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KAPITEL 1

Einleitung

1.1 Biologische Sehsysteme

Das Sehen ist für den Menschen eine so alltägliche Fähigkeit, daß wir uns gar
nicht oder nur selten über die ihm zugrunde liegende Komplexität der neurona-
len Verschaltungen und Prozesse bewußt werden. Aber „unsere Intuition sagt uns,
daß das Gehirn kompliziert sein muß. Wir tun komplizierte Dinge, und das in enor-
mer Vielfalt“ [Hub90]. Mittlerweile weiß man auch, daß das menschliche Gehirn
in der Tat etwa

�������
(Billionen) Nervenzellen besitzt, die auf geschickte Weise

durch
��� ���
	�	�	 ��� ���

Verbindungen miteinander gekoppelt sind. Dieses Wissen ist
das Ergebnis jahrzehntelanger neurophysiologischer Forschung – getrieben von
dem Wunsch die Funktionsweise des menschlichen Sehsystems zu verstehen oder
zumindest ansatzweise erklären zu können. So muß auch der Nobelpreisträger
DAVID HUBEL zugeben, daß seine stärkste Motivation „... die reine Neugier auf
die Arbeitsweise der kompliziertesten Struktur ist, die wir kennen“ [Hub90]. Aber
nicht nur das reine Erlangen von Erkenntnissen über die Funktionsweise unseres
Gehirns, sondern auch die Möglichkeiten für Mediziner und Biologen, neurologi-
sche und psychiatrische Krankheiten zu heilen oder zu verhüten, ist überzeugen-
der Motor neurologischer Studien. Damit ist die Erforschung des menschlichen
Gehirns sicher eine der ehrgeizigsten Bestrebungen seit jeher und scheint nichts
von seiner Faszination zu verlieren.

Trotz der erwähnten Komplexität ist zumindest das visuelle System höher ent-
wickelter Säugetiere einer der am besten verstandenen Teile des Gehirns. Hier
kommt der Wissenschaft entgegen, daß auf das Auge projizierte Lichtreize be-
stimmte Antwortaktivitäten in gewissen Hirnbereichen hervorrufen. Werden die-
se meßtechnisch erfaßt, so können daraus funktionale Zusammenhänge über den
Aufbau der neuronalen Verschaltung abgeleitet werden. Modellierungen der vi-
suellen Verarbeitung scheinen daher recht erfolgversprechend. Das menschliche

1



2 Kapitel 1 Einleitung

Sehsystem ist zudem offensichtlich in der Lage, relevante Informationen auf äu-
ßerst effiziente Weise aus natürlichen Szenen zu extrahieren, um hiermit eine ro-
buste Repräsentation und Objekterkennung durchzuführen. Die Kenntnisse über
neuronale Verarbeitungsstrukturen sind daher, wie sich vielfach gezeigt hat, auch
für technische Sehsysteme von großem Interesse. Biologisch motivierte Methoden
spielen daher zunehmend eine bedeutende Rolle in der industriellen Bildverarbei-
tung [EPdRH02]. Das ehrgeizige Ziel ist, zumindest Teile der biologischen Me-
chanismen zu beschreiben und für technische Bilderkennungsaufgaben nutzbar
zu machen. Darüber hinaus können solche Modellierungen und deren Simulation
auf leistungsfähiger Hardware auch dazu beitragen, biologische Abläufe besser
zu verstehen.

1.2 Robuste Bildverarbeitung

Die klassische Bildverarbeitung ist Gegenstand der benachbarten Disziplinen Ma-
thematik, Informatik und der Ingenieurwissenschaften, wobei die Schwerpunk-
te und die Terminologie unter Umständen verschieden sein können. Hierbei ist
der Zweck vieler bisheriger und aktueller Forschungsaufgaben die effiziente und
effektive Verarbeitung von Kameradaten einer betrachteten Szene für die unter-
schiedlichsten Anwendungsgebiete. So ist die robuste Extraktion von Objekt-
merkmalen in einer betrachteten Bildszene, insbesondere Linien- und Konturin-
formationen, offenbar stets ein wichtiges Thema vieler Forschungsgruppen. Denn
nur durch solche robusten Merkmale einer komplexen Szene sind ehrgeizige Sy-
steme realisierbar, welche z. B. durch eine automatische Objekterkennung einer
Maschine eine begrenzten visuelle Wahrnehmung verleihen. Ein Beispiel sei hier
das in der Arbeitsgruppe HARTMANN entwickelte, visuell gesteuerte Robotersy-
stem zur automatisierten Demontage von Altautos [STDH98, GDH98]. So steht
auch in dieser Arbeit die robuste Extraktion von Konturmerkmalen im Vorder-
grund.

Ein Verfahren soll hier robust genannt werden, wenn es unempfindlich gegen-
über äußeren Veränderungen oder Störeinflüssen ist, wie z. B. einer schlechten
Beleuchtung und dem damit verbundenen Bildrauschen. Verwendet z.B. eine au-
tomatische Objekterkennung die extrahierten Objektkonturen aus einer Bildszene,
so ist meist die Objekterkennung selbst nur robust, wenn die Konturen ebenfalls
robust extrahiert wurden. Für die Gewinnung stabiler Objektkonturen benötigt
man folglich die unverzichtbare Vorverarbeitung, welche die Bilddaten von evtl.
Störungen im Vorfeld bereinigt. Erst durch diese Maßnahmen können robuste in-
telligente Systeme entwickelt werden. Exemplarisch sei an dieser Stelle die Un-
terdrückung bzw. Minderung von Störungen bei bildgebenden Verfahren für die
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medizinische Diagnostik genannt. Hier erfolgt nicht unbedingt eine automatisierte
Auswertung der Daten durch einen Computer. Der Mediziner wird hier die Dia-
gnose stellen. Allerdings kann es dennoch nützlich sein, die Bilddaten zuvor vom
Computer aufbereiten zu lassen und in einer verbesserten Qualität dem Mediziner
für die weitere Auswertung zur Verfügung zu stellen. Die Erforschung und die
Entwicklung neuer Verfahren zur Rauschunterdrückung scheint daher stets ein
aktuelles Thema zu sein.

Die Entwicklung leistungsfähiger Algorithmen für die Bildverarbeitung erfordert
aber i. d. R. ein solides theoretisches Fundament, welches durch die (Bild-) Si-
gnalverarbeitung geschaffen wird. Durch diese meist theoretische Beschreibung
der zu manipulierenden Bilddaten und den gewünschten Funktionen können dann
z. B. sogenannte Operatoren oder Digitalfilter entwickelt werden, die auf Stan-
dardrechnern eingesetzt werden können. Als Werkzeug in der Bildverarbeitung ist
eine detaillierte Kenntnis über den theoretischen Hintergrund oft nicht mehr not-
wendig. Neben der klassischen Signalverarbeitung konnte sich auch die Theorie
der neuronalen Netze, deren Ursprünge in der Informatik liegen, für den Einsatz
in der Bildverarbeitung durchaus etablieren. Man erhofft sich hierdurch, wie oben
erwähnt, wichtige vorteilhafte Eigenschaften und Strukturen des überlegenen bio-
logischen Vorbildes nutzbar machen zu können. Somit ist sowohl mittels der Di-
gitalfilter einerseits als auch mittels neuronaler Netze andererseits eine Verarbei-
tung von Bilddaten möglich. Die Verwandtschaft dieser beiden Herangehenswei-
sen verdeutlicht das folgende Kapitel, in dem die Analogie zwischen bestimmten
Digitalfiltern und künstlichen neuronalen Netzen aufgezeigt wird. Daraus können
sich Vorteile bei der Entwicklung neuronaler Netze ergeben, wenn man diese z.B.
als Digitalfilter interpretiert. So wird im Rahmen der Arbeit konsequent sowohl
die systemtheoretische als auch die neuronale Terminologie parallel verwendet,
um jeweils die Vorteile beider Betrachtungsweisen auszunutzen.

1.3 Ziel der Arbeit

Ziel der Arbeit ist eine systemtheoretische Beschreibung fundamentaler Verar-
beitungspfade höher entwickelter biologischer Sehsysteme. Hier scheint es sehr
attraktiv und lehrreich, Hypothesen zu biologischen Strukturen systemtheoretisch
zu modellieren und vorteilhafte Strukturen in geeigneter Form technisch umzu-
setzen. Diese können dann einen Beitrag zum Verständnis der neurologischen
Mechanismen liefern oder als Grundlage für neurophysiologische Simulationen
und Experimente dienen, wobei die positiven Eigenschaften des biologischen Vor-
bildes hinsichtlich der Extraktion von orientierten Konturmerkmalen aufgezeigt
werden. Da die Photorezeptoren des menschlichen Auges im Bereich des schärf-
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sten Sehens eine hexagonale Anordnung aufweisen, wie in [Yel81] gezeigt, bil-
det solch ein hexagonales Abtastraster die grundlegende Basis für die dargestell-
ten Betrachtungen. Diese Form der Signalabtastung liefert eine überlegene Sym-
metrie, eine einfache, wohl definierte Nachbarschaftsbeziehung und eine Daten-
reduktion im Vergleich zu einer gewöhnlichen Repräsentation unter Einhaltung
des Abtasttheorems von SHANNON. Des weiteren werden aus der biologischen
Modellierung Algorithmen für technische Bildverarbeitungssysteme und für ei-
ne Spezialhardware, die der Simulation großer neuronaler Netze dient, abgeleitet.
Um robuste Merkmale aus den Bilddaten zu extrahieren, werden schließlich Me-
chanismen untersucht, die eine adaptive Rauschunterdrückung ermöglichen.

1.4 Gliederung und Abgrenzung

In Kapitel 2 folgen zunächst die systemtheoretischen Grundlagen für eine allge-
mein mehrdimensionale Signalverarbeitung, soweit sie für das Verständnis der
Ausführungen notwendig sind. Ein Abschnitt widmet sich insbesondere der he-
xagonalen Abtastung und Verarbeitung, da dies die wesentliche Eigenschaft al-
ler entwickelten Strukturen und Algorithmen dieser Arbeit ist. Darauf werden
die neurophysiologischen Zusammenhänge und die formale Analogie zwischen
künstlichen neuronalen Netzen und Digitalfiltern bzgl. der Ortskoordinaten der
Bilddaten beschrieben.

Das Kapitel 3 stellt ein massiv paralleles Modell der frühen visuellen Verarbeitung
im menschlichen Sehsystem vor, welches orientierte Konturmerkmale in einem
Bild extrahiert. Das beschriebene Modell stellt eine Hypothese auf, welches zu
erklären vermag, wie die Zellen in der Netzhaut (Retina) und in der Großhirnrinde
(Cortex), möglicherweise in einer kaskadierten Struktur von Neuronenschichten
organisiert sein könnten. Darüber hinaus werden die Vorteile der Architektur für
biologische und technische Sehsysteme herausgearbeitet.

Existierende Ansätze für ähnliche Zielsetzungen betrachten meist nur sehr ein-
geschränkte Bereiche, wie z.B. die Retina, oder sind nicht systemtheoretisch fun-
diert. Unter diesen sei die recht detaillierte Abhandlung über die Netzhaut des Pri-
maten [SL96a, SL96b] hervorzuheben, welche sowohl örtliche Filtercharakteristi-
ka als auch das zeitliche Verhalten berücksichtigt. Einige grundlegende Ideen wur-
den hieraus für die vorliegende Arbeit übernommen, um eine neue Hypothese der
biologischen Signalverarbeitung von der Abtastung durch die Rezeptoren bis hin
zu den Verknüpfungsschemata im visuellen Cortex aufzubauen. Im Unterschied
zu anderen retinalen Modellen wird hierbei ein hexagonales Abtastraster der Pho-
torezeptoren auf der Netzhaut biologisch und signaltheoretisch motiviert, welches
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somit ein wesentliches Merkmal der vorliegenden Arbeit darstellt. Die Verbin-
dungsgewichte der retinalen Neuronenstruktur werden dann anhand von neuro-
physiologischen Fakten durch ein Approximationsproblem gefunden. Für die Zu-
sammenhänge in der Großhirnrinde werden im wesentlichen die anerkannten For-
schungsarbeiten von POLLEN und RONNER [PR81, PR82, PR83] zugrunde ge-
legt, welche die Existenz sogenannter simpler Zellen im primären visuellen Cortex
nachgewiesen haben. Die rezeptiven Felder dieser Neuronen können näherungs-
weise durch GABOR-Funktionen [Gab46] beschrieben werden und weisen ein si-
gnifikantes Antwortverhalten auf orientierte Linien oder Kanten auf (siehe auch
[Dau80, Mar80, KMB82, JP87]). Aus diesen Erkenntnissen heraus hat sich eine
neue Klasse der Digitalfilter, die GABOR-Filter, etabliert, deren Vorteile für viele
Bildverarbeitungsaufgaben genutzt werden. Die Realisierungen bei technischen
Systemen, wie z.B. [Tra98, LVB � 93, WFKvdM97, Wis97, Bie87, SvdM97], fin-
den allerdings weder auf einem hexagonalen Abtastschema, noch in Verbindung
mit neuronalen Vorverarbeitungsstufen, wie sie in der Retina zu finden sind, statt.

Die theoretisch fundierte Arbeit von SABATINI [Sab96] sollte in diesem Zusam-
menhang nicht ungenannt bleiben, in der ein Modell simpler Neuronen auf der
Basis interkortikaler inhibitorischer Kopplungen vorgestellt wird. Die rezeptiven
Felder von Neuronen im seitlichen Kniehöcker (Corpus geniculatum laterale) sind
hier allerdings der Einfachheit halber orientiert gaußförmig ausgeprägt. Es ent-
steht eine rekursiv gekoppelte Struktur simpler Neuronen, deren sich ergebenden
rezeptiven Felder - je nach Umgebungseinfluß - den zweidimensionalen orien-
tierungsselektiven GABOR-Funktionen sehr ähnlich sein können. Im Gegensatz
zu einer realitätsnahen biologischen Modellierung zeigt die Studie vielmehr auf,
welche rezeptiven Felder simpler Zellen mit der Hilfe interkortikaler Einflüsse
entstehen können, wobei ein gaborähnliches Verhalten als Sonderfall betrachtet
werden kann. Hier bleibt aber die berechtigte Frage offen, ob dieses Ergebnis
immer noch gültig ist, wenn die rezeptiven Felder der Neuronen im seitlichen
Kniehöcker Zentrum-Umfeld-Charakter haben, wie es bei den Gangliensignalen
tatsächlich der Fall ist. Dennoch eröffnen die Betrachtungen rekursiver Strukturen
neue Möglichkeiten, die es noch im Detail zu erforschen gilt. Die Interpretation
als rekursive Digitalfilter können sicher auch hier hilfreich und ratsam sein.

In Kapitel 4 wird gezeigt, wie das zuvor entwickelte visuelle neuronale Netz-
werk soweit erweitert werden kann, daß ab den Gangliensignalen in der Retina
eine pulscodierte Verarbeitung stattfindet. Damit gewinnt die Modellierung wei-
ter an Biologienähe. Die Informationsverarbeitung bis zu den Ganglienzellen ist
meist durch kontinuierliche Signale modelliert, die die Erregungen der Zelle re-
präsentieren. Jedoch wird die Verarbeitung im Gehirn nach den Ganglienzellen als
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pulscodiert angenommen. In einigen Untersuchungen konnte gezeigt werden, daß
neben der Pulsrate dieser Signale auch insbesondere die Phaseninformation für
visuelle Aufgaben genutzt wird [ERAD89, ERAD90]. Neuronen, welche ähnli-
che Merkmale repräsentieren wie z.B. eine kontinuierliche Linie in ihren rezepti-
ven Feldern, synchronisieren beispielsweise ihre Pulse. Dieser Mechanismus birgt
potentielle Vorteile für viele Wahrnehmungsprozesse, wie der Objektsegmentati-
on. Wegen dieser Tatsache wird in diesem Kapitel das vorhandene Netzwerk zu
einem pulscodierten neuronalen Netzwerk ausgebaut. Die Ganglienzellen kon-
vertieren dabei ihre Aktivität in eine Pulsrate und die simplen Zellen werden als
pulscodierte ECKHORN-Neuronen entworfen [ERAD89, ERAD90]. Die auf diese
Weise erzielte Kombination eines gaborähnlichen Verhaltens auf einem hexago-
nalen Abtastraster mit einer pulscodierten Informationsverarbeitung wurde eben-
falls auf einer Spezialhardwarearchitektur implementiert und simuliert. Die damit
verbundenen Ergebnisse und Erkenntnisse werden hier ebenfalls dargestellt.

Wie eingangs erwähnt, rufen variierende Beleuchtungsbedingungen meist Schwie-
rigkeiten hervor, wenn reale Szenen mit einem Digitalrechner verarbeitet werden
sollen. Besonders Rauschprozesse, die mit der Bildentstehung selbst einhergehen,
können bei dunklen Lichtverhältnissen zu fehlerhaften Resultaten führen. Eine au-
tomatische Auswertung oder Interpretation des Bildinhaltes durch ein technisches
Sehsystem wird damit meist unmöglich. Das menschliche Sehsystem scheint je-
doch in der Lage zu sein, sich auf diese Veränderungen in der wahrgenomme-
nen Szene anzupassen und auf diese Weise die Qualität aller Verarbeitungsschrit-
te zu gewährleisten – es findet eine robuste Verarbeitung statt. Obwohl dieser
adaptive Vorverarbeitungsmechanismus in der Literatur vereinzelt erwähnt wird
[SL96a, BC92], sind Untersuchungen oder technische Implementationen bisher
ausgeblieben. In Kapitel 5 wird daher eine biologisch motivierte Vorverarbei-
tungsstragie entwickelt, die sich an variierende Lichtverhältnisse adaptiert und auf
diese Weise eine effektive Unterdrückung des Rauschens in Bilddaten erzielt. Wie
weiter gezeigt wird, ist erst mit diesem Ansatz eine robuste Extraktion von Kon-
turen möglich, die auch bei extrem dunklen und damit stark verrauschten Szenen
zum Erfolg führt. Auf diesen Erkenntnissen aufbauend wird die Erweiterung des
bisherigen Modells um diese adaptive Komponente untersucht und daraus eine
alternative kortikale Verknüpfungsarchitektur abgeleitet.

Die Leistungsfähigkeit der in dieser Arbeit vorgestellten biologienahen Struktu-
ren zur Bildvorverarbeitung wird in Kapitel 6 anhand realer Kameradaten demon-
striert. Der Schwerpunkt wird hier insbesondere auf die adaptive Vorfilterung mit
anschließender Konturextraktion gelegt.



KAPITEL 2

Mehrdimensionale Digitale
Signalverarbeitung

In diesem Kapitel wird zunächst die Theorie mehrdimensionaler Signale und li-
nearer Systeme behandelt, soweit es für das Verständnis der systemtheoretischen
Betrachtungen dieser Arbeit wichtig ist. Im späteren Verlauf der Untersuchun-
gen wird ggf. an verschiedenen Stellen auf diesen Grundlagen aufgebaut und
die Thematik vertieft. Der Großteil der Arbeit bedient sich dieser fundierten Be-
schreibungsmethode, um verschiedene Bilddaten oder biologische visuelle Reize
als ortsabhängige (ortsdiskrete) Signale auf beliebigen periodischen Abtastrastern
aufzufassen und mit Digitalfiltern zu verarbeiten. Die wesentlichen Begriffe der
nichtrekursiven und rekursiven mehrdimensionalen Digitalfilter müssen daher in
diesem Kapitel ebenfalls kurz formuliert werden.

Des weiteren wird in einem nächsten Abschnitt insbesondere die hexagonale Ab-
tastung eines zweidimensionalen (Bild-)Signals als das effizienteste periodische
Raster näher betrachtet. Die mathematischen Zusammenhänge und die für techni-
sche und biologische Bildverarbeitungssysteme wichtigen Vorzüge werden dabei
herausgestellt. Ein Schwerpunkt bildet hier die Umrechnung auf solch ein he-
xagonales Abtastraster, da üblicherweise die Bilddaten einer Kamera auf einem
rechtwinkligen Raster (z.B. eines CCD oder CMOS-Chips) vorliegen. Durch ex-
perimentelle Untersuchungen werden verschiedene Verfahren zur Umrechnung
vergleichend gegenübergestellt.

Für die wesentliche Zielsetzung dieser Arbeit, die systemtheoretische Beschrei-
bung biologischer Sehsysteme, sind abschließend die Grundlagen der neurophy-
siologischen Informationsverarbeitung zu erörtern. Offensichtlich ist hier speziell
die visuelle Wahrnehmung des Menschen oder anderer höher entwickelter Lebe-
wesen von großem Interesse. Außerdem wird gezeigt, inwieweit künstliche neuro-

7
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nale Netze als Digitalfilter interpretiert werden können, was für die Modellierung
der biologischen Vorgänge und Architekturen im Laufe dieser Arbeit wertvolle
Vorteile bietet.

2.1 Mehrdimensionale Signale und Systeme

Zu betrachten sind hier zunächst kontinuierliche Signale ��� ����� des Ortes
�	��
 � �

,
die mit Hilfe der ortskontinuierlichen FOURIER-Transformation
 � ������������ � ��� ������� ����� T  

d
�

(2.1)

� � ���!��� �"$# � � �� � 
 � ���%��� ��� T  
d
�

(2.2)

in der gewöhnlichen (Orts-)Frequenz
�&��
 � �

dargestellt werden können1.

Erfolgt nun eine sogenannte periodische Abtastung des Signals in der Form2� �(')�*� �+� ��,-')� mit
'.� /10 � 0 �32 T �.4 4 �

, wobei hier
, � /5� � � �32 �6
 � �87 �

die
Abtastmatrix sei, so verwenden wir die ortsdiskrete FOURIER-Transformation
 ��9:���<;>= � �(')��� ����? T

=
(2.3)

� �(')��� �"@# � �BA� A 
 ��9:��� ��? T

=
d
9 	

(2.4)

Die Transformierte ist durch ihre Eigenschaft
 ��9:��� 
 ��9DC�E #GF � HJI F �K4 4 �
(2.5)

periodisch in der (normierten) Frequenz
9B� /5L � L �M2 T, so daß das Integrationsge-

biet für die Rücktransformation z. B. zu N #6O L ��P � O #
gewählt werden kann.

Wie in [DM84] nachgelesen werden kann, ist dann gemäß
 ��9)��� �QSRUTWV�,XQ ;MY 
 � ��, � T 9 N[Z-\ � H�]^�_4 4 �
(2.6)

1Zur Abkürzung sollen hier Mehrfachintegrale vielfach nur durch die Dimension der Integra-
tionsvariablen allein, z. B. durch ` bzw. a gekennzeichnet und auf die Symbolik bcb verzichtet
werden, da die Betrachtungen meist nicht auf zweidimensionale Fälle beschränkt sind.

2Falls es aus dem Zusammenhang hervorgeht, kann der Index „c“ zur Abkürzung weggelassen
werden, auch wenn der Ausdruck „ d�egfihcjkd�emlnfih “ natürlich mathematisch nicht korrekt ist.
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die Transformierte des abgetasteten Signals eine periodische Fortsetzung der Trans-
formierten des kontinuierlichen Signals. Hierbei ist die Beziehung zwischen der
gewöhnlichen und der normierten Frequenz9_� , T � (2.7)

durch die Abtastmatrix
,

gegeben. Die sogenannte Kreisfrequenzmatrix Z ergibt
sich dabei zu Z �<E # , � T H Z �./5� � � �32 �X
 � �87 � 	 (2.8)

Eine alternative Definition und ebenfalls gebräuchliche Form der diskreten Trans-
formation lautet

�
 �������<; = � �(')��� ����� T �
= H

(2.9)

so daß sich hier die Zusammenhänge zu

�
 ������� 
 ��, T ����� �QSR TWV+,XQ ; Y 
 � ��� NBZ \ � (2.10)

ergeben.

In Abb. 2.1 ist die Verarbeitung eines kontinuierlichen Signals � � ����� mit Hil-
fe eines diskreten Systems und anschließender Interpolation dargestellt. Wir be-
schränken uns hier auf lineare und ortsinvariante (engl. shift invariant) Systeme
(LSI-Systeme), welche mit Hilfe einer Impulsantwort

� �(')�
beschrieben werden

können und nennen diese Klasse von Systemen auch Digitalfilter.

PSfrag replacements

�����
	�� �
����� � ����� � ����	��
Abtastung� Verarbeitung������� Interpolation� �����

Abbildung 2.1: Digitale Verarbeitung eines kontinuierlichen Signals.

Die Verarbeitung entspricht dann einer diskreten Faltung des abgetasteten Signals� � ')� mit der Impulsantwort, also

� �(':��� � � ')�! � �(')� � ;
"
� � F � � � ' N F ��� ;

"
� �(' N F � � � F � 	

(2.11)
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Die (diskrete) Transformation der Impulsantwort

� ��9 ��� ; = � �(':��� ����? T

= H
(2.12)

die bei der Bestimmung des Ausgangssignals eine bedeutende Rolle spielt, nen-
nen wir Übertragungsfunktion3 des Systems, da mit ihrer Hilfe das Systemver-
halten im Frequenzbereich beschrieben wird. Bei einem Einsatz des Systems als
Digitalfilter kann mittels

� ��9:�
die Filtereigenschaft analysiert oder auch speziell

entworfen werden.

Hat das kontinuierliche Eingangssignal nun die spezielle Form � � � �!� �6� ��� T  
, so

ergibt sich das diskrete Ausgangssignal zu

� �(')��� � ��, T ��� � �(' ��� � ��, T ����� ��� T �
=

(2.13)

bzw. mit entsprechender Interpolation das kontinuierliche Ausgangssignal

� � ������� � ��, T ��� � � ���!��� � ��, T � ��� ��� T  	
(2.14)

Aus diesem Grund werden Signale dieser Form auch Eigenfunktionen linearer
ortsinvarianter Systeme genannt. Ein beliebiges Eingangssignal führt dann zu dem
diskreten Ausgangssignal

� � ':��� �"@# � � A� A � ��9:� 
 ��9:��� ��? T

=
d
9 H

(2.15)

so daß sich die Transformation des Ausgangssignals als

� ��9)��� � ��9 � 
 ��9:�
(2.16)

bzw. mit (2.7) als

� � ������� � ��, T ��� 
 � ��� � (2.17)

schreiben läßt.

Neben der eingeführten FOURIER-Transformation spielt die (hier zweidimensio-
nale) z-Transformation
�� ��� ��� � H	� � ��� ;


��
;

�


� � 0 � H30 � ��� � 
���
� � 
�

�

H	� ��P � ��� H30 � P � �_4 4 (2.18)

3Streng genommen handelt es sich um den Frequenzgang des Systems.
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bei der Beschreibung diskreter Signale und insbesondere diskreter Systeme eine
wichtige Rolle. Die z-Transformierte der Impulsantwort

� � � � ��� � H	� � ��� ;

 �

;

 


� � 0 � H30 � ��� � 
���
� � 
�

�

H	� ��P � ���
(2.19)

bezeichnet man als z-Übertragungsfunktion und wird für den Filterentwurf und
für Stabilitätsbetrachtungen herangezogen, wie im nächsten Abschnitt deutlich
wird. Zwischen der z-Übertragungsfunktion und der Übertragungsfunktion in der
normierten Frequenzvariablen

9 �./5L � L � 2 T gilt der Zusammenhang

� ��L � H�L � ��� ��� ��� � � � � � H3� � � 
 �
(2.20)�<;


��
;

�


� � 0 � H30 � ��� ��� � � 
�� � ��� � 
 
�
 H (2.21)

wobei das komplexe Argument
���

auf dem Einheitskreis ausgewertet wird. Durch
die Beziehung

9K��9 ����� ��, T � läßt sich die Übertragungsfunktion auch in der
gewöhnlichen Frequenz ausdrücken

�� ��� � H�� � ��� � � � � � � � � ��� �
	 H3� � � 
�� ��	 �
(2.22)� ;


��
;

�


� � 0 � H30 � ��� �i� � � � ��	 
 � � ��� � 
 � �
	 
 
 H (2.23)

welche sich bei einer rechtwinkligen Abtastung (siehe Abschnitt 2.2),.� ��� �
� ��� (2.24)

zu
�� ��� � H�� � ��� � � ��� � � ��� ��� H3� ��� 
�� �

(2.25)� ;

��

;

�


� � 0 � H30 � ��� ����� ��� 
�� � ����� 
�� 
�
 H (2.26)

vereinfacht.

In diesem Zusammenhang sollte erwähnt werden, daß die z-Transformation selbst
losgelöst von dem gewählten Abtastraster gesehen werden kann. So erfordern z.B.
Stabilitätsbetrachtungen nicht die Kenntnis des Rasters. Erst bei der Interpretati-
on als Übertragungssystem wirkt sich die Abtastmatrix auf das Verhalten im Fre-
quenzbereich aus. In den folgenden Abschnitten wird der Zusammenhang der z-
Übertragungsfunktion und dem Berechnungsalgorithmus eines diskreten Systems
hergestellt.
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2.1.1 Nichtrekursive Digitalfilter

Nichtrekursive diskrete Systeme oder nichtrekursive Digitalfilter sind in der Di-
gitalen Signalverarbeitung weit verbreitet, da sie einfach zu implementieren sind
und stets einen stabilen Algorithmus aufweisen. Da Kausalität in der Bildverar-
beitung keine Bedeutung hat, wird hier der allgemeinere Fall der nichtkausalen
Systeme betrachtet. Ein eindimensionales Übertragungssystem läßt sich als soge-
nannte Differenzengleichung

� � 0�� � �;
��� � � � � � � 0 N ])� (2.27)

angeben, bei der das Ausgangssignal � � 0c� lediglich von bestimmten mit reellen
Filterkoeffizienten � � gewichteten Eingangswerten � � 0�� , aber nicht von anderen
Ausgangswerten selber abhängt. Der Übersichtlichkeit wegen seien hier die un-
tere und obere Grenze des Summenindex symmetrisch zu N �

bzw.
�

gewählt.
Die direkte Realisierung dieser Differenzengleichung führt auf einen Algorithmus
mit dem gewünschten Verhalten. Die Realisierungen alternativer Filterstrukturen
mit dem selben Filterverhalten können aber durchaus für verschiedene Einsatzge-
biete, wie z. B. für die Implementierung mit begrenzten Wortlängen der Signale
und Koeffizienten Vorteile aufweisen [Fet86]. Die z-Übertragungsfunktion kann
durch z-Transformation der Differenzengleichung mittels der Eigenschaften die-
ser Transformation direkt berechnet werden und lautet

� � ��� ��� ��� �;
��� � � � � � � � H	� ��� 	

(2.28)

Die Übertragungsfunktion in der normierten Frequenzvariablen
L

kann mit

� ��Lc� � � � ��� � � � � ��� �;
��� � � � � � �i� ��� (2.29)

direkt aus der z-Übertragungsfunktion gewonnen werden. Hieraus ist ablesbar,
daß

� � 0�� � � 
 gilt, d.h. die Filterkoeffizienten stellen die endliche Impulsantwort
dar. Daher wird für diese Klasse der Digitalfilter auch oft die Bezeichnung FIR
Filter (finite impulse response) verwendet.

Im zweidimensionalen Fall kann das Ausgangssignal ebenfalls durch eine Diffe-
renzengleichung

� � 0 � H30 � ��� �
�;

� � � � � �
�

;

� 
 � � � 
 � � � � 
 �
� 0 � N ] � H30 � N ] � � (2.30)
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berechnet und das Verhalten im Frequenzbereich durch die zweidimensionale z-
Übertragungstransformation

��� ��� ��� � H	� � ��� �
�;

� � � � � �
�

;

� 
 � � � 
 � � � � 

� � � �
�

� � � 

�

H	� ��P � ���
(2.31)

charakterisiert werden. In der Bildsignalverarbeitung wird für die gespiegelte Ver-
sion der zweidimensionalen Impulsantwort

� � 0 � H30 � � � � 
�� 
�
 üblicherweise der
Begriff Faltungsmaske oder Faltungskern verwendet und wie das Bildsignal als
Matrix formuliert.

Für den besonderen Fall einer separierbaren Impulsantwort gilt � � � � 
 � � � � � � 
 ,
und die Matrix läßt sich als dyadisches Produkt schreiben. Hieraus folgt weiter

� � 0 � H30 � ��� �
�;

� � � � � � � � �
��

�

;

� 
 � � � 
 � � 
 �
� 0 � N ] � H30 � N ] � ����� ��� 	
� � 0 � N ] � H30 � �

(2.32)

� �
�;

� � � � � � � � �

� � 0 � N ] � H30 � �MH (2.33)

d.h. die beiden Faltungssummen können hintereinander (in beliebiger Reihenfol-
ge) getrennt voneinander ausgeführt werden. In diesem Fall läßt sich die zwei-
dimensionale Filterung auf zwei nacheinander ausgeführte eindimensionale Fil-
terungen in den beiden Koordinatenrichtungen reduzieren. Hierdurch wird zwar
die Menge aller realisierbaren Übertragungsfunktionen eingeschränkt, der Ent-
wurfsprozeß des Filters vereinfacht sich aber enorm, da mit

� � � � ��� � H	� � ��� ��
�
�;

� � � � � � � � �
� � � �
�

�� ��
�

;

� 
 � � � 
 � � 

� � � 

�

��
(2.34)

� � � � �
�
��� � ��� � � � �

�
��� � � (2.35)

der Entwurf ebenso auf zwei eindimensionale z-Übertragungsfunktionen redu-
ziert wird.

2.1.2 Rekursive Digitalfilter

Bei einem rekursiven Digitalfilter werden neben den Eingangswerten � � 0�� auch
Ausgangswerte benötigt, um das Ausgangssignal zu bestimmen. Die Differenzen-
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gleichung eines kausalen rekursiven Digitalfilters lautet

� � 0�� � �;
�����

� � � � 0 N ]:� N �;
� � �

�
� � � 0 N�� �MH (2.36)

und die z-Übertragungsfunktion entsprechend

� � ��� ��� ��� �;
�����

� � � � �
� C �;

� � �
�
�
� � � �

�;
�����

� � � � �
�;
� ���

�
�
� � � mit

�
�	�
� � 	

(2.37)

Da die rekursiven Digitalfilter meist eine unendlich lange Impulsantwort besitzen,
nennt man sie auch IIR Filter (infinite impulse response). Obwohl dies aber nicht
unbedingt der Fall sein muß, wird diese Bezeichnung in der Literatur vielfach
verwendet.

Damit der rekursive Filteralgorithmus bzw. das Digitalfilter stabil ist, müssen die
Pole von

� � � �
im Einheitskreis liegen. Dies kann insbesondere bei einer Direkt-

realisierung der Differenzengleichung auf einem Digitalrechner nicht immer ge-
währleistet werden. Zudem können die nichtlinearen Rundungsoperationen, die
mit den begrenzten Signalwortlängen einhergehen, zu einem instabilen Verhal-
ten führen. Hierfür bieten sich dann alternative Filterstrukturen an, deren Vorzüge
vielfach in der Literatur diskutiert sind [Fet86, Gaz85] und die es ermöglichen,
stabile rekursive Digitalfilter zu implementieren.

Für die Realisierung eines in der Bildverarbeitung oft gewünschten nichtkausa-
len Filters kann z. B. die Hintereinanderschaltung (Kaskade) eines kausalen und
eines antikausalen Filters verwendet werden, wobei die Filterrichtung bei dem
antikausalen Filter gedreht ist. In [vVYV98] ist ein Filterentwurf für sogenann-
te Gaußtiefpaßfilter gezeigt, welcher im Rahmen dieser Arbeit auch Verwendung
findet (siehe Kapitel 5 und Kapitel 6).

Der Einsatz rekursiver Digitalfilter ist natürlich auch für die Bildverarbeitung von
großem Interesse, da hiermit im Vergleich zu den FIR Filtern unter Umständen
wesentlich weniger Aufwand für die Signalverarbeitung notwendig ist. Die Stabi-
lität zweidimensionaler rekursiver Systeme zu gewährleisten, erfordert allerdings
i.allg. viel mehr Mühe als bei eindimensionalen Systemen. Der Fundamentalsatz
der Algebra z.B. besagt, daß ein Polynom vom Grad

�
(der Nenner der Übertra-

gungsfunktion) in
�

Polynome vom Grad eins faktorisiert werden kann, so daß
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jede Singularität von
� � ��� � �i�

isoliert betrachtet werden kann. Für mehrdimen-
sionale Polynome existiert aber kein solches Theorem, und daher ist hier selten
eine Faktorisierung möglich, es sei denn die Übertragungsfunktion wird bereits
bei dem Entwurf entsprechend konstruiert. Gleichwohl können wie im eindimen-
sionalen Fall auch bei zweidimensionalen Systemen Kriterien für einen Stabili-
tätstest aufgestellt werden [DM84], was für den Filterentwurf entsprechend be-
rücksichtigt werden muß. Weitere Besonderheiten eines mehrdimensionalen Fil-
terentwurfes, wie die rekursive Berechenbarkeit und die Bedeutung der Anfangs-
werte des Randbereiches, sollen hier erwähnt werden, sind aber für den Rahmen
dieser Arbeit nicht relevant (siehe dazu z. B. [DM84, Lim90, Wah80, Wah89]).
Die Aufgaben konnten nämlich auf separierbare Impulsantworten und damit auf
die Realisierung eindimensionaler rekursiver Filter reduziert werden. Sind diese
nichtkausal realisiert, so werden auf diese Weise auch nichtkausale zweidimen-
sionale rekursive Filter möglich.

