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NOMENCLATURE

Nomenclature

Latin Symbols

Symbol Dimension Denotation

A [m2] area

A [Pa] sound field amplitude

c [m/s] velocity of sound

cp [J/kg K] specific heat capacity (at const. pressure)

cv [J/kg K] specific heat capacity (at const. volume)

C [m] curve

D [1/s] rate of deformation

D [m] sonotrode diameter
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dRRSB [m] diameter according to Rosin & Rammler (1933)

dv.0.5 [µm] volume median diameter

d50,3̇ [µm] mass median diameter

F [m] focal length

f [-] volume fraction

f [1/s] frequency

F,f [N] force

G [-] area

g [m/s2] body forces (e.g., acceleration of gravity)

h [J/kg] total enthalpy

hst [J/kg] static (thermodynamic) enthalpy

I [-] identity tensor

I [Ns] momentum

J [kg/m2s] flux

K [m2] lamella parameter

K [-] fluid consistency index of viscosity model

L [m] length

Lr [m] resonant distance
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NOMENCLATURE

Symbol Dimension Denotation

k [1/m] wave number

k [J/m sK] conductivity coefficient

NK [-] number of pressure nodes

M [kg/mol] molar mass

n [-] unit normal

n [-] flow index of viscosity of model

P [N/m2] momentum flux

p [N/m2] pressure

P [N/m2] characteristic pressure
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R [J/kgK] gas constant

Rc [m] radius of curvature

R* [-] non-dimensional radius

s [m] line element

S [N/m2] viscosity stress tensor

T [s] period (time)

T [K] temperature

T [N/m2] stress tensor

u [m/s] velocity vector

U [m/s] characteristic velocity

u, v, w [m/s] components of velocity vector

V [m3] volume

X [m] sonotrode distance

Xi [m] inner sonotrode distance

Xl [m] distance of the lamella from the nozzle

x [m] position vector

x, y, z [m] coordiante of x = (x,y,z )

Y [m] oscillation amplitude
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Greek Symbols

Symbol Dimension Denotation

α [◦] angle

Γ [m2] interface, phase boundary

λ [kg/ms] bulk viscosity

λ [m] wave length

µ [kg/ms] dynamic viscosity

µ0 [kg/ms] dynamic zero shear rate viscosity
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ρ [kg/m3] density

< [-] real part

σ [N/m] surface tension

ω [1/s] angular frequency

κ [1/m] curvature

κ [-] isentropic exponent

φ [-] value of a quantity

ψ [-] physical quantity

χ [-] lamella number

δ [m] lamella thickness

Ω [-] subdomain

γ̇ [1/s] shear rate

ϕ [-] velocity potential
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Subscripts

∼ deviation from the mean value

i, j, k cell indices in (x,y,z)-direction

d droplet / disperse phase

g gas

l lamella

max maximal

n nozzle

opt optimal

p particle

pc parasite current

r resonant

rel relative

s spherical

st surface tension

str strand

t time

Dimensionless Numbers

Ba = A2Rs/(σρc
2) acoustic Bond number

Ca = µ|u| /σ Capillary number

Fr = U/
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L||g|| Froude number

La = σρR/µ2 Laplace number

Ma = umax/c0 Mach number
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σρd d Ohnesorg number

Re = ρU L/µ Reynolds number
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SUMMARY

Summary

Powder coatings are used in many different areas and are gaining increasing impor-

tance because of the neglectable emission potential concerning volatile components.

The production of powder coatings by disintegration using an ultrasonic standing

wave atomizer (SWA) avoids disadvantages of other techniques, but still needs in-

tensification to reach industrial standards.

Therefore, the goal of our research is to achieve a better understanding of the poly-

mer strand disintegration in an ultrasonic wave field. This is done by means of

numerical simulations based on continuum mechanical modeling and well-defined

experiments for validation. The simulations employ a one-way coupling, where the

commercial Computational Fluid Dynamic-tools Fluent and CFX, respectively, are

used to compute the nonlinear acoustic field. The calculated acoustic forces are

incorporated in the Volume of Fluid-code FS3D to compute the disintegration

process. These ultrasonic forces acting on the liquid’s surface are modeled as ap-

propriate momentum fluxes, approximating the real gas-liquid jump conditions.

The model is validated by comparing droplet breakup in levitator experiments and

numerical simulations of the atomization process.

The simulations allow a qualitative description of droplet deformation and

atomization in a single axis standing wave levitator (SWL). Taking into account

back-effects of a droplet on the ultrasonic field, quantitative predictions of droplet

radii with respect to sonotrode amplitude are possible, mirroring the real behavior

very well. Because of the much higher complexity, numerical simulation of liquid

strand disintegration in an SWA cannot take into account effects of the liquid phase

on the ultrasonic field. Therefore, so far simulations only allow for a qualitative

description of the disintegration process. Nevertheless, significant trends in strand

disintegration can be observed as it is demonstrated by particle size distributions.

The latter are important for industrial use, reflecting the correlation between varia-

tions in operational parameters, material properties, and particle sizes. Therefore,

based on these results optimizations of our laboratory plant and the process itself

are now possible.

xi





1. Introduction

Polymer particles with size distributions in the range of 5 to 50 µm are gaining

increasing importance in industrial production processes and technological appli-

cations. Huge amounts of such particles are required in powder coating technology

due to more rigid environmental standards. Powder coatings as a solvent-free al-

ternative with almost no thinner emission exceed other types of coatings in terms

of conservation. Additional applications include the production of pigments or

toners. So far, the production of powder coatings is done by energy-costly milling

of polymers, which leads to sharp-edged particles of irregular shape. This reduces

product quality and thus, has a negative environmental effect. Therefore, new

innovative production methods have to be developed. However, the industrial de-

velopment of new markets and applications for powder coatings strongly depends

on the properties of the polymer particles as well as their manufacturing process.

The properties and quality of powder coatings are not only given by their chemical

formation, but also depend on particle shape and particle size distribution, hence,

on the manufacturing technique. Especially fine properties are found for coatings

made of spherical particles with narrow particle size distribution.

A novel advantageous technique for the production of polymer particles is the

disintegration of polymer melts in an ultrasonic standing wave atomizer (SWA).

Here, particles are created by means of ultrasonic forces acting on the liquid sur-

face and leading to its disintegration. For this purpose, an ultrasonic standing wave

field is generated by two sonotrodes, driven by piezo ceramic, with frequencies of

about 20 kHz. To improve this system, a booster is placed between transducer and

a sonotrode. Thereby, amplitudes of up to 125 µm are generated at the sonotrode’s

end face. The distance between the transducers is adjusted to an odd multiple of

half the acoustic wave length to achieve resonance with usually three or five pres-

sure nodes. Due to resonance phenomena, amplitudes of the resulting velocity and

1



1.1. Problem Description

pressure fields are very high and of strong nonlinear nature.

nozzle

sonotrode
sonotrode

Figure 1.1.: Schema of a pilot plant

To produce spherical polymer particles, molten polymer is continuously in-

jected via a nozzle into the central pressure node of the ultrasonic standing wave

field (cf. Figure 1.1). The polymer strand disintegrates due to the acoustic forces

acting on it. Thereby, discrete droplets with a particle size distribution in the

range of 5 to 100 µm are generated. Due to surface tension, the shapes of these

droplets become almost spherical. Particles solidify during their movement and

are presorted by a subsequent cyclone. This spherical shape has advantage over

irregular-shaped particles in terms of ability of maintaining static electric charges,

important for direct application, and surface smoothness of coating. This process

is especially interesting in the context of thermo-mechanically sensitive materials.

1.1. Problem Description

Powder coatings are manufactured by processing a main constituent resin to coarse

crushing, dry blending with a hardener and various additives, and then subjecting

the dry blend to extrusion, cooling, a second crushing process, and classification.

Compared with solvent based paints, the manufacturing process is long and com-

plex, and consequently the problem arises of increased process cost especially when

thin film powders are considered.

Currently, the great majority of binders constituting most powder composi-

tions are based on amorphous resins. To avoid negative side effects of the binder,

2



CHAPTER 1. INTRODUCTION

they are formed by a semi-cristalline polyester being used alone or as a mixture

with amorphous resins. These semi-cristalline polyesters have a high melting point

and a low transition temperature. Consequently, the melt viscosity is much lower

than that of the amorphous polyester, which is commonly used in powder com-

position. This means that powder coating compositions based on semi-cristalline

polyester exhibit better fluidity of the coating film and provide outstanding me-

chanical properties. Beside the many advantages especially grinding of the semi-

cristalline extrudate is critical. Due to the fact that the semi-cristallinity already

implies some mechanical strength of the extrudate, the enormous dissipation of

heat created by the grinding process often causes partial melting of the powder

during manufacturing and thus, blocking of the grinding equipment. Hence, disin-

tegration of the melt in an ultrasonic field is the best opportunity to process this

advantageous resins.

So far, equipment used for the disintegration of polymer melts in an SWA

is based on the ultrasonic welding technique. Therefore, transducers applied for

the atomization process are not build and optimized for this kind of application.

Previous optimization of the ultrasonic field yielding preferably small particles has

mainly be done empirically. The aim of these efforts was to generate particles of

about 10 - 50 µm having a small particle size distribution at mass flow rates of about

300 mL/min. Because of various parameters effecting the disintegration process

like frequencies and amplitudes of the sonotrodes, the geometry of the sonotrode’s

end face, the distance and angle of the sonotrodes to each other, and the liquid

properties, empirical optimization of the whole process is too time-consuming. Ex-

perimental investigations having done so far give an idea of qualitative and partially

quantitative effects of parameter variations on the disintegration process, but are

still limited on the specific geometry of the employed sonotrodes. Therefore, a

transfer of results related to this specific plant to other sonotrode configurations

with modified geometry is not possible.

Further more, the process of atomization of liquids in an ultrasonic field itself

is still not totally understood. The phenomena causing a fragmentation of the

liquids surface and mechanisms proceeding near the interface are too complex to

be described in total. This fundamental understanding of the SWA is necessary to

3



1.2. Aim of the Study

further improve the disintegration process.

1.2. Aim of the Study

The ultimate goal of our research in this field is to optimize the disintegration

process in an ultrasonic standing wave atomizer in terms of energy requirements,

product quality, flow rate, narrow particle distribution, and total cost. To gain

maximum efficiency from this technique, a fundamental understanding of the mech-

anisms of disintegration, the determination of all relevant parameters, and a quan-

titative description of their effects is required. So far, optimization of this process

is mainly done empirically. This requires time-consuming and expensive experi-

mental work such as screening of the pressure field between the transducers and

its dependency on different surface plate forms, transducer orientations as well as

variations of frequency and geometrical parameters.

In Reipschläger et al. (2001, 2002) and Reipschläger (2002), a novel approach

based on continuum mechanical modeling and numerical simulations has been ini-

tiated that allows for process optimization. This method is able to describe the

disintegration process as a free surface flow in which acoustic forces act on the

liquid surface. Since the phase boundary undergoes highly nonlinear changes dur-

ing the disintegration process with frequent changes of its topology, the interface

has to be captured implicitly. The previously applied Volume of Fluid (VOF)

code used for surface capturing has been extended by new subroutines in order

to determine the disintegration process quantitatively. Subsequently, numerical

simulations of the disintegration of polymer strands have been performed under

variation of geometrical, operational, and material properties. This allows to char-

acterize their effects on the disintegration process quantitatively. However, in order

to perform a large number of simulations for different parameters, highly efficient

computational techniques are required. To validate these numerical simulations,

experimental measurements have also been done.

4



2. Mathematical Treatment of Two-Phase

Flows

The disintegration of a liquid in an ultrasonic field is a highly complex two-phase

flow with compressible gas phase. On the microscopic level each fluid is discrete

with its properties fluctuating violently. However, considering problems in which

the dimensions of interest are very large compared to molecular scales, one may

ignore the molecular structure and endow the fluid with a continuous distribu-

tion of matter. This is the continuum hypothesis valid as a statistical average of

the corresponding molecular property of a large number of molecules. The fluid

properties can then be treated to vary smoothly in space and time. Therefore,

physical quantities such as mass and momentum associated with the matter con-

tained within a given small volume will be regarded as being spread uniformly over

this domain instead of being concentrated in a small fraction of it. Thus, all macro-

scopic quantities are treated as piecewise continuously functions of their location.

The extensive quantities are then additive to mass, allowing for the balancing of

the system on a continuum mechanical level.

Two-phase flow systems in particular are characterized by all physical quan-

tities being continuous in each phase with at least one of these variables making

a jump at the interface. In addition, two-phase systems are determined by its

boundary properties. In general, the phase boundary is treated as a thin, massless

layer which is considered as a piecewise smooth surface throughout mathematical

modeling. The following derivations of the balance equations for two-phase flows

are based on Bothe (2002). For more details about continuum mechanical modeling

of two-phase flows see Ishii (1975), Silhavy (1997) and Slattery (1999).

5



2.1. Integral Balance

2.1. Integral Balance

The basic approach for modeling two-phase flows are the balance equations for

mass, momentum and energy in their integral form. These extensive quantities are

valid over the whole calculation domain including the phase boundary.

In the following we observe the motion of two fluids which are immiscible on

a molecular level. The fluids occupy an arbitrary subdomain Ω−(t) and Ω+(t), re-

spectively, at time t in an arbitrary set G ⊂ R3 with G = Ω− ∪ Ω+. The fluid flow

transports the values of φ− and φ+ within its motion (cf. Figure 2.1). Thereby,

the phase boundary Γ(t) moves with the velocity of uΓ. Here, the unit normal

vector nΓ on Γ(t) points in the direction of Ω+(t). For balancing the fluid flow

the ball volume Br := Br(x0) is used. Under these assumptions the Navier-Stokes

equations are derived from the conservation laws for mass and momentum.

PSfrag replacements

Ω−(t)
φ−

Γ(t)
Γ(t+ dt)

nΓ
B−r

x0

B+
r

Ω+(t)
φ+ n

Figure 2.1.: Region φ− and φ+ of a two-phase system including its interface Γ(t).

Mass Balance

To setup the balance of mass, consider a closed surface A whose position is fixed

relatively to the coordinate axes, and which encloses a volume V ⊂ G totally

occupied by fluid. The mass of fluid enclosed by the surface at any distance is
∫

V
ρ(x, t) dV , where ρ is the density of the fluid at a position x and time t. The

net rate at which mass is flowing outwards across the surface is then
∫
ρu · n dA.

Here, dV and dA are elements of the enclosed volume and area of the surrounding

6



CHAPTER 2. MATHEMATICAL TREATMENT OF TWO-PHASE FLOWS

surface, with the latter having the unit outward normal vector n. Therefore, for a

massless boundary layer the mass change inside the volume V will become

d

dt

∫

V

ρ dV = −
∫

∂V

ρu · n dA , (2.1)

d

dt

∫

V

ρ dV +

∫

∂V

J · n dA = 0 with J = ρu .

Here, the density flux J of the liquid will point towards the flow direction. Its

magnitude represents the fluid value per time which flows through a surface unit

perpendicularly to the velocity.

Momentum Balance

In general, the momentum of a body is the product of its mass with its velocity.

Since in case of a fluid the velocity may vary with its position, the momentum of

a substantial fluid volume V (t) transported by fluid motion is expressed by the

integral

I(t) =

∫

V (t)

ρu dV .

According to Newton’s second law, the rate of change of (linear) momentum is

equal to the sum of the forces acting on the fluid:

d

dt
I(t) =

∑

i

Fi

Two types of forces are distinguished:

• body forces of external fields with a given force density f per unit volume

(e.g., gravity, Coriolis force, magnetic force),

and

• surface forces S∂V (t) (e.g., pressure and internal friction).

Thus, Newton’s law for fluids reads as

d

dt

∫

V (t)

ρu dV = S∂V (t) +

∫

V (t)

ρf dV .

The correlation between S∂V (t) and the remaining fluid quantities has to be estab-

lished by constitutive equations. When modeling an ideal fluid, internal friction is

7



2.1. Integral Balance

neglected. Therefore, for a single-phase system the tension on the surface of a fluid

volume V is solely determined by the pressure p (x, t). Thus, the force −pn dA
acts on the enclosed surface element dA of the surface dV :

S∂V (t) = −
∫

∂V (t)

pn dA .

Instead, for real fluids in a two-phase system the previous balance equation needs

to be extended by the impact of surface tension and interfacial forces:

d

dt

∫

V (t)

ρu dV =

∫

V (t)

ρf dV +

∫

∂V (t)

T · n dA+ FΓ(t) .

Here, the stress tensor T is given as T = −pI + S with I denoting the identity

tensor and S the viscous part of the stress tensor. This viscosity stress tensor S

describes the tension in a fluid caused by internal friction. FΓ(t) refers to the force

on the boundary layer Γ(t) ∩ V (t) due to surface tension. This term derives from

the force FA acting on the area A = V ∩ Γ(t) of the phase boundary enclosed by

the control volume V.

PSfrag replacements

A

nΓ

dF
ds

C
Γ(t)

Figure 2.2.: Force on a line element ds on the interface Γ(t).

Such state is pictured in Figure 2.2. Located on the phase boundary Γ(t) is the

enclosed area A with its boundary curve C. As a result of the surrounding interface,

the force dF acts on the line element ds of the curve C tangential to the boundary

layer Γ(t). It is perpendicular to ds with an absolute value of |σds|. Hence, the

surface tension σ(x, t) onto a line element of the length |ds| results in a force

dF = σds× nΓ. Thus, the integral along the boundary leads to the force onto the
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area A,

FA(t) =

∮

C

σ(ds× nΓ) =
∮

C

ds× σnΓ , (2.2)

pointing opposite to the area A. For the special case of a vector product eq. (2.2) as

a line integral can be transformed into a surface force by applying Stoke’s theorem

(Appendix A.1):

FA(t) =

∫

A

(nΓ ×∇)× σnΓ dA .

The term (nΓ×∇)×σnΓ denotes the surface density of the surface tension (force)

fΓ(x, t). By transformation it results

fΓ = ∇σ − nΓ(nΓ · ∇σ) + σnΓ · ∇nΓ − σnΓ(∇ · nΓ) . (2.3)

By subtracting the normal part of the gradient with respect to the normal

(nΓ(nΓ · ∇σ)) from the surface tension gradient (∇σ), the two terms yield the

surface gradient ∇Γσ of σ. If the surface tension σ is constant, these two parts

vanish acting perpendicular to the surface. This does not mirror the typical condi-

tion since surface tension especially depends on temperature and the concentration

of surface active substances (σ = σ(T, cΓ)). Therefore, the significance of this

term may increase with the occurrence of temperature or concentration gradients

at the interface. The influence of these gradients on σ is known as Marangoni effect.

Taking into account that the third addend of eq. (2.3) equals zero, the equation

simplifies to

fΓ = ∇Γσ − σnΓ(∇ · nΓ) .

Including the curvature

κΓ(x, t) = −∇ · nΓ(x, t) ,

the surface force results in

FΓ(t) =

∫

A

fΓ dA with fΓ = ∇Γσ + σκΓnΓ .

Therefore, the momentum balance for a fixed volume element V determines as

d

dt

∫

V

ρu dV +

∫

∂V

J · n dA =

∫

V

ρf dV +

∫

V ∩Γ(t)

fΓ dA (2.4)

with the momentum flux J = ρu⊗ u−T.
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2.2. Differential Balance

Based on the integral balance for a fixed volume element, the corresponding dif-

ferential balance equation and jump conditions can be derived by localization. In

a first step, the surface integrals over the boundary ∂V need to be transformed

to volume integrals using the Gaussian divergence theorem (Appendix A.2). Sub-

sequently, the interior of the phase is divided by the absolute value |V | of the

balanced volume V = Br(x0) and the ball Br is constricted towards the point x0

(r → 0+). For the derivation of the jump conditions on Γ(t) the particular volume

integral is divided into its phase fractions, in order to complete the missing areas

of the boundary layer. At this point the differential balance equations are applied

to both phases. Further, the jump conditions are achieved by division of the area

|Γr| inside the balance domain and contraction of the ball to r → 0+. Whereas the

differential balance equations are restricted to the interior of the particular phase,

the jump conditions describe the actual state at the interface. Further, these need

to be supplemented by constitutive equations.

Mass Balance

The flux of a quantity outwards across a surface A due to fluid motion is expressed

by the conservation law of eq. (2.1). Using the Gaussian divergence theorem on the

right hand side of this equation transfers the surface integral into a volume integral.

The requirement that the previous statement has to be valid for all choices of the

volume V bounded by A then gives the differential equation

∂

∂t
ρ+ div(ρu) = 0 . (2.5)

For the special case of an incompressible fluid the following equation system results:

divu = 0 and
∂

∂t
ρ+ u · ∇ρ = 0 .

If there are no density variation in time or space, i.e. , ρ(x, t) = ρ∞ = const., this

results in the continuity equation for isochore fluids with

divu = 0 . (2.6)

10
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Momentum Balance

In the same way as the differential equation for the conservation of mass, the

equation of motion is developed. If there is only gravity as the solely body force

acting in negative direction along the z-achses, the momentum balance becomes

∂

∂t
(ρu) + div(ρu⊗ u−T) = −ρgez , (2.7)

with the stress tensor T = −pI + S. For Newton fluids the viscosity stress tensor

S is given by

S = λ(divu)I+ µ
(
∇u+ (∇u)T

)
. (2.8)

Here, λ denotes the bulk viscosity and µ the dynamic viscosity. For fluids of con-

stant density (ρ(x, t) = ρ∞ = const.) and arbitrary body forces g the momentum

balance can be rewritten as

∂

∂t
u+∇ · (u⊗ u) = −1

ρ
∇p+ µ

ρ
∆u+ g . (2.9)

The quotient of µ/ρ = ν is called the kinematic viscosity. If further internal friction

of the fluid (viscosity) characterized by energy dissipation is neglected, the Euler

equation results:

∂

∂t
u+∇ · (u⊗ u) = −1

ρ
∇p .

The equation of motion (2.9) in connection with the conservation of mass (2.6) for

the special case of incompressible fluids are called the Navier-Stokes equations.

