

Scanning probe microscopy on liquid crystals and heterogeneous organic structures

Thorsten Röder

The scope of this thesis was the investigation of liquid crystals and heterogeneous organic structures with scanning probe techniques, like scanning force microscopy, scanning near-field optical microscopy and confocal microscopy.

The defects in a nematic liquid crystal were observed. At the same time the optical appearance and the topography were obtained.

On the focal conics texture in the chloesteric phase the well-known double spirals and heretofore unknown inverse spirals were observed. The B7 Phase of bent molecules shows steps and periodic structures, which indicate a layer structure and a helical superstructure.

It has been found, that the solar cells based on a poly-phenylene-vinylene derivate and fullerene derivate show a heterogeneous structure depending on preparation conditions. The extinction diffusionlength in the poly-phenylene-vinylene derivate was determined. A new method to modify the interface between the electron-acceptor and-donator was developed.

The pores of macroporous silicon were filled with a glassy-state nematic liquid crystal. After etching the silicone, the director field was determined by confocal microscopy. Polymer monodisperse nanoparticels were synthesized to obtain photonic crystals.