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1 Einleitung

In den vergangenen Jahrhunderten haben Forscher in der Optik, einem elementaren Teilgebiet
der Physik, immer wieder fur aufsehenerregende Entdeckungen gesorgt. Beginnend mit der
Beschreibung des Lichts als Welle durch Huygens waren die optischen Technologien nicht
aufzuhalten. Digitalkameras, Compact Discs, Flussigkristalldisplays und Laserpointer geho-
ren zu unserem Alltag. Datentbertragungen geschehen nicht mehr mit Hilfe von Kupferdrah-
ten sondern Uber ein Netz von Glasfaserkabeln, welches die Erde umspannt und gigantische
Datenmengen mit Lichtgeschwindigkeit transportiert. Ausserdem bildet die optische Spektro-
skopie die Basis fur die experimentelle Forschung in allen naturwissenschaftlichen Bereichen.

In den letzten 10 Jahren hat sich der Begriff ,Photonik” in der physikalischen Forschung
durchgesetzt. Es handelt sich dabei um einen Komplex von Wissensgebieten, die sich mit
Informationsubertragung und -verarbeitung mittels Licht befassen. Die Forschung an ,pho-
tonischen Kristallen® ist ein wichtiger Bestandteil der Photonik. Bei photonischen Kristallen
handelt sich um periodische Strukturen mit Gitterkonstanten im Bereich der Wellenlange des
sichtbaren Lichts. Derartige Stukturen, die einen ausreichenden dielektrischen Kontrast auf-
weisen, besitzen photonische Bandlicken, so dass die Ausbreitung von elektromagnetischen
Wellen in einem bestimmten Intervall von Frequenzen verboten ist [1, 2]. Das Auftreten ei-
ner Bandlucke fur Photonen in Photonischen Kristallen stellt ein Analogon zur Energieliicke
zwischen dem Valenz- und dem Leitungsband von Elektronen in einem Halbleiter dar. Daraus
ergibt sich die Grundlage fur potentielle Anwendungen im Bereich der optischen Signalverar-
beitung. Ausserdem eignen sich Photonische Kristalle zum Beispiel sehr gut als Wellenleiter,
Frequenzfilter, Kollimatoren und Superprismen [3].

Fur potentielle Anwendungen muss ein photonischer Kristall abstimmbar sein. Fur die Her-
stellung eines Frequenzfilters missen beispielsweise die Strukturen auf wenige Angstrom ge-
nau gefertigt werden, da sonst die gewiinschte ausgekoppelte Wellenlange um mehrere Mi-
krometer verfehlt wird. Dies ist jedoch mit einem hohen Aufwand verbunden oder bisher
technisch unmoéglich. Der photonische Kristall muss daher abstimmbar sein, um die fur ihn
bestimmten Anforderungen zu erfullen. Darlber hinaus ist in aktiven optischen Bauelementen
ein thermisch, elektrisch oder magnetisch induziertes Schalten der dielektrischen Eigenschatf-
ten erforderlich.
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Flussigkristalle als Teil des photonischen Kristalls sollten sich fur diese Aufgabe gut eignen,
dasie eine hohe Anisotropie der Brechungsindizes besitzen. Flussigkristalle besitzen doppel-
brechende Eigenschaften, welche stark von der Temperatur abhangen. Die optische Achse von
Flussigkristallen lasst sich durch das Anlegen eines aul3eren magnetischen oder elektrischen
Feldes umorientieren. Da die optischen Eigenschaften eines photonischen Kristalls essentiell
von den Brechungsindizes der beteiligten Materialien abhéangen, ist es prinzipiell mdglich,
diese in einem flussigkristall-haltigen photonischen Kristall durch die Veranderung der Tem-
peratur [4] oder durch &ul3ere Felder [7] zu beeinflussen.

Die vorliegende Arbeit beschéftigt sich mit periodischen, heterogenen Nanostrukturen, de-
ren eine Komponente ein Flissigkristall ist. Die realen Méglichkeiten und Grenzen dieses
Effektes wurden im Rahmen dieser Arbeit an zwei Systemen untersucht. Einerseits wurden
Kolloidkristalle (ktinstliche Opale) mit einem Flussigkristall infiltriert und charakterisiert, an-
dererseits wurden mikrofabrizierte Strukturen aus Silizium verwendet. Neben der spektrosko-
pischen und elektrooptischen Charakterisierung wurden Beugungsexperimente mit konver-
gentem Licht durchgefihrt.
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2.1 Photonische Kristalle

2.1.1 Grundkonzepte und Dimensionalitat

Strukturen, die eine periodische Modulation des Brechungsindexes mit einer Gitterkonstante
in der GroRRenordnung der Wellenlange von sichtbarem Licht besitzen, kdnnen eine photo-
nische Bandliicke aufweisen, das heil3t einen bestimmten Energiebereich in dem die Aus-
breitung von Lichtwellen verboten ist [1, 2]. Dies stellt ein Analogon zur Energiellicke zwi-
schen Valenz— und Leitungsband fir Elektronen in einem Halbleiter dar. Es ist zweckméaRig,
eindimensionale (1D), zweidimensionale (2D) und dreidimensionale (3D) photonische Kiri-
stalle zu unterscheiden (Abb. 2.1). Eine Schichtfolge von zwei Materialien stellt einen 1D
photonischen Kristall dar. Bei 2D photonischen Kristallen existiert eine Brechungsindexmo-
dulation in der Ebene, und bei 3D photonischen Kristallen eine periodische Modulation in
allen drei Raumrichtungen. Treffen elektromagnetische Strahlen auf einen photonischen Kri-

1-D 2-D 3-D
&£ P v
yral

i

Abbildung 2.1: Beispielefir ein—, zwei— und dreidimensionale photonische Kristalle [12].

stall, werden sie gestreut. Strahlen mit deutlich groReren Wellenlangen als die Gitterkonstante
des photonischen Kristalls spiren nur ein Medium mit einem effektiven Brechungsindex. Ist
die eingestrahlte Wellenlange jedoch vergleichbar oder kleiner als die Gitterkonstante, so tritt
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Bragg—Beugung auf. Ist der dielektrische Kontrast gentigend hoch, so beschrankt sich dieses
Beugungserhalten nicht nur auf singulére Frequenzen, sondern dominiert das optische Ver-
halten in Frequenzintervallen (photonische Stopbander) und noch weitere Phanomene, z.B.
eine ungewdhnliche Dispersion oder eine extrem geringe Gruppengeschwindigkeit treten in
Erscheinung.

2.1.2 Eigenwertgleichungen und Eigenfunktionen

Um die Dispersionsrelation(k) zu erhalten, geht man zunéchst von den Maxwellgleichungen
aus:

0-B(r,t) =0 (2.1)
Ox E(r,t) + aBg’t) ~0 2.2)
O-D(r,t) =p (2.3)
O x H(rt) — aDéI’t) ~3 (2.4)

Firkunftige Rechnungen werden folgende Vereinfachungen und Zusammenhé&nge angenom-
men [23]:

1. Wir beschéaftigen uns ausschlief3lich mit optisch nichtmagnetischen Materjakern:
2. Die Materialien sind optisch isotrog:|| D

3. Esexistiert keine Absorption. Die Dielektrizitatskonstaaits real, und in dem betrach-
teten Bereich gibt es keine Frequenzabhéngigkéitw) ~ (r)

4. Es existieren keine freien Ladungstrager und keine Lichtquegllen0;J = 0

Die Maxwellgleichungen werden zur Berechnung komplexer ebener Wellen mit dem Wellen-
vektork und der Frequen@ verwendet:

H(r,t) = H(r)e® = hekr .ot (2.5)

E(r,t) = E(r) ¥ = ek’ . g%t (2.6)

H undE stehen senkrecht zur Ausbreitungsrichtung. Es handelt sich demnach um eine Trans-
versalwelle. Die dielektrische Verschiebubdgind das elektrische Felelstehen in der Bezie-
hungD(r) = gog(r) E(r) . Die magnetische Flussdichte und die magnetische Feldstérke stehen
in einer ahnlichen Beziehung, jedoch ist bei den meisten Materialien, die von Interesse sind,
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die magnetische Permeabilitat eins. Daraus fBlgt poH. Hierdurch vereinfachen sich die
Maxwellgleichungen (2.2) und (2.4) wie folgt:

OxE(r) + iwpgoH(r) = 0 (2.7)

OxH(r) — iwepe(r) E(r) = 0 (2.8)

Die Rotationsgleichung (2.8) wird durctr) geteilt und man lasst auf die Gleichung eine
Rotation von links wirken, [6st Gleichung (2.7) nddhx E(r) auf und setzt diese in Gleichung
(2.8) ein. So erhalt man:

1 w?
Bei Gl (2.9) handelt es sich um ein Eigenwertproblem, welches aus der Quantenmechanik
bekannt ist, und es ist meist guinstiger, die Operatorschreibweise zu benutzen:

OH(r) = gH(r) (2.10)
Der OperatorG_) beschreibt den Kristallaufbau. Nur die EigenvektokHnwelche die Glei-
chung (2.10) erftllen, beschreiben elektromagnetische Wellen, die sich im Kristall ausbreiten
kénnen. Alle anderen Vektoren sind verboten. Mit der Losung der Eigenwertgleichung kann
bestimmt werden, wie die Gesamtwellenform, welche im Kristall erlaubt ist, aussieht. Uber
Symmetrieoperatoren kbnnen Symmetrieeigenschaften, das heil3t das ungefdhre Aussehen der
Welle, bestimmt werden.
In einem Kristall existiert eine diskrete Translationssymmetrie:

g(r) = e(r+R) (2.11)

Mit R =1la, wobeia ein primitiver Gittervektor ist. Hieraus folgt fir den Ansatz von Gleichung
(2.5)

w(k) = w(k + mb) (2.12)

mit b als primitiven reziproken Gittervektor. Daraus ergibt sich, dass man nur die erste Bril-
louinzone betrachten muss. In der Festkorperphysik wird meist das Bloch’sche Theorem be-
nutzt. Es handelt sich dabei eigentlich nur um eine N&herung, aber es erklart sehr gut die
physikalischen Sachverhalte fur periodisch aufgebaute Strukturen:

Hi(r) = € unk(r) (2.13)
mit Uk (r) = unk(r +la) undnfir den Bandindex. Einsetzen von Gleichung (2.13) in Glei-
chung (2.9) ergibt folgende Gleichung:

w(k)?

: k)2 .
0 x {%D x &K U (1) } = Té‘“ Unk (") (2.14)
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Wendet man die Rotationen in Gleichung (2.14) eif anund teilt anschleiRend dure’
so erhélt Gleichung (2.14) die folgende Form:

: 1. w(k)?
(ik +0) x {—(Ik +0) x umk(r)} = (2) Unk(r) (2.15)
e(r) C
Esgibt nun einen neuen hermitischen Operﬁgrder aufu wirkt:
— w(K 2
Sctni(r) = 28 (1 216)

Um die Eigenfunktionen eines Kristalls zu berechnen, muss man die passende Blochfunkti-
on fur das ausgesuchte System konstruieren und die Eigenwertgleichung 16sn) Diad
unk(r) Gitterperiodisch sind, kénnen sie in eine Fourierreihe entwickelt werden:

Unk(r) = gueeie'r (2.17)

1

m - gzeeiG-f (2.18)

G stellt einen reziproken Gittervektor dafg und ug sind die Fourierkoeffizienten fué(%
undun(r). Streng genommen besitzen Fourierreihen unendlich viele Glieder. Man verwen-
det jedoch nur eine bestimmte Anzddlvon Gliedern, und zwar so viele, wie notwendig
sind, um den periodischen Verlauf ve(r) ausreichend gut darzustellen. Besitzt der photo-
nische Kristall einen hohen Brechungsindexkontrast mit scharfen Stufen, dann benétigt man
relativ viele Glieder der Fourierreihe. Die Ansatze (2.17) und (2.18) werden in Gleichung
(2.16) eingesetzt. Nach einem Koeffizientenvergleich erhéalt maN-ediimensionales homo-
genes Gleichungssystem ritEigenwerterw, k (k) . Flr allek—Vektoren werden die zugeho-
rigenwy i (k) bestimmt. Diese Werte kdnnen in ein Diagramm eingetragen werden, wenn man
einen bestimmten Pfad fiir die-Werte innerhalb der ersten Brillouinzone wahit. Ublicher-
weise werden diese Diagramme in normierter Form dargestellt. Auf der Ordinate werden die
normierten Frequenzen ¥ dagestellt. Fiir ein konstantesbilden die Eigenwerteo, i (k)

Bander aus, so dass man diese Diagramme mit den Banddiagrammen aus der Halbleiterphysik
vergleichen kann. Hier entspricht dieses Banddiagramm einer Dispersionsrelation fur elektro-
magnetische Wellen in der Kristallstruktur. Diese Methode wird auch ,Methode der ebenen
Wellen” genannt, da die Glieder der Fourierreihe ebene Wellen beschreiben.

Aufgrund der normierten Darstellung fur die Frequenzen in Banddiagrammen muss man auf
eine Besonderheit hinweisen: Die Grundgleichungen sind skalierbar. Das bedeutet, dass es
bei der Berechnung einer Dispersionsrelation nur auf den Brechungsindexkontrast und auf die
Porositat der photonischen Kristalle ankommt. Aufgrund dieser Eigenschaft ist es moglich, ei-
nige physikalische Effekte, die fir den Mikrowellenbereich bereits bekannt sind, auf kleinere
photonische Strukturen zu Ubertragen. Bei einigen Berechnungen funktioniert diese beliebige
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Skalierbarkeit jedoch nicht. Wenn es beispielsweise um Emitter oder um nichtlinineare Ma-
terialieninnerhalb der Struktur geht, muss man die Gitterkonstanten mit einbeziehen. Nur so
kénnen alle Wechselwirkungen bertcksichtigt werden.

2.1.3 Eindimensionale photonische Kristalle

1-Dimensionale photonische Kristalle besitzen eine periodische Schichtstruktur und stellen
das einfachste Beispiel fur photonische Kristalle dar. Der Brechungsindex veréandert sich pe-
riodisch in nur einer Raumrichtung. Derartige Strukturen sind als Bragg—Reflektoren bereits
langer bekannt. Diese kdnnen sehr prazise gefertigt werden und sind zum Beispiel in der
Lasertechnik von groRem Nutzen. Zur Begriindung fur die Existenz einer photonischen Band-
licke kann man die Bragg—Bedingung heranziehen:

mA=2d VmeN (2.19)

Ist die doppelte Gitterperiode 2ein ganzzahliges Vielfaches der Wellenlarige- Ao/n, so

wird die Lichtwelle innerhalb des photonischen Kristalls reflektiert, und es kommt zur kon-
struktiven Interferenz. Ist die Bragg—Bedingung fiir= 1 erfullt (k = 11/d), entsteht eine
stehende Welle (Abb. 2.2). Dabei gibt es zwei Moglichkeiten:

a b
C d

Abbildung 2.2: Darstellungdes Prinzips der zwei stehenden Wellen. a) und b) zeigt die elektrische Feldvertei-
lung der beiden Moden an den Bandkanten. ¢) und d) zeigt die Intensitaten fiir die Feldverteilungen. Die Farben
rot und blau stellen Bereiche mit unterschiedlichem Brechungsindex dar.

Die Schwingungsbéauche befinden sich entweder in den Schichten mit hohem oder niedrigem
Brechingsindex. Somit ist die Intensitat der einen Welle im Bereich des hohen Berechungsin-
dexes hoher, und die andere Welle hat eine hdhere Intensitéat in den Bereichen mit niedrigem
Brechungsindex. Daraus folgt, dass diese beiden stehenden Wellen unterschiedliche Frequen-
zen besitzen. Die Welle, die eine grol3ere Intensitat im Medium mit dem niedrigen Brechungs-
index besitzt, hat eine hohere Frequenz als die Welle, deren Intensitatsmaxima sich im Gebiet
mit dem hohem Brechungsindex befinden. Zwischen diesen beiden Frequenzen kdnnen keine
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elektromagnetischen Wellen im photonischen Kristall propagieren. Dort existiert eine Band-
[Ucke.

2.1.4 Zweidimensionale photonische Kristalle

Wenn man mehrere gleichartige Stédbe mit einem Brechungsimdearallel zueinander pe-
riodisch anordnet und wenn die Umgebung einen nprerschiedenen Brechungsindex be-

sitzt, so kann es zu einer photonischen Bandlicke in der Ebene kommen. Dabei muss man die
Polarisationszustédnde des eingestrahlten Lichts bertcksichtigen. Man spricht von einer TE—
Polarisation (transversal elektrisch) oder H—Polarisation, wenn das oszillierende elektrische
Feld senkrecht zur L&ngsachse der Stabe liegt, von einer TM—Polaisation (transversal magne-
tisch) oder E—Polarisation, wenn das oszillierende magnetische Feld senkrecht zur Langsachse
der Stabe liegt. In der Bandstruktur eines photonischen Kristalls werden immer beide Po-

ole —

a) b)
Abbildung 2.3: Darstellungeines 2D hexagonalen Porengitters und b) k—Vektoren in der 1. Brillouin—Zone.

larisationszustande betrachtet, da sie beide eigene Bandstrukturen besitzen, die Bandliicken
beinhalten kdnnen. Eine vollstandige Bandllcke tritt nur auf, wenn sich die Bandlticken von
beiden Polarisationszustanden in einem Spektralbereich Uberlappen.

Nicht nur der Polarisationszustand, sondern auch die Einstrahlrichtung auf den Kristall muss
bei spektral aufgeldsten Reflexions— oder Transmissions—Messungen bertcksichtigt werden.
In Abbildung 2.3 ist ein hexagonales Porengitter mit der zugehdrigen 1. Brillouin—Zone dar-
gestellt. Messungen werden meisfir M— oder in — K—Richtung durchgefihrt. Abbildung

2.4 zeigt eine Bandstruktur eines zweidimensionalen photonischen Kristalls mit hexagonaler
Symmetrie. Beispiele fur 2—dimensionale photonische Kristalle sind pordses Silizium (Abb.
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Abbildung 2.4: Bandstruktuieines zweidimensionalen photonischen Kristalls mit hexagonaler Symmetrie. Die
Struktur besteht aus Luftporen in einem Dielektrikum mit einem Brechungsindexxdh4. Das r/a—\Verhaltnis
betragt 0,4. Die Bandstruktur wurde mit dem Programm MIT Photonic Bands berechnet [40].

2.5) oder pordses Aluminiumoxid. Dabei werden in einen Silizium— oder Aluminium-Wafer
periodisch angeordnete Poren geétzt. Nach einer lithographischen Vorstrukturierung der Ober-
flache kann dieser Atzvorgang entweder nasschemisch oder iiber ein lonenstrahlatzverfahren
erfolgen. Mit lithographischen Methoden lassen sich in diese Strukturen gut Defekte einfligen,
so dass es maglich ist, Wellenleiterstrukturen und Strahlteiler in die photonischen Kristalle
einzubauen.
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Abbildung 2.5: REM—Aufnahmeeines breitenmodulierten Streifens von makroporésem Silizium. Durch das
Auslassen von einigen Poren wurde hier eine Wellenleiterstruktur eingebaut [13].
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2.1.5 Dreidimensionale photonische Kristalle

Es gibt unterschiedliche 3—dimensionale photonische Kristalle. Einige davon werden in die-
sem Kapitel vorgestellt.

