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NOMENCLATURE

Nomenclature

Latin Symbols

Symbol Dimension Denotation

A [m?] area

A [Pa] sound field amplitude

c [m/s] velocity of sound

p [J/kg K] specific heat capacity (at const. pressure)
Cy [J/kg K] specific heat capacity (at const. volume)
C [m] curve

D [1/s] rate of deformation

D [m] sonotrode diameter

d [m] diameter

ds [m] Sauter diameter

drrsp  [m] diameter according to Rosin & Rammler (1933)
dyo.5 [pm] volume median diameter

ds0 3 [pm] mass median diameter

F [m)] focal length

f -] volume fraction

f [1/s] frequency

F.f [N] force

G -] area

g [m/s?] body forces (e.g., acceleration of gravity)
h [J/kg] total enthalpy

st [J/kg] static (thermodynamic) enthalpy

I -] identity tensor

I [Ns] momentum

J [kg/m2s]  flux

K [m?] lamella parameter

K -] fluid consistency index of viscosity model
L [m)] length

L [m] resonant distance

<



NOMENCLATURE

Symbol Dimension Denotation

k [1/m] wave number

k [J/msK]  conductivity coefficient

Ng ] number of pressure nodes

M [kg/mol] molar mass

n -] unit normal

n ] flow index of viscosity of model
P [N/m?] momentum flux

P [N/m?] pressure

P [N/m?] characteristic pressure

R [m] radius

R [J/kg K] gas constant

R, [m)] radius of curvature

R* -] non-dimensional radius

s [m)] line element

S [N/m?] viscosity stress tensor

T [s] period (time)

T K] temperature

T [N/m?] stress tensor

u [m/s] velocity vector

U [m/s] characteristic velocity

u,v,w  [m/s] components of velocity vector
\% [m?] volume

X [m] sonotrode distance

X; [m] inner sonotrode distance

X; [m)] distance of the lamella from the nozzle
X [m)] position vector

x,y,z  [m] coordiante of x = (z,y,2)

Y [m] oscillation amplitude
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NOMENCLATURE

Greek Symbols

Symbol Dimension Denotation

o [° angle

r [m?] interface, phase boundary
A (kg /ms] bulk viscosity

A [m] wave length

L [kg/ms] dynamic viscosity
Lo (kg /ms] dynamic zero shear rate viscosity
v [m?/s] kinematic viscosity
p [kg/m?] density

R -] real part

o [N/m] surface tension

w [1/s] angular frequency
K [1/m] curvature

K -] isentropic exponent
¢ -] value of a quantity
) ] physical quantity

X -] lamella number

J [m)] lamella thickness

Q -] subdomain

¥ [1/s] shear rate

@ -] velocity potential

vii



NOMENCLATURE

Subscripts

~ deviation from the mean value

i, j, k cell indices in (x,y,z)-direction

d droplet / disperse phase
g gas

1 lamella

max maximal

n nozzle

opt optimal

p particle

pc parasite current
r resonant

rel relative

S spherical

st surface tension
str strand

t time

Dimensionless Numbers

Ba = A%R,/(opc?) acoustic Bond number

Ca = plul/o Capillary number

Fr = U/+/Llgl| Froude number

La = opR/u? Laplace number

Ma = Umaz/Co Mach number

Oh = pa/\opad Ohnesorg number

Re = pUL/u Reynolds number

Rep. = u,R/v Reynolds number (Lafaurie et al., 1994)
We = pyui,d/o Gas-Weber number

Werierke = 8pp/po = (k/0) - dyo Po Ma®* Weber number (Lierke, 1998)
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Abbreviations
DNS - direct numerical simulation
LD - laser diffraction
PSD - particle size distribution
PSA - particle size analyze
rms - root mean square
SWA - standing wave atomizer
SWL - standing wave levitator
SPL - sound pressure level

VOF - volume of fluid
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SUMMARY

Summary

Powder coatings are used in many different areas and are gaining increasing impor-
tance because of the neglectable emission potential concerning volatile components.
The production of powder coatings by disintegration using an ultrasonic standing
wave atomizer (SWA) avoids disadvantages of other techniques, but still needs in-
tensification to reach industrial standards.

Therefore, the goal of our research is to achieve a better understanding of the poly-
mer strand disintegration in an ultrasonic wave field. This is done by means of
numerical simulations based on continuum mechanical modeling and well-defined
experiments for validation. The simulations employ a one-way coupling, where the
commercial Computational Fluid Dynamic-tools Fluent and CFX, respectively, are
used to compute the nonlinear acoustic field. The calculated acoustic forces are
incorporated in the Volume of Fluid-code FS3D to compute the disintegration
process. These ultrasonic forces acting on the liquid’s surface are modeled as ap-
propriate momentum fluxes, approximating the real gas-liquid jump conditions.
The model is validated by comparing droplet breakup in levitator experiments and

numerical simulations of the atomization process.

The simulations allow a qualitative description of droplet deformation and
atomization in a single axis standing wave levitator (SWL). Taking into account
back-effects of a droplet on the ultrasonic field, quantitative predictions of droplet
radii with respect to sonotrode amplitude are possible, mirroring the real behavior
very well. Because of the much higher complexity, numerical simulation of liquid
strand disintegration in an SWA cannot take into account effects of the liquid phase
on the ultrasonic field. Therefore, so far simulations only allow for a qualitative
description of the disintegration process. Nevertheless, significant trends in strand
disintegration can be observed as it is demonstrated by particle size distributions.
The latter are important for industrial use, reflecting the correlation between varia-
tions in operational parameters, material properties, and particle sizes. Therefore,
based on these results optimizations of our laboratory plant and the process itself

are now possible.

xi






1. Introduction

Polymer particles with size distributions in the range of 5 to 50 um are gaining
increasing importance in industrial production processes and technological appli-
cations. Huge amounts of such particles are required in powder coating technology
due to more rigid environmental standards. Powder coatings as a solvent-free al-
ternative with almost no thinner emission exceed other types of coatings in terms
of conservation. Additional applications include the production of pigments or
toners. So far, the production of powder coatings is done by energy-costly milling
of polymers, which leads to sharp-edged particles of irregular shape. This reduces
product quality and thus, has a negative environmental effect. Therefore, new
innovative production methods have to be developed. However, the industrial de-
velopment of new markets and applications for powder coatings strongly depends
on the properties of the polymer particles as well as their manufacturing process.
The properties and quality of powder coatings are not only given by their chemical
formation, but also depend on particle shape and particle size distribution, hence,
on the manufacturing technique. Especially fine properties are found for coatings

made of spherical particles with narrow particle size distribution.

A novel advantageous technique for the production of polymer particles is the
disintegration of polymer melts in an ultrasonic standing wave atomizer (SWA).
Here, particles are created by means of ultrasonic forces acting on the liquid sur-
face and leading to its disintegration. For this purpose, an ultrasonic standing wave
field is generated by two sonotrodes, driven by piezo ceramic, with frequencies of
about 20 kHz. To improve this system, a booster is placed between transducer and
a sonotrode. Thereby, amplitudes of up to 125 pum are generated at the sonotrode’s
end face. The distance between the transducers is adjusted to an odd multiple of
half the acoustic wave length to achieve resonance with usually three or five pres-

sure nodes. Due to resonance phenomena, amplitudes of the resulting velocity and
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pressure fields are very high and of strong nonlinear nature.

sonotrode

sonotrode

Figure 1.1.: Schema of a pilot plant

To produce spherical polymer particles, molten polymer is continuously in-
jected via a nozzle into the central pressure node of the ultrasonic standing wave
field (cf. Figure 1.1). The polymer strand disintegrates due to the acoustic forces
acting on it. Thereby, discrete droplets with a particle size distribution in the
range of 5 to 100 um are generated. Due to surface tension, the shapes of these
droplets become almost spherical. Particles solidify during their movement and
are presorted by a subsequent cyclone. This spherical shape has advantage over
irregular-shaped particles in terms of ability of maintaining static electric charges,
important for direct application, and surface smoothness of coating. This process

is especially interesting in the context of thermo-mechanically sensitive materials.

1.1. Problem Description

Powder coatings are manufactured by processing a main constituent resin to coarse
crushing, dry blending with a hardener and various additives, and then subjecting
the dry blend to extrusion, cooling, a second crushing process, and classification.
Compared with solvent based paints, the manufacturing process is long and com-
plex, and consequently the problem arises of increased process cost especially when

thin film powders are considered.

Currently, the great majority of binders constituting most powder composi-

tions are based on amorphous resins. To avoid negative side effects of the binder,
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they are formed by a semi-cristalline polyester being used alone or as a mixture
with amorphous resins. These semi-cristalline polyesters have a high melting point
and a low transition temperature. Consequently, the melt viscosity is much lower
than that of the amorphous polyester, which is commonly used in powder com-
position. This means that powder coating compositions based on semi-cristalline
polyester exhibit better fluidity of the coating film and provide outstanding me-
chanical properties. Beside the many advantages especially grinding of the semi-
cristalline extrudate is critical. Due to the fact that the semi-cristallinity already
implies some mechanical strength of the extrudate, the enormous dissipation of
heat created by the grinding process often causes partial melting of the powder
during manufacturing and thus, blocking of the grinding equipment. Hence, disin-
tegration of the melt in an ultrasonic field is the best opportunity to process this

advantageous resins.

So far, equipment used for the disintegration of polymer melts in an SWA
is based on the ultrasonic welding technique. Therefore, transducers applied for
the atomization process are not build and optimized for this kind of application.
Previous optimization of the ultrasonic field yielding preferably small particles has
mainly be done empirically. The aim of these efforts was to generate particles of
about 10 - 50 um having a small particle size distribution at mass flow rates of about
300 mL/min. Because of various parameters effecting the disintegration process
like frequencies and amplitudes of the sonotrodes, the geometry of the sonotrode’s
end face, the distance and angle of the sonotrodes to each other, and the liquid
properties, empirical optimization of the whole process is too time-consuming. Ex-
perimental investigations having done so far give an idea of qualitative and partially
quantitative effects of parameter variations on the disintegration process, but are
still limited on the specific geometry of the employed sonotrodes. Therefore, a
transfer of results related to this specific plant to other sonotrode configurations

with modified geometry is not possible.

Further more, the process of atomization of liquids in an ultrasonic field itself
is still not totally understood. The phenomena causing a fragmentation of the
liquids surface and mechanisms proceeding near the interface are too complex to

be described in total. This fundamental understanding of the SWA is necessary to
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further improve the disintegration process.

1.2. Aim of the Study

The ultimate goal of our research in this field is to optimize the disintegration
process in an ultrasonic standing wave atomizer in terms of energy requirements,
product quality, flow rate, narrow particle distribution, and total cost. To gain
maximum efficiency from this technique, a fundamental understanding of the mech-
anisms of disintegration, the determination of all relevant parameters, and a quan-
titative description of their effects is required. So far, optimization of this process
is mainly done empirically. This requires time-consuming and expensive experi-
mental work such as screening of the pressure field between the transducers and
its dependency on different surface plate forms, transducer orientations as well as

variations of frequency and geometrical parameters.

In Reipschléger et al. (2001, 2002) and Reipschlager (2002), a novel approach
based on continuum mechanical modeling and numerical simulations has been ini-
tiated that allows for process optimization. This method is able to describe the
disintegration process as a free surface flow in which acoustic forces act on the
liquid surface. Since the phase boundary undergoes highly nonlinear changes dur-
ing the disintegration process with frequent changes of its topology, the interface
has to be captured implicitly. The previously applied Volume of Fluid (VOF)
code used for surface capturing has been extended by new subroutines in order
to determine the disintegration process quantitatively. Subsequently, numerical
simulations of the disintegration of polymer strands have been performed under
variation of geometrical, operational, and material properties. This allows to char-
acterize their effects on the disintegration process quantitatively. However, in order
to perform a large number of simulations for different parameters, highly efficient
computational techniques are required. To validate these numerical simulations,

experimental measurements have also been done.



2. Mathematical Treatment of Two-Phase

Flows

The disintegration of a liquid in an ultrasonic field is a highly complex two-phase
flow with compressible gas phase. On the microscopic level each fluid is discrete
with its properties fluctuating violently. However, considering problems in which
the dimensions of interest are very large compared to molecular scales, one may
ignore the molecular structure and endow the fluid with a continuous distribu-
tion of matter. This is the continuum hypothesis valid as a statistical average of
the corresponding molecular property of a large number of molecules. The fluid
properties can then be treated to vary smoothly in space and time. Therefore,
physical quantities such as mass and momentum associated with the matter con-
tained within a given small volume will be regarded as being spread uniformly over
this domain instead of being concentrated in a small fraction of it. Thus, all macro-
scopic quantities are treated as piecewise continuously functions of their location.
The extensive quantities are then additive to mass, allowing for the balancing of

the system on a continuum mechanical level.

Two-phase flow systems in particular are characterized by all physical quan-
tities being continuous in each phase with at least one of these variables making
a jump at the interface. In addition, two-phase systems are determined by its
boundary properties. In general, the phase boundary is treated as a thin, massless
layer which is considered as a piecewise smooth surface throughout mathematical
modeling. The following derivations of the balance equations for two-phase flows
are based on Bothe (2002). For more details about continuum mechanical modeling
of two-phase flows see Ishii (1975), Silhavy (1997) and Slattery (1999).
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2.1. Integral Balance

The basic approach for modeling two-phase flows are the balance equations for
mass, momentum and energy in their integral form. These extensive quantities are

valid over the whole calculation domain including the phase boundary.

In the following we observe the motion of two fluids which are immiscible on
a molecular level. The fluids occupy an arbitrary subdomain Q~(¢) and Q7% (¢), re-
spectively, at time ¢ in an arbitrary set G C R? with G = Q= U Q". The fluid flow
transports the values of ¢~ and ¢ within its motion (cf. Figure 2.1). Thereby,
the phase boundary I'(¢) moves with the velocity of ur. Here, the unit normal
vector np on I'(¢) points in the direction of Q*(¢). For balancing the fluid flow
the ball volume B, := B,.(X) is used. Under these assumptions the Navier-Stokes

equations are derived from the conservation laws for mass and momentum.

Figure 2.1.: Region ¢~ and ¢™ of a two-phase system including its interface I'(¢).

Mass Balance

To setup the balance of mass, consider a closed surface A whose position is fixed
relatively to the coordinate axes, and which encloses a volume V' C G totally
occupied by fluid. The mass of fluid enclosed by the surface at any distance is
fv p(x,t)dV, where p is the density of the fluid at a position x and time ¢. The
net rate at which mass is flowing outwards across the surface is then [ pu-ndA.

Here, dV and dA are elements of the enclosed volume and area of the surrounding
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surface, with the latter having the unit outward normal vector n. Therefore, for a

massless boundary layer the mass change inside the volume V will become

d

— pdV:—/ pu-ndA (2.1)
dt Jv ov

d
— pdV+/ J-ndA=0 withJ =pu.
dt Jy av

Here, the density flux J of the liquid will point towards the flow direction. Its
magnitude represents the fluid value per time which flows through a surface unit

perpendicularly to the velocity.

Momentum Balance

In general, the momentum of a body is the product of its mass with its velocity.
Since in case of a fluid the velocity may vary with its position, the momentum of
a substantial fluid volume V() transported by fluid motion is expressed by the

integral

I(t) :/ pudV .
V()

According to Newton’s second law, the rate of change of (linear) momentum is

equal to the sum of the forces acting on the fluid:
d
a2

Two types of forces are distinguished:

e body forces of external fields with a given force density f per unit volume
(e.g., gravity, Coriolis force, magnetic force),

and

o surface forces Syy ) (e.g., pressure and internal friction).

Thus, Newton’s law for fluids reads as

d
— pudV = Say ) + / pfdV .
dt Jy V(t)

The correlation between Ssy ;) and the remaining fluid quantities has to be estab-

lished by constitutive equations. When modeling an ideal fluid, internal friction is
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neglected. Therefore, for a single-phase system the tension on the surface of a fluid
volume V is solely determined by the pressure p (z,t). Thus, the force —pndA

acts on the enclosed surface element dA of the surface dV:

Sovi = — /8V(t) pndA .

Instead, for real fluids in a two-phase system the previous balance equation needs

to be extended by the impact of surface tension and interfacial forces:

d pudV:/ pde+/ T -ndA+Fr(t) .
dt V(t) V(t) oV (t)

Here, the stress tensor T is given as T = —pl + S with I denoting the identity
tensor and S the viscous part of the stress tensor. This viscosity stress tensor S
describes the tension in a fluid caused by internal friction. Fr(t) refers to the force
on the boundary layer I'(¢) N V(¢) due to surface tension. This term derives from
the force F 4 acting on the area A = V NT'(¢) of the phase boundary enclosed by

the control volume V.

Figure 2.2.: Force on a line element ds on the interface I'(¢).

Such state is pictured in Figure 2.2. Located on the phase boundary I'(t) is the
enclosed area A with its boundary curve C. As a result of the surrounding interface,
the force dF acts on the line element ds of the curve C' tangential to the boundary
layer T'(¢). It is perpendicular to ds with an absolute value of |ods|. Hence, the
surface tension o(x,t) onto a line element of the length |ds| results in a force

dF = ods x np. Thus, the integral along the boundary leads to the force onto the



CHAPTER 2. MATHEMATICAL TREATMENT OF TWO-PHASE FLOWS

area A,

Fu(t) = ]{Ca(ds X nr) = %Cds X onr , (2.2)

pointing opposite to the area A. For the special case of a vector product eq. (2.2) as
a line integral can be transformed into a surface force by applying Stoke’s theorem
(Appendix A.1):

FA(t) = /A(HF X V) X onr dA .

The term (nr x V) x onr denotes the surface density of the surface tension (force)

fr(x,t). By transformation it results
fr = Vo —nr(nr-Vo)+onr-Vor —onp(V-nr) . (2.3)

By subtracting the normal part of the gradient with respect to the normal
(npr(nr - Vo)) from the surface tension gradient (Vo), the two terms yield the
surface gradient Vo of o. If the surface tension o is constant, these two parts
vanish acting perpendicular to the surface. This does not mirror the typical condi-
tion since surface tension especially depends on temperature and the concentration
of surface active substances (¢ = o(7,cr)). Therefore, the significance of this
term may increase with the occurrence of temperature or concentration gradients

at the interface. The influence of these gradients on o is known as Marangoni effect.

Taking into account that the third addend of eq. (2.3) equals zero, the equation

simplifies to
fr = Vro —onp(V -nr) .
Including the curvature
kr(x,t) = =V -np(x,t) ,
the surface force results in
Fr(t) = /Afp dA with fr = Vo + okrnr .
Therefore, the momentum balance for a fixed volume element V' determines as

4 pudV+/ J-ndA:/pde+/ frdA (2.4)
dt Jy oV v VAT()

with the momentum flux J = pu®@u—T.
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2.2. Differential Balance

Based on the integral balance for a fixed volume element, the corresponding dif-
ferential balance equation and jump conditions can be derived by localization. In
a first step, the surface integrals over the boundary 0V need to be transformed
to volume integrals using the Gaussian divergence theorem (Appendix A.2). Sub-
sequently, the interior of the phase is divided by the absolute value |V of the
balanced volume V' = B, (x¢) and the ball B, is constricted towards the point x,
(r — 0+). For the derivation of the jump conditions on I'(¢) the particular volume
integral is divided into its phase fractions, in order to complete the missing areas
of the boundary layer. At this point the differential balance equations are applied
to both phases. Further, the jump conditions are achieved by division of the area
II',| inside the balance domain and contraction of the ball to r — 0+. Whereas the
differential balance equations are restricted to the interior of the particular phase,
the jump conditions describe the actual state at the interface. Further, these need

to be supplemented by constitutive equations.

Mass Balance

The flux of a quantity outwards across a surface A due to fluid motion is expressed
by the conservation law of eq. (2.1). Using the Gaussian divergence theorem on the
right hand side of this equation transfers the surface integral into a volume integral.
The requirement that the previous statement has to be valid for all choices of the

volume V bounded by A then gives the differential equation

0 + div(pu) =0 (2.5)
— AV4 =U. .
ot r p

For the special case of an incompressible fluid the following equation system results:

divu =0 and %/H—u-Vp:O.

If there are no density variation in time or space, i.e. , p(X,t) = ps = const., this

results in the continuity equation for isochore fluids with

divu = 0. (2.6)
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CHAPTER 2. MATHEMATICAL TREATMENT OF TWO-PHASE FLOWS

Momentum Balance
In the same way as the differential equation for the conservation of mass, the
equation of motion is developed. If there is only gravity as the solely body force

acting in negative direction along the z-achses, the momentum balance becomes

0 .
5 (pu) + div(pu®@ u—T) = —pge, , (2.7)
with the stress tensor T = —plI + S. For Newton fluids the viscosity stress tensor

S is given by
S = Adivu)I + p (Vu+ (Vu)") . (2.8)

Here, A denotes the bulk viscosity and p the dynamic viscosity. For fluids of con-
stant density (p(x,t) = ps = const.) and arbitrary body forces g the momentum

balance can be rewritten as

0 1 1
a4V, — _2vp+HAutg. 2.
5 0t (u®u) P p+p u+tg (2.9)

The quotient of u/p = v is called the kinematic viscosity. If further internal friction
of the fluid (viscosity) characterized by energy dissipation is neglected, the Fuler

equation results:

0 1
au—i—v-(u@u)——;Vp.

The equation of motion (2.9) in connection with the conservation of mass (2.6) for

the special case of incompressible fluids are called the Navier-Stokes equations.