2.2 Abtastung zweidimensionaler Signale

In der Bildverarbeitung wird meist eine rechtwinklige Abtastung vorgenommen,
d.h. die Abtastmatrix hat z.B. die vereinfachte Form,�� � � � � �

� � � � 	
(2.38)

Hieraus resultiert nach (2.8) eine Kreisfrequenzmatrix

Z � � � � A��� �
� � A��� � H�� � ��P � � � E #� � H (2.39)

die die Periodizität der Transformierten festlegt. Im allgemeinen kann die Periode
in den beiden Dimensionen sogar unterschiedlich sein. Wir wollen uns aber hier
auf den obigen Spezialfall beschränken.

Als vorteilhafte Alternative zur rechtwinkligen Abtastung betrachten und verwen-
den wir hier allerdings die sogenannte hexagonale Abtastung mit,�� � � � � � �� �
	 � N � ��	 � � (2.40)

bzw.

Z � � 
 A��� A���A� ��� � N A� ��� ��� H�� � ��P � � � #� � E	 � 	 (2.41)
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Es kann gezeigt werden, daß die hexagonale Abtastung die aufwandsgünstigste
periodische Abtastmethode ist, wenn die Transformierte des kontinuierlichen Si-
gnals, welches abgetastet werden soll, kreisförmig bandbegrenzt ist. Durch die
Tatsache, daß i. allg. die Optik des bildgebenden Systems, sei es das Kameraob-
jektiv oder die Optik des Auges (siehe auch Kapitel 3) ein rotationssymmetrisches
Tiefpaßverhalten aufweist, ist das resultierende Spektrum der Bildszene in guter
Näherung kreisförmig bandbegrenzt. Ein hexagonales Abtastraster bietet sich da-
her i.d.R. immer an.

Um die Effizienz einer hexagonalen Abtastung unter diesen Bedingungen zu ver-
deutlichen, betrachten wir Abb. 2.2, in der die diskrete FOURIER-Transformation
jeweils für die rechtwinklige und hexagonale Abtastung skizziert ist. Die durch
den Abtastvorgang periodische Fortsetzung des kreisförmig begrenzten Frequenz-
spektrums (

� ��P ������� � #�� � � ) eines kontinuierlichen Signals

 � ���%� ist dabei an-

gedeutet. Hieraus ist erkennbar, daß bei einer hexagonalen Abtastung die kreis-
förmigen Spektren eine dichtere Anordnung ergeben können ohne sich zu über-
schneiden, was für die Rekonstruktion des kontinuierlichen Signals von Bedeu-
tung ist. Hieraus resultiert aber, daß die einzelnen Abtastwerte weiter auseinan-
der liegen, d. h. man benötigt weniger Abtastwerte, um dasselbe kontinuierliche
Signal zu repräsentieren. In [DM84] ist nachzulesen, daß bei einer hexagonalen
Abtastung 13.4% weniger Abtastwerte anfallen, als bei einer rechtwinkligen Ab-
tastung, man also einen geringeren Speicheraufwand betreiben muß. Da aber diese
Daten auch verarbeitet werden müssen, ergeben sich auch deutlich weniger Re-
chenoperationen. Bei der Faltungssumme (2.11) sind z.B. etwa 25% weniger Ad-
ditionen und Multiplikationen auszuführen, was zu einer beachtlichen Reduktion
der Berechnungsdauer führen kann. Die wesentlichen Vorteile einer hexagonalen
Abtastung können wie folgt zusammengefaßt werden:

� weniger Bilddaten nach SHANNON ( 	
� � 	 "�


)

� weniger Berechnungsaufwand bei der Signalverarbeitung ( 	
E
� 


)

� Filterantworten weisen höhere Rotationssymmetrie auf

� jedes Pixel besitzt 6 eindeutige nächste Nachbarn

Hier sollte betont werden, daß die Signalbeschreibung und der Filterentwurf auf
hexagonalem Abtastraster, und zudem auch die Verwaltung der Daten in Digi-
talrechnern (hier ist alles auf matrizenförmige Strukturen zugeschnitten) i. allg.
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Abbildung 2.2: Periodizität der diskreten FOURIER-Transformation bei einer
rechtwinkligen und hexagonalen Abtastung

weitaus komplizierter ist im Vergleich zu dem gewöhnlichen rechtwinkligen Ra-
ster. Zusätzlich stehen die Bilddaten der Kamera i. d.R. nicht auf einem hexago-
nalen Abtastraster zur Verfügung, so daß eine einmalige Umrechnung notwen-
dig ist. Dennoch ist dieses vorteilhafte hexagonale Abtastraster als Strategie in
der Bildverarbeitung für spezielle technische Lösungen zu finden, wie z. B. in
[HDD � 94, MDH94, FG96, Sta96, Sta89, GF]. Zudem hat sich das hexagonale
Abtastraster, wie im späteren Verlauf dieser Arbeit noch beschrieben wird, im
biologischen Sehsystem höher entwickelter Lebewesen, aber auch bei Insekten
im Laufe der Evolution etabliert. So macht sich das biologische Vorbild die o.g.
Vorteile dieser Form der Signalrepräsentation und Signalverarbeitung effizient zu-
nutze. Um die mathematischen Details muß es sich dabei nicht kümmern.

Ist nun das kontinuierliche Signal mit
 � ������� � I � � � � � � �
�
C � �

��� � �� (2.42)

kreisförmig bandbegrenzt, was bei den meisten bildgebenden Verfahren nähe-
rungsweise erfüllt ist, so fordert das Abtasttheorem von SHANNON, daß� � ��P � � � E � � (2.43)
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gilt und somit auch� ��� #� � bei einer rechtwinkligen Abtastung bzw. (2.44)� � � #	 � � � bei einer hexagonalen Abtastung
	

(2.45)

In der Literatur ist oft ein pseudohexagonales Abtastraster (auch oft Quincunx-
oder Zeilensprungraster genannt) [Ohm99, HY94] anzutreffen, bei dem mit,�� � � � � � �� � N � � � (2.46)

die Daten durch direkte Abtastung des rechtwinkligen Rasters gewonnen werden.
Da die neuen Rasterorte auf dem ursprünglichen rechtwinkligen Raster liegen,
entfällt eine aufwendige Interpolation. Diese Methode besticht damit durch seine
sehr einfache Implementation und damit sehr niedrigem Berechnungsaufwand.
Wie aus der Kreisfrequenzmatrix

Z � � � A��� A���A��� N A��� � H�� � ��P � � � 	 E #� � (2.47)

ersichtlich ist, müssen allerdings mit hoher Wahrscheinlichkeit große Aliasing-
fehler in Kauf genommen werden, was sich auch durch experimentelle Ergebnis-
se bestätigt (siehe Abb. 2.5 und Tabelle 2.1). Eine vorherige Tiefpaßfilterung des
rechtwinklig abgetasteten Signals ist dabei wenigstens vorzuschlagen. Die Sym-
metrieeigenschaften und die vorteilhafte Nachbarschaftsbeziehung des hexagona-
len Abtastrasters können jedoch auch dann nicht erzielt werden.

2.2.1 Umrechnung auf ein hexagonales Abtastraster

Herkömmliche bildgebende Verfahren, wie z. B. CCD-Sensoren, liefern i. d. R.
Bildsignale auf einem rechtwinkligen Abtastraster. Deshalb soll an dieser Stel-
le eine genauere Untersuchung und ein Vergleich einiger Methoden zur Umrech-
nung zwischen rechtwinklig und hexagonal abgetasteten Bildern gegeben werden,
wobei diverse Gesichtspunkte, wie Effizienz, Berechnungsaufwand und Umrech-
nungsfehler berücksichtigt werden.

Die einfachste hier betrachtete Methode, ein hexagonalähnliches Bildsignal zu
erzeugen, ist die Verwendung eines pseudohexagonalen Rasters. Wie in Abb. 2.3
(links) zu erkennen, liegen die gesuchten Abtastorte auf dem ursprünglichen recht-
winkligen Raster. So können durch ein lineares Mapping direkt die gesuchten he-
xagonalen Bilddaten angegeben werden. Wie sich in diesem Abschnitt aber zeigt,
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muß für die Einfachheit und Schnelligkeit des Verfahrens aber auch ein beachtli-
cher Umrechnungsfehler in Kauf genommen werden. In [HY94] ist die Umrech-
nung für ein ähnliches Raster beschrieben, bei dem aber immer zwei benachbarte
Pixel des rechtwinkligen Raster zu einem Wert des hexagonalen Rasters kom-
biniert werden. Dieses hexagonale Raster selber entsteht durch Verschieben jeder
zweiten Spalte oder Zeile. Die Verrechnung zweier benachbarter Pixel kann als ei-
ne einfache Tiefpaßfilterung (Interpolation) interpretiert werden. Allerdings sind
die Ergebnisse der betrachteten Interpolationsarten hier nur qualitativ gegenüber-
gestellt.

Unter Zuhilfenahme des Abtasttheorems von SHANNON kann aber auch die Frage
geklärt werden, welche Abtastperioden für eine korrekte Umrechnung höchstens
notwendig wären, um das kontinuierliche Bildsignal fehlerfrei zu repräsentieren.
Da das Spektrum des kontinuierlichen Signals a priori nicht bekannt ist und ja
auch von der betrachteten Szene abhängt, können dazu nur Abschätzungen über
das zugrunde liegende rechtwinklige Abtastraster gemacht werden. Im folgen-
den wird dieser Frage nachgegangen. Die resultierenden Abtastmatrizen bzw. Ab-
tastorte fallen dann allerdings nicht mehr auf ursprüngliche Orte des rechtwinkli-
gen Rasters wie bei dem pseudohexagonalen Abtastraster, so daß die Abtastwerte
zudem durch Interpolationsverfahren bestimmt werden müssen.

Zunächst sei nach der notwendigen Abtastperiode � � für ein hexagonales Raster
gefragt, wenn ein rechtwinklig abgetastetes Signal, z.B. von einer CCD-Kamera,
vorliegt. Wenn wir davon ausgehen, daß das mit � � rechtwinklig abgetastete Si-
gnal kreisförmig begrenzt war, dann ist aus (2.44) ersichtlich, daß

� � P � ��� � A���
die größte Frequenz ist, die in dem abgetasteten kontinuierlichen Signal vorkom-
men kann. Mit (2.45) ergibt sich dann die notwendige Abtastperiode zu

� � � #	 � � � P � � � � � �	 � 	 (2.48)

In Abb. 2.3 (mitte) ist das rechtwinklige Raster und das bei kreisförmig bandbe-
grenzten Signalen notwendige hexagonale Abtastraster gezeigt.

Es soll hier nicht unerwähnt bleiben, daß die Annahme, das kontinuierliche Si-
gnal sei kreisförmig bandbegrenzt, in technischen Systemen nicht unbedingt im-
mer erfüllt ist, und somit unter Umständen ein gewisser Aliasingfehler in Kauf
genommen werden muß. Untersuchungen mit Bilddaten einer CCD-Kamera zei-
gen aber, daß die Anteile in den Frequenzbereichen, die bei einer Interpolation
auf hexagonalem Raster zu Fehlern führen, durchaus vernachlässigbar sind. Will
man diese Voraussetzung dennoch nicht machen, und läßt so eine quadratische
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Bandbegrenzung bis
� � P �3P � � � � A��� zu, erhalten wir die strengere Bedingung#� � �E � � ��P ����� �

#� � 	 � � � �MP � ��� (2.49)

und damit � � � #E � ��P �3P � ��� � � �E 	
(2.50)

Dieses Abtastraster erfüllt zwar theoretisch optimal das Abtasttheorem, benötigt
aber deutlich mehr Abtastwerte pro Flächeneinheit, was in Abb. 2.3 (rechts) zu
sehen ist.
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Abbildung 2.3: Rechtwinkliges Abtastraster ( � ) und verschiedene hexagonale
Zielraster ( � ). links: pseudohexagonales Raster. mitte/rechts: hexagonales Raster
bei Annahme einer kreisförmigen (2.48) bzw. rechteckigen (2.50) Bandbegren-
zung.

Der Vollständigkeit halber sei hier auch kurz die Rücktransformation behandelt,
d. h. es liegt ein Bildsignal auf hexagonalem Raster vor, und die Abtastperiode� � für eine Umrechnung auf ein rechtwinkliges Raster sei gesucht. Machen wir
wieder die Annahme, es handele sich um eine kreisförmige Bandbegrenzung, so
ist lt. (2.45) die größte zu erwartende Frequenz

� � P � ��� � A� � ��� und wir erhalten
aus (2.44) � � � #� � P ����� � 	 � � � 	 (2.51)

Möchte man sich nicht auf o.g. Annahme festlegen, so erhalten wir für die beiden
Koordinatenrichtungen die Schranken

� � P � ��� � �� A� � und
� �3P � � � � A� � � � und

folglich die kleinere Abtastperiode� � � #
�����	� � ��P ����� H�� �3P � � ��
 � � E � � 	 (2.52)
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2.2.2 Eine Strategie zur effizienten Interpolation

Wir wissen aus dem vorherigen Abschnitt, wie die Abtastperiode � � bzw. � � zu
wählen ist, wenn Bilddaten auf ein hexagonales bzw. rechtwinkliges Abtastraster
umzurechnen sind. Damit kennen wir also die neuen Orte der Abtastpunkte. In
einem weiteren Schritt ist aber jetzt noch die eigentliche Interpolation zu leisten,
also die Berechnung der jeweiligen Abtastwerte, deren Orte i.allg. nicht auf dem
alten Raster liegen, wie aus Abb. 2.3 (mitte/rechts) ersichtlich ist. Die folgenden
Methoden sollen hier vergleichend gegenübergestellt werden:

� Bilineare Interpolation
Eine recht schnelle Methode ist die bilineare Interpolation, bei der ein neu-
er Abtastwert aus vier benachbarten Werten des alten Abtastrasters linear
berechnet wird.

� Bispline Interpolation
Die zweidimensionale kubische Spline Interpolation benötigt viel Rechen-
zeit, liefert dafür zwischen den Stützstellen im Gegensatz zur linearen Inter-
polation ein glatteres Ergebnis, was für die vorliegende Aufgabe von Vorteil
sein könnte.

� Bilineare oder Bispline Interpolation mit vorheriger Verdoppelung der Ab-
tastrate
Durch Erhöhung der Abtastrate des rechtwinkligen Rasters ist eine Verrin-
gerung des Umrechnungsfehlers zu erwarten.

� Matched Interpolation
Bei dieser neuartigen Methode soll zunächst das Abtastraster des recht-
winklig abgetasteten Bildsignals derart erhöht werden, so daß ein Raster
entsteht, in dem möglichst genau die Abtastorte des gewünschten hexa-
gonalen Rasters wiederzufinden sind. Hierfür ist eine effiziente rationale
Abtastratenerhöhung notwendig, die im folgenden Abschnitt erläutert wird.
In einem zweiten Schritt können durch ein einfaches lineares Mapping die
Abtastwerte bestimmt werden.

Zur Verbesserung der Bilinearen und Spline Interpolation, aber vor allem für die
Matched Interpolation, ist eine Abtastratenänderung auf rechtwinkligem Raster
notwendig. Hierbei soll aus dem bereits abgetasteten Signal � � ')��� � � ��,�� ')� ein
neues Signal


� � F � der Abtastmatrix

, �

berechnet werden, welches aber identisch
ist mit einer Abtastung des ursprünglichen kontinuierlichen Signals durch


, �
, also
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� � F � � � � � 
, � F � . Theoretisch muß also das kontinuierliche Signal rekonstruiert
und erneut abgetastet werden, was auf einem Digitalrechner allerdings nicht direkt
möglich ist. Wir beschränken uns aus diesem Grund auf Abtastratenänderungen
mit rationalem Interpolationsfaktor, d. h. für das neue Abtastraster


,��
gilt die

Beziehung ,�� ��� 
, �
(2.53)

mit der Interpolationsmatrix

� � ��� � �
� � � � H

� ��P � ��� � � H
(2.54)

wobei � ��P � � �
eine Erhöhung (Upsampling) und � ��P � � �

eine Verringerung
(Downsampling) der Abtastrate, respektive der Auflösung in der entsprechenden
Koordinate bedeutet.

Ein vor allem in der Onlineverarbeitung, wie z.B. der Sprachsignalverarbeitung,
gängiges Vorgehen ist die Separation der Ratenänderung in einen Upsampling-
und einen anschließenden Downsampling-Prozeß [PM92], gemäß der Eigenschaft

� � ��� � �
	 � �
� � � �
	 � � � ��� � �

� � � � � � �
	 � �
� � �
	 � � H

� � P � H 	 ��P � ��

��� � 	 (2.55)

Da durch die Separation nur ganzzahlige Interpolationsfaktoren verwendet wer-
den dürfen, ist diese Art von Ratenänderung umsetzbar. Bei der Ratenerhöhung
werden zunächst Nullen an den entsprechenden zusätzlichen Abtastorten einge-
fügt. Dies staucht allerdings lediglich das Spektrum, so daß man das sich erge-
bende Signal anschließend mittels eines Tiefpaß-Filters (Interpolationsfilter) be-
arbeiten muß. Der Ratenverringerung geht dagegen eine Tiefpaß-Filterung voraus,
um dann die benötigten neuen Abtastwerte durch ein lineares Mapping direkt ab-
zulesen. Dieses Vorgehen der Ratenänderung ist dabei nicht auf ein bestimmtes
Abtastraster beschränkt. Auch für die Änderung der Abtastrate auf einem hexa-
gonalen Raster, z.B. für eine Rücktransformation auf rechtwinklige Koordinaten
ist ein Interpolationsfilter, allerdings auf hexagonalem Raster notwendig (siehe
dazu auch [LF97]). Diese Methode hat aber wesentliche Nachteile, wenn klei-
ne nichtrationale Interpolationsfaktoren approximativ realisiert werden sollen, da
hierdurch � und

	
recht groß werden können. Zudem ist die Qualität der Interpo-

lation stark von der Güte des verwendeten Filters abhängig.

Im vorliegenden Fall handelt es sich allerdings nicht um eine Onlineverarbeitung
im eigentlichen Sinne, da das Bildsignal als Matrix i.d.R. erst nach der Bildauf-
nahme vorliegt - dann allerdings komplett. Somit kann hier die Abtastratenän-
derung im Frequenzbereich nach Transformation mit der FFT vollzogen werden.
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Dazu muß das Signal zunächst in den Frequenzbereich transformiert werden, um
dort an der Nyquistfrequenz bzgl. beider Frequenzkoordinaten passend viele Nul-
len einzufügen (Ratenerhöhung) oder auch Werte des Spektrums wegzuschneiden
(Ratenverringerung). Bei letzterem wird immer eine ideale Tiefpaßfilterung voll-
zogen, was die Qualität der Interpolation mit wenig Aufwand erheblich verbes-
sert. Es sei darauf hingewiesen, daß durch die Anwendung der FFT implizit das
Bildsignal im Ortsbereich periodisch fortgesetzt wird, was an den Rändern eine
entsprechende Extrapolation bewirkt und ggf. Artefakte verursachen kann. Die
Rücktransformation ist dann allerdings i. d. R. keine schnelle FFT mehr, so daß
mit zunehmender Bildgröße auch dieses Verfahren mehr Rechenzeit benötigt. Das
beschriebene Verfahren und Weiterentwicklungen können in [Haw97, WSM92]
nachgelesen werden.

Für die vorliegende Arbeit erwies sich die beschriebene Abtastratenerhöhung mit-
tels der FFT als sehr effizient und wurde vor allem für die Matched Interpolation
eingesetzt. Hierzu wurde das rechtwinklige Raster derart modifiziert (Resamp-
ling), daß das hexagonale Zielraster möglichst nah in beiden Koordinatenrichtun-
gen getroffen wird. Aus Tabelle 2.1 ist dazu die erforderliche hexagonale Abtast-
matrix für eine kreisförmige und quadratische Bandbegrenzung angegeben zu

, � 
 	� � 
 ���� � ���� �� � N � � � H�, � � 	� � 
 ���
�

���
���� � �

� N ��� � �
� � 	

(2.56)

Im ersten Fall ist abzulesen, daß lediglich in der ersten Koordinate eine Abtastra-
tenerhöhung um

	 �
erforderlich ist (vgl. auch Abb. 2.3). Bei der quadratischen

Bandbegrenzung ist hingegen eine Ratenänderung in beiden Koordinaten nötig,
so daß sich folgende Interpolationsmatrizen ergeben:

� � 
 	 � � 	 � �
� � � H � � � 	 � 
 E �

� �� � � 	
(2.57)

2.2.3 Experimentelle Ergebnisse

An dieser Stelle soll nun ein Vergleich der einzelnen Methoden zur Umrechnung
auf ein hexagonales Raster gegeben werden, da deren Beurteilung für den Einsatz
in einem technischen Bildverarbeitungssystem, aber auch für die Analyse biolo-
gischer Vorgänge wichtig ist. Allerdings scheint der Vergleich zweier Signale, die
auf unterschiedlichen Abtastrastern liegen, nicht direkt möglich. Denkbar wäre
aber, das rechtwinklig abgetastete Signal (einer Kamera) auf ein zu bewertendes
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Raster zu transformieren, um es dann wieder auf das ursprüngliche Raster zu-
rückzurechnen. Das rücktransformierte Signal kann dann mit dem Originalsignal
verglichen werden. Da aber durch dieses Vorgehen sowohl Hin- als auch Rück-
transformation jeweils einen Einfluß auf den berechenbaren Fehler ausüben und
nicht mehr getrennt betrachtet werden können, erweist sich dieser Weg als un-
brauchbar für die Untersuchungen. Aus diesem Grund soll hier eine Betrachtung
im Frequenzbereich durchgeführt werden, um einen quantitativen Vergleich der
verschiedenen Raster untereinander (hexagonales Raster mit kreisförmiger bzw.
quadratischer Annahme über die Bandbegrenzung und das pseudohexagonale Ra-
ster) aber auch der notwendigen Interpolationsmethoden (Bilinear, Bispline und
Matched Interpolation) zu ermöglichen. Diese Betrachtung ist möglich, da das
Definitionsgebiet

�
für alle Abtastraster einheitlich ist und das Spektrum den In-

formationsgehalt eines Signals vollständig widerspiegelt.

Die FOURIER-Transformation des auf rechtwinkligem Raster
, �

definierten Si-
gnals

�
 � ���%��� ;!= � � �(')��� ����� T � � = � �Q5R TWV+, � Q ; Y 
 � ��� NBZ � \ � (2.58)

stellt in dem Basisband
� � � � /�� � H�� � 2 T Q � ��P � � � 	�	�	 # 
 die Frequenzverteilung
 � des zu Grunde liegenden kontinuierlichen Signals zur Verfügung. Somit kann

mittels der DFT in beliebiger Frequenzauflösung ein Referenzspektrum berechnet
werden, was aber auch nach einer evtl. Umrechnung auf ein anderes Abtastraster
möglichst genau erreicht werden sollte. Dies gibt dann die Güte der Umrechnung
wieder. Das Spektrum auf dem hexagonalen Abtastraster kann dann ebenso durch

�
 � ���%��� ; = � � �(' ��� �i��� T � � = � �QSRUTWV�, � Q ; Y 
 � ��� NBZ � \ � (2.59)

berechnet werden. Schließlich kann durch ein normiertes Fehlermaß

�
NMSE

� � ���8��� �
�
�
�
 � ����� Q R TWV+, � Q N �
 � ����� QSRUTWVc, � Q ��

�
�

d
�

� �	�8��� �
�
�
�
 � ����� ��

�
� ��Q5R TWV+, �@Q �

d
� H

(2.60)

welches die normierte mittlere Abweichung im Frequenzbereich angibt, der In-
formationsgehalt auf dem hexagonalen Raster bzw. die Güte der Umrechnung
bewertet werden.

In Abb. 2.4 ist nun ein Bildsignal auf rechtwinkligem Raster (Bild einer CCD-
Kamera) und das zugehörige Betragsspektrum (logarithmisch aufgetragen) dar-
gestellt. Die Ergebnisse der Umrechnung dieses Bildsignals auf ein hexagonales
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Abtastraster sind in Abb. 2.5 zu sehen. Der für das Fehlermaß berücksichtigte
Bereich von 0 bis zur Nyquistfrequenz ist entsprechend gekennzeichnet.
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Abbildung 2.4: CCD-Bild und das zugehörige Spektrum.
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Abbildung 2.5: Umrechnung auf ein hexagonales Raster. oben: pseudohexagona-
les Raster (2.46). mitte/unten: hexagonales Raster bei Annahme einer kreisförmi-
gen (2.48) bzw. rechteckigen (2.50) Bandbegrenzung.
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Auffallend und für die Qualität der Umrechnung von großer Bedeutung sind hier
die unterschiedlichen Periodizitäten der Spektren im Frequenzbereich. Bei dem
pseudohexagonalen Raster (oben) ist die Verletzung des Abtasttheorems deutlich
zu sehen, da hier die höheren Spektren in das Basisspektrum hineinragen. Eine
angenommene kreisförmige Bandbegrenzung (mitte) des kontinuierlichen Signals
scheint zumindest qualitativ betrachtet näherungsweise erfüllt zu sein. Bei einer
quadratischen Bandbegrenzung (unten) sind theoretisch keine Aliasingfehler zu
erwarten, da hier die Periodizität im Frequenzbereich optimal ist.

In Tabelle 2.1 sind die Ergebnisse aller untersuchten Interpolationsmethoden für
ein hexagonales Abtastraster gegenübergestellt. Die Effizienz gibt hier die Dichte
der Abtastpunkte relativ zum ursprünglichen rechtwinkligen Raster an. Je klei-
ner dieser Wert ist, desto weniger Abtastpunkte müssen verwaltet und verarbeitet
werden. Die Berechnungsdauer � Ber für die Umrechnung der Daten wurde auf
einer Sun Ultra 6 unter MATLAB ermittelt, kann also nicht als Leistungsbewer-
tung für ein Bildverarbeitungssystem herangezogen werden, ermöglicht aber den
Vergleich der Methoden untereinander. Das Fehlermaß

�
NMSE gibt die Qualität

der Umrechnung auf das hexagonale Abtastraster wieder und eignet sich für den
Vergleich der Verfahren untereinander. Zusätzlich sind die Ergebnisse des pseu-
dohexagonalen Rasters gezeigt, das sich durch eine hohe Effizienz, schnelle Be-
rechnung aber auch durch einen großen Umrechnungsfehler auszeichnet.

Aus der Tabelle Tabelle 2.1 wird ersichtlich, daß durch vorherige Abtastratener-
höhung bei der Bilinearen und Bispline Interpolation (Bilinear 2, Bispline 2) der
Umrechnungsfehler wie vermutet verringert werden kann. Allerdings wird hier-
für auch mehr als die doppelte Berechnungszeit benötigt. Die hier vorgeschlage-
ne Matched Interpolation zeigt allerdings sowohl bzgl. der Berechnungsdauer als
auch bei dem resultierenden Umrechnungsfehler ihre Vorteile. Bei der Annahme
einer kreisförmigen Bandbegrenzung liefert diese Methode nur noch einen Fehler
von nur 	

" 	 � � � ��� � �
, was mehr als eine 10er Potenz besser ist als die ein-

fache bilineare Interpolation bei vergleichbarem rechnerischem Aufwand. Wird
eine quadratische Bandbegrenzung angenommen, so erhält man mit � 	

E � � � � � ���
praktisch keinen meßbaren Fehler mehr. Die anderen Verfahren hingegen liefern
hier noch einen größeren Fehler als bei der Matched Interpolation bei kreisförmi-
ger Bandbegrenzung. Aus diesem Grunde überzeugt die vorgeschlagene Methode
in jeder Hinsicht und sollte für eine ressourceneffiziente und robuste Umrechnung
herkömmlicher Bilddaten auf ein hexagonales Raster verwendet werden.
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Tabelle 2.1: Vergleich der Verfahren zur Umrechnung auf ein hexagonales Raster.

2.3 Biologische Verarbeitungssysteme

Die neuronalen Netze (NN) sind teilweise vereinfachte Beschreibungen der ver-
netzten und massiv parallelen Informationsverarbeitung in biologischen (Nerven-)
Systemen, wie im menschlichen Gehirn oder in Gehirnen recht artverwandter Le-
bewesen (Primaten). Der Begriff neuronal ist von der Bezeichnung der Nervenzel-
le (griech. Neuron) abgeleitet. Neuronale Netze werden allgemein als eine große
Ansammlung informationstransportierender und informationsverarbeitender Neu-
ronen verstanden, die über ein Netzwerk miteinander verbunden sind.

Die ursprünglich in der Informatik eingesetzten künstlichen neuronalen Netze
(KNN) sind modellhafte Konstrukte, welche die für die Informationsverarbeitung
wesentlichen Aspekte beinhalten, und repräsentieren damit meist einen numeri-
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schen Algorithmus oder eine Berechnungsvorschrift. Dabei dient dieses Modell
zum einen dem Verständnis biologischer Mechanismen, was vielfach durch die
digitale Simulation der künstlichen neuronalen Netze unterstützt werden kann.
Neurologen können z. B. auf diese Art die Verarbeitung tiefer studieren, zuver-
lässigere Diagnosen stellen, und durch Simulationen medikamentöse Behandlun-
gen im Digitalrechner erproben. Zum anderen können diese künstlichen Netzwer-
ke auch eingesetzt werden, um technische Aufgaben, wie z. B. im Bereich der
(diskreten) Optimierung, der Funktionsapproximation, der Mustererkennung und
Klassifizierung [EPdRH02] zu lösen. Hierdurch sind in der Vergangenheit diese
biologisch inspirierten Verarbeitungssysteme auch für ingenieurwissenschaftliche
Fragestellungen interessant geworden.

Im Rahmen dieser Arbeit steht die Verarbeitung visueller Signale und Informatio-
nen im Vordergrund, um Zielsetzungen der Bildsignalverarbeitung mit Hilfe des
biologischen Vorbildes zu verfolgen. Daher werden im folgenden Abschnitt die
neurophysiologischen Grundlagen speziell für die Verarbeitung visueller Reize
gelegt.

2.3.1 Neurophysiologische Verarbeitung visueller Signale

Zunächst wird die Funktionsweise neuronaler Netze und der grundlegende Auf-
bau des visuellen Systems im Gehirn von Primaten in kompakter Form dargestellt.
Im Verlauf dieser Arbeit werden dann einzelne für die Zielsetzung interessante
Aspekte vertieft behandelt.

Neurophysiologische Grundlagen

In Abb. 2.6 ist der funktionelle Aufbau eines Neurons abgebildet [Hub90], wel-
ches aus Dendriten, einem Zellkörper und einem Axon besteht. Reize anderer
Neuronen gelangen zu den Dendriten eines Neurons und können zu einer Reiz-
weiterleitung über das Axon führen, wenn die zeitliche und örtliche Summation
der Eingangsreize groß genug ist. Das Innere eines Neurons ist mit einer Lö-
sung aus ionisierten Salzmolekülen gefüllt und weist eine elektrische Potential-
differenz zu der dem Neuron umgebenden Salzlösung auf. Dieses Membranpo-
tential wird durch dendritische Reizungen anderer Neuronen beeinflußt und führt
ab einer gewissen Schwelle zu einer Öffnung von Ionenkanälen in der Zellmem-
bran, wodurch positive Natriumionen in die Zelle hineinfließen. Dadurch erhöht
sich das Membranpotential weiter und schließlich öffnen sich weitere Kanäle, die
positive Kaliumionen nach außen leiten und das Ruhepotential wieder herstel-
len. Diese lokale Änderung des elektrischen Potentials pflanzt sich örtlich fort
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Abbildung 2.6: Aufbau und Verschaltung eines Neurons.

und wird ggf. über das Axon bis zu anderen Neuronen weitergeleitet, dient da-
mit also als wesentlicher Informationsträger. Diese Potentialänderung wird auch
als Aktionspotential, Puls oder Spike bezeichnet, und die Anzahl der erzeugten
Pulse pro Zeiteinheit gibt die Aktivierung des Neurons wieder. Wird ein künstli-
ches neuronales Netz (KNN) auf diese besonders biologienahe Weise modelliert,
so spricht man auch von pulscodierten oder pulsgekoppelten neuronalen Net-
zen (PCNN). Dies ist eine Art der KNN, welche nicht nur die Aktivierung der
Neuronen selbst, sondern auch das zeitliche Auftreten des Reizes berücksichtigt.
Somit kommt die Zeit als weiterer Informationsträger in die Verarbeitungskette
hinein. Untersuchungen haben beispielsweise gezeigt, daß Neuronen, die ähnli-
che Eingangsinformationen repräsentieren, wie eine kontinuierliche Linie, sich
synchronisieren können, um so eine Art zeitliche Segmentierung durchzuführen
[EKGS90, ERAD89, ERAD90, Eck94]. Dies kann natürlich bei der Entwicklung
künstlicher Sehsysteme zur Interpretation einer Bildszene von großem Interesse
sein [HD90, Har91].
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Das visuelle System

Das visuelle System des Primaten ist einer der am besten erforschten Teile des
Gehirns. Bereits 1960 lieferte der Nobelpreisträger DAVID H. HUBEL durch seine
Forschungsergebnisse einen großen Beitrag zum Verständnis der neuronalen Me-
chanismen [HW62, Hub90]. Die Signalverarbeitung der wahrgenommenen Szene
beginnt bereits im Auge, wenn das reflektierte Licht der Szene durch das optische
System von Iris und Linse auf die Netzhaut (Retina) projiziert wird (siehe Abb. 2.7
[Hub90]). Dort befinden sich die lichtempfindlichen Zellen (Photorezeptoren), die

Abbildung 2.7: Aufbau des Auges und der Netzhaut.

die auftreffende Lichtintensität in ein elektrisches Signal umwandeln. Man unter-
scheidet zwischen Zapfen, die bevorzugt auf den roten, grünen und blauen Wel-
lenlängenbereich reagieren und Stäbchen. Die Stäbchen sind in einer weitaus grö-
ßeren Anzahl vorhanden

�
	

� E � � � ��� �
als die Zapfen

�
	 � � ����� �

, und sind auch
anders auf der Retina verteilt, wie aus Abb. 2.8 deutlich wird [Köh90, ST97]. Das
Auflösungsvermögen der Stäbchen ist wesentlich geringer als das der Zapfen, da-
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für sind sie aber wesentlich lichtempfindlicher, wodurch sie im wesentlichen für
das Nachtsehen zum Einsatz kommen. In der Sehgrube (Fovea) ist die Dichte der
Zapfen am größten. Dies ist der Bereich des schärfsten Sehens.

Abbildung 2.8: Verteilung der Photorezeptoren auf der Netzhaut.

Wie die Detailzeichnung der Retina in Abb. 2.7 erkennen läßt, leiten die Rezepto-
ren ihren Reiz weiter an die Schicht der Bipolarzellen, welche wiederum mit den
Ganglienzellen verbunden sind. Darüber hinaus existieren Horizontal- und Ama-
krinzellen, die eine weitere Verkopplung der Rezeptoren und der Bipolarzellen
verursachen. Die verschiedenen Zellen können meist weiter in unterschiedliche
Typen unterteilt werden.

An dieser Stelle ist erwähnenswert, daß durch die Verkopplung der einzelnen
Schichten und durch die inhomogene Verteilung der Rezeptoren auf der Netz-
haut bereits eine enorme Datenreduktion im Auge stattfindet. Die Signale von fast
130 Millionen Rezeptoren konvergieren auf ca. 1 Million Gangliensignale, die
über den Sehnerv (Nervus opticus) zur Großhirnrinde (Cortex) übertragen werden
(siehe Abb. 2.9 [ST97]). Hierbei kreuzen sich die Sehnerven der beiden Augen im
Chiasma Opticum derart, daß in jeder Gehirnhälfte das gleiche Gesichtsfeld bei-
der Augen zur Verfügung steht, um u. a. das Tiefensehen zu ermöglichen. Die
Signale gelangen zunächst zu dem seitlichen Kniehöcker (Corpus geniculatum
laterale), was im wesentlichen eine Schaltstelle darstellt. Von dort werden die In-
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Abbildung 2.9: Schematische Darstellung der Sehbahn im menschlichen Gehirn.

formationen in verschiedene Bereiche des visuellen Cortex projiziert. Dort sind
u.a. Zellen nachgewiesen, die auf Kontraständerungen in der auf der Netzhaut ab-
gebildeten Bildszene ansprechen. So existieren Zellen, die auf Konturverläufe mit
spezifischer Orientierung, auf bewegte Konturverläufe oder auch Konturverläufe
begrenzter Länge reagieren. Die erste Gruppe wird als einfache oder simple Zellen
charakterisiert, auf die im Laufe dieser Arbeit noch genauer eingegangen wird.

