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1 Einleitung

In den vergangenen Jahrhunderten haben Forscher in der Optik, einem elementaren Teilgebiet

der Physik, immer wieder für aufsehenerregende Entdeckungen gesorgt. Beginnend mit der

Beschreibung des Lichts als Welle durch Huygens waren die optischen Technologien nicht

aufzuhalten. Digitalkameras, Compact Discs, Flüssigkristalldisplays und Laserpointer gehö-

ren zu unserem Alltag. Datenübertragungen geschehen nicht mehr mit Hilfe von Kupferdräh-

ten sondern über ein Netz von Glasfaserkabeln, welches die Erde umspannt und gigantische

Datenmengen mit Lichtgeschwindigkeit transportiert. Ausserdem bildet die optische Spektro-

skopie die Basis für die experimentelle Forschung in allen naturwissenschaftlichen Bereichen.

In den letzten 10 Jahren hat sich der Begriff „Photonik“ in der physikalischen Forschung

durchgesetzt. Es handelt sich dabei um einen Komplex von Wissensgebieten, die sich mit

Informationsübertragung und -verarbeitung mittels Licht befassen. Die Forschung an „pho-

tonischen Kristallen“ ist ein wichtiger Bestandteil der Photonik. Bei photonischen Kristallen

handelt sich um periodische Strukturen mit Gitterkonstanten im Bereich der Wellenlänge des

sichtbaren Lichts. Derartige Stukturen, die einen ausreichenden dielektrischen Kontrast auf-

weisen, besitzen photonische Bandlücken, so dass die Ausbreitung von elektromagnetischen

Wellen in einem bestimmten Intervall von Frequenzen verboten ist [1, 2]. Das Auftreten ei-

ner Bandlücke für Photonen in Photonischen Kristallen stellt ein Analogon zur Energielücke

zwischen dem Valenz- und dem Leitungsband von Elektronen in einem Halbleiter dar. Daraus

ergibt sich die Grundlage für potentielle Anwendungen im Bereich der optischen Signalverar-

beitung. Ausserdem eignen sich Photonische Kristalle zum Beispiel sehr gut als Wellenleiter,

Frequenzfilter, Kollimatoren und Superprismen [3].

Für potentielle Anwendungen muss ein photonischer Kristall abstimmbar sein. Für die Her-

stellung eines Frequenzfilters müssen beispielsweise die Strukturen auf wenige Angström ge-

nau gefertigt werden, da sonst die gewünschte ausgekoppelte Wellenlänge um mehrere Mi-

krometer verfehlt wird. Dies ist jedoch mit einem hohen Aufwand verbunden oder bisher

technisch unmöglich. Der photonische Kristall muss daher abstimmbar sein, um die für ihn

bestimmten Anforderungen zu erfüllen. Darüber hinaus ist in aktiven optischen Bauelementen

ein thermisch, elektrisch oder magnetisch induziertes Schalten der dielektrischen Eigenschaf-

ten erforderlich.
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8 1 Einleitung

Flüssigkristalle als Teil des photonischen Kristalls sollten sich für diese Aufgabe gut eignen,

dasie eine hohe Anisotropie der Brechungsindizes besitzen. Flüssigkristalle besitzen doppel-

brechende Eigenschaften, welche stark von der Temperatur abhängen. Die optische Achse von

Flüssigkristallen lässt sich durch das Anlegen eines äußeren magnetischen oder elektrischen

Feldes umorientieren. Da die optischen Eigenschaften eines photonischen Kristalls essentiell

von den Brechungsindizes der beteiligten Materialien abhängen, ist es prinzipiell möglich,

diese in einem flüssigkristall–haltigen photonischen Kristall durch die Veränderung der Tem-

peratur [4] oder durch äußere Felder [7] zu beeinflussen.

Die vorliegende Arbeit beschäftigt sich mit periodischen, heterogenen Nanostrukturen, de-

ren eine Komponente ein Flüssigkristall ist. Die realen Möglichkeiten und Grenzen dieses

Effektes wurden im Rahmen dieser Arbeit an zwei Systemen untersucht. Einerseits wurden

Kolloidkristalle (künstliche Opale) mit einem Flüssigkristall infiltriert und charakterisiert, an-

dererseits wurden mikrofabrizierte Strukturen aus Silizium verwendet. Neben der spektrosko-

pischen und elektrooptischen Charakterisierung wurden Beugungsexperimente mit konver-

gentem Licht durchgeführt.



2 Grundlagen

2.1 Photonische Kristalle

2.1.1 Grundkonzepte und Dimensionalität

Strukturen, die eine periodische Modulation des Brechungsindexes mit einer Gitterkonstante

in der Größenordnung der Wellenlänge von sichtbarem Licht besitzen, können eine photo-

nische Bandlücke aufweisen, das heißt einen bestimmten Energiebereich in dem die Aus-

breitung von Lichtwellen verboten ist [1, 2]. Dies stellt ein Analogon zur Energielücke zwi-

schen Valenz– und Leitungsband für Elektronen in einem Halbleiter dar. Es ist zweckmäßig,

eindimensionale (1D), zweidimensionale (2D) und dreidimensionale (3D) photonische Kri-

stalle zu unterscheiden (Abb. 2.1). Eine Schichtfolge von zwei Materialien stellt einen 1D

photonischen Kristall dar. Bei 2D photonischen Kristallen existiert eine Brechungsindexmo-

dulation in der Ebene, und bei 3D photonischen Kristallen eine periodische Modulation in

allen drei Raumrichtungen. Treffen elektromagnetische Strahlen auf einen photonischen Kri-

Abbildung 2.1: Beispielefür ein–, zwei– und dreidimensionale photonische Kristalle [12].

stall, werden sie gestreut. Strahlen mit deutlich größeren Wellenlängen als die Gitterkonstante

des photonischen Kristalls spüren nur ein Medium mit einem effektiven Brechungsindex. Ist

die eingestrahlte Wellenlänge jedoch vergleichbar oder kleiner als die Gitterkonstante, so tritt

9



10 2 Grundlagen

Bragg–Beugung auf. Ist der dielektrische Kontrast genügend hoch, so beschränkt sich dieses

Beugungsverhalten nicht nur auf singuläre Frequenzen, sondern dominiert das optische Ver-

halten in Frequenzintervallen (photonische Stopbänder) und noch weitere Phänomene, z.B.

eine ungewöhnliche Dispersion oder eine extrem geringe Gruppengeschwindigkeit treten in

Erscheinung.

2.1.2 Eigenwertgleichungen und Eigenfunktionen

Um die Dispersionsrelationω(k) zu erhalten, geht man zunächst von den Maxwellgleichungen

aus:

∇ ·B(r, t) = 0 (2.1)

∇×E(r, t) +
∂B(r, t)

∂t
= 0 (2.2)

∇ ·D(r, t) = ρ (2.3)

∇×H(r, t) − ∂D(r, t)
∂t

= J (2.4)

Für künftige Rechnungen werden folgende Vereinfachungen und Zusammenhänge angenom-

men [23]:

1. Wir beschäftigen uns ausschließlich mit optisch nichtmagnetischen Materialien:µ = 1

2. Die Materialien sind optisch isotrop:E ||D

3. Es existiert keine Absorption. Die Dielektrizitätskonstanteε ist real, und in dem betrach-

teten Bereich gibt es keine Frequenzabhängigkeit:ε(r, ω) ≈ ε(r)

4. Es existieren keine freien Ladungsträger und keine Lichtquellen:ρ = 0; J = 0

Die Maxwellgleichungen werden zur Berechnung komplexer ebener Wellen mit dem Wellen-

vektork und der Frequenzω verwendet:

H(r, t) = H(r)eiωt = heikr ·eiωt (2.5)

E(r, t) = E(r)eiωt = eeikr ·eiωt (2.6)

H undE stehen senkrecht zur Ausbreitungsrichtung. Es handelt sich demnach um eine Trans-

versalwelle. Die dielektrische VerschiebungD und das elektrische FeldE stehen in der Bezie-

hungD(r) = ε0ε(r)E(r) . Die magnetische Flussdichte und die magnetische Feldstärke stehen

in einer ähnlichen Beziehung, jedoch ist bei den meisten Materialien, die von Interesse sind,
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die magnetische Permeabilität eins. Daraus folgtB = µ0H. Hierdurch vereinfachen sich die

Maxwellgleichungen (2.2) und (2.4) wie folgt:

∇×E(r) + iωµ0H(r) = 0 (2.7)

∇×H(r) − iωε0ε(r) E(r) = 0 (2.8)

Die Rotationsgleichung (2.8) wird durchε(r) geteilt und man lässt auf die Gleichung eine

Rotation von links wirken, löst Gleichung (2.7) nach∇×E(r) auf und setzt diese in Gleichung

(2.8) ein. So erhält man:

∇×
{

1
ε(r)

∇×H(r)
}

=
ω2

c2 H(r) (2.9)

Bei Gl (2.9) handelt es sich um ein Eigenwertproblem, welches aus der Quantenmechanik

bekannt ist, und es ist meist günstiger, die Operatorschreibweise zu benutzen:

Θ̄H(r) =
ω2

c2 H(r) (2.10)

Der OperatorΘ̄ beschreibt den Kristallaufbau. Nur die EigenvektorenH, welche die Glei-

chung (2.10) erfüllen, beschreiben elektromagnetische Wellen, die sich im Kristall ausbreiten

können. Alle anderen Vektoren sind verboten. Mit der Lösung der Eigenwertgleichung kann

bestimmt werden, wie die Gesamtwellenform, welche im Kristall erlaubt ist, aussieht. Über

Symmetrieoperatoren können Symmetrieeigenschaften, das heißt das ungefähre Aussehen der

Welle, bestimmt werden.

In einem Kristall existiert eine diskrete Translationssymmetrie:

ε(r) = ε(r +R) (2.11)

Mit R = la, wobeia ein primitiver Gittervektor ist. Hieraus folgt für den Ansatz von Gleichung

(2.5)

ω(k) = ω(k + mb) (2.12)

mit b als primitiven reziproken Gittervektor. Daraus ergibt sich, dass man nur die erste Bril-

louinzone betrachten muss. In der Festkörperphysik wird meist das Bloch’sche Theorem be-

nutzt. Es handelt sich dabei eigentlich nur um eine Näherung, aber es erklärt sehr gut die

physikalischen Sachverhalte für periodisch aufgebaute Strukturen:

Hk(r) = eikr un,k(r) (2.13)

mit un,k(r) = un,k(r + la) undn für den Bandindex. Einsetzen von Gleichung (2.13) in Glei-

chung (2.9) ergibt folgende Gleichung:

∇×
{

1
ε(r)

∇×eikr un,k(r)
}

=
ω(k)2

c2 eikr un,k(r) (2.14)
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Wendet man die Rotationen in Gleichung (2.14) aufeikr anund teilt anschleißend durcheikr

so erhält Gleichung (2.14) die folgende Form:

(ik +∇) ×
{

1
ε(r)

(ik +∇) × un,k(r)
}

=
ω(k)2

c2 un,k(r) (2.15)

Esgibt nun einen neuen hermitischen OperatorΘ̄k der aufu wirkt:

Θ̄kun,k(r) =
ω(k)2

c2 un,k(r) (2.16)

Um die Eigenfunktionen eines Kristalls zu berechnen, muss man die passende Blochfunkti-

on für das ausgesuchte System konstruieren und die Eigenwertgleichung lösen. Daε(r) und

un,k(r) Gitterperiodisch sind, können sie in eine Fourierreihe entwickelt werden:

un,k(r) = ∑
G

uGeiG·r (2.17)

1
ε(r)

= ∑
G

ζGeiG·r (2.18)

G stellt einen reziproken Gittervektor dar,ζG und uG sind die Fourierkoeffizienten für1ε(r)
undun,k(r) . Streng genommen besitzen Fourierreihen unendlich viele Glieder. Man verwen-

det jedoch nur eine bestimmte AnzahlN von Gliedern, und zwar so viele, wie notwendig

sind, um den periodischen Verlauf vonε(r) ausreichend gut darzustellen. Besitzt der photo-

nische Kristall einen hohen Brechungsindexkontrast mit scharfen Stufen, dann benötigt man

relativ viele Glieder der Fourierreihe. Die Ansätze (2.17) und (2.18) werden in Gleichung

(2.16) eingesetzt. Nach einem Koeffizientenvergleich erhält man einN–dimensionales homo-

genes Gleichungssystem mitN Eigenwertenωn,k(k). Für allek–Vektoren werden die zugehö-

rigenωn,k(k) bestimmt. Diese Werte können in ein Diagramm eingetragen werden, wenn man

einen bestimmten Pfad für diek–Werte innerhalb der ersten Brillouinzone wählt. Üblicher-

weise werden diese Diagramme in normierter Form dargestellt. Auf der Ordinate werden die

normierten Frequenzen inωa
2πc dargestellt. Für ein konstantesn bilden die Eigenwerteωn,k(k)

Bänder aus, so dass man diese Diagramme mit den Banddiagrammen aus der Halbleiterphysik

vergleichen kann. Hier entspricht dieses Banddiagramm einer Dispersionsrelation für elektro-

magnetische Wellen in der Kristallstruktur. Diese Methode wird auch „Methode der ebenen

Wellen” genannt, da die Glieder der Fourierreihe ebene Wellen beschreiben.

Aufgrund der normierten Darstellung für die Frequenzen in Banddiagrammen muss man auf

eine Besonderheit hinweisen: Die Grundgleichungen sind skalierbar. Das bedeutet, dass es

bei der Berechnung einer Dispersionsrelation nur auf den Brechungsindexkontrast und auf die

Porösität der photonischen Kristalle ankommt. Aufgrund dieser Eigenschaft ist es möglich, ei-

nige physikalische Effekte, die für den Mikrowellenbereich bereits bekannt sind, auf kleinere

photonische Strukturen zu übertragen. Bei einigen Berechnungen funktioniert diese beliebige
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Skalierbarkeit jedoch nicht. Wenn es beispielsweise um Emitter oder um nichtlinineare Ma-

terialieninnerhalb der Struktur geht, muss man die Gitterkonstanten mit einbeziehen. Nur so

können alle Wechselwirkungen berücksichtigt werden.

2.1.3 Eindimensionale photonische Kristalle

1–Dimensionale photonische Kristalle besitzen eine periodische Schichtstruktur und stellen

das einfachste Beispiel für photonische Kristalle dar. Der Brechungsindex verändert sich pe-

riodisch in nur einer Raumrichtung. Derartige Strukturen sind als Bragg–Reflektoren bereits

länger bekannt. Diese können sehr präzise gefertigt werden und sind zum Beispiel in der

Lasertechnik von großem Nutzen. Zur Begründung für die Existenz einer photonischen Band-

lücke kann man die Bragg–Bedingung heranziehen:

m·λ = 2d ∀m ∈ N (2.19)

Ist die doppelte Gitterperiode 2dein ganzzahliges Vielfaches der Wellenlängeλ = λ0/n, so

wird die Lichtwelle innerhalb des photonischen Kristalls reflektiert, und es kommt zur kon-

struktiven Interferenz. Ist die Bragg–Bedingung fürm = 1 erfüllt (k = π/d), entsteht eine

stehende Welle (Abb. 2.2). Dabei gibt es zwei Möglichkeiten:

a b

c d

Abbildung 2.2: Darstellungdes Prinzips der zwei stehenden Wellen. a) und b) zeigt die elektrische Feldvertei-
lung der beiden Moden an den Bandkanten. c) und d) zeigt die Intensitäten für die Feldverteilungen. Die Farben
rot und blau stellen Bereiche mit unterschiedlichem Brechungsindex dar.

Die Schwingungsbäuche befinden sich entweder in den Schichten mit hohem oder niedrigem

Brechingsindex. Somit ist die Intensität der einen Welle im Bereich des hohen Berechungsin-

dexes höher, und die andere Welle hat eine höhere Intensität in den Bereichen mit niedrigem

Brechungsindex. Daraus folgt, dass diese beiden stehenden Wellen unterschiedliche Frequen-

zen besitzen. Die Welle, die eine größere Intensität im Medium mit dem niedrigen Brechungs-

index besitzt, hat eine höhere Frequenz als die Welle, deren Intensitätsmaxima sich im Gebiet

mit dem hohem Brechungsindex befinden. Zwischen diesen beiden Frequenzen können keine
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elektromagnetischen Wellen im photonischen Kristall propagieren. Dort existiert eine Band-

lücke.

2.1.4 Zweidimensionale photonische Kristalle

Wenn man mehrere gleichartige Stäbe mit einem Brechungsindexn1 parallel zueinander pe-

riodisch anordnet und wenn die Umgebung einen vonn1 verschiedenen Brechungsindex be-

sitzt, so kann es zu einer photonischen Bandlücke in der Ebene kommen. Dabei muss man die

Polarisationszustände des eingestrahlten Lichts berücksichtigen. Man spricht von einer TE–

Polarisation (transversal elektrisch) oder H–Polarisation, wenn das oszillierende elektrische

Feld senkrecht zur Längsachse der Stäbe liegt, von einer TM–Polaisation (transversal magne-

tisch) oder E–Polarisation, wenn das oszillierende magnetische Feld senkrecht zur Längsachse

der Stäbe liegt. In der Bandstruktur eines photonischen Kristalls werden immer beide Po-

a

r

Abbildung 2.3: Darstellungeines 2D hexagonalen Porengitters und b) k–Vektoren in der 1. Brillouin–Zone.

larisationszustände betrachtet, da sie beide eigene Bandstrukturen besitzen, die Bandlücken

beinhalten können. Eine vollständige Bandlücke tritt nur auf, wenn sich die Bandlücken von

beiden Polarisationszuständen in einem Spektralbereich überlappen.

Nicht nur der Polarisationszustand, sondern auch die Einstrahlrichtung auf den Kristall muss

bei spektral aufgelösten Reflexions– oder Transmissions–Messungen berücksichtigt werden.

In Abbildung 2.3 ist ein hexagonales Porengitter mit der zugehörigen 1. Brillouin–Zone dar-

gestellt. Messungen werden meist inΓ−M– oder inΓ−K–Richtung durchgeführt. Abbildung

2.4 zeigt eine Bandstruktur eines zweidimensionalen photonischen Kristalls mit hexagonaler

Symmetrie. Beispiele für 2–dimensionale photonische Kristalle sind poröses Silizium (Abb.
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Abbildung 2.4: Bandstruktureines zweidimensionalen photonischen Kristalls mit hexagonaler Symmetrie. Die
Struktur besteht aus Luftporen in einem Dielektrikum mit einem Brechungsindex vonn= 3,4. Das r/a–Verhältnis
beträgt 0,4. Die Bandstruktur wurde mit dem Programm MIT Photonic Bands berechnet [40].

2.5) oder poröses Aluminiumoxid. Dabei werden in einen Silizium– oder Aluminium–Wafer

periodisch angeordnete Poren geätzt. Nach einer lithographischen Vorstrukturierung der Ober-

fläche kann dieser Ätzvorgang entweder nasschemisch oder über ein Ionenstrahlätzverfahren

erfolgen. Mit lithographischen Methoden lassen sich in diese Strukturen gut Defekte einfügen,

so dass es möglich ist, Wellenleiterstrukturen und Strahlteiler in die photonischen Kristalle

einzubauen.
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Abbildung 2.5: REM–Aufnahmeeines breitenmodulierten Streifens von makroporösem Silizium. Durch das
Auslassen von einigen Poren wurde hier eine Wellenleiterstruktur eingebaut [13].
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2.1.5 Dreidimensionale photonische Kristalle

Es gibt unterschiedliche 3–dimensionale photonische Kristalle. Einige davon werden in die-

sem Kapitel vorgestellt.