2.3. Dimensionless Form of the Navier-Stokes

Equations

Information of the flow is contained in the parameter characterizing it like the dy-
namic viscosity 4 and the density p, and the characteristic values for the length L
and the velocity U. Furthermore, by L and U a characteristic time scale is deter-
mined as T = L/U. If these parameters are combined in a suitable way to yield
dimensionless quantities, then these enable the comparison of different flow con-
ditions or the similarity of flows, respectively. Therefore, dimensionless quantities
are formed by their dimensional counterparts:

, X , u ;o Ut , p—P

= — = — t —_— =
X u U? L Y p pU2 ?

T (2.10)
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with given scalar constants L, p, U, P.
Recasting eq. (2.9) by inserting the variables of eq. (2.10) leads to the equation

!/ !/ i !/ /’L
9 : - _ 2 A L
t/u+u V V'p + u+-—g,

where the operators V' and A’ are those with respect to the dimensionless posi-
tion vector x’. Concluding, flows will be dynamically similar, if their parameters

w, U, p, L, g are similar as well or the dimensionless quantities

~pUL

Re : (Reynolds number) and

U

r:= ———(Froude number)

VL]l

of the flows coincidence.

Both, the dimensionless Reynolds number as well as the Froude number de-
scribe properties of the fluid flow. The Reynolds number characterizes the relative
magnitude of inertial and viscous forces. Therefore, it gives an idea about the
impact of viscose effects (1/ReVu) on fluid motion. It further needs to be con-
sidered that low 1/Re still has a huge influence on the flow field. This is because
it increases the order of the equation to two and especially changes the boundary
conditions. For huge 1/Re (creeping flow) most likely the Stokes flow is employed
as an approximation. Thus, the convective fraction (u - Vu) is neglected. There-
fore, a linear problem results. Instead, the Froude number represents the ratio of

inertial to gravitational forces.

The dimensionless form of the continuity equation displayed by eq. (2.6) simply

becomes

V' -u =0.

2.4. Jump Conditions

For the derivation of the jump conditions the integral balance equation (2.4) for a
fixed volume is used. This equation is applied on the volume of a ball B, := B,.(xg)
with I', :==I' N B, (cf. Figure 2.2). Since the interface is free to move, I', = I',(¢)

12



CHAPTER 2. MATHEMATICAL TREATMENT OF TWO-PHASE FLOWS

and, therefore, even BE = BX(t). The integrals are separated into their fractions

of B and B; . Thereon the differential balance equations are used.

As a result of this approach, boundary conditions for each phase can be derived.
In case of conservation of mass the jump condition at the interface between the

phase ¢ and ¢~ becomes
[p(u—ur)]-np =0, (2.11)

where ur is the interfacial velocity. Here, nr is the unit normal vector on the

interface directed into the gas phase and the symbol

[ ()] lim ¢(z + hnp) — hlirg1+ (x — hnr)

T h—0+

stands for the jump of a physical quantity 1 across the interface.

Similarly, the equation for momentum conservation across the interface is

expressed:
[pu® (u—ur) + pI —S]-nr = Vro + okrnr , (2.12)

where Vro denotes the surface gradient of the surface tension and kxr = —V - nr

is the sum of the local (principal) curvatures of the interface.

In the present work it is assumed that the two-phase system under considera-
tion does not endure phase changes like evaporation or condensation. Consequently,
there are no convective fluxes across the interface, i.e. the normal components of
the fluid velocities are continuous at the phase boundary and equal to the surface’s
normal velocity. Finally, we assume no-slip conditions at the interface as well as

constant surface tension. Then the jump conditions (2.11), (2.12) simply become
[u] =0, [pI -S| -nr = okrnr. (2.13)

By neglecting the viscosity stress tensor S, the right part of eq. (2.13) becomes the

Young-Laplace equation:

1 1
Ap=o0kr=o0 (E + E) : (2.14)
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2.4. Jump Conditions

where Ry and Ry denote the principal radii of curvature. For stagnant fluids u =0
and consequently S equals zero as well. In this case Young-Laplace is an exact so-
lution of the flow system. For more details about the derivation of jump conditions

for two-phase flow see Reipschléger (2002).
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3. Numerical Approach

The disintegration of a liquid in an ultrasonic field is a highly complex two-phase
flow with compressible gas phase. Any numerical description of this process that
aims in the prediction of particle size distributions has to take into account the
strong nonlinear behavior which appears during the formation of complex topolo-
gies of the disperse phase such as liquid lamellae, ligaments, and droplets of different
sizes. Thus, modeling and simulation of the mechanisms of liquid disintegration in
an ultrasonic standing wave field requires a numerical method which allows for the

computation of the dynamics and topology of the free phase boundary.

The mechanisms of disintegration can vary according to the type of atom-
ization process. Hence, simplifying models that do not account for the interface
dynamics but still describe atomization in a general setting seem to be out of reach.
Therefore, the principal aim here is to compute the two-phase flow without such
simplifications. Difficulties occur because of the different length- and time-scales
associated with ultrasonic sound field and droplet dynamics phenomena. On the
one hand, the nonlinear oscillations within the ultrasonic sound field take place on
a time scale of about 50 us, while the relevant length scale is the distance between
the two sonotrodes of about 50 mm. On the other hand, droplet breakup requires a
much longer period of about 5 -20 ms due to inertia of the liquid, but proceeds on a
decade of smaller length scales from a few millimeters down to a few pym. A so-called
Direct Numerical Simulation (DNS) of such a two-phase flow with full resolution of
the interfacial dynamics on all relevant length- and time-scales, therefore, requires
extreme numerical efforts and is not possible with today’s computer technology.
While commercial Computational Fluid Dynamics (CFD) software is in principle
able to calculate compressible transient two-phase flow, systems of this complexity
cannot be handled. Furthermore, process optimization requires a large number of

variations of relevant material and operational properties. Hence, DNS would be
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much too expensive and time-consuming. For this reason a partial decoupling into
the compressible single phase gas flow corresponding to the resonant sound field
and the droplet dynamics given by the free surface flow is done. The effect of the
compressible gas phase onto the liquid surface is taken into account by means of
additional interfacial source terms within the momentum jump conditions, leading
to a one-way coupling. The dynamics of the liquid flow are captured by means
of transient three-dimensional simulations with a two-phase Navier-Stokes solver
employing a volume tracking method to capture the disperse phase. With this
overall approach, the full disintegration process is split into two parts which are

solved separately using a specialized numerical method that fits its particular needs.

3.1. The Numerical Method

The study of moving interfaces is one of the most important areas in technological
and engineering fields. Its application involves solid mechanics as material shaping
processes and fluid mechanics like breakup of a jet, coalescence of liquid drops or
wave breaking. For numerical modeling of these tasks different approaches have
been developed to treat these two classes of problems. The finite element method
combined with a Lagrangian description of the movement is generally applied for
material shaping problems (Lock et al., 1998). For the study of fluid-structure
interactions a mixed description is found to be the most suitable one: Lagragian
in solid and Eulerian in fluids with coupling at the interface. Finally, either the
mixed description or the Eulerian one is most likely used for the treatment of two
phase flows with fluid-fluid interaction. This approach can handle complex inter-
face problems and is employed in numerical simulations of such problems (Hyman,
1984; Laskey et al., 1987; Floryan & Rasmussen, 1989).

In case of droplet breakup and strand disintegration as conducted in this
study particular complex shaped interfaces result. The difficulties in treating such

flows can be attributed to

e the interface location,

e the interface topology, and
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e the interfacial mechanism.

Most of the developed methods use the Eulerian approach to model the fluid flow
and various techniques have been employed to track the interfaces through the

fixed mesh. The two basic methods are surface tracking and volume tracking.

In surface tracking methods markers are initially placed on the fluid’s inter-
face and are subsequently followed within the flow. A disadvantage of this method
is that coalescence cannot be easily treated with these techniques. Further, Os-
her & Sethian (1988) found that curvature effects cause another drawback of the
marker-based method: For large and complex motion, particles come together in
regions of high curvature causing numerical instability. Therefore, a regridding
step has to be employed which usually contains diffusion-like errors. This effect

can even dominate the real effect of curvature.

In the volume tracking method the interface is implicitly tracked. In this case
markers are used to identify the fluid itself. These markers can be, e.g., one of the
fluids properties or another function. Employing this method the fluid is identified
in each cell of the computational domain, where it is present. The interface is
located somewhere inside a cell which contain more than one fluid and is finally
reassembled cell by cell. Two methods developed by this approach are the Marker-
and-Cell (MAC) (Harlow & Welch, 1965; Welch et al., 1966) and the Volume of
Fluid (VOF) methods (Hirt & Nicols, 1981). The MAC technique employs massless
particles as markers. This approach causes particles to accumulate in some parts of
the mesh leading to an inaccuracy in locating the interface and, therefore, separat-
ing the particles. Instead, the VOF method defines a marker function f denoting
the fraction of a cell volume that is occupied by one of the fluids. The function
can adopt values between zero and unity, whereas a cell is either empty or filled,
respectively, with a specific fluid. If f is between zero and unity, the interface of
the fluid is located in that specific cell. The VOF technique was introduced by Hirt
& Nicols (1981) for infinite difference structured meshes. Rectangular grids were
required since the f value is determined using a donor-acceptor flux approximation
of Rawshaw & Trapp (1976) which requires rectangular cells. The main advantage
of this volume tracking method was that it can handle interfaces which undergo

large deformations and treat multiple fronts. This basic approach of Hirt & Nicols
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(1981) was extended over the years by, e.g., Kothe & Mjolsness (1992); Rider et al.
(1995) and Rider & Kothe (1998) which is now applicable on arbitrary grids. Es-
pecially in this case the VOF technique is combined with the finite volume (FV)
method for solving the partial differential equations that calculates the quantities
of the variables averaged across the cell volume. This is due to the advantage of
the finite volume method over the finite difference (FD) method that it does not
require structured meshes. In addition, the finite volume method is preferable to
other techniques since boundary conditions can be applied non invasively. This
is true since the values of the conserved variables are located within the volume

element and not at nodes or surfaces (Versteeg & Malalasekera, 1995).

Therefore, the VOF technique in combination with the finite volume method
is widely used during the last couple of years to model complex shaped structures
and highly flexible processes. These are flow phenomena as, e.g., disintegration or
coalescence of fluid regions. Since the VOF method implicitly captures the shifting
topology of such processes, no mechanisms need to be developed for the recon-
struction of phase boundaries. Hence, the VOF method works without further
approximation. Although the VOF technique is not restricted on structured grids,
applications commonly used are based on such meshes. Therefore, these grids as
used in FS3D do have the advantage of easy discretization of the calculation do-
main for parallelization. Additionally, since the calculation of the flow variables
solely requires values of the adjacent cell layers, a good proportion between calcu-
lation cost and communication of the participating processors result. This is an
advantage over other techniques since the calculation domain used for the simu-
lation of the disintegration process is made of up to 16 million grid cells. Such
high grid resolution is necessary in order to capture droplets down to a few pm
generated during the disintegration process. Therefore, the simulation of such pro-
cesses requires a massive parallelization of the numerical method. Finally, the VOF
method as integrated into FS3D allows for easy implementation of impacts as, e.g.,
surface tension on the fluid surface. This is one of the main essential advantages
used throughout this work: Additional source terms characterizing the momentum

flux through the surface are incorporated into the VOF-code FS3D.
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3.2. Decoupling of the Simulation Process

In the first step, oscillating pressure and velocity of the ultrasonic sound field are
computed by solving the Navier-Stokes equations for compressible viscous flows
(eq. 2.5 & 2.7). In addition to the mass and momentum balance, the energy equa-
tion is taken into account, since large sound intensities appearing in an SWA lead
to high temperature fluctuations inside the gas phase. Due to the axial symmetry
of the configurations, computations of the ultrasonic sound field are carried out
in two-dimensions employing cylindrical coordinates. For numerical simulation of
the ultrasonic sound field during the continuous disintegration process of polymer
in a double oscillation unit, CFX 4.4 (AEA Technology GmbH, 2001) is used. To
investigate levitated droplets, the software tool Fluent 6.1.18 (Fluent Inc., 2003) is
chosen. Both CFD-codes have been extended by user-defined subroutines for the
output of time-averaged pressure and velocity fields. Fluent is employed for the
computation of ultrasonic sound fields with liquid-gas interactions, since it allows

for easy patching of spherical liquid obstacles into the computational domain.

In the second step, transient DNS of the disintegration process are performed
in 3-D with an advanced VOF method (Hirt & Nicols, 1981). This method is in-
corporated into the non-commercial VOF code FS3D (Free Surface 3D), developed
at the "Institut fiir Thermodynamik der Luft- und Raumfahrt” (ITLR) Stuttgart
(Rieber, 2004). Within the VOF method the Navier-Stokes equations for an in-
compressible time-dependent two-phase flow are solved. The validation of the code
has been done based on multiple cases relevant in application. Thus numerical
simulation and experimental validation was made for drop-wall as well as binary
droplet collision (Rieber & Frohn, 1997), deformation of moving droplets (Rieber
& Frohn, 1998; Rieber et al., 2000) and the crown formation of a drop splashing
on a liquid surface (Rieber & Frohn, 1999).

This programm was extended by Reipschldger et al. (2002) to incorporate
pressure and velocity fields previously calculated in CFX. These are used as source
terms to account for the influence of the ultrasonic field onto the liquid phase.
During this project the interface was improved to automatically determine the ge-
ometries used in CFX and Fluent, respectively. Hence, the coordinates of the grid

including its stream variables are read out and automatically transferred into the
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setup of FS3D. Therefore, the FS3D grid is determined as well and compared to
the ones from simulation of the sound field. Finally, the fluid data to be trans-

ferred are simultaneously averaged over divers acoustic cycles of the ultrasonic field.

Since numerical simulations of the ultrasonic field are done in 2-D with rota-
tional symmetry, the data need to be transferred into cubic coordinates in 3-D of
the VOF-code FS3D. Therefore, a rotation including an interpolation of the para-
metric field is necessary. This is done by a cubic spline interpolation (Akima, 1972)
which maps the CFX and Fluent data, respectively, onto the FS3D geometry. The
routine is further able to interpolate the stream parameters from a rough grid into
a smoother subdivided one. This is necessary since the disintegration of continuous
liquid strands requires much smoother grids than the ones for simulations of the
ultrasonic field. Instead, the deformation of droplets demand a straight transfer of
data from Fluent to FS3D to quantitatively determine droplet deformation. In this
case both tools work with the same grid resolution and, therefore, a direct coupling
without interpolation is necessary. For parallel computing of the VOF simulation
a separation of the calculation domain and its scalar field is possible according to
the number of computer nodes. Finally, the interface supports multiple conversion
of data sets to create input files for time dependent import into FS3D. The overall
progression of numerical simulations of the ultrasonic field to the simulations of

the disintegration process including the data conversion is shown in Figure 3.1.

CFX/FLUENT FS3D

cylindrical coordinates cartesian coordinates

INTERFACE

ointerpolation

o coordinate trans formation |
H o grid separation for \
multi processor calculation

time averaged pressure
and velocity fields

] 1]

Figure 3.1.: Progression of numerical simulation and data conversion.
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To visualize the results generated by FS3D a post-processor of the Fluent
Inc. was used. Therefore, Reipschléger et al. (2002) developed a conversion tool
to transform the data sets produced by FS3D during numerical simulation of the
two-phase flow into the universal-format of FLPOST (Fluent Inc., 2000). An ad-
vantage of this programm is the highly advanced visualization technique including
various ways of illuminating droplets and strands of polymer inside the calculation
domain. Contrariwise the programm is restricted to a low number of data points
to be visualized. For grid resolutions of more than 64° data points the programm
becomes much too slow and, therefore, unfunctional. Further, newer versions of
Fluent do not support FLPOST as an independent tool in addition to the FLUENT

solver itself anymore.

In order to effectively visualize data sets of more than 64 data points PADV1z
was used. This tools is part of the CFD modeling tool padfem? developed at the
Center for Parallel Computing (PC?) at the Paderborn University. Especially
because of the ability of parallel data processing and visualization it is able to
handle huge data sets. Therefore, a conversion tool was programmed to enable the
input of data sets from FS3D into PADVI1z and to transform the data with respect
to the symmetry planes applied in FS3D.

3.3. Method for the Simulation of the Ultrasonic
Field

The simulation of ultrasonic standing wave fields is done by means of the com-
mercial CFD software package. For numerical simulation of the ultrasonic sound
field during the continuous disintegration process of polymer in a twin-oscillation
unit CFX 4.4 (ANSYS) is used. To investigate levitated droplets the software
tool Fluent 6.1.18 (Fluent Inc.) is chosen. Both CFD-codes have been extended
by user-defined subroutines for the output of time-averaged pressure and velocity
fields. Fluent is employed for the computation of sound fields with liquid-gas in-
teractions, since it allows for easy patching of spherical liquid obstacles into the

computational domain.

In both cases the balance equations for compressible liquid flows are solved
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with a finite volume approach based on block-structured grids. The Pressure-
Implicit with Splitting of Operators (PISO) algorithm is chosen to derive pres-
sure fields from the continuity equation by using a relationship between velocity
and pressure corrections during numerical simulation. The PISO pressure velocity
coupling scheme is part of the SIMPLE family of algorithms. Such a SIMPLE
algorithm uses a Semi-Implicit Method for Pressure-Linked Equations (Patankar,
1980; Ferziger & Peric, 2002). As a second pressure-correction equation the PISO
coupling is applied in order to improve the solution of the momentum equations

while maintaining continuity.

Oscillating pressure and velocity of the ultrasonic sound field are then com-
puted by solving the Navier-Stokes equations for compressible viscous flows. In
addition to mass and momentum balance the total enthalpy is included to incor-
porate temperature variations since large sound intensities appearing in an SWA

lead to high temperature fluctuations inside the gas phase:

O (ph)+V -(puh) =V - (kVT)=0p . (3.1)
Here, p denotes the density, u the velocity, p the pressure, k the conductivity co-
efficient, h the total enthalpy and T the temperature. Because of the significant
impact of temperature variations on sound acoustics, it is investigated in more de-

tail later on. Further remarks on that subject are found in Section 4.7.3.

Since the density of the compressible liquid gas flow depends on temperature
and pressure, it is implicitly calculated inside the CFD-solver. Thereby, the gas
phase is treated as an ideal gas and, therefore, calculates as

Py = (pgauge +pref)Mg
g RT

with M, denoting the molecular weight of the gas and R the universal gas con-

stant. To avoid the problem of roundoff errors when computing pressure gradi-
ents, all pressures computed and reported by CFX and Fluent, respectively, are
gauge pressure pgauge- 1he gauge pressure simply derives by subtracting a fixed
reference pressure p,.; from the absolute, thermodynamic pressure p. In general,
this reference pressure is simply determined by the standard atmospheric pressure,
1.013 - 10° N/m?.
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Due to the axial symmetry of the configurations in an SWA and SWL, com-
putations of the ultrasonic sound field are carried out in two dimensions employ-
ing cylindrical coordinates. To capture the movement of the sonotrode face, pre-
scribed velocities at the inlet are used. The radial velocity component at the
sonotrode’s end face is taken to be zero (v = 0), while the axial component is given
by u = ugsinwt. Therefore, the movement of the sonotrodes’ surface are treated
as uniform over the whole area. This approach was justified during experimen-
tal investigations of the sonotrodes. Scans of the surface using a laser vibrometer

showed a uniform, rotational symmetric oscillation over the whole sonotrode’s face.

Simulations of droplet deformation as well as strand disintegration (Chapter 5
and Chapter 6) are carried out for sonotrodes with diameter of 35 mm assuming
rotational symmetry and oscillation frequencies of about 20 kHz. More precisely,
the two sonotrodes are slightly distorted by a difference of 230 Hz in frequency,
resulting in a modulation of the ultrasonic field by superimposed oscillation of
pressure and velocity amplitudes (cf. Figure 4.6). The computational domain en-
closes additional space up to a radius of 52.5 mm around the sonotrode axis with
boundary conditions set to constant pressure. Because of different gradients of the
ultrasonic field in axial and radial direction, respectively, the spatial grid resolu-
tion is chosen to a minimum cell length of 0.3 mm in axial and 0.875 mm in radial
direction in case of an undisturbed ultrasonic field. For this and even smoother
grids the numerically computed pressure fields are found to be independent from
the grid resolution. Coarser meshed grids would fulfill the Courant-Friedrich-Levi
(CFL) criterion (Griebel et al., 1995) if the time step size is decreased simulta-
neously, but will cause gradients of the flow variables to be solved insufficiently.
Instead, if the sound field is solved including a liquid obstacle using Fluent, much
smoother grids are necessary to implicitly capture the liquid surface. Therefore,
equally sized meshes of 0.078 mm around the liquid droplet are used to compute
the ultrasonic field. On the one hand, this is because of limitation due to com-
puter technology. Smoother grids would cause much longer computational times
and, therefore, would exceed acceptable conditions. On the other hand, computed
pressure and velocity fields are found to be independent from the grid resolution
in case of a flattening droplet of 45 ul. Since meshes of 0.078 mm in diameter

cannot resolve separating fragments from an atomizing droplet of that size, this
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grid independence of sound fields is only valid in case of deforming droplets.

For the generation of geometries including their grids the software tool Mesh-
build from AFEA Technology is used in case of CFX 4 and Gambit from the Fluent
Inc. for the compilation of geometries used in Fluent 6. In both cases struc-
tured, the contour fitting, meshes are used for spatial discretization of the concave
sonotrode geometry. Exemplarily, grids used for numerical simulation of an SWA

and an SWL generated by GAMBIT are show in Figure 3.2.

(a) atomizer (b) levitator

Figure 3.2.: Setup of the calculation domain and grid structure for numerical simula-

tion.