2.3. Dimensionless Form of the Navier-Stokes

Equations

Information of the flow is contained in the parameter characterizing it like the dy-

namic viscosity µ and the density ρ, and the characteristic values for the length L

and the velocity U . Furthermore, by L and U a characteristic time scale is deter-

mined as T = L/U. If these parameters are combined in a suitable way to yield

dimensionless quantities, then these enable the comparison of different flow con-

ditions or the similarity of flows, respectively. Therefore, dimensionless quantities

are formed by their dimensional counterparts:

x′ :=
x

L
, u′ :=

u

U
, t′ :=

U t

L
, p′ :=

p− P
ρU2

, (2.10)
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with given scalar constants L, ρ, U, P .

Recasting eq. (2.9) by inserting the variables of eq. (2.10) leads to the equation

∂

∂t′
u′ + u′ · ∇′u′ = −∇′p′ + µ

ρUL
∆′u′ +

L

U2
g ,

where the operators ∇′ and ∆′ are those with respect to the dimensionless posi-

tion vector x′. Concluding, flows will be dynamically similar, if their parameters

µ, U, ρ, L,g are similar as well or the dimensionless quantities

Re :=
ρU L

µ
(Reynolds number) and

Fr :=
U

√

L ||g||
(Froude number)

of the flows coincidence.

Both, the dimensionless Reynolds number as well as the Froude number de-

scribe properties of the fluid flow. The Reynolds number characterizes the relative

magnitude of inertial and viscous forces. Therefore, it gives an idea about the

impact of viscose effects (1/Re∇u) on fluid motion. It further needs to be con-

sidered that low 1/Re still has a huge influence on the flow field. This is because

it increases the order of the equation to two and especially changes the boundary

conditions. For huge 1/Re (creeping flow) most likely the Stokes flow is employed

as an approximation. Thus, the convective fraction (u · ∇u) is neglected. There-

fore, a linear problem results. Instead, the Froude number represents the ratio of

inertial to gravitational forces.

The dimensionless form of the continuity equation displayed by eq. (2.6) simply

becomes

∇′ · u′ = 0.

2.4. Jump Conditions

For the derivation of the jump conditions the integral balance equation (2.4) for a

fixed volume is used. This equation is applied on the volume of a ball Br := Br(x0)

with Γr := Γ ∩ Br (cf. Figure 2.2). Since the interface is free to move, Γr = Γr(t)

12
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and, therefore, even B±r = B±r (t). The integrals are separated into their fractions

of B+
r and B−r . Thereon the differential balance equations are used.

As a result of this approach, boundary conditions for each phase can be derived.

In case of conservation of mass the jump condition at the interface between the

phase φ+ and φ− becomes

[ρ(u− uΓ)] · nΓ = 0 , (2.11)

where uΓ is the interfacial velocity. Here, nΓ is the unit normal vector on the

interface directed into the gas phase and the symbol

[ψ(x)] := lim
h→0+

ψ(x+ hnΓ)− lim
h→0+

ψ(x− hnΓ)

stands for the jump of a physical quantity ψ across the interface.

Similarly, the equation for momentum conservation across the interface is

expressed:

[ρu⊗ (u− uΓ) + pI− S] · nΓ = ∇Γσ + σκΓnΓ , (2.12)

where ∇Γσ denotes the surface gradient of the surface tension and κΓ = −∇ · nΓ
is the sum of the local (principal) curvatures of the interface.

In the present work it is assumed that the two-phase system under considera-

tion does not endure phase changes like evaporation or condensation. Consequently,

there are no convective fluxes across the interface, i.e. the normal components of

the fluid velocities are continuous at the phase boundary and equal to the surface’s

normal velocity. Finally, we assume no-slip conditions at the interface as well as

constant surface tension. Then the jump conditions (2.11), (2.12) simply become

[u] = 0, [p I− S] · nΓ = σκΓnΓ . (2.13)

By neglecting the viscosity stress tensor S, the right part of eq. (2.13) becomes the

Young-Laplace equation:

∆p = σκΓ = σ

(
1

R1

+
1

R2

)

, (2.14)
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where R1 and R2 denote the principal radii of curvature. For stagnant fluids u = 0

and consequently S equals zero as well. In this case Young-Laplace is an exact so-

lution of the flow system. For more details about the derivation of jump conditions

for two-phase flow see Reipschläger (2002).
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3. Numerical Approach

The disintegration of a liquid in an ultrasonic field is a highly complex two-phase

flow with compressible gas phase. Any numerical description of this process that

aims in the prediction of particle size distributions has to take into account the

strong nonlinear behavior which appears during the formation of complex topolo-

gies of the disperse phase such as liquid lamellae, ligaments, and droplets of different

sizes. Thus, modeling and simulation of the mechanisms of liquid disintegration in

an ultrasonic standing wave field requires a numerical method which allows for the

computation of the dynamics and topology of the free phase boundary.

The mechanisms of disintegration can vary according to the type of atom-

ization process. Hence, simplifying models that do not account for the interface

dynamics but still describe atomization in a general setting seem to be out of reach.

Therefore, the principal aim here is to compute the two-phase flow without such

simplifications. Difficulties occur because of the different length- and time-scales

associated with ultrasonic sound field and droplet dynamics phenomena. On the

one hand, the nonlinear oscillations within the ultrasonic sound field take place on

a time scale of about 50 µs, while the relevant length scale is the distance between

the two sonotrodes of about 50 mm. On the other hand, droplet breakup requires a

much longer period of about 5 -20 ms due to inertia of the liquid, but proceeds on a

decade of smaller length scales from a few millimeters down to a few µm. A so-called

Direct Numerical Simulation (DNS) of such a two-phase flow with full resolution of

the interfacial dynamics on all relevant length- and time-scales, therefore, requires

extreme numerical efforts and is not possible with today’s computer technology.

While commercial Computational Fluid Dynamics (CFD) software is in principle

able to calculate compressible transient two-phase flow, systems of this complexity

cannot be handled. Furthermore, process optimization requires a large number of

variations of relevant material and operational properties. Hence, DNS would be
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much too expensive and time-consuming. For this reason a partial decoupling into

the compressible single phase gas flow corresponding to the resonant sound field

and the droplet dynamics given by the free surface flow is done. The effect of the

compressible gas phase onto the liquid surface is taken into account by means of

additional interfacial source terms within the momentum jump conditions, leading

to a one-way coupling. The dynamics of the liquid flow are captured by means

of transient three-dimensional simulations with a two-phase Navier-Stokes solver

employing a volume tracking method to capture the disperse phase. With this

overall approach, the full disintegration process is split into two parts which are

solved separately using a specialized numerical method that fits its particular needs.

3.1. The Numerical Method

The study of moving interfaces is one of the most important areas in technological

and engineering fields. Its application involves solid mechanics as material shaping

processes and fluid mechanics like breakup of a jet, coalescence of liquid drops or

wave breaking. For numerical modeling of these tasks different approaches have

been developed to treat these two classes of problems. The finite element method

combined with a Lagrangian description of the movement is generally applied for

material shaping problems (Lock et al., 1998). For the study of fluid-structure

interactions a mixed description is found to be the most suitable one: Lagragian

in solid and Eulerian in fluids with coupling at the interface. Finally, either the

mixed description or the Eulerian one is most likely used for the treatment of two

phase flows with fluid-fluid interaction. This approach can handle complex inter-

face problems and is employed in numerical simulations of such problems (Hyman,

1984; Laskey et al., 1987; Floryan & Rasmussen, 1989).

In case of droplet breakup and strand disintegration as conducted in this

study particular complex shaped interfaces result. The difficulties in treating such

flows can be attributed to

• the interface location,

• the interface topology, and
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• the interfacial mechanism.

Most of the developed methods use the Eulerian approach to model the fluid flow

and various techniques have been employed to track the interfaces through the

fixed mesh. The two basic methods are surface tracking and volume tracking.

In surface tracking methods markers are initially placed on the fluid’s inter-

face and are subsequently followed within the flow. A disadvantage of this method

is that coalescence cannot be easily treated with these techniques. Further, Os-

her & Sethian (1988) found that curvature effects cause another drawback of the

marker-based method: For large and complex motion, particles come together in

regions of high curvature causing numerical instability. Therefore, a regridding

step has to be employed which usually contains diffusion-like errors. This effect

can even dominate the real effect of curvature.

In the volume tracking method the interface is implicitly tracked. In this case

markers are used to identify the fluid itself. These markers can be, e.g., one of the

fluids properties or another function. Employing this method the fluid is identified

in each cell of the computational domain, where it is present. The interface is

located somewhere inside a cell which contain more than one fluid and is finally

reassembled cell by cell. Two methods developed by this approach are the Marker-

and-Cell (MAC) (Harlow & Welch, 1965; Welch et al., 1966) and the Volume of

Fluid (VOF) methods (Hirt & Nicols, 1981). The MAC technique employs massless

particles as markers. This approach causes particles to accumulate in some parts of

the mesh leading to an inaccuracy in locating the interface and, therefore, separat-

ing the particles. Instead, the VOF method defines a marker function f denoting

the fraction of a cell volume that is occupied by one of the fluids. The function

can adopt values between zero and unity, whereas a cell is either empty or filled,

respectively, with a specific fluid. If f is between zero and unity, the interface of

the fluid is located in that specific cell. The VOF technique was introduced by Hirt

& Nicols (1981) for infinite difference structured meshes. Rectangular grids were

required since the f value is determined using a donor-acceptor flux approximation

of Rawshaw & Trapp (1976) which requires rectangular cells. The main advantage

of this volume tracking method was that it can handle interfaces which undergo

large deformations and treat multiple fronts. This basic approach of Hirt & Nicols
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(1981) was extended over the years by, e.g., Kothe & Mjolsness (1992); Rider et al.

(1995) and Rider & Kothe (1998) which is now applicable on arbitrary grids. Es-

pecially in this case the VOF technique is combined with the finite volume (FV)

method for solving the partial differential equations that calculates the quantities

of the variables averaged across the cell volume. This is due to the advantage of

the finite volume method over the finite difference (FD) method that it does not

require structured meshes. In addition, the finite volume method is preferable to

other techniques since boundary conditions can be applied non invasively. This

is true since the values of the conserved variables are located within the volume

element and not at nodes or surfaces (Versteeg & Malalasekera, 1995).

Therefore, the VOF technique in combination with the finite volume method

is widely used during the last couple of years to model complex shaped structures

and highly flexible processes. These are flow phenomena as, e.g., disintegration or

coalescence of fluid regions. Since the VOF method implicitly captures the shifting

topology of such processes, no mechanisms need to be developed for the recon-

struction of phase boundaries. Hence, the VOF method works without further

approximation. Although the VOF technique is not restricted on structured grids,

applications commonly used are based on such meshes. Therefore, these grids as

used in FS3D do have the advantage of easy discretization of the calculation do-

main for parallelization. Additionally, since the calculation of the flow variables

solely requires values of the adjacent cell layers, a good proportion between calcu-

lation cost and communication of the participating processors result. This is an

advantage over other techniques since the calculation domain used for the simu-

lation of the disintegration process is made of up to 16 million grid cells. Such

high grid resolution is necessary in order to capture droplets down to a few µm

generated during the disintegration process. Therefore, the simulation of such pro-

cesses requires a massive parallelization of the numerical method. Finally, the VOF

method as integrated into FS3D allows for easy implementation of impacts as, e.g.,

surface tension on the fluid surface. This is one of the main essential advantages

used throughout this work: Additional source terms characterizing the momentum

flux through the surface are incorporated into the VOF-code FS3D.
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3.2. Decoupling of the Simulation Process

In the first step, oscillating pressure and velocity of the ultrasonic sound field are

computed by solving the Navier-Stokes equations for compressible viscous flows

(eq. 2.5 & 2.7). In addition to the mass and momentum balance, the energy equa-

tion is taken into account, since large sound intensities appearing in an SWA lead

to high temperature fluctuations inside the gas phase. Due to the axial symmetry

of the configurations, computations of the ultrasonic sound field are carried out

in two-dimensions employing cylindrical coordinates. For numerical simulation of

the ultrasonic sound field during the continuous disintegration process of polymer

in a double oscillation unit, CFX 4.4 (AEA Technology GmbH, 2001) is used. To

investigate levitated droplets, the software tool Fluent 6.1.18 (Fluent Inc., 2003) is

chosen. Both CFD-codes have been extended by user-defined subroutines for the

output of time-averaged pressure and velocity fields. Fluent is employed for the

computation of ultrasonic sound fields with liquid-gas interactions, since it allows

for easy patching of spherical liquid obstacles into the computational domain.

In the second step, transient DNS of the disintegration process are performed

in 3-D with an advanced VOF method (Hirt & Nicols, 1981). This method is in-

corporated into the non-commercial VOF code FS3D (Free Surface 3D), developed

at the ”Institut für Thermodynamik der Luft- und Raumfahrt” (ITLR) Stuttgart

(Rieber, 2004). Within the VOF method the Navier-Stokes equations for an in-

compressible time-dependent two-phase flow are solved. The validation of the code

has been done based on multiple cases relevant in application. Thus numerical

simulation and experimental validation was made for drop-wall as well as binary

droplet collision (Rieber & Frohn, 1997), deformation of moving droplets (Rieber

& Frohn, 1998; Rieber et al., 2000) and the crown formation of a drop splashing

on a liquid surface (Rieber & Frohn, 1999).

This programm was extended by Reipschläger et al. (2002) to incorporate

pressure and velocity fields previously calculated in CFX. These are used as source

terms to account for the influence of the ultrasonic field onto the liquid phase.

During this project the interface was improved to automatically determine the ge-

ometries used in CFX and Fluent, respectively. Hence, the coordinates of the grid

including its stream variables are read out and automatically transferred into the
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setup of FS3D. Therefore, the FS3D grid is determined as well and compared to

the ones from simulation of the sound field. Finally, the fluid data to be trans-

ferred are simultaneously averaged over divers acoustic cycles of the ultrasonic field.

Since numerical simulations of the ultrasonic field are done in 2-D with rota-

tional symmetry, the data need to be transferred into cubic coordinates in 3-D of

the VOF-code FS3D. Therefore, a rotation including an interpolation of the para-

metric field is necessary. This is done by a cubic spline interpolation (Akima, 1972)

which maps the CFX and Fluent data, respectively, onto the FS3D geometry. The

routine is further able to interpolate the stream parameters from a rough grid into

a smoother subdivided one. This is necessary since the disintegration of continuous

liquid strands requires much smoother grids than the ones for simulations of the

ultrasonic field. Instead, the deformation of droplets demand a straight transfer of

data from Fluent to FS3D to quantitatively determine droplet deformation. In this

case both tools work with the same grid resolution and, therefore, a direct coupling

without interpolation is necessary. For parallel computing of the VOF simulation

a separation of the calculation domain and its scalar field is possible according to

the number of computer nodes. Finally, the interface supports multiple conversion

of data sets to create input files for time dependent import into FS3D. The overall

progression of numerical simulations of the ultrasonic field to the simulations of

the disintegration process including the data conversion is shown in Figure 3.1.
PSfrag replacements
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Figure 3.1.: Progression of numerical simulation and data conversion.

20



CHAPTER 3. NUMERICAL APPROACH

To visualize the results generated by FS3D a post-processor of the Fluent

Inc. was used. Therefore, Reipschläger et al. (2002) developed a conversion tool

to transform the data sets produced by FS3D during numerical simulation of the

two-phase flow into the universal -format of Flpost (Fluent Inc., 2000). An ad-

vantage of this programm is the highly advanced visualization technique including

various ways of illuminating droplets and strands of polymer inside the calculation

domain. Contrariwise the programm is restricted to a low number of data points

to be visualized. For grid resolutions of more than 643 data points the programm

becomes much too slow and, therefore, unfunctional. Further, newer versions of

Fluent do not support Flpost as an independent tool in addition to the Fluent

solver itself anymore.

In order to effectively visualize data sets of more than 643 data points PadViz

was used. This tools is part of the CFD modeling tool padfem2 developed at the

Center for Parallel Computing (PC2) at the Paderborn University. Especially

because of the ability of parallel data processing and visualization it is able to

handle huge data sets. Therefore, a conversion tool was programmed to enable the

input of data sets from FS3D into PadViz and to transform the data with respect

to the symmetry planes applied in FS3D.

3.3. Method for the Simulation of the Ultrasonic

Field

The simulation of ultrasonic standing wave fields is done by means of the com-

mercial CFD software package. For numerical simulation of the ultrasonic sound

field during the continuous disintegration process of polymer in a twin-oscillation

unit CFX 4.4 (ANSYS) is used. To investigate levitated droplets the software

tool Fluent 6.1.18 (Fluent Inc.) is chosen. Both CFD-codes have been extended

by user-defined subroutines for the output of time-averaged pressure and velocity

fields. Fluent is employed for the computation of sound fields with liquid-gas in-

teractions, since it allows for easy patching of spherical liquid obstacles into the

computational domain.

In both cases the balance equations for compressible liquid flows are solved
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with a finite volume approach based on block-structured grids. The Pressure-

Implicit with Splitting of Operators (PISO) algorithm is chosen to derive pres-

sure fields from the continuity equation by using a relationship between velocity

and pressure corrections during numerical simulation. The PISO pressure velocity

coupling scheme is part of the SIMPLE family of algorithms. Such a SIMPLE

algorithm uses a Semi-ImplicitMethod for Pressure-Linked Equations (Patankar,

1980; Ferziger & Peric, 2002). As a second pressure-correction equation the PISO

coupling is applied in order to improve the solution of the momentum equations

while maintaining continuity.

Oscillating pressure and velocity of the ultrasonic sound field are then com-

puted by solving the Navier-Stokes equations for compressible viscous flows. In

addition to mass and momentum balance the total enthalpy is included to incor-

porate temperature variations since large sound intensities appearing in an SWA

lead to high temperature fluctuations inside the gas phase:

∂t (ρ h) +∇ · (ρuh)−∇ · (k∇T ) = ∂tp . (3.1)

Here, ρ denotes the density, u the velocity, p the pressure, k the conductivity co-

efficient, h the total enthalpy and T the temperature. Because of the significant

impact of temperature variations on sound acoustics, it is investigated in more de-

tail later on. Further remarks on that subject are found in Section 4.7.3.

Since the density of the compressible liquid gas flow depends on temperature

and pressure, it is implicitly calculated inside the CFD-solver. Thereby, the gas

phase is treated as an ideal gas and, therefore, calculates as

ρg =
(pgauge + pref )Mg

RT

with Mg denoting the molecular weight of the gas and R the universal gas con-

stant. To avoid the problem of roundoff errors when computing pressure gradi-

ents, all pressures computed and reported by CFX and Fluent, respectively, are

gauge pressure pgauge. The gauge pressure simply derives by subtracting a fixed

reference pressure pref from the absolute, thermodynamic pressure p. In general,

this reference pressure is simply determined by the standard atmospheric pressure,

1.013 · 105N/m2.
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Due to the axial symmetry of the configurations in an SWA and SWL, com-

putations of the ultrasonic sound field are carried out in two dimensions employ-

ing cylindrical coordinates. To capture the movement of the sonotrode face, pre-

scribed velocities at the inlet are used. The radial velocity component at the

sonotrode’s end face is taken to be zero (v = 0), while the axial component is given

by u = u0 sinωt. Therefore, the movement of the sonotrodes’ surface are treated

as uniform over the whole area. This approach was justified during experimen-

tal investigations of the sonotrodes. Scans of the surface using a laser vibrometer

showed a uniform, rotational symmetric oscillation over the whole sonotrode’s face.

Simulations of droplet deformation as well as strand disintegration (Chapter 5

and Chapter 6) are carried out for sonotrodes with diameter of 35 mm assuming

rotational symmetry and oscillation frequencies of about 20 kHz. More precisely,

the two sonotrodes are slightly distorted by a difference of 230 Hz in frequency,

resulting in a modulation of the ultrasonic field by superimposed oscillation of

pressure and velocity amplitudes (cf. Figure 4.6). The computational domain en-

closes additional space up to a radius of 52.5 mm around the sonotrode axis with

boundary conditions set to constant pressure. Because of different gradients of the

ultrasonic field in axial and radial direction, respectively, the spatial grid resolu-

tion is chosen to a minimum cell length of 0.3 mm in axial and 0.875 mm in radial

direction in case of an undisturbed ultrasonic field. For this and even smoother

grids the numerically computed pressure fields are found to be independent from

the grid resolution. Coarser meshed grids would fulfill the Courant-Friedrich-Levi

(CFL) criterion (Griebel et al., 1995) if the time step size is decreased simulta-

neously, but will cause gradients of the flow variables to be solved insufficiently.

Instead, if the sound field is solved including a liquid obstacle using Fluent, much

smoother grids are necessary to implicitly capture the liquid surface. Therefore,

equally sized meshes of 0.078 mm around the liquid droplet are used to compute

the ultrasonic field. On the one hand, this is because of limitation due to com-

puter technology. Smoother grids would cause much longer computational times

and, therefore, would exceed acceptable conditions. On the other hand, computed

pressure and velocity fields are found to be independent from the grid resolution

in case of a flattening droplet of 45 µL. Since meshes of 0.078 mm in diameter

cannot resolve separating fragments from an atomizing droplet of that size, this
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3.3. Method for the Simulation of the Ultrasonic Field

grid independence of sound fields is only valid in case of deforming droplets.

For the generation of geometries including their grids the software tool Mesh-

build from AEA Technology is used in case of CFX 4 and Gambit from the Fluent

Inc. for the compilation of geometries used in Fluent 6. In both cases struc-

tured, the contour fitting, meshes are used for spatial discretization of the concave

sonotrode geometry. Exemplarily, grids used for numerical simulation of an SWA

and an SWL generated by Gambit are show in Figure 3.2.

(a) atomizer (b) levitator

Figure 3.2.: Setup of the calculation domain and grid structure for numerical simula-

tion.

