
Lehr- Lernprozesse im
Informatik-Anfangsunterricht

Theoriegeleitete Entwicklung und Evaluation eines Unterrichtskonzepts
zur Objektorientierung in der Sekundarstufe II

Dissertation

Schriftliche Arbeit zur Verleihung
des akademischen Grades

DOKTOR DER NATURWISSENSCHAFTEN
in der Fakultät für Elektrotechnik, Informatik und Mathematik

der Universität Paderborn

von

Carsten Schulte

Paderborn,
Oktober 2003

Vorwort
Die hier vorgelegte Arbeit umfasst verschiedene Aspekte: Entwicklung eines Unterrichtskon-
zepts, Entwicklung eines empirischen Untersuchungsdesigns und von
Untersuchungsinstrumenten, die Durchführung und Auswertung der Untersuchung. Sie konn-
te daher nur aufgrund von Kooperationsmöglichkeiten und zusätzlicher Förderung bewältigt
werden. Im Rahmen des life3-Projektes wurde vom Universitätsverbund Multimedia NRW die
Kooperation zwischen den Arbeitsgruppen Didaktik der Informatik, Softwaretechnik und
zwei Paderborner Gymnasien gefördert und Mittel für die Durchführung der Evaluation be-
reitgestellt. Die Ergebnisse und die entstandenen Unterrichtsmaterialien sind auf dem
learn:line-Server und unter www.life.uni-paderborn.de dokumentiert. Zudem konnte im For-
schungskolleg Neue Medien an der Universität Paderborn das Untersuchungsdesign
vorgestellt und mit Hilfe der Anregungen verbessert werden.
Ich möchte mich bei allen Beteiligten für die Unterstützung und Kooperation bedanken:
• bei den Mitgliedern des Forschungskollegs für die intensiven Diskussionen, die Bereitwil-

ligkeit sich in andere Forschungsprojekte hineinzuversetzen und die vielen wertvollen
Anregungen.

• bei Johannes Magenheim für die freundliche Begleitung und Unterstützung, aber auch für
Freiräume, eigene Wege zu gehen.

• bei der AG Didaktik der Physik, insbesondere bei Martin Freudenreich für die vielen Tipps
bei der Erstellung der Arbeit, der Datenauswertung, fürs Korrekturlesen, und nicht zuletzt
für die vielen Stunden, die wir mit SPSS und Videograph verbracht haben.

• bei meinen AG-Kollegen: Beate Bee, Dirk Pommerenke und Olaf Scheel für eure Unter-
stützung und fürs Korrekturlesen. Bei Leopold Lehner für den technischen Support und die
Pflege der Kameraausrüstung.

• bei Frau Grabitzky für das sorgfältige Korrekturlesen. Alle verbliebenen Fehler gehen auf
mein Konto.

• bei Ira Diethelm und Albert Zündorf für den regen Gedankenaustausch zur Verwendung
von Fujaba in der Schule (und die interessante Testaufgabe).

• bei Julia Uthmann für das Design, vor allem des life3-Logos, und die Hilfe bei der Visuali-
sierung von Ergebnissen und für die Erstellung von Grafiken.

• und nicht zuletzt beim life3-Team: den beiden Informatiklehrern Michael Dohmen und
Fritz Ewers für engagierten Unterricht und vor allen Dingen für die begleitende Steuerung
der weiteren Entwicklung und viele wertvolle Anregungen. Bei den Softwaretechnikern,
insbesondere Andreas Elsner für die schnellen Bug-fixes und Jörg Niere für die gute Zu-
sammenarbeit und die Diskussion weitergehender Möglichkeiten. Und natürlich bei Eva
Westenberger und Stefan Engel, bei Nils Diekmann und Christian Wedtke, sowie bei Ul-
rich Block und Michael Hirsch: Ihr habt den Laden am Laufen gehalten – nicht nur bei den
Interviews, der Unterrichtsbeobachtung, der Entwicklung der Web-Plattform, der Auswer-
tung der Daten, der Diskussion der Testaufgaben und deren Auswertung, dem ständigen
Notebook-Schleppen, sondern auch durch eure Begeisterung und Ideen für das Projekt.

3

Inhaltsverzeichnis
1 Einleitung...7

2 Theoriegeleitete Entwicklung und Evaluation...10

3 Unterrichtserfahrungen und Praxiskonzepte...13
3.1 Systeme warten...14
3.2 Projektorientierter Einstieg..16
3.3 Formulardesigner nutzen..18
3.4 Bibliotheken nutzen und anschließend erweitern...22
3.5 Sprachkurse..24
3.6 Bildungsziele der vorgestellten Praxiskonzepte...25
3.7 Inhalte der Praxiskonzepte...26
3.8 Zusammenfassung ...30

4 Fachdidaktischer Hintergrund..33
4.1 Informationszentrierter Ansatz...33

4.1.1 Bildungsziele des Ansatzes..33
4.1.2 Inhalte des informationszentrierten Informatikunterrichts....................................33
4.1.3 Unterrichtsmethodische Zugänge zu den Inhalten...34
4.1.4 Zusammenfassung und Bewertung des Ansatzes...36

4.2 Systemorientierter Ansatz..37
4.2.1 Bildungsziele des systemorientierten Ansatzes..39
4.2.2 Inhalte des systemorientierten Informatikunterrichts...40
4.2.3 Unterrichtsmethodische Zugänge ..42

5 Fachdidaktische Ausgestaltung des Unterrichtskonzepts ...44
5.1 Bildungsziele des life3-Unterrichtskonzepts..46
5.2 Inhalte des life3-Unterrichtskonzepts...47

5.2.1 CRC-Karten als Unterrichtsinhalt ...47
5.2.2 Klassendiagramme als Unterrichtsinhalt..49
5.2.3 Objektstrukturen als Unterrichtsinhalt ..51

5.3 Unterrichtsmethodische Zugänge des life3-Unterrichtskonzepts..................................52
5.3.1 Modelle schrittweise formalisieren..52
5.3.2 Projekte in den Mittelpunkt stellen...53
5.3.3 Das Entwicklungswerkzeug als Lernmedium nutzen...53
5.3.4 In der Implementation eine objektorientierte Sichtweise beibehalten...................56
5.3.5 Zum inneren Zusammenhang der Unterrichtsmethoden..56

6 Lehr- und lerntheoretischer Hintergrund..61
6.1 Das konstruktivistische Bild vom Lernen..62

6.1.1 Die Rolle des Vorwissens...63
6.1.2 Motivation und Metakognition...65
6.1.3 Situierung und authentischer Kontext..65

6.2 Mathematisch-naturwissenschaftlicher Unterricht ..68
6.2.1 Unterrichtsmuster...69
6.2.2 Epistemologische Überzeugungen und Konzeptwechsel.......................................70

4

6.2.3 Modellieren im Mathematikunterricht..72
6.3 Schlussfolgerungen für den Informatikunterricht..74

6.3.1 Modellieren...74
6.3.2 Konzeptwechsel..75
6.3.3 Konsequenzen aus dem konstruktivistischen Bild des Lehrens und Lernens........77

6.4 Situierte und konstruktivistisch orientierte Unterrichtsmodelle....................................77
6.4.1 Cognitive Apprenticeship...78

7 Das life3-Unterrichtskonzept...84
7.1 Inhalte des life3-Unterrichtskonzepts: das Bereichswissen...84
7.2 Unterrichtsmethoden..87

7.2.1 Instruktionale Erklärungen: Modelling..87
7.2.2 Scaffolding mit Entwicklungswerkzeugen...89

7.3 Das life3-Phasenmodell..89
7.3.1 Phase 1..91
7.3.2 Phase 2..93
7.3.3 Phase 3..97

7.4 Soziale Bedingungen..97

8 Aufbau der empirischen Untersuchung...101
8.1 Aufgabe und Stellenwert der Evaluation...101
8.2 Evaluationsmethoden und Untersuchungsinstrumente..106
8.3 Mess- und Auswertungs-Instrumente...109

8.3.1 Vortest mit Fragebögen..110
8.3.2 Ergänzung des Vortests durch ein leitfadengestütztes Interview.........................112
8.3.3 Prozessbeobachtung..114
8.3.4 Zwischenbefragung..120
8.3.5 Nachtest..121

8.4 Zusammenfassende Übersicht zum Untersuchungsablauf...122

9 Ergebnisse der empirischen Untersuchung...126
9.1 Vortest..126

9.1.1 Ergebnisse des Interviews..126
9.1.2 Ergebnisse des Fragebogens...131

9.2 Zwischenbefragung..133
9.2.1 Interviews...133
9.2.2 Fragebogen ..138

9.3 Prozessbeobachtung...140
9.3.1 Unterrichtsbeobachtung in den drei Phasen...140
9.3.2 Projektverlauf in Phase 3: Bildschirmvideos..149
9.3.3 Entstehung der Projekte: Logfiles..151

9.4 Nachtest..155
9.4.1 Befragung...155
9.4.2 Fragebogen...157

10 Interpretation der Ergebnisse ...160
10.1 Lernergebnisse der Schülerinnen und Schüler...160

10.1.1 Vermittlung objektorientierter Konzepte...160
10.1.2 Vermittlung von Modellierkompetenz...164

5

10.1.3 Vermittlung von Vorstellungen über Softwareentwicklung...............................166
10.2 Lernereigenschaften...168

10.2.1 Abwahlverhalten und geschlechtsspezifische Unterschiede..............................169
10.3 Lernumgebung und Unterrichtskonzept...174

10.3.1 Objektstrukturen...174
10.3.2 Fujaba als Lernmedium..177

11 Zusammenfassung und Diskussion..184

12 Literatur...193

13 Anhänge...203
13.1 Vortest..204

13.1.1 Interviewleitfaden ..204
13.1.2 Vortest: INCOBI...205

13.2 Zwischenbefragung...215
13.2.1 Interviewleitfaden...215
13.2.2 Fragebogen FEOK1..215
13.2.3 Auswertungsschema FEOK1..218

13.3 Abschlussbefragung ..220
13.3.1 Fragebogen FEOK2..220
13.3.2 Auswertungsschema FEOK2..224

13.4 Unterrichtsprotokolle ..227
13.4.1 Schule A...227
13.4.2 Schule B..236

13.5 Kurzfassung der Arbeit..246

6

Einleitung

1 Einleitung
Seit Anfang der siebziger Jahre wird in Deutschland Informatik als Schulfach angeboten. Da-
mit einher geht der Aufbau fachdidaktischer Professuren. Parallel zum Aufbau der
fachdidaktischen Forschung werden Didaktiken für den Informatikunterricht vorgelegt (etwa
Baumann 1996, Modrow 1991). In der üblichen Einteilung der (kurzen) Geschichte der In-
formatikdidaktik werden verschiedene Ansätze in zeitlicher Abfolge unterschieden: vom
rechnerorientierten Ansatz der frühen siebziger Jahre über den algorithmenorientierten, den
anwendungsorientierten zum benutzerorientierten Ansatz in den achtziger und neunziger Jah-
ren (vgl. etwa Hubwieser 2001, S. 50ff; Wilkens 2000, S. 52f)1. Im Mittelpunkt der (noch
relativ jungen) informatikdidaktischen Diskussion steht neben den Bemühungen zur Legiti-
mation des Unterrichtsfachs die Darlegung des allgemein bildenden Werts der Informatik.
Diese Diskussion ist verknüpft mit der Bestimmung des Verhältnisses zur Hochschulinforma-
tik. Es gelingt jedoch nur selten, die Ziele der informatikdidaktischen Ansätze in der
Unterrichtspraxis einzulösen (vgl. Forneck 1992).
Auch aktuelle Arbeiten2 sind vor allem bildungstheoretisch oder an der Fachwissenschaft ori-
entiert:
• Humbert (2003) arbeitet zur wissenschaftlichen Fundierung des Schulfachs Bezüge zwi-

schen Unterricht und Fachwissenschaft heraus, um die Ergebnisse anhand lehr-
lerntheoretischer Überlegungen zu einen curricularen Vorschlag in Form eines Modulkon-
zepts zu verdichten.

• Auch Modrow (2002) diskutiert curriculare Fragen und erarbeitet vor dem Hintergrund des
Ansatzes der fundamentalen Ideen und konstruktivistischer Vorstellungen von Lehren und
Lernen ein Auswahlverfahren zur Bestimmung von Unterrichtsinhalten. Für den Bereich
der theoretischen Informatik werden konkrete Beispiele vorgelegt.

• Thomas (2002) arbeitet anhand einer Präzisierung des Modellbegriffs in der Informatik
und der Diskussion der Rolle des Modellierens in der Kultur die allgemein bildende Rele-
vanz informatischen Modellierens heraus, um den Informatikunterricht als allgemein
bildend zu legitimieren.

• Engbring (in Vorbereitung) entwickelt anhand des „Herstellungs- und Nutzungskontext“
der Informatik für die informatische Bildung (an Schule und Hochschule) einen Zugang zu
Informatiksystemen aus der Sicht der Anwendungsbereiche und schlägt unter Bezugnahme
auf den Ansatz der fundamentalen Ideen Digitalisierung und Interaktivität als „zentrale
Ideen“ für den Informatikunterricht vor.

• Brinda (vgl. Brinda 2001 und Humbert 2002, S. 70) setzt sich (nach einer Begründung des
allgemein bildenden Wertes der Objektorientierung, Brinda 2001) zum Ziel, durch eine
Analyse des Themas objektorientierte Modellierung aus fachwissenschaftlicher Sicht die-
sen Bereich für die schulische Bildung leichter erschließbar zu machen, indem die
sachlogische Abhängigkeit der einzelnen Konzepte, zugehörende 'Aufgabenklassen' und
Visualisierungshilfen entwickelt werden. Zudem wurden Akzeptanzstudien in Lehreraus-
und fortbildung sowie in der Sekundarstufe II (Brinda und Ortmann 2002) durchgeführt.

Allen genannten Arbeiten ist gemeinsam, dass sie Ziele informatischer Bildung in der Schule
diskutieren und mit Bezug auf die Fachwissenschaft Informatik und zum Teil auf lehr-lern-

1 Eine aktuelle Auflistung der Entwicklungslinien in der Informatikdidaktik liefert Humbert (2003).
2 In der folgenden Auflistung sind zeitlich parallele Promotionen bzw. Promotionsvorhaben aufgeführt wor-

den.

7

Einleitung

theoretische Überlegungen abstrakt Inhaltsbereiche für den Informatikunterrichts beschreiben
(z.B.: Objektorientierung, vernetzte Systeme, Modellierung, Interaktivität, theoretische Infor-
matik), zum Teil werden ergänzend konkrete Unterrichtsbeispiele angeführt.
Den Schwerpunkt dieser Arbeit bildet die auf den Informatikunterricht bezogene Unterrichts-
forschung. Die Notwendigkeit zur Überprüfung fachdidaktischer Vorschläge in der
Unterrichtspraxis wird überwiegend geteilt3. Eberle fordert bereits 1996, unter anderem mit
Bezug auf die eigenen Forschungsergebnisse:

„Viele Aussagen in dieser Arbeit mit deskriptivem Charakter sind empirisch gar nicht oder man-
gelhaft nachgewiesen, beruhen nur auf Alltagsbeobachtungen oder basieren auf
nichtrepräsentativer qualitativer Forschungsmethodik. Daraus ergibt sich eine breite Palette von
Forschungsfragen, die empirisch geklärt werden sollten“ (Eberle 1996, S. 427).

Im internationalen Bereich wird eine solche 'Umorientierung' in Richtung empirischer infor-
matikdidaktischer Forschung ebenfalls gefordert (Holmboe, McIver und George 2001, S. 7):

„A change in the focus of the field of computer science education research seems desirable at this
point. More empirical research and comparative evaluation would build a stronger foundation for
future research. A higher proportion of this sort of work would also strengthen the case for com-
puter science education research to be taken seriously as an academic discipline.“

Der Ertrag empirischer Forschung hängt von der Ausarbeitung entsprechender Untersu-
chungsinstrumente ab. Hier steht die Fachdidaktik Informatik am Anfang der Entwicklung.
Gleichzeitig ist aufgrund der Verwendung von Computern im Unterricht, projektartiger Ar-
beitsformen und Gruppen- bzw. Partnerarbeit an verschiedenen Rechnern der empirische
Zugang zum Unterrichtsprozess schwierig. Eine Aufgabe der Informatikdidaktik – neben der
Entwicklung von Unterrichtskonzepten und deren curricularer Verankerung – besteht daher in
der Entwicklung und Anwendung von Methoden der empirischen Unterrichtsforschung, mit
deren Hilfe verallgemeinerbares fachdidaktisches Wissen über die spezifischen Bedingungen
des Lehrens und Lernens von Informatik zu erlangen ist.
Dieses Wissen bildet eine wesentliche Grundlage nicht nur für die Unterrichtspraxis, nicht
nur für die Entwicklung von fachbezogenen Unterrichtskonzepten und Unterrichtsmethoden,
sondern auch für die bildungstheoretische Diskussion über den allgemein bildenen Beitrag
des Informatikunterrichts, da dieser sich erst in und mit den Lernerfolgen der Schülerinnen
und Schülern realisieren kann.
Diese Aufgaben betreffen aktuell den Anfangsunterricht. Immer wieder gibt es Vorschläge für
die Organisation und für geeignete Programmierstile des Anfangsunterrichts (etwa: Schubert
1991, Baumann 1995, Schwill 1995). Zunehmend werden objektorientierte Technologien ein-
gesetzt (vgl. etwa die Diskussion in Log In 2000-2003)4. Humbert zieht aus der Befragung
von Informatiklehrerinnen und -lehrern den Schluss:

„Objektorientierung sowie Algorithmen und Datenstrukturen sind nach Auffassung der Expertin-
nen Basisbereiche der Schulinformatik, denen ungeteilte Zustimmung durch die Expertinnen
zukommt.“ (Humbert 2003, S. 94)

Insgesamt kommt der Objektorientierung sowohl von Seiten der Unterrichtspraxis, als auch
von Seiten der Fachdidaktik eine hohe Aufmerksamkeit zu5. Für diesen Inhaltsbereich des In-

3 Thomas (2002) und Engbring (in Vorbereitung) verweisen auf die Notwendigkeit empirischer Überprüfung,
die aber aus Ressourcengründen zunächst unterbleiben müsse. Humbert (2002) und Modrow (2002) legen
kleine Fallstudien vor.

4 Vgl. auch die Analyse der aktuellen Lehrpläne der Bundesländer in Thomas (2002, Abschnitt I.5).
5 Humbert diskutiert im Sinne der wissenschaftlichen Fundierung der Schulinformatik die fachwissenschaftli-

che Bedeutung der Objektorientierung (Humbert 2003, Abschnitt 2), Modrow diskutiert unterrichtsmethodi-
sche Möglichkeiten durch objektorientierte Sprachen und Entwicklungswerkzeuge (Modrow 2002, z.B. S.

8

Einleitung

formatikunterrichts gilt damit, was Meyer Anfang der neunziger Jahre in Bezug auf die Soft-
waretechnik gesagt hat:

„'Objektorientiert' ist in und ergänzt oder ersetzt vielleicht sogar 'strukturiert', die High-Tech-Ver-
sion von 'gut'. Wie stets in solchen Fällen unvermeidbar, wird der Begriff von verschiedenen
Leuten mit verschiedenen Bedeutungen benutzt; genauso unvermeidbar wie die drei Stufen von
Reaktionen, die die Einführung eines neuen methodischen Prinzips begleiten: (1) 'Das ist trivial';
(2) 'Im Übrigen wird das nicht funktionieren'; (3) 'Ich habe sowieso schon immer so gearbeitet'.
(Die Reihenfolge mag variieren.)“
(Meyer 1990, S. V)

In der vorliegenden Arbeit ist ein Unterrichtskonzept (das life3-Unterrichtskonzept) für den
Anfangsunterricht in der Jahrgangsstufe 11 entwickelt worden, das auf einem objektorientier-
ten Zugang zur Informatik aufbaut.
Die Entwicklung erfolgte theoriegeleitet (Tulodziecki und Herzig 1998, Möller 1999), nach
den Prinzipien des Cognitive Apprenticeship.
Anhand der empirischen Untersuchung des Konzepts wurden Lehr- und Lernprozesse im In-
formatik-Anfangsunterricht untersucht und ein Beitrag zur empirischen Forschungsmethodik
in der Informatikdidaktik geleistet.
Zum Aufbau der Arbeit: Zunächst wird der methodische Ansatz der Arbeit vorgestellt: die
theoriegeleitete Entwicklung und die empirische Evaluation. Damit wird die Forschungsme-
thode der Arbeit begründet.
Danach werden die vorliegenden unterrichtlichen Erfahrungen analysiert, die Ziele und Er-
wartungen an das Themengebiet in Auseinandersetzung mit fachdidaktischen Ansätzen
diskutiert und daraus erste Schlussfolgerungen für die Gestaltung des Unterrichtskonzepts ge-
zogen.
Anschließend wird das life3-Unterrichtskonzept anhand lehr-lerntheoretischer Ansätze aus
dem Bereich konstruktivistischer Vorstellungen zum Lehren und Lernen und einer Diskussion
empirischer Studien aus den mathematisch-naturwissenschaftlichen Fächern ausdifferenziert.
Im anschließenden empirischen Teil der Arbeit werden die empirischen Untersuchungsinstru-
mente vorgestellt, die Durchführung beschrieben, sowie die Ergebnisse dargestellt und
interpretiert.
Die Arbeit endet mit einem einem Ausblick auf weiterführende Forschungsfragen.

61). Brinda (in Druck) entwickelt ein 'didaktisches System' für die Objektorientierung. Siehe auch Schulte
(2001) sowie Magenheim, Hampel und Schulte (1999).

9

Theoriegeleitete Entwicklung und Evaluation

2 Theoriegeleitete Entwicklung und Evaluation
Gegenüber der im Schulalltag möglichen Unterrichtsplanung unterscheidet sich die Entwick-
lung von Unterrichtskonzepten durch die Orientierung und Einbettung der Planungs- und
Prüfungsschritte an wissenschaftlichen Theorien, die dazu führt, dass Planungsentscheidun-
gen stärker vor dem Stand der Wissenschaft begründet und Ergebnisse intersubjektiv
nachprüfbar gemacht werden. Fachdidaktische Unterrichtskonzepte müssen zweifach in der
Theorie verankert werden: einmal in der Lerntheorie, zum anderen in der fachdidaktischen
Theorie.
Theorien haben die Aufgabe, Zusammenhänge aufzuzeigen und Schlussfolgerungen für die
Praxis zu ermöglichen. Insbesondere sollte durch die Orientierung an solchen Theorien die
einzelnen Elemente des Unterrichtskonzepts in sich stimmig und damit effektiver zum Einsatz
kommen. Die Orientierung an Lehr- und Lerntheorien ersetzt jedoch nicht den kreativen Ge-
staltungsprozess, sondern unterstützt diesen. Es gibt aber keine fertigen ‚Rezepte’, die einfach
nur auf ein beliebiges Lernthema angewendet zu werden brauchen. Denn in der Entwicklung
werden einzelne Entscheidungen getroffen, welche die Theorie auf die eine oder andere Art
unterrichtsmethodisch umsetzen6. Theorieorientierung kann auch bedeuten, sich ggf. an meh-
reren Ansätzen zu orientieren und diese in ein in sich stimmiges Gesamtkonzept umzusetzen.
Tulodziecki und Herzig (1998) bemerken dazu:

„Praxis- und theorieorientiert entwickelte Unterrichtskonzepte haben gegenüber herkömmlichem
Unterricht den Vorteil, daß sie auf der Basis – mindestens bis zu einem gewissen Grad – bewähr-
ter lern- und lehrtheoretischer Annahmen entwickelt wurden. Dennoch sind dadurch
entsprechende Lernerfolge nicht garantiert. Die Reflexion zur Entwicklung der Unterrichtskon-
zepte hat gezeigt, daß im Entwicklungsprozeß verschiedene Entscheidungen gefällt werden
müssen, deren empirische Auswirkungen unter Umständen nur schwer vorhersehbar sind. Insofern
ist in jedem Falle eine Erprobung der Unterrichtskonzepte sinnvoll.“ (aaO., S. 15).

Die Theorieorientierung erfüllt prinzipiell zwei verschiedene Funktionen: Sie unterstützt die
Entwicklung und die Evaluation von Unterrichtskonzepten. Zum einen soll durch die Orien-
tierung an überprüften Wissen über Lehr- und Lernvorgänge sichergestellt werden, dass die
Entwicklung des Unterrichtskonzepts nach dem Stand der Wissenschaft erfolgt. Zum anderen
ist die Verknüpfung der Entwicklung mit prozessbegleitender Evaluation geboten (die zweite
Funktion der Theorieorientierung), um zu überprüfen, ob das entstandene Konzept tatsächlich
die intendierten Effekte erreicht (Freudenreich und Schulte, 2002).
Die empirische Untersuchung gewinnt ihre Fragen und zum Teil auch ihre Untersu-
chungsinstrumente so also durch die Theorieorientierung der Konzeptentwicklung. Diese
liefert Hinweise auf wesentliche Aspekte, mögliche Schwierigkeiten und Hinweise auf die er-
warteten Wirkungen der einzelnen Elemente des Unterrichtskonzepts, die untersucht werden
sollten.
Aus fachdidaktischer Perspektive ist eine weitere theoretische Verankerung des Unterrichts-
konzepts an fachdidaktischen Ansätzen sinnvoll: Diese soll bewirken, dass Unterrichtsinhalte,
Unterrichtsmethoden und die damit verknüpften Unterrichtsziele den Stand der fachdidakti-
schen Forschung widerspiegeln. Diese zweite Theorieorientierung führt so zu einer
Präzisierung von Forschungsfragen und -zielen.

6 Tulodziecki und Herzig (1998 S.9f) empfehlen, bereits den Prozess des 'Auffindens' eines geeigneten theore-
tischen Ansatzes als einen Entscheidungsprozess zu interpretieren, da beispielsweise eine angemessene Nähe
zwischen den Lernzielen und den Vorstellungen der Theorie über Lehren und Lernen gewährleistet sein
müsse (Widerspruchfreiheit, Normenproblem).

10

Theoriegeleitete Entwicklung und Evaluation

Die Entwicklung und Evaluation vollzieht sich als eine verzahnte Abfolge einzelner Schritte,
vgl. Tulodziecki und Herzig, 1998:

• „Vermutungen zu verbesserungswürdigen Disposition auf Seiten der Lernenden,
• Entwickeln von Zielvorstellungen und deren Begründung,
• Entscheidung für einen geeigneten lern-lehrtheoretischen Ansatz auf der Basis einer prüfenden

Reflexion,
• Formulierung der Annahmen zu den Lernvoraussetzungen, der Zielvorstellungen, der lerntheo-

retischen und der lehrtheoretischen Annahmen auf der Basis des gewählten Ansatzes,
• Konkretisierung der anzustrebenden Lernaktivitäten und geeigneter Lehrhandlungen, ggf. un-

ter Berücksichtigung weiterer Annahmen,
• Entwickeln der notwendigen Lern- und Lehrmaterialien,
• Entwurf einer Handlungslinie für den Unterricht als Orientierung für die Lehrperson.“ (Tulod-

ziecki und Herzig, 1998, S. 13)

Der Entwicklungsprozess ist dabei nicht als Ableitungsprozess, sondern als Wechselwir-
kungsprozess zu sehen, in dem ggf. Leerstellen in theoretischen Ansätzen ergänzt oder
bezüglich einzelner Punkte ausgetauscht werden müssen.
Grundsätzlich sollten in der Evaluation des entwickelten Konzepts die folgenden Fragestel-
lungen berücksichtigt werden:

„(1) Wurden die Lernvoraussetzungen im Rahmen des Konzepts angemessen eingeschätzt?
(2) Konnten die Lehrhandlungen in der geplanten Weise durchgeführt werden? Erwies sich dies
als sinnvoll?
(3) Wurden die Lernenden in der angestrebten Weise aktiv? Zeigten sich unter Umständen er-
wünschte oder unerwünschte Nebenwirkungen?
(4) Wie sind die erreichten Lernergebnisse im Aspekt der Zielvorstellungen zu beurteilen?“ (Tu-
lodziecki und Herzig, 1998, S. 16)

Bezüglich der vierten Frage stellt sich das Problem der Einschätzung. Man könnte einen
Schwellenwert festlegen, ab dem Lernziele als erfüllt angesehen werden: Wenn mindestens X
Schüler Aufgabe Y richtig lösen, ist das Lernziel erreicht. Man könnte den Lernerfolg statis-
tisch festlegen, indem die Ergebnisse von Vor- und Nachtest auf signifikante Unterschiede
geprüft werden. Und drittens könnte der Vergleich mit einer Kontrollgruppe als Maßstab ge-
wählt werden. Diese Möglichkeit hat zudem den Vorteil, dass mögliche Störeffekte (leichter)
ausgeschlossen werden können (Tulodziecki und Herzig, 1998, S.22f).
Voraussetzung für eine präzise Messung des Konzepterfolgs sind relativ gute Kenntnisse über
die Bedingungen des Lehrens und Lernens im Fachgebiet, über Schwierigkeiten bei der Lern-
zielerreichung, mögliche unterrichtsmethodische Zugänge und vorliegende Konzepte, die den
intendierten Zielvorstellungen zumindest recht nahe stehen. Diese Basis ermöglicht zusam-
men mit der theoretischen Verankerung bzw. Verfeinerung in der Konzeptentwicklung, dass
präzise Voraussetzungs-Ziel-Mittel-Aussagen möglich werden. Diese Aussagen haben die
Form:

„-Wenn Schülerinnen und Schüler mit den Lernvoraussetzungen Vi [..] die Lernaktivitäten Xk

vollziehen, dann erreichen sie die Ziele [..].
-Wenn die Lehrperson die Lehrhandlungen Y1 durchführt, dann vollziehen die Schülerinnen und
Schüler mit den Lernvoraussetzungen Vi die Lernaktivitäten Xk.“ (Tulodziecki und Herzig, 1998,
S.9)

In der Informatikdidaktik und dem Thema der Einführung der Objektorientierung sind diese
Voraussetzungen jedoch nicht gegeben. Daher wird sich die Evaluation auf den Bereich der
'Nebenwirkungen' konzentrieren müssen. Nebenwirkungen im obigen Sinne sind zusätzliche,
neben den präzisen Wenn-dann-Aussagekonstrukten, im Verlauf der Evaluation beobachtete
Wirkungen des Lernkonzepts, die sich auf verschiedene Bereiche beziehen können: Lernziele,

11

Theoriegeleitete Entwicklung und Evaluation

Lernervariablen, Lehrhandlungen etc. Diese 'Nebenwirkungen' können Grundlage sein, um in
einer weiteren theoriegeleiteten Entwicklung und Überprüfung eines Unterrichtskonzepts ge-
nauer untersucht zu werden.
Dies hat Konsequenzen für die Anlage der Untersuchung und die Wahl der Untersuchungsin-
strumente. Die Entwicklung des Konzepts soll theoriegeleitet erfolgen und möglichst innere
Wechselwirkungen berücksichtigen, die Überprüfung jedoch nicht auf einige ausgewählte
Aspekte konzentriert werden, sondern mit einem eher explorativen Charakter den Bereich
möglicher 'Nebenwirkungen' zu erfassen suchen.
Die Auswertung der Untersuchung im engeren Sinn ist mit der Beschreibung der Lernergeb-
nisse abgeschlossen:

„Es bietet sich jedoch an, die Evaluationsergebnisse unter drei weiterführenden Fragen zu disku-
tieren:
(1) Sind die Evaluationsergebnisse auf andere Lerngruppen übertragbar?
(2) Was sagen die Evaluationsergebnisse über die Gültigkeit der dem Konzept zugrunde liegenden
allgemeinen Voraussetzungs-Ziel-Mittel-Aussage aus?
(3) Was bedeuten die Evaluationsergebnisse für die Anwendbarkeit des herangezogenen theoreti-
schen Ansatzes?“ (Tulodziecki und Herzig, 1998, S.23).

Nicht zuletzt sollten die Grundlage für Voraussetzungs-Ziel-Mittel-Aussagen in weiteren
theoriegeleiteten Entwicklungen und empirischer Evaluationen werden.

12

Unterrichtserfahrungen und Praxiskonzepte

3 Unterrichtserfahrungen und Praxiskonzepte
In diesem Kapitel sollen die bislang bekannten Erfahrungen und Konzepte zur Einführung der
Objektorientierung im Informatikunterricht untersucht und beurteilt werden, um Erfahrungen
aus der Unterrichtspraxis berücksichtigen zu können.
Zum Thema Objektorientierung im Informatikunterricht liegen keine empirischen Untersu-
chungen, sondern nur Erfahrungsberichte von Lehrenden vor. Erfahrungsberichte sind zwar
einerseits eine informative Quelle, andererseits kann aus verschiedenen Gründen die Gültig-
keit der Aussagen nur schlecht abgeschätzt werden. Beispielsweise bleibt offen, ob die
Eigenschaften und Voraussetzungen der Lerngruppe hinreichend berücksichtigt sind. Zudem
ist unwahrscheinlich, dass neben dem eigenen Lehren durch Beobachtung und Reflexion des
Unterrichtgeschehens alle Faktoren systematisch und konstant erfasst werden können. Die
Aussagen von Erfahrungsberichten können also nur begrenzt in systematischer und nach-
prüfbarer Weise Erkenntnisse über Lehr-Lernprozesse liefern. Gleichwohl bleiben sie
insbesondere angesichts fehlender empirischer Untersuchungen eine wertvolle Informations-
quelle, aus der Hinweise z.B. über methodische Zugänge, Lehr- und Lernprobleme oder
geeignete und weniger geeignete Beispiele gewonnen werden können.
Bei der Interpretation dieser Hinweise ist eine weitere Schwierigkeit zu berücksichtigen, näm-
lich die Frage, vor welchem (möglicherweise heimlichen) Lehrplan unterrichtet und der
Erfolg des Unterrichts bewertet wird. Diese Frage ist wesentlich, da mit der hier vorgelegten
Konzeptentwicklung zugleich auch Forderungen neuerer informatikdidaktischer Ansätze in
den Informatikunterricht umgesetzt werden sollen (Kapitel 4 und 5). Die hinter den Unter-
richtskonzepten stehenden fachdidaktischen Grundpositionen werden im Abschnitt 3.6
ausführlicher analysiert. Hier sollen einleitend nur einige einführende Hinweise zum Ver-
ständnis der verschiedenen unterrichtspraktischen Ansätze gegeben werden:
Jürgen Burkert (Burkert 1995) kommt in einer Analyse der Lehrpläne der Bundesländer bis
Mitte der neunziger Jahre zu dem Schluss, dass „das algorithmenorientierte Paradigma in kei-
nem Bundesland ernsthaft in Frage gestellt wird“ (aaO., S.73). In Bezug auf den
Anfangsunterricht, der aus dieser Orientierung resultiert, vermutet er ein 'Unbehagen' über die
hohen Abwählerzahlen, die durch die „Einführung in das Problemlösen mittels einer problem-
orientierten, prozeduralen Sprache wie PASCAL“ hervorgerufen würden. Stattdessen sollte
möglichst früh an offenen Aufgabenstellungen mit 'komplexeren' Problemen gearbeitet wer-
den, die auch zur projektartigen Gruppenarbeit geeignet sind (aaO.). Allerdings entstehe hier
ein Widerspruch, denn da die Schüler in Gruppenarbeit selbstständig Aufgaben lösen sollen,
müssen sie über die dazu notwendigen Grundkenntnisse verfügen. Wobei man dann wieder
beim einführenden Sprachkurs wäre, der eigentlich vermieden werden sollte. Diese Einschät-
zung und Argumentationskette Burkerts gibt ziemlich genau die Problemlage wieder, mit der
Unterrichtskonzepte für den Anfangsunterricht zu tun haben. Alle hier vorzustellenden Ansät-
ze versuchen auf eine bestimmte Art und Weise dieses Dilemma des Anfangsunterrichts
aufzulösen bzw. abzumildern.
Nach Baumann (1995) liegen die Gründe für das Festhalten am bisherigen Anfangsunterricht
vom Typ 'Programmierkurs', also des auf die Vermittlung einer Programmiersprache ge-
richteten Unterrichts in der nahe liegenden, quasi 'natürlichen' und systematischen
Sequenzierung der Lerninhalte anhand der Sprachkonstrukte, an dem Entgegenkommen der
Wünsche der zumeist männlichen Schüler, und nicht zuletzt am Fach-Inhalt, der auch autodi-
daktisch (von der Lehrperson) zu erlernen und jeweils eine Woche später im Unterricht
anwendbar ist.

13

Unterrichtserfahrungen und Praxiskonzepte

Da empirische Untersuchungen über den tatsächlich stattfindenden Informatikunterricht feh-
len, kann nur auf folgende Materialien zurückgegriffen werden: Lehrpläne und deren
Analysen wie die oben angesprochene Analyse Burkerts (Burkert 1995) und veröffentlichte
Praxiskonzepte in Form von Schulbüchern und Lehrerhandreichungen (Czischke 1995a,
1995b, 1996, 1997 und 2000, Czischke u. a. 1999, Spolweg 1995 und 1997, Hermes und Stein
1996, Hermes 1996, Husch 1997, Modrow 1998 und 1999, Fleischer 1998, Damann und
Wemßen 1998 und 2002, Penon und Spolwig 1998, Füller 1999, Hermes und Leipholz-Schu-
macher 1999, Baumann 2000a und 2000b) oder zusammenfassende Beschreibungen
verschiedener Unterrichtsansätze (Baumann 1995, Schwill 1995).
Zur Darstellung der Konzepte sind die verschiedenen Ansätze in die folgenden fünf Konzepte
geordnet worden (Tabelle 1):

Konzept Kurzbeschreibung
Systeme warten Der Einstieg beginnt mit der Wartungsphase: Die Schüler erkunden eine vorlie-

gende Software und beheben kleinere (vor allem syntaktische) Fehler.
projektorientierter Einstieg Zusammen mit dem Lehrer wird von Beginn im Plenum ein kleines Projekt ent-

wickelt. Die Projektphasen dienen als Ordnungsschema des Unterrichts und der
Inhalte.

Formulardesigner nutzen Die Schüler beginnen mit der Erstellung grafischer Oberflächen mit GUI-Buil-
dern um einen einfachen Einstieg und schnelle Erfolge zu erzielen.

Bibliotheken nutzen und er-
weitern

Die Schüler arbeiten mit einer kleinen Bibliothek, zunächst erkundend und nut-
zend; später wird die Bibliothek selbst von den Schülern erweitert.

Sprachkurs Programmierunterricht. Statt in Pascal wird nun in eine objektorientierte Spra-
che eingeführt.

Tabelle 1 Verschiedene Konzepte des Anfangsunterrichts für den Einstieg in die Objektorientierung

Die hier vorgenommene Einteilung bezieht sich vor allem auf die unterschiedlichen unter-
richtsmethodischen Varianten, stellt also in der Einteilung das jeweils vorgeschlagene
unterrichtsmethodische Vorgehen in den Vordergrund. Dagegen wurden die unterschiedlichen
Beispiele, Sprachen oder Programmierumgebungen und unterschiedliche Lernziel-
orientierungen (als Unterscheidungskriterium) geringer gewichtet. Es kann also sein, dass zu
einem einzelnen der fünf unterschiedenen Zugänge verschiedene Konzepte existieren, die auf
unterschiedlichen Sprachen und Programmierumgebungen beruhen. Die gewählte Reihenfol-
ge der Darstellung der fünf Konzepte spiegelt keine Wertung wieder.

3.1 Systeme warten
Spolweg (1995) schlägt vor, mit der Analyse eines vorliegenden Programms einzusteigen,
beispielsweise einem Fahrkartenautomaten mit grafischer Bedienoberfläche7. Die Schülerin-
nen und Schüler beginnen mit einer Situationsbeschreibung, die einen solchen Automaten
erfordert. Nachdem sie über dessen Aufbau nachgedacht haben, bekommen sie ein Programm,
das Fehler enthält und lückenhaft dokumentiert ist. Sie sollen die Dokumentation vervollstän-
digen sowie die Fehler lokalisieren und beheben.

7 Dieselbe Idee der Systemwartung wird von Lehmann (Lehmann u.a. 1995) vor dem Hintergrund strukturier-
ter Programmierung beschrieben.

14

Unterrichtserfahrungen und Praxiskonzepte

Sie lernen die Programmstruktur und den Umgang mit dem Programmiersystem sowie ver-
schiedene Konzepte kennen: den Algorithmusbegriff, das Prozedurkonzept, einzelne
Sprachkonstrukte, sowie Nassi-Shneiderman-Diagramme. Ein solcher Einstieg wurde in meh-
reren Klassen erprobt und dauert nach Spolweg etwa acht Schulstunden (vgl. Spolweg 1995,
S. 46ff).
Spolweg bewertet die Resultate des Einstiegs wie folgt: Nach seinen Erfahrungen bereite die
'Modulstruktur des Programms' den Schülerinnen und Schülern keine Schwierigkeiten, sie
würden durch den Einstieg motiviert und hätten hohe Erwartungen, könnten 'technisch' aber
noch fast nichts. Daher solle der Lehrer erklären, dass bis zur selbstständigen Erstellung eines
ähnlichen Programms noch „ein weiter Weg“ zurückgelegt werden müsse. Er schlägt vor, im
folgenden Unterricht gemeinsam Programme zu entwickeln, die ähnlich strukturiert seien wie
das Einstiegsbeispiel. Es könnten vorgefertigte 'Bausteine' (im Sinne einer Klassenbibliothek)
benutzt werden, um die Tipparbeit zu verkürzen. Bewährt habe sich auch ein kleines Projekt
am Ende des ersten Halbjahres mit selbstständig arbeitenden Schülergruppen. Das erste Pro-
jekt könnte das Spiel 'Drei Gewinnt' sein. Die Aufgabe würde sich reduzieren auf die
„Abbildung der Spielgegenstände auf den Bildschirm. Es stellt lediglich grafische Objekte zur
Verfügung, die kein Gedächtnis haben; d.h. die Spieler geben die korrekten Bildschirmkoor-
dinaten für die Steine im Schacht ein und ermitteln selbst den Gewinner“ (Spolweg 1997, S.
39).
Spolweg (1995) schlägt damit unter dem Aspekt der Objektorientierung einen „Wechsel im
Denken statt in der Sprache“ vor. Später arbeitet Spolweg (Spolweg 1997) das Konzept de-
taillierter aus (S. 77f). In der sich an die Wartung anschließenden Lerneinheit werden die
„algorithmischen Grundstrukturen (Sequenz, Iteration, Auswahl)“ sowie der Algorithmusbe-
griff vermittelt (aaO., S.79). Spolweg betont hier auch deutlicher die möglichen Nachteile
dieses Vorgehens: So müssten verschiedene Konzepte sowohl auf „Sprachebene“ (etwa: Pro-
zedurparameter) als auch auf „der logischen Ebene“ (etwa: Modellierungsfragen) gleichzeitig
vermittelt werden. Die Probleme mit der Sprachebene überdeckten dabei leicht die Probleme
auf der Modellierungsebene. Daher sei es „unverzichtbar“ in der Einstiegsphase den Schüle-
rinnen und Schülern einen sicheren Umgang zu vermitteln mit (aaO., S.83):

„-der Programmiersprache (algorithmisch, atomare Datentypen, Kontrollstrukturen),
-dem zugrunde liegende[n] Sprachkonzept (Struktur, Syntax) und einen
-verständigen Umgang mit dem Benutzen von (Bibliotheks-)Units“

Dazu bedürfe es ausreichender Zeit zur Übung der Sprachelemente. Das Aufsammeln und so-
zusagen zufällige Nebenbei-Lernen dieser Elemente führe zu keinem wirklichen Verständnis
(aaO., S.84).
Im späteren Unterricht sei ein 'Projektsemester' sehr sinnvoll und schließlich auch in fast allen
Lehrplänen fest vorgeschrieben (aaO., S.85). Ein Projekt sollte so umfangreich sein, dass es
von der Klasse nur arbeitsteilig bewältigt werden kann, wobei Teilergebnisse im Plenum prä-
sentiert werden (aaO., S.89). Zu einem Projekt gehören die Phasen der 'Analyse des
Sachproblems', der 'Konstruktion des Softwaresystems' und die 'Organisation der Arbeitstei-
lung' (aaO., S.85). Als weitere Beispiele werden ein Programm zur Verwaltung von
Bücherausleihen und eine Partnervermittlung (aaO., S. 93ff) genannt.
Zusammenfassung:
Systeme warten bedeutet, in einzelne Sprachkonstrukte im Zusammenhang eines vorliegen-
den Beispiels einzuführen. Damit wird nebenbei in die Werkzeugbedienung eingeführt. Diese
Einführung wird durch Übungen ergänzt und durch ein anschließendes Projekt abgerundet.

15

Unterrichtserfahrungen und Praxiskonzepte

In wie weit hier eigenständiges Modellieren und der Aufbau objektorientierter Software the-
matisiert und umgesetzt werden, kann nur schlecht beurteilt werden. Unterrichtsmethodische
Ideen für diesen Bereich werden nicht dargelegt.
Die Schülerinnen und Schüler lernen Sprachkonstrukte im Kontext des zu wartenden Systems
und nicht losgelöst anhand von Mini-Übungsaufgaben. Dieser Einstieg kann dadurch motivie-
rend wirken und den Nutzen der einzelnen Konzepte und ihre Anwendung in realistischen
Zusammenhängen aufzeigen.
Das eingangs beschriebene Dilemma des Anfangsunterrichts wird nicht aufgelöst, aber gemil-
dert: Der einführende Sprachkurs wird in Form von Übungen in die Beschäftigung mit dem
zu wartenden System eingestreut. Offen bleibt jedoch, ob und wie dabei die Fähigkeiten und
Kompetenzen für die eigenständige Entwicklung von Projekten vermittelt werden, insbeson-
dere Analyse und Design – da die Übungen sich auf den Umgang mit der
Entwicklungsumgebung und die Implementationsebene beschränken.

3.2 Projektorientierter Einstieg
Bei diesem Vorgehen wird im Anfangsunterricht mit dem gesamten Kurs, sozusagen im Ple-
num, ein kleines Projekt entwickelt, wobei schrittweise die notwendigen
Werkzeugbedienkenntnisse, die objektorientierten Konzepte und Syntaxelemente eingeführt
werden. Die Schülerinnen und Schüler entwickeln gemeinsam Lösungsideen, die dann mit
Hilfe des Lehrers umgesetzt werden.
Hintergrund und Ziel des Unterrichts ist die Implementation eines Programms. Dieser pro-
jektorientierte Einstieg unterscheidet sich von anderen Ansätzen zur Einführung des
Programmierens, bei denen „häufig“ ein Weg gewählt werde, „bei dem einzelne Anweisun-
gen einer Sprache eingeführt und schließlich zu umfangreicheren Programmen
zusammengesetzt werden“ (Füller, 1999, S.192). Von Anweisungen geht es über Variablen,
Ablaufsteuerung, Unterprogrammen zur Modularisierung (aaO.). Als Entwurfsmethodik wird
ein iteratives Verfahren der Objektsuche verwendet: Zunächst werden Objekte 'herausgefun-
den' (aaO., S.197), dann Attribute und Methoden. Dieser Prozess wird mehrfach durchlaufen.
An einem Beispiel kann der Ablauf beschrieben werden. Die Aufgabenstellung lautete (Füller
1999, S.197):

„Schreiben Sie ein Programm, mit dem ein einzelner Anwender Memory spielen kann. Der An-
wender benennt Karten, die aufgedeckt werden. Richtige Kartenpaare bleiben liegen, während
Karten, die nicht zusammenpassen, wieder zugedeckt werden. Das Programm zählt wieviele Ver-
suche der Anwender braucht, um alle Kartenpaare zu finden.“

Als Sprache wurde Java gewählt. Im Unterricht wird zunächst die „eigentliche Idee des
Spiels“ von der Benutzeroberfläche isoliert. Als Ergebnis entsteht folgender Entwurf (aaO.,
S.198):

„ -Der Spielkern verwaltet eine Menge von Karten, von denen lediglich gefordert wird, dass zufäl-
lig verteilte Kartenpaare existieren und unterscheidbar sind. Das wird als Liste modelliert, denn
der Anwender muss eine bestimmte Karte (durch ihre Position in der Liste) benennen können.
-Die Karteninhalte sind einfache Zahlen
-Das Spiel kann sich initialisieren und es kann eine Karte aufgedeckt werden.
-Ein Spielobjekt benötigt auf der Benutzeroberfläche Klassen, um Karteninhalte (und -rückseiten)
anzuzeigen, die Statistik auszugeben und das Spielende zu signalisieren“ (Füller 1999, S.198)

Dieser „Spielkern“ musste im Projektverlauf nicht geändert werden, sondern nur um „eine
einfache Klasse zur Ein- Ausgabe ergänzt“ werden (aaO.).

16

Unterrichtserfahrungen und Praxiskonzepte

Abbildung 2 Klassendesign des Memoryspiels nach Füller. Die Klasse Memory stellt den so genannten
'Spielkern' dar. Sie implementiert die eigentliche Funktionalität. Die Darstellung ist in die Klasse
MemoryTestInterface ausgelagert, die Klasse Karte ist ein Datenbehälter. (Das Klassendiagramm wurde mit
Fujaba aus dem von Füller im WWW bereitgestellten Quelltext erzeugt – im Unterricht oder in dem
vorliegenden Unterrichtsmaterial selbst wurden keine UML-Darstellungen benutzt)

Füller schließt von dem Beispiel auf drei verallgemeinerbare Probleme (aaO.):
1. Es werden wenig „objektorientierte Eigentümlichkeiten“ verwendet und sichtbar. Im schu-

lischen Kontext werde etwa die Wiederverwendung nicht sichtbar, da sich die einzelnen
Projekte zu sehr unterscheiden. Hier wurde beispielsweise auf eine allgemeine Applikati-
onsklasse verzichtet. Füller versucht, auf dem 'Kern' des Memory-Spiels verschiedene
Oberflächen zu implementieren, um Aspekte der Wiederverwendung zu demonstrieren,
doch die Schülerinnen und Schüler können diese Abstraktionsleistung nicht alleine erbrin-
gen und können oder wollen auch nach dieser Unterrichtsphase in der Diskussion
möglicher weiterer Erweiterungen „eher die neuen Programme per cut-and-paste zusamm-
enstellen, als systematisch die notwendigen Strukturänderungen zu planen“ (aaO., S. 199).
Füller verallgemeinert (aaO., S. 200): „Die objektorientierte Strukturierung eines Problems
zahlt sich möglicherweise erst so spät aus, dass der Gewinn im Unterricht nicht mehr ein-
gefahren werden kann. Wenn das stimmt, dann ergibt sich auch hier das typische 'Lernen
auf Vorrat', das schon jetzt in der Schule einen viel zu breiten Raum einnimmt“.

2. Die notwendige Abstraktion demotiviere einige der Schülerinnen und Schüler und überfor-
dere sie. „Alle Schüler machten beispielsweise den Vorschlag, die Kartenposition als X-Y-
Koordinatenpaar zu modellieren“ (aaO., S.198). Diese Art des Herangehens an die Pro-
grammierung unterstütze damit prinzipiell „analytisch-planendes, an Strukturen
orientiertes Vorgehen“ (aaO.; S. 200) und „stützt damit die gleichen Qualitäten, die die
meisten anderen Schulfächer ebenfalls verlangen, allen voran die Mathematik“. Und: „Ein
spielerisch-experimenteller Ansatz (mit all seinen Nachteilen) geht verloren“ (aaO.).

3. Die Implementation in Java stelle eine weitere Hürde dar: „Der Umfang des benötigten
Java-Vokabulars und die Sicherheit im Umgang mit der Programmiersprache sind für die
Schüler nicht trivial“ (aaO., S.199).
Syntax und einige Sprachelemente behinderten das Denken in Abstraktionen (aaO., S.200):
„Einer der Gründe dafür ist, dass die Schüler nicht abstrakt objektorientiert entwerfen [..]
Sie denken vielmehr in der Zielsprache.“

17

Unterrichtserfahrungen und Praxiskonzepte

Insgesamt kommt Füller zu dem ernüchternden Fazit, dass unklar sei, wozu überhaupt Objekt-
orientierung im Informatikunterricht thematisiert werden solle und wie man dieses Thema
denn vermitteln solle. Er fordert, die Konsequenzen eines Programmierparadigmenwechsels

„viel genauer als bisher zu durchdenken, breiter zu debattieren, um eine derartige Entscheidung
viel bewusster treffen zu können. Hier ist die Bildungsplanung gefragt: Leitfragen müssen sein:
- Welchen Beitrag kann die Informatik zu einem konstruktivistischen, selbsttätigen Lernen
leisten?
- Welchen Stellenwert hat eine induktiv-experimentierende, spielerische Arbeitsweise?
- Welche Rolle spielt analysierendes 'theoretisches' deduzierendes Vorgehen?
- Welche Werkzeuge werden für die verschiedenen Arbeitsschritte gebraucht und wann sollen die-
se eingesetzt werden?“ (aaO., S. 200f).

Zusammenfassung:
Eine Konsequenz des projektartigen Vorgehens ist, dass die Schüler, da sie ja noch keinerlei
Vorerfahrungen besitzen, in jedem einzelnen Schritt von der Beurteilung durch den Lehrer
abhängen und im Grunde Ideen nur ratend vorschlagen, von denen dann die richtige vom
Lehrer im Unterrichtsgespräch herausgefiltert wird. Dann erarbeitet oder demonstriert der
Lehrer die Umsetzung der Idee. Auf diese Weise entsteht nach und nach die Implementation.
Daher ist es sehr wahrscheinlich, dass die zu lösenden Beispiele so ausgewählt werden (müs-
sen), dass 'die richtige Lösung' den Schülerinnen und Schülern sofort einsichtig wird.
Dadurch aber steht anstelle des Modellierprozesses tatsächlich die Einführung in Konzepte,
Sprachsyntax und die Entwicklungsumgebung im Vordergrund.

3.3 Formulardesigner nutzen
Dieser Ansatz nutzt die Möglichkeiten integrierter Entwicklungsumgebungen (und entspre-
chender Komponentenbibliotheken), die grafische Benutzungsoberfläche eines Programms
durch Platzieren von Komponenten8 auf ein Formular zu erstellen. Auf diese Weise kann der
Entwickler eines Programms dessen Oberfläche interaktiv mit der Maus zusammenstellen, in-
dem er die benötigten Komponenten aus der Komponentenpalette auswählt, auf dem
Formular anordnet und bearbeitet.
In der Schule wird dieses Vorgehen als 'visuelles Programmieren' bezeichnet. Die Be-
zeichnung meint eigentlich komponentenbasierte Entwicklung. Auf diese Weise entsteht zwar
nicht die vollständige Implementation, aber zumindest Teile. Husch (1997, S.12) liefert ein
Beispiel für die schultypische Auslegung des Begriffs:

„Visuelle Programmierung beruht auf der Tatsache, daß die Funktionsauslösung in Programmen
über Dialogkomponenten erfolgt, die auf der Benutzeroberfläche sichtbar sind; das können einfa-
che Schaltflächen (Buttons), Optionsschaltflächen (Radiobuttons), Menüpunkte, Eingabefelder,
Rollbalken usw. sein. Je nach Ausstattungsreichtum eines Entwicklersystems kann der Anwen-
dungsprogrammierer auf eine mehr oder weniger gut ausgestattete Bibliothek derartiger
Komponenten zugreifen und sie in seinen Programmen benutzen.“

Der Ansatz ist eng mit der Entwicklungsumgebung Delphi verbunden. Aus der Benutzung
von Entwicklungsumgebungen und Komponenten wird eine bestimmte Phasierung des Pro-
grammierens abgeleitet; nach Modrow (1998, S. 23) in drei Phasen:
1. Zusammenstellen der Programmoberfläche in der Entwicklungsumgebung.
2. Ausfüllen der benötigten Ereignisbehandlungsmethoden mit Quelltext.
3. Übersetzen und Testen des erzeugten Programms.

8 Komponenten sind Klassen, die bereits zur Entwurfszeit darstellbar sind und deren Eigenschaften zur Ent-
wurfszeit manipulierbar sind, etwa die Platzierung auf dem Formular, Größe und Beschriftung.

18

Unterrichtserfahrungen und Praxiskonzepte

Ein ähnliches Muster findet man bei Fleischer (1998, S. 32f), der jedoch der Erstellung der
grafischen Oberfläche eine Phase zur Analyse der Problemstellung voranstellt.
An einem Beispiel von Modrow (1999, S.26ff) können die Überlegungen und typische Pro-
grammstrukturen dieser Herangehensweise aufgezeigt werden. Das Beispiel ist ein kleines
Programm, mit dem ein Nutzer Memory spielen kann.
Die Oberfläche besteht aus einem Fenster mit einigen Einträgen zum Spielstand (Anzahl Ver-
suche, Anzahl Treffer, ...) und aus schachbrettartig angeordneten Bildern, die anklickbar sind.
Diese Grafikobjekte sind von einer Standardklasse geerbt und implementieren gleichzeitig die
Programmlogik. Eine Memorykarte ist ein an der Oberfläche sichtbares grafisches Element,
das anklickbar ist und den entsprechenden Ereignisbehandler implementiert. Das Hauptpro-
gramm ist das Fenster, in dem einige Prozeduren (nicht Methoden im Sinne der
Objektorientierung) und globale Variablen zur Spielsteuerung implementiert werden (Tabelle
3).

tKarte Hauptprogramm
Nummer // Kartenpaarbezeichner
Xpos // X-Koordinate im Fenster
Ypos // Y-Koordinate im Fenster
verdeckt // Zustand

ZeigeDich // Darstellung
BeiClick // Ereignisbehandler

Globale Variablen:
ErsteKarte // Zustand: eine Karte aufgedeckt?
N1 // Nummer der ersten aufg. Karte
i1, j1 // Position der ersten Karte
tKarten // Zweidimensinales Feld der Memorykarten

Globale Prozeduren
schreibeNachricht // setzt die weiteren Anzeigen
BehandleErsteKarte // Zustand ändern und Karte aufde-
cken
BehandleZweiteKarte // Karten vergleichen und Spielzug
aus werten

Tabelle 3 Klassendesign eines Memoryspiels mit Delphi (nach Modrow 2000, S. 30ff)

Der Programmablauf sieht wie folgt aus: „Der zeitliche Ablauf des Memoryspiels wird durch
die BeiKlick-Methode unserer Kartenobjekte festgelegt“ (Modrow 2000, S. 33):

„In dieser ['Bei-Click-Methode'; C. S.] wird (nach den Spielregeln von Memory) zwischen dem
Ziehen der ersten bzw. der zweiten Karte unterschieden. Wird die erste Karte gezogen, dann wird
in ein entsprechendes Unterprogramm [BehandleErsteKarte, C.S.] verzweigt. Beim Ziehen
der zweiten Karte wird die Karte aufgedeckt und angezeigt. Danach wird ein Timer gestartet, um
das Bild für kurze Zeit zu bewahren. In der Timer-Methode des Timers wird (nach der Wartezeit)
das Unterprogramm zur Behandlung der zweiten Karte aufgerufen“ (Modrow 2000, S.31).

Die globale Prozedur BehandleErsteKarte setzt die globalen Zustandsvariablen und
ruft die Methode zeigeDich auf. Die Prozedur BehandleZweiteKarte implementiert
zusätzlich die Funktionalität zum Vergleichen der beiden aufgedeckten Karten und das Aus-
werten des Vergleichs.
Die Programmstruktur bzw. das Design ist direkte Folge des Vorgehens beim Entwickeln.
Das Design der Anwendung weist einige Auffälligkeiten auf:
• Logik (bzw. Fachmodell) und grafische Oberfläche sind nicht getrennt. Eigentlich existiert

gar keine Logikschicht.
• Funktionalitäten sind nicht eindeutig zugeordnet. Beispiel: Eine Karte reagiert selbst auf

ein Ereignis, arbeitet jedoch nur Teile der Funktionalität ab, 'umgedreht' wird die Karte
durch eine 'BehandleKarte'-Prozedur im Hauptprogramm.

19

Unterrichtserfahrungen und Praxiskonzepte

• Das Programm arbeitet mit primitiven globalen Variablen, die den Zustand des Pro-
gramms speichern. Zum Teil wird der Zustand in Ausgabefeldern gespeichert (z.B. Anzahl
Versuche).

• Wesentliche Teile der Funktionalität sind keinen Klassen zugeordnet und dementspre-
chend als globale Prozeduren implementiert.

Das Programm ist prozedural zerlegt und nicht objektorientiert strukturiert. Die Funktionalität
orientiert sich am zeitlichen Spielablauf, die Zuordnung zu Klassen wird dieser Orientierung
untergeordnet. Die Gründe dafür können unterschiedlich sein:
• Die Delphi-Umgebung legt diese Sichtweise nahe.
• Der Autor hat umfangreiche prozedurale Vorerfahrungen, die hier durchschlagen.
• Anstelle objektorientierter Konzepte stehen andere Lernziele im Vordergrund.
Damann und Wemßen (1998) erläutern ihre Gewichtung von Lernzielen, indem sie darlegen,
wie über das 'visuelle Programmieren' in Delphi die Vermittlung „algorithmischen Grundwis-
sens“ von der „Theorie der objektorientierten Problemlösung“ entzerrt werden kann und
behaupten: „Der theoretische Hintergrund der OOP ist kein Gegenstand des Anfangsunter-
richts in der Schule“ (Damann und Wemßen 1998, S.8).
Stattdessen wird in ein Schema zur Entwicklung ereignisgesteuerter Programme eingeführt
(aaO., S.23). Die Unterrichtsbeispiele, die schrittweise Erweiterung und die verwendeten
Konzepte der Objektorientierung bei Damann und Wemßen (1999) ähneln dabei stark dem
Ansatz Stifte und Mäuse (Czischke u.a. 1999); beide sind vom Landesinstitut für Schule und
Weiterbildung veröffentlicht worden. Zu diesem Konzept gibt es auch ein Unterrichtswerk
(Damann und Wemßen 2002) für Schüler. Im Vorwort werden die Leitgedanken des dahinter
stehenden Konzepts zusammengefasst (aaO., S. III):
1. Ausgewählte Aspekte der Entwicklungsumgebung Delphi kennen lernen, vor allem den

Formular-Editor und die Komponentenleiste, mit denen grafische Oberflächen mit der
Maus interaktiv (und visuell) erstellt werden können.

2. Darüber die Schüler zum 'objektorientierten Denken' hinführen, indem die Schüler vom
Benutzen vorgefertigter Klassen (bzw. vor allem: Komponenten) zur Erstellung eigener
Klassen geführt werden – dieses allerdings nicht in dem hier herangezogenen Band, son-
dern im darauf folgenden.

Zusammenfassung:
Man erkennt deutlich den Zusammenhang mit dem bibliotheksbezogenen Einstieg (Abschnitt
3.4) und den eigentlichen Schwerpunkt des Unterrichts: die Einführung in ein Werkzeug
(Delphi) als Entwicklungsumgebung und Programmiersprache. Objektorientierte Technolo-
gien werden benutzt, aber nicht den Schülerinnen und Schülern bewusst gemacht, die
Programmentwicklung wird auf die Codierphase reduziert.
Die Betonung der Ereignisorientierung und algorithmischer Grundlagen (oder vielleicht tref-
fender: von Sprachkonzepten) führt zusammen mit der in Delphi gegebenen Möglichkeit der
prozeduralen Zerlegung daher nicht nur zufällig zu oben am Beispiel Memory beschriebenen
Programmstrukturen.
Penon und Spolwig (1998, S. 40) fassen die typische Struktur nach dem obigen 3-schrittigen
Schema aufgebauter Programme wie folgt als „Schaf im Wolfspelz“ zusammen:

„Was bekommt man [unter der grafischen Oberfläche, C.S.] zu sehen, wenn man den Pelz anhebt?
Einerseits die Komponenten aus der Klassenhierarchie des GUI-Builders: Buttons, Editierfelder,
Checkboxen, usw., also Elemente, die aus dem Konzept der objektorientierten Grafikoberflächen

20

Unterrichtserfahrungen und Praxiskonzepte

entstanden sind, andererseits eine Programmierweise, die den Begriff Architektur wohl kaum ver-
dient und häufig bestenfalls als strukturierte Programmierung zu betrachten ist.“

Diese und ähnliche Ansätze sind im Lehrplan NRW als ein eigenständiger Weg zur Einfüh-
rung in die Objektorientierung festgeschrieben worden ('objektorientiert visuell'). Eine Folge
ist, dass die Bezeichnung 'Visuelles Programmieren' im Schulkontext leider eine fest mit dem
Zusammenklicken von grafischen Oberflächen verbundene Bedeutung bekommen hat.
Im Ansatz stehen die Einführung in die Entwicklungsumgebung und das Erzeugen grafischer
Oberflächen im Vordergrund. Zu vermuten ist, dass angesichts des damit verbundenen Vorge-
hens eher prozedurale anstatt objektorientierte Programmarchitekturen entstehen, verstärkt
durch die vertraute Pascal-Schreibweise, die den prozeduralen Entwurf nahe legt (zur Unter-
scheidung siehe Meyer, 1990, S. 46-55).
Das unterrichtliche Vorgehen führt dazu, dass grafische Oberflächen interaktiv erzeugt wer-
den und anschließend kleinere (Ereignisbehandlungs-)Prozeduren in Pascal implementiert
werden. Dieses Vorgehen kann schnell in einen sprachzentrierten Unterricht umschlagen. Die
Einführung in Objektorientierung wird tendenziell durch die Einführung in eine Entwick-
lungsumgebung und die Nutzung einer Komponentenbibliothek ersetzt. Auf diese Weise
können die Schülerinnen und Schüler schnell professionell aussehende Programme inklusive
Ereignisbehandlung erstellen.
Auf den ersten Blick gelingt so die eigenständige Arbeit an Projekten, aber auf den zweiten
Blick wird klar, dass die Schülerinnen und Schüler nicht lernen, eine Problemlösung zu ent-
wickeln, sondern vorhandene Entwürfe mit dem Werkzeug implementieren lernen. Der
Modellierprozess selbst sowie das objektorientierte Denken wird vernachlässigt. Die Pro-
gramme besitzen nur einfachste Funktionalität.
Möglicherweise, dazu gibt es jedoch keine Untersuchungen, wird so das Erlernen objektori-
entierter Konzepte im weiteren Unterrichtsverlauf sogar erschwert, da beispielsweise bei der
Nutzung von Delphi der Eindruck vermittelt wird, ein objektorientiertes Programm bestehe
aus einem Fenster auf dem Komponenten platziert werden, denen im Eigenschaftseditor
(manchmal auch Inspektor genannt) Prozeduren zugeordnet werden, die dann, beispielsweise
durch Anklicken der Komponente, zur Laufzeit ausgeführt werden. Diese werden von Delphi
als innere Methoden der Formularklasse implementiert, welche die Rolle eines 'Hauptpro-
gramms' bekommt. Diese Klasse selbst und die Erzeugung eines Exemplars bleibt den
Schülerinnen und Schülern jedoch verborgen, es wird nicht deutlich, dass Methoden Klassen
zugeordnet werden und dass bei der objektorientierten Programmierung die Funktionalität des
Programms auf Objekte aufgeteilt wird; stattdessen entsteht der Eindruck, dass die Methoden
den Komponenten (der grafischen Oberfläche) zugeordnet werden. Zudem wird die erlernte
Vorgehensweise der Programmentwicklung (die oben erwähnten drei Phasen: Oberfläche ge-
stalten, Ereignisbehandlungsmethoden implementieren, Übersetzen und Testen) stören, wenn
eigene Problemlösungen entwickelt werden sollen, die nicht direkt implementierbar sind, son-
dern für die vor der Implementierung zu erfolgende Analyse- und Entwurfsphasen notwendig
werden.
Andererseits wird hier ein weitere Möglichkeit deutlich, im Anfangsunterricht den Codie-
rungsaufwand zu verringern um schneller zu sinnvollen Beispielen zu kommen.
Komponenten (eine Form der Klassenbibliothek) und eine Entwicklungsumgebung werden in
diesem Ansatz als Lernwerkzeuge genutzt: Die Entwicklungsumgebung bietet die verfügba-
ren Klassen an und erlaubt das interaktive Anwenden der Klassen auf eine visuelle Art,
sodass der Lernaufwand für die Benutzung verringert wird. Im Einzelfall wird man je nach

21

Unterrichtserfahrungen und Praxiskonzepte

der eingesetzten Entwicklungsumgebung entscheiden müssen, ob der Lernaufwand für das
(möglicherweise proprietäre) Werkzeug angemessen erscheint.

3.4 Bibliotheken nutzen und anschließend erweitern
Bei diesem Ansatz werden einfach zu benutzende Bibliotheken eingesetzt, mit deren Hilfe die
Schülerinnen und Schüler kleine Aufgaben lösen können. Dazu bieten sich Bibliotheken an,
die es erlauben, grafische Oberflächen zu erzeugen – im Unterschied zum Ansatz 'Formular-
designer nutzen' geschieht das hier jedoch im Quelltext.
Das bekannteste Beispiel ist das Konzept Stifte und Mäuse (Zusammenfassend in Czischke
u.a. 1999 dargestellt). Dieses Konzept ist Grundlage für die Variante 'Objektorientierung all-
gemein' im Lehrplan NRW (Lehrplan NRW 1999). Davor (und parallel) wurde in der
inzwischen eingestellten Zeitschrift 'Informatik betrifft uns' in mehreren Artikeln das Konzept
entworfen und beschrieben (Czischke 1995a, 1995b, 1996, 1997, 2000). Die vorliegende Fas-
sung (Czischke u.a. 1999) beruht auf einer gleichnamigen Klassenbibliothek, die die
Konstruktion grafischer Oberflächen nach dem Prinzip der Turtle-Grafik und die Reaktion auf
Mauseingaben erlaubt. Die Bibliothek ist für verschiedene Sprachen verfügbar.
Aufbauend auf der Bibliothek ist ein Konzept zum Einstieg in die Objektorientierung samt
dazu gehörenden Beispielen, Übungsaufgaben und didaktischen Hinweisen entwickelt wor-
den.
Daneben führt das Konzept eingedeutschte Begriffe in die Unterrichtspraxis9 ein und legt eine
Auswahl von Grundkonzepten der Objektorientierung sowie einen Vorschlag für die Reihen-
folge der Vermittlung vor.

Konzept Begrifflichkeit im Ansatz Stifte und Mäuse
Klasse Klasse
Klassen-Schnittstelle Protokoll, Schnittstelle10

Objekt Objekt, Exemplar
Erzeugung Objekt bzw. Exemplar erzeugen
Attribut Zustandsvariable
Methode Nachrichten, Dienste, Methode
Methodenaufruf Punktschreibweise
Assoziation Kennt-Beziehung (Verbindung)
Aggregation Hat-Beziehung (Zerlegung)
Vererbung Ist-Beziehung (Vererbung)

Tabelle 4 Begriffe für objektorientierte Konzepte in Ansatz Stifte und Mäuse (vgl. aaO., S.14).

Zur Veranschaulichung der Bibliothek und von Klassen sowie deren Beziehungen wird eine
grafische Notation verwendet. In Czischke u.a. (1999, vgl. S. 15) ist das noch Coad-Yourdon,
auf den Webseiten auf dem learn:line-Server wird die UML-Notation verwendet.
Methodische Grundidee ist die schrittweise Einführung von einzelnen Konzepten und syntak-
tischen Elementen durch kleine Aufgaben, die von Anfang an sichtbare Ergebnisse auf dem
Computerbildschirm erzeugen.
9 Viele Begriffe finden sich bereits früher in Fachpublikationen wie Booch 1996 (z.B. S. 29f) oder Jacobsen

1992 (z.B. S.45ff), sind jedoch in diesem Ansatz wesentlich deutlicher als in anderen didaktischen Publika-
tionen mit dem (erfolgreichen) Bemühen um eine schülergerechte, präzise und in sich stimmige Begrifflich-
keit eingedeutscht worden.

10 Im Konzept werden zusätzlich noch Import-, Export-, Erben- und Basisschnittstelle unterschieden (aaO., S.
17f).

22

Unterrichtserfahrungen und Praxiskonzepte

(* Initialisierungst. *)
Erzeugen (meinBildschirm)
meinBildschirm.Init
Erzeugen (meinStift)
meinStift.Init
(* Aktionsteil *)
meinStift.Wechsle
meinStift.Runter
meinStift.BewegeUm(190)

Abbildung 5 Beispielprogramm nach dem Konzept: Methoden aus Bibliotheksklassen werden nacheinander
innerhalb einer Klasse aufgerufen, die als eine Art Hauptprogramm benutzt wird. Die Struktur ist von der eines
imperativen Programms nicht zu unterscheiden. Beispiel aus dem ersten Abschnitt: Verwenden gegebener
Klassen (aaO., S. 34ff).

Zusammen mit der Klassenbibliothek wird das folgende unterrichtliche Vorgehen vorgeschla-
gen. Die Einführung der Objektorientierung beginnt zunächst mit dem 'Verwenden gegebener
Klassen' aus der nach didaktischen Gesichtspunkten entworfenen Klassenbibliothek, die dem
Konzept den Namen gab. Mit diesem Lernwerkzeug werden zunächst die wesentlichen Be-
griffe, Schreibweisen, Datentypen und Parameter (aaO., S. 36) eingeführt. Danach folgen
Kontrollstrukturen (Verzweigung, Schleife) und das Konzept der Vererbung. Anschließend
sollen dann eigene Klassen entwickelt werden: Das erste Beispiel sind Bälle, die sich über
den Bildschirm bewegen. Das Programm wird im Unterrichtsgespräch erarbeitet und mit Hil-
fe der Bibliothek implementiert. Interessanterweise wird die erste Version imperativ
implementiert, ohne eine Klasse Ball zu erzeugen(aaO., S.60f). Danach erst (aaO., S.65)
wird die Implementation in eine objektorientierte Schreibweise überführt, indem die entspre-
chenden Programmelemente in eine Klasse Ball gekapselt werden. In den Materialien
werden Hinweise zur Modellierung des Beispiels gegeben, die sich jedoch nur an die Lehr-
kräfte richten und scheinbar nicht direkt für den Unterricht gedacht sind (aaO., S.66).
Das Beispiel verdeutlicht die Ausrichtung des Ansatzes, der sich auf die Implementation und
die Einführung von Schreibweisen und Begrifflichkeiten konzentriert, aber deren Anwendung
– und damit den gesamten Bereich der Modellierung – vernachlässigt.
Anschließend werden weitere Konzepte eingeführt: die Zustandsvariablen (aaO., S.68), para-
metrisierte Methoden (in etwa: setter und getter) (aaO., S. 72), die Hat- (aaO., S.74) und
Kennt-Beziehung (aaO., S.82) von Objekten, die Vererbung (aaO., S.86) mit Überschreiben
von Methoden sowie abstrakte Klassen (aaO., S.96). Danach dann werden ereignisgesteuerte
Anwendungen (aaO., S.111) thematisiert.
Starke Ähnlichkeit mit diesem Vorgehen besitzt das im Zusammenhang mit dem Werkzeug
Blue/j vorgestellte Konzept11 (Barnes und Kölling 2003). Zwar wird in den Veröffentlichun-
gen zu Blue/j der Schwerpunkt auf die Entwicklungsumgebung gelegt, tatsächlich aber wird
ein unterrichtliches Vorgehen vorgeschlagen, das dem hier Vorgestellten ähnelt und in dem
ebenfalls eine didaktische Klassenbibliothek verwendet wird. Im Unterschied zu den hier vor-
gestellten Stiften und Mäusen wird im Zusammenhang mit Blue/j zusätzlich die Nutzung des
Debuggers zu Lehr- und Lernzwecken hervorgehoben. Blue/j ist eine Entwicklungsumgebung
für Java, die es mit vereinfachten Bibliotheken zur Erzeugung grafischer Oberflächen und ei-
nem integrierten Debugger erlaubt, interaktiv Objekte zu erzeugen. Diese werden in der
Umgebung angezeigt, es ist möglich, auf den Objekten Methoden aufzurufen. Damit können

11 Aufgrund der großen Übereinstimmung wird der Ansatz daher nicht eigens vorgestellt – einen sehr ausführ-
lichen Überblick findet man in Barnes und Kölling 2003.

23

Unterrichtserfahrungen und Praxiskonzepte

Objekte in den Vordergrund gestellt werden und im Anfangsunterricht zuerst behandelt wer-
den. Der Slogan dazu lautet: objects first.
Blue/j stellt die Klassen in einem UML-artigen Klassen-Diagramm dar. Die Autoren des
Werkzeugs schlagen folgendes lehrmethodisches Vorgehen vor: Zunächst arbeiten die Studie-
renden mit Objekten, die sie aus vorliegenden Klassen erstellen und rufen darauf Methoden
auf (Kölling und Rosenberg 2001, S. 35f). Anschließend modifizieren sie den vorliegenden
Quelltext, fügen neue Methoden hinzu und schließlich neue Klassen. Darauf entwickeln sie
ein eigenes kleines Projekt von Anfang an – insgesamt wird für diese Kursfolge ein zweise-
mestriger Kurs vorgeschlagen, woraus sich die gedachte Tiefe ableiten lässt, mit der die
einzelnen Themen behandelt werden sollen.
Neben dem erwähnten Grundsatz 'objects first' nennen die Autoren folgende Grundregeln für
ihren didaktischen Ansatz: Nicht mit Projekten beginnen, die von Anfang an entwickelt wer-
den, sondern mit vorliegenden Klassen arbeiten; mit 'komplexen' Projekten beginnen, die aus
mehreren kooperierenden Klassen bestehen; die main-Methode und hello-world-Beispiele
vermeiden; die Beziehungen zwischen den Klassen verdeutlichen; grafische Oberflächen
sorgfältig einführen (aaO., S.34f).
Durch Codegenerierung werden Implementationsdetails der Objekt- und Klassenstrukturen
verborgen. Die automatische Generierung beschränkt sich jedoch zumeist auf die Deklaration
von Klassen und Methodenköpfen. Zugriffsmethoden auf einfache Attribute werden oft eben-
falls generiert, nicht jedoch für Container. Ebenso werden meist nur einfache Beziehungen,
aber keine Mehrfachbeziehungen generiert.
Zusammenfassung:
Der Unterrichtskonzept ist sehr stark geleitet, wird dafür aber konsequent und in sich logisch
anhand der Sachstruktur von den einfachen grundlegenden Konzepten zu komplexeren Kon-
zepten aufgebaut: Die Interaktionen zwischen Objekten steigen langsam an. Strukturen
werden auf Klassenebene, statisch, angesprochen, die Funktionsweise eines objektorientierten
Programms eigentlich gar nicht. Die Übungsaufgaben beziehen sich fast ausschließlich auf
Syntaxkenntnisse. Objektorientierte Konzepte außerhalb der Syntaxebene werden erst spät
vermittelt. Objektorientiertes Modellieren wird im Unterricht nicht behandelt. Allenfalls wird
ein Modell genutzt, um die zu vermittelnde Struktur übersichtlich darzustellen. Insgesamt ist
auch dieses Konzept auf die Einführung in Sprachkonzepte bezogen.

3.5 Sprachkurse
Daneben gibt es verschiedene Vorschläge bzw. veröffentlichte Unterrichtsmaterialien, die
versuchen, objektorientierte Sprachen in 'gewohnter Weise' zu vermitteln: also in Form eines
Sprachkurses. Beispiele sind Baumann (2000a und 200b) mit einem Java-Sprachkurs und die
Arbeitshefte zu Java und Oberon (Hermes und Schumacher 1999; Hermes und Stein 1996).
Im ersteren beispielsweise wird die Datenstruktur Liste, ein bekannter traditioneller Unter-
richtsinhalt, als Beispiel für objektorientierte Techniken (Hermes und Schumacher, S.54 ff)
behandelt. Zu den Sprachkursen können auch die Vorschläge zählen, die analog zu Pascalkur-
sen mit 'Nikki dem Roboter' (also mit einem kleinen Robotermodell) in Java oder andere
objektorientierte Sprachen einführen wollen. Zum Teil verfolgen diese Ansätze das Ziel, ei-
nen „'gleitenden' Übergang von der prozeduralen zur objektorientierten Programmierung“
(Hermes 1996, S. 30) zu ermöglichen: Die Schülerinnen und Schüler sollen im Anfangsunter-
richt zunächst eine imperative Sprache wie Pascal lernen, um auf dieser Basis später zu
Oberon und damit zur Objektorientierung zu wechseln.

24

Unterrichtserfahrungen und Praxiskonzepte

Sprachkurse führen so gut wie ausschließlich in eine Sprache ein, nicht in die Objektorient-
ierung. Konzepte wie Variable, Schleife und Auswahl, die hier vermittelt werden, sind keine
genuinen Konzepte der Objektorientierung (vergleiche Lewis 2000).
Die bewusste Anknüpfung an die bisherigen Inhalte und Methoden des Informatikunterrichts
dient jedoch auch dazu, dem Informatiklehrer den Übergang zur Objektorientierung zu er-
leichtern. Dazu Baumann (2000b, S.33):

„Insbesondere ist damit [Baumann bezeichnet seinen Sprachkurs als evolutionäres Vorgehen,
C.S.] gemeint, dass die Informatiklehrer nicht alles zu vergessen hätten, was sie früher einmal ge-
lernt haben. Zwar ist PASCAL, auch wenn es schüler- bzw. lernzieladäquat eingesetzt wird, als
Lehr- und Lernsprache in der Schule heute überholt, aber die Grundsätze der strukturierten Pro-
grammierung beispielsweise gelten auch jetzt noch.“

3.6 Bildungsziele der vorgestellten Praxiskonzepte
Die Analyse der fachdidaktischen Diskussion ergibt (Schulte 2001), dass hinter den Praxis-
konzepten eine in sich geschlossene Konzeption mit starken Bezügen zwischen Inhalt,
Unterrichtsmethodik und Bildungsziel vorliegt: Inhalt ist die Softwareentwicklung, konzen-
triert auf die Implementierung von Algorithmen (und Datenstrukturen), Bildungsziel ist die
Vermittlung von Problemlösekompetenz.
Das Trainieren oder Vermitteln von Problemlösefähigkeiten erfolgt durch Programmieren,
bzw. im Sinne des Ansatzes formuliert durch Problemlöse-Methoden, die sich an den Metho-
den des Software-Engineering orientieren. Dabei werden Problemlösekompetenzen mit der
Erstellung von Algorithmen gleichgestellt. Dieses Bildungsziel der Schulung von Problemlö-
sefähigkeiten soll durch die Vermittlung von algorithmischem Denken erreicht werden, indem
nach der Vermittlung der programmiersprachlichen Grundlagen und nach der Vermittlung
grundlegender Datenstrukturen und Algorithmen kleinere Softwareprojekte durchgeführt wer-
den. Das unterrichtsmethodische Vorgehen in diesen Projekten orientiert sich dann am
Softwareentwicklungsprozess.
Zusammenfassend kann man diesen Ansatz als 'Problemlöse-Paradigma' bezeichnen.
Berger vermutet (2001, S.279f), dass die beschleunigte Entwicklung der Programmierspra-
chen und deren wachsende Komplexität dazu beigetragen habe, dass die hinter den
programmiersprachlichen Formulierungen liegende Algorithmik im Unterricht einen höheren
Stellenwert bekam, um das „Bleibende der Informatik“ (aaO.) stärker zu betonen. Die bevor-
zugte Form der Schülerlösung wird konsequenterweise die „umgangssprachliche
Algorithmus-Formulierung“ oder das „Programmlisting“, und weniger das „lauffähige Pro-
gramm“ (aaO.). Dabei spielt die „Reflexion von Lösungsschwierigkeiten“ keine Rolle,
sondern eine Mischung aus „kreativen Ideen“ und Methodenbeherrschung“ (vgl. aaO., S. 280
und 281).
Die relative Abkehr von der Programmiersprache und die Betonung der Algorithmik ist wohl
als Abkehr vom Technischen der Informatik zu verstehen; vermutlich würden sich einige der
eingangs vorgestellten Praxiskonzepte auch eher als problemlösende Modellierungskurse und
weniger als Programmierkurse verstehen12.
Nach Mietzel (2001, S.12ff) ist jedoch die Idee überholt, dass man das Gehirn ähnlich wie ei-
nen Muskel im methodischen Denken trainieren könne und dass die Trainingseffekte dann die
allgemeine Denkleistung, unabhängig vom Gebiet, fördere. Als Beispiel nennt er folgendes:

12 Siehe beispielsweise Baumann 2000a, S. 46, der vorgestellte Programmierkurs wird als Modellierkurs be-
zeichnet.

25

Unterrichtserfahrungen und Praxiskonzepte

Es wäre problematisch, das Programmieren von Computern, etwa mit LOGO, als Unter-
richtsfach vor allem mit der Rechtfertigung einzuführen, dadurch würden u.a. das
schlussfolgernde Denken und die planerischen Fähigkeiten der Lernenden gefördert. Denn die
pädagogische Psychologie konnte derartige kognitive Lerneffekte bislang nicht nachweisen
(Mietzel 2001, S.14), was interessanterweise in der Informatikdidaktik auch von Verfechtern
des Problemlöseparadigmas nicht bestritten wird, etwa von Eberle (1996, S. 212), der die
Schlussfolgerung zieht, dass man dann zumindest davon ausgehen könne, dass der Informa-
tikunterricht für dieses Bildungsziel wenigstens nicht weniger beitrage als andere Schulfächer
und dass schließlich Programmierkompetenz überall dort nütze, wo Programmierkompetenz
gefragt sei. Eberle übersieht, dass mit der Anerkennung fehlender Belege für eine allgemeine
Problemlösekompetenz diese nicht als das zentrale Bildungsziel und auch nicht als die zentra-
le Begründung des allgemein bildenden Wertes des Informatikunterrichts herangezogen
werden kann.
In der pädagogischen Psychologie hat man sich zur Klärung der Frage, „wie Denkprozesse
von Schülern gefördert werden können, an dem orientiert, was über die Denkweisen von Ex-
perten ermittelt worden ist“ (Mietzel 2001, S. 278ff.): Experten verfügen über umfangreiche
bereichsgebundene Kenntnisse und Lösungsstrategien. Sie werden daher schneller auf rele-
vante Informationen aufmerksam, können die Informationsmenge durch Schemata verringern,
etc. Experte, und damit kompetenter Problemlöser, wird man vor allem durch Bereichskennt-
nisse. Das zentrale Bildungsziel des Problemlöse-Paradigmas – so ist zu folgern – ist damit
tatsächlich nicht begründet: Wenn im Informatikunterricht Programmieren vermittelt wird,
dann haben die Schülerinnen und Schüler, falls der Unterricht lernwirksam ist, bestenfalls
also Programmieren gelernt. Wieso sie dies aber lernen sollen, wird im Problemlöse-Paradig-
ma nicht beantwortet.

3.7 Inhalte der Praxiskonzepte
Aus Sicht des Problemlöse-Paradigmas, in welchem Softwareentwicklung als ein Problemlö-
seprozess gesehen wird, der auf die im Gehirn ablaufenden Prozesse beim (menschlichen)
Problemlösen direkt übertragen werden kann, ist die Objektorientierung erst einmal ein weite-
res Problemlöseverfahren der Informatik mit potenziellem Wert für den Unterricht. Bisher
schon führt die Schulinformatik in verschiedene - wie man sie aus der Sicht des Problemlöse-
Paradigmas sehen würde - 'Problemlöseverfahren' ein, die man den imperativen, logischen
und funktionalen Programmiersprachen oder -paradigmen zuordnen kann.
Man hat nun versucht, die verschiedenen Programmierparadigmen direkt menschlichen Denk-
weisen zuzuordnen (Müller 1992, S. 159), siehe Tabelle 6:

Entspricht dem Pro-
grammierparadigma:

Menschliche Vorstellungs- und Denkweise:
Bearbeiten Kooperieren Abstrahieren, Klassifizieren,

Systematisieren
Abbilden,
Zuordnen,

Beschreiben

Imperativ X
Funktional X
Deklarativ X

Objektorientiert X X X X X

Tabelle 6 Müllers Zuordnung von Denkweisen und Programmierparadigmen, nach: Müller, 1992, Abbildung S.
159

Diese Zuordnung ist sehr willkürlich: Weder ist klar, weshalb den einzelnen Programmierpa-
radigmen nun genau diese Eigenschaften zugeordnet werden, noch ist klar, weshalb das

26

Unterrichtserfahrungen und Praxiskonzepte

menschliche Denken anhand genau dieser Eigenschaften charakterisiert wird. Die getroffenen
Zuordnungen sollen hier nicht weiter erörtert werden, so kritikwürdig sie auch sind.
Stattdessen kann an diesem Beispiel sehr anschaulich das Argumentationsmuster verdeutlicht
werden, mit dem im Problemlöse-Paradigma die Inhalte des Informatikunterrichts bestimmt
werden: Es werden (irgendwie) Denkfähigkeiten bestimmt und auf Programmier- oder
Sprachkonzepte bezogen, indem eine Übereinstimmung zwischen Denkfähigkeit und Pro-
grammierkonzept postuliert wird. Anschließend muss hervorgehoben werden, dass diese
Denkfähigkeit, d.h. also dieses Programmierkonzept typisch für z.B. Objektorientierung und
untypisch für die anderen Paradigmen sei, dann hat man eine Begründung für die Behandlung
der Objektorientierung im Informatikunterricht gefunden.
Nun könnte man nach Müllers Zuordnung argumentieren, dass die Objektorientierung ja be-
reits alle Denkfähigkeiten vereinige und daher ausschließlich Objektorientierung zu
vermitteln sei. Diese Folgerung unterbleibt aber interessanterweise zumeist13.
Stattdessen haben sich drei verschiedene – zum Teil widersprüchliche – Positionen herausge-
bildet:
1. Objektorientierung sei eine Weiterentwicklung bisherigen imperativen Programmierens.

Nichts Neues im Grunde. Wie bisher gibt es drei Paradigmen: prädikativ, funktional und
eben das „imperativ-objektorientierte“ Paradigma.

2. Objektorientierung sei eine Herangehensweise an Softwareentwicklung und kein Program-
mierparadigma, zugespitzt: Man könne objektorientierte Softwareentwicklungsmethoden
anwenden und anschließend die Implementation in einem frei wählbaren Paradigma oder
irgendeiner Programmiersprache umsetzen.

3. Objektorientierung fügt den bisherigen Paradigmen eine neue Denkfähigkeit bzw. ein neu-
es Problemlöseverfahren hinzu. Dieses objektorientierte Denken soll im Unterricht als ein
weiteres (zusätzliches) Paradigma vermittelt werden.

Zum ersten Punkt:
Aus der postulierten Ähnlichkeit zwischen imperativen und objektorientierten Inhalten wer-
den zwei unterschiedliche Schlussfolgerungen gezogen. Baumann (1996, S. 281) schlägt vor,
entsprechend den imperativen Inhalt, zumindest imperative Sprachen abzulösen: „Wir plädie-
ren dafür, dass Pascal als Ausbildungssprache durch Oberon abgelöst wird“ (aaO.). Falls das
nicht möglich sei, soll in Turbo-Pascal zumindest das Vererbungskonzept benutzt werden, mit
dem die Objektorientierung neben einer neuen Terminologie anfange (aaO., S.282). Mit ähn-
licher Zielrichtung versucht Böttcher (1997, S.38) die Eignung von Java für den Informatik-
Anfangsunterricht zu prüfen, indem er fragt, „ob sich wesentliche Aufgabenstellungen in
JAVA ebenso gut wie in PASCAL behandeln lassen“.
Die andere Schlussfolgerung ist folgende: Durch die Objektorientierung kommen zur bisher
üblichen Programmierschulung noch mehr Aspekte hinzu: beispielsweise der Aufbau von
Klassen sowie die Vererbung. Diese Konzepte seien kein neuer, sondern ein zusätzlicher Un-
terrichtsinhalt, der dann in Frage komme, wenn Zeit zur Verfügung stehe14:

„Konzepte der "Objektorientierung" haben als informatisches Thema ihren Platz nach einer soli-
den Grundbildung (Voraussetzung: sicheres Operieren mit Verweisstrukturen, Datenabstraktion,

13 Der Artikel „Objektorientiertes Denken als didaktische Basis der Informatik“ von Crutzen und Hein (1996)
bildet in gewisser Weise eine Ausnahme. Hier wird gefordert, Objektorientierung als didaktische Leitlinie
des Unterrichts von Anfang an und immer wieder im Unterricht zu thematisieren (aaO., S. 149), es bleibt je-
doch offen, ob daneben noch andere Programmierparadigmen unterrichtet werden sollen oder nicht.

14 So argumentieren auch Damann und Wemßen 2002 in ihren Vorbemerkungen.

27

Unterrichtserfahrungen und Praxiskonzepte

Organisation großer Programme), schwerpunktmäßig im Bereich der Softwaretechnik. Die Kon-
zepte der Datenabstraktion und der Objektbasierung sind viel grundlegender und deshalb für den
Informatik-Unterricht zentraler.“ (http://www.inf.fu-berlin.de/inst/ag-lfwb/didaktik/diverses/the-
sen.html)

Interessant ist, dass der Schwerpunkt der Objektorientierung als Implementation in einer (ob-
jektorientierten) Programmiersprache gesehen wird.
Zum zweiten Punkt:
Objektorientierung hat demnach als Methodik der Softwareentwicklung den Schwerpunkt auf
der Modellierung. Die Phase der Modellierung ist unabhängig von der Implementation. Da
die Implementation dann aber (meist imperativ) in einer Programmiersprache erfolgt, muss
man sich hier wieder zwischen den beiden obigen Alternativen entscheiden: Objektorientie-
rung anstelle einer imperativen Sprache, oder danach bzw. darauf aufbauend.
Zum dritten Punkt:
Insbesondere als Modellierungstechnik, bei der die Strukturen der Wirklichkeit formal abge-
bildet werden, entspreche die Objektorientierung menschlichen Denkweisen und kann
objektorientiertes Denken genannt werden. Dieses objektorientierte Denken wird von den an-
deren Paradigmen nicht unterstützt, ist demnach eigenständiger Unterrichtsinhalt. Da die
Implementation dann aber wiederum gegenüber den anderen Paradigmen nicht sehr abweiche,
soll Objektorientierung als Unterrichtsthema mit dem Schwerpunkt auf dem Modellieren un-
terrichtet werden.
Insgesamt bleibt diese Diskussion um den Unterrichtsinhalt Objektorientierung merkwürdig
unentschlossen. Obwohl im einzelnen von unterschiedlichen Prämissen ausgegangen wird,
enden die Vorschläge damit, Objektorientierung zusammen mit bzw. anstelle einer imperati-
ven Sprache einzuführen – oder darauf aufbauend. So richtig zum Tragen kommt dann
Objektorientierung als Unterrichtsthema, wenn ein eigenes Projekt erstellt wird. Das Soft-
wareprojekt kann dann modelliert werden, aufbauend auf den vorher vermittelten Konzepten
– und diese vorher vermittelten Konzepte sind sprachbezogene Konzepte.
Die aufgeworfenen Probleme um den Stellenwert der Objektorientierung im Problemlöse-Pa-
radigma sollen hier nicht gelöst werden – und sind möglicherweise innerhalb ihres
Argumentationsrahmens auch nicht lösbar. Hier interessieren an der Diskussion die Konse-
quenzen für den Anfangsunterricht. Es ist festzustellen, dass sich durch die
Objektorientierung so gut wie nichts am Informatik-Anfangsunterricht ändert, da die Frage
nach der Objektorientierung reduziert wird auf einen Wechsel der Programmiersprache.
Damit geht ein aus unterrichtsmethodischer Sicht wesentlicher Aspekt der Objektorientierung
verloren, auf den Schwill bereits 1993 hingewiesen hat. Vor dem Hintergrund eines psycholo-
gischen Experiments von Duncker untersucht Schwill die Objektorientierung als Thema für
den Anfangsunterricht. Im Gegensatz zum Problemlöse-Paradigma wird hier nicht argumen-
tiert, dass Objektorientierung bestimmte Denkfähigkeiten trainiere, sondern umgekehrt wird
aus den Ergebnissen des Experiments gefolgert, dass objektorientierte Konzepte unter ge-
wissen Umständen die menschliche Herangehensweise bei der Problemlösung unterstützen
können.
Dunkers Experiment war folgendes: Die Versuchspersonen bekommen eine Streichholz-
schachtel mit einigen Streichhölzern, einer Heftzwecke und einer kleinen Kerze. Sie haben
die Aufgabe, die Kerze so an der Wand zu befestigen dass man sie anzünden kann. Eine
Gruppe bekommt die Materialien einzeln, die andere bekommt die Materialien in der ge-
schlossenen Streichholzschachtel. Bekommen die Versuchspersonen die Dinge einzeln, so

28

Unterrichtserfahrungen und Praxiskonzepte

kommen sie schneller auf die Idee, die Schachtel mit der Heftzwecke an die Wand zu pinnen
und die Kerze darauf zu stellen. Die anderen Versuchspersonen brauchen deutlich länger, um
das Problem zu lösen.
Im zweiten Fall, so die Erklärung des Experiments, wird die Schachtel mit den darin enthalte-
nen Materialien vor allem als Behälter wahrgenommen und so funktional gebunden. Man
kommt daher nur schwer auf die Idee, sie als etwas anderes, etwa als einen Kerzenhalter, zu
benutzen. Schwill schließt daraus, dass die objektorientierte Sichtweise, in der Objekte fest
zugeordnete Operationen haben, dem menschlichen Denken sehr nahe steht. Diese Ähnlich-
keit könnte genutzt werden, Objektorientierung im Anfangunterricht vor diesem Hintergrund
der zu erwartenden Vorkenntnisse zu vermitteln: Den Schülerinnen und Schülern wäre dem-
nach die Idee, bestimmten Objekten bestimmte Operationen zuzuordnen, einfach zu
vermitteln – denn sie entspricht ihrer Alltagserfahrung.
Es ist wichtig, diese Argumentation von der Rückrichtung zu trennen, die im Problemlöse-Pa-
radigma vorgenommen wird. Dort wird nämlich das objektorientierte Konzept mit
menschlicher Denkweise identifiziert. Die Thematisierung des Konzepts soll dann demnach
Problemlösefähigkeiten trainieren. Übertragen auf obiges Beispiel wäre die Folgerung, dass
die Wahrnehmung von Objekten als funktional gebunden zu trainieren wäre. Die Folgerung
aus dem Experiment ist aber nun gerade das Gegenteil: Die Fixierung von Operationen an
Objekte, die das Experiment nachweist, behindert die Lösungsfähigkeit. Diejenigen Personen,
die die Streichholzschachtel als Behälter wahrgenommen hatten, konnten den Behälter nur
schwer als Halter verwenden. Das Trainieren von Problemlösefähigkeiten müsste gerade dies
Fixierung überwinden.
Ähnlich wie Schwill argumentiert Quibeldy-Cirkel (1994, Kapitel 5.1) unter Verweis auf
Dörner und Lompscher, dass Objektorientierung intuitiv sei (aaO. 1994, S.145). Er versucht
dieses an Beispielen deutlich zu machen:

• „Datenabstraktion und Vererbung versus sprachliche Kategorien
Kraftfahrzeuge haben einen Motor. Ein Auto ist ein Kraftfahrzeug (generalisierte Abstraktion:
KFZ ist die Oberklasse von Auto). Somit hat ein Auto auch einen Motor (abgeleitete Eigen-
schaft durch Vererbung).

• Overloading versus Wortanalogien
Wir können Gegenstände 'ziehen', eine Parallele oder einen Schlussstrich 'ziehen' oder die Auf-
merksamkeit auf uns 'ziehen': Wörter können wie Operatoren in Programmiersprachen
'überladen' sein.

• Polymorphie versus Mehrdeutigkeit
Wir können unseren Gästen stereotyp das gleiche sagen: 'Das Buffet ist eröffnet, bedient euch!'
Jeder Gast wird individuell reagieren: Die 'polymorphen' Verhaltensmuster reichen vom Absti-
nenzler über den Gourmet bis zum Gourmand.

• Datenkapselung versus Metaphern
Piktogramme (=symbolische Metaphern) stehen für komplexe Objekte und Operationen.“
(Quibeldey-Cirkel, 1994, S.150)

Damit versucht Quibeldey-Cirkel zu zeigen, dass objektorientierte Begriffe ihre „Mystik“
verlieren können (aaO.) – sie könnten im Anfangsunterricht von den Schülern intuitiv erfasst
werden, woraus man sicherlich nicht direkt die Schlussfolgerung ableiten wird, die genannten
Konzepte sämtlich im Anfangsunterricht zu vermitteln.
Aber man kann schlussfolgern, dass – wenn man in den Bereich Programmierung, Codierung,
Softwareentwicklung oder Modellierung einführen will – die Objektorientierung sich als ein
intuitiver Zugang für den Anfangsunterricht anbietet. Diese Schlussfolgerung hat auch
Schwill (1993) gezogen und darauf aufmerksam gemacht, dass dazu unterrichtsmethodische

29

Unterrichtserfahrungen und Praxiskonzepte

Konzepte zu entwickeln sind, die dieses Potenzial nutzen. Leider ist das bislang nicht gesche-
hen.

3.8 Zusammenfassung
In den Praxiskonzepten zum Einstieg in die Objektorientierung liegt der Schwerpunkt auf
dem Erlernen einer Programmiersprache. Die Sprache steht zwar nicht unbedingt als eigen-
ständiges Lernziel im Vordergrund, wird jedoch als notwendige Voraussetzung gesehen, die
vor oder zumindest integriert mit der Einführung in die Objektorientierung vermittelt werden
muss.
Da die gewählten Sprachen (Java, Turbo- oder Objektpascal, Oberon) auf imperativen
Sprachstrukturen beruhen, also Konzepte wie Variable, Schleife und Verzweigung enthalten,
entsteht das Problem, diese Konzepte zu vermitteln. Die Objektorientierung vergrößert die
Zahl der zu vermittelnden Konzepte durch die Konzepte Klasse, Objekt, Vererbung, Erzeu-
gung, Assoziation und Aggregation.
Dementsprechend zielen die Praxiskonzepte vor allem darauf, diese zunehmende Stofffülle
aufzufangen:
1. Systeme warten:

Dieser Ansatz reduziert sich im Unterricht auf das Analysieren eines vorliegenden Quell-
textes. Wartbarkeit als Qualitätskriterium sowie objektorientierte Konzepte zur Steigerung
der Wartbarkeit und Veränderbarkeit von Software stehen hier nicht auf dem Stundenplan.
Ebenso fehlen Hinweise auf objektorientierte Entwicklungsmethoden, auf das Modellieren
oder die Architektur der Beispiele. Der Ansatz ist rein unterrichtsmethodisch motiviert:
vorliegender Quelltext als Lernhilfe im Sinne des Lernens aus Beispielen. Das erspart den
Schülerinnen und Schülern Tipparbeit und zeigt die einzelnen Sprachkonstrukte integriert
in ein lauffähiges Programm. Durch die Einbettung der Vermittlung einzelner Sprachkon-
strukte in ein Beispiel kann ggf. der Nutzen des Konstrukts sowie der Zusammenhang zu
anderen Konstrukten leichter hergestellt werden. Zudem wird so nebenbei in die Benut-
zung einer Entwicklungsumgebung (als Handwerkszeug) eingeführt.

2. Formulardesigner nutzen:
Hier wird die Stofffülle oder zumindest der Tippaufwand der Schülerinnen und Schüler
durch automatische Codegenerierung verringert. Diese Vorgehensweise stellt an sich eine
interessante Idee dar, nur bleibt es in der Umsetzung bei der Einführung in eine Program-
miersprache (inklusive Entwicklungsumgebung wie Delphi). Dass die behandelten
Beispiele oft mit einer ansprechenden grafischen Oberfläche versehen werden, könnte die
Schülerinnen und Schüler zusätzlich motivieren.

3. Projektorientierter Einstieg:
Hier wird zusammen mit dem Prozess der Entwicklung eines kleinen, aber benutzbaren
Programms in die Sprache, die Entwicklungsumgebung, das Modellieren und in Grund-
konzepte eingeführt. Durch den Verzicht auf vorausgehende Einführungen muss jedoch
der ganze Prozess durch den Lehrer gelenkt werden. Der Unterrichtsablauf selbst ist daher
eigentlich nicht als projektorientiert zu bezeichnen, da Projektorientierung das eigenständi-
ge Anwenden und Vertiefen in Gruppenarbeit mit der Möglichkeit zu eigenen
Entscheidungen und der eigenen Kontrolle des Vorgehens voraussetzt. Somit reduziert
sich der Ansatz auf die Idee, die Inhalte der Objektorientierung im Zusammenhang ihrer
Anwendung zu vermitteln. Dabei wird versucht, über die Vermittlung von Sprachstruktu-

30

Unterrichtserfahrungen und Praxiskonzepte

ren hinaus zu gehen und auch Techniken zu deren Anwendung, also Softwareentwick-
lungstechniken, zu vermitteln. Die berichteten Probleme sind – im Vergleich mit den
anderen hier vorgestellten Ansätzen – nicht überraschend, da der Schwierigkeitsgrad höher
erscheint und damit weniger Gelegenheit für eigenständige Arbeitsformen, eigenständiges
Lernen, Wiederholungen und Vertiefungen gegeben sind. Im Unterricht selbst liegt wegen
der hohen Anforderungen der Schwerpunkt dann doch wieder auf der Implementierungs-
phase und damit auf der Vermittlung von Sprachstrukturen.

4. Unterstützung durch Klassenbibliotheken:
Diese Idee ähnelt den vorigen: Durch vorliegende Bausteine wird die Tipparbeit reduziert,
einzelne Konstrukte können so eher in größere Zusammenhänge gestellt werden: Ein Me-
thodenaufruf beispielsweise kann eine mächtige Bibliotheksfunktion auslösen. Obwohl
auch dieser Ansatz auf Sprachstrukturen (beispielsweise die Punktschreibweise der Metho-
denaufrufe), reduziert wird, gehen hier die Schülerinnen und Schüler schon eher mit
objektorientierten Konzepten um, da sie eine Klassenbibliothek benutzen. Sie erfahren so
eher den Gedanken der Wiederverwendung. Allerdings liegt auch hier im Anfangsunter-
richt der Schwerpunkt auf einzelnen Konstrukten, die Bibliothek wird nur so weit
eingeführt, dass sie genutzt werden kann. Überlegungen zur Architektur der Bibliothek,
zur Nutzung der Bibliothek in eigenen Designs oder überhaupt das Erstellen eigener Klas-
senentwürfe finden im Anfangsunterricht nach diesem Konzept nicht statt.

5. Informatikanfangsunterricht als Programmiersprachenkurs:
Baumann beispielsweise vermutet, dass gute Sprachkurse mit Java die zusätzlichen Kon-
zepte ebenfalls vermitteln könne. Andere adaptieren die bekannten Hilfsmittel: Nikki, der
Roboter als Java-Version anstelle von Pascal.
Diese Konzepte wechseln die Sprache, nicht den eigentlichen Unterrichtsinhalt. Eine un-
terrichtsmethodische Innovation ist ebenso wenig erkennbar. Eine Einführung in die
Objektorientierung beschränkt sich auf zusätzliche Sprachkonstrukte und andere Schreib-
weisen (beispielsweise die Punktschreibweise).

Es zeigt sich, dass in den verschiedenen Ansätzen dieselben unterrichtsmethodischen Pro-
bleme durch die Stofffülle und die Heterogenität der Inhalte deutlich werden: Es gelingt nicht,
neben in Sprachen und Entwicklungswerkzeuge auch in Konzepte der Objektorientierung,
den Entwicklungsprozess und Modellierungstechniken einzuführen. Einzelne Ansätze redu-
zieren die Anforderungen auf geschickte Weise, können aber die Problematik nur ansatzweise
lösen.
Insgesamt fällt auf, dass das konkrete Vorgehen des Modellierens kaum eine Rolle spielt, gra-
fische Notationen ebenso wenig. Der Quelltext, bzw. das Implementieren bleibt Schwerpunkt
sowohl von den beim Unterrichten wahrgenommenen Problemen, als auch von der Seite der
Lösungsideen. Unterrichtsmethodische Ansätze, Modellierungstechniken zu vermitteln, sind
bislang nicht veröffentlicht worden – was nicht bedeutet, dass Modellieren in der Unterrichts-
praxis gar keine Rolle spielt.
Erinnert sei an Füllers Frage (siehe Abschnitt 3.2), welchen Stellenwert angesichts der me-
thodischen Probleme von OOT im Anfangsunterricht eigenständige, konstruktive und
explorierende Schülerarbeitsphasen haben können und sollen.
Man kann daher der Einschätzung von Penon und Spolwig (1999) zustimmen, wonach der
Schwerpunkt der Veröffentlichungen zur Objektorientierung auf dem Aspekt der zu verwen-
denden Programmiersprache (aaO., S. 40) liege; doch nach ihren

„Erfahrungen im Unterricht und in der Lehrerfortbildung resultieren die Schwierigkeiten beim

31

Unterrichtserfahrungen und Praxiskonzepte

Einsatz dieser Sprachen in erster Linie aus der Datenmodellierung durch Klassenbildung und der
Ablaufsteuerung durch Ereignisse, die vielen ungewohnt ist“ (aaO., S.46, Hervorhebung im Origi-
nal).

Dennoch können einzelne unterrichtsmethodische Ideen für die Entwicklung des Unterrichts-
konzepts aufgegriffen werden: beispielsweise die Idee der Wartung, die allerdings über die
Syntaxebene hinausgehen müsste, oder die Idee der Nutzung einer Klassenbibliothek oder
von einfachen Werkzeugen. Diese einzelnen Ideen müssen jedoch vor dem theoretischen Hin-
tergrund geprüft und ggf. angepasst werden – aus fachdidaktischer, wie aus lehr-
lerntheoretischer Perspektive.
Insgesamt ist aufgrund der unrealistischen Bildungsziele des Problemlöse-Paradigmas die
Frage offen, welche Bildungsziele (stattdessen) erreicht werden sollen; und damit auch, unter
welcher Perspektive Objektorientierung Unterrichtsinhalt werden soll, ob einzelne Aspekte
wie Programmieren, Codieren und Modellieren oder insgesamt Methoden der Softwareent-
wicklung im Vordergrund stehen sollen. Die unterrichtsmethodische Frage ist vor diesem
unklaren Hintergrund ebenfalls nicht lösbar. Trotz der möglichen Intuitivität der Objektorien-
tierung erweist sich das Thema vor diesem Hintergrund als schwer zu vermitteln.