During numerical simulation of the ultrasonic field each oscillation cycle is
resolved in time by 250 time steps. Hence, for simulations of sound fields with an
excitation frequency of 20 kHz the time step size results to be 0.2 us. Thereby, the
temporal discretization should satisfy the Nyquist criteria fsgmpre < 2fimae (Broch,
1990). The criteria states that the reconstruction of a arbitrarily signal has to be

performed with at least twice the maximum frequency of that signal.
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3.4. Method for the Simulation of Free Fluid Surface

The deformation and breakup of droplets and strands in an ultrasonic standing
wave fields involves various dynamic modifications of the liquid surface. Therefore,
Hirt & Nicols (1981) introduced a Volume of Fluid (VOF) method to implicitly
capture the residence region of two immiscible liquid flows. It was further presumed

that these fluids are incompressible and of a huge density difference.

Based on phase-related balancing advection of the disperse phase is governed

by an additional transport equation for the volume fraction f of this phase, i.e.

of +V-(fu)=0 (3.2)
determining the temporal propagation of the phase with respect to the flow field.
Hence, the balance equations of mass, momentum and energy in addition to eq.
(3.2) can be solved for both phases simultaneously. Using the VOF method the
disperse liquid phase corresponds to regions where the f-function has the value
1, the continuous phase is characterized by f = 0, while the interface is located
within grid cells for which 0 < f < 1. Therefore, cells of 0 < f < 1 comprise both
phases. In case of droplet deformation and breakup cells with f = 0 characterize
the surrounding gas phase and f = 1 denotes the droplet or liquid strand, respec-
tively. Figure 3.3 represents a supposable distribution of the f-variable inside the

calculation domain to clarify the approach.

0.15/0.02 0 0 0 0
\

1 |0.64 %k29 0 0 0

1 1 [0.87,0.14 0 0

1 1 1 0\38 0 0

1 1 1 0.#6 0 0

Figure 3.3.: Cell occupation of a liquid drop (f > 1) in a surrounding gas phase (f = 0)
based on the VOF-method with PLIC reconstruction of the interface.

Surface tension (cf. Section 3.4.1) is taken into account based on the conser-

vative approximation of Lafaurie et al. (1994). For accurate approximation of the
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free fluid surface spatial discretization of high resolution are necessary. This leads
to computational grids having up to 16 million grid cells. Therefore, a massive

parallelization of F'S3D is essential here.

The VOF-code FS3D is based on a finite volume method which is used to
discretize the transport equations for mass, momentum and volume fraction f.
Thereby, the location of the volume fraction f is derived by determining the actual
velocity field u and the corresponding value of the prior f-function. The Navier-
Stokes equations are solved by a second-order projection method for incompressible
liquid flows based on Godunov’s conservative projection method (Bell et al., 1989;
Tau, 1994). The approach uses a MAC method to store the derived flow variables
on a staggered grid and a split-explicit time differencing schema. Thus, the Navier-
Stokes equations are split and successively solved. Finally, the remaining pressure
field is calculated based on a cell-centralized discretization of the Poisson equation.
Therefore, a multigrid method is applied which offers the robustness necessary to
handle huge density ratios (Wesseling, 1992). For more details about FS3D and

implemented numerical solutions see Rieber (2004).

After determining the volume fraction f at a distinct time ¢, the phase bound-
ary needs to be reconstructed. This is necessary to solve the transport equation
of the f-variable. Thus, the interface in a cell of interest is adjusted regarding it
adjacent cells. The most ordinary way originally used by Hirt & Nicols (1981) is
the Simple Line Interface Reconstruction (SLIC) algorithm by Noh & Woodward
(1976). It produces an interface consisting of line segments, constructed parallel
to a grid face. Since this algorithm only uses line segments that are parallel to
the coordinate axes, the resulting interfaces are generally discontinuous. An im-
provement to this method is the Piecewise Linear Interface Reconstruction (PLIC)
algorithm such as the one from Youngs (1992) or Puckett et al. (1997). The method
involves two steps for reconstruction. In a first step, the normal on the interface is
calculated using the gradient of the volume fraction f. Second, the intercept of that
interface is calculated such that it intersects the exact volume fraction in the cell of
interest. Although the resulting interface is still discontinuous, the approach allows
a more appropriate reconstruction of the liquid phase boundary. Nevertheless, it

is still necessary to have at least on grid cell of f = 0 between to phase boundaries

26



CHAPTER 3. NUMERICAL APPROACH

to distinguish them as separated, independent droplets (Figure 6.7).

3.4.1. Surface Tension

The accurate computation of surface tension is a critical task throughout the sim-
ulation of free fluid boundaries. Since molecular forces are responsible for placing
liquid surfaces in tension, the scale of that process in general is not solved in com-
putational fluid dynamics. The resulting surface tension is incorporated in Laplace
formula as a surface stress condition (Landau & Lifshitz, 1959). In recent mod-
els this computationally inconvenient description of the effect of surface tension
is replaced by an equivalent volume force, which acts on a length scale compara-
ble to the grid spacing rather than the thickness of the interface (Brackbill et al.,
1992; Lafaurie et al., 1994; Truggvason et al., 2001). Such an approach is necessary
since there is no strict boundary layer numerically generated by the VOF method.
Instead, a continuous transition area of thickness [ exists expanding over several
grid cells. Therefore, the curvature and the pressure jump at the interface have
to be calculated accurately. These requirements were obtained first by Brackbill
et al. (1992) on a VOF method. The Continuum Surface Force (CFL) model as
a non-conservative approach expresses the area-related surface force fr(xr) at the
interface I' in terms of a volume-related force fr (x) inside a small transition area
around the interface. If the thickness [ of the continuous boundary layer declines

against zero, both forces can be equated:

témmﬁﬂgﬂﬂﬂ@WZ (3.3)

By using Dirac’s delta distribution § (Appendix A.3) on eq. (3.3) the surface inte-

gral can be transformed into a volume integral.

A&@@:L&@ﬂ@—mwm]

In case of the boundary thickness [ — 0 the Delta function can be expressed in
terms of the norm of the gradient of the VOF function f:

f(x) = H[(x—xr)-fr]
Vf(z) §[(x —xp) - fip] - Ap
IVf(@)] = 6[(x—xr)-fir]
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Here, H is the Heaviside step function. Since the f-function requires to have a finite
gradient in a distance [ of the transition area, the function is artificially daubed

during discretization over serval cells. Therefore, the volume force results as
/ foy (X)dA = oV f(x) | (3.4)
A

with the local (principal) curvature of the interface given by kp = —V-fip. Here, fip
denotes the unit normal vector at the interface with fir = nr/|nr|. Using the finite-
difference-discretization of eq. (3.4) results in contributions from the boundary of
the transition area of that interface. Since the values of the density are saved inside
the cell’s center, an indirect differentiation of the normal vector causes an improve
in numerical approximation. For it, a transformation in calculating the curvature

is necessary (with n = nr):

K:ﬁlv-n—(%-v> \n|] . (3.5)

The main disadvantage of the CSF model described before is its non-conservative
character. Due to this manner the conservation of momentum cannot be guaran-
teed, eventually causing non-physical effects during numerical simulation. There-
fore, a conservative model has been developed by Lafaurie et al. (1994) eliminating
such problems. The approach develops the discrete form of conservative capillary
forces by applying the same approximation of V f to calculate the normal vector
and the density of the boundary layer. Thus, the volume-specific capillary force fy

result as:

fo=—0V- {n@n —I|n\] :
]

Using the quotient rule on this equation gives

e [ (5 () ) (8 9) vl

(3.6)

The latter conservative formulation of capillary forces differs from the non-conservative
form of eq. (3.5) by the two additional terms in eq. (3.6). The numerical simula-
tions of free surface flow with FS3D conducted throughout this project are carried

out using the conservative approach of Lafaurie et al. (1994).

28



CHAPTER 3. NUMERICAL APPROACH

3.4.2. Numerical Implementation of the Surface Forces

As mentioned previously, the calculation of the flow variables inside the VOF code
is based on the MAC method. Thus, the spatial discretization of these parameters
occurs on a staggered grid inside each control volume. Therefore, the pressure p
and the volume fraction f are saved in the cell’s centroid, whereas the velocity com-
ponents u,v,w are stored on the cell’s face and the normal vector n at the corner

of the volume element dV = dx dy dz (cf. Figure 3.4).

Surface forces fg ; ;, are also calculated inside the cell centroid for the three
directions in space. Therefor, a conservative model of Lafaurie et al. (1994) is
applied solving the Navier-Stokes equations using staggered finite differences on a
MAC grid for spatial discretization and a split-explicit time differencing schema.
For it, normal vectors are necessary derived by averaging the normal vectors from
the corners of the control volume. These normal vectors at the corners are cal-
culated as n = V f using the marker function f with respect to the 27 adjacent

cells.
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Figure 3.4.: Staggerd alignment of the flow variables according to the MAC method.

3.4.3. Parasite Currents

A problem during numerical calculation of free fluid surfaces are 'parasite currents’.
These unavoidable flows are a result of the locality of the method of Brackbill et al.
(1992) and Lafaurie et al. (1994) since curvature xr and normal vector nr are calcu-
lated insufficient at the interface. Therefore, these imprecisions cause non-physical

effects which may deform a bubble or even cause disintegration. Even a macro-
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scopically static bubble is surrounded by a small amplitude velocity field due to
the slight unbalance between the stresses at the sites in the interfacial region. Such
parasitic currents are absent on flat interfaces parallel to the grid axes or make a
45° angle with them. However, they are found for a generic orientation of a flat
interface with respect to grid direction inducing artificial swirls at the interface of
the bubble. In general parasitic currents scale with surface tension and viscosity.
As could be shown by, e.g., Lafaurie et al. (1994); Scardovelli & Zaleski (1999)
using dimensionless analysis, the maximum velocity around a bubble of radius R is
determined as u,. = C o /n,; with C being the dimensionless magnitude. Numerical
experiments based on empirical approaches verify this law with C' ~ 10~2. Lafau-
rie et al. (1994) further found a proportionality between the dimensionless radius
R/R, (R, = pgv3/o) and the Reynolds number based on parasitic current velocity
and bubble size Re,. = u,.R/v. Here, R, characterizes the capillary-viscous length
scale of the fluid. With increasing Re,. number the fluctuations of parasitic cur-
rents will increase as well eventually causing the interface to disintegrate. Instead,
for very small values of R/R, capillary effects should be negligible so that parasite

currents cause little effect since the dynamics are controlled by viscous forces.

Lafaurie et al. (1994) were able attenuate parasite currents by smoothing
the volume fraction f. The smoothing was realized by a repeated application of
a Laplacian filter to finally reduce the amplitude of parasite currents by a factor
of 2 or 4. Instead, FS3D uses a quadratic smoothing method to attenuate para-
site currents. Furthermore it was found that even the grid resolution applied for
numerical simulation of liquids strongly influences the magnitude of physical im-
precisions. Reipschléager et al. (2002) and Koebe (2004) performed quantitative
experiments investigating the temporal evolution of the kinetic energy inside the
computational domain regarding the grid resolution. They were able to approve a
relationship between parasite currents and grid resolution, but could not observe a
specific trend. Concluding, a concrete prediction whether or not parasite currents

scale with grid resolution is not possible.

In general, parasite currents appear for systems of high surface tension and
high density discrepancies. This is especially significant for droplets of small ra-

dius, when the surface tension is large compared to its viscosity (Scardovelli &
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Zaleski, 1999). In such cases either the capillary number Ca = p|u| /o is small or
the Laplace number La = gpR/u? is large, respectively. According to numerical
experiments there were no physical instabilities found for small Ca and moderate
La. The only troublesome effect were parasite currents. Instead, if the La increased
even parasite currents grow as well and could even become large enough to destroy

the interface. This behavior is explained by the relationship between Re and La as
La = 100 Rey, .

In practice, parasite currents turned out to be significant in computation when
La ~ 10°. This is approximately the value for droplets of 1 cm in diameter mark-
ing the minimum size of droplets to be accurately simulated. Since our study deals
with droplets of about 2.2 ¢m and lamella of about 4 cm in diameter in numeri-
cal simulation of the disintegration process, parasite currents need to be rated by
comparing surface tension and inertia. At small Weber numbers, We = p,u?,,d/o,
capillary tension dominates inertial phenomena. Since this happens for smaller
droplet diameter, parasite currents may have an influence on the deformation pro-
cesses during simulation in an SWL. Here, the Weber number is less than We < 10
(see Chapter 5.2). However, in case of an ultrasonic standing wave field the energy
input of the ultrasonic field into the system is dominant. Especially for the disinte-
gration of a continuous liquid strand, Weber numbers of We > 60 are achieved, so
that parasite current should be of no importance. For more details about parasite
currents and possible solution see Rudman (1998); Jacqmin (1996); Meier et al.
(2000) and Jamet et al. (2002).

3.5. Coupling of the Numerical Tools

To consider the force input of the ultrasonic field on the disperse phase, a coupling
of the numerical simulation tools is necessary. Therefore, the VOF method for
simulation of the free surface flow is extended by source terms. These source terms
act on the liquid phase boundary modeling the momentum flux of the oscillating
sound field on the disperse phase. The basic approach of modeling the surface
forces are the jump conditions introduced in Chapter 2.4. The main assumption
of this approach is that the acoustic forces solely act on the liquid surface because

of the huge acoustic impedance between gas and disperse phase. Therefore, only
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an insignificant amount of the ultrasonic field impinges into the liquid phase. This
approach is proven by numerical simulation of pressure and velocity fields including
a liquid obstacle. Finally, back-effects of the disperse phase onto the sound field
are neglected in terms of the continuous strand disintegration. In case of the
deformation of liquid droplets the interaction between drop and ultrasonic field
could be studied using Fluent. Therefor, sound fields disturbed by a liquid obstacle
are read into FS3D. Further interactions between sound field and disperse phase

varying the ultrasonic field inside F'S?D have not been realized so far.

3.5.1. Modeling of the Interfacial Source Terms

undisturbed momentum flux
A - velocity field =
- - " dA P =pn + pu(u-n)

(a) (b)

Figure 3.5.: a)  Schematic profile of the normal component of the
relative  velocity u  inside  the  continuous  phase  ver-
sus the mnormal distance r to the interface T'(¢).

b) Momentum flux through a face dA parallel to the interface.

Ultrasonic forces acting on the liquid surface are taken into account by a one-
way coupling of the two numerical methods. For this purpose, additional interfacial
source terms are incorporated into the momentum jump conditions, which model
the flux of momentum into the liquid due to acoustic forces. Pressure and velocity
fields needed for the computation of source terms are obtained from the compress-
ible flow computations with CFX or Fluent, respectively. Initially, back-effects of
the dispersed phase onto the sound field are neglected. More precisely, the following

approach is used for calculation of the interfacial source terms (cf. Figure 3.5 a&b).

32




CHAPTER 3. NUMERICAL APPROACH

If the back-effects are small, the velocity inside the gas phase relative to the liquid
phase will change within a thin boundary layer from zero at the interface due to
no-slip conditions to values that equal those in an unperturbed situation at points
close to the interface. Since dissipation inside the gas phase is negligible because
of small viscosity, the momentum flux across the phase boundary is approximately
given by the flux of momentum through the slightly shifted face that is situated
in the gas phase parallel to the original one. Thus, he resulting momentum flux is

given by the acoustic pressure
P=pn+p(u®u) - n=pn+u(u-n).

Because of the high inertia of the liquid phase compared to the gas phase, droplets
do not instantaneously react on every oscillation within the gas phase. Therefore,
the force density can be calculated by taking time-averages over an acoustic cycle,

1.e.

P =pn+ pu(u-n) (3.7)
with the mean value of a quantity ¢ given by ¢(t, z):= % :+T o(s,x) ds, with ap-
propriate T' > 0. These time-averaged pressure and velocity values are calculated
during the CFD simulations of the sound field with CFX or Fluent, respectively.
The average density of the momentum flux is then incorporated as a source term
on the right-hand side of the second formula in (2.13). Furthermore, because of
different grid resolutions, the flow fields obtained in two dimensions assuming rota-
tional symmetry are interpolated and transformed to Cartesian coordinates, before

being read as source terms into FS3D.

3.5.2. Numerical Implementation of the Interfacial Source

Terms

The assumptions derived in Section 3.5.1 characterize the impact of the ultrasonic
field on the disperse phase as an averaged momentum flux through a face parallel
to the phase boundary. Therefore, the ultrasonic force needs to be added onto the
overall balance of forces at the interface. Hence, surface forces need to be trans-

formed to volume forces acting inside the transition area of the phase boundary.
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According to eq. (3.7) the term pu ® u displays a symmetric matrix with entries

for the three coordinates in space:

puw  puv  puw Ng
pu®u-n = < puv  pvv  prw > Ty )
puw  pYW  PUWW n,

where u,v and w denote the components of the velocity vector u with respect to
the Cartesian coordinates in space z,y,z and (-) the time average. The components
required for the calculation of the symmetric matrix are derived in conjunction with
the pressure p inside the CFX and Fluent-code, respectively. Since ultrasonic fields
are calculated assuming rotational symmetry, averaged data fields pu, u,,pu ., and
pu,u, need to be transformed to Cartesian coordinates, before being read as source
terms into F'S3D. For the simulation of droplet deformation and strand disintegra-
tion the coordinate system is chosen in such way that the z-axis of CFX or Fluent,
respectively, are congruent with the setup in £'S3D. Further, the calculation domain
of the droplet is made up of two symmetry planes (zy- and zz-plane), whereas the
simulation of the continuous strand disintegration requires one symmetry condi-
tion as the xzz-plane. Therefore, the center of a simulated droplet is located on the

z-axis (cf. Figure 3.6).

In case of droplet deformation and strand disintegration the chosen symmetry

causes the six entries of the symmetric matrix to be

puu = Pugly
puv = Py - Y
pUW = PUgly - 2
pUU = PUly - Z,f_;
pUw = Pl - Y
pWW = PUrUy - i_z )

with r = 7(y, 2) = (y> +r?)1/2

The force fy; ;. due to surface tension is calculated in F'S3D inside the center of
a grid cell (Section 3.4.2). Likewise the calculation of the source terms is done for
the cell’s center. Therefore, according to Figure 3.4 the normal vectors need to be

interpolated from the corners of the grid cell to its center. Thereby, the normal
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(a) CFX / Fluent (b) FS3D

Figure 3.6.: Position of the interpolation and symmetry areas in CFX/Fluent and
FS3D.

vectors point in the direction of the phase with f = 1. Therefore, in case of the
simulation of the disperse phase in air these vectors point into the liquid phase.
Concluding, the source terms f inside the cell’s center of the grid cell 4, j, k for

the three coordinates result as:

fo. =P ne| Vf| + (PUT Ny + PUD Ny + pUw ) |V f|
ny :ﬁncylvf| + (,ou_v Uz +pv—vncy + pvw ncz) |Vf|
fo, =D ne:|Vf| + (PUW ney + pOW Ny + pww ne.) |V f]

The mandatory transformation of surface forces into volume forces is done by
multiplication with |V f|. The values of n.|V f| = V f with respect to the required
grid cell are also needed for the calculation of the normal vector. Therefore, they are
already calculated in a subroutine of FS3D. Finally, the source terms are added to
the corresponding surface force of each local coordinate. In case of the x-coordinate

for cell (4,7,k) it results:

fstx = fsta: + fo

For the y- and z-coordinate corresponding equations occur.
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4. Ultrasonic Standing Wave Fields

The acoustic denotes the propagation of local density fluctuations in a medium as
sound. Thereby, it is does not matter if this medium is a fluid, specifically meaning
gas or liquid systems, or a solid. According to the frequency spectrum sound is

separated into:

subsonic noise: frequency domain of 0.01 Hz - 15 Hz
acoustic noise: frequency domain of 16 Hz - 20 kHz
ultrasound: frequency domain of 20 kHz - 10 GHz
hypersound: frequency domain of 10 GHz - ~10 THz

The propagation of sound waves occurs in solid media as longitudinal or transver-
sal waves. Instead, elastic thrusts are missing in fluids which are necessary for
the transfer of transversal waves. Therefore, in liquids and gases only longitudinal

waves are found (Meyer & Neumann, 1979).

Ultrasound is generated by mechanical sound generators like whistles, sirens,
electro-magnetic, and piezo electric transducers. Because of ultrasound having of
comparable short wave length - smaller than 20 mm in air - focusing of its energy
is relatively easy. This leads to high local sound intensities including magnificent
energy densities. The technical benefit of ultrasonic fields is based on especially

this high energy density.

The applications of the ultrasonic technique are principally subdivided into three

parts:

e ultrasonic gas atomizer
e ultrasonic capillary wave atomizer

e ultrasonic standing wave atomizer
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The ultrasonic gas atomization is known since the beginning of the 20th century
and successfully used in industry. The process is based on Hartmann’s shock wave
generator. A gas is exited to high frequency oscillations in a resonance chamber
while exposing it to high pressure. Afterwards, the gas is conducted to a molten
strand of the required material resulting in the disintegration of the strand into
droplets. Although the process is highly efficient, it is also characterized by a huge
consumption of gas (Meng, 1997).

During ultrasonic capillary wave atomization an ultrasonic field is generated
by the means of mechanical movements of a piezo ceramic. The liquid to be at-
omized is directly placed on the surface of the oscillation unit, leading to a thin
liquid film on the sonotrode’s face. Subsequently, capillary waves are formed on the
liquid’s surface caused by Langevin’s acoustic radiation pressure. Due to this pres-
sure the film will then disintegrate into single droplets causing an atomized spray
(Pohlmann & Stamm, 1965; Lang, 1962; GieBhammer & Lierke, 1968). Hence, the

process is limited to low viscose liquids or melts having a low melting point.