Durch aufeinander aufbauende Neuronenverkopplungen sind die Neuronen in der
Lage, eine immer komplexer werdende Reizspezifität zu erhalten. Die Beschrei-
bung der Reizspezifität eines Neurons erfolgt über das rezeptive Feld. Dieses gibt
zum einen den Bereich (Ort und Größe) des Bildausschnittes respektive der Re-
zeptoren an, auf den das Neuron überhaupt reagiert, d. h. der dem Neuron Ein-
gangsreize liefern kann. Zum anderen beschreibt das rezeptive Feld die optimale
Form und Ausprägung des Lichtreizes auf der Netzhaut, der eine maximale Er-
regung des Neurons verursacht. So weisen Ganglienzellen ein Zentrum-Umfeld-
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Verhalten auf. Bei einer On-Zentrum-Zelle beispielsweise besitzt das rezeptive
Feld ein erregendes (exzitatorisches) Zentrum und ein hemmendes (inhibitori-
sches) Umfeld, so daß ein begrenzter heller Stimulus in einer dunklen Umgebung
das Neuron am stärksten erregt. Ein dunkler Stimulus in einer hellen Umgebung
hingegen hemmt das Neuron am stärksten, was in Abb. 2.10 (links) [ST97] ex-
emplarisch dargestellt ist. Eine Off-Zentrum-Zelle verhält sich genau entgegenge-
setzt.

Abbildung 2.10: Rezeptives Feld und Antwortverhalten einer On- bzw. Off-
Zentrum-Zelle.

Terminologie beim menschlichen Auge

Zum Abschluß dieses Abschnittes über die neurophysiologische Verarbeitung sol-
len noch kurz ein paar weitere wichtige Fachausdrücke und deren Zusammenhang
zu der ingenieurwissenschaftlichen Beschreibung gegeben werden.

In Kapitel 3 wird ein systemtheoretisches Modell des frühen visuellen Systems
entwickelt werden. Dieses basiert darauf, daß die lichtempfindlichen Rezeptoren
in der zentralen Fovea auf einem annähernd hexagonalen Raster liegen, was zu
den genannten Vorteilen führt. Bei einem hexagonalen Abtastraster wird gewöhn-
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lich der kleinste Abstand
�

cc
� E � � (2.61)

zwischen einem Abtastpunkt zu seinen 6 Nachbarpunkten meist gesondert als
spacing benannt (cc=center-to-center spacing). Im Kontext der Photorezeptoren
(Zapfen) des menschlichen Auges spricht man dann von cone spacing, was dann
auch oft als Maßeinheit [csp] fungiert, wenn man die verwendeten Größen auf

�
cc

normiert.

Weiter ist es oft notwendig, aus der Dichte � der Abtastpunkte, welche z. B.
aus einer Zählung der Zapfen gewonnen wird, auf die Abtastperiode � � bzw.
das cone spacing

�
cc zu schließen. Die entsprechende Beziehung hierfür lautet

[DM84, HM87]

�
cc
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�
	

(2.62)

Die Größe eines Objektes, welches auf die Retina projiziert wird, ist vom Abstand
des Objektes vom Auge abhängig. Um diese Abhängigkeiten zu vermeiden, ver-
wendet man meist Winkelgrößen. Im Frequenzbereich gelangt man somit von der
gewöhnlichen Einheit

� ���
entsprechend zu der Einheit

� ���
bzw. � � � oder � � �

���
(cycles per degree). Die Umrechnung erfolgt durch die Beziehung

	
cpd

� 	
E # �� � � � 	 (2.63)

Hierbei ist
�

der Radius der gekrümmten Netzhaut, auf die das Bild projiziert
wird. Ein typischer Wert eines Menschen liegt etwa bei

� � � � 	 � mm, d. h. ein
Sehwinkel von

�
�
entspricht dann einer Strecke von etwa

� 	 E �
mm auf der Netz-

haut [ST97].

2.3.2 Künstliche neuronale Netzwerke

Für die Untersuchung der biologischen Abläufe, aber auch für die Umsetzung und
technische Nutzbarmachung bestimmter perzeptiver Fähigkeiten des biologischen
Vorbildes bedient man sich abstrakter Modelle, den sogenannten künstlichen Neu-
ronen bzw. den künstlichen neuronalen Netzwerken. Diese stellen die Arbeits-
weise des Netzes als arithmetische Rechenschritte dar, welche dann theoretisch
analysiert oder auf einem Digitalrechner nachgebildet und simuliert werden kön-
nen. So gibt es eine Vielzahl von unterschiedlichen Modellen, die je nach Auf-
gabenstellung nur gewisse Funktionen und Mechanismen der biologischen Syste-
me nachbilden. Bei der überwiegenden Anzahl technischer Fragestellungen kann
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z.B. der Einfachheit wegen auf die pulscodierte Verarbeitung verzichtet werden,
um so bereits die meisten technischen Probleme erfolgreich zu lösen. Dieser Weg
wird in dieser Arbeit ab Kapitel 3 zunächst ebenfalls gewählt. Daß dies aber nicht
zwingend eine zu starke Einschränkung bzw. Sackgasse sein muß, wird dann im
Laufe der Arbeit ersichtlich. In Kapitel 4 wird gezeigt, wie die Modellierung in
einer späteren Entwurfsphase bei Bedarf für pulscodierte Mechanismen erweitert
werden kann, um so nach einer soliden Modellierung ebenfalls die Vorteile der
Pulscodierung nutzen oder untersuchen zu können.

Die grundlegende Arbeitsweise eines einfachen künstlichen neuronalen Netzes
ist in Abb. 2.11 schematisiert. Bei der Verarbeitung werden die ankommenden
Signale der Vorgängerneuronen gewichtet und verarbeitet, wie in Abb. 2.11 ge-
zeigt. Die Gewichte entsprechen hier der synaptischen Erregung oder Hemmung
beim biologischen Vorbild entsprechend dem rezeptiven Feld des Neurons. Sind
die Eingangsreize ausreichend, so wird das Neuron selbst einen Ausgangsreiz zu
nachfolgenden Zielneuronen weiterleiten. Die Propagierfunktion

net
� � ; � � � � � � �����

(2.64)

eines betrachteten Neurons � ist dabei meist die gewichtete Summierung der Ein-
gangsreize, d. h. Ausgangssignale der Vorgängerneuronen. Die Verbindungsge-
wichte

� � �����
zwischen dem Vorgängerneuron

�
und dem betrachteten Zielneu-

ron � gibt dabei an, wie sehr das Zielneuron � von einem Vorgängerneuron erregt
(
� ����� � � �

, exzitatorische Verbindung) oder gehemmt (
� ������� � �

, inhibitorische
Verbindung) wird. Der Aktivierungszustand � � entspricht dem Membranpotential
der biologischen Zelle und ist von dem vergangenen Zustand, der Netzeingabe
net

�
und ggf. einem Schwellwert abhängig. Der Ausgangsreiz � � ergibt sich aus

dem Aktivierungszustand der Zelle über einen linearen oder nichtlinearen funk-
tionalen Zusammenhang.

Die dieser Arbeit zugrundeliegenden biologischen örtlichen Filtercharakteristiken
bis zu den simplen Zellen weisen in weiten Bereichen ein lineares Verhalten auf
(siehe Kapitel 3), so daß hier im wesentlichen die linearen Neuronen mit

� � ��; � � � � ��� �����
(2.65)

zum Einsatz kommen. Speziell im biologischen Sehsystem (siehe Aufbau der Re-
tina in Abb. 2.7) sind oft viele Neuronen gleicher Gattung in Schichten ange-
ordnet, so daß jedes Neuron mit dem Ort eines Bildbereiches korrespondiert. Hier
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Abbildung 2.11: Schematisierung eines künstlichen Neurons und dessen Ver-
schaltung mit Vorgängerneuronen.

empfängt jedes Neuron meist nur Eingangsreize von Neuronen einer anderen Gat-
tung, d.h. einer anderen Schicht, was als vorwärtsgerichtetes Netz bezeichnet wird
(Feed-Forward Netz). Ordnet man nun die Neuronen jeder Schicht jeweils in einer
Matrix an und bezeichnet die Schichten mit 1 und 2, so kann die Summe in (2.65)
als zwei Summen

� � � 	� � P � 
 � ; � � ; � 
 � � � 	� � P � 
 � � � � P � 
 ��� � H � � � (2.66)

für die Zeilen- und Spaltenkoordinate geschrieben werden. Darüber hinaus wei-
sen die Verbindungsgewichte innerhalb einer Neuronenschicht ein sehr reguläres
Schema auf, wodurch mit der Eigenschaft

��� � P � 
 � � � N �
H
� � N 	 ��� � 
�� P 
�
 � 0 � N �

H30 � N 	 � I
�
H 	 H � � P � H30 ��P � (2.67)

eine ortsinvariante Verarbeitung entsteht, d. h. das Verbindungsgewicht ist nicht
mehr abhängig von dem Ort des Zielneurons selbst, sondern nur noch von der
örtlichen Relation (� bzw.

	
) zu den verbundenen Vorgängerneuronen. Wir kürzen

dies für
� � � � � N � und
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mit
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ab und erhalten

� � � 	� � P � 
 � ;
�

;
�

� � � 	� � � � P � 
 � � � 
� � � H 	 � 	 (2.69)

Auf diese Weise geht die Berechnungsvorschrift des linearen Neurons formal in
die Faltungssumme des nichtrekursiven Digitalfilters (2.30) über, und die Verbin-
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dungsgewichte respektive das rezeptive Feld können als Faltungsmaske interpre-
tiert werden. Auf ähnliche Weise läßt sich auch die Arithmetik einer rekursiv ge-
koppelten Neuronenstruktur mit sogenannten lateralen Neuronenverknüpfungen
auf die Differenzengleichung eines rekursiven Digitalfilters zurückführen. Diese
Zusammenhänge liefern damit wertvolle Ergebnisse für die Interpretation neuro-
naler Architekturen der biologischen (visuellen) Informationsverarbeitung. Hier-
durch wird ersichtlich, daß lineare neuronale Netzwerke mit ihren lokal regulären
Verbindungsgewichten als ortsinvariante Digitalfilter interpretiert werden können.
Dies birgt zum einen für die Simulation der Netzwerke große Vorteile, da ver-
schiedenste Methoden der effektiven Filterimplementierung auf Digitalrechnern
und Signalprozessoren zur Verfügung stehen. Zudem kann hier von der großen
Anzahl an Analysemethoden und Entwurfsverfahren im Orts- und Frequenzbe-
reich profitiert werden, um die Modellierung neuronaler Netze zu unterstützen.
Aus diesen Gründen bildet auch die systemtheoretische Betrachtung des biologi-
schen Sehsystems die Grundlage der vorliegenden Arbeit.



KAPITEL 3

Lineares Modell der frühen
visuellen Verarbeitung

In diesem Kapitel wird ein Modell auf der Basis eines hexagonalen Rasters vor-
gestellt, welches viele informationsverarbeitende Funktionen beinhaltet, die bei
den Sehsystemen höherer Lebewesen erbracht werden [TH00, Thi99]. Hierbei
betrachten wir die Verarbeitungskette von den Photorezeptoren in der Netzhaut
(Retina) über die retinalen Horizontal- und Ganglienzellen bis hin zu den simplen
Zellen in der Großhirnrinde (visueller Cortex). Dieses Modell hat u.a. die Eigen-
schaft, daß es massiv parallel arbeiten kann. Zudem werden aber auch wertvolle
Zwischensignale produziert, die in weiteren Verarbeitungsaufgaben nützlich sind.
Hier seien Blicksteuerungskonzepte, Adaptionsmechanismen bei Beleuchtungs-
änderungen oder die Komposition simpler Zellen anderer Auflösungsebenen ge-
nannt. Die Eigenschaften des Modells zeigen auf, wie effizient die Verarbeitungs-
prozesse im menschlichen Gehirn aufgebaut sein könnten.

Die Verarbeitung der visuellen Signale wird in dieser Arbeit systemtheoretisch
modelliert, d.h. das Verbindungsnetzwerk zwischen Schichten meist gleichartiger
Neuronen wird als lineares System mit Eingangs- und Ausgangsgrößen darge-
stellt. Da hierdurch, wie im vorangegangenen Kapitel aufgezeigt, die Signalver-
arbeitung solch eines Neuronennetzwerkes als Digitalfilter interpretiert werden
kann, ergeben sich wesentliche Vorteile im Kontext dieser Arbeit. Die Beschrei-
bung der Signalverarbeitung im Frequenzbereich und die Vielzahl an etablierten
Verfahren zur Synthese bzw. zum Entwurf von Digitalfiltern sind hier besonders
erwähnenswert. Darüber hinaus ist aber auch die Simulation auf Digitalrechnern
eines systemtheoretisch vorliegenden Modells eines Neuronalen Netzwerkes mit
Standardoperationen der Digitalen Signalverarbeitung leicht möglich.

39
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Im folgenden Abschnitt wird zunächst die Umsetzung der visuellen Informatio-
nen einer betrachteten Szene durch die lichtempfindlichen Rezeptoren im Auge
betrachtet, um einige wesentliche Konsequenzen der weiteren Signalverarbeitung
herauszuarbeiten. In den beiden folgenden Abschnitten wird die Topologie des
Modells mit den zugehörigen optimalen Modellparametern entwickelt, welche zu
den gewünschten Verarbeitungseigenschaften bzw. rezeptiven Feldern des biolo-
gischen neuronalen Netzwerkes führt. Abschließend werden die wesentlichen Ei-
genschaften des vorgestellten Modells zusammengefaßt, eine Simulation mit ei-
nem Eingangsreiz durchgeführt und gezeigt, wie die Netzstruktur und damit die
Anzahl der Neuronenverbindungen reduziert werden kann. Letzteres ist für die
effiziente Simulation des Netzwerkes auf gewisser Spezialhardware für Neurona-
le Netze nützlich. So wird im nächsten Kapitel 4 die Implementation des Modells
auf eine in der Arbeitsgruppe HARTMANN entwickelte Neurocomputerarchitektur
beschrieben.

3.1 Bildgewinnung in einem biologischen Sehsy-
stem

In diesem Abschnitt wird zunächst die Bildentstehung auf der menschlichen Netz-
haut betrachtet und die wesentlichen Konsequenzen für die weitere Modellierung
aufgezeigt. Zum einen wird eine hexagonale örtliche Abtastung mittels der licht-
empfindlichen Photorezeptoren, wie sie in der Biologie beobachtet wurde, moti-
viert. Dieses hexagonale Abtastraster soll dann Grundlage für das zu entwickelnde
visuelle Verarbeitungssystem sein. Zum anderen wird der Einfluß der Rezeptora-
pertur untersucht und die Betrachtung dieser im ortsdiskreten Bereich begründet.

3.1.1 Abbildungseigenschaften des Auges

Die Photorezeptoren auf der Retina tasten das kontinuierliche Bild ab, welches
durch das Auge als „optisches Übertragungssystem“ auf die Retina projiziert wird.
In den meisten Fällen handelt es sich um ein lineares und ortsinvariantes Bildent-
stehungssystem, wie in Abb. 3.1 dargestellt. Die Abbildungseigenschaften des
Auges werden dabei im wesentlichen durch die folgenden Effekte bestimmt:

� Beugungseffekte
FRAUNHOFERsche Beugung an einer Lochblende

� sphärische Aberrationen
Brechkraft der Pupille ist abhängig vom Eintrittsort des Lichtes
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� chromatische Aberrationen
Brechkraft der Pupille ist abhängig von der Wellenlänge des Lichtes
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Abbildung 3.1: Das Auge als optisches Übertragungssystem.

Ist der Pupillendurchmesser sehr klein ( � � E
mm), so sind die letzten bei-

den Effekte vernachlässigbar und es handelt sich näherungsweise um ein rein
beugungsbegrenztes System. Das Übertragungsverhalten des Systems wird dann
durch einen Beugungsprozeß bestimmt und kann mit Hilfe der FOURIER-Optik
berechnet werden. Wir betrachten hierzu Abb. 3.2, in der das abstrahierte Auge
und die schematisierte Beugungsfigur zu sehen sind. Trifft eine ebene Lichtwel-
lenfront auf die Pupille (Lochblende), so handelt es sich um die Wellenfront eines
unendlich weit entfernten Lichtpunktes, und die entstehende Beugungsfigur ist
die Impulsantwort des Systems. In [KF88, Hec98] ist gezeigt, daß sich die kreis-
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Abbildung 3.2: Beugungsfigur bei der Bildentstehung im Auge.
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symmetrische Impulsantwort des Systems zu

��� ������� ��� ��� ��� E�� � � A � � 	 ���
� �A � � 	 � � � 
 �
(3.1)

ergibt, wobei
� � die Besselfunktion erster Gattung mit der Ordnung eins und �

die Wellenlänge des verwendeten Lichtes ist. Der konstante Faktor
� � ��� �

hängt
u. a. von der Lichtstärke. Die ebenfalls kreissymmetrische Übertragungsfunktion
des Systems kann zu

� � ������� " ��� ��� �� A � � 	 � � � E�
n���%� N������ � E�
n���%����� H�
n���%��� ��������� � � � � �E A � � 	 
 	
(3.2)

hergeleitet werden und wird in der Optik als MTF (modulation transfer function)
bezeichnet.

In Abb. 3.3 ist u. a. das theoretische Übertragungsverhalten für verschiedene Pu-
pillendurchmesser für ein rein beugungsbegrenztes System (- -) nach (3.1) und
(3.2) bei � � � � �

nm dargestellt. Ebenfalls hier zu sehen ist das reale Verhal-
ten der Augenoptik, welches experimentell bestimmt werden kann [Hau94] (vgl.
auch [ILGA98, Bro79, CG66]). Es ist erkennbar, daß für größere Pupillenöffnun-
gen ( � � E

mm) die experimentellen Ergebnisse immer mehr von dem rein beu-
gungsbegrenzten Verhalten abweichen. Die Abberationseffekte können folglich
nur bei kleinen Pupillenöffnungen vernachlässigt werden, da sie offensichtlich im
Gegensatz zum Beugungsverhalten mit zunehmender Öffnung ein stärkeres Tief-
paßverhalten bzw. eine abnehmende Grenzfrequenz verursachen.

Die wahre (experimentelle) Übertragungsfunktion soll deshalb an dieser Stelle
mit einer rotationssymmetrischen Exponentialfunktion der Form

� � ������� � ��� � �!� H#" �X
 � � �
(3.3)

beschrieben werden. Dies stellt eine gute Näherung der experimentellen Daten
in [Hau94] dar. Die Form und die Ausdehnung der Impulsantwort des Systems,
welche die Intensitätsverteilung bei einer punktförmigen Lichtquelle beschreibt,
ist für weitere Schlußfolgerungen von Interesse. Um eine analytische Form zu
erhalten, sind mit Hilfe von [GH73] einige Rechenschritte notwendig, die hier
allerdings nicht im einzelnen gezeigt werden können. Als Resultat der Herleitung



3.1 Bildgewinnung in einem biologischen Sehsystem 43

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements



mm
�� �

mm��� �
mm

normierte Impulsantwort

normierte Übertragungsfunktion

����	�


� �!��� � A [ cpd]


 �� �


�  � [m]

Abbildung 3.3: Übertragungsverhalten der Augenoptik verschiedener Pupillen-
durchmesser basierend auf experimentellen Untersuchungen (-) und die theore-
tischen Kurven für ein rein beugungsbegrenztes System (- -), jeweils bei einer
Wellenlänge von � � � � �

nm des verwendeten Lichtes.

ergibt sich die Impulsantwort zu

��� ������� �E # �" � C ��� � � �;
� ���

� E
�
����

�
� � � �� � N E

�
��E � � � ��� � �" � C � � � ��� � (3.4)

� �E # �" � C ��� � � � " � C "�� " � C ��� � � 
� " � C "�� " � C ���
� � 
 C � � � � H (3.5)
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welche ebenfalls rotationssymmetrisch ist. Mit Hilfe der Impulsantwort könn-
te u. a. das Auflösungsvermögen des Auges untersucht werden [KF88, Hec98].
Im Rahmen dieser Arbeit stellen sich aber das Verhalten der Optik im Frequenz-
bereich und die daraus resultierenden Konsequenzen für eine örtliche Abtastung
durch die Photorezeptoren in den Vordergrund. Im folgenden werden dazu eini-
ge Betrachtungen angestellt und mit verschiedenen, in der Literatur zu findenden
experimentellen Ergebnissen verglichen.

Da es sich bei dem experimentell bestimmten Verhalten im Frequenzbereich und
bei unserem Ansatz um ein kreissymmetrisches Tiefpaßverhalten handelt, ist folg-
lich jedes auf die Netzhaut projizierte kontinuierliche Signal immer näherungs-
weise kreisförmig frequenzbegrenzt. Wie aus Kapitel 2 bekannt, wäre für die-
sen Fall eine hexagonale Abtastung des kontinuierlichen Signals die effektivste
Form der ortsdiskreten Repräsentation. Unter der Annahme, daß das biologische
Vorbild hoch entwickelt sei und daher effizient arbeite, kann an dieser Stelle die
Hypothese geäußert werden, daß sich im Laufe der Evolution eine hexagonale
oder zumindest hexagonalähnliche Anordnung der Photorezeptoren ausgebildet
haben könnte. In der Tat ist in zahlreichen Untersuchungen gezeigt worden, daß
die Anordnung der Zapfen in der Fovea der Retina eine sehr hohe Regularität auf-
weist [Wil85, WC83, Wil86, WC87, Wil88, HM87, Yel81]. Es konnte in diesen
Arbeiten darüber hinaus festgestellt werden, daß das Mosaik der Zapfen in sehr
guter Näherung einem hexagonalem Abtastraster in der Fovea entspricht (siehe
Abb. 3.4). Durch Zählung der Zapfen ist z.B. eine Dichte �

� � " 	 � � " � � ��� � ] m
�
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Abbildung 3.4: Anordnung der Photorezeptoren (Zapfen) in der Fovea centralis
eines Affens [HM87]. Die hexagonale Gitterstruktur ist deutlich erkennbar.

ermittelt worden, was nach (2.62) einem mittleren Zapfenabstand (cone spacing)�
cc
�<E 	 � ] m entspricht. Um das Abtasttheorem von SHANNON zu erfüllen, ergä-
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be sich dann mit (2.45) eine Nyquistfrequenz von
	 � P � ��� � � � cpd. Da das konti-

nuierliche Bild auf der Retina, wie aus Abb. 3.3 (reales Verhalten) hervorgeht, kei-
ne nennenswerten Frequenzanteile über

� �
cpd aufweisen kann, sind keine oder

nur kaum Aliasingfehler in der zentralen Fovea (Fovea centralis) zu vermuten.
Diese Aussage wird in der Tat durch die o. g. experimentellen Untersuchungen
über Aliaseffekte, vor allem von WILLIAMS [Wil85], bestätigt.

Außerhalb der Fovea nimmt die Unregelmäßigkeit des Mosaiks allerdings zu.
Berechnet man dennoch die theoretische Nyquistfrequenz aus der Zapfendichte
[Yel81] (Rhesusaffe) unter Annahme eines hexagonalen Rasters, so ergeben sich
die Werte in der folgenden Tabelle:

Exzentrizität
��� � � � � �

Zapfendichte [
� � ��� � ]

m
�
] 19.4 1.4 0.6

Nyquistfrequenz
	 � P ����� [ cpd] 53 14 9.5

mittl. Zapfenabstand [ csp] 2.5

Ab der Parafovea ( � � ) müßten demnach Aliasingeffekte auftreten, was aber nicht
in dem Maße der Fall ist. Wie in [Yel81] gefolgert wird, beugt das Sehsystem
offensichtlich Aliaseffekten mit Hilfe der Irregularität des Mosaiks vor, da ei-
ne Frequenz � 	 � P � ��� keine konkrete Spiegelfrequenz ergibt, sondern durch das
unregelmäßige Abtastraster zu einem gestreuten breitbandigen Rauschen führt.
Hieraus läßt sich aber auch folgern, daß das biologische Vorbild außerhalb der
Fovea auf ein periodisches Abtastraster verzichtet und auf eine unregelmäßige,
zufällige Verteilung übergeht, um weniger Rezeptoren spendieren und damit we-
niger Daten verarbeiten zu müssen. Eine Interpretation, die die Leistungsfähig-
keit eines biologischen Sehsystems unterstreicht. Darüber hinaus könnte diese Er-
kenntnis durchaus auch für technische Systeme von Interesse sein. Dies wäre eine
Alternative zu anderen inhomogenen Abtaststrategien (z.B. logarithmisch-polare
Abtastraster), so daß vergleichende Untersuchungen lohnen könnten.

3.1.2 Abtastung mittels Photorezeptoren

Die Abtastung durch die lichtempfindlichen Rezeptoren in der Netzhaut soll nun
systematisch betrachtet werden, um die erste Stufe eines Modells zur biologiena-
hen visuellen Verarbeitung schrittweise zu entwickeln. Die Photorezeptoren der
Retina absorbieren die einfallenden Lichtquanten und setzen diese in ein elek-
trisches Potential für die Weiterverarbeitung um. Da die Rezeptoren auf einem
diskreten Raster angeordnet sind, sorgen sie also für eine örtliche Diskretisierung
des kontinuierlichen Signals auf der Retina und dienen somit im wesentlichen der
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Abtastung. Das Abtasttheorem von SHANNON geht gewöhnlich davon aus, daß
ein kontinuierliches Signal mit einem idealen Impulskamm, d. h. mit unendlich
kleiner Apertur abgetastet wird. Dies ist aber in der Natur und bei technischen
Systemen niemals der Fall. So besitzt zum einen die Fläche eines einzelnen Re-
zeptors – sei es auf der Netzhaut oder auch auf einem CCD-Chip – immer eine
endliche Ausdehnung und zudem fällt stets Streulicht seitlich in den Rezeptor
ein. Die resultierende Abtastapertur bzw. das Empfindlichkeitsprofil der Photore-
zeptoren ist ebenfalls endlich und bewirkt somit vor der eigentlichen Abtastung
einen Tiefpaßeffekt durch eine gewisse örtliche Mittelung der Lichtintensität. Der
Vorgang der Abtastung ist in Abb. 3.5 als Signalflußgraph schematisiert.
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Abbildung 3.5: Abtastung des Retinabildes mit vorheriger Aperturfilterung.

Der Tiefpaßeffekt der Apertur kann in einem Abtastsystem unter Umständen als
Anti-Aliasing-Filter dienen, was auch beim menschlichen Sehsystem auf den er-
sten Blick plausibel erscheint. Deshalb soll zunächst kurz geklärt werden, wie
diese Aperturfunktion der Rezeptoren aussieht und inwieweit sie für die visuelle
Signalverarbeitung von Bedeutung ist. Durch Untersuchungen von Aliaseffekten
kann ansatzweise das Frequenzverhalten der einzelnen Rezeptoren im menschli-
chen Auge geschätzt werden. Die physiologischen Experimente in [Wil85], bei
denen der Einfluß der Augenoptik durch die direkte Projektion von Interferenz-
mustern auf die Retina kompensiert wird, lassen z. B. den Schluß zu, daß die
Apertur der Rezeptoren einen Tiefpaßcharakter mit hoher Grenzfrequenz und ei-
ner Nullstelle bei ca.

� � � 	�	�	 � � � cpd besitzt. Auch Modellierungen der Zapfen
als dielektrische Lichtwellenleiter [SP94] weisen ein Tiefpaßverhalten mit einer
recht langsam abfallenden Frequenzcharakteristik und einer Nullstelle bei hohen
Frequenzen auf. Diese Untersuchungen widerlegen die oft anzutreffende Verein-
fachung einer gaußförmigen Apertur mit hohem Überlappungsgrad benachbarter
Rezeptoren. Im Gegenteil, die Ergebnisse deuten auf sehr schmale Aperturfunk-
tionen in der Größenordnung der Rezeptorausdehnung hin, wodurch die Apertur
eine eher untergeordnete Rolle bei dem Abtastvorgang zu spielen scheint. Falls
dennoch der Einfachheit wegen eine gaußförmige Apertur bei der Modellbildung
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zum Einsatz kommt, so kann demnach nur eine entsprechend geringe Überlap-
pung, d. h. hohe Grenzfrequenz die biologischen Verhältnisse widerspiegeln. In
[TWCH91] wird beispielsweise für die gaußförmige Aperturfunktion eine Stan-
dardabweichung von � Apertur

� � � 	 � ��� 	 � 	 " ]
m im Ortsbereich verwendet, was

im Frequenzbereich einer Standardabweichung von
� E 	 �

cpd entspricht (Exzen-
trizität

� 	 � � ). Hier könnte auch ein Vergleich mit [HM98] von Interesse sein.

Wie bereits erwähnt, treten bei der Abtastung in der Fovea keine oder nur kaum
Aliasingfehler auf, d.h. die Tiefpaßwirkung der Augenoptik ist für das vorhandene
Abtastraster bereits ausreichend, um das Abtasttheorem zu erfüllen. Es ist somit
davon auszugehen, daß der Apertur der Rezeptoren zumindest bei der Abtastung
keine große Bedeutung zukommt, und es ist daher möglich und zweckmäßig, den
Einfluß der Apertur im diskreten Bereich zu betrachten, was in Abb. 3.6 verdeut-
licht ist.
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Abbildung 3.6: Ideale Abtastung des Retinabildes und Berücksichtigung der
Apertur im diskreten Bereich.

Im weiteren ist darauf hinzuweisen, daß die Aperturfunktion der einzelnen Re-
zeptoren nicht zu verwechseln ist mit dem Übertragungsverhalten, d. h. mit der
Impulsantwort oder dem rezeptiven Feld der Rezeptoren. Hier spielt nämlich eine
laterale Kopplung benachbarter Rezeptoren eine wichtige Rolle, die in Verbin-
dung mit der Apertur ein resultierendes rezeptives Feld erzeugt. Die Kopplung
kann mit Hilfe eines weiteren Filters beschrieben werden, was in Abb. 3.7 zu se-
hen ist.

Das resultierende rezeptive Feld eines Rezeptors ergibt sich mit

��� �(':��� ��� �(')�  ��� �(')�
(3.6)

als Kaskadierung des Apertur- und des Kopplungsfilters und ist die Impulsant-
wort des Systemverhaltens zwischen dem ideal abgetasteten Signal � �(')� und dem
Signal � � �(')� am Ausgang des Rezeptors, was in Abb. 3.8 symbolisiert ist.
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Abbildung 3.7: Einfluß der lateralen Kopplung benachbarter Rezeptoren.
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Abbildung 3.8: Zusammenfassung der Apertur und der lateralen Kopplung zur
Impulsantwort eines Rezeptors.

In [SS90] wird das rezeptive Feld der Zapfen einer Katzenretina durch die Diffe-
renz zweier Gaußfunktionen (DoG, difference of gaussian) modelliert. Meist ist
die Beschreibung des Übertragungsverhaltens mit Hilfe einer Gaußfunktion aber
ausreichend [SL96a, SL96b]. Diese Näherung soll auch im Rahmen dieser Arbeit
für die Modellierung der retinalen Signalverarbeitung als Grundlage dienen.

3.2 Modellierung retinaler Neuronen

Die Verschaltung der Zellen selbst zu Beginn der Verarbeitungskette in der Reti-
na ist in biologischen Sehsystemen sehr komplex und bis heute noch nicht voll-
ständig verstanden. Obwohl in dieser Arbeit eine biologienahe Betrachtung und
Modellierung vorgenommen wird, sollen lediglich die für uns wichtigen Funk-
tionen der retinalen Informationsverarbeitung berücksichtigt werden. So liegt der
Schwerpunkt auf der Nachbildung rezeptiver Felder, also auf der örtlichen Filter-
wirkung. Diese Filtereffekte sind auch für technische Bildverarbeitungssysteme
in Form von Digitalfilterbänken von großem Interesse, um diverse Vorverarbei-
tungsschritte, wie Rauschunterdrückung oder Merkmalsextraktion bei statischen
Szenen zu realisieren. Zeitliche Vorgänge und ebenso nichtlineare Effekte sollen
bewußt nicht in das Modell einfließen.
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Der schematische Aufbau des Retinamodells ist in Abb. 3.9 dargestellt. Wesentli-
che Bestandteile der Verarbeitungskette sind die Rezeptoren, Horizontalzellen und
Ganglienzellen. In der Fovea besteht darüber hinaus eine eins-zu-eins Verbindung
von den Bipolarzellen zu den Ganglienzellen mit nur wenig Einfluß der Amakrin-
zellen [SL96a]. Deshalb ist das grundlegende Übertragungsverhalten bzgl. der
örtlichen Filterung und damit das rezeptive Feld der Ganglienzellen und der Bi-
polarzellen näherungsweise gleich, weshalb die Bipolar- und Amakrinzellen hier
nicht betrachtet werden sollen.
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Abbildung 3.9: Modellierung der retinalen Verarbeitung durch Rezeptoren,
Horizontal- und Ganglienzellen, die in Zellschichten organisiert sind.

3.2.1 Photorezeptoren

In Anlehnung an [SL96a, SL96b] beschränken wir uns hier auf das rot-grün-
Zapfensystem in der zentralen Fovea, da dieses im Gegensatz zu dem Stäbchensy-
stem die höchste örtliche Auflösung ermöglicht. In diesem Bereich der Retina sind
keine oder nur kaum blaue Zapfen vorhanden. Betrachtet man nämlich die Ab-
sorptionskurven der drei Zapfenarten in Abb. 3.10 [Hau94] (siehe auch [ST97]),
welche die spektrale Empfindlichkeit der Rezeptoren widerspiegeln, so ist erkenn-
bar, daß die Kurven der roten und grünen Rezeptoren einen weiten Spektralbe-
reich umfassen und sich auch relativ stark überlappen. Aus diesem Grund kann
davon ausgegangen werden, daß das Signal dieses Zapfensystems auch genügend
nutzbare Intensitätsinformationen beinhaltet, auch wenn der Farb- und Intensitäts-
gehalt gemischt in einem Pfad zu höheren Ebenen des Gehirns übertragen wird.
Die Rezeptoren sollen zudem, wie im vorangegangenen Abschnitt motiviert, ein
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Abbildung 3.10: Absorptionskurven der Zapfen. Die spektrale Empfindlichkeit
der roten und grünen Rezeptoren weisen eine große Überlappung auf.

hexagonales Abtastraster mit einer Abtastperiode von � � � � 	 E
� ]
m, also ei-

nem cone spacing von
�

cc
� E 	 � ]

m bilden. Dies stimmt gut mit zahlreichen
Untersuchungen [WC83, WC87, Wil88, HM87, Yel81] und den Ergebnissen aus
Abschnitt 3.1 überein.

Wie im Abschnitt über den Abtastvorgang durch die Rezeptoren motiviert, kann
das rezeptive Feld bzw. die Impulsantwort der Zapfen

��� � ')��� �� � E #
�
���� � � �������	�




�
 
 �

(3.7)

in guter Näherung als gaußförmig angenommen werden. Im Frequenzbereich er-
gibt sich durch die örtliche Diskretisierung eine periodisch fortgesetzte Gaußfunk-
tion. Im interessierenden Nyquistbereich erhalten wir entsprechend approximativ
die rein reelle Übertragungsfunktion des Systems

� � ��9 �
	

�Q R TWV+,kQ � � � ��
 T � � 
 
 
 �
 H N # O L ��P � O # 	
(3.8)

Es ist weiter bekannt, daß mit abnehmender mittlerer Beleuchtung die Größe der
rezeptiven Felder adaptiv zunimmt, um für eine größere Lichtausbeute bzw. ein
besseres Signal-zu-Rauschverhältnis zu sorgen, da auf diese Weise die Rausch-
komponente stärker gemittelt wird. Natürlich verschlechtert sich hierdurch auch
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das Auflösungsvermögen des Auges. Allerdings wird dieser Nachteil ein wenig
mit der Tatsache kompensiert, daß bei schlechteren Lichtverhältnissen auch die
Pupillenöffnung und damit auch die Impulsantwort der Augenoptik geweitet wird
(siehe Abb. 3.3). So könnte sich nach [SL96a] die Standardabweichung �

�
z.B.

in einem Bereich

�
� � � 	 � 	�	�	 � E

csp (3.9)

bewegen. Auch im Frequenzbereich ist zu erkennen, daß die Übertragungsfunk-
tion des Rezeptors an die Augenoptik angepaßt ist, da sich nämlich für die Stan-
dardabweichung von

� � ��9)�
Werte zwischen

� E
cpd (starke Beleuchtung) und� 	 � cpd (schwache Beleuchtung) ergeben würden. In der vorliegenden Modellie-

rung lassen wir zunächst aber zur Vereinfachung keine Adaption zu und verwen-
den einen festen Wert von �

� � � 	 �
csp, wie bei einer starken Beleuchtung. Erst

in Kapitel 5 bzw. Abschnitt 5.4 gehen wir auf ein adaptives Verhalten der Re-
zeptoren ein. In Abb. 3.11 ist das sich ergebende rezeptive Feld und die Übertra-
gungsfunktion als Funktion des Ortes� �(')��� ��� � �(' �

� � �(' � � � , '
(3.10)

bzw. der Frequenz

� ��9)��� � 	 � ��9:�	 � ��9:� � � �E # , � T 9 (3.11)

aufgetragen.