32

Fachdidaktischer Hintergrund

4 Fachdidaktischer Hintergrund
In diesem Kapitel wird der fachdidaktische Hintergrund anhand zweier fachdidaktischer Posi-
tionen entwickelt, dem informationszentrierten und dem systemorientierten Ansatz. Anhand
dieser Positionen werden die Ziele des Anfangsunterrichts bestimmt sowie Ansätze zur Aus-
wahl der Inhalte und der unterrichtsmethodischen Zugänge entwickelt.

4.1 Informationszentrierter Ansatz
Der Ansatz erhebt den Anspruch einer Gesamtkonzeption für den Informatikunterricht von
der Grundschule bis zur Oberstufe. Die eigentliche Aufgabe des Informatikunterrichts wird in
der Vermittlung von „Prinzipien, Konzepte[n] und Strategien zur Planung, Konstruktion, Be-
schreibung und Bewertung abstrakter Informatiksysteme“ (Hubwieser 2000, S. 12) gesehen.
Der Begriff der abstrakten Informatiksysteme wird nicht explizit erläutert, steht jedoch im
Kontext des Begriffs Anwendungsdomäne und bezieht sich auf Bereiche, die mit Hilfe infor-
matischer Methoden beschrieben werden. Hubwieser nennt als Beispiel die Strukturierung
eines Großbetriebs (aaO.). Den eigentlichen Kern des Ansatzes bilden Modellierungstechni-
ken. Die passendere Bezeichnung wäre vielleicht 'modellierungszentrierter Ansatz'. Diese
Bezeichnung zeigt die Unterschiede zum Problemlöse-Paradigma auf und lässt erahnen, dass
die Objektorientierung ein wesentliches Unterrichtsthema des Ansatzes sein kann.

4.1.1 Bildungsziele des Ansatzes
Angesichts einer immer größer werdenden Informationsmenge sei das Umgehen mit Informa-
tionen ohne computerbasierte Hilfsmittel nicht mehr möglich. Daher wird das Strukturieren,
Aufbereiten, Finden und Verwalten von Informationen zur Leitlinie des Informatikunterrichts.
Im Mittelpunkt des informationszentrierten Ansatzes stehen Notationen und grafische Be-
schreibungssprachen für Informationsmengen.
Wesentliches Bildungsziel bleibt die Vermittlung informatischer Grundkonzepte, die am kon-
kreten Beispiel für die Schülerinnen und Schüler begreifbar werden (vgl. aaO., S.13f.) sollen.
Dabei wird implizit vorausgesetzt, dass die im Unterricht vermittelten informatischen Model-
lierungssprachen auch außerhalb der Softwareentwicklung zur Beschreibung von
Sachverhalten eingesetzt werden können und damit als allgemein bildend angesehen werden
können. Die Notation an sich macht den möglichen Bildungswert aus, insofern sie geeignet
erscheint, damit Informationen darstellen und strukturieren zu können.

4.1.2 Inhalte des informationszentrierten Informatikunterrichts
Den inhaltlichen Rahmen bilden die Bereiche 'Darstellung von Information', 'Verarbeitung
und Transport von Repräsentationen' und die 'Interpretation von Repräsentationen'. Der Infor-
matikunterricht beschäftigt sich in diesem Sinne vor allem mit der Informationsverarbeitung
(Hubwieser 2001, S. 79), also der Modellierung und Strukturierung von Daten. Hubwieser
leitet daraus die Modellierung als inhaltlichen Kern des Schulfaches Informatik ab (aaO., S.
85). Ein Modell wird als Beschreibung eines geplanten oder realen Systems verstanden (aaO.,
S. 86).
Zusammenfassend bemerkt Hubwieser (2000, S. 36):

„Unser Informatikunterricht beschäftigt sich nicht nur mit Modellbildung und Simulation, unser
Unterricht besteht im Wesentlichen aus Modellbildung und Simulation, wie wir im nächsten Kapi-
tel ausführlich darlegen werden. Spezielle, schülergemäße Modellierungstechniken gehören
dagegen durchaus zu den vorgeschlagenen Lerninhalten.“

33

Fachdidaktischer Hintergrund

Es werden Modelle erstellt und mit informatischen Mitteln formalisiert, aber es werden aus-
drücklich keine Softwareprodukte entwickelt. Die Umsetzung muss nicht einmal mit
Programmiersystemen erfolgen, sie dient eher als unterrichtsmethodisches Mittel, um die
Gültigkeit der Schülerlösung zu prüfen und den Schülern vom Computer demonstrieren zu
lassen, damit das Modellieren keine rein theoretisch-abstrakte Gedankenübung bleibt.
Das objektorientierte Modellieren ist im informationszentrierten Ansatz (zunächst) ein Be-
schreibungsverfahren unter anderen. Hubwieser vermutet in diesem Zusammenhang
ausdrücklich große didaktische Möglichkeiten der Objektorientierung und der UML:

„Leider verfügte man bis vor kurzem nicht über geeignete Techniken, um diesen Modellierungs-
vorgang im Unterricht systematisch und in angemessener Tiefe umsetzen zu können. Aus diesem
Mangel heraus gerieten die Betrachtungen zu diesem Thema im Unterrichtsgeschehen oft zu rein
philosophischen, wenig schülergemäßen Exkursen. Inzwischen haben sich jedoch auf dem Gebiet
der Softwareentwicklung Modellierungstechniken durchgesetzt, die aufgrund ihrer Anschaulich-
keit und Beschreibungsmächtigkeit geeignet scheinen, genau diese methodische Lücke zu
schließen. Die Softwaretechnik verwendet inzwischen vor allem objektorientierte Entwurfsmetho-
den, die auf diesen Techniken aufsetzen. Dazu gehören die Entwicklungsmethoden von
Rumbaugh et al. (1991), Booch (1994) und Jacobson et al. (1991), die inzwischen unter Beteili-
gung der drei Erfinder zur Unified Modeling Language (UML) verschmolzen und
weiterentwickelt wurden (siehe Booch, Rumbaugh, Jacobson (1997)). Einige dieser relativ neuen
Techniken ermöglichen eine durchaus altersgemäße Modellierung einfacher Sachverhalte und da-
mit eine direkte Umsetzung unseres didaktischen Ansatzes.“ (Hubwieser 2000, S. 50).

Hubwieser vermutet, dass neuere objektorientierte Entwurfsmethoden der Softwaretechnik
geeignet sind, Modellierungsvorgänge im Informatikunterricht „systematisch und in angemes-
sener Tiefe umsetzen zu können“ (aaO., S.85f.). Dabei werden mit Hilfe der
objektorientierten Modellierung komplexe Systeme in Subsysteme bis auf Objektebene ver-
feinert. Die Modellierung kann im Unterricht sowohl „Lerninhalt (Erlernen von
Modellierungstechniken zur Beschreibung komplexer Systeme) als auch Methode (Erarbei-
tung grundlegender Prinzipien von Informatiksystemen durch ihre Modellierung) sein“ (aaO.,
S.86).
Die objektorientierte Programmierung biete eine einfache und effiziente Implementation der
Modellierung an, liefere für sich genommen aber kaum Beiträge zur Allgemeinbildung (aaO.,
S.94), sie diene zur Veranschaulichung und Überprüfung der Modellierung (aaO., S.89) bzw.
zum Einüben von „Teamfähigkeit, Zeitplanungsstrategien und Kommunikationstechniken“ in
einem Abschlussprojekt (aaO., S.95).

4.1.3 Unterrichtsmethodische Zugänge zu den Inhalten
Im Unterricht sollen die Lerninhalte in größere Sinnzusammenhänge eingeordnet und deutlich
strukturiert werden. Ziel dieser Maßnahmen sei es, die Bildung „präpositionaler Netzwerke“
zu ermöglichen. Lernen erfolge dabei im Sinne gemäßigt konstruktivistischer Ansätze15 durch
aktive Auseinandersetzung der Schülerinnen und Schüler mit dem Stoff, der altersgemäß dar-
geboten werden soll. Für die unterrichtsmethodische Umsetzung des Ansatzes sei es aus
(leider nicht weiter erläuterten)

„nahe liegenden didaktischen Gründen geboten,
· die Modellierungstechniken zunächst einzeln einzuführen,
· einzeln auf geeignete Probleme anzuwenden und
· die erzeugten Modelle möglichst sofort zu implementieren.“ (Hubwieser 2000, S.53f.)

15 Vgl. mit Reinmann-Rothmeier u. Mandl (1996) (Reinmann-Rothmeier, G., Mandl, H.: Lernen auf der Basis
des Konstruktivismus. Computer und Unterricht 23 (1996). S. 41-44).

34

Fachdidaktischer Hintergrund

Für die Schule ergibt diese Auffassung, für die einiges spricht16, ein unterrichtsmethodisches
Problem: Zwar sollen die planerischen Aspekte der Softwareentwicklung, die Modellierung,
betont werden, aber die „Modellierung und Strukturierung“ soll dabei weder zu „philosophi-
schen Exkursen“ verkommen, noch sollen die „spezifische Eigenheiten der verwendeten
Programmiersprache in den Mittelpunkt des Unterrichts rücken“ (Hubwieser 1999, S.24f.).
In der Sekundarstufe II sollen Probleme projektartig bearbeitet werden, dazu schlägt Hub-
wieser eine Phaseneinteilung vor, die den Vorgehensmodellen der Softwareentwicklung
nachempfunden ist. Allerdings sei die Phasierung nicht als „strenges Schema“, sondern als
Auswahl für den Unterricht wichtiger Punkte zu betrachten, die im Verlauf eines Projektes
behandelt oder zumindest gestreift werden sollten (aaO., S. 37). Diese Phasen werden im Fol-
genden wiedergegeben:
1. Problembegegnung

Einführung der Problemstellung und Motivation, Anschluss an Vorwissen, eher lehrerzen-
triert (aaO., S. 37)

2. Informelle Problembeschreibung
Verbale oder grafische Beschreibung der Problemstellung inklusive der Randbedingungen.
Bei einem Softwareentwicklungsprojekt ist Ergebnis der Phase ein Pflichtenheft (aaO., S.
37).

3. Formale Modellierung
„Die Gruppe ist die beherrschende Sozialstruktur, typisch wäre etwa die Entwicklung unterschied-
licher Modellklassen durch einzelne Gruppen mit abschließender gemeinsamer Diskussion der
Ergebnisse. Ein willkommenes Werkzeug bei der Erarbeitung von Diagrammen wäre ein geeigne-
tes Flow-Chart-Programm, das eine saubere Anordnung der Elemente auf dem Arbeitsblatt, leichte
Korrekturen und eine Einbindung in ein Abschlussdokument ermöglicht.“ (Hubwieser 2000, S.
38)

4. Implementation und Realisierung
Diese Phase diene dazu, das vorher erstellte Modell zu prüfen. Außerdem trage die „Aus-
sicht auf ein lauffähiges System entscheidend zur Motivation der Schüler bei“ (aaO., S.38).
Dagegen sollen nicht tiefer gehende Kenntnisse über eine spezielle Programmiersprache
oder ein Programmiersystem vermittelt werden.

5. Bewertung
Diese Phase diene einerseits zur Wiederholung und Festigung des Gelernten, andererseits
zur Förderung der Kritik- und Urteilsfähigkeit. Fragen nach alternativen Lösungen, unge-
lösten Teilproblemen etc. werden diskutiert (aaO., S. 38).

Zur Umsetzung der Modellierung in Phase vier sei man neben Softwarewerkzeugen wie Da-
tenbanken auf Programmierumgebungen angewiesen. Um die Phase der Codierung
'kleinzuhalten', werden verschiedene Möglichkeiten angedeutet: So könnten „Code-
generierungssysteme“ (aaO., S.42) interessante Möglichkeiten zur direkten Umsetzung von
Modellierungen bieten oder man versucht,

„gewisse Lerninhalte gleichsam nebenbei, im Zuge der Beschäftigung mit anderen Themen, zu
vermitteln. Für einige Konzepte der Objektorientierung, die Funktionsweise von Rechenanlagen,
Aspekte des Datenschutzes oder gesellschaftliche Auswirkungen der Informatik beispielsweise
scheint es angemessen, sie immer wieder an verschiedenen Stellen anhand des gerade betrachteten
Systems anzusprechen, anstatt sie allein in den Mittelpunkt des Unterrichts zu stellen.“ (Hubwie-
ser 2000, S.49)

16 Siehe dazu das Kapitel 6 über den allgemeindidaktischen und lehr- und lerntheoretischen Hintergrund, etwa
S. 62, sowie den Abschnitt 6.1.3 ab S. 65.

35

Fachdidaktischer Hintergrund

4.1.4 Zusammenfassung und Bewertung des Ansatzes
Aus der Perspektive des Anfangsunterrichts bleiben die unterrichtsmethodischen Vorschläge
vage: Die Idee, Modellierungstechniken einzeln einzuführen, verteilt die Lerninhalte sagt aber
wenig über das wie aus. CASE-Tools mit automatischer Codegenerierung sind Hilfsmittel,
um den Anteil der Codierung zu senken. Nach den Praxisberichten erfordern die Werkzeuge
jedoch möglicherweise selbst eine Einführung, sodass zwar die Übungsphase für die Pro-
grammiersprachensyntax kürzer wird, aber dafür zusätzliche Übungen mit dem Werkzeug
notwendig werden.
Tatsächlich bleibt die oben festgestellte unterrichtsmethodische Lücke für den Anfangsunter-
richt bestehen. Zugespitzt gesagt wurde (gegenüber dem Problemlöse-Paradigma) die
Einführung in sprachbezogene Grundkonzepte ersetzt durch die Einführung in notationsbezo-
gene Modellierkonzepte, an die sich eine Projektphase anschließen soll.
Interessant ist die Idee, vor allem grafische Notationen zu verwenden. Diese können Details
verdecken und so stärker die zu vermittelnden Grundkonzepte herauszustellen. M.E. geht die-
se Akzentverschiebung in der Informatikdidaktik zudem konform mit der Entwicklung in der
Softwaretechnik: In beiden Fällen geht das Bestreben dahin, sich von der engen Orientierung
auf den Computer und maschinennahe Beschreibungen zu lösen und stattdessen näher an den
Strukturen des Problemfeldes zu arbeiten und diese formalisiert zu erfassen. Dementspre-
chend spielen in beiden Bereichen objektorientierte Ansätze eine größere Rolle als früher, da
objektorientierte Beschreibungsverfahren weniger Brüche zwischen den verschiedenen Mo-
dellstufen von der ersten Anforderungsbeschreibung bis hin zur lauffähigen Implementation
aufweisen.
Wenn die Schülerinnen und Schüler im Unterricht modellieren, um Systeme zu strukturieren
so kann dies als Problemlöseprozess aufgefasst werden. In diesem Falle jedoch sind, wenn
eine entsprechende projektartige Zugangsweise gelingt, die methodischen Vorgehensweisen
und damit verknüpften Zielvorstellungen mit der aktuellen lehr-lerntheoretischen Diskussion
vereinbar. Klieme, Artelt und Stanet (2001) fassen die Diskussion um Problemlösekompetenz
vor dem Hintergrund der PISA-Studie zusammen:

„Aus heutiger Sicht scheint es kaum realistisch, Problemlösekompetenz ganz allgemein trainieren
zu wollen. Realistisch ist es hingegen, bestimmte Strategien wie etwa Analogiebildung und kom-
binatorisches Denken, die Nutzung von kognitiven Werkzeugen (z.B. Diagrammen) oder
Techniken der Selbststeuerung dadurch zu fördern, dass man sie immer wieder, an konkrete Inhal-
te geknüpft, in Unterrichtssituationen thematisiert“ (Klieme, Artelt und Stanet, 2001, S. 209).

Die einzelnen Modelliertechniken werden im Unterricht jedoch aus ihrem informatischen
Einsatzbereich, ihrem Kontext, herausgenommen und an einzelnen isolierten Beispielen ein-
geführt und geübt, welche die Technik und Notation deutlich herausstellen. Das könnte dazu
führen, dass im Unterricht vor allem Beispiele verwendet werden, welche die jeweilige Mo-
delliertechnik in idealer Weise darstellen. Damit würde das Konzept dem Problemlöse-
Paradigma der Praxiskonzepte ähneln.
Während bislang also im Anfangsunterricht zu viel Wert auf die Programmierung gelegt wur-
de, wird nun aufgezeigt, dass die Modellierung als allgemein bildender Wert angesehen
werden kann und dass Modellierung den Informatikunterricht prägen kann. Da jedoch objekt-
orientierte Modelle einen Zweck haben (die Implementation von qualitativ guter Software),
kann man Modellieren nicht ohne diesen Bezug thematisieren.
Es wird also eine Verbindung des Modellierens und der Implementation gesucht. Dieser Brü-
ckenschlag kann vor dem systemorientierten Ansatz entwickelt werden, der zudem weitere

36

Fachdidaktischer Hintergrund

Bildungsziele für den Informatikunterricht postuliert, die diesen Brückenschlag nicht nur un-
terrichtsmethodisch, sondern auch von der Frage nach dem allgemein bildenden Wert her
legitimieren.

4.2 Systemorientierter Ansatz
Die bisher vorgestellten informatikdidaktischen Positionen beziehen sich vornehmlich auf die
Informatik. Von der Fachwissenschaft ausgehend werden Bildungsziele und Inhalte bestimmt.
Ein wesentlicher Begründungszusammenhang des systemorientierten Ansatzes kommt im Ge-
gensatz dazu nicht aus der Fachwissenschaft, sondern aus dem Bereich der Techniksoziologie
oder -philosophie. Dieser Blick von außen soll nun, die bisherige Diskussion kontrastierend,
vorgestellt und anschließend für die informatikdidaktische Diskussion nutzbar gemacht wer-
den.
Ropohl versucht ein Projekt der technologischen Aufklärung (Ropohl 1991) zu etablieren, um
die unbeabsichtigten Nebenfolgen des technologischen Fortschritts zu meistern, die sich äu-
ßern in zunehmendem Ressourcenverbrauch, Naturzerstörung, großen und unkalkulierbaren
technischen Risiken (er verweist hier auf Tschernobyl) sowie einer damit einhergehenden all-
zu schlichten Technikphobie und -kritik einerseits, aber auch eines allzu naiven
Fortschrittsoptimismus' andererseits. Problematisch sei vor allem die Reduzierung der Tech-
nik auf eine angewandte Naturwissenschaft, da sich in dieser Perspektive die „Entstehungs-
und Verwendungszusammenhänge“ technischer Artefakte „verflüchtigen“ müssten (aaO.,
S.43), sodass Ingenieure einem blinden Technikfetischismus huldigen würden:

„Zwar setzen Ingenieure neue Konstrukte in die Welt. Aber weder wissen sie, welche soziokultu-
rellen und sozioökonomischen Kräfte ihre Aufgabenstellungen und Auswahlprozeduren
präformieren, noch geben sie sich Rechenschaft davon, daß sie mit den Konstrukten zugleich die
natürliche Umwelt und die menschlichen Handlungsmuster, also die gesellschaftliche Mitwelt ver-
ändern.“ (Ropohl 1991, S.43)

Es sei notwendig zu erkennen, dass technologische Bildung ein unverzichtbarer Bestandteil
der Allgemeinbildung sei. Unter anderem sei sie notwendig zur Stiftung eines zeitgemäßen
Weltbildes (aaO., S.222f.) und zur Entmystifizierung der Technik. Dabei komme es nicht da-
rauf an, „alle Menschen zu Ingenieuren im Westentaschenformat“ (aaO., S.229) zu machen,
sondern auf die Vermittlung von Orientierungswissen. Unverzichtbar dafür sei ein Einblick in
die Technologie, aber auch ein Überblick, der über das rein technische Wissen hinausgehe.
Vor allem zwei Dinge sind es, die an dieser Sichtweise erstaunen: zum einen die sehr negati-
ve Sicht auf die zerstörerischen Folgen des technologischen Fortschritts, welche allein den
Ingenieuren angelastet werden, die – träfe der Vorwurf zu - unverantwortlich Handeln wür-
den; zum anderen aber wird die allgemeine Vermittlung von 'Orientierungswissen' über die
ingenieursmäßige Entwicklung von Technologien gefordert. Die technologische Aufklärung
des Einzelnen liegt dann in der Einsicht, dass Technik jeweils für einen bestimmten Zweck
entwickelt wird und dass technologische Entwicklungen nicht allein auf (zweckfreie) Tech-
nikfragen reduzierbar sind.
Ropohl macht auch Vorschläge, wie diese technologische Bildung verwirklicht werden könn-
te: Der Entstehungs- und Gestaltungsprozess von Technik solle vermittelt werden, gerade
auch am Gymnasium, welches traditionell die Ingenieurs- und Technikwissenschaften aus
dem Kanon (humanistischer) Bildung ausschlösse. Schwierig sei allerdings, den Gebrauchs-
und Bewertungszusammenhang, die soziotechnische Perspektive, einzubeziehen. Die Umset-
zung der technischen Bildung in einem Schulfach werde erschwert durch die Notwendigkeit

37

Fachdidaktischer Hintergrund

von eigenen Praxiserfahrungen und die Zersplitterung der Technikwissenschaften. Man
bräuchte nach Ropohl so etwas wie eine allgemeine Technologie (aaO., S.227).
Eine Herausforderung sei die integrative Vermittlung dieser Aspekte, ohne dass sie zu einem
Additivum verkommen (aaO., S.232). Doch im Grunde sei das Anliegen nicht mehr, als das
Wissen auf den Begriff zu bringen, das der „tätige Ingenieur“ sowieso habe: Technik sei kei-
ne Spielwiese für die „zweckfreie Pröbelei“, stattdessen dienten die technischen Artefakte

„immer als Mittel für menschliche Handlungszwecke, und sie gehen aus menschlichem Handeln
hervor, das sie vorher als Zweck gesetzt hatte. Neue technische Lösungen sind immer auch neue
Handlungsmuster, von Menschen für Menschen entworfen und damit Kristallisationen gesell-
schaftlicher Verhältnisse. [..]
Jede Invention ist eine Intervention, eine Intervention in Natur und Gesellschaft.“ (Ropohl 1991,
S. 233)

Dass Orientierungswissen über den technischen Fortschritt und dessen Mechanismen sowie
Wissen über wichtige Technologien in den modernen technologischen Gesellschaften zur All-
gemeinbildung zählen sollten, wird auch andernorts gesehen. Klafki (1996, S. 59) verweist
auf Schlüsselprobleme, die in der allgemein bildenden Schule thematisiert werden sollen. Ei-
nes davon sind die Fragen der Informations- und Kommunikationstechnologien. In neuerer
Zeit belegt Lessig (1999) vor dem Hintergrund des Internets im Einzelnen die Bedeutsamkeit
technologischen Orientierungswissens.
Die Notwendigkeit, Technik zu entmystifizieren, technische Entwicklungen verständlich zu
machen und die Bedeutung von Technik für den Einzelnen und die Gesellschaft deutlich zu
machen wird nicht nur in einer technologischen Aufklärung, sondern auch in der Informatik-
didaktik gesehen (Hubwieser 2001, S. 58f.). Die Empfehlungen zur informatischen Bildung
der Gesellschaft für Informatik (Gesellschaft für Informatik 2000) sowie die meisten Lehrplä-
ne betrachten diese Fragen als relevant für den Informatikunterricht. Bisher, so etwa die
Analyse von Forneck (1992), ist diese Frage aber ein Anhängsel des Unterrichts geblieben
(vgl. auch Hampel, Magenheim und Schulte 1999).
Der systemorientierte Ansatz versucht nun einen Brückenschlag zu finden, um so-
ziotechnische Aspekte in den Informatikunterricht zu integrieren. Hier sind einige
Anregungen Ropohls zu nennen:
1. Technik hat demnach immer auch eine 'soziale Seite'.
2. Technische Bildung kann nicht durch die Beschäftigung mit Technik 'von außen' erworben

werden. Praktische Erfahrungen mit der Entwicklung und Nutzung von Technik sind dazu
notwendig.

Um den ersten Punkt herauszuarbeiten, führt der systemorientierte Ansatz den Begriff des so-
ziotechnischen Informatiksystems ein, der zum eigentlichen Kernbegriff des Ansatzes wird.
Es besteht aus Hard- und Software mit Verarbeitungs- und Speicherkomponenten, aber auch
mit einer Benutzungsschnittstelle, sodass beispielsweise die Perspektive des Benutzers einbe-
zogen wird. Foegen schlägt 1996 vor, die „Gestaltung von Systemen“ als Leitfaden für den
Informatikunterricht zu benutzen und macht deutlich, dass damit der Algorithmus nur eine
Form der Informationsverarbeitung darstellt und das „alte Paradigma der Algorithmusori-
entierung“ durch den systemorientierten Ansatz abgelöst wird, um die verschiedenen
Teilbereiche der Informatik in einem didaktischen Konzept zu vereinen und neue Entwicklun-
gen wie die Objektorientierung zu integrieren (Foegen 1996, S. v). Die Gestaltung wird dabei
nicht auf technische oder informationstechnische Systeme beschränkt, sondern bezieht die
umgebenden sozialen Systeme ausdrücklich mit ein: „Technische Systeme zu verändern

38

Fachdidaktischer Hintergrund

heißt, die sozialen Systeme, in die sie eingebettet sind, zu verändern, und Veränderungen so-
zialer Systeme erfordern oft auch neue technische Lösungen zu ihrer Unterstützung“ (aaO.,
S.18).
Die Beschäftigung mit informatischen Notationen kann und sollte also, in Bezug auf den
zweiten Punkt, die Entwicklung und Nutzung von Software einbeziehen. Und zwar nicht als
Training kognitiver Fähigkeiten, sondern um Softwareentwicklung als Entwicklung von
Technik aus einer soziotechnischen Perspektive zu betrachten. Also zum Zwecke die Nutzung
und ggf. Veränderungen im Einsatzbereich und die Weiterentwicklung einzubeziehen.

4.2.1 Bildungsziele des systemorientierten Ansatzes
Die Schülerinnen und Schüler sollen Informatiksysteme als soziotechnische Systeme begrei-
fen lernen. Sie sollen erkennen, dass die Gestaltung von Software immer den geplanten
Einsatzkontext berücksichtigen muss. Zu diesem Kontext gehören nicht nur die materiellen
Gegebenheiten wie Hard- und Software, sondern auch die sozialen Gegebenheiten wie Ar-
beitsabläufe und verschiedene Rollen der Benutzer.
Vereinfacht könnte das Konzept des soziotechnischen Informatiksystems (abgekürzt: stIFS)
wie folgt dargestellt werden: Ein stIFS besteht aus dem Computer plus Software sowie den
Nutzern und den Betroffenen der Nutzung und den verschiedenen Interessensgruppen (Tabel-
le 7). Zwischen den 'Bestandteilen' eines stIFS bestehen Wechselwirkungen. Ein stIFS besitzt
zumindest immer eine technische Seite (Soft- und Hardware) sowie eine soziale Seite (Nutzer
und Betroffene). Die einzelnen Bestandteile können ggf. als Subsysteme genauer analysiert
werden.

Soziotechnisches Informatiksystem
technische
Seite

Hardware Lokaler Rechner, entfernter Rechner,
Netzwerkkomponenten

Software Schichtenarchitektur (z.B. MVC), Komponenten
(z.B. Module, Units, ...), Klassen, Objekte ...

soziale Seite Interessensgruppen Anwender, Betroffene, Entwickler,
Auftraggeber: Anwendungszwecke

Tabelle 7 Schema eines soziotechnischen Informatiksystems mit seinen identifizierbaren Subsystemen

Im Modellierungsprozess wird die geplante Software sozusagen kontextualisiert. Dieser Pro-
zess geht von zwei Seiten aus: Die Modelle (Anforderung, Analyse, Design) werden an die
Umgebung angepasst. Andererseits kann auch die Umgebung angepasst werden: Arbeitsab-
läufe und Rollen der Benutzer können sich ändern.
Ziel ist, die enge Verzahnung von technischer Entwicklung und gesellschaftlichen Ver-
änderungen begreifbar zu machen. Daher soll der Aspekt der gesellschaftlichen
Auswirkungen nicht als isoliertes Randthema sondern als Leitprinzip des Unterrichts gesehen
werden:

„In einer zunehmend von computerbasierten Medien und Technologien unterschiedlichster Art ge-
prägten Welt kann den Schülerinnen und Schülern im Sinne der o.g. Zweck-Mittel Relation17 die
sozialverträgliche Technikgestaltung als interessensgeleiteter Entscheidungsprozess verdeutlicht

17 Zur Zweck-Mittel Relation: Eine Software wird als Mittel gesehen, das bestimmte Zwecke erfüllen soll. Hin-
ter dieser Zwecksetzung sind stets Interessensgruppen erkennbar. Dazu Magenheim 2000: „Gestaltung von
Informatiksystemen bewegt sich im Spannungsfeld von formalem Modell und nicht formaler Wirklichkeit,
wobei der Gestaltungsprozess der Informatiker durch die Zweck-Mittel-Relation des Systems, z.B. von den
Interessen der Auftraggeber, den ökonomischen Rahmenbedingungen der Systementwicklung, dem realen
Ausgangszustand des soziotechnischen Systems, abhängt.“

39

Fachdidaktischer Hintergrund

und so ein wichtiger Beitrag für ihre künftige Handlungskompetenz im Umgang mit Medien und
Informationstechniken am Arbeitsplatz und in den Sphären von politischer Öffentlichkeit und Pri-
vatheit geleistet werden.“ (Magenheim 2000)

Daher sollte aufgezeigt werden, dass eine Entwicklungsaufgabe unterschiedliche Lö-
sungswege und Lösungen hat. Es existiert nicht die eine richtige Lösung, nicht das eine
Qualitätskriterium, sondern zum Teil einander widersprechende Anforderungen und Interes-
sen. Werden im Informatikunterricht verschiedene Lösungswege in der Softwareentwicklung
deutlich, dann können Gestaltungsaufgaben im Sinne der Schlüsselprobleme Klafkis the-
matisiert werden:

„Zur bildenden Auseinandersetzung gehört zentral die – an exemplarischen Beispielen zu erarbei-
tende Einsicht, daß und warum die Frage nach 'Lösungen' der großen Gegenwarts- und
Zukunftsprobleme verschiedene Antworten ermöglicht [..]. Aus diesem Grundsachverhalt folgt al-
lerdings keineswegs die umstandslose Anerkennung aller solcher Positionen als gleichberechtigt.
Vielmehr stellt sich die Frage nach Kriterien, mit deren Hilfe die Geltung unterschiedlicher Lö-
sungsvorschläge [..] beurteilt werden kann“ (Klafki, 1996, S. 61).

Modellieren wird damit als Teil des Softwareentwicklungsprozesses eingebettet in die Gestal-
tung von Informatiksystemen. Die Beurteilung des Systems sowie die Suche nach
Verbesserungen gehen prinzipiell über die Frage der Konstruktion eines Software-Produktes
hinaus.
Zusammenfassend können die Bildungsziele des systemorientierten Ansatzes wie folgt be-
schrieben werden: Die Berücksichtigung verschiedener Kriterien und das Erkennen der
Vernetzung von Software und Einsatzumgebung erschließt exemplarisch die Thematik der
Wechselwirkungen zwischen Informatik und Gesellschaft; im Sinne der Klafki'schen Schlüs-
selprobleme sowie der technologischen Bildung nach Ropohl:

„An erster Stelle wäre aus der Perspektive einer systemorientierten Didaktik der Informatik darauf
zu verweisen, dass Informatik als einziges Fach (evtl. neben Arbeitslehre) mit technologischen
und ingenieurwissenschaftlichen Bezügen an allgemein bildenden Schulen in der Lage sein könn-
te, den Schülerinnen und Schülern den Umgang und die Auseinandersetzung mit Technologie
insbesondere mit Informationstechnologien näher zu bringen.“ (Magenheim 2000)

4.2.2 Inhalte des systemorientierten Informatikunterrichts
Inhalt des Informatikunterrichts ist die Softwareentwicklung, allerdings im Unterschied zu an-
deren Ansätzen weniger, um Problemlösefähigkeiten zu schulen, sondern um technische
Entwicklungsprozesse zu verstehen. In diesem Sinne ist die 'Reflexion von Softwareentwick-
lung' der wesentliche Unterrichtsinhalt des systemorientierten Ansatzes.
Magenheim nennt insgesamt als Unterrichtsziele und -inhalte

• „Teaching fundamental concepts of informatics (like algorithms, methods of software techni-
que ...).

• Learning about (computer-based) modelling techniques.
• Recognising software development and the construction of IS as a communicative and co-op-

erative process, i.e. construction decisions and group interests should be balanced.
• Learning, that the social impact of an implemented IS has its roots in the phases of requirement

definition, specification and design of software
• Creating technical systems and IS is not only a technical but also an important social process

with large influence on society” (Magenheim 2001)

Diese Unterrichtsinhalte sind zunächst 'neutral' gegenüber Programmierparadigmen. Hier soll
nun untersucht werden, ob nicht die objektorientierte Softwareentwicklung angesichts der
Bildungsziele ein geeigneter Unterrichtsinhalt ist.

40

Fachdidaktischer Hintergrund

Zunächst sollte die Interaktion zwischen Nutzer und Software in den Unterricht einbezogen
werden, um den Zusammenhang zwischen Softwarefunktionalität und Einsatz thematisieren
zu können.
Nach Wegener (1997) sind interaktive Systeme von der Algorithmik zu unterscheiden: Die
Leistung des Gesamtsystems kann nicht allein aus der Analyse der algorithmischen Funktio-
nen abgeleitet werden, sondern ergibt sich aus dem Zusammenspiel von Software und
Nutzereingaben. Ob ein solches interaktives System, wie Wegener behauptet, tatsächlich leis-
tungsfähiger als algorithmische Systeme ist, kann man zwar bezweifeln, dennoch bleibt der –
im Sinne der Systemorientierung – wesentliche Unterschied bestehen, dass interaktive Syste-
me nicht allein durch die technische Seite beschrieben werden können, sondern dass die
soziale Seite (zunächst einfach in Form von Nutzereingaben) ebenso berücksichtigt werden
muss.
Zur Konstruktion interaktiver Systeme mit grafischen Oberflächen bieten die meisten objekt-
orientierten Sprachen Unterstützung durch Bibliotheken und Mechanismen zur
Ereignisbehandlung. Anhand objektorientierter Sprachen kann also Interaktivität in den Infor-
matikunterricht einbezogen werden.
Objektorientierte Softwareentwicklungsmethoden beziehen ebenfalls Interaktivität ein: das
Konzept der Anwendungsfälle. Jacobsen, Booch und Rumbaugh (1999, S. 5) beschreiben das
Konzept am Beispiel eines Bankautomaten: 'Geldabheben' durch einen (menschlichen) An-
wender ist ein Anwendungsfall. Das aus den einzelnen Anwendungsfällen zusammengesetzte
Anwendungsfallmodell repräsentiert die komplette Systemfunktionalität. Die Akteure bilden
den Kontext des Systems (aaO., S. 41), den soziotechnischen Kontext, könnte man anfügen.
Anwendungsfallmodelle ersetzen die funktionale Anforderungsanalyse:

„A functional specification can be said to answer the question, what is the system supposed to do?
The use case strategy can be characterized by adding three words to the end of this question: for
each user? These three words have a very important implication. They force us to think in terms
of value to users and not just in functions that might be good to have.” (Jacobsen, Booch und
Rumbaugh 1999, S. 5)

Objektorientierung versucht daneben vor allem auch die Qualität von Software zu unterstüt-
zen. Ein wesentliches Qualitätskriterium ist die Erweiterbarkeit, denn:

„the environment mutates. Operating systems, database systems, and the underlying machines ad-
vance. As the mission becomes better understood, the requirements may change. In fact, it is one
of the constants of software development that the requirements change.” (Jacobsen, Booch und
Rumbaugh 1999, S. 9)

Objektorientierte Softwareentwicklungsmethoden beziehen (Erweiterungs-)Zyklen ein. Quali-
tätsanforderungen und Entwicklungsmethoden können als technologische Antwort auf die
soziotechnische Einbettung der Software in einen sich ändernden Anwendungskontext ver-
standen werden.
Die inkrementelle Entwicklung wird durch den Aufbau objektorientierter Programme unter-
stützt. Die Erweiterung kann auf zwei Weisen geschehen: Objekte können zusätzliche
Operationen erhalten, zur Menge der vorhandenen Objekte können neue Objekte mit neuen
Eigenschaften und Operationen hinzukommen. Auf diese Weise sind die im Informatikunter-
richt thematisierten kleinen Beispiele strukturell komplexen (bzw. 'echten') Programmen
ähnlich.
Die Nähe der objektorientierten Begrifflichkeit zur Anwendungsdomäne, auch in der Imple-
mentation, macht die Verzahnung von technologischer Erfindung und dem Kontext deutlich:
Einerseits muss eine Software wesentliche Bedingungen des Anwendungskontextes aufgrei-

41

Fachdidaktischer Hintergrund

fen, andererseits wird gerade in diesen Anwendungskontext etwas Neues hineingepflanzt. Das
zeigt sich bereits in den einfachsten Anwendungen, beispielsweise einfachen Spielen, in de-
nen die Rolle eines Spieler-Objekts und dessen Beziehung zum Benutzer des Programms
geklärt werden muss.
Objektorientierte Konzepte scheinen also geeignet, den Systemgedanken zu repräsentieren,
objektorientierte Entwicklungsmethoden können die Verschränktheit technologischer Ent-
wicklung mit dem Einsatzumfeld deutlich machen. Offen ist, wie weit diese Inhalte im
Anfangsunterricht thematisierbar sind bzw. welche Grundlagen der Anfangsunterricht für
eine Vermittlung der Inhalte im darauf folgenden Unterricht zu legen vermag.
Im Grunde kann die Objektorientierung aufgefasst werden als informatische Sichtweise oder
Reformulierung des soziotechnischen Ansatzes mit seinen Vorläufern in der Techniksoziolo-
gie. Der soziotechnische Ansatz behauptet, dass Softwareentwicklung ein Beispiel ist für
technologische Entwicklung aus systemorientierter Perspektive und dass Software nicht ohne
den Zusammenhang mit dem Einsatzkontext begriffen werden kann (siehe dazu auch Magen-
heim 2003).
Insofern kann der Schwerpunkt des systemorientierten Ansatzes für den Informatikunterricht
zusammenfassend beschrieben werden als Reflexion über Software und über Softwareent-
wicklung.
In Bezug auf Objektorientierung sind Entwicklungsmethoden sowie die Unterstützung der
Objektorientierung für ereignisgesteuerte Programme und die Erweiterbarkeit Unterrichtsin-
halte.

4.2.3 Unterrichtsmethodische Zugänge
In der bislang ausgearbeiteten Konzeption bildet die Dekonstruktion von Informatiksystemen
den zentralen unterrichtsmethodischen Zugang – und war ursprünglich auch als ein Konzept
für den Anfangsunterricht gedacht (Hampel, Magenheim und Schulte, 1999).
Grundlage der Dekonstruktion ist ein vorliegendes Softwarebeispiel, das exemplarisch die
Einbettung von Softwareprodukten in soziale Kontexte aufzeigt und beispielsweise Auswir-
kungen auf Arbeitsabläufe und Arbeitsplätze verdeutlicht. Das Softwarebeispiel kann die
entsprechende Funktionalität demonstrieren, kann im Quelltext eingesehen und verändert
werden, ist aber für die Schule reduziert, sodass die interessierenden Aspekte deutlich heraus-
gestellt werden können. Wesentliches Anliegen der Beschäftigung mit einem vorliegenden
System ist die Erkenntnis, dass dieses unter verschiedenen Aspekten und aus verschiedenen
Perspektiven heraus geschehen kann. Dabei wird diese Multi-Perspektivität handelnd erfahr-
bar, indem die Schülerinnen und Schüler die Software erweitern und dazu die
Wechselwirkungen mit dem (fiktiven) Einsatzkontext berücksichtigen müssen. Das erzwingt
die Analyse des Quelltextes und dessen Änderung, bindet so die Thematisierung der exempla-
risch am Einsatzkontext erfahrenen gesellschaftlichen Auswirkungen an die Behandlung
'echter' informatischer Themen und verhindert so ein Auseinanderfallen des Informatikun-
terrichts in einen Programmierkurs mit angehängtem Ausblick auf gesellschaftliche Aspekte
der Informatik. Gleichzeitig ermöglicht die Verwendung vorliegender Beispiele die Behand-
lung komplexerer Programme als sonst im Unterricht möglich und kann so die Verwendung
von Programmierprinzipien und Modellierungsfragen an realistischeren Beispielen zeigen.
Die eindeutig überwiegenden Lernziele auf der Ebene der Reflexion führen dazu, dass die
Methodik sich besser für zumindest etwas fortgeschrittene Schülerinnen und Schüler eignet

42

Fachdidaktischer Hintergrund

(siehe den entsprechenden Entwurf von Schulte und Block 2002) oder ihren Platz im Informa-
tikstudium findet.
Schwierigkeiten für die unterrichtspraktische Umsetzung der Dekonstruktion bestehen zudem
in der Notwendigkeit, dazu geeignete Beispiele zu finden oder zu entwickeln sowie in den
Lernwerkzeugen, die die Dekonstruktion unterstützen. Diese Lernwerkzeuge werden vermut-
lich komplexe multimediale Anwendungen sein müssen:

„To realise this didactical concept it is necessary to develop didactical software with open access
to the source code and a multimedia-based exploration environment, which offers the different
tools and types of documents such as: Java development kit, object browsing system, examples of
CRC-modelling, description of use cases, description of social context of IS (patterns of interac-
tion, types of workflow), video sequences of social action representing the use cases, interviews
with future users, interviews with developers and applicants, documents concerning with the his-
tory of ST and IS, parts of documentation of the concrete IS, fragments of source code, elements
of the GUI of the software, description of methods to develop, modules of software to develop,
UML class and sequence diagrams, GUI prototypes, alternative software design concepts, soft-
ware development strategies, scalable prototypes of software to develop and so on.” (Magenheim
2001)

Damit stellt sich die Frage, wie der Anfangsunterricht in der Sekundarstufe II nach einem sys-
temorientierten Ansatz erfolgen könnte.
Unabhängig von der Methode der Dekonstruktion bleibt ein mehrperspektivischer Zugang zu
den behandelten Inhalten Erfolg versprechend, um die Wechselwirkungen und Abhängigkei-
ten zwischen Softwarefunktionen und Benutzungsmöglichkeiten erfahrbar zu machen. Die
bislang vorgelegten Praxiskonzepte (vgl. Kapitel 3) zeigen jedoch auf, wie schwierig es ist,
projektartige Zugänge zu finden, ohne auf eine vorhergehende Konzept- und Sprachschulung
zurückzugreifen. Methodisch ergibt sich hier das Dilemma des Anfangsunterrichts: Vor der
projektartigen Umsetzung von kleinen Softwareprojekten, die in diesem Fall Systemgestal-
tung verdeutlichen soll, müssen Grundlagen dazu vermittelt werden, die über theoretische
Einsichten hinausgehen: Zu nennen sind beispielsweise die Ereignissteuerung, die den Pro-
grammablauf mit dem Einsatzkontext verzahnt, die grafische Benutzungsschnittstelle, welche
einerseits die interne Programmstruktur abschirmt und andererseits die Interaktion mit dem
Kontext ermöglicht.
Im Grunde stellen sich hier zwei Fragen: zunächst, ob Softwareprojekte den eigentlichen Un-
terrichtsinhalt der technologischen Gestaltungsprozesse sowie der Charakteristika
soziotechnischer Informatiksysteme transportieren können, und zweitens, ob dazu nicht wie-
derum ein vorgeschalteter 'Programmierkurs' notwendig wird, der isoliert betrachtet nicht viel
zum Bildungswert des Unterrichts beiträgt.
Für diese methodische Lücke im Anfangsunterricht soll nun ein Unterrichtskonzept entwi-
ckelt werden. Der Anfangsunterricht sollte dabei natürlich nicht nur auf spätere
Dekonstruktions- oder Konstruktions-Projekte im Informatikunterricht vorbereiten, sondern
soweit möglich einen eigenständigen Beitrag zur informatischen Bildung leisten.

43

Fachdidaktische Ausgestaltung des Unterrichtskonzepts

5 Fachdidaktische Ausgestaltung des Unterrichtskonzepts
In diesem Kapitel werden aus der bisherigen Diskussion der Praxiserfahrungen (Kapitel 3)
und fachdidaktischer Ansätze (Kapitel 4) Ziele, Inhalte und unterrichtsmethodische Zugänge
für den Anfangsunterricht abgeleitet. In einem späteren Kapitel (Kapitel 7) werden diese Ele-
mente dann zu einem Unterrichtskonzept weiterentwickelt. Schwerpunkt dieses Kapitels ist
die Entwicklung einer in sich stimmigen fachdidaktischen Position. Bislang stehen Praxiskon-
zepte, informationszentrierter und systemorientierter Ansatz unverbunden nebeneinander.
Gemeinsam ist den drei hier unterschiedenen Ansätzen, dass Software thematisiert wird: In
der Unterrichtspraxis mit dem Schwerpunkt der Vermittlung grundlegender und syntaktischer
Konzepte wie Variablen, Schleifen etc., im informationszentrierten Ansatz mit dem Schwer-
punkt der Modellierung und der Betonung der planerischen Anteile der Softwareentwicklung;
im systemorientierten Ansatz mit dem Schwerpunkt des soziotechnischen Informatiksystems
in dem Softwarestrukturen und -funktionen mit sozialen Aspekten wie Nutzungszwecken und
Einsatzbedingungen verknüpft sind. Zusammengefasst: Implementation, Modellierung, Her-
stellen von Bezügen.
In Tabelle 8 wird der resultierende Zusammenhang der drei Positionen dargestellt:

life3-Unterrichtskonzept
verbindet aus unterrichtsmethodischer Perspektive:

Unterrichtspraxis Informationszentrierter Ansatz Systemorientierter Ansatz
Ziele Einführung in Grundkon-

zepte und Notationen.
Anwenden von Konzepten und Nota-
tionen, um Informationen zu
strukturieren (=modellieren).

Modellieren in Softwareent-
wicklungsprozess einbetten.
Entwicklungsprozesse kennen
und bewerten. Reflexion von
Softwareentwicklung.

Inhalte des
Anfangs-
unterrichts

Einführung in Syntax und
Werkzeuge, Begrifflichkeit

Modelliertechniken und Notationen
vorstellen und üben

Soziotechnische Einbettung von
Software erkunden.
Dekonstruktion

Tabelle 8 Grundlagen der Konzeptentwicklung

Dabei wird in allen drei Bereichen Wert auf unterrichtsmethodische Zugänge gelegt, die den
Schülerinnen und Schülern eigene Erfahrungen und Übungsmöglichkeiten ermöglichen: In
den Praxiskonzepten üben die Schülerinnen und Schüler am Rechner. Hubwieser betont, dass
die Modellierung sowohl Lerninhalt als auch unterrichtsmethodischer Zugang sein soll (Hub-
wieser 2001, S.86). Im systemorientierten Ansatz wird die Dekonstruktion als explorierender
Zugang zur Erkundung und Analyse existierenden Softwaresysteme auf verschiedenen Ebe-
nen (Benutzung, Analyse softwareergonomischer Aspekte, Analyse des Quelltextes und des
Entwicklungsprozesses) als handlungsorientierte Unterrichtsmethode vorgeschlagen (Magen-
heim 2001).
Die verschiedenen Positionen beziehen sich jeweils auf unterschiedliche Schwerpunkte des
Softwareentwicklungsprozesses, nicht aus softwaretechnischer Perspektive mit dem Ziel der
Prozesssteuerung und -optimierung, sondern als ein Modellierungs- und Problemlöseprozess
der nach Klieme, Artelt und Stanet (2001, S. 205) aus lernpsychologischer Sicht wie folgt
dargestellt werden kann:

• „Bestimmung des Zieles,
• Analyse der Ausgangssituation und Aufbau einer mentalen Repräsentation, eines Situations-

modells,
• Bestimmung der Lösungsstrategie und Planung von Lösungsschritten

44

Fachdidaktische Ausgestaltung des Unterrichtskonzepts

• Ausführen des Lösungsplans, begleitende Kontrolle und ggf. Modifizierung der Lösung sowie
• Evaluation der Lösung“

In Abbildung 9 ist dieser Prozess schematisch dargestellt.

Abbildung 9 Softwareentwicklung als Problemlöseprozess. Die linke Seite bezieht sich auf die Ebene des
Problems oder der Aufgabe. Die rechte Seite stellt die Lösung dar. Oben ist die informatische Seite dargestellt,
unten die Anwendungsseite bzw. der Problembereich.

Anhand des Schemas wird deutlich, wie die drei Positionen einander zugeordnet werden kön-
nen:
1. Die Praxiskonzepte führen in eine Programmiersprache ein: Sie beziehen sich auf den Vor-

gang des Implementierens und beginnen mit einem Modell, d.h. einer informatischen
Anforderungsbeschreibung zur Implementation. Dementsprechend erklären sich auch die
Varianten in den Praxiskonzepten, etwa wenn eine vorliegende Implementation untersucht
oder die Einführung mit Hilfe einer Entwicklungsumgebung oder einer Klassenbibliothek
vorgenommen wird. In allen Fällen bleiben die Konzepte auf der Ebene der Informatik
(obere Hälfte der Abbildung). Schwerpunkt ist das Implementieren.

2. Der informationszentrierte Ansatz dagegen will Probleme der realen Welt mit Hilfe der In-
formatik strukturieren – die Umsetzung des Modells ist eher nebensächlich und als 'proof
of concept' zu betrachten. Der Ansatz stellt die Methoden, mit denen Situationen in der
Welt in den Bereich der Informatik übertragen werden in den Mittelpunkt. Schwerpunkt ist
der Vorgang des Modellierens (linke Seite der Abbildung).

3. Der systemorientierte Ansatz dagegen will schwerpunktmäßig die Verzahnung zwischen
Informatik und Anwendungsbereich, das soziotechnische System deutlich machen und be-
zieht sich mit der Unterrichtsmethodik der Dekonstruktion auf den Bereich der Ausführung
und Bewertung einer Implementation in der Welt18. Das soziotechnische System, die infor-
matische Lösungsbeschreibung und das der Implementation zugrunde liegende Modell
sollen zwar auch deutlich werden, der Schwerpunkt liegt jedoch auf der unteren Hälfte der
Abbildung.

18 Würde der systemorientierte Ansatz hier stehen bleiben, so wäre er den benutzerorientierten Ansätzen (vgl.
Forneck 1992) zuzurechnen, die vorhandene Werkzeuge (Anwendersoftware) der Informatik benutzen und
bewerten und sich damit im Grunde außerhalb der Informatik, in der unteren Hälfte der Abbildung bewegen.

45

Fachdidaktische Ausgestaltung des Unterrichtskonzepts

Insgesamt bleibt festzustellen, dass sich die verschiedenen Positionen als unterschiedliche
Akzentuierungen desselben Softwareentwicklungsschemas auffassen lassen. Die Integration
der verschiedenen Ansätze erlaubt, die verschiedenen Prozesse der Softwareentwicklung, -
nutzung und -weiterentwicklung als Elemente eines einheitlichen aufeinander bezogenen Vor-
gangs zu betrachten. Damit eröffnen sich unterrichtsmethodische Zugänge, mit denen
Schülerinnen und Schülern das Konzept eines soziotechnischen Systems vermittelt werden
kann.
Das objektorientierte Modellieren19 bildet die verbindende Leitlinie: Hier werden die Grund-
konzepte der Objektorientierung deutlich, es können Modelliertechniken und Notationen
vermittelt werden, und nicht zuletzt wendet sich die objektorientierte Modellierung verstärkt
dem Anwendungsbereich zu.

5.1 Bildungsziele des life3-Unterrichtskonzepts
Vor dem Hintergrund des Modellierens ergänzen sich ebenfalls die Lernziele des informati-
onszentrierten und des systemorientierten Ansatzes: Nach dem ersteren sollen Schülerinnen
und Schüler lernen, Informationen objektorientiert zu modellieren. Sie lernen, einen Anwen-
dungsbereich mit Klassen zu strukturieren, die Interaktion von Objekten zu beschreiben,
Verantwortlichkeiten auf Klassen aufzuteilen, relevante Methoden und Attribute einer Klasse
herausfinden etc. Ein einfaches Beispiel ist die Beschreibung eines Tisches. Die relevanten
Attribute einer Klasse Tisch können jedoch nicht ohne Bezug auf einen Kontext beschrie-
ben werden. Je nach Anwendungszweck würde man andere Bestandteile der Klasse
ausmachen: Den nach Gewicht abrechnenden Lieferanten interessiert das Volumen und Ge-
wicht der zerlegten Einzelteile, den Handel interessiert der Preis, evtl. auch der Preis für
Ersatzteile, den Innenarchitekten interessieren die lieferbaren Materialien, Farben und
Formen, den Kunden (ein Gastgeber) möglicherweise nur die Anzahl der Personen, die an
dem Tisch sitzen können. Um also eine Klasse Tisch modellieren zu können, ist die Frage
nach dem Auftraggeber und den mit dem Modell verfolgten Zwecksetzungen entscheidend –
und diese Erkenntnis ist im systemorientierten Ansatz ein wesentliches Lernziel. Mit anderen
Worten: Das Modellieren von Beispielen führt nicht nur dazu, dass Schülerinnen und Schüler
Strukturierungstechniken lernen und anwenden üben (informationszentrierter Ansatz), son-
dern auch dazu, dass sie sich Gedanken machen müssen über die Angemessenheit ihrer
Lösung, die an den Zielsetzungen der Aufgabe erkennbar wird (systemorientierter Ansatz).
Die Lernziele des Anfangsunterrichts beziehen sich damit auf die folgenden drei Bereiche:
 1 Die Schülerinnen und Schüler sollen die zur objektorientierten Modellierung und Imple-

mentation notwendigen informatischen Inhalte und Grundkonzepte verstehen und
anwenden können. Hier geht es um eine Einführung in die Grundkonzepte der Objektori-
entierung, die jedoch nicht auf die Einführung in objektorientierte Sprachkonzepte
reduziert werden darf.

 2 Die Schülerinnen und Schüler sollen in der Lage sein, eigenständig eine Situation ange-
messener Komplexität strukturiert und formal zu erfassen, indem sie mit Hilfe
verschiedener Konzepte und Notationselemente ein objektorientiertes Modell erstellen.
Hier geht es um das Modellieren, das aber nicht auf das Anwenden einzelner Techniken re-

19 Hier wird der objektorientierte Zugang im Anfangsunterricht untersucht. Die Frage, ob neben dem objektori-
entierten Modellieren auch imperatives, funktionales und deklaratives Modellieren als verschiedene Ausprä-
gungen informatischen Modellierens im Unterricht vermittelt werden sollen, wäre Thema einer anderen Ar-
beit (siehe dazu Thomas 2002)

46

Fachdidaktische Ausgestaltung des Unterrichtskonzepts

duziert werden darf, sondern als Teil eines Softwareentwicklungsprozesses deutlich wer-
den soll. Dazu zählt auch die Umsetzung in eine Implementation.

 3 Die Schülerinnen und Schüler sollen verstehen, dass die zu suchende Lösung vom Einsatz-
zweck abhängt und dass dazu überlegt werden muss, welche Aspekte in das Modell
aufzunehmen sind. Hier geht es um ein Grundverständnis für ein soziotechnisches Infor-
matiksystem.

5.2 Inhalte des life3-Unterrichtskonzepts
Bezüglich der Inhalte ist die Frage offen, welche objektorientierten Konzepte und Notationen
im Anfangsunterricht zu vermitteln sind. Zum Teil kann das davon abhängig gemacht werden,
welche Projekte im Unterricht modelliert und implementiert werden sollen, aber es sollten
auch die wesentlichen Grundlagen, die später immer wieder benötigt werden, im Unterricht
vorkommen.
Die Frage, was als Grundbegriff der Objektorientierung anzusehen ist, kann nicht so einfach
beantwortet werden. Auf einem 'Educators` Symposium' (Daniels und Eckstein 2000) bei-
spielsweise wurde (erfolglos) versucht, Objektorientierung auf die relevanten Grundbegriffe
zu reduzieren. Die Arbeitsgruppen konnten sich nicht auf eine einheitliche Liste einigen (Ta-
belle 10).

Ergebnisse des Educators´ Symposium:
Grundbegriffe der Objektorientierung für Einführungskurse

Group I Group II Group III Group IV
•having fun because it's
maintained
•aesthetically clean encap-
sulated interface
•reasonable economics via
potential reuse
•parameterizing changes
via encapsulation
•putative real-world mobile
objects that bind late

•encapsulation
•polymorphism
•enables easy and naive be-
havioral design
•enables piecemeal devel-
opment
•design by contract

•encapsulation
•abstraction
•dynamic binding
•inheritance
•buzz words

•objects to model things
•encapsulation of data ≠
functions
•separation of interface and
implementation
•polymorphism for obtai-
ning meaning from context
•type inheritance

Tabelle 10 Grundlegende Begriffe der Objektorientierung, Ergebnisse eines fachdidaktischen Workshops
(Educators' Symposium, OOPSLA 2000). Zit. nach (Daniels und Eckstein 2000).

Während in der obigen Auflistung auch Aspekte der Softwareentwicklung genannt werden,
wurde in der Schule bislang der Schwerpunkt auf die Einführung in eine Programmiersprache
gelegt (vgl. Abschnitt 3.8, ab S. 30). Dabei spielen die Konzepte Klasse, Objekt, Methode,
Attribut, Beziehungen (Vererbung, Aggregation und Assoziation) sowie Instantiierung in fast
allen Fällen eine Rolle, wobei vor allem auf die syntaktische Verwendung dieser Konzepte in
der Programmierung geachtet wird. Aufgrund der hier angestrebten Ziele müssen jedoch ver-
stärkt Aspekte der Anwendung objektorientierter Konzepte, insbesondere ihre Nutzung beim
Modellieren berücksichtigt werden.

5.2.1 CRC-Karten als Unterrichtsinhalt
Als Hilfsmittel für die Einführung in die Objektorientierung für Anfänger entwickelt verknüp-
fen CRC-Karten die Einführung in die Objektorientierung mit dem Modellierungsprozess
oder, wie Beck und Cunningham sich ausdrücken, dem Design von Klassen. CRC-Karten be-

47

Fachdidaktische Ausgestaltung des Unterrichtskonzepts

schreiben tatsächlich nach Meinung verschiedener Autoren (vgl. etwa Oesterreich 1999, S.
43, Booch 1996, S. 203, Bellin und Simone 1997) die zunächst wesentlichen Aspekte, die
beim objektorientierten Modellieren zu beachten sind. Daher werden CRC-Karten auch als
Notation und Brainstorming-Technik in der Softwareentwicklung eingesetzt. Sie erlauben die
einfache informale Strukturierung des Anwendungsbereichs und reduzieren die Fülle der De-
tails, die mit den Konzepten Klasse und Objekt verbunden sind, auf die Elemente
Klassenbezeichnung (class), Aufgaben und Verantwortlichkeiten von Klassen und der dazu-
gehörigen Objekte (responsibilities) sowie auf die Interaktion zwischen Objekten und die
Beziehungen zwischen Klassen (collaborators).
CRC-Karten sind eine didaktisch-methodische Idee, die benutzt werden soll „as a way of gi-
ving learners a direct experience of objects“, so Beck und Cunningham 1989. Sie berichten:

„We have found that the most effective way of teaching the idiomatic way of thinking with objects
is to immerse the learner in the "object-ness" of the material. To do this we must remove as much
familiar material as possible, expecting that details such as syntax and programming environment
operation will be picked up quickly enough once the fundamentals have been thoroughly unders-
tood.“ (aaO.)

Das Konzept der CRC-Karten wurde bereits im Unterricht eingesetzt (Jochum 1998)20:
„Der positive Grundtenor, der der Arbeit mit den CRC-Karten entgegengebracht wurde, zeigt, daß
die Schüler die Bedeutung der Planungsphase für das Gesamtprojekt erkannt haben und daß sich
diese Methode besonders gut für den Informatikunterricht eignet, da die Schüler durch das Ver-
schieben der Karten unterschiedliche Szenarien ausprobieren und damit intuitiv an die Analyse
herangehen können. Durch die CRC-Karten konnte das Spiel so gut analysiert werden, daß das Er-
gebnis dieser Stunde praktisch durch das gesamte Projekt trug. Interessant ist, daß die Schüler die
Komplexität dieser Stunden nicht als negativ empfunden haben. Trotzdem würde ich die bereits
erwähnte Möglichkeit der Einführung der Methode ,,CRC-Karten'' im Vorfeld eines Projektes vor-
ziehen.“ (Jochum 1998, Abschnitt 4.3)

Jochum schätzt CRC-Karten als relativ anspruchsvoll ein und verzichtet deshalb auf die An-
gabe der Collaborators. Im Unterrichtsverlauf musste die geplante Veranschaulichung der
Klassenbeziehungen durch die Verteilung der Karten auf einem Tisch ergänzt werden. Hier
wurden dann Pfeile und Linien nach Art von Coad-Yordon-Diagrammen eingesetzt (Jochum
1998, Abschnitt 3.3.2).
Die Schreibweise auf den CRC-Karten ist nicht einheitlich geregelt, gerade in Bezug auf die
Angabe der Beteiligten. Oft wird neben jede Verantwortlichkeit die zu beteiligende Klasse
geschrieben (Bellin und Simone 1997, S. 2f., Beispiel S. 171). Teilweise werden Verant-
wortlichkeiten als Anweisung im Imperativ formuliert (Tue dieses oder jenes!), zum Teil als
Tätigkeit im Infinitiv (drehen, merken, ...). Manchmal wird vorgeschlagen, die Formulierung
schon an spätere Methoden- oder Attributbezeichnungen anzunähern. Teilweise soll bewusst
davon abgewichen und ein kleiner Satz formuliert werden (Bellin und Simone 1997, S. 2f.,
Beispiel S. 171; Oesterreich 1999, S. 153).
Da die Beispiele im Anfangsunterricht relativ einfach bleiben und zwischen zwei Klassen nur
eine Beziehung bestehen soll, werden in der hier vorgeschlagenen Schreibweise die Beteilig-
ten jeweils nur einmal notiert (siehe Beispiel in Abbildung 11).

20 CRC-Karten werden in der Praxis häufig im Informatikunterricht verwendet. Soweit mir bekannt liegt außer
Jochum 1998 jedoch keine schriftliche Dokumentation vor.

48

Fachdidaktische Ausgestaltung des Unterrichtskonzepts

Abbildung 11 Beispiel für ein CRC-Karten-Modell: Flaschendrehen. Dieses Modell wurde im Unterricht
eingesetzt.

Die CRC-Karten können und müssen weiter formalisiert werden, da die Modelle im Unter-
richt implementiert werden sollen. Dazu werden die Verantwortlichkeiten aufgeteilt in solche,
die Verhalten beschreiben, das werden die Methoden – und in solche, die beschreiben, was
sich eine Klasse merken muss. Dies werden die Attribute (vgl. etwa Bellin und Simone 1997,
S. 59f.). Diese Schritte verbinden CRC-Karten mit weiteren Inhalten, die bislang auch im An-
fangsunterricht vermittelt werden (siehe Tabelle 12).

CRC-Karten Stifte und Mäuse
Class: Klasse Klasse

Objekt, Exemplar
Objekt bzw. Exemplar erzeugen (Instantiierung)

Responsibility:
Verantwortlichkeiten / Aufgaben

Zustandsvariable (Attribut)
Nachrichten, Dienste, Methode
Punktschreibweise

Collaborator: Beziehungen Kennt-Beziehung, Verbindung (Assoziation)
Hat-Beziehung, Zerlegung (Aggregation)
Ist-Beziehung, Vererbung

Tabelle 12 Bekannte Inhalte des Anfangsunterrichts aus dem Konzept Stifte und Mäuse und ihre Zuordnung
zum Schema der CRC-Karten. Vgl. zum Konzept Stifte und Mäuse Abschnitt 3.4, insbesondere Tabelle 4, S. 22.

In Tabelle 12 wird angedeutet, wie die CRC-Karten in der linken Spalte durch Ausdifferen-
zierung formalisiert werden können, dazu können UML-Klassendiagramme eingesetzt
werden.

5.2.2 Klassendiagramme als Unterrichtsinhalt
Die UML hat sich als Standard-Notation für die objektorientierte Modellierung durchgesetzt
(Zündorf 2002, Oesterreich 1999, S. 203) und wird in allen Phasen des Entwicklungsprozes-

49

Fachdidaktische Ausgestaltung des Unterrichtskonzepts

ses eingesetzt (vgl. Jacobson, Booch und Rumbaugh 1999). Die grafische Notation erlaubt die
Betrachtung des objektorientierten Systems auf einer abstrakteren Ebene als dies in einer Pro-
grammiersprache möglich wäre. Die UML ist eine grafische Sprache: „not only to
communicate with others but to provide a setting in which individual developers can think
and analyze. [...] Basically, the UML enables the developers to visualize their work products
in standardized blueprints or diagrams“ (Jacobson, Booch und Rumbaugh, 1999, S. 421). Vi-
sualisierung, so die hier implizite Annahme, ist verständnisfördernd und hilft deshalb
Entwürfe zu kommunizieren – auch mit eher fachfremden Personen bzw. Anfängern. Dabei
reduziert Visualisierung die Fülle von Details und erlaubt einen schnelleren 'Überblick'.
Im Unterricht könnte die Visualisierung der UML ebenso die Kommunikation von Design-
ideen, aber etwa auch die Darstellung des Programms zur Laufzeit ermöglichen. Code gene-
rierende Werkzeuge, die auf der UML aufbauen, können die Transformation der CRC-Karten
in die Implementation unterstützen.

CRC-Karte UML-Klassendiagramm
Name Klassenname
Verantwortlichkeiten, Responsibilities:
'Wissen' und
'Können'

Attribute
Methoden

Beteiligte, Collaborators Assoziation

Tabelle 13 Übergang vom CRC-Modell zum Klassendiagramm: In der linken Seite die Angaben auf einer CRC-
Karte, auf der rechten Seite die Angaben im Klassendiagramm.

Die beiden Notationen CRC und UML helfen, die Entwicklungsphasen zu unterscheiden:
CRC-Karten werden mit der Analysephase identifiziert, UML-Klassendiagramme mit der De-
signphase.
Anhand der Klassendiagramme soll dann die Modellierung, zumindest zum Zwecke ihrer
Überprüfung implementiert werden können. Welche Inhalte dazu nötig sind, hängt auch da-
von ab, welche fachlichen Aspekte zum Verstehen einer Implementation notwendig
erscheinen. Diese Aspekte sollen nun geprüft werden. Dabei soll die Implementierung durch
die Verwendung eines Codegenerators teilweise automatisiert werden, sodass die Implemen-
tation für die Schülerinnen und Schüler direkt als eine Formalisierung der Modellierung
verstehbar wird.
Broy und Siedersleben machen in diesem Zusammenhang auf folgendes Problem aufmerk-
sam:

„Leider ist es außerordentlich schwierig, das beobachtbare Verhalten von Klassen und Objekten
zu beschreiben. Der Grund dafür sind die komplexen Interaktionen von Objekten über Methoden-
aufrufe, die nichts anderes sind als normale Funktionsaufrufe, ergänzt um den Mechanismus der
späten Bindung. [..] Daher müssen Methodenaufrufe in objektorientierten Programmen als in ei-
nem riesigen Zustandsraum – dem globalen Programmzustand – operierend angesehen werden.“
(Broy und Siedersleben 2002, S. 5)

Das Problem wird verschärft durch den Zugriff auf Objekte mittels Referenzen und mögliche
Seiteneffekte, wenn ein Objekt mehrfach referenziert wird (Broy und Siedersleben 2002, S.
6). Hinzu kommt die immer wieder anzutreffende Vermischung von Implementations- und
Ausführungsebene, beispielsweise auch im obigen Zitat („das beobachtbare Verhalten von
Klassen und Objekten“), die ein Verständnis für die Funktionsweise eines objektorientierten
Programms erschwert. Das didaktische Problem für den Anfangsunterricht besteht darin, dass
der Einblick in das Laufzeitverhalten objektorientierter Software durch Programmieren und

50

Fachdidaktische Ausgestaltung des Unterrichtskonzepts

Modellieren nur indirekt gewonnen werden kann. Insbesondere für Anfänger ist es schwierig
aus dem Quelltext das Laufzeitverhalten abzuleiten.
Das Verständnis für die Funktionsweise einer objektorientierten Implementation ist jedoch
aus mehreren Gründen notwendig: Erstens müssen die Konzepte Klasse und Objekt verstan-
den und unterschieden werden können. Zweitens müssen die Schülerinnen und Schüler
verstehen, wie einfache Abläufe durch ein objektorientiertes Programm simuliert werden kön-
nen. Drittens soll deutlich werden, dass und wie die gesamte Programmfunktionalität auf
Objekte unterschiedlichen Typs aufgeteilt wird.
Die Implementation ist auch deswegen Unterrichtsinhalt, da auf diese Weise die alltagsnahe
Sichtweise fachlich präzisiert wird. Einerseits sind Begriffe und Sichtweisen der Objektorien-
tierung nahe an alltäglichen Vorstellungen (vgl. etwa Schwills Analyse des Duncker'schen
Streichholzschachtelexperiments, oben S. 28f.), sodass die Schülerinnen und Schüler sehr
wahrscheinlich daran anknüpfen können und werden. Andererseits ergibt sich daraus aller-
dings die Notwendigkeit eines 'Konzeptwechsels'21: Die Alltagsbedeutungen der Begriffe
Objekt, Verantwortlichkeit, Beziehung, Interaktion (Zusammenarbeit) und Ereignis müssen
präzisiert werden durch die fachlich korrekte Bedeutung, ohne den Anknüpfungspunkt an die
vorhandenen Vorstellungen zu verlieren.
Dies soll durch den Begriff der Objektstruktur geschehen.

5.2.3 Objektstrukturen als Unterrichtsinhalt
Eine Objektstruktur ist das zur Ausführungszeit vorhandene Geflecht von Objekten, die durch
Interaktion die Funktionalität des Programms erbringen. Diese wird bereits im Objektspiel
deutlich und soll für die Schülerinnen und Schüler auf die Implementationsebene übertragen
werden.
Gemeinsame Basis von Entwicklungsprozess, Programmiersprache und Programm (zur Lauf-
zeit) ist das Objekt. Oesterreich (1999, S. 35) nennt ein einfaches Beispiel, die Aussage: „Ein
Mensch besitzt ein Fahrrad und liest ein Buch“ wird objektorientiert grafisch beschrieben als:

Abbildung 14 Objektorientierte Beschreibung eines Wirklichkeitsausschnitts: Der Zusammenhang zwischen
Person, Buch und Fahrrad (links) wird als Klassendiagramm (rechts) dargestellt. Abbildung nach Oesterreich
1999, S.35.

Ein Person-Objekt aus obigem Beispiel kann etwa 'lesen' oder 'Fahrrad fahren'. Die
Funktionalität des Programms ist so auf der Kooperation zwischen Objekten aufgebaut: Zum
Radfahren muss ein Person-Objekt mit einem Fahrrad-Objekt kooperieren, fürs 'lesen'

21 Zum Thema Konzeptwechsel siehe Abschnitt 6.2.2 ab S. 70.

51

besitzt

liest Person

Fahrrad Buch

liestbesitzt

Fachdidaktische Ausgestaltung des Unterrichtskonzepts

ist es auf ein Buch-Objekt angewiesen. Dabei wird meist auch die Funktionalität zwischen
den Objekten verteilt: Die Person tritt in die Pedale und liefert die Energie, die das Rad von
den Pedalen zu den Rädern überträgt.
Das Programm zur Laufzeit kann als eine Menge miteinander in Beziehung stehender Objekte
aufgefasst werden, die verschiedene Operationen ausführen.
Die Ausführung eines objektorientierten Programms kann als Simulation eines Systems (=des
Problembereichs) aufgefasst werden. Die „semantische Lücke“ (Jacobson 1992, S. 43) zwi-
schen Anforderungsdefinition und Programmstruktur wird auf diese Weise verkleinert. Die
Programmstruktur zur Laufzeit kann dabei als Objektstruktur bezeichnet werden. Für eine
Einführung der Objektorientierung scheint mir gegenüber den einzelnen Konzepten wie Klas-
sen, Objekten, Vererbung, Polymorphie etc. die Einsicht in die Funktionsweise eines
objektorientierten Programms, in die Objektstruktur, wesentlich zu sein. Ähnlich wie in die-
sem Abschnitt ausgeführt kann im Unterricht die Objektstruktur und deren Laufzeitverhalten
von der alltäglichen Erfahrung, und damit der Vorerfahrung der Anfänger, her entwickelt
werden, um den Einstieg zu erleichtern.
Die Implementierung selbst soll ebenfalls möglichst nahe an der Modellierungsebene bleiben,
sie dient als Test der Modellierung, als Umsetzung auf den Computer und sie ermöglicht, den
soziotechnischen Konstruktionsprozess durchzuspielen.

5.3 Unterrichtsmethodische Zugänge des life3-Unterrichtskonzepts
Wie bereits erwähnt, korrespondieren Unterrichtsinhalte und -methoden, da zur Objektorien-
tierung als Inhalt auch Methoden der Softwareentwicklung zählen. Im Unterricht können die
Methoden der Softwaretechnik Gegenstand, aber auch Unterrichtsmethode sein. Diese dop-
pelte Verwendung wurde im vorigen Abschnitt bereits am Beispiel der CRC-Karten deutlich,
die einerseits als Unterrichtsmethode für den Einstieg in die Objektorientierung, andererseits
als Softwareentwicklungsmethode in der Analysephase eingesetzt werden.

5.3.1 Modelle schrittweise formalisieren
Um die zur Erstellung der Software notwendigen Kompetenzen nicht in einem vorgeschalte-
ten Sprachkurs vermitteln zu müssen, sollen in Form einer kleineren Dekonstruktions-Phase
eines einfachen Beispiels grundlegende Modellierungstechniken, Werkzeuge, Notations- und
Syntaxkenntnisse vermittelt werden. Die Vermutung ist, dass die Objektorientierung einen
solchen unterrichtsmethodischen Zugang ermöglicht, da die Unterschiede zwischen Imple-
mentation und Modellierung gering genug sind um eine integrierte Vermittlung zu
ermöglichen: Objektorientiertes Modellieren soll im Zusammenhang mit der Softwareent-
wicklung als ein Formalisierungsprozess vermittelt werden (Abbildung 15), in dem auf den
Stufen Analyse, Design und Implementation dieselbe Beschreibungsentität – das Objekt –
verwendet wird, sodass der Formalisierungsprozess schrittweise verdeutlicht und nachvollzo-
gen werden kann. Das wesentliche Ziel ist, einen Programmierkurs zu vermeiden, der allein
die Spezifika einer Programmierumgebung und -sprache vermittelt. Es soll ein unterrichtsme-
thodischer Zugang für die Oberstufe entwickelt werden, der möglichst von Anfang an
Modelliertechniken vermittelt und gleichzeitig die Fertigkeiten für die selbstständige Durch-
führung eines kleinen Softwareentwicklungsprojekts lehrt.

52

Fachdidaktische Ausgestaltung des Unterrichtskonzepts

Abbildung 15 Stellenwert der Modellierung im Softwareentwicklungsprozess: Modellieren umfasst die Phasen
Analyse und Design, reicht aber im Sinne eines Formalisierungsprozesses von der im Unterricht formlos
durchzuführenden Voruntersuchung ('was soll gemacht werden?') bis in die Implementationsphase hinein.

5.3.2 Projekte in den Mittelpunkt stellen
Dazu soll der Unterricht von Anfang an projektartig vorgehen: Projekte können Gestaltungs-
spielräume zulassen, indem sie offenere Aufgabenstellungen ermöglichen, die über ein
abbildendes Modellieren bereits informatisch präzisierter Aufgabenstellungen in UML-Klas-
sendiagramme hinausgehen. Projekte erlauben es, die Kreativität und Gestaltungsideen der
Schülerinnen und Schüler einzubinden, sie eigene Gestaltungserfahrungen machen zu lassen
und deutlich werden zu lassen, dass unterschiedliche Entwürfe denkbar sind und je nach Ziel
unterschiedliche Aspekte einer Situation modelliert werden müssen (vgl. Abbildung 9, S. 45).
So können also Notationen, ihre Nutzung, sowie Einsichten über Entwicklungsprozesse inte-
griert vermittelt werden.
Im Unterricht müssen die Schülerinnen und Schüler dazu mit einer Entwicklungsumgebung
und einer Programmiersprache arbeiten. Entwicklungsumgebungen für den Unterricht sollten
die Konzepte klar darstellen, einfach zu benutzen sein und den Anfänger nicht mit zu vielen
Details belasten. Moll (2002, S. 48) nennt folgende didaktische Bewertungskriterien für Ent-
wicklungswerkzeuge im Informatikunterricht: adressaten- und sachgemäße Darstellung;
Bedienbarkeit und Funktionsumfang; Übersichtlichkeit der Diagramme; Dokumentations-
und Speichermöglichkeit der Schülerprojekte; Einfachheit und Qualität des automatisch er-
zeugten Programmcodes.
Die Möglichkeiten der Entwicklungswerkzeuge und von Codegeneratoren sind insbesondere
angesichts der oben dargelegten Bedeutung der Idee der Objektstrukturen zu berücksichtigen.
Hier müssen die Unterrichtsmethoden und die Werkzeuge (im allgemeindidaktischen Zusam-
menhang würde man anstelle von Werkzeugen von Medien sprechen, siehe Freudenreich und
Schulte 2002) aufeinander abgestimmt werden.
Für das zu entwickelnde Unterrichtskonzept sind Werkzeuge, die grafische Darstellungen nut-
zen vor allem deshalb interessant, weil sie Objektstrukturen (mittels UML-Diagrammen)
visualisieren.

5.3.3 Das Entwicklungswerkzeug als Lernmedium nutzen
Fujaba bietet mit dem grafischen Debugger Dobs die Möglichkeit Objektstrukturen zur Lauf-
zeit zu visualisieren und interaktiv zu verändern. Damit werden die sonst verborgenen
Objektstrukturen direkt erfahrbar. Zudem kann mit diesem Werkzeug auf die Erzeugung von
Quelltext für eine grafische Oberfläche verzichtet werden, da Dobs mit der Visualisierung
von Objektstrukturen eine Art Benutzungsschnittstelle erzeugt.

53

Voruntersuchung Analyse Implementation

Modellierung

Design

Fachdidaktische Ausgestaltung des Unterrichtskonzepts

Abbildung 16 Der grafische Debugger Dobs: Dargestellt wird die Objektstruktur des implementierten Beispiels
Flaschendrehen22.

Das Aufrufen von Methoden kann Attributwerte ändern, die in Dobs im mittleren Bereich an
der linken Fensterseite dargestellt sind oder aber durch Umsetzen von Beziehungen die in der
Abbildung als Pfeile dargestellt sind die Objektstruktur verändern: beispielsweise zeigt die
Flasche auf Feld f8, nach Aufruf der drehen-Methode könnte die Flasche etwa auf
Feld f20 zeigen23.
Im Quelltext dagegen werden Objektstrukturen durch Objekte (genauer: Variablen) und Zei-
ger gebildet. Zeiger sind schwer zu beherrschen und gelten als goto der Datenstruktur :

„Object structures are built and changed through creation and removal of objects and through redi-
recting pointers by assignment statements. With this primitive means, pointers tend to become
corrupted. If the object structure reaches a certain complexity, problems like memory leaks, dan-
gling references, and corrupted system states emerge.” (Zündorf 2002, Introduction, S. 5)

Codegenerierung könnte die Fokussierung auf programmiersprachliche Details aufheben. In
Fujaba kann die Implementation auf der grafischen Ebene erfolgen. In Abbildung 17 ist ein
Fujaba-Aktivitätsdiagramm dargestellt. Den Methodenkopf sieht man in der Mitte oben, von
dort beschreiben Pfeile den algorithmischen Ablauf der Ausführung. Dieser beginnt mit ei-
nem rechteckigen Kästchen, einem Story-Pattern.

22 Vgl. die Darstellung mit dem CRC-Karten-Modell (Abbildung 11, S. 45): Die Verantwortlichkeit der Klasse
Feld, das jeweils nächste Feld zu kennen, wird hier als Pfeil dargestellt. Die zu dem ausgewählten Objekt
gehörenden Methoden können aufgerufen werden (in der Abbildung links unten im Bereich 'public
methods'). So kann in Dobs direkt mit der Objektstruktur gearbeitet werden.

23 Die Methode arbeitet mit einer zufällig erzeugten Schrittweite, daher kann man nicht vorhersagen auf wel-
ches Feld die Flasche nach einem Methodenaufruf zeigt.

54

Fachdidaktische Ausgestaltung des Unterrichtskonzepts

Abbildung 17 Fujaba-Aktivitätsdiagramm: Die Methode createSpiel der Klasse Spieler. Das Ergebnis
der Ausführung der Methode ist in Abbildung 16 zu sehen.

Story-Pattern haben drei Aufgaben:
1) Sie identifizieren eine bestehende Objektstruktur. Dieser Schritt ist Voraussetzung, um die-

se verändern zu können. Dazu muss ein Story-Pattern ein bereits bekanntes Objekt haben,
von dem aus das Laufzeitsystem prüfen kann, ob die gesuchte Struktur vorhanden ist. Die-
se bekannten Objekte sind gebundene Objekte: bound24.

2) Sie erweitern die Objektstruktur, indem neue Objekte, neue Beziehungen oder neue Attri-
butwerte gesetzt werden. In dem ersten Story-Pattern der Abbildung 17 werden zwei
Objekte erzeugt: Eine flasche vom Typ Flasche und ein erstesFeld vom Typ
Feld. Es werden Beziehungen aufgebaut: dreht vom spieler zur flasche und
zeigtAuf von der flasche zum Objekt erstesFeld. Zudem werden Attributwerte
geändert: nummer und einsatz des Objekts erstesFeld sowie vermoegen des Ob-
jekts this (vom Typ Spieler). Die neu zu erstellenden Elemente werden mit dem Wort
create markiert und grün dargestellt25.

3) Sie können Elemente der Objektstruktur löschen, etwa Beziehungen oder Objekte. Diese
Löschvorgänge werden durch das Wort destroy markiert. Die zu löschenden Elemente
werden rot dargestellt.

24 Erkennbar sind sie daran, dass sie nur einen Bezeichner ohne Klassennamen haben. In diesem Beispiel ist
this ein bound-Objekt. Als reservierter Bezeichner bezieht this sich auf das Spieler-Objekt, welches die Me-
thode ausführt.

25 Man erkennt an dem Beispiel, dass der Konsistenz halber auch das vermoegen-Attribut grün dargestellt
sein sollte. Im Laufe des life3-Projekts ist dies eine der Änderungen an Fujaba geworden. Die hier benutzten
Abbildungen zeigen Fujaba in der Version, die zu Beginn der Untersuchung eingesetzt wurde.

55

Fachdidaktische Ausgestaltung des Unterrichtskonzepts

5.3.4 In der Implementation eine objektorientierte Sichtweise
beibehalten
Durch diese Art der Implementierung werden dynamischere Objektstrukturen erzeugt, da es
sich anbietet, Funktionalität durch das Umbiegen von Assoziationen zu implementieren. Im
Flaschendrehen-Beispiel 'merkt sich' (im Sinne der CRC-Verantwortlichkeit) das Objekt
flasche auf welches Spielfeld-Objekt es zeigt durch die aktuelle Belegung der Assoziation
zwischen den beiden Klassen, und nicht durch ein Attribut, in dem die Feldnummer gespei-
chert wird (vgl. Abbildung 16). In der Methode drehen der Flasche wird daher kein
Attributwert geändert, sondern eine Assoziation.
Damit wird die Implementation 'objektorientierter', denn auf diese Weise eröffnen Story-Pat-
tern die Möglichkeit, Klassendesign und Methoden-Implementation direkt zu verbinden.
Objekte können nur zusammenarbeiten, wenn sie sich kennen. Um ein Objekt 'kennen zu ler-
nen', muss in einem Story-Pattern eine Objektstruktur dargestellt werden, die den Weg vom
aktuellen Objekt zum gesuchten Objekt beschreibt. Um das aber tun zu können, müssen im
Klassendiagramm entsprechend Assoziationen definiert worden sein. Das macht das Klas-
sendiagramm zur direkten (sichtbaren) Grundlage der Implementation. Des Weiteren kann
Funktionalität, wie eben beschrieben, in einer Methode durch das 'Umbiegen von As-
soziationen zwischen Objekten' implementiert werden. Dies ist der zweite Grund, weshalb die
Verbindung zwischen Klassendesign und Methoden-Implementation deutlicher wird. Auf die-
se Weise wird stärker mit Beziehungen gearbeitet, das Suchen und Festlegen von
Beziehungen in der Analyse- und Designphase wird den Schülerinnen und Schülern einsichti-
ger. Diese Art des Vorgehens ist gemeint, wenn die Implementation mit Fujaba als
'objektorientierter' bezeichnet wird.
Die Wahl von Fujaba bzw. die Repräsentation der Methoden mit Story-Pattern führt auf diese
Weise zu zwei didaktisch interessanten Auswirkungen:
1. Objektstrukturen werden 'dynamischer'.
2. Die Implementation erfolgt auf der Modellierungsebene und wird dadurch in den Augen

der Schülerinnen und Schüler 'objektorientierter'.
So wie der Zustand eines Objekts das Ergebnis von Methodenaufrufen ist, wird nun die ge-
samte Objektstruktur als ein veränderbarer Zustand aufgefasst – das ist keine Fujaba-
spezifische Idee, wird aber durch die grafische Art der Implementation in Fujaba unterstützt.
Wie bei den CRC-Karten und dem Objektspiel in der Analyse- und Designphase werden in
der Implementation mit Fujaba die Beziehungen zwischen Objekten auf Klassenebene defi-
niert und tragen zur Laufzeit zur Funktionalität bei.

5.3.5 Zum inneren Zusammenhang der Unterrichtsmethoden
In diesem Abschnitt wird der innere Zusammenhang der vorgestellten unterrichtsmethodi-
schen Zugänge erläutert.
 1. Die Ähnlichkeit der einzelnen Notationen wird für den Lernprozess genutzt: CRC-Karten,

UML-Diagramme, Fujaba-Aktivitätsdiagramme26 benutzen Klassen, Objekte und deren
Beziehungen als wesentliche gemeinsame Merkmale. Daher soll im Sinne zunehmender

26 Fujaba-Aktivitätsdiagramme nutzen die UML-Notation (Fischer, Niere und Torunski 1998, S. 42. 47), da sie
jedoch nicht zum normalen UML-Gebrauch zählen und da sie eine streng definierte Semantik besitzen, die
Fujaba zur Codegenerierung benutzt, werden sie hier als eigene Notation aufgeführt, welche die Implementa-
tionsebene beschreibt.

56

Fachdidaktische Ausgestaltung des Unterrichtskonzepts

Formalisierung der Lernprozess nicht mit der Implementationsebene (wie bei den Praxis-
ansätzen), sondern mit der Modellierebene beginnen und von CRC-Karten über UML-
Klassendiagramme zu Fujaba-Aktivitätsdiagrammen führen.

 2. Die zu vermittelnden Notationen müssen nicht mit Hilfe von Lernmedien erläutert werden,
sondern sind selbst das Lernmedium. Würde Quelltext im Vordergrund stehen, dann würde
beispielsweise das Konzept Variable im Quelltext mit Zeichnungen von Schubläden oder
Schuhkartons veranschaulicht und Schleifen-Konstrukte anhand von Flussdiagrammen er-
läutert. Diese zusätzlichen grafischen Veranschaulichungshilfen bringen die Notationen
mit sich. Der springende Punkt ist, dass anhand der Notationen nun Konzepte der Objekt-
orientierung, Modelliertechniken und modellierte Beispiele (im Sinne
dekonstruktivistischer Vorgehensweisen) erläutert werden können – und nicht in einem
Vorkurs an einfachen, isolierten Beispielen als Notationselemente eingeführt werden müs-
sen.

 3. Damit wird ein projektorientierter bzw. in Ansätzen dekonstruierender Zugang im An-
fangsunterricht möglich: Es werden benutzbare Objektstrukturen anstelle von Beispielen,
die je einen zu modellierenden Aspekt erläutern, wie etwa eine Schleife, eine Parameter-
übergabe oder die Punkt-Schreibweise, im Anfangsunterricht behandelt.

Nach Beck und Cunningham (1989) gelingt dieses mit Anfängern auf der CRC-Karten-Ebene
sehr gut. In dem zu entwickelnden Unterrichtskonzept soll diese unterrichtsmethodische Vor-
gehensweise bis zur Implementation beibehalten werden. Ob diese unterrichtsmethodischen
Zugänge sich verwirklichen lassen, soll in der empirischen Untersuchung geprüft und zuvor
anhand lehr- und lerntheoretischer Überlegungen präzisiert werden.
Damit die Schülerinnen und Schüler innerhalb der dargestellten Formalisierungsprozesse ei-
gene Implementationen erstellen können, wird Fujaba im Rahmen des life3-Projekts um
didaktische Funktionalitäten erweitert:
• Eine Bibliothek für die Erzeugung einer grafischer Oberfläche und Ereignisbehandlung

wird integriert, sodass sie innerhalb der gewohnten Umgebung benutzt werden kann.
• Die Benutzungs-Oberfläche von Fujaba wird vereinfacht auf Grundfunktionen.
• Der generierte Quelltext soll vereinfacht werden.
Letzteres soll vor allem dazu dienen, den Übergang zum Quelltext zu vereinfachen und zu er-
möglichen im Unterricht auf andere Werkzeuge umsteigen zu können – etwa wenn die Arbeit
mit den Fujaba-Aktivitätsdiagrammen im Anfangsunterricht zu schwierig ist oder Fujaba sich
für den Schuleinsatz als nicht stabil genug erweisen sollte. Denn gerade im Anfangsunterricht
werden Probleme beim Lernen, so die generelle Erfahrung aus der Praxis, durch ungewöhnli-
che syntaktische Elemente und für Anfänger undurchschaubar komplexe Strukturen verstärkt.
Die ungewöhnlichen syntaktischen Elemente in den Aktivitätsdiagrammen von Fujaba könn-
ten – so wurde in der Planungsgruppe27 diskutiert - möglicherweise diese Probleme in Teilen
weiter verschärfen: Auch einfache Methoden, die in wenigen Textzeilen darstellbar sind, fül-
len in der grafischen Notation schnell den gesamten Bildschirm aus. Dies gelte beispielsweise
für Schleifen (Tabelle 18)28.

27 Im Rahmen der empirischen Untersuchung und der Förderung des Unterrichtsprojekts gab es eine Planungs-
gruppe bestehend aus den beteiligten Lehrern und den Projektbeteiligten aus den Arbeitsgruppen Software-
technik und Didaktik der Informatik der Universität Paderborn.

28 Zur vergleichenden Gegenüberstellung in Tabelle 18 ist zu bemerken: Das Aktivitätsdiagramm wurde eigens
Platz sparend angeordnet, das ist gegenüber der Einrückung im Quelltext aufwändiger. Der Quelltext wurde
allerdings ebenfalls kompakt dargestellt. Im Anfangsunterricht würde man vermutlich den Schleifenrumpf

57

Fachdidaktische Ausgestaltung des Unterrichtskonzepts

public void drehen (int anzahlFelder) {
 for (int i=0; i<anzahlFelder; i++) {
 this.setZeigtAufFeld (this.getZeigtAufFeld().getNaechstesFeld());
 }
}

Tabelle 18 Vergleich von Aktivitätsdiagramm und Quelltext: Eine Schleife als Fujaba-Aktivitätsdiagramm
(oben) und im Java-Quelltext (unten). (Hinweise: Im Java-Quelltext fehlen die von Fujaba erzeugten
Anweisungen zur Konsistenzsicherung des Modells.)

Ein weiterer Einwand trifft tendenziell jede Neuerung: Mit zunehmender Verwendung der
grafischen Notation und dem Ausblenden des Java-Quelltextes wird das Wissen der Schüler
weniger vergleichbar mit dem Wissen, das die Schüler in parallelen Kursen erwerben. Wenn
dann in Klasse 12 Kurse neu zusammengestellt werden, könnte das zu Nachteilen für die
Schüler aus der Versuchsgruppe führen.
Insgesamt wird es vor dem Unterrichtsbeginn in der Planungsgruppe als problematisch einge-
schätzt, ob tatsächlich in den Versuchsklassen vergleichbar sichere Grundkenntnisse in der
Programmierung vermittelt werden. Um diesen Aspekt sicherzustellen, müssen zum einen die
Projekte entsprechend ausgewählt und zum anderen der Übergang von der visuellen Notation
zur 'richtigen' Programmiersprache sichergestellt werden.
Eine weitere damit zusammenhängende Frage ist, welche Beispiele für den Anfangsunterricht
geeignet sind. Bekannt sind Automaten (Fahrscheinautomat), Ausleihsysteme (Schülerbüche-
rei) oder Spiele (Memory). Automaten sind nach der Diskussion in der Planungsgruppe eher
demotivierende Anwendungen, bei denen nach komplexer Berechnung doch nur ein Fenster
gezeichnet wird, auf dem dann wahlweise steht, dass die Fahrkarte oder der Kaffee fertig ist.
Es sollen auf jeden Fall lebendige, motivierende Beispiele gewählt werden. Spiele gefallen
den meisten Schülern deutlich besser als Ausleihsysteme.
Als Projekte für den Unterrichtsversuch werden Spiele gewählt, die grafisch so implementiert
sind, dass die direkte Übertragung in Quelltext mit den im Anfangsunterricht vermittelten
Kenntnissen möglich ist. Generell soll die grafische Darstellung mittels eines möglichst einfa-
chen Schemas in Quelltext transformierbar sein.
Das bedeutet insbesondere, nur einfache Beziehungen und zunächst nur gerichtete Beziehun-
gen zu verwenden, die als Attribut im Quelltext ausgedrückt werden können. Set- und get-

nicht als eine geschachtelte Anweisung schreiben, sondern mit Hilfe lokaler Variablen auseinander ziehen
(beispielsweise: aktuellesFeld=this.getZeigtAufFeld();). Außerdem öffnet der einfache
Quelltext Fehlermöglichkeiten, die im Gegensatz zum Aktivitätsdiagramm nicht automatisch abgefangen
werden: Leere Verweise auf Objekte, die zur Laufzeit eine NullPointerException auslösen können.

58

Fachdidaktische Ausgestaltung des Unterrichtskonzepts

Methoden sollen dagegen von Anfang an benutzt werden. Wiederholte Anweisungen werden
als Schleifen mit lokalen Zählvariablen bzw. mit Boolschen Ausgangsbedingungen darge-
stellt, sodass sie ebenfalls direkt in Quelltext überführt werden können (siehe als Beispiel für
eine mögliche Übertragbarkeit Tabelle 18). Methodenaufrufe innerhalb einer Methode wer-
den nicht als Collaborations-Statements, sondern als Quelltext-Statement dargestellt.
Mehrfach-Story-Pattern oder optionale, negative oder multiple Objekte werden nicht verwen-
det.
Des Weiteren soll die Codegenerierung von Fujaba 'ausgedünnt' werden, sodass die einfachen
grafischen Darstellungen zu entsprechend einfachem Quelltext führen. Insbesondere sollen
nicht alle möglichen Fehlerbedingungen abgefragt werden und auf die Verwendung des Aus-
nahmemechanismus verzichtet werden. Da das schwierig zu realisieren ist und zudem in
komplexeren Projekten zu Problemen führen könnte, soll der Texteditor in Fujaba so ange-
passt werden, dass die entsprechenden Code-Teile, die dem Abfangen von Fehlerzuständen
dienen, ausgeblendet werden. Der Mechanismus soll schrittweise komplexere Strukturen ein-
blendbar machen (siehe Tabelle 19).
public void drehen (int anzahlFelder)
{
 Feld feld = null;
 Feld naechstesFeld = null;
 boolean fujaba__Success = false;
 Object fujaba__TmpObject = null;
 int i=0;
 while (i<anzahlFelder)
 {
 try
 {
 fujaba__Success = false;
 // bind feld: Feld
 feld = this.getFeld();
 JavaSDM.ensure (feld != null);
 // bind naechstesFeld: Feld
 naechstesFeld = feld.getFeld1();
 JavaSDM.ensure (naechstesFeld != null);
 // check isomorphic binding
 JavaSDM.ensure (!(feld.equals (naechstesFeld)));
 // delete link
 this.setFeld (null);
 // create link
 this.setFeld (naechstesFeld);
 fujaba__Success = true;
 }
 catch (JavaSDMException fujaba__InternalException)
 {
 fujaba__Success = false;
 } // try catch
 i++;
 }
}

public void drehen (int anzahlFelder)
{
 Feld feld = null;
 Feld naechstesFeld = null;
 int i=0;
 while (i<anzahlFelder)
 {
 // bind feld: Feld
 feld = this.getFeld();
 // bind naechstesFeld: Feld
 naechstesFeld = feld.getFeld1();
 // create link
 this.setFeld (naechstesFeld);

 i++;
 }
}

Tabelle 19 Der von Fujaba aus dem Aktivitätsdiagramm in Tabelle18 generierte Quelltext (linke Seite). Rechts
die durch Ausblenden von Quelltextzeilen entstandene vereinfachte Version.

Diese Änderung ist zwar realisiert, später im Unterricht jedoch nicht eingesetzt worden, da
sich gezeigt hat, dass mit der grafischen Darstellung der Aktivitätsdiagramme sehr gut gear-
beitet werden konnte.
Insgesamt wurde die Funktionalität von Fujaba, und damit die Benutzungsschnittstelle, auf
die im Anfangsunterricht notwendigen Teile beschränkt. Dazu wurden Menüs ausgeblendet
und die Funktionalität zum Ein-/Ausblenden von Menüs mit Passwort geschützt. Um die Un-
terscheidung der verschiedenen Ebenen (Klasse, Methode, Objekt) noch deutlicher zu
machen, werden die entsprechenden Fenster mit unterschiedliche Hintergrundfarben ange-

59

Fachdidaktische Ausgestaltung des Unterrichtskonzepts

zeigt. Diese Änderungen am Werkzeug sind im Options-Menue der life-Version von Fujaba
zugänglich und können dort eingestellt werden.
Die vorher festgelegte Auswahl der visuellen Konstrukte und der Art der Implementierung in
Fujaba, etwa von Schleifen, wurde jedoch beibehalten, um den späteren Umstieg auf Java-
Quelltext zu erleichtern (dessen Verwendung unter den kooperierenden Paderborner Gymna-
sien festgelegt wurde).

60

Lehr- und lerntheoretischer Hintergrund

6 Lehr- und lerntheoretischer Hintergrund
Die Diskussion bewegt sich bis zu dieser Stelle innerhalb eines fachdidaktischen Argumenta-
tionsschemas, das sich vorrangig auf Lernziele und Lerninhalte bezieht und nur einige
unterrichtsmethodische Muster beschreibt, ohne einzelne unterrichtsmethodische Entschei-
dungen in einem Begründungszusammenhang zu erläutern. Daher haben viele der bisherigen
unterrichtsmethodischen Vorschläge einen vorläufigen Charakter: Sie beschreiben Unter-
richtsmuster, ohne den inneren Zusammenhang der intendierten Lernprozesse zu erläutern,
sodass Abweichungen vom Unterrichtsmuster, Probleme beim Unterrichten, Lernschwierig-
keiten der Schülerinnen und Schüler als Störungen des Ablaufs erscheinen müssen.
Um einen unterrichtsmethodischen Fortschritt zu erzielen, können diese Störungen jedoch als
produktive Anregungen genutzt werden, um Varianten im unterrichtlichen Vorgehen zu er-
proben und daran (und an den festgestellten Problemen) den zugrunde liegenden
Begründungszusammenhang zu verfeinern. Genau dieses ist Aufgabe der empirischen Eva-
luation des Unterrichtskonzepts (vgl. zur Forschungsmethodik auch Kap. 2, S.10).
Wesentliche Voraussetzung für diesen forschungsmethodischen Zugang ist das Vorhanden-
sein eines solchen theoretischen Begründungszusammenhangs. Genau dieser soll in diesem
und dem folgenden Kapitel entfaltet werden. Dazu wird über die informatikdidaktische Dis-
kussion hinausgehend der Wirkungszusammenhang anhand allgemeiner lehr- und
lerntheoretischer Erkenntnisse und der Diskussion in benachbarten fachdidaktischen Diszipli-
nen (Naturwissenschaft und Mathematik) entwickelt29. Den Schwerpunkt der Diskussion liegt
dabei auf der Begründung des unterrichtsmethodischen Vorgehens.
Im einleitenden Teil der Arbeit wurde anhand der Diskussion fachdidaktischer und unter-
richtspraktischer Konzepte deutlich, dass die Einführung in die Objektorientierung und
allgemein in das Programmieren zumeist in zwei Teile zerfällt: in einen Kurs zum Erwerben
der einzelnen Konzepte und Konstrukte und in einen weiteren Kurs, in dem diese Konstrukte
und Konzepte in einem (Programmier-) Projekt angewendet und ggf. vertieft werden. Proble-
matisiert wurde in der fachdidaktischen Diskussion vor dem Hintergrund des
Problemlöseparadigmas bereits die Frage, ob derartiges Wissen transferierbar, also außerhalb
des ursprünglichen Vermittlungskontextes einsetzbar ist. Die Frage nach der Anwendbarkeit
des Wissens stellt sich jedoch bereits viel früher, da bezweifelt werden kann, ob überhaupt in
den oben referierten zweigeteilten Kurs-Aufbauten die isolierte Vermittlung von Grundkon-
zepten ausreichend gelingt, sodass die Schülerinnen und Schüler diese in einem Projekt
selbstständig anwenden können.
Hinweise zur Beantwortung der Frage finden sich in der Unterrichtsforschung, den 'benach-
barten' naturwissenschaftlichen Didaktiken und der pädagogischen Psychologie. In diesen
Disziplinen haben sich konstruktivistische Annahmen als allgemein akzeptiertes Verständnis
von Lernen und Lehren weitgehend durchgesetzt. So stellt Blömeke fest:

„Mittlerweile sind auf der Basis des konstruktivistischen Ansatzes international zahlreiche Unter-
richtseinheiten entwickelt und empirisch geprüft worden, die zu ähnlichen pädagogischen
Schlussfolgerungen kommen, sodass man davon ausgehen kann, dass «eine theoretisch begründe-
te, empirisch unterfütterte Empfehlung für die pädagogische Praxis gegeben [ist; S. B.], die sich
variabel, kreativ und kontextsensitiv nutzen lässt».“ (Blömeke 2001, S.6, zitiert hier Weinert 1998,
S. 208)

Im Einzelnen nennt Blömeke die Ansätze Situated Cognition, Anchored Instruction, Cogniti-
ve Flexibility und Cognitive Apprenticeship: „Konkret bedeutet dies, dass durch ein
29 Dieses Vorgehen bekräftigt die Notwendigkeit der empirischen Überprüfung unter der Fragestellung, ob die

Erkenntnisse aus anderen Bereichen auf das Unterrichten des Faches Informatik übertragbar sind.

61

Lehr- und lerntheoretischer Hintergrund

Ausgehen von authentischen Aufgaben, die Einbeziehung authentischer Kontexte, die Ein-
nahme multipler Perspektiven und Modelllernen [erklärendes Vormachen, C. S.] der
Wissenserwerb optimiert werden kann“ (Blömeke 2001, S. 6).
Authentische Aufgaben und Kontexte, sowie die Aneignung von Wissen in authentischen Si-
tuationen bedeuten für den Informatikunterricht vor allem eines: Die oben festgestellte
Zweiteilung des Unterrichts in die systematische Vermittlung von Grundkonzepten einerseits
und die anschließende Arbeit an einem Programmierprojekt andererseits ist nicht nur auf-
grund der Lernziele der hier zugrunde gelegten fachdidaktischen Position heraus fragwürdig
(vgl. Kap. 5), sondern zudem aus einer lehr-lerntheoretischen Perspektive als eher wenig lern-
effektiv einzuschätzen.
Die Entwicklung des life3-Unterrichtskonzepts für den Anfangsunterricht bezieht nicht nur
fachlich orientierte Überlegungen bezüglich Aufgaben, Programmiersprachen und -umgebun-
gen etc., sondern gerade auch didaktisch-methodische Überlegungen ein. Dieser Ansatz geht
über das bloße Bekenntnis hinaus, sich 'einem konstruktivistischem Bild des Lernens und
Lehrens verpflichtet zu fühlen', wie es in der Literatur zwar oft abgegeben, aber selten einge-
löst wird30. Daher soll nun im Einzelnen ein konstruktivistisches Bild31 des Lernens und
Lehrens entwickelt und auf dieser Grundlage die Entscheidung für den Ansatz des Cognitive
Apprenticeship als Ausgangspunkt für die Entwicklung des life3-Unterrichtskonzepts zur Ob-
jektorientierung im Detail vorgestellt werden.

6.1 Das konstruktivistische Bild vom Lernen
Lernen ist ein vielschichtiger, komplexer mentaler Vorgang, der in unterschiedlichen Zusam-
menhängen und auf verschiedenen kognitiven Niveaus stattfinden kann (vgl. Mietzel 2001):
Angefangen mit Prozessen, die auch bei Tieren beobachtet werden können, bis hin zum Er-
werb von Einsicht und Verständnis. Letztere, kognitiv anspruchsvollere Lernvorgänge, die als
verständnisvolles Lernen bezeichnet werden können, stehen hier im Vordergrund.
Im Konstruktivismus wird verständnisvolles Lernen als individuelle Konstruktion durch Ler-
nende aufgefasst. In der pädagogischen Psychologie (Mietzel 2001, Seel 2000, u.a.), der
Fachdidaktik Informatik (Magenheim 2000, Hubwieser 2001), den naturwissenschaftlichen
Fachdidaktiken (Labudde 2000) und der empirischen Unterrichtsforschung (Baumert, Bos
und Lehmann 2000) wird verständnisvolles Lernen übereinstimmend und allgemein akzep-
tiert als individueller, aktiver Konstruktionsprozess aufgefasst, durch den „Wissensstrukturen
verändert, erweitert, vernetzt, hierarchisch geordnet oder neu generiert werden“32. Dieses Bild
wird in Baumert und Köller (2000, S. 273f) zusammenfassend wie folgt charakterisiert:
• Lernen ist auf die aktive mentale und handelnde Auseinandersetzung des Lernenden mit

dem Stoff angewiesen. Dabei können auch äußerlich passive Verhaltensweisen wie Zu-
hören oder Beobachten von aktiven mentalen Prozessen begleitet werden; andererseits sind
beobachtbare Handlungen kein zwingender Beleg – sondern höchstens Hinweis – auf (in-
tendierte) Lernprozesse.

30 Vgl.: Holmboe, McIver und George 2001: „Studying the recent publications on computer science education
alongside the ones from more than twenty years back, there is a striking lack of reference either to a pedago-
gical frame of theory or to prior work and findings on the topic“ (S. 3).

31 Die Debatte in den neunziger Jahren über den radikalen und gemäßigten Konstruktivismus sowie die ontolo-
gischen Grundlagen des Konstruktivismus ist mittlerweile zugunsten einer Sichtweise eines gemäßigten 'pä-
dagogischen' Konstruktivismus entschieden (vgl. etwa Blömeke 2001, S.6f; Labudde 2000, S. 18 sowie die
dortigen Verweise).

32 Vgl. TIMMS, Band 2, S. 273 unten.

62

Lehr- und lerntheoretischer Hintergrund

• Lernen wird durch kognitive Entlastungsmechanismen unterstützt.
Man nimmt an, dass ein Erwachsener etwa 7 (+/-2) Informationseinheiten gleichzeitig im
Kurzzeitgedächtnis halten kann. Diese Grenze ist auf zwei Arten erweiterbar: Zum einen
können einzelne Informationen zu größeren Einheiten zusammengefasst werden. Man
kann sich etwa eine längere Telefonnummer dadurch einprägen, dass nicht die einzelnen
Ziffern, sondern etwa Dreierblöcke als einzelne Einheiten benutzt werden. Der andere Weg
bezieht sich auf Automatismen: Weil Telefonieren, also Hörer-Abnehmen und das Wählen
der Nummer als automatisierte Tätigkeiten ablaufen, kann man sich auf das Behalten der
Nummer konzentrieren (vgl. Mietzel 2001, S. 189f).
Mechanismen zur kognitiven Entlastung sind also beispielsweise die Herausbildung von
größeren Wissenseinheiten (chunks) oder die Automatisierung von Handlungs- und Denk-
vorgängen (Baumert und Köller, 2000, S. 274).

• Die Um- oder Neukonstruktion von Wissensstrukturen ist wesentlich durch das bereichs-
spezifische Vorwissen bestimmt33.