Yablonovite

Die erste Struktur, fir die eine vollstandige Bandliicke berechnet wurde, war die Yablonovite—
Struktur [15] (Abb. 2.6). Hierbei werden an definierten Stellen in drei verschiedenen Richtun-
gen Locher in ein dielektrisches Material gebohrt. Der Winkel zwischen den Bohrrichtungen
betragt 120. Das Resultat ist eine Diamantstruktur. Yablonovitch stellte diese Struktur her

[16] und konnte eine vollstdndige photonische Bandliicke nachweisen, welche jedoch im Mi-
krowellenbereich lag, da die Gitterkonstante relativ grof3 war.

Abbildung 2.6: Schematische Dartellung einer Abbildung 2.7: REM-Aufnahmevon einem Kolloid-
Yablonovite—Struktur [15]. An ihr wurde erstmals ei- kristall. Der Kristall besitzt eine fcc—Gitterstruktur
ne vollstandige photonische Bandliicke nachgewiesefi7].

[16].

Kolloidkristalle

Kolloidkristalle oder auch ,kinstliche Opale” (Abb. 2.7) sind einfach herzustellen. Sie be-
stehen aus monodispersen Kugeln, welche einen Durchmesser vonnea.b&01000hm
Durchmesser haben. Die Kugeln werden in Lésung auf einem glatten Substrat oder einem
dem Kugeldurchmesser entsprechenden strukturierten Substrat (Templat) aufgebracht und ge-
trocknet. Auf einer unbehandelten, glatten Oberflache bilden die Kugeln durch Selbstorgani-
sation ein kubisch flachenzentriertes Gitter (face centered cubic, fcc) und wachsen senkrecht
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zur Substratoberflache in (1,1,1)-Richtung [21, 22]. Kolloidkristalle reflektieren Licht nach
demBragg’'schen Gesetz:

A3 = 2ngttdhi (2.20)

Gleichung (2.20) entspricht Gleichung (2.19), woblgi die Schichtabstande im Kristall mit
den Miller—Indizeg hkl) bezeichnet. Fir einen kubischen Kristall mit der Gitterkonstaaten

gilt:
dnt = a(h?+k?412)71/2 (2.21)

Der effektive Brechungsindex 1 berechnet sich ndherungsweise wie folgt [18]:

err = (3 fi n?)
Dabei ist die Summe Uber alle Materialien des heterogenen Systems zu bilden. Die GroR3e
fi bezeichnet den Fullfaktor des jeweiligen Materials mit dem Brechungsinddxs gibt
unterschiedliche Materialien, aus denen die Kugeln bestehen kénnen. Sehr gebrauchlich sind
Kugeln aus Si@. Aber auch Polymerkugeln, zum Beispiel aus Poly(methylmethacrylat) (PM-
MA), werden benutzt.

Es ist moglich, Kolloidkristalle zu invertieren. Die R&ume zwischen den Kugeln werden mit
einem Material gefillt und die Kugeln werden anschliel3end herausgeldst. Invertierte Opale
mit einer fcc—Struktur besitzen bei ausreichend hohem Brechungsindexkdwir@isie voll-
standige Bandllcke in allen Raumrichtungen [19](Abb. 2.8).

1/2 (2.22)
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Abbildung 2.8: Bandstruktuieines Kolloidkristalls aus Luftkugeln in einer Siliziummatrix [19].
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Wood-—pile—Struktur

Die Wood—pile-Struktur (Abb. 2.9) besteht aus mikroskopisch kleinen Staben, meist aus Sili-
zium, die in einer Schichtstruktur gestapelt sind. Die Herstellung einer derartigen Struktur ist
bislang sehr aufwandig, wenn auch das Einbringen von Defekten, z.B. durch Weglassen eines
Stabchens, vergleichsweise einfach ist.

Abbildung 2.9: Elektronenmikrostipische Aufnah-  Abbildung 2.10: Elektronenmikros@pische Aufnah-
me eines photonischen Kristalls mit einer Wood—pile—me eines Schnittes durch einen photonischen Kristall
Struktur [20]. aus pordsem Silizium mit moduliertem Poren [25].

Makropordses Silizium mit modulierten Poren

Eine weitere 3D-Struktur kann man mit makroporésem Silizium mit periodisch moduliertem
Porendurchmesser realisieren (Abb. 2.10). Die erste Brillouin—Zone wird vom 2D-Kristall
auf den 3D—KTristall erweitert (Abb. 2.11). Diese Strukturen besitzen eine Bandlicke entlang
derl — A—Richtung, also entlang der Porenachse. Zur Erklarung dieser Bandlucke ist es aus-
reichend, den eindimensionalen Fall zu betrachten: Zerlegt man den photonischen Kristall in
Ir — A—Richtung in Schichten, so erhalt man fur jede Schicht eine effektive Dielektrizitdtskon-
stante (g¢+), die sich aus der Maxwell-Garnett Relation berechnen lasst [27]:

€eff —&si fair(Eair — €si)

Eeft +26si  Eair + 2€s;

(2.23)

Aus dieser Betrachtung heraus resultiert eine eindimensionale periodische Multilayerstruktur
(Abb. 2.12), welche einem Bragg—Reflektor &hnelt. Die Poren in den modulierten Strukturen
besitzen jedoch keinen perfekt kreisformigen Querschnitt. Es handelt sich vielmehr um Qua-
drate mit abgerundeten Ecken (Abb. 2.13). Dies hat zur Folge, dass die urspriingliche sechs-
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\/

Abbildung 2.11: Erste Brillouin—Zone eines hexagonalen Kristallgitters mit seinen Hochsymmetriepunkten
[25].

Abbildung 2.12: Schematisch®arstellung ei- Abbildung 2.13: SEM-Aufnahmevon makro-
ner Multilayerstruktur, auf die der photonische pordsem Silizium mit Porenmodulation in der
Kristall mit Porenmodulation reduziert wurde. Aufsicht. Die Poren besitzen einen quadrati-
Jeder Farbton symbolisiert edps ¢, welches sich schen Querschnitt mit abgerundeten Ecken.

aus der Maxwell-Garnett Relation berechnet.

zahlige Symmetrie auf eine zweizahlige Symmtrie reduziert wird. Das bedeutet flr spektro-
skopische Untersuchungen, dass die Bandlicke entlang der Porenachse abhéangig vom Polari-
sationszustand der einfallenden Strahlung ist [25]. In den noch folgenden Ausfiihrungen be-
zeichnet die ,Polarisationrichtung°0ein oszillierendes elektrisches Feldlin- K-Richtung

und bei der ,Polarisationrichtung 90 liegt das oszillierende elektrische Feld des Lichts in

derl — M—Richtung.
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2.2 Flussigkristalle

2.2.1 Allgemeines

Fllssigkristalle vereinen typische Eigenschaften von Flussigkeiten und von Festkorperkristal-
len miteinander. Sie besitzen sowohl anisotrope als auch viskose Eigenschaften. Flussigkri-
stallphasen werden aus Molekuilen gebildet, die entweder eine ausgepragte Stabform (kala-
mitische Flussigkristalle) oder Scheibenform besitzen (diskotische Flussigkristalle). Da die
Ordnung der Flussigkristallphasen zwischen der einer Flussigkeit und der eines Kristalls liegt,
nennt man die flissigkristallinen Phasen auch ,Mesophasen”. In Abbildung 2.14 ist eine flus-

N 1y
T

I " N

b) c)

Abbildung 2.14: SchematischBarstellung der Zustande: a) kristallin, b) flissigkristallin und c) flissig—isotrop.

sigkristalline Phase im Vergleich zur kristallin—festen und zur isotrop—fliissigen Phase dar-
gestellt. In der flissigkristallinen Phase besitzen die Molekile eine bevorzugte Orientierung.
Die Maier—Saupe—Theorie [43, 44] liefert uns Informationen tUber die Parallelitdt der Moleku-
le. Diese kann durch den von Tsvetkov [54] eingefiihrten Ordnungspara8ileéscchrieben
werden:

S= %(30052@—1> (2.24)

Der Klammerausdruck steht fur den Mittelwert, der durch gewichtete Aufsummierung tber
alle Winkel © fur die Molekuile entsteht. Bei vollstandiger Ordnung ist der Vst 1 und
im isotropen Fall istS= 0 [43]. Aufgrund thermischer Schwankungen$st 1 in der Rea-
litat nicht erreichbar. Er wird lediglich bei Extrapolation einer geeigneten Auftragung auf OK
erreicht. Die experimentellen Werte v&iiegen in der Regel zwischen®und 04, und neh-
men mit der Temperatur ab. Nach Uberschreitung einer bestimmten Temperapwngt der
Ordnungsparameter auf den W&+ 0. Oberhalb der Temperatig ist der Flussigkristall
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flissig—isotrop. Die Temperatig wird Klarpunkt genannt.

Die potentielle Energie eines einzelnen Molekilis einem nematischen Flussigkristall mit
dem Ordnungsgra& kann nach einer Theorie des mittleren Feldes von Maier und Saupe
durch folgende Gleichung beschrieben werden:

V(®) = -A-S -Vm2~%(3co§8—l) (2.25)

Aist ein temperaturunabhangiger MaterialparameteMghs Molvolumen [44]. Der Ansatz

ist so gewabhlt, dass die potenzielle Energie minimal wird, wenn sich das Molekul parallel zu
den Molekulen in seiner direkten Umgebung orientiert. Bei senkrechter Orientierung wird
die Energie dagegen maximal. Wenn dem Molekul keine Energie zugefuhrt wird, so wird es
sich parallel zu seinen Nachbarmolekllen ausrichten. Die Zufuhr von Energie in Form von
Warme kann diese Vorzugsrichtung verandern. Mit Hilfe der Boltzmann-Statistik erhalt man
naherungsweise die Temperaturabhéngigkeit des Ordnungsgrades:

S(T) = (1-0,98 Treq) (2.26)
Dabei gilt fur die reduzierte Temperatligq:
Tred = T-Via(T)/(Te-Via(Te)) ~ T/Tc (2.27)

Wie bei den meisten Flussigkeiten sinkt die Viskositét bei Fllssigkristallen bei steigender der
Temperatur. Am Klarpunkt nimmt die Viskositat sehr stark ab.

Die nematische Phase (N) ist die einfachste Flussigkristallphase. Bei ihr ist die Orientierungs-
fernordnung das einzige Ordnungsprinzip. Das heil3t, dass nur die Orientierung der Molekiile
vorgegeben ist. Sie wird durch den Direktogekennzeichnet. Die Schwerpunkte der Moleki-

le sind in der nematischen Phase statistisch verteilt (Abb. 2.17a). Nematische Flussigkristalle
sind doppelbrechend (Abb. 2.15), und besitzen eine Anisotropie des Brechungsindexes im
Bereich vonAn ~ 0,2. Zur Bestimmung der ordentlichen und auf3erordentlichen Brechungs-
indizes i und n kann man eine Keilzelle verwenden (Abb. 2.16). In der Keilzelle ist der
Flassigkristall einheitlich orientiert. Strahlt man polarisiertes Licht ein, werden die Strahlen,

je nach Polarisationsrichtung, verschieden stark gebrochen. Aus den Brechungswinkeln lassen
sich dann die Brechungsindizes berechnen. Dazu nutzt man das Brechungsgesetz nach Sellius
(s. Abschnitt 9.1 ). Im nematischen Zustand kann ein mittlerer Brechungsmdes dem
ordentlichen und dem aul3erordentlichen Brechungsindex berechnet werden:

o %<ng +2r2) (2.28)

Der mittlere Brechungsindex in der nematischen Phase liegt am Klarpunkt ein wenig hoher
als der Brechungsindex in der isotropen Phase (Abb. 2.15). Dies ist auf die Volumenanderung
bei der Phasenumwandlung zurrtickzufihren.
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Abbildung 2.15: Abhéngigleit der Doppelbrechung eines nematischen Flissigkristalls von der Temperatur
(schematisch). Am KlarpunKi; verschwindet die Doppelbrechung, und es existiert nur noch ein isotroper Bre-
chungsindex, welcher am Klarpunkt etwas niedriger ist, als der mittlere Brechungsindex im nematischen Zustand.

Flussigkristall Keilzelle
‘ 0%’
Polarisation
Laser
/

Abbildung 2.16: Messaufbazur Bestimmung des ordentlichen und au3erordentlichen Brechungsindexes.

Es existieren noch weitere flussigkristalline Phasen. Die smektischen Phasen besitzen neben
einer Orientierungsfernordnung zusatzlich eine Schichtstruktur. Ist der Direktanallel zur
Schichtnormalen orientiert, so spricht man von einer smektischen A Phase. Sind die Molekile
zur Schichtnormalen verkippt, so erhalt man eine smektische C Phase (Abb. 2.17 b-c).
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Abbildung 2.17: Darstellungvon vier unterschiedlichen flissigkristallinen Phasen: a) nematische Phase, b)
smektische A Phase, c¢) smektische C Phase, d) cholesterische Phase.

Eine cholesterische Phase kann dann auftreten, wenn der Flussigkristall aus chiralen Moleku-
len besteht. Es bilden sich ebene nematische Bereiche aus, wobei der DiretoEbene zu

Ebene verdreht ist (Abb. 2.17 d). Es entsteht eine Helixstruktur. Der Abstand zwischen zwei
gleichartig orientierten Ebenen, zwischen denen sich der Azimutwinkel des Direktors genau
um 360° &ndert, wird als Ganghéhg(engl. ,pitch”). bezeichnet. In der cholesterischen Pha-

se existiert eine periodische Variation des Brechungsindexes in einer Raumrichtung. Es ist
daher nicht verwunderlich, dass die cholesterische Phase eine 1D—Bandliicke besitzt, aller-
dings nur fir zirkular polarisiertes Licht, dessen Drehsinn dem Drehsinn der Helix entspricht.
Man kann daher diese flussigkristalline Phase durchaus zur Familie der photonischen Kristalle
hinzuzahlen.

2.2.2 Flussigkristalle in elektrischen und magnetischen Feldern

Die Ausrichtung des Direktors durch ein auf3eres elektrisches Feld ist die Grundlage aller
elektrooptischen Anwendungen. Die Kopplung des Direkioes das Feld erfolgt Gber die
anisotropen dielektrischen Eigenschaften der Mesophase. Diese ist im wesentlichen bestimmt
durch permanente Dipolmomente der Molekile, sowie durch die unterschiedliche elektroni-
sche Polarisierbarkeit parallel und senkrecht zur Molekilhauptachse. Die meisten kalamiti-
schen Flussigkristalle weisen eine positive Dielektrizitatsanisotropie auf, d.h. die Dielektrizi-
tatskonstante (DK) langs der Molekulachse ist groR3er als jene senkrecht dazu.

Ae=¢;—¢;, >0 (2.29)

Bei ausreichend groR3er Feldstarke orientiert sich der Direktmei diesen Systemen parallel
zur Feldrichtung (Abb. 2.18). Daraus resultiert bei paralleler Verankerung des Direktors an den
Elektroden eine Deformation des Direktorfeldes und eine Anderung des Brechungsindexes
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in einer Beobachtungsrichtung (Frederickz—Ubergang). Entlang des Direktorfeldes sieht man
denordentlichen Brechungsindey und senkrecht dazu den aul3erordentlichen Brechungsin-
dex ne. Die Schwellfeldstarke ist abhangig von der Grol3e der elastischen Koeffizienten des
Flussigkristalls, welche die riicktreibende Kraft beschreiben (s. Abschnitt 2.2.3). Im Magnet-

s~ -
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Abbildung 2.18: Darstellungeiner Flussigkristallzelle, in der sich ein nematischer Flissigkristall befindet. Der
Flissigkristall ist planar an den Wéanden orientiert. Nach Anlegen eines elektrischen Feldes orientieren sich die
Molekile um.

feld verhalten sich nematische Flussigkristalle &hnlich wie in elektrischen Feldern. Fur ty-

pische Werte der mgnetischen Anisotropie sind jedoch sehr hohe Magnetfelder notwendig,
um einen nematischen Flussigkristall im Magnetfeld umorientieren zu kdénnen (s. Abschnitt

2.2.3).

2.2.3 Elastische Eigenschaften von Flissigkristallen

Viele Eigenschaften von Flussigkristallen lassen sich erklaren, indem man den Flussigkristall
als Kontinuum betrachtet. Aufgrund von Randbedingungen oder durch &uf3ere Felder treten
elastische Deformationen auf. In der Kontinuumstheorie wird vorausgesetzt, dass die elasti-
schen Kréfte gegenuber intermolekularen Kréften klein sind. Die charakteristischen Langen
der elastischen Deformationen sollten grol3 gegentiber den molekularen Ausdehnungen sein.
Nematische Flussigkristalle mit einheitlicher Orientierung befinden sich im Gleichgewicht
und besitzen minimale freie Energie. Bei einer Deformation aufgrund von auf3eren Feldern
oder veranderten Randbedingungen erhoht sich die freie Energie. Die freie Energie pro Volu-
men hangt von drei voneinander unabh&ngigen elastischen Konstanten ab, die sich auf Sprei-
zen (K1), Verdrehen (K2) und Verbiegen (l§g) des Direktorfeldes beziehen (Abb. 2.19):

F= %/ (K2(0-n)? + Kaa(n- (O x n))? 4 Kaa(n x (O x n))?) dV (2.30)
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Abbildung 2.19: Darstellungder drei Deformationsformen von Flissigkristallen.

Dabei istn der Direktor. Die molekulare Wechselwirkung befindet sich in einer Grél3enordung
von 10 kJ/mol. Bei einer Molekilausdehnung von 2 nm bedeutet das, dass die elastischen
Konstanten in der GréRenordnung &N liegen [53].

Wenn man ein externes elektrisches Feld an eine mit Flussigkristall gefillte Zelle anlegt, so
muss das Feld eine gewisse Schwellfeldstarke tberschreiten, um die Ruckstellkrafte, die sich
aufgrund der Randbedingungen ausbilden, zu Uberwinden. Nur dann wird sich der Direktor
n lokal umorientieren. Die Grél3enordnung der Schwellfeldstarke fur eine Deformation des
Direktorfeldes lasst sich naherungsweise mit folgender Formel berechnen:

1
Eo — g(%) i (2.31)
Die Schwellfeldstarke hdngt demnach von der Schichtdicke der Zelle ab. Bei sehr kleinen
Schichtdicken benétigt man fur eine Umorientierung entsprechend hohe Feldstarken. Die hier-
fur notwendige elektrische Spannung ist allerdings unabhé&ngig von der Schicldditksan
man mit einem Magnetfeld eine Deformation erreichen will, dann gilt fir die magnetische
Schwellfeldstarke:

1
o Ki )2
Ho = g (—UOAX) (2.32)

Aufgrundder relativ schwachen magnetischen Anisotrdyje~ 1- 107 sind in diinnen Fliis-
sigkristallschichten sehr hohe Magnetfelder nétig. Befindet sich beispielsweise ein nemati-
scher Flussigkristall zwischen zwei Glasplatten mit dem Absthrd 100um so erhalt man

nach Gleichung (2.32) eine magnetische Schwellfeldstarke ven 280.000 H, was einer
magnetischen Flussdichte v@h~ 0,35 T entspricht. Da die Schwellfeldstarke umgekehrt
proportional zur Schichtdicke ist, erhoht sich das benétigte Magnetfeld um eine Zehnerpotenz
wenn man die Schichtdicke um eine Zehnerpotenz vermindert. Méchte man einen Schaltef-
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fekt in einem photonischen Kristall durch ein Magnetfeld induzieren, so bendétigt man extrem
hoheFlussdichten, da es sich um sehr kleine Geometrien handelt, in denen der Flussigkristall
eingebettet ist.

