Design, Analysis, and Evaluation of a Data Structure
for Distributed Virtual Environments

Dissertation von Matthias Fischer

Schriftliche Arbeit zur Erlangung des Grades eines Doktors der Naturwissenschaften

Heinz Nixdorf Institut und

Institut fiir Informatik

Fakultat flir Elektrotechnik, Informatik und Mathematik

Universitat Paderborn Paderborn, im Februar 2005

Fiir meine Eltern,
meine Frau Hanne und
meine Kinder Miriam & Carolin

Herzlichen Dank
fiir ihre ideelle Unterstiitzung,
ihre Geduld, Entbehrungen und ihr Verstandnis

Contents

(1

Introduction to a System for Networked Virtual Environments|

P

Background and State of the Art|

[2.1 Classification of Methods for Scene Complexity Reduction|

[2.1.1 Level of Detail Concepts|.
[2.1.2 Polygonal Surface Simplification]
2.1.3 Point Sampling]
[2.1.4 Visibility Cullingl

[2.2 Parallel Rendering and Networked Virtual Environments|.

[2.2.1 Real-Time Rendering on Clusters|. . . .
[2.2.2 Remote Renderingl
[2.2.3 Visibility-Based Approaches|.

2.3 Data Structures from Computational Geometry]
[2.3.1 Range Searchingl

[2.3.2 Graph Spanners and Geometric Spanners|

[2.3.3 Spatial Data Structures|

Architecture and Functionality of the System|

[3.1 Underlying Abstraction of Dynamic, Fully Distributed Sceneg|

[3.1.1 Scenes Composed from Abstract Objects|

[3.1.2 Interactive Multi-User Navigation and Manipulation]

[3.1.4 Bubbles: A Spatial Hierarchy of Caches|

3.2 Elementary Operations for Navigation and Manipulation].

[3.2.1 Reporting from the Scene|

11
15
15
18
21
23
24
26
28
29
30
32
33
34
38

41

41
43
44
45
47
48
49
50
50

Contents

[3.3.1 Spatial Locality]. o oo 51
[3.3.2 Support tor Cut and Pastelo 0. 52
[3.3.3 Support tor Duplication|o 00000 53
[3.3.4 Support tor a Combined Bubble and Storage Hierarchy| 54

3.4 Summary and Discussion| 0L 51§
[Our Data Structure and Algorithms| 59
4.1 Weak-Spanner Approach|. oL 59
4.2 The Sectorgraph| 62
[4.2.1 Circular Range Query in Output-Sensitive Time| 64
[4.2.2 Constructing the Sectorgraph in O(n log(n))l 67

4.3 Limitations and Overcoming Them| 70
[4.3.1 Deserts and Long Edges| 71
432 Unbounded Accumulationl 71
[4.3.3 Crowded Scenes, Dummy Balls, and Non-Overlapping Objects] . 72

4.4 Implementation of Bubbles Using the Sectorgraph| 74
[4.4.1 Cutting a Subgraph of the Sectorgraph| 75
[4.4.2 Algorithms for Reporting and Incremental Motion| 75
[4.4.3 Algorithms for Insertion and Deletion| 80
[4.4.4 Composing a Large Scenel 88

4.5 Summary and Discussion| Lo Lo 89
[5 Implementation and Evaluation| 91
.1 Functionality and User Intertaces| 92
B.L.1 Scene Construction and 2D Viewerd 92
[>.1.2 Generation of an Arbitrary Bubble Hierarchy] 94
[>.1.3 3D Navigation and Manipulation of the Scene]. 98

.2 Implementation of the Bubbles| 99
[b.2.1 Software Layer| 100
b22 Interfaced 101

b3 Benchmarkl o 102
.4 Construction and Recomputation of a Scene| 103
[5.4.1 Construction Time for Difterent Storage Types| 104
[5.4.2 Multiple Managers for a Storage Across a Network] 106

.5 Motions Through the Scene|] 108
b5, [he Radii of Bubbled 108
B52 Benchmarkl 109
[b.5.3 Movements with one Bubbld 110

Contents

b.0.4 Movements with two Bubbled 114

.6 Summary and Discussion| 0L 121

[6 Conclusion and Further Development] 123
Bib grap 125

Contents

1 Introduction to a System for Networked
Virtual Environments

Three-dimensional computer graphics, a field of great importance in industrial appli-
cations and in scientific research, is a means for depicting and representing kinds of
data. Typical applications are the architectural visualization of buildings and cities.
The user of such systems wishes a realistic impression of designed buildings that do
not exist yet. In industrial simulations of manufacturing plants, the computer graphics
system is used for the visualization of simulation data. For example, the data derives
from material-flow simulations or planning systems. In order to investigate the dy-
namics of fluids, computer graphics is used for the visualization of the flow of fluids.
Applications in industrial construction and design use the computer graphics systems
for the visualization of vehicles, clothes, tools, household appliances, and so forth (CAD
systems). Further fields of applications are entertainment (games, film industry), mar-
keting (product presentation), education, history, archaeology, and medicine.

The data of the applications can be solids (e.g., vehicles or clothes), physical param-
eters or quantities (e.g., pressure, temperature, and flow), and artistic works of art.
There arise two different questions and problems which must be solved by the appli-
cations. The first problem, the visualization problem [228, 216], is the question of how
to visualize the data, e.g., temperature or pressure. The goal is to search for methods
to intelligibly and clearly arrange complex data. The second problem, the rendering
problem [95], is the fast and efficient computation of one or more high quality images
of the data. In this work, we develop efficient data structures and algorithms for the
fast rendering of three-dimensional data, i.e., we focus on the rendering problem.

The first important step towards real-time rendering was the implementation of Cat-
muls z-buffer algorithm [35, [36] 37] in hardware. Consisting of simple and basic opera~
tions, it is to date the basic concept of today’s real-time rendering graphics workstations.
However, the growing demands for more complex and realistic models in some appli-
cations make the main drawback evident: the running time of the algorithm, O(n - a)
[121], is linear in n and a where n denotes the number of triangles drawn and a the
number of pixels (without consideration of occlusion).

In this work, we tackle the problem by a distribution of the data across a network of

1 Introduction to a System for Networked Virtual Environments

workstations and rendering only parts of a scene, namely the neighbourhood of a visitor.
Accordingly, the running time of our rendering algorithms depends on the complexity
of the neighbourhood of the visitor, but is independent of the size of the scene.

Due to the lack of practical alternatives, the effort to render complex scenes and
to get a realistic impression results in two trends. On one hand, hardware producers
optimize the technique so that the rendering pipeline is capable of rendering more and
more polygons at the same time. After a phase of improvements on higher triangle and
rastering performance, the manufacturers focus more on realistic effects than on higher
geometry performance. With techniques such as textures, pixelshader, and reflection
mapping, the realistic impression of the scene is improved. Today many applications
use these new techniques instead of highly complex models in order to get a realistic
image of the scene.

The second trend is based on the insight that the rendering pipeline can be disbur-
dened by reducing the number of polygons sent to the graphics pipeline. Among other
rendering techniques, two main streams of algorithm developments are established that
work like a prefiltering step before the graphics pipeline. The approximation of the
image (simplification and replacement of polygon meshes) is the one and the compu-
tation of invisible polygons (visibility culling) is the other one. The concept of level of
detail (LOD) started this direction of research and it is an important one in the field
of computer graphics, dating back to James Clark’s 1976 seminal paper [55].

In the following, we sketch the main ideas and results of the architecture and data
structure. Our main contributions are summarised as follows:

1. We propose a data structure for the management, rendering, navigation, and
manipulation of a distributed virtual environment. This data structure supports
e distributing the scene across a network of workstations.
e a walkthrough of the scene, concurrently for many users.

e a manipulation of the scene, namely insertion and deletion of objects, by
many users at runtime.

e a conceptually unbounded extension and size of the virtual environment.
2. A theoretical analysis of the data structure that proves that each of the operations
(navigation, manipulation, rendering) can be executed in a time that only depends

on the complexity of the neighbourhood of the user, and is independent of the
total size of the scene.

3. A prototypical implementation of a walkthrough system for a distributed virtual

environment based on our data structure. The objects of the scene and the data
structure are stored across a network of remote hard disks.

4. An experimental evaluation of this implementation confirms the theoretical results
and gives further details about the properties of the system. The evaluation
investigates how fast the user can manipulate and navigate through the scene.

Distributed Multi-User Walkthrough System

We present a walkthrough system for the real-time rendering of distributed virtual
environments. The complexity of the scenes is scalable and can exceed the capacity of
main memory and hard disk. The scene is distributed across a network of workstations
each having a local hard disk. Only parts of the scene are stored in the main memory.
We develop a system architecture, a data structure, and algorithms that enable a user
to walk through a distributed scene in real time. The system avoids extensive upload
times for the whole virtual scene. Each workstation stores only a small part of the data
in its main memory, or on its hard disk.

The system is a multi-user and multi-system environment. Multi-user environment
means that many users use the virtual scene for a collaborative work. They work in-
dependently on different parts of the scene. Typical work is insertion, deletion, and
viewing of objects. Multi-system environment means that the scene can be manipu-
lated by several graphic systems that are placed at distinct places and which may be
incompatible with each other with respect to software and hardware. Our simple in-
terface consists of the virtual objects and a data structure (graph) that connects the
objects.

Our walkthrough system aims at scenes with a large spatial range such as land-
scape scenes consisting of cities, countries, and areas of vegetation. The scenes are
2.5-dimensional because the diameter of the scene is much larger than the height of the
scene. We develop special featured operations and data structures that allow navigation
and manipulation.

Abstraction of a Virtual Scene and Architecture

We introduce a simple theoretical model for modelling virtual scenes. In our underlying
abstraction, the virtual scene is composed from simple balls (objects). The balls have
unit size and must not overlap. We show that the abstract model, despite its simplicity,
can be applied to typical virtual scenes consisting of houses, cars, and trees. On one
hand, the model is a suitable means for the development of efficient algorithms, and
otherwise it is suitable for practical use.

1 Introduction to a System for Networked Virtual Environments

The virtual scene can be visited by wisitors and modellers, each sitting at a graphics
workstation. The visitor walks only through the scene and moves to arbitrary positions.
The modeller has additional capabilities; he inserts objects into and deletes objects from
the scene. Our architecture enables many viewers and modellers to view and to model
the scene simultaneously, but at the same time independently of each other.

Both, the viewer and the modeller see the objects in a sufficiently large neighbour-
hood. More precisely, they see all objects inside the circle with centre z and radius ¢ if
x is the position of the viewer or modeller. We denote the circle and all objects inside
the circle by bubble. The bubble must implement some properties that we denote by
bubble requirement. The bubble requirements feature an easy duplication of parts of
the scene. For example, remotely stored parts of the scene can be copied easily to a
local hard disk, and from the hard disk, parts of the scene can be copied into the main
memory. The bubble requirements feature an easy combination of different parts of the
scene, e.g., city models can be combined easily to a whole country.

The walkthrough system must enable the movement of the bubbles, and the inser-
tion and deletion of objects. We use the four operations SEARCH(z,t), MOVE(z, Ax),
INSERT(z,0), and DELETE(x). The SEARCH(z, t) operation computes all objects in the
bubble starting from one object in the bubble. The centre of the bubble is always
the position of viewer and modeller. The MOVE(z, Az) operation moves the bubble
through the scene if the viewer and the modeller move. The modeller uses the op-
erations INSERT(z,0) and DELETE(z) to insert and delete an object o at his current
position z.

Locality of Data

An important requirement for our architecture is the locality of data. More precisely,
the spatial locality in the scene must correspond to the locality of the data. We use
a non-hierarchical, two-dimensional data structure that features the locality of data.
Hierarchical data structures, which are mainly used in computer graphics, do not feature
the locality of data. Spatial locality means that two modellers can insert and delete
objects at distant locations concurrently, but independently of each other. Locality of
the data means that a modification of the data by one modeller does not affect the data
of the other modeller and vice versa.

We give an example: two modellers, each sitting at a graphics workstation, modifies
a model of the landscape of Germany independently of each other. The one inserts
and deletes objects in Paderborn and the other one modifies Munich. We require a
separation of the data structure: a part M of the data structure manages the objects of
Munich and a part P manages the objects of Paderborn. The modification of the scene

involves a modification of the data structure. The data structure supports the locality
of the data if the manipulation of the modeller in Munich only involves updates of the
part M and the manipulation of Paderborn only involves updates of part P. Not only
updates of the data structure are locally restricted, but also references to or knowledge
about far away parts of the scene are limited.

What is the advantage of such a data structure? The unbounded spatial size of the
scene implies a growing number of visitors and modellers. This in turn implies that the
users employing different systems may be standing at different places. Heterogeneous
systems prefer an interface that is as small as possible. Our data structure supports an
interface consisting only of links (edges) that point from one object to its neighbour. We
must neither refer to nor change the data of Munich if we add new objects to Hamburg
and Aachen. Moreover, the system used by a modeller, who renders and manipulates
data of Munich, can be completely incompatible with a system of a modeller who
modifies Paderborn. Spatially separated parts of the scene can be added to a single scene
by simple paste operations such as composing the parts of a jigsaw puzzle. Therefore,
the locality of data makes the system scalable.

Weak Spanner and Sectorgraph

We introduce a new class of graph, the weak spanner [91], this is a special variant
of a spanner. A graph G of a two-dimensional point set is a f-weak spanner if for
each node u,v of G there is a path from v to v in G so that for each point s on
the path dist(u,s) < f - dist(u,v) holds. We propose a new non-hierarchical, flat
data structure, namely the sectorgraph, based on a well known graph construction for
spanners [241], [135] [180]. The sectorgraph is defined as follows: for each point u draw
k rays (line segments) from u such that these rays subdivide R? into k equal cones
(sectors) around u. For each u and each sector s, u has a directed edge to the closest
object from w lying in the sector s.

We show that the sectorgraph is a weak spanner [94] and use it in our walkthrough
system to manage the objects of the scene. We prove that the running time of our
algorithms for the navigation and manipulation in the scene only depends on the number
of objects in the neighbourhood of the visitor, which is independent of the size of the
scene. The sectorgraph fulfils the bubble requirements so that the graph is usable for
a circular range query, the movement of bubbles, and the insertion and deletion of the
objects.

The reason for our choice of data structure is the property that the weak spanner
combines the spatial locality with the locality of the data. The weak spanner features
the property because all edges of an object point only to some few objects of the

1 Introduction to a System for Networked Virtual Environments

neighbourhood. Changes in the data of far away parts of the scene do not involve
updates of the data of nearby parts of the scene.

In order to reflect the locality in the runtime analysis, we introduce the notion of the
neighbourhood sensitive running time. As an output-sensitive algorithm, the running
time depends on the output of the algorithm. In our case, this is all objects of a bubble.
Typically, our algorithms must search the neighbourhood of the bubble, too. This
implies costs that depend on the number of objects in the neighbourhood of the bubble.
Consequently, the running time is good if the neighbourhood is small, and the running
time is worse if the neighbourhood is larger than the bubble. The cost measure reflects
the spatial locality of the algorithmic operations well. We show that our algorithms are
neighbourhood sensitive.

Implementation and Evaluation

We implement the algorithms into a prototypically walkthrough system. The system
makes the manipulation and movement through a distributed virtual scene possible.
Our system stores the objects and the sectorgraph in the main memory, on a local hard
disk, and across the network on remote hard disks (storage types). For each storage
type, we create bubbles that contain duplicated objects of the scene. If we slot the
bubbles of different storage types into each other, we build a spatial hierarchy of caches.
Depending on the access time of the storage type, we can move the bubbles with varying
speed. We use the system for the evaluation of our methods and show their practical
use. For this, we investigate the running time for the navigation and manipulation in
the virtual scene. We measure how fast a user can move the bubbles of different storage
types through the scene.

Overview

We survey the state of the art in Chapter [2} In Chapter 3] we present our abstraction
of a virtual scene and the architecture of the system. In Chapter [} we describe the
algorithms for the management and manipulation of the scene based on the sectorgraph.
The implementation and evaluation follows in Chapter

10

2 Background and State of the Art

In the following Subsections, we introduce acceleration methods and data structures for
walkthrough systems of complex models. The work on parallel rendering and networked
virtual environments (Section is closely related to our approach because our walk-
through system renders a scene that is distributed across a network of workstations.
Most of these work is a result of computer graphics. Because our data structure is a
spanner is used for range searching, the work on range searching, spatial data structures,
and geometric spanner is also closely related to our approach (Section. Section
gives a wide overview of the fields and general approaches that improve the rendering
time. Prior to that, we informally describe the ability and features of a walkthrough
system, and we explain demands, problems, and bottlenecks.

Input to a Graphics System

Typical 3D data derives from a CAD system, simulator, medical apparatus, and 3D
scanner [27]. The exchange of 3D data between different applications (e.g., CAD and
walkthrough system) is complicated because applications use their own proprietary file
format. The format must be converted in a suitable 3D model that can be processed by
a graphics system. Widely used formats of 3D models are established by 3D rendering
libraries (e.g., Openlnventor [233]), application interfaces of the World Wide Web (e.g.,
VRML [34,203]), as well as by 3D modelling programs for the construction of 3D models
(e.g., 3DStudioMax [26],[78]). The handling and conversion of file formats has up to now
been a time intensive work process and an insufficiently solved problem in computer
graphics. The main reasons are buggy transformation programs and incompatible fea-
tures of the formats. A curious transformation A to C to D to B may be better than
directly A to B.

Two common techniques for modelling three dimensional data are surface modelling
and solid modelling [95, 119, 229]. Solid modelling allows a distinction between the
inside, outside, and the surface of a model. These properties are necessary in many
applications, e.g., CAD/CAM. Today’s commercial computer graphics systems mainly
use surface models. They model the surface of the objects by means of a mathematical
description, e.g., polygon mesh surfaces, parametric surfaces, and quadratic surfaces. A
wall can be modelled as a single equilateral (one-sided wall) or as flat cuboids (two-sided

11

2 Background and State of the Art

wall). Rounded objects need many flat surface elements to be modelled realistically.

Real-Time Versus Offline Rendering

A traditional classification of rendering methods distinguishes, between real-time ren-
dering and offline rendering. Offline rendering defines the motion of the camera and
computes an image for each position of the camera path in a preprocessing step. After-
wards, all images are put together into a movie that shows the scene along the defined
path. After completion, a modification of the orientation and the position of the camera
is impossible. Classical offline rendering methods are radiosity [204, [61] and ray tracing
[201) 103]. The computation of each image needs a few minutes up to hours.

Real-time rendering computes the image during the walkthrough such that the viewer
can move the camera to arbitrary positions of the scene. The images must be recom-
puted if the viewer moves to the same position several times. To get smooth rendering
of the images, fast real-time rendering methods are necessary. The rendering of a single
image consists of the three basic steps transformation, illumination, and hidden sur-
face removal: the transformation computations transform the three-dimensional scene
space to the two-dimensional screen space of the viewing device [95]. The second step,
the illumination computation, computes a realistic appearance of the scene. Fast local
illumination methods such as Goraud Shading [105, [106] and Phong Shading [171] [172]
are used in walkthrough systems. In contrast to global illumination methods (radiosity,
ray-tracing), a loss of image quality is the consequence because shadows and reflections
are missing. However, the newest generation of graphics hardware reduces this lack of
image quality using techniques as textures, pixelshaders, and reflection mapping [165].
The third rendering step is the removal of the hidden surfaces. Hidden surface removal
is a time consuming step and it is one of the classical rendering problems [82].

Rendering in real time has been available since the successful hardware implementa-
tion of the z-buffer algorithm. The algorithm goes back to Catmull’s famous dissertation
[35, 36], B7]. The algorithm removes all hidden surfaces by the transformation and ras-
terization of surfaces. For each pixel of the rastered surface, the distance to the viewer
(z-value) is also stored to decide if other surfaces are in front or behind of the surface.
The running time of the algorithm grows linearly O(n + a) with the number of surface
polygons n, and the number of pixels a that are used for the rendering of a surface (inde-
pendent of occlusion) [I2I]. The simple hardware implementation of basic algorithmic
operations makes this algorithm successful. Today, all three basic rendering steps are
hardware supported. They are implemented in a kind of pipeline that processes the
surface elements, the polygons, one after another.

12

Walkthrough Systems and Their Requirements

A walkthrough system of virtual scenes allows the arbitrary modification of the position
and orientation of the camera by the mouse and other additional devices, so that the
user is able to move to arbitrary positions. The system has to compute a new image
for every new camera position; each rendered image is denoted as frame. A system is
denoted as walkthrough system if it allows this kind of navigation.

The ability to visit things that do not exist in the real world makes the technology so
interesting. The practical value of a walkthrough system is the view from, and the move
to “things” that we would otherwise never experience without the help of the system.
The new stadium in Atlanta for the 1996 Centennial Olympic Games was far from
completion as the opening approached. There was no time to interrupt the construction
for visits and tours by international officials and local planners. A walkthrough system
of the whole stadium, implemented by IBM’s 3-D Interaction Accelerator (3DIX) [I31],
enabled international officials and local planners to simulate a walkthrough tour of the
stadium before, during, and after the construction [125]. The walkthrough system was
used in classrooms to help to train the employees and the volunteers who worked later at
the Olympic venues; the security people planned access points, surveillance, and tactics.
The stadium was built parallel to the training and schooling of the service teams.

The question remains what are the essential demands on a walkthrough system? The
example shows that we cannot assume a technical background of the users. This implies
that the user does not suffer a poor realistic impression of the system. In consequence,
the walkthrough system must fulfil two requirements, first high quality modelling, light-
ing, and shading of the scene, and second guaranteed real-time rendering. Real-time
rendering means that the system computes a new image with at least ten frames per
second (fps) if the user moves to a new position. To avoid jerky movements of the
camera at least 20-30 fps are necessary, i.e., bms for the computation of one image.
Computer games try to get 30-60 fps, and first-person shooters need more than 60 fps
because of the fast movement of the actors in the game. More problematical than jerky
image generation is the navigation of the user. For middling navigation, at least 10 fps
are necessary. Frame rates below ten prevent good navigation because the position of
the rendered image and the position of the input device differ. The user permanently
tries to correct the difference, but the walkthrough-system cannot follow and so the
difference gets larger and larger. The result is wide jumps of the camera and the user
cannot reach the desired position. Therefore, high frame rates have the highest pri-
ority compared with other demands like good image quality. Otherwise, navigation is
impossible and the system is unserviceable.

13

2 Background and State of the Art

problem approach speedup technique

3D-model

prefiltering

visibility culling) visibility
level of detail

replacement
image-based rendering)

real-time mesh simplification)

approximation

rendering
subsystem

rendering

point sampling)

distributed rendering)
) parallel computation

interactive ray tracing

networked-based rendering) distribution

Figure 2.1: Some prefiltering approaches and their underlying mechanism.

Bottlenecks and Acceleration Methods

Many applications need visualization of scenes with millions of polygons. The real-
time rendering of small scenes up to several hundred thousand polygons is possible
with today’s graphics hardware. The fill rate (6.4 billion texels/sec), the memory
bandwidth (35.2 GB/sec), and geometry transformation (600 million vertices per second)
are relevant parameters that limit the complexity of the scene (performance specification
NVIDIA GeForce 6800 Ultra [164]). If the scene complexity exceeds more than a million
polygons, the large scene cannot be rendered in real-time because of the linear running
time of the z-buffer algorithm [121]. Thus, the graphics pipeline is one of the bottlenecks
of the system. A further bottleneck occurs in front of the graphics pipeline. The slow
memory access and the limited transfer rate of the bus system prevent a fast transfer
from the CPU/memory unit to the graphics unit and prevent the graphics pipeline
from working at full capacity. In addition, the limited memory capacity is a bottleneck.
Large scenes must be modelled by instantiation in order to fit into the main memory.
Otherwise, they have to be stored on hard disks and out of score rendering techniques
that slow down the frame rate are necessary.

We need sophisticated algorithms in order to achieve high frame rates. Some accel-
eration methods start from the situation that the end of the rendering process is made
up of the graphics pipeline, which is based on the conventional z-buffer algorithm. The
algorithms work like a prefiltering step between the model and the rendering subsys-
tem (see Fig. left). The acceleration methods reduce the number of polygons that
they send to the graphics hardware. Some basic approaches have been established.
Visibility culling algorithms [82] compute a subset of the invisible polygons and avoid
their rendering by the graphics hardware. Level of detail, surface simplification, and

14

2.1 Classification of Methods for Scene Complexity Reduction

multiresolution modelling [153] are approximation methods that achieve the accelera-
tion by rendering less complex models, whereas the simplified models should look like
the highly complex original. Teztures [120] or image based rendering [202] substitute
large parts of the scene with fixed images. Some methods must exempt from the “pre-
filtering” classification, e.g., interactive ray tracing [223] or some point sampling work
do not work on top of a z-buffer architecture, because they solve the hidden surface
removal problem without the help of the z-buffer algorithm. Figure right, shows
some approaches and their underlying mechanism.

