéltnissen zu fehlerhaften Resultaten fiihren. Eine au-
tomatische Auswertung oder Interpretation des Bildinhaltes durch ein technisches
Sehsystem wird damit meist unmdglich. Das menschliche Sehsystem scheint je-
doch in der Lage zu sein, sich auf diese Veranderungen in der wahrgenomme-
nen Szene anzupassen und auf diese Weise die Qualitét aller Verarbeitungsschrit-
te zu gewahrleisten — es findet eine robuste Verarbeitung statt. Obwohl dieser
adaptive Vorverarbeitungsmechanismus in der Literatur vereinzelt erwéhnt wird
[SL96a, BC92], sind Untersuchungen oder technische Implementationen bisher
ausgeblieben. In Kapitel 5 wird daher eine biologisch motivierte Vorverarbei-
tungsstragie entwickelt, die sich an variierende Lichtverhéltnisse adaptiert und auf
diese Weise eine effektive Unterdriickung des Rauschens in Bilddaten erzielt. Wie
weiter gezeigt wird, ist erst mit diesem Ansatz eine robuste Extraktion von Kon-
turen moglich, die auch bei extrem dunklen und damit stark verrauschten Szenen
zum Erfolg flhrt. Auf diesen Erkenntnissen aufbauend wird die Erweiterung des
bisherigen Modells um diese adaptive Komponente untersucht und daraus eine
alternative kortikale Verknlipfungsarchitektur abgeleitet.

Die Leistungsféhigkeit der in dieser Arbeit vorgestellten biologienahen Struktu-
ren zur Bildvorverarbeitung wird in Kapitel 6 anhand realer Kameradaten demon-
striert. Der Schwerpunkt wird hier insbesondere auf die adaptive Vorfilterung mit
anschlieRender Konturextraktion gelegt.



KAPITEL 2

Mehrdimensionale Digitale
Signalverarbeitung

In diesem Kapitel wird zunéchst die Theorie mehrdimensionaler Signale und li-
nearer Systeme behandelt, soweit es fur das Verstdndnis der systemtheoretischen
Betrachtungen dieser Arbeit wichtig ist. Im spéteren Verlauf der Untersuchun-
gen wird ggf. an verschiedenen Stellen auf diesen Grundlagen aufgebaut und
die Thematik vertieft. Der Groliteil der Arbeit bedient sich dieser fundierten Be-
schreibungsmethode, um verschiedene Bilddaten oder biologische visuelle Reize
als ortsabhangige (ortsdiskrete) Signale auf beliebigen periodischen Abtastrastern
aufzufassen und mit Digitalfiltern zu verarbeiten. Die wesentlichen Begriffe der
nichtrekursiven und rekursiven mehrdimensionalen Digitalfilter mussen daher in
diesem Kapitel ebenfalls kurz formuliert werden.

Des weiteren wird in einem nachsten Abschnitt insbesondere die hexagonale Ab-
tastung eines zweidimensionalen (Bild-)Signals als das effizienteste periodische
Raster n&her betrachtet. Die mathematischen Zusammenhénge und die fur techni-
sche und biologische Bildverarbeitungssysteme wichtigen Vorziige werden dabei
herausgestellt. Ein Schwerpunkt bildet hier die Umrechnung auf solch ein he-
xagonales Abtastraster, da blicherweise die Bilddaten einer Kamera auf einem
rechtwinkligen Raster (z.B. eines CCD oder CMOS-Chips) vorliegen. Durch ex-
perimentelle Untersuchungen werden verschiedene Verfahren zur Umrechnung
vergleichend gegeniibergestelit.

Fur die wesentliche Zielsetzung dieser Arbeit, die systemtheoretische Beschrei-
bung biologischer Sehsysteme, sind abschlieRend die Grundlagen der neurophy-
siologischen Informationsverarbeitung zu erdrtern. Offensichtlich ist hier speziell
die visuelle Wahrnehmung des Menschen oder anderer hoher entwickelter Lebe-
wesen von grofiem Interesse. AuBerdem wird gezeigt, inwieweit kiinstliche neuro-

7
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nale Netze als Digitalfilter interpretiert werden kénnen, was fur die Modellierung
der biologischen Vorgange und Architekturen im Laufe dieser Arbeit wertvolle
\orteile bietet.

2.1 Mehrdimensionale Signale und Systeme

Zu betrachten sind hier zun4chst kontinuierliche Signale z.(t) des Ortes ¢ € IR?,
die mit Hilfe der ortskontinuierlichen FOURIER-Transformation

X, (w) = /_ h zo(t)e @'t gt (2.1)
zc(t) = 41? /_ 7 X (@) dw (2.2)

in der gewdhnlichen (Orts-)Frequenz w € IR? dargestellt werden kénnen?.

Erfolgt nun eine sogenannte periodische Abtastung des Signals in der Form?
z(k) = z.(Tk) mit k = [ki1ks]" € Z2, wobei hier T = [t1ts] € R?**? die
Abtastmatrix sei, so verwenden wir die ortsdiskrete FOURIER-Transformation

X(v) =Y a(k)e vk (2.3)
k
z(k) = 471r ' X('U)ej”Tk dv. (2.4)

Die Transformierte ist durch ihre Eigenschaft
X(v) = X(v+2mn) ,\Vn € 7* (2.5)

periodisch in der (normierten) Frequenz v = [v1v2]', S0 daR das Integrationsge-
biet fur die Rucktransformation z.B. zu —m < v12 < 7 gewahlt werden kann.
Wie in [DM84] nachgelesen werden kann, ist dann gemaf

X(v) = ZX (T "o — Qu) € T2 (2.6)

|det T

1Zur Abkiirzung sollen hier Mehrfachintegrale vielfach nur durch die Dimension der Integra-
tionsvariablen allein, z. B. durch ¢ bzw. w gekennzeichnet und auf die Symbolik [ [ verzichtet
werden, da die Betrachtungen meist nicht auf zweidimensionale Félle beschrénkt sind.

2Falls es aus dem Zusammenhang hervorgeht, kann der Index ,,c* zur Abkiirzung weggelassen
werden, auch wenn der Ausdruck ,,z(k) = =(Tk)" natlirlich mathematisch nicht korrekt ist.
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die Transformierte des abgetasteten Signals eine periodische Fortsetzung der Trans-
formierten des kontinuierlichen Signals. Hierbei ist die Beziehung zwischen der
gewohnlichen und der normierten Frequenz

v=T"w (2.7)

durch die Abtastmatrix T" gegeben. Die sogenannte Kreisfrequenzmatrix €2 ergibt
sich dabei zu

Q=27T"" ,Q = [wiws] € R?*2. (2.8)

Eine alternative Definition und ebenfalls gebréauchliche Form der diskreten Trans-
formation lautet

X(w) = Zx(k)e_ijTk, (2.9)
k
so dal sich hier die Zusammenhénge zu
. 1
X(w)=X(T'w) = X (w—-9Q 2.10
(w) = X(T"w) |detT|zM: (w — Q) (210)

ergeben.

In Abb. 2.1 ist die Verarbeitung eines kontinuierlichen Signals z.(¢t) mit Hil-
fe eines diskreten Systems und anschlieRender Interpolation dargestellt. Wir be-
schranken uns hier auf lineare und ortsinvariante (engl. shift invariant) Systeme
(LSI-Systeme), welche mit Hilfe einer Impulsantwort h(k) beschrieben werden
konnen und nennen diese Klasse von Systemen auch Digitalfilter.

zc(t) z(k) _ y(k) _ Ye(t)
Abtastung Verarbeitung Interpolation
— ™ T > h(k) — i) —

Abbildung 2.1: Digitale Verarbeitung eines kontinuierlichen Signals.

Die Verarbeitung entspricht dann einer diskreten Faltung des abgetasteten Signals
z(k) mit der Impulsantwort, also

y(k) = (k) «h(k) =Y z(n)h(k—n)=> x(k—mn)h(n). (211)

n n
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Die (diskrete) Transformation der Impulsantwort

H(v) =Y h(k)e ', (2.12)
k

die bei der Bestimmung des Ausgangssignals eine bedeutende Rolle spielt, nen-
nen wir Ubertragungsfunktion® des Systems, da mit ihrer Hilfe das Systemver-
halten im Frequenzbereich beschrieben wird. Bei einem Einsatz des Systems als
Digitalfilter kann mittels H (v) die Filtereigenschaft analysiert oder auch speziell
entworfen werden.

Hat das kontinuierliche Eingangssignal nun die spezielle Form z.(t) = eJw't 50
ergibt sich das diskrete Ausgangssignal zu

y(k) = H(T w)z(k) = H(T w)e/* Tk (2.13)
bzw. mit entsprechender Interpolation das kontinuierliche Ausgangssignal
ye(t) = H(T w)zo(t) = H(T w)el®'t. (2.14)

Aus diesem Grund werden Signale dieser Form auch Eigenfunktionen linearer
ortsinvarianter Systeme genannt. Ein beliebiges Eingangssignal fiihrt dann zu dem
diskreten Ausgangssignal

1 m
- 4m?

y(k) H(v)X (v)e’'* do, (2.15)

so daf sich die Transformation des Ausgangssignals als
Y (v) = H(v)X (v) (2.16)
bzw. mit (2.7) als
Yo(w) = H(T'w)X,(w) (2.17)

schreiben laft.

Neben der eingeftihrten FOURIER-Transformation spielt die (hier zweidimensio-
nale) z-Transformation

X (21, 20) =3 b, ko)27 M2 22 €C kg e (2.18)
k1 ko

3Streng genommen handelt es sich um den Frequenzgang des Systems.
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bei der Beschreibung diskreter Signale und insbesondere diskreter Systeme eine
wichtige Rolle. Die z-Transformierte der Impulsantwort

H[Z] (21, Z2) = Z Z h(kl, k‘g)zl_kl ZQ_kZ ,21,2 € C (2.19)
k1 ko

bezeichnet man als z-Ubertragungsfunktion und wird fiir den Filterentwurf und
fur Stabilitatsbetrachtungen herangezogen, wie im ndchsten Abschnitt deutlich
wird. Zwischen der z-Ubertragungsfunktion und der Ubertragungsfunktion in der
normierten Frequenzvariablen v = [Ul’ljg]T gilt der Zusammenhang

H(vy,v9) = HIF (eI eI2) (2.20)
=3 ) h(ky, ky)e Irkremiveke, (2.21)
k1 ko

wobei das komplexe Argument z; auf dem Einheitskreis ausgewertet wird. Durch
die Beziehung v = v(w) = T "w l4Rt sich die Ubertragungsfunktion auch in der
gewdhnlichen Frequenz ausdriicken

H(wy,wy) = HE(e71 (@) eiv2(w)y (2.22)
=3 h(ky, kp)e i@k gmivalwlha (2.23)
ki ks

welche sich bei einer rechtwinkligen Abtastung (siehe Abschnitt 2.2)

T = [:OF ,ﬂ (2.24)
ZU
H(wi,ws) = HE(edn T giwsT) (2.25)
=Y > h(ky, kp)e I Th i The, (2.26)
k1 k2

vereinfacht.

In diesem Zusammenhang sollte erwédhnt werden, daB die z-Transformation selbst
losgel®st von dem gewahlten Abtastraster gesehen werden kann. So erfordern z.B.
Stabilitatsbetrachtungen nicht die Kenntnis des Rasters. Erst bei der Interpretati-
on als Ubertragungssystem wirkt sich die Abtastmatrix auf das Verhalten im Fre-
guenzbereich aus. In den folgenden Abschnitten wird der Zusammenhang der z-
Ubertragungsfunktion und dem Berechnungsalgorithmus eines diskreten Systems
hergestellt.
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2.1.1 Nichtrekursive Digitalfilter

Nichtrekursive diskrete Systeme oder nichtrekursive Digitalfilter sind in der Di-
gitalen Signalverarbeitung weit verbreitet, da sie einfach zu implementieren sind
und stets einen stabilen Algorithmus aufweisen. Da Kausalitat in der Bildverar-
beitung keine Bedeutung hat, wird hier der allgemeinere Fall der nichtkausalen
Systeme betrachtet. Ein eindimensionales Ubertragungssystem 4Bt sich als soge-
nannte Differenzengleichung
N
y(k) = Y auz(k —p) (2.27)
p=—N

angeben, bei der das Ausgangssignal y(k) lediglich von bestimmten mit reellen
Filterkoeffizienten a,, gewichteten Eingangswerten xz(k), aber nicht von anderen
Ausgangswerten selber abhangt. Der Ubersichtlichkeit wegen seien hier die un-
tere und obere Grenze des Summenindex symmetrisch zu —N bzw. N gewdhlt.
Die direkte Realisierung dieser Differenzengleichung fuhrt auf einen Algorithmus
mit dem gewdinschten Verhalten. Die Realisierungen alternativer Filterstrukturen
mit dem selben Filterverhalten kdnnen aber durchaus fir verschiedene Einsatzge-
biete, wie z. B. fur die Implementierung mit begrenzten Wortlangen der Signale
und Koeffizienten Vorteile aufweisen [Fet86]. Die z-Ubertragungsfunktion kann
durch z-Transformation der Differenzengleichung mittels der Eigenschaften die-
ser Transformation direkt berechnet werden und lautet

N
HAR) = Y apz* ,z € C. (2.28)
p=—N
Die Ubertragungsfunktion in der normierten Frequenzvariablen v kann mit
H(v) = HF(e") = Y aye i (2.29)
p=—N

direkt aus der z-Ubertragungsfunktion gewonnen werden. Hieraus ist ablesbar,
dal h(k) = ag gilt, d.h. die Filterkoeffizienten stellen die endliche Impulsantwort
dar. Daher wird fur diese Klasse der Digitalfilter auch oft die Bezeichnung FIR
Filter (finite impulse response) verwendet.

Im zweidimensionalen Fall kann das Ausgangssignal ebenfalls durch eine Diffe-
renzengleichung

N1 N>

ykika) = D Y aume(ki—pike —p2)  (230)
p1=—Ni po=—N>
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berechnet und das Verhalten im Frequenzbereich durch die zweidimensionale z-
Ubertragungstransformation

Ny Na
H (21, 22) = Z Z ammzl_’“z;“z ,212 € C (2.31)
p1=—N1 p2=—Ns

charakterisiert werden. In der Bildsignalverarbeitung wird fiir die gespiegelte Ver-
sion der zweidimensionalen Impulsantwort h(k1, k2) = ak, , Ublicherweise der
Begriff Faltungsmaske oder Faltungskern verwendet und wie das Bildsignal als
Matrix formuliert.

Flr den besonderen Fall einer separierbaren Impulsantwort gilt a,,, ., = a,, au,,
und die Matrix 188t sich als dyadisches Produkt schreiben. Hieraus folgt weiter

N, No
y(ky, ko) = Y ap Ay, m (k1 — pa, Ky — pa) (2.32)
p1=—N1 . po=—No )
§(k1 — p1, k2)
N1
= Z au, Gk — p1, ke), (2.33)
p1=—N1

d.h. die beiden Faltungssummen kdnnen hintereinander (in beliebiger Reihenfol-
ge) getrennt voneinander ausgefiihrt werden. In diesem Fall 148t sich die zwei-
dimensionale Filterung auf zwei nacheinander ausgefiihrte eindimensionale Fil-
terungen in den beiden Koordinatenrichtungen reduzieren. Hierdurch wird zwar
die Menge aller realisierbaren Ubertragungsfunktionen eingeschrénkt, der Ent-
wurfsprozel des Filters vereinfacht sich aber enorm, da mit

N1 N2
HP(21, 29) = Z ap 21 Z auy 25 (2.34)
p1=—N1 poa=—Nao
= HA(21) - H (2) (2.35)

der Entwurf ebenso auf zwei eindimensionale z-Ubertragungsfunktionen redu-
ziert wird.

2.1.2 Rekursive Digitalfilter

Bei einem rekursiven Digitalfilter werden neben den Eingangswerten x(k) auch
Ausgangswerte bendtigt, um das Ausgangssignal zu bestimmen. Die Differenzen-
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gleichung eines kausalen rekursiven Digitalfilters lautet
N M
y(k) =Y auz(k—p) = > by(k—v), (2.36)
pn=0 v=1

und die z-Ubertragungsfunktion entsprechend

N N
Z a,z Z a,z
H[z] (Z) _ p=0 _ p=0

o M M
1+ Z b,z7" Z b,z "
v=1 v=0

Da die rekursiven Digitalfilter meist eine unendlich lange Impulsantwort besitzen,
nennt man sie auch IIR Filter (infinite impulse response). Obwohl dies aber nicht
unbedingt der Fall sein mul3, wird diese Bezeichnung in der Literatur vielfach
verwendet.

mit bo := 1. (2.37)

Damit der rekursive Filteralgorithmus bzw. das Digitalfilter stabil ist, miissen die
Pole von HZl im Einheitskreis liegen. Dies kann insbesondere bei einer Direkt-
realisierung der Differenzengleichung auf einem Digitalrechner nicht immer ge-
wahrleistet werden. Zudem kdnnen die nichtlinearen Rundungsoperationen, die
mit den begrenzten Signalwortldngen einhergehen, zu einem instabilen Verhal-
ten fuhren. Hierflr bieten sich dann alternative Filterstrukturen an, deren Vorziige
vielfach in der Literatur diskutiert sind [Fet86, Gaz85] und die es ermdglichen,
stabile rekursive Digitalfilter zu implementieren.

Fur die Realisierung eines in der Bildverarbeitung oft gewiinschten nichtkausa-
len Filters kann z. B. die Hintereinanderschaltung (Kaskade) eines kausalen und
eines antikausalen Filters verwendet werden, wobei die Filterrichtung bei dem
antikausalen Filter gedreht ist. In [vVYV98] ist ein Filterentwurf fur sogenann-
te Gaultiefpalfilter gezeigt, welcher im Rahmen dieser Arbeit auch Verwendung
findet (siehe Kapitel 5 und Kapitel 6).

Der Einsatz rekursiver Digitalfilter ist nattirlich auch fiir die Bildverarbeitung von
grolRem Interesse, da hiermit im Vergleich zu den FIR Filtern unter Umsténden
wesentlich weniger Aufwand fir die Signalverarbeitung notwendig ist. Die Stabi-
litdt zweidimensionaler rekursiver Systeme zu gewéhrleisten, erfordert allerdings
I.allg. viel mehr Muhe als bei eindimensionalen Systemen. Der Fundamentalsatz
der Algebra z.B. besagt, daB ein Polynom vom Grad N (der Nenner der Ubertra-
gungsfunktion) in N Polynome vom Grad eins faktorisiert werden kann, so daf3
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jede Singularitat von H'!#(z) isoliert betrachtet werden kann. Fiir mehrdimen-
sionale Polynome existiert aber kein solches Theorem, und daher ist hier selten
eine Faktorisierung maoglich, es sei denn die Ubertragungsfunktion wird bereits
bei dem Entwurf entsprechend konstruiert. Gleichwohl kénnen wie im eindimen-
sionalen Fall auch bei zweidimensionalen Systemen Kriterien fiir einen Stabili-
tatstest aufgestellt werden [DM84], was fir den Filterentwurf entsprechend be-
riicksichtigt werden muR. Weitere Besonderheiten eines mehrdimensionalen Fil-
terentwurfes, wie die rekursive Berechenbarkeit und die Bedeutung der Anfangs-
werte des Randbereiches, sollen hier erwéahnt werden, sind aber fiir den Rahmen
dieser Arbeit nicht relevant (siehe dazu z. B. [DM84, Lim90, Wah80, Wah89]).
Die Aufgaben konnten ndmlich auf separierbare Impulsantworten und damit auf
die Realisierung eindimensionaler rekursiver Filter reduziert werden. Sind diese
nichtkausal realisiert, so werden auf diese Weise auch nichtkausale zweidimen-
sionale rekursive Filter moglich.

2.2 Abtastung zweidimensionaler Signale

In der Bildverarbeitung wird meist eine rechtwinklige Abtastung vorgenommen,
d.h. die Abtastmatrix hat z.B. die vereinfachte Form

|7 ©
T, = [ 0 Tr] : (2.38)
Hieraus resultiert nach (2.8) eine Kreisfrequenzmatrix
0 - ezl = 7 (2:39)
r — O %_7: 9 w1,2 — TT-’ .

die die Periodizitat der Transformierten festlegt. Im allgemeinen kann die Periode
in den beiden Dimensionen sogar unterschiedlich sein. Wir wollen uns aber hier
auf den obigen Spezialfall beschranken.

Als vorteilhafte Alternative zur rechtwinkligen Abtastung betrachten und verwen-
den wir hier allerdings die sogenannte hexagonale Abtastung mit

T}, 1},
T, = 2.4
" |:Th\/§ _Th\/§:| (2.40)
bzw.
T o T )
Q= | o Nwigl = +—=. (2.41)
T3 Ty 3] Th V3
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Es kann gezeigt werden, dal} die hexagonale Abtastung die aufwandsgunstigste
periodische Abtastmethode ist, wenn die Transformierte des kontinuierlichen Si-
gnals, welches abgetastet werden soll, kreisformig bandbegrenzt ist. Durch die
Tatsache, daB i.allg. die Optik des bildgebenden Systems, sei es das Kameraob-
jektiv oder die Optik des Auges (siehe auch Kapitel 3) ein rotationssymmetrisches
TiefpaBverhalten aufweist, ist das resultierende Spektrum der Bildszene in guter
Né&herung kreisférmig bandbegrenzt. Ein hexagonales Abtastraster bietet sich da-
her i.d.R. immer an.

Um die Effizienz einer hexagonalen Abtastung unter diesen Bedingungen zu ver-
deutlichen, betrachten wir Abb. 2.2, in der die diskrete FOURIER-Transformation
jeweils fur die rechtwinklige und hexagonale Abtastung skizziert ist. Die durch
den Abtastvorgang periodische Fortsetzung des kreisformig begrenzten Frequenz-
spektrums (w1,2max = 7/T}) eines kontinuierlichen Signals X (w) ist dabei an-
gedeutet. Hieraus ist erkennbar, dal} bei einer hexagonalen Abtastung die kreis-
formigen Spektren eine dichtere Anordnung ergeben kdnnen ohne sich zu (ber-
schneiden, was fir die Rekonstruktion des kontinuierlichen Signals von Bedeu-
tung ist. Hieraus resultiert aber, dal? die einzelnen Abtastwerte weiter auseinan-
der liegen, d. h. man benétigt weniger Abtastwerte, um dasselbe kontinuierliche
Signal zu représentieren. In [DM84] ist nachzulesen, dal bei einer hexagonalen
Abtastung 13.4% weniger Abtastwerte anfallen, als bei einer rechtwinkligen Ab-
tastung, man also einen geringeren Speicheraufwand betreiben muf. Da aber diese
Daten auch verarbeitet werden mussen, ergeben sich auch deutlich weniger Re-
chenoperationen. Bei der Faltungssumme (2.11) sind z.B. etwa 25% weniger Ad-
ditionen und Multiplikationen auszuftihren, was zu einer beachtlichen Reduktion
der Berechnungsdauer fiihren kann. Die wesentlichen Vorteile einer hexagonalen
Abtastung kénnen wie folgt zusammengefal3t werden:

weniger Bilddaten nach SHANNON (= 13.4%)

weniger Berechnungsaufwand bei der Signalverarbeitung (=~ 25%)

Filterantworten weisen hohere Rotationssymmetrie auf

jedes Pixel besitzt 6 eindeutige néchste Nachbarn

Hier sollte betont werden, daR die Signalbeschreibung und der Filterentwurf auf
hexagonalem Abtastraster, und zudem auch die Verwaltung der Daten in Digi-
talrechnern (hier ist alles auf matrizenformige Strukturen zugeschnitten) i. allg.
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Abbildung 2.2: Periodizitat der diskreten FOURIER-Transformation bei einer
rechtwinkligen und hexagonalen Abtastung

weitaus komplizierter ist im Vergleich zu dem gewdhnlichen rechtwinkligen Ra-
ster. Zusatzlich stehen die Bilddaten der Kamera i.d.R. nicht auf einem hexago-
nalen Abtastraster zur Verfligung, so dal eine einmalige Umrechnung notwen-
dig ist. Dennoch ist dieses vorteilhafte hexagonale Abtastraster als Strategie in
der Bildverarbeitung fur spezielle technische Ldsungen zu finden, wie z. B. in
[HDD*94, MDH94, FG96, Sta96, Sta89, GF]. Zudem hat sich das hexagonale
Abtastraster, wie im spéteren Verlauf dieser Arbeit noch beschrieben wird, im
biologischen Sehsystem hdher entwickelter Lebewesen, aber auch bei Insekten
im Laufe der Evolution etabliert. So macht sich das biologische Vorbild die o.g.
\orteile dieser Form der Signalreprésentation und Signalverarbeitung effizient zu-
nutze. Um die mathematischen Details mul} es sich dabei nicht kimmern.

Ist nun das kontinuierliche Signal mit
X(w)=0 V|w|®=w]+ws>w] (2.42)

kreisformig bandbegrenzt, was bei den meisten bildgebenden Verfahren nahe-
rungsweise erflllt ist, so fordert das Abtasttheorem von SHANNON, daf

|wi,2]l > 2w, (2.43)
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gilt und somit auch

™

T < — bei einer rechtwinkligen Abtastung bzw. (2.44)
Wo

Ty, < " bei einer hexagonalen Abtastung. (2.45)
\/gwg

In der Literatur ist oft ein pseudohexagonales Abtastraster (auch oft Quincunx-
oder Zeilensprungraster genannt) [Ohm99, HY94] anzutreffen, bei dem mit

[T T,
r- |7 )

die Daten durch direkte Abtastung des rechtwinkligen Rasters gewonnen werden.
Da die neuen Rasterorte auf dem urspriinglichen rechtwinkligen Raster liegen,
entfallt eine aufwendige Interpolation. Diese Methode besticht damit durch seine
sehr einfache Implementation und damit sehr niedrigem Berechnungsaufwand.
Wie aus der Kreisfrequenzmatrix

(2.46)

i iy
a,- |7 % | Dl =VEE @47
T Ty T

ersichtlich ist, mussen allerdings mit hoher Wahrscheinlichkeit groRe Aliasing-
fehler in Kauf genommen werden, was sich auch durch experimentelle Ergebnis-
se bestatigt (siehe Abb. 2.5 und Tabelle 2.1). Eine vorherige Tiefpal3filterung des
rechtwinklig abgetasteten Signals ist dabei wenigstens vorzuschlagen. Die Sym-
metrieeigenschaften und die vorteilhafte Nachbarschaftsbeziehung des hexagona-
len Abtastrasters kénnen jedoch auch dann nicht erzielt werden.

2.2.1 Umrechnung auf ein hexagonales Abtastraster

Herkémmliche bildgebende Verfahren, wie z. B. CCD-Sensoren, liefern i.d. R.
Bildsignale auf einem rechtwinkligen Abtastraster. Deshalb soll an dieser Stel-
le eine genauere Untersuchung und ein Vergleich einiger Methoden zur Umrech-
nung zwischen rechtwinklig und hexagonal abgetasteten Bildern gegeben werden,
wobei diverse Gesichtspunkte, wie Effizienz, Berechnungsaufwand und Umrech-
nungsfehler berticksichtigt werden.

Die einfachste hier betrachtete Methode, ein hexagonaldhnliches Bildsignal zu
erzeugen, ist die Verwendung eines pseudohexagonalen Rasters. Wie in Abb. 2.3
(links) zu erkennen, liegen die gesuchten Abtastorte auf dem urspriinglichen recht-
winkligen Raster. So kdnnen durch ein lineares Mapping direkt die gesuchten he-
xagonalen Bilddaten angegeben werden. Wie sich in diesem Abschnitt aber zeigt,
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muf fir die Einfachheit und Schnelligkeit des Verfahrens aber auch ein beachtli-
cher Umrechnungsfehler in Kauf genommen werden. In [HY94] ist die Umrech-
nung fur ein &hnliches Raster beschrieben, bei dem aber immer zwei benachbarte
Pixel des rechtwinkligen Raster zu einem Wert des hexagonalen Rasters kom-
biniert werden. Dieses hexagonale Raster selber entsteht durch Verschieben jeder
zweiten Spalte oder Zeile. Die Verrechnung zweier benachbarter Pixel kann als ei-
ne einfache TiefpafBfilterung (Interpolation) interpretiert werden. Allerdings sind
die Ergebnisse der betrachteten Interpolationsarten hier nur qualitativ gegenuber-
gestellt.

Unter Zuhilfenahme des Abtasttheorems von SHANNON kann aber auch die Frage
geklart werden, welche Abtastperioden fur eine korrekte Umrechnung hdchstens
notwendig wéren, um das kontinuierliche Bildsignal fehlerfrei zu reprasentieren.
Da das Spektrum des kontinuierlichen Signals a priori nicht bekannt ist und ja
auch von der betrachteten Szene abhéngt, konnen dazu nur Abschatzungen Uber
das zugrunde liegende rechtwinklige Abtastraster gemacht werden. Im folgen-
den wird dieser Frage nachgegangen. Die resultierenden Abtastmatrizen bzw. Ab-
tastorte fallen dann allerdings nicht mehr auf urspriingliche Orte des rechtwinkli-
gen Rasters wie bei dem pseudohexagonalen Abtastraster, so daR die Abtastwerte
zudem durch Interpolationsverfahren bestimmt werden miissen.

Zunéchst sei nach der notwendigen Abtastperiode 77, fur ein hexagonales Raster
gefragt, wenn ein rechtwinklig abgetastetes Signal, z.B. von einer CCD-Kamera,
vorliegt. Wenn wir davon ausgehen, dal3 das mit 7} rechtwinklig abgetastete Si-
gnal kreisformig begrenzt war, dann ist aus (2.44) ersichtlich, dal wy max = 7
die grofite Frequenz ist, die in dem abgetasteten kontinuierlichen Signal vorkom-
men kann. Mit (2.45) ergibt sich dann die notwendige Abtastperiode zu

< s T
\/§Wg,max \/g -

In Abb. 2.3 (mitte) ist das rechtwinklige Raster und das bei kreisférmig bandbe-
grenzten Signalen notwendige hexagonale Abtastraster gezeigt.

(2.48)

Es soll hier nicht unerwéhnt bleiben, daf} die Annahme, das kontinuierliche Si-
gnal sei kreisformig bandbegrenzt, in technischen Systemen nicht unbedingt im-
mer erflllt ist, und somit unter Umsténden ein gewisser Aliasingfehler in Kauf
genommen werden mul. Untersuchungen mit Bilddaten einer CCD-Kamera zei-
gen aber, dal3 die Anteile in den Frequenzbereichen, die bei einer Interpolation
auf hexagonalem Raster zu Fehlern flihren, durchaus vernachlassigbar sind. Will
man diese Voraussetzung dennoch nicht machen, und 1aBt so eine quadratische
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Bandbegrenzung bis w12, max = 7- zu, erhalten wir die strengere Bedingung

T 1 S A T
——>uw
Th ) 1,max Th\/g

und damit

> W2 max (2.49)

T
Th< — =", (2.50)
2W1,2,max 2

Dieses Abtastraster erfillt zwar theoretisch optimal das Abtasttheorem, benétigt

aber deutlich mehr Abtastwerte pro Flacheneinheit, was in Abb. 2.3 (rechts) zu
sehen ist.

2

X
o o
15 15 :
|
1 1 * X
o | o
|
N 0.5 N 0.5 ty
|
0 o ———————— ® — —— — 4
|
|
-05 -0.5 to |
|
i (@]
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Abbildung 2.3: Rechtwinkliges Abtastraster (x) und verschiedene hexagonale
Zielraster (o). links: pseudohexagonales Raster. mitte/rechts: hexagonales Raster
bei Annahme einer kreisférmigen (2.48) bzw. rechteckigen (2.50) Bandbegren-
zung.

Der \Vollstandigkeit halber sei hier auch kurz die Ricktransformation behandelt,
d. h. es liegt ein Bildsignal auf hexagonalem Raster vor, und die Abtastperiode
T, fur eine Umrechnung auf ein rechtwinkliges Raster sei gesucht. Machen wir
wieder die Annahme, es handele sich um eine kreisférmige Bandbegrenzung, so

ist It. (2.45) die groRte zu erwartende Frequenz w, max = \/_3LTh und wir erhalten
aus (2.44)
T, <« — X — /3Ty, (2.51)
wg,max

Mdachte man sich nicht auf 0.g. Annahme festlegen, so erhalten wir fur die beiden

Koordinatenrichtungen die Schranken wy max = %Tlh und wa max = \/_3LTh und
folglich die kleinere Abtastperiode
3
T, < T °T. (2.52)

max{wl,maxameax} -2
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2.2.2 Eine Strategie zur effizienten Interpolation

Wir wissen aus dem vorherigen Abschnitt, wie die Abtastperiode T3, bzw. T;. zu
wahlen ist, wenn Bilddaten auf ein hexagonales bzw. rechtwinkliges Abtastraster
umzurechnen sind. Damit kennen wir also die neuen Orte der Abtastpunkte. In
einem weiteren Schritt ist aber jetzt noch die eigentliche Interpolation zu leisten,
also die Berechnung der jeweiligen Abtastwerte, deren Orte i.allg. nicht auf dem
alten Raster liegen, wie aus Abb. 2.3 (mitte/rechts) ersichtlich ist. Die folgenden
Methoden sollen hier vergleichend gegentibergestellt werden:

e Bilineare Interpolation
Eine recht schnelle Methode ist die bilineare Interpolation, bei der ein neu-
er Abtastwert aus vier benachbarten Werten des alten Abtastrasters linear
berechnet wird.

e Bispline Interpolation
Die zweidimensionale kubische Spline Interpolation bendtigt viel Rechen-
zeit, liefert dafur zwischen den Stutzstellen im Gegensatz zur linearen Inter-
polation ein glatteres Ergebnis, was fir die vorliegende Aufgabe von Vorteil
sein konnte.

e Bilineare oder Bispline Interpolation mit vorheriger Verdoppelung der Ab-
tastrate
Durch Erh6hung der Abtastrate des rechtwinkligen Rasters ist eine Verrin-
gerung des Umrechnungsfehlers zu erwarten.

e Matched Interpolation

Bei dieser neuartigen Methode soll zunédchst das Abtastraster des recht-
winklig abgetasteten Bildsignals derart erh6ht werden, so daR ein Raster
entsteht, in dem maoglichst genau die Abtastorte des gewtlinschten hexa-
gonalen Rasters wiederzufinden sind. Hierfir ist eine effiziente rationale
Abtastratenerh6hung notwendig, die im folgenden Abschnitt erlutert wird.
In einem zweiten Schritt konnen durch ein einfaches lineares Mapping die
Abtastwerte bestimmt werden.