During numerical simulation of the ultrasonic field each oscillation cycle is

resolved in time by 250 time steps. Hence, for simulations of sound fields with an

excitation frequency of 20 kHz the time step size results to be 0.2 µs. Thereby, the

temporal discretization should satisfy the Nyquist criteria fsample ≤ 2fmax (Broch,

1990). The criteria states that the reconstruction of a arbitrarily signal has to be

performed with at least twice the maximum frequency of that signal.
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CHAPTER 3. NUMERICAL APPROACH

3.4. Method for the Simulation of Free Fluid Surface

The deformation and breakup of droplets and strands in an ultrasonic standing

wave fields involves various dynamic modifications of the liquid surface. Therefore,

Hirt & Nicols (1981) introduced a Volume of Fluid (VOF) method to implicitly

capture the residence region of two immiscible liquid flows. It was further presumed

that these fluids are incompressible and of a huge density difference.

Based on phase-related balancing advection of the disperse phase is governed

by an additional transport equation for the volume fraction f of this phase, i.e.

∂tf +∇ · (f u) = 0 (3.2)

determining the temporal propagation of the phase with respect to the flow field.

Hence, the balance equations of mass, momentum and energy in addition to eq.

(3.2) can be solved for both phases simultaneously. Using the VOF method the

disperse liquid phase corresponds to regions where the f -function has the value

1, the continuous phase is characterized by f = 0, while the interface is located

within grid cells for which 0 < f < 1. Therefore, cells of 0 < f < 1 comprise both

phases. In case of droplet deformation and breakup cells with f = 0 characterize

the surrounding gas phase and f = 1 denotes the droplet or liquid strand, respec-

tively. Figure 3.3 represents a supposable distribution of the f -variable inside the

calculation domain to clarify the approach.
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Figure 3.3.: Cell occupation of a liquid drop (f > 1) in a surrounding gas phase (f = 0)

based on the VOF-method with PLIC reconstruction of the interface.

Surface tension (cf. Section 3.4.1) is taken into account based on the conser-

vative approximation of Lafaurie et al. (1994). For accurate approximation of the
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3.4. Method for the Simulation of Free Fluid Surface

free fluid surface spatial discretization of high resolution are necessary. This leads

to computational grids having up to 16 million grid cells. Therefore, a massive

parallelization of FS3D is essential here.

The VOF-code FS3D is based on a finite volume method which is used to

discretize the transport equations for mass, momentum and volume fraction f.

Thereby, the location of the volume fraction f is derived by determining the actual

velocity field u and the corresponding value of the prior f -function. The Navier-

Stokes equations are solved by a second-order projection method for incompressible

liquid flows based on Godunov’s conservative projection method (Bell et al., 1989;

Tau, 1994). The approach uses a MAC method to store the derived flow variables

on a staggered grid and a split-explicit time differencing schema. Thus, the Navier-

Stokes equations are split and successively solved. Finally, the remaining pressure

field is calculated based on a cell-centralized discretization of the Poisson equation.

Therefore, a multigrid method is applied which offers the robustness necessary to

handle huge density ratios (Wesseling, 1992). For more details about FS3D and

implemented numerical solutions see Rieber (2004).

After determining the volume fraction f at a distinct time t, the phase bound-

ary needs to be reconstructed. This is necessary to solve the transport equation

of the f -variable. Thus, the interface in a cell of interest is adjusted regarding it

adjacent cells. The most ordinary way originally used by Hirt & Nicols (1981) is

the Simple Line Interface Reconstruction (SLIC) algorithm by Noh & Woodward

(1976). It produces an interface consisting of line segments, constructed parallel

to a grid face. Since this algorithm only uses line segments that are parallel to

the coordinate axes, the resulting interfaces are generally discontinuous. An im-

provement to this method is the Piecewise Linear Interface Reconstruction (PLIC)

algorithm such as the one from Youngs (1992) or Puckett et al. (1997). The method

involves two steps for reconstruction. In a first step, the normal on the interface is

calculated using the gradient of the volume fraction f. Second, the intercept of that

interface is calculated such that it intersects the exact volume fraction in the cell of

interest. Although the resulting interface is still discontinuous, the approach allows

a more appropriate reconstruction of the liquid phase boundary. Nevertheless, it

is still necessary to have at least on grid cell of f = 0 between to phase boundaries
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to distinguish them as separated, independent droplets (Figure 6.7).

3.4.1. Surface Tension

The accurate computation of surface tension is a critical task throughout the sim-

ulation of free fluid boundaries. Since molecular forces are responsible for placing

liquid surfaces in tension, the scale of that process in general is not solved in com-

putational fluid dynamics. The resulting surface tension is incorporated in Laplace

formula as a surface stress condition (Landau & Lifshitz, 1959). In recent mod-

els this computationally inconvenient description of the effect of surface tension

is replaced by an equivalent volume force, which acts on a length scale compara-

ble to the grid spacing rather than the thickness of the interface (Brackbill et al.,

1992; Lafaurie et al., 1994; Truggvason et al., 2001). Such an approach is necessary

since there is no strict boundary layer numerically generated by the VOF method.

Instead, a continuous transition area of thickness l exists expanding over several

grid cells. Therefore, the curvature and the pressure jump at the interface have

to be calculated accurately. These requirements were obtained first by Brackbill

et al. (1992) on a VOF method. The Continuum Surface Force (CFL) model as

a non-conservative approach expresses the area-related surface force fΓ(xΓ) at the

interface Γ in terms of a volume-related force fΓ,V (x) inside a small transition area

around the interface. If the thickness l of the continuous boundary layer declines

against zero, both forces can be equated:

∫

A

fΓ(xΓ) = lim
l→0

∫

V

fΓ,V (x)dV . (3.3)

By using Dirac’s delta distribution δ (Appendix A.3) on eq. (3.3) the surface inte-

gral can be transformed into a volume integral.

∫

A

fΓ(xΓ) =

∫

V

fΓ(x) δ[(x− xΓ) · n̂Γ]

In case of the boundary thickness l → 0 the Delta function can be expressed in

terms of the norm of the gradient of the VOF function f :

f(x) = H[(x− xΓ) · n̂Γ]
∇f(x) = δ[(x− xΓ) · n̂Γ] · n̂Γ
|∇f(x)| = δ[(x− xΓ) · n̂Γ] .
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Here, H is the Heaviside step function. Since the f -function requires to have a finite

gradient in a distance l of the transition area, the function is artificially daubed

during discretization over serval cells. Therefore, the volume force results as
∫

A

fΓ,V (x)dA = σκΓ∇f(x) , (3.4)

with the local (principal) curvature of the interface given by κΓ = −∇·n̂Γ. Here, n̂Γ
denotes the unit normal vector at the interface with n̂Γ = nΓ/|nΓ|. Using the finite-

difference-discretization of eq. (3.4) results in contributions from the boundary of

the transition area of that interface. Since the values of the density are saved inside

the cell’s center, an indirect differentiation of the normal vector causes an improve

in numerical approximation. For it, a transformation in calculating the curvature

is necessary (with n = nΓ):

κ =
1

|n|

[

∇ · n−
(
n

|n| · ∇
)

|n|
]

. (3.5)

The main disadvantage of the CSF model described before is its non-conservative

character. Due to this manner the conservation of momentum cannot be guaran-

teed, eventually causing non-physical effects during numerical simulation. There-

fore, a conservative model has been developed by Lafaurie et al. (1994) eliminating

such problems. The approach develops the discrete form of conservative capillary

forces by applying the same approximation of ∇f to calculate the normal vector

and the density of the boundary layer. Thus, the volume-specific capillary force fst

result as:

fst = −σ∇ ·
[
n⊗ n
|n| − I |n|

]

.

Using the quotient rule on this equation gives

fst = −σ
[
n

|n|

(

∇ · n−
(
n

|n| · ∇
)

|n|
)

+

(
n

|n| · ∇
)

n−∇|n|
]

.

(3.6)

The latter conservative formulation of capillary forces differs from the non-conservative

form of eq. (3.5) by the two additional terms in eq. (3.6). The numerical simula-

tions of free surface flow with FS3D conducted throughout this project are carried

out using the conservative approach of Lafaurie et al. (1994).
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3.4.2. Numerical Implementation of the Surface Forces

As mentioned previously, the calculation of the flow variables inside the VOF code

is based on the MAC method. Thus, the spatial discretization of these parameters

occurs on a staggered grid inside each control volume. Therefore, the pressure p

and the volume fraction f are saved in the cell’s centroid, whereas the velocity com-

ponents u,v,w are stored on the cell’s face and the normal vector n at the corner

of the volume element dV = dx dy dz (cf. Figure 3.4).

Surface forces fst,i,j,k are also calculated inside the cell centroid for the three

directions in space. Therefor, a conservative model of Lafaurie et al. (1994) is

applied solving the Navier-Stokes equations using staggered finite differences on a

MAC grid for spatial discretization and a split-explicit time differencing schema.

For it, normal vectors are necessary derived by averaging the normal vectors from

the corners of the control volume. These normal vectors at the corners are cal-

culated as n = ∇ f using the marker function f with respect to the 27 adjacent

cells.

f
i,j,k


p
i,j,k


u
i+1/2,j,k


v
i,j+1/2,k


w
i,j,k+1/2


n
i+1/2,j+1/2,k-1/2


Figure 3.4.: Staggerd alignment of the flow variables according to the MAC method.

3.4.3. Parasite Currents

A problem during numerical calculation of free fluid surfaces are ’parasite currents’.

These unavoidable flows are a result of the locality of the method of Brackbill et al.

(1992) and Lafaurie et al. (1994) since curvature κΓ and normal vector nΓ are calcu-

lated insufficient at the interface. Therefore, these imprecisions cause non-physical

effects which may deform a bubble or even cause disintegration. Even a macro-
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3.4. Method for the Simulation of Free Fluid Surface

scopically static bubble is surrounded by a small amplitude velocity field due to

the slight unbalance between the stresses at the sites in the interfacial region. Such

parasitic currents are absent on flat interfaces parallel to the grid axes or make a

45◦ angle with them. However, they are found for a generic orientation of a flat

interface with respect to grid direction inducing artificial swirls at the interface of

the bubble. In general parasitic currents scale with surface tension and viscosity.

As could be shown by, e.g., Lafaurie et al. (1994); Scardovelli & Zaleski (1999)

using dimensionless analysis, the maximum velocity around a bubble of radius R is

determined as upc = C σ/ηd with C being the dimensionless magnitude. Numerical

experiments based on empirical approaches verify this law with C ' 10−2. Lafau-

rie et al. (1994) further found a proportionality between the dimensionless radius

R/Rv (Rv = ρdν
2
d/σ) and the Reynolds number based on parasitic current velocity

and bubble size Repc = upcR/ν. Here, Rv characterizes the capillary-viscous length

scale of the fluid. With increasing Repc number the fluctuations of parasitic cur-

rents will increase as well eventually causing the interface to disintegrate. Instead,

for very small values of R/Rv capillary effects should be negligible so that parasite

currents cause little effect since the dynamics are controlled by viscous forces.

Lafaurie et al. (1994) were able attenuate parasite currents by smoothing

the volume fraction f. The smoothing was realized by a repeated application of

a Laplacian filter to finally reduce the amplitude of parasite currents by a factor

of 2 or 4. Instead, FS3D uses a quadratic smoothing method to attenuate para-

site currents. Furthermore it was found that even the grid resolution applied for

numerical simulation of liquids strongly influences the magnitude of physical im-

precisions. Reipschläger et al. (2002) and Koebe (2004) performed quantitative

experiments investigating the temporal evolution of the kinetic energy inside the

computational domain regarding the grid resolution. They were able to approve a

relationship between parasite currents and grid resolution, but could not observe a

specific trend. Concluding, a concrete prediction whether or not parasite currents

scale with grid resolution is not possible.

In general, parasite currents appear for systems of high surface tension and

high density discrepancies. This is especially significant for droplets of small ra-

dius, when the surface tension is large compared to its viscosity (Scardovelli &
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Zaleski, 1999). In such cases either the capillary number Ca = µ|u| /σ is small or

the Laplace number La = σρR/µ2 is large, respectively. According to numerical

experiments there were no physical instabilities found for small Ca and moderate

La. The only troublesome effect were parasite currents. Instead, if the La increased

even parasite currents grow as well and could even become large enough to destroy

the interface. This behavior is explained by the relationship between Re and La as

La = 100 Repc .

In practice, parasite currents turned out to be significant in computation when

La ∼ 106. This is approximately the value for droplets of 1 cm in diameter mark-

ing the minimum size of droplets to be accurately simulated. Since our study deals

with droplets of about 2.2 cm and lamella of about 4 cm in diameter in numeri-

cal simulation of the disintegration process, parasite currents need to be rated by

comparing surface tension and inertia. At small Weber numbers, We = ρgu
2
reld/σ ,

capillary tension dominates inertial phenomena. Since this happens for smaller

droplet diameter, parasite currents may have an influence on the deformation pro-

cesses during simulation in an SWL. Here, the Weber number is less than We ≤ 10

(see Chapter 5.2). However, in case of an ultrasonic standing wave field the energy

input of the ultrasonic field into the system is dominant. Especially for the disinte-

gration of a continuous liquid strand, Weber numbers of We > 60 are achieved, so

that parasite current should be of no importance. For more details about parasite

currents and possible solution see Rudman (1998); Jacqmin (1996); Meier et al.

(2000) and Jamet et al. (2002).

3.5. Coupling of the Numerical Tools

To consider the force input of the ultrasonic field on the disperse phase, a coupling

of the numerical simulation tools is necessary. Therefore, the VOF method for

simulation of the free surface flow is extended by source terms. These source terms

act on the liquid phase boundary modeling the momentum flux of the oscillating

sound field on the disperse phase. The basic approach of modeling the surface

forces are the jump conditions introduced in Chapter 2.4. The main assumption

of this approach is that the acoustic forces solely act on the liquid surface because

of the huge acoustic impedance between gas and disperse phase. Therefore, only
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an insignificant amount of the ultrasonic field impinges into the liquid phase. This

approach is proven by numerical simulation of pressure and velocity fields including

a liquid obstacle. Finally, back-effects of the disperse phase onto the sound field

are neglected in terms of the continuous strand disintegration. In case of the

deformation of liquid droplets the interaction between drop and ultrasonic field

could be studied using Fluent. Therefor, sound fields disturbed by a liquid obstacle

are read into FS3D. Further interactions between sound field and disperse phase

varying the ultrasonic field inside FS3D have not been realized so far.

3.5.1. Modeling of the Interfacial Source Terms

PSfrag replacements
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r

undisturbed
velocity field

(a)
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P̄ = p̄n+ ρu(u · n)
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Figure 3.5.: a) Schematic profile of the normal component of the

relative velocity u inside the continuous phase ver-

sus the normal distance r to the interface Γ(t).

b) Momentum flux through a face dA parallel to the interface.

Ultrasonic forces acting on the liquid surface are taken into account by a one-

way coupling of the two numerical methods. For this purpose, additional interfacial

source terms are incorporated into the momentum jump conditions, which model

the flux of momentum into the liquid due to acoustic forces. Pressure and velocity

fields needed for the computation of source terms are obtained from the compress-

ible flow computations with CFX or Fluent, respectively. Initially, back-effects of

the dispersed phase onto the sound field are neglected. More precisely, the following

approach is used for calculation of the interfacial source terms (cf. Figure 3.5 a&b).
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If the back-effects are small, the velocity inside the gas phase relative to the liquid

phase will change within a thin boundary layer from zero at the interface due to

no-slip conditions to values that equal those in an unperturbed situation at points

close to the interface. Since dissipation inside the gas phase is negligible because

of small viscosity, the momentum flux across the phase boundary is approximately

given by the flux of momentum through the slightly shifted face that is situated

in the gas phase parallel to the original one. Thus, he resulting momentum flux is

given by the acoustic pressure

P = pn+ ρ(u⊗ u) · n = pn+ u(u · n) .

Because of the high inertia of the liquid phase compared to the gas phase, droplets

do not instantaneously react on every oscillation within the gas phase. Therefore,

the force density can be calculated by taking time-averages over an acoustic cycle,

i.e.

P̄ = p̄n+ ρu(u · n) (3.7)

with the mean value of a quantity φ given by φ̄(t, x):= 1
T

∫ t+T

t
φ(s , x ) ds , with ap-

propriate T > 0. These time-averaged pressure and velocity values are calculated

during the CFD simulations of the sound field with CFX or Fluent, respectively.

The average density of the momentum flux is then incorporated as a source term

on the right-hand side of the second formula in (2.13). Furthermore, because of

different grid resolutions, the flow fields obtained in two dimensions assuming rota-

tional symmetry are interpolated and transformed to Cartesian coordinates, before

being read as source terms into FS3D.

3.5.2. Numerical Implementation of the Interfacial Source

Terms

The assumptions derived in Section 3.5.1 characterize the impact of the ultrasonic

field on the disperse phase as an averaged momentum flux through a face parallel

to the phase boundary. Therefore, the ultrasonic force needs to be added onto the

overall balance of forces at the interface. Hence, surface forces need to be trans-

formed to volume forces acting inside the transition area of the phase boundary.
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According to eq. (3.7) the term ρu⊗ u displays a symmetric matrix with entries

for the three coordinates in space:

ρu⊗ u · n =

〈







ρuu ρuv ρuw

ρuv ρvv ρvw

ρuw ρvw ρww







〉







nx

ny

nz







,

where u,v and w denote the components of the velocity vector u with respect to

the Cartesian coordinates in space x,y,z and 〈·〉 the time average. The components

required for the calculation of the symmetric matrix are derived in conjunction with

the pressure p inside the CFX and Fluent-code, respectively. Since ultrasonic fields

are calculated assuming rotational symmetry, averaged data fields ρuxux,ρuxur and

ρurur need to be transformed to Cartesian coordinates, before being read as source

terms into FS3D. For the simulation of droplet deformation and strand disintegra-

tion the coordinate system is chosen in such way that the x -axis of CFX or Fluent,

respectively, are congruent with the setup in FS3D. Further, the calculation domain

of the droplet is made up of two symmetry planes (xy- and xz -plane), whereas the

simulation of the continuous strand disintegration requires one symmetry condi-

tion as the xz -plane. Therefore, the center of a simulated droplet is located on the

x -axis (cf. Figure 3.6).

In case of droplet deformation and strand disintegration the chosen symmetry

causes the six entries of the symmetric matrix to be

ρuu = ρuxux

ρuv = ρuxur · yr
ρuw = ρuxur · zr
ρvv = ρurur · y

2

r2

ρvw = ρurur · yzr2
ρww = ρurur · z

2

r2
,

with r = r(y, z) = (y2 + r2)1/2.

The force fst i,j,k due to surface tension is calculated in FS3D inside the center of

a grid cell (Section 3.4.2). Likewise the calculation of the source terms is done for

the cell’s center. Therefore, according to Figure 3.4 the normal vectors need to be

interpolated from the corners of the grid cell to its center. Thereby, the normal
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Figure 3.6.: Position of the interpolation and symmetry areas in CFX/Fluent and

FS3D.

vectors point in the direction of the phase with f = 1. Therefore, in case of the

simulation of the disperse phase in air these vectors point into the liquid phase.

Concluding, the source terms fQ inside the cell’s center of the grid cell i, j, k for

the three coordinates result as:

fQx
= p ncx|∇f |+ (ρuu ncx + ρuv ncy + ρuw ncz) |∇f |

fQy
= p ncy|∇f |+ (ρuv ncx + ρvv ncy + ρvw ncz) |∇f |

fQy
= p ncz|∇f |+ (ρuw ncx + ρvw ncy + ρww ncz) |∇f | .

The mandatory transformation of surface forces into volume forces is done by

multiplication with |∇f |. The values of nc|∇f | = ∇f with respect to the required

grid cell are also needed for the calculation of the normal vector. Therefore, they are

already calculated in a subroutine of FS3D. Finally, the source terms are added to

the corresponding surface force of each local coordinate. In case of the x-coordinate

for cell (i,j,k) it results:

fstx = fstx + fQx

For the y- and z-coordinate corresponding equations occur.
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4. Ultrasonic Standing Wave Fields

The acoustic denotes the propagation of local density fluctuations in a medium as

sound. Thereby, it is does not matter if this medium is a fluid, specifically meaning

gas or liquid systems, or a solid. According to the frequency spectrum sound is

separated into:

subsonic noise: frequency domain of 0.01 Hz - 15 Hz

acoustic noise: frequency domain of 16 Hz - 20 kHz

ultrasound: frequency domain of 20 kHz - 10 GHz

hypersound: frequency domain of 10 GHz - ∼10 THz

The propagation of sound waves occurs in solid media as longitudinal or transver-

sal waves. Instead, elastic thrusts are missing in fluids which are necessary for

the transfer of transversal waves. Therefore, in liquids and gases only longitudinal

waves are found (Meyer & Neumann, 1979).

Ultrasound is generated by mechanical sound generators like whistles, sirens,

electro-magnetic, and piezo electric transducers. Because of ultrasound having of

comparable short wave length - smaller than 20 mm in air - focusing of its energy

is relatively easy. This leads to high local sound intensities including magnificent

energy densities. The technical benefit of ultrasonic fields is based on especially

this high energy density.

The applications of the ultrasonic technique are principally subdivided into three

parts:

• ultrasonic gas atomizer

• ultrasonic capillary wave atomizer

• ultrasonic standing wave atomizer
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The ultrasonic gas atomization is known since the beginning of the 20th century

and successfully used in industry. The process is based on Hartmann’s shock wave

generator. A gas is exited to high frequency oscillations in a resonance chamber

while exposing it to high pressure. Afterwards, the gas is conducted to a molten

strand of the required material resulting in the disintegration of the strand into

droplets. Although the process is highly efficient, it is also characterized by a huge

consumption of gas (Meng, 1997).

During ultrasonic capillary wave atomization an ultrasonic field is generated

by the means of mechanical movements of a piezo ceramic. The liquid to be at-

omized is directly placed on the surface of the oscillation unit, leading to a thin

liquid film on the sonotrode’s face. Subsequently, capillary waves are formed on the

liquid’s surface caused by Langevin’s acoustic radiation pressure. Due to this pres-

sure the film will then disintegrate into single droplets causing an atomized spray

(Pohlmann & Stamm, 1965; Lang, 1962; Gießhammer & Lierke, 1968). Hence, the

process is limited to low viscose liquids or melts having a low melting point.

Ultrasonic standing wave atomizers (SWA) are based on the containerless

disintegration of liquids in the central pressure node of a resonant ultrasonic field.