Our work is most related to networked-based rendering and distributed rendering. We
do not use level-of-detail, approximation, replacement, and point sampling techniques
because we bound the scene complexity by rendering only the objects lying within a
short fixed distance. However, a combination with our system is useful and possible.
With the help of approximation methods, we render more objects in the neighbourhood
of the viewer. In the same way, integration of visibility culling is possible resulting in
the rendering of fewer objects. However, the goal of our system is to show the usefulness
of a new data structure for the management of distributed scenes. Therefore, we neglect
other kinds of speed up techniques. A good introduction to walkthrough systems that
integrates several acceleration techniques is given by the MMR system of Aliaga et al.
[10, 11], and the book by Moller and Haines [I59]. Although a combination of different
techniques is worthwhile, not all algorithms can be combined in the same system. In
addition to the time and memory efficiency of the algorithms, the capability of the
integration is an important feature of the rendering algorithms.

2.1 Classification of Methods for Scene Complexity Reduction

2.1.1 Level of Detail Concepts

The concept level of detail (LOD) is an important one in the field of computer graphics,
dating back to Clark’s seminal paper [55]. Clark recognizes the redundancy of using
many polygons to render an object covering only a few pixels. He described a hierar-
chical scene graph structure that incorporated not only level of detail, but also other
now common techniques, such as view-frustum culling. The paper discusses advantages
of a hierarchical scene organization for computer graphics.

The Hierarchy

The hierarchical scene organization makes it possible to render a model in different
levels of detail. The smiley in Fig. consists of three LOD models, each consisting
of different resolutions and quality. High quality models are exchanged by low quality

15

2 Background and State of the Art

Figure 2.2: High quality models for short distances, low LOD models for far distances. From
left to right: LOD1 (5976 triangles, 3135 vertices), LOD 2 (366 triangles, 308 vertices), LOD
3 (264 triangles, 257 vertices), and all of them.

models if the user moves farther away from the model (see Fig. left). The rendering
of the low quality models is faster than the rendering of high quality models because the
low quality models need fewer polygons. The visual perception of distant low quality
models is only slightly disturbed (see all LOD models at distinct distances in Fig.
right).

How does a data structure that supports this concept look? Clark suggests a hier-
archical organization of the scene modelled by an acyclic graph. The root node of the
scene represents the whole scene (see Fig. right). Children of inner nodes represent
refined definitions of upper nodes, e.g., a coarse model of a smiley (level 1). The arcs
in the tree represent either transformations, necessary for the placement of objects in
the world, or references (links) to the children that contain a more refined model rep-
resentation. The three children of the smiley node are a refined model representation
for head, legs, and arms (level 2). The three children of the head node contain further

‘rom ‘ltooz “()DS f::;f:

>0miles ~ >1mile >2miles 1232?3' -
Al A'l " fine
level 3

Figure 2.3: Different LOD’s are chosen for different distances with respect to the viewer (left).
LOD hierarchy (right): vertices at higher levels contain coarse models and vertices at lower
levels contain refined models.

16

2.1 Classification of Methods for Scene Complexity Reduction

13
33 &
b-o 560

Figure 2.4: Continuous LOD (left): one single model contains different resolutions. The coarse
level use only the red vertices, refined levels additionally use the blue (green, black) vertices.
View-dependent LOD (right): near to the viewer, the object is rendered with small polygons
and far from the viewer with large polygons.

32

&
os
o

:

:
>4
o0

¢

PO

refined models of the head, both eyes, and mouth (level 3). Each of the three levels
contains a full model representation of different resolutions.

Level of Detail Frameworks

Clark’s hierarchical LOD idea has been refined because of problems with the fixed
granularity. The following classification into three frameworks is used in the literature
[153].

Discrete LOD: The original scheme, denoted by discrete level of detail, creates multiple
versions of every object during an off-line computation in a preprocessing step. At
runtime, the appropriate LOD model is chosen to render the object.

Continuous LOD: The problem of the discrete LOD is the granularity of the objects;
usually a fixed number of models (2-5) is used for switching the objects. Switching
a model implies disturbing popping effects. Continuous level of detail solves these
problems by encoding a continuous spectrum of detail. Many different resolutions of
the object are encoded in one single representation; the desired LOD is extracted at
runtime. The better granularity leads to a better balancing of the number of polygons
for each object. The quadratic mesh of Fig. left, shows four levels of detail in one
single representation. The coarse mesh contains the four red vertices (a single square).
The first refined level uses additionally the five blue vertices (four squares), the second
refined level uses the green vertices (16 squares), and the finest level uses all vertices
(64 squares). Other geometric subdivisions are possible; see the triangle mesh of Figure
24 left.

View-Dependent LOD: View-dependent level of detail extends continuous LOD using
a view-dependent simplification to dynamically select the most appropriate level for
the current viewpoint of the viewer. Nearby portions of the object are shown at higher
resolution than distant regions. A single object spans multiple levels of details for one
single view. View-dependent LOD is useful for objects with large extent, e.g. trains,

17

2 Background and State of the Art

Figure 2.5: Spheres with distinct resolutions (wire frame and shaded). From left to right: 8,
32, 72, and 521 triangles.

aircraft, and terrain. If the viewer is standing at the front of the train, we render the
head of the train with a high LOD and the back of the train with a low LOD. The viewer
of Fig. looks from left onto the triangle mesh. Near the viewer, we render many
small triangles, and far away, we render the triangle mesh with a few large triangles.

Although today only cited in the context of systems that use simplification and re-
placement methods, Clark’s paper set the cornerstone for many visibility culling tech-
niques, too. This spatial scene organization is basically used for many approximation
and culling algorithms. Shade et. al [I199] used LOD based hierarchies to cache rendered
images and reuse the images in subsequent frames. Funkhouser and Séquin [98] used an
LOD hierarchy in conjunction with Potentially Visible Sets (PVS). Maciel and Shirley
[156] used an LOD hierarchy of meshes and textures to reduce the complexity of the
scene. Chamberlain et al. [40] used an LOD hierarchy consisting only of coloured boxes,
where the colour of the box is computed by an average of the colours in the box.

Looking back from today’s point of view, the idea of building up a hierarchy is simple,
but its fundamental character has influenced the development of new algorithms and
systems for real-time rendering until today. Therefore, Clark’s paper was selected for a
book on seminal publications [56].

2.1.2 Polygonal Surface Simplification

Highly complex polygonal 3D models occur in technical applications. 3D scanners gen-
erate 3D polygon models from an existing object in our real environment. The scanning
devices use a high resolution to get a smooth surface for plumb objects. CAD programs
use abstract mathematical high-level description of the objects. To make the models
readable for a walkthrough-system, they have to be converted into complex polygonal
models. The high resolution is unnecessary for objects with large flat surfaces and
causes slow rendering times, high memory consumption, and long network transmission
times. Simplification algorithms substitute the many polygons in flat regions for only
few polygons. The input is a mesh with n polygons. The algorithm computes a simpli-
fied mesh with n’ polygons, whereby n’ < n on condition that the rendered simplified

18

2.1 Classification of Methods for Scene Complexity Reduction

original model first decimation second decimation third decimation

Figure 2.6: Decimation: the green vertices are systematically removed and the red vertices
remain. After each removal, the whole mesh is retriangulated.

mesh looks similar to the original mesh (approximation quality). Fig. m shows four
spheres with distinct resolutions. Spheres with fewer triangles show more corners. For
a sphere, approximately 200 triangles are necessary to avoid recognizable corners.

We describe four polygon-removal algorithmic operations that are common for surface
simplification algorithms: decimation, sampling, vertex merging, and adaptive subdivi-
sion. Some simplification algorithms use combinations of the four mechanisms. A
detailed introduction can be obtained from several surveys [100} [176], [54] 88, 122, 151]

and dissertations [149] [154] [T01].

Algorithmic Operation Decimation: Decimation iteratively removes vertices or faces
from the mesh and retriangulates the resulting hole after each step. The operations
continue until they reach a degree of reduction of the polygons specified by the user.
The algorithm mostly defines some kind of error metric. Some decimation algorithms
try to preserve the local topology of the mesh. They do not permit a vertex or face
removal that will change the local topology. Consequently, the algorithm may be unable
to effect high degrees of simplification.

The meshes of Fig. show two sides of the surface shape of a cube. The left mesh
is the original mesh; the other three meshes show the mesh after three consecutive
decimations steps. Each decimation step removes some rows and columns of vertices
(green points) from the mesh of the preceding step. Afterwards, the resulting holes
are retriangulated. From step to step, the error between the original mesh and the
simplified mesh gets larger because the corner of the box is sloping. Some results of
this approach can be obtained from the literature [196, [59].

Algorithmic Operation Sampling: In contrast to the decimation techniques, the sam-
pling approach need not use a subset of the original vertices in the simplified mesh. In
Fig. the left mesh with the red vertices is the original model. The sampling opera-
tions start with a sampling of additional vertices of the original model (green points of
Fig. . The samples can be points of the 2D manifold surfaces or voxels in a 3D grid
superimposed upon the original model. After the removal of the original vertices (red

19

2 Background and State of the Art

original model sampled model retriangulated model

Figure 2.7: Sampling: vertices are sampled on the surface with the desired density (green). The
original vertices (red) are removed and the remaining vertices are retriangulated.

points), the algorithm triangulates the new vertices so that the surface closely matches
the original model. Varying the number of samples taken regulates the accuracy and
degree of simplification of the original model. Errors can occur, so that the straight
edges of the box are replaced by a plumb-looking shape (see Fig. [2.7]). Some results of
this approach can be obtained from the literature [221], [128] [T1§].

Algorithmic Operation Vertex Merging: Vertexr merging algorithms take two or more
neighbouring vertices and merge them to one new vertex, e.g., see the two green vertices
of Fig. One or more adjacent triangles collapse and these triangles must be removed.
The resulting area triangulates the same space using fewer triangles than before the
vertex merging step (see the yellow triangles of Fig. . The edges of the new triangles
are connected to one of the original points. This property prevents the new edges from
moving far away from the surface of the original mesh. This algorithm makes it possible
to reduce some interesting areas of the surface mesh, independently of other parts of
the surface where a high degree of triangulation is desired. This makes the method
more flexible than the other techniques. Some results of this approach can be obtained
from the literature [179) 126, 150, 127, 102] 174, 239].

Algorithmic Operation Adaptive Subdivision: Adaptive subdivision algorithms start
from a coarse base mesh. Afterwards, they try to refine the base mesh by the addition
of new points such that the distance to the original mesh is reduced. The distance
is measured by an error metric. The Fig. shows an original mesh, a base mesh,

merged vertices new vertex

,,,,,,

Figure 2.8: Vertex merging: two or more vertices are merged. Afterwards, collapsed triangles
and vertices are removed.

20

2.1 Classification of Methods for Scene Complexity Reduction

original model base model first subdivision second subdivision

Figure 2.9: Adaptive subdivision: a coarse base model is computed. Afterwards, the mesh is
refined until a desired polygon number or error is reached.

and two refined meshes. The additional points are placed at the edges of the cuboid.
The algorithm can be classified as the inverse operation of the decimation approach.
The main problem is the computation of the base mesh. Mostly, an other kind of
simplification algorithm is used to compute the coarse base mesh. The advantage is the
observation that one can better adjust the error by the addition of points than by the
removal of points. This is why the added points can be at arbitrary positions, but the
removed decimated points are fixed by the original mesh. Some results of this approach
can be obtained from the literature [85].

2.1.3 Point Sampling

Instead of triangles, point sampling uses points as rendering primitives. The points can
be obtained by sampling orthographic views on an equilateral triangle lattice [I12] or
by random throw of balls on the surface of the objects [227]. The basic idea of point
sampling consists of the two steps sampling and image reconstruction. The house (1)
of Fig. 2.10]is sampled and reconstructed out of the sampled points showing differences
between the position of a sampled point and the position of the corresponding coloured
pixel (2). If the density of points is sufficiently high, the rendered points will show
a correct image of the object (4), otherwise holes occur (3) so that the shape (roof
and outside wall) is unclear. Holes of false reconstructions cause misleading renderings,
especially in the case of nearby parallel surfaces (see Fig. right). From the top, the
viewer sees a green surface in front of a red surface. Due to holes in the green surface,
parts of the red surface shine through the green surface. The holes occur because some
pixels contain only red sample points missing at least one green sample point.

The construction of an image out of a set of surface sample points makes point
sampling independent of the input topology, thereby overcoming the main problem of
polygon based rendering. Point sampling is used to speed up the rendering of complex
scenes. Objects of complex scenes cover only a fraction of the pixels of the screen. The
advantage of polygon-based scan-line coherence is lost because triangles or objects are

21

2 Background and State of the Art

surface 1 /. \viewer holes view from top

H e surface 2
| /00 @
lfe o

o. ©

o
'o O kK
1 2 3 4

Figure 2.10: Left: A house (1), sampled and reconstructed (2) with holes in the surface (3), and
a correct reconstruction (4). Right: Incorrect reconstruction of two nearby parallel surfaces
showing holes in the green surface.

smaller than a pixel. The rendering time of polygon based methods is proportional to
scene complexity (the number of polygons and the projected area) [121]. Point sampling
achieves logarithmic rendering times with certain conditions [227].

Point sampling was introduced by Levoy and Whitted [146] to render surface models
for the display of smooth three-dimensional surfaces. Also, points were used for the
sampling and control of implicit surfaces [235]. Grossmann and Dally [112], TT1] obtained
point samples by sampling orthographic views on an equilateral triangle surface. They
solve two problems at the same time, the reconstruction of continuous surfaces, and the
efficient rendering of the data. Unlike points as input, Rusinkiewicz and Levoy [181]
and Pfister et al. [I70] convert polygon based rendering primitives into a uniform point
representation. They build up a level-of-detail representation of points so that points of
appropriate level can be selected depending on the screen projection. The simplicity of
the hierarchy of points as a rendering primitive speeds up the rendering times. Several
work use point sampling to speed up the rendering [211], 132 [49] [60] [8, 246, 234]. We
ourself contribute the Randomized z-Buffer algorithm [227], 226]. We render the scene
with a random set of surface sample points. Far away, objects are rendered with few
points only and nearby the objects are rendered with many points. The number of points
is proportional to the projected area of the objects. A careful choice of the sample set
guarantees a high quality of the rendered image. We improve the randomized approach

view frustum

object —>¢@

Figure 2.11: Visibility culling: view-frustum culling (left), back-face culling (middle), and oc-
clusion culling (right). The red objects are invisible.

22

2.1 Classification of Methods for Scene Complexity Reduction

such that the randomization only performs in a single preprocessing step [137]. Our
Randomized Sample Tree allows the I/O efficient access to the sampled data of scenes
that are stored on a hard disk. A detailed introduction to point sampling can be
obtained from several surveys [245], [244].

2.1.4 Visibility Culling

Visibility Culling reduces the number of polygons by a computation of a set of invisible
polygons that are excluded from the rendering process. The literature distinguishes
among view-frustum culling, back-face culling, and occlusion culling (see Fig. [2.11)).
View-frustum culling computes polygons that are completely outside the view frustum.
The algorithms use spatial data structures such as octrees (see Section . For each
new position, all nodes of the octree are traversed that lie inside of the view frustum.
All octree nodes outside the view frustum are invisible and excluded from rendering.
Back-face culling computes all polygons that face away from the viewer assuming that
each polygon has only one visible side. The algorithm tests if the angle between the
normal of the polygon and the viewing direction exceeds 180 degree. Occlusion Culling
computes all invisible polygons that lie inside the view frustum.

The occlusion depends on the view direction, e.g., the scene is highly occluded in front
of a row of houses, but above the houses the scene is densely occluded (see Fig.
right). The usage of visibility culling algorithms is practical only if the scene consists of
sufficient invisible polygons because searching and testing for invisible polygons costs
computation time. It is insufficient to only maximize the number of computed invisible
polygons. More important is the time for the computation of invisible polygons. We save
no time if it exceeds the time for the rendering of the invisible polygons. Some occlusion
culling algorithms compute a large number of invisible polygons quickly, but they need
much more time for the computation of all invisible polygons. There is a tradeoff
between the rendering time and the computation time of the invisible polygons. In the
schematic diagram (see Fig. left), we assume a linear rendering time of the polygons

r_un — ?:rl::jne%ing vi_ew .
time — total direction 1
culled :
view N
\ ? oaons vew {} {} {} {} {}

n, n

max

Figure 2.12: Left: Tradeoff of rendering time versus computation time of culled polygons
(schematic diagram). Right: Different views of a scene with high occlusion.

23

2 Background and State of the Art

(red line) and a non-linear time (green line) for the visibility culling computations. The
total running time gets a minimum for ng computed invisible polygons.

Occlusion culling is used for densely occluded environments such as buildings, al-
though the algorithms suffer from the knowledge of rooms and floors. Teller et al.
[218] 99] compute Potentially Visible Sets (PVS) that contain all visible polygons and
only a few invisible polygons (conservative visibility). A dynamic computation of the
PVS is presented by Luebke and Georges [152]. We distinguish image space based
culling algorithms that compute the polygons to be culled by the coordinates of the
image space, and object space based culling algorithms that use the 3D coordinates of
the objects to be culled. Coorg and Teller [65] present an object space culling algo-
rithm that computes large occluders in the preprocessing step and use these occluders
during the walkthrough for the culling of hidden objects. Greene et al. [I08] present
an image based algorithm that renders a spatial octree of the scene from front to back.
Each octree cell containing a polygon is tested for visibility. If the box is invisible, all
polygons are culled. Theoretical bounds of visibility are given by the aspect graph of
Plantinga and Dyer [I73]. They classify the ways in which the topology of the image
of a polyhedron changes with the viewpoint. They show that a scene consists of O(n?)
(perspective viewing model) maximal regions of viewpoints of the same aspect. Durand
et al. [83] [84] introduced the 3D visibility complex that subdivides the visibility in line
space and claimed a complexity of O(n*). The approzimate visibility [214] allows little
error due to missing visible polygons. This is practical in the densely occluded scenes
where only overlapping objects result in an occluding map [243]. Occlusion culling algo-
rithms work in common with replacements techniques, e.g., textures are used to “close”
portals like doors and to efficiently cull all objects behind an open door or window
[12]. A problem for the algorithms is to find a suitable occluder if the scene consists
of many small objects that all together overlay to a large occluder. Bittner solved this
problem by dynamically computing a suitable occluder [24]. A detailed introduction
can be obtained from several surveys [62], 82], 23] [7] and dissertations [81], 242] 217].

2.2 Parallel Rendering and Networked Virtual Environments

Distributed and parallel rendering aims at the acceleration of the rendering process by
many workstations. Parallel rendering is distinct from the distributed and networked
virtual environments. The main objective of networked environments is the common
interaction of multiple users in a distributed environment, but the goal of parallel ren-
dering is the acceleration of the rendering process by means of parallelism. We see
our work in both areas because we introduce a new data structure for the efficient

24

2.2 Parallel Rendering and Networked Virtual Environments

distribution of a virtual scene and for the independent navigation of multiple users.
The connection between the two is given by the kind of data structure and the kind of
distribution. Our method provides for the efficient rendering of the scene for each user.

Parallel Rendering

Parallel rendering has been applied in computer graphics for a long time; for an intro-
duction see serveral surveys [22], [38]. It is used for time consuming tasks such as ray
tracing, radiosity [66, 177, B9], and volume rendering [240] [133] 236]. Most applications
are off-line computations that need minutes to hours for the computation of a single
image. However, recently more and more systems for real-time rendering have become
available.

Parallelism is used with different approaches, e.g., for parallel occlusion culling [107],
and for parallel ray-tracing used both to render off-line images of a film as well as inter-
active real-time ray-tracing on a cluster of workstations [223]. The typical problems of
parallel processing occur. The methods must offer efficient solutions for the combination
of the parallel computed partial results.

Since the underlying problem of rendering is a sorting problem, Molnar et al. [160]
classify the parallel rendering approaches as sort-first, sort-middle, and sort-last archi-
tectures. The three classes distinguish where the sorting of objects takes place: before
the geometry processing, between geometry processing and rasterization, and after the
rasterization in the graphics pipeline.

Architectures

Parallel graphics architectures are grouped into three classes. The first type are special
purpose architectures that are specialized in the solution of a specific problem, e.g.,
ray-tracing [148]. The pixel-plane architecture [89], starting from a more general raster
based approach, also belongs to this group. The pixel-plane architecture is a SIMD
(Single Instruction Multiple Data) machine where each processor rasters exactly one
column of pixels of the display.

The second class of architectures are tight coupled parallel systems that are not de-
signed for special kinds of rendering problems. In this group are SIMD machines such
as the connection-machine (CM-2) that is used for ray-tracing [67] and MIMD machines
(Multiple Instruction Multiple Data) such as the IBM SP/2 used for the rendering of
methods that improve the image quality by incremental steps of refinement [17§].

The third class of architectures is distributed networks of workstations. A network
of 117 Sun workstations rendered the movie “Toy Story” [123] and 40 Amiga Worksta~
tions rendered the television series “SeaQuest” [238]. The workstations were networked
and each of them was used to render parts of filming sequences. The first class, the

25

2 Background and State of the Art

special purpose architectures, has the best performance, followed by the second class
of tightly coupled systems. The trend is going towards distributed systems because of
improved network performance, low hardware costs, and the flexibility of a networked
architecture.

Distributed Virtual Environments

A networked virtual environment is a virtual environment that is distributed across a
network, e.g., the Internet. Multiple users interact with each other in the same virtual
scene in real time. Each user is represented in the scene by a so called avatar or entity
such that the user can be recognized by other users. The action of each user can be ob-
served by other users in real time. In some systems the users can communicate with each
other and exchange video messages [205]. The users share the common scene and run
an interactive program on distinct workstations connected to each other via a network.
The interface program is a walkthrough system that renders images of the environment
as perceived from the viewpoint of the user. Applications are networked walkthroughs
of large information spaces, networked multi-player games, virtual meetings, distributed
training simulations, and computer supported cooperative work.

The challenge of such systems is maintaining a consistent state, e.g., the current
position of each user, among a large number of users and workstations distributed across
a wide network. Whenever a user changes his state (e.g., movement, interaction with
other objects), an appropriate update must be applied to the system in order to maintain
a consistent state. Despite the improvements in network technology, the network is
the most constrained resource of the system. Architectures and data structure are
required that minimize the bandwidth consumption when users navigate through a
distributed virtual environment. If the scene is very large and stored on many disks
across a network, we need a data structure for the spatial organisation of the scene
that allows efficient access to the objects of the scene. If the user accesses neighbouring
objects, the data structure should access only the disk where the object is stored and
avoid references to other hard disks. The book by Zyda and Singhal [205] and several
dissertations [2| 198 [194] give an overview.

2.2.1 Real-Time Rendering on Clusters

Recently, parallel real-time rendering has become popular because of increasing network
and graphics hardware performance. Typically off-line rendering problems are becoming
more and more rendered in real time in an attempt to make each frame run faster. In
addition, the classical triangle and z-Buffer based rendering methods were improved by
cluster based systems. They handle the triangle stream to move geometry and imagery

26

2.2 Parallel Rendering and Networked Virtual Environments

across a network as required.

The main problem of cluster based real-time rendering is the balancing of the ren-
dering tasks. Each workstation should be assigned an equal part of the rendering load.
Otherwise, some workstations finish their rendering sooner than others, and thus the
system is not optimally load balanced. There are different approaches to distributing
and combining the rendering tasks. We can tile the display such that each tile has to
be rendered by a workstation. In addition, we partition the scene such that each work-
station has to render an equal part of the scene. Not all types guarantee a balanced
load of the workstations because the current number polygons to be rendered depends
on the topology of the scene and the viewpoint.

Examples

One example of cluster based rendering is interactive distributed ray tracing [223].
Wald et al. [224] render an image on a cluster of seven PCs that are connected by a
Gigabit Ethernet network. For scenes of 50 million polygons at a resolution of 640x480
pixels, they achieve 4-5 frames per second on a client that is connected with the cluster.
They bundle many rays in order to save network bandwidth [225]. Compared to other
raster-based approaches, ray tracing has the advantage that it is easily to parallelise.

The scalable graphics system WireGL [129] uses a cluster that is connected by a
Gigabit network. The systems consists of application nodes, rendering nodes with
graphic acceleration (pipe servers), and many displays. On the application nodes, the
programmer uses an OpenGL-like [237] library interface that replaces the standard
OpenGL interface. Each application node generates a part of the virtual scene and
starts preprocessing the data. Afterwards, the data is sent across the network to the
rendering nodes. The data is distributed such that each rendering node renders a
tile of the display. The system is scalable because of the three independent parts
application, rendering nodes, and displays. The parallel access of the application nodes
to the rendering nodes avoids the classical bottleneck between application and graphics
hardware. Similar approaches are used in Chromium [I30] that provide a sort-first
and sort-last architecture that is similar to WireGL, but it is more flexible because its
stream processors can be interchanged and combined arbitrarily. Thus, the system can
be load balanced for several kinds of scenes.

The main goal of the SAGE graphics architecture [77] is the computation of high
quality, aliasing reduced images. The fixed raster of the frame buffer is replaced by a
sample buffer that can place up to 16 non-uniformly placed samples on each output pixel.
In order to reduce aliasing errors, various filters are supported and the reconstruction
process uses up to 400 samples per output pixel. Each SAGE board contains four
parallel rendering subunits and several of the boards can be tiled together in order to

27

2 Background and State of the Art

scale the system for higher fill rates and resolutions.