Zur Verbesserung der Bilinearen und Spline Interpolation, aber vor allem fir die
Matched Interpolation, ist eine Abtastratendnderung auf rechtwinkligem Raster
notwendig. Hierbei soll aus dem bereits abgetasteten Signal z(k) = z.(T'-k) ein
neues Signal Z(n) der Abtastmatrix T, berechnet werden, welches aber identisch
ist mit einer Abtastung des urspriinglichen kontinuierlichen Signals durch T, also
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#(n) = z.(T,n). Theoretisch muR also das kontinuierliche Signal rekonstruiert
und erneut abgetastet werden, was auf einem Digitalrechner allerdings nicht direkt
moglich ist. Wir beschréanken uns aus diesem Grund auf Abtastratendnderungen
mit rationalem Interpolationsfaktor, d. h. fiir das neue Abtastraster T’ gilt die
Beziehung

T.= DT, (2.53)
mit der Interpolationsmatrix
D = [7“1 0] T2 € @, (2.54)
0 o

wobei 712 > 1 eine Erhéhung (Upsampling) und r12 < 1 eine Verringerung
(Downsampling) der Abtastrate, respektive der Auflésung in der entsprechenden
Koordinate bedeutet.

Ein vor allem in der Onlineverarbeitung, wie z.B. der Sprachsignalverarbeitung,
géngiges Vorgehen ist die Separation der Ratenanderung in einen Upsampling-
und einen anschliefenden Downsampling-Prozefl? [PM92], gemal} der Eigenschaft

p/an 0 p1 0] [1/611 0 ] >0
D= = D12, q1o € N> (2,55

Da durch die Separation nur ganzzahlige Interpolationsfaktoren verwendet wer-
den diirfen, ist diese Art von Ratendnderung umsetzbar. Bei der Ratenerhéhung
werden zunéchst Nullen an den entsprechenden zusatzlichen Abtastorten einge-
flgt. Dies staucht allerdings lediglich das Spektrum, so dal? man das sich erge-
bende Signal anschlieBend mittels eines TiefpaR-Filters (Interpolationsfilter) be-
arbeiten muB. Der Ratenverringerung geht dagegen eine Tiefpal3-Filterung voraus,
um dann die bendétigten neuen Abtastwerte durch ein lineares Mapping direkt ab-
zulesen. Dieses Vorgehen der Ratendnderung ist dabei nicht auf ein bestimmtes
Abtastraster beschrankt. Auch fiir die Anderung der Abtastrate auf einem hexa-
gonalen Raster, z.B. fir eine Rucktransformation auf rechtwinklige Koordinaten
ist ein Interpolationsfilter, allerdings auf hexagonalem Raster notwendig (siehe
dazu auch [LF97]). Diese Methode hat aber wesentliche Nachteile, wenn klei-
ne nichtrationale Interpolationsfaktoren approximativ realisiert werden sollen, da
hierdurch p und ¢ recht gro8 werden konnen. Zudem ist die Qualitat der Interpo-
lation stark von der Giite des verwendeten Filters abhéngig.

Im vorliegenden Fall handelt es sich allerdings nicht um eine Onlineverarbeitung
im eigentlichen Sinne, da das Bildsignal als Matrix i.d.R. erst nach der Bildauf-
nahme vorliegt - dann allerdings komplett. Somit kann hier die Abtastratenan-
derung im Frequenzbereich nach Transformation mit der FFT vollzogen werden.
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Dazu muB das Signal zundchst in den Frequenzbereich transformiert werden, um
dort an der Nyquistfrequenz bzgl. beider Frequenzkoordinaten passend viele Nul-
len einzufligen (Ratenerh6hung) oder auch Werte des Spektrums wegzuschneiden
(Ratenverringerung). Bei letzterem wird immer eine ideale TiefpaRfilterung voll-
zogen, was die Qualitat der Interpolation mit wenig Aufwand erheblich verbes-
sert. Es sei darauf hingewiesen, daR durch die Anwendung der FFT implizit das
Bildsignal im Ortsbereich periodisch fortgesetzt wird, was an den R&ndern eine
entsprechende Extrapolation bewirkt und ggf. Artefakte verursachen kann. Die
Rucktransformation ist dann allerdings i. d. R. keine schnelle FFT mehr, so dal
mit zunehmender Bildgrolie auch dieses Verfahren mehr Rechenzeit benétigt. Das
beschriebene Verfahren und Weiterentwicklungen kdnnen in [Haw97, WSM92]
nachgelesen werden.

Fur die vorliegende Arbeit erwies sich die beschriebene Abtastratenerhhung mit-
tels der FFT als sehr effizient und wurde vor allem fur die Matched Interpolation
eingesetzt. Hierzu wurde das rechtwinklige Raster derart modifiziert (Resamp-
ling), daR das hexagonale Zielraster mdglichst nah in beiden Koordinatenrichtun-
gen getroffen wird. Aus Tabelle 2.1 ist dazu die erforderliche hexagonale Abtast-
matrix flr eine kreisformige und quadratische Bandbegrenzung angegeben zu

® |k E w_ | F
T, = ‘1/5 _‘/J_?lr aThq - [Trz\/ﬁ _TZ\/E]- (2.56)

Im ersten Fall ist abzulesen, dal} lediglich in der ersten Koordinate eine Abtastra-
tenerhdhung um /3 erforderlich ist (vgl. auch Abb. 2.3). Bei der quadratischen
Bandbegrenzung ist hingegen eine Ratenanderung in beiden Koordinaten nétig,
so daR sich folgende Interpolationsmatrizen ergeben:

D) = [\/g O} , D@ = 2 g . (2.57)
0 1 /3

2.2.3 Experimentelle Ergebnisse

An dieser Stelle soll nun ein Vergleich der einzelnen Methoden zur Umrechnung
auf ein hexagonales Raster gegeben werden, da deren Beurteilung fir den Einsatz
in einem technischen Bildverarbeitungssystem, aber auch fir die Analyse biolo-
gischer Vorgédnge wichtig ist. Allerdings scheint der Vergleich zweier Signale, die
auf unterschiedlichen Abtastrastern liegen, nicht direkt moglich. Denkbar wére
aber, das rechtwinklig abgetastete Signal (einer Kamera) auf ein zu bewertendes
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Raster zu transformieren, um es dann wieder auf das urspringliche Raster zu-
riickzurechnen. Das rucktransformierte Signal kann dann mit dem Originalsignal
verglichen werden. Da aber durch dieses Vorgehen sowohl Hin- als auch Riick-
transformation jeweils einen Einflul? auf den berechenbaren Fehler ausiben und
nicht mehr getrennt betrachtet werden kénnen, erweist sich dieser Weg als un-
brauchbar fur die Untersuchungen. Aus diesem Grund soll hier eine Betrachtung
im Frequenzbereich durchgefihrt werden, um einen quantitativen Vergleich der
verschiedenen Raster untereinander (hexagonales Raster mit kreisférmiger bzw.
quadratischer Annahme uber die Bandbegrenzung und das pseudohexagonale Ra-
ster) aber auch der notwendigen Interpolationsmethoden (Bilinear, Bispline und
Matched Interpolation) zu ermdglichen. Diese Betrachtung ist moglich, da das
Definitionsgebiet w fir alle Abtastraster einheitlich ist und das Spektrum den In-
formationsgehalt eines Signals vollstdndig widerspiegelt.

Die FOURIER-Transformation des auf rechtwinkligem Raster T',. definierten Si-
gnals

. , 1
Xy (w) - Z wr(k)e_JwTTrk =
k

= Xo(w — Q, 2.
‘detmg (w = Qp) (2.58)

stellt in dem Basishand wp = {[w1, wQ]T|W1,2 = 0...w} die Frequenzverteilung
X, des zu Grunde liegenden kontinuierlichen Signals zur Verfiigung. Somit kann
mittels der DFT in beliebiger Frequenzaufldsung ein Referenzspektrum berechnet
werden, was aber auch nach einer evtl. Umrechnung auf ein anderes Abtastraster
moglichst genau erreicht werden sollte. Dies gibt dann die Giite der Umrechnung
wieder. Das Spektrum auf dem hexagonalen Abtastraster kann dann ebenso durch

1
y7s

Rofe) = 3 (ke Tk =
k

berechnet werden. Schliel}lich kann durch ein normiertes Fehlermal}

/L:)EwB

Famse = /
wewpR

welches die normierte mittlere Abweichung im Frequenzbereich angibt, der In-
formationsgehalt auf dem hexagonalen Raster bzw. die Giite der Umrechnung
bewertet werden.

~ ~ 2
X, (w) |det T, | — X (w) |det Th|‘ dw

: (2.60)

~ 2
Xr(w)‘ |det Ty |2 do

In Abb. 2.4 ist nun ein Bildsignal auf rechtwinkligem Raster (Bild einer CCD-
Kamera) und das zugehdrige Betragsspektrum (logarithmisch aufgetragen) dar-
gestellt. Die Ergebnisse der Umrechnung dieses Bildsignals auf ein hexagonales
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Abtastraster sind in Abb. 2.5 zu sehen. Der fiir das FehlermaR bertcksichtigte
Bereich von 0 bis zur Nyquistfrequenz ist entsprechend gekennzeichnet.

Abbildung 2.4: CCD-Bild und das zugehdrige Spektrum.
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Abbildung 2.5: Umrechnung auf ein hexagonales Raster. oben: pseudohexagona-
les Raster (2.46). mitte/unten: hexagonales Raster bei Annahme einer kreisformi-
gen (2.48) bzw. rechteckigen (2.50) Bandbegrenzung.
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Auffallend und fur die Qualitat der Umrechnung von grof3er Bedeutung sind hier
die unterschiedlichen Periodizitaten der Spektren im Frequenzbereich. Bei dem
pseudohexagonalen Raster (oben) ist die Verletzung des Abtasttheorems deutlich
zu sehen, da hier die hoheren Spektren in das Basisspektrum hineinragen. Eine
angenommene kreisformige Bandbegrenzung (mitte) des kontinuierlichen Signals
scheint zumindest qualitativ betrachtet ndherungsweise erflllt zu sein. Bei einer
quadratischen Bandbegrenzung (unten) sind theoretisch keine Aliasingfehler zu
erwarten, da hier die Periodizitat im Frequenzbereich optimal ist.

In Tabelle 2.1 sind die Ergebnisse aller untersuchten Interpolationsmethoden fiir
ein hexagonales Abtastraster gegentibergestellt. Die Effizienz gibt hier die Dichte
der Abtastpunkte relativ zum ursprunglichen rechtwinkligen Raster an. Je klei-
ner dieser Wert ist, desto weniger Abtastpunkte mussen verwaltet und verarbeitet
werden. Die Berechnungsdauer Tge, flr die Umrechnung der Daten wurde auf
einer Sun Ultra 6 unter MATLAB ermittelt, kann also nicht als Leistungsbewer-
tung fiir ein Bildverarbeitungssystem herangezogen werden, ermdglicht aber den
Vergleich der Methoden untereinander. Das Fehlerma Fiyuse gibt die Qualitat
der Umrechnung auf das hexagonale Abtastraster wieder und eignet sich fiir den
Vergleich der Verfahren untereinander. Zusétzlich sind die Ergebnisse des pseu-
dohexagonalen Rasters gezeigt, das sich durch eine hohe Effizienz, schnelle Be-
rechnung aber auch durch einen groRen Umrechnungsfehler auszeichnet.

Aus der Tabelle Tabelle 2.1 wird ersichtlich, daR durch vorherige Abtastratener-
hohung bei der Bilinearen und Bispline Interpolation (Bilinear 2, Bispline 2) der
Umrechnungsfehler wie vermutet verringert werden kann. Allerdings wird hier-
fur auch mehr als die doppelte Berechnungszeit bendtigt. Die hier vorgeschlage-
ne Matched Interpolation zeigt allerdings sowohl bzgl. der Berechnungsdauer als
auch bei dem resultierenden Umrechnungsfehler ihre Vorteile. Bei der Annahme
einer kreisformigen Bandbegrenzung liefert diese Methode nur noch einen Fehler
von nur &~ 4.95 - 1075, was mehr als eine 10er Potenz besser ist als die ein-
fache bilineare Interpolation bei vergleichbarem rechnerischem Aufwand. Wird
eine quadratische Bandbegrenzung angenommen, so erhilt man mit 7.29 - 10~2°
praktisch keinen meRbaren Fehler mehr. Die anderen Verfahren hingegen liefern
hier noch einen groReren Fehler als bei der Matched Interpolation bei kreisformi-
ger Bandbegrenzung. Aus diesem Grunde tiberzeugt die vorgeschlagene Methode
in jeder Hinsicht und sollte fur eine ressourceneffiziente und robuste Umrechnung
herkdmmlicher Bilddaten auf ein hexagonales Raster verwendet werden.



28 Kapitel 2 Mehrdimensionale Digitale Signalverarbeitung

Annahme Uber Interpolations- | Effizienz | Tger Fnmse
Bandbegrenzung methode [%] [s]
kreisformig: Bilinear 86 0.17 | 7.778531-10~4
__— Bispline 86 2.46 | 7.686476 - 10~*
7 {% %]
Tr —Ir Bilinear 2 86 | 0.41 | 1.298692 - 10—
Qb lTﬁ T“g] Bispline 2 8 | 6.01 | 1.399655 - 10~*
T,  Tr
Matched 86 0.22 | 4.945777-107°
quadratisch: Bilinear 114 | 0.22 | 1.920650 - 10~3
n on Bispline 114 | 3.19 | 1.900647 - 103
R Pl
2 2 Bilinear 2 116 | 0.47 | 1.234659 - 10~
Q@ — l Tz Bispline 2 116 | 6.75 | 1.236909 - 10~
P T3  Tr/3
Matched 115 | 0.29 | 7.288345 - 10~2°
Quincunx
(Pseudohexagonal):
Ty T 10-2
T, - {Tr _Tr] 50 | 0.07 | 2.867551 - 10
o[f %
T, T,

Tabelle 2.1: Vergleich der Verfahren zur Umrechnung auf ein hexagonales Raster.

2.3 Biologische Verarbeitungssysteme

Die neuronalen Netze (NN) sind teilweise vereinfachte Beschreibungen der ver-
netzten und massiv parallelen Informationsverarbeitung in biologischen (Nerven-)
Systemen, wie im menschlichen Gehirn oder in Gehirnen recht artverwandter Le-
bewesen (Primaten). Der Begriff neuronal ist von der Bezeichnung der Nervenzel-
le (griech. Neuron) abgeleitet. Neuronale Netze werden allgemein als eine grofRe
Ansammlung informationstransportierender und informationsverarbeitender Neu-
ronen verstanden, die tber ein Netzwerk miteinander verbunden sind.

Die urspringlich in der Informatik eingesetzten kiinstlichen neuronalen Netze
(KNN) sind modellhafte Konstrukte, welche die fur die Informationsverarbeitung
wesentlichen Aspekte beinhalten, und représentieren damit meist einen numeri-
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schen Algorithmus oder eine Berechnungsvorschrift. Dabei dient dieses Modell
zum einen dem Verstandnis biologischer Mechanismen, was vielfach durch die
digitale Simulation der kinstlichen neuronalen Netze unterstiitzt werden kann.
Neurologen konnen z. B. auf diese Art die Verarbeitung tiefer studieren, zuver-
l4ssigere Diagnosen stellen, und durch Simulationen medikamenttse Behandlun-
gen im Digitalrechner erproben. Zum anderen kénnen diese kiinstlichen Netzwer-
ke auch eingesetzt werden, um technische Aufgaben, wie z. B. im Bereich der
(diskreten) Optimierung, der Funktionsapproximation, der Mustererkennung und
Klassifizierung [EPARHO02] zu l6sen. Hierdurch sind in der Vergangenheit diese
biologisch inspirierten Verarbeitungssysteme auch flr ingenieurwissenschaftliche
Fragestellungen interessant geworden.

Im Rahmen dieser Arbeit steht die Verarbeitung visueller Signale und Informatio-
nen im Vordergrund, um Zielsetzungen der Bildsignalverarbeitung mit Hilfe des
biologischen Vorbildes zu verfolgen. Daher werden im folgenden Abschnitt die
neurophysiologischen Grundlagen speziell fiir die Verarbeitung visueller Reize
gelegt.

2.3.1 Neurophysiologische Verarbeitung visueller Signale

Zunachst wird die Funktionsweise neuronaler Netze und der grundlegende Auf-
bau des visuellen Systems im Gehirn von Primaten in kompakter Form dargestellt.
Im Verlauf dieser Arbeit werden dann einzelne fur die Zielsetzung interessante
Aspekte vertieft behandelt.

Neurophysiologische Grundlagen

In Abb. 2.6 ist der funktionelle Aufbau eines Neurons abgebildet [Hub90], wel-
ches aus Dendriten, einem Zellkdrper und einem Axon besteht. Reize anderer
Neuronen gelangen zu den Dendriten eines Neurons und kénnen zu einer Reiz-
weiterleitung Uber das Axon fihren, wenn die zeitliche und 6rtliche Summation
der Eingangsreize gro3 genug ist. Das Innere eines Neurons ist mit einer LO-
sung aus ionisierten Salzmolekilen gefullt und weist eine elektrische Potential-
differenz zu der dem Neuron umgebenden Salzlésung auf. Dieses Membranpo-
tential wird durch dendritische Reizungen anderer Neuronen beeinflu3t und fuhrt
ab einer gewissen Schwelle zu einer Offnung von lonenkanalen in der Zellmem-
bran, wodurch positive Natriumionen in die Zelle hineinflieRen. Dadurch erhéht
sich das Membranpotential weiter und schliel3lich 6ffnen sich weitere Kanéle, die
positive Kaliumionen nach auBen leiten und das Ruhepotential wieder herstel-
len. Diese lokale Anderung des elektrischen Potentials pflanzt sich ortlich fort
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Abbildung 2.6: Aufbau und Verschaltung eines Neurons.

und wird ggf. Gber das Axon bis zu anderen Neuronen weitergeleitet, dient da-
mit also als wesentlicher Informationstrager. Diese Potentialanderung wird auch
als Aktionspotential, Puls oder Spike bezeichnet, und die Anzahl der erzeugten
Pulse pro Zeiteinheit gibt die Aktivierung des Neurons wieder. Wird ein kinstli-
ches neuronales Netz (KNN) auf diese besonders biologienahe Weise modelliert,
so spricht man auch von pulscodierten oder pulsgekoppelten neuronalen Net-
zen (PCNN). Dies ist eine Art der KNN, welche nicht nur die Aktivierung der
Neuronen selbst, sondern auch das zeitliche Auftreten des Reizes beriicksichtigt.
Somit kommt die Zeit als weiterer Informationstréger in die Verarbeitungskette
hinein. Untersuchungen haben beispielsweise gezeigt, daR Neuronen, die &hnli-
che Eingangsinformationen reprasentieren, wie eine kontinuierliche Linie, sich
synchronisieren kénnen, um so eine Art zeitliche Segmentierung durchzufiihren
[EKGS90, ERAD89, ERADY0, Eck94]. Dies kann natlrlich bei der Entwicklung
klnstlicher Sehsysteme zur Interpretation einer Bildszene von groflem Interesse
sein [HD90, Har91].
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Das visuelle System

Das visuelle System des Primaten ist einer der am besten erforschten Teile des
Gehirns. Bereits 1960 lieferte der Nobelpreistrdger DAVID H. HUBEL durch seine
Forschungsergebnisse einen grof3en Beitrag zum Verstandnis der neuronalen Me-
chanismen [HW62, Hub90]. Die Signalverarbeitung der wahrgenommenen Szene
beginnt bereits im Auge, wenn das reflektierte Licht der Szene durch das optische
System von Iris und Linse auf die Netzhaut (Retina) projiziert wird (siehe Abb. 2.7
[Hub90]). Dort befinden sich die lichtempfindlichen Zellen (Photorezeptoren), die

Ganglien- Horizontal-
zelle zelle

Bipolar- | Stdbchen
zelle

Netzhaut

Abbildung 2.7: Aufbau des Auges und der Netzhaut.

die auftreffende Lichtintensitét in ein elektrisches Signal umwandeln. Man unter-
scheidet zwischen Zapfen, die bevorzugt auf den roten, griinen und blauen Wel-
lenldangenbereich reagieren und Stabchen. Die Stébchen sind in einer weitaus gro-
Reren Anzahl vorhanden (= 120 - 109) als die Zapfen (=~ 6 - 10%), und sind auch
anders auf der Retina verteilt, wie aus Abb. 2.8 deutlich wird [K6h90, ST97]. Das
Auflésungsvermdogen der Stébchen ist wesentlich geringer als das der Zapfen, da-
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fur sind sie aber wesentlich lichtempfindlicher, wodurch sie im wesentlichen fir
das Nachtsehen zum Einsatz kommen. In der Sehgrube (Fovea) ist die Dichte der
Zapfen am groRten. Dies ist der Bereich des scharfsten Sehens.

Zapfen
§  150000- ﬂ
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Abbildung 2.8: Verteilung der Photorezeptoren auf der Netzhaut.

Wie die Detailzeichnung der Retina in Abb. 2.7 erkennen 1aRt, leiten die Rezepto-
ren ihren Reiz weiter an die Schicht der Bipolarzellen, welche wiederum mit den
Ganglienzellen verbunden sind. Dariber hinaus existieren Horizontal- und Ama-
krinzellen, die eine weitere Verkopplung der Rezeptoren und der Bipolarzellen
verursachen. Die verschiedenen Zellen kdnnen meist weiter in unterschiedliche
Typen unterteilt werden.

An dieser Stelle ist erwdhnenswert, dal durch die Verkopplung der einzelnen
Schichten und durch die inhomogene Verteilung der Rezeptoren auf der Netz-
haut bereits eine enorme Datenreduktion im Auge stattfindet. Die Signale von fast
130 Millionen Rezeptoren konvergieren auf ca. 1 Million Gangliensignale, die
uber den Sehnerv (Nervus opticus) zur GroBhirnrinde (Cortex) tibertragen werden
(siehe Abb. 2.9 [ST97]). Hierbei kreuzen sich die Sehnerven der beiden Augen im
Chiasma Opticum derart, daB in jeder Gehirnhalfte das gleiche Gesichtsfeld bei-
der Augen zur Verfugung steht, um u. a. das Tiefensehen zu ermdglichen. Die
Signale gelangen zun&chst zu dem seitlichen Kniehdcker (Corpus geniculatum
laterale), was im wesentlichen eine Schaltstelle darstellt. on dort werden die In-
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Abbildung 2.9: Schematische Darstellung der Sehbahn im menschlichen Gehirn.

formationen in verschiedene Bereiche des visuellen Cortex projiziert. Dort sind
u.a. Zellen nachgewiesen, die auf Kontrastanderungen in der auf der Netzhaut ab-
gebildeten Bildszene ansprechen. So existieren Zellen, die auf Konturverlaufe mit
spezifischer Orientierung, auf bewegte Konturverldufe oder auch Konturverlaufe
begrenzter L&nge reagieren. Die erste Gruppe wird als einfache oder simple Zellen
charakterisiert, auf die im Laufe dieser Arbeit noch genauer eingegangen wird.

Durch aufeinander aufbauende Neuronenverkopplungen sind die Neuronen in der
Lage, eine immer komplexer werdende Reizspezifitat zu erhalten. Die Beschrei-
bung der Reizspezifitat eines Neurons erfolgt Uber das rezeptive Feld. Dieses gibt
zum einen den Bereich (Ort und GroRe) des Bildausschnittes respektive der Re-
zeptoren an, auf den das Neuron Uberhaupt reagiert, d. h. der dem Neuron Ein-
gangsreize liefern kann. Zum anderen beschreibt das rezeptive Feld die optimale
Form und Ausprégung des Lichtreizes auf der Netzhaut, der eine maximale Er-
regung des Neurons verursacht. So weisen Ganglienzellen ein Zentrum-Umfeld-
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Verhalten auf. Bei einer On-Zentrum-Zelle beispielsweise besitzt das rezeptive
Feld ein erregendes (exzitatorisches) Zentrum und ein hemmendes (inhibitori-
sches) Umfeld, so daR ein begrenzter heller Stimulus in einer dunklen Umgebung
das Neuron am stérksten erregt. Ein dunkler Stimulus in einer hellen Umgebung
hingegen hemmt das Neuron am starksten, was in Abb. 2.10 (links) [ST97] ex-
emplarisch dargestellt ist. Eine Off-Zentrum-Zelle verhalt sich genau entgegenge-
setzt.

Lichtreiz Belichtung von:

=01 10P— .__l_"'"'—ll___

_f RF-Zentrum

. RF-Peripherie

: '_;j RF-Zentrum und
- RF-Peripherie

. RF-Zentrum

' RF-Peripherie

i bl RF-Zentrum und
SRR RE-Peripherie

Off-Zentrum-Neuron .|—1s—|

Abbildung 2.10: Rezeptives Feld und Antwortverhalten einer On- bzw. Off-
Zentrum-Zelle.

Terminologie beim menschlichen Auge

Zum AbschluB dieses Abschnittes Uiber die neurophysiologische Verarbeitung sol-
len noch kurz ein paar weitere wichtige Fachausdriicke und deren Zusammenhang
zu der ingenieurwissenschaftlichen Beschreibung gegeben werden.

In Kapitel 3 wird ein systemtheoretisches Modell des friihen visuellen Systems
entwickelt werden. Dieses basiert darauf, dal die lichtempfindlichen Rezeptoren
in der zentralen Fovea auf einem annéhernd hexagonalen Raster liegen, was zu
den genannten Vorteilen fiihrt. Bei einem hexagonalen Abtastraster wird gewohn-
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lich der kleinste Abstand
dec = 2T}, (2.61)

zwischen einem Abtastpunkt zu seinen 6 Nachbarpunkten meist gesondert als
spacing benannt (cc=center-to-center spacing). Im Kontext der Photorezeptoren
(Zapfen) des menschlichen Auges spricht man dann von cone spacing, was dann
auch oft als Maleinheit [csp] fungiert, wenn man die verwendeten GroRen auf d.
normiert.

Weiter ist es oft notwendig, aus der Dichte p der Abtastpunkte, welche z. B.
aus einer Zahlung der Zapfen gewonnen wird, auf die Abtastperiode T3 bzw.
das cone spacing d¢. zu schliefen. Die entsprechende Beziehung hierfir lautet

cc n \/_ . .

Die GroRe eines Objektes, welches auf die Retina projiziert wird, ist vom Abstand
des Objektes vom Auge abhangig. Um diese Abhangigkeiten zu vermeiden, ver-
wendet man meist WinkelgroRen. Im Frequenzbereich gelangt man somit von der
gewohnlichen Einheit 1/m entsprechend zu der Einheit 1/° bzw. cpd oder ¢/deg
(cycles per degree). Die Umrechnung erfolgt durch die Beziehung
27h
fcpd - f360° :
Hierbei ist b der Radius der gekrimmten Netzhaut, auf die das Bild projiziert
wird. Ein typischer Wert eines Menschen liegt etwa bei b = 16.7 mm, d. h. ein
Sehwinkel von 1° entspricht dann einer Strecke von etwa 0.29 mm auf der Netz-
haut [ST97].

(2.63)

2.3.2 Kunstliche neuronale Netzwerke

Fir die Untersuchung der biologischen Abl&ufe, aber auch fiir die Umsetzung und
technische Nutzbarmachung bestimmter perzeptiver Féhigkeiten des biologischen
Vorbildes bedient man sich abstrakter Modelle, den sogenannten kiinstlichen Neu-
ronen bzw. den kinstlichen neuronalen Netzwerken. Diese stellen die Arbeits-
weise des Netzes als arithmetische Rechenschritte dar, welche dann theoretisch
analysiert oder auf einem Digitalrechner nachgebildet und simuliert werden kon-
nen. So gibt es eine Vielzahl von unterschiedlichen Modellen, die je nach Auf-
gabenstellung nur gewisse Funktionen und Mechanismen der biologischen Syste-
me nachbilden. Bei der tiberwiegenden Anzahl technischer Fragestellungen kann
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z.B. der Einfachheit wegen auf die pulscodierte Verarbeitung verzichtet werden,
um so bereits die meisten technischen Probleme erfolgreich zu I6sen. Dieser Weg
wird in dieser Arbeit ab Kapitel 3 zunéchst ebenfalls gewahlt. Dal dies aber nicht
zwingend eine zu starke Einschrdnkung bzw. Sackgasse sein muf3, wird dann im
Laufe der Arbeit ersichtlich. In Kapitel 4 wird gezeigt, wie die Modellierung in
einer spateren Entwurfsphase bei Bedarf fiir pulscodierte Mechanismen erweitert
werden kann, um so nach einer soliden Modellierung ebenfalls die Vorteile der
Pulscodierung nutzen oder untersuchen zu kénnen.

Die grundlegende Arbeitsweise eines einfachen kinstlichen neuronalen Netzes
ist in Abb. 2.11 schematisiert. Bei der Verarbeitung werden die ankommenden
Signale der Vorgéngerneuronen gewichtet und verarbeitet, wie in Abb. 2.11 ge-
zeigt. Die Gewichte entsprechen hier der synaptischen Erregung oder Hemmung
beim biologischen Vorbild entsprechend dem rezeptiven Feld des Neurons. Sind
die Eingangsreize ausreichend, so wird das Neuron selbst einen Ausgangsreiz zu
nachfolgenden Zielneuronen weiterleiten. Die Propagierfunktion

net; = Y o - wi(y) (2.64)

J

eines betrachteten Neurons 7 ist dabei meist die gewichtete Summierung der Ein-
gangsreize, d. h. Ausgangssignale der Vorgangerneuronen. Die Verbindungsge-
wichte w;(j) zwischen dem \Vorgéngerneuron 5 und dem betrachteten Zielneu-
ron ¢ gibt dabei an, wie sehr das Zielneuron ¢ von einem Vorgangerneuron erregt
(w;(7) > 0, exzitatorische Verbindung) oder gehemmt (w;(j) < 0, inhibitorische
Verbindung) wird. Der Aktivierungszustand a; entspricht dem Membranpotential
der biologischen Zelle und ist von dem vergangenen Zustand, der Netzeingabe
net; und ggf. einem Schwellwert abhéngig. Der Ausgangsreiz o; ergibt sich aus
dem Aktivierungszustand der Zelle tber einen linearen oder nichtlinearen funk-
tionalen Zusammenhang.

Die dieser Arbeit zugrundeliegenden biologischen ortlichen Filtercharakteristiken
bis zu den simplen Zellen weisen in weiten Bereichen ein lineares Verhalten auf
(siehe Kapitel 3), so dal hier im wesentlichen die linearen Neuronen mit

0; =Y _0jwi(j) (2.65)
i

zum Einsatz kommen. Speziell im biologischen Sehsystem (siehe Aufbau der Re-
tina in Abb. 2.7) sind oft viele Neuronen gleicher Gattung in Schichten ange-
ordnet, so dal jedes Neuron mit dem Ort eines Bildbereiches korrespondiert. Hier



2.3 Biologische Verarbeitungssysteme 37
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Abbildung 2.11: Schematisierung eines kunstlichen Neurons und dessen Ver-
schaltung mit Vorgangerneuronen.

empfangt jedes Neuron meist nur Eingangsreize von Neuronen einer anderen Gat-
tung, d.h. einer anderen Schicht, was als vorwartsgerichtetes Netz bezeichnet wird
(Feed-Forward Netz). Ordnet man nun die Neuronen jeder Schicht jeweils in einer
Matrix an und bezeichnet die Schichten mit 1 und 2, so kann die Summe in (2.65)
als zwei Summen

g,)zg ZZ 04, 32 T Wiy ig .71;.72) (2.66)
1 J2

fur die Zeilen- und Spaltenkoordinate geschrieben werden. Darlber hinaus wei-
sen die Verbindungsgewichte innerhalb einer Neuronenschicht ein sehr reguléres
Schema auf, wodurch mit der Eigenschaft

Wiy in (11 — Py 92 — Q) = Wiy ko (K1 — D k2 —q)  VD,q,012,k12  (2.67)

eine ortsinvariante Verarbeitung entsteht, d. h. das Verbindungsgewicht ist nicht
mehr abh&ngig von dem Ort des Zielneurons selbst, sondern nur noch von der
ortlichen Relation (p bzw. ¢) zu den verbundenen Vorgangerneuronen. Wir kiirzen
dies fur j; = 41 — p und jo = i5 — g Mit

Wiy iz (7’1 — b 12 — Q) = w(pa Q) (268)

ab und erhalten
741;22 Z Z 11 —D,i2— q p7 q) (269)

Auf diese Weise geht die Berechnungsvorschrift des linearen Neurons formal in
die Faltungssumme des nichtrekursiven Digitalfilters (2.30) tber, und die \Verbin-
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dungsgewichte respektive das rezeptive Feld kénnen als Faltungsmaske interpre-
tiert werden. Auf dhnliche Weise 1403t sich auch die Arithmetik einer rekursiv ge-
koppelten Neuronenstruktur mit sogenannten lateralen Neuronenverkniipfungen
auf die Differenzengleichung eines rekursiven Digitalfilters zurtickfiihren. Diese
Zusammenhénge liefern damit wertvolle Ergebnisse fir die Interpretation neuro-
naler Architekturen der biologischen (visuellen) Informationsverarbeitung. Hier-
durch wird ersichtlich, dal? lineare neuronale Netzwerke mit ihren lokal reguléren
Verbindungsgewichten als ortsinvariante Digitalfilter interpretiert werden konnen.
Dies birgt zum einen fiir die Simulation der Netzwerke groRe Vorteile, da ver-
schiedenste Methoden der effektiven Filterimplementierung auf Digitalrechnern
und Signalprozessoren zur Verfligung stehen. Zudem kann hier von der grof3en
Anzahl an Analysemethoden und Entwurfsverfahren im Orts- und Frequenzbe-
reich profitiert werden, um die Modellierung neuronaler Netze zu unterstiitzen.
Aus diesen Griinden bildet auch die systemtheoretische Betrachtung des biologi-
schen Sehsystems die Grundlage der vorliegenden Arbeit.



KAPITEL 3

Lineares Modell der frihen
visuellen Verarbeitung

In diesem Kapitel wird ein Modell auf der Basis eines hexagonalen Rasters vor-
gestellt, welches viele informationsverarbeitende Funktionen beinhaltet, die bei
den Sehsystemen hoherer Lebewesen erbracht werden [THOO, Thi99]. Hierbei
betrachten wir die Verarbeitungskette von den Photorezeptoren in der Netzhaut
(Retina) tber die retinalen Horizontal- und Ganglienzellen bis hin zu den simplen
Zellen in der GroRhirnrinde (visueller Cortex). Dieses Modell hat u.a. die Eigen-
schaft, daB es massiv parallel arbeiten kann. Zudem werden aber auch wertvolle
Zwischensignale produziert, die in weiteren Verarbeitungsaufgaben niitzlich sind.
Hier seien Blicksteuerungskonzepte, Adaptionsmechanismen bei Beleuchtungs-
anderungen oder die Komposition simpler Zellen anderer Auflésungsebenen ge-
nannt. Die Eigenschaften des Modells zeigen auf, wie effizient die Verarbeitungs-
prozesse im menschlichen Gehirn aufgebaut sein konnten.

Die Verarbeitung der visuellen Signale wird in dieser Arbeit systemtheoretisch
modelliert, d.h. das Verbindungsnetzwerk zwischen Schichten meist gleichartiger
Neuronen wird als lineares System mit Eingangs- und AusgangsgroRRen darge-
stellt. Da hierdurch, wie im vorangegangenen Kapitel aufgezeigt, die Signalver-
arbeitung solch eines Neuronennetzwerkes als Digitalfilter interpretiert werden
kann, ergeben sich wesentliche Vorteile im Kontext dieser Arbeit. Die Beschrei-
bung der Signalverarbeitung im Frequenzbereich und die Vielzahl an etablierten
Verfahren zur Synthese bzw. zum Entwurf von Digitalfiltern sind hier besonders
erwéhnenswert. Darlber hinaus ist aber auch die Simulation auf Digitalrechnern
eines systemtheoretisch vorliegenden Modells eines Neuronalen Netzwerkes mit
Standardoperationen der Digitalen Signalverarbeitung leicht maoglich.