• Lernen wird durch Motivation und Metakognition beeinflusst.
• Lernen ist ein situierter und kontextgebundener Prozess. Wissen ist situiert.
Die letzten drei Punkte werden in den folgenden Abschnitten genauer beschrieben.
Es ist jedoch zu beachten, dass Unterricht nicht allein auf eigenkonstruktive Schüleraktivitä-
ten aufbauen sollte. Nach Gruber, Mandl und Renkl (2000, S.152) gilt es, eine „Balance
zwischen notwendigen Konstruktionen auf Lernerseite und wohlorganisierten In-
struktionsprozessen zu finden“. Es gilt, situativ angemessene Unterrichtformen zu realisieren,
die zwischen den Polen der direkten Instruktion und Formen des offenen Unterrichts an-
gesiedelt sind: Darbietung durch den Lehrer, das fragend-entwickelnde Unterrichtsgespräch,
die gelenkte Entdeckung oder kooperatives Lernen, Freiarbeit, Projektarbeit34. Nach Gruber,
Mandl und Renkl (aaO.) sind für den Erwerb „inhaltlichen Wissens“ Formen der direkten In-
struktion, für „Anwendungswissen“ Formen situierten Lernens und für „verstehendes Lernen“
komplexe Lernumgebungen zu bevorzugen. Nach Gruehn (zitiert nach Baumert und Köller
2000, S.272) gehören zu den Qualitätsdimensionen des Unterrichts neben der störungspräven-
tiven Unterrichtsführung und der effektiven Behandlung von Störungen ein angemessenes
(nicht maximales) Unterrichtstempo, die Angepasstheit an die Lerngruppe, die affektive Qua-
lität der Schüler-Lehrer-Beziehung und die „Klarheit und Strukturiertheit des Stoffs und der
Aufgabenstellungen“. Übereinstimmung besteht auch darin, dass es „keinen Königsweg einer
einzigen Unterrichtskonzeption, -strategie, oder -methode gibt“ (Baumert und Köller 2000, S.
271). Unterrichtsqualität entsteht durch eine abwechslungsreiche, in sich stimmige unter-
richtsmethodische, soziale, inhaltliche und situativ angemessene Gestaltung des Unterrichts
durch die Lehrperson.

6.1.1 Die Rolle des Vorwissens
Mietzel zeichnet ein Beispiel von Vosniadou35 nach. Sie beschreibt die Vorstellungen von
Grundschulkindern über die Rundheit der Erde. In einem Dialog zwischen Lehrer und Schüler
scheint der Schüler zunächst ein angemessenes Bild der Erde zu haben, durch ständiges und

33 Die Art, wie Informationen zu neuem Wissen verarbeitet wird, hängt von den bereits vorhandenen Vorstel-
lungen und Erfahrungen ab (vgl. etwa Mietzel S.28 und S.30).

34 Zu den einzelnen Unterrichtsmethoden siehe beispielsweise Peterßen (1999).
35 Vosniadou, S.: Capturing and modeling the process of conceptual change. In: Learning and Instruction

(1994). S.45-69.

63

Lehr- und lerntheoretischer Hintergrund

wiederholtes Nachfragen wird jedoch deutlich, dass dem nicht so ist (Mietzel 2001, S. 25).
Verschiedene Vorstellungen von Grundschulkindern fasst Mietzel (aaO., S.26) in folgender
Abbildung zusammen:

Vorstellung 1:

Die Erde besitzt Ähnlichkeit mit einer
Untertasse.

Vorstellung 3:

Die Erde wird rund dargestellt. Menschen
leben auf sämtlichen Oberflächen.
Aber die Vorstellung von oben und unten
ist weiterhin vorhanden..

Vorstellung 2:

Die Erdrundung wird dargestellt, aber die
Vorstellung von oben und unten bleibt
bestehen.
Die Menschen leben auf der oberen Hälfte.

Vorstellung 4:

Zutreffende Sichtweise.
Menschen leben überall auf der Erde und sie
sind zum Erdmittelpunkt ausgerichtet.

Abbildung 20 Vorstellungen von Grundschulkindern über die runde Erde (nach Mietzel 2001, S.26)

Dieses und andere Beispiele zeigen: Lernende nehmen die dargebotenen Informationen kei-
neswegs immer so auf, wie es vom Lehrenden beabsichtigt ist. Missverständnisse sind jedoch
oft nur schwer zu entdecken. Eine Möglichkeit, die Konstruktion eines angemessenen Ver-
ständnisses zu fördern, besteht darin, den Lernenden ausreichend Gelegenheit zu geben, sich
gegenseitig über ihre Vorstellungen auszutauschen. In der „konstruktivistischen Unterrichts-
strategie“ von Rosalind Driver (1989) beispielsweise wird diese Phase „Hervorlocken der
Schülervorstellungen“ genannt. Über eine entsprechende Vorgehensweise berichten Häußler,
Bünder und Duit (1998, S. 216) aus dem naturwissenschaftlichen Unterricht:

„Sie [die Schülerinnen und Schüler, C. S.] führen eigenständig eine große Anzahl von Experimen-
ten durch und werden gebeten, ihre Deutungen und Vorstellungen aufzuschreiben. Zu einem
Phänomen arbeitet jede Schülergruppe ein Poster aus, das ihre Vorstellungen darstellt.“

Bleibt den Lernenden nichts anderes zu tun, als nur die vom Lehrer dargebotenen Informatio-
nen aufzunehmen, kann es sein, dass die Schüler zwar in Tests richtige Antworten geben,
obwohl sie grundsätzlich die Zusammenhänge nicht verstanden haben. Sie haben dann den In-

64

Lehr- und lerntheoretischer Hintergrund

halt nur mechanisch übernommen und abgespeichert, ohne ihn mit ihren bereits vorhandenen
Gedächtnisinhalten zu vernetzen (Mietzel 2001, S.301f.).

6.1.2 Motivation und Metakognition
Ob erfolgreiches Lernen stattfindet, ist wesentlich eine Frage der Motivation, wobei hier zwi-
schen extrinsischer und intrinsischer Motivation zu unterschieden ist. Während erstere auf
äußeren Anreizen, beispielsweise die Aussicht auf Lob, gute Noten oder dem Ansehen bei
den Mitschülern beruht, wirkt die intrinsische Motivation weitaus stärker von innen heraus.
Sie ist mit dem Lernen selbst verbunden, es ist der Wissens- und Kompetenzzuwachs selbst,
der als 'Belohnung' funktioniert. Extrinsische Motivation ist insofern problematisch, als sie
leicht vom eigentlichen Lernziel wegführt und Lernende dazu bringen kann, sich gut darstel-
len zu wollen ('Darstellungsorientierung'), anstatt etwas lernen zu wollen (Mietzel, 2001, S.
32 ff. und S. 362ff.). Fehler werden schnell als störend empfunden, da sie auf Wissens- oder
Kompetenzlücken verweisen. Dabei sollten Fehler in einem Unterricht erwünscht sein, in dem
Lernen als Konstruktion von Wissen gesehen wird, da sie Missverständnisse anzeigen, die
man nur ausräumen kann, wenn man auf sie aufmerksam wird.
Lernzielorientierte (=intrinsisch motivierte) Schüler geben bei Schwierigkeiten nicht so
schnell auf. Im Gegensatz zu Schülern mit Darstellungsorientierung müssen sie nicht fürch-
ten, dass große Anstrengungen negativ bewertet werden, die ja auf Schwierigkeiten oder
Fehler hinweisen.
Lernzielorientierte Schüler setzen vergleichsweise häufig metakognitive Strategien ein: Wenn
sie in der Aufgabenlösung nicht weiterkommen, suchen sie nach einer alternativen Lösungs-
strategie. Sie lesen unverstandene Textteile wiederholt durch, sie stellen sich selbst Fragen,
diskutieren ihr Vorverständnis oder suchen nach ähnlichen Problemen, die sie früher bearbei-
tet haben. Sie setzten sich aktiv mit den Lerninhalten auseinander. Zudem haben sie keine
Schwierigkeiten, den Lehrer um Rat zu fragen, „denn dieser wird bei Lernzielorientierung
nicht vorrangig als Bewerter gesehen, sondern als Förderer; deshalb darf man ihm gegenüber
auch Unzulänglichkeiten zum Ausdruck bringen“ (Mietzel 2001, S. 367).

6.1.3 Situierung und authentischer Kontext
Situiertes Lernen betont die Bedeutung der Tätigkeit beim Lernen, die immer auch eine so-
ziale Aktivität ist. Lernen wird diesem Ansatz zufolge weniger als 'Wechsel' von einer
kognitiven Struktur zur nächsten aufgefasst, sondern als ein 'Wechsel' in der Position des Ler-
nenden zur Welt, eine Art Perspektivenwechsel, den der Lernende vornimmt. Dabei spielt die
Situation, in der dieser Wechsel stattfindet, eine entscheidende Rolle: Die neue Position wird
in einer bestimmten Situation eingenommen – und nicht notwendigerweise von nun an in al-
len Situationen. Lernen erfolgt aus dieser Perspektive vor allem durch Handeln in Situationen.
Begriffliches Wissen entsteht durch Systematisierung und Artikulation der Erfahrungen in Si-
tuationen. Daher sind auch Begriffe immer an ihren Verwendungskontext gebunden.
Mandl, Gruber und Renkl (1997, S. 168) weisen darauf hin, dass es zwar keine einheitliche
Definition einer 'Situation' gebe, dass aber neben materialen Aspekten immer auch „die sozia-
le Umwelt des Lernenden und somit andere Personen“ eingeschlossen werden. Lern- und
Anwendungssituationen sollten demzufolge möglichst 'ähnlich' gestaltet werden: etwa durch
„Lernen und Arbeiten in Gruppen, Nutzung von Hilfsmitteln, Berücksichtigen der Anwend-
ungssituation von Wissen“ (aaO., S.169). Entsprechende Lernumgebungen gehen von
„Komplexen Ausgangsproblemen“ aus, betonen „Situiertheit und Authentizität“, „Multiple

65

Lehr- und lerntheoretischer Hintergrund

Perspektiven“, „Artikulation und Reflexion“ und das „Lernen im sozialen Austausch“ (aaO.,
S. 171), um so das Lernen in authentischen Situationen zu ermöglichen. Wenn die Lernsitua-
tion mit der (späteren) Anwendungssituation in wichtigen Aspekten übereinstimmt, dann
spricht man von authentischen Situationen.
Im Sinne des oben beschriebenen Perspektivenwechsels besteht Lernen in einem Wechsel von
einem Kontext in einen anderen: etwa vom Alltagskontext zu einem wissenschaftlichen Kon-
text (Duit 1996, S. 157). In den Worten problemlösenden Lernens wird das als Einführung in
eine 'community of experts practice“ beschrieben:

„Community of practice refers to the creation of a learning environment in which the participants
actively communicate about and engage in the skills involved in expertise, where expertise is un-
derstood as the practice of solving problems and carrying out tasks in a domain.“ (Collins, Brown
und Holum 1991)

Roth (1996, S. 164) versucht die situative Einbettung von Wissen an einem Beispiel aus dem
Computerbereich zu verdeutlichen: Gefragt nach einer bestimmten Funktion der Text-
verarbeitung kann es passieren, dass man ohne den Computer einfach nicht erklären kann, wo
und wie die Funktion zu erreichen ist. Ist jedoch das Textverarbeitungsprogramm zur Hand,
kann man meist sehr einfach und schnell mit ein paar Mausklicks die Frage per De-
monstration beantworten.
In diesem Fall zeigt sich deutlich neben der situativen Gebundenheit von Wissen ein weiterer
Aspekt: Möglicherweise gibt es neben dem sprachlich zur Verfügung stehenden Wissen, das
man verbal ausdrücken kann auch ein Wissen, das man eher implizit zur Verfügung hat. Diese
beiden Wissensarten werden als deklaratives und prozedurales Wissen unterschieden. Im situ-
ierten Lernen wird die Zusammengehörigkeit dieser beiden Aspekte betont und, im Vergleich
zum traditionellen Unterrichten, insbesondere das 'implicit, tacit knowledge' berücksichtigt36.
Daher kann die Bedeutung von Begriffen und die Möglichkeit zu ihrer Verwendung (im Sin-
ne eines Werkzeugs) erst im Zusammenhang mit ihrer Benutzung erkannt werden:

„For example, one cannot expect students to derive the authentic use of some tool in the same way
that it would be ludicrous to expect some isolated indegenous people to discover the practice of
using a chain saw if they found one on the forest floor.“ (Roth 1996, S. 165)

Das Problem des Lernens in der Schule besteht darin, dass der situative Kontext im Klas-
senraum sich normalerweise erheblich von der 'experts practice' unterscheidet und der
einzelne Lehrer in der Klasse diese nicht alleine simulieren kann.

„Befunde instruktionspsychologischer Studien sprechen dafür, daß die wenig anwendungs-
bezogene, oft abstrakte und systematisierte Form der Wissensvermittlung, die der Komplexität des
Alltags nur selten gerecht wird, dazu beiträgt, daß träges Wissen erzeugt wird. Das gewissermaßen
'in vitro' erworbene Wissen kann zwar im universitätsanalogem Kontext, in dem es erworben wur-
de, genutzt werden, etwa bei Prüfungen; in komplexen, alltagsnahen Problemsituationen gelingt
die Wissensanwendung jedoch oft nur unvollständig oder überhaupt nicht. Damit kommt es zu ei-
ner Kluft zwischen 'Wissen und Handeln'.“ (Gruber, Mandl und Renkl, 2000, S. 139)

Der Lehrer kann nur versuchen zusammen mit den Schülerinnen und Schülern eine Praxis
aufzubauen, die der Expertenpraxis nahe kommt und dabei Begrifflichkeiten mit den Schülern
entwickeln und verwenden, die an fachliche Begrifflichkeiten anschlussfähig sind (vgl. aaO.,
S.172).

36 Wissen, das zwar wichtig ist, jedoch nur schwer aus Büchern gelernt werden kann. Hierzu zählen Tricks und
Kniffe für besondere Problemsituationen; die in Formulierungen mitschwingenden Bedeutungen; die impli-
ziten Konventionen, die meist unerwähnt bleiben (z.B.: i bezeichnet nie einen Boolean-Wert).

66

Lehr- und lerntheoretischer Hintergrund

 Begriffslernen im Zusammenhang situierten Lernens
Das Zusammenfassen einzelner Merkmale zu größeren und abrufbaren Einheiten ergibt Be-
griffe. Beim Lernen von Begriffen kann dieses Zusammenfassen sich auf eine bestimmte
Anzahl von Merkmalen/Kategorien beziehen oder auf prototypische Beispiele. Im Unterricht
kann es sich anbieten, typische Beispiele zum Erklären und Lernen neuer Begriffe zu verwen-
den. Gerade bei abstrakten Begriffen kann es jedoch vorkommen, dass einzelne Eigenschaften
der konkreten Situation von den Lernenden fälschlicherweise mit zur Bedeutung des abstrak-
ten Begriffs gerechnet werden. Möglicherweise könnte so im Bereich der Informatik die
Einführung des Begriffs Schleife anhand verschiedener Beispiele, in denen jeweils eine Va-
riable i benutzt wird, Lernende veranlassen, jedes Mal, wenn sie eine Schleife
programmieren, eine Variable i zu benutzen. Ein solcher Effekt kann jedoch auch gewünscht
sein (wie im gerade genannten Beispiel).
Begriffe können wie Werkzeuge gesehen werden, bei denen es auch nicht genügt zu wissen,
was für ein Werkzeug es ist, sondern man muss zusätzlich wissen, wie man es gebrauchen
kann. Die beispielhaften Situationen, mit denen ein Begriff eingeführt wird, sollten daher au-
thentisch sein. Authentisch meint, dass der Zusammenhang, in dem der neue Begriff
eingeführt wird, den Zusammenhängen entspricht, in denen der Begriff (später) zur Anwen-
dung kommt. Begriffslernen umfasst in dieser Perspektive mehr als das Erlernen einer
Definition. Unweigerlich gehören neben der Definition auch Vorgehensweisen, Bezüge zu
ähnlichen Situationen und Anwendungsregeln dazu. Wenn man jedoch nur Definitionen ver-
mittelt und die Anwendung anhand enger, abgegrenzter Beispielaufgaben übt, werden
Definitionen mechanisch abgespeichert, träges Wissen entsteht (Gruber, Mandel und Renkl,
2000; Mietzel 2001, S. 206).
Die Situierung von Lernen zeigt sich besonders an zwei Aspekten: Zum einen erfolgt Lernen
als Prozess in (sozialen) Situationen. Eigenschaften der Lernsituation können beispielsweise
zu den beiden im vorangegangenen Abschnitt diskutierten Lernhaltungen führen: dem auf die
Außenwirkung gerichteten darstellungsbezogenen Lernen oder dem inhaltsbezogenen Lernen.
Situierung verweist ebenfalls auf die Annahme, dass Lernen sozusagen als Nebenprodukt der
Teilhabe und dem Engagement an sozialen Interaktionen gesehen werden kann. Lernen kann
in diesem Sinne als Enkulturation, als Einführung in eine Gemeinschaft von Experten oder
Praktikern gesehen werden.
Zum anderen ist das erlernte Wissen gebunden an den Kontext, an bestimmte Merkmale der
Situation, in der es erworben wurde. Damit ist das erlernte Wissen gleichzeitig bereichsspezi-
fisch gebunden, da es immer an situative Eigenschaften und Handlungen geknüpft ist. Dies
gilt selbst für mögliche grundlegende, und damit bereichsübergreifende Wissensbestände oder
Handlungskompetenzen wie die in der informatikdidaktischen Diskussion oft herangezogene
Vorstellung einer bereichsübergreifenden bzw. übertragbaren Problemlösekompetenz. Mögli-
cherweise gelten aber in den verschiedenen Bereichen ähnliche situative Bedingungen, sodass
eine übergreifende Problemlösekompetenz trotz aller bisherigen eher negativen Erfahrungen
denkbar erscheint. In der für das Jahr 2003 geplanten PISA-Studie soll beispielsweise unter
anderem geprüft werden, „ob sich Problemlösen überhaupt in sinnvoller Weise domänenun-
spezifisch bestimmen und erfassen lässt“ (Baumert, Stanat und Demmrich 2001, S. 22).
Nach Gruber, Mandl und Renkl (2000, S. 152) helfen Theorien situierten Lernens, lernrele-
vante Bedingungen zu identifizieren: den situativen Kontext sowie den sozialen Charakter des
Lernens. „Dadurch wird Lernen als Verknüpfung von Kompetenzerwerb in Bezug auf Wissen
und auf Handeln herausgestellt“ (aaO.). Daher sollten auch im Unterricht Leistungs- und

67

Lehr- und lerntheoretischer Hintergrund

Lernsituationen getrennt werden: Wenn Schüler Unterricht als permanente Leistungsüberprü-
fung wahrnehmen, wollen sie eher Misserfolge vermeiden und von Wissenslücken und
Problemen ablenken, anstatt Probleme verstehen zu wollen und Wissenslücken zu schließen.
Zusammenfassend bemerkt Mietzel (2001, S. 219):

„Eine Lernphase ist somit als effektiv zu bezeichnen, wenn der Lernende motiviert ist, dem (mög-
lichst gut geordneten) Unterrichtsmaterial und seiner Verarbeitung hohe Aufmerksamkeit
entgegenzubringen. Dazu soll er ausreichend Zeit zur Verfügung haben und auch nutzen können,
damit eine aktive (übende) Auseinandersetzung mit dem Lernmaterial stattfinden kann.“

Auch wenn die letzten Passagen auf den ersten Blick nicht so wirken, so sind die einzelnen
Aspekte doch immer im konstruktivistischen Bild von Lehren und Lernen eingeordnet. Aber
möglicherweise reichen solche eher allgemeinen Angaben nicht aus, um ein Unterrichts-
konzept auf der Basis konstruktivistischer Annahmen praktisch wirksam werden zu lassen.
Dies hängt auch mit der Unterrichtstradition zusammen, die im Informatikunterricht vor-
herrscht. Leider gibt es dazu keine empirischen Untersuchungen37, aber dennoch Hinweise
aus der empirischen Forschung in den 'benachbarten' Fächern Mathematik und Naturwis-
senschaften. Auch im Allgemeinen, also unabhängig von Unterrichtsfächern, folgt der
überwiegende Teil des Unterrichts dem Schema der direkten Instruktion (vgl. Terhardt 1997,
S.98ff; Mietzel 2001 S.23ff). Lernen wird dabei als eher passives Aufnehmen von Wissen
konzipiert, das vom Lehrer dargeboten wird.
Im folgenden Abschnitt werden Untersuchungen aus dem mathematisch-naturwissenschaftli-
chen Bereich rekapituliert, um so weitere Hinweise für die Ausgestaltung des life3-
Unterrichtskonzepts zu finden.

6.2 Mathematisch-naturwissenschaftlicher Unterricht
Unter der Annahme, dass tatsächlich eine 'Nachbarschaft' des naturwissenschaftlichen Unter-
richts zum Informatikunterricht besteht, so wie sie in der Zuordnung von schulischen
Aufgabenfeldern beispielsweise in NRW ausgedrückt wird – dort zählt die Informatik zum
naturwissenschaftlich-mathematischen Aufgabenfeld –, sollen nun einige relevante empiri-
sche Untersuchungen über den mathematisch-naturwissenschaftlichen Unterricht analysiert
werden. Dies kann ggf. zu einer bestimmten Schwerpunktsetzung des Konzepts führen oder
beitragen. In jedem Fall sollten sich unterrichtsbezogene Hinweise für die Entwicklung des
life3-Unterrichtskonzepts ableiten lassen.
Nach Berger ist die Informatik „ein Fach von Mathematiklehrern“ (Berger 2001, S. 199f.).
Die Mathematik stellt die Folie dar, vor der ein Bild der Informatik entwickelt wird, aller-
dings „geschieht dies keineswegs in der Weise, dass die wissenschaftlichen oder
pädagogischen Kategorien der Mathematik etwa auf das neue Fach projiziert würden“ (aaO.,
S.289). Nach Berger werden den beiden Fächern unterschiedliche Lehr-Lernstile zugeordnet:
Mathematik = „frontal, lehrerzentriert, dogmatisch, eng, penibel“, Informatik = „aktiv, team-
orientiert, kreativ, kooperativ, mitbestimmt, offen, großzügig“ (aaO., S.293): Die
Übertragbarkeit empirischer Ergebnisse aus dem mathematisch-naturwissenschaftlichen Be-
reich auf die Praxis des Informatikunterrichts kann aus dieser Perspektive angezweifelt
werden. Allerdings beruhen die Aussagen auf Selbstaussagen von (28) Informatiklehrern und

37 Das liegt am jungen Fach Informatik (man konzentriert sich in der Fachdidaktik auf allgemein bildende Be-
gründungen des Unterrichts) und den dünnen informatikdidaktischen Forschungskapazitäten. Dennoch wä-
ren über Unterrichtsmuster hinausgehend Untersuchungen auch zum Bild der Informatik und des Informatik-
unterrichts, das die Lehrer haben, sinnvoll – siehe die eingangs gesammelten Beispiele zum Thema Objekt-
orientierung, die allesamt einem einheitlichen Bild verpflichtet scheinen.

68

Lehr- und lerntheoretischer Hintergrund

geben keine objektive Messung von Unterrichtsstilen wieder. Man kann vermuten, dass nach
Abzug der Schülerarbeitsphasen am Rechner der Informatikunterricht den anderen Fächern
doch wieder sehr ähnlich ist. Die Aussagen der Lehrer beziehen sich meist auf Rechnerar-
beitsphasen (vgl. aaO., S.293f): Da kann man die Schüler „machen lassen“, „Man geht zum
Computer und gibt Tipps“ etc. Die Gruppenarbeit, auf die sich einzelne Äußerungen bezie-
hen, findet wohl meist am Computer statt. Da also empirische Ergebnisse für den
Informatikunterricht nicht vorliegen, werden hier die TIMMS- und die PISA-Studie herange-
zogen.

6.2.1 Unterrichtsmuster
Die TIMSS38-Ergebnisse (Baumert und Lehmann 1997, S. 55f.) zeigen insgesamt mittlere
Leistungen der deutschen Schülerinnen und Schüler, die mit einer vergleichsweise hohen
Leistungsheterogenität und mit geringen Lernzuwächsen in der siebten und achten Jahrgangs-
stufe einhergehen: „Defizite liegen insbesondere im Bereich konzeptuellen Verständnisses
und im Verständnis naturwissenschaftlicher Arbeitsweisen“ (aaO., S.56).
Im Vergleich von Japan, den USA und Deutschland zeigen sich unterschiedliche typische un-
terrichtliche Muster: Japanischer Mathematikunterricht ist „Problemlöseunterricht“, in den
USA und Deutschland findet „Wissenserwerbsunterricht“ statt. „In Deutschland werden ma-
thematische Konzepte im Unterrichtsgespräch, das auf eine einzige Lösung hinführt,
entwickelt, in den USA vom Lehrer vorgestellt und von den Schülern angewandt“ (aaO.,
S.215). Japanischer Mathematikunterricht ist eher konstruktivistisch ausgerichtet, in der typi-
schen Unterrichtsstunde wird ein komplexes Problem mit unterschiedlichen
Lösungsmöglichkeiten von den Schülern in Gruppen- oder Partnerarbeit angegangen. An-
schließend werden verschiedene Lösungswege vorgestellt und im Unterrichtsgespräch
zusammengefasst, danach lösen die Schüler in Einzel- oder Gruppenarbeit ähnliche Aufgaben
(aaO., S. 225).
In Deutschland sieht das typische Muster so aus: Nach Durchsicht und Besprechung der
Hausaufgaben mit einer kurzen Wiederholungsphase wird im fragend-entwickelndem Un-
terrichtsgespräch, das auf eine einzige Lösung hinausläuft, der neue Stoff erarbeitet, an der
Tafel zusammengefasst und anschließend wird das Lösungsverfahren von den Schülern geübt.
Alternativ löst anstelle des Lehrers ein Schüler zusammen mit Klasse und Lehrer das Problem
(aaO., S. 226). Das Muster in den USA unterscheidet sich vom deutschen dadurch, dass der
Lehrer den neuen Stoff nicht im Unterrichtsgespräch erarbeitet sondern vorstellt und an-
schließend im Klassenverband mit den Schülern Beispiele durcharbeitet, bevor die Schüler in
Stillarbeit ähnlich Aufgaben lösen.
Zugespitzt könnte man im typischen Mathematikunterricht in Deutschland das unterrichtliche
Vorgehen nach dem Problemlöse-Paradigma wieder erkennen, während Informatikunterricht
nach dem systemorientierten Ansatz durch die Idee mehrperspektivischer Zugänge zu einem
Themenbereich eher Ähnlichkeiten mit dem Mathematikunterricht in Japan aufweisen müsste.
In allen drei Ländern liegen 70-80 Prozent der Redeanteile beim Lehrer, wobei nur in Japan
längere, zusammenfassende Darstellungen durch den Lehrer erfolgen (aaO., S. 231). Ebenso
fühlen sich die nationalen Fachdidaktiken und die Lehrpläne eher einem konstruktivistischem
Bild des Lernens und Lehrens verpflichtet, wobei in Deutschland beklagt wird, dass zwar Un-
terrichtskonzepte vorliegen, der Unterricht in der Breite davon jedoch kaum berührt wird
38 TIMSS: Third International Mathematics and Science Study. Die dritte internationale Mathematik- und Na-

turwissenschaftsstudie.

69

Lehr- und lerntheoretischer Hintergrund

(aaO., S.232f). Die Unterrichtsziele des Mathematikunterrichts in Japan beziehen sich zu drei
Vierteln auf Verständnis, zu einem Viertel auf mathematische Fähigkeiten. In den USA und
Deutschland ist das Verhältnis etwa 40 zu 60 (aaO., S 227).
Der Leistungsabstand zwischen deutschen und japanischen Schülern, berechnet aufgrund der
in einem Jahr erzielten Leistungsfortschritte, beträgt in Mathematik gut drei, in den Naturwis-
senschaften etwa zwei Jahre (aaO., S. 220). Zwischen Deutschland und den USA gibt es
kaum Unterschiede (aaO., S. 221). Die Autoren (der deskriptiven Befunde 1997) vermuten,
dass die Leistungsunterschiede weniger durch die Sozialformen und mehr durch die jeweilige
Aufgabenstellung und die in der Aufgabenbearbeitung ausgelösten kognitiven Prozesse er-
klärbar sein werden (aaO., S. 19).
In TIMSS III39 (Baumert, Bos und Lehmann 2000) wurden mathematische und physikalische
Kompetenzen am Ende der gymnasialen Oberstufe untersucht:

„Zusammenfassend läßt sich festhalten, dass der Mathematikunterricht der gymnasialen Oberstufe
aus Schülersicht bemerkenswert variationsarm ist. Vorherrschend sind zwei miteinander korres-
pondierende modale Muster: Sobald die Lehrkraft einen mathematischen Gedankengang
entwickelt und vorgestellt hat, folgen in der Schülerarbeitsphase das Lösen von Gleichungen und
die Übung von Rechenfertigkeiten. Inwieweit die Entwicklung des mathematischen Themas allein
in der Hand der Lehrkraft liegt oder primär im lehrergeleiteten Unterrichtsgespräch erfolgt, kann
aufgrund des TIMSS/III-Fragebogens nicht entschieden werden. Insgesamt nehmen die Schüler
den Mathematikunterricht als bemerkenswert variationsarm wahr. Variabilität lässt sich am ehes-
ten in der Dimension der Verständnisorientierung von Aufgabenstellungen erkennen.“ (Baumert
und Koller, 2000, S. 283)

Der Physikunterricht wird hauptsächlich als Demonstrations-Unterricht durchgeführt, in dem
der Lehrer anhand eines Experiments einen physikalischen Gedankengang entwickelt (Bau-
mert und Koller, 2000, S.295f). Allerdings kann man in der Physik insgesamt neun
didaktisch-methodische Merkmale unterscheiden, die etwa „40 Prozent der Leistungsvariation
zwischen den Kursen erklären“ (aaO.). Am lernwirksamsten ist dabei folgendes Muster: Die
Lehrkraft legt Wert auf anspruchsvolle Aufgaben und theoretisches Verständnis; unterstützt
Lernen durch gut vorbereitete Experimente, wobei Schüler- und Lehrerexperimente nicht der
theoretischen Fragestellung (also nicht induktiv) vorgelagert sind. Die verfügbare Un-
terrichtszeit wird optimal genutzt (aaO., S.297).
Höhere Leistungen gehen nicht mit Interessensverlusten einher, sondern stützen sich gegen-
seitig. Grundlage für eine solche mehrdimensionale Zielerreichung auf inhaltlicher und
motivationaler Ebene „scheinen verständnisorientierte Unterrichtsstrategien zu sein, die ver-
mutlich für die Dynamik des Verständnis- und Motivationssyndroms verantwortlich sind.
Repetitive und rezeptive Unterrichtsformen, wie sie das induktive Vorgehen im Physikunter-
richt offenbar darstellt, stehen in negativem Zusammenhang sowohl mit kognitiven als auch
mit motivationalen Kriterien“ (aaO., S.311).
Die Befunde von TIMSS und TIMSS/III entsprechen sich. Beide Untersuchungen weisen auf
eine höhere Lernwirksamkeit für Lehr- und Lernprozesse hin, die an einem konstruktivisti-
schen Bild des Lehrens und Lernens und auf Verständnisorientierung ausgerichtet sind.

6.2.2 Epistemologische Überzeugungen und Konzeptwechsel
Man nimmt an, dass intuitive Theorien, d.h. die mathematischen und naturwissenschaftlichen
Weltbilder der Schülerinnen und Schüler „Denken und Schlussfolgern, Informationsverarbei-

39 In TIMSS werden verschiedene Untersuchungspopulationen unterschieden. TIMSS III bezieht sich auf
Schülerinnen und Schüler der Sekundarstufe II.

70

Lehr- und lerntheoretischer Hintergrund

tung, Lernen, Motivation und schließlich auch die akademische Leistung“ (aaO., S.231) be-
einflussen. Epistemologische Strukturen geben die intuitiven Überzeugungen, die
fachbezogenen Weltbilder wieder. Diese epistemologischen Überzeugungen wurden in
TIMSS/III untersucht (Köller, Baumert und Neubrand 2000).
Mathematik (und analog Informatik) kann in einer statischen Sicht verstanden werden als ein
System von Aussagen aus Axiomen, Begriffen und Relationen. Damit korrespondiert ein Ma-
thematikunterricht, in dem Definitionen, Fakten und Routinen im Mittelpunkt stehen. Aus
einer dynamischen Sichtweise stellt sich Mathematik als eine Tätigkeit dar, die mit Fragen
und Problemen beginnt und zu deren Sammlung und Ordnung und zu systematisierten Aussa-
gen auf verschiedenen Stufen führt. Mit dieser Sichtweise korrespondiert ein
Mathematikunterricht, in dem mathematische Intuition, inhaltliches Argumentieren, Mathe-
matisieren im Sinne von Modellieren Vorrang bekommen (vgl. aaO., S. 235). Die Dominanz
eines schematisch-algorithmischen Mathematik-Weltbilds bei Oberstufenschülerinnen und -
schülern könnte man als „das kumulative Ergebnis eines über die Schuljahre hinweg unifor-
men und schematisch angelegten Mathematikunterrichts sehen“ (aaO., S.250).
Für den Mathematikunterricht wurde festgestellt, dass ein mathematisches Verständnis der
Schüler, das Mathematik als das Anwenden von Lösungsalgorithmen auf vorgegebene Aufga-
ben ansieht, niedrigere Leistungen zur Folge hat (Köller, Baumert und Neubrand 2000, S.
268).
Physik wird in einem traditionell-empiristischen Wissenschaftsbild vor allem als Entdecken
von in der Natur vorhandenen Gesetzen gesehen, die im Experiment entdeckt und in der phy-
sikalischen Theorie systematisiert werden. „Die Vorstellung von Wissenschaft als einer
Konstruktionsleistung ist in diesem Weltbild ein Fremdkörper“ (aaO., S. 267).
Epistemologische Strukturen (die Idee des Faches, die den Schülern vermittelt wird) betreffen
Positionen der Fachdidaktik. So strebt man in der Mathematik eine dynamische Sichtweise
an, im Physikunterricht ein Wissenschaftsbild, nach dem die Welt grundsätzlich verstehbar,
wissenschaftliches Wissen zwar dauerhaft, aber dennoch im Wandel begriffen ist und nicht
alle Fragen wissenschaftlich zu beantworten sind; zudem ist Wissenschaft eine 'organisierte
Unternehmung' mit speziellen 'naturwissenschaftlichen Untersuchungsmethoden' (aaO.,
S.237). Gegenüber diesem Anforderungskatalog erscheinen die Vorstellungen der meisten
Schülerinnen und Schüler defizitär (aaO.).
Lernen wird dementsprechend als Konzeptwechsel beschrieben. Der Begriff Konzeptwechsel
bzw. Conceptual Change hat sich als „Kennzeichen neuer, konstruktivistisch orientierter
Sichtweisen von Lehren und Lernen der Naturwissenschaften durchgesetzt (Duit 1996, S.146)
und verweist darauf, dass Lernen in den Naturwissenschaften oft 'Umlernen' bedeutet, da
„vorunterrichtliche Vorstellungen und naturwissenschaftliche Vorstellungen zumindest in we-
sentlichen Aspekten einander gegenüberstehen“ (aaO., S. 158). Dieses Umlernen kann
entweder kontinuierlich, als Erweiterung mit kleineren Revisionen des vorhandenen Wissens
oder diskontinuierlich als grundlegende Änderung erfolgen (aaO., S.148).
Nach Duit (1996, S. 150) ist die Theorie des Conceptual Change von Posner u.a.40 zum Leit-
bild für entsprechende Unterrichtskonzepte geworden. Vier Bedingungen sind für einen
Konzeptwechsel notwendig:

40 Posner, G.J.; Strike, K.A.; Hewson, P.W.; Gertzog, W.A.: Accomodation of a scientific conception: Toward
a theory of conceptual change. In: Science Education 66 (1982). S.211-227.

71

Lehr- und lerntheoretischer Hintergrund

1. Die Lernenden müssen mit ihren bisherigen Vorstellungen unzufrieden sein (dissatisfac-
tion)

2. Die neue Vorstellung muss ihnen logisch verständlich erscheinen (intelligible)
3. Sie muss einleuchtend sein (plausible)
4. Sie muss sich in neuen Situationen als erfolgreich erweisen (fruitful)
Die vier Punkte geben Hinweise, weshalb Konzeptwechsel so schwierig sind (siehe oben, Ab-
bildung 20, S. 64). Aber auch wenn die Bedingungen zwei und drei erfüllt sind, das
wissenschaftliche Konzept logisch und plausibel erscheint, wird es oft nicht verstanden, weil
nicht genügend Hintergrundwissen vorhanden ist. Hier kann so etwas wie ein Lern-Paradox
entstehen (siehe Duit 1996, S. 153): „Die neue Sichtweise kann man erst dann verstehen,
wenn man bereits über ausreichend Wissen über sie verfügt“. Auch empirische Evidenz reicht
nicht aus; Duit (aaO., S.154) zitiert ein Beispiel:

„Ein zwölf Jahre altes Mädchen ist gebeten worden, vorherzusagen, ob ein Eisblock schneller
schmilzt, wenn er in Wolle oder Aluminiumfolie eingewickelt ist. Das Mädchen ist der Meinung,
der in Wolle eingewickelte Block müsse schneller schmelzen, weil Wolle warm macht und folg-
lich Wärme abgibt. Das gegenteilige Resultat ihres Versuchs überzeugte sie nicht, daß ihre
Vorstellung falsch war. Sie erfindet vielmehr ad hoc eine Reihe von Argumenten, die erklären sol-
len, warum sich in diesem speziellen Fall ein Ergebnis eingestellt hat, das mit dem von ihr
vorhergesagten nicht übereinstimmt.“ (Duit 1996, S.154)

Insbesondere die impliziten Botschaften des Unterrichts hätten einen großen Einfluss auf
epistemologische Überzeugungen (aaO., S. 231). Inwieweit umgekehrt epistemologische Vor-
stellungen den Unterrichtserfolg des Schülers beeinflussen ist weitgehend offen, obwohl es in
Mathematik und Naturwissenschaften Hinweise auf einen Einfluss gibt (aaO., S. 238). Als Er-
gebnis von TIMSS/III halten die Autoren fest:

„Personen mit der Überzeugung, Mathematik sei das bloße Anwenden von Lösungsalgorithmen
auf vorgegebene Aufgaben, sind weniger interessiert, verwenden mehr Oberflächenstrategien
beim Lernen und erreichen niedrigere Leistungen. [..] Analoge Zusammenhänge zwischen episte-
mologischen Überzeugungen, Mediatoren und Fachleistungen lassen sich für das Fach Physik
nachweisen. [..] Insgesamt zeigen die Analysen, dass epistemologische Überzeugungen ein wichti-
ges, bislang nicht ausreichend gewürdigtes Element motivierten und verständnisvollen Lernens in
der Schule darstellen“ (aaO., S. 268).

6.2.3 Modellieren im Mathematikunterricht
Im Mathematikunterricht wird das Modellieren ebenfalls als ein zentraler Inhalt gesehen (Ab-
bildung 21).

72

Lehr- und lerntheoretischer Hintergrund

Abbildung 21 Der Prozess des Mathematisierens als Kern mathematischer Bildung (Abbildung nach Klieme,
Neubrand und Lüdtke 2001, S.144).

Damit ergibt sich eine schematische Übereinstimmung zum Informatik-Anfangsunterricht
(vergleiche dazu oben Abbildung 9, Seite 45). In beiden Fächern werden Situationen der Welt
mit fachsprachlichen Notationen (also mathematisch oder informatisch) modelliert, d.h. for-
mal beschrieben. Die Notation muss dabei im Sinne eines Kalküls syntaktisch und semantisch
korrekt verwendet werden. Daraus ergeben sich prinzipiell zwei mögliche Schwerpunktset-
zungen für den Unterricht. Entweder versucht man Kalküle als notwendige Grundlage zu
vermitteln oder man betont das Modellieren und hofft, dass dabei die Kalküle ebenfalls er-
lernt werden können.
Die Ergebnisse der PISA-Studie zeigen nun, dass diejenigen Staaten gut abschneiden, die im
Unterricht mathematische Modellierungsprozesse betonen. Diese können innermathematisch
oder auf Anwendungen der Mathematik ausgerichtet sein (Klieme, Neubrand und Lüdtke
2001, S. 186f). Daraus folgern die Autoren:

„Will man mathematische Grundbildung fördern, so muss man den Schülerinnen und Schülern
vermitteln, wie reale Situationen mathematisiert werden, wie auch innerhalb der Mathematik Mo-
delle gebildet werden, wie man sodann innerhalb eines mathematischen Modells
Schlussfolgerungen zieht und diese an der Realität überprüft“ (aaO., S. 186).

Dies könne erreicht werden durch „mehr inner- und außermathematische Vernetzungen, we-
niger Verfahren und Kalküle, mehr Denkaktivitäten und Eigenkonstruktionen der Schüler,
mehr Reflexion, flexiblerer[n] Methodeneinsatz“ (aaO., nach Blum 2001). Dazu wird ver-
sucht, die Unterrichts- und Aufgabenkultur des mathematisch-naturwissenschaftlichen
Unterrichts weiterzuentwickeln41.
Interessanterweise greifen die Autoren ein mögliches Gegenargument gegen die Betonung
des Modellierens im Mathematikunterricht auf: So habe die PISA-Studie Schwächen vor al-
lem im unteren Leistungssegment aufgedeckt. Sollte man nicht mit denjenigen Schülern
zunächst elementare Grundbegriffe und Rechnen üben? Die Autoren wenden sich ausdrück-
lich gegen diese Forderung, da sie die Kalkülorientierung des deutschen
Mathematikunterrichts nur befördern würde:

„Stattdessen muss versucht werden, auch schwächere Schüler – anhand einfacher mathematischer
Inhalte – an Modellierungsprozesse und offenere Aufgaben heranzuführen. Nicht die Reduktion,
sondern die Verstärkung des Anspruchniveaus – nicht des 'technischen' Niveaus – ist gefordert.

41 Etwa im BLK-Programm 'Steigerung der Effizienz des mathematisch-naturwissenschaftlichen Unterrichts'.

73

Lehr- und lerntheoretischer Hintergrund

Dies bedeutet vor allem, dass vermehrt auf allen Schulstufen die Gestaltung 'substantieller mathe-
matischer Lernumgebungen' (Wittmann, in press)42, die das Kennenlernen innermathematischer
Strukturen mit Anwendungsfähigkeiten verbinden, angestrebt werden muss. Auch ließe sich bei-
spielsweise mit Stern und Staub (2000)43 argumentieren, dass im herkömmlichen Unterricht –
nicht nur in der Grundschule – das verständnisfördernde Potenzial von visuellen Darstellungsfor-
maten noch lange nicht ausgenutzt ist“ (aaO., S.187)

Für den Naturwissenschaftsunterricht fallen die Empfehlungen ähnlich aus (Prenzel u.a. 2001,
S.245f.). Naturwissenschaftliche Denk- und Arbeitsweisen werden vergleichsweise selten und
unsystematisch thematisiert. Insgesamt folgern die Autoren:

„Nach wie vor gilt es, die in Deutschland erkennbare Neigung zum fragend-entwickelnden und
fachsystematisch orientierten Unterricht zu überwinden und durch Anwendungsbezug, Problem-
orientierung sowie Betonung mentaler Modelle das Interesse an den Naturwissenschaften und die
Entwicklung eines tiefer gehenden Verständnisses und flexibel anwendbaren Wissens zu fördern.“

6.3 Schlussfolgerungen für den Informatikunterricht
In diesem Abschnitt werden die oben dargelegten Ergebnisse mathematisch-naturwissen-
schaftsdidaktischer Forschung auf Lehr- und Lernprozesse im Informatikunterricht und damit
verbunden auf informatikdidaktische Forschungsfragen übertragen. Konkret betrifft das zwei
Bereiche: den Bereich des Modellierens im Mathematikunterricht (siehe Abschnitt 6.2.3), der
im Abschnitt 6.3.1 auf die Ausgestaltung und den Stellenwert des Modellierens im Anfangs-
unterricht Informatik übertragen wird, sowie den Bereich der epistemologischen
Überzeugungen und der Konzeptwechselansätze (siehe Abschnitt 6.2.2), der im Abschnitt
6.3.2 übertragen wird. Zusammenfassend werden in Abschnitt 6.3.3 Konsequenzen aus dem
zugrunde gelegten konstruktivistischem Bild des Lehrens und Lernens (siehe Abschnitt 6.1)
gezogen, die dann im Abschnitt 6.4 vor dem Hintergrund eines konkreten didaktischen Ansat-
zes präzisiert werden.

6.3.1 Modellieren
Der Modellierungsvorgang in der mathematischen Grundbildung (Klieme, Neubrandt und
Lüdtke 2001, S.142) ähnelt dem Modellieren im Informatikunterricht (Abbildung 9, Seite 45).
Dieses spricht dafür, dass die in den mathematisch-naturwissenschaftlichen Fächern vorlie-
genden empirischen Ergebnisse und Schlussfolgerungen wertvolle Anregungen für die
Beschreibung von Lehr- und Lernprozesse im Informatikunterricht liefern können.
Die Studien TIMSS, TIMSS/III und PISA stellen übereinstimmend für den Mathematikun-
terricht fest, dass eine Betonung des Modellierens im Unterricht, begleitet von
entsprechenden unterrichtsmethodischen Maßnahmen, zu insgesamt höheren Leistungen
führt. Mathematik wird dabei als ein System begrifflicher Werkzeuge verstanden, die bei der
Bearbeitung mathematischer Aufgaben benutzt werden. Dabei werden Situationen (beispiels-
weise eine Aufgabenstellung in Textform) mit mathematischen Ansätzen verknüpft – es wird
ein mathematisches Modell der Ausgangssituation erstellt. Aufgabenlösen kann daher als
„Prozess der Erstellung, Verarbeitung und Interpretation eines mathematischen Modells be-
schrieben werden“ (Klieme, Neubrand und Lüdtke 2001, S.143ff.): Wesentlich ist der
Vorgang des Mathematisierens / Modellierens, der über das textuelle Verstehen der Aufgabe

42 Wittmann, E.C.: Developing mathematics education in a systemic process (plenty lecture at the 9th internatio-
nal Congress on Mathematical Education ICME Tokyo 2000.

43 Stern, E.; Staub, F.: Mathematik lernen und verstehen: Anforderungen an die Gestaltung des Mathematikun-
terrichts. In: Inckermann, E.; Kahlert, J.; Speck-Hamdan, A.: Sich Lernen leisten. Grundschule vor den He-
rausforderungen der Wissenschaft. Luchterhand 2000. S. 90-100.

74

Lehr- und lerntheoretischer Hintergrund

hinausgehend zu einem mathematischen Modell führt. Solch ein mathematisches Modell
muss nicht nur eine Formel sein, es kann auch eine Skizze, ein Plan oder Ähnliches sein. Die-
ses mathematische Modell wird nun bearbeitet, etwa die Lösung ausgerechnet und
anschließend mit der Aufgabenstellung in Beziehung gesetzt (siehe Abbildung 21, S. 73).
Von solchen Aufgaben strikt zu trennen sind so genannte eingekleidete Aufgaben, in denen in
der Aufgabenstellung das mathematische Modell bereits mitgeliefert wird. Solche Aufgaben
blenden den eigentlichen Mathematisierungs- bzw. Modellierungsvorgang aus oder triviali-
sieren ihn, indem sie den Eindruck erwecken, genau eine Modellierung sei die richtige.
Sprachbezogener Anfangsunterricht führt demnach zu kalkülorientierten Lehr- und Lernpro-
zessen im Informatikunterricht und sollte durch Modellierungsorientierung abgelöst werden.
Gegenüber dem herkömmlichen Unterrichtsmuster sollten auch im Anfangsunterricht Aufga-
ben gestellt werden, die unterschiedliche Lösungswege und Herangehensweisen zulassen.
Man denke hier auch an die im deutschen Mathematikunterricht überwiegende Orientierung
auf den einen korrekten Lösungsweg, die es im Sinne verständnisvollen Lernens zu vermei-
den gilt. In diesem Zusammenhang sollen noch einmal die oben vorgestellten Ergebnisse
bezüglich verschiedener Unterrichtsmuster im Mathematikunterricht in Japan und Deutsch-
land hervorgehoben werden, wonach in Japan die Unterrichtsziele viel stärker auf Verständnis
als auf die Schulung mathematischer Fähigkeiten ausgerichtet sind – mit dem Ergebnis deut-
lich besserer mathematischen Fähigkeiten (siehe Kap. 6.2.1, S. 69).
Modellierung bezieht sich auf einen 'Problembereich' und ist damit in eine Situation eingebet-
tet. Daher können metakognitive Aspekte und die Betrachtung des soziotechnischen Systems
als integrative Bestandteile des Modellierungsvorgangs betrachtet werden. Auch die Inter-
pretation und Validierung des mathematischen Modells erfordert eine „Rückübersetzung aus
der Mathematik in die situative Einbettung“ (Klieme, Neubrand und Lüdtke 2001, S.146).
Der Gesamtprozess des Modellierens ist erst beendet, wenn die Gültigkeit des Modells klar
geworden ist – dazu wird ggf. der Erstellungsprozess mehrfach durchlaufen. Übertragen auf
die Informatik bedeutet dieses, dass mit der Implementationsphase mehr als der Test der Kor-
rektheit der Modellierung verbunden werden sollte. Beispielsweise könnten evolutionäre
Aspekte der Softwareentwicklung angesprochen werden.
Informatisches Modellieren unterscheidet sich demnach insgesamt vom mathematischen Mo-
dellieren vor allem durch die Auswahl der Modellier-Werkzeuge und möglicherweise durch
vielfältigere visuelle Werkzeuge. Diese können, etwa in Form informatischer Notationen wie
UML, ihren eigenen Beitrag als Lernunterstützung leisten, gerade um die vorherrschende Kal-
külorientierung, bzw. im Informatikunterricht die Programmiersprachenfixierung, zu
überwinden. Bezogen auf den Lernprozess im Informatik-Anfangsunterricht ergibt sich aus
der Theorie situierten Lernens folgende Vermutung: Wenn man im Unterricht die situative
Einbettung des Modellierens einbezieht, dann werden die Schülerinnen und Schüler weniger
Schwierigkeiten haben, die Werkzeuge, Notationen, Konzepte, Begriffe und die Arbeitswei-
sen der objektorientierten Modellierung zu verstehen und anwenden zu können, sodass auf
eine einführende Syntaxschulung und einen einführenden Kurs in Werkzeugbedienung ver-
zichtet werden kann.

6.3.2 Konzeptwechsel
Die zweite Schlussfolgerung aus der Analyse der Diskussion in den mathematisch-naturwis-
senschaftlichen Fachdidaktiken betrifft den Ansatz Konzeptwechsel, mit dem die

75

Lehr- und lerntheoretischer Hintergrund

Auswirkungen des Unterrichts auf die naturwissenschaftlichen Weltbilder der Schülerinnen
und Schüler diskutiert werden.
Die Autoren von TIMSS/III vermuten einen bislang unterschätzten Zusammenhang zwischen
epistemischen Strukturen, Fachinteresse und Lernerfolg (vgl. oben S. 72). Man könnte nun
Verbindungen annehmen zwischen dem Bild von Informatik als schematischem Codieren
oder einsichtsvollem Modellieren in der Softwareentwicklung und dem Interesse der Schüle-
rinnen und Schüler und ihren Kompetenzen. Interessanterweise gehört zu einem fachlich
angemessenen Verständnis der Objektorientierung auch eine Rahmenvorstellung über die Art
und Weise der Softwareentwicklung. In diesem Zusammenhang könnten didaktische Ansätze
zum Konzeptwechsel und epistemische Strukturen auch in der informatikdidaktischen Dis-
kussion eine Rolle spielen.
Metakognitive Lernziele aus dem Bereich der Systemorientierung können möglicherweise als
Konzeptwechsel aufgefasst werden, denn zumindest implizit geht der systemorientierte An-
satz von der Annahme aus, dass das angestrebte soziotechnische Verständnis von Informatik
nicht gegeben ist, sondern im Unterricht gelehrt werden muss, da die Schülerinnen und Schü-
ler aus dem alltäglichen Umgang mit Informationstechnik ein unangemessenes Verständnis
mitbringen und beispielsweise die Entwicklung von Informatiksystemen als einen rein techni-
schen Prozess (des Codierens) konzeptualisieren. Ein solches Vor-Verständnis würde durch
die vermutete typische Monokultur im Unterricht sogar noch gefestigt werden, sodass Soft-
wareentwicklung von den meisten Schülerinnen und Schülern als Programmieren angesehen
werden könnte. Dagegen ist ein wesentliches Lernziel des systemorientierten Ansatzes, Soft-
wareentwicklung eben nicht als einen rein 'inner'-technischen Prozess des Codierens
aufzufassen, sondern die Bezüge zum sozialen Umfeld zu erkennen (z.B. die Rolle des Auf-
traggebers). Lernprozesse im Anfangsunterricht könnten dementsprechend bezüglich der
Vorstellung von 'Programmieren' mit einer Konzeptwechselproblematik verbunden sein.
Aus diesen Gründen werden epistemologische Strukturen im Sinne impliziten Lernens und ih-
rer möglichen Festigung auch im Anfangsunterricht beachtenswert: So kann und soll eine im
Sinne des soziotechnischen Ansatzes angemessene Einführung in Objektorientierung im An-
fangsunterricht einen Konzeptwechsel zumindest nicht behindern und ggf. sogar vorbereiten.
Die Schülerinnen und Schüler sollten erleben können, dass Softwareentwicklung mehr ist als
Codieren. Dieses eigene Erleben scheint eher mit konstruktiven Zugängen unterrichts-
methodisch realisierbar zu sein, bei denen im Unterricht die Schülerinnen und Schüler selbst
Modelle entwerfen und diese zu implementieren versuchen als bei der Dekonstruktion einer
vorliegenden Software, bei der eher analytisch oder anhand von Unterrichtsmaterialien, die
von der Entstehung berichten, auf den Entstehungsprozess rückgeschlossen wird. Im Sinne
kognitiver Entlastung und im Sinne der Aufmerksamkeitsfokussierung kann dann auch in der
jeweiligen Unterrichtseinheit ein einheitlicher Lernzielbereich angestrebt werden: Zunächst
den Modellierungsprozess kennen und verstehen lernen, um anschließend darauf aufbauend
die Perspektive soziotechnischer Systeme zu entwickeln. Diese könnte dann im Unterricht als
'Reflexion von Softwareentwicklung' eingeführt werden, die sich an die Einführung in die Ob-
jektorientierung anschließt. Auch die Konzeptwechseldiskussion spricht dafür, im
Informatikunterricht offene Aufgabenstellungen zu modellieren, welche die Schülerinnen und
Schüler zum Nachdenken über Entwurfsalternativen sowie wesentliche und unwesentliche
Funktionalität anregen und so die „sozialverträgliche Technikgestaltung als interessengeleite-
te[n] Entscheidungsprozess“ (Magenheim 2000) ansatzweise im Unterricht erfahrbar werden
lassen.

76

Lehr- und lerntheoretischer Hintergrund

Aus dieser Diskussion folgt für die empirische Untersuchung die Aufgabe, bereits vor dem
Unterricht mögliche Vorstellungen der Schülerinnen und Schüler zu Softwareentwicklung
und dem Zusammenhang zwischen Informationstechnik und ihrer sozialen bzw. gesellschaft-
lichen Bedeutung und wahrgenommenen Wechselwirkungen zwischen diesen Bereichen zu
erfassen.
Eine weitere Aufgabe ist es, in der Beobachtung des Unterrichts Anknüpfungspunkte für
Konzeptwechselprozesse aufzudecken.

6.3.3 Konsequenzen aus dem konstruktivistischen Bild des Lehrens
und Lernens
Halten wir skizzenartig weitere Anregungen für Lehr- und Lernprozesse im Informatikunter-
richt fest. Der fachsystematisch aufgebaute, fragend-entwickelnde Unterricht mit Betonung
von Kalkülen und eher isolierten Übungen technischer Fertigkeiten prägt in Form der Syntax-
orientierung die bisherigen Praxiskonzepte zum Thema Objektorientierung (vgl. oben Kapitel
3). Aus der dargelegten lehr- und lerntheoretischen Perspektive ist jedoch eher ein Unterricht
zu bevorzugen, der
1. verständnisvolles Lernen in den Mittelpunkt stellt,
2. die Modellierung betont,
3. unterrichtsmethodische Zugänge variiert,
4. die Schülerinnen und Schüler anspruchsvolle, offene Aufgaben (ggf. in Gruppen) bearbei-

ten lässt,
5. die inner- und außerfachliche Anwendung im Blick behält,
6. die Herausbildung mentaler Modelle (im Sinne eines tiefen Verständnisses) fördert,
7. Denkaktivitäten, Eigenkonstruktionen und Reflexion betont und
8. epistemologische Strukturen berücksichtigt.
Diese Punkte sollen – soweit möglich - in dem zu entwickelnden life3-Unterrichtskonzept be-
rücksichtigt werden. Die Umsetzung dieser Anregungen führt dazu, dass in mehreren
Bereichen von den Praxiskonzepten (vgl. oben Kapitel 3) und zum Teil auch von den fachdi-
daktischen Ansätzen abgewichen wird (vgl. oben Kapitel 5): Modellierungstechniken
(=Kalküle) werden nicht einzeln eingeführt und einzeln geübt44. Dagegen wird die Vernet-
zung der verschiedenen Modellierungstechniken betont und versucht sie im Kontext
authentischer Aufgaben einzuüben. Die Einführung der Objektorientierung wird orientiert an
den Vorerfahrungen der Schülerinnen und Schüler und im Kontext von ('technisch' einfachen,
aber modellierend herausfordernden) anspruchsvollen Aufgaben erfolgen. Auf eine fachsyste-
matisch stimmige Reihenfolge der Vermittlung von Konzepten wird im Zweifel verzichtet –
zumal umstritten ist, was als Grundkonzept anzusehen ist.

6.4 Situierte und konstruktivistisch orientierte Unterrichtsmodelle
Es stellt sich nun das Problem, aus den im vorigen Abschnitt vorgestellten lehr-lerntheoreti-
schen Hinweisen und Ansatzpunkten ein in sich stimmiges Unterrichtskonzept abzuleiten, das
die einzelnen Hinweise angemessen in unterrichtsmethodische Zugänge überführt.

44 Siehe Hubwieser 2000, S. 90: Modellierungstechniken werden einzeln eingeführt und einzeln auf Probleme
angewendet.

77

Lehr- und lerntheoretischer Hintergrund

Glücklicherweise gibt es verschiedene allgemeine Konzepte, die aus den lehr-lerntheoreti-
schen 'Grundlagen' didaktische und methodische Hinweise ableiten. Zu nennen sind hier vor
allem Cognitive Flexibility, situiertes Lernen, Anchored Instruction und Cognitive Apprenti-
ceship, die nun in aller Kürze vorgestellt werden – auf das Cognitive Apprenticeship wird im
nächsten Abschnitt ausführlicher eingegangen, da es die Grundlage für das hier zu entwi-
ckelnde Unterrichtsmodell bildet.
Nach der Theorie der kognitiven Flexibilität (vgl. Gruber, Mandl und Renkl, 2000, S. 144)
sollen Lernende einen Lerngegenstand in unterschiedlichen Kontexten erleben und so mul-
tiple Repräsentationen herausbilden: „Dasselbe Lerngebiet ist zu verschiedenen Zeiten, in
veränderten Kontexten, unter veränderter Zielsetzung und aus unterschiedlichen konzep-
tuellen Perspektiven zu durchleuchten“ (aaO.).
Situiertes Lernen (vgl. Kap. 6.1.3, ab S. 65) ist eine Perspektive auf schulisches Lernen, stellt
selbst jedoch wenig konkrete Umsetzungsvorschläge für Unterrichtskonzepte bereit. Bei-
spielsweise wird man nicht einfach folgern können, dass Lernen nur durch (beobachtbares)
Handeln in Situationen erfolgt.
Im Ansatz der Anchored Instruction wird Lernen eingeleitet durch einen narrativen Anker,
mit dessen Hilfe Interesse und Neugier geweckt sowie die Aufmerksamkeit gelenkt wird. Der
Lernende muss Probleme entdecken und Lösungsvorschläge erarbeiten. Die Schülerinnen und
Schüler lernen an verschiedenen möglichst lebensnahen Fällen (Seel 2000, S. 358). Für die
Umsetzung bieten sich multimediale Lernumgebungen wie die Jasper Woodburry-Serie der
Cognition and Technology Group at Vanderbilt an (siehe Mandl, Gruber und Renkl 1997, S.
172). Mit Hilfe etwa 20-minütiger Videos werden die Schülerinnen und Schüler in Geschich-
ten verwickelt, sodass sie anschließend versuchen dem Helden der Geschichte bei der Lösung
eines Problems zu helfen. In einem Beispiel muss Jasper einen verletzten Adler aus dem Wald
in eine Klinik transportieren, was nur mit Hilfe eines Ultraleichtdrachens möglich ist. Die
Schülerinnen und Schüler müssen mathematische Kenntnisse erwerben, um die notwendigen
Strecken im Dreieck zwischen dem Standort des Drachens, dem Fundort des Adlers und der
Klinik zu planen (ausführlicher dazu: aaO., und Seel 2000, S. 357 ff.). „Mit der Anchored In-
struction werden also authentische Lernumgebungen kreiert, die zunächst vor allem auf
explorierendes, offenes Lernen abzielen“ (aaO., S. 173)45.

6.4.1 Cognitive Apprenticeship
In diesem Abschnitt wird mit dem Ansatz des Cognitive Apprenticeship die theoretische
Grundlage des life3-Unterrichtskonzepts vorgestellt. Daher wird hier nicht nur das Cognitive
Apprenticeship selbst erläutert, sondern auch die Diskussion über das Konzept vorgestellt, um
daraus Schlussfolgerungen für die Anwendung der im Cognitive Apprenticeship vorgeschla-
genen Elemente zu ziehen. Denn:

„Unter den neueren kognitionspsychologisch begründeten Konzeptionen zur Gestaltung von Lern-
umgebungen nimmt der Ansatz des Cognitive Apprenticeship eine herausragende Position ein, da
er im Schnittpunkt unterschiedlicher Argumentationen liegt und darauf abzielt, Merkmale idealer
Lernumgebungen zu identifizieren.“ (Seel 2000, S. 362)

Der Ansatz des Cognitive Apprenticeship wurde von (Collins, Brown und Newman, 1989)
vorgestellt. Die Autoren haben verschiedene theoretische Annahmen und erfolgreiche Un-
terrichtskonzepte auf ihre gemeinsamen Merkmale untersucht und unter dem Aspekt der

45 Es gibt Ideen, Dekonstruktion in diesem Sinne mit narrativen Ankern zu verbinden und entsprechende multi-
mediale Lernumgebungen zu entwickeln (Magenheim 2001).

78

Lehr- und lerntheoretischer Hintergrund

'kognitiven Meisterlehre' in insgesamt 18 Merkmalen zusammengefasst, die in vier Bereiche
unterteilt werden: Lern-Inhalte, Lehr-Methoden, Sequenzierung und soziale Lernbedingungen
(siehe Tabelle 22).
Das Konzept orientiert sich an der Lehrlingsausbildung, in welcher der Lehrling zunächst
dem Meister bei der Arbeit zusieht und von diesem Erklärungen erhält ('Modelling'), um unter
Anleitung ('Coaching') schrittweise einfachere und nach und nach immer anspruchsvollere
Arbeiten ('Scaffolding') selbst durchzuführen, wobei die Hilfestellungen durch den
Experten/Lehrer immer weiter nachlassen ('Fading'). Im Unterschied zur traditionellen Be-
rufsausbildung sind bei kognitiven Tätigkeiten wie z.B. Lesen, Schreiben, Rechnen
wesentliche Aspekte der Tätigkeit unsichtbar und müssen daher beim Vormachen wahrnehm-
bar gemacht werden ('Articulation'). Dies gilt natürlich auch für die Tätigkeiten der
Lernenden, die zudem die Fähigkeit erwerben müssen, ihre Handlungen selbst zu steuern, ihre
Herangehensweise zu bewerten und ggf. anzupassen. Dazu soll die Reflexion angeregt wer-
den ('Reflection'). Eine Methode dazu ist die Interaktion mit anderen, bei der der
eingeschlagene Weg vom Lernenden erklärt wird.
Das erklärende Vormachen wird in der Lernumgebung also stets durch Schüleraktivitäten er-
gänzt, bei denen die Schülerinnen und Schüler etwas anspruchsvollere Aufgaben übernehmen
sollen, als ihrem Kompetenzniveau entspricht. Um die Aufgaben erfolgreich lösen zu können,
werden sie vom Lehrenden unterstützt, der jedoch diese Unterstützung schrittweise zurück-
zieht, sodass im Verlauf des gesamten Lernprozesses die Lernenden nach und nach immer
mehr Aufgaben selbst übernehmen und ihre Eigenständigkeit erhöht wird (vgl. Gruber, Mandl
und Renkl 2000, S. 145).
Oft wird der Apprenticeship-Ansatz (die kognitive Meisterlehre) auf die Unterrichtsmethode
des erklärenden Vormachens46 reduziert.

Lern-Inhalte Bereichswissen
heuristische Strategien („tricks of the trade“)
Kontroll-Strategien
Lern-Strategien

Lehr-Methoden Modelling
Coaching
Scaffolding und Fading
Articulation
Reflection
Exploration

Lern-Sequenz ansteigende Komplexität
ansteigende Vielfalt
Globale Kenntnisse und Fähigkeiten vor lokalen

Soziale Bedingungen Situiertheit
Expertenpraxis
intrinsische Motivation
Kooperation der Lernenden nutzen
Wettbewerb der Lernenden nutzen

Tabelle 22 Eigenschaften idealer Lernumgebungen nach dem Cognitive Apprenticeship[CBN 1989, S.476ff.]

An erster Stelle des Ansatzes steht der Lerninhalt. Neben dem Bereichswissen (den Konzep-
ten, den Fakten, den Regeln, ...) sollen auf jeden Fall auch die Tricks und Kniffe der Experten

46 Modelling wird im Deutschen meist mit Modellieren wiedergegeben. Aufgrund der Verwechslungsgefahr
mit dem objektorientierten Modellieren nennen ich diese Unterrichtsmethode hier: erklärendes Vormachen
oder auch Lösungsbeispiel.

79

Lehr- und lerntheoretischer Hintergrund

Berücksichtigung finden. Diese Forderung entspricht dem oben Dargelegten zum Erlernen an-
wendbarer Begriffe (siehe Kap. 6.1.3, S. 67): Neben dem 'Knowing what' erfordert tiefes
Verständnis, Anwendbarkeit und Übertragbarkeit immer auch das 'Knowing how'. Unterstützt
werden soll das durch das Vermitteln von Kontroll- und Lernstrategien, sodass Lernende in
der Lage sind, Kontrolle über ihre Aktivitäten und Lernprozesse zu übernehmen. Damit wird
das Lernen deklarativen Wissens (Syntax, Grundkonzepte) mit prozeduralem Wissen (der An-
wendung beim Modellieren) und metakognitiven Aspekten (der Steuerung und Beurteilung
des Modellierens und der Modellierungs-Ergebnisse) verbunden. D.h. die in Kapitel 5 vorge-
nommene Verbindung dreier fachdidaktischer Positionen (Unterrichtserfahrungen bzw.
Praxiskonzepte des Anfangsunterrichts, informationszentrierter und systemorientierter An-
satz) findet sich in der Beschreibung der notwendigen Lern-Inhalte für ideale
Lernumgebungen wieder.
Zu den bereits überblicksartig erwähnten Unterrichtsmethoden ist zu ergänzen, dass die Akti-
vitäten 'Reflection' und 'Articulation' auch von den Lernenden übernommen werden sollen:
Die Reflexion des Vorgehens übt die Verwendung von Kontroll- und Lernstrategien ein.
Dazu muss aber das eigene Vorgehen artikuliert werden. Diese beiden Unterrichtsmethoden
können zwar den Erwerb anwendbaren Wissens unterstützen, jedoch nicht garantieren: „Je
nach Art der Anregung zur Artikulation und Reflexion und nach dem Vorwissensniveau der
Lernenden können positive Effekte auch ausbleiben“ (Gruber, Mandl und Renkl, 2000, S.
151). Erforderlich ist eine angemessene instruktionale Einbettung.
Die Unterrichtsmethoden 'Coaching', 'Scaffolding' und 'Fading' zielen auf die Hilfe zur Selbst-
ständigkeit ab. Hier besteht die Möglichkeit und Notwendigkeit im Sinne des
Ausbalancierens von Instruktion und Konstruktion die Lernumgebung so zu gestalten, dass
der Lehrer seine Rolle vom Instrukteur zum Coach und weitergehend zum beratenden, organi-
sierenden Außenstehenden entwickeln kann und immer weniger Eingriffe in die Aktivitäten
der Schülerinnen und Schüler notwendig sind. Das 'Scaffolding' kann insbesondere durch Ma-
terialien zur Veranschaulichung des Stoffes, durch Merkhilfen, die Zerlegung von Zielen in
Teilziele, Tipps und Merkregeln für einzelne Problemlösungen unterstützt werden (Seel 2001,
S. 363).
Eine weitere Funktion der Scaffolds ist, die Lernsequenz in eine dem Lernenden sinnvoll er-
scheinende Ordnung zu bringen. Ob das Unterrichtsmaterial gut geordnet ist, hängt dabei vom
bereits vorhandenen Wissen der Lernenden ab und von der Klarheit der Darstellung durch den
Lehrer. Klarheit wird durch Abbildungen, Vergleiche oder Beispiele unterstützt (Mietzel
2001, S. 220). Eine Rolle spielen auch vorangestellte Einordnungshilfen (aaO., S.224). Diese
wirken wie ein „geistiges Gerüst“, das dem Lernenden hilft, Verankerungsmöglichkeiten für
neues Wissen zu finden. Sie lenken die Aufmerksamkeit und bilden eine „Einrüstung“ ('Scaf-
folding') zwischen neuem Material und bereits Bekanntem.
In einer multimedial unterstützten Umsetzung des Cognitive Apprenticeship zur Vermittlung
von Kenntnissen im objektorientierten Modellieren folgert Tholander (Tholander u.a. 1999),
dass die Lernumgebung insbesondere 'strategic Scaffolding' unterstützen sollte und bezieht
sich dabei neben der Notwendigkeit angemessener Unterstützung vor allem auch auf den Pro-
zess der zunehmenden Selbstständigkeit, der auch auf diese Weise gefördert werden soll.
Vor dem Hintergrund der oben dargelegten typischen Unterrichtsmuster und der typischen
Vermittlungsstrategien des Informatikunterrichts sollte dieser Aspekt in der Konzeptentwick-
lung hervorgehoben bzw. besonders unterstützt werden. Duit (2000, S. 84) weist auf Studien

80

Lehr- und lerntheoretischer Hintergrund

hin, in denen Lehrer „auch nach entsprechendem Training im Unterricht von Scaffolding
nicht Gebrauch (machten), obwohl sie meinten es zu tun“.
Seel (aaO., S. 365) weist darauf hin, dass in empirischen Untersuchungen fast immer nur ein-
zelne der Komponenten des Cognitive Apprenticeship umgesetzt und geprüft worden sind.
Eine Ausnahme bildet eine Untersuchung von Al-Diban und Seel, in der das Konzept für den
Lern-Inhalt Wirtschaftssysteme geprüft wurde, und in welcher nach Aussage der Autoren
„erstmals alle Methoden der 'Cognitive Apprenticeship' (Modelling, Coaching, Scaffolding,
Artikulation, Reflexion und Exploration) innerhalb eines Lehrprogramms realisiert und unter-
sucht worden [sind, C.S.]. Die Ergebnisse stützen generell die Effektivität der Lehrkonzeption
des Cognitive Apprenticeship als Grundlage für die didaktische Gestaltung multimedialer
Lehrsysteme“ (Al-Diban und Seel 1999, S. 33f., S.29).
Insgesamt sind jedoch trotz des überwiegend positiven Urteils auch Schwächen des Ansatzes
zu berücksichtigen, der oft nur auf Plausibilitätsniveau begründet ist und auch Inkonsistenzen
aufweist (Seel, 2001, S. 365). Es empfiehlt sich daher, die einzelnen Komponenten des Ansat-
zes stärker zu operationalisieren und zu begründen. Als explizite Schwäche wird auf die
Forderung zu kompetitiven Lernen verwiesen, die nicht mehr dem Stand der Lernforschung
entspreche (aaO., S. 364; vergleiche dazu auch oben Kap. 6.1.2, S. 65).
Empirische Untersuchungen haben ergeben, dass die Methode des erklärenden Vormachens

„eine geeignete Maßnahme ist, um den Erwerb anwendbaren Wissens zu fördern. Im Gegensatz
zu entsprechenden Annahmen innerhalb des Ansatzes der kognitiven Lehre kann es aber sinnvoll
sein, die Modellierung [erklärendes Vormachen, C.S.] nicht an den Anfang des Lernprozesses zu
stellen, sondern erst dann einzusetzen, wenn die Lernenden erste Schwierigkeiten selbst erfahren
haben“ (Al-Diban und Seel 1999, S. 151).

Peterßen (2001, S. 55) vermutet, dass die Methode ungewohnt sei, da sie dazu zwinge, Denk-
wege zu artikulieren. Dies verlange Übung vom Lehrer und von den Schülern und
funktioniere nicht in Klassen mit „gruppendynamischen Schwierigkeiten“. Ein weiteres Pro-
blem liege „im mechanischen des Verfahrens. CA [Cognitive Apprenticeship] in langen
Unterrichtseinheiten oder gleichzeitig in mehreren Fächern kann schnell eintönig wirken“
(aaO.).
Unter der verallgemeinerten Bezeichnung 'Lernen aus Lösungsbeispielen' wird zu diesen
Aspekten geforscht. Man ist sehr optimistisch, die Lernwirksamkeit dieser Methode noch
steigern zu können (siehe Themenheft 'Lernen aus Lösungsbeispielen' der Zeitschrift Unter-
richtswissenschaft (Nr.1, 2001). Lösungsbeispiele weichen dabei von einigen Vorgaben des
Cognitive Apprenticeship ab. Trotzdem werden Lösungsbeispiele von Schnotz (2001, S. 89)
als Variante des erklärenden Vormachens (richtigerweise) in den Zusammenhang mit dem
Cognitive Apprenticeship gestellt. Weitere Erfolg versprechende Varianten der Methodik sind
nach Schnotz:
• das ausgearbeitete Lösungsbeispiel zusammen mit Erklärungen durch die Lehrperson: die

Instruktionale Erklärung,
• das Erläutern durch den Lernenden selbst: die Selbsterklärung.
In beiden Fällen müssen „das der Beispiellösung zugrunde liegende konzeptuelle Wissen über
die Domäne sowie das deklarative Handlungs- und Situationswissen explizit gemacht wer-
den“ (aaO.). Im Lernprozess kann der Lernende solche Beispielaufgaben auch selbst lösen
(learning by doing) oder unter Hilfestellung des Lehrers ('Coaching'). In beiden Fällen können
'Articulation' und 'Reflection' als unterstützende Methoden eingesetzt werden (aaO.). Für die
verschiedenen Möglichkeiten gilt, lapidar gesagt: so viel Selbsterklärung wie möglich, so we-

81

Lehr- und lerntheoretischer Hintergrund

nig Fremderklärung wie nötig (aaO., S. 90, Renkl im selben Band). Der Lernprozess sollte so
organisiert werden, dass mit den ausführlicheren Fremderklärungen begonnen wird und diese
(im Sinne des 'Fading') abnehmen zugunsten von Selbsterklärungen (aaO.). Falls später doch
noch längere Fremderklärungen notwendig werden, so ist dies ein Indiz für zu schnelles 'Fa-
ding' (aaO., S. 90f.).
Zwischen der Quantität der Verbalisierung bei Selbsterklärungen und Lernerfolg besteht ver-
mutlich kein Zusammenhang (aaO., S. 92). Verbalisierungen können auch auf
Verständnisschwierigkeiten hindeuten, andererseits aber auch auf elaborative, Kohärenz för-
dernde kognitive Verarbeitung verweisen. Im Sinne der Expertiseforschung also den Prozess
der Elaboration von eher flachen Wissens- und Handlungsstrukturen von Novizen hin zu stark
gegliederten hierarchischen kognitiven Strukturen von Experten ausdrücken (aaO., S. 91f.).
Insgesamt müssen Lösungsbeispiele in eine entsprechende Lehr-Lern-Kultur eingebettet wer-
den, damit der damit verbundene kognitive Aufwand des Strategiewechsels vom
mechanischen, routinisierten Aufgabenlösen zur „reflektierten, prinzipbasierten und kreativen
Aufgaben- bzw. Problembewältigung“ für die Lernenden „hinreichend ertragreich erscheint.
Andernfalls dürfte die Bereitschaft zur Nutzung instruktionaler Erklärungen relativ gering
bleiben“ (aaO., S.93).
In der naturwissenschaftlichen Didaktik wird die Anwendbarkeit des Cognitive Apprentice-
ship entsprechend unter dem Aspekt des Konzeptwechsels diskutiert. Duit verweist 1996
etwas skeptisch und 2000 ausdrücklich auf diesen Ansatz.
In Duit (1996, S. 157) wird auf ein Problem der 'communities of practice' verwiesen:

„Ansätze zum Cognitive Apprenticeship sind mit einer fundamentalen Problematik behaftet. Es
geht ihnen um die Einführung in die Praxis einer neuen Kultur. Aber um welche Kultur handelt es
sich? Im Falle des Hochschulunterrichts ist dies zweifellos die Kultur der entsprechenden Wissen-
schaft. Für den allgemeinbildenden Unterricht der Schule trifft dies allerdings nicht zu, denn dort
geht es ja ganz ausdrücklich nicht allein um Propädeutik, sondern ganz wesentlich um die Aufklä-
rung der natürlichen und gesellschaftlichen Lebenswelt durch naturwissenschaftliches Wissen.
Diese Problematik wird zur Zeit im Zusammenhang mit Ansätzen des Cognitive Apprenticeship
noch nicht ausreichend diskutiert.“

Für Lehr- und Lernprozesse im Informatikunterricht würde man aus der Sicht des system-
orientierten Ansatzes hinzufügen, dass Schule auch in die technologische Umwelt einführen
und darüber aufklären muss – aber die aufgeworfene Frage bleibt bestehen: In welche 'Praxis
der Informatik' soll der Unterricht einführen? Es ist klar, dass die Ausbildung von 'Informati-
kern im Westentaschenformat' (Roth 1996, S. 175; vergleiche dazu auch Ropohl 1991, S.229)
kein primäres Ziel darstellen kann. Grundlage des Informatikunterrichts ist die systemorien-
tierte Sichtweise anhand derer die 'Kultur der Softwareentwicklung' deutlich wird, in die der
Unterricht Einblicke gewährt (vgl. Kap. 4.2, ab S. 37).
Das Einführen in eine 'community of experts', in eine 'Kultur' kann insofern auch direkt ge-
nutzt werden für den angestrebten Konzeptwechsel (vgl. dazu Kap. 6.2.2, ab S. 70): Dieser
besteht im Wechsel von der 'Alltagskultur' zur 'Expertenkultur', von den alltäglichen Vorer-
fahrungen zur intendierten wissenschaftlichen (oder hier: soziotechnischen) Sichtweise. Nach
diesem Verständnis bietet das Cognitive Apprenticeship im Sinne des situierten Lernens neue
Akzente für Unterrichtsstrategien des Konzeptwechsels (vgl. dazu Duit 2000, S. 85). Dabei
wird dann unter anderem die Methode des 'Scaffolding' interessant (vgl. zur Problematik Kon-
zeptwechsel und Informatikunterricht die Schlussfolgerungen für die Konzeptentwicklung in
Kap.6.3.2, ab S. 75).

82

Lehr- und lerntheoretischer Hintergrund

Insgesamt wird die Entwicklung des life3-Unterrichtskonzepts sich auf das Cognitive Appren-
ticeship stützen, dabei jedoch insbesondere das mittlerweile entstandene wissenschaftliche
Bild vom Lehren und Lernen sowie den Forschungsstand zum Ansatz selbst berücksichtigen.

83

Das life3-Unterrichtskonzept

7 Das life3-Unterrichtskonzept
In diesem Abschnitt wird die bereits im Kapitel 5 ab S. 44 vorgenommene Beschreibung des
life3-Unterrichtskonzepts erneut aufgenommen. Dort wurde das Unterrichtskonzept vor dem
Hintergrund der Auseinandersetzung mit den Praxiskonzepten (Kapitel 3) aus der Perspekti-
ve der fachdidaktischen Diskussion (Kap. 4) erläutert. Standen dort die Inhalte und sich
daraus ergebende unterrichtsmethodische Anknüpfungspunkte sowie die Lernziele im Vor-
dergrund, soll nun die lehr- und lerntheoretische Verankerung des Konzepts vorgestellt und
erläutert werden. Hier steht vor dem Hintergrund des Cognitive Apprenticeship (Abschnitt
6.4)47 die unterrichtsmethodische Realisierung von Lehr- und Lernprozessen im Vordergrund.
Damit wird ebenfalls die Grundlage für die empirische Untersuchung gelegt.
In diesem Kapitel wird zunächst der Lerninhalt aus der Perspektive des Cognitive Apprentice-
ship analysiert: Was ist das grundlegende Bereichswissen, welches sind die angemessenen
heuristischen Strategien sowie damit verknüpft mögliche Kontroll- und inhaltsbezogenen
Lernstrategien48 (Abschnitt 7.1)? Anschließend werden die weiteren drei Kernelemente von
Lernumgebungen nach dem Cognitive Apprenticeship auf das Unterrichtskonzept bezogen
vorgestellt: unterrichtsmethodische Zugänge (7.2), die Lernsequenzierung (7.3) und relevante
soziale Bedingungen (7.4).

7.1 Inhalte des life3-Unterrichtskonzepts: das Bereichswissen
Die zu vermittelnden Inhalte (siehe Abschnitt 5.2, S. 47ff.) kann man nach Wissensarten un-
terscheiden:
1) begriffliches bzw. Faktenwissen: Dazu zählt das Wissen über objektorientierte Konzepte

wie Klasse, Assoziation, Vererbung etc. sowie über Notationen.
2) prozedurales Wissen: Es betrifft die Vorgehensweisen. Wie wende ich die Konzepte an?

Wie gehe ich vor, wenn ich eine Software entwickeln möchte?
3) Metakognition: Sie betrifft die Reflexion der Ergebnisse. Ist die Vorgehensweise erfolg-

reich? Was habe ich als Lernender nicht verstanden? Was bedeutet das für mein Bild von
Informatik? Welche Konsequenzen ergeben sich aus der Nutzung von Software?

Das bedeutet dementsprechend eine verzahnte Vermittlung von Begriffen, Vorgehensweisen
und idealerweise auch metakognitiven Aspekten (siehe Tabelle 23).

47 Allerdings – das gilt allgemein für die Entwicklung von Konzepten pädagogischen Handelns – darf nicht der
Eindruck entstehen, es komme bei der hier vorzunehmenden Präzisierung des Unterrichtskonzepts darauf an,
die Punkte der gewählten theoretischen Verankerung, hier also die einzelnen Aspekte des Cognitive Appren-
ticeship, im Sinne einer Anforderungsdefinition einzeln abzuarbeiten und umzusetzen. Was aus der Sicht ei-
ner einzelnen Anforderung nicht genügt, müsste dann geändert werden. Die Gefahr besteht, dass ein solches
Vorgehen zwar dem Wortlaut des 'Vorbilds' auf das genaueste entspricht, aber dessen eigentliche pädagogi-
sche Idee völlig verfehlt und eine starre, mechanische Umsetzung ergibt, die in der Unterrichtspraxis nicht
funktionieren würde, da die Idee des Cognitive Apprenticeship gerade nicht umgesetzt wird. Ziel des Cogni-
tive Apprenticeship ist, den Schülerinnen und Schülern eine motivierende Starthilfe zu geben, damit sie
schrittweise erleben können, dass sie Aufgaben erfolgreich bearbeiten, sich mehr und mehr in dem Bereich
auskennen, immer vielfältigere und anspruchsvollere Aufgaben bearbeiten können und dabei selbst immer
mehr zum Experten werden. Diese Idee soll mit den einzelnen 18 Merkmalen idealer Lernumgebungen um-
gesetzt werden. Dazu, das wurde in Kapitel 6.4 bereits diskutiert, wird vor dem Hintergrund der allgemeinen
Diskussion über Lehren und Lernen durchaus von der Vorlage abgewichen – etwa im Bereich instruktionaler
Lösungsbeispiele (siehe oben). Daher stellt das Cognitive Apprenticeship tatsächlich 'nur' den Hintergrund
bereit.

48 Zur Begrifflichkeit vgl. den Abschnitt über Cognitive Apprenticeship, Kap. 6.4.1 ab S. 78).

84

Das life3-Unterrichtskonzept

Deklaratives Wissen Prozedurales Wissen Metakognition
Begriffe und Konzepte kennen
Konzeptwissen
Begriffswissen

Anwenden
Lösungsstrategien
Handlungsschemata

Reflektieren
Beurteilungswissen
normatives Wissen

Klasse, Objekt, Zuweisung, ... Analyse, Design, Fehlersuche, .. Einschätzen und Bewerten des Vor-
gehens, Rolle von Technik in
Gesellschaft

...wird im Problemlöse-Paradigma
bzw. den Praxiskonzepten betont

...wird im informationszentrierten
Ansatz betont

...wird im systemorientierten Ansatz
betont

Tabelle 23 Wesentliches Bereichswissen zur Einführung der Objektorientierung, Geordnet nach den Schwer-
punkten der verschiedenen didaktischen Ansätze, wobei in allen Ansätzen alle drei Bereiche angesprochen
werden.

Diese Aufteilung in Wissensarten verdeutlicht, auf welchen verschiedenen Ebenen Lernpro-
zesse im Informatikunterricht stattfinden. Die didaktisch-methodische Entscheidung für den
Einsatz von CRC-Karten wird hiermit lerntheoretisch begründbar, denn CRC-Karten ver-
knüpfen im Sinne situierten Begriffslernens das Aufnehmen wesentlicher Begriffe im
authentischen Kontext der Entwicklung objektorientierter Anwendungen49. Die Verwendung
von CRC-Karten als Entwicklungsmethode bettet die Begriffe (als deklaratives Wissen) in
den Modellierungsprozess (als prozedurales Wissen) ein, dessen Ergebnis, das CRC-Karten-
modell, anhand des Objektspiels reflektiert und beurteilt werden kann (Metakognition). Damit
ist auch bereits ein erster Anknüpfungspunkt zwischen der Einführung der Objektorientierung
und der Einführung von Softwareentwicklungsprozessen gegeben (vgl. ausführlicher oben
Kap. 5.2, ab S. 47).
Allerdings sagen CRC-Karten nur wenig über die Implementation aus. Das bedeutet für den
Einstieg zunächst, dass hier ggf. ein Lernproblem auftritt: Ziel objektorientierter Techniken
und Sichtweisen bleibt die Implementation von Software (auf einem Computer). Ben-Ari ar-
gumentiert, dass dazu eine angemessene Vorstellung, ein mentales Modell des Computers
benötigt wird, das Novizen nicht haben (Ben-Ari 1998). Demzufolge würde zum notwendigen
Bereichswissen eine Einführung in den grundsätzlichen Aufbau des Rechners gehören. Nach
Ben-Ari gilt das insbesondere anhand der Diskussion konstruktivistischer Lernansätze. Da
nun, im Sinne der Argumentation von Ben-Ari, Ziel der objektorientierten Modellierung die
Implementation auf einer Maschine ist, so muss man etwas über diese Maschine wissen, da
sonst die Modellierung nicht gelingen kann, die sich ja an den Eigenschaften der Maschine
ausrichten muss. Hier allerdings entstehe ein objektorientiertes Paradoxon: Da die Anfänger
die Eigenschaften der Maschine nicht kennen, von denen die Objektorientierung abstrahiert,
könnten sie die abstrakten Konzepte der Objektorientierung erst dann verstehen, wenn sie
eine angemessene Vorstellung von der Arbeitsweise des Computers haben.
Hinzu kommt, dass die Implementation (jedenfalls in den gängigen objektorientiert-imperati-
ven Sprachen) auf imperative Sprachmittel wie Schleife, Verzweigung und Variable
zurückgreift. Andererseits besteht aus der softwaretechnischen Perspektive der Fortschritt in
den Entwicklungsmethoden und Sprachmitteln gerade darin, diese zunehmend von den grund-
legenden Eigenschaften der Maschine zu abstrahieren – und den Problembereich direkter
abbilden zu können. Dies gilt insbesondere für die Objektorientierung und den Entwurfspro-
zess, wobei nach Quibeldey-Cirkel (1994, S. 17) insbesondere Code generierende Werkzeuge
wirksame Hilfsmittel darstellen:

49 Zur Authentizität bedeutet andererseits auch, dass der zu modellierende Bereich den Schülerinnen und Schü-
lern vertraut ist, also für sie authentisch ist.

85

Das life3-Unterrichtskonzept

„Was wir brauchen, um die Essenz einer komplexen Entwurfsaufgabe in den Griff zu bekommen,
sind Code erzeugende Werkzeuge, die das konzeptionelle Modell 'zum Laufen bringen', es sprach-
lich umformen in ein Programm.“

Durch den Einsatz Code generierender Werkzeuge wie Fujaba sollte also das Bereichswissen
auf der Ebene bleiben, die mit den CRC-Karten betreten wurde: das Design bzw. das Model-
lieren. Damit sollte also die Notwendigkeit entfallen, ein mentales Modell über die Interna
des Rechners zu vermitteln, damit die Schülerinnen und Schüler ihre CRC-Karten-Modelle
implementieren können. Ob das gelingt, wird in der empirischen Untersuchung zu prüfen
sein.
Die bereits angedeuteten unterrichtsmethodischen Zugänge zur Softwareentwicklung und
Werkzeugunterstützung (vgl. Kap 5.3 ab S. 52), also die Inhalte, die im Cognitive Apprenti-
ceship 'tricks of the trade' – heuristisches Wissen – genannt werden, spielen eine wichtige
Rolle. Durch die Benutzung von Story-Pattern ändert sich, wie oben beschrieben wurde, ten-
denziell der Implementationsstil: Assoziationen werden eher zur Laufzeit geändert,
Objektstrukturen werden dynamischer (vgl. Kap 5.3 ab S. 52). Durch die Verbindung von
Modellierung und Implementierung wird die Vernetzung der beiden Bereiche in der Vor-
stellung des Novizen gefördert. Daher kann die Verwendung von Fujaba dazu führen, dass die
Implementation in der Wahrnehmung der Lernenden 'objektorientierter' wird: Die Implemen-
tation erfolgt ebenso wie die Modellierung der CRC-Karten und der UML-Klassendiagramme
auf der Ebene des Modellierens. Aktivitätsdiagramme beschreiben, welche Objektstrukturen
aufgebaut und welche Änderungen an den Objektstrukturen erfolgen sollen. Wesentlich ist,
dass es beim Beschreiben dieser Änderungen bleibt – die algorithmische Umsetzung wird
durch den im Hintergrund generierten Quelltext zur Laufzeit erfolgen und muss nicht imple-
mentiert werden.
Implementieren wird so zu einem Formalisierungsschritt, der den Entwurf mit CRC-Karten in
der UML-Notation präzisiert. Diese Möglichkeit führt zu einer Thematisierung wichtiger ob-
jektorientierter Grundkonzepte wie Klasse, Verantwortlichkeit und Beteiligte nicht nur in der
Anfangsphase auf CRC-Karten, sondern auch beim Klassendesign in UML und der Imple-
mentation in Fujaba. Die semantische Lücke zwischen Implementation und Design ist klein,
da die Implementation mit Aktivitätsdiagrammen und Story-Pattern auf eine Art erfolgt, wel-
che Klassen, Objekte und deren Beziehungen (sprich: Objektstrukturen) in den Mittelpunkt
der Aufmerksamkeit rückt. Dadurch werden diese Begriffe und Konzepte im Sinne kognitiver
Flexibilität (siehe oben S. 77) in verschiedenen Anwendungszusammenhängen und aus ver-
schiedenen Blickwinkeln wiederholt thematisiert.
Die Schülerinnen und Schüler lernen etwas über die generelle Vorgehensweise der Software-
entwicklung, über die Phasen Analyse, Design und Implementation. Die Unterrichtsmethodik
vermittelt eine Art didaktischen Softwareentwicklungsprozess, dessen Umrisse in Tabelle 24
beschrieben werden.

1. Analyse mit CRC-Karten
2. Design mit UML (und Story-Pattern)
3. Implementation der Fachlogik mit Story-Pattern (Fällt also mit dem Design zusammen)
4. Implementation der Benutzungsschnittstelle

Tabelle 24 Unterrichtsmethodische Vorgehensweise zur Erstellung von Programmen.

86

Das life3-Unterrichtskonzept

Die enge Verzahnung zwischen deklarativem und prozeduralem Wissen wird durch die si-
tuierte Einbettung in authentische Schritte der Softwareerstellung50 an vereinfachten
Beispielen erreicht.
Im Anfangsunterricht werden also verschiedene Kenntnisse zur Erstellung eines kleinen Pro-
gramms vermittelt: Notationen, Grundkonzepte, Vorgehensweisen, Werkzeuge und Beispiele,
an denen sich die Schülerinnen und Schüler orientieren können. Detailliertere Kenntnisse wie
syntaktische Elemente, Konzepte wie Parameterübergabe, etc. sind zugeordnetes Detailwis-
sen, das in der näheren Beschreibung der Lernsequenzierung weiter erläutert wird (siehe
Abschnitt 7.3). Dort wird auch ausführlich auf den Bereich Nutzerinteraktion und grafische
Oberflächen (Schritt 4 in Tabelle 24) eingegangen, der an dieser Stelle ausgeklammert wurde.
Bevor in den folgenden Abschnitten die sich hier andeutende Sequenzierung der Lernphasen
näher erläutert wird, werden zunächst, der Gliederung des Cognitive Apprenticeship folgend,
die Unterrichtsmethoden beschrieben.

7.2 Unterrichtsmethoden
In diesem Abschnitt werden die oben bereits in Ansätzen vorgestellten unterrichtsmethodi-
schen Zugänge (vgl. Abschnitt 5.3, ab S. 52) aus der lehr- und lerntheoretischen Perspektive
erläutert und präzisiert. Die zentrale Unterrichtsmethode des Cognitive Apprenticeship, das
Modelling, wird in Form des instruktionalen Lösungsbeispiels umgesetzt. Dieses Beispiel
wird ein CRC-Karten-Modell sein, das vorgestellt und von den Schülerinnen und Schülern
auf verschiedenen Ebenen erkundet wird: auf der Ebene der Analyse, des Klassendesigns und
als vorliegende Implementation (Abschnitt 7.2.1). Um die wesentlichen Aspekte der verschie-
denen Ebenen in den Vordergrund zu rücken, werden die Beispiele mit Hilfe der im
Unterricht eingesetzten Notationen und Entwicklungswerkzeuge jeweils aus einer bestimmten
Perspektive dargestellt, welche im Anfangsunterricht nicht notwendiges Detailwissen aus-
blendet. Das bedeutet in der Ausdrucksweise des Cognitive Apprenticeship, dass im
Unterricht die Werkzeuge als Scaffolds eingesetzt werden (Abschnitt 7.2.2).

7.2.1 Instruktionale Erklärungen: Modelling
Beck und Cunningham beschreiben die Möglichkeit, CRC-Karten-Modelle im Rollenspiel
mit den Lernenden zu erproben (aaO.). Bellin und Simone (1997) legen den Schwerpunkt des
Einsatzes von CRC-Karten auf die Softwareentwicklung im Team, wobei dem 'Rollenspiel'
eine entscheidende Bedeutung zukommt. Entweder wird ein Satz von CRC-Karten mit dem
Rollenspiel anhand vorher ausgearbeiteter Szenarios getestet, oder anhand der Szenarios wer-
den im Rollenspiel CRC-Karten handelnd entwickelt (aaO., S. 99).
Bergin (Bergin, o.J.) hat die Rollenspiele zur Idee des Objektspiels im Sinne eines in-
struktionalen Lösungsbeispiels weiterentwickelt. Der Anteil an instruktionaler Erklärung und
Selbsterklärung bleibt jedoch unklar. Zumindest einige Schülerinnen und Schüler, die die
Rolle von Objekten spielen, sind in jedem Fall aktiv beteiligt.

50 Authentisch ist hier im Sinne der lehr-lerntheoretischen Diskussion (siehe Kap. 6.1.3, S. 65) benutzt: Die In-
halte sollten 'realistisch' sein und so (bzw. auch) den Lernenden die Anknüpfung an ihre Alltagserfahrung er-
möglichen. Wann die wesentlichen Aspekte der Softwareentwicklung im Unterricht deutlich werden, sodass
die unterrichtliche Lernsituation als eine authentische bezeichnet werden kann, ist natürlich in gewissem
Grade abhängig davon, welche Aspekte der Softwareentwicklung als die wesentlichen angesehen werden.
Das in der Softwareentwicklung durchaus übliche Vorgehen mit CRC-Karten (siehe Kap. 5.2 ab S. 47) ist
ein Indiz für die Authentizität des hier beschriebenen Vorgehens.

87

Das life3-Unterrichtskonzept

Bergin weist dabei auf Aspekte hin, die die Auswahl des Beispiels betreffen, die hier über-
nommen und um einen vierten Punkt ergänzt werden (Tabelle 25).
1. Erstens sollte das im Objektspiel verwendete Beispiel unbedingt mehrere Klassen verwenden – eine Richt-

größe sind drei bis fünf Klassen.
2. Die Objekte müssen miteinander kooperieren.
3. Von mindestens einer Klasse müssen mehrere Objekte erzeugt werden.
4. Das Beispiel sollte die Kooperation der Objekte in Form dynamischer Objektstrukturen umsetzen (vgl. die

Diskussion um statische und dynamische Objektstrukturen oben in Abschnitt 5.3, S. 52ff.).

Tabelle 25 Kriterien für die Auswahl von Unterrichtsbeispielen, die für das Objektspiel geeignet sind.

Es wird eine weitere Veränderung vorgenommen: Da CRC-Karten und auch das Objektspiel
in der ursprünglichen Fassung die Unterscheidung zwischen Klassen und Objekten verwi-
schen, diese jedoch eine der Hürden beim Lernen von Objektorientierung darstellt, wird das
Objektspiel an dieser Stelle abgeändert. Dazu wird das Beispiel als CRC-Klassen-Modell für
alle sichtbar projiziert. Die am Objektspiel beteiligten Schülerinnen und Schüler erhalten Ob-
jekt-Karten: Die CRC-Karten selbst bleiben während des Spiels unverändert, auf den Objekt-
Karten wird jeweils der aktuelle Zustand des Objekts notiert. Der Lehrer verdeutlicht, dass
zunächst eine 'Objektstruktur' aufgebaut wird. Die Schülerinnen und Schüler werden dazu
aufgefordert, vor Beginn des Objektspiels auf ihren Objekt-Karten den initialen Zustand zu
notieren: Was sie über sich wissen (etwa: meine Feldnummer), mit wem sie kooperieren kön-
nen (etwa: mein nächstesFeld ist Michael). Die dazu notwendigen Informationen erhalten die
Schülerinnen und Schüler durch den Lehrer. Während des Spiels achten Lehrer und die Mit-
schüler jeweils darauf, dass die 'Objekte' nur das tun, was nach den CRC-Karten und dem
Zustand (auf den Objekt-Karten) erlaubt ist. Das Spiel wird zunächst nur mit den ggf. not-
wendigen Korrekturen durchgeführt. Anschließend werden die Konzepte und Begriffe
zusammenfassend gesammelt und an der Tafel gesichert. Ergebnis des Objektspiels im Sinne
eines instruktionalen Lösungsbeispiels ist die Einführung und Vertiefung wesentlicher Begrif-
fe (Klasse, Objekt, Beziehung, Objektstruktur, Zustand), der CRC-Karten-Notation, der
Funktionsweise eines objektorientierten Programms sowie einer Methodik zum Testen von
CRC-Modellen. Insbesondere wird der Unterschied zwischen den Konzepten Klasse und Ob-
jekt für die Schülerinnen und Schüler handelnd erfahrbar, und die Konzepte werden situativ
eingebettet in Tätigkeiten, die die Schülerinnen und Schüler später selbst durchführen, wenn
sie mit dem Objektspiel ihre eigene Modellierung prüfen. Zudem soll so der Einwand gegen
das Cognitive Apprenticeship entkräftet werden, nach dem die Präsentation instruktionaler
Beispiele zu eintönig-langweiligem Unterricht führen müsse (Peterßen 2001, S. 55, vgl. auch
Abschnitt 6.4.1). Durch diese zeitliche Einbettung des Objektspiels nach dem Erkunden des
Problembereichs sollen die Schülerinnen und Schüler auch unterstützt werden, sich ganz auf
die objektorientierte 'Mechanik' des Programmablaufs konzentrieren zu können (kognitive
Entlastung, Aufmerksamkeitsfokussierung). Zudem können sie auf diese Weise eher eigene
Mutmaßungen anstellen, sodass das Lösungsbeispiel nicht komplett durch den Lehrer vorge-
geben werden muss.
Anhand der Unterrichtsmethode des instruktionalen Lösungsbeispiels sollen an weiteren Stel-
len des Unterrichts Lehr- und Lernprozesse organisiert werden:
1. Sie erkunden das laufende Programm mit einem grafischen Debugger.
2. Sie erkunden das Klassendiagramm und die Implementation einiger Methoden.
3. Die lernen das Konzept GUI kennen.
4. Sie lernen Ereignisbehandlung kennen.

88

Das life3-Unterrichtskonzept

7.2.2 Scaffolding mit Entwicklungswerkzeugen
Collins, Brown und Newman (1989) zitieren ein Beispiel für den Einsatz von Scaffolds: In
der Schneiderlehre bekamen die Lehrlinge direkt nach einem kurzen Einführungskurs im Um-
gang mit Schere, Nadel und Faden die Aufgabe, eine Jacke fertig zu stellen. Als Scaffolds
dienten vorgefertigte Einzelteile, z.B. Kragen und Taschen. Danach lernten sie, die einzelnen
Teile anzufertigen. Da sie dann aber schon wussten, wie etwa ein Kragen eingenäht wird,
konnten sie die Details der Herstellung des Kragens besser verstehen und einordnen. Scaf-
folds, die Hilfsgerüste, sollen also den Schülerinnen und Schülern bereits im
Anfangsunterricht die Möglichkeit geben, Zusammenhänge selbst zu erfahren und selbst sinn-
volle, authentische Aufgaben bearbeiten zu können. Sie dienen der
Aufmerksamkeitsfokussierung auf die wichtigen Bereiche und der kognitiven Entlastung.
Beispiele für Scaffolds sind Hilfestellungen zur Aufgabenbearbeitung, vorgefertigte Teillö-
sungen und Visualisierungen.
Bei genauerem Hinsehen wurden bereits einige Scaffolds vorgestellt51: CRC-Karten erlauben
es den Anfängern, direkt in das objektorientierte Design 'einzutauchen', ohne vorher Syntax,
Programmiersprache und Implementationsdetails kennen lernen zu müssen. Ebenso kann die
UML, verbunden mit automatischer Codegenerierung, als Scaffold eingesetzt werden.
Fujaba, das aus UML lauffähigen Code generiert und zusammen mit dem grafischen Debug-
ger Dobs die Ausführung des Codes erlaubt, realisiert ein zusätzliches Scaffold für die Ein-
und Ausgabe. Damit kann auf eine grafische Oberfläche zunächst verzichtet werden, um die
Aufmerksamkeit ganz auf die Erstellung und Implementation des Modells (der Fachlogik)
richten zu können: Die Schülerinnen und Schüler lassen ihre Modelle im Debugger laufen
und brauchen so keine zusätzlichen Ein-Ausgabefunktionen zu realisieren. Erst später lernen
sie, wie man eine grafische Oberfläche und Ereignisbehandlung hinzufügt.
Die weiteren Methoden des Cognitive Apprenticeship werden an unterschiedlichen Stellen
der Lernumgebung ebenfalls eingesetzt: Bei der Arbeit am Rechner unterstützt der Lehrer als
Coach. Das generelle Fading wird durch die Lernsequenz realisiert; explorative Phasen kom-
men immer wieder vor, insbesondere in einer kleinen Projektphase, ebenso Artikulation und
Reflexion. An der Lernsequenz, die nun beschrieben wird, wird der Einsatz der Methoden
und ihre Verankerung im life3-Unterrichtskonzept deutlich.

7.3 Das life3-Phasenmodell
Die Lernsequenz wird als ein dreistufiges Phasenmodell (das life3-Phasenmodell) aufgebaut,
mit jeweils unterschiedlichen Lehrerrollen. Daraus ergibt sich eine etwas strikte Umsetzung
des Prinzips des Fadings, das eigentlich aufgrund der situativen Bedingungen eher fließend
und nicht schrittweise erfolgen sollte. Gleichwohl scheint die Phasenstruktur notwendig, um
eine Veränderung des Unterrichts von der initialen Konzentration auf die Einführung von
Konzepten durch den Lehrer (dem erklärenden Vormachen) hin zu stärker selbstständigen
Lernprozessen zumindest ansatzweise zu erreichen, denn der Einsatz von Scaffolds scheint
schwierig zu sein (Duit 2000, S. 84), bestimmte Unterrichtsmuster dominieren (vgl. Abschnitt
6.2.1) und somit ist die Balance zwischen Instruktion und Konstruktion schwierig zu halten
(vgl. Gruber, Mandl und Renkl, 2000).

51 Auch in den oben vorgestellten Praxiskonzepten werden eine Reihe von Scaffolds eingesetzt: etwa eine ver-
einfachte Klassenbibliothek, die das Erstellen von Programmen erleichtern soll (Abschnitt 3.4, ab S. 22) oder
die Verwendung von Entwicklungswerkzeugen mit Formulardesignern (Abschnitt 3.3 ab S. 18).

89

Das life3-Unterrichtskonzept

Die Lernsequenzierung soll dazu führen, dass beginnend bei einem einführenden Überblick
schrittweise immer mehr Details vermittelt werden (vgl. das oben beschriebene Beispiel aus
der Schneiderlehre).

Abbildung 26 Die Lernsequenz als Top-Down-Vorgehensweise: Beginnend mit dem Gesamtüberblick (dem
ganzen Baum) werden danach schrittweise wesentliche Details wie Blätter und Stamm vertiefend behandelt.

In jeder der drei Phasen soll ein Softwarebeispiel im Mittelpunkt des Unterrichts stehen. In
der ersten Phase wird eine Implementation von den Schülerinnen und Schülern nachvollzo-
gen, in der dritten Phase schließlich sollen die Schülerinnen und Schüler möglichst
selbstständig ein Programm entwickeln.
Das life3-Phasenmodell soll die folgenden Prinzipien des Cognitive Apprenticeship umsetzen:
ansteigende Komplexität, ansteigende Vielfalt, globale Kenntnisse und Fähigkeiten vor loka-
len (vgl. Abschnitt 6.4.1, dort Tabelle 22).
Vor dem Hintergrund des Cognitive Apprenticeship und den obigen Ausführungen zu unter-
richtsmethodischen Zugängen (vgl. Abschnitt 5.3) können nun Kriterien zur Auswahl von
geeigneten Projekten im Anfangsunterricht nach dem life3-Phasenmodell entwickelt werden.
Ein wesentlicher Aspekt ist die gewünschte Betonung von Objektstrukturen (vgl. Abschnitt
5.3) im Unterricht, die dazu führt, dass anstelle isolierter Details zunächst ein Überblick über
die Objektorientierung vermittelt wird. Dazu werden die Werkzeuge Fujaba und Dobs, aber
auch die unterrichtsmethodischen Zugänge wie das Objektspiel als Scaffolds eingesetzt. Die
mit dieser Unterstützung im Unterricht zu behandelnden Projekte sollten daher dynamische
Objektstrukturen auf eine einfache Weise benutzen, sodass die Schülerinnen und Schüler die-
sen Aspekt in den Mittelpunkt ihrer Aufmerksamkeit stellen können. Durch die folgenden
Kriterien soll dieses gewährleistet werden:
1. Insbesondere im ersten Projekt sollten grundlegende Konzepte der Objektorientierung im

Vordergrund stehen. Dazu sollten ggf. Implementierungsdetails in Form von 'Bibliotheks-
objekten' eingebunden werden. Sinnvoll wäre, diese in den folgenden Projekten dann
ebenfalls zu nutzen. In der empirischen Evaluation etwa wurde ein Zufallszahlengenerator
benutzt.

2. In den einzelnen Projekten – insbesondere im ersten – sollte die Implementation mit Hilfe
dynamischer Objektstrukturen direkt aus der Modellierung ableitbar sein.

3. Der dem Projekt zugrunde liegende Problembereich sollte den Schülerinnen und Schülern
bekannt bzw. leicht durchschaubar sein.

4. Die Projekte sollten in Komplexität und Umfang ansteigen – je nach Lerngruppe und Lern-
zuwachs (ansteigende Komplexität).

90

Das life3-Unterrichtskonzept

5. Jedes Projekt soll ein in sich sinnvolles und benutzbares Programm zum Inhalt haben (Si-
tuierung).

6. Um die Aufmerksamkeit der Schülerinnen und Schüler auf dynamische Objektstrukturen
zu konzentrieren, sollten die Projekte sinnvolle Funktionalität mit Hilfe dynamischer Ob-
jektbeziehungen implementieren. Dazu sollte das Projekt so umfangreich sein, dass eine
Trennung von Fachlogik und Oberfläche erkennbar ist und sinnvoll erscheint. Dann kann
zunächst Dobs als Scaffold für die Oberfläche eingesetzt werden. Mit der Logikschicht
wird gleichzeitig die Idee dynamischer Objektstrukturen in den Mittelpunkt gerückt. Spä-
ter kann das Projekt um eine eigene grafische Oberfläche ergänzt werden (ansteigende
Komplexität, Aufmerksamkeitsfokussierung).

7. Die Logikschicht des Projekts sollte den Kriterien für das Objektspiel (siehe Abschnitt
7.2.1) genügen – insbesondere gilt das natürlich für das Projekt in Phase 1.

