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1 Weighted (PLB)-spaces of continuous func-

tions

1.1 Introduction to part 1

In the first chapter of this work we investigate the weighted (PLB)-spaces
AC(X) and A0C(X) of continuous functions, i.e. for a double sequence
A := ((an,k)k∈N)n∈N of strictly positive continuous functions (weights) with
an,k+1(x) ≤ an,k(x) ≤ an+1,k(x) ∀ n, k ∈ N, x ∈ X, we form the projective
limit (with respect to n) of the inductive limits (with respect to k) of the
weighted spaces of continuous functions Can,k(X) and C(an,k)0(X), respec-
tively.

Weighted spaces of continuous functions were introduced by Nachbin ([33],
[34], [35]). Inductive limits of weighted spaces of continuous and holomorphic
functions were studied by Bierstedt, Meise [12] in 1976. In 1982 Bierstedt,
Meise, Summers [14] investigated the projective description of weighted in-
ductive limits. They showed that the weighted inductive limit V0C(X) is
always a topological subspace of its projective hull CV 0(X) and that in
the (LB)-case V0C(X) is complete if and only if V0C(X) = CV 0(X) holds
algebraically (and topologically) if and only if the sequence V is regularly
decreasing. For O-growth conditions Bierstedt, Bonet [6] and Bastin [2] gave
a similar result in 1989: For a locally compact and σ-compact space X the
(LB)-space VC(X) equals CV (X) topologically (and algebraically) if and
only if the sequence V satisfies condition (D) (compare section 1.4.3).

The more complicated case of weighted (LF )-spaces of continuous functions
was investigated by Bierstedt, Bonet [8] in 1994. For weighted (LF )-spaces
of continuous functions they used the conditions (Q) and (wQ) of Vogt to
obtain results for the projective description.

In the following chapter we investigate the weighted (PLB)-spaces AC(X)
and A0C(X) of continuous functions for the first time. We will analyse
their topological structures and for o-growth conditions we can characterise
when the (PLB)-space A0C(X) and the (LF )-space V0C(X) are equal alge-
braically and topologically.

5



In section 1.2 we give the necessary notations and definitions for the first
chapter. In section 1.3 we collect some properties of the spaces AC(X) and
A0C(X) which follow from the general theory of Banach spaces and of their
inductive and projective limits. After that we recall in section 1.4 several
results for general (LF )-spaces: In 1.4.1, we give the definitions of acyclic
and weakly acyclic (LF )-spaces in the sense of Palamodov [36], recall the
characterisation of Retakh [38] and present the characterisation of Vogt [44]
with the conditions (Q) and (wQ) as well as some results of Wengenroth
[46]. Next, in 1.4.2 we introduce the conditions (Q) and (wQ) of Vogt in
the way Bierstedt, Bonet [8] used them to investigate weighted (LF )-spaces
of continuous functions. They reformulated them in terms of the weights,
introduced a condition (wQ∗) which is equivalent to (wQ), and constructed
many examples of which we present some here, too. At the end of this section
in 1.4.3 we collect the main results for the weighted (LB)- and (LF )-spaces
VC(X) and V0C(X) and their projective description which were proved by
Bastin [2], Bierstedt, Bonet [8] and Bierstedt, Meise, Summers [14]. Then
we present the general theory of projective spectra of (DF )-spaces in section
1.5. These results go back to Palamodov, Retakh, Vogt and Wengenroth
([36], [38], [42], [43], [45]).

After all this we are finally able to investigate the structure of the weighted
(PLB)-spaces AC(X) and A0C(X). In 1.6.1 we show for the weighted
(PLB)-spaces A0C(X) that condition (wQ) is equivalent to Proj1A0 = 0
and that it is also equivalent to A0C(X) ultrabornological (theorem 1.48).
Furthermore we prove that the projective spectrum A0 is of strong P -type if
and only if condition (Q) is satisfied (theorem 1.49). In the case of O-growth
conditions we show in section 1.6.2 that Proj1A = 0 if and only if condition
(Q) is satisfied (theorem 1.52) if and only if the projective spectrum A is of
strong P -type (remark 1.53).

Next follow the inductive description for weighted Fréchet spaces in section
1.7.1 and the inductive description in the case of weighted (PLB)-spaces
in section 1.7.2. In both cases we prove that for a locally compact and σ-
compact space X the spaces CA(X) and CA(X) resp. AC(X) are equal
algebraically (theorem 1.55 and 1.56). In the case of O-growth conditions it
was not possible to give a similar characterisation as in theorem 1.48. But
the inductive description allows us to conclude that from AC(X) barrelled
it follows that condtion (wQ) is satisfied (see corollary 1.60 and remark 1.61).
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In section 1.8 we compare the weighted (PLB)-spaces of continuous func-
tions with the weighted (LF )-spaces of continuous functions. First we give
an example which shows that these spaces are not equal in general. Then
we introduce condition (B) of Vogt and prove that AC(X) = VC(X) holds
algebraically if and only if condition (B) is satisfied (theorem 1.65). To prove
the same in the case of o-growth condtions we need the additional condition
that (An)0C(X) is complete for each n ∈ N (theorem 1.66). If all (An)0C(X)
are complete we can even prove that A0C(X) = V0C(X) holds algebraically
and topologically if and only if the conditions (B) and (wQ) are satisfied
(corollary 1.67).

We finish this chapter in section 1.9 with an example in the case of sequence
spaces which illustrates the results given above.
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1.2 Notation and definitions

Weighted (PLB)-spaces of continuous functions are defined by a double se-
quence of weights as the projective limit of the inductive limit of the single
weighted Banach spaces of continuous functions. In this work these spaces
are investigated for the first time. Taking the limits the other way round
one gets the (LF )-spaces of continuous functions which were investigated by
Bierstedt, Bonet [8]. From now on let X be a locally compact space and
A := ((an,k)k∈N)n∈N a double sequence of strictly positive continuous func-
tions on X, called weights, which is decreasing in k and increasing in n, i.e.
for each n, k ∈ N and x ∈ X

an,k+1(x) ≤ an,k(x) ≤ an+1,k(x)

holds. Define the weighted spaces of continuous functions

Can,k(X) := {f ∈ C(X) ; ||f ||n,k := sup
x∈X

an,k(x)|f(x)| < ∞},

C(an,k)0(X) := {f ∈ C(X) ; an,k|f | vanishes at infinity on X}

with continuous inclusions

Can,k(X) → Can,k+1(X) and C(an,k)0(X) → C(an,k+1)0(X)

for fixed n ∈ N.

C(an,k)0(X) is a closed subspace of Can,k(X), and both spaces are complete,
hence Banach spaces, where C(an,k)0(X) carries the induced norm. The unit
balls are

Bn,k := {f ∈ Can,k(X); an,k|f | ≤ 1},

(Bn,k)0 := {f ∈ C(an,k)0(X); an,k|f | ≤ 1}.

We form the locally convex inductive limits

AnC(X) := indkCan,k(X),

(An)0C(X) := indkC(an,k)0(X)

with An+1C(X) ⊂ AnC(X) and (An+1)0C(X) ⊂ (An)0C(X) and the pro-
jective limits

AC(X) := projnAnC(X) = projnindkCan,k(X),

A0C(X) := projn(An)0C(X) = projnindkC(an,k)0(X).
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1.3 Consequences of known results

In this section we collect known results for the weighted (PLB)-spaces AC(X)
and A0C(X) which follow from the general theory of Banach resp. Fréchet
spaces and their countable inductive and projective limits. Every Fréchet
space F as well as every Banach space E is webbed [32], which means that
there exists a family Cn1,...,nk

, n1, ..., nk ∈ N, k ∈ N, of absolutely convex
subsets of F with the following properties:

i) ∪∞
n=1Cn = F.

ii) ∪∞
n=1Cn1,...,nk,n = Cn1,...,nk

for all n1, ..., nk ∈ N and all k ∈ N.

iii) For each sequence (nk)k∈N in N there exists a sequence (λk)k∈N in ]0,∞[,
so that for every sequence (xk)k∈N in F with xk ∈ Cn1,...,nk

for all k ∈ N

the series
∑∞

k=1 λkxk converges in F .

Remark 1.1. The spaces C(an,k)(X) and C(an,k)0(X) are webbed for each
k, n ∈ N.

To show that AC(X) and A0C(X) are webbed we need some results of de
Wilde [47]:

Theorem 1.2. i) A countable inductive limit of webbed spaces is webbed.

ii) A countable projective limit of webbed spaces is webbed.

As a consequence of theorem 1.2 we get:

Corollary 1.3. The spaces AnC(X) and (An)0C(X) are webbed for each
n ∈ N. The spaces AC(X) and A0C(X) are webbed.

Fréchet and Banach spaces are ultrabornological (and hence barrelled) [32].

Remark 1.4. The spaces C(an,k)0(X) and C(an,k)(X) are ultrabornological
(and hence barrelled) for each n, k ∈ N.

Theorem 1.5. (Meise, Vogt [32]) Let the locally convex space E carry the
inductive topology of the system (ji : Ei → E)i∈I . If all the spaces Ei are
barrelled or ultrabornological, then E has the corresponding property, too.

Corollary 1.6. The spaces (An)C(X) and (An)0C(X) are ultrabornological
(and hence barrelled) for each n ∈ N.

9



In general the countable projective limit of barrelled resp. ultrabornological
spaces need not be barrelled resp. ultrabornological. Conditions under which
AC(X) and A0C(X) are barrelled resp. ultrabornological will be discussed
later.

1.4 The (LF )-case

Palamodov [36] investigated acyclic and weakly acyclic (LF )-spaces with ho-
mological tools. Retakh [38] later called them (LF )-spaces of type (M) and
(M0). In 1992 Vogt investigated these spaces with more functional analytic
tools and reformulated the conditions of Retakh. Vogt introduced the con-
ditions (Q) and (wQ) as necessary conditions for acyclic and weakly acyclic
(LF )-spaces. In this section we collect some of these results to compare them
with the (PLB)-spaces and with the results we will obtain here.

1.4.1 General results for (LF )-spaces

Let E be an (LF )-space. This means here that there is an increasing sequence
(Ek)k∈N of subspaces of E with continuous imbeddings, each Ek is equipped
with a Fréchet space topology, and E := indkEk. For each k ∈ N there is a
fundamental system (|| ||k,n)n of seminorms in Ek and we assume that

|| ||k+1,n ≤ || ||k,n ≤ || ||k,n+1

holds for each k, n ∈ N. Identifying ⊕kEk with the set {x = (xk)k ∈
∏

k∈N
Ek; xk = 0 up to finitely many k} we define the map q : ⊕kEk → E

by q(x) =
∑

k∈N
xk. σ : ⊕k∈NEk → ⊕k∈NEk, defined by σ(x) = (xk −

xk−1)k, x−1 = 0, is an isomorphism onto the kernel of q. Hence we have the
canonical exact sequence

0 → ⊕k∈NEk
σ

−→⊕k∈N Ek
q

−→E → 0.

The inverse σ−1 : ker q → ⊕k∈NEk is given by

σ−1(x) = (

k
∑

j=1

xj)k.

q is continuous and open, σ is continuous, but not necessarily open onto its
range. This means that σ−1 need not be continuous.
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Definition 1.7. (Palamodov [36]) An inductive spectrum is called acyclic
if σ−1 is continuous; it is called weakly acyclic if σ−1 is weakly continuous,
i.e. continuous with respect to the weak topologies. An (LF )-space E is
called (weakly) acyclic if it admits an acyclic resp. a weakly acyclic defining
spectrum.

Retakh [38] investigated this behaviour of an inductive spectrum and proved:

Theorem 1.8. E is (weakly) acyclic if and only if the following condition is
fulfilled: There exists a sequence Uµ of absolutely convex neighbourhoods of
zero in E, µ = 0, 1, 2, ..., such that

i) Uµ ⊂ Uµ+1 for all µ.

ii) For every µ there exists K ≥ µ such that for all K ≥ k the (weak)
topology of EK coincides on Uµ with the (weak) topology of Ek.

In the notation of Retakh [38] the condition in the acyclic case is called (M),
in the weakly acyclic case (M0). Vogt showed that the following conditions
(Q) and (wQ) are necessary for acyclicity resp. weak acyclicity.

Proposition 1.9. i) If E is acyclic, then condition (Q) holds:
∀ n ∃ m ≥ n, k ∀ µ ≥ m, l, ε > 0 ∃ L, S > 0 ∀ x ∈ En :

||x||m,l ≤ ε||x||n,k + S||x||µ,L.

ii) If E is weakly acyclic, then condition (wQ) holds:
∀ n ∈ N ∃ m ≥ n, k ∈ N ∀ µ ≥ m, l ∈ N ∃ L ∈ N, S > 0 ∀ x ∈ En:

||x||m,l ≤ S(||x||n,k + ||x||µ,L).

These conditions can be evaluated in concrete cases and are more suitable
for applications than the characterisations of Retakh.

Definition 1.10. An inductive limit E = indnEn is called regular if every
bounded subset of E is contained and bounded in some step En.

It is well-known that every complete (LF )-space is regular, but whether the
converse holds is an open problem (raised by Grothendieck), even for (LB)-
spaces.
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Definition 1.11. Let (E, t) = indn(En, tn) be an (LF)-space. The inductive
limit (E, t) is called sequentially retractive if every convergent sequence in
(E, t) is contained and convergent in some step (En, tn). It is called boundedly
retractive if for any bounded subset B of (E, t) there is n ∈ N such that B is
contained and bounded in (En, tn) and that the topologies t and tn coincide
on B. The inductive limit (E, t) is called (sequentially) compactly regular if
every (sequentially) compact subset of the inductive limit is (sequentially)
compact in some step.

Palamodov [36] showed that every acyclic (LF )-space is complete, regular
and sequentially retractive. In 1996 Wengenroth [46] showed that for a gen-
eral (LF )-space the conditions (M) and (Q) are equivalent to the properties
of being sequentially retractive, boundedly retractive, compactly regular and
sequentially compactly regular.

1.4.2 Conditions (Q) and (wQ)

Vogt [44] introduced the conditions (Q) and (wQ) for general acyclic and
weakly acyclic (LF )-spaces, but we do not need these general conditions in
the sequel. In the case of weighted (PLB)-spaces one can reformulate these
conditions in terms of the weights, as follows:

Definition 1.12. i) A sequence A = ((an,k)k∈N)n∈N satisfies condition
(Q) if and only if
∀ n ∃ m ≥ n, k ∀ µ ≥ m, l, ε > 0 ∃ L, S > 0 ∀ x ∈ X :

1

am,l(x)
≤ max(ε

1

an,k(x)
, S

1

aµ,L(x)
).

ii) A sequence A = ((an,k)k∈N)n∈N satisfies condition (wQ) if and only if
∀ n ∈ N ∃ m ≥ n, k ∈ N ∀ µ ≥ m, l ∈ N ∃ L ∈ N, S > 0 ∀ x ∈ X:

1

am,l(x)
≤ S max(

1

an,k(x)
,

1

aµ,L(x)
).

Note that condition (wQ) is always satisfied in the (LB)-case.