39
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Im folgenden Abschnitt wird zunéchst die Umsetzung der visuellen Informatio-
nen einer betrachteten Szene durch die lichtempfindlichen Rezeptoren im Auge
betrachtet, um einige wesentliche Konsequenzen der weiteren Signalverarbeitung
herauszuarbeiten. In den beiden folgenden Abschnitten wird die Topologie des
Modells mit den zugehdrigen optimalen Modellparametern entwickelt, welche zu
den gewinschten Verarbeitungseigenschaften bzw. rezeptiven Feldern des biolo-
gischen neuronalen Netzwerkes flhrt. Abschlieend werden die wesentlichen Ei-
genschaften des vorgestellten Modells zusammengefalit, eine Simulation mit ei-
nem Eingangsreiz durchgefiihrt und gezeigt, wie die Netzstruktur und damit die
Anzahl der Neuronenverbindungen reduziert werden kann. Letzteres ist fir die
effiziente Simulation des Netzwerkes auf gewisser Spezialhardware fiir Neurona-
le Netze niitzlich. So wird im néachsten Kapitel 4 die Implementation des Modells
auf eine in der Arbeitsgruppe HARTMANN entwickelte Neurocomputerarchitektur
beschrieben.

3.1 Bildgewinnung in einem biologischen Sehsy-
stem

In diesem Abschnitt wird zunédchst die Bildentstehung auf der menschlichen Netz-
haut betrachtet und die wesentlichen Konsequenzen fiir die weitere Modellierung
aufgezeigt. Zum einen wird eine hexagonale ortliche Abtastung mittels der licht-
empfindlichen Photorezeptoren, wie sie in der Biologie beobachtet wurde, moti-
viert. Dieses hexagonale Abtastraster soll dann Grundlage fir das zu entwickelnde
visuelle Verarbeitungssystem sein. Zum anderen wird der EinfluR der Rezeptora-
pertur untersucht und die Betrachtung dieser im ortsdiskreten Bereich begriindet.

3.1.1 Abbildungseigenschaften des Auges

Die Photorezeptoren auf der Retina tasten das kontinuierliche Bild ab, welches
durch das Auge als ,,optisches Ubertragungssystem* auf die Retina projiziert wird.
In den meisten Fallen handelt es sich um ein lineares und ortsinvariantes Bildent-
stehungssystem, wie in Abb. 3.1 dargestellt. Die Abbildungseigenschaften des
Auges werden dabei im wesentlichen durch die folgenden Effekte bestimmt:

e Beugungseffekte
FRAUNHOFERsche Beugung an einer Lochblende

e spharische Aberrationen
Brechkraft der Pupille ist abh&ngig vom Eintrittsort des Lichtes
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e chromatische Aberrationen
Brechkraft der Pupille ist abh&ngig von der Wellenl&nge des Lichtes

o(t) z(t)
Augenoptik
— ho(t) >
Objekt Netzhautbild

Abbildung 3.1: Das Auge als optisches Ubertragungssystem.

Ist der Pupillendurchmesser sehr klein (a < 2 mm), so sind die letzten bei-
den Effekte vernachldssigbar und es handelt sich n&herungsweise um ein rein
beugungsbegrenztes System. Das Ubertragungsverhalten des Systems wird dann
durch einen BeugungsprozeR bestimmt und kann mit Hilfe der FOURIER-Optik
berechnet werden. Wir betrachten hierzu Abb. 3.2, in der das abstrahierte Auge
und die schematisierte Beugungsfigur zu sehen sind. Trifft eine ebene Lichtwel-
lenfront auf die Pupille (Lochblende), so handelt es sich um die Wellenfront eines
unendlich weit entfernten Lichtpunktes, und die entstehende Beugungsfigur ist
die Impulsantwort des Systems. In [KF88, Hec98] ist gezeigt, dalk sich die kreis-

z(t)

Abbildung 3.2: Beugungsfigur bei der Bildentstehung im Auge.
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symmetrische Impulsantwort des Systems zu

Ta 2
251(5 3 ||t||)) (3.1)

ho(t) = ho(0) (23

53 ¢l
ergibt, wobei J; die Besselfunktion erster Gattung mit der Ordnung eins und A
die Wellenlénge des verwendeten Lichtes ist. Der konstante Faktor Ao (0) hangt
u.a. von der Lichtstarke. Die ebenfalls kreissymmetrische Ubertragungsfunktion
des Systems kann zu

_ 4ho(0)
"Gy

Ho(w) (28(w) — sin(28(w))) ,ﬂ(w):arccos(!:!>. (3.2)

Ab

hergeleitet werden und wird in der Optik als MTF (modulation transfer function)
bezeichnet.

In Abb. 3.3 ist u.a. das theoretische Ubertragungsverhalten fiir verschiedene Pu-
pillendurchmesser fiir ein rein beugungsbegrenztes System (- -) nach (3.1) und
(3.2) bei A = 500 nm dargestellt. Ebenfalls hier zu sehen ist das reale Verhal-
ten der Augenoptik, welches experimentell bestimmt werden kann [Hau94] (vgl.
auch [ILGA98, Bro79, CG66]). Es ist erkennbar, daR fiir groRere Pupillenoffnun-
gen (a > 2 mm) die experimentellen Ergebnisse immer mehr von dem rein beu-
gungsbegrenzten Verhalten abweichen. Die Abberationseffekte kénnen folglich
nur bei kleinen Pupillen6ffnungen vernachléssigt werden, da sie offensichtlich im
Gegensatz zum Beugungsverhalten mit zunehmender Offnung ein starkeres Tief-
palverhalten bzw. eine abnehmende Grenzfrequenz verursachen.

Die wahre (experimentelle) Ubertragungsfunktion soll deshalb an dieser Stelle
mit einer rotationssymmetrischen Exponentialfunktion der Form

Hp(w) = el ,a € RV (3.3

beschrieben werden. Dies stellt eine gute Naherung der experimentellen Daten
in [Hau94] dar. Die Form und die Ausdehnung der Impulsantwort des Systems,
welche die Intensitatsverteilung bei einer punktformigen Lichtquelle beschreibt,
ist flr weitere SchlulRfolgerungen von Interesse. Um eine analytische Form zu
erhalten, sind mit Hilfe von [GH73] einige Rechenschritte notwendig, die hier
allerdings nicht im einzelnen gezeigt werden kénnen. Als Resultat der Herleitung
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Abbildung 3.3: Ubertragungsverhalten der Augenoptik verschiedener Pupillen-
durchmesser basierend auf experimentellen Untersuchungen (-) und die theore-
tischen Kurven flr ein rein beugungsbegrenztes System (- -), jeweils bei einer

Wellenldnge von A = 500 nm des verwendeten Lichtes.

ergibt sich die Impulsantwort zu

1 1 s

B (2v)! 1
0= o T TeP 2 ()7 (L2 <a2

=0

2 2 2
. . (a + ay/ o —|—||t||)

:2— 2 2 ’
7 + [t (a2+a a2+||t||2>+||t||2

2 v
[tdl )
2
+ |1t

3.4)

(3.5)



44 Kapitel 3 Lineares Modell der friihen visuellen Verarbeitung

welche ebenfalls rotationssymmetrisch ist. Mit Hilfe der Impulsantwort konn-
te u.a. das Auflosungsvermdgen des Auges untersucht werden [KF88, Hec98].
Im Rahmen dieser Arbeit stellen sich aber das Verhalten der Optik im Frequenz-
bereich und die daraus resultierenden Konsequenzen fir eine ortliche Abtastung
durch die Photorezeptoren in den Vordergrund. Im folgenden werden dazu eini-
ge Betrachtungen angestellt und mit verschiedenen, in der Literatur zu findenden
experimentellen Ergebnissen verglichen.

Da es sich bei dem experimentell bestimmten Verhalten im Frequenzbereich und
bei unserem Ansatz um ein kreissymmetrisches TiefpalRverhalten handelt, ist folg-
lich jedes auf die Netzhaut projizierte kontinuierliche Signal immer n&herungs-
weise kreisformig frequenzbegrenzt. Wie aus Kapitel 2 bekannt, ware fir die-
sen Fall eine hexagonale Abtastung des kontinuierlichen Signals die effektivste
Form der ortsdiskreten Représentation. Unter der Annahme, dal} das biologische
Vorbild hoch entwickelt sei und daher effizient arbeite, kann an dieser Stelle die
Hypothese geédulert werden, daR sich im Laufe der Evolution eine hexagonale
oder zumindest hexagonaldhnliche Anordnung der Photorezeptoren ausgebildet
haben konnte. In der Tat ist in zahlreichen Untersuchungen gezeigt worden, dal
die Anordnung der Zapfen in der Fovea der Retina eine sehr hohe Regularitat auf-
weist [Wil85, WC83, Wil86, WC87, Wil88, HM87, Yel81]. Es konnte in diesen
Arbeiten dartiber hinaus festgestellt werden, dal} das Mosaik der Zapfen in sehr
guter Naherung einem hexagonalem Abtastraster in der Fovea entspricht (siehe
Abb. 3.4). Durch Zéhlung der Zapfen ist z. B. eine Dichte p = 14.7341/100 pm?

t2 |}

t1

@
Y

t1
ta

Abbildung 3.4: Anordnung der Photorezeptoren (Zapfen) in der Fovea centralis
eines Affens [HM87]. Die hexagonale Gitterstruktur ist deutlich erkennbar.

ermittelt worden, was nach (2.62) einem mittleren Zapfenabstand (cone spacing)
dec = 2.8 pm entspricht. Um das Abtasttheorem von SHANNON zu erfiillen, erga-
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be sich dann mit (2.45) eine Nyquistfrequenz von f, max = 56 cpd. Da das konti-
nuierliche Bild auf der Retina, wie aus Abb. 3.3 (reales Verhalten) hervorgeht, kei-
ne nennenswerten Frequenzanteile tber 50 cpd aufweisen kann, sind keine oder
nur kaum Aliasingfehler in der zentralen Fovea (Fovea centralis) zu vermuten.
Diese Aussage wird in der Tat durch die o.g. experimentellen Untersuchungen
uber Aliaseffekte, vor allem von WiLLIAMS [Wil85], bestétigt.

Aulerhalb der Fovea nimmt die Unregelmé&RBigkeit des Mosaiks allerdings zu.
Berechnet man dennoch die theoretische Nyquistfrequenz aus der Zapfendichte
[Yel81] (Rhesusaffe) unter Annahme eines hexagonalen Rasters, so ergeben sich
die Werte in der folgenden Tabelle:

Exzentrizitat 0° | 6° | 35°
Zapfendichte [1/100 zm?] 19.4 | 1.4 | 0.6
Nyquistfrequenz f, max [Cpd] || 53 | 14 | 95
mittl. Zapfenabstand [ csp] 2.5

Ab der Parafovea (6°) miften demnach Aliasingeffekte auftreten, was aber nicht
in dem Male der Fall ist. Wie in [Yel81] gefolgert wird, beugt das Sehsystem
offensichtlich Aliaseffekten mit Hilfe der Irregularitdt des Mosaiks vor, da ei-
ne Frequenz > f, max keine konkrete Spiegelfrequenz ergibt, sondern durch das
unregelmélige Abtastraster zu einem gestreuten breitbandigen Rauschen fuhrt.
Hieraus 18Rt sich aber auch folgern, dal das biologische Vorbild auRerhalb der
Fovea auf ein periodisches Abtastraster verzichtet und auf eine unregelmaRige,
zufallige Verteilung tibergeht, um weniger Rezeptoren spendieren und damit we-
niger Daten verarbeiten zu mussen. Eine Interpretation, die die Leistungsfahig-
keit eines biologischen Sehsystems unterstreicht. Darliber hinaus kdnnte diese Er-
kenntnis durchaus auch fiir technische Systeme von Interesse sein. Dies wére eine
Alternative zu anderen inhomogenen Abtaststrategien (z.B. logarithmisch-polare
Abtastraster), so dal} vergleichende Untersuchungen lohnen kénnten.

3.1.2 Abtastung mittels Photorezeptoren

Die Abtastung durch die lichtempfindlichen Rezeptoren in der Netzhaut soll nun
systematisch betrachtet werden, um die erste Stufe eines Modells zur biologiena-
hen visuellen Verarbeitung schrittweise zu entwickeln. Die Photorezeptoren der
Retina absorbieren die einfallenden Lichtquanten und setzen diese in ein elek-
trisches Potential fur die Weiterverarbeitung um. Da die Rezeptoren auf einem
diskreten Raster angeordnet sind, sorgen sie also fiir eine Ortliche Diskretisierung
des kontinuierlichen Signals auf der Retina und dienen somit im wesentlichen der
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Abtastung. Das Abtasttheorem von SHANNON geht gewohnlich davon aus, dal
ein kontinuierliches Signal mit einem idealen Impulskamm, d. h. mit unendlich
kleiner Apertur abgetastet wird. Dies ist aber in der Natur und bei technischen
Systemen niemals der Fall. So besitzt zum einen die Flache eines einzelnen Re-
zeptors — sei es auf der Netzhaut oder auch auf einem CCD-Chip — immer eine
endliche Ausdehnung und zudem fallt stets Streulicht seitlich in den Rezeptor
ein. Die resultierende Abtastapertur bzw. das Empfindlichkeitsprofil der Photore-
zeptoren ist ebenfalls endlich und bewirkt somit vor der eigentlichen Abtastung
einen TiefpaBeffekt durch eine gewisse Ortliche Mittelung der Lichtintensitét. Der
\Vorgang der Abtastung ist in Abb. 3.5 als SignalfluRgraph schematisiert.

o(t) z(t) ' (t) ' (k)
Augenoptik Apertur Abtastung
— ho(t) - ha(t) S T L
Objekt Netzhautbild abgetastetes Signal

Abbildung 3.5: Abtastung des Retinabildes mit vorheriger Aperturfilterung.

Der TiefpaReffekt der Apertur kann in einem Abtastsystem unter Umsténden als
Anti-Aliasing-Filter dienen, was auch beim menschlichen Sehsystem auf den er-
sten Blick plausibel erscheint. Deshalb soll zunachst kurz geklart werden, wie
diese Aperturfunktion der Rezeptoren aussieht und inwieweit sie fir die visuelle
Signalverarbeitung von Bedeutung ist. Durch Untersuchungen von Aliaseffekten
kann ansatzweise das Frequenzverhalten der einzelnen Rezeptoren im menschli-
chen Auge geschatzt werden. Die physiologischen Experimente in [Wil85], bei
denen der Einflu der Augenoptik durch die direkte Projektion von Interferenz-
mustern auf die Retina kompensiert wird, lassen z. B. den Schluf? zu, daf} die
Apertur der Rezeptoren einen Tiefpalicharakter mit hoher Grenzfrequenz und ei-
ner Nullstelle bei ca. 150...160 cpd besitzt. Auch Modellierungen der Zapfen
als dielektrische Lichtwellenleiter [SP94] weisen ein Tiefpallverhalten mit einer
recht langsam abfallenden Frequenzcharakteristik und einer Nullstelle bei hohen
Frequenzen auf. Diese Untersuchungen widerlegen die oft anzutreffende Verein-
fachung einer gauRformigen Apertur mit hohem Uberlappungsgrad benachbarter
Rezeptoren. Im Gegenteil, die Ergebnisse deuten auf sehr schmale Aperturfunk-
tionen in der GréRenordnung der Rezeptorausdehnung hin, wodurch die Apertur
eine eher untergeordnete Rolle bei dem Abtastvorgang zu spielen scheint. Falls
dennoch der Einfachheit wegen eine gaul3formige Apertur bei der Modellbildung
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zum Einsatz kommt, so kann demnach nur eine entsprechend geringe Uberlap-
pung, d. h. hohe Grenzfrequenz die biologischen Verhaltnisse widerspiegeln. In
[TWCH91] wird beispielsweise fiir die gautformige Aperturfunktion eine Stan-
dardabweichung von oapertur = 17.6” = 1.4 pm im Ortshereich verwendet, was
Im Frequenzbereich einer Standardabweichung von 32.5 cpd entspricht (Exzen-
trizitat 3.8°). Hier konnte auch ein Vergleich mit [HM98] von Interesse sein.

Wie Dbereits erwahnt, treten bei der Abtastung in der Fovea keine oder nur kaum
Aliasingfehler auf, d.h. die Tiefpallwirkung der Augenoptik ist flir das vorhandene
Abtastraster bereits ausreichend, um das Abtasttheorem zu erfillen. Es ist somit
davon auszugehen, daR der Apertur der Rezeptoren zumindest bei der Abtastung
keine groRe Bedeutung zukommt, und es ist daher méglich und zweckmalig, den
EinfluR der Apertur im diskreten Bereich zu betrachten, was in Abb. 3.6 verdeut-
licht ist.

o(t) x(t) z(k) z' (k)
Augenoptik Abtastung Apertur
—®  ho(t) [ T ——— = huk) ———»
Objekt Netzhautbild abgetastetes Signal

Abbildung 3.6: Ideale Abtastung des Retinabildes und Berlcksichtigung der
Apertur im diskreten Bereich.

Im weiteren ist darauf hinzuweisen, dal} die Aperturfunktion der einzelnen Re-
zeptoren nicht zu verwechseln ist mit dem Ubertragungsverhalten, d. h. mit der
Impulsantwort oder dem rezeptiven Feld der Rezeptoren. Hier spielt ndmlich eine
laterale Kopplung benachbarter Rezeptoren eine wichtige Rolle, die in Verbin-
dung mit der Apertur ein resultierendes rezeptives Feld erzeugt. Die Kopplung
kann mit Hilfe eines weiteren Filters beschrieben werden, was in Abb. 3.7 zu se-
hen ist.

Das resultierende rezeptive Feld eines Rezeptors ergibt sich mit
hr(k) = ha(k) * hi (k) (3.6)

als Kaskadierung des Apertur- und des Kopplungsfilters und ist die Impulsant-
wort des Systemverhaltens zwischen dem ideal abgetasteten Signal z(k) und dem
Signal z (k) am Ausgang des Rezeptors, was in Abb. 3.8 symbolisiert ist.
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z (k) z'(k) zr (k)
Apertur Kopplung
—> ha(k) - hi (k) —

Rezeptorsignal

Abbildung 3.7: Einflul? der lateralen Kopplung benachbarter Rezeptoren.

z (k) zr(k)
Rezeptor
—> hr(k) -

Abbildung 3.8: Zusammenfassung der Apertur und der lateralen Kopplung zur
Impulsantwort eines Rezeptors.

In [SS90] wird das rezeptive Feld der Zapfen einer Katzenretina durch die Diffe-
renz zweier Gaul3funktionen (DoG, difference of gaussian) modelliert. Meist ist
die Beschreibung des Ubertragungsverhaltens mit Hilfe einer GauBfunktion aber
ausreichend [SL96a, SL96Db]. Diese N&herung soll auch im Rahmen dieser Arbeit
fiir die Modellierung der retinalen Signalverarbeitung als Grundlage dienen.

3.2 Modellierung retinaler Neuronen

Die Verschaltung der Zellen selbst zu Beginn der Verarbeitungskette in der Reti-
na ist in biologischen Sehsystemen sehr komplex und bis heute noch nicht voll-
stdndig verstanden. Obwohl in dieser Arbeit eine biologienahe Betrachtung und
Modellierung vorgenommen wird, sollen lediglich die fir uns wichtigen Funk-
tionen der retinalen Informationsverarbeitung berlicksichtigt werden. So liegt der
Schwerpunkt auf der Nachbildung rezeptiver Felder, also auf der ortlichen Filter-
wirkung. Diese Filtereffekte sind auch fir technische Bildverarbeitungssysteme
in Form von Digitalfilterb&dnken von grolRem Interesse, um diverse Vorverarbei-
tungsschritte, wie Rauschunterdriickung oder Merkmalsextraktion bei statischen
Szenen zu realisieren. Zeitliche Vorgange und ebenso nichtlineare Effekte sollen
bewuRt nicht in das Modell einfliel3en.
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Der schematische Aufbau des Retinamodells ist in Abb. 3.9 dargestellt. Wesentli-
che Bestandteile der Verarbeitungskette sind die Rezeptoren, Horizontalzellen und
Ganglienzellen. In der Fovea besteht dartiber hinaus eine eins-zu-eins Verbindung
von den Bipolarzellen zu den Ganglienzellen mit nur wenig Einflu} der Amakrin-
zellen [SL96a]. Deshalb ist das grundlegende Ubertragungsverhalten bzgl. der
ortlichen Filterung und damit das rezeptive Feld der Ganglienzellen und der Bi-
polarzellen n&dherungsweise gleich, weshalb die Bipolar- und Amakrinzellen hier
nicht betrachtet werden sollen.

z(k) zr(k) Ganglienzelle | zg(k)
Rezeptor
— hr(k) »Q »@ — -
O -1
Horizontalzelle

— > hru(k)

Abbildung 3.9: Modellierung der retinalen Verarbeitung durch Rezeptoren,
Horizontal- und Ganglienzellen, die in Zellschichten organisiert sind.

3.2.1 Photorezeptoren

In Anlehnung an [SL96a, SL96b] beschranken wir uns hier auf das rot-grin-
Zapfensystem in der zentralen Fovea, da dieses im Gegensatz zu dem Stabchensy-
stem die hochste ortliche Auflésung ermdéglicht. In diesem Bereich der Retina sind
keine oder nur kaum blaue Zapfen vorhanden. Betrachtet man namlich die Ab-
sorptionskurven der drei Zapfenarten in Abb. 3.10 [Hau94] (siehe auch [ST97]),
welche die spektrale Empfindlichkeit der Rezeptoren widerspiegeln, so ist erkenn-
bar, daR die Kurven der roten und griinen Rezeptoren einen weiten Spektralbe-
reich umfassen und sich auch relativ stark Gberlappen. Aus diesem Grund kann
davon ausgegangen werden, dal} das Signal dieses Zapfensystems auch geniigend
nutzbare Intensitatsinformationen beinhaltet, auch wenn der Farb- und Intensitéts-
gehalt gemischt in einem Pfad zu hoheren Ebenen des Gehirns tbertragen wird.
Die Rezeptoren sollen zudem, wie im vorangegangenen Abschnitt motiviert, ein
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Absorption —=

LbO 500 SbO nm
k-

Abbildung 3.10: Absorptionskurven der Zapfen. Die spektrale Empfindlichkeit
der roten und griinen Rezeptoren weisen eine groRe Uberlappung auf.

hexagonales Abtastraster mit einer Abtastperiode von T}, = 1.25 um, also ei-
nem cone spacing von dec = 2.5 um bilden. Dies stimmt gut mit zahlreichen
Untersuchungen [WC83, WC87, Wil88, HM87, Yel81] und den Ergebnissen aus
Abschnitt 3.1 tberein.

Wie im Abschnitt iber den Abtastvorgang durch die Rezeptoren motiviert, kann
das rezeptive Feld bzw. die Impulsantwort der Zapfen

1 _lTK|?

hr(k) = (TJIQ%)Q e R (3.7

in guter Naherung als gau3férmig angenommen werden. Im Frequenzbereich er-
gibt sich durch die 6rtliche Diskretisierung eine periodisch fortgesetzte GauRfunk-
tion. Im interessierenden Nyquistbereich erhalten wir entsprechend approximativ
die rein reelle Ubertragungsfunktion des Systems

1l
2
|det T|e

Es ist weiter bekannt, dall mit abnehmender mittlerer Beleuchtung die Groéfe der
rezeptiven Felder adaptiv zunimmt, um fir eine groRere Lichtausbeute bzw. ein
besseres Signal-zu-Rauschverhéltnis zu sorgen, da auf diese Weise die Rausch-
komponente starker gemittelt wird. Natlrlich verschlechtert sich hierdurch auch

HR(’U) ~

,—m < vy ST (3.8)
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das Aufldsungsvermogen des Auges. Allerdings wird dieser Nachteil ein wenig
mit der Tatsache kompensiert, dal3 bei schlechteren Lichtverhéltnissen auch die
Pupillen6ffnung und damit auch die Impulsantwort der Augenoptik geweitet wird
(siehe Abb. 3.3). So konnte sich nach [SL96a] die Standardabweichung o g z.B.
in einem Bereich

ocr=15...12c¢csp (3.9)

bewegen. Auch im Frequenzbereich ist zu erkennen, daR die Ubertragungsfunk-
tion des Rezeptors an die Augenoptik angepalit ist, da sich ndmlich fiir die Stan-
dardabweichung von Hp(v) Werte zwischen 12 cpd (starke Beleuchtung) und
1.6 cpd (schwache Beleuchtung) ergeben wiirden. In der vorliegenden Modellie-
rung lassen wir zundchst aber zur Vereinfachung keine Adaption zu und verwen-
den einen festen Wert von o = 1.5 csp, wie bei einer starken Beleuchtung. Erst
in Kapitel 5 bzw. Abschnitt 5.4 gehen wir auf ein adaptives Verhalten der Re-
zeptoren ein. In Abb. 3.11 ist das sich ergebende rezeptive Feld und die Ubertra-
gungsfunktion als Funktion des Ortes

t(k) — [ZEZ;] — Tk (3.10)
bzw. der Frequenz
_ f1(v) _ i T
flv) = [b(v)l =5 T (3.11)

aufgetragen.

Abschlielend ist erwahnenswert, da das menschliche Sehsystem offensichtlich
nicht versucht, die TiefpalBverzerrungen der Augenoptik bei hoheren Frequenzen
bis zur Nyquistfrequenz 50 . . . 60 cpd durch die Verarbeitung in der Retina zu ent-
zerren. Im Gegensatz zu technischen Systemen, in denen je nach Aufgabenstel-
lung durchaus eine Kompensation der Verzerrungen des bildgebenden Prozesses
niitzlich sein kann, scheint das Ubertragungsverhalten der Rezeptorschicht bereits
eine erste Stufe in einer komplexeren Verarbeitungskette zu sein.

3.2.2 Horizontal- und Ganglienzellen

Die Ganglienzellen werden in drei Klassen unterteilt [ST97, DS94, Sla90]. X-
Ganglienzellen (5-Zellen, parvozellulére Zellen) weisen weitgehend ein lineares
zeitliches und ortliches Verhalten auf. Sie sind dicht angeordnet, besitzen Klei-
ne rezeptive Felder und vermitteln hauptséchlich Farb- und Forminformationen.
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Abbildung 3.11: Normierte Impulsantwort und Ubertragungsfunktion der Rezep-
toren auf hexagonalem Abtastraster.

Aus diesem Grund ist dieser Zelltyp Bestandteil des Modells. Die nichtlinearen Y-
Ganglienzellen (a-Zellen, magnozellulare Zellen) hingegen besitzen grolie rezep-
tive Felder und sind nicht so dicht gepackt. Sie gehdren zu den bewegungsemp-
findlichen Zellen. Eine weitere Klasse sind die W-Ganglienzellen (y/6-Zellen),
die ebenfalls groRe rezeptive Felder aufweisen.

In Abb. 3.9 ist zu erkennen, dal die Ganglienzelle als Eingabe das Signal z z(k)
einiger Rezeptoren erhdlt und davon das Signal z g (k) einer Horizontalzelle sub-
trahiert. Systemtheoretisch ist demzufolge die Ganglienzelle ein System mit zwei
Eingangs- und einem Ausgangssignal z¢ (k). Dieses Gangliensignal berechnet
sich dann zu

va(k) = ha(k) sx(k)  mit ho(k) = [1 — hga(k)] <ha(k),  (312)
hra(k)

wobei hg (k) das rezeptive Feld der Ganglienzelle ist. Aus physiologischen Unter-
suchungen ist bekannt, dal} das rezeptive Feld der Ganglienzellen eine Zentrum-
Umfeld-Charakteristik aufweist, welche entweder als Differenz zweier Gau3funk-
tionen (DoG, difference of gaussians) oder als Laplace-Ableitung einer Gaul3-
funktion (LoG, laplacian of gaussian) approximiert werden kann. Das gewunsch-
te rezeptive Feld (hier durch des=desired gekennzeichnet) soll im folgenden eine
LoG-Funktion

2 _ITk|?
ha,des(k) = _ai? [2 - ”CI;IQCH ] ( = )2 e ¢, (3.13)
G G \/27r0é
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sein. In [Hub90] ist nachzulesen, daR das Zentrum des rezeptiven Feldes bei voller
Beleuchtung etwa 10 um (4 csp) betrégt, was die Nullstelle des rezeptiven Feldes
bei 5 um (2 csp) festlegt und damit zu einer Standardabweichung von

og = 5% = v/2csp (3.14)

flhrt. Die gewiinschte Impulsantwort bzw. die Ubertragungsfunktion der Gangli-
enzelle ist in Abb. 3.12 dargestellt.

0 08
2. Zos
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ta(k) [csp] -5 -5 t1(k) [csp] f2(v) [cpd] 20 0 20 fi(v) [epd]

Abbildung 3.12: Normierte Impulsantwort und Ubertragungsfunktion der Gangli-
enzellen auf hexagonalem Abtastraster.

Das retinale Modell ist nun bis auf die Verknlpfung zwischen den Rezeptoren
und Horizontalzellen beschrieben, und es stellt sich die Frage, wie das gesuchte
System hgrg(k) bzw. hgg(k) = 1 — hrg(k) bestimmt werden muB, daR sich
das gewtinschte rezeptive Feld der Ganglienzelle kg ges(k) ,.,optimal” ergibt. Wir
machen also den Ansatz

hG,des(k) = hG(k)
= hro(k)* hr(k) =Y hra(n)-hr(k—n) Vk (315

und reduzieren die Doppelsumme (ber den vektoriellen Laufindex n auf eine Ein-
fachsumme ber j = 1... Ng durch Indizierung der Vektoren n. Entsprechend
beschreiben wir k durch eine Indexmenge 2 = 1... M und erhalten dadurch

Ng
hees(ki) =Y hra(ny) - hr(k; —n;) i=1...M. (3.16)
j=1
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Mit M > Ng liegt nun ein berbestimmtes lineares Gleichungssystem vor, wel-
ches z.B. mittels der Pseudoinversen im Sinne der kleinsten Fehlerquadrate gelost
werden kann. Das auf diese Weise gefundene System h g (k) minimiert die Feh-
lerquadratsumme bzw. den mittleren quadratischen Fehler (MSE, mean squared
error)

Fuase = 27 3 [hgas(k) — h(R)) (3.17)

k

In (3.15) wird deutlich, dai3 das rezeptive Feld der Ganglienzelle h (k) eine linea-
re Uberlagerung von Basisfunktionen ist. Die Basisfunktionen Az (k —mn) sind um
n verschobene Versionen des rezeptiven Feldes der Rezeptoren und werden mit
einem Faktor hpg(m) gewichtet. Mathematisch betrachtet, handelt es sich dem-
nach um die Approximation einer ortsdiskreten LoG-Funktion mittels einer Su-
perposition von abgetasteten GauRfunktionen. Hier ist allerdings anzumerken, daf3
die rezeptiven Felder auch als kontinuierliche Funktionen betrachtet und die Er-
mittlung der Verbindungsgewichte durch eine Approximationsaufgabe kontinuier-
licher Funktionen geldst werden kénnen. Wenn die Funktionen aber nach SHAN-
NON abgetastet werden durfen (Signale sind naherungsweise bandbegrenzt), kann
der Einfachheit wegen ebenso eine diskrete Approximation durchgefiihrt werden.
Man kann hier zeigen, daR die Normalgleichungssysteme mit kontinuierlichen
und abgetasteten Funktionen identisch sind und damit auf die selben Ldsungen
flhren. Ein formaler Beweis soll der Ubersichtlichkeit wegen an dieser Stelle aber
ausbleiben.

Die Anzahl der Rezeptoren Ng, die auf eine Horizontalzelle konvergieren bzw.
die Anzahl der zu berticksichtigenden Koeffizienten der Horizontalzelle, ist fur die
Approximation entsprechend zu beschrénken. Es laf3t sich aber schon im Vorfeld
die Vermutung &uf3ern, dal} der Restfehler der Approximation umso geringer und
damit das Approximationsergebnis umso besser ausféllt, je groRer das Ng, also
die Anzahl der Filterkoeffizienten von hrq (k) gewéhlt wird. Dies scheint plau-
sibel, da mit groRerem Ng mehr Basisfunktionen fiir die Approximationsaufgabe
zur Verfligung stehen. In Abb. 3.13, Abb. 3.14 und Abb. 3.15 werden die Ergeb-
nisse der Approximation mit unterschiedlichem N vorgestellt. Fir eine genauere
Beurteilung sind hier die Impulsantworten als Aufsicht und zudem die Profilan-
sicht in zwei Schnittrichtungen zu sehen. Die Horizontalzelle erhalt jeweils einen
Input von dem direkt ,,dariiber liegenden* Rezeptor (der den selben Ort auf der
Netzhaut représentiert), sowie von sechs Nachbarrezeptoren erster und/oder zwolf
Nachbarrezeptoren zweiter Ordnung. Der Nachbarschaftsring der Ordnung : sei
mit R; C {Z?} bezeichnet. In Tabelle 3.1 ist jeweils der Restfehler der Appro-
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ximation angegeben, und es fallt auf, daR mit zunehmendem N tatsachlich der
mittlere quadratische Fehler kleiner wird.

Ng n < Restfehler Fysg
7 {Ro; Ry} 1.1059 - 10=° | Abb. 3.13
13 | {Ro; Ry} | 4.0212-10710 | Abb.3.14
19 | {Ro; Ry; Re} | 4.5345-10711 | Abb. 3.15

Tabelle 3.1: Restfehler bei der Approximation des rezeptiven Feldes der Gangli-
enzelle.