8. Sinnvoll erscheint, die drei Projekte aus verwandten Problembereichen zu wählen, um die
Vielfalt von Lösungsmöglichkeiten und unterschiedliche Verwendungsarten von Konzep-
ten und Sprachmitteln zu demonstrieren.

9. Die Projekte sollten auf eher offenen Aufgabenstellungen beruhen (gilt insbesondere für
das dritte Projekt), um eine Reflexion über die Angemessenheit der vorliegenden Lösung
anzuregen.

Insgesamt sieht das resultierende Phasenmodell wie folgt aus (Tabelle 27):
Phase 1 Phase 2 Phase 3

Inhalt Einstieg mit einem Lösungs-
beispiel; nur Fachlogik, keine
GUI

durch die Lehrperson unter-
stützte Entwicklung eines
kleinen Programms

Entwicklung eines Programms
in (parallel arbeitenden)
Kleingruppen

Ziel Brücke zum Vorwissen,
grundlegende Begriffe, grund-
legendes Verständnis

Anwendung, Vertiefung, Ver-
vollständigung: GUI

Integration, Vertiefung, Re-
flexion

Methodik siehe oben: Objektspiel, De-
bugger, ...

angeleitetes Projekt, Lösungs-
beispiel für GUI

Projekt mit offener Aufga-
benstellung, Gruppenarbeit,
Plenumsphasen zur Diskussi-
on von Alternativen

 Schwerpunkt
nach CA

Instruktion und geleitete Er-
kundung

Coaching, Fading selbstständige Konstruktion

Tabelle 27 Das life3-Phasenmodell

Um die Phasen deutlich zu trennen und um jeweils eine authentische Situierung zu erreichen,
wird in jeder der drei Phasen ein eigenes 'Softwareprojekt' thematisiert. Das sind im wesentli-
chen drei objektorientierte Programme die instruktiv vorgestellt, erkundet, gemeinsam
entwickelt oder von den Schülerinnen und Schülern konstruiert werden. Die einzelnen Projek-
te sollten vom Lehrer anhand der Interessen und des Vorwissens in der Lerngruppe
ausgewählt werden. In der empirischen Evaluation beispielsweise wurden als Projekte kleine
Brettspiele gewählt.
Nun zu den drei Phasen im Einzelnen.

7.3.1 Phase 1
In der ersten Phase, dem eigentlichen Einstieg in den Informatikunterricht, gilt es zunächst
eine Brücke vom Vorwissen zu den zu lernenden Inhalten der objektorientierten Softwareent-
wicklung aufzubauen.

91

Das life3-Unterrichtskonzept

Schritt 1 Schritt 2 Schritt 3
Inhalt Problembereich objektorien-

tiert mit CRC-Karten
darstellen

Ausführung der Implementati-
on in Dobs erkunden

Implementation im Klassen-
diagramm und
Aktivitätsdiagramm

Ziel Einführung, Grundbegriffe,
Notation

Präzisierung und Formalisie-
rung der Grundbegriffe,
Notation

weitere Formalisierung

Methodik Objektspiel Erkunden in Dobs Erkunden in Fujaba, Übungs-
aufgaben

 Schwerpunkt
nach CA

Instruktionales Lösungsbei-
spiel

Instruktionales Lösungsbei-
spiel, Exploration

Instruktionales Lösungsbei-
spiel, Exploration

Tabelle 28 Überblick über die drei Schritte der ersten Phase.

Die Aktualisierung des Vorwissens geschieht durch die spielerische Erkundung des Pro-
blembereichs, der den Schülerinnen und Schülern prinzipiell vertraut sein sollte. Durch diesen
einführenden Schritt können sie sich in den folgenden Schritten auf die objektorientierte Mo-
dellierung des Problembereichs konzentrieren. Dazu führt der Lehrer kurz und sehr informal
in die objektorientierte Weltsicht ein.
Anschließend wird das Objektspiel durchgeführt, um die prinzipielle Funktionsweise eines
objektorientierten Programms zu verdeutlichen: Zunächst wird eine Objektstruktur aufge-
baut52, dann wird ein einzelnes Objekt aufgefordert, etwas zu tun. Um die Anfrage abarbeiten
zu können wird das Objekt mit anderen Objekten kooperieren. Anschließend bekommt der
Auftraggeber (sei es ein anderes Objekt oder der externe menschliche Benutzer [hier: Der
Lehrer]) eine Rückmeldung.
Ein wichtiges Lernziel ist es, zu erkennen, dass Objekte stets nach den in der Klasse festge-
haltenen Regeln operieren, die konkrete Ausführung aber vom jeweiligen Zustand (des
Objekts und der gesamten Objektstruktur) abhängt.
In der Auswertung des Objektspiels wird diese Mechanik nochmals bewusst gemacht und die
einzelnen Konzepte und Begriffe gesammelt. Einige davon wird man in der Unterrichtspraxis
daher eventuell vor dem Objektspiel einführen:
1. CRC-Karten, Klasse, Verantwortlichkeit, Beteiligt,
2. zwei verschiedene Verantwortlichkeits-Arten: Wissen und Können,
3. Objektspiel, Objekte, Zustand, Aufforderung/Anforderung ('Methodenaufruf'),
4. das Ablaufverhalten: Methodenaufrufe ändern das, was sich einzelne Objekte merken (ih-

ren Zustand) und die Beziehungen zwischen Objekten (die Objektstruktur).
Im Objektspiel werden Begriffe und Konzepte situiert in ihrer Anwendung erlernt (zum Be-
griffslernen siehe Abschnitt 6.1.3). Es kann sinnvoll sein, das Objektspiel zu wiederholen. In
der Wiederholung könnte ggf. auch ein abgeändertes Modell durchgespielt werden.
Auf dieser Basis wird nun im zweiten Schritt das Verhalten des implementierten Logik-Mo-
dells mit Hilfe eines grafischen Debuggers (z.B. in Partnerarbeit) erkundet. Damit wird
• das generelle Ablaufverhalten aus einer leicht anderen Perspektive erneut erkundet,
• ein weiterer Formalisierungsschritt vollzogen und die damit verbundenen Konzepte und

Notationen kennen gelernt,
• ein weiteres wichtiges Werkzeug und dessen Benutzung eingeführt und

52 Objektwelt, Objektnetz, Objektgraph ...

92

Das life3-Unterrichtskonzept

• der Beweis für die Übertragbarkeit des Objektspiels auf eine 'richtige' Implementation er-
bracht.

Die Schülerinnen und Schüler lernen Methodenaufrufe mit und ohne Parameter kennen, Set-
ter und Getter, Objektdiagramme mit Objektbeziehungen, Attributwerten und Methoden und
sie üben das Testen der Implementation. Zusammen mit dem Objektspiel vermittelt dieser
Schritt ein grundlegendes Verständnis für den Ablauf eines objektorientierten Programms. Im
Sinne des Cognitive Apprenticeship dient das der Vermittlung von Überblickswissen, bzw.
globaler Kenntnisse vor lokalen (vgl. Tabelle 22, S. 79).
Im dritten Schritt der ersten Phase wird dann die Implementation anhand von UML-Diagram-
men untersucht: das Klassendiagramm als Transformation des CRC-Karten-Modells,
Attribute als Transformation der Verantwortlichkeiten des Bereichs 'Wissen' und die Aktivi-
tätsdiagramme als Repräsentation der Verantwortlichkeiten des Bereichs 'Können' und als
grafische Implementation von Methoden. Die Schülerinnen und Schüler lernen die UML-No-
tation für Klassen, Beziehungen und Methoden kennen. Spätestens hier werden einfache
Datentypen eingeführt, zusammen mit Sprachkonstrukten wie Zuweisungen, Verzweigungen,
Schleifen und Parametern. An der Art der Einführung der Aktivitätsdiagramme zeigt sich
wieder das durchgängige Prinzip der Situierung sehr deutlich: Deklaratives bzw. begriffliches
Wissen über Konzepte wird im Zusammenhang mit authentischen Verwendungsbeispielen
eingeführt.
Anhand kleinerer Änderungen am vorliegenden Lösungsbeispiel kann und sollte dann bereits
in der ersten Phase (bzw. im Übergang zur zweiten Phase) die Bedienung der Werkzeuge ein-
geübt sowie die Kenntnis der Begriffe und Konzepte vertieft werden (in der zweiten Phase
wird das nochmals eingehender getan).
Insgesamt ist die erste Phase des life3-Phasenmodells eine fachspezifische Umsetzung der Un-
terrichtsmethode der instruktionalen Erklärung, bzw. des erklärenden Vormachens, wie es im
Cognitive Apprenticeship genannt wird. Allerdings lernen die Schülerinnen und Schüler das
einführende Beispiel nicht in Form eines Lehrervortrags, sondern in Form verschiedener Er-
kundungen kennen, bei denen sie sich selbst aktiv beteiligen können: Das CRC-Karten-
Modell wird als Objektspiel von einer Schülergruppe vorgeführt, die Funktionsweise der Im-
plementation wird in Dobs in Kleingruppen erkundet. Der Kern des unterrichtsmethodischen
Vorschlags bleibt jedoch derselbe: Die Anfänger sollen zunächst an einem einfachen Beispiel
die wesentlichen Grundkenntnisse, Begrifflichkeiten und Vorgehensweisen im Zusammen-
hang präsentiert bekommen53.

7.3.2 Phase 2
Nach dieser Phase sollen nach dem Cognitive Apprenticeship die Schülerinnen und Schüler
ihre Kenntnisse anwenden, vertiefen und erweitern, wobei sich die Lehrperson ein wenig aus
ihrer zentralen Rolle zurückzieht54. Sie soll in dieser Phase die eigenständige Anwendung des
Erlernten unterstützen (Coaching) und sich im Laufe des Unterrichts langsam weiter aus der

53 Wenn man sich in diesem Zusammenhang die im Cognitive Apprenticeship vorgeschlagenen Unterrichtsme-
thoden ansieht (vgl. Tabelle 22, S. 79), dann kann man alternativ die Phase 1 auch als eine Kombination der
Lehr-Methoden Modelling und Exploration auffassen . Wobei in Phase 1 im Anschluss an explorative Schü-
lertätigkeiten immer im Unterrichtsgespräch unter recht starker Lenkung der Lehrperson die Fachbegrifflich-
keiten herausgearbeitet werden sollen, da hier eine gemeinsame (auch begriffliche) Basis für den weiteren
Unterricht geschaffen werden soll.

54 Diese zentrale Rolle ist durch die explorativen Anteile in der ersten Phase nicht so dominant wie mögli-
cherweise in einigen der oben vorgestellten Praxiskonzepte.

93

Das life3-Unterrichtskonzept

instruktionalen Rolle zurückziehen (Fading). Das bedeutet andererseits, dass die Schülerinnen
und Schüler allmählich selbstständig Aufgaben bearbeiten sollen.

Schritt 1 Schritt 2 Schritt 3
Inhalt Schritte der Softwareentwick-

lung erproben
Einführung der GUI Einführung der Ereignisbe-

handlung
Ziel Vorgehensweise einüben Klassenbibliothek anwenden

können
Ereignisbehandlung anwen-
den können

Methodik angeleitetes Projekt (ohne
GUI)

Einführung an einfachem Bei-
spiel, Übertragen auf das
Projekt

Einführung an einfachem Bei-
spiel, Übertragen auf das
Projekt

 Schwerpunkt
nach CA

Coaching, Articulation, Re-
flection

Instruktionales Lösungsbei-
spiel

Instruktionales Lösungsbei-
spiel

Tabelle 29 Überblick über die drei Schritte der zweiten Phase.

Thematisch steht in dieser Phase der Softwareentwicklungsprozess (der bislang implizit in
Phase 1 behandelt wurde) in Form einiger wesentlicher Stationen nun im Zentrum des Unter-
richts. Dazu wird die Konstruktion erweitert, sodass am Ende dieser Phase ein Programm mit
grafischer Benutzungsschnittstelle entsteht.
An einem neuen Beispiel führen die Schülerinnen und Schüler, unterstützt und geleitet durch
den Lehrer, den gesamten Entwicklungsprozess durch. Dabei wird nach der Fertigstellung der
Fachlogik anhand eines kleinen instruktionalen Lösungsbeispiels durch den Lehrer die Erstel-
lung der grafischen Oberfläche und die Realisierung der Ereignisbehandlung eingeführt und
anschließend von den Schülerinnen und Schülern auf ihr eigenes Projekt übertragen.
Im ersten Schritt dieser Phase können die Schülerinnen und Schüler anhand ihrer Kenntnisse
aus der ersten Phase die einzelnen Abschnitte der Softwareentwicklung zusammenstellen. Da-
raus wird dann ein Modell des Softwareentwicklungsprozesses abgeleitet, das nun im
Unterricht anhand eines neuen Projektes durchgeführt wird. Im evaluierten Unterricht bei-
spielsweise wurde ein weiteres Spiel entwickelt, dessen genaue Spielregeln die Schülerinnen
und Schüler sich selbst überlegt haben. Dieses Spiel nannte sich Schatzsuche.
Die Schülerinnen und Schüler erstellen nun selbst ein CRC-Karten-Modell, testen es mit dem
Objektspiel, überführen es ins Klassendiagramm, erstellen die einzelnen Methoden und pro-
bieren es im Debugger aus. Dabei steht als Lernziel das Anwenden der Kenntnisse aus der
ersten Phase, die dabei vertieft werden. Vor allem lernen die Schüler, wie die einzelnen Mo-
delle entstehen und ineinander überführt werden können (CRC-Karten ins Klassendiagramm,
einzelne Verantwortlichkeiten in Aktivitätsdiagramme). Dabei werden auftretende Fragen,
etwa zur Bedeutung einzelner Konzepte geklärt und viele bereits bekannte Inhalte nochmals
wiederholt. In diesem ersten Schritt der zweiten Phase werden zudem erste Kriterien für ein
gelungenes Modell und mögliche unterschiedliche Realisierungen angesprochen.
Im zweiten Schritt der Phase 2 wird durch den Lehrer mit Hilfe einer vereinfachten Biblio-
thek (als Scaffold, siehe Abbildung 30) der Aufbau grafischer Oberflächen eingeführt, um das
Projekt entsprechend erweitern zu können. Die Einführung der grafischen Bibliothek wird da-
mit eingebettet in den Prozess der Erstellung des Projekts durch die Schülerinnen und
Schüler. Die zeitliche Einordnung in der Lernsequenz spiegelt die intendierte Einordnung im
didaktischen Softwareentwicklungsprozess wieder und erfolgt nach der Erstellung der Fachlo-
gik.

94

Das life3-Unterrichtskonzept

Abbildung 30 Klassendiagramm der Klassenbibliothek FGrafik.

Für die Umsetzung der instruktionalen Erklärung bietet es sich an, dass die Lehrperson prä-
sentiert, wie in Dobs mit Hilfe der Bibliothek FGrafik eine grafische Oberfläche erstellt
werden kann. Dazu werden nacheinander die entsprechenden Objekte erzeugt und verbunden
(siehe Abbildung 31).
Schritte Lehrperson zeigt Ergebnis in Dobs Ergebnis der Oberfläche

1 Neues Objekt aus der Klasse Fens-
ter

f1:Fenster Ein (leeres) Fenster erscheint

2 Neues Objekt aus der Klasse Ausga-
befeld

a2:Ausgabefeld -

3 a2.setText(„hallo“) - -
4 a2.setFenster(f1) Linie zwischen f1 und

a2
Auf dem Fenster erscheint: hal-
lo

5 Neues Objekt aus der Klasse Fens-
ter

f3:Fenster Ein zweites Fenster erscheint

6 a2.setFenster(f3) Linie zwischen f3 und
a2

Nun steht hallo auf dem zwei-
ten Fenster

Abbildung 31 Interaktives Erstellen einer grafischen Oberfläche mit Hilfe der FGrafik und Dobs: In
verschiedenen Schritten (Spalte 'Schritte' und 'Lehrperson zeigt') werden in Dobs Objekte erzeugt (Spalte
Dobs) und am Bildschirm angezeigt (rechte Spalte).

95

Das life3-Unterrichtskonzept

Aus dem Beispiel können die Schülerinnen und Schüler auf die Klassenstruktur und auf eini-
ge der Verantwortlichkeiten der einzelnen Klassen schließen. Anhand des Klassendiagramms
der Bibliothek können diese Annahmen dann überprüft werden. Aus der Benutzung in Dobs
sollte auch klar werden, dass die Klassen der Bibliothek bereits in übersetzter Form vorliegen.
Wichtigstes Lernziel dieses Schritts ist die Idee der Klassen-Bibliothek: das Wiederverwen-
den bereits programmierter Klassen in einem neuen Projekt.
Wie das Wiederverwenden funktioniert, kann anhand des Projekts aus der ersten Phase (in
Form des instruktionalen Lösungsbeispiels) vom Lehrer demonstriert werden. Analog zum
Vorgehen aus der ersten Phase können die Schülerinnen und Schüler sich dabei besonders auf
die Anwendung konzentrieren, da das grundsätzliche Gerüst bekannt ist. Nebenbei wird eben-
falls die Werkzeugunterstützung (und Bedienung) eingeführt. Sind das Konzept und die
grundsätzliche Anwendung der Klassen-Bibliothek zur Erweiterung eines vorliegenden Pro-
jektes eingeführt, bereitet den Schülerinnen und Schülern die Umsetzung im aktuellen Projekt
keine Schwierigkeiten mehr.
Thema des dritten Schrittes ist die Ereignisbehandlung, damit die Schülerinnen und Schüler
die Oberfläche nun auch in eigenen Programmen nutzen können. Grundlage der FGrafik ist
das Java-Modell der Ereignisbehandlung, nach dem Ereignisquellen Ereignisse auslösen und
an angemeldete Ereignisempfänger weiterleiten. Mit diesem Schema ist eine weitgehende
Entkoppelung des Codes für das Fachmodell (die Logik) und für die grafische Oberfläche
möglich. Dazu allerdings müssen Objekte, die auf Ereignisse reagieren sollen, das ent-
sprechende Interface implementiert haben und sich bei der jeweiligen Ereignisquelle
registrieren (siehe das Beispiel in Abbildung 32).

Abbildung 32 Beispiel für die Verwendung der Ereignisbehandlung mit FGrafik: Die Klasse Klickzähler
implementiert die Methode klick des Interface KlickHorcher und kann damit auf Mausereignisse
reagieren (linke Seite das Klassendiagramm). In der create()-Methode wird der KlickHorcher mit Hilfe
der Assoziation horcher mit einem Knopf verbunden (oben rechts). Ergebnis ist ein kleines Fenster (unten
rechts), das mitzählt, wie oft der Knopf angeklickt wird. (Eine ausführlichere Erklärung dieses Beispiels findet
man unter www.life.uni-paderborn.de.)

Die unterrichtliche Einführung der Ereignisbehandlung kann an einem Beispiel wie in der
Abbildung 32 eingeführt werden. Im evaluierten Unterricht wurde als Beispiel eine per Maus-
klick steuerbare Ampel gewählt. Die Einführung steht aus der Schülerperspektive unter
folgender Fragestellung: Da sie die Bibliothek als eine eigene, sozusagen in sich geschlossene
Klassenstruktur kennen gelernt haben, stellt sich die Frage, wie man daraus nicht nur eine
grafische Darstellung herstellen, sondern diese mit der Objektstruktur des eigenen Programms

96

Das life3-Unterrichtskonzept

verknüpfen kann? Beantwortet wird diese Frage für die Schülerinnen und Schüler in zwei
Schritten. Zunächst fügen sie die Bestandteile der Oberfläche ihrem Projekt hinzu, etwa in
obigen Beispiel ein Fenster und einen Knopf. Dann implementieren sie einen Klick-
Horcher und melden diesen bei einer Ereignisquelle (hier dem Knopf) an. Dieses Schema
wird vom Lehrer an einem Beispiel vorgeführt, anschließend von den Schülerinnen und
Schülern geübt und schließlich auf ihr eigenes Projekt übertragen. Man erkennt hier im Klei-
nen das Unterrichtsmuster des Cognitive Apprenticeship wieder: instruktionales
Lösungsbeispiel, Übungsphase und selbstständige Anwendung.

7.3.3 Phase 3
In der dritten und letzten Phase des life3-Phasenmodells sollen nach dem Cognitive Apprenti-
ceship die „Lernenden verschiedene Hypothesen verfolgen und eigene Lösungsstrategien
ausprobieren“ (Seel, 2000, S. 364). D.h., dass sich die Lehrperson noch weiter aus der Len-
kung und Leitung der Schüleraktivitäten zurückzieht und hauptsächlich eine im Bedarfsfall
zur Verfügung stehende Beratung anbietet. Diese Phase wird daher projektorientiert durchge-
führt55.
In dieser Phase erstellen die Schülerinnen und Schüler in Gruppenarbeit ein eigenes Pro-
gramm und durchlaufen dabei möglichst eigenständig den gesamten Entwicklungsprozess.
Zum einen müssen sie das bisher erworbene Wissen in dieser Phase nun anwenden, mögliche
Wissenslücken schließen, ihre Kenntnisse dabei auf ein neues Projekt übertragen und zum an-
dern müssen sie den Prozess der Herstellung zusammen mit den Mitschülern in der Gruppe
selbst steuern und kontrollieren. Um diese Steuerung zu erleichtern, werden vom Lehrer re-
gelmäßige Statusberichte im Plenum angefordert, sodass die einzelnen Gruppen
Rückmeldung und Anregungen durch die anderen Gruppen erhalten können. Es werden hier
vor allem die im Ansatz der Cognitive Apprenticeship geforderten Reflexions- und Arti-
kulationsprozesse der Schülerinnen und Schüler angeregt und gefordert. Hier sollte sich
positiv bemerkbar machen, dass die Schülerinnen und Schüler bereits von Anfang an gelernt
haben, etwa mit Hilfe des Objektspiels, Programmabläufe und Modellierungsideen zu veran-
schaulichen und zu verbalisieren (vgl. die kritischen Bemerkungen zu Artikulation und
Reflexion gegen Ende des Abschnitts 6.4.1).
In dieser Phase wird generell die Einsicht in den Entwicklungsprozess im Sinne des sozio-
technischen Ansatzes gefördert, sodass diese Phase Grundlage für eine anschließende
Unterrichtseinheit zur Dekonstruktion bilden kann.

7.4 Soziale Bedingungen
In diesem Abschnitt soll noch einmal zusammenfassend auf den vierten der im Cognitive Ap-
prenticeship genannten wesentlichen Bereiche für ideale Lernumgebungen eingegangen
werden, den Bereich der sozialen Bedingungen mit den Aspekten Situiertheit, Expertenpraxis,
intrinsische Motivation, Kooperation und Wettbewerb der Lernenden (vgl. Abschnitt 6.4.1,
u.a. Tabelle 22). Obwohl einzelne dieser Aspekte in der obigen Vorstellung des life3-Phasen-
modells angesprochen wurden, soll hier noch einmal verdeutlicht werden, wie dieser Bereich
des Cognitive Apprenticeship im Unterrichtskonzept berücksichtigt worden ist.

55 In der Begrifflichkeit des Cognitive Apprenticeship würde man eher von der Unterrichtsmethode der Explo-
ration sprechen. Darauf bezieht sich auch das Zitat von Seel. Aus der fachdidaktischen Perspektive wird in
dieser Phase ein Unterrichtsprojekt durchgeführt, und zwar die eigenständige Entwicklung eines Programms
in mehreren Schülergruppen.

97

Das life3-Unterrichtskonzept

Durch eine Orientierung jeder der drei Phasen an jeweils einem lauffähigen Programm, das
mittels Debugger benutzbar ist, werden die einzelnen Inhalte situiert. Die Reihenfolge der In-
halte und die gewählten Unterrichtsmethoden führen dazu, dass ihre Vermittlung an der
Expertenpraxis ausgerichtet erfolgt. So werden beispielsweise in der ersten Phase Konzepte
anhand von Methoden eingeführt, die in der zweiten Phase als Schritte der Softwareentwick-
lung identifiziert werden. Die beiden nach dem Cognitive Apprenticeship zu beachtenden
sozialen Bedingungen der Situierung und Orientierung an Expertenpraxis im Sinne der Ein-
führung in eine 'community of expert practice' werden insofern durch die Einbettung in
Phasen der Softwareentwicklung unterstützt. Festzuhalten bleibt jedoch, dass diese Praxis der
Softwareentwicklung nicht im Sinne einer 'industriellen objektorientierten Softwareentwick-
lungspraxis im Kleinen für 'Informatiker im Westentaschenformat56' zu verstehen ist.
Stattdessen fordern die Prinzipien Situierung und Expertenpraxis die Beachtung des bereichs-
spezifischen Anwendens der Inhalte: Anhand von Situationen, die den Schülerinnen und
Schülern zugänglich sind, werden die Inhalte so ähnlich vielfältig benutzt, wie ein Experte
das tun würde. Diese Situierung soll vor allem Sinn und Zweck objektorientierten Modellie-
rens verdeutlichen. Das bedeutet hier vor allem, Objekte in den verschiedenen Phasen der
Softwareentwicklung zu benutzen: zur ersten Erfassung des Problembereichs mit CRC-Karten
und dem Objektspiel, im Klassen- und Aktivitätsdiagramm und als instantiierte Objekte im
Debugger. Dadurch wird ein umfassenderes und tieferes Verständnis der Objektorientierung
angestrebt, als es durch die isolierte oder isolierende Betrachtung einzelner Phasen möglich
ist, etwa der Design-Phase nach einer auf den informationszentrierten Ansatz zugespitzten
Konzeption, oder der Implementation nach dem Konzept der Stifte und Mäuse. Konzepte
werden im Kontext ihrer konkreten Anwendung vermittelt und durch den Wechsel von An-
wendungssituationen (drei Phasen, drei Projekte) soll das die einzelnen Situationen
übergreifende verallgemeinerte Verständnis vermittelt werden. Dieses ist – im Gegensatz zu
einem naiven Verständnis des Cognitive Apprenticeship als Nachahmung industrieller Praxis
im Schulunterricht – mit Situierung und Expertenpraxis gemeint (siehe Collins, Brown und
Holum 1991).
Die Bedingung intrinsische Motivation zielt darauf, eine Lernumgebung zu schaffen, in der
die Schülerinnen und Schüler nicht vorrangig wegen der Aussicht auf gute Noten, der Ver-
meidung von Strafen oder der Aussicht auf ein Lob des Lehrers lernen, sondern um im
Inhaltsbereich der Objektorientierung Erfolge zu erzielen. Stattdessen geht man davon aus,
dass Lernen sich selbst belohnt. Intrinsische Motivation wird man folglich am besten dadurch
fördern, dass Lernende bei der eigenständigen Bearbeitung von Aufgaben erfolgreich sind
und das Gefühl haben, ihre Kompetenzen zu steigern57. In diesem Sinne sollte auch das Lern-
tempo nicht zu hoch gewählt sein. Das life3-Phasenmodell und die darin enthaltenen
Möglichkeiten des aktiven Arbeitens sollten intrinsische Motivation fördern, indem sie durch
die Organisation des Lernprozesses dazu führen sollen, dem Lernstand angemessene Aufga-
ben zu stellen und indem das steigende Anspruchs- bzw. vor allem das steigende
Kompetenzniveau der Schülerinnen und Schüler betont wird – etwa auch durch die deutliche
Zurücknahme der Lehrerdominanz. Wesentlich ist jedoch die Auswahl der in den drei Phasen
zu bearbeitenden Projekte – einige allgemeine Regeln sind bereits angegeben worden (vgl.

56 Vergleiche mit den Hintergründen des systemorientierten Ansatzes, der Ropohl'schen Technikphilosophie,
der es ebenfalls nicht darum geht, alle Menschen zu Ingenieuren im Westentaschenformat auszubilden (Ab-
schnitt 4.2, ab S. 37).

57 Siehe Mietzel 2001, dort im Abschnitt 6.3.1.2, S. 345f.

98

Das life3-Unterrichtskonzept

oben Abschnitt 7.3). Das angemessene Schwierigkeitsniveau wird aber erst in der Praxis he-
rauszufinden sein.
Die letzten beiden sozialen Bedingungen (Kooperation und Wettbewerb) des Cognitive Ap-
prenticeship zielen auf das Lernen in Gruppen. Die Forderung nach kompetitiven Lernen
muss kritisch gesehen werden (vgl. die kritischen Bemerkungen zum Cognitive Apprentice-
ship gegen Ende des Abschnitts 6.4.1). Sie ist interessanterweise auch im 1991er-Artikel
(Collins, Brown und Holum 1991) gegenüber dem ursprünglichen Artikel von 1989 (Collins,
Brown und Newman 1989) von den Autoren selbst etwas zurückgenommen worden und hier
kein eigener Punkt mehr. Stattdessen verweisen die Autoren auf folgende Möglichkeit: „Co-
operation can be blended with competition; for example, individuals might work in groups to
compete with other groups“ (Collins, Brown und Holum 1991). Gruppenarbeit oder zumin-
dest Partnerarbeit wird in allen Phasen des life3-Unterrichtskonzepts vorrangig unterstützt.
Die parallele Arbeit in Gruppen in Phase 3 dient aber nicht vorrangig der Erzeugung einer
Wettbewerbsatmosphäre, sondern soll eine natürliche Gelegenheit zur Diskussion un-
terschiedlicher Vorgehensweisen und Modelle ergeben.
Die Berücksichtigung einer 'authentischen' Expertenpraxis lässt sich durch Gruppenarbeit um-
setzen, bei der die Lernenden innerhalb ihrer Arbeitsgruppe kooperativ vorgehen und man
möglicherweise zwischen den Arbeitsgruppen eine gewisse Konkurrenz etabliert. Die Sozial-
form der Gruppenarbeit führt neben einer Situierung zu einer angemessenen Form, die
sozialen Bedingungen der Lernumgebung zu berücksichtigen und einzelne Komponenten des
Ansatzes wirksam einzusetzen (Seel, 2000, S. 366). Blömeke fasst die Vorteile des Lernens in
Gruppen zusammen:

„Der Vorteil des Lernens in Gruppen liegt auf mehreren Ebenen: Das Vorwissen der Teilnehmer
wird durch den kommunikativen Austausch aktiviert, durch das Beobachten anderer Gruppenmit-
glieder beim Denken werden kognitive Modelle bereit gestellt, die Diskussionen im Laufe der
Bearbeitung einer Aufgabe können einerseits zu kognitiven Konflikten mit Veränderungen in der
eigenen kognitiven Struktur als Folge führen, andererseits fordern sie Begründungen der eigenen
Position mit einem tieferen Verständnis als Folge heraus und schließlich steigt durch den Aus-
tausch untereinander die Flexibilität der Wissensanwendung.“ (Blömeke 2001)

99

Das life3-Unterrichtskonzept

Lernumgebungen im CA Das life3-Unterrichtskonzept
Lern-Inhalte Bereichswissen Objektstrukturen im Vordergrund: Analysieren, Erstellen, Implementieren (in UML); Vorge-

hensweisen zur Erstellung
heuristische Strategien
(„tricks of the trade“)

Vorgehensweisen, heuristische Strategien etwa für die Überführung von CRC-Karten in UML-
Klassendiagramme

Kontroll-Strategien Fehlersuche, Objektspiel als Test, Testen mit dem Debugger
Lern-Strategien Orientieren an Beispielen

Lehr-Methoden Modelling instruktionales Lösungsbeispiel, Objektspiel
Coaching Erklären des Objektspiels, Hilfestellungen des Lehrers
Scaffolding and Fading durch das life3-Phasenmodell und die Werkzeuge (CRC-Karten, Fujaba)

Werkzeuge wie Fujaba verdecken viele Details durch grafische Programmierung und automati-
sche Code-Erzeugung.

Articulation auf die Begrifflichkeit achten, Schülerarbeiten erklären lassen: z. B.: Vorstellung der Ergebnisse
der Gruppenarbeitsphasen

Reflection Arbeitsphasen besprechen: War das Vorgehen in der Gruppe erfolgreich?
in Phase 3 durch Arbeit in parallelen Gruppen: Die einzelnen Gruppen stellen vor der Klasse
den Stand dar, ihr Vorgehen, ihre Modellier-Ideen und Probleme. Die Klasse unterstützt, fragt
nach, ...

Exploration Beispiele erkunden
Lern-Sequenz ansteigende Komplexität durch das life3-Phasenmodell: Ansteigende Selbstständigkeit; Ausgewählte Projekte

ansteigende Vielfalt durch das life3-Phasenmodell: Modell -> Modell+gui -> Modell+gui+Ereignisbehandlung
globale Kenntnisse und
Fähigkeiten vor lokalen

Denken in Objektstrukturen zuerst, Vorgehensweisen, dann schrittweise Implementationsdetails

Soziale Bedin-
gungen

Situiertheit Konzepte der Objektorientierung werden im Zusammenhang mit Softwareentwicklung einge-
führt

Expertenpraxis Elemente aus der Expertenpraxis werden übertragen: Vorgehensweisen
intrinsische Motivation Die eigenständige Aktivität wird von Anfang an gefördert, die Schüler können recht schnell ein

kleines Projekt erstellen: Diese Erfolge sollen die Motivation stärken.
Kooperation der Lernen-
den nutzen

durch Gruppenarbeit und Partnerarbeit am Rechner

Wettbewerb der Lernen-
den nutzen

Die Gruppen arbeiten parallel an demselben Projekt: In der Unterrichtsbesprechung wird der ei-
gene Stand mit dem der anderen Gruppen verglichen.

Tabelle 33 Zusammenfassende Gegenüberstellung des life3-Unterrichtskonzepts (rechts) und den Elementen des
Cognitive Apprenticeship (links).

100

Aufbau der empirischen Untersuchung

8 Aufbau der empirischen Untersuchung
In diesem Kapitel wird das Konzept der empirischen Untersuchung entwickelt. Dazu werden
zunächst die Aufgaben und Ziele beschrieben und daraus die Untersuchungsaspekte abgeleitet
(Abschnitt 8.1). Vor diesem Hintergrund wird im Abschnitt 8.2 die Art der Untersuchung
festgelegt: eine hypothesengenerierende formative Evaluation. Danach kann dann das Kon-
zept konkretisiert werden. In Abschnitt 8.3 werden die Untersuchungsinstrumente begründet
und vorgestellt.
Die Befragung der Schülerinnen und Schüler nach der Unterrichtung gliedert sich in zwei
Teile: die Zwischenbefragung am Halbjahresende (Abschnitt 8.3.4), kurz vor Beginn der drit-
ten Phase des Unterrichtskonzepts, und den Nachtest am Ende des Unterrichtsversuchs
(Abschnitt 8.3.5).
Schließlich wird der Ablauf der Evaluation im Überblick dargestellt (Abschnitt 8.4). Hier
wird auch begründet, warum die Befragung nach der Unterrichtung auf zwei Zeitpunkte ver-
teilt wurde (Zwischenbefragung und Nachtest). Dies sollte dazu dienen diejenigen
Schülerinnen und Schüler befragen zu können, die am Halbjahresende das Fach abgewählt
haben.

8.1 Aufgabe und Stellenwert der Evaluation
Evaluationsforschung wird nach Bortz und Döring (1995, S. 97) als Auftraggeberforschung
zur Begleitung oder Bewertung einer Maßnahme des Auftraggebers beschrieben. Als wissen-
schaftliche Forschung beinhaltet sie „die systematische Anwendung empirischer
Forschungsmethoden zur Bewertung des Konzepts, des Untersuchungsplanes, der Implemen-
tierung und der Wirksamkeit sozialer Interventionsprogramme“ (aaO., S.96). Davon grenzen
die Autoren die Interventionsforschung ab, die sich „auf der Basis technologischer Theorien
mit der Entwicklung von Maßnahmen“ beschäftigt, die dann von der Evaluationsforschung
bewertet werden (aaO., S. 100). In der Praxis, so wird eingeräumt, sind die Übergänge zwi-
schen Evaluations- und Interventionsforschung fließend.
In dieser Arbeit wird Evaluationsforschung nach Tulodziecki (1982) auf Unterrichtsforschung
bezogen, die pädagogische Handlungskonzepte entwickelt und bewertet. Der Zweck von Eva-
luation ist weniger die Prüfung von Theorien oder das Auffinden von allgemeinen
Gesetzesaussagen, sondern das Prüfen der Eignung von (unterrichtsmethodischen, medialen,
...) Mitteln (Tulodziecki, 1982, S.371f.). Bei dieser evaluativen Untersuchung können gewoll-
te oder ungewollte Nebenwirkungen dieser Mittel mit erfasst werden.
Die Beachtung der Lerngruppe und der inneren Wirkungszusammenhänge gehört ebenfalls zu
den Aufgaben der Evaluation: Nach Tulodziecki (1982) ist Ziel der anwendungsbezogenen
Forschung, dem Lehrer Möglichkeiten an die Hand zu geben, den eigenen Unterricht zu pla-
nen und ggf. zu verbessern. Damit ist eine Form der Übertragbarkeit der
Forschungsergebnisse angesprochen, die sich von der statistischen Repräsentativität unter-
scheidet: Damit Lehrende Ergebnisse übertragen können und in ihrem eigenen Unterricht
anwenden können, und damit Ergebnisse für weitere Konzeptentwicklungen nutzbar werden,
müssen die situativen Merkmale des Unterrichts und der Lerngruppe sowie die inneren Zu-
sammenhänge der Unterrichtskonzeption bekannt sein, damit ein Lehrer das Konzept an die
spezifische unterrichtliche Situation anpassen kann.
Tulodziecki (1982) plädiert im Zusammenhang mit Überlegungen zur Übertragbarkeit von
Konzepten pädagogischen Handelns für die Nützlichkeit empirischer Studien mit kleinen

101

Aufbau der empirischen Untersuchung

Gruppen „an nicht-repräsentativen Stichproben in nicht-repräsenativen Situationen“. Diese
können nützliche „Entscheidungshilfen für Lehrer darstellen“ (aaO. S.372f.), wenn sie sich
auf a) theoriegeleitete Entwicklungen beziehen und b) selbst theoriegeleitet durchgeführt wer-
den. Wenn Einzelfallstudien hinreichend genau die wesentlichen Besonderheiten beschreiben,
dann ermöglichen sie (dem Unterrichtenden) die Anpassung an die eigene Situation und die
eigene Lerngruppe. Dabei unterstützt statistische Repräsentativität die Anpassbarkeit auf die
eigene Lerngruppe nicht, denn erstens kann der Lehrer meist nur schwer nachprüfen, ob seine
eigene Lerngruppe ebenfalls dem statistischen Durchschnitt entspricht um zu entscheiden, ob
die Untersuchungsergebnisse für die Lerngruppe gültig sind. Die Frage ist, was passiert, wenn
seine Lerngruppe nicht dem Durchschnitt entspricht. Dann wären wieder sowohl genauere
Beschreibungen, als auch Erkenntnisse über Wirkungszusammenhänge notwendig, damit der
Lehrer den Unterricht zuschneiden kann. Geht man jedoch im anderen Fall davon aus, dass
die Lerngruppe des Lehrers wahrscheinlich dem Durchschnitt entspricht, weil die Streubreite
der für das Unterrichtskonzept wichtigen Lernereigenschaften gering ist, dann sollte das mit
derselben Wahrscheinlichkeit für die willkürlich gewählte Untersuchungsgruppe gelten, wes-
halb sich wiederum an der Nützlichkeit des Nachweises der statistischen Repräsentativität
zweifeln ließe.
Tulodziecki folgert, dass Angaben über die Untersuchungsgruppe am besten helfen die jewei-
lige Anwendbarkeit zu entscheiden. In diesem Sinne gehört zu den Aufgaben der Evaluation,
relevante Eigenschaften der Untersuchungsgruppe zu bestimmen und zu erheben, um so die
Anwendbarkeit und Praxisrelevanz der Konzeptentwicklung zu stärken.
Evaluative Unterrichtsforschung wird daher relativ oft Aussagen auf bestimmte Teilgruppen
beschränken. Diese Annahme folgt direkt aus den Erfahrungen mit dem Forschungsansatz
Aptitude-Treatment-Interaction (vgl. Terhart, 1997, S. 81), in dem die Untersuchung der
Wechselwirkungen zwischen Schülermerkmalen und Lehrmethoden zentrales Anliegen ist
(siehe dazu auch Abschnitt 8.2).
Ein wesentlicher Aspekt der empirischen Untersuchung wird daher die Beschreibung der
Lerngruppe sein.
Nebenbei bedeutet empirische Evaluation auch, dass das Konzept selbst tatsächlich für die
Unterrichtspraxis entwickelt werden muss – eigentlich eine Selbstverständlichkeit, dennoch
gibt es die Tendenz, dass rein theoretisch entwickelte Ansätze, die gerade nicht die Unter-
richtspraxis in den Blick nehmen, Lernprozesse zu optimistisch beschreiben. Dieser Punkt
betrifft die unterrichtspraktische Relevanz fachdidaktischer Forschung: Wenn ein Un-
terrichtskonzept im Unterricht evaluiert wird, dann im Sinne der oben erläuterten empirischen
Evaluation nach Tulodziecki deshalb, um es auf seine unterrichtspraktische Eignung zu prü-
fen.
Die Übertragbarkeit solcher Forschungen in die Praxis kann ggf. noch gesteigert werden,
wenn kooperative Formen der Entwicklung und Evaluation von Unterrichtskonzepten einge-
setzt werden. Diese Ansicht wird auch in der Forschungsförderung vertreten. So war das
UVM-Programm Schule Hochschule, in dem das life3-Projekt gefördert wurde, als ein solches
kooperatives Vorhaben ausgeschrieben. Kooperative Vorhaben sind schon allein deshalb nahe
an der Unterrichtspraxis, da sie mit und für die Schule entwickelt und dort erprobt werden.
Konzepte, die sozusagen im Elfenbeinturm entstehen, laufen Gefahr, auch dort zu bleiben.
Werden Lehrer als Experten für die Unterrichtspraxis einbezogen, dann kann das Unterrichts-
konzept besser auf schulische Bedingungen zugeschnitten werden. Zudem werden mindestens

102

Aufbau der empirischen Untersuchung

die bei der Entwicklung beteiligten Lehrer 'fortgebildet', sodass sie das Konzept nutzen kön-
nen.
Allerdings besteht die Gefahr, dass ein solches Unterrichtskonzept durch die Einflüsse aus der
Praxis 'verwässert' wird in dem Sinne, dass die jeweiligen Unterrichtsstile der Lehrer das
Konzept beeinflussen (vgl. Blömeke, Müller und Eichler 2003) – dass also ATI-ähnliche Ef-
fekte auftreten: eine Wechselwirkung zwischen Konzept und Lehrer, die die Umsetzung und
Weiterentwicklung des Konzepts je nach Lehrertyp unterschiedlich aussehen lässt oder gar
von der eigentlichen theoretischen Verankerung löst. Daher wird die praktische Durchführung
durch kooperative Planung des Unterrichts im Sinne von Interventionsforschung bzw. forma-
tiver Evaluation begleitet.
Die beiden beteiligten Informatiklehrer waren dabei nicht Forschungsobjekte, die für die kor-
rekte Umsetzung des vorher geplanten Unterrichts verantwortlich waren und daraufhin in der
Untersuchung beobachtet wurden, sondern sie waren als Experten für die Unterrichtspraxis
daran beteiligt, das life3-Unterrichtskonzept in die Praxis umzusetzen – und es dabei mit zu
entwickeln bzw. weiterzuentwickeln. Der grobe Rahmen war mit der Wahl des Werkzeugs
Fujaba, dem life3-Phasenmodell, einzelnen Unterrichtsmethoden und Werkzeugen (CRC-Kar-
ten, Objektspiel, Lösungsbeispiel) vorgegeben. Dennoch sind innerhalb dieses Rahmens, auf
den man sich als Voraussetzung verständigen konnte58, wesentliche Entwicklungsschritte er-
folgt: Fujaba wurde angepasst, die als Projekt oder Lösungsbeispiel zu verwendenden
Projekte wurden ausgewählt, der Unterrichtsverlauf wurde im einzelnen geplant.
Auf diese Weise wird die Übertragbarkeit des Konzepts in die Unterrichtspraxis zwar nicht
gesichert, aber gestützt. Glücklicherweise ist die curriculare Gültigkeit des hier entwickelten
life3-Unterrichtskonzepts nach dem (allgemein gehaltenen) Nordrhein-westfälischen Lehrplan
gegeben59, sodass von dieser Seite aus das entwickelte life3-Unterrichtskonzept einsetzbar ist.
Eine weitere Aufgabe der Evaluation ergibt sich im Zusammenhang mit der Nutzung von
UML-Darstellungen und dem Werkzeug Fujaba als Lernwerkzeug. Die Effekte neuer Medien
auf das Lernen werden in verschiedenen Bereichen erforscht, etwa in Fachdidaktiken, der all-
gemeinen Didaktik oder auch in der Informatik selbst (z.B. GI-Jahrestagung 2002). Zu diesem
Bereich liegen umfangreiche allgemeine Kenntnisse vor; dazu zusammenfassend Freuden-
reich und Schulte 2002:

„Clark (1994, 1994a) vertritt die Meinung, dass die instruktionale Methode grundlegender sei als
das eingesetzte Medium; eine Beeinflussung des Lernprozesses könne sinnvoll nur auf die Metho-
de zurückgeführt werden und nicht auf das Medium, denn die Effekte eines Mediums könnten
immer durch die Wahl eines anderen Mediums erzielt werden. Damit wäre die Nutzung neuer Me-
dien im Unterricht eine Wahl, die nicht durch besondere Eigenschaften dieser Medien begründet

58 Sicherlich mit bedingt durch vorherige Kontakte über eine Fortbildung zur Objektorientierung und Java im
Jahr 1999 durch die Arbeitsgruppe Didaktik der Informatik, an der die Lehrer teilgenommen hatten und
durch das Seminar „Schulpraktische Studien“, das die beiden Lehrer jeweils als externe Lehrende seit eini-
gen Jahren zusammen mit der AG DDI durchführen. Durch diese Kontakte war es sicherlich einfacher, eine
gemeinsame Basis für die Entwicklung eines Konzepts zum Anfangsunterricht zu finden. Andererseits ist der
oben beschriebene Rahmen als Voraussetzung auch aufgrund meiner Erfahrungen im Zusammenhang mit
der Fortbildung und den schulpraktischen Studien entstanden und hat diese Erfahrungen berücksichtigt. (Un-
ter anderem deswegen weicht das Konzept beträchtlich vom Konzept für den Anfangsunterricht ab, das 1999
auf der INFOS vorgestellt wurde (Hampel, Magenheim und Schulte 1999)).

59 Dazu der Lehrplan NRW: „Ins Zentrum fachlicher Inhalte des Informatikunterrichts in der gymnasialen
Oberstufe rücken generalisierbare Techniken zur Modellbildung und zur (Weiter)Entwicklung von Anwen-
dungssystemen sowie Verfahren zur Analyse und Bewertung vorliegender Informatiksysteme. Diese Position
sucht unter wissenschaftspropädeutischem Aspekt die Nähe zur Softwaretechnologie als einer wesentlichen
Ausprägung des Hochschulfaches Informatik.“ (Lehrplan NRW 1999, S. 6)

103

Aufbau der empirischen Untersuchung

ist und sich gegenüber anderen Medienalternativen nur bezüglich der entstehenden Kosten unter-
scheidet. „The point that I had hoped to make in my earlier reviews is that media attributes are
surface features of learning systems. Those surface features may affect the economics but not the
learning effectiveness of instruction.” (Clark 1994, S.26).
In Auseinandersetzung mit der Position Clarks weist Kozma darauf hin, dass eine Beziehung von
eingesetztem Medium und Lernerfolg sich nicht wie in naturwissenschaftlichen Kontexten gleich-
sam auffinden lasse, sondern gestaltet werden müsse (Kozma 1994, S.7). Die Kritik Kozmas an
Vergleichsstudien zum Medieneinsatz bezieht sich auf die Art und Weise, in der diese durchge-
führt werden: Medieneffekte würden meist auf Grund eines standardisierten Vor-/Nachtest
Designs nachgewiesen, dagegen fehlten in diesen Studien kognitive, affektive und soziale Aspek-
te, unter denen aktives Lernen stattfinde. „Consequently, we will understand the potential for a
relationship between media and learning when we consider it as an interaction between cognitive
processes and charakteristics of the environment, so mediated (...).” (Kozma 1994, S.8). Um zu ei-
nem Verstehen der beim Einsatz neuer Medien ablaufenden Prozesse zu gelangen sei es also
notwendig, genauer hinzuschauen.
Kozma verwendet hier das Bild eines Tornados, der eine Stadt verwüstet. Um das Geschehen zu
verstehen, reicht es nicht aus, Photographien vor und nach diesem Ereignis zu vergleichen. Gerade
der prozesshafte Charakter des Geschehens ist von Interesse für ein vertieftes Verständnis sowohl
von Tornados als auch von Lernprozessen, sodass der Umgang der Lernenden mit der Software,
der Lernprozess selbst, untersucht werden müsse: „To understand this process we would need to
make fine-grained, moment by moment observations.(...) The use of think aloud protocols (…),
eye fixations, and log files of events increases the amount of information that we have on the proc-
esses by which change occurs as learners interact with our interventions in certain ways.“ (Kozma
1994, S.15).“ (aus: Freudenreich und Schulte 2002)

Der Einfluss der gewählten Medien spricht daher ebenso für eine begleitende, das Unter-
richtsgeschehen beobachtende Untersuchungsform, die über den Einsatz von Vorher-
Nachher-Tests hinausgeht. Die empirische Evaluation sollte Lernereigenschaften und den Zu-
sammenhang von Unterrichtsmedium und Unterrichtsmethode berücksichtigen.
Die zu untersuchenden Bereiche betreffen also zunächst die theoriegeleitete Entwicklung des
Konzepts:
• Wirken sich die unterschiedlichen Elemente des life3-Unterrichtskonzepts tatsächlich in

der Unterrichtspraxis wie beabsichtigt aus? Ggf. werden in der empirischen Evaluation
verdeckte Widersprüche, zu hohe (oder zu niedrige) Anforderungen an Lerner etc. sicht-
bar. Im Einzelnen ist nicht klar, wie die beabsichtigten Wirkungen sich im Zusammenspiel
von Unterrichtsmethoden, konkreten Beispielen und Aufgaben sowie dem Inhaltsbereich
Objektorientierung entfalten. Welche Wirkungszusammenhänge und Wechselwirkungen
treten auf (siehe die Gegenüberstellung der einzelnen Eigenschaften einer Lernumgebung
aus der Sicht des Cognitive Apprenticeship mit den jeweiligen Aspekten des life3-Unter-
richtskonzepts in Tabelle 33, S. 100)?

• Sind die theoretischen Grundlagen, das allgemeine Konzept des Cognitive Apprenticeship,
das für Lernen in Mathematik, Schreiben und Lesen entwickelt wurde, auch für das Lernen
informatischer Inhalte (sprich: der Objektorientierung) einsetzbar? Vor dem Hintergrund
der Ansätze konstruktivistischen und situierten Lernens klingt das zwar plausibel, kann
aber erst in der praktischen Anwendung bestätigt oder widerlegt werden.

• Sind die Ergebnisse der Lehr-Lernforschung und der empirischen Unterrichtsforschung aus
der Mathematik- und der naturwissenschaftlichen Didaktik auf Lehr- und Lernprozesse des
Informatikunterrichts übertragbar? Zwar wird das Schulfach Informatik allgemein dem
Block bzw. Aufgabenbereich der mathematisch-naturwissenschaftlichen Fächer zugerech-
net, dennoch bleibt die direkte Übertragung von Kenntnissen aus der Unterrichtsforschung
in diesen Fächern auf den Informatikunterricht mit Unsicherheiten behaftet.

104

Aufbau der empirischen Untersuchung

Einen weiterer Bereich betrifft den Einsatz des Entwicklungswerkzeugs Fujaba, das bislang
noch nicht intensiv in der Schulpraxis eingesetzt worden ist. Zudem wurden einzelne Funktio-
nalitäten für den Einsatz im Unterricht im Rahmen des life3-Projekts angepasst. Das
Zusammenspiel der im Konzept entwickelten unterrichtsmethodischen Zugänge mit dem
Werkzeug Fujaba ist bislang nur theoretisch ausgearbeitet und noch nicht in der Praxis er-
probt. Daraus resultieren die folgenden Aufgaben:
• Wie wirkt sich der Einsatz von Fujaba aus, das bislang nicht im Informatikunterricht ein-

gesetzt wurde? Treten Programmfehler, Schwierigkeiten mit der Notation oder der
Bedienung auf?

• Gibt es besondere Wechselwirkungen zwischen dem eingesetzten Medium und den ande-
ren Elementen des life3-Unterrichtskonzepts? Funktioniert das Wechselspiel zwischen
Unterrichtsmethode und eingesetztem Medium?

Daneben ist zu vermuten, dass Eigenschaften der Lerngruppe, etwa Vorkenntnisse und Erwar-
tungen der Schülerinnen und Schüler, Auswirkungen zeigen:
• Neben den Zusammenhängen der Konzeptelemente können ggf. nicht intendierte Ne-

benwirkungen (positiver oder negativer Art) durch die Evaluation aufgedeckt werden und
zur Generierung neuer Forschungsfragen dienen.

• In der Evaluation wird die Lerngruppe ebenfalls beschrieben. Diese Angaben helfen zu-
sammen mit festgestellten Wechselwirkungen zwischen Konzept und 'Lernertypen' bei der
Übertragung auf andere Lerngruppen.

Insgesamt sind also drei Bereiche zu berücksichtigen: die theoretische Einbettung des life3-
Unterrichtskonzepts, die eingesetzten Werkzeuge (in ihrer Funktion als Lernmedien) und die
Eigenschaften der Lernenden.
Ziel der empirischen Evaluation ist es, etwaige Mängel und Inkonsistenzen des Konzepts auf-
zudecken, aber auch funktionierende Zugänge für den Informatikunterricht zu beschreiben
und so einen Beitrag zum fachdidaktischen Wissen über das Lehren und Lernen der Objekt-
orientierung zu leisten.
Die zentrale Frage der empirischen Evaluation lautet, ob mit dem entwickelten Untersu-
chungskonzept die intendierten Lernziele (siehe oben Abschnitt 5.1, ab S. 46) in den beiden
zu untersuchenden Lerngruppen erreicht werden konnten. Daraus ergeben sich die folgenden
Untersuchungsaspekte (Tabelle 34):
A Die Schülerinnen und Schüler kennen und verstehen objektorientierte Grundkonzepte, insbesondere die

Konzepte Klasse und Objekt.
B Die Schülerinnen und Schüler können einfache Abläufe objektorientiert beschreiben.
C Die Schülerinnen und Schüler können mit ihren Kenntnissen ein objektorientiertes Modell erstellen.
D Die Schülerinnen und Schüler können ein Modell mit dem im Unterricht verwendeten Werkzeug implemen-

tieren.
E Die Schülerinnen und Schüler erkennen
• Softwareentwicklung als Gestaltung, nicht nur als Codierung.
• die Möglichkeit für unterschiedliche Lösungsentwürfe.
• die Möglichkeit der Konzeptänderung im Verlauf der Entwicklung (nicht nur zunehmende Verfeinerung,

sondern auch Umbau von Entwürfen).
• , dass Softwareentwicklung ein soziotechnischer Prozess ist.

Tabelle 34 Lernziele des Unterrichtskonzepts

105

Aufbau der empirischen Untersuchung

Die folgende differenziertere Auflistung der Untersuchungsbereiche dient der Analyse und
Strukturierung der zu beobachtenden Aspekte, um so die Konstruktion von Mess- und Aus-
wertungsinstrumenten zu unterstützen.
Zu A) Kenntnis der grundlegenden Elemente der Objektorientierung

1. Klasse, Objekt
2. Notationen und damit verbundene Konzepte: CRC-Karten, Klassen- und Aktivitätsdiagramme, einzel-

ne syntaktische Konstrukte in der Programmiersprache Java;
3. Die einzelnen syntaktischen Konstrukte können aufeinander bezogen werden, beispielsweise der Zu-

sammenhang zwischen 'Links' im Aktivitätsdiagramm und 'Assoziationen' im Klassendiagramm oder
zwischen der Erstellung von Attributen im Klassendiagramm und den zugeordneten set- und get-Me-
thoden in Java-Syntax.

Zu B) Abläufe objektorientiert ausdrücken können
1. Verantwortlichkeiten von CRC-Karten im Objektspiel ausführen können;
2. den Ablauf von Aktivitätsdiagrammen und Story-Pattern verstehen;
3. Schleifen und Verzweigungen erstellen können;

Zu C) Ein objektorientiertes Modell erstellen können
1. ein CRC-Karten-Modell erstellen können;
2. ein Klassendiagramm entwickeln können;

Zu D) Implementation in Fujaba
1. einfache Methoden mit Hilfe von Aktivitätsdiagrammen, Story-Pattern und Java-Syntax-Statements

implementieren können;
2. grafische Oberflächen erstellen und an die Logikschicht anbinden können;
3. Ereignisbehandlung verwenden können;

Zu E) Softwareentwicklung als mehr als Codieren begreifen
1. eine Vorstellung von Softwareentwicklung entwickeln, die mehr umfasst als die Codierungs- (oder:

Implementations-) phase;
2. ein Programm selbstständig und methodisch entwickeln können: Erlernen methodischer Arbeitsweisen

und verstehen des Entwicklungsablaufs;
3. die Möglichkeit unterschiedlicher Entwürfe erkennen und ggf. unterschiedliche Entwurfsideen gegen-

einander abwägen;

Tabelle 35 Beobachtungsebenen der im Unterricht zu erreichenden Kompetenzen

In den folgenden Abschnitten (8.2 und 8.3) werden Untersuchungsmethoden und -instrumente
entwickelt. Bislang gibt es keine Tradition empirischer informatikdidaktischer Unterrichts-
forschung und dementsprechend kein spezifisches Methodeninstrumentarium, keine
methodenkritische Debatte und fast keine empirischen Erkenntnisse über den Informatikun-
terricht. Angesichts der jungen Informatikdidaktik bedeutet Evaluation daher auch,
disziplinrelevante Forschungsmethodiken aufzubauen.

8.2 Evaluationsmethoden und Untersuchungsinstrumente
Im Abschnitt 8.1 wurden bereits einige Entscheidungen bezüglich der Wahl der Evaluations-
methoden getroffen. So soll die Evaluation Lernereigenschaften, die eingesetzten Werkzeuge,
die Lernzielerreichung sowie die theoretische Einbettung des life3-Unterrichtskonzepts erfas-
sen. Bezüglich der theoretischen Einbettung sind insbesondere die unterrichtsmethodischen
Zugänge, die Reihenfolge der Inhalte und die Effekte bezüglich eines Konzeptwechsels zu be-
achten.
Welche empirischen Methoden können in dieser Situation eingesetzt werden?
Es hat sich, gerade im Hinblick auf unterschiedliche Lernereigenschaften, herausgestellt, dass
die Suche nach der einen bestimmten und effektivsten Unterrichtsmethode sinnlos ist. Eine
Unterrichtsmethode kann auf unterschiedliche Lernende unterschiedlich wirken. Man könnte
die Wirkung einer Methode (das treatment) auf bestimmte Lernergruppen mit bestimmten Ei-
genschaften (aptitudes) untersuchen und so Aussagen über die Interaktion von Methoden und

106

Aufbau der empirischen Untersuchung

Lernereigenschaften bestimmen: der so genannte ATI-Ansatz (Aptitude-Treatment-Interac-
tion). Die Aufsplittung in unterschiedliche Lernertypen kann nahezu beliebig fein erfolgen
kann: praktisch solange, bis man für jeden einzelnen Schüler das individuell effektivste Un-
terrichtskonzept entwickelt und empirisch untersucht hat. Daraus folgen zwei Ergebnisse: Die
Suche nach der effektivsten Unterrichtsmethode ist kein sinnvolles Forschungsziel. Stattdes-
sen können Unterrichtskonzepte in Bezug auf bestimmte (nicht nur in sehr geringen
Fallzahlen vorkommende) Merkmale von Lernenden untersucht werden (vgl. Terhart, 1997,
S. 81).
Aufgrund der spärlichen empirischen Forschungsergebnisse in der Informatikdidaktik sind die
relevanten Lernereigenschaften allerdings nur schwer zu bestimmen und zu begründen. Hier
müsste ggf. auf allgemeine Kenntnisse zurückgegriffen werden, um die Fragestellung zu Ler-
nereigenschaften einzugrenzen und operationalisieren zu können. Oder die Untersuchung
wird durch relativ offene Fragestellungen so angelegt, dass ein breites Spektrum an mögli-
chen Lernereigenschaften erfassbar wird.
Diese Unterscheidung entspricht der allgemein üblichen Differenzierung empirischer For-
schungsinstrumente in quantitative und qualitative: Die Entscheidung für den Einsatz
quantitativer Instrumente, die versuchen die Subjektivität des Forschenden durch die Kon-
struktion von Instrumenten und Auswertungsschemata aus dem empirischen Prozess
herauszuhalten, stellt die Grundlage dafür dar, dass die Ergebnisse reliabel und objektiv wer-
den können. Die Validität wird dadurch nicht gesichert, sondern muss auf anderem Wege vor
der Konstruktion der Instrumente und in der Interpretation der Ergebnisse gesichert werden.
Im Allgemeinen versucht man das durch die Interpretation (und Konstruktion) im Rahmen ei-
ner Theorie zu erreichen. Mögliche Instrumente sind schriftliche Tests, Fragebögen, Logfiles
oder die Kodierung von Beobachtungsdaten.
Qualitative Instrumente, wie sie etwa in der hermeneutisch orientierten Richtung empirischer
Forschung vorgeschlagen werden, finden beispielsweise in der systemischen Sozialforschung
Anwendung. Sie gehen mehr auf die subjektive Seite der handelnden Personen ein und versu-
chen die Daten zu interpretieren. In dieser Richtung versucht man beispielsweise die
subjektiven Einschätzungen der Beteiligten durch Interviews, teilnehmende Beobachtung und
die gemeinsame Auswertung der Daten ggf. zusammen mit externen Experten zu erheben, um
sich so an eine intersubjektiv tragfähige Deutung des Geschehens heranzuarbeiten. Vorteil
dieser Methoden ist die Anpassbarkeit auch an unvorhergesehene Zusammenhänge, die Ge-
nerierung kontextsensitiver und umfassender Informationen, sodass diese Methoden bei
entsprechender Anwendung sehr valide Aussagen ergeben können. Mögliche Nachteile quali-
tativer Verfahren sind: die Gefahr der Beliebigkeit der Untersuchungsaspekte und
Fragestellungen, mögliche Gruppeneffekte in der Bewertung, sodass diese nur innerhalb der
Bewertergruppe, aber nicht außerhalb tragfähig wird sowie die Schwierigkeit der exakten
Wiederholung von Untersuchung oder Auswertung. Mögliche Instrumente sind offene oder
leitfadengestützte Interviews, die hermeneutische Deutung von Beobachtungsdaten, Experten-
befragungen.
Bortz und Döring (1995, S. 274) fassen zusammen:

„In der qualitativen Forschung werden verbale bzw. nichtnumerische Daten interpretativ verarbei-
tet, in der quantitativen Forschung werden Messwerte statistisch analysiert. Viele
Forschungsprojekte kombinieren beide Herangehensweisen.“

107

Aufbau der empirischen Untersuchung

In der vorliegenden Untersuchung werden verschiedene Verfahren kombiniert: Die Auswer-
tungsinstrumente fragen subjektive Einschätzungen einerseits und beobachtbares Verhalten
andererseits ab und nutzen dazu quantitative und qualitative Instrumente (Tabelle 36).

Qualitative Methode: Offene Befragung: interpretieren Quantitative Methode: Test: quantifizieren
Subjektive Seite: Befragung, Test Objektive Seite: Beobachtung, Test,

hier auch: Logfiles; Projektergebnisse

Tabelle 36 Zusammenhang unterschiedlicher Instrumente und Untersuchungsperspektiven: qualitativ-subjektiv
sowie quantitativ-objektivierend.

Das Hauptziel der empirischen Untersuchung ist das Erkunden von Wirkungszusammen-
hängen und das Aufdecken von Nebenwirkungen. Ein Weg, Wirkungszusammenhänge
aufzuspüren sind hypothesengenerierende evaluative Studien, die Indizien für Wirkungszu-
sammenhänge aufzeigen, die dann nachfolgend (in weiteren Forschungsarbeiten) eingegrenzt
und hypothesenprüfend untersucht werden können. Hypothesengenerierende Studien liefern
mehr Daten als Erfahrungsberichte. Sie liefern Daten, die unter kontrollierteren Bedingungen
erhoben worden sind, sie erfassen Daten, die nicht vom Unterrichtenden einfach so 'nebenher'
erhoben werden können60, und nicht zuletzt können sie beitragen, Untersuchungsinstrumente
(für weitere nachfolgende Untersuchungen) zu entwickeln. Und sie können, als eine typische
Aufgabe von Evaluationen, frühzeitiger und mehr Informationen liefern, um die grundsätzli-
che Entscheidung zu treffen, ob eine Weiterentwicklung in die vorgeschlagene Richtung
lohnenswert erscheint.
Mittels der empirischen Evaluation kann man die Angemessenheit des neu entwickelten Un-
terrichtskonzepts explorativ prüfen, Hinweise auf Verbesserungen finden und einen Beitrag
zum fachdidaktischen Wissen (Holmboe, McIver und George 2001) in der Informatikdidaktik
leisten.
Als Untersuchungskonzept wird hier daher eine hypothesengenerierende, formative Evaluati-
on gewählt.
Hypothesengenerierend bedeutet, dass die Ergebnisse den Charakter von Hypothesen haben
werden. Einzelne Hypothesen könnten dann ggf. in folgenden Forschungsvorhaben hypothe-
senprüfend untersucht werden.
Formativ bedeutet, dass kein vollständig fertiges, nicht mehr änderbares Konzept in der An-
wendung insgesamt geprüft wird (das wäre eine summative Evaluation), sondern dass
während der Evaluation bereits Rückmeldungen aus der Evaluation zu Änderungen führen
können. Beispielsweise könnte ein Programmierfehler in Fujaba entdeckt werden, im Gegen-
satz zu einer summativen Evaluation würde ein solcher Fehler in der hier gewählten
formativen Evaluation bereits während der Evaluation geändert61.
Welche potenziellen Wirkungszusammenhänge sollen und können nun untersucht werden?

60 Man denke allein an Befragungen, bei denen die Schülerinnen und Schüler dem Lehrer oder einem externen
Beobachter ihre Lernprobleme, die Zufriedenheit mit dem Unterricht oder Ähnliches berichten sollen.

61 Der Programmierfehler würde bei einer summativen Evaluation zwar registriert, aber aufgrund der notwendi-
gen Konstanz der Untersuchungsbedingungen streng genommen nicht während der Laufzeit der Evaluation
geändert werden. Das würde in unserem Fall ggf. bedeuten, dass das gesamte Konzept aufgrund eines ein-
fach zu behebenden Fehlers als gescheitert angesehen werden müsste. Das wäre zwar ein unanfechtbares em-
pirisches Resultat mit einer eindeutigen Ursache und vermutlich mit einer ebenso eindeutigen Empfehlung
für eine Konzeptverbesserung, die dann zu untersuchen wäre. Wie oben angedeutet, wäre das Ergebnis
gleichzeitig tatsächlich sinnlos.

108

Aufbau der empirischen Untersuchung

Wirkungszusammenhänge

Reihenfolge und
Art der Inhalte

Lernereigenschaften

(Vorwissen, Interesse,
Motivation)

Medium

(Entwicklungsumgebung,
Programmiersprache)

Unterrichts-
methoden

(Instruktion, Konstruktion)

?

?

? ??

Abbildung 37 Interdependenzstruktur didaktischer Zusammenhänge

Aus dem bisher Dargelegten ergeben sich Hinweise auf die wesentlichen anzunehmenden
Wirkungszusammenhänge (siehe Abbildung 37). Daraus ergibt sich, dass aus folgenden ver-
schiedenen Bereichen Daten zu erheben sind:
1. Um die Wirkungszusammenhänge erkennen zu können, wird das Unterrichtsgeschehen be-

obachtet. Da im Konzept die Aktivitäten der Schülerinnen und Schüler eine große Rolle
spielen und die Werkzeuge für den Unterricht neu sind, soll ebenfalls die Arbeit der Schü-
lerinnen und Schüler beobachtet werden.

2. Zur Beschreibung der Lerngruppe wird ein Vortest durchgeführt. Dieser wird ergänzt
durch einen Nachtest. Dabei ist auch der Lernfortschritt zu messen. Die subjektive Zufrie-
denheit der Beteiligten mit dem Unterricht spielt für eine mögliche Übertragung auf
weitere Klassen ebenfalls eine Rolle.

Vorrangiges Ziel der Erprobung ist zunächst die Klärung der Frage, ob überhaupt die grundle-
genden Konzepte der Objektorientierung auf diese Weise vermittelt werden können. Aus der
Perspektive des 'traditionellen' Anfangsunterrichts, der sich auf die Einführung in die grundle-
genden Sprachstrukturen bezieht, bedeutet das life3-Konzept, dass der einführende
Anfangsunterricht weggelassen wird. Ob dieses Konzept im Hinblick auf die oben aufgeführ-
ten Lernziele tatsächlich erfolgreich ist, ist eine empirische Frage.
Um diese zentrale Frage zu beantworten, soll die Untersuchung auf die dritte Phase des life3-
Phasenmodells konzentriert werden, in der die Schülerinnen und Schüler das erworbene Wis-
sen möglichst selbstständig in einem neuen Projekt in Gruppenarbeit anwenden sollen.
Ursachen für in dieser Phase auftretende Probleme sind in den vorangegangenen Phasen und
schließlich in grundlegenden Elementen (z.B.: das verwendete Werkzeug) oder im Gesamt-
konzept zu suchen. Aus dem Ergebnis sollten dann Informationen für Konzeptverbesserungen
sowie Erkenntnisse über Lehr- und Lernprozesse im Anfangsunterricht ableitbar sein.

8.3 Mess- und Auswertungs-Instrumente
Die vorgestellte Verbindung verschiedener empirischer Methoden spiegelt sich in den einge-
setzten Untersuchungsinstrumenten. Zunächst werden im Sinne eines Vorher-Nachher-
Vergleichs ein Vortest und ein Nachtest eingesetzt, welche quantifiziert ausgewertet werden.
Ergänzend zu diesen Tests werden qualitative leitfadengestützte Interviews eingesetzt. Neben

109

Aufbau der empirischen Untersuchung

dem Vorher-Nachher-Vergleich wird der Lernprozess selbst beobachtet: Logfiles nehmen die
Arbeit mit Fujaba auf, ergänzt durch Aufzeichnungen des Bildschirms und der Schüleräuße-
rungen. Das Unterrichtsgeschehen, etwa die Arbeit im Plenum, wird mit Hilfe von
Videoaufzeichnungen erfasst.
Zunächst wird der Fragebogen des Vortests (Abschnitt 8.3.1) und die Ergänzung durch Ein-
zel-Interviews (Abschnitt 8.3.2) vorgestellt, danach die Instrumente und Verfahren der
Unterrichtsbeobachtung (Abschnitt 8.3.3) und zum Schluss das Instrument für den Zwischen-
und Abschlusstest (Abschnitt 8.3.4).

8.3.1 Vortest mit Fragebögen
Der Vortest dient zur Erfassung relevanter Merkmale der Versuchsgruppe. Durch die Be-
schreibung wird zudem die praktische Anwendbarkeit der entwickelten Konzeption gesichert,
da wesentliche Merkmale der Gruppe, die in der Praxis auch den Lehrpersonen ohne großen
Aufwand zugänglich sind, die Übertragbarkeit auf andere schulische Rahmenbedingungen
und andere Lernergruppen erhöhen. Die Voraussetzungen der Lernergruppe haben Auswir-
kungen auf den Ausgang der Reihe, zudem kann der Stand des Vorwissens genutzt werden,
um den Lernzuwachs zu beschreiben. Als wichtige Vorbedingungen können angesehen wer-
den:
1. Vorwissen im Bereich Programmiersprachen und Objektorientierung
2. Interessenlage und Erwartungen an das Fach
3. Vorwissen und Kenntnisse im Umgang mit dem Computer
4. Selbsteinschätzung gegenüber dem Fach und speziell dem Computer
In den beiden ersten Bereichen sind große Streuungen zu erwarten, zumal ein vorausgehender
Unterricht in der Sekundarstufe I nicht verpflichtend ist und zudem die Inhalte im Informatik-
unterricht der Sekundarstufe I differieren. In den beiden Versuchsschulen beispielsweise
werden unterschiedliche Konzepte verfolgt: In Schule A wird eine grundsätzliche Einführung
in das Programmieren gegeben, während in Schule B genau dieses vermieden wird, um allen
Schülerinnen und Schülern gleiche Startvoraussetzungen für den Anfangsunterricht in der Se-
kundarstufe II zu ermöglichen – auch denen, die in der Mittelstufe keinen
Informatikunterricht hatten. Ebenso aufgrund der Erfahrung, dass sich einzelne Schülerinnen
und Schüler in ihrer Freizeit intensiv mit dem Computer und dabei auch mit Programmierung
beschäftigen, musste man im Vorfeld von sehr unterschiedlichen fachlichen Vorkenntnissen
ausgehen. Daher wurden, um individuell die vorhandenen Kenntnisse erfragen zu können,
diese nicht in einem für alle Schülerinnen und Schüler identischen Fragebogen, sondern in
den Einzelinterviews abgefragt.
Für die Bereiche drei und vier existieren bereits Untersuchungsinstrumente. In der Diskussi-
on von Medienkompetenz wird die 'Computernutzungskompetenz' als ein wesentlicher
Bestandteil gesehen, und somit können Verfahren zur Messung von Medienkompetenz, die
die Kompetenzen im Umgang mit dem Computer abfragen, hier eingesetzt werden, um einen
Bereich der Lernervoraussetzungen für den Informatikunterricht zu erfassen. Diese Untersu-
chungen haben für den amerikanischen Raum einen Zusammenhang von
Computereinstellungen, Computernutzung, PC-Kontrollüberzeugungen und dem Computer-
wissen ergeben, der auch für den deutschsprachigen Raum bestätigt werden konnte (Senkbeil
und v. Davier 2001) (siehe Tabelle 38). Zwischen den Bereichen gibt es mittlere bis hohe
Korrelationen (aaO.).

110

Aufbau der empirischen Untersuchung

Computereinstellungen subjektive Einstellung gegenüber dem Computer, Einstellungen gegenüber dem
persönlichen und gesellschaftlichen Nutzen dieser Technologie

Computernutzung Nutzungsbereiche: Spiele, Internet, Anwendungen
PC-Kontrollüberzeugungen
bzw. Sicherheit im Um-
gang

Kontrolle über Computernutzung (etwa: „Bei der Arbeit mit dem Computer finde
ich eher durch Zufall, was ich suche.“)

Computerwissen Grundkenntnisse über die Funktionsweise, Kenntnis von Fachbegriffen wie 'Link',
praktische Fertigkeiten im Umgang (z.B.: Wie kann man ein ZIP-gepacktes Text-
dokument in die Textverarbeitung laden?)

Tabelle 38 Dimensionen der Computernutzungskompetenz (vgl Senkbeil und v. Davier 2001)

Im BLK-Programm: „Systematische Einbeziehung von Medien, Informations- und Kommuni-
kationstechnologien in Lehr-Lernprozesse“ wurde im Teilprojekt „Didaktisch optimierter
Einsatz Neuer Medien“ von Senkbeil und v. Davier (2001) ein entsprechender Fragebogen
zur Mediennutzung entwickelt, der sich auf den Computer und die Computernutzung von
Schülerinnen und Schülern bezieht und mit dessen Hilfe die vier beschriebenen Bereiche ab-
gefragt werden. Der Schwerpunkt des Fragebogens liegt auf der genauen Erfassung von
Computernutzungsbereichen und -motiven. Mit Hilfe des Fragebogens wurden verschiedene
Nutzungstypen charakterisiert. Senkbeil und v. Davier (2001) gehen von vier verschiedenen
Nutzungstypen aus: Enthusiasten, Spaßnutzer, Pragmatiker und Unerfahrene. Diese verschie-
denen Nutzungstypen oder auch Unterschiede in den einzelnen Bereichen wirken sich
möglicherweise auf die Effektivität des Unterrichtskonzepts aus.
Im Zusammenhang mit Untersuchungen zum Einsatz des Computers als Lernmedium haben
Richter, Naumann und Groeben (2001) 1999 das 'Inventar zur Computernutzung' entwickelt.
INCOBI zielt stärker auf Einstellungen und Vorwissen und weniger auf die Unterscheidung
von Nutzertypen (im Sinne der Medienkompetenzforschung), weil INCOBI als Instrument
zur Beschreibung von Lernergruppen (von Studierenden) gedacht ist: Die Entwicklung er-
folgte im Rahmen eines Forschungsprojekts zum Vergleich der Lerneffizienz von Hypertext
und linearem Text. Das Instrument umfasst:

„1. einen Fragebogen zur inhaltlich differenzierten Erfassung von computerbezogenen Einstellun-
gen (abgekürzt FIDEC),

2. einen Fragebogen, der sich auf Ihre Sicherheit im Umgang mit Computern und Computeran-
wendungen bezieht (SUCA),

3. einen Fragebogen zu ihrer Vertrautheit mit verschiedenen Computeranwendungen (VECA),
4. einen Fragebogen zu theoretischem Computerwissen (TECOWI),
5. einen Fragebogen zu praktischem Computerwissen (PRACOWI) sowie
6. einen Fragebogen, der relevante soziodemographische Informationen erhebt.“
(aus: Richter, Naumann und Groeben 2001, S. 2)

Zur Konzeption von INCOBI bemerken die Autoren:
„In Untersuchungen zum Lernen mit dem Computer wird Computer Literacy häufig als eine wich-
tige Lernervoraussetzung für die Nutzung computerunterstützter Lehr-/Lern-Angebote mit
fachspezifischen Inhalten konzeptualisiert. Als weitgehend eigenständiges Forschungsfeld hat sich
bisher die Untersuchung computerbezogener Einstellungen etabliert, wobei der Zusammenhang
von Computereinstellungen mit Computerwissen und Computernutzung im Vordergrund steht.“
(Richter, Naumann und Groeben 2001, S.2)

Computer Literacy wird als Gesamtheit prozeduraler und deklarativer Wissensbestände ver-
standen, die ein kompetentes Umgehen mit dem Computer ermöglichen. Das deklarative
Wissen wird als Wissen über grundsätzliche Funktionsweisen, Standardsoftware und Be-
triebssysteme beschrieben. Prozedurales Wissen wird über die Verfügbarkeit von
Handlungsmöglichkeiten etwa in Fehlerfällen erfragt. Zudem wird die subjektive Sicherheit

111

Aufbau der empirischen Untersuchung

im Umgang mit dem Computer durch die Befragung von subjektiven Einstellungen gegen-
über dem Umgang erfasst.
Der INCOBI wird als Instrument zur Beschreibung der Lerngruppe benutzt: Die Einstellungs-
skalen sind allgemein verwendbar, allerdings sind die Skalen zum deklarativen und
prozeduralem Wissen, zur Vertrautheit mit Computeranwendungen, sowie die Selbsteinschät-
zungsskala auf die Belange von Studierenden zugeschnitten, die Anwendbarkeit der einzelnen
Items auf andere Gruppen müsste geprüft werden (Richter, Naumann und Groeben 2001, dort
Fußnote S.10). Einige der Items des Wissenstests sind in den Fragebogen von Senkbeil und v.
Davier (2001) eingeflossen und konnten erfolgreich auch bei Schülerinnen und Schülern ver-
wendet werden. Für die Untersuchung werden die Fragen des INCOBI (siehe Anhang) in
Absprache mit den Entwicklern adaptiert an die Zielgruppe der Schülerinnen und Schüler:
Fragen zum Berufsleben und Studium wurden an schulische Bereiche geknüpft. Verwendet
werden die INCOBI-Skalen FIDEC, VECA, PRACOWI und SUCA. Zudem werden soziode-
mographische Daten erhoben.
Alternativ wäre die Entwicklung eines eigenen Instruments denkbar, damit könnte man dann
genauer auf die informatikspezifischen Bereiche eingehen – etwa auf das Vorwissen bezüg-
lich Programmierung. Aus der Perspektive, den Computer als Lernmedium im Unterricht
einzusetzen, und die darauf bezogenen Eigenschaften der Lernergruppe und das Vorwissen zu
erfassen, scheint eine Eigenentwicklung nicht notwendig.
INCOBI wird zudem in der Zwischenbefragung eingesetzt, um Änderungen in den generellen
Einstellungen zum Computer (FIDEC) und Änderungen in der Selbsteinschätzung der Sicher-
heit im Umgang mit dem Computer (SUCA) zu erfassen. Im Sinne des soziotechnischen
Ansatzes und der Verbindung der Lernziele mit Ansätzen des Konzeptwechsels kann damit
ggf. eine entsprechende Einstellungsänderung beschrieben werden.
Die Wiederholung von SUCA im Nachtest zielt auf einen anderen Aspekt. Nach Senkbeil und
v. Davier (2001) könnte die Verwendung des Computers als Lernmedium bei unerfahrenen
Nutzern eine Überforderung darstellen, die sich in steigender Unsicherheit und einer zuneh-
menden generellen Ablehnung des Computers ausdrückt. Entsprechende Effekte sollen so im
Zusammenspiel von Vor- und Nachtest beschreibbar werden.
Vorteile in der Verwendung eines vorliegenden Instruments liegen zum einen in der bereits
erfolgten Prüfung des Messverfahrens (Richter, Naumann und Groeben 2001, Senkbeil und v.
Davier 2001) und zum anderen in der Möglichkeit so die Untersuchungsgruppe mit anderen
Gruppen (hier: Studierenden der Wirtschafts- und Sozialwissenschaften) vergleichen zu kön-
nen. Das ist zwar kein idealer Vergleich, könnte aber zumindest Anhaltspunkte zur
Beurteilung der INCOBI-Messwerte der Untersuchungsgruppe liefen.

8.3.2 Ergänzung des Vortests durch ein leitfadengestütztes
Interview
Mit dem INCOBI im Vortest lassen sich nicht alle vier oben genannten Vorbedingungen er-
fassen. Das Vorwissen im Bereich Programmiersprachen und Objektorientierung sowie die
Interessenlage und Erwartungen an das Fach werden damit nur unzureichend beschrieben.
Eine Erfassung per Erweiterung des Fragebogens verbietet sich aufgrund der unzureichenden
Erkenntnislage: Die Konstruktvalidität könnte aufgrund fehlender Theoriebildung und fehlen-
der empirischer Kenntnisse nicht abgeschätzt werden. Man könnte erstens nicht angeben, ob
die Operationalisierungen inhaltlich auf die entsprechenden der Theorie entlehnten Konstruk-
te abzielen und zweitens wüsste man nicht, ob tatsächlich alle wesentlichen Konstrukte

112

Aufbau der empirischen Untersuchung

erfasst wären (man vergleiche etwa die Fragebogenentwicklung des INCOBI (Richter, Nau-
mann und Groeben 2001) oder des Fragebogens zur Mediennutzung (Senkbeil und v. Davier
2001)). Der wesentliche Vorteil der Fragebögen, ihre Quantifizierung, welche das Auswerten
erleichtert, und die Standardisierung, welche den Vergleich und die Interpretation erleichtert,
wird durch die fehlenden Kenntnisse über den Untersuchungsgegenstand zum Nachteil. Das
zu nutzende Instrument muss an mögliche individuelle Vorwissensstände und In-
teressenslagen der Schüler anpassbar sein, um entsprechend nachfragen zu können. Damit
wird man also qualitative Verfahren einsetzen müssen. Nach Bortz und Döring (1995, S. 283)
sind die wichtigsten Grundtechniken „nicht-standardisierte oder teil-standardisierte Befragun-
gen, Beobachtungen und nonreaktive Verfahren“. Hier wurde eines der am weitesten
verbreitete gewählt, das leitfadengestützte Interview. Das leitfadengestützte Interview sorgt
durch den Leitfaden dafür, dass die beiden verbliebenen Vorbedingungen abgefragt werden.
König und Vollmer (1999) nennen es daher Konstrukt-Interview. Diese Interview-Form er-
laubt individuelle Erweiterungen, um so die „subjektiven Deutungen“ bzw. die „subjektiven
Theorien“ (König und Vollmer (1999, S. 141) der einzelnen Schülerinnen und Schüler aufklä-
ren zu können.
Üblicherweise wird aufgrund des hohen Durchführungs- und Auswertungsaufwands eine
Stichprobe aus der Untersuchungsgesamtheit ausgewählt (aaO., S.146f.). Hier soll aufgrund
der Ergebnisgüte und der überschaubaren Zahl von vermutlich höchstens 40 Schülerinnen und
Schülern die gesamte Schülergruppe einzeln interviewt werden. Der Interviewverlauf wird
durch die Reihenfolge von üblicherweise drei bis sechs Leitfragen festgelegt (aaO., S. 149).
Für die Durchführung sind die Einstiegs-Leitfrage, die Anordnung, Anzahl und Formulierung
weiterer Fragen wichtig (aaO., S.149f und 154ff.).
Da die 40 Interviews im schulorganisatorischen Rahmen nicht von einer Einzelperson durch-
führbar sind, werden mehrere Interviewer zeitlich parallel die Befragungen durchführen. Um
die Interviews vergleichbar zu halten, werden die Interviewer geschult. Dazu gehören Pro-
beinterviews, die im Beisein aller Interviewer durchgeführt und gemeinsam ausgewertet
werden. Diese Probeinterviews werden mit Studierenden aus informatikfernen Studiengängen
als Versuchspersonen durchgeführt und dienen gleichzeitig zur Überprüfung des Leitfadens.
Die entsprechende Schulung wurde einige Tage vor der Befragung der Schülerinnen und
Schüler durchgeführt. Der in der Schulbefragung verwendete Interviewleitfaden ist im An-
hang in Tabelle 97 wiedergegeben.
Insgesamt werden vier Leitfragen (oder Themenkreise) angesprochen:
1. das Interesse (und damit auch die Motivation) am Fach,
2. die spezifischen Vorkenntnisse im Bereich Programmieren,
3. das Umgehen mit möglichen Problemen während der Arbeit am Computer als Indikator für

Frustrationstoleranz und Problemlösestrategien (als Ergänzung zum SUCA),
4. die subjektiven Theorien über Softwareentwicklung
Während die ersten beiden Leitfragen die beiden noch offenen Vorbedingungen ansprechen,
ergänzen die anderen zwei Leitfragen nochmals den Fragebogen. SUCA erfasst die Selbstsi-
cherheit im Umgang, Leitfrage 3 ergänzt durch die Frage nach möglichen Strategien im
Umgang mit auftretenden Problemen. Im Unterricht werden früher oder später ähnliche Pro-
bleme auftreten, mögliche vorhandene Verhaltensweisen beeinflussen dann das Verhalten im
Unterricht. Hier könnte ein Zusammenhang entdeckt werden.

113

Aufbau der empirischen Untersuchung

Mit Hilfe der vierten Leitfrage soll versucht werden, mögliche bereits vorhandene subjektive
Theorien im Sinne eines möglichen Konzeptwechsels durch den soziotechnisch ausgerichte-
ten Informatikunterricht zu beschreiben. FIDEC fragt bereits in eine entsprechende Richtung,
diese Frage spitzt dies zu auf Softwareentwicklung als soziotechnischen Gestaltungsprozess.
Vermutlich wird kein Schüler Softwareentwicklung angemessen beschreiben können, ggf. je-
doch andere Konzepte entwickelt haben. Falls sich in dieser Richtung nennenswerte
Aussagen ergeben, soll dann eine entsprechende Leitfrage ebenfalls in einem Interview im
Nachtest erhoben werden, um mögliche Anhaltspunkte für einen Konzeptwechsel zu finden.
Hier sind aber nur schwache Effekte zu vermuten, da ja Softwareentwicklung nicht explizit
als soziotechnischer Prozess thematisiert wird. Dennoch sind durch die Situierung, und damit
gewissermaßen implizite Anbindung des Unterrichts an Softwareentwicklungsprozesse, ins-
besondere in Phase 3 des life3-Phasenmodells entsprechende Lerneffekte denkbar.
Nach der Durchführung der Interviews müssen diese ausgewertet werden.

„Vielleicht das gravierendste Problem bei der Durchführung qualitativer Interviewverfahren ist die
Auswertung. Während standardisierte Fragebogen sich relativ schnell auswerten lassen, stellt sich
für qualitative Interviews das Problem der Datenmenge, die systematisiert, komprimiert und zu
Vorschlägen für praktische Konsequenzen verdichtet werden muß.“ (König und Volmer 1999, S.
161)

Ziel des Auswertungsverfahrens ist es einerseits, möglichst „gute und gesicherte Ergebnisse“
zu erzeugen und andererseits einen möglichst minimalen Aufwand für die Auswertung zu be-
nötigen (aaO.).
Dazu werden die Interviews zunächst bezüglich der Leitfragen zusammengefasst. Anhand der
Zusammenfassung werden die einzelnen Aussagen zum jeweiligen Themenkreis in Katego-
rien eingeteilt. Beispielsweise kann die Motivation der Schülerinnen und Schüler vermutlich
einfach eingeteilt werden in die Kategorien: keine, schwach, mittel und hoch.
Die Kategorien für die Themenkreise werden interpretierend aus den erhobenen Daten heraus
entwickelt. Die Interessen beziehen sich möglicherweise analog zu bislang in der Forschung
festgestellten Nutzungstypen auf wenige Kategorien; ebenso die Problemlösestrategien – falls
hier überhaupt Angaben über die bereits durch SUCA erfassten hinausgehen. Wie allerdings
die subjektiven Theorien über Softwareentwicklung kategorisiert werden können, ist offen.
Möglicherweise gibt es so gut wie keine Vorstellungen oder eine gleichförmige, wie etwa:
'Softwareentwicklung bedeutet, ein Programm in den Computer zu tippen'. Das konkret
durchgeführte Verfahren der Kategorisierung wird im nächsten Abschnitt anhand der Ergeb-
nisse vorgestellt.

8.3.3 Prozessbeobachtung
Um Wirkungszusammenhänge der einzelnen Elemente des life3-Unterrichtskonzepts, der
Werkzeuge und den Eigenschaften der Schülerinnen und Schüler sowie die situativen Bedin-
gungen des Schulunterrichts erkennen und auch nachvollziehbar beschreiben zu können, muss
das Unterrichtsgeschehen selbst in geeigneter Form erfasst werden.
In der Folge der Ergebnisse der TIMSS-Studie, in der einzelne Mathematik-Unterrichtsstun-
den in verschiedenen Ländern mit Videokameras aufgezeichnet und analysiert wurden, hat
die seit Jahrzehnten übliche Technik des Filmens von Unterricht durchaus neue Aspekte hin-
zugewonnen, und zwar durch neue, computergestützte Auswertungsverfahren. Auch in der
AG DDI in Paderborn wurde in zwei Forschungsprojekten (MUE und VILM, siehe Magen-
heim und Schubert 2000) an entsprechenden Instrumenten gearbeitet.

114

Aufbau der empirischen Untersuchung

Die wesentliche Schwierigkeit ist, das umfangreiche Datenmaterial systematisch und (auch
durch Dritte) nachvollziehbar auszuwerten – das gilt entsprechend für die im Vortest erhobe-
nen Interviews, die mit gleichen bzw. ähnlichen Verfahren auswertbar sind.
Dazu kann das Verfahren der Transkription mit anschließender Kategorisierung verwendet
werden. Nach diesem üblichen Auswertungsverfahren (vgl. König und Volmer 1999, S.
161ff.) werden die Daten zunächst transkribiert62. Für die Anfertigung eines solchen Tran-
skripts muss man etwa den anderthalb bis dreifachen Zeitaufwand des Geschehens rechnen.
Daher ist es üblich, „wenig inhaltstragende Textbestandteile (Ausschmückungen, Wiederho-
lungen, für die Fragestellung unwichtige Passagen)“ (aaO.) wegzulassen. Dann werden die
einzelnen Passagen kategorisiert, wobei sich die Kategorien aus theoretischen Konzepten
und/oder, etwa im Falle der oben verwendeten leitfadengestützten Interviews, aus Leitfragen
bzw. Nachfragekategorien ergeben können. Ggf. können die Kategorien auch auf der Basis
von Erfahrungen oder teilnehmender Beobachtung oder induktiv aus einzelnen Interviews ge-
bildet werden (aaO., S. 162f.).
Kategorisierung ist ein Quantifizierungsverfahren, bei dem nach einem Schema beobachteten
Ereignissen Kategorien zugeordnet werden. Der Auswerter erzeugt für jedes Ereignis einen
Eintrag in der entsprechenden Kategorie. Dies kann entweder intervallbasiert oder 'turn-by-
turn' erfolgen. Im ersten Fall wird für jeden festgelegten Zeittakt (beispielsweise: 1 s, 10 s
oder 1 Min) ein Eintrag angelegt, im anderen Fall wird jeweils Beginn und Ende markiert. In
beiden Fällen kann man anschließend Häufigkeiten und Dauer auszählen und anschließend
statistische Zusammenhänge zwischen den einzelnen Kategorien untersuchen. Das verwende-
te Kategoriensystem kann a prioi festgelegt werden (etwa im Falle hypothesenprüfender
Untersuchungen) oder hermeneutisch während der Auswertung erzeugt oder geändert werden.

Unterrichts-
geschehen

Kategoriensystem Intervall

Ereignistyp A
B
C
D
E

Auswertung

Zeit (Min) 1 2 3 40 5 6 7

Ereignistyp

C

D

E

A

B

0

0

I

0

I

0

0

I

0

0

0

I

0

I

I

I

0

0

I

0

I

0

I

0

0

I

0

I

0

0

I

0

0

0

I Summe II

II

IV

I

IV

Kategoriensystem Turn by Turn

Auswertung (von-bis)

Ereignistyp

C

D

E

A

B

0,6-0,8 / 0,9-1,0 / 1,1-1,2 / 1,3-1,4 / 1,5-1,6 / 2,0-2,4 / 3,0-3,3 / 3,4-3,5 / …

0,3-0,5 / 1,8-2,6 / 5,6-6,4

0,4-2,1 / 3,7-4,6 / 5,3-6,2

0,7-1,1 / 2,2-2,6 / 2,8-3,6 / 4,1-4,5 / 6,9-7,3

0,0–0,8 / 1,1-1,2 / 1,5-1,6 / 1,8-1,9 / 2,1-2,3 / 2,4-2,8 / 4,3-4,5 / 4,6-4,7 / … Summe 3,1 min

2,4 min

3,5 min

1,8 min

3,8 min

Abbildung 39 Kategorienbasierte Verfahren zur Auswertung von Unterrichtsgeschehen: Intervallbasiert werden
für feste Zeitintervalle Eintragungen erstellt. Turn-by-turn werden exakt Anfangs- und Endpunkte erfasst. Oben
sind die tatsächlich aufgetretenen Ereignisse dargestellt, darunter die intervallbasierte Kodierung und darunter
die Kodierung nach dem 'Turn by Turn'-Verfahren.
62 Die Äußerungen werden wortgetreu verschriftlicht. Dabei werden spezielle Symbole für Pausen, Intonation

und Interjektionen verwendet.

115

Aufbau der empirischen Untersuchung

In der hier vorgenommenen Untersuchung dient die Kategorisierung dazu, die Daten aus den
Interviews mit den Daten aus den Fragebögen und Tests in Beziehung setzen zu können, um
so mögliche Wechselwirkungen festzustellen.
Nicht nur die Interviews, auch die Unterrichtsstunden werden mit Hilfe eines Kategorien-
systems ausgewertet.
Einen wesentlichen Anteil bei der Auswertung mit Kategoriesystemen macht die Transkripti-
on aus. Diese war bisher notwendig, um überhaupt auf die erhobenen Daten zugreifen zu
können: Man kann die jeweilige Zuordnung zu einer Kategorie an der jeweiligen Passage no-
tieren; und diese Zuordnung kann von einem Kollegen überprüft werden. Man kann im Text
hin- und herspringen, um Verbindungen zu finden, man kann verschiedene Interviews/ Unter-
richtsstunden nebeneinander legen und direkt vergleichen.
Spannend ist nun, dass mittlerweile Auswertungssoftware existiert, die es erlaubt, diese Dinge
direkt mit den digitalisierten Originaldaten (Ton- und/oder Videoaufzeichnungen) zu tun. Am
IPN in Kiel wird das Programm Videograph entwickelt, das die quantitative Auswertung mit
Kategoriesystemen unterstützt63. Videograph erlaubt die synchrone Bearbeitung mehrerer Vi-
deos.
Die Erfahrungen in MUE (siehe auch Humbert, Magenheim und Schubert 2000) haben er-
geben, dass zwei Kameras, von denen eine den Lehrer, die andere die Klasse aufzeichnet,
eine hinreichend genaue Beobachtung des Unterrichtsgeschehens im Plenum erlauben. Zudem
ist der Störeffekt durch zwei fest installierte Kameras vernachlässigbar. Andererseits fehlt so
die Möglichkeit, etwa die Arbeit am Rechner oder Gruppenarbeitsphasen zu erfassen.
Gerade die Arbeit (mit Fujaba) am Computer wird jedoch vermutlich einen wesentlichen An-
teil am Unterricht haben. Hier hat die Arbeitsgruppe Didaktik der Physik an der Universität
Paderborn einen Forschungsaufbau konzipiert, der hier eingesetzt wird (siehe dazu Freuden-
reich und Rheinhold 2002): Die Schülerinnen und Schüler arbeiten an einem Klassensatz von
zehn Notebooks, auf denen die Lern-Software installiert ist und zusätzlich im Hintergrund ein
Programm gestartet wird, das eine Videoaufzeichnung des Bildschirms mit einer Tonspur der
jeweiligen Schüleräußerungen anlegt, die über das Notebook-Mikrofon aufgenommen wer-
den.
Ein solches Video kann mit vertretbarem Aufwand erzeugt und mit dem bereits erläuterten
Verfahren (vgl. Abbildung 39) in Videograph ausgewertet werden. Aus den Erfahrungen mit
dem Instrument aus der Physikdidaktik konnten für die Untersuchung einige praktische Ver-
besserungen vorgenommen werden: Die Notebooks werden so konfiguriert, dass das
Programm zur Videoaufzeichnung automatisch startet und beim Ausschalten des Notebooks
die Daten rekonstruiert werden können, auch wenn das Programm nicht ordnungsgemäß be-
endet wurde. Zudem bekommen die Schülerinnen und Schüler Logins mit Passwörtern, um zu
gewährleisten, dass an einem Notebook immer dieselben Schülerinnen und Schüler arbeiten.
Die erzeugten Videos werden automatisiert benannt, per Script ausgelesen und erhalten je-
weils einen Zeitstempel, der am Bildschirmrand eingeblendet wird, um ggf. diese Daten mit
den Videos aus dem Klassenraum in Beziehung setzen zu können.
Die Verbindung der Notebookaufzeichnungen und Klassenraumvideos ergibt ein Untersu-
chungsinstrument, das computergestützte Lernumgebungen im Sinne konstruktivistischer und
situierter Ansätze des Lernens in Gruppen erfassen soll. In Details ist das Instrumentarium si-
63 Daneben existieren kommerzielle Pakete, beispielsweise Interact (www.mangold.de), NUD*IST und NVivo

(www.qsrinternational.com), AQUAD (www.aquad.de). Diese Programme unterstützen quantitative oder
qualitative Verfahren und zum Teil Mischformen.

116

Aufbau der empirischen Untersuchung

cherlich zu verbessern und in verschiedenen Untersuchungen zu prüfen, aber auch im hier
vorliegenden Stadium ist es so weit ausgereift, dass es allgemein als Instrument zur empiri-
schen Untersuchung von computergestützten Lerneinheiten im Unterricht eingesetzt werden
kann (siehe dazu Freudenreich und Schulte 2002).
Im Detail verbesserungsfähig ist der Aufwand, der zur Auswertung der Daten betrieben wer-
den muss. Durch den Einbezug der Bildschirmvideos wird der Umfang der Daten (für
bestimmte Unterrichtsphasen und bei Einsatz der entsprechenden Zahl von Notebooks) ver-
zehnfacht64!
In der vorliegenden Untersuchung wird mit drei Mitteln versucht, den Mehraufwand zumin-
dest etwas abzufangen:
1. Es werden nicht alle erzeugten Videos untersucht, sondern anhand einer Auswahl redu-

ziert.
2. Die Videos werden zur Vorbereitung der Kodierung nicht mehr transkribiert sondern di-

rekt kodiert.
3. Zur Verringerung des Kodieraufwands wird in Fujaba eine 'logging'-Funktion eingebaut,

mit der die entsprechenden Fujaba-Nutzungsschritte automatisiert kodiert werden. Manuell
kodiert werden 'nur noch' ergänzende Daten: Schüleräußerungen und Arbeitsweisen wie
Kooperation, geplantes vs. ungeplantes Vorgehen, ...

Zu Punkt 1: Reduzierung durch Auswahl
Wir wenden ein gestuftes Auswertungsverfahren an: Zunächst werden nur einige wesentliche
Stunden ausgewertet. Anhand der dabei festgestellten Wechselwirkungen und Verbindungen
mit anderen Elementen des Unterrichts werden dann schrittweise weitere Stunden zur Aus-
wertung hinzugezogen. Dieses Verfahren geht von der Annahme aus, dass trotz sorgfältiger
Vorbereitung der Unterricht an einigen Stellen nicht zufriedenstellend funktioniert – und ge-
nau diese Stellen können Aufschluss geben über Probleme der Umsetzung, aber auch des
Konzepts. Ziel der empirischen Untersuchung im Sinne formativer Evaluation ist nämlich ge-
rade nicht das endgültige Bewerten eines feststehenden Unterrichtskonzepts, sondern das
explorative Erkunden des Konzepts, um im positiven Falle entsprechend Ansatzpunkte für
Konzeptverbesserungen zu finden – sowie im spezifischen Bereich des Erlernens objektorien-
tierter Technologien im Anfangsunterricht übertragbare Kenntnisse über den Zusammenhang
von Lernern, Lehrmethoden, Werkzeugen (Medien) und Inhalten zu gewinnen.
Die Unterrichtsphase, in der die meisten Probleme zu erwarten sind und in der eine intensive
Beobachtung des Geschehens erfolgen soll, ist Phase 3 des life3-Phasenmodells, in der die
Schülerinnen und Schüler möglichst ohne Hilfestellung durch den Lehrer ein kleines Pro-
gramm von Grund auf entwickeln sollen. Um hier die Datenfülle zu reduzieren kann sich
(zumindest im ersten Schritt) die Auswertung auf eine der beiden Klassen beschränken.
Denkbar ist, dass einerseits die Schülerinnen und Schüler das Programm nicht fertig stellen
können und andererseits nicht so vorgehen wie durch das Unterrichtskonzept nahe gelegt.

64 Das entwickelte life3-Unterrichtskonzept deckt mit den drei Phasen vermutlich etwa ein Halbjahr ab, das sind
ca. 50 Unterrichtsstunden. Schwierig abzuschätzen ist der Anteil der Rechnerarbeit am Unterricht. Bei viel-
leicht ca. 20 Prozent würde dies also 10 Stunden ausmachen. Das würde für die beiden Klassen 100 Stunden
Unterrichtsvideo und dieselbe Menge an Bildschirmvideos ergeben, bei dreifacher Zeit bis zur Kodierung
würde das insgesamt einen geschätzten Aufwand von 600 Unterrichtsstunden zur Datenaufbereitung erge-
ben. Unsicherheiten entstehen durch wenig Erfahrung mit den Werkzeugen und aufgrund des explorativen
Untersuchungscharakters, der es wahrscheinlich macht, dass die Kodierung mehrfach durchgeführt werden
muss (etwa weil das Kodierungssystem induktiv angepasst wird).

117

Aufbau der empirischen Untersuchung

Probleme mit einzelnen syntaktischen und semantischen Konstrukten sowie mit der generel-
len Vorgehensweise würden dann auf Schwächen in Phase 2, ganz grundsätzliche
Verständnisprobleme auf Schwächen in Phase 1 hindeuten. Entsprechend würde man die je-
weilige Phase, die jeweiligen Stunden genauer untersuchen. Damit die jeweiligen Stunden
auffindbar sind, wird der Unterricht von Mitarbeitern der Arbeitsgruppe beobachtet. Zu jeder
Stunde wird ein Beobachtungsbogen und ein sehr kurzes (drei bis zehn Sätze umfassendes)
Stundenprotokoll (siehe Anlage) angefertigt.
Auf diese Weise sollten Wirkungszusammenhänge beschreibbar werden. Im Umkehrschluss
würden Aspekte, die in Phase 3 den Schülerinnen und Schülern überhaupt keine Schwierig-
keiten bereiten, auf positiv wirkende Zusammenhänge hinweisen.
Zusammenfassend zu Punkt 1: Zunächst werden die Beobachtungsdaten aus einer Klasse und
aus Phase 3 ausgewertet. Schwerpunkt ist die Identifikation von Problemen der Schülerinnen
und Schüler bei der Bewältigung der gestellten Aufgabe. Messbar werden diese anhand der
Eingriffe durch den Lehrer (Unterrichtsvideo und Protokolle), anhand der Programmierfehler,
sowie der Anzahl und der zeitlichen Dauer der Versuche, diese zu beheben (Logfiles) sowie
der Schüleräußerungen während der Arbeit (Bildschirmvideos).

Abbildung 40 Videograph: Oben links: das zu untersuchende Video (hier: Fujaba-Nutzung); oben rechts:
Kodierfenster; unten: Zeitleiste mit eingetragenen Kodierungen.

Zu Punkt 2: Verringerung des Auswertungsaufwands durch direkte Kodierung
Die Transkription der Daten ist der weitaus aufwändigste Prozess der Datenaufbereitung zum
Zwecke der Interpretation und dient (wie oben beschrieben) dazu, die Daten für die Kodie-
rung und für qualitative Analysen zugänglich zu machen. Mit Hilfe von softwaregestützten

118

Aufbau der empirischen Untersuchung

Umgebungen wie Videograph (siehe Abbildung 40) kann man jedoch sehr gut auf einzelne
Stellen eines Videos zugreifen, dieses kommentieren, Kodierungen einfügen etc. und gleich-
zeitig die Zuordnung einer Kodierung zu der jeweiligen Stelle im Video abspeichern. Damit
ist ebenso wie bei Transkripten die Überprüfung der Kodierungen möglich. Schwierig ist die
Weitergabe der Daten: Transkripte dienen als Anonymisierungsverfahren, um Daten veröf-
fentlichen zu können. Der Sinn der Darstellung von Transkripten in der Veröffentlichung ist
umstritten; mindestens kleinere Ausschnitte zu illustrierenden Zwecken scheinen sinnvoll zu
sein. Für solche Fälle können auch in dieser Untersuchung einzelne, sehr kurze Abschnitte
transkribiert (und somit anonym publiziert) werden. Die direkte Kodierung anhand der digita-
lisierten Daten wird dabei auch für die Interviews in der Eingangs- und Abschlussbefragung
so erfolgen. Auch diese werden nicht transkribiert, sondern zusammengefasst und dann ko-
diert.
Insgesamt führt der Verzicht auf durchgehende Transkription der Daten zu einer enormen
Verringerung des Aufwands bei vertretbarer Zunahme der Fehlerquellen durch mögliche fal-
sche Zuordnungen65 in der Auswertung.
Zu Punkt 3: Reduzierung des Kodieraufwandes durch automatisierte Kodierung
Fujaba wird automatisiert Logfiles erzeugen, die angeben, wann welche Fujaba-Funktion auf-
gerufen wurde, wie lange der entsprechende Dialog geöffnet war und ergänzende Angaben
machen (z.B.: welcher Quelltext eingegeben wurde). Tabelle 41 zeigt ein Beispiel für ein
Logfile:

ID Startzeit Endzeit Schritttyp Diagram Class method object type modifier Guard
Type

Ok?

9 09:03:41 09:10:41 StartActivityDiagram Flaschendre-
hen

Spieler createSpiel 0

9 09:03:41 09:03:43 Edit_Stop_Activity Flaschendre-
hen

Spieler createSpiel 0

9 09:03:44 09:03:51 Edit_SDM_Object createSpiel() Spieler createSpiel this Spieler NONE 0
9 09:03:53 09:03:56 Edit_SDM_Object createSpiel() Spieler createSpiel erstesFeld Feld CREATE 0
9 09:03:57 09:03:59 Edit_SDM_Object createSpiel() Spieler createSpiel erstesFeld Feld CREATE 0
9 09:04:34 09:04:36 Edit_Statement_Activi-

ty
Flaschendre-

hen
Spieler createSpiel 0

9 09:04:37 09:04:42 Edit_Act_Transition createSpiel() Spieler createSpiel Boolean Ex-
pression

1

9 09:04:47 09:04:52 Edit_Act_Transition createSpiel() Spieler createSpiel Boolean Ex-
pression

1

9 09:10:33 09:10:41 Edit_Act_Transition createSpiel() Spieler createSpiel Else 0
9 09:03:41 09:10:41 EndActivityDiagram 0

Tabelle 41 Ein (für die Auswertung aufbereitetes) Fujaba-Logfile, die Angabe der Notebooknummer in Spalte 1
ist hinzugefügt worden.

65 Die Verallgemeinerung des Auswertungsverfahrens (Verzicht auf Transkripte) auf hypothesenprüfende Un-
tersuchungen, bei denen ein einzelner Effekt (oder wenige, zusammengehörende Effekte) möglichst treffge-
nau und unter möglichst exakter Angabe der (quantifizierten) Effektgröße und mit minimaler Unsicherheit
durch das Auswertungsverfahren untersucht werden sollen, wäre zu prüfen, ist jedoch nicht automatisch
sinnvoll, auch wenn dies einer der Gründe für die Entwicklung der entsprechenden Auswertungssoftware ist.
Daher ist die Verbindung der Instrumente Unterrichtsvideo, Bildschirmvideo mit automatischer Kodierung
von einzelnen Aspekten durch Logfiles ein so interessantes Verfahren: Es verbindet Arbeitserleichterung
(automatisches Kodieren, Verzicht auf durchgehende Transkripte) mit einer Verringerung der Fehlerquellen
bei Messung und Auswertung. Mittels solcher Kombination der Instrumente scheinen mir hypothesenprüfen-
de Untersuchungen eher möglich.