The main problem is the partitioning of the rendering load. The first systems parti-
tion the 3D model or the 3D screen statically resulting in worse efficiency because some
of the workstations render more triangles than others. The unbalance is dependent on
the topology of the scene and the current viewpoint of the camera. Improved systems
use a view-dependent partitioning of the 3D model and the 3D image [I87]. Some of
the methods require either replicating the entire 3D scene on every workstation or they
require the redistribution of parts of the scene if the viewpoint changes. Thus, such
kinds of systems need high memory capacity and network bandwidth. An interesting
approach to trade off these demands is the k-way replication of Samanta et al. [I86].
They duplicate copies of parts of the scene to k of the n workstations (k < n) in order
to reduce the communications overhead. During the rendering, exactly one of the k
servers renders each object. Thus, the system can be balanced if the viewpoint changes
by dynamic partitioning.

Hardware Supported Image Reconstruction

One problem of a parallel rendering system is the combination of all images to a single
image. This can be done by either a software and a hardware solution [129]. The
software solution uses a server that collects all images from the rendering clients across
a fast network. The hardware solution uses dedicated hardware components that get the
images directly from the rendering hardware of the clients and combine them to a single
image. Typically, the hardware solution is faster than the software solution because a
large amount of data has to be sent across the network. WireGL achieves frame rates
of 8Hz with a software solution and a frame rate of 90Hz with the hardware solution
Lightning-2 [129]. The Lightning-2 system is scalable for the number of rendering nodes
and the number of displays [215]. One important feature is that they use only standard
graphics hardware to ensure a high degree of flexibility. The combination of the partial
images cannot be performed by a simple overlay of the video signals because more
complex information like depth values is necessary [215]. Also, the access by the AGP
bus is too slow. However, today’s graphics hardware can do this using digital outputs
(digital display interface, DVI [I13]). Further examples of hardware solutions are the
MetaBuffer [25], the “VISUALIZE fx” graphics hardware of Hewlett-Packard [68] and
the PixelFlow machine of Molnar et al. [161].

2.2.2 Remote Rendering

Man and Cohen-Or [I57] perform remote rendering where the scene is stored remotely
from the client, but the rendering process is done jointly by client and server. The

28

2.2 Parallel Rendering and Networked Virtual Environments

client stores a locally available geometric model of the scene. They assume that the
textures to improve the realistic impression are expensive to transmit over the network.
Therefore, the server stores all textures and renders a high quality image of the scene.
Dependent on the current viewpoint, the server sends the rendered image to the client.
The client maps the texture on the model and renders the image. Only the differences
between the images are sent across the network between successive images.

In contrast to preceding image-based remote rendering systems, the QSplat system of
Rusinkiewicz and Levoy [182] performs a view-dependent transmission of the geometric
data across the network such that the client holds only the data that is valid for the
current position. The whole scene is stored as a point-based data structure on a server.

Remote rendering is used for the improvement of the image quality. Stamminger
et al. [212] use a workstation for the real-time rendering of a scene that consists of a
moderate number of polygons. The image quality is improved by a powerful parallel
remote workstation that renders high quality images via ray tracing. The computed
images, used as textures, are sent to clients to improve the image from time to time.

Cohen-Or et al. [63] assume that the virtual scene is texture-intensive and that the
size of the geometry is significantly smaller than the size of the textures. The client does
not store the whole scene and loads a view-dependent stream of geometry and textures
that is rendered for nearby views. These textures can be compressed well because of
the temporal coherency, thus avoiding expensive loading times from the server.

2.2.3 Visibility-Based Approaches

Other approaches for network-based walkthrough systems address the visibility prob-
lem. They overcome the network bottleneck by avoiding transmission of invisible ob-
jects. The modified state of a user (e.g., position) is only sent to users that can see each
other. Cohen-Or and Zadicario [64] generalize the Potentially Visible Sets (PVS) [218]
for the use in distributed virtual environments. The classical PVS algorithms cannot
be directly adapted for a network-based system. The server will need to permanently
update the visible set of the clients because of the movement of the viewpoint. The au-
thors introduce a so-called e-neighbourhood of a given viewpoint. The client renders the
model independently of the server as long as the user moves inside the e-neighbourhood.
During the walkthrough, the server transmits the view-dependent superset of the vis-
ible set of the e-neighbourhood. The superset includes all the visible primitives that
can been seen from a viewpoint of the e-neighbourhood. The RING system [97] of
Funkhouser is a further well-known distributed system that uses visibility culling for
the reduction of network traffic (see discussion below).

29

2 Background and State of the Art

2.2.4 Networked Virtual Environments

Interest Management

The heart of a distributed system is the entities of the system. An entity can be a user
of the system or objects and active things that some users are interested in. A problem
is the scalability of the system. The more users come into the distributed scenes, the
merrier the communication traffic occurs, especially if the users request many entities
of the system. A common approach is the filtering of the entities. Filtering means
that the system knows that some clients of the system are only interested in some of
the entities that are available in the system. Therefore, the system can reduce the
communications overhead. For example, each client needs only to update the positions
of those entities he is interested in. This approach is known as interest management.
The systems can be classified by the part of the system where the filtering of entities is
done (server-based filtering, sender-based-filtering, and region-based filtering) [2].

In a server-based filtering system, all clients are connected to one or more servers.
The servers control the actual state of the entities and decide which state changes
should be sent to which clients. The RING system [97] of Funkhouser is an example
for server based filtering. RING manages the communication between multiple users
interacting in a shared virtual environment. Its client-server architecture uses visibility-
based message culling algorithms to reduce the message traffic. Server-based visibility
algorithms compute potential visual interactions between entities representing users in
order to reduce the number of messages required to maintain a consistent state among
the distributed workstations. When an entity changes its state, the updates are sent
only to clients with entities that can see the updated objects. A further example of
server-based filtering is the MASSIVE system of Greenhalgh and Benford [109]. Each
entity has a so-called aura that defines the extent to which interaction with other
objects is possible. The interaction of two auras depends on the position of the objects
and other attributes. If two auras collide, the server notifies the two objects and peer-
to-peer communication between the two objects is enabled. This mechanism reduces
the communications overhead because only entities that are interested in each other
communicate.

In sender-based filtering systems, the entities decide which other entities the messages
are sent to. The strength of the system is that all entities get only the needed messages
and must not throw away useless data. The drawback of such types of systems is that
each single entity must know all other entities that are interested in the entity. The
Minimal-Rendering Toolkit [200] is an example for a sender-based system. Each entity
of the MR toolkit holds a list of all other entities. The entity sends an update to all

30

2.2 Parallel Rendering and Networked Virtual Environments

other entities if the state of the entity changes.

Region-based filtering systems use a tessellation of the virtual scene. Although mostly
tessellated by the three-dimensional space of location, other kinds of shapes are possible.
Entities of each region send the state changes to a central point that is responsible
for that region. The receiving entities must subscribe to all regions which they are
interested in. The drawback of such kinds of systems is the crowdedness of a region if
many entities are placed in the same region.

Most systems use fixed local shapes for the partitioning of the scene in order to
perform interest management. Typical shapes can be hexagons or grids. Abrams et al.
[1] differ from the fixed shape by introducing a tree-tiered interest management system
in order to avoid clumping. The main problem of a distributed system is scalability.
A distributed system with thousands of users requires a high demand on the network
capability because of the large number of messages that must be sent across the network.
The general approach to achieve this is area of interest management (AOI). If there are
n users in the scene, there are O(n?) potentially interesting relationships. A spatial
subdivision reduces the relationships so that users must provide notification of state
changes of users of the same subdivision and of users of neighboured subdivisions.
A regular subdivision leads to an unbalanced load on the servers. Steed and Abou-
Haidar [2I3] used a record of aggregate behaviour of the participants and constructed
an irregular subdivision in order to minimize server and network costs. The CyberWalk
system [163] uses multiple servers and algorithms to dynamically partition the entire
scene into regions. A server manages each region. If a viewer visits a region, the server
of that region is responsible for all requests. If the viewer crosses the boundaries of the
regions, the servers of all neighbouring regions serve the request of the users. In order
to maintain a uniform workload of the servers, they use an adaptive region-partition
scheme. The VELVET [76] system uses an adaptive area of interest management that
supports heterogeneity amongst participants with varying system performance. The
system manages users with high-speed networking and supercomputer performance as
well as users that work with a single workstation behind a slow dial-up connection.
The user may elect to unilaterally reduce or increase his own view of the world. It
depends on the performance of the system that the client uses. The area of interest
can be enlarged and reduced dynamically so that, upon increase in load, the system
automatically reduces the area of interest.

Replicated Geometry

One of the problems of a distributed virtual environment is access to the 3D data. Some
applications, e.g., fast computer games, have all the data stored at each client. They use
a locally stored copy of the virtual environment that is available before the application

31

2 Background and State of the Art

starts (DOOM [210], NPSNET [I55], 247]). If the data is not available, we download
it using VRML based browsers [34] [117]. Thus, fast access and rendering of the data
is possible, but this solution is space wasting. Another reason for the distribution of
the data is the situation that the client is not allowed to access all the data; so the
distribution is the only solution. Systems that distribute the geometry data over the
network are denoted geometry replication systems; they must transfer parts of the scene
to each client. The question is how to organize the data and the storage of the scene
such that fast access is possible.

One approach is the Remote Rendering Pipeline from Schmalstieg [194]. To avoid
a single geometry replication before the application starts, Schmalstieg and Gervautz
[195] use a geometry database maintained by a server. Users share the common scene
across a network. The problem of long download times is addressed by the AOI concept.
The client only has the data for those objects that are contained in a spherical area.
If the client moves through the scene, the AOI is moved and additional objects are
loaded from the server. In order to compensate for the delay introduced by the network
transmission, the system uses prefetching. The LOD algorithm selects finer LOD objects
than needed for the rendering when the objects are still relatively far away. Sewell
[198] followed a similar concept of data base manager. He proposed that the virtual
scene is managed separately from the graphics application. The rendering workstation
operates only on a subset of the entire model. Methods for the reduction and culling
of objects are performed on the data base manager. The manager sends only a partial
subset of the virtual scene to the rendering workstation. Another solution proposed
Hesina et al. [124] with the Distributed Open Inventor. Their implementation extends
the standard library Open Inventor [233] so that the programmers can use a familiar
software interface. The scene is distributed among several servers that are unable to
render the scene, but they manage the scene. Parts of the scene graph are stored on
different servers. The approach relies on the replication of the scene graph at every
workstation. The workstation and the servers must keep all replicas synchronized.

2.3 Data Structures from Computational Geometry

We survey related algorithms and data structures from computational geometry. The
problems deal with points, lines, and boxes. The algorithms search subsets, compute
intersections and arrangements. Mostly, the space dimension R? is arbitrary and con-
stant. The two and three-dimensional space is interesting because of its practical use.
Our fundamental data structure problem is range searching (Section . The basic
data structure for our walkthrough system is a weak spanner. Weak spanners have

32

2.3 Data Structures from Computational Geometry

strong similarities with spanners (Section [2.3.2). Standard spatial data structures for
computer graphics systems are octrees and BSP-trees (Section [2.3.3]).

2.3.1 Range Searching

Given a point set, a range query computes all points which lie in a specified region.
The shape of the region can be arbitrarily formed and influences the running time
of the algorithms that solve the problem. In two dimensional space, commonly used
shapes are circles and rectangles; in the three dimensional space spheres and cuboids
are used. Rectangles and cuboids are special cases of orthogonal range queries. An
overview of the different types of range searching problems can be found in several
surveys [158, B, 5] and books [75] [4]. Typically, a complex data structure is computed
in a preprocessing step. Afterwards, we compute one or more range queries very quickly.
In one-dimensional space, we construct a balanced binary search tree in time O(nlogn)
and O(n) space, such that the a range query can be reported in time O(k+logn), where
k is the number of reported points. An orthogonal range query in two-dimensional
space uses a more complex data structure, a kd-tree. A kd-tree splits the set of points
into two subsets of roughly equal size using horizontal and vertical lines, so that a
balanced tree is generated. The kd-tree can be constructed in O(nlogn) time and O(n)
space. A rectangular range query can be performed in O(y/n + k) time, where k is the
number of reported points. Another well-known data structure is a range tree. A range
tree consists of several nested balanced trees. In the two dimensional space, the tree
consists of a balanced tree for one dimension. Inside the tree, several balanced trees
exist for the other dimension. The tree can easily extend to arbitrary dimensions. In d
dimensions, a range tree of n points needs O(n logd_1 n) space and it can be constructed
in O(nlog?~! n) time. Rectangular range queries can be reported in time O(log?(n+k)),
where k is the number of reported points [75]. A sophisticated technique is fractional
cascading [47, 48]. Fractional cascading improves the results by one dimension; queries
can be reported in time O(log?(n + k)).

Some applications need algorithms that process input that is more complicated than
points. Circles, spheres, and lines have been used as the shape of the input [114]. In our
model, the input consists of spheres and balls. A technique to improve the running time
of the algorithms is to restrict the input model, e.g., small and thin triangles in a set of
triangles. This is useful because in some applications the worst-case constructions do not
occur. An approach to the solution here is the work of Schwarzkopf and Vleugels[197];
they define low-density environments. A scene is a low-density environment if any
bounding box of an object cannot intersect more than a constant number of objects of
the same or larger size.

33

2 Background and State of the Art

2.3.2 Graph Spanners and Geometric Spanners

Let G = (V, E) be a weighted graph with n nodes and positive edge weights. A subgraph
G' = (V,E"),E' C E, is an f-spanner (graph spanner) of G if for each node u,v € V
there is a path from u to v in G’ with distg/(u,v) < f - distg(u,v). The distance
distg(u,v) of a path is the sum of the weights of all edges of the path. We denote f
by stretch factor. Spanners are used and motivated by applications in communications
networks, distributed systems, and network design theory. If a set of n objects is given,
we search for a good network that connects all objects, in such a way that special
properties are maintained or optimized. For example, the path along the edges of the
network should be minimized, i.e., we need a small stretch factor. Other interesting
parameters of spanners are the construction time, the size and weight of a spanner,
and the maximum vertex degree. An introduction and overview of different types and
construction can be found in several surveys [208, [87] and dissertations [207, 42, [115].

Graph spanners were first introduced by Peleg and Ullman [169] 168], where they used
the spanner for the synchronization of networks. For general graphs, it is desirable that
the spanner be as sparse as possible, i.e., have few edges. Let Sk(G) denote the number
of edges of a k-spanner for a graph G. Peleg and Schéfer [167] demonstrate the problem
of determining, for a given graph G and a integer m, whether S3(G) is NP-complete.
Therefore, it is interesting to look for approximation algorithms that approximate a
given bound and compute a construction. For a given graph G, Kortsarz and Peleg
[138, [140] compute the sparsest 2-spanner G’ with mostly |E'| = O(S2(G)-log(|E|/|V]))
edges, i.e., the approximation ratio is log(|E|/|V]).

Geometric Spanner

Geometric network problems approximate the distances among the points of the Eu-
clidean space. The input is a set of points; wanted is a geometric spanner G such that
for each pair (u, v) of nodes distg(u,v) < f-dist(u,v) holds. The problem can be solved
by a reduction of the graph spanner problem. We construct the complete geometric
graph where the edge weight is the Euclidean distance. We search for a sparse sub-
graph, namely the geometric spanner, that approximates the complete graph hereby.
For our type of walkthrough problem, a suitable class of graphs is geometric spanners.
We use geometric spanners to perform a local bounded range query: if a single node of
the graph is given, we perform a breadth first search that is bounded by the distance
f - t, where t is the maximum distance of objects to be computed.

For our walkthrough system, a small edge degree and small stretch factor f is relevant.
Soares [209), 206] presents a bounded degree spanner. For every point set and stretch
factor f, an f-spanner G of the point set exists such that the degree of GG is bounded by f

34

2.3 Data Structures from Computational Geometry

~ cone
axis

Figure 2.13: Distance measure of Yao [241] (left), Keil and Gutwin [I35] (middle), and Ruppert
and Seidel [180] (right).

and d, where d is the dimension. A simple greedy algorithm achieves this: subsequently,
we add all edges (u, v) such that distg(u,v) < f-dist(u,v) holds. The edges (u,v) must
iterate in increasing order with the distance dist(u,v). The algorithm terminates if
distg(u,v) < f-dist(u,v) holds for all edges (u,v). The degree of the resulting spanner

is bounded by O(d% . (%)d) The dimension d = 2 is fixed in our walkthrough system,
but the we must adjust the stretch factor f during the walkthrough. In consequence,
we must recompute the graph for every adjustment of the stretch factor. Therefore, the
construction shown [209] is inappropriate for our application needs. We need a spanner
construction that has a constant out degree, independent of the stretch factor.

Yao [241] presents a more usable construction that is the basis for our data structure:
let x be a point in the plane. Like pieces of a cake, divide the plane into k£ uniform
regions relative to x, where z is the centre of the region. The regions are formed by &
lines each ending at point x; see the six sectors of the point z in Fig. 2.13] For each
region, = gets an edge pointing to the next neighbour of the region. Yao [241] used this
construction for the construction of a minimum spanning tree. In a d-dimensional space
(d > 3), he presents algorithms such that the minimum spanning tree can be computed
in time O(n?~% (logn)*~%), where d’ = 2~ (41 The graph was named after the author
as Yao graph [87]. Although the Yao graph may have unbounded degree, the important
property for our data structure is the small bounded out degree.

The Yao graph is used for several spanner constructions: Keil and Gutwin [135] used
the graph for a spanner construction that has only k - n outgoing edges, where k is the
number of sectors. The ingoing degree of the graph is unbounded. The graph has a
stretch factor of 1/(cos - (1 — tan#)), where § = 27 /k is the degree of each sector.
Keil and Gutwin denoted the graph by 6-graph. The significant difference between the
Yao graph and #-graph is the type distance measure of the nearest neighbour in each
sector (see Fig. . The Yao graph used the Euclidean distance, i.e., all points u are
equidistant from a point x that are placed on are circle around z. In the #-graph, all
points u are equidistant that have the same perpendicular projection onto one of the
sector boundaries. In consequence, the point x of the #-graph will not necessarily be

35

2 Background and State of the Art

connected to its nearest neighbour in each region. Keil and Gutwin [I35] computed
the f-graph in time O(nlogn). At the time of publication, the result was faster than
the construction time of the Yao graph (O(n2~1/8 .1og?~/%(n)), [241]). Later, Wee et
al. [232] 231], 230] presented divide-and-conquer algorithms that construct the graph in
time O(nlogn).

Rupert and Seidel [I80] improved the stretch factor of the #-graph by using a different
distance measure. All points u are equidistant that are placed on the perpendicular of
the line halving the sector of point z (see Fig. . The stretch factor of the graph
is 1/(1 — 2sin %), where k is the number of sectors. The graph can be constructed in
time O(n(logn)?1) for dimension d > 2. In this work, we use the Yao graph and 6-
graph, respectively, for the construction of our data structure. We use the same distance
measure as Ruppert and Seidel, but for a different type of graph. In contrast to Ruppert
and Seidel, we construct a weaker kind of spanner, a so called weak spanner (see Section
. We show a smaller stretch factor as the factor for the spanner of Ruppert and Seidel;
this in turn is an important feature for our walkthrough system. However, note that
our factor and that from Ruppert and Seidel are not comparable because they describe
different features of the same graph construction and distance measure. In order to
make a clear distinction, we denote our graph by sectorgraph.

Spanner Constructions Based on the Delaunay Triangulation

Other ways to get a spanner construction are the usage of well-known graph types or
data structures, e.g., the Delaunay triangulation. The Delaunay triangulations are good
candidates for the approximation of the complete Euclidean graph since they contain a
linear number of edges and can be computed quickly O(nlogn) [175) [75]. The results
of the stretch factors depend on different distance measures used by the authors. Chew
[52] shows that the Delaunay triangulation of a point set in the L; metric is a spanner
with a stretch factor f = v/10. Afterwards, Chew [53] used a slightly modified measure
of the Euclidean measure, the triangle distance, and reached a stretch factor f = 2
for the Delaunay triangulation. In Euclidean metric, Dobkin et al. [79, 80] show a
stretch factor f = (1 + \/5)% ~ 5.08 for the Delaunay triangulation. Keil and Gutwin
[135], [134] improved this bound and show that each Delaunay triangulation of a point set
approximates the complete Euclidean graph by a stretch factor BC#(’;/G) ~ 2.42. Despite
the good results for the stretch factors of Delaunay triangulations, the graph does not
optimize all parameters that are important for good spanners. One can construct a set
of n point sets where the Delaunay triangulation has a weight of order n times the weight
of a minimum spanning tree (MST) [I36]. To overcome this drawback, one can slightly
modify the Delaunay triangulation. Levcopoulos and Lingas [142] [143] modify the
Delaunay triangulation in time O(n) and show that for an arbitray r > 0, the resulting

36

2.3 Data Structures from Computational Geometry

) 2m

graph approximates the Euclidean graph by a stretch factor of f = (1 — 1 Teos(n/0) "

The weight of the graph is bounded by (2r + 1) - wt(MST).

Sparse Spanners with Low Weight and Low Size

The size size(G) of a spanner G is defined as the number of edges and the weight
wt(G) of the spanner as the sum of the edge weights. Sparse spanners have a low
size or weight. The minimum spanning tree (MST) is, by its definition, the sparsest
possible spanner in terms of both size as well as weight. However, the stretch factor can
be worse [14] [13]. Therefore, the sparseness of a good spanner is compared to the size
and weight wt(MST) of the minimum spanning tree. A further important parameter
is the diameter; it is defined as the maximum number of edges of a spanner path. For
spanners of bounded degree, a better diameter than logarithmic is difficult and comes
only at the expense of an increasing degree. All parameters are interdependent; it is
difficult to optimize all parameters at the same time. Constructions with a good stretch
factor and a good size may have a worse weight. We give some examples of the research.

Optimal spanner constructions, in terms of weight, for two-dimensional Euclidean
space are presented in [14, [142] 143] [72]. There exists O(1)-spanner with size O(n)
and weight O(1) - wt(MST'). The results exploit properties that hold only for two-
dimensional Euclidean space, so that new techniques were developed for higher dimen-
sional spaces. For the d-dimensional space, Chandra et al. [46] [44] [45] achieved a
spanner of weight O(1) times the weight of the minimum spanning tree and with a
stretch factor O(log?(n)). For the special case of a three dimensional Euclidean space,
the stretch factor O(log?(n)) can be improved. For any ¢ > 1, Das et al. [69] produce a
t-spanner with O(n) edges, and weight O(1) - wt(MST'). Chandra uses a simply mod-
ified algorithm of Kruskal (to compute the minimum spanning tree) in order to show
that for dimension d > 3 and a randomly choosen set of the points, an optimal spanner
with weight can be constructed [41], 43].

Some research bounds the degree of the spanner. For example Salowe [185] [184]
constructs a t(k)-spanner with vertex degree at most four, where ¢(k) is a constant
dependently from k for every k > 2. Das and Heffernan [70] [71] construct spanners
bounded by degree three that additionally achieve an optimal weight O(1) - wt(M ST).
Bounding stretch factor and the degree of the spanner to be computed can result NP
complete problems [139, [141].

Another important property of a spanner is the time required for its construction.
The construction of a t-spanner with O(n) edges is possible in time O(nlogn) [183]
222),132]. The spanner of Callahan and Kosaraju [32] used the so called well-separated
pair decomposition of Callahan [30]. It consists of a binary tree whose leaves are points,
with internal nodes corresponding to subsets of points in the natural way. In addition

37

2 Background and State of the Art

to the tree, they used a list of pairs of nodes, such that the sets corresponding to each
node are geometrically separated, and each distinct pair of points is covered by exactly
one of the pairs of nodes. Originally, they introduced this data structure for the nearest
neighbour and the n-body problem [33] 31].

Arya et al. [15] concentrate on building spanners that optimize many spanner proper-
ties. They build spanners in time (nlogn) and space O(n) with bounded degree and an
optimal weight of O(wt(MST). Their spanners achieve optimal tradeoffs among sev-
eral combinations of the spanner properties weight, degree, and diameter. They used
a data structure, the dumbbell tree, that provides a method of decomposing a spanner
into a constant number of trees, so that each O(n?) spanner path is mapped in one
of the trees. The work improves the so far best known algorithm of Arya and Smid
[19) 20] that constructs a bounded spanner in time O(n log® n). Also, the work improves
the construction time O(nlog?n) of the spanner of Das and Narasimhan [73] that has
optimal weight O(wt(MST)).

Other Directions of Spanner Research
As for other kind of problems, several techniques are used to improve the algorithms
using randomized solutions [162, 57, 58, [17, 18] and approximate queries [16]. Another
interesting type of spanners is fault-tolerant spanners [144, [145]. If in fault-tolerant
spanners at most k edges or vertices are removed, then each pair of points in the
remaining graph is still connected by a short path. Another kind of spanners is designed
for a special kind of graph, e.g, a grid spanner for a grid of points [I47]. The restricted
topology of the points is useful in constructing parallel computers. In contrast to the
restriction of the input topology, we can restrict the output, namely the topology of the
spanner. For example, tree-spanners are spanners that are trees [116]. This restriction
can result in hard decision problems, e.g., to decide if a given graph admits a tree t-
spanner is NP-complete for ¢ > 4 [29]. Also, other kinds of optimal spanners can result
in NP-completeness, e.g., finding a t-spanner for planar weighted graphs with minimum
weight is NP-complete [2§].

