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1 Weighted (PLB)-spaces of continuous func-
tions

1.1 Introduction to part 1

In the first chapter of this work we investigate the weighted (P LB)-spaces
AC(X) and AoC(X) of continuous functions, i.e. for a double sequence
A = ((ank)ken)nen of strictly positive continuous functions (weights) with
an+1(2) < app(z) < apprk(z) Vn,k € Nyx € X, we form the projective
limit (with respect to n) of the inductive limits (with respect to k) of the
weighted spaces of continuous functions Ca, (X) and C(a,)o(X), respec-
tively.

Weighted spaces of continuous functions were introduced by Nachbin ([33],
[34], [35]). Inductive limits of weighted spaces of continuous and holomorphic
functions were studied by Bierstedt, Meise [12] in 1976. In 1982 Bierstedst,
Meise, Summers [14] investigated the projective description of weighted in-
ductive limits. They showed that the weighted inductive limit V,C(X) is
always a topological subspace of its projective hull CVy(X) and that in
the (LB)-case V,C(X) is complete if and only if VyC(X) = CV,(X) holds
algebraically (and topologically) if and only if the sequence V is regularly
decreasing. For O-growth conditions Bierstedt, Bonet [6] and Bastin [2] gave
a similar result in 1989: For a locally compact and o-compact space X the
(LB)-space VC(X) equals CV(X) topologically (and algebraically) if and
only if the sequence V satisfies condition (D) (compare section 1.4.3).

The more complicated case of weighted (LF')-spaces of continuous functions
was investigated by Bierstedt, Bonet [8] in 1994. For weighted (LF')-spaces
of continuous functions they used the conditions (@) and (w@) of Vogt to
obtain results for the projective description.

In the following chapter we investigate the weighted (PLB)-spaces AC(X)
and AyC(X) of continuous functions for the first time. We will analyse
their topological structures and for o-growth conditions we can characterise
when the (PLB)-space AoC(X) and the (LF)-space VyC(X) are equal alge-
braically and topologically.



In section 1.2 we give the necessary notations and definitions for the first
chapter. In section 1.3 we collect some properties of the spaces AC(X) and
ApC(X) which follow from the general theory of Banach spaces and of their
inductive and projective limits. After that we recall in section 1.4 several
results for general (LF)-spaces: In 1.4.1, we give the definitions of acyclic
and weakly acyclic (LF)-spaces in the sense of Palamodov [36], recall the
characterisation of Retakh [38] and present the characterisation of Vogt [44]
with the conditions (@) and (w@) as well as some results of Wengenroth
[46]. Next, in 1.4.2 we introduce the conditions (@) and (w@) of Vogt in
the way Bierstedt, Bonet [8] used them to investigate weighted (LF')-spaces
of continuous functions. They reformulated them in terms of the weights,
introduced a condition (w@*) which is equivalent to (w@®), and constructed
many examples of which we present some here, too. At the end of this section
in 1.4.3 we collect the main results for the weighted (LB)- and (LF')-spaces
VC(X) and VyC(X) and their projective description which were proved by
Bastin [2], Bierstedt, Bonet [8] and Bierstedt, Meise, Summers [14]. Then
we present the general theory of projective spectra of (DF')-spaces in section
1.5. These results go back to Palamodov, Retakh, Vogt and Wengenroth
([36], [38], [42], [43], [45]).

After all this we are finally able to investigate the structure of the weighted
(PLB)-spaces AC(X) and AyC(X). In 1.6.1 we show for the weighted
(PLB)-spaces AyC(X) that condition (wQ) is equivalent to Proj'A4, = 0
and that it is also equivalent to A,C(X) ultrabornological (theorem 1.48).
Furthermore we prove that the projective spectrum Ay is of strong P-type if
and only if condition (Q) is satisfied (theorem 1.49). In the case of O-growth
conditions we show in section 1.6.2 that Proj'A = 0 if and only if condition
(Q) is satisfied (theorem 1.52) if and only if the projective spectrum A is of
strong P-type (remark 1.53).

Next follow the inductive description for weighted Fréchet spaces in section
1.7.1 and the inductive description in the case of weighted (P LB)-spaces
in section 1.7.2. In both cases we prove that for a locally compact and o-
compact space X the spaces CA(X) and CA(X) resp. AC(X) are equal
algebraically (theorem 1.55 and 1.56). In the case of O-growth conditions it
was not possible to give a similar characterisation as in theorem 1.48. But
the inductive description allows us to conclude that from AC(X) barrelled
it follows that condtion (w(@) is satisfied (see corollary 1.60 and remark 1.61).
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In section 1.8 we compare the weighted (PLB)-spaces of continuous func-
tions with the weighted (LF)-spaces of continuous functions. First we give
an example which shows that these spaces are not equal in general. Then
we introduce condition (B) of Vogt and prove that AC(X) = VC(X) holds
algebraically if and only if condition (B) is satisfied (theorem 1.65). To prove
the same in the case of o-growth condtions we need the additional condition
that (A,)oC(X) is complete for each n € N (theorem 1.66). If all (A,,)oC(X)
are complete we can even prove that AoC'(X) = VoC'(X) holds algebraically
and topologically if and only if the conditions (B) and (w@) are satisfied
(corollary 1.67).

We finish this chapter in section 1.9 with an example in the case of sequence
spaces which illustrates the results given above.



1.2 Notation and definitions

Weighted (PLB)-spaces of continuous functions are defined by a double se-
quence of weights as the projective limit of the inductive limit of the single
weighted Banach spaces of continuous functions. In this work these spaces
are investigated for the first time. Taking the limits the other way round
one gets the (LF')-spaces of continuous functions which were investigated by
Bierstedt, Bonet [§8]. From now on let X be a locally compact space and
A = ((an)ren)neny @ double sequence of strictly positive continuous func-
tions on X, called weights, which is decreasing in £ and increasing in n, i.e.
for each n,k € Nand v € X

anji+1(2) < an () < apgrp()

holds. Define the weighted spaces of continuous functions

Canp(X) 1= A € CX) 5 (I llnk i= sup an (@) f(2)] < 00},
Clank)o(X) = {fe€C(X); ankl|f| vanishes at infinity on X}

with continuous inclusions
Canp(X) = Capps1(X) and Clani)o(X) — Clank+1)o(X)
for fixed n € N.

C(ank)o(X) is a closed subspace of Ca,, ,(X), and both spaces are complete,
hence Banach spaces, where C(ay x)o(X) carries the induced norm. The unit
balls are
Bn,k = {f S Can,k(X)7an,k|f| S 1}7
(Bni)o = {f € Clank)o(X); anklf| <1}

We form the locally convex inductive limits
A, C(X) = indgCayi(X),
(A,)oC(X) = indgCl(ank)o(X)
with A, 1C(X) C A,C(X) and (A,41)oC(X) C (A,)oC(X) and the pro-
jective limits
AC(X) = proj,A,C(X) = proj,ind;Ca, ,(X),
AoC(X) = proj,(A,)eC(X) = proj,indiC(anx)o(X).



1.3 Consequences of known results

In this section we collect known results for the weighted (PLB)-spaces AC(X)
and AyC(X) which follow from the general theory of Banach resp. Fréchet
spaces and their countable inductive and projective limits. Every Fréchet
space F' as well as every Banach space E is webbed [32], which means that
there exists a family C,, _,,,n1,....,nx € Nk € N, of absolutely convex
subsets of F' with the following properties:

ii) U?:lcnl ng,n :Cm

.....

n, for all ny,...,n; € Nand all k € N.

.....

iii) For each sequence (ny)ren in N there exists a sequence (Ag)ren in |0, 00f,
so that for every sequence (2 )gen in F with zy, € C,, _p, forall k € N
the series Zzozl ArTp converges in F.

.....

Remark 1.1. The spaces C(an,x)(X) and C(anx)o(X) are webbed for each
k,n € N.

To show that AC(X) and AqC(X) are webbed we need some results of de
Wilde [47]:

Theorem 1.2. i) A countable inductive limit of webbed spaces is webbed.
i1) A countable projective limit of webbed spaces is webbed.

As a consequence of theorem 1.2 we get:

Corollary 1.3. The spaces A,C(X) and (A,)oC(X) are webbed for each
n € N. The spaces AC(X) and AyC(X) are webbed.

Fréchet and Banach spaces are ultrabornological (and hence barrelled) [32].

Remark 1.4. The spaces C(a,x)o(X) and C(a,x)(X) are ultrabornological
(and hence barrelled) for each n, k € N.

Theorem 1.5. (Meise, Vogt [32]) Let the locally convex space E carry the
inductive topology of the system (j; : E; — E)ier. If all the spaces E; are
barrelled or ultrabornological, then E has the corresponding property, too.

Corollary 1.6. The spaces (A,,)C(X) and (A,,)oC(X) are ultrabornological
(and hence barrelled) for each n € N.



In general the countable projective limit of barrelled resp. ultrabornological
spaces need not be barrelled resp. ultrabornological. Conditions under which
AC(X) and AyC(X) are barrelled resp. ultrabornological will be discussed
later.

1.4 The (LF)-case

Palamodov [36] investigated acyclic and weakly acyclic (LF)-spaces with ho-
mological tools. Retakh [38] later called them (LF')-spaces of type (M) and
(Mp). In 1992 Vogt investigated these spaces with more functional analytic
tools and reformulated the conditions of Retakh. Vogt introduced the con-
ditions (@) and (w@) as necessary conditions for acyclic and weakly acyclic
(LF)-spaces. In this section we collect some of these results to compare them
with the (PLB)-spaces and with the results we will obtain here.

1.4.1 General results for (LF)-spaces

Let E be an (LF')-space. This means here that there is an increasing sequence
(Ex)ren of subspaces of E with continuous imbeddings, each Ej, is equipped
with a Fréchet space topology, and F := indyFE). For each k& € N there is a
fundamental system (|| ||x,n)» of seminorms in £, and we assume that

ke < A Hem < A1 Tkint

holds for each k,n € N. Identifying @FE) with the set {x = (xx)r €
[Iien Ex; 2 = 0 up to finitely many k} we define the map ¢ : ®pfy — E
by q(z) = Y pen®h- 0 @ Openbr — Openly, defined by o(z) = (z —
Tr_1)k, T—1 = 0, is an isomorphism onto the kernel of q. Hence we have the
canonical exact sequence

0 — @kENEkL) EBI;:GN EkLE — 0

The inverse o~ ! : ker ¢ — @penFy is given by

o (x) = (Z ;)

q is continuous and open, ¢ is continuous, but not necessarily open onto its
range. This means that o~! need not be continuous.
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Definition 1.7. (Palamodov [36]) An inductive spectrum is called acyclic
if 0=1 is continuous; it is called weakly acyclic if 0=1 is weakly continuous,
i.e. continuous with respect to the weak topologies. An (LF')-space F is
called (weakly) acyclic if it admits an acyclic resp. a weakly acyclic defining
spectrum.

Retakh [38] investigated this behaviour of an inductive spectrum and proved:

Theorem 1.8. FE is (weakly) acyclic if and only if the following condition is
fulfilled: There exists a sequence U, of absolutely convex neighbourhoods of
zero in E,pu=0,1,2, ..., such that

i) U, CU,qq for all p.

i1) For every p there exists K > p such that for all K > k the (weak)
topology of Ex coincides on U, with the (weak) topology of Ej.

In the notation of Retakh [38] the condition in the acyclic case is called (M),
in the weakly acyclic case (My). Vogt showed that the following conditions
(Q) and (wQ) are necessary for acyclicity resp. weak acyclicity.

Proposition 1.9. i) If E is acyclic, then condition (Q) holds:
Vndm>nkVu>m,l,e>03L,S>0VxeE,:

|2l < ellzlng + Sz

it) If E is weakly acyclic, then condition (w@Q) holds:
VneNdm>nkeNVu>mleNILeNS>0VxeklE,:

2l < Sk + l2]z)-

These conditions can be evaluated in concrete cases and are more suitable
for applications than the characterisations of Retakh.

Definition 1.10. An inductive limit F = ind, F, is called regular if every
bounded subset of E is contained and bounded in some step E,,.

It is well-known that every complete (LF')-space is regular, but whether the
converse holds is an open problem (raised by Grothendieck), even for (LB)-
spaces.
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Definition 1.11. Let (E,t) = ind,,(E,, t,) be an (LF)-space. The inductive
limit (E,t) is called sequentially retractive if every convergent sequence in
(E,t) is contained and convergent in some step (F,, t,). It is called boundedly
retractive if for any bounded subset B of (E,t) there is n € N such that B is
contained and bounded in (£,,t,) and that the topologies ¢ and t,, coincide
on B. The inductive limit (F,t) is called (sequentially) compactly reqular if
every (sequentially) compact subset of the inductive limit is (sequentially)
compact in some step.