Ultrasonic standing wave atomizers (SWA) are based on the containerless
disintegration of liquids in the central pressure node of a resonant ultrasonic field.
Therefore, they are even summarized as ”containerless processing”. Their use is
wide spread in industry e.g., as ultrasonic nozzles, humidifier in households, for
the atomization of metals, or the disintegration of polymers. In general, the SWA-
technique is only used for very specific tasks and mainly not optimized for that
application. The ultrasonic field generated in an SWA, which acts on the inserted

liquid and leads to its disintegration, is subsequently discussed in more detail.

4.1. Previous Investigations

The beginning of the SWA-technique is based on levitator experiments extensively
investigated by the European and American Space Agencies, ESA and NASA. They
were interested in containerless processing of samples under microgravity conditions
(Lierke, 1996). In a single-axis standing wave levitator (SWL) acoustic forces bal-
ance an inserted sample against gravity between a sound source and a reflector, if
the applied sound field is strong enough. Using a liquid as the investigated sample,

an increase of the sound amplitude causes flattening and final breakup of the fluid
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(Danilov & Mironov, 1992; Andersen, 1996).

Lierke & Ruckdeschel (1976) realized that this technique could evenly be used
for the continuous disintegrations of melted, liquid metals to produce powders and
pellets. At this early stage of the SWA-technique, Lierke and Ruckdeschel describe
their disintegration process of a continuous liquid strand based on one active, os-
cillating transducer and an opposite static reflector corresponding to an SWL. In
later patents Lierke et al. (1978, 1987) extends this technique to the general use
of arbitrary fluids and additionally converted the static, plane reflector into a sec-
ond oscillating transducer unit. This approach further more has the advantage of

the sonotrodes being self-cleaning by the vibrational movements of both sonotrodes.

Based on these perceptions systematical investigations and developments were
done at the Institut fir Werkstofftechnik (IWT) in Bremen. The research group
of Bauckhage et al. focused on the investigation of metals and glasses (see Reich,
1995; Li, 1996; Andersen, 1996; Meng, 1997), but also expanded the SWA-technique
from liquid metals to highly viscous materials. For this purpose, the acoustic energy
density inside a central pressure node was increased by the application of concave
sonotrode end faces during the 1990th resulting in an improved disintegration of
liquids (Bauckhage, Schreckenberger & Vetters, 1989).

Especially Li (1996) extensively characterized the ultrasonic field in an SWA
qualitatively and quantitatively. Using the non-linear wave theory Li (1996) was
able to explain the appearance of sound waves: For waves having an finite ampli-
tude the propagation velocity depends on the instantaneous velocity u(z,t) and on
the medium (characterized by isentropic exponent k). Therefore, it might happen
that the wave front having a positive particle velocity - propagating faster - passes
the one with a negative particle velocity. Thus, a deformation of the wave front
results which itself depends on the distance to the sound source. Sutilov (1984)
characterized this typical form as tooth-like and the corresponding wave as a shock-

wave.

The deformation of sound waves caused by higher harmonic oscillations is
equivalent to the description of Li (1996). Beside the fundamental frequency w,

depending on the sonotrode movement, higher harmonics occur. These intensify
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during the propagation process at the expense of the fundamental noise. Li (1996)
stated that there is a broad theory about the appearance of shock waves to predict
their occurrence. Instead, an explicit mathematical solution of these shock-waves
based on sound characteristics is so far not possible. Li (1996) was able to approve
these theoretical approaches by measuring the pressure field in an SWA regarding
the non-linear effects of the sound field. He found almost sinusoidal oscillations
near the sonotrodes face having the exiting frequency of the transducer. Increasing
the distance to the sonotrode leads to a strong deformation of these waves with
higher harmonics getting more dominant. Concluding, Li (1996) described the ul-
trasonic wave field as the sum of two standing waves depending on the fundamental

frequency w; and the frequency ws of the first higher harmonic wave:
p = p1(x) sinwit 4 py(x) sin 2wot

However, Li (1996) only used this perception for a better understanding of the

SWA-technique instead of deriving models describing the disintegration process.

4.2. Theory on Sound Acoustics

Acoustic sound fields are of strong non-linear nature. Their sound waves are rather
divergent having a finite width with the amplitude varying over the acoustic beam
cross section and continuously decaying on the beam edges. Instead, the ultrasonic
piston of an acoustic resonator is often theoretically simplified to generate plane
waves. These are assumed to be an uniform ”top hat” wave with abruptly decaying
amplitudes at the edges of the wave. This approach is mainly used in literature

and subsequently presented in more detail.

4.2.1. Linearization of the Wave Equation

Sound waves are characterized by spatial and temporal fluctuations of the density

p, the particle velocity u, and the pressure p around a constant value:

p = po+ p~
u=1uy+u. (4.1)
p="rotDp~-

Here, pg, ug, and pg denote the constant values of the fluid in equilibrium. The
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variable quantities of the sound field are indicated as excess density p., velocity
u., and pressure p_. Notice also, that the sound-particle velocity needs to be dis-
tinguished from the sound-propagation velocity of the ultrasonic field. The latter
one depends on the specific propagation medium and, therefore, the sound speed
in air becomes 343 m/s at standard conditions. The fundamentals of sound prop-
agation are the transport equations of mass (2.5) and momentum (2.7) previously

discussed in Chapter 2.

For linearization of these basic equations fluctuations of the physical quanti-
ties are assumed to be small compared to the quiescent state (Meyer & Neumann,
1979). Therefore,

Ap <<py and Ap << pg

needs to be valid. In this case the non-linear terms of the transport equations
can be neglected, if further more losses caused by dissipation are unconsidered.
Hence, the viscosity stress tensor 7, the convective acceleration (uV)u as well as
the non-linear fraction of the local acceleration cancel out. Inserting eq. (4.1) into

the resulting transport equations leads to the following expressions:

%pN + podivu =0,

The vector of the velocity can be expressed by a scalar quantity, introducing a

velocity potential as u = V. Therefore, the continuity equation becomes

0 . 1 dp.
P~ + podiv(Ve) =0, Ap= P

= _ 4.2
ot Lo ot ’ ( )

and the momentum equation can be displayed as

0 Op
Vi~ = po (V) pr=poyr

In order to solve the mathematical system, a correlation is necessary describing
the interrelationship between pressure and density. Assuming state changes in an

ultrasonic wave proceeding very fast and, therefore, temperature adjustments with
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the environment not taking part, the isentropic equation can be used:

P (ﬁ) '

Po Po
Here, the isentropic exponent x = ¢,/c, denotes the relationship between the spe-
cific heat capacity at constant pressure and constant volume. Because of the density

being a function of pressure, the derivation dp/0t can be expressed as follows in

the mass balance:

dp _ (Op\ Op
ot \op), ot
By differentiation of the impulse equation, the derivation dp/dt results as
op Py
ot~ Mo
Inserting these two equations into the mass balance (4.2) leads to the fundamental

wave equation in acoustics

19%
o’

having the propagation velocity of an infinite small amplitude

@ = (@) |
op)

The speed of sound ¢ can finally be calculated using the ideal gas law, pV=RT /M,

(4.3)

including the gas constant R and the molecular weight M as

co = VkKRT .

If the velocity potential is only based on one coordinate, the wave equation mirrors
the plane wave solution of an ideal, one-dimensional wave. This solution arises
from the classical model of Kundt’s tube. For this purpose, it is assumed that the
diameter of the tube is clearly smaller than the exited wave length. This is the

basic equation used for the description of propagating waves in acoustics.

Regarding specific boundary conditions one solution of eq. (4.3) is the sinus

function. Therefore, problems based on the linearized approach can always be
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ascribed to the sinus function. This is the attempt generally used in literature to
calculate ultrasonic fields and, therefore, comparing results achieved during this

project with data from different groups is difficult.

4.3. Plane Waves of Small Amplitude

Sound waves are assumed to be monochromatic waves whose quantities are entirely
an ordinary function of time. If the sound generator is oscillating with an angular

frequency w, the velocity potential derives in a complex formulation,

oz, t) =R {goo(x)em} ,
with R denoting the real part and ¢o the amplitude of the velocity potential at
t = 0. Inserting this term into the wave equation (4.3), the so called one-
dimensional Hemholtz equation results:

D?po()

—5z T k*po(z) = 0. (4.4)

Here, k = w/cy denotes the wave number including the angular frequency w. A
special solution of eq. (4.4) for a wave propagating in positive x-direction and

having an initial phase of zero is

0(2,t) = Pmaze’ @ ) and

(4.5)
o(x,t) = Omaz sin(wt — kx) , respectively,

with ¢4 as the maximum amplitude of the velocity potential and z as the dis-
tance of the propagating wave from its source. Further, the angular frequency w
can be derived in dependency of the sound frequency f as w = 27 f. The local
phase change of the wave of 27 proceeds on a distance of A = ¢/ f, with A denoting

the wave length.

Because of the linearization of the equation as described previously, it is only
exactly valid in case of sound waves of infinitesimal small amplitude. Instead, real
sound waves are of a finite amplitude which can build up due to resonance phe-
nomena. As pointed out by Lierke & Grofibach (1983), especially nonlinear effects
have an important impact on the disintegration process in an ultrasonic field. Ac-

cording to Lierke & Grofibach (1983), there is a strong influence of nonlinear effects
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on the sound field for acoustic Mach numbers (Ma) > 1072, with Ma giving the
ratio of linear velocity and sound velocity in a fluid (Ma = u4./c0). As could
be calculated in numerical simulations of a 45 ul. droplet in an ultrasonic standing
wave levitator, Ma = 2.8 - 1072 at a transducer amplitude of 5.21 ym results (see
Chapter 5 for more details). Therefore, non-linear effects do have an important
impact on droplet deformation as well as on strand disintegration. Hence, mass
and momentum balance have to be solved regarding the nonlinear terms of the

sound field to quantitatively describe the atomization processes.

4.4. Plane, Standing Waves of Small Amplitude

If two plane waves propagate opposite to each other having the same amplitude and
frequency in a boundless environment, a standing wave results. Mathematically,
such a standing wave is defined as the sum of two waves propagating in positive
and negative direction. In one dimension, the following equation results according
to eq. (4.5):

o(x,t) = ¢y sin(wt — kx) + o sin(wt + kz)

A special aspect about standing waves is the temporal fluctuation of the acoustic
properties with respect to their spatial position. These acoustic properties are

subsequently discussed for plane, standing waves in a restricted area.

4.4.1. Oscillation-Reflection Unit

For experimental as well as numerical investigations of droplets in an ultrasonic
wave field, ultrasonic standing wave levitators are used. This setup consists of
an active, oscillating transducer and a reflector. As a first approximation this
oscillation-reflection unit can be described by the classical model of Kundt’s tube.
Therefore, it is assumed that the reflector is made up of a sound inert material, i.e.
having a huge sound resistance. Further, the transducer has to conduct a purely
sinusoidal oscillation with an amplitude of Yy and the angular frequency w. The
generated sound waves are assumed to be plane waves and, therefore, in this spe-
cific case the diameter of the sonotrode has to be smaller than the wave length. In

reality, the sonotrode employed is 35 mm in diameter, whereas the wave length of
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the sound is about twice as small having approx. 17 mm.
For an ultrasonic standing wave in a restricted area the following boundary
conditions apply in case of Kundt’s tube:
P(z=0) = Yosin(wt) and @u=r) =0, (4.6)

with L denoting the distance between the sonotrode’s surface and the resonator,
and Y, the oscillation amplitude in comparison to its rest position. According to

Arsenin (1968), one solution of this set of equations is

oz, t) = = Ok:L sin(L — z) sin(wt) (4.7)

using the boundary conditions as displayed in equation (4.6) on the fundamental
wave equation (4.3). This latter equation (4.7) mirrors the typical shape of a

standing wave having oscillation nodes and anti-nodes. But the sound amplitude

Yo
sin kL

between sonotrode and reflector. For values of

is not solely based on the acoustic source. It also depends on the distance L

kL =nmr (n=123,..) or L=n\/2, (4.8)

respectively, it gets infinite. This case is called the resonance condition or L being

the resonance length L,.

4.4.2. Twin-Oscillation Unit

The experimental setup used for the disintegration in an ultrasonic standing wave
field consist of a second, active transducer instead of a reflector. Thereby, it can
further be distinguished if both transducer units oscillate with the same frequency
or if there is a frequency shift between them. Mathematically, the latter condition
is a special case of the first one. Additionally, it is distinguished between sonotrodes

which oscillate in phase or with a phase shift.

Sonotrodes Oscillate in Phase

If both transducer units oscillate without any phase shift, the following bound-

ary conditions need to be employed:

P(z=0) = Yisin(wit) and @=r) = Yaosin(wst) . (4.9)
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The solution of the wave equation (4.3) regarding the latter boundary conditions
(4.9) will than result in

Y,
sin k’zL

sin(L — z) sin(wyt) +

sin (kox) sin(wot) .

(4.10)

1
t) =
(,0(17, ) sin le

Obviously, both addends mirror a single standing wave. This is based on the fact
that a sound source acts as a rigid reflector for an opposite transducer unit, although
it is itself performing constant oscillations. If the transducers are operated with a
frequency shift, beats will occur resulting in a periodic oscillation of the amplitude
of such beats. This amplitude varies between two extremes: zero (erasure) and
2 - Y (summation), with an angular frequency of Aw. Therefore, the resonant
lengths will be found at L,; = nA1/2 and L, > = nXy/2. Simplifying, the average
wave length is used more generally to determine the overall resonance length of
the system. Hence, the mean resonance length L, implying a ceratin quantity of

pressure knots N, is calculated as

L. =N, @) — N, - (é) . (4.11)

Further more, if both transducers oscillate with the same amplitude and frequency,

equation (4.10) can be simplified as

. L
QO(.TJ&) = m Sll’l(u)t) COS ]{3(5 — ZE) .

For this special case, the condition for the resonance length can be derived as

L= (2N, —1)- (%) = (2N, — 1) - (%) . with Ny =1,2,3, .. .

Therefore, only for distances between the sonotrodes’ faces with an odd multiple of
half the acoustic wave length, maximum pressure amplitudes are found. Further on
it can be concluded, that only conditions having an odd number of pressure nodes
and an even number of pressure anti-nodes, respectively, can be derived (cf. Fig-
ure 4.3).
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Sonotrodes Oscillate with a Phase Difference

Instead, if both transducers oscillate with a phase shift of 27, the following bound-

ary conditions result:
P(z—0) = Yisin(wit) and @E_r) = —Yssin(wst) . (4.12)

The solution of the wave equation (4.3) regarding the latter boundary conditions

(4.12) will than result in

sin(L—x) sin(wt) — sin(kqz) sin(wqt) . (4.13)

1 2
t p—
#l.1) sin ky L sin koL

For the special case of equal amplitudes and frequencies of both transducers, equa-

tion (4.13) can be displayed as
L
sin(wt) sin k(E — ).

ple,t) = sinkL/2

Thus, the condition for the resonance length derives as
L.=Ng-A=N,- G) . with Ny =1,2,3, .. .

Concluding, maximal pressure amplitudes result for resonant distances of even mul-
tiples of the wave length. Consequently, just pressure fields with an even number

of pressure nodes can be generated.
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4.5. Experimental Measurement of the Ultrasonic
Field

4.5.1. Experimental Setup of the Pilot Plant

The experimental investigations performed are done at a pilot plant of an ultra-
sonic standing wave atomizer of the CTB as established by Mattern (1998). The
generation of the ultrasonic field is done via a frequency synthesizer of the Bran-
son company. This synthesizer drives a piezo ceramic with an almost constant
frequency of about 20 kHz. The piezo ceramic transforms electrical energy into
mechanical movement. The generated amplitude at the ceramic is extended by
a booster, attached to the piezo, and a following sonotrode. This overall system
is called transducer unit generating amplitudes at the sonotrode’s end face up to
125 pm. The maximum amplitude is adjusted by the synthesizer and is kept con-
stant via capacity control. The resulting system made up by the generator and
the transducer unit is limited to a certain frequency which can only be varied by

exchanging the piezo ceramic.

To extend the sound intensity two opponent transducer units are used (Fig-
ure 4.1). Both transducer units oscillate at a fixed frequency and parallelly act as a
reflector for the opposite sonotrode. According to eq. (4.11) resonance is achieved
at distances L, of 25.7 mm for a 3-node field and of 42.9 mm for a 5-node field
assuming an average sound frequency of 20.05 kHz, a sound velocity of 343.71 m/s,
and plane sonotrodes. Both transducers are operated with a distance of half the
acoustic wave length in order to achieve an odd number of pressure nodes (see Sec-
tion 4.4.1). This setup allows the injection of polymer melt into the central pressure
node causing an almost circular lamella and less fouling of the sonotrodes’ faces
due to acoustic streaming (see Section 6.3). These calculated resonance lengths
need to be corrected because of the nonlinear nature of the sound field and the

concave shape of the employed sonotrodes.

To further more improve the energy density between the sonotrodes, con-
cave sonotrode faces are used. These concave shaped surfaces cause focussing of
the emitted sound waves and, therefore, an energy increase in the central pressure

node. Empirical investigation of Gazka (1994) show an increase in the pressure am-
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plitude inside the central pressure node of up to 100 %. This influence of sonotrode
shape on the pressure distribution and, hence, on the disintegration process is dis-

cussed in Section 4.7 in more detail.

Finally, to impress an impulse on the trajectory of the generated particles
in the sound field the sonotrode angle « is varied according to Figure 4.1. This
impulse causes an acceleration of the generated particles out of the sound field
in order to minimize fouling of the sonotrodes. Fouling generates bulky particles
which separate from the sonotrode’s face and, furthermore, an undesired shift in
the sonotrode’s amplitude due to building up an additional layer on the sonotrode’s

face.

Sonotrodes used for the operation of the pilot plant and subsequently used for
experimental investigations do have a concave face with a diameter D of 35 mm.
The concave shape is made of a countersink having a radius of curvature R, of
35 mm resulting in a spherical calotte of 4.7 mm. Therefore, the adjusted optimal
resonance distance X for a 3-node pressure field is experimentally found at 19 mm
and at 38 mm for a 5-node pressure field (Mattern, 1998). This corresponds to an
inner distance X; of 28.4 mm and 47.4 mm, respectively. The same approach is
used for deriving the optimal distance used for droplet levitation. For investiga-
tions in levitator experiments an optimal distance of L, = 25.7 mm is calculated
according to eq. (4.8) for a 3-node pressure field resulting in an adjusted distance

of X = 23.3 mm and X; = 28 mm, respectively.
X

Figure 4.1.: Definition of the sonotrode distance X, the inner distance X;, and the

sonotrode angle a between two transducer units.
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4.5.2. Interferometric Investigation of the Ultrasonic Field

Experimental measurements of the acoustic field between two sonotrodes have
been performed with a Mach-Zehnder interferometer (Zeiss Com.) at the ITLR
in Stuttgart. This tool detects the retardation of a light beam along an optical
path crossing the acoustic field compared to a reference beam. Hence, this tech-
nique allows for the measurement of integral densities along optical paths in a
non-invasive manner. In particular, Mach-Zehnder interferometry is useful for an
efficient qualitative characterization of acoustic fields. Figure 4.2 shows several
interferometric photographs of the acoustic field in an SWA with concave surface
faces for different sonotrode angles and distances. Because density fluctuations in
an ultrasonic sound field occur on very short time intervals, only averaged density
differences are visualized if a continuous light source is used. The dark regions next
to the sonotrodes are caused by high local temperatures. These hot spots occur
because the sonotrodes heat up during operation. The photographs in the first row
of Figure 4.2 show ultrasonic fields at an optimal resonance distance of X = 19
mm for 3 pressure nodes and of X = 38 mm for 5 pressure nodes with in-line
oriented sonotrodes. Because of the concave shape of the sonotrodes’ end faces,
especially the outer pressure antinodes are deformed. What results for a 3-node
field is an almost homogenous high pressure gradient inside the central pressure
node. In radial direction this area of high gradient covers about three quarters
of the sonotrodes. For a 5-node field, ellipsoidal contours of the central pressure
antinodes between the sonotrodes reduce the region of high pressure gradients. Be-
sides higher pressure field amplitudes, this might be responsible for the smaller size
of the particles generated in a 3-node field at the same amplitudes and frequencies.
Furthermore, the 3-node field leads to a larger residence time of the polymer in the
area of high pressure gradients. This allows for higher flow rates of the liquid during
disintegration. Increasing the sonotrode angle leads to larger deformations of the
ultrasonic field and to a displacement in radial direction (cf. Figure 4.2). Thereby,
the intensity of the ultrasonic field significantly decreases at larger angles. For this

reason the angle is usually chosen to be less than 6 degrees.
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Figure 4.2.: Interferometric photographs of the acoustic field under variations of the

sonotrode angles o and distances X (cf. Reipschléger (2002)).
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4.6. Numerical Simulation of the Ultrasonic Field

In the experimental setup a twin-oscillation unit with transducer frequencies of
19.9 kHz and 20.13 kHz, respectively, is operated at sonotrode amplitudes of 80
pm. For this configuration numerical simulations were performed with resulting
velocity and pressure distributions along the axial direction shown in Figure 4.3. In
this case the optimal distance giving resonance with 5 pressure nodes is computed
as 37.5 mm which matches the experimental value of 38 mm. Moreover, the sim-
ulation captures the complex nonlinear behavior of sound waves causing shifts in
amplitudes at high pressure. Because of the increasing influence of higher harmon-
ics, the flanks of the velocity and pressure profiles get strongly steepened leading to
sawtooth-like profiles. Pressure nodes, which are sharp at low amplitudes, become
wider and diffuse. The calculations are done in 2-D with cylindrical coordinates
assuming rotational symmetry. Further more, all simulations performed regarding

double oscillation units are performed with a sonotrodes angle of zero degrees.
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Figure 4.3.: Numerically computed velocity and pressure distributions at equidistant

time-steps for an SWA.