Abschließend ist erwähnenswert, daß das menschliche Sehsystem offensichtlich
nicht versucht, die Tiefpaßverzerrungen der Augenoptik bei höheren Frequenzen
bis zur Nyquistfrequenz

� � 	�	�	 � � cpd durch die Verarbeitung in der Retina zu ent-
zerren. Im Gegensatz zu technischen Systemen, in denen je nach Aufgabenstel-
lung durchaus eine Kompensation der Verzerrungen des bildgebenden Prozesses
nützlich sein kann, scheint das Übertragungsverhalten der Rezeptorschicht bereits
eine erste Stufe in einer komplexeren Verarbeitungskette zu sein.

3.2.2 Horizontal- und Ganglienzellen

Die Ganglienzellen werden in drei Klassen unterteilt [ST97, DS94, Sla90]. X-
Ganglienzellen (



-Zellen, parvozelluläre Zellen) weisen weitgehend ein lineares

zeitliches und örtliches Verhalten auf. Sie sind dicht angeordnet, besitzen klei-
ne rezeptive Felder und vermitteln hauptsächlich Farb- und Forminformationen.
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Abbildung 3.11: Normierte Impulsantwort und Übertragungsfunktion der Rezep-
toren auf hexagonalem Abtastraster.

Aus diesem Grund ist dieser Zelltyp Bestandteil des Modells. Die nichtlinearen Y-
Ganglienzellen (

"
-Zellen, magnozelluläre Zellen) hingegen besitzen große rezep-

tive Felder und sind nicht so dicht gepackt. Sie gehören zu den bewegungsemp-
findlichen Zellen. Eine weitere Klasse sind die W-Ganglienzellen ( � / � -Zellen),
die ebenfalls große rezeptive Felder aufweisen.

In Abb. 3.9 ist zu erkennen, daß die Ganglienzelle als Eingabe das Signal � � �(')�
einiger Rezeptoren erhält und davon das Signal �	� �(')� einer Horizontalzelle sub-
trahiert. Systemtheoretisch ist demzufolge die Ganglienzelle ein System mit zwei
Eingangs- und einem Ausgangssignal �	
 �(')� . Dieses Gangliensignal berechnet
sich dann zu� 
 �(')��� � 
 �(':�! � � ')� mit

� 
 �(' ���./ � N ��� � �(')� 2� ��� 	� ��� � = 	  ��� �(')�MH
(3.12)

wobei
� 
 �(')� das rezeptive Feld der Ganglienzelle ist. Aus physiologischen Unter-

suchungen ist bekannt, daß das rezeptive Feld der Ganglienzellen eine Zentrum-
Umfeld-Charakteristik aufweist, welche entweder als Differenz zweier Gaußfunk-
tionen (DoG, difference of gaussians) oder als Laplace-Ableitung einer Gauß-
funktion (LoG, laplacian of gaussian) approximiert werden kann. Das gewünsch-
te rezeptive Feld (hier durch des=desired gekennzeichnet) soll im folgenden eine
LoG-Funktion

� 
 P des
�(')��� N �

�
�



 E N � , ' � �
�
�
 � �� � E #

�
�
 � �

� � ��� �	� 

�
 
� H
(3.13)



3.2 Modellierung retinaler Neuronen 53

sein. In [Hub90] ist nachzulesen, daß das Zentrum des rezeptiven Feldes bei voller
Beleuchtung etwa

��� ]
m (

"
csp) beträgt, was die Nullstelle des rezeptiven Feldes

bei
� ]

m (
E

csp) festlegt und damit zu einer Standardabweichung von

� 
 � � ]
m	 E � 	 E

csp (3.14)

führt. Die gewünschte Impulsantwort bzw. die Übertragungsfunktion der Gangli-
enzelle ist in Abb. 3.12 dargestellt.
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Abbildung 3.12: Normierte Impulsantwort und Übertragungsfunktion der Gangli-
enzellen auf hexagonalem Abtastraster.

Das retinale Modell ist nun bis auf die Verknüpfung zwischen den Rezeptoren
und Horizontalzellen beschrieben, und es stellt sich die Frage, wie das gesuchte
System

� � 
 �(')� bzw.
� � � � ':� � � N � � 
 �(' � bestimmt werden muß, daß sich

das gewünschte rezeptive Feld der Ganglienzelle
� 
 P des

� ':�
„optimal“ ergibt. Wir

machen also den Ansatz
� 
 P des

�(')��� � 
 �(':�� � � 
 �(')�  � � �(')���<;
"

� � 
 � F � � � � �(' N F � I '
(3.15)

und reduzieren die Doppelsumme über den vektoriellen Laufindex
F

auf eine Ein-
fachsumme über

�K� � 	�	�	 � 
 durch Indizierung der Vektoren
F

. Entsprechend
beschreiben wir

'
durch eine Indexmenge �

� � 	�	�	��
und erhalten dadurch

� 
 P des
�('�� ��� �

�;� � � ��� 
 � F � � � ��� �('�� N F � � H
�
� � 	�	�	�� 	

(3.16)
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Mit
� � � 
 liegt nun ein überbestimmtes lineares Gleichungssystem vor, wel-

ches z.B. mittels der Pseudoinversen im Sinne der kleinsten Fehlerquadrate gelöst
werden kann. Das auf diese Weise gefundene System

� � 
 �(')� minimiert die Feh-
lerquadratsumme bzw. den mittleren quadratischen Fehler (MSE, mean squared
error)

�
MSE

� �
�

; = / � 
 P des
�(')� N � 
 �(')� 2 � 	 (3.17)

In (3.15) wird deutlich, daß das rezeptive Feld der Ganglienzelle
� 
 � ')� eine linea-

re Überlagerung von Basisfunktionen ist. Die Basisfunktionen
� � � ' N F � sind umF

verschobene Versionen des rezeptiven Feldes der Rezeptoren und werden mit
einem Faktor

� � 
 � F � gewichtet. Mathematisch betrachtet, handelt es sich dem-
nach um die Approximation einer ortsdiskreten LoG-Funktion mittels einer Su-
perposition von abgetasteten Gaußfunktionen. Hier ist allerdings anzumerken, daß
die rezeptiven Felder auch als kontinuierliche Funktionen betrachtet und die Er-
mittlung der Verbindungsgewichte durch eine Approximationsaufgabe kontinuier-
licher Funktionen gelöst werden können. Wenn die Funktionen aber nach SHAN-
NON abgetastet werden dürfen (Signale sind näherungsweise bandbegrenzt), kann
der Einfachheit wegen ebenso eine diskrete Approximation durchgeführt werden.
Man kann hier zeigen, daß die Normalgleichungssysteme mit kontinuierlichen
und abgetasteten Funktionen identisch sind und damit auf die selben Lösungen
führen. Ein formaler Beweis soll der Übersichtlichkeit wegen an dieser Stelle aber
ausbleiben.

Die Anzahl der Rezeptoren
� 
 , die auf eine Horizontalzelle konvergieren bzw.

die Anzahl der zu berücksichtigenden Koeffizienten der Horizontalzelle, ist für die
Approximation entsprechend zu beschränken. Es läßt sich aber schon im Vorfeld
die Vermutung äußern, daß der Restfehler der Approximation umso geringer und
damit das Approximationsergebnis umso besser ausfällt, je größer das

� 
 , also
die Anzahl der Filterkoeffizienten von

� � 
 � ')� gewählt wird. Dies scheint plau-
sibel, da mit größerem

� 
 mehr Basisfunktionen für die Approximationsaufgabe
zur Verfügung stehen. In Abb. 3.13, Abb. 3.14 und Abb. 3.15 werden die Ergeb-
nisse der Approximation mit unterschiedlichem

� 
 vorgestellt. Für eine genauere
Beurteilung sind hier die Impulsantworten als Aufsicht und zudem die Profilan-
sicht in zwei Schnittrichtungen zu sehen. Die Horizontalzelle erhält jeweils einen
Input von dem direkt „darüber liegenden“ Rezeptor (der den selben Ort auf der
Netzhaut repräsentiert), sowie von sechs Nachbarrezeptoren erster und/oder zwölf
Nachbarrezeptoren zweiter Ordnung. Der Nachbarschaftsring der Ordnung � sei
mit � ��� � 4 4 � 
 bezeichnet. In Tabelle 3.1 ist jeweils der Restfehler der Appro-
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ximation angegeben, und es fällt auf, daß mit zunehmendem
� 
 tatsächlich der

mittlere quadratische Fehler kleiner wird.

� 
 F �
Restfehler

�
MSE

� � � ��� � � 
 � 	 � � � � � ��� � �
Abb. 3.13� � � � ��� � � 
 " 	 � E � E � � � � � �
Abb. 3.14� � � � � � � � � � � 
 " 	 � � " � � � � � � �
Abb. 3.15

Tabelle 3.1: Restfehler bei der Approximation des rezeptiven Feldes der Gangli-
enzelle.

Es liegt damit ein Modell zur Aufnahme und frühen Verarbeitung visueller In-
formationen in der Netzhaut höher entwickelter Lebewesen vor. Mit dessen Hil-
fe kann eine biologienahe Simulation und Signalverarbeitung über eine Kaskade
von drei Teilsystemen (Rezeptor-Horizontalzelle-Ganglienzelle) stattfinden, wenn
die Bildinformation auf einem hexagonalen Abtastraster vorliegt. Die Parame-
ter des Modells konnten entweder direkt durch physiologische Untersuchungen
oder mittels einer Approximationsaufgabe bestimmt werden. Im Hinblick auf eine
Nutzung für ein technisches Bildverarbeitungssystem ergeben sich diverse positi-
ve Eigenschaften. Zunächst spiegelt die massive Parallelisierbarkeit der neurona-
len Netze die hohe Verarbeitungsgeschwindigkeit biologischer Sehsysteme wider,
was einer technischen Realisierung bei einer parallelen Verarbeitungsarchitektur
grundlegende Vorteile bietet. Darüber hinaus stellt das Signal der Ganglienzel-
le ein wesentliches Basissignal für die „höheren“ Verarbeitungsstufen dar, da es
über den Sehnerv zum Gehirn geleitet wird. Somit ist es möglich, sogenannte
Zwischensignale zu berechnen, welche für viele komplexe Aufgaben im biolo-
gischen Sehsystem aber auch für technische Systeme nützlich sein können. Dies
seien z.B. Blicksteuerungsmethoden, Adaption bei Beleuchtungsänderungen oder
die effiziente Komposition simpler Zellen im visuellen Cortex des Gehirns, was
im folgenden Abschnitt detaillierter beschrieben werden soll.
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Abbildung 3.13: Approximation des rezeptiven Feldes einer Ganglienzelle, bei
der

� 
 �
� Rezeptoren auf eine Horizontalzelle konvergieren.
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Abbildung 3.14: Approximation des rezeptiven Feldes einer Ganglienzelle, bei
der
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Rezeptoren auf eine Horizontalzelle konvergieren.
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Abbildung 3.15: Approximation des rezeptiven Feldes einer Ganglienzelle, bei
der

� 
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Rezeptoren auf eine Horizontalzelle konvergieren.
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3.3 Modellierung kortikaler simpler Neuronen

Die Ausgangssignale der Ganglienzellen höherer Lebewesen werden zunächst
durch den Sehnerv zum seitlichen Kniehöcker (Corpus geniculatum laterale) über-
tragen. Die Verschaltung geschieht hier größtenteils eins-zu-eins, so daß diesem
Ort eher die Funktion einer Signalverstärkung oder Signalverteilung als einer Si-
gnalverarbeitung zugeschrieben wird [DS94]. So kann die synaptische Übertra-
gung an die jeweiligen Umweltbedingungen angepaßt werden, also z. B. abge-
schwächt oder sogar abgeschaltet werden. Vom Kniehöcker aus bestehen zwar
Verbindungen zur Colliculi superiores, wo Mechanismen zur Blicksteuerung ab-
laufen. Der größte Teil der Signale im Kniehöcker wird aber auf die Großhirnrin-
de, den visuellen Cortex abgebildet.

Im primären visuellen Cortex (genauer Area 17 oder V1) konnten Neuronen nach-
gewiesen werden, dessen Eingangssignale von den parvozellulären Ganglienzel-
len stammen und deren rezeptive Felder den sogenannten GABOR-Funktionen äh-
neln [PR81, PR82, PR83, KMB82, JP87]. Die Felder dieser einfachen bzw. sim-
plen Zellen besitzen entweder gerade oder ungerade Profile, so daß sie entweder
ausgeprägt auf Linien oder Kanten im Eingangsbild antworten. Zudem weisen je-
weils genau zwei benachbarte Zellen dieses entgegengesetzte Verhalten für den
selben Ort auf, so daß diese formal als (komplexwertiges) GABOR-Filter zusam-
mengefaßt und damit annähernd als sog. Quadraturfilterpaar [AKM95] aufgefaßt
werden können. Die Antwort der simplen Zellen ist sowohl richtungs- als auch
frequenzselektiv, so daß die Gesamtheit der simplen Zellen schließlich als eine
Art Bandpaß-Filterbank von Linien- und Kantendetektoren unterschiedlicher lo-
kaler Orientierungen und Frequenzkanäle beschrieben werden kann.

Hier ist die theoretische Arbeit von SABATINI [Sab96] nennenswert, in der ein
Modell simpler Neuronen auf der Basis interkortikaler inhibitorischer Kopplun-
gen vorgestellt wird. Die rezeptiven Felder von Neuronen im Corpus geniculatum
laterale sind hier allerdings der Einfachheit halber orientiert gaußförmig ausge-
prägt. Ein betrachtetes simples Neuron erhält darüber hinaus nun weiteren inhi-
bitorischen Einfluß aus der (nicht unmittelbaren) Umgebung des visuellen Cor-
tex. Diese somit rückwirkenden simplen Neuronen der Umgebung liegen hier in
mehreren, kreisförmigen Einzugsgebieten, wobei die synaptischen Verbindungen
jeweils ebenfalls gaußförmig, aber isotrop gewählt sind. Es entsteht eine rekur-
siv gekoppelte Struktur simpler Neuronen, deren sich ergebenden rezeptiven Fel-
der - je nach Umgebungseinfluß - den zweidimensionalen orientierungsselektiven
GABOR-Funktionen sehr ähnlich sein können. Ziel ist es aber offenbar nicht ge-
wesen, ein realistisches biologisches Modell des primären visuellen Cortex zu
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erstellen. Die Studie zeigt vielmehr auf, welche rezeptiven Felder simpler Zellen
mit der Hilfe interkortikaler Einflüsse entstehen können, wobei ein gaborähnli-
ches Verhalten als Sonderfall betrachtet werden kann. Es bleibt hier die berech-
tigte Frage offen, ob dieses Ergebnis immer noch gültig ist, wenn die rezeptiven
Felder der Neuronen im seitlichen Kniehöcker Zentrum-Umfeld-Charakter haben,
wie es bei den Gangliensignalen tatsächlich der Fall ist. Dennoch eröffnen die Be-
trachtungen rekursiver Strukturen neue Möglichkeiten, die es noch im Detail zu
erforschen gilt. Die Interpretation als rekursive Digitalfilter können sicher auch
hier hilfreich und ratsam sein.

Die hier folgende kortikale Modellierung soll aber ausschließlich nichtrekursive
Strukturen verwenden, da der Filterentwurf dann analog zu dem vorangegange-
nen Abschnitt durchgeführt werden kann. Darüber hinaus könnten später dann
immer noch die entstehenden endlichen Impulsantworten durch rekursive Digi-
talfilter realisiert werden, um deren Vorteile auszuschöpfen. In der vorliegenden
Modellierung konvergieren eine Vielzahl von Ganglienzellen auf eine simple Zel-
le, deren Ausgangssignal sich somit zu��� �(' ��� � 
�� �(')�  � 
 � ')��� � 
�� �(')�  � 
 �(')�� ��� 	��� � = 	  � �(')� (3.18)

ergibt, was in Abb. 3.16 veranschaulicht ist.
PSfrag replacements

� � � � ��� � �
� �������
�
Retina�
�
����� simple Zelle�

��� �����

Abbildung 3.16: Modellierung der kortikalen Verarbeitung.

Es sollen hier gemäß der physiologischen Erkenntnisse beide Klassen der simplen
Zellen betrachtet werden. Das gewünschte gerade und ungerade rezeptive Feld
(RF) der simplen Zelle sei also

� � P des
�(':��� � � T �
	� P des

�(')�
rez. Feld gerade,
 � �
	� P des

�(':�
rez. Feld ungerade

(3.19)

mit
�
	� P des

�(')��� �� 	 E #
� � � �

� � �8� � �
 � � = 	 T � T � � � � = 	 �8� ��� T
 � � = 	 H
(3.20)
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wobei
� 	 � P des

�(':�
die komplexwertige Impulsantwort des Quadraturfilters sein soll.

Durch eine Drehmatrix � und eine Parametermatrix � [Tra98] der Form

� � � ��� � ���G� ����� ��� �N � � � ���G� ��� � ���G� � bzw. � � � � � � �� �
� � �

�
�
� � (3.21)

handelt es sich bei den beiden rezeptiven Felder i.allg. um gedrehte (
���� � �

), el-
liptische ( � �

��
� � ) zweidimensionale Gaußfunktionen. Im Nyquistbereich ergibt

sich dann die Übertragungsfunktion

� � P des
��9)��� ��
	 � � � 	� P des

��9:��� �
�
� 	� P des

��9)�GC �
�
� 	��� P des

� N 9:� RF gerade,
 � � 	� P des

��9:��� �
� � � 	� P des

��9:� N �
� � � 	
�� P des

� N 9)� RF ungerade

mit

� 	� P des

��9:�
	

�Q5R TWV+,kQ �8� � �
 � � 
 T ? �c� 
 	 T � T � 
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 	 H N # O L ��P � O�# H
deren Bandpaßcharakter in Abb. 3.17 deutlich wird.
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Abbildung 3.17: Normierte Impulsantwort und Übertragungsfunktion der simplen
Zellen mit geradem rezeptiven Feld für das erste Richtungsband (

��� � �
).

Die rezeptiven Felder der einfachen Zellen im Cortex von Katzen sind z.T. recht
detailliert vermessen. In [JP87] beispielsweise ist die größte Modulationsfrequenz� �
�
� � E #

, die durch Approximationsmethoden im Orts- und im Frequenzbereich
bestimmt wurde, mit etwa

� 	 � cpd angegeben. Im Vergleich zu den Grenzfrequen-
zen der bereits vorgestellten Komponenten unseres Retinamodells, wie z. B. den
Ganglienzellen, scheint dieser Wert jedoch recht klein zu sein. Die Gründe hierfür



62 Kapitel 3 Lineares Modell der frühen visuellen Verarbeitung

sind bislang nicht bekannt und können nur durch detailliertere Studien und physio-
logische Messungen geklärt werden. Um eine bzgl. des gewählten Abtastrasters
möglichst gute örtliche Auflösung zu erreichen, soll im weiteren allerdings der in
[Tra98] vorgestellte Filterentwurf verwendet werden, der einen weiten Frequenz-
bereich nutzt. In der vorliegenden Modellierung soll eine Orientierungsauflösung
von �

� � � � �
gewählt werden, woraus sich 6 Orientierungsbänder (auf

� � � � ) für
beide Typen der simplen Zellen (gerade und ungerade), also insgesamt 12 Zell-
schichten ergeben.

Wie bei der Bestimmung der Impulsantwort zwischen Rezeptoren und Ganglien-
zellen, erfolgt nun in gleicher Weise eine Approximation des rezeptiven Feldes
der simplen Zellen durch Faltung des rezeptiven Feldes der Ganglienzellen mit
einem noch unbekannten System

� 
�� � ':� , also

� � P des
� ')��� � � � ')� (3.22)� � 
�� �(')�! � 
 � ':��� ;

"
� 
�� � F ��� � 
 �(' N F � 	

(3.23)

Nach Umschreiben der Doppelsumme in eine Einfachsumme erhalten wir für
� � � � wieder ein überbestimmtes Gleichungssystem

� � P des
�(' � ��� �

�;� � � � 
 � � F � � � � 
 �(' � N F � � H
�
� � 	�	�	�� H

(3.24)

und bestimmen das System
� 
�� � ':� so, daß der mittlere quadratische Fehler

�
MSE

minimal wird. Hierbei sei
� 
 �(')� nicht das ideale rezeptive Feld der Ganglienzelle,

sondern das Ergebnis der Approximation für unsere Modellierung im vorherigen
Abschnitt. In Tabelle 3.2 ist der Restfehler der Approximation abzulesen, jeweils
in Abhängigkeit von

� 
 , der Anzahl der Rezeptoren bei der Approximation der
Ganglienzelle im vorherigen Kapitel. Für den Fall

� 
 �
� Rezeptoren, die auf

eine Ganglienzelle konvergieren, und
� � � �

� bzw.
� � � � � Ganglienzellen,

die auf eine einfache Zelle konvergieren, sind die Approximationsergebnisse in
Abb. 3.18 bzw. Abb. 3.19 dargestellt.

Analog zu der Approximation des rezeptiven Feldes der Ganglienzelle führt eine
Erhöhung der Anzahl der Ganglienzellen

� � , die auf eine simple Zelle konvergie-
ren, zu einem kleineren Restfehler. Hier konnte allerdings weiter beobachtet wer-
den, daß eine Verbesserung des Approximationsergebnisses bei der Ganglienzelle
bei festem

� � nicht unbedingt auch eine bessere Approximation für die einfache
Zelle bedeutet. Erhöht man z.B. die Zahl der Rezeptoren, die auf eine Ganglien-
zelle konvergieren von

� 
 �
� auf

� 
 � � �
, was im vorherigen Abschnitt eine
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� 
 � � F �
Restfehler

�
MSE

�
�
� � � ��� � � � � � � � � 
 " 	 " ��� � � ��� ���

Abb. 3.18� � � � ��� � � � � � � � � � � � 
 E 	 ��� � � � ��� ���
Abb. 3.19� � �

� � � � � � � � � � � � � 
 � 	 " � " E � ��� � �� � � � � � � � � � � � � � � � ��
 � 	 � � � � � ��� ���
� � �

� � � ��� � � � � � � � � 
 E 	 � � � � � ��� ���� � � � � � � � � � � � � � � � � 
 � 	 � � � � � ��� ���
Tabelle 3.2: Restfehler bei der Approximation des rezeptiven Feldes der geraden
simplen Zelle (basierend auf der Approximation der Ganglienzelle mit

� 
 Re-
zeptoren).

bessere Approximation bedeutete (siehe Tabelle 3.1), so verschlechtert sich für ein
festes

� � � �
� das Ergebnis bei der einfachen Zelle von

�
MSE

� " 	 " ��� � � � � ���
auf

�
MSE

� � 	 " � " E � ��� � �
. Dies kann dadurch begründet sein, daß sich bei� 
 � � �

zwar ein kleinerer mittlerer quadratischer Fehler ergibt, sich die Ro-
tationssymmetrie des rezeptiven Feldes der Ganglienzelle jedoch qualitativ etwas
verschlechtert (vgl. Abb. 3.13 und Abb. 3.14). Die Verwendung eines alternativen
Fehlermaßes wäre zumindest für die Approximation der Ganglienzelle ggf. von
Vorteil.

Für die weitere Modellierung sei
� 
 �

� oder
� 
 � � �

gewählt, je nach ge-
forderter Genauigkeit. Hier sollte allerdings immer berücksichtigt werden, daß
die in der Biologie gemessenen rezeptiven Felder im Laufe der Evolution enstan-
den sind, aber auch nur näherungsweise mit GABOR-Funktionen in der Literatur
beschrieben werden konnten, so daß das tatsächliche Verhalten natürlich davon
abweichen kann. Unter diesem Aspekt ist die geringere Anzahl der Verbindungen� � � �

� in den meisten Fällen vorzuziehen, da mit
� � � � � der mittlere quadra-

tische Fehler lediglich etwas mehr als halbiert wird, die Anzahl der notwendigen
Berechnungen aber auch fast verdoppelt wird.
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� 
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� 
 �
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In Abb. 3.20 ist schließlich der Signalflußgraph und in Abb. 3.21 sind die re-
zeptiven Felder der gesamten bisherigen Modellierung des biologisch motivierten
Sehsystems für

� 
 �
� und

� � � �
� zu sehen.

Dargestellt sind die rezeptiven Felder eines Rezeptors, einer Ganglienzelle und
zweier Paare einfacher Zellen

� 	 � P � und
� 	 � P � in einer Orientierung von

���
und� � �

. Die Gesamtheit aller � Orientierungen auf
� � � � ergibt sich jeweils aus einer

Koordinatendrehung um � ��� auf dem hexagonalem Raster der beiden Grundori-
entierungen gemäß

�
	� P � �(')��� �� 	 �
	� P � � 
� � � �
� �
')� H

�
� � H3E H 	�	�	 H � � H

� 	 � P � � 
� � � � � 	 � �
� �

')� H
�
� � H � H 	�	�	 H � � 	 (3.25)

Hierbei ist

� � � eine diskrete Drehmatrix, welche eine Koordinatendrehung auf

dem diskreten Abtastraster
'

um � � � erwirkt. Sie ergibt sich aus der Drehmatrix

� � �
� � � � E 	 � � EN 	 � � E � � E � (3.26)

für die kontinuierlichen Koordinaten
� � , '

durch die Identität

� � �
, ' !� , 
� � �

' I '
(3.27)

���

� � �

� , � � � � �
, � � � N �

� � � 	
(3.28)
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Abbildung 3.20: Signalflußgraph der Modellierung. Über einen impulsartigen
Eingangsreiz läßt sich das Antwortverhalten der Verarbeitungskette schichtwei-
se messen.
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3.4 Eigenschaften der Modellierung

Die Architektur des entwickelten Verarbeitungssystems, welches einige Aspekte
der biologischen Verhältnisse bei höheren Lebewesen widerspiegelt, weist einige
Vorzüge auf, die nicht nur für das biologische Vorbild, sondern auch für technische
Systeme von Interesse sind. In diesem Zusammenhang ist herauszustellen, daß
nicht nur die eigentlichen Ausgangssignale der einfachen Zellen berechnet wer-
den. Die Verarbeitungskette liefert, wie bereits geschildert, darüber hinaus weitere
wertvolle Signale. Diese sogenannten Zwischensignale werden beim biologischen
Vorbild für diverse visuelle Aufgaben eingesetzt. Dem Ausgangssignal der Gan-
glienzellen kommt hierbei eine besondere Bedeutung zu. Es wird beispielsweise
für Blicksteuerungsmechanismen und für die Adaption bei sich ändernden Licht-
verhältnissen verwendet. Wie in [Har82] gezeigt, erscheint es aber auch plausibel,
daß mit Hilfe des Gangliensignals rezeptive Felder gleicher Form aber größerer
örtlicher Ausdehnung erzeugt werden können, die wiederum auf einfache Zellen
konvergieren. Auf diese Weise ergeben sich ähnliche parallele Verarbeitungspfa-
de, aber mit unterschiedlichen Ortsauflösungen. Diese automatisch mitberechne-
ten Zwischensignale, die in der Biologie einer enormen Einsparung von Neuro-
nenverbindungen zugute kommen, sollten demnach auch bei der Realisierung ei-
nes technischen Gesamtsystems berücksichtigt und ausgenutzt werden.

Eine weitere wichtige Eigenschaft der kaskadenförmigen Struktur ist die hier-
in implizierte Aufwandsreduktion gegenüber einer direkten Implementierung der
einfachen Zellen als Feed-Forward Netz mit einer Eingangsneuronenschicht (ab-
getastete Bilddaten) und der Ausgangsneuronenschichten (einfache Zellen ver-
schiedenen Typs und Orientierung) bzw. einem nichtrekursiven Digitalfilter. Der
Einfachheit halber wollen wir folgende Abschätzung betrachten, in der die Impul-
santworten der Systeme jeweils quadratisch begrenzt sein sollen. Das rezeptive
Feld einer einfachen Zelle hat eine radiale Ausdehnung bis etwa � � , die Im-
pulsantwort

� � P des
� ')�

ist also vereinfacht mit dem quadratischen Gebiet
0 ��P � �N � H 	�	�	 H � bis

� �
� zu berücksichtigen. Daraus ergeben sich

� E � C � � � � E$E �
synaptische Verbindungen bzw. Multiplikationen und Additionen. Dieser Auf-
wand muß natürlich für jede Orientierung spendiert werden, woraus sich dann
insgesamt

� E �UE$E � � E
� � � Verbindungen ergeben. Der erforderliche Aufwand

bei der vorliegenden Modellierung ist in Tabelle 3.3 für zwei Genauigkeitsstufen
nachzuvollziehen. Wird ein großer Modellierungsaufwand betrieben, um eine ho-
he Approximationsgüte zu erreichen, so sind bei der Simulation im Vergleich zur
direkten Implementierung lediglich nur noch etwa

" � 

an synaptischen Verbin-

dungen zu spendieren, was einer beachtlichen Reduktion an arithmetischen Ope-
rationen gleichkommt. Bei der etwas schlechteren Modellgüte beträgt die Anzahl
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Anzahl der synaptischen
Anzahl der Verbindungen

� E � C � � �
[
�

]
Orientierungen

� � � � 
 � 
 � �

1 81 [4] 9 [1] 81 [4] 171
12 12

�
81 1062 (

� � 	 � 

)

1 81 [4] 9 [1] 49 [3] 139
12 12

�
49 678 (

E � 	 � 

)

Tabelle 3.3: Berechnungsaufwand für die Simulation des Modells. Die Anzahl der
synaptischen Verbindungen gibt die Anzahl der Multiplikationen und Additionen
wieder.

der Berechnungen noch weniger. Die wesentlichen Vorteile einer Kaskadierung
in Subsysteme können wie folgt zusammengefaßt werden:

� wertvolle Zwischensignale werden mitberechnet (Adaption, Blicksteuerung)

� andere Auflösungsebenen können mit wenig Aufwand berechnet werden

� zusätzliche Parallelisierbarkeit (Bildsequenzen)

� weniger Neuronenverbindungen gegenüber einer Direktrealisierung
( 	 N � � 	�	�	 �

� 

)

Abschließend sollen die Ergebnisse einer Simulation des Systems mit einem Bei-
spieleingangsbild (Szene einer Raddemontage) betrachtet werden. In Abb. 3.22
(oben) ist zunächst das zur Verfügung stehende Bildsignal einer CCD-Kamera auf
rechtwinkligem Raster und die auf das hexagonale Raster umgerechneten Bildda-
ten dargestellt. Darunter sind die Aktivitäten der Rezeptoren und Ganglienzellen
der Modellierung zu sehen.

Die Ausgangssignale der kortikalen Verarbeitungssysteme sind in Abb. 3.23 zu
sehen. Der Übersichtlichkeit wegen sind zunächst nur die Antworten der geraden
und ungeraden einfachen Zellen für eine Orientierung (

� �
) dargestellt, welche auf

vertikale Konturinhalte der Szene ansprechen. In der unteren Zeile sind darüber
hinaus gewisse Verknüpfungen dieser Signale zu sehen, welche bereits als eine
Art komplexe Zellen aufgefaßt werden können. Dies ist zunächst die Summe der
quadrierten Signale der geraden und ungeraden simplen Zellen einer bestimmten
Orientierung (in der Abbildung:

� �
)��� P � �(':���.� � � P � � � � � ')��� � C�� � � P � � �(')��� � H

�
� � 	�	�	 � (3.29)
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PSfrag replacements

CCD-Bild (rechtwinkliges Raster) hexagonales Raster (Ausschnitt)

Rezeptoren Ganglienzellen

Abbildung 3.22: Simulation des Modells (Retina). oben: Bild einer CCD-Kamera
und die auf ein hexagonales Raster umgerechneten Bilddaten. unten: Ausgangs-
signal der Rezeptor- und Ganglienzellenschicht auf dem hexagonalen Raster.

was bei der technischen Realisierung einer GABOR-Filterbank dem Betrag der
komplexen Filterantwort entspricht. Schließlich ist in Abb. 3.23 noch zur Veran-
schaulichung der Arbeitsweise die lineare Überlagerung aller Orientierungen
� � � ':��� �; � � � � � P � � ':� (3.30)

dargestellt. Der Betrag der komplexen GABOR-Filterantwort wird in technischen
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PSfrag replacements
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Abbildung 3.23: Simulation des Modells auf hexagonalem Raster (Cortex). oben:
Antwortsignal der geraden und ungeraden simplen Zellen (

� �
). unten: Verknüp-

fung der Signale gerader und ungerader simpler Zellen (
� �

) bzw. Überlagerung
aller Orientierungen.

Systemen vielfach als einfaches Modell für die komplexen Neuronen verwendet
[SvdM97]. Neurophysiologische Untersuchungen des Antwortverhaltens komple-
xer Neuronen von POLLEN und RONNER [PR83, PR82] führen hingegen auf ein
periodisches komplexes Modellneuron, welches die exzitatorischen Anteile der
Antworten von insgesamt vier simplen Neuronen erhält. Es bleibt allerdings un-
klar, ob das von POLLEN und RONNER nachgewiesene periodische komplexe Mo-
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dellneuron Vorteile gegenüber dem Betrag der GABOR-Antwort für technische
Systeme aufweisen könnte. Abschließend sei hier erwähnt, daß der Begriff der
„komplexen Zelle“ von der Idee des Neocognitron [FOH94, Fuk95, MV96] abzu-
grenzen ist. Bei diesem hat das komplexe Neuronen im wesentlichen die Aufgabe,
eine Lageinvarianzbildung zu realisieren. Die Weiterverarbeitung zu komplexen
Neuronen soll im Rahmen dieser Arbeit allerdings nicht näher behandelt werden.

3.5 Reduktion der Netzstruktur

Bei der beschriebenen Vorgehensweise zur Approximation der gewünschten re-
zeptiven Felder und damit der Bestimmung der synaptischen Gewichte bzw. Fil-
terkoeffizienten wurden die synaptischen Verbindungen bislang immer so gewählt,
daß sie innerhalb bestimmter Hexagone mit einem Radius � � liegen. Die Koeffi-
zienten wurden dann so errechnet, daß der mittlere quadratische Fehler minimal
ist. Allerdings sollte hier nicht unerwähnt bleiben, daß bei fest vorgegebener An-
zahl der synaptischen Verbindungen die Orte dieser Verbindungen einen Einfluß
auf das Approximationsergebnis haben können. Bei der Approximation der Gan-
glienzelle war dies weniger deutlich, da die zu approximierende Impulsantwort
rotationssymmetrisch ist. Bei der Modellierung der einfachen Zellen allerdings
haben die Orte einen großen Einfluß. Um die optimalen Orte zu finden, kann z.B.
wie folgt vorgegangen werden. Möchte man eine feste Anzahl an Verbindungen� � � �

� im Modell verwenden, so könnte zunächst die optimale Lösung mit
deutlich mehr Verbindungen, z. B.

� � � � � , berechnet werden. Anschließend
werden alle 61-37 Verbindungen, die das kleinste Gewicht besitzen, vernachläs-
sigt. Wie in Abb. 3.19 zu erkennen, sind einige Koeffizienten der einfachen Zelle
in der Tat betragsmäßig sehr klein. Auf diese Weise erhält man allerdings nur ein
suboptimales Ergebnis.