Palamodov [36] showed that every acyclic (LF)-space is complete, regular
and sequentially retractive. In 1996 Wengenroth [46] showed that for a gen-
eral (LF')-space the conditions (M) and (Q) are equivalent to the properties
of being sequentially retractive, boundedly retractive, compactly regular and
sequentially compactly regular.

1.4.2 Conditions (@) and (wQ)

Vogt [44] introduced the conditions (@) and (w(@) for general acyclic and
weakly acyclic (LF)-spaces, but we do not need these general conditions in
the sequel. In the case of weighted (PLB)-spaces one can reformulate these
conditions in terms of the weights, as follows:

Definition 1.12. i) A sequence A = ((a,x)ren)nen satisfies condition
(@) if and only if
Vndm>nkVu>m,l,e>03L,S>0Vere X:

1 1 1
< max(e .S .
1 () k(%) ()

ii) A sequence A = ((an)ken)nen satisfies condition (w@) if and only if
VneNdm>nkeNVu>mleNdLeN S>0VzelX:

Note that condition (w@) is always satisfied in the (LB)-case.

Bierstedt and Bonet introduced a condition similar to (w@) which they called
condition (w@*).
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Definition 1.13. (Bierstedt, Bonet [8]) A sequence A = ((@nk)ken)nen sat-
isfies condition (w@*) if
JkW)yenVndm>nVYu>m,l3L,S>0VzxeX:

1 . 1 1
< Smax( min : ,
A1 () 1<v<n ay ) (2) " ()

Lemma 1.14. (Bierstedt, Bonet [8]) Condition (w@Q) is equivalent to con-
dition (wQ*).

At the end of this section we will present some examples of sequences of
weights which satisfy the conditions introduced above.

Example 1.15. (Bierstedt, Bonet [8]) Let

v: X —-R, O<ov(z)<l VzelX,
w: X —-R, 0<w(x) VoelX,

be continuous functions, 7, p > 0 or +o00, and let (r,,)nen, (Pr)ren be strictly
increasing sequences of positive numbers with r, — r and pp — p. For each
n,k € N we put

Up () == v(z)"w(z)™ Ve e X

and V 1= ((Unk)ken)nen. If p = 00, then the sequence V = ((Upk)ren)nen
satisfies condition (()) and therefore (w@).

Next we give an example of a sequence V = ((vpn)ken)nen Which satisfies
condition (w@), but not (Q). First we have to define regularly decreasing
sequences in the sense of Bierstedt, Meise, Summers [14]:

Definition 1.16. Let V = (v,),en be a decreasing sequence of weights on
X. Vis called reqularly decreasing if, for given n € N, there exists m > n,
such that for every ¢ > 0 and every k > m, it is possible to find §(k,e) > 0
with

vi(x) > 6(k,e)v,(z) whenever v, (z) > ev,(x).

In other words, V is regularly decreasing if and only if for given n € N, there
exists m > n such that, on each subset of X on which the quotient 2= is
bounded away from zero, also all quotients ** k > m, are bounded away

n
from zero.
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Example 1.17. (Bierstedt, Meise, Summers [15]) Let X := N x N. The
sequence

- & i<n A eNxN
Un<Z7.7>_ 1n i2n+17(27j>6 X
is regularly decreasing, and the sequence

1 _
(i) =47 PSP G eNxN
n?] L Z>n ) 7]

is not regularly decreasing.

Now to the example of a sequence V = ((v,, x)ken)nen Which satisfies condition

(w@Q), but not (Q).

Example 1.18. (Bierstedt, Bonet [8]) Let W = (w,)nen be a decreasing
sequence of weights on a locally compact space X which is not regularly
decreasing. For

Up ke = 25w, n,k €N,

V = ((Unk)ken)nen satisfies condition (w@), but not ().
Remark 1.19. (Bierstedt, Bonet [8])

(Q) & (wQ) plus the “countably regularly decreasing” condition (¢cRD) :
Vndm,kVpul,e>03L0>0:
Ui (x) > vy () = vy n(x) > dv, k().

Hence in the (L B)-case condition (@) is equivalent to the regularly decreasing
condition.

1.4.3 The inductive limits VC(X) and V,C(X)

In this section we will give a survey on inductive limits of weighted Banach
and Fréchet spaces and their projective description. In the case of (LF)-
spaces VoC'(X) Bierstedt, Meise, Summers [15] showed that the topology of
the weighted inductive limit VyC'(X) can always be described by an associ-
ated system V of weights on X.

In the beginning of this section we will restrict our attention to the (LB)-
case; the (LF)-case will be treated later on.
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For a decreasing sequence V = (v, )nen of strictly positive continuous func-
tions (weights) define

Con(X) = {f € C(X); |[f]ln = ilel)gvn(x)lf(x)! < oo},

C(vn)o(X) :={f € C(X); v,f vanishes at co on X},
and the weighted inductive limits of spaces of continuous functions
VC(X) :=ind,,Cv,(X) and VoC'(X) := ind,,C(vy,)o(X).
The associated system V' of weights was introduced by

V={welC(X);VnIa,>071<infa,v, on X}.

The corresponding weighted spaces for V' (the projective hulls) are

CV(X)={feCX);Vv eV :supv(z)|f(z)|] < oo}

reX
and
CVo(X) :={f € C(X);Vv €V :7|f| vanishes at co on X}.

CV(X) and CV(X) are complete, and C(V)o(X) is a closed subspace of
CV(X). For the case of o-growth conditions Bierstedt, Meise, Summers [14]
showed in 1982:

Theorem 1.20. In the (LB)-case of VoC(X), the following conditions are
equivalent:

i) V = (Un)nen is reqularly decrasing, i.e. for given n € N, there exists
m > n, such that for every ¢ > 0 and every k > m, it is possible to
find 6(k,e) > 0 with

vg(x) > §(k,e)v,(x) whenever wv,,(z) > ev,(z),
ii) VoC(X) is complete,

iii) VoCO(X) = CVy(X) holds algebraically (and then also topologically).
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Before we can formulate a result for O-growth conditions we have to introduce
condition (D), which was first used by Bierstedt, Meise [13] as a sufficient
condition for distinguishedness of echelon spaces. This property generalizes
the quasinormable and the reflexive case of echelon spaces. It was inspired
by a condition of Grothendieck [23], see also [15].

Definition 1.21. The decreasing sequence V = (v, ),en satisfies condition
(D) if there exists an increasing sequence J = (X,,)men of subsets X, of X
such that

(N, J) for each m € N there is n,,, > m with inf,cx,, UZI:,SJ(C;) >0,k =ng, +
1.n,, + 2, ..., while

(M, J) for each n € N and each subset Y of X with Y N (X \ X,,) # 0 for

all m € N there is n’ = n/(n,Y) > n such that inf, ¢y f}’::((s)) = 0.

In the following result we need the assumption that the space X is not only
locally compact, but also o-compact. A characterisation of o-compactness of
a locally compact space X was given by Bastin [1]. The condition (M, K) was
introduced by Bierstedt, Meise [13]. Condition (M7, K) and the continuous
domination property were defined by Bastin [1].

Definition 1.22. Let V = (v,,).en be a decreasing sequence of strictly posi-
tive continuous weights on X.

1)V = (vn)nen satisfies condition (M, K) if, for every non relatively com-
pact subset Y of X, Vn € N dn € N such that

inf va(T) = 0.
zeY vy (x)
ii) V = (vn)nen satisfies condition (M, K) if, for every non relatively com-
pact subset Y of X, there is n € N such that

v
inf 22 _ g,
€Y (ZL‘)
iii) the family V satisfies the continuous domination property if every v €
V' is dominated by a continuous element of V.

Proposition 1.23. (Bastin [1]) Let V = (v,)nen be a decreasing sequence
of strictly positive continuous weights on X. The following conditions are
equivalent:

16



i) 'V satisfies condition (M, ) and the continuous domination property,
i1) V satisfies condition (M, ) and the continuous domination property,

ii1) the space X is locally compact and o-compact.

Theorem 1.24. (Bierstedt, Bonet [6], Bastin [2]) Let X be o-compact. In
the (LB)-case of VC(X) the following conditions are equivalent:

i) The sequence V satisfies condition (D),
i) VC(X) = CV(X) holds algebraically and topologically.

It follows a collection of results for projective description in the case of (LF)-
spaces. The (LF)-spaces VC(X) and V,C(X) were defined by Bierstedt,
Bonet and investigated in [8]. The notation and the main results of this
article are given below.

For every n € N let V,, = (v, x)keny be an increasing sequence of strictly
positive continuous functions on X. Let V denote the sequence (V,),en and
let us assume that

'Un—i—l,k(x) S Un,k(x) S Un,k—l—l(x)
holds for all n,k € N and for all x € X. Define
CVo(X) = {feCX):;VEeN:||fllx = su);zvnk(x)|f(m)| < oo},
S

C(Va)o(X) = {feCX);YVkeNVYe>03 K C X compact :
v ()| f(z)| <eVae X\K}.

For each n € N we obtain that CV,,(X) (resp. C(V},)o(X)) is continuously
included in CV,;1(X) (resp. C(Vy41)o(X)). The weighted (LF')-spaces of

continuous functions are defined by
VC(X) :=ind,,CV,(X) and VyC(X) := ind,,C(V,,)o(X).

Remark 1.25. As an (LF)-space VC(X) (resp. VoC (X)) is webbed and

ultrabornological.
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This holds because CV,,(X) (resp. C(V,)o(X)) is webbed and ultrabornolog-
ical as a Fréchet space for each n € N and because a countable inductive
limit of webbed or ultrabornological spaces is webbed or ultrabornological
(see theorem 1.2 and theorem 1.5).

In order to describe VC'(X) and V,C(X) algebraically and topologically Bier-

stedt, Bonet [8] introduced the system V' of weights associated with V,
Vi={nelCX);v>0andVneNIa, >0,k(n) eN:7< O Un e(n) }-
The projective hulls of the weighted inductive limits are defined as follows:
CV(X) = {f € COYT eV pelf) = supT@)f (@) < oo,

Te
CVo(X) = {feC(X);YDeEV Ve>03K C X compact :
v(x)|f(x)| <eVze X\ K}
One has VC(X) C CV(X) and V,C(X) C CVo(X) with continuous inclu-
sions, and OV (X ) and CV(X) are complete locally convex spaces.

The main results of [8] are that VC(X) = CV(X) holds algebraically if
and only if the sequence V satisfies condition (w@), and that the (LF)-space
VC'(X) is also complete if and only if the sequence V satisfies condition (w@).
In the case of o-growth conditions it was proved that V,C(X) = CV((X)
is equivalent to V satisfying condition (@), and that this is equivalent to
VoC(X) complete.

1.5 Known results of projective spectra of (D F')-spaces

Before we can investigate the structure of the (PLB)-spaces AC(X) and
AoC(X), we need some general results about projective spectra of (DF')-

spaces. All the following results go back to the work of Palamodov [36],
Retakh [38], Vogt [42],[43], and Wengenroth [45].

Definition 1.26. A projective spectrum X is a sequence (X,,)nen of linear
spaces (over the same field of real or complex numbers) and linear maps
u s Xy — X, for n < m, satistying

n m __ n n o __ 3
tyooty =t forn <m <k and ¢, =idy,.

Write X = (X, 6 1 )nen-
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Definition 1.27. For X = (X,,, (1,1 )nen set:

Proj’xX = {(Zn)nen € H Xp; () =, V< m},
neN
Proj'¥ = [] X./B(X),
neN

where

B(X) ={(an)n € H Xn; 3 (bn)n € H X, such that a, = ¢, 1bpy1 — by}

neN neN

There is a natural exact sequence of linear spaces:

(*) 0 — Proj’x — H X, H X,—5Proj'X — 0,

neN neN
where 0 1 (Zp)nen = (44 1%n1 — Tn)nen and ¢ is the quotient map.

In the case of a projective spectrum X = (X,,, ¢!, ;) of (LB)-spaces every X,

has the form X,, = U, X,, . where X, ; is a Banach space with a norm || - ||, ,
and X, carries the locally convex inductive limit topology of the X, 5. ¢,

is assumed to be continuous. We put B, x := {z € X, x; ||2|[nr < 1} and
assume that UgenBp x = X,, and that (B, x)ken is a fundamental sequence of
bounded sets in X,,. Let X = proj,X,. (" : X — X,, denotes the canonical
projection onto the n-th component. X is called reduced if X,, = "X for all
n € N. X is called a (DF'S)-spectrum if for every k and m there exists M
such that the inclusion Xy ,,, < X} as is compact. For a locally convex space
X we denote by Uy(X) the filter basis of absolutely convex neighbourhoods of
0. Palamodov and Retakh investigated under which conditions Proj'X = 0,
i.e. the map o in the exact sequence (x) is surjective. First Palamodov [36]
presented a sufficient condition:

Theorem 1.28. Let X be a projective spectrum and assume that each X,
15 endowed with a complete metrizable group topology such that the spectral
maps are continuous and

VneNUel(X,) Im=>nVpup>m: 13X, Cu, X, +U

Then Proj'X = 0.
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The next result was given by Frerick and Wengenroth [22] and independently
by Braun and Vogt [19]. BD(X) denotes the set of Banach discs in a locally
convex space X.