For acoustic levitation of drops much lower amplitudes are required in order
to prevent the fluid from immediate disintegration. In case of a 20 kHz sonotrode
as an ultrasonic generator and a glass plate as a reflector, resonance is experimen-

tally found at a distance of 23.3 mm, consistent with numerical investigations. For
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sonotrode amplitudes of 5.34 pum, the simulated velocity and pressure distributions
are shown in Figure 4.4. Since the deformed levitated droplet is still rotationally
symmetric, its influence can be taken into account during 2-D computations of the
sound field. Thus, interactions between the liquid obstacle and the ultrasonic field

can be investigated by means of 2-D axial symmetric simulations.
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Figure 4.4.: Numerically computed velocity and pressure distributions at equidistant

time-steps for an SWL.

Figure 4.5 shows resulting pressure and velocity distributions caused by a
45 pl droplet placed into a pressure node as a spherical obstacle. As Figure 4.5
illustrates, the back-effect of a single drop on the ultrasonic field is closely localized
around the droplet, i.e. perturbations of pressure and velocity are small away from
a thin boundary layer. Inside the drop the velocity breaks down to almost zero
because of the large density ratio between gas and liquid. Hence, strong velocity
gradients close to the phase boundary occur. These phenomena coincide with the
assumptions used above to model the gas-liquid momentum flux. This agreement

justifies the chosen approach.

As can be seen in Figure 4.5, the pressure field is not that strongly affected by
the liquid as it retains the same overall structure. The pressure amplitude is some-

what higher inside the droplet. This can partially be explained by the droplet’s
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Figure 4.5.: Numerically computed velocity and pressure distributions at equidistant

time-steps for an SWL disturbed by a levitated 45 pL. drop.

surface tension, since the latter induces a pressure jump Ap at the interface of a
stagnant droplet. The height of this jump is given by the Young-Laplace equation
(2.14). Such a local influence of small obstacles on acoustic streaming was previ-
ously described in the literature (Lee & Wang, 1989; Yarin et al., 1999). Further

remarks on droplets in an acoustic sound field are given in Section 5.3.

4.7. Variation of Operational and Geometrical

Parameters in Numerical Simulation

In general, variables influencing the ultrasonic field are subdivided into four cate-
gories: the ultrasonic generator, the state of the gas phase, the operating conditions,
and the condition of the molten mass. The criteria of their impact is related to
the refinement of the disintegration process since smaller particle do have a bigger
surface while maintaining a constant energy intake into the system. Thus, the ef-
ficiency factor increases with smaller-sized particles (Li, 1996) at constant energy
intake. Within this chapter, mainly the influence of parameter variations on the
sound field itself is investigated and discussed. On the one hand, this will be done

for the geometrical setup causing 5 pressure nodes due to the practical use of this
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setup during experiments. On the other hand, ultrasonic fields of 3 pressure nodes
will be investigated since they are described in literature. Thus, a direct compari-
son of these data with our numerical simulations of the ultrasonic field is possible.
The influence of the condition of the molten polymer, e.g., viscosity or surface
tension, on the disintegration process including resulting particle size distributions

will be investigated in Chapter 6.

Since the frequency of a sonotrode is predetermined by its manufacturing,
frequencies used for numerical simulation are identical with those of the pilot plant
and are not altered. In the experimental setup a twin-oscillation unit with trans-
ducer frequencies of 19.9 kHz and 20.13 kHz, respectively, is used and, therefore,
a beat of 230 Hz results. Such a frequency difference is recommended in litera-
ture (Li, 1996; Bauckhage et al., 1996) to be at least 1% of the original frequency.
According to Schadlich (2001), the maximum pressure amplitude inside a pressure
antinode decreases with increasing frequency of the beat. Consequently, the pres-
sure amplitude inside the pressure node growth. The impact of this behavior on
particle size distribution was experimentally studied by Vestweber (2004) and will

be discussed in more detail in Chapter 6.
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Figure 4.6.: Dependency of the maximum pressure amplitude on time.

The beat of an ultrasonic field is caused by swapping of oscillations having
slightly different frequencies. Therefore, their overall phase shifts slowly result-
ing in maxima and minima which are called beat (Heywang et al., 1992). The

time necessary to pass a single beat period is calculated to be 4.3 ms according to
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T =1/Af (cf. Figure 4.6). Concluding, pressure amplitudes of different simula-
tions to be compared have to be calculated at equidistant time-steps. Furthermore,
since the ultrasonic field needs a distinct time to reach a quasi-stationary state, all
pressure amplitudes numerically generated by simulation of the ultrasonic field are

shown and compared at t = 1 ms.

4.7.1. Variation of the Sonotrode’s Curvature

The concave shape of the sonotrodes presently used was empirically optimized for
an ultrasonic field of 3 pressure nodes by slightly varying the sonotrodes curvature.
For this purpose, various sonotrodes of different curvature were produced and re-
sulting pressure fields were measured. Thereby, an optimal radius of curvature of
35 mm was found causing maximum pressure amplitudes. This procedure is ex-
pensive and time-consuming. In addition, if a 5-node pressure field is generated
using such sonotrodes e.g., to reduce fouling of the surfaces, the previous geometry
provokes no optimal focusing of the ultrasonic field and, therefore, lower pressure
amplitudes. Thus, variations of the sonotrodes’ curvature with respect to the res-
onant distance have been performed in order to improve the overall setup for a

5-node pressure field.

For the geometrical setup as described in Section 4.5.1, the optimal reso-
nant distance is experimentally as well as in numerical simulations found to be
X = 37.5 mm and X; = 46.9 mm, respectively. First, the maximum pressure
amplitude is determined by numerical simulation of the ultrasonic field under vari-
ation of the sonotrode’s curvature keeping this distance constant. For a sonotrode
amplitude of 80 ym maximum pressure amplitudes as illustrated in Figure 4.7 are
found. As can be seen, maximum pressure amplitudes result for a sonotrode cur-

vature of 2.13 mm™! or a radius of curvature R, of 47 mm, respectively.

This result mirrors phenomena known from linear wave theory for mirror-
reflector configurations in optics. For a sonotrode’s curvature of 47 mm the radius
is almost identical to the sonotrodes inner distance (R.; = R.2 = X;). Therefore,
this condition is stated to be a stable position according to Kneubiihl & Sigrist

(1991). The specific constellation is called confocal. Such type of resonator is most
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Figure 4.7.: Numerically simulated maximal pressure amplitude at 80 pum under varia-

tion of the sonotrode’s curvature.

likely used since it is found to have least deflections compared to other reflection
systems and, additionally, is less complicated during adjustment. Whether or not
such a mirror-reflector unit is operated under stable conditions furthermore needs
to be determined by stability criteria (Kneubiihl & Sigrist, 1991). As a rough rule,
the line between the two radii of curvature and their centers has to overlap in
order to establish stable conditions. This is true for all investigations performed

in numerical simulation of the system as well as in experiments with the pilot plant.

Further, the distance between the opposite sonotrodes is adjusted for each
curvature to achieve the optimal distance, i.e. the distance causing the maximum
pressure amplitude. As can be seen in Figure 4.8(a), the distance X; is shifted

inwards with decreasing curvature in order to obtain the maximum pressure am-

plitude (Figure 4.8(b)).

The observed trend is not congruent with effects known from optics, but
justifies observations made by Gazka (1994) during the measurement of sound
fields derived with different sonotrodes. If the radius of curvature is reduced, the

focal length F will be reduced as well since
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Figure 4.8.: Dependency of max. pressure amplitude on curvature and resonant dis-

tance.

As the focal length is increasing linearly with decreasing curvature, the sonotrodes
distance should increase as well to reach a new, optimal distance. Supposedly, two

concurrent effects are observed here: Less curvature will cause a higher energy loss
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due to scattering of the ultrasonic waves, whereas a decrease of the sonotrodes’
distance will cause less energy loss. These two effects will superpose and cause the
trend displayed in Figure 4.8. This points out that ultrasonic standing wave fields
are not based on linear wave theory and, therefore, cannot entirely be explained

by linear correlations.

4.7.2. Variation of the Sonotrode’s Diameter

An extension of the sonotrodes diameter and, therefore, of the radiating surface
should generally cause an increase in the overall pressure amplitude. However, the
optimization of the sonotrodes geometry is limited due to technical feasibility since
the emitted frequency correlates with the sonotrodes mass. Thus, an increase of
the sonotrode’s surface in order to achieve a better disintegration will commonly
be associated with a lower frequency and a lower maximal oscillation amplitude
of such a sonotrode. Nevertheless, numerical simulations are performed based on
the original setup for an ultrasonic field of 5 pressure nodes (compare Section 4.6)
under variation of the sonotrodes radiating surface. Therefore, the diameter of the
sonotrodes has been extended from 35 mm to 50 mm and 60 mm keeping their

curvature and distance constant.
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Figure 4.9.: Numerically simulated pressure amplitudes caused by different sonotrode

diameters at a sonotrode amplitude of 80 pm.
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As can be seen in Figure 4.9, a significant increase in the overall pressure ampli-
tude can be observed in numerical simulation of the acoustic field with increasing
sonotrode diameter. Since the acoustic field needs a longer time to reach a quasi-
stationary state in case of extended sonotrode diameters, computed pressure am-
plitudes are compared at t = 2 ms. Additionally, the maximum pressure amplitude
significantly increases at a diameter of 50 mm in comparison to the original setup,
whereas less pressure difference is gained by a further increase of the sonotrode’s

diameter to 60 mm.

In order to operate the SWA with higher frequencies of about 30 kHz, the
sonotrode’s end face as the whole apparatus scale down by about 1/3. Figure 4.10
shows the schematic plot of a 30 kHz SWA in comparison to a 20 kHz oscillation

unit as it is used during this work.
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Figure 4.10.: Comparison of a 20 kHz and a 30 kHz oscillation unit used for atomization.
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It is aspired to use transducers of smaller physical dimensions for desired direct ap-
plications. Further, higher oscillation frequencies do cause higher velocities inside
the atomizer and, therefore, a better acceleration of the generated particles. This
is an important feature if the atomized polymer strand disintegrates into droplets
which do not cure fast enough. By increasing the frequency more air is ingested
into the system from the environment causing the droplets to cool down and cure
faster, respectively. Additionally, the beat of the ultrasonic field shall be vanished
in further applications to avoid impacts on the particle size distribution caused by
that effect. This is achieved by the construction of new electronic amplifiers, which

are able to control the sonotrode’s frequency (Hennig & Hemsel, 2004).

In order to compare results achieved by the 30 kHz transducer with the ones
from the 20 kHz transducer, the mathematical product of the sonotrode’s amplitude
and its frequency is kept constant. Therefore, the SWA made up by two 30 kHz
oscillation units is operated with a sonotrode amplitude of 53 pym unlike 80 pm
for the 20 kHz transducer. The resonant distance X; is found to be 32.5 mm by
numerical simulation of the ultrasonic field. The resulting velocity and pressure

distributions are shown in Figure 4.11.
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Figure 4.11.: Numerically computed velocity and pressure distributions at equidistant

time-steps for an SWA generated by 30 kHz oscillation units.

As can be seen in Figure 4.11, the pressure field is equally distributed between
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the inner pressure nodes. The generated pressure amplitude of those inner nodes
is about 12 % higher than in the original setup (cf. Figure 4.3(b)) and, addition-
ally, the velocity distribution inside the central velocity antinode outreaches the
one from the 5-node pressure field shown in Figure 4.3(a) by about 20 %. The
impact of these sound fields generated by a 30 kHz twin-oscillation unit without a

frequency shift on the disintegration process need to be discussed in future projects.

4.7.3. Variation of the Gas Temperature

The operation of the transducers lead to heating of the sonotrodes and their sur-
rounding as illustrated in Figure 4.2 by interferometric pictures. Therefore, the air
between the two sonotrodes in an SWA will heat up as well causing a shift in e.g.,
viscosity and sound velocity. Further, large sound intensities appearing in an SWA
itself lead to high temperature fluctuations inside the gas phase. Therefore, oscil-
lating pressure and velocity distributions of the ultrasonic field are computed by
solving the Navier-Stokes equations for compressible viscous flows (eq. (2.5),(2.7))

and the energy equation (3.1) since heat flux needs to be taken into account.

This heating of the air caused by operation of the plant is modeled during
numerical simulation of the ultrasonic field by varying affected parameters. The
specific variables are the particular temperature 7, the viscosity p, the thermal
conductivity k, and the heat capacity c, of the gas phase at a certain stage. These
data are extracted from the ” Enzyclopedie de gas” (Table 4.1) and implemented
into the command file of the CFX/-solver.

The coefficient for temperature and thermal conductivity will directly be
inserted into the energy equation (3.1), whereas the specific heat is affecting the
total enthalpy h of the system. The total enthalpy is calculated inside the CFX/-

solver by

1
h:hst+§u2a

with hg as the static (thermodynamic) enthalpy. The transport equation has to
be closed by supplying the constitutive equation, that is, the relationship between

static enthalpy, temperature, and pressure, h = h(t,p). The fluid is assumed
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Table 4.1.: Parameters used to model temperature variations.

Temperature (T) | viscosity (1) | conductivity (k) | specific heat (c,)
(K] [Pas-107% | [(J/ms K)-1079 kJ/kg K|
270 16.96 23.9397 1.005477
320 19.45 27.8536 1.006733
350 20.82 30.0722 1.008407
400 23.01 33.6345 1.011338
500 27.01 40.3782 1.013849

to be thermally perfect, hence, static enthalpy is a function of temperature only.
Therefore, the constitutive equation is given uniquely by specifying the specific

heat at constant pressure, as a function of temperature:

o(T) = (agt) ,

with the reference temperature T,.¢, where the static enthalpy is defined as zero.

The enthalpy reference temperature 7,.; is given the default value of 288 K in
CFXJ. The static enthalpy is then obtained by integrating

T T
hg = / cp(T) dT" — / cp(T) dT" .
0 0

Inside CFX/, the constitutive equation is assumed to have the following analytic

form:
hst = Cp(T)T = Cp(Tres) Trers

where ¢, is an average specific heat, obtained by integrating

2 (T) = % /0 e (T') dT" .

The specific heat is assumed to be a constant, independent of temperature, so that
¢p = ¢p. This value can then be incorporated into the command file of CFX}4. Fi-
nally, the gas viscosity is incorporated into the momentum balance (2.7) by means

of the viscosity stress tensor (2.8).
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4.8. Acoustic Sound Pressure Level

The resulting maximal pressure amplitudes arising at each temperature for a

3-node pressure field are shown in Figure 4.12.
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Figure 4.12.: Calculated maximal pressure amplitudes at different temperatures at a

sonotrode amplitude of 80 pm.

As can be seen, the overall pressure amplitude decreases with increasing sys-
tem temperature. This effect is mainly caused by the higher viscosity of a heated
gas abating the maximal pressure amplitude. Instead, the resonant distance of the
system does not change by variation of the temperature and its affected coefficients.
In reality, even the transducer frequency shifts to higher frequencies with heating
of the system. Therefore, the resonant distance between the sonotrodes need to
be adjusted during operation of the pilot plant. Since this effect has not quantita-
tively been investigated in literature, it could not be accounted during numerical

simulation of the ultrasonic field under variation of the temperature.

4.8. Acoustic Sound Pressure Level

For a qualitative impression of the obtained pressure fields, numerical simulations
in CFX are compared to interferometric pictures as described in Section 4.5.2.
Figure 4.13 shows several interferometric photographs of the acoustic field in an

SWA at different sonotrode distances in comparison to pressure fields calculated
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Figure 4.13.: Instantaneous pictures of pressure fields obtained in numerical simulation

in comparison to interferometric shoots.

As can be seen, there is a good qualitative agreement between numerical simula-
tion and experiment for identical operational conditions. Further, to quantitatively
validate the derived pressure fields, numerical simulation of the pressure field need
to be compared to specific data of experimental measurements of the acoustic field.
For this purpose, the pressure distribution was determined by microphones taking
measurements along the symmetry axis between the sonotrodes (Mattern, 1998).
These microphones are made of piezo ceramics having a diameter of 1.5 mm. Hence,
the measurement itself denotes an essential disturbance of the sound field. There-
fore, Reipschliager (2002) found huge discrepancies between numerically determined
sound pressure levels in comparison to Mattern’s experimental data. Comparing
the maximum sound pressure inside the pressure nodes, Reipschlager (2002) found
pressure amplitudes derived by numerical simulations up to 36 % higher than in

experiment.

Instead, Andersen (1996) and Meng (1997) used a conductor to derive the
pressure level inside the sound field. In general, the technique is called ther-
moanemometry which is based on Wheatston’s bridge circuit. In case of a CTA
(Constant Temperature Anemometer), the temperature of a metal wire inside an

SWA is kept constant. Due to the ambient gas flow of the ultrasonic field alter-

65



4.8. Acoustic Sound Pressure Level

ing the temperature, electricity needs to be supplied to compensate temperature
fluctuations. Therefore, a correlated electric current is measured determining the
sound pressure level. This conductor is about 5 pm in diameter and hardly effects
the sound field. In fact, Andersen (1996) found the deviation of a single set of
data compared to the average value to be less then 5 %. Based on multiple exper-
iments, Andersen (1996) finally developed a mathematical expression describing
the effective sound pressure (p,,s) as the root mean square of the intrinsic pres-
sure. For two active, concave sonotrodes with a radius of curvature of 32.5 mm, a
sonotrode’s diameter of 35 mm, and frequencies of 20 kHz Andersen (1996) derived

the following equation:
Prms = 0.056 - p9 . AT N 064 (4.14)
with the static ambient pressure pg in 'bar’ and the sonotrode amplitude A in pm.

According to Stamm & Purzel (1984), a correlation between an arbitrary
pressure signal p,,,,s and the maximum sound pressure p,,.. of a sinusoidal function

is found:

_ 1/T (1) dt — — (4.15)
pT‘mS T O p \/ipmam .

Hence, combining the correlations of Stamm & Purzel (1984) and of Andersen
(1996) allows a prediction of the expected maximal pressure amplitude inside a
pressure node under given operational conditions. According to eq. (4.14) and
eq.(4.15), the maximal pressure amplitude can be calculated as 88779 Pa for a
sound field of 3 pressure nodes and sonotrode amplitudes of 80 pum at standard
conditions. Numerical simulations of the pressure field using CFX for sonotrodes
with R. = 35 mm and otherwise identical conditions results in a maximal pressure

amplitude of 88702 Pa. Therefore, the theoretical prediction matches the numeri-

cally calculated pressure level very well.
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5. Droplet Levitation

First investigations concerning levitator experiments were done by the European
and American Space Agencies, ESA and NASA, in the early 1970th. For the
containerless processing of samples under microgravity conditions, they balanced
an inserted sample in an ultrasonic standing wave field against gravity (Lierke,
1996). Later on Hohmann et al. (1988) and Bending (1988) found similarities
between the atomization of a levitated single liquid droplet inside an ultrasonic field
and the continuous disintegration of a liquid strand. Therefore, results achieved by
the investigation of single liquid droplets in an ultrasonic standing wave levitator
(SWL) should allow for conclusions of the continuous disintegration process of
polymer melts. Hence, because of the enormous complexity of the continuous
disintegration process, atomization and deformation of single liquid droplets are
investigated in the somewhat simpler system of an SWL. This approach allows for
comparison between experimental data of the deformation process and numerical

results.

5.1. Previous Investigations

The behavior of droplets in an ultrasonic sound field has been a field of interest for
many years. Therefore, numerous experimental and theoretical investigations have
been performed, aiming to understand phenomena and mechanisms occurring in
processes of droplet deformation and breakup. First calculations on linear droplet
deformations were done by Rayleigh (1879a,b) and Lamb (1932) for the inviscid
and weakly viscid cases. More recently, nonlinear oscillation of non-viscous and vis-
cous drops was analyzed by, e.g., Tsamopoulus & Brown (1983), Basaran (1992),
Yarin et al. (1998) and Murray & Heister (1999). Basaran (1992) used the finite
element technique to address nonlinear oscillation of viscous droplets. Based on
the computation of the acoustic radiation pressure, Yarin et al. (1998) calculated

the droplet’s shape by means of the boundary element method. Finally, Murray

67
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& Heister (1999) simulated the unsteady, nonlinear response of a liquid droplet
to an imposed acoustic perturbation using the boundary element method. Lierke
(1996) mainly focused on experimental aspects of droplet levitation. Calculations
based on the linear wave theory were done by Lee et al. (1991, 1994), Trinh &
Wang (1982) and Anilkumar et al. (1993). They recorded droplet deformation
with high-speed cameras until breakup and compared the resulting experimental

data to model calculation.

5.2. Mechanism of the Atomization Process

The dynamics of droplet flattening and breakup have been discussed in several
papers, e.g. Danilov & Mironov (1992); Yarin et al. (1999); Lee et al. (1991);
Anilkumar et al. (1993); Becker et al. (1991, 1994). This was done by theoretical
studies as well as by experimental investigations. In general, three stages are
described in literature including the flattening of the droplet, the growth of small-
scale disturbances at its rim, and the parametric growth of capillary waves on its
surface. In addition, during droplet flattening, two limiting scenarios are identified
by Lee et al. (1991) and Anilkumar et al. (1993) while increasing the sound pressure

level:

i) acoustically big drops (kRs = 0.5) sustain equilibrium beyond a point, by low-

ering the sound pressure level through frequency shift,

ii) acoustically small drops (kRs < 0.3) cannot sustain equilibrium beyond a point,

and expand horizontally suddenly to disintegrate,

where k = 27 fy/cy (co: sound speed in air) is the acoustic wave number and Rj
denotes the spherical radius of the droplet. Instead, for drops of intermediate size,
sudden horizontal expansion can be observed but return to equilibrium. Regarding
the size of a droplet with respect to kR, different geometries will occur during

flattening to final breakup.