119

Aufbau der empirischen Untersuchung

Damit wird automatisiert erfasst, was die Schülerinnen und Schüler wann an ihren Program-
men getan haben: was neu erstellt wurde, was geändert wurde, was mit dem Debugger Dobs
ausprobiert wurde etc.
Der Aufwand für die Kodierung der Bildschirmvideos kann damit wesentlich reduziert wer-
den. Da die Arbeit an Fujaba automatisch kodiert und damit auswertbar wird, dienen die
Bildschirmvideos hauptsächlich dazu, die mit der Arbeit an Fujaba verbundenen Äußerungen
der Schülerinnen und Schüler aufzuzeichnen. Die Schülerinnen und Schüler arbeiten ja zu
zweit am Rechner beziehungsweise in der Phase 3 in Kleingruppen an einem Projekt. Die
Schüleräußerungen während der Arbeit am Computer ergänzen das durch die Logfiles gewon-
nene Bild.
An den Äußerungen sollte erkennbar sein, ob die Schülerinnen und Schüler gezielt vorgehen
bzw. zumindest aufgrund von Vermutungen, ob sie 'einfach mal ausprobieren' oder ob sie von
anderen Gruppen oder dem Lehrer Hilfestellung bekommen haben.
Die die Logfiles ergänzenden zusätzlichen Auswertungs-Kategorien sind: Geplantes/Unge-
plantes Vorgehen; Hilfe von Außen/Hilfe durch voriges Projekt im Unterricht. Ggf. werden
anhand des tatsächlichen Unterrichtsverlaufs, d.h. anhand von Ergebnissen der Unterrichtsbe-
obachtung oder Hinweisen der Lehrer weitere Kategorien gebildet.
Die Prozessbeobachtung und Auswertung der aufgezeichneten Videos aus dem Unterricht
und der Arbeit an den Notebooks (die Bildschirmvideos) wird also durch die Kodierung in
Kategoriensysteme erfolgen. Der dabei auftretende Arbeitsaufwand wird reduziert durch ein
schrittweises Vorgehen, bei dem zuerst die Unterrichts- und Bildschirmvideos aus der dritten
Unterrichtsphase ausgewertet werden. Denn in dieser Phase wird sich zeigen, ob die Schüle-
rinnen und Schüler das entsprechende Verständnis und die Kompetenzen erworben haben, um
eigenständig die gestellte Aufgabe zu lösen.
Der Umweg der Kategorisierung über Transkripte wird durch die Auswertungssoftware Vi-
deograph vermieden, und schließlich werden wesentliche Aspekte der Bildschirmvideos
durch eine Logging-Funktion in Fujaba automatisiert kodiert.
Durch die Prozessbeobachtung werden die inneren Beziehungen des life3-Unterrichtskonzepts
und problematische, aber vielleicht auch erfolgreiche Stellen aufgezeigt. Die Instrumente sa-
gen aber relativ wenig über den Grad der Zielerreichung aus, zudem sind die Daten bezogen
auf Gruppenarbeit, nicht auf die einzelnen Schülerinnen und Schüler. Dementsprechend wird
die Unterrichtsbeobachtung durch einen Nachtest ergänzt.

8.3.4 Zwischenbefragung
Aufgabe der Zwischenbefragung und des Nachtests ist die Klärung der Frage, ob sich Ände-
rungen während des durchgeführten Unterrichts ergeben haben. In der Zwischenbefragung
werden folgende Daten erhoben:
1. Änderungen in den generellen Einstellungen (FIDEC)
2. Änderungen in der subjektiven Kompetenzwahrnehmung in der Computerbedienung

(SUCA)
3. Änderungen in den subjektiven Theorien über Softwareentwicklung
Die Zwischenbefragung nimmt ebenfalls die Verschränkung von standardisierter Befragung
mit quantitativ ausgerichteter Auswertung und einer ergänzenden individuellen Befragung mit
qualitativ ausgerichteter Auswertung auf.

120

Aufbau der empirischen Untersuchung

Ergänzend zum wiederholten Einsatz von SUCA und FIDEC wird
4. ein Test zur Erfassung objektorientierter Konzepte entwickelt und eingesetzt.
Der Test FEOK1 soll das Verständnis objektorientierter Konzepte messen (siehe S. 216 ff.).
Die Fragen beziehen sich einerseits auf begriffliches Wissen zum Unterschied von Klasse und
Objekt sowie auf Klassendiagramme. Andererseits wird das Verständnis von Klassen- und
Objektstrukturen geprüft, indem die aus einem Klassendiagramm erzeugbaren Objektstruktu-
ren angegeben werden sollen. Dieser Test, der am Ende der zweiten Unterrichtsphase
eingesetzt wird, soll die in der dritten Phase zu erwartenden Ergebnisse ergänzen. In der drit-
ten Phase werden die Schülerinnen und Schüler ein eigenes Projekt entwickeln, sodass dabei
der bisherige Lernerfolg sichtbar werden sollte. Im FEOK1 werden daher einige als grundle-
gend betrachtete Aspekte (aus dem Bereich A, vgl. Tabelle 35, S. 106) geprüft, um mögliche
Unterschiede im Lernerfolg der abwählenden und der nicht abwählenden Schülerinnen und
Schüler feststellen zu können.
In der Zwischenbefragung sind zudem Einzelinterviews durchgeführt worden. Der Leitfaden
der Einzelinterviews für die Zwischenbefragung:

Leitfaden Zwischeninterview
Begrüßung, Klären offener Fragen, beispielsweise zum Umgang mit den erhobenen Daten oder zu deren Aus-
wertung
Erster Fragenblock: Vorstellungen über Softwareentwicklungsprozesse
I) Wie stellst du dir die Entwicklung einer Software in einer Softwarefirma (ggf. im Unterschied zur Schule)
vor?
Je nach Antwort weiterfragen:
a) Wie stellst du dir den Vorgang vor, wenn ein Kunde ein spezielles Programm haben will?
b) Welche verschiedenen Phasen kannst du dir dabei vorstellen?
c) Welche verschiedenen Aufgaben gibt es für die Mitarbeiter?
II) Versuche mit eigenen Worten zu beschreiben, was Modellierung ist. (Wo und wann wird sie verwendet?)
III) Entsprach der Unterricht deinen Erwartungen?
Wie hättest du ihn dir anders gewünscht? Weshalb wäre das besser gewesen?

Tabelle 42 Leitfaden für die Interviews in der Zwischenbefragung

In den Einzelinterviews wird die Frage nach der Konzeption von Softwareentwicklungspro-
zessen aus dem Eingangsinterview wiederholt. Zudem wird nach der subjektiven
Einschätzung der Reihe gefragt: Zufriedenheit, Schwierigkeitsgrad, Probleme, Verbesse-
rungsvorschläge. Hier soll Raum für individuelle Bewertungen gegeben werden.

8.3.5 Nachtest
Der Nachtest gliedert sich wiederum in einen schriftlichen Test und eine Befragung, die die-
ses Mal in Form einer Gruppenbefragung durchgeführt wurde.
Der Fragebogen FEOK2 wird im Anhang auf S. 220 wiedergegeben. Hier wird aufgrund der
Unsicherheiten im Umgang mit der FGrafik und möglichen Auswirkungen auf die soziotech-
nische Bedeutsamkeit des Anwendens 'vorgefertigter Bauteile' in der Softwareentwicklung
die generelle Einschätzung von Klassenbibliotheken abgefragt (FEOK2 a). Diese Frage kann
also zum Bereich E (vgl. Tabelle 35, S. 106) gerechnet werden.
Des Weiteren wird geprüft, ob die Schülerinnen und Schüler neben den im Unterricht aus-
schließlich behandelten Spielen auch andere Zusammenhänge objektorientiert beschreiben
können (Bereich C 2, vgl. Tabelle 35, S. 106). Dazu sollen sie Klassendiagramme zu einer

121

Aufbau der empirischen Untersuchung

Firmenstruktur und zur Beschreibung eines Bestellsystems entwerfen (FEOK2 b und c)66. In
einem weiteren Teil wird das Verständnis der Semantik der grafischen Darstellungen Fujabas
überprüft. Dazu sollen die Schülerinnen und Schüler unter anderem eine im Unterricht nicht
verwendete Notation erläutern. Damit wird geprüft, wie sich die Schülerinnen und Schüler
mit ihrem Verständnis der Objektorientierung (möglicherweise) selbstständig unbekannte
syntaktische Formen erschließen können. Damit werden Lernziele aus den Bereiche A 3, D
und B 2 (Tabelle 35, S. 106) angesprochen.
Bezüglich der in FEOK1 und FEOK2 eingesetzten Fragen ist allgemein zu bemerken, dass die
darin angesprochenen Aspekte nicht aus einer Theorie der Objektorientierung oder einer in
der Fachdidaktik etablierten Theorie von Lernzielen aus dem Bereich Objektorientierung ab-
geleitet worden sind, da solche Theorein nicht existieren. Daher könnten andere
Untersuchungen zu demselben Thema leicht unterschiedliche Aspekte erfragen – die Ver-
gleichbarkeit, aber auch die inhaltliche Gültigkeit von FEOK1 und FEOK2 sind also nur
eingeschränkt gegeben. Bezüglich einiger Fragen wurde auf Vorschläge anderer Arbeitsgrup-
pen zurückgegriffen (etwa FEOK2 d), um so die Vergleichbarkeit der Fragestellungen zu
verbessern und um ein wenig darauf hinzuarbeiten, den Lernerfolg nicht vor dem Hintergrund
der entwickelten Unterrichtskonzeption zu messen.
Momentan entstehen Arbeiten, die als Grundlage für die Konstruktion validerer Testinstru-
mente dienen können: Bezüglich der Beschreibung von Kompetenzstufen und der
Schwierigkeit von Aufgaben aus dem Bereich der Objektorientierung stellt Brinda eine Ein-
teilung auf der Basis der Bloom'schen Taxonomie vor (Brinda, in Druck); es werden
Wissensnetze entwickelt, welche die Voraussetzungen für bestimmte Aufgaben beschreiben.
Zudem werden in der Informatikdidaktik Vorschläge erarbeitet, die angeregt durch die PISA-
Studie Kompetenzstufen 'informatischer Literalität' zu entwickeln versuchen (Friedrich 2003
und Puhlmann 2003). Diese Versuche gründen im Unterschied zur PISA-Studie momentan
zwar noch nicht auf einer theoretisch fundierten Basis, können jedoch bei einer weiteren Ent-
wicklung und einem Diskussionsprozess in der Informatikdidaktik zu einer Grundlage
werden, damit Lernzieltests (wie hier FEOK1 und FEOK2) an allgemein akzeptierten Lern-
zielen und Kompetenzstufen ausgerichtet werden können.

8.4 Zusammenfassende Übersicht zum Untersuchungsablauf
Im Schuljahr 2001/02 wurde die Untersuchung in zwei Schulklassen durchgeführt. Aufgrund
äußerer Umstände begann der Unterricht nach dem life3-Unterrichtkonzept erst einige Wo-
chen nach dem Schulbeginn. In einem Kurs wurde in der Zwischenzeit der Hardware-Aufbau
des Rechners behandelt, im anderen waren die Schülerinnen und Schüler im Betriebsprakti-
kum.
Der Unterricht verlief in beiden Kursen parallel. Es gab während des Unterrichts immer wie-
der Treffen mit den am life3-Projekt Beteiligten. Dabei wurde der Unterrichtsverlauf
besprochen und ggf. wurden Elemente geändert.
Zunächst soll hier über einige praktische Details der Durchführung berichtet werden.
Jede Stunde wurde im Normalfall von zwei Beobachtern beobachtet und mit zwei Videoka-
meras aufgezeichnet. Die Kameras wurden an vorher vereinbarten Positionen aufgestellt
wobei die hintere Kamera von einem der Beobachter bedient wurde. Der zweite Beobachter
hat anhand eines Beobachtungsbogens die wesentlichen Schritte der Stunde mitprotokolliert.

66 Diese beiden Aufgaben stammen aus Übungsaufgaben einer Grundstudiumsveranstaltung.

122

Aufbau der empirischen Untersuchung

Alle Beobachter wurden vor Beginn der Untersuchung eingewiesen67. Eine Kamera hat je-
weils Tafel, Lehrer und die Beamer-Projektion gefilmt, die andere die Klasse. Die
Tonaufzeichnung erfolgte durch aufgesetzte externe Mikrofone. Die eingebauten Mikrofone
der Kameras haben das Bandlaufgeräusch zu laut mit aufgezeichnet. Mit den aufgesteckten
Mikrofonen war die Qualität ausreichend – Unterrichtsgespräche, Lehrer- wie Schüleräuße-
rungen waren verständlich. Die vordere Kamera war zusätzlich mit einer Weitwinkellinse
ausgestattet, um den gesamten Klassenraum erfassen zu können und stationär auf einem Sta-
tiv aufgestellt. Die hintere Kamera wurde ebenfalls auf einem Stativ angebracht, allerdings
hat hier einer der beiden Beobachter die Kamera bedient, um beispielsweise Tafelanschriebe
oder Projektionen zu filmen. Steckdosen sind in den Computerräumen genügend angebracht
gewesen, sodass die Stromversorgung kein Problem darstellte.
Die Filme wurden anschließend zur Archivierung, zum schnelleren Zugriff (kein Spulen) und
um sie mit der Auswertungssoftware auswerten zu können digitalisiert. Insgesamt sind 124
Unterrichtsstunden beobachtet worden. Das ergibt rechnerisch 248 gefilmte Unterrichtsstun-
den, von denen einige fehlen: In der dritten Projektphase wurde ein Kurs nur mit einer
Kamera gefilmt und insgesamt drei Videokassetten haben einen Bandschaden gehabt, sodass
sie nicht ausgewertet werden konnten.
Aus den Unterrichtsprotokollen wurden anschließend von den Beobachtern zu jeder Stunde
eine Kurzfassung erstellt (meistens drei bis fünf Sätze), die zum schnelleren Wiederauffinden
bestimmter Unterrichtspassagen sehr wichtig gewesen ist (siehe Anhang).
Daneben wurden zu jeder Stunde zehn Notebooks mitgebracht, auf denen eine Bildschirmvi-
deosoftware installiert war. Jede Schülergruppe hatte ein eigenes Login. Dadurch wurde
sichergestellt, dass die Schülerinnen und Schüler auch jedesmal an demselben Notebook ar-
beiten. Dieses ist wichtig, um den Entstehungsverlauf der Projekte nachvollziehen zu können.
Die Schülerinnen und Schüler haben die Geräte sehr sorgfältig genutzt und jeweils am Stun-
denende in eine dafür eigens angeschaffte und ausstaffierte Transportbox zurückgelegt. Die
Geräte wurden anschließend in der Universität neu aufgeladen, da im Unterricht die Note-
books im Akkubetrieb arbeiteten, um den Aufbau zu vereinfachen. Außerdem wurden jeweils
die aufgezeichneten Daten herunterkopiert (Bildschirmvideos und Logfiles).
Die Software zum Aufzeichnen der Bildschirmvideos wurde so installiert, dass sie automa-
tisch beim Anmelden startet und beim Abmelden herunterfährt. Das eingesetzte Produkt
Camtasia68 wurde wegen der Eigenschaft ausgewählt, Ton- und Bildinformation besonders
gut, also auch unter Last synchronisiert aufzuzeichnen, braucht allerdings dafür eine Phase, in
der das Video vor dem Abspeichern finalisiert wird. Aus Erfahrungen der Arbeitsgruppe Di-
daktik der Physik hat sich jedoch ergeben, dass die Schülerinnen und Schüler am
Stundenende die Notebooks oft direkt ausschalten und zurückgeben. Daher wurde Camtasia
so installiert, dass beim Herunterfahren Camtasia kontrolliert abstürzt und die Videos an-
schließend im Labor der Universität aus den getrennt vorliegenden Ton- und Bildspuren
erzeugt worden sind. Dabei konnten jedoch ca. 10 Prozent der Bildschirmvideos nicht exakt
synchron erzeugt werden, sodass es Verschiebungen zwischen Ton und Bild gibt. Dieses Ver-
fahren ist jedoch gegenüber berichteten Ausfällen von ca. bis zu einem Drittel (wenn die

67 Bei einem Beobachtungszeitraum von insgesamt über einem halben Jahr mit jeweils vier Terminen pro Wo-
che konnten jedoch nicht immer je zwei Personen anwesend sein, sodass einige Unterrichtsprotokolle fehlen.
Per Video wurden jedoch alle Stunden aufgezeichnet.

68 www.techsmith.com

123

Aufbau der empirischen Untersuchung

Schülerinnen und Schüler jeweils am Stundenende selbst die erzeugten Videos finalisieren
sollten) erheblich sicherer.
Die Logfiles konnten ebenfalls erzeugt werden. Allerdings werden nicht alle Fujaba-Eingaben
protokolliert, sondern nur solche, die über einen Dialog aufgerufen werden. Auch bei den
Logfiles gab es nur einen minimalen Ausfall.
Die Einzelinterviews wurden ebenfalls mit Camtasia und den Notebooks aufgezeichnet. Dazu
wurden in einem zweiten Raum jeweils vier bis sechs Notebooks aufgebaut und die Schüle-
rinnen und Schüler kamen nacheinander zu den Interviews, während im Klassenraum der
Lehrer die anderen Schülerinnen und Schüler beaufsichtigte. Auch zu den Interviews wurden
kurze Protokolle angefertigt – hauptsächlich um die Dateien später zuordnen zu können. Eine
ursprünglich geplante Kurzfassung der Interviews hat sich dagegen nicht gelohnt, da die ein-
zelnen Interviews mit ca. drei bis sieben Minuten recht kurz waren. Die einzelnen Interviewer
wurden vorher gemeinsam geschult. Dazu wurden insgesamt drei Studierende (die jeweils
nicht Informatik studierten) nach dem Interviewleitfaden befragt und anschließend Fragetech-
niken, Vorgehen, Einsatz der Technik mit der gesamten Interviewergruppe besprochen. Da
die Zwischenbefragung von derselben Interviewergruppe durchgeführt wurde, wurde vor
Durchführung des zweiten Interviews nur der Leitfaden besprochen, aber nicht mehr die Art
der Durchführung.
Nicht ganz gelungen ist die Abschlussbefragung (das dritte Interview der Schülerinnen und
Schüler) als Gruppenbefragung der ganzen Klasse – hier sind nicht kontrollierbare Gruppen-
effekte aufgetreten, sodass auf eine Auswertung der Gruppenbefragung schwierig ist (vgl.
Abschnitt 9.4.1, ab S. 155).
Aufgrund des späteren Anfangs verschob sich das Projektende über das Halbjahresende hi-
naus. Insgesamt musste im Unterricht zum Teil auch auf die zu schreibenden Klausuren
Rücksicht genommen werden69. Das hat aber keinen Einfluss auf das Konzept gehabt.
Für die Untersuchung gab es aufgrund des Halbjahreswechsels ein Problem: Mit dem Halb-
jahreswechsel änderte sich der Stundenplan, eine Unterrichtsstunde der beiden Kurse lag nun
zeitgleich70. In einer Klasse mussten daher anstelle der Notebooks die schuleigenen Rechner
benutzt werden. In dieser Klasse gibt es deshalb keine Bildschirmvideos aus der Projektphase.
Hier wurde der Unterricht mit einer Kamera aufgezeichnet. Einige Schülerinnen und Schüler
wählten mit dem Halbjahresende das Fach ab. Damit änderte sich die Zusammensetzung der
Untersuchungsgruppe. Da gerade die abwählenden Schülerinnen und Schüler als die vermut-
lich mit dem Unterricht unzufriedenen verstärkt auf Probleme und Schwierigkeiten des
Unterrichts hinweisen könnten, würden somit ggf. interessante Auskünfte fehlen. Daher wur-

69 Notenrelevante Aspekte des Unterrichts wurden aus der Evaluation ausgeklammert. An den entsprechenden
Stellen wurden die Kameras abgeschaltet. Allerdings wird in einem späteren Abschnitt (10.1.2) über eine
Klausuraufgabe und ihre Beantwortung im Allgemeinen berichtet werden, da diese Aufgabe in der life3-
Gruppe diskutiert worden ist.

70 In der ursprünglichen Planung war davon ausgegangen worden, die empirische Untersuchung innerhalb des
ersten Halbjahres abschließen zu können. Daher wurden im Vorfeld der Untersuchung keine speziellen Ver-
einbarungen mit den beiden Schulleitungen getroffen, um etwaige Stundenplanänderungen zum Halbjahres-
wechsel auszuschließen. Während des laufenden Schuljahres wurde schlicht versäumt, einen Stundenplan-
wechsel rechtzeitig zu antizipieren und entsprechende Maßnahmen zu ergreifen eine Veränderung zu verhin-
dern. Davon abgesehen hat die Unterrichtsbeobachtung einer der beiden Kurse genügend Daten ergeben.
Was allerdings gelitten hat, ist die Vergleichbarkeit der beiden Kurse und die genauere Untersuchung mögli-
cher Ursachen für Unterschiede in der Unterrichtsdurchführung. Hierzu kann zum Teil nicht auf Videos bzw.
nur auf Videos einer Kamera und auf Beobachtungsaufzeichnungen zurückgegriffen werden. Im zweiten
Halbjahr wurden zudem Bildschirmvideos nur noch in einem der beiden Kurse angefertigt.

124

Aufbau der empirischen Untersuchung

de die Abschlussbefragung vorgeschoben, um sie noch in die Untersuchung einbeziehen zu
können. Diese vorgezogene Befragung wurde mit allen Schülerinnen und Schülern durchge-
führt und wurde so zu einer Zwischenbefragung. Damit stellte sich die Frage, ob dann am
tatsächlichen Ende nochmals die geplante Abschlussbefragung durchgeführt werden sollte.
Aufgrund der zeitlichen Nähe und des Aufwands wurde die Abschlussbefragung geändert:
Gruppenbefragung statt Einzelinterviews, Verzicht auf FIDEC und SUCA, die zum dritten
Mal eingesetzt worden wären. Dafür wurde ein geänderter Test zur Abfrage objektorientierter
Konzepte durchgeführt.
Die dritte Phase des Unterrichts fand im zweiten Halbjahr statt, die eingesetzten Notebooks
mit der installierten Bildschirmaufzeichnungssoftware, mit denen die Schülerinnen und Schü-
ler arbeiten sollten, konnten daher nur in einer Schule verwendet werden. Dementsprechend
kann diese Phase nur für eine Lerngruppe ausgewertet werden.

Vortest Zwischentest

• FEOK
• FIDEC
• SUCA
• Einzelinterviews:

• Vorstellungen über
Softwareentwicklung
• Zufriedenheit mit
dem Unterricht, dem
Werkzeug

Nachtest

• FEOK2
•Gruppenbefragung

Unterrichts-
beobachtung

• Videoaufzeichnung
• Bildschirmvideos
• Logfiles

Phase, in der Unterricht stattfindet

Unterrichts-
beobachtung

• Videoaufzeichnung
• Bildschirmvideos
• Logfiles

•FIDEC
•SUCA
•VECA
•PRACOWI
•Einzelinterviews:

•Vorstellungen
über Software-
entwicklung
•Motivation
•Programmier-
kenntnisse

Abbildung 43 Ablauf der Untersuchung: Einsatzzeitpunkt der verschiedenen Instrumente: vorher, nachher oder
begleitend

125

Ergebnisse der empirischen Untersuchung

9 Ergebnisse der empirischen Untersuchung
In diesem Kapitel werden die deskriptiven Ergebnisse der empirischen Untersuchung zusam-
men mit Kommentaren und ergänzenden Erläuterungen zu den eingesetzten Instrumenten
vorgestellt. In Kapitel 10 werden die Einzelergebnisse interpretiert und weitergehende Aus-
wertungen erfolgen. Die Darstellung der Einzelergebnisse erfolgt in zeitlicher Reihenfolge:
Vortest (Abschnitt 9.1), Zwischenbefragung (Abschnitt 9.2), Unterrichtsbeobachtung (Ab-
schnitt 9.3) und Nachtest (Abschnitt 9.4).
Bei der Vorstellung der Ergebnisse werden jeweils mögliche unterscheidbare Gruppen, be-
züglich Geschlecht und Lerngruppe, angegeben. Ob die Unterschiede statistisch signifikant
sind, wird mit dem U-Test71 berechnet, da dieser relativ wenig Ansprüche an das Datenniveau
erhebt:

„Der von H. B. Mann und D. R. Whitney im Jahre 1974 entwickelte U-Test dient zum Vergleich
von zwei Stichproben hinsichtlich ihrer zentralen Tendenz, wobei die Werte beliebig verteilt sein
oder Ordinalniveau aufweisen können. Im Falle nichtgegebener Normalverteilung oder bei Ordi-
nalniveau ersetzt der U-Test also den t-Test nach Student. Wendet man den U-Test bei
normalverteilten Werten an, so besitzt er eine Effizienz von 95% des t-Tests.“(Zöfel 2001, S. 103)

Ab einem Wert von p,05 wird das Ergebnis wie allgemein üblich als signifikant bezeichnet
(p,01 sehr signifikant und p,001 höchst signifikant; vgl. Zöfel 2001, S. 63).

9.1 Vortest
Die Lerngruppe wurde im Vortest mit Hilfe eines Interviews und eines Fragebogens (INCO-
BI) beschrieben. In diesem Abschnitt werden deskriptiv die Eigenschaften der Lerngruppe
vor der Unterrichtsdurchführung vorgestellt.

9.1.1 Ergebnisse des Interviews
Zu den Fragen des Einzelinterviews im Vortest siehe den Abschnitt 8.3.2 sowie Tabelle 97, S.
204.
In der Sekundarstufe I hatten viele Schüler Informatikunterricht belegt, allerdings hatten kei-
ne Mädchen Informatikunterricht in der Sekundarstufe I (Tabelle 44).

ges m w
ja nein ja nein ja nein

Informatikunterricht in SI 17 20 17 15 0 5

Tabelle 44 Anzahl der Schülerinnen und Schüler, die Informatikunterricht in der Sekundarstufe I belegt hatten.
Es gab einen signifikanten Unterschied zwischen Mädchen und Jungen. (Test auf Unterschied: Mann-Whitney-
U: Signifikanz = ,057; nicht für Bindungen (gleiche Rangplätze, siehe Fußnote 71) korrigiert72).

Dabei hat sich, getrennt nach den beiden Kursen, folgendes Bild ergeben: 13 der insgesamt 21
Schülerinnen und Schüler aus Schule A hatten bereits Informatikunterricht in der Sekundar-
stufe I belegt und sollten dort Erfahrungen mit PASCAL gemacht haben. Allerdings gaben

71 Der U-Test von Mann und Whitney ordnet den errichten Punktzahlen Rangplätze zu, beginnend mit dem
niedrigsten Wert. Sind die Ergebnisse der beiden Gruppen in der Lage ähnlich, dann sollten die Rangplätze
zufällig verteilt sein. Bei gleichen Punktzahlen wird der Rangplatz gemittelt: Wenn also an dritter, vierter
und fünfter Stelle dieselbe Punktzahl erreicht wird, wird für die drei Fälle der gemittelte Rangplatz vier ver-
geben. Diese so genannten Bindungen oder Rangbindungen sollten möglichst selten vorkommen. Siehe dazu
auch Zöfel 2001, S. 103ff.

72 Der Verzicht auf die Korrektur bedeutet eine konservativere Signifikanzprüfung, die Korrektur würde sich
tendenziell vorteilhaft auf die Signifikanzberechnung auswirken, zur Berechnungsformel (korrigiert und un-
korrigiert) siehe Zöfel 2001, S. 106f.

126

Ergebnisse der empirischen Untersuchung

davon nicht alle an, eine Programmiersprache zu kennen. Objektorientierte Konzepte kannte
niemand, wenige (drei Schüler) hatten davon gehört, dass Turbo-PASCAL objektorientiert
sei, konnten mit dem Begriff jedoch nichts verbinden. Von den 17 Schülerinnen und Schülern
aus Schule B hatten vier in der Sekundarstufe I Informatikunterricht oder eine Informatik-AG
besucht. In der Letzteren wurde auch programmiert. Trotzdem gaben über die Hälfte der
Schülerinnen und Schüler an, bereits programmiert zu haben, auch in der Freizeit; allerdings
sahen sie auch das Erstellen von Webseiten in HTML als Programmieren an. Eine Pro-
grammiersprache wie Basic kannten insgesamt acht, einige hatten darin in der Freizeit etwas
programmiert. Ein Schüler hatte bereits eine vage Vorstellung von Objektorientierung („da
kann man anders als in BASIC, Objekte direkt ansprechen“).
Die Angaben zur Programmiererfahrung aus den Interviews wurden zur weiteren Auswertung
in die folgenden Kategorien zusammengefasst:
1. Keine: Schüler hat keine Programmiererfahrung.
2. Wenig: Der Schüler hat im Informatikunterricht kleinere Übungen (Schleife, etc.) im Pro-

grammieren gemacht, aber nicht in der Freizeit bzw. zu Hause nach dem Unterricht
programmiert.

3. Mittel: Der Schüler hat auch zu Hause, außerhalb des Unterrichts versucht zu programmie-
ren.

4. Viel: Ohne Bezug zum Unterricht wurde aus eigenem Antrieb ein kleines Programm er-
stellt (beispielsweise ein Rechentrainer, der Rechenaufgaben stellt).

Das ergibt die in Tabelle 45 angegebene Verteilung:
ges m w

Programmiererfahrung keine 15 10 5
wenig 11 11 0
mittel 6 6 0
viel 5 5 0

Tabelle 45 Programmiervorkenntnisse der Schülerinnen und Schüler. Der Grad der Programmiervorkenntnisse
wurde durch Kategorisierung der Interviews bestimmt, zum genauen Verfahren siehe Text oben. Es traten
signifikante Unterschiede zwischen Mädchen und Jungen auf (U-Test,Signifikanz =,012; nicht für Bindungen.

Kein Mädchen hatte mit einer Programmiersprache gearbeitet. Insgesamt hatten etwa zwei
Drittel der Schülerinnen und Schüler keine oder wenig Programmiererfahrung. Ein Drittel
hatte bereits Erfahrungen in einer Programmiersprache oder sogar schon kleinere Programme
selbst geschrieben.
In den Einzelinterviews im Vortest wurde gefragt, welche Erwartungen an die Unterrichtsin-
halte bestehen. Die verschiedenen Äußerungen wurden zusammengefasst, einzelnen
Kategorien zugeordnet und gezählt. Dieses Verfahren der Kategorisierung anhand der auf of-
fene Fragen gegebenen Antworten wird im Ansatz der grounded theory vertreten und
teilweise auch als zentrales Untersuchungskonzept verwendet (siehe beispielsweise Friedrich
2001). Hier wird nach diesem Verfahren ein Teil des Untersuchungsspektrums, das die sub-
jektive Seite der Lernenden abdeckt, für spätere quantitative Auswertungen und zur besseren
Interpretation erschlossen. Siehe als ein ähnliches Beispiel für diese Verschränkung von Un-
tersuchungsperspektiven und -verfahren auch Blömeke 2003.
Die Erwartungen der Schülerinnen und Schüler wurden den folgenden Kategorien zugeord-
net; in Klammern werden jeweils Beispiele für typische Schüleräußerungen genannt:

127

Ergebnisse der empirischen Untersuchung

1. Keine: Es wurden keine Erwartungen genannt („Ich lass mich überraschen“; „weiß nicht
..“).

2. Programmierkurs: Die Erwartung, programmieren zu lernen („Dass programmiert wird“,
„dass mit einer Programmiersprache umgegangen wird“, „dass wir kleine Programme pro-
grammieren“ etc.).

3. Bedienerschulung: Umgang mit dem Rechner („Tipps und Tricks“; „dass ich lerne, wie
man den Computer besser einsetzen kann“, ..)

4. Programmierkurs plus: Wie Kategorie 2 plus zusätzliche Angaben (plus „kennen lernen,
wie der Computer aufgebaut ist“; plus „verschiedene Software vergleichen“; plus „Theo-
rie“, ...)

Erwartungen m w
keine 0 2
Bedienerschulung 0 1
Programmierkurs 26 1
Programmierkurs plus 5 1

Tabelle 46 Erwartungen des Schülerinnen und Schüler an den Informatikunterricht. Die vier Kategorien
wurden anhand der Interviewergebnisse bestimmt, zum Verfahren siehe die Erläuterungen im Text oben. (Da
hier nur Nominalskalenniveau vorliegt, wurde der Chiquadrattest gerechnet. Die Unterschiede sind höchst
signifikant (p,000)).

Des Weiteren wurde nach der Motivation bzw. nach den Gründen gefragt, weshalb das Fach
gewählt wurde. Die Frage zielt auf die Motivation, die den folgenden Kategorien zugeordnet
wurde; in Klammern sind Beispiele für typische Schüleräußerungen angegeben:
1. Zufallswahl: kein Grund für die Wahl angegeben („Lass mich überraschen“);
2. normativ: Informatik aus extrinsischen Motiven gewählt („Wichtig für den Beruf“; „Com-

puter werden ja immer wichtiger“, ...);
3. Interesse („Interessiere mich für Computer/Informatik“; „Ich hab in der Sekundarstufe I In-

formatik gehabt und fand das interessant“, ...);
4. hohes Interesse („Hab mich immer sehr dafür interessiert“; „Ich will auf jeden Fall später

was mit Computern machen“, „Ich will vielleicht Informatik studieren“; „Ich program-
miere gerne“...);

Motivation m w
Keine besondere Motivation 1 1
Normative Motivation 4 2
Interesse 10 2
Hohes Interesse 16 0

Tabelle 47 Motivation der Schülerinnen und Schüler. Der Grad der Motivation bzw. die Gründe der
Schülerinnen und Schüler Informatik zu wählen, wurde durch Kategorisierung der Interviews bestimmt. Zum
Verfahren siehe Text oben. Die Motivation der Mädchen und Jungen unterscheidet sich signifikant (U-Test,
Signifikanz = ,016; nicht für Bindungen korrigiert73.

73 Für die Auswertung wird also angenommen, dass der Grad der Motivation unterschieden werden kann (auf-
steigend): keine besondere Motivation, normativ, Interesse, hohes Interesse. Diese Einteilung in 'Stufen' der
Motivation beruht auf einer Interpretation der Schüleräußerungen, jedoch nicht auf einer theoriegeleiteten
Ausarbeitung von Motivationsgraden. Eine theoriegeleitete Einteilung, die der hier vorgenommenen ähnelt,
findet sich beispielsweise in Seidel, Rimmele und Prenzel 2003.

128

Ergebnisse der empirischen Untersuchung

Die Motivation der Schülerinnen und Schüler ist durchweg hoch. Die Jungen wollen Pro-
grammieren lernen und sind motiviert oder sehr motiviert, die Mädchen sind dagegen nicht
ganz so motiviert und haben unterschiedliche Erwartungen an den Informatikunterricht.
Schließlich wurde nach den bereits vorhandenen Vorstellungen über Softwareentwicklung ge-
fragt.
Einige Schülerinnen und Schüler stellten sich den Softwareentwicklungsprozess so vor, dass
nach Vorüberlegungen die Arbeit aufgeteilt werde, dann Einzelteile programmiert, zusam-
mengefügt und das Gesamtergebnis getestet werde. Die Vorstellung von
Softwareentwicklung als einem arbeitsteiligen Prozess hatten auch andere, ohne dabei den
Prozess genauer beschreiben zu können, einige hatten überhaupt keine Vorstellung. Zum
überwiegenden Teil wurde Softwareentwicklung als 'Überlegen' und dann 'Runterpro-
grammieren' beschrieben. Was überlegt wird, welche Vorüberlegungen wozu wichtig sind,
war den Schülerinnen und Schülern nicht klar. Insgesamt wurde Informatik als eng gebunden
an eine Programmiersprache und an die Tätigkeit des Codierens verstanden. Ebenso wurde
Softwareentwicklung vorwiegend als Codieren aufgefasst.
Auch diese Angaben konnten zur weiteren Auswertung Kategorien zugeordnet werden. Diese
Kategorien haben sich durch Mehrfachnennungen ergeben, sind also induktiv aus den Äuße-
rungen der Schülerinnen und Schüler abgeleitet und nicht deduktiv aus einer theoretischen
Verankerung hergeleitet74. Daher haben die Kategorien einen rein deskriptiven Charakter und
dienen vor allem dazu, die Vorstellungen der Schülerinnen und Schüler vor dem Unterricht
mit den Vorstellungen nach dem Unterrichtsversuch vergleichbar machen zu können. Die Ka-
tegorien und ihre Verteilung sind in Tabelle 48 dargestellt.

Anzahl %
Auftraggeber 5 13
Modellierung 0 0
Planung 18 47
Arbeitsteilung 19 50
Realisierung 17 45
Testen 8 21
Evolution 13 34
Präsentation 4 11

Tabelle 48 Vorstellungen der Schülerinnen und Schüler über Softwareentwicklung. Die acht Kategorien (linke
Spalte) wurden aus den Interviewergebnissen ermittelt, zum Verfahren siehe Text. Es waren
Mehrfachnennungen möglich. Angegeben sind die absolute Anzahl und der prozentuale Anteil der Nennungen.

Die prozentuale Auflistung in Tabelle 48 verdeutlicht allerdings nicht, wie ausdifferenziert
die Vorstellungen der einzelnen Schülerinnen und Schüler sind. Es könnte sein, dass einige zu
allen Aspekten etwas sagen, andere dagegen überhaupt keine Vorstellung besitzen. Daher
wird anhand der Kategorien durch Interpretation eine Typisierung gebildet, der dann die
Schülerinnen und Schüler zugeordnet werden. Dabei werden nur tatsächlich vorkommende
Muster berücksichtigt.

74 Die Kategorien wurden anhand der Äußerungen in Vortest und im Zwischeninterview gebildet, um die Er-
gebnisse der beiden Interviews vergleichen zu können. Zur Erläuterung der Kategorien siehe auch Tabelle
61, S.137. Die Kategorie Modellierung wurde nur in der zweiten Befragung beobachtet.

129

Ergebnisse der empirischen Untersuchung

Die so entstandenen Typen sind:
• Keine: Der Schüler gibt an, keine Vorstellung von Softwareentwicklung zu haben.
• Arbeitsteilung: Der Schüler gibt nur an, dass die Arbeit verteilt werden müsse.
• Planen und Testen: Schüler gibt an, dass man das Vorgehen planen und später das Ergeb-

nis überprüfen bzw. testen müsse.
• Codieren: Die Aussagen beschränken sich auf den Bereich Realisierung.
Dann gibt es Schülerinnen und Schüler, die den Bereich des Implementierens und andere
Aspekte ansprechen. Diese lassen sich in die folgenden Gruppen einteilen:
• Arbeitsteilung und Codieren: Die Arbeit wird aufgeteilt, dann werden die einzelnen Teile

programmiert.
• Planen und Codieren: Die Arbeit wird geplant und dann implementiert.
• Planen, Codieren und Testen: Man muss planen bzw. festlegen, was genau man will, dann

programmieren und anschließend testen.
Das Ergebnis mit den Häufigkeiten für die einzelnen Typen ist in Tabelle 49 dargestellt.

Softwareentwicklung Zusammenfassung
Anzahl % Anzahl % Typ

Keine 12 31%
Arbeitsteilung 6 16%
Planen und Testen 2 5%

20

53%

geringe bzw. unspezifische
Vorstellungen

Codieren 3 8% 3 8% Programmieren
Arbeitsteilung und Codieren 2 5%
Planen und Codieren 5 13%
Planen-Codieren-Testen 8 21%

15

40%

Entwicklungsprozess mit
Programmieren als einer
wesentlichen Tätigkeit

Tabelle 49 Vorstellungsmuster der Schülerinnen und Schüler von Softwareentwicklung. Angegeben sind die
absolute Anzahl und der prozentuale Anteil. Keine Mehrfachzuordnung möglich. Zur Beschreibung der Typen
siehe Text.

Über die Hälfte der Schülerinnen und Schüler hatte nur vage oder gar keine Vorstellungen
von Softwareentwicklung (Typ geringe bzw. unspezifische Vorstellungen). Einige Schüler
(knapp acht Prozent) bezogen sich nur auf den Aspekt der Implementation. Andere konnten
sich den Implementierungsprozess organisierende Maßnahmen als wichtigen Bestandteil der
Softwareentwicklung vorstellen (Typ Entwicklungsprozess, knapp 40 Prozent).

130

Ergebnisse der empirischen Untersuchung

9.1.2 Ergebnisse des Fragebogens
Tabelle 50 gibt die Ergebnisse im Test SUCA, der die Sicherheit im Umgang mit dem Rech-
ner als Gegenpol zur Computerängstlichkeit abfragt, wieder.

ges SD m SD w SD
SUCA, diese Arbeit 2,88 0,45 2,92 0,46 2,66 0,28
SUCA Novizen; aus Naumann, Richter und Groeben 2001 2,11 0,92 2,25 0,92 2,04 0,78
SUCA Experten; aus Naumann, Richter und Groeben 2001 2,86 0,71 3,04 0,63 2,55 0,72

Tabelle 50 Ergebnisse SUCA (Sicherheit im Umgang mit dem Computer): Ergebnisse dieser Arbeit im
Vergleich mit der Untersuchung von Naumann, Richter und Groeben 2001 mit Studierenden75. Angegeben sind
Mittelwerte und Standardabweichung (SD). Nach dem U-Test ist der Unterschied zwischen Schülerinnen (w)
und Schülern (m) nicht signifikant. Insgesamt sind Werte zwischen 0 und 4 möglich.

Der Unterschied zwischen Mädchen und Jungen war nicht signifikant. Die Werte wurden mit
einer Befragung von Studierenden verglichen, bei der Experten und Novizen befragt wurden
(vgl. Naumann, Richter und Groeben 2001): Die Schülerinnen und Schüler waren dem Com-
puter gegenüber selbstsicherer als die Novizen, die in der Studie einen Wert von 2,11 erreicht
hatten, und erreichten die Werte von Experten.
Der INCOBI-Test VECA fragt ab, wie die Schülerinnen und Schüler ihre Vertrautheit mit
verschiedenen Computeranwendungen selbst einschätzen. Hier sollten die Schülerinnen und
Schüler angeben, ob sie meinen, im Umgang mit den jeweiligen Anwendungen im Vergleich
zu anderen Schülerinnen und Schülern "weit überdurchschnittlich", "überdurchschnittlich",
"durchschnittlich", "unterdurchschnittlich" oder "weit unterdurchschnittlich" vertraut zu sein.
Der Fragebogen PRACOWI fragt nach dem praktischen Computerwissen, d.h. nach solchem
Wissen, das für den Umgang mit dem Computer unmittelbar relevant sein kann. Insgesamt 13
Problemsituationen werden abgefragt, mit denen man bei der täglichen Arbeit am Computer
konfrontiert sein oder zu tun haben kann, beispielsweise: „Sie wurden vor einer angeblichen
Virus-Mail mit dem Titel "Good Times" gewarnt. Angeblich soll beim Öffnen dieser E-Mail
der Inhalt der Festplatte gelöscht werden. Jetzt erhalten sie eine solche E-Mail. Was tun Sie?“
Der PRACOWI-Wert gibt die Anzahl der richtig gelösten Problemsituationen an. Da die erste
Problemsituation als 'Eisbrecher-Item' gewertet wird, ist der maximal mögliche Wert 12. Die
Ergebnisse dieser beiden Fragebögen sind in Tabelle 51 dargestellt.

75 Zur Auswahl der Stichprobe. „Als Novizen und Novizinnen wurden 51 Studierende der Geistes- und Sozial-
wissenschaften in niedrigen Semestern befragt, bei denen a priori von bestenfalls durchschnittlichen Com-
puterkenntnissen ausgegangen werden kann. [..] Als Experten und Expertinnen wurden 101 Studierende he-
rangezogen, die online (n = 56) oder über hochschulöffentliche Rechnerpools der Universität zu Köln (n =
45) gewonnen wurden. Bei Personen, die über einen Internetzugang verfügen und das Internet so intensiv
nutzen, dass sie an Online-Untersuchungen teilnehmen, und bei Nutzerinnen und Nutzern von Computer-
pools kann von einer hohen Nutzungsintensität und damit mutmaßlich auch von hoher Expertise ausgegan-
gen werden.“ (Naumann, Richter und Groeben 2001)

131

Ergebnisse der empirischen Untersuchung

ges SD m SD w SD
VECA, diese Arbeit 2,54 0,67 2,66 0,62 1,76 0,42
VECA Novizen; aus Naumann, Richter und Groeben 2001 1,4876 0,92 1,69 0,9 1,63 0,92
VECA Experten; aus Naumann, Richter und Groeben 2001 2,14 0,74 2,33 0,66 1,82 0,78
PRACOWI, diese Arbeit 8,32 3,11 9,03 2,46 3,80 3,27
PRACOWI Novizen; aus Naumann, Richter und Groeben 2001 4,25 3,65 5,33 4,69 3,67 2,86
PRACOWI Experten; aus Naumann, Richter und Groeben 2001 8,63 3,27 9,65 2,59 6,95 3,61

Tabelle 51 Ergebnisse VECA (Vertrautheit mit Computeranwendungen) und PRACOWI (Praktisches
Computerwissen): Angegeben sind Mittelwerte und Standardabweichung der Untersuchungsgruppe und zum
Vergleich die Daten aus der Untersuchung von Naumann, Richter und Groeben 2001. Die Unterschiede
zwischen Schülerinnen (w) und Schülern (m) sind für VECA und PRACOWI nach dem U-Test sehr signifikant.
Möglicher Wertebereich: VECA 0-4; PRACOWI 0-12.

Die Schüler und Schülerinnen schätzten sich selbst als vertraut mit Computeranwendungen
ein (die Schüler stärker als die Schülerinnen), aber nur die Schüler verfügten über hohes
Computerwissen (PRACOWI). Die Schülerinnen dagegen verfügten über Computerwissen
nur auf einem Niveau vergleichbar mit den Novizen unter den Studierenden.
Die Schülerinnen und Schüler benutzten den Rechner bereits seit langem und nach eigener
Aussage auch sehr intensiv (Tabelle 52).

ges m w
M SD M SD M SD

Alter 16,16 0,44 16,20 0,43 15,80 0,45
Computernutzung seit Jahren 5,02 2,64 5,05 2,57 4,67 4,04
Computernutzung aktuell (Stunden pro Woche) 11,01 9,03 11,75 9,41 6,30 3,93
Internetnutzung (Stunden pro Woche) 8,18 14,14 8,87 14,95 3,13 3,01
Anzahl der genutzten Computer-Anwendungen 3,46 1,26 3,62 1,24 2,40 0,89
Anzahl der Internet-Anwendungen 3,97 1,55 4,10 1,52 3,00 1,63

Tabelle 52 Alter der Schülerinnen und Schüler und Muster der Computernutzung (Anzahl Anwendungen,
Nutzungsdauer). Die Angaben beruhen auf Selbsteinschätzungen der Schülerinnen und Schüler. Mittelwerte und
Standardabweichungen. Statistisch signifikant (U-Test) ist nur der Unterschied zwischen Mädchen und Jungen
in der Anzahl der genutzten Computer-Anwendungen.

FIDEC fragt allgemeine Vorstellungen über den Computer ab, die möglicherweise im Zusam-
menhang mit Vorstellungen über Softwareentwicklung stehen (vgl. Abschnitt 8.3.1):
subjektive Einstellungen gegenüber dem Computer und Einstellungen gegenüber dem per-
sönlichen und gesellschaftlichen Nutzen dieser Technologie. Diese Einstellungen betreffen im
Sinne des Konzeptwechsels (siehe Abschnitt 6.3.2) Lernziele aus der systemorientierten Sicht
des Informatikunterrichts (Abschnitt 4.2).
Tabelle 53 zeigt die Ergebnisse der acht Skalen des FIDEC. Die Ergebnisse in den beiden
Klassen waren fast identisch und ähneln eher der Einschätzung, die die Experten vornehmen,
als der Einschätzung durch die Novizen (vgl. die Umfrage in Naumann, Richter und Groeben
2001). Den positiven Einschätzungen (Skalen 1,3,5,7) wurde eindeutig eher zugestimmt als
den negativen Skalen (2,4,6,8).

76 Der angegebene Mittelwert scheint unplausibel, möglicherweise liegt er bei 1,68 (eventuell liegt ein Tippfeh-
ler vor).

132

Ergebnisse der empirischen Untersuchung

Skala Beispielitem M SD
1 LA/PE/NW „Für mich ist der Computer ein nützliches Arbeitsmittel.“ 3,23 0,55
3 UK/PE/N

W
„Der Computer bereichert meine Freizeit.“ 2,97 0,68

5 LA/GF/NT „Die staatliche Unterstützung der Computertechnologie in der Arbeitswelt und im
Bildungsbereich ist für den gesellschaftlichen Fortschritt sehr wichtig.“

2,80 0,51

7 UK/GF/NT „Die elektronischen Kommunikationsmedien werden die Menschen stärker miteinan-
der in Kontakt bringen.“

2,67 0,77

2 LA/PE/UM „Die Arbeit am Computer ist oft frustrierend, weil ich diese Maschine nicht
verstehe.“

0,87 0,66

4 UK/PE/UM „Für mich ist der Unterhaltungswert des Computers generell gering, weil man dabei
viel zu viel technischen Ärger hat.“

0,82 0,70

6 LA/GF/UT „Der Einsatz von Computern im Bildungsbereich und in der Arbeitswelt zerstört zwi-
schenmenschliche Beziehungen.“

1,71 0,82

8 UK/GF/UT „Durch die große Beliebtheit von Computerspielen verblöden die Leute.“ 1,70 0,84

Tabelle 53 Ergebnisse FIDEC (Fragebogen zur inhaltlich differenzierten Erfassung von computerbezogenen
Einstellungen). Mittelwerte und Standardabweichung (SD). In den FIDEC-Skalen gab es keine signifikanten
Unterschiede (U-Test) zwischen Schülerinnen und Schülern. LA: Computer als Lern- und Arbeitsmittel. UK:
Computer als Unterhaltungs- und Kommunikationsmittel. PE: Persönliche Erfahrung. GF: Gesellschaftliche
Folgen. NW: Nützliches Werkzeug. UM: Unbeeinflussbare Maschine. NT: Nützliche Technologie. UT:
Unbeeinflussbare Technik. Beispielitems aus: Richter, Naumann und Groeben 2001, S. 5. Wertebereich: 0-4

Die Schülerinnen und Schüler schätzten den Computer als Bereicherung für die Freizeit ein
(Skala 3). Etwas überraschend war die hohe Bedeutung, die von den Schülerinnen und Schü-
lern dem Computer als Arbeitsmittel zugeschrieben wurde (Skala 1). Insgesamt waren die
Schülerinnen und Schüler dem persönlichen Gebrauch des Rechners als Arbeits- und Lern-
mittel gegenüber positiv gestimmt (recht hohe Werte in Skala 1, sehr niedrige Werte in der
negativ gepolten Skala 2).
Unterschiede zwischen Schule A und Schule B ergaben sich im Vortest nur in zwei Fragen: In
Schule B hatten weniger Schülerinnen und Schüler in der Sekundarstufe I Informatikunter-
richt gehabt und sie waren weniger selbstsicher im Umgang mit dem Computer (SUCA)77.

9.2 Zwischenbefragung
Die Zwischenbefragung wurde zum Halbjahreswechsel eingesetzt (zum Ablauf der Untersu-
chung siehe auch Abschnitt 8.4, insbesondere Abbildung 43, S. 125). Zu dem Zeitpunkt
befand sich der Unterricht in der zweiten Phase des Phasenmodells (siehe oben Abschnitt 7.3,
bzw. Tabelle 27, S. 91). Zu diesem Zeitpunkt wurden dann auch wie zu Beginn der Untersu-
chung Einzelinterviews mit den Schülerinnen und Schülern durchgeführt, die Fragbögen
FIDEC und SUCA wiederholt und der Fragbogen FEOK1 eingesetzt.

9.2.1 Interviews
In den Zwischeninterviews wurden die abwählenden Schülerinnen und Schüler nach den
Gründen gefragt. Sie gaben folgende Antworten (Tabelle 54).

77 Für die Variable SUCA wurden die Unterschiede mit dem U-Test berechnet (Signifikanz =,045). Da die Va-
riable Informatikunterricht in SI dichotom ist, wurde hier der Chiquadrat-Test (Fischer) gerechnet (Signifi-
kanz =,013).

133

Ergebnisse der empirischen Untersuchung

Drei Schüler aus Schule A haben abgewählt, Gründe dafür wurden nicht angegeben.
In Schule B haben fünf Schülerinnen und Schüler abgewählt. Sie haben als Gründe angegeben:
1. „Programmieren liegt mir nicht und macht mir keinen Spaß.“
2. „Es wurde zu viel diskutiert, ich hätte lieber ordentliche Aufgaben gehabt mit einer Lösung, die man dann programmiert.“
3. „Ich habe nichts verstanden, besonders seit wir mit der FGrafik angefangen haben.“
4. „Weil ich nicht viel gelernt habe und das Programmieren entmutigend ist; bei Fehlern weiß man nie, woran es liegt.“
5. „Keine Angabe“

Tabelle 54 Die von den Schülerinnen und Schülern geäußerten Abwahlgründe.

Der Unterricht in Schule A selbst entsprach in etwa den Vorstellungen der meisten Schülerin-
nen und Schüler. Trotz Kritik fanden sie den Aufbau des Unterrichts insgesamt gut. Mehrere
Schülerinnen und Schüler störte, dass ihrer Meinung nach zu wenig erklärt wurde und sie mit
Fehlern alleine gelassen wurden (vgl. Tabelle 55) und so nur wenige alles verstanden hätten
und die Aufgaben mit Fujaba lösen konnten.
S: Ein Teil wusste, wie es geht und der andere nicht und dann wurde auf dieses Problem nicht so geachtet und dann wurde einfach weiter
gemacht und der eine Teil hat alles zusammengestellt. Dann haben wir am Ende der Stunde alles angeguckt und alles erklärt, dann war die
Stunde vorbei und dann musste es weitergehen.
[Gewünscht hätten die Schülerinnen und Schüler sich, dass] von vornherein bisschen mehr erklärt wurde, was er da machen muss, vom
Grundprinzip her das Programm erklärt wurde und dass alle auf dem gleichen Stand gehalten wurden, von den Kenntnissen her. Wenn der
eine weiß, wie man das und das macht, dann muss das auch soweit gemacht werden, dass es jeder weiß, wie das geht. Wie man diese End-
losschleife macht - mit den zwei Spielern kreieren und dann diese Felder danach dazu mit der FGrafik.

Tabelle 55 Kommentar eines Schülers zum Unterricht. Äußerung aus Schule A.

Als schwierig empfunden wurde vor allem in Schule A die Arbeit an der grafischen Oberflä-
che und der Grafikbibliothek FGrafik. Mehrere Schülerinnen und Schüler bemängelten, dass
die Fehlermeldungen von Fujaba unverständlich seien und dass es keine Hilfe oder erklären-
des Material gebe. In Schule B wurde zur FGrafik relativ wenig gesagt, es gab scheinbar
keine großen Probleme; wenige Schüler meinten jedoch, erst damit sei der der Unterricht
richtig interessant geworden.
In Schule B schätzten wenige den Unterricht als zu einfach ein, andere (wenige) fanden die
Einführung neuer Elemente wie der FGrafik zu schnell. Einige hätten gerne mehr program-
miert und waren der Meinung, dass zu viel diskutiert wurde (Tabelle 56).
S: Ich weiß nicht, mir liegt so was nicht. Und zwar haben wir am Anfang immer diskutiert wie so was abläuft, ich mag das nicht, bei mir
muss es immer eine Lösung geben und die wird dann genommen. Wenn man stundenlang nur rumdiskutiert und drüber redet - der eine sagt
so und der andere sagt so -, ja das war eigentlich der Hauptgrund, warum ich das abgewählt hab.
I (Interviewer): D.h., du hättest dir mehr so klare Aufgaben ...
S: (unterbricht) Ja genau, ja!
I: ...wo es genau eine Lösung gibt und ...
S: (unterbricht) Genau! Ja, richtig.

Tabelle 56 Aussage eines Schülers zur Arbeitsweise im Informatikunterricht.

Wenige meinten, dass man nach dem Einstieg zur richtigen Programmierung in Java wech-
seln solle; einer aus dieser Gruppe vermutete sogar Nachteile gegenüber dem Parallelkurs, der
direkt mit Java begonnen hatte (Schüler S3, siehe Tabelle 58, S. 135). Wenige Schülerinnen
und Schüler deuteten an, dass sie sich unterfordert fühlten.
In der Zwischenbefragung äußerten sich die Schülerinnen und Schüler auch zu ihrer Zu-
friedenheit mit Fujaba (Tabelle 57). Die Bewertungen der Schüler fanden dabei vor dem
Hintergrund ihrer Unterrichtserfahrungen statt und bezogen sich auf das Werkzeug, so wie es
im Unterricht eingesetzt wurde (vgl. die zum Teil während des Unterrichts erfolgten Ände-
rungen an Fujaba, Tabelle 74, S. 148).

134

Ergebnisse der empirischen Untersuchung

I: Hat der Unterricht deinen Erwartungen entsprochen?
S: Ja, eigentlich schon. Es gab halt immer mal ein paar Probleme mit Fujaba. Das größte Problem war, dass es hier mal nicht lief, da mal
nicht lief, ein paar Fehler drin waren. Aber sonst fand ich es eigentlich schon ok so. Also, abgesehen von den Softwareproblemen war es ok.

Tabelle 57 Schüler aus Schule A zu Fujaba.

Die wichtigsten an Fujaba kritisierten Punkte waren:
• fehlende bzw. nicht vollständige Dokumentation
• fehlende Möglichkeit, Teilprojekte zu importieren /exportieren
• fehlende Möglichkeit, Methodenrümpfe (Story-Pattern, ..) zu kopieren / verschieben
• Undo-Funktion
• Unklarer Bezug zwischen Fehlermeldungen des Java-Compilers und den Fujaba-Diagram-

men
• fehlende Möglichkeit der schrittweisen Programmausführung
Fast alle Punkte betrafen die Bedienbarkeit im praktischen Umgang. Neben den behobenen
Fehlern von Fujaba traten im Unterricht weitere auf, die erst nachträglich (Tabelle 74, S. 148,
erster Eintrag) oder unabhängig vom life3-Projekt durch eine neue Version behoben werden.
In Schule A fanden die meisten Schüler Fujaba in Ordnung. Die meisten Schülerinnen und
Schüler äußerten sich wie im angegebenen Interviewauszug (Tabelle 57). Dagegen fand kein
Schüler das Werkzeug gut. Konkrete Kritik bezog sich auf die Fehlermeldungen, die unver-
ständlich waren (drei Nennungen), auf die Schwierigkeiten, Fehler zu lokalisieren (einmal),
auf die FGrafik, die zu schwierig war (dreimal) und auf Probleme beim Installieren und Nut-
zen von Fujaba zu Hause (zweimal).
Einige Schülerinnen und Schüler aus Schule B fanden Fujaba ebenfalls 'in Ordnung' (fünf
Nennungen). Im Unterschied zu Schule A fanden mehrere Schüler Fujaba 'gut' (viermal), und
meinten, dass Fujaba eine Lernhilfe sei (fünfmal). Die FGrafik wurde meist nicht erwähnt,
wenige empfanden den Einstieg in die FGrafik als zu schnell, zwei Schüler schätzten die
FGrafik als sehr motivierend ein. Wenige bemängelten die Fehler in Fujaba (zweimal) und die
komplizierte Installation (zweimal). Zwei Schüler beanstandeten, dass das Werkzeug auf
Englisch sei, weil das die Bedienung erschwere. Wenige Schüler (dreimal) verglichen von
sich aus den Unterricht mit einem Parallelkurs, in dem nach dem Konzept Stifte und Mäuse
mit einer textuellen Entwicklungsumgebung gearbeitet wurde (Tabelle 58).
S1: Also ich glaube, das ist einfacher erst über Fujaba und dann an diesen Quelltext ranzugehen, als wenn man gleich in den Quelltext
geht[..] bei Fujaba kann man die Klassen sehen, und man sieht auch die einzelnen Objekte und bei diesem Quelltext kann man das eben
nicht so deutlich erkennen – und aber wenn man schon weiß, also, ja: Man kann sich da dann drunter was vorstellen.
S2: Es hat mit Sicherheit einen Vorteil gegenüber dem anderen Kurs Informatik, die haben, so wie ich gehört hab' direkt mit Java oder so
programmiert. Eventuell ist es so leichter sich die grundsätzlichen Strukturen, hmm, der Programmierung oder so, vorzustellen.
S3: Wenn das Programm [Fujaba] jetzt darauf abzielt, die ganze Theorie des Programmierens zu lernen um dann auch auf 'ne normale Pro-
grammiersprache umzusteigen, dann könnte man es durchaus nehmen – nur eben nicht so lange [Pause] oder eben intensiver, wir haben jetzt
meiner Meinung nach nicht ganz so viel gemacht.

Tabelle 58 Meinungen zum Einstieg in Fujaba im Vergleich zum Einstieg mit einer Programmiersprache (Java,
Schule B).

Zwei Schüler aus Schule A (mit Vorerfahrung im Programmieren) verglichen ebenfalls die
Arbeit mit Fujaba mit dem 'normalen' Programmieren. Dieses schätzen sie als leichter ein.
(Tabelle 59).

135

Ergebnisse der empirischen Untersuchung

S: Normalen Java-Quellcode oder Turbo-PASCAL mochte ich lieber, weil das klarer verständlich war [...]
Ein Text ist leichter verständlich. Da hat man nicht so viele Pfeile, womit man noch nie vorher was gemacht hat. [...]
[Die Programme werden] irgendwie größer, auf verschiedenen Seiten, im Text steht alles untereinander. Man sucht [in Fujaba] dauernd, wo
was ist. [...]
Viele Sachen vergisst man, wie man das genau in welcher Reihenfolge macht, zum Beispiel. Und man schreibt so wenig, man macht meis-
tens was mit Pfeilen und das vergisst man leichter wieder, als wenn man was schreiben muss.

Tabelle 59 Vergleich Fujaba und Java-Quellcode (Schule A).

Insgesamt wurde Fujaba in den beiden Schulen etwas unterschiedlich beurteilt, vermutlich da
in Schule A der Unterricht mehr mit den Fujaba-Problemen beschäftigt war, während in Schu-
le B meist schon eine verbesserte Fujaba-Version genutzt werden konnte. Obwohl auch die
Schüler in Schule A das Werkzeug in Ordnung fanden, wurde es nicht als Lernhilfe gesehen,
anders als in Schule B.
Interessant sind die Schüleräußerungen zu Fujaba (vor allem der Umfang) auch deshalb, weil
in den Zwischeninterviews nicht nach Fujaba sondern nur allgemein danach gefragt wurde, ob
der Unterricht den Erwartungen entsprach (vgl. den Interview-Leitfaden im Anhang, S. 215).
Bei entsprechenden Schüleräußerungen wurde dann allerdings auch bezüglich Fujaba nachge-
fragt.
In der Zwischenbefragung wurden die Schülerinnen und Schüler ebenfalls (wie im Vortest)
nach ihren Vorstellungen von Softwareentwicklungsprozessen gefragt. Diese sind wesentlich
detaillierter geworden. Es wurde im Unterricht zwar nicht explizit ein Software-
entwicklungsprozess besprochen, doch die Schülerinnen und Schüler verallgemeinerten, wie
auch in den Antworten zur Bibliotheksnutzung erkennbar, ihre Erfahrungen aus dem Unter-
richt (vgl. Tabelle 60).
I: Wie stellst du dir Softwareentwicklung vor?
S: Ja, das hat sich jetzt, glaub ich, ein bisschen geändert [..] Wir haben's ja so gemacht, dass wir uns erst die Grundidee überlegt haben, was
wir überhaupt machen wollen. Ja, und dann haben wir so'n Objektspiel gemacht [..] Und dann haben wir uns erste Überlegungen am Com-
puter gemacht, und dann haben wir Fujaba dazugenommen, und dann haben wir erst 'ne Alphaversion gemacht, also Vor-Versionen und
dann später erst, also, haben wir versucht (lacht), die Endversion zu machen.

Tabelle 60 Vorstellungen über den Softwareentwicklungsprozess vor der Projektphase.

Fast alle Schülerinnen und Schüler beschrieben nun eine allgemeine Planungsphase in der
man sich absprechen müsse, eine Phase der Konzept- oder Strukturentwicklung, oder die Not-
wendigkeit, zunächst ein Grundgerüst zu entwickeln. Einige gingen auch darauf ein, dass sich
im Verlauf der Entwicklung das Konzept ändern könne, dass während der Entwicklung meh-
rere 'Alphaversionen' entstünden und dass man gemeinsam mit dem Auftraggeber die
Programmfunktionalität entwerfe und bespreche. Einige ergänzten noch die Aufteilung in
Teams, die Notwendigkeit zur Absprache von Namenskonventionen und wenige stellten sich
vor, dass das initiale Konzept zwischendurch angepasst werde. Tabelle 61 listet die Katego-
rien mit exemplarischen Schülerantworten auf.

136

Ergebnisse der empirischen Untersuchung

Kategorie Beispiel-Antworten An-
zahl

%

Modellierung • „Dann werden die Verantwortlichkeiten gesammelt und wenn schriftlich das Konzept
steht, wird mit dem Programmieren begonnen.“

• „Nachdem man sich klar gemacht hat, welche Anforderungen erfüllt werden müssen,
werden die Klassen definiert, dann die Objekte und Beteiligten, die bei den Anwen-
dungen gebraucht werden.“

• „Danach werden die Klassen und Objekte festgelegt. Nachdem das Klassendiagramm
steht, werden die einzelnen Methoden festgelegt.“ 10 33

Planung • „Die Programmierer müssen sich zuerst darüber klar werden, was sie machen sollen
und wie sie diese Anforderungen erfüllen können. Für die Planungsphase hat der Un-
terricht neue Möglichkeiten der Planung eröffnet, indem er die Planung mit Objekten
gezeigt hat.“

• „Dann wird ein Konzept entwickelt mit CRC-Karten und danach programmiert.“
• „[...] dann wird überlegt, was genau realisiert werden soll. Danach wird überlegt, wie

die Aufgabe realisiert werden soll.“
• „[...] man sich erst überlegt, was gemacht werden soll (Anfangsdefinition) und dann

erst programmiert wird. Die Anfangsdefinition beinhaltet, wie das Programm ablaufen
soll und welche Objekte was zu tun haben .“

• „Wenn in einer Firma Software für einen Kunden erstellt wird, überlegt sich der Be-
trieb zunächst, was man programmieren will, welches Ziel es gibt, welche
Anforderungsdefinition. Dann wird überlegt, wo der Benutzer eingreifen und steuern
soll.“ 27 90

Arbeitsteilung • „Die Programmierung wird unter den verschiedenen Programmierern aufgeteilt und
daher ist eine ständige Absprache unter den Programmierern wichtig.“

• „[...] man muss sich auf einige Punkte einigen, wie man das in Arbeitsteilung erledi-
gen kann.“

• „Dabei ist immer wichtig, dass man sich vorher gut abspricht, damit man immer gleich
lautende Bezeichnungen benutzt.“

• „Die einzelnen Aufgaben für die Mitarbeiter werden je nach Programm schwerpunkt-
mäßig aufgeteilt.“ 24 80

Auftraggeber • „Das Programm wird von den Erstellern in Einbezug des Kunden erstellt Dabei ist im-
mer wichtig, dass man sich vorher gut abspricht, damit man immer gleich lautende
Bezeichnungen benutzt.“

• „Die Firma muss aber zunächst aus dem Kunden ganz genau herausbekommen, wel-
che Anforderungen der Kunde an das Produkt stellt.“

• „Der Kunde wird in die Überlegung, wie das Programm aussehen soll, mit einbezo-
gen.“ 13 43

Realisierung • „[...] zum Schluss wird das ganze Programm dann zusammengestellt.“
• „[...] jeder programmiert eine Methode. Vorher wird festgelegt, wie diese heißen sol-

len, sodass das Grundgerüst, alle Dateien und Attribute gleich heißen, sodass alle
einzelnen Methoden kompatibel zueinander sind. Jeder programmiert nun [..].“

• „Jeder muss seine Aufgabe programmieren, danach wird das Programm wieder zu-
sammengesetzt.“

• „Programmieren, Zusammensetzen des Programms“ 25 83

Testen • „und im Anschluss daran kommt die Testphase, es werden Bugs gesucht und ausge-
merzt.“ 5 17

Evolution • „danach folgen [...] dazu erste Versionen, die nach und nach verbessert werden.“
• „Die Mitarbeiter erstellen die verschiedenen Versionen.“ 11 37

Präsentation • „Der erste Programmentwurf wird dann wiederum dem Kunden vorgestellt.“
• „Das Ergebnis stellen sie dem Chef vor, danach dem Kunden.“ 2 7

Tabelle 61 Schülervorstellungen Softwareentwicklung mit Beispieläußerungen aus der Zwischenbefragung.
Nennungen der Anzahl und in Prozent.

Ebenso wie im Vortest werden die einzelnen Angaben typisiert, um den Differenzierungsgrad
der einzelnen Schülerinnen und Schüler beschreiben zu können. Da die Aussagen allgemein
differenzierter ausfallen, können hier nicht dieselben Typisierungen wie im Eingangsinter-
view verwendet werden. Stattdessen werden die folgenden Typen im Zwischeninterview
unterschieden:

137

Ergebnisse der empirischen Untersuchung

• keine: Es werden keine Vorstellungen genannt.
• Analyse und Codieren: Nach der Klärung, was implementiert werden soll, wird codiert.
• Analyse und Codieren mit Arbeitsteilung: Bei der Implementation wird die Arbeit aufge-

teilt.
• Analyse, Design, Codieren: Nach dem 'Was' muss über das 'Wie' nachgedacht werden,

dann erst folgt die Implementation.
• Analyse, Design, Codieren mit Arbeitsteilung: siehe vorherigen Punkt, ergänzt um arbeits-

teiliges Vorgehen.
• zyklischer und iterativer Prozess: In verschiedenen Schritten und mit Wiederholungen wer-

den einzelne Bereiche des Programms entwickelt (Analyse, Entwurf, Implementation).
Tabelle 62 zeigt die Verteilung:

Softwareentwicklung
Schule A Schule B

Anzahl % Anzahl %
keine 1 7%

Analyse und Codieren 1 7%

Analyse, Codieren, Arbeitsteilung 3 20%

Analyse, Design, Codieren 2 13% 7 47%

Analyse, Design, Codieren, Arbeitstei-
lung 8 53% 4 27%

zyklisch und iterativ 1 7% 3 20%

Tabelle 62 Vorstellungsmuster der Schülerinnen und Schüler über Softwareentwicklung im Zwischeninterview.
Zu den Typen siehe Text. Die Unterschiede zwischen den Gruppen sind insgesamt nicht signifikant (Chiquadrat-
Test p=,072). Allerdings scheinen Unterschiede bezüglich der Arbeitsteilung vorzuliegen. Vergleiche 'Analyse,
Design, Codieren' und 'Analyse ,Design, Codieren, Arbeitsteilung' .

9.2.2 Fragebogen
In der Zwischenbefragung am Halbjahresende wurden die Fragbögen FIDEC und SUCA er-
neut eingesetzt. Die Ergebnisse sind in Tabelle 63 dargestellt78.

Zwischenbefragung M SD
FIDEC Lernen/Arbeiten nützlich 3,13 0,51

Lernen/Arbeiten unbeeinflussbar 0,85 0,58
Unterhaltung / Kommunik nützlich 2,89 0,78
Unterhaltung / Kommunik unbeeinfl. 0,77 0,59
Arbeitswelt / Bildungsbereich positiv 2,64 0,68
Arbeitswelt / Bildungsbereich negativ 1,90 0,78
Unterh. -Komm.-Technologie positiv 2,66 0,61
Unterh. -Komm.-Technologie negativ 1,66 0,87

SUCA SUCA Sicherheit im Umgang 2,81 0,56

Tabelle 63 Ergebnisse der FIDEC-Skalen und SUCA aus der Zwischenbefragung. Angegeben sind Mittelwerte
und Standardabweichung. Keine signifikanten Unterschiede in den Teilgruppen.

78 Eine Gegenüberstellung mit den Ergebnissen aus dem Vortest erfolgt im Abschnitt 10.1.3 ab S. 166.

138

Ergebnisse der empirischen Untersuchung

Im FEOK1 wurden im ersten Block objektorientierte Konzepte, im zweiten Block der Um-
gang mit Objektstrukturen abgefragt79. Im ersten Fragenblock wurden zunächst Elemente des
Klassendiagramms und das Verständnis der Konzepte Klasse und Objekt abgefragt (Tabelle
98, S. 219).

 FEOK1 a SD FEOK1 b SD FEOK1 c SD
ges 0,55 0,42 1,50 0,61 0,76 0,66
Schule A 0,39 0,27 1,72 0,62 0,81 0,62
Schule B 0,73 0,50 1,23 0,50 0,70 0,73
Max. erreichbar 2 3 2

Tabelle 64 Ergebnisse von FEOK1 a bis FEOK1 c. Mittelwerte und Standardabweichung für die beiden
Lerngruppen. Signifikant (nach U-Test) sind die Unterschiede in FEOK1 a und in FEOK1 b. Zu den Aufgaben
siehe Anlage S. 216ff.

Zu den Ergebnissen der ersten Frage, FEOK1 a: Einen halben Punkt gab es für die Vorstel-
lung von Klassen als Objektmenge bzw. als Zusammenfassung gleichartiger Objekte oder von
Objekten gleichen Typs. Diese Vorstellung ist nicht falsch, aber auch nicht weitgehend ge-
nug. Erwartet wurde, dass eine Klasse als Bauplan für Objekte und diese wiederum als
Exemplare (Instanzen) verstanden werden. Es sollte deutlich werden, dass Objekte zur Lauf-
zeit existieren und die eigentliche Programmfunktionalität erbringen (Methoden ausführen,
Attributwerte speichern), während Klassen zur Quelltextebene gehören80.
In FEOK1 b und FEOK1 c wurde nach den Begriffen gefragt, die im Zusammenhang mit
Klassendiagrammen auftreten. Diese sollten genannt und in FEOK1 c fachlich richtig erläu-
tert werden.
Neben der Frage nach Klassen und Objekten wurden im FEOK1 weitere Aufgaben gestellt, in
denen die Schülerinnen und Schüler gefragt wurden, welche Objektstrukturen aus den abge-
bildeten Klassendiagrammen erzeugbar sind. Die Ergebnisse dieser Fragen sind in Tabelle 65
dargestellt.

 FEOK1 d SD FEOK1 e SD FEOK1 f SD FEOK1 g SD
ges 0,58 0,40 0,55 0,36 0,53 0,41 0,36 0,36
Schule A 0,42 0,35 0,67 0,38 0,42 0,43 0,28 0,31

Schule B 0,77 0,37 0,40 0,28 0,67 0,36 0,47 0,40
Max. erreichbar 1 1 1 2

Tabelle 65 Ergebnisse FEOK1 d bis FEOK1 g. Mittelwerte und Standardabweichung (SD) der Gesamtgruppe
und der beiden Teilgruppen (Schule A und Schule B). Signifikant (U-Test) sind die Unterschiede in FEOK1 d
und FEOK1 e (FEOK1 d: Signifikanz= ,013; FEOK1 e Signifikanz ,044; nicht für Bindungen korrigiert). Zu
den Aufgaben siehe Anlage S. 216ff.

Die Schülerinnen und Schüler konnten die möglichen Objektstrukturen teilweise aus den
Klassendiagrammen ableiten. Oft wurden nur einzelne mögliche Objektstrukturen, aber nicht
alle möglichen Strukturen als Lösung angeboten.
Die Aufgabe FEOK1 d wurde in Schule B besser beantwortet als in Schule A. Die Aufgabe
FEOK1 e war überraschend schwer, die Schüler sollten die Struktur doch aus dem Flaschen-
drehen-Projekt kennen. Die meisten Schüler der beiden Klassen erkannten, dass ein Objekt a

79 In einem weiteren Block wurden im FEOK1 auch Modellierungskompetenzen untersucht. Diese Ergebnisse
des FEOK1 werden in Abschnitt 10.1.2 diskutiert.

80 Klassenvariablen oder Klassenmethoden wurden nicht eingeführt. Aufgrund der Verwendung von Dobs
konnte im Unterricht auch auf die main()-Methode verzichtet werden.

139

Ergebnisse der empirischen Untersuchung

ein weiteres Objekt a kennen kann. Aber nur wenige Schüler folgerten, dass auch das zweite
a wiederum ein weiteres Objekt a, etc. kennen kann – die Struktur einer einfach verketteten
Liste wurde nicht gesehen. In Aufgabe FEOK1 f beachteten dagegen jeweils die meisten
Schüler die angegebene Kardinalität und gaben an, dass a mehrere b's kennen kann. Die bei-
den Aufgaben FEOK1 d und FEOK1 f waren einfacher, da hier die Objektstruktur direkt an
der Kardinalität abgelesen werden konnte. In FEOK1 e dagegen reichte die direkte Überset-
zung des Klassendiagramms in ein Objektdiagramm nicht aus. Ebenso in Aufgabe FEOK1 g,
die durch die Vererbungsbeziehung noch schwieriger war. Vor allem die Objektstruktur
FEOK1 g, in der Vererbung eingesetzt wurde, überstieg die Fähigkeiten der Schülerinnen und
Schüler, die Vererbung nur im Zusammenhang mit der Implementation des KlickHor-
cher-Interface kennen gelernt haben. Viele Schülerinnen und Schüler erkannten in der
Klassenstruktur IV die Vererbung, interpretierten den Pfeil jedoch falsch herum. Dieser Auf-
gabenblock war für die Schülerinnen und Schüler also insgesamt schwierig bis sehr
schwierig. Eine ausführliche vergleichende Analyse und Interpretation der Unterschiede in
den Ergebnissen erfolgt im Abschnitt 10.1.1 ab S. 160.

9.3 Prozessbeobachtung
In diesem Abschnitt werden einige ausgewählte Szenen aus dem Unterrichtsgeschehen (Ab-
schnitt 9.3.1), der Projektverlauf in der dritten Phase am Beispiel einer Gruppe aus Schule B
(Abschnitt 9.3.2) und eine zusammenfassende Analyse der Logfiles der verschiedenen Grup-
pen (Abschnitt 9.3.3) vorgestellt.
Eine zusammenfassende Beschreibung des Unterrichtsablaufs in den beiden Kursen findet
sich im Anhang (Schule A im Anhang ab S. 227, Schule B ab S. 236).

9.3.1 Unterrichtsbeobachtung in den drei Phasen
In diesem Abschnitt werden aus der gesamten Unterrichtsreihe einige interessante Aspekte
aufgegriffen und zusammen mit Transkripten einzelner unterrichtlicher Situationen erläutert.

 Zum Objektspiel
Ziel der ersten Phase war die Einführung der objektorientierten Begriffe und Konzepte. Dazu
wurde die Unterrichtsmethode des Objektspiels durchgeführt, nachdem im Unterrichtsge-
spräch die objektorientierte Sichtweise eingeführt wurde (Tabelle 66):

140

Ergebnisse der empirischen Untersuchung

L: [Nachdem das Spiel Flaschendrehen gespielt wurde, vor dem Objektspiel] Ganz wichtig ist nur, dass jeder sich zunächst einmal wirklich
Gedanken gemacht hat, welche Objekte könnten denn wichtig werden und welche Aktivitäten liegen vor. Und wir sollten einfach mal sam-
meln, ganz spontan und überhaupt nicht geordnet und einfach was euch dazu einfällt. [...]
S: Der Spieler, der macht also [unverständlich] ja der macht die Einsätze eben.
L: Ich schreib genau das auf, was ihr sagt.
S: Na Flasche und Zufallsgenerator.
L: Eine Flasche soll ich hinschreiben? [...]
L: Sonst noch was? Wenn ich da öfter hin gehe, dann müsste ich doch eigentlich..
S: Die Zuschauer, die beobachten das Ganze.
S: Die Zahlenfelder.
L: Was ist damit?
S: Die haben eigentlich keine Aktivität. Die Einsätze werden auf die Zahlenfelder gelegt und ...
L: Was schreiben wir hin?
S: Die zeigen die Spielfelder an. [Einspruch aus der Klasse]
S: Die Zahlenfelder werden besetzt.
L: Also, wenn keiner was dagegen hat, schreib ich das hin.
S: Das ist aber doch keine Handlung von den Zahlenfeldern. Das ist ja irgendwie eine Aktion von dem Spieler.
S: Das ist eine Eigenschaft von den Feldern, dass sie gesetzt werden können, das gehört schon mit dazu.
S: Das gehört aber eher zum Spieler, das steht da oben, der das einsetzt und da könnte man noch dazufügen: „und legt sie auf die Zahlen-
felder“, weil bei den Zahlenfeldern an sich haben wir eigentlich keine Aktivität.
L: Da sind wir uns nicht ganz einig. Ich schreib mal hin: „und legt sie auf Zahlenfelder“. Noch was?
S: Bei dem Spieler haben wir noch nicht aufgeschrieben, dass er den den Impuls gibt und so die Flasche bewegt.
L: Ihr seht, das ist sehr mühsam so was aufzuschreiben. Das hinzuschreiben ist nicht das Problem, aber das so hinzuschreiben, dass jeder
sofort sieht, das sind Objekte, das sind Aktivitäten. Wo sind denn die Objekte?
S: Der Spieler, die Flasche und die Zuschauer vor allem.
S: Ich würde noch die Zahlenfelder dazu nehmen, und die Einsätze.

Tabelle 66 Transkript: Unterrichtsauszug: Einführung in die objektorientierte Begrifflichkeit zur Einführung
des CRC-Karten-Modells (Vorbereitung auf das Objektspiel, Anfang der ersten Phase)

Nach der entsprechenden Vorbereitung und Überlegungen der Schülerinnen und Schüler, wel-
che Objekte beim Flaschendrehen-Spiel welche Aufgaben haben könnten, wurde das
Objektspiel durchgeführt (Tabelle 67):
[Lehrer stellt seine Version der CRC-Karten vor und fragt nach Unterschieden zu der gemeinsam erarbeiteten Version. Er erklärt das Ob-
jektspiel, verteilt die Objekte auf die Schüler, setzt die Attributwerte. [Der Schüler, der das Objekt Flasche darstellt, soll die
Verantwortlichkeit 'Flasche drehen' spielen:]
S1: [dreht die Flasche]
L: Aber Sie kennen doch das nächste Feld nicht, Sie zeigen auf Feld 1 ...
S1: Dann muss ich auf Feld 2 zeigen?
L: Aber wie geht das denn?
S1: Das Feld 1 nach seinem nächsten Feld fragen.
S: Liebes Feld 1, welches ist dein nächstes Feld?
S2: Feld 2.
L: Kennen Sie nun das nächste Feld?
S1:: Ja.
L: Dann weiter.
S1: Liebes Feld 2, was ist dein nächstes Feld?

Tabelle 67 Transkript: Ein Beispiel für die Durchführung des Objektspiels in der ersten Phase

 Zur Einführung der grafischen Oberfläche und der Ereignisbehandlung
In den beiden Versuchsklassen wurde die zweite Phase etwas unterschiedlich organisiert: In
Schule A hat die Klasse nach der Erstellung des Klassenmodells das Projekt der Phase 2
(Schatzsuche) arbeitsteilig weiter entwickelt. Jede Gruppe hatte unterschiedliche Methoden
zu implementieren.

141

Ergebnisse der empirischen Untersuchung

In Schule B wurde das Projekt vollständig gemeinsam bzw. jeweils in Einzel-, Partner oder
Hausarbeitsphasen erstellt. Danach wurde das FGrafik-Klassendiagramm als ein weiteres
Klassendiagramm zu dem bestehenden Schatzsuche-Projekt hinzugefügt; über gerichtete As-
soziationen wurde die grafische Oberfläche an das eigene Klassenmodell angebunden.
In Schule A versuchten viele Schülerinnen und Schüler mit bidirektionalen Assoziationen auf
die Bibliotheksklassen zuzugreifen oder Methoden der Bibliothek selbst zu implementieren.
Die enge Einbindung in Fujaba und das eigene Modell führte vermutlich zu der Vorstellung,
dass die FGrafik wie ein Makro zu den selbst erstellten Klassen hinzugefügt werde, und dass
die FGrafik-Klassen wie die selbst erstellten Klassen beim Export erzeugt würden und in Fu-
jaba änderbar seien. Das Konzept der Bibliotheksklasse als ein vorgefertigter Baustein, der
übernommen werden kann, aber nicht änderbar ist, wurde hier nicht hinreichend erklärt. In
Schule B wurde dieses Konzept dagegen deutlich – die Unterschiede zeigen sich in der Frage
nach dem Konzept Bibliothek im FEOK2 (siehe Tabelle 84, S. 158).
In der zweiten Phase wurde ebenfalls das Konzept der Ereignisbehandlung behandelt. Die Ta-
bellen 68 und 69 zeigen, wie die Ereignisbehandlung in Schule B eingeführt wurde.

142

Ergebnisse der empirischen Untersuchung

[Nachdem die GUI zur Schatzsuche hinzugefügt worden ist]
L: Was fehlt noch in unserer Software?
S1: Man kann das nicht richtig durchspielen, weil man die Felder nicht anklicken kann, sodass es richtig läuft das Spiel.
L: Da gibt es einen Fachausdruck für: Es fehlt noch die so genannte Ereignissteuerung. d.h., dass über bestimmte Ereignisse die von außen
hereingegeben werden in diesem Spiel, im Modell etwas ausgelöst wird. Ein Beispiel: Was könnte passieren? Was könnte man sich vorstel-
len, was passieren sollte?
S2: Zum Beispiel, dass wenn man ein Feld klickt, dass sich die Farbe ändert und dann der Wert des Schatzes da steht oder so was.
L: Hmm. [nimmt nächsten S dran]
S3: Ich würde eher sagen, wenn man auf den Spieler klickt, dass man dann ein Eingabefeld bekommt und dem Spieler sagen kann, welches
Feld er wählen soll und dass man dann hinterher im Ausgabefeld die Veränderung des Spielerkontos sehen kann.
S4: Das mit dem Eingabefeld finde ich gar nicht so sinnvoll. Wir haben ja die Felder da, wir können da doch drauf klicken. [Gemurmel in
der Klasse]
L: Hmm. Ok, ganz einfach ein Beispiel[L zeigt auf Schüler]: S4: Feld, S5: Knopf, S6: Benutzer, der Anwender. So S6: Was machst du?
S6: Ich drücke S5.
L: Ja genau, irgendwie wird der beeinflusst von außen. Ja, was jetzt? [mehrere S melden sich]
L: Nee, seid ruhig. S5 ist der Knopf.
S5: Ja, da ich eine Beziehung zu S4 hab - ja wenn die erstellt wurde - dann sage ich dem Spieler, der mich gedrückt hat, dass S4 ihm den
Schatz geben soll oder ich gebe dem Spieler den Schatz von S4.
L: Ja, die beiden Objekte [zeigt auf S4 und S5], was muss da sein? Sonst passt das nicht. Hab ich gar nicht vorgegeben.
S7: Die müssen eine Beziehung zueinander haben
L: D.h., wir haben da ein Feld und wir haben da einen Knopf, dann können wir nur darüber reden, wenn das die beiden Objekte sind, die zu-
einander eine Beziehung haben. Nämlich dass das Feld durch den Knopf dargestellt wird.
L: Aber eines habt ihr außer Acht gelassen. S6 hat gesagt, ich klicke jetzt einfach mal auf S5, auf diesen Knopf. Was muss da aber gegeben
sein? Ich will nicht sagen, Gott gegeben. Aber was muss da irgendwie da sein?
S8: Der Computer muss wissen, welchen Spieler er aufrufen soll.
L: Hmm.
S5: Das Feld muss wissen, welche Methode es aufrufen soll.
L: Hmm. Was ganz Banales, das euch wahrscheinlich gar nicht so einfällt.
S9: Der Knopf muss mitkriegen, dass er geklickt wird.
L: Ja [geht zu S5], dass ich den jetzt hier drücke und klicke, da könnt ihr sagen: schön. Aber im Grunde genommen muss ja etwas vorgege-
ben sein. Genau was S9 sagt: Der Knopf muss das bemerken können. Und das ist ja nicht etwas Normales. Ein Spieler, den wir
implementiert haben, der wird ja nicht bemerken, dass ihr mit der Maus rumklickt.
L: D.h. also, dieser Knopf muss in der Lage sein
diese Art von Ereignissen zu registrieren.
L [an Tafel; erläutert Skizze, siehe rechts]: objek-
tA registriert ein Ereignis und - wichtig - ist in
der Lage ein Ereignis zu registrieren. [zeichnet
Pfeil mit Ereignis ein]. Etwas, das von außen
kommt. Da passiert was. Was passiert jetzt?
S: objektA muss jetzt eine Botschaft an objektB
senden. [L ergänzt Botschaftspfeil in Skizze]
L: Wenn man ausformulieren möchte: objektA benachrichtigt objektB. Ja, worüber?
S: Ereignis.
L: Ja, klar: Dass ein Ereignis stattgefunden hat. Also: objektB wird benachrichtigt. Das hört sich jetzt ganz einfach an. Botschaft, benach-
richtigen ...
S5: Wir müssen doch eigentlich sagen, was passieren soll ... welches Ereignis ... was daraus folgen soll.

Tabelle 68 Unterrichtstranskript: Erarbeitung der Idee der Ereignisbehandlung

Zunächst gelang die Einführung des Konzepts, unterstützt durch ein kurzes informelles Ob-
jektspiel, sehr flüssig. Auf jeden der Impulse durch den Lehrer meldeten sich mindestens drei
Schülerinnen und Schüler, fast immer mehr. Die Schülerinnen und Schüler wirkten aktiv und
konnten der Entwicklung folgen.
Doch dann folgte der zweite Teil (Tabelle 69), in dem erklärt wurde, dass sich ein Ereignis-
empfänger (hier die Klasse Feld, die das KlickHorcher-Interface implementiert) bei der
Ereignisquelle registrieren muss (siehe zur Erläuterung Abbildung 70).

143

 objektA {Knopf} objektB {Feld}
Ereignis --- ---> | Botschaft--------> |

 | |
| |

Ergebnisse der empirischen Untersuchung

[L erklärt: objektB muss erklären, dass es über eintreffende Ereignisse informiert werden will.]
L: Dieses Konzept ermöglicht nämlich eines: Dieses Objekt könnte nämlich, wenn wir das denn wollen, auch beliebig anderen Objekten
diese Nachricht schicken – wenn die nur sagen, „bitte, ich möchte die haben“.
[kurze Stille, S scheinen etwas verwirrt zu sein]
L: So, das ist eigentlich der letzte Punkt, bevor wir uns anschauen können, wie das realisiert wird. Also: objektB muss objektA mitgeteilt
haben, dass es Nachrichten empfangen möchte. [notiert diesen Sachverhalt an Tafel]
[L lässt das nochmal wiederholen: erst anmelden, dann werden Ereignisse weitergeleitet]
S1: Ja, aber muss man das machen?
L: Das ist Konzept. [erklärt kurz das Java-Ereignismodell]
S1: Es würde doch reichen, wenn das Ereignis einem bestimmten Objekt mitgeteilt wird.
L: Ja, und das muss man über diese Botschaft (melde mich an) machen. [S zuckt mit den Schultern]
L: Nee, das ist Konzept..
[Zwei weitere Schüler melden sich, L fährt mit Erklärung fort: Anmelden, bevor Ereignisse weitergeleitet werden. S schauen ratlos]
S1: Das ist doch das Gleiche: Ich schicke einem Objekt eine Nachricht, oder mehreren. [zuckt wieder mit den Schultern]
L: Hmm. [fertigt Skizze an Tafel an, um das nochmal zu erklären: Ereignisregistrierer, und zwei Ereignisempfänger, die sich anmelden, dar-
gestellt mit Strichen, erläutert daran nochmal den Sachverhalt, S schauen immer noch ratlos]
S2: Kann man nicht dem objektA sagen, wenn dich jemand angeklickt hat, dass ich dann ganz genau diesem Feld das schicke? [L nickt]
S2: [redet weiter] Aber dazu muss ...
L [unterbricht]: Ja dadurch [zeigt auf Skizze: den 'Anmeldepfeil von objektB, erklärt nochmal]
S3: Ja, aber das kann man doch auch so machen, dass objektA eine Liste hat, in der alle Objekte ..
L [nickt]: Genau.
S3: ... drin sind, die benachrichtigt werden.
L: Ja genau, und das mache ich dadurch [zeigt wieder auf die Skizze]. Das ist genau das Konzept.
S4: Ich glaub, worauf wir da alle jetzt hinauswollen ist nicht, dass die Objekte da dem Knopf die Liste geben, sondern dass die sich von An-
fang an, dass die sich am Anfang kennen ...
L: Ach so, ja das tun wir ja, beim Aufbauen müssen wir das tun.[S schauen immer noch verwirrt]
L: So, jetzt machen wir erstmal Pause.
Nach der Pause wird das Beispiel in Fujaba demonstriert. Anschließend bekommen die Schülerinnen und Schüler die Aufgabe, ein ähnliches
einfaches Beispiel in ihrem Modell nachzubauen. Die Demonstration der Vorgehensweise scheint die Schülerinnen und Schüler zu überzeu-
gen und sie erstellen in der anschließenden Arbeitsphase recht schnell lauffähige Beispiele.

Tabelle 69 Unterrichtstranskript: Einführung des Konzepts Ereignisbehandlung

Die Schülerinnen und Schüler konnten nicht nachvollziehen, weshalb sich das Feld beim
Knopf 'anmelden' muss, damit es vom Knopf eine Nachricht bekommen kann. Ihre Vorschlä-
ge bzw. Einwände laufen darauf hinaus, dass ein Objekt einem anderen genau dann eine
Nachricht schicken kann, wenn es das andere kennt. Dazu wird eine Beziehung zwischen die-
sen beiden Objekten (und demzufolge zwischen den Klassen) bestehen müssen – dieses
wurde von dem Schüler S5 beim Objektspiel im ersten Abschnitt bereits betont („Ja, da ich
eine Beziehung zu S4 hab - ja wenn die erstellt wurde - dann sage ich dem...“).
Diese Einwände der Schülerinnen und Schüler sind richtig, denn das Anmelden des Empfän-
gers beim Ereignissender bedeutet, dass eine Beziehung namens horcher angelegt wird
(siehe Abbildung 70).
Interessant ist, dass die Schülerinnen und Schüler an dieser Stelle die zu vereinfachte und da-
mit im Grunde falsche Erklärung kritisierten, wonach das 'Anmelden' als ein Methodenaufruf
eingeführt wurde. Fachlich ist die Vorstellung der Schüler, die in den Nachfragen zum Aus-
druck kommt, richtig: Objekte müssen sich kennen, um kooperieren zu können, und dazu
besteht eine Beziehung zwischen ihnen. Tatsächlich muss auf Klassenebene eine Beziehung
zwischen einer Ereignisquelle und einem Ereignisempfänger bestehen, damit im Fujaba-Sto-
rydiagramm ein entsprechender Link angelegt werden kann81. Im Klasendiagramm der
FGrafik (30, S. 95) ist die entsprechende Beziehung (horcher) sichtbar.

81 bzw. im Quelltext eine entsprechende addTo-Methode aufgerufen werden kann – Die Vorstellung ist allge-
mein richtig und nicht auf die Verwendung von Fujaba beschränkt.

144

Ergebnisse der empirischen Untersuchung

Abbildung 70 Fujaba-Story-Pattern: Das Anmelden eines Feld-Objekts bei einem Knopf durch Erzeugen des
horcher-Links.

Das Ausgangsproblem für die Einführung der Ereignisbehandlung, welches dem gesamten
Kurs noch einmal bewusst werden sollte, lautete also: Wie kann eine Ereignisquelle mit ei-
nem unbekannten Ereignisempfänger zusammenarbeiten, wenn die Klasse Ereignisquelle
nicht geändert werden kann (sonst könnte man ja die beiden Klassen im Klassendiagramm
einfach mit einer Beziehung verbinden)?
Die Antwort ist: Die Quelle kann mit dem unbekannten Empfänger genau dann zusammenar-
beiten, wenn dieser so tut, als sei er ein in der Bibliothek vorhandener bekannter Empfänger.
Ein solcher bekannter Empfänger in der FGrafik-Bibliothek ist die Klasse Klickhorcher.
Der Empfänger muss nun zu einem besonderen Klickhorcher werden, indem er von der
Klasse Klickhorcher erbt und dann eine Methode des Klickhorchers implementiert,
die bei einem Ereignis jeweils von der Ereignisquelle aufgerufen wird.

 Zum Memory-Projekt
In Phase 3 des Unterrichts sollten die Schülerinnen und Schüler ein Projekt (Memory) in
Gruppen möglichst eigenständig modellieren und implementieren.
Die Entstehung der Programme ist zwar im Detail unterschiedlich, ebenso die Lösungen, aber
es sind auch übergreifende Gemeinsamkeiten festzustellen (Tabelle 71).

Arbeitsschritte
1. Analyse mit CRC-Karten und Objektspiel
2. Erstellung des Klassendiagramms
3. Erstellen einer Methode erzeugeSpiel
4. Erstellen weiterer Methoden
5. Erstellen der grafischen Oberfläche
6. Anbinden der grafischen Oberfläche
7. Ereignisbehandlung

Tabelle 71 Projektverlauf im Überblick: Typische Abfolge der Entwicklung des Memory-Projekts in den
Gruppen.

Die ersten Schritte sind in den Gruppen nahezu identisch: Nach dem initialen Entwurf (mit
CRC-Karten) und einer Plausibilitätsprüfung (durch Diskussion in der Gruppe und/oder Ob-
jektspiel) wurde das Klassendiagramm in Fujaba erstellt und zunächst in einer Methode
(Namen) die anfängliche Objektstruktur erzeugt.
Insgesamt gelang das Strukturieren mit CRC-Karten sehr schnell, die Gruppen benötigten ca.
eine halbe Unterrichtsstunde und konnten anschließend den Entwurf vorstellen (Tabelle 72).

145

Ergebnisse der empirischen Untersuchung

Die CRC-Karten einer Schülergruppe: Spielleiter, Spieler und Feld
Name: Spielleiter
Verantwortlichkeiten:
erstellt Spiel
wertet Spielzug aus
Beteiligte:
Spieler, Felder

Name: Spieler
Verantwortlichkeiten:
Punktzahl
Nummer
aufgedeckt
deckt Felder auf
kennt nächsten Spieler
Beteiligte:
Spieler, Felder

Name: Feld
Verantwortlichkeit:
Wert
Nummer
aufgedeckt
kennt Spieler
Beteiligte:
Spieler

S1: Ja, ok, wir fangen beim Spielleiter an, der kennt alle Spieler, alle Felder, wie wir das auch schon hatten, der erstellt das Spiel und da ha-
ben wir jetzt drunter, dass er den Spielzug auswertet. Spielzug heißt dann immer, dass ein Spieler zwei Felder ausgewählt hat.
Dann können wir mit dem Spieler weitermachen. Er hat eine bestimmte Punktzahl, d.h., immer,wenn er ein Paar aufgedeckt hat, kriegt er ei-
nen Punkt dazu. Er kennt den nächsten Spieler, er kennt die Felder, hat eine Nummer, deckt die Felder auf, das wäre dann ein
Anwendungsfall und wir haben ihm noch ein Attribut "aufgedeckt" dazugegeben.
Das Feld hat einen Wert, es kennt den Spieler, es hat aufgedeckt oder nicht aufgedeckt und es hat eine Nummer. Aufgedeckt wollen wir als
Boolean machen, also wenn aufgedeckt true ist, werden beim Spielleiter, der den Spielzug auswertet, die beiden Felder mit dem Wert true
miteinander verglichen, ob der Wert gleich ist.
Wenn ja, ist halt ein Paar, dass der Spieler einen Punkt dazubekommt und wenn nicht, werden die wieder umgedreht.
Dann haben wir noch kurz die Anwendungsfälle: Spielleiter: Spiel erstellen, der Spieler wählt die Felder aus und der Spielleiter wertet den
Spielzug aus.
Wir könnten es jetzt auch einmal kurz durchspielen:
Der Spielleiter erstellt das Spiel, die Spieler, und dann haben wir jetzt mal zum Beispiel vier Felder. Dann fängt Spieler 1 an mit dem Spiel.
Ich bin Spieler 1 und wähle ein Feld aus, zum Beispiel Feld 1 und noch ein Feld, z.B. Feld 3. Dann ist der Spielleiter an der Reihe, der über-
prüft, welches der Felder bei aufgedeckt den Wert true hat.
S2: Dann vergleiche ich die Werte: nicht gleich, d.h. der Spieler bekommt keinen Punkt dazu und es wird nicht mehr angezeigt, welche
Werte die [Felder] haben.
S3: Spieler 2 nimmt das Feld mit Nummer 2 und das Feld mit Nummer 1.
S2 (Spielleiter): die beiden haben den Wert true, es wird verglichen, die beiden haben den Wert 1. Die beiden fallen schon weg, weil sie
ausgewählt wurden. Und er ist jetzt noch einmal dran, weil er zwei herausgefunden hat.
S3: Spieler 2 wählt Feld 4 und 3. Ist ja das Gleiche wieder.
S2: Spielleiter wertet das Spiel aus, weil alle Felder aufgedeckt sind.

Tabelle 72 Unterrichtstranskript: Eine Gruppe erläutert ihren CRC-Entwurf. Oben: Abbildung des CRC-
Modells, das die Schülerinnen und Schüler vorstellen.

Das erste Klassendiagramm wurde von den Schülern als Hausaufgabe erstellt – der Lehrer
hatte einen sauber aufgeschriebenen CRC-Karten-Entwurf erwartet. Viele Schülerinnen und
Schüler hatten auch gleich mit der Methode erstelleSpiel begonnen. In der ersten Ein-
zelstunde und der darauf folgenden Doppelstunde wurde das fertiggestellt. Danach wurden
zwei alternative Vorgehensweisen beobachtet: Die einen wollten nun mit der grafischen
Oberfläche fortfahren, die anderen wollten zunächst ein in Dobs vollständig lauffähiges Mo-
dell implementieren.
In Schule B entstand bereits während der Analysephase (zu Beginn der dritten Phase) eine
Diskussion über das Vorgehen bei der Modellierung und die Aufgaben von Analyse und De-
sign, die diese Aspekte gebündelt beschreibt. Dieser Unterrichtsausschnitt wird im Protokoll
wiedergegeben (Tabelle 73).

146

Ergebnisse der empirischen Untersuchung

S1: Wir stecken gerade dabei, wie wir die Felder verteilen können auf das Spielfeld, und hatten uns überlegt, dass wir sie mit zufälligen
Grid-x- und Grid-y-Werten verteilen können, äh, für x-Koordinaten und y-Koordinaten Werte verteilen könnten und dann stellt sich die Fra-
ge, wie wir diese Zufallswerte machen, ob wir dann die Zufallswerte so einstellen können, dass wir dann die Zahlen 1 bis 10 jeweils nur
einmal haben, dass die aber zufällig dann hinterher zugeordnet werden.
S2: Ja, ich denke nicht, dass wir jetzt schon wieder die grafische Darstellung uns unbedingt überlegen, d.h., wie das hinterher genau aus-
sieht. Deshalb hat ein Feld an sich bei uns zunächst mal keine Grid-x- und Grid-y-Werte.
S3: Es geht ja jetzt noch nicht um die grafische Darstellung, sondern erstmal darum, dass immer zwei Felder den gleichen Kontrollwert oder
so haben, und dass kein Wert dreimal vorkommt und dass nicht irgendein Wert weniger als zweimal vorkommt und da haben wir uns auch
schon was zu überlegt, nur wie das weitergeht, weiß ich nicht.
[Diskussion: weiterer Diskussionsbedarf oder nicht?]
L: Warum schauen alle mich an? Jetzt überlegt doch mal, in welcher Phase einer solchen Entwicklung, Projektentwicklung sag ich mal jetzt,
sind wir denn im Moment?
S4: Schon eigentlich ganz am Anfang. Wir überlegen uns genau die Anforderungsdefinition, was realisiert werden soll und wie, aber wir
sind noch nicht bei der Grafik.
S2: Ja, wir überlegen eigentlich noch nicht, wie es realisiert werden soll. Vor allem nicht, wie es grafisch realisiert werden soll.
S1: Ich denk mal, je früher ich anfange zu überlegen, wie ich's realisiere, desto einfacher ist es nachher, desto mehr stimmt das, was ich mir
hier überlege mit den Dingen überein, die man da machen muss.
L: Ich fasse einfach mal zusammen. [Lehrer gibt Zusammenfassung] Wir müssen da jetzt eine Entscheidung treffen: Soll man sich jetzt
schon damit beschäftigen, wie es dann genau aussieht oder nicht?
S5: Ja, ich denke schon, weil wenn man sich jetzt irgendwas so ausdenkt, dass es nachher zu Problemen führt, dann ist es im Endeffekt viel
umständlicher, weil dann, meinetwegen lege ich mich jetzt auf eine Lösung fest, danach führt das nur zu Problemen und dann braucht man
im Endeffekt doch mehr Zeit. Dann wäre es besser, wenn man von Anfang an überlegt, wie das sich nachher auswirken könnte, dass man
schon von Anfang an das Richtige nimmt.
S2: Ich könnte mir auch vorstellen, dass das jetzt bei diesem Projekt z.B. nicht unbedingt so Probleme macht, weil das auch noch nicht so
komplex ist, aber wenn man komplexere Projekte hat, dann wird das am Anfang zu unübersichtlich. Also deshalb: Aus Prinzip wär ich ei-
gentlich dagegen.
S1: Wir haben mit der Schatzsuche etwas sehr Ähnliches realisiert und wir wissen nun mal, welche Probleme aufgetreten sind und wie die
grafische Darstellung in etwa aussehen soll. Also, warum sollten wir nicht von unserem Wissen, was wir haben, ausgehen und versuchen
dieses Wissen jetzt auf das neue Projekt anzuwenden?
L: Wir haben uns, ich versuch das nur nochmal in Erinnerung zu rufen, ganz zu Beginn unserer Arbeit, als wir überlegt haben, welche Ob-
jekte gibt es denn und wir haben bestimmte Verantwortlichkeiten zugeschrieben. Worüber haben wir uns eigentlich nie Gedanken gemacht.
S4: Dass alles richtig funktioniert, dass das Spiel richtig gespielt werden kann. Also es kann gespielt werden, nur nicht grafisch, sodass man
es anklicken kann und dass man erst dann ... [unverständlich]
L: Noch genauer, worüber haben wir uns nie Gedanken gemacht. Denkt mal an unsere ersten Berührungspunkte so mit Objekten, Aktivitä-
ten und Verantwortlichkeiten?
S6: Wir hatten das immer festgelegt, z.B. Verantwortlichkeiten und haben das dann mit diesen Objekten und Verantwortlichkeiten und so
weiter durchprobiert und haben uns dann dabei immer nur gedacht, dass es einfach geht, was wir den Objekten zugewiesen haben.
L: Das war unsere erste Überlegung. Und natürlich ist es jetzt, und das sagen ja auch alle, nicht von der Hand zu weisen, wir sind ein klein
wenig weiter schon. Wir haben jetzt erlebt, welche Probleme noch auf uns zukommen können, wenn wir dann wirklich an die Realisierung
herangehen. Dass wir da auch Veränderungen durchführen, und da greif ich vielleicht das auf, was S2 eben sagte, wo haben wir denn Analy-
se, wo haben wir Design? Könnte man das jetzt vielleicht fassen: Wo steckt die Analyse? Wann setzt das Design ein? Dass das ein
fließender Übergang ist, denk ich, ist klar, aber ...
S7: Es kommt zu weit, wenn man überlegt, wie das realisiert werden soll, weil man denkt ja jetzt schon nach, wie eine bestimmte Schleife
aussehen soll und alles und das ist ja eigentlich schon das Design.
L: Das ist ein Schritt weiter und trotzdem sind alle der Meinung, dass was S1 anspricht, kann man nicht von der Hand weisen, nur, wir müs-
sen da jetzt irgendwo eine Entscheidung treffen oder die Gruppe muss einen Entscheidung treffen. Können wir ihr dabei helfen?
S2: Wir nehmen das Design dann schon vorweg und nehmen es mit in die Analyse hinein und das ist in sofern nicht mehr so günstig.
L: Ich versuch's mal einmal deutlich zu machen: Wann macht das überhaupt kein Problem, wenn ich sage, ich überleg schon mal, wie es
dann realisiert werden könnte und nehme das auf. Wann macht das gar kein Problem?
S6: Bei so einfachen Sachen wie wir hier machen, würd' ich da sagen, ist es sinnvoll das jetzt schon mal zu überlegen, nur halt - hat S2 vor-
hin auch schon gesagt - wenn das jetzt ein bisschen komplizierter wird, dann haben wir ein Problem.

Tabelle 73 Schülerdiskussion über Aufgaben von Analyse und Design, in den einzelnen Gruppen werden CRC-
Karten-Modelle des Memory-Spiels entworfen, dabei kommt es zu dieser Diskussion in der Klasse.

Deutlich wird in dem Unterrichtsauszug, dass die Schülerinnen und Schüler Softwareentwick-
lung als eine Tätigkeit begriffen haben, die mehr umfasst als die Phase des Codieren bzw.
Implementierens. Dieses ist eines der wesentlichen zu erreichenden Lernziele gewesen.