Theorem 1.29. Let X = (X,,.) be a projective spectrum consisting of

ny Ym

locally convex spaces and continuous linear maps such that
VneNdIm>nVu>m3BeBDX,) Y MeBD(X,,)
3K € BD(Xon); (M) C ) (K) + B.
Then Proj'X = 0.

Palamodov gave a characterisation in the case of a projective spectrum of
Fréchet spaces by showing that then the condition in theorem 1.28 is also
necessary. Compare also Wengenroth ([48], 3.2.8).

Theorem 1.30. For a projective spectrum X consisting of Fréchet spaces
and continuous linear maps the following conditions are equivalent:

i) Proj'X =0,
i) YneNUeU(r,) Im=>nVu>=m: X, CipX,+U.

In the case of projective spectra of (LB)-spaces Retakh gave a necessary and
sufficient condition for Proj'X = 0. Compare also [48], 3.2.9.

Theorem 1.31. For a projective spectrum X of (LB)-spaces, Proj'x =0
holds if and only if there is a sequence of Banach discs B, C X,, such that

i) "By C By, for alln <m,

it) for every n there is m > n such that for each > m
b (Xon) C 1, X, + By, holds.

Vogt (see [42], theorem 4.4, proposition 4.5, theorem 5.7) reformulated these

results and introduced condition (P).

Theorem 1.32. For a projective spectrum X of (LB)-spaces, Proj'x =0
holds if and only if the following holds:
(P) 3 (k(W)yenVneNIm>nVu>m3as:

b X C L X, + S ﬂ(LZ)_lBu,k(y)-

v=1
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Proposition 1.33. The following is necessary for (P):

3 (k(W)yenVneNIm>nVi,u3dLS:

1 Bina € S Byur + () () ™ Bu)-

v=1

In [42], 5.7 Vogt showed the connection between the projective spectrum X
and the topological properties ultrabornological resp. barrelled for its pro-
jective limit.

Theorem 1.34. For a projective spectrum X of (LB)-spaces the following
holds: If Proj'X = 0, then X = proj, X, is ultrabornological (and hence
barrelled).

The following properties were defined in [43]:

Definition 1.35. For a projective spectrum X let

(P)  3kYn3mVul3L,S: i Buy C S By + Bur),
(P)  Ynm3kmVpl3LS: B, CShB,,+ Bur).

Of course (Fy) is stronger than (P;). A weak variant of condition (P») was

defined by Wengenroth [45].

Definition 1.36. Let X = (X,,, (/") be a projective spectrum and B(X,,) the

ny “m

family of all absolutely convex bounded sets. Then
(Ps5) YneNdm>nVYu>m3dBeB(X,) VMeBX;) 3K €
B(X,),S>0:

tm (M) C S(1,(K) + B).

Vogt turned the conditions (P;) and (P) into inequalities by means of duali-
sation. The following notation was used: Let j : X/ — X/ be the transpose
of /7 for n < m. For y € X/ set

[l = sup{ly(z)| : |[2|[ne <1}
with

[yl ks

| |j5+1y\ ‘Zﬂ,k-

177 e
17 e

IV IA
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For a reduced spectrum X we identify X with X := j"X/ C X', where j"

is the transpose of /. Then X C X, holds for each n € N and we obtain

an imbedding spectrum of Fréchet spaces. By X* we denote the dual space
X' equipped with the inductive topology. X denotes X’ equipped with the
strong topology. The map id : X* — X] is continuous.

Definition 1.37.
(Pr) 3kVYn3mVu,l3L,S>0Yy e X, |yl < SUlhvlln o+ Iyl ),
(P3) Vn3kmVu,l3L,S>0Vye X 5yl < SUihyll L+l z)-

Condition (P;) and (Pj) are not equivalent in general. The same holds for
(P,) and (Py). An example for this was given by Dierolf, Frerick, Mangino
and Wengenroth [20]. They constructed a projective spectrum of (LB)-
spaces of "Moscatelli type” which satisfies the conditions (P;) and (Py), but
neither (P;) nor (P;). On the other hand, with duality theory and the bipolar
theorem it follows:

Remark 1.38. (Vogt [43]) For (DFS)-spectra the conditions (P;°) and (Py)
are equivalent to (P;) and (F,), respectively.

Theorem 1.39. (Vogt [43]) Let X be a (DFS)-spectrum. The following
implications hold:

i) (P1) = Proj'xX =0 = (P),
i) (Pf) = Proj'x =0= (P}).

Now assume that X is reduced and consider the inductive spectrum X*. For
a reduced spectrum Vogt (see [42] corollary 5.10, theorem 5.11) showed:

Corollary 1.40. If X is barrelled and X is reduced, then
(Py) Vn3kmVul3dLS>0VyelX,:

dn vy < SUEYI L + Yllne)
holds.

Theorem 1.41. If X is reduced, the following implications hold:

Proj' X = 0 = X* is regular = (P;).

22



€¢

(P) < Proj'xX =0

4

X ultrabornological =

4

X bornological =

4

X} complete

X barrelled

4

X’ sequentially complete
(quasi complete)

X quasibarrelled

4

X, sequentially complete
(quasi complete)

Every bounded set in X’ is contained
and bounded in some X.

Y

Every bounded set in X is contained
and bounded in some X.

4

X* regular
Y

(F5)



For a reduced spectrum X the implications between the properties discussed
in this section are collected in the previous scheme. All these implications
were shown by Vogt in [42] and [43].

Asking under which conditions the map

o: H X, — H Xy 0((Tn)nen) = (bn411Tn41 — Tn)nen

neN neN

in the exact sequence (x) is not only surjective, but also every bounded set
in [, ey Xn is contained in the image under o of a bounded set in ],y Xn
("o lifts bounded sets”), we are led to the following definition.

Definition 1.42. (Bonet, Dierolf, Wengenroth [18]) Let B(X,,) be the system
of bounded sets of X,,,n € N. A projective spectrum X = (X, (%) consisting
of locally convex spaces is said to be of strong P-type if

(P;) VneN3IB,eB(X,),m>nVYu>mMeB(X,) IKecB(X,):

n
Lm

(M) C 1;(K) + B,.
A similar condition was used by Wengenroth in the following theorem:

Theorem 1.43. (Wengenroth [48]) Let X = (Xp, ) be a locally convex

ny Ym

projective spectrum of locally complete spaces. Then the condition
(P;) VYnim>nVpu>m3BeB(X,)VMeB(X,) 3 KeB(X,)

tm(M) C 1;(K) + B

m

implies that o lifts bounded sets, that there are B,, € B(X,,) with /" (B,) C B,
for M >n and thatV ne NIm>nV M € B(X,,) 3 D € B(ProjX)
(M) C (D) + B,.

m

Corollary 1.44. (Wengenroth [[8]) Let X = (X,, ") be a locally convex

projective spectrum of reqular (LB)-spaces. Then o lifts bounded sets if and
only if the condition (Pz) of 1.43 holds.
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1.6 New results on the weighted (PLB)-spaces A,C(X)
and AC(X)

1.6.1 Structure of 4,C(X)

Using the general results of Vogt and Wengenroth we now investigate the
structure of the weighted (PLB)-space AoC(X). In the case of the (LB)-
spaces (A;)oC(X) the linear maps

(o (An)oC(X) — (An)eC(X)

for n < m can be chosen as ¢}, = id(4,,),c(x) since (A )oC(X) C (Ay)oC(X).
The projective spectrum is defined by
Ao = ((An)OC(X)7id(An+1)oC(X))nENa
and its projective limit A C(X) is
AoC(X) := proj,(A,)oC(X) = proj,indxC(anx)o(X).
Remark 1.45. The projective spectrum A, is reduced.

Proof: Let C.(R™) be the space of all continuous functions with compact
support and let f € C'(anx)o(X). For each € > 0 there exists a compact set
K C X with

ank(z)|f(z) <eVee X\K.

One can choose a function ¢ € C.(R,,) with ¢ = 1 on K and look at fp €
C.(R™). It follows that C.(R") is dense in C(a, x)o(X) for each n, k € N and
hence in each (A,)oC(X) = indiC(ank)o(X). Because C.(R") is dense in
each step it is dense in the projective limit AyC(X).

Remark 1.46. In general A,C(X) is not a (DFS)-spectrum, because the
inclusions are not compact.

To see under which conditions Proj' Aq = 0, i.e. the map ¢ in the canonical
exact sequence

0 — Proj’Ay — [ [(An)oC(X)—= [ [ (An)oC(X)—=Proj' 4y — 0
neN neN

is surjective, we use condition (w@) on A = ((@nk)ken)nen. Before we can
prove the main theorem of this chapter, which will show the connection
between condition (wQ), Proj'4y = 0 and A,C(X) ultrabornological resp.
barrelled, we need the following obvious result:
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Lemma 1.47. Let X be locally compact and Z1, 7y C X zero sets of con-

tinuous functions hi,hy on X. If Zy N Zy = 0, then h = ‘hl‘ﬁl'lhﬂ defines
a continuous function on X with values in [0,1] such that hjz, = 0 and
h|Z2 =1.

Theorem 1.48. The following conditions are equivalent:
i) The sequence A = ((ank)ken)nen Satisfies condition (w@Q),
i) Proj'Ag =0,

iii) the (PLB)-space AqC(X) is ultrabornological,

i) the (PLB)-space AgC(X) is barrelled.

Proof. We will prove the theorem in the following way

§) =2 i) 2 i) 2 ) 229,

For 1.) we apply theorem 1.32. In the case of the weighted (PLB)-spaces
AoC(X) condition (P) looks as follows:

J(k(v)yenVneNIm>nVu>m3S>0:

(Am)oC(X) C (Au)oC(X) + 5 MJ_1 (Bukw))o-
Let A = ((@nk)ren)nen satisfy condition (w@), and therefore (w@*). Us-
ing condition (w@*) one can find a sequence (k(v)),eny which satisfies (P).
For given n select m according to (w@*), and for given u > m and f €
(A;)oC(X) one can find [ such that f € C(am)o(X). For p,lselect L,S >0
as in (wQ@*). Now define the sets
1
K = {r € Xian(@)/@)] > 55}
X1 ={r e X;a,.(x) <2Sa,,,(z)},

(
1
Xy i=A{z € X;anm,(z)|f(x)] < g} N{z € X;a,.(x) > San,(z)}.
The set K is relatively compact and open in X. We claim that

X =(XjUK)UX,
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holds. To show this, let x € X be given. The following cases are possible:

1
D) ama(o)|f(z)] > 55 OF ) ami(2)|f(2)] < 55 < 5
In the first case x € K. If the second case is true one has to evaluate if
a) a,(x) <28ay,(x) or b) a,r(x)>2Say,(z) > San(x).

From a) it follows that z € X;. If b) is true, then x € X, holds.

Now define 7; := X \ (X UK) and Z; := X \ Xy. For Z; and Z, we
obtain

IZiNZy=X\(X1UK)N(X\X2) =X\ (X UKUX,)=10.

To apply lemma 1.47 one has to show that Z; and Z; are zero sets of
continuous functions hq,ho on X. The set Z; can be written as Z; =
(X \ X1) N (X \ K). First we show the existence of suitable continuous
functions g¢;, g2 such that X \ X; and X \ K are zero sets. Define the con-
tinuous functions ¢; and g on X by

_Jo0 for a,, (x) — 2Sa,,(z) > 0
() = {CL%L(.T) —2Sa;,,(x) elsewhere,

0 for a,, ()| f(x - L <0

92(x) = {am,z@ﬂf@) — % elsewhegre.)| @l
X \ Xj is the zero set of g1, X \ K is the zero set of go and finally Z; is the
zero set of the function hy := max(gi, go). The case of Z; can be treated in

a similar way.