Bierstedt and Bonet introduced a condition similar to (wQ) which they called
condition (wQ∗).
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Definition 1.13. (Bierstedt, Bonet [8]) A sequence A = ((an,k)k∈N)n∈N sat-
isfies condition (wQ∗) if
∃ (k(ν))ν∈N ∀ n ∃ m ≥ n ∀ µ ≥ m, l ∃ L, S > 0 ∀ x ∈ X:

1

am,l(x)
≤ S max( min

1≤ν≤n

1

aν,k(ν)(x)
,

1

aµ,L(x)
).

Lemma 1.14. (Bierstedt, Bonet [8]) Condition (wQ) is equivalent to con-
dition (wQ∗).

At the end of this section we will present some examples of sequences of
weights which satisfy the conditions introduced above.

Example 1.15. (Bierstedt, Bonet [8]) Let

v : X → R, 0 < v(x) ≤ 1 ∀ x ∈ X,
w : X → R, 0 ≤ w(x) ∀ x ∈ X,

be continuous functions, r, ρ > 0 or +∞, and let (rn)n∈N, (ρk)k∈N be strictly
increasing sequences of positive numbers with rn → r and ρk → ρ. For each
n, k ∈ N we put

vn,k(x) := v(x)rnw(x)ρk ∀ x ∈ X

and V := ((vn,k)k∈N)n∈N. If ρ = ∞, then the sequence V = ((vn,k)k∈N)n∈N

satisfies condition (Q) and therefore (wQ).

Next we give an example of a sequence V = ((vn,k)k∈N)n∈N which satisfies
condition (wQ), but not (Q). First we have to define regularly decreasing
sequences in the sense of Bierstedt, Meise, Summers [14]:

Definition 1.16. Let V = (vn)n∈N be a decreasing sequence of weights on
X. V is called regularly decreasing if, for given n ∈ N, there exists m ≥ n,
such that for every ε > 0 and every k ≥ m, it is possible to find δ(k, ε) > 0
with

vk(x) ≥ δ(k, ε)vn(x) whenever vm(x) ≥ εvn(x).

In other words, V is regularly decreasing if and only if for given n ∈ N, there
exists m ≥ n such that, on each subset of X on which the quotient vm

vn
is

bounded away from zero, also all quotients vk

vn
, k ≥ m, are bounded away

from zero.
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Example 1.17. (Bierstedt, Meise, Summers [15]) Let X := N × N. The
sequence

vn(i, j) =

{

1
ji i ≤ n
1
jn i ≥ n + 1

, (i, j) ∈ N × N

is regularly decreasing, and the sequence

vn(i, j) =

{ 1
jn i ≤ n − 1
1
in

i ≥ n
, (i, j) ∈ N × N

is not regularly decreasing.

Now to the example of a sequence V = ((vn,k)k∈N)n∈N which satisfies condition
(wQ), but not (Q).

Example 1.18. (Bierstedt, Bonet [8]) Let W = (wn)n∈N be a decreasing
sequence of weights on a locally compact space X which is not regularly
decreasing. For

vn,k = 2kwn, n, k ∈ N,

V = ((vn,k)k∈N)n∈N satisfies condition (wQ), but not (Q).

Remark 1.19. (Bierstedt, Bonet [8])

(Q) ⇔ (wQ) plus the ′′countably regularly decreasing′′ condition (cRD) :

∀ n ∃ m, k ∀ µ, l, ε > 0 ∃ L, δ > 0 :

vm,l(x) ≥ εvn,k(x) ⇒ vµ,L(x) ≥ δvn,k(x).

Hence in the (LB)-case condition (Q) is equivalent to the regularly decreasing
condition.

1.4.3 The inductive limits VC(X) and V0C(X)

In this section we will give a survey on inductive limits of weighted Banach
and Fréchet spaces and their projective description. In the case of (LF )-
spaces V0C(X) Bierstedt, Meise, Summers [15] showed that the topology of
the weighted inductive limit V0C(X) can always be described by an associ-
ated system V of weights on X.

In the beginning of this section we will restrict our attention to the (LB)-
case; the (LF )-case will be treated later on.

14



For a decreasing sequence V = (vn)n∈N of strictly positive continuous func-
tions (weights) define

Cvn(X) := {f ∈ C(X); ||f ||n = sup
x∈X

vn(x)|f(x)| < ∞},

C(vn)0(X) := {f ∈ C(X); vnf vanishes at ∞ on X},

and the weighted inductive limits of spaces of continuous functions

VC(X) := indnCvn(X) and V0C(X) := indnC(vn)0(X).

The associated system V of weights was introduced by

V := {v ∈ C(X); ∀ n ∃ αn > 0, v ≤ inf
n

αnvn on X}.

The corresponding weighted spaces for V (the projective hulls) are

CV (X) := {f ∈ C(X); ∀ v ∈ V : sup
x∈X

v(x)|f(x)| < ∞}

and

CV 0(X) := {f ∈ C(X); ∀ v ∈ V : v|f | vanishes at ∞ on X}.

CV (X) and CV 0(X) are complete, and C(V )0(X) is a closed subspace of
CV (X). For the case of o-growth conditions Bierstedt, Meise, Summers [14]
showed in 1982:

Theorem 1.20. In the (LB)-case of V0C(X), the following conditions are
equivalent:

i) V = (vn)n∈N is regularly decrasing, i.e. for given n ∈ N, there exists
m ≥ n, such that for every ε > 0 and every k ≥ m, it is possible to
find δ(k, ε) > 0 with

vk(x) ≥ δ(k, ε)vn(x) whenever vm(x) ≥ εvn(x),

ii) V0C(X) is complete,

iii) V0C(X) = CV 0(X) holds algebraically (and then also topologically).
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Before we can formulate a result for O-growth conditions we have to introduce
condition (D), which was first used by Bierstedt, Meise [13] as a sufficient
condition for distinguishedness of echelon spaces. This property generalizes
the quasinormable and the reflexive case of echelon spaces. It was inspired
by a condition of Grothendieck [23], see also [15].

Definition 1.21. The decreasing sequence V = (vn)n∈N satisfies condition
(D) if there exists an increasing sequence J = (Xm)m∈N of subsets Xm of X
such that
(N, J) for each m ∈ N there is nm ≥ m with infx∈Xm

vk(x)
vnm (x)

> 0, k = nm +
1, nm + 2, ..., while
(M, J) for each n ∈ N and each subset Y of X with Y ∩ (X \ Xm) 6= ∅ for

all m ∈ N there is n′ = n′(n, Y ) > n such that infy∈Y
vn′ (y)

vn(y)
= 0.

In the following result we need the assumption that the space X is not only
locally compact, but also σ-compact. A characterisation of σ-compactness of
a locally compact space X was given by Bastin [1]. The condition (M,K) was
introduced by Bierstedt, Meise [13]. Condition (M1,K) and the continuous
domination property were defined by Bastin [1].

Definition 1.22. Let V = (vn)n∈N be a decreasing sequence of strictly posi-
tive continuous weights on X.

i) V = (vn)n∈N satisfies condition (M,K) if, for every non relatively com-
pact subset Y of X, ∀ n ∈ N ∃ ñ ∈ N such that

inf
x∈Y

vñ(x)

vn(x)
= 0.

ii) V = (vn)n∈N satisfies condition (M1,K) if, for every non relatively com-
pact subset Y of X, there is n ∈ N such that

inf
x∈Y

vn(x)

v1(x)
= 0.

iii) the family V satisfies the continuous domination property if every v ∈
V is dominated by a continuous element of V .

Proposition 1.23. (Bastin [1]) Let V = (vn)n∈N be a decreasing sequence
of strictly positive continuous weights on X. The following conditions are
equivalent:
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i) V satisfies condition (M,K) and the continuous domination property,

ii) V satisfies condition (M1,K) and the continuous domination property,

iii) the space X is locally compact and σ-compact.

Theorem 1.24. (Bierstedt, Bonet [6], Bastin [2]) Let X be σ-compact. In
the (LB)-case of VC(X) the following conditions are equivalent:

i) The sequence V satisfies condition (D),

ii) VC(X) = CV (X) holds algebraically and topologically.

It follows a collection of results for projective description in the case of (LF )-
spaces. The (LF )-spaces VC(X) and V0C(X) were defined by Bierstedt,
Bonet and investigated in [8]. The notation and the main results of this
article are given below.

For every n ∈ N let Vn = (vn,k)k∈N be an increasing sequence of strictly
positive continuous functions on X. Let V denote the sequence (Vn)n∈N and
let us assume that

vn+1,k(x) ≤ vn,k(x) ≤ vn,k+1(x)

holds for all n, k ∈ N and for all x ∈ X. Define

CVn(X) := {f ∈ C(X); ∀ k ∈ N : ||f ||n,k := sup
x∈X

vn,k(x)|f(x)| < ∞},

C(Vn)0(X) := {f ∈ C(X); ∀ k ∈ N ∀ ε > 0 ∃ K ⊂ X compact :

vn,k(x)|f(x)| ≤ ε ∀ x ∈ X \ K}.

For each n ∈ N we obtain that CVn(X) (resp. C(Vn)0(X)) is continuously
included in CVn+1(X) (resp. C(Vn+1)0(X)). The weighted (LF )-spaces of
continuous functions are defined by

VC(X) := indnCVn(X) and V0C(X) := indnC(Vn)0(X).

Remark 1.25. As an (LF )-space VC(X) (resp. V0C(X)) is webbed and
ultrabornological.
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This holds because CVn(X) (resp. C(Vn)0(X)) is webbed and ultrabornolog-
ical as a Fréchet space for each n ∈ N and because a countable inductive
limit of webbed or ultrabornological spaces is webbed or ultrabornological
(see theorem 1.2 and theorem 1.5).

In order to describe VC(X) and V0C(X) algebraically and topologically Bier-
stedt, Bonet [8] introduced the system V of weights associated with V,

V := {v ∈ C(X); v ≥ 0 and ∀ n ∈ N ∃ αn > 0, k(n) ∈ N : v ≤ αnvn,k(n)}.

The projective hulls of the weighted inductive limits are defined as follows:

CV (X) := {f ∈ C(X); ∀ v ∈ V : pv(f) := sup
x∈X

v(x)|f(x)| < ∞},

CV 0(X) := {f ∈ C(X); ∀ v ∈ V ∀ ε > 0 ∃ K ⊂ X compact :

v(x)|f(x)| ≤ ε ∀ x ∈ X \ K}.

One has VC(X) ⊂ CV (X) and V0C(X) ⊂ CV 0(X) with continuous inclu-
sions, and CV 0(X) and CV (X) are complete locally convex spaces.

The main results of [8] are that VC(X) = CV (X) holds algebraically if
and only if the sequence V satisfies condition (wQ), and that the (LF)-space
VC(X) is also complete if and only if the sequence V satisfies condition (wQ).
In the case of o-growth conditions it was proved that V0C(X) = CV 0(X)
is equivalent to V satisfying condition (Q), and that this is equivalent to
V0C(X) complete.

1.5 Known results of projective spectra of (DF )-spaces

Before we can investigate the structure of the (PLB)-spaces AC(X) and
A0C(X), we need some general results about projective spectra of (DF )-
spaces. All the following results go back to the work of Palamodov [36],
Retakh [38], Vogt [42],[43], and Wengenroth [45].

Definition 1.26. A projective spectrum X is a sequence (Xn)n∈N of linear
spaces (over the same field of real or complex numbers) and linear maps
ιnm : Xm → Xn for n ≤ m, satisfying

ιnm ◦ ιmk = ιnk for n ≤ m ≤ k and ιnn = idXn
.

Write X = (Xn, ι
n
n+1)n∈N.
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Definition 1.27. For X = (Xn, ιnn+1)n∈N set:

Proj0X := {(xn)n∈N ∈
∏

n∈N

Xn; ιnm(xm) = xn ∀ n ≤ m},

Proj1X :=
∏

n∈N

Xn/B(X ),

where

B(X ) = {(an)n ∈
∏

n∈N

Xn; ∃ (bn)n ∈
∏

n∈N

Xn such that an = ιnn+1bn+1 − bn}.

There is a natural exact sequence of linear spaces:

(∗) 0 −→ Proj0X ↪→
∏

n∈N

Xn
σ

−→
∏

n∈N

Xn
q

−→Proj1X −→ 0,

where σ : (xn)n∈N → (ιnn+1xn+1 − xn)n∈N and q is the quotient map.

In the case of a projective spectrum X = (Xn, ιnn+1) of (LB)-spaces every Xn

has the form Xn = ∪kXn,k where Xn,k is a Banach space with a norm || · ||n,k,
and Xn carries the locally convex inductive limit topology of the Xn,k. ιnn+1

is assumed to be continuous. We put Bn,k := {x ∈ Xn,k; ||x||n,k ≤ 1} and
assume that ∪k∈NBn,k = Xn and that (Bn,k)k∈N is a fundamental sequence of
bounded sets in Xn. Let X = projnXn. ιn : X → Xn denotes the canonical
projection onto the n-th component. X is called reduced if Xn = ιnX for all
n ∈ N. X is called a (DFS)-spectrum if for every k and m there exists M
such that the inclusion Xk,m ↪→ Xk,M is compact. For a locally convex space
X we denote by U0(X) the filter basis of absolutely convex neighbourhoods of
0. Palamodov and Retakh investigated under which conditions Proj1X = 0,
i.e. the map σ in the exact sequence (∗) is surjective. First Palamodov [36]
presented a sufficient condition:

Theorem 1.28. Let X be a projective spectrum and assume that each Xn

is endowed with a complete metrizable group topology such that the spectral
maps are continuous and

∀ n ∈ N, U ∈ U0(Xn) ∃ m ≥ n ∀ µ ≥ m : ιnmXm ⊂ ιnµXµ + U.

Then Proj1X = 0.
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The next result was given by Frerick and Wengenroth [22] and independently
by Braun and Vogt [19]. BD(X) denotes the set of Banach discs in a locally
convex space X.

Theorem 1.29. Let X = (Xn, ιnm) be a projective spectrum consisting of
locally convex spaces and continuous linear maps such that

∀ n ∈ N ∃ m ≥ n ∀ µ ≥ m ∃ B ∈ BD(Xn) ∀ M ∈ BD(Xm)

∃ K ∈ BD(Xmu); ιnm(M) ⊂ ιnµ(K) + B.

Then Proj1X = 0.

Palamodov gave a characterisation in the case of a projective spectrum of
Fréchet spaces by showing that then the condition in theorem 1.28 is also
necessary. Compare also Wengenroth ([48], 3.2.8).

Theorem 1.30. For a projective spectrum X consisting of Fréchet spaces
and continuous linear maps the following conditions are equivalent:

i) Proj1X = 0,

ii) ∀ n ∈ N, U ∈ U0(xn) ∃ m ≥ n ∀ µ ≥ m : ιnmXm ⊂ ιnµXµ + U.

In the case of projective spectra of (LB)-spaces Retakh gave a necessary and
sufficient condition for Proj1X = 0. Compare also [48], 3.2.9.