Large droplets of kR, 2 0.8 will get unstable during levitation and finally
collapse caused by ”buckling” instability. First, the flattened drop will change

its shape from convex to concave. A dimple will be formed in the middle which
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CHAPTER 5. DROPLET LEVITATION

eventually thins out into a membrane. While the area of the membrane will grow in-
creasing the sound pressure level, the liquid is squeezed to the edges giving a donut-
shaped periphery. Ripples may appear on the central membrane. This membrane
will then suddenly bulge upward while being flattened. Since the thicker periphery
is picking up speed some time later, it is contracted inwards to turn the flattened
drop into a closed shell. The closing marks a violent collision forming liquid jets
which move vertically in both directions. By the jet piercing the outer shell the
complex will smash to pieces. This process is also called ”buckling” instability
(Lee et al., 1991). Smaller droplets may stay stable while ripples appear and emit
satellite drops in both directions perpendicular to the membrane. Therefore, they

return to equilibrium in shifting their frequencies.

The investigation of the flattening and atomization of small drops (kRs; < 0.3)
is most important throughout this study, since droplets generated in an SWA dur-
ing continuous strand disintegration are of the size of a few pum. Therefore, the
following discussion and investigation of breakup phenomena will focus on this type

of droplets.

5.3. Deformation and Breakup Regimes

The deformation and breakup of droplets by aerodynamic forces can be charac-
terized by the Weber and the Ohnesorg number. Here, the dimensionless Weber

number is defined as

2,d
We — Lolral (5.1)

g

where d denotes the spherical drop diameter, u,, the amplitude of the relative
velocity, and the index g gas phase. The Weber number describes the ratio of
aerodynamic (drag) to surface tension forces. If a droplet is exposed to a gas flow
of increasing velocity, deformation starts at Weber numbers of unity according to
Hsiang & Faeth (1992). A further increase in the sound pressure level and aero-
dynamic forces, respectively, will lead to droplet breakup. With respect to the
intensity of the aerodynamic forces, three different disintegration mechanisms are
distinguished: The aerodynamic forces act against the viscose forces inside the

droplet and the surface tension forces. With increasing relative velocity between
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5.3. Deformation and Breakup Regimes

droplet and sound field, the aerodynamic forces affecting the droplet increase as
well until breakup is initiated. The three distinct mechanisms are called bag, mul-

timode, and shear-breakup.

Since Hinze (1955) found that progressive larger disturbances (i.e. larger We)
were required for the onset of breakup as Oh increases, low Oh numbers are desired.

This is because Oh represents the ratio of liquid viscous to surface tension forces:

Hd
Oh = ,
Vopad

where 14 denotes the viscosity of the disperse, liquid phase and the index d the

disperse phase itself. Therefore, viscous forces in the liquid tend to inhibit drop
deformation at high Oh. For a system of small water droplets levitated in air
Oh becomes reasonable small, e.g., for a water drop of 45 pl. Oh calculates as
Oh = 1.8 -1073. Therefore, viscous forces can be neglected during levitation and
atomization of water drops. Instead, in case of the disintegration of polymers
having a viscosity of 0.1 Pas < p < 2 Pas much higher Oh numbers of Oh > 3
result for droplets in the desired range of 50 um.

(a) (b)

bag breakup shear breakup

Figure 5.1.: Breakup mechanism for bag and shear breakup.

The critical Weber number We,,. defines the onset of bag breakup. This stage
is generally found to be at We ~ 10. The bag breakup regime is characterized
by the formation of droplets which separate from a bag-like fluid film. This film

70



CHAPTER 5. DROPLET LEVITATION

expands from the tutorial rim (cf. Figure 5.1(a)). For higher Weber numbers of
We =~ 20 multimode breakup occurs. This stage is characterized by a fluid column
that remains in the center of an umbrella-like film structure. A further increase
in the relative gas velocity leads to the transitional breakup regime which passes
into the shear breakup regime. During the shear breakup mechanism ligaments
are stripped of the rim of a disc shaped droplet. This mechanism is illustrated by
Figure 5.1(b) for We = 70.

In common levitation experiments, the range of large aspect ratios close to
atomization tries to be avoided. Therefore, atomization in an SWL occurring at
law We numbers is most commonly subject to the bag breakup mode. Instead,
during continuous strand disintegration large We numbers are yielded in order to
let the atomization process occur. Additionally, secondary breakup of fragments
stripping of the lamella will be supported. Therefore, the shear breakup stage is
commonly found during disintegration in an SWA. As Lierke (1998) pointed out,
atomization of levitated droplets will be initiated if the Weber number exceeds a
critical range of about We.. = 10. Then, the drop will disintegrate by Bernoulli
forces similar to gas jet atomizers. Even Hohmann et al. (1988) and Bending (1988)
found similarities between the atomization of a levitated single liquid droplet inside
an ultrasonic field and the continuous disintegration of a liquid strand. They point
out, that the mechanism of disintegration is mainly dominated by the acoustic

sound pressure and the Bernoulli stress.

time-averaged
pressure distribution

\4

droplet shape

equator

Figure 5.2.: Bernoulli effect on a levitated droplet.

71



5.3. Deformation and Breakup Regimes

5.3.1. Bernoulli Pressure - Qualitative Characterization

In the context of droplets flattening mechanism, Bernoulli pressure is often cited
as one main reason for deformation: since the droplet acts as an obstacle forcing
the gas flow to go around it, higher velocities at the droplet’s equator lead to lower
pressure here which pulls at the droplet (cf. Figure 5.2). This line of arguments
is not strictly valid due to several reasons. First of all, Bernoulli’s law in its most
common formulation

1 2

5P ull* + 2 + pgz = const (5.2)

~~
g static pressure  hydrostatic pressure
dynamic pressure

is only valid for stationary potential flows, also neglecting dissipation of mechanical
energy as well as density variations. Here gz denotes the body force due to gravity

which acts perpendicularly to the symmetry axis in our situation.

In case of the ultrasonic sound field under consideration, time-averaged vari-
ations in density are negligibly small over an acoustic cycle according to numerical
simulation. Despite of this, especially the strong time-dependence of the oscillat-
ing velocity field rules out the applicability of (5.2). Instead, the time-dependent

version

dop 1 2, P

— 4 = - = const 5.3
o+ gl + 2 4z (53)
of eq. (5.2) has to be used. Here, the constant might in principle depend on time,
but the fact that all flow variables are almost constant at a certain radial distance

leads to the same constant for all ¢.

Now, Lierke (1998) argues that the time-averaged pressure and velocity fields
act according to Bernoulli’s prediction since the drop does not react on every
oscillation of the ultrasonic field. Thus, the uniform velocity between droplet and
gas flow needs to be replaced by the effective value of the periodically varying sound
particle velocity in axial direction. In fact, in our numerical simulations we observe,
firstly, that the rotation of the instantaneous velocity fields reaches only 4 % of the
strength (measured in Euclidean norm) of the corresponding gradient such that the
flow is close to potential flow and, secondly, that maximum gas velocities occur at

the droplet’s equator accompanied by minimal pressure there (cf. Figure 5.3), i.e.
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Figure 5.3.: Contour plot of averaged pressure distributions over an acoustic cycle for

an SWL disturbed by a levitated 45 uL drop.
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eq. (5.3) seems to apply for the time-averaged velocity field. A possible explanation
relies indeed on the different time-scales involved, since integration of eq. (5.2) on
[0, 7] leads to

¢t +T) - o(t)
T

1
Sl + 2+ g2 = + const |
2 P

a relation that closely resembles eq. (5.2) when T is large compared to the fluctu-
ations of the velocity potential ¢. The latter is reasonable if T is large compared

to the ultrasonic time-scale.

These considerations are supported by our numerical results as illustrated by
Figure 5.3. The contour plots show typical distributions of dynamic and static
pressure, time-averaged over one acoustic cycle of 50 us. In hydrodynamics the
sum of dynamic and static pressure is called the total pressure as illustrated in
Figure 5.3(c). Overall, pressure maxima correspond to white regions, whereas the
minima are shown in black. Evidently, the static pressure is larger at the poles, and
correspondingly, the velocities are larger at the equator of the drop. What results
is an impact pressure (Bernoulli pressure) at the poles and a depression (Bernoulli
suction pressure) at the equator. These cause flattening of the drop in the direc-
tion of the alternating gas flow. This effect is in turn intensified by the flattening,
since the latter leads to a larger pressure difference between equator and poles.
As the drop deforms the surface curvature at the equator increases continuously.
This leads to a corresponding increase in surface tension forces that act against
the deformation and, hence, Bernoulli pressure. Therefore, Bernoulli pressure and
restoring forces have an enormous influence on droplet deformation and breakup.
Whether the drop achieves an equilibrium state in which the Bernoulli pressure
is balanced by the surface tension forces depends on the strength of the pressure

forces.

Unlike the common form of Bernoulli’s equation (5.2) the resulting total pres-
sure may still depend on the position. In fact, as can be seen in Figure 5.3(c), the
total pressure has an almost linear axial profile in the region around the droplet.
Despite of this, the pressure minima and velocity maxima at the droplets equator
balance each other locally. This behavior once more emphasizes the narrowness of

the influence of droplets on the ultrasonic field.
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5.3.2. Bernoulli Pressure - Quantitative Characterization

Beside such qualitative studies as performed in Section 5.3.1, numerical simulations
of the correlated two-phase flow allow for quantitative investigations of the effect
of Bernoulli pressure on droplet behavior. For example, for a levitator oscillating
at an amplitude of 5.34 um the maximum velocity of the gas in axial direction
is computed to be Upq= 3.32 m/s (We = 0.77) for an unperturbed sound field,
while it increases to a maximum of w,.,= 17.4 m/s (We = 21.25) at the rim of a
flattened, ellipsoidal 45 plL. droplet (cf. Figure 5.4).

35 : , ; i ; i ; ,

[ | &—< undisturbed ultrasonic field

30H % ultrasonic field incl. a spherical obstacle a
O ultrasonic field incl. an ellipsoidal obstacle

[ ) )
S G
T T

axial velocity [m/s]
[
T

10

amplitude [um]
Figure 5.4.: Amplitude versus calculated axial velocity.

In fact, the Bernoulli pressure can lead to the onset of disintegration. For
the investigated sonotrodes droplet breakup is observed experimentally at ampli-
tudes above 5.34 pm, while numerical calculations based on the corresponding but
unperturbed sound field predict a flattened drop. A threshold for breakup can be
defined by means of a critical Weber number (We,,.) describing the ratio of aero-
dynamic to surface forces. According to Schmehl et al. (2000), the transition from
deformation to breakup is calculated to occur at We.,. = 12 in case of a 45 ul. water
droplet with Oh = 1.8 - 1073 (cf. Figure 5.5), corresponding to a relative velocity

of the gas phase of u, = 13.1 m/s, respectively. Atomization occurs locally if
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5.3. Deformation and Breakup Regimes

the relative velocity at the droplet’s surface exceeds this critical value. In fact,
although the maximum velocity of the gas in axial direction is computed to be
Umaz = 17.4 m/s (We = 21.25) at the rim of a flattened, ellipsoidal 45 pL droplet,
the onset of breakup is already found for values of e = 14.9 m/s (We,, = 15.66).
This value characterizing the transition from deformation to breakup mirrors the
calculated We,, of Schmehl et al. (2000) very well. Consequently, back-effects of
droplets onto the sound field have to be taken into account in numerical simulations

in order to quantitatively reproduce the deformation and disintegration of droplets.

Slightly higher sonotrode amplitudes of 6.47 um already cause a relative ve-
locity of the gas phase of u,q = 33.1 m/s (We = 76.8) in numerical simulation
of the disintegration process leading to a spontaneous atomization of an inserted
droplet. These droplets are exposed to the shear breakup mode. Therefore, the
transition regime from bag breakup to shear breakup is densely close to each other.
Consequently, disintegration mechanisms observed in experiments (Section 5.4) as

well as in numerical simulation (Section 5.5) are of the shear breakup type.
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Figure 5.5.: Breakup regimes (based on Schmehl et al. (2000)).
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5.4. Experimental Investigations of the Deformation

Process

The experiments are conducted in a single-axis standing wave levitator (SWL),
which allows to study the behavior of single liquid droplets in a sound field under

simplified conditions (cf. Figure 5.4).

spotlight

Figure 5.6.: Experimental setup for droplet levitation

This device is made up of an oscillator-reflector configuration at resonance
conditions. A glass plate is chosen as a reflector whose distance to the oscillator can
be varied by a micro-screw. Therefore, a distance of 23.3 mm resulting in a 3-node
field is chosen for levitation (cf.Figure 4.4). Using this oscillation unit, droplets
positioned in the central pressure node can be levitated against gravity. Increasing
the sound amplitude leads to the disintegration of droplets, as shown in Figure 5.7
for an acoustically small one (kRs; = 0.3). Such a water drop is levitated at a fixed
frequency of fy = 19984 kHz, and disintegrates due to a rapid increase of the
sound intensity within a few milliseconds. This highly dynamic process is recorded
with a high-speed video camera at 1000 frames/sec, showing a sequence of events

from flattening via buckling to final breakup of the water drop. If the acoustic
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amplitude increases rapidly, the drop is flattened into a thin lamella by the acoustic
pressure acting on its surface. This lamella then becomes unstable at its rim,
where cylindrical-like ligaments will be separated that immediately disintegrate into
smaller droplets. These droplets will then move radially outwards from the center
of the lamella. This process is similar to the continuous disintegration of liquid
strands by SWA, for which a quasi-stationary lamella develops at the outlet of the
nozzle. This lamella is oriented parallel to the sonotrodes’ end faces, continuously

separating fragments at its rim, which disintegrate into smaller particles.

S F———
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Figure 5.7.: Sequence of deformations of a water drop with kR; = 0.3.

5.5. Numerical Investigations of the Deformation

Process

In order to compare experimental data of the deformation process, recorded by
means of a high-speed camera, and numerical results, simulations of levitated
droplets in an SWL are conducted using identical conditions as in experiments.
As mentioned in Section 3.2, time-averaged pressure and velocity fields of an un-
perturbed sound field are computed with CFX. To simulate droplet dynamics these
fields are read into FS3D to account for source terms at the fluid interface. The
calculations are done assuming two symmetry planes (cf. Section 3.4.2). The nu-

merically obtained evolution of the disintegration of an acoustically small water
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drop is displayed in Figure 5.8.

Figure 5.8.: Sequence of simulated deformations of a water drop with kRs; = 0.3mm.

The computational domain covers a cube of 0.125 cm® having 128 grid cells in
each coordinate direction. The drop is exposed to a rapid increase of the acoustic
amplitude by 50 kPa in order to mirror the droplet breakup conditions used to gen-
erate the pictures of Figure 5.7. Evidently, pictures obtained from the numerical
simulation agree very well with the ones obtained during experimental disintegra-
tion of an acoustically small water droplet. The pressure drop from poles to the
equator of the droplet causes flattening. Since the drop is exposed to gravity it
is slightly buckled, developing an arched shape in its cross section, having a thin
middle membrane and a surrounding large rim. If the drop is suddenly exposed
to a high speed blast of air, it is deformed into a plano-convex lenticular body
due to the acceleration of the drop (Anilkumar et al., 1993) as is typical for the
shear-breakup mode. With increasing flow velocity, the surface becomes more con-
cave. In this case, the convex face of the body is facing the sonotrode. Droplets
are then generated by stripping from the periphery of the droplet. Currently, it
is believed by Anilkumar et al. (1993) that breakup is caused by the edges of the
saucer-shaped body being drawn into a thin sheet by the strong viscous stress due
to the high speed of the air flow. Equilibrium is lost when the viscous shear stress
overcomes surface tension locally, whereby the edge is drawn out into a sheet. The
generated sheet will then segregate into fine-scale fragments, which can break down
further. Drops will exit at well-defined frequencies due to the rapid growth of cap-
illary surface waves. This is the main mechanism responsible for disintegration
(Anilkumar et al., 1993). Instead, Danilov and Mironov (1992) found small-scale

interfacial instabilities caused by the gas flow around the drop to be more impor-
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tant for atomization than other acoustic processes. Small droplets are blown off the
edge of the drop as a result of this instability. Yarin et al. (1999) emphasized that
acoustic levitation causes acoustic streaming near the drop surface, hence triggers
interfacial instabilities. When the droplet becomes considerably flat, oscillation of
the droplet establishes a mechanism for the parametric excitation and growth of
capillary waves on the droplet’s surface. These waves increase in amplitude until
the drop collapses. Capillary waves on the droplet’s surface can also be repro-
duced in numerical simulations of the disintegration process. Their impact on the
atomization process in numerical computations can be strengthened by slightly
perturbing the acoustic forces with white noise. This final collapse leads to rather

large fragments, the size of which will decrease with increasing sound frequency.

5.6. Size Determination of the Deformation Complex

To quantitatively compare and furthermore validate the developed approach, the
flattening of drops in an ultrasonic field has been studied and resulting drop diame-
ters have been determined. For this purpose, a sequence of experiments producing
deformed droplets under various sound field amplitudes (A4) has been performed.
Measured diameters are compared with data obtained by numerical simulations

under identical conditions.

The response of a drop to changes in the sound pressure level can be elegantly

represented in terms of the acoustic Bond number

2
Ba:ARS

opc?’

as the ratio of hydrostatic and capillary pressure. As the sound field amplitude,
maximal pressure in the pressure antinode are taken for an undisturbed ultrasonic
field. Figure 5.9 displays the relationship between the acoustic Bond number and
the non-dimensional equatorial radius R*=R/R; (R: equatorial Radius) of a 45 uL
droplet. As can been seen, a large deviation is found between experimental and
numerical results if back-effects of the droplet on the ultrasonic field are neglected.
This discrepancy is especially significant for experiments performed with an SWL
because the generated pressure amplitudes are relatively small and, therefore, the

drop causes a rather strong perturbation of the ultrasonic field. If the sound field
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X

(O experimental results

X--X undisturbed ultrasonic field
* ultrasonic field disturbed by a spherical obstacle
+ ultrasonic field disturbed by an ellipsoidal obstacle

B, [-]

R/R [-]
Figure 5.9.: Normalized radius R* versus acoustic Bond number.

is perturbed by a spherical water drop, pressure and velocity fields result as shown
above in Figure 4.5. These simulations of a two-phase flow with compressible gas
phase are performed with Fluent using the VOF-method. After time-averaging and
interpolation, these data are transferred into FS3D for calculation of the deforma-
tion process. Resulting droplet diameters mirror experimental results far better.
Results are even almost identical, if the sound field is calculated for an appropriate
ellipsoidal droplet as an obstacle. Hence, Bernoulli stress and local velocity peaks
near the liquid surface are the main quantities determining droplet deformation and
breakup. In particular, pressure and velocity increments caused by the Bernoulli
effect can exceed acoustic effects of the applied sound field by several orders of

magnitude.
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6. Strand Breakup

The production of fine droplets from liquids in a surrounding gas phase is called
disintegration. Thereby, the density p, of the surrounding gas phase is explic-
itly smaller than the one of the droplets forming liquid. This is the main argument
found in literature to explain the disintegration process as an aerodynamic problem
(Andersen, 1996; Reitz & Bracco, 1982). Hence, the mechanism of liquid disinte-
gration especially at high fluid velocities significantly differs from the dispersion

mechanism at low density differences.

Table 6.1.: Width of the particle size distribution for different disintegration mecha-

nisms.
Mechanism dyos/dse  dmaz/dvos
dripping 1 1.1
natural laminar strand disintegration 1.05-1.1 1.4
lamella nozzle 1.1-1.3 1.5-2.5
turbulent nozzle 1.3-1.5 2.5-3.5
pneumatic atomizer 1.1-1.5 2.5-3.5

rotational atomizer

ligament state 1.05-1.1  1.4-2.0
lamella state 1.1-14 2.5-3.5
capillary wave atomizer 1.05-1.4  1.5-2.5

The production of such fine droplets is mainly done by the disintegration of lamel-

lae. In this case three different mechanisms are distinguished (Walzel, 1990):

1. boundary contraction
2. aerodynamic wave creation

3. turbulent disintegration

83



6.1. Previous Investigations

These three disintegration mechanisms are mainly superposed and, therefore,
cannot be treated separately. In contrast to liquid filaments or strands the lamella
is stable. Each deformation of a lamella will then cause an increase in its surface
and, therefore, result in reversed forces (Bond, 1935; Tayler, 1959; Squire, 1953).
To characterize the created droplets the Sauter diameter dszs is generally used as
the mean particle diameter. It has the same surface/volume ratio as the overall
particle size distribution (PSD). Typical values for the width of particle size dis-

tributions for different types of breakup mechanisms are given in Table 6.1.

During the dripping state surface forces are dominant leading to particles
of almost the same size (cf. Figure 6.1). With increasing velocity of the liquid
strand or the surrounding gas phase friction forces get more important and the
particle size distribution gets more diffuse. Aiming to keep the PSD tight and to
inhibit oversized grain is the overall goal of the following investigations during the

disintegration process in an SWA.

6.1. Previous Investigations

The first patent using ultrasonic standing waves for the disintegration of fluids is
dated back to 1976 (Lierke & Ruckdeschel, 1976). This specification describes a
method for the disintegration of fluids and powders based on ultrasound waves
producing droplets between an ultrasonic piston and a reflector. A later patent
from Lierke et al. (1980) states fluids, molten metals, suspensions, emulsions, and

agglomerated powders as a field of application.