 Zum Einsatz von Fujaba
Im Verlauf der Unterrichtsreihe sind diverse Fehler an Fujaba aufgetreten, die nach und nach
gelöst wurden, siehe die Versionshistorie in Tabelle 74. Zum Teil entstanden diese Fehler

147

Ergebnisse der empirischen Untersuchung

durch Änderungswünsche an Fujaba, etwa zur Vereinfachung der Bedienung, zur Vereinfa-
chung der Oberfläche etc. Nach Abschluss der Evaluation wurden weitere Änderungen an
Fujaba vorgenommen, die aus den Evaluationsergebnissen abgeleitet sind (Tabelle 74, erster
Eintrag).
Einige wesentliche Änderungen nach dem eigentlichen Unterricht: Fujaba 3.0.0 life³ [g-i]
1. Bug im Link Editor behoben: Assoziationen werden jetzt in korrekter Abhängigkeit von Source/Target angezeigt
2. Bug behoben: Kommentare lassen sich jetzt ändern
3. neuer Comment Editor (Alternative zu mpEdit)
4. Collaborations lassen sich auf Elementen eines Sets ausführen
5. im Collaboration Editor wird ein angewähltes Object als Target übernommen
6. Export und Compile: Packages werden jetzt beim compilieren berücksichtigt
7. Mr. Dobs erkennt exportierte Packages
8. im FGrafik Template sind Methoden sichtbar
9. neu erstellte Diagrammobjekte erscheinen nun unter dem Mousecursor und nicht mehr an zufälliger Stelle
10. Attributzuweisungen in Story-Pattern werden nun grün dargestellt, andere Assertions immer schwarz
11. Inkonsistenz beseitigt: fgrafik.jar ist auf die aktuelle Version von FGrafik gebracht
12. Fujaba Manual unter Help verfügbar (beta)
13. "Schulkiosk" Beispiel hinzugefügt
1. Quelle eines KlickSignals über die Assoziation “quelle” abrufbar
2. Anglizismen aus FGrafik entfernt. Alte Methoden- und Attributnamen sind aus Gründen der Abwärtskompatibilität weiterhin gültig
3. überarbeitete Dokumentation
1. JSDK 1.4 Kompatibilität
2. Editieren von Statements in mpEdit
3. Environment: Path Defaults an Windows angepasst
4. Bug in getRelativePath() in OptionsPanelPathes behoben
5. Bug in der Sourcecodegenerierung für DELETE Links auf 1..n Reference Assocs behoben
6. Bug im Link Editor behoben: Interfaces werden jetzt korrekt behandelt, ungültige Links werden ausgeblendet
Fujaba 3.0.0 life³ [f] - 21.03.2002.
1. Löschen von Objekten unter Dobs gefixt
2. dauerhafter Task - Bug im ScrollPanel behoben
Fujaba 3.0.0 life³ [e] - 18.02.2002.
1. Generierung des FGrafik Templates beschleunigt
2. Anführungszeichen für lange Verzeichnisnamen unter Win32 beim Starten von DOBS gefixt
3. fehlende import Anweisung im generierten Quelltext für java.util.Iterator gefixt.
4. neuer Layoutmanager für Toolbars gegen das „Hüpfender Projektbaum“ Problem
Fujaba 3.0.0 life³ [d] - 07.02.2002.
1. FujabaLog Einträge für das Laden und Speichern von Projekten hinzugefügt
2. Kreis aus FGrafik wird jetzt vollständig gezeichnet
3. Attribute breite und hoehe auf Linie sind wieder zulässig
Fujaba 3.0.0 life³ [c] - 21.01.2002.
1. Kardinalitäten sind stets editierbar
2. Association Editor erlaubt keine von reference Klassen ausgehenden Assoziationen mehr, außer die Partnerklasse ist ebenfalls reference
3. removeYou wird beim Löschen einer Assoc geupdated (Bug in AClassMethodEngine)
4. Zugriffsmethoden einer Referenz werden beim Löschen einer solchen mitgelöscht, removeYou geupdated
5. die neue Dateiendung für Fujaba-Projekte ist .fpr statt fpr.gz
6. Version wird im About Fujaba Dialog aufgeführt
7. ein Doppelklick auf Fujaba Projekte mit der neuen Dateiendung .fpr unter Windowsâ öffnet diese
8. "Out of Memory" Problem bei Rechnern mit mehr als 64MB gelöst
9. Verwendung von Inno Setup für das Update (demnächst auch für Komplettinstallationen)
Fujaba 3.0.0 life³ [b] - 06.12.2001.
1. "Show Comment" im Popupmenü hinzugefügt
2. DialogFenster zum FGrafik Template hinzugefügt
3. im Assertions Editor ist ":=" Standardeinstellung
4. Farbe kann mit Assertions benutzt werden
5. Farbe(int rot, int gruen, int blau) Konstruktor
6. Farbe(String farbName) Konstruktor
7. DialogFenster ohne Aufruf von System.exit()
8. createChessboard akzeptiert "null" als Parameter für Farbe
9. Symbol hat jetzt "public" Sichtbarkeit > keine Probleme mehr mit Symbol-Methoden unter Dobs
10. FGrafik für die direkte Verwendung unter Dobs liegt als fgrafik.jar bei
11. DobsStart.bat startet Dobs mit fgrafik.jar im Klassenpfad

Tabelle 74 Änderungen an Fujaba während des Unterrichtsversuchs

Die fehlenden Möglichkeiten, bzw. die Umständlichkeit, einmal erstellte Fujaba-Diagramme
zu ändern, auszutauschen, Diagrammelemente zwischen verschiedenen Diagrammen oder
Projekten zu verschieben, führte dazu, dass die Gruppen in Phase 3 eher bestehende Diagram-
me änderten und umbauten als neue Diagramme aus einzelnen 'Bausteinen' aufzubauen, denn

148

Ergebnisse der empirischen Untersuchung

diese hätten komplett erzeugt werden müssen. Konkret hat sich das bei der Ereignisbehand-
lung bemerkbar gemacht: In einer Gruppe wurde die Methode immer umfangreicher und
unübersichtlicher - es fehlte die Möglichkeit, sie in zwei verschiedene Methoden zu zerlegen.
In einer anderen Gruppe bauten die Schüler dann lieber gleich in der Ereignisbehand-
lungsmethode Elemente aus der Vergleichen-Methode nach, als die vergleichen-Methode
anzupassen, da das Umbauen und Verschieben von Diagrammelementen nur eingeschränkt
möglich war.
Auf diese Weise trug die im Unterricht verwendete Fujaba-Version dazu bei, dass die Erstel-
lung der Projekte in Phase 3 länger dauerte, es behinderte die Schüler neue Design-Ideen
während der Erstellung einfließen zu lassen und führte dazu, die bestehenden Modellstruktu-
ren beizubehalten.
In der Unterrichtsbeobachtung wurden aufgetretene einzelne Probleme in den Stundenproto-
kollen notiert. Aus diesen Protokollen sind die folgenden, den einzelnen Beobachtern
aufgefallenen Schwierigkeiten bei der Erstellung des Memory-Projekts entnommen:
1. Schleifen konstruieren (Fujaba-Syntax), aber auch Fujaba-Problem
2. Fujaba-Fehlermeldungen und Compiler-Meldungen unverständlich
3. Gerichtete Links können in Story-Pattern Fehler verursachen (Fujaba-Fehler)
4. Pattern-Matching von Story-Pattern unklar
5. Objekte auf bound setzen unklar
6. 1:1 statt 1:n-Assoziation verwendet
7. gerichtete satt ungerichtete Assoziation verwendet
8. Benutzung von Parametern: formaler und aktueller Parameter.
9. Konzept Bibliothek: Schüler versuchen Methoden der FGrafik-Klassen zu überschreiben
10.Schüler versuchen Assoziation zwischen FGrafik-Klassen zu ziehen
Einige Probleme sind relativ eng mit der Werkzeug-Nutzung verknüpft (Punkte 1 bis 5). Sie
entstanden direkt durch die Verwendung von Fujaba, und entsprechen – zumindest auf den
ersten Blick – keinen allgemein gültigen objektorientierten Konzepten: Fujaba erlaubte bei-
spielsweise das relativ freie Verbinden von Elementen eines Aktivitätsdiagramms, sodass
nicht unmittelbar klar war, welche Konstruktionen wohlgeformt sind und auf Schleifenstruk-
turen abbildbar sind. Der dritte Punkt betrifft insbesondere Probleme mit der FGrafik. Im
Aktivitätsdiagramm konnten Links, die ja prinzipiell ungerichtet sind, bei der Codegenerie-
rung (je nach Eingabereihenfolge) auf nicht vorhandene gerichtete Assoziationen abgebildet
werden, sodass anstelle der vorhandenen Assoziation a->b die Codegenerierung Quelltext für
die (nicht vorhandene) Gegenrichtung a<-b erzeugt wurde. Dieses Problem wurde im Laufe
der Unterrichtsreihe behoben, hat jedoch für Irritationen gesorgt, zumal Links in Aktivitäts-
diagrammen ungerichtet erscheinen. Andere Probleme beziehen sich auf die Semantik von
Story-Pattern: Wie funktionieren sie (Punkt 4)? Weshalb und wozu benötigt man gebundene
Objekte (Punkt 5)? Zum Teil wurden Assoziationen nicht korrekt benutzt, ebenso Parameter
(6 bis 8). Es gab Verständnisprobleme bei der Nutzung der FGrafik-Bibliothek (9 und 10).

9.3.2 Projektverlauf in Phase 3: Bildschirmvideos
Die Entstehung der Projekte in der Implementationsphase soll nun untersucht werden. Dazu
wurden die erzeugten Bildschirmvideos der Projektphase, die nur für Schule B vorliegen, ka-

149

Ergebnisse der empirischen Untersuchung

tegorisiert. Es wurde in 10-Sekunden-Schritten kodiert, welcher Arbeitsschritt an welchem
Element des Projekts gerade durchgeführt wurde.
Das allgemeine Vorgehen der kategorienbasierten Auswertung von Videodaten wurde bereits
in Abschnitt 8.3.3 erläutert (vgl. die Abbildung 40, S. 118: Videograph-Screenshot). Hier
wird nun das verwendete Kategoriensystem vorgestellt. Die Kategorien sind (Tabelle 75):

 1 Arbeitsphase: Was machen die Schülerinnen und Schüler?
 1.1 Erkunden sie ein früheres Projekt oder eines einer anderen Gruppe? (Fremdes Erkunden)
 1.2 Testen sie ihr eigenes Projekt in DOBS? (Eigenes Ausprobieren)
 1.3 Suchen sie einen Fehler? (Fehler lokalisieren)
 1.4 Verbessern sie einen Fehler? (Fehler beheben)
 1.5 Erweitern sie ihr Projekt um neue Funktionalität, Klassen, Methoden etc? (Erweitern)

 2 Inhalt: Bezieht sich ihre Arbeit auf den Bereich der Programmlogik oder auf die grafische Oberfläche?
 2.1 Programmlogik (Modell)
 2.2 Ein- und Ausgabe (FGrafik)

 3 Vorgehensweise: Wie gehen sie dabei vor?
 3.1 Gehen sie eher unstrukturiert vor, probieren einfach etwas aus? (konzeptlos)
 3.2 Gehen sie eher geplant vor? (geplant)
 3.3 Brauchen sie Hilfe durch den Lehrer, durch einen Mitschüler? (Anregung durch Person)
 3.4 Suchen sie Anregung durch ein früheres Projekt? (Anregung durch Projekt)
 3.5 Überlegen sie gemeinsam, was zu tun ist? (Diskussion)

Tabelle 75 Das Kategoriensystem zur Auswertung der Bildschirmvideos

In den einzelnen Videos passierte relativ oft gar nichts, denn die Schülerinnen und Schüler
starteten fast immer alle Notebooks, um dann doch gemeinsam an einem Notebook zu arbei-
ten, während die anderen Notebooks zwar liefen und ein Video aufgenommen wurde, aber
niemand an dem Notebook arbeitete. Daher haben die folgenden Abbildungen jeweils zu ei-
nem großen Prozentsatz 'Nicht gewählt' als Kategorie. Sieht man von diesen Leerlaufphasen
ab, so zeigt sich folgende Arbeitsverteilung (siehe Tabelle 76):

Arbeitsphasen ohne
Leerlauf

Anzahl %
Fremdes erkunden 557 4,7%
Eigenes ausprobie-
ren

3445 29,0%

Fehler lokalisieren 3147 26,5%
Fehler beheben 1772 14,9%
Erweitern 2951 24,90%

Tabelle 76 Verteilung der verschiedenen Tätigkeiten während der Rechnerarbeit in der Projektphase.
Gesamtsumme über alle Gruppen. Die Daten beziehen sich nur auf Schule B. Jeder Eintrag bezieht sich auf ein
Intervall von 10 Sekunden. Erläuterung der Tätigkeiten/Kategorien in Tabelle 75 (Arbeitsphasen).

Die Modelle anderer Gruppen (Kategorie Fremdes erkunden) wurden relativ selten herange-
zogen. Die Arbeit verteilte sich auf die Erstellung bzw. Ergänzung des Projekts (Erweitern),
das Ausprobieren und zur anderen Hälfte der Zeit auf die Fehlersuche und Fehlerbehebung
(Fehler lokalisieren und Fehler beheben).
In der Unterrichtsbeobachtung wirkte die Gruppenarbeit in Phase 3 oft als Programmieren
nach dem Trial-and-Error-Prinzip. Das Modell konnte jeweils sehr schnell erstellt werden.
Danach schienen die Gruppen oft zu experimentieren, wie die GUI angebunden werden kann.
Tabelle 77 zeigt die Verteilung der Arbeit auf GUI und Modell.

150

Ergebnisse der empirischen Untersuchung

Inhalt ohne Leerstellen
Anzahl %

Modell 8616 59,10%
FGrafik 5967 40,90%

Tabelle 77 Verteilung der Arbeitszeit auf Fachlogik und grafische Oberfläche. Gesamtsumme über alle
Gruppen. Die Daten beziehen sich nur auf Schule B. Jeder Eintrag bezieht sich auf ein Intervall von 10
Sekunden. Erläuterung in Tabelle 75 (Inhalt).

Die Analyse der Arbeit im Einzelnen zeigt, dass dieser Eindruck nicht ganz richtig war. Die
etwas höhere Anzahl an Aktivitäten bezog sich auf das Modell. Hier sind aber mehrere Pro-
jekte parallel entstanden, in den späteren Unterrichtsphasen haben die Gruppen tendenziell an
weniger Notebooks parallel gearbeitet. Das bedeutet, dass die Auswertungsmethode die Ar-
beit am Modell etwas zu stark gewichtet. Man kann vielleicht von einer 50-50 Verteilung
ausgehen.
Tabelle 78 zeigt die verschiedenen Vorgehensweisen bei der Arbeit mit Fujaba:

Vorgehensweisen
Anzahl %

konzeptlos 2031 17,2%
geplant 4600 38,9%
Anregung durch Person 2263 19,1%
Anregung durch Projekt 100 0,80%
Diskussion 2837 24,00%

Tabelle 78 Beobachtete Vorgehensweisen. Gesamtsumme über alle Gruppen. Die Daten beziehen sich nur auf
Schule B. Jeder Eintrag bezieht sich auf ein Intervall von 10 Sekunden. Erläuterung der Kategorien in Tabelle
75 (Vorgehensweise).

Auch hier war der subjektive Eindruck, dass das zufällige Vorgehen (trial-and-error) über-
wiegt, bei dem eher planlos 'rumgeklickt' und 'rumprobiert' wurde. Wenn man die nicht
zuzuordnende Zeit (nicht gewählt) abzieht, ist knapp zwei Drittel der Zeit zielgerichtet vorge-
gangen (geplant) oder das Vorgehen erörtert worden (Diskussion). Etwa 18% der Zeit wurde
mit zufälligem Vorgehen (konzeptlos) verbracht. Ebenso oft erfolgten Anregungen durch Mit-
schüler oder Lehrer.
Es scheint also eher, dass die Schülerinnen und Schüler mit einzelnen Problemen konfrontiert
waren, deren Lösung sie aufgehalten hat, als dass sie generell einfach drauflos programmier-
ten.

9.3.3 Entstehung der Projekte: Logfiles
Die Genese des Projekts und der vermuteten einzelnen Probleme wird am Beispiel einer der
drei Gruppen der Notebook-Klasse nachgezeichnet, um die Probleme der Erstellung im Ein-
zelnen zu verdeutlichen. Obwohl nur eine der drei Gruppen (aus Schule B) vorgestellt wird,
kann der hier dargestellte Ablauf auf die anderen beiden Gruppen übertragen werden. Zwar
gingen die Gruppen tatsächlich etwas unterschiedlich vor, hatten aber dennoch jeweils ähnli-
che Schwierigkeiten mit derselben Funktionalität (Ereignisbehandlung, Aufbau der
Oberfläche mit zufälliger Anordnung der Memorykarten, Aktualisieren der Oberfläche nach
einem Spielzug).
Für die Auswertung werden die Bildschirmvideos und die Fujaba-Logfiles herangezogen und
ausgewertet, sowie das entstandene Ergebnis (das Memory-Projekt) analysiert. Aus den Log-

151

Ergebnisse der empirischen Untersuchung

files werden Diagramme erzeugt, welche angeben, wann in welchem Bereich gearbeitet wur-
de. Als Bereiche werden Klassendiagramm, Aktivitätsdiagramm und Dobs unterschieden.
Doch zunächst zur Analyse des Ergebnisses. Das Klassendiagramm des fertigen Memorypro-
jekts der hier vorgestellten Schülergruppe ist in Abbildung 79 dargestellt.

Abbildung 79 Klassendiagramm des fertigen Memoryspiels

Die Logik des Spiels besteht aus den drei Klassen Spielleiter, Spieler und Feld.
Die Klassen Random, Ausgabefeld, Fenster, Knopf und Klickhorcher sind aus
Bibliotheken übernommen. Die eigentliche Funktionalität des Programmes konzentriert sich
in der Klasse Spielleiter. Die Klasse Spieler ist eine reine Datenklasse. Die Klasse
Feld kann auf Mausereignisse reagieren.
Kartenpaare werden durch die Selbst-Assoziation feld der Klasse Feld ausgedrückt, das
Attribut wert enthält das anzuzeigende Symbol für die Ausgabe, das Attribut nummer wird
zwar gesetzt, jedoch nicht verwendet. Die Assoziation kennt zwischen den Klassen Feld
und Spieler wird ebenfalls nicht verwendet.
Die drei Methoden der Klasse Spielleiter zeigen stellvertretend den für alle Gruppen ty-
pischen Entstehungsablauf und die jeweiligen Schwierigkeiten, die die Schülerinnen und
Schüler überwinden mussten (zum Entstehungsverlauf des Projekts im Überblick siehe Tabel-
le 71, S. 145 und Abbildung 80).

152

Ergebnisse der empirischen Untersuchung

E=Einzel, D=Doppelstunde: E D E D E D E
Er

st
es

 N
ot

eb
oo

k
de

r G
ru

pp
e

D
ob

s
 M

et
ho

de
n

K

la
ss

en

Zw
ei

te
s N

ot
eb

oo
k

de
r G

ru
pp

e

D
ob

s
 M

et
ho

de
n

K

la
ss

en

Abbildung 80 Die Arbeit der Gruppe in den einzelnen Stunden. Die Gruppe hat an zwei Notebooks gearbeitet
(Verlauf oben und unten). Das in Abbildung dargestellte Projekt ist auf dem Notebook entstanden, dessen
Verlauf oben dargestellt ist. (rot=Arbeit an Klasse; blau=Arbeit an Methode; grün: Kompilieren;
Magenta=Dobs). Die Zeitachse gibt nicht die gesamte Stundenzeit, sondern die Zeit wieder, in der Fujaba
gestartet war.

Zur Methode erstelleSpiel:
Das grundlegende Klassendiagramm mit den Klassen der Logik wurde von allen Gruppen zu
Hause erstellt, ebenso eine erste Fassung der create-Methode. Das Erzeugen der für den
Spielanfang notwendigen Objektstruktur ist einfach, solange die Struktur in Dobs angezeigt
wird. Mit dem Hinzufügen der grafischen Oberfläche jedoch müssen die Karten gemischt
werden. Zwei der drei Gruppen haben das Mischen in die erstelleSpiel-Methode inte-
griert, eine Gruppe hat eine eigene Methode dafür entwickelt. Die Schwierigkeit war erhöht
dadurch, dass jeweils zwei Karten mit demselben Wert benötigt wurden. Diese Gruppe hatte
die Methode zum Erzeugen des Spiels und dem Mischen der Karten von einer anderen Grup-
pe übernommen. Tatsächlich wurde die Funktionalität zum Mischen der Karten und dem
Anordnen an der Oberfläche von einem einzelnen Schüler entwickelt und von allen Gruppen
in die eigenen Projekte übertragen.
Man sieht hier ein Problem, das sich durch die ganze Phase zieht: Für die Visualisierung auf
der grafischen Oberfläche wird zusätzlich Funktionalität benötigt, die in die Fachlogik inte-
griert wurde. Die Übersichtlichkeit leidet, ebenso die Trennung zwischen der Funktionalität
der Logik und der Oberfläche.
Zur Methode vergleichen:
Schwierigkeit hier war die Ereignisbehandlung. Je nachdem, ob die erste oder die zweite
Karte aufgedeckt wird, muss der Ereignisbehandler unterschiedlich reagieren. Die Gruppe

153

Ergebnisse der empirischen Untersuchung

hat dazu dem Spielleiter das Attribut aufgedeckt gegeben, das die Anzahl der aufge-
deckten Karten speichert. Die Methode vergleichen deckt entweder die zweite Karte auf
oder sie vergleicht die Karten und arbeitet das Ergebnis ab: Im Erfolgsfall bleiben die
Karten aufgedeckt, die horcher-Assoziation wird zerstört, sodass die Karte nicht mehr
auf Mausereignisse reagiert, der Spieler bekommt Punkte gutgeschrieben und bleibt
aktiv. Im Misserfolgsfall wird der andere Spieler aktiv. Zugedeckt werden die Karten
durch den Benutzer.
Das Problem hier ist weniger das Schema der Ereignisbehandlung (Interface implementieren,
Empfänger-Objekt der Liste der zu benachrichtigenden Objekte hinzufügen) als die Abarbei-
tung des Ereignisses und das Auslösen der jeweiligen Änderungen in der grafischen
Darstellung. Problematisch wird dies durch die unterschiedliche Reaktion auf denselben Er-
eignistyp (Karte angeklickt) je nach Programmzustand (Auswahl der ersten oder der zweiten
Karte). Zum Teil konzentriert sich die Arbeit der Schülerinnen und Schüler auf die Methode
klick, in der fast die gesamte Funktionalität des Memory-Projekts implementiert wird. Ta-
belle 81 zeigt das Extrembeispiel:
E=Einzel, D=Doppelstunde: E D E D E D

 N
ot

eb
oo

k
ei

ne
r w

ei
te

re
n

G
ru

pp
e

D
ob

s

M

et
ho

de
n

K
la

ss
en

Tabelle 81 Logfile einer weiteren Gruppe: Problem Ereignisbehandlung: Arbeit konzentriert sich auf die
Methode klick

Allerdings wurde in dieser Gruppe insgesamt an vier Notebooks gearbeitet, Tabelle 81 gibt
nur die Arbeit an einem Notebook wieder. An der insgesamt (im Vergleich zu Tabelle 80) ge-
ringeren Anzahl der einzelnen Aktionen wird deutlich, dass an diesem Notebook nicht
intensiv gearbeitet wurde. An den entsprechenden Visualisierungen der anderen Notebooks
der Gruppe erkennt man, dass auch in dieser Gruppe insgesamt die Fokussierung auf der Me-
thode klick nicht ganz so stark war, wie die Abbildung anzeigt.
Es zeigte sich allerdings, dass der Verzicht auf die Zerlegung in verschiedene Methoden zu
einer vergleichsweise sehr komplexen und unübersichtlichen klick-Methode führt, in der
die Schülerinnen und Schüler nur durch Ausprobieren Fehler beseitigen können.
Zur Methode zudecken:
Diese Methode wurde eingeführt, da die Schülerinnen und Schüler keine Möglichkeit gefun-
den hatten, die Karten nach einer Zeitspanne automatisch umzudrehen.
Tatsächlich war es so, dass in der Kombination von Dobs und FGrafik so etwas nicht zu reali-
sieren war. Die Aktualisierung der Darstellung erfolgte stets als letzte Aktion, nachdem die

154

Ergebnisse der empirischen Untersuchung

Methoden der Anwendung abgearbeitet worden waren. Daher funktionierten auch die von den
Schülern eingebauten Warteschleifen nicht.
Dieses Problem wurde im Unterricht von einem Schüler angesprochen, der zu Hause diesen
Zusammenhang selbst herausgefunden hatte. Die Möglichkeiten der FGrafik und deren Be-
nutzung waren nicht deutlich genug herausgestellt worden. Ein Problem lag vermutlich auch
in der fehlenden Dokumentation.
In Abbildung 80 wird der Entstehungsverlauf des besprochenen Projekts dargestellt – aller-
dings nur die Arbeit an den Notebooks während der Unterrichtsstunden. Die Schülerinnen
und Schüler haben zu Hause an ihren Projekten weitergearbeitet. In dieser Gruppe etwa ist die
Klasse Zudecker und die Methode zudecken komplett außerhalb des Unterrichts entstan-
den, in der Abbildung ist sie nicht eingetragen. Man erkennt in der Abbildung den
Stundenplan wieder: Einzel- und Doppelstunden wechseln sich ab. Das Klassendiagramm
wurde in den ersten beiden Stunden erstellt, musste allerdings in der letzten Doppelstunde ge-
ändert werden, und zwar wurde die Assoziation zwischen Spielleiter und Feld
bearbeitet, die Methoden klick und vergleichen, sowie die Methode erstelle-
Spiel. Die Schüler hatten Probleme, den Vergleich der zwei aufgedeckten Karten zu
realisieren, sie implementierten dazu eine Assoziation untersucht zwischen Spiel-
leiter und Feld. Um die geänderten Assoziationen zu nutzen, musste dann die Methode
zum Aufbauen der Objektstruktur erstelleSpiel ebenfalls angepasst werden.
Generell aber deuten die Logfiles eher auf einen relativ problemlosen Ablauf hin: Zunächst
wurde das Klassendiagramm erstellt, dann die Methode zum Aufbau der Objektstruktur (er-
stelleSpiel). Anschließend wurden die weiteren Methoden und die Grafik
implementiert. Dieser Ablauf würde eine Art Diagonale von oben links (Anfang mit Klassen)
nach unten rechts (Testen in Dobs) erzeugen. Abweichungen davon finden sich in der Zusam-
menfassung aller Logfiles bei den oben beschriebenen Problemen mit den Methoden
vergleichen, klick und zudecken.

9.4 Nachtest

9.4.1 Befragung
Die Befragung in der Gesamtgruppe dient dazu, die Schülerinnen und Schüler nach der drit-
ten Phase noch einmal nach dem Stellenwert der einzelnen Unterrichtsphasen und der
Zufriedenheit mit dem Unterricht und nach Verbesserungsvorschlägen zu fragen. Es hat sich
leider gezeigt, dass Gruppeneffekte nicht auszuschließen sind: In der Befragung der ersten
Gruppe (Schule B) wurde nach der Zufriedenheit mit dem Unterrichtsablauf gefragt, einige
Schüler meldeten sich und wollten der ersten Phase als Schulnote eine 1 geben, daraufhin
meldete sich ein Mitschüler und meinte, dass die erste Phase doch so einfach gewesen sei,
dass sie wirklich nur für 'dumme' Schüler oder 'absolute Anfänger' geeignet sei, also könne
man diese Phase höchstens mit 4 bewerten. Daraufhin trauten sich in der Diskussion nach un-
serer Meinung die Schüler nicht mehr, offen ihre Meinung zu sagen. In der zweiten Gruppe
wurde diese Diskussion deswegen durch eine schriftliche Befragung ergänzt, in der die Schü-
lerinnen und Schüler für die vier Projekte (Flaschendrehen, Hausbau, Schatzsuche und
Memory) jeweils Noten geben sollten. Diese Befragung wurde in Form einer Tabelle den
Schülerinnen und Schüler aus Schule A ausgeteilt und von 15 Schülerinnen und Schülern zu-
rückgegeben. Sie konnten jeweils zu einer Phase auf Wunsch einen Kommentar angeben; von
dieser Möglichkeit haben einige Gebrauch gemacht. Die Kommentare aus Schule A lauten:

155

Ergebnisse der empirischen Untersuchung

1. Zum Flaschendrehen (Phase 1a):
S1:„Man musste sich alles nur ansehen, nichts selber programmieren. Man wurde durch die Aktivi-
tätsdiagramme erschlagen.“
S3: „Dieses Projekt war eigentlich gar nicht schlecht, weil man so ein paar grundlegende Sachen ge-
lernt hat.“
S5: „War gut nachzuvollziehen.“
S7: „Guter Einstieg.“
S13: „Einfach zu verstehen.“
S14: „War zum Kennenlernen ganz gut, um Fujaba / Dobs zu verstehen.“
S15: „Ganz gutes Einsteigerprojekt, nur gleich einen Zufallsgenerator zu benutzen war vielleicht ein
wenig schwer, trotzdem: gutes Einsteigerprojekt.“

2. Zum Hausbau (Phase 1b):
S1: „Es war schwer in einer völlig neuen Entwicklungsumgebung etwas eigenständig zu programmie-
ren.“
S5: „Langweilig. Eigentlich nur Wiederholung.“
S6: „Überflüssig, da man die Schleifen bereits beim Projekt Flaschendrehen gelernt hat.“
S7: „Leicht verständlich, gut anschaulich, gutes Projekt.“
S8: „Kein Projekt, das Anwendung finden könnte.“
S13: „Kompliziertes Verfahren.“
S14 „War nicht das Gelbe vom Ei.“
S15: „Dabei habe ich viele grundlegende Dinge gelernt, die mir gut gefallen haben.“

3. Zur Schatzsuche (Phase 2):
S1: „Eine zu große Gruppe. Zu plötzlicher Einstieg selbst zu programmieren.“
S3: „Das Projekt hat eigentlich gar nicht funktioniert, weil niemand wirklich wusste, in welcher Grup-
pe er war und was er programmieren sollte.“
S7: „Hier fing die FGrafik an, nicht gut genug erklärt.“
S8: „Abschluss des Projekts hat gefehlt, kein fertiges Programm.“
S14: „Das Projekt war nicht so toll, da man das erste Mal fast alleine programmiert hat. Da das meiste
auch nicht funktioniert hat, hat man schnell die Lust verloren.“
S15: „Das Projekt Schatzsuche hat mir, wie man an den Noten erkennen kann, nicht bis gar nicht ge-
fallen, weil kaum Hilfen da waren. Und der Sprung von Hausbau zu Schatzsuche war zu groß!“

4. Zum Memory (Phase 3):
S1: „In einer kleinen Gruppe hat man sich gut ergänzt, konnte sich austauschen, hatte genug Erfah-
rung.“
S2: „Das war mal eine richtige Herausforderung, hat aber Spaß gemacht.“
S3: „Hat sich viel zu lang hingezogen. Manchmal hat man fünf Stunden lang hintereinander program-
miert, um dann festzustellen, dass sowieso die Hälfte falsch ist. Außerdem hat Fujaba eines unserer
Projekte (das schon ziemlich gut war) mal einfach so eliminiert – keine Ahnung, wo da der Fehler
lag.“
S4: „Das Projekt hat mir gut gefallen, da man endlich auch bemerken konnte, wie es möglicherweise
in einer Firma ist.“
S5: „FGrafik ist nie wirklich erklärt worden / teilweise sehr schwer.“
S6: „Enormer Zeitaufwand. Ohne Heimarbeit kaum machbar.“
S7: „Zu wenig Unterstützung, zu komplizierte Methoden, wenn man ein- oder zweimal nicht da war:
große Lücke.“
S14: „War eigentlich ganz ok. Man hatte ja jetzt Erfahrung (vor allem aus der Schatzsuche). Hat auch
wieder mehr Spaß gemacht.“
S15: „Das Projekt Memory war eine große Herausforderung, die aber durchaus viel Spaß gemacht
hat!“

Die Noten für die einzelnen Phasen wurden in verschiedene Aspekte aufgeteilt. Eine Gesamt-
note, eine Note für den Schwierigkeitsgrad (1=sehr leicht, 6= sehr schwierig), den
Lernzuwachs (1=sehr hoch, 6= nichts gelernt), die Nützlichkeit von Fujaba und Dobs (1= sehr
nützlich, 6 = gar nicht nützlich) und Hilfen durch Arbeitsblätter, Erklärungen des Lehrers etc.
Die Ergebnisse der Notengebung sind in Tabelle 82 aufgelistet.

156

Ergebnisse der empirischen Untersuchung

Projekt M SD
Flaschendrehen Gesamt 2,73 0,47
Flaschendrehen Schwierig-
keit 2,67 0,70
Flaschendrehen Lernzuwachs 2,67 0,82
Flaschendrehen Fujaba 3,00 0,80
Flaschendrehen Hilfen 3,14 0,85

Projekt M SD
Hausbau Gesamt 3,35 0,97
Hausbau Schwierigkeit 2,36 0,68
Hausbau Lernzuwachs 3,62 1,40
Hausbau Fujaba 3,20 0,77

Hausbau Hilfen 3,29 0,98

Projekt M SD
Schatzsuche Gesamt 3,18 0,81
Schatzsuche Schwierigkeit 3,51 0,76
Schatzsuche Lernzuwachs 3,00 1,00
Schatzsuche Fujaba 3,05 0,80
Schatzsuche Hilfen 3,85 1,08

Projekt M SD
Memory Gesamt 2,65 0,85
Memory Schwierigkeit 3,73 1,06
Memory Lernzuwachs 2,60 1,04
Memory Fujaba 2,80 0,93
Memory Hilfen 3,56 0,87

Tabelle 82 Ergebnisse des schriftlichen Befragung im Nachtest, nur Teilgruppe aus Schule A, Mittelwerte und
Standardabweichung (SD). Die Werte orientieren sich an Schulnoten (1=sehr gut, 6= ungenügend).

Die einzelnen Noten korrelieren untereinander. Die Beurteilung von Fujaba korreliert stark
bis sehr stark und überwiegend höchst signifikant über alle vier Projekte (der Mittelwert liegt
zwischen 3,2 im Hausbauprojekt und 2,8 im Memory-Projekt). Ebenso korreliert die Beurtei-
lung der gegebenen Hilfen über die Projekte, allerdings mit Ausnahme der Beurteilung der
Hilfen im Schatzsuche-Projekt (in diesem wurde die FGrafik eingeführt).
Ebenso korreliert jeweils innerhalb einer Phase die Beurteilung der Phase insgesamt mit der
Beurteilung des jeweiligen Lernzuwachses, allerdings nicht im Memory-Projekt, hier zeigt
sich eine mit 0,512 mittlere Korrelation, die mit 0,51 knapp das Signifikanzniveau verfehlt –
in den anderen drei Fällen gibt es sehr signifikante Korrelationen (p0,01), die eher stark
sind (der Korrelationskoeffizient liegt bei etwa 0,7).
Aufgrund der Durchführung der Abschlussbefragung liegen diese Ergebnisse leider nur für
Schule A vor.
Mit Bedenken kann die Tendenz der Bewertung der Schülerinnen und Schüler in Schule B
angegeben werden: Demnach war die erste Phase mit dem Flaschendrehen-Projekt zu leicht,
das Hausbau-Projekt nur eine kleine Zwischenübung und die Schatzsuche wurde ab der Ein-
führung der FGrafik interessant. Im Memory-Projekt sei nichts Neues hinzugekommen,
sondern hier ging es nur um das Anwenden des bereits Gelernten – wie gesagt: das war der
Tenor der offenen Befragung in der ganzen Klasse, wobei wir den Verdacht haben, dass sich
nicht alle Schülerinnen und Schüler offen geäußert haben und einige Meinungsführer den Ton
der Bewertung vorgegeben haben.

9.4.2 Fragebogen
Nach der Durchführung der dritten Phase des life3-Phasenmodells wurde ein weiterer Test
(FEOK2) zum Verständnis objektorientierter Konzepte gestellt.
FEOK2 fragt nach Vor- und Nachteilen des Einsatzes von Klassenbibliotheken (Tabelle 83),
da im Unterricht (siehe Abschnitt 10.1.2) Probleme bei der Implementation, insbesondere bei
der Anbindung der Grafik an die zuvor erstellten Modelle aufgetreten sind. Die Frage nach
Bibliotheken wurde von den Schülerinnen und Schülern vor dem Hintergrund ihrer Erfahrun-
gen mit der FGrafik-Bibliothek beantwortet. Damit sollte zum einen geprüft werden, welches
Verständnis des Bibliothekskonzepts die Schülerinnen und Schüler erworben haben und zum

157

Ergebnisse der empirischen Untersuchung

anderen ihre Bewertung des Nutzens vor dem Hintergrund der Unterrichtserfahrungen: Wie
wirkten sich die Unterrichtsabläufe auf die Schülereinstellungen aus?
Man kann bei der Softwareentwicklung Bibliotheken benutzen, so wie zum Beispiel die FGrafik. Welche Aus-
wirkungen (Vor- und Nachteile) hat die Benutzung von Bibliotheken?
Beispiele für Schülerantworten:
• „Weniger Zeitaufwand: Man muss nicht alles selbst programmieren.“
• „Eine einmal erstellte Bibliothek kann später in anderen Programmen aufgerufen und benutzt werden.“
• „Funktioniert nicht immer – siehe FGrafik.“
• „Schlecht manipulierbar: An der Bibliothek selbst kann nur wenig bis gar nichts geändert werden.“
• „Schnelleres Arbeiten: Bibliothek ist vorprogrammiert, Benutzer muss nicht alles selber schreiben.“
• „Variabel einsetzbar: Nicht nur in einem Programm, sondern wie FGrafik in mehreren Programmen ein-

setzbar.“
• „Probleme: Bei Fehlern in der Bibliothek läuft das Programm nicht.“
• „Verstehen: Man muss sich erst damit beschäftigen und es verstehen, bevor man es anwenden kann, manch-

mal etwas kompliziert (FGrafik).“

Tabelle 83 FEOK2 a (erste Zeile): Beispiele für Schülerantworten (zweite Zeile).

Die in Tabelle 83 genannten Argumente der Schülerinnen und Schüler stellen in ihrer Ge-
samtheit ein recht abgerundetes Bild dar – allerdings zeigen die Ergebnisse in Tabelle 84,
dass die einzelnen Schülerinnen und Schüler jeweils nur einige Aspekte benannt haben.

Bibliothek M SD

ges 1,52 1,15
Schule A 1,03 1,08
Schule B 2,13 0,96
Max. erreichbar 2,5

Tabelle 84 FEOK2 a, Mittelwerte und Standardabweichung. Maximal waren 2,5 Punkte erreichbar. Der
Unterschied zwischen den beiden Schulen ist nach dem U-Test sehr signifikant. (Signifikanz (ohne
Bindungskorrektur) p=,006).

Im FEOK2 (vgl. Abbildung 99, S.226) wurden zwei Modellierungsaufgaben gestellt, in denen
die Schülerinnen und Schüler aufgefordert wurden, aus einer kurzen Problemdarstellung ein
Klassendiagramm zu erstellen. In der ersten Aufgabe sollte der Aufbau einer Firma dargestellt
werden, in der zweiten ein Versandhandel. Beide Aufgaben haben jedoch den Nachteil, dass
sie als Textaufgaben bereits Hinweise auf Klassennamen liefern. Die erste Aufgabe kann di-
rekt aus der Beschreibung als Klassendiagramm angegeben werden. Die Schülerinnen und
Schüler gaben relativ oft die Attribute nicht an – dies wurde allerdings durch die Aufgaben-
stellung (konzeptuelles Klassendiagramm) nahe gelegt. Die zweite Aufgabe kann nicht durch
eine einfache Abbildung in ein Klassendiagramm überführt werden. Die Strukturen sind kom-
plexer, im Grunde muss hier Vererbung eingesetzt werden. Außerhalb des Erbens vom
Klickhorcher aus der FGrafik-Bibliothek wurde Vererbung im Unterricht nicht als Mittel
zu Modellierung eingesetzt – nur ein Schüler hat das hier erkannt und in der Aufgabe die vol-
le Punktzahl erreicht. Zusammengefasst sind die Ergebnisse in Tabelle 85 dargestellt.

 M SD Max. erreichbar

Management (FEOK2 b) 2,80 1,40 4
Bestellsystem (FEOK2 c) 2,02 1,51 5

Tabelle 85 FEOK2 b und FEOK2 c, Mittelwerte und Standardabweichung. Keine signifikanten Unterschiede in
Teilgruppen (nach U-Test).

158

Ergebnisse der empirischen Untersuchung

Die Ergebnisse bestätigen zum einen den problemlosen Umgang mit der Notation, zum ande-
ren zeigen sie, dass die Schülerinnen und Schüler in der Lage waren, die Notation
anzuwenden, um damit einen Problembereich zu strukturieren. Dabei gingen sie jedoch nicht
immer mit genügender Sorgfalt vor. Fehlerhäufigkeiten, die auf bestimmte Probleme hindeu-
ten, sind nicht aufgefallen. Zum Schwierigkeitsgrad ist zu sagen, dass die beiden Aufgaben
Übungsaufgaben zur Klausurvorbereitung im Informatikgrundstudium sind (Bearbeitungszeit
je 10 Minuten).
Die Aufgaben FEOK2 d bis FEOK2 f (vgl. Abbildung 99, S.226) beziehen sich auf den ver-
stehenden Umgang mit der Notation. In FEOK2 d soll von einem Aktivitätsdiagramm auf ein
Klassendiagramm geschlossen werden. Dazu mussten die Schülerinnen und Schüler die ein-
zelnen Elemente eines Story-Pattern auf die Elemente eines Klassendiagramms beziehen und
ein Klassendiagramm darstellen können. Interessant im Untersuchungszusammenhang ist,
dass die Schülerinnen und Schüler nicht alle der in FEOK2 d benutzen syntaktischen Elemen-
te im Unterricht gelernt hatten: Methodenaufrufe wurden im Unterricht in Form von Java-
Statements in die Aktivitätsdiagramme aufgenommen und nicht wie in den Aufgaben FEOK2
d und FEOK2 e als Collaboration-Statement. Um die Aufgabe lösen zu können, mussten die
Schülerinnen und Schüler also ihr Wissen über Objektorientierung benutzen und damit die
unbekannte Syntax zu erklären versuchen.
Bei einem maximal möglichen Punktwert von 5 erreichten die Schülerinnen und Schüler im
FEOK2 d einen Mittelwert von 4,63, was als ein sehr hoher Werte anzusehen ist. In FEOK2
e, der Frage nach den Collaboration-Statements, die max. 1 Punkt ergibt, liegt der Wert bei
0,62, was ebenfalls ein recht hoher Mittelwert ist. Die Umsetzung in die Java-Schreibweise
und die Erklärung fiel etwas schlechter aus: Von 2 möglichen Punkten werden im Mittel 0,93
erreicht; allerdings konnten nur diejenigen Schülerinnen und Schüler, die in der vorangegan-
genen Frage richtig geantwortet haben, hier eine korrekte Antwort erzielen.
Die Frage FEOK2 g bezieht sich zwar auch auf ein syntaktisches Element, die Links im Sto-
ry-Pattern, zielt aber auf das Verständnis von Objektstrukturen: Die Schülerinnen und Schüler
sollten erklären, dass Links Objektstrukturen prüfen oder verändern, indem sie Assoziationen
zwischen Objekten aufbauen oder löschen. Von 4 möglichen Punkten werden hier im Mittel
nur 1,98 erreicht.
Zusammengefasst sind die Ergebnisse in Tabelle 86 dargestellt:

 M SD Max. erreichbar
Story_Klasse (FEOK2 d) 4,63 1,47 5
Collaboration-Statement (FEOK2 e) 0,62 0,45 1
Java-Schreibweise (FEOK2 f) 0,93 0,96 2
Links (FEOK2 g) 1,98 1,27 4

Tabelle 86 FEOK2 d – FEOK2 g, Mittelwerte und Standardabweichung. Keine signifikanten Unterschiede in
Teilgruppen (nach U-Test).

159

Interpretation der Ergebnisse

10 Interpretation der Ergebnisse
In diesem Kapitel wird der Zusammenhang der Einzelergebnisse analysiert und das life3-Un-
terrichtskonzept bewertet. Dazu werden soweit möglich weitere Arbeiten als
Vergleichsmaßstab hinzugezogen. Es werden Schlussfolgerungen gezogen und Hypothesen
für weitere Untersuchungen sowie Ansätze zur Weiterentwicklung des Konzepts dargestellt.
Im Abschnitt 10.1 werden die Lernergebnisse im engeren Sinn beurteilt. Im Abschnitt 10.2
geht es um die Analyse von Lernereigenschaften, die mit dem Unterrichtskonzept interagieren
und somit das Lernergebnis beeinflussen. Abschnitt 10.3 schließlich vertieft einzelne Aspekte
dieser Diskussion, etwa die Rolle des eingesetzten Werkzeugs Fujaba.

10.1 Lernergebnisse der Schülerinnen und Schüler
In diesem Abschnitt werden die Lernergebnisse bezogen auf die in den Tests FEOK1 und
FEOK2 sowie in der Unterrichtsbeobachtung ermittelten Daten vor der dem Konzept zugrun-
de liegenden Dreiteilung der Inhalte (vgl. Tabelle 23, S. 85) analysiert: im Abschnitt 10.1.1
die vermittelten objektorientierten Konzepte (vorrangig deklaratives Wissen), im Abschnitt
10.1.2 die erworbenen Modellierungskompetenzen sowie die Vorgehensweisen der Schülerin-
nen und Schüler beim Modellieren (vorrangig prozedurales Wissen) und im Abschnitt 10.1.3
die Veränderungen in den Schülervorstellungen von Softwareentwicklungsprozessen und
weitere Lernergebnisse im Sinne des systemorientierten Ansatzes (vorrangig Metakognition).

10.1.1 Vermittlung objektorientierter Konzepte
In den beiden Tests (FEOK1 und FEOK2) zeigt sich insgesamt, dass in den beiden Klassen
ein grundlegendes Verständnis der Konzepte der Objektorientierung erworben wurde. Um die
Ergebnisse besser einschätzen und interpretieren zu können, werden vergleichbare Arbeiten
betrachtet. Es gibt leider nicht viele vergleichbare empirische Untersuchungen, daher wird zu-
nächst Hadjerrouits Bericht über Erfahrungen mit Java als erste Programmiersprache am
Agder-College in Norwegen (Hadjerrouit 1997) hinzugezogen:

„Even if we introduced objects early in the course and consistently reinforced their design gradu-
ally during the course, approximately one third of the students struggled with the object-oriented
approach, mostly because they had a great deal of difficulty just learning the syntax of the object-
oriented concepts. In addition they had not sufficient background to grasp the abstract semantics
of the concepts.“

Hadjerrouit ergänzt die Beobachtung, dass Vorkenntnisse in prozeduralen Sprachen das Erler-
nen der Objektorientierung erschweren würden.
Demgegenüber sind hier kaum Probleme mit dem Erlernen der (grafischen) Syntax aufgetre-
ten82. Der Vergleich mit Hadjerrouits Ergebnissen legt nahe, dass mit der hier verwendeten
Lernumgebung der Einstieg in die Objektorientierung problemloser als mit einer Program-
miersprache gelingt. Diese Vermutung könnte als Hypothese für weitere empirische Arbeiten
zugrunde gelegt werden: Die grafischen Darstellungen in Fujaba und/oder der Einstieg mit
Rollenspielen und CRC-Karten führen dazu, dass die notwendige Syntax leichter erlernbar
wird.
Nahe liegender ist der Vergleich mit Konzepten für den Informatikunterricht (vgl. Kapitel 3,
S. 13ff). Brinda und Ortmann (2002) haben zwei Informatikgrundkurse der Jahrgangsstufe 11
und einen Grundkurs der Jahrgangsstufe 12 befragt, in denen nach dem Konzept Stifte und
82 Siehe Ergebnis von FEOK2 d, in der Aufgabe sollten Elemente eines Aktivitätsdiagramms einem Klassen-

diagramm zugeordnet werden (Tabelle 86, S. 159).

160

Interpretation der Ergebnisse

Mäuse unterrichtet wurde (aaO., S. 15). Die Ergebnisse dieser Befragung können mit den hier
erzielten Ergebnissen verglichen werden; dabei ist jedoch zu berücksichtigen, dass im Unter-
richt unterschiedliche Ziele verfolgt werden: Im Konzept Stifte und Mäuse (vgl. Abschnitt
3.4) steht der sichere Umgang mit Syntax (Programmiersprache, UML) und einzelnen isolier-
ten Konzepten im Vordergrund (Klasse, Objekt, Methode, Attribut, Klassenbeziehungen).
Modellierungskenntnisse sind dagegen sekundär. Im hier untersuchten Konzept ist das Ver-
hältnis eher umgekehrt. Die nach dem Konzept Stifte und Mäuse in den beiden von Brinda
und Ortmann untersuchten Klassen unterrichteten Schüler sollten insgesamt – nach den Inten-
tionen des Konzepts – also etwas sicherer mit einzelnen Begriffen und Notationen umgehen
können als die Schülerinnen und Schüler, die nach dem hier untersuchten Konzept unterrich-
tet wurden.
Brinda und Ortmann stellten jedoch Schwierigkeiten mit dem Begriffspaar Klasse – Objekt
(aaO., S.20f) fest: In einem der Kurse83 (mit 12 Schülern) deuten sechs Schüler die Begriffe
als synonym, drei deuten den Begriff Klasse als Oberbegriff für mehrere Objekte, nur zwei
verwenden die Metaphern aus dem Unterricht, nach denen eine Klasse ein Bauplan oder
Stempel für ein Objekt ist (aaO., S.17). Nach dem hier verwendeten Beurteilungsschema wür-
de das einen Durchschnittswert von 0,29 ergeben84. Die nach dem life3-Konzept unterrichteten
Schülerinnen und Schüler von Schule A und Schule B erreichen insgesamt einen Wert von
0,54. Das Unterrichtskonzept hat also bezüglich der wichtigen Unterscheidung von Klassen
und Objekten in den beiden Versuchsklassen recht gute Lernergebnisse ermöglicht.
Allerdings fallen Unterschiede zwischen den beiden Kursen (siehe Tabelle 64, S. 139, sowie
Tabelle 65, S. 139) auf: Der Durchschnitt in FEOK1 a betrug 0,39 in Schule A und 0,73 in
Schule B.
Mit dem U-Test werden die einzelnen Fragen von FEOK1 und FEOK2 auf Unterschiede ge-
prüft. Tabelle 87 zeigt das Ergebnis:

FEOK1 FEOK2
FEOK1 a FEOK1 d FEOK1 e FEOK2 a

Schule A, Mittelwert 0,390 0,420 0,670 1,030
Schule B, Mittelwert 0,730 0,770 0,400 2,130
Signifikanz ,052(a) ,013(a) ,044(a) ,006(a)

Tabelle 87 Unterschiede zwischen Schule A und Schule B in FEOK1 und FEOK2. Signifikanzprüfung mit dem
U-Test.(a) nicht für Bindungen korrigiert85. FEOK1-Fragen in Tabelle 98, S. 219; FEOK2 in Abbildung 99, S.
226.

Während bei den meisten Fragen, für die ein Unterschied festgestellt wurde, Schule B höhere
Mittelwerte aufweist, hat Schule A einen höheren Mittelwert in FEOK1 e.
Nun soll versucht werden, anhand möglicher Zusammenhänge zu den anderen in der Untersu-
chung erhobenen Variablen Gründe für diese signifikanten Unterschiede zu finden. Dazu
werden theoriegeleitet Thesen aufgestellt, die dann statistisch geprüft werden. Der sozusagen
umgekehrte Weg der systematischen statistischen Prüfung aller übrigen Variablen ist nicht

83 Die Ergebnisse des zweiten befragten Kurses zu dieser Frage fehlen leider.
84 6*0 Punkte und 3*0,5 Punkte für die Mengenidee sowie 2*1 Punkt für die Bauplansichtweise macht insge-

samt 3,5 Punkte; der Durchschnitt bei 12 Schülern beträgt daher 0,29.
85 Der Verzicht auf die Korrektur bedeutet eine konservativere Signifikanzprüfung, die Korrektur würde sich

tendenziell vorteilhaft auf die Signifikanzberechnung auswirken, zur Berechnungsformel (korrigiert und un-
korrigiert) siehe Zöfel 2001, S. 106f.

161

Interpretation der Ergebnisse

ratsam, da bei den in der Untersuchung erhobenen ca. 70 Variablen und folgenden 2415 Kom-
binationsmöglichkeiten rein rechnerisch 120 Kombinationen einen signifikanten
Zusammenhang haben, obwohl dieser nicht gegeben ist (α-Fehler: Nullhypothese wird ver-
worfen, obwohl sie richtig ist). Um dieser Problematik zu entgehen, werden nur Variablen
verglichen, für die ein Zusammenhang aufgrund der in den Kapiteln 6 und 6.4 entfalteten
lehr-lerntheoretischen Verankerung zu begründen ist.
Demnach kommen drei verschiedene Gründe als Ursache für die Unterschiede in Betracht:
Das Vorwissen der Schülerinnen und Schüler (vgl. 6.1.1, ab S. 63), ihre Motivation (vgl.
6.1.2, ab S. 65) und die – trotz der Vorgaben durch das Konzept möglichen und unvermeidli-
chen – Unterschiede in der Unterrichtsdurchführung (vgl. 6.2.1, ab S. 69).
Zunächst wird nach einem Zusammenhang der Ergebnisse in FEOK1 und FEOK2 mit dem
Vorwissen (Programmiererfahrung) gesucht. Dazu wurden die Schülerinnen und Schüler auf-
grund der Werte in der Variablen Programmiererfahrung in zwei Gruppen geteilt und der U-
Test mit der Gruppeneinteilung nach Programmiererfahrung ja/nein86 gerechnet. Danach sind
Unterschiede nur für die Frage nach den einzelnen Elementen des Klassendiagramms
(p=0,006) in FEOK1 und der Frage nach der korrekten Java-Schreibweise eines Methoden-
aufrufs (p=0,03) in FEOK2 signifikant. Die Unterschiede zwischen den Lerngruppen
bezüglich der in Tabelle 87 genannten Variablen hängen also kaum mit unterschiedlichen
Programmiervorerfahrungen zusammen.
Für die Variable Motivation wurde dasselbe Verfahren angewandt, hier zeigt sich kein signi-
fikanter Zusammenhang.
Es bleibt die Möglichkeit der unterschiedlichen Durchführung des Unterrichts. Hier hat es tat-
sächlich Unterschiede gegeben, die sich in der Unterrichtsbeobachtung zeigten (Tabelle 88):

Phase /
Projekt

Phase 1:
Flaschendrehen

Phase 1a:
Hausbau

Phase 2:
Schatzsuche

Phase 3:
Memory

Gesamt

Dauer Schule B 12 7 28 13 60
Dauer Schule A 9 9 25 21 64
Dauer im Mittel 10,5 8 26,5 17 62

Tabelle 88 Verteilung der Unterrichtszeit auf die drei Phasen und die Projekte. Getrennt für Schule A und
Schule B sowie die mittlere Dauer. Angegeben sind Unterrichtsstunden (je 45 Minuten). Phase 1 ist in die
beiden Projekte Flaschendrehen und Hausbau unterteilt worden.

Die Anzahl der verwendeten Schulstunden für die jeweilige Unterrichtsphase ist in den bei-
den Kursen unterschiedlich. In Schule A ist die Phase 1 kürzer, dafür die Phase 3 um
immerhin 8 Stunden länger. Interessant ist der Unterschied in Phase 1a, dem Hausbauprojekt
(Abbildung 89).

Abbildung 89 Das Hausbauprojekt, eine kleine Übung zur Programmierung von Schleifen in Fujaba.

86 Dazu wurde keine/wenig als Nein, und mittel/viel als Ja gerechnet. Vgl. Tabelle 45, S. 127.

162

Interpretation der Ergebnisse

Die Schülerinnen und Schüler bekamen das Modell vorgegeben und sollten die Methode
baueHaus implementieren: Ein Maurer erzeugt eine bestimmte Anzahl miteinander über
eine Assoziation namens naechsteEtage verbundener Etagen. In der Erweiterung soll
eine Methode erzeugt werden, mit der der Maurer eine weitere Etage zu einem Haus hin-
zufügt. Dazu wird die Selbst-Assoziation naechsteEtage in einer Schleife zwischen einer
existierenden Etage und einer in jedem Schleifendurchlauf erzeugten Etage angelegt. In
Schule A gibt es als weitere Übung mehrere Häuser und damit eine weitere Methode, in der
eine Schleife benutzt wird: Der Maurer kann von einem Haus zu einem anderen gehen und
dort ins oberste Stockwerk, um eine Etage hinzuzufügen. In dieser Übung wird deutlicher
herausgestellt, dass mit der Selbstassoziation beliebig viele Etagen-Objekte verknüpft sein
können, denn die Schleife muss (in einem 'unbekannten' Haus) solange durchlaufen werden,
bis die Assoziation naechsteEtage ins Leere verweist. Die Schülerinnen und Schüler
müssen hier eine Listenstruktur benutzen und sie nicht nur paarweise aufbauen. Sie müssen
verstehen, dass die Selbst-Assoziation zu Listenstrukturen führen kann – und genau dieses
Wissen wurde in der entsprechenden FEOK1-Frage abgeprüft. Die Unterrichtsdurchführung
kann also der Grund für das unterschiedliche Ergebnis im FEOK1 e sein.
Bezüglich der Unterschiede in den drei anderen Variablen (Tabelle 87) zeigt der U-Test kei-
nen signifikanten Zusammenhang mit Vorwissen (Programmiererfahrung, Informatik-
unterricht in Sekundarstufe I) oder Motivation. Auch hier liegen die Unterschiede vermutlich
in der Unterrichtsdurchführung: Im Kurs in Schule A wird mehr Wert auf das Benutzen der
grundlegenden Konzepte gelegt und es werden öfter kleinere Übungen durchgeführt, bei-
spielsweise zu Schleifen. Im Kurs der Schule B wird der Schwerpunkt eher auf die sichere
Beherrschung von Fachbegriffen und auf das allgemeine Verständnis gelegt (die Schüler for-
mulierten diese Orientierung in den Interviews meist als Konzentration auf die Theorie87). In
der Frage nach dem Unterschied von Klasse und Objekt (FEOK1 a) wird gerade das Ver-
ständnis von Begriffen getestet.
Somit kann die Abweichung in den FEOK-Ergebnissen mit der unterschiedlichen Unterrichts-
durchführung erklärt werden: Diese Erklärung stimmt mit der lerntheoretischen Verankerung
überein, wonach verständnisorientierter Unterricht (vgl. Ergebnisse aus TIMSS, Abschnitt
6.2.1, ab S. 69) und Begriffslernen (vgl. Abschnitt 6.1.3, ab S. 67) gefördert werden sollten.
Dazu passt auch, dass das von Brinda und Ortmann berichtete Ergebnis einer Lerngruppe, die
nach dem Konzept Stifte und Mäuse unterrichtet wurde, mit 0,29 dem Ergebnis aus Schule A
(0,39) sehr nahe kommt, denn in beiden Fällen wird das Üben einzelner grundlegender Kon-
zepte betont (vgl. Abschnitt 3.4, ab S. 22).
Hier stellt sich nun die Frage, wieso dann in FEOK1 e in Schule A ein besseres Ergebnis er-
reicht worden ist. Es zeigt sich, dass diese Aufgabe sich in einem wichtigen Punkt von den
anderen unterscheidet: Hier gibt es nämlich einen wesentlichen Unterschied zwischen der
Struktur, wie sie im 'Quelltext' bzw. im Klassendiagramm beschrieben wird, und der mögli-
chen Struktur zur Laufzeit – und dieser Unterschied kann etwa mit dem Hausbau-Beispiel
durch ein Übungsprogramm und der Visualisierung in Dobs deutlich gemacht werden. Diesen
Unterschied zwischen statischer Beschreibung im Programm und der Ausführung zur Laufzeit
gibt es in den anderen Aufgaben nicht: Die mit FEOK1 d verbundene Struktur sieht als Ob-
jektdiagramm genauso wie das Klassendiagramm aus. Die Fragen nach den Konzepten
Klasse, Objekt und Bibliothek betreffen Aspekte der Objektorientierung, die über das Verste-

87 Dies meint z.B. der Schüler S3, Tabelle 58, S.135 mit der „Theorie des Programmierens“, die er vom 'richti-
gen' Programmieren im Sinne von Quelltext schreiben abgrenzt.

163

Interpretation der Ergebnisse

hen von Programmen (bzw. UML-Modellen) hinausgehen bzw. nicht wie FEOK1 e mögliche
Struktur-Unterschiede zwischen Quelltext und Laufzeitverhalten betreffen.
Eine mögliche Interpretation ist die folgende: Das allgemeine Verständnis der Schülerinnen
und Schüler scheint in Schule B besser zu sein, während in Schule A differenziertere Kennt-
nisse der Fujaba-Nutzung und der im Unterricht behandelten Projekte vorliegen. Eine
Ursache könnte das Werkzeug sein, das aufgrund von einigen Fehlern (siehe Tabelle 74, S.
148) in Schule A mehr Aufmerksamkeit beansprucht hat als in Schule B. Dagegen fehlen in
Schule B möglicherweise Übungsphasen. Das bedeutet, dass in der Durchführung die Anteile
von Instruktion und Konstruktion, von Erklären und Üben besser ausbalanciert werden könn-
ten. Möglicherweise könnten so insgesamt bessere Lernergebnisse erzielt werden. Der
Tendenz nach ist aber ein verständnisorientierter Unterricht dem Üben einzelner Beispiele
vorzuziehen – in der Mehrzahl der Fälle ist das Ergebnis in Schule B höher. Die Hauptursa-
che für diese Unterschiede dürfte die höhere Konzentration auf das Werkzeug in Schule A
sein, die durch die aufgetretenen Fehler in Fujaba bedingt ist.

10.1.2 Vermittlung von Modellierkompetenz
In diesem Abschnitt soll die erreichte Modellierkompetenz der Schülerinnen und Schüler be-
wertet werden, das wird ebenfalls durch Vergleiche geschehen. Brinda und Ortmann (2002, S.
19) stellen eine vergleichbare Modellier-Aufgabe in einem 12er-Grundkurs (genannt B-12):

„Der Kurs B-12 sollte selbstständig das Spiel 'Schnick-Schnack-Schnuck' analysieren und ein sta-
tisches Systemmodell konstruieren. Einige Teilschritte waren vorgegeben, allerdings keine
Teillösungen, wie bei den anderen Kursen. Zur Analyse wurde das Spiel mit verteilten Rollen ge-
spielt, um Klassen und deren Aufgaben zu identifizieren. Die meisten der sechs Schülerteams
versuchten jede Klasse erst komplett zu beschreiben, bevor sie mit der nächsten Klasse fortsetzten.
Nur wenige Teams bestimmten erst die benötigten Klassen, um diese im Anschluss genauer zu
spezifizieren. Das Auffinden und Beschreiben der Klassen bereitete den Teams Probleme: zwei
Teams fanden nur eine Klasse, beschrieben diese allerdings gut, ein Team ermittelte zwei Klassen
und dokumentierte eine davon ausführlich, die anderen drei Teams beschrieben jeweils zwei von
drei Klassen ausführlicher. Deutliche Unterschiede gab es in der Qualität der Dokumentation: ein-
fache Klassen (z.B. Spielgegenstände „Stein“, „Papier“, „Schere“) wurden ausführlich
dokumentiert, komplexe Klassen (z.B. „Spielleiter“) dagegen nur rudimentär.[...]
Nachdem die Klassen im Rahmen der Besprechung der Aufgabe festgelegt wurden, gelang es den
Lernenden ohne große Schwierigkeiten, die Beziehungen zwischen den einzelnen Klassen festzu-
legen und das zugehörige Klassendiagramm zu erstellen (fünf von sieben Teams fehlerfrei).“
(Brinda und Ortmann 2002, S. 19)

Die Schülerinnen und Schüler der Untersuchung von Brinda und Ortmann modellierten ein-
zelne, isolierte Klassen und fügten diese erst nach einem klärenden Unterrichtsgespräch zu
einem Klassenmodell zusammen. Die Lernenden hatten scheinbar Probleme, Beziehungen
zwischen Klassen eigenständig zu beschreiben (aaO., S. 18f) sowie mit der Methoden-
zuordnung zu Klassen (aaO., S. 18). Brinda und Ortmann (aaO., S. 21) interpretieren die
beobachteten Ergebnisse zusammenfassend als „teilweise Überforderung der Lernenden“. Die
Modellier-Aufgabe sollte „angesichts des Leistungsstandes“ des 12er-Kurses in „kleinere,
präzise formulierte und konkrete Teilaufgaben“ zerlegt werden.
Dagegen konnten hier die Schülerinnen und Schüler in der dritten Phase eigenständig ein Mo-
dell des Spiels Memory entwerfen. Ausgehend von einem (selbst entworfenen) CRC-Modell
des Memoryspiels konnten sie ein Klassenmodell erstellen und dieses im weiteren Unter-
richtsverlauf implementieren. Dabei ist zu berücksichtigen, dass die Schüler im hier
beobachteten Unterricht bereits diese Art von Aufgaben an zwei vorangegangenen ähnlichen
Projekten geübt haben.

164

Interpretation der Ergebnisse

Die Schlussfolgerung von Ortmann und Brinda, der Entwurf eines Klassendiagramms für ein
einfaches Spiel überfordere Schülerinnen und Schüler der Jahrgangsstufe 12 kann nicht auf-
recht erhalten werden. Die hier vorliegende Untersuchung zeigt, dass Schülerinnen und
Schüler nach etwa einem halben Jahr Einführung in die Objektorientierung diese Art von
Aufgabenstellungen in eigenständiger Gruppenarbeit bearbeiten und zufriedenstellend lösen
können.
Füller (1999) berichtet - bezogen auf das Beispiel Memory - von großen Problemen der Schü-
lerinnen und Schüler in der elften Klasse, die „Essenz“ des Memoryspiels zu fassen und eine
Klassenstruktur zu entwerfen, die nicht einfach das beobachtete Spiel abbildet: Alle (!) Schü-
lerinnen und Schüler hätten vorgeschlagen, X-Y-Koordinaten zu verwenden, um die
einzelnen Memorykarten zu identifizieren – im hier beobachteten Unterricht hat keine einzige
Gruppe einen solchen Entwurf vorgeschlagen. Einen positiven Nebeneffekt hatte die im Un-
terricht angelegte und von den Schülerinnen und Schülern durchweg eingehaltene
Reihenfolge bzw. Herangehensweise an die Erstellung des Projekts (siehe dazu Tabelle 71, S.
145): Die Schülerinnen und Schüler entwerfen tatsächlich ein objektorientiertes Modell der
Fachlogik. Sie trennen Modell und grafische Oberfläche, um erst in einem weiteren Schritt
dem logischen Modell eine Benutzungsschnittstelle hinzuzufügen.
Die Schülerinnen und Schüler haben also bezüglich ihrer Modellierkompetenz ein vergleichs-
weise hohes Leistungsniveau erreicht.

 Zur Angemessenheit von Spielen als Modellieraufgaben
Dennoch bleibt die Modellierung auf den Bereich Spiele beschränkt. Spiele könnten aller-
dings schlechte Modellieraufgaben darstellen, da die Spielregeln und das Spielmaterial ja
eindeutige Strukturen vorgeben, die nur auf die Syntax der Programmierumgebung 'abgebil-
det' werden müssen. Demnach würde das Modellieren von Brettspielen nur bedeuten, die
Namen der Spielelemente (Spieler, Figur, Plan, Feld, etc.) zu Klassennamen zu machen. Das
eigentliche Strukturieren von Informationen, das Modellieren von nicht direkt sichtbaren Zu-
sammenhängen durch abstraktere Denkweisen würde demnach nicht vermittelt (etwa:
Koordinaten durch eine Assoziation ausdrücken).
Dieses ist jedoch nicht der Fall gewesen, wie auch die Beantwortung einer Klausuraufgabe
durch die Schülerinnen und Schüler zeigt: Die Schülerinnen und Schüler sollten ein Würfel-
spiel (Verflixte Sieben) modellieren. Sie haben das getan, ohne eine Klasse Würfel zu
erstellen. Stattdessen wurde der Klasse Spieler eine Methode würfeln zugeordnet, in
welcher von der Bibliotheksklasse Random eine Zufallszahl erzeugt wird. Die meisten Schü-
ler haben in einem Kommentar angemerkt, dass ihrer Meinung nach daher aus
Implementationsgründen eine Klasse Würfel überflüssig sei, da die Funktionalität einer sol-
chen Würfelklasse zu gering für eine eigene Klasse und zudem bereits in der Klasse Random
implementiert sei. Diese Art zu modellieren sowie der Versuch der Schülerinnen und Schüler
die Logikschicht des Modells von der Benutzungsschnittstelle zu trennen zeigt sich sehr deut-
lich auch im Unterricht (vergleiche Unterrichtsprotokoll in Tabelle 73, S. 147). Die
Schülerinnen und Schüler lösen sich sowohl in der Klausuraufgabe als auch im oben ange-
sprochenen Unterrichtsausschnitt aus der Phase 3 von der direkten abbildenden
Modellierung.
Das bedeutet, dass Spiele als Projektaufgabe mehr als ein rein abbildendes Modellieren zulas-
sen und die Schülerinnen und Schüler im Unterricht auch mehr gelernt haben, als nur ein
vorformuliertes Modell (gewissermaßen 1-zu-1) in die UML-Notation zu übertragen.

165

Interpretation der Ergebnisse

Allerdings gibt es hier ein Problem aus der Unterrichtspraxis: Die Modellierung des Würfel-
spiels mit der Klasse Random anstelle einer eigenen Würfelklasse in der Klausur wurde als
falsch gewertet, weil ein Würfelspiel nicht ohne Würfel auskommen sollte, die Modellierung
also nicht die Wirklichkeit angemessen wiedergegeben bzw. abgebildet habe. Das mag in die-
sem Beispiel berechtigt sein, deutet aber auch auf die oben im Zusammenhang mit der
Bezeichnung Problemlöse-Paradigma erfolgte Beobachtung hin, dass der Informatikunterricht
dazu neigt, abbildende Aufgaben zu bevorzugen und Problemlösen mit der Überführung einer
vorliegenden Modellierung mit Hilfe einer Programmiersprache (oder der UML) in ein syn-
taktisches Modell gleichzusetzen. Dieser Aufgabentyp wird auch als 'eingekleidete
Aufgabenstellung' bezeichnet, da in der meist verbalen Beschreibung das Modell bereits vor-
gezeichnet ist – dieses gilt etwa für viele Textaufgaben aus der Mathematik. Klieme,
Neubrand und Lüdtke (2001, S.145) bemerken dazu:

„In Schulbüchern und im Schulunterricht findet man allerdings oft die so genannten eingekleide-
ten Aufgaben, die den Mathematisierungsprozess praktisch ausblenden oder weitgehend
trivialisieren, weil sie den Eindruck erwecken, genau eine Weise der Mathematisierung sei
'richtig'. Dann wird also der für den Erwerb von Mathematical Literacy zentrale, ja charakteristi-
sche Vorgang des Mathematisierens abgeschnitten und die Aufgabe erscheint unmittelbar auf der
Modellebene.“

In der Durchführung ist darauf zu achten, solche eingekleideten Aufgaben zu meiden bzw. zu-
mindest im Sinne der vom Cognitive Apprenticeship geforderten zunehmenden Komplexität
und Variabilität von Aufgabenstellungen schrittweise zurückzunehmen88.
Im FEOK2 wurden zwei Modellieraufgaben gestellt, die nicht aus dem Bereich Spiele kom-
men. Es sollten die Strukturen einer Firma und eines Bestellsystems als Klassendiagramm
modelliert werden. Diese Aufgabe war für die Schülerinnen und Schüler schwieriger (vgl. Ta-
belle 85, S.158), im Schnitt erreichten sie etwa die Hälfte der möglichen Punkte. Dieses
Ergebnis zeigt einerseits, dass die Variabilität der Aufgabenstellungen gesteigert werden soll-
te (Prinzip 'ansteigende Vielfalt' des Cognitive Apprenticeship), andererseits aber als
Hilfestellung durchaus mehrere Beispiele aus einem Bereich (hier: Spiele) verwendet werden
sollten (Prinzip 'Scaffolding' des Cognitive Apprenticeship). Diese beiden Prinzipien müssen
jeweils spezifisch für die Lerngruppe berücksichtigt werden.

10.1.3 Vermittlung von Vorstellungen über Softwareentwicklung
Wie in dem Unterrichtsauszug in Tabelle 73 (S. 147) deutlich wird, begreifen die Schülerin-
nen und Schüler Softwareentwicklung als eine Tätigkeit, die mehr umfasst als die Phase des
Codierens bzw. Implementierens und erreichen damit eines der wesentlichen Lernziele (siehe
dazu Tabelle 35, S. 106). Die Schülerinnen und Schüler zeigen, dass sie ihr eigenes Vorgehen
planen und bewerten können. Deutlich wird auch, wie an anderer Stelle gezeigt wird (siehe
Abschnitt 10.1.2, Klausuren mit Würfelspiel-Aufgabe), dass den Schülerinnen und Schülern
die Erstellung einer Software als Ziel der Analyse und Designphase bewusst ist. Zumindest
ansatzweise verstehen sie den Prozess als Technik zur Bewältigung von Komplexität, sie se-
hen unterschiedliche Herangehensweisen und die Notwendigkeit zu geplantem Vorgehen.
Die Schülergruppe unterscheidet sich in dieser Hinsicht von dem oben bereits erwähnten 12er
Informatik-Grundkurs, der von Brinda und Ortmann (2002, S. 20) untersucht wurde:

„Die meisten Lernenden hielten es für sinnvoll, dass Problemstellungen in der Analysephase zer-
legt werden. Bei der Frage, ob sie selber bei einer neuen Aufgabe eine Analyse durchführen
würden, hielten sie diese nicht mehr für erforderlich. Die Lernenden gaben an, dass sie lieber pro-

88 Siehe Kapitel 6.4, ab S. 77; Stichwort Lernsequenzierung.

166

Interpretation der Ergebnisse

grammieren, statt zu modellieren, und meinten, dass sie die Fähigkeit zu programmieren in Zu-
kunft eher gebrauchen können, als zu modellieren.“ (Brinda und Ortmann 2002, S. 20)

Die nach dem life3-Unterrichtskonzept unterrichteten Schülerinnen und Schüler nutzen die er-
lernten Modellierungstechniken und -notationen auch in der eigenständigen Projektphase.
Hier zeigt sich der Vorteil situierten Lernens: Das Modellieren wurde nicht als eigenständige
(bzw. isolierte, theoretisch-abstrakte) Tätigkeit vermittelt, sondern integriert mit der Einfüh-
rung von Konzepten der Objektorientierung und deren Anwendung in der
Softwareentwicklung im Unterricht behandelt, anders ausgedrückt: Modellieren wurde nicht
als träges Wissen vermittelt, es gibt keinen (oder zumindest einen geringeren) Unterschied
zwischen Verstehen und Anwenden (vgl. Abschnitt 6.1.3: Situierung und authentischer Kon-
text, ab S. 65).
Das hat Auswirkungen auf die Vorstellungen der Schülerinnen und Schüler über Softwareent-
wicklung. Diese wurden in den Einzelinterviews (vor dem Beginn des Unterrichts und nach
dem Halbjahresende) abgefragt. Nun werden im zweiten Auswertungsschritt diese Kategorien
wiederum den einzelnen Schülerinnen und Schülern zugeordnet und anschließend die Häufig-
keit des Auftretens sowohl für das Interview im Vortest als auch im Nachtest miteinander
verglichen. Dazu wird der McNemar-Test benutzt, der dichotome Variablen vergleicht (vgl.
Zöfel 2001, S.166f). Es gibt signifikante Unterschiede zwischen Vortest und Zwischen-Inter-
view. Tabelle 90 zeigt die Ergebnisse für die einzelnen Kategorien:

McNemar, Signifikanz
Realisierung Nach - Realisierung 0,003
Auftraggeber Nach - Auftraggeber 0,039
Modellierung Nach - Modellierung 0,002
Planung Nach - Planung 0,006
Arbeitsteilung Nach - Arbeitsteilung 0,022
Testen Nach - Testen 0,453
Evolution Nach - Evolution 1,000
Präsentation Nach - Präsentation 1,000

Tabelle 90 Vergleich der Nennungen der einzelnen Kategorien, in denen die Schülerinnen und Schüler
Softwareentwicklung beschreiben. McNemar-Text auf signifikante Unterschiede dichotomer Variablenpaare .
Die ersten sechs Variablenpaare unterscheiden sich signifikant bzw. sehr signifikant, die letzten drei nicht.

In den Zwischeninterviews werden die Kategorien Auftraggeber, Planung, Arbeitsteilung und
Realisierung signifikant häufiger als in den Eingangsinterviews genannt. In den Kategorien
Testen, Evolution und Präsentation gibt es keine signifikanten Änderungen. Neu genannt in
der Zwischenbefragung wird die Kategorie Modellieren. Die Unterschiede zwischen den bei-
den Schulen sind nicht signifikant.
Das Verständnis des Softwareentwicklungsprozesses hat sich in Richtung soziotechnischer
Sichtweisen geöffnet. Die Schülerinnen und Schüler beziehen nach der Reihe verstärkt iterati-
ve und inkrementelle Herangehensweisen (Planung und Modellierung) sowie die Absprachen
mit Auftraggebern und Arbeitsteilung ein. Sie gewichten damit auch die Implementierungs-
phase geringer.
Aus der Sicht des systemorientierten Ansatzes könnte vermutlich ein tieferes Verständnis des
Konzepts der soziotechischen Systeme im Unterricht angestrebt und erreicht werden. Ver-
schiedene Ansatzpunkte sind bereits im Unterrichtsverlauf angelegt und sollten den
Schülerinnen und Schülern stärker bewusst gemacht werden. Reinsch (2003), der die erste

167

Interpretation der Ergebnisse

Phase (leicht adaptiert) des life3-Phasenmodells in der Sekundarstufe I evaluiert hat, berichtet
beispielsweise von folgendem Vorgehen: Nachdem das Flaschendrehen-Spiel in Gruppen mit
dem ausdrücklichen Auftrag ausprobiert wurde, bei möglichen Unklarheiten des Spielablaufs
die Spielregeln zu erweitern, wurden die verschiedenen Lösungen an der Tafel gesammelt:

„Im Unterrichtsgespräch wird geklärt, ob unterschiedliche Regelauslegungen in echten Program-
mierprojekten überhaupt auftreten können. Die Diskussion endet mit der Aufzählung von
Personenkreisen, die in der Realität solche Probleme auflösen können: Auftraggeber, Informati-
ker, Benutzer, ...“ (Reinsch 2003, S.9).

Mit diesen und ähnlichen Reflexionsphasen werden metakognitive Lernziele angestrebt. Die-
se Aspekte könnten dann, sinnvollerweise auf der Basis eigener 'Projekterfahrungen', also
während der dritten Phase, zu einem Bild des soziotechnischen Informatiksystems zusammen-
geführt werden (vgl. Tabelle 7, S. 39). Anhand der Thematisierung von (eher sozialen)
Interessens- und (eher technischen) Designkonflikten (vgl. Magenheim 2000) sollte diese
Thematik vertieft werden können.

10.2 Lernereigenschaften
In diesem Abschnitt werden mögliche Zusammenhänge zwischen Eigenschaften der Lernen-
den (Motivation, Interesse, Vorwissen) mit dem Lernergebnis untersucht. Dazu werden mit
dem U-Test Zusammenhänge zwischen Lernereigenschaften sowie FEOK1 und FEOK2 ana-
lysiert.
In Bezug auf den Zusammenhang zwischen Lernerfolg und dem Besuch von Informatikunter-
richt in der Sekundarstufe I haben sich keine signifikanten Zusammenhänge gezeigt. Die
Ursachen für den fehlenden Zusammenhang können vielfältig sein, außerdem wurde nicht
kontrolliert, was in den beiden Schulen konkret im Informatikunterricht der Sekundarstufe I
unterrichtet wird. Insgesamt deuten die fehlenden Zusammenhänge jedoch an, dass der unter-
suchte Unterricht offensichtlich wenig Berührungspunkte mit etwaigen Vorerfahrungen aus
dem Schulunterricht (an den beiden Schulen) aufweist.
Es wurden ebenfalls mögliche Zusammenhänge der FEOK-Ergebnisse mit der Programmier-
vorerfahrung untersucht. Dabei gibt es kaum signifikante Zusammenhänge89. Die
Vorerfahrungen, die sich bei den Schülerinnen und Schülern durchweg auf imperative Pro-
grammierung in einer textuellen Programmiersprache beziehen, haben also keinen bzw. einen
geringen Einfluss auf die Unterrichtsergebnisse. Dieses etwas überraschende Ergebnis deutet
darauf hin, dass das life3-Unterrichtskonzept und die verwendeten Werkzeuge dazu führen,
dass die Schülerinnen und Schüler die Inhalte als neue und eigenständige Themen verstehen.
Es scheint also gelungen zu sein, die Schülerinnen und Schüler von Anfang an in die von
Cunningham und Beck (1989) angesprochene 'objectness of the material' hineinzuziehen, so-
dass weder fehlende noch imperativ orientierte Vorkenntnisse einen nennenswerten Einfluss
auf das Unterrichtsergebnis haben – allerdings haben die Schülerinnen und Schüler der Schu-
le B geringere Vorkenntnisse und zeigen bessere Ergebnisse in einigen FEOK-Fragen. Diese
Unterschiede liegen jedoch vermutlich an der unterschiedlichen Unterrichtsdurchführung
bzw. der unterschiedlichen Stabilität von Fujaba in den beiden Lerngruppen, allerdings kön-
nen Zusammenhänge mit dem Vorwissen mit dem hier eingesetzten Untersuchungsdesign
nicht ausgeschlossen werden.

89 Ausnahme: Die Frage nach der Java-Schreibweise eines Methodenaufrufs (FEOK2 f, siehe Abbildung 99, S.
226 sowie Tabelle 86). Bezüglich der in FEOK2 e gestellten Frage nach der Erklärung der grafischen Syn-
tax eines Methodenaufrufs gibt es jedoch wieder keinen signifikanten Unterschied zwischen den Gruppen.

168

Interpretation der Ergebnisse

10.2.1 Abwahlverhalten und geschlechtsspezifische Unterschiede
In den Zwischeninterviews (vgl. Abschnitt 9.2.1, ab S. 133) haben sich die Schülerinnen und
Schüler zu den Gründen geäußert, das Fach abzuwählen. Diese Gründe scheinen Motivation
und Interesse am Fach anzusprechen, daher soll hier der mögliche Zusammenhang zwischen
Abwahlverhalten und Lernereigenschaften wie z.B. Interesse untersucht werden. Dazu wird
der U-Test mit verschiedenen Variablen gerechnet: INCOBI, FEOK und Interviewergebnisse.

SUCA VECA PRACOWI FIDEC 6 FIDEC 8 Motivation Info SI Programmier-
erfahrung

Abwähler 2,51 2,01 5,88 2,19 2,31 1,29 0% 0,25
Nicht-Abwähler 2,98 2,69 9 1,57 1,54 2,38 59% 1,24
Signifikanz ,029(a) ,009(a) ,051(a) ,041(a) ,009(a) ,009(a) ,011(a) ,021(a)

Tabelle 91 Unterschiede zwischen Abwählern und Nicht-Abwählern im Vortest (INCOBI-Skalen und
Interviewergebnisse). In den Zeilen die Mittelwerte für die Gruppe der Abwähler und der Nicht-Abwähler.
Darunter die Signifikanz der Unterschiede nach U-Test, (a) nicht für Bindungen korrigiert. Zu SUCA, VECA
und PRACOWI siehe Anhang und Text. FIDEC 6: Wert der Skala: „negative gesellschaftliche Konsequenzen,
die nach Ansicht mancher Leute mit der zunehmenden Verbreitung der Computertechnik in der Arbeitswelt und
im Bildungsbereich verknüpft sind.“. FIDEC 8: Wert der Skala „negative gesellschaftliche und kulturelle
Konsequenzen, die nach Ansicht mancher Leute mit der zunehmenden Verbreitung des Computers als
Unterhaltungs- und Kommunikationsmittel verknüpft sind“ (höhere Werte=höhere Zustimmung, Wertebereich
0-4).

Von den FIDEC-Skalen (vgl. Tabelle 53, S. 133) unterscheiden sich Abwähler und Nicht-Ab-
wähler in den Ansichten über den Einsatz von Computern für Arbeit und Schule (FIDEC 6)
sowie in der Bewertung der gesellschaftlichen Folgen des Computers als Unterhaltungs- und
Kommunikationsmittel (FIDEC 8). Es gibt signifikante Zusammenhänge in den Variablen
SUCA und VECA (die subjektive Einschätzung der Vertrautheit mit Computeranwendungen).
Für den PRACOWI (das Praktische Computerwissen) liegt das Ergebnis mit 0,51 knapp ober-
halb der Signifikanzschwelle.
VECA fragt die Selbsteinschätzung der Vertrautheit mit Computeranwendungen ab, PRACO-
WI testet (bezogen auf das Betriebssystem Windows) das tatsächlich vorhandene prozedurale
Wissen im Umgang mit dem Computer.
SUCA erfasst als Dispositionsvariable „Kompetenzerwartungen und Besorgtheitskognitionen
in Bezug auf den Umgang mit typischen Computeranwendungen“ (Naumann, Richter und
Groeben (in Druck), S. 12), die vermutlich bedeutsam für die Qualität des Umgangs mit dem
Rechner ist. Niedrige SUCA-Werte würden demzufolge andeuten, dass bei der Bearbeitung
schwieriger Aufgaben kognitive Kapazitäten für Bewältigungsstrategien zur Abwehr aufkom-
mender Angstreaktionen abgezweigt werden müssen. Allerdings ist der Zusammenhang
zwischen Computerängstlichkeit und Leistung nicht eindeutig (vgl. aaO., S. 8). Man kann da-
von ausgehen, dass eine höhere Selbsteinschätzung und geringere Selbstzweifel (also ein
hoher SUCA-Wert) weniger Probleme mit der Computerbedienung ein höheres Beharrungs-
vermögen, auch schwierige Aufgaben zu lösen, indiziert.
Des Weiteren gibt es signifikante Unterschiede in den Variablen Motivation und der Pro-
grammiererfahrung.
Auch im Zwischentest unterscheiden sich die Gruppen der Abwähler und Nicht-Abwähler:

169

Interpretation der Ergebnisse

FEOK1 Ges. SUCA-N FIDEC 8-N
Abwähler 2,9 2,2 2,36

Nicht-Abwähler 5,16 2,91 1,52
Signifikanz ,034(a) ,009(a) ,026(a)

Tabelle 92 Unterschiede zwischen Abwählern und Nicht-Abwählern in Zwischenbefragung und Nachtest. In den
Zeilen die Mittelwerte der Abwähler und der Nicht-Abwähler, darunter die Signifikanz nach U-Test. (a) Nicht
für Bindungen korrigiert. FEOK1 ges= Gesamtergebnis des FEOK1. SUCA-N: SUCA-Wert der
Zwischenbefragung. FIDEC-8N: Wert der Skala „negative gesellschaftliche und kulturelle Konsequenzen, die
nach Ansicht mancher Leute mit der zunehmenden Verbreitung des Computers als Unterhaltungs- und
Kommunikationsmittel verknüpft sind“ (höhere Werte=höhere Zustimmung, Wertebereich 0-4).

Es gibt also ein Bündel von möglichen Faktoren für das Abwahlverhalten.
Zwei Aspekte sollen hier herausgehoben werden: Die SUCA-Werte und die geschlechtsspezi-
fische Verteilung des Abwahlverhaltens. Das Abwahlverhalten scheint einher zu gehen mit
einer geringeren Selbstsicherheit bzw. mit einem Verlust von Selbstsicherheit im Umgang mit
dem Computer.
Hier haben von fünf Schülerinnen drei abgewählt und von 33 Schülern haben fünf abgewählt.
Da das Abwahlverhalten möglicherweise also mit dem Geschlecht zusammenhängt, sollen
diese Zusammenhänge im Folgenden weiter analysiert werden. Zwar sind die Fallzahlen zu
klein, um sie zu verallgemeinern, dennoch bleiben die Ergebnisse ein Indiz für geschlechts-
spezifische Unterschiede, die auch an anderer Stelle sichtbar werden: Berger (2001, S. 200ff)
nennt den Informatikunterricht ein „Fach mit männlicher Klientel“: Gegenüber einem Frauen-
anteil am Gymnasium von über 50% sind im Informatikgrundkurs der Klasse 11 nur 32%
Schülerinnen90. Im Grundkurs des 12ten Jahrgangs sinkt der Anteil auf 15%, im Leistungs-
kurs der Jahrgangsstufe 13 sind gerade noch 8% weiblich (aaO., 201f.). Diese 8% entsprechen
exakt dem Anteil der Informatiklehrerinnen am Gymnasium mit Lehrbefähigung (aaO.,
S.203). Gegebenenfalls spielen hier Rollenvorbilder – unabhängig von den Unterrichtsinhal-
ten und -methoden – eine Rolle im geschlechtsspezifischen Wahlverhalten (vgl. aaO., S.
203ff.). Ein weiteres Beispiel ist eine Untersuchung von Richter, Naumann und Hortz (2001).
Sie haben den INCOBI benutzt, um computerbezogene Einstellungen bei männlichen und
weiblichen Studierenden zu untersuchen. Unterschiede haben sich insbesondere im SUCA
und PRACOWI sowie der tatsächlichen Computernutzung gezeigt – ebenso wie in der hier er-
folgten Untersuchung. Insgesamt folgern die Autoren:

„Soll an der Hochschule ein technologisches ‘gender gap’ vermieden werden (Berghaus 1999), ist
es mit Abwarten also vermutlich nicht getan: Die vorliegenden Ergebnisse lassen eine gezielte
Förderung von Computerkenntnissen bei Frauen sinnvoll erscheinen und legen zugleich Interven-
tionen nahe, die auf subjektive Variablen wie Computerängstlichkeit abzielen.“ (Richter,
Naumann und Hortz, 2001, S. 79)91

Möglicherweise wird im Informatikunterricht unterschwellig fachliche Kompetenz mit Com-
puterbedienkompetenz verbunden. Für diese Deutung sprechen der Druck und die Angst vor
dem Rechner, die selbst Informatiklehrer verspüren: Sie müssen dem von außen an sie heran-
getragenem Bild (Berger, 2001, S. 226) als Computerexperten genügen. Zwar sehen sich die
meisten Informatiklehrer als selbstbewusste und kompetente Computernutzer, „gleichwohl
tritt bei einigen der Befragten als eine wichtige Facette ihres Computerbildes auch Unsicher-

90 Die Angaben beziehen sich auf Nordrhein-Westfalen im Schuljahr 1998/99 (Berger 2001, Fußnote 432, S.
194).

91 Berghaus 1999: Berghaus, M.: Student und interaktive Medien: Theoretische Überlegungen und empirische
Befunde zur „AphaBITisierung“ der Hochschulen. In: Medienpsychologie 11, (1999), S. 260-276.

170

Interpretation der Ergebnisse

heit gegenüber der komplexen und anspruchsvollen Maschine hervor, offenbaren sich Formen
von Angst“ (aaO., S. 227).
Des Weiteren spielt die Motivation der Schülerinnen und Schüler vermutlich eine Rolle in der
Abwahlentscheidung. Diese ist bei den Mädchen geringer als bei den Jungen (Tabellen 46
und 47, S. 128). Zudem ändern sich die Bewertungen in zwei FIDEC-Skalen: FIDEC 1 („Für
mich ist der Computer ein nützliches Arbeitsmittel.“) sinkt bei den abwählenden Mädchen
von 3,38 auf 2,86, FIDEC 5 („Die staatliche Unterstützung der Computertechnologie in der
Arbeitswelt und im Bildungsbereich ist für den gesellschaftlichen Fortschritt sehr wichtig.“)
von 2,71 auf 1,89.
Zugespitzt könnte man formulieren: Einige Schülerinnen und Schüler wählen Informatik ab,
sie verlieren das Interesse, sehen nicht mehr die Nützlichkeit der Computertechnologie im Ar-
beits- und Bildungsbereich, weder persönlich noch allgemein; und sie verlieren ihr
subjektives Kompetenzerleben im Umgang mit dem Computer. Möglicherweise betrifft dieses
Problem Schülerinnen stärker als Schüler.
Schlussfolgerungen:
Um die geschlechtsspezifischen Unterschiede zwischen Mädchen und Jungen genauer zu un-
tersuchen, wurde im Anschluss an diese empirische Arbeit eine größere Umfrage im
Anfangsunterricht der 11ten Klassen durchgeführt, um zu sehen, ob sich das hier gezeigte
Bild verallgemeinern lässt. Mit Hilfe der Untersuchungsergebnisse in den Bereichen Schüler-
eigenschaften wie Interesse, Motivation und Geschlecht, die mit dem Lernerfolg und dem
Abwahlverhalten zusammenhängen, wurde ein Fragebogen entwickelt. Dazu wurden die In-
terviewergebnisse des Vortests herangezogen, SUCA sowie Fragen nach
soziodemographischen Angaben. Diese zweite Untersuchung wurde von der AG Didaktik der
Informatik zum Schuljahresbeginn 2002/03 durchgeführt, um die im life3-Projekt ermittelten
Werte und besonders die geschlechtsspezifischen Unterschiede an einer größeren Stichprobe
überprüfen zu können. Das vorläufige Ergebnis lautet zugespitzt: Jungen wollen Programmie-
ren lernen, Mädchen Tipps und Tricks im Umgang mit dem Computer und mit
Standardsoftware kennen lernen. Die SUCA-Werte unterscheiden sich höchst signifikant zwi-
schen Mädchen und Jungen, dabei liegen sie etwas über den Werten der beiden
Untersuchungsklassen.
Möglicherweise ist die Bedienung von Fujaba eine Hürde, die dazu führt, dass computer-
ängstliche Lernende eher aufgeben und in der Konsequenz möglicherweise dann das Fach
abwählen. Da die Mädchen (zumindest in den beiden Versuchsklassen, siehe Tabelle 51) ge-
ringere Erfahrungen und Bedienkenntnisse haben, trifft dieser Fall auf sie eher zu.

 Überarbeitungsstrategien vermitteln
Im Folgenden sollen die Änderungen am Unterrichtskonzept beschrieben werden, die auf die
Aufarbeitung und Behebung der Computerängstlichkeit abzielen. Das life3-Unterrichtskon-
zept könnte verändert werden um deutlicher zu machen, dass Softwareentwicklung ein
iterativer Prozess ist, in dem Fehler vorkommen, die aber durch Überarbeitungen und Verfei-
nerungen iterativ beseitigt werden können. Damit sollen die Schülerinnen und Schüler lernen,
dass auch Experten Fehler machen und sie sich nicht als inkompetent verstehen, wenn ein
Programm nicht sofort funktioniert. Dazu werden zwei der Konzepte vorgestellt, die dem Co-
gnitive Apprenticeship zugrunde liegen; eines aus dem Schreibunterricht, eines aus dem
Mathematikunterricht.

171

Interpretation der Ergebnisse

Das Schreiben von Programmen ist im Hinblick auf den folgenden Aspekt möglicherweise
mit dem Schreibunterricht vergleichbar: Anfänger stellen sich Schreiben oft als einen linearen
Prozess vor, bei dem der Autor einen Gedanken nach dem anderen zu Papier bringt, bis der
Text fertig ist (vgl. Collins, Brown und Newman 1989, S. 46592). Analog dazu äußern einige
Lernende die Erwartung, dass es für die Entwicklungs-Aufgaben stets eine eindeutige Lösung
geben würde (vgl. Schüleraussage, Tabelle 56, S. 134). Erfahrene Autoren dagegen ver-
wenden relativ viel Zeit für Planung und Überarbeitung von bereits Geschriebenem. Viele
Schülerinnen und Schüler haben nun die naive Vorstellung, dass Schreiben für geübte Auto-
ren ein glatter und einfacher Prozess ist und halten sich demnach für inkompetent, wenn sie
beim Schreiben eines Textes auf Schwierigkeiten stoßen. Wenn sie nun den Schreibprozess
eines Experten beobachten können, dann sehen sie, dass auch geübte Autoren beim Schreiben
Probleme haben können, stecken bleiben, falsch anfangen, zwischendurch nicht genau wis-
sen, wie der Text am besten weitergehen kann (vgl. aaO., S. 468) – und sie sehen gleichzeitig,
wie ein Experte mit Schwierigkeiten umgeht, sie lernen heuristische Strategien zur Bewälti-
gung von Problemen beim Schreiben.
In der Mathematik hat Schoenfeld (aaO., S. 469ff) eine ähnliche Methodik entwickelt: Er bit-
tet seine Schülerinnen und Schüler, ihm schwierige mathematische Probleme zu stellen, und
versucht diese vor der Klasse zu lösen (aaO., S. 473). Collins et al. folgern:

„Seeing how experts deal with problems that are difficult for them is critical to students' develop-
ing a belief in their own capabilities. Even experts stumble, flounder, and abandon their search for
a solution until another time. Witnessing these struggles helps students realize that trashing is nei-
ther unique to them nor a sign of incompetence.” (aaO., S. 473)

Nun bezogen sich instruktionale Erklärungen im Unterricht fast ausschließlich auf die Erklä-
rung bereits fertiger Beispiele. Ggf. sind den Schülerinnen und Schülern im Sinnes des
Cognitive Apprenticeship nicht genügend Möglichkeiten gegeben worden, die Erstellung von
Programmen zu beobachten.
Eine Verbesserungsmöglichkeit wäre also zu Anfang der Phase 2 das CRC-Modell nicht ge-
meinsam in der Klasse in ein UML-Klassendiagramm zu überführen, sondern die
Schülerinnen und Schüler beobachten zu lassen, wie das gemeinsam erstellte CRC-Modell
von der Lehrperson in ein Klassenmodell übertragen wird. Dabei auftretende Probleme, Syn-
taxfehler, Designentscheidungen93 etc. können dann ggf. dazu beitragen, dass die
Schülerinnen und Schüler ihre Konzeption von Kompetenz und von Softwareentwicklung än-
dern. Scardamalia und Bereiter nennen dies 'knowledge transforming' (Collins, Brown und
Newman, S. 465)94: Die Schülerinnen und Schüler erkennen, dass der von ihnen als linear
konzipierte Schreibprozess eingebettet ist in einen komplexeren Planungs- und Entwicklungs-
prozess, in dem Ziele definiert und Probleme gelöst werden.
Es wäre interessant zu untersuchen, ob eine derartige Veränderung des Unterrichts Auswir-
kungen auf die Selbstkompetenz bzw. Computerängstlichkeit (SUCA) und die

92 Collins, Brown und Newman beziehen sich auf Scardamalia und Breitner's „Procedural Facilitation of Wri-
ting“ (aaO., S. 464ff) als ein Beispiel für die Anwendung von Methoden des Cognitive Apprenticeship (Der
Ansatz des Cognitive Apprenticeship wurde aus der vergleichenden Analyse erfolgreicher Unterrichtsmetho-
den wie dieser 'destilliert' – nicht umgekehrt).

93 Mit Designentscheidungen sind hier offene Fragen in der Entwicklung gemeint, für die es mehrere denkbare
Lösungen gibt, sodass man sich für eine entscheiden muss. Eine solche Designentscheidung kann sich dann
später als sehr gut, aber auch als weniger gut herausstellen.

94 Scardamalia und Bereiter haben für das Schreiben von Aufsätzen einzelne Schritte und Hilfen dazu definiert
(siehe Tabelle in aaO., S. 466), die für entsprechende unterrichtsmethodische Zugänge in der Informatik ge-
nutzt werden können.

172

Interpretation der Ergebnisse

Abwählerzahlen gegenüber einer Vergleichsgruppe hat, in welcher der Umgang mit Fehlern
sowie der Design- und Implementierungsprozess wie gehabt thematisiert wird. Zudem sollten
derartige Maßnahmen nach dem Cognitive Apprenticeship zu höherer Selbststeuerungsfähig-
keit bei der Aufgabenbearbeitung führen und metakognitive Kompetenzen verbessern (z.B.
Planung und Beurteilung des Vorgehens).
Wenn nun der Unterricht durch Phasen ergänzt wird, in denen ein Lehrer vorläufige Lösun-
gen bzw. in den Augen der Schülerinnen und Schüler möglicherweise gar 'etwas Falsches'
vorführt, um danach das eigene Vorgehen zu korrigieren, könnte das andererseits bei den
Schülerinnen und Schüler den Eindruck mangelnder Zielstrebigkeit und Genauigkeit im Un-
terricht hervorrufen oder verstärken. Vermutlich werden auch Lehrer dazu neigen, im
Unterricht vor den Schülerinnen und Schülern eher klare und eindeutige Lösungen zu zeigen
– und dementsprechend die zu bearbeitenden Aufgaben auswählen. Die unterrichtsmethodi-
sche Frage spielt so in die Frage nach den zu vermittelnden Inhalten hinein. Durch das
Zulassen 'atmender Modelle', die im Laufe der Entwicklung verfeinert, geändert und ggf. auch
als unpassend verworfen werden können, wird ein Bild von Softwareentwicklung entworfen,
nach dem Software schrittweise und zyklisch entsteht, wobei in den einzelnen Schritten und
Ausbaustufen 'Fehler' auftreten können.
Dieses Bild weicht von der eventuell vorrangig im Anfangsunterricht vermittelten Vorstel-
lung ab, für (Softwareentwicklungs-)Probleme jeweils das 'richtige' Lösungskonzept
auszusuchen und anzuwenden, um das Problem 'endgültig' und 'richtig' zu lösen. Die Lö-
sungskonzepte sind Schleifen, Parameter, Assoziation, Vererbung, etc. Ein solches naives
Konzept von Softwareentwicklung würde Modellierung als unnötigen Ballast ablehnen, da oft
falsche Lösungen produziert werden bzw. einfach nichts Wesentliches – nämlich kein Quell-
text – entsteht. Tatsächlich atmen Modelle und werden in der Entwicklung nicht nur in einem
linearen Prozess verfeinert. Ggf. werden Ideen geändert, Entwürfe verworfen, es kommen
neue, bisher nicht bedachte Aspekte ins Spiel.
Eine Weiterentwicklung der Methodik der instruktionalen Erklärung im life3-Unterrichtskon-
zept in Richtung Vormachen und Erklären von Modellierungsschritten kann so
Modellierkompetenz stärken: Modellierung wird nicht als linearer, prinzipiell fehlerfreier
Prozess, sondern als Transformationsprozess (analog zum transformativen Schreibprozess
nach Scardamalia und Bereiter) vermittelt. Es wird deutlich, dass Modellierung ein eigenstän-
diger Schritt der Softwareentwicklung ist, der sich von der Implementation unterscheidet.
Damit entsteht die Möglichkeit, durch Modellierung tatsächlich Entwürfe zu finden, die no-
tiert, kommuniziert und verglichen werden, die nach Kriterien beurteilt und verbessert
werden.
Auf diese Weise kann die instruktionale Erklärung ebenfalls Voraussetzungen stärken für die
Vermittlung der soziotechnischen Perspektive, nach der technologische Lösungen eingebettet
sind in soziale Zusammenhänge, sodass Software, die tatsächlich genutzt wird, früher oder
später geändert werden muss, beispielsweise aufgrund veränderter Rahmenbedingungen. Zu-
dem sind jeweils verschiedene Lösungen denkbar, aus technischen Gründen oder aus
unterschiedlichen Perspektiven der beteiligten Akteure (Entwickler, Abnehmer, Benutzer, ..).
Aus unterschiedlichen Perspektiven und Interessen heraus wird ein Programmentwurf unter-
schiedlich gesehen und bewertet – und gegebenenfalls bereits während der Entwicklung
geändert.
Für eine Weiterentwicklung bzw. Präzisierung des life3-Phasenmodells sind zwei Elemente
wichtig: Zum einen soll Softwareentwicklung, speziell Modellieren als kreativer Prozess

173

Interpretation der Ergebnisse

deutlich werden, d.h.: Modellieren bedeutet mehr als das Notieren einer Lösung. Es gibt keine
universell anwendbaren Idealrezepte, sondern situierte Lösungen und Heuristiken. Zum ande-
ren dient ein Modell immer zwei verschiedenen Zwecken: einmal der Implementation – es
muss vom Computer 'verstanden' werden, aber das Modell dient auch zur Kommunikation
und Dokumentation von Entwurfsideen, es muss von den Entwicklern verstanden werden. Es
ist Dokumentation und Grundlage für mögliche spätere Änderungen, sodass nicht nur Imple-
mentierbarkeit und Funktionstüchtigkeit, sondern auch Verständlichkeit und Wartbarkeit eine
Rolle spielen.
Das Lernwerkzeug muss daher das einfache Aufschreiben und Ändern unterstützen.
Wenn die instruktionale Erklärung diese Sichtweise des allmählichen Verfeinerns verdeutli-
chen kann, dann sollte so das Abwahlverhalten (aus Unsicherheit gegenüber dem Werkzeug)
verbessert, die Modellierkompetenz und die verstehende Einsicht in soziotechnische Sicht-
weisen gefördert werden können, da ggf. ein Modell erst durch den tatsächlichen Einsatz,
durch den Bezug auf die Einsatzzwecke beurteilt und verbessert werden kann.

10.3 Lernumgebung und Unterrichtskonzept
In diesem Abschnitt werden einzelne Aspekte des life3-Unterrichtskonzepts vertiefend disku-
tiert: Die Rolle der Objektstrukturen (Abschnitt 10.3.1) und die Rolle von Fujaba als
Lernmedium (Abschnitt 10.3.2). Es werden dabei einige Konzeptänderungen (bzw. Präzisie-
rungen) vorgeschlagen, die im Einklang mit der lehr- und lerntheoretischen Diskussion (vgl.
Abschnitt 6.3.1 ab S. 74) auf eine Stärkung des verständnisorientierten Lernens im Sinne des
Cognitive Apprenticeship abzielen.

10.3.1 Objektstrukturen
In diesem Abschnitt soll die Idee der Objektstrukturen als ein konzeptuelles Modell präzisiert
werden, mit dessen Hilfe für Anfänger angemessene mentale Modelle der Objektorientierung
gelehrt werden können.
Damit soll ein zentraler Wirkungszusammenhang des Unterrichtskonzepts vor dem Hinter-
grund der Evaluation erläutert werden. Dieses geschieht auch deshalb, weil vermutlich der
Beitrag der ersten Phase zum Lernerfolg aus der unterrichtspraktischen Sicht nicht klar ist;
siehe dazu beispielsweise (Moll, 2002)95: „Der eigentlichen Modellierungsarbeit in zusam-
menhängenden Projekten geht eine mehrwöchige bzw. mehrmonatige Phase voran, in der
grundlegende Konzepte der Objektorientierung in Anlehnung“ an das Konzept Stifte und
Mäuse vermittelt werden (aaO., S. 49), denn die Vermittlung der für die Implementation not-
wendigen Konzepte Schleife, Verzweigung, ggf. Parameter und lokale Variablen (aaO., S. 46)
„allein im Rahmen umfangreicher Softwareprojekte erscheint schwierig“ (aaO.). Erst nach
dieser 'einführenden' Phase könne im Klassenverband mit CRC-Karten und Objektspiel eine
Version des Flaschendrehen-Beispiels (Mini-Roulette) modelliert und mit einem CASE-Tool
implementiert werden. Moll zieht folgende Schlussfolgerung aus dem durchgeführten Unter-
richt:

„Insgesamt haben die Erfahrungen gezeigt, dass die Schülerinnen und Schüler auch in der Jahr-
gangsstufe 11 bereits frühzeitig mit Modellierungen und Modellierungstechniken umgehen

95 Der Autor bezieht sich in seinem Konzept auf eine frühere Version des hier entwickelten life3-Unterrichts-
konzepts: Reinsch/Schulte, Arbeitspapier 2001 (unveröffentlichtes Manuskript). Er kannte das hier entwi-
ckelte Unterrichtskonzept auch von der INFOS 2001. Der Unterricht war gerade angefangen und es war
nicht klar, ob Phase 2 wie erwartet funktionieren kann. Eben dies wurde bei einem Treffen mit Informatik-
lehrern und Referendaren während der INFOS 2001 stark angezweifelt.