Es liegt damit ein Modell zur Aufnahme und friihen Verarbeitung visueller In-
formationen in der Netzhaut hoher entwickelter Lebewesen vor. Mit dessen Hil-
fe kann eine biologienahe Simulation und Signalverarbeitung tber eine Kaskade
von drei Teilsystemen (Rezeptor-Horizontalzelle-Ganglienzelle) stattfinden, wenn
die Bildinformation auf einem hexagonalen Abtastraster vorliegt. Die Parame-
ter des Modells konnten entweder direkt durch physiologische Untersuchungen
oder mittels einer Approximationsaufgabe bestimmt werden. Im Hinblick auf eine
Nutzung fur ein technisches Bildverarbeitungssystem ergeben sich diverse positi-
ve Eigenschaften. Zundchst spiegelt die massive Parallelisierbarkeit der neurona-
len Netze die hohe Verarbeitungsgeschwindigkeit biologischer Sehsysteme wider,
was einer technischen Realisierung bei einer parallelen Verarbeitungsarchitektur
grundlegende Vorteile bietet. Dartiber hinaus stellt das Signal der Ganglienzel-
le ein wesentliches Basissignal fiir die ,,h6heren* Verarbeitungsstufen dar, da es
uber den Sehnerv zum Gehirn geleitet wird. Somit ist es mdglich, sogenannte
Zwischensignale zu berechnen, welche fir viele komplexe Aufgaben im biolo-
gischen Sehsystem aber auch fiir technische Systeme nutzlich sein kdnnen. Dies
seien z.B. Blicksteuerungsmethoden, Adaption bei Beleuchtungsédnderungen oder
die effiziente Komposition simpler Zellen im visuellen Cortex des Gehirns, was
im folgenden Abschnitt detaillierter beschrieben werden soll.
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Abbildung 3.13: Approximation des rezeptiven Feldes einer Ganglienzelle, bei
der Ng = 7 Rezeptoren auf eine Horizontalzelle konvergieren.
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Abbildung 3.14: Approximation des rezeptiven Feldes einer Ganglienzelle, bei
der N = 13 Rezeptoren auf eine Horizontalzelle konvergieren.
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Abbildung 3.15: Approximation des rezeptiven Feldes einer Ganglienzelle, bei
der Ng = 19 Rezeptoren auf eine Horizontalzelle konvergieren.
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3.3 Modellierung kortikaler simpler Neuronen

Die Ausgangssignale der Ganglienzellen hoherer Lebewesen werden zunéchst
durch den Sehnerv zum seitlichen Kniehdcker (Corpus geniculatum laterale) Gber-
tragen. Die Verschaltung geschieht hier groRtenteils eins-zu-eins, so dal diesem
Ort eher die Funktion einer Signalverstarkung oder Signalverteilung als einer Si-
gnalverarbeitung zugeschrieben wird [DS94]. So kann die synaptische Ubertra-
gung an die jeweiligen Umweltbedingungen angepal’t werden, also z. B. abge-
schwécht oder sogar abgeschaltet werden. Vom Kniehdcker aus bestehen zwar
Verbindungen zur Colliculi superiores, wo Mechanismen zur Blicksteuerung ab-
laufen. Der groRite Teil der Signale im Kniehdcker wird aber auf die Grofl3hirnrin-
de, den visuellen Cortex abgebildet.

Im primaren visuellen Cortex (genauer Area 17 oder V1) konnten Neuronen nach-
gewiesen werden, dessen Eingangssignale von den parvozelluldren Ganglienzel-
len stammen und deren rezeptive Felder den sogenannten GABOR-Funktionen ah-
neln [PR81, PR82, PR83, KMB82, JP87]. Die Felder dieser einfachen bzw. sim-
plen Zellen besitzen entweder gerade oder ungerade Profile, so dal sie entweder
ausgepragt auf Linien oder Kanten im Eingangsbild antworten. Zudem weisen je-
weils genau zwei benachbarte Zellen dieses entgegengesetzte Verhalten fiir den
selben Ort auf, so dal? diese formal als (komplexwertiges) GABOR-Filter zusam-
mengefalit und damit annéhernd als sog. Quadraturfilterpaar [AKM95] aufgefalit
werden kdnnen. Die Antwort der simplen Zellen ist sowohl richtungs- als auch
frequenzselektiv, so dal die Gesamtheit der simplen Zellen schliel3lich als eine
Art Bandpal3-Filterbank von Linien- und Kantendetektoren unterschiedlicher lo-
kaler Orientierungen und Frequenzkanéle beschrieben werden kann.

Hier ist die theoretische Arbeit von SABATINI [Sab96] nennenswert, in der ein
Modell simpler Neuronen auf der Basis interkortikaler inhibitorischer Kopplun-
gen vorgestellt wird. Die rezeptiven Felder von Neuronen im Corpus geniculatum
laterale sind hier allerdings der Einfachheit halber orientiert gauférmig ausge-
pragt. Ein betrachtetes simples Neuron erhélt dariiber hinaus nun weiteren inhi-
bitorischen EinfluR aus der (nicht unmittelbaren) Umgebung des visuellen Cor-
tex. Diese somit riickwirkenden simplen Neuronen der Umgebung liegen hier in
mehreren, kreisférmigen Einzugsgebieten, wobei die synaptischen Verbindungen
jeweils ebenfalls gaul3formig, aber isotrop gewahlt sind. Es entsteht eine rekur-
siv gekoppelte Struktur simpler Neuronen, deren sich ergebenden rezeptiven Fel-
der - je nach Umgebungseinfluf? - den zweidimensionalen orientierungsselektiven
GABOR-Funktionen sehr dhnlich sein kénnen. Ziel ist es aber offenbar nicht ge-
wesen, ein realistisches biologisches Modell des priméren visuellen Cortex zu
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erstellen. Die Studie zeigt vielmehr auf, welche rezeptiven Felder simpler Zellen
mit der Hilfe interkortikaler Einflisse entstehen kénnen, wobei ein gaborahnli-
ches Verhalten als Sonderfall betrachtet werden kann. Es bleibt hier die berech-
tigte Frage offen, ob dieses Ergebnis immer noch gultig ist, wenn die rezeptiven
Felder der Neuronen im seitlichen Kniehdcker Zentrum-Umfeld-Charakter haben,
wie es bei den Gangliensignalen tatséchlich der Fall ist. Dennoch eréffnen die Be-
trachtungen rekursiver Strukturen neue Moglichkeiten, die es noch im Detail zu
erforschen gilt. Die Interpretation als rekursive Digitalfilter kdnnen sicher auch
hier hilfreich und ratsam sein.

Die hier folgende kortikale Modellierung soll aber ausschliel3lich nichtrekursive
Strukturen verwenden, da der Filterentwurf dann analog zu dem vorangegange-
nen Abschnitt durchgefiihrt werden kann. Daruber hinaus kdnnten spéter dann
immer noch die entstenenden endlichen Impulsantworten durch rekursive Digi-
talfilter realisiert werden, um deren Vorteile auszuschdpfen. In der vorliegenden
Modellierung konvergieren eine Vielzahl von Ganglienzellen auf eine simple Zel-
le, deren Ausgangssignal sich somit zu

z5(k) = has(k) x zg(k) = has(k) * ha(k) xz(k) (3.18)

hs(k)

ergibt, was in Abb. 3.16 veranschaulicht ist.

z(k) za(k) zs(k)
Retina simple Zelle
— > hg(k) [  hgs(k) [———

Abbildung 3.16: Modellierung der kortikalen Verarbeitung.

Es sollen hier gemaR der physiologischen Erkenntnisse beide Klassen der simplen
Zellen betrachtet werden. Das gewdiinschte gerade und ungerade rezeptive Feld
(RF) der simplen Zelle sei also

Reh? (k) rez. Feld gerade,
hs,des (k) = o (3.19)
Imhg 4s(k) rez. Feld ungerade
mit
1 :
B ges (k) = TR RIPRITR) . iwi(Th) - (3.20)

(V2m0102)?
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wobei hS 4es (k) die komplexwertige Impulsantwort des Quadraturfilters sein soll.
Durch eine Drehmatrix R und eine Parametermatrix P [Tra98] der Form

| cos(¢p) sin(¢) _[1/62 0
R= _sin() cos(o) bzw. P = [ 0 1 1/0%] (3.21)

handelt es sich bei den beiden rezeptiven Felder i.allg. um gedrehte (¢ # 0°), el-
liptische (o1 # o2) zweidimensionale Gaufl3funktionen. Im Nyquistbereich ergibt
sich dann die Ubertragungsfunktion

RaHgdes(”):%Hg,des(v) 1H§?;‘es( v) RF gerade,

HS,des('U) = *
Ia Hg,des(v) = %Hﬁ%des(v) 1 H?des( —v) RF ungerade
mit
1 YT T w )\ TRT P
Hg?,des(v) ~ ‘det T| "€ 2(T Y wO) R P R( 'U wO) 7_7T S ’U]_,Q S ﬂ-,

deren Bandpalicharakter in Abb. 3.17 deutlich wird.

= i}

— | 0.8
B 0 »"QV’// ‘ ':;A ..’ —~
5 /"/ /l\’”"*“?” 3

< -0.5 1 !ﬂ’}« /| //“‘///’}A‘\\‘Q'_% -g\o 4

40

N
5 t10k) [cspl fa(v) [cpdl®_, -_40 —;9(3) [cpd]
Abbildung 3.17: Normierte Impulsantwort und Ubertragungsfunktion der simplen

Zellen mit geradem rezeptiven Feld fur das erste Richtungsband (¢ = 0°).

Die rezeptiven Felder der einfachen Zellen im Cortex von Katzen sind z. T. recht
detailliert vermessen. In [JP87] beispielsweise ist die grolRte Modulationsfrequenz
||wol| /27, die durch Approximationsmethoden im Orts- und im Frequenzbereich
bestimmt wurde, mit etwa 0.8 cpd angegeben. Im Vergleich zu den Grenzfrequen-
zen der bereits vorgestellten Komponenten unseres Retinamodells, wie z.B. den
Ganglienzellen, scheint dieser Wert jedoch recht klein zu sein. Die Grunde hierfur
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sind bislang nicht bekannt und kénnen nur durch detailliertere Studien und physio-
logische Messungen geklart werden. Um eine bzgl. des gewdahlten Abtastrasters
moglichst gute ortliche Auflésung zu erreichen, soll im weiteren allerdings der in
[Tra98] vorgestellte Filterentwurf verwendet werden, der einen weiten Frequenz-
bereich nutzt. In der vorliegenden Modellierung soll eine Orientierungsauflésung
von A¢ = 30° gewahlt werden, woraus sich 6 Orientierungsbander (auf 180°) fir
beide Typen der simplen Zellen (gerade und ungerade), also insgesamt 12 Zell-
schichten ergeben.

Wie bei der Bestimmung der Impulsantwort zwischen Rezeptoren und Ganglien-
zellen, erfolgt nun in gleicher Weise eine Approximation des rezeptiven Feldes
der simplen Zellen durch Faltung des rezeptiven Feldes der Ganglienzellen mit
einem noch unbekannten System hgg(k), also

hsdes(k) = hs(k) (3.22)
= has(k) x hg(k) = Y has(n) - ha(k —n). (3.23)

Nach Umschreiben der Doppelsumme in eine Einfachsumme erhalten wir fir
M > Ng wieder ein Uberbestimmtes Gleichungssystem

Ng

hsges(k) = has(ng) -ha(ki—m;)  i=1...M,  (3.24)
j=1

und bestimmen das System hgs (k) so, dal der mittlere quadratische Fehler Fiyse
minimal wird. Hierbei sei hg (k) nicht das ideale rezeptive Feld der Ganglienzelle,
sondern das Ergebnis der Approximation fir unsere Modellierung im vorherigen
Abschnitt. In Tabelle 3.2 ist der Restfehler der Approximation abzulesen, jeweils
in Abhangigkeit von N, der Anzahl der Rezeptoren bei der Approximation der
Ganglienzelle im vorherigen Kapitel. Fir den Fall Ng = 7 Rezeptoren, die auf
eine Ganglienzelle konvergieren, und Ng = 37 bzw. Ng = 61 Ganglienzellen,
die auf eine einfache Zelle konvergieren, sind die Approximationsergebnisse in
Abb. 3.18 bzw. Abb. 3.19 dargestellt.

Analog zu der Approximation des rezeptiven Feldes der Ganglienzelle fuhrt eine
Erh6hung der Anzahl der Ganglienzellen Ng, die auf eine simple Zelle konvergie-
ren, zu einem kleineren Restfehler. Hier konnte allerdings weiter beobachtet wer-
den, daR eine Verbesserung des Approximationsergebnisses bei der Ganglienzelle
bei festem Ng nicht unbedingt auch eine bessere Approximation fiir die einfache
Zelle bedeutet. Erhdht man z.B. die Zahl der Rezeptoren, die auf eine Ganglien-
zelle konvergieren von Ng = 7 auf Ng = 13, was im vorherigen Abschnitt eine
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Ng | Ng n e Restfehler Fyse

7 | 37 | {Ro; Ri; Re; Rs} 4.4015-10~" | Abb. 3.18
61 | {Ro; Ry; Ro; R3; Ry} | 2.8677-107% | Abb. 3.19
13 | 37 | {Ro; Ri1; Ro; R3} 1.4742 - 1076
61 | {Ro; Ry; Ro; R3; Ry} | 3.3335-1077
19 | 37 | {Ro; Ri1; Ro; R3} 2.7315-10~7
61 | {Ro; R1; Ro; R3; Ry} | 1.3635-1078

Tabelle 3.2: Restfehler bei der Approximation des rezeptiven Feldes der geraden
simplen Zelle (basierend auf der Approximation der Ganglienzelle mit Ng Re-
zeptoren).

bessere Approximation bedeutete (siehe Tabelle 3.1), so verschlechtert sich fiir ein
festes Ng = 37 das Ergebnis bei der einfachen Zelle von Fyysg = 4.4015 - 10~7
auf Fiyse = 1.4742 - 1075, Dies kann dadurch begriindet sein, daR sich bei
N¢g = 13 zwar ein kleinerer mittlerer quadratischer Fehler ergibt, sich die Ro-
tationssymmetrie des rezeptiven Feldes der Ganglienzelle jedoch qualitativ etwas
verschlechtert (vgl. Abb. 3.13 und Abb. 3.14). Die Verwendung eines alternativen
Fehlermalles wére zumindest flr die Approximation der Ganglienzelle ggf. von
\orteil.

Fur die weitere Modellierung sei Ng = 7 oder Ng = 19 gewaéhlt, je nach ge-
forderter Genauigkeit. Hier sollte allerdings immer bericksichtigt werden, daf}
die in der Biologie gemessenen rezeptiven Felder im Laufe der Evolution enstan-
den sind, aber auch nur ndherungsweise mit GABOR-Funktionen in der Literatur
beschrieben werden konnten, so daR das tatsachliche Verhalten natirlich davon
abweichen kann. Unter diesem Aspekt ist die geringere Anzahl der Verbindungen
Ng = 37 in den meisten Fallen vorzuziehen, da mit Ng = 61 der mittlere quadra-
tische Fehler lediglich etwas mehr als halbiert wird, die Anzahl der notwendigen
Berechnungen aber auch fast verdoppelt wird.
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Abbildung 3.18: Approximation des rezeptiven Feldes einer simplen Zelle, bei
der Ng = 37 Ganglienzellen auf eine simple Zelle konvergieren (Ng = 7).
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Abbildung 3.19: Approximation des rezeptiven Feldes einer simplen Zelle, bei
der Ng = 61 Ganglienzellen auf eine simple Zelle konvergieren (Ng = 7).



66 Kapitel 3 Lineares Modell der friihen visuellen Verarbeitung

In Abb. 3.20 ist schlieBlich der SignalfluBgraph und in Abb. 3.21 sind die re-
zeptiven Felder der gesamten bisherigen Modellierung des biologisch motivierten
Sehsystems fiir N¢ = 7 und Ng = 37 zu sehen.

Dargestellt sind die rezeptiven Felder eines Rezeptors, einer Ganglienzelle und
zweier Paare einfacher Zellen hg,o und hg,1 in einer Orientierung von 0° und
30°. Die Gesamtheit aller 6 Orientierungen auf 180° ergibt sich jeweils aus einer
Koordinatendrehung um 60° auf dem hexagonalem Raster der beiden Grundori-
entierungen gemaf

0 W2, (Ragk)  i=0,2,...,10,
hg (k) =  (i-1)/2 (3.25)
hg (Reo k) ,i=1,3,...,11.

Hierbei ist Rgo eine diskrete Drehmatrix, welche eine Koordinatendrehung auf
dem diskreten Abtastraster k um 60° erwirkt. Sie ergibt sich aus der Drehmatrix

[ 172 V/3)2
Reo = l—\/?/2 1/2 ] (3.26)

fur die kontinuierlichen Koordinaten ¢ = Tk durch die Identitat

ReoTk =T Reok vk (3.27)

< Reo =T 'ReT = E _01] : (3.28)
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Eingangsreiz 1aRt sich das Antwortverhalten der Verarbeitungskette schichtwei-

Abbildung 3.20: SignalfluBgraph der Modellierung. Uber einen impulsartigen
se messen.
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Abbildung 3.21: Approximierte rezeptive Felder des biologischen Sehsystems.
oben: Rezeptor und Ganglienzelle, mitte/unten: simple Zellen der Orientierung
0° und 30°.
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3.4 Eigenschaften der Modellierung

Die Architektur des entwickelten Verarbeitungssystems, welches einige Aspekte
der biologischen Verhaltnisse bei hoheren Lebewesen widerspiegelt, weist einige
Vorziige auf, die nicht nur fir das biologische Vorbild, sondern auch fiir technische
Systeme von Interesse sind. In diesem Zusammenhang ist herauszustellen, daf3
nicht nur die eigentlichen Ausgangssignale der einfachen Zellen berechnet wer-
den. Die Verarbeitungskette liefert, wie bereits geschildert, dartiber hinaus weitere
wertvolle Signale. Diese sogenannten Zwischensignale werden beim biologischen
Vorbild fir diverse visuelle Aufgaben eingesetzt. Dem Ausgangssignal der Gan-
glienzellen kommt hierbei eine besondere Bedeutung zu. Es wird beispielsweise
fur Blicksteuerungsmechanismen und fur die Adaption bei sich &ndernden Licht-
verhaltnissen verwendet. Wie in [Har82] gezeigt, erscheint es aber auch plausibel,
dal® mit Hilfe des Gangliensignals rezeptive Felder gleicher Form aber groRerer
ortlicher Ausdehnung erzeugt werden konnen, die wiederum auf einfache Zellen
konvergieren. Auf diese Weise ergeben sich &hnliche parallele Verarbeitungspfa-
de, aber mit unterschiedlichen Ortsauflésungen. Diese automatisch mitberechne-
ten Zwischensignale, die in der Biologie einer enormen Einsparung von Neuro-
nenverbindungen zugute kommen, sollten demnach auch bei der Realisierung ei-
nes technischen Gesamtsystems berticksichtigt und ausgenutzt werden.

Eine weitere wichtige Eigenschaft der kaskadenformigen Struktur ist die hier-
in implizierte Aufwandsreduktion gegentiber einer direkten Implementierung der
einfachen Zellen als Feed-Forward Netz mit einer Eingangsneuronenschicht (ab-
getastete Bilddaten) und der Ausgangsneuronenschichten (einfache Zellen ver-
schiedenen Typs und Orientierung) bzw. einem nichtrekursiven Digitalfilter. Der
Einfachheit halber wollen wir folgende Abschatzung betrachten, in der die Impul-
santworten der Systeme jeweils quadratisch begrenzt sein sollen. Das rezeptive
Feld einer einfachen Zelle hat eine radiale Ausdehnung bis etwa R, die Im-
pulsantwort hg qes(k) ist also vereinfacht mit dem quadratischen Gebiet k12 =
—N,...,N bis N = 7 zu beriicksichtigen. Daraus ergeben sich (2N +1)2 = 225
synaptische Verbindungen bzw. Multiplikationen und Additionen. Dieser Auf-
wand muf3 natirlich fiir jede Orientierung spendiert werden, woraus sich dann
insgesamt 12 - 225 = 2700 Verbindungen ergeben. Der erforderliche Aufwand
bei der vorliegenden Modellierung ist in Tabelle 3.3 fiir zwei Genauigkeitsstufen
nachzuvollziehen. Wird ein grol3er Modellierungsaufwand betrieben, um eine ho-
he Approximationsgute zu erreichen, so sind bei der Simulation im Vergleich zur
direkten Implementierung lediglich nur noch etwa 40% an synaptischen \erbin-
dungen zu spendieren, was einer beachtlichen Reduktion an arithmetischen Ope-
rationen gleichkommt. Bei der etwas schlechteren Modellglite betrégt die Anzahl



70 Kapitel 3 Lineares Modell der friihen visuellen Verarbeitung

Anzahl der synaptischen
Anzahl der Verbindungen (2N + 1)2 [NV]
Orientierungen | kg hrg  has | X
1 81[4] 9[1] 8L[4] ] 171
12 12-81 | 1062 (39.3%)
1 81[4] 9[1] 49[3] | 139
12 12.49 | 678 (25.1%)

Tabelle 3.3: Berechnungsaufwand fir die Simulation des Modells. Die Anzahl der
synaptischen Verbindungen gibt die Anzahl der Multiplikationen und Additionen
wieder.

der Berechnungen noch weniger. Die wesentlichen Vorteile einer Kaskadierung
in Subsysteme kdnnen wie folgt zusammengefal3t werden:

e wertvolle Zwischensignale werden mitberechnet (Adaption, Blicksteuerung)
e andere Auflésungsebenen kdnnen mit wenig Aufwand berechnet werden
e zusatzliche Parallelisierbarkeit (Bildsequenzen)

e weniger Neuronenverbindungen gegenuber einer Direktrealisierung
(~ —60...75%)

Abschliel’end sollen die Ergebnisse einer Simulation des Systems mit einem Beli-
spieleingangsbild (Szene einer Raddemontage) betrachtet werden. In Abb. 3.22
(oben) ist zunachst das zur Verfiigung stehende Bildsignal einer CCD-Kamera auf
rechtwinkligem Raster und die auf das hexagonale Raster umgerechneten Bildda-
ten dargestellt. Darunter sind die Aktivitaten der Rezeptoren und Ganglienzellen
der Modellierung zu sehen.

Die Ausgangssignale der kortikalen Verarbeitungssysteme sind in Abb. 3.23 zu
sehen. Der Ubersichtlichkeit wegen sind zunachst nur die Antworten der geraden
und ungeraden einfachen Zellen fiir eine Orientierung (0°) dargestellt, welche auf
vertikale Konturinhalte der Szene ansprechen. In der unteren Zeile sind dartiber
hinaus gewisse Verkniipfungen dieser Signale zu sehen, welche bereits als eine
Art komplexe Zellen aufgefal3t werden kdnnen. Dies ist zundchst die Summe der
quadrierten Signale der geraden und ungeraden simplen Zellen einer bestimmten
Orientierung (in der Abbildung: 0°)

20i(k) = (252i-1(k))* + (z5.2:(K)) i=1...6 (3.29)
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CCD-Bild (rechtwinkliges Raster) hexagonales Raster (Ausschnitt)
r'

Rezeptoren Ganglienzellen

Abbildung 3.22: Simulation des Modells (Retina). oben: Bild einer CCD-Kamera
und die auf ein hexagonales Raster umgerechneten Bilddaten. unten: Ausgangs-
signal der Rezeptor- und Ganglienzellenschicht auf dem hexagonalen Raster.

was bei der technischen Realisierung einer GABOR-Filterbank dem Betrag der
komplexen Filterantwort entspricht. Schlie3lich ist in Abb. 3.23 noch zur Veran-
schaulichung der Arbeitsweise die lineare Uberlagerung aller Orientierungen

6
zo(k) =) zou(k) (3.30)
i=1

dargestellt. Der Betrag der komplexen GABOR-Filterantwort wird in technischen
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simple Zellen (0°, gerade) simple Zellen (0°, ungerade)

Verkniipfung fir 0° Uberlagerung aller Orientierungen

Abbildung 3.23: Simulation des Modells auf hexagonalem Raster (Cortex). oben:
Antwortsignal der geraden und ungeraden simplen Zellen (0°). unten: Verkn(p-
fung der Signale gerader und ungerader simpler Zellen (0°) bzw. Uberlagerung
aller Orientierungen.

Systemen vielfach als einfaches Modell fur die komplexen Neuronen verwendet
[SvdM97]. Neurophysiologische Untersuchungen des Antwortverhaltens komple-
xer Neuronen von POLLEN und RONNER [PR83, PR82] fuhren hingegen auf ein
periodisches komplexes Modellneuron, welches die exzitatorischen Anteile der
Antworten von insgesamt vier simplen Neuronen erhélt. Es bleibt allerdings un-
klar, ob das von POLLEN und RONNER nachgewiesene periodische komplexe Mo-
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dellneuron Vorteile gegeniiber dem Betrag der GABOR-Antwort fur technische
Systeme aufweisen konnte. Abschlielend sei hier erwéhnt, dal3 der Begriff der
»komplexen Zelle* von der Idee des Neocognitron [FOH94, Fuk95, MV96] abzu-
grenzen ist. Bei diesem hat das komplexe Neuronen im wesentlichen die Aufgabe,
eine Lageinvarianzbildung zu realisieren. Die Weiterverarbeitung zu komplexen
Neuronen soll im Rahmen dieser Arbeit allerdings nicht ndher behandelt werden.

3.5 Reduktion der Netzstruktur

Bei der beschriebenen Vorgehensweise zur Approximation der gewiinschten re-
zeptiven Felder und damit der Bestimmung der synaptischen Gewichte bzw. Fil-
terkoeffizienten wurden die synaptischen Verbindungen bislang immer so gewahlt,
daf sie innerhalb bestimmter Hexagone mit einem Radius R, liegen. Die Koeffi-
zienten wurden dann so errechnet, dal? der mittlere quadratische Fehler minimal
ist. Allerdings sollte hier nicht unerwéhnt bleiben, daR bei fest vorgegebener An-
zahl der synaptischen Verbindungen die Orte dieser Verbindungen einen Einfluf3
auf das Approximationsergebnis haben kénnen. Bei der Approximation der Gan-
glienzelle war dies weniger deutlich, da die zu approximierende Impulsantwort
rotationssymmetrisch ist. Bei der Modellierung der einfachen Zellen allerdings
haben die Orte einen groRRen Einflul3. Um die optimalen Orte zu finden, kann z.B.
wie folgt vorgegangen werden. Mdchte man eine feste Anzahl an Verbindungen
Ng = 37 im Modell verwenden, so kdnnte zundchst die optimale Ldsung mit
deutlich mehr Verbindungen, z. B. Ng = 61, berechnet werden. AnschlieRend
werden alle 61-37 Verbindungen, die das kleinste Gewicht besitzen, vernachlés-
sigt. Wie in Abb. 3.19 zu erkennen, sind einige Koeffizienten der einfachen Zelle
in der Tat betragsméalig sehr klein. Auf diese Weise erhalt man allerdings nur ein
suboptimales Ergebnis.

Die gegebene Problemstellung ist in der linearen Algebra unter dem Begriff subset
selection bekannt. Das Uberbestimmte Gleichungssystem

Ns
hsdes(ki) = Y has(n;) - ha(ks — n;)) i i=1...M (3.31)
j=1
ist eine lineare Regressionsaufgabe und kann als Matrixgleichung
Az =1b ,A e RM*Ns g ¢ RMs,b e RM (3.32)

geschrieben werden. Bestimmt man den Ldsungsvektor im Least-Square Sinne
optimal, so ergibt sich ein Restfehler

|Azrs —b|*=b"b—b"A(ATA)"1ATH > 0. (3.33)
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Wird nun eine Untermenge der Spalten von A mit einer festen Anzahl Ng <
Ng an Spaltenvektoren ausgewahlt, so ergibt sich i.allg. ein groRerer Restfehler.
Die Aufgabe besteht somit darin, diejenigen Ng Spalten auszuwahlen, die den
kleinsten Restfehlerzuwachs verursachen.

GoLus stellt in [GVL96] eine Methode zur subset selection mit Hilfe der Singu-
larwertzerlegung vor, die aber den Zielvektor b nicht weiter betrachtet. Hier wer-
den diejenigen Spalten von A gesucht, die am starksten linear unabhéngig sind
und damit RM am besten aufspannen. Dies filhrt aber nicht unbedingt zu einer
Spaltenauswahl mit dem kleinsten Restfehler bzgl. b, was ebenfalls von GoLuB
diskutiert wird. Es ist weiter bekannt, dal3 die Losung des least-square Problems
mit Hilfe einer orthogonalen Zerlegung der Matrix A bestimmt werden kann,
was oft als orthogonal-least-square bezeichnet wird. Hierauf aufbauend wird in
[CBL89, CW95] ein Verfahren zur subset selection gezeigt, welches sukzessive
die besten Spalten von A sucht (forward selection) und den Ldsungsvektor be-
stimmt. In [SS97, VHV87, KDB93, CCG91] sind verwandte Strategien zu diesem
Thema veroffentlicht. Fir weitergehende Untersuchungen sei hier auch das Buch
[Mil90] genannt, welches sich ausschlieRlich mit diesem Thema befalt und eine
gute Ubersicht Gber bestehende und neuere Verfahren geben kann.

Die genannten Methoden mdssen allerdings nicht notwendigerweise das globale
Optimum finden. In der Tat zeigen heuristische Untersuchungen, daB in unse-
rem Fall lediglich suboptimale Losungen erreicht werden. Nur der \Vergleich aller
(%,S) moglichen Ng-dimensionalen Untermengen der Spalten von A liefert die
optsimale Auswahl. Will man z.B. bis zu einem Radius R4 (also Ng = 61) die
optimale Untermenge mit Ng = 37 Elementen suchen, so ergeben sich bereits
(53) = 5.94 - 10'® magliche Kombinationen. Diese Suche (exhaustive search)
fihrt zwar gewil3 auf die optimale Auswahl, allerdings nur mit erheblichem Re-
chenaufwand. Im vorliegenden Fall kann allerdings die Symmetrie der zu appro-
ximierenden Funktionen eine erhebliche Reduktion des Suchaufwandes bedeuten.
Hierzu ist die Darstellung in Abb. 3.24 hilfreich, in der die optimalen Verbindun-
gen nach solch einer Suche gezeigt sind. Dabei wird der Suchraum jeweils auf den
ersten Quadranten reduziert (e), da sich die Orte in den tibrigen Quadranten (graue
Kreise) durch entsprechende Spiegelungen an den Achsen ergeben. Die Spiege-
lachsen sind hier immer die Symmetrieachsen der zu approximierenden Funktion.

Der erste Quadrant inklusive der Achsen umfalt in unserem Beispiel 19 Koor-
dinaten, aus denen alle moglichen Untermengen mit Ng Elementen (o) fiir die
Suche in Frage kommen. Hier ist zu beachten, daR die Positionen auf den Ach-
sen nicht zweimal, sondern lediglich einmal gespiegelt werden, der Ursprung
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Abbildung 3.24: Reduktion der Suche nach den optimalen synaptischen Verbin-
dungen auf den ersten Quadranten.

hingegen wird nicht gespiegelt. Damit nach der Spiegelung dennoch insgesamt
Ng = 37 Koordinaten entstehen, wére Ng = NT,SJ = 9 zu klein dimensioniert.
Im schlimmsten Fall sind ndmlich die Achsen vollstandig besetzt, so dal? sich aus
der Bedingung

I _ o ) mn_ 7y,
Ny=2442-2+ 1 +(Ni—7)-4 (3:34)
t1-Achse  to-Achse  Ursprung Quadranten
N —1
— N/ — ST?’ 47 (3.36)

und mit Ng = 37 die Dimension der reduzierten Untermenge zu Ng = 13 ergibt.
Es sind dann nattrlich nur diejenigen Kombinationen zu betrachten, die nach der
Spiegelung insgesamt Ng = 37 Koordinaten aufweisen. Wird also diese Symme-
trie ausgenutzt, so reduziert sich der Suchaufwand auf (}g) = 27132, was recht
schnell mit der heutigen Rechenleistung bewaltigt werden kann. In Abb. 3.25 ist
zu erkennen, inwieweit sich der Restfehler durch die Suche der optimalen syn-
aptischen Verbindungen weiter um etwa die Halfte reduzieren &Rt (vgl. hierzu
Tabelle 3.2).

Bei der Verwendung spezieller Neurohardware zur Simulation neuronaler Net-
ze, wie z. B. in [Fra97, Wol01] und im folgenden Kapitel beschrieben, welche
beliebige, auch sparliche synaptische Verbindungen realisieren kann, schlagt sich
solch eine Reduktion der Netztopologie direkt in der benétigten Rechenzeit nieder
und flhrt demzufolge zu drastischen Geschwindigkeitsvorteilen, die auf jeden Fall
genutzt werden sollten. Wird die Simulation des neuronalen Netzes bzw. Digital-
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filters mittels diskreter Faltung im Ortsbereich ausgefiihrt, so bleiben auch hier
die Vorteile durch die beschriebene Reduktion der Netzstruktur erhalten, wenn
die auf null gesetzen Filterkoeffizienten entsprechend bertcksichtigt werden und
nicht zu einer Multiplikation bei der Filteroperation fiihren. Bei einer Filterung
durch Multiplikation im Frequenzbereich, hat die Anzahl der Filterkoeffizienten
ungleich null allerdings i.allg. keine Auswirkungen auf die Rechenzeit.
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Abbildung 3.25: Approximation des rezeptiven Feldes einer simplen Zelle mit
optimaler Wahl der synaptischen Verbindungen (Ng = 7, Ng = 37).
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KAPITEL 4

Realisierung pulscodierter
Mechanismen

Durch neurophysiologische Untersuchungen weil man, daf die Informationsver-
arbeitung im biologischen Sehsystem ab den Ganglienzellen in einer pulscodier-
ten Form geschieht. Dabei codiert das Neuron seinen momentanen Aktivitats-
zustand in ein zeitliches Signal, eine Pulsfolge oder Spikes, deren Pulsfrequenz
die Erregung der Zelle widerspiegelt. Dieses Signal wird tber das Axon zu den
Nachfolgeneuronen Ubertragen. An den Dendriten der Zielneuronen wird dann
durch Aufsummierung oder Integration der Spikes die Aktivitat des Vorgéanger-
neurons rekonstruiert. Hierdurch kommt die Zeit als weitere Dimension und auch
als weiterer Informationstrager hinzu. Wie namlich verschiedene Studien zeigen,
wird auch die Phaseninformation der Pulsfolgen fiir Wahrnehmungsmechanismen
genutzt [ERAD89, ERAD90]. Diejenigen Neuronen, die ein dhnliches Merkmal
reprasentieren, wie eine kontinuierliche Linie in ihrem rezeptiven Feld, synchro-
nisieren so ihre ausgesendeten Pulsfolge. Dieser Mechanismus ist naturlich fur
viele Aufgaben nutzlich. Die Segmentation einzelner Objekte oder die Trennung
von Objekt und Hintergrund seien hier als Beispiel genannt.

Die genannten Synchronisationseffekte selbst sind zwar nicht Gegenstand der vor-
liegenden Arbeit (der interessierte Leser sei auf andere Arbeiten verwiesen, wie
[Sch00]). Dennoch ist es von groflem Interesse, das im vorangegangenen Kapi-
tel vorgestellte Netzwerk, welches das lineare Filterverhalten der frihen visuel-
len Verarbeitung beschreibt, um diese pulscodierenden Strukturen zu erweitern.
Durch die Kombination eines gaborahnlichen Verhaltens zur Konturextraktion auf
einem hexagonalen Raster und eine pulscodierte Verarbeitung ergibt sich hier-
durch ein wertvolles Vorverarbeitungssystem fir pulscodierte neuronale Netzwer-
ke (PCNN) [TWHOO0, Thi00, Wol01]. Dabei setzen die Ganglienzellen ihre Akti-
vitdten in Pulsraten um und die simplen Zellen kénnen als ECKHORN-Neuronen
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entworfen werden. Auf dieses pulscodierte Vorverarbeitungssystem kdnnten dann
weitere Studien aufbauen, um z. B. die Synchronisationsmechanismen néher zu
untersuchen.