Focussing on molten metals Hohmann et al. (1988) and Bending (1988) pub-
lished papers describing the production of metal powders by an SWA. To overcome
the high surface tension of these molten metals, the surrounding pressure was in-
creased to 5.5 bar using a pressure chamber. Thereby, the Bernoulli force is said
to have been increased, which was accounted to be the main force for the disinte-
gration mechanism. They used tin for disintegration and obtained mass medians
between 60 and 100 pum for the atomized metal in dependence on different sonotrode

amplitudes.

Schreckenberg (1991) and Bauckhage (1992) predicted a semi-empirical in-
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terrelationship between the mass median (dy, 3 ) of a particle size distribution and

several process parameters:

/ Co 1/7
de o = — W 6.1
50,3 — Q0 el e, (6.1)

with the surface tension o, p, denoting the gas pressure, and I the capacity based
on the sonotrode’s cross-sectional area. The factor a empirically determined influ-
encing parameters like the number of pressure nodes or the geometry of the nozzle,
which had not been explicitly characterized. Therefore, according to Bauckhage
(1992) the particle size distribution rarely depends on the viscosity of the molten
metal itself. Further investigation of basic procedures and aspects of material sci-
ence related to the disintegration of metals in an SWA was done by Bauckhage &
Schreckenberg (1994); Bauckhage et al. (1995, 1996); Andersen et al. (1995) and
Andersen (1996).

Beside the investigation of metals in an SWA, Reich (1995) focused on molten
glass and Hansmann (1996) disintegrated highly viscose fluids. For the prediction
of particle size distribution Hansmann (1996) placed a static, circular disk into the
sound field and observed the sound forces acting on this disk. The approach was

used as a starting point for the qualitative description of the disintegration process.

Since the beginning of the 1990th the institute of "Chemie und Technolo-
gie der Beschichtungsstoffe (CTB)” from the University of Paderborn used the
SWA-technique on powder coatings. It was found that powders generated in an
SWA exceed other coatings in terms of an improvement in their optical perfor-
mance (Holmann, 1994; Goldschmidt et al., 1998; Vestweber, 1999). The influence
of different material and process parameters regarding the particle size distribution
was investigated by Mattern (1998). Therefore, he measured the sound field us-
ing a sensitive sonsor under variation of the sonotrodes’ setup, geometry, distance,
and angle. Vestweber (1999) investigated the impact of the molecular structure
of the employed polymers on the disintegration process. As could be shown, non-
Newtonian and visco-elastic behavior of the molten polymer influenced the disin-
tegration process. Therefore, retardation and relaxation of polymers needed to be
adjusted with their residence time inside the pressure node of the ultrasonic field

in order to achieve small particles. To support the application of polymers on a
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surface, the SWA was extended to electrostatically charge the plant. Further, hot
air was used to direct the liquid flow (Goldschmidt et al., 1993; Vestweber, 2004).

Although the ultrasonic field has been investigated by sensors as well as the
influence of material and process parameters on the generated particle size dis-
tribution, little is known about the disintegration mechanism itself. Therefore, an
optimization of the process based on an empirical approach is difficult. Thus, Reip-
schlager (2002) visualized the disintegration of polymer melts in an SWA by means
of numerical simulation of the process. He qualitatively found a good agreement
between experiment and simulation, but was not able to quantitatively detect the
numerically calculated particles in terms of particle size distribution. Since back
effects of the liquid on the ultrasonic field have not been accounted, little is said

about the disintegration mechanism itself.

6.2. Mechanism of the Disintegration Process

In case of the SWA a lamella is formed between the two sonotrode plates. Therefore,
this lamella is antiparallel to the flow direction of the gas phase decreasing with
increasing nozzle distance. The product of lamella thickness ¢ and distance X
from the nozzle outlet is constant after a certain distance behind the nozzle. It is a
parameter for the thickness of the lamella: K = §X; (Dombrowsi et al., 1960; Fraser
et al., 1962). If K is related to the cross-sectional area of the outlet, the lamella
number results: y = §X; / A. In case of a spherical nozzles y = 46X;/nd,*. For
experimental as well as for numerical investigations of the disintegration mechanism
a nozzle of d,, = 1.5 mm is used. Finally, employing a mass flow of 100 g/min and

a sonotrode amplitude of 120 pum results in lamellae as shown in Figure 6.4.

Figure 6.4 shows screen shots of simulations of a continuously disintegrating
strand of alkydal solution having a viscosity of 10 mPas and 114 mPas. The pic-
tures are focussing on the lamella to emphasize on the procedures around the rim.
As can be seen in numerical simulations as well as in experiments, the size of the
lamella increases with increasing viscosity. Further, surface waves are observed on
the lamellaes’ surfaces whose wave lengths increase with increasing distance to the
outlet. In case of a viscosity of 114 mPas, the parameter K is calculated as 0.059 cm?

with a lamella thickness of 220 pum at the outer rim having an axial distance of
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(a) p = 10 mPas (b) u = 114 mPas

Figure 6.1.: Numerically generated lamellae at equidistant time-steps in an SWA.

2.7 cm to the outlet. Therefore, x calculates as 0.034 and x- We = 113 regarding
eq. (5.1) to calculate We for amplitudes of the axial gas velocity of 205.5 m/s using

the nozzle diameter as the characteristic length.

For values of yWe < 220, the lamella is bordered by a bulge at its outer
part disintegration into relatively big droplets. For xWe > 220, the lamella will
start to oscillate because of the gas forces acting on the lamella’s surface. The
amplitudes of oscillation rapidly increase with increasing distance to the nozzle
and initiate the disintegration of the lamella. This case is called the aerodynamic
corrugation. The fragments leaving the lamella form liquid ligaments, which will
then break down further by e.g., Rayleigh breakup (Walzel, 1990). Walzel (1990)
based his investigations on the breakup of lamellae generated by e.g., hollow cone,
deflector, or flat spray nozzles. Instead, in numerical simulation of the continuous
disintegration process both mechanisms can be observed: A bulge is formed at the
outer rim of the lamella separating ligaments which break down further. This is
because not solely aerodynamic forces are responsible for strand disintegration in
an SWA. Whereas in common pneumatic atomizers particles of 50 pm are formed

not until gas velocities u, of 300 m/s are reached, an SWA already generates such

87



6.2. Mechanism of the Disintegration Process

particles at, e.g., 200 m/s in case of sonotrodes oscillating at 120 gm. Concluding,
the disintegration mechanism of a lamella in an ultrasonic field is not entirely con-

gruent to pneumatic atomizers.

According to Lierke (1995) the disintegration mechanism in an SWA corre-
lates to the aerodynamic atomization of free falling drops. Walzel (1990) compares
the disintegration mechanism to a two-phase injector. Instead of the uniform rel-
ative velocity ug between the droplet and the gas flow, the rms-value u,,,, of the
periodically varying sound particle velocity in axial direction needs to be used in
case of a continuous disintegration. Since the lamella builds up and disintegrates
inside the pressure node, Walzel (1990) used the sound velocity of the correspond-
ing velocity node for his investigations. For the characterization of the continuous
disintegration mechanism in an SWA, Lierke (1998) used an altered Weber and the
Mach number. As the Weber number he defined

Wepsre — P8 _ gdd Py Ma? | (6.2)

(e

with pg denoting the Bernoulli pressure, p, the capillary pressure, and Py the static
pressure at standard conditions. Further, Lierke (1998) assumed the disintegration
mechanism to start in terms of instabilities on the liquid surface at Wep e ~ 8
for a water drop. As the resulting critical Mach number (Ma,,.) for small mass flow

rates he calculated

o
May, ~ 1.69, | ———
PO dstr,O

with dg,.o as the initial strand diameter. For a nozzle of 1.5 mm in diameter
and a resulting water strand of the same value, the disintegration should start
at Ma,, = 0.039 at standard conditions. This mirrors a sound level of 168.8 dB
Or Upmqe = 13.4 m/s, respectively. For the disintegration of polymer strands this
approach needs to be altered. As explained previously in Section 5.3, the critical
Weber number depends on the Ohnesorg number. Therefore, for a polymer strand
having a viscosity of 0.1 Pas, a surface tension of about 0.03 N/m, and a density
of 1100 kg/m?, the dimensionless Ohnesorg numbers calculates as Oh = 0.449
resulting in a critical Weber number of We,, = 15.59. Using this value on eq. (6.2),

the critical Mach number for such a polymer results as:

o
Ma,, ~ 2.34, | =—— .
PO dstr,O
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Therefore, for a polymer strand of 1.5 mm in diameter the disintegration should
start at Ma., = 0.033 at standard conditions. This mirrors a sound level of 166.7 dB
OF Upqar = 11.3 m/s, respectively. In case of an SWA like the one used during the
experiments, such velocities are found in numerical simulation of the oscillating
sound field for sonotrode amplitudes of 20 ym. This confirms the results achieved
during experimental investigations of the disintegration process as the ones shown

in Figure 6.2.

After initiating the disintegration process, small filaments are separated from
the rim of the lamella. These liquid ligaments are unstable due to central symmetric
waves occurring on their surfaces. These surface waves will grow quite quickly in
case of the wave length being A > 7dj;,. According to Rayleigh (1879b), the fastest

growing perturbation has an optimal wave length of
Aopt = TdiigV' 2 + 6 Oh

in case of laminar strand disintegration. The resulting particles shall have a diam-

eter of
d, = dlig\6/44 +6 Oh , (6.3)

with a narrow particle size distribution. Separated ligaments observed in numer-
ical simulation of the disintegration process do have diameters between 180 and
240 pm. Therefore, according to eq. (6.3) particles with diameters bigger than
that should result by secondary breakup of such ligaments. A detailed investiga-
tion on generated particles and the particle size distribution obtained in an SWA
is done experimentally in Section 6.5 as well as by means of numerical simulation

of the disintegration process in Section 6.6.
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6.3. Experimental Investigation of the Strand
Disintegration

For the disintegration of a continuous liquid strand in an SWA, the liquid is in-
serted via a nozzle into a pressure node of a high-amplitude resonant sound field.
Thus, a quasi-stationary lamella is generated at the top of the nozzle disintegration
into ligaments and droplets at its outer sphere. Thereby, discrete droplets with a
particle size distribution in the range of 5 to 100 um are generated. Since the par-
ticle size significantly determines the performance of powder coatings, the overall
aim is to optimize such a disintegration process in terms of narrow particle size

distribution.

Figure 6.2 displays various forms of lamellae at different sonotrode ampli-
tudes. The pictures are taken with a digital camera using a strobe flash (~ 8 nanosec
flash exposure) as back light. For optical reasons, an angle of approximately 40 de-
grees had to be chosen which leads to an ellipsoidal form of the lamella on the
photograph. A solution of alkydal in xylol is used as a model liquid, since alkydal
is a common feedstock in the coating industry. This solution has a viscosity of
0.1 Pas, a surface tension of about 0.03 N/m and a density of 1100 kg/m?. The

mass flow rate is adjusted to be 100 g/min.

65 pum B0 pum

Figure 6.2.: Disintegration of a continuous liquid strand of an alkydal solution at various

sonotrode amplitudes.

At small sound amplitudes relatively big, unsteady lamellae result which dis-
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integrate mainly outside the pressure node. Therefore, the flattened liquid strand
intensively acts as a reflector for the impinging sound waves. This destroys reso-
nance and results in poor disintegration with a considerable amount of large liquid
ligaments. Not until a minimum amplitude is reached depending on the fluids
properties and on process parameters, a continuous disintegration with a consid-
erable small quasi-stationary lamella is achieved. This small lamella is situated
inside the pressure node and, therefore, hardly effects the sound field. Thus, for
sonotrode amplitudes above 60 um particle size distribution in the desired range
of 5 to 50 um is obtained at the given flow rate. In case of an alkydal solution the
generated particles are detected by a LD (Laser Diffraction) method and their size
distribution is measured under the given operational and material conditions (see
Section 6.5 for more details). This procedure enables a quantitative comparison
between experimental data and numerical simulation of the disintegration process.
In case of polymers used for the production of powder coatings, the generated par-

ticles are pre-sorted by a cyclone and measured later on.

During operation of the pilot plant, undesired fouling of the sonotrodes’ faces
occurs caused by advected liquid particles along the axial direction. In general,
generated particles occupy the whole region between the sonotrodes in addition
to their main flow direction. This effect is mainly caused by acoustic streaming
appearing in sound fields of high intensity (Trinh, 1986; Lee & Wang, 1990). Fo-
cussing on outer acoustic streaming, in contrast to, e.g., near-boundary acoustic
streaming (Lee & Wang, 1989), the effect can be generalized into two common
types. The first mechanism is caused by friction between the gas phase and a solid
wall if the former is vibrating in contact with the latter. This can be the case
for, e.g., a standing wave in a resonant area. The second type happens due to the
spatial attenuation of a plane wave in free space, e.g., a plane traveling wave. The
mean energy density of a wave motion is decreasing due to absorption inside the
medium. Since this energy is transformed into kinetic energy, a convective flux
results affecting the particle track of droplets inside such sound fields. Thereby,
the flow direction of such outer acoustic streams coincides with the propagation
direction of the sound wave. Trinh (1986) quantitatively investigates outer acous-
tic streaming by means of an oscillation-reflection unit. The resulting flow profile

shows two adjacent swirls rotating in opposite direction. The velocities of such
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swirls are found to be in the range of 0.003 m/s for small sound field amplitudes.
Since for the disintegration in an SWA much higher amplitudes are applied, higher
velocities of the corresponding acoustic streaming result causing the transport of

particles along the axial direction.

6.4. Numerical Investigation of the Strand

Disintegration

For numerical simulation of the disintegration process of a continuous liquid strand,
the nozzle was implemented as a cylindrical patch into the computational domain
of FS3D with no-slip conditions at its lateral walls. The inlet boundary condition
is a Poiseuille flow with parabolic velocity profile. Calculations were done assuming
symmetry with respect to the xz-plane (cf. Figure 6.4). For accurate approximation
of the free liquid surface during strand disintegration, the computational domain
covers a rectangle of 0.5 x 1 x 1 cm along the z,y,z directions containing up to

16 million grid cells.

Figure 6.4 shows a screen shot of a simulation of a continuously disintegrating
strand of alkydal solution, as it was used in previous experiments (cf. Figure 6.2).
The nozzle has a length of 2 mm, an inner diameter of 1.5 mm and is placed 2 mm
ahead of the central pressure node in the radial direction. The mass flow rate is
100 g/min. As determined experimentally and confirmed by numerical simulation,
the liquid outlet should be shifted by 1 to 2 mm in radial direction away from the
sound field’s axis in order to generate smaller polymer particles. This is because the
liquid’s residence time in the area of high pressure gradients is maximal then. After
a short transient period quasi-stationarity is achieved. The liquid strand leaving
the nozzle will then be flattened into a lamella by the ultrasonic forces. At the rim
of the lamella ligaments and droplets are separated. The more viscous the polymer
or the smaller the applied sonotrode amplitude is, the more ligaments occur (cf.
Figure 6.1). On the left-hand side of the lamella shown in Figure 6.4 a liquid film
is formed which wets the nozzle. Since the lamella expands to an almost circular
disk, part of the liquid droplets move opposite to the inflow direction during dis-

integration. This negative effect is also observed in experiments at the pilot plant
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A

Figure 6.3.: Simulation of strand disintegration.

and causes material loss. When ligaments and droplets move away from the lamella
after separation, secondary breakup will occur leading to the generation of smaller
particles. This so-called Rayleigh breakup is caused by aerodynamically induced
disturbances on the liquid’s surface. It leads to contractions which finally result
in the stripping of droplets, caused by capillary forces. To account for such dis-
turbances during numerical simulation, white noise is added to the acoustic forces

leading to smaller particles.

In contrast to experimental investigations as conducted in Section 6.3, the
continuous strand disintegration as performed by numerical simulations takes place
mainly along the zy-plane. Instead, in experiments outer acoustic streaming leads
to undesired fouling of the sonotrodes’ faces by advecting liquid particles along the

axial direction. Here, particles move along in axial and tangential direction between

93



6.4. Numerical Investigation of the Strand Disintegration

the sonotrodes occupying the whole region. This behavior is missing in numerical
simulations due to inexistent acoustic streaming as described in Section 6.3. This
effect causes convective fluxes which divert the particle track especially of small
droplets. Since the effect of ultrasonic streaming takes place on a time scale of
multiple oscillation cycles of the sound field (Lee & Wang, 1990), it cannot be
taken into account during numerical simulation of the ultrasonic field. Due to limi-
tation in the CFX-solver, the transient sound field is only calculated for real-times
of up to 2 ms. Nevertheless, since acoustic forces of the superposed ultrasonic field
exceed outer acoustic streaming by orders of magnitude, resulting forces caused by

ultrasonic streaming are of no significance for the disintegration mechanism itself.

(a) Newtonian liquid (b) Non-Newtonian liquid

Figure 6.4.: Comparison between Newtonian and non-Newtonian fluids with

1 = 114 mPas at equidistant time-steps in an SWA.

The polymer melts for the production of powder coatings show a non-Newtonian
flow behavior. A modified Carreau model is, therefore, employed to describe the

concrete liquid (Appendix C). This model takes into account the shear thin-
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ning behavior of polymers, i.e. the viscosity decrease caused by an increase in

shear rate 7:

= H%ﬁ ,  with 4 =+/2tr(D?) and D,, = % (g—z + %) ,
where D denotes the rate of deformation. A shear-thinning liquid attains lower
viscosities during droplet collision. This leads to a larger maximum diameter of the
generated collision complex compared to Newtonian droplet collision (Motzigemba
et al., 2002). During disintegration these lowered viscosities mainly lead to smaller
particles due to a lower value of We... As can be seen in Figure 6.4, the lamella
calculated including the modified Carreau model significantly differs from the one
without considering the shear shinning effect. The extension of the lamella in
Figure 6.4(a) is considerably smaller than the one in Figure 6.4(b). Since the
reduced critical We number supports the earlier stripping of droplets and ligaments
from the periphery of the lamella, the circumference of the lamella will decrease.
Similarly, Rayleigh breakup is supported as well appearing in shorter ligaments
and an earlier collapse of these ligaments, respectively. Therefore, overall a better

atomization of the disperse phase occurs.

6.5. Experimental Determination of the Particle Size

Distribution

The probabilities of particle sizes analyze (PSA) in sprays including the advantages
and disadvantages of the particular measurement method have been discussed in
literature before (Lefebvre, 1989; Bachalo, 2000; Yule & Dunkley, 1994). Choosing
the best method for the particular problem includes diverse considerations: The
method needs to guarantee the measurement of a representative sample, the de-
tected particle size has to be independent of the measurement angle or distance,
and the measurement especially needs to be non-invasive. Thus, the method shall
enable the measurement of the particle size distribution (PSD) without affecting
either the disperse or the continuous phase. Hence, the disintegration process in
general should not be altered by the measurement technique. Finally, the determi-

nation of the PSD has to be reproductive.
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The laser diffraction (LD) technique is found to be the most reliable method
for the measurement of PSD in powder coating technology (Hewitt, 1993; Scholz,
1998; Corbeels, Senser & Lefebvre, 1992). The idea of measuring particle size
using this physical principle is based on the effect of particles interacting with
light (Frauenhofer, 1817). Light of a laser beam is focused in the center of a
multielement-detector. Thus, the scattering effect at the edges of a particle leads
to signals on the non-central elements of the detector. Generally, the smaller the
particles are the larger the resulting diffraction angles. Diffraction at small angles,
however, can only be recognized by the system if the scattered light is not focussed
to the central elements where all the unscattered light is collected. The optical

setup used is referred to as Fourier-optics (Heuer & Leschonski, 1985).

The instrument applied for PSA is a Helos-Vario/KF (Sympatec Co.). The
device holds a 5 mW He-Ne-laser (A = 632.8 nm) which can be expanded up to
13 mm in diameter. The diffraction pattern resulting during the measurement is
pictured by a Fourier lens on the central detector. Using this specific type of lens,
equally sized particles are recognized by the detector regardless their position in
the measuring field. The lens has a focussing length of 500 mm and, therefore,

detects particles between 4.5 and 875 pm.
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Figure 6.5.: Setup for detection of the particle size distribution in a PSA system.

For the detection of PSD the LD apparatus is placed approx. 20 cm in front
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of the nozzle of the SWA, orthogonal to the lamella of the exiting polymer strand
(cf. Figure 6.5).

For a sonotrode amplitude of 80 pm, a mass flow rate of 100 g/min, and a
sonotrode angle of 2 degrees, the particle size distributions of different atomized
alkydal solutions in xylol are investigated. The viscosity of each sample is altered
by changing the mixing ratio of the same alkyd resin in xylol. Each data set is
measured over a period of 200 ms and averaged over 20 cycles. The resulting

particle size distributions for different viscosities are shown in Figure 6.6.
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Figure 6.6.: Experimentally determined PSD at a sonotrode amplitude of 80 pm.

As can be seen in Figure 6.6, the particle size in general decreases with decreasing
viscosity of the liquid. More specific, for a viscosity of u = 114 mPas averaged over

multiple test series the following quantities are found during disintegration:

Table 6.2.: Characteristic values of an experimentally obtained PSD for a polymer of

¢ = 114 mPas at 80 pm.

d32 dRRSB dv.0.5 dmaz dv.0.5/d32 dmax/dv.O.EJ
23.32 54.95 4597 135.43 1.97 2.95
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In comparison to Table 6.1, physical dimensions of particles generated by
an SWA are in the same range as droplets manufactured by other atomizers. In-
stead, particle size distributions obtained in an SWA are more disperse than e.g.,

generated in a rotational atomizer.