Yablonovite

Die erste Struktur, für die eine vollständige Bandlücke berechnet wurde, war die Yablonovite–

Struktur [15] (Abb. 2.6). Hierbei werden an definierten Stellen in drei verschiedenen Richtun-

gen Löcher in ein dielektrisches Material gebohrt. Der Winkel zwischen den Bohrrichtungen

beträgt 120◦. Das Resultat ist eine Diamantstruktur. Yablonovitch stellte diese Struktur her

[16] und konnte eine vollständige photonische Bandlücke nachweisen, welche jedoch im Mi-

krowellenbereich lag, da die Gitterkonstante relativ groß war.

Abbildung 2.6: Schematische Dartellung einer
Yablonovite–Struktur [15]. An ihr wurde erstmals ei-
ne vollständige photonische Bandlücke nachgewiesen
[16].

Abbildung 2.7: REM–Aufnahmevon einem Kolloid-
kristall. Der Kristall besitzt eine fcc–Gitterstruktur
[17].

Kolloidkristalle

Kolloidkristalle oder auch „künstliche Opale” (Abb. 2.7) sind einfach herzustellen. Sie be-

stehen aus monodispersen Kugeln, welche einen Durchmesser von ca. 50nm bis 1000nm

Durchmesser haben. Die Kugeln werden in Lösung auf einem glatten Substrat oder einem

dem Kugeldurchmesser entsprechenden strukturierten Substrat (Templat) aufgebracht und ge-

trocknet. Auf einer unbehandelten, glatten Oberfläche bilden die Kugeln durch Selbstorgani-

sation ein kubisch flächenzentriertes Gitter (face centered cubic, fcc) und wachsen senkrecht
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zur Substratoberfläche in (1,1,1)–Richtung [21, 22]. Kolloidkristalle reflektieren Licht nach

demBragg’schen Gesetz:

λvak = 2ne f fdhkl (2.20)

Gleichung (2.20) entspricht Gleichung (2.19), wobeidhkl die Schichtabstände im Kristall mit

den Miller–Indizes(hkl) bezeichnet. Für einen kubischen Kristall mit der Gitterkonstantena

gilt:

dhkl = a(h2 +k2 + l2)−1/2 (2.21)

Der effektive Brechungsindexne f f berechnet sich näherungsweise wie folgt [18]:

ne f f =
(
∑ fi n

2
i

)1/2
(2.22)

Dabei ist die Summe über alle Materialien des heterogenen Systems zu bilden. Die Größe

fi bezeichnet den Füllfaktor des jeweiligen Materials mit dem Brechungsindexni . Es gibt

unterschiedliche Materialien, aus denen die Kugeln bestehen können. Sehr gebräuchlich sind

Kugeln aus SiO2. Aber auch Polymerkugeln, zum Beispiel aus Poly(methylmethacrylat) (PM-

MA), werden benutzt.

Es ist möglich, Kolloidkristalle zu invertieren. Die Räume zwischen den Kugeln werden mit

einem Material gefüllt und die Kugeln werden anschließend herausgelöst. Invertierte Opale

mit einer fcc–Struktur besitzen bei ausreichend hohem Brechungsindexkontrast∆n eine voll-

ständige Bandlücke in allen Raumrichtungen [19](Abb. 2.8).

Abbildung 2.8: Bandstruktureines Kolloidkristalls aus Luftkugeln in einer Siliziummatrix [19].
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Wood–pile–Struktur

Die Wood–pile–Struktur (Abb. 2.9) besteht aus mikroskopisch kleinen Stäben, meist aus Sili-

zium, die in einer Schichtstruktur gestapelt sind. Die Herstellung einer derartigen Struktur ist

bislang sehr aufwändig, wenn auch das Einbringen von Defekten, z.B. durch Weglassen eines

Stäbchens, vergleichsweise einfach ist.

Abbildung 2.9: Elektronenmikroskopische Aufnah-
me eines photonischen Kristalls mit einer Wood–pile–
Struktur [20].

Abbildung 2.10: Elektronenmikroskopische Aufnah-
me eines Schnittes durch einen photonischen Kristall
aus porösem Silizium mit moduliertem Poren [25].

Makroporöses Silizium mit modulierten Poren

Eine weitere 3D–Struktur kann man mit makroporösem Silizium mit periodisch moduliertem

Porendurchmesser realisieren (Abb. 2.10). Die erste Brillouin–Zone wird vom 2D–Kristall

auf den 3D–Kristall erweitert (Abb. 2.11). Diese Strukturen besitzen eine Bandlücke entlang

derΓ−A–Richtung, also entlang der Porenachse. Zur Erklärung dieser Bandlücke ist es aus-

reichend, den eindimensionalen Fall zu betrachten: Zerlegt man den photonischen Kristall in

Γ−A–Richtung in Schichten, so erhält man für jede Schicht eine effektive Dielektrizitätskon-

stante (εe f f), die sich aus der Maxwell–Garnett Relation berechnen lässt [27]:

εe f f − εSi

εef f + 2εSi
=

fair(εair − εSi)
εair + 2εSi

(2.23)

Aus dieser Betrachtung heraus resultiert eine eindimensionale periodische Multilayerstruktur

(Abb. 2.12), welche einem Bragg–Reflektor ähnelt. Die Poren in den modulierten Strukturen

besitzen jedoch keinen perfekt kreisförmigen Querschnitt. Es handelt sich vielmehr um Qua-

drate mit abgerundeten Ecken (Abb. 2.13). Dies hat zur Folge, dass die ursprüngliche sechs-
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Abbildung 2.11: Erste Brillouin–Zone eines hexagonalen Kristallgitters mit seinen Hochsymmetriepunkten
[25].

Abbildung 2.12: SchematischeDarstellung ei-
ner Multilayerstruktur, auf die der photonische
Kristall mit Porenmodulation reduziert wurde.
Jeder Farbton symbolisiert einεe f f, welches sich
aus der Maxwell–Garnett Relation berechnet.

Abbildung 2.13: SEM–Aufnahmevon makro-
porösem Silizium mit Porenmodulation in der
Aufsicht. Die Poren besitzen einen quadrati-
schen Querschnitt mit abgerundeten Ecken.

zählige Symmetrie auf eine zweizählige Symmtrie reduziert wird. Das bedeutet für spektro-

skopische Untersuchungen, dass die Bandlücke entlang der Porenachse abhängig vom Polari-

sationszustand der einfallenden Strahlung ist [25]. In den noch folgenden Ausführungen be-

zeichnet die „Polarisationrichtung 0◦” ein oszillierendes elektrisches Feld inΓ−K–Richtung

und bei der „Polarisationrichtung 90◦” liegt das oszillierende elektrische Feld des Lichts in

derΓ−M–Richtung.
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2.2 Flüssigkristalle

2.2.1 Allgemeines

Flüssigkristalle vereinen typische Eigenschaften von Flüssigkeiten und von Festkörperkristal-

len miteinander. Sie besitzen sowohl anisotrope als auch viskose Eigenschaften. Flüssigkri-

stallphasen werden aus Molekülen gebildet, die entweder eine ausgeprägte Stabform (kala-

mitische Flüssigkristalle) oder Scheibenform besitzen (diskotische Flüssigkristalle). Da die

Ordnung der Flüssigkristallphasen zwischen der einer Flüssigkeit und der eines Kristalls liegt,

nennt man die flüssigkristallinen Phasen auch „Mesophasen”. In Abbildung 2.14 ist eine flüs-

 a) b) c)

Abbildung 2.14: SchematischeDarstellung der Zustände: a) kristallin, b) flüssigkristallin und c) flüssig–isotrop.

sigkristalline Phase im Vergleich zur kristallin–festen und zur isotrop–flüssigen Phase dar-

gestellt. In der flüssigkristallinen Phase besitzen die Moleküle eine bevorzugte Orientierung.

Die Maier–Saupe–Theorie [43, 44] liefert uns Informationen über die Parallelität der Molekü-

le. Diese kann durch den von Tsvetkov [54] eingeführten OrdnungsparameterS beschrieben

werden:

S =
1
2
〈3cos2Θ−1〉 (2.24)

Der Klammerausdruck steht für den Mittelwert, der durch gewichtete Aufsummierung über

alle Winkel Θ für die Moleküle entsteht. Bei vollständiger Ordnung ist der WertS = 1 und

im isotropen Fall istS= 0 [43]. Aufgrund thermischer Schwankungen istS= 1 in der Rea-

lität nicht erreichbar. Er wird lediglich bei Extrapolation einer geeigneten Auftragung auf 0K

erreicht. Die experimentellen Werte vonS liegen in der Regel zwischen 0,8 und 0,4, und neh-

men mit der Temperatur ab. Nach Überschreitung einer bestimmten TemperaturTC springt der

Ordnungsparameter auf den WertS= 0. Oberhalb der TemperaturTC ist der Flüssigkristall
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flüssig–isotrop. Die TemperaturTC wird Klärpunkt genannt.

Die potentielle Energie eines einzelnen Molekülsi in einem nematischen Flüssigkristall mit

dem OrdnungsgradSi kann nach einer Theorie des mittleren Feldes von Maier und Saupe

durch folgende Gleichung beschrieben werden:

V(ϑ) = −A·Si ·V−2
m · 1

2
(3cos2ϑ−1) (2.25)

A ist ein temperaturunabhängiger Materialparameter undVm das Molvolumen [44]. Der Ansatz

ist so gewählt, dass die potenzielle Energie minimal wird, wenn sich das Molekül parallel zu

den Molekülen in seiner direkten Umgebung orientiert. Bei senkrechter Orientierung wird

die Energie dagegen maximal. Wenn dem Molekül keine Energie zugeführt wird, so wird es

sich parallel zu seinen Nachbarmolekülen ausrichten. Die Zufuhr von Energie in Form von

Wärme kann diese Vorzugsrichtung verändern. Mit Hilfe der Boltzmann–Statistik erhält man

näherungsweise die Temperaturabhängigkeit des Ordnungsgrades:

S(T) = (1−0,98·Tred)0,22 (2.26)

Dabei gilt für die reduzierte TemperaturTred:

Tred = T ·V2
m(T)/(TC ·V2

m(TC)) ≈ T/TC (2.27)

Wie bei den meisten Flüssigkeiten sinkt die Viskosität bei Flüssigkristallen bei steigender der

Temperatur. Am Klärpunkt nimmt die Viskosität sehr stark ab.

Die nematische Phase (N) ist die einfachste Flüssigkristallphase. Bei ihr ist die Orientierungs-

fernordnung das einzige Ordnungsprinzip. Das heißt, dass nur die Orientierung der Moleküle

vorgegeben ist. Sie wird durch den Direktorn gekennzeichnet. Die Schwerpunkte der Molekü-

le sind in der nematischen Phase statistisch verteilt (Abb. 2.17a). Nematische Flüssigkristalle

sind doppelbrechend (Abb. 2.15), und besitzen eine Anisotropie des Brechungsindexes im

Bereich von∆n ≈ 0,2. Zur Bestimmung der ordentlichen und außerordentlichen Brechungs-

indizes no und ne kann man eine Keilzelle verwenden (Abb. 2.16). In der Keilzelle ist der

Flüssigkristall einheitlich orientiert. Strahlt man polarisiertes Licht ein, werden die Strahlen,

je nach Polarisationsrichtung, verschieden stark gebrochen. Aus den Brechungswinkeln lassen

sich dann die Brechungsindizes berechnen. Dazu nutzt man das Brechungsgesetz nach Sellius

(s. Abschnitt 9.1 ). Im nematischen Zustand kann ein mittlerer Brechungsindexn̄ aus dem

ordentlichen und dem außerordentlichen Brechungsindex berechnet werden:

n̄ =

√
1
3
〈n2

e + 2n2
o〉 (2.28)

Der mittlere Brechungsindex in der nematischen Phase liegt am Klärpunkt ein wenig höher

als der Brechungsindex in der isotropen Phase (Abb. 2.15). Dies ist auf die Volumenänderung

bei der Phasenumwandlung zurrückzuführen.
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Abbildung 2.15: Abhängigkeit der Doppelbrechung eines nematischen Flüssigkristalls von der Temperatur
(schematisch). Am KlärpunktTC verschwindet die Doppelbrechung, und es existiert nur noch ein isotroper Bre-
chungsindex, welcher am Klärpunkt etwas niedriger ist, als der mittlere Brechungsindex im nematischen Zustand.

KeilzelleFlüssigkristall

Polarisation
Laser

Abbildung 2.16: Messaufbauzur Bestimmung des ordentlichen und außerordentlichen Brechungsindexes.

Es existieren noch weitere flüssigkristalline Phasen. Die smektischen Phasen besitzen neben

einer Orientierungsfernordnung zusätzlich eine Schichtstruktur. Ist der Direktorn parallel zur

Schichtnormalen orientiert, so spricht man von einer smektischen A Phase. Sind die Moleküle

zur Schichtnormalen verkippt, so erhält man eine smektische C Phase (Abb. 2.17 b-c).
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a)                b)              c)                  d)

Abbildung 2.17: Darstellungvon vier unterschiedlichen flüssigkristallinen Phasen: a) nematische Phase, b)
smektische A Phase, c) smektische C Phase, d) cholesterische Phase.

Eine cholesterische Phase kann dann auftreten, wenn der Flüssigkristall aus chiralen Molekü-

len besteht. Es bilden sich ebene nematische Bereiche aus, wobei der Direktorn von Ebene zu

Ebene verdreht ist (Abb. 2.17 d). Es entsteht eine Helixstruktur. Der Abstand zwischen zwei

gleichartig orientierten Ebenen, zwischen denen sich der Azimutwinkel des Direktors genau

um 360◦ ändert, wird als Ganghöhep (engl. „pitch”). bezeichnet. In der cholesterischen Pha-

se existiert eine periodische Variation des Brechungsindexes in einer Raumrichtung. Es ist

daher nicht verwunderlich, dass die cholesterische Phase eine 1D–Bandlücke besitzt, aller-

dings nur für zirkular polarisiertes Licht, dessen Drehsinn dem Drehsinn der Helix entspricht.

Man kann daher diese flüssigkristalline Phase durchaus zur Familie der photonischen Kristalle

hinzuzählen.

2.2.2 Flüssigkristalle in elektrischen und magnetischen Feldern

Die Ausrichtung des Direktorsn durch ein äußeres elektrisches Feld ist die Grundlage aller

elektrooptischen Anwendungen. Die Kopplung des Direktorsn an das Feld erfolgt über die

anisotropen dielektrischen Eigenschaften der Mesophase. Diese ist im wesentlichen bestimmt

durch permanente Dipolmomente der Moleküle, sowie durch die unterschiedliche elektroni-

sche Polarisierbarkeit parallel und senkrecht zur Molekülhauptachse. Die meisten kalamiti-

schen Flüssigkristalle weisen eine positive Dielektrizitätsanisotropie auf, d.h. die Dielektrizi-

tätskonstante (DK) längs der Molekülachse ist größer als jene senkrecht dazu.

∆ε = ε||− ε⊥ > 0 (2.29)

Bei ausreichend großer Feldstärke orientiert sich der Direktorn bei diesen Systemen parallel

zur Feldrichtung (Abb. 2.18). Daraus resultiert bei paralleler Verankerung des Direktors an den

Elektroden eine Deformation des Direktorfeldes und eine Änderung des Brechungsindexes
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in einer Beobachtungsrichtung (Frederickz–Übergang). Entlang des Direktorfeldes sieht man

denordentlichen Brechungsindexno und senkrecht dazu den außerordentlichen Brechungsin-

dex ne. Die Schwellfeldstärke ist abhängig von der Größe der elastischen Koeffizienten des

Flüssigkristalls, welche die rücktreibende Kraft beschreiben (s. Abschnitt 2.2.3). Im Magnet-

E=0 E>0

E

Abbildung 2.18: Darstellungeiner Flüssigkristallzelle, in der sich ein nematischer Flüssigkristall befindet. Der
Flüssigkristall ist planar an den Wänden orientiert. Nach Anlegen eines elektrischen Feldes orientieren sich die
Moleküle um.

feld verhalten sich nematische Flüssigkristalle ähnlich wie in elektrischen Feldern. Für ty-

pische Werte der mgnetischen Anisotropie sind jedoch sehr hohe Magnetfelder notwendig,

um einen nematischen Flüssigkristall im Magnetfeld umorientieren zu können (s. Abschnitt

2.2.3).

2.2.3 Elastische Eigenschaften von Flüssigkristallen

Viele Eigenschaften von Flüssigkristallen lassen sich erklären, indem man den Flüssigkristall

als Kontinuum betrachtet. Aufgrund von Randbedingungen oder durch äußere Felder treten

elastische Deformationen auf. In der Kontinuumstheorie wird vorausgesetzt, dass die elasti-

schen Kräfte gegenüber intermolekularen Kräften klein sind. Die charakteristischen Längen

der elastischen Deformationen sollten groß gegenüber den molekularen Ausdehnungen sein.

Nematische Flüssigkristalle mit einheitlicher Orientierung befinden sich im Gleichgewicht

und besitzen minimale freie Energie. Bei einer Deformation aufgrund von äußeren Feldern

oder veränderten Randbedingungen erhöht sich die freie Energie. Die freie Energie pro Volu-

men hängt von drei voneinander unabhängigen elastischen Konstanten ab, die sich auf Sprei-

zen (K11), Verdrehen (K22) und Verbiegen (K33) des Direktorfeldes beziehen (Abb. 2.19):

F =
1
2

∫ (
K11(∇ ·n)2 + K22(n · (∇×n))2 + K33(n× (∇×n))2) dV (2.30)
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Spreizen      Verdrehen      Biegen

Abbildung 2.19: Darstellungder drei Deformationsformen von Flüssigkristallen.

Dabei istn der Direktor. Die molekulare Wechselwirkung befindet sich in einer Größenordung

von 10 kJ/mol. Bei einer Molekülausdehnung von 2 nm bedeutet das, dass die elastischen

Konstanten in der Größenordnung 10−11 N liegen [53].

Wenn man ein externes elektrisches Feld an eine mit Flüssigkristall gefüllte Zelle anlegt, so

muss das Feld eine gewisse Schwellfeldstärke überschreiten, um die Rückstellkräfte, die sich

aufgrund der Randbedingungen ausbilden, zu überwinden. Nur dann wird sich der Direktor

n lokal umorientieren. Die Größenordnung der Schwellfeldstärke für eine Deformation des

Direktorfeldes lässt sich näherungsweise mit folgender Formel berechnen:

E0 =
π
d

(
Kii

ε0∆ε

) 1
2

(2.31)

Die Schwellfeldstärke hängt demnach von der Schichtdicke der Zelle ab. Bei sehr kleinen

Schichtdicken benötigt man für eine Umorientierung entsprechend hohe Feldstärken. Die hier-

für notwendige elektrische Spannung ist allerdings unabhängig von der Schichtdicked. Wenn

man mit einem Magnetfeld eine Deformation erreichen will, dann gilt für die magnetische

Schwellfeldstärke:

H0 =
π
d

(
Kii

µ0∆χ

) 1
2

(2.32)

Aufgrundder relativ schwachen magnetischen Anisotropie∆χ≈ 1·10−7 sind in dünnen Flüs-

sigkristallschichten sehr hohe Magnetfelder nötig. Befindet sich beispielsweise ein nemati-

scher Flüssigkristall zwischen zwei Glasplatten mit dem Abstandd = 100µm, so erhält man

nach Gleichung (2.32) eine magnetische Schwellfeldstärke von H≈ 280.000 H, was einer

magnetischen Flussdichte vonB ≈ 0,35 T entspricht. Da die Schwellfeldstärke umgekehrt

proportional zur Schichtdicke ist, erhöht sich das benötigte Magnetfeld um eine Zehnerpotenz

wenn man die Schichtdicke um eine Zehnerpotenz vermindert. Möchte man einen Schaltef-
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fekt in einem photonischen Kristall durch ein Magnetfeld induzieren, so benötigt man extrem

hoheFlussdichten, da es sich um sehr kleine Geometrien handelt, in denen der Flüssigkristall

eingebettet ist.