Im folgenden Abschnitt wird das flr pulscodierte Netzwerke vielfach eingesetz-
te ECKHORN- Neuron vorgestellt. Dieses Neuronenmodell ist zunédchst flr die
Aufgabenstellung so zu parametrisieren, dal’ die Codierung und Decodierung der
Membranpotentiale auf eine lineare Weise geschieht. Dies ist wichtig, da das \Ver-
halten bzgl. der 6rtlichen Filterwirkung bis hin zu den simplen Zellen allgemein
als nédherungsweise linear angenommen wird.

Der konsequente Schritt ist dann die Erweiterung des linearen Modells auf eine
pulscodierte Verarbeitung, was theoretisch hergeleitet werden soll und auf eine
spezielle Netzstruktur fihrt. Die Betrachtungen zeigen, da prinzipiell jedes li-
neare neuronale (Feed-Forward) Netzwerk (oder nichtrekursive Digitalfilter), wie
die simplen Zellen, komplett mittels ECKHORN-Neuronen realisiert werden kann,
ohne daR dabei die Linearitat verloren geht.

Erst durch den Einsatz von Spezialhardware ist aber die Simulation solch grof3er
pulscodierter neuronaler Netze in akzeptabler Rechenzeit mdglich. Abschliel}end
ist deshalb die Implementierung auf einer in der Arbeitsgruppe HARTMANN ent-
wickelten Neurocomputerarchitektur SPIKE bzw. ParSPIKE gezeigt, welche das
EckHORN-Neuron als grundlegenden Baustein verwendet [FHJS99, HFSW97,
WHR99]. Wie experimentelle Untersuchungen zeigen, ist allerdings das ECKHORN-
Neuron flr die geforderte Umsetzung nicht ausreichend. Erst eine Modifikation
durch Verbesserung des Spike-Decoders kann die numerischen Probleme der Di-
gitalrealisierung mit Erfolg beheben.

4.1 Modellneuron von ECKHORN

Die ECKHORN-Neuronen besitzen Dendriten flr verschiedene dendritische Po-
tentiale. Fir die vorliegende Modellierung in Abb. 4.1 werden nur zwei Den-
dritenbdume (E'P1 und I P) berucksichtigt. Einer dieser beiden Dendritenbdume
sorgt flr einen exzitatorischen (£ P1) und der andere fiir einen inhibitorischen
EinfluB (I P) auf das Membranpotential (M P), wobei die Dendritenpotentiale
uber sogenannte Leckintegratoren akkumuliert werden. Fir die Aussendung einer
Pulsfolge (Spikes) wird das Membranpotential des Neurons in eine riickgekop-
pelte Verarbeitungsstufe mit einer dynamischen Schwelle (DT') gefuhrt, die als
Spike-Encoder bezeichnet wird und sehr ahnlich zu der Struktur von FRENCH
und STEIN ist [FS70]. Dieses weit verbreitete Modell Neuron wird fiir die Si-
mulation pulscodierter Mechanismen eingesetzt und wurde bereits auf spezieller
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Neurohardware implementiert [FHJS99, HFSW97, WHR99]. Aus diesem Grund
soll es auch hier Anwendung finden und etwas detaillierter diskutiert werden.

-

Excitatory
Dendrites

spikg

Inhibitory
Dendrites

- 9,

Abbildung 4.1: Das ECKHORN-Modellneuron. Der Spike-Decoder (links) und
Spike-Encoder (rechts) sind farbig hinterlegt.

In der Abb. 4.1 sind die beiden wesentlichen Komponenten des Modell Neurons
gekennzeichnet: der Spike-Encoder (rechts) und der Spike-Decoder (links). Der
Spike-Encoder eines Neurons 7 (an der Position k;) erzeugt ein Zeitsignal, die
sogenannte Pulsfolge oder Spikes, so daR die Frequenz dieser Spikes das (mehr
oder weniger stationdre) Membranpotential M P bzw. die Erregung des Neurons
codiert. So wird das ortsdiskrete Signal z(k) in ein (Puls-) Signal z,(k,t) des
Ortes und der Zeit umgesetzt, was in Abb. 4.2 (links) schematisch dargestellt ist.
Diese Operation kann auch als Raten-Puls-Umsetzung bezeichnet werden. Der
Spike-Decoder in Abb. 4.2 (rechts) hat die entgegengesetzte Aufgabe, die Ruck-
gewinnung der Erregung eines Vorgangerneurons zu rekonstruieren. Dazu wer-
den die eintreffenden Spikes derart integriert, dafl das Ausgangssignal des Spike-
Decoders mit

z(k) = tliglo T, (k,t) = z(k) (4.1)
gegen den Mittelwert der Pulsfolge konvergiert, da dieser die gewiinschte codier-
te Information bereithalt. Im ECKHORN-Neuron ist dieser Decoder durch einen
sogenannten Leckintegrator realisiert, was ein rekursives Tiefpalifilter erste Ord-
nung darstellt. Durch die zugehorige Differenzengleichung

yn)=e Y z(n—1)+ e Vy(n —1) (4.2)
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Abbildung 4.2: Prinzipielle Funktionsweise eines Spike-Encoders (links) und ei-
nes Spike-Decoders (rechts).

N

kann auf die z-Ubertragungsfunktion

—-1/7,—1
c 2 (4.3)

(z) =

1 — e—l/TZ—l

geschlossen werden, wobei die Zeitkonstanten der exzitatorischen und inhibitori-
schen Eingange gleich gewéhlt werden sollen (rgp1 = 71p = 7).

Um eine sichere Codierung und Decodierung zu gewahrleisten, sind einige Para-
meter zu dimensionieren. Dazu muR zunachst eine passende Einstellung fiir den
Spike-Encoder gefunden werden, welcher die Aktivitdt der Ganglienzellen auf
eine moglichst lineare Weise in eine Pulsfolge passender Pulsfrequenz umsetzt.
Die Parameter der dynamischen Schwelle (DT) sind die Zeitkonstante 7pr des
Leckintegrators, das Inkrement A DT und der Offset DT der Schwelle. Wie Un-
tersuchungen zeigen, fuhrt ein 7p7 = 32 in Kombination mit ADT = 16 auf eine
nahezu lineare Umsetzung der Ganglienaktivitat in eine Pulsfrequenz. Sehr gerin-
ge Aktivitaten werden mit DTos = 4 unterdriickt. In einem weiteren Schritt sind
die Leckintegratoren fiir das dendritische Potential der simplen Zellen passend zu
dimensionieren. Diese dendritischen Potentiale miissen gegen die selben Werte
wie die codierten Ganglienaktivitaten konvergieren, die durch die Frequenzen der
eintreffenden Pulsfolgen reprasentiert werden. Wie sich gezeigt hat, ist mit einer
Zeitkonstanten 7 = 1000 der Integrationseffekt ausreichend. Die gesamte Codie-
rung und Decodierung kann auf diese Weise recht genau linear realisiert werden,
was in Abb. 4.3 illustriert ist.
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Abbildung 4.3: links: Rekonstruktion der Ganglienaktivitat (0...255) aus den
Pulssignalen mit dem Leckintegrator nach ECKHORN. rechts: Lineare Codierung
der Ganglienaktivitét Uber die Spikefrequenz (— gewlnscht, o erzielt).

4.2 Erweiterung des linearen Modells

Fir die Implementierung mit ECKHORN-Neuronen muf} das bestehende in Ka-
pitel 3 entwickelte Modell fur eine pulscodierte Informationsverarbeitung erwei-
tert werden. Dazu mul zun&chst berticksichtigt werden, dal Pulse oder Spikes
in einem pulscodierten neuronalen Netzwerk zeitdiskrete Ereignisse ohne \or-
zeichen und Amplitudenwerte sind. Das Ausgangssignal der Ganglienzellen und
simplen Zellen (und auch Zellen anderer kortikaler Areale) in einer ratencodierten
Beschreibung nehmen jedoch i.allg. durchaus sowohl positive als auch negative
Werte an, z.B. im Bereich von -255 bis 255. Dies fiihrt auf die Notwendigkeit, das
bisherige Modell schrittweise zu erweitern. Der Einfachheit wegen beschranken
wir uns im folgenden auf die fur die vorliegende Arbeit interessierende Neuro-
nenschicht der simplen Zellen, was in Abb. 4.4 schematisch fir einen Typ simpler
Zellen dargestellt ist. Das Ziel ist die Umsetzung der Antworten der Ganglien-

kel TS5
| optischer Nerv o hGsi | »

Abbildung 4.4: Die pulscodierten Gangliensignale werden tber den optischen
Nerv tbertragen und konvergieren auf die simplen Zellen (hier ist nur ein Typ
simpler Zellen dargestellt).

zellen und simplen Zellen in Pulsfolgen. Fur diesen Zweck missen sowohl die
positiven als auch die negativen Anteile der Antworten separat in zwei Schichten
aufgebaut werden. Generell kann aber jedes Signal = gemaR

r=xt -z ,oTT >0 (4.4)



84 Kapitel 4 Realisierung pulscodierter Mechanismen

in zwei positivwertige Anteile
T =2 u(x) und x” = —x-u(—x) (4.5)

aufgeteilt werden. Dabei sei

1 ,z>0
u(x):{ 0 .z<0 (4.6)

die Sprungfunktion. Diese Transformation wird in Abb. 4.5 (oben) fur die Gan-
glienzellen und in Abb. 4.5 (unten) fur die simplen Zellen eingesetzt. Da die ver-
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Abbildung 4.5: Représentation des positiven und negativen Anteils der Zellant-
worten in zwei Schritten fur die Ganglienzellen (oben) und den simplen Zellen
(unten).

wendeten Signale nun positiv sind, kdnnen sie mit Hilfe der bereits beschriebenen
Spike-Encoder in Pulsfolgen codiert werden. Die Rekonstruktion der Membran-
potentiale wird durch Spike-Decoder an einer geeigneten Stelle im Signalflul3-
graph nach der Verschaltung hgg; zur oOrtlichen Filterung durchgefihrt. Diese
Anpassung ist in Abb. 4.6 (oben) gezeigt. AbschlielRend ist mit der Hilfe von
Abb. 4.1 ersichtlich, dal’ der resultierende Graph zwei bekannte Strukturen bein-
haltet (die obere ist zur Verdeutlichung gekennzeichnet), die durch ECKHORN-
Neuronen substituiert werden konnen, was in Abb. 4.6 (unten) gezeigt ist. Fur die
simplen Zellen, welche den positiven Anteil reprasentieren, werden die positiven
Antworten der Ganglienzellen mit dem exzitatorischen Eingang des ECKHORN-
Modells tber die Verbindungsgewichte hggs ; verbunden. Die negativen Antwor-
ten der Ganglienzellen gelangen zu dem inhibitorischen Eingang. Die negativen
simplen Zellen werden entsprechend auf komplementare Weise verschaltet.
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Abbildung 4.6: oben: Realisierung eines linearen Ubertragungssystems fiir eine
pulscodierte Verarbeitung. unten: Implementierung mit ECKHORN-Neuronen.

Zusammengefaft ist festzuhalten, dafl3 theoretisch jedes lineare System auf die
beschriebene Vorgehensweise mit pulscodierten Mechanismen realisiert werden
kann ohne die lineare ortliche Filtercharakteristik zu verlieren. Im folgenden Ab-
schnitt wird allerdings gezeigt, dal die Qualitat der resultierenden Filtercharakte-
ristik stark von der Qualitat der implementierten Spike-Decoder abhéngt.

4.3 Experimentelle Ergebnisse einer Neurocompu-
terimplementierung

Die in der Arbeitsgruppe HARTMANN entwickelte Neurocomputerarchitektur SPIKE
dient der schnellen Simulation grof3er pulscodierter neuronaler Netze. Eine Imple-
mentation ist das SPIKE128K System [FHJS99, HFSW97], welches eine schnelle
Simulation von Netzstrukturen erlaubt, die bis zu 131072 Neuronen und 16 Mil-
lionen Verbindungen beinhalten dirfen. In diesem Kontext bedeutet Echtzeit eine
Ausfuhrdauer von 1 ms fur einen Simulationszeitpunkt (Timeslot). Der ParSPI-
KE Entwurf erweitert die Architektur durch einen parallelen Ansatz auf Netz-
werke bis zu einer Million Neuronen. Dieser wurde allerdings noch nicht als
Hardware realisiert, liegt aber als Softwaresimulation vor, die eine Abschétzung
der Leistungsféhigkeit erlaubt [WHR99]. In beiden Systemen werden die Neu-
ronen durch die Werte ihrer dendritischen Potentiale und der aktuellen dynami-
schen Schwelle reprasentiert. Diese Zustdnde konnen in einem Speicherbereich
organisiert werden, wobei der Zugriff auf diesen Uber eine spezielle Neuronen-
adresse fir jedes Neuron erfolgt. Der Simulationsalgorithmus arbeitet dann auf
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diesem Neuronenspeicher und mul} diesen, falls erforderlich, fir jeden Zeitpunkt
aktualisieren. In Netzwerken fir die Verarbeitung visueller Daten sind meist nur
wenige Neuronen, die bestimmte Merkmale einer Szene beschreiben, in der Infor-
mationsverarbeitung involviert. Der Zustand der tGbrigen Neuronen wird dement-
sprechend in der Simulation nicht durch erregende Spikes verandert. Dies fuhrt
direkt auf einen ereignisgesteuerten Simulationszyklus, der nur die aktiven Neu-
ronen berechnet. Dieser Algorithmus kann auf Hardware, wie dem SPIKE128K
implementiert oder aber auch als Softwaresimulation einer parallelen DSP Ar-
chitektur, dem ParSPIKE simuliert ausgefuhrt werden. Fiir die parallele Imple-
mentation verteilen sich die Neuronen auf viele DSPs, indem deren Zustande auf
den Speicherbereichen dieser Prozessoren untergebracht werden. ParSPIKE ba-
siert auf SHARC Prozessoren von Analog Devices mit groBem On-Chip Speicher.
Das System stellt zwei DSP Boards zur Verfiigung. Ein Typ ist auf Vorverarbei-
tungsaufgaben spezialisiert und berechnet die Neuronenzustande durch Verbin-
dungsmasken auf jedem Chip. Fur die Kommunikation zwischen den parallelen
DSPs ist nur der Austausch von sogenannten Spikelisten notwendig. Diese sog.
(RC) Boards fir regulare Verknlpfungsmasken (rc=regular connections) eignen
sich sehr fir das vorgestellte Netzwerk der friihen visuellen Verarbeitung (siehe
Abb. 4.7).

Abbildung 4.7: ParSPIKE Neurocomputer Architektur fiir PCNN. links: RC VME
Board Implementation mit 32 DSPs (zweiseitig). rechts: Testboard flr die Analyse
der Leistungsféahigkeit.

Das Vorverarbeitungsnetzwerkes wurde im Rahmen dieser Arbeit als Software-
simulation des ParSPIKE implementiert. Das entwickelte Konzept besteht zu-
néchst aus 2 Schichten Ganglienzellen, um die positiven und negativen Antei-
le als Pulsfolgen zu codieren. Darlber hinaus werden 2 Typen simpler Zellen
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(mit geradem und ungeradem rezeptiven Feld) fur 6 verschiedene Orientierun-
gen (0°,30°,...,150°) berucksichtigt, ebenfalls als Pulsfolge der positiven und
negativen Anteile. Das fiihrt insgesamt auf 24 Schichten simpler Zellen und 2
Schichten Ganglienzellen. Das ParSPIKE RC Board stellt 32 DSPs fir die Simu-
lation zur Verfligung. Es bietet sich daher an, fiir jede der 24 kortikalen Schich-
ten einen DSP zu verwenden. Dartiber hinaus kann tber den VME Bus auf den
On-Chip Speicher zugegriffen werden, um die Eingangsreize einzuspeisen. Diese
Eingangsbilddaten kdnnen partitioniert und mit einer entsprechenden Uberlap-
pung auf die restlichen 8 DSPs fir die Vorverarbeitung verteilt werden. So kénnte
die Umrechnung auf das hexagonale Abtastraster und die retinale Vorfilterung
gemal der rezeptiven Felder der Ganglienzellen auf einem Achtel des Bildes par-
allel ausgeftihrt werden. Letztlich werden die positiven und negativen Pulsstro-
me der Ganglienzellen generiert. Durch das hexagonale Abtastraster werden die
Eingangsbilddaten durch 14161 (119 x 119) simple Neuronen in jeder Schicht
verarbeitet. Das gesamte Netzwerk umfalt 368186 Neuronen inklusive der Gan-
glienzellen und konnte demnach auf einem ParSPIKE RC VME Board simuliert
werden. Hierbei verwenden die simplen Zellen die selbe Spike-Encoder Struktur
wie die Ganglienzellen.

4.4 Modifikation des EckHORN-Modellneurons

Die SPIKE Architektur weil3t, wie jede Digitalrechnerimplementation, gewisse
Einschrankungen auf. So werden intern alle Berechnungen durch eine Fixed Point
Arithmetik ausgefiihrt. Die Neuronengewichte hgs; sind als s3.5 Variablen (si-
gned, 3 Bit + 5 Bit) und die dendritischen Potentiale (E'P/IP) als s9.5 Variablen
guantisiert. Die Potentiale stellen dabei genau genommen die Zustandsvariablen
der Leckintegratoren dar, welche Digitalfilter vom Grad eins sind. Wie die Un-
tersuchungen anhand der Softwaresimulation zeigen, fiihren diese Restriktionen
seitens der Hardware nicht auf die erwarteten Resultate. Stark quantisierte Verbin-
dungsgewichte auf der einen Hand fuhren zu 6rtlichen Filtercharakteristiken, die
vom Entwurf in Kapitel 3 abweichen. Entweder Gewichte mit h6herer Auflésung
oder ein spezieller Filterentwurf mittels diskreter Optimierung der Koeffizienten
konnten bessere Resultate ergeben. Trotz dieser Verbesserungen wirden die Ein-
schréankungen des Leckintegrators dennoch nicht die gewtinschten Signale oder
gar Probleme mit der Konvergenz verursachen. Dieser Sachverhalt ist in Abb. 4.8
verdeutlicht, in der das Ausgangssignal des Leckintegrators als Spike-Decoder
beim ECKHORN-Neuron dargestellt ist. Die Verknupfung gewichteter Signale die-
ser Qualitat fihren offensichtlich nicht auf die gewiinschte Filtercharakteristik, da
die Ungenauigkeiten dadurch noch verstérkt werden.
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Spike-Decoder beim ECKHORN-Neuron
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Abbildung 4.8: Integrationsleistung des Spike-Decoders beim ECKHORN-
Neuron.

Da die Pulsstrome, als Eingangssignale der Leckintegratoren, recht viel Energie
auch bei hohen Frequenzen aufweisen, sind sie sicher als ,,schwierige* Signale
insbesondere fur Tiefpalfilter mit den genannten Restriktionen aufzufassen. Eine
Kombination der quantisierten Zustandsvariablen mit den Nachteilen des Leckin-
tegrators vom Grad eins fihren auf entsprechend grol’e numerische Ungenauig-
keiten. Diese Fehler machen sich entweder durch stark oszillierende Anteile oder
sogar durch Konvergenzprobleme des Filteralgorithmus bemerkbar. Diese Ergeb-
nisse zeigen, dal? eine Verbesserung des verwendeten Spike-Decoders notwendig
ist, was in Abb. 4.9 angedeutet ist.
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Abbildung 4.9: Modifikation des ECKHORN-Neurons. Der Leckintegrator wird
durch ein ,,wohl entworfenes* Tiefpal¥filter ersetzt.

Als verbesserter Spike-Decoder wird hier ein passend entworfenes Tiefpalifilter
vom Grad zwei vorgeschlagen. Es sollten zudem weitere positive Eigenschaften
erflllt werden. Dazu z&hlt zum einen eine grole Dampfung bei hohen Frequen-
zen, um die Oszillationen ausreichend zu unterdriicken. Eine kurze Einschwing-
zeit des Filters sollte zudem ebenfalls realisiert werden, um die Simulationsdauer
zu verkirzen. Um auf der Neurohardware SPIKE Uberhaupt simuliert werden zu
kdnnen, mul} der Filteralgorithmus schlieBlich in eine Stimulations- und Abkling-
phase separierbar sein [WHR99, Wol01], was am Beispiel des Leckintegrators
kurz erldutert werden soll. Bei dieser ereignisgesteuerten Signalverarbeitung wer-
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den zun&chst in einer ersten Phase alle Spikes gesammelt und die betroffenen
Zielneuronen durch die eintreffenden Spikes erregt, d.h. ihre Zustandsspeicher z,,
werden entsprechend modifiziert. Im Zustandsmodell aller Leckintegratoren wird
dieser Schritt als

zw(n +1) = z(n) +y(n), (4.7)

berechnet, wobei z die gewichtete Summe aller eintreffenden Spikes, also das
Eingangssignal, und y das Membranpotential bzw. das Ausgangssignal des Sy-
stems im vorherigen Zeitschritt sind. Erst dann werden in einer zweiten Phase,
der Abklingphase, die Ausgangswerte der Spike-Decoder, also die Potentiale al-
ler Neuronen mit

yn+1)=e V" z,(n+1) (4.8)

berechnet. Vergleiche dazu auch (4.2). Auf diese Weise ist eine parallele Abarbei-
tung der Daten mdglich.

In Abb. 4.10 ist das Verhalten des Leckintegrators und zweier Tiefpalientwiirfe
auf hochfrequente Pulsfolgen gezeigt. Das Spektrum der Pulsfolge (Impulskamm)
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Abbildung 4.10: links: Das Einschwingverhalten verschiedener Spike-Decoder
auf hochfrequente Pulsfolgen bei der Decodierung. rechts: Das Spektrum der
Pulsfolge und die zugehdrigen Ubertragungsfunktionen im Frequenzbereich.

und die Ubertragungsfunktionen in Abb. 4.10 (rechts) erklaren die verbleibenden
Oszillationen bei dem Leckintegrator und dem Chebyshev-Entwurf: die Damp-
fung bei hohen Frequenzen reicht hier offensichtlich nicht aus. Eine Kaskadie-
rung zweier Leckintegratoren kénnte zwar ein Filter vom Grad zwei mit ausrei-
chend hoher Dampfung ergeben. Allerdings wirde sich damit die Einschwing-
zeit noch weiter vergréfRern. Bei dem Chebyshev Filter ergibt sich die selbe Pro-
blematik, wenn die geforderte Sperrddmpfung erhéht wird, da dieser Filtertyp
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eher fur andere Aufgabenstellungen geeignet ist. Einen Ausweg bietet hier jedoch
ein Butterworth-Filter (Potenztiefpall) vom Grad zwei, welches eine kurze Ein-
schwingzeit bei offensichtlich ausreichender Ddmpfung liefert. Darlber hinaus
laRt sich mit einem modifizierten Butterworth-Entwurf! eine Wellendigitalstruk-
tur nach GRAY & MARKEL (siehe [Zal91, GM73]) entwickeln, mit der auch eine
Separation in Erregungs- und Abklingphase fuir den Neurocomputeralgorithmus
durchgefiihrt werden kann. Dies kann erreicht werden, wenn nur der Zahlerko-
effizient ag der z-Ubertragungsfunktion (2.37) von Null verschieden ist und fiir
die Gbrigen Koeffizienten a2 = 0 gilt. Das Membranpotential eines Neurons
ist in diesem Fall (wie bei der Struktur des Leckintegrators) bis auf einen Faktor
eine Zustandsvariable des Filters, auf welchen in der Erregungsphase direkt die
Eingangsspikes wirken. Dies ist von Vorteil, da diese spezielle Filterstruktur eine
numerische Stabilitat trotz starker Quantisierungseinschrankungen gewahrleistet
[Fet86, Gaz85]. Ob diese Filterstruktur, welche aus einer Kette von Leitungsele-
menten abgeleitet werden kann [Zal91], biologisch plausibler ist als der Leckin-
tegrator muf? an dieser Stelle allerdings offen bleiben.

Die resultierenden Verbesserungen in Abb. 4.11 (rechts) sprechen fur sich: ho-
he Frequenzen werden effektiv unterdriickt und der stationdre Zustand wird in
etwa der halben Simulationszeit erreicht, verglichen mit dem Leckintegrator in
Abb. 4.11 (links).

Spike-Decoder beim ECKHORN-Neuron verbesserter Spike-Decoder
15000 1 15000 [
10000 " 1 10000 [
5000 1 5000
00 1060 2(;(_)0 3600 4600 00 ldOO 20@0 3(;00 4(;00
Timeslot n Timeslot n

Abbildung 4.11: Integration einer Pulsfolge mittels des Spike-Decoders beim
EckHORN-Neuron (links) und die Leistungsfahigkeit des verbesserten Spike-
Decoders (rechts).

In Abb. 4.12 sind abschlieRend einige Simulationsergebnisse gezeigt. Dazu wurde
zundgchst ein Bild als Eingangsreiz dem Netzwerk prasentiert und in den verschie-
denen Zellschichten verarbeitet. Der Ubersichtlichkeit wegen sind hier nur die
Antworten der (geraden) simplen Zellen mit einer Orientierung von 120° abgebil-

tunter Verwendung einer reellen charakteristischen Funktion C(v) ~ %2/(1 + ) mit¢ =
(z —1)/(z + 1) als aquivalente komplexe Frequenz
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det. Um das Ubertragungsverhalten des Netzwerkes beurteilen zu kdnnen, wurde
zudem ein Impuls als Stimulus verwendet (rechte Spalte). Die daraus resultie-
renden Impulsantworten der simplen Zellen im Vergleich zu den gewiinschten
Antworten des linearen Modells geben AufschlulR Gber die erreichte Qualitat der
gesamten Simulation.

Retina-Signal
(hexag. Raster)

G

Impulsantwort

Rezeptoren (ParSPIKE)

simple Zellen Impulsantwort
(120°, gerade) (gewtinscht)

Ganglienzellen

Abbildung 4.12: Simulation des Netzwerkes auf der ParSPIKE Architektur.
links/mitte: Ergebnis bei einem Bild als Eingangsstimulus. rechts: Antwort der
simplen Zellen bei einem pulsformigen Reiz (Impulsantwort) und Vergleich mit
dem gewdinschten Verhalten.

Die Geschwindigkeit der Simulation hangt stark von der parallelen Lastverteilung
ab. In dem Simulationsbeispiel ist die Auslastung des am starksten beanspruchten
Prozessors nur etwa 4% groler als die durchschnittliche Belastung, was eine sehr
gute Lastverteilung bedeutet. Die Messungen zur Lastverteilung entstanden durch
Simulationen auf einer Sun Ultra60 Workstation. In Kombination mit Ergebnissen
einer DSP Implementation mittels eines Testboards von Analog Devices konnten
recht genaue Schatzungen fir die Simulationsgeschwindigkeit gegeben werden
[TWHO00, Thi00, Wol01]. So bendtigt die Simulation auf einem Prozessor der
Sun Ultra60 etwa 1600 ms flr einen Zeittakt. Das ParSPIKE RC VME Board
hingegen, konnte diesen voraussichtlich in nur 36 ms berechnen, was eine beein-
druckende Beschleunigung der Simulationsgeschwindigkeit um den Faktor ~ 50
bedeutet.

In diesem Kapitel wurde eine Strategie zur Erweiterung linearer ortsdiskreter
Ubertragungssysteme fiir eine pulscodierte Verarbeitung auf der Basis des be-
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kannten ECKHORN-Neurons entwickelt. Die Zielsetzung dieses Modellneurons,
die Realisierung der Synchronisationseffekte, ist allerdings nicht Gegenstand die-
ser Arbeit und wurde daher nicht weiter betrachtet. Trotz des komplizierten und
auf den ersten Blick nichtlinearen Verhaltens der pulscodierenden Strukturen kann
dennoch eine lineare Ortliche Filtercharakteristik realisiert werden. Damit gentigt
es, die Filterkoeffizienten des linearen Filtermodells ohne irgendeine Pulscodie-
rung zu ermitteln, was den Entwurf (linearer) pulscodierter neuronaler Netze we-
sentlich vereinfacht. In diesem Rahmen wurde ein grof3es neuronales Netzwerk,
welches einige wesentliche, fur die Bildverarbeitung interessante Funktionen bio-
logischer Sehsysteme modelliert, mit Erfolg auf einer Spezialhardware Archi-
tektur ParSPIKE implementiert. Auf diese Weise steht nun eine gaboréhnliche
Konturextraktion auf hexagonalem Abtastraster flr ein pulscodiertes Bildverar-
beitungsnetzwerk zur Verfugung. Aufgrund der Quantisierungseffekte der digi-
talen Umsetzung und einiger Einschrankungen der verwendeten Hardwareimple-
mentation wichen die Antworten stark von den idealen GABOR Antworten ab.
Diese numerischen Probleme konnten jedoch durch einen neuen Entwurf des
Spike-Decoders effektiv minimiert werden, welcher auf diese Weise das bekann-
te ECKHORN- Modellneuron fir die hier dargelegte Aufgabenstellung wesentlich
verbessert. Die Simulationsergebnisse zeigen das gewtiinschte GABOR Verhalten
und liefern eine Schatzung fur die Simulationsgeschwindigkeit der verwendeten
Spezialhardware.



KAPITEL 5

Adaption bel variierenden
Beleuchtungsbedingungen

Variierende Beleuchtungsbedingungen sind stets eine Problematik, wenn reale
Bildszenen auf Digitalrechnern verarbeitet werden. Insbesondere Rauschprozes-
se, die mit der Bildgebung selbst einhergehen, z. B. Ausleserauschen der CCD-
Elektronik oder das Photonenrauschen, konnen zu falschen Verarbeitungsresulta-
ten bis hin zu unbrauchbaren Leistungen der Objekterkennung fiihren. Das Sehsy-
stem des Menschen zeigt hingegen die vorteilhafte F&higkeit, sich an Veranderun-
gen in der wahrzunehmenden Szene, wie z.B. sich verandernde Lichtverhaltnisse,
anzupassen.

In diesem Kapitel wird eine biologisch motivierte Vorverarbeitung fiir eine effek-
tive Rauschminderung in dunklen und daher stark verrauschten Bilddaten vorge-
stellt [TEDHO02, Thi01]. Auf diese Weise sollen insbesondere Konturmerkmale
robust extrahiert werden, um Mustererkennungsaufgaben auch in extremen Situa-
tionen durchfiihren zu kénnen. Nach einer kurzen Einfiihrung in die Problema-
tik der adaptiven Rauschunterdriickung wird auf die Entstehung des Rauschens
bei bildgebenden Verfahren selbst eingegangen. Die Analyse und Entwicklung
eines neuartigen Adaptionskonzeptes zur Rauschunterdriickung bildet hier einen
Schwerpunkt der Untersuchungen. Daraufhin wird ausfuhrlich die Erweiterung
des in Kapitel 3 entwickelten Modells behandelt, um das adaptive Verhalten bis
hin zur Extraktion orientierter Konturmerkmale zu leisten.

5.1 Verfahren zur Rauschunterdrickung
Die Detektion von Kanten oder Linien in Kamerabildern ist ein wichtiges Mit-

tel zur Interpretation einer Szene sowohl im menschlichen Sehsystem als auch in
technischen Systemen. Ublicherweise werden in vielen Anwendungen dazu Gra-

93
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dientenfilter eingesetzt, welche jedoch bekannterweise recht storempfindlich auf
Rauschen in Kamerabildern reagieren. In Abb. 5.1 ist dazu ein einfaches Beispiel
einer realen verrauschten Szene dargestellt, in der eine Kantendetektion durchge-
fihrt wird. Ist die Szene sehr schwach beleuchtet, so fiihrt eine Kantendetektion
in der Regel auf unbrauchbare Ergebnisse. Eine Objekterkennung ist mit diesen
Daten nicht mdglich. Da es sich bei Rauschprozessen meist um hochfrequente

Abbildung 5.1: Kantendetektion in dunklen verrauschten Szenen. oben: Bei ge-
dampftem Licht mit niedrigem SNR kann noch ein brauchbares Kantenbild er-
zeugt werden. unten: Die dunkle Szene mit sehr niedrigem SNR fuhrt zu einem
stark verrauschten und damit unbrauchbaren Kantenbild.

Storungen handelt, die durch eine Gradientenbildung verstarkt werden, bringt
eine vorherige Tiefpalfilterung zur Unterdriickung des Rauschens in den mei-
sten Fallen bessere Ergebnisse. Die Schwierigkeit liegt allerdings in der Wahl
der Filterparameter, da eine zu starke Filterung auch mehr Details der Szene
selbst unterdriickt. In der Bildverarbeitung hat sich die Klasse der sogenannten
Gaulableitungsfilter (gaussian derivatives) in diversen Formen und Implemen-
tationen etabliert, bei der im wesentlichen ein GauBtiefpal¥filter mit einem Gra-
dientenoperator kombiniert wird. Viele weitere Details zu diesem Thema sind in
[MH80, SM87, Der93, vvVYV98] nachzulesen. Abgesehen davon, ob diese Imple-
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mentierungen einen adaptiven Einsatz ermdglichen oder nicht, beschranken sich
die Arbeiten bislang meist auf konkrete Skalierungen bzw. Auflésungspyramiden.
Eine Adaption der Vorfilterung auf die Starke des Rauschens in den Bildern bleibt
meist aus.

Das klassische WIENER-Filter [Lim90] hingegen ist urspriinglich ein Ansatz zur
Schétzung eines Signals in einer gestorten Beobachtung und diente als Basis
fir eine Vielzahl von Anwendungen in der Sprach- und Bildverarbeitung. Da
es ein linearer Schatzer ist, welcher einen mittleren quadratischen Fehler zwi-
schen dem zu rekonstruierenden Signal und der Schétzung verwendet, féllt es in
die Klasse der linear minimum mean square error estimator. Bei gaullverteilten
Prozessen handelt es sich sogar um den optimalen Schatzer. Die Ubertragungs-
funktion des WIENER-Filters zur Reduzierung von additivem Rauschen in Bildsi-
gnalen verwendet dabei Annahmen (ber die Leistungsdichtespektren des Signals
bzw. der Stérung. Da es sich um ein ortsinvariantes Filter handelt, werden Un-
terschiede in den einzelnen Bildbereichen wie helle und dunkle bzw. texturlose
und strukturreiche Bereiche nicht berlicksichtigt. Es wird (berall die selbe Fil-
terstarke verwendet. Hier etablierte sich das adaptive WIENER-Filter nach LEE
[Lim90, KZ96, Lee80, Mat]. Dieses Verfahren verwendet einfache statistische
Merkmale (Mittelwert und Varianz), um in einer lokalen Umgebung jedes Pixels
eine Filterung durchzufuihren. Dabei wird eine gewichtete Summe des Eingangs-
signals und des geschéatzten Mittelwertes gebildet mit dem Ziel, in Regionen mit
hoher Varianz eine geringe Filterwirkung zu verwenden, da dort Kanten vermutet
werden. Nachteil hierbei ist, daB die Rauschleistung bekannt oder eine Annahme
daruber vorhanden sein mul. Ist diese Annahme nicht korrekt, so hat das Verfah-
ren allerdings den Effekt, dal3 bei Regionen hoher durch Rauschen verursachter
Varianz - obwohl dort keine Kanten vorliegen - ebenfalls eine zu geringe Filter-
stérke eingesetzt wird. Darlber hinaus setzt diese Methode voraus, daB es sich um
unkorreliertes Rauschen handelt, was bei der Bildaufnahme aber nicht gegeben
sein muf3. Als ein in der Bildverarbeitung etabliertes Verfahren wird es spater als
Referenz herangezogen, um einen Vergleich mit dem hier entwickelten Verfahren
zu ermdglichen.