By lemma 1.47 there exists a function h € C(X,[0,1]) such that hjz, =0
and hjz, = 1. Write the given function f € C(am,)o(X) as f = hf + (1 —
h)f = fi + fo. We have to show that f; € C(a,r)o(X) and therefore
fi € (A)oC(X) and fo € S(Byiw))o for v =1,...,n. If z ¢ X; UK then
fi(z) = h(z)f(x) =0. If x € X; UK it follows that | fi(z)| < |f(x)| and for
Tz € X,

1, (2)] [1(2)] < @ (2)]f ()] < 25 am ()| f ()]

holds. Since K is compact,

sup a,..(a) fi ()] < oo.
zeX
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Collecting these facts we obtain that for z € X; U K there exists S >0
such that a, r|fi| < Sapm|f]. From f € C(am)o(X) it follows that f; €
C(CLML)Q(X). If Q_f X2
fo(x) = f(x)(1 = h(z)) = 0.
On the other hand, if x € X5 we have |f5] < |f| and by the definition of X5
1 S
%% > .
“) @

With condition (w@*) and (%) we obtain that

Ay () () < Sty ()

holds for v =1, ..., n, and then

k() (2)] fo ()] < @) ()| f(2)] < Sam(z)[ f(2)]

holds for v = 1, ...,n. It follows that f5 € C(a,kw))o(X) forv =1, ..., n. From
z € X, we also can conclude that a,,(x)|f(z)| < 4, which is equivalent to
Sam ()| f(z)] < 1. Then

k() (2)] f2(2)] < Sam ()| f(2)] <1

holds for v = 1,...,n and therefore f, € (B, )0 for v = 1,...,n. Finally
condition (P) and therefore Proj' A4, = 0 follows.

2.) follows immediately from theorem 1.34 and 3.) holds in general. Since
the projective spectrum Ay is reduced we can apply corollary 1.40 to show

4.):
(P) VYnadm>2nkVu>m,l3LSYee((A,)CX):

[lpllms < SUlellz + e,

where ||¢[[5; == sup{| < ¢, f > [; f € (Bmai)o}- Since (Bni)o C (Bni)o
for m > n, the sup is finite. We show that condition (w@) follows for the
sequence A. The quantifiers are the same. We fix x € X. The measure
0z + (An)oC(X) — C,6,(f) := f(x), is continuous because the topology of
this weighted (L B)-space is finer than the compact-open topology. Now

1

A ()

102 [0 = sup{|f (2)[; f € (Bmi)o} <
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clearly holds since |f| < —— on X for each f € (By,;)o. On the other hand,

select ¢ € C(X) with Compact support, 0 < ¢ < 1 and p(z) = 1. Clearly
fo= 2> belongs to (Bym,)o and

1

A1 ()

= fo(z) < sup{[f(2)[; f € (Bmi)o} = [|0x][5-

Thus, we have proved that [|d,][[},, = %l(x) Therefore

1 1 1 1 1

@) =@ a2 e

which is condition (w@). O

A

For the next theorem we need the assumption that the space (A,,)oC(X) is
complete. This completeness was characterised by Bierstedt, Bonet, Sum-
mers [14] (see theorem 1.20).

Theorem 1.49. Let (A,,)oC(X) be complete for each n € N. The projective
spectrum Ay is of strong P-type if and only if the sequence A = ((Gn k)ken)nen
satisfies condition (Q).

To prove this theorem we need some technical tools. First we present a
partition of a continuous functions. The idea of this goes back to Ernst,
Schnettler [21].

Proposition 1.50. Let u,v € C(X) be strictly positive functions. If f €
C(X) satisfies | f| < max(u,v), there exist g1, 9o € C(X) with |¢1| < u and
|ga] < v on X such that |f| = g1 + g2

Proof. Define

A = {reX; |f(z)
B = {reX; [f(z)

AYARVAN
s g
S
-

and g1, g2 € C(X) by g1(x) := min(|f(z)[, u(x)) and ga(x) := [f
Of course, |f| = g1 + g2 holds. If x € A then gi(z) = |f(z )| u(z) and
g2(z) = 0. For x € B we obtain g;(z) = u(x) and ¢gs(x) = |f
With the definition of the set B and the assumption that |f| < aX(u v) it
follows that v(x) > |f(z)| > | f(x)| — u(x) = g2(x). We have 0 < g; < w and
0<gs <wvon X. O
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Lemma 1.51. Let Ay be of strong P-type. Condition (Ps) (see definition
1.42) can be written as follows: ¥ n I m, k¥ p,l,e >03 L, S >0:

(Bm,i)o C S(By,)o +(Buk)o-

Then¥n Im, kY p,l,e >03L,S >0V ¢ € (A,)C(X)*:

ol < Sllelly.z +ellelln
holds.

Proof. Choose ¢ € (Ay)oC(X)" and let |7, ; == sup{[o(f)|; f € (Bmi)o} <
1. Write f as f = Sfl + Efg with f1 € (B,u,L)O and f2 € (Bn,k>0-

(NI < Sle(f)l +ele(f2)]

<
< Sl +ellellx

holds for all f € (B,,;)o. Then the same inequality holds for the sup, and
one gets

pllms < STl + el e
0

Proof of 1.49. Let the projective spectrum Ag be of strong P-type. We apply
lemma 1.51 and get: Vndm, kVu,l,é > 03 L, S > 0 such that

el < Sllellyz + Ellell i

Let n,m, k, uu,1 be as before and put e = 2. Let L be as above and put
S =2S. Fix zp € X and define ¢,, : (A,)oC(X) — C as in the proof of
theorem 1.48; recall that from 4.) in the proof of theorem 1.48

1
am,l(xO) .

102y |[m,s = sup{[f(zo)[; f € (Bmi)o} =

It follows that

1 .
= |0, * < S|4, * 2116, ||
PREN 10z0[ s < S0 [,z + Ell0zo 176
~ 1 1

= S +& :

a’l’«yL('rO) an,k(ﬂfo)
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We claim that

1 1 1
———— < max(S ,E ,
am,i (o) (7o) an(z0)
which is exactly condition (Q). If not, then
S S N
am,i(Z0) 2ami(70) 2 amy(xo)
- 15 1 n 1 1
2 aur(xo) 2 ani(zo)
which implies
1 ~ 1 . 1
> S + € ,
am,(Z0) apnr(o)  ank(wo)

a contradiction to the inequality proved above.

Now let condition (Q)) be given. Take f € B,,;; then

1 S ¢
|f| S - S max(—, —)
Qm 1 a,u,l Qp, i

holds on X. By proposition 1.50 there exist fi, fo € C(X) with |f;] <

QL — Onk

1.6.2 Structure of AC(X)

5| fo] < == and |f] = fi + fo. It follows that f; € SB, 1 and fo € £B, .

In this chapter we investigate the structure of the space AC(X) which is

defined by

AC(X) := proj, A,C(X) = proj,ind;Ca, (X).

Similar to the case of o-growth conditions the linear maps

o AnC(X) — A,C(X)

for n < m can be chosen as ¢}, = ida,.c(x) since A,,C(X) C A,C(X). The

projective spectrum is defined by

A= (A,C(X),id 4,4, 0(x) Jnen-

Theorem 1.52. Proj'A = 0 if and only if A = ((ank)en)nen satisfies con-

dition (Q).
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Proof. Without loss of generality we can assume that for each n € N the
system (B, x)ken is a fundamental system of bounded sets in A, C(X). First
let Proj'A = 0. With theorem 1.31 it follows that for each n € N there exists
a bounded absolutely convex B,, in A, C(X) such that B,,; C B, for each
n € N and

(%) Vndm>nVpu>m: A,CX)C A,C(X)+ B,.

Since B,, is bounded in A, C(X) and since A,C(X) is a regular inductive
limit (see [14]), we can select k(n) € N such that B, C B, k). Now we have
to show that A = ((ank)en)nen satisfies condition (Q)). For given n, select
m as in (xx) and k = k(n) with B, C By k). Fix p > m,l,e > 0; w.lo.g.
e < 1. For the function f := 5a1nl’ f € A,C(X) holds, and by (#x*) one
can write f = g+ h with g € AMC(X) and h € B,. For g € A,C(X) there
exist L € N and S > 0 with a, |g| < S on X. For h € B, it follows that
h € B, k) and then a,;|h| < 1, and therefore |h| < ﬁ holds on X. It

follows that

1 S 1
=fI<lgl+1[hl < —+—
EQml Q.1 Ap &
1 S S
= <2 4 <max(——,—)
Qm 1 QOJH,L 20%,]4: a,u,L Ap k

holds on X, which is exactly (Q).

In the other direction we show that condition (@) even implies that the
map o in the exact sequence lifts bounded sets. Then Proj'A = 0 fol-
lows immediately from theorem 1.29. Let condition (@) be satisfied, i.e.
Vndm,kVpul,e>03LS>0:

R < max(i £

)

A, a,u,L Qp, i
holds on X. Take f € B,,;; then

1 S ¢
|f| S - S max(—, —)
Qm 1 a,u,l Qp, i

holds on X. By proposition 1.50 there exist fi, fo € C(X) with |fi| <
S| fe] < —and |f[ = fi + fo. It follows that f; € SB, and f> € eBy,

QL
which is condition (Ps) in the case of the space AC(X) (compare lemma

1.51). 0
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Remark 1.53. We have even shown that AC(X) has Proj'4 = 0 if and
only if the projective spectrum A is of strong P-type.

Remark 1.54. With theorem 1.52 above and theorem 1.34, a general result
for projective spectra of (LB)-spaces, we get the following inclusions for the
(PLB)-space AC(X):

(Q) = Proj'A =0 = AC(X) is ultrabornological (and hence barrelled).

But in general the (PLB)-space AC(X) is not reduced, i.e. we cannot use
the general theory of (DF')-spaces to conclude that from AC(X) barrelled
or ultrabornological it follows that the sequence A satisfies condition (w(@)
or (Q). It is unknown if then condition (@) must be satisfied. The fact
that from AC(X) barrelled it follows that the sequence A satisfies at least
condition (w@) is indeed right. But to show this, we need the inductive
description which will be introduced in the next section.

1.7 Inductive description

From now on through the whole section 1.7 let the space X be locally compact
and o-compact.

1.7.1 Inductive description for Fréchet spaces

First we investigate inductive description for an increasing sequence A =
(@n)nen of strictly positive continuous functions (weights). For

Can(X) = {f € CX); [flln := sup an(@)| f(z)] < 00},
the space CA(X) = proj,,Ca,(z) is a Fréchet space. Define
A={aeC(X);a>0,VnIa,>0:a>a,a,},
CalX) = {f € COXR: 1]y = supala) ()] < o)
and the corresponding space

CA(X) :=1ind,eaCa(X).
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Theorem 1.55.
CA(X) = CA(X)

holds algebraically, and the canonical mapping CA(X) — CA(X) is contin-
uous.

Proof. Let f € CA(X). There exists a € A,a > a,a, for each n € N, with
f € Ca(X). It follows that

1 1
[1f1ln = sup an(2)|f(2)] < —sup a(z)|f(z)| = —||fla,

reX n re€X

which means that f € Ca,(X) for each n € N, hence f € CA(X).

Now let ¢ € CA(X). Then for each n € N there exists «,, € R, with
anlgl < oy, for all n € N. With the inequality above we obtain |g| < 2= on
X for each n € N. It follows that |g| < inf, ey o= on X. Define the sequence

(Wn)nen by wy, 1= i In the notation of section 1.4.3 (but V' replaced by W)
we obtain w := inf, ey z—: € W. With a result of Bierstedt, Meise, Summers

([14], 0.2) it follows that there exists @ € W with @w(x) > 0 for all z € X

and w = inf,ey ‘;‘—: < w. Define b := L. Then |g| < w = %, and therefore

w

lglb < 1 holds. We still have to show that b € A holds. From @ € W it
follows that ¥V n € N 3 8, > 0 such that ; = @ < inf, S,w, = inf 3,L.

Then b > sup,, B%Q"’ and this means that b € A and g € CA(X). O

1.7.2 Inductive description in the (PLB)-case

Now we investigate the (PLB)-case. Again we take a double sequence A =
((@nk)ken)nen of strictly positive weights with

nk41(7) < anp() < appip(r) VYn,k e NyVe € X,
and define

A={aecC(X);a>0,VneNIJa,k(n): a>supa,tyim)}-

Again we have v, = ﬁ where v,, ), € V is a weight as in [8] with

n,

V={veC(X);1>0,YneNIa,kn): v<infa,v,km}

34



Then A = {1;7 € V}. Define

Ca(X) :={f € C(X);[|flla = ig)g@(x)lf(x)! < oo}

and

CA(X) :=indgesCa(X).

Since X is o-compact, one can restrict the attention to the positive elements
U € V (see [14]) and hence to the positive elements a € A. Each Ca(X) is a
Banach space, a € A, and hence CA(X) is ultrabornological.

Theorem 1.56.
CA(X) = AC(X)

holds algebraically, and the canonical mapping CA(X) — AC(X) is contin-
uous.

Proof. Let f € CA(X), i.e. there exists a € A such that f € Ca(X). For
each n € N there are o, > 0 and k(n) € N such that a > o,y k(n). It follows
that

[l iy = SUD @ iy ()| f ()] < = sup a(@)| ()] < —|fll < oo,
zeX Op zeX Qp
which means f € Cay, () (X) for each n € N, hence f € A,C(X) for each
n € N and therefore f € AC(X). The above inequality shows that C'a(X)
is continuously injected in Cay, k) (X) for each n € N. It follows that the
mapping CA(X) — A,,C(X) is continuous for each n € N, which proves the
last assertion of the theorem.