Es gibt jedoch eine Mdglichkeit, die fir einen messbaren Schalteffekt bendtigten Magnetfel-
der zu verringern, indem man in den Flussigkristall magnetische Nanopartikel dispergiert. Das
Schaltverhalten verbessert sich dadurch deutlich. Diese Dispersionen nennt man ferronemati-
sche Flussigkristalle (engl.: Ferronematics) [28]. Die Schwellfeldstéarke vermindert sich durch
den Einsatz von ferronematischen Flussigkristallen um ungeféhr eine Gré3enordnung [29].
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3 Herstellung von Kolloidkristallen

Kolloidkristalle sind eine Variante von photonischen Materialien, bei der sich mikroskopisch
kleine Kugeln durch Selbstorganisation zu photonischen Kristallen anordnen. Sie sind von
gro3em Interesse flr die Photonik, da mit geringem technologischen Aufwand photonische
Kristalle hergestellt werden kdnnen. In diesem Kapitel wird beschrieben, wie Kolloidkristalle
aus Polymerkugeln entstehen und wie man sie mit einem hochbrechenden Material invertiert.

3.1 Kolloidkristalle aus Poly(methylmethacrylat)

Abbildung 3.1: Darstellungeiner kubisch flachenzentrierten Gitterstruktur (fcc). Nur jede dritte Kugellage liegt
direkt Gbereinander.

Die verwendeten Polymerkugeln wurden durch Emulsionspolymerisation hergestellt [30]. Als
Monomer wurde Methylmethacrylat (MMA) benutzt, woraus monodisperse Kugeln aus Po-
ly(methylmethacrylat) (PMMA, Plexiglas) entstehen. PMMA ist eines der wenigen Polymere,
welche sich aufgrund seiner Transparenz gut fur optische Anwendungen eignen.

29
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Bei der Kristallisation von monodispersen Kugeln kann es zu verschiedenen Kristallstrukturen
kommen. Die dichtesten Kugelpackungen sind die wahrscheinlichsten. Man kann sie mit ei-
nem Apfelsinenstapel vergleichen, bei der die Raumausfillung der Kugeln 74% betragt. Dass
dieser Wert die maximal mégliche Raumausfullung fur Kugeln darstellt, wurde erst im Jahre
1998 mathematisch bewiesen. Es gibt mehrere Anordungen von Kugellagen, bei der die maxi-
male Raumausfullung von 74% erreicht wird. Man geht von hexagonal angeordneten ebenen
Kugellagen aus, die sich unterschiedlich Ubereinander stapeln. Die Abfolge ABAB entspricht
der hexagonal dichtesten Kugelpackung [engl.: hexagonal closed packed (hcp)], und ist da-
durch charakterisiert, dass sich jede zweite Schicht Uberdeckt. Bei der Abfolge ABCABC
deckt sich erst wieder die vierte Kugellage mit der Ersten. Diese Abfolge entspricht der ku-
bisch dichtesten Kugelpackung. Diese wird in der Kristallographie als kubisch flachenzentriert
[engl.: face centered cubic (fcc)] bezeichnet (Abb. 3.1). Diese Abfolgen kdnnen sich aul3erdem
mischen, so dass es zu willkirlichen Abfolgen kommt und eine willkirliche hexagonal dich-
teste Kugelpackung entsteht (engl: randomly hexagonal closed packed (r—hcp)). Die thermo-
dynamisch gunstigste Abfolge ist die kubisch dichteste Packung. Sie ist daher die bevorzugte
Kristallstruktur von selbstorganisierenden Kolloidkristallen. Als Ausgangsmaterial wird eine

Verdunstung

Kolloidsuspension
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Abbildung 3.2: Darstellungdes Wachstumsvorgangs eines Kolloidkristalls. Die Verdunstung des Wassers ist an
den Randern des auf dem Substrat aufgetraufelten Tropfens am starksten. Dadurch kommt es zu einer gerichteten
Diffusion der kolloidalen Teilchen.

Kolloidkristall

Abbildung 3.3: Profil eines Kolloidkristalls welcher auf einem horizontalem Substrat kristallisiert ist.
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Suspension aus Wasser und Polymerkugeln verwendet. Die Konzentration der Kugeln betragt
zwischen5 bis 20%. Die Suspension wird auf eine Substratoberflache getraufelt. Das Wasser
verdunstet langsam und kontrolliert in einer Umgebung mit hoher Luftfeuchtigkeit (98%). Zur
Kontrolle der Luftfeuchtigkeit erfolgt der Wachstumsprozess in einem Exsikkator, in dem ein
Gefald mit geséattigter KN&-LOsung steht. Durch die hohe Luftfeuchtigkeit ist der Prozess
der Kristallisation sehr langsam und kann mehrere Tage dauern. Dies ist notwendig, damit
grof3e einkristalline Bereiche entstehen kdnnen. Aufgrund der Brown’schen Bewegung [34]
finden sich die kolloidalen Teilchen selbstorganisiert zusammen und bilden dadurch grol3e
einkristalline Domanen. Bei schneller Trocknung kann es zu vielen Versetzungen in der Kri-
stallstruktur kommen, bis hin zu Rissen und Grében, die sich negativ auf die photonischen
Eigenschaften auswirken. Die Brown’sche Bewegung kann mit Ultraschall unterstitzt wer-
den, so dass die einkristallinen Bereiche grof3er werden. Einen dreidimensionalen Einkristall
mit mehreren Millimetern Kantenléange herzustellen, ist nach bisherigen Erkenntnissen jedoch
nicht moglich.

A
Zugbewegung

3
Abbildung 3.4: Darstellug des Wachs-
tums mit vertikaler Deposition. Die Ge- ° . T\/
schwindigkeit der Zugbewegung des Sub- e .
strats betragt nur wenige Millimeter pro | ® ¢ KoIIO|da.Ie Suspension
Stunde. Man erhélt dadurch einen gleich- ¢

maRig dunnen Kristallfilm mit wenigen
Monolagen.

Die Verdunstung des Wassers ist an den Randern des auf dem Substrat aufgetraufelten Trop-
fensam starksten (Abb. 3.2), da dort die Oberflache des Wassers am gréf3ten ist. Dadurch
entsteht eine Stromung des Wassers in Richtung Rand. Die Kugeln werden mit dieser Stro-
mung transportiert (gerichtete Diffusion), und setzen sich dann ab. Da die Trocknung in dieser
Weise verlauft, besitzt der resultierende Kolloidkristall ein ungleichmafiiges Profil (Abb. 3.3).
Um diesen Effekt zu minimieren, kann man das Substrat mit einer hydrophilen Oberflache
versehen. Nach der Behandlung der Substratoberflache mit NaOH benetzt ein Wassertropfen
einen deutlich groReren Bereich als bei einer unbehandelten Oberflache. Dadurch wird der
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Tropfen flacher und das Profil des resultierenden Kolloidkristalls wird gleichmé&Riger.
Eineweitere Methode des Kristallwachstums ist die vertikale Deposition:

Das Substrat wird dabei senkrecht in die Suspension eingetaucht und langsam (mm/h) heraus-
gezogen (Abb. 3.4). Dadurch entstehen Einkristalle aus wenigen definierten Monolagen Uber
die gesamte Substratoberflache. Diese Methode macht es méglich, Multilayerstrukturen aus
Kugeln mit unterschiedlichem Durchmesser Ubereinander zu stapeln [31]. Eine vereinfachte
Methode besteht darin, das Substrat in die Suspension einzutauchen und das Wasser im Gefal3
verdunsten zu lassen. Auf dem Substrat entsteht dann ein relativ homogener Kristallfilm.
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3.2 Invertierte Kolloidkristalle aus Zinnsulfid

Die Kolloidkristalle aus PMMA sind mit anderen Materialien invertierbar. Dazu eignen sich
z.B. SiQ, TiO2 und SnS. In der vorliegendan Arbeit wurde mit Sp§earbeitet (Abb. 3.5).
Sn$S besitzt einen sehr hohen Brechungsindex im sichtbaren Spektralbereich. Fir kristallines

PMMA llnvertierung Luft
SnS,

Abbildung 3.5: Durch die Invertierung
eines Kolloidkristalls aus PMMA und
Luft wird die Luft durch Sn$ ersetzt und
die PMMA Kugeln herausgeltst. Wo vor-
her PMMA war, befindet sich schlief3lich
Luft.

Zinnsulfid liegt er bei n = 3,2. Daher ist auch nach der Infiltration mit einem Flissigkristall ein
hoherBrechungsindexkontrast gewahrleistet, was fur eine Bandliicke in einem photonischen
Kristall notwendig ist. Die Invertierung geschieht tber einen CVD-Prozess (engl.: chemical
vapour deposition) [30]. Die Substrate werden mit den Kolloidkristallen in einen Exsikkator
gelegt, in der eine Schale mit Sndiegt. Der Exsikkator wird geschlossen und anschliel3end
evakuiert. Danach wird er fur drei Stunden tiefgekuhlt. Nach der Kiihlung wird der Exsikkator
mit H,S gefiillt und bei Raumtemperatur einen Tag stehen gelassen. Uber einen Kapillarkon-
densationsprozess setzt sich iden Zwischenrdumen des Kolloidkristalls als Feststoff ab
(Abb. 3.6). Als weiteres Produkt entsteht HCI, welches in der Gasphase vorliegt. Die Substra-
te werden danach fir eine halbe Stunde in ein Wasserbad gelegt. Anschliel3end werden die
PMMA Kugeln mit Tetrahydrofuran (THF) herausgeltst. Das resultierende-$3e3 st hat
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Abbildung 3.6: Darstellungdes Invertierungsprozesses im Exsikkator: QnEPH,S — SnS + 4HCI.

einen Fullfaktor zwischen 10 und 14% statt der theoretisch moglichen 26%. Der Brechungs-
index fur Sng, welches durch CVD abgeschieden wurde, liegt bei n = 2,6. Dies ist deutlich
niedriger als fur hochreines, monokristallines $SiéL].



4 Infiltration von Flussigkristallen in
photonisc he Kristalle

4.1 Flussigkristall in Kolloidkristallen

Die Infiltration von Flussigkristall in einen Kolloidkristall geschieht Gber Kapillarkrafte. Es
reicht, einen kleinen Tropfen an den Rand des Kristalls zu bringen. Der Flussigkristall wird in
die Zwischenrdume eingezogen und verdréngt die Luft nahezu vollstandig. Der Flissigkristall

Abbildung 4.1: Foto eines Kolloidkristalls. Der obere Bereich ist nicht mit Flissigkristall gefillt. In der linken
unteren Ecke wechselt aufgrund des eindringenden Flussigkristalls die Reflexion von blau nach grin.

hat einen hoheren Brechungsindex als Luft. Der effektive Brechungsindex des Kolloidkri-
stalls, dessen Kugeln vorher noch von Luft umgeben waren, erhéht sich dadurch. Aufgrund
der Braggbedingung verschiebt sich daher die Reflexionswellenlange zu grol3eren Wellenlan-
gen. Dies ist mit blol3em Auge erkennbar (Abb. 4.1).

4.2 Flussigkristall in makroporésem Silizium

Da in porésem Silizium die Poren nicht miteinander verbunden und nur an einem Ende ge-
Offnet sind, kann man allein durch Kapillarkrafte keine gute Fillung mit dem Flissigkristall
erreichen.
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Spritze mit
Flassigkristall

Septum

Vakuumpumpe

Abbildung 4.2: Die Infiltration von
makropordésem Silizium im Vaku-
um. Der FlUssigkristall wird mit ei-
ner Spritze durch ein Septum in
einen evakuierten Kolben einge-
spritzt.

Die Porenoberflachen kénnen zwar benetzt werden, aber eine vollstéandige Fillung ist nur
durcheine Infiltration im Vakuum erreichbar (Abb. 4.2). Die Probe wird in einen Kolben ge-
legt, der mit einem Saugrohr fur die Vakuumpumpe ausgestattet ist. Anschlie3end wird der
Kolben mit einem Septum verschlossen. Zur Evakuierung wurde eine Olpumpe (Fa. Schiitt)
verwendet, die einen Enddruck von ca. 0,5 mbar erreicht. Der Flussigkristall wird dann mit
einer Spritze durch das Septum in den evakuierten Kolben eingespritzt, so dass die Probe voll-
standig benetzt ist. Nach dem Bellften des Kolbens sind die Poren nahezu vollstandig gefiillt.
Der restliche Flussigkristallfilm kann mit einem Skalpell oder einem Tuch abgewischt wer-
den. Aufgrund der hohen Kapillarkréafte bleibt der Flissigkristall unter Normalbedingungen
dauerhaft in den Poren.

Es gibt Flussigkristalle, die sich erst bei hohen Temperaturen verflissigen, und bei anschlie-
Rendem schnellen Abkihlen unter die Glastemperatur ihre Orientierungsfernordnung beibe-
halten. Will man die Poren mit einer solchen Substanz fillen, muss man etwas anders vor-



4 Infiltration von Fliissigkristallen in photonische Kristalle 37

Vakuum

Porenseite

Makropordses Silizium

Glasartig
erstarrender
Flussigkristall

Heatgun

Abbildung 4.3: Infiltration eines glasartig erstarrenden Flissigkristalls.

gehen. Die Substanz wird unter das zu flllende Substrat gelegt, welches mit den Poren nach
unten zeigt. AnschlieRend wird der Rezipient evakuiert. Der Flussigkristall wird mit einer
Heatgun erhitzt, damit sich die Substanz verflussigt. AnschlieRend wird der Rezipient belif-
tet, wodurch sich die Poren mit dem Flussigkristall fullen (Abb. 4.3).
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5 Verwendete Proben und
Substanz en

5.1 Kolloidkristalle

5.1.1 Kolloidkristalle aus Polymeren

Es gibt bereits einige Arbeiten zu schaltbaren Kolloidkristallen. Jedoch benutzten die Arbeits-
gruppen, die sich damit beschaftigen, ausschlie3lich Kugeln aus [3JOUm neue Mate-
rialien zu erschliel3en, wurden in dieser Arbeit Polymerkugeln aus Poly(methylmethacrylat)
(PMMA) zur Herstellung von Kolloidkristallen verwendet [30], die anschliel3end mit einem
Flussigkristall infiltriert wurden. In Abbildung 5.1 ist eine AFM—Aufnahme eines Kolloidkri-
stalls aus PMMA-Teilchen mit Durchmessern von 280 nm zu sehen. Fir Beugungsexperi-

1104753 nm

36.9263 rim

Abbildung 5.1: AFM-Aufnahmeeines Kolloidkristalls, welcher aus PMMA-Teilchen mit Durchmessern von
280 nm besteht.
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mente wurden kommerziell erhaltliche Polystyrol-Kugeln mit 500 nm Durchmesser von der
FirmaDuke Scientific und PMMA—-Kugeln mit 463 nm Durchmesser verwendet.

5.1.2 Invertierte Kolloidkristalle aus Zinnsulfid

Zu invertierten Kolloidkristallen gab es bis zum Jahr 2002 keine Arbeiten, die ein Schaltver-
halten mit Hilfe von Flussigkristallen beinhalten. Motiviert durch die theoretischen Vorher-
sagen von Busch und John [19], dass sich bei einer invertierten Struktur durch die Verwen-
dung eines Flussigkristalls die photonische Bandliicke 6ffnen und vollstandig schlie3en lasst,
wurden in dieser Arbeit invertierte Kolloidkristalle aus $r{3S0] hergestellt und mit einem
Flussigkristall gefullt.

5.2 Makropordses Silizium

5.2.1 2-D Strukturen

In der Nachrichtentechnik werden Wellenlangen von iy3pd 1,5m verwendet, da bei die-

sen Wellenlangen die Dampfung in der Glasfaser am niedrigsten und dadurch die Transmis-
sion besonders hoch ist. Um die Eigenschaften von photonischen Kristallen daftir nutzen zu
konnen, benétigt man Bandlucken im infraroten Spektralbereich. In makroporésem Silizium,
mit periodisch hexagonal angeordneten Poren (Abb. 2.5) sind Bandlticken bei beiden Wellen-
langen bereits realisiert worden [25].

Deshalb wurden 2D—Kristalle aus Silizium untersucht, die am Max-Planck-Institut fir Mi-
krostrukturphysik in Halle an der Saale von Jérg Schilling und Stefan Schweizer hergestellt
wurden.

5.2.2 3-D Strukturen

Am Max-Planck-Institut fir Mikrostrukturphysik werden auch Proben hergestellt, bei denen
der Porendurchmesser mit der Tiefe periodisch moduliert ist (s. Abb. 2.10). Dadurch entsteht
eine Bandlucke in der dritten Dimension. Desweiteren wurden Proben verwendet, die eine
Stérung der Modulationsperiode aufweisen [25]. Es ist bekannt, dass dadurch photonische Zu-
stéande innerhalb der Bandliicke entstehen [23, 55], die man mit einer Fabry—Perot—Resonanz
vergleichen kann. Bei spektroskopischen Untersuchungen erhélt man einen Resonanzpeak in-
nerhalb der Bandlicke. Diese Struktur wurde von Sven Matthias vom MPI in Halle hergestellit.
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5.3 Flussigkristalle

Eswurden drei nematische Flussigkristalle verwendet: Es handelt sich um 4—-Cyano—4’'—pentyl-
biphenyl (5CB oder auch K15, Abb. 5.2), die nematische Mischung E7 (51% 5CB, 25% 7CB,
16% 80CB, 8% 5CT) von der Firma Merck und den glasartig erstarrenden Flissigkristall
ASY10, welcher im Arbeitskreis von Prof. Picken (TU Delft) synthetisiert wurde (Abb. 5.3).
5CB hat einen Klarpunkt béic = 34,6°C. Bei?H — NMR-Messungen wurde 5CB benutzt,

H.C~_ CN

Abbildung 5.2: Strukturformelvon 5CB.

0 —0O0
<:> \
H.C

O O

Abbildung 5.3: Strukturformelvon ASY10.

welches an der ersten Position in der Alkylkette (a—Position) deuteriert ist. Dieser Flissig-
kristall wurde von Prof. Mary Neubert und Julie Kim von der Kent State University in Ohio
synthetisiert und uns zur Verfigung gestellt. Bei E7 handelt es sich um eine Mischung, in
der 5CB enthalten ist, die aber einen gréf3eren Temperaturbereich der nematischen Phase als
5CB besitzt. E7 wird haufig in Flussigkristallanzeigen verwendet und hat einen Klarpunkt
bei Tc = 60,5°C. ASY10 besitzt eine Glaslbergangstemperatuffge+ 46°C und geht bei

Tc = 137C von der nematischen Phase in die isotrope Phase uber. Die Brechungsindizes von
E7 und ASY10 wurden temperaturabhangig mit Hilfe einer Keilzelle bei einer Wellenlange
von 633 nm bestimmt (Abb. 5.4-5.5, Tab. 5.1-5.2). Unterhalb des Klarpunktes wurde fir je-
de Temperatur aus dem ordentlichen und dem auf3erordentlichen Brechungsindex der mittlere



42 5 Verwendete Proben und Substanzen

Brechungsindex nach folgender Gleichung berechnet:

7= \/3(8+ 29 (5.1)

Oberhalbdes Klarpunktes ist keine Mittelung notwendig, da der Flussigkristall in der isotro-
pen Phase keine doppelbrechenden Eigenschaften besitzt.
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Abbildung 5.4: Experimentelbestimmte Werte der ordentlichepund auRerordentlichen Brechungsindizes
von E7 in Abhangigkeit von der Temperatur. Die mittleren Brechungsindizeserhalb des Klarpunktes wurden
berechnet.