Das Verfahren zur Glattung in einer selektierten Nachbarschaft ist ebenfalls ein
lokal arbeitendes Verfahren [KZ96, NM79, WW88] zur Rauschunterdriickung.
Hier werden Nachbarn des aktuellen Grauwertes dahingehend untersucht, ob sie
zu der selben Region gehoren wie der aktuelle Grauwert, um die Gewichtungen
der Nachbarn fiir den Glattungsprozel3 abzuleiten. Die Schwierigkeit ist dabei, ei-
ne Schwelle flr die Zugehdorigkeit zu einer Region festzulegen. Wie bei allen Seg-
mentierungsverfahren kann diese Vorgehensweise beliebig aufwendig sein. Der
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\ollstéandigkeit halber sei hier auch der Ansatz mittels MARKOV Random Fields
in [PKO00] zur Rauschunterdriickung genannt.

Ein Vorzug des biologischen Sehsystems ist die automatische Anpassung der
Modell- bzw. Filterparameter an Veranderungen der Beleuchtungssituation und
daher auch an die Rauschstarke, um eine robuste Merkmalsextraktion oder Ob-
jekterkennung zu gewahrleisten. Ublicherweise ist die wahrgenommene Szene mit
Rauschen tberlagert, welches in den lichtempfindlichen Sensorelementen und der
Ausleseelektronik entsteht, und zu einer Verschlechterung des Signal-zu-Rausch-
verhaltnisses (SNR) flhrt. Besonders in dunklen Szenen kann die Rauschleistung
bereits in der GroRenordnung der Signalleistung liegen. Am biologischen Vorbild
allerdings wurde gezeigt, dal? die rezeptiven Felder der retinalen Photorezeptoren
mit der Verdunkelung einer Szene anwachsen [Hub88, SL96a]. Dieses Verhalten
flhrt offensichtlich zwar zu einer Abnahme der Auflésung, durch die Mittelung
uber die eigentliche Signalinformation der Szene und zugleich des Rauschprozes-
ses Uber ein grolieres rezeptives Feld kann jedoch vor allem das Rauschen weiter
unterdriickt werden. Zusatzlich wird bei dunklerer Szene aber auch die Offnung
der Iris geweitet, um mehr Licht zu sammeln, was ebenfalls zu einer Verringe-
rung der Ortsauflésung des retinalen Intensitatssignals fiihrt. Diese Beziehung ist
in Abb. 3.3 zu erkennen, so daR hier die Komponenten des biologischen Systems
aufeinander abgestimmt zu sein scheinen. Eine automatische Blende in einer Ka-
mera agiert auf &hnliche Weise.

Die beschriebene Vorfilterung durch die Photorezeptoren kann wie in Kapitel 3
erwahnt als GauRtiefpalfilter modelliert werden [SL96a, TH00, TWHOO, Thi00].
Um der Verschlechterung des SNR in dunklen Szenen entgegenzuwirken, wird
die GroRe der rezeptiven Felder bzw. die Koeffizienten dieses GauRfilters adap-
tiv zur (lokalen) Helligkeit in der Szene veréndert. Auf diese Weise versucht das
System einen Kompromif3 zwischen Aufldsung und robuster Kantendetektion zu
erreichen. Obwohl dieser adaptive biologische Mechanismus in einigen Arbeiten
erwahnt ist [SL96a, BC92], sind weitere Untersuchungen und technische Imple-
mentationen bislang nicht bekannt. Im weiteren wird zunéchst der theoretische
Zusammenhang zwischen adaptiver Vorfilterung und dem Signal-zu-Rauschver-
haltnis n&her betrachtet, um einen Algorithmus zu entwickeln, der das SNR ver-
bessern oder gar auf einem bestimmten Niveau halten kann [TEDHO02, ThiO1].
Dabei soll bewul3t zunéchst aus der Sicht eines technischen Bildverarbeitungs-
systems das Signal-zu-Rauschverhaltnis als objektives Beurteilungskriterium her-
angezogen werden. AnschlieBend wird die wichtige Erweiterung des Modells aus
Kapitel 3 behandelt, um die Frage zu klaren, wie das biologische Vorbild die ad-
aptiven Mechanismen in einem Gesamtsystem zu realisieren vermag.
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5.2 Rauschprozesse bei der Bildakquisition

Fir die Entwicklung eines geeigneten Algorithmus zur Rauschunterdriickung ist
es wichtig, die diversen Quellen des Rauschens in einem bildgebenden System zu
betrachten. Bei der Bildaufnahme mit einer CCD-Kamera bilden sich durch ein-
fallende Photonen Ladungspakete in den photoempfindlichen Zellen, die durch
serielles Auslesen in einen Datenstrom umgesetzt werden. Hierbei werden dem
eigentlichen Informationsgehalt der betrachteten Szene eine Reihe von Storgro-
Ren wahrend des bildgebenden Prozesses Uberlagert, welche i. allg. stochasti-
scher Natur sind, aber auch durchaus systematische Komponenten beinhalten kon-
nen [BC92, Kam]. Bei guten Beleuchtungssituationen fallen diese Rauschanteile
I.allg. nicht auf. Nimmt die Helligkeit der Szene aber ab, so ist bereits bei Innen-
aufnahmen ohne kiinstliche Beleuchtung (bei TV-Reportagen zu beobachten) ein
gewisses Rauschen wahrnehmbar. Mit der Dunkelheit der Szene wird dieser Ef-
fekt immer stérker. Hier kénnen im wesentlichen drei Rauscharten unterschieden
werden, welche hier nur kurz genannt werden sollen:

e Photonenrauschen (Photon shot noise)
Diese Rauschart wird durch die Quantennatur der Photonen hervorgerufen,
da die Einfallrichtung und die Anzahl der Photonen auf ein lichtempfind-
liches Element wahrend der Belichtung nicht konstant ist, sondern zufallig
variiert.

e Ausleserauschen (Read noise)

In diese Kategorie fallen eine Vielzahl unterschiedlicher Rauschquellen, die
zum einen technischer Natur sein kdnnen (wie z. B. das Dunkelstromrau-
schen oder auch thermisches Rauschen), zum anderen aber auch von dem
Design des Sensors oder der Signalverarbeitung abhangen (Rauschen des
Ausgangsverstarkers). Die Art des Rauschens ist vor allem bei niedrigen Si-
gnalpegeln von Bedeutung. So ist bei extrem dunklen Aufnahmen, wie der
Uberwachung bei Nacht, oder aber auch bei der Astrofotografie die Rausch-
leistung im Vergleich zur Signalleistung derart hoch, dal} die Geréte meist
kinstlich gekdhlt werden mussen.

e Musterrauschen (Pattern noise)
Durch die individuelle Empfindlichkeit der einzelnen Sensorelemente und
irreguléare Kristallstrukturen ergeben sich signalabhangige (PRNU, Photo-
response Nonuniformity) und signalunabhangige (FPN, Fixed Pattern Noi-
se des Dunkelstromes) ortliche UngleichmaRigkeiten. Diese systematischen
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Muster konnen durch Mittelung von Serienaufnahmen gleichmaRiger Hel-
ligkeit oder von Dunkelbildern extrahiert und sichtbar gemacht werden.

In [Kam] ist die Komplexitat der Rauschentstehung bei CCD- und Videobildern
im Detail beschrieben. Fir die folgenden Analysen dieser Arbeit ist es aber mog-
lich und zweckmaRig, die Uberlagerung des eigentlichen gewiinschten Bildsi-
gnals mit den verschiedenen Rauscharten in dem vereinfachten Rauschmodell in
Abb. 5.2 zu abstrahieren.

. - -7 -
4| n
0
[ Bna [ any
Szene Kamera

Kamerasignal: z(k) = yzo(k) + n(k)
Gesamtrauschen: n(k) = ani(k) + vyzo(k)Bn2(k)
Rauschquellen: ni1 Lng,on , =1p2=0
Rauschparameter: a,B€R
Originalszene: Zo (L ni12)
Beleuchtungsstérke: 0<~y<1

Abbildung 5.2: Das verwendete Rauschmodell.

Das Kamerasignal

z(k) = vz, (k) + n(k) (5.1)
= yzo(k) + ani (k) + vx,(k)Bna(k) (5.2)

ist hierbei eine Summe aus Originalszene z,, welche i.allg. um einen reellen
Faktor 0 < v < 1 verdunkelt ist, einem unkorrelierten Rauschanteil an; und ei-
nem Korrelierten Rauschterm ~z,08ns. «, 8 seien reelle positive Faktoren. Die
weilen Rauschprozesse n12 sind unkorreliert (L), gauRverteilt, mittelwertfrei
und haben die Varianz eins. Eine detaillierte Analyse des Kamerarauschens ist
in [BC92, Kam] gegeben.
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Das Signal-zu-Rauschverhéltnis (SNR, in dB: Signal-zu-Rauschabstand, SN R 4g)
des zur Verfligung stehenden Kamerasignals x, hier als SNR, bezeichnet, kann
dann durch

E{(vz,)*}
E{(an1 +vBzon2)?}
_ v’E{s}
- a2E {n?} + v2B82E {z2n3} + 2vaBE {zonina}’

SNR,(7) =

(5.3)

(5.4)

berechnet werden und ist neben den Rauschparametern stark abhangig von der
Leistung der Szene bzw. der Beleuchtung ~. Mit E {} ist der Mittelwertoperator
bzgl. des Ortes abgekirzt. Die reellen Rauschparameter «, 8 sind hierbei nicht
eindeutig fur ein bestimmtes SNR, da sie den Beitrag des korrelierten und unkor-
relierten Rauschens zum Gesamtrauschen beschreiben. So ist beispielsweise

v2E {22} — a®SNR .
= o far E{x, ~ 0. 55
/8 \/ ’)/2E {a:gn%} SNR {:E nl”?} ( )

Die Abhéngigkeit des SNR von der Beleuchtung ist hier von groRem Interesse
und muB genauer diskutiert werden. Im allgemeinen verringert (verschlechtert)
sich das SNR, wenn ~ kleiner wird. Genaugenommen ist das Verhalten von der
Diskriminanten [Bro99]

A= (2aB)*(E{ni}E{z2n3} — E {zoning}? ) (5.6)

abhéangig, welche aber auf Grund der Gleichung von CAUCHY-SCHWARZ nicht
negativ sein kann. Der recht unwahrscheinliche Fall A = 0 besitzt 2 Pole in ~
und wird nicht weiter betrachtet. Der wahrscheinlichere Fall A > 0 weist keinen
reellen Pol auf und 4Rt das SNR gegen den Grenzwert

. _ E{a}
7151010 SNR;(7) = BE {a2nd}’ (5.7)

konvergieren. Dies geschieht entweder monoton steigend, wenn E {z,nins} > 0
oder mit einem lokalen Maximum, wenn E {z,n1n2} < 0. Die Simulationen
und Messungen an realen Kameradaten haben hier stets einen monotonen Ver-
lauf gezeigt. Dieses Modell wird im weiteren Verlauf auch fiir die Generierung
der Testbilder mit kinstlichem Rauschen verwendet. Ein typischer Verlauf der
Abhangigkeit und die beiden Extremfélle vollig korrelierten (o = 0) und unkor-
relierten Rauschens (8 = 0) sind in Abb. 5.3 verdeutlicht.
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Abbildung 5.3: Verschlechterung des SNR bei abnehmender Beleuchtung ~ fur
verschiedene Rauschparameter.

5.3 Adaptive Filterung zur Rauschunterdriickung

In Anlehnung an die Filtercharakteristik der Photorezeptoren in der menschlichen
Retina wird im weiteren ein Gaultiefpalfilter mit der Impulsantwort (bzw. dem
rezeptiven Feld)

1 L3
h(k) = g(k) = 5 ¢ 2 (5.8)
(\/ 2#02)
und der Ubertragungsfunktion
v 20'2
h(k) o—e H(v) = e v = [v1vg]" (5.9

a_ﬂ-S’UI,QSﬂ-

als erste Stufe einer Prozel3kette angenommen, die, wie in Kapitel 3 beschrieben,
Konturinformationen extrahiert [SL96a, TH00, TWHOO, Thi00]. Zur Vereinfa-
chung der Beschreibung aller Zusammenhange in diesem Kapitel wird hier meist
die Notation fiir ein technisches Bildverarbeitungssystem unter Verwendung ei-
nes rechtwinkligen Abtastrasters verwendet, so dal 7" und ¢ in Pixelkoordinaten
(statt in pum oder csp) angegeben sind und damit auch T = T~ bzw. v = w
gilt. Da dies allerdings die Ergebnisse nicht einschrénkt, kann zu jeder Zeit eine
Interpretation im Hinblick auf eine biologische Betrachtung gegeben werden.

Die Adaption im biologischen Sehsystem ist lokal, d.h. die GroRe der einzelnen
rezeptiven Felder der Photorezeptoren kann mit dem Ort variieren (¢ = o(k)). Im
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Rahmen dieser Arbeit liegt der Schwerpunkt allerdings auf der Entwicklung eines
globalen Mechanismus. Das Ziel ist also die Adaption eines 0Ortlich invarianten
Filters mit der Hilfe eines Steuersignals, welches aus dem Eingangsbild gewon-
nen werden kann. Die Untersuchungen haben gezeigt, dal’ ein globaler Mechanis-
mus ausreicht, um eine adaptive Rauschunterdriickung erfolgreich zu realisieren.
Ein lokal arbeitender Algorithmus erhéht zudem im Hinblick auf eine technische
Nutzbarmachung den Berechnungsaufwand auf sequentiell arbeitenden Digital-
rechnern enorm und soll daher nicht weiter behandelt werden. Allerdings scheint
dieser in der Biologie seine Berechtigung zu besitzen, da die Steuerung der Star-
ke der Rezeptorkopplung eigentlich nur aus dem lokalen Umfeld eines Rezep-
tors gewonnen werden kann. Ein globales Steuersignal wére hingegen biologisch
nicht plausibel, was in Abschnitt 5.4 n&her erldutert wird. Weitere Untersuchun-
gen und der Vergleich zwischen lokaler und globaler Rauschunterdriickung kon-
nen in [EisO3] nachgelesen werden.

Im biologischen Vorbild variiert die GroRe der rezeptiven Felder der Zapfen und
damit der Filterparameter des Gaulifilters in einem Bereich von ¢ = 1.5 bis 12
(Pixel oder cone spacing) fir eine Adaption von hellen bis dunklen Szenen. Diese
Randbedingung soll auch fiir die globale Filterung berticksichtigt werden.

Im folgenden wird der EinfluB einer GauRfilterung auf das Signal-zu-Rauschver-
héltnis untersucht. Dabei kann experimentell und theoretisch gezeigt werden, daf
durch solch eine Filteroperation das SNR bei dem verwendeten Rauschmodell
verbessert werden kann. Aus den beschriebenen Zusammenhangen heraus wird
dann ein plausibler Steuermechanismus abgeleitet, der zu einer gemessenen Be-
leuchtungssituation - einer Szene ein notwendiges o einer Gaul¥filterung berech-
net und somit eine adaptive Filterung ermdglicht.

5.3.1 SNR einer gefilterten Szene

In Abb. 5.4 ist das Beispiel der Filterung einer kiinstlich verrauschten Szene unter
variablen Lichtverhéltnissen gezeigt. Dazu wurde dem Originalbild (oben links)
ein RauschprozeR (hier mit o = 1.8 - 1073, = 9.5 - 1073) Uberlagert, so daR
sich ein Signal-zu-Rauschabstand von SNR,, gg = 40 dB einstellt. Die Ermittlung
der Rauschparameter einer realen Kamera wird in Kapitel 6 beschrieben. Dieser
Szene wurde die Beleuchtung v = 1 zugeordnet (mitte links). Durch die Verdun-
kelung auf v = 0.01 (untere Reihe) verschlechtert sich das SNR um etwa 30 dB
auf SNR,, ¢ = 10 dB. Eine anschliefende Tiefpal¥filterung (hier mit o = 1) al-
lerdings scheint objektiv betrachtet die Qualitat des Bildes bzgl. des Rauschens
zu erhohen (unten rechts). Fir beide Beleuchtungssituationen wurde schlieBlich
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die Abhangigkeit des SNR von dem Filterparameter (im folgenden als SNR,, be-
zeichnet) experimentell bestimmt (oben rechts). Hierbei fallt auf, dal? durch die
Filterung Details zwar unter Umstanden verloren gehen, das SNR aber jeweils
verbessert werden konnte.

Numerische Untersuchungen des resultierenden SNR einer gefilterten Szene vie-
ler gefilterter Kamerabilder flihren zu der Annahme, daR das SNR in weiten Berei-
chen stets monoton steigend mit o ist. Dies bedeutete, daR das SNR umso besser
wirde, je starker das TiefpalBverhalten ist, was auch in Abb. 5.4 (oben rechts) ex-
emplarisch zu sehen ist. Wie man im weiteren allerdings erkennen wird, sind die
Abhdngigkeiten des SNR so komplex, daf} die simulierten Ergebnisse nicht all-
gemein gezeigt werden kdnnen. Unter bestimmten Vereinfachungen kdnnen aber
relativ gute Interpretationen geliefert werden, die zu sinnvollen und effektiven ad-
aptiven Steueralgorithmen fuhren werden. Diese neuartigen Herleitungen sollen
nun im einzelnen gegeben werden.

Die Verarbeitung des verrauschten und verdunkelten Bildsignals x(k) mit einem
Filter beschrieben durch (5.9) fuhrt auf das gefilterte Bild

y(k) = h(k) *x z(k) (5.10)
— yh(k) * zo(K) + h(k) * n(k), (5.12)

welches ebenfalls aus einem Signal- und einem Rauschanteil besteht. Das resul-
tierende SNR 14t sich dann berechnen zu

_ ZE{(h*1z,)%}
T E{(h*n)2}

SNR, (7,0) (5.12)

Mit Hilfe der PARSEVALschen Gleichung kann das SNR im Frequenzbereich for-
muliert werden. Aus der Tatsache heraus, dall das Rauschen, auch wenn es aus
einem korrelierten Anteil besteht, in allen Testreihen n&dherungsweise ein weil3es
Leistungsdichtespektrum o2 = E {n?} aufweist, erhalten wir fir reelle Signale
weiter

S [1HW)PX,(v)|? dov

SNRy (v, 0) = TH(o) o2 do (5.13)
72 [ H )P Xo(v) % dv
“ 2 JH@Pdv (5.14)
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Abbildung 5.4: Verbesserung des SNR einer verdunkelten verrauschten Bei-
spielszene durch Tiefpalifilterung. oben: Unverrauschtes Originalbild und SNR-
Verbesserung fur zwei unterschiedliche Beleuchtungen +. mitte: Verrauschtes Ori-
ginalbild SNR4gg = 40 dB (y := 1) und das Filterergebnis mit ¢ = 1. unten:
Verdunkelte Szene (v = 0.01) mit SNR gg = 10 dB und das Filterergebnis mit

o=1.
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Annahme 1: Naturliche Bildszenen

Zur Vereinfachung lohnt es, sich auf eindimensionale Signale zu konzentrieren.
Fir den biologisch plausiblen Bereich (siehe Kapitel 3) des Filterparameters o >
1.5 kdnnen wir die Naherung

iy o0
/ |H (v)|* dv ~ / e 7 dv = vr (5.15)
- oo o
verwenden und erhalten fir den eindimensionalen Fall
2 2 T o2y
SNRY(v,0) = \/_7%%0 e | X, (v) 2 do. (5.16)

Fur die Untersuchung des Monotonieverhaltens des SNR bzgl. o ist die partielle
Ableitung

1
6SNRy _ 272
do o2
zu diskutieren, welche die Grenzwerte

. OSNR_(v,0)
lim

/ e X, ()21 — 202 dv (5.17)
0

_ 1
lim 90 = 24/mSNR () > 0, (5.18)
OSNRL (v, o)
. y Y .
Uli}n;o 9% = 0. (5.19)

zeigt. Die Annahme natdrlicher Bilder erlaubt weitere Vereinfachungen. Dann
namlich klingt das Spektrum des Bildes naherungsweise mit | X, (v)| ~ 1/(v +
v)?, p € R™1 [TF97, WM97] ab und wir erhalten

OSNRL(y,0) 292 [ _ 521 —20%02
- A Y (5.20)
do Va2 Jo (v + vp)?P

was fiir eine monoton steigende Funktion positiv sein sollte. Dieses Verhalten
scheint gultig zu sein fir alle untersuchten Bildszenen, da der gegebene Integrand
schnell genug gegen null konvergiert. Fir diesen Fall fuhrt die Lage des kritischen
Nulldurchganges

1 1
Ve = min = 5.21
© e gv2 12V2 .21)
des Integranden zu einem positiven Beitrag fur 0...v, zum gesamten Integral,
welches groRer ist als der negative Beitrag im Bereich v....7 und daher ins-
gesamt zu einem positiven Ergebnis des Integrals und daher zu einer positiven

Steigung des SNR.
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Es ist erwahnenswert, dal’ die theoretische Interpretation, was das positive \or-
zeichen der Steigung angeht, nicht von der Art des Rauschens abhéngt, weder bei
vollig unkorreliertem (8 = 0), noch bei korreliertem Rauschen (o« = 0), so lan-
ge ndherungsweise ein weildes Frequenzspektrum vorliegt. Untersuchungen haben
bestatigt, dal’ die Leistung des originalen Bildsignals bei nattirlichen Bildern auf
niedrige Frequenzen konzentriert ist und damit auch der korrelierte Rauschanteil
ebenfalls naherungsweise weil bleibt. Die GroBe der positiven Steigung SNR,,
kann hingegen von der Art des Rauschens abhéngig bleiben.

Annahme 2: Konstantes Bildsignal

Neben den natirlichen Szenen sind Bildsignale mit konstanten Bildbereichen ein
Sonderfall, fir den eine theoretische Herleitung gegeben werden kann.

Das SNR des ungefilterten Bildes kann fiir z, = const nach (5.4) vereinfacht
werden zu

2,.2
T Xy

SNR$(’7) = o ’)/QﬂQIL'Q,
o

(5.22)

da die Rauschprozesse ny und ny als zueinander unkorreliert und mit einer Vari-
anz eins angenommen werden kdnnen.

Fir die gefilterte Szene ergibt sich dann fur den zweidimensionalen Fall der Aus-
druck

2 2

SNR — T Zo 2
O = e ey~ e [P O
2 2,..2 2
_ 2 Lo — T To . g
-7 o2Cr/o? o2 OCn’ (5.24)

wobei C hier der Vorfaktor der gewéhlten FOURIER-Transformation ist. Da weiter
die Leistung des ungefilterten Rauschens durch o2 = o? + 42?322 bestimmt ist,
ergibt sich die Beziehung

721:3 0_2 0.2

. = SNR, N 2
a? + 926222 Cr S () (5.25)

SNR, (7,0) = A

oder mit den logarithmischen GroRen

2
g
SNRya dB(fYa J) = SNRx, dB ('Y) + 10 10g10 E (526)
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Dieses interessante Ergebnis ist einer Reihe von Annahmen und Néaherungen un-
terworfen und gilt somit z. B. nur fir ¢ > 1. Auch flr beliebig groRe o ist die
Né&herung nicht mehr sinnvoll, da nach (5.25) das SNR nicht gegen einen Grenz-
wert fir wachsende o konvergieren wiirde. Messungen bestéatigen aber, daR die
Kurvenform bzw. die Steigung des SNR, (o) nicht stark von - abhéngt, sondern
die Beleuchtungsstarke hier lediglich einen konstanten Faktor ausmacht (bzw. ei-
ne additive Konstante in dB), was der obige Ausdruck auch bestétigt. Wie sich
noch zeigen wird, ist dieses Ergebnis fir praktische Zwecke durchaus ausreichend
und von groRem Interesse.

5.3.2 Konstruktion eines Steuermechanismus

Wie der vorherige Abschnitt zeigt, ist durch Filterung mit einem Gaul3tiefpal3 ei-
ne Verbesserung des Signal-zu-Rauschverhéltnisses in dunklen und verrauschten
Bildszenen bis sehr groBe o moglich. Offensichtlich kann es aber nicht zweck-
malig sein, sets das maximale o zu verwenden. Dies liefert zwar das beste SNR,
hierdurch wirde jedoch immer die geringste ortliche Auflosung erzielt werden.
Aus diesem Grund ist es sehr wichtig, einen KompromifR zwischen ,,gutem* SNR
und ausreichender Ortsauflosung zu finden. In diesem Abschnitt wird daher eine
maogliche Strategie vorgeschlagen, um ein o flr eine globale, d. h. ortsinvariante
Filterung flr eine bestimmte Beleuchtungsstarke + des verrauschten Bildes zu fin-
den. Ziel hierbei ist, durch die Filterung mit einem passend zu wahlendem adap-
tiven o,(y) das SNR der Szene soweit zu verbessern, daB ein gewiinschtes SNR,
z.B. das einer ungefilterten, gut beleuchteten Szene (v = 1) erreicht wird. Das
Prinzip ist in Abb. 5.5 verdeutlicht. Die Bestimmung der notwendigen Filterstar-
ke o,(y) in Abhéngigkeit von der Beleuchtung, was im folgenden Steuersignal
genannt werden soll, kann z. B. durch einen Optimierungsprozel? mittels realen
oder simulierten Kameradaten approximativ geschehen. Des weiteren kann aber
auch die theoretische Herleitung des SNR eines gefilterten Bildes im vorherigen
Abschnitt genutzt werden, um ein explizites Steuersignal aufzustellen. Beide Ver-
fahren werden nun kurz vorgestellt.

Optimierungsprozel}
In einem Optimierungsprozel wird die Abh&ngigkeit der adaptiven Filterparame-
ter o = o, von der Beleuchtung v gesucht, um ein bestimmtes SNR zu erzielen,

d.h. gesucht ist die Losung

04(7) = argmin |[SNR, (7, o) — SNR,(1)|?. (5.27)
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Abbildung 5.5: links: Bestimmung der notwendigen Filterstarke o bei gegebener
Beleuchtung und fir ein gewtinschtes SNR. rechts: Resultierendes Steuersignal.

Fir diese Aufgabe wurde das Verhalten o, () flr v = 0...1 mit verschiedenen
Testbildern berechnet und das adaptive o, durch einen Optimierungsprozel’ be-
stimmt (siehe auch [EisO1]). Da die Ergebnisse fur verschiedene Testbilder nur

geringfugig voneinander abweichen, ist eine Approximation der Mef3daten durch
eine Funktionsvorschrift

A
0a(7) = (040 — %) (%) +C (5.28)

moglich und zweckmaéliig, um jedem beliebigen ~ einen Filterparameter zuordnen
zu kdnnen. Mit der Konstanten
A
Oa,1 — 0g,0 <z_(1))

3= 3 (5.29)
- (3)
71
und der Vorgabe zweier Eckwerte o, ; = 04(7;), 7 = 1, 2 istes moglich die Abbil-
dungsvorschrift auf zwei vordefinierte Werte zu ,.klemmen®. Zusétzlich kann ein
gewichteter mittlerer Approximationsfehler wéhrend der Funktionsapproximati-
on, der den Bereich kleiner Werte o, betont, die weiteren Ergebnisse verbessern.
Das Ergebnis der Approximation ist in Abb. 5.6 (links) zu sehen. Auch wenn
SNR(e) immer eine positive Steigung hat, wie bereits diskutiert und in Abb. 5.4

gezeigt, andert sich die Steigung mit unterschiedlichem Anteil von korreliertem
und unkorreliertem Rauschen, also mit den Rauschparametern o und 5. Hier wird
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also deutlich, dal? immer eine Art Kamerakalibrierung zur Schéatzung der Rausch-
parameter oder zur Gewinnung der Kurvenschar SNR(o) im Vorfeld notwendig
ist.

In Abb. 5.6 (rechts) ist eine Simulation einer adaptiven Filterung dargestellt. Der
Mittelwert des Bildes wurde dabei benutzt, um die Beleuchtungsstérke ~ zu schat-
zen. Der gut beleuchteten Szene wurde dabei v = 1 zugeordnet. Bei dieser Ad-
aption wurde als Kleinste Filterstarke ¢ = 1/+/27 verwendet, wodurch auch das
hellste Bild einer sehr geringen aber dennoch vorhandenen Filterung unterworfen
ist. Aus diesem Grund ist das SNR, etwas groRer als das SNR, bei v = 1. Der
Adaptionsmechanismus klemmt, wie zu sehen, das SNR, gegen den optimalen
Wert der hellen Szene. Die Abweichungen sind durch den Restfehler der Appro-
ximation in Abb. 5.6 (links) zu erklaren.

12

0 02 04 06 08 1 02 04 06 08 1
Beleuchtung ~y Beleuchtung ~y

Abbildung 5.6: links: Sinnvolle Zuordnung der Beleuchtungsstarke (— gemessen,
- - approximiert) durch Optimierung mittels simulierter Kameradaten. rechts: Ver-
schlechterung (=) und adaptive Verbesserung (- -) bei abfallender Beleuchtung
(v =1...0.01) in einer simulierten Szene.

Explizites Steuersignal

Unter der Voraussetzung, dal® das Bildsignal der Szene konstant ist und die bei-
den Rauschprozesse weild sind, kann man durch (5.25) ein explizites Steuersignal
konstruieren. Unter Angabe eines zu erzielenden Signal-zu-Rauschverhaltnisses
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SNRges := SNR,, und der adaptiven Filterstarke o, erhalt man die Beziehung

SNRges = SNRy (7, 04) = 23 g—SNR Y —62’ 5.30
des y(7, %) a? + 2322 Cr =(7) - Cr (5.30)
und damit das explizite Steuersignal
SNRy
2 es
o, \Y) ' = =" . 531

Der Faktor C, der urspriinglich aus der FOURIER-Transformation resultierte, kann
hierbei unter Umstanden auch modifiziert werden, um die Naherungen (vor allem
bei kleinen Filterstarken o), die zu dem Ergebnis in (5.25) flihren, auszugleichen.

Mit diesem Ergebnis kann theoretisch ein beliebiges SNR eingestellt werden, wo-
fir allerdings die Rauschparameter . und 8 bekannt sein mussen, da sie bei der
expliziten Schéatzung der GroRe SNR, () bendtigt werden. Eine Simulation ist
in Abb. 5.7 gezeigt. Sind die exakten Rauschparameter bekannt, so ergibt sich

02 04 06 08 1 02 04 06 08 1
Beleuchtung ~ Beleuchtung ~y

Abbildung 5.7: Verschlechterung (=) und adaptive Verbesserung (- -) bei abfal-
lender Beleuchtung in einer simulierten Szene mit dem expliziten Steuersignal
(SNRges = 40 dB). links: Ergebnis mit den exakten Rauschparametern. rechts:
EinfluR unkorrekter Rauschparameter bei der Adaption.

das Ergebnis der Adaption in Abb. 5.7 (links). Der geschatzte adaptive Filter-
koeffizient o, ist bis v ~ 0.3 so klein, dal3 keine Filterung stattfindet. Dies ist
hauptsachlich darin begriindet, dal? der theoretische Ansatz fiir das explizite Steu-
ersignal flr kleine o nur nédherungsweise erftllt ist. Fir wachsende o wird das
gewinschte SNR dann schnell erzielt. In Abb. 5.7 (rechts) sind die Auswirkungen
zu sehen, die sich durch unbekannte oder schlecht geschétzte Rauschparameter er-
geben. Hier weichen die Parameter o. und 3 der Adaption um etwa 25% bzw. 50%
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von den originalen Parametern ab, die zur Erzeugung des verrauschten Bildsignals
verwendet wurden. Aus diesem Grund wird das gewtinschte SNR nicht erreicht.
Zur Schétzung der Rauschparameter ist also eine Art Kamerakalibrierung erfor-
derlich, die im nachsten Kapitel genauer beschrieben wird. Dort ist auch gezeigt,
dal} trotz der genannten N&herungen und Annahmen durchaus auf sehr einfache
Weise eine effektive Adaption erzielt werden kann.

5.3.3 Vergleich mit dem biologischen Vorbild

An dieser Stelle lohnt es, die Aufmerksamkeit auf das in der Biologie gemes-
sene Steuersignal zur Generierung der adaptiven (lokalen) Rezeptorkopplung zu
richten. Wie Untersuchungen in [SL96a] zeigen, kann die Abhéngigkeit der Re-
zeptorkopplung von der mittleren lokalen Helligkeit I, (gemessen in td=photopic
trolands) hier durch die Gleichung

In A’)’L
or(l,) =152 %

S n~0.5,6~0.01, Ay ~ 65 td (5.32)
a

naherungsweise approximiert werden, was in Abb. 5.8 (links) dargestellt ist.

12}

12

10 10}
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0 0
10° 10 10 10° 01 02 03 04 05

lokale retinale Lichtintensitat I, [td] normiertes Rezeptorpotential v /vRr, max

Abbildung 5.8: Adaptive Rezeptorkopplung des biologischen Vorbildes. links:
Abhéangigkeit von der lokalen mittleren Helligkeit. rechts: Abhéangigkeit von dem
(normierten) Rezeptorpotential (fiir ein gewéhltes 1,).

In einem weiteren Schritt mul allerdings die nichtlineare Umsetzung der Licht-
bzw. Strahlungsintensitat 7, die auf einen Rezeptor fallt, in das resultierende Re-
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zeptorpotential

1
I+ (kr/kaa + kr)

berlcksichtigt werden, da erst dieses Potential v dem in dieser Arbeit verwende-
ten Rezeptorsignal z g entspricht. Wird also die Rezeptorkopplung nicht tber 1,
sondern tber vg in Abb. 5.8 (rechts) aufgetragen, so verdeutlicht dies, daR3 der Me-
chanismus im biologischen Vorbild dem technischen Steuersignal (siehe Abb. 5.6
(links)) qualitativ sehr &hnlich ist. Damit scheint der in den vorherigen Abschnit-
ten entwickelte Ansatz, in einem technischen System das SNR bei variierenden
Beleuchtungsverhaltnissen durch eine adaptive Filterung auf einen gewinschten
Wert zu halten, weiter biologisch motiviert und sinnvoll zu sein.

ky ~8331d, k, &~ 103 td  (5.33)

UR (I, Ia) ~ UR,max

5.4 Erweiterungen fur eine adaptive Verarbeitung

In diesem Abschnitt wird nun die Frage behandelt, inwieweit das bereits vorge-
stellte lineare Modell aus Kapitel 3 um eine adaptive Komponente fiir variieren-
de Beleuchtungsbedingungen erweitert werden kann. Dabei soll die Aufgabe, ei-
ne biologienahe Konturextraktion durchzufuhren, stets im Blickpunkt bleiben. In
Abb. 5.9 ist eine denkbare adaptive Verarbeitungskette dargestellt. Dabei wird das
Rezeptorsignal x g zurtickgekoppelt, um ein Steuersignal zu erzeugen, was wie-
derum die Grolie der Rezeptorkopplung og adaptiv steuert. Im Gegensatz dazu
wird in der biologischen Modellierung von SHAH [SL96a, SL96b] das Ausgangs-
signal der Horizontalzellen fiir die Adaption verwendet. Da dieses dort als GauR3-
filter ausgelegt ist, wird so in Kombination mit der Rezeptorkopplung insgesamt
wieder ein Gaulfilter grolerer Filterstarke ausgebildet, um so eine mittlere loka-
le Helligkeit I, zu schatzen. Dieses wird tber eine nichtlineare Abbildung zur
Berechnung der Rezeptorkopplung eingesetzt. Da im Rahmen dieser Arbeit al-
lerdings die Ubertragungseigenschaft der Horizontalzellen nicht direkt modelliert
wurde, um dort keinen Freiheitsgrad zu verlieren, wird dieses Signal nicht ver-
wendet. Vielmehr wird das Rezeptorsignal selbst mittels eines allgemeinen Verar-
beitungsschrittes or (xr) in das Steuersignal tiberfihrt. Ist diese Verarbeitung als
Gaulfilter ausgelegt, so entspricht dies aber wieder im wesentlichen der Funkti-
onsweise des biologischen Vorbildes.