Therefore, they are even summarized as ”containerless processing”. Their use is

wide spread in industry e.g., as ultrasonic nozzles, humidifier in households, for

the atomization of metals, or the disintegration of polymers. In general, the SWA-

technique is only used for very specific tasks and mainly not optimized for that

application. The ultrasonic field generated in an SWA, which acts on the inserted

liquid and leads to its disintegration, is subsequently discussed in more detail.

4.1. Previous Investigations

The beginning of the SWA-technique is based on levitator experiments extensively

investigated by the European and American Space Agencies, ESA and NASA. They

were interested in containerless processing of samples under microgravity conditions

(Lierke, 1996). In a single-axis standing wave levitator (SWL) acoustic forces bal-

ance an inserted sample against gravity between a sound source and a reflector, if

the applied sound field is strong enough. Using a liquid as the investigated sample,

an increase of the sound amplitude causes flattening and final breakup of the fluid
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(Danilov & Mironov, 1992; Andersen, 1996).

Lierke & Ruckdeschel (1976) realized that this technique could evenly be used

for the continuous disintegrations of melted, liquid metals to produce powders and

pellets. At this early stage of the SWA-technique, Lierke and Ruckdeschel describe

their disintegration process of a continuous liquid strand based on one active, os-

cillating transducer and an opposite static reflector corresponding to an SWL. In

later patents Lierke et al. (1978, 1987) extends this technique to the general use

of arbitrary fluids and additionally converted the static, plane reflector into a sec-

ond oscillating transducer unit. This approach further more has the advantage of

the sonotrodes being self-cleaning by the vibrational movements of both sonotrodes.

Based on these perceptions systematical investigations and developments were

done at the Institut für Werkstofftechnik (IWT ) in Bremen. The research group

of Bauckhage et al. focused on the investigation of metals and glasses (see Reich,

1995; Li, 1996; Andersen, 1996; Meng, 1997), but also expanded the SWA-technique

from liquid metals to highly viscous materials. For this purpose, the acoustic energy

density inside a central pressure node was increased by the application of concave

sonotrode end faces during the 1990th resulting in an improved disintegration of

liquids (Bauckhage, Schreckenberger & Vetters, 1989).

Especially Li (1996) extensively characterized the ultrasonic field in an SWA

qualitatively and quantitatively. Using the non-linear wave theory Li (1996) was

able to explain the appearance of sound waves: For waves having an finite ampli-

tude the propagation velocity depends on the instantaneous velocity u(x,t) and on

the medium (characterized by isentropic exponent κ). Therefore, it might happen

that the wave front having a positive particle velocity - propagating faster - passes

the one with a negative particle velocity. Thus, a deformation of the wave front

results which itself depends on the distance to the sound source. Sutilov (1984)

characterized this typical form as tooth-like and the corresponding wave as a shock-

wave.

The deformation of sound waves caused by higher harmonic oscillations is

equivalent to the description of Li (1996). Beside the fundamental frequency ω,

depending on the sonotrode movement, higher harmonics occur. These intensify
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during the propagation process at the expense of the fundamental noise. Li (1996)

stated that there is a broad theory about the appearance of shock waves to predict

their occurrence. Instead, an explicit mathematical solution of these shock-waves

based on sound characteristics is so far not possible. Li (1996) was able to approve

these theoretical approaches by measuring the pressure field in an SWA regarding

the non-linear effects of the sound field. He found almost sinusoidal oscillations

near the sonotrodes face having the exiting frequency of the transducer. Increasing

the distance to the sonotrode leads to a strong deformation of these waves with

higher harmonics getting more dominant. Concluding, Li (1996) described the ul-

trasonic wave field as the sum of two standing waves depending on the fundamental

frequency ω1 and the frequency ω2 of the first higher harmonic wave:

p = p1(x) sinω1t+ p2(x) sin 2ω2t

However, Li (1996) only used this perception for a better understanding of the

SWA-technique instead of deriving models describing the disintegration process.

4.2. Theory on Sound Acoustics

Acoustic sound fields are of strong non-linear nature. Their sound waves are rather

divergent having a finite width with the amplitude varying over the acoustic beam

cross section and continuously decaying on the beam edges. Instead, the ultrasonic

piston of an acoustic resonator is often theoretically simplified to generate plane

waves. These are assumed to be an uniform ”top hat” wave with abruptly decaying

amplitudes at the edges of the wave. This approach is mainly used in literature

and subsequently presented in more detail.

4.2.1. Linearization of the Wave Equation

Sound waves are characterized by spatial and temporal fluctuations of the density

ρ, the particle velocity u, and the pressure p around a constant value:

ρ = ρ0 + ρ∼

u = u0 + u∼

p = p0 + p∼ .

(4.1)

Here, ρ0, u0, and p0 denote the constant values of the fluid in equilibrium. The
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variable quantities of the sound field are indicated as excess density ρ∼, velocity

u∼, and pressure p∼. Notice also, that the sound-particle velocity needs to be dis-

tinguished from the sound-propagation velocity of the ultrasonic field. The latter

one depends on the specific propagation medium and, therefore, the sound speed

in air becomes 343 m/s at standard conditions. The fundamentals of sound prop-

agation are the transport equations of mass (2.5) and momentum (2.7) previously

discussed in Chapter 2.

For linearization of these basic equations fluctuations of the physical quanti-

ties are assumed to be small compared to the quiescent state (Meyer & Neumann,

1979). Therefore,

4p << p0 and 4ρ << ρ0

needs to be valid. In this case the non-linear terms of the transport equations

can be neglected, if further more losses caused by dissipation are unconsidered.

Hence, the viscosity stress tensor T, the convective acceleration (u∇)u as well as

the non-linear fraction of the local acceleration cancel out. Inserting eq. (4.1) into

the resulting transport equations leads to the following expressions:

∂

∂t
ρ∼ + ρ0divu = 0 ,

ρ0
∂u

∂t
+∇p∼ = 0 .

The vector of the velocity can be expressed by a scalar quantity, introducing a

velocity potential as u = ∇ϕ. Therefore, the continuity equation becomes

∂

∂t
ρ∼ + ρ0div(∇ϕ) = 0 , 4ϕ =

1

ρ0

∂ρ∼
∂t

, (4.2)

and the momentum equation can be displayed as

∇p∼ = ρ0
∂

∂t
(∇ϕ), p∼ = ρ0

∂ϕ

∂t
.

In order to solve the mathematical system, a correlation is necessary describing

the interrelationship between pressure and density. Assuming state changes in an

ultrasonic wave proceeding very fast and, therefore, temperature adjustments with

41



4.2. Theory on Sound Acoustics

the environment not taking part, the isentropic equation can be used:

p

p0
=

(
ρ

ρ0

)κ

.

Here, the isentropic exponent κ = cp/cv denotes the relationship between the spe-

cific heat capacity at constant pressure and constant volume. Because of the density

being a function of pressure, the derivation ∂ρ/∂t can be expressed as follows in

the mass balance:

∂ρ

∂t
=

(
∂ρ

∂p

)

0

∂p

∂t
.

By differentiation of the impulse equation, the derivation ∂p/∂t results as

∂p

∂t
= ρ0

∂2ϕ

∂t2
.

Inserting these two equations into the mass balance (4.2) leads to the fundamental

wave equation in acoustics

4ϕ =
1

c20

∂2ϕ

∂t2
, (4.3)

having the propagation velocity of an infinite small amplitude

c20 =

(
∂p

∂ρ

)

S

.

The speed of sound c0 can finally be calculated using the ideal gas law, pV=RT/M,

including the gas constant R and the molecular weight M as

c0 =
√
κRT .

If the velocity potential is only based on one coordinate, the wave equation mirrors

the plane wave solution of an ideal, one-dimensional wave. This solution arises

from the classical model of Kundt’s tube. For this purpose, it is assumed that the

diameter of the tube is clearly smaller than the exited wave length. This is the

basic equation used for the description of propagating waves in acoustics.

Regarding specific boundary conditions one solution of eq. (4.3) is the sinus

function. Therefore, problems based on the linearized approach can always be
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ascribed to the sinus function. This is the attempt generally used in literature to

calculate ultrasonic fields and, therefore, comparing results achieved during this

project with data from different groups is difficult.

4.3. Plane Waves of Small Amplitude

Sound waves are assumed to be monochromatic waves whose quantities are entirely

an ordinary function of time. If the sound generator is oscillating with an angular

frequency ω, the velocity potential derives in a complex formulation,

ϕ(x, t) = <
{
ϕ0(x)e

iωt
}
,

with < denoting the real part and ϕ0 the amplitude of the velocity potential at

t = 0. Inserting this term into the wave equation (4.3), the so called one-

dimensional Hemholtz equation results:

∂2ϕ0(x)

∂x2
+ k2ϕ0(x) = 0. (4.4)

Here, k = ω/c0 denotes the wave number including the angular frequency ω. A

special solution of eq. (4.4) for a wave propagating in positive x-direction and

having an initial phase of zero is

ϕ(x, t) = ϕmaxe
i(ωt−kx) and

ϕ(x, t) = ϕmax sin(ωt− kx) , respectively,
(4.5)

with ϕmax as the maximum amplitude of the velocity potential and x as the dis-

tance of the propagating wave from its source. Further, the angular frequency ω

can be derived in dependency of the sound frequency f as ω = 2πf . The local

phase change of the wave of 2π proceeds on a distance of λ = c/f , with λ denoting

the wave length.

Because of the linearization of the equation as described previously, it is only

exactly valid in case of sound waves of infinitesimal small amplitude. Instead, real

sound waves are of a finite amplitude which can build up due to resonance phe-

nomena. As pointed out by Lierke & Großbach (1983), especially nonlinear effects

have an important impact on the disintegration process in an ultrasonic field. Ac-

cording to Lierke & Großbach (1983), there is a strong influence of nonlinear effects
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on the sound field for acoustic Mach numbers (Ma) > 10−2, with Ma giving the

ratio of linear velocity and sound velocity in a fluid (Ma = umax/c0). As could

be calculated in numerical simulations of a 45 µL droplet in an ultrasonic standing

wave levitator, Ma = 2.8 · 10−2 at a transducer amplitude of 5.21 µm results (see

Chapter 5 for more details). Therefore, non-linear effects do have an important

impact on droplet deformation as well as on strand disintegration. Hence, mass

and momentum balance have to be solved regarding the nonlinear terms of the

sound field to quantitatively describe the atomization processes.

4.4. Plane, Standing Waves of Small Amplitude

If two plane waves propagate opposite to each other having the same amplitude and

frequency in a boundless environment, a standing wave results. Mathematically,

such a standing wave is defined as the sum of two waves propagating in positive

and negative direction. In one dimension, the following equation results according

to eq. (4.5):

ϕ(x, t) = ϕ1 sin(ωt− kx) + ϕ2 sin(ωt+ kx)

A special aspect about standing waves is the temporal fluctuation of the acoustic

properties with respect to their spatial position. These acoustic properties are

subsequently discussed for plane, standing waves in a restricted area.

4.4.1. Oscillation-Reflection Unit

For experimental as well as numerical investigations of droplets in an ultrasonic

wave field, ultrasonic standing wave levitators are used. This setup consists of

an active, oscillating transducer and a reflector. As a first approximation this

oscillation-reflection unit can be described by the classical model of Kundt’s tube.

Therefore, it is assumed that the reflector is made up of a sound inert material, i.e.

having a huge sound resistance. Further, the transducer has to conduct a purely

sinusoidal oscillation with an amplitude of Y0 and the angular frequency ω. The

generated sound waves are assumed to be plane waves and, therefore, in this spe-

cific case the diameter of the sonotrode has to be smaller than the wave length. In

reality, the sonotrode employed is 35 mm in diameter, whereas the wave length of
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the sound is about twice as small having approx. 17 mm.

For an ultrasonic standing wave in a restricted area the following boundary

conditions apply in case of Kundt’s tube:

ϕ(x=0) = Y0 sin(ωt) and ϕ(x=L) = 0 , (4.6)

with L denoting the distance between the sonotrode’s surface and the resonator,

and Y0 the oscillation amplitude in comparison to its rest position. According to

Arsenin (1968), one solution of this set of equations is

ϕ(x, t) =
Y0

sin kL
sin(L− x) sin(ωt) (4.7)

using the boundary conditions as displayed in equation (4.6) on the fundamental

wave equation (4.3). This latter equation (4.7) mirrors the typical shape of a

standing wave having oscillation nodes and anti-nodes. But the sound amplitude
Y0

sin kL
is not solely based on the acoustic source. It also depends on the distance L

between sonotrode and reflector. For values of

kL = nπ (n=1,2,3, ...) or L = nλ/2 , (4.8)

respectively, it gets infinite. This case is called the resonance condition or L being

the resonance length Lr.

4.4.2. Twin-Oscillation Unit

The experimental setup used for the disintegration in an ultrasonic standing wave

field consist of a second, active transducer instead of a reflector. Thereby, it can

further be distinguished if both transducer units oscillate with the same frequency

or if there is a frequency shift between them. Mathematically, the latter condition

is a special case of the first one. Additionally, it is distinguished between sonotrodes

which oscillate in phase or with a phase shift.

Sonotrodes Oscillate in Phase

If both transducer units oscillate without any phase shift, the following bound-

ary conditions need to be employed:

ϕ(x=0) = Y1 sin(ω1t) and ϕ(x=L) = Y2 sin(ω2t) . (4.9)
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The solution of the wave equation (4.3) regarding the latter boundary conditions

(4.9) will than result in

ϕ(x, t) =
Y1

sin k1L
sin(L− x) sin(ω1t) +

Y2
sin k2L

sin (k2x) sin(ω2t) .

(4.10)

Obviously, both addends mirror a single standing wave. This is based on the fact

that a sound source acts as a rigid reflector for an opposite transducer unit, although

it is itself performing constant oscillations. If the transducers are operated with a

frequency shift, beats will occur resulting in a periodic oscillation of the amplitude

of such beats. This amplitude varies between two extremes: zero (erasure) and

2 · Y (summation), with an angular frequency of 4ω. Therefore, the resonant

lengths will be found at Lr,1 = nλ1/2 and Lr,2 = nλ2/2. Simplifying, the average

wave length is used more generally to determine the overall resonance length of

the system. Hence, the mean resonance length L̄r implying a ceratin quantity of

pressure knots Nk is calculated as

L̄r = Nk ·
(
λ̄

2

)

= Nk ·
(
c

2f̄

)

. (4.11)

Further more, if both transducers oscillate with the same amplitude and frequency,

equation (4.10) can be simplified as

ϕ(x, t) =
Y

cos kL/2
sin(ωt) cos k(

L

2
− x) .

For this special case, the condition for the resonance length can be derived as

Lr = (2Nk − 1) ·
(
λ

2

)

= (2Nk − 1) ·
(
c

2f

)

, with Nk = 1, 2, 3, ... .

Therefore, only for distances between the sonotrodes’ faces with an odd multiple of

half the acoustic wave length, maximum pressure amplitudes are found. Further on

it can be concluded, that only conditions having an odd number of pressure nodes

and an even number of pressure anti-nodes, respectively, can be derived (cf. Fig-

ure 4.3).
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Sonotrodes Oscillate with a Phase Difference

Instead, if both transducers oscillate with a phase shift of 2π, the following bound-

ary conditions result:

ϕ(x=0) = Y1 sin(ω1t) and ϕ(x=L) = −Y2 sin(ω2t) . (4.12)

The solution of the wave equation (4.3) regarding the latter boundary conditions

(4.12) will than result in

ϕ(x, t) =
Y1

sin k1L
sin(L−x) sin(ω1t)−

Y2
sin k2L

sin(k2x) sin(ω2t) . (4.13)

For the special case of equal amplitudes and frequencies of both transducers, equa-

tion (4.13) can be displayed as

ϕ(x, t) =
Y

sin kL/2
sin(ωt) sin k(

L

2
− x) .

Thus, the condition for the resonance length derives as

Lr = Nk · λ = Nk ·
(
c

f

)

, with Nk = 1, 2, 3, ... .

Concluding, maximal pressure amplitudes result for resonant distances of even mul-

tiples of the wave length. Consequently, just pressure fields with an even number

of pressure nodes can be generated.
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4.5. Experimental Measurement of the Ultrasonic

Field

4.5.1. Experimental Setup of the Pilot Plant

The experimental investigations performed are done at a pilot plant of an ultra-

sonic standing wave atomizer of the CTB as established by Mattern (1998). The

generation of the ultrasonic field is done via a frequency synthesizer of the Bran-

son company. This synthesizer drives a piezo ceramic with an almost constant

frequency of about 20 kHz. The piezo ceramic transforms electrical energy into

mechanical movement. The generated amplitude at the ceramic is extended by

a booster, attached to the piezo, and a following sonotrode. This overall system

is called transducer unit generating amplitudes at the sonotrode’s end face up to

125 µm. The maximum amplitude is adjusted by the synthesizer and is kept con-

stant via capacity control. The resulting system made up by the generator and

the transducer unit is limited to a certain frequency which can only be varied by

exchanging the piezo ceramic.

To extend the sound intensity two opponent transducer units are used (Fig-

ure 4.1). Both transducer units oscillate at a fixed frequency and parallelly act as a

reflector for the opposite sonotrode. According to eq. (4.11) resonance is achieved

at distances Lr of 25.7 mm for a 3-node field and of 42.9 mm for a 5-node field

assuming an average sound frequency of 20.05 kHz, a sound velocity of 343.71 m/s,

and plane sonotrodes. Both transducers are operated with a distance of half the

acoustic wave length in order to achieve an odd number of pressure nodes (see Sec-

tion 4.4.1). This setup allows the injection of polymer melt into the central pressure

node causing an almost circular lamella and less fouling of the sonotrodes’ faces

due to acoustic streaming (see Section 6.3). These calculated resonance lengths

need to be corrected because of the nonlinear nature of the sound field and the

concave shape of the employed sonotrodes.

To further more improve the energy density between the sonotrodes, con-

cave sonotrode faces are used. These concave shaped surfaces cause focussing of

the emitted sound waves and, therefore, an energy increase in the central pressure

node. Empirical investigation of Gazka (1994) show an increase in the pressure am-
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plitude inside the central pressure node of up to 100 %. This influence of sonotrode

shape on the pressure distribution and, hence, on the disintegration process is dis-

cussed in Section 4.7 in more detail.

Finally, to impress an impulse on the trajectory of the generated particles

in the sound field the sonotrode angle α is varied according to Figure 4.1. This

impulse causes an acceleration of the generated particles out of the sound field

in order to minimize fouling of the sonotrodes. Fouling generates bulky particles

which separate from the sonotrode’s face and, furthermore, an undesired shift in

the sonotrode’s amplitude due to building up an additional layer on the sonotrode’s

face.

Sonotrodes used for the operation of the pilot plant and subsequently used for

experimental investigations do have a concave face with a diameter D of 35 mm.

The concave shape is made of a countersink having a radius of curvature Rc of

35 mm resulting in a spherical calotte of 4.7 mm. Therefore, the adjusted optimal

resonance distance X for a 3-node pressure field is experimentally found at 19 mm

and at 38 mm for a 5-node pressure field (Mattern, 1998). This corresponds to an

inner distance Xi of 28.4 mm and 47.4 mm, respectively. The same approach is

used for deriving the optimal distance used for droplet levitation. For investiga-

tions in levitator experiments an optimal distance of Lr = 25.7 mm is calculated

according to eq. (4.8) for a 3-node pressure field resulting in an adjusted distance

of X = 23.3 mm and Xi = 28 mm, respectively.

PSfrag replacements

X

Xi

α

Figure 4.1.: Definition of the sonotrode distance X, the inner distance Xi, and the

sonotrode angle α between two transducer units.
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4.5.2. Interferometric Investigation of the Ultrasonic Field

Experimental measurements of the acoustic field between two sonotrodes have

been performed with a Mach-Zehnder interferometer (Zeiss Com.) at the ITLR

in Stuttgart. This tool detects the retardation of a light beam along an optical

path crossing the acoustic field compared to a reference beam. Hence, this tech-

nique allows for the measurement of integral densities along optical paths in a

non-invasive manner. In particular, Mach-Zehnder interferometry is useful for an

efficient qualitative characterization of acoustic fields. Figure 4.2 shows several

interferometric photographs of the acoustic field in an SWA with concave surface

faces for different sonotrode angles and distances. Because density fluctuations in

an ultrasonic sound field occur on very short time intervals, only averaged density

differences are visualized if a continuous light source is used. The dark regions next

to the sonotrodes are caused by high local temperatures. These hot spots occur

because the sonotrodes heat up during operation. The photographs in the first row

of Figure 4.2 show ultrasonic fields at an optimal resonance distance of X = 19

mm for 3 pressure nodes and of X = 38 mm for 5 pressure nodes with in-line

oriented sonotrodes. Because of the concave shape of the sonotrodes’ end faces,

especially the outer pressure antinodes are deformed. What results for a 3-node

field is an almost homogenous high pressure gradient inside the central pressure

node. In radial direction this area of high gradient covers about three quarters

of the sonotrodes. For a 5-node field, ellipsoidal contours of the central pressure

antinodes between the sonotrodes reduce the region of high pressure gradients. Be-

sides higher pressure field amplitudes, this might be responsible for the smaller size

of the particles generated in a 3-node field at the same amplitudes and frequencies.

Furthermore, the 3-node field leads to a larger residence time of the polymer in the

area of high pressure gradients. This allows for higher flow rates of the liquid during

disintegration. Increasing the sonotrode angle leads to larger deformations of the

ultrasonic field and to a displacement in radial direction (cf. Figure 4.2). Thereby,

the intensity of the ultrasonic field significantly decreases at larger angles. For this

reason the angle is usually chosen to be less than 6 degrees.
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Figure 4.2.: Interferometric photographs of the acoustic field under variations of the

sonotrode angles α and distances X (cf. Reipschläger (2002)).
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4.6. Numerical Simulation of the Ultrasonic Field

In the experimental setup a twin-oscillation unit with transducer frequencies of

19.9 kHz and 20.13 kHz, respectively, is operated at sonotrode amplitudes of 80

µm. For this configuration numerical simulations were performed with resulting

velocity and pressure distributions along the axial direction shown in Figure 4.3. In

this case the optimal distance giving resonance with 5 pressure nodes is computed

as 37.5 mm which matches the experimental value of 38 mm. Moreover, the sim-

ulation captures the complex nonlinear behavior of sound waves causing shifts in

amplitudes at high pressure. Because of the increasing influence of higher harmon-

ics, the flanks of the velocity and pressure profiles get strongly steepened leading to

sawtooth-like profiles. Pressure nodes, which are sharp at low amplitudes, become

wider and diffuse. The calculations are done in 2-D with cylindrical coordinates

assuming rotational symmetry. Further more, all simulations performed regarding

double oscillation units are performed with a sonotrodes angle of zero degrees.
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Figure 4.3.: Numerically computed velocity and pressure distributions at equidistant

time-steps for an SWA.