Tabelle 5.1: Brechungsindizes von E7 bei 633 nm:

| TemperaturC) | no | ne [ n |
20 1,522 1,734| 1,592
35 1,523 1,719 1,588
45 1,525 1,699 1,583
55 1,533| 1,666| 1,577
62 1,572
70 1,569

Die Werte fur die Brechungsindizes von 5CB wurden der Literatur entnommen [42]. Abbil-
dung5.6 zeigt die temperaturabhangigen Brechungsindizes von 5CB bei einer Wellenlange
von 4,45um.
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Abbildung 5.5: Experimentelbestimmte Werte der ordentlichepund auRerordentlichen Brechungsindizes
von ASY10 in Abh&ngigkeit von der Temperatur.

Tabelle 5.2: Brechungsindizes von ASY10 bei 633 nm:

| Temperatur{C) | no [ ne [ n |
140 1,578
133 1,536| 1,673| 1,582
130 1,535| 1,676| 1,583
125 1,534| 1,681 1,584
120 1,534| 1,687 1,586
115 1,533| 1,695| 1,588
110 1,533 1,701| 1,590
105 1,533| 1,706| 1,592
100 1,534| 1,711 1,595
95 1,534| 1,716 1,596
90 1,535| 1,720| 1,599
85 1,536| 1,724| 1,601
80 1,537| 1,729 1,603
70 1,538| 1,736 1,606
60 1,540| 1,742 1,610
80 1,541| 1,759| 1,616
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Abbildung 5.6: Werte der ordentlichensrund auRerordentlichen Brechungsindizes von 5CB in Abhangigkeit
von der Temperatur bei einer Wellenlange von 445[42].



6 EXxperimente

6.1 Beugungsexperimente an photonischen Kristallen

Kristalle, die aus Atomen zusammengesetzt sind, kdnnen mit Rontgenbeugungsexperimenten
untersucht werden, um Informationen Uber die Symmetrie und den Kristallaufbau zu erhal-
ten. Die Wellenlange der Rontgenstrahlung liegt im Bereich der Gitterkonstante der zu un-
tersuchenden Kristalle. Meist werden die Bragg’sche Drehkristallmethode, die Laue— und die
Debye-Scherrer-Technik verwendet. Sie alle basieren auf der Bragg—Beugung (Abschnitt 9.2).
Diese Techniken kdnnen auch fir photonische Kristalle verwendet werden, wenn die Wellen-
lange der elektromagnetischen Strahlung der Gitterkonstanten angepasst wird. Bei photoni-
schen Kristallen ist das demnach Licht mit einer kleineren Wellenlange als die Gitterkon-
stante. Im folgenden Abschnitt wird die Kossel-Technik beschrieben, mit der photonische
Kristalle aus 2D makroporésem Silizium und getrocknete Kolloidkristalle aus monodispersen
Polystyrol-Kugeln mit einem Durchmesser von 500 nm untersucht wurden.

6.1.1 Bildung von Kossellinien

Bestrahlt man einen photonischen Kristall mit konvergentem monochromatischem Licht, so
kann man in Transmission (sowie in Reflexion) ein interessantes Phanomen beobachten: un-
terschiedlich dunkle (helle) Kreise und Ellipsen entstehen vor einem diffus hellen (dunklen)
Hintergrund. Diese Kreise und Ellipsen nennt man Kossellinien [32]. Sie bilden sich aufgrund
der Bragg-Reflexionsbedingung:

m-A = 2d(hk|) -sin®@ Yme N (6.1)

Die GrofieA bezeichnet die Wellenlange des Lichti,,, den Netzebenenabstand mit den
Miller—Indizes (hkl) und® den Reflexionswinkel.

Die Existenz dieser ,Gitterquelleninterferenzen” wurden 1924 von Walter Kossel vorherge-
sagt. Das erste mal wurde sie 1934 beobachtet. Die theoretische Interpretation im Kontext der
dynamischen Rontgeninterferenztheorie wurde 1935 durch Max von Laue [33] gegeben. Die
Anordnung und die Ausdehnung der Kossellinien sind abhéngig von der Gitterkonstanten,
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Abbildung 6.1: SchematischBarstellung zur Bildung von Kossellinien. Konvergentes Licht (griin) trifft auf die
Netzebenen des Kristallgitters. In Reflexion entsteht dann ein Kosselkegel (rot).

Kamera ;l

Okular T
S
B_ertrand- — Monochromator
Linse
Strahlteiler {— I ®
Lichtquelle

Immersionsobjektiv l

Probe
Verschiebetisch

Abbildung 6.2: Schematisch&eichnung einer Kosselapparatur. Durch das Einsetzen einer Bertrand—Linse ent-
steht aus dem orthoskopischen ein konoskopischer Strahlengang, bei dem nicht die Bildebene. sondern die Brenn-
ebene des Objektivs auf die Kamera abgebildet wird.

der Symmetrie und der Raumgruppe der photonischen Kristalle. Mit der Kosselmethode ist
es moglich, diese Kristallparameter zu bestimmen. In Abbildung 6.1 ist die Bildung der Kos-
sellinien schematisch dargestellt. Das aus allen Richtungen einfallende Licht wird gemaf3 der
Bragg-Bedingung gestreut, so dass eine Netzebenenschar einen kreisférmigen Ring bildet. Da
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in einem Kristall mehrere Netzebenen existieren, und jede Netzebenenschar, die die Braggbe-
dingungerfullt, einen Kosselkegel bildet, besteht ein Kosseldiagramm aus einer Vielzahl von
Kreisen und Ellipsen.

Zur Aufnahme der Kosseldiagramme wurde ein Polarisationsmikroskop verwendet (Abb. 6.2),
in das eine Bertrand—Linse eingebaut war, um die Brennebene des Objektivs zu betrachten
(konoskopischer Strahlengang). Als Lichtquelle diente eine Bogenlampe, hinter der ein In-
terferenzfilter als Monochromator positioniert wurde. Da fir die Aufnahme von Kossellinien
konvergentes Licht benotigt wird, wurde ein Immersionsobjektiv mit 125—facher Vergrolie-
rung benutzt.
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6.2 Untersuchung von Kolloidkristallen im sichtbaren
Spektralbereic h

6.2.1 Temperaturabhangiges Schalten von Kolloidkristallen

Thermotrope Flussigkristalle haben die Eigenschaft, dass ihr Brechungsindex von der Tempe-
ratur abhangt (Abschnitt 2.2). Da die Bandlicke eines photonischen Kristalls direkt von den
Brechungsindizes seiner Komponenten abhéangt, ist es moglich, die Bandlicke durch Veran-
derung der Temperatur zu schalten, wenn der Kristall einen Flissigkristall enthalt. Es wurden
Versuche an Kolloidkristallen aus Polymethymetacrylat (PMMA) und an invertierten Kolloid-
kristallen aus Sn&durchgefihrt. Die Kolloidkristalle aus PMMA und die invertierten Kolloid-
kristalle aus Sngwurden mit dem nematischen Flussigkristall E7 infiltriert (s. Abschnitt 4.1).
Beide Systeme zeigten Braggreflexion im Bereich des sichtbaren Lichts, welche mit dem Pho-
tospektrometer Instaspec IV der Firma LOT—Oriel in Reflexion in [111]-Richtung untersucht
wurde. Die Temperatur wurde mit einer Genauigkeit vorrQ,dlurch einen Mikroskopheiz-

tisch mit einer Kontrolleinheit FP5 (Firma Mettler) eingestellt.

6.2.2 Elektrisches Schalten von Kolloidkristallen

Der mit Flussigkristall gefillte Kolloidkristall befindet sich zwischen zwei mit Indiumzinn-
oxid (ITO) beschichteten Glasplatten (Abb. 6.3). Durch das Anlegen eines elektrischen Feldes,
richten sich die Molekiile in Richtung des Feldes aus (s. Abschnitt 2.2). Durch die Anderung
des Brechungsindexes des Flussigkristalls verandert sich die Bandliicke des photonischen Kri-
stalls. Es wurden Versuche an infiltrierten Kolloidkristallen aus PMMA gemacht, welche mit
E7 gefullt waren. Messungen an invertiertem S8#id nicht moglich, da es sich bei dem
Material um einen polykristallinen Halbleiter handelt, welcher leitfahig ist.

6.2.3 Spektroskopie im sichtbaren Spektralbereich

Im sichtbaren Spektralbereich wurden die Proben in einem Mikroskop untersucht. Dies er-
moglicht die Aufnahme von Reflexionsspektren unter einem Lotwinkel Vol weiterer

Vorteil des Mikroskops ist die Tatsache, dass man Spektren von sehr kleinen Bereichen im
Kristall aufnehmen kann. Dies kann bei Kolloidkristallen notwendig sein, da die einkristalli-
nen Bereiche meist sehr klein sind. Auf das Mikroskop wurde ein Photospektrometer vom Typ
Oriel Instaspec IV montiert. Das Photospektrometer besteht aus einem Spalt, zwei Hohlspie-
geln und einem Gittermonochromator (Abb. 6.4). Das von der Probe reflektierte Licht geht
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Flussigkristall

; ;Glas
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ITO

Kolloidkristall

Abbildung 6.3: Schematisch®arstellung einer Sandwich—Zelle zum Anlegen von elektrischen Feldern. Die
Glasplatten sind mit leitfahigem Indiumzinnoxid beschichtet. In der Zelle sind die Zwischenrdume eines Kol-
loidkristalls (grau) mit einem Flissigkristall (blau) gefllt.
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Abbildung 6.4: Funktionsweiseines Photospektrometers. Das Licht fallt durch den Spalt auf einen Hohlspiegel
und von dort auf einen Monochromator, der das Licht spektral unterteilt. Das Spekral aufgeltste Licht wird von
einem weiteren Hohlspiegel auf ein Array von CCD-Photodioden geworfen, welche die Lichtintensitaten in
elektrische Signale umwandeln.
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durch einen Spalt und trifft auf den ersten Hohlspiegel, welcher das Licht auf einen Gittermo-
nochromatoreflektiert. Dieser zerlegt das auftreffende Licht in seine spektralen Anteile, die

von dem zweiten Hohlspiegel auf ein Array von Photodioden reflektiert werden. Die Photodi-
oden wandeln die Lichtintensitaten der einzelnen Wellenlangen in elektrische Signale um.
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6.3 Untersuchung von makroporésem Silizium im
infrar oten Spektralbereich

6.3.1 Temperaturabhangiges Schalten von 3D makroporésem
Silizium
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Abbildung 6.5: Aufnahmevon Transmissionsspektren von makroporésem Silizium mit modulierten Poren. Es
wird polarisationsabhangig entlang der Porenachse gemessen.

Die Spektren wurden in Transmission entlang der Porenachse aufgenommen (Abb. 6.5). Dabei
wurde polarisierte IR-Strahlung verwendet. Zur Temperaturkontolle diente ein Eisenblock, in
dem ein Thermoelement und ein Thermofiuhler eingebettet waren. Als Kontrolleinheit diente
ein TTK—Heizregler (Firma Paar).

6.3.2 Temperaturabhangiges Schalten von 2D makroporésem
Silizium

Transmissionsmessungen 2D— und 3D-Strukturen entlanf dé¢— und I — M—Richtung

stellen generell ein Problem dar. Fir derartige Messungen muss ein schmaler Steg aus der
Probe herausprapariert werden, dessen Kanten sehr glatt sein mussen, damit es nicht zu Ober-
flachenstreuungen beim Ein— oder beim Austritt der Lichtstrahlen kommt. Daher wurden Re-
flexionsmessungen an diesen Strukturen durchgefuhrt. Der photonische Kristall wurde ent-
lang derl” K Richtung gebrochen und unter Vakuum mit dem nematischen Flussigkristall 5CB
geflllt (s. Abschnitt 4.2). Die Messung erfolgte in Reflexion mit einem Infrarot—Mikroskop
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Abbildung 6.6: Definitionder Polarisationsrichtung bei den dreidimensionalen Strukturen. Die Pfeile geben die
Richtung des elektrischen Feldes an.

Geatzter Bereich

Sichtfeld im L

IR-MikroskoV

Messﬂe>ck<

L

Abbildung 6.7: Schematisch®arstellung des Sichtfeldes in einem IR—Mikroskop. Die schmale hellgraue Fla-
che symbolisiert den Bereich, der mit der IR-Strahlung bestrahlt wurde, um ein Reflexionsspektrum zu erhalten.
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senkrecht zur Bruchkante ilM—Richtungmit TE—polarisierter Infrarotstrahlung. Mit der Hil-

fe von Blenden im Strahlengang wurde ein Ausschnitt des Sichtfeldes untersucht (Abb. 6.7).
Aufgrund des Cassegrain—Objektives (s. Abschnitt 6.3.3) fallt das Licht unter einem Winkel
von ca. 30 auf die Probe. Dies hat zur Folge, dass nicht exakiM-Richtung gemessen
wird, sondern unter einem Winkel von 3@vas def” K—Richtung entspricht (Abb. 6.8). Nach
Snellius sollte das Licht nach dem Auftreffen auf der Oberflache durch Brechung in einem ex-
akt zu berechnenden Winkel zum Lot hin abgelenkt werden. Weil die Bruchkante genau durch
eine Porenreihe fihrt, und dadurch eine Rauhigkeit im Bereich der betrachteten Wellenlan-
gen besitzt, kommt es zu einer Beugung der einfallenden Lichtstrahlung in einer nicht exakt
bestimmbaren Winkelverteilung. Zusatzlich kommt es im Kristall zu einer Beugung der Licht-
strahlung in Vorwartsrichtung (Laue-Fall). Bei Erflillung der Braggbedingung wird das Licht
in der Ruckwartsrichtung gebeugt (Bragg-Fall) und detektiert. Bei einem Lichteinfall vion 30
wird demnach keine exakte Kristallrichtung untersucht. Die detektierten Lichtstrahlen wurden
im und am Kristall mehrfach gebeugt.

TE-Polarisation

TE-Polarisation

Spiegelnde
Reflexion

S

Gebeugte
Strahlung

RS

Abbildung 6.8: Bestrahlungeines 2D Kristalls mit hexagonaler Symmetrie mit TE—Polarisierter IR-Strahlung.

Die Bruchkante liegt in def K—Richtung. Links: In"f M—Richtung. Im Spektralbereich der fundamentalen Band-
lucken wird das Licht spiegelnd reflektiert. Es treten auBerdem Beugungseffekte auf. Rechts: Unter einem Winkel
von 30 zur FM—Richtung, was deF K—Richtung entsprechen wirde. Nach Snellius sollte dieser Strahl in der
Probe zum Lot hin abgelenkt werden. Da die Bruchkante keine glatte Oberflache besitzt, sondern durch eine Po-
renreihe geht, werden diese Strahlen in einer gewissen Winkelverteilung gebeugt, und schlief3lich bei Erfillung
der Bragg—Bedingung reflektiert.

Da es sich bei Silizium um einen Halbleiter handelt, der in diesem Fall aufgrund seiner Dotie-
rung leitfahig ist, ist es nicht moéglich, elektrische Felder anzulegen, um eine Umorientierung

der FlUssigkristallmoleile zu erreichen und dadurch die optische Eigenschaften der Struktur
zu verandern.
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6.3.3 Infrarot—Spektroskopie

FurUntersuchungen im infraroten Spektralbereich wurde ein Fourier-Transformations-Infrarot-
Spektrometer (FTIR-Spektrometer) benutzt. Das Kernstlick des FTIR-Spektrometers ist ein
Michelson—Interferometer (Abb. 6.9). Dabei trifft weil3es Licht auf einen Strahlteiler. Die bei-

® Lichtquelle

Interferierende
Lichtstrahlen

/ Detektor
S =—=| g
— e m— _>
X
Beweglicher Probe

Spiegel

Strahlteiler

Fester Spiegel

Abbildung 6.9: Darstellungeines Michelsoninterferometers als Kernstiick eines FTIR—Spektrometers. Licht
(rote Pfeile) wird an einem Strahlteiler geteilt und von zwei Spiegeln reflektiert, so dass der Strahlteiler ein
weiteres Mal passiert wird, und die Strahlen zur Interferenz gelangen. Durch kontinuierliche Verschiebung eines
Spiegels werden immer andere Wellenléangen zu konstruktiver und destruktiver Interferenz gebracht.

den Lichtstrahlen treffen jeweils auf einen Spiegel und werden reflektiert. Der Strahlteiler wird
ein weiteres Mal passiert, und die beiden Strahlen kommen zur Interferenz. In diesem Fall
ist der eine Spiegel fest montiert, wahrend der andere beweglich ist. Bewegt man den Spie-
gel in eine Richtung, so erreicht man eine Weglangendiffefdnder beiden Lichtstrahlen.
Wellenlangen miAl = mA interferieren konstruktiv und werden verstarkt, wogegen Wellen-
langen mitAl = (m+ %))\ destrukty interferieren und sich ausloschen. Bei einer standigen
Bewegung des Spiegels &ndert sldhstetig, und damit werden immer andere Wellenlangen
verstarkt oder ausgeldscht. Der Detektor im Spektrometer misst die Intensitaten aller ankom-
menden Wellenlangen integral. Man erhélt dann ein Intensitatsspektinmbhangigkeit

von der Spiegelpositior. Betrachtet man die Interferenz der beiden Lichtstrahlen mathema-
tisch, so ist dieses Spektruirfx) die Fouriertransformierte des Spektrums im Frequenzraum.
Durch eine Rucktransformation vd(x) mit Hilfe eines Computers erhélt man schlie3lich das
Spektrum im Frequenzraum.
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Transmissionsmessungen

Das Infrarotspektrometer ist vom Typ Equinox 55 (Firma Bruker). Fiur eine Transmissions-
messung wurde die Probe in den Strahlengang gebracht, in dem die Strahlen zur Interferenz
gelangen. Das Probenspektrum wird anschliel3end durch ein Referenzspektrum, welches oh-
ne Probe aufgenommen wurde, geteilt. Die Messungen fanden in einem Spektralbereich von
1,5umbis 20unstatt. Als Lichtquelle diente ein Stab aus Siliziumcarbid (SiC), der Strahlteiler
bestand aus Kaliumbromid (KBr) und der Detektor aus deuteriertem Triglycinsulfat (DTGS).

Reflexionsmessungen

Fur Reflexionsmessungen wurde ein Infrarot—Mikroskop benutzt. Im infraroten Spektralbe-
reich nutzt man spezielle Cassegrain—Spiegelobjektive (Abb. 6.10). Diese bestehen aus einem

Lochblende

Hohlspiegel

Konvex-
Spiegel

Abbildung 6.10: Darstellungeines Cassegrain—Objektivs. Das Licht fallt durch das Loch im Hohlspiegel und
wird von einem Konvexspiegel auf den Hohlspiegel reflektiert, von dort aus auf die Probe fokussiert. Von der
Probe wird das Licht reflektiert, nimmt den Weg zuriick durch das Objektiv und wird detektiert.