Now let f € AC(X), i.e. for each n € N there exists k(n) € N such that
[ € Caypn)(X), ie. for each n € N there exist k(n) € N,b, > 0 such that
anklfl < by = |f| < b,— for all n € N. Define w := inf, b,——. One has

an,k Ap k(n) ’

w € V, and with [14] there exists w € V with w(z) > 0 for all x € X and
w < w. Define g := 2 € C(X). Then g|f| < 1 because |f| <w < w. It
follows that a € A and f € CA(X). O

gl

Corollary 1.57. CA(X) and AC(X) have the same bounded sets, and the
inductive limit CA(X) is regular.

35



Proof. After theorem 1.56 it suffices to fix a bounded set B C AC(X) and
to show that there exists a € A such that B is contained and bounded in
Ca(X). B isbounded in A,C(X) for each n € N. Since A, C(X) is a regular
inductive limit, there exist k(n), m,, > 0 such that B C m,B,, (). Then for
each f € B

an,k(n)|f‘ S my
holds. Define w := inf, mn%. With the same arguments as above we

n,k(n

obtain a € A,a > 0, such that a|f| <1 for each f € B, which means that B
is contained in Ca(X) and bounded there. O

Theorem 1.58. Let the sequence A satisfy condition (Q). Then
CA(X)=AC(X)
holds topologically.

Proof. If condition (Q) is satisfied, with theorem 1.52 it follows that Proj'A =
0. Hence AC(X) is ultrabornological (theorem 1.34) and webbed (corollary
1.3). The space CA(X) is ultrabornological and webbed, since CA(X) is the
ultrabornological space associated with AC(X) by corollary 1.57 and [26],
13.3.3. Define id : CA(X) — AC(X), which is a continuous embedding.
With de Wilde’s [47] closed graph theorem it follows that id™' : AC(X) —
CA(X) is continuous, too. So we have a topological isomorphism between

the spaces AC(X) and CA(X). O

Theorem 1.59. Let (A,,)oC(X) be complete for each n € N. If AC(X) is
barrelled, then AoC(X) is barrelled.

Proof. Let Ty be a barrel in A4,C(X), i.e. T} is absolutely convex, closed and
absorbant. Define

T:={fecAC(X); pf €Ty V p € Ce(X),0 < p < 1}

We show that T is a barrel in AC(X): Choose f,g € T)\,p € IK =R or C
such that || 4 || < 1. Since

O(Nf +1g) = Mepf) + uleg) € To,

T is absolutely convex.
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Now let (fi)ien C T with f; — f € AC(X) in AC(X). For ¢ € C.(X)
with 0 < ¢ < 1 we claim that ¢f; — ¢f in AoC(X). This is equivalent to
ofi = of in (A,)oC(X) for each n € N. (A,)oC(X) carries the topology
induced by its projective hull, say, C(4,)o(X) for A, = the “V* associated
with (v,1)ken. But for each v € A,

pole(fi = f)) = itel)gﬁ(fv)w(x)lfi(x) —f@)| <pe(fi = f) =0

since f; — f in C'A,(X) follows from f; — f in A,C(X). Since the barrel
Ty is closed, ¢f; € Ty for each © € N now implies ¢ f € T, and hence f € T
We have proved that T is closed.

For f € AC(X) define
By ={pfip € Ce(X),0< o <1}

By is bounded in AoC'(X) because for each n € N there exist k(n) € N, b, > 0
such that a, km)|f| < b, on X and then

an o) f] < p iyl f| < bp on X,

which means that By is bounded in C(ay, k(n))o(X), hence in (A, )oC(X) and
then finally in A,C(X). After the assumption that (A,)oC(X) is complete
(hence locally complete), there exists a Banach disc B with By C B. Since by
[37], 3.2.7, a barrel absorbs Banach discs, there is 5 > 0 such that By C 8T5.
Then %gof €Ty V¢ € Co(X) with 0 < ¢ < 1, hence %f € Tor fepT.
It follows that T is absorbant. This finishes the proof that T is a barrel in
AC(X).

Since AC(X) is barrelled, T' is a 0-neighbourhood, i.e. there exists W €
U(AC(X)) with W C T. After our hypothesis A, = (anx)ren is regularly
decreasing for each n € N, hence A, = (a,x)ren satisfies condition (D),
and thus A,C(X) = C'4,(X) holds topologically for each n € N. Now the
0-neighbourhood W in AC(X) can be taken of the form

W ={f e AC(X); Sg}gﬁn(x)lf(ﬂf)l <1}

with @,, € A,, for some n € N. Define

V= {g € AC(X);supa,(z)|g(z)| < 1}.

zeX
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{9 € (An)oC(X); sup,ex @n(2)|f(2)] < 1} is a O-neighbourhood in the space
(An)oC(X) C C(A,)o(X), hence V is a 0-neighbourhood in A,C(X), and
if we show V C Tj, then Ty is a 0-neighbourhood, too, which proves that
ApC(X) is barrelled. Let g € V. Then ¢ € W C T and hence pg € Tj
for each ¢ € C.(X) with 0 < ¢ < 1. For each compact set K C X let
vr € Co(X) satisfy pg(x) = 1 for each € K and 0 < ¢ < 1 on X.
Fix n € N and consider (¢pxg)rx in (A,)oC(X). By using that (A,)oC(X)
carries the topology induced by C(A,)o(X), one easily sees that pxg — g in
(A,)oC(X). Hence one has pxg — ¢ in AyC(X), too, which yields g € Ty
since Tj is closed in A C'(X). O

Even without the hypothesis that (A,,)oC(X) is complete for each n € N, a
modification of the proof of theorem 1.59 serves to show.

Corollary 1.60. If AC(X) is barrelled, then AoC(X) is quasibarrelled.

Proof. Let Ty be a bonivorous barrel in A,C(X). Again define
T={feAC(X); pf €To ¥V p € Cc(X),0< p < 1}

and show that T is a barrel in AC(X). That T is absolutely convex and
closed follows exactly in the same way as in the proof of theorem 1.59. But
to show that 7" is absorbant we now proceed as follows: For f € AC(X)
again define

Br :={pf;p € C(X),0<p <1}

As in the proof of 1.59, it is clear that By is bounded in AoC(X). Since here
Ty is bornivorous, it follows that By is absorbed by 7j. From this point on
the rest of the proof follows along the lines of the end of the proof of 1.59. [

Remark 1.61. Let the following conditions be satisfied:

i) The sequence A satisfies condition (@),

ii) Proj'A =0,

1v

)
)

iii) AC(X) is barrelled,
) AyC(X) is quasibarrelled,
)

v) condition (Py) is satisfied,

38



vi) the sequence A satisfies condition (w@).

Then the implications
i) = ii) = i) = ) = v) = vi)
hold.

It is an open question if v) = i) holds.

Proof. In theorem 1.52 we proved that condition (@) for the sequence A is
equivalent to Proj'A = 0. Hence it follows that AC(X) is barrelled (1.34).
In this section (corollary 1.60) we proved that AC(X) barrelled implies that
ApC(X) is quasibarrelled. Vogt proved in the general case of reduced spectra
of (LB)-spaces that the space X is barrelled if and only if it is quasibarrelled
([43], 3.1). With corollary 1.40 it follows that condition (Py) is satisfied,
which is equivalent to condition (w@) (1.48).

]

1.8 Comparison of the (PLB)- and the (LF)-space

Now we want to describe under which conditions the (PLB)-spaces AC(X)
and AoC(X) are equal to the (LF')-spaces VC(X) and VyC(X), respectively.
This cannot be true in general as the following example shows for the case

of AC(X) and VC(X).

Example 1.62. First we define a sequence of weights on X := N x N by

—k . .
awﬁJMI{J fisn ppen.

0 otherwise

A = ((ank)ken)nen is decreasing in k and increasing in n. Now define f :
N x N — R, f(i,j) := j7*¥2 for each (i,j) € N x N. Fix n, and select
k(n) =n+ 1. If i <n, we have

£, 5)| = 7% < it

for each j, which means that f € Cay, y(m)(X), hence f € A,C(X). Then we
get f e AC(X).
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Suppose that f € VC(X).We find k such that for each n there is C,, > 0
with |f(i,7)| < C,j* for i = 1,...,n. Select n := k and i := k to conclude

n+1/2

j = JHV2 = | f(i,§)| < Cuj® = Cpj”

for each j. This implies j'/2 < C, for each j, which is a contradiction.

Lemma 1.63. VC(X) C AC(X) and V,C(X) C AoC(X) holds in general
with continuous inclusions.

Proof. One can write VC(X) = indgproj,Ca, r(X). Let f € VC(X). Thus
there exists k € N such that ||f||,x < +oo for all n € N. This implies
that for each n € N there exists k¥ € N such that ||f||,x < 400, hence
f € A,C(X) for each n € N and therefore f € AC(X). A similar argument
gives VyC(X) C AyC(X). The argument for the continuous inclusions is as
follows:

proj,, Ca, k(x) — Cayx(X)

is continuous for each n,k € N. Then
proj, Ca, k() — indgCayp 1 (X) = A,C(X)
is continuous for each n € N, and thus
VC(X) = indgproj,Can x(X) — A,C(X)
must be continuous for each n € N, whence the continuity of
VC(X) - AC(X).
O

Next we introduce a condition which was used by Vogt [41] as a characteri-
sation for Fréchet spaces between which all continuous linear mappings are
bounded.

Definition 1.64. Let A = ((am,1)ien)nen be a sequence of weights. A satis-
fies condition (B) if Vk(n) 31e NVmeN3IneN,e¢>0:

Uy < € MAX Gy k(n)-
1<n<n
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Theorem 1.65. AC(X) = VC(X) holds algebraically if and only if the
sequence A satisfies condition (B).

Proof. Let A satisfy condition (B). VC(X) C AC(X) holds by 1.63. To
show the other inclusion, choose f € AC(X). After the definition of AC(X)
it follows that: Vn € N3 k(n) e N;b, >0

n i) ()] f(2)| < by Vo € X,

For given (k(n)),en we can apply condition (B) to find [ such that for each
m there exist n,c > 0 with

a < c max a
m,l 1<nen n,k(n)-

We claim that f € CV|(X), ie. f € Ca,, C(X) for each m € N. Indeed, for
given m, one can select 7 := n(m) and ¢ := ¢, > 0 as in condition (B) and
then for each x € X:

(@)1 ()] < ¢ max anpgo(@)1f ()] < ¢ max b, < oo,

and sup, ¢y am ()| f(z)| < 0o ¥V m € N, hence f € CV/(X) C VC(X).

In the other direction, for given (k(n)),en consider the space

F = ﬂneNCCLnJg(n) (X)
= {felC(X); Su)pgan,k(n)(x)|f(x)| = ||f|ln < o0V n e N}
x€

Clearly F' C AC(X). Observe that the norms || - ||,, do not satisfy

[l < 1 T

in general. The space F' with the norms p,(f) := maxj<,<, ||f(2)|], is a
Fréchet space because F' is continuously injected in AC(X), which has a
topology finer than the compact-open topology. By the assumption AC(X) =
VC(X) we get FF C VC(X) = ind,CV;(X), which is an (LF')-space. Mor-
ever the inclusion has closed graph because VC'(X) is continuously included
in AC(X). By Grothendieck's factorisation theorem there is [ such that
F C CVi(X), and the inclusion is continuous. This implies ¥ m 3 7,¢ > 0
such that, for each g € F,

(% * *) su)péaml(a:)\g( x)| < clmax sup n oy (@) |g(2)].
Te SNEA g
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Suppose J xg € X with

Am (o) > a > cllgfligxﬁ A Jo(n) (T0).-

By continuity one can find a compact neighbourhood Wy of zy with

¢ max_ a,pm)(r) < a Vo e W,.
1<n<n

Select p € C'(X, [0, 1]) with suppy C Wy and ¢(zg) = 1. Clearly ¢ € F. We
apply (% * %) to conclude

(7o) = am1(70)|p(T0)| < SUP G (2] 0 ()]
Te
< <
< e max sup an i (2)|p(2)] < ¢ max, sup U () ()
< a.
This is a contradiction. Hence condition (B) holds. O

Theorem 1.66. If the sequence A satisfies condition (B), then the space
AoC(X) equals VoC(X) algebraically. If each (Ay)o(X) is complete, which
is equivalent to A, = (an)ren regularly decreasing for each n € N, then the
converse is also true.