For acoustic levitation of drops much lower amplitudes are required in order

to prevent the fluid from immediate disintegration. In case of a 20 kHz sonotrode

as an ultrasonic generator and a glass plate as a reflector, resonance is experimen-

tally found at a distance of 23.3 mm, consistent with numerical investigations. For
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sonotrode amplitudes of 5.34 µm, the simulated velocity and pressure distributions

are shown in Figure 4.4. Since the deformed levitated droplet is still rotationally

symmetric, its influence can be taken into account during 2-D computations of the

sound field. Thus, interactions between the liquid obstacle and the ultrasonic field

can be investigated by means of 2-D axial symmetric simulations.
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Figure 4.4.: Numerically computed velocity and pressure distributions at equidistant

time-steps for an SWL.

Figure 4.5 shows resulting pressure and velocity distributions caused by a

45 µL droplet placed into a pressure node as a spherical obstacle. As Figure 4.5

illustrates, the back-effect of a single drop on the ultrasonic field is closely localized

around the droplet, i.e. perturbations of pressure and velocity are small away from

a thin boundary layer. Inside the drop the velocity breaks down to almost zero

because of the large density ratio between gas and liquid. Hence, strong velocity

gradients close to the phase boundary occur. These phenomena coincide with the

assumptions used above to model the gas-liquid momentum flux. This agreement

justifies the chosen approach.

As can be seen in Figure 4.5, the pressure field is not that strongly affected by

the liquid as it retains the same overall structure. The pressure amplitude is some-

what higher inside the droplet. This can partially be explained by the droplet’s
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Figure 4.5.: Numerically computed velocity and pressure distributions at equidistant

time-steps for an SWL disturbed by a levitated 45 µL drop.

surface tension, since the latter induces a pressure jump ∆p at the interface of a

stagnant droplet. The height of this jump is given by the Young-Laplace equation

(2.14). Such a local influence of small obstacles on acoustic streaming was previ-

ously described in the literature (Lee & Wang, 1989; Yarin et al., 1999). Further

remarks on droplets in an acoustic sound field are given in Section 5.3.

4.7. Variation of Operational and Geometrical

Parameters in Numerical Simulation

In general, variables influencing the ultrasonic field are subdivided into four cate-

gories: the ultrasonic generator, the state of the gas phase, the operating conditions,

and the condition of the molten mass. The criteria of their impact is related to

the refinement of the disintegration process since smaller particle do have a bigger

surface while maintaining a constant energy intake into the system. Thus, the ef-

ficiency factor increases with smaller-sized particles (Li, 1996) at constant energy

intake. Within this chapter, mainly the influence of parameter variations on the

sound field itself is investigated and discussed. On the one hand, this will be done

for the geometrical setup causing 5 pressure nodes due to the practical use of this
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setup during experiments. On the other hand, ultrasonic fields of 3 pressure nodes

will be investigated since they are described in literature. Thus, a direct compari-

son of these data with our numerical simulations of the ultrasonic field is possible.

The influence of the condition of the molten polymer, e.g., viscosity or surface

tension, on the disintegration process including resulting particle size distributions

will be investigated in Chapter 6.

Since the frequency of a sonotrode is predetermined by its manufacturing,

frequencies used for numerical simulation are identical with those of the pilot plant

and are not altered. In the experimental setup a twin-oscillation unit with trans-

ducer frequencies of 19.9 kHz and 20.13 kHz, respectively, is used and, therefore,

a beat of 230 Hz results. Such a frequency difference is recommended in litera-

ture (Li, 1996; Bauckhage et al., 1996) to be at least 1% of the original frequency.

According to Schädlich (2001), the maximum pressure amplitude inside a pressure

antinode decreases with increasing frequency of the beat. Consequently, the pres-

sure amplitude inside the pressure node growth. The impact of this behavior on

particle size distribution was experimentally studied by Vestweber (2004) and will

be discussed in more detail in Chapter 6.
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Figure 4.6.: Dependency of the maximum pressure amplitude on time.

The beat of an ultrasonic field is caused by swapping of oscillations having

slightly different frequencies. Therefore, their overall phase shifts slowly result-

ing in maxima and minima which are called beat (Heywang et al., 1992). The

time necessary to pass a single beat period is calculated to be 4.3 ms according to
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4.7. Variation of Operational and Geometrical Parameters

T = 1/4f (cf. Figure 4.6). Concluding, pressure amplitudes of different simula-

tions to be compared have to be calculated at equidistant time-steps. Furthermore,

since the ultrasonic field needs a distinct time to reach a quasi-stationary state, all

pressure amplitudes numerically generated by simulation of the ultrasonic field are

shown and compared at t = 1 ms.

4.7.1. Variation of the Sonotrode’s Curvature

The concave shape of the sonotrodes presently used was empirically optimized for

an ultrasonic field of 3 pressure nodes by slightly varying the sonotrodes curvature.

For this purpose, various sonotrodes of different curvature were produced and re-

sulting pressure fields were measured. Thereby, an optimal radius of curvature of

35 mm was found causing maximum pressure amplitudes. This procedure is ex-

pensive and time-consuming. In addition, if a 5-node pressure field is generated

using such sonotrodes e.g., to reduce fouling of the surfaces, the previous geometry

provokes no optimal focusing of the ultrasonic field and, therefore, lower pressure

amplitudes. Thus, variations of the sonotrodes’ curvature with respect to the res-

onant distance have been performed in order to improve the overall setup for a

5-node pressure field.

For the geometrical setup as described in Section 4.5.1, the optimal reso-

nant distance is experimentally as well as in numerical simulations found to be

X = 37.5 mm and Xi = 46.9 mm, respectively. First, the maximum pressure

amplitude is determined by numerical simulation of the ultrasonic field under vari-

ation of the sonotrode’s curvature keeping this distance constant. For a sonotrode

amplitude of 80 µm maximum pressure amplitudes as illustrated in Figure 4.7 are

found. As can be seen, maximum pressure amplitudes result for a sonotrode cur-

vature of 2.13 mm−1 or a radius of curvature Rc of 47 mm, respectively.

This result mirrors phenomena known from linear wave theory for mirror-

reflector configurations in optics. For a sonotrode’s curvature of 47 mm the radius

is almost identical to the sonotrodes inner distance (Rc,1 = Rc,2 = Xi). Therefore,

this condition is stated to be a stable position according to Kneubühl & Sigrist

(1991). The specific constellation is called confocal. Such type of resonator is most
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Figure 4.7.: Numerically simulated maximal pressure amplitude at 80 µm under varia-

tion of the sonotrode’s curvature.

likely used since it is found to have least deflections compared to other reflection

systems and, additionally, is less complicated during adjustment. Whether or not

such a mirror-reflector unit is operated under stable conditions furthermore needs

to be determined by stability criteria (Kneubühl & Sigrist, 1991). As a rough rule,

the line between the two radii of curvature and their centers has to overlap in

order to establish stable conditions. This is true for all investigations performed

in numerical simulation of the system as well as in experiments with the pilot plant.

Further, the distance between the opposite sonotrodes is adjusted for each

curvature to achieve the optimal distance, i.e. the distance causing the maximum

pressure amplitude. As can be seen in Figure 4.8(a), the distance Xi is shifted

inwards with decreasing curvature in order to obtain the maximum pressure am-

plitude (Figure 4.8(b)).

The observed trend is not congruent with effects known from optics, but

justifies observations made by Gazka (1994) during the measurement of sound

fields derived with different sonotrodes. If the radius of curvature is reduced, the

focal length F will be reduced as well since

F =
Rc

2
.

57



4.7. Variation of Operational and Geometrical Parameters

0.0175 0.02 0.0225 0.025 0.0275
sonotrode’s curvature [cm-1]

46.2

46.4

46.6

46.8

47.0
so

no
tr

od
e 

di
st

an
ce

 [x
i]

(a) Optimal distance for sonotrodes of different curvature.
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(b) Resulting max. pressure amplitudes at these distances.

Figure 4.8.: Dependency of max. pressure amplitude on curvature and resonant dis-

tance.

As the focal length is increasing linearly with decreasing curvature, the sonotrodes

distance should increase as well to reach a new, optimal distance. Supposedly, two

concurrent effects are observed here: Less curvature will cause a higher energy loss

58



CHAPTER 4. ULTRASONIC STANDING WAVE FIELDS

due to scattering of the ultrasonic waves, whereas a decrease of the sonotrodes’

distance will cause less energy loss. These two effects will superpose and cause the

trend displayed in Figure 4.8. This points out that ultrasonic standing wave fields

are not based on linear wave theory and, therefore, cannot entirely be explained

by linear correlations.

4.7.2. Variation of the Sonotrode’s Diameter

An extension of the sonotrodes diameter and, therefore, of the radiating surface

should generally cause an increase in the overall pressure amplitude. However, the

optimization of the sonotrodes geometry is limited due to technical feasibility since

the emitted frequency correlates with the sonotrodes mass. Thus, an increase of

the sonotrode’s surface in order to achieve a better disintegration will commonly

be associated with a lower frequency and a lower maximal oscillation amplitude

of such a sonotrode. Nevertheless, numerical simulations are performed based on

the original setup for an ultrasonic field of 5 pressure nodes (compare Section 4.6)

under variation of the sonotrodes radiating surface. Therefore, the diameter of the

sonotrodes has been extended from 35 mm to 50 mm and 60 mm keeping their

curvature and distance constant.

30 35 40 45 50 55 60 65
sonotrode’s diameter [mm]

85000

90000

95000

100000

105000

m
ax

. p
re

ss
ur

e 
am

pl
itu

de
 [P

a]

Figure 4.9.: Numerically simulated pressure amplitudes caused by different sonotrode

diameters at a sonotrode amplitude of 80 µm.
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4.7. Variation of Operational and Geometrical Parameters

As can be seen in Figure 4.9, a significant increase in the overall pressure ampli-

tude can be observed in numerical simulation of the acoustic field with increasing

sonotrode diameter. Since the acoustic field needs a longer time to reach a quasi-

stationary state in case of extended sonotrode diameters, computed pressure am-

plitudes are compared at t = 2 ms. Additionally, the maximum pressure amplitude

significantly increases at a diameter of 50 mm in comparison to the original setup,

whereas less pressure difference is gained by a further increase of the sonotrode’s

diameter to 60 mm.

In order to operate the SWA with higher frequencies of about 30 kHz, the

sonotrode’s end face as the whole apparatus scale down by about 1/3. Figure 4.10

shows the schematic plot of a 30 kHz SWA in comparison to a 20 kHz oscillation

unit as it is used during this work.

(a) 20 kHz oscillation unit

PSfrag replacements

Nils

(b) 30kHz oscillation unit

Figure 4.10.: Comparison of a 20 kHz and a 30 kHz oscillation unit used for atomization.
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It is aspired to use transducers of smaller physical dimensions for desired direct ap-

plications. Further, higher oscillation frequencies do cause higher velocities inside

the atomizer and, therefore, a better acceleration of the generated particles. This

is an important feature if the atomized polymer strand disintegrates into droplets

which do not cure fast enough. By increasing the frequency more air is ingested

into the system from the environment causing the droplets to cool down and cure

faster, respectively. Additionally, the beat of the ultrasonic field shall be vanished

in further applications to avoid impacts on the particle size distribution caused by

that effect. This is achieved by the construction of new electronic amplifiers, which

are able to control the sonotrode’s frequency (Hennig & Hemsel, 2004).

In order to compare results achieved by the 30 kHz transducer with the ones

from the 20 kHz transducer, the mathematical product of the sonotrode’s amplitude

and its frequency is kept constant. Therefore, the SWA made up by two 30 kHz

oscillation units is operated with a sonotrode amplitude of 53 µm unlike 80 µm

for the 20 kHz transducer. The resonant distance Xi is found to be 32.5 mm by

numerical simulation of the ultrasonic field. The resulting velocity and pressure

distributions are shown in Figure 4.11.
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(b) pressure distribution

Figure 4.11.: Numerically computed velocity and pressure distributions at equidistant

time-steps for an SWA generated by 30 kHz oscillation units.

As can be seen in Figure 4.11, the pressure field is equally distributed between
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4.7. Variation of Operational and Geometrical Parameters

the inner pressure nodes. The generated pressure amplitude of those inner nodes

is about 12 % higher than in the original setup (cf. Figure 4.3(b)) and, addition-

ally, the velocity distribution inside the central velocity antinode outreaches the

one from the 5-node pressure field shown in Figure 4.3(a) by about 20 %. The

impact of these sound fields generated by a 30 kHz twin-oscillation unit without a

frequency shift on the disintegration process need to be discussed in future projects.

4.7.3. Variation of the Gas Temperature

The operation of the transducers lead to heating of the sonotrodes and their sur-

rounding as illustrated in Figure 4.2 by interferometric pictures. Therefore, the air

between the two sonotrodes in an SWA will heat up as well causing a shift in e.g.,

viscosity and sound velocity. Further, large sound intensities appearing in an SWA

itself lead to high temperature fluctuations inside the gas phase. Therefore, oscil-

lating pressure and velocity distributions of the ultrasonic field are computed by

solving the Navier-Stokes equations for compressible viscous flows (eq. (2.5),(2.7))

and the energy equation (3.1) since heat flux needs to be taken into account.

This heating of the air caused by operation of the plant is modeled during

numerical simulation of the ultrasonic field by varying affected parameters. The

specific variables are the particular temperature T, the viscosity µ, the thermal

conductivity k, and the heat capacity cp of the gas phase at a certain stage. These

data are extracted from the ”Enzyclopedie de gas” (Table 4.1) and implemented

into the command file of the CFX4 -solver.

The coefficient for temperature and thermal conductivity will directly be

inserted into the energy equation (3.1), whereas the specific heat is affecting the

total enthalpy h of the system. The total enthalpy is calculated inside the CFX4 -

solver by

h = hst +
1

2
u2 ,

with hst as the static (thermodynamic) enthalpy. The transport equation has to

be closed by supplying the constitutive equation, that is, the relationship between

static enthalpy, temperature, and pressure, h = h(t, p). The fluid is assumed
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Table 4.1.: Parameters used to model temperature variations.

Temperature (T) viscosity (µ) conductivity (k) specific heat (cp)

[K] [Pa s · 10−6] [(J/m s K) · 10−6] [kJ/kg K]

270 16.96 23.9397 1.005477

320 19.45 27.8536 1.006733

350 20.82 30.0722 1.008407

400 23.01 33.6345 1.011338

500 27.01 40.3782 1.013849

to be thermally perfect, hence, static enthalpy is a function of temperature only.

Therefore, the constitutive equation is given uniquely by specifying the specific

heat at constant pressure, as a function of temperature:

cp(T ) =

(
∂hst
∂t

)

p

,

with the reference temperature Tref , where the static enthalpy is defined as zero.

The enthalpy reference temperature Tref is given the default value of 288 K in

CFX4. The static enthalpy is then obtained by integrating

hst =

∫ T

0

cp(T
′) dT ′ −

∫ Tref

0

cp(T
′) dT ′ .

Inside CFX4, the constitutive equation is assumed to have the following analytic

form:

hst = cp(T )T − cp(Tref )Tref ,

where cp is an average specific heat, obtained by integrating

cp(T ) =
1

T

∫ T

0

cp(T
′) dT ′ .

The specific heat is assumed to be a constant, independent of temperature, so that

cp = cp. This value can then be incorporated into the command file of CFX4. Fi-

nally, the gas viscosity is incorporated into the momentum balance (2.7) by means

of the viscosity stress tensor (2.8).
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4.8. Acoustic Sound Pressure Level

The resulting maximal pressure amplitudes arising at each temperature for a

3-node pressure field are shown in Figure 4.12.
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Figure 4.12.: Calculated maximal pressure amplitudes at different temperatures at a

sonotrode amplitude of 80 µm.

As can be seen, the overall pressure amplitude decreases with increasing sys-

tem temperature. This effect is mainly caused by the higher viscosity of a heated

gas abating the maximal pressure amplitude. Instead, the resonant distance of the

system does not change by variation of the temperature and its affected coefficients.

In reality, even the transducer frequency shifts to higher frequencies with heating

of the system. Therefore, the resonant distance between the sonotrodes need to

be adjusted during operation of the pilot plant. Since this effect has not quantita-

tively been investigated in literature, it could not be accounted during numerical

simulation of the ultrasonic field under variation of the temperature.

4.8. Acoustic Sound Pressure Level

For a qualitative impression of the obtained pressure fields, numerical simulations

in CFX are compared to interferometric pictures as described in Section 4.5.2.

Figure 4.13 shows several interferometric photographs of the acoustic field in an

SWA at different sonotrode distances in comparison to pressure fields calculated
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CHAPTER 4. ULTRASONIC STANDING WAVE FIELDS

by CFX.

Figure 4.13.: Instantaneous pictures of pressure fields obtained in numerical simulation

in comparison to interferometric shoots.

As can be seen, there is a good qualitative agreement between numerical simula-

tion and experiment for identical operational conditions. Further, to quantitatively

validate the derived pressure fields, numerical simulation of the pressure field need

to be compared to specific data of experimental measurements of the acoustic field.

For this purpose, the pressure distribution was determined by microphones taking

measurements along the symmetry axis between the sonotrodes (Mattern, 1998).

These microphones are made of piezo ceramics having a diameter of 1.5 mm. Hence,

the measurement itself denotes an essential disturbance of the sound field. There-

fore, Reipschläger (2002) found huge discrepancies between numerically determined

sound pressure levels in comparison to Mattern’s experimental data. Comparing

the maximum sound pressure inside the pressure nodes, Reipschläger (2002) found

pressure amplitudes derived by numerical simulations up to 36 % higher than in

experiment.

Instead, Andersen (1996) and Meng (1997) used a conductor to derive the

pressure level inside the sound field. In general, the technique is called ther-

moanemometry which is based on Wheatston’s bridge circuit. In case of a CTA

(Constant Temperature Anemometer), the temperature of a metal wire inside an

SWA is kept constant. Due to the ambient gas flow of the ultrasonic field alter-
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4.8. Acoustic Sound Pressure Level

ing the temperature, electricity needs to be supplied to compensate temperature

fluctuations. Therefore, a correlated electric current is measured determining the

sound pressure level. This conductor is about 5 µm in diameter and hardly effects

the sound field. In fact, Andersen (1996) found the deviation of a single set of

data compared to the average value to be less then 5 %. Based on multiple exper-

iments, Andersen (1996) finally developed a mathematical expression describing

the effective sound pressure (prms) as the root mean square of the intrinsic pres-

sure. For two active, concave sonotrodes with a radius of curvature of 32.5 mm, a

sonotrode’s diameter of 35 mm, and frequencies of 20 kHz Andersen (1996) derived

the following equation:

prms = 0.056 · p0.990 · A0.71 ·N−0.64
k , (4.14)

with the static ambient pressure p0 in ’bar’ and the sonotrode amplitude A in µm.

According to Stamm & Purzel (1984), a correlation between an arbitrary

pressure signal prms and the maximum sound pressure pmax of a sinusoidal function

is found:

prms =

√

1

T

∫ T

0

p2(t) dt =
1√
2
pmax (4.15)

Hence, combining the correlations of Stamm & Purzel (1984) and of Andersen

(1996) allows a prediction of the expected maximal pressure amplitude inside a

pressure node under given operational conditions. According to eq. (4.14) and

eq.̃(4.15), the maximal pressure amplitude can be calculated as 88779 Pa for a

sound field of 3 pressure nodes and sonotrode amplitudes of 80 µm at standard

conditions. Numerical simulations of the pressure field using CFX for sonotrodes

with Rc = 35 mm and otherwise identical conditions results in a maximal pressure

amplitude of 88702 Pa. Therefore, the theoretical prediction matches the numeri-

cally calculated pressure level very well.
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5. Droplet Levitation

First investigations concerning levitator experiments were done by the European

and American Space Agencies, ESA and NASA, in the early 1970th. For the

containerless processing of samples under microgravity conditions, they balanced

an inserted sample in an ultrasonic standing wave field against gravity (Lierke,

1996). Later on Hohmann et al. (1988) and Bending (1988) found similarities

between the atomization of a levitated single liquid droplet inside an ultrasonic field

and the continuous disintegration of a liquid strand. Therefore, results achieved by

the investigation of single liquid droplets in an ultrasonic standing wave levitator

(SWL) should allow for conclusions of the continuous disintegration process of

polymer melts. Hence, because of the enormous complexity of the continuous

disintegration process, atomization and deformation of single liquid droplets are

investigated in the somewhat simpler system of an SWL. This approach allows for

comparison between experimental data of the deformation process and numerical

results.

5.1. Previous Investigations

The behavior of droplets in an ultrasonic sound field has been a field of interest for

many years. Therefore, numerous experimental and theoretical investigations have

been performed, aiming to understand phenomena and mechanisms occurring in

processes of droplet deformation and breakup. First calculations on linear droplet

deformations were done by Rayleigh (1879a,b) and Lamb (1932) for the inviscid

and weakly viscid cases. More recently, nonlinear oscillation of non-viscous and vis-

cous drops was analyzed by, e.g., Tsamopoulus & Brown (1983), Basaran (1992),

Yarin et al. (1998) and Murray & Heister (1999). Basaran (1992) used the finite

element technique to address nonlinear oscillation of viscous droplets. Based on

the computation of the acoustic radiation pressure, Yarin et al. (1998) calculated

the droplet’s shape by means of the boundary element method. Finally, Murray
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5.2. Mechanism of the Atomization Process

& Heister (1999) simulated the unsteady, nonlinear response of a liquid droplet

to an imposed acoustic perturbation using the boundary element method. Lierke

(1996) mainly focused on experimental aspects of droplet levitation. Calculations

based on the linear wave theory were done by Lee et al. (1991, 1994), Trinh &

Wang (1982) and Anilkumar et al. (1993). They recorded droplet deformation

with high-speed cameras until breakup and compared the resulting experimental

data to model calculation.