Theorem 1.31. For a projective spectrum X of (LB)-spaces, Proj1X = 0
holds if and only if there is a sequence of Banach discs Bn ⊂ Xn such that

i) ιnmBm ⊂ Bn for all n ≤ m,

ii) for every n there is m ≥ n such that for each µ ≥ m
ιnm(Xm) ⊂ ιnµXµ + Bn holds.

Vogt (see [42], theorem 4.4, proposition 4.5, theorem 5.7) reformulated these
results and introduced condition (P ).

Theorem 1.32. For a projective spectrum X of (LB)-spaces, Proj1X = 0
holds if and only if the following holds:
(P) ∃ (k(ν))ν∈N ∀ n ∈ N ∃ m ≥ n ∀ µ ≥ m ∃ S:

ιnmXm ⊂ ιnmXµ + S

n
⋂

ν=1

(ινn)−1Bν,k(ν).
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Proposition 1.33. The following is necessary for (P ):

∃ (k(ν))ν∈N ∀ n ∈ N ∃ m ≥ n ∀ l, µ ∃ L, S :

ιnmBm,l ⊂ S(ιnµBµ,L +
n

⋂

ν=1

(ινn)−1Bν,k(ν)).

In [42], 5.7 Vogt showed the connection between the projective spectrum X
and the topological properties ultrabornological resp. barrelled for its pro-
jective limit.

Theorem 1.34. For a projective spectrum X of (LB)-spaces the following
holds: If Proj1X = 0, then X = projnXn is ultrabornological (and hence
barrelled).

The following properties were defined in [43]:

Definition 1.35. For a projective spectrum X let

(P1) ∃ k ∀ n ∃ m ∀µ, l ∃ L, S : ιµmBm,l ⊂ S(ιµnBn,k + Bµ,L),

(P2) ∀ n ∃ k, m ∀ µ, l ∃ L, S : ιµmBm,l ⊂ S(ιµnBn,k + Bµ,L).

Of course (P1) is stronger than (P2). A weak variant of condition (P2) was
defined by Wengenroth [45].

Definition 1.36. Let X = (Xn, ιnm) be a projective spectrum and B(Xn) the
family of all absolutely convex bounded sets. Then
(P3) ∀ n ∈ N ∃ m ≥ n ∀ µ ≥ m ∃ B ∈ B(Xn) ∀ M ∈ B(Xk) ∃ K ∈
B(Xµ), S > 0 :

ιnm(M) ⊂ S(ιnµ(K) + B).

Vogt turned the conditions (P1) and (P2) into inequalities by means of duali-
sation. The following notation was used: Let jm

n : X ′
n → X ′

m be the transpose
of ιnm for n ≤ m. For y ∈ X ′

n set

||y||∗n,k = sup{|y(x)| : ||x||n,k ≤ 1}

with

||y||∗n,k ≤ ||y||∗n,k+1,

||y||∗n,k ≥ ||jk+1
n y||∗n+1,k.
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For a reduced spectrum X we identify X ′
n with X∗

n := jnX ′
n ⊂ X ′, where jn

is the transpose of ιn. Then X∗
n ⊂ X∗

n+1 holds for each n ∈ N and we obtain
an imbedding spectrum of Fréchet spaces. By X∗ we denote the dual space
X ′ equipped with the inductive topology. X ′

b denotes X ′ equipped with the
strong topology. The map id : X∗ → X ′

b is continuous.

Definition 1.37.

(P ∗
1 ) ∃ k ∀ n ∃ m ∀ µ, l ∃ L, S > 0 ∀ y ∈ X∗

n : ||jm
n y||∗m,l ≤ S(||jµ

ny||∗µ,L+||y||∗n,k),

(P ∗
2 ) ∀ n ∃ k, m ∀ µ, l ∃ L, S > 0 ∀ y ∈ X ′

n : ||jm
n y||∗m,l ≤ S(||jµ

ny||∗µ,L+||y||∗n,k).

Condition (P1) and (P ∗
1 ) are not equivalent in general. The same holds for

(P2) and (P ∗
2 ). An example for this was given by Dierolf, Frerick, Mangino

and Wengenroth [20]. They constructed a projective spectrum of (LB)-
spaces of ”Moscatelli type” which satisfies the conditions (P ∗

1 ) and (P ∗
2 ), but

neither (P1) nor (P2). On the other hand, with duality theory and the bipolar
theorem it follows:

Remark 1.38. (Vogt [43]) For (DFS)-spectra the conditions (P ∗
1 ) and (P ∗

2 )
are equivalent to (P1) and (P2), respectively.

Theorem 1.39. (Vogt [43]) Let X be a (DFS)-spectrum. The following
implications hold:

i) (P1) ⇒ Proj1X = 0 ⇒ (P2),

ii) (P ∗
1 ) ⇒ Proj1X = 0 ⇒ (P ∗

2 ).

Now assume that X is reduced and consider the inductive spectrum X ∗. For
a reduced spectrum Vogt (see [42] corollary 5.10, theorem 5.11) showed:

Corollary 1.40. If X is barrelled and X is reduced, then
(P ∗

2 ) ∀ n ∃ k, m ∀ µ, l ∃ L, S > 0 ∀ y ∈ X ′
n :

||jm
n y||∗m,l ≤ S(||jµ

ny||∗µ,L + ||y||∗n,k)

holds.

Theorem 1.41. If X is reduced, the following implications hold:

Proj1X = 0 ⇒ X∗ is regular ⇒ (P ∗
2 ).
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(P ) ⇔ Proj1X = 0

⇓

X ultrabornological ⇒ X barrelled

⇓
X ′ sequentially complete
(quasi complete)

⇔

⇒

Every bounded set in X ′ is contained
and bounded in some X∗

n.

⇓ ⇓

X bornological

⇓
X ′

b complete

⇒ X quasibarrelled

⇓
X ′

b sequentially complete
(quasi complete)

⇒

⇒

Every bounded set in X ′
b is contained

and bounded in some X∗
n.

⇓

X∗ regular

⇓

(P ∗
2 )
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For a reduced spectrum X the implications between the properties discussed
in this section are collected in the previous scheme. All these implications
were shown by Vogt in [42] and [43].

Asking under which conditions the map

σ :
∏

n∈N

Xn →
∏

n∈N

Xn, σ((xn)n∈N) = (ιnn+1xn+1 − xn)n∈N

in the exact sequence (∗) is not only surjective, but also every bounded set
in

∏

n∈N
Xn is contained in the image under σ of a bounded set in

∏

n∈N
Xn

(”σ lifts bounded sets”), we are led to the following definition.

Definition 1.42. (Bonet, Dierolf, Wengenroth [18]) Let B(Xn) be the system
of bounded sets of Xn, n ∈ N. A projective spectrum X = (Xn, ιnm) consisting
of locally convex spaces is said to be of strong P-type if
(Ps) ∀ n ∈ N ∃ Bn ∈ B(Xn), m ≥ n ∀ µ ≥ m, M ∈ B(Xm) ∃ K ∈ B(Xµ) :

ιnm(M) ⊂ ιnµ(K) + Bn.

A similar condition was used by Wengenroth in the following theorem:

Theorem 1.43. (Wengenroth [48]) Let X = (Xn, ιnm) be a locally convex
projective spectrum of locally complete spaces. Then the condition

(Ps̃) ∀ n ∃ m ≥ n ∀ µ ≥ m ∃ B ∈ B(Xn) ∀ M ∈ B(Xm) ∃ K ∈ B(Xµ)

ιnm(M) ⊂ ιnµ(K) + B

implies that σ lifts bounded sets, that there are B̃n ∈ B(Xn) with ιnm(B̃n) ⊂ B̃n

for M ≥ n and that ∀ n ∈ N ∃ m ≥ n ∀ M ∈ B(Xm) ∃ D ∈ B(ProjX )

ιnm(M) ⊂ ιn(D) + B̃n.

Corollary 1.44. (Wengenroth [48]) Let X = (Xn, ι
n
m) be a locally convex

projective spectrum of regular (LB)-spaces. Then σ lifts bounded sets if and
only if the condition (Ps̃) of 1.43 holds.
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1.6 New results on the weighted (PLB)-spaces A0C(X)
and AC(X)

1.6.1 Structure of A0C(X)

Using the general results of Vogt and Wengenroth we now investigate the
structure of the weighted (PLB)-space A0C(X). In the case of the (LB)-
spaces (An)0C(X) the linear maps

ιnm : (Am)0C(X) → (An)0C(X)

for n ≤ m can be chosen as ιnm = id(Am)0C(X) since (Am)0C(X) ⊂ (An)0C(X).
The projective spectrum is defined by

A0 := ((An)0C(X), id(An+1)0C(X))n∈N,

and its projective limit A0C(X) is

A0C(X) := projn(An)0C(X) = projnindkC(an,k)0(X).

Remark 1.45. The projective spectrum A0 is reduced.

Proof: Let Cc(R
n) be the space of all continuous functions with compact

support and let f ∈ C(an,k)0(X). For each ε > 0 there exists a compact set
K ⊂ X with

an,k(x)|f(x)| < ε ∀ x ∈ X \ K.

One can choose a function ϕ ∈ Cc(Rn) with ϕ ≡ 1 on K and look at fϕ ∈
Cc(R

n). It follows that Cc(R
n) is dense in C(an,k)0(X) for each n, k ∈ N and

hence in each (An)0C(X) = indkC(an,k)0(X). Because Cc(R
n) is dense in

each step it is dense in the projective limit A0C(X).

Remark 1.46. In general A0C(X) is not a (DFS)-spectrum, because the
inclusions are not compact.

To see under which conditions Proj1A0 = 0, i.e. the map σ in the canonical
exact sequence

0 −→ Proj0A0 ↪→
∏

n∈N

(An)0C(X)
σ

−→
∏

n∈N

(An)0C(X)
q

−→Proj1A0 −→ 0

is surjective, we use condition (wQ) on A = ((an,k)k∈N)n∈N. Before we can
prove the main theorem of this chapter, which will show the connection
between condition (wQ), Proj1A0 = 0 and A0C(X) ultrabornological resp.
barrelled, we need the following obvious result:
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Lemma 1.47. Let X be locally compact and Z1, Z2 ⊂ X zero sets of con-
tinuous functions h1, h2 on X. If Z1 ∩ Z2 = ∅, then h = |h1|

|h1|+|h2|
defines

a continuous function on X with values in [0, 1] such that h|Z1
≡ 0 and

h|Z2 ≡ 1.

Theorem 1.48. The following conditions are equivalent:

i) The sequence A = ((an,k)k∈N)n∈N satisfies condition (wQ),

ii) Proj1A0 = 0,

iii) the (PLB)-space A0C(X) is ultrabornological,

iv) the (PLB)-space A0C(X) is barrelled.

Proof. We will prove the theorem in the following way

i)
1.)

=⇒ ii)
2.)

=⇒ iii)
3.)

=⇒ iv)
4.)

=⇒ i).

For 1.) we apply theorem 1.32. In the case of the weighted (PLB)-spaces
A0C(X) condition (P ) looks as follows:

∃ (k(ν))ν∈N ∀ n ∈ N ∃ m ≥ n ∀ µ ≥ m ∃ S > 0 :

(Am)0C(X) ⊂ (Aµ)0C(X) + S ∩n
ν=1 (Bν,k(ν))0.

Let A = ((an,k)k∈N)n∈N satisfy condition (wQ), and therefore (wQ∗). Us-
ing condition (wQ∗) one can find a sequence (k(ν))ν∈N which satisfies (P ).
For given n select m according to (wQ∗), and for given µ ≥ m and f ∈
(Am)0C(X) one can find l such that f ∈ C(am,l)0(X). For µ, l select L, S > 0
as in (wQ∗). Now define the sets

K := {x ∈ X; am,l(x)|f(x)| >
1

2S
},

X1 := {x ∈ X; aµ,L(x) < 2Sam,l(x)},

X2 := {x ∈ X; am,l(x)|f(x)| <
1

S
} ∩ {x ∈ X; aµ,L(x) > Sam,l(x)}.

The set K is relatively compact and open in X. We claim that

X = (X1 ∪ K) ∪ X2
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holds. To show this, let x ∈ X be given. The following cases are possible:

I) am,l(x)|f(x)| >
1

2S
or II) am,l(x)|f(x)| ≤

1

2S
<

1

S
.

In the first case x ∈ K. If the second case is true one has to evaluate if

a) aµ,L(x) < 2Sam,l(x) or b) aµ,L(x) ≥ 2Sam,l(x) > Sam,l(x).

From a) it follows that x ∈ X1. If b) is true, then x ∈ X2 holds.

Now define Z1 := X \ (X1 ∪ K) and Z2 := X \ X2. For Z1 and Z2 we
obtain

Z1 ∩ Z2 = X \ (X1 ∪ K) ∩ (X \ X2) = X \ (X1 ∪ K ∪ X2) = ∅.

To apply lemma 1.47 one has to show that Z1 and Z2 are zero sets of
continuous functions h1, h2 on X. The set Z1 can be written as Z1 =
(X \ X1) ∩ (X \ K). First we show the existence of suitable continuous
functions g1, g2 such that X \ X1 and X \ K are zero sets. Define the con-
tinuous functions g1 and g2 on X by

g1(x) :=

{

0 for aµ,L(x) − 2Sam,l(x) > 0
aµ,L(x) − 2Sam,l(x) elsewhere,

g2(x) :=

{

0 for am,l(x)|f(x)| − 1
2S

< 0
am,l(x)|f(x)| − 1

2S
elsewhere.

X \ X1 is the zero set of g1, X \ K is the zero set of g2 and finally Z1 is the
zero set of the function h1 := max(g1, g2). The case of Z2 can be treated in
a similar way.

By lemma 1.47 there exists a function h ∈ C(X, [0, 1]) such that h|Z1
≡ 0

and h|Z2 ≡ 1. Write the given function f ∈ C(am,l)0(X) as f = hf + (1 −
h)f =: f1 + f2. We have to show that f1 ∈ C(aµ,L)0(X) and therefore
f1 ∈ (Aµ)0C(X) and f2 ∈ S(Bν,k(ν))0 for ν = 1, ..., n. If x /∈ X1 ∪ K then
f1(x) = h(x)f(x) = 0. If x ∈ X1 ∪ K it follows that |f1(x)| ≤ |f(x)| and for
x ∈ X1

aµ,L(x)|f1(x)| ≤ aµ,L(x)|f(x)| ≤ 2Sam,l(x)|f(x)|

holds. Since K is compact,

sup
x∈X

aµ,L(x)|f1(x)| < ∞.
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Collecting these facts we obtain that for x ∈ X1 ∪ K there exists S̃ > 0
such that aµ,L|f1| ≤ S̃am,l|f |. From f ∈ C(am,l)0(X) it follows that f1 ∈
C(aµ,L)0(X). If x /∈ X2

f2(x) = f(x)(1 − h(x)) = 0.

On the other hand, if x ∈ X2 we have |f2| ≤ |f | and by the definition of X2

(∗∗)
1

am,l(x)
>

S

aµ,L(x)
.