Hohlspiegel mit einem Loch in der Mitte. Durch dieses Loch fallt das Licht und wird von

einem kleinen Konvexspiegel auf den Hohlspiegel reflektiert. Dieser fokussiert das Licht an-
schlieRend auf die Probe. Das Licht, welches von der Probe reflektiert wird, nimmt den glei-
chen Weg zuriick und wird detektiert. Die Lichtstrahlen werden unter einem kleinen Offnungs-
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winkel von 30 auf die Probe eingestrahlt. Bei Messungen an photonischen Kristallen kann
es daher zu einer leichten ,Verschmierung” der Bandkanten kommen. Als Referenz diente ein
Goldspiegel. Im Unterschied zur Transmissionsmessung wurde ein mit Stickstoff gekuhlter
Quecksilber—Cadmium-Tellurid (MCT) Detektor benutzt.

6.4 Deuterium—NMR-Messungen an 2D und 3D
makroporésem Silizium

Um Informationen tber die Orientierungsverteilung der Flussigkristallmolektle in den Poren
von 2D makroporésem Silizium zu bekommen, wurden die Porerardeuteriertem 5CB
gefullt. Der Siliziumwafer wurde in 2mm x 2mm quadratische Stlcke zerschnitten und in
einem NMR—-R06hrchen gestapelt (Abb. 6.11).

Abbildung 6.11: Fotografie eines NMR—-R&hrchens geflllt mit Scheiben aus photonischen Kristallen aus ma-
kropordsem Silizium.

6.4.1 Bestimmung der Orientierungsfernordung von
Flissigkristallen mit Deuterium—NMR

Fur NMR—-Experimente konnen Proben genutzt werden, deren Atomkerne ein magnetisches
Moment besitzen. Die Wechselwirkung mit dem Magnetfeld des NMR-Spektrometers fuhrt
zu dquidistanten Zeemann Energieniveaus. Eine elektromagnetische Welle im Radiofrequenz-
bereich induziert Ubergange zwischen diesen Energieniveaus, wenn die Frequenz identisch
mit der Larmorfrequenz des Atomkerns ist. Bei einer magnetischen Flussdichte von 1 T be-
tragt die Frequenz fur Deuterium 6,5 MHz, bei 4,7 T betragt sie ca. 30 MHz. Fir Deuterium
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bewirkt die Wechselwirkung des Quadrupolmoments des Kerns mit dem Gradienten des elek-
trischenFeldes eine zusatzliche Verschiebung der Zeeman—Energieniveaus (Abb. 6.12). Das

E

Abbildung 6.12: Zuséatzliché/erschiebung der Zeeman-Energieniveaus aufgrund der Wechselwirkung des Qua-
drupolmoments des Kerns mit dem Gradienten des elektrischen Feldes.

NMR-Signal ist deshalb verbreitert oder in mehrere Linien aufgespalten. In starren, vollig
einheitlich orientierten Molekilen spaltet das NMR-Signal in zwei Linien auf mit dem Ab-
stand:

3€29Q1
Av = E%QE (3co80 — 1) 6.2)

Dabei iste?qQ/h die statische Quadrupolkopplungskonstante. In einer Alkylkette liegt sie
beispielsweise bei 165 kH& ist der Winkel zwischen der Symmetrieachse des elektrischen
Feldgradiententensors und dem externen Magnetfeld. In deuterierten Fllssigkristallen ist der
elektrische Feldgradiententensor typischerweise parallel zur C-D Bindung. Aufgrund dieser
Umstande ist dieH — NMR-Spektroskopie eine elegante experimentelle Methode zur Be-
stimmung der Orientierungsfernordnung von Flissigkristallen [35, 36, 37]. Man benétigt far
eine derartige Messung einen Flussigkristall, der an einer Stelle deuteriert ist. Die Aufspaltung
ist abhangig von dem Winkel der Flussigkristallmolekile zum permanenten Magnetfeld des
NMR-Spektrometers:

Av = %AVO(?) cog9 —1) (6.3)
Dabei istd der Winkel zwischen dem Direkteorund dem externen Magnetfeld und
3¢2qQ1 [, 1 1 :
Avg = E%QE s<§(co§[3— 1) + 5(S— Syy)(sirfBcos2a) . (6.4)

Die Winkel a und 3 bezeichnen die Azimut— und Polarwinkel, welche von der Symmetrie-
achse des elektrischen Feldgradiententensors und der Molekiillangsachse geformt werden. Die
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1.0
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Abbildung 6.13: NormierteQuadrupolaufspaltung in Abhangigkeit vom Winkel des Direktors zum Magnetfeld.

GrofeSist der Ordnungsparameter (vgl. 2.24):
1
S= E<3co§e— 1) (6.5)

Dabei ist© der Winkel zwischen der Molekillangsachse und dem Direkto(Sy — Syy)
bezeichnet den Ordnungsgrad der molekularen Biaxialitat und beschreibt die Abweichung des
Molektls von einer perfekten zylindrischen Symmetrie. Abbildung 6.13 zeigt die normierte
Quadrupolaufspaltung, die nach der Gleichung

1
AVnorm = é<3cos’-e —1) (6.6)

berechnet wurde. Béd = 0° ist die Aufspaltung maximal. Beéd = 90° betragt sie-1/2.
Diese Aufspaltung ist jedoch nicht unterscheidbar von der Quadrupolaufspaluf®y wel-

che dem Winkel® = 35,26° zuzuordnen ist. Quadrupolaufspaltungen von 0 bis 1/2 lassen
sich daher nicht eindeutig einem Wink@lzuordnen. Ebenso ist eine einheitliche Orientie-
rung unter dem ,magischen Winke® = 54,74° nicht von einer isotropen Verteilung Uber
alle Winkel zu unterscheiden. In beiden Féllen tritt keine AufspaltungHim- NMR—Signal

auf.

Abbildung 6.14 zeigt eifH — NMR-Signal des Fliissigkristalls 5CB, bei dem der Direktor
n der Flussigkristallmolekile in Richtung des Magnetfeldes zeigt [37]. BeC2etragt die
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Abbildung 6.14: °H — NMR-Spektrumvon dem nematischen Flussigkristall 5CB bei vollstandiger Orien-
tierung des Direktors zum Magnetfeld (oben), und die Temperaturabhéngigkeit der Quadrupolaufspaltung

(unten)[37]. Bei 28C betrégt die Aufspaltunfv = 53 kHz.
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Abbildung 6.15: Beispielefiir °’H — NMR—-Spektren mit schematischen Zeichnungen der zugehdrigen Direktor-
felder in zylindrischen Poren [37].
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AufspaltungAv = 53 kHz. Die Quadrupolaufspaltung nimmt mit zunehmender Temperatur
ab. Befindet sich der Flussigkristall in der isotropen Phase, so verschwindet die Quadrupol-
aufspaltung. Die Intensitétsverteilung des— NMR—Signals gibt die Verteilung der Orientie-
rungenf (9) gemittelt Uber die gesamte Probe an. In Abbildung 6.15 sind einige Beispiele fiir
Intensitatsverteilungen mit zugehdorigen Direktorfeldern dargestellt. In dieser Arbeit wurden
ein Bruker AMX 300 und ein Bruker AMX 500 NMR-Spektrometer mit einem permanenten
Magnetfeld von 7 T bzw. 14 T benutzt. Die Larmorfrequenz von Deuteriumkernen liegt fir 7
T bei 46,07 MHz und fur 14 T bei 76,77 MHz.

6.4.2 Theoretische Berechnung von Direktorfeldern zur
Interpretation der Deuterium—NMR-Spektren

Um die experimentell gemessenéh— NMR-Spektren zu interpretieren, wurden die Direk-
torfelder innerhalb der Poren mit einem Computerprogramm berechnet. Fir die Berechnung
wird die lokale Orientierung der Flussigkristallmolekile durch den Ausrichtungstensor

1

beschriebenDie Gré3enny, ny undny sind die Komponenten des Direktors udg ist der
Einheitstensor. Im Gegensatz zur Beschreibung der Orientierung durch einen Vektor, den Di-
rektorn, gewahrleistet die Beschreibung durch den Tensor 2. Stufe die physikalische Aquiva-
lenz vonn und —n. Die zugehdrige Relaxationsgleichung lautet:

T(dayy/dt) — (ohayw + Py —Fy =0 (6.8)

(o ist eine Korrellationslange, die die Lange eines Molekils beschreib®une- 0@/0ay, ist

die Ableitung eines dimensionslosen Landau—de Gennes Potenzialgpabler TensoiF,y
beschreibt den Einfluss eines externen elektrischen oder magnetischen Feldes.

Kilian und Hess haben einen Algorythmus zur numerischen Relaxation eines in Rwimddl
Zeit (& = y101%/2dK) diskretisierten Systems entwickelt [52]. Nach einem Zeitschritt ergibt
sich fur den Direktor:

M = M (numv) + [HoXadl?/ (2dK)JHuHy 10y (6.9)

Dabei istA ein Normierungsfaktory; die Rotationsviskositaty, die Anisotropie der ma-
gnetischen Suszeptibilitad, die Dimension (d= 3), K ein effektiver elastischer Koeffizient
undH, undH, sind die Komponenten eines externen Magnetfeldes. In diesem Algorythmus
wird nur mit einem effektiven elastischen Koeffizienten gerechnet, anstatt die Unterschiede
der drei elastischen Koeffizienten zu berticksichtigen. Dennoch kann man mit diesem Algo-
rythmus sehr gut das Verhalten von Flussigkristallen in kleinsten RAumen beschreiben. Zur



6 Experimente 61

Berechnung der Direktorfelder wird eine festgelegte Orientierung fur die Randschicht an den
Porenwdndemangenommen. An den ubrigen Orten ist der Direktor zu Beginn der Rechnung

statistisch verteilt. Nach einer endlichen Anzahl von Zeitschritten erfolgt keine Anderung des
Direktorfeldes mehr. Es befindet sich dann im thermodynamischen Gleichgewicht, oder zu-
mindest in einem metastabilen Zustand.

Aus den simulierten Direktorfeldern werden schlieRRth— NMR—Spektren berechnet, um

sie mit den experimentell gemessenen Spektren zu vergleichen.
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[/ Ergebnisse

7.1 Ergebnisse der Beugungsexperimente

Es wurden Kosseldiagramme von verschiedenen photonischen Kristallen aufgenommen. In
Abbildung 7.1 ist ein Kosseldiagramm einer 2D Silizium—Probe zu sehen, in der die Poren in
sechszahliger Symmtrie zueinander angeordnet sind. Die Gitterkonstante betrug a = 600 nm.

Abbildung 7.1: Kosseldiagramm von 2D makropordsem Silizium mit hexagonaler Symmetrie.

Die Aufnahme wurde bei einer Wellenléange vbn= 488 nm gemacht. Wie erwartet, ist im
Kosseldiagramm die sechszéhlige Symmetrie deutlich zu erkennen.

Von Kolloidkristallen wurden ebenfalls Kosseldiagramme beobachtet. Der erste Kolloidkri-
stall bestand aus einem dinnen Film aus Polystyrolkugeln, die einen Durchmesser von 500
nm hatten. Die Kossellinien weisen eine sechszéahlige Symmetrie auf. Die Schnittpunkte der
Kosselkegel bilden zwei Sechsecke, welche unterschiedlich grol3, und°urnéd@ander ver-

dreht sind (Abb. 7.2 und 7.3). Es handelt sich hierbei um Beugungsbilder der obersten Schicht
des Kolloidkristalls, ahnlich dem Kosseldiagramm des 2D makroporgsen Siliziums. Diese bei-
den Sechsecke entsprechen den Reflexen der ersten und der zweiten Brillouinzone (Abb. 7.4).

63
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Abbildung 7.2: Kosseldiagramm eines Kolloid- Abbildung 7.3: Die Verbindung der Schnittpunk-
kristalls aus Polystyrolkugeln. Der Kugeldurch- te der Kossellinien ergeben zwei Sechsecke, die
messer betrug 500 nm. um 30° zueinander verdreht sind.

Abbildung 7.4: Darstellungdes reziproken Gitters eines zweidimensionalen hexagonalen Kristalls mit der Kon-
struktion der ersten und zweiten Brillouinzone.

Geht man davon aus, dass es sich bei der beoachteten Schicht um die Oberflache einer fcc—
Struktur handelt, so wére die Beobachtungsrichung entlang der [111]-Richtung.

Der zweite Kolloidkristall bestand aus PMMA mit einem Kugeldurchmesser von 463 nm. Die-
ser Kristall lieferte stellenweise ein Kosseldiagramm mit 4—z&hliger Symmetrie (Abb. 7.5).
An diesen Stellen ist der Kolloidkristall if200}-Richtung gewachsen. Es sind die Reflexe der
Kristallebenen(111), (111),(111) und (111) zu sehen (vergl. Abb. 7.6).
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Die fcc—Struktur besitzt einerseits Flachen mit einer hexagonalen Anordnung der Kugeln, und
andererseit®\chsen mit 4—zahliger Symmetrie. Geht man davon aus, dass Kolloidkristalle
tats&chlich fcc—Strukturen bilden (s. Kapitel 3), stehen die Ergebnisse mit dieser Vermutung
im Einklang.

T11 111

171 11-1
Abbildung 7.5: Kosseldiagramm eines Kolloid- Abbildung 7.6: SchematischeDarstellung der
kristalls aus PMMA—Kugeln. Der Kugeldurchmes- Kosselkegelschnitte eines fcc—Kristalls in der

ser betrug 463 nm. [200]-Richtung.
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7.2 Temperaturabhangiges Schalten von
Kolloidkristallen

7.2.1 Kolloidkristalle aus PMMA

Es wurde ein Kolloidkristall aus PMMA—-Kugeln mit einem Durchmesser D = 200 nm herge-
stellt. Die Kristalle besalRen eine kubisch flachenzentrierte Kristallstruktur (fcc), deren[1,1,1]-
Richtung senkrecht zur Substratoberflache orientiert ist. Der Kristall zeigte einen Reflex-
ionspeak bek111 =448 nm bei senkrechtem Lichteinfall (Abb. 7.7). Mit der Bragg—Bedingung

Reflektivitat (willk. Einh.)

ML

T T T T T T T
420 440 460 480 500 520

Wellenlange (nm)

Abbildung 7.7: Reflexionsintensitaten eines PMMA Kolloidkristalls gefullt mit Luft (A=448 nm) und mit E7
(A=493 nm) im Vergleich.
berechnet sich das Maximum des Reflexionspeaks wie folgt (s. Abschnitt 2.1.5):

A = 2Nef0nk (7.1)
Der effektive Brechungsindex wird durch

Nerr = (Y find)*/? (7.2)
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Abbildung 7.8: Temperaturabhangigkeit der Reflexionsmaxima des mit Flussigkristall gefiuliten PMMA Kol-
loidkristalls, und des Brechungsindexes von E7. Beide Werte nehmen mit zunehmender Temperatur ab.

beschrieben. Dabei bezeichrfetien Volumenanteil der Komponenten der Heterostruktur.
Der Schichtabstandyy von Schichten mit den Miller—Indizes (k) ist abh&ngig von der
Gitterkonstantem:

dnit = a(h?+k2412)71/2 (7.3)

MitprMA = 0,74 , lPMMA = 1,49 ) f|_uft = 0,26 y NLuft = 1,a= D\/E und(h,k,l) = (1,1,1)
erhalt man einen mittleren Brechungsindex vgp & 1,38. MitA111 = \/8_/3rbffD und dem
gemessenen Wert fir den Reflexionspeak berechnet sich der Kugeldurchmesser zu D = 199nm
was durch AFM—Messungen (D =195 nb10 nm) bestétigt wurde.

Nachdem die Zwischenraume mit Flussigkristall gefullt wurden, beobachtet man eine Rot-
verschiebung des (1,1,1)-Reflexionspeaks (Abb. 7.7). B& 2@r das Maximum des Re-
flexionspeaks beii11 = 493, 4nm. Mit dem mittleren Brechungsindex von E&;a= 1,612,
berechnet sich ein effektiver Brechungsindex vei-+ 1,523 woraus sich eine etwas grof3e-

re Reflexionswellenlange bki11 = 494,3nm ergibt als gemessen wurde. Diese Abweichung
lasst sich durch einen kleinen Volumenanteil Luft von weniger als 1% erklaren.

Bei Erh6hung der Temperatur von°Z3auf 70C ergibt sich eine leichte Blauverschiebung
des Reflexionspeaks von ungefahr 2 nm (Abb. 7.8).
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Tabelle 7.1: Temperaturabhéngigkeit der Reflexionswellenlange und des mittleren Brechungsindexes des Flis-
sigkristalls E7:

PMMA Kolloidkristall mit E7
T(°C) | A(nm)  ng7 No Ne
23| 4934 1,612 1,530 1,76b
40| 492,1 1,605 1534 1,74
50| 491,8 1,600 1,540 1,71b
70| 491,4 1,589 - -
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Abbildung 7.9: Halbwertsbreitaler Reflexionsbande und Brechungsindex—Kon#ast ng7 — nppma in Ab-
hangigkeit von der Temperatur.

Dies stimmt mit der Annahme Uberein, dass durch die Abnahme des mittleren Brechungsinde-
xes des Flussigkristalls der effektive Brechungsindex des Gesamtsystems und somit die Bragg-
wellenlange ebenfalls sinken (Abb. 7.8, Tab. 7.1). Aber nicht nur die Peakposition sondern
auch die Breite des Reflexionspeaks nimmt mit zunehmender Temperatur ab (Abb. 7.9). Am
auffalligsten ist dies oberhalb des Klarpunktes, wo der mittlere Brechungsindex im Vergleich
zur nematischen Phase sprunghaft um einen kleinen Betrag abnimmt (s. Abschnitt 2.2.1). Qua-
litativ ist die Breite der photonischen Bandliicke direkt proportional zum Brechungsindex—
Kontrast der beiden Komponenten, aus denen der photonische Kristall besteht. Demnach steht
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die Abnahme der Bandbreite in Ubereinstimmung mit der Abnahme der Differenz zwischen
denBrechungsindizes von PMMA und dem Flussigkristall. Dabei fallt auf, dass sich, so lan-
ge sich der Flussigkristall im nematischen Zustand befindet, nur die Bandkante, die sich bei
groReren Wellenlangen befindet, verschiebt. Es handelt sich um die Bandkante des niede-
renergetischen Bandes, in der die Intensitat der stehenden elektromagnetischen Wellen in den
Bereichen mit hohem Brechungsindex am grof3ten ist. Dieses Band wird Ublicherweise di-
elektrisches Band genannt. Da der Flussigkristall einen héheren Brechungsindex als PMMA
besitzt, kann man diesem Band den Namen ,Flussigkristallband” geben. Da durch die Tem-
peraturdnderung der Brechungsindex des Flussigkristalls verandert wurde, kommt es zu ei-
ner Verschiebung des ,Flussigkristallbandes”. Hingegen verschiebt sich die andere Bandkante
nicht. Diese entspricht dem hochenergetischen Band, und wird Ublicherweise Luftband ge-
nannt. Da der hier betrachtete photonische Kristall jedoch keine Luft als einen Bestandteil
besitzt, handelt es sich hier um das ,PMMA-Band”.