5.2. Mechanism of the Atomization Process

The dynamics of droplet flattening and breakup have been discussed in several

papers, e.g. Danilov & Mironov (1992); Yarin et al. (1999); Lee et al. (1991);

Anilkumar et al. (1993); Becker et al. (1991, 1994). This was done by theoretical

studies as well as by experimental investigations. In general, three stages are

described in literature including the flattening of the droplet, the growth of small-

scale disturbances at its rim, and the parametric growth of capillary waves on its

surface. In addition, during droplet flattening, two limiting scenarios are identified

by Lee et al. (1991) and Anilkumar et al. (1993) while increasing the sound pressure

level:

i) acoustically big drops (kRs & 0.5) sustain equilibrium beyond a point, by low-

ering the sound pressure level through frequency shift,

ii) acoustically small drops (kRs . 0.3) cannot sustain equilibrium beyond a point,

and expand horizontally suddenly to disintegrate,

where k = 2πf0/c0 (c0: sound speed in air) is the acoustic wave number and Rs

denotes the spherical radius of the droplet. Instead, for drops of intermediate size,

sudden horizontal expansion can be observed but return to equilibrium. Regarding

the size of a droplet with respect to kRs, different geometries will occur during

flattening to final breakup.

Large droplets of kRs & 0.8 will get unstable during levitation and finally

collapse caused by ”buckling” instability. First, the flattened drop will change

its shape from convex to concave. A dimple will be formed in the middle which
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eventually thins out into a membrane. While the area of the membrane will grow in-

creasing the sound pressure level, the liquid is squeezed to the edges giving a donut-

shaped periphery. Ripples may appear on the central membrane. This membrane

will then suddenly bulge upward while being flattened. Since the thicker periphery

is picking up speed some time later, it is contracted inwards to turn the flattened

drop into a closed shell. The closing marks a violent collision forming liquid jets

which move vertically in both directions. By the jet piercing the outer shell the

complex will smash to pieces. This process is also called ”buckling” instability

(Lee et al., 1991). Smaller droplets may stay stable while ripples appear and emit

satellite drops in both directions perpendicular to the membrane. Therefore, they

return to equilibrium in shifting their frequencies.

The investigation of the flattening and atomization of small drops (kRs . 0.3)

is most important throughout this study, since droplets generated in an SWA dur-

ing continuous strand disintegration are of the size of a few µm. Therefore, the

following discussion and investigation of breakup phenomena will focus on this type

of droplets.

5.3. Deformation and Breakup Regimes

The deformation and breakup of droplets by aerodynamic forces can be charac-

terized by the Weber and the Ohnesorg number. Here, the dimensionless Weber

number is defined as

We =
ρgu

2
reld

σ
, (5.1)

where d denotes the spherical drop diameter, urel the amplitude of the relative

velocity, and the index g gas phase. The Weber number describes the ratio of

aerodynamic (drag) to surface tension forces. If a droplet is exposed to a gas flow

of increasing velocity, deformation starts at Weber numbers of unity according to

Hsiang & Faeth (1992). A further increase in the sound pressure level and aero-

dynamic forces, respectively, will lead to droplet breakup. With respect to the

intensity of the aerodynamic forces, three different disintegration mechanisms are

distinguished: The aerodynamic forces act against the viscose forces inside the

droplet and the surface tension forces. With increasing relative velocity between
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5.3. Deformation and Breakup Regimes

droplet and sound field, the aerodynamic forces affecting the droplet increase as

well until breakup is initiated. The three distinct mechanisms are called bag, mul-

timode, and shear-breakup.

Since Hinze (1955) found that progressive larger disturbances (i.e. larger We)

were required for the onset of breakup as Oh increases, low Oh numbers are desired.

This is because Oh represents the ratio of liquid viscous to surface tension forces:

Oh =
µd√
σρdd

,

where µd denotes the viscosity of the disperse, liquid phase and the index d the

disperse phase itself. Therefore, viscous forces in the liquid tend to inhibit drop

deformation at high Oh. For a system of small water droplets levitated in air

Oh becomes reasonable small, e.g., for a water drop of 45 µL Oh calculates as

Oh = 1.8 · 10−3. Therefore, viscous forces can be neglected during levitation and

atomization of water drops. Instead, in case of the disintegration of polymers

having a viscosity of 0.1 Pa s < µ < 2 Pa s much higher Oh numbers of Oh > 3

result for droplets in the desired range of 50 µm.

(a)

bag breakup

(b)

shear breakup

Figure 5.1.: Breakup mechanism for bag and shear breakup.

The critical Weber number Wecr defines the onset of bag breakup. This stage

is generally found to be at We ≈ 10. The bag breakup regime is characterized

by the formation of droplets which separate from a bag-like fluid film. This film
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expands from the tutorial rim (cf. Figure 5.1(a)). For higher Weber numbers of

We ≈ 20 multimode breakup occurs. This stage is characterized by a fluid column

that remains in the center of an umbrella-like film structure. A further increase

in the relative gas velocity leads to the transitional breakup regime which passes

into the shear breakup regime. During the shear breakup mechanism ligaments

are stripped of the rim of a disc shaped droplet. This mechanism is illustrated by

Figure 5.1(b) for We ≈ 70.

In common levitation experiments, the range of large aspect ratios close to

atomization tries to be avoided. Therefore, atomization in an SWL occurring at

law We numbers is most commonly subject to the bag breakup mode. Instead,

during continuous strand disintegration large We numbers are yielded in order to

let the atomization process occur. Additionally, secondary breakup of fragments

stripping of the lamella will be supported. Therefore, the shear breakup stage is

commonly found during disintegration in an SWA. As Lierke (1998) pointed out,

atomization of levitated droplets will be initiated if the Weber number exceeds a

critical range of about Wecr = 10. Then, the drop will disintegrate by Bernoulli

forces similar to gas jet atomizers. Even Hohmann et al. (1988) and Bending (1988)

found similarities between the atomization of a levitated single liquid droplet inside

an ultrasonic field and the continuous disintegration of a liquid strand. They point

out, that the mechanism of disintegration is mainly dominated by the acoustic

sound pressure and the Bernoulli stress.
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Figure 5.2.: Bernoulli effect on a levitated droplet.
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5.3.1. Bernoulli Pressure - Qualitative Characterization

In the context of droplets flattening mechanism, Bernoulli pressure is often cited

as one main reason for deformation: since the droplet acts as an obstacle forcing

the gas flow to go around it, higher velocities at the droplet’s equator lead to lower

pressure here which pulls at the droplet (cf. Figure 5.2). This line of arguments

is not strictly valid due to several reasons. First of all, Bernoulli’s law in its most

common formulation

1

2
ρ ||u||2

︸ ︷︷ ︸

dynamic pressure

+ p
︸︷︷︸

static pressure

+ ρgz
︸︷︷︸

hydrostatic pressure

= const (5.2)

is only valid for stationary potential flows, also neglecting dissipation of mechanical

energy as well as density variations. Here gz denotes the body force due to gravity

which acts perpendicularly to the symmetry axis in our situation.

In case of the ultrasonic sound field under consideration, time-averaged vari-

ations in density are negligibly small over an acoustic cycle according to numerical

simulation. Despite of this, especially the strong time-dependence of the oscillat-

ing velocity field rules out the applicability of (5.2). Instead, the time-dependent

version

∂φ

∂t
+

1

2
||u||2 + p

ρ
+ gz = const (5.3)

of eq. (5.2) has to be used. Here, the constant might in principle depend on time,

but the fact that all flow variables are almost constant at a certain radial distance

leads to the same constant for all t.

Now, Lierke (1998) argues that the time-averaged pressure and velocity fields

act according to Bernoulli’s prediction since the drop does not react on every

oscillation of the ultrasonic field. Thus, the uniform velocity between droplet and

gas flow needs to be replaced by the effective value of the periodically varying sound

particle velocity in axial direction. In fact, in our numerical simulations we observe,

firstly, that the rotation of the instantaneous velocity fields reaches only 4% of the

strength (measured in Euclidean norm) of the corresponding gradient such that the

flow is close to potential flow and, secondly, that maximum gas velocities occur at

the droplet’s equator accompanied by minimal pressure there (cf. Figure 5.3), i.e.
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Figure 5.3.: Contour plot of averaged pressure distributions over an acoustic cycle for

an SWL disturbed by a levitated 45 µL drop.
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eq. (5.3) seems to apply for the time-averaged velocity field. A possible explanation

relies indeed on the different time-scales involved, since integration of eq. (5.2) on

[0, T ] leads to

1

2
||u||2 + p

ρ
+ gz =

φ(t+ T )− φ(t)
T

+ const ,

a relation that closely resembles eq. (5.2) when T is large compared to the fluctu-

ations of the velocity potential φ. The latter is reasonable if T is large compared

to the ultrasonic time-scale.

These considerations are supported by our numerical results as illustrated by

Figure 5.3. The contour plots show typical distributions of dynamic and static

pressure, time-averaged over one acoustic cycle of 50 µs. In hydrodynamics the

sum of dynamic and static pressure is called the total pressure as illustrated in

Figure 5.3(c). Overall, pressure maxima correspond to white regions, whereas the

minima are shown in black. Evidently, the static pressure is larger at the poles, and

correspondingly, the velocities are larger at the equator of the drop. What results

is an impact pressure (Bernoulli pressure) at the poles and a depression (Bernoulli

suction pressure) at the equator. These cause flattening of the drop in the direc-

tion of the alternating gas flow. This effect is in turn intensified by the flattening,

since the latter leads to a larger pressure difference between equator and poles.

As the drop deforms the surface curvature at the equator increases continuously.

This leads to a corresponding increase in surface tension forces that act against

the deformation and, hence, Bernoulli pressure. Therefore, Bernoulli pressure and

restoring forces have an enormous influence on droplet deformation and breakup.

Whether the drop achieves an equilibrium state in which the Bernoulli pressure

is balanced by the surface tension forces depends on the strength of the pressure

forces.

Unlike the common form of Bernoulli’s equation (5.2) the resulting total pres-

sure may still depend on the position. In fact, as can be seen in Figure 5.3(c), the

total pressure has an almost linear axial profile in the region around the droplet.

Despite of this, the pressure minima and velocity maxima at the droplets equator

balance each other locally. This behavior once more emphasizes the narrowness of

the influence of droplets on the ultrasonic field.
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5.3.2. Bernoulli Pressure - Quantitative Characterization

Beside such qualitative studies as performed in Section 5.3.1, numerical simulations

of the correlated two-phase flow allow for quantitative investigations of the effect

of Bernoulli pressure on droplet behavior. For example, for a levitator oscillating

at an amplitude of 5.34 µm the maximum velocity of the gas in axial direction

is computed to be umax= 3.32 m/s (We = 0.77) for an unperturbed sound field,

while it increases to a maximum of umax= 17.4 m/s (We = 21.25) at the rim of a

flattened, ellipsoidal 45 µL droplet (cf. Figure 5.4).
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Figure 5.4.: Amplitude versus calculated axial velocity.

In fact, the Bernoulli pressure can lead to the onset of disintegration. For

the investigated sonotrodes droplet breakup is observed experimentally at ampli-

tudes above 5.34 µm, while numerical calculations based on the corresponding but

unperturbed sound field predict a flattened drop. A threshold for breakup can be

defined by means of a critical Weber number (Wecr) describing the ratio of aero-

dynamic to surface forces. According to Schmehl et al. (2000), the transition from

deformation to breakup is calculated to occur at Wecr = 12 in case of a 45 µL water

droplet with Oh = 1.8 · 10−3 (cf. Figure 5.5), corresponding to a relative velocity

of the gas phase of urel = 13.1 m/s, respectively. Atomization occurs locally if
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5.3. Deformation and Breakup Regimes

the relative velocity at the droplet’s surface exceeds this critical value. In fact,

although the maximum velocity of the gas in axial direction is computed to be

umax = 17.4 m/s (We = 21.25) at the rim of a flattened, ellipsoidal 45 µL droplet,

the onset of breakup is already found for values of urel,cr = 14.9 m/s (Wecr = 15.66).

This value characterizing the transition from deformation to breakup mirrors the

calculated Wecr of Schmehl et al. (2000) very well. Consequently, back-effects of

droplets onto the sound field have to be taken into account in numerical simulations

in order to quantitatively reproduce the deformation and disintegration of droplets.

Slightly higher sonotrode amplitudes of 6.47 µm already cause a relative ve-

locity of the gas phase of urel = 33.1 m/s (We = 76.8) in numerical simulation

of the disintegration process leading to a spontaneous atomization of an inserted

droplet. These droplets are exposed to the shear breakup mode. Therefore, the

transition regime from bag breakup to shear breakup is densely close to each other.

Consequently, disintegration mechanisms observed in experiments (Section 5.4) as

well as in numerical simulation (Section 5.5) are of the shear breakup type.PSfrag replacements
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Figure 5.5.: Breakup regimes (based on Schmehl et al. (2000)).
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5.4. Experimental Investigations of the Deformation

Process

The experiments are conducted in a single-axis standing wave levitator (SWL),

which allows to study the behavior of single liquid droplets in a sound field under

simplified conditions (cf. Figure 5.4).

PSfrag replacements glass plate

spotlight

camera

sonotrode

Figure 5.6.: Experimental setup for droplet levitation

This device is made up of an oscillator-reflector configuration at resonance

conditions. A glass plate is chosen as a reflector whose distance to the oscillator can

be varied by a micro-screw. Therefore, a distance of 23.3 mm resulting in a 3-node

field is chosen for levitation (cf.F̃igure 4.4). Using this oscillation unit, droplets

positioned in the central pressure node can be levitated against gravity. Increasing

the sound amplitude leads to the disintegration of droplets, as shown in Figure 5.7

for an acoustically small one (kRs = 0.3). Such a water drop is levitated at a fixed

frequency of f0 = 19984 kHz, and disintegrates due to a rapid increase of the

sound intensity within a few milliseconds. This highly dynamic process is recorded

with a high-speed video camera at 1000 frames/sec, showing a sequence of events

from flattening via buckling to final breakup of the water drop. If the acoustic
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amplitude increases rapidly, the drop is flattened into a thin lamella by the acoustic

pressure acting on its surface. This lamella then becomes unstable at its rim,

where cylindrical-like ligaments will be separated that immediately disintegrate into

smaller droplets. These droplets will then move radially outwards from the center

of the lamella. This process is similar to the continuous disintegration of liquid

strands by SWA, for which a quasi-stationary lamella develops at the outlet of the

nozzle. This lamella is oriented parallel to the sonotrodes’ end faces, continuously

separating fragments at its rim, which disintegrate into smaller particles.

Figure 5.7.: Sequence of deformations of a water drop with kRs = 0.3.

5.5. Numerical Investigations of the Deformation

Process

In order to compare experimental data of the deformation process, recorded by

means of a high-speed camera, and numerical results, simulations of levitated

droplets in an SWL are conducted using identical conditions as in experiments.

As mentioned in Section 3.2, time-averaged pressure and velocity fields of an un-

perturbed sound field are computed with CFX. To simulate droplet dynamics these

fields are read into FS3D to account for source terms at the fluid interface. The

calculations are done assuming two symmetry planes (cf. Section 3.4.2). The nu-

merically obtained evolution of the disintegration of an acoustically small water
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drop is displayed in Figure 5.8.

Figure 5.8.: Sequence of simulated deformations of a water drop with kRs = 0.3mm.

The computational domain covers a cube of 0.125 cm3 having 128 grid cells in

each coordinate direction. The drop is exposed to a rapid increase of the acoustic

amplitude by 50 kPa in order to mirror the droplet breakup conditions used to gen-

erate the pictures of Figure 5.7. Evidently, pictures obtained from the numerical

simulation agree very well with the ones obtained during experimental disintegra-

tion of an acoustically small water droplet. The pressure drop from poles to the

equator of the droplet causes flattening. Since the drop is exposed to gravity it

is slightly buckled, developing an arched shape in its cross section, having a thin

middle membrane and a surrounding large rim. If the drop is suddenly exposed

to a high speed blast of air, it is deformed into a plano-convex lenticular body

due to the acceleration of the drop (Anilkumar et al., 1993) as is typical for the

shear-breakup mode. With increasing flow velocity, the surface becomes more con-

cave. In this case, the convex face of the body is facing the sonotrode. Droplets

are then generated by stripping from the periphery of the droplet. Currently, it

is believed by Anilkumar et al. (1993) that breakup is caused by the edges of the

saucer-shaped body being drawn into a thin sheet by the strong viscous stress due

to the high speed of the air flow. Equilibrium is lost when the viscous shear stress

overcomes surface tension locally, whereby the edge is drawn out into a sheet. The

generated sheet will then segregate into fine-scale fragments, which can break down

further. Drops will exit at well-defined frequencies due to the rapid growth of cap-

illary surface waves. This is the main mechanism responsible for disintegration

(Anilkumar et al., 1993). Instead, Danilov and Mironov (1992) found small-scale

interfacial instabilities caused by the gas flow around the drop to be more impor-
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tant for atomization than other acoustic processes. Small droplets are blown off the

edge of the drop as a result of this instability. Yarin et al. (1999) emphasized that

acoustic levitation causes acoustic streaming near the drop surface, hence triggers

interfacial instabilities. When the droplet becomes considerably flat, oscillation of

the droplet establishes a mechanism for the parametric excitation and growth of

capillary waves on the droplet’s surface. These waves increase in amplitude until

the drop collapses. Capillary waves on the droplet’s surface can also be repro-

duced in numerical simulations of the disintegration process. Their impact on the

atomization process in numerical computations can be strengthened by slightly

perturbing the acoustic forces with white noise. This final collapse leads to rather

large fragments, the size of which will decrease with increasing sound frequency.

5.6. Size Determination of the Deformation Complex

To quantitatively compare and furthermore validate the developed approach, the

flattening of drops in an ultrasonic field has been studied and resulting drop diame-

ters have been determined. For this purpose, a sequence of experiments producing

deformed droplets under various sound field amplitudes (A) has been performed.

Measured diameters are compared with data obtained by numerical simulations

under identical conditions.

The response of a drop to changes in the sound pressure level can be elegantly

represented in terms of the acoustic Bond number

Ba =
A2Rs

σρc2
,

as the ratio of hydrostatic and capillary pressure. As the sound field amplitude,

maximal pressure in the pressure antinode are taken for an undisturbed ultrasonic

field. Figure 5.9 displays the relationship between the acoustic Bond number and

the non-dimensional equatorial radius R*=R/Rs (R: equatorial Radius) of a 45 µL

droplet. As can been seen, a large deviation is found between experimental and

numerical results if back-effects of the droplet on the ultrasonic field are neglected.

This discrepancy is especially significant for experiments performed with an SWL

because the generated pressure amplitudes are relatively small and, therefore, the

drop causes a rather strong perturbation of the ultrasonic field. If the sound field
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Figure 5.9.: Normalized radius R∗ versus acoustic Bond number.

is perturbed by a spherical water drop, pressure and velocity fields result as shown

above in Figure 4.5. These simulations of a two-phase flow with compressible gas

phase are performed with Fluent using the VOF-method. After time-averaging and

interpolation, these data are transferred into FS3D for calculation of the deforma-

tion process. Resulting droplet diameters mirror experimental results far better.

Results are even almost identical, if the sound field is calculated for an appropriate

ellipsoidal droplet as an obstacle. Hence, Bernoulli stress and local velocity peaks

near the liquid surface are the main quantities determining droplet deformation and

breakup. In particular, pressure and velocity increments caused by the Bernoulli

effect can exceed acoustic effects of the applied sound field by several orders of

magnitude.
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6. Strand Breakup

The production of fine droplets from liquids in a surrounding gas phase is called

disintegration. Thereby, the density ρg of the surrounding gas phase is explic-

itly smaller than the one of the droplets forming liquid. This is the main argument

found in literature to explain the disintegration process as an aerodynamic problem

(Andersen, 1996; Reitz & Bracco, 1982). Hence, the mechanism of liquid disinte-

gration especially at high fluid velocities significantly differs from the dispersion

mechanism at low density differences.

Table 6.1.: Width of the particle size distribution for different disintegration mecha-

nisms.

Mechanism dv.0.5/d32 dmax/dv.0.5

dripping 1 1.1

natural laminar strand disintegration 1.05-1.1 1.4

lamella nozzle 1.1-1.3 1.5-2.5

turbulent nozzle 1.3-1.5 2.5-3.5

pneumatic atomizer 1.1-1.5 2.5-3.5

rotational atomizer

ligament state 1.05-1.1 1.4-2.0

lamella state 1.1-1.4 2.5-3.5

capillary wave atomizer 1.05-1.4 1.5-2.5

The production of such fine droplets is mainly done by the disintegration of lamel-

lae. In this case three different mechanisms are distinguished (Walzel, 1990):

1. boundary contraction

2. aerodynamic wave creation

3. turbulent disintegration
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These three disintegration mechanisms are mainly superposed and, therefore,

cannot be treated separately. In contrast to liquid filaments or strands the lamella

is stable. Each deformation of a lamella will then cause an increase in its surface

and, therefore, result in reversed forces (Bond, 1935; Tayler, 1959; Squire, 1953).

To characterize the created droplets the Sauter diameter d32 is generally used as

the mean particle diameter. It has the same surface/volume ratio as the overall

particle size distribution (PSD). Typical values for the width of particle size dis-

tributions for different types of breakup mechanisms are given in Table 6.1.

During the dripping state surface forces are dominant leading to particles

of almost the same size (cf. Figure 6.1). With increasing velocity of the liquid

strand or the surrounding gas phase friction forces get more important and the

particle size distribution gets more diffuse. Aiming to keep the PSD tight and to

inhibit oversized grain is the overall goal of the following investigations during the

disintegration process in an SWA.