Die gegebene Problemstellung ist in der linearen Algebra unter dem Begriff subset
selection bekannt. Das überbestimmte Gleichungssystem

� � P des
�(' � ��� �

�;� � � � 
�� � F � � � � 
 � ' � N F � � H
�
� � 	�	�	��

(3.31)

ist eine lineare Regressionsaufgabe und kann als Matrixgleichung
��� ��� H � ��
 � � 7

�
� H � � 
 �

�
� H�� ��
 � �

(3.32)

geschrieben werden. Bestimmt man den Lösungsvektor im Least-Square Sinne
optimal, so ergibt sich ein Restfehler� ����� � N � � � �	� T � N � T � � � T � � � � � T ��
 � 	

(3.33)
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Wird nun eine Untermenge der Spalten von
�

mit einer festen Anzahl
� �� �� � an Spaltenvektoren ausgewählt, so ergibt sich i. allg. ein größerer Restfehler.

Die Aufgabe besteht somit darin, diejenigen
� �� Spalten auszuwählen, die den

kleinsten Restfehlerzuwachs verursachen.

GOLUB stellt in [GVL96] eine Methode zur subset selection mit Hilfe der Singu-
lärwertzerlegung vor, die aber den Zielvektor

�
nicht weiter betrachtet. Hier wer-

den diejenigen Spalten von
�

gesucht, die am stärksten linear unabhängig sind
und damit


 � �
am besten aufspannen. Dies führt aber nicht unbedingt zu einer

Spaltenauswahl mit dem kleinsten Restfehler bzgl.
�
, was ebenfalls von GOLUB

diskutiert wird. Es ist weiter bekannt, daß die Lösung des least-square Problems
mit Hilfe einer orthogonalen Zerlegung der Matrix

�
bestimmt werden kann,

was oft als orthogonal-least-square bezeichnet wird. Hierauf aufbauend wird in
[CBL89, CW95] ein Verfahren zur subset selection gezeigt, welches sukzessive
die besten Spalten von

�
sucht (forward selection) und den Lösungsvektor be-

stimmt. In [SS97, VHV87, KDB93, CCG91] sind verwandte Strategien zu diesem
Thema veröffentlicht. Für weitergehende Untersuchungen sei hier auch das Buch
[Mil90] genannt, welches sich ausschließlich mit diesem Thema befaßt und eine
gute Übersicht über bestehende und neuere Verfahren geben kann.

Die genannten Methoden müssen allerdings nicht notwendigerweise das globale
Optimum finden. In der Tat zeigen heuristische Untersuchungen, daß in unse-
rem Fall lediglich suboptimale Lösungen erreicht werden. Nur der Vergleich aller�
�
�

���
��� möglichen

� �� -dimensionalen Untermengen der Spalten von
�

liefert die
optimale Auswahl. Will man z. B. bis zu einem Radius � � (also

� � � � � ) die
optimale Untermenge mit

� �� � �
� Elementen suchen, so ergeben sich bereits� � �� � � � � 	 � " � ��� � �

mögliche Kombinationen. Diese Suche (exhaustive search)
führt zwar gewiß auf die optimale Auswahl, allerdings nur mit erheblichem Re-
chenaufwand. Im vorliegenden Fall kann allerdings die Symmetrie der zu appro-
ximierenden Funktionen eine erhebliche Reduktion des Suchaufwandes bedeuten.
Hierzu ist die Darstellung in Abb. 3.24 hilfreich, in der die optimalen Verbindun-
gen nach solch einer Suche gezeigt sind. Dabei wird der Suchraum jeweils auf den
ersten Quadranten reduziert ( � ), da sich die Orte in den übrigen Quadranten (graue
Kreise) durch entsprechende Spiegelungen an den Achsen ergeben. Die Spiege-
lachsen sind hier immer die Symmetrieachsen der zu approximierenden Funktion.

Der erste Quadrant inklusive der Achsen umfaßt in unserem Beispiel 19 Koor-
dinaten, aus denen alle möglichen Untermengen mit

� � �� Elementen ( � ) für die
Suche in Frage kommen. Hier ist zu beachten, daß die Positionen auf den Ach-
sen nicht zweimal, sondern lediglich einmal gespiegelt werden, der Ursprung
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Abbildung 3.24: Reduktion der Suche nach den optimalen synaptischen Verbin-
dungen auf den ersten Quadranten.

hingegen wird nicht gespiegelt. Damit nach der Spiegelung dennoch insgesamt� �� � �
� Koordinaten entstehen, wäre

� � �� � � � �
�
��� � �

zu klein dimensioniert.
Im schlimmsten Fall sind nämlich die Achsen vollständig besetzt, so daß sich aus
der Bedingung

� �� � E � "� ��� 	�
�

-Achse

C E �8E� ��� 	�



-Achse

C �� ��� 	
Ursprung

C � � ���� N �
��� "� ��� 	

Quadranten

(3.34)� � � C�� � ���� N �
��� "

(3.35)

��� � � �� � � �� N � �" C
� (3.36)

und mit
� �� � �

� die Dimension der reduzierten Untermenge zu
� � �� � � �

ergibt.
Es sind dann natürlich nur diejenigen Kombinationen zu betrachten, die nach der
Spiegelung insgesamt

� �� � �
� Koordinaten aufweisen. Wird also diese Symme-

trie ausgenutzt, so reduziert sich der Suchaufwand auf
� � �
� � � � E

� �
� E

, was recht
schnell mit der heutigen Rechenleistung bewältigt werden kann. In Abb. 3.25 ist
zu erkennen, inwieweit sich der Restfehler durch die Suche der optimalen syn-
aptischen Verbindungen weiter um etwa die Hälfte reduzieren läßt (vgl. hierzu
Tabelle 3.2).

Bei der Verwendung spezieller Neurohardware zur Simulation neuronaler Net-
ze, wie z. B. in [Fra97, Wol01] und im folgenden Kapitel beschrieben, welche
beliebige, auch spärliche synaptische Verbindungen realisieren kann, schlägt sich
solch eine Reduktion der Netztopologie direkt in der benötigten Rechenzeit nieder
und führt demzufolge zu drastischen Geschwindigkeitsvorteilen, die auf jeden Fall
genutzt werden sollten. Wird die Simulation des neuronalen Netzes bzw. Digital-
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filters mittels diskreter Faltung im Ortsbereich ausgeführt, so bleiben auch hier
die Vorteile durch die beschriebene Reduktion der Netzstruktur erhalten, wenn
die auf null gesetzen Filterkoeffizienten entsprechend berücksichtigt werden und
nicht zu einer Multiplikation bei der Filteroperation führen. Bei einer Filterung
durch Multiplikation im Frequenzbereich, hat die Anzahl der Filterkoeffizienten
ungleich null allerdings i.allg. keine Auswirkungen auf die Rechenzeit.
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KAPITEL 4

Realisierung pulscodierter
Mechanismen

Durch neurophysiologische Untersuchungen weiß man, daß die Informationsver-
arbeitung im biologischen Sehsystem ab den Ganglienzellen in einer pulscodier-
ten Form geschieht. Dabei codiert das Neuron seinen momentanen Aktivitäts-
zustand in ein zeitliches Signal, eine Pulsfolge oder Spikes, deren Pulsfrequenz
die Erregung der Zelle widerspiegelt. Dieses Signal wird über das Axon zu den
Nachfolgeneuronen übertragen. An den Dendriten der Zielneuronen wird dann
durch Aufsummierung oder Integration der Spikes die Aktivität des Vorgänger-
neurons rekonstruiert. Hierdurch kommt die Zeit als weitere Dimension und auch
als weiterer Informationsträger hinzu. Wie nämlich verschiedene Studien zeigen,
wird auch die Phaseninformation der Pulsfolgen für Wahrnehmungsmechanismen
genutzt [ERAD89, ERAD90]. Diejenigen Neuronen, die ein ähnliches Merkmal
repräsentieren, wie eine kontinuierliche Linie in ihrem rezeptiven Feld, synchro-
nisieren so ihre ausgesendeten Pulsfolge. Dieser Mechanismus ist natürlich für
viele Aufgaben nützlich. Die Segmentation einzelner Objekte oder die Trennung
von Objekt und Hintergrund seien hier als Beispiel genannt.

Die genannten Synchronisationseffekte selbst sind zwar nicht Gegenstand der vor-
liegenden Arbeit (der interessierte Leser sei auf andere Arbeiten verwiesen, wie
[Sch00]). Dennoch ist es von großem Interesse, das im vorangegangenen Kapi-
tel vorgestellte Netzwerk, welches das lineare Filterverhalten der frühen visuel-
len Verarbeitung beschreibt, um diese pulscodierenden Strukturen zu erweitern.
Durch die Kombination eines gaborähnlichen Verhaltens zur Konturextraktion auf
einem hexagonalen Raster und eine pulscodierte Verarbeitung ergibt sich hier-
durch ein wertvolles Vorverarbeitungssystem für pulscodierte neuronale Netzwer-
ke (PCNN) [TWH00, Thi00, Wol01]. Dabei setzen die Ganglienzellen ihre Akti-
vitäten in Pulsraten um und die simplen Zellen können als ECKHORN-Neuronen

79
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entworfen werden. Auf dieses pulscodierte Vorverarbeitungssystem könnten dann
weitere Studien aufbauen, um z. B. die Synchronisationsmechanismen näher zu
untersuchen.

Im folgenden Abschnitt wird das für pulscodierte Netzwerke vielfach eingesetz-
te ECKHORN- Neuron vorgestellt. Dieses Neuronenmodell ist zunächst für die
Aufgabenstellung so zu parametrisieren, daß die Codierung und Decodierung der
Membranpotentiale auf eine lineare Weise geschieht. Dies ist wichtig, da das Ver-
halten bzgl. der örtlichen Filterwirkung bis hin zu den simplen Zellen allgemein
als näherungsweise linear angenommen wird.

Der konsequente Schritt ist dann die Erweiterung des linearen Modells auf eine
pulscodierte Verarbeitung, was theoretisch hergeleitet werden soll und auf eine
spezielle Netzstruktur führt. Die Betrachtungen zeigen, daß prinzipiell jedes li-
neare neuronale (Feed-Forward) Netzwerk (oder nichtrekursive Digitalfilter), wie
die simplen Zellen, komplett mittels ECKHORN-Neuronen realisiert werden kann,
ohne daß dabei die Linearität verloren geht.

Erst durch den Einsatz von Spezialhardware ist aber die Simulation solch großer
pulscodierter neuronaler Netze in akzeptabler Rechenzeit möglich. Abschließend
ist deshalb die Implementierung auf einer in der Arbeitsgruppe HARTMANN ent-
wickelten Neurocomputerarchitektur SPIKE bzw. ParSPIKE gezeigt, welche das
ECKHORN-Neuron als grundlegenden Baustein verwendet [FHJS99, HFSW97,
WHR99]. Wie experimentelle Untersuchungen zeigen, ist allerdings das ECKHORN-
Neuron für die geforderte Umsetzung nicht ausreichend. Erst eine Modifikation
durch Verbesserung des Spike-Decoders kann die numerischen Probleme der Di-
gitalrealisierung mit Erfolg beheben.

4.1 Modellneuron von ECKHORN

Die ECKHORN-Neuronen besitzen Dendriten für verschiedene dendritische Po-
tentiale. Für die vorliegende Modellierung in Abb. 4.1 werden nur zwei Den-
dritenbäume ( ��� �

und ��� ) berücksichtigt. Einer dieser beiden Dendritenbäume
sorgt für einen exzitatorischen ( ��� �

) und der andere für einen inhibitorischen
Einfluß ( ��� ) auf das Membranpotential (

� � ), wobei die Dendritenpotentiale
über sogenannte Leckintegratoren akkumuliert werden. Für die Aussendung einer
Pulsfolge (Spikes) wird das Membranpotential des Neurons in eine rückgekop-
pelte Verarbeitungsstufe mit einer dynamischen Schwelle ( � � ) geführt, die als
Spike-Encoder bezeichnet wird und sehr ähnlich zu der Struktur von FRENCH

und STEIN ist [FS70]. Dieses weit verbreitete Modell Neuron wird für die Si-
mulation pulscodierter Mechanismen eingesetzt und wurde bereits auf spezieller
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Neurohardware implementiert [FHJS99, HFSW97, WHR99]. Aus diesem Grund
soll es auch hier Anwendung finden und etwas detaillierter diskutiert werden.
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Abbildung 4.1: Das ECKHORN-Modellneuron. Der Spike-Decoder (links) und
Spike-Encoder (rechts) sind farbig hinterlegt.

In der Abb. 4.1 sind die beiden wesentlichen Komponenten des Modell Neurons
gekennzeichnet: der Spike-Encoder (rechts) und der Spike-Decoder (links). Der
Spike-Encoder eines Neurons � (an der Position

0 �
) erzeugt ein Zeitsignal, die

sogenannte Pulsfolge oder Spikes, so daß die Frequenz dieser Spikes das (mehr
oder weniger stationäre) Membranpotential

� � bzw. die Erregung des Neurons
codiert. So wird das ortsdiskrete Signal � � ')� in ein (Puls-) Signal � � �(' H � � des
Ortes und der Zeit umgesetzt, was in Abb. 4.2 (links) schematisch dargestellt ist.
Diese Operation kann auch als Raten-Puls-Umsetzung bezeichnet werden. Der
Spike-Decoder in Abb. 4.2 (rechts) hat die entgegengesetzte Aufgabe, die Rück-
gewinnung der Erregung eines Vorgängerneurons zu rekonstruieren. Dazu wer-
den die eintreffenden Spikes derart integriert, daß das Ausgangssignal des Spike-
Decoders mit 
� �(')� � � � � ��

� � � � �(' H � � 	 � � ')� (4.1)

gegen den Mittelwert der Pulsfolge konvergiert, da dieser die gewünschte codier-
te Information bereithält. Im ECKHORN-Neuron ist dieser Decoder durch einen
sogenannten Leckintegrator realisiert, was ein rekursives Tiefpaßfilter erste Ord-
nung darstellt. Durch die zugehörige Differenzengleichung

� ���)����� � � ��� � ��� N � � C � � � ��� � ��� N � �
(4.2)
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Abbildung 4.2: Prinzipielle Funktionsweise eines Spike-Encoders (links) und ei-
nes Spike-Decoders (rechts).

kann auf die z-Übertragungsfunktion

� � ��� � �i��� � � � ��� � � �
� N � � � ��� � � � (4.3)

geschlossen werden, wobei die Zeitkonstanten der exzitatorischen und inhibitori-
schen Eingänge gleich gewählt werden sollen ( ����� �

�
�! "�

�
� ).

Um eine sichere Codierung und Decodierung zu gewährleisten, sind einige Para-
meter zu dimensionieren. Dazu muß zunächst eine passende Einstellung für den
Spike-Encoder gefunden werden, welcher die Aktivität der Ganglienzellen auf
eine möglichst lineare Weise in eine Pulsfolge passender Pulsfrequenz umsetzt.
Die Parameter der dynamischen Schwelle ( � � ) sind die Zeitkonstante ��# � des
Leckintegrators, das Inkrement � � � und der Offset � � off der Schwelle. Wie Un-
tersuchungen zeigen, führt ein � # � � � E

in Kombination mit � � � � � � auf eine
nahezu lineare Umsetzung der Ganglienaktivität in eine Pulsfrequenz. Sehr gerin-
ge Aktivitäten werden mit � � off

� "
unterdrückt. In einem weiteren Schritt sind

die Leckintegratoren für das dendritische Potential der simplen Zellen passend zu
dimensionieren. Diese dendritischen Potentiale müssen gegen die selben Werte
wie die codierten Ganglienaktivitäten konvergieren, die durch die Frequenzen der
eintreffenden Pulsfolgen repräsentiert werden. Wie sich gezeigt hat, ist mit einer
Zeitkonstanten �

� ��� � �
der Integrationseffekt ausreichend. Die gesamte Codie-

rung und Decodierung kann auf diese Weise recht genau linear realisiert werden,
was in Abb. 4.3 illustriert ist.
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Abbildung 4.3: links: Rekonstruktion der Ganglienaktivität (
� 	�	�	 E
� �

) aus den
Pulssignalen mit dem Leckintegrator nach ECKHORN. rechts: Lineare Codierung
der Ganglienaktivität über die Spikefrequenz (– gewünscht, � erzielt).

4.2 Erweiterung des linearen Modells

Für die Implementierung mit ECKHORN-Neuronen muß das bestehende in Ka-
pitel 3 entwickelte Modell für eine pulscodierte Informationsverarbeitung erwei-
tert werden. Dazu muß zunächst berücksichtigt werden, daß Pulse oder Spikes
in einem pulscodierten neuronalen Netzwerk zeitdiskrete Ereignisse ohne Vor-
zeichen und Amplitudenwerte sind. Das Ausgangssignal der Ganglienzellen und
simplen Zellen (und auch Zellen anderer kortikaler Areale) in einer ratencodierten
Beschreibung nehmen jedoch i. allg. durchaus sowohl positive als auch negative
Werte an, z.B. im Bereich von -255 bis 255. Dies führt auf die Notwendigkeit, das
bisherige Modell schrittweise zu erweitern. Der Einfachheit wegen beschränken
wir uns im folgenden auf die für die vorliegende Arbeit interessierende Neuro-
nenschicht der simplen Zellen, was in Abb. 4.4 schematisch für einen Typ simpler
Zellen dargestellt ist. Das Ziel ist die Umsetzung der Antworten der Ganglien-PSfrag replacements
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Abbildung 4.4: Die pulscodierten Gangliensignale werden über den optischen
Nerv übertragen und konvergieren auf die simplen Zellen (hier ist nur ein Typ
simpler Zellen dargestellt).

zellen und simplen Zellen in Pulsfolgen. Für diesen Zweck müssen sowohl die
positiven als auch die negativen Anteile der Antworten separat in zwei Schichten
aufgebaut werden. Generell kann aber jedes Signal � gemäß

� � � � N � � H � � P � 
 �
(4.4)
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in zwei positivwertige Anteile

� �
� � ��� � � � und � � � N � ��� � N � � (4.5)

aufgeteilt werden. Dabei sei

� � � � � � � H � 
 �
� H � � � (4.6)

die Sprungfunktion. Diese Transformation wird in Abb. 4.5 (oben) für die Gan-
glienzellen und in Abb. 4.5 (unten) für die simplen Zellen eingesetzt. Da die ver-
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Abbildung 4.5: Repräsentation des positiven und negativen Anteils der Zellant-
worten in zwei Schritten für die Ganglienzellen (oben) und den simplen Zellen
(unten).

wendeten Signale nun positiv sind, können sie mit Hilfe der bereits beschriebenen
Spike-Encoder in Pulsfolgen codiert werden. Die Rekonstruktion der Membran-
potentiale wird durch Spike-Decoder an einer geeigneten Stelle im Signalfluß-
graph nach der Verschaltung

� 
�� P � zur örtlichen Filterung durchgeführt. Diese
Anpassung ist in Abb. 4.6 (oben) gezeigt. Abschließend ist mit der Hilfe von
Abb. 4.1 ersichtlich, daß der resultierende Graph zwei bekannte Strukturen bein-
haltet (die obere ist zur Verdeutlichung gekennzeichnet), die durch ECKHORN-
Neuronen substituiert werden können, was in Abb. 4.6 (unten) gezeigt ist. Für die
simplen Zellen, welche den positiven Anteil repräsentieren, werden die positiven
Antworten der Ganglienzellen mit dem exzitatorischen Eingang des ECKHORN-
Modells über die Verbindungsgewichte

� 
 � P � verbunden. Die negativen Antwor-
ten der Ganglienzellen gelangen zu dem inhibitorischen Eingang. Die negativen
simplen Zellen werden entsprechend auf komplementäre Weise verschaltet.
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Abbildung 4.6: oben: Realisierung eines linearen Übertragungssystems für eine
pulscodierte Verarbeitung. unten: Implementierung mit ECKHORN-Neuronen.

Zusammengefaßt ist festzuhalten, daß theoretisch jedes lineare System auf die
beschriebene Vorgehensweise mit pulscodierten Mechanismen realisiert werden
kann ohne die lineare örtliche Filtercharakteristik zu verlieren. Im folgenden Ab-
schnitt wird allerdings gezeigt, daß die Qualität der resultierenden Filtercharakte-
ristik stark von der Qualität der implementierten Spike-Decoder abhängt.

4.3 Experimentelle Ergebnisse einer Neurocompu-
terimplementierung

Die in der Arbeitsgruppe HARTMANN entwickelte Neurocomputerarchitektur SPIKE
dient der schnellen Simulation großer pulscodierter neuronaler Netze. Eine Imple-
mentation ist das SPIKE128K System [FHJS99, HFSW97], welches eine schnelle
Simulation von Netzstrukturen erlaubt, die bis zu 131072 Neuronen und 16 Mil-
lionen Verbindungen beinhalten dürfen. In diesem Kontext bedeutet Echtzeit eine
Ausführdauer von 1 ms für einen Simulationszeitpunkt (Timeslot). Der ParSPI-
KE Entwurf erweitert die Architektur durch einen parallelen Ansatz auf Netz-
werke bis zu einer Million Neuronen. Dieser wurde allerdings noch nicht als
Hardware realisiert, liegt aber als Softwaresimulation vor, die eine Abschätzung
der Leistungsfähigkeit erlaubt [WHR99]. In beiden Systemen werden die Neu-
ronen durch die Werte ihrer dendritischen Potentiale und der aktuellen dynami-
schen Schwelle repräsentiert. Diese Zustände können in einem Speicherbereich
organisiert werden, wobei der Zugriff auf diesen über eine spezielle Neuronen-
adresse für jedes Neuron erfolgt. Der Simulationsalgorithmus arbeitet dann auf
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diesem Neuronenspeicher und muß diesen, falls erforderlich, für jeden Zeitpunkt
aktualisieren. In Netzwerken für die Verarbeitung visueller Daten sind meist nur
wenige Neuronen, die bestimmte Merkmale einer Szene beschreiben, in der Infor-
mationsverarbeitung involviert. Der Zustand der übrigen Neuronen wird dement-
sprechend in der Simulation nicht durch erregende Spikes verändert. Dies führt
direkt auf einen ereignisgesteuerten Simulationszyklus, der nur die aktiven Neu-
ronen berechnet. Dieser Algorithmus kann auf Hardware, wie dem SPIKE128K
implementiert oder aber auch als Softwaresimulation einer parallelen DSP Ar-
chitektur, dem ParSPIKE simuliert ausgeführt werden. Für die parallele Imple-
mentation verteilen sich die Neuronen auf viele DSPs, indem deren Zustände auf
den Speicherbereichen dieser Prozessoren untergebracht werden. ParSPIKE ba-
siert auf SHARC Prozessoren von Analog Devices mit großem On-Chip Speicher.
Das System stellt zwei DSP Boards zur Verfügung. Ein Typ ist auf Vorverarbei-
tungsaufgaben spezialisiert und berechnet die Neuronenzustände durch Verbin-
dungsmasken auf jedem Chip. Für die Kommunikation zwischen den parallelen
DSPs ist nur der Austausch von sogenannten Spikelisten notwendig. Diese sog.
(RC) Boards für reguläre Verknüpfungsmasken (rc=regular connections) eignen
sich sehr für das vorgestellte Netzwerk der frühen visuellen Verarbeitung (siehe
Abb. 4.7).

Abbildung 4.7: ParSPIKE Neurocomputer Architektur für PCNN. links: RC VME
Board Implementation mit 32 DSPs (zweiseitig). rechts: Testboard für die Analyse
der Leistungsfähigkeit.

Das Vorverarbeitungsnetzwerkes wurde im Rahmen dieser Arbeit als Software-
simulation des ParSPIKE implementiert. Das entwickelte Konzept besteht zu-
nächst aus 2 Schichten Ganglienzellen, um die positiven und negativen Antei-
le als Pulsfolgen zu codieren. Darüber hinaus werden 2 Typen simpler Zellen
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(mit geradem und ungeradem rezeptiven Feld) für 6 verschiedene Orientierun-
gen (

� � H � � � H 	�	�	 H � � � �
) berücksichtigt, ebenfalls als Pulsfolge der positiven und

negativen Anteile. Das führt insgesamt auf 24 Schichten simpler Zellen und 2
Schichten Ganglienzellen. Das ParSPIKE RC Board stellt 32 DSPs für die Simu-
lation zur Verfügung. Es bietet sich daher an, für jede der 24 kortikalen Schich-
ten einen DSP zu verwenden. Darüber hinaus kann über den VME Bus auf den
On-Chip Speicher zugegriffen werden, um die Eingangsreize einzuspeisen. Diese
Eingangsbilddaten können partitioniert und mit einer entsprechenden Überlap-
pung auf die restlichen 8 DSPs für die Vorverarbeitung verteilt werden. So könnte
die Umrechnung auf das hexagonale Abtastraster und die retinale Vorfilterung
gemäß der rezeptiven Felder der Ganglienzellen auf einem Achtel des Bildes par-
allel ausgeführt werden. Letztlich werden die positiven und negativen Pulsströ-
me der Ganglienzellen generiert. Durch das hexagonale Abtastraster werden die
Eingangsbilddaten durch

� " � � � (
� � � � � � �

) simple Neuronen in jeder Schicht
verarbeitet. Das gesamte Netzwerk umfaßt

� ��� � ��� Neuronen inklusive der Gan-
glienzellen und könnte demnach auf einem ParSPIKE RC VME Board simuliert
werden. Hierbei verwenden die simplen Zellen die selbe Spike-Encoder Struktur
wie die Ganglienzellen.

4.4 Modifikation des ECKHORN-Modellneurons

Die SPIKE Architektur weißt, wie jede Digitalrechnerimplementation, gewisse
Einschränkungen auf. So werden intern alle Berechnungen durch eine Fixed Point
Arithmetik ausgeführt. Die Neuronengewichte

� 
 � P � sind als s3.5 Variablen (si-
gned, 3 Bit + 5 Bit) und die dendritischen Potentiale ( � � / ��� ) als s9.5 Variablen
quantisiert. Die Potentiale stellen dabei genau genommen die Zustandsvariablen
der Leckintegratoren dar, welche Digitalfilter vom Grad eins sind. Wie die Un-
tersuchungen anhand der Softwaresimulation zeigen, führen diese Restriktionen
seitens der Hardware nicht auf die erwarteten Resultate. Stark quantisierte Verbin-
dungsgewichte auf der einen Hand führen zu örtlichen Filtercharakteristiken, die
vom Entwurf in Kapitel 3 abweichen. Entweder Gewichte mit höherer Auflösung
oder ein spezieller Filterentwurf mittels diskreter Optimierung der Koeffizienten
könnten bessere Resultate ergeben. Trotz dieser Verbesserungen würden die Ein-
schränkungen des Leckintegrators dennoch nicht die gewünschten Signale oder
gar Probleme mit der Konvergenz verursachen. Dieser Sachverhalt ist in Abb. 4.8
verdeutlicht, in der das Ausgangssignal des Leckintegrators als Spike-Decoder
beim ECKHORN-Neuron dargestellt ist. Die Verknüpfung gewichteter Signale die-
ser Qualität führen offensichtlich nicht auf die gewünschte Filtercharakteristik, da
die Ungenauigkeiten dadurch noch verstärkt werden.
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Abbildung 4.8: Integrationsleistung des Spike-Decoders beim ECKHORN-
Neuron.

Da die Pulsströme, als Eingangssignale der Leckintegratoren, recht viel Energie
auch bei hohen Frequenzen aufweisen, sind sie sicher als „schwierige“ Signale
insbesondere für Tiefpaßfilter mit den genannten Restriktionen aufzufassen. Eine
Kombination der quantisierten Zustandsvariablen mit den Nachteilen des Leckin-
tegrators vom Grad eins führen auf entsprechend große numerische Ungenauig-
keiten. Diese Fehler machen sich entweder durch stark oszillierende Anteile oder
sogar durch Konvergenzprobleme des Filteralgorithmus bemerkbar. Diese Ergeb-
nisse zeigen, daß eine Verbesserung des verwendeten Spike-Decoders notwendig
ist, was in Abb. 4.9 angedeutet ist.
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Abbildung 4.9: Modifikation des ECKHORN-Neurons. Der Leckintegrator wird
durch ein „wohl entworfenes“ Tiefpaßfilter ersetzt.

Als verbesserter Spike-Decoder wird hier ein passend entworfenes Tiefpaßfilter
vom Grad zwei vorgeschlagen. Es sollten zudem weitere positive Eigenschaften
erfüllt werden. Dazu zählt zum einen eine große Dämpfung bei hohen Frequen-
zen, um die Oszillationen ausreichend zu unterdrücken. Eine kurze Einschwing-
zeit des Filters sollte zudem ebenfalls realisiert werden, um die Simulationsdauer
zu verkürzen. Um auf der Neurohardware SPIKE überhaupt simuliert werden zu
können, muß der Filteralgorithmus schließlich in eine Stimulations- und Abkling-
phase separierbar sein [WHR99, Wol01], was am Beispiel des Leckintegrators
kurz erläutert werden soll. Bei dieser ereignisgesteuerten Signalverarbeitung wer-
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den zunächst in einer ersten Phase alle Spikes gesammelt und die betroffenen
Zielneuronen durch die eintreffenden Spikes erregt, d.h. ihre Zustandsspeicher

�
�

werden entsprechend modifiziert. Im Zustandsmodell aller Leckintegratoren wird
dieser Schritt als

�
�
��� C � ��� � ���:�GC � ���:�MH (4.7)

berechnet, wobei � die gewichtete Summe aller eintreffenden Spikes, also das
Eingangssignal, und � das Membranpotential bzw. das Ausgangssignal des Sy-
stems im vorherigen Zeitschritt sind. Erst dann werden in einer zweiten Phase,
der Abklingphase, die Ausgangswerte der Spike-Decoder, also die Potentiale al-
ler Neuronen mit

� ��� C � ��� � � � ��� � �
�
���*C � �

(4.8)

berechnet. Vergleiche dazu auch (4.2). Auf diese Weise ist eine parallele Abarbei-
tung der Daten möglich.

In Abb. 4.10 ist das Verhalten des Leckintegrators und zweier Tiefpaßentwürfe
auf hochfrequente Pulsfolgen gezeigt. Das Spektrum der Pulsfolge (Impulskamm)
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Abbildung 4.10: links: Das Einschwingverhalten verschiedener Spike-Decoder
auf hochfrequente Pulsfolgen bei der Decodierung. rechts: Das Spektrum der
Pulsfolge und die zugehörigen Übertragungsfunktionen im Frequenzbereich.

und die Übertragungsfunktionen in Abb. 4.10 (rechts) erklären die verbleibenden
Oszillationen bei dem Leckintegrator und dem Chebyshev-Entwurf: die Dämp-
fung bei hohen Frequenzen reicht hier offensichtlich nicht aus. Eine Kaskadie-
rung zweier Leckintegratoren könnte zwar ein Filter vom Grad zwei mit ausrei-
chend hoher Dämpfung ergeben. Allerdings würde sich damit die Einschwing-
zeit noch weiter vergrößern. Bei dem Chebyshev Filter ergibt sich die selbe Pro-
blematik, wenn die geforderte Sperrdämpfung erhöht wird, da dieser Filtertyp
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eher für andere Aufgabenstellungen geeignet ist. Einen Ausweg bietet hier jedoch
ein Butterworth-Filter (Potenztiefpaß) vom Grad zwei, welches eine kurze Ein-
schwingzeit bei offensichtlich ausreichender Dämpfung liefert. Darüber hinaus
läßt sich mit einem modifizierten Butterworth-Entwurf1 eine Wellendigitalstruk-
tur nach GRAY & MARKEL (siehe [Zal91, GM73]) entwickeln, mit der auch eine
Separation in Erregungs- und Abklingphase für den Neurocomputeralgorithmus
durchgeführt werden kann. Dies kann erreicht werden, wenn nur der Zählerko-
effizient � � der z-Übertragungsfunktion (2.37) von Null verschieden ist und für
die übrigen Koeffizienten � ��P � � �

gilt. Das Membranpotential eines Neurons
ist in diesem Fall (wie bei der Struktur des Leckintegrators) bis auf einen Faktor
eine Zustandsvariable des Filters, auf welchen in der Erregungsphase direkt die
Eingangsspikes wirken. Dies ist von Vorteil, da diese spezielle Filterstruktur eine
numerische Stabilität trotz starker Quantisierungseinschränkungen gewährleistet
[Fet86, Gaz85]. Ob diese Filterstruktur, welche aus einer Kette von Leitungsele-
menten abgeleitet werden kann [Zal91], biologisch plausibler ist als der Leckin-
tegrator muß an dieser Stelle allerdings offen bleiben.

Die resultierenden Verbesserungen in Abb. 4.11 (rechts) sprechen für sich: ho-
he Frequenzen werden effektiv unterdrückt und der stationäre Zustand wird in
etwa der halben Simulationszeit erreicht, verglichen mit dem Leckintegrator in
Abb. 4.11 (links).
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Abbildung 4.11: Integration einer Pulsfolge mittels des Spike-Decoders beim
ECKHORN-Neuron (links) und die Leistungsfähigkeit des verbesserten Spike-
Decoders (rechts).

In Abb. 4.12 sind abschließend einige Simulationsergebnisse gezeigt. Dazu wurde
zunächst ein Bild als Eingangsreiz dem Netzwerk präsentiert und in den verschie-
denen Zellschichten verarbeitet. Der Übersichtlichkeit wegen sind hier nur die
Antworten der (geraden) simplen Zellen mit einer Orientierung von

� E � �
abgebil-

1unter Verwendung einer reellen charakteristischen Funktion � e�� h����

�� e 
	�
� h 
 mit � je�� � 
�h � e�����
�h als äquivalente komplexe Frequenz
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det. Um das Übertragungsverhalten des Netzwerkes beurteilen zu können, wurde
zudem ein Impuls als Stimulus verwendet (rechte Spalte). Die daraus resultie-
renden Impulsantworten der simplen Zellen im Vergleich zu den gewünschten
Antworten des linearen Modells geben Aufschluß über die erreichte Qualität der
gesamten Simulation.
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Abbildung 4.12: Simulation des Netzwerkes auf der ParSPIKE Architektur.
links/mitte: Ergebnis bei einem Bild als Eingangsstimulus. rechts: Antwort der
simplen Zellen bei einem pulsförmigen Reiz (Impulsantwort) und Vergleich mit
dem gewünschten Verhalten.

Die Geschwindigkeit der Simulation hängt stark von der parallelen Lastverteilung
ab. In dem Simulationsbeispiel ist die Auslastung des am stärksten beanspruchten
Prozessors nur etwa 4



größer als die durchschnittliche Belastung, was eine sehr

gute Lastverteilung bedeutet. Die Messungen zur Lastverteilung entstanden durch
Simulationen auf einer Sun Ultra60 Workstation. In Kombination mit Ergebnissen
einer DSP Implementation mittels eines Testboards von Analog Devices konnten
recht genaue Schätzungen für die Simulationsgeschwindigkeit gegeben werden
[TWH00, Thi00, Wol01]. So benötigt die Simulation auf einem Prozessor der
Sun Ultra60 etwa

� � � � ms für einen Zeittakt. Das ParSPIKE RC VME Board
hingegen, könnte diesen voraussichtlich in nur

� � ms berechnen, was eine beein-
druckende Beschleunigung der Simulationsgeschwindigkeit um den Faktor 	

� �

bedeutet.

In diesem Kapitel wurde eine Strategie zur Erweiterung linearer ortsdiskreter
Übertragungssysteme für eine pulscodierte Verarbeitung auf der Basis des be-
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kannten ECKHORN-Neurons entwickelt. Die Zielsetzung dieses Modellneurons,
die Realisierung der Synchronisationseffekte, ist allerdings nicht Gegenstand die-
ser Arbeit und wurde daher nicht weiter betrachtet. Trotz des komplizierten und
auf den ersten Blick nichtlinearen Verhaltens der pulscodierenden Strukturen kann
dennoch eine lineare örtliche Filtercharakteristik realisiert werden. Damit genügt
es, die Filterkoeffizienten des linearen Filtermodells ohne irgendeine Pulscodie-
rung zu ermitteln, was den Entwurf (linearer) pulscodierter neuronaler Netze we-
sentlich vereinfacht. In diesem Rahmen wurde ein großes neuronales Netzwerk,
welches einige wesentliche, für die Bildverarbeitung interessante Funktionen bio-
logischer Sehsysteme modelliert, mit Erfolg auf einer Spezialhardware Archi-
tektur ParSPIKE implementiert. Auf diese Weise steht nun eine gaborähnliche
Konturextraktion auf hexagonalem Abtastraster für ein pulscodiertes Bildverar-
beitungsnetzwerk zur Verfügung. Aufgrund der Quantisierungseffekte der digi-
talen Umsetzung und einiger Einschränkungen der verwendeten Hardwareimple-
mentation wichen die Antworten stark von den idealen GABOR Antworten ab.
Diese numerischen Probleme konnten jedoch durch einen neuen Entwurf des
Spike-Decoders effektiv minimiert werden, welcher auf diese Weise das bekann-
te ECKHORN- Modellneuron für die hier dargelegte Aufgabenstellung wesentlich
verbessert. Die Simulationsergebnisse zeigen das gewünschte GABOR Verhalten
und liefern eine Schätzung für die Simulationsgeschwindigkeit der verwendeten
Spezialhardware.