7.2.2 Kolloidkristalle aus Zinnsulfid

Abbildung 7.10: Mikroskopaufnahmen  von
einem PMMA Kolloidkristall aus Kugeln mit
280 nm Durchmesser (oben) und nach d
Invertierung mit Sng(unten).
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Abbildung 7.11: Reflexionsintensitét des Templats mit Kugeln aus 280 nm Durchmesser und des invertierten
Kolloidkristalls aus Sng

Fur die Herstellung der inversen Struktur wurden grofRere PMMA—Kugeln als Template be-
nutzt. Der Kolloidkristall, welcher als Templat diente, hatte einen Reflexionspeak et

632 nm, woraus sich ein Kugeldurchmesser von D = 280 nm berechnen lasst. Dieser Wert
wurde durch AFM—Messungen bestatigt (D = 278 aimlOnm). Lichtstreuexperimente in
wassriger Losung lieferten gréRere Werte, die sich mit dem Quellen der Kugeln im Lésungs-
mittel erklaren lassen. Der Gyrationsradius wurde gu=RL.28nm und der hydrodynamische
Radius zuR, = 161nmbestimmt. Das Verhaltnis J Ry = 0,79 demonstriert die Kugelform

der kolloidalen Partikel. Fir eine ideale Kugel liegt das VerhaltnjsRR bei 0,77. Fir ein
Stabchen ist /R, = 2. Die Zwischenraume wurden mit Spgefullt und das Templat wur-

de herausgeldst (s. Abschnitt 3.2). Die Gitterkonstante des invertierten Kristalls wurde bei
diesem Prozess etwas kleiner als die des Templats. Elektronenmikroskopie lieferte einen Ab-
stand von D = 270 nm zwischen den Zentren benachbarter Lécher. Diese Struktur zeigte einen
Reflexionspeak bek111 = 536 nm (Abb. 7.11), was einem effektiven Brechungsindex von
Neft =~ 1,22 entspricht. In Abbildung 7.10 sind Mikroskopaufnahmen vom Templat und von
der invertierten Struktur zu sehen. Der Wechsel der Braggreflexion von Rot zu Grin ist deut-
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lich zu erkennen. Mit dem bekannten Brechungsindex von mit CVD abgeschiedenem, kristal-
linemSn$, nsng = 2,6 [41], mUsste man auf einen Volumenanteil von Sn&h weniger als
10% (statt 26%) schliel3en. Allerdings ist es unwahrscheinlich, dass dak&stsllin ist. Es

Raumtemp.
—35°C
50°C
] —55°C
70°C

Reflektivitat (willk. Einh.)

o),

Yol

' I ' I ' I ' I ' I wq
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Abbildung 7.12: Reflexionsintensitaten des gefillten invertierten Kolloidkristalls (E7/9nBie Reflektivitat
nimmt mit zunehmender Temperatur zu.

wird vielmehr polykristallin sein, so dass der Brechungsindex des mit CVD abgeschiedenen
SnS deutlich geringer ist. Ein Volumenanteil von ungefahr 15% ist wahrscheinlicher, da der
invertierte Kolloidkristall mechanisch stabil ist. Bei einem Volumenanteil von nur 10% wir-
de das Gitter in sich zusammenbrechen. Der,SK8lloidkristall blieb sogar stabil, wenn er

mit Flussigkristall gefillt wurde. Nach der Infiltration mit E7 kam es zur erwarteten Rotver-
schiebung des Reflexionspeaks &uf; = 736nm, woraus sich ein effektiver Brechungsindex
von ny = 1,67 flr das Gesamtsystem ergibt (Abb. 7.12). Der Reflexionspeak der gefllten
invertierten Kolloidkristalle bewegte sich bei Erhéhung der Temperatur wegen der Verminde-
rung des mittleren Brechungsindexes, ebenfalls zu kleineren Wellenlangen (Abb. 7.13). Wegen
des deutlich gré3eren Volumenanteils des Flussigkristalls ist die Verschiebung des Peakma-
ximums ebenfalls deutlich gréRRer. Eine Temperaturdnderung voa aaf 70C ergibt eine
Verschiebung um 14 nm (Abb. 7.13, Tabelle 7.2).
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Abbildung 7.13: Temperaturabhangigkeit der Reflexionsmaxima des geflllten invertierten Kolloidkristalls
(E7/Sn%) und des mittleren Brechungsindexes von E7.

Tabelle 7.2: Temperaturabhangigkeit der Reflexionswellenlange und des mittleren Brechungsindexes des Flus-
sigkristalls E7 fur die invertierte Struktur:

Invertierter Kolloidkristall mit E7
T(°C) | A(nm) Ng7
23| 736 1,592
35| 735 1,588
50| 732 1,583
55| 731 1,577
62| 723 1,572
70| 722 1,569
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7.3 Elektrisches Schalten von Kolloidkristallen

Eswurden drei Kolloidkristalle aus PMMA mit verschieden Kugelgré3en mit E7 oder 5CB
infiltriert, und die Reflexionsspektren wurden bei verschieden hohen Wechselspannungen mit
einer Frequenz von 100 Hz gemessen. Abbildung 7.14 zeigt die Reflexionsspektren eines

Reflektivitat (%)

T T T T T T T T T
450 475 500 525 550

Wellenlange (nm)

Abbildung 7.14: Abhangigleit der Reflektivitaten eines gefiillten Kolloidkristalls (PMMA/E7) von der Wellen-
lange fir verschiedene Spannungen. Die Kugelgrofie betrug 200 nm.

Kolloidkristalls bestehend aus Kugeln mit 200 nm Durchmesser, gefillt mit E7. Die Bragg-
wellenlange liegt bei 491,7 nm. Beim Anlegen einer Spannung verschiebt sich das Maximum
zu kleineren Wellenlangen. Dies liegt daran, dass sich der Direktiess Flussigkristalls ent-

lang des elektrischen Feldes orientiert. Da die Feldrichtung mit der Beobachtungsrichtung
Ubereinstimmt, beobachten wir eine Verminderung des effektiven Brechungsindexes des Flis-
sigkristalls, der im Fall vollstandiger Orientierung mit dem ordentlichen Brechungsindex von
E7 Ubereinstimmen sollte. Allerdings verhindern die Anbindung der Flissigkristallmolekule
an die Oberflache der Kugeln und die elastischen Wechselwirkungskrafte der Molekile unter-
einander eine vollstandige Orientierung des Direktors Feldrichtung. Zur Kompensation

der elastischen Krafte kann man die Spannung erhéhen. Da es jedoch bei hohen Spannun-



74 7 Ergebnisse

14
oV
X — 80V
150V
12
<
S
b |
=
=
2 10- \\
Q
(=
) \
o Ay, A
S P \,
.,
8 N
N
Bhan i S0 1
I ' I ' I ' I '
540 560 580 600 620
Wellenlange (nm)

Abbildung 7.15: Abhangigleit der Reflektivitaten eines gefillten Kolloidkristalls (PMMA/E7) von der Span-
nung. Die Kugelgrof3e betrug 220 nm.

gen zu einer Zerstérung der Testzelle kommen kann, konnte die Spannung maximal bis auf
150 V erhoht werden, bevor ein elektrischer Durchbruch erfolgte. Man sieht jedoch deutlich
eine Abhangigkeit der Braggwellenlange von der Spannung. Bei einer Spannung von 120 V
verschiebt sich die Braggwellenlange um 1,1 nm zu niedrigeren Werten. Dieser Effekt ist ge-
ringer als beim Temperaturschalten (s. Abschnitt 8.2). Ein weiterer Effekt ist in Abbildung
7.14 zu sehen. Mit zunehmender Spannung erhéht sich die Reflektivitat. Dies liegt daran, dass
der Flussigkristall im Mittel isotrop orientiert ist, was an der Randorientierung des Flissig-
kristalls an den Kugeloberflachen liegt (Abb. 7.17). In diesem Fall wird das einfallende Licht
stark diffus gestreut. Bei einer zunehmenden anisotropen Orientierung im elektrischen Feld
wird das Licht weniger stark diffus gestreut, und es gelangt mehr Licht zur Detektion in das
Spektromenter. Da die Lichtquelle einen geringen Anteil in dem hier untersuchten Teil des
sichtbaren Spektrums besitzt, macht sich der Effekt besonders deutlich bemerkbar. Bei den
folgenden Spektren fallt der Effekt deutlich geringer aus. Das Schaltverhalten im elektrischen
Feld wurde mit zwei weiteren Kolloidkristallen untersucht. Beide Proben zeigten das gleiche
Verhalten (Abb. 7.15 und 7.18). Die Braggreflexion verschob sich geringfiigig zu kleineren
Wellenlangen, und die Reflektivitat nahm zu. In Abbildung 7.15 wurde ein Kolloidkristall mit
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Abbildung 7.16: Abhangigleit der Reflexionsmaxima des geflllten Kolloidkristalls (PMMA(220 nm)/E7) von
der Spannung.

Direktorfeld
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Abbildung 7.17: Zweidimensional®arstellung von einem Direktorfeld eines Flussigkristalls in den Zwischen-
raumen eines Kolloidkristalls. In diesem Fall handelt es sich um eine planare Randorientierung. Im Zentrum der
Kugelzwischenrdume befindet sich eine Disklination, da es keine eindeutige Gleichgewichtslage fir die Flissig-
kristallmolekile gibt.
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Abbildung 7.18: Abhé&ngigleit der Reflektivitdten eines gefillten Kolloidkristalls (PMMA/5CB) von der Span-
nung. Die Kugelgrof3e betrug 280 nm.

230 nm Kugeldurchmesser mit E7 geflllt. Die Spannung wurde schrittweise bis auf 150 Volt
gesteigert. Die Abhangigkeit der Braggwellenlange von der Spannung ist in Abbildung 7.16
dargestellt. Dort ist abzulesen, dass die maximale Verschiebung 1,5 nm betragt. AuRerdem
wurde ein Kolloidkristall mit einem Kugeldurchmesser von 280 nm mit 5CB gefullt. Das Er-
gebnis ist in Abbildung 7.18 zu sehen. Die Braggwellenlange verschiebt sich in diesem Fall
um 1,1 nm bei 130 Volt. Geht man davon aus, dass sich die Flussigkristallmolektile vollstandig
im elektrischen Feld orientieren, so liegen die Ergebnisse der Messungen unter den Erwartun-
gen. Die Braggwellenlange sollte sich im Vergleich zum feldfreien Zustand deutlich starker
verschieben. Tabelle 7.3 zeigt die theoretischen Werte fur die Verschiebung im Falle vollstan-
diger Orientierung im Vergleich mit den experimentellen Werten. Es stellt sich nun die Frage,
warum die Verschiebung der Braggwellenléange so klein ausfallt.

In Abschnitt 2.2.3 wurde die Schwellfeldstarke fur eine Deformation des Direktorfeldes in
Abhangigkeit von der Schichtdicke des Flussigkristalls beschrieben:

Nl

Eo=—

Kii )2
HE 74
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Tabelle 7.3: Theoretischberechnete Werte fir die Verschiebung der Braggwellenlange im Vergleich zu den
experimentell bestimmten Werten.

Kugeldurchmesser (nm) (Fullung)Theorie (nm)| Experiment (nm)
200 (E7) 6,5 1,1
230 (E7) 7,0 1,5
280 (5CB) 7,5 1,1

Betrachtet man die Ausdehnung der Tetraeder— und Oktaederlicken, in denen der Flussigkri-
stall zwischen den Kugeln im Kolloidkristall eingebettet ist, so kommt man zu dem Schluss,
dass es sich um ,Schichtdicken” von ca. 50 nm bis 100 nm handeltAMit 13,8 und

Kii ~ 10 1IN fiir E7 und einer Schichtdicke vaa 100 nm erhalt man fir die Schwellfeldstér-

ke B = 9:—m. Fur Testzellen mit einer Dicke von 3@ubenétigt man z. B. eine Spannung von

ca. 270 V. Fur reine Flussigkristalle sind%pdurchausakzeptabel, aber in den hier unter-
suchten heterogenen Systemen fiihrte eine derart hohe Spannung zur Zerstérung der Testzelle.
Dass es Uberhaupt eine Verschiebung der Braggwellenlange gibt, obwohl die hier angelegten
Spannungen niedriger sind, liegt wahrscheinlich an der Disklination im Zentrum der Kugel-
zwischenrdume (Abb. 7.17). In diesem kleinen Bereich ist die Gleichgewichtslage fiir das
Direktorfeld nicht eindeutig definiert, da sich die elastischen Kréafte, die von der Randorien-
tierung des Flussigkristalls an den Kugeloberflachen herriihren, gegenseitig aufheben. Daher
ist es moglich, durch relativ kleine &uf3ere Felder das Direktorfeld in diesem Bereich zu be-
einflussen.
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7.4 Temperaturabhangiges Schalten in 3D
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Abbildung 7.19: Transmissionsspektrum von porésem Silizium mit modulierten Poren: ohne Flissigkristall
(schwarz), mit nematischem Flussigkristall (rot) und mit Flissigkristall in der isotropen Phase (griin).

Pordses Silizium mit modulierten Poren besitzt eine Bandliicke fir Licht, das sich entlang
der Porenachse ausbreitet. Die erste analysierte Probe besitzt eine Modulation der Radien von
Rmin ~ 0,38 + 0,05pum und Rnax~ 0,63 +0,05um bei einer Gitterkonstante von=al,5um

und einer Periodizitat von p = 2}8n. Die Messung der Transmission parallel zur Porenach-

se (s. Abschnitt 5.3.1) weist auf eine Bandlicke hin, dieXet 10,5um zentriert ist. Es
kommt zu einer Rotverschiebung nach der Infiltration der Poren mit dem Flussigkristall 5CB
um ~920 nm an der Bandkante héherer Wellenlangen, undudim62 nm an der Bandkante
kirzerer Wellenlangen (Abb. 7.19). Die Bandliicke wird demnach schmaler, was sich, auf-
grund des hoéheren Brechungsindexes des Flussigkristalls gegenlber Luft, mit dem geringeren
dielektrischen Kontrast der beiden Komponenten des photonischen Kristalls erklaren lasst.
Der Grund fur die Gesamtverschiebung der Bandliicke ist der groRere mittlere Brechungsin-
dex der infiltrierten Probe, der sich aus der Maxwell-Garnett Beziehung (s. Abschnitt 2.1.5
[27]) berechnen lasst.
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Heizt man die Probe von der RaumtemperatuCduf 40°C auf, so dass sich der Flussigkri-

stall schlief3lich in der isotropen Phase befindet, verschiebt sich die Bandllicke wiederum zu
groReren Wellenlangen. Dieses Ergebnis tberrascht zunachst:

Der mittlere Brechungsindex des Flussigkristalls, und damit auch der Gesamtbrechungsindex
des Systems, sollten abnehmen. Also misste sich die Bandlicke zu kleineren Wellenlangen
verschieben. Da das Gegenteil der Fall ist, muss man davon ausgehen, dass die Flussigkri-
stallmolekiile in der nematischen Phase hauptséachlich parallel zur Porenachse orientiet sind.
Das bedeutet, dass der effektive Brechungsindex fiir Lichtausbreitung parallel zur Porenachse
naherungsweise dem ordentlichen Brechungsindex entspricht, welcher kleiner als der mittlere
Brechungsindex des Flissigkristalls ist. Beim Aufheizen in die isotrope Phase steigt daher der
Brechungsindex. Es kommt zu einer Verschiebung der ,Flussigkristallbandkante’1l4ih

nm zu grolReren Wellenlangen. Der Ausdruck ,Flussigkristallbandkante” gilt in Anlehnung
an den Ausdruck ,Luftbandkante”, wie normalerweise die Bandkante bei niedrigeren Wel-
lenlangen genannt wird. Sie korrespondiert mit den elektromagnetischen Moden, welche ihre
Maxima in den mit Flussigkristall gefullten Regionen besitzen. Es verschiebt sich auch die
Bandkante des dielektrischen Bandes. Die Verschiebung beti@ghm. Der Grund hierfur

liegt darin, dass in einer Struktur mit Porenmodulation die Eigenschaften des dielektrischen
Bandes nicht ausschlief3lich vom Silizium abhangen. Dieser Sachverhalt wurde in Abschnitt
2.1.5 beschrieben. In diesem speziellen Fall kommt es zu einer Verschiebung beider Bandkan-
ten, wenn sich der Brechungsindex einer Komponente andert.

Es wurden auch polarisationsabhangige Messungen an den 3D Strukturen durchgefihrt. Bei
den Poren handelt es sich nicht um Zylinder mit einem exakt kreisfémigen Querschnitt, son-
dern vielmehr um quadratische Saulen mit abgerundeten Kanten. Damit wird die sechszahlige
Symmitrie auf eine zweizahlige Symmetrie reduziert, und es gibt ein polarisationsabhéngiges
Transmissionsverhalten entlang der Porenachse (s. Abschnitt 2.1.5) [25]. Die hierfir genutz-
te Probe wurde vom gleichen Wafer abgebrochen, wie die Probe, die fir die unpolarisierten
Messungen genutzt wurde. Es scheint jedoch so, als ob der Siliziumwafer inhomogen geétzt
wurde, so dass die polarisationabh&ngigen Messungen von den unpolarisierterpyoma;5
weichen (Abb. 7.20). Die polarisationsabhangige Verschiebung der Flussigkristallbandkante
betrug 152 nm, und war demnach groR3er als der Effekt beim polarisationsunabhangigen Tem-
peraturschalten. Die nachste Messung wurde temperatur— und polarisationsabhangig durch-
gefuhrt, und mit theoretischen Berechnungen verglichen, die nach der Methode der ebenen
Wellen berechnet wurden (Abb. 7.21). Als Grundlage fur die theoretischen Bandstrukturrech-
nungen dienten die 0. g. Werte. Eine Periode der Pore wurde in mehrere Scheiben unterteilt.
Fur jede Scheibe wurde nach der Maxwell-Garnett Relation die effektive Dielektrizitatskon-
stante (DK) berechnet. Fur Silizium wurde der West (3,4)2, fur den Flussigkristall wurden

die ordentliche DK mity = (1,5)? und die DKgiso = (1,55 in der isotropen Phase verwen-
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Abbildung 7.20: Polarisationsabhangigeransmissionsspektren von makroporésem Silizium mit modulierten
Poren gefiillt mit 5CB bei Raumtemperatur. Die in der Legende dargestelliénd’90 beschreiben die Rich-
tung des oszillierenden elektrischen Feldes.

Tabelle 7.4: Experimentelle und theoretische Werte der Flissigkristallbandkante fur unterschiedliche Polarisa-
tionen der einfallenden IR-Strahlung und unterschiedliche Flissigkristallphasen.

Polarisation| Fliissigkristallphas¢ A~* (Experiment)(cm?) | A~ (Theorie)(cnt?)
0° Nematisch 894 932
0° Isotrop 885 918
[0 Nematisch 882 897
9 Isotrop 871 885

det. Theorie und Experiment weichen etwas voneinander ab, was der Wertetabelle 7.4 fur die
Positionerder Flussigkristallbandkanten zu entnehmen ist. Die Abweichungen lassen sich da-
mit erklaren, dass bei den Rechnungen der Porenquerschnitt als Quadrat angenommen wurde.
Da es sich jedoch in der Realitdt um Quadrate mit abgerundeten Ecken handelt, ist der Effekt,
der sich durch die Reduktion der Symmetrie begriinden lasst, nicht so stark ausgepragt. Im
Experiment bewirkt die Drehung der Polarisationsebene umélfie Verschiebung von 894
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Abbildung 7.21: Temperatur— und polarisationsabhéangige Transmissionsspektren von makropordésem Silizium
mit modulierten Poren gefillt mit 5CB. Die Bandstrukturrechnungen (links) wurden von Heinrich Matthias
durchgefiihrt.

cm~ nach 871 cm?, was einer Wellenlangenverschiebung von 11,@6nach 11,48um
entspricht. Die Flussigkristallbandkante wurde demnach um 296 nm verschoben.