Lower bounds were given by Chen et al. [51) 50]. They show that the problem of
constructing a t-spanner for ¢ > 1 takes time (nlogn) in the algebraic computation
tree model.

2.3.3 Spatial Data Structures

Spatial data structures are one of the fundamental types of data structure for the
rendering algorithms of computer graphics. They are important because a good spatial
subdivision is necessary for efficient access to parts of the data of the scene. Although

38

2.3 Data Structures from Computational Geometry

many methods use the same spatial data structure for the same purpose, the methods
are different. The difference is because how they use the data structure. We only
examine briefly some basic work about the spatial data structures.

One important data structure is quadtrees/octress, they were introduced by Finkel
and Bently [90]. Since then, many researchers have investigated quadtrees. This phase
was completed by the books by Samet [190, 189] and surveys by him and Webber
[192] 193], 191, 188]. The quadtrees/octrees find not only their applications in real-time
systems for the spatial subdivision of the scene, but also in various other applications
such as finite elements methods, VLSI design, robotics, and in computer graphics as
means for the adaptive surface meshing together with wavelets and LOD [I10]. A
drawback of a quadtree is that the balance of the tree depends on the arrangement of
the points. Therefore, we compute the depth of the tree depending on ¢, the smallest
distance between two points, and s, the length of the bounding box of the point set.
The depth of the quadtree for a point set is at most log(%) + % The tree of depth d
and p points can be constructed in time O(n(d + 1)).

A further important data structure for computer graphics is Binary Space Partitions
Trees (BSP). They were introduced by Fuchs et al. [96] for the removal of hidden
surface using the painters’ algorithm. To subdivide the spatial area of a set of polygons,
the BSP tree uses polygons of the scene as part of the dividing plane, whereby other
polygons are split. This kind of subdivision results in O(nlogn) expected fragments of
the polygons; and the construction of a two dimensional BSP tree of size O(nlogn) can
be computed in expected time O(nlogn) [75]. Although the construction time is worse,
many applications use the BSP tree because they compute the tree in the preprocessing.
If we assume certain properties on the topology of the scene, we get better results.
De Berg [74] constructs BSP trees of linear size and O(nlogn) construction time for
uncluttered scenes. Similar improved size and construction time can be obtained if the
aspect ratio of the rectangles is restricted [6]. BSP became important for the hidden-
surface-removal problem [166]. They were used for the rendering of geometric data
[220, [104]. Also dynamic variants of BSP trees are developed where the objects of the
scene can be moved and deformed [219].

39

2 Background and State of the Art

40

3 Architecture and Functionality of the
System

We introduce a new scene model that we need for the data structure and architecture
of our walkthrough system (Section . The model defines a virtual scene consisting
of objects, a viewer, and a modeller (Section . The objects are basically for our
scene model (Section. The user navigates in his environment, which we denote by
bubble (Section . The user perceives only objects of a bubble; all objects outside
the bubble are invisible. In Section we describe our kind of distribution of the
scene across a network. We define the available operations of the walkthrough system
in Section As a result of the scene model and the operations of the walkthrough
system, we define the requirements to our data structure in Section

3.1 Underlying Abstraction of Dynamic, Fully Distributed
Scenes

3.1.1 Scenes Composed from Abstract Objects

Our architecture and data structure are designed for large and complex 2.5-dimensional
scenes. A complex scene means that the 3D model consists of many polygons and a
large scene means that the spatial extent is large. We assume that width and depth
are large with respect to the height. Typical scenes are outdoor scenes as landscapes,
cities, and whole countries. There are no further restrictions on the topology of the
scene. We allow occluded scenes such as architectural models, and disconnected scenes
such as trees, forests, and meadows. The height of large objects, such as buildings and
mountains, is unrestricted. More important is that the diameter of the scene is much
larger than the height of the objects. An exact limit is difficult; our experiments show
that the system works well if the ratio of diameter to height is at least ten.

The reason for the restriction to 2.5 dimensional scenes is our data structure, which
handles two-dimensional spaces only. The memory consumption of more-dimensional
variants of the data structure is too large for practical applications. Our experiments
show that the two-dimensional data structure works well for landscapes scenes.

41

3 Architecture and Functionality of the System

Virtual scenes are semantically structured by the term object, e.g., a car, a house,
and a tree are objects. The term is imprecise because an exact definition does not exist
and objects are defined differently in applications. Objects may be modelled with a few
as well as many polygons and they may contain other objects, e.g., a whole house is an
object, and the window and the roof of the house could be objects. For our theoretical
analysis, we need an exact object definition in order to compute exact runtime bounds.
Our kind of object definition influences the runtime bounds of our algorithms strongly.
We distinguish between objects of the theoretical model and objects of the virtual scene.

Objects of the Theoretical Model

The scene consists of m simple objects o1, ..., 0, of unit size. We denote the objects
by balls. The balls are arbitrarily distributed without overlaps, i.e., the balls can touch
each other, but one ball cannot enclose another ball. The balls have a fixed constant
diameter r.

The requirement that the objects do not overlap is important for our data structure.
Maximal O(t?) non-overlapping objects can be placed on a two-dimensional disk with
radius t. This condition has an effect on the runtime bounds of our algorithms (for
details see Chapter .

Objects of the Virtual 3D Scene

In contrast to the simple non-overlapping balls of the theoretical model, the basic units
of the 3D scene are polygons that form surfaces with arbitrary topology. The problem
arises of how to map the simple theoretical model onto the complex structure of a virtual
scene. Fach ball corresponds to an object of the virtual 3D scene. Typical objects of
a virtual landscape scene are houses, trees, traffic lights, street lamps, crossroads, and
pedestrian crossings (see Fig. [3.1)).

Figure 3.1: Typical objects of a landscape scene: houses, trees, traffic lights, street lamps,
crossroads, and pedestrian crossings.

42

3.1 Underlying Abstraction of Dynamic, Fully Distributed Scenes

Figure 3.2: A small overlapping of the enclosing spheres S(0;) of all objects o; is allowed.

Let S(0;) be the smallest enclosing sphere of Object 0;. The diameter r; of the spheres
S(0;) is bounded by a small fixed range [Fjower, Tupper]- A small range means that the
difference between upper and lower bound is small in comparison to the diameter 7scene
of the scene, i.e., Tupper — Tlower <K T'scene holds.

We allow that the enclosing spheres S(o;) overlap each other by a small constant
value (see Fig. [3.2)). However, the condition must hold that on a two-dimensional disk
with radius ¢ we can place maximal O(t?) enclosing spheres. Otherwise, the condition
of our theoretical model is violated and the runtime expectation of our data structures
does not hold.

The question remains whether it is possible to structure arbitrary virtual scenes with
a number of slightly overlapping spheres. We achieve one simple construction with a
regular grid of spheres in which all empty spheres are removed. This construction works
for arbitrary scenes, but it results in degenerated objects, e.g., a car could be divided.
There is a good chance to model a landscape scene without such types of artefacts. A
house, a chair, and a table are good choices for an object if these objects do not overlap.
If a table and a chair are placed inside a house, we choose only one single object.

3.1.2 Interactive Multi-User Navigation and Manipulation

We design a multi-user system for real-time navigation and manipulation in a virtual
scene. Many persons use the system for a collaborative work. They navigate through
the scene to arbitrary positions and work on different parts of the virtual scene at the
same time. Each user is sitting at a rendering workstation that allows free navigation
in the scene. In our model, we represent the collaborative work with a viewer and a
modeller (see Fig. [3.3).

The ability of the viewer is restricted to the navigation in the scene. The viewer moves
the position and orientation of his camera in order to navigate to arbitrary objects of
the scene. The movement is slightly restricted: if the viewer moves from his current
position x to a new position y, he must go the complete path to position y, e.g., viewer

43

3 Architecture and Functionality of the System

Paderborn Munich

Vie%) Iy
A ﬁ v ﬁ e &

modeller 1 viewer 3 modeller 2

Figure 3.3: Modeller and viewer work on far away places of the scene. Viewer 3 moves from
Paderborn to Munich

3 in Fig. [3.3] The system cannot beam the viewer down to a new location. Some
walkthrough systems are able to beam the viewer to arbitrary positions.

Like the viewer, the modeller navigates through the scene. Additionally, he ma-
nipulates the scene and inserts and deletes objects of the scene. The manipulation is
restricted to the insertion and deletion of complete objects. A manipulation of a single
object is impossible, e.g., the insertion of a single polygon into an object. A single
object is the smallest editable unit. The car, the tree, and the house of Fig. are
objects.

Although we support the manipulation of a scene, the system is not a 3D modelling
program like 3d Studio Max [78] or Softimage [21]. The system is designed for the
collaborative work of many users on one single virtual scene. A typical application is
the interactive visit to and design of large landscapes and cities. The user is interested
in a manipulation of complete objects, i.e., he exchanges some models, e.g., houses, cars
or trees. He uses a modular system of objects in order to build the scene.

3.1.3 Distributed Virtual Scenes

Our walkthrough system is a distributed system. The virtual scene is complex so that
the objects cannot be stored in the memory of the computer. The data is distributed
and stored on several disks that are connected by a network. In a preprocessing step, we
build the scene such that spatially close objects are stored on the same hard disk (see
Fig. . During the walkthrough of the users, newly inserted and deleted objects ought
to balance among the disks. Other kinds of distribution are thinkable and intended,
e.g., a random distribution.

The data structure, responsible for the navigation and management of the objects, is
distributed among the hard disks, too. The objects of each partition are managed by a
subset of the data structure stored on the same disk as the objects (see the green edges

44

3.1 Underlying Abstraction of Dynamic, Fully Distributed Scenes

00O
O ‘*‘
O
(]

object duplicate

Figure 3.4: Distributed walkthrough system: the objects of the scene (black balls) are dis-
tributed among several hard disks. The bubble of the user stores duplicates of the objects
(yellow balls). The data structure is stored on the hard disk (green edges). Links (red edges)
connect the data structure between two hard disks.

in Fig.[3.4). Parts of the data structure are connected via links (red edges). These links
refer from an object on one disk to an object on another disk.

The user walks through the scene without any knowledge of the partition of the
scene. It does not matter if the bubble overlaps one or more objects that are stored
on different hard disks or partitions (see the bubble of the viewer in Fig. [3.4]). The
user moves his bubble from one partition to another. The modeller inserts and deletes
objects even if his bubble contains objects from more than one disk. He manipulates
the scene without the knowledge that the objects are stored on several disks. He sees
only one single virtual scene.

The bubble of the user contains a duplicate of the objects stored on the rendering
workstation of the user. The black objects in Fig. are the distributed objects of the
scene and the yellow objects are duplicates of the objects. The objects of the scene are
loaded from the hard disk and sent to the user via the network. The object is stored as
a duplicate on the rendering workstation of the user. The duplicates are necessary for
fast access and rendering of the objects. We remove the duplicates from the rendering
workstation if the position of the objects is outside the bubble. We describe the four
kinds of duplicates in more detail in Section [3.3.3

3.1.4 Bubbles: A Spatial Hierarchy of Caches

Each user sits at a graphics workstation and has his own environment. An environment
contains all objects of the users neighbourhood. We denote the environment of a user

45

3 Architecture and Functionality of the System

®
~~. the path of IN
// a viewer 7N

modeller 1

Figure 3.5: The basic model of the scene consisting of bubbles and objects: each bubble is a
circle and contains all objects of the corresponding area.

by bubble. A bubble is a circle with radius t. Let x be the current position of the
user, then V;(x) denotes the set of all objects with position y so that |y — x| < ¢ holds.
The centre of the bubble is the current position of the user. The walkthrough system
executes the movement of the user through the scene by the movement of the bubble
(see Fig.[3.5).

The user sees only objects of the bubble; all other objects are invisible. We must
choose the radius ¢ of a bubble to be large enough. Otherwise, the user misses some far
away objects that are outside the bubble. In typical scenes such as landscape scenes,
this seldom occurs if we choose t large enough.

Requirements to the Data Structure

The bubble defines a spatially bounded environment of the user. Many viewers and
modellers work independently of each other on different parts of the scene at the same
time if their bubbles do not overlap. We want to transfer the property of the independent
work to the property of the data structure.

See Fig. for an example: modeller 1 and modeller 2 are working on two distant
locations of the scene; 1 and x9 are the positions of modeller 1 and modeller 2, respec-
tively. Both modellers work completely independently of each other and each bubble
contains a subset of the data structure that manages all objects of the scene. Assume
now that modeller 2 manipulates the scene. The insertion and deletion of objects of
modeller 2 must not induce changes or references to the data structure of modeller
1. Modeller 1 does not know the positions of the objects o; € Vi(z2) of modeller 2.
Therefore, modeller 1 must not update his data structure if modeller 2 manipulates the
scene.

Just the same applies to a viewer moving through the scene during the walkthrough

46

3.2 Elementary Operations for Navigation and Manipulation

(see Fig.[3.5)). The viewer must update his data structures if he moves to a new position.
For these updates, he knows only the position of the objects of his neighbourhood. He
needs no access to the objects of the bubbles of modeller 1 and modeller 2.

Hierarchical data structures, e.g., octrees, BSP-trees, kd—trees (see Section cre-
ate a hierarchy of the objects. At higher levels of the hierarchy (e.g., a tree), the data
structure makes a coarse-grained subdivision. This subdivision is refined at lower levels
of the hierarchy. That is, the hierarchy needs the references of all objects. If some
objects are inserted and deleted anywhere in the scene, the hierarchy must be updated
and parts of the hierarchy must be rebuilt depending on the type of data structure.
Thus, two far away modellers cannot make their insertion and deletion independently
from each other. Therefore, these data structures are unsuitable to fulfil our desired
requirements. We present a data structure that fulfils these requirements in Chapter [
The requirements are specified in more detail in Section

3.2 Elementary Operations for Navigation and Manipulation

We describe the operations that we need for the movement of a user, and for the
insertion and deletion of objects. We discuss some features of the operations and those
our system supports, and explain why we do not support other kinds of operations. All
operations are described in more detail in the following sections.

Dynamic Properties of the Virtual Scene

Some walkthrough systems support only static scenes. A static scene consists of a fixed
number of polygons and objects. A modification of the scene is impossible. We can
neither insert and delete a single polygon nor an entire object. Independent of the
static behaviour of the scene, the visitor moves unrestrained to arbitrary positions of
the scene. Sophisticated walkthrough systems use algorithms that replace a complex
object by a less complex object in order to save rendering time. Also these walkthrough
systems render a static scene because the user cannot manipulate the scene.

A scene is dynamic if the user inserts and removes parts of the scene during the walk-
through. The 3D-modelling program 3d Studio Max [78] is an editor for full dynamic
scenes. Our system allows the insertion and deletion of objects: we use precomputed
models that are stored on the hard disk. The modeller starts with an empty scene and
inserts the precomputed models in the scene. This feature gives the modeller a good
degree of flexibility in order to build a scene from scratch. However, our system does
not allow the modification of a single object, e.g., the modification of polygons.

47

3 Architecture and Functionality of the System

Movement of Objects

A walkthrough system allows movements if the objects are able to move to arbitrary
positions. For example, car and human models can move through a virtual scene. The
degree of mobility is different: the system supports a high degree of flexibility if a large
number of cars or human models are able to move to arbitrary positions. The rotating
blade of a windmill is an example of a low degree of flexibility because the movement
takes place in a spatial bounded area. The different degree of movement makes different
demands on the algorithms. Spatially bounded movement is easier to support than the
movement of many objects to arbitrary positions. Our system supports the movement of
objects that take place in a spatially bounded area, but the movement of many objects
to arbitrary positions is impossible. Our system does not support the free movement
of objects in the scene.

Operations of the System

Our system uses four operations that are necessary for the movement of the user in
the virtual scene. The operations compute the bubbles, move the bubbles, and allow
the manipulation of the objects. Furthermore, the operations are necessary in order to
iterate all objects of a bubble for the rendering of the objects.

SEARCH(z,t): Let be y the position of an object 0;. Search all objects o; with |z—y| < t.
MOVE(z, Az): Move the bubble from position = to position = + Ax.

INSERT(z,0): Insert object o at position z if is the centre of the bubble and the user,
respectively.

DELETE(z): Delete the object nearest to position z if z is the centre of the bubble
and the user, respectively.

We describe the operations in the following Sections.

3.2.1 Reporting from the Scene

The data structure must offer two report operations: the computation of a bubble and
an iterator for a sequential listing of all objects. The operation SEARCH(z,t) computes
a bubble with centre x and arbitrary radius ¢. For the computation of the bubble, a
single object (seed) must be given that is inside the bubble (see Fig.[3.6]). The operation
SEARCH(z, t) is used if we create a new bubble or if we change the radius of the bubble
from t; to a greater value t5. We need this operation during the walkthrough if the
scene becomes sparsely populated and the user sees the border of his bubble.

48

3.2 Elementary Operations for Navigation and Manipulation

seed

)

Figure 3.6: Report operation: an object (seed) is used in order to compute a bubble with an
arbitrary radius t.

The second report operation is an iterator that computes a sequentially unordered
list of all objects. This operation is necessary for the rendering of the scene. The listed
objects are sent to the rendering pipeline in order to render an image for the user. We
need the iterator after each insertion and deletion of objects, and after each movement
of the visitor.

3.2.2 Insertion to and Deletion from the Scene

Our data structure supports fully dynamic operations for the insertion and the deletion
of objects. The operation INSERT(z, 0) inserts a new object at position x, where x is the
position of the modeller (see Fig. [3.7). The modeller inserts only whole objects. The
objects are loaded from the hard disk. The centre of the bounding box of the object is
placed at the position . The operation DELETE(x) deletes the object that is next to

position of position of
modeller 1 modeller 2

deleted
next object inserted object

bubble of bubble of
modeller 1 modeller 2

Figure 3.7: Insertion and deletion of objects: modeller 1 deletes the next object; modeller 2
inserts an object at his current position.

49

3 Architecture and Functionality of the System

left banana right banana

objects deleted objects inserted
from the bubble in the bubble

old position
new position

Figure 3.8: Movement of a bubble: the objects of the left banana are deleted from the bubble
(red) and the objects of the right banana are inserted (green).

position z, where x is the position of the modeller (see Fig. [3.7). The modification of
an object is impossible. If the modeller wants to move an object, he can do this with
successive deletion and insertion operations. Delete and insert operations do not move
the position of the visitor and the centre of the bubble.

3.2.3 Incremental Motion of Bubbles

The operation MOVE(z, Az) moves the bubble from position z to position z+ Ax. This
operation is necessary for the movement of the user. If the user changes the position of
his camera, we have to move the bubble of the user too, because the position of the user
is always the centre of the bubble. No operation is necessary if the user changes the
orientation of his camera. If the centre of the bubble moves, some objects are deleted
and some are inserted (see the two bananas in Fig. [3.8)). The objects of the left banana
are outside the bubble at the new position; they are deleted from the bubble. The
objects of the right banana are inside the bubble at the new position; they are inserted.
The system must compute all objects of the left and right banana.

Despite the modification of the bubble, the scene remains without any changes. The
objects are neither inserted into nor deleted from the scene. The objects of the bubble
are duplicates of the objects of the scene. We delete and insert only the duplicates
of the bubble. Compare this with the INSERT(x,0) and DELETE(x) operations. Both
delete and insert the objects completely from the scene.

3.3 Resulting Requirements to the Data Structure

The efficiency of the data structure is important for a fast execution of the operations
and a successful usage in a walkthrough system. Furthermore, we need a simple handling

50

3.3 Resulting Requirements to the Data Structure

bubble of bubble of
the modeller T~ the viewer

o | Vi(x)

—

Figure 3.9: Locality: manipulation of objects of the set Vi(z2) does not affect data structure
of other objects. Only parts of the data structure for the black and blue objects are referred
and modified.

and the ability to implement easily. For this, we need four requirements that are the
key observations for our choice of data structure. We denote the four requirements by
bubble requirement and describe them in the following sections.

3.3.1 Spatial Locality

Our virtual scene is shallow and has a large diameter, for example a large landscape
scene consisting of many towns and buildings. Many modellers and viewers use the
scene simultaneously. Our walkthrough system supports independent operations for all
users who are standing widely apart in the scene. For this purpose, we need a locality
of the data structure. Locality means that just as we can view and model two parts of
the scene independently of each other, we also change the appropriate parts of the data
structure independently. The data structure of far away objects is well separated.

See Fig. for an example: the scene contains two bubbles Vi(x1) and Vi(x2), one
for the viewer and the other one for the modeller. If the modeller manipulates the
objects of his bubble, all changes of the data structure are supposed to be bounded
to the spatial area of his bubble. Objects and parts of the data structure outside of
Vi(z2) are neither referred to nor changed (in Fig. [3.9)the red objects). It is unnecessary
to refer to objects o € Vi(z2) if the modeller modifies objects o € Vi(x2). Locality of
the data means the spatial boundary of references to parts of the data structure. No
references means that the modeller does not know the positions and number of objects
outside his bubble. Moreover, he does not know if a scene outside his bubble exists. If
the modeller inserts or deletes an object, he modifies the data structure only by local
bounded references and changes to the data structure. The avoidance of reference to
parts outside of V;(z2) makes all parts outside of V;(x2) completely independent of the

o1

3 Architecture and Functionality of the System

cut

Vio(X,)

Vi(x4)

Figure 3.10: Cut: the extracted part of the data structure (red objects and edges) supports all
operations without any recomputation. Paste: connect two independently modelled parts of
a scene to a single scene by a recomputation of the borderline.

manipulation by the modeller. In the same way, the viewer of V;(x1) does not take care
of any changes of V;(x3) if he moves through the scene.

We must slightly modify what we mean by spatially bounded references. If we modify
the number of objects inside a bubble with radius ¢, we allow a reference and modifi-
cation of the data structure to objects that are inside a circle with radius f -t for a
small constant f (see Fig. [3.9). If the modeller inserts objects into his bubble Vi(x2)
(black objects), he modifies and refers to objects of the data structure that are inside
the dashed circle (blue and black objects and edges).

Locality makes the system fault tolerant to any changes or failures of far away parts
of the scene. Furthermore, groups of modellers and viewers can operate independently
in the scene if they are far away from each other. They need no synchronisation, data
exchange, and communication in order to make their changes. For example, no parts
of the data structure that are used for a walk through Paderborn are affected if the
modeller inserts houses in Munich.

3.3.2 Support for Cut and Paste

Let Vi, (z1) be a sufficiently large bubble with radius ¢; and let V4, (x2) be a bubble with
radius to < t1 (see Fig. left). The bubble V;,(z2) is completely inside of bubble
Vi, (z1). The objects are a subset of bubble Vi, (z1), i.e., Vi, (x2) C Vi, (z1) holds. If this
condition holds, we say that we cut bubble V;,(z3) from bubble V;, (z1).

Our aim is to transfer the locality of the objects to the locality of the data structure.
Just like the cut of the objects of bubble Vi, (1), we need a cut of the data structure
for bubble Vi, (x2). A cut of the data structure means that we extract and isolate a
subset of the data of the bubble Vi, (z1). This subset allows the movement and the

52

3.3 Resulting Requirements to the Data Structure

duplicate

duplicate

Figure 3.11: Duplication: the bubble V;(z) contains three bubbles, each consisting of duplicates
of the objects. The green objects have more than one duplicate; the red objects have only
one duplicate.

insertion and deletion of objects in the bubble V;,(x2). All data structure operations of
the bubble V;,(z2) should be carried out with the extracted part of the data structure.
We allow no further recomputation for the isolated parts of the data structure. In order
to fulfil this requirement, we need a data structure that has the same locality as the
locality of the objects in the scene.

Similarly to the cut property, we need a paste property in order to connect two inde-
pendently modelled scenes together to form a single scene (see Fig. right). The
example shows two bubbles V;(z3) and Vi(z4). We place the two one beside the other.
Before we connect the two parts to a whole, we assume that each part has computed
its own data structure. We connect the two parts of the scene by a recomputation of
objects that are at the border of the two bubbles (red objects). We allow neither a
recomputation nor a reference to the other objects (black objects and edges). If the
data structure has this property, we denote it by paste property.

3.3.3 Support for Duplication

The walkthrough system supports independent movement and modification of the bub-
bles in the scene for many users. The users are sitting at several rendering workstations.
We distribute the virtual scene over a network of hard discs. Therefore, every user must
load a copy via the network. Each user has a copy of his own; they do not share the same
data. We need a mechanism for copying and loading the objects from the distributed
virtual scene. We denote such copies by duplicates because we have four different kinds
of copies (see Section and not every type is a simple copy of the data. Duplicates
are self-contained instances of the same object.

See Fig. for an example: the bubble Vi(z) contains the distributed objects and

93

3 Architecture and Functionality of the System

three included bubbles (e.g., for three viewers) that consist of duplicates of the bubble
Vi(x). The bubbles can overlap, so that one or more duplicates can be descended from
the same object. The objects of the green duplicates in the example have more than
one duplicate; the objects of the red duplicates have only one duplicate.

If a modeller deletes an object of his bubble, the appropriate object in the distributed
scene is removed and the data structure must be refreshed. Afterwards, the system looks
for the bubbles that contain duplicates and the accordingly duplicates of the objects
are removed. If the modeller inserts an object in his bubble, at first a new object
of the distributed scene is generated and the distributed data structure is updated.
Afterwards, the system makes duplicates for all bubbles that contain the new object.