Proof. First we show that from condition (B) it follows that A,C(X) =
VoC'(X) holds algebraically. VyC(X) C AoC(X) holds in general (see 1.63).
Now let the sequence A satisfy condition (B). Choose f € AyC(X). Then
after the definition of A¢C(X) it follows that: Vn € N3 k(n) e NV e >
0 3 K(¢) C X compact:

() g (@)|f(2)] <e Ve X\ K(e)

For given (k(n)),en we can apply condition (B) to find [ such that for each
m there exist n = n(m),c= ¢, >0:

Ay < € Max a .
m,l > 1<nen n,k(n)

We claim that f € C(V))o(X), i.e. f € Clamu)o(X) for each m € N. Let
e > 0 be given. For fixed n € N;1 < n <, by (+) there exists k(n) such
that for € := £ there exists a compact set K,, C X with

an o) (@) | f(2)| LEV 2 € X\ K,
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Then
am ()] f (@) < € max. ap (@) f(2)] < g =

for all z € X \ K with K := U"_, K,,, which proves our claim.

Now let all (A,)oC(X) be complete and let A,C(X) = VoC(X) hold al-
gebraically. We have to show condition (B). Similarly to the proof of 1.65,
for given (k(n))nen we define Fy := MyC(@pkn))o(X) and use the same ar-
guments to conclude that condition (B) is satisfied. O

Corollary 1.67. If all (A,)oC(X) are complete, then AyC(X) = VoC(X)
holds algebraically and topologically if and only if the sequence A satisfies the
conditions (B) and (w@Q).

Proof. When A,C(X) = V,C(X) holds topologically, then the space AqC(X)
is ultrabornological as an (LF)-space. With theorem 1.48 it follows that the
sequence A satisfies condition (w@), and condition (B) follows from 1.66.

Now let A satisfy condition (w@). With theorem 1.48 it follows that A4,C'(X)
is ultrabornological. As an (LF')-space VoC(X) is webbed. Define id :
VoC'(X) — ApC(X), which is a continuous embedding. With de Wilde’s [47]
closed graph theorem it follows that id™" : AoC(X) — VoC/(X) is continuous.
So we have a topological isomorphism between AoC(X) and VoC(X). O

1.9 An example in the case of sequence spaces

Before we can illustrate the previous results with an example in the case
of sequence spaces we have to introduce Kothe sequence spaces and some
of their properties. For the definitions and notations see Bierstedt, Meise,
Summers [15]. Some further results which are needed here were given by
Bierstedt, Bonet [5], [4].

Definition 1.68. Let A = (a,)neny be an increasing sequence of strictly
positive functions on some index set I; A is called a Kéthe matrix. In the
following example we chose I = N and omit it from our notation.

We define the Kothe echelon spaces of order p,1 < p < oo or p = 0, as
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follows:

M(A) = {z e K ||z]l, = O |rian())P)/? <00 ¥ n € N}, 1 < p < oo,
=1

Ao(A) = {x € IKY;||z]|, := sup |z]a,(i) < oo ¥V n € N},
€N

M(A) = {zx € Ao(A); lim x;a,(i)) =0V n e N}

Ap(A) = proj,ly(an(i)), 1 <p < oo,

Ao(A) = proj,,co(an(i))
algebraically and topologically.

For every Kothe matrix A, the spaces A\, (A), 1 < p < oo and p = 0, are
Fréchet spaces.

Taking V' = (v,(7))nen to denote the associated decreasing sequence of func-
tions v, (i) = ﬁ(i), we put

ky(V) = ind;l, (v, (7)), 1 <p < o0,
and
k’Q(V) = md,co(vn(z))

These are Kothes‘s co-echelon spaces. Define

V=Ao(A); ={v€ (R)Y;sup Ui, < oo for each n € N}
ieN Un (%)

and B o
Kp(v) = /\p(v) = proj@evlp(ﬁ)
for 1 < p < oo as well as
KO(V) = Projge¢o(0).

Remark 1.69. (Bierstedt, Meise, Summers [15], 1.5) k,(V') is continuously

embedded in K,(V).

44



Let E, F be locally complete locally convex spaces. L,(FE, F') denotes the
space of all continuous linear mappings from E to F', endowed with the strong
topology. For V and a locally convex space F, it is clear how K (V, E) is
defined.

Proposition 1.70. [5] Let E denote a locally complete locally convex space.
Then there is a canonical topological isomorphism

KooV, E) = Ly(M(A), E)

of K (FE) onto the space of all continuous linear mappings from A1(A) into
E, endowed with the topology of uniform convergence on the bounded subsets

of M(A). In particular, Koo (V) = (A (A)); (see [15],2.7).
Now we come to the main example:

Example 1.71. Let B = (bi(i))ken,? € N and C = (¢y(j))nen,j € N
be Kéthe matrices. Consider the space Ly(A1(B), A(C)). We can write
M (B) = projili(bg(i)) and Ao (C) = proj,le(cn(j)). Suppose that A\ (B)
is distinguished, which holds if and only if (by(7))ren satisfies condition (D)
(see [4], 6.). Bierstedt, Meise, Summers (see [15], 2.8) proved that A\;(B) dis-
tinguished is equivalent to (A (B))g = koo (W). With this result and taking
W = (wi,(7) ) gen, wi(7) := bp(z)~!, we obtain that

AM(B)y & koo(W) = indgloo (wi(4)).
Now we have Ly(A\(B), A(C)) = proj.Ly(A(B),l(cn(j))). Since A\i(B)

is distinguished, Ly(A(B),ls(cn(j))) is ultrabornological (see [5]) and by
Bierstedt, Bonet ([4], 6. and 7.)

Ly(M(B), loo(cn(5))) = indgLy (L (0k (7)), los(cn (7))
indploo (Wi (2), Lo (cn(3)))
indyl (wk(l) ® Cn(]))'

12

holds. This implies that

L0 (B), Ax(C)) = profindlc (i) & €0 (1)
holds algebraically and topologically. If A\j(A) is distinguished, the space
Ly(M(B), A(C)) is of the form AC(X) with X = N x N and a, (7, j) ==
bkl(i) ®cn(j). An easy argument shows that the isomorphism above induces a

linear isomorphism between the space LB(A1(B), Aso(C)) of bounded linear
maps and VC(X) = indgproj,, Ca, x(X).
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Corollary 1.72. If A = ((ank)nen)ken is defined by a, x(1,7) = bk(@) ®cn(g),
i,7 € N, and satisfies condition (Q), then the space Ly(A1(B), Ao(C)) is
barrelled.

Proof. For a general (PLB)-space AC(X) we have proved in theorem 1.52
that condition (Q) is satisfied if and only if Proj'A = 0. With the general
theory of (DF')-spaces (see theorem 1.34) it follows that Ly(A1(B), Aoo(C))
is barrelled. O

Corollary 1.73. If Lb()\l(B),)\oo( )) is barrelled, then A = ((ank)nen)ken
defined by a, k(i,7) = m (Z ®cn(f), 1,7 €N, satisfies condition (w@Q).

Proof. With corollary 1.60 from AC/(X) barrelled it follows that the space
AoC(X) is quasibarrelled (corollary 1.60). Again with the general theory
of projective spectra of (LB)-spaces (see [43]) this implies that AqC(X) is
barrelled, and condition (w@) follows with theorem 1.48. O

46



2 Weighted spaces of holomorphic functions
on the half-plane

2.1 Introduction to part 2

The second chapter of this work deals with weighted Banach spaces of holo-
morphic functions on the upper half-plane G. Let v : G — R, be a strictly
positive, continuous function (weight). The space Hvy(G) is defined as fol-
lows:

Hvy(G) :={f € H(G);v|f] vanishes at infinity on G}.

This chapter is motivated by a question of Bierstedt [3]. In a survey about
weighted inductive limits of spaces of holomorphic functions he asked if the
space Hvy(G) has the approximation property under some conditions of Holt-
manns [25]. The problem remains open in general, but we give a positive
answer for weights with two additional conditions. Actually we can then
even show the existence of a basis.

In section 2.2 we give the necessary notation and an overview about results
for weighted spaces of holomorphic functions on certain domains. The main
result (theorem 2.13) is given in section 2.3. Next, in section 2.4, we present
some preparations before we give the proof of theorem 2.13 in section 2.5. In
the last section we give some examples for the weights.

An article similar to this part, except for section 2.2, is accepted for pu-
plication in Bull. Soc. R. Sci. Liege.
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2.2 Notation and known results

Let G C Cor CN,N €N, and v : G — R, be a weight on G, i.e. a strictly
positive, continuous function. Define

Ho(G) == {f € H(G); |[fllo:= supv(2)[f(2)] < o0},

2€G
Huvo(G) :={f € H(G); vf vanishes at infinity on G}.

Huy(G) is a closed subspace of Hv(G), and both spaces are complete, hence
Banach spaces, where Hvy(G) carries the induced norm.

The unit balls of these spaces are denoted as follows:

B :={f € Hu(G);supu(z)|f(z)] <1},

zeG
By:={f € Hvo(G);sggv(zﬂf(z)] <1}

In 1993 Bierstedt, Bonet, Galbis [10] investigated weighted spaces of holo-
morphic functions for radial weights v on balanced domains G and proved
the metric approximation property of Hvy(G) if Hvo(G) contains the poly-
nomials. For starshaped domains and admissible weights Kaballo and Vogt
[27] had already proved the approximation property by a different method.
More recently Stanev [40] studied weighted spaces of holomorphic functions
on the upper half-plane. He gave a characterisation when these spaces are not
trivial. In her thesis Holtmanns [25] investigated biduals of weighted spaces
of holomorphic functions on the upper-half plane GG. She introduced natural
conditions on the weight v such that Hug(G)” and Hv(G) are isometrically
isomorphic. We now present some more details of the results mentioned so
far.

Definition 2.1. A Banach space X has the approzimation property (a.p.) if
for any compact subset M C X and any € > 0 there is a linear finite rank
operator L : X — X with ||Lx — z|| < ¢ for every x € M. If there is A > 1
such that in addition L can always be chosen with [|L|| < A, then X has the
bounded approximation property (b.a.p.). If X can be chosen to be 1, one says
that X has the metric approximation property (m.a.p.).

48



Definition 2.2. Let G be a starshaped bounded open set around zero in C¥,
which means that G C G, := {z € CV;pz € G} for 0 < p < 1. A weight
v: G — Ry with lim,_sc v(z) = 0 is called admissible if v(z) < v(pz) holds
forall z€e Gand 0 < p <1.

Kaballo, Vogt [27] presented the following result in 1980:

Theorem 2.3. Let G C C be a starshaped bounded open set around zero
and v : G — Ry be an admissible weight on G. Then Huvy(G) has the
approximation property.

The theorem was proved by use of the operator T, : Hvy(G) — H(G,),
(T,f)(2) = f(pz). The space H(G,) has the approximation property, and
showing that for p — 1 the operator T}, tends to the identity uniformly on the
compact subsets of Huvy(G), it follows that Hug(G) has the approximation
property. This proof also shows that Hvy(G) has the bounded approximation

property if A(G) = {f € C(G); fic holomorph} has. An obvious example

for this situation is the unit disc in C, but A(G) also has the bounded ap-
proximation property for bounded balanced domains G C CV.

Definition 2.4. Let G be a balanced open subset of CV. A weight v : G — R
is called radial if v(Az) = v(z) for all z € G and all A € C, || = 1.

Theorem 2.5. (Bierstedt, Bonet, Galbis [10]) Let G be a balanced open
subset of CN, v : G — Ry be a radial weight and let Hvo(G) contain all the
polynomials. Then Hvy(G) has the bounded approzimation property, and the
polynomials are dense in Huy(G).

In the proof of theorem 2.5 the authors used the Cesaro means of the partial
sums of the Taylor series about 0 to construct linear operators of finite rank

from Ho(G) into Huy(G).

To answer the question of Bierstedt, it is not possible to use the same argu-
ments and ideas as in the case of radial weights on balanced domains.

Now let G be the upper half-plane, G = {z € C;Imz > 0}. Stanev [40]
presented conditions under which weighted spaces of holomorphic functions
on the upper half-plane are not trivial. His notation is different from the
usual one. He considered functions p : Ry — Ry with inf,c1 g p(t) > 0 for
all ¢ > 1 and the norm

11l 2= supp(ma)| £ ()]
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Theorem 2.6. (Stanev [40]) Let p : R, — R, be a function as above and
put v(z) = v,(2) = p(Imz), z € G.

i) Hv(G) # {0} if and only if there exist a,b € R such that
(=) Inp(t) >at+b
for all t > 0.

it) Huvo(G) # {0} if and only if the following two conditions on the func-
tion p are satisfied:

(a) there exist a,b € R such that (—1)Inp(t) > at + b for allt > 0,
(b) lim o, p(t) = 0.

Next we present a result of Holtmanns for weighted spaces of holomorphic
functions on the upper half-plane G and their biduals. In her proof she used
a general result of Bierstedt, Summers which we will give first.