174

Interpretation der Ergebnisse

können. Ein Teil der Schwierigkeiten war darauf zurückzuführen, dass die vorangehende Phase et-
was knapp ausgefallen war.“ (Moll 2002, S. 52)

Eine ähnliche Folgerung hatte die life3-Projektgruppe zunächst ebenfalls aus den Unterrichts-
erfahrungen gezogen: Weil an einzelnen Stellen Schwierigkeiten auftraten, sollten (zumindest
für diese Inhalte) verstärkt Übungen am Ende von Phase 1 oder zwischen Phase 1 und 2 ein-
gesetzt werden. Diese Folgerung entspricht zwar den herkömmlichen Unterrichtsskripts (3.8
ab S. 30), nach denen zunächst einzeln Grundlagen gelegt und darauf aufbauend durch An-
wenden und Kombination der Grundlagen 'zusammenhängende Projekte' verwirklicht werden
können – sie widerspricht jedoch den lehr-lerntheoretischen Grundlagen des life3-Unterrichts-
konzepts und den Evaluationsergebnissen, denn die Schülerinnen und Schüler konnten ohne
die von Moll beschriebene Vorbereitungsphase objektorientierte Modelle entwerfen und im-
plementieren.
Gestützt wird dieses empirische Ergebnis durch theoretische Überlegungen von Ben-Ari
(2001). Nach Ben-Ari bedeutet konstruktivistisches Lernen von Objektorientierung, dass Ler-
nende angemessene Vorstellungen über den Lerngegenstand erwerben müssen.
Objektorientierung aber abstrahiere von den Details der Hardware, sodass Lernende Schwie-
rigkeiten bekommen, die Ausführung eines objektorientierten Programms zu verstehen. Ben-
Ari folgert daraus, dass explizit ein mentales Modell des Computers gelehrt werden müsse,
bevor die Lernenden das Programmieren lernen, da ansonsten sozusagen 'zufällige' und mit
großer Wahrscheinlichkeit unvollständige, fehlerhafte oder vollständig falsche Vorstellungen
über die Ausführungsweise objektorientierte Programme erlernt werden, die zu Schwierigkei-
ten beim Modellieren und Implementieren führen.
Ben-Ari (2001, S. 11) wirft die Frage auf, wie detailliert ein solches Modell sein müsse und
deutet an, dass diese Frage nur empirisch zu beantworten sei96. Da Objektorientierung vor al-
lem Abstraktion vom unterliegenden Maschinenmodell bedeute, sei es problematisch, in
einem Anfängerkurs mit der Objektorientierung zu beginnen, da Anfänger ja noch kein men-
tales Modell von der Arbeitsweise des Computers bzw. der Ausführung eines
objektorientierten Programms besäßen.
Modrow (2002, S. 62) behauptet, diese Argumentation sei „kein Einwand gegen OOP-Spra-
chen“, denn Ben-Ari sage nichts aus über „die Art des zugrundeliegenden Computermodells“
und übersehe, dass „die Modelle der Lernenden aus konstruktivistischer Sicht nicht vollstän-
dig, sondern nur gültig sein müssen, und zwar gültig für die Abstraktionsebene, auf der
gearbeitet wird“ (Modrow 2002, S.62). Tatsächlich wirft Ben-Ari selbst (s.o.) die Frage auf,
wie detailliert ein solches Verständnis des Computers sein müsse.
Modrow widerspricht Ben-Ari (und damit meiner Meinung nach konstruktivistischen Grund-
positionen des Lehrens und Lernens) in einem weiteren Punkt: „Je nach Arbeitsrichtung
werden die vorhandenen, meist überwiegend ungültigen Modellvostellungen [der Lernenden,
C.S.] in unterschiedlicher Hinsicht verschärft“ (Modrow 2002, S.62). Und:

„Wie auf anderen Gebieten auch wird ausgehend von von einem 'Urmodell', das eher intuitiv aus
der Erfahrungswelt der Lernenden entstanden ist, zu mehr und mehr gültigen Modellen gewech-
selt [Hervorhebung von mir, C.S.] werden müssen“ (Modrow 2002, S.62).

In der pädagogischen Psychologie dagegen wird die Rolle des Vorwissens stark betont (siehe
Kapitel 6, insbesondere Abschnitt 6.1.1: „Die Rolle des Vorwissens.“, S. 63); in der naturwis-
senschaftlichen Didaktik werden unter dem Stichwort Konzeptwechsel die Problematik des

96 „The extent and fidelity of the model that must be taught to the students can only be discovered from the ex-
perience of teachers of the subject.“ (Ben-Ari, 2001, S.11)

175

Interpretation der Ergebnisse

Umlernens von erfahrungsbezogenen Vorstellungen zu naturwissenschaftlich angemessenen
Vorstellungen und die damit verbundenen erheblichen Lernschwierigkeiten diskutiert (siehe
Abschnitt 6.2.2: „Epistemologische Überzeugungen und Konzeptwechsel.“, ab S.70).
Die Ergebnisse der empirischen Untersuchung entsprechen der allgemeinen Diskussion: Die
sorgfältige Einführung der grundlegenden Begriffe und Konzepte in Phase 1 in Schule B, die
dadurch etwas länger dauert und gleichzeitig weniger praktische Übungen umfasst, geht mit
einer effizienteren Leistung der Schülerinnen und Schüler in der Projektphase (P3) einher: die
Gruppe aus Schule B benötigt nur 13 gegenüber 21 Unterrichtsstunden zur anderen Gruppe.
Dieses Ergebnis stimmt mit Ben-Aris Vermutung überein, dass ein verfrühtes Beginnen mit
der Programmierphase zu Lernschwierigkeiten und ineffektivem 'trial and error'-Programmie-
ren führe:

„Constructivism suggests that programming exercises should be delayed until class discussion has
enabled the construction of a good model of the computer. Too often students become infatuated
with the absolute ontology supplied by the computer. Premature attempts to write programs lead to
bricolage and delay the development of viable models.“ (Ben-Ari 2001, S.14)

Anhand der Idee der Objektstrukturen kann die Arbeitsweise des Computers und die Ausfüh-
rung eines objektorientierten Programms erläutert werden. Daher ist es sinnvoll, im Unterricht
diese Idee direkt anzusprechen.

 Objektstrukturen explizit unterrichten
Eine Verbesserung der ersten Phase könnte möglicherweise durch eine stärkere Akzentuie-
rung der Grundideen der dynamischen Objektstruktur erreicht werden. Wesentlich in Phase 1
ist demnach das Vermitteln eines konzeptuellen Modells der Objektorientierung. Konzeptuel-
le Modelle werden benutzt, um bei Lernenden den Aufbau eines angemessenen – im
konstruktivistischen Begriff: viablen – mentalen Modells zu ermöglichen.
Das hier verwendete konzeptuelle Modell zeichnet sich durch die Verbindung dreier Aspekte
aus:
1. Ein Realitätsauschnitt wird erkundet: Das Spiel Flaschendrehen wird im Unterricht durch-

gespielt. Dabei werden insbesondere die beteiligten Elemente und das dynamische
Verhalten beachtet.

2. Das implementierte Spiel wird mit Dobs, nach einem vorbereitenden Zwischenschritt, dem
Objektspiel, durchgespielt. Dabei werden Objektstrukturen aufgebaut und (durch Metho-
denaufrufe) verändert.

3. Der Aufbau und das Ändern von Objektstrukturen wird mit Hilfe von Story-Pattern be-
schrieben.

Das dabei vermittelte Bild der Objektorientierung konzentriert das Verständnis auf das Be-
schreiben, Aufbauen und Verändern von Objektstrukturen.
Die später von den Schülerinnen und Schülern geforderte Implementation der Modelle wird
erleichtert, indem im Unterricht und den Modellen jeweils statische Klassenstrukturen mit der
dynamischen Interaktion von Objekten in Bezug gesetzt werden. Es wird jeweils deutlich,
dass die Assoziation zwischen Objekten zur Programmausführung benötigt wird und dass da-
durch Programmfunktionalität ausgedrückt wird: Beim Flaschendrehen-Projekt
beispielsweise wird keine Zufallszahl erzeugt, die die Nummer des Gewinnfeldes anzeigt,
sondern die Assoziation 'zeigtAuf' zwischen dem Flaschenobjekt und einem Feldobjekt
zeigt das Gewinnfeld an (vgl. Abbildung 16, S. 54). Üblicherweise (vgl. die oben vorgestell-
ten Ansätze in Kapitel 3, S. 13ff.) werden gerade im Anfangsunterricht einfache statische

176

Interpretation der Ergebnisse

Objektstrukturen aufgebaut97. Obwohl der Unterschied zwischen statischen und dynamischen
Objektstrukturen zunächst eher gering erscheint, gibt es einen wesentlichen Unterschied für
Novizen: Wenn Objekt-Strukturen zur Laufzeit unverändert bleiben, dann bleiben die voran-
gegangenen Modellierungs-Schritte, in denen Klassen als Baupläne für Objekte und
Beziehungen zwischen Klassen bestimmt wurden, getrennt von der eigentlichen Funktionali-
tät des Programms. Bei den einfachen Anfangsbeispielen wird den Lernenden möglicherweise
nicht deutlich, wieso denn die Funktionalität nicht in einem Objekt, sondern auf eine komple-
xe, aber statische Objektstruktur aufgeteilt werden soll.
Vermutlich liegt in diesen beiden Aspekten der ersten Phase (Konzentration auf der Idee von
Objektstrukturen und die Verbindung von Modellierung und Implementation durch dynami-
sche Objektstrukturen) ein wichtiger Grund, weshalb die Schülerinnen und Schüler die
nachfolgenden Lernschritte (das eigenständige Modellieren und Implementieren, das Erlernen
der grafischen Programmiersprache Fujabas) relativ problemlos bewältigen. Daher sollten dy-
namische Objektstrukturen eine deutliche Akzentuierung im Unterricht erfahren. Diese Idee
legt die Grundlage für das Verstehen der Objektorientierung.

10.3.2 Fujaba als Lernmedium
Im Abschnitt 9.3 (S. 140ff) wurde bereits die anfängliche Skepsis gegenüber der Verwendung
der grafischen Möglichkeiten der Programmierung in Fujaba verwiesen. Im Laufe des Pro-
jekts hat sich diese Einschätzung geändert, da nach Meinung der Beteiligten, insbesondere der
Lehrer die Schülerinnen und Schüler in der ersten und zweiten Phase des life3-Phasenmodells
weniger Probleme mit dem Erlernen der Syntax hatten und kein Bruch im Verständnis bzw.
der Abstraktionsebene aufgetreten ist; denn wenn Modelle mit Aktivitätsdiagrammen imple-
mentiert werden, bleibt die objektorientierte Sichtweise bestehen (siehe den vorangegangenen
Abschnitt: Objektstrukturen)
Die Frage ist, inwieweit das Softwareentwicklungswerkzeug als Lernwerkzeug den Lernpro-
zess unterstützt. Um dieser Frage nachzugehen wird der Ansatz 'Wissenserwerb mit
Multimedia' (Schnotz, 2001) herangezogen98.
Der Ansatz beruft sich auf eine Reihe anerkannter Befunde und Ansätze der lernpsychologi-
schen Forschung: die Debatte um konstruktivistische Lerntheorien, die Cognitive-Load-
Theory und das Multimedia-Lernmodell nach Mayer. Schnotz' Ansatz ist damit eher als Zu-
sammenfassung und Fortführung der Multimedia-Lernpsychologie denn als eigener Ansatz zu
betrachten.
Er unterscheidet zwei unterschiedliche kognitive Verarbeitungsstrategien. Beim Lernen sind
diese beiden Prozesse komplementär aufeinander angewiesen und jeweils an der Informati-
onsaufnahme beteiligt: Einerseits werden die Informationen bildhaft-analog verarbeitet und
im Gehirn als mentale Modelle abgelegt, andererseits werden sie symbolisch-abstrakt verar-
97 Grafische Benutzungsoberflächen sind ein typisches Beispiel für statische Objektstrukturen: Komponenten

werden auf Fenster gelegt und lösen Ereignisse aus, die von den Komponenten selbst oder von festen Ereig-
nisempfängern bearbeitet werden. Änderungen beziehen sich auf Änderungen von Attributen wie Position,
Größe oder Farbe einzelner Objekte - die Objektstruktur selbst bleibt unverändert. Im Konzept Stifte und
Mäuse wird so verfahren: Der Bildschirm bekommt einen Stift, der auf dem Bildschirm zeichnet – die Schü-
lerinnen und Schüler arbeiten mit dieser Objektstruktur, indem sie den Stift benutzen: Zustand, Position und
Farbe werden geändert.

98 Die folgenden Absätze sind eine ergänzte und erweiterte Argumentation aus einem Artikel über die Entwick-
lung von Lernsoftware (Schulte 2002, S. 410ff). Hier soll die Diskussion ex post die beobachteten Wir-
kungszusammenhänge des Unterrichts erklären helfen und die Untersuchungsergebnisse theoretisch veran-
kern.

177

Interpretation der Ergebnisse

beitet und in einer Art ‚Gehirnsprache’ als propositionale Repräsentationen abgelegt. Menta-
le Modelle unterstützen schlussfolgerndes Denken und Analogiebildungen99, dienen dem
überblicksartigen Verständnis und werden eher durch bildhafte Darstellungen gefördert. Pro-
positionale Repräsentationen stellen allgemeine, abstrakte Aussagen dar, sie sind näher
orientiert an sprachlichen Darstellungen, dienen dem logischen Durchdringen und der Erklä-
rung im Detail und werden eher durch abstrakte und verbale Darstellungen gefördert.
Als Theorie zur Erklärung der Wirksamkeit von multimedialem Lernen geht der Ansatz da-
von aus, dass bestimmte Informationsrepräsentationen eine der beiden kognitiven
Verarbeitungsstrategien begünstigen: Bilder beschreiben Informationen meist in Analogien100

und können über die visuelle Rezeption eher bildhaft-analog verarbeitet werden (dann wirken
sie als depiktionale Repräsentation). Texte werden zwar ebenfalls visuell wahrgenommen, je-
doch symbolhaft-abstrakt (als deskriptionale Repräsentation) verarbeitet. Umgekehrt können
Bilder auch als deskriptionale Repräsentation wirken (Abbildung 93).

Worte

Bilder

Ohren

Augen

Worte
auswählen

Bilder
auswählen

Multimediale
Präsentation

Sinne

Wort-
Basis

Bild-
Basis

Verarbeitung und Gedächtnis

Visuelles
mentales Modell

Verbale
propositionale
Repräsentation

Vorwissen

Langzeit-
gedächtnis

depiktional

deskriptional

Integrieren

Abbildung 93 Modell des Wissenserwerbs mit Multimedia nach Schnotz und Mayer (Zeichnung nach Schnotz
2001)

Die Simultanpräsentation bildhaft-analoger und symbolhaft-abstrakter Information auf einem
Sinneskanal (meist dem visuellen) kann nach diesem Modell zu kognitiven Überlastungen
führen ('cognitive load'). Günstiger wäre beispielsweise, bildhaft-analoge Informationen über
den visuellen Kanal und gleichzeitig angebotene symbolhaft-abstrakte Informationen über
den auditiven Kanal zu transportieren. Genau das ist oft im Unterricht geschehen. Die visuelle
Darstellung objektorientierter Konzepte in UML-Notation wurde durch die verbale Erläute-
rung des Lehrers oder der Schüler ergänzt und erläutert. Dabei zielt die bildliche Darstellung
auf visuelle Verarbeitung als depiktionale Repräsentation, sie verdeutlicht inhaltliche Zusam-
menhänge und unterstützt Analogiebildungen. Komplementär ergänzt wird diese Vorstellung
durch die verbalen Erläuterungen als deskriptionale Repräsentationen, die abstrakt-verbale
Vorstellungen präsentieren. Die Simultanpräsentation fördert das Integrieren der unterschied-

99 Die Begriffe mentales Modell und propositionale Repräsentation werden in der Diskussion von verschiede-
nen Autoren unterschiedlich benutzt. Unter anderem gibt es Ansätze, die je einen der beiden Konstrukte als
die hauptsächliche 'Gehirnsprache' verstehen. Hier werden die beiden Repräsentationsformen als komple-
mentär verschränkt im Sinne der mentalen Repräsentation depiktionaler und deskriptionaler Repräsentatio-
nen verwendet. Im Sinnes des Ansatzes kann je eine Repräsentation in einer der beiden mentalen Repräsen-
tationsformen oder auch in beiden abgelegt werden. Siehe genauer Schnotz und die in Schnotz angegebenen
Ansätze (die oben erwähnt werden).

100 Analogie bezeichnet hier eine Analogie zwischen dem Bild, in dem die Informationen enthalten sind, und
dem damit verbundenen oder induzierten mentalen Modell. Die Analogie wird als eine strukturelle Ähnlich-
keit zwischen Bild und mentaler Vorstellung aufgefasst.

178

Interpretation der Ergebnisse

lichen Repräsentationsformen, auch mit dem Vorwissen. Zudem wird durch die Wahl unter-
schiedlicher Sinneskanäle die Gefahr kognitiver Überlastung gemindert und die
Informationsaufnahme optimiert.

 Zur Wirkungsweise der ersten Phase des life3-Phasenmodells
Analysiert man unter dieser Perspektive die Schüleräußerungen, etwa die Anmerkungen zur
visuellen Repräsentation durch Fujaba (Tabellen 77 und 78), dann kann man Folgendes ver-
muten:
Die in Phase 1 verwendeten grafischen Darstellungen (statische Aspekte im Klassendia-
gramm, die Repräsentation des Ablaufverhaltens im Aktivitätsdiagramm und die interaktiven
Objektdiagramme) haben zu einem entsprechenden mentalen Modell geführt. Dieses be-
schreibt objektorientierte Programme und ihren Ablauf als ein zusammenhängendes Netz
einzelner interagierender Objekte. Dieses Netz wird durch die Links (die Verbindungslinien)
zwischen Objekten gebildet. Die Schüler schlussfolgern mit Hilfe dieses mentalen Modells:
Sie ordnen neue Inhalte ein und nutzen es für Analogieschlüsse. Man könnte dieses vielleicht
'Denken in Objektstrukturen' oder 'Denken in dynamischen Objektstrukturen' nennen.
Simultan erfolgte Erläuterungen (Partnerarbeit am PC, Präsentationen im Klassenraum) haben
die Integration von visuellem mentalen Modell und verbalen propositionalen Repräsentatio-
nen und damit das verstehende Lernen begünstigt.
Unterstützt wurde der Lernprozess durch das Phasenmodell, in dem schrittweise die einzelnen
Diagrammarten in einer geordneten Reihenfolge sowie deren Zusammenhänge durch die Ler-
nenden (sozusagen mit der multimedialen Lernsoftware Fujaba) erkundet und erklärt werden.

 Objektstrukturen mit Aktivitätsdiagrammen implementieren
Die notwendige Integration des mentalen Modells mit propositionalen Vorstellungen, die zu
entsprechenden sprachlichen Äußerungen führen, ist jedoch nicht vollständig; beispielsweise
ist der Begriff der Objektstruktur den Schülern nicht vermittelt worden. Dazu passt die Kritik
eines Teils der Schülerinnen und Schüler aus Schule A, dass zu wenig Erklärungen gegeben
wurden (vgl. Abschnitt 9.2.1 ab S. 133, insbesondere Tabelle 55, sowie die in der Unterrichts-
beobachtung aufgefallenen Schwierigkeiten der Schülerinnen und Schüler, siehe die
Auflistung auf S. 149).
Anhand der These, die die Idee der Objektstrukturen und die Rolle von Fujaba als Lernmedi-
um verbindet, können Hinweise auf eine bessere Integration dieser beiden Elemente des
Unterrichtskonzepts gegeben werden. Zunächst geht es darum, die Vorstellung von Objekt-
strukturen nicht nur auf die Analyseebene (CRC-Karten) und die Ausführungsebene (DOBS)
zu beziehen, sondern stärker als bislang auf die Design- und Implementationsebene, in der
Fujaba benutzt wird. Story-Pattern beschreiben Objektstrukturen – wenn das den Schülerin-
nen und Schülern klarer wird, dann wird der Abstand zwischen Modellierung, Ausführung
(auch durch das Objektspiel – oder in DOBS) und der Implementation in den Metho-
dendiagrammen von Fujaba geringer. Deutlicher als bisher muss vermittelt werden, dass 1)
Story-Pattern zunächst alle Elemente zu binden versuchen und dann erst die Struktur ändern
und 2) dass beim Fehlschlagen der Bindung an einer Stelle alle Bezeichner als nicht-gebun-
den gelten. Im Unterricht kam es öfter vor, dass die Schülerinnen und Schüler in einem
folgenden Story-Pattern auf Bezeichner zugriffen, die zwar im vorangegangenen Story-Pat-
tern deklariert wurden, zur Laufzeit jedoch nicht gebunden wurden – Ursache für diverse
'NullPointerExceptions'.

179

Interpretation der Ergebnisse

Diese aufgetretenen Schwierigkeiten können eventuell besser bewältigt werden, wenn den
Schülerinnen und Schülern deutlicher wird, dass ein Story-Pattern genau drei mögliche Auf-
gaben hat. Eine Objektstruktur wird (erstens) auf Vorhandensein geprüft, es werden
(zweitens) Elemente hinzugefügt oder (drittens) gelöscht. Diesen drei Möglichkeiten sind in
Fujaba Farben zugeordnet: schwarz, grün und rot. So wird die Semantik von Story-Pattern
deutlicher. Auf diese Weise kann etwa die Fehlersuche beschleunigt werden. Die Schüler ha-
ben Prüfen und Ändern häufig falsch angewandt – in den Zusicherungen unter Objekten mit
den Symbolen := und == recht ähnlich dargestellt und in der im Unterricht verwendeten Ver-
sion noch nicht farblich unterschieden.
Das explizite Einführen des Begriffs Objektstruktur, der drei Möglichkeiten der Bearbeitung
im Story-Pattern und des Farbschemas sollten hier hilfreich sein. Zudem sollte der Begriff
Teilstruktur genutzt werden: Nicht in jedem Storypattern muss die gesamte Objektstruktur des
Programms beachtet werden, sondern nur ein interessierender Ausschnitt: die Teilstruktur.
Hier kam es häufig zu Überspezifizierungen: Die Schüler verwendeten im Storypattern Ob-
jekte und Beziehungen, die für die intendierte Funktion nicht notwendig waren – das erhöhte
die Komplexität der Story-Pattern unnötig.
Wichtigstes Element ist das Prüfen auf Vorhandensein. In diesem Kontext wird dann auch der
Begriff der Bindung (in Fujaba: bound) thematisiert werden. Damit wird zudem die Unter-
scheidung von Objekten, Variablen und Bezeichnern (zumindest implizit) deutlicher: Im
Quelltext werden Bezeichner für Variablen angelegt, die zur Laufzeit an Objekte gebunden
werden können. Eine Variable kann, etwa innerhalb einer Schleife, an unterschiedliche Ob-
jekte gebunden werden, zwei Bezeichner können dieselbe Variable bezeichnen etc. Zwar
wurden hier keine besonderen Probleme bemerkt, diese Aspekte betreffen aber typische Fehl-
vorstellungen und Lernprobleme von Anfängern (Holland, Griffiths und Woodmann 1997).
Daneben sollte das Werkzeug weiterentwickelt werden. Einige Dialoge sollten vereinfacht
werden, gerade im Hinblick auf diejenigen Schülerinnen und Schüler mit geringeren Ein-
schätzungen der auf die Computerbedienung bezogenen Selbstkompetenz. Andererseits
führen einfache Dialoge zu aufwändig vielen Klicks (siehe Abbildung 94).
Während zum Erstellen eines Objekts jeweils der entsprechende Dialog geöffnet und ge-
schlossen werden muss, können mit einem Dialog-Aufruf mehrere Collaboration-Statements
erzeugt und verändert werden. Das Umgehen mit mehreren Objekten ist daher umständlicher
als das Umgehen mit mehreren Collaboration-Statements; es gibt jedoch kaum Story-Pattern
mit nur einem Objekt, während die meisten ohne Collaboration-Statements auskommen. An-
dererseits ist der Dialog zum Bearbeiten von Collaborations durch die vielen Möglichkeiten
sehr komplex geworden, sodass im Unterrichtsversuch Methodenaufrufe als Quelltext einge-
geben wurde, um diesen Dialog den Schülerinnen und Schülern nicht erklären zu müssen.
Wenn im Unterricht Objektstrukturen im Mittelpunkt stehen, dann könnte die Bedienung des
Werkzeugs an diese Schwerpunktsetzung angepasst werden. Angedeutet wird dies an obigem
Beispiel: Collaboration-Statements beziehen sich im Unterricht im Grunde nur auf das Aufru-
fen von Objektmethoden, der Dialog Collaboration-Statement könnte ersetzt oder ergänzt
werden durch einen einfachen Dialog, der im Kontextmenue von Objekten erreichbar ist und
die Methoden der Objekte zur Auswahl anbietet. Der Dialog zum Bearbeiten von Objekten
könnte es ermöglichen, mit einem Aufruf gleich mehrere Objekte anzulegen und zu bearbei-
ten.

180

Interpretation der Ergebnisse

Abbildung 94 Fujaba-Dialoge. Links: Fujaba-Dialog zum Anlegen eines Objekts in einem Story-Pattern.Rechts:
Fujaba-Dialog zum Erstellen und Bearbeiten von Collaborations-Statements. Dazu können Schleifen- und
Auswahlstrukturen erstellt werden.

Möglicherweise könnte die Arbeit mit Story-Pattern auch an die Bedienung von Grafikpro-
grammen angepasst werden. Diese verfügen oft über eine Leiste mit Schablonen für typische
grafische Formen wie Kreise, Rechtecke und eine eingestellte Farbe. Diese Formen können
mit der Maus auf die Zeichenfläche gezogen werden und erscheinen in der aktiven Farbe. In
ähnlicher Weise könnten eine Liste mit den erzeugten Klassen und die Anzeige des aktiven
Modus (destroy, create oder none) angezeigt werden, sodass die Schülerinnen und Schüler per
drag&drop Story-Pattern aufbauen und bearbeiten können. Möglicherweise würde das sogar
nochmals die Idee von Klassen als Schablonen bzw. als Baupläne betonen. Möglicherweise
könnte auf ähnliche Weise auch das Anlegen von Links zwischen Objekten ermöglicht wer-
den.
Unabhängig von der Nützlichkeit/Realisierbarkeit der Vorschläge sollte deutlich werden, dass
mit Hilfe der Schwerpunktsetzung auf Objektstrukturen Hinweise für Verbesserungen der Be-
dienbarkeit gefunden werden können. Die Schülerinnen und Schüler haben dazu ebenfalls
Ideen geäußert (siehe Auflistung im Abschnitt 9.2.1, Seite 135).
Wesentlich ist das Einführen von Refaktorisierungsmöglichkeiten, damit die Schülerinnen
und Schüler ihre Modelle verbessern können. Die wichtigste Funktion dürfte der Schritt 'Me-
thode extrahieren' sein. Im Unterricht wurden die Methoden teilweise sehr komplex
(Abbildung 95), weil diese Möglichkeit gefehlt hat und die Lehrer nicht das Neu-Anfertigen
der vielen eingegebenen Elemente erzwingen wollten – eine einfache 'copy-paste'-Möglich-

181

Interpretation der Ergebnisse

keit von Story-Pattern aus einem Aktivitätsdiagramm in ein anderes hätte hier sehr hilfreich
sein können.

Abbildung 95 Aktivitätsdiagramm der Methode auswerten aus dem Memoryprojekt einer Schülergruppe.
Hier wird geprüft, wie viele Karten ausgewählt sind, bei zweien wird auf Gleichheit geprüft, es wird der
Punktestand und der aktive Spieler gesetzt, geprüft ob noch Karten vorhanden sind, ggf. das Spiel beendet und
jeweils die grafische Oberfläche verändert und aktualisiert.

In diesem Zusammenhang ist eine von Reinsch (2003) wiedergegebene Kritik an den Aktivi-
tätsdiagrammen bemerkenswert: Diese würden das Programmieren unstrukturierter Sprünge
erlauben und so das Ziel des Informatikunterrichts 'strukturiertes Denken' zu vermitteln, kon-
terkarieren. Diese Kritik deutet meiner Meinung auf zwei Dinge hin: Einerseits braucht man
ggf. ähnlich wie in textuellen Programmiersprachen Style Guides für die Struktur von Aktivi-
tätsdiagrammen. Andererseits ist vermutlich die Idee dynamischer Objektstrukturen wenig im
Bewusstsein der Lehrenden verankert; jedenfalls deutet der Vorschlag, Aktivitätsdiagramme
durch Struktogramme zu ersetzen, auf eine imperative Sichtweise hin, in der die Idee der Be-
schreibung und Veränderung von Objektstrukturen gerade keine zentrale Rolle spielt, obwohl
sie nach den Ergebnissen dieser Studie vermutlich eine der wesentlichen Bedingungen für den
Lernerfolg darstellt.
Interessanterweise gibt es in Bezug auf Flussdiagramme eine Reihe negativer empirischer Be-
funde über deren höhere Lernwirksamkeit gegenüber textuellen Darstellungen;
Aktivitätsdiagramme können als eine Art von Flussdiagrammen gelten. So berichten Shnei-
derman u. a. (1977) über eine Serie einzelner Studien mit Studierenden, zum Teil in
Anfängerkursen:

„Although our original intention was to ascertain under which conditions detailed flowcharts were
most helpful, our repeated negative results have led us to a more skeptical opinion of the utility of
detailed flowcharts under modern programming conditions. We repeatedly selected problems and
tried to create test conditions which would favor the flowchart groups, but found no statistically
significant differences between the flowchart and nonflowchart groups. In some cases the mean
scores for the nonflowchart groups even surpassed the means for the flowchart groups. We con-
jecture that detailed flowcharts are merely a redundant presentation of the information contained
in the programming language statements. The flowcharts may even be at a disadvantage because
they are not as complete (omitting declarations, statement labels, and input/output formats) and re-

182

Interpretation der Ergebnisse

quire many more pages than do the concise programming language statements.“ (Shneiderman u.a.
1977, S. 380)

Der Zusammenhang zwischen Flussdiagrammen und Struktogrammen (Nassi-Shneiderman-
Diagrammen) ist nicht ganz eindeutig, die Diskussion scheint davon auszugehen, dass die
Darstellungen vergleichbar sind101. Insgesamt bleibt die Forschungslage dazu etwas wider-
sprüchlich, vermutlich weil zu viele Inferenzen hineinspielen102 (Scanlan 1988, S. 186).
Scanlan vermutet, dass die Lernwirksamkeit von Flussdiagramm und Quelltext stark von den
jeweiligen Lernstilen abhängt: Einige Lernende würden die textuelle, andere die grafische
Darstellung bevorzugen; die Untersuchung gibt Hinweise auf diese These (Scanlan 1988, S.
186). Auch in diesem Unterrichtsversuch äußerten sich die Schülerinnen und Schüler unter-
schiedlich über die Lernwirksamkeit der visuellen Darstellung in Fujaba und Dobs (vgl. die
Tabellen 58 und 59, S. 135), wobei insgesamt die positive Einschätzung überwiegt.
Kutar, Britton und Barker (2002) haben die Verständlichkeit von Sequenz- und Kollaborati-
ons-Diagrammen vergleichend untersucht. Die Untersuchungsthese lautete, dass
Kollaborationsdiagramme weniger gut verständlich seien. Beispielsweise sei der zeitliche Ab-
lauf in Kollaborationsdiagramme weniger gut ersichtlich, da die Transitionen zwischen
Objekten frei wählbar sind, während in Sequenzdiagrammen der zeitliche Verlauf an der Sor-
tierung der Transitionen von oben nach unten deutlich wird. In einer Studie mit 124
Studierenden des Grundstudiums ergab sich jedoch kein Unterschied in der Verständlichkeit
der Diagrammformen.
Sinnvoll wären folgende Untersuchungen, die diesen Fragen im Einzelnen nachgehen: Wir-
ken grafische Darstellungen nur für einen Teil der Schülerinnen und Schüler als Lernhilfen?
Gibt es geeignetere grafische Darstellungen für den Kontrollfluss oder entspricht die Komple-
xität der Darstellung den damit ausgedrückten Abläufen? Können
Überarbeitungsmöglichkeiten die Schülerinnen und Schüler unterstützen, sodass sie einfache-
re und übersichtlichere Aktivitätsdiagramme erzeugen?

101 Z.B. Scanlan 1988, S. 188: „Although this research deals with flowcharts, it is possible that with appropriate
reservations the results could be generalized to other graphical techniques.“

102 Vgl. dazu auch in Abschnitt 8.1, ab S. 101 die Diskussion der sog. Kozma-Clark-Debatte: Schwierigkeiten
(bzw. die Unmöglichkeit) des empirischen Nachweises von Medieneffekten losgelöst von unterrichtsmetho-
dischen Variablen.

183

Zusammenfassung und Diskussion

11 Zusammenfassung und Diskussion
In der vorliegenden Arbeit wurde ein verständnisorientierter Top-down-Zugang zur Objekt-
orientierung entwickelt, der von Überblickswissen ausgehend schrittweise das
selbstständigere Erarbeiten von detaillierteren Kenntnissen und Fähigkeiten ermöglichen soll.
Das life3-Phasenmodell (Tabelle 27, S. 91) führt beginnend mit der Einführung von Kon-
zepten durch den Lehrer (dem erklärenden Vormachen) hin zu selbstständigeren
Lernprozessen und einer Projektphase. Das life3-Unterrichtskonzept (Tabelle 33, S. 100) un-
terstützt diese Lernsequenzierung durch entsprechende Unterrichtsmethoden (Objektspiel103),
Beispielprojekte (Flaschendrehen104) und Werkzeuge (CRC-Karten, Fujaba und Dobs105), die
in verschiedenen Rollen als Lernmedien (Abschnitt 5.3.3, S. 53ff.) und Entwicklungsumge-
bungen eingesetzt werden. Ziel ist es, auch in der Implementation eine möglichst
objektorientierte Sichtweise beibehalten zu können, also die 'semantische Lücke' (Jacobsen)
zwischen Modell und Implementation möglichst klein zu halten (siehe Abschnitt 5.3.4, S.
56ff) um so im Anfangsunterricht Modellierung anstelle von Implementationswissen themati-
sieren zu können.
Die Entwicklung dieses Top-down-Vorgehens sollte ermöglichen, dass im Anfangsunterricht
diejenigen Lernziele des Informatikunterrichts angestrebt werden können, die im informati-
onszentrierten und im systemorientierten Ansatz vorgeschlagen werden. Dazu wurden anhand
einer lernpsychologischen Perspektive die beiden Ansätze sowie die Inhalte des Anfangsun-
terrichts miteinander verbunden: Deklaratives Wissen, prozedurales Wissen und
Metakognition können jeweils schwerpunktartig der Vermittlung von syntaktischen Grundla-
gen und Grundkonzepten, dem Anwenden der Grundlagen (dem Strukturieren von
Informationen nach dem informationszentrierten Ansatz) und der Bewertung und Reflexion
des Vorgehens (Softwareentwicklung als soziotechnischer Prozess) zugeordnet werden (vgl.
Tabellen 8, S. 44 und 23, S.85). Vor diesem Hintergrund wurden Lernziele, Inhalte und unter-
richtsmethodische Zugänge des life3-Unterrichtskonzepts bestimmt (Kapitel 5, S. 44ff.).
Die Konkretisierung und Ausgestaltung des Unterrichtskonzepts erfolgte theoriegeleitet106.
Als zugrunde liegende Theorie wurde der Ansatz des Cognitive Apprenticeship ausgewählt.
Anhand der Maßgaben dieses Ansatzes wurden die einzelnen Elemente des Unterrichtskon-
zepts konkretisiert und in sich widerspruchsfrei zusammengestellt. Dazu wurden neben der
ursprünglichen Fassung des Cognitive Apprenticeship didaktisches Wissen aus den mathema-
tisch-naturwissenschaftlichen Didaktiken und der Diskussion konstruktivistischer
Vorstellungen des Lernens und Lehrens berücksichtigt (Kapitel 6, S.61ff.).
Das life3-Unterrichtskonzept stellt eine Alternative zu den üblichen Praxiskonzepten (Ab-
schnitt 3, S. 13ff) dar, die zunächst sprachbezogene Grundlagen vermitteln und damit nicht
ein allgemeines Verständnis der Objektorientierung, sondern den Umgang mit Kalkülen in
den Mittelpunkt stellen und engere Aufgabenstellungen verwenden. Diese Vorgehensweise

103 Siehe Abschnitt 7.2.1, S. 87ff sowie Abschnitt 7.3.1, S. 91ff.
104 Wichtig sind die Kriterien für Projekte (siehe Tabelle25, S. 88), die dafür sorgen, dass die im Unterricht ver-

wendeten Beispiele den Lernprozess im Sinne des Unterrichtskonzepts unterstützen.
105 Die Entwicklungsumgebung soll den Lernenden helfen Zusammenhänge zu erkennen und soll für den An-

fänger unwichtige Details (z.B. Sprachstrukturen) ausblenden. Als Werkzeug wurde Fujaba ausgewählt, da
es über weitreichende Codegenerierungsfunktionen, einen einzigartigen grafischen Debugger und die Mög-
lichkeit zur grafischen Implementierung verfügt und zudem durch die Kooperation mit dem Lehrstuhl Soft-
waretechnik und die Förderung des life3-Projekts durch den Universitätsverbund NRW an die Erfordernisse
des zu entwickelnden Unterrichtskonzepts angepasst werden konnte.

106 Zum theoriegeleiteten Vorgehen siehe Kapitel 2, S.10ff.

184

Zusammenfassung und Diskussion

kann als Bottom-up bezeichnet werden: Zunächst stehen grundlegende Details im Vorder-
grund, die das Erlernen und Verstehen abstrakterer und komplexerer Konzepte ermöglichen
sollen.
Da die wesentlichen Elemente des Unterrichtskonzepts bislang nicht im Informatikunterricht
erprobt worden sind, wurde eine empirische Evaluation durchgeführt. Dazu mussten eine Un-
tersuchungsmethodik und entsprechende Untersuchungsinstrumente entwickelt werden
(Kapitel 8, S. 101ff.). Schließlich wurde das Konzept in zwei Schulklassen erprobt und evalu-
iert (Kapitel 9, S. 126ff. und 10, S. 160ff.).
Die Ergebnisse der Evaluation sind: Die Schülerinnen und Schüler haben in einem Schulhalb-
jahr ein Verständnis von Grundkonzepten der Objektorientierung erworben (Abschnitt 10.1.1,
S. 160ff), können diese Kenntnisse in der Modellierung anwenden (Abschnitt 10.1.2, S.
164ff.) und haben differenziertere Vorstellungen über den Softwareentwicklungsprozess ent-
wickelt, sodass sie nun beispielsweise auch die Rolle der Auftraggeber einbeziehen
(Abschnitt 10.1.3, S. 166ff.).

 Diskussion des life3-Unterrichtskonzepts
Das Unterrichtskonzept mit Phasenmodell und Werkzeugen wirkt als ein konzeptuelles Mo-
dell für die Objektorientierung (siehe Abschnitt 10.3.1, S. 174ff.) mit dessen Hilfe die
Lernenden die einzelnen Elemente in einen Zusammenhang bringen können. Auf diese Weise
werden Analyse, Entwurf und Implementation für die Lernenden einfacher aufeinander be-
ziehbar: Softwareentwicklung bedeutet, Objektstrukturen zu analysieren und schrittweise
formal zu beschreiben. Ein objektorientiertes Programm schließlich erzeugt eine Objektstruk-
tur und verändert diese mittels der vom Benutzer aufgerufenen Methoden.
Zur weiteren Diskussion des entwickelten Unterrichtskonzepts sei an die Fragen erinnert, die
im theoriegeleiteten Vorgehen vorgeschlagen wurden:

„Es bietet sich jedoch an, die Evaluationsergebnisse unter drei weiterführenden Fragen zu disku-
tieren:
(1) Sind die Evaluationsergebnisse auf andere Lerngruppen übertragbar?
(2) Was sagen die Evaluationsergebnisse über die Gültigkeit der dem Konzept zugrundeliegenden
allgemeinen Voraussetzungs-Ziel-Mittel-Aussage aus?
(3) Was bedeuten die Evaluationsergebnisse für die Anwendbarkeit des herangezogenen theoreti-
schen Ansatzes?“ (Tulodziecki und Herzig 1998, S.23).

Zur ersten Frage: Die – bislang nur vorläufig ausgewertete – Folgeumfrage deutet auf ver-
gleichbare Bedingungen zwischen den Lerngruppen hin. Es wurden keine Hinweise auf
Besonderheiten der Versuchsgruppe gefunden. Allerdings sind einige Aspekte offen: Welche
Rolle genau spielen das Vorwissen aus der Sekundarstufe I, Kenntnisse im Programmieren
und die Computersicherheit (siehe Abschnitt 10.2, S. 168ff.)? Zur Übertragbarkeit gehört
auch die Verfügbarkeit der Werkzeuge und Materialen. Diese sind über eine Webseite auf
dem learn-line-Server NRW oder life.uni-paderborn.de verfügbar. Allerdings stellt sich die
Frage, ob ein Einsatz von Fujaba im Unterrichtsalltag ohne begleitende Fortbildung der Leh-
renden und nur anhand der erstellten Hilfen und erklärenden Materialien möglich ist.
Zur zweiten Frage: Die allgemeine Voraussetzungs-Ziel-Mittel-Aussage kann kann am Bei-
spiel des Erlernens einer Fremdsprache erläutert werden. Um die zu sprechen, müssen
Vokabular und Grammatik beherrscht werden. Nun könnten zunächst ein Vokabeltraining
und ein Grammatikkurs erfolgen, an die sich das Führen einfacher Gespräche anschließt.
Stattdessen beginnt der Unterricht meist mit einfachen Sätzen, die einfache kleine Unterhal-

185

Zusammenfassung und Diskussion

tungen ermöglichen und führt nebenher Vokabeln und die fremdsprachliche Grammatik ein.
In der Arbeit wird dieses Vorgehen auf den Informatikunterricht-Anfangsunterricht übertra-
gen.
Dabei zeigte sich, dass dieses Vorgehen zu recht guten Lernergebnissen geführt hat. Man
kann also die Lernwirksamkeit des 'Top-down'-Vorgehens annehmen. Zur dritten Frage: der
Eignung des gewählten Ansatzes (Cognitive Apprenticeship). Verbunden mit der Wahl des
Ansatzes war das Anliegen, die selbstständige Arbeit der Schülerinnen und Schüler auch im
Anfangsunterricht in den Mittelpunkt zu stellen, um so das Modellieren sowie das Bewerten
von Lösungsideen und Entwürfen im Unterricht stärker zu verankern. Dabei sollte das Erwer-
ben der notwendigen syntaktischen und Werkzeugkenntnisse in die Arbeit an authentischen
Beispielen integriert werden. Dieses Anliegen konnte im Großen und Ganzen verwirklicht
werden. Gleichzeitig wurden mit Hilfe des Ansatzes empirische Ergebnisse erklärt und Anre-
gungen für Weiterentwicklungen gegeben (vgl. Kapitel 10, S. 160ff.). Dabei scheint eine
stärkere Beachtung der Rolle der eingesetzten Lernmedien (Fujaba und Dobs) geeignet zu
sein, um das Wirkungsgeflecht der Lernumgebung besser erklären zu können. Dabei würden
sich – wie oben angedeutet - die verschiedenen Ansätze und Erklärungsmuster Cognitive Ap-
prenticeship, instruktionale Erklärungen und die Theorien zum Lernen mit Multimedia nach
Schnotz und/oder Mayer gegenseitig ergänzen. Auf diese Weise könnte das 'Dilemma des An-
fangsunterrichts' (vgl. Kapitel 3, S. 13ff.) bzw. das 'objektorientierte Paradoxon' (vgl. 7.1, S.
84ff., 10.2 S. 168 sowie 10.3.1, S. 174) weiter aufgeklärt107 sowie effektivere Lernumgebun-
gen für den Anfangsunterricht entwickelt werden.

 Diskussion des Stellenwerts von Programmierkursen
Das life3-Unterrichtskonzept weicht von der 'Tradition' des Informatikunterrichts (wenn man
angesichts seines kurzen Bestehens davon sprechen kann) bzw. von den Praxiskonzepten aber
auch teilweise von der aktuellen fachdidaktischen Diskussion ab. So erhebt Modrow Einwän-
de, die sich zwar allgemein auf die fachdidaktische Diskussion beziehen, jedoch direkt das
hier vorgestellte Unterrichtskonzept betreffen:

„Einerseits wird aktive Schülerarbeit und Projektunterricht als grundlegend für das Fach herausge-
stellt, andererseits wird die für Projektunterricht wesentliche Produkt- und Ergebnisorientierung,
die im Informatikunterricht weitgehend durch Programmierung realisiert wird, erschwert oder ver-
hindert, indem ein in den Unterricht integrierter Programmierkurs als schädlich oder überflüssig
hingestellt wird, zumindest aber nicht genügend Zeit bekommt“ (Modrow 2002, S. 53).

An anderer Stelle macht Modrow einen Vorschlag für einen aus seiner Sicht sinnvollen, in
den Unterricht integrierten Programmierkurs, der interessanterweise der hier verfolgten Kon-
zeption ähnelt:

„Andererseits müssen die Lernenden sicher programmieren können, wenn sie ihre Ideen selbst-
ständig am Computer verwirklichen sollen. Da ihre Modelle sich nicht durch Kurzprogramme, wie
sie im Programmierkurs üblich sind, realisieren lassen, müssen sie ihr Werkzeug wenigstens unter
den dafür erforderlichen Aspekten beherrschen – und das sind nicht wenige. Für den problemori-
entierten Unterricht wäre es also wünschenswert, Schülerinnen und Schüler zu haben, die in etwa
wissen, welche Möglichkeiten das Programmentwicklungssystem zu Verfügung stellt, damit sie
nicht laufend durch Detailprobleme für eigene Ideen blockiert sind. Es wäre trotzdem keine gute
Idee, einen Programmierkurs dem eigentlichen Informatikunterricht vorzuschalten. Der größere
Teil der Informatikschülerinnen und -schüler nimmt nicht an der gesamten Kursfolge teil, sondern
steigt nach einem oder zwei Kursen (z.B. nach der 11. Klasse) aus. Würde deren Unterrichtszeit
überwiegend von einem Programmierkurs eingenommen, dessen Rechtfertigung erst durch die

107 Vgl. dazu die Einführung in Kapitel 3, S. 13, sowie die Abschnitte 7.1, S. 84ff.; 10.2, S. 168 und 10.3.1, S.
174ff. Burkert 1995. Modrow 2003, S. 51ff.

186

Zusammenfassung und Diskussion

Teilnahme an den Kursen höherer Semester erfolgt, dann wäre der Unterricht dieser Schülerinnen
und Schüler vertan. Folglich muss ein Programmierkurs über die gesamte Kursfolge so verteilt
werden, dass einerseits die Sprachstrukturen, die zur Bearbeitung bestimmter Problemklassen er-
forderlich sind, sicher beherrscht werden, andererseits die zu dieser Übung erforderliche Zeit in
einem ausgewogenen Verhältnis zur Gesamtunterrichtszeit steht. Sinnvollerweise folgen die benö-
tigten Sprachstrukturen aus einer umfassenderen Problemstellung, sodass Schüler und Lehrer
jeweils wissen, weshalb gerade diese Programmierübungsphase eingeschoben werden muss. Ein
Programmierkurs kann und soll deshalb nicht an der Systematik der Programmiersprache ausge-
richtet sein. Er wird die zur Verfügung stehenden Sprachmittel nur unvollständig ausschöpfen. Er
enthält nur die benötigten, nicht die möglichen Teile; diese werden allerdings sorgfältig unterrich-
tet.“ (Modrow 2002, S.59)

Das hier aufgeführte Zitat spiegelt vermutlich die Sicht erfahrener Lehrerinnen und Lehrer
wieder, löst jedoch das aufgeworfene Dilemma nicht. Ziel des Unterrichts ist das selbstständi-
ge Entwerfen von Problemlösungen oder, wie es bei Hubwieser heißt, das Strukturieren von
Informationen. Die Lösungsideen müssen jedoch aufgeschrieben und geprüft werden, und
zwar am Rechner, was die Beherrschung der dazu eingesetzten Werkzeuge erfordert. An die-
ser Stelle wird 'erfordert' oft zu einem zeitlich verstandenen 'vorausgesetzt' umgedeutet,
sodass ein von der eigentlichen Aufgabenstellung losgelöster Programmierkurs dem gesamten
Unterricht vorangeht oder jeweils vorher eingeschoben wird – damit aber Gefahr läuft in ei-
nem isolierten, kalkülorientierten Unterrichtskonzept vermittelt zu werden. Zudem führt das
zu engeren Aufgabenstellungen in der sich anschließenden Projektphase, die dann zu einer
Übungsphase für die vorher trainierten Sprachstrukturen und Werkzeugmöglichkeiten redu-
ziert wird. Ein solcher Unterricht wäre dem oben so genannten Problemlöse-Paradigma
zuzurechnen (Abschnitt 3.6, S. 25ff.).
Das hier vorgeschlagene Unterrichtskonzept vermeidet ein 'Lernen auf Vorrat' und integriert
die Vermittlung des notwendigen Implementationswissens in den Unterricht, der das Model-
lieren betont.
Allerdings könnte man fragen, ob die mit dem Begriff der Problemorientierung festgestellte
Kalkülorientierung des Informatikunterrichts mit diesem Ansatz tatsächlich überwunden wur-
de, oder ob nur der 'alte' einführende Sprachkurs durch einen Kurs zur Vermittlung von
Modelliersyntax in Form von UML-Elementen und Fujaba-Bedienung ersetzt worden ist.
Wünschenswert sind weitere Arbeiten mit dem Ziel, die Modellierperspektive sowie die Ein-
führung in systemorientierte Denkweisen zu stärken. Die Modellierung von Objektstrukturen
sollte im Unterricht stärker mit der Frage nach den Grenzen des Modells bzw. mit der (sys-
temorientierten) Frage verbunden werden, welche Aspekte und Funktionen automatisiert und
welche von den menschlichen Benutzern übernommen werden sollen. Auf diese Weise würde
die Beschreibung der Anwendungsdomäne im Sinne des informationszentrierten Ansatzes mit
der Bewertung und Reflexion des Modells im Sinne des systemorientierten Ansatzes verbun-
den.
Offen bleibt, wie Informatikunterricht nach diesem Anfangsunterricht weitergeführt werden
kann. Damit aber ist die Diskussion über die Rolle und möglichst angemessene Integration
der Vermittlung von Implementationwissen auch mit der vorliegenden Arbeit nicht abge-
schlossen.

 Diskussion der Evaluationsmethode
In der hier durchgeführten Evaluation wurden bestehende Instrumente eingesetzt sowie neue
Instrumente entwickelt. Schülerbefragungen konnten viel über die subjektiven Sichtweisen
der Schülerinnen und Schüler in Erfahrung bringen. Einzelinterviews mit kategorisierter Aus-

187

Zusammenfassung und Diskussion

wertung sind angesichts der Fallzahlen mit vertretbarem Aufwand durchführbar. Diese kön-
nen gut mit standardisierten Befragungstechniken (Fragebögen) kombiniert werden. Mit dem
INCOBI konnte ein solches Instrument aus der psychologischen Forschung genutzt werden.
Die Ergebnisse der Interviews konnten für eine Folgeumfrage genutzt werden.
Werkzeuge zur Unterrichtsbeobachtung und zum Umgang mit videogestützten Daten werden
weiter entwickelt (etwa: Videograph) und sind brauchbar. Erfahrungen mit Untersuchungsin-
strumenten und -verfahren zur Nutzung der Werkzeuge liegen ebenfalls vor. Videostudien,
die mit entsprechenden Softwarewerkzeugen ausgewertet werden können, gelten derzeit als
eine der vielversprechendsten Forschungsinstrumente empirischer Unterrichtsforschung, al-
lerdings sind in praktischer und theoretischer Hinsicht noch Probleme zu lösen und
Verbesserungen denkbar (siehe dazu: Blömeke 2003, Aufschnaiter 2001, Seidel 2003). Die
allgemeine und hier verfolgte Idee, Unterrichtsbeobachtung und Schülerarbeitsphasen am
Rechner zu koppeln (siehe Freudenreich und Schulte, 2002) kann bislang noch nicht zufrie-
denstellend umgesetzt werden. Einerseits sind Aufwand und Datenmengen sehr hoch,
andererseits fehlen theoretische Erkenntnisse, nach denen Plenums- und Schülerarbeitsphasen
systematisch aufeinander zu beziehen wären. In der durchgeführten Studie konnten die einzel-
nen Instrumente nicht in vollem Umfang untereinander in Beziehung gesetzt werden,
beispielsweise wurden die Logfiles intervallbasiert, die Bildschirmvideos dagegen turn-by-
turn kodiert (vgl. Abbildung 39, S.115) und ausgewertet. Zudem konnten die Gruppenergeb-
nisse nur indirekt mit den Ergebnissen der individuellen Vor- und Nachtests in Beziehung
gesetzt werden. Die hier gewonnenen Erkenntnisse über entsprechende Wirkungszusammen-
hänge sind insgesamt eher interpretierend und qualitativ gewonnen als durch das
Instrumentarium systematisch aufgespürt worden.
Die Ergebnisse lassen jedoch vermuten, dass empirische Forschung mit dieser Ausrichtung
gerade für die Informatikdidaktik äußerst gewinnbringend sein wird - denn so werden die ein-
gesetzten Entwicklungswerkzeuge als Lernmedien betrachtet und können in den
Zusammenhang mit Unterrichtskonzepten gestellt und beurteilt werden. Mit hoffentlich fol-
genden Untersuchungen sollten enger eingegrenzte Untersuchungsfragen, präzisere
Untersuchungsdesigns und ausgefeiltere Instrumente und Auswertungsmethoden entwickelt
werden können, sodass neben den notwendigen evaluativen Studien auch empirische Untersu-
chungen im Sinne kontrollierter Experimente (vgl. dazu auch Prechelt 2001) oder
Laborstudien möglich werden.

 Diskussion weiterführender Fragen
Insgesamt legen die Untersuchungsergebnisse nahe, dass mit der hier konzipierten life3-Lern-
umgebung ein angemessener Einstieg in die Objektorientierung für den Anfangsunterricht
Informatik möglich ist (vgl. Abschnitt 10.1); Effektstärken bzw. der Grad der Lernwirksam-
keit jedoch können nur durch vergleichende Untersuchungen ermittelt werden. Die oben
angesprochenen Unterrichtsberichte liefern bestenfalls Hinweise. Für eine solche vergleichen-
de Untersuchung wäre eine Theorie objektorientierten Lernens, die aus Lernerperspektive
fachliche Zusammenhänge aufzeigt, wünschenswert; dies würde es erlauben, fachlich orien-
tierte Lernzieltests zur Ermittlung von Kompetenzstufen der Objektorientierung zu
entwickeln.
Daneben bieten sich weitere Forschungsvorhaben an, um einzelne Wirkungszusammenhänge
genauer zu erforschen und daraus Konzeptverbesserungen oder die Möglichkeit zur Entwick-
lung alternativer Konzepte bzw. Konzepte für andere Lernbereiche des Informatikunterrichts

188

Zusammenfassung und Diskussion

zu schaffen. Entsprechende Wirkungszusammenhänge, die die Ergebnisse dieser Studie nahe
legen, sollen kurz in Form von Hypothesen angedeutet werden:
 1 Der Lernerfolg wird möglicherweise durch Lernereigenschaften beeinflusst:

 1.1 Möglicherweise gibt es im Zusammenhang mit der Variable 'Computerängstlichkeit'
und der Variable 'Erfahrung im Umgang mit dem Computer' geschlechtsspezifische Un-
terschiede, welche die Entwicklung darauf bezogener pädagogischer Interventionen
nahe legen (Abschnitt 10.2, S. 168ff. sowie Richter, Naumann und Hortz 2001). Insbe-
sondere in Phase 2 könnten durch geeignete instruktionale Erklärungen, welche den
Schülerinnen und Schülern die Möglichkeit geben, Modelle zu beobachten, und welche
geeigneten Hilfen mit entsprechenden Gelegenheiten für Übungs- und Überarbeitungs-
prozesse bereitstellen, eher computerängstliche Schülerinnen und Schüler gefördert
werden.

 1.2 Eine weitere Lernervariable ist möglicherweise die Neigung/Fähigkeit mit visuellen
Darstellungen zu lernen (Scanlan 1988). Siehe dazu auch die unterschiedliche Beurtei-
lung des Werkzeugs Fujaba (siehe Abschnitt 9.2.1, S. 133ff.), die aber möglicherweise
auch auf den an den beiden Schulen zum Einsatzzeitpunkt unterschiedlichen Entwick-
lungsstand von Fujaba liegen könnte. Dazu Blömeke (2003, S. 69): „Es hat sich gezeigt,
dass eine automatische Verbesserung durch einfache Addition mehrerer Codiersysteme
nicht erreicht wird, wenn die Schülerinnen und Schüler die Fähigkeit zur Decodierung
der Symbol- und Codiersysteme nicht besitzen“.

 1.3 Eine mit dem Abwahlverhalten korrelierende Variable war die in den Eingangsinter-
views erhobene Motivation der Schülerinnen und Schüler. In der Zwischen- und
Abschlussbefragung wurde diese Variable jedoch nicht mehr erhoben. Vermutlich hat
der Unterricht Effekte auf die Motivation. Seidel, Rimmele und Prenzel (2003) vermu-
ten, dass der durch starke Kontrolle bestimmte deutsche mathemathisch-
naturwissenschaftliche Unterricht zu einer kleinschrittigen Erarbeitung führt, welche die
„geistige Selbstständigkeit der Schülerinnen und Schüler einschränkt“(aaO., S. 144)
und sich negativ auf die Motivation auswirkt. Sie führten eine Videostudie durch, die
diese Vermutung bestätigt: „Die Befunde weisen auf systematische negative Effekte ei-
ner hohen Engführung des Klassengesprächs auf selbstbestimmte
Lernmotivationsformen. Schülerinnen und Schüler aus Klassen mit einer hohen Engfüh-
rung erleben sich signifikant weniger intrinsisch motiviert und interessiert. Darüber
hinaus wirkt sich die hohe Engführung negativ auf das physikbezogene Interesse dieser
Schülerinnen und Schüler aus“ (aaO., S. 161). Mit dem life3-Phasenmodell werden be-
reits in der ersten Phase offene Klassengespräche möglich. Im Zusammenhang mit der
Motivation ist nun interessant, dass die Zahlen der Schülerinnen und Schüler aus den
beiden Versuchsklassen, die einen Leistungskurs Informatik wählen, relativ hoch aus-
fallen108. Untersuchungen über systematische Zusammenhänge zwischen
Unterrichtsdurchführung, Motivation und Abwahlverhalten könnten helfen, angemesse-
nere Unterrichtsformen zu entwickeln. Die Hypothese lautet:
Die offene, schüleraktivierende Gestaltung des Unterrichts, die offenen Aufgabenstel-
lungen, die vergleichsweise selbstständige Gruppen- und Partnerarbeit und offene
Unterrichtsgespräche, die nicht auf eine eindeutige Lösung hinauslaufen, sondern in de-

108 In einem kooperativen Leistungskurs mit 23 Schülerinnen und Schülern, der aus insgesamt sieben Kursen
hervorgegangen ist, kommen 10 Schülerinnen und Schüler aus den beiden Untersuchungskursen.

189

Zusammenfassung und Diskussion

nen Entwurfsalternativen abgewogen werden, fördern das Interesse am Informatikunter-
richt und am Fach Informatik.

 2 In der zweiten Phase des Unterrichtskonzepts (Einführung von GUI und Ereignisbehand-
lung) sind (durch das Unterrichtskonzept) Überforderungen der Lernenden möglich. Hier
sind geeignete Hilfen (Scaffolds) bereitzustellen (vgl. die Bewertung durch die Schülerin-
nen und Schüler im Zwischeninterview, Abschnitt 9.2.1, S. 133ff. und in der
Abschlussbefragung (9.4.1, S. 155ff.) sowie die vorgesehenen Hilfen in Form instruktiona-
ler Beispiele (7.3.2, S. 93ff).
 2.1 Um Überforderungen zu vermeiden, könnten entsprechende Realisierung des Lernens

in Gruppen sinnvoll sein, da in der Gruppe im Sinne des Cognitive Apprenticeship Pro-
zesse der 'Articulation' und 'Reflection' häufiger als bei der individuellen Arbeit
auftreten sollten. Blömeke (2003, S. 73) weist auf wichtige Punkte hin: „So zeigen sich
die lernförderlichen Wirkungen der Gruppenarbeit beim Lernen mit neuen Medien im
Unterricht nur bei entsprechender Unterstützung durch die Lehrperson, indem diese den
Interaktionsprozess vorstrukturiert und Aufgaben stellt, die nicht lediglich Formelwis-
sen zur Lösung benötigen.“ Insbesondere bei Anfängern könne es zu kognitiven
Überlastungen kommen, wenn sie neben der Aufgabenbearbeitung auch noch den Inter-
aktionsprozess strukturieren müssen (siehe unter diesem Aspekt die
Unterrichtstranskripte in Abschnitt 9.3.1, S. 140ff., etwa Tabelle 73, S. 147). Diesbe-
züglich sind die Unterschiede in der Durchführung der zweiten Phase in den beiden
Schulen interessant (siehe die Unterrichtsprotokolle im Anhang sowie die Bewertung in
der Abschlussbefragung 9.4.1, S. 155ff.). Vermutlich spielt hier die Art und Weise des
verwendeten Softwareentwicklungsprozesses und der Grad der Reflexion über diesen
Prozess sowie dessen explizite Kenntnis durch die Schülerinnen und Schüler eine Rolle.
Entsprechende Maßnahmen sollten sich auf den Erfolg der Projektarbeit in der dritten
Phase des Unterrichtskonzepts auswirken und nachweisen lassen.

 3 Im Zusammenhang mit dem vorigen Punkt (2.1) stellt sich die Frage nach möglichen alter-
nativen Zugangsweisen zur Softwareentwicklung. Neben den hier eingesetzten CRC-
Karten bietet es sich möglicherweise an, direkt mit UML-Notationen zu arbeiten (Johlen
2002) oder das Konzept des Story-Driven-Modelling zu nutzen (Diethelm, Geiger und
Zündorf 2002).

 4 Subjektive Theorien von Informatiklehrkräften und typische Unterrichtsskripts des Infor-
matikunterrichts (Problemlöse-Paradigma und Kalkülorientierung) führen möglicherweise
dazu, dass ein verständnisorientierter Unterricht nicht adäquat umgesetzt wird109: Bei auf-
tretenden Lernschwierigkeiten werden diese zu schnell auf fehlendes Detailwissen
(Syntaxkenntnisse, Werkzeugbedienung, zu wenig Übungen) zurückgeführt als auf das ge-
nerelle Verständnis der Schülerinnen und Schüler.

 5 Durch offene Aufgaben, die Notwendigkeit von reflektierenden Unterrichtsphasen an ver-
schiedenen Stellen ergeben sich geeignete Anknüpfpunkte für eine stärkere Fokussierung
von Lernzielen und Unterrichtsinhalten im Sinne des systemorientierten Ansatzes. An-
knüpfpunkte für eine weitere Vertiefung in diesem Bereich bildet auch das Üben von
Überarbeitungen. Bezüglich dieser Änderungen hin zur stärkeren Fokussierung auf Lern-
ziele im Sinne der Systemorientierung sind positive Wechselwirkungen mit den in 1.3 und
2.1 angesprochenen Punkten der Motivation und des Lernens in Gruppen denkbar.
109 Vgl. dazu Blömeke, Müller und Eichler 2003, Berger 2001 sowie die Diskussion über den Stellenwert

der Programmierung, S. 186.

190

Zusammenfassung und Diskussion

 6 Das life3-Phasenmodell, die gewählten unterrichtsmethodischen Zugänge und das Werk-
zeug Fujaba bilden im Sinne des aktuellen Forschungsstandes zum Lehren und Lernen mit
neuen Medien (Blömeke 2003) eine sinnvoll aufeinander abgestimmte Einheit, sodass die
Steigerung der Lerneffektivität eher durch eine bessere Abstimmung der hier entwickelten
Elemente des Unterrichtskonzepts als durch einen Austausch dieser Elemente durch andere
(z.B. Fujaba durch Blue/j) erreicht werden kann. Anhand dieser Hypothese soll im Folgen-
den ein mögliches Untersuchungsdesign skizziert werden.

 Ausblick
Der beobachtete Lernerfolg ist möglicherweise zu einem großen Teil der Nutzung grafischer
Darstellungen und der Art und Weise der unterrichtsmethodischen Einbettung dieser Darstell-
lungen zu verdanken. Das würde beispielsweise bedeuten, dass der Austausch von Fujaba
durch eine quelltextorientierte Entwicklungsumgebung das Unterrichtskonzept relativ stark
beeinträchtigen würde. Also sollten dementsprechend die Werkzeuge im Sinne der 'Lernwirk-
samkeit' anhand der Vorstellungen zum multimedialen Lernen besser in das
Unterrichtskonzept eingepasst werden können. Die visuellen Repräsentationen müssen durch
angemessene instruktionale Erklärungen (verbaler Art) und Unterrichtsmethoden unterstützt
werden.
Interessant wäre beispielsweise eine Untersuchung mit Lernenden, die bereits einige objekt-
orientierte Konzepte oder beispielsweise nach dem Konzept 'Bibliotheken nutzen und
erweitern' (siehe Abschnitt 3.4, ab S. 22) eine eher auf programmiersprachliche Aspekte fo-
kussierte Einführung in die Objektorientierung bekommen haben. Es könnte sein, dass diese
Lernenden eher Schwierigkeiten haben, nach dem life3-Unterrichtskonzept und mit Fujaba zu
lernen und zu arbeiten, denn in diesem Fall würden möglicherweise bereits erworbene Vor-
stellungen über Objektorientierung (im Sinne Ben-Aris (2001) These der Herausbildung
mentaler Modelle) zu korrigieren sein. Es könnte sich jedoch auch zeigen, dass das life3-Un-
terrichtskonzept auch in diesem Falle eine neue Sichtweise auf den Lernstoff ermöglichen
könnte und keine Lernschwierigkeiten auftreten.
Ebenso wäre eine Untersuchung mit Lerngruppen interessant, in denen ein Teil der Schülerin-
nen und Schüler unter nachvollziehbaren Bedingungen im Informatikunterricht der
Sekundarstufe I beispielsweise PASCAL gelernt haben, um zu prüfen, ob tatsächlich eine 'im-
perative Vorbildung' keinen negativen Einfluss hat. Dieses Ergebnis wäre zumindest für die
informatikdidaktische Diskussion hilfreich. Es wäre möglich, dass die Schülerinnen und
Schüler mit Programmiervorkenntnissen (z.B. PASCAL) wegen der grafischen Darstellung
keine Verbindung zum imperativen Programmieren ziehen und daher bei diesem Ansatz keine
Lernschwierigkeiten auftreten. In der auf den Hochschulbereich bezogenen informatikdidakti-
schen Diskussion wird jedoch eher davon ausgegangen, dass eine imperative Vorbildung
Lernschwierigkeiten beim Erlernen der Objektorientierung bedeutet:

„The reality of our situation is that we have for many years devoted a good deal of energy to „un-
teaching” those of our students who come to college with programming experience. By and large,
we want such students to unlearn their bad programming habits and to pick up new, more princi-
pled ones.“ (Decker und Hirshfield 1994)

Oder Joseph Bergin:
„This, then, is the nature of the dreaded paradigm shift that procedural programmers go through
when trying to become object programmers. There is nothing especially complex about OOP, any
more than there is anything complex about procedural programming. It’s just that the world looks
completely different in the two paradigms. The experience of the industry is that an experienced

191

Zusammenfassung und Diskussion

procedural programmer will take a year to 18 months to make the switch [Stroustrup, pg 172].
Lattanzi and Henry [Lattanzi] also report on the difficulty of teaching object-oriented principles to
students experienced in the procedural paradigm. While the programmers are in this learning
mode, they will naturally try to solve problems by decomposing functions and not by discovering
objects. Whenever the going gets hard, they will fall back on what they know best–procedural
programming. It takes a while for the mind to become re-wired to the new way of thinking. If fact,
during this year, the practitioner is likely to build really ugly programs, mixing techniques in an
awkward way.“ (Bergin 2000)

Gerade aus der Perspektive kumulativen Lernens, in der das Vorwissen eine bedeutende Rolle
spielt, sollten Programmierkenntnisse oder vorangegangener Informatikunterricht Auswirkun-
gen zeigen. Dass dieses hier nicht der Fall ist, könnte auch als Hinweis gedeutet werden, dass
die visuelle Programmierung mit Fujaba sich in der Wahrnehmung der Lernenden so deutlich
vom Programmieren in einer Programmiersprache unterscheidet, dass keine Inferenzeffekte
auftreten.
Insgesamt bildet das life3-Phasenmodell demnach zusammen mit Fujaba als Modellierungs-
werkzeug eine effektive Lernumgebung für den Informatik-Anfangsunterricht. Daher könnte
man nun versuchen, die Effektstärke bzw. Lernwirksamkeit dieser beiden wesentlichen
Aspekte genauer zu untersuchen. Es würden sich vergleichende Untersuchungen je zweier
Lerngruppen anbieten, die beide nach dem life3-Unterrichtskonzept unterrichtet werden, eine
Gruppe mit Fujaba, die andere mit einer 'herkömmlichen' textuellen Entwicklungsumgebung;
sowie zweier Lerngruppen, die beide anhand eines Bottom-up-Vorgehens mit Fujaba oder ei-
ner textuellen Entwicklungsumgebung unterrichtet werden:
Phasenmodel plus Fujaba (wie im Konzept) x Einstieg mit kleinen Übungen (Stifte und Mäuse) plus Fujaba
Phasenmodell plus Blue/j x Einstieg mit kleinen Übungen (Stifte und Mäuse) plus Blue/j

Tabelle 96 Vergleich verschiedener Kombinationen aus Lernsequenz und Werkzeugeinsatz im Unterricht.

In der Untersuchung könnte vergleichend die Wahrnehmung des Schwierigkeitsgrads durch
die Schülerinnen und Schüler sowie ihr konzeptuelles Verständnis gemessen werden. Als
weiteren Aspekt könnte man zusätzlich die Sicherheit im Umgang mit den Notationen und
Werkzeugen testen. Die Hypothese ist, dass in allen drei Fragen die Untersuchungsgruppe,
die nach dem hier vorgestellten Konzept mit Fujaba unterrichtet wird, signifikant besser ab-
schneidet. Begründet wird die Hypothese mit dem Evaluationsergebnis: Die von Fujaba
verwendete grafische Notation (und die Art ihrer Verwendung im Unterricht, Stichwort: Wis-
senserwerb mit Multimedia) weist demnach Vorteile auf gegenüber Quelltext, das situierte
'Top-down'-Lernkonzept Vorteile gegenüber dem fachsystematisch 'Bottom-up' aufgebauten.
Diese beiden Aspekte haben sich in der hier vorgenommenen Evaluation als die vermutlich
wichtigsten Änderungen gegenüber 'herkömmlichen' Konzepten erwiesen.

192

Literatur

12 Literatur
Al-Diban, Seel 1999: Al-Dibahn, S.; Seel, Norbert M.: Evaluation als Forschungsaufgabe von

Instruktionsdesign. Dargestellt am Beispiel einer multimedialen Lernumgebung. In:
Unterrichtswissenschaft 27 (1999) Nr. 1. S. 29-60.

Arlt, Wolfgang (Hrsg.): Informatik als Schulfach. Didaktische Handreichungen für das Schul-
fach Informatik. Oldenbourg 1981.

Aufschnaiter 2001: Aufschnaiter, S. v. (Hrsg.): Nutzung von Videodaten zur Untersuchung
von Lehr-Lern-Prozessen. Aktuelle Methoden empirischer pädagogischer Forschung.
Waxmann 2001.

Barnes und Kölling 2003: Barnes, D. J.; Kölling, M.: Objects First with Java - A Practical In-
troduction using BlueJ. Prentice Hall / Pearson Education 2003.

Bartke, P.; Maurer, C.: Thesen zum Informatikunterricht der Oberstufe. Unveröffentlichtes
Web-Dokument. Zugänglich über: http://www.hyfisch.de/HyFISCH/Diskussionsforen
(im Diskussionforum zum Informatikunterricht, 9.10.2003)

Baumann 1993: Baumann, R.: Ziele und Inhalte des Informatikunterrichts. In: Zentralblatt für
Didaktik der Mathematik 25 (1993) Nr. 1. S. 9-19.

Baumann 1995: Baumann, R.: Probleme des Anfangsunterrichts. In: Log In 15 (1995) Nr. 1.
S. 10-16.

Baumann 2000a: Baumann, R.: Java im Informatik-Anfangsunterricht. In: Log In 1 (2000),
S.46-54.

Baumann 2000b: Baumann, R.: Ereignisverarbeitung in Java. Am Beispiel grafischer Benutz-
eroberflächen. In: Log In 5 (2000). S. 27-33.

Baumann und Koerber 2002: Baumann, R.; Koerber, B.: Lernen mit elektronischen Medien.
Ein Überblick. In: Log In 120 (2002). S. 18-25.

Baumann, Rüdeger: Didaktik der Informatik. Zweite, vollständig neu bearb. Aufl. Klett 1996.
Baumert und Köller 2000: Baumert, J.; Köller, O.: Unterrichtsgestaltung, verständnisvolles

Lernen und multiple Zielerreichung im Mathematik- und Physikunterricht der gymna-
sialen Oberstufe. In: Baumert, Bos und Lehmann 2000. S. 271-316.

Baumert und Lehmann 1997: Baumert, J.; Lehmann, R.; u.a.: TIMSS – Mathematisch-natur-
wissenschaftlicher Unterricht im internationalen Vergleich. Deskriptive Befunde. Leske
u. Budrich 1997.

Baumert, Bos und Lehmann 2000: Baumert, J.; Bos, W.; Lehmann, R. (Hrsg.): TIMSS/III.
Dritte Internationale Mathematik- und Naturwissenschaftsstudie. Mathematische und
naturwissenschaftliche Bildung am Ende der Schullaufbahn. Band 2: Mathematische
und physikalische Kompetenzen am Ende der gymnasialen Oberstufe. Leske u. Budrich
2000.

Baumert, Stanat und Demmrich 2001: Baumert, J.; Stanat, P.; Demmrich, A.: PISA 2000:
Untersuchungsgegenstand, theoretische Grundlagen und Durchführung der Studie. In:
Deutsches Pisa-Konsortium 2001. S. 15-68.

Beck und Cunningham 1989: Beck, K., Cunningham, W.: A Laboratory for Teaching Object-
Oriented Thinking. SIGPLAN Notices, Volume 24, Number 10, October 1989
(http://c2.com/doc/oopsla89/paper.html, 9.10.2003).

Bellin und Simone 1997: Bellin, D.; Simone, S. S.: The CRC Card Book. Addison Wesley
1997.

Ben-Ari 2001: Ben-Ari, M.: Constructivism in computer science education. Expanded versi-

193

Literatur

on. ACM SIGCSE Bulletin, Proceedings of the twenty-ninth SIGCSE technical sympo-
sium on Computer science education. Volume 30, Issue 1, 1998. Expanded version
published in the Journal of Computers in Mathematics & Science Teaching 20 (1),
2001. S. 45-73.

Berger 1997: Berger, P.: Das 'Computer-Weltbild' von Lehrern. In: Hoppe, H., U.; Luther, W.
(Hrsg.): Informatik und Lernen in der Informationsgesellschaft. 7. GI-Fachtagung In-
formatik und Schule. INFOS '97. Springer 1997. S. 27-39.

Berger 2001: Berger, P.: Computer und Weltbild. Habitualisierte Konzeptionen von der Welt
der Computer. Westdeutscher Verlag 2001.

Bergin (o.J.): Bergin, J.: The Objectgame. An Exercise for Studying Objects.
(http://csis.pace.edu/~bergin/patterns/objectgame.html, 9.10.2003).

Bergin 2000: Bergin, J: Why Procedural is the Wrong First Paradigm if OOP is the Goal,
(http://csis.pace.edu/~bergin/papers/Whynotproceduralfirst.html, 9.10.2003) (zuletzt
geändert März 2000) Original: OOPSLA 1999, Educators Symposium.

Blömeke 2001: Blömeke, S.: Zur medienpädagogischen Ausbildung von Lehrerinnen und
Lehrern. Folgerungen aus der aktuellen lern- und professionstheoretischen Diskussion.
In: Medienpädagogik (http://www.medienpaed.com/00-2/bloemeke1.pdf, 9.10.2003).

Blömeke 2003: Blömeke, S.: Lehren und Lernen mit neuen Medien – Forschungsstand und
Forschungsperspektiven. In: Unterrichtswissenschaft 31 (2003) Nr. 1. S. 59-82.

Blömeke, Müller und Eichler 2003: Blömeke, S.; Müller, C.; Eichler, D.: Handlungsmuster
von Lehrerinnen und Lehrer beim Einsatz neuer Medien. Grundlagen eines Projekts zur
empirischen Unterrichtsforschung. Angenommen für: Bachmair, B.; Diepold, P.; De
Witt, C. (Hrsg.): Jahrbuch Medienpädagogik 4. Leske u. Budrich 2003.

Booch 1996: Booch, G.: Objektorientierte Analyse und Design. Mit praktischen Anwen-
dungsbeispielen. Addison Wesley 1996.

Bortz und Döring 1995: Bortz, J.; Döring, N.: Forschungsmethoden und Evaluation für Sozi-
alwissenschaftler. Springer 1995.

Böttcher 1997: Böttcher, K.: Java jetzt – adieu Pascal. In: Log In 17 (1997) Nr. 6. S. 38-45.
Brinda (in Druck): Brinda, T.: Integration of new exercise classes into the Informatics educa-

tion in the field of object-oriented modelling. In: Education and Information
Technologies. The Official Journal of the IFIP Technical Committee on Education.

Brinda 2001: Brinda, T.: Einfluss fachwissenschaftlicher Erkenntnisse zum objektorientierten
Modellieren auf die Gestaltung von Konzepten in der Didaktik der Informatik. In: Keil-
Slawik, R.; Magenheim, J. (Hrsg): Informatikunterricht und Medienbildung, GI Procee-
dings, INFOS 2001. S. 75-86.

Brinda und Ortmann 2002: Brinda, T.; Ortmann, T.: Fallstudien zur unterrichtlichen Einbet-
tung spezieller Aufgabenklassen. In: Schubert, Magenheim, Hubwieser und Brinda
2002. S. 13-22.

Broy und Siedersleben 2002: Broy, M.; Siedersleben, J.: Objektorientierte Programmierung
und Softwareentwicklung. Eine kritische Einschätzung. In: Informatik Spektrum 25
(2002). S. 3-11.

Burkert 1994a: Burkert, J.: Umorientierung des Informatikunterrichts (Teil 1). In: Log In 14
(1994) Nr. 4. S. 55-58.

Burkert 1995: Burkert, J.: Umorientierung des Informatikunterrichts (Teil 3). In: Log In 15
(1995) Nr. 1. S. 73-80.

194

Literatur

Clark 1994: Clark, R.E.: Media will never influence learning. In: Education technology re-
search and development 42 (1994) Nr. 2. S. 21-29.

Clark 1994a: Clark, R.E.: Media and method. In: Education technology research and develop-
ment 42 (1994) Nr. 3. S. 7-10.

Collins, Brown und Holum 1991: Collins, A.; Brown, J. S.; Holum, A.: Cognitive Apprentice-
ship: Making thinking visible. In: American Educator 15 (1991) Nr. 3. S. 6-11 und
38-46.

Collins, Brown und Newman 1989: Collins, A.; Brown, J.S.; Newman, S.E.: Cognitive Ap-
prenticeship: Teaching the crafts of reading, writing, and mathematics. In: Resnick, L.
B. (Hrsg.): Knowing, learning and instruction. Lawrence Erlbaum Associates 1989. S.
453-494.

Crutzen und Hein 1995: Crutzen, C. K. M.; Hein, H. W.: Objektorientiertes Denken als didak-
tische Basis der Informatik. In: Schubert 1995. S. 149-158.

Czischke 1995a: Czischke, J.: Von Stiften und Mäusen. In: Informatik betrifft uns (1995) Nr.
2. S. 24-43.

Czischke 1995b: Czischke, J.: Von Buntstiften und Prototypen. In: Informatik betrifft uns
(1995) Nr. 3. S. 28-50.

Czischke 1996: Czischke, J.: Von Ereignissen und Pentominos. In: Informatik betrifft uns
(1996) Nr. 1. S. 22-45.

Czischke 1997: Czischke, J.: OOP – Von Anfang an. In: Informatik betrifft uns (1997) Nr. 1.
S. 16-35.

Czischke 2000: Czischke, J.: Von Stiften und Mäusen. In: Informatik betrifft uns (2000) Nr.
2. S. 26-41.

Czischke u.a. 1999: Czischke, J.; Dick, G.; Hildebrecht, H. u.a.: Von Stiften und Mäusen.
Eine Einführung in die Grundlagen der objektorientierten Programmierung. Landesin-
stitut für Schule und Weiterbildung NRW 1999.

Damann und Wemßen 1999: Damann, P.; Wemßen, J.: Einführung in die Grundlagen der ob-
jektorientierten Programmierung mit Delphi (Vers. 1.0). Landesinstitut für Schule und
Weiterbildung NRW 1999.

Damann und Wemßen 2002: Damann, P.; Wemßen, J.: Objektorientierte Programmierung mit
Delphi. Ein Unterrichtswerk. Band 1: Mit Delphi-Klassen arbeiten. Klett 2002.

Daniels und Eckstein 2000: Daniels, J.; Eckstein, J.: Object Principles: Back to Basics. Be-
richt des Educators' Symposium auf der OOPSLA 2000.
(http://oopsla.acm.org/oopsla2k/postconf/BACK2BASICSREPORT.pdf, 3.10.2003)

Decker und Hirshfield 1993: Decker, R.; Hirshfield, S.: Top-down teaching: object-oriented
programming in CS 1. In: ACM SIGCSE Bulletin 25 (1993) Nr. 1. S. 270-273.

Decker und Hirshfield 1994: Decker, R.; Hirshfield, S.: The top 10 reasons why object-orient-
ed programming can't be taught in CS 1. In: ACM SIGCSE Bulletin 26 (1994) Nr. 1.

Deiters, Wolfgang: Prozeßmodelle als Grundlage für ein systematisches Management von
Geschäftsprozessen. In: Informatik Forschung und Entwicklung 12 (1997). S. 52-60.
(http://link.springer.de/link/service/journals/00450/papers/7012002/70120052.pdf,
9.10.2003)

Deutsches PISA-Konsortium 2001: Baumert, J.; u.a.: PISA 2000. Basiskompetenzen von
Schülerinnen und Schülern im internationalen Vergleich. Leske u. Budrich 2001.

Diethelm, Geiger und Zündorf 2002: Diethelm, I.; Geiger, L.; Zündorf, A.: UML im Unter-

195

Literatur

richt: Systematische objektorientierte Problemlösung mit Hilfe von Szenarien am Bei-
spiel der Türme von Hanoi. In: Schubert, Magenheim, Hubwieser und Brinda 2002.
S.33-42.

Driver 1989: Driver, R.: Changing conceptions. In: Ardey, P. (Hrsg.): Adolescent develop-
ment and school science. Falmer Press 1989. S. 79-103.

Duit 1996: Duit, R.: Lernen als Konzeptwechsel im naturwissenschaftlichen Unterricht. In:
Duit, R.; Rhöneck von, C.: Lernen in den Naturwissenschaften. Beiträge zu einem
Workshop an der Pädagogischen Hochschule Ludwigsburg. IPN 1996.

Duit 2000: Duit, R.: Konzeptwechsel und Lernen in den Naturwissenschaften in einem mehr-
perspektivischen Ansatz. In: Duit, R.; Rhöneck von, C.: Ergebnisse fachdidaktischer
und lernpsychologischer Lehr-Lern-Forschung. Beiträge zu einem Workshop an der Pä-
dagogischen Hochschule Ludwigsburg. IPN 2000.

Eberle, Franz: Didaktik der Informatik bzw. einer informations- und kommunikationstechno-
logischen Bildung auf der Sekundarstufe II. Verlag für Berufspädagogik Sauerländer
1996.

Engbring (in Vorbereitung): Engbring, D.: Informatik im Herstellungs- und Nutzungskontext.
Ein technikbezogener Zugang zur fachübergreifenden Lehre.

Fischer, Niere und Torunski 1998: Fischer, T; Niere, J.; Torunski, L.: Konzeption und Reali-
sierung einer integrierten Entwicklungsumgebung für UML, Java und Story-Driven-
Modeling. Diplomarbeit, Universität Paderborn 1998.

Foegen 1996: Foegen, M.: Entwurf eines didaktischen Konzepts der Informatik. Diplomar-
beit, TH Darmstadt 1996.

Forneck 1992: Forneck, H. J.: Bildung im informatonstechnischen Zeitalter. Verlag Sauerlän-
der 1992.

Freudenreich und Reinhold 1999: Freudenreich, M., Reinhold, P.: Lernprozessuntersuchun-
gen im computerunterstützten Unterricht. In: R. Brechel (Hrsg.): Zur Didaktik der
Physik und Chemie: Probleme und Perspektiven. Vorträge auf der Tagung für Didaktik
der Physik/ Chemie in Dortmund, September 1999. Leuchtturm-Verlag 2002.

Freudenreich und Schulte 2002: Freudenreich, M.; Schulte, C.: Von der Evaluation von Lern-
software zur Gestaltung von Unterricht. In: Medienpädagogik 1 (2002).
(www.medienpaed.com/02-1/freudenreich_schulte1.pdf, 9.10.2003)

Friedrich 2001: Friedrich, H.: Schülerinnen- und Schülervorstellungen vom Grenzwertbegriff
beim Ableiten. Dissertation, Universität Paderborn 2001.

Friedrich 2003: Friedrich, S.: Informatik und PISA – vom Wehe und Wohl der Schulinforma-
tik. In: Hubwieser, P. (Hrsg.): Informatische Fachkonzepte im Unterricht, INFOS 2003.
Gesellschaft für Informatik 2003. S. 133-144.

Funken, Hammerich und Schinzel 1996: Funken, C., Hammerich, K., Schinzel, B.: Ge-
schlecht, Informatik und Schule. Oder: Wie Ungleichheit der Geschlechter durch
Koedukation neu organisiert wird. Sankt Augustin 1996.

Gesellschaft für Informatik 2000: Gesellschaft für Informatik: Empfehlung der Gesellschaft
für Informatik e.V. für ein Gesamtkonzept zur informatischen Bildung an allgemein bil-
denden Schulen. In: Informatik Spektrum. 23 (2000) Nr. 6. S. 378–382.

Gruber, Mandl und Renkl 2000: Gruber, H.; Mandl, H.; Renkl, A.: Was lernen wir in Schule
und Hochschule: Träges Wissen? In: Mandl, H.; Gerstenmaier, J.: Die Kluft zwischen
Wissen und Handeln. Empirische und theoretische Lösungsansätzte. Hogrefe 2000. S.
139-156.

196

Literatur

Hadjerrouit 1997: Hadjerrouit, S.: Teaching Java as First Programming Language: A Critical
Evaluation. Proceedings of NIK '97 (Norwegian Computer Science Conference). Tapir
Forlag 1997. S. 149-160.

Hampel, Magenheim und Schulte 1999: Hampel, T., Magenheim, J., Schulte, C.: Dekonstruk-
tion von Informatiksystemen als Unterrichtsmethode. In: Schwill, A. (Hrsg.):
Informatik und Schule. Springer 1999. S.149-164.

Häusler, Bünder und Duit 1998: Häusler, P.; Bünder, W.; Duit, R.: Naturwissenschaftdidakti-
sche Forschung. Perspektiven für die Unterrichtspraxis. IPN 1998.

Hermes 1996: Hermes, A.: OOP im Unterricht. Ein Plädoyer für einen gleitenden Paradig-
menwechsel. In: Log In 16 (1996) Nr. 4. S. 29-33.

Hermes und Leipholz-Schumacher 1999: Hermes, A.; Leipholz-Schumacher, B.: Java. Hg. v.
R. Baumann, R. Hermes u. R. Reimer. Klett 1999 (= Arbeitshefte Informatik).

Hermes und Stein 1996: Hermes, A.; Stein, C.: Objektorientierte Programmierung. Ein Zu-
gang in Oberon mit Anwendungen von Listen und Grafik. Hg. v. R. Baumann, R.
Hermes u. R. Reimer. Klett 1996 (=Arbeitshefte Informatik).

Holland, Griffiths und Woodmann 1997: Holland, S.; Griffiths, R.; Woodmann, M.: Avoiding
Object Misconceptions. ACM SIGCSE Bulletin 29 (1997) Nr. 1. S. 131-134.

Holmboe, McIver und George 2001: Holmboe, C.; McIver, L.; George, C.: Research Agenda
for Computer Science Education. In: 13th Workshop of the Psychology of Programming
Interest Group. Bournemouth UK 2001. (www.ppig.org)

Hubwieser 1997: Hubwieser, P.; Broy, M.: Ein neuer Ansatz für den Informatikunterricht am
Gymnasium. In: Log In 17 (1997) Nr.3 / 4. S. 42-47.

Hubwieser 1999: Hubwieser, P.: Modellieren in der Schulinformatik. In: Log In 19 (1999)
Nr.1. S. 24-29.

Hubwieser 2000: Hubwieser, P.: Informatik am Gymnasium. Ein Gesamtkonzept für einen
zeitgemäßen Informatikunterricht. Habilitationsschrift, Technische Universität Mün-
chen 2000.

Hubwieser 2001: Hubwieser, Peter: Didaktik der Informatik. Grundlagen, Konzepte, Beispie-
le. 2. korr. Auflage. Springer 2001.

Humbert, Magenheim und Schubert 2000: Humbert, L.; Magenheim, J.; Schubert, S.: Projekt
MUE: Multimediale Evaluation in der Informatiklehrerausbildung. Beitrag zum Work-
shop zur Lehrerausbildung. GI-Jahrestagung 2000. (http://didaktik.cs.uni-
potsdam.de/HyFISCH/WorkshopLehrerbildung2000/Papers/Schubert.pdf.zip
9.10.2003)

Jacobson 1992: Jacobson, I.; Christerson, M.; Jonsson, P.; Övergaard, G.: Object Oriented
Software Engineering. A Use Case Driven Approach. Addison-Wesley 1992.

Jacobson, Booch und Rumbaugh 1999: Jacobson, I.; Booch, G.; Rumbaugh, J.: The Unified
Software Development Process. Addison-Wesley 1999.

Jochum 1998: Jochum, H.: Objektorientierung zur Analyse, zum Design und zur Programmie-
rung am Beispiel eines Strategiespiels mit einem Schwerpunkt in arbeitsteiliger
Gruppenarbeit. Schriftliche Hausarbeit vorgelegt im Rahmen der Zweiten Staatsprü-
fung für das Lehramt für die Sekundarstufe I/II in Informatik.
(http://bscw.hagen.de/pub/german.cgi/0/204200, 01.05.2003)

Johlen 2002: Johlen, D.: Methodik der OOSE für Fachinformatiker nach dem Lernfeldansatz
unter Einbeziehung der Lehrerfortbildung. In: Schubert, Magenheim, Hubwieser und
Brinda 2002. S.55-64.

197

Literatur

Klafki 1996: Klafki, Wolfgang: Grundzüge eines neuen Allgemeinbildungskonzepts. Im Zen-
trum: Epochaltypische Schlüsselprobleme. S. 43–81. In: Klafki, Wolfgang: Neue
Studien zur Bildungstheorie und Didaktik. Beltz. 5. Auflage 1996 (1. Auflage 1985).

Klieme, Artelt und Stanet 2001: Klieme, E.; Artelt, C.; Stanet, P.: Fächerübergreifende Kom-
petenzen: Konzepte und Indikatoren. In: Weinert, F. E. (Hrsg.): Leistungsmessungen in
Schulen. Beltz 2001. S. 203-218.

Klieme, Neubrand und Lüdtke 2001: Klieme, E.; Neubrand, M.; Lüdtke, O.: Mathematische
Grundbildung: Testkonzeption und Ergebnisse. In: Deutsches PISA-Konsortium 2001.
S. 141-191.

Köller, Baumert und Neubrand 2000: Köller, O.; Baumert, J.; Neubrand, J.: Epistemologi-
sche Überzeugungen und Fachverständnis im Mathematik- und Physikunterricht. In:
Baumert, Bos und Lehmann 2000. S. 229-270.

Kölling und Rosenberg 2001: Kölling, M.; Rosenberg, J.: Guidelines for Teaching Object
Orientation with Java. In: ItiCSE 2001. Canterburry 2001. S. 33-36.

König 1993: König, G.: Informatikunterricht aus der Sicht der Hochschule. Ergebnisse einer
Umfrage. In: Zentralblatt für Didaktik der Mathematik 25 (1993) Nr. 1. S. 1-8.

König und Volmer 1999: König, E.; Volmer, G.: Systemische Organisationsberatung. Grund-
lagen und Methoden. 6. Auflage. Deutscher Studienverlag 1999.

König und Zedler 1983: König, E; Zedler, P.: Einführung in die Wissenschaftstheorie der Er-
ziehungswissenschaft. Schwann 1983.

Kozma 1994: Kozma, R. B.: Will media influence learning? Reframing the debate. In: Educa-
tion technology research and development 42 (1994) Nr. 2. S. 7-19.

Krohn 2000: Krohn, Friedrich W.: Grundwissen Didaktik. 3. akt. Aufl. Ernst Reinhard Verlag
2000.

Kutar, Britton und Barker 2002: Kutar, M.; Britton, C.; Barker, T.: A Comparison of Empiri-
cal Study and Cognitive Dimension Analysis in the Evaluation of UML Diagramms. In:
14th Workshop of the Psychology of Programming Interest Group. PPIG 2002.

Labudde 2000: Labudde, P.: Konstruktivismus im Physikunterricht der Sekundarstufe II.
Haupt 2000.

Lehmann u.a. (1995): Lehmann, E.; Hecker, I.; Heining, V.; Janetzke, P.: Am Anfang war das
dokumentierte System. In: Log In 15 (1995) Nr.1. S. 38-50.

Lehrplan NRW 1999: Ministerium für Schule, Wissenschaft und Forschung (Hrsg.): Richtli-
nien und Lehrpläne für die Sekundarstufe II – Gymnasien/Gesamtschule in Nordrhein-
Westfalen. Informatik. Ritterbach Verlag 1999.

Lessig 1999: Lessig, L.: Code and other laws of cyberspace. Basic Books 1999.
Lewis 2000: Lewis, T.: Myths about Object-Orientation and its Pedagogy. In: ACM SIGCSE

Bulletin 32 (2000) Nr. 1. S. 245-249.
Magenheim 2000: Magenheim, J.: Informatiksystem und Dekonstruktion als didaktische Ka-

tegorien. Theoretische Aspekte und unterrichtspraktische Implikationen einer
systemorientierten Didaktik der Informatik. Beitrag zur IAB 2000. (http://ddi.upb.de/di-
daktik/Veroeffentlichungen/sytemorientierter_ansatz.pdf, 9.10.2003)

Magenheim 2001: Magenheim, J.: Deconstruction of Socio-technical Information Systems
with Virtual Exploration Environments as a Method of Teaching Informatics. Edmedia
2001.

Magenheim 2003: Magenheim, J: Wissensmanagement, Dekonstruktion und ‚Learning Com-

198

Literatur

munities’ in der Softwaretechnik – Didaktische Konzepte im BMBF-Projekt MuSofT.
In: Rinn, U.; Wedekind, J. (Hrsg.): Didaktik der neuen Medien. Waxmann 2003. S.
255-269.

Magenheim und Schubert 2000: Magenheim, J.; Schubert, S.: Evaluation of Teacher Educati-
on in Informatics. In: Benzie, D.; Passey, D. (Hrsg.): Proceedings of Conference on
Educational Uses of Information and Communication Technologies, 16th World Com-
puter Congress 2000. S. 181-184.

Mandl, Gruber und Renkl 1997: Mandl, H.; Gruber, H.; Renkl, A.: Situiertes Lernen in multi-
medialen Lernumgebungen. In: Issing, L. J.; Klimsa, P.: Information und Lernen mit
Multimedia. 2. Aufl. Beltz 1997. S. 167-178.

Meyer 1990: Meyer, B.: Objektorientierte Softwaerentwicklung. Hanser Verlag 1990 (Origi-
nalausgabe 1988).

Meyer 1994: Meyer, H.: Unterrichtsmethoden. I: Theorieband. 6. Aufl. Cornelsen Verlag
Scriptor 1994.

Mietzel 2001: Mietzel, G.: Pädagogische Psychologie des Lernens und Lehrens. 6. korr. Auf-
lage. Hogrefe 2001.

Modrow 1991: Modrow, E.: Zur Didaktik des Informatik-Unterrichts. Band 1: Ziele und In-
halte – Anfangsunterricht – Beispiele und Anwendungen. Dümmler Verlag 1991.

Modrow 2000: Modrow, E.: Informatik mit Delphi. Band 2. Zeiger, Objekte, SQL-Datenban-
ken, Simulationen. Dümmler Verlag 2000.

Modrow 2002: Modrow, E.: Pragmatischer Konstruktivismus und fundamentale Ideen als
Leitlinien der Curriculumsentwicklung. Am Beispiel der theoretischen und technischen
Informatik. Dissertation, Martin-Luther-Universität Halle-Wittenberg 2002.

Moll 2002: Moll, S.: Objektorientierte Modellierung unter Einsatz eines CASE-Tools im In-
formatikunterricht der Jahrgangsstufe 11. In: Schubert, Magenheim, Hubwieser und
Brinda 2002. S. 43-52.

Möller 1999: Möller, Dirk: Förderung vernetzten Denkens im Unterricht. Grundlagen und
Umsetzung am Beispiel der Leittextmethode. Lit Verlag 1999.

Naumann, Richter und Groeben 2001: Naumann, J.; Richter, T.; Groeben, N.: Validierung des
Inventars zur Computerbildung (INCOBI) anhand eines Vergleichs von Anwendungs-
experten und Anwendungsnovizen. In: Zeitschrift für Pädagogische Psychologie 15
(2001). S. 219-232.

Noack und Schienmann 1999: Noack, J.; Schienmann, B.: Objektorientierte Vorgehensmodel-
le im Vergleich. Informatik-Spektrum 22 (1999). S. 166–180.

Oesterreich 1999: Oesterreich, B.: Objektorientierte Softwareentwicklung. Analyse und De-
sign mit der Unified Modeling Language. Oldenbourg 1999.

Penon und Spolwig 1998: Penon, J.; Spolwig, S.: Schöne visuelle Welt? Objektorientierte
Programmierung mit DELPHI und JAVA. In: Log In 18 (1998) Nr. 5. S. 40-46.

Peterßen 1999: Peterßen, W. H.: Kleines Methoden-Lexikon. Oldenbourg 1999.
Prechelt 2001: Prechelt, L.: Kontrollierte Experimente in der Softwaretechnik. Potenzial und

Methodik. Springer 2001.
Prenzel u.a. 2001: Prenzel, M.; u.a.: Naturwissenschaftliche Grundbildung: Testkonzeption

und Ergebnisse. In: Deutsches PISA-Konsortium 2001. S. 191-250.

199

Literatur

Puhlmann 2003: Puhlmann, H.: Informatische Literalität nach dem PISA-Muster. In: Hubwie-
ser, P. (Hrsg.): Informatische Fachkonzepte im Unterricht, INFOS 2003. Gesellschaft
für Informatik 2003. S. 145-154.

Quibeldey-Cirkel 1994: Quibeldey-Cirkel, Klaus: Das Objekt-Paradigma in der Informatik.
Teubner 1994.

Quibeldey-Cirkel 1999: Quibeldey-Cirkel, Klaus: Entwurfsmuster: Design Patterns in der ob-
jektorientierten Softwaretechnik. Springer 1999.

Reinsch 2003: Reinsch, T.: Darstellung und Analyse eines objektorientierten Einstiegs im An-
fangsunterricht der Sekundarstufe I mit Hilfe von UML und Fujaba. Schriftliche
Hausarbeit vorgelegt im Rahmen der Zweiten Staatsprüfung für das Lehramt für die Se-
kundarstufe I/II in Informatik. Studienseminar Bonn 2003.

Richter, Naumann und Groeben 2001: Richter, T.; Naumann, J.; Groeben, N.: Das Inventar
zur Computerbildung (INCOBI): Ein Instrument zur Erfassung von Computer Literacy
und computerbezogenen Einstellungen bei Studierenden der Geistes- und Sozialwissen-
schaften. In: Psychologie in Erziehung und Unterricht 48 (2001). S.1-13.

Richter, Naumann und Hortz 2001: Richter, T.; Naumann, J.; Hortz, H.: Computer Literacy,
computerbezogene Einstellungen und Computernutzung bei männlichen und weibli-
chen Studierenden. In: Oberquelle, H.; Oppermann, R.; Krause, J. (Hrsg.): Mensch und
Computer 2001. Erste Fachübergreifende Konferenz. Teubner 2001. S. 71-80.

Riedel, Dieter 1981: Ansätze einer Didaktik des Informatikunterricht. In: Arlt 1981. S.36-41.
Ropohl 1991: Ropohl, G.: Technologische Aufklärung. Beiträge zur Technikphilosophie. 2.

Aufl. Suhrkamp 1999 (Erstauflage 1991).
Scanlan 1988: Scanlan, D.: Should short, relatively complex algorithms be taught using both

graphical and verbal methods? Six replications. In: ACM SIGCSE Bulletin 20 (1988)
Nr. 1. S. 185-189.

Schnotz 2001: Schnotz, W.: Wissenserwerb mit Multimedia. In: Zeitschrift für Unterrichts-
wissenschaft 29 (2001). S. 293-318.

Schubert 1991: Schubert, S.: Fachdidaktische Fragen der Schulinformatik und (un)mögliche
Antworten. In: Gorny, P. (Hrsg.): Informatik und Schule. Springer 1991. S.27-33.

Schubert 1995: Schubert, S.: Innovative Konzepte für die Ausbildung. 6. GI-Fachtagung In-
formatik und Schule INFOS '95. Springer 1995.

Schubert, Magenheim, Hubwieser und Brinda 2002: Schubert, S.; Hubwieser, P.; Magenheim,
J.; Brinda, T.: Forschungsbeiträge zur 'Didaktik der Informatik' – Theorie, Praxis, Eva-
luation. 1. GI-Workshop DDI '02 (Schwerpunkt: Modellierung in der informatischen
Bildung). Gesellschaft für Informatik 2002.

Schulte 2001: Schulte, C.: Vom Modellieren zum Gestalten – Objektorientierung als Impuls
für einen neuen Informatikunterricht. In: Informatica didactica 3 (2001).
(http://ddi.cs.uni-potsdam.de/InformaticaDidactica/Issue3, 9.10.2003)

Schulte 2002: Schulte, C.: Theoriegeleitete Entwicklung und Evaluation von Neuen Medien
für die Lehre. In: Schubert, S.; Reusch, B.; Jesse, N.: Informatik bewegt. Informatik
2002. 32. Jahrestagung der Gesellschaft für Informatik. GI Lecture Notes 2002. S.
408-415.

Schulte u.a. 2003 (in Druck): Schulte, C; Magenheim, J.; Niere, J; Schäfer, W.: Thinking in
Objects and their Collaboration: Introducing Object-Oriented Technology. In: Compu-
ter Science Education 13 (2003).

Schulte und Block 2002: Schulte, C.; Block, U.: Das Sieben-Schritte-Schema zur Dekonstruk-

200

Literatur

tion objektorientierter Software. In: Schubert, S.; Magenheim, J.; Hubwieser, P.; Brin-
da, T.: Forschungsbeiträge zur „Didaktik der Informatik“ - Theorie, Praxis, Evaluation.
GI Lecture Notes 2002. S. 3-12.

Schulte und Niere 2002: Schulte, C.; Niere, J.: 'Thinking in Object Structures: Teaching Mo-
delling in Secondary Schools'. In: Proceedings of the ECOOP Workshop on Pedagogies
and Tools for Learning Object-Oriented Concepts 2002.

Schwill 1993: Schwill, A.: Objektorientierte Programmierung. Eine Rechtfertigung aus ko-
gnitionspsychologischer Sicht. In: Log In 13 (1993) Nr. 4. S. 44-45.

Schwill 1995: Schwill, A.: Programierstile im Anfangsunterricht. In: Schubert 1995. S.
178-187.

Seel 2000: Seel, N. M.: Psychologie des Lernens. Lehrbuch für Pädagogen und Psychologen.
UTB 2000.

Seidel, Rimmele und Prenzel 2003: Seidel, T; Rimmele, R.; Prenzel, M.: Gelegenheitsstruktu-
ren beim Klassengespräch und ihre Bedeutung für die Lernmotivation. In:
Unterrichtswissenschaft (2) 2003. S. 143-165.

Senkbeil und v. Davier 2001: Senkbeil, M.; von Davier, M.: Identifizierung verschiedener Ty-
pen der Computernutzung und ihre Bedeutung hinsichtlich der kompetenten Nutzung
von Medien. Ergebnisse einer Längsschnittstudie. Manuskript, Institut für Pädagogik
der Naturwissenschaften (IPN) Kiel 2000.

Shneidermann u.a. 1977: Shneiderman, B.; Mayer, R.; McKay, D.; Heller, P.: Experimental
investigations of the utility of detailed flowcharts in programming. In: Communications
of the ACM 20 (1977) Nr. 6. S. 373-381.

Spolweg 1995: Spolweg, S.: Objektbasierte Programmierung im Anfangsunterricht. In: Log
In 15 (1995) Nr. 3. S. 43-49.

Spolweg 1997: Spolweg, S.: Objektorientierung im Informatikunterricht. Objektbasierte Ana-
lyse – Objektorientiertes Design bei Softwareprojekten – Objektbasierte Entwürfe im
Anfangsunterricht. Dümmler-Verlag 1997.

Spolweg 1999: Spolweg, S.: 'Hello World' in OOP. In: Log In 19 (1999) Nr.5. S.38-42.
Spolweg 2000: Spolweg, S.: Modellieren und Programmieren. In: Log In 20 (2000) Nr.2.

S.53-59.
Terhardt 1997: Terhart, E.: Lehr-Lern-Methoden. Eine Einführung in Probleme der methodi-

schen Organisation von Lehren und Lernen. Juventa 1997.
Tholander u.a. 1999: Tholander, J.; Rutz, F.; Karlgren, K.; Ramberg, R.: Design and Evaluati-

on of an Apprenticeship Setting for Learning Object-Oriented Modeling. In: G.
Cumming, G.; Okamoto, T.; Gomez, L.: Proceedings of the International Conference on
Computers in Education. IOS Press 1999.

Thomas 2002: Thomas, M.: Modelle in der Fachsprache der Informatik. In: Schubert, Magen-
heim, Hubwieser und Brinda 2002. S. 99-109.

Tulodziecki 1982: Tulodziecki, G.: Zur Bedeutung von Erhebung, Experiment und Evaluation
für die Unterrichtswissenschaft. In: Unterrichtswissenschaft 4 (1982). S. 364-377.

Tulodziecki und Herzig 1998: Tulodziecki, G.; Herzig, B.: Praxis- und theorieorientierte Ent-
wicklung und Evaluation von Konzepten für pädagogisches Handeln. Internes
Arbeitsgruppenpapier der AG Allgemeine Didaktik und Medienpädagogik, Universität
Paderborn 1998.

Wegener 1997: Wegener, P.: Why Interaction is More Powerful than Algorithms. In: CACM
40, 1997, Nr. 5, S. 80-91.

201

Literatur

Wilkens 2000: Wilkens, U.: Das allmähliche Verschwinden der informationstechnischen
Grundbildung. Zum Verhältnis von Informatik und Allgemeinbildung. Shaker-Verlag
2000. Dissertation, Universität Bremen 2000.

Zöfel 2001: Zöfel, P.: Statistik verstehen. Ein Begleitbuch zur computergestützten Anwen-
dung. Addison-Wesley 2001.

Zündorf 2002: Zündorf, A.: Rigorous Object Oriented Software Development. Draft. Version
0.3. (5.3.2002). Manuskript, Universität Paderborn 2002.

202

Anhänge

13 Anhänge
Verzeichnis der Anhänge
13 Anhänge...203

13.1 Vortest..204
13.1.1 Interviewleitfaden ..204
13.1.2 Vortest: INCOBI...205

 FIDEC..205
 SUCA...210
 VECA...211
 PRACOWI...211
 Fragen zur Person ...213

13.2 Zwischenbefragung...215
13.2.1 Interviewleitfaden...215
13.2.2 Fragebogen FEOK1..215
13.2.3 Auswertungsschema FEOK1..218

13.3 Abschlussbefragung ..220
13.3.1 Fragebogen FEOK2..220
13.3.2 Auswertungsschema FEOK2..224

13.4 Unterrichtsprotokolle ..227
13.4.1 Schule A...227
13.4.2 Schule B..236

13.5 Kurzfassung der Arbeit..246

203

Anhang: Vortest Interviewleitfaden

13.1 Vortest

13.1.1 Interviewleitfaden
Der Leitfaden für das Interview im Vortest

Interviewvorbereitung:
Ich bin Mitarbeiter in dem life³-Projekt, an dem Sie teilnehmen und zu dem Sie bereits den Fragebogen ausge-
füllt haben. Ich möchte Ihnen einige Fragen stellen, die den Fragebogen ergänzen sollen. Dazu möchte ich erst
ein paar Fragen im Vorhinein klären. Das Interview soll über den Laptop aufgenommen werden, ist dir das
recht? Hast du noch irgendwelche Fragen bezüglich des Interviews?
Einstiegsfrage: Zur Kontaktaufnahme, zum Warmreden, Einstieg in das Gespräch
Gab es bei der Bearbeitung des Fragebogens irgendwelche Probleme?
(Ggf. Vertiefung: Wenn ja, wo? Hast du die Fragen trotzdem beantwortet? Wie?)
Erster Themenkreis: Motivation und Interesse:
Warum hast du das Fach Informatik gewählt?
(Ggf. Vertiefung: Wie stellst du dir den Informatikunterricht in der nächsten Zeit vor?)
Zweiter Themenkreis: Programmierkenntnisse – Vorkenntnisse in der Objektorientierung
Hast du schon einmal programmiert?
(Ggf. Vertiefung: Wann, wo, was wurde dort gemacht? Welche Sprachen und Werkzeuge hast du dafür be-
nutzt?
Falls Objektorientierung bekannt, welche Konzepte wurden genutzt?
Hast du schon einmal etwas in deiner Freizeit programmiert? Was genau hast du programmiert? Beschreibe ein
Programm, das du geschrieben hast.
Wie gehst du beim Programmieren vor? Wie planst du die Programmierung? Machst du Skizzen? (Planung
und/oder beim Programmieren) oder grafische Pläne? Wie sehen diese aus? Benutzt du eine formale Notation?
Dritter Themenkreis: Umgang mit Fehlern, Frustrationstoleranz, praktische Erfahrungen
Was machst du, wenn etwas nicht funktioniert? (...beim Programmieren / beim Benutzen von Programmen – je
nach Programmierkenntnissen)?
(Ggf. Vertiefung: Hast du bestimmte Tricks oder Vorgehensweisen Probleme zu lösen? Was machst du, wenn
bestimmte Programmteile nicht funktionieren?
Programmierst du mit anderen zusammen? Wie geht ihr dabei vor? Wie sprecht ihr euch ab?
Hast du schon einmal für eine Firma programmiert?)
Vierter Themenkreis: Vorstellungen über Softwareentwicklung
Mit welcher Textverarbeitung/ welchem Brennerprogramm/ welchem Browser hast du schon einmal gearbeitet?
Wie stellst du dir die Entwicklung dieses ... vor?
Wie stellst du dir den Vorgang vor, wenn ein Kunde ein spezielles Programm in Auftrag gibt?
(Ggf. Vertiefung: Welche verschiedenen Phasen kannst du dir dabei vorstellen?
Welche verschiedenen Aufgaben gibt es für die Mitarbeiter?)
Gesprächsabschluss, Möglichkeit für individuelle Besonderheiten, Anmerkungen der Schülerin, des Schülers
Gibt es noch weitere Dinge, die du hinzufügen möchtest?
(Ggf. Vertiefung)

Tabelle 97 Der Interviewleitfaden für das Einzelinterview im Rahmen der Voruntersuchung

204

Anhang: Vortest: leicht adaptierte Version des INCOBI von Naumann, Richter und Groeben,
Universität Köln. Vor Verwendung bitte die Rechte bei den Autoren erfragen.