3.3.4 Support for a Combined Bubble and Storage Hierarchy

The objects of the virtual scene, the polygon data, and the data structure are stored on
several hard disks that are connected by a network. Different problems arise if a viewer
or modeller wants to access the scene. The user must load and store the necessary
objects of his bubble. The viewer needs a buffer if his neighbourhood is large, and if
he wants to explore different parts of the scene. Otherwise, he would load and remove
the same parts of the scene if he moves away and comes back again. For this kind
of problem, we have four types of duplication: TuNetwork, TuDisk, TuMemory, and
TuReference.

TuNetwork: A TuNetwork bubble stores all objects distributed over several disks con-
nected by a network. Every rendering workstation gets access to the
whole scene. The rendering workstation does not know where the object
is stored. The TuNetwork bubble decides itself where a newly inserted
object is stored.

TuDisk: A TuDisk bubble stores all objects on a single hard disk. Only the
rendering workstation that is connected to the hard disk can access the
objects of the scene. The objects cannot be accessed by other rendering
workstations.

TuMemory: A TuMemory bubble stores the objects and the polygon data in the main
memory of the rendering workstation. Only the rendering workstation
can access the objects.

TuReference: A TuReference bubble stores instances that contain references to other
duplicates.

54

3.3 Resulting Requirements to the Data Structure

duplicate Network Disk Memory Reference
type
bubble 0)
hierarch Vo
S i E,
to other e
rendering _ = e
workstations
storage @ @@ B -------
\/J disk main memory
network of multiple disks one single rendering workstation

Figure 3.12: A hierarchy of bubbles: extracted parts of the data structure are slotted into each
other. We store each extracted part on different types of storage (memory, disk, network,
references).

Each bubble can contain one or more duplicates of different types. In Fig. the large
TuNetwork bubble contains three TuDisk duplicates, the large red dashed circle, and
the two small green dashed circles. The bubbles may be included one in another. The
TuDisk bubble includes two TuMemory bubbles. One of the TuMemory bubbles includes
two TuReference bubbles. The bubbles form a storage hierarchy of bubbles that works
as a spatial hierarchy of caches.

Only the TuNetwork bubble is distributed and stored on many disks. The other three
types are stored on a single workstation, whereby a single workstation can store more
than one type of bubble. In the example, the TuDisk bubble, the two TuMemory bubbles,
and the two TuReference bubbles are stored on the same rendering workstation.

The question remains, why do we need such a spatial hierarchy of caches? We need
the TuNetwork bubble in order to distribute the objects over many disks. The TuDisk
bubble works like a buffer and cache, respectively, for a single rendering workstation.
If a user stays in the same place for a longer time, all objects of the neighbourhood
are stored on the hard disk of the rendering workstation. We need the hard disk if the
objects do not fit in the main memory. The TuMemory bubbles are used for fast access
to render the scene. The TuReference bubble is necessary if the modeller uses one or

95

3 Architecture and Functionality of the System

more rendering windows at the same time, for example, if he models simultaneously
at different places. He looks for something in one window, and he models in the other
window.

3.4 Summary and Discussion

We presented a model for the management of a scene that is distributed across a network
of workstations. The scene consists of non-overlapping objects, so that it is impossible
to put an arbitrary number of objects into a fixed area. This requirement of the model
is consistent with practice because in typical scenes, the models overlap only to a small
degree.

A visitor moves through scene, and a modeller manipulates the scene by insertion and
deletion operations. The visitor, as well as the modeller, must move from his current
position to a new position, i.e., he must walk along the whole way. Beaming to a
new position that is far away is not supported. This requirement is not a restriction
to many practical applications, because although technically easy to achieve, beaming
confuses the visitors so that they lose their way in the scene. For the navigation and
manipulation in the scene, we need the four operations SEARCH(z,t), MOVE(z, Az),
INSERT(z,0), and DELETE(z) that must be supported by the data structure.

The extent of the scene is very large, so that the we assume that the visitor sees only
a small part of the scene, namely all objects inside a circle that we denote by bubble.
The bubble creates four requirements on the data structure:

1. To enable an arbitrary high scalability of the scene complexity, we require that
the data structure used for the navigation of a visitor in a part of the scene must
not be updated if far away parts of scene are manipulated, e.g., for insertion and
deletion (locality of operations and data).

2. To enable an easy combination of some independently modelled parts, the com-
bination of the parts into a single large one needs only objects of the border of
the scene parts (paste property). To avoid the loading of whole data structure of
the scene, we can extract a part of the scene as well as a part of the data. The
extracted part of the data supports all operations without any recomputation of
the data structure (cut property).

3. The scene is stored on remote workstations or on local hard disks. To enable fast
local access in the main memory of the rendering workstation, the data structure
must support easy duplication of data without any recomputation of the data
structure (duplication property).

56

3.4 Summary and Discussion

4. To enable buffering of the scene on hard disk and in main memory, and to enable
the rendering of distinct parts of the scene at the same time, the data structure
should support bubbles being slotted into each other. The slotting of bubbles
forms a storage hierarchy that works as a spatial hierarchy of caches (bubble and
storage hierarchy).

In the next chapter we present a data structure that fulfils these requirements.

o7

3 Architecture and Functionality of the System

58

4 Our Data Structure and Algorithms

We present and analyse a data structure that manages the storage, access, and manip-
ulation of a virtual scene. The scene is 2.5-dimensional and scalable in two dimensions,
i.e., all objects are three-dimensional, but the height of the objects is small in compar-
ison to the diameter of the scene.

First, we think about the type of data structure that we need for our system. The
problem of computing all objects inside a circle with radius r and centre x looks like a
range query. Many data structures and algorithms exist for range queries (see Section
, but only some data structures are practical and fulfil all the requirements of our
bubble (see Section . We use a special class of graphs, the so-called spanners (see
Section . A spanner has the property of locality that we need for our bubbles. For
our data structure we use weak spanners that have weaker properties than a spanner
(see Section . In Section we define a weak-spanner that we use for the imple-
mentation of the walkthrough system. We discuss the problems that a weak spanner
approach involves in Section In Section we use the weak-spanner to implement
movement, insertion, and deletion. We discuss and compare our approach in Section

at the end of this chapter.

4.1 Weak-Spanner Approach

Before we investigate our new weak spanner approach, we define a f-spanner, a well
known data structure in the computational geometry (see Section [2.3.2]).

Definition 1 (f-spanner). Let O be a set of n nodes (objects) in RY and d € N be a
constant. Furthermore, let G = (O, E) be a graph whose edges (u,v) € E are straight-
line segments with Euclidean distance dist(u,v) between two points u,v of the set O.
The length length(P) of a path P in G is the sum of the length dist(u,v) of all edges
of P. Let f > 1 be a real number. The graph G is a f-spanner for O if for each point
u, v there is a path from u to v in G with length(u,v) < f - dist(u,v). We denote f by
the stretch factor of the f-spanner.

In other words, the spanner guarantees a bounded path length from every node u to

99

4 Our Data Structure and Algorithms

spanner condition weak-spanner condition
|path u to v| <t - dist(u,v) for all s: dist(u,s) < t - dist(u,v)

path u to v
dist(u,v)
vV

Figure 4.1: Spanner versus weak spanner: a spanner guarantees a bounded path length from
every node u to a node v. A weak spanner guarantees only that the distance to every node
s on the path from u to v is bounded. Therefore, every spanner is a weak spanner, but not
the other way round.

a node v in G if we move along the edges of G. Note that the graph G must not be the
complete graph.

A f-spanner is a good candidate for the computation of all objects of a bubble:
starting with one object u of the bubble, we compute all other objects of the bubble
by a simple breadth first search with the given point as starting point. Our breadth
first search stops the search at all nodes s if the nodes are further away than f -
dist(u, s). We compute all neighboured objects by a local bounded complete search of
the neighbourhood.

Although we can implement a bubble with a f-spanner, we introduce a new graph
type, the so-called weak spanner, in order to get a better data structure for our problem.

Definition 2 (f-weak spanner). Using the notations of O,G = (O, E), f > 1 as in
the definition of a f-spanner, we define a f-weak spanner as follows: the graph G is a
f-weak spanner for O if for each point u,v there is a path from u to v in G so that for
each point s on the path dist(u,s) < f - dist(u,v) holds.

In other words, a weak spanner guarantees that the distance to every node s on the
path from u to v is bounded. The path can be longer, like t - dist(u,v). Therefore,
every spanner is a weak spanner, but not the other way round (see Fig. . A weak
spanner fulfils our requirements for the bubbles. Compared with a normal spanner, the
advantage is the size of the stretch factor. In the following section, we show smaller

60

4.1 Weak-Spanner Approach

some visited edges
and nodes of the
bread first search

bubble

Figure 4.2: Neighbourhood sensitive versus output sensitive: output sensitive running time
depends from the number of objects of the bubble (black objects). The neighbourhood
sensitive running time depends on neighbouring objects that are outside of the bubble (red
objects).

stretch factors for weak spanners than for normal spanners. This is important because
the stretch factor has an effect on the running time. We introduced the notion weak
spanner later [91) [92] when we define and use the graph [94].

In this work, the dimension d of the nodes is always two. We look only at two-
dimensional spanners, although higher dimensional variants of spanners and weak span-
ners exist and we developed variants for d = 3 [93]. However, the two-dimensional
construction is sufficient and easier to handle for typical landscape scenes.

For the classification of the running time, we need a definition that reflects locality.

Definition 3 (neighbourhood sensitive, neighbour factor). Let S be a set of n
objects of the virtual sceme, b > 1 a real number, x the centre, and t the radius of a
bubble Vi(x). We call an algorithm b-neighbourhood sensitive if the running time of the
algorithm depends only on the number of objects of the bubble Vi.i(x), i.e., the running
time is a function of |Vy¢(x)|. The number b is called the neighbour factor.

The definition does not allow the dependency from n, i.e., the running time is inde-
pendent of the size of the scene. The running time does not only depend on the size
Vi(x) of the bubble, but also on the neighbourhood of the bubble. If a bubble contains
a few objects and the neighbourhood consists of many objects (|Vi(x)| < |Vpi(z)]), we
get slow query times for the computation of the bubble, although the number of objects
of the bubble is small (see the red objects in Fig. . This implies that the neighbour
factor of our algorithms should be as small as possible.

What does this definition mean compared to an output-sensitive algorithm? An

61

4 Our Data Structure and Algorithms

algorithm is output-sensitive if the running time of the algorithm is sensitive to the
size of the output [162] [75]. If k is the output size of an algorithm, the running time
depends on k£ and is mostly a small term of the input size n. On the one hand, the
neighbourhood sensitive definition is harder because no dependency from n is allowed.
Otherwise, the definition is weaker because it depends not only on the size of the output
k, but also on the number of objects of the neighbourhood of the bubble.

Why do we need this kind of definition? Our main objective is to build a system
and to develop algorithms that support locality of the user in the scene. The definition
reflects locality because it measures the degree of locality. If the neighbour factor is
much larger than one, the algorithm has a low degree of locality. A neighbour factor of
one is optimal because a 1-neighbourhood sensitive algorithm does not refer to objects
outside of the bubble V;(z).

4.2 The Sectorgraph

Now we define the weak spanner that we use for the navigation in our scene. The data
structure makes the movement of the bubble and the insertion and deletion of objects in
the scene possible. We define the graph, compute the stretch factor, present a scan-line
algorithm for the computation of the graph, and finally show how one can use the graph
for the implementation of the operations.

Definition 4 (y-sector, v-angle graph, sectorgraph). Let k be an integer, v = 2%,
and v in R? be a position of an object in the scene. The k ~-sectors of a position
are defined as follows: draw k rays (line segments) from u such that they form angles
w,i = 1,...k, with the vertical line through u. These rays subdivide R? into k
sectors around .

The directed y-angle graph G-, = (O, E.) on a finite point set O C R? has the vertex
set O and edges that are constructed as follows: for each uw € O and each y-sector, u
has a directed edge to the closest object from O lying in the sector. The edge of the
sector is non-existent if no object lies in the sector.

The function S, (i) : {1,...,k} — S C R? defines the space of each sector i for each
object v. We define a function sec,(v) : O — {1,...,k} and write i = sec,(v) if object
v lies in sector i of the object u. Also, we denote the edge of object u pointing to the
next object v of sector sec,(v) by “edge secy(v)”.

We define the distance d,(u,v) from u to v as follows (see Fig. a)):

Definition 5 (distance measure, bisector line, orthogonal-bisector line). Con-
sider the y-sector S of a node w containing the node v. Let the bisector line be the

62

4.2 The Sectorgraph

orthogonal bisector line circle segment
r"-—_ !
I v
u
bisector line y
(cone axis) @
sector
a) b) c) d)

Figure 4.3: a) Construction of the sectorgraph (d(u,v) = d(u, z)), distance measure of Rupert
and Seidel. b) example of the sectorgraph with k = 6 and v = 60°. c) Distance measure of
Yao d) Distance measure of Keil and Gutwin.

line halving the angle in S at uw and let the orthogonal-bisector line be the line or-
thogonal to the bisector line. Then dy(u,v) is the (Euclidean) distance from u to the
orthogonal-bisector line through v.

The graph has out-degree k£ and the minimum number of edges is one. The graph
is connected because each node “sees” at least one of the other objects through one of
its sectors if the graph consists of more than two nodes. If £ = 2 (mod 4) holds, the
orthogonal bisector line is also a boundary of a y-sector of v. See Fig. b) for an
example with £ = 6 and v = 60°. The example shows that two nodes can be connected
in a unidirectional or bidirectional way. We assume that exact one line segment of a
node belongs to one sector of the node, e.g., the left line segment bounding a sector
belongs to the sector.

This kind of graph was first introduced by Yao [241], but he used the graph for the
construction of a minimum spanning tree. The Yao graph used the Euclidean distance,
i.e., all points v are equidistant from a point u that are placed on are circle around u
(see the green objects of Fig. c)). Afterwards, this kind of construction was used
for various spanner constructions with modifications in the distance measure. Keil and
Gutwinn [135] denote the graph by 0-graph and show that the undirected graph is a
(Fl(y) : #nm)—spanner for the Euclidean metric if £ > 9 holds. In the 8-graph, all
nodes v of a sector of a node w are equidistant that lie on a line orthogonal to one
of the sector boundaries of the node u (see the green objects of Fig. d)). Rupert
and Seidel improved the stretch factor of the spanner by a modification in the distance
measure. They show [I80] that the v-angle graph is a (m)—spanner ifk>7
holds. With that, it is shown that the distance measure influences the stretch factor of
the sectorgraph construction. For more details on these results, see the discussion in

63

4 Our Data Structure and Algorithms

Section 2:3.2) on page

We use the Yao graph and 6-graph, respectively, for the construction of our data
structure. We use the same distance measure as Ruppert and Seidel, but for a different
type of graph. In contrast to Ruppert and Seidel, we construct a weaker kind of spanner,
the weak spanner. We compute a smaller stretch factor as the factor for the spanner
of Rupert and Seidel; this in turn is an important feature for our walkthrough system.
However, note that our factor and that of Ruppert and Seidel are not comparable
because they describe different features of the same graph construction. For a clear
distinction, we denote the graph by sectorgraph.

4.2.1 Circular Range Query in Output-Sensitive Time

We show how to compute a local range search in order to compute of all objects of a
bubble. We need the algorithm for the movement of a bubble. We show that the ~-
angle graph is a weak spanner with stretch factor f,. If one single object of the bubble
is given, we show how far we must search the graph in order to compute all objects of
the bubble. Afterwards, we modify a simple breadth first search in order to compute a
simple range search.

Theorem 6 (weak spanner). If k > 6,7 = 2%, and x € R? is the position of an

object, it holds: each object of Vi(x) is reachable via one or more directed paths from x
in the v-angle graph. At least one path contains no objects farther away from x than
t' = f,-t. The bound for f, is tight for even k.

fy = max{\/l—|—48-sin4 <;)m}

Proof. First, we assume that k = 2 (mod 4) holds. Let u, v be objects in the scene with
d(u,v) = t. In order to lead us far away from u before we find v, an adversary places
objects that we must choose as our neighbour. Our strategy to reach v is as follows:
when having reached a ball w, we choose as next the edge going in that sector around
w containing v. The strategy of choosing the objects and the choices of the adversary
is shown in Fig.

The left illustration of Fig. shows the simpler, special case where v = §(=60°)
and k = 6. Note that, for £ = 2 (mod 4), the rays from w; through v, i = 1,2,...,
are boundaries of y-sectors of w;. It is easy to check that v is always reached, and
that wp or ws is always the object on the path far away from wu, i.e., it holds f, =
max{d(u, ws),d(u, ws)}.

64

4.2 The Sectorgraph

worst case
positions

u

u

Figure 4.4: Search environment of the y-angle graph for k = 6, v = 60° (left) and for k > 6

(right).

The following two calculations compute the exact distance from u to we and from u
to w3. With 2 = 2tsin(3) and the cosine theorem we get for d(u,ws):

d(u, ws)

Moreover, with z

d(u, ws)

\/x2 +t2 — 2xt cos (90O + %)

\/4752 sin? (%) 42— 42gin (%) cos (900 4 %)

t- \/4sin2 (3) ~4sin (%) sin (180°+ 7) +1

t-\/8sin? (%>+1

t- \/8;(1 —cos(y)) +1

t-+/5—4cos(y)

= 8tsin® (1) and the cosines theorem we get for d(u,ws):

3
\/22 + 12 — 22t cos <90° + 27)

2-61) 2 _ -3<1> oy 3
\/6415 sin (2 +t 16t sin 5 tcos | 90 +27

65

4 Our Data Structure and Algorithms

Algorithm 1 LRS(¢,05): Computes all objects of a bubble.
Require: ~y-angle-graph of n Objects O = {o1,...,0,}, radius ¢, and one object o5 € O
Ensure: All objects V;(os) of a bubble
Que.push(os); Vi(os) = os;
while Que # () do
u = Que.pop();
for all neighbors v of © do
if dist(os,v) < fyt and v is univisited then
Que.push(v);
if dist(os,v) <t then
Add v to Vi(os);
end if
end if
end for
end while

3
_ t\/64 sin® (%) 14 16sin3 (%) sin <27>
= tyfotsint (3) + 1 160w (3) (3 (3) - 4si” (1))
= t\/l + 48 sin* (;)

O]

The above construction also shows the optimality of our bound for f, if k is even.
If k is odd, the stretch factor f, is an upper bound. Now it is easy to execute a local
range search, i.e., we compute all objects of a bubble if one object is given that lies in
the centre of the bubble. We execute only a simple breadth first search. See Algorithm
for a detailed description; Que() is a First-In-First-Out Queue.

Corollary 7 (local range search, LRS). Let 01,...,0, n Objects and G = (O, E)
be a precomputed ~y-angle-graph with stretch factor f, for these objects. We compute
the set Vi(os) of all objects of a bubble with radius t in time O(|Vy. .¢(0s)| if the reference
of an object os of the sectorgraph is given. The centre of the bubble is the position of
the object os. The algorithm is fy-neighbourhood sensitive.

66

4.2 The Sectorgraph

Proof. We find all objects of V;(0s) by starting a simple breadth first search (BFS) from
05, without ever leaving V. 4(os). For each object v found during the search, we check
whether d(os,v) <t holds. The running time follows from the fact that we never refer
to objects outside of V¢ ;(0s) and that all objects are visited only once. O

All our efforts to find a weak-spanner with a small stretch factor are aimed at this
simple and efficient algorithm that under no circumstances refers to any objects outside
of Vi, .t(0s). Above all, the existence of objects outside V. .1(0s) and the current state
of the data structure is completely irrelevant for the computation of V;(os).

In order to make the really interesting property clearer, assume that we get the
object o5 and compute V;(0s) at the time ¢1, i.e., we get the subset of the data structure
(perhaps a copy) that contains all objects of Vi(0s) and a little bit of V. 4(os). After
the time ¢1, some parts of the scene outside ny.t(os) are manipulated, i.e., objects
are inserted or deleted, and the corresponding parts of the data structure are updated.
After these modifications at time t3, we use our local part of the data structure (a copy)
of the bubble V;(0s) again. At that time, no update of our part of the sectorgraph is
necessary. Moreover, there is no necessity that we know anything about the preceding
modification. Our data structure has this property because the locality of the objects in
the scene is the same as the locality of the data structure. This property of sectorgraph
was the key motivation for our development.

In addition the above-mentioned results for spanners [135 [180] yield stretch factors
similar to Theorem [} The spanners would fulfil our requirements too. However, their
results have worse stretch factors f. For example for k£ = 9 (10,11), the result from
Keil and Gutwinn [I35] yields stretch factors f = 8.11 (4.52, 3.32), the one from
Ruppert and Seidel [I80] f = 3.16 (2.61,2.29), whereas we obtain the stretch factors
f=1.39(1.32,1.27). As our stretch factor is defined for k > 6 (k =6 — f = 2), we can
use a graph with small out-degree for our implementation. It is reasonable to choose a
weak spanner with a small out-degree and a low stretch factor f for the implementation
in order to save running time and memory.

4.2.2 Constructing the Sectorgraph in O(n log(n))

The efficient computation of the sectorgraph is possible by the means of the scan-line
technique in time O(k-n-log(n)) if n is the number of objects and k the number of sectors
(the simple brute force algorithm needs time O(n?)). The following algorithm works for
R? and with minor modifications for higher dimensions. The algorithm computes the
edges of the sectors in consecutive passes. At first, in each pass we project the points
onto the bisector line of the sector to be computed. Afterwards, we sort the points

67

4 Our Data Structure and Algorithms

scan-line / [)
-

—

4/7

Figure 4.5: A situation of the scan-line during the computation of the y-angle-graph (left). An
example of the graph consisting of eight objects (right).

according to their projection onto the bisector line.

The scan line starts and iterates the points in increasing order (see the left illustration
of Fig. 4.5). We keep in mind all objects that have an unconnected sector and store it
in the data structure SortSeq() (blue and black nodes left from the scan line). A single
step of the scan line, from one object to another, looks like this: we query SortSeq()
for all objects that contain the object of the scan line in their sector (the blue objects
left of the scan line). We connect all these objects with the current object of the scan
line (the red object) and remove it all from SortSeq() afterwards. Last, we insert the
scan line object into SortSeq(). As usual for scan line algorithms, the non-processed
objects are right of the scan line (the green objects). In the right illustration of Fig.
we see an example of the ~v-angle-graph consisting of eight objects computed by
our algorithm.

For the detailed description in Algorithm [2} we use the following notations and func-
tions: proj(sl,o;) computes the projection of the point o; onto the scan line. “o; in
sector s; of o.” means that the node o; lies in the sector s; of the node o.. The
data structure SortSeq() keeps all inserted values in a sorted order. The operation
SortSeq.find(x) finds the next element to x and sets a reference to the element found.
We use SortSeq.nextup() and SortSeq.nextdown() to iterate to the next smaller or
next greater element of the sorted elements of SortSeq().

Theorem 8 (y-angle-graph computation). Let n denote the number of objects and
k the number of sectors. The algorithm computes the v-angle graph in time O(k - n -
log(n)) and space O(n).

68

4.2 The Sectorgraph

Algorithm 2 CSG({o1,...,0,}): Computes y-angle-graph

Require: n Objects O = {o1,...,0,}
Ensure: ~v-angle-graph
for all k sectors s; of the origin 6= (0,0) do
for all objects 0; € O do
compute the projection onto the bisector of s;;
end for
Sort,(O) := sort all objects according their projection onto s;;
SortSeq := 0;
for all objects 0; € Sort,(O) in increasing order do
oc := SortSeq.find(proj(sl,o;)); {sl is the scan-line}
while o; in sector s; of o, do
connect o, with o;; {edge for sector s;}
remove o, from SortSeq();
oc := SortSeq.nextup();
end while
oc := SortSeq. find(proj(sl, 0;));
while o; in sector s; of o, do
connect o, with o;; {edge for sector s;}
remove o, from SortSeq();
oc := SortSeq.nextdown();
end while
put o; in SortSeq();
end for
end for

Proof. Correctness: note that all objects left of the scan line either have found their
nearest neighbour, or the objects are stored in SortSeq(). The invariant of the algorithm
is that all objects of SortSeq() have no nearest neighbour left of the scan line. Look
now where the scan line reaches the next object. All objects of SortSeq() are computed
containing the scan-line object in their sector s;. The scan-line object is the nearest
neighbour for the objects of SortSeq() because all other objects right of the scan-line
object are farther away. This holds because the objects are scanned in the sorted order
(see Sort,(0O)) and the scan line is the orthogonal bisector line of the sector s;. As
noted above, all objects of the scan line are equidistant for the sector s; (see definition
B).

Time and space: the scan line iterates all objects with n steps. For each step,

69

4 Our Data Structure and Algorithms

we have the following costs: the data structure SortSeq() can be implemented with
red-black trees. If n is number of elements of SortSeq(), the insertion, deletion, and
query (SortSeq.find()) of an element can be executed in time O(log(n)). As we insert
and remove every object only once to SortSeq(), a single scan line step causes time
O(log(n)). The query of the next smaller or next greater element (SortSeq.nextup()
and SortSeq.nextdown()) costs constant time. The iteration of the objects during
the scan steps adds up to time O(n) for the whole computation because every object
is iterated and removed only once. All iterated objects form a consecutive subset of
elements of the sorted sequence SortSeq(). See the blue ellipse in the left illustration
of Fig. The algorithm sorts and projects the objects in time O(knlog(n)). The
distance measure implies the logarithmic running time of the algorithm. A Euclidean
distance measure would cause more problems, although there exist algorithms with the
same running time (see the discussion in the literature .