With condition (wQ∗) and (∗∗) we obtain that

aν,k(ν)(x) ≤ Sam,l(x)

holds for ν = 1, ..., n, and then

aν,k(ν)(x)|f2(x)| ≤ aν,k(ν)(x)|f(x)| ≤ Sam,l(x)|f(x)|

holds for ν = 1, ..., n. It follows that f2 ∈ C(aν,k(ν))0(X) for ν = 1, ..., n. From
x ∈ X2 we also can conclude that am,l(x)|f(x)| < 1

S
, which is equivalent to

Sam,l(x)|f(x)| < 1. Then

aν,k(ν)(x)|f2(x)| ≤ Sam,l(x)|f(x)| < 1

holds for ν = 1, ..., n and therefore f2 ∈ (Bν,k(ν))0 for ν = 1, ..., n. Finally
condition (P ) and therefore Proj1A0 = 0 follows.

2.) follows immediately from theorem 1.34 and 3.) holds in general. Since
the projective spectrum A0 is reduced we can apply corollary 1.40 to show
4.):

(P ∗
2 ) ∀ n ∃ m ≥ n, k ∀ µ ≥ m, l ∃ L, S ∀ ϕ ∈ (An)0C(X)′ :

||ϕ||∗m,l ≤ S(||ϕ||∗µ,L + ||ϕ||∗n,k),

where ||ϕ||∗m,l := sup{| < ϕ, f > |; f ∈ (Bm,l)0}. Since (Bm,l)0 ⊂ (Bn,l)0

for m ≥ n, the sup is finite. We show that condition (wQ) follows for the
sequence A. The quantifiers are the same. We fix x ∈ X. The measure
δx : (An)0C(X) → C, δx(f) := f(x), is continuous because the topology of
this weighted (LB)-space is finer than the compact-open topology. Now

||δx||
∗
m,l = sup{|f(x)|; f ∈ (Bm,l)0} ≤

1

am,l(x)
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clearly holds since |f | ≤ 1
am,l

on X for each f ∈ (Bm,l)0. On the other hand,

select ϕ ∈ C(X) with compact support, 0 ≤ ϕ ≤ 1 and ϕ(x) = 1. Clearly
f0 = ϕ

am,l
belongs to (Bm,l)0 and

1

am,l(x)
= f0(x) ≤ sup{|f(x)|; f ∈ (Bm,l)0} = ||δx||

∗
m,l.

Thus, we have proved that ||δx||
∗
m,l = 1

am,l(x)
. Therefore

1

am,l(x)
≤ S(

1

aµ,L(x)
+

1

an,k(x)
) ≤ 2S max(

1

aµ,L(x)
,

1

an,k(x)
)

which is condition (wQ).

For the next theorem we need the assumption that the space (An)0C(X) is
complete. This completeness was characterised by Bierstedt, Bonet, Sum-
mers [14] (see theorem 1.20).

Theorem 1.49. Let (An)0C(X) be complete for each n ∈ N. The projective
spectrum A0 is of strong P-type if and only if the sequence A = ((an,k)k∈N)n∈N

satisfies condition (Q).

To prove this theorem we need some technical tools. First we present a
partition of a continuous functions. The idea of this goes back to Ernst,
Schnettler [21].

Proposition 1.50. Let u, v ∈ C(X) be strictly positive functions. If f ∈
C(X) satisfies |f | ≤ max(u, v), there exist g1, g2 ∈ C(X) with |g1| ≤ u and
|g2| ≤ v on X such that |f | = g1 + g2.

Proof. Define

A := {x ∈ X; |f(x)| ≤ u(x)},

B := {x ∈ X; |f(x)| > u(x)},

and g1, g2 ∈ C(X) by g1(x) := min(|f(x)|, u(x)) and g2(x) := |f(x)| − g1(x).
Of course, |f | = g1 + g2 holds. If x ∈ A then g1(x) = |f(x)| ≤ u(x) and
g2(x) = 0. For x ∈ B we obtain g1(x) = u(x) and g2(x) = |f(x)| − u(x).
With the definition of the set B and the assumption that |f | ≤ max(u, v) it
follows that v(x) ≥ |f(x)| ≥ |f(x)| − u(x) = g2(x). We have 0 ≤ g1 ≤ u and
0 ≤ g2 ≤ v on X.
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Lemma 1.51. Let A0 be of strong P-type. Condition (Ps) (see definition
1.42) can be written as follows: ∀ n ∃ m, k ∀ µ, l, ε > 0 ∃ L, S > 0 :

(Bm,l)0 ⊂ S(Bµ,L)0 + ε(Bn,k)0.

Then ∀n ∃m, k ∀µ, l, ε > 0 ∃L, S > 0 ∀ ϕ ∈ (An)0C(X)∗ :

||ϕ||∗m,l ≤ S||ϕ||∗µ,L + ε||ϕ||∗n,k

holds.

Proof. Choose ϕ ∈ (An)0C(X)∗ and let ||ϕ||∗m,l := sup{|ϕ(f)|; f ∈ (Bm,l)0} ≤
1. Write f as f = Sf1 + εf2 with f1 ∈ (Bµ,L)0 and f2 ∈ (Bn,k)0.

|ϕ(f)| ≤ S|ϕ(f1)| + ε|ϕ(f2)|

≤ S||ϕ||∗µ,L + ε||ϕ||∗n,k

holds for all f ∈ (Bm,l)0. Then the same inequality holds for the sup, and
one gets

||ϕ||∗m,l ≤ S||ϕ||∗µ,L + ε||ϕ||∗n,k.

Proof of 1.49. Let the projective spectrum A0 be of strong P -type. We apply
lemma 1.51 and get: ∀n ∃m, k ∀µ, l, ε̃ > 0 ∃ L, S̃ > 0 such that

||ϕ||∗m,l ≤ S̃||ϕ||∗µ,L + ε̃||ϕ||∗n,k.

Let n, m, k, µ, l be as before and put ε = 2ε̃. Let L be as above and put
S = 2S̃. Fix x0 ∈ X and define δx0 : (An)0C(X) → C as in the proof of
theorem 1.48; recall that from 4.) in the proof of theorem 1.48

||δx0||
∗
m,l = sup{|f(x0)|; f ∈ (Bm,l)0} =

1

am,l(x0)
.

It follows that

1

am,l(x0)
= ||δx0||

∗
m,l ≤ S̃||δx0||

∗
µ,L + ε̃||δx0||

∗
n,k

= S̃
1

aµ,L(x0)
+ ε̃

1

an,k(x0)
.
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We claim that
1

am,l(x0)
≤ max(S

1

aµ,L(x0)
, ε

1

an,k(x0)
),

which is exactly condition (Q). If not, then

1

am,l(x0)
=

1

2

1

am,l(x0)
+

1

2

1

am,l(x0)

>
1

2
S

1

aµ,L(x0)
+

1

2
ε

1

an,k(x0)
,

which implies
1

am,l(x0)
> S̃

1

aµ,L(x0)
+ ε̃

1

an,k(x0)
,

a contradiction to the inequality proved above.

Now let condition (Q) be given. Take f ∈ Bm,l; then

|f | ≤
1

am,l

≤ max(
S

aµ,l

,
ε

an,k

)

holds on X. By proposition 1.50 there exist f1, f2 ∈ C(X) with |f1| ≤
S

aµ,L
, |f2| ≤

ε
an,k

and |f | = f1 + f2. It follows that f1 ∈ SBµ,L and f2 ∈ εBn,k.

1.6.2 Structure of AC(X)

In this chapter we investigate the structure of the space AC(X) which is
defined by

AC(X) := projnAnC(X) = projnindkCan,k(X).

Similar to the case of o-growth conditions the linear maps

ιnm : AmC(X) → AnC(X)

for n ≤ m can be chosen as ιnm = idAmC(X) since AmC(X) ⊂ AnC(X). The
projective spectrum is defined by

A := (AnC(X), idAn+1C(X))n∈N.

Theorem 1.52. Proj1A = 0 if and only if A = ((an,k)∈N)n∈N satisfies con-
dition (Q).
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Proof. Without loss of generality we can assume that for each n ∈ N the
system (Bn,k)k∈N is a fundamental system of bounded sets in AnC(X). First
let Proj1A = 0. With theorem 1.31 it follows that for each n ∈ N there exists
a bounded absolutely convex Bn in AnC(X) such that Bn+1 ⊂ Bn for each
n ∈ N and

(∗∗) ∀ n ∃ m ≥ n ∀ µ ≥ m : AmC(X) ⊂ AµC(X) + Bn.

Since Bn is bounded in AnC(X) and since AnC(X) is a regular inductive
limit (see [14]), we can select k(n) ∈ N such that Bn ⊂ Bn,k(n). Now we have
to show that A = ((an,k)∈N)n∈N satisfies condition (Q). For given n, select
m as in (∗∗) and k = k(n) with Bn ⊂ Bn,k(n). Fix µ ≥ m, l, ε > 0; w.l.o.g.
ε ≤ 1. For the function f := 1

εam,l
, f ∈ AmC(X) holds, and by (∗∗) one

can write f = g + h with g ∈ AµC(X) and h ∈ Bn. For g ∈ AµC(X) there
exist L ∈ N and S > 0 with aµ,L|g| ≤ S on X. For h ∈ Bn it follows that
h ∈ Bn,k(n) and then an,k|h| ≤ 1, and therefore |h| ≤ 1

an,k
holds on X. It

follows that

1

εam,l
= |f | ≤ |g| + |h| ≤

S

aµ,L
+

1

an,k

⇒
1

am,l

≤
Sε

2aµ,L

+
ε

2an,k

≤ max(
S

aµ,L

,
ε

an,k

)

holds on X, which is exactly (Q).

In the other direction we show that condition (Q) even implies that the
map σ in the exact sequence lifts bounded sets. Then Proj1A = 0 fol-
lows immediately from theorem 1.29. Let condition (Q) be satisfied, i.e.
∀ n ∃ m, k ∀ µ, l, ε > 0 ∃ L, S > 0 :

1

am,l
≤ max(

S

aµ,L
,

ε

an,k
)

holds on X. Take f ∈ Bm,l; then

|f | ≤
1

am,l

≤ max(
S

aµ,l

,
ε

an,k

)

holds on X. By proposition 1.50 there exist f1, f2 ∈ C(X) with |f1| ≤
S

aµ,L
, |f2| ≤

ε
an,k

and |f | = f1 + f2. It follows that f1 ∈ SBµ,L and f2 ∈ εBn,k,

which is condition (Ps) in the case of the space AC(X) (compare lemma
1.51).
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Remark 1.53. We have even shown that AC(X) has Proj1A = 0 if and
only if the projective spectrum A is of strong P -type.

Remark 1.54. With theorem 1.52 above and theorem 1.34, a general result
for projective spectra of (LB)-spaces, we get the following inclusions for the
(PLB)-space AC(X):

(Q) ⇒ Proj1A = 0 ⇒ AC(X) is ultrabornological (and hence barrelled).

But in general the (PLB)-space AC(X) is not reduced, i.e. we cannot use
the general theory of (DF )-spaces to conclude that from AC(X) barrelled
or ultrabornological it follows that the sequence A satisfies condition (wQ)
or (Q). It is unknown if then condition (Q) must be satisfied. The fact
that from AC(X) barrelled it follows that the sequence A satisfies at least
condition (wQ) is indeed right. But to show this, we need the inductive
description which will be introduced in the next section.

1.7 Inductive description

From now on through the whole section 1.7 let the space X be locally compact
and σ-compact.

1.7.1 Inductive description for Fréchet spaces

First we investigate inductive description for an increasing sequence A =
(an)n∈N of strictly positive continuous functions (weights). For

Can(X) := {f ∈ C(X); ||f ||n := sup
x∈X

an(x)|f(x)| < ∞},

the space CA(X) = projnCan(x) is a Fréchet space. Define

A := {a ∈ C(X); a ≥ 0, ∀ n ∃ αn > 0 : a ≥ αnan},

Ca(X) := {f ∈ C(X); ||f ||a := sup
x∈x

a(x)|f(x)| < ∞}

and the corresponding space

CA(X) := inda∈ACa(X).
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Theorem 1.55.
CA(X) = CA(X)

holds algebraically, and the canonical mapping CA(X) → CA(X) is contin-
uous.

Proof. Let f ∈ CA(X). There exists a ∈ A, a ≥ αnan for each n ∈ N, with
f ∈ Ca(X). It follows that

||f ||n = sup
x∈X

an(x)|f(x)| ≤
1

αn
sup
x∈X

a(x)|f(x)| =
1

αn
||f ||a,

which means that f ∈ Can(X) for each n ∈ N, hence f ∈ CA(X).

Now let g ∈ CA(X). Then for each n ∈ N there exists αn ∈ R+ with
an|g| ≤ αn for all n ∈ N. With the inequality above we obtain |g| ≤ αn

an
on

X for each n ∈ N. It follows that |g| ≤ infn∈N
αn

an
on X. Define the sequence

(wn)n∈N by wn := 1
an

. In the notation of section 1.4.3 (but V replaced by W )

we obtain w := infn∈N
αn

an
∈ W . With a result of Bierstedt, Meise, Summers

([14], 0.2) it follows that there exists w̃ ∈ W with w̃(x) > 0 for all x ∈ X
and w = infn∈N

αn

an
≤ w̃. Define b := 1

w̃
. Then |g| ≤ w̃ = 1

b
, and therefore

|g|b ≤ 1 holds. We still have to show that b ∈ A holds. From w̃ ∈ W it
follows that ∀ n ∈ N ∃ βn > 0 such that

1

b
= w̃ ≤ infn βnwn = inf βn

1
an

.

Then b ≥ supn
1

βn
an, and this means that b ∈ A and g ∈ CA(X).

1.7.2 Inductive description in the (PLB)-case

Now we investigate the (PLB)-case. Again we take a double sequence A =
((an,k)k∈N)n∈N of strictly positive weights with

an,k+1(x) ≤ an,k(x) ≤ an+1,k(x) ∀n, k ∈ N, ∀x ∈ X,

and define

A := {a ∈ C(X); a ≥ 0, ∀ n ∈ N ∃ αn, k(n) : a ≥ sup
n

αnan,k(n)}.

Again we have vn,k = 1
an,k

where vn,k ∈ V is a weight as in [8] with

V = {v ∈ C(X); v > 0, ∀ n ∈ N ∃ αn, k(n) : v ≤ inf
n

αnvn,k(n)}.
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Then A = { 1
v
; v ∈ V }. Define

Ca(X) := {f ∈ C(X); ||f ||a := sup
x∈X

a(x)|f(x)| < ∞}

and
CA(X) := inda∈ACa(X).

Since X is σ-compact, one can restrict the attention to the positive elements
v ∈ V (see [14]) and hence to the positive elements a ∈ A. Each Ca(X) is a
Banach space, a ∈ A, and hence CA(X) is ultrabornological.

Theorem 1.56.
CA(X) = AC(X)

holds algebraically, and the canonical mapping CA(X) → AC(X) is contin-
uous.