6.1. Previous Investigations

The first patent using ultrasonic standing waves for the disintegration of fluids is

dated back to 1976 (Lierke & Ruckdeschel, 1976). This specification describes a

method for the disintegration of fluids and powders based on ultrasound waves

producing droplets between an ultrasonic piston and a reflector. A later patent

from Lierke et al. (1980) states fluids, molten metals, suspensions, emulsions, and

agglomerated powders as a field of application.

Focussing on molten metals Hohmann et al. (1988) and Bending (1988) pub-

lished papers describing the production of metal powders by an SWA. To overcome

the high surface tension of these molten metals, the surrounding pressure was in-

creased to 5.5 bar using a pressure chamber. Thereby, the Bernoulli force is said

to have been increased, which was accounted to be the main force for the disinte-

gration mechanism. They used tin for disintegration and obtained mass medians

between 60 and 100 µm for the atomized metal in dependence on different sonotrode

amplitudes.

Schreckenberg (1991) and Bauckhage (1992) predicted a semi-empirical in-
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terrelationship between the mass median (d50,3̇ ) of a particle size distribution and

several process parameters:

d50,3̇ = ασ

√
c0
pg I

We1/7 , (6.1)

with the surface tension σ, pg denoting the gas pressure, and I the capacity based

on the sonotrode’s cross-sectional area. The factor α empirically determined influ-

encing parameters like the number of pressure nodes or the geometry of the nozzle,

which had not been explicitly characterized. Therefore, according to Bauckhage

(1992) the particle size distribution rarely depends on the viscosity of the molten

metal itself. Further investigation of basic procedures and aspects of material sci-

ence related to the disintegration of metals in an SWA was done by Bauckhage &

Schreckenberg (1994); Bauckhage et al. (1995, 1996); Andersen et al. (1995) and

Andersen (1996).

Beside the investigation of metals in an SWA, Reich (1995) focused on molten

glass and Hansmann (1996) disintegrated highly viscose fluids. For the prediction

of particle size distribution Hansmann (1996) placed a static, circular disk into the

sound field and observed the sound forces acting on this disk. The approach was

used as a starting point for the qualitative description of the disintegration process.

Since the beginning of the 1990th the institute of ”Chemie und Technolo-

gie der Beschichtungsstoffe (CTB)” from the University of Paderborn used the

SWA-technique on powder coatings. It was found that powders generated in an

SWA exceed other coatings in terms of an improvement in their optical perfor-

mance (Holmann, 1994; Goldschmidt et al., 1998; Vestweber, 1999). The influence

of different material and process parameters regarding the particle size distribution

was investigated by Mattern (1998). Therefore, he measured the sound field us-

ing a sensitive sonsor under variation of the sonotrodes’ setup, geometry, distance,

and angle. Vestweber (1999) investigated the impact of the molecular structure

of the employed polymers on the disintegration process. As could be shown, non-

Newtonian and visco-elastic behavior of the molten polymer influenced the disin-

tegration process. Therefore, retardation and relaxation of polymers needed to be

adjusted with their residence time inside the pressure node of the ultrasonic field

in order to achieve small particles. To support the application of polymers on a
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surface, the SWA was extended to electrostatically charge the plant. Further, hot

air was used to direct the liquid flow (Goldschmidt et al., 1993; Vestweber, 2004).

Although the ultrasonic field has been investigated by sensors as well as the

influence of material and process parameters on the generated particle size dis-

tribution, little is known about the disintegration mechanism itself. Therefore, an

optimization of the process based on an empirical approach is difficult. Thus, Reip-

schläger (2002) visualized the disintegration of polymer melts in an SWA by means

of numerical simulation of the process. He qualitatively found a good agreement

between experiment and simulation, but was not able to quantitatively detect the

numerically calculated particles in terms of particle size distribution. Since back

effects of the liquid on the ultrasonic field have not been accounted, little is said

about the disintegration mechanism itself.

6.2. Mechanism of the Disintegration Process

In case of the SWA a lamella is formed between the two sonotrode plates. Therefore,

this lamella is antiparallel to the flow direction of the gas phase decreasing with

increasing nozzle distance. The product of lamella thickness δ and distance Xl

from the nozzle outlet is constant after a certain distance behind the nozzle. It is a

parameter for the thickness of the lamella: K = δXl (Dombrowsi et al., 1960; Fraser

et al., 1962). If K is related to the cross-sectional area of the outlet, the lamella

number results: χ = δXl / A. In case of a spherical nozzles χ = 4δXl/πdn
2. For

experimental as well as for numerical investigations of the disintegration mechanism

a nozzle of dn = 1.5 mm is used. Finally, employing a mass flow of 100 g/min and

a sonotrode amplitude of 120 µm results in lamellae as shown in Figure 6.4.

Figure 6.4 shows screen shots of simulations of a continuously disintegrating

strand of alkydal solution having a viscosity of 10 mPas and 114 mPas. The pic-

tures are focussing on the lamella to emphasize on the procedures around the rim.

As can be seen in numerical simulations as well as in experiments, the size of the

lamella increases with increasing viscosity. Further, surface waves are observed on

the lamellaes’ surfaces whose wave lengths increase with increasing distance to the

outlet. In case of a viscosity of 114 mPas, the parameter K is calculated as 0.059 cm2

with a lamella thickness of 220 µm at the outer rim having an axial distance of
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(a) µ = 10 mPas (b) µ = 114 mPas

Figure 6.1.: Numerically generated lamellae at equidistant time-steps in an SWA.

2.7 cm to the outlet. Therefore, χ calculates as 0.034 and χ· We = 113 regarding

eq. (5.1) to calculate We for amplitudes of the axial gas velocity of 205.5 m/s using

the nozzle diameter as the characteristic length.

For values of χWe < 220, the lamella is bordered by a bulge at its outer

part disintegration into relatively big droplets. For χWe > 220, the lamella will

start to oscillate because of the gas forces acting on the lamella’s surface. The

amplitudes of oscillation rapidly increase with increasing distance to the nozzle

and initiate the disintegration of the lamella. This case is called the aerodynamic

corrugation. The fragments leaving the lamella form liquid ligaments, which will

then break down further by e.g., Rayleigh breakup (Walzel, 1990). Walzel (1990)

based his investigations on the breakup of lamellae generated by e.g., hollow cone,

deflector, or flat spray nozzles. Instead, in numerical simulation of the continuous

disintegration process both mechanisms can be observed: A bulge is formed at the

outer rim of the lamella separating ligaments which break down further. This is

because not solely aerodynamic forces are responsible for strand disintegration in

an SWA. Whereas in common pneumatic atomizers particles of 50 µm are formed

not until gas velocities ug of 300 m/s are reached, an SWA already generates such
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particles at, e.g., 200 m/s in case of sonotrodes oscillating at 120 µm. Concluding,

the disintegration mechanism of a lamella in an ultrasonic field is not entirely con-

gruent to pneumatic atomizers.

According to Lierke (1995) the disintegration mechanism in an SWA corre-

lates to the aerodynamic atomization of free falling drops. Walzel (1990) compares

the disintegration mechanism to a two-phase injector. Instead of the uniform rel-

ative velocity u0 between the droplet and the gas flow, the rms-value umax of the

periodically varying sound particle velocity in axial direction needs to be used in

case of a continuous disintegration. Since the lamella builds up and disintegrates

inside the pressure node, Walzel (1990) used the sound velocity of the correspond-

ing velocity node for his investigations. For the characterization of the continuous

disintegration mechanism in an SWA, Lierke (1998) used an altered Weber and the

Mach number. As the Weber number he defined

WeLierke =
8pB
pσ

=
κ

σ
dd P0Ma2 , (6.2)

with pB denoting the Bernoulli pressure, pσ the capillary pressure, and P0 the static

pressure at standard conditions. Further, Lierke (1998) assumed the disintegration

mechanism to start in terms of instabilities on the liquid surface at WeLierke ≈ 8

for a water drop. As the resulting critical Mach number (Macr) for small mass flow

rates he calculated

Macr ≈ 1.69

√
σ

P0 dstr,0
,

with dstr,0 as the initial strand diameter. For a nozzle of 1.5 mm in diameter

and a resulting water strand of the same value, the disintegration should start

at Macr = 0.039 at standard conditions. This mirrors a sound level of 168.8 dB

or umax = 13.4 m/s, respectively. For the disintegration of polymer strands this

approach needs to be altered. As explained previously in Section 5.3, the critical

Weber number depends on the Ohnesorg number. Therefore, for a polymer strand

having a viscosity of 0.1 Pas, a surface tension of about 0.03 N/m, and a density

of 1100 kg/m3, the dimensionless Ohnesorg numbers calculates as Oh = 0.449

resulting in a critical Weber number of Wecr = 15.59. Using this value on eq. (6.2),

the critical Mach number for such a polymer results as:

Macr ≈ 2.34

√
σ

P0 dstr,0
.
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Therefore, for a polymer strand of 1.5 mm in diameter the disintegration should

start at Macr = 0.033 at standard conditions. This mirrors a sound level of 166.7 dB

or umax = 11.3 m/s, respectively. In case of an SWA like the one used during the

experiments, such velocities are found in numerical simulation of the oscillating

sound field for sonotrode amplitudes of 20 µm. This confirms the results achieved

during experimental investigations of the disintegration process as the ones shown

in Figure 6.2.

After initiating the disintegration process, small filaments are separated from

the rim of the lamella. These liquid ligaments are unstable due to central symmetric

waves occurring on their surfaces. These surface waves will grow quite quickly in

case of the wave length being λ > πdlig. According to Rayleigh (1879b), the fastest

growing perturbation has an optimal wave length of

λopt = πdlig
√
2 + 6 Oh

in case of laminar strand disintegration. The resulting particles shall have a diam-

eter of

dp = dlig
6
√
44 + 6 Oh , (6.3)

with a narrow particle size distribution. Separated ligaments observed in numer-

ical simulation of the disintegration process do have diameters between 180 and

240 µm. Therefore, according to eq. (6.3) particles with diameters bigger than

that should result by secondary breakup of such ligaments. A detailed investiga-

tion on generated particles and the particle size distribution obtained in an SWA

is done experimentally in Section 6.5 as well as by means of numerical simulation

of the disintegration process in Section 6.6.
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6.3. Experimental Investigation of the Strand

Disintegration

For the disintegration of a continuous liquid strand in an SWA, the liquid is in-

serted via a nozzle into a pressure node of a high-amplitude resonant sound field.

Thus, a quasi-stationary lamella is generated at the top of the nozzle disintegration

into ligaments and droplets at its outer sphere. Thereby, discrete droplets with a

particle size distribution in the range of 5 to 100 µm are generated. Since the par-

ticle size significantly determines the performance of powder coatings, the overall

aim is to optimize such a disintegration process in terms of narrow particle size

distribution.

Figure 6.2 displays various forms of lamellae at different sonotrode ampli-

tudes. The pictures are taken with a digital camera using a strobe flash (∼ 8 nanosec

flash exposure) as back light. For optical reasons, an angle of approximately 40 de-

grees had to be chosen which leads to an ellipsoidal form of the lamella on the

photograph. A solution of alkydal in xylol is used as a model liquid, since alkydal

is a common feedstock in the coating industry. This solution has a viscosity of

0.1 Pas, a surface tension of about 0.03 N/m and a density of 1100 kg/m3. The

mass flow rate is adjusted to be 100 g/min.

Figure 6.2.: Disintegration of a continuous liquid strand of an alkydal solution at various

sonotrode amplitudes.

At small sound amplitudes relatively big, unsteady lamellae result which dis-
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integrate mainly outside the pressure node. Therefore, the flattened liquid strand

intensively acts as a reflector for the impinging sound waves. This destroys reso-

nance and results in poor disintegration with a considerable amount of large liquid

ligaments. Not until a minimum amplitude is reached depending on the fluids

properties and on process parameters, a continuous disintegration with a consid-

erable small quasi-stationary lamella is achieved. This small lamella is situated

inside the pressure node and, therefore, hardly effects the sound field. Thus, for

sonotrode amplitudes above 60 µm particle size distribution in the desired range

of 5 to 50 µm is obtained at the given flow rate. In case of an alkydal solution the

generated particles are detected by a LD (Laser Diffraction) method and their size

distribution is measured under the given operational and material conditions (see

Section 6.5 for more details). This procedure enables a quantitative comparison

between experimental data and numerical simulation of the disintegration process.

In case of polymers used for the production of powder coatings, the generated par-

ticles are pre-sorted by a cyclone and measured later on.

During operation of the pilot plant, undesired fouling of the sonotrodes’ faces

occurs caused by advected liquid particles along the axial direction. In general,

generated particles occupy the whole region between the sonotrodes in addition

to their main flow direction. This effect is mainly caused by acoustic streaming

appearing in sound fields of high intensity (Trinh, 1986; Lee & Wang, 1990). Fo-

cussing on outer acoustic streaming, in contrast to, e.g., near-boundary acoustic

streaming (Lee & Wang, 1989), the effect can be generalized into two common

types. The first mechanism is caused by friction between the gas phase and a solid

wall if the former is vibrating in contact with the latter. This can be the case

for, e.g., a standing wave in a resonant area. The second type happens due to the

spatial attenuation of a plane wave in free space, e.g., a plane traveling wave. The

mean energy density of a wave motion is decreasing due to absorption inside the

medium. Since this energy is transformed into kinetic energy, a convective flux

results affecting the particle track of droplets inside such sound fields. Thereby,

the flow direction of such outer acoustic streams coincides with the propagation

direction of the sound wave. Trinh (1986) quantitatively investigates outer acous-

tic streaming by means of an oscillation-reflection unit. The resulting flow profile

shows two adjacent swirls rotating in opposite direction. The velocities of such
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swirls are found to be in the range of 0.003 m/s for small sound field amplitudes.

Since for the disintegration in an SWA much higher amplitudes are applied, higher

velocities of the corresponding acoustic streaming result causing the transport of

particles along the axial direction.

6.4. Numerical Investigation of the Strand

Disintegration

For numerical simulation of the disintegration process of a continuous liquid strand,

the nozzle was implemented as a cylindrical patch into the computational domain

of FS3D with no-slip conditions at its lateral walls. The inlet boundary condition

is a Poiseuille flow with parabolic velocity profile. Calculations were done assuming

symmetry with respect to the xz-plane (cf. Figure 6.4). For accurate approximation

of the free liquid surface during strand disintegration, the computational domain

covers a rectangle of 0.5 × 1 × 1 cm along the x,y,z directions containing up to

16 million grid cells.

Figure 6.4 shows a screen shot of a simulation of a continuously disintegrating

strand of alkydal solution, as it was used in previous experiments (cf. Figure 6.2).

The nozzle has a length of 2 mm, an inner diameter of 1.5 mm and is placed 2 mm

ahead of the central pressure node in the radial direction. The mass flow rate is

100 g/min. As determined experimentally and confirmed by numerical simulation,

the liquid outlet should be shifted by 1 to 2 mm in radial direction away from the

sound field’s axis in order to generate smaller polymer particles. This is because the

liquid’s residence time in the area of high pressure gradients is maximal then. After

a short transient period quasi-stationarity is achieved. The liquid strand leaving

the nozzle will then be flattened into a lamella by the ultrasonic forces. At the rim

of the lamella ligaments and droplets are separated. The more viscous the polymer

or the smaller the applied sonotrode amplitude is, the more ligaments occur (cf.

Figure 6.1). On the left-hand side of the lamella shown in Figure 6.4 a liquid film

is formed which wets the nozzle. Since the lamella expands to an almost circular

disk, part of the liquid droplets move opposite to the inflow direction during dis-

integration. This negative effect is also observed in experiments at the pilot plant
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Figure 6.3.: Simulation of strand disintegration.

and causes material loss. When ligaments and droplets move away from the lamella

after separation, secondary breakup will occur leading to the generation of smaller

particles. This so-called Rayleigh breakup is caused by aerodynamically induced

disturbances on the liquid’s surface. It leads to contractions which finally result

in the stripping of droplets, caused by capillary forces. To account for such dis-

turbances during numerical simulation, white noise is added to the acoustic forces

leading to smaller particles.

In contrast to experimental investigations as conducted in Section 6.3, the

continuous strand disintegration as performed by numerical simulations takes place

mainly along the xy-plane. Instead, in experiments outer acoustic streaming leads

to undesired fouling of the sonotrodes’ faces by advecting liquid particles along the

axial direction. Here, particles move along in axial and tangential direction between
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the sonotrodes occupying the whole region. This behavior is missing in numerical

simulations due to inexistent acoustic streaming as described in Section 6.3. This

effect causes convective fluxes which divert the particle track especially of small

droplets. Since the effect of ultrasonic streaming takes place on a time scale of

multiple oscillation cycles of the sound field (Lee & Wang, 1990), it cannot be

taken into account during numerical simulation of the ultrasonic field. Due to limi-

tation in the CFX -solver, the transient sound field is only calculated for real-times

of up to 2 ms. Nevertheless, since acoustic forces of the superposed ultrasonic field

exceed outer acoustic streaming by orders of magnitude, resulting forces caused by

ultrasonic streaming are of no significance for the disintegration mechanism itself.

(a) Newtonian liquid (b) Non-Newtonian liquid

Figure 6.4.: Comparison between Newtonian and non-Newtonian fluids with

µ = 114 mPas at equidistant time-steps in an SWA.

The polymer melts for the production of powder coatings show a non-Newtonian

flow behavior. A modified Carreau model is, therefore, employed to describe the

concrete liquid (Appendix C). This model takes into account the shear thin-
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ning behavior of polymers, i.e. the viscosity decrease caused by an increase in

shear rate γ̇:

µ =
µ0

1 + µo

K
γ̇1−n

, with γ̇ =
√

2tr(D2) and Dxy =
1

2

(
∂u

∂y
+
∂v

∂x

)

,

where D denotes the rate of deformation. A shear-thinning liquid attains lower

viscosities during droplet collision. This leads to a larger maximum diameter of the

generated collision complex compared to Newtonian droplet collision (Motzigemba

et al., 2002). During disintegration these lowered viscosities mainly lead to smaller

particles due to a lower value of Wecr. As can be seen in Figure 6.4, the lamella

calculated including the modified Carreau model significantly differs from the one

without considering the shear shinning effect. The extension of the lamella in

Figure 6.4(a) is considerably smaller than the one in Figure 6.4(b). Since the

reduced critical We number supports the earlier stripping of droplets and ligaments

from the periphery of the lamella, the circumference of the lamella will decrease.

Similarly, Rayleigh breakup is supported as well appearing in shorter ligaments

and an earlier collapse of these ligaments, respectively. Therefore, overall a better

atomization of the disperse phase occurs.

6.5. Experimental Determination of the Particle Size

Distribution

The probabilities of particle sizes analyze (PSA) in sprays including the advantages

and disadvantages of the particular measurement method have been discussed in

literature before (Lefebvre, 1989; Bachalo, 2000; Yule & Dunkley, 1994). Choosing

the best method for the particular problem includes diverse considerations: The

method needs to guarantee the measurement of a representative sample, the de-

tected particle size has to be independent of the measurement angle or distance,

and the measurement especially needs to be non-invasive. Thus, the method shall

enable the measurement of the particle size distribution (PSD) without affecting

either the disperse or the continuous phase. Hence, the disintegration process in

general should not be altered by the measurement technique. Finally, the determi-

nation of the PSD has to be reproductive.
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The laser diffraction (LD) technique is found to be the most reliable method

for the measurement of PSD in powder coating technology (Hewitt, 1993; Scholz,

1998; Corbeels, Senser & Lefebvre, 1992). The idea of measuring particle size

using this physical principle is based on the effect of particles interacting with

light (Frauenhofer, 1817). Light of a laser beam is focused in the center of a

multielement-detector. Thus, the scattering effect at the edges of a particle leads

to signals on the non-central elements of the detector. Generally, the smaller the

particles are the larger the resulting diffraction angles. Diffraction at small angles,

however, can only be recognized by the system if the scattered light is not focussed

to the central elements where all the unscattered light is collected. The optical

setup used is referred to as Fourier-optics (Heuer & Leschonski, 1985).

The instrument applied for PSA is a Helos-Vario/KF (Sympatec Co.). The

device holds a 5 mW He-Ne-laser (λ = 632.8 nm) which can be expanded up to

13 mm in diameter. The diffraction pattern resulting during the measurement is

pictured by a Fourier lens on the central detector. Using this specific type of lens,

equally sized particles are recognized by the detector regardless their position in

the measuring field. The lens has a focussing length of 500 mm and, therefore,

detects particles between 4.5 and 875 µm.

PSfrag replacements

20 cm

nozzle

r
=
5
cm

Sympatec

Helos/KF

Figure 6.5.: Setup for detection of the particle size distribution in a PSA system.

For the detection of PSD the LD apparatus is placed approx. 20 cm in front
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of the nozzle of the SWA, orthogonal to the lamella of the exiting polymer strand

(cf. Figure 6.5).

For a sonotrode amplitude of 80 µm, a mass flow rate of 100 g/min, and a

sonotrode angle of 2 degrees, the particle size distributions of different atomized

alkydal solutions in xylol are investigated. The viscosity of each sample is altered

by changing the mixing ratio of the same alkyd resin in xylol. Each data set is

measured over a period of 200 ms and averaged over 20 cycles. The resulting

particle size distributions for different viscosities are shown in Figure 6.6.
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Figure 6.6.: Experimentally determined PSD at a sonotrode amplitude of 80 µm.

As can be seen in Figure 6.6, the particle size in general decreases with decreasing

viscosity of the liquid. More specific, for a viscosity of µ = 114 mPas averaged over

multiple test series the following quantities are found during disintegration:

Table 6.2.: Characteristic values of an experimentally obtained PSD for a polymer of

µ = 114 mPas at 80 µm.

d32 dRRSB dv.0.5 dmax dv.0.5/d32 dmax/dv.0.5

23.32 54.95 45.97 135.43 1.97 2.95
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In comparison to Table 6.1, physical dimensions of particles generated by

an SWA are in the same range as droplets manufactured by other atomizers. In-

stead, particle size distributions obtained in an SWA are more disperse than e.g.,

generated in a rotational atomizer.