KAPITEL 5

Adaption bei variierenden
Beleuchtungsbedingungen

Variierende Beleuchtungsbedingungen sind stets eine Problematik, wenn reale
Bildszenen auf Digitalrechnern verarbeitet werden. Insbesondere Rauschprozes-
se, die mit der Bildgebung selbst einhergehen, z. B. Ausleserauschen der CCD-
Elektronik oder das Photonenrauschen, können zu falschen Verarbeitungsresulta-
ten bis hin zu unbrauchbaren Leistungen der Objekterkennung führen. Das Sehsy-
stem des Menschen zeigt hingegen die vorteilhafte Fähigkeit, sich an Veränderun-
gen in der wahrzunehmenden Szene, wie z.B. sich verändernde Lichtverhältnisse,
anzupassen.

In diesem Kapitel wird eine biologisch motivierte Vorverarbeitung für eine effek-
tive Rauschminderung in dunklen und daher stark verrauschten Bilddaten vorge-
stellt [TEDH02, Thi01]. Auf diese Weise sollen insbesondere Konturmerkmale
robust extrahiert werden, um Mustererkennungsaufgaben auch in extremen Situa-
tionen durchführen zu können. Nach einer kurzen Einführung in die Problema-
tik der adaptiven Rauschunterdrückung wird auf die Entstehung des Rauschens
bei bildgebenden Verfahren selbst eingegangen. Die Analyse und Entwicklung
eines neuartigen Adaptionskonzeptes zur Rauschunterdrückung bildet hier einen
Schwerpunkt der Untersuchungen. Daraufhin wird ausführlich die Erweiterung
des in Kapitel 3 entwickelten Modells behandelt, um das adaptive Verhalten bis
hin zur Extraktion orientierter Konturmerkmale zu leisten.

5.1 Verfahren zur Rauschunterdrückung

Die Detektion von Kanten oder Linien in Kamerabildern ist ein wichtiges Mit-
tel zur Interpretation einer Szene sowohl im menschlichen Sehsystem als auch in
technischen Systemen. Üblicherweise werden in vielen Anwendungen dazu Gra-

93
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dientenfilter eingesetzt, welche jedoch bekannterweise recht störempfindlich auf
Rauschen in Kamerabildern reagieren. In Abb. 5.1 ist dazu ein einfaches Beispiel
einer realen verrauschten Szene dargestellt, in der eine Kantendetektion durchge-
führt wird. Ist die Szene sehr schwach beleuchtet, so führt eine Kantendetektion
in der Regel auf unbrauchbare Ergebnisse. Eine Objekterkennung ist mit diesen
Daten nicht möglich. Da es sich bei Rauschprozessen meist um hochfrequente
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Abbildung 5.1: Kantendetektion in dunklen verrauschten Szenen. oben: Bei ge-
dämpftem Licht mit niedrigem SNR kann noch ein brauchbares Kantenbild er-
zeugt werden. unten: Die dunkle Szene mit sehr niedrigem SNR führt zu einem
stark verrauschten und damit unbrauchbaren Kantenbild.

Störungen handelt, die durch eine Gradientenbildung verstärkt werden, bringt
eine vorherige Tiefpaßfilterung zur Unterdrückung des Rauschens in den mei-
sten Fällen bessere Ergebnisse. Die Schwierigkeit liegt allerdings in der Wahl
der Filterparameter, da eine zu starke Filterung auch mehr Details der Szene
selbst unterdrückt. In der Bildverarbeitung hat sich die Klasse der sogenannten
Gaußableitungsfilter (gaussian derivatives) in diversen Formen und Implemen-
tationen etabliert, bei der im wesentlichen ein Gaußtiefpaßfilter mit einem Gra-
dientenoperator kombiniert wird. Viele weitere Details zu diesem Thema sind in
[MH80, SM87, Der93, vVYV98] nachzulesen. Abgesehen davon, ob diese Imple-
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mentierungen einen adaptiven Einsatz ermöglichen oder nicht, beschränken sich
die Arbeiten bislang meist auf konkrete Skalierungen bzw. Auflösungspyramiden.
Eine Adaption der Vorfilterung auf die Stärke des Rauschens in den Bildern bleibt
meist aus.

Das klassische WIENER-Filter [Lim90] hingegen ist ursprünglich ein Ansatz zur
Schätzung eines Signals in einer gestörten Beobachtung und diente als Basis
für eine Vielzahl von Anwendungen in der Sprach- und Bildverarbeitung. Da
es ein linearer Schätzer ist, welcher einen mittleren quadratischen Fehler zwi-
schen dem zu rekonstruierenden Signal und der Schätzung verwendet, fällt es in
die Klasse der linear minimum mean square error estimator. Bei gaußverteilten
Prozessen handelt es sich sogar um den optimalen Schätzer. Die Übertragungs-
funktion des WIENER-Filters zur Reduzierung von additivem Rauschen in Bildsi-
gnalen verwendet dabei Annahmen über die Leistungsdichtespektren des Signals
bzw. der Störung. Da es sich um ein ortsinvariantes Filter handelt, werden Un-
terschiede in den einzelnen Bildbereichen wie helle und dunkle bzw. texturlose
und strukturreiche Bereiche nicht berücksichtigt. Es wird überall die selbe Fil-
terstärke verwendet. Hier etablierte sich das adaptive WIENER-Filter nach LEE

[Lim90, KZ96, Lee80, Mat]. Dieses Verfahren verwendet einfache statistische
Merkmale (Mittelwert und Varianz), um in einer lokalen Umgebung jedes Pixels
eine Filterung durchzuführen. Dabei wird eine gewichtete Summe des Eingangs-
signals und des geschätzten Mittelwertes gebildet mit dem Ziel, in Regionen mit
hoher Varianz eine geringe Filterwirkung zu verwenden, da dort Kanten vermutet
werden. Nachteil hierbei ist, daß die Rauschleistung bekannt oder eine Annahme
darüber vorhanden sein muß. Ist diese Annahme nicht korrekt, so hat das Verfah-
ren allerdings den Effekt, daß bei Regionen hoher durch Rauschen verursachter
Varianz - obwohl dort keine Kanten vorliegen - ebenfalls eine zu geringe Filter-
stärke eingesetzt wird. Darüber hinaus setzt diese Methode voraus, daß es sich um
unkorreliertes Rauschen handelt, was bei der Bildaufnahme aber nicht gegeben
sein muß. Als ein in der Bildverarbeitung etabliertes Verfahren wird es später als
Referenz herangezogen, um einen Vergleich mit dem hier entwickelten Verfahren
zu ermöglichen.

Das Verfahren zur Glättung in einer selektierten Nachbarschaft ist ebenfalls ein
lokal arbeitendes Verfahren [KZ96, NM79, WW88] zur Rauschunterdrückung.
Hier werden Nachbarn des aktuellen Grauwertes dahingehend untersucht, ob sie
zu der selben Region gehören wie der aktuelle Grauwert, um die Gewichtungen
der Nachbarn für den Glättungsprozeß abzuleiten. Die Schwierigkeit ist dabei, ei-
ne Schwelle für die Zugehörigkeit zu einer Region festzulegen. Wie bei allen Seg-
mentierungsverfahren kann diese Vorgehensweise beliebig aufwendig sein. Der
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Vollständigkeit halber sei hier auch der Ansatz mittels MARKOV Random Fields
in [PK00] zur Rauschunterdrückung genannt.

Ein Vorzug des biologischen Sehsystems ist die automatische Anpassung der
Modell- bzw. Filterparameter an Veränderungen der Beleuchtungssituation und
daher auch an die Rauschstärke, um eine robuste Merkmalsextraktion oder Ob-
jekterkennung zu gewährleisten. Üblicherweise ist die wahrgenommene Szene mit
Rauschen überlagert, welches in den lichtempfindlichen Sensorelementen und der
Ausleseelektronik entsteht, und zu einer Verschlechterung des Signal-zu-Rausch-
verhältnisses (SNR) führt. Besonders in dunklen Szenen kann die Rauschleistung
bereits in der Größenordnung der Signalleistung liegen. Am biologischen Vorbild
allerdings wurde gezeigt, daß die rezeptiven Felder der retinalen Photorezeptoren
mit der Verdunkelung einer Szene anwachsen [Hub88, SL96a]. Dieses Verhalten
führt offensichtlich zwar zu einer Abnahme der Auflösung, durch die Mittelung
über die eigentliche Signalinformation der Szene und zugleich des Rauschprozes-
ses über ein größeres rezeptives Feld kann jedoch vor allem das Rauschen weiter
unterdrückt werden. Zusätzlich wird bei dunklerer Szene aber auch die Öffnung
der Iris geweitet, um mehr Licht zu sammeln, was ebenfalls zu einer Verringe-
rung der Ortsauflösung des retinalen Intensitätssignals führt. Diese Beziehung ist
in Abb. 3.3 zu erkennen, so daß hier die Komponenten des biologischen Systems
aufeinander abgestimmt zu sein scheinen. Eine automatische Blende in einer Ka-
mera agiert auf ähnliche Weise.

Die beschriebene Vorfilterung durch die Photorezeptoren kann wie in Kapitel 3
erwähnt als Gaußtiefpaßfilter modelliert werden [SL96a, TH00, TWH00, Thi00].
Um der Verschlechterung des SNR in dunklen Szenen entgegenzuwirken, wird
die Größe der rezeptiven Felder bzw. die Koeffizienten dieses Gaußfilters adap-
tiv zur (lokalen) Helligkeit in der Szene verändert. Auf diese Weise versucht das
System einen Kompromiß zwischen Auflösung und robuster Kantendetektion zu
erreichen. Obwohl dieser adaptive biologische Mechanismus in einigen Arbeiten
erwähnt ist [SL96a, BC92], sind weitere Untersuchungen und technische Imple-
mentationen bislang nicht bekannt. Im weiteren wird zunächst der theoretische
Zusammenhang zwischen adaptiver Vorfilterung und dem Signal-zu-Rauschver-
hältnis näher betrachtet, um einen Algorithmus zu entwickeln, der das SNR ver-
bessern oder gar auf einem bestimmten Niveau halten kann [TEDH02, Thi01].
Dabei soll bewußt zunächst aus der Sicht eines technischen Bildverarbeitungs-
systems das Signal-zu-Rauschverhältnis als objektives Beurteilungskriterium her-
angezogen werden. Anschließend wird die wichtige Erweiterung des Modells aus
Kapitel 3 behandelt, um die Frage zu klären, wie das biologische Vorbild die ad-
aptiven Mechanismen in einem Gesamtsystem zu realisieren vermag.
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5.2 Rauschprozesse bei der Bildakquisition

Für die Entwicklung eines geeigneten Algorithmus zur Rauschunterdrückung ist
es wichtig, die diversen Quellen des Rauschens in einem bildgebenden System zu
betrachten. Bei der Bildaufnahme mit einer CCD-Kamera bilden sich durch ein-
fallende Photonen Ladungspakete in den photoempfindlichen Zellen, die durch
serielles Auslesen in einen Datenstrom umgesetzt werden. Hierbei werden dem
eigentlichen Informationsgehalt der betrachteten Szene eine Reihe von Störgrö-
ßen während des bildgebenden Prozesses überlagert, welche i. allg. stochasti-
scher Natur sind, aber auch durchaus systematische Komponenten beinhalten kön-
nen [BC92, Kam]. Bei guten Beleuchtungssituationen fallen diese Rauschanteile
i.allg. nicht auf. Nimmt die Helligkeit der Szene aber ab, so ist bereits bei Innen-
aufnahmen ohne künstliche Beleuchtung (bei TV-Reportagen zu beobachten) ein
gewisses Rauschen wahrnehmbar. Mit der Dunkelheit der Szene wird dieser Ef-
fekt immer stärker. Hier können im wesentlichen drei Rauscharten unterschieden
werden, welche hier nur kurz genannt werden sollen:

� Photonenrauschen (Photon shot noise)
Diese Rauschart wird durch die Quantennatur der Photonen hervorgerufen,
da die Einfallrichtung und die Anzahl der Photonen auf ein lichtempfind-
liches Element während der Belichtung nicht konstant ist, sondern zufällig
variiert.

� Ausleserauschen (Read noise)
In diese Kategorie fallen eine Vielzahl unterschiedlicher Rauschquellen, die
zum einen technischer Natur sein können (wie z. B. das Dunkelstromrau-
schen oder auch thermisches Rauschen), zum anderen aber auch von dem
Design des Sensors oder der Signalverarbeitung abhängen (Rauschen des
Ausgangsverstärkers). Die Art des Rauschens ist vor allem bei niedrigen Si-
gnalpegeln von Bedeutung. So ist bei extrem dunklen Aufnahmen, wie der
Überwachung bei Nacht, oder aber auch bei der Astrofotografie die Rausch-
leistung im Vergleich zur Signalleistung derart hoch, daß die Geräte meist
künstlich gekühlt werden müssen.

� Musterrauschen (Pattern noise)
Durch die individuelle Empfindlichkeit der einzelnen Sensorelemente und
irreguläre Kristallstrukturen ergeben sich signalabhängige (PRNU, Photo-
response Nonuniformity) und signalunabhängige (FPN, Fixed Pattern Noi-
se des Dunkelstromes) örtliche Ungleichmäßigkeiten. Diese systematischen
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Muster können durch Mittelung von Serienaufnahmen gleichmäßiger Hel-
ligkeit oder von Dunkelbildern extrahiert und sichtbar gemacht werden.

In [Kam] ist die Komplexität der Rauschentstehung bei CCD- und Videobildern
im Detail beschrieben. Für die folgenden Analysen dieser Arbeit ist es aber mög-
lich und zweckmäßig, die Überlagerung des eigentlichen gewünschten Bildsi-
gnals mit den verschiedenen Rauscharten in dem vereinfachten Rauschmodell in
Abb. 5.2 zu abstrahieren.PSfrag replacements d��
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Abbildung 5.2: Das verwendete Rauschmodell.

Das Kamerasignal
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ist hierbei eine Summe aus Originalszene � � , welche i. allg. um einen reellen
Faktor

� O � O �
verdunkelt ist, einem unkorrelierten Rauschanteil

" � � und ei-
nem korrelierten Rauschterm � � � 
 � � .

" H�

seien reelle positive Faktoren. Die

weißen Rauschprozesse
� � P � sind unkorreliert ( � ), gaußverteilt, mittelwertfrei

und haben die Varianz eins. Eine detaillierte Analyse des Kamerarauschens ist
in [BC92, Kam] gegeben.
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Das Signal-zu-Rauschverhältnis (SNR, in dB: Signal-zu-Rauschabstand, � � � dB)
des zur Verfügung stehenden Kamerasignals � , hier als SNR � bezeichnet, kann
dann durch

SNR �
� � ��� E � � � � � � ���

E � ��" � � C � 
 � � � � � � 
 (5.3)� � � E � � �� �" �
E � � � � � C � � 
 � E �@� �� � �� � C�E � " 
 E � � � � � � � 
 H (5.4)

berechnet werden und ist neben den Rauschparametern stark abhängig von der
Leistung der Szene bzw. der Beleuchtung � . Mit E � 
 ist der Mittelwertoperator
bzgl. des Ortes abgekürzt. Die reellen Rauschparameter

" H�

sind hierbei nicht

eindeutig für ein bestimmtes SNR, da sie den Beitrag des korrelierten und unkor-
relierten Rauschens zum Gesamtrauschen beschreiben. So ist beispielsweise


K� � � E � � �� 
 N " �
SNR

� � E �@� �� � �� � SNR
für E � � � � � � � 
 	 � 	

(5.5)

Die Abhängigkeit des SNR von der Beleuchtung ist hier von großem Interesse
und muß genauer diskutiert werden. Im allgemeinen verringert (verschlechtert)
sich das SNR, wenn � kleiner wird. Genaugenommen ist das Verhalten von der
Diskriminanten [Bro99]

�
� � E " 
 � � �

E � � � � � E �@� �� � �� � N E � � � � � � � 
 � � H (5.6)

abhängig, welche aber auf Grund der Gleichung von CAUCHY-SCHWARZ nicht
negativ sein kann. Der recht unwahrscheinliche Fall �

� �
besitzt 2 Pole in �

und wird nicht weiter betrachtet. Der wahrscheinlichere Fall � � �
weist keinen

reellen Pol auf und läßt das SNR gegen den Grenzwert

� � �� � � SNR �
� � ��� E �@� �� �
 �

E �@� �� � �� � H (5.7)

konvergieren. Dies geschieht entweder monoton steigend, wenn E � � � � � � ��
 
 �

oder mit einem lokalen Maximum, wenn E � � � � � � � 
 � �
. Die Simulationen

und Messungen an realen Kameradaten haben hier stets einen monotonen Ver-
lauf gezeigt. Dieses Modell wird im weiteren Verlauf auch für die Generierung
der Testbilder mit künstlichem Rauschen verwendet. Ein typischer Verlauf der
Abhängigkeit und die beiden Extremfälle völlig korrelierten (

"�� �
) und unkor-

relierten Rauschens (

K� �

) sind in Abb. 5.3 verdeutlicht.
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Abbildung 5.3: Verschlechterung des SNR bei abnehmender Beleuchtung � für
verschiedene Rauschparameter.

5.3 Adaptive Filterung zur Rauschunterdrückung

In Anlehnung an die Filtercharakteristik der Photorezeptoren in der menschlichen
Retina wird im weiteren ein Gaußtiefpaßfilter mit der Impulsantwort (bzw. dem
rezeptiven Feld)
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(5.8)

und der Übertragungsfunktion
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als erste Stufe einer Prozeßkette angenommen, die, wie in Kapitel 3 beschrieben,
Konturinformationen extrahiert [SL96a, TH00, TWH00, Thi00]. Zur Vereinfa-
chung der Beschreibung aller Zusammenhänge in diesem Kapitel wird hier meist
die Notation für ein technisches Bildverarbeitungssystem unter Verwendung ei-
nes rechtwinkligen Abtastrasters verwendet, so daß

,
und � in Pixelkoordinaten

(statt in
]

m oder csp) angegeben sind und damit auch
, � , � T bzw.

9 � �
gilt. Da dies allerdings die Ergebnisse nicht einschränkt, kann zu jeder Zeit eine
Interpretation im Hinblick auf eine biologische Betrachtung gegeben werden.

Die Adaption im biologischen Sehsystem ist lokal, d. h. die Größe der einzelnen
rezeptiven Felder der Photorezeptoren kann mit dem Ort variieren ( �

�
�
�(')�

). Im
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Rahmen dieser Arbeit liegt der Schwerpunkt allerdings auf der Entwicklung eines
globalen Mechanismus. Das Ziel ist also die Adaption eines örtlich invarianten
Filters mit der Hilfe eines Steuersignals, welches aus dem Eingangsbild gewon-
nen werden kann. Die Untersuchungen haben gezeigt, daß ein globaler Mechanis-
mus ausreicht, um eine adaptive Rauschunterdrückung erfolgreich zu realisieren.
Ein lokal arbeitender Algorithmus erhöht zudem im Hinblick auf eine technische
Nutzbarmachung den Berechnungsaufwand auf sequentiell arbeitenden Digital-
rechnern enorm und soll daher nicht weiter behandelt werden. Allerdings scheint
dieser in der Biologie seine Berechtigung zu besitzen, da die Steuerung der Stär-
ke der Rezeptorkopplung eigentlich nur aus dem lokalen Umfeld eines Rezep-
tors gewonnen werden kann. Ein globales Steuersignal wäre hingegen biologisch
nicht plausibel, was in Abschnitt 5.4 näher erläutert wird. Weitere Untersuchun-
gen und der Vergleich zwischen lokaler und globaler Rauschunterdrückung kön-
nen in [Eis03] nachgelesen werden.

Im biologischen Vorbild variiert die Größe der rezeptiven Felder der Zapfen und
damit der Filterparameter des Gaußfilters in einem Bereich von �

� � 	 �
bis

� E
(Pixel oder cone spacing) für eine Adaption von hellen bis dunklen Szenen. Diese
Randbedingung soll auch für die globale Filterung berücksichtigt werden.

Im folgenden wird der Einfluß einer Gaußfilterung auf das Signal-zu-Rauschver-
hältnis untersucht. Dabei kann experimentell und theoretisch gezeigt werden, daß
durch solch eine Filteroperation das SNR bei dem verwendeten Rauschmodell
verbessert werden kann. Aus den beschriebenen Zusammenhängen heraus wird
dann ein plausibler Steuermechanismus abgeleitet, der zu einer gemessenen Be-
leuchtungssituation � einer Szene ein notwendiges � einer Gaußfilterung berech-
net und somit eine adaptive Filterung ermöglicht.

5.3.1 SNR einer gefilterten Szene

In Abb. 5.4 ist das Beispiel der Filterung einer künstlich verrauschten Szene unter
variablen Lichtverhältnissen gezeigt. Dazu wurde dem Originalbild (oben links)
ein Rauschprozeß (hier mit

" � � 	 � � ��� � �
,

 � � 	 � � ��� � �

) überlagert, so daß
sich ein Signal-zu-Rauschabstand von SNR � dB

� " �
dB einstellt. Die Ermittlung

der Rauschparameter einer realen Kamera wird in Kapitel 6 beschrieben. Dieser
Szene wurde die Beleuchtung � � �

zugeordnet (mitte links). Durch die Verdun-
kelung auf � � � 	 � �

(untere Reihe) verschlechtert sich das SNR um etwa
� �

dB
auf SNR � P dB

� � �
dB. Eine anschließende Tiefpaßfilterung (hier mit �

� �
) al-

lerdings scheint objektiv betrachtet die Qualität des Bildes bzgl. des Rauschens
zu erhöhen (unten rechts). Für beide Beleuchtungssituationen wurde schließlich
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die Abhängigkeit des SNR von dem Filterparameter (im folgenden als SNR � be-
zeichnet) experimentell bestimmt (oben rechts). Hierbei fällt auf, daß durch die
Filterung Details zwar unter Umständen verloren gehen, das SNR aber jeweils
verbessert werden konnte.

Numerische Untersuchungen des resultierenden SNR einer gefilterten Szene vie-
ler gefilterter Kamerabilder führen zu der Annahme, daß das SNR in weiten Berei-
chen stets monoton steigend mit � ist. Dies bedeutete, daß das SNR umso besser
würde, je stärker das Tiefpaßverhalten ist, was auch in Abb. 5.4 (oben rechts) ex-
emplarisch zu sehen ist. Wie man im weiteren allerdings erkennen wird, sind die
Abhängigkeiten des SNR so komplex, daß die simulierten Ergebnisse nicht all-
gemein gezeigt werden können. Unter bestimmten Vereinfachungen können aber
relativ gute Interpretationen geliefert werden, die zu sinnvollen und effektiven ad-
aptiven Steueralgorithmen führen werden. Diese neuartigen Herleitungen sollen
nun im einzelnen gegeben werden.

Die Verarbeitung des verrauschten und verdunkelten Bildsignals � �(')� mit einem
Filter beschrieben durch (5.9) führt auf das gefilterte Bild

� �(')��� � � ':�! � �(')� (5.10)� � � �(')�! � � �(')� C � �(')�! � �(' �MH
(5.11)

welches ebenfalls aus einem Signal- und einem Rauschanteil besteht. Das resul-
tierende SNR läßt sich dann berechnen zu

SNR �
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E � � �  �:� � 
 	
(5.12)

Mit Hilfe der PARSEVALschen Gleichung kann das SNR im Frequenzbereich for-
muliert werden. Aus der Tatsache heraus, daß das Rauschen, auch wenn es aus
einem korrelierten Anteil besteht, in allen Testreihen näherungsweise ein weißes
Leistungsdichtespektrum �

�
�
�

E � � � � aufweist, erhalten wir für reelle Signale
weiter
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Abbildung 5.4: Verbesserung des SNR einer verdunkelten verrauschten Bei-
spielszene durch Tiefpaßfilterung. oben: Unverrauschtes Originalbild und SNR-
Verbesserung für zwei unterschiedliche Beleuchtungen � . mitte: Verrauschtes Ori-
ginalbild SNR dB

� " �
dB ( � �

� �
) und das Filterergebnis mit �

� �
. unten:

Verdunkelte Szene ( � � � 	 ���
) mit SNR dB

� ���
dB und das Filterergebnis mit

�
� �

.
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Annahme 1: Natürliche Bildszenen

Zur Vereinfachung lohnt es, sich auf eindimensionale Signale zu konzentrieren.
Für den biologisch plausiblen Bereich (siehe Kapitel 3) des Filterparameters �
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verwenden und erhalten für den eindimensionalen Fall
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Für die Untersuchung des Monotonieverhaltens des SNR bzgl. � ist die partielle
Ableitung
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zu diskutieren, welche die Grenzwerte
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zeigt. Die Annahme natürlicher Bilder erlaubt weitere Vereinfachungen. Dann
nämlich klingt das Spektrum des Bildes näherungsweise mit

Q 
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[TF97, WM97] ab und wir erhalten
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was für eine monoton steigende Funktion positiv sein sollte. Dieses Verhalten
scheint gültig zu sein für alle untersuchten Bildszenen, da der gegebene Integrand
schnell genug gegen null konvergiert. Für diesen Fall führt die Lage des kritischen
Nulldurchganges L � � � � �

�

�

�
	 E � �

� E 	 E (5.21)

des Integranden zu einem positiven Beitrag für
� 	�	�	 L � zum gesamten Integral,

welches größer ist als der negative Beitrag im Bereich
L � 	�	�	 # und daher ins-

gesamt zu einem positiven Ergebnis des Integrals und daher zu einer positiven
Steigung des SNR.
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Es ist erwähnenswert, daß die theoretische Interpretation, was das positive Vor-
zeichen der Steigung angeht, nicht von der Art des Rauschens abhängt, weder bei
völlig unkorreliertem (


 � �
), noch bei korreliertem Rauschen (

" � �
), so lan-

ge näherungsweise ein weißes Frequenzspektrum vorliegt. Untersuchungen haben
bestätigt, daß die Leistung des originalen Bildsignals bei natürlichen Bildern auf
niedrige Frequenzen konzentriert ist und damit auch der korrelierte Rauschanteil
ebenfalls näherungsweise weiß bleibt. Die Größe der positiven Steigung SNR �
kann hingegen von der Art des Rauschens abhängig bleiben.

Annahme 2: Konstantes Bildsignal

Neben den natürlichen Szenen sind Bildsignale mit konstanten Bildbereichen ein
Sonderfall, für den eine theoretische Herleitung gegeben werden kann.

Das SNR des ungefilterten Bildes kann für � ��� ��� ��� V nach (5.4) vereinfacht
werden zu

SNR �
� � ��� � � � ��" � C � � 
 � � �� H (5.22)

da die Rauschprozesse
� � und

� � als zueinander unkorreliert und mit einer Vari-
anz eins angenommen werden können.

Für die gefilterte Szene ergibt sich dann für den zweidimensionalen Fall der Aus-
druck

SNR �
� � H � ��� � � � ��

E � � �  �)� � 
 � � � � ��
� ��
� � Q � ��9)��Q �

d
9 (5.23)� � � � ��

� ��
� #��

� �
	 � � � � ��

� ��
� �

�
� # H (5.24)

wobei
�

hier der Vorfaktor der gewählten FOURIER-Transformation ist. Da weiter
die Leistung des ungefilterten Rauschens durch �

�
�
� " � C � � 
 � � �� bestimmt ist,

ergibt sich die Beziehung

SNR �
� � H � � � � � � ��" � C � � 
 � � �� � �

�
� # �

SNR �
� � � � �

�
� # (5.25)

oder mit den logarithmischen Größen

SNR � P dB
� � H � ��� SNR � P dB

� � � C � � � ��� � � �
�

� # 	
(5.26)
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Dieses interessante Ergebnis ist einer Reihe von Annahmen und Näherungen un-
terworfen und gilt somit z. B. nur für � � �

. Auch für beliebig große � ist die
Näherung nicht mehr sinnvoll, da nach (5.25) das SNR nicht gegen einen Grenz-
wert für wachsende � konvergieren würde. Messungen bestätigen aber, daß die
Kurvenform bzw. die Steigung des SNR �

�
�
�

nicht stark von � abhängt, sondern
die Beleuchtungsstärke hier lediglich einen konstanten Faktor ausmacht (bzw. ei-
ne additive Konstante in dB), was der obige Ausdruck auch bestätigt. Wie sich
noch zeigen wird, ist dieses Ergebnis für praktische Zwecke durchaus ausreichend
und von großem Interesse.

5.3.2 Konstruktion eines Steuermechanismus

Wie der vorherige Abschnitt zeigt, ist durch Filterung mit einem Gaußtiefpaß ei-
ne Verbesserung des Signal-zu-Rauschverhältnisses in dunklen und verrauschten
Bildszenen bis sehr große � möglich. Offensichtlich kann es aber nicht zweck-
mäßig sein, sets das maximale � zu verwenden. Dies liefert zwar das beste SNR,
hierdurch würde jedoch immer die geringste örtliche Auflösung erzielt werden.
Aus diesem Grund ist es sehr wichtig, einen Kompromiß zwischen „gutem“ SNR
und ausreichender Ortsauflösung zu finden. In diesem Abschnitt wird daher eine
mögliche Strategie vorgeschlagen, um ein � für eine globale, d. h. ortsinvariante
Filterung für eine bestimmte Beleuchtungsstärke � des verrauschten Bildes zu fin-
den. Ziel hierbei ist, durch die Filterung mit einem passend zu wählendem adap-
tiven � �

� � � das SNR der Szene soweit zu verbessern, daß ein gewünschtes SNR,
z. B. das einer ungefilterten, gut beleuchteten Szene ( � � �

) erreicht wird. Das
Prinzip ist in Abb. 5.5 verdeutlicht. Die Bestimmung der notwendigen Filterstär-
ke � �

� � � in Abhängigkeit von der Beleuchtung, was im folgenden Steuersignal
genannt werden soll, kann z. B. durch einen Optimierungsprozeß mittels realen
oder simulierten Kameradaten approximativ geschehen. Des weiteren kann aber
auch die theoretische Herleitung des SNR eines gefilterten Bildes im vorherigen
Abschnitt genutzt werden, um ein explizites Steuersignal aufzustellen. Beide Ver-
fahren werden nun kurz vorgestellt.

Optimierungsprozeß

In einem Optimierungsprozeß wird die Abhängigkeit der adaptiven Filterparame-
ter �

�
� � von der Beleuchtung � gesucht, um ein bestimmtes SNR zu erzielen,

d.h. gesucht ist die Lösung

� �
� � ��� � � � � � �

�

Q
SNR �

� � H � � N SNR �
� � ��Q � 	

(5.27)
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Abbildung 5.5: links: Bestimmung der notwendigen Filterstärke � bei gegebener
Beleuchtung und für ein gewünschtes SNR. rechts: Resultierendes Steuersignal.

Für diese Aufgabe wurde das Verhalten � �
� � � für � � � 	�	�	 �

mit verschiedenen
Testbildern berechnet und das adaptive � � durch einen Optimierungsprozeß be-
stimmt (siehe auch [Eis01]). Da die Ergebnisse für verschiedene Testbilder nur
geringfügig voneinander abweichen, ist eine Approximation der Meßdaten durch
eine Funktionsvorschrift

� �
� � � � �

� � P � N � � � � �
� 
 � C � (5.28)

möglich und zweckmäßig, um jedem beliebigen � einen Filterparameter zuordnen
zu können. Mit der Konstanten

� � � � P � N � � P � � � 
� � � �
� N � � 
� � � � (5.29)

und der Vorgabe zweier Eckwerte � � P � � � �
� � � � , �

� � H3E
ist es möglich die Abbil-

dungsvorschrift auf zwei vordefinierte Werte zu „klemmen“. Zusätzlich kann ein
gewichteter mittlerer Approximationsfehler während der Funktionsapproximati-
on, der den Bereich kleiner Werte � � betont, die weiteren Ergebnisse verbessern.
Das Ergebnis der Approximation ist in Abb. 5.6 (links) zu sehen. Auch wenn
SNR

�
�
�

immer eine positive Steigung hat, wie bereits diskutiert und in Abb. 5.4
gezeigt, ändert sich die Steigung mit unterschiedlichem Anteil von korreliertem
und unkorreliertem Rauschen, also mit den Rauschparametern

"
und



. Hier wird
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also deutlich, daß immer eine Art Kamerakalibrierung zur Schätzung der Rausch-
parameter oder zur Gewinnung der Kurvenschar SNR

�
�
�

im Vorfeld notwendig
ist.

In Abb. 5.6 (rechts) ist eine Simulation einer adaptiven Filterung dargestellt. Der
Mittelwert des Bildes wurde dabei benutzt, um die Beleuchtungsstärke � zu schät-
zen. Der gut beleuchteten Szene wurde dabei � � �

zugeordnet. Bei dieser Ad-
aption wurde als kleinste Filterstärke �

� � � 	 E #
verwendet, wodurch auch das

hellste Bild einer sehr geringen aber dennoch vorhandenen Filterung unterworfen
ist. Aus diesem Grund ist das SNR � etwas größer als das SNR � bei � � �

. Der
Adaptionsmechanismus klemmt, wie zu sehen, das SNR � gegen den optimalen
Wert der hellen Szene. Die Abweichungen sind durch den Restfehler der Appro-
ximation in Abb. 5.6 (links) zu erklären.
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Abbildung 5.6: links: Sinnvolle Zuordnung der Beleuchtungsstärke (– gemessen,
- - approximiert) durch Optimierung mittels simulierter Kameradaten. rechts: Ver-
schlechterung (–) und adaptive Verbesserung (- -) bei abfallender Beleuchtung
( � � � 	�	�	 � 	 ���

) in einer simulierten Szene.

Explizites Steuersignal

Unter der Voraussetzung, daß das Bildsignal der Szene konstant ist und die bei-
den Rauschprozesse weiß sind, kann man durch (5.25) ein explizites Steuersignal
konstruieren. Unter Angabe eines zu erzielenden Signal-zu-Rauschverhältnisses
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SNRdes �
�

SNR � und der adaptiven Filterstärke � � erhält man die Beziehung

SNRdes
�

SNR �
� � H � � ��� � � � ��" � C � � 
 � � �� � �

�
�

� # �
SNR �

� � ��� �
�
�

� # (5.30)

und damit das explizite Steuersignal

�
�
�

� � � � � SNRdes

SNR �
� � � � � # 	 (5.31)

Der Faktor
�

, der ursprünglich aus der FOURIER-Transformation resultierte, kann
hierbei unter Umständen auch modifiziert werden, um die Näherungen (vor allem
bei kleinen Filterstärken � � ), die zu dem Ergebnis in (5.25) führen, auszugleichen.

Mit diesem Ergebnis kann theoretisch ein beliebiges SNR eingestellt werden, wo-
für allerdings die Rauschparameter

"
und



bekannt sein müssen, da sie bei der

expliziten Schätzung der Größe SNR �
� � � benötigt werden. Eine Simulation ist

in Abb. 5.7 gezeigt. Sind die exakten Rauschparameter bekannt, so ergibt sich
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Abbildung 5.7: Verschlechterung (–) und adaptive Verbesserung (- -) bei abfal-
lender Beleuchtung in einer simulierten Szene mit dem expliziten Steuersignal
(SNRdes

� " �
dB). links: Ergebnis mit den exakten Rauschparametern. rechts:

Einfluß unkorrekter Rauschparameter bei der Adaption.

das Ergebnis der Adaption in Abb. 5.7 (links). Der geschätzte adaptive Filter-
koeffizient � � ist bis � 	

� 	 �
so klein, daß keine Filterung stattfindet. Dies ist

hauptsächlich darin begründet, daß der theoretische Ansatz für das explizite Steu-
ersignal für kleine � nur näherungsweise erfüllt ist. Für wachsende � wird das
gewünschte SNR dann schnell erzielt. In Abb. 5.7 (rechts) sind die Auswirkungen
zu sehen, die sich durch unbekannte oder schlecht geschätzte Rauschparameter er-
geben. Hier weichen die Parameter

"
und



der Adaption um etwa

E �
% bzw.

� �
%
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von den originalen Parametern ab, die zur Erzeugung des verrauschten Bildsignals
verwendet wurden. Aus diesem Grund wird das gewünschte SNR nicht erreicht.
Zur Schätzung der Rauschparameter ist also eine Art Kamerakalibrierung erfor-
derlich, die im nächsten Kapitel genauer beschrieben wird. Dort ist auch gezeigt,
daß trotz der genannten Näherungen und Annahmen durchaus auf sehr einfache
Weise eine effektive Adaption erzielt werden kann.