Proof. Let f ∈ CA(X), i.e. there exists a ∈ A such that f ∈ Ca(X). For
each n ∈ N there are αn > 0 and k(n) ∈ N such that a ≥ αnan,k(n). It follows
that

||f ||n,k(n) = sup
x∈X

an,k(n)(x)|f(x)| ≤
1

αn

sup
x∈X

a(x)|f(x)| ≤
1

αn

||f ||a < ∞,

which means f ∈ Can,k(n)(X) for each n ∈ N, hence f ∈ AnC(X) for each
n ∈ N and therefore f ∈ AC(X). The above inequality shows that Ca(X)
is continuously injected in Can,k(n)(X) for each n ∈ N. It follows that the
mapping CA(X) → AnC(X) is continuous for each n ∈ N, which proves the
last assertion of the theorem.

Now let f ∈ AC(X), i.e. for each n ∈ N there exists k(n) ∈ N such that
f ∈ Can,k(n)(X), i.e. for each n ∈ N there exist k(n) ∈ N, bn > 0 such that
an,k|f | ≤ bn ⇒ |f | ≤ bn

1
an,k

for all n ∈ N. Define w := infn bn
1

an,k(n)
. One has

w ∈ V , and with [14] there exists w ∈ V with w(x) > 0 for all x ∈ X and
w ≤ w. Define a := 1

w
∈ C(X). Then a|f | ≤ 1 because |f | ≤ w ≤ w. It

follows that a ∈ A and f ∈ CA(X).

Corollary 1.57. CA(X) and AC(X) have the same bounded sets, and the
inductive limit CA(X) is regular.
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Proof. After theorem 1.56 it suffices to fix a bounded set B ⊂ AC(X) and
to show that there exists a ∈ A such that B is contained and bounded in
Ca(X). B is bounded in AnC(X) for each n ∈ N. Since AnC(X) is a regular
inductive limit, there exist k(n), mn > 0 such that B ⊂ mnBn,k(n). Then for
each f ∈ B

an,k(n)|f | ≤ mn

holds. Define w := infn mn
1

an,k(n)
. With the same arguments as above we

obtain a ∈ A, a > 0, such that a|f | ≤ 1 for each f ∈ B, which means that B
is contained in Ca(X) and bounded there.

Theorem 1.58. Let the sequence A satisfy condition (Q). Then

CA(X) = AC(X)

holds topologically.

Proof. If condition (Q) is satisfied, with theorem 1.52 it follows that Proj1A =
0. Hence AC(X) is ultrabornological (theorem 1.34) and webbed (corollary
1.3). The space CA(X) is ultrabornological and webbed, since CA(X) is the
ultrabornological space associated with AC(X) by corollary 1.57 and [26],
13.3.3. Define id : CA(X) → AC(X), which is a continuous embedding.
With de Wilde’s [47] closed graph theorem it follows that id−1 : AC(X) →
CA(X) is continuous, too. So we have a topological isomorphism between
the spaces AC(X) and CA(X).

Theorem 1.59. Let (An)0C(X) be complete for each n ∈ N. If AC(X) is
barrelled, then A0C(X) is barrelled.

Proof. Let T0 be a barrel in A0C(X), i.e. T0 is absolutely convex, closed and
absorbant. Define

T := {f ∈ AC(X); ϕf ∈ T0 ∀ ϕ ∈ Cc(X), 0 ≤ ϕ ≤ 1}.

We show that T is a barrel in AC(X): Choose f, g ∈ T, λ, µ ∈ IK = R or C

such that |λ| + |µ| ≤ 1. Since

ϕ(λf + µg) = λ(ϕf) + µ(ϕg) ∈ T0,

T is absolutely convex.
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Now let (fi)i∈N ⊂ T with fi → f ∈ AC(X) in AC(X). For ϕ ∈ Cc(X)
with 0 ≤ ϕ ≤ 1 we claim that ϕfi → ϕf in A0C(X). This is equivalent to
ϕfi → ϕf in (An)0C(X) for each n ∈ N. (An)0C(X) carries the topology
induced by its projective hull, say, C(An)0(X) for An = the “V “ associated
with (vn,k)k∈N. But for each v ∈ An:

pv(ϕ(fi − f)) = sup
x∈X

v(x)ϕ(x)|fi(x) − f(x)| ≤ pv(fi − f) → 0

since fi → f in CAn(X) follows from fi → f in AnC(X). Since the barrel
T0 is closed, ϕfi ∈ T0 for each i ∈ N now implies ϕf ∈ T0, and hence f ∈ T .
We have proved that T is closed.

For f ∈ AC(X) define

Bf := {ϕf ; ϕ ∈ Cc(X), 0 ≤ ϕ ≤ 1}.

Bf is bounded in A0C(X) because for each n ∈ N there exist k(n) ∈ N, bn > 0
such that an,k(n)|f | ≤ bn on X and then

an,k(n)|ϕf | ≤ an,k(n)|f | ≤ bn on X,

which means that Bf is bounded in C(an,k(n))0(X), hence in (An)0C(X) and
then finally in A0C(X). After the assumption that (An)0C(X) is complete
(hence locally complete), there exists a Banach disc B with Bf ⊂ B. Since by
[37], 3.2.7, a barrel absorbs Banach discs, there is β > 0 such that Bf ⊂ βT0.
Then 1

β
ϕf ∈ T0 ∀ ϕ ∈ Cc(X) with 0 ≤ ϕ ≤ 1, hence 1

β
f ∈ T or f ∈ βT .

It follows that T is absorbant. This finishes the proof that T is a barrel in
AC(X).

Since AC(X) is barrelled, T is a 0-neighbourhood, i.e. there exists W ∈
U0(AC(X)) with W ⊂ T . After our hypothesis An = (an,k)k∈N is regularly
decreasing for each n ∈ N, hence An = (an,k)k∈N satisfies condition (D),
and thus AnC(X) = CAn(X) holds topologically for each n ∈ N. Now the
0-neighbourhood W in AC(X) can be taken of the form

W = {f ∈ AC(X); sup
x∈X

an(x)|f(x)| ≤ 1}

with an ∈ An for some n ∈ N. Define

V := {g ∈ A0C(X); sup
x∈X

an(x)|g(x)| ≤ 1}.
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{g ∈ (An)0C(X); supx∈X an(x)|f(x)| ≤ 1} is a 0-neighbourhood in the space
(An)0C(X) ⊂ C(An)0(X), hence V is a 0-neighbourhood in A0C(X), and
if we show V ⊂ T0, then T0 is a 0-neighbourhood, too, which proves that
A0C(X) is barrelled. Let g ∈ V . Then g ∈ W ⊂ T and hence ϕg ∈ T0

for each ϕ ∈ Cc(X) with 0 ≤ ϕ ≤ 1. For each compact set K ⊂ X let
ϕK ∈ Cc(X) satisfy ϕK(x) = 1 for each x ∈ K and 0 ≤ ϕK ≤ 1 on X.
Fix n ∈ N and consider (ϕKg)K in (An)0C(X). By using that (An)0C(X)
carries the topology induced by C(An)0(X), one easily sees that ϕKg → g in
(An)0C(X). Hence one has ϕKg → g in A0C(X), too, which yields g ∈ T0

since T0 is closed in A0C(X).

Even without the hypothesis that (An)0C(X) is complete for each n ∈ N, a
modification of the proof of theorem 1.59 serves to show.

Corollary 1.60. If AC(X) is barrelled, then A0C(X) is quasibarrelled.

Proof. Let T0 be a bonivorous barrel in A0C(X). Again define

T := {f ∈ AC(X); ϕf ∈ T0 ∀ ϕ ∈ Cc(X), 0 ≤ ϕ ≤ 1}

and show that T is a barrel in AC(X). That T is absolutely convex and
closed follows exactly in the same way as in the proof of theorem 1.59. But
to show that T is absorbant we now proceed as follows: For f ∈ AC(X)
again define

Bf := {ϕf ; ϕ ∈ Cc(X), 0 ≤ ϕ ≤ 1}.

As in the proof of 1.59, it is clear that Bf is bounded in A0C(X). Since here
T0 is bornivorous, it follows that Bf is absorbed by T0. From this point on
the rest of the proof follows along the lines of the end of the proof of 1.59.

Remark 1.61. Let the following conditions be satisfied:

i) The sequence A satisfies condition (Q),

ii) Proj1A = 0,

iii) AC(X) is barrelled,

iv) A0C(X) is quasibarrelled,

v) condition (P ∗
2 ) is satisfied,
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vi) the sequence A satisfies condition (wQ).

Then the implications

i) ⇒ ii) ⇒ iii) ⇒ iv) ⇒ v) ⇒ vi)

hold.

It is an open question if iv) ⇒ ii) holds.

Proof. In theorem 1.52 we proved that condition (Q) for the sequence A is
equivalent to Proj1A = 0. Hence it follows that AC(X) is barrelled (1.34).
In this section (corollary 1.60) we proved that AC(X) barrelled implies that
A0C(X) is quasibarrelled. Vogt proved in the general case of reduced spectra
of (LB)-spaces that the space X is barrelled if and only if it is quasibarrelled
([43], 3.1). With corollary 1.40 it follows that condition (P ∗

2 ) is satisfied,
which is equivalent to condition (wQ) (1.48).

1.8 Comparison of the (PLB)- and the (LF )-space

Now we want to describe under which conditions the (PLB)-spaces AC(X)
and A0C(X) are equal to the (LF )-spaces VC(X) and V0C(X), respectively.
This cannot be true in general as the following example shows for the case
of AC(X) and VC(X).

Example 1.62. First we define a sequence of weights on X := N × N by

an,k(i, j) :=

{

j−k if i ≤ n
0 otherwise

, n, k ∈ N.

A = ((an,k)k∈N)n∈N is decreasing in k and increasing in n. Now define f :
N × N → R, f(i, j) := ji+1/2 for each (i, j) ∈ N × N. Fix n, and select
k(n) = n + 1. If i ≤ n, we have

|f(i, j)| = ji+1/2 ≤ jn+1

for each j, which means that f ∈ Can,k(n)(X), hence f ∈ AnC(X). Then we
get f ∈ AC(X).
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Suppose that f ∈ VC(X).We find k such that for each n there is Cn > 0
with |f(i, j)| ≤ Cnj

k for i = 1, ..., n. Select n := k and i := k to conclude

jn+1/2 = ji+1/2 = |f(i, j)| ≤ Cnjk = Cnj
n

for each j. This implies j1/2 ≤ Cn for each j, which is a contradiction.

Lemma 1.63. VC(X) ⊂ AC(X) and V0C(X) ⊂ A0C(X) holds in general
with continuous inclusions.

Proof. One can write VC(X) = indkprojnCan,k(X). Let f ∈ VC(X). Thus
there exists k ∈ N such that ||f ||n,k < +∞ for all n ∈ N. This implies
that for each n ∈ N there exists k ∈ N such that ||f ||n,k < +∞, hence
f ∈ AnC(X) for each n ∈ N and therefore f ∈ AC(X). A similar argument
gives V0C(X) ⊂ A0C(X). The argument for the continuous inclusions is as
follows:

projnCan,k(x) → Can,k(X)

is continuous for each n, k ∈ N. Then

projnCan,k(x) → indkCan,k(X) = AnC(X)

is continuous for each n ∈ N, and thus

VC(X) = indkprojnCan,k(X) → AnC(X)

must be continuous for each n ∈ N, whence the continuity of

VC(X) → AC(X).

Next we introduce a condition which was used by Vogt [41] as a characteri-
sation for Fréchet spaces between which all continuous linear mappings are
bounded.

Definition 1.64. Let A = ((am,l)l∈N)n∈N be a sequence of weights. A satis-
fies condition (B) if ∀ k(n) ∃ l ∈ N ∀ m ∈ N ∃ ñ ∈ N, c > 0:

am,l ≤ c max
1≤n≤ñ

an,k(n).
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Theorem 1.65. AC(X) = VC(X) holds algebraically if and only if the
sequence A satisfies condition (B).

Proof. Let A satisfy condition (B). VC(X) ⊂ AC(X) holds by 1.63. To
show the other inclusion, choose f ∈ AC(X). After the definition of AC(X)
it follows that: ∀ n ∈ N ∃ k(n) ∈ N, bn > 0 :

an,k(n)(x)|f(x)| ≤ bn ∀ x ∈ X.

For given (k(n))n∈N we can apply condition (B) to find l such that for each
m there exist ñ, c > 0 with

am,l ≤ c max
1≤n≤ñ

an,k(n).

We claim that f ∈ CVl(X), i.e. f ∈ Cam,lC(X) for each m ∈ N. Indeed, for
given m, one can select ñ := ñ(m) and c := cm > 0 as in condition (B) and
then for each x ∈ X:

am,l(x)|f(x)| ≤ c max
1≤n≤ñ

an,k(n)(x)|f(x)| ≤ c max
1≤n≤ñ

bn < ∞,

and supx∈X am,l(x)|f(x)| < ∞ ∀ m ∈ N, hence f ∈ CVl(X) ⊂ VC(X).

In the other direction, for given (k(n))n∈N consider the space

F := ∩n∈NCan,k(n)(X)

= {f ∈ C(X); sup
x∈X

an,k(n)(x)|f(x)| =: ||f ||n < ∞ ∀ n ∈ N}.

Clearly F ⊂ AC(X). Observe that the norms || · ||n do not satisfy

|| · ||n ≤ || · ||n+1

in general. The space F with the norms pn(f) := max1≤ν≤n ||f(x)||ν is a
Fréchet space because F is continuously injected in AC(X), which has a
topology finer than the compact-open topology. By the assumption AC(X) =
VC(X) we get F ⊂ VC(X) = indkCVk(X), which is an (LF )-space. Mor-
ever the inclusion has closed graph because VC(X) is continuously included
in AC(X). By Grothendieck‘s factorisation theorem there is l such that
F ⊂ CVl(X), and the inclusion is continuous. This implies ∀ m ∃ ñ, c > 0
such that, for each g ∈ F ,

(∗ ∗ ∗) sup
x∈X

am,l(x)|g(x)| ≤ c max
1≤n≤ñ

sup
x∈X

an,k(n)(x)|g(x)|.
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Suppose ∃ x0 ∈ X with

am,l(x0) > α > c max
1≤n≤ñ

an,k(n)(x0).

By continuity one can find a compact neighbourhood W0 of x0 with

c max
1≤n≤ñ

an,k(n)(x) ≤ α ∀x ∈ W0.

Select ϕ ∈ C(X, [0, 1]) with suppϕ ⊂ W0 and ϕ(x0) = 1. Clearly ϕ ∈ F . We
apply (∗ ∗ ∗) to conclude

am,l(x0) = am,l(x0)|ϕ(x0)| ≤ sup
x∈X

am,l(x)|ϕ(x)|

≤ c max
1≤n≤ñ

sup
x∈X

an,k(n)(x)|ϕ(x)| ≤ c max
1≤n≤ñ

sup
x∈W0

an,k(n)(x)

≤ α.

This is a contradiction. Hence condition (B) holds.

Theorem 1.66. If the sequence A satisfies condition (B), then the space
A0C(X) equals V0C(X) algebraically. If each (An)0(X) is complete, which
is equivalent to An = (an,k)k∈N regularly decreasing for each n ∈ N, then the
converse is also true.