Each element is stored only once for the projection, once in SortSeq(), and once in
the resulting list. Therefore, we need only space O(n). O

The algorithm for R? works similarly to the two-dimensional case. The problem is an
efficient computation of all unconnected nodes left of the scan line that contain the scan
line node in their sector. In two dimensions, we use a sorted sequence. Alternatively, we
can use a more dimensional range query for the mirrored sector of the scan line node;
see the red cone of the scan line node in the left illustrations of Fig.[2] All unconnected
nodes left from the scan line lying in the mirrored sector of the scan line have the scan
line node as their nearest neighbour.

4.3 Limitations and Overcoming Them

In our model, the bubbles use only movement operations that do not refer to far away
points. The quadtree data structure (see Section refers to far away points of
the scene because it builds a tree of all objects of the scene. On the highest level,
the construction algorithm decides which parts of the scene are far away and which
parts are nearby. Our data structure can move the bubble without such a hierarchical
structure and without references to far away points.

An alternative to a hierarchical data structure is a two-dimensional graph that con-
nects the objects in the form of a network, e.g., our weak spanner. The connections
are the edges between the objects. In order to ensure the locality of the data structure,
we connect the objects that are neighbouring (e.g., see cluster one of Fig. . If the
bubble moves through the scene, we compute the neighbouring objects with a breadth
first search of the graph. In the following two Sections , we describe some

70

4.3 Limitations and Overcoming Them

Figure 4.6: Deserts and long edges: the crossing of a desert is impossible without a search of
the whole scene.

problems that result from the weak spanner approach. The solution to overcome the
problem is described in Section [£.3.3]

4.3.1 Deserts and Long Edges

A problem of the movement of the bubbles is the navigation across large empty parts
of the scene. A part is large and empty in comparison to the diameter of the bubble if
the part is at least as large as the bubble.

The scene in Fig. consists of five clusters (groups 1-5). The edges between the
objects can be a graph that connects the objects such as our sectorgraph. The moving
bubble starts in the large cluster one and moves along the path to cluster five. During
the movement to cluster five, the bubble crosses parts of the scene where the bubble
does not contain objects. Therefore, it is difficult to compute objects that will form
a way through the cluster. At the starting position of the bubble, in cluster one, the
bubble knows only the edges of clusters two and three (red edges). The bubble has no
information about the edges of cluster one and three that lead to cluster four and from
four to cluster five. Generally, large and empty parts of the scene are a problem for a
weak spanner missing a hierarchical structure to make point location. We denote such
large empty parts of the scene by deserts. The question arises, how we can bridge over
large deserts. The long edges between the clusters do not help. We cannot guarantee
that we will quickly reach the desired cluster if we cross the desert containing only long
edges.

4.3.2 Unbounded Accumulation

A further problem of the weak spanner approach is the arbitrarily high density of points.
Let every object be represented as a point of the sectorgraph. If the objects are far

71

4 Our Data Structure and Algorithms

e 0 o ([]
® 0 0
oo o0 Vi(x1)
® 0 o (J
e 6 0606 06 0 O
oo o
Vt(x2) ARG a e e e e e e e
PALP P APV AL P LS r
e e e R R R e
R e S R R R
D R s
PR R R R R R R R R R R R R

'''''

Figure 4.7: High Point density. Many objects are neighbours of the bubble in the centre (left).
The bubble moves from an area with low density to an area with high density (right).

away, a single object has many neighbouring points. This is a problem for the efficiency
of the insertion or deletion operations. We cannot guarantee a simple small bound
because we can easily construct a worst case with many neighbours (see Fig. for a
worst-case example). In the centre of a circle of points (black), we have a single object
(red). The red edges are edges of the neighbours pointing to the red object. We have
to modify many edges if this object is inserted or deleted.

The point density is also a problem for the movement of the bubble because each
bubble can arbitrarily include many points. This causes unsteady response times of the
movement operation. In Fig. [£.7] the red bubble moves from an area of low density to
an area of high density. As soon as the viewer arrives at the area of high density, the
walkthrough system will slow down.

4.3.3 Crowded Scenes, Dummy Balls, and Non-Overlapping Objects

We use two techniques, dummy points and non-overlapping objects, to overcome the
two problems “high point density” and “deserts”; both together solve the problems.
Dummy points are auxiliary inserted objects in the scene. As an example, the objects
are arranged on a regular grid in Fig. m (red squares). The dummy points are invisible
to the user of the walkthrough system. The points prevent long edges because each
object has a nearby neighbour. The bubble can move across the deserts because the
desert consists of at least these dummy points. The bubble contains at least one object
that is necessary for the movement of the bubble.

The condition of non-overlapping objects is defined by our abstraction of the scene
and means that the objects have a fixed size and that only a small overlapping is
possible (see the definition of our model in Section . The condition guarantees
that on a square or circle with diameter r, we place only O(r?) objects (see Fig. [4.8

72

4.3 Limitations and Overcoming Them

Figure 4.8: Dummy points (left) and non-overlapping objects (right) overcome the problems of
high-point density and deserts.

right). Without this condition, we can place an arbitrary number objects on a square
or circle with diameter r. This in turn involves an inefficient insertion and deletion
of objects. The condition of non-overlapping objects is the reason for the efficiency of
our algorithms. In our effort to model the problem, we must parameterize the dummy
points technique. A parameterized technique gives us the possibility to make a runtime
analysis. Dummy points are a means to increase the density of the scene. Therefore,
we introduce a measure of the density of a scene.

Definition 9 (c-crowded scene). We denote a scene by (v, c)-crowded if for each
point z € R? each y-sector around z contains either no object or an object within
distance at most ¢ from the position z.

In other words, a c-crowded scene gives us the guarantee that we find a next neighbour
in every direction within a maximum distance, or the point is at the border of the scene
and contains no neighbour in that direction. One simple way to make a scene (7, ¢)-
crowded for a given c, is a simple grid of dummy points.

Lemma 10 (grid of dummy points). A grid of dummy points with edge length

d=c/(1+ #n(l)) is a (7, c)-crowded scene.
2

Proof. To make the crowd factor c as large as possible for a given d, we must set the top
of the sector to the position as shown in Fig. In this general position, we maximize
the distance between the points p; and ps and the top of the sector without including
the points p3 and p4 in the sector. For the distance d holds:

()= L o aerem ()< e

2 c—d 2 :1+2tan

73

4 Our Data Structure and Algorithms

] L] L]]
dI ™~
pm Ps]]
d/2 .
[p,* p4c-d u]
Cc
] /I m m]

Figure 4.9: A grid of dummy points.

Therefore, we can turn every scene with unknown crowdedness into a c-crowded scene.
For different angles v = 30°(53.13°,60°,90°,160°) we get factors a = 2.87(2.0, 1.87, 1.5,
1.09) if ¢ = a - d holds. As we use our weak spanner for v > 60°, it follows that long
edges are “broken” at least after a second cell of regular grid. The auxiliary dummy
points need space requirements quadratic in n in a grid-like manner. Of course, we
cannot allow that in practical use. We can reduce the requirements to linear space if we
use hashing. We store only the dummy points lying in the neighbourhood of objects,
all objects lying in deserts were not stored [94]

For c-crowded scenes, we can strengthen the stretch factor of our weak spanner if the
stretch factor is less than the distance between source and destination object.

Corollary 11 (stretch factor for c-crowded scenes). Let x,y be objects of a (v, c)-
crowded scene with t = d(x,y) and ¢ < t. At least one path from x to y exists such that
for every node s on the path holds dist(xz,s) <t+ A7) - c.

Proof. The result follows from theorem [f] by a modification of the proof as follows: if
hold ¢ < t hold, our adversary can place the objects only within maximum distance c
instead of distance ¢t. Therefore, we substitute ¢ by ¢ in the formulas of d(u,ws) and
d(u,w3) and get the claimed bound. O

4.4 Implementation of Bubbles Using the Sectorgraph

This section shows how we use the sectorgraph to implement the operations of the
bubbles, which are defined in Section The problem is the computation of V;(x) for
general positions. The computation requires that x is also the position of an object and
the search starts from it. However, the condition does not hold for general positions.
We give algorithms for the reporting, movement, search (Section , insertion, and

74

4.4 Implementation of Bubbles Using the Sectorgraph

deletion (Section {4.4.3). Finally, we show how to compose parts of a large scene in
Section 441

4.4.1 Cutting a Subgraph of the Sectorgraph

We introduced and defined objects and their duplicates (see Section , which are
the basic units of the scene. We make the requirement that the data structure of
a duplicated bubble Vi(x) should be extracted from the data structure of the whole
scene and that the duplicated subgraph should keep all properties such that all of our
operations can work on the duplicated subgraph. We show how we extract a duplicated
bubble from the y-angle graph.

Definition 12 (subgraph of the sectorgraph). Let G, = (O, E,) be the y-angle
graph and Vi(z) a bubble with centre x and radius t. We denote Gy,(,) by subgraph of
Gy if Gy, o) = (Vi(z), EY) is the subgraph of G- that is induced by Vi(z), i.e., for all
edges e = (u,v) € E7 it holds: e € Ef, & u,v € Vi(v),e € E,.

In other words, Gy, (,) contains all edges that lie completely in the circle with centre
x and radius t. The circle of the bubble cuts a subset of objects and edges from the
v-angle graph. Edges that are cut through by the circle are not in Gy, (;), i.e. all edges
e = (u,v) with u € Vi(x),v & Vi(z) and v € Vi(z),u &€ Vi(x), respectively.

We need the subgraph because the DELETE(z) MOVE(z, Az), INSERT(z,0), and
SEARCH(x, t) operations work not only on the complete v-angle graph, but also on
the bubble without any access to the whole graph. Like the objects of the bubble V;(z),
the subset Gy, (, also belongs to the bubble Vi(z).

By this definition, the duplication of the bubble is an easy operation: we must com-
pute and duplicate all objects of a bubble V;(x) in a first step. Afterwards, we duplicate
all edges of Gy, (,) in a second step.

4.4.2 Algorithms for Reporting and Incremental Motion

We have all means in order to implement the operations SEARCH(z,t), MOVE(x, Az),
DELETE(z), and INSERT(z, 0) for general positions in the scene, i.e., positions that are
unequal to the positions of the objects. The essential three means are a parameterized
c-crowded scene (Section , the algorithm for the computation of the sectorgraph
(Section [£.2.2)), and the algorithm for the local range search (Section [£.2.1). The algo-
rithms use the sectorgraph to search the objects. Some of them start the search from
the reference to an object. References to objects are pointers to the corresponding
nodes of the sectorgraph.

75

4 Our Data Structure and Algorithms

Algorithm 3 SEARCH(z,t): Computes the bubble V;(z).
Require: ~-angle graph, radius t, reference to object os € V;(x).
Ensure: Objects of bubble V;(z) are given as data structure Gy, ;).
Compute Vii4(0s) by algorithm LRS(t + d, 0s);
for all objects 0; € Vi14(0s) do
if |pos(o;) — x| <t then
Vi(x) := Vi(x) + o5
end if
end for

Search

Let = be the centre of a bubble Vi(z) to be computed. If a single reference to one
object o5 € Vi(z) of the sectorgraph is given, we execute the SEARCH(x,t) operation as
follows: we execute the local range search of Section [£.2.1]in which the reference to the
object os is used as the starting point. In order to find all objects of Vi(z), we must
compute Vi1 4(0s) where d = dist(x,0,) is the distance between position z and object
0s, and d < t holds (see Fig. . Afterwards, we discard all objects Viiq(0s)\Vi(z).
A detailed description of the operation is shown in Algorithm

Figure 4.10: SEARCH(z, t) operation: in order to find the objects of the bubble V;(z) we must
compute the bubble Vi1 4(0s) starting a search from object os.

Theorem 13 (operation search). Let k = 27” e N,k > 6, t the radius of a bubble, and
let x,y be two positions of a bubble where Ax = dist(x,y). We consider a (7, c)-crowded
scene of n objects in R? organized as a sectorgraph where t > c. The SEARCH(z,t)
operation can be done in time O(|Vay,i(0s)]) = O(t?) if an object o5 € Vi(x) is given.

76

4.4 Implementation of Bubbles Using the Sectorgraph

left banana right banana

Vt+d(os)

Vi(x)

Figure 4.11: The MOVE(z, Az) operation must insert objects of the right banana (horizontal
hatching) and delete the objects of the left banana (vertical hatching).

The algorithm is 2f.-neighbourhood sensitive. By comllary we can strengthen the
neighbour factor up to 2 + % The data structure needs space O(n) for all operations.

Proof. By the LRS(t + d, 05) algorithm, we search all objects of Vi 4(0s) and some, not
necessary all, objects of va(Hd)(os). Due to o5 € Vi(x), it holds d = dist(x,0,) < t.
Hence, LRS(t 4 d, 05) execute a breadth first search up to a distance of f,2t, so that the
running time O(|Vay,+(0s)]) = O(t*) and the neighbour factor 2f, hold. The iteration
of Vi1a(0s) and the removal of the objects V;iq(0s)\Vi(x) cost time O(t?), too. By
corollary the LRS(t + d, 05) algorithm searches the objects only up to a distance of
2t + f,c, so that the neighbour factor 2 + % results. O

Movement

The visitor of the scene uses the MOVE(z, Az) operation in order to move the bubble
from position x to y where Az = y — x is the distance of the movement. Two parts
of the bubble V;(z) and of the data structure Gy, (,) must be updated, namely the two
bananas, shown in the left illustration of Fig. The left banana (vertical hatching)
contains the objects to be removed from the bubble and the right banana (horizontal
hatching) contains the objects to be inserted; both bananas are of width Az. As our
local range search algorithm must search up to a distance of Ax + b (for some fixed b),
the area to be searched is a little bit larger (yellow and green area of Fig. 4.11). We
describe two algorithms for the computation of the two bananas and the bubble V;(y),
respectively.

The first algorithm of the MOVE(z, Az) operation (see Algorithm [d]) is similar to the
algorithm of the SEARCH(z, t) operation. We perform a local range search LRS(t+d, o5),
starting from the object os € V;(x) that is next to the position y, in order to search all

77

4 Our Data Structure and Algorithms

Algorithm 4 MoVE(x, Ax): Moves the bubble V;(z) from position z to y.
Require: The v-angle graph, radius ¢, bubble V;(z).
Ensure: The bubble V;(y) is given as data structure Gy,).
By iteration of V;(z), compute the object o5 next to position y;
d := dist(0s,y);
Compute Vi44(0s) by algorithm LRS(t + d, 0s);
for all objects o; € Vi1 4(0s) do
if dist(o;,y) <t then
Vi(y) = Vi(y) + oi;
end if
end for

objects of Vi44(0s) where d = dist(os,y) is the distance between object o, and position
y (see the right illustration of Fig. . We must search all objects within distance 3-¢
because d < 2t holds. To get the object o5, we can iterate the objects o; € Vi(z) and
check if 0; is the object next to position y. A detailed description is shown in Algorithm
21|

The running time of our first MOVE(z, Az) algorithm (Algorithm [4)) is independent
of the distance Az of the movement. If Az is small compared to ¢, the running time
is not linear in terms of the moved area, i.e, the size of left banana |V;(x)\Vi(y)| and
the size of right right banana |V;(y)\Vi(x)|. Therefore, for small values Az, we use a
second algorithm that achieves a running time depending on the objects of the left and
right banana only.

We slightly modify the local range search algorithm LRS(¢,05) (see Algorithm .
The algorithm works as follows (see Fig. [£.12). To get the new bubble V(y), we must
compute the right and left banana. We insert the objects of the right banana into V;(z)
and remove the objects of the left banana from Vi(z) resulting in the bubble Vi(y).
To compute the objects of the right banana we must search up to a distance Ax + c.
Therefore, we search the objects of Viiaztc(x) starting a local range search from the
border of the bubble Vi(z). The border of Vi(z) is defined as follows: By(z) = {v €
Vi(z) | 3 (v,u) € By :u & Vi(x)}. In other words, the border is a subset of the bubble
Vi(z), consisting of nodes that have at least one edge pointing to a neighbour outside
of the bubble V;(x). Searching up to a distance t + Az + ¢ ensures that we get the
objects of the right banana. To get the objects of the left banana, we could iterate the
objects Vi(x), but this would cost time O(t?). Therefore, we modify our local range
search algorithm such that we avoid the search of inner objects of Vi(z), namely the
objects Vi(z) N Vi(y). The input of the modified algorithm LRS(¢, Az, ¢, Bi(x)) are the

78

4.4 Implementation of Bubbles Using the Sectorgraph

v
C - ==
A T AR . Vt+Ax+c(X)
v L
C — R
A ¢ X\,
Vi(x) g 25\
3 =
AX _AX t _AX
AX t

Figure 4.12: The movement of the bubble from position z to y. The objects to be inserted
are in the right banana (horizontal blue hatching) and the objects to be deleted are in the
left banana. The objects Vitagte()\(Vi(x) N Vi(y)) must be computed in order to get the
objects of the left and right banana.

radius of the bubble ¢, the distance Ax of the movement, the crowdedness ¢, and the
border By(x) of the bubble Vi(z). The detailed description is shown in Algorithm

Theorem 14 (operation movement). Let k = 27” € N,k > 6, t the radius of a
bubble, and let x,y be two positions of a bubble where Ax = dist(x,y). We consider a
(7, ¢)-crowded scene of n objects in R? to be organized as a sectorgraph where t >> c.

If V() is given as data structure Gy, (), the MOVE(z, Az) operation can be done in
time O(|Vag¢(0s)| + [Vi(@)]) = O(t?) by Algorithm where o5 € Vi(x) is the object that
is next to position y. The algorithm is 3f.-neighbourhood sensitive. With corollary
we can strengthen the neighbour factor up to 3 + %

If Vi(z) is given as data structure Gy, (., the MOVE(x, Ax) operation can be done in
time O(t - Ax + Ax?) by Algorithm @

Proof. MOVE(z, Az) operation by Algorithm [4f The iteration of the bubble V;(x), to
compute the object os that is next to position y, costs time O(|Vi(x)|) = O(t?). Since
os € Vi(x), it holds d = dist(y, 0s) < 2t. Hence, the LRS(t + d, 05) algorithm performs a
breadth first search up to a distance of f,3t, so that the running time O(|Vay. ¢(0s)|) =
O(t?) and the neighbour factor 3f., results. The iteration of V;;4(0s) and the removal
of the objects Viyq(0s)\V(y) costs time O(|Vi4a(0s)]) = O(|Vai(0s)[) = O(?), too. By
corollary the LRS(t + d, 05) algorithm searches for the objects only up to a distance

79

4 Our Data Structure and Algorithms

Algorithm 5 MoOVE(x, Ax): Moves the bubble V;(z) from position z to y.
Require: The v-angle graph, crowdedness ¢, radius ¢, bubble V;(x), border By(z).
Ensure: The bubble V;(y) given as data structure Gy, ().
Compute Viiazte()\(Vi(x) N Vi(y)) by algorithm LRS(¢, Az, ¢, Bi(x)):
1. The breadth first search (BFS) starts with a queue that is filled with all objects
of the border B(z).
2. Restrict the BFS to the upper distance t + f,(Axz + ¢), such that no objects
outside of Vi, ¢ (Aztc)(2) are visited.
3. As “lower distance”, restrict the breadth first search to objects o; where
dist(o;,y) >t — ¢ and dist(o;,x) >t — ¢ holds.
Vi(y) := Vi(z) {reference only, no copy of elements}
for all objects 0; € Vigazte()\(Vi(z) N Vi(y)) do
if dist(o;,z) >t and dist(o;,y) <t then
Vi(y) := Vi(y) + 0i; {Add the objects of the right banana to the bubble}
end if
if dist(o;,z) <t and dist(o;,y) >t then
Vi(y) := Vi(y) — 0i; {Remove an object of the left banana from the bubble}
end if
end for

of 3t + fc, so that we can strengthen the neighbour factor to 3 + %

MovVE(z, Az) operation by Algorithm in fact, our modified local range search
algorithm LRS(¢, Az, ¢, By(x)) searches through an area that is similar to a degenerated
torus. The outer radius is t + Az + ¢ and the inner “radius” is a shape formed by
Vi(z) N Vi_e(y). The algorithm starts the search from the boundary By(z) of Vi(x).
The objects of the boundary By(z) must lie in Vi(z) — Vi_.(x), i.e., all objects lie in a
torus that has centre z, inner radius ¢t — ¢, and outer radius ¢. Thus, the size of By(z) is
bounded by O(t) since c is a constant and sufficiently small compared to ¢. The time of
the MOVE(x, Ax) operation depends on the size of the degenerated torus. The witdh of
the degenerated torus is smallest, Ax 4 2¢, at the right banana, and at most, 2Ax + 2c,
at the left banana. So we get the running time of O(t - Az + Ax?). O

4.4.3 Algorithms for Insertion and Deletion

We describe the algorithms for the manipulation of the scene. The modeller inserts
objects in the scene using the INSERT(x,0) operations and deletes objects from the
scene using the DELETE(z) operations. The modeller must stand near the position

80

4.4 Implementation of Bubbles Using the Sectorgraph

of the objects to be deleted. The modeller inserts the object at his current position.
The operations have the same difficulties as the movement operations because our local
range search algorithm starts the search from an object of the scene. Additionally, the
following problems must be solved.

The deletion of an object is simple, but the update of the graph is difficult. The
update consists of two steps. First, we compute all objects that point to the deleted
object. This can be achieved easily if each object stores an indegree list. If we do not
use indegree lists, we compute the objects to be updated by a local range search started
from the object to be deleted. We must search sufficiently widely in order to find all
objects. The second step is to compute the new neighbours of the objects. This can
be achieved by a local range search, where we search all objects of the neighbourhood.
Afterwards, we use the algorithm for the construction of the sectorgraph (see Algorithm
2) in order to update the edges of the objects pointing to the object to be deleted.

The insertion of an object works similarly, but it is harder. We must compute all
neighbouring objects that get new edges pointing to the inserted object. The first
problem is that we have no object that we can start our search from in order to explore
the neighbourhood. The second problem is that we do not know how wide we must
search in order to find all objects. If the scene is c-crowded and we are inside the scene,
the answer is easy. Nevertheless, if we are at the border of the scene, we have difficulties
because we do not know the shape of the border.

Delete

Let = be the position of the object to be deleted. The algorithm of the DELETE(z)
operation consists of two steps: first, we delete the object and its outgoing edges.
Second, we compute the set U of objects that have an edge pointing to the object z
and we redirect the edges sec,(x) for each u € U to the new closest neighbour of u (see
left illustration in Fig. |4.13)).

As our scene is (7, ¢)-crowded, the objects u to be updated are a subset of V,(x), i.e.,
U C V(x) holds. The set U is even smaller, because at most O(c) objects in the set
Ve(z) can have x as their closest neighbour in one of the k directions of the sectors,
i.e., |[U| = O(c) holds. The worst case would be to cluster the border of V.(z) with
objects u so that each object points to object x. As the density of the objects cannot
be arbitrarily high, the condition |U| = O(c) follows.

After the computation of the set U, the second step of the DELETE(x) algorithm
starts. We recompute all edges sec,(z) for each v € U. The new closest neighbour n
of the object u is at most at distance ¢ from x or there is no other object in the sector
secy(z) because the scene is (v, c)-crowded (see a more detailed proof in theorem [L5)).

81

4 Our Data Structure and Algorithms

sector numbering

Figure 4.13: We must search the neighbourhood V() of the object « in order to find all objects
u € U (green balls) that have edges pointing to the object x (left). The new next neighbour
of object u in sector sec,(x) is at most at a distance of ¢ or the sector is empty (right).

Thus, when we search all objects V.(z) and afterwards, we use the algorithm for the
computation of the sectorgraph CSG(V,(z)) (see Algorithm [2) in order to recompute the
edges. However, we slightly modify Algorithm[2] The algorithm must retain unchanged
both sectors of objects u & U as well as sectors s of objects u € U where s # sec,(z).
The algorithm of the DELETE(x) operation is sketched in Algorithm @

Algorithm 6 DELETE(z): Deletes the object x from the bubble V;(z).

Require: The ~-angle-graph, radius ¢, reference to the object x € Vi(x) to be deleted,
object x is centre of the bubble.
Ensure: The bubble V;(z)\z.
Compute V,(z) using the local range search algorithm LRS(c, x);
for all objects u € V,(z) do
if u has an edge pointing to = then
U:=U+u;
end if
end for
For all u € U recompute all edges sec,(z) by the algorithm CSG(V.(x));

Theorem 15 (operation deletion). Let k = 27“ € Nk > 6, ¢c <t be the radius of
a bubble, and let x be the object to be deleted. We consider a (v, c)-crowded scene of
n objects in R? organized as a sectorgraph. The DELETE(z) operation can be done in

time O(c? -1log(c)) if a reference to the object x is given and the position x of the object
is the centre of the bubble Vi(x).

82

4.4 Implementation of Bubbles Using the Sectorgraph

Proof. We compute all objects of V.(x) using the LRS(c, z) algorithm. The algorithm
performs a breadth first search at a distance of fyc so that the running time O(c?)
holds. The redirection of the edges by the algorithm CSG(V,(z)) costs time O(c?-log(c))
because all O(c?) objects of V,(z) are possible neighbours.