5.3.3 Vergleich mit dem biologischen Vorbild

An dieser Stelle lohnt es, die Aufmerksamkeit auf das in der Biologie gemes-
sene Steuersignal zur Generierung der adaptiven (lokalen) Rezeptorkopplung zu
richten. Wie Untersuchungen in [SL96a] zeigen, kann die Abhängigkeit der Re-
zeptorkopplung von der mittleren lokalen Helligkeit � � (gemessen in td=photopic
trolands) hier durch die Gleichung

�
� �
� �
��� � 	 � �

�
�

C�� �
�

� �
�

C � �
H �

	
� 	 � H � 	

� 	 � � H��
� 	 � � td (5.32)

näherungsweise approximiert werden, was in Abb. 5.8 (links) dargestellt ist.
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Abbildung 5.8: Adaptive Rezeptorkopplung des biologischen Vorbildes. links:
Abhängigkeit von der lokalen mittleren Helligkeit. rechts: Abhängigkeit von dem
(normierten) Rezeptorpotential (für ein gewähltes � � ).

In einem weiteren Schritt muß allerdings die nichtlineare Umsetzung der Licht-
bzw. Strahlungsintensität � , die auf einen Rezeptor fällt, in das resultierende Re-
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zeptorpotentialL � �
�
H
� �
�
	
L � P � ��� �

�
C � 0 � � 0 	 � � C 0 �W� H30 �

	 � � � td
H30 	

	
��� �

td (5.33)

berücksichtigt werden, da erst dieses Potential
L �

dem in dieser Arbeit verwende-
ten Rezeptorsignal � � entspricht. Wird also die Rezeptorkopplung nicht über � �
sondern über

L �
in Abb. 5.8 (rechts) aufgetragen, so verdeutlicht dies, daß der Me-

chanismus im biologischen Vorbild dem technischen Steuersignal (siehe Abb. 5.6
(links)) qualitativ sehr ähnlich ist. Damit scheint der in den vorherigen Abschnit-
ten entwickelte Ansatz, in einem technischen System das SNR bei variierenden
Beleuchtungsverhältnissen durch eine adaptive Filterung auf einen gewünschten
Wert zu halten, weiter biologisch motiviert und sinnvoll zu sein.

5.4 Erweiterungen für eine adaptive Verarbeitung

In diesem Abschnitt wird nun die Frage behandelt, inwieweit das bereits vorge-
stellte lineare Modell aus Kapitel 3 um eine adaptive Komponente für variieren-
de Beleuchtungsbedingungen erweitert werden kann. Dabei soll die Aufgabe, ei-
ne biologienahe Konturextraktion durchzuführen, stets im Blickpunkt bleiben. In
Abb. 5.9 ist eine denkbare adaptive Verarbeitungskette dargestellt. Dabei wird das
Rezeptorsignal � � zurückgekoppelt, um ein Steuersignal zu erzeugen, was wie-
derum die Größe der Rezeptorkopplung �

�
adaptiv steuert. Im Gegensatz dazu

wird in der biologischen Modellierung von SHAH [SL96a, SL96b] das Ausgangs-
signal der Horizontalzellen für die Adaption verwendet. Da dieses dort als Gauß-
filter ausgelegt ist, wird so in Kombination mit der Rezeptorkopplung insgesamt
wieder ein Gaußfilter größerer Filterstärke ausgebildet, um so eine mittlere loka-
le Helligkeit � � zu schätzen. Dieses wird über eine nichtlineare Abbildung zur
Berechnung der Rezeptorkopplung eingesetzt. Da im Rahmen dieser Arbeit al-
lerdings die Übertragungseigenschaft der Horizontalzellen nicht direkt modelliert
wurde, um dort keinen Freiheitsgrad zu verlieren, wird dieses Signal nicht ver-
wendet. Vielmehr wird das Rezeptorsignal selbst mittels eines allgemeinen Verar-
beitungsschrittes �

� � � � � in das Steuersignal überführt. Ist diese Verarbeitung als
Gaußfilter ausgelegt, so entspricht dies aber wieder im wesentlichen der Funkti-
onsweise des biologischen Vorbildes.

Der Mechanismus könnte wie in [SL96a, SL96b] ortsvariant sein und damit lo-
kal adaptiv arbeiten. Dies kann Vorteile bei Szenen mit großem Dynamikbereich
bieten, damit helle, aber auch dunkle Bereiche lokal unterschiedlich behandelt
werden können. Wie aber bereits gezeigt, arbeitet bereits eine globale Adaption
effektiv, wenn eine gewisse globale Helligkeit zugrunde gelegt wird. Diese kann
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Abbildung 5.9: Erweiterung des bisherigen Modells um eine adaptive Rezeptor-
kopplung.

meßtechnisch durch den Mittelwert der kompletten Bildszene geschätzt werden,
was einer Mittelung über die Gesamtheit aller Rezeptorpotentiale entspräche. Dies
wäre aber biologisch nur sehr aufwendig implementierbar, da hierfür alle Rezep-
torsignale auf ein resultierendes Neuron konvergieren müßten, was entweder sehr
ausgedehnte synaptische Verbindungen bei einer einzelnen Verknüpfungsschicht
oder aber eine sehr aufwendige Kaskade von vielen Neuronenschichten (die je-
weils eine örtliche Tiefpaßwirkung besitzen) bedeuten würde. Dies wird ebenfalls
ein Grund sein, warum in der Biologie ein lokaler Mechanismus zum Einsatz
kommt. Da in technischen Bildverarbeitungssystemen aber im Gegensatz zu der
retinalen Architektur eine globale mittlere Helligkeit � der Szene leicht berechnet
werden kann, beschränken wir uns hier auf einen globalen Steuermechanismus.
Wie wir im weiteren sehen werden, stellt aber selbst diese ortsinvariante Adap-
tion für die gesamte bisherige Verarbeitungskette eine zusätzliche Schwierigkeit
im Entwurf dar.

5.4.1 Einfluß auf nachgeschaltete Verarbeitungsschichten

Ziel ist es, eine biologienahe Signalverarbeitungskette aufzustellen, die adaptiv
zur Helligkeit der Szene eine robuste Konturextraktion gewährleistet. Dazu be-
trachten wir die Verarbeitung des bisherigen linearen Modells in Kapitel 3 und
simulieren die Übertragungseigenschaften für eine adaptive Rezeptorkopplung
�
�

. Da die nachgeschalteten Systeme
� � � und

� 
�� P � für ein spezielles �
� �
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� 	 �
csp, also für die beste Ortsauflösung entworfen worden sind, ist es nicht unbe-

dingt selbstverständlich, daß die gesamte Verarbeitungskette noch die gewünsch-
ten Übertragungseigenschaften für ein adaptives �

�
besitzt.

Untersuchungen zeigen, daß das Modell bis zu den Gangliensignalen die ge-
wünschten Eigenschaften auch für eine adaptive Rezeptorkopplung beibehält. Die-
ses liegt darin begründet, daß die Filtereigenschaft

� 
 als Laplace-Ableitung einer
Gaußfunktion (LoG) entworfen ist, das Subsystem

� � 
 sich damit näherungswei-
se (je nach Modellaufwand) als Laplace-Operator �  � � � � � � � �

C � � � � � �� ausge-
bildet hat

� � 
 �(')� �(N$N � � � 
 ��9:� 	 �
� , � T 9 �

�
�Q RUTWV�,XQ � � � � �Q RUTWV�, Q 	 (5.34)

In Abb. 5.10 ist die (normierte) Übertragungsfunktion
� � 
 auf der Basis eines

hexagonalen Abtastrasters dargestellt. Wird der Parameter des Gaußfilters nun ad-
aptiv verändert, so bleibt insgesamt immer ein LoG-Operator bestehen.
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Abbildung 5.10: Die Übertragungsfunktion
� � 
 entspricht näherungsweise dem

Verhalten eines Laplace-Operators.

Im Gegensatz dazu weichen die Resultate der Simplen Zellen aber für ein �
� ��

� 	 �
csp von dem gewünschten „Gaborverhalten“ ab. In Abb. 5.11 ist dazu der

Betrag der Übertragungsfunktion
� � P � für verschiedene Rezeptorkopplungen zu

sehen. Da die kortikalen synaptischen Verknüpfungen bzw. die Filterkoeffizienten
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der kortikalen Subsysteme für ein �
� � � 	 �

csp ausgelegt und optimiert sind,
führen diese bei größeren Rezeptorkopplungen nicht mehr zu dem gewünschten
Verhalten.
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Abbildung 5.11: Übertragungsverhalten
� � P � der ursprünglichen Verarbeitungs-

kette bei variablen Rezeptorkopplungen �
� � � 	 �

csp (links), �
� � �

csp (mitte)
und �

� � � csp (rechts).

Natürlich könnte versucht werden, auf eine gewisse Art die Subsysteme
� 
 � P �

ebenfalls adaptiv auszulegen, um stets das gewünschte Verhalten zu erreichen.
Dies ist aber biologisch nicht erklärbar, da dies eine zusätzliche enorme Anzahl
von synaptischen Verbindungen innerhalb des Cortex bedeuten würde, um die je-
weiligen Verknüpfungen beider Typen Simpler Zellen (gerade/ungerade) für alle
Orientierungen adaptiv auszulegen. Für das biologische Vorbild wäre deshalb nur
ein Verarbeitungssystem sinnvoll und effizient, bei dem nur an einer Stelle, näm-
lich zu Beginn der Verarbeitungskette, sprich den Rezeptoren ein adaptiver Me-
chanismus zu implementieren ist. Auch für ein technisches System wäre nur solch
eine Strategie interessant und überhaupt sinnvoll, da vom Aufwand her vertretbar.

5.4.2 Modellierung kortikaler Verknüpfungsstrukturen

Um die Problematik mit dem bisherigen Modell, die durch eine adaptive Verar-
beitung entsteht, dennoch lösen zu können, wird im folgenden eine alternative
kortikale Modellierung vorgestellt. Diese besteht aus einer Zusammenschaltung
von Subsystemen, welche die örtlichen Gradienten des Intensitätssignals bilden.
Damit wird die retinale Verarbeitung, die im wesentlichen eine Ableitung zwei-
ter Ordnung bildet, im Cortex systematisch weitergeführt. Würde sich dann durch
eine Adaption die Standardabweichung der Gaußfunktion ändern, sollte das prin-
zipielle Verhalten einer Gaborfunktion aber bestehen bleiben.

Um die Komplexität der Modellierung zu reduzieren, betrachten wir zunächst den
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eindimensionalen Fall. Hier kann leicht veranschaulicht werden, daß die höheren
Ableitungen einer Gaußfunktion recht gut der Kurvenform der Gaborfunktionen
ähneln, so daß es zu untersuchen lohnt, die kortikale Modellierung als eine Ket-
te von örtlichen Ableitungsfiltern aufzubauen. In Abb. 5.12 (links) sind exempla-
risch die geraden und ungeraden Ableitungen einer Gaußfunktion bis zur Ordnung
4 bzw. 5 dargestellt. Die höheren Ableitungen scheinen dabei qualitativ einer Ga-
borfunktion ähnlich zu sein. Vergleicht man in Abb. 5.12 (rechts/oben) die 6. und
5. Ableitung mit dem Real- und Imaginärteil einer bestimmten Gaborfunktion, so
wird dies nochmals deutlich. Werden nun aber jeweils die gerade und ungerade
Ableitung kombiniert, wie in [KvD87] vorgeschlagen, so ergeben sich die Dar-
stellungen in Abb. 5.12 (rechts/unten). Im Gegensatz zu dem Betrag der komple-
xen Gaborfunktion, welcher durch die Quadratureigenschaft von Real- und Ima-
ginärteil eine unmodulierte Gaußfunktion ist, ähnelt die gezeigte Kombination der
beiden Ableitungen nur in entfernter Weise einer Gaußfunktion. Da gerade diese
Eigenschaft aber für eine leistungsfähige Konturextraktion von großer Bedeutung
ist, soll an dieser Stelle ein neuer Ansatz zur Approximation der Gaborfunktionen
mittels linear kombinierter Gaußableitungen vorgestellt werden.

Approximationsansatz für den eindimensionalen Fall

Die Untersuchungen im eindimensionalen Fall, für die o. E. � � �
sei, zeigen,

daß durch eine Linearkombination

��� P�� � 0c� 	 
��� P�� � 0c� � � ;
�

	 � � � � � � � ��� 0�� H
� � P � � 0c� 	 
� � P � � 0�� � � ;

�

	 � � � � � � � � � � � ��� 0�� H
(5.35)

verschiedener Ableitungen einer Gaußfunktion die Approximationsgenauigkeit
deutlich verbessert werden kann. Dabei seien

� � � �
�
� � �

�
die örtlichen Ablei-

tungen der Ordnung � bzw. deren diskrete Realisierungen,

�G� 0c� � �	 E #
� �

�8� � � 

 
 
 �(N@N � � ��Lc� 	 � ��� 
 
 


(5.36)
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Abbildung 5.12: links: Gerade (oben) und ungerade (unten) örtliche Ableitungen
einer Gaußfunktion. rechts: Vergleich der 6. und 5. Ableitung einer Gaußfunktion
(- -) mit einer geraden und ungeraden Gaborfunktion (–) (oben) und Kombination
der Gaborfunktionen (–) bzw. der beiden Ableitungen nach [KvD87] (- -) (unten).

die Gaußfunktion und

��� P�� � 0c� � �� E #
� ��

� � � � 

 
 

	 � ��� � ��9 � 0c�MH (5.37)

� � P � � 0c� � �� E #
� ��
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	 � ����� ��9 � 0�� (5.38)

die zu approximierende gerade (even) bzw. ungerade (odd) Gaborfunktion. Die
Koeffizienten

	 �
lassen sich durch ein Regressionsverfahren numerisch bestim-

men. Es hat sich gezeigt, daß bereits drei Ableitungsfunktionen zu einer ausrei-
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chend genauen Approximation führen. Wir machen deshalb den Ansatz


��� P�� � 0�� � �� ;� � �3P �WP � 	 � � � �� � �G� 0c� �.� 	 � � � C 	 � � � C 	
�
�
�
� � ��� 0�� H


��� P � � 0�� � �� ;� � � P �3P � 	 � � � �� � �G� 0c� �.� 	 � � � C 	 � � � C 	
�
�
�
� � ��� 0�� 	

(5.39)

Hierbei soll eine Ableitung
� E

nicht verwendet werden, da im Cortex lediglich
das Signal der Ganglienzellen zur Verfügung steht (laplacian of gaussian), auf das
die Kaskade aufgebaut wird.

Die kaskadenförmige Verarbeitungskette ist in Abb. 5.13 durch einen denkbaren
Signalflußgraph beschrieben. Neben dieser Implementierung gibt es weitere Va-
rianten, die aber weniger effizient oder für eine Erweiterung auf den zweidimen-
sionalen Fall weniger geeignet sind. Hier wird aber auch deutlich, daß durch die
Linearkombination kein Mehraufwand in Kauf genommen werden muß, da durch
eine Kaskade die Ableitungen niedriger Ordnung mitberechnet werden.
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Abbildung 5.13: Signalflußgraph der eindimensionalen Verarbeitungskette.

Das Ergebnis der Approximation spiegelt Abb. 5.14 wider. Sowohl die beiden
reellen Gaborfunktionen, als auch deren Kombination weisen eine hohe Appro-
ximationsgüte auf. Hierbei wurde als Entwurfsziel eine Gaborfilterimpulsantwort
mit einer Mittenfrequenz von

#�� � (3. Band einer logarithmischen Frequenzauftei-
lung, siehe Abb. 5.15) und eine Standardabweichung der Gaußfunktion von �

� �
gewählt.

Verändert sich nun die Standardabweichung im Rahmen einer Adaption, so ergibt
sich in einem weiten Rahmen immer eine Gaborfunktion als Resultat der Über-
lagerung der Gaußableitungen. Abb. 5.15 gibt diesen Aspekt im Frequenzbereich
wieder, wobei die Standardabweichung hier in 4 Schritten von

� 	 "
bis

� E
variiert.
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Abbildung 5.14: oben: Gerade und ungerade Gaborfunktion (–) im Vergleich zu
dem vorgestellten Approximationsansatz (- -) gemäß (5.39). unten: Kombination
der Gaborfunktionen (–) und der Approximationsergebnisse (- -).
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Abbildung 5.15: Vergleich der Gaborfunktionen (–) mit dem Ergebnis der Appro-
ximation (- -) im Frequenzbereich für verschiedene Mittenfrequenzen.
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Bei der biologischen Modellierung würde sich � (bzw. die Rezeptorkopplung �
�

)
adaptiv einstellen. Für eine technische Implementierung kann es aber auch nütz-
lich sein zu wissen, wie � einzustellen ist, um eine gewisse gewünschte Mittenfre-
quenz

L
� des Gaborfilters zu realisieren. Dazu ist das Verhalten der Ableitungskas-

kade im Frequenzbereich zu betrachten, da dort das Maximum bei der gesuchten
Mittenfrequenz liegt. In der vorliegenden Modellierung kommt als Ableitungsfil-
ter ein zentrischer Gradient mit der Differenzengleichung

� � 0�� � � � 0%C � � N � � 0 N � �E � (5.40)

zum Einsatz, gleichwohl auch Alternativen dazu, wie ein rekursives nichtkausales
Filter, untersucht wurden. Da neben der einfachen Implementierung der zentri-
sche Gradient gegenüber Rauschprozessen durch die Dämpfung bei hohen Fre-
quenzen zusätzlich robust ist, soll im weiteren diese Form verwendet werden. Die
z-Übertragungsfunktion bzw. die gewöhnliche Übertragungsfunktion des zentri-
schen Gradienten läßt sich angeben zu

� � ���
#
� �i��� � N � � �E � bzw.

�
#
��Lc� � � � � ����� ��LU� 	 (5.41)

Weiter erlaubt dies eine Beschreibung der verschiedenen (geraden und ungeraden)
Ableitungsoperationen höherer Ordnung im Frequenzbereich mit

� � �(N$N � ��� � � � 
 � � 	 � �
#
��Lc��� � �.��� � � � � ����� � ��Lc� 	 (5.42)

Mit diesen Realisierungen ergeben sich die Approximationen der Gaborfunktio-
nen im Frequenzbereich zu


� � P�� ��Lc� � �� ;� � �3P � P � 	 � ��� � � � � � � � � ��Lc� �� � � ��LU�MH (5.43)


� � P � ��Lc� � �� ;� � � P �MP � 	 � ��� � � � � � � � � ��Lc���� � � ��LU� 	 (5.44)

Da die Übertragungsfunktionen am Rand des interessierenden Frequenzbereiches
verschwinden 
� � P�� � � ��� 
� � P�� � # ��� � H

(5.45)
� � P � � � ��� 
� � P � � # ��� � H
(5.46)
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führt die notwendige Bedingung für eine Extremstelle

�
� L 
� � P���� � ��Lc� !� �

(5.47)� � ; � 	 ����� � � � � � ����� � � � ��LU� � ��� � ��Lc� � � ��Lc� C� ; � 	 ����� � � � � ����� � ��Lc� � � N L � � � � � ��LU�
auf eine allgemeine Berechnungsvorschrift für den gesuchten Filterparameter �
bei gegebener oder gewünschter Mittenfrequenz


L
�

�
� � 	 � ��� � � � � � ����� � � � � 
L � �

� 	 � ��� � � � � ����� � � 
L � � ��� � � 
L � �
L
�

	
(5.48)

Der reduzierte Approximationsansatz für die gerade Gaborfunktion
� � P�� ��Lc��� � N " 	 � ����� � ��Lc�GC � � 	 � ����� � ��Lc� N � " 	 � ����� � ��LU��� � � ��Lc� (5.49)

führt damit nach entsprechenden Vereinfachungen auf

�
� N E 	 � C � � 	 � ����� � � 
L � � N � � 	 � ����� � � 
L � �N 	 � ����� � 
L � � C " 	 � ����� � � 
L � � N � � 	 � ����� � � 
L � � ��� � � 
L � �
L

�

H
(5.50)

wobei hier o. E. � � �
(genormt auf Pixelkoordinaten) gesetzt sei. Die umge-

kehrte Fragestellung nach der resultierenden Mittenfrequenz

L
� bei gegebenem

Filterparameter � kann durch die implizite Gleichung


L
�
� N E 	 � C � � 	 � ����� � � 
L � � N � � 	 � ����� � � 
L � �N 	 � ����� � 
L � � C " 	 � ����� � � 
L � � N � � 	 � ����� � � 
L � � ��� � � 
L � �� �

(5.51)

numerisch recht schnell gelöst werden. Die Zuordnung für eine logarithmische
Frequenzbandaufteilung, wie es bei Filterbankrealisierungen i.d.R. üblich ist, er-
gibt bei der Wahl von zentrischen Gradienten die folgende Übersicht:
L

�
# � E # �>" # � � # � � �

�
� 	 � � � � E 	 � � � " � 	 � � E � � E 	 � � � � (5.52)
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Approximationsansatz für den zweidimensionalen Fall

Was im eindimensionalen Fall die Ableitung bzgl. der Ortskoordinate � ist, muß
im zweidimensionalen Fall durch die Ableitung in eine bestimmte (gewünschte)
Richtung realisiert werden, um die Orientierungsselektivität der zweidimensio-
nalen Gaborfunktionen zu approximieren. Die Ableitung eines kontinuierlichen
Signals � � ����� in eine bestimmte Richtung kann mittels eines Richtungsvektors

� � � � �
� � � � � ��� � ���G������ ���G� � (5.53)

und des Gradienten
�

des Signals durch

� ��� 	 �+� ������� � T �+� ������� � � / � � � 	 �+� � �!�MH � � � 	 �+� ���!� 2 � ��� �� � � (5.54)

bestimmt werden, was kurz Richtungsableitung genannt wird. Bei einem ortsdis-
kreten Signal � �(')��� �+� ��,-')� (5.55)

auf einem beliebigen Abtastraster
,

müssen nun die Ableitungen bzgl. der karte-
sischen Koordinatenrichtungen

� � � 	
( �
� � H3E

) durch die entsprechenden diskreten
Realisierungen auf den Koordinatenachsen des Abtastrasters ausgedrückt werden.
Es ergibt sich durch Substitution die Beziehung

� � � 	 � � ������� �
�
�
� � � ��, ')��� �

� ' � �(')� � �
�
�
� ' � � T

= � �(')��� �
�
�
� ��, � � �!�� ��� 	

��� �� �
� �
�
� � �	

H
(5.56)

die die Berechnung der gesuchten Ableitung durch den Gradienten 

=

auf dem
Abtastraster und der ersten bzw. zweiten Spalte von

, � �
angibt. Zusammengefaßt

gilt somit

� ��� 	 � �(')��� � T

= � �(')� ��, � � � � (5.57)�./ � � � 	 � �(')�MH � � � 	 � �(')� 2 � � � � � � � �
� � � � � � � � � � �

� � � 	
(5.58)

Für � � �
und einem rechtwinkligen Abtastraster ergibt sich eine starke Verein-

fachung der Richtungsableitung, was in Abb. 5.16 zu sehen ist. Auf einem hexa-
gonalen Abtastraster sind allerdings die allgemeine Form und die entsprechenden
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Koeffizienten, die aus , � �� � 
 �
� � � �

� � � � ��
� � � � �

� � � � � � (5.59)

resultieren, zu verwenden, was in Abb. 5.17 veranschaulicht ist. Letztlich ist in
Abb. 5.18 der Signalflußgraph der resultierenden zweidimensionalen orientierungs-
selektiven Verarbeitungskette dargestellt.
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Abbildung 5.16: Vereinfachter Signalflußgraph der zweidimensionalen Rich-
tungsableitung auf rechtwinkligem Raster mit � � �

.
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Abbildung 5.17: Signalflußgraph der zweidimensionalen Richtungsableitung auf
hexagonalem Raster.
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Abbildung 5.18: Signalflußgraph der zweidimensionalen Verarbeitungskette.

Bei der zweidimensionalen Filterung ist zusätzlich zu der Ableitungskette bzgl.
der gewünschten Orientierung noch eine zu der Orientierung orthogonale Tief-
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paßfilterung ��� notwendig, um eine Orientierungsselektivität zu erreichen. An-
schaulich wird dadurch eine kontrollierte Überschneidung zweier Frequenzbän-
der mit einer benachbarten Orientierung erreicht. So ist beispielsweise die Über-
tragungsfunktion bis zu der zweiten Richtungsableitung in der Kette für die Ori-
entierung

� �
(Ableitung in die erste Koordinatenrichtung) im wesentlichen eine

Multiplikation einer isotropen Gaußfunktion mit � � � � ��L � � . Dadurch ist aber die
resultierende Übertragungsfunktion bzgl. der orthogonalen Frequenz (hier

L � ) für
eine Orientierungsselektivität i. allg. zu breit. Die biologische Realisierung stellt
eine zusätzliche Herausforderung dar, da durch das Gangliensignal als Eingangs-
signal der Ableitungskette immer eine Laplace-Ableitung eines gaußgefilterten
Signals zur Verfügung steht. Dies bedeutet somit aber immer eine Fremdkompo-
nente durch die 2. Ableitung bzgl. der orthogonalen Richtung. Durch die erwähnte
orthogonale Tiefpaßfilterung, welche näherungsweise als Integrator, also als Um-
kehroperation zur Differentiation aufgefaßt werden kann, wird die störende Kom-
ponente aber weitgehend unterdrückt. In Abb. 5.19 sind exemplarisch die resul-
tierenden Frequenzbänder für Orientierungen bis

� � �
und


L
�
�./ #�� EiH #��>" H #�� � 2

der geraden und ungeraden Ableitungsketten dargestellt. Bei dem ersten Auflö-
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Abbildung 5.19: Verhalten einer frequenz- und orientierungsselektiven Filterbank
im Frequenzbereich (Konturplot bei einer Dämpfung von 6 dB) auf der Basis der
geraden und ungeraden Ableitungsketten.

sungskanal

L
�
� # � E

macht sich die Anisotropie des LoG der Ganglienzellen
bemerkbar. Die Mittenfrequenzen liegen nicht auf einem Kreis und bei

� �
sowie� � �

müßte die orthogonale Filterung verstärkt werden. An dieser Stelle sollte aber
daran erinnert werden, daß im biologischen Vorbild keineswegs geordnete Struk-
turen der Filterbank gemessen wurden. Deshalb ist eine Realisierung optimaler
Frequenzbandaufteilung auch nicht unbedingt erstrebenswert. Hingegen ist mit
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der vorliegenden Modellierung eine biologienahe Verarbeitungskette entwickelt
worden, die den Bedürfnissen einer adaptiven Konturextraktion gerecht wird. In
Abb. 5.20 ist noch einmal abschließend das Frequenzverhalten der ursprünglichen
Modellierung und der unter Einsatz von Ableitungsoperatoren bei einer Adaption
gegenübergestellt.
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Abbildung 5.20: Übertragungsverhalten
� � P � der ursprünglichen Verarbeitungs-

kette (oben) und der kortikalen Ableitungskette (unten) bei variablen Rezeptor-
kopplungen �

� � � 	 �
csp (links), �

� � �
csp (mitte) und �

� � � csp (rechts).

5.4.3 Rekursive Strukturen retinaler Neuronen

In der entwickelten Verarbeitungskette kann durch eine Adaption der ersten Verar-
beitungsstufe (die Kopplung der Rezeptoren) insgesamt eine variable Extraktion
von orientierten Konturmerkmalen realisiert werden. Für die Rezeptorkopplung,
die in der Modellierung als Gaußtiefpaß eingeht, wurde bislang eine nichtrekur-
sive Filterstruktur (bzw. ein neuronales Feed-Forward Netz) verwendet. Da die
Filterwirkung adaptiv ist und die Größe der Impulsantwort (des rezeptiven Fel-
des) variabel ist, würde sich eine rekursive Struktur anbieten, biologisch gar als
sehr plausibel erscheinen. Mit einem rekursiven Filter kann z.B. ein Tiefpaß rea-
lisiert werden, bei dem allein durch die Werte und nicht die Anzahl der Filterko-
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effizienten die Grenzfrequenz des Filters eingestellt werden kann. Als rekursives
neuronales Netz bliebe hierdurch dann die Anzahl der synaptischen Verbindun-
gen, die auf ein Zielneuron konvergieren, konstant, nur die synaptischen Gewich-
te selbst verändern sich adaptiv und bewirken durch die rekursive Verschaltung
die gewünschte Filterwirkung. Zudem kann ein rekursives (2D) Digitalfilter auch
immer direkt durch seine Differenzengleichung als ein neuronales Verbindungs-
netzwerk interpretiert werden (siehe Kapitel 2).

In [Der93] und [vVYV98] werden verschiedene Realisierungen zweidimensiona-
ler Gaußtiefpaßfilter vorgeschlagen. Diese beruhen darauf, daß auf einem recht-
winkligen Abtastraster die Impulsantwort durch� � �  � 
 � � � � � � = � 
 � � � � 
��� � 
 
 � �


 

 	 �<� � � 
��� 
 
 � � � � � 
��� 
 


(5.60)

separierbar ist, und somit die zweidimensionale Filterung auf zwei eindimensio-
nale Filteroperationen zurückgeführt werden kann. Auf einem hexagonalen Ab-
tastraster ist allerdings die Impulsantwort nicht mehr in den Koordinatenrichtun-
gen separierbar, da hier gilt:� � �  � 
 � � � � � � = � 
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Im folgenden wird kurz vorgestellt, wie dennoch eine separierbare Verarbeitung
erreicht werden kann. Betrachtet man nämlich die Diagonalkoordinaten

�
des Ra-

sters
'

, die aus einer Drehung um
" � �� 0 �0 � � � � 	 E � E N 	 E � E	 E � E 	 E � E � � � �� � � (5.62)

hervorgehen, so ergibt sich die Beziehung0 �
�
C�0 �
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also ebenfalls eine separierbare Impulsantwort in den Diagonalkoordinaten. Somit
kann durch eindimensionale Gaußfilterung in den beiden Diagonalkoordinaten
des hexagonalen Rasters ebenfalls eine zweidimensionale Gaußfilterung erzielt
werden. Dies kann dann auch mittels eindimensionaler rekursiver Filter gesche-
hen. Hier ist zu erkennen, daß in den beiden Filterrichtungen allerdings unter-
schiedliche Filterstärken eingesetzt werden müssen, um insgesamt eine isotrope
zweidimensionale Filterantwort zu erhalten. Damit ist eine rekursive Realisierung
der Rezeptorkopplung auf der Basis eindimensionaler Filter auch auf einem hexa-
gonalen Abtastraster möglich.
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KAPITEL 6

Experimentelle Ergebnisse

In diesem Kapitel wird die Leistungsfähigkeit der in dieser Arbeit vorgestellten
biologienahen Verfahren zur Bildvorverarbeitung mit realen Kameradaten unter-
sucht. Der Schwerpunkt wird hier insbesondere auf die adaptive Vorfilterung mit
anschließender Konturextraktion gelegt, welche, wie man zeigen kann, die wich-
tigste Komponente einer robusten Merkmalsextraktion ist. Die Untersuchungs-
ergebnisse der übrigen in dieser Arbeit entwickelten Aspekte eines biologischen
oder technischen Systems, wie die Interpolation für ein hexagonales Raster, die Si-
mulation des nichtadaptiven Modells und der pulscodierten Mechanismen wurden
bereits direkt in den jeweiligen Kapiteln gegeben. Für den Vergleich mit bestehen-
den Verfahren soll die Verarbeitung hier exemplarisch auf einem rechtwinkligen
Abtastraster erfolgen. Wie im vorangegangenen Kapitel erläutert, sind die Struk-
turen jedoch jederzeit auf einem hexagonalen Raster implementierbar.

Bei der Gewinnung und Verarbeitung realer Kameradaten (Kameramodell teli
Micro-Camera CS3330) für die adaptive Rauschfilterung sind zusätzliche Beson-
derheiten zu beachten, auf die im ersten Abschnitt eingegangen werden soll. Hier
wird das Prinzip zur Messung des SNR mit gewissen Testmustern beschrieben,
was die Grundlage der quantitativen Beurteilung der Algorithmen ist und deshalb
viel Sorgfalt erfordert. Da die vorgestellte adaptive Strategie über die Helligkeit
der Bildinhalte gesteuert wird, ist hier auch die Kompensation des AGC (auto-
matic gain control) der Kamera von großer Bedeutung. Zudem wird anschließend
die Kompensation des FPN (Fixed Pattern Noise) behandelt, weil bei sehr dunklen
Szenen der systematische Anteil des Dunkelstromrauschens im Vergleich zum Si-
gnal nicht mehr zu vernachlässigen ist.

Für die vorgestellte Strategie zur adaptiven Rauschfilterung ist die Kenntnis der
Rauschparameter der Kamera vorausgesetzt. Wie in einem weiteren Abschnitt ge-
zeigt, können diese aber recht gut mit Hilfe von Testmustern und einem Regressi-
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onsansatz ermittelt werden.

Abschließend wird eine adaptive Filterung mit der vorgestellten biologienahen
Strategie durchgeführt und mit etablierten Standardverfahren verglichen. Dazu
wird zunächst die Leistungsfähigkeit bei der Verbesserung des SNR untersucht.
Anschließend werden die Ergebnisse der Konturdetektion vorgestellt.

6.1 Verarbeitung realer Kameradaten

Die vorgestellte Strategie zur adaptiven Rauschfilterung verwendet das Signal-zu-
Rauschverhältnis und die Beleuchtungsstärke, um die Filterung zu steuern. Aus
diesem Grund wird zunächst auf die schwierige Bestimmung des SNR und auf
die Bestimmung des Verstärkungsfaktors der Kamera eingegangen. Anschließend
wird die Kompensation des Dunkelstromrauschens besprochen, um die Gültigkeit
des Rauschmodells auch in extrem dunklen Situationen zu gewährleisten.

6.1.1 Meßbilder zur Schätzung des SNR

Um die vorgestellten Algorithmen im Einsatz untersuchen zu können, ist die Ver-
wendung von Testmustern notwendig, auf denen definierte weiße und schwar-
ze Rechtecke oder Quadrate aufgedruckt sind (Abb. 6.1). Die aufgenommenen
Bilddaten enthalten immer bereits die additive Überlagerung von Original- und
Rauschsignal. Anhand der Testmuster ist es aber möglich, Schätzungen beider Si-
gnale getrennt voneinander zu berechnen, um dann z. B. eine Schätzung für das
Verhältnis der Signalleistungen (SNR) angeben zu können.
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Abbildung 6.1: Kamerabilder verwendeter Testmuster. In Regionen mit nähe-
rungsweise konstantem Signal � � � ��� ��� V kann das SNR geschätzt werden.

Von dem Testmuster ist bekannt, daß das Originalsignal � � der Szene (der Grau-
wert des Testmusters selbst) in definierten, uns bekannten Regionen konstant über
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den Ort ist. Daher sollte eine Schätzung dieses Signals und des Rauschens durch
einfache örtliche Mittelwertbildung

� � � 	 E � � 
 (6.1)
� � " � � C � � � 
 � � 	 � N E � � 


möglich sein. Für diesen Zweck ist aber ein gleichmäßig ausgeleuchtetes Testbild
erforderlich, was in der realen Messung natürlich nie erreicht werden kann. In
der Tat hat sich gezeigt, daß diese Bedingung sehr schwer erfüllbar ist. Hierauf
sollte also besonders geachtet werden. Trotz des Einsatzes spezieller Fotolampen,
die ein diffuses Licht erzeugten, wiesen die Messungen leicht inhomogene Aus-
leuchtungen auf. Um dennoch eine gute Schätzung des Originalsignals und des
Rauschens zu erhalten, musste das Meßfenster entsprechend klein gewählt wer-
den, damit darin das Signal näherungsweise konstant ist.

Es wurde eine Vielzahl von Testbildern mit verschiedenen, abnehmenden Be-
leuchtungsstufen � mittels einer dimmbaren Fotolampe in einer abgedunkelten
Laborumgebung aufgenommen. Für Kompensationszwecke waren zu jeder Be-
leuchtung jeweils ein Bild mit und ohne AGC (automatic gain control) notwen-
dig. Darüber hinaus diente eine Reihe von Dunkelbildern der Kompensation des
Dunkelstrommusters FPN (fixed pattern noise).

Eine Mittelung einer statischen Szene über die Zeit scheint ebenfalls eine alterna-
tive Methode für die Schätzung der Signal- und Rauschleistung zu sein [Eis03].
Erste Versuche haben gezeigt, daß in dunklen verrauschten Situationen minde-
stens 100 Bilder benötigt werden, um mit einer pixelweisen Mittelung das Rau-
schen zu unterdrücken. Das Resultat ist dann eine Schätzung des eigentlichen
Signals � � � , welches hier nicht zwingend konstant bzgl. des Ortes sein muß. Ei-
ne Subtraktion dieser Schätzung von einem verrauschten Bild würde dann auf
das Rauschsignal führen. Der Szeneninhalt darf sich dabei allerdings nicht än-
dern. Hierfür muß die Kamera fest montiert sein, um Einflüsse durch Vibrationen
zu vermeiden. Diese einschränkenden Bedingungen sind aber nur für Analyse-
zwecke notwendig, nicht etwa in einer späteren Anwendung. Der Ansatz soll hier
nicht weiter verfolgt werden, da er in [Eis03] detailliert untersucht wird.