6.6. Numerical Determination of the Particle Size

Distribution

To quantitatively analyze the disintegration of polymers in an SWA, particle size

distributions of the disintegration process need to be calculated. Therefore, ev-

ery single value of the VOF variable fi,j,k > 0 characterizing the disperse phase

needs to be detected and associated with a droplet. This is done by a recursive

algorithm which is established and incorporated into the program code of FS3D

(cf. Appendix B). The algorithm detects the value of an arbitrary cell. In case

of fi,j,k > 0 it recursively scans the surrounding cell volumes until it reaches an

empty cell next to the boundary of a droplet characterized by fi,j,k = 0. Since the

algorithm works on the whole calculation domain scanning every cell, it detects all

droplets present. The reconstruction of a single droplet is then done by combina-

tion of the adjacent cells of fi,j,k > 0. Finally, the droplet volume is calculated as

the sum of all cell volumes the particle is made of:

Vd =
∑

i,j,k

fi,j,k · Vcell(i, j, k), with Vcell(i, j, k) = 4xi4yj4zk . (6.4)

Based on the calculated volume of the droplet the equivalent, spherical radius (Rd,s)

is determined as

Rd,s =
3

√

3

4
πVd . (6.5)

As well the components of the velocity vector for each droplet are calculated. For

the component u it follows

u =

∑

i,j,k u(i, j, k) · f(i, j, k) · Vcell(i, j, k)
∑

i,j,k f(i, j, k) · Vcell(i, j, k)
, (6.6)

denoting the mass-averaged velocity as the ratio of the momentum flux over the

droplet’s mass. The values for v and w are calculated alike u. For the exact
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position of each droplet inside the calculation domain, the center of the droplet is

determined as 3-D coordinates against x,y,z :

x =

∑

i,j,k xi · f(i, j, k) · Vcell(i, j, k)
∑

i,j,k f(i, j, k) · Vcell(i, j, k)
. (6.7)

The values for y and z result equally. Concluding, the exact position, velocity,

and volume of each droplet at every time-step in the calculation domain is known.

Notice also, that the accuracy of these calculated values strongly depends on the

discretization of the calculation domain. The PLIC algorithm (see Section 3.3)

itself is not able to separate the particles. Two areas characterizing a droplet will

be recognized as disconnected, independent volumes inside the VOF code not until

a single cell of f = 0 does separate them (Figure 6.7). Hence, the more grid cells

the computational domain is made of and the smaller the physical cell dimensions

are, respectively, the more accurate the determination of the particle volume and,

therefore, the PSD will be.

(a) droplets apparently separated (b) droplets conjunction

Figure 6.7.: Failed separation of two droplets by the PLIC algorithm.

Based on this routine, the PSD for various alkydal solutions has been an-

alyzed by numerical simulation of the disintegration process. The liquid system

used for disintegration is an alkyd resin in xylol as described in Section 6.3. By

varying the mass fraction of alkydal in xylol, the viscosity of the mixture is altered,

whereas the surface tension of 0.03 N/m and the density of about 1100 kg/m3 are

roughly kept constant. As can be seen in Figure 6.8, less viscous materials result in

smaller particles during disintegration consistent with experimental investigations

(cf. Figure 6.6). Each data set is calculated over a period of 23 ms with particle

sizes obtained every 1 ms. Comparison of these particle size distributions derived
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by numerical simulations with experimental data for identical liquid systems and

similar operational conditions reveals that particles generated by numerical simu-

lations are larger than those obtained during experiments. On the one hand, this

is due to the fact that during simulation the particle size is - in contrast to exper-

imental measurement - detected near the boundary of the computational domain

rather close to the lamella. At this early stage of the disintegration process sec-

ondary breakup is still not complete. On the other hand, polymer phase effects on

the sound field have been neglected in numerical calculations.
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Figure 6.8.: Numerically determined PSD at a sonotrode amplitude of 120 µm.

In addition, due to the latter fact polymers of about µ = 0.1 Pas easily

disintegrate in sound fields generated by sonotrode amplitudes of 80 µm during ex-

perimental investigations of the atomization process. Instead, for numerical disin-

tegration of a continuous liquid strand of molten polymer of µ = 0.1 Pas, sonotrode

amplitudes of 120 µm are necessary to let qualitatively similar atomization occur.

If back effects of the polymer phase on the sound field are neglected, the Bernoulli

effect causing local velocity peaks and an impact pressure at the lamella’s pole are

neglected as well. These have been identified in Section 5.3 as the main impact

on the atomization process in an ultrasonic standing wave field beside the acous-

tic radiation pressure. Therefore, higher sonotrode amplitudes need to be applied
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during numerical simulation to mirror experimental behavior.

Further, so far the effect of beats of ultrasonic fields on the PSD has been

neglected as well. Such beats are caused by swapping of oscillations having slightly

different frequencies (Section 4.7). Thus, their overall phase shifts slowly resulting

in maxima and minima (Heywang et al., 1992). As a result, the beat of an ultra-

sonic field causes enlarged particle size distributions. Since time-averaged pressure

and velocity fields are read into FS3D to model the real gas-liquid jump conditions,

effects of such beats of an ultrasonic sound field on the atomization process are van-

ished during numerical simulation. In contrast, experimental measurements of the

PSD as performed in Section 6.5 capture the effects of such beats. The time neces-

sary to pass a single beat period is calculated to be 4.3 ms according to T = 1/4f .
Since data are taken over a period of 200 ms and averaged over 20 cycles, multiple

beats alter the general droplets size during data acquisition.

To quantitatively compare particle size distribution obtained during numeri-

cal simulation of the disintegration process and experiments, characteristic values

for a alkydal solution in xylol having a viscosity of 114 mPas are listed in Ta-

ble 6.3. These data correspond to a mass flow rate of 100 g/min, a surface tension

of 0.03 N/m and a density of 1100 kg/m3.

Table 6.3.: Characteristic values of a numerically obtained PSD for a polymer of

µ = 114 mPas at 120 µm.

d32 dRRSB dv.0.5 dmax dv.0.5/d32 dmax/dv.0.5

148.3 257.2 197.1 449.8 1.33 2.28

A detailed, quantitative comparison between characteristic values of a poly-

mer with identical liquid parameters applied in experiments as well in numerical

simulations approves earlier conclusion. Comparing quantities of Table 6.2 and

Table 6.3 shows that particles generated in numerical simulations of the disinte-

gration process are significantly bigger than those from experiments. In contrast

to Table 6.2, the width of the PSD by numerical experiments is smaller, i.e. the

ratio of dv.0.5/d32 is considerably closer to unity. This emphasizes the influence of

beats of the ultrasonic field on the disintegration process which effect is missing in
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numerical simulations. Thus, such an effect will cause an enlarged PSD in experi-

ments as denoted by a ratio of dv.0.5/d32 close to two (cf. Table 6.2).

During disintegration ligaments moving away from the lamella are subject

to secondary breakup (see Section 6.2). Due to instabilities on the ligaments sur-

face (Rayleigh, 1879b), such objects will break down further. Separated ligaments

observed in numerical simulation of the disintegration process do have diameters

between 180 and 240 µm. Therefore, according to eq. (6.3) particles with diameters

bigger than that should result by secondary breakup of such ligaments. Using these

values of ligament diameters on eq. (6.3), a potential range of resulting particle

diameters between 341.6 to 455.4 µm calculates. As can be seen, the diameter

of dRayleigh = 455.4 µm mirrors the maximum diameter of particles found during

numerical simulation of the disintegration process with dmax = 449.8 µm very well.

Since dmax is defined to match 99.7 % of all generated particles (Vestweber, 2004),

outliers are specifically excluded in statistics which are even closer to dRayleigh.

As a matter of fact, secondary breakup due to Rayleigh effects is one mechanism

during strand disintegration influencing the overall process. As stated by Walzel

(1990), aerodynamically induced disturbances accounting for Rayleigh breakup are

superposed by other mechanisms. Therefore, a wide range of droplets results in an

SWA, especially since the acoustic radiation pressure generated by the ultrasonic

standing wave field permanently acts on the liquid’s surface.
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”The known is finite, the unknown is infinite; intellectually we stand

on an islet in the midst of an illimitable ocean of inexplicability. Our

business in every generation is to reclaim a little more land.”

Thomas Henry Huxley (1825-1895)

A mathematical/computational approach is developed that allows for the numer-

ical simulation of the atomization of polymer melts in ultrasonic standing wave

fields. The main difficulties lie in the largely different time and length scales of the

ultrasonic sound field and the liquid dynamics on the one hand and the highly non-

linear behavior of the interface including topological changes on the other hand.

The model involves a one-way coupling between a compressible single-phase gas

flow, corresponding to the resonant sound field, and the droplet dynamics given

by a free surface flow. Ultrasonic forces acting on the fluid surface are computed

as time-averaged momentum fluxes through a face situated in the sound field that

coincides with the gas-liquid phase boundary. The use of time-averages is neces-

sary to reduce computational effort and is justified by the different time scales of

ultrasonic field and liquid deformation. The model and the numerical simulations

are validated by means of levitator experiments. The simulations allow a qualita-

tive description of droplet deformation and atomization in a single axis standing

wave levitator. Taking into account back-effects of a droplet on the ultrasonic field,

quantitative predictions of droplet radii with respect to sonotrode amplitude are

possible, mirroring the real behavior very well. Because of the much higher com-

plexity, numerical simulation of liquid strand disintegration in an SWA cannot take

into account effects of the liquid phase on the ultrasonic field. Therefore, so far

simulations only allow for a qualitative description of the disintegration process.

Nevertheless, significant trends in strand disintegration can be observed as it is

demonstrated by particle size distributions. The latter are important for industrial

103



use, reflecting the correlation between variations in operational parameters, mate-

rial properties, and particle sizes. Thus, based on these results optimizations of

our laboratory plant and the process itself are now possible.

An advantage of the decoupling of the simulation process into non-linear

acoustic sound field and free fluid surface is the ability of applying specialized

numerical methods which fit the particular needs. As a result, detailed investiga-

tions on the sound field have been performed which allow precise predictions about

sound field behavior under variation of operational parameters as sonotrode angle,

distance, or curvature. This is an import fact due to other investigation techniques

e.g., inserting microphones into the sound field, being invasive and therefore, falsify

the results of measurement. Although the impact of the sound field on the disinte-

gration process is still not totally understood, it offers the possibility of predicting

trends in particle size distribution. Since the variations in sonotrode geometry and

operational conditions are the main time-consuming and costly part of the overall

atomization process, it is a significant improvement in optimization of the contin-

uous liquid strand disintegration.

In addition, detailed investigations on the deformation and disintegration

mechanism of single liquid droplets as well as continuous strands in an ultrasonic

standing wave field have been performed. As could be shown, the mechanism of

disintegration is mainly dominated by acoustic forces (e.g., sound pressure and

Bernoulli pressure) and aerodynamic forces (e.g., Rayleigh breakup) closely local-

ized around an obstacle. Therefore, ultrasonic forces acting on the fluid surface are

computed as fluxes through a face situated in the sound field that coincides with

the phase boundary. On the one hand, acoustic forces as the Bernoulli effect cause

higher velocities at the droplet’s equator corresponding with a lower pressure here

which pulls at the droplet. A suction results improving the rate of deformation

and disintegration. On the other hand, aerodynamic forces induce disturbances

on the liquid surface. If a liquid drop becomes considerably flat, oscillation estab-

lishes a mechanism for parametric excitation and growth of capillary waves on the

droplets surface. Further, during strand disintegration surface waves are found on

the lamella as well. Especially the impact of aerodynamically induced disturbances

on secondary breakup can be observed in the strand disintegration process.
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Future Perspective

Numerical simulations of the overall disintegration process show significant trends

as demonstrated by particle size distributions. Thus, based on these results opti-

mizations of our laboratory plant is started in close cooperation with the mechanical

engineering and the electrical engineering group. In a first step, the transducer unit

has been modified and a new electronic amplifier has been made. As a result of

numerical simulations of the ultrasonic field, frequency shifts due to heating and

the beat of the ultrasonic field due to frequency differences of the transducers shall

be avoided. Therefore, the new equipment allows a direct control of the system

during operation of the pilot plant to vanish these undesired effects. In addition,

due to perceptions made during simulation of the ultrasonic field with different

sonotrode curvature, sonotrodes with less curvature are produced to generate a

5-node pressure field. Such a geometry leads to an increase in pressure amplitude

in numerical simulations. The implementation of these potential optimizations on

the disintegration process are in progress.

To quantitatively describe the numerical simulation of liquid strand disinte-

gration in an SWA, back-effects of the disperse phase on the ultrasonic field need

to be considered. Due to the enormous complexity of the strand disintegration,

numerical simulations of the overall process cannot take into account effects of the

disperse phase on the ultrasonic field. Therefore, a simplifying model needs to be

established mirroring the back-effect of a liquid on the sound field during numeri-

cal simulation of the free fluid flow. For it, a precise understanding of the overall

deformation and disintegration mechanism is essential. This thesis gives a first

impression of such mechanisms close to the lamella to gain the knowledge needed.

So far, ultrasonic forces acting on the fluid surface are computed as time-

averaged momentum fluxes. The use of time-averages is necessary to reduce com-

putational effort and is justified by the different time scales of ultrasonic field and

liquid deformation. Nevertheless, although the disperse phase does not react on

every oscillation of the ultrasonic field, its particle size distribution depends on the

overall beat of the ultrasonic field. To mirror this behavior in numerical simulation

of the disintegration process, multiple time-dependent sound fields need to be read

into FS3D which may still be averaged over an acoustic cycle. Thereby, the shift in
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pressure amplitude due to beats is considered with respect to the reaction time of

the liquid phase. Thus, the impact of such an effect on the particle size distribution

can be included in numerical simulations.
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A. Mathematical Supplement

A.1. Stokes Theorem

Consider an arbitrary smooth surface A enclosed by the boundary curve C. Using

Stokes theorem transfers the line integral over C of the vector field to a surface

integral of a vector field:

∮

C

ds× σn =

∫

A

(n×∇)× σn dA .

A.2. Gaussian Divergence Theorem

Gauss’s divergence theorem states that if V is a volume with surface A and if φ is

a differentiable vector field then

∫

V

∇ · φ dV =

∫

A

φ · n dA .

Here n is the outward normal to the surface of the volume at a given point on the

surface and ∇·φ the divergence of φ denoting the source density inside the volume

V.

A.3. Delta Distribution

The one-dimensional delta distribution δ can, e.g., be defined as the limit of a

function:

δ(x) = lim
α→∞

√
α

π
e−αx

2

.

Here the limiting value is not meant pointwise but understood as follows:

If a continuous function f(x) is multiplied with the delta distribution δ, an inte-

gration over the real part of the axis results in the value of that function at x = 0.
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i.g.

∫ +∞

−∞

f(x)δ(x)dx = f(0) . (A.1)

The delta function is no function in the common sense since for all x 6= 0 eq. (A.1)

the limit becomes zero. Nevertheless, for the integral of the function it arises

∫ +∞

−∞

δ(x)dx = 1 .

Dirac’s delta distribution results by derivation of Heavyside’s jump condition H :

H(x) =

{

0 x < 0

1 x ≥ 0
.
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B. Recursive Algorithm

B.1. Definition

A recursive algorithm is an algorithm which calls itself with ”smaller (or simpler)”

input values, and which obtains the result for the current input by applying simple

operations to the returned value for the smaller (or simpler) input. More gener-

ally if a problem can be solved utilizing solutions to smaller versions of the same

problem, and the smaller versions reduce to easily solvable cases, then one can use

a recursive algorithm to solve that problem. For example, the elements of a recur-

sively defined set, or the value of a recursively defined function can be obtained by

a recursive algorithm.

If a set or a function is defined recursively, then a recursive algorithm to

compute its members or values mirrors the definition. Initial steps of the recur-

sive algorithm correspond to the basis clause of the recursive definition and they

identify the basis elements. They are then followed by steps corresponding to the

inductive clause, which reduce the computation for an element of one generation

to that of elements of the immediately preceding generation.

In general, recursive computer programs require more memory and compu-

tation time compared with iterative algorithms. Instead they are simpler and for

many cases a natural way of thinking about the problem. To reduce computational

time and memory usage the recursive algorithm explained subsequently has also

been turned into an iterative approach. Since it is much more complex, it is for-

beared here from going into more detail.
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B.2. Structure

The determination of single droplets inside the calculation domain is done by the

routine ’droplet’. The code for the determination of single droplets takes as input

parameters the grid structure in three dimensions as the number of grid cells in

each direction (nk, nj, ni) and the VOF-values inside the domain with respect to

the cell index (fi,j,k).

routine ’droplet’

Input (ni, nj, nk, f)

By looping over the whole calculation domain cells which fi,j,k > 0 are predeter-

mined by the Boulian operator B=.true. versus R=.false. for fi,j,k = 0. These

variables (B,R) are incorporated into the code as logical operators:

1 B=.true.

2 R=.false.

3 for i← 1 to ni

4 for j ← 1 to nj

5 for k ← 1 to nk

6 if f(i, j, k) > 0 then

7 B(i, j, k) = .true.

8 else R(i, j, k) = .false.

9 endif

After characterizing each cell by B or R, respectively, the loop is starting all over

but checking for the logical operator instead. In case of B being true, the subrou-

tine ’merge’ is called as a recursive algorithm who analyzes the cells around the

previously investigated grid cell (i,j,k):
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APPENDIX B. RECURSIVE ALGORITHM

recursive subroutine ’merge’

Input (i, j, k, f, B,R)

9 for ii← (i− 1) to (i+ 1)

10 for jj ← (j − 1) to (j + 1)

11 for kk ← (k − 1) to (k + 1)

12 if B(ii, jj, kk) = .true.

13 call → ’Calculation’

14 call → ’merge’

15 else R(ii, jj, kk) = .false.

16 exit → termination condition

As long as B=.true. the algorithm calls itself and calculates (’Calculation’) the

demanded values according to eq. (6.4), (6.5), (6.6) and (6.7). Therefore, all grid

cells (i,j,k) having adjacent cells of fi,j,k > 0 are merged. In case of fi,j,k = 0

and R=.false., respectively, the algorithm terminates the loop and leaves the re-

cursive subroutine ’merge’. Therefore, it goes back to its initial position and

continuous the previous loop inside the routine ’droplet’ until all grid cells in

the calculation domain are scanned. Finally, every VOF-variable with f(i, j, k) > 0

will be associated with an area denoting a droplet. Further, the coordinates of the

center of the droplet, the corresponding components of the velocity vector (u,v,w),

the and its spherical radius (Rd,s) are quantified and read out.

Output (x, y, z, u, v, w,Rd,s)
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C. The Modified Carreau Model

The viscosity of a fluid represents the material’s internal resistance to deform. It

is mathematically defined as the ratio of shear stress τ and shear rate γ̇:

η ≡ τ

γ̇
(C.1)

In general, fluids can be classified as either Newtonian if the relation of eq. (C.1)

is linear or non-Newtonian. In the first case η is a constant independent of γ̇. Vis-

cosity is a fluid property easily measured by, e.g., extrusion viscometers, capillary

or parallel plate rhometers.

For polymeric liquids the viscosity depends on the shear rate. Therefore, the

viscosity curves depend on the following properties:

1. limγ̇→0+ η = η0 with η0 denoting the zero shear viscosity.

2. η(γ̇) is a decreasing function of γ̇. This behavior is called ”pseudo-plastic”

or shear-thinning.

3. The experimental measurement of zero shear viscosity is not possible for the

employed polymers using available tools.

Viscosity measuring provides experimental data at a given temperature con-

sisting of several data points on the viscosity curve. These data are then fitted to

the viscosity model of Carreau

µ =
µ0

1 + µo

K
γ̇1−n

, (C.2)

with K denoting the critical shear stress roughly characterizing the transition shear

stress from Newtonina to the pseudo-plastic region. Further, n represents the shear

rate sensitivity with 0 < n < 1.
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Therefore, the overall aim of data fitting is to derive the three parameters η0,

K, and n according to eq. (C.2). For this purpose, a solution of alkydal in xylol

(percent by weight: 45 %) is used with a surface tension of about 0.03 N/m and

a density of 1100 kg/m3 at standard conditions. The fitting of the experimental

data under consideration of eq. (C.2) leads to η0 = 0.114 Pas, K = 9.83329, and

n = 0.898479.

Applying these data to FS3D quantitatively leads to smaller particles during

disintegration (see Section 6.4 for more details). Qualitatively, using the modified

Carreau model causes reduced lamella extension in comparison to the Newtonian

approach with a constant viscosity set to η = 114 mPas. Further, the viscosity

inside the lamella changes with the lamella radius. As can be seen in Figure C,

the viscosity decreases with increasing distance of the lamella from the nozzle.

Since shear rate correlates with the ultrasonic forces acting on the fluid surface,

the shielded liquid inside the lamella is found to have higher viscosities. Corre-

sponding phenomena are found for droplets and ligaments moving away form the

lamella. In addition, the bulge formed at the rim of the lamella can clearly been

seen in Figure C for r = 0.2 mm due to higher viscosities inside such a bulge in

contrast to the flattened lamella.

PSfrag replacements

r = 0.2 mm r = 0.1 mm r = 0.0 mm

η [g/(cm s)]

9.1489 · 10−2

8.3866 · 10−2

7.6244 · 10−2

6.8621 · 10−2

6.0998 · 10−2

5.3376 · 10−2

4.5763 · 10−2

3.8131 · 10−2

3.0508 · 10−2

2.2896 · 10−2

1.5263 · 10−2

7.6406 · 10−3

1.8000 · 10−3

Figure C.1.: Contour plots of viscosity with respect to the distance r from the nozzle’s

center.
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Stehwellen-Zerstäubung in der Pulver-Lackiertechnik. DFO e.V. Tagungsband

Pulverlackpraxis .

123



Bibliography

Griebel, M., Dornseifer, T. & Neunhoeffer, T. 1995 Numerische Sim-
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Interdisziplinärer Ansatz zur technologischen Optimierung der Stehwellenz-
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Ein Rückblick auf 35 Jahre Forschung und Entwicklung. CIT 7, 815–826.

Lierke, E. G. & Großbach, R. 1983 Acoustic positioner for mirror furnace.

Tech. Rep. Contract No. 4494080. ETEC.
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