Bei der zweiten Probe handelt es sich um 3D makropordses Silizium mit einer Stérung der
Modulationsperiode. Sie besitzt 5 periodisch aufeinander folgende Modulationen des Poren-
durchmessers. Daran angeschlossen ist eine Defektschicht, in der der Porendurchmesser kon-
stant gehalten wird. Darauf folgen wiederum 5 periodische Modulationen (Abb. 7.22). Die An-
ordnung der Poren ist bei dieser Probe quadratisch. Daher ist die BandlUckeRichtung
polarisationsunabhangig.

Die Struktur besitzt eine Resonanz innerhalb der zweiten Bandlticke beipfyl8dach dem

Fullen der Probe mit 5CB verschiebt sich der Resonanzpeak b@id# 191 nm erwartungs-
gemal zu groReren Wellenlangen nach 7 8@5Durch Erhitzen der Probe auf 4C kommt

es wiederum zu einer Verschiebung um 20 nm auf 7 @85(Abb 7.23). Dieses Ergebnis
korresponiert mit der Annahme, dass sich der Flussigkristall in der nematischen Phase haupt-
sachlich parallel zur Porenachse orientiert, so dass es durch die Temperaturerhéhung zu einer
Erh6hung des effektiven Brechungsindexes fiir Lichtausbreituhg+#Richtung kommt. Da-
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Abbildung 7.22: Rasterelektronenmikroskische Aufnahme von 3D makroporésem Silizium mit einer Reso-

nanzstruktur (von Sven Matthias).

Abbildung 7.23: Transmissionsspektren von 3D makropordsem Silizium mit Resonanzstruktur. Die Messun-
gen wurden ohne Flussigkristall (schwarz), sowie mit Flissigkristallfullung 56 Zebt) und bei 40C (griin)

durchgefuhrt.
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her kommt es nicht nur zu einer Verschiebung der Flussigkristallbandkante, sondern auch zu
einerVerschiebung des Resonanzsignals. Desweiteren wurde die Temperaturabhangigkeit des
Resonanzsignals genauer Uberprift. Dabei wurde festgestellt, dass sich das Resonanzsignal
erst am Klarpunkt verschiebt. Unter und Uber dem Klarpunkt ist die Position des Resonanz-
peaks im Rahmen der Messgenauigkeit velmmtemperaturunabhangig (Abb. 7.24).
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Abbildung 7.24: Maximades Resonanzpeaks in Abhangigkeit von der Temperatur.

Die experimentellen Werte wurden rechnerisch mit dem von W. Theil3 entwickelten Programm
~Scout 98” verglichen, welches auf einem 1D Transfer-Matrix-Formalismus basiert. Bei der-
artigen Berechnungen wird fur disA—Richtung des photonischen Kristalls das Problem auf

ein 1D Lamellenmodell reduziert. In Abbildung 7.25 wird die Verschiebung der Resonanz-
peaks betrachtet. Der Resonanzpeak fuir den ungefillten photonischen Kristall verschiebt sich
um 296 nm, nachdem die Struktur mit einem Dielektrikum mit einem Brechungsindex von n =
1,5 geflllt wurde, was dem ordentlichen Brechungsindex von 5CB entspricht. Bei Erh6hung
dieses Brechungsindexes auf n = 1,55, was dem Brechungsindex von 5CB in der isotropen
Phase entspricht, kommt es erwartungsgemaln zu einer weiteren Rotverschiebung um 33 nm.

Die dritte Probe wurde mit dem glasartig erstarrenden Flussigkristall ASY10 geftllt. Die Po-
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Abbildung 7.25: Gegeniberstellung des berechneten mit dem experimentell bestimmten Transmissionsspek-
trum. Zum besseren Vergleich wird nur die Verschiebung der Resonanzpeaks betrachtet.

ren besitzen eine Modulationsperiode von @, haben einen minimalen Durchmesser von

0,8 um und einen maximalen Durchmesser von [y Die Probe wurde drei Tage bei 120

°C temperiert, damit sich eine einheitliche nematische Orientierungsfernordnung in den Po-
ren bilden kann. Anschliel3end wurde die Probe schnell auf einem Metallblock abgekunhlt. In
Abbildung 7.26 ist die Bandlicke gut erkennbar. Nach der ersten Messung wurde die Sub-
stanz auf 170C in die isotrope Phase aufgeheizt und von dieser Temperatur aus mit dem
Metallblock abgekuhlt. Im anschlie3end gemessenen Transmissionsspektrum ist an der Flus-
sigkristallbandkante eine leichte Verschiebung um 35 nm zu erkennen. Die Verschiebung fallt
deutlich kleiner aus, als bei der Infiltration mit 5CB, obwohl die Doppelbrecliumgpn bei-

den Substanzen bei ca. 0,15 liegt. Die Verschiebung der Flussigkristallbandkante sollte dem-
nach auch ungefahr gleich sein. Die Abweichung der Verbindung vom erwarteten Verhalten
liegt vermutlich daran, dass das ASY10 sich nicht so einheitlich orientiert, wie die deutlich
weniger viskose Verbindung 5CB. Aul3erdem wurde bei anderen Experimenten gezeigt, dass
ASY10 in den Poren haufig Disklinationen und Defekte (Abb. 7.27) ausbildet [50].
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Abbildung 7.26: Reflexionsspektren von 3D makroporésem Silizium gefillt mit ASY10, welche bei°120
und bei 170°C temperiert wurden. Es kommt zu einer Verschiebung der Flussigkristallbandkante um 35 nm.

Abbildung 7.27: Aufnahmevon ASY 10, welches aus makroporésem Silizium herausgeldst wurde. Die Substanz
wurde mit einem Fluoreszenzfarbstoff versetzt und mit polarisiertem Licht angeregt. Daraus lasst sich lokal die
Vorzugsrichtung der Molekile bestimmen. In diesem Fall ist die Orientierung sehr uneinheitlich, und es sind
viele Defekte erkennbar [50].
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7.5 Temperaturabhangiges Schalten in 2D
makr oporosem Silizium

Die in diesem Abschnitt analysierte Probe besitzt eine Gitterkonstante von apmlyBd
einen konstanten Porendurchmesser von d fuih2Daraus ergibt sich ein Verhaltnis r/a von
0,4. Die Messungen wurden in— M-Richtung in der TE-Polarisation durchgeftihrt, wo-

Reflektivitat

0.0 T T T T T T T T T T T
2 3 4 5 6 7 8

Wellenlange (um)

Abbildung 7.28: Reflexionsspektren von 2D makroporésem Silizium, welche$ in M—Richtung mit TE-
Polarisierter IR—Strahlung bestrahlt wurde, vor und nach der Befillung mit 5CB.

bei zu beachten ist, dass aufgrund der Casségrain—Optik unter einem gewissen Winkel auf
die Probe eingestrahlt wird (s. Abschnitt 6.3.2). Nach der Infiltration mit dem Flissigkristall
5CB verschob sich die Bandliicke erwartungsgemal in Richtung grél3erer Wellenlangen. Die
Luftbandkante verschiebt sich zur Flussigkristallbandkante umiyil8nd die dielektrische
Bandkante um 0,3pm (Abb. 7.28). Nach Erhdhung der Temperatur von Raumtemperatur
auf 60C wurde ein Verschieben der Flissigkristallbandkante um 35 nm in Richtung gro-
Berer Wellenlangen beobachtet. Da es sich genau wie bei den 3D-Systemen um eine Rot-
verschiebung handelt, muss man wieder davon ausgehen, dass die Flussigkristallmolekile
hauptséachlich parallel zur Porenachse orientiert sind. Nur so lasst sich erklaren, warum in
der TE—Polarisation in der nematischen Phase ein kleinerer effektiver Brechungsindex des
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Flussigkristalls existiert als in der isotropen Phase. Die Messungen wurden mit theoretischen
Berechnungererglichen, bei denen von einem Brechungsindex vgs @,5 in der nemati-
schen Phase und voiyh= 1,55 in der isotropen Phase ausgegangen wird. Es wurden Refle-
xionsspektren i M— und I K—Richtung mit dem Progamm Translight von A. Reynolds [38]
berechnet (Abb. 7.29), das auf einem 2D-Transfermodell basiert, sowie Bandstrukturen mit
dem MIT Photonic Bands—Progamm [40] (Abb. 7.30). Die Werte flr die Bandkanten sind der
Tabelle 7.5 zu entnehmen. Die Simulation mit Translight ergab eine Bandkantenverschiebung

Nematisch
Isotrop 7

Wellenlange (um)
T
(wr) abuejus|eAn

30 nm
}
4 -
3_ l T 'I T > Ll 'l Ll 'l Ll l Ll 'l Ll 'l T 3
0.0 0.4 08 0.0 04 0.8 00 04 08
Reflektivitat

Abbildung 7.29: Vergleich der experimentell gemessenen Spektren (mitte) mit den Reflexionssimulationen
(rechts:I' M, links: I'K).

um 100nm, also fast dreimal soviel als im Experiment. Die Bandstrukturrechnung kommt mit
97 nm zu einem ahnlichen Ergebnis. Die Abweichung zu den experimentellen Werten liegt
in der Messmethode begrindet. Aufgrund des schragen Lichteinfalls wegen der Casségrain—
Optik ,sieht* das auftreffende Licht nicht ausschlief3lich den ordentlichen Brechungsigdex
sondern einen etwas héheren effektiven Brechungsindex. AuRerdem kann es sich auch um ei-
ne ,escaped radialtt Orientierungsverteilung des Direktors handeln. Diese bildet sich haufig
bei homdotroper Randorientierung an den Porenwéanden aus. In diesem Fall erhalt man in der
Gesamtheit einen grof3eren effektiven Brechungsindex fur die TE—Polarisation. Um eine kla-
re Aussage Uber die Orientierungsverteilung der Flissigkristallmolekile zu treffen, wurden
°H — NMR-Experimente durchgefiihrt. Diese sind im folgenden Kapitel dargestellt.
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Abbildung 7.30: Vergleich der Bandstrukturrechnung (links) mit den experimentell gemessenen Spektren
(rechts).

Tabelle 7.5: Experimentelle und theoretische Werte flr die Flussigkristallbandkante der 2D—Struktur fir unter-
schiedliche Flussigkristallphasen.

Phase | Experiment (cm?) | Translight (TK/IFM)(cnt?) [ MIT (TK/TM)(cm —1)
Nematisch 2206 2302 /2084 22722117
Isotrop 2189 2250/ 2036 2224 | 2067
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7.6 Deuterium—NMR-Experimente in makroporosem
Silizium

Deuterium—NMR—-Messungemurden mit zwei unterschiedlichen 2D—Kristallen und an einer
3D-Struktur mit Porenmodulation durchgefihrt.

7.6.1 2D-Strukturen

2,1um bei 298K
7 27,677 kHz
—~
£ _1-28,314 kHz
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Abbildung 7.31: 2H — NMR-Messungn 2D Silizium mit 2,1um Porendurchmesser.

Die Porendurchmesser der 2D—Strukturen betrugepr@,Bzw. 2,1um. Die Probe mit 2,1im
Porendurchmesser besal} eine Porentiefe vopu208ei einer Gitterkonstante von a = 4y

ergibt sich eine Pordsitét von 0,227. Es wurden 42 Plattchen m2ant GroRe herausge-
schnitten und tGbereinander gestapelt (s. Abschnitt 6.4). Daraus ergibt sich ein Porenvolumen
von ca. 7,6 mr. Geht man davon aus, dass die Poren vollstandig mit deuteriertem 5CB ge-
fullt sind, dann befinden sich nur 78 Flussigkristall in dem NMR—-R6hrchen. Aufgrund
dieser geringen Menge war eine lange Messzeit von einem Tag ndtig, um ein relativ gutes
Signal/Rausch—Verhaltnis S/N zu erhalten. Bei der Probe mit nyrd Betrug die Gitterkon-
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0,9um bei 298K
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Abbildung 7.32: 2?H — NMR-Messungn 2D Silizium mit 0,9um Porendurchmesser.

stante a = 1,5um. Das ergibt eine Pordsitat von 0,326. Es wurden 36 Plattchen Ubereinander
gestapelt. Die Porentiefe betrug nur 4@8. Daraus ergibt sich, dass 4J6Flussigkristall in

der Probe enthalten sind. Da es sich um weniger Substanz als bei gen-Z2tobe handelt,

war das Verhaltnis S/N bei diesen Messungen schlechter, und es war eine Messzeit von drei
Tagen nétig, um ein ausreichend gutes Verhaltnis S/N zu erhalten. In Abbildung 7.31 ist das
2H — NMR-Spektrum fiir die 2, im—Probe bei 298 K (Z&) zu sehen. Die Quadrupolauf-
spaltung de$H — NMR-Signals betraghv = 55,991 kHz. Bei der 0,9m—Probe betragt die
AufspaltungAv = 56,363 kHz (Abb. 7.32). Die beiden Werte korrespondieren sehr gut mitein-
ander. Die Literatur [37] liefert fiir eine parallele Orientierung des Direkiansm Magneteld

eine Quadrupolaufspaltung vatv = 53 kHz bei 298 Kelvin (Abschnitt 5.4). Dieser Wert fur

die Quadrupolaufspaltung liegt etwas niedriger, ist aber durchaus mit den hier gemessenen
Werten vergleichbar. Zur Kontrolle wurden einige Milliliter 5CB in ein NMR—R6hrchen ge-
fullt und bei der gleichen Temperatur wurde dés— NMR—Spektrum gemessen. Es darf an-
genommen werden, dass sich der Direkor des Flussigkristalls in dieser Probe in Feldrichtung
orientiert, und daher Auskunft Uber die maximale Quadrupolauspaltung gibt. Das Ergebnis
warAv = 53,210 kHz (Abb. 7.33). Fir eine Orientierung senkrecht zum Magnetfeld wiirde die
Aufspaltung nur die Halfte betragen. Bei einer Mischung beider Orientierungen waren dann
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Abbildung 7.33: 2H — NMR-Spektrumvon 5CB in einem NMR—R&hrchen. Die Aufspaltung betragt erwar-
tungsgeman 53,210 kHz.
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Abbildung 7.34: Gegeniberstellung von Abbildung 7.31 und einem rechnerisch ermittelten Spektrum fiir den
Fall vollstandiger Orientierung des Direktarentlang der Porenachse.



92 7 Ergebnisse

auch beide Aufspaltungen im NMR-Spektrum sichtbar. Abbildung 7.34 zeigt eine Gegen-
Uberstellungvon Abbildung 7.31 und einem theoretisch berechneten Spektrum fur den Fall
vollstandiger Orientierung des Direktors entlang der Porenachse. Die beiden Spektren passen
sehr gut zusammen. Dies bestétigt, dass sich 5CB in den Poren des 2D-Siliziums hauptséach-
lich parallel zur Porenachse orientiert.

Die Quadrupolaufspaltung von dem-deuterierten 5CB in den Poren ist um ca. 3 kHz gro-

Ber als die Aufspaltung, die in dem NMR—-R6hrchen gemessen wurde. Bedenkt man, dass die
Aufspaltung nicht nur vom Direktor, sondern auch vom Ordnungsgrad abh&ngt, kommt man
zu dem Schluss, dass der Ordnungsgrad vom 5CB in den Poren héher sein muss. Um dies zu
guantifizieren, betrachtet man folgende Gleichung (s. Abschnitt 6.4.1):

3¢ .
Avg = E%Q% Sé(coszﬁ— 1)) + %(S«—SyyxsmzﬁcosZa) : (7.5)

3(Sx — Syy)(sin’Bcos2a) enthlt die Biaxialitdt des Molekils. Im Fall von 5CB kann man
diesen Term vernachlassigen und gleich null setzen. Wenn mane3j@/h- <%(cos’-[3—
1)) = x setzt,ergibt sich aus Gleichung (7.5) die Proportionalitat:

Avg = XS (7.6)

Ist die maximale Quadrupolaufspaltung allein aufgrund des Ordnungsgrades unterschiedlich,
so gilt fir die relative Anderung der Aufspaltung:

Avpr —Avee S-S

Avor S

Demnachhat man in den 0,9n Poren eine relative Anderung des Ordnungsgrades S um
0,059 und bei den 2, Poren eine um 0,052 gegentber dem Ordnungsgrad, der in dem
NMR—-Ro6hrchen war.
Nach Abschnitt 5.4 sollte es theoretisch zu sehr scharfen Peaks mit geringer Halbwertsbreite
kommen. Aufgrund von Gerateparametern, wie z.B. der Inhomogenitat des Magnetfeldes oder
Schwankungen der Magnetfeldstarke, sind NMR—-Signale gaussverteilt. Deshalb wurde das
theoretisch berechnete Signal mit einer Gauss—Funktion gefaltet.

(7.7)

Um eine Anderung von der planaren zu einer homootropen Randorientierung zu erhalten,
kann man die Porenwande chemisch behandeln. Daflr wurde eine 0,1—prozentige Losung
DMOAP (N,N-dimethyl-N-octadecyl-3-aminopropyltrimethoxisilylchlorid) in die Poren mit
2,1pm Durchmesser gefillt und bei 1%0 getrocknet. Dabei entsteht eine kovalente Bindung
des DMOAP mit dem Silizium [75]. 5CB orientiert sich an den mit DMOAP behandelten
Oberflachen homootrop. Das Ergebnis der Deuterium—NMR—-Messung ist in Abbildung 7.35
zu sehen. Man sieht deutlich neben der dominanten Maximalaufspaltung von 54,809 kHz
eine zuséatzliche, schwacher ausgepragte Auspaltung von 24,231 kHz. Au3erdem ist in der
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Abbildung 7.35: 2H — NMR-Spektrumvon 5CB in 2,1m—Poren, welche mit DMOAP behandelt wurden. Die
maximale Aufspaltung betragt 54,809 kHz. Die kleinere Aufspaltung betragt 24,231 kHz. Der schmale Peak in
der Mitte deutet auf isotrope Anteile innerhalb der nematischen Phase hin.