Proof. First we show that from condition (B) it follows that A0C(X) =
V0C(X) holds algebraically. V0C(X) ⊂ A0C(X) holds in general (see 1.63).
Now let the sequence A satisfy condition (B). Choose f ∈ A0C(X). Then
after the definition of A0C(X) it follows that: ∀ n ∈ N ∃ k(n) ∈ N ∀ ε >
0 ∃ K(ε) ⊂ X compact:

(+) an,k(n)(x)|f(x)| ≤ ε ∀ x ∈ X \ K(ε).

For given (k(n))n∈N we can apply condition (B) to find l such that for each
m there exist ñ = ñ(m), c = cm > 0 :

am,l ≤ c max
1≤n≤ñ

an,k(n).

We claim that f ∈ C(Vl)0(X), i.e. f ∈ C(am,l)0(X) for each m ∈ N. Let
ε > 0 be given. For fixed n ∈ N, 1 ≤ n ≤ ñ, by (+) there exists k(n) such
that for ε̃ := ε

c
there exists a compact set Kn ⊂ X with

an,k(n)(x)|f(x)| ≤ ε̃ ∀ x ∈ X \ Kn.
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Then
am,l(x)|f(x)| ≤ c max

1≤n≤ñ
an,k(n)(x)|f(x)| ≤ cε̃ = ε

for all x ∈ X \ K with K := ∪ñ
ν=1Kn, which proves our claim.

Now let all (An)0C(X) be complete and let A0C(X) = V0C(X) hold al-
gebraically. We have to show condition (B). Similarly to the proof of 1.65,
for given (k(n))n∈N we define F0 := ∩nC(an,k(n))0(X) and use the same ar-
guments to conclude that condition (B) is satisfied.

Corollary 1.67. If all (An)0C(X) are complete, then A0C(X) = V0C(X)
holds algebraically and topologically if and only if the sequence A satisfies the
conditions (B) and (wQ).

Proof. When A0C(X) = V0C(X) holds topologically, then the space A0C(X)
is ultrabornological as an (LF )-space. With theorem 1.48 it follows that the
sequence A satisfies condition (wQ), and condition (B) follows from 1.66.

Now let A satisfy condition (wQ). With theorem 1.48 it follows that A0C(X)
is ultrabornological. As an (LF )-space V0C(X) is webbed. Define id :
V0C(X) → A0C(X), which is a continuous embedding. With de Wilde’s [47]
closed graph theorem it follows that id−1 : A0C(X) → V0C(X) is continuous.
So we have a topological isomorphism between A0C(X) and V0C(X).

1.9 An example in the case of sequence spaces

Before we can illustrate the previous results with an example in the case
of sequence spaces we have to introduce Köthe sequence spaces and some
of their properties. For the definitions and notations see Bierstedt, Meise,
Summers [15]. Some further results which are needed here were given by
Bierstedt, Bonet [5], [4].

Definition 1.68. Let A = (an)n∈N be an increasing sequence of strictly
positive functions on some index set I; A is called a Köthe matrix. In the
following example we chose I = N and omit it from our notation.

We define the Köthe echelon spaces of order p, 1 ≤ p ≤ ∞ or p = 0, as
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follows:

λp(A) = {x ∈ IKN; ||x||n := (

∞
∑

i=1

|xian(i)|p)1/p < ∞ ∀ n ∈ N}, 1 ≤ p ≤ ∞,

λ∞(A) = {x ∈ IKN; ||x||n := sup
i∈N

|xi|an(i) < ∞ ∀ n ∈ N},

λ0(A) = {x ∈ λ∞(A); lim
i→∞

xian(i) = 0 ∀ n ∈ N}

with
λp(A) = projnlp(an(i)), 1 ≤ p ≤ ∞,

and
λ0(A) = projnc0(an(i))

algebraically and topologically.

For every Köthe matrix A, the spaces λp(A), 1 ≤ p ≤ ∞ and p = 0, are
Fréchet spaces.

Taking V = (vn(i))n∈N to denote the associated decreasing sequence of func-
tions vn(i) = 1

an(i)
, we put

kp(V ) = indilp(vn(i)), 1 ≤ p ≤ ∞,

and
k0(V ) = indic0(vn(i)).

These are Köthes‘s co-echelon spaces. Define

V = λ∞(A)+ = {v ∈ (R+)N; sup
i∈N

vi

vn(i)
< ∞ for each n ∈ N}

and
Kp(V ) = λp(V ) = projv∈V lp(v)

for 1 ≤ p ≤ ∞ as well as

K0(V ) = projv∈V c0(v).

Remark 1.69. (Bierstedt, Meise, Summers [15], 1.5) kp(V ) is continuously
embedded in Kp(V ).
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Let E, F be locally complete locally convex spaces. Lb(E, F ) denotes the
space of all continuous linear mappings from E to F , endowed with the strong
topology. For V and a locally convex space E, it is clear how K∞(V , E) is
defined.

Proposition 1.70. [5] Let E denote a locally complete locally convex space.
Then there is a canonical topological isomorphism

K∞(V , E) = Lb(λ1(A), E)

of K∞(E) onto the space of all continuous linear mappings from λ1(A) into
E, endowed with the topology of uniform convergence on the bounded subsets
of λ1(A). In particular, K∞(V ) = (λ1(A))′b (see [15],2.7).

Now we come to the main example:

Example 1.71. Let B = (bk(i))k∈N, i ∈ N and C = (cn(j))n∈N, j ∈ N

be Köthe matrices. Consider the space Lb(λ1(B), λ∞(C)). We can write
λ1(B) = projkl1(bk(i)) and λ∞(C) = projnl∞(cn(j)). Suppose that λ1(B)
is distinguished, which holds if and only if (bk(i))k∈N satisfies condition (D)
(see [4], 6.). Bierstedt, Meise, Summers (see [15], 2.8) proved that λ1(B) dis-
tinguished is equivalent to (λ1(B))′b

∼= k∞(W ). With this result and taking
W = (wk(i))k∈N, wk(i) := bk(i)

−1, we obtain that

λ1(B)′b
∼= k∞(W ) = indkl∞(wk(i)).

Now we have Lb(λ1(B), λ∞(C)) = projkLb(λ1(B), l∞(cn(j))). Since λ1(B)
is distinguished, Lb(λ1(B), l∞(cn(j))) is ultrabornological (see [5]) and by
Bierstedt, Bonet ([4], 6. and 7.)

Lb(λ1(B), l∞(cn(j))) ∼= indkLb(l1(bk(i)), l∞(cn(j)))
∼= indkl∞(wk(i), l∞(cn(j)))

= indkl∞(wk(i) ⊗ cn(j)).

holds. This implies that

Lb(λ1(B), λ∞(C)) = projnindkl∞(wk(i) ⊗ cn(j))

holds algebraically and topologically. If λ1(A) is distinguished, the space
Lb(λ1(B), λ∞(C)) is of the form AC(X) with X = N × N and an,k(i, j) :=

1
bk(i)

⊗ cn(j). An easy argument shows that the isomorphism above induces a

linear isomorphism between the space LB(λ1(B), λ∞(C)) of bounded linear
maps and VC(X) = indkprojnCan,k(X).
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Corollary 1.72. If A = ((an,k)n∈N)k∈N is defined by an,k(i, j) = 1
bk(i)

⊗ cn(j),

i, j ∈ N, and satisfies condition (Q), then the space Lb(λ1(B), λ∞(C)) is
barrelled.

Proof. For a general (PLB)-space AC(X) we have proved in theorem 1.52
that condition (Q) is satisfied if and only if Proj1A = 0. With the general
theory of (DF )-spaces (see theorem 1.34) it follows that Lb(λ1(B), λ∞(C))
is barrelled.

Corollary 1.73. If Lb(λ1(B), λ∞(C)) is barrelled, then A = ((an,k)n∈N)k∈N

defined by an,k(i, j) = 1
bk(i)

⊗ cn(j), i, j ∈ N, satisfies condition (wQ).

Proof. With corollary 1.60 from AC(X) barrelled it follows that the space
A0C(X) is quasibarrelled (corollary 1.60). Again with the general theory
of projective spectra of (LB)-spaces (see [43]) this implies that A0C(X) is
barrelled, and condition (wQ) follows with theorem 1.48.
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2 Weighted spaces of holomorphic functions

on the half-plane

2.1 Introduction to part 2

The second chapter of this work deals with weighted Banach spaces of holo-
morphic functions on the upper half-plane G. Let v : G → R+ be a strictly
positive, continuous function (weight). The space Hv0(G) is defined as fol-
lows:

Hv0(G) := {f ∈ H(G); v|f | vanishes at infinity on G}.

This chapter is motivated by a question of Bierstedt [3]. In a survey about
weighted inductive limits of spaces of holomorphic functions he asked if the
space Hv0(G) has the approximation property under some conditions of Holt-
manns [25]. The problem remains open in general, but we give a positive
answer for weights with two additional conditions. Actually we can then
even show the existence of a basis.

In section 2.2 we give the necessary notation and an overview about results
for weighted spaces of holomorphic functions on certain domains. The main
result (theorem 2.13) is given in section 2.3. Next, in section 2.4, we present
some preparations before we give the proof of theorem 2.13 in section 2.5. In
the last section we give some examples for the weights.

An article similar to this part, except for section 2.2, is accepted for pu-
plication in Bull. Soc. R. Sci. Liège.
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2.2 Notation and known results

Let G ⊂ C or CN , N ∈ N, and v : G → R+ be a weight on G, i.e. a strictly
positive, continuous function. Define

Hv(G) := {f ∈ H(G); ||f ||v := sup
z∈G

v(z)|f(z)| < ∞},

Hv0(G) := {f ∈ H(G); vf vanishes at infinity on G}.

Hv0(G) is a closed subspace of Hv(G), and both spaces are complete, hence
Banach spaces, where Hv0(G) carries the induced norm.

The unit balls of these spaces are denoted as follows:

B := {f ∈ Hv(G); sup
z∈G

v(z)|f(z)| ≤ 1},

B0 := {f ∈ Hv0(G); sup
z∈G

v(z)|f(z)| ≤ 1}.

In 1993 Bierstedt, Bonet, Galbis [10] investigated weighted spaces of holo-
morphic functions for radial weights v on balanced domains G and proved
the metric approximation property of Hv0(G) if Hv0(G) contains the poly-
nomials. For starshaped domains and admissible weights Kaballo and Vogt
[27] had already proved the approximation property by a different method.
More recently Stanev [40] studied weighted spaces of holomorphic functions
on the upper half-plane. He gave a characterisation when these spaces are not
trivial. In her thesis Holtmanns [25] investigated biduals of weighted spaces
of holomorphic functions on the upper-half plane G. She introduced natural
conditions on the weight v such that Hv0(G)′′ and Hv(G) are isometrically
isomorphic. We now present some more details of the results mentioned so
far.

Definition 2.1. A Banach space X has the approximation property (a.p.) if
for any compact subset M ⊂ X and any ε > 0 there is a linear finite rank
operator L : X → X with ||Lx − x|| ≤ ε for every x ∈ M . If there is λ ≥ 1
such that in addition L can always be chosen with ||L|| ≤ λ, then X has the
bounded approximation property (b.a.p.). If λ can be chosen to be 1, one says
that X has the metric approximation property (m.a.p.).
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Definition 2.2. Let G be a starshaped bounded open set around zero in CN ,
which means that G ⊂ Gρ := {z ∈ CN ; ρz ∈ G} for 0 < ρ < 1. A weight
v : G → R+ with limz→∂G v(z) = 0 is called admissible if v(z) ≤ v(ρz) holds
for all z ∈ G and 0 ≤ ρ ≤ 1.

Kaballo, Vogt [27] presented the following result in 1980:

Theorem 2.3. Let G ⊂ C be a starshaped bounded open set around zero
and v : G → R+ be an admissible weight on G. Then Hv0(G) has the
approximation property.

The theorem was proved by use of the operator Tρ : Hv0(G) → H(Gρ),
(Tρf)(z) = f(ρz). The space H(Gρ) has the approximation property, and
showing that for ρ → 1 the operator Tρ tends to the identity uniformly on the
compact subsets of Hv0(G), it follows that Hv0(G) has the approximation
property. This proof also shows that Hv0(G) has the bounded approximation
property if A(G) := {f ∈ C(G); f|G holomorph} has. An obvious example
for this situation is the unit disc in C, but A(G) also has the bounded ap-
proximation property for bounded balanced domains G ⊂ CN .

Definition 2.4. Let G be a balanced open subset of CN . A weight v : G → R

is called radial if v(λz) = v(z) for all z ∈ G and all λ ∈ C, |λ| = 1.

Theorem 2.5. (Bierstedt, Bonet, Galbis [10]) Let G be a balanced open
subset of C

N , v : G → R+ be a radial weight and let Hv0(G) contain all the
polynomials. Then Hv0(G) has the bounded approximation property, and the
polynomials are dense in Hv0(G).

In the proof of theorem 2.5 the authors used the Cesàro means of the partial
sums of the Taylor series about 0 to construct linear operators of finite rank
from Hv(G) into Hv0(G).

To answer the question of Bierstedt, it is not possible to use the same argu-
ments and ideas as in the case of radial weights on balanced domains.

Now let G be the upper half-plane, G = {z ∈ C; Imz > 0}. Stanev [40]
presented conditions under which weighted spaces of holomorphic functions
on the upper half-plane are not trivial. His notation is different from the
usual one. He considered functions p : R+ → R+ with inft∈[ 1

c
,c] p(t) > 0 for

all c > 1 and the norm

||f ||p := sup
z∈G

p(Imz)|f(z)|.
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Theorem 2.6. (Stanev [40]) Let p : R+ → R+ be a function as above and
put v(z) = vp(z) := p(Imz), z ∈ G.

i) Hv(G) 6= {0} if and only if there exist a, b ∈ R such that

(−1) ln p(t) ≥ at + b

for all t > 0.

ii) Hv0(G) 6= {0} if and only if the following two conditions on the func-
tion p are satisfied:

(a) there exist a, b ∈ R such that (−1) ln p(t) ≥ at + b for all t > 0,

(b) limt→0+ p(t) = 0.

Next we present a result of Holtmanns for weighted spaces of holomorphic
functions on the upper half-plane G and their biduals. In her proof she used
a general result of Bierstedt, Summers which we will give first.

Proposition 2.7. (Bierstedt, Summers [16]) If B0 is dense in B in the
compact open topology , then Hv(G) is isometrically isomorphic to the bidual
Hv0(G)′′.

Theorem 2.8. (Holtmanns [25]) Let G be the upper half-plane and let v be
a continuous weight on G such that:

(i) v > 0 on G,

(ii) limImz→0 v(z) = 0,

(iii) there exists 0 < r0 < 1 with v(z) ≤ v(z + ir) for all z ∈ G and
0 < r ≤ r0.

Then Hv0(G)′′ and Hv(G) are isometrically isomorphic.

For f ∈ Hv0(G) Holtmanns introduced auxiliary functions

fn(z) := f(z +
1

n
) n

√

1

z + i
, z ∈ G, n ∈ N

(as in the proof of the classical Phragmen-Lindelöf theorem) to prove the
condition of proposition 2.7 in her case. The operators f → fn on Hv0(G)
will be important for the proof of our main result, too.
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2.3 Commuting b.a.p. and the main result

While we tried to solve the problem of Bierstedt, it turned out that two
additional conditions on the weights were needed. With these conditions
and a result of Lusky [30] it was even possible to show the existence of a
basis.