6.1.2 Kompensation des AGC

In dunklen Szenen verstärkt die Elektronik der Kamera üblicherweise automatisch
das gesamte Signal, d.h. das Originalsignal � � und das Rauschsignal

�
, bevor es

in ein Videosignal wie PAL umgesetzt wird. Natürlich ist dieses sogenannte AGC
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(automatic gain control) notwendig, um den zur Verfügung stehenden Signalpe-
gel auszunutzen und somit das Videosignal robust zu machen gegen Störungen
auf dem Übertragungskanal (Kabel). Weiterhin ist es dadurch möglich, den ma-
ximalen Dynamik- oder Quantisierungsbereich der Signalamplitude bei der Digi-
talisierung durch den Framegrabber zu nutzen. In Abb. 6.2 ist ein Beispiel einer
dunklen Szene ohne und mit AGC dargestellt. Es ist zu erkennen, daß ohne AGC
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Abbildung 6.2: Aufnahme einer dunklen Szene ohne und mit automatischer Pe-
gelverstärkung des Kamerasystems.

der Dynamikbereich viel zu gering für eine sinnvolle Signalverarbeitung ist. Das
AGC hingegen verstärkt den Signalpegel, aber gleichzeitig auch das Rauschen.
Zur besseren Darstellung wurde hier die Szene etwas aufgehellt.

Leider ist es aber nicht möglich, Szenen unterschiedlicher Beleuchtung � zu ana-
lysieren und zu vergleichen, wenn die interne Verstärkung der Kamera nicht be-
kannt ist. Für diesen Zweck ist es wichtig, eine gewisse Kontrolle über das AGC
der Kamera zu besitzen, um z. B. den Verstärkungsfaktor der Kamera auszule-
sen. Moderne Kameras verfügen meist über Schnittstellen zur Kontrolle des AGC
[Ima]. Da die vorliegenden Untersuchungen aber mit statischen Bildszenen ge-
macht wurden, war eine echtzeitfähige Kontrolle des AGC nicht notwendig. Hier
war ein Ausschalten des AGC ausreichend. Durch eine Aufnahme mit AGC und
eine weitere Aufnahme mit ausgeschaltetem AGC war es hier möglich, implizit
die Verstärkung herauszurechnen. Wie bereits erwähnt, ist das AGC für dunkle
Szenen sehr wichtig, da sonst eine sehr schlechte Amplitudenauflösung nach der
Digitalisierung zu unbrauchbaren Ergebnissen führt. Diese Tatsache spiegelt sich
auch in dem Histogramm des Kamerabildes mit AGC in Abb. 6.3 (links) und in
dem Bild ohne AGC (mitte) wider. Werden jedoch bei den Testmessungen jeweils
ein Bild der Szene mit AGC � AGC und eines ohne AGC � NoAGC aufgenommen, so
ist es möglich, das AGC-Bild (bei dunkler Szene) auf ein korrektes � zu skalieren,
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Abbildung 6.3: AGC Kompensation. links: Histogramm eines realen Kamerabil-
des bei eingeschaltetem AGC. mitte: Histogramm eines Bildes ohne AGC. rechts:
Histogramm nach der AGC Kompensation.

um dessen hohe Amplitudenauflösung nutzen zu können. Mit der Transformation� comp
�(')��� � NoAGC,min

C 	�	�	� � AGC
�(')� N � AGC,min

� �.� � NoAGC
� ')� N � NoAGC,min

�
� � � AGC

� ')� N � AGC,min
� (6.2)

und � NoAGC,min
� � ���= � NoAGC

�(':�MH � AGC,min
� � ���= � AGC

�(')�MH
(6.3)

ist diese AGC-Kompensation mit recht guter Näherung möglich. Bei der verwen-
deten Kamera war das Minimum der Grauwerte mit und ohne AGC etwa gleich
groß, also � NoAGC,min 	 � AGC,min. Das Histogramm nach der Kompensation in
Abb. 6.3 (rechts) hat offensichtlich den selben Signalpegel wie das Bild ohne
AGC, weist aber die gute Amplitudenauflösung des AGC-Bildes auf (links).

6.1.3 Kompensation des FPN

Für extrem dunkle Szenen ist in einem weiteren Schritt eine Dunkelbildkompen-
sation notwendig. Wir betrachten dazu im folgenden den Dunkelstrom (dark cur-
rent), welcher als Überlagerung eines systematischen Anteils � DC und eines mit-
telwertfreien Rauschprozesses aufgefaßt wird [Kam]. Letzterer kann in dem be-
trachteten Rauschmodell den übrigen Rauschprozessen zugeordnet werden. Um
aber den systematischen Anteil des Dunkelstromes, der bislang vernachlässigt
werden konnte, zu berücksichtigen, muß das Rauschmodell entsprechend erwei-
tert werden zu � �./ � � � C � DC 2 C " � � C � � � 
 � � 	 (6.4)
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Der Erwartungswert des Dunkelstromes � DC, welcher auch als FPN (Fixed Pat-
tern Noise) bezeichnet wird, variiert mit dem Ort

'
und hat seine Ursache in der

irregulären Kristallstruktur des CCD. Deshalb muß zunächst mit einem Testdaten-
satz von (hier 10) Dunkelbildern, welche durch Verwendung eines lichtundurch-
lässigen Objektivdeckels gewonnen werden können, die systematische Kompo-
nente � DC geschätzt werden. Dies geschieht durch pixelweise Mittelung über die-
se Bilder, um die Zufallskomponente zu eliminieren. Nach einer einfachen Sub-
traktion der gemittelten Dunkelbilder von dem aktuellen Kamerabild können wir
wieder die Gültigkeit des Kameramodells (5.1) sicherstellen. In Abb. 6.4 ist die
Schätzung des Dunkelbildes dargestellt.
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Abbildung 6.4: Schätzung des Dunkelbildes (FPN=Fixed Pattern Noise) der ver-
wendeten Kamera.

Ohne die beschriebene Kompensation ist das verwendete Rauschmodell nicht gül-
tig und die Ergebnisse weichen bei realen Kameradaten recht stark von den simu-
lierten Szenen ab. Wie in [TEDH02] zu sehen, führt die Kompensation jedoch zu
genaueren Schätzungen des Signals und des Rauschens, so daß die Simulations-
ergebnisse erreicht werden können. Dies ist ein Indiz dafür, daß das verwendete
Rauschmodell eine gute Näherung der realen Verhältnisse wiedergibt. Im folgen-
den Abschnitt sollen anhand von realen Testmustern die Parameter

"
und



des

Modells geschätzt werden.

6.2 Schätzung der Rauschparameter

Für die adaptive Filterung mittels des expliziten Steuersignals (5.31), aber auch
für die Verifikation des Modells ist es wichtig, die Rauschparameter

"
und



zu schätzen. Dazu werden Meßbilder unterschiedlicher Beleuchtungen � � (hier
�
� � 	�	�	 E$E

) aufgenommen, in denen Regionen mit einem konstanten Original-
signal � � vorkommen. Anschließend wird eine Kompensation des AGC und FPN
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durchgeführt. Eine Schätzung des Signals bzw. des Rauschens wird gemäß (6.1)
berechnet, wobei sich die zugehörigen Leistungen entsprechend ergeben. Unter
dieser Annahme ergäbe sich mit dem verwendeten Rauschmodell die Leistung
des Gesamtrauschens für jede Beleuchtungssituation � � zu

�
�

� P � � " � C � �� 
 � � �� (6.5)

und damit das überbestimmte Gleichungssystem
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(6.6)

Mittels linearer Regression kann dann eine Schätzung im Sinne der kleinsten Feh-
lerquadrate für die Unbekannten

" �
und


 �
gefunden werden. Das Vorzeichen

spielt hierbei keine Rolle, da es keinen Einfluß auf die Rauschleistung hat. Somit
können die positiven Wurzeln der Regressionslösungen verwendet werden. Für
die eingesetzte Kamera ergeben sich die folgenden Schätzungen für die Rausch-
parameter "

	
� 	 " � � � � � �

(6.7)

	 � 	 ��� � � � � � H

(6.8)

wobei diese sich auf Bilddaten beziehen, die auf eins normiert sind. Das SNR
kann für die Meßdaten ebenfalls angegeben werden, da die Leistung des Signals

� �� � �� � E � � � 
 � � ] �
� � (6.9)

direkt durch das Quadrat des Mittelwertes der Grauwerte in den betrachteten Re-
gionen geschätzt werden kann. Betrachtet man nun die Schätzungen des SNR an-
hand der Meßdaten und anhand des Modells in Abb. 6.5, so scheint das Modell des
Rauschens hier sehr erfolgreich zu sein. Es wäre sicher sinnvoll, weitere Untersu-
chungen anzustellen, die Aufschluß darüber geben, ob die geschätzten Rauschpa-
rameter konstant über die Zeit sind oder sich unter Umständen durch Erwärmung
der Kamera verändern. Sollte dies der Fall sein (Thermisches Rauschen), so ist al-
lerdings nach einer gewissen Aufwärmphase ein stabiler Zustand zu erwarten. Für
die vorgestellten experimentellen Ergebnisse kann daher stets davon ausgegangen
werden, daß hier keine oder nicht meßbare Einflüsse vorhanden sind.
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Abbildung 6.5: Messungen des SNR einer Verdunkelungssequenz bei realen Ka-
merabildern (o) und mit geschätzten Rauschparametern (–).

6.3 Adaptive Filterung

Mit Hilfe der geschätzten Rauschparameter der verwendeten Kamera ist eine
adaptive Rauschunterdrückung mittels des vorgestellten expliziten Steuersignals
möglich. Anhand von Testmustern wird zunächst die erfolgreiche adaptive Ver-
besserung des Signal-zu-Rauschabstandes demonstriert und mit einem etablier-
ten Standardverfahren, dem adaptiven WIENER-Filter nach LEE [Lim90, Lee80,
Mat], verglichen. Anschließend werden komplexere Szenen auf diese Weise vor-
gefiltert, um eine Konturextraktion in extrem dunklen Situationen durchzuführen.
Hier kommt zunächst der CANNY-Operator [Can86, Mat] zum Einsatz, um die
Leistungsfähigkeit der adaptiven Rauschfiltermethoden bewerten zu können. Dar-
über hinaus werden die Ergebnisse des in Kapitel 5 vorgestellten biologienahen
Systems zur Extraktion von orientierten Konturmerkmalen gezeigt, das für ein
adaptives Verhalten entwickelt wurde.

6.3.1 Verbesserung des SNR

Wie in Abschnitt 5.3 an simulierten Szenen veranschaulicht und theoretisch analy-
siert, erwarten wir durch eine Tiefpaßfilterung eine Reduktion der Rauschleistung.
Fällt die Leistung des Signals dann in kleinerem Maße ab, so wird das SNR ver-
bessert. In Abb. 6.6 wird dieses Verhalten mit der Verdunkelungssequenz experi-
mentell bestätigt. Der Parameter der Kurvenschar ist die Beleuchtung � . Um die
Leistungen in den realen Kameradaten schätzen zu können, werden hier definierte
Testmuster verwendet. Aus diesen Meßdaten könnte nun ein Steuersignal durch
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Abbildung 6.6: Auswirkung der Tiefpaßfilterung einer realen Szene unter ver-
schiedenen Beleuchtungsverhältnissen. links: Reduktion der Rauschleistung.
rechts: Verbesserung des SNR.

einen Optimierungsprozeß gemäß (5.28) abgeleitet und eine adaptive Filterung
mit realen Kameradaten durchgeführt werden. Dies soll an dieser Stelle nicht im
Detail betrachtet werden. Der interessierte Leser sei hier auch auf [Eis01] verwie-
sen. Das Ergebnis einer adaptiven Verbesserung des SNR einer simulierten Szene
basierend auf solch einem Steuersignal wurde bereits in Abb. 5.6 verdeutlicht.

Wie eine Vielzahl weiterer Simulationen zeigt, sind die Ergebnisse einer adap-
tiven Verbesserung des SNR bei natürlichen Szenen einerseits und Testmustern
mit konstanten Signalbereichen andererseits qualitativ recht ähnlich [Eis01]. Dies
ist ein Grund, warum im weiteren Verlauf dieser Arbeit die Verwendung eines
expliziten Steuersignals (5.31) der Konstruktion eines Steuersignals mittels eines
Optimierungsprozesses (5.28) vorgezogen wird. Durch den Einsatz des explizi-
ten Steuersignals kann zudem ein gewünschtes SNR vorgegeben werden, was für
den praktischen Nutzen ein wichtiger Vorteil ist. Die Rauschparameter der Ka-
mera, die hierfür notwendig sind, wurden bereits im vorangegangenen Abschnitt
experimentell bestimmt.

In Abb. 6.7 (links) ist die adaptive Verbesserung unter Verwendung eines expli-
ziten Steuersignals dem Ergebnis eines adaptiven WIENER-Filters und dem SNR
ohne Filterung gegenübergestellt. Mit dem WIENER-Filter und einer Nachbar-
schaft von

� � �
fällt das SNR unterhalb � � � 	 �

zunächst langsam, dann stärker
ab und erreicht bei der extrem dunklen Situation ( � min

� � 	 � � " �
) nur noch

���
dB.

Durch Erhöhung des Nachbarschaftsparameters auf
� � � � �

verschiebt sich die
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Abbildung 6.7: Adaptive Verbesserung des SNR. links: Vorgestellte Strategie (o)
im Vergleich zu einem WIENER-Filter (*) und dem Verhalten ohne Filterung.
rechts: Adaptiv eingestellter Filterparameter (Steuersignal).

Kurve insgesamt einige dB nach oben und bei � min werden noch
� � 	 �

dB ge-
messen (siehe Tabelle 6.1). Bei dieser großen Nachbarschaftskopplung und der
damit verbundenen Verschiebung nach oben wird allerdings bei helleren Szenen
eine sehr starke Filterung durchgeführt, obwohl dies nicht unbedingt notwendig
ist. Im Gegensatz dazu ist die vorgestellte adaptive Filterung auf der Basis des ex-
pliziten Steuersignals sehr erfolgreich. Das gewünschte SNR (zum Vergleich hier
auf

� �
dB gesetzt) kann hier über den gesamten Bereich nahezu gehalten werden.

Erst bei extrem dunklen Szenen fällt das SNR schließlich auf etwa
" �

dB ab. Dies
ist aber im Vergleich zu der ungefilterten Szene (SNR

� � 	 �
dB) immerhin noch

eine Verbesserung um etwa
� �

dB. Der adaptiv eingestellte Filterparameter � � ist
in Abb. 6.7 (rechts) gezeigt und spiegelt das verwendete Steuersignal wider.

Ein Vergleich der Berechnungsdauer der gegenübergestellten Verfahren zur ad-
aptiven Rauschfilterung zeigt Tabelle 6.1. Die Berechnungen wurden mit Matlab
durchgeführt. Die Zeitangaben lassen daher nur Aussagen über relative Verhält-
nisse zu, absolute Zeitmessungen insbesondere im Hinblick auf Echtzeitfähigkeit
können nicht gemacht werden und waren hier auch nicht Gegenstand der Betrach-
tungen. Bei dem adaptiven WIENER-Filter kann durch manuelle Vergrößerung
der Nachbarschaft auf

� � � � �
eine Verbesserung der Qualität erreicht werden,

wodurch der Berechnungsaufwand allerdings mehr als verdoppelt wird. Die Bild-
größe geht etwa linear in die Berechnungsdauer ein. Die vorgestellte Strategie
wurde mittels des expliziten Steuersignals durchgeführt und als nichtrekursives
(FIR) und rekursives (IIR) Filter implementiert. Der Berechnungsaufwand ergibt
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Filtermethode Berechnungsdauer � / � 2 SNR � P dB

��� � � � ��� � � E � � � E
bei � min

WIENER
� � � E 	 � � 	 � ���
� � � � � " 	 � E 	 � � � 	 �

vorgestellte Strategie
" �

dB FIR
� 	 � � 	 � � � 	 "

IIR
� 	 � � 	 � � � 	 "

� �
dB FIR � 	

E � 	 � � � 	 "
IIR

� 	 � � 	 � � � 	 "
Tabelle 6.1: Vergleich der Resultate der adaptiven Rauschfilter unter Matlab.

sich hier hauptsächlich durch die Filterroutine und ist als FIR-Filter höher als bei
dem WIENER-Filter. Insbesondere bei einem gewünschten SNR von

� �
dB ergibt

sich durch die langen Impulsantworten ein höherer Berechnungsaufwand. Aller-
dings lassen sich dadurch auch wesentlich bessere Ergebnisse bei der adaptiven
Rauschfilterung erzielen. Daß man nicht unbedingt einen höheren Preis für die
überzeugenden Filterergebnisse bezahlen muß, zeigt schließlich die Variante mit-
tels einer IIR-Implementation. Hier sind die Berechnungszeiten nur abhängig von
dem Filtergrad, also unabhängig von dem gewünschten SNR bzw. von der Filter-
stärke und erheblich kürzer als die des WIENER-Filters.

6.3.2 Robuste Konturextraktion

Abschließend soll eine Konturextraktion durchgeführt werden. Eine vorgeschal-
tete adaptive Rauschfilterung soll hierfür das Ergebnis verbessern. Es wird hier
der Schwerpunkt auf eine qualitative Aussage gelegt. Quantitative Betrachtun-
gen, wie z. B. die Verbesserung einer konturbasierten Objekterkennung bleiben
hingegen weitergehenden Untersuchungen überlassen.

Exemplarisch wird eine sehr dunkle Szene mit einer Beleuchtung von � 	
� 	 � �

verwendet werden, die in Abb. 6.8 (links) gezeigt ist. Da es sich um eine komplexe
Szene handelt, kann das Signal-zu-Rauschverhältnis nicht aus den Bilddaten ge-
schätzt werden. Mittels � kann aber aus den Messungen nach Abb. 6.5 ein Schätz-
wert von SNR 	

E �
dB ermittelt werden. Da hier die Beleuchtungsstärke aus dem

globalen Mittelwert der Szene ermittelt wird, kann das tatsächliche lokale SNR
verständlicherweise in helleren oder dunkleren Bildregionen in geringem Maße
nach oben oder unten davon abweichen. Die Extraktion von Kantenmerkmalen,
z. B. mittels des CANNY-Operators, ergibt ein unbrauchbares Resultat, wenn sie
direkt auf dem verrauschten Szenenbild durchgeführt wird (Abb. 6.8 (rechts)).
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PSfrag replacements
PSfrag replacements

Abbildung 6.8: Beispiel einer Konturextraktion mittels des CANNY-Operators in
einer sehr dunklen und daher sehr verrauschten Szene.

Wie zu erwarten, ist eine vorherige Rauschunterdrückung unerläßlich. Als Refe-
renz verwenden wir hier zunächst das adaptive WIENER-Filter, welches sich als
Standardwerkzeug etabliert hat und vielfach eingesetzt wird. Bei extrem schwach
beleuchteten Szenen mit niedrigem SNR sind die Grenzen des Verfahrens aber
schnell erreicht, wie in Abb. 6.9 zu sehen ist. Zwar kann mittels der Nachbar-
schaft, in der die lokale Bildstatistik berechnet wird, die Qualität etwas verbessert
werden, in den Konturbereichen ist allerdings noch eine recht hohe Rauschlei-
stung vorhanden. Zudem ist dieser Freiheitsgrad von Hand zu optimieren, so daß
hier der Vorteil einer automatischen Adaption verloren geht.

Über die gemessene Beleuchtungsstärke � 	
� 	 � �

kann nun adaptiv über das
explizite Steuersignal für ein gewünschtes SNR die erforderliche Filterstärke er-
mittelt werden. Da in gut ausgeleuchteten Daten der verwendeten Kamera ein
typisches SNR von

" � 	�	�	 � �
dB gemessen werden konnte, sollen diese Werte hier

als gewünschtes SNR der Adaption verwendet werden. Um dieses zu erreichen,
wird eine Filterstärke von � � 	

� 	�	�	 � 	 �
adaptiv eingestellt, und es ergibt sich das

Ergebnis der Rauschreduktion in der linken Spalte von Abb. 6.10 für
" �

(oben)
bzw.

� �
dB (unten). In der rechten Spalte sind die Ergebnisse einer anschließen-

den Konturextraktion dargestellt. Hier ist gegenüber Abb. 6.8 und Abb. 6.9 eine
enorme Verbesserung der Qualität des Kantenbildes feststellbar. Eine Verbesse-
rung des SNR erhöht hier offensichtlich die Robustheit der Konturextraktion ge-
genüber Rauschen. Hochfrequente Details in der Szene gehen dabei aber natürlich
weiter verloren. Eigene Untersuchungen haben gezeigt, daß ein SNRdes

� " �
dB

für das vorliegende Kameramodell für die meisten Situationen durchaus ausrei-
chend ist.



6.3 Adaptive Filterung 139
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Abbildung 6.9: Rauschunterdrückung mittels eines adaptiven WIENER-Filters zur
Verbesserung einer anschließenden Konturextraktion. Die Qualität kann durch die
Nachbarschaftsgröße (oben: 3x3, unten: 11x11) manuell optimiert werden.

Statt des CANNY-Operators wird abschließend das in dieser Arbeit entwickelte
biologische kortikale Modell auf der Basis der Ableitungsketten als Konturdetek-
tion verwendet. Für ein gewünschtes SNR von

" �
dB wurde eine Rauschunter-

drückung durchgeführt und anschließend die Ableitungen in horizontaler Rich-
tung

� �
gebildet, was in Abb. 6.11 zu sehen ist. Hierdurch werden alle verti-

kalen Konturmerkmale aus der stark verrauschten Szene mit Erfolg extrahiert.
Die Orientierungsauflösung wurde hier exemplarisch zu

� � �
( � �

� � E
) und� � �

( � �
� � 	 � ) gewählt. An dieser Stelle sollte auch erwähnt werden, daß ei-

ne Skelettierung wie in [Göt00] oder eine Non-Maximum-Suppression wie bei
dem CANNY-Operator natürlich ebenfalls ein pixelbreites Konturergebnis liefern
könnte, falls die aufbauende Objekterkennung des Bildverarbeitungssystems dies
fordert. Darauf soll im Rahmen dieser Betrachtungen aber verzichtet werden.
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Abbildung 6.10: Rauschunterdrückung mittels der vorgestellten expliziten Adap-
tion zur Verbesserung einer anschließenden Konturextraktion (oben:

" �
dB, unten:� �

dB).

PSfrag replacements
PSfrag replacements

Abbildung 6.11: Adaptive Rauschunterdrückung (SNRdes
� " �

dB) und anschlie-
ßende orientierte Konturextraktion (

� �
) auf der Basis der Ableitungsketten mit

einer Orientierungsauflösung von
� � �

bzw.
� � �

.
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6.4 Fazit

Mit den vorliegenden experimentellen Ergebnissen konnte demonstriert werden,
daß eine adaptive Verbesserung des SNR mit dem expliziten Steuersignal einfach
und effizient durchgeführt werden kann. Trotz der gemachten Näherungen in der
theoretischen Herleitung und dem Einsatz einer globalen Filterung auf der Ba-
sis des Bildmittelwertes überzeugen die Resultate auch bei realen Kameraszenen.
Gerade bei extrem dunklen und damit extrem verrauschten Bilddaten versagen
etablierte Standardverfahren, wie das adaptive WIENER-Filter. Zudem konnte die
Strategie durch einen Vergleich mit den biologischen Mechanismen motiviert und
begründet werden. Ein Nachteil des WIENER-Filters scheint die Einschränkung
zu sein, daß die Rauschleistung bekannt sein muß, um diese Methode effizienter
anzuwenden. Hier wäre eine Kombination aus dem vorgestellten expliziten Steu-
ersignal und dem WIENER-Filter denkbar, da über die Helligkeit � theoretisch
auch die Rauschleistung geschätzt werden könnte. Dieses Vorgehen verspricht ei-
ne Verbesserung des lokal arbeitenden WIENER-Filters. Dieser Sachverhalt sollte
in weiteren Arbeiten näher untersucht werden.

Es konnte experimentell gezeigt werden, daß durch eine Verbesserung des SNR,
was die Grundlage der vorgestellten Strategie ist, ebenfalls eine deutliche Verbes-
serung in der Qualität von extrahierten Konturmerkmalen erzielt werden kann. Mit
diesen Daten ergibt sich dann offensichtlich auch eine robustere Objekterkennung:
Eine Kantendetektion ohne effektiv arbeitende, adaptive Rauschfilterung führt zu
unbrauchbaren Ergebnissen und läßt keine robuste Repräsentation des Szenenin-
haltes anhand der Konturmerkmale zu. Die vorgestellte Strategie verspricht daher
nicht nur eine Verbesserung des SNR, sondern auch ein robustes Konturergebnis.

Wird die betrachtete Rauschfilterung mit nichtrekursiven Filtern implementiert,
so ergeben sich sowohl im biologischen Vorbild als auch in technischen Syste-
men bei großen Filterstärken und dunklen Szenen ineffiziente Algorithmen. Zu-
dem kann ein adaptives FIR-Filter nicht sehr gut als biologisches Neuronales Netz
motiviert werden. Aus diesem Grund bieten sich gerade hier rekursive neurona-
le Strukturen bzw. rekursive Filter an. Bei diesen Strukturen ist der Aufwand an
synaptischen Verbindungen bzw. an arithmetischen Operationen unabhängig von
der Filterstärke. Deshalb ergeben sich hier wesentlich kürzere Berechnungszeiten
auch im Vergleich zu dem WIENER-Filter (siehe Tabelle 6.1), was im Hinblick
auf echtzeitfähige Anwendungen von großer Bedeutung ist.
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KAPITEL 7

Zusammenfassung und
Ausblick

Die Leistungsfähigkeit der visuellen Wahrnehmung des menschlichen Sehsystems
ist technischen Ansätzen bislang noch weit überlegen. Ein Grund hierfür ist in
der Komplexität biologischer Systeme zu suchen, deren Funktionsweise wir auch
in naher Zukunft sicherlich noch nicht wirklich im Detail verstehen werden. Die
Entwicklung von Modellen und Hypothesen biologischer Strukturen ist allerdings
stets eines der ehrgeizigsten Bestrebungen aktueller Forschung, mit dem Zweck,
unsere Kenntnisse über biologische Abläufe zu erweitern und zumindest Teile der
überlegenen Strukturen für technische Aufgaben nutzbar zu machen. In der indu-
striellen Bildverarbeitung spielen daher zunehmend biologisch motivierte Metho-
den eine bedeutende Rolle.

Ziel der vorliegenden Arbeit war eine systemtheoretische Beschreibung funda-
mentaler Verarbeitungspfade höher entwickelter biologischer Sehsysteme insbe-
sondere unter dem Gesichtspunkt technischer Fragestellungen der Bildverarbei-
tung. In diesem Rahmen wurden die Eigenschaften des biologischen Vorbildes
hinsichtlich der Extraktion von orientierten Konturmerkmalen herausgearbeitet.
Als wesentliche Unterschiede zu bisherigen technischen Ansätzen sind die vor-
teilhafte hexagonale Bilderfassung und Verarbeitung, die vielversprechende neu-
ronale Informationsverarbeitung durch pulscodierte Signale und wichtige adapti-
ve Mechanismen zur robusten Rauschminderung bei extrem dunklen Szenen si-
gnaltheoretisch untersucht worden.

Auf einem biologisch und systemtheoretisch motivierten hexagonalen Abtastras-
ter, welches viele Vorteile bietet, wurde eine plausible, massiv parallele Archi-
tektur der Signalverarbeitung vorgestellt, wie sie im menschlichen Sehsystem im
Laufe der Evolution entstanden sein könnte. Das Modell ist durch eine kaskadier-
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te Topologie gewisser Subfilter bzw. Neuronenschichten charakterisiert. Es konn-
te gezeigt werden, daß für die Realisierung von rezeptiven Feldern, die denen
der Ganglienzellen in der Netzhaut und der simplen Zellen im visuellen Cortex
entsprechen, lediglich nichtrekursive Neuronenverbindungen bzw. nichtrekursive
Digitalfilter ausreichend sind. Die Parameter des Modells konnten entweder direkt
mit der Hilfe von Ergebnissen physiologischer Experimente oder mittels eines Ap-
proximationsansatzes näherungsweise gefunden werden. Im Hinblick auf techni-
sche Sehsysteme bietet die präsentierte Architektur neben der überlegenen hexa-
gonalen Datenrepräsentation eine Reihe nützlicher Eigenschaften, die im wesent-
lichen mit der kaskadierten Struktur zusammenhängen. Hierzu zählt zum einen die
zusätzliche Möglichkeit der parallelen Abarbeitung der Daten bei Bildsequenzen,
was direkt die hohe Effizienz des biologischen Systems widerspiegelt. Zum ande-
ren werden nicht nur die eigentlichen Zielsignale (Konturmerkmale der simplen
Zellen) durch das Netz berechnet, die Struktur bietet darüber hinaus den Zugang
zu wertvollen Zwischensignalen, die, wie in der Biologie, für andere Bildverar-
beitungsaufgaben weitergenutzt werden können. Als Beispiel sei hier das Signal
der Ganglienzellen genannt, welches in der Natur u.a. für Blicksteuerungskonzep-
te eingesetzt wird. Wie in [Har82] gezeigt, sollten sich hieraus aber auch Auflö-
sungspyramiden konstruieren lassen. Zwischensignale stellen daher einen Gewinn
an Effizienz dar, da sie in der kaskadierten Struktur automatisch mitberechnet
und genutzt werden können. Da die Signale der Ganglienzellen auf viele Arten
simpler Zellen unterschiedlicher Orientierung und Selektivität konvergieren, birgt
dies ebenfalls ein enormes Potential an Einsparungen von Neuronenverbindungen.
Vergleicht man dies mit einer Implementation, bei der jeder Typ simpler Zellen
für sich realisiert ist, so ist festzustellen, daß deutlich weniger arithmetische Ope-
rationen notwendig sind. Dies liegt darin begründet, daß in der Kaskade bereits
berechnete Signale für aufbauende Verarbeitungsschritte vielfach benutzt werden
können.

In einem weiteren Schritt konnte eine Strategie für die Erweiterung linearer Über-
tragungssysteme auf eine pulscodierte Verarbeitung entwickelt werden. Dadurch
ist es möglich, bei Bedarf die Zeit als weitere Informationskomponente auch in
das vorgestellte lineare Modell der frühen visuellen Verarbeitung einzubringen,
was hierdurch natürlich an Biologienähe gewinnt. Da aber die Berechnung solch
großer, massiv paralleler pulscodierter neuronaler Netze auf sequentiell arbeiten-
den Standardrechnern nur schwer möglich ist, wurde zudem das Netzwerk mit
Erfolg auf einer in der Arbeitsgruppe entwickelten Neurocomputerarchitektur im-
plementiert. Dieser ParSPIKE basiert auf parallel arbeitenden digitalen Signal-
prozessoren und verwendet das Modellneuron von ECKHORN. Die experimentel-
len Untersuchungen zeigten allerdings zunächst, daß durch die stets vorhande-
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nen Quantisierungsmaßnahmen bei der digitalen Realisierung und den Einschrän-
kungen der verwendeten Hardwarearchitektur die Antworten der simplen Zel-
len recht stark von den gewünschten GABOR-Antworten abwichen. Aus diesem
Grund wurde das bekannte ECKHORN-Neuron für die vorliegende Implementati-
on modifiziert und verbessert. Ein speziell entworfener Spike-Decoder, dessen Al-
gorithmus als Tiefpaßfilter in Wellendigitalrealisierung interpretiert werden kann,
konnte hierbei für diesen Zweck die numerischen Ungenauigkeiten minimieren.
Darüber hinaus ließ sich auch die Einschwingzeit des Spike-Decoders, welche
sich auf das dynamische Verhalten der Simulation und letztlich auch auf die ge-
samte Simulationsdauer niederschlägt, deutlich verkürzen. Hierdurch ist nun die
effiziente Simulation eines komplexen Netzwerkes zur Verarbeitung visueller Da-
ten möglich, welches ein gaborähnliches Verhalten auf einem hexagonalen Ab-
tastraster mit einer pulscodierten Informationsverarbeitung kombiniert. Es steht
also ein System zur Verfügung mit dem z.B. die für Bildverarbeitungsaufgaben in-
teressanten Synchronisationseffekte simpler Zellen effizient studiert werden kön-
nen.

Der dritte Schwerpunkt widmete sich der Rauschunterdrückung, welche stets als
Vorstufe eines nachgeschalteten Systems zur Konturextraktion eingesetzt werden
sollte, wie es auch in der bisherigen Modellierung stattgefunden hat. Um gegen-
über Veränderungen der Beleuchtungsbedingungen einer betrachteten Szene ro-
bust zu sein, ist allerdings eine adaptive Rauschfilterung von großem Interesse.
Die hierzu entwickelte Strategie basiert auf dem biologischen Mechanismus der
Photorezeptoren, deren rezeptive Felder sich an die Lichtverhältnisse anpassen,
um so bei dunklen Szenen, d. h. vermehrtem Rauschen eine stärkere Rauschfil-
terung durchzuführen. Theoretische Betrachtungen führten hier zu einem geeig-
neten und einfach zu implementierenden Kontrollmechanismus für ein gegebenes
Rauschmodell. Trotz der notwendigen Näherungen in der theoretischen Herlei-
tung und dem Einsatz einer globalen Filterung überzeugten dennoch die Resultate
der experimentellen Untersuchungen mit realen Kameraszenen. Gerade bei ex-
trem dunklen und damit extrem verrauschten Bilddaten versagen statt dessen eta-
blierte Standardverfahren wie das adaptive WIENER-Filter. Allerdings scheint hier
auch eine Kombination der entwickelten Strategie mit dem adaptiven WIENER-
Filter denkbar, um diesen lokalen Ansatz zu verbessern, was in folgenden Arbei-
ten untersucht werden könnte. Für den Einsatz einer Konturextraktion in Kom-
bination mit der entwickelten adaptiven Rauschfilterung wurden schließlich die
Auswirkungen der Adaption auf das bisherige nichtadaptive Modell untersucht.
Hier zeigte sich, daß die bisherigen kortikalen Neuronenverknüpfungen nicht aus-
reichen, um ein stabiles gaborähnliches Verhalten zu realisieren. Dieses Ergebnis
rührt daher, daß die bisherige Modellierung für die kleinste Rezeptorkopplung
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(und damit beste Ortsauflösung) entworfen und optimiert wurde. Durch einen al-
ternativen Ansatz, der als eine Kaskadierung von Ableitungsoperatoren aufgebaut
wurde, ist eine erfolgreiche adaptive Extraktion von Konturinformationen mög-
lich, was durch die experimentellen Untersuchungen zusätzlich demonstriert wer-
den konnte.

Die theoretischen und experimentellen Untersuchungen konnten die Leistungsfä-
higkeit der entwickelten Strategien zeigen. Damit stehen zum einen Hypothesen
neuronaler Architekturen des biologischen visuellen Systems zur Verfügung, die
evtl. einen Beitrag zum Verständnis dieser komplexen Materie liefern könnten.
Darüber hinaus wurden einige wichtige Eigenschaften des biologischen Vorbil-
des aufgezeigt, die insbesondere für technische Umsetzungen von Interesse sein
können. Im Rahmen dieser Arbeit ist eine biologienahe Strategie erarbeitet wor-
den, die eine robuste Extraktion von Konturinformationen leistet. So beschäftigen
sich derzeit laufende Arbeiten in der Arbeitsgruppe mit der Implementation der
Verfahren auf einer mobilen Roboterplattform [Eis03]. Zum einen kann hiermit
eine robuste Objekterkennung für autonome Einsätze in extrem dunklen Situatio-
nen, wie sie bei sicherheitsrelevanten Überwachungsaufgaben eintreten können,
realisiert werden. Des weiteren soll ein telesensorischer Roboter (TSR) lediglich
anhand der Konturinformationen in seinen Kamerabildern navigiert werden, wel-
che für diesen Zweck über eine Funkstrecke (WLAN) übermittelt und der be-
dienenden Person visualisiert werden. Eine Reduzierung der Szene auf Kontu-
rinformationen erzielt dabei die notwendige Datenkompression für die Übertra-
gungsstrecke. Die vorgestellte adaptive Rauschunterdrückung sorgt dabei auch
bei extrem dunklen bzw. verrauschten Situationen für eine robuste Extraktion der
Konturen.
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