13.1.2 Vortest: INCOBI

 FIDEC

Fragebogen zur inhaltlich differenzierten Erfassung von
computerbezogenen Einstellungen (FIDEC)
Dieser Fragebogen dient der Erfassung von computerbezogenen Einstellungen (oder Bewertungen), wobei wir
davon ausgehen, dass die Bewertung des Computers durch eine Person unterschiedlich ausfallen kann, je nach-
dem, auf welchen Aspekt des Computers sich die Bewertung bezieht. Der Fragebogen soll Ihnen also die
Möglichkeit geben, in inhaltlich differenzierter Weise zu dem Einstellungsobjekt "Computer" Stellung zu neh-
men.

Auf den folgenden acht Seiten sind insgesamt 51 wertende Aussagen über den Computer aufgeführt. Die Aussa-
gen sind zu acht Themenbereichen (I - VIII) zusammengefasst, die einleitend jeweils kurz charakterisiert
werden.

Wir möchten Sie bitten, jeweils anzugeben, in welchem Ausmaß Sie den Aussagen zustimmen. Wenn Sie den-
ken, zu einer Aussage oder zu allen zehn Aussagen eines Themenbereichs nicht sinnvoll Stellung nehmen zu
können, haben Sie die Möglichkeit, die Aussage nicht zu beurteilen bzw. die thematische Gruppe als ganze "ab-
zuwählen".

Hier ein Beispiel:

stimme zu stimme
eher zu

neutral stimme
eher nicht

zu

stimme
nicht zu

für mich nicht
relevant o.
beurteilbar

Die Verbreitung von Computern im Büro
bringt hauptsächlich mehr Stress hervor.

Wenn Sie der Aussage zustimmen, dass die Verbreitung von Computern in Büro hauptsächlich mehr Stress her-
vorbringt, kreuzen Sie das Feld bei "stimme zu" an, wenn Sie der Aussage tendenziell zustimmen, kreuzen Sie
das Feld bei "stimme eher zu an", wenn Sie die Aussage weder zustimmend noch ablehnend beurteilen, kreu-
zen Sie das Feld bei "neutral" an usw. Sollten Sie der Meinung sein, die Aussage auch mit etwas Nachdenken
nicht sinnvoll beurteilen zu können, etwa weil darin ein Aspekt angesprochen wird, der für Ihre eigene Einschät-
zung des Computers überhaupt nicht relevant ist oder weil Sie keine Erfahrungsgrundlage für eine Bewertung
haben, kreuzen Sie das Feld in der Spalte "für mich nicht relevant oder beurteilbar" an.

Nur dann, wenn Sie keine der Aussagen eines Themenbereichs bearbeiten wollen oder können, etwa weil Sie
sich mit der angesprochenen Thematik noch nie beschäftigt haben, markieren Sie das Feld "nein" bei dem Item
"Ich möchte zu den Aussagen dieses Themenbereichs Stellung ziehen", das den Aussagen eines Themenbereichs
jeweils vorangestellt ist. Bedenken Sie dabei, dass es Ihnen auch freisteht, zu einzelnen Aussagen nicht Stellung
zu beziehen.

Es gibt hier keine 'richtigen' oder 'falschen' Antworten. Versuchen Sie, spontan zu antworten, jedoch nicht, ohne
die jeweilige Aussage gründlich gelesen zu haben. Bitte bearbeiten Sie alle Aussagen ('Abwählen' ist auch eine
Bearbeitung).

205

Anhang: Vortest: leicht adaptierte Version des INCOBI von Naumann, Richter und Groeben,
Universität Köln. Vor Verwendung bitte die Rechte bei den Autoren erfragen.

I. Die folgenden sieben Aussagen beziehen sich auf Ihre persönlichen Erfahrungen, die
Sie beim Lernen oder Arbeiten mit dem Computer gemacht haben, und thematisieren
dabei die Funktion des Computers als nützliches Werkzeug.

Bitte entscheiden Sie zunächst, ob Sie zu den Aussagen dieses Themenbereichs Stellung
beziehen wollen oder können.

Ich möchte zu den Aussagen dieses Themenbereichs Stellung beziehen.

ja nein

stimme
zu

stimme
eher zu

neutral stimme
eher

nicht zu

stimme
nicht zu

für mich
nicht

relevant o.
beurteilbar

1. Für mich ist der Computer ein
nützliches Arbeitsmittel.

2. Ich finde es praktisch, für die Schule
oder fürs Lernen einen Computer zur
Verfügung zu haben.

3. Ich würde es begrüßen, wenn in der
Schule bei der Wissensvermittlung
der Computer und die Neuen Medien
stärker genutzt werden würden.

4. Viele Arbeiten, wie zum Beispiel das
Verfassen von Texten, gehen mit dem
Computer einfach leichter und
schneller.

5. Es gibt viele Arbeiten, die ich mit dem
Computer leichter und schneller
verrichten kann als ohne.

6. Bei einem großen Teil der lern- oder
schulbezogenen Tätigkeiten, die ich zu
verrichten habe, ist für mich der
Computer ein nützliches Gerät.

7. Ich kann mir das Arbeiten ohne den
Computer kaum noch vorstellen.

Die folgenden Skalen werden ausschnitthaft wiedergegeben:

II. Die folgenden sieben Aussagen beziehen sich auf Ihre persönlichen Erfahrungen, die
Sie beim Lernen oder Arbeiten mit dem Computer gemacht haben, und thematisieren
dabei den Computer als unbeeinflussbare Maschine.

1. Wenn ich am Computer arbeite, habe ich permanent Angst, er könnte "abstürzen".
2. Der Computer macht manchmal Sachen, die ich nicht verstehe und nicht erklären kann.

206

Anhang: Vortest: leicht adaptierte Version des INCOBI von Naumann, Richter und Groeben,
Universität Köln. Vor Verwendung bitte die Rechte bei den Autoren erfragen.

3. Um den Computer als Lernmittel zu verwenden, ist er mir zu unzuverlässig.
4. Die Arbeit am Computer ist oft frustrierend, weil ich diese Maschine nicht verstehe.
5. Wenn mir mein Computer bei der Arbeit Probleme macht, fühle ich mich hilflos.
6. Ich ärgere mich oft darüber, dass der Computer für normale Menschen einfach nicht verstehbar

ist.
7. Wenn ich am Computer arbeite, habe ich manchmal das Gefühl, dass das Ding macht, was es

will.

III. Die folgenden sechs Aussagen beziehen sich auf Ihre persönlichen Erfahrungen, die
Sie mit dem Computer als Unterhaltungs- und Kommunikationsmittel gemacht haben,
und thematisieren dabei die Funktion des Computers als nützliches Werkzeug.

1. Die E-Mail ist ein praktisches Medium, seine Sozialkontakte zu pflegen.
2. Ich kann mir vorstellen, Vergnügen daran zu finden, im Internet zu "surfen".
3. Der Computer bereichert meine Freizeit.
4. Computerspiele und andere CD-ROM-Anwendungen bieten abwechslungsreiche Möglichkeiten

der Freizeitgestaltung.
5. In meinem Leben ist der Computer als Unterhaltungsmedium wichtig.
6. Es ist wichtig für mich, mich mit FreundInnen und Bekannten per Computer austauschen zu

können.

IV. Die folgenden sechs Aussagen beziehen sich auf Ihre persönlichen Erfahrungen, die
Sie mit dem Computer als Unterhaltungs- und Kommunikationsmittel gemacht haben,
und thematisieren dabei den Computer als unbeeinflussbare Maschine.

1. Für mich ist der Unterhaltungswert des Computers generell gering, weil man dabei viel zu viel
technischen Ärger hat.

2. Mit den so genannten "neuen" Kommunikationstechnologien werde ich wahrscheinlich nie
umgehen können.

3. Ich glaube, dass das Internet wirr und undurchschaubar ist.
4. In meiner Freizeit bin ich froh, mich nicht mit dem Computer herumärgern zu müssen.
5. Mit computergestützter Kommunikation konnte ich noch nie viel anfangen.
6. Auf mich wirkt die Kommunikation über elektronische Medien kalt und unpersönlich.

V. Die folgenden sieben Aussagen beziehen sich auf positive gesellschaftliche und
kulturelle Auswirkungen, die nach Ansicht mancher Leute mit einer Nutzbarmachung
der Computertechnologie in der Arbeitswelt und im Bildungsbereich verknüpft sind.

1. Computergestützte Lernprogramme sind in vielen Fällen dem klassischen Schulunterricht
überlegen, weil sie ein Lernen ermöglichen, das auf die individuellen Bedürfnisse der Schüler-
Innen abgestimmt ist.

2. Viele Steuerungsprozesse in der Industrie werden dadurch zuverlässiger, dass der Computer den
fehleranfälligen "Faktor Mensch" ersetzt.

3. Die staatliche Unterstützung der Computertechnologie in der Arbeitswelt und im
Bildungsbereich ist für den gesellschaftlichen Fortschritt sehr wichtig.

4. Lernen mit dem Computer ermöglicht in hohem Maße selbstbestimmtes und entdeckendes
Lernen.

207

Anhang: Vortest: leicht adaptierte Version des INCOBI von Naumann, Richter und Groeben,
Universität Köln. Vor Verwendung bitte die Rechte bei den Autoren erfragen.

5. Durch computerbasierte Lernprogramme können SchülerInnen besser zum Lernen motiviert
werden.

6. Für die wirtschaftliche Entwicklung ist es sehr wichtig, dass die Computertechnologie gefördert
wird.

7. Für die Vermittlung mancher Lerninhalte kann der Computer sehr nützlich sein.

VI. Die folgenden sieben Aussagen beziehen sich auf negative gesellschaftliche
Konsequenzen, die nach Ansicht mancher Leute mit der zunehmenden Verbreitung der
Computertechnik in der Arbeitswelt und im Bildungsbereich verknüpft sind.

1. Die zunehmende Verbreitung von Computern in den Büros isoliert die Menschen.
2. Die Computertechnik vernichtet mehr Arbeitsplätze als sie schafft.
3. Ich rechne damit, dass die Computertechnik gravierende negative Folgen für unsere Kultur haben

wird.
4. Durch den Computer ist die Arbeitswelt unmenschlicher geworden.
5. Es ist problematisch, dass der Computer so viele Bereiche der Gesellschaft kontrolliert.
6. Beim Lernen mit dem Computer wird die Kritikfähigkeit der Lernenden zu wenig gefördert.
7. Der Einsatz von Computern im Bildungsbereich und in der Arbeitswelt zerstört

zwischenmenschliche Beziehungen.

VII. Die folgenden fünf Aussagen beziehen sich auf positive gesellschaftliche und
kulturelle Auswirkungen, die nach Ansicht mancher Leute mit einer Nutzbarmachung
des Computers als Unterhaltungs- und Kommunikationstechnologie verknüpft sind.

1. Durch die zunehmende Vernetzung von Computern rund um den Globus wird sich das
Verständnis zwischen Menschen unterschiedlicher Kulturen verbessern.

2. Die neuen Kommunikationsmedien (E-Mail, Internet) begrüße ich, weil sie einen reibungslosen
und schnellen Austausch von Informationen ermöglichen.

3. Weil die Kommunikation per E-Mail schnell und unproblematisch ist, werden die Menschen
mehr miteinander kommunizieren.

4. Die elektronischen Kommunikationsmedien werden die Menschen stärker miteinander in
Kontakt bringen.

5. Das Internet bietet viele für die Gesellschaft nützliche und förderliche
Kommunikationsmöglichkeiten.

VIII. Die folgenden sieben Aussagen beziehen sich auf negative gesellschaftliche und
kulturelle Konsequenzen, die nach Ansicht mancher Leute mit der zunehmenden
Verbreitung des Computers als Unterhaltungs- und Kommunikationsmittel verknüpft
sind.

1. Durch die große Beliebtheit von Computerspielen verblöden die Leute.
2. Computerspiele machen die Menschen einsam, weil sie nicht mehr miteinander, sondern nur

noch mit einer Maschine spielen.
3. Durch die zunehmende Verbreitung von E-Mail werden die Menschen einander eher fremder, als

dass sie sich näherkommen.

208

Anhang: Vortest: leicht adaptierte Version des INCOBI von Naumann, Richter und Groeben,
Universität Köln. Vor Verwendung bitte die Rechte bei den Autoren erfragen.

4. Die Beziehungen zwischen den Menschen werden durch elektronische Kommunikation immer
oberflächlicher.

5. Durch die weite Verbreitung von Computerspielen verliert die junge Generation ihre Fantasie
und Kreativität.

6. Ich sehe es mit Sorge, dass die Verbreitung elektronischer Kommunikationsmedien den Brief und
den persönlichen Kontakt immer mehr in den Hintergrund drängen.

209

Anhang: Vortest: leicht adaptierte Version des INCOBI von Naumann, Richter und Groeben,
Universität Köln. Vor Verwendung bitte die Rechte bei den Autoren erfragen.

 SUCA

Fragebogen zur Sicherheit im Umgang mit Computern und
Computeranwendungen (SUCA)
Bei diesem Fragebogen geht es darum, wie sicher Sie selbst Ihren Umgang mit dem
Computer und verschiedenen Computeranwendungen einschätzen. Auf dieser und der
folgenden Seite sind elf Feststellungen aufgeführt, die sich auf Ihren Umgang mit dem
Computer beziehen. Wir möchten Sie bitten, jeweils anzugeben, in welchem Ausmaß die
Aussagen auf Sie zutreffen.

Hier ein Beispiel:

trifft zu trifft
eher zu

neutral trifft
eher

nicht zu

trifft
nicht zu

keine
Ein-

schätzun
g

Bei der Arbeit am Computer fühle ich mich so sicher
wie beim täglichen Zähneputzen.

Wenn die Aussage auf Sie zutrifft, kreuzen Sie das Feld bei "trifft zu" an, wenn die Aussage
tendenziell auf Sie zutrifft, kreuzen Sie das Feld bei "trifft eher zu an", wenn die Aussage Ihrer
Einschätzung nach auf Sie eher nicht zutrifft, kreuzen Sie das Feld bei "trifft eher nicht zu" an usw.
Wenn Sie keine Einschätzung abgeben können oder wollen, haben Sie die Möglichkeit, das Feld in
der Spalte "keine Einschätzung" zu markieren.

Beachten Sie bitte, dass es hier keine 'richtigen' oder 'falschen' Antworten gibt.
Versuchen Sie, spontan zu antworten, jedoch nicht, ohne die jeweilige Aussage
gründlich gelesen zu haben.
Bitte bearbeiten Sie alle elf Aussagen.

1. Im Umgang mit Computern fühle ich mich sicher.
2. Die Verwendung unbekannter Software-Programme kann ich schnell erlernen.
3. Bei der Arbeit mit dem Computer lasse ich mich durch auftretende

(computerbedingte) Schwierigkeiten leicht frustrieren.
4. Im allgemeinen bereitet mir die Arbeit mit Computern wenig Probleme.
5. Bei Problemen mit einem Computerprogramm würde ich eher das Handbuch als die

Online-Hilfe heranziehen.
6. Bei auftretenden Computerproblemen frage ich meistens andere Leute.
7. Ich schätze mich so ein, dass ich von der Informationssuche im Internet profitieren

kann.
8. Mit der Computer-Maus umzugehen, bereitet mir manchmal Schwierigkeiten.
9. Für Referate würde ich eher mit dem Computer suchen, als in Büchern.
10. Mit den Fehlermeldungen meines Computers kann ich in der Regel etwas anfangen.
11. Das Formatieren eines längeren Textdokuments ist für mich kein Problem.

210

Anhang: Vortest: leicht adaptierte Version des INCOBI von Naumann, Richter und Groeben,
Universität Köln. Vor Verwendung bitte die Rechte bei den Autoren erfragen.

 VECA

Fragebogen zur Vertrautheit mit verschiedenen Computeranwendungen
(VECA)
Bei diesem Fragebogen geht es um Ihre Vertrautheit mit verschiedenen
Computeranwendungen. Sie sollen sich selbst daraufhin einschätzen, wie vertraut Sie im
Umgang mit einzelnen Computeranwendungen sind. Im folgenden sind einige
Computeranwendungen aufgelistet. Wir möchten Sie bitten, jeweils zu beurteilen, ob Sie
meinen, im Umgang mit den jeweiligen Anwendungen im Vergleich zu anderen
Studentinnnen und Studenten "weit überdurchschnittlich", "überdurchschnittlich",
"durchschnittlich", "unterdurchschnittlich" oder "weit unterdurchschnittlich" vertraut zu
sein.

Ich bin vertraut im Umgang mit
1. Computern im allgemeinen
2. Textverarbeitung
3. Multimedia-Anwendungen
4. Programmiersprachen
5. Tabellenkalkulation
6. Statistik-Programmen
7. E-Mail
8. Datenbanken
9. Internet/WWW
10. Computerspielen
11. Graphikprogrammen
12. Terminplanungsprogrammen

 PRACOWI

Fragebogen zu praktischem Computerwissen (PRACOWI)
Bei diesem Fragebogen geht es um praktisches Computerwissen, d.h. um solches Wissen, das
für den Umgang mit dem Computer unmittelbar relevant sein kann. Auf den folgenden vier
Seiten werden insgesamt 13 Problemsituationen aufgeführt, mit denen man bei der täglichen
Arbeit am Computer konfrontiert sein oder zu tun haben kann. Hier ein Beispiel:

1. Sie wurden vor einer angeblichen Virus-Mail mit dem Titel "Good Times" gewarnt.
Angeblich soll beim Öffnen dieser E-Mail der Inhalt der Festplatte gelöscht werden. Jetzt
erhalten sie eine solche E-Mail. Was tun Sie?

1. Ich schalte den Computer sofort ab und besorge mir ein Antiviren-Programm.
2. Ich öffne die E-Mail und gehe davon aus, daß mein Antiviren-Programm den

Virus dann beseitigen wird.
3. Es handelt sich um einen Hoax. Die E-Mail kann getrost gelesen bzw. gelöscht

werden.

211

Anhang: Vortest: leicht adaptierte Version des INCOBI von Naumann, Richter und Groeben,
Universität Köln. Vor Verwendung bitte die Rechte bei den Autoren erfragen.

4. Ich wähle im Mailprogramm den Menüpunkt "check viruses", um den Virus zu
entfernen.

weiß ich nicht

Ihre Aufgabe ist es, für jede geschilderte Problemsituation diejenige Handlungsalternative
auszusuchen und anzukreuzen, die Ihrer Einschätzung nach die beste Möglichkeit darstellt,
mit dem Problem umzugehen. Sind Sie beispielsweise der Meinung, bei dem Erhalt der "Good
Times"-Mail handele es sich um einen Hoax, kreuzen Sie das entsprechende Kästchen an.
Sollten Sie nicht wissen, was in der jeweils geschilderten Situation zu tun ist, sollen Sie nicht
raten, sondern das Kästchen "weiß ich nicht" ankreuzen. Bitte lesen Sie alle zur Verfügung
stehenden Alternativen genau durch und denken Sie nach, Sie haben ausreichend Zeit.

Da die Fragen sich zum Teil auf bestimmte Betriebssysteme beziehen, ist es für uns von
Interesse, mit welchem Betriebssystem/welchen Betriebssystemen Sie persönlich arbeiten und
bezüglich welcher Betriebssysteme Sie Kenntnisse besitzen (z.B. weil Sie früher einmal damit
gearbeitet haben).

Ich arbeite mit... Windows '95 oder höher (98, NT)
(Mehrfachnennungen möglich) Windows 3.x

OS/2
DOS
Unix
Apple Macintosh

Ich habe Kenntnisse in... Windows '95 oder höher (98, NT)
(Mehrfachnennungen möglich) Windows 3.x

OS/2
DOS
Unix
Apple Macintosh

1. Sie haben in Word Änderungen an einem Textdokument vorgenommen, und möchten
sowohl die geänderte Datei speichern als auch die ursprüngliche Version beibehalten.
Was tun Sie?

(a) Ich rufe in der Textverarbeitung den Menüpunkt "Versionsvergleich" auf.
(b) Ich verschiebe die Datei vor dem Speichern in ein anderes Verzeichnis.
(c) Ich speichere die geänderte Datei unter einem neuen Namen.
(d) Ich wähle in Word den Menüpunkt "Änderungen in einer neuen Datei

speichern".
weiß ich nicht

2. Ihre Maus ist ausgefallen, und Sie wollen das Programm, das Sie geöffnet haben,
beenden. Was tun Sie?

(a) Ich beende das Programm, indem ich die Tastenkombination "Strg" + "Ende"
(bei englischen/amerikanischen Tastaturen "Ctr" + "End") drücke. Alternativ
kann das Programm mit der Tastenkombination "Alt" + "F3" beendet werden.

212

Anhang: Vortest: leicht adaptierte Version des INCOBI von Naumann, Richter und Groeben,
Universität Köln. Vor Verwendung bitte die Rechte bei den Autoren erfragen.

(b) Ich beende das Programm, indem ich die Taste "Strg" (englisch/amerikanische
Tastatur: "Ctr") gedrückt halte, und dabei die Tastenkombination "Ende" +
"Enter" ("End" + "Enter") drücke. Alternativ kann das Programm mit der
Tastenkombination "Alt" + "F6" beendet werden.

(c) Ich beende das Programm, indem ich gleichzeitig "Shift" und "Ende" (bzw.
"End") drücke. Alternativ kann das Programm mit der Tastenkombination "Alt"
+ "F5" beendet werden.

(d) Ich beende das Programm, indem ich die "Alt"-Taste gedrückt halte und dabei
nacheinander die Tasten "D" und "B" (bei englischsprachigen Programmen "F"
und "X") drücke. Alternativ kann das Programm mit der Tastenkombination
"Alt" + "F4" beendet werden.

Die folgenden Fragen werden ohne die Antwortalternativen wiedergegeben. Bei Interesse
sind sie bei den Autoren zu erfragen.

3. Sie müssen unter Windows 95/98 ein neu installiertes Programm häufig aufrufen und
möchten dafür einen schnelleren Weg zur Verfügung haben als über das "Start-Menü".
Was unternehmen Sie?

4. Sie wissen, daß ein bestimmtes Programm auf Ihrem Computer installiert ist, sie können
es aber nicht auf die gewohnte Weise starten. Wie können Sie dieses Problem beheben?

5. Sie bekommen ein als ZIP-Archiv gepacktes Textdokument. Wie verfahren Sie damit?
6. Sie haben über das Internet eine als selbstextrahierendes Archiv gepackte Textdatei auf

ihren Computer geladen. Nun möchten Sie diese lesen. Was tun Sie?
7. Sie möchten eine Graphik-Datei per E-Mail verschicken. Wie gehen Sie vor?
8. Nach dem Einbau des neuen Modems funktioniert die Maus nicht mehr. Was tun Sie?
9. Sie möchten im Internet eine bestimmte Adresse aufsuchen. Was tun Sie?
10. Die Festplatte ist voll. Sie arbeiten mit Windows 95/98. Nach dem Löschen unnötiger

Dateien wird der freie Platz auf der Festplatte dennoch nicht größer. Was ist zu tun?
11. Beim Aufruf des DOS-Fensters erscheint bei der Eingabe am Bildschirm ein "y", obwohl

Sie die "z"-Taste gedrückt haben. Was ist zu tun?
12. Sie wollen den Computer starten. Es erscheint kurz nach dem Einschalten die Meldung

"Disk not ready. Insert bootable disk and press any key" bzw. "This disk can't boot. It
was formatted without the /s (system-) option". Was tun Sie?

13. Ihr Computer ist abgestürzt, und Sie wollen ihn möglichst "schonend" neu starten. Was
tun Sie?

 Fragen zur Person

Fragen zur Person
Da wir uns unter anderem für die Zusammenhänge der erhobenen Fragebogendaten mit
soziodemographischen und anderen "objektiven" Daten interessieren, möchten wir Sie zum
Schluss noch bitten, die folgenden Fragen zu Ihrer Person zu beantworten:

• Geschlecht: männlich weiblich

213

Anhang: Vortest: leicht adaptierte Version des INCOBI von Naumann, Richter und Groeben,
Universität Köln. Vor Verwendung bitte die Rechte bei den Autoren erfragen.

• Alter: Jahre

• Seit wie vielen Jahren nutzen Sie bereits einen Computer? Jahre

• Wie viel Zeit in Stunden verbringen Sie
• durchschnittlich pro Woche mit dem Computer? __ Stunden

• Welche der im folgenden genannten Anwendungen benutzen Sie?
• Textverarbeitung ja nein
• Bildverarbeitung ja nein
• Tabellenkalkulation ja nein
• Datenbanken ja nein
• Statistikprogramme ja nein

• Sonstige:

• Haben Sie Zugang zum Internet? ja nein
(wenn nein, weiter bei 12.)

• Wie viel Zeit verbringen Sie durchschnittlich
pro Woche 'im' Internet? Stunden

• Für welche Zwecke nutzen Sie das Internet?
• "Surfen" ja nein
• Recherche ja nein
• Eigene Homepage ja nein
• E-Mail ja nein
• Newsgroups ja nein
• Chat ja nein

• Sonstige:

214

Anhang: Fragebogen der Zwischenbefragung INCOBI und FEOK1

13.2 Zwischenbefragung

13.2.1 Interviewleitfaden
Leitfaden Zwischeninterview

Begrüßung, Klären offener Fragen, beispielsweise zum Umgang mit den erhobenen Daten oder zu deren Aus-
wertung
Erster Fragenblock: Vorstellungen über Softwareentwicklungsprozesse
I) Wie stellst du dir die Entwicklung einer Software in einer Softwarefirma (ggf. im Unterschied zur Schule)
vor?
Je nach Antwort weiterfragen:
a) Wie stellst du dir den Vorgang vor, wenn ein Kunde ein spezielles Programm haben will?
b) Welche verschiedenen Phasen kannst du dir dabei vorstellen?
c) Welche verschiedenen Aufgaben gibt es für die Mitarbeiter?
II) Versuche mit eigenen Worten zu beschreiben, was Modellierung ist.(Wo und wann wird sie verwendet?)
III) Entsprach der Unterricht deinen Erwartungen?
Wie hättest du ihn dir anderes gewünscht? Weshalb wäre das besser gewesen?

13.2.2 Fragebogen FEOK1
Liebe Untersuchungsteilnehmer/innen,

dieser Fragebogen dient der Erfassung Ihres Computerwissens und Ihrer computerbezogenen
Einstellungen. Der Fragebogen hilft bei der Beurteilung des Verlaufs und des Erfolgs der
Unterrichtsreihe. Ihre Antworten sind den Lehrern selbstverständlich nicht zugänglich und
werden ausschließlich zu wissenschaftlichen Zwecken ausgewertet.

Auf den folgenden Seiten finden Sie insgesamt fünf verschiedene Fragebögen, mit denen
verschiedene Aspekte von computerbezogenen Einstellungen abgedeckt werden sollen:

5. Einen Fragebogen zur inhaltlich differenzierten Erfassung von computerbezogenen
Einstellungen (abgekürzt FIDEC),

6. einen Fragebogen, der sich auf Ihre Sicherheit im Umgang mit Computern und
Computeranwendungen bezieht (SUCA),

7. einen Fragebogen zur Erfassung von objektorientierten Kenntnissen (FEOK).

Vielen Dank für Ihre Mitarbeit!

Fragebogen zur inhaltlich differenzierten Erfassung von
computerbezogenen Einstellungen (FIDEC)
siehe Anlage 13.1.2, ab S. 205.

Fragebogen zur Sicherheit im Umgang mit Computern und
Computeranwendungen (SUCA)
siehe Anlage 13.1.2, ab S. 210

215

Anhang: Fragebogen der Zwischenbefragung INCOBI und FEOK1

Fragebogen zur Erfassung von objektorientierten Kenntnissen (FEOK1)
Bei diesem Fragebogen geht es um Ihr Verständnis von objektorientierten Begriffen und
Strukturen. Wir möchten Sie bitten, die vier Aufgaben mit wenigen Stichworten oder in ein
bis zwei kurzen Sätzen zu beantworten.

Wir möchten Sie nochmals darauf hinweisen, dass Ihre Angaben
nur von uns ausgewertet und vertraulich behandelt werden. Weder
werden sie benotet noch sind sie den Lehrern zugänglich.

FEOK1 a:
1. Erläutern Sie den Unterschied zwischen Klasse und Objekt.

FEOK1 b:
2. Welche Elemente kommen in einem Klassendiagramm vor? Zählen Sie sie auf.

FEOK1 c:
3. Erläutern Sie zwei der von Ihnen in Aufgabe 2 genannten Fachbegriffe.

216

Anhang: Fragebogen der Zwischenbefragung INCOBI und FEOK1

4. Beschreiben Sie die Objektstruktur, die durch die jeweils abgebildeten
Beziehungen möglich ist.

zu (I): (FEOK1 d) zu (II): (FEOK1 e)

zu (III): (FEOK1 f) zu (IV): (FEOK1 g)

Nochmals vielen Dank für Ihre Mithilfe! Wenn Sie Anmerkungen (Kritik,
Ergänzungen, Kommentare) haben, können Sie dafür gerne die Rückseite dieses
Blattes nutzen. Sie helfen uns damit weiter!

217

A B
1 1

(I)

(III) (IV)

(II)

A B
1 n

A

B

1

1

A

1

1

Anhang B: Auswertungsschema FEOK1

13.2.3 Auswertungsschema FEOK1
Aufgabe Auswertungsschema Punkte

FEOK1 a: Erläutern Sie den Unterschied
zwischen Klasse und Objekt!

Erwartet: Klasse als Beschreibung (Bauplan o.Ä.), Objekt als Exemplar (wird erzeugt, macht etwas zur Laufzeit, ist
konkret, …). Beispiele für Schülerantworten:
• „Klassen sind Vorlagen für Objekte. Objekte können individuelle Attribute haben. Jedes Objekt gehört einer Klasse

an.“ (1 Punkt)
• „Eine Klasse hat mehrere Objekte, wie z.B. ein Feld.“ (0 Punkte)
• „Eine Klasse fasst mehrere gleichartige Objekte zusammen.“ (0,5 Punkte) 2

FEOK1 b: Welche Elemente kommen in
einem Klassendiagramm vor? Zählen Sie
sie auf!

Erwartet: Klasse, Methode, Attribut, Beziehung. Plus max. 1 Zusatzpunkt für weitere genannte Elemente.

3
FEOK1 c: Erläutern Sie zwei der von Ih-
nen in Aufgabe 2 genannten Fachbegriffe!

Auswertung: Für jeden korrekt erläuterten Fachbegriff 1 Punkt.
2

FEOK1 d:

1 Punkt möglich. Diese Aufgaben konnten auch anhand einer kleinen Skizze beantwortet werden
Erwartet: Paar(e) von Objekten, jeweils einmal vom Typ A, einmal vom Typ B
(als Skizze: a-b bzw.: a-b, a-b, a-b, ...) 1

FEOK1 e:

Erwartet : a kennt a (gerichtet) , (als Skizze: a->a), verkettet (als Skizze: a->a->a..)

1

FEOK1 f:

Erwartet: a kennt mehrere b’s = 0,5 Punkte, oder a kennt beliebig viele b's = 1 Punkt

1

FEOK1 g:

Erwartet: a kennt b und b kennt b (als spezielles a. Wenn b als spezialisiertes a aufgefasst wird, aber Beziehung fehlt,
noch 0,5 Punkte)

2

218

Anhang B: Auswertungsschema FEOK1

Tabelle 98 FEOK1 Fragen und Auswertungsschema

219

Anhang: FEOK2

13.3 Abschlussbefragung

13.3.1 Fragebogen FEOK2
Liebe Untersuchungsteilnehmer/innen,

Auf den folgenden Seiten finden Sie einen Abschlussfragebogen zur Erfassung von
objektorientierten Kenntnissen (abgekürzt FEOK2).

Der Fragebogen dient der Erfassung Ihres Wissens bezüglich der Kenntnis objektorientierter
Begriffe und Zusammenhänge. Der Fragebogen hilft bei der Beurteilung des Verlaufs und des
Erfolgs der Unterrichtsreihe. Ihre Antworten sind den Lehrern selbstverständlich nicht
zugänglich und werden ausschließlich zu wissenschaftlichen Zwecken ausgewertet.

Bei diesem Fragebogen geht es um Ihr Verständnis von objektorientierten Begriffen und
Strukturen. Zu einigen Fragen können Sie Skizzen machen, zu anderen ist es sinnvoll in
ganzen Sätzen zu antworten.

Wir möchten Sie nochmals darauf hinweisen, dass Ihre Angaben
nur von uns ausgewertet und vertraulich behandelt werden.

Vielen Dank für Ihre Mitarbeit!

220

Anhang: FEOK2

1. Bibliotheken
(FEOK2 a)
Man kann bei der Softwareentwicklung Bibliotheken benutzen, so wie zum Beispiel die
FGrafik. Welche Auswirkungen (Vor- und Nachteile) hat die Benutzung von Bibliotheken?
Bemerkung: Es müssen nicht je alle drei Punkte ausgefüllt werden, bei Bedarf können
natürlich auch mehr Punkte genannt werden.

Vorteile: Begründung:

●________________

●________________

●________________

Nachteile: Begründung:

●________________

●________________

●________________

221

Anhang: FEOK2

2. Objektorientierte Strukturierung
Bemerkung: konzeptuelles Klassendiagramm bedeutet: Datentypen von Attributen wie z.B.
int etc. brauchen nicht angegeben werden. Im Allgemeinen, also wenn nicht ausdrücklich
erwünscht, brauchen keine Methoden angegeben werden. Es kommt darauf an, die geforderte
Struktur darzustellen.
(FEOK2 b)

2.1 Zusammenhang: „Management“

Modellieren Sie folgende Zusammenhänge durch ein konzeptuelles Klassendiagramm:
Eine Firma hat mehrere Abteilungen. Die Mitarbeiter der Firma gehören jeweils genau
einer Abteilung an. Jede Abteilung hat einen Abteilungsleiter und einen Stellvertreter.
Außerdem gibt es eine Reihe von Projekten, die von jeweils einer oder mehreren
Abteilungen betreut werden. Dabei haben die Projekte u.a. Namen, Laufzeiten und
Budgets.

(FEOK2 c)

2.2 „Auftraggeber-Hersteller-Interaktion“

Modellieren Sie folgende Sachverhalte durch ein konzeptuelles Klassendiagramm: In
einem Bestellsystem gibt es Kunden, die Aufträge erteilen. Jeder Auftrag besteht neben
der Angabe des Auftraggebers und Bezahlers (dies kann jemand anderes als der
Aufraggeber sein!) aus einer Reihe von Positionen, in denen u.a. der jeweils bestellte
Artikel, die Anzahl und der Preis aufgeführt sind. Seitens des Unternehmens sind die
Artikel zur besseren Übersicht in Gruppen angeordnet. Ferner gibt es so genannte bundles
als eigenständige Artikel, die mehrere andere Artikel bündeln und auf Bestellungen als
nur ein Artikel erscheinen (z.B. das "Einsteigerpaket" als Computer mit Monitor, Tastatur,
Maus und Software).

222

Anhang: FEOK2

2.3 Objekte und Klassen
(FEOK2 d)

Gib zu dem folgenden Storydiagramm das dafür notwendige Klassendiagramm an.

2.4 Schreibweisen

a) Was stellt diese Schreibweise dar? (FEOK2 e)

b) Welche alternative Darstellung gibt es dazu? (FEOK2 f)

2.5 Links
Was bedeuten die Verbindungslinien (Links) zwischen Objekten in einem Story-Pattern?
Wozu kann man sie benutzen? (FEOK2 g)

Nochmals vielen Dank für Ihre Mithilfe! Wenn Sie Anmerkungen (Kritik, Ergänzungen,
Kommentare) haben, können Sie dafür gerne die Rückseite dieses Blattes nutzen. Sie
helfen uns damit weiter!

223

Anhang: Auswertungsschema FEOK2

13.3.2 Auswertungsschema FEOK2
Aufgabe Auswertungsschema Punk-

te
FEOK2 a: Man kann bei der Softwareentwicklung Bibliothe-
ken benutzen, so wie zum Beispiel die FGrafik. Welche
Auswirkungen (Vor- und Nachteile) hat die Benutzung von
Bibliotheken? Bemerkung: Es müssen nicht je alle drei Punkte
ausgefüllt werden, bei Bedarf können natürlich auch mehr
Punkte genannt werden.

Je 0,5 Punkte für begründete Nennungen, dabei waren je drei positive und negative Nennungen
möglich. Es wurden höchstens 2,5 Punkte gegeben.

2,5
FEOK2 b: Modellieren Sie folgende Zusammenhänge durch
ein konzeptuelles Klassendiagramm110: Eine Firma hat mehrere
Abteilungen. Die Mitarbeiter der Firma gehören jeweils genau
einer Abteilung an. Jede Abteilung hat einen Abteilungsleiter
und einen Stellvertreter. Außerdem gibt es eine Reihe von Pro-
jekten, die von jeweils einer oder mehreren Abteilungen
betreut werden. Dabei haben die Projekte u.a. Namen, Lauf-
zeiten und Budgets.

Erwartet wurden folgende Modell-Eigenschaften (jeweils 1 Punkt):

1 Punkt: Firma hat mehrere Abteilungen (hat). 1 Punkt: Mitarbeiter gehören zur Firma, und
zu genau einer Abteilung (gehoertZu). 1 Punkt: Firma hat Abteilungsleiter und
Stellvertreter (hat). 1 Punkt: Projekte werden von Abteilungen betreut (betreutDurch).
1 Punkt: Projekte haben Attribute (budget, laufzeit, name).
(Ob Aggregation oder Asssoziation benutzt wird, wird nicht gewertet, ebenso, ob die Beziehungen
gerichtet oder ungerichtet gesetzt sind. Die Kardinalität dagegen wurde bei der Bewertung berück-
sichtigt). 4

110 Konzeptuelles Klassendiagramm bedeutet: Datentypen von Attributen wie z.B. int etc. brauchen nicht angegeben werden. Im Allgemeinen, also wenn nicht ausdrücklich
erwünscht, brauchen keine Methoden angegeben werden. Es kommt darauf an, die geforderte Struktur darzustellen.

224

Anhang: Auswertungsschema FEOK2

Aufgabe Auswertungsschema Punk-
te

FEOK2 c: Modellieren Sie folgende Sachverhalte durch ein
konzeptuelles Klassendiagramm: In einem Bestellsystem gibt
es Kunden, die Aufträge erteilen. Jeder Auftrag besteht neben
der Angabe des Auftraggebers und Bezahlers (dies kann je-
mand anderes als der Aufraggeber sein!) aus einer Reihe von
Positionen, in denen u.a. der jeweils bestellte Artikel, die An-
zahl und der Preis aufgeführt sind. Seitens des Unternehmens
sind die Artikel zur besseren Übersicht in Gruppen angeord-
net. Ferner gibt es so genannte bundles als eigenständige
Artikel, die mehrere andere Artikel bündeln und auf Bestellun-
gen als nur ein Artikel erscheinen (z.B. das "Einsteigerpaket"
als Computer mit Monitor, Tastatur, Maus und Software). Vermutlich werden die Schülerinnen und Schüler Klassen für Bezahler und Auftraggeber

erstellen, die den Auftrag kennen – siehe Klassendiagramm. Dafür gibt es einen Punkt, ebenso aber
für die Variante, in der Kunde zu Auftrag zwei Beziehungen namens auftraggeber und be-
zahler hat. 1 Punkt für die Klasse Position, noch einen Punkt für die Attribute.

5

225

Anhang: Auswertungsschema FEOK2

Aufgabe Auswertungsschema Punk-
te

FEOK2 d: Gib zu dem Storydiagramm das dafür notwendige
Klassendiagramm an!

Erwartet: Für die einzelnen Elemente des Klassendiagramms wurden je 0,5 Punkte vergeben: Je-
weils für die Nennung der Klassen, der Attribute, Methoden und der Beziehungen (mit Namen)
zwischen den Klassen.

5
FEOK2 e: Was stellt diese Schreibweise

dar?

Auswertungsschema:
1 Punkt für: Methodenaufruf, 0,5 Punkte falls Methodenaufruf umschrieben wurde (etwa: das Objekt
soll etwas machen).

1
FEOK2 f: Welche alternative Darstellung gibt es dazu? 2 Punkte für die Erklärung und die Darstellung im Java-Quelltext heizung.warm();

Für die Umschreibung gibt es 1 Punkt. 2
FEOK2 g: Was bedeuten die Verbindungslinien (Links) zwi-
schen Objekten in einem Story-Pattern? Wozu kann man sie
benutzen?

Erwartet: Links arbeiten auf Objektebene. Sie a) prüfen, b) löschen oder c) erzeugen eine Bezie-
hung.

4

Abbildung 99 FEOK2 Aufgaben111

111 Die Aufgaben FEOK2 c, FEOK2 d und FEOK2 e sind von Ira Diethelm und Albert Zündorf, die Fujaba in Braunschweig an der Schule eingesetzt haben, ursprünglich als
Klausuraufgaben entwickelt worden. Vielen Dank an dieser Stelle für die Nutzungsrechte.

226

Anhang: Unterrichtsprotokoll Schule A

13.4 Unterrichtsprotokolle

13.4.1 Schule A
Unterricht vom 11. September 2001
Das Spiel Flaschendrehen wird mit einer realen Flasche, realen Feldern und einem realem
Spieler gespielt. Anschließend werden die beteiligten “Objekte” im Plenum gesammelt. Dabei
werden Beziehungen zwischen Objekten und “Feld” als Zusammenfassung von gleichartigen
Objekten thematisiert.

Unterricht vom 13. September 2001
Der Unterschied zwischen Klasse und Objekt wird thematisiert am Beispiel der Klasse
“Feld”. Es folgt die Erarbeitung einer informalen Definition von Objektorientierung: “Was
tun die Objekte/in welchen Beziehungen stehen sie?” Anschließend werden CRC-Karten er-
klärt und das CRC-Modell des Flaschendrehens vorgestellt und diskutiert. Es folgt das
Objektspiel, wobei deutlich werden soll, dass Werte auf Objekt-Karten “gespeichert” werden
müssen. Das Objektspiel wird nun am PC mit Dobs nachgespielt.

Unterricht vom 18. September 2001
Die Schülerinnen und Schüler spielen/erkunden das Flaschendrehen mit Dobs an den Note-
books. Erfahrungen der Schüler werden anschließend besprochen.

Unterricht vom 20. September 2001
Das Erkunden des Flaschendrehen mit Dobs wird aufgegriffen und der Unterschied zwischen
Klasse und Objekt erneut thematisiert. Es folgt eine Einführung in Fujaba, und das Klassen-
diagramm des Flaschendrehen wird mit den Schülerinnen und Schülern angeschaut. Dabei
werden die verschiedenen grafischen Elemente von UML/Fujaba in ihrer Bedeutung erarbei-
tet. Anschließend wird das Klassendiagramm verändert und die Veränderungen mit Dobs
ausprobiert. Die Schülerinnen und Schüler ändern/erkunden anschließend selbstständig an
den Notebooks das Flaschendrehen-Modell.

Unterricht vom 25. September 2001
In dieser Stunde erfolgt eine Zwischenbilanz, d.h. eine Zusammenfassung, Einordnung und
Wiederholung des bisher im Unterricht behandelten Stoffs. Dabei kommen auch die Begriffe
Datentypen, Parameter und Kontrollstrukturen vor, die rudimentär erläutert werden.

Unterricht vom 27. September 2001
Das Klassendiagramm vom Flaschendrehen wird weiter verändert (Anzahl der Felder in der
createSpiel-Methode), die notwendigen Veränderungen mit den Schülerinnen und Schülern
erarbeitet. Dann wird ein neues Projekt - Hausbau - vorgestellt. Um den Umgang mit Fujaba
zu üben, sollen die Schülerinnen und Schüler das vorgegebene Klassendiagramm selbst an
den Notebooks erstellen.

Unterricht vom 2. Oktober 2001

227

Anhang: Unterrichtsprotokoll Schule A

Das Klassendiagramm aus der letzten Stunde dient als Grundlage, um zu erarbeiten, wie die
baueHaus-Methode arbeiten müsste. Dabei wird auf Ähnlichkeiten mit der createSpiel-Me-
thode aus dem Flaschendrehen-Projekt verwiesen. Aufgabe für die Schülerinnen und Schüler
ist es nun, mit dieser “Vorlage” selbst die baueHaus-Methode in Fujaba zu implementieren.

Unterricht vom 4. Oktober 2001
In Anknüpfung an die letzte Stunde wird mit der baueHaus-Methode fortgefahren. Dabei wer-
den die Begriffe Schleife und Zähler thematisiert. Es tauchen Probleme mit Fujaba auf.

Unterricht vom 25. Oktober 2001
Nach der Zusammenfassung der letzten Stunde wird das Maurerbeispiel um die Frage: “Was
muss man tun, um das Haus aufzustocken?” erweitert. Im Unterrichtsgespräch wird gemein-
sam dafür nach einer Lösung gesucht: Der Maurer muss in ein anderes Haus gehen, ins
oberste Stockwerk gehen und dann ein Stockwerk draufbauen. Dabei wird ein Grundkonzept
zusammen formuliert, von dem dann der erste Teil von den Schülerinnen und Schülern in
Partnerarbeit gemeinsam am Notebook modelliert wird.

Unterricht vom 30. Oktober 2001
Der Lehrer gibt Tipps zur Fehlersuche: Zahl in der unteren Statuszeile, Story-Pattern Namen
geben. Die Schülerinnen und Schüler erklären die Methode geheInHaus und woran man ein
bound-Objekt erkennt. Der Lehrer erklärt Story-Pattern als Suche nach einem Zustand und
die Möglichkeit sucess und failure-Kanten zu benutzen.
Anschließend sollen die Schülerinnen und Schüler an den Notebooks das Projekt fertig stel-
len. An einigen Notebooks gibt es unverständliche Fehler, sodass die Fertigstellung des
Projekts als Hausaufgabe aufgegeben wird, die auf einer Diskette zur nächsten Stunde mitge-
bracht werden soll.

Unterricht vom 6. November 2001
Zum Projekt Hausbau sollen noch drei Methoden dazukommen: rübergehen, hochgehen und
mauern. Diese Methoden werden im Unterrichtsgespräch am Beamer besprochen. Details
werden noch einmal geklärt (bound-Objekte, schwarz gefärbte Elemente, NOP, Schleife).
Dann sollen die Schülerinnen und Schüler die Diagramme abschreiben und zu Hause in Fuja-
ba konstruieren.

Unterricht vom 08. November 2001
Anfangs wird über die Installation von Fujaba auf den Heim-PCs gesprochen und Probleme
diskutiert. Im Anschluss daran stellt der Lehrer den Schülerinnen und Schülern ein neues Pro-
jekt vor, indem er sie in die Lage einer Software-Entwicklungsfirma versetzt, in der sie
Programmierer sind und deren Kunde ihnen aufträgt, ein Spiel namens Schatzsuche zu pro-
grammieren. Dieses Spiel soll wahrscheinlich für Kinder bestimmt und dadurch
gekennzeichnet sein, dass die Spieler auf einzelne Felder ziehen können. Diese Felder können
die Spieler optional umdrehen. Auf ihrer Unterseite befindet sich z.B. ein Schatz.

228

Anhang: Unterrichtsprotokoll Schule A

Im Folgenden beraten sich die Schülerinnen und Schüler teilweise ohne Beisein des “Auftrag-
gebers” in freier Gruppenarbeit, wie das Spiel aussehen soll. Dabei kommen sie zu dem
Schluss, dass es einen Parcours aus Feldern gibt, der durchlaufen werden soll. Dazu entwi-
ckeln sie ein Tafelbild und CRC-Karten. Im Anschluss daran werden die Spielregeln mit dem
Lehrer diskutiert und die Klasse in Gruppen eingeteilt, die jeweils einzelne Teile des Spiels
modellieren sollen. Hausaufgabe ist es, sich zu den jeweiligen Objekten Methoden auszuden-
ken.

Unterricht vom 13. November 2001
Im Unterrichtsgespräch wird die letzte Stunde zusammengefasst. Anschließend wird am Bea-
mer in Fujaba gemeinsam das Klassendiagramm erstellt, dabei orientieren sich die
Schülerinnen und Schüler am Flaschendrehen und sehen im Flaschendrehen-Modell nach.

Unterricht vom 15. November 2001
Die Schülerinnen und Schüler teilen sich selbst neu in Gruppen auf. Jede Gruppe bekommt
eine andere Aufgabe: Programmierung des Spielleiters, des Spielfeldes und des Spielers.
Nach ca. 1-stündiger Programmierarbeit werden die bisherigen Ergebnisse vorgestellt und neu
auftauchende Fragen und Fehler geklärt. Ein Schüler erklärt sich dazu bereit, die fertigen
Projektfragmente zu Hause zusammenzufügen.

Unterricht vom 20. November 2001
Nach Begrüßung und Kritik an der Arbeitshaltung der Schüler durch den Lehrer soll das von
einem Schüler erstellte Modell an den Notebooks getestet und verbessert werden. Im danach
folgenden Unterrichtsgespräch geben die beiden Schüler die Projektleitung an zwei andere ab,
es werden Verbesserungsvorschläge gesammelt und es wird überlegt, wo Änderungen vorge-
nommen werden müssen, um diese umzusetzen. Hausaufgabe: Zwei dieser Änderungen
umsetzen

Unterricht vom 22. November.2001
Zu Anfang wird der Fortschritt der Programmierung der einzelnen Aufgaben besprochen. Es
soll nun umgesetzt werden, was die Schülerinnen und Schüler zu Hause überlegt haben. Die
Programmfragmente sowie einige Erweiterungen werden dann an den Notebooks zusammen-
geführt. Gegen Ende der Stunde wurden die einzelnen Aktivitätsdiagramme von den
jeweiligen Bearbeitern vorgestellt und von der gesamten Klasse diskutiert.

Unterricht vom 27. November 2001
Wiederholungsstunde als Vorbereitung auf die Klausur, die 12 Schüler mitschreiben. Im Un-
terrichtsgespräch am Beamer wird besprochen: UML, CRC, Objektspiel, stosseFlascheAn,
NOP-Anweisung, Hausbau, Vorgehen beim Schatzsuche-Projekt, Gründe für unterschiedliche
Modelle.

Unterricht vom 4. Dezember 2001

229

Anhang: Unterrichtsprotokoll Schule A

Flaschendrehen mit FGrafik wird am Beamer gezeigt, die Schülerinnen und Schüler sollen
neue Elemente erkennen, die besprochen werden: Referenzen, neue Beziehungen. Anschlie-
ßend sollen die Schülerinnen und Schüler an den Notebooks in Dobs ein Fenster erzeugen.

Unterricht vom 6. Dezember 2001
Die Schülerinnen und Schüler erarbeiten selbstständig ein Arbeitsblatt zur FGrafik. Nach der
Besprechung des Arbeitsblatts sollen sie an den Notebooks selbst Eingabe- und Ausgabefens-
ter sowie Kreise und Rechtecke in Dobs erzeugen. Anschließend werden die Erfahrungen und
Probleme diskutiert. Am Beispiel vom Flaschendrehen schauen sich die Schülerinnen und
Schüler ein fertiges FGrafik-Programm an. Die Hausaufgabe besteht darin, dass die Schüle-
rinnen und Schüler sich eine entsprechende FGrafik für die Schatzsuche überlegen sollen.

Unterricht vom 13. Dezember 2001
Zu Beginn der Stunden wird diskutiert, ob alle Schülerinnen und Schüler die FGrafik zu Hau-
se ausprobieren konnten und die per E-Mail zugesandte Hausaufgabe bearbeitet haben. Als
Nächstes sollen die Schülerinnen und Schüler an den Notebooks die FGrafik importieren und
in die Schatzsuche einbauen. Nach ca. 10 Minuten wird dann besprochen, welche Elemente
nun benötigt werden und welche Beziehungen diese untereinander haben sollten. Die daraus
resultierende Aufgabe lautet, dass der Spielleiter zusätzlich noch ein Fenster erzeugen soll.
Zusätzlich sollt ein Ausgabefenster erzeugt werden, welches anschließend in das erste Fenster
gelegt wird. Die Programmierung dauert die restliche Stunde, da immer wieder Probleme mit
der FGrafik auftreten.

Unterricht vom 18. Dezember 2001
Aufgetretene Fehler sollen im Unterrichtsgespräch geklärt werden: Der Aufbau der FGrafik
wird wiederholt (keine bidirektionalen Beziehungen einsetzen). Anschließend sollen die
Schülerinnen und Schüler ihre Modelle entsprechend abändern.

Unterricht vom 20. Dezember 2001
Zu Beginn der Stunden wird die Klausur ausgegeben. Daran anschließend werden Probleme
beim Download einzelner Projekte diskutiert. Die Schülerinnen und Schüler arbeiten mit den
Notebooks weiter an dem Projekt Schatzsuche mit FGrafik. Dazu sollen sie ein Spielfeld
sichtbar machen und verschiedene Ausgabefelder programmieren (Erweiterung: die Felder
sollen farbig markiert sein), Button anlegen und alles positionieren. Oft die komplette Neu-
programmierung nötig, weil Verbindungen Methoden erzeugen, die nicht entfernt werden,
wenn die zugehörige Verbindung gelöscht wird. Nach einiger Zeit entstehen lauffähige Pro-
jekte, die farbige Felder enthalten. Zwei der fertigen Projekte werden für alle Schülerinnen
und Schüler zum Download bereitgestellt, damit jeder von jetzt ab eine lauffähige Version
hat.

Unterricht vom 8. Januar 2002
Der Lehrer zeigt das Schatzsuche-Modell von zwei Schülern am Beamer. Im Unterrichtsge-
spräch werden die Änderungen zur Version ohne Grafik besprochen. Es wird auf Farb-

230

Anhang: Unterrichtsprotokoll Schule A

Objekte eingegangen, anschließend verbessern die Schülerinnen und Schüler ihre Versionen
an den Notebooks.

Unterricht vom 10. Januar 2002
Der Unterricht beginnt mit dem Vorführen des bisher bearbeiteten Projektes. Das Ziel der
vergangenen und auch heutigen Unterrichts-Doppelstunden ist es, Knöpfe mit Funktionen zu
hinterlegen. Dementsprechend sollen die Schüler bei dem Programm Flaschendrehen die Stel-
len heraussuchen, an denen Elemente mit KlickHorchern vorkommen, um anschließend die
Ergebnisse zu besprechen. Danach wird den Schülerinnen und Schülern die Funktionalität der
KlickHorcher erklärt und damit die der Interfaces und der Vererbung inklusive Weiterleitung
von Informationen. Den Rest der Stunde verbringen die Schüler damit, in ein vorhandenes
Projekt KlickHorcher einzubauen.

Unterricht vom 15. Januar 2002: ausgefallen

Unterricht vom 17. Januar 2002: ausgefallen

Unterricht vom 22. Januar 2002: ausgefallen

Unterricht vom 24. Januar 2002
Das Ziel des Unterrichts ist, dass der Würfelbutton bei mindestens einer Gruppe funktioniert.
Die Schülerinnen und Schüler bearbeiten diese Aufgabe an den Notebooks. Dabei tauchten
immer wieder kleine Probleme mit der Verknüpfung von den Feldern auf. Bis es eine lauffä-
hige Version des Würfelbuttons gibt, vergeht fast eine Doppelstunde. Gegen Ende der Stunde
werden dann die am häufigsten aufgetretenen Probleme diskutiert und erklärt, z.B.: Wie muss
man mit einem Klickhorcher umgehen und wie stellt man die Beziehung zwischen Objekt und
Horcher her?

Unterricht vom 29. Januar 2002: fehlt

Unterricht vom 1. Februar 2002
Der Lehrer erläutert, dass nun auf dem Schulrechner, nicht mehr mit den Notebooks gearbei-
tet wird. Das Schatzsuche-Projekt wird als beendet erklärt, der Lehrer startet ein neues
Projekt: Die Schülerinnen und Schüler sollen in Gruppen ein Memory-Spiel entwickeln. Der
Lehrer teilt die Klasse in vier Gruppen ein.
Die Gruppen arbeiten am Projekt, drei erstellen Klassendiagramme, eine zusätzlich CRC-Kar-
ten. Aber bereits nach ca. 20 Minuten wollen die Gruppen an die Rechner, um dort
weiterzuarbeiten. Keine Gruppe hat ihre Modellierung vorher geprüft.

Unterricht vom 5. Februar 2002
Am Beamer werden die Arbeitsergebnisse der letzten Stunde vorgestellt. Gruppe 1 hat Kar-
tenpaare durch eine Beziehung ausgedrückt. Gruppe 2 denkt stark von der GUI her, alle
Beziehungen nennen sich ‚kennt'. Das Vorgehen der Gruppe passt nicht zum unterrichtlichen

231

Anhang: Unterrichtsprotokoll Schule A

Vorgehen, muss aber nicht falsch sein. Der Lehrer versucht die Gruppe etwas von der GUI
wegzubewegen. Gruppen 3 und 4 bringen keine neuen Erkenntnisse.

Unterricht vom 8. Februar 2002
Die Stunde beginnt mit technischen Hinweisen des Lehrers zum Login auf den Rechnern. Als
Kommentar und Hinweis zur Optimierung der Arbeitsweise in den Gruppen ermutigt der Leh-
rer dazu, Überlegungen und Aspekte der Modellierung sorgfältig vielleicht auch auf Papier
festzuhalten. Anschließend sollen die Schülerinnen und Schüler in den Gruppen an den PCs
ihre Projekte weiter bearbeiten.
Auffälliges in den einzelnen Gruppen: Gruppe 1 ist unsicher, wie die Methoden eines Objek-
tes aufgerufen werden; sie löst das Problem mit Hilfe des Lehrers. Weiterhin wird dort eine
gerichtete Assoziation verwendet, wo eine ungerichtete gebraucht wird; der Lehrer hilft auch
hier. Ungewöhnlich: Das Auswählen der Karten geschieht über Nummern als Parameter.
Gruppe 2 arbeitet relativ gut zusammen und ist mehr nebenbei mit Fehlerbeseitigung beschäf-
tigt. Gruppe 3 kämpft mit Fehlermeldungen, die daraus resultieren, dass sie im
Aktivitätsdiagramm das " bound" vergessen haben. Weiterhin bereitet eine Schleifenstruktur
Probleme, woraufhin der Lehrer - er geht von einem Fujaba-Problem aus - empfiehlt, die Me-
thode neu zu schreiben. Außerdem benötigen sie die Hilfe des Lehrers für den Zugriff auf
Attribute (getMethoden). Gruppe 4 hat Probleme damit, dass sie 1:1-Assoziationen verwen-
det, wo eigentlich 1:n-Assoziationen benötigt werden, löst dies aber mit Hilfe des Lehrers.
Zum Ende der Stunde werden stellen die Gruppen 1, 2 und 4 ihre Projekte im Plenum vor,
wobei auf Fehler und Probleme hingewiesen wird.

Unterricht vom 12. Februar 2002
Die Schüler arbeiten in ihren Gruppen am Projekt weiter. Zu Stundenbeginn fordert der Leh-
rer auf, heute das Modell fertigzustellen. Die Grafik-Anbindung soll später erfolgen, jedoch
sollen die Schüler bereits diesen Schritt im Modell einplanen. Sie sollen auch an Anwen-
dungsfälle und Dokumentation denken.
Während der Arbeit tritt bei zwei Gruppen folgendes Problem auf: Sie versuchen von einer
fremden Klasse auf ein privates Attribut zuzugreifen, es wird erklärt, dass sie die getMethode
des Attributs benutzen sollen.

Unterricht vom 15. Februar 2002
Zu Beginn der Stunde werden mögliche Anwendungsfälle beim Memory vom Lehrer auf Fo-
lie zusammengetragen. Anschließend geht er auf die CRC-Karten als Beschreibung von
Klassen ein. Anschließend erteilt er den Auftrag, dass die Gruppen o.g. Anwendungsfälle bei
der Weiterarbeit an ihren Projekten testen sollen.
Auffälliges in den Gruppen: Gruppe 1 überlegt, wie sie mit Rückgabewerten den Vergleich
der Punktzahlen von Spielern realisieren soll. Gruppe 2 und 3 haben Probleme mit Schleifen-
strukturen in Fujaba: Success- und Failure-Kanten und Schleifen vertragen sich nicht (Fujaba-
Problem!). Gruppe 4 scheint fast nur, aber dafür ausgiebig zu testen.
Zum Ende der Stunde stellen alle Gruppen ihr Projekt im Plenum vor: Gruppe 4 wird vom
Plenum darauf aufmerksam gemacht, dass eine Kartenwahl über Nummern als Parameter
nicht eindeutig ist. Gruppe 3 kündigt an, nun mit der Einbindung der FGrafik beginnen zu

232

Anhang: Unterrichtsprotokoll Schule A

können. Gruppe 2 verweist auf ihre Probleme mit der Vergleichsmethode. Und Gruppe 1 er-
wähnt ihre Probleme mit der Spiel-beenden-Methode beim Spielleiter (hat fast die gesamte
Funktionalität, Lehrer weist beiläufig darauf hin). In dieser Phase greift der Lehrer zum einen
die o.g. Fujaba Probleme mit Schleifenstrukturen und Success- und Failure-Kanten heraus,
zum anderen spricht er die Problematik von aussagefähigen Versionsnamen an.

Unterricht vom 19. Februar 2002
In dieser Stunden arbeiten die Schülerinnen und Schüler fast ausschließlich am Rechner. Zu
Beginn wird als HA für den 22.02. aufgegeben, nachträglich für die realisierten Modelle
CRC-Karten zu entwerfen.
Während der Rechnerarbeit tauchen an zwei Stellen Probleme auf: Eine Gruppe bekam eine
NullPointerException in einer Methode, obwohl alle Aktivitätsdiagramme mit denen der an-
deren Gruppe übereinzustimmen scheinen, die keinen Fehler bekam. Eine Gruppe konnte das
Ausgabefeld nicht einbinden. Beim Compilieren bekamen sie den Fehler “Cannot resolve
symbol”. Ansonsten scheinen die Modelle bei den meisten Gruppen lauffähig zu sein. Sie be-
ginnen jetzt mit der Einbindung der FGrafik.

Unterricht vom 22. Februar 2002
Zu Beginn stellt eine Schülerin die Hausaufgaben am Beamer vor: CRC-Karten des Memory.
Es findet eine Diskussion u.a. darüber statt, ob die Verantwortlichkeit “Karte aufdecken” nun
beim Spieler, Spielleiter oder der Karte anzusiedeln ist. Anschließend skizziert ein weiterer
Schüler seine CRC-Karten auf Folie; auch hier findet eine Diskussion über Responsibilities
und Collaborators statt. Der Lehrer stellt die Frage: “Wie sieht dazu das UML-Diagramm
aus?” Er skizziert eines und auf Schüleräußerungen hin die Beziehungen zwischen den einzel-
nen Klassen. Anschließend wird der Übergang von CRC nach UML thematisiert sowie der
Unterschied zwischen gerichteten und ungerichteten Assoziationen. Auch Designfragen erge-
ben sich: Muss die Beziehung “naechsteKarte” von Karte zu Karte gerichtet oder ungerichtet
sein? Der Lehrer erläutert an dieser Stelle auch anschaulich 1:n-Assoziationen. Anschließend
stellt er die Hausaufgabe: Erstellung eines UML-Diagramms aus den CRC-Karten.
Es folgt die Weiterarbeit an den Projekten in Gruppen:
Gruppe 1 hat Probleme mit einer Dobs-Fehlermeldung (null), löst dies aber mit Hilfe (evtl.
Fujaba-Unzulänglichkeit). Gruppe 4 hat einen nicht nachvollziehbaren Fehler in Fujaba: ein
Link zwischen this und fenster wird falsch herum angeboten, muss aber so gesetzt werden,
damit richtig kompiliert wird. Außerdem wird versucht, Assoziationen zwischen FGrafik-
Klassen zu ziehen, was natürlich (erst) beim Kompilieren zu Fehlermeldungen führt. Gruppe
2 ist mit der Spiellogik beschäftigt. Gruppe 3 experimentiert bei der Einbindung der FGrafik.
Ein Fehler in einem Story-Pattern mit komplexer Success- und Failure-Struktur wird mit Hil-
fe aber dennoch weitgehend selbständig gelöst. Die Präsentation der einzelnen
Gruppenergebnisse entfällt heute aus Zeitmangel.

Unterricht vom 26. Februar 2002: ausgefallen

Unterricht vom 1. März 2002

233

Anhang: Unterrichtsprotokoll Schule A

Der Lehrer kontrolliert die Hausaufgabe: Ein UML-Klassendiagramm sollte gezeichnet wer-
den, nicht alle Schülerinnen und Schüler haben das erledigt, viele haben Kardinalitäten
vergessen. Das Klassendiagramm wird am Overhead im Unterrichtsgespräch gemeinsam er-
stellt und auf Wunsch der Schülerinnen und Schüler auch die Anbindung de FGrafik. Grund
ist ein Schülerkommentar: Die FGrafik habe niemand verstanden. Vorher wird das mögliche
Aussehen der GUI besprochen, dabei stellt sich heraus, dass die Anwendungsfälle nicht ge-
klärt sind. Die Schüler diskutieren über Benutzungsvarianten. Nach der Einigung auf eine
Variante wird dann im Unterrichtsgespräch die Anbindung der notwendigen FGrafik-Objekte
in das UML-Diagramm erarbeitet. Nach der Pause versuchen die Schüler in der letzten halben
Stunde dies an ihren Projekten umzusetzen. Dabei gibt es Probleme, weil Fujaba sehr langsam
läuft und die FGrafik-Elemente nicht das tun, was die Schüler erwarten.

Unterricht vom 5. März 2002
Der Lehrer knüpft an die Probleme mit der FGrafik aus der letzten Stunde an, verteilt eine
kurze Dokumentation und fragt nach Lösungsmöglichkeiten, wie Ausgabefelder ohne Rand
zu erzeugen sind. Die Schülerinnen und Schüler kommen auf die Idee, ‚Zwischenfelder’ aus-
zugeben. Der Lehrer will auf createChessboard hinaus. Er erklärt die Auswirkung mit einer
Grafik und schreibt einen Aufruf der Methode auf. Zudem weist er auf einen Fehler in der
Dokumentation hin: Neben den angegebenen int-Parametern muss noch ein Farbobjekt über-
geben werden.
Anschließend sollen die Schülerinnen und Schüler dies in den verbleibenden 30 Minuten der
Stunde umsetzen. Dabei stellt sich heraus, dass sie den Methodenaufruf anhand der Doku-
mentation versuchen und nicht mehr an der Tafel nachsehen. Außerdem gibt es offensichtlich
Probleme beim Verständnis der Idee der Klassenbibliothek: Zwei Gruppen wollen die Metho-
de createChessboard selbst implementieren.

Unterricht vom 8. März 2002
Der Lehrer beginnt die Stunde mit einem Verweis auf die Klausur nächste Woche und möchte
deshalb und wegen allgemeiner Probleme mit der KartenUmdrehen-Methode eine Wiederho-
lung der Anwendungsfälle vornehmen. Dazu gibt er auf Folie eine Definition des Begriffes
“Anwendungsfall” und - damit verbunden - des Begriffes “Akteur”. Anschließend erläutert er,
wie eine formale Beschreibung eines Anwendungsfalles auszusehen hat.
Es schließt sich die Gruppenarbeit an den PCs an: Gruppe 1 vergisst die horcher-Beziehung
und erhält so keine Reaktion auf Klicks und versucht zunächst die Methode “createChessbo-
ard” zu erstellen statt sie aufzurufen, bemerkt aber diesen Fehler selbst. Gruppe 2 hat
ebenfalls Probleme mit dem Aufruf dieser Methode, sie hat die Beschreibung dieser Methode
als exakte Vorlage genommen und somit Fehler bei der Parameterübergabe erzeugt. Gruppe 4
holt sich Unterstützung beim Lehrer, da sie von Fujaba die Fehlermeldung “Abnormal Con-
trol Flow” erhält. Gruppe 3 ist mit dem Mischen der Karten beschäftigt und sucht ebenfalls
Hilfestellung beim Lehrer. Insgesamt ist zu beobachten, dass die Gruppen auch untereinander
Hilfestellung suchen und geben.
In einer letzen Unterrichtsphase präsentieren die Gruppen ihren derzeitigen Stand im Plenum.
Hausaufgabe ist es, den Anwendungsfall “Auswerten” nach dem zu Beginn der Stunde erläu-
terten Schema zu dokumentieren.

234

Anhang: Unterrichtsprotokoll Schule A

Unterricht vom 12. März 2002
Zu Beginn der Stunde wurde die Hausaufgabe gesprochen: die Beschreibung der Anwen-
dungsfälle. Die vorgetragenen Anwendungsfälle werden mit der gesamten Klasse diskutiert
und erörtert. Anschließend wird noch einmal der Begriff “Variation” erklärt. Es wird auch
wiederholt, warum das Anwendungsfallschema wichtig ist. Anschließend wird in den Grup-
pen weiter am Projekt gearbeitet.

Unterricht vom 15. März 2002: Klausur

Unterricht vom 19. März 2002
Die Schülerinnen und Schüler arbeiteten weiter am Computer an ihrem Projekt.
Die meisten beschäftigten sich mit der Anordnung von den Memorykarten, der Klick- oder
der Umdrehfunktion oder dem Vergleichen und Umdrehen der Karten.

Unterricht vom 9. April 2002
Der Unterricht beginnt mit der Rückgabe der Klausuren. Danach wird die Klausuraufgabe mit
allen Schülerinnen und Schülern gemeinsam erarbeitet. Das Würfelspiel wird anschließend
vorgestellt. Danach werden gemeinsam die Klassen erarbeitet und Anwendungsfälle gesam-
melt. Gegen Ende des Unterrichts wird die Lehrervariante der Klasse vorgeführt und mit der
Klasse besprochen. Als Hausaufgabe sollen die Schüler die Methode ErzeugeSpiel selbst pro-
grammieren.

Unterricht vom 12. April 2002
Zu Beginn des Unterrichts wird die weitere Vorgehensweise besprochen. Anschließend arbei-
ten die Gruppen weiter an ihrem Projekt. Gegen Ende des Unterrichts stellen die einzelnen
Gruppen ihr Projekt und die einzelnen Fehler vor. Einige Probleme können durch gemeinsa-
me Erörterung gelöst werden. Ein besonders häufiges Problem besteht im Mischen der Karten
und dem Beibehalten der Beziehungen zwischen den Karten. Als Hausaufgabe sollen die ein-
zelnen Gruppen ihr Projekt bis zur nächsten Unterrichtsstunde fertig stellen.

235

Anhang: Unterrichtsprotokoll Schule B

13.4.2 Schule B
Unterricht vom 12.09.2001
Die Schülerinnen und Schüler werden über die Spiele Plumpssack und Flaschendrehen an das
Objektspiel herangeführt, ohne dass die Objektorientierung explizit genannt wird. Dabei wer-
den zuerst die Spiele real ausgeführt. Anschließend wird gemeinsam überlegt, welche Objekte
und Aktivitäten in dem Spiel vorkommen. Diese Erkenntnis wird dann auf das CRC-Karten -
System übertragen und mit einem weiteren Beispiel eingeübt.

Unterricht vom 19.9.2001
Das Objektspiel wird eingeführt. Die Schülerinnen und Schüler spielen das Spiel für das be-
reits kennen gelernte Flaschendrehen durch.

Unterricht vom 21.09.2001
Die Objekt-Karten und das Objektspiel werden wiederholt und das Spiel noch einmal durch-
gespielt. Danach wird Dobs vorgestellt, die Schülerinnen und Schüler machen an den
Notebooks erste Bekanntschaft damit.

Unterricht vom 26.09.2001
Wiederholung objektorientierter Begriffe. Das Flaschendrehen in Dobs wird vorgestellt und
die dazugehörigen Objekt-Karten werden besprochen. Anschließend spielen die Schülerinnen
und Schüler an ihren Notebooks das vorprogrammierte Flachendrehen in Dobs. Das Spiel
wird vor der Klasse noch einmal gemeinsam durchgespielt und anschließend in Partnerarbeit
wiederholt.

Unterricht vom 28.09.2001
Die Schülerinnen und Schüler spielen an den Notebooks die als Hausaufgabe ausgedachte Er-
weiterung des Flaschendrehen durch. Das Konzept wird im Klassenverbund besprochen. Es
werden UML-Diagramme sowie die kennt-Beziehung eingeführt und an Anwendungsfällen
untersucht.

Unterricht vom 05.10.2001
Fujaba wird zum ersten Mal vorgestellt und anschließend von den Schülern selbst erforscht.
Ein Schüler erklärt im Klassenunterricht das Diagramm. Danach werden UML- Diagramme
weiter erarbeitet, Typen, Parameter und Assoziationen so wie Aktivitätsdiagramme einge-
führt. Anschließend sollen die Schüler wieder das Aktivitätsdiagramm „createSpiel“ selbst
erforschen. Die Ergebnisse werden im Unterrichtsgespräch gesammelt.

Unterricht vom 24.10.01
Wiederholung am Beamer. Es folgt ein Unterrichtsgespräch zu den Themen: CRC-Modell des
Flaschendrehens, Methode drehen, Klassendiagramm, Anwendungsfall, Klassen-Objekte, Ak-
tivitätsdiagramm. In einer Übung sollen die Schülerinnen und Schüler an den Notebooks die
Methoden createSpiel und drehen ansehen und erklären können. Diese werden später ganz

236

Anhang: Unterrichtsprotokoll Schule B

kurz erläutert. Als Hausaufgabe sollen sie Schülerinnen und Schüler ein vom Lehrer ausge-
teiltes Aktivitätsdiagramm mit Erklärungen beschriften.

Unterricht vom 26.10.01
Die Hausaufgabe wird besprochen. Die Schülerinnen und Schüler benutzen keine Fachbegrif-
fe. Der Lehrer drängt darauf und geht die einzelnen Elemente des Aktivitätsdiagramms durch.
Das Flaschendrehen wird damit abgeschlossen, ein neues Projekt – Hausbau – eingeführt. Das
Klassendiagramm wird am Beamer gezeigt, die Schülerinnen und Schüler bekommen einen
Ausdruck und sollen als Hausaufgabe das Aktivitätsdiagramm skizzieren.

Unterricht vom 31.10.01
Zur Einführung erklärt ein Schüler das Klassendiagramm des Hausbau-Projekts. Anschlie-
ßend tauschen die Schülerinnen und Schüler in Gruppen ihre Hausaufgaben
(Aktivitätsdiagramm der " baueHaus"-Methode) aus und erarbeiten je eine gemeinsame Lö-
sung, die schließlich an den Notebooks in Fujaba implementiert wird. Anhand der
"createSpiel"-Methode wird die Bedeutung des "story-pattern-with-this" erklärt, nachdem be-
reits in der Gruppenarbeit Probleme damit aufgetaucht sind. Die Stunde endet mit
Erklärungen zur Installation von Fujaba auf dem heimischen PC.

Unterricht vom 07.11.01
Zu Beginn werden Installationsprobleme von Fujaba besprochen, anschließend Regularien
(Elternsprechtag, Quartalsnoten). Der Einstieg ins Thema erfolgt, indem ein Schüler seine
"baueHaus"-Methode vorstellt. Fehler werden vom Plenum herausgearbeitet. Dabei werden
die Begriffe 'Transition' als 'Übergang', 'Story-Pattern' als Beschreibung eines Zustandes, der
gegeben sein muss, geklärt Es geht also um das Verstehen der Funktionsweise eines OO-Pro-
gramms. Weiter wird auf Zählvariablen eingegangen, wobei deutlich wird, dass ein
Verständnis von Schleifenstrukturen durchaus gegeben ist. Nach der Diskussion einer zweiten
Schülerlösung gehen die Schülerinnen und Schüler an die Notebooks, um die Ergebnisse um-
zusetzen. Hausaufgabe: "baueHaus" fertig stellen und die Methode "erstelleNeueEtage"
erstellen.

Unterricht vom 14.11.01
Zunächst wird Organisatorisches geklärt: Entweder werden Hausaufgaben in Fujaba zu Hause
erledigt oder in der Schule nach Terminabsprache bearbeitet. Als Einstieg werden die fertige
"baueHaus"-Methode und die Elemente darin besprochen. Klärung des Begriffes 'Zustandsän-
derung': Wovon? Wer ist betroffen? Wirkt sich immer auf das Gesamtsystem aus!
Anschließend stellt ein Schüler die Hausaufgabe "baueNeueEtage" vor. Problem: Die Schüle-
rinnen und Schüler gehen davon aus, dass diese Methode direkt nach "baueHaus" aufgerufen
wird, also implizit vorausgesetzt wird, dass sich der Maurer vor Aufruf der Methode in der
obersten Etage befindet. Der Lehrer führt die Schülerinnen und Schüler zu diesem Problem.
Hausaufgabe: Nachvollziehen der "baueHaus"-Methode, Fertigstellen und mit Dobs auspro-
bieren. Es werden noch Hinweise zu Dobs gegeben.

Unterricht vom 16.11.01

237

Anhang: Unterrichtsprotokoll Schule B

Die Stunde beginnt damit, dass die Schülerinnen und Schüler ihr eigenes Hausbau-Projekt mit
Dobs testen sollen. Im Anschluss sammelt der Lehrer Probleme und Wünsche an das Werk-
zeug Fujaba und gibt Hinweise zur Problembehebung. Danach stellt ein Schüler sein
Hausbau-Projekt vor, woraufhin es im Plenum diskutiert wird. Nach der Besprechung einiger
Probleme sollen die Schülerinnen und Schüler nun versuchen, an den Notebooks eventuelle
Probleme auszumerzen. Hausaufgabe: „Anforderungsdefinition“ für die Schatzsuche überle-
gen.

Unterricht vom 21.11.01
Zunächst werden einige Probleme mit der Fujabainstallation zu Hause besprochen. Als Ein-
stieg erläutert ein Schüler die Aufgabenstellung des Projekts Schatzsuche. Im
Unterrichtsgespräch wird das weitere Vorgehen besprochen: "Wie kommen wir zu einer ge-
meinsamen Lösung?" Anschließend findet eine rege Diskussion über Funktionalität und
Aussehen der Schatzsuche statt. Der Lehrer macht auf die Konsequenzen von Designentschei-
dungen aufmerksam und versucht auch stillere Schüler einzubeziehen. Schließlich revidiert er
bereits getroffene Festlegungen und drängt auf eine schnelle Fixierung der Ergebnisse: #Spie-
ler: 4; #Felder: 16; Spielende nach 4 Runden; Zug durch Wahl eines Feldes; Spielreihenfolge:
nach Spielernummer im Wechsel. Hausaufgabe: Aussehen der Schatzsuche festlegen und
"Wo tritt ein Benutzer in Aktion?".

Unterricht vom 23.11.01
In drei Gruppen sollen sich die Schülerinnen und Schüler innerhalb von 10 Minuten auf ein
CRC-Modell einigen. Anschließend werden die Modelle von den Gruppen vorgespielt und
besprochen. Der Lehrer geht in der Reflexion auch auf den Stil der Diskussion ein. Anschlie-
ßend soll festgelegt werden, wie das Modell aussehen soll. Unklar ist, wie dies
aufgeschrieben werden soll.

Unterricht vom 28.11.01
Zum Einstieg fasst der Lehrer den Projektstand zusammen, und die Schülerinnen und Schüler
sollen in Gruppen in 15 Minuten ihre Ergebnisse auf CRC-Karten zusammenstellen. Während
der Gruppenarbeit bemerkt der Lehrer, dass die Schülerinnen und Schüler ihre CRC-Karten
nicht durchspielen. Eine Gruppe (nach Qualität vom Lehrer ausgewählt) präsentiert schließ-
lich ihr Ergebnis: Durchspielen und Skizzieren von Anwendungsfällen. Der Lehrer dringt auf
Einhaltung der formalen Notationen. Fazit: Im Objektspiel werden Fehler im Modell deutlich.
Hausaufgabe: Jede Gruppe soll in der nächsten Stunde in der Lage sein, ihr Ergebnis zu prä-
sentieren.

Unterricht vom 30.11.01
Es werden Gruppenarbeitsergebnisse vorgetragen. Zwei Gruppen sprechen sich noch ab und
stellen dann ihre Ergebnisse vor. Der Lehrer fragt jeweils nach dem aktivsten Objekt. Nach
der Vorstellung der Gruppenergebnisse stellt er die Frage, wie man weiterkommt. Im Unter-
richtsgespräch einigt man sich auf eine gemeinsame Lösung. Die Schülerinnen und Schüler
bearbeiten die Aufgabe, Objekt-Karten und Anwendungsfälle zu erstellen. Hausaufgabe: Ge-
naue Abfolge der Aktivitäten angeben können.

238

Anhang: Unterrichtsprotokoll Schule B

Unterricht vom 12.12.01
Zu Beginn wird kurz auf die Klausur eingegangen. Anschließend wird die Hausaufgabe be-
sprochen: Benennung der Anwendungsfälle und Aktivitätsverlauf. Dabei macht der Lehrer
deutlich, dass hier nicht letzte Feinheiten verlangt sind. Die Schülerinnen und Schüler disku-
tieren die Anwendungsfälle. Schließlich erhalten sie den Arbeitsauftrag, in Partnerarbeit an
den Notebooks das UML-Klassendiagramm der Schatzsuche zu realisieren. Anhand der von
zwei Schülern an der Tafel skizzierten CRC-Karten und der UML-Klassen wird diskutiert un-
ter der Fragestellung: Welche Verantwortlichkeit wird Attribut, welche Methode?
Hausaufgabe: UML-Klassendiagramm realisieren mit Parametern und Typen, so wie sie die
Schülerinnen und Schüler für nötig und richtig erachten.

Unterricht vom 14.12.01
Am Beamer wird die Hausaufgabe besprochen. Die Schülerinnen und Schüler diskutieren
über das vorgestellte Modell eines Mitschülers. Der Lehrer wundert sich, dass es scheinbar
noch Unklarheiten gibt, wie man vom CRC-Modell zum Klassendiagramm kommt. Im Unter-
richtsgespräch werden bidirektionale Beziehungen geklärt. Die Schülerinnen und Schüler
diskutieren Modellvarianten. Hausaufgabe: Erstellen der Methoden „createSpiel“ und „wähle-
FeldAus“

Unterricht vom 19.12.01
In den ersten 10 Minuten sollen die Schülerinnen und Schülern ihre Hausaufgaben („create-
Spiel“, „wähleFeldAus“) an den Notebooks abgleichen. Ein Schüler stellt seine Lösung vor.
Daraus entwickelt sich eine vom Lehrer geleitete Diskussion, in der es um den Perspektiven-
wechsel Spieler als Benutzer oder als Klasse/Objekt geht: Wer wählt das Feld aus? Benutzer
oder Spieler? Hausaufgabe: Modell mit Dobs ausprobieren und verbessern und ggfs. noch
„createSpiel“ und „wähleFeldAus“ fertig stellen.

Unterricht vom 09.01.02
Das Klassendiagramm mit dem bisherigen Stand der Schatzsuche-Modellierung wird am Bea-
mer besprochen und wiederholt: Spielablauf, Schleife, wähleAus. Einige Schülerinnen und
Schüler haben zu Hause bereits das Modell fertig gestellt und Random genutzt. Die Schüle-
rinnen und Schüler erhalten die Aufgabe, den Schätzen in einer Schleife Zufallswerte
zuzuweisen. Anschließend wird das Modell mit Random (eines Schülers) am Beamer bespro-
chen. Hausaufgabe: Das Modell soll fertig gestellt werden.

Unterricht vom 11.01.02
Die Hausaufgabe wird besprochen. Dabei werden viele Dinge wiederholt und vertieft: ran-
dom, nextInt, reference, Methode wähleFeldAus mit Schreibweise der Assertion konto=,
bound, Objekte müssen sich kennen ... Da removeYou in Dobs nicht funktioniert, soll nach
Heben des Schatzes der Wert des Feldes auf 0 gesetzt werden. Dies setzen die Schüler an den
Notebooks um. Eine Gruppe versucht sich an der Spielauswertung, ihr Modell wird zwecks
Fehlersuche am Beamer präsentiert, der Fehler wird jedoch nicht gefunden.

239

Anhang: Unterrichtsprotokoll Schule B

Der Lehrer leitet dann zur Grafik über und macht schrittweise die Erstellung einer Oberfläche
vor. Beim Kompilieren treten zahlreiche nicht erklärbarer Fehler auf [Vermutung: zu alte Fu-
jaba-Version]. Hausaufgabe: Metasprachlich/logisch den Ablauf der automatischen
Spielauswertung darstellen und das Grafikprojekt ansehen und um zwei Knöpfe erweitern.

Unterricht vom 16.01.02
Es wird auf Organisatorisches eingegangen: Besuch von Didaktikern der Universität Dort-
mund, 5 Minuten zur Besprechung eines Kurstreffens. Anschließend wird auf die
Hausaufgabe eingegangen. Ein Schüler trägt sie vor, wobei der Lehrer als Kritik darauf
drängt, Klarheit in den Formulierungen walten zu lassen; er weist auch auf die Bedeutung von
Kontrollstrukturen für den Ablauf eines Programms hin. Weiter wird der zweite Teil der
Hausaufgabe besprochen, indem ein weiterer Schüler die "create"-Methode des Ampel-Pro-
jekts vorstellt. Der Lehrer erklärt die Anordnung von Grafik-Objekten im Gridlayout.
Hausaufgabe: "auswerten"-Methode aus dem Flaschendrehen kleinschrittiger beschreiben
(Vorbereitung für den Besuch der Didaktiker) und Umstellen der Ampel auf "Zeichenfläche"
und "Rechteck" statt "Fenster" und "Knopf".

Unterricht vom 18.01.02
Zunächst werden die Inhalte der letzten Stunde wiederholt. Failure/Success-Kanten werden
als bedingte Anweisung herausgearbeitet. Es wird gefragt, wozu man überhaupt eine Grafik
braucht: Um Kontakt mit dem Nutzer herzustellen’, daher nennt man es grafischer Benutzer-
schnittstelle. Anschließend sollen sich die Schülerinnen und Schüler in etwa 10 Minuten mit
der Struktur der FGrafik-Bibliothek vertraut machen, die Struktur wird anhand einer Over-
head-Folie besprochen. Dabei wird Vererbung implizit eingeführt. Sprechweise ‚Ist ein
besonderes’.
Dann stellt ein Schüler seine Hausarbeit vor: Ampel als Grafik. Der Lehrer verdeutlicht daran
noch einmal die Struktur der Bibliothek und welche Klassenbeziehungen schon in der Biblio-
thek vorhanden sind. Die geplante Aufgabe, die Schülerinnen und Schüler an den Notebooks
das Beispiel vervollständigen zu lassen, scheitert, da die Batterien leer sind. Daher wird am
Beamer ein Beispiel im Unterrichtsgespräch erstellt. Dabei werden Datentypen Boolean und
String besprochen. Als Hausaufgabe sollen die Schüler zu Hause ‚irgendetwas zeichnen’.

Unterricht vom 23.01.02
Zu Beginn kündigt der Lehrer das Ziel der Stunde an: Umgang mit der FGrafik-Bibliothek,
Zusammenfassung bisheriger Inhalte und für die nächste Stunde die Anwendung des bisheri-
gen Wissens. In einer Partnerarbeit - ausdrücklich nicht in den Notebookgruppen - sollen sich
die Schülerinnen und Schüler über Erfahrungen mit der Hausaufgabe austauschen. Anschlie-
ßend gehen sie an die Notebooks, um sich die Hausaufgaben gegenseitig vorzustellen und auf
einen gemeinsamen Stand zu bringen. Im Plenum lässt der Lehrer am Beamer nach dieser Ar-
beitsphase den Prozess CRC -> Anwendungsfälle -> UML Revue passieren und betont auf
einer Folie, wie UML losgelöst von Fujaba Sinn macht und aussieht. Auch der Prozess der
Softwareentwicklung wird durchgegangen. Hausaufgabe ist, in Gedanken durchzugehen, wel-
chen Weg man vom Problem zur UML-Klassendefinition gehen muss.

240

Anhang: Unterrichtsprotokoll Schule B

Unterricht vom 25.01.02
Der Lehrer teilt die Klasse in vier Gruppen, um die GUI für die Schatzsuche zu entwickeln.
Nach der Gruppenarbeit wird im Unterrichtsgespräch das Klassendiagramm der FGrafik
durchgesprochen und Fragen geklärt. Dann werden die Gruppenergebnisse vorgestellt. An-
schließend wird 20 Minuten an den PCs gearbeitet. Die Lösung wird am Beamer vorgestellt.
Als Hausaufgabe soll die GUI für die Schatzsuche implementiert werden.

Unterricht vom 30.01.02: ausgefallen

Unterricht vom 02.02.02: ausgefallen

Unterricht vom 06.02.02
Am Anfang erfolgt die Besprechung der Hausaufgabe zur letzten Stunde. Hierbei wird von
den Schülern eine Reihe von Problemen geäußert, insgesamt wird die Hausaufgabe von den
Schülerinnen und Schülern als zu schwierig eingeschätzt. Daraufhin kündigt der Lehrer an,
sein Stundenkonzept umzuwerfen und geht vorwiegend auf die geäußerten Probleme ein.
Dazu wird zunächst ein Schülerprojekt am Beamer gezeigt. In einem kurzen Einschub geht
der Lehrer aber zunächst auf das Klassendiagramm der FGrafik-Bibliothek ein und erläutert
es. Anschließend wird das Schülerprojekt im Plenum verbessert. In einer Partnerarbeitsphase
sollen die Schülerinnen und Schüler nun an den Notebooks ihre eigenen Projekte verbessern.
Danach präsentiert ein Schüler seine Lösung, wobei der Lehrer Kritik äußert: Keine Bezie-
hungen zwischen den eigenen Klassen und deren graphischen Repräsentanten aus der
FGrafik. Hausaufgabe ist es, diese Beziehungen im eigenen Projekt aufzubauen und es sich
nochmals gründlich anzuschauen.

Unterricht vom 8.02.02
Zur Hausaufgabenbesprechung werden zunächst Probleme aufgelistet, am Beamer wird ein
Beispiel durchgesprochen. Der Lehrer verweist kurz auf das Vorgehensmodell der SE, dann
wird Ereignissteuerung mit einem Mini-Rollenspiel eingeführt. Daraus wird an der Tafel eine
schematische Darstellung abgeleitet. Die Schülerinnen und Schüler scheinen Verständnispro-
bleme zu haben: Weshalb muss man den Horcher ‚anmelden’? (Lehrer: „Das Feld muss dem
Knopf sagen, dass es wissen will, wenn ein Ereignis stattfindet“) Anschließend wird am Bea-
mer die Realisierung in Fujaba gezeigt. Danach findet eine kurze Rechnerarbeitsphase statt.
Hausaufgabe: Wer muss bei der Schatzsuche auf Ereignisse reagieren? Was muss als Reakti-
on auf ein Ereignis passieren?

Unterricht vom 13.02.02
Am Beginn greift der Lehrer die Ereignisbehandlung auf: „Wie funktioniert sie?“ In einem
Lehrer-Schüler-Gespräch möchte er insbesondere hinaus auf den Mechanismus und die Be-
deutung eines Protokolls, d.h. Absprache über Form und Inhalt der Nachrichten.
Anschließend steht die praktische Umsetzung der Ereignisbehandlung in Fujaba im Mittel-
punkt, wozu ein Schüler das Projekt seiner Gruppe am Beamer vorstellt. Das Fujaba-Problem
der falsch gerichteten Horcher-Beziehung versucht der Lehrer auch am Quelltext deutlich zu
machen, indem er auf entscheidende Anweisungen eingeht.

241

Anhang: Unterrichtsprotokoll Schule B

Im Anschluss steht das Erweitern des Projekts im Mittelpunkt. Dabei taucht das Problem auf,
wie der (aktive) Spieler vom Feld aus erreicht werden kann. Lösung ist wohl eine Anpassung
des Klassendiagramms. Zum Ende der Stunde hin skizziert der Lehrer die Ereigniskette eines
Anwendungsfalls (Benutzer klickt Feld an) an der Tafel und erklärt sie formal, anschließend
gibt er Hinweise für die Realisierung in Fujaba, die auch Hausaufgabe ist.

Unterricht vom 15.02.02: fehlt

Unterricht vom 20.02.02
Zu Beginn geht der Lehrer auf die Fujaba-Fehlermeldungen und Probleme der Schüler ein,
die diese bei der Hausaufgabe gehabt haben. Anschließend präsentiert ein Schüler die Haus-
aufgabe; bei dieser Gelegenheit geht der Lehrer noch einmal auf die verschiedenen
Beziehungen im Klassendiagramm ein. Im Anschluss werden die Java-Namenskonventionen
thematisiert sowie, dass get- und setMethoden für Attribute von Fujaba automatisch erzeugt
werden und dass Attribute den Zustand eines Objekts wesentlich ausmachen.
Weiter teilt der Lehrer eine eigene Lösung der Schatzsuche aus, die im Wesentlichen auf dem
in der letzten Stunde Erarbeiteten aufbaut und lässt sie die Schülerinnen und Schüler durchge-
hen. Dabei fällt ihnen ein neues Attribut beim Spieler auf: „aktiv“ vom Typ Boolean. Dies
wird vom Lehrer im Zusammenhang mit dem Modell erklärt, wobei er auch auf die Methode
„klick“ im Feld eingeht, wo Failure- und Success-Transitions als Schleifenbedingungen be-
nutzt werden. Nachdem der Lehrer ein zweites Arbeitsblatt mit CRC- und UML-Ausschnitten
der Schatzsuche verteilt hat, versucht er deutlich zu machen, dass CRC-Modelle nicht unver-
rückbar sind und bei der Implementierung durch neue Anforderungen durchaus erweitert
werden müssen. Ende der Analysephase sollte jedenfalls ein erstes Klassendiagramm sein,
welches das Objektspiel als Testinstanz bestehen muss.
Hausaufgabe ist, die Schritte vom Problem zur ersten Analyse in Gedanken zu durchlaufen.
Der Lehrer weist ausdrücklich auf die Bedeutung der Erkundung (z.B. Spielen eines Spiels)
hin.

Unterricht vom 22.02.02
Die Hausarbeit wird in Partnerarbeit durchgesprochen, anschließend können die Schüler Fra-
gen stellen. Einer fragt nach dem Unterschied von Analyse und Design. Die Antwort wird
zunächst aufgeschoben. Anschließend, nach ca. 7 Minuten, beginnt ein neues Projekt: Memo-
ry. Der Lehrer hat Memory-Karten sowie Zettel und Stifte vorbereitet. Die Schüler werden in
drei Gruppen eingeteilt, können das Material nutzen und sollen das Projekt bearbeiten.
Kurzbericht Gruppe1: Schüler verteilen die Karten, spielen ein bis zwei Spielzüge durch. Sie
überlegen, wie man Karten vergleichen kann. Einwand eines Schülers: 'da würde ich noch
nicht dran denken'. Sie nehmen dann die Zettel und erstellen CRC-Karten, gehen die Klassen
durch und ordnen Verantwortlichkeiten zu. Zum Teil erinnern sie sich an Flaschendrehen,
schauen auch in ihren Unterlagen nach. Sie springen zwischen den Klassen hin und her, pro-
bieren dann ihr Modell mit einem angedeuteten Objektspiel, nutzen dabei jedoch nicht
stringent die Objektspiel-Methodik. Nach einer halben Stunde wird das Vorgehen im Unter-
richt diskutiert: Frage: Welche Phase hat die Aufgabe von Analyse und Design. Anschließend
stellen zwei Gruppen ihr Ergebnis vor, eine sagt, ihr Modell sei so ähnlich, sodass die Vor-
stellung nutzlos sei (hat aber tatsächlich als einzige die Idee gehabt, Kartenpaare durch eine

242

Anhang: Unterrichtsprotokoll Schule B

Assoziation zu modellieren). In der ersten Vorstellung gehen die Anwendungsfälle unter,
bzw. werden nicht deutlich. Der Lehrer fasst hier nach und besteht auf sauberem Objektspiel,
das eine weitere Gruppe vorstellt.
Anschließend bekommen die Schülerinnen und Schüler fünf Minuten Zeit für die Reinschrift
der Gruppenarbeitsergebnisse. Die Gruppen sollen außerdem überlegen, ob ihre Vorgehens-
weise erfolgreich war. Der Lehrer geht zu einer Gruppe, um dort zu helfen. Anschließend
wird das Problem noch ganz kurz im Unterrichtsgespräch besprochen. Hausaufgabe: Klassen-
diagramm des Modells erstellen.

Unterricht vom 27.02.02
Die Unterrichtsstunde beginnt mit der Zusammenfassung des Projekts und der konkreten Be-
schreibung der Unterrichtsziele für die nächsten Stunden. Danach gilt es in einer
Viertelstunde das UML-Diagramm für das Memory-Projekt zu erstellen und in der Lage zu
sein, dies erklären und begründen zu können. Da die Schülerinnen und Schüler sehr motiviert
sind, haben fast alle dies schon zu Hause erledigt. Ihre Ergebnisse besprechen sie aber noch
einmal mit der Gruppe. In den letzten Minuten werden die Schülerinnen und Schüler auf das
UML-Diagramm festgelegt, indem das UML-Diagramm der Gruppe ausgedruckt und dem
Lehrer übergeben wird.

Unterricht vom 01.03.02
Zu Beginn der Stunde stellt jeweils ein Schüler aus den Gruppen den aktuellen Stand der
Gruppe vor. Dabei fällt auf, dass nicht allen Gruppenmitglieder klar war, wofür die einzelnen
Elemente der Klassendiagramme (Attribute, Methoden, Assoziationen) da sind.
Der Rest der Stunde wird für die Arbeit an den Projekten genutzt. Dabei gibt es in jeder Grup-
pe Probleme mit der bound-Eigenschaft. Es ist nicht klar, wozu diese gebraucht wird. Eine
Gruppe hat auch Probleme mit Parametern. Der Gruppe ist nicht klar, dass man den Parame-
ter über den Namen ansprechen kann/muss. Stattdessen wurde versucht, ihn über eine
Zusicherung zu erreichen.

Unterricht vom 06.03.02
Die Stunde beginnt mit der Gruppenarbeit. Nach ca. 20 Minuten unterbricht der Lehrer, um
mit den Schülerinnen und Schülern über ihre Arbeitsweise zu diskutieren. Er meint, dass viele
mit „Trial & Error“ arbeiten statt geplant vorzugehen. Er verlangt von den Schülern bis zum
08.03. in der 2. Stunde eine Planung über das weitere Vorgehen. Jeder Einzelne soll sich da-
rüber klar werden, was genau er zu tun hat. Im Anschluss wird die Gruppenarbeit fortgesetzt.

Unterricht vom 08.03.02
Der Lehrer ist in der ersten Stunde nicht anwesend. Die Schülerinnen und Schüler arbeiten in
ihren drei Gruppen an den Notebooks konzentriert weiter. Zum Teil finden Absprachen in der
Gesamtgruppe (4 Personen), zum Teil in 2er-Gruppen statt. Die Schülerinnen und Schüler ha-
ben allgemein Probleme, die Algorithmik umzusetzen. Bei fast allen Gruppen läuft das
Modell, die GUI wird erzeugt, es gibt nur zum Teil zufällige Verteilung der Karten. Zum Teil
funktioniert die Ereignisbehandlung nicht, zum Teil gibt es Probleme bei der Auswertung.

243

Anhang: Unterrichtsprotokoll Schule B

Bei mindestens einer Gruppe gibt es unterschiedliche Methoden für dieselbe Funktionalität,
also mangelnde Absprachen. Am Ende der zweiten Stunde fragt der Lehrer, ob eine Gruppe
Hilfe braucht. Ein Schüler meldet sich, die anderen wollen für sich weiterarbeiten. Als Haus-
aufgabe sollen sie das Klassendiagramm zum Zeitpunkt ‚Modell funktioniert in Dobs, noch
keine Grafik’ mit der aktuellen Version vergleichen und die Änderungen klären: Warum gab
es Änderungen, war das sinnvoll? Das Ziel ist laut Lehrer, den Überblick wiederherzustellen.

Unterricht vom 13.03.02
Der Lehrer greift die Hausaufgabe auf und fordert die Schülerinnen und Schüler auf, die in
der Hausaufgabe bearbeiteten UML-Diagramme in ihr Projekt auf den Notebooks zu übertra-
gen (Ziel: systematischeres Vorgehen). Gruppe 1 kämpft mit Fehlern, die in einer relativ
komplexen Schleifenstruktur liegen. Gruppe 2 hat Probleme beim Spielfeldaufbau und bei der
Ereignisbehandlung. Gruppe 3 arbeitet an der auf den ersten Blick komplexen Methode
Feld.klick(). Schließlich tritt bei Gruppe 1 das Problem auf, dass sie meint, nach aufgedeckten
Feldern über die Nummern mit einer Schleife suchen zu müssen; niemand hat realisiert, dass
dies viel einfacher von einem Story-Pattern automatisch erledigt wird. Dieses Problem greift
der Lehrer auf und stellt das einfachere Vorgehen im Plenum an der Tafel vor: „Story-Pattern
beschreiben den Zustand, den ich haben möchte…“. Hausaufgabe: Bei Methoden, die Proble-
me bereiten, Zeile für Zeile genau aufschreiben, was passieren soll.

Unterricht vom 15.03.02
Zu Beginn der Stunde werden die Schwierigkeiten der einzelnen Gruppen bei der Program-
mierung des Projekts erläutert und mit der gesamten Klasse eine Lösung gesucht. Die
wesentlichen Probleme sind die Aktualisierung der Oberfläche nach einem Zug und das Wie-
derumdrehen der Karten nach einem erfolglosen Versuch. Nach dieser Besprechung arbeiten
die Schülerinnen und Schüler an den Notebooks, um die Fehler zu beheben. Als Hausaufgabe
wird die Fertigstellung des Projekts unter den einzelnen Projektmitgliedern aufgeteilt.

Unterricht vom 20.03.02
Zu Beginn bespricht der Lehrer zunächst die Anforderungen der Klausur am Ende der Woche.
Anschließend erkundigt er sich über den Projektstand und Probleme in den einzelnen Grup-
pen. Er nennt als Arbeitsauftrag für die Gruppen, sich Notizen über das Vorgehen im Projekt
und über Lösungsstrategien insbesondere bei der Fehlerfindung und –behebung zu machen.
Zum Stand der Projekte in den Gruppen: Gruppe 1 hat bereits eine lauffähige Version. Bei
Gruppe 2 werden die Werte der Karten noch angezeigt, und es wird nicht an den nächsten
Spieler weitergegeben. Gruppe 3 versucht einen Fehler bei der Punkteverteilung zu finden.
In Anbetracht der fortgeschrittenen Zeit fasst der Lehrer zum Ende der Stunde die Ergebnisse
der Gruppenarbeit aus seiner Sicht selbst zusammen. Anschließend stellt er im Plenum die
Frage: „Wie geht man beim Auftreten von Fehlern vor?“ und sammelt die Äußerungen der
Schülerinnen und Schüler an der Tafel. Als Hausaufgabe bleibt über die Ferien, sich Gedan-
ken zum Projekt zu machen und es ggf. fertigzustellen.

Unterricht vom 22.03.02: Klausur

244

Anhang: Unterrichtsprotokoll Schule B

Unterricht vom 10.04.02
Zu Beginn der Stunde wird die Klasse in Klausurschreiber und Nicht-Klausurschreiber aufge-
teilt. Diejenigen, die eine Klausur geschrieben haben, bekommen diese zurück und
besprechen sie mit dem Lehrer. Die anderen arbeiten an dem Gruppenprojekt weiter. Nach 20
Minuten kommen dann auch die Klausurschreiber in ihre Gruppen zurück und besprechen mit
der Gruppe das weitere Vorgehen. Das Ergebnis ist, dass alle Gruppen bis zur nächsten Un-
terrichtsstunde fertig sein werden. Als Hausaufgabe wird der ganzen Klasse die
Klausuraufgabe, das Würfelspiel, vorgestellt. Zu diesem Spiel sollen die Schülerinnen und
Schüler bis zur nächsten Stunde die CRC- und Objekt-Karten so erstellen, dass mit ihnen ein
komplettes Objektspiel möglich ist.

245

Anhang Kurzfassung

13.5 Kurzfassung der Arbeit
Lehr- und Lernprozesse in der informatischen Bildung und im Informatikunterricht werden in der In-
formatikdidaktik im Hinblick auf ihre effektive Gestaltbarkeit untersucht. Im Zusammenspiel mit
empirischer Forschung kann die lernpsychologisch und fachdidaktisch begründete Entwicklung von
Lernkonzepten zur didaktischen Theoriebildung beitragen.
Anhand der Entwicklung und Evaluation eines Unterrichtskonzepts für den Einstieg in die Objektori-
entierung im Anfangsunterricht der Sekundarstufe II soll ein Beitrag zu dieser Problematik geleistet
werden.
Überblickswissen und die Grundlagen für den weiteren Unterrichtsverlauf sollen im Anfangsunterricht
vermittelt werden. Dieses geschieht üblicherweise in Form von einführenden Programmierkursen. Pro-
blematisch daran ist, dass ein 'Lernen auf Vorrat' erfolgt und die eigentlichen Inhalte und Lernziele des
Informatikunterrichts erst später thematisiert werden. Diese liegen gemäß dem informationszentrierten
Ansatz im Bereich des Modellierens, legt man den systemorientierten Ansatz zugrunde im Bereich der
Gestaltung soziotechnischer Informatiksysteme. Damit Modellierung und Gestaltung nicht auf der
schwer verständlichen 'theoretisch-abstrakten' Ebene bleiben, sollten Entwurf und Implementation
exemplarisch erfahrbar werden. Aus dieser Forderung resultiert, dass Implementationswissen vermit-
telt werden muss. Die Fragestellung lautet, ob dieses Implementationswissen im Zusammenhang mit
der Thematisierung der eigentlichen Unterrichtsinhalte erlernbar ist oder ob dazu die üblichen 'Sprach-
kurse', in denen die grundlegenden Sprachstrukturen vermittelt werden, notwendig sind.
In der Arbeit wird zur Prüfung dieser Frage ein empirisches Untersuchungsszenario entwickelt.
Zunächst werden die Lehr- und Lernkonzepte zum Thema Objektorientierung im Anfangsunterricht
analysiert. Danach wird anhand der Ergebnisse sowie fachdidaktischer und lernpsychologischer An-
sätze ein Unterrichtskonzept entwickelt. Das Konzept verbindet den systemorientierten und den
informationszentrierten Ansatz der Informatikdidaktik und folgt in der unterrichtsmethodischen Aus-
gestaltung dem Konzept des Cognitive Apprenticeship. Dabei werden Entwicklungswerkzeuge
(Fujaba und Dobs) als Lernmedien in die Unterrichtsmethodik integriert sowie ein Phasenmodell des
Unterrichtsablaufs entwickelt.
Für die Untersuchung des Konzepts werden Untersuchungsmethoden und -instrumente entwickelt.
Nicht nur die Lernwirksamkeit des Konzepts wird geprüft, auch die spezifischen Bedingungen des
Lehrens und Lernens von Objektorientierung im Anfangsunterricht, die zur Weiterentwicklung des
Konzepts und zur didaktischen Theoriebildung beitragen können, werden untersucht.
Dass es den einzelnen Schülergruppen mit diesem Konzept gelungen ist, ein Projekt zu modellieren
und zu implementieren, ist ein wesentliches Ergebnis der Untersuchung. Die Schülerinnen und Schüler
haben Grundkonzepte der Objektorientierung erlernt, Modellierungskenntnisse und ein differenzierte-
res Bild von Softwareentwicklung erworben.
In einem weiteren interpretativen Auswertungsschritt können mögliche Wirkungszusammenhänge
identifiziert werden: Zum einen stützen die verwendeten Werkzeuge, Notationen und die Entwick-
lungsmethodik den Lernprozess, indem die vielfältigen Aspekte der Objektorientierung auf die
Kollaboration zwischen Objekten konzentriert werden. Das 'Denken in Objektstrukturen' ermöglicht
selbstständiges Arbeiten und erleichtert das Erlernen der syntaktischen Strukturen.
Zum anderen verbindet das Unterrichtskonzept die Visualisierungsmöglichkeiten der Werkzeuge mit
dem Konzept der instruktionalen Erklärung und ergibt so ein 'multimediagestütztes Cognitive Appren-
ticeship', das nach dem Ansatz des Wissenserwerbs mit Multimedia zu effektiver Wissensvermittlung
führt.

246