Definition 2.9. Let X be a Banach space. A sequence (ej)j∈N is called
Schauder basis of X if for each x ∈ X there is a uniquely determined sequence
(ξj(x))j∈N in IK, for which x =

∑∞
j=1 ξj(x)ej is true.

Definition 2.10. Let X be a Banach space. A sequence of bounded linear
operators Vn : X → X of finite rank is called commuting approximating
sequence (c.a.s.) if limn→∞ Vnx = x for each x ∈ X and VnVm = Vmin(n,m)

whenever n 6= m. If there exists such a sequence (Vn)n∈N on X, then X
is said to have the commuting bounded approximation property (CBAP). If
VnVm = Vmin(n,m) holds, in addition, even for n = m then X is said to have
a finite dimensional Schauder decomposition (FDD).

Clearly, by the Banach-Steinhaus theorem (CBAP) implies the bounded ap-
proximation property. It is known that there are Banach spaces with (CBAP)
which do not have (FDD).

Definition 2.11. Let X be a given Banach space. For a fixed p with 1 ≤
p ≤ ∞ we say that a sequence of continuous linear operators Vn : X → X
factors uniformly through lmp ’s with respect to λ if there are suitable integers
mn ∈ N and continuous linear operators

Tn : X → lmn

p , Sn : lmn

p → X,

with
Vn = SnTn, sup

n
||Tn|| ≤ λ and sup

n
||Sn|| ≤ λ.

In 1996 Lusky [30] presented the following result which we will use in the
case p = ∞ to show that Hv0(G) has a basis.

Theorem 2.12. Let the Banach space X have a commuting approximating
sequence (Vn)n∈N such that Vn−Vn−1 factors uniformly through lmp ’s for some
1 ≤ p ≤ ∞. Then X has a basis.

From now on G is the upper half-plane. For our main result we need the
following conditions on the weight v. Let v : G → R be continuous such that
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(i) v > 0 on G,

(ii) limImz→0 v(z) = 0,

(iii) there exists 0 < r0 < 1 with v(z) ≤ v(z + ir) for all z ∈ G and
0 < r ≤ r0,

(iv) for each ε > 0 there exists b = b(ε) > 0 such that v(z) ≥ b for all z ∈ G
with Imz ≥ ε,

(v) v is bounded.

The first three conditions were introduced by Holtmanns [25]. She did not
require conditions (iv) and (v) for her work, but these conditions seem to be
necessary for our result. The following is the main result of the second part
of this work.

Theorem 2.13. Let G be the upper half-plane and v a weight on G which
satisfies conditions (i)-(v) above. Then Hv0(G) has a basis.

With theorem 2.12 above the proof of theorem 2.13 is reduced to showing
that Hv0(G) has a commuting approximating sequence {Vn}

∞
n=1 such that

Vn − Vn−1 factors uniformly through lm∞’s.

2.4 Preparations

In the sequel some technical tools are given which are needed for the proof.
In her thesis [25] Holtmanns defined linear operators Θn as follows:

Definition 2.14. For f ∈ Hv0(G) let

Θn : Hv0(G) → Hv0(G), n ∈ N, Θnf := fn

with fn(z) := f(z +
i

n
) n

√

1

z + i
for z ∈ G.

The main branch of the n-th root is well-defined since z → 1
z+i

maps G into
the set {z ∈ C ; Imz < 0 and |z| < 1}. The functions fn are holomorphic on
G since z + i 6= 0 for all z ∈ G.

Lemma 2.15. (Holtmanns [25]) Θn is well-defined and continuous as an
operator from Hv0(G) into Hv0(G). Θnf converges to f in the compact-

open topology, f ∈ Hv0(G), since | n

√

1
z+i

| → 1 for n → ∞.
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Lemma 2.16. Let f ∈ Hv0(G) and Θn be as defined before. For each ε > 0
there exist n0 ∈ N and a compact set K ⊂ G with v(z)|Θnf(z) − f(z)| ≤ ε
for all z ∈ G \ K and for any fixed n ∈ N, n ≥ n0.

Proof. Let ε > 0 be given. Set ε̃ = 1
4
ε. f ∈ Hv0(G) means that there exist

L > 0 and 0 < l < 1
2

with

v(z)|f(z)| ≤ ε̃ ∀ z ∈ G \ [−L, L] × i[l, L].

Set K := [−L, L] × i[ l
2
, L]. For all z ∈ G \ K the following inequality holds

for n ∈ N large enough such that condition (iii) can be applied:

v(z)|Θnf(z) − f(z)| ≤ v(z)(|fn(z) − f(z + i
n
)| + |f(z + i

n
) − f(z)|)

≤ v(z)|f(z + i
n
) n

√

1
z+i

− f(z + i
n
)|

+v(z)|f(z + i
n
)| + v(z)|f(z)|

≤ v(z + i
n
)|f(z + i

n
)|| n

√

1
z+i

− 1|

+v(z + i
n
)|f(z + i

n
)| + v(z)|f(z)|.

Let us now show that v(z + i
n
)|f(z + i

n
)| ≤ ε̃ for n ∈ N large enough. Two

cases are possible:
Case 1: |Rez| > L or Imz > L. Then z /∈ K ⇒ z + i

n
/∈ K ⇒ v(z + i

n
)|f(z +

i
n
)| ≤ ε̃.

Case 2: Imz < l
2

and |Rez| ≤ L. Then there exists n0 ∈ N with 1
n

< l
2

for
all n ∈ N, n ≥ n0. z + i

n
= x + i(y + 1

n
) with y + 1

n
< l

2
+ 1

n
≤ l

2
+ l

2
= l

⇒ Im(z + i
n
) < l ⇒ v(z + i

n
)|f(z + i

n
)| ≤ ε̃.

On the other hand, supz∈G | n

√

1
z+i

| = supz∈G
n

√

1
|z+i|

= 1 ∀n ∈ N since

|z + i| ≥ |Imz| + 1 ≥ 1 ∀z ∈ G, and hence |1 − n

√

1
z+i

| ≤ 2.

Using these two estimates in the right hand side of the above inequality
yields

v(z)|Θnf(z) − f(z)| ≤ 2ε̃ + ε̃ + ε̃ ≤ ε

for each z ∈ G \ K.

Corollary 2.17. With lemma 2.15 and lemma 2.16 it follows that for f ∈
Hv0(G) and for each ε > 0 there exists n0 ∈ N such that ||Θnf − f ||v ≤ ε
for any fixed n ∈ N, n ≥ n0.
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Next we define the space A0(G), extend the operator Θn to G and show that
fn maps Hv0(G) to A0(G) and that there exists a restriction mapping back
to Hv0(G).

Definition 2.18. Define

A0(G) := {f ∈ C(G); f|G ∈ H(G), ∀ η > 0 ∃ N ∈ R+ :
|f(z)| < η ∀z ∈ G, |z| ≥ N},

endowed with the sup-norm and extend Θnf continuously to G by taking

(Θnf)(x) = f(x + 1
n
) n

√

1
x+i

for x ∈ R.

Lemma 2.19. For each f ∈ Hv0(G) and each n ∈ N we have Θnf ∈ A0(G),
i.e. there exists a linear mapping

Rn : Hv0(G) → A0(G), Rnf = fn ∀ n ∈ N.

Proof. Let f ∈ Hv0(G) and n ∈ N be fixed. Set ε = 1
n
. With condition (iv)

for the weight v there exists b = b( 1
n
) > 0 with v(z) ≥ b for all z ∈ G with

Imz ≥ ε. Then for each z ∈ G, also v(z + i
n
) ≥ b holds. Now fix η > 0.

f ∈ Hv0(G) means that for η̃ := η · b there exists N > 0 such that

|f(z +
i

n
)|v(z +

i

n
) ≤ η̃

for all z ∈ G with |z| ≥ N . Then for fn and such a z ∈ G the following
estimate holds:

|fn(z)| = |f(z + i
n
)|| n

√

1
z+i

|

= |f(z + i
n
)|v(z + i

n
) 1

v(z+ i
n

)
| n

√

1
z+i

|

≤ η̃ · 1
b

= η,

hence fn ∈ A0(G).

Lemma 2.20. The restriction mapping

R : A0(G) → Hv0(G), f → f|G,

is well-defined and continuous.
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Proof. Fix f ∈ A0(G). By condition (v), v is bounded, i.e. there exists
M > 0 with v(z) ≤ M for all z ∈ G. Let η > 0 be arbitrary, but fixed. Set
η′ := η

M
. For η′ there exists N > 0 such that |f(z)| < η′ for all z ∈ G with

|z| ≥ N. Then v(z)|f(z)| < M η
M

= η for all z ∈ G with |z| ≥ N . Define

L := N + 1. By condition (ii) we can extend v continuously to G by putting
ṽ(z) := v(z) for z ∈ G and ṽ(z) := 0 elsewhere. ṽ is uniformly continuous
on K := [−L, L] × i[δ, L] for each δ > 0. f is bounded on K which means
that there exists S > 0 such that |f(z)| ≤ S for all z ∈ K. For ε := η

S
> 0

there exists δ > 0 : z, z′ ∈ K, |z − z′| < δ ⇒ |ṽ(z) − ṽ(z′)| < ε. We would
like to show that v(z)|f(z)| < η for all z /∈ K. The desired inequality holds
if |z| ≥ N + 1. Let z = x + iy /∈ K and consider 0 < y < δ and |z| ≤ N + 1.
We get |x − z| = |x − x − iy| = |y| < δ and ṽ(z) = ṽ(z) − ṽ(x) < ε = η

S
,

hence v(z)|f(z)| < η
S
S = η for all z /∈ K.

Lemma 2.21. The sequence (Rn)n∈N of linear mappings Rn : Hv0(G) →
A0(G) is uniformly bounded.

Proof. For n ≥ n0 large enough so that condition (iii) can be applied, we get

||Rnf ||v = ||fn||v = sup
z∈G

|fn(z)|v(z) = sup
z∈G

|f(z +
i

n
) n

√

1

z + i
|v(z)

≤ sup
z∈G

|f(z +
i

n
)|v(z +

i

n
)| n

√

1

z + i
|

≤ ||f ||v.

In the next step we define the disc algebra A(D), the space A0(D), repeat
some properties of these spaces and show the existence of an isometric iso-
morphism between A0(D) and A0(G).

Definition 2.22. Let D be the open unit disc, D := {z ∈ C; |z| < 1}. Define
the disc algebra

A(D) := {f ∈ C(D); f|D is holomorphic},

and the space
A0(D) := {f ∈ A(D); f(1) = 0}.

Because the polynomials are dense in the disc algebra one can write A0(D)
as

A0(D) = span{zj − 1; j = 1, 2, ...}.
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Bockarev [17] showed in 1974:

Proposition 2.23. The disc algebra A(D) has a Schauder basis and therefore
the bounded approximation property.

Proposition 2.24. A0(D) has the bounded approximation property.

Proof. By proposition 2.23, A(D) has the bounded approximation property.
p : A(D) → A0(D), p(f) = f − f(1), f ∈ A(D), is a bounded projection
onto A0(D). Because of this, A0(D) is complemented in the disc algebra and
inherits the bounded approximation property from A(D).

Proposition 2.25. There exists an isometric isomorphism T between A0(G)
and A0(D).

Proof. Compare [39], p. 81. Define α : G → D, α(z) := z−i
z+i

for z ∈ G. α is a
linear fractional transformation of the upper half-plane G onto the unit disc
D. The inverse mapping of α is β : D → G, β(w) := i 1+w

1−w
, w ∈ D. For each

c ≥ 0, α maps the half plane Imz > c onto the disc {w; |w − c
1+c

| < 1
1+c

},

and α maps the line Imz = c onto the circle {w; |w − c
1+c

| = 1
1+c

} with the
point 1 deleted, also β(1) = ∞ and α(∞) = 1. Now we can define

T : A0(G) → A0(D) as Tf := f ◦ α, f ∈ A0(G),

which is an isometric isomorphism from A0(G) onto A0(D).

From now on we are following a method of Lusky (see [29]) to construct a suit-
able commuting approximating sequence (Vn)n∈N, Vn : Hv0(G) → Hv0(G)
such that Vn − Vn−1 factors uniformly through lm∞’s.

Definition 2.26. Let H(D) := {f : D → C; f continuous, f|D harmonic}
endowed with the sup-norm and let f ∈ H(D) have the Fourier series
f(reiϕ) =

∑∞
k=−∞ αkr

|k|eikϕ.

Define Ṽn : H(D) → H(D) as

(Ṽnf)(reiϕ) :=
∑

|k|≤2n

αkr
|k|eikϕ +

∑

2n<|k|≤2n+1

2n+1 − |k|

2n
αkr

|k|eikϕ,

Ṽn is the convolution with the de la Vallée Poussin kernel which is defined as

Vn(z) := 2F2n+1(z) − F2n(z),
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where Fn(z) is the Fejér kernel

F2n(z) :=
n

∑

k=−n

(1 −
|k|

2n
)eikϕ.

and Vn : A0(D) → A0(D) as

Vnf := Ṽnf − (Ṽnf)(1) · z2n

, f ∈ A0(D).

Lemma 2.27. For the Fourier series f =
∑

αkr
|k|eikϕ we define the Cesàro

means σn : H(D) → H(D) by σn(f) :=
∑

|k|≤2n

2n−|k|
2n αkr

|k|eikϕ, cf. [24].
Then

2σn+1(f) − σn(f) = Ṽn(f)

holds for each n ∈ N.

Proof. By calculating we obtain

2σn+1(f) − σn(f)

= 2
∑

|k|≤2n+1

2n+1 − |k|

2n+1
αkr

|k|eikϕ −
∑

|k|≤2n

2n − |k|

2n
αkr

|k|eikϕ

=
∑

2n<|k|≤2n+1

2n+1 − |k|

2n
αkr

|k|eikϕ +
∑

|k|≤2n

(

2n+1 − |k|

2n
−

2n − |k|

2n

)

αkr
|k|eikϕ

=
∑

2n<|k|≤2n+1

2n+1 − |k|

2n
αkr

|k|eikϕ +
∑

|k|≤2n

(

2n+1 − 2n

2n

)

αkr
|k|eikϕ

=
∑

2n<|k|≤2n+1

2n+1 − |k|

2n
αkr

|k|eikϕ +
∑

|k|≤2n

αkr
|k|eikϕ

= Ṽn(f).

Lemma 2.28. For f ∈ A0(D) and Vn defined as before, the following holds:

(i) limn→∞ Vnf = f for each f ∈ A0(D),

(ii) dim VnA0(D) < ∞,

(iii) VnVm = Vmin(n,m), if n 6= m.
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Proof. (i) and (ii) follow immediately from the definition of Vn, respectively
of Ṽn and lemma 2.27 because the Cesàro means are convergent to f in
A(D). To show (iii), we first prove ṼnṼm = Ṽmin(n,m), for n 6= m. For m > n,

ṼnṼm = Ṽn follows directly from the definition. Ṽnzk = 0 if k ≥ 2n+1, and
Ṽmzk = Ṽnzk = zk if k ≤ 2n < 2m.