Mitte ein schmaler Peak zu sehen, was auf geringe isotrope Anteile innerhalb der nematischen
Phase deutet. Durch Integration dieses Signals kann man sagen, dass dieser isotrope Anteil bei
ungefahr 4% liegt. Zum Vergleich wurden drei theoretische Spektren fir eine ,escaped radial”
Orientierungsverteilung berechnet. Die ersten beiden Rechnungen unterscheiden sich nur im
Winkel der Randorientierung. Es wurden Randorientierur@en= 1) von 90 und von 80
angenommen. In der Mitte der Poren=r0) liegt der Direktorn parallel zum Magnetfeld.
Dazwischen wird ein exponenzieller Verlauf der Orientierung des Direktoré\bhangigkeit

vom normierten Radiusangesetzt:

O(r=1)

O(r) = 107

O<r<i1 (7.8)

Das dritte Spektrum wurde fir ein Direktorfeld berechnet, das durch ein Polynom vierten
Grades beschrieben wird. Fir die Randorientierung wurde ein Winkel vonh&@g&nommen
und der Verlauf durch ein Polynom vierten Grades beschrieben:

O(r) =39-r +39-r2+05-r* 0<r<1 (7.9)
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Abbildung 7.36: Berechnete?H — NMR-Spektrenfiir ,escaped radial” Direktorverteilungen mit Randorien-
tierungen von 90 (oben), 80 (mitte) und 78,3 (unten). Die Striche neben den Spektren symbolisieren die
Orientierungen des Direktors zum Magnetfeld in Abhangigkeit vom Radius

Intensitéit (willk. Einh.)
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Abbildung 7.37: Vergleich des experimentell gemessenen Spektrums (schwarz) mit dem theoretisch berechne-
ten Spektrum fiir eine Randorientierung @it= 78,5° (rot).
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Die berechneten Spektren unterscheiden sich signifikant voneinander (Abb. 7.36). Die kleine
Aufspaltunghangt direkt mit der Randorientierung des Flussigkristalls an den Porenwanden
zusammen. Je grol3er der Winkel, desto grof3er ist die Aufspaltung im mittleren Teil des Spek-
trums. Vergleicht man das experimentell gemessene Spektrum mit den berechneten Spektren,
so entdeckt man eine gute Ubereinstimmung fiir das Polynom mit R&afdorientierung

(Abb. 7.37). Es kann daher angenommen werden, dass dieses Modell das Direktorfeld im
Inneren der Pore am besten beschreibt.
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7.6.2 3D-Strukturen
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Abbildung 7.38: SEM—Aufnahmevon 3D makropordsem Silizium, welcher anschlieRendaniteuteriertem
5CB gefillt wurde.

Die untersuchte 3D-Struktur besitzt eine zweidimensionale quadratische Anordnung der Po-
ren mit einer Gitterkonstante von &n. Fiir die?H — NMR-Messung ist das jedoch ohne
Belang. Es existieren 30 Modulationen in der Probe, wobei die Lange einer Modulationsperi-
ode 1,82um betragt. Die Poren sind 54,6n tief. Der Porendurchmesser variiert von 1,88

bis 1,82um (Abb. 7.38).

Es wurden 68 Plattchen mit einer GréRRe vor 2mn? herausgeschnitten und gestapelt. Dar-

aus ergibt sich ein Porenvolumen von ca. 9 fnomd es befinden sich @ Fliissigkristall

in der untersuchten Probe. Abbildung 7.39 zeigt #ids- NMR—Spektrum der 3D—Probe.

Die maximale Aufspaltung der Linien valv = 46,874 kHz sind auch in der 3D-Probe do-
minant, woraus sich schliel3en lasst, dass der Grof3teil der Flissigkristallmolekile entlang der
Porenachse orientiert ist. Die Aufspaltung ist, verglichen mit den Spektren der 2D—Proben,
relativ klein. Daraus kann man schliel3en, dass der Ordnungsgrad in den 3D-Strukturen deut-
lich geringer ist als in den 2D-Strukturen. Zusétzlich existiert in der Mitte ein relativ schwach
ausgepragter aber relativ breiter Peak, was auf isotrope Anteile oder Defektorientierungen in-
nerhalb der nematischen Phase hindeutet. Die Poren der gleichen Probe wurden ebenfalls mit
DMOAP behandelt, um eine homéotrope Randorientierung des Flussigkristalls zu erhalten.
Das Spektrum dieser Messung ist in Abbildung 7.40 zu sehen. Die Messungen unterscheiden
sich deutlich voneinander. Bei der Probe, die mit DMOAP behandelt wurde, ist neben der
maximalen Quadrupolaufspaltung van = 52,623 kHz auch noch eine kleinere Aufspaltung



7 Ergebnisse 97

7] -23,193 kHz 3D Probe bei 295K 23,681 kHz
=
£
L
N _
E
—
«© .
=
7}
c
O
S
c _
T ¥ T T T T T T T T T T T
-30 -20 -10 0 10 20 30
Frequenz (kHz)

Abbildung 7.39: 2H — NMR—-Messung/on deuteriertem 5CB in 3D—makroporésem Silizium.
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Abbildung 7.40: 2H — NMR-Messungvon deuteriertem 5CB in 3D—makroporésem Silizium bei dem die Po-
renoberflachen mit DMOAP behandelt wurden, um eine homdotrope Randorientierung zu erhalten.



98 7 Ergebnisse

von Av = 24,231kHz erkennbar. Sie ist exakt genau so grol3, wie die kleine Aufspaltung in
der 2D—Probe. Das lasst auf eine ,escaped radial” Orientierungsverteilung des Direktorfel-
des schliel3en. Der Ordnungsgrad im mittleren Teil der Poren, wo der Direktanallel zum
Magnetfeld liegt, ist deutlich hdher als in der unbehandelten Probe, was man aus der grofie-
ren Aufspaltung schlieBen kann. Er liegt um 12,2 % héher als bei den unbehandelten Poren.
Bei der unbehandelten 3D—Probe sollte die Randorientierung wie bei den unbehandelten 2D—-
Proben planar sein. Zum Vergleich wurden mit einem Computerprogramm Berechnungen von
Direktorfeldern und den zugehdrigéhl — NMR—Spektren fiir die hier betrachtete Struktur

bei planarer und homootroper Randorientierung durchgefuhrt (Abb. 7.41 und 7.42).

N4

Frequenz r

Abbildung 7.41: Berechnungeines Direktorfeles mit dem zugehdrigéhl — NMR—Spektrum bei planarer
Randorientierung.
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Abbildung 7.42: Berechnungines Direktorfeldes mit dem zugehérigdh— NMR—-Spektrum bei homdotroper
Randorientierung. Die Simulation wurde vor dem Erreichen des Zustands minimaler Energie abgebrochen.
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Als Grundlage fur die Berechnungen diente ein Algorythmus, der von Kilian und Hess ent-
wickelt wurde und numerisch Relaxationen von Flussigkristallsystemen berechnet [52]. Dazu
wird eine Raum— und Zeitdiskretisierung durchgeftuhrt. In diesem Fall wurde die Porenform
einer Modulation durch ein Gitter von 13 x 13 x 13 Teilvolumina approximiert, wobei jedem
Teilvolumen ein Direkton zugeordnet wird. Das berechnete Spektrum fir die planare Ran-
dorientierung ist gut mit dem experimentell gemessenen Spektrum der unbehandelten Probe
vergleichbar, und bestétigt die Annahme, dass in unbehandelten Poren eine planare Randori-
entierung existiert (Abb. 7.43). Bei der Rechnung mit homdotroper Randorientierung passt das

Intensitét (willk. Einh.)

Frequenz (normiert)

Abbildung 7.43: Vergleich des gemessenen mit dem simulieftér- NMR—Spektrum bei planarer Randorien-
tierung. Die Spektren zeigen eine akzeptable Ubereinstimmung.

berechnete Spekrum nur dann gut zu dem experimentell gemessenen Spektrum, wenn man die
Rechnung vor dem Erreichen des Zustands minimaler Energie abbricht (Abb. 7.44). Lasst man
die Rechnung bis zum Erreichen Zustands mit minimaler Energie weiterlaufen, sieht das be-
rechnete Spektrum deutlich anders aus (Abb. 7.45). In beiden Féallen erhalt man eine ,escaped
radial“ Orientierungsverteilung der Flussigkristallmolekule. Der Flussigkristall scheint sich in
modulierten Poren bei homdotroper Randorientierung nicht in einem Zustand mit minimaler
Energie zu befinden.
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Abbildung 7.44: Vergleich des gemessenen mit dem simulieftdn- NMR—Spektrum bei homéotroper Ran-
dorientierung. Die Spektren zeigen unter Beriicksichtigung des geringen Signal/Rausch—Verhéaltnisses eine ak-

zeptable Ubereinstimmung. Es scheint so, als ob sich der Fliissigkristall nicht in einem Zustand mit minimaler
Energie befindet.
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Abbildung 7.45: Berechnungines Direktorfeldes mit dem zugehérigah— NMR—-Spektrum bei homdotroper
Randorientierung. Die Rechnung wurde bis zum Erreichen des Zustands minimaler Energie durchgefiihrt.



8 Zusammenfassung und Ausblick

In der vorliegenden Arbeit wurden abstimmbare photonische Kristalle erzeugt, indem pordse
Strukturen mit einem Flassigkristall gefullt wurden. Es wurden vier Arten von photonischen
Kristallen mit FlUssigkristallen infiltriert und spektroskopisch untersucht. Darunter waren Kol-
loidkristalle aus PMMA, invertierte Kolloidkristalle aus Zinnsulfid und zwei— und dreidimen-
sionale photonische Kristalle aus makroporésem Silizium. Es ist bei allen drei Systemen ge-
lungen, ein Schaltverhalten der Bandlicken durch Temperaturédnderung zu erreichen. Bei den
Kolloidkristallen war es sogar mdglich, ein Schaltverhalten der Bandliicke bei Anlegen von
relativ kleinen elektrischen Feldern zu beobachten. Bei den anderen photonischen Kristallen
war dies nicht mdglich, da es sich bei den Materialien um Halbleiter handelt, die eine zu hohe
Leitfahigkeit besitzen. Bei Anlegen eines elektrischen Feldes bekame man einen Kurzschluss,
so dass kein Feld existiert, in dem sich der Flussigkristall orientiert.

Es wurde gezeigt, dass man uber die Temperaturanderung in Kolloidkristallen aus einem
Polymer—Flussigkristall-Gemisch einen Schalteffekt &@n~ 2 nm erzielen kann. Das glei-

che System sollte bei Anlegen von elektrischen Feldern bei konstanter Temperatur einen gro-
Beren Schalteffekt erzeugen, was jedoch nicht gezeigt werden konnte. Die Zwischenraume
sind bei den Kolloidkristallen so klein, dass die elastischen Ruckstellkrafte zwischen den Mo-
lektlen mit den hier angelegten Spannungen nicht aufgehoben werden konnten. Bei dem Ver-
such, héhere Spannungen anzulegen, kam es zu einer Zerstorung der Testzellen.

Mit den invertierten Strukturen aus Zinnsulfid war ein deutlich gré3erer Schalteffekt durch
die Temperaturanderung zu erreichen. Die Verschiebung der Wellenlange 1ag beil4

nm. Diese deutlich grol3ere Verschiebung der Bragg—Wellenlange kann auf den hoheren Flis-
sigkristallanteil in der invertierten Struktur zurtickgefiihrt werden.

Das poroése Silizium ist fir eventuelle Anwendungen von besonderem Interesse. Gerade hier
ist es notwendig, die optischen Eigenschaften dieser Strukturen schaltbar oder abstimmbar zu
machen. Es ist bei dreidimensionalen Strukturen gelungen, einen Schalteffekt der Flussigkri-
stallbandkante von 1,23 meV (& 296nmbei 11 2um zu erreichen. Bei dreidimensionalen
Strukturen mit Defektstruktur betrug die spektrale Verschiebung der resonanten Defektmode
0,43 meV (AA= 20nmbei 7,3um). Beim ersten Versuch, eine 3D-Struktur mit einem glasartig
erstarrenden Flussigkristall abzustimmen und anschliel3end zu fixieren, gelang eine Verschie-
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102 8 Zusammenfassung und Ausblick

bung der Bandkante um 0,34 meV (AA35nmbei 11,3un). Bei den zweidimensionalen
Strukturen waren es 0,80 meV (AA30nmbei 4,5un). Die Ergebnisse stehen in guter Uber-
einstimmung mit theoretischen Berechnungen.

Die Deuterium—NMR Experimente van-deuteriertem 5CB in zwei— und dreidimensionalen
photonischen Kristallen aus makropordsem Silizium zeigten, dass sich der Dimekiwie-

gend parallel zur Porenachse orientiert. Dieses Ergebnis deckt sich mit den optischen Untersu-
chungen an diesen Strukturen. Au3erdem ist es gelungen, die Porenoberflachen chemisch so
zu behandeln, dass sich eine ,escaped radial” Orientierungsverteilung in den Poren ausbildet,
und als solche nachgewiesen werden konnte.

In zukiinfigen Untersuchungen sollte sich der Schalteffekt in makroporésem Silizium noch
vergroRern lassen. Dies kann durch die Wahl eines anderen Flussigkristalls mit einer gro-
Beren Doppelbrechung geschehen. Der Vergleich der in dieser Arbeit untersuchten Systeme
zeigt, dass insbesondere im Bereich der glasartig erstarrenden Polymere noch Verbesserungen
erwartet werden kdnnen. Hierzu misste man eine Substanz verwenden, die sich einheitlich
in den Poren orientieren lasst und wenig Defekte ausbildet. Es sind theoretische Berechnun-
gen fur die Direktorfelder in pordsen Strukturen unter Bertcksichtigung der unterschiedli-
chen Grol3e der elastischen Koeffizienten nétig, um die Deuterium—NMR Spektren besser zu
guantifizieren. Bei den Kolloidkristallen kdnnen theoretische Berechnungen der Direktorfel-
der Aufschluss tber das Verhalten in elektrischen Feldern geben.

In der hier vorgelegten Arbeit konnten erste Beitrdge zur Entwicklung abstimmbarer photo-
nischer Kristalle geleistet werden. Aufgrund der hohen Bedeutung, die diese Thematik zur
Zeit besitzt, wurde parallel zu den eigenen Arbeiten weltweit auch in anderen Arbeitsgruppen
bemerkenswerte Entwicklungen vorangetrieben. Zu erwahnen sind u.a.:

Abstimmung durch Ladungstragerinjektion im Halbleiter (Wehrspohn) [5]—[6]

Optimierung von Kolloidkristallen (Yoshino) [7]—[11]

Lasing in Flussigkristallen (Finkelmann) und Kolloidkristallen (Shkunov) [62]-[65]

Abstimmbare QD-Laser (Reithmaier) [66]

Gemeinsam mit den Ergebnissen dieser Arbeitsgruppen wurde ein Beitrag geleistet, um die
Voraussetzungen, dass in absehbarer Zeit hochwertige abstimmbare photonische Kristalle fur
Anwendungen der Photonik hergestellt werden kénnen.



9 Anhang

9.1 Bestimmung der Brechungsindizes von
FlUssigkristallen

2y

Flissigkristall %

T

Abbildung 9.1: Schematisch®arstellung des Strahlengangs in einer Keilzelle zur Messung von Brechungsin-

dizes. In diesem Fall ist der Brechungsindex des Glases hoher als der des Flussigkristalls, da der Strahl zum Lot
hingebrochen wird.

Die Brechungsindizes der Flussigkristalle wurden mit einer Keilzelle (Jelley’sches Mikro—
Refraktometer) bestimmt (Abb. 9.1). Um die Werte flr die Brechungsindizes zu berechnen,
nutzt man das Brechungsgesetz nach Snellius:

sina m

sinB n ®-1)
In Abbildung 9.1 gilt demnach

sind Nglas

Sing i ©2
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und

siny Mt

Dabeiist ngjas der Brechungsindex des Glasege rler Brechungsindex des Flussigkristalls
und nyst der Brechungsindex der Luft. Weiterhin gitt:= 45°, B +y = 45 und tard = d/I.
Daraus folgt:

y = arcsin MWt sing (9.4)
Nglas

Ersetztmand durch arctand/I)

y = arcsin Mt gin (arctan( & (9.5)
Nglas |

Soerhalt man einen Ausdruck fur den Winkgl

B =45 — arcsin( :S::Ssin (arctan(?))) : (9.6)

Hierauskann man schlie3lich den Brechungsindex des Flussigkristalls berechnen:

s.in(45O — arcsin(%mﬂssin(arctar(lg))))
NLCc = Nglas sin(@d5)

(9.7)
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9.2 Bragg—Beugung

Eine einfache Erklarung zur Beugung elektromagnetischer Wellen in Kristallen hat W. L.
Bragg gegeben. Er hat angenommen, dass die einfallenden Lichtstrahlen an parallelen Teil-
chenebenen in einem Kristall gespiegelt werden. Jede Ebene reflektiert nur einen Bruchteil
der einfallenden Strahlung. Wenn die reflektierten elektomagnetischen Wellen an parallelen
Ebenen konstruktiv interferieren, dann spricht man von Beugung.

“d sin®

Abbildung 9.2: Ableitungder Braggbedingung. d ist der Abstand von benachbarten parallelen Netzebenen.

Man betrachtet eine Schar paralleler Netzebenen mit dem Abstaddr einfallende Licht-

strahl bildet mit den Netzebenen den Wini&l Der Wegunterschied zwischen den reflek-
tierten Strahlen zweier aufeinander folgender Netzebenen betragt dahrsig®. Es tritt
konstruktive Interferenz auf, wenn der Wegunterschied ein ganzzahliges Vielfaches der Wel-
lenlangen ist:

20hki-SIN@ = M-Apg mMeN (9.8)

Diese Gleichung nennt man Bragg—Bedingung.

Braggreflexion kann nur bei Wellenlangen auftreten, die kleiner als das doppelte des Netzebe-
nenabstandes sind. Wenn man an photonischen Kristallen spektroskopische Untersuchungen
durchfuhrt, muss man zusétzlich den Brechungsindex n des Materials bertcksichtigen, da die
Wellenlange in dielektrischen Materialien kleiner ist als im Vakuum oder in Luft. Firm =1
lautet die Bragg—Bedingung

Vak — n. Ay = 2nd- sin®. (9.9)

Zu demselben Ergebnis wie Gleichung (9.8) fihrt eine Betrachtung der Impulserhaltung: Sind
k undk' mit [k| = |k'| = 21/An die Wellenvektoren des einfallenden bzw. des gebeugten
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Strahls undG mit |G| = 21/dy ein Vektor des reziproken Gitters, der die Netzebenenschar
mit den Millerindizes (h,k,l) beschreibt, so lautet die Bragg—Bedingung:

k' —k =G. (9.10)

Im Fall elastischer Streuundk(| = |k‘|) gilt daher

2 o |
G| = ﬁ - 2-7”sm@ — 2K/ sin®. (9.11)
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9.3 Abkirzungen

5CB,K15 4-cyano-4'-pentylbiphenyl

PMMA
H,S
SnCl
HCI
SnS
Si
THF
ITO
MCT
DTGS
CVvD
AFM
NMR
N
ISO
hcp
r-hcp

fcc

S/IN

Poly(methylmethacrylat)

Schwefelwasserstoff

Zinnchlorid

Salzsaure

Zinnsulfid

Silizium

Tetra-Hydro-Furan

Indium-tin-oxide, Indiumzinnoxid

Mercury Cadmium Telluride

Deuteriertes Tri-Glycin-Sulfid

Chemical Vapor Deposition

Atomic Force Microscope, Rasterkraftmikroskop
Nuclear Magnetic Resonance

Nematische Phase

Isotrope Phase

hexagonal closed packing, hexagonal dichteste Packung
randomly hcp, willkirliche hcp

faced centered cubic, kubisch flachenzentriert
Infrarot

Signal/Noise, Signal/Rausch-Verhaltnis
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9.4 Symbole

n Direktor

Kii Elastische&konstante

S Ordnungsgrad

B Magnetische Flussdichte

H Magnetische Feldstarke

E Elektrische Feldstarke

a Gitterkonstante

h  Schichtabstand

h.,k,1 Millerindizes

G Reziproker Gittervektor

k Wellenvektor

r Ortsvektor

w Kreisfrequenz

c Lichtgeschwindigkeit

€ Dielektrizitatskonstante

A Wellenlange
Brechungsindex

f Fallfaktor

T Temperatur

Tc Klarpunkt

Ts Glastemperatur

Vi Molvolumen

\% Potentielle Energie

Magnetische Feldkonstante

Magnetische Anisotropie
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