It remains to be shown that all possible new neighbours n of the objects uw € U are
placed at a maximum distance of c. First, we look at the case of a graph with v = 60°,
i.e., an object has six sectors. See the middle illustration of Fig. .13} a numbering of
the sectors is shown in the right illustration of Fig. The result of other values
follows if k = 2 (mod 4) holds. We look only at one single sector sec,(x) = 4 of the
object u € U. The result for other sectors concurs because of the symmetry of the
sectors. Object u points to object x in sector sec,(x) = 4 if the object is placed in
the triangle of the three points z,u;, and us. We show that the next neighbour n of
object u is at most distance ¢ from x or there is no other object in the sector. We have
to distinguish different cases depending on the possible position of the new neighbour
n. First, we assume that at least one object n is placed in sector 4 of object x, i.e.,
secy(n) = sec,(x) holds and sector sec,(n) is a subset of sector sec, (). It follows that
at least one object n = nj is placed at a distance of ¢ from z because otherwise the
sector sec,(n) of object x is not (v, ¢)-crowded. Assuming that sector 4 of object x is
empty, we consider two further cases. In the first case, sector 5 of object x contains
at least one object n. In the second case, sector 3 of object x contains a neighbour, is
symmetrical. At least one object n = ng is placed at a distance of ¢ from = because
otherwise the sector sec,(ns3) of object x is not (v, ¢)-crowded.

However, this observation is insufficient for the proof. In fact, we must distinguish
whether the object n3 is placed in sector sec,(z). We are finished if ng3 is in sector
sec,(x). However, if n3 is not in sector sec,(x), the following problem appears. Let
S(secy(x)) be the area of sector secy(x). Either the area S(secy(x)) N S(secy(ns)) is
empty, then we are finished, or one object ny € S(sec,(z)) N S(secy(ng)) exists that
is placed far away from object x (see ny in the dark grey parallelogram of Fig. [4.13]).
This would not violate the crowdedness of sector sec,(n3). However, this object must
be placed at a distance of ¢ because otherwise the sector secy,(x) of object ng is not
(v, ¢)-crowded, i.e., point ny cannot be placed as shown in Fig. (inside the grey
parallelogram). Note that in the latter case the sector 4 of object x is empty. O

Insert

Let = be the position of the object o to be inserted. The execution of the INSERT(z, 0)
operation consists of two steps. First, we have to insert the object and to compute its
outgoing edges to the closest neighbours. Second, we must find the set U of objects u

83

4 Our Data Structure and Algorithms

outscene convex hull

object u
far away

Figure 4.14: Both far away objects (e.g., u) and nearby objects (e.g., v) point to the inserted
object = (left). The space of the scene is partitioned into the two parts outscene, and inscene
depending on the shape of the convex hull (right).

having sectors sec,(x) that points to a closest neighbour that is farther away than the
inserted object x. We redirect these edges onto the object x. As our scene is (v, ¢)-
crowded, the objects U are a subset of V.(z), i.e, U C V.(z) holds. Thus, we compute
the set V,(x) using the LRS(c, z) algorithm, similar to the DELETE(z) and SEARCH(z, t)
operation. Afterwards, we insert the new object x and iterate all objects u € U in order
to compute the closest neighbour of the object x, and to redirect the edges for each
object u € U.

The update of objects u € U C V,(z) is sufficient in the majority of cases, namely for
all positions “inside” a c-crowded scene where each sector has an edge. However, the
update may fail if a sector points to x that does not have an edge so far. The situation
arises that a far away object w points to the inserted object x lying in a sector of u that
is empty so far. The left illustration of Fig. shows a c-crowded scene consisting
of the green object u and some black objects. After the insertion of the new object at
position z, the object becomes a new closest neighbour for a sector of the object v and
u. Only object v remains c-crowded. Object u violates the condition because it is too
far away from x. Therefore, the insertion algorithm fails because it does not find all far
away objects, here in the example, object u, and cannot point the edges to x.

In the following, we describe how we can identify such kinds of situations. First, we
classify those parts of the scene that have objects with empty sectors. We denote the
sector of an object that does not contain an object by empty sector. We partition the
two-dimensional space of the scene in two parts (see the right illustration of Fig. :
let Sput = {S,(7) | sector i of object v is an empty sector} C R? be a region of the
scene that contains no objects. We denote S, by outscene and the rest of the scene
by inscene, where S, = R?\S,,;. Accordingly, we denote all objects that have at least

84

4.4 Implementation of Bubbles Using the Sectorgraph

one empty sector by the set O, and we denote the set of objects having no empty
sectors by O;y,.

Observation 16 (Property of inscene and outscene). The space S;y, is a single
contiguous region shaped as a polyhedron. The vertices of the polyhedron are the set
Sout. All objects Oy, are inside the polyhedron, i.e., Yu € Oy, - u C Sy,

Proof. We assume that two discontinuous regions exists and look at the leftmost objects
u € Oyt that are in the first region. Some of their sectors would contain objects of
the second region and therefore, the two discontinuous regions cannot exist. All objects
Oout lie on the polygon of the polyhedron because otherwise an object 0 € Oy inside
the polyhedron would contradict the definition of S;,. Therefore, the shape of S;,
is a polygon formed by piecewise parts of sector boundaries of the objects u € Opyy.
The objects O;, must lie inside .5;,, because an object outside .5;, would contradict the
definition of the empty sectors. O

In the next step, we compare and characterize the shape of the inscene with the
convex hull of the scene. Large parts of the inscene are shaped by the empty sectors
of objects lying on the convex hull of the scene (see the black objects in the right ill.
of Fig. . Only small parts of the inscene are lying outside the convex hull. These
small parts of the inscene are made from non-empty sectors of objects of the convex
hull. On the other side, some parts of the outscene lie inside the convex hull. The
objects with empty sectors lying inside the convex hull contribute empty sectors to the
outscene that are lying both outside as well as inside the convex hull (see the red objects
and the chequered region in the right ill. of Fig. [f.14). Now we ask how far away can
an object of the set Oy be from an edge (u;,u;) of the convex hull.

Observation 17. Let (u;, uj) be the edge of the convex hull, h be the length of the edge,
and u; and u; the vertices of the edge of the convex hull. The mazimum distance of

objects v € Sy from the edge of the convex hull is max{%h tan(y), %}

Proof. To make the maximum distance of an object v € O,y from the edge of the
convex hull, we must place the object v between the two objects u;, u;, so that at least
one of its sectors looks through the two nodes u;, u;. Two different situations can occur
depending on the orientation of the sectors. The two situations are shown in the middle
and right ill. of Fig. In the middle illustration, the vertices v1,v2 and v3 can look
through the two vertices u; and us, so that at least one of its sectors is empty. In
the right illustration, the vertex v4 can look through the two vertices us and uy. The
maximum distance follows by the height of the triangle consisting of the vertices u;, u;

85

4 Our Data Structure and Algorithms

<— convex hull * * * *
ooy ok £ o *w* :
sectors u>1+< v, >+<u2 * *

region of non
empty sectors

Figure 4.15: Only the sectors of objects v; at a distance of max{%htan(w), ﬁ} look through
two objects u;.

and the sector boundaries. These triangles shape a zone near the convex hull of the
scene. The left ill. of Fig. shows an example of the zone. Inside this zone, we can
place objects that get empty sectors. O

The insertion of objects in the inscene is simple. We describe the algorithm for the
INSERT(z, 0) operation if the object x to be inserted is in the inscene, i.e., we know that
there are no far away objects that will get the object z as their next neighbour. The
algorithm is sketched in Algorithm [7}

Theorem 18 (operation insertion). Let k = 27” € Nk > 6, ¢c <t be the radius
of a bubble, and let x be the position of a object to be inserted where x is the centre
of the bubble. We consider a (v, c)-crowded scene of n objects in R? organized as a
sectorgraph. The INSERT(x, 0) operation can be done in time O(c?).

Proof. We can insert a new object without any problems in the inscene. It is sufficient
to search and update all objects of 0; € V.(x) as described in beginning of this section.
It holds U C V. (z) if V,(x) is “inside” a (7, ¢)-crowded scene. All objects of the inscene
have degree k, i.e., they have no empty sectors and each sector of the object points
to another object. The running time follows from the local range search of the bubble
Ve(z) and the iteration of all objects in order to update the edges. O

The insertion of objects into the outscene is a more difficult case because in the worst
case, we must search far away to find the objects that will point to the inserted new
object (see the example of Fig. [4.14]). The first question is, how can we identify such
a situation? If we search the bubble Vi(z) and find a ball in each sector of x, we can
assume that no far away objects can point to x because the objects of the sector work
as so called blocking balls (see the left ill. of Fig. . A set of blocking balls prevent
objects on one side of the set from pointing to an object x that is placed on the opposite

86

4.4 Implementation of Bubbles Using the Sectorgraph

Algorithm 7 INSERT(z,0): Inserts an object at position z into the bubble V;(x) if =

is also the centre of the bubble.
Require: The y-angle-graph, radius ¢, object = to be inserted.
Ensure: The bubble Vi(z) U x.
Compute the object o, that is next to position z;
d := dist(os, x);
Create a node for object x;
Compute V.1 4(0s) by algorithm LRS(c + d, 0s);
for all 0; € Voy4(x) do
if o0; is next neighbour of x in sector sec,(0;) then
edge secz(0;) 1= 0;;
end if
for all sector 7 of o; do
if x is next neighbour of o; in sector sec,,(x) then
edge sec,, (x) 1= x;
end if
end for
end for

side. The set of blocking balls v prevents objects u; from pointing to object x. Between
the blocking balls and the blocking line is a small area where an object can look through
the blocking balls, so that it can point to x.

However, it is insufficient to examine only some balls of one sector in order to exclude
that other objects of the same sector do not point to x. In the middle ill. of Fig.
the two objects v work as blocking balls for the new object x. However, the border
of the sector is critical because a far away object u can point to z. In the situation

sector 5

<—blocking line full covering

of sector 5

full covering ———*
of sectors 3,6—B——<

\

sector 3

full covering
of sector 3

2c

A
blocking balls critical area

Figure 4.16: Blocking balls prevent distant objects from pointing to object x.

87

4 Our Data Structure and Algorithms

dummy balls regions objects border

Figure 4.17: The composing of a large scene. Five regions are modelled and managed by
different groups. Three rows of dummy balls are placed at the border of the regions.

in the example, the object u cannot point to z because a neighbouring sector contains
the object w. Therefore, we must search in the direction of sectors of the object x that
have no objects in the bubble V;(x) in order to find far away objects. The right ill. of
Fig. shows that a far away object of sector four cannot point to object z if the
neighbouring sectors three and five contain objects. The areas A, B and C cover the
corresponding sectors.

4.4.4 Composing a Large Scene

We outline how one can construct a virtual scene that is divided into independent
regions. A region is a part of the scene that is modelled and stored by a group of
modellers. For example in Fig. the scene consists of five regions. Each region is
bounded by a border (black line). The region can be arbitrarily shaped.

Many groups work on the same virtual scenes. A group can be a firm or a company.
Therefore, each group manages and stores the objects of its region on its own hardware
system. Thus, the spatial partition of the regions corresponds to the groups and their
storage. Typically, the virtual scene consists of more than the five regions and groups,
as shown in the example. The system is extensible, i.e., it is possible to extend the
virtual scene whereby we must update the sectorgraph only for a few groups. We allow
only updates of regions that are next to the inserted region. For example, if region 3 of
Fig. is newly inserted, only updates of regions 1 and 2 are necessary.

Our weak spanner fulfils these requirements because the locality of the data is the
same as the spatial locality of the scene. We use dummy points (see Section in
order to break long edges of the weak spanner construction. Lemma [L0] shows that for

88

4.5 Summary and Discussion

v = 60°, a long edge cannot cross more than two grid cells of a grid with edge length d.
Thus, our strategy is as follows. We place a zone that consists of three parallel lines of
dummy points (red points in Fig. at the border of each region. Because of lemma
we know that the edges of the objects of the neighbouring regions cannot cross
the zone. Therefore, after the insertion of a new region, we must only recompute the
sectorgraph for the objects of the border of neighbouring regions and we must compute
the sectorgraph for the objects of the new region. In Fig. we compute only the
sectorgraph for the objects of the blue area if region 3 is newly inserted.

4.5 Summary and Discussion

If our visitor wants to visit a far away part of the scene, he must move from his current
position to a new position, i.e., he cannot beam to a far away position and must walk
the whole way. In most applications, the user moves mostly through the scene with-
out beaming to arbitrary positions because most users are unfamiliar with a beaming
function, and thus, beaming would confuse the visitors, such that they would lose their
way in the scene. Beaming to every desired position can easily be achieved with a
hierarchical data structure.

In this work, we take advantage of this restriction. We use the weak spanner to
connect two independently modelled parts of the scene. All we need is a recomputation
of the graph at the border of the scene parts. This is difficult for a hierarchical data
structure because the hierarchy must be updated and, possibly, parts of the hierarchy
must be rebuilt depending on the type of data structure. Thus, two far away modellers
can make their insertions and deletions independently of each other. Furthermore, it
is possible to partition a scene into arbitrary tiles, each modelled by a distinct firm.
Each firm stores the tiles on its own server. To connect all parts to a single large scene,
neighbouring firms must only know the objects of their borders in order to compute the
edges pointing to the objects of the neighbouring firm. If we use a hierarchical data
structure, we have at least one central instance, namely the top of the hierarchy, that
knows the position of all objects. This central instance must be updated if the scene
changes. In our system, we can exchange one part of the scene (e.g., a firm) for another
without notifying most of the tiles stored by other firms.

A further property of our model is the bounded density of the objects in the scene.
Typically, virtual scenes do not need an arbitrarily high point density. A high density
implies that at some positions of the virtual scene we have a very high number of
objects. However, in the real world, all objects have an extent, and typically, they
are not arbitrarily small. On a fixed space, we place only a fixed number of objects.

89

4 Our Data Structure and Algorithms

Therefore, our abstraction of a scene seems more reasonable than a scene model with
an arbitrarily high density of objects. The bounded density is a necessary condition
for the proofs of our runtime analysis. At this point, we see that a useful and practical
restriction of the model leads to provably correct algorithms.

The main objective of the model and system design is to construct a system that
offers completely independent work by many users in the scene. For this, we require
the locality of the data structure and present a class of data structure, namely the weak
spanner, which fulfils this requirement. The question remains, what is the price for this
degree of flexibility? The first restriction is the abandonment of point location. Second,
we show that we need some kind of parameter for the density of the scene. For this, we
introduce crowded scenes and the parameter c. Without this parameter, the insertion
and deletion of objects remains difficult. The search and move operations work well
without the requirements of a c-crowded scene.

90

5 Implementation and Evaluation

This chapter consists of three parts. Section[5.1]describes the functionality of the system
implemented. Section briefly introduces the details of implementation. We confine
ourselves to a short description of the software layers and the interfaces of the system.
The third and last part of the chapter (Section and et seqq.) contains our evaluation
of the system.

Goals of our Evaluation

Our evaluation aims at the investigation of the performance of the MOVE(z, Az),
SEARCH(z, t), INSERT(x, 0), and DELETE(x) operations: for practical usage of the sys-
tem, the execution of the operations must be fast enough for interactive movements
and manipulations. The operations are implemented for the storage types TuMemory,
TuNetwork, and TuDisk. Operations executed on a TuMemory bubble are computed in
the main memory. Operations executed on a TuDisk bubble are computed on the local
hard disk, i.e., accesses to objects and edges are executed by loading the data from
the hard disk. Operations executed on a TuNetwork bubble are computed on remote
hard disks, i.e., accesses to objects and edges are executed by loading the object from
the remote hard disk via TCP. We investigate the performance of the operations for all
storage types.

We analyse the basic algorithms used in DELETE(x), SEARCH(z,t), INSERT(z,0),
and MOVE(z, Az) operations (see Section [£.4)). For this we proceed as follows: all four
methods are composed of two basic algorithms of the sectorgraph (Section . The
one is the algorithm to construct a scene (see Section , and the other one is the
breadth first search algorithm to execute a circular range query (see Section .
The breadth first search algorithm is used in all four operations. The construction of a
sectorgraph is only used in INSERT(z,0) and DELETE(x) operations and to construct a
sectorgraph from scratch. Therefore, we investigate the construction time of the scene
in Section 5.4} depending on our three storage types. The breadth first search algorithm
is important for the MOVE(x, Ax) operation. Therefore, we investigate this operation
in the context of the implementation of the 3D viewer in Section We measure the
speed of motion of a user navigating through the scene.

91

5 Implementation and Evaluation

5.1 Functionality and User Interfaces

We describe the functionality of the software implemented and demonstrate the con-
struction of a virtual scene (2D viewer, Section , the usage of the bubbles, and
the generation of a bubble hierarchy (Section . We show by means of examples
that our implementation supports the generation of an arbitrary hierarchy of bubbles
that works as a spatial hierarchy of caches. Furthermore, we demonstrate how viewer
and modeller walk through a virtual scene (3D viewer, Section .

5.1.1 Scene Construction and 2D Viewer

We implemented two ways of creating a virtual scene. One possibility is to start with
an empty scene, so that the modeller inserts objects into the scene one after another.
An alternative is to start with a predefined scene consisting of the 3D data and the
positions of the objects. In a preprocessing step, we compute the weak spanner for the
whole scene from scratch with the algorithm presented in Section [4.2.2

Both objects, as well as the weak spanner, are stored and distributed across a net-
work. The network consists of a number of workstations that we denote as manager
(see Fig. |5.1). Each manager stores a part of the scene. Notice that the position of
the objects does not depend on the servers where the objects are stored. With other
words, objects, placed at the same position, can be stored either on the same server
or on distinct servers. FKEither the manager stores the scene temporarily in his main
memory or permanently on his local hard disc; we use the latter configuration for all
our measurements). Each object consists of a position and a polygonal 3D-model. We
do not use any instantiation of the objects [233].

memory disk memory disk memory disk
workstation
without 3D .
features
3D-rendering
workstation
viewer / modeller viewer / modeller viewer / modeller

Figure 5.1: Viewer and modeller use a rendering workstation (client) to walk through the scene.
The scene and the sectorgraph is distributed across a network of workstations (managers)
stored on local hard disks.

92

5.1 Functionality and User Interfaces

(Qvianager BEIE
File Generate Memory Test
[Edit & Select Bubbl Edit Object— ~Number
50 1 »
20 vi w2 w3 va | Create NERTRTR = et [|20 v2 va
vi vz v3 v v . I I
v5 v6 v7 B 9 | Delete + Disk ,—2" Bubble Radius | Step Size Delete vi V3
50 L: Move Bubble
v 10 11 12 13 14 | Print Tree 4 Memary Update Dist — b Next-Root
V15 V16 17 18 19 | Print Bubble || « Reference Pick Radius | o oo by Next-Bubble o
S
V20 w21 22 23 24 | Print Objects — e
~Show
Balls | 1000 I GridBalls
o F Balls
I I
Grid Width Bk
100 I B-Edges
4T
Desert Size - B
1
[—— I Help Grid
Seed Value 200
41
[~Scene Size—
e & (Manitar)

[Tupe

Figure 5.2: The graphical user interface of the 2D viewer. The drawing widget visualizes the
sectorgraph consisting of vertices (red points) and edges (red lines). The top part of the
window contains control widgets for the generation of an arbitrary bubble hierarchy, and
for the insertion and deletion of objects. The left part of the window contains widgets to
configure display options.

We implemented a 2D viewer and a 3D viewer for the navigation and manipulation of
the scene (the latter is described in Section[5.1.3)). The 2D viewer executes the following
tasks:

1. Generation of a predefined scene from scratch.

2. Visualization of the data structure, i.e., vertices and edges of the sectorgraph.
3. Real-time generation of an arbitrary bubble hierarchy.

4. Visualization of the bubble hierarchy.

Figure shows a screenshot of the graphical user interface of the 2D viewer. The
drawing widget visualizes the sectorgraph, which consists of vertices (red points) and
edges (red lines). The top part of the window contains control widgets for the generation
of an arbitrary bubble hierarchy (see Section and for the insertion and deletion
of objects. The left part of the window contains widgets to configure display options.
We designed the system such that only the rendering clients (3D viewer see Section
need the ability to process the 3D file format of the objects in order to render the

93

5 Implementation and Evaluation

3D data. The managers, as well as the 2D viewer, treat the polygonal 3D data of the
objects as an abstract block of data. Therefore, the system is able to mix different 3D
file formats of the objects without any changes to the implementation of the managers
and the 2D viewer. Furthermore, it is conceptually possible to model different parts
of the scene using different file formats. The 3D clients can visit only those parts of
the scene whose file formats they can render. Each object of the 2D viewer that is
visualized as a red point contains the polygonal 3D data.

5.1.2 Generation of an Arbitrary Bubble Hierarchy

In this section, we demonstrate the capability and flexibility of the system. Our system
is able to slot arbitrary bubbles of different storage types into one another. First,
we discuss some useful configurations for a rendering workstation. Second, we give
examples of a bubble hierarchy that is created by the 2D viewer. The 2D viewer can
arbitrarily slot bubbles of different storage classes (TuNetwork, TuMemory, TuDisk) into
one another in real time. The implementation of the 3D viewer uses an arbitrary bubble
hierarchy that is fixed at compile time.

Typical Configurations for a Rendering Workstation

As described in Section [3.3.4] we need four kinds of duplication for a bubble, namely
TuMemory, TuDisk, TuNetwork, and TuReference, depending on the type of storage.
Each of them stores the objects on a different storage type. We can slot each duplication
type into each other. In the following, we discuss typical instances for a rendering
workstation.

Every bubble hierarchy consists of at least one bubble, namely the root bubble. The
root bubble is one of storage type TuNetwork if the scene is distributed across the
network. The root bubble is one of type TuDisk if the scene is stored on a local disk.
The root bubble is one of type TuMemory if a process generates a scene in its main
memory. If the root bubble is one of storage type TuNetwork, we can configure different
kinds of sub trees that work as a spatial hierarchy of caches.

A possible configuration is to slot a TuMemory bubble into a TuNetwork bubble (see
option 1 in Fig. [5.3]). The rendering workstation accesses the distributed scene us-
ing the TuNetwork bubble. Local references to TuNetwork objects are stored in the
TuReference bubble. This option is worse because each movement of the visitor causes
the TuReference bubble to access the TuNetwork bubble in order to load a new object.
We must wait because of the long loading time for each new object.

A better configuration uses a bubble on the rendering workstation that is larger than
the bubble that the visitor needs. We slot a TuReference bubble into a TuMemory

94

5.1 Functionality and User Interfaces

TuNetwork
TuNetwork TuDisk
TuNetwork TuMemory TuMemory
TuRef TuReference Ii TuReference
UReference "
—_— -_—
option 1 option 2 option 3

Figure 5.3: Some configurations to slot the bubbles into each other. The bubble hierarchy forms
a spatial hierarchy of caches.

bubble, and the TuMemory bubble into the TuNetwork bubble (see option 2 in Fig. [5.3]).
The TuMemory bubble works as a cache for the TuReference bubble. The size of the
cache depends on the radius of the TuMemory bubble. The user sees only the objects
of the TuReference bubble. We use the TuReference bubble instead of a TuMemory
bubble to avoid copies of the same object in the memory of the rendering workstation.

An alternative configuration slots a TuReference bubble into the TuMemory bubble,
the TuMemory bubble into the TuDisk bubble, and finally the TuDisk bubble into the
TuNetwork bubble that accesses the distributed scene. This configuration is suitable if
the main memory is too small to store the objects of the scene. We use the TuDisk
type to obtain a cache that uses the local hard disk (see option 3 in Fig. . We have
a double cache consisting of the local hard disk and the main memory of the rendering
workstation.

Our implementation of the bubble is able to slot arbitrary bubbles into each other.
Therefore, other options are thinkable and useful, e.g., if the modeller models one part of
the scene and visits another part of the scene at the same time: we slot two TuMemory
bubbles into a TuNetwork bubble on the rendering workstation, one for viewing and
the other one for modelling. The discussion shows that the system is flexible, so that
arbitrary configurations can be constructed.

Examples of a Bubble Hierarchy Created by the 2D Viewer

Below, we show some examples (screenshots) of bubble hierarchies that are generated
by our 2D viewer. Figure [5.4] shows a distributed virtual scene consisting of 5000
objects (red points) that are stored on three workstations (managers). The edges of
the sectorgraph are drawn as red lines. The objects of the scene are managed by a
TuNetwork bubble (root bubble). If we access the objects of the TuNetwork bubble
to draw the sectorgraph, the objects must be loaded from that workstation (manager)
which stores the object.

95

5 Implementation and Evaluation

8

Figure 5.4: A distributed virtual scene consisting of 5000 objects (red points) that are stored on
three workstations (managers). Edges of the sectorgraph are drawn as red lines. The scene
can be accessed by a TuNetwork bubble (root bubble).

¥

s Y%

X

Figure 5.5: The same scene as in Fig. [5.4} additionally, two TuMemory bubbles (bubl, bub2)
are inserted. The bubbles are children of the TuNetwork root bubble.

96

5.1 Functionality and User Interfaces

Figure 5.6: The same scene as in Fig. [5.5 (without visualizing the root bubble): additionally,
a new TuMemory bubble (bub3) is slot into bubl, and a new TuMemory bubble (bub4) is slot
into bub2.