Es gibt jedoch eine Möglichkeit, die für einen messbaren Schalteffekt benötigten Magnetfel-

der zu verringern, indem man in den Flüssigkristall magnetische Nanopartikel dispergiert. Das

Schaltverhalten verbessert sich dadurch deutlich. Diese Dispersionen nennt man ferronemati-

sche Flüssigkristalle (engl.: Ferronematics) [28]. Die Schwellfeldstärke vermindert sich durch

den Einsatz von ferronematischen Flüssigkristallen um ungefähr eine Größenordnung [29].
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3 Herstellung von Kolloidkristallen

Kolloidkristalle sind eine Variante von photonischen Materialien, bei der sich mikroskopisch

kleine Kugeln durch Selbstorganisation zu photonischen Kristallen anordnen. Sie sind von

großem Interesse für die Photonik, da mit geringem technologischen Aufwand photonische

Kristalle hergestellt werden können. In diesem Kapitel wird beschrieben, wie Kolloidkristalle

aus Polymerkugeln entstehen und wie man sie mit einem hochbrechenden Material invertiert.

3.1 Kolloidkristalle aus Poly(methylmethacrylat)

Abbildung 3.1: Darstellungeiner kubisch flächenzentrierten Gitterstruktur (fcc). Nur jede dritte Kugellage liegt
direkt übereinander.

Die verwendeten Polymerkugeln wurden durch Emulsionspolymerisation hergestellt [30]. Als

Monomer wurde Methylmethacrylat (MMA) benutzt, woraus monodisperse Kugeln aus Po-

ly(methylmethacrylat) (PMMA, Plexiglas) entstehen. PMMA ist eines der wenigen Polymere,

welche sich aufgrund seiner Transparenz gut für optische Anwendungen eignen.

29



30 3 Herstellung von Kolloidkristallen

Bei der Kristallisation von monodispersen Kugeln kann es zu verschiedenen Kristallstrukturen

kommen. Die dichtesten Kugelpackungen sind die wahrscheinlichsten. Man kann sie mit ei-

nem Apfelsinenstapel vergleichen, bei der die Raumausfüllung der Kugeln 74% beträgt. Dass

dieser Wert die maximal mögliche Raumausfüllung für Kugeln darstellt, wurde erst im Jahre

1998 mathematisch bewiesen. Es gibt mehrere Anordungen von Kugellagen, bei der die maxi-

male Raumausfüllung von 74% erreicht wird. Man geht von hexagonal angeordneten ebenen

Kugellagen aus, die sich unterschiedlich übereinander stapeln. Die Abfolge ABAB entspricht

der hexagonal dichtesten Kugelpackung [engl.: hexagonal closed packed (hcp)], und ist da-

durch charakterisiert, dass sich jede zweite Schicht überdeckt. Bei der Abfolge ABCABC

deckt sich erst wieder die vierte Kugellage mit der Ersten. Diese Abfolge entspricht der ku-

bisch dichtesten Kugelpackung. Diese wird in der Kristallographie als kubisch flächenzentriert

[engl.: face centered cubic (fcc)] bezeichnet (Abb. 3.1). Diese Abfolgen können sich außerdem

mischen, so dass es zu willkürlichen Abfolgen kommt und eine willkürliche hexagonal dich-

teste Kugelpackung entsteht (engl: randomly hexagonal closed packed (r–hcp)). Die thermo-

dynamisch günstigste Abfolge ist die kubisch dichteste Packung. Sie ist daher die bevorzugte

Kristallstruktur von selbstorganisierenden Kolloidkristallen. Als Ausgangsmaterial wird eine

Verdunstung

Strömung

Kolloidsuspension
in Wasser

Abbildung 3.2: Darstellungdes Wachstumsvorgangs eines Kolloidkristalls. Die Verdunstung des Wassers ist an
den Rändern des auf dem Substrat aufgeträufelten Tropfens am stärksten. Dadurch kommt es zu einer gerichteten
Diffusion der kolloidalen Teilchen.

Kolloidkristall

Abbildung 3.3: Profil eines Kolloidkristalls welcher auf einem horizontalem Substrat kristallisiert ist.
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Suspension aus Wasser und Polymerkugeln verwendet. Die Konzentration der Kugeln beträgt

zwischen5 bis 20%. Die Suspension wird auf eine Substratoberfläche geträufelt. Das Wasser

verdunstet langsam und kontrolliert in einer Umgebung mit hoher Luftfeuchtigkeit (98%). Zur

Kontrolle der Luftfeuchtigkeit erfolgt der Wachstumsprozess in einem Exsikkator, in dem ein

Gefäß mit gesättigter KNO3–Lösung steht. Durch die hohe Luftfeuchtigkeit ist der Prozess

der Kristallisation sehr langsam und kann mehrere Tage dauern. Dies ist notwendig, damit

große einkristalline Bereiche entstehen können. Aufgrund der Brown’schen Bewegung [34]

finden sich die kolloidalen Teilchen selbstorganisiert zusammen und bilden dadurch große

einkristalline Domänen. Bei schneller Trocknung kann es zu vielen Versetzungen in der Kri-

stallstruktur kommen, bis hin zu Rissen und Gräben, die sich negativ auf die photonischen

Eigenschaften auswirken. Die Brown’sche Bewegung kann mit Ultraschall unterstützt wer-

den, so dass die einkristallinen Bereiche größer werden. Einen dreidimensionalen Einkristall

mit mehreren Millimetern Kantenlänge herzustellen, ist nach bisherigen Erkenntnissen jedoch

nicht möglich.

Abbildung 3.4: Darstellug des Wachs-
tums mit vertikaler Deposition. Die Ge-
schwindigkeit der Zugbewegung des Sub-
strats beträgt nur wenige Millimeter pro
Stunde. Man erhält dadurch einen gleich-
mäßig dünnen Kristallfilm mit wenigen
Monolagen.

Zugbewegung

Kolloidale Suspension

Die Verdunstung des Wassers ist an den Rändern des auf dem Substrat aufgeträufelten Trop-

fens am stärksten (Abb. 3.2), da dort die Oberfläche des Wassers am größten ist. Dadurch

entsteht eine Strömung des Wassers in Richtung Rand. Die Kugeln werden mit dieser Strö-

mung transportiert (gerichtete Diffusion), und setzen sich dann ab. Da die Trocknung in dieser

Weise verläuft, besitzt der resultierende Kolloidkristall ein ungleichmäßiges Profil (Abb. 3.3).

Um diesen Effekt zu minimieren, kann man das Substrat mit einer hydrophilen Oberfläche

versehen. Nach der Behandlung der Substratoberfläche mit NaOH benetzt ein Wassertropfen

einen deutlich größeren Bereich als bei einer unbehandelten Oberfläche. Dadurch wird der
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Tropfen flacher und das Profil des resultierenden Kolloidkristalls wird gleichmäßiger.

Eineweitere Methode des Kristallwachstums ist die vertikale Deposition:

Das Substrat wird dabei senkrecht in die Suspension eingetaucht und langsam (mm/h) heraus-

gezogen (Abb. 3.4). Dadurch entstehen Einkristalle aus wenigen definierten Monolagen über

die gesamte Substratoberfläche. Diese Methode macht es möglich, Multilayerstrukturen aus

Kugeln mit unterschiedlichem Durchmesser übereinander zu stapeln [31]. Eine vereinfachte

Methode besteht darin, das Substrat in die Suspension einzutauchen und das Wasser im Gefäß

verdunsten zu lassen. Auf dem Substrat entsteht dann ein relativ homogener Kristallfilm.
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3.2 Invertierte Kolloidkristalle aus Zinnsulfid

Die Kolloidkristalle aus PMMA sind mit anderen Materialien invertierbar. Dazu eignen sich

z.B. SiO2, TiO2 und SnS2. In der vorliegendan Arbeit wurde mit SnS2 gearbeitet (Abb. 3.5).

SnS2 besitzt einen sehr hohen Brechungsindex im sichtbaren Spektralbereich. Für kristallines

Abbildung 3.5: Durch die Invertierung
eines Kolloidkristalls aus PMMA und
Luft wird die Luft durch SnS2 ersetzt und
die PMMA Kugeln herausgelöst. Wo vor-
her PMMA war, befindet sich schließlich
Luft.

Invertierung
PMMA

Luft
SnS2

Zinnsulfid liegt er bei n = 3,2. Daher ist auch nach der Infiltration mit einem Flüssigkristall ein

hoherBrechungsindexkontrast gewährleistet, was für eine Bandlücke in einem photonischen

Kristall notwendig ist. Die Invertierung geschieht über einen CVD–Prozess (engl.: chemical

vapour deposition) [30]. Die Substrate werden mit den Kolloidkristallen in einen Exsikkator

gelegt, in der eine Schale mit SnCl4 liegt. Der Exsikkator wird geschlossen und anschließend

evakuiert. Danach wird er für drei Stunden tiefgekühlt. Nach der Kühlung wird der Exsikkator

mit H2S gefüllt und bei Raumtemperatur einen Tag stehen gelassen. Über einen Kapillarkon-

densationsprozess setzt sich SnS2 in den Zwischenräumen des Kolloidkristalls als Feststoff ab

(Abb. 3.6). Als weiteres Produkt entsteht HCl, welches in der Gasphase vorliegt. Die Substra-

te werden danach für eine halbe Stunde in ein Wasserbad gelegt. Anschließend werden die

PMMA Kugeln mit Tetrahydrofuran (THF) herausgelöst. Das resultierende SnS2–Gerüst hat
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H S2H S2

SnS2SnS2

SnCl4SnCl4

PMMAPMMA

HCl

(Fest)

(Gas)

(Gas)

flüssig

Abbildung 3.6: Darstellungdes Invertierungsprozesses im Exsikkator: SnCl4 + 2H2S→ SnS2 + 4HCl.

einen Füllfaktor zwischen 10 und 14% statt der theoretisch möglichen 26%. Der Brechungs-

index für SnS2, welches durch CVD abgeschieden wurde, liegt bei n = 2,6. Dies ist deutlich

niedriger als für hochreines, monokristallines SnS2 [41].



4 Infiltration von Flüssigkristallen in
photonisc he Kristalle

4.1 Flüssigkristall in Kolloidkristallen

Die Infiltration von Flüssigkristall in einen Kolloidkristall geschieht über Kapillarkräfte. Es

reicht, einen kleinen Tropfen an den Rand des Kristalls zu bringen. Der Flüssigkristall wird in

die Zwischenräume eingezogen und verdrängt die Luft nahezu vollständig. Der Flüssigkristall

Abbildung 4.1: Foto eines Kolloidkristalls. Der obere Bereich ist nicht mit Flüssigkristall gefüllt. In der linken
unteren Ecke wechselt aufgrund des eindringenden Flüssigkristalls die Reflexion von blau nach grün.

hat einen höheren Brechungsindex als Luft. Der effektive Brechungsindex des Kolloidkri-

stalls, dessen Kugeln vorher noch von Luft umgeben waren, erhöht sich dadurch. Aufgrund

der Braggbedingung verschiebt sich daher die Reflexionswellenlänge zu größeren Wellenlän-

gen. Dies ist mit bloßem Auge erkennbar (Abb. 4.1).

4.2 Flüssigkristall in makroporösem Silizium

Da in porösem Silizium die Poren nicht miteinander verbunden und nur an einem Ende ge-

öffnet sind, kann man allein durch Kapillarkräfte keine gute Füllung mit dem Flüssigkristall

erreichen.

35
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Abbildung 4.2: Die Infiltration von
makroporösem Silizium im Vaku-
um. Der Flüssigkristall wird mit ei-
ner Spritze durch ein Septum in
einen evakuierten Kolben einge-
spritzt.

Vakuumpumpe

Septum

Spritze mit
Flüssigkristall

Probe

Die Porenoberflächen können zwar benetzt werden, aber eine vollständige Füllung ist nur

durcheine Infiltration im Vakuum erreichbar (Abb. 4.2). Die Probe wird in einen Kolben ge-

legt, der mit einem Saugrohr für die Vakuumpumpe ausgestattet ist. Anschließend wird der

Kolben mit einem Septum verschlossen. Zur Evakuierung wurde eine Ölpumpe (Fa. Schütt)

verwendet, die einen Enddruck von ca. 0,5 mbar erreicht. Der Flüssigkristall wird dann mit

einer Spritze durch das Septum in den evakuierten Kolben eingespritzt, so dass die Probe voll-

ständig benetzt ist. Nach dem Belüften des Kolbens sind die Poren nahezu vollständig gefüllt.

Der restliche Flüssigkristallfilm kann mit einem Skalpell oder einem Tuch abgewischt wer-

den. Aufgrund der hohen Kapillarkräfte bleibt der Flüssigkristall unter Normalbedingungen

dauerhaft in den Poren.

Es gibt Flüssigkristalle, die sich erst bei hohen Temperaturen verflüssigen, und bei anschlie-

ßendem schnellen Abkühlen unter die Glastemperatur ihre Orientierungsfernordnung beibe-

halten. Will man die Poren mit einer solchen Substanz füllen, muss man etwas anders vor-
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Vakuum

Heatgun

Makroporöses Silizium

Glasartig
erstarrender
Flüssigkristall

Porenseite

Abbildung 4.3: Infiltration eines glasartig erstarrenden Flüssigkristalls.

gehen. Die Substanz wird unter das zu füllende Substrat gelegt, welches mit den Poren nach

unten zeigt. Anschließend wird der Rezipient evakuiert. Der Flüssigkristall wird mit einer

Heatgun erhitzt, damit sich die Substanz verflüssigt. Anschließend wird der Rezipient belüf-

tet, wodurch sich die Poren mit dem Flüssigkristall füllen (Abb. 4.3).
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5 Verwendete Proben und
Substanz en

5.1 Kolloidkristalle

5.1.1 Kolloidkristalle aus Polymeren

Es gibt bereits einige Arbeiten zu schaltbaren Kolloidkristallen. Jedoch benutzten die Arbeits-

gruppen, die sich damit beschäftigen, ausschließlich Kugeln aus SiO2 [7]. Um neue Mate-

rialien zu erschließen, wurden in dieser Arbeit Polymerkugeln aus Poly(methylmethacrylat)

(PMMA) zur Herstellung von Kolloidkristallen verwendet [30], die anschließend mit einem

Flüssigkristall infiltriert wurden. In Abbildung 5.1 ist eine AFM–Aufnahme eines Kolloidkri-

stalls aus PMMA–Teilchen mit Durchmessern von 280 nm zu sehen. Für Beugungsexperi-

Abbildung 5.1: AFM–Aufnahmeeines Kolloidkristalls, welcher aus PMMA–Teilchen mit Durchmessern von
280 nm besteht.
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mente wurden kommerziell erhältliche Polystyrol–Kugeln mit 500 nm Durchmesser von der

FirmaDuke Scientific und PMMA–Kugeln mit 463 nm Durchmesser verwendet.

5.1.2 Invertierte Kolloidkristalle aus Zinnsulfid

Zu invertierten Kolloidkristallen gab es bis zum Jahr 2002 keine Arbeiten, die ein Schaltver-

halten mit Hilfe von Flüssigkristallen beinhalten. Motiviert durch die theoretischen Vorher-

sagen von Busch und John [19], dass sich bei einer invertierten Struktur durch die Verwen-

dung eines Flüssigkristalls die photonische Bandlücke öffnen und vollständig schließen lässt,

wurden in dieser Arbeit invertierte Kolloidkristalle aus SnS2 [30] hergestellt und mit einem

Flüssigkristall gefüllt.

5.2 Makroporöses Silizium

5.2.1 2–D Strukturen

In der Nachrichtentechnik werden Wellenlängen von 1,3µm und 1,5µm verwendet, da bei die-

sen Wellenlängen die Dämpfung in der Glasfaser am niedrigsten und dadurch die Transmis-

sion besonders hoch ist. Um die Eigenschaften von photonischen Kristallen dafür nutzen zu

können, benötigt man Bandlücken im infraroten Spektralbereich. In makroporösem Silizium,

mit periodisch hexagonal angeordneten Poren (Abb. 2.5) sind Bandlücken bei beiden Wellen-

längen bereits realisiert worden [25].

Deshalb wurden 2D–Kristalle aus Silizium untersucht, die am Max-Planck-Institut für Mi-

krostrukturphysik in Halle an der Saale von Jörg Schilling und Stefan Schweizer hergestellt

wurden.

5.2.2 3–D Strukturen

Am Max-Planck-Institut für Mikrostrukturphysik werden auch Proben hergestellt, bei denen

der Porendurchmesser mit der Tiefe periodisch moduliert ist (s. Abb. 2.10). Dadurch entsteht

eine Bandlücke in der dritten Dimension. Desweiteren wurden Proben verwendet, die eine

Störung der Modulationsperiode aufweisen [25]. Es ist bekannt, dass dadurch photonische Zu-

stände innerhalb der Bandlücke entstehen [23, 55], die man mit einer Fabry–Perot–Resonanz

vergleichen kann. Bei spektroskopischen Untersuchungen erhält man einen Resonanzpeak in-

nerhalb der Bandlücke. Diese Struktur wurde von Sven Matthias vom MPI in Halle hergestellt.
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5.3 Flüssigkristalle

Eswurden drei nematische Flüssigkristalle verwendet: Es handelt sich um 4–Cyano–4’–pentyl-

biphenyl (5CB oder auch K15, Abb. 5.2), die nematische Mischung E7 (51% 5CB, 25% 7CB,

16% 8OCB, 8% 5CT) von der Firma Merck und den glasartig erstarrenden Flüssigkristall

ASY10, welcher im Arbeitskreis von Prof. Picken (TU Delft) synthetisiert wurde (Abb. 5.3).

5CB hat einen Klärpunkt beiTC = 34,6◦C. Bei 2H−NMR–Messungen wurde 5CB benutzt,

H C3 CN

Abbildung 5.2: Strukturformelvon 5CB.

O

O O

O O

*

*

H C3

Abbildung 5.3: Strukturformelvon ASY10.

welches an der ersten Position in der Alkylkette (α–Position) deuteriert ist. Dieser Flüssig-

kristall wurde von Prof. Mary Neubert und Julie Kim von der Kent State University in Ohio

synthetisiert und uns zur Verfügung gestellt. Bei E7 handelt es sich um eine Mischung, in

der 5CB enthalten ist, die aber einen größeren Temperaturbereich der nematischen Phase als

5CB besitzt. E7 wird häufig in Flüssigkristallanzeigen verwendet und hat einen Klärpunkt

bei TC = 60,5◦C. ASY10 besitzt eine Glasübergangstemperatur beiTG = 46◦C und geht bei

TC = 137◦C von der nematischen Phase in die isotrope Phase über. Die Brechungsindizes von

E7 und ASY10 wurden temperaturabhängig mit Hilfe einer Keilzelle bei einer Wellenlänge

von 633 nm bestimmt (Abb. 5.4-5.5, Tab. 5.1-5.2). Unterhalb des Klärpunktes wurde für je-

de Temperatur aus dem ordentlichen und dem außerordentlichen Brechungsindex der mittlere
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Brechungsindex nach folgender Gleichung berechnet:

n̄ =

√
1
3
(n2

e + 2n2
o) (5.1)

Oberhalbdes Klärpunktes ist keine Mittelung notwendig, da der Flüssigkristall in der isotro-

pen Phase keine doppelbrechenden Eigenschaften besitzt.
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Abbildung 5.4: Experimentellbestimmte Werte der ordentlichen no und außerordentlichen ne Brechungsindizes
von E7 in Abhängigkeit von der Temperatur. Die mittleren Brechungsindizesn̄ unterhalb des Klärpunktes wurden
berechnet.