6.6. Numerical Determination of the Particle Size

Distribution

To quantitatively analyze the disintegration of polymers in an SWA, particle size
distributions of the disintegration process need to be calculated. Therefore, ev-
ery single value of the VOF variable f;;, > 0 characterizing the disperse phase
needs to be detected and associated with a droplet. This is done by a recursive
algorithm which is established and incorporated into the program code of FS3D
(cf. Appendix B). The algorithm detects the value of an arbitrary cell. In case
of fijr > 0 it recursively scans the surrounding cell volumes until it reaches an
empty cell next to the boundary of a droplet characterized by f; ; = 0. Since the
algorithm works on the whole calculation domain scanning every cell, it detects all
droplets present. The reconstruction of a single droplet is then done by combina-
tion of the adjacent cells of f; ;, > 0. Finally, the droplet volume is calculated as

the sum of all cell volumes the particle is made of:
Vo= fiji - Veenli g k), with Vou(i, , k) = Aa; Ay; Az . (6.4)
ijk
Based on the calculated volume of the droplet the equivalent, spherical radius (Rg,)

is determined as

/3
Ros=1{ 17 Va (6.5)

As well the components of the velocity vector for each droplet are calculated. For

the component u it follows

~ igwuld g k) - 5, k) - V(i g, k)
S i k) - Veen(i, j, k)

denoting the mass-averaged velocity as the ratio of the momentum flux over the

: (6.6)

droplet’s mass. The values for v and w are calculated alike u. For the exact
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position of each droplet inside the calculation domain, the center of the droplet is

determined as 3-D coordinates against z,y,z:

_ Zi,jvk Li+ f(Zhj’ k) ’ ‘/Cell(iuju k)
Zi,j,k f(l,], kf) : ‘/;ell(ia j? k)

The values for y and z result equally. Concluding, the exact position, velocity,

(6.7)

and volume of each droplet at every time-step in the calculation domain is known.
Notice also, that the accuracy of these calculated values strongly depends on the
discretization of the calculation domain. The PLIC algorithm (see Section 3.3)
itself is not able to separate the particles. Two areas characterizing a droplet will
be recognized as disconnected, independent volumes inside the VOF code not until
a single cell of f = 0 does separate them (Figure 6.7). Hence, the more grid cells
the computational domain is made of and the smaller the physical cell dimensions

are, respectively, the more accurate the determination of the particle volume and,
therefore, the PSD will be.
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Figure 6.7.: Failed separation of two droplets by the PLIC algorithm.

Based on this routine, the PSD for various alkydal solutions has been an-
alyzed by numerical simulation of the disintegration process. The liquid system
used for disintegration is an alkyd resin in xylol as described in Section 6.3. By
varying the mass fraction of alkydal in xylol, the viscosity of the mixture is altered,
whereas the surface tension of 0.03 N/m and the density of about 1100 kg/m? are
roughly kept constant. As can be seen in Figure 6.8, less viscous materials result in
smaller particles during disintegration consistent with experimental investigations
(cf. Figure 6.6). Each data set is calculated over a period of 23 ms with particle

sizes obtained every 1 ms. Comparison of these particle size distributions derived
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6.6. Numerical Determination of the Particle Size Distribution

by numerical simulations with experimental data for identical liquid systems and
similar operational conditions reveals that particles generated by numerical simu-
lations are larger than those obtained during experiments. On the one hand, this
is due to the fact that during simulation the particle size is - in contrast to exper-
imental measurement - detected near the boundary of the computational domain
rather close to the lamella. At this early stage of the disintegration process sec-
ondary breakup is still not complete. On the other hand, polymer phase effects on

the sound field have been neglected in numerical calculations.

30 T T T T T T T

+ u= 50 mPas with 0,5 % white noise
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Figure 6.8.: Numerically determined PSD at a sonotrode amplitude of 120 pm.

In addition, due to the latter fact polymers of about p = 0.1 Pas easily
disintegrate in sound fields generated by sonotrode amplitudes of 80 ym during ex-
perimental investigations of the atomization process. Instead, for numerical disin-
tegration of a continuous liquid strand of molten polymer of © = 0.1 Pas, sonotrode
amplitudes of 120 um are necessary to let qualitatively similar atomization occur.
If back effects of the polymer phase on the sound field are neglected, the Bernoulli
effect causing local velocity peaks and an impact pressure at the lamella’s pole are
neglected as well. These have been identified in Section 5.3 as the main impact
on the atomization process in an ultrasonic standing wave field beside the acous-

tic radiation pressure. Therefore, higher sonotrode amplitudes need to be applied
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CHAPTER 6. STRAND BREAKUP

during numerical simulation to mirror experimental behavior.

Further, so far the effect of beats of ultrasonic fields on the PSD has been
neglected as well. Such beats are caused by swapping of oscillations having slightly
different frequencies (Section 4.7). Thus, their overall phase shifts slowly resulting
in maxima and minima (Heywang et al., 1992). As a result, the beat of an ultra-
sonic field causes enlarged particle size distributions. Since time-averaged pressure
and velocity fields are read into F.S3D to model the real gas-liquid jump conditions,
effects of such beats of an ultrasonic sound field on the atomization process are van-
ished during numerical simulation. In contrast, experimental measurements of the
PSD as performed in Section 6.5 capture the effects of such beats. The time neces-
sary to pass a single beat period is calculated to be 4.3 ms according to "= 1/Af.
Since data are taken over a period of 200 ms and averaged over 20 cycles, multiple

beats alter the general droplets size during data acquisition.

To quantitatively compare particle size distribution obtained during numeri-
cal simulation of the disintegration process and experiments, characteristic values
for a alkydal solution in xylol having a viscosity of 114 mPas are listed in Ta-
ble 6.3. These data correspond to a mass flow rate of 100 g/min, a surface tension
of 0.03 N/m and a density of 1100 kg/m?3.

Table 6.3.: Characteristic values of a numerically obtained PSD for a polymer of

@ = 114 mPas at 120 pm.

d32 dRRSB dv.0.5 dma:p dv.0.5/d32 dmam/dv.O.E)
148.3 257.2 197.1 449.8 1.33 2.28

A detailed, quantitative comparison between characteristic values of a poly-
mer with identical liquid parameters applied in experiments as well in numerical
simulations approves earlier conclusion. Comparing quantities of Table 6.2 and
Table 6.3 shows that particles generated in numerical simulations of the disinte-
gration process are significantly bigger than those from experiments. In contrast
to Table 6.2, the width of the PSD by numerical experiments is smaller, i.e. the
ratio of d, o5/dss is considerably closer to unity. This emphasizes the influence of

beats of the ultrasonic field on the disintegration process which effect is missing in
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6.6. Numerical Determination of the Particle Size Distribution

numerical simulations. Thus, such an effect will cause an enlarged PSD in experi-

ments as denoted by a ratio of d, o5/dss close to two (cf. Table 6.2).

During disintegration ligaments moving away from the lamella are subject
to secondary breakup (see Section 6.2). Due to instabilities on the ligaments sur-
face (Rayleigh, 1879b), such objects will break down further. Separated ligaments
observed in numerical simulation of the disintegration process do have diameters
between 180 and 240 pm. Therefore, according to eq. (6.3) particles with diameters
bigger than that should result by secondary breakup of such ligaments. Using these
values of ligament diameters on eq. (6.3), a potential range of resulting particle
diameters between 341.6 to 455.4 um calculates. As can be seen, the diameter
of drayieigh = 455.4 pm mirrors the maximum diameter of particles found during
numerical simulation of the disintegration process with d,,,, = 449.8 um very well.
Since dyq, is defined to match 99.7 % of all generated particles (Vestweber, 2004),
outliers are specifically excluded in statistics which are even closer to dgayicigh-
As a matter of fact, secondary breakup due to Rayleigh effects is one mechanism
during strand disintegration influencing the overall process. As stated by Walzel
(1990), aerodynamically induced disturbances accounting for Rayleigh breakup are
superposed by other mechanisms. Therefore, a wide range of droplets results in an
SWA, especially since the acoustic radiation pressure generated by the ultrasonic

standing wave field permanently acts on the liquid’s surface.
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7. Conclusions and Future Perspective

"The known is finite, the unknown is infinite; intellectually we stand
on an islet in the midst of an illimitable ocean of inexplicability. Our

business in every generation is to reclaim a little more land.”
THOMAS HENRY HUXLEY (1825-1895)

A mathematical /computational approach is developed that allows for the numer-
ical simulation of the atomization of polymer melts in ultrasonic standing wave
fields. The main difficulties lie in the largely different time and length scales of the
ultrasonic sound field and the liquid dynamics on the one hand and the highly non-
linear behavior of the interface including topological changes on the other hand.
The model involves a one-way coupling between a compressible single-phase gas
flow, corresponding to the resonant sound field, and the droplet dynamics given
by a free surface flow. Ultrasonic forces acting on the fluid surface are computed
as time-averaged momentum fluxes through a face situated in the sound field that
coincides with the gas-liquid phase boundary. The use of time-averages is neces-
sary to reduce computational effort and is justified by the different time scales of
ultrasonic field and liquid deformation. The model and the numerical simulations
are validated by means of levitator experiments. The simulations allow a qualita-
tive description of droplet deformation and atomization in a single axis standing
wave levitator. Taking into account back-effects of a droplet on the ultrasonic field,
quantitative predictions of droplet radii with respect to sonotrode amplitude are
possible, mirroring the real behavior very well. Because of the much higher com-
plexity, numerical simulation of liquid strand disintegration in an SWA cannot take
into account effects of the liquid phase on the ultrasonic field. Therefore, so far
simulations only allow for a qualitative description of the disintegration process.
Nevertheless, significant trends in strand disintegration can be observed as it is

demonstrated by particle size distributions. The latter are important for industrial
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use, reflecting the correlation between variations in operational parameters, mate-
rial properties, and particle sizes. Thus, based on these results optimizations of

our laboratory plant and the process itself are now possible.

An advantage of the decoupling of the simulation process into non-linear
acoustic sound field and free fluid surface is the ability of applying specialized
numerical methods which fit the particular needs. As a result, detailed investiga-
tions on the sound field have been performed which allow precise predictions about
sound field behavior under variation of operational parameters as sonotrode angle,
distance, or curvature. This is an import fact due to other investigation techniques
e.g., inserting microphones into the sound field, being invasive and therefore, falsify
the results of measurement. Although the impact of the sound field on the disinte-
gration process is still not totally understood, it offers the possibility of predicting
trends in particle size distribution. Since the variations in sonotrode geometry and
operational conditions are the main time-consuming and costly part of the overall
atomization process, it is a significant improvement in optimization of the contin-

uous liquid strand disintegration.

In addition, detailed investigations on the deformation and disintegration
mechanism of single liquid droplets as well as continuous strands in an ultrasonic
standing wave field have been performed. As could be shown, the mechanism of
disintegration is mainly dominated by acoustic forces (e.g., sound pressure and
Bernoulli pressure) and aerodynamic forces (e.g., Rayleigh breakup) closely local-
ized around an obstacle. Therefore, ultrasonic forces acting on the fluid surface are
computed as fluxes through a face situated in the sound field that coincides with
the phase boundary. On the one hand, acoustic forces as the Bernoulli effect cause
higher velocities at the droplet’s equator corresponding with a lower pressure here
which pulls at the droplet. A suction results improving the rate of deformation
and disintegration. On the other hand, aerodynamic forces induce disturbances
on the liquid surface. If a liquid drop becomes considerably flat, oscillation estab-
lishes a mechanism for parametric excitation and growth of capillary waves on the
droplets surface. Further, during strand disintegration surface waves are found on
the lamella as well. Especially the impact of aerodynamically induced disturbances

on secondary breakup can be observed in the strand disintegration process.
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Future Perspective

Numerical simulations of the overall disintegration process show significant trends
as demonstrated by particle size distributions. Thus, based on these results opti-
mizations of our laboratory plant is started in close cooperation with the mechanical
engineering and the electrical engineering group. In a first step, the transducer unit
has been modified and a new electronic amplifier has been made. As a result of
numerical simulations of the ultrasonic field, frequency shifts due to heating and
the beat of the ultrasonic field due to frequency differences of the transducers shall
be avoided. Therefore, the new equipment allows a direct control of the system
during operation of the pilot plant to vanish these undesired effects. In addition,
due to perceptions made during simulation of the ultrasonic field with different
sonotrode curvature, sonotrodes with less curvature are produced to generate a
5-node pressure field. Such a geometry leads to an increase in pressure amplitude
in numerical simulations. The implementation of these potential optimizations on

the disintegration process are in progress.

To quantitatively describe the numerical simulation of liquid strand disinte-
gration in an SWA, back-effects of the disperse phase on the ultrasonic field need
to be considered. Due to the enormous complexity of the strand disintegration,
numerical simulations of the overall process cannot take into account effects of the
disperse phase on the ultrasonic field. Therefore, a simplifying model needs to be
established mirroring the back-effect of a liquid on the sound field during numeri-
cal simulation of the free fluid flow. For it, a precise understanding of the overall
deformation and disintegration mechanism is essential. This thesis gives a first

impression of such mechanisms close to the lamella to gain the knowledge needed.

So far, ultrasonic forces acting on the fluid surface are computed as time-
averaged momentum fluxes. The use of time-averages is necessary to reduce com-
putational effort and is justified by the different time scales of ultrasonic field and
liquid deformation. Nevertheless, although the disperse phase does not react on
every oscillation of the ultrasonic field, its particle size distribution depends on the
overall beat of the ultrasonic field. To mirror this behavior in numerical simulation
of the disintegration process, multiple time-dependent sound fields need to be read

into FS3D which may still be averaged over an acoustic cycle. Thereby, the shift in
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pressure amplitude due to beats is considered with respect to the reaction time of
the liquid phase. Thus, the impact of such an effect on the particle size distribution

can be included in numerical simulations.
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A. Mathematical Supplement

A.1. Stokes Theorem

Consider an arbitrary smooth surface A enclosed by the boundary curve C. Using
Stokes theorem transfers the line integral over C of the vector field to a surface

integral of a vector field:

fdsxan:/(nxV)xandA.
c A

A.2. Gaussian Divergence Theorem

Gauss’s divergence theorem states that if V' is a volume with surface A and if ¢ is

a differentiable vector field then

/Vv-wv—/Agb-ndA.

Here n is the outward normal to the surface of the volume at a given point on the
surface and V - ¢ the divergence of ¢ denoting the source density inside the volume

V.

A.3. Delta Distribution

The one-dimensional delta distribution 0 can, e.g., be defined as the limit of a

function:

e—Oé.l‘

d(z) = lim

a—00

o
T
Here the limiting value is not meant pointwise but understood as follows:

If a continuous function f(x) is multiplied with the delta distribution 4, an inte-

gration over the real part of the axis results in the value of that function at x = 0.
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A.3. Delta Distribution

ig.
“+00

f(x)o(x)dr = £(0) . (A1)

The delta function is no function in the common sense since for all = # 0 eq. (A.1)

the limit becomes zero. Nevertheless, for the integral of the function it arises

/+°O S(x)da = 1.

o0

Dirac’s delta distribution results by derivation of Heavyside’s jump condition H:

H<x):{0 z <0

1 >0
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B. Recursive Algorithm

B.1. Definition

A recursive algorithm is an algorithm which calls itself with ”smaller (or simpler)”
input values, and which obtains the result for the current input by applying simple
operations to the returned value for the smaller (or simpler) input. More gener-
ally if a problem can be solved utilizing solutions to smaller versions of the same
problem, and the smaller versions reduce to easily solvable cases, then one can use
a recursive algorithm to solve that problem. For example, the elements of a recur-
sively defined set, or the value of a recursively defined function can be obtained by

a recursive algorithm.

If a set or a function is defined recursively, then a recursive algorithm to
compute its members or values mirrors the definition. Initial steps of the recur-
sive algorithm correspond to the basis clause of the recursive definition and they
identify the basis elements. They are then followed by steps corresponding to the
inductive clause, which reduce the computation for an element of one generation

to that of elements of the immediately preceding generation.

In general, recursive computer programs require more memory and compu-
tation time compared with iterative algorithms. Instead they are simpler and for
many cases a natural way of thinking about the problem. To reduce computational
time and memory usage the recursive algorithm explained subsequently has also
been turned into an iterative approach. Since it is much more complex, it is for-

beared here from going into more detail.
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B.2. Structure

B.2. Structure

The determination of single droplets inside the calculation domain is done by the
routine ’droplet’. The code for the determination of single droplets takes as input
parameters the grid structure in three dimensions as the number of grid cells in
each direction (nk, nj, ni) and the VOF-values inside the domain with respect to
the cell index (f; x).

ROUTINE ’droplet’

INPUT (ni,nj,nk, f)

By looping over the whole calculation domain cells which f; ;, > 0 are predeter-
mined by the Boulian operator B=.true. versus R=.false. for f;;, = 0. These

variables (B,R) are incorporated into the code as logical operators:

1 B=.true.

2 R=.false.

for 1 «—1tom

for j«— 1tony

for k<« 1tonk
if f(i,7,k) >0 then

B(i, j, k) = .true.

else R(i,j, k)= .false.
endif

© 00 J O Ot = W

After characterizing each cell by B or R, respectively, the loop is starting all over
but checking for the logical operator instead. In case of B being true, the subrou-
tine >merge’ is called as a recursive algorithm who analyzes the cells around the

previously investigated grid cell (i,5,k):
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APPENDIX B. RECURSIVE ALGORITHM

RECURSIVE SUBROUTINE 'merge’
INpUT (4,4, k, f, B, R)

9
10
11
12
13
14
15
16

for it— (i—1)to(i+1)
for jj e (j—1)to(j+1)
for kk— (k—1)to (k+1)
if B(ii, jj, kk) = .true.
call — ’Calculation’
call — ’merge’
else R(ii,jj, kk) = .false.

exit — termination condition

As long as B=.true. the algorithm calls itself and calculates (’Calculation’) the
demanded values according to eq. (6.4), (6.5), (6.6) and (6.7). Therefore, all grid

cells (4,5,k) having adjacent cells of f;;x > 0 are merged. In case of f;;x = 0

and R=.false., respectively, the algorithm terminates the loop and leaves the RE-

CURSIVE SUBROUTINE 'merge’. Therefore, it goes back to its initial position and

continuous the previous loop inside the ROUTINE ’droplet’ until all grid cells in

the calculation domain are scanned. Finally, every VOF-variable with f(, 5, k) > 0

will be associated with an area denoting a droplet. Further, the coordinates of the

center of the droplet, the corresponding components of the velocity vector (u,v,w),

the and its spherical radius (R, ) are quantified and read out.

OuTPUT (x,y,2,u,v, w, Ryy)
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C. The Modified Carreau Model

The viscosity of a fluid represents the material’s internal resistance to deform. It
is mathematically defined as the ratio of shear stress 7 and shear rate +:
T

/y

1 (C.1)

In general, fluids can be classified as either Newtonian if the relation of eq. (C.1)
is linear or non-Newtonian. In the first case 7 is a constant independent of 4. Vis-
cosity is a fluid property easily measured by, e.g., extrusion viscometers, capillary

or parallel plate rhometers.

For polymeric liquids the viscosity depends on the shear rate. Therefore, the

viscosity curves depend on the following properties:
1. lims_o+ 1 = 1o with 7y denoting the zero shear viscosity.

2. n(%) is a decreasing function of 4. This behavior is called ”pseudo-plastic”

or shear-thinning.

3. The experimental measurement of zero shear viscosity is not possible for the

employed polymers using available tools.

Viscosity measuring provides experimental data at a given temperature con-
sisting of several data points on the viscosity curve. These data are then fitted to
the viscosity model of Carreau

Ho
= i 1o (C.2)
1+ 4t
with K denoting the critical shear stress roughly characterizing the transition shear

stress from Newtonina to the pseudo-plastic region. Further, n represents the shear

rate sensitivity with 0 <n < 1.

113



Therefore, the overall aim of data fitting is to derive the three parameters 7,
K, and n according to eq. (C.2). For this purpose, a solution of alkydal in xylol
(percent by weight: 45 %) is used with a surface tension of about 0.03 N/m and
a density of 1100 kg/m?3 at standard conditions. The fitting of the experimental
data under consideration of eq. (C.2) leads to 1y = 0.114 Pas, K = 9.83329, and
n = 0.898479.

Applying these data to FS3D quantitatively leads to smaller particles during
disintegration (see Section 6.4 for more details). Qualitatively, using the modified
Carreau model causes reduced lamella extension in comparison to the Newtonian
approach with a constant viscosity set to n = 114 mPas. Further, the viscosity
inside the lamella changes with the lamella radius. As can be seen in Figure C,
the viscosity decreases with increasing distance of the lamella from the nozzle.
Since shear rate correlates with the ultrasonic forces acting on the fluid surface,
the shielded liquid inside the lamella is found to have higher viscosities. Corre-
sponding phenomena are found for droplets and ligaments moving away form the
lamella. In addition, the bulge formed at the rim of the lamella can clearly been
seen in Figure C for » = 0.2 mm due to higher viscosities inside such a bulge in

contrast to the flattened lamella.

1 [/ (cm s)]
‘ 9.1489 - 102
8.3866 - 1072
7.6244-1072
6.8621-1072
6.0998 - 1072
5.3376- 1072
| 45763-1072
3.8131-1072
3.0508 - 1072
2.2896- 1072
1.5263 - 1072

7.6406 - 1073

1.8000 - 107%

r=0.2 mm r = 0.1 mm r = 0.0 mm

Figure C.1.: Contour plots of viscosity with respect to the distance r from the nozzle’s

center.
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