Proposition 2.7. (Bierstedt, Summers [16]) If By is dense in B in the
compact open topology , then Hv(G) is isometrically isomorphic to the bidual
HUQ(G)H.

Theorem 2.8. (Holtmanns [25]) Let G be the upper half-plane and let v be
a continuous weight on G such that:

(i) v>0 onG,
(#1) limpy,, o v(z) =0,

(7i) there exists 0 < 1o < 1 with v(z) < wv(z +ir) for all z € G and
0<r<nrg.

Then Huvo(G)" and Hv(G) are isometrically isomorphic.

For f € Hvy(G) Holtmanns introduced auxiliary functions

1 1
(2) = —)\/——, z€G,neN
ful) = fe+ )i =0 2 € Gon
(as in the proof of the classical Phragmen-Lindel6f theorem) to prove the
condition of proposition 2.7 in her case. The operators f — f,, on Hug(G)
will be important for the proof of our main result, too.
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2.3 Commuting b.a.p. and the main result

While we tried to solve the problem of Bierstedt, it turned out that two
additional conditions on the weights were needed. With these conditions
and a result of Lusky [30] it was even possible to show the existence of a
basis.

Definition 2.9. Let X be a Banach space. A sequence (e;)jey is called
Schauder basis of X if for each x € X there is a uniquely determined sequence
(&(2))jen in IK, for which x = 377% | ;(w)e; is true.

Definition 2.10. Let X be a Banach space. A sequence of bounded linear
operators V,, : X — X of finite rank is called commuting approrimating
sequence (c.a.s.) if lim, o Voo = @ for each z € X and V,V,, = Vinin(n,m)
whenever n # m. If there exists such a sequence (V,),eny on X, then X
is said to have the commuting bounded approzimation property (CBAP). If
ViVin = Vinin(n,m) holds, in addition, even for n = m then X is said to have
a finite dimensional Schauder decomposition (FDD).

Clearly, by the Banach-Steinhaus theorem (CBAP) implies the bounded ap-
proximation property. It is known that there are Banach spaces with (CBAP)
which do not have (FDD).

Definition 2.11. Let X be a given Banach space. For a fixed p with 1 <
p < oo we say that a sequence of continuous linear operators V,, : X — X
factors uniformly through [ ’s with respect to A if there are suitable integers
m, € N and continuous linear operators

Ty X =0, Syl — X,
with
Vo= SpTn, sup||T,|| < A and sup|]S,]| < A
In 1996 Lusky [30] presented the following result which we will use in the
case p = 0o to show that Hvy(G) has a basis.

Theorem 2.12. Let the Banach space X have a commuting approximating
sequence (Vi )nen such that V, =V, 1 factors uniformly through I ’s for some
1 <p<oo. Then X has a basis.

From now on G is the upper half-plane. For our main result we need the
following conditions on the weight v. Let v : G — R be continuous such that
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(i) v >0 on G,
(i1) limpy, ov(z) =0,

(iii) there exists 0 < 79 < 1 with v(2) < v(z 4 ir) for all z € G and
0<r<nr,

(iv) for each € > 0 there exists b = b(¢) > 0 such that v(z) > bforall z € G
with Imz > ¢,

(v) v is bounded.

The first three conditions were introduced by Holtmanns [25]. She did not
require conditions (iv) and (v) for her work, but these conditions seem to be
necessary for our result. The following is the main result of the second part
of this work.

Theorem 2.13. Let G be the upper half-plane and v a weight on G which
satisfies conditions (i)-(v) above. Then Hvy(G) has a basis.

With theorem 2.12 above the proof of theorem 2.13 is reduced to showing
that Hvy(G) has a commuting approximating sequence {V,,}>°, such that
Vi — Vi1 factors uniformly through [7}’s.

2.4 Preparations

In the sequel some technical tools are given which are needed for the proof.
In her thesis [25] Holtmanns defined linear operators ©,, as follows:

Definition 2.14. For f € Hvy(G) let
O, : Huy(G) — Huy(G), n€ N, ©,f:=f,

. i 1
with f,(2) = f(z + E) P for z € G.

The main branch of the n-th root is well-defined since z — z%ﬂ maps G into

the set {z € C; Imz < 0 and |2| < 1}. The functions f,, are holomorphic on
G since z + 1 # 0 for all z € G.

Lemma 2.15. (Holtmanns [25]) ©,, is well-defined and continuous as an
operator from Huvo(G) into Hug(G). ©,f converges to f in the compact-

open topology, f € Hug(G), since |1n/zL+i| — 1 forn — oo.
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Lemma 2.16. Let f € Hug(G) and ©,, be as defined before. For each e > 0
there exist ng € N and a compact set K C G with v(2)|©,f(z) — f(2)] < e
for all z € G\ K and for any fired n € N,n > ny.

Proof. Let € > 0 be given. Set € = 1e. f € Hug(G) means that there exist
L>0and 0 << 5 with

v(2)|f(2)| <€V ze G\ [-L, L] xi[l, L].

Set K :=[—L, L] x i[$,L]. For all z € G\ K the following inequality holds
for n € N large enough such that condition (iii) can be applied:

V@O = ()] £ vEfal) = F+ DI+ I+ 2) = [(2)])
< <z>|f<z+i’>%% (= + 1)l
Fof+ D+ v )
<

v+ DIfE+ DIlyE -1
oz + DI+ DI+ eI

Let us now show that v(z + )| f(z 4+ £)| < & for n € N large enough. Two
cases are possible:

Case 1: [Rez[ > L or Imz > L. Thenz ¢ K= z24++ ¢ K= v(z+2)|f(z+
Dl <é

Case 2: Imz < L L and |Rez| < L. Then there exists no € NWlth < L for
allnENn>n0 z+i=a+4ily+ i) withy+l <l +7i_[
:>Im(z+n)<l=>v(z+n)|f(z+n)|§6

On the other hand, sup..q|{/75| = sup.eq ,"/ﬁ = 1 Vn € N since

|z 44 > |Imz| +1>1Vz € G, and hence |1 — ¢ z—H\_

Using these two estimates in the right hand side of the above inequality
yields

(LN

v()Onf(2) - f(z)| <26 +E+E<e
for each z € G\ K. O

Corollary 2.17. With lemma 2.15 and lemma 2.16 it follows that for f €
Huvo(G) and for each € > 0 there exists ng € N such that ||©,f — f|], < ¢
for any fired n € N,n > ny.
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Next we define the space Ay(G), extend the operator ©,, to G and show that
fn maps Hug(G) to Ag(G) and that there exists a restriction mapping back
to Hug(G).

Definition 2.18. Define

Ao(G) = {feC(G)fic e HG), Vn>03INeR,:
[f(2)| <nVzeG,lz[ = N},

endowed with the sup-norm and extend O, f continuously to G by taking
(Onf)(x) = flx+ ) §/ 75 for z € R.

Lemma 2.19. For each f € Hug(G) and each n € N we have O,,f € Ay(G),
i.e. there exists a linear mapping

Rn : H’U()(G) — Ao(G), Rnf = fn ¥V neéeN.

Proof. Let f € Hug(G) and n € N be fixed. Set ¢ = +. With condition (iv)
for the weight v there exists b = b(=) > 0 with v(z) > b for all z € G with
Imz > e. Then for each z € G, also v(z + £) > b holds. Now fix n > 0.
f € Huy(G) means that for 7 := 7 - b there exists N > 0 such that

F+ Do+ 2) <

for all z € G with |z|] > N. Then for f, and such a z € G the following
estimate holds:

1) = 1fE+ DI 5
= e+ DG+l =
hence f, € Ay(G). O

Lemma 2.20. The restriction mapping
R: Ao(G) — Huo(G), f— fia

1s well-defined and continuous.
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Proof. Fix f € Ay(G). By condition (v), v is bounded, i.e. there exists
M > 0 with v(z) < M for all z € G. Let n > 0 be arbitrary, but fixed. Set
n' = 5. For i there exists NV > 0 such that |f(z)| <’ for all z € G with
|z| > N. Then v(2)|f(2)] < M4} = n for all z € G with |z| > N. Define
L := N +1. By condition (ii) we can extend v continuously to G by putting
0(z) := v(z) for z € G and 9(z) := 0 elsewhere. ¥ is uniformly continuous
on K := [—L, L] x i[6, L] for each § > 0. f is bounded on K which means
that there exists S > 0 such that |f(z)] < S forall 2 € K. Fore:={ >0
there exists § > 0: 2,2/ € K,|z — 2| < d = |0(2) — 9(2')| < e. We would
like to show that v(2)|f(z)| < n for all z ¢ K. The desired inequality holds
if |2| > N+ 1. Let z=x+ iy ¢ K and consider 0 < y < § and |z] < N + 1.
We get |z — 2| = |[v — 2 —iy| = |y| < 0 and 0(2) = 0(z) — 9(v) < e = &,
hence v(2)|f(2)] < &S =nforall z ¢ K. O
Lemma 2.21. The sequence (Ry)nen of linear mappings R, : Huvy(G) —
Ao(G) is uniformly bounded.

Proof. For n > ng large enough so that condition (iii) can be applied, we get

i 1
1Ruflle = Wl = sup £u(2)I0(:) = sup £z + ) {f == o(2)
1 1 1
< _ _ n
< swplf(e+ Do+ DI 5

IN

1o
U
In the next step we define the disc algebra A(D), the space Ay(D), repeat

some properties of these spaces and show the existence of an isometric iso-
morphism between Ay(D) and Ay(G).

Definition 2.22. Let D be the open unit disc, D := {z € C; |z| < 1}. Define
the disc algebra

A(D) :={f € C(D); fp is holomorphic},
and the space
Ao(D) :=A{f € A(D); f(1) = 0}.

Because the polynomials are dense in the disc algebra one can write Ay(D)
as

Ao(D) =span{z’ —1; j =1,2,..}.
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Bockarev [17] showed in 1974:

Proposition 2.23. The disc algebra A(D) has a Schauder basis and therefore
the bounded approrimation property.

Proposition 2.24. Aq(D) has the bounded approximation property.

Proof. By proposition 2.23, A(D) has the bounded approximation property.
p: A(D) — Ao(D),p(f) = f— f(1),f € A(D), is a bounded projection
onto Ag(D). Because of this, Ag(D) is complemented in the disc algebra and
inherits the bounded approximation property from A(D).

]

Proposition 2.25. There exists an isometric isomorphism T between Ag(QG)
and Ay(D).

Proof. Compare [39], p. 81. Define a: G — D,a(z) :== L for 2 € G. ais a
linear fractional transformation of the upper half-plane GG onto the unit disc
D. The inverse mapping of ais f: D — G, f(w) := i}fg,w € D. For each

¢ > 0, o maps the half plane Imz > c onto the disc {w; |w — ;%[ < ﬁ ,

and o maps the line Imz = ¢ onto the circle {w; |w — & | = i} with the
point 1 deleted, also 5(1) = oo and a(oc) = 1. Now we can define

T:A(G) — Ao(D) as Tf := foa,fe Ay(G),
which is an isometric isomorphism from Ay(G) onto Ay(D). O

From now on we are following a method of Lusky (see [29]) to construct a suit-
able commuting approximating sequence (V;,)nen, Vi @ Hug(G) — Huo(G)
such that V,, — V,,_; factors uniformly through [7’s.

Definition 2.26. Let H(D) := {f : D — C; f continuous, fjp harmonic}
endowed with the sup-norm and let f € H(D) have the Fourier series

fre®) =302 agrlkleite,
Define V,, : H(D) — H(D) as

¥ io\ . |k| Jike 2nH — |k| |k| Jike
(Vof)(re?) = Z agr'te™ 4 Z —— e,
k|<2n 2n < |k|<2n+1

V,, is the convolution with the de la Vallée Poussin kernel which is defined as

Vi (2) i = 2Fon+1(2) — Fan(2),
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where F,(z) is the Fejér kernel
For(z) =) (1— @)ei’w.
on

and V,, : Ag(D) — Ap(D) as

an = an - (an)(l) ’ 22”’ f € AO(D)

Lemma 2.27. For the Fourier series f = Eakr“‘“‘eik“" we define the Cesaro

means o, : H(D) — H(D) by o,(f) = ngzn M agrFleite cf. [24],
Then

20041(f) = ou(f) = Va(f)
holds for each n € N.