Tabelle 5.1: Brechungsindizes von E7 bei 633 nm:

Temperatur (◦C) no ne n̄

20 1,522 1,734 1,592
35 1,523 1,719 1,588
45 1,525 1,699 1,583
55 1,533 1,666 1,577
62 1,572
70 1,569

Die Werte für die Brechungsindizes von 5CB wurden der Literatur entnommen [42]. Abbil-

dung5.6 zeigt die temperaturabhängigen Brechungsindizes von 5CB bei einer Wellenlänge

von 4,45µm.
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Abbildung 5.5: Experimentellbestimmte Werte der ordentlichen no und außerordentlichen ne Brechungsindizes
von ASY10 in Abhängigkeit von der Temperatur.

Tabelle 5.2: Brechungsindizes von ASY10 bei 633 nm:

Temperatur (◦C) no ne n̄

140 1,578
133 1,536 1,673 1,582
130 1,535 1,676 1,583
125 1,534 1,681 1,584
120 1,534 1,687 1,586
115 1,533 1,695 1,588
110 1,533 1,701 1,590
105 1,533 1,706 1,592
100 1,534 1,711 1,595
95 1,534 1,716 1,596
90 1,535 1,720 1,599
85 1,536 1,724 1,601
80 1,537 1,729 1,603
70 1,538 1,736 1,606
60 1,540 1,742 1,610
80 1,541 1,759 1,616
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Abbildung 5.6: Werte der ordentlichen no und außerordentlichen ne Brechungsindizes von 5CB in Abhängigkeit
von der Temperatur bei einer Wellenlänge von 4,45µm [42].
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6.1 Beugungsexperimente an photonischen Kristallen

Kristalle, die aus Atomen zusammengesetzt sind, können mit Röntgenbeugungsexperimenten

untersucht werden, um Informationen über die Symmetrie und den Kristallaufbau zu erhal-

ten. Die Wellenlänge der Röntgenstrahlung liegt im Bereich der Gitterkonstante der zu un-

tersuchenden Kristalle. Meist werden die Bragg’sche Drehkristallmethode, die Laue– und die

Debye-Scherrer-Technik verwendet. Sie alle basieren auf der Bragg–Beugung (Abschnitt 9.2).

Diese Techniken können auch für photonische Kristalle verwendet werden, wenn die Wellen-

länge der elektromagnetischen Strahlung der Gitterkonstanten angepasst wird. Bei photoni-

schen Kristallen ist das demnach Licht mit einer kleineren Wellenlänge als die Gitterkon-

stante. Im folgenden Abschnitt wird die Kossel–Technik beschrieben, mit der photonische

Kristalle aus 2D makroporösem Silizium und getrocknete Kolloidkristalle aus monodispersen

Polystyrol–Kugeln mit einem Durchmesser von 500 nm untersucht wurden.

6.1.1 Bildung von Kossellinien

Bestrahlt man einen photonischen Kristall mit konvergentem monochromatischem Licht, so

kann man in Transmission (sowie in Reflexion) ein interessantes Phänomen beobachten: un-

terschiedlich dunkle (helle) Kreise und Ellipsen entstehen vor einem diffus hellen (dunklen)

Hintergrund. Diese Kreise und Ellipsen nennt man Kossellinien [32]. Sie bilden sich aufgrund

der Bragg-Reflexionsbedingung:

m·λ = 2d(hkl) ·sinΘ ∀m ∈ N (6.1)

Die Größeλ bezeichnet die Wellenlänge des Lichts,d(hkl) den Netzebenenabstand mit den

Miller–Indizes (hkl) undΘ den Reflexionswinkel.

Die Existenz dieser „Gitterquelleninterferenzen“ wurden 1924 von Walter Kossel vorherge-

sagt. Das erste mal wurde sie 1934 beobachtet. Die theoretische Interpretation im Kontext der

dynamischen Röntgeninterferenztheorie wurde 1935 durch Max von Laue [33] gegeben. Die

Anordnung und die Ausdehnung der Kossellinien sind abhängig von der Gitterkonstanten,

45
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Abbildung 6.1: SchematischeDarstellung zur Bildung von Kossellinien. Konvergentes Licht (grün) trifft auf die
Netzebenen des Kristallgitters. In Reflexion entsteht dann ein Kosselkegel (rot).

Probe

Okular

Bertrand-
Linse

Lichtquelle

Monochromator

Strahlteiler

Immersionsobjektiv

Verschiebetisch

Kamera

Abbildung 6.2: SchematischeZeichnung einer Kosselapparatur. Durch das Einsetzen einer Bertrand–Linse ent-
steht aus dem orthoskopischen ein konoskopischer Strahlengang, bei dem nicht die Bildebene. sondern die Brenn-
ebene des Objektivs auf die Kamera abgebildet wird.

der Symmetrie und der Raumgruppe der photonischen Kristalle. Mit der Kosselmethode ist

es möglich, diese Kristallparameter zu bestimmen. In Abbildung 6.1 ist die Bildung der Kos-

sellinien schematisch dargestellt. Das aus allen Richtungen einfallende Licht wird gemäß der

Bragg-Bedingung gestreut, so dass eine Netzebenenschar einen kreisförmigen Ring bildet. Da
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in einem Kristall mehrere Netzebenen existieren, und jede Netzebenenschar, die die Braggbe-

dingungerfüllt, einen Kosselkegel bildet, besteht ein Kosseldiagramm aus einer Vielzahl von

Kreisen und Ellipsen.

Zur Aufnahme der Kosseldiagramme wurde ein Polarisationsmikroskop verwendet (Abb. 6.2),

in das eine Bertrand–Linse eingebaut war, um die Brennebene des Objektivs zu betrachten

(konoskopischer Strahlengang). Als Lichtquelle diente eine Bogenlampe, hinter der ein In-

terferenzfilter als Monochromator positioniert wurde. Da für die Aufnahme von Kossellinien

konvergentes Licht benötigt wird, wurde ein Immersionsobjektiv mit 125–facher Vergröße-

rung benutzt.
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6.2 Untersuchung von Kolloidkristallen im sichtbaren
Spektralbereic h

6.2.1 Temperaturabhängiges Schalten von Kolloidkristallen

Thermotrope Flüssigkristalle haben die Eigenschaft, dass ihr Brechungsindex von der Tempe-

ratur abhängt (Abschnitt 2.2). Da die Bandlücke eines photonischen Kristalls direkt von den

Brechungsindizes seiner Komponenten abhängt, ist es möglich, die Bandlücke durch Verän-

derung der Temperatur zu schalten, wenn der Kristall einen Flüssigkristall enthält. Es wurden

Versuche an Kolloidkristallen aus Polymethymetacrylat (PMMA) und an invertierten Kolloid-

kristallen aus SnS2 durchgeführt. Die Kolloidkristalle aus PMMA und die invertierten Kolloid-

kristalle aus SnS2 wurden mit dem nematischen Flüssigkristall E7 infiltriert (s. Abschnitt 4.1).

Beide Systeme zeigten Braggreflexion im Bereich des sichtbaren Lichts, welche mit dem Pho-

tospektrometer Instaspec IV der Firma LOT–Oriel in Reflexion in [111]–Richtung untersucht

wurde. Die Temperatur wurde mit einer Genauigkeit von 0,1◦C durch einen Mikroskopheiz-

tisch mit einer Kontrolleinheit FP5 (Firma Mettler) eingestellt.

6.2.2 Elektrisches Schalten von Kolloidkristallen

Der mit Flüssigkristall gefüllte Kolloidkristall befindet sich zwischen zwei mit Indiumzinn-

oxid (ITO) beschichteten Glasplatten (Abb. 6.3). Durch das Anlegen eines elektrischen Feldes,

richten sich die Moleküle in Richtung des Feldes aus (s. Abschnitt 2.2). Durch die Änderung

des Brechungsindexes des Flüssigkristalls verändert sich die Bandlücke des photonischen Kri-

stalls. Es wurden Versuche an infiltrierten Kolloidkristallen aus PMMA gemacht, welche mit

E7 gefüllt waren. Messungen an invertiertem SnS2 sind nicht möglich, da es sich bei dem

Material um einen polykristallinen Halbleiter handelt, welcher leitfähig ist.

6.2.3 Spektroskopie im sichtbaren Spektralbereich

Im sichtbaren Spektralbereich wurden die Proben in einem Mikroskop untersucht. Dies er-

möglicht die Aufnahme von Reflexionsspektren unter einem Lotwinkel von 0◦. Ein weiterer

Vorteil des Mikroskops ist die Tatsache, dass man Spektren von sehr kleinen Bereichen im

Kristall aufnehmen kann. Dies kann bei Kolloidkristallen notwendig sein, da die einkristalli-

nen Bereiche meist sehr klein sind. Auf das Mikroskop wurde ein Photospektrometer vom Typ

Oriel Instaspec IV montiert. Das Photospektrometer besteht aus einem Spalt, zwei Hohlspie-

geln und einem Gittermonochromator (Abb. 6.4). Das von der Probe reflektierte Licht geht
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EU

Glas

ITO

Flüssigkristall

Kolloidkristall

Abbildung 6.3: SchematischeDarstellung einer Sandwich–Zelle zum Anlegen von elektrischen Feldern. Die
Glasplatten sind mit leitfähigem Indiumzinnoxid beschichtet. In der Zelle sind die Zwischenräume eines Kol-
loidkristalls (grau) mit einem Flüssigkristall (blau) gefüllt.

PC

Spalt

Gitter-
monochromator

Spiegel

CCD-
Array

Abbildung 6.4: Funktionsweiseeines Photospektrometers. Das Licht fällt durch den Spalt auf einen Hohlspiegel
und von dort auf einen Monochromator, der das Licht spektral unterteilt. Das Spekral aufgelöste Licht wird von
einem weiteren Hohlspiegel auf ein Array von CCD–Photodioden geworfen, welche die Lichtintensitäten in
elektrische Signale umwandeln.
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durch einen Spalt und trifft auf den ersten Hohlspiegel, welcher das Licht auf einen Gittermo-

nochromatorreflektiert. Dieser zerlegt das auftreffende Licht in seine spektralen Anteile, die

von dem zweiten Hohlspiegel auf ein Array von Photodioden reflektiert werden. Die Photodi-

oden wandeln die Lichtintensitäten der einzelnen Wellenlängen in elektrische Signale um.
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6.3 Untersuchung von makroporösem Silizium im
infrar oten Spektralbereich

6.3.1 Temperaturabhängiges Schalten von 3D makroporösem
Silizium

Polarisierte
IR-Strahlung

Poröses Si

Abbildung 6.5: Aufnahmevon Transmissionsspektren von makroporösem Silizium mit modulierten Poren. Es
wird polarisationsabhängig entlang der Porenachse gemessen.

Die Spektren wurden in Transmission entlang der Porenachse aufgenommen (Abb. 6.5). Dabei

wurde polarisierte IR–Strahlung verwendet. Zur Temperaturkontolle diente ein Eisenblock, in

dem ein Thermoelement und ein Thermofühler eingebettet waren. Als Kontrolleinheit diente

ein TTK–Heizregler (Firma Paar).

6.3.2 Temperaturabhängiges Schalten von 2D makroporösem
Silizium

Transmissionsmessungen 2D– und 3D–Strukturen entlang derΓ−K– und Γ−M–Richtung

stellen generell ein Problem dar. Für derartige Messungen muss ein schmaler Steg aus der

Probe herauspräpariert werden, dessen Kanten sehr glatt sein müssen, damit es nicht zu Ober-

flächenstreuungen beim Ein– oder beim Austritt der Lichtstrahlen kommt. Daher wurden Re-

flexionsmessungen an diesen Strukturen durchgeführt. Der photonische Kristall wurde ent-

lang derΓK Richtung gebrochen und unter Vakuum mit dem nematischen Flüssigkristall 5CB

gefüllt (s. Abschnitt 4.2). Die Messung erfolgte in Reflexion mit einem Infrarot–Mikroskop
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0°

90°

Abbildung 6.6: Definitionder Polarisationsrichtung bei den dreidimensionalen Strukturen. Die Pfeile geben die
Richtung des elektrischen Feldes an.

Sichtfeld im
IR-Mikroskop

Si-Wafer

Blende
Messfleck

Geätzter Bereich

Abbildung 6.7: SchematischeDarstellung des Sichtfeldes in einem IR–Mikroskop. Die schmale hellgraue Flä-
che symbolisiert den Bereich, der mit der IR–Strahlung bestrahlt wurde, um ein Reflexionsspektrum zu erhalten.
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senkrecht zur Bruchkante inΓM–Richtungmit TE–polarisierter Infrarotstrahlung. Mit der Hil-

fe von Blenden im Strahlengang wurde ein Ausschnitt des Sichtfeldes untersucht (Abb. 6.7).

Aufgrund des Cassegrain–Objektives (s. Abschnitt 6.3.3) fällt das Licht unter einem Winkel

von ca. 30◦ auf die Probe. Dies hat zur Folge, dass nicht exakt inΓM–Richtung gemessen

wird, sondern unter einem Winkel von 30◦, was derΓK–Richtung entspricht (Abb. 6.8). Nach

Snellius sollte das Licht nach dem Auftreffen auf der Oberfläche durch Brechung in einem ex-

akt zu berechnenden Winkel zum Lot hin abgelenkt werden. Weil die Bruchkante genau durch

eine Porenreihe führt, und dadurch eine Rauhigkeit im Bereich der betrachteten Wellenlän-

gen besitzt, kommt es zu einer Beugung der einfallenden Lichtstrahlung in einer nicht exakt

bestimmbaren Winkelverteilung. Zusätzlich kommt es im Kristall zu einer Beugung der Licht-

strahlung in Vorwärtsrichtung (Laue-Fall). Bei Erfüllung der Braggbedingung wird das Licht

in der Rückwärtsrichtung gebeugt (Bragg-Fall) und detektiert. Bei einem Lichteinfall von 30◦

wird demnach keine exakte Kristallrichtung untersucht. Die detektierten Lichtstrahlen wurden

im und am Kristall mehrfach gebeugt.

a

TE-PolarisationTE-Polarisation

30°a

Spiegelnde
Reflexion

Gebeugte
Strahlung

Abbildung 6.8: Bestrahlungeines 2D Kristalls mit hexagonaler Symmetrie mit TE–Polarisierter IR–Strahlung.
Die Bruchkante liegt in derΓK–Richtung. Links: InΓM–Richtung. Im Spektralbereich der fundamentalen Band-
lücken wird das Licht spiegelnd reflektiert. Es treten außerdem Beugungseffekte auf. Rechts: Unter einem Winkel
von 30◦ zur ΓM–Richtung, was derΓK–Richtung entsprechen würde. Nach Snellius sollte dieser Strahl in der
Probe zum Lot hin abgelenkt werden. Da die Bruchkante keine glatte Oberfläche besitzt, sondern durch eine Po-
renreihe geht, werden diese Strahlen in einer gewissen Winkelverteilung gebeugt, und schließlich bei Erfüllung
der Bragg–Bedingung reflektiert.

Da es sich bei Silizium um einen Halbleiter handelt, der in diesem Fall aufgrund seiner Dotie-

rung leitfähig ist, ist es nicht möglich, elektrische Felder anzulegen, um eine Umorientierung

der Flüssigkristallmoleüle zu erreichen und dadurch die optische Eigenschaften der Struktur

zu verändern.
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6.3.3 Infrarot–Spektroskopie

FürUntersuchungen im infraroten Spektralbereich wurde ein Fourier-Transformations-Infrarot-

Spektrometer (FTIR–Spektrometer) benutzt. Das Kernstück des FTIR–Spektrometers ist ein

Michelson–Interferometer (Abb. 6.9). Dabei trifft weißes Licht auf einen Strahlteiler. Die bei-

Lichtquelle

Detektor

Probe

Fester Spiegel

X
Beweglicher 
Spiegel

Interferierende
Lichtstrahlen

Strahlteiler

Abbildung 6.9: Darstellungeines Michelsoninterferometers als Kernstück eines FTIR–Spektrometers. Licht
(rote Pfeile) wird an einem Strahlteiler geteilt und von zwei Spiegeln reflektiert, so dass der Strahlteiler ein
weiteres Mal passiert wird, und die Strahlen zur Interferenz gelangen. Durch kontinuierliche Verschiebung eines
Spiegels werden immer andere Wellenlängen zu konstruktiver und destruktiver Interferenz gebracht.

den Lichtstrahlen treffen jeweils auf einen Spiegel und werden reflektiert. Der Strahlteiler wird

ein weiteres Mal passiert, und die beiden Strahlen kommen zur Interferenz. In diesem Fall

ist der eine Spiegel fest montiert, während der andere beweglich ist. Bewegt man den Spie-

gel in eine Richtung, so erreicht man eine Weglängendifferenz∆l der beiden Lichtstrahlen.

Wellenlängen mit∆l = mλ interferieren konstruktiv und werden verstärkt, wogegen Wellen-

längen mit∆l = (m+ 1
2)λ destruktiv interferieren und sich auslöschen. Bei einer ständigen

Bewegung des Spiegels ändert sich∆l stetig, und damit werden immer andere Wellenlängen

verstärkt oder ausgelöscht. Der Detektor im Spektrometer misst die Intensitäten aller ankom-

menden Wellenlängen integral. Man erhält dann ein IntensitätsspektrumI in Abhängigkeit

von der Spiegelpositionx. Betrachtet man die Interferenz der beiden Lichtstrahlen mathema-

tisch, so ist dieses SpektrumI(x) die Fouriertransformierte des Spektrums im Frequenzraum.

Durch eine Rücktransformation vonI(x) mit Hilfe eines Computers erhält man schließlich das

Spektrum im Frequenzraum.
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Transmissionsmessungen

DasInfrarotspektrometer ist vom Typ Equinox 55 (Firma Bruker). Für eine Transmissions-

messung wurde die Probe in den Strahlengang gebracht, in dem die Strahlen zur Interferenz

gelangen. Das Probenspektrum wird anschließend durch ein Referenzspektrum, welches oh-

ne Probe aufgenommen wurde, geteilt. Die Messungen fanden in einem Spektralbereich von

1,5µmbis 20µmstatt. Als Lichtquelle diente ein Stab aus Siliziumcarbid (SiC), der Strahlteiler

bestand aus Kaliumbromid (KBr) und der Detektor aus deuteriertem Triglycinsulfat (DTGS).

Reflexionsmessungen

Für Reflexionsmessungen wurde ein Infrarot–Mikroskop benutzt. Im infraroten Spektralbe-

reich nutzt man spezielle Cassegrain–Spiegelobjektive (Abb. 6.10). Diese bestehen aus einem

Probe

Hohlspiegel

Lochblende

Konvex-
Spiegel

Abbildung 6.10: Darstellungeines Cassegrain–Objektivs. Das Licht fällt durch das Loch im Hohlspiegel und
wird von einem Konvexspiegel auf den Hohlspiegel reflektiert, von dort aus auf die Probe fokussiert. Von der
Probe wird das Licht reflektiert, nimmt den Weg zurück durch das Objektiv und wird detektiert.