Figure 5.7: The 2D viewer generates arbitrary bubble hierarchies: the root bubble (not visual-
ized) contains the two bubbles (bubl, bub5). Bubble bubl contains the three bubbles (bub2,
bub3, bub4). The bubble bub5 contains two bubbles (bub6, bub7). The bubble bub7 con-
tains the two bubbles (bub8, bub9). The storage type of each bubble is arbitrary (TuNetwork,
TuDisk, TuMemory). The bubble hierarchy forms a spatial hierarchy of caches.

97

5 Implementation and Evaluation

Because the access to the TuNetwork bubble is slow, two users of the scene avoid
direct access and rather slot a TuMemory bubble into the root bubble in order to cache
a local duplication of nearby objects. Figure [5.5] shows the same scene as in Fig. 5.4
Additionally, two TuMemory bubbles (bubl, bub2) are inserted, one bubble for each
user. The bubbles are children of the TuNetwork bubble (root bubble).

The two inserted TuMemory bubbles, only make fast access to the objects possible if the
user does not move. For each movement of the bubble, new objects must be duplicated
from the root bubble (TuNetwork) into the TuMemory bubble (bubl, bub2). The slow
access to the TuNetwork bubble prevents smooth movement of the user. Therefore,
each user slots another small TuMemory bubble into his bubble. Figure |5.6[shows the
same scene as in Fig. without visualizing the root bubble. Additionally, one user
slots a TuMemory bubble (bub3) into bubl, and the other user slots a TuMemory bubble
(bub4) into bub2. The bubble hierarchy of Figure shows a typical configuration of
two users that moves through the scene using the 3D viewer (see Section .

Notice that the bubbles bubl and bub3 in Fig. 5.6 not only contain duplicated objects
of the distributed scene, but also the duplicated data structure, namely the edges of
the sectorgraph. Therefore, the MOVE(x, Azx) operation of the innermost bubble bub3
uses only the cut sub graph of the preceding bubble in the hierarchy, namely bubble
bubl. This is the reason why local updates of the scene do not affect the rendering
workstations of far away users.

Arbitrary bubble hierarchies can be generated by the 2D viewer, Figure [5.7] shows an
example: the root bubble (not visualized) contains two bubbles (bubl, bub5). Bubble
bubl contains three bubbles (bub2, bub3, bub4) and bubble bubb contains two bubbles
(bub6, bub7). The bubble bub7 contains two further bubbles (bub8, bub9). The storage
type of each bubble is arbitrary (TuNetwork, TuDisk, TuMemory) and can be mixed in
arbitrary order. The implementation can generate all thinkable combinations. The
bubble hierarchy forms a spatial hierarchy of caches.

5.1.3 3D Navigation and Manipulation of the Scene

One or more users can walk through the 3D virtual scene. Each user uses a 3D viewer
(graphical user interface) running on a rendering workstation (see client in Fig. [5.1)).
The 3D viewer uses a bubble configuration as shown in Section typically at least
one TuNetwork and two TuMemory bubbles. Figure shows a screen shot of the 3D
viewer. The 3D viewer stores the objects of the two TuMemory bubbles (see bubble bubl,
bub3 of Fig. , but only the objects of the innermost bubble (bub3) are rendered and
are visible to the user. The TuNetwork bubble holds the connection to the network and
loads the required parts of the scene from the manager which stores the objects.

98

5.2 Implementation of the Bubbles

e tValue

as

2
Height Angle

[Free cam

Figure 5.8: The graphical user interface of the 3D viewer.

The system manages an arbitrary number of viewers and modellers. The 3D viewer is
used both by the viewer, who walks only through the scene, as well as by the modeller
who inserts and deletes the objects of the scene. The position of a viewer is always
the centre of his innermost bubble (see bubble bub3 in Fig. [5.6]). If the viewer moves
his position, the 3D viewer moves the centre of the innermost bubble. The 3D viewer
moves the centre of the second TuMemory bubble (see bubble bubl in Fig. only if
the innermost bubble crosses the border of the bubble bubl. To insert an object, the
modeller loads a new object from the disk. The newly inserted object is placed at the
current position of the modeller. In order to delete an object, the modeller must move
near the position of the object. The system selects the object nearest to his current
position. The insertion and deletion of the objects goes from the root bubble down
to the leaves of the bubble hierarchy. We update the root bubble first and afterwards
the lower levels of the bubble hierarchy. For measurements and presentations, the 3D
viewer records and stores the path of motions on disk. After loading a stored path, the
3D viewer moves the position of the user automatically along the recorded path.

5.2 Implementation of the Bubbles

We describe the basic ideas for implementation. To distribute the objects across a net-
work of workstations, we implement a virtual distributed memory. The graph, consisting

99

5 Implementation and Evaluation

application layer (6) (application (viewer)

application layer (5) (bubble hierarchy bubble slotting

} sectorgraph

graph layer (4) (bubble: algorithms, graph

a single object of the sectorgraph,

graph layer (3) [different duplicates

reference memory disk| network

memory management
service layer (2)

disk ' network

)
)
)
object: polygon data, edges]
)

service layer (1) (communication layer

(system: XToolkit, Openinventor, Sockets)

Figure 5.9: The software layer of the system. The algorithms are separated from the memory
management. Layer 3 implements the virtualisation the distributed memory.

of objects and edges, is the interface of the virtualisation. Each object is implemented
for TuMemory, TuDisk, and TuNetwork. The implementation of pointers, necessary for
the edges of an object, uses an extended address space consisting of the identifier of a
remote workstation, and the disk address of the remote disk. The implementation of
the extended address space enables the addressing of objects that are stored on remote
workstations. The access to a virtualised object hides the information about where the
data of the object are stored. We describe the software layers of the system in Section
and the idea of the interfaces in Section [5.2.2

5.2.1 Software Layer

The core idea of the implementation is the separation of the algorithms and the memory
management. We implement the system in six distinct software layers using the system
libraries at the lowest level (see Fig. . Layers 6 and 5 are the application layers.
Layer 6 is the viewer that iterates all objects and renders the objects. Therefore, this
layer must understand and process the file format of the 3D objects. All other layers
are independent of the format of the 3D data. Layer 5 allows the construction of a
bubble hierarchy. At this level, we slot a bubble into another bubble as described in the
preceding Section The bubble hierarchy is managed with a tree data structure.
The core of the system consists of layers one to four. Layers 4 and 3 are the graph
layers. The algorithms are completely implemented in layer 4. The graph can be stored
in the main memory, on the local hard disk, and across a network of workstations. Even
though we have three different storage types, there is only one implementation of the

100

5.2 Implementation of the Bubbles

| storage type | address
| /\(
M]

memory

' pointer
: reference
f ? I @
| disk | file positiion
I
- I server id,
disk 1 ! disk 2 WEEal; remote address

Figure 5.10: Four types of memory addresses. To point to a remote object, the network type
consists of a server identifier and a remote disk address. The red edge points to a remote
address.

algorithms, e.g., single breadth first search implementation for all three storage types.
The abstract interface of the objects in layer 3 makes this possible. The algorithms
do not know if they are searching a graph stored in the main memory, or if they are
searching a graph stored on a remote workstation. The object layer (3) hides the storage
type.

The implementation of the objects depends on the storage type. For each kind of
bubble, namely the types TuNetwork, TuMemory, and TuDisk, we have an implemen-
tation of the object (see Fig. [5.9). The implementations lie in layer 3. In order to
make it easy and fast to implement the objects, we enclose the basic operations of the
communication in the communication layer, and we enclose the basic operation of the
memory management for a disk and network access (TuDisk, TuNetwork) in layer two.

5.2.2 Interfaces

Our most important interface is a virtual interface to the storage management. Typi-
cally, the operating system offers a virtual interface to the main memory where parts of
the memory are stored on the hard disk. The algorithms access the data without any
knowledge of where the data is stored. The advantage is an easy access because of the
simple interface. The disadvantage is the fact that the algorithms cannot distinguish
between a cheap local access, and an expensive remote access.

In order to keep the advantage and to avoid the disadvantage for our virtualisation,
we move the storage interface to the objects of the scene. As shown in Fig. the
graph layer 4 works independently of the storage type. The graph layer 3 implements
four different types, namely TuMemory, TuDisk, TuReference, and TuNetwork.

In order to achieve a virtual memory interface for objects, we use a technique simi-
larly to smart pointers, a well known C++ programming technique [9, [86]. We imple-
mented pointer classes that correspond to the four storage types (TuMemory, TuDisk,

101

5 Implementation and Evaluation

Figure 5.11: A house and tree used as objects for the benchmarks. The object consists of 61
triangles and needs 2917 Bytes storage. The object is of size 6 (depth), 8.5 (width), and 4
(height).

TuReference, TuNetwork). To implement a pointer that points to remote workstations,
we extend the address space of a normal memory address. The memory address of the
network type consists of a server identifier that identifies the remote server, and a re-
mote address. The remote address can be either a disk type (file position) if the object
is stored on a local hard disk, or a memory type if the object is stored in the main
memory of the remote machine. Furthermore, we have a class for disk addresses, and
the normal pointer addresses for the access to the main memory (see right illustration
of Fig. .

The left illustration of Fig. shows two green objects and two blue objects each
stored on different hard disks connected by a network. If an algorithm accesses the red
edge of the green object pointing to the blue object stored on a remote disk, the system
automatically loads the green object from the remote workstation.

5.3 Benchmark

In the following subsections, we measure the running time for movement and construc-
tion of a virtual scene. Our benchmarks are defined and described in the corresponding
subsections. Common to all benchmarks is the following object of the scene (see Fig.
: the object is a simple modelled house and a tree consisting of 61 triangles. The
object is of size 6 (depth), 8.5 (width), and 4 (height). The polygon data of the object
needs 2917 Bytes storage. An object of the graph stored on the disk and on a re-
mote workstation needs 3082 Bytes storage because of additional data for graph edges,
position and pointers to duplicated objects.

We use the object in our benchmarks for the generation of a randomly distributed
scene. The objects to be inserted and deleted can be of arbitrary type and shape.
Objects of a virtual scene can be more complex. Typically, values range from 1000

102

5.4 Construction and Recomputation of a Scene

to 5000 triangles. Our benchmark house has comparatively few polygons. There is a
tradeoff between the complexity of objects and the number of objects. If we use complex
objects, we can place only a few objects in the scene because the system supports no
methods for polygon reduction.

Memory Consumption and Overhead

The object in our benchmarks needs 2917 Bytes of storage for the polygon data. A
generated object needs 165 Bytes additional data for the storage of edges, position,
and pointers to the parents and children of duplicates. Therefore, we have a memory
overhead of 5.6% which is a good value for the objects used in the benchmark. We
should avoid larger overheads of smaller objects, i.e., the 2917 Bytes is the lower limit
for a reasonable size.

Hardware and Software Used

We implemented the system on Irix (SGI) and Linux (PC). The source code is written
in C++. For the graphical user interface, we used X11, Xlib, and Motif libraries. The
3D scenes were rendered with the Openlnventor library [233]. All objects are coded
with the Openlnventor file format. For all measurements, the 3D viewer runs on a SGI
02 with 256MB main memory and 160MHz clock speed. For all measurements, the 2D
viewer and the managers run on Linux 2.4. For the measurements of different storage
types (see Section , the 2D viewer runs on a Pentium 3 PC with and 933Mhz
clock speed and 1GB main memory. All network communications are executed via TCP
connections. For our measurements of scalability (see Section , the managers run
on a cluster of 20 PCs. The first eleven PCs are Pentium 4 systems with 1.7GHz and
1GB main memory, and the last nine PCs are Pentium 3 systems with 933 MHz and
512 MB main memory.

5.4 Construction and Recomputation of a Scene

In the following subsections, we investigate the construction time of a virtual scene that
is constructed from scratch. For the construction of the scene, we use the algorithm
described in Section The algorithm is essentially not only for the construction of
the scene, but also for the algorithms of the INSERT(z,0) and DELETE(x) operations
(Section . For insertion and deletion, we execute a circular range query and
recompute the sectorgraph for all objects lying inside a circle with fixed radius.

The algorithm to compute the sectorgraph must be fast to make an interactive manip-
ulation of the scene by the modeller possible. Therefore, we investigate the construction
time of the sectorgraph in the following subsections. In Section [5.4.1] we investigate the

103

5 Implementation and Evaluation

10000 Err T T T T T 1e405 grr

10000

E disk
F e—e memory
1000

1000 £

100 £

100k

computation time [s]
5
computation time [s]

®—e network

0,1¢ disk 4 r
TE ®—e memory 3 0,1¢

0,01l 0,01k

TR I I I T AT A A A A A A AN AU AR A A A A Lol Lol IR | L
0 2000 4000 6000 8000 10000 100 1000 10000 1e+05
number of objects number of objects

Figure 5.12: Computation time against the number of objects. Red curves for a construction
in Memory (TuMemory), green for a construction on hard disk (TuDisk), and blue for a
construction across the network (TuNetwork).

running time for the storage types TuMemory, TuDisk, and TuNetwork, and in Section
for a construction across a network of multiple servers.

5.4.1 Construction Time for Different Storage Types

The dimension of the scene is of size 2500x1500 units. We place a fixed number of
objects chosen randomly into the scene and use the object described in Section [5.3] We
vary the number of objects from 100 to 10000 and measure the construction time of
the scene, i.e., the time for the computation of the sectorgraph. We plot the running
time against the number of objects in Figure We repeat this measurement for
the computation in the main memory, on the local hard disk, and across the network
(TuMemory, TuDisk, TuNetwork). The three curves are shown in the left diagram of
Figure For storage types TuDisk and TuMemory, the right diagram of Figure [5.1
shows the same measurements for larger scenes (n = 64...262144). We doubled the
size of the scene in each step.

Running Time Versus Asymptotic Bound

The running time of our algorithm, described in Section is of order O(nlogn).
The logarithmic factor is due to unconnected objects (objects without a next neigh-
bour) lying left of the scan line (see the discussion of the algorithm in Section ,
and because of the sorting algorithm, which is executed three times. The logarithmic
factor ranges from four to nine for scenes of size 100 to 10000. Despite this multi-
plier, the running time curves show a linear characteristic. The reason for the nearly
linear running time is the equal distribution of the randomly chosen objects and the

104

5.4 Construction and Recomputation of a Scene

n | TuMemory [s] TuDisk [s] TuNetwork [min] Tz;‘:;z‘y Tﬁﬁ;”o"f;‘ Tfetvork
100 0.019 1.01 0.77 53 2430 46
500 0.098 5.38 4.03 55 2460 45

1000 0.199 11.14 8.18 56 2469 44
1500 0.302 17.99 12.47 60 2479 42
2000 0.403 25.87 16.88 64 2511 39
3000 0.607 50.04 25.83 82 2553 31
4000 0.823 96.35 34.88 117 2544 22
5000 1.074 118.44 44.19 110 2468 22
6000 1.229 160.89 53.31 131 2602 20
7000 1.443 213.88 62.49 148 2599 18
8000 1.653 260.82 71.84 158 2608 17
9000 1.857 309.26 81.06 167 2620 16
10000 2.074 371.69 90.57 179 2621 15

Table 5.1: Running time and ratio for the construction of a scene.

fixed length of the scan line. The scan line moves from left to right across the scene.
Therefore, the density of objects on each side of the scan line is approximately of the
same size for each position of the scan line. A higher scene density does not increase
the number of unconnected objects. The number of unconnected objects depends on
the length of the scan line if the objects are equally distributed. Also the logarithmic
multiplier of the sorting algorithm is not apparent.

Running Time Versus Storage Type
Tables [5.1]and [5.2] show the values and ratios of computation times plotted in Fig.[5.12
The first and last column shows the ratios of computation on the disk to computation
in the memory. Further columns show the ratio of network to memory, and network
to disk. The ratios show the additional costs of the computation on different storage
types. The computation of 64 objects on disk takes 53 times longer than the same
computation in the memory.

The ratios of Tzﬁz;ziy range from 53 (n = 64) to 328 (n = 131072). Noticeable is
the steady increase in the ratio, i.e., the computation on disk is more expensive for
large scenes than for small scenes. This is caused by the file caching mechanism of the
operating system. Free parts of the main memory are used for file caching (1G Byte
in our tests). For large scenes, the computation needs more memory such that the file
cache becomes smaller and the inexpensive access to the file cache must be replaced
by expensive disk accesses. The ratios 29 (n = 128) and 788 (n = 262144) seem to be
irregularities.

The ratios of the other columns bear out our observation. The ratio

TuNetwork

TuMemory shows

105

5 Implementation and Evaluation

n | TuMemory [s] TuDisk [s] %

64 0,012 0.01 53

128 0.047 0.02 29
256 0.050 0.05 56
512 0.101 0.10 o7
1024 0.205 0.20 99
2048 0.412 0.47 69
4096 0.840 1.56 111
8192 1.718 4.44 155
16348 3.420 12.85 225
32768 6.895 30.41 265
65536 13.936 68.47 295
131072 28.254 154.36 328
262144 73.738 969.02 788

Table 5.2: Running time and ratio for the construction of a scene.

the same increase, ranges from 2430 (n = 100) to 2621 (n = 10000), but the relative
increase is smaller. The increase is due to the file caching of the remote workstation.
The relative increase is smaller because of the latency of the network transfer. We have
no caching mechanism for the network transfer. This has an effect on the ratio %.
The values decrease steadily to 22 (n = 4000), but after n = 4000 the relative increase
is smaller.

Now it is possible to answer the question how much more time the computation costs
on hard disk than in main memory, and how much more time the computation costs
across the network than on hard disk. The ratios Tzﬁznlﬂilr‘y and T“TNf;iWS"krk of the table
show that for small scenes n < 4000, we have nearly equal ratios memory to disk and
disk to network. The ratio of memory to disk of a scene with n = 4000 objects is 117,
and 22 for disk to network. This means that we lose the most time for the disk access.
The difference increases for larger scenes. The ratio memory to disk is 179 for a scene

of size n = 10000 objects, and the ratio disk to network is 15.

5.4.2 Multiple Managers for a Storage Across a Network

We investigate the construction time of a virtual scene that is distributed across the
network and make the following measurement for it: the dimension of the scene is of size
2500x1500 units. We place a fixed number of objects chosen randomly into the scene
and use the object described in Section All objects are distributed on remote hard
disks (storage type TuNetwork). We vary the number of managers from 1 to 20, and

106

5.4 Construction and Recomputation of a Scene

2000 : :
18001 n = 4000
1600 [+

1400 [

1200 [

1000 Lo | | ! | | I | | I 1 1 | 1 | B
= 200gT T T T T T T T T

450
400
350
300
8 250
50
459
40
35
30
25

TIF

omputation time [s
IETRNEERRTEARNNRARNRRANAN]

| |
2 4 6 8 10 12 14 16 18 20
number of servers

Figure 5.13: The computation time across the network (TuNetwork) plotted against the number
of managers (servers). The red curve is for a scene of size 100 objects, the green curve for
1000 objects, and the blue curve for 4000 objects. The speedup converges against two.

measure the construction time of the scene. In Figure the running time is plotted
against the number of managers (servers). We repeat the measurement for different
sizes of the scene n = 100 (red curve), n = 1000 (green curve), and n = 4000 (blue
curve).

The computation of the graph is performed by a single workstation. The implemented
algorithm (Section executes the computation steps sequentially. Therefore, we
expect the same running time independent of the number of managers. The three curves
of Fig. .12 show that we achieve a speedup if we use more managers. The speedup
converges against two for 20 managers. The relative speedup is maximum 0.59 for two
managers. Each additional manager accelerates the computation time, however, the
relative speedup falls off.

The reason for this speedup is the asynchronous implementation of the write and free
operations. The write operation sends a packet from the client to a manager. After the
message is transferred, the client program continues and does not wait until the data

107

5 Implementation and Evaluation

is written to the disk of the manager. The same holds for the free operation. The free
operation frees an allocated storage on the remote disk. After the message is sent out,
the client program continues. Subsequent operations to distinct remote disks can be
executed simultaneously.

5.5 Motions Through the Scene

In this section, we investigate the motions of a user through the virtual scene. We
are interested in how fast a visitor moves through the scene. The speed of the visitor
depends on the running time to move a bubble. Therefore, we measure the running
time of the MOVE(x, Az) operation dependent on the storage type of the bubble. We
distinguish between a user who slots only one TuMemory bubble into the scene bubble
(Section , and a visitor who uses two bubbles that work as a cache for fast move-
ment of nearby positions (Section . For the latter, we investigate the frame rate
of the walkthrough system in order to analyse the influence of remote accesses on the
running time of the client.

5.5.1 The Radii of Bubbles

A slight restriction of our system is that we render only the objects of the neighbourhood
of the user. No objects outside the bubble are rendered. As soon as the moving bubble
reaches objects lying outside the scene, the objects pop in the rendered image. The
missing objects outside the bubble and the popping effect can be neglected if the radius
of the bubble is large enough so that the border of the bubble is far away. However, we
cannot choose the radius to be arbitrarily high because the complexity of the objects
to be rendered increases. Furthermore, the radii of the bubbles have an effect on the
number of updates of the bubble in the bubble hierarchy, and on the running time of a
movement operation. Therefore, we must choose the radii thoroughly.

Figure shows a scene consisting of 5000 objects (benchmark house). The four
screenshots show a view to the scene for four different radii of the bubble (50, 100,
300, and 400 units). The bubble with radius 50 contains 15 objects, the bubble with
radius 100 contains 47 objects, the bubble with radius 300 contains 387 objects, and the
bubble with radius 400 contains 662 objects. Note that the view frustum renders only
a few objects of the bubble. The radius of size 50 shows an observable error because
of the missing objects outside the bubble. The error is less observable for the bubble
of size 100. We can neglect the error caused by missing objects for the bubble with
radius 300. The differences to the image with radius 400 are hard to observe. Of course,
this impression is relative to the position of the viewer. If the viewer moves a little bit

108

5.5 Motions Through the Scene

Figure 5.14: A walk through our benchmark scene: the house with the tree is a single object.
The three images show a view of the scene for three different radii of the bubble (50, 100,
300, and 400 units).

higher, he sees better the border of the bubble. Therefore, for higher positions of the
viewer, we must increase the radius of the bubble to reduce the artefacts.

5.5.2 Benchmark

The benchmark scene is of size 2500x1500 units and consists of 5000 randomly chosen
objects (the house described in Section [5.3). We define a path of the moving bubbles
and visitors (red line in Fig. |5.15). Four markers are positioned on the path (1, 2, 3,
and 4). For benchmark scene 1, the markers have the coordinates (x,y) = (300, 300),
(500, 500), (700, 700), and (900, 900). For the benchmarks scene 2 and scene 3, the
four markers have the coordinates (300, 300), (800,800), (1400, 800), and (1400, 1500).

The value r denotes the radius of a bubble. The extent of scene, bubble, and path are
true to scale. We denote a bubble that stores the whole scene by scene bubble. A bubble
that is rendered in the 3D viewer is denoted by wview bubble. The viewer sees all objects
of the view bubble; other objects are not rendered. If the viewer moves through the
scene, the 3D viewer executes his motion by a movement of the view bubble. However,

109

5 Implementation and Evaluation

scene 1 scene 2 scene 3
scene bubble scene bubble scene bubble
view bubble @
r=300 1 buffer bubble @ @
view bubble r=300 buffer bubble| width
r= 100 / r =200 =2000
@ %
; view bubble view bubble
I ® ®
(0,0 | X
depth = 1500
y

Figure 5.15: The red line is the path of the bubbles. For scene 2 and scene 3, the coordinates
of the markers 1, 2, 3, and 4 are (x,y) = (300, 300), (800,800), (1400, 800), and (1400, 1500).
For scene 1, the coordinates are (x,y) = (300, 300), (500, 500), (700, 700), and (900, 900).
The value r denotes the radius of a bubble. The extent of scene, bubble, and path are true
to scale.

the system does not move the bubble for small motions of the viewer. The system uses
a threshold of 10 units. If the viewer is 10 units away from the centre of the bubble, the
system executes the MOVE(x, Ax) operation. We use this threshold to save execution
time and because it is visually undisturbing to fix the centre of the bubble for small
movements. If a third bubble is used to cache the scene, as in scene 1 and scene 2, we
denote the bubble by buffer bubble. The buffer bubble is moved only if the view bubble
crosses the border of the buffer bubble. Otherwise, the view bubble moves freely inside
the buffer bubble without updating the buffer bubble.

5.5.3 Movements with one Bubble

The goal in this section is the investigation of an unbuffered movement through a scene.
We investigate the frame rate and the running time of the MOVE(z, Az) operations for
the storage types TuDisk and TuMemory. The results of both test series are shown in

Fig. and and Table and .

110

5.5 Motions Through the Scene

IS
o

W
o

—_
o

frames per second [1/s]
N
o

L AL A A U A O A A A A I T A A

O T

0,01

200 400 600 800
measuring point
T T T T T T T T T I T T T T T T T T T I T T T T T T T 400
1k e time: Move + SCenegraph ...,)

g o — o time: move 300 2

| e—e objects: view bubble ._g.

B 0, g)
= \] S

_qg) N $00002%0%000000000000000004 200 ;
= i E o
E

>

[

bﬂ'llllll
<
_-e
~