Der Mechanismus konnte wie in [SL96a, SL96b] ortsvariant sein und damit lo-
kal adaptiv arbeiten. Dies kann Vorteile bei Szenen mit grolem Dynamikbereich
bieten, damit helle, aber auch dunkle Bereiche lokal unterschiedlich behandelt
werden kénnen. Wie aber bereits gezeigt, arbeitet bereits eine globale Adaption
effektiv, wenn eine gewisse globale Helligkeit zugrunde gelegt wird. Diese kann
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Abbildung 5.9: Erweiterung des bisherigen Modells um eine adaptive Rezeptor-
kopplung.

melitechnisch durch den Mittelwert der kompletten Bildszene geschatzt werden,
was einer Mittelung tber die Gesamtheit aller Rezeptorpotentiale entsprache. Dies
ware aber biologisch nur sehr aufwendig implementierbar, da hierfir alle Rezep-
torsignale auf ein resultierendes Neuron konvergieren muften, was entweder sehr
ausgedehnte synaptische Verbindungen bei einer einzelnen Verknipfungsschicht
oder aber eine sehr aufwendige Kaskade von vielen Neuronenschichten (die je-
weils eine ortliche TiefpalRwirkung besitzen) bedeuten wiirde. Dies wird ebenfalls
ein Grund sein, warum in der Biologie ein lokaler Mechanismus zum Einsatz
kommt. Da in technischen Bildverarbeitungssystemen aber im Gegensatz zu der
retinalen Architektur eine globale mittlere Helligkeit v der Szene leicht berechnet
werden kann, beschréanken wir uns hier auf einen globalen Steuermechanismus.
Wie wir im weiteren sehen werden, stellt aber selbst diese ortsinvariante Adap-
tion fir die gesamte bisherige Verarbeitungskette eine zusétzliche Schwierigkeit
im Entwurf dar.

5.4.1 Einflul3 auf nachgeschaltete Verarbeitungsschichten

Ziel ist es, eine biologienahe Signalverarbeitungskette aufzustellen, die adaptiv
zur Helligkeit der Szene eine robuste Konturextraktion gewéhrleistet. Dazu be-
trachten wir die Verarbeitung des bisherigen linearen Modells in Kapitel 3 und
simulieren die Ubertragungseigenschaften fir eine adaptive Rezeptorkopplung
or. Da die nachgeschalteten Systeme hrg und hgg; flr ein spezielles op =
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1.5 csp, also fir die beste Ortsauflésung entworfen worden sind, ist es nicht unbe-
dingt selbstverstandlich, dal die gesamte Verarbeitungskette noch die gew(insch-
ten Ubertragungseigenschaften fiir ein adaptives o i besitzt.

Untersuchungen zeigen, dall das Modell bis zu den Gangliensignalen die ge-
wiinschten Eigenschaften auch fiir eine adaptive Rezeptorkopplung beibehalt. Die-
ses liegt darin begriindet, daB die Filtereigenschaft A als Laplace-Ableitung einer
Gaul¥funktion (LoG) entworfen ist, das Subsystem h g sich damit ndherungswei-
se (je nach Modellaufwand) als Laplace-Operator Ay = 92 /0t? + 8% /9t2 ausge-
bildet hat

T Tv 2 2

(5.34)

In Abb. 5.10 ist die (normierte) Ubertragungsfunktion H g auf der Basis eines
hexagonalen Abtastrasters dargestellt. Wird der Parameter des Gaul¥filters nun ad-
aptiv verandert, so bleibt insgesamt immer ein LoG-Operator bestehen.

: : : 1.2 K0
F——— 0.8{ -
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Abbildung 5.10: Die Ubertragungsfunktion H gz entspricht naherungsweise dem
Verhalten eines Laplace-Operators.

Im Gegensatz dazu weichen die Resultate der Simplen Zellen aber fir ein o #
1.5 csp von dem gewuinschten ,,Gaborverhalten” ab. In Abb. 5.11 ist dazu der
Betrag der Ubertragungsfunktion Hg ; fiir verschiedene Rezeptorkopplungen zu
sehen. Da die kortikalen synaptischen Verkntipfungen bzw. die Filterkoeffizienten
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der kortikalen Subsysteme fiir ein cg = 1.5 csp ausgelegt und optimiert sind,
fuhren diese bei groRReren Rezeptorkopplungen nicht mehr zu dem gewtinschten
\erhalten.

Abbildung 5.11: Ubertragungsverhalten Hg ; der urspriinglichen Verarbeitungs-
kette bei variablen Rezeptorkopplungen o = 1.5 csp (links), og = 3 csp (mitte)
und o = 6 csp (rechts).

Natlrlich konnte versucht werden, auf eine gewisse Art die Subsysteme hgs ;
ebenfalls adaptiv auszulegen, um stets das gewinschte Verhalten zu erreichen.
Dies ist aber biologisch nicht erklarbar, da dies eine zusatzliche enorme Anzahl
von synaptischen Verbindungen innerhalb des Cortex bedeuten wirde, um die je-
weiligen Verknipfungen beider Typen Simpler Zellen (gerade/ungerade) fur alle
Orientierungen adaptiv auszulegen. Fiir das biologische Vorbild wére deshalb nur
ein Verarbeitungssystem sinnvoll und effizient, bei dem nur an einer Stelle, nam-
lich zu Beginn der Verarbeitungskette, sprich den Rezeptoren ein adaptiver Me-
chanismus zu implementieren ist. Auch fiir ein technisches System waére nur solch
eine Strategie interessant und tberhaupt sinnvoll, da vom Aufwand her vertretbar.

5.4.2 Modellierung kortikaler Verknipfungsstrukturen

Um die Problematik mit dem bisherigen Modell, die durch eine adaptive Verar-
beitung entsteht, dennoch l6sen zu kénnen, wird im folgenden eine alternative
kortikale Modellierung vorgestellt. Diese besteht aus einer Zusammenschaltung
von Subsystemen, welche die ortlichen Gradienten des Intensitatssignals bilden.
Damit wird die retinale Verarbeitung, die im wesentlichen eine Ableitung zwei-
ter Ordnung bildet, im Cortex systematisch weitergefuhrt. Wirde sich dann durch
eine Adaption die Standardabweichung der GaulRfunktion &ndern, sollte das prin-
zipielle Verhalten einer Gaborfunktion aber bestehen bleiben.

Um die Komplexitat der Modellierung zu reduzieren, betrachten wir zundchst den
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eindimensionalen Fall. Hier kann leicht veranschaulicht werden, dal die hoheren
Ableitungen einer Gauf3funktion recht gut der Kurvenform der Gaborfunktionen
ahneln, so daB es zu untersuchen lohnt, die kortikale Modellierung als eine Ket-
te von Ortlichen Ableitungsfiltern aufzubauen. In Abb. 5.12 (links) sind exempla-
risch die geraden und ungeraden Ableitungen einer Gaul3funktion bis zur Ordnung
4 bzw. 5 dargestellt. Die hoheren Ableitungen scheinen dabei qualitativ einer Ga-
borfunktion dhnlich zu sein. Vergleicht man in Abb. 5.12 (rechts/oben) die 6. und
5. Ableitung mit dem Real- und Imagindrteil einer bestimmten Gaborfunktion, so
wird dies nochmals deutlich. Werden nun aber jeweils die gerade und ungerade
Ableitung kombiniert, wie in [KvD87] vorgeschlagen, so ergeben sich die Dar-
stellungen in Abb. 5.12 (rechts/unten). Im Gegensatz zu dem Betrag der komple-
xen Gaborfunktion, welcher durch die Quadratureigenschaft von Real- und Ima-
gindrteil eine unmodulierte GauBfunktion ist, &hnelt die gezeigte Kombination der
beiden Ableitungen nur in entfernter Weise einer Gaul3funktion. Da gerade diese
Eigenschaft aber fir eine leistungsfahige Konturextraktion von groRer Bedeutung
ist, soll an dieser Stelle ein neuer Ansatz zur Approximation der Gaborfunktionen
mittels linear kombinierter GauRableitungen vorgestellt werden.

Approximationsansatz fir den eindimensionalen Fall

Die Untersuchungen im eindimensionalen Fall, fir die 0.E. T' = 1 sei, zeigen,
dafl durch eine Linearkombination

hg,e(k) ~ Bg,e(k) = (Z f21/a2u) : g(k)a

hg,o(k) =~ Eg,o(k) = (Z f2u+182y+1) - g(k), (5.35)

verschiedener Ableitungen einer Gaulifunktion die Approximationsgenauigkeit
deutlich verbessert werden kann. Dabei seien 9; = 9¢/0t* die ortlichen Ablei-
tungen der Ordnung ¢ bzw. deren diskrete Realisierungen,

1 _ k% 0202

vV 2ro?

g(k) =
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Abbildung 5.12: links: Gerade (oben) und ungerade (unten) ortliche Ableitungen
einer Gaul3funktion. rechts: Vergleich der 6. und 5. Ableitung einer GauRfunktion
(- -) mit einer geraden und ungeraden Gaborfunktion (=) (oben) und Kombination
der Gaborfunktionen (=) bzw. der beiden Ableitungen nach [KvD87] (- -) (unten).

die GauRfunktion und

1 K
hge(k) = ———-e > - cos(vok), (5.37)
2#03
1 K
hyolk) = ———=-e %75 -sin(vok) (5.38)

die zu approximierende gerade (even) bzw. ungerade (odd) Gaborfunktion. Die
Koeffizienten f; lassen sich durch ein Regressionsverfahren numerisch bestim-
men. Es hat sich gezeigt, dal bereits drei Ableitungsfunktionen zu einer ausrei-
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chend genauen Approximation fiihren. Wir machen deshalb den Ansatz

hee(k) = | Y fidi| - g(k) = (f202 + fa0s + f606) - g(k),

i=2,4,6

hoo(k)=| > fi0i | - g(k) = (f305 + fs05 + f707) - g(k).  (5.39)
i=3,5,7

Hierbei soll eine Ableitung < 2 nicht verwendet werden, da im Cortex lediglich
das Signal der Ganglienzellen zur Verfuigung steht (laplacian of gaussian), auf das
die Kaskade aufgebaut wird.

Die kaskadenformige Verarbeitungskette ist in Abb. 5.13 durch einen denkbaren
SignalfluBgraph beschrieben. Neben dieser Implementierung gibt es weitere Va-
rianten, die aber weniger effizient oder fur eine Erweiterung auf den zweidimen-
sionalen Fall weniger geeignet sind. Hier wird aber auch deutlich, dal? durch die
Linearkombination kein Mehraufwand in Kauf genommen werden muf3, da durch
eine Kaskade die Ableitungen niedriger Ordnung mitberechnet werden.

azg

f2 fa fe

+)—O—@
+)—O—@

hg.e

f3 ?f 5 %f 7}]%0

+

Abbildung 5.13: SignalfluRgraph der eindimensionalen Verarbeitungskette.

Das Ergebnis der Approximation spiegelt Abb. 5.14 wider. Sowohl die beiden
reellen Gaborfunktionen, als auch deren Kombination weisen eine hohe Appro-
ximationsglite auf. Hierbei wurde als Entwurfsziel eine Gaborfilterimpulsantwort
mit einer Mittenfrequenz von = /8 (3. Band einer logarithmischen Frequenzauftei-
lung, siehe Abb. 5.15) und eine Standardabweichung der GauRfunktion von o = 6
gewadhlt.

Verandert sich nun die Standardabweichung im Rahmen einer Adaption, so ergibt
sich in einem weiten Rahmen immer eine Gaborfunktion als Resultat der Uber-
lagerung der GauRableitungen. Abb. 5.15 gibt diesen Aspekt im Frequenzbereich
wieder, wobei die Standardabweichung hier in 4 Schritten von 0.4 bis 12 variiert.
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Abbildung 5.14: oben: Gerade und ungerade Gaborfunktion (=) im Vergleich zu
dem vorgestellten Approximationsansatz (- -) gemaR (5.39). unten: Kombination
der Gaborfunktionen (-) und der Approximationsergebnisse (- -).

Abbildung 5.15: Vergleich der Gaborfunktionen (=) mit dem Ergebnis der Appro-
ximation (- -) im Frequenzbereich fiir verschiedene Mittenfrequenzen.
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Bei der biologischen Modellierung wiirde sich o (bzw. die Rezeptorkopplung o )
adaptiv einstellen. Fir eine technische Implementierung kann es aber auch nitz-
lich sein zu wissen, wie ¢ einzustellen ist, um eine gewisse gew(inschte Mittenfre-
quenz vqg des Gaborfilters zu realisieren. Dazu ist das Verhalten der Ableitungskas-
kade im Frequenzbereich zu betrachten, da dort das Maximum bei der gesuchten
Mittenfrequenz liegt. In der vorliegenden Modellierung kommt als Ableitungsfil-
ter ein zentrischer Gradient mit der Differenzengleichung

::L'(k—}-l)—a:(k—l)

o7 (5.40)

y(k)

zum Einsatz, gleichwohl auch Alternativen dazu, wie ein rekursives nichtkausales
Filter, untersucht wurden. Da neben der einfachen Implementierung der zentri-
sche Gradient gegenuber Rauschprozessen durch die Dampfung bei hohen Fre-
guenzen zusatzlich robust ist, soll im weiteren diese Form verwendet werden. Die
z-Ubertragungsfunktion bzw. die gewoshnliche Ubertragungsfunktion des zentri-
schen Gradienten Iait sich angeben zu

z—z_l

2T

HE (2) = bzw. Hp(v) = j/T sin(v). (5.41)

Weiter erlaubt dies eine Beschreibung der verschiedenen (geraden und ungeraden)
Ableitungsoperationen hoherer Ordnung im Frequenzbereich mit

i o—e (F{01})' = (Hp(v))' = (j/T)" sin’(v). (5.42)

Mit diesen Realisierungen ergeben sich die Approximationen der Gaborfunktio-
nen im Frequenzbereich zu

Hye(w)=| Y. f£i(G/T) sin'(v) | - G(v), (5.43)
i=2,4,6

Hyo(v)=| Y £(/T) sini(])L(w- (5.44)
i=3,5,7

Da die Ubertragungsfunktionen am Rand des interessierenden Frequenzbereiches
verschwinden

Hyo
Hg,o(

(m)

(7)

, (5.45)

0)=H,, 0
0)=H,, 0, (5.46)
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fuhrt die notwendige Bedingung fir eine Extremstelle
%ﬁg,do(u) =) (5.47)
= (Z fi(G/T)" i sin“(v)) cos(v) - G(v) +
(Z fi(G/T)’ sin%v)) (~vo?) - G(v)

auf eine allgemeine Berechnungsvorschrift fiir den gesuchten Filterparameter o
bei gegebener oder gewlinschter Mittenfrequenz o

__ [S A/ sin = Go) cos(ao) 6.0

> fi(3/T)" sin’ (o) Yo

Der reduzierte Approximationsansatz fur die gerade Gaborfunktion
I:I"g,e(v) = (—4fysin?(v) + 16 f4 sin® (v) — 646 sin®(v)) - G(v) (5.49)

fihrt damit nach entsprechenden Vereinfachungen auf

o \/ —2f, + 16 f4 sin2(7ig) — 96 f5 sin(7i) cos(@o) (5.50)

— fosin(Tig) + 4f4sin3 (%) — 16 fg sin®(3g) o

wobei hier 0. E. T = 1 (genormt auf Pixelkoordinaten) gesetzt sei. Die umge-
kehrte Fragestellung nach der resultierenden Mittenfrequenz vy bei gegebenem
Filterparameter o kann durch die implizite Gleichung

. —2fo+16f4 sin(g) — 96 fg sin*(7g)  cos(@p)
T —fysin(dg) + 44 sin3(9g) — 16 fgsin®(3p) 02

(5.51)

numerisch recht schnell gelost werden. Die Zuordnung fir eine logarithmische
Frequenzbandaufteilung, wie es bei Filterbankrealisierungen i.d.R. tblich ist, er-
gibt bei der Wahl von zentrischen Gradienten die folgende Ubersicht:

o | /2 /4 /8 /16
o ‘0.3989 2.7584 6.0321 12.0777

(5.52)
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Approximationsansatz fur den zweidimensionalen Fall

Was im eindimensionalen Fall die Ableitung bzgl. der Ortskoordinate ¢ ist, muf}
im zweidimensionalen Fall durch die Ableitung in eine bestimmte (gewinschte)
Richtung realisiert werden, um die Orientierungsselektivitat der zweidimensio-
nalen Gaborfunktionen zu approximieren. Die Ableitung eines kontinuierlichen
Signals z.(t) in eine bestimmte Richtung kann mittels eines Richtungsvektors

| ri | | cos(e)
- [2]- (0]
und des Gradienten V des Signals durch
0 a.(t) = V'ae(t) - 7 = [0Wac(t), 0P, ()] - [ ! ] (5.54)
2

bestimmt werden, was kurz Richtungsableitung genannt wird. Bei einem ortsdis-
kreten Signal

z(k) = z.(Tk) (5.55)

auf einem beliebigen Abtastraster 7" mussen nun die Ableitungen bzgl. der karte-
sischen Koordinatenrichtungen 8(9 (; = 1, 2) durch die entsprechenden diskreten
Realisierungen auf den Koordinatenachsen des Abtastrasters ausgedriickt werden.
Es ergibt sich durch Substitution die Beziehung
Wz (t) = C,%:cc(Tk:) = %x(k) : a%k = V,iz(k)- a%(T—lt), (5.56)
N—_——
!
| T

die die Berechnung der gesuchten Ableitung durch den Gradienten V auf dem
Abtastraster und der ersten bzw. zweiten Spalte von T~ angibt. Zusammengefaft
gilt somit

Mz (k)=Viz(k) - T r (5.57)

= [0Wz(k), 8P z(k -[m m]-[”]. 5.58

0V (k),0®a() - | 72 | (558)

Fur T = 1 und einem rechtwinkligen Abtastraster ergibt sich eine starke Verein-
fachung der Richtungsableitung, was in Abb. 5.16 zu sehen ist. Auf einem hexa-
gonalen Abtastraster sind allerdings die allgemeine Form und die entsprechenden
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Koeffizienten, die aus

1 1
T; = | ** W_?_’fh] (5.59)
2Tn  24/3Ty,

resultieren, zu verwenden, was in Abb. 5.17 veranschaulicht ist. Letztlich ist in
Abb. 5.18 der SignalfluBgraph der resultierenden zweidimensionalen orientierungs-
selektiven Verarbeitungskette dargestellt.

T1

o)

T2

5(2)

Abbildung 5.16: Vereinfachter SignalfluBgraph der zweidimensionalen Rich-
tungsableitung auf rechtwinkligem Raster mit 7" = 1.

o)

8(2)

Abbildung 5.17: SignalfluRgraph der zweidimensionalen Richtungsableitung auf
hexagonalem Raster.
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Abbildung 5.18: Signalflugraph der zweidimensionalen Verarbeitungskette.

Bei der zweidimensionalen Filterung ist zusatzlich zu der Ableitungskette bzgl.
der gewiinschten Orientierung noch eine zu der Orientierung orthogonale Tief-
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palfilterung o, notwendig, um eine Orientierungsselektivitat zu erreichen. An-
schaulich wird dadurch eine kontrollierte Uberschneidung zweier Frequenzban-
der mit einer benachbarten Orientierung erreicht. So ist beispielsweise die Uber-
tragungsfunktion bis zu der zweiten Richtungsableitung in der Kette fir die Ori-
entierung 0° (Ableitung in die erste Koordinatenrichtung) im wesentlichen eine
Multiplikation einer isotropen GauRfunktion mit sin?(v;). Dadurch ist aber die
resultierende Ubertragungsfunktion bzgl. der orthogonalen Frequenz (hier v5) fr
eine Orientierungsselektivitat i.allg. zu breit. Die biologische Realisierung stellt
eine zusatzliche Herausforderung dar, da durch das Gangliensignal als Eingangs-
signal der Ableitungskette immer eine Laplace-Ableitung eines gauRgefilterten
Signals zur Verfugung steht. Dies bedeutet somit aber immer eine Fremdkompo-
nente durch die 2. Ableitung bzgl. der orthogonalen Richtung. Durch die erwéhnte
orthogonale Tiefpalifilterung, welche naherungsweise als Integrator, also als Um-
kehroperation zur Differentiation aufgefa3t werden kann, wird die strende Kom-
ponente aber weitgehend unterdriickt. In Abb. 5.19 sind exemplarisch die resul-
tierenden Frequenzbénder fur Orientierungen bis 90° und ¢y € [r/2,7/4, /8]
der geraden und ungeraden Ableitungsketten dargestellt. Bei dem ersten Auflo-

va/m
o

O |
Q%%g
oS

-1 —0:5 0 015
vi/m
Abbildung 5.19: Verhalten einer frequenz- und orientierungsselektiven Filterbank

im Frequenzbereich (Konturplot bei einer Dampfung von 6 dB) auf der Basis der
geraden und ungeraden Ableitungsketten.

sungskanal ¢y = 7/2 macht sich die Anisotropie des LoG der Ganglienzellen
bemerkbar. Die Mittenfrequenzen liegen nicht auf einem Kreis und bei 0° sowie
90° miRte die orthogonale Filterung verstarkt werden. An dieser Stelle sollte aber
daran erinnert werden, dal’ im biologischen Vorbild keineswegs geordnete Struk-
turen der Filterbank gemessen wurden. Deshalb ist eine Realisierung optimaler
Frequenzbandaufteilung auch nicht unbedingt erstrebenswert. Hingegen ist mit
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der vorliegenden Modellierung eine biologienahe Verarbeitungskette entwickelt
worden, die den Bedirfnissen einer adaptiven Konturextraktion gerecht wird. In
Abb. 5.20 ist noch einmal abschliel}end das Frequenzverhalten der urspriinglichen
Modellierung und der unter Einsatz von Ableitungsoperatoren bei einer Adaption
gegentibergestellt.

wa /T

WQ/ﬂ'

.. .. ..
-0.5 0 0.5 -0.5 0 05 -0.5 0 05
& S
: S S
3 3
-05 0 05 -05 0 05 -05 0 0.5
wi/m wi/m wi/m

Abbildung 5.20: Ubertragungsverhalten Hg ; der urspriinglichen Verarbeitungs-
kette (oben) und der kortikalen Ableitungskette (unten) bei variablen Rezeptor-
kopplungen or = 1.5 csp (links), g = 3 csp (mitte) und o = 6 csp (rechts).

5.4.3 Rekursive Strukturen retinaler Neuronen

In der entwickelten Verarbeitungskette kann durch eine Adaption der ersten \Verar-
beitungsstufe (die Kopplung der Rezeptoren) insgesamt eine variable Extraktion
von orientierten Konturmerkmalen realisiert werden. Fir die Rezeptorkopplung,
die in der Modellierung als Gaulf3tiefpal? eingeht, wurde bislang eine nichtrekur-
sive Filterstruktur (bzw. ein neuronales Feed-Forward Netz) verwendet. Da die
Filterwirkung adaptiv ist und die GroRe der Impulsantwort (des rezeptiven Fel-
des) variabel ist, wirde sich eine rekursive Struktur anbieten, biologisch gar als
sehr plausibel erscheinen. Mit einem rekursiven Filter kann z.B. ein Tiefpal3 rea-
lisiert werden, bei dem allein durch die Werte und nicht die Anzahl der Filterko-
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effizienten die Grenzfrequenz des Filters eingestellt werden kann. Als rekursives
neuronales Netz bliebe hierdurch dann die Anzahl der synaptischen Verbindun-
gen, die auf ein Zielneuron konvergieren, konstant, nur die synaptischen Gewich-
te selbst verdndern sich adaptiv und bewirken durch die rekursive Verschaltung
die gewiinschte Filterwirkung. Zudem kann ein rekursives (2D) Digitalfilter auch
immer direkt durch seine Differenzengleichung als ein neuronales Verbindungs-
netzwerk interpretiert werden (siehe Kapitel 2).

In [Der93] und [VVYV98] werden verschiedene Realisierungen zweidimensiona-
ler Gaul3tiefpal3filter vorgeschlagen. Diese beruhen darauf, daR auf einem recht-
winkligen Abtastraster die Impulsantwort durch

ot — o= I Trkl® — ~TZ-(ki+k3) _ ~TZkT . ~T2k3 (5.60)

separierbar ist, und somit die zweidimensionale Filterung auf zwei eindimensio-
nale Filteroperationen zurtickgefiihrt werden kann. Auf einem hexagonalen Ab-
tastraster ist allerdings die Impulsantwort nicht mehr in den Koordinatenrichtun-
gen separierbar, da hier gilt:

eIt — o= IITnkl® — o= TR-((ka+ko)>+3(k1—k2)?) _ o—4T7-(W+k3—kik2) (5 61)

Im folgenden wird kurz vorgestellt, wie dennoch eine separierbare Verarbeitung
erreicht werden kann. Betrachtet man ndmlich die Diagonalkoordinaten d des Ra-
sters k, die aus einer Drehung um 45°

BRI 552

hervorgehen, so ergibt sich die Beziehung

1 3
k2 4+ k2 — kiky = Ed% + Edg (5.63)
und damit
o—lt? — 4T (53 +3d3) _ —2T%d? 6—2T5-3d§, (5.64)

also ebenfalls eine separierbare Impulsantwort in den Diagonalkoordinaten. Somit
kann durch eindimensionale GauRfilterung in den beiden Diagonalkoordinaten
des hexagonalen Rasters ebenfalls eine zweidimensionale Gaulifilterung erzielt
werden. Dies kann dann auch mittels eindimensionaler rekursiver Filter gesche-
hen. Hier ist zu erkennen, dal in den beiden Filterrichtungen allerdings unter-
schiedliche Filterstarken eingesetzt werden mussen, um insgesamt eine isotrope
zweidimensionale Filterantwort zu erhalten. Damit ist eine rekursive Realisierung
der Rezeptorkopplung auf der Basis eindimensionaler Filter auch auf einem hexa-
gonalen Abtastraster moglich.
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KAPITEL 6

Experimentelle Ergebnisse

In diesem Kapitel wird die Leistungsféhigkeit der in dieser Arbeit vorgestellten
biologienahen Verfahren zur Bildvorverarbeitung mit realen Kameradaten unter-
sucht. Der Schwerpunkt wird hier insbesondere auf die adaptive Vorfilterung mit
anschlielender Konturextraktion gelegt, welche, wie man zeigen kann, die wich-
tigste Komponente einer robusten Merkmalsextraktion ist. Die Untersuchungs-
ergebnisse der Ubrigen in dieser Arbeit entwickelten Aspekte eines biologischen
oder technischen Systems, wie die Interpolation fuir ein hexagonales Raster, die Si-
mulation des nichtadaptiven Modells und der pulscodierten Mechanismen wurden
bereits direkt in den jeweiligen Kapiteln gegeben. Fiir den Vergleich mit bestehen-
den Verfahren soll die Verarbeitung hier exemplarisch auf einem rechtwinkligen
Abtastraster erfolgen. Wie im vorangegangenen Kapitel erldutert, sind die Struk-
turen jedoch jederzeit auf einem hexagonalen Raster implementierbar.

Bei der Gewinnung und Verarbeitung realer Kameradaten (Kameramodell teli
Micro-Camera CS3330) fur die adaptive Rauschfilterung sind zusétzliche Beson-
derheiten zu beachten, auf die im ersten Abschnitt eingegangen werden soll. Hier
wird das Prinzip zur Messung des SNR mit gewissen Testmustern beschrieben,
was die Grundlage der quantitativen Beurteilung der Algorithmen ist und deshalb
viel Sorgfalt erfordert. Da die vorgestellte adaptive Strategie tiber die Helligkeit
der Bildinhalte gesteuert wird, ist hier auch die Kompensation des AGC (auto-
matic gain control) der Kamera von groRRer Bedeutung. Zudem wird anschlieBend
die Kompensation des FPN (Fixed Pattern Noise) behandelt, weil bei sehr dunklen
Szenen der systematische Anteil des Dunkelstromrauschens im Vergleich zum Si-
gnal nicht mehr zu vernachlassigen ist.

Fir die vorgestellte Strategie zur adaptiven Rauschfilterung ist die Kenntnis der
Rauschparameter der Kamera vorausgesetzt. Wie in einem weiteren Abschnitt ge-
zeigt, konnen diese aber recht gut mit Hilfe von Testmustern und einem Regressi-

127
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onsansatz ermittelt werden.

Abschlielend wird eine adaptive Filterung mit der vorgestellten biologienahen
Strategie durchgefiihrt und mit etablierten Standardverfahren verglichen. Dazu
wird zundchst die Leistungsféhigkeit bei der Verbesserung des SNR untersucht.
AnschlieBend werden die Ergebnisse der Konturdetektion vorgestellt.

6.1 Verarbeitung realer Kameradaten

Die vorgestellte Strategie zur adaptiven Rauschfilterung verwendet das Signal-zu-
Rauschverhéltnis und die Beleuchtungsstarke, um die Filterung zu steuern. Aus
diesem Grund wird zun&chst auf die schwierige Bestimmung des SNR und auf
die Bestimmung des Verstarkungsfaktors der Kamera eingegangen. Anschlie3end
wird die Kompensation des Dunkelstromrauschens besprochen, um die Gultigkeit
des Rauschmodells auch in extrem dunklen Situationen zu gewéhrleisten.

6.1.1 Melbilder zur Schatzung des SNR

Um die vorgestellten Algorithmen im Einsatz untersuchen zu kdnnen, ist die Ver-
wendung von Testmustern notwendig, auf denen definierte wei3e und schwar-
ze Rechtecke oder Quadrate aufgedruckt sind (Abb. 6.1). Die aufgenommenen
Bilddaten enthalten immer bereits die additive Uberlagerung von Original- und
Rauschsignal. Anhand der Testmuster ist es aber mdglich, Schatzungen beider Si-
gnale getrennt voneinander zu berechnen, um dann z.B. eine Schétzung fur das
Verhaltnis der Signalleistungen (SNR) angeben zu kdnnen.

-~ 1l 1

200 2001

300 . . 3001

400 4001 ]

1 Hl - HHNEN
200 400 600 200 400 600

Abbildung 6.1: Kamerabilder verwendeter Testmuster. In Regionen mit nahe-
rungsweise konstantem Signal z, = const kann das SNR geschatzt werden.

\Von dem Testmuster ist bekannt, daR das Originalsignal z, der Szene (der Grau-
wert des Testmusters selbst) in definierten, uns bekannten Regionen konstant tiber
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den Ort ist. Daher sollte eine Schétzung dieses Signals und des Rauschens durch
einfache oOrtliche Mittelwertbildung

vz, ~ E{z} (6.1)
n =any +yx.0ne ~ x — E{z}

maoglich sein. Flr diesen Zweck ist aber ein gleichmélig ausgeleuchtetes Testbild
erforderlich, was in der realen Messung nattrlich nie erreicht werden kann. In
der Tat hat sich gezeigt, dal3 diese Bedingung sehr schwer erflllbar ist. Hierauf
sollte also besonders geachtet werden. Trotz des Einsatzes spezieller Fotolampen,
die ein diffuses Licht erzeugten, wiesen die Messungen leicht inhomogene Aus-
leuchtungen auf. Um dennoch eine gute Schatzung des Originalsignals und des
Rauschens zu erhalten, musste das Mel¥fenster entsprechend klein gewahlt wer-
den, damit darin das Signal ndherungsweise konstant ist.

Es wurde eine Vielzahl von Testbildern mit verschiedenen, abnehmenden Be-
leuchtungsstufen « mittels einer dimmbaren Fotolampe in einer abgedunkelten
Laborumgebung aufgenommen. Fir Kompensationszwecke waren zu jeder Be-
leuchtung jeweils ein Bild mit und ohne AGC (automatic gain control) notwen-
dig. Daruber hinaus diente eine Reihe von Dunkelbildern der Kompensation des
Dunkelstrommusters FPN (fixed pattern noise).

Eine Mittelung einer statischen Szene (iber die Zeit scheint ebenfalls eine alterna-
tive Methode fiir die Schatzung der Signal- und Rauschleistung zu sein [Eis03].
Erste Versuche haben gezeigt, daB in dunklen verrauschten Situationen minde-
stens 100 Bilder bendtigt werden, um mit einer pixelweisen Mittelung das Rau-
schen zu unterdriicken. Das Resultat ist dann eine Schatzung des eigentlichen
Signals vz, welches hier nicht zwingend konstant bzgl. des Ortes sein muR. Ei-
ne Subtraktion dieser Schéatzung von einem verrauschten Bild wirde dann auf
das Rauschsignal fiihren. Der Szeneninhalt darf sich dabei allerdings nicht &n-
dern. Hierfur muf die Kamera fest montiert sein, um Einfliisse durch Vibrationen
zu vermeiden. Diese einschrankenden Bedingungen sind aber nur fur Analyse-
zwecke notwendig, nicht etwa in einer spateren Anwendung. Der Ansatz soll hier
nicht weiter verfolgt werden, da er in [Eis03] detailliert untersucht wird.

6.1.2 Kompensation des AGC
In dunklen Szenen verstarkt die Elektronik der Kamera tblicherweise automatisch

das gesamte Signal, d.h. das Originalsignal z, und das Rauschsignal n, bevor es
in ein Videosignal wie PAL umgesetzt wird. Naturlich ist dieses sogenannte AGC
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(automatic gain control) notwendig, um den zur Verfugung stehenden Signalpe-
gel auszunutzen und somit das Videosignal robust zu machen gegen Stdérungen
auf dem Ubertragungskanal (Kabel). Weiterhin ist es dadurch méglich, den ma-
ximalen Dynamik- oder Quantisierungsbereich der Signalamplitude bei der Digi-
talisierung durch den Framegrabber zu nutzen. In Abb. 6.2 ist ein Beispiel einer
dunklen Szene ohne und mit AGC dargestellt. Es ist zu erkennen, dal? ohne AGC

Abbildung 6.2: Aufnahme einer dunklen Szene ohne und mit automatischer Pe-
gelverstarkung des Kamerasystems.

der Dynamikbereich viel zu gering fir eine sinnvolle Signalverarbeitung ist. Das
AGC hingegen verstarkt den Signalpegel, aber gleichzeitig auch das Rauschen.
Zur besseren Darstellung wurde hier die Szene etwas aufgehellt.