PSfrag replacements

2−m 2−n 2n 2m

Ṽn

Ṽm, m > n

For n > m one can use the same arguments to get ṼnṼm = Ṽm. To show
the desired equation for VnVm, set Wn(f) = −(Ṽnf)(1)z2n

. For m > n we
obtain:

VnVm(f) = (Ṽn + Wn)(Ṽm + Wm)(f)

= (ṼnṼm + ṼnWm + WnṼm + WnWm)(f)

= Ṽn(f) − Ṽn((Ṽmf)(1)z2m

) − Ṽn(Ṽmf)(1)z2n

− Wn((Ṽmf)(1)z2m

)

= Ṽn(f) − (Ṽmf)(1)Ṽn(z
2m

) − (Ṽnf)(1)z2n

+(Ṽmf)(1)(Ṽn(z
2m

))(1)z2n

= Ṽn(f) + Wn(f)

= Vn(f).

In the case m < n one uses the same arguments and obtains VnVm = Vm.

Lemma 2.29. For trigonometric polynomials
∑

k αkr
|k|eikϕ define

P (
∑

k

αkr
|k|eikϕ) :=

∑

k≥0

αkr
|k|eikϕ,

with generally unbounded P . Then

P (Ṽn − Ṽn−1)(f) = ei2nϕσn(e−i2nϕf) −
1

2
ei2n−1ϕσn−1(e

−i2n−1ϕf).

Hence P (Ṽn − Ṽn−1) is a continuous linear operator and the same then holds
for P (Vn − Vn−1).
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Proof. By some calculations we get

P (Ṽn − Ṽn−1)(f)

=
2n
∑

k=0

αkr
keikϕ −

2n−1
∑

k=0

αkr
keikϕ

−
2n
∑

k=2n−1+1

2n − k

2n−1
αkr

keikϕ +

2n+1
∑

k=2n+1

2n+1 − k

2n
αkr

keikϕ

=
2n
∑

k=2n−1+1

αkr
keikϕ −

2n
∑

k=2n−1+1

2n − k

2n−1
αkr

keikϕ +
2n+1
∑

k=2n+1

2n+1 − k

2n
αkr

keikϕ

=

2n
∑

k=2n−1+1

(

1 −
2n − k

2n−1

)

αkr
keikϕ +

2n+1
∑

k=2n+1

2n+1 − k

2n
αkr

keikϕ

=
2n
∑

k=2n−1+1

k − 2n−1

2n−1
αkr

keikϕ +
2n+1
∑

k=2n+1

2n+1 − k

2n
αkr

keikϕ

and

ei2nϕσn(e−i2nϕf) −
1

2
ei2n−1ϕσn−1(e

−i2n−1

ϕ)

=
∑

|k−2n|≤2n

2n − |k − 2n|

2n
αkr

keikϕ −
1

2

∑

|k−2n−1|≤2n−1

2n−1 − |k − 2n−1|

2n−1
αkr

keikϕ

=
∑

0≤k≤2n+1

2n − |k − 2n|

2n
αkr

keikϕ −
1

2

∑

0≤k≤2n

2n−1 − |k − 2n−1|

2n−1
αkr

keikϕ

=

2n
∑

k=0

2n − 2n + k

2n
αkr

keikϕ +

2n+1
∑

k=2n+1

2n − k + 2n

2n
αkr

keikϕ

−
2n−1
∑

k=0

2n−1 − 2n−1 + k

2n
αkr

keikϕ −
2n
∑

k=2n−1+1

2n−1 − k + 2n−1

2n
αkr

keikϕ

=

2n
∑

k=0

k

2n
αkr

keikϕ +

2n+1
∑

k=2n+1

2n+1 − k

2n
αkr

keikϕ
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−
2n−1
∑

k=0

k

2n
αkr

keikϕ −
2n
∑

k=2n−1+1

2n − k

2n
αkr

keikϕ

=

2n
∑

k=2n−1+1

(

k

2n
−

2n − k

2n

)

αkr
keikϕ +

2n+1
∑

k=2n+1

2n+1 − k

2n
αkr

keikϕ

=
2n
∑

k=2n−1+1

k − 2n + k

2n
αkr

keikϕ +
2n+1
∑

k=2n+1

2n+1 − k

2n
αkr

keikϕ

=

2n
∑

k=2n−1+1

k − 2n−1

2n−1
αkr

keikϕ +

2n+1
∑

k=2n+1

2n+1 − k

2n
αkr

keikϕ.

Proposition 2.30. Vn − Vn−1 factors uniformly through lm∞’s on A0(D).

Proof. By the definition of the Cesàro means, ||σn|| = 1 holds for all n ∈ N;
again cf. [24]. With lemma 2.27 we obtain ||Ṽn|| ≤ 3 for all n ∈ N . Hence
(Vn)n is uniformly bounded. C(∂D) is a L∞-space, and it is well-known that
H(D) is isometrically isomorphic to C(∂D). Hence H(D) is a L∞-space.
There exists λ > 0 such that for each n ∈ N there is F ⊂ H(D) with
Ṽn+1H(D) ⊂ F and there is an isomorphism Φ : F → lM∞ with M = dim F <
∞ and ||Φ||·||Φ−1|| ≤ λ. Note that A0(D) ⊂ H(D). Define Tn : A0(D) → lM∞
by

Tnf := Φ(Vn+1 − Vn−2)f,

and Sn : lM∞ → A0(D) by

Sng := P (Vn − Vn−1)Φ
−1g − (P (Vn − Vn−1)Φ

−1g)(1).

We have supn ||Sn|| < ∞, supn ||Tn|| < ∞ and

SnTn(f) = SnΦ(Vn+1 − Vn−2)f

= P (Vn − Vn−1)(Vn+1 − Vn−2)f

−(P (Vn − Vn−1)(Vn+1 − Vn−2)f)(1)

= P (Vn − Vn−1)f − (P (Vn − Vn−1)f)(1) = (Vn − Vn−1)f

where the last but one equality holds because of

(Vn − Vn−1)(Vn+1 − Vn−2) = VnVn+1 − VnVn−2 − Vn−1Vn+1 + Vn−1Vn−2

= Vn − Vn−2 − Vn−1 + Vn−2 = Vn − Vn−1.
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2.5 Proof of theorem 2.13

Before we give the proof of theorm 2.13 we will collect the results of section
2.4 in the following diagram. We have

Hv0(G)
Rn−→ A0(G)

T
−→ A0(D)

Vn−→ A0(D)
T−1

−→ A0(G)
R

−→ Hv0(G).

With the linear mapping

Rn : Hv0(G) → A0(G), Rnf = fn ∀ n ∈ N,

the isometric isomorphism

T : A0(G) → A0(D), T f := f ◦ β, f ∈ A0(G),

the commuting approximating sequence (Vn)n

Vn : A0(D) → A0(D), Vnf := Ṽnf − (Ṽnf)(1) · z2n

, f ∈ A0(D)

and the restriction mapping

R : A0(G) → Hv0(G), f → f|G.

Now we come to the proof of theorem 2.13: For a suitable sequence (mn)n∈N

of indices we can assume without loss of generality:

(∗) Rmn
RT−1(r|k|eikϕ − 1) = T−1(r|k|eikϕ − 1) ∀ |k| ≤ 2n+1.

If (∗) is not true, replace Rmn
by

R̃mn
:= Rmn

(id − Pn) + R−1Pn

= (R−1 − Rmn
)Pn + Rmn

,

with En := span{RT−1(r|k|eikϕ − 1); |k| ≤ 2n+1}, En ⊂ Hv0(G) and Pn :
Hv0(G) → En a bounded projection. Then

R̃mn
RT−1 = (R−1 − Rmn

)RT−1 + Rmn
RT−1 = T−1

holds on En, but we have to show that R̃mn
is uniformly bounded. By

corollary 2.17, one can choose m1 < m2 < ... with

||Rmn
RT−1(r|k|eikϕ − 1) − T−1(r|k|eikϕ − 1)|| ≤

1

n2n+2||Pn||w
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for all |k| ≤ 2n+1, where w := ||R−1
|En

||. By the definition of R̃mn
we obtain

||R̃mn
− Rmn

|| = ||(R−1 − Rmn
)Pn||.

Let x ∈ En with ||x||v = 1. One can write x as

x :=
∑

|k|≤2n+1

αkRT−1(r|k|eikϕ − 1).

With U := (R−1 − Rmn
)Pn one gets

||Ux||v ≤
∑

|k|≤2n+1

|αk| · ||URT−1(r|k|eikϕ − 1)||v.

Define Fn := span{(r|k|eikϕ−1); |k| ≤ 2n+1}. Then Fn ⊂ A0(D), RT−1Fn =
En and ||(RT−1

|Fn
)−1|| ≤ w ||T || holds. Set W := (RT−1

|Fn
)−1 and note and

Wx =
∑

|k|≤2n+1

|αk|(r
|k|eikϕ − 1).

Here the Fourier coefficients can be estimated as follows:

|αk| ≤ ||Wx|| ≤ ||W || · ||x||v = ||W || ≤ w ||T ||.

Putting the estimates together we obtain

||R̃mn
− Rmn

|| = sup{||Ux||v; ||x||v = 1}

≤
∑

|k|≤2n+1

|αk| · ||URT−1(r|k|eikϕ − 1)||v

≤ 2n+2w||T || · ||T−1(r|k|eikϕ − 1) − Rmn
RT−1(r|k|eikϕ − 1)||

≤
||T ||

n||Pn||
.

Now define V̂n : Hv0(G) → Hv0(G) by

V̂n := RT−1VnTRmn
.

Comparing the definition of V̂n with the diagram at the beginning of this
section we obtain that V̂n is welldefined. We claim that V̂n is a commuting

62



approximating sequence with V̂nV̂m = V̂min(n,m) for n 6= m, dim V̂nHv0(G) <

∞ and limn→∞ V̂nf = f for f ∈ Hv0(G). Let n > m; then we have:

V̂nV̂m = RT−1VnTRmn
RT−1VmTRmm

= RT−1VnTT−1VmTRmm

= RT−1VnVmTRmm

= RT−1VmTRmm

= V̂m.

This holds because of (∗) and because TT−1 is the identity on A0(D). If
n < m we obtain V̂nV̂m = V̂n by the same arguments. In proposition 2.30 we
showed that there exist kn, Tn : A0(D) → lkn

∞ and Sn : lkn
∞ → A0(D) with

supn ||Sn|| < ∞, supn ||Tn|| < ∞ and SnTn = Vn − Vn−1. Set

T̂n : Hv0(G) → lkn
∞ , T̂n := TnTRmn

,

Ŝn : lkn
∞ → Hv0(G), Ŝn := RT−1Sn.

With (∗) and the definition of Vn it follows that

(∗∗) VnTRmj
= VnTRmn

holds for all j ≥ n since VnTRmn
RT−1(r|k|eikϕ − 1) = VnTT−1(r|k|eikϕ − 1) =

Vn(r|k|eikϕ − 1) for each |k| ≤ 2n+1. Note that supn ||Ŝn|| < ∞, supn ||T̂n|| <
∞ and by (∗∗)

ŜnT̂n = Ŝn(TnTRmn
)

= RT−1SnTnTRmn

= RT−1(Vn − Vn−1)TRmn

= (RT−1Vn − RT−1Vn−1)TRmn

= RT−1VnTRmn
− RT−1Vn−1TRmn−1

= V̂n − V̂n−1.

We have constructed a commuting approximating sequence V̂n such that
V̂n − V̂n−1 factors uniformly through lm∞’s. With theorem 2.12 it follows that
Hv0(G) has a basis.
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2.6 Examples

Example 2.31. (Stanev [40])

i) Let p : R+ → R+ be defined by p(t) = 1 for all t ∈ R+ and define
v(z) = vp(t) := p(Imz) for z ∈ G. In this case Hv(G) = H∞(G) and
Hv0(G) = {0}, because condition ii) of theorem 2.6 is not satisfied.

ii) Let p : R+ → R+ be defined by p(t) = exp(t2) for all t ∈ R and define
v(z) = vp(t) := p(Imz) for z ∈ G. From theorem 2.6 it follows that
Hv(G) = {0} and Hv0(G) = {0}.

Example 2.32. Let G be the upper half-plane and v : G → R be defined
by v(z) := (Imz)r for Imz ≤ 1 and v(z) := 1 elsewhere, r > 0. v satisfies the
conditions (i) - (v). Hence Hv0(G) has a basis.

Example 2.33. Let G be the upper half-plane and v : G → R be defined by
v(z) := exp(−1/(Imz)2). It is easy to see that v satisfies conditions (i)-(v).
Hence Hv0(G) has a basis.

Example 2.34. Let G be the upper half-plane and v : G → R be defined
by v(z) := Imz. v satisfies conditions (i)-(iv), but v is not bounded. But
Hv0(G) has the bounded approximation property.

Proof: The idea of this construction goes back to Stanev [40]. Let the
weight w on the unit disc D be defined by w(δ) := (1 − |δ|2). w is ra-
dial and lim|δ|→1 w(δ) = 0. Hence Hw0(D) has the bounded approximation

property [10]. For f ∈ Hw0(D) we define the operator T̃ : Hw0(D) →
Hv0(G), T̃ f(z) = (f ◦ β̃)(z) · ( 4

(1−iz)2
), z ∈ G with β̃(z) = 1+iz

1−iz
for z ∈ G.

β̃ maps the upper half-plane G onto the unit disc D. The operator T̃ is a
topological isomorphism from Hw0(D) onto Hv0(G) [40].

For z = x + iy ∈ G set β̃(z) = 1+iz
1−iz

= δ and calculate 1 − |δ|2:

1 − |δ|2 = 1 − |1+iz
1−iz

|2 = |1−iz|2−|1+iz|2

|1−iz|2
= (1−iz)(1+z)−(1+iz)(1−z)

|1−iz|2

= 1+iz−iz+|z|2−(1−iz+iz+|z|2)
|1−iz|2

= 2iz−2iz
|1−iz|2

= 2ix+2y−2ix+2y
|1−iz|2

= 4y
|1−iz|2

= 4Imz
|1−iz|2

For f ∈ Hw0(D) the following holds:
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f ∈ Hw(D) ⇔ (1 − |δ|2)p|f(δ)| < ∞ ∀δ ∈ D
⇔ ( 4Imz

|1−iz|2
)p|f(1+iz

1−iz
)| < ∞ ∀z ∈ G

⇔ v(z)|T̃ f(z)| < ∞∀ z ∈ G

⇔ T̃ f ∈ Hv(G) and
f ∈ Hw0(D) ⇔ f ∈ Hw(D), lim|δ|→1−(1 − |δ|2)p|f(δ)| = 0

⇔ T̃ f ∈ Hv(G), limImz→0(
4Imz

(1−iz)2
)pf(1+iz

1−iz
) = 0

⇔ T̃ f ∈ Hv(G), limImz→0 v(z)Tf (z) = 0

⇔ T̃ f ∈ Hv0(G).
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spaces and the characterization of the distinguishes Köthe echolon
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Functions, Birkhäuser Advanced Texts, Basler Lehrbücher (1994).
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