Proof. By calculating we obtain

ontl _ | . 2" — |k ,
- 9 Z 2n+1‘ ‘akrwﬂelkg@_ Z Qn‘ ‘&kT\Mezkip

k] <21 [k <2n
2n L — k| 2"Jr1 k| 27—k 4
— E : | i T,\k| ik + E : | | | | &kr|k\€zkip
2n 2n
2”<|k\§2”+1 |k|<2n
k 2n+1 on )
_ § : | |a T‘kl ike + E akrvﬂezkgp
2n<|k|<2ntl |k| <27
2n+1 — |k ) )
_ E o | |akr\k|ezk<p + E akr\lﬂezkcp
2n<|k|<2ntl |k|<2m
= Vn(f)

]
Lemma 2.28. For f € Ay(D) and V,, defined as before, the following holds:
(1) lim, .o Vo, f = f for each f € Ay(D),
(ii) dim V, Ao(D) < oo,
(iii) ViV = Vininnum), if 1 # m.
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Proof. (i) and (ii) follow immediately from the definition of V,, respectively

of V,, and lemma 2.27 because the Cesaro means are convergent to f in

A(D). To show (iii), we first prove Vi Vin = Vmin(mm), for n # m. For m > n,
f/m =V, follows directly from the definition. V,z¥ = 0 if k& > 27*! and
=Yk =2k if k< 2n < 2m,

<z

<

— V’!L
-- \7m,m >n

--------------------

2™ 27" 2n 2m

For n > m one can use the same arguments to ~get f/nf/m = Vm. To show
the desired equation for V,,V,,, set W, (f) = —(V,f)(1)2z*". For m > n we
obtain:

ViVin(f) = (Vi W) (Vi + Wi (f)
= (ViVin + VWi + W, Vi, + W Wi, )(f)
= Valf) = Va((Ve ) (1)) = Va (Vi ) (1) 22" = Wi (Vi f)(1)22")

( "

() = (VY Va(2") = (V) (1)
= f/n(f
= Vn(

In the case m < n one uses the same arguments and obtains V,,V,,, = V,,. U

Lemma 2.29. For trigonometric polynomials >, ar!Flet*? define

P(E ayrMethe) = E oy Flethe
k

k>0

with generally unbounded P. Then

() = e o, (e f) - l62‘2"71“"0%1(6*1'2”71%",7'?).

PV, -V,

( 2

Hence P(f/ ~n 1) 18 a continuous linear operator and the same then holds
for P(V, 1)
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Proof. By some calculations we get

P(Vn — Vo) (f)

on— 1
= E arFets — E arFets
2n
on k‘ 2n+1 )
— g = = ket 4 E akrke’k“"
k=2n—141 k=2"+1
on on
) omn _ L 2n+1 )
— E akrke”w — E 1 ——ayr keike 4 E akrke’k“"
k=2n—141 k=2n—141 k=241
on gnt1
—k 2n+1 k )
— E (1 EiT= agprfes + E T agrret™®
k=2n—141 k=241
2’7’L
k — 2"* 2n+1
— E T == aprettv 4 E Ozkrkelk“’
k=2n—141 k=2n41
and
2" —i2" @ 1 i2n—ly —g2n—l
€ n( f) 56 On— (6 )
2" — |k — 2™ , 1 o=l | —on-t
— E —|2n |ak'rke”““’ — 5 E 2|n_1 |a rFeike
lk—2n| <2 [—2n—1|<gn—1
2" — |k — 2™ ~ 1 =l | —on—l
= E —|2n ‘akrke”“" — = g 2|n1 ‘oz rketke
0<E<L2n+1 0<k<2n
2 on _on 4}, A TR
_ B k _ike B k_iko
= E o orve”” + E T on ogrre
k=0 k=2n+1
on- on
2n—1 _ 2n—1 + k ) 2n—1 —k + 2n—1 )
— E agrFe® — E aprkee
2n 2n
k=0 k=2n—141
on gl
2n+1 —k
= E 2—nakrkem + E ——ayrte’?
k=0 k=2n+1
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on— 1 on

2" — k ,
— E —a rkethe — E agrretts
2n

k=2n—141
on gntl
kK 2"—k ik 2mtt — ko
= E — — aprfet*? 4 g 70%7“6“"
2n 2n 2n
k=2n—141 k=2n+1
on ontl
k—2"+k 2mt — ;
= E — aprfet? 4 E 70%7“]“6”“"
k=2n—141 k=2n+1
271/
L — 2n 1 27l+1 .
= E = Y Al E ak'r’kem.
k=2n—141 k=2n+1

U
Proposition 2.30. V,, — V,,_; factors uniformly through I ’s on Ay(D).

Proof. By the definition of the Cesaro means, [|o,[| = 1 holds for all n € N;
again cf. [24]. With lemma 2.27 we obtain ||V,|| < 3 for all n € N . Hence
(V3.)n is uniformly bounded. C'(9D) is a L-space, and it is well-known that
H(D) is isometrically isomorphic to C(0D). Hence H(D) is a Lo.-space.
There exists A > 0 such that for each n € N there is F' C H(D) with
Vi1 H(D) C F and there is an isomorphism ® : F' — [ with M = dim F <
oo and ||®][-[|®7| < A. Note that Ayg(D) C H(D). Define T,, : Ag(D) — M
by
T.f = (I)(VnJrl - Vn72)f7
and S, : (M — Ay(D) by
Sng = P(Vn - Vn—l)q)_lg - (P(Vn - Vn—l)q)_lg)(l)'
We have sup,, ||S,|| < oo, sup, ||7,|] < co and
SnTn(f) = Sp@(Vias1 = Vaoo) f
= P(Vn - anl)(vnﬂ — V- 2)f
—(P(Va = Vit) (Vi = Va2) f)(1)

= PVo=Vo)f = (P(Va — Vn )f)(1) = (Vi = Var)f

where the last but one equality holds because of
(Vn - Vn71)<Vn+1 - Vn72) = VnVnJrl - ann72 - anlanrl + Vn71Vn72
= Vo—-"Vao Vo + Vo=V, =V,
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2.5 Proof of theorem 2.13

Before we give the proof of theorm 2.13 we will collect the results of section
2.4 in the following diagram. We have

Huo(G) L2 Ay(G) 1 Ag(D) Y25 Ag(D) T2 A(@) 25 Huo(G).

With the linear mapping
R, : Hu(G) — Ao(G),R.f = fn Vn €N,
the isometric isomorphism
T:Ao(G) — Ao(D),Tf = fop, fe A(G),
the commuting approximating sequence (V,,),
Vo1 Ag(D) = Ag(D), Vuf = Vof = (Vaf)(1) - 2%, f € Ao(D)
and the restriction mapping
R:Ao(G) = Huo(G), [ — fic-

Now we come to the proof of theorem 2.13: For a suitable sequence (m,,),en
of indices we can assume without loss of generality:

(%) Ry, RT Y (rFle — 1) = T71(rlFletke — 1) v [k < 27HL,
If (%) is not true, replace R,,, by
Ry, = R, (id—P,)+ R 'P,
(R™' = Ry,)Pu + R,

with E, := span{RT~!(rlkle?** —1); |k| < 2"}, E, C Huo(G) and P, :
Huvy(G) — E, a bounded projection. Then

Ry, RT'=(R'—R, )RT'+R,, RT'=T""!

holds on E,, but we have to show that émn is uniformly bounded. By
corollary 2.17, one can choose m; < my < ... with

1

R, RT—l |k| ikgo_]_ _T—l |k| ikcp_l <
o Rt 1) = 1 = 1) <
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for all |k| < 27*1, where w := ||[R~!|z,||. By the definition of R,,, we obtain

||Rmn - RmnH - ||(R_1 - Rmn)PnH-

Let x € E,, with ||z||, = 1. One can write x as

Z apy RTH(r*leihe — 1),

‘k|§2n+l

With U := (R~ — R, ) P, one gets

|Uallo < Y Jew] - [JURT ™! (e — 1)),

|k|<an+1

Define F,, := span{(rlfle?** —1); |k| < 2"*1}. Then F, C Ao(D), RT'F, =
E, and ||(RT‘1‘Fn)_1|| < w ||T|| holds. Set W := (RT!p,)~" and note and

Wz = Z v (r*leke — 1),

|k|<2n+1
Here the Fourier coefficients can be estimated as follows:
lo| < |[Wel|[ < [[W]] - [[z]]l, = [[W]] <w [[T]].

Putting the estimates together we obtain

1B,y = B, || = sup{||Ux][o; |][o = 1}
< Yl WWORT (P Mete — 1)),
Ik <21
< 2"P2||T)| - |7 (rMete — 1) — R, RT 1 (rI*Fleie — 1))
_ il
- onllAll

Now define V,, : Huy(G) — Huo(G) by
V,, := RT"'V,, TR,,,.

Comparing the definition of V,, with the diagram at the beginning of this
section we obtain that V,, is welldefined. We claim that V,, is a commuting
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approximating sequence with V.V, = Vmin(mm) for n # m, dim V. H v(G) <
oo and lim,,_,~ an = f for f € Hug(G). Let n > m; then we have:

VoVie = RT'W,TR,, RT'V,TR,,.
= RT'W,TT 'V,,TR,,,
= RT'W,V,,TR,,,
= RT'V,TR,,,
Vin.

This holds because of () and because TT~! is the identity on Ay(D). If
n < m we obtain Van = Vn by the same arguments. In proposition 2.30 we
showed that there exist k,, T, : Ao(D) — I*» and S, : I*» — Ag(D) with
sup,, ||Sn|| < oo, sup, ||Tn|| < oo and S,T,, =V, — V,,—1. Set

T, : Hug(G) — Ik, T, := T,TR,,,
S,k — Hug(G), S,:= RT7'S,.

With (x) and the definition of V,, it follows that
(%) ViTR,,, = V,TR,,

holds for all j > n since V,,TR,,, RT ' (rl¥le?k¢ — 1) :AVnTT*I(TWe"k“’ —1)=
Vi, (r*le?k¢ — 1) for each |k| < 271, Note that sup,, ||S,|| < oo, sup,, ||Ty|| <
oo and by (xx)

A

SyT = Sn(T,TR.,)
= RT'S,T,TR,,
= RT YV, —V,_1)TR,,
= (RT™YV, — RT'V,_\)TR,,,
= RTYW,TR,, — RT'V,_\TR,, .
= Vo= Vo1
We have constructed a commuting approximating sequence V,, such that

Vn - Vn,l factors uniformly through I2’s. With theorem 2.12 it follows that
Huy(G) has a basis.
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2.6 Examples
Example 2.31. (Stanev [40])

i) Let p: Ry — R, be defined by p(t) = 1 for all t € R, and define
v(z) = v,(t) := p(Imz) for z € G. In this case Hu(G) = H>*(G) and
Huy(G) = {0}, because condition ii) of theorem 2.6 is not satisfied.

ii) Let p: R, — R, be defined by p(t) = exp(t?) for all t € R and define
v(2) = vy(t) := p(Imz) for z € G. From theorem 2.6 it follows that
Hv(G) = {0} and Huo(G) = {0}.

Example 2.32. Let G be the upper half-plane and v : G — R be defined
by v(2) := (Imz)" for Imz < 1 and v(z) := 1 elsewhere, r > 0. v satisfies the
conditions (i) - (v). Hence Huvy(G) has a basis.

Example 2.33. Let G be the upper half-plane and v : G — R be defined by
v(2) == exp(—1/(Imz)?). It is easy to see that v satisfies conditions (i)-(v).
Hence Huy(G) has a basis.

Example 2.34. Let G be the upper half-plane and v : G — R be defined
by v(z) := Imz. v satisfies conditions (i)-(iv), but v is not bounded. But
Huvy(G) has the bounded approximation property.

Proof: The idea of this construction goes back to Stanev [40]. Let the
weight w on the unit disc D be defined by w(d) := (1 — |6]?). w is ra-
dial and lims—, w(6) = 0. Hence Hwy(D) has the bounded approximation
property [10]. For f € Huwg(D) we define the operator T : Huwy(D) —
Huo(G), Tf(z) = (foB)(z)- ((1_%)2),2 € G with 3(z) = = for z € G.
3 maps the upper half-plane G onto the unit disc D. The operator T is a
topological isomorphism from Hwy(D) onto Hvy(G) [40].

For z =z + iy € G set §(z) = 2 — § and calculate 1 — |6]%:

1— |5‘2 —1_ 1+iz|2 1—izP—|1442]2  (1—i2)(142)—(1+i2)(1-2)
- 1—iz!l [1—iz|? - [1—iz|?
_ 1iz—iz 22— (1—iztiz+]2|?) 26720z
- [1—iz|? T 1—iz|?
_ 2ix2y—29x4+2y 4y
o [1—iz|? T 1—iz|?
_ 4Imz
T 1—iz|?

For f € Hwy(D) the following holds:
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f € Hw(D)

f € Hwo(D)

& (L=[0]?)?|f(8)] <00 W6 € D

< (\fiﬁg)ﬂf(}f;jﬂ <ooVzeG

S v(2)|Tf(2)| <oV 2z €G

& Tf e Hu(G) and

& [ € Hu(D), limyg_,-(1= 3] £(0)

& Tf e Hu(G), hmImZ_)O((l{%)pf(li—éj) —0
& Tf € Hu(G), limm,—ov(z)T;(z) =0

And Tf S HUQ(G)
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