Leider ist es aber nicht moglich, Szenen unterschiedlicher Beleuchtung ~ zu ana-
lysieren und zu vergleichen, wenn die interne Verstarkung der Kamera nicht be-
kannt ist. Fur diesen Zweck ist es wichtig, eine gewisse Kontrolle iber das AGC
der Kamera zu besitzen, um z. B. den Verstarkungsfaktor der Kamera auszule-
sen. Moderne Kameras verfiigen meist tber Schnittstellen zur Kontrolle des AGC
[Ima]. Da die vorliegenden Untersuchungen aber mit statischen Bildszenen ge-
macht wurden, war eine echtzeitfahige Kontrolle des AGC nicht notwendig. Hier
war ein Ausschalten des AGC ausreichend. Durch eine Aufnahme mit AGC und
eine weitere Aufnahme mit ausgeschaltetem AGC war es hier moglich, implizit
die Verstarkung herauszurechnen. Wie bereits erwahnt, ist das AGC fur dunkle
Szenen sehr wichtig, da sonst eine sehr schlechte Amplitudenauflésung nach der
Digitalisierung zu unbrauchbaren Ergebnissen fiihrt. Diese Tatsache spiegelt sich
auch in dem Histogramm des Kamerabildes mit AGC in Abb. 6.3 (links) und in
dem Bild ohne AGC (mitte) wider. Werden jedoch bei den Testmessungen jeweils
ein Bild der Szene mit AGC zagc und eines ohne AGC znoacc aufgenommen, so
ist es moglich, das AGC-Bild (bei dunkler Szene) auf ein korrektes ~ zu skalieren,
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Abbildung 6.3: AGC Kompensation. links: Histogramm eines realen Kamerabil-
des bei eingeschaltetem AGC. mitte: Histogramm eines Bildes ohne AGC. rechts:
Histogramm nach der AGC Kompensation.

um dessen hohe Amplitudenauflésung nutzen zu kdnnen. Mit der Transformation

Zeomp(k) = TNoAGC,min + - - -

Z(QTNOAGC("?) - -TUNoAGC,min)
> (zacc(k) — zacemin)

(zacc(k) — zaGc min) (6.2)

und
INoAGC,min = n}cin xNoAGC(k), TAGC,min = n}cin xAGC(k), (6-3)

ist diese AGC-Kompensation mit recht guter Naherung moglich. Bei der verwen-
deten Kamera war das Minimum der Grauwerte mit und ohne AGC etwa gleich
grof3, also znoacemin & Tace,min- Das Histogramm nach der Kompensation in
Abb. 6.3 (rechts) hat offensichtlich den selben Signalpegel wie das Bild ohne
AGC, weist aber die gute Amplitudenauflésung des AGC-Bildes auf (links).

6.1.3 Kompensation des FPN

Fur extrem dunkle Szenen ist in einem weiteren Schritt eine Dunkelbildkompen-
sation notwendig. Wir betrachten dazu im folgenden den Dunkelstrom (dark cur-
rent), welcher als Uberlagerung eines systematischen Anteils Epc und eines mit-
telwertfreien Rauschprozesses aufgefalst wird [Kam]. Letzterer kann in dem be-
trachteten Rauschmodell den lbrigen Rauschprozessen zugeordnet werden. Um
aber den systematischen Anteil des Dunkelstromes, der bislang vernachldssigt
werden konnte, zu berlicksichtigen, muf3 das Rauschmodell entsprechend erwei-
tert werden zu

z = [yx, + Epc] + any + yz,0na. (6.4)
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Der Erwartungswert des Dunkelstromes Epc, welcher auch als FPN (Fixed Pat-
tern Noise) bezeichnet wird, variiert mit dem Ort k& und hat seine Ursache in der
irreguldren Kristallstruktur des CCD. Deshalb muR3 zun&chst mit einem Testdaten-
satz von (hier 10) Dunkelbildern, welche durch Verwendung eines lichtundurch-
lassigen Objektivdeckels gewonnen werden kdnnen, die systematische Kompo-
nente Epc geschatzt werden. Dies geschieht durch pixelweise Mittelung tber die-
se Bilder, um die Zufallskomponente zu eliminieren. Nach einer einfachen Sub-
traktion der gemittelten Dunkelbilder von dem aktuellen Kamerabild kénnen wir
wieder die Gultigkeit des Kameramodells (5.1) sicherstellen. In Abb. 6.4 ist die
Schétzung des Dunkelbildes dargestellt.

Abbildung 6.4: Schatzung des Dunkelbildes (FPN=Fixed Pattern Noise) der ver-
wendeten Kamera.

Ohne die beschriebene Kompensation ist das verwendete Rauschmodell nicht gul-
tig und die Ergebnisse weichen bei realen Kameradaten recht stark von den simu-
lierten Szenen ab. Wie in [TEDHO02] zu sehen, fuhrt die Kompensation jedoch zu
genaueren Schétzungen des Signals und des Rauschens, so dal} die Simulations-
ergebnisse erreicht werden konnen. Dies ist ein Indiz dafir, dal3 das verwendete
Rauschmodell eine gute N&herung der realen Verhaltnisse wiedergibt. Im folgen-
den Abschnitt sollen anhand von realen Testmustern die Parameter «. und 3 des
Modells geschatzt werden.

6.2 Schatzung der Rauschparameter

Fur die adaptive Filterung mittels des expliziten Steuersignals (5.31), aber auch
fur die Verifikation des Modells ist es wichtig, die Rauschparameter o und 3
zu schétzen. Dazu werden MeRbilder unterschiedlicher Beleuchtungen ~; (hier
¢ = 1...22) aufgenommen, in denen Regionen mit einem konstanten Original-
signal z, vorkommen. AnschlieRend wird eine Kompensation des AGC und FPN
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durchgefiihrt. Eine Schétzung des Signals bzw. des Rauschens wird gemél (6.1)
berechnet, wobei sich die zugehtrigen Leistungen entsprechend ergeben. Unter
dieser Annahme ergédbe sich mit dem verwendeten Rauschmodell die Leistung
des Gesamtrauschens flr jede Beleuchtungssituation ~y; zu

02 o 4+ 2322 (6.5)

n,g

und damit das tberbestimmte Gleichungssystem
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Mittels linearer Regression kann dann eine Schéatzung im Sinne der kleinsten Feh-
lerquadrate fiir die Unbekannten a2 und 82 gefunden werden. Das Vorzeichen
spielt hierbei keine Rolle, da es keinen EinfluR auf die Rauschleistung hat. Somit
konnen die positiven Wurzeln der Regressionslésungen verwendet werden. Fir
die eingesetzte Kamera ergeben sich die folgenden Schétzungen fur die Rausch-
parameter

o~ 1471073 (6.7)
B~ 6.01-1073, (6.8)

wobei diese sich auf Bilddaten beziehen, die auf eins normiert sind. Das SNR
kann fiir die MelRdaten ebenfalls angegeben werden, da die Leistung des Signals

vl = E{z;}’ = p2, (6.9)

direkt durch das Quadrat des Mittelwertes der Grauwerte in den betrachteten Re-
gionen geschatzt werden kann. Betrachtet man nun die Schéatzungen des SNR an-
hand der Mel}daten und anhand des Modells in Abb. 6.5, so scheint das Modell des
Rauschens hier sehr erfolgreich zu sein. Es ware sicher sinnvoll, weitere Untersu-
chungen anzustellen, die AufschluR darliber geben, ob die geschétzten Rauschpa-
rameter konstant tiber die Zeit sind oder sich unter Umstanden durch Erwérmung
der Kamera verandern. Sollte dies der Fall sein (Thermisches Rauschen), so ist al-
lerdings nach einer gewissen Aufwarmphase ein stabiler Zustand zu erwarten. Flr
die vorgestellten experimentellen Ergebnisse kann daher stets davon ausgegangen
werden, daR hier keine oder nicht mel3bare Einfllisse vorhanden sind.
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Abbildung 6.5: Messungen des SNR einer Verdunkelungssequenz bei realen Ka-
merabildern (o) und mit geschétzten Rauschparametern (-).

6.3 Adaptive Filterung

Mit Hilfe der geschatzten Rauschparameter der verwendeten Kamera ist eine
adaptive Rauschunterdriickung mittels des vorgestellten expliziten Steuersignals
moglich. Anhand von Testmustern wird zundchst die erfolgreiche adaptive Ver-
besserung des Signal-zu-Rauschabstandes demonstriert und mit einem etablier-
ten Standardverfahren, dem adaptiven Wi1ENER-Filter nach LEE [Lim90, Lee80,
Mat], verglichen. AnschlieBend werden komplexere Szenen auf diese Weise vor-
gefiltert, um eine Konturextraktion in extrem dunklen Situationen durchzufihren.
Hier kommt zundchst der CANNY-Operator [Can86, Mat] zum Einsatz, um die
Leistungsfahigkeit der adaptiven Rauschfiltermethoden bewerten zu kdnnen. Dar-
uber hinaus werden die Ergebnisse des in Kapitel 5 vorgestellten biologienahen
Systems zur Extraktion von orientierten Konturmerkmalen gezeigt, das fir ein
adaptives Verhalten entwickelt wurde.

6.3.1 Verbesserung des SNR

Wie in Abschnitt 5.3 an simulierten Szenen veranschaulicht und theoretisch analy-
siert, erwarten wir durch eine TiefpaRfilterung eine Reduktion der Rauschleistung.
Fallt die Leistung des Signals dann in kleinerem MaRe ab, so wird das SNR ver-
bessert. In Abb. 6.6 wird dieses Verhalten mit der Verdunkelungssequenz experi-
mentell bestatigt. Der Parameter der Kurvenschar ist die Beleuchtung ~. Um die
Leistungen in den realen Kameradaten schétzen zu kdnnen, werden hier definierte
Testmuster verwendet. Aus diesen MelRdaten kdnnte nun ein Steuersignal durch
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Abbildung 6.6: Auswirkung der TiefpaRfilterung einer realen Szene unter ver-
schiedenen Beleuchtungsverhéltnissen. links: Reduktion der Rauschleistung.
rechts: Verbesserung des SNR.

einen Optimierungsprozel gemal (5.28) abgeleitet und eine adaptive Filterung
mit realen Kameradaten durchgefiihrt werden. Dies soll an dieser Stelle nicht im
Detail betrachtet werden. Der interessierte Leser sei hier auch auf [Eis01] verwie-
sen. Das Ergebnis einer adaptiven Verbesserung des SNR einer simulierten Szene
basierend auf solch einem Steuersignal wurde bereits in Abb. 5.6 verdeutlicht.

Wie eine Vielzahl weiterer Simulationen zeigt, sind die Ergebnisse einer adap-
tiven Verbesserung des SNR bei nattirlichen Szenen einerseits und Testmustern
mit konstanten Signalbereichen andererseits qualitativ recht dhnlich [EisO1]. Dies
ist ein Grund, warum im weiteren Verlauf dieser Arbeit die Verwendung eines
expliziten Steuersignals (5.31) der Konstruktion eines Steuersignals mittels eines
Optimierungsprozesses (5.28) vorgezogen wird. Durch den Einsatz des explizi-
ten Steuersignals kann zudem ein gewtiinschtes SNR vorgegeben werden, was fur
den praktischen Nutzen ein wichtiger Vorteil ist. Die Rauschparameter der Ka-
mera, die hierfir notwendig sind, wurden bereits im vorangegangenen Abschnitt
experimentell bestimmt.

In Abb. 6.7 (links) ist die adaptive Verbesserung unter Verwendung eines expli-
ziten Steuersignals dem Ergebnis eines adaptiven WIENER-Filters und dem SNR
ohne Filterung gegenubergestellt. Mit dem WIENER-Filter und einer Nachbar-
schaft von 3 x 3 fallt das SNR unterhalb v = 0.5 zundchst langsam, dann stérker
ab und erreicht bei der extrem dunklen Situation (ymin = 0.0045) nur noch 10 dB.
Durch Erhéhung des Nachbarschaftsparameters auf 11 x 11 verschiebt sich die
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Abbildung 6.7: Adaptive Verbesserung des SNR. links: Vorgestellte Strategie (0)
im Vergleich zu einem WIENER-Filter (*) und dem Verhalten ohne Filterung.
rechts: Adaptiv eingestellter Filterparameter (Steuersignal).

Kurve insgesamt einige dB nach oben und bei ymi, werden noch 19.9 dB ge-
messen (siehe Tabelle 6.1). Bei dieser groRen Nachbarschaftskopplung und der
damit verbundenen Verschiebung nach oben wird allerdings bei helleren Szenen
eine sehr starke Filterung durchgefiihrt, obwohl dies nicht unbedingt notwendig
ist. Im Gegensatz dazu ist die vorgestellte adaptive Filterung auf der Basis des ex-
pliziten Steuersignals sehr erfolgreich. Das gewiinschte SNR (zum Vergleich hier
auf 50 dB gesetzt) kann hier (iber den gesamten Bereich nahezu gehalten werden.
Erst bei extrem dunklen Szenen féllt das SNR schlieBlich auf etwa 40 dB ab. Dies
ist aber im Vergleich zu der ungefilterten Szene (SNR = 5.1 dB) immerhin noch
eine Verbesserung um etwa 35 dB. Der adaptiv eingestellte Filterparameter o, ist
in Abb. 6.7 (rechts) gezeigt und spiegelt das verwendete Steuersignal wider.

Ein Vergleich der Berechnungsdauer der gegenubergestellten Verfahren zur ad-
aptiven Rauschfilterung zeigt Tabelle 6.1. Die Berechnungen wurden mit Matlab
durchgefuihrt. Die Zeitangaben lassen daher nur Aussagen Gber relative Verhalt-
nisse zu, absolute Zeitmessungen insbesondere im Hinblick auf Echtzeitfahigkeit
kdnnen nicht gemacht werden und waren hier auch nicht Gegenstand der Betrach-
tungen. Bei dem adaptiven WIENER-Filter kann durch manuelle VergréRerung
der Nachbarschaft auf 11 x 11 eine Verbesserung der Qualitat erreicht werden,
wodurch der Berechnungsaufwand allerdings mehr als verdoppelt wird. Die Bild-
groRe geht etwa linear in die Berechnungsdauer ein. Die vorgestellte Strategie
wurde mittels des expliziten Steuersignals durchgefthrt und als nichtrekursives
(FIR) und rekursives (l1IR) Filter implementiert. Der Berechnungsaufwand ergibt
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Filtermethode Berechnungsdauer 7'[s] | SNRy, 4B
761 x 566 | 512 x 512 | bei ymin
WIENER 3x3 2.1 1.3 10
11 x 11 4.6 2.7 19.9
vorgestellte Strategie 45dB FIR 3.9 1.9 39.4
IR 1.7 1.0 39.4
50dB FIR 7.2 3.9 39.4
IR 1.7 1.0 39.4

Tabelle 6.1: Vergleich der Resultate der adaptiven Rauschfilter unter Matlab.

sich hier hauptséchlich durch die Filterroutine und ist als FIR-Filter hoher als bei
dem WIENER-Filter. Insbesondere bei einem gewiinschten SNR von 50 dB ergibt
sich durch die langen Impulsantworten ein hoherer Berechnungsaufwand. Aller-
dings lassen sich dadurch auch wesentlich bessere Ergebnisse bei der adaptiven
Rauschfilterung erzielen. DaR man nicht unbedingt einen hoheren Preis fir die
uberzeugenden Filterergebnisse bezahlen muf3, zeigt schliellich die Variante mit-
tels einer IIR-Implementation. Hier sind die Berechnungszeiten nur abh&ngig von
dem Filtergrad, also unabhéngig von dem gewinschten SNR bzw. von der Filter-
starke und erheblich kiirzer als die des WIENER-Filters.

6.3.2 Robuste Konturextraktion

AbschlieRend soll eine Konturextraktion durchgefiihrt werden. Eine vorgeschal-
tete adaptive Rauschfilterung soll hierflir das Ergebnis verbessern. Es wird hier
der Schwerpunkt auf eine qualitative Aussage gelegt. Quantitative Betrachtun-
gen, wie z.B. die Verbesserung einer konturbasierten Objekterkennung bleiben
hingegen weitergehenden Untersuchungen tberlassen.

Exemplarisch wird eine sehr dunkle Szene mit einer Beleuchtung von v = 0.03
verwendet werden, die in Abb. 6.8 (links) gezeigt ist. Da es sich um eine komplexe
Szene handelt, kann das Signal-zu-Rauschverhéltnis nicht aus den Bilddaten ge-
schatzt werden. Mittels v kann aber aus den Messungen nach Abb. 6.5 ein Schatz-
wert von SNR = 23 dB ermittelt werden. Da hier die Beleuchtungsstarke aus dem
globalen Mittelwert der Szene ermittelt wird, kann das tatsachliche lokale SNR
verstandlicherweise in helleren oder dunkleren Bildregionen in geringem Malie
nach oben oder unten davon abweichen. Die Extraktion von Kantenmerkmalen,
z.B. mittels des CANNY-Operators, ergibt ein unbrauchbares Resultat, wenn sie
direkt auf dem verrauschten Szenenbild durchgefuhrt wird (Abb. 6.8 (rechts)).
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Abbildung 6.8: Beispiel einer Konturextraktion mittels des CANNY-Operators in
einer sehr dunklen und daher sehr verrauschten Szene.

Wie zu erwarten, ist eine vorherige Rauschunterdriickung unerl&Rlich. Als Refe-
renz verwenden wir hier zunéchst das adaptive WIENER-Filter, welches sich als
Standardwerkzeug etabliert hat und vielfach eingesetzt wird. Bei extrem schwach
beleuchteten Szenen mit niedrigem SNR sind die Grenzen des Verfahrens aber
schnell erreicht, wie in Abb. 6.9 zu sehen ist. Zwar kann mittels der Nachbar-
schaft, in der die lokale Bildstatistik berechnet wird, die Qualitét etwas verbessert
werden, in den Konturbereichen ist allerdings noch eine recht hohe Rauschlei-
stung vorhanden. Zudem ist dieser Freiheitsgrad von Hand zu optimieren, so dal}
hier der Vorteil einer automatischen Adaption verloren geht.

Uber die gemessene Beleuchtungsstarke v ~ 0.03 kann nun adaptiv tber das
explizite Steuersignal fur ein gewiinschtes SNR die erforderliche Filterstarke er-
mittelt werden. Da in gut ausgeleuchteten Daten der verwendeten Kamera ein
typisches SNR von 45 . . . 50 dB gemessen werden konnte, sollen diese Werte hier
als gewiinschtes SNR der Adaption verwendet werden. Um dieses zu erreichen,
wird eine Filterstarke von o, ~ 3...5.3 adaptiv eingestellt, und es ergibt sich das
Ergebnis der Rauschreduktion in der linken Spalte von Abb. 6.10 flr 45 (oben)
bzw. 50 dB (unten). In der rechten Spalte sind die Ergebnisse einer anschlielRen-
den Konturextraktion dargestellt. Hier ist gegenuber Abb. 6.8 und Abb. 6.9 eine
enorme Verbesserung der Qualitat des Kantenbildes feststellbar. Eine Verbesse-
rung des SNR erhoht hier offensichtlich die Robustheit der Konturextraktion ge-
genuber Rauschen. Hochfrequente Details in der Szene gehen dabei aber nattirlich
weiter verloren. Eigene Untersuchungen haben gezeigt, daB ein SNRges = 45 dB
fir das vorliegende Kameramodell fir die meisten Situationen durchaus ausrei-
chend ist.
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Abbildung 6.9: Rauschunterdriickung mittels eines adaptiven WI1ENER-Filters zur
Verbesserung einer anschlieBenden Konturextraktion. Die Qualitat kann durch die
NachbarschaftsgroRRe (oben: 3x3, unten: 11x11) manuell optimiert werden.

Statt des CANNY-Operators wird abschlieend das in dieser Arbeit entwickelte
biologische kortikale Modell auf der Basis der Ableitungsketten als Konturdetek-
tion verwendet. Fir ein gewinschtes SNR von 45 dB wurde eine Rauschunter-
driickung durchgefuhrt und anschlieBend die Ableitungen in horizontaler Rich-
tung 0° gebildet, was in Abb. 6.11 zu sehen ist. Hierdurch werden alle verti-
kalen Konturmerkmale aus der stark verrauschten Szene mit Erfolg extrahiert.
Die Orientierungsauflosung wurde hier exemplarisch zu 15° (o, = 12) und
30° (o, = 5.8) gewdhlt. An dieser Stelle sollte auch erwahnt werden, dal} ei-
ne Skelettierung wie in [GOtO0] oder eine Non-Maximum-Suppression wie bei
dem CANNY-Operator natiirlich ebenfalls ein pixelbreites Konturergebnis liefern
kdnnte, falls die aufbauende Objekterkennung des Bildverarbeitungssystems dies
fordert. Darauf soll im Rahmen dieser Betrachtungen aber verzichtet werden.
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Abbildung 6.10: Rauschunterdriickung mittels der vorgestellten expliziten Adap-
tion zur Verbesserung einer anschlieRenden Konturextraktion (oben: 45 dB, unten:
50 dB).

Abbildung 6.11: Adaptive Rauschunterdriickung (SNRges = 45 dB) und anschlie-
Rende orientierte Konturextraktion (0°) auf der Basis der Ableitungsketten mit
einer Orientierungsaufldsung von 15° bzw. 30°.
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6.4 Fazit

Mit den vorliegenden experimentellen Ergebnissen konnte demonstriert werden,
dal’ eine adaptive Verbesserung des SNR mit dem expliziten Steuersignal einfach
und effizient durchgefiihrt werden kann. Trotz der gemachten Naherungen in der
theoretischen Herleitung und dem Einsatz einer globalen Filterung auf der Ba-
sis des Bildmittelwertes iberzeugen die Resultate auch bei realen Kameraszenen.
Gerade bei extrem dunklen und damit extrem verrauschten Bilddaten versagen
etablierte Standardverfahren, wie das adaptive WIENER-Filter. Zudem konnte die
Strategie durch einen Vergleich mit den biologischen Mechanismen motiviert und
begriindet werden. Ein Nachteil des WIENER-Filters scheint die Einschrankung
zu sein, daB die Rauschleistung bekannt sein muf3, um diese Methode effizienter
anzuwenden. Hier ware eine Kombination aus dem vorgestellten expliziten Steu-
ersignal und dem WIENER-Filter denkbar, da Uber die Helligkeit ~ theoretisch
auch die Rauschleistung geschatzt werden konnte. Dieses Vorgehen verspricht ei-
ne Verbesserung des lokal arbeitenden WIENER-Filters. Dieser Sachverhalt sollte
in weiteren Arbeiten n&her untersucht werden.

Es konnte experimentell gezeigt werden, daR durch eine Verbesserung des SNR,
was die Grundlage der vorgestellten Strategie ist, ebenfalls eine deutliche Verbes-
serung in der Qualitat von extrahierten Konturmerkmalen erzielt werden kann. Mit
diesen Daten ergibt sich dann offensichtlich auch eine robustere Objekterkennung:
Eine Kantendetektion ohne effektiv arbeitende, adaptive Rauschfilterung fiihrt zu
unbrauchbaren Ergebnissen und 4Rt keine robuste Reprasentation des Szenenin-
haltes anhand der Konturmerkmale zu. Die vorgestellte Strategie verspricht daher
nicht nur eine Verbesserung des SNR, sondern auch ein robustes Konturergebnis.

Wird die betrachtete Rauschfilterung mit nichtrekursiven Filtern implementiert,
so ergeben sich sowohl im biologischen Vorbild als auch in technischen Syste-
men bei groRen Filterstarken und dunklen Szenen ineffiziente Algorithmen. Zu-
dem kann ein adaptives FIR-Filter nicht sehr gut als biologisches Neuronales Netz
motiviert werden. Aus diesem Grund bieten sich gerade hier rekursive neurona-
le Strukturen bzw. rekursive Filter an. Bei diesen Strukturen ist der Aufwand an
synaptischen Verbindungen bzw. an arithmetischen Operationen unabhéngig von
der Filterstarke. Deshalb ergeben sich hier wesentlich kiirzere Berechnungszeiten
auch im Vergleich zu dem WIENER-Filter (siehe Tabelle 6.1), was im Hinblick
auf echtzeitfahige Anwendungen von grof3er Bedeutung ist.
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Zusammenfassung und
Ausblick

Die Leistungsfahigkeit der visuellen Wahrnehmung des menschlichen Sehsystems
Ist technischen Ansétzen bislang noch weit Gberlegen. Ein Grund hierfur ist in
der Komplexitét biologischer Systeme zu suchen, deren Funktionsweise wir auch
in naher Zukunft sicherlich noch nicht wirklich im Detail verstehen werden. Die
Entwicklung von Modellen und Hypothesen biologischer Strukturen ist allerdings
stets eines der ehrgeizigsten Bestrebungen aktueller Forschung, mit dem Zweck,
unsere Kenntnisse iber biologische Abl&ufe zu erweitern und zumindest Teile der
uberlegenen Strukturen fur technische Aufgaben nutzbar zu machen. In der indu-
striellen Bildverarbeitung spielen daher zunehmend biologisch motivierte Metho-
den eine bedeutende Rolle.

Ziel der vorliegenden Arbeit war eine systemtheoretische Beschreibung funda-
mentaler Verarbeitungspfade hoher entwickelter biologischer Sehsysteme insbe-
sondere unter dem Gesichtspunkt technischer Fragestellungen der Bildverarbei-
tung. In diesem Rahmen wurden die Eigenschaften des biologischen Vorbildes
hinsichtlich der Extraktion von orientierten Konturmerkmalen herausgearbeitet.
Als wesentliche Unterschiede zu bisherigen technischen Ansétzen sind die vor-
teilhafte hexagonale Bilderfassung und Verarbeitung, die vielversprechende neu-
ronale Informationsverarbeitung durch pulscodierte Signale und wichtige adapti-
ve Mechanismen zur robusten Rauschminderung bei extrem dunklen Szenen si-
gnaltheoretisch untersucht worden.

Auf einem biologisch und systemtheoretisch motivierten hexagonalen Abtastras-
ter, welches viele Vorteile bietet, wurde eine plausible, massiv parallele Archi-
tektur der Signalverarbeitung vorgestellt, wie sie im menschlichen Sehsystem im
Laufe der Evolution entstanden sein konnte. Das Modell ist durch eine kaskadier-
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te Topologie gewisser Subfilter bzw. Neuronenschichten charakterisiert. Es konn-
te gezeigt werden, daB fiir die Realisierung von rezeptiven Feldern, die denen
der Ganglienzellen in der Netzhaut und der simplen Zellen im visuellen Cortex
entsprechen, lediglich nichtrekursive Neuronenverbindungen bzw. nichtrekursive
Digitalfilter ausreichend sind. Die Parameter des Modells konnten entweder direkt
mit der Hilfe von Ergebnissen physiologischer Experimente oder mittels eines Ap-
proximationsansatzes nidherungsweise gefunden werden. Im Hinblick auf techni-
sche Sehsysteme bietet die présentierte Architektur neben der tberlegenen hexa-
gonalen Datenreprésentation eine Reihe niitzlicher Eigenschaften, die im wesent-
lichen mit der kaskadierten Struktur zusammenhéngen. Hierzu zahlt zum einen die
zusatzliche Moglichkeit der parallelen Abarbeitung der Daten bei Bildsequenzen,
was direkt die hohe Effizienz des biologischen Systems widerspiegelt. Zum ande-
ren werden nicht nur die eigentlichen Zielsignale (Konturmerkmale der simplen
Zellen) durch das Netz berechnet, die Struktur bietet dartiber hinaus den Zugang
zu wertvollen Zwischensignalen, die, wie in der Biologie, fur andere Bildverar-
beitungsaufgaben weitergenutzt werden konnen. Als Beispiel sei hier das Signal
der Ganglienzellen genannt, welches in der Natur u.a. fur Blicksteuerungskonzep-
te eingesetzt wird. Wie in [Har82] gezeigt, sollten sich hieraus aber auch Aufl6-
sungspyramiden konstruieren lassen. Zwischensignale stellen daher einen Gewinn
an Effizienz dar, da sie in der kaskadierten Struktur automatisch mitberechnet
und genutzt werden kdnnen. Da die Signale der Ganglienzellen auf viele Arten
simpler Zellen unterschiedlicher Orientierung und Selektivitat konvergieren, birgt
dies ebenfalls ein enormes Potential an Einsparungen von Neuronenverbindungen.
Vergleicht man dies mit einer Implementation, bei der jeder Typ simpler Zellen
fur sich realisiert ist, so ist festzustellen, daB deutlich weniger arithmetische Ope-
rationen notwendig sind. Dies liegt darin begriindet, dal3 in der Kaskade bereits
berechnete Signale fur aufbauende Verarbeitungsschritte vielfach benutzt werden
kdnnen.

In einem weiteren Schritt konnte eine Strategie fiir die Erweiterung linearer Uber-
tragungssysteme auf eine pulscodierte Verarbeitung entwickelt werden. Dadurch
ist es moglich, bei Bedarf die Zeit als weitere Informationskomponente auch in
das vorgestellte lineare Modell der friihen visuellen Verarbeitung einzubringen,
was hierdurch natirlich an Biologien&he gewinnt. Da aber die Berechnung solch
grolRer, massiv paralleler pulscodierter neuronaler Netze auf sequentiell arbeiten-
den Standardrechnern nur schwer moglich ist, wurde zudem das Netzwerk mit
Erfolg auf einer in der Arbeitsgruppe entwickelten Neurocomputerarchitektur im-
plementiert. Dieser ParSPIKE basiert auf parallel arbeitenden digitalen Signal-
prozessoren und verwendet das Modellneuron von ECKHORN. Die experimentel-
len Untersuchungen zeigten allerdings zundchst, dal? durch die stets vorhande-
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nen Quantisierungsmaflnahmen bei der digitalen Realisierung und den Einschran-
kungen der verwendeten Hardwarearchitektur die Antworten der simplen Zel-
len recht stark von den gewtiinschten GABOR-Antworten abwichen. Aus diesem
Grund wurde das bekannte ECKHORN-Neuron fiir die vorliegende Implementati-
on modifiziert und verbessert. Ein speziell entworfener Spike-Decoder, dessen Al-
gorithmus als Tiefpalfilter in Wellendigitalrealisierung interpretiert werden kann,
konnte hierbei fur diesen Zweck die numerischen Ungenauigkeiten minimieren.
Daruber hinaus liel? sich auch die Einschwingzeit des Spike-Decoders, welche
sich auf das dynamische Verhalten der Simulation und letztlich auch auf die ge-
samte Simulationsdauer niederschlagt, deutlich verkirzen. Hierdurch ist nun die
effiziente Simulation eines komplexen Netzwerkes zur Verarbeitung visueller Da-
ten moglich, welches ein gaboréhnliches Verhalten auf einem hexagonalen Ab-
tastraster mit einer pulscodierten Informationsverarbeitung kombiniert. Es steht
also ein System zur Verfiigung mit dem z.B. die fiir Bildverarbeitungsaufgaben in-
teressanten Synchronisationseffekte simpler Zellen effizient studiert werden kon-
nen.

Der dritte Schwerpunkt widmete sich der Rauschunterdriickung, welche stets als
\orstufe eines nachgeschalteten Systems zur Konturextraktion eingesetzt werden
sollte, wie es auch in der bisherigen Modellierung stattgefunden hat. Um gegen-
uber Veranderungen der Beleuchtungsbedingungen einer betrachteten Szene ro-
bust zu sein, ist allerdings eine adaptive Rauschfilterung von groem Interesse.
Die hierzu entwickelte Strategie basiert auf dem biologischen Mechanismus der
Photorezeptoren, deren rezeptive Felder sich an die Lichtverhéltnisse anpassen,
um so bei dunklen Szenen, d. h. vermehrtem Rauschen eine starkere Rauschfil-
terung durchzufiihren. Theoretische Betrachtungen flihrten hier zu einem geeig-
neten und einfach zu implementierenden Kontrollmechanismus fir ein gegebenes
Rauschmodell. Trotz der notwendigen Naherungen in der theoretischen Herlei-
tung und dem Einsatz einer globalen Filterung liberzeugten dennoch die Resultate
der experimentellen Untersuchungen mit realen Kameraszenen. Gerade bei ex-
trem dunklen und damit extrem verrauschten Bilddaten versagen statt dessen eta-
blierte Standardverfahren wie das adaptive WIENER-Filter. Allerdings scheint hier
auch eine Kombination der entwickelten Strategie mit dem adaptiven WIENER-
Filter denkbar, um diesen lokalen Ansatz zu verbessern, was in folgenden Arbei-
ten untersucht werden konnte. Fir den Einsatz einer Konturextraktion in Kom-
bination mit der entwickelten adaptiven Rauschfilterung wurden schlieBlich die
Auswirkungen der Adaption auf das bisherige nichtadaptive Modell untersucht.
Hier zeigte sich, dal} die bisherigen kortikalen Neuronenverknipfungen nicht aus-
reichen, um ein stabiles gaborahnliches Verhalten zu realisieren. Dieses Ergebnis
rihrt daher, dal die bisherige Modellierung fur die kleinste Rezeptorkopplung
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(und damit beste Ortsaufldsung) entworfen und optimiert wurde. Durch einen al-
ternativen Ansatz, der als eine Kaskadierung von Ableitungsoperatoren aufgebaut
wurde, ist eine erfolgreiche adaptive Extraktion von Konturinformationen mdg-
lich, was durch die experimentellen Untersuchungen zusatzlich demonstriert wer-
den konnte.

Die theoretischen und experimentellen Untersuchungen konnten die Leistungsfé-
higkeit der entwickelten Strategien zeigen. Damit stehen zum einen Hypothesen
neuronaler Architekturen des biologischen visuellen Systems zur Verfuigung, die
evtl. einen Beitrag zum Verstandnis dieser komplexen Materie liefern konnten.
Daruber hinaus wurden einige wichtige Eigenschaften des biologischen Vorbil-
des aufgezeigt, die insbesondere fiir technische Umsetzungen von Interesse sein
konnen. Im Rahmen dieser Arbeit ist eine biologienahe Strategie erarbeitet wor-
den, die eine robuste Extraktion von Konturinformationen leistet. So beschéftigen
sich derzeit laufende Arbeiten in der Arbeitsgruppe mit der Implementation der
Verfahren auf einer mobilen Roboterplattform [Eis03]. Zum einen kann hiermit
eine robuste Objekterkennung flr autonome Einsatze in extrem dunklen Situatio-
nen, wie sie bei sicherheitsrelevanten Uberwachungsaufgaben eintreten konnen,
realisiert werden. Des weiteren soll ein telesensorischer Roboter (TSR) lediglich
anhand der Konturinformationen in seinen Kamerabildern navigiert werden, wel-
che fur diesen Zweck Uber eine Funkstrecke (WLAN) tbermittelt und der be-
dienenden Person visualisiert werden. Eine Reduzierung der Szene auf Kontu-
rinformationen erzielt dabei die notwendige Datenkompression fiir die Ubertra-
gungsstrecke. Die vorgestellte adaptive Rauschunterdriickung sorgt dabei auch
bei extrem dunklen bzw. verrauschten Situationen fur eine robuste Extraktion der
Konturen.
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