Hohlspiegel mit einem Loch in der Mitte. Durch dieses Loch fällt das Licht und wird von

einem kleinen Konvexspiegel auf den Hohlspiegel reflektiert. Dieser fokussiert das Licht an-

schließend auf die Probe. Das Licht, welches von der Probe reflektiert wird, nimmt den glei-

chen Weg zurück und wird detektiert. Die Lichtstrahlen werden unter einem kleinen Öffnungs-
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winkel von 30◦ auf die Probe eingestrahlt. Bei Messungen an photonischen Kristallen kann

es daher zu einer leichten „Verschmierung” der Bandkanten kommen. Als Referenz diente ein

Goldspiegel. Im Unterschied zur Transmissionsmessung wurde ein mit Stickstoff gekühlter

Quecksilber–Cadmium–Tellurid (MCT) Detektor benutzt.

6.4 Deuterium–NMR–Messungen an 2D und 3D
makroporösem Silizium

Um Informationen über die Orientierungsverteilung der Flüssigkristallmoleküle in den Poren

von 2D makroporösem Silizium zu bekommen, wurden die Poren mitα–deuteriertem 5CB

gefüllt. Der Siliziumwafer wurde in 2mm x 2mm quadratische Stücke zerschnitten und in

einem NMR–Röhrchen gestapelt (Abb. 6.11).

Abbildung 6.11: Fotografie eines NMR–Röhrchens gefüllt mit Scheiben aus photonischen Kristallen aus ma-
kroporösem Silizium.

6.4.1 Bestimmung der Orientierungsfernordung von
Flüssigkristallen mit Deuterium–NMR

Für NMR–Experimente können Proben genutzt werden, deren Atomkerne ein magnetisches

Moment besitzen. Die Wechselwirkung mit dem Magnetfeld des NMR–Spektrometers führt

zu äquidistanten Zeemann Energieniveaus. Eine elektromagnetische Welle im Radiofrequenz-

bereich induziert Übergänge zwischen diesen Energieniveaus, wenn die Frequenz identisch

mit der Larmorfrequenz des Atomkerns ist. Bei einer magnetischen Flussdichte von 1 T be-

trägt die Frequenz für Deuterium 6,5 MHz, bei 4,7 T beträgt sie ca. 30 MHz. Für Deuterium
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bewirkt die Wechselwirkung des Quadrupolmoments des Kerns mit dem Gradienten des elek-

trischenFeldes eine zusätzliche Verschiebung der Zeeman–Energieniveaus (Abb. 6.12). Das

I =-1z

I =0z

I =1z

E

Abbildung 6.12: ZusätzlicheVerschiebung der Zeeman–Energieniveaus aufgrund der Wechselwirkung des Qua-
drupolmoments des Kerns mit dem Gradienten des elektrischen Feldes.

NMR–Signal ist deshalb verbreitert oder in mehrere Linien aufgespalten. In starren, völlig

einheitlich orientierten Molekülen spaltet das NMR–Signal in zwei Linien auf mit dem Ab-

stand:

∆ν =
3
2

e2qQ
h

1
2

(3 cos2ϑ0 −1) (6.2)

Dabei iste2qQ/h die statische Quadrupolkopplungskonstante. In einer Alkylkette liegt sie

beispielsweise bei 165 kHz.ϑ0 ist der Winkel zwischen der Symmetrieachse des elektrischen

Feldgradiententensors und dem externen Magnetfeld. In deuterierten Flüssigkristallen ist der

elektrische Feldgradiententensor typischerweise parallel zur C–D Bindung. Aufgrund dieser

Umstände ist die2H−NMR–Spektroskopie eine elegante experimentelle Methode zur Be-

stimmung der Orientierungsfernordnung von Flüssigkristallen [35, 36, 37]. Man benötigt für

eine derartige Messung einen Flüssigkristall, der an einer Stelle deuteriert ist. Die Aufspaltung

ist abhängig von dem Winkelϑ der Flüssigkristallmoleküle zum permanenten Magnetfeld des

NMR–Spektrometers:

∆ν =
1
2

∆ν0(3 cos2ϑ −1) (6.3)

Dabei istϑ der Winkel zwischen dem Direktorn und dem externen Magnetfeld und

∆ν0 =
3
2

e2qQ
h

1
2

[
S〈1

2
(cos2β−1)〉 +

1
2
(Sxx−Syy)〈sin2βcos2α〉

]
. (6.4)

Die Winkel α und β bezeichnen die Azimut– und Polarwinkel, welche von der Symmetrie-

achse des elektrischen Feldgradiententensors und der Moleküllängsachse geformt werden. Die
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Abbildung 6.13: NormierteQuadrupolaufspaltung in Abhängigkeit vom Winkel des Direktors zum Magnetfeld.

GrößeS ist der Ordnungsparameter (vgl. 2.24):

S =
1
2
〈3cos2Θ−1〉 (6.5)

Dabei istΘ der Winkel zwischen der Moleküllängsachse und dem Direktorn. (Sxx − Syy)
bezeichnet den Ordnungsgrad der molekularen Biaxialität und beschreibt die Abweichung des

Moleküls von einer perfekten zylindrischen Symmetrie. Abbildung 6.13 zeigt die normierte

Quadrupolaufspaltung, die nach der Gleichung

∆νnorm =
1
2
〈3cos2Θ−1〉 (6.6)

berechnet wurde. BeiΘ = 0◦ ist die Aufspaltung maximal. BeiΘ = 90◦ beträgt sie−1/2.

Diese Aufspaltung ist jedoch nicht unterscheidbar von der Quadrupolaufspaltung+1/2, wel-

che dem WinkelΘ = 35,26◦ zuzuordnen ist. Quadrupolaufspaltungen von 0 bis 1/2 lassen

sich daher nicht eindeutig einem WinkelΘ zuordnen. Ebenso ist eine einheitliche Orientie-

rung unter dem „magischen Winkel”Θ = 54,74◦ nicht von einer isotropen Verteilung über

alle Winkel zu unterscheiden. In beiden Fällen tritt keine Aufspaltung im2H−NMR–Signal

auf.

Abbildung 6.14 zeigt ein2H−NMR–Signal des Flüssigkristalls 5CB, bei dem der Direktor

n der Flüssigkristallmoleküle in Richtung des Magnetfeldes zeigt [37]. Bei 25◦C beträgt die
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Abbildung 6.14: 2H−NMR–Spektrumvon dem nematischen Flüssigkristall 5CB bei vollständiger Orien-
tierung des Direktors zum Magnetfeld (oben), und die Temperaturabhängigkeit der Quadrupolaufspaltung
(unten)[37]. Bei 25◦C beträgt die Aufspaltung∆ν = 53 kHz.

60 kHz60 kHz60 kHz60 kHz60 kHz60 kHz60 kHz60 kHz60 kHz60 kHz60 kHz60 kHz 60 kHz60 kHz60 kHz60 kHz60 kHz60 kHz

planar-radial escaped-radialn || B

B B

Abbildung 6.15: Beispielefür 2H−NMR–Spektren mit schematischen Zeichnungen der zugehörigen Direktor-
felder in zylindrischen Poren [37].
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Aufspaltung∆ν = 53 kHz. Die Quadrupolaufspaltung nimmt mit zunehmender Temperatur

ab. Befindet sich der Flüssigkristall in der isotropen Phase, so verschwindet die Quadrupol-

aufspaltung. Die Intensitätsverteilung des2H−NMR–Signals gibt die Verteilung der Orientie-

rungenf (ϑ) gemittelt über die gesamte Probe an. In Abbildung 6.15 sind einige Beispiele für

Intensitätsverteilungen mit zugehörigen Direktorfeldern dargestellt. In dieser Arbeit wurden

ein Bruker AMX 300 und ein Bruker AMX 500 NMR–Spektrometer mit einem permanenten

Magnetfeld von 7 T bzw. 14 T benutzt. Die Larmorfrequenz von Deuteriumkernen liegt für 7

T bei 46,07 MHz und für 14 T bei 76,77 MHz.

6.4.2 Theoretische Berechnung von Direktorfeldern zur
Interpretation der Deuterium–NMR–Spektren

Um die experimentell gemessenen2H−NMR–Spektren zu interpretieren, wurden die Direk-

torfelder innerhalb der Poren mit einem Computerprogramm berechnet. Für die Berechnung

wird die lokale Orientierung der Flüssigkristallmoleküle durch den Ausrichtungstensor

aµν = 〈nµnν〉 −
1
3

nλnλδµν (6.7)

beschrieben.Die Größennµ, nν und nλ sind die Komponenten des Direktors undδµν ist der

Einheitstensor. Im Gegensatz zur Beschreibung der Orientierung durch einen Vektor, den Di-

rektorn, gewährleistet die Beschreibung durch den Tensor 2. Stufe die physikalische Äquiva-

lenz vonn und−n. Die zugehörige Relaxationsgleichung lautet:

τ(δaµν/δt) − ζ0∆aµν + Φµν − Fµν = 0 (6.8)

ζ0 ist eine Korrellationslänge, die die Länge eines Moleküls beschreibt undΦµν = ∂φ/∂aµν ist

die Ableitung eines dimensionslosen Landau–de Gennes Potenzials nachaµν. Der TensorFµν

beschreibt den Einfluss eines externen elektrischen oder magnetischen Feldes.

Kilian und Hess haben einen Algorythmus zur numerischen Relaxation eines in Raum (δl) und

Zeit (δt = γ1δl2/2dK) diskretisierten Systems entwickelt [52]. Nach einem Zeitschritt ergibt

sich für den Direktor:

nnew
µ = λ{〈nµnν〉 + [µ0χaδl2/(2dK)]HµHν}nν (6.9)

Dabei istλ ein Normierungsfaktor,γ1 die Rotationsviskosität,χa die Anisotropie der ma-

gnetischen Suszeptibilität,d die Dimension (d= 3), K ein effektiver elastischer Koeffizient

undHµ undHν sind die Komponenten eines externen Magnetfeldes. In diesem Algorythmus

wird nur mit einem effektiven elastischen Koeffizienten gerechnet, anstatt die Unterschiede

der drei elastischen Koeffizienten zu berücksichtigen. Dennoch kann man mit diesem Algo-

rythmus sehr gut das Verhalten von Flüssigkristallen in kleinsten Räumen beschreiben. Zur
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Berechnung der Direktorfelder wird eine festgelegte Orientierung für die Randschicht an den

Porenwändenangenommen. An den übrigen Orten ist der Direktor zu Beginn der Rechnung

statistisch verteilt. Nach einer endlichen Anzahl von Zeitschritten erfolgt keine Änderung des

Direktorfeldes mehr. Es befindet sich dann im thermodynamischen Gleichgewicht, oder zu-

mindest in einem metastabilen Zustand.

Aus den simulierten Direktorfeldern werden schließlich2H−NMR–Spektren berechnet, um

sie mit den experimentell gemessenen Spektren zu vergleichen.
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7 Ergebnisse

7.1 Ergebnisse der Beugungsexperimente

Es wurden Kosseldiagramme von verschiedenen photonischen Kristallen aufgenommen. In

Abbildung 7.1 ist ein Kosseldiagramm einer 2D Silizium–Probe zu sehen, in der die Poren in

sechszähliger Symmtrie zueinander angeordnet sind. Die Gitterkonstante betrug a = 600 nm.

Abbildung 7.1: Kosseldiagramm von 2D makroporösem Silizium mit hexagonaler Symmetrie.

Die Aufnahme wurde bei einer Wellenlänge vonλ = 488 nm gemacht. Wie erwartet, ist im

Kosseldiagramm die sechszählige Symmetrie deutlich zu erkennen.

Von Kolloidkristallen wurden ebenfalls Kosseldiagramme beobachtet. Der erste Kolloidkri-

stall bestand aus einem dünnen Film aus Polystyrolkugeln, die einen Durchmesser von 500

nm hatten. Die Kossellinien weisen eine sechszählige Symmetrie auf. Die Schnittpunkte der

Kosselkegel bilden zwei Sechsecke, welche unterschiedlich groß, und um 30◦ zueinander ver-

dreht sind (Abb. 7.2 und 7.3). Es handelt sich hierbei um Beugungsbilder der obersten Schicht

des Kolloidkristalls, ähnlich dem Kosseldiagramm des 2D makroporösen Siliziums. Diese bei-

den Sechsecke entsprechen den Reflexen der ersten und der zweiten Brillouinzone (Abb. 7.4).

63
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Abbildung 7.2: Kosseldiagramm eines Kolloid-
kristalls aus Polystyrolkugeln. Der Kugeldurch-
messer betrug 500 nm.

Abbildung 7.3: Die Verbindung der Schnittpunk-
te der Kossellinien ergeben zwei Sechsecke, die
um 30◦ zueinander verdreht sind.

Abbildung 7.4: Darstellungdes reziproken Gitters eines zweidimensionalen hexagonalen Kristalls mit der Kon-
struktion der ersten und zweiten Brillouinzone.

Geht man davon aus, dass es sich bei der beoachteten Schicht um die Oberfläche einer fcc–

Struktur handelt, so wäre die Beobachtungsrichung entlang der [111]–Richtung.

Der zweite Kolloidkristall bestand aus PMMA mit einem Kugeldurchmesser von 463 nm. Die-

ser Kristall lieferte stellenweise ein Kosseldiagramm mit 4–zähliger Symmetrie (Abb. 7.5).

An diesen Stellen ist der Kolloidkristall in[200]–Richtung gewachsen. Es sind die Reflexe der

Kristallebenen(111),(1̄11),(11̄1)und(111̄) zu sehen (vergl. Abb. 7.6).
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Die fcc–Struktur besitzt einerseits Flächen mit einer hexagonalen Anordnung der Kugeln, und

andererseitsAchsen mit 4–zähliger Symmetrie. Geht man davon aus, dass Kolloidkristalle

tatsächlich fcc–Strukturen bilden (s. Kapitel 3), stehen die Ergebnisse mit dieser Vermutung

im Einklang.

Abbildung 7.5: Kosseldiagramm eines Kolloid-
kristalls aus PMMA–Kugeln. Der Kugeldurchmes-
ser betrug 463 nm.

111 111

11-1111

Abbildung 7.6: SchematischeDarstellung der
Kosselkegelschnitte eines fcc–Kristalls in der
[200]–Richtung.
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7.2 Temperaturabhängiges Schalten von
Kolloidkristallen

7.2.1 Kolloidkristalle aus PMMA

Es wurde ein Kolloidkristall aus PMMA–Kugeln mit einem Durchmesser D = 200 nm herge-

stellt. Die Kristalle besaßen eine kubisch flächenzentrierte Kristallstruktur (fcc), deren [1,1,1]–

Richtung senkrecht zur Substratoberfläche orientiert ist. Der Kristall zeigte einen Reflex-

ionspeak beiλ111= 448 nm bei senkrechtem Lichteinfall (Abb. 7.7). Mit der Bragg–Bedingung
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Abbildung 7.7: Reflexionsintensitäten eines PMMA Kolloidkristalls gefüllt mit Luft (λ=448 nm) und mit E7
(λ=493 nm) im Vergleich.

berechnet sich das Maximum des Reflexionspeaks wie folgt (s. Abschnitt 2.1.5):

λ = 2ne f fdhkl (7.1)

Der effektive Brechungsindex wird durch

ne f f = (∑ fin
2
i )

1/2 (7.2)
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Abbildung 7.8: Temperaturabhängigkeit der Reflexionsmaxima des mit Flüssigkristall gefüllten PMMA Kol-
loidkristalls, und des Brechungsindexes von E7. Beide Werte nehmen mit zunehmender Temperatur ab.

beschrieben. Dabei bezeichnetfi den Volumenanteil der Komponentei in der Heterostruktur.

Der Schichtabstanddkhl von Schichten mit den Miller–Indizes (h,k, l ) ist abhängig von der

Gitterkonstantena:

dhkl = a(h2 +k2 + l2)−1/2 (7.3)

Mit f PMMA = 0,74 , nPMMA = 1,49 , fLuft = 0,26 , nLuft = 1 , a= D
√

2 und(h,k, l) = (1,1,1)
erhält man einen mittleren Brechungsindex von neff = 1,38. Mit λ111 =

√
8/3neffD und dem

gemessenen Wert für den Reflexionspeak berechnet sich der Kugeldurchmesser zu D = 199nm

was durch AFM–Messungen (D = 195 nm±10 nm) bestätigt wurde.

Nachdem die Zwischenräume mit Flüssigkristall gefüllt wurden, beobachtet man eine Rot-

verschiebung des (1,1,1)–Reflexionspeaks (Abb. 7.7). Bei 23◦C war das Maximum des Re-

flexionspeaks beiλ111 = 493,4nm. Mit dem mittleren Brechungsindex von E7, nE7 = 1,612,

berechnet sich ein effektiver Brechungsindex von neff = 1,523 woraus sich eine etwas größe-

re Reflexionswellenlänge beiλ111 = 494,3nm ergibt als gemessen wurde. Diese Abweichung

lässt sich durch einen kleinen Volumenanteil Luft von weniger als 1% erklären.

Bei Erhöhung der Temperatur von 23◦C auf 70◦C ergibt sich eine leichte Blauverschiebung

des Reflexionspeaks von ungefähr 2 nm (Abb. 7.8).
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Tabelle 7.1: Temperaturabhängigkeit der Reflexionswellenlänge und des mittleren Brechungsindexes des Flüs-
sigkristalls E7:

PMMA Kolloidkristall mit E7

T(◦C) λ(nm) n̄E7 n0 ne

23 493,4 1,612 1,530 1,765
40 492,1 1,605 1,534 1,740
50 491,8 1,600 1,540 1,715
70 491,4 1,589 - -

Abbildung 7.9: Halbwertsbreiteder Reflexionsbande und Brechungsindex–Kontrast∆n = nE7−nPMMA in Ab-
hängigkeit von der Temperatur.

Dies stimmt mit der Annahme überein, dass durch die Abnahme des mittleren Brechungsinde-

xes des Flüssigkristalls der effektive Brechungsindex des Gesamtsystems und somit die Bragg-

wellenlänge ebenfalls sinken (Abb. 7.8, Tab. 7.1). Aber nicht nur die Peakposition sondern

auch die Breite des Reflexionspeaks nimmt mit zunehmender Temperatur ab (Abb. 7.9). Am

auffälligsten ist dies oberhalb des Klärpunktes, wo der mittlere Brechungsindex im Vergleich

zur nematischen Phase sprunghaft um einen kleinen Betrag abnimmt (s. Abschnitt 2.2.1). Qua-

litativ ist die Breite der photonischen Bandlücke direkt proportional zum Brechungsindex–

Kontrast der beiden Komponenten, aus denen der photonische Kristall besteht. Demnach steht
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die Abnahme der Bandbreite in Übereinstimmung mit der Abnahme der Differenz zwischen

denBrechungsindizes von PMMA und dem Flüssigkristall. Dabei fällt auf, dass sich, so lan-

ge sich der Flüssigkristall im nematischen Zustand befindet, nur die Bandkante, die sich bei

größeren Wellenlängen befindet, verschiebt. Es handelt sich um die Bandkante des niede-

renergetischen Bandes, in der die Intensität der stehenden elektromagnetischen Wellen in den

Bereichen mit hohem Brechungsindex am größten ist. Dieses Band wird üblicherweise di-

elektrisches Band genannt. Da der Flüssigkristall einen höheren Brechungsindex als PMMA

besitzt, kann man diesem Band den Namen „Flüssigkristallband” geben. Da durch die Tem-

peraturänderung der Brechungsindex des Flüssigkristalls verändert wurde, kommt es zu ei-

ner Verschiebung des „Flüssigkristallbandes”. Hingegen verschiebt sich die andere Bandkante

nicht. Diese entspricht dem hochenergetischen Band, und wird üblicherweise Luftband ge-

nannt. Da der hier betrachtete photonische Kristall jedoch keine Luft als einen Bestandteil

besitzt, handelt es sich hier um das „PMMA–Band”.

7.2.2 Kolloidkristalle aus Zinnsulfid

Abbildung 7.10: Mikroskopaufnahmen von
einem PMMA Kolloidkristall aus Kugeln mit
280 nm Durchmesser (oben) und nach der
Invertierung mit SnS2 (unten).
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Abbildung 7.11: Reflexionsintensität des Templats mit Kugeln aus 280 nm Durchmesser und des invertierten
Kolloidkristalls aus SnS2.

Für die Herstellung der inversen Struktur wurden größere PMMA–Kugeln als Template be-

nutzt. Der Kolloidkristall, welcher als Templat diente, hatte einen Reflexionspeak beiλ111 =
632 nm, woraus sich ein Kugeldurchmesser von D = 280 nm berechnen lässt. Dieser Wert

wurde durch AFM–Messungen bestätigt (D = 278 nm± 10nm). Lichtstreuexperimente in

wässriger Lösung lieferten größere Werte, die sich mit dem Quellen der Kugeln im Lösungs-

mittel erklären lassen. Der Gyrationsradius wurde zu Rg = 128nm und der hydrodynamische

Radius zuRh = 161nmbestimmt. Das Verhältnis Rg/Rh = 0,79 demonstriert die Kugelform

der kolloidalen Partikel. Für eine ideale Kugel liegt das Verhältnis Rg/Rh bei 0,77. Für ein

Stäbchen ist Rg/Rh = 2. Die Zwischenräume wurden mit SnS2 gefüllt und das Templat wur-

de herausgelöst (s. Abschnitt 3.2). Die Gitterkonstante des invertierten Kristalls wurde bei

diesem Prozess etwas kleiner als die des Templats. Elektronenmikroskopie lieferte einen Ab-

stand von D = 270 nm zwischen den Zentren benachbarter Löcher. Diese Struktur zeigte einen

Reflexionspeak beiλ111 = 536nm (Abb. 7.11), was einem effektiven Brechungsindex von

neff ≈ 1,22 entspricht. In Abbildung 7.10 sind Mikroskopaufnahmen vom Templat und von

der invertierten Struktur zu sehen. Der Wechsel der Braggreflexion von Rot zu Grün ist deut-
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lich zu erkennen. Mit dem bekannten Brechungsindex von mit CVD abgeschiedenem, kristal-

linemSnS2, nSnS2 = 2,6 [41], müsste man auf einen Volumenanteil von SnS2 von weniger als

10% (statt 26%) schließen. Allerdings ist es unwahrscheinlich, dass das SnS2 kristallin ist. Es
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Abbildung 7.12: Reflexionsintensitäten des gefüllten invertierten Kolloidkristalls (E7/SnS2). Die Reflektivität
nimmt mit zunehmender Temperatur zu.

wird vielmehr polykristallin sein, so dass der Brechungsindex des mit CVD abgeschiedenen

SnS2 deutlich geringer ist. Ein Volumenanteil von ungefähr 15% ist wahrscheinlicher, da der

invertierte Kolloidkristall mechanisch stabil ist. Bei einem Volumenanteil von nur 10% wür-

de das Gitter in sich zusammenbrechen. Der SnS2–Kolloidkristall blieb sogar stabil, wenn er

mit Flüssigkristall gefüllt wurde. Nach der Infiltration mit E7 kam es zur erwarteten Rotver-

schiebung des Reflexionspeaks aufλ111 = 736nm, woraus sich ein effektiver Brechungsindex

von neff = 1,67 für das Gesamtsystem ergibt (Abb. 7.12). Der Reflexionspeak der gefüllten

invertierten Kolloidkristalle bewegte sich bei Erhöhung der Temperatur wegen der Verminde-

rung des mittleren Brechungsindexes, ebenfalls zu kleineren Wellenlängen (Abb. 7.13). Wegen

des deutlich größeren Volumenanteils des Flüssigkristalls ist die Verschiebung des Peakma-

ximums ebenfalls deutlich größer. Eine Temperaturänderung von 23◦C auf 70◦C ergibt eine

Verschiebung um 14 nm (Abb. 7.13, Tabelle 7.2).
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Abbildung 7.13: Temperaturabhängigkeit der Reflexionsmaxima des gefüllten invertierten Kolloidkristalls
(E7/SnS2) und des mittleren Brechungsindexes von E7.

Tabelle 7.2: Temperaturabhängigkeit der Reflexionswellenlänge und des mittleren Brechungsindexes des Flüs-
sigkristalls E7 für die invertierte Struktur:

Invertierter Kolloidkristall mit E7
T(◦C) λ(nm) nE7

23 736 1,592
35 735 1,588
50 732 1,583
55 731 1,577
62 723 1,572
70 722 1,569
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7.3 Elektrisches Schalten von Kolloidkristallen

Es wurden drei Kolloidkristalle aus PMMA mit verschieden Kugelgrößen mit E7 oder 5CB

infiltriert, und die Reflexionsspektren wurden bei verschieden hohen Wechselspannungen mit

einer Frequenz von 100 Hz gemessen. Abbildung 7.14 zeigt die Reflexionsspektren eines
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Abbildung 7.14: Abhängigkeit der Reflektivitäten eines gefüllten Kolloidkristalls (PMMA/E7) von der Wellen-
länge für verschiedene Spannungen. Die Kugelgröße betrug 200 nm.

Kolloidkristalls bestehend aus Kugeln mit 200 nm Durchmesser, gefüllt mit E7. Die Bragg-

wellenlänge liegt bei 491,7 nm. Beim Anlegen einer Spannung verschiebt sich das Maximum

zu kleineren Wellenlängen. Dies liegt daran, dass sich der Direktorn des Flüssigkristalls ent-

lang des elektrischen Feldes orientiert. Da die Feldrichtung mit der Beobachtungsrichtung

übereinstimmt, beobachten wir eine Verminderung des effektiven Brechungsindexes des Flüs-

sigkristalls, der im Fall vollständiger Orientierung mit dem ordentlichen Brechungsindex von

E7 übereinstimmen sollte. Allerdings verhindern die Anbindung der Flüssigkristallmoleküle

an die Oberfläche der Kugeln und die elastischen Wechselwirkungskräfte der Moleküle unter-

einander eine vollständige Orientierung des Direktorsn in Feldrichtung. Zur Kompensation

der elastischen Kräfte kann man die Spannung erhöhen. Da es jedoch bei hohen Spannun-
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Abbildung 7.15: Abhängigkeit der Reflektivitäten eines gefüllten Kolloidkristalls (PMMA/E7) von der Span-
nung. Die Kugelgröße betrug 220 nm.

gen zu einer Zerstörung der Testzelle kommen kann, konnte die Spannung maximal bis auf

150 V erhöht werden, bevor ein elektrischer Durchbruch erfolgte. Man sieht jedoch deutlich

eine Abhängigkeit der Braggwellenlänge von der Spannung. Bei einer Spannung von 120 V

verschiebt sich die Braggwellenlänge um 1,1 nm zu niedrigeren Werten. Dieser Effekt ist ge-

ringer als beim Temperaturschalten (s. Abschnitt 8.2). Ein weiterer Effekt ist in Abbildung

7.14 zu sehen. Mit zunehmender Spannung erhöht sich die Reflektivität. Dies liegt daran, dass

der Flüssigkristall im Mittel isotrop orientiert ist, was an der Randorientierung des Flüssig-

kristalls an den Kugeloberflächen liegt (Abb. 7.17). In diesem Fall wird das einfallende Licht

stark diffus gestreut. Bei einer zunehmenden anisotropen Orientierung im elektrischen Feld

wird das Licht weniger stark diffus gestreut, und es gelangt mehr Licht zur Detektion in das

Spektromenter. Da die Lichtquelle einen geringen Anteil in dem hier untersuchten Teil des

sichtbaren Spektrums besitzt, macht sich der Effekt besonders deutlich bemerkbar. Bei den

folgenden Spektren fällt der Effekt deutlich geringer aus. Das Schaltverhalten im elektrischen

Feld wurde mit zwei weiteren Kolloidkristallen untersucht. Beide Proben zeigten das gleiche

Verhalten (Abb. 7.15 und 7.18). Die Braggreflexion verschob sich geringfügig zu kleineren

Wellenlängen, und die Reflektivität nahm zu. In Abbildung 7.15 wurde ein Kolloidkristall mit
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Abbildung 7.16: Abhängigkeit der Reflexionsmaxima des gefüllten Kolloidkristalls (PMMA(220 nm)/E7) von
der Spannung.

Direktorfeld
bei planarer
OrientierungZentrum

Abbildung 7.17: ZweidimensionaleDarstellung von einem Direktorfeld eines Flüssigkristalls in den Zwischen-
räumen eines Kolloidkristalls. In diesem Fall handelt es sich um eine planare Randorientierung. Im Zentrum der
Kugelzwischenräume befindet sich eine Disklination, da es keine eindeutige Gleichgewichtslage für die Flüssig-
kristallmoleküle gibt.
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Abbildung 7.18: Abhängigkeit der Reflektivitäten eines gefüllten Kolloidkristalls (PMMA/5CB) von der Span-
nung. Die Kugelgröße betrug 280 nm.

230 nm Kugeldurchmesser mit E7 gefüllt. Die Spannung wurde schrittweise bis auf 150 Volt

gesteigert. Die Abhängigkeit der Braggwellenlänge von der Spannung ist in Abbildung 7.16

dargestellt. Dort ist abzulesen, dass die maximale Verschiebung 1,5 nm beträgt. Außerdem

wurde ein Kolloidkristall mit einem Kugeldurchmesser von 280 nm mit 5CB gefüllt. Das Er-

gebnis ist in Abbildung 7.18 zu sehen. Die Braggwellenlänge verschiebt sich in diesem Fall

um 1,1 nm bei 130 Volt. Geht man davon aus, dass sich die Flüssigkristallmoleküle vollständig

im elektrischen Feld orientieren, so liegen die Ergebnisse der Messungen unter den Erwartun-

gen. Die Braggwellenlänge sollte sich im Vergleich zum feldfreien Zustand deutlich stärker

verschieben. Tabelle 7.3 zeigt die theoretischen Werte für die Verschiebung im Falle vollstän-

diger Orientierung im Vergleich mit den experimentellen Werten. Es stellt sich nun die Frage,

warum die Verschiebung der Braggwellenlänge so klein ausfällt.

In Abschnitt 2.2.3 wurde die Schwellfeldstärke für eine Deformation des Direktorfeldes in

Abhängigkeit von der Schichtdicke des Flüssigkristalls beschrieben:

E0 =
π
d

(
Kii

ε0∆ε

) 1
2

(7.4)



7 Ergebnisse 77

Tabelle 7.3: Theoretischberechnete Werte für die Verschiebung der Braggwellenlänge im Vergleich zu den
experimentell bestimmten Werten.

Kugeldurchmesser (nm) (Füllung)Theorie (nm) Experiment (nm)
200 (E7) 6,5 1,1
230 (E7) 7,0 1,5

280 (5CB) 7,5 1,1

Betrachtet man die Ausdehnung der Tetraeder– und Oktaederlücken, in denen der Flüssigkri-

stall zwischen den Kugeln im Kolloidkristall eingebettet ist, so kommt man zu dem Schluss,

dass es sich um „Schichtdicken” von ca. 50 nm bis 100 nm handelt. Mit∆ε = 13,8 und

Kii ≈ 10−11N für E7 und einer Schichtdicke von≈ 100 nm erhält man für die Schwellfeldstär-

ke E0 = 9 V
µm. Für Testzellen mit einer Dicke von 30µm benötigt man z. B. eine Spannung von

ca. 270 V. Für reine Flüssigkristalle sind 10V
µm durchausakzeptabel, aber in den hier unter-

suchten heterogenen Systemen führte eine derart hohe Spannung zur Zerstörung der Testzelle.

Dass es überhaupt eine Verschiebung der Braggwellenlänge gibt, obwohl die hier angelegten

Spannungen niedriger sind, liegt wahrscheinlich an der Disklination im Zentrum der Kugel-

zwischenräume (Abb. 7.17). In diesem kleinen Bereich ist die Gleichgewichtslage für das

Direktorfeld nicht eindeutig definiert, da sich die elastischen Kräfte, die von der Randorien-

tierung des Flüssigkristalls an den Kugeloberflächen herrühren, gegenseitig aufheben. Daher

ist es möglich, durch relativ kleine äußere Felder das Direktorfeld in diesem Bereich zu be-

einflussen.
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7.4 Temperaturabhängiges Schalten in 3D
makr oporösem Silizium

8 10 12 14
0.00

0.01

0.02

0.03

1762 nm

 

 

144 nm

920 nm

 Luftporen
 Nematisch
 Isotrop

Tr
an

sm
iss

ion

Wellenlänge (µm)

Abbildung 7.19: Transmissionsspektrum von porösem Silizium mit modulierten Poren: ohne Flüssigkristall
(schwarz), mit nematischem Flüssigkristall (rot) und mit Flüssigkristall in der isotropen Phase (grün).

Poröses Silizium mit modulierten Poren besitzt eine Bandlücke für Licht, das sich entlang

der Porenachse ausbreitet. Die erste analysierte Probe besitzt eine Modulation der Radien von

Rmin ≈ 0,38±0,05µm und Rmax≈ 0,63±0,05µm bei einer Gitterkonstante von a= 1,5µm

und einer Periodizität von p = 2,6µm. Die Messung der Transmission parallel zur Porenach-

se (s. Abschnitt 5.3.1) weist auf eine Bandlücke hin, die beiλ = 10,5 µm zentriert ist. Es

kommt zu einer Rotverschiebung nach der Infiltration der Poren mit dem Flüssigkristall 5CB

um∼920 nm an der Bandkante höherer Wellenlängen, und um∼1762 nm an der Bandkante

kürzerer Wellenlängen (Abb. 7.19). Die Bandlücke wird demnach schmaler, was sich, auf-

grund des höheren Brechungsindexes des Flüssigkristalls gegenüber Luft, mit dem geringeren

dielektrischen Kontrast der beiden Komponenten des photonischen Kristalls erklären lässt.

Der Grund für die Gesamtverschiebung der Bandlücke ist der größere mittlere Brechungsin-

dex der infiltrierten Probe, der sich aus der Maxwell–Garnett Beziehung (s. Abschnitt 2.1.5

[27]) berechnen lässt.
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Heizt man die Probe von der Raumtemperatur 24◦C auf 40◦C auf, so dass sich der Flüssigkri-

stall schließlich in der isotropen Phase befindet, verschiebt sich die Bandlücke wiederum zu

größeren Wellenlängen. Dieses Ergebnis überrascht zunächst:

Der mittlere Brechungsindex des Flüssigkristalls, und damit auch der Gesamtbrechungsindex

des Systems, sollten abnehmen. Also müsste sich die Bandlücke zu kleineren Wellenlängen

verschieben. Da das Gegenteil der Fall ist, muss man davon ausgehen, dass die Flüssigkri-

stallmoleküle in der nematischen Phase hauptsächlich parallel zur Porenachse orientiet sind.

Das bedeutet, dass der effektive Brechungsindex für Lichtausbreitung parallel zur Porenachse

näherungsweise dem ordentlichen Brechungsindex entspricht, welcher kleiner als der mittlere

Brechungsindex des Flüssigkristalls ist. Beim Aufheizen in die isotrope Phase steigt daher der

Brechungsindex. Es kommt zu einer Verschiebung der „Flüssigkristallbandkante“ um∼144

nm zu größeren Wellenlängen. Der Ausdruck „Flüssigkristallbandkante“ gilt in Anlehnung

an den Ausdruck „Luftbandkante“, wie normalerweise die Bandkante bei niedrigeren Wel-

lenlängen genannt wird. Sie korrespondiert mit den elektromagnetischen Moden, welche ihre

Maxima in den mit Flüssigkristall gefüllten Regionen besitzen. Es verschiebt sich auch die

Bandkante des dielektrischen Bandes. Die Verschiebung beträgt∼75 nm. Der Grund hierfür

liegt darin, dass in einer Struktur mit Porenmodulation die Eigenschaften des dielektrischen

Bandes nicht ausschließlich vom Silizium abhängen. Dieser Sachverhalt wurde in Abschnitt

2.1.5 beschrieben. In diesem speziellen Fall kommt es zu einer Verschiebung beider Bandkan-

ten, wenn sich der Brechungsindex einer Komponente ändert.

Es wurden auch polarisationsabhängige Messungen an den 3D Strukturen durchgeführt. Bei

den Poren handelt es sich nicht um Zylinder mit einem exakt kreisfömigen Querschnitt, son-

dern vielmehr um quadratische Säulen mit abgerundeten Kanten. Damit wird die sechszählige

Symmtrie auf eine zweizählige Symmetrie reduziert, und es gibt ein polarisationsabhängiges

Transmissionsverhalten entlang der Porenachse (s. Abschnitt 2.1.5) [25]. Die hierfür genutz-

te Probe wurde vom gleichen Wafer abgebrochen, wie die Probe, die für die unpolarisierten

Messungen genutzt wurde. Es scheint jedoch so, als ob der Siliziumwafer inhomogen geätzt

wurde, so dass die polarisationabhängigen Messungen von den unpolarisierten um 0,5µm ab-

weichen (Abb. 7.20). Die polarisationsabhängige Verschiebung der Flüssigkristallbandkante

betrug 152 nm, und war demnach größer als der Effekt beim polarisationsunabhängigen Tem-

peraturschalten. Die nächste Messung wurde temperatur– und polarisationsabhängig durch-

geführt, und mit theoretischen Berechnungen verglichen, die nach der Methode der ebenen

Wellen berechnet wurden (Abb. 7.21). Als Grundlage für die theoretischen Bandstrukturrech-

nungen dienten die o. g. Werte. Eine Periode der Pore wurde in mehrere Scheiben unterteilt.

Für jede Scheibe wurde nach der Maxwell–Garnett Relation die effektive Dielektrizitätskon-

stante (DK) berechnet. Für Silizium wurde der Wertε = (3,4)2, für den Flüssigkristall wurden

die ordentliche DK mitεN = (1,5)2 und die DKεiso = (1,55)2 in der isotropen Phase verwen-
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Abbildung 7.20: PolarisationsabhängigeTransmissionsspektren von makroporösem Silizium mit modulierten
Poren gefüllt mit 5CB bei Raumtemperatur. Die in der Legende dargestellten 0◦ und 90◦ beschreiben die Rich-
tung des oszillierenden elektrischen Feldes.

Tabelle 7.4: Experimentelle und theoretische Werte der Flüssigkristallbandkante für unterschiedliche Polarisa-
tionen der einfallenden IR–Strahlung und unterschiedliche Flüssigkristallphasen.

Polarisation Flüssigkristallphase λ−1 (Experiment)(cm−1) λ−1 (Theorie)(cm−1)
0◦ Nematisch 894 932
0◦ Isotrop 885 918
90◦ Nematisch 882 897
90◦ Isotrop 871 885

det. Theorie und Experiment weichen etwas voneinander ab, was der Wertetabelle 7.4 für die

Positionender Flüssigkristallbandkanten zu entnehmen ist. Die Abweichungen lassen sich da-

mit erklären, dass bei den Rechnungen der Porenquerschnitt als Quadrat angenommen wurde.

Da es sich jedoch in der Realität um Quadrate mit abgerundeten Ecken handelt, ist der Effekt,

der sich durch die Reduktion der Symmetrie begründen lässt, nicht so stark ausgeprägt. Im

Experiment bewirkt die Drehung der Polarisationsebene um 90◦ eine Verschiebung von 894
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Abbildung 7.21: Temperatur– und polarisationsabhängige Transmissionsspektren von makroporösem Silizium
mit modulierten Poren gefüllt mit 5CB. Die Bandstrukturrechnungen (links) wurden von Heinrich Matthias
durchgeführt.

cm−1 nach 871 cm−1, was einer Wellenlängenverschiebung von 11,185µm nach 11,481µm

entspricht. Die Flüssigkristallbandkante wurde demnach um 296 nm verschoben.

Bei der zweiten Probe handelt es sich um 3D makroporöses Silizium mit einer Störung der

Modulationsperiode. Sie besitzt 5 periodisch aufeinander folgende Modulationen des Poren-

durchmessers. Daran angeschlossen ist eine Defektschicht, in der der Porendurchmesser kon-

stant gehalten wird. Darauf folgen wiederum 5 periodische Modulationen (Abb. 7.22). Die An-

ordnung der Poren ist bei dieser Probe quadratisch. Daher ist die Bandlücke inΓA–Richtung

polarisationsunabhängig.

Die Struktur besitzt eine Resonanz innerhalb der zweiten Bandlücke bei 7,184µm. Nach dem

Füllen der Probe mit 5CB verschiebt sich der Resonanzpeak bei 24◦C um 191 nm erwartungs-

gemäß zu größeren Wellenlängen nach 7,375µm. Durch Erhitzen der Probe auf 40◦C kommt

es wiederum zu einer Verschiebung um 20 nm auf 7,395µm (Abb 7.23). Dieses Ergebnis

korresponiert mit der Annahme, dass sich der Flüssigkristall in der nematischen Phase haupt-

sächlich parallel zur Porenachse orientiert, so dass es durch die Temperaturerhöhung zu einer

Erhöhung des effektiven Brechungsindexes für Lichtausbreitung inΓA–Richtung kommt. Da-
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Abbildung 7.22: Rasterelektronenmikroskopische Aufnahme von 3D makroporösem Silizium mit einer Reso-
nanzstruktur (von Sven Matthias).
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Abbildung 7.23: Transmissionsspektren von 3D makroporösem Silizium mit Resonanzstruktur. Die Messun-
gen wurden ohne Flüssigkristall (schwarz), sowie mit Flüssigkristallfüllung bei 24◦C (rot) und bei 40◦C (grün)
durchgeführt.
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her kommt es nicht nur zu einer Verschiebung der Flüssigkristallbandkante, sondern auch zu

einerVerschiebung des Resonanzsignals. Desweiteren wurde die Temperaturabhängigkeit des

Resonanzsignals genauer überprüft. Dabei wurde festgestellt, dass sich das Resonanzsignal

erst am Klärpunkt verschiebt. Unter und über dem Klärpunkt ist die Position des Resonanz-

peaks im Rahmen der Messgenauigkeit von±1nmtemperaturunabhängig (Abb. 7.24).
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Abbildung 7.24: Maximades Resonanzpeaks in Abhängigkeit von der Temperatur.

Die experimentellen Werte wurden rechnerisch mit dem von W. Theiß entwickelten Programm

„Scout 98” verglichen, welches auf einem 1D Transfer-Matrix-Formalismus basiert. Bei der-

artigen Berechnungen wird für dieΓA–Richtung des photonischen Kristalls das Problem auf

ein 1D Lamellenmodell reduziert. In Abbildung 7.25 wird die Verschiebung der Resonanz-

peaks betrachtet. Der Resonanzpeak für den ungefüllten photonischen Kristall verschiebt sich

um 296 nm, nachdem die Struktur mit einem Dielektrikum mit einem Brechungsindex von n =

1,5 gefüllt wurde, was dem ordentlichen Brechungsindex von 5CB entspricht. Bei Erhöhung

dieses Brechungsindexes auf n = 1,55, was dem Brechungsindex von 5CB in der isotropen

Phase entspricht, kommt es erwartungsgemäß zu einer weiteren Rotverschiebung um 33 nm.

Die dritte Probe wurde mit dem glasartig erstarrenden Flüssigkristall ASY10 gefüllt. Die Po-
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Abbildung 7.25: Gegenüberstellung des berechneten mit dem experimentell bestimmten Transmissionsspek-
trum. Zum besseren Vergleich wird nur die Verschiebung der Resonanzpeaks betrachtet.

ren besitzen eine Modulationsperiode von 2,9µm, haben einen minimalen Durchmesser von

0,8 µm und einen maximalen Durchmesser von 1,5µm. Die Probe wurde drei Tage bei 120
◦C temperiert, damit sich eine einheitliche nematische Orientierungsfernordnung in den Po-

ren bilden kann. Anschließend wurde die Probe schnell auf einem Metallblock abgekühlt. In

Abbildung 7.26 ist die Bandlücke gut erkennbar. Nach der ersten Messung wurde die Sub-

stanz auf 170◦C in die isotrope Phase aufgeheizt und von dieser Temperatur aus mit dem

Metallblock abgekühlt. Im anschließend gemessenen Transmissionsspektrum ist an der Flüs-

sigkristallbandkante eine leichte Verschiebung um 35 nm zu erkennen. Die Verschiebung fällt

deutlich kleiner aus, als bei der Infiltration mit 5CB, obwohl die Doppelbrechung∆n von bei-

den Substanzen bei ca. 0,15 liegt. Die Verschiebung der Flüssigkristallbandkante sollte dem-

nach auch ungefähr gleich sein. Die Abweichung der Verbindung vom erwarteten Verhalten

liegt vermutlich daran, dass das ASY10 sich nicht so einheitlich orientiert, wie die deutlich

weniger viskose Verbindung 5CB. Außerdem wurde bei anderen Experimenten gezeigt, dass

ASY10 in den Poren häufig Disklinationen und Defekte (Abb. 7.27) ausbildet [50].
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Abbildung 7.26: Reflexionsspektren von 3D makroporösem Silizium gefüllt mit ASY10, welche bei 120◦C
und bei 170◦C temperiert wurden. Es kommt zu einer Verschiebung der Flüssigkristallbandkante um 35 nm.

Abbildung 7.27: Aufnahmevon ASY10, welches aus makroporösem Silizium herausgelöst wurde. Die Substanz
wurde mit einem Fluoreszenzfarbstoff versetzt und mit polarisiertem Licht angeregt. Daraus lässt sich lokal die
Vorzugsrichtung der Moleküle bestimmen. In diesem Fall ist die Orientierung sehr uneinheitlich, und es sind
viele Defekte erkennbar [50].
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7.5 Temperaturabhängiges Schalten in 2D
makr oporösem Silizium

Die in diesem Abschnitt analysierte Probe besitzt eine Gitterkonstante von a = 1,5µm und

einen konstanten Porendurchmesser von d = 1,2µm. Daraus ergibt sich ein Verhältnis r/a von

0,4. Die Messungen wurden inΓ−M–Richtung in der TE–Polarisation durchgeführt, wo-
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Abbildung 7.28: Reflexionsspektren von 2D makroporösem Silizium, welches inΓ−M–Richtung mit TE–
Polarisierter IR–Strahlung bestrahlt wurde, vor und nach der Befüllung mit 5CB.

bei zu beachten ist, dass aufgrund der Casségrain–Optik unter einem gewissen Winkel auf

die Probe eingestrahlt wird (s. Abschnitt 6.3.2). Nach der Infiltration mit dem Flüssigkristall

5CB verschob sich die Bandlücke erwartungsgemäß in Richtung größerer Wellenlängen. Die

Luftbandkante verschiebt sich zur Flüssigkristallbandkante um 1,18µm und die dielektrische

Bandkante um 0,37µm (Abb. 7.28). Nach Erhöhung der Temperatur von Raumtemperatur

auf 60◦C wurde ein Verschieben der Flüssigkristallbandkante um 35 nm in Richtung grö-

ßerer Wellenlängen beobachtet. Da es sich genau wie bei den 3D–Systemen um eine Rot-

verschiebung handelt, muss man wieder davon ausgehen, dass die Flüssigkristallmoleküle

hauptsächlich parallel zur Porenachse orientiert sind. Nur so lässt sich erklären, warum in

der TE–Polarisation in der nematischen Phase ein kleinerer effektiver Brechungsindex des
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Flüssigkristalls existiert als in der isotropen Phase. Die Messungen wurden mit theoretischen

Berechnungenverglichen, bei denen von einem Brechungsindex von no = 1,5 in der nemati-

schen Phase und von niso = 1,55 in der isotropen Phase ausgegangen wird. Es wurden Refle-

xionsspektren inΓM– undΓK–Richtung mit dem Progamm Translight von A. Reynolds [38]

berechnet (Abb. 7.29), das auf einem 2D–Transfermodell basiert, sowie Bandstrukturen mit

dem MIT Photonic Bands–Progamm [40] (Abb. 7.30). Die Werte für die Bandkanten sind der

Tabelle 7.5 zu entnehmen. Die Simulation mit Translight ergab eine Bandkantenverschiebung

Abbildung 7.29: Vergleich der experimentell gemessenen Spektren (mitte) mit den Reflexionssimulationen
(rechts:ΓM, links: ΓK).

um 100nm, also fast dreimal soviel als im Experiment. Die Bandstrukturrechnung kommt mit

97 nm zu einem ähnlichen Ergebnis. Die Abweichung zu den experimentellen Werten liegt

in der Messmethode begründet. Aufgrund des schrägen Lichteinfalls wegen der Casségrain–

Optik „sieht“ das auftreffende Licht nicht ausschließlich den ordentlichen Brechungsindexno

sondern einen etwas höheren effektiven Brechungsindex. Außerdem kann es sich auch um ei-

ne „escaped radialt’t’ Orientierungsverteilung des Direktors handeln. Diese bildet sich häufig

bei homöotroper Randorientierung an den Porenwänden aus. In diesem Fall erhält man in der

Gesamtheit einen größeren effektiven Brechungsindex für die TE–Polarisation. Um eine kla-

re Aussage über die Orientierungsverteilung der Flüssigkristallmoleküle zu treffen, wurden
2H−NMR–Experimente durchgeführt. Diese sind im folgenden Kapitel dargestellt.
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Abbildung 7.30: Vergleich der Bandstrukturrechnung (links) mit den experimentell gemessenen Spektren
(rechts).

Tabelle 7.5: Experimentelle und theoretische Werte für die Flüssigkristallbandkante der 2D–Struktur für unter-
schiedliche Flüssigkristallphasen.

Phase Experiment (cm−1) Translight (ΓK/ΓM)(cm−1) MIT (ΓK/ΓM)(cm−1)
Nematisch 2206 2302 / 2084 2272 / 2117

Isotrop 2189 2250 / 2036 2224 / 2067
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7.6 Deuterium–NMR–Experimente in makroporösem
Silizium

Deuterium–NMR–Messungenwurden mit zwei unterschiedlichen 2D–Kristallen und an einer

3D–Struktur mit Porenmodulation durchgeführt.

7.6.1 2D–Strukturen
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Abbildung 7.31: 2H−NMR–Messungan 2D Silizium mit 2,1µm Porendurchmesser.

Die Porendurchmesser der 2D–Strukturen betrugen 0,9µm bzw. 2,1µm. Die Probe mit 2,1µm

Porendurchmesser besaß eine Porentiefe von 200µm. Bei einer Gitterkonstante von a = 4,2µm

ergibt sich eine Porösität von 0,227. Es wurden 42 Plättchen mit 2×2mm2 Größe herausge-

schnitten und übereinander gestapelt (s. Abschnitt 6.4). Daraus ergibt sich ein Porenvolumen

von ca. 7,6 mm3. Geht man davon aus, dass die Poren vollständig mit deuteriertem 5CB ge-

füllt sind, dann befinden sich nur 7,6µl Flüssigkristall in dem NMR–Röhrchen. Aufgrund

dieser geringen Menge war eine lange Messzeit von einem Tag nötig, um ein relativ gutes

Signal/Rausch–Verhältnis S/N zu erhalten. Bei der Probe mit nur 0,9µm betrug die Gitterkon-
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Abbildung 7.32: 2H−NMR–Messungan 2D Silizium mit 0,9µm Porendurchmesser.

stante a = 1,5µm. Das ergibt eine Porösität von 0,326. Es wurden 36 Plättchen übereinander

gestapelt. Die Porentiefe betrug nur 100µm. Daraus ergibt sich, dass 4,6µl Flüssigkristall in

der Probe enthalten sind. Da es sich um weniger Substanz als bei der 2,1µm–Probe handelt,

war das Verhältnis S/N bei diesen Messungen schlechter, und es war eine Messzeit von drei

Tagen nötig, um ein ausreichend gutes Verhältnis S/N zu erhalten. In Abbildung 7.31 ist das
2H−NMR–Spektrum für die 2,1µm–Probe bei 298 K (25◦C) zu sehen. Die Quadrupolauf-

spaltung des2H−NMR–Signals beträgt∆ν = 55,991 kHz. Bei der 0,9µm–Probe beträgt die

Aufspaltung∆ν = 56,363 kHz (Abb. 7.32). Die beiden Werte korrespondieren sehr gut mitein-

ander. Die Literatur [37] liefert für eine parallele Orientierung des Direktorsn zum Magneteld

eine Quadrupolaufspaltung von∆ν = 53 kHz bei 298 Kelvin (Abschnitt 5.4). Dieser Wert für

die Quadrupolaufspaltung liegt etwas niedriger, ist aber durchaus mit den hier gemessenen

Werten vergleichbar. Zur Kontrolle wurden einige Milliliter 5CB in ein NMR–Röhrchen ge-

füllt und bei der gleichen Temperatur wurde das2H−NMR–Spektrum gemessen. Es darf an-

genommen werden, dass sich der Direkor des Flüssigkristalls in dieser Probe in Feldrichtung

orientiert, und daher Auskunft über die maximale Quadrupolauspaltung gibt. Das Ergebnis

war∆ν = 53,210 kHz (Abb. 7.33). Für eine Orientierung senkrecht zum Magnetfeld würde die

Aufspaltung nur die Hälfte betragen. Bei einer Mischung beider Orientierungen wären dann
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Abbildung 7.33: 2H−NMR–Spektrumvon 5CB in einem NMR–Röhrchen. Die Aufspaltung beträgt erwar-
tungsgemäß 53,210 kHz.
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Abbildung 7.34: Gegenüberstellung von Abbildung 7.31 und einem rechnerisch ermittelten Spektrum für den
Fall vollständiger Orientierung des Direktorsn entlang der Porenachse.
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auch beide Aufspaltungen im NMR–Spektrum sichtbar. Abbildung 7.34 zeigt eine Gegen-

überstellungvon Abbildung 7.31 und einem theoretisch berechneten Spektrum für den Fall

vollständiger Orientierung des Direktors entlang der Porenachse. Die beiden Spektren passen

sehr gut zusammen. Dies bestätigt, dass sich 5CB in den Poren des 2D–Siliziums hauptsäch-

lich parallel zur Porenachse orientiert.

Die Quadrupolaufspaltung von demα–deuterierten 5CB in den Poren ist um ca. 3 kHz grö-

ßer als die Aufspaltung, die in dem NMR–Röhrchen gemessen wurde. Bedenkt man, dass die

Aufspaltung nicht nur vom Direktor, sondern auch vom Ordnungsgrad abhängt, kommt man

zu dem Schluss, dass der Ordnungsgrad vom 5CB in den Poren höher sein muss. Um dies zu

quantifizieren, betrachtet man folgende Gleichung (s. Abschnitt 6.4.1):

∆ν0 =
3
2

e2qQ
h

1
2

[
S〈1

2
(cos2β−1)〉 +

1
2
(Sxx−Syy)〈sin2βcos2α〉

]
. (7.5)

1
2(Sxx−Syy)〈sin2βcos2α〉enthält die Biaxialität des Moleküls. Im Fall von 5CB kann man

diesen Term vernachlässigen und gleich null setzen. Wenn man 3/4· e2qQ/h · 〈1
2(cos2β−

1)〉 = x setzt,ergibt sich aus Gleichung (7.5) die Proportionalität:

∆ν0 = xS (7.6)

Ist die maximale Quadrupolaufspaltung allein aufgrund des Ordnungsgrades unterschiedlich,

so gilt für die relative Änderung der Aufspaltung:

∆ν01− ∆ν02

∆ν01
=

S1 − S2

S1
(7.7)

Demnachhat man in den 0,9µm Poren eine relative Änderung des Ordnungsgrades S um

0,059 und bei den 2,1µm Poren eine um 0,052 gegenüber dem Ordnungsgrad, der in dem

NMR–Röhrchen war.

Nach Abschnitt 5.4 sollte es theoretisch zu sehr scharfen Peaks mit geringer Halbwertsbreite

kommen. Aufgrund von Geräteparametern, wie z.B. der Inhomogenität des Magnetfeldes oder

Schwankungen der Magnetfeldstärke, sind NMR–Signale gaussverteilt. Deshalb wurde das

theoretisch berechnete Signal mit einer Gauss–Funktion gefaltet.

Um eine Änderung von der planaren zu einer homöotropen Randorientierung zu erhalten,

kann man die Porenwände chemisch behandeln. Dafür wurde eine 0,1–prozentige Lösung

DMOAP (N,N-dimethyl-N-octadecyl-3-aminopropyltrimethoxisilylchlorid) in die Poren mit

2,1µm Durchmesser gefüllt und bei 110◦C getrocknet. Dabei entsteht eine kovalente Bindung

des DMOAP mit dem Silizium [75]. 5CB orientiert sich an den mit DMOAP behandelten

Oberflächen homöotrop. Das Ergebnis der Deuterium–NMR–Messung ist in Abbildung 7.35

zu sehen. Man sieht deutlich neben der dominanten Maximalaufspaltung von 54,809 kHz

eine zusätzliche, schwächer ausgeprägte Auspaltung von 24,231 kHz. Außerdem ist in der
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Abbildung 7.35: 2H−NMR–Spektrumvon 5CB in 2,1µm–Poren, welche mit DMOAP behandelt wurden. Die
maximale Aufspaltung beträgt 54,809 kHz. Die kleinere Aufspaltung beträgt 24,231 kHz. Der schmale Peak in
der Mitte deutet auf isotrope Anteile innerhalb der nematischen Phase hin.

Mitte ein schmaler Peak zu sehen, was auf geringe isotrope Anteile innerhalb der nematischen

Phase deutet. Durch Integration dieses Signals kann man sagen, dass dieser isotrope Anteil bei

ungefähr 4% liegt. Zum Vergleich wurden drei theoretische Spektren für eine „escaped radial”

Orientierungsverteilung berechnet. Die ersten beiden Rechnungen unterscheiden sich nur im

Winkel der Randorientierung. Es wurden RandorientierungenΘ(r = 1) von 90◦ und von 80◦

angenommen. In der Mitte der Poren (r= 0) liegt der Direktorn parallel zum Magnetfeld.

Dazwischen wird ein exponenzieller Verlauf der Orientierung des Direktorsn in Abhängigkeit

vom normierten Radiusr angesetzt:

Θ(r) =
Θ(r = 1)
e(1−r)/0.47

0 < r < 1 (7.8)

Das dritte Spektrum wurde für ein Direktorfeld berechnet, das durch ein Polynom vierten

Grades beschrieben wird. Für die Randorientierung wurde ein Winkel von 78,5◦ angenommen

und der Verlauf durch ein Polynom vierten Grades beschrieben:

Θ(r) = 39· r + 39· r2 + 0,5· r4 0 ≤ r ≤ 1 (7.9)
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Abbildung 7.36: Berechnete2H−NMR–Spektrenfür „escaped radial” Direktorverteilungen mit Randorien-
tierungen von 90◦ (oben), 80◦ (mitte) und 78,5◦ (unten). Die Striche neben den Spektren symbolisieren die
Orientierungen des Direktors zum Magnetfeld in Abhängigkeit vom Radiusr.

Abbildung 7.37: Vergleich des experimentell gemessenen Spektrums (schwarz) mit dem theoretisch berechne-
ten Spektrum für eine Randorientierung mitΘ = 78,5◦ (rot).
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Die berechneten Spektren unterscheiden sich signifikant voneinander (Abb. 7.36). Die kleine

Aufspaltunghängt direkt mit der Randorientierung des Flüssigkristalls an den Porenwänden

zusammen. Je größer der Winkel, desto größer ist die Aufspaltung im mittleren Teil des Spek-

trums. Vergleicht man das experimentell gemessene Spektrum mit den berechneten Spektren,

so entdeckt man eine gute Übereinstimmung für das Polynom mit 78,5◦ Randorientierung

(Abb. 7.37). Es kann daher angenommen werden, dass dieses Modell das Direktorfeld im

Inneren der Pore am besten beschreibt.
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7.6.2 3D–Strukturen

Abbildung 7.38: SEM–Aufnahmevon 3D makroporösem Silizium, welcher anschließend mitα–deuteriertem
5CB gefüllt wurde.

Die untersuchte 3D–Struktur besitzt eine zweidimensionale quadratische Anordnung der Po-

ren mit einer Gitterkonstante von 2µm. Für die2H−NMR–Messung ist das jedoch ohne

Belang. Es existieren 30 Modulationen in der Probe, wobei die Länge einer Modulationsperi-

ode 1,82µm beträgt. Die Poren sind 54,6µm tief. Der Porendurchmesser variiert von 1,39µm

bis 1,82µm (Abb. 7.38).

Es wurden 68 Plättchen mit einer Größe von 2×2mm2 herausgeschnitten und gestapelt. Dar-

aus ergibt sich ein Porenvolumen von ca. 9 mm3, und es befinden sich 9µl Flüssigkristall

in der untersuchten Probe. Abbildung 7.39 zeigt das2H−NMR–Spektrum der 3D–Probe.

Die maximale Aufspaltung der Linien von∆ν = 46,874kHz sind auch in der 3D–Probe do-

minant, woraus sich schließen lässt, dass der Großteil der Flüssigkristallmoleküle entlang der

Porenachse orientiert ist. Die Aufspaltung ist, verglichen mit den Spektren der 2D–Proben,

relativ klein. Daraus kann man schließen, dass der Ordnungsgrad in den 3D–Strukturen deut-

lich geringer ist als in den 2D–Strukturen. Zusätzlich existiert in der Mitte ein relativ schwach

ausgeprägter aber relativ breiter Peak, was auf isotrope Anteile oder Defektorientierungen in-

nerhalb der nematischen Phase hindeutet. Die Poren der gleichen Probe wurden ebenfalls mit

DMOAP behandelt, um eine homöotrope Randorientierung des Flüssigkristalls zu erhalten.

Das Spektrum dieser Messung ist in Abbildung 7.40 zu sehen. Die Messungen unterscheiden

sich deutlich voneinander. Bei der Probe, die mit DMOAP behandelt wurde, ist neben der

maximalen Quadrupolaufspaltung von∆ν = 52,623kHz auch noch eine kleinere Aufspaltung
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Abbildung 7.39: 2H−NMR–Messungvon deuteriertem 5CB in 3D–makroporösem Silizium.
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Abbildung 7.40: 2H−NMR–Messungvon deuteriertem 5CB in 3D–makroporösem Silizium bei dem die Po-
renoberflächen mit DMOAP behandelt wurden, um eine homöotrope Randorientierung zu erhalten.
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von ∆ν = 24,231kHz erkennbar. Sie ist exakt genau so groß, wie die kleine Aufspaltung in

der 2D–Probe. Das lässt auf eine „escaped radial” Orientierungsverteilung des Direktorfel-

des schließen. Der Ordnungsgrad im mittleren Teil der Poren, wo der Direktorn parallel zum

Magnetfeld liegt, ist deutlich höher als in der unbehandelten Probe, was man aus der größe-

ren Aufspaltung schließen kann. Er liegt um 12,2 % höher als bei den unbehandelten Poren.

Bei der unbehandelten 3D–Probe sollte die Randorientierung wie bei den unbehandelten 2D–

Proben planar sein. Zum Vergleich wurden mit einem Computerprogramm Berechnungen von

Direktorfeldern und den zugehörigen2H−NMR–Spektren für die hier betrachtete Struktur

bei planarer und homöotroper Randorientierung durchgeführt (Abb. 7.41 und 7.42).

r

z

Frequenz

Abbildung 7.41: Berechnungeines Direktorfeles mit dem zugehörigen2H−NMR–Spektrum bei planarer
Randorientierung.

r

z

FrequenzFrequenz

Abbildung 7.42: Berechnungeines Direktorfeldes mit dem zugehörigen2H−NMR–Spektrum bei homöotroper
Randorientierung. Die Simulation wurde vor dem Erreichen des Zustands minimaler Energie abgebrochen.
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Als Grundlage für die Berechnungen diente ein Algorythmus, der von Kilian und Hess ent-

wickelt wurde und numerisch Relaxationen von Flüssigkristallsystemen berechnet [52]. Dazu

wird eine Raum– und Zeitdiskretisierung durchgeführt. In diesem Fall wurde die Porenform

einer Modulation durch ein Gitter von 13 x 13 x 13 Teilvolumina approximiert, wobei jedem

Teilvolumen ein Direktorn zugeordnet wird. Das berechnete Spektrum für die planare Ran-

dorientierung ist gut mit dem experimentell gemessenen Spektrum der unbehandelten Probe

vergleichbar, und bestätigt die Annahme, dass in unbehandelten Poren eine planare Randori-

entierung existiert (Abb. 7.43). Bei der Rechnung mit homöotroper Randorientierung passt das

Abbildung 7.43: Vergleich des gemessenen mit dem simulierten2H−NMR–Spektrum bei planarer Randorien-
tierung. Die Spektren zeigen eine akzeptable Übereinstimmung.

berechnete Spekrum nur dann gut zu dem experimentell gemessenen Spektrum, wenn man die

Rechnung vor dem Erreichen des Zustands minimaler Energie abbricht (Abb. 7.44). Lässt man

die Rechnung bis zum Erreichen Zustands mit minimaler Energie weiterlaufen, sieht das be-

rechnete Spektrum deutlich anders aus (Abb. 7.45). In beiden Fällen erhält man eine „escaped

radial“ Orientierungsverteilung der Flüssigkristallmoleküle. Der Flüssigkristall scheint sich in

modulierten Poren bei homöotroper Randorientierung nicht in einem Zustand mit minimaler

Energie zu befinden.
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Abbildung 7.44: Vergleich des gemessenen mit dem simulierten2H−NMR–Spektrum bei homöotroper Ran-
dorientierung. Die Spektren zeigen unter Berücksichtigung des geringen Signal/Rausch–Verhältnisses eine ak-
zeptable Übereinstimmung. Es scheint so, als ob sich der Flüssigkristall nicht in einem Zustand mit minimaler
Energie befindet.
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Abbildung 7.45: Berechnungeines Direktorfeldes mit dem zugehörigen2H−NMR–Spektrum bei homöotroper
Randorientierung. Die Rechnung wurde bis zum Erreichen des Zustands minimaler Energie durchgeführt.



8 Zusammenfassung und Ausblick

In der vorliegenden Arbeit wurden abstimmbare photonische Kristalle erzeugt, indem poröse

Strukturen mit einem Flüssigkristall gefüllt wurden. Es wurden vier Arten von photonischen

Kristallen mit Flüssigkristallen infiltriert und spektroskopisch untersucht. Darunter waren Kol-

loidkristalle aus PMMA, invertierte Kolloidkristalle aus Zinnsulfid und zwei– und dreidimen-

sionale photonische Kristalle aus makroporösem Silizium. Es ist bei allen drei Systemen ge-

lungen, ein Schaltverhalten der Bandlücken durch Temperaturänderung zu erreichen. Bei den

Kolloidkristallen war es sogar möglich, ein Schaltverhalten der Bandlücke bei Anlegen von

relativ kleinen elektrischen Feldern zu beobachten. Bei den anderen photonischen Kristallen

war dies nicht möglich, da es sich bei den Materialien um Halbleiter handelt, die eine zu hohe

Leitfähigkeit besitzen. Bei Anlegen eines elektrischen Feldes bekäme man einen Kurzschluss,

so dass kein Feld existiert, in dem sich der Flüssigkristall orientiert.

Es wurde gezeigt, dass man über die Temperaturänderung in Kolloidkristallen aus einem

Polymer–Flüssigkristall–Gemisch einen Schalteffekt von∆λ ≈ 2 nm erzielen kann. Das glei-

che System sollte bei Anlegen von elektrischen Feldern bei konstanter Temperatur einen grö-

ßeren Schalteffekt erzeugen, was jedoch nicht gezeigt werden konnte. Die Zwischenräume

sind bei den Kolloidkristallen so klein, dass die elastischen Rückstellkräfte zwischen den Mo-

lekülen mit den hier angelegten Spannungen nicht aufgehoben werden konnten. Bei dem Ver-

such, höhere Spannungen anzulegen, kam es zu einer Zerstörung der Testzellen.

Mit den invertierten Strukturen aus Zinnsulfid war ein deutlich größerer Schalteffekt durch

die Temperaturänderung zu erreichen. Die Verschiebung der Wellenlänge lag bei∆λ = 14

nm. Diese deutlich größere Verschiebung der Bragg–Wellenlänge kann auf den höheren Flüs-

sigkristallanteil in der invertierten Struktur zurückgeführt werden.

Das poröse Silizium ist für eventuelle Anwendungen von besonderem Interesse. Gerade hier

ist es notwendig, die optischen Eigenschaften dieser Strukturen schaltbar oder abstimmbar zu

machen. Es ist bei dreidimensionalen Strukturen gelungen, einen Schalteffekt der Flüssigkri-

stallbandkante von 1,23 meV (∆λ= 296nmbei 11,2µm) zu erreichen. Bei dreidimensionalen

Strukturen mit Defektstruktur betrug die spektrale Verschiebung der resonanten Defektmode

0,43 meV (∆λ= 20nmbei 7,3µm). Beim ersten Versuch, eine 3D–Struktur mit einem glasartig

erstarrenden Flüssigkristall abzustimmen und anschließend zu fixieren, gelang eine Verschie-
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bung der Bandkante um 0,34 meV (∆λ= 35nmbei 11,3µm). Bei den zweidimensionalen

Strukturen waren es 0,80 meV (∆λ= 30nmbei 4,5µm). Die Ergebnisse stehen in guter Über-

einstimmung mit theoretischen Berechnungen.

Die Deuterium–NMR Experimente vonα–deuteriertem 5CB in zwei– und dreidimensionalen

photonischen Kristallen aus makroporösem Silizium zeigten, dass sich der Direktorn vorwie-

gend parallel zur Porenachse orientiert. Dieses Ergebnis deckt sich mit den optischen Untersu-

chungen an diesen Strukturen. Außerdem ist es gelungen, die Porenoberflächen chemisch so

zu behandeln, dass sich eine „escaped radial” Orientierungsverteilung in den Poren ausbildet,

und als solche nachgewiesen werden konnte.

In zukünfigen Untersuchungen sollte sich der Schalteffekt in makroporösem Silizium noch

vergrößern lassen. Dies kann durch die Wahl eines anderen Flüssigkristalls mit einer grö-

ßeren Doppelbrechung geschehen. Der Vergleich der in dieser Arbeit untersuchten Systeme

zeigt, dass insbesondere im Bereich der glasartig erstarrenden Polymere noch Verbesserungen

erwartet werden können. Hierzu müsste man eine Substanz verwenden, die sich einheitlich

in den Poren orientieren lässt und wenig Defekte ausbildet. Es sind theoretische Berechnun-

gen für die Direktorfelder in porösen Strukturen unter Berücksichtigung der unterschiedli-

chen Größe der elastischen Koeffizienten nötig, um die Deuterium–NMR Spektren besser zu

quantifizieren. Bei den Kolloidkristallen können theoretische Berechnungen der Direktorfel-

der Aufschluss über das Verhalten in elektrischen Feldern geben.

In der hier vorgelegten Arbeit konnten erste Beiträge zur Entwicklung abstimmbarer photo-

nischer Kristalle geleistet werden. Aufgrund der hohen Bedeutung, die diese Thematik zur

Zeit besitzt, wurde parallel zu den eigenen Arbeiten weltweit auch in anderen Arbeitsgruppen

bemerkenswerte Entwicklungen vorangetrieben. Zu erwähnen sind u.a.:

• Abstimmung durch Ladungsträgerinjektion im Halbleiter (Wehrspohn) [5]–[6]

• Optimierung von Kolloidkristallen (Yoshino) [7]–[11]

• Lasing in Flüssigkristallen (Finkelmann) und Kolloidkristallen (Shkunov) [62]–[65]

• Abstimmbare QD–Laser (Reithmaier) [66]

Gemeinsam mit den Ergebnissen dieser Arbeitsgruppen wurde ein Beitrag geleistet, um die

Voraussetzungen, dass in absehbarer Zeit hochwertige abstimmbare photonische Kristalle für

Anwendungen der Photonik hergestellt werden können.



9 Anhang

9.1 Bestimmung der Brechungsindizes von
Flüssigkristallen

Flüssigkristall

Glas

Luft

l

d

45°

Abbildung 9.1: SchematischeDarstellung des Strahlengangs in einer Keilzelle zur Messung von Brechungsin-
dizes. In diesem Fall ist der Brechungsindex des Glases höher als der des Flüssigkristalls, da der Strahl zum Lot
hingebrochen wird.

Die Brechungsindizes der Flüssigkristalle wurden mit einer Keilzelle (Jelley’sches Mikro–

Refraktometer) bestimmt (Abb. 9.1). Um die Werte für die Brechungsindizes zu berechnen,

nutzt man das Brechungsgesetz nach Snellius:

sinα
sinβ

=
n1

n2
(9.1)

In Abbildung 9.1 gilt demnach

sinα
sinβ

=
nglas

nLC
(9.2)
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und

sinγ
sinδ

=
nluft

nglas
(9.3)

Dabei ist nglas der Brechungsindex des Glases, nLC der Brechungsindex des Flüssigkristalls

und nluft der Brechungsindex der Luft. Weiterhin gilt:α = 45◦, β + γ = 45◦ und tanδ = d/l .

Daraus folgt:

γ = arcsin

(
nluft

nglas
sinδ

)
(9.4)

Ersetztmanδ durch arctan(d/l)

γ = arcsin

(
nluft

nglas
sin

(
arctan

(
d
l

)))
(9.5)

Soerhält man einen Ausdruck für den Winkelβ:

β = 45◦ − arcsin

(
nluft

nglas
sin

(
arctan

(
d
l

)))
. (9.6)

Hierauskann man schließlich den Brechungsindex des Flüssigkristalls berechnen:

nLC = nglas

sin
(

45◦ − arcsin
(

nluft
nglas

sin
(
arctan

(
d
l

))))
sin(45◦)

(9.7)
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9.2 Bragg–Beugung

Eine einfache Erklärung zur Beugung elektromagnetischer Wellen in Kristallen hat W. L.

Bragg gegeben. Er hat angenommen, dass die einfallenden Lichtstrahlen an parallelen Teil-

chenebenen in einem Kristall gespiegelt werden. Jede Ebene reflektiert nur einen Bruchteil

der einfallenden Strahlung. Wenn die reflektierten elektomagnetischen Wellen an parallelen

Ebenen konstruktiv interferieren, dann spricht man von Beugung.

d sin 

d

Abbildung 9.2: Ableitungder Braggbedingung. d ist der Abstand von benachbarten parallelen Netzebenen.

Man betrachtet eine Schar paralleler Netzebenen mit dem Abstandd. Der einfallende Licht-

strahl bildet mit den Netzebenen den WinkelΘ. Der Wegunterschied zwischen den reflek-

tierten Strahlen zweier aufeinander folgender Netzebenen beträgt dann 2· d · sinΘ. Es tritt

konstruktive Interferenz auf, wenn der Wegunterschied ein ganzzahliges Vielfaches der Wel-

lenlängeλ ist:

2dhkl ·sinΘ = m·λhkl m ∈ N (9.8)

Diese Gleichung nennt man Bragg–Bedingung.

Braggreflexion kann nur bei Wellenlängen auftreten, die kleiner als das doppelte des Netzebe-

nenabstandes sind. Wenn man an photonischen Kristallen spektroskopische Untersuchungen

durchführt, muss man zusätzlich den Brechungsindex n des Materials berücksichtigen, da die

Wellenlänge in dielektrischen Materialien kleiner ist als im Vakuum oder in Luft. Für m = 1

lautet die Bragg–Bedingung

λvak
hkl = n·λhkl = 2nd·sinΘ. (9.9)

Zu demselben Ergebnis wie Gleichung (9.8) führt eine Betrachtung der Impulserhaltung: Sind

k undk‘ mit |k| = |k‘| = 2π/λhkl die Wellenvektoren des einfallenden bzw. des gebeugten
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Strahls undG mit |G| = 2π/dhkl ein Vektor des reziproken Gitters, der die Netzebenenschar

mit den Millerindizes (h,k,l) beschreibt, so lautet die Bragg–Bedingung:

k‘ − k = G. (9.10)

Im Fall elastischer Streuung (|k| = |k‘| ) gilt daher

|G| =
2π
dhkl

= 2· 2π
λ

sinΘ = 2|k| sinΘ. (9.11)
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9.3 Abkürzungen

5CB,K15 4-cyano-4’-pentylbiphenyl

PMMA Poly(methylmethacrylat)

H2S Schwefelwasserstoff

SnCl4 Zinnchlorid

HCl Salzsäure

SnS2 Zinnsulfid

Si Silizium

THF Tetra-Hydro-Furan

ITO Indium-tin-oxide, Indiumzinnoxid

MCT Mercury Cadmium Telluride

DTGS Deuteriertes Tri-Glycin-Sulfid

CVD Chemical Vapor Deposition

AFM Atomic Force Microscope, Rasterkraftmikroskop

NMR Nuclear Magnetic Resonance

N Nematische Phase

ISO Isotrope Phase

hcp hexagonal closed packing, hexagonal dichteste Packung

r-hcp randomly hcp, willkürliche hcp

fcc faced centered cubic, kubisch flächenzentriert

IR Infrarot

S/N Signal/Noise, Signal/Rausch-Verhältnis
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9.4 Symbole

n Direktor

Kii ElastischeKonstante

S Ordnungsgrad

B Magnetische Flussdichte

H Magnetische Feldstärke

E Elektrische Feldstärke

a Gitterkonstante

dhkl Schichtabstand

h,k, l Millerindizes

G Reziproker Gittervektor

k Wellenvektor

r Ortsvektor

ω Kreisfrequenz

c Lichtgeschwindigkeit

ε Dielektrizitätskonstante

λ Wellenlänge

n Brechungsindex

f Füllfaktor

T Temperatur

TC Klärpunkt

TG Glastemperatur

Vm Molvolumen

V Potentielle Energie

µ0 Magnetische Feldkonstante

∆χ Magnetische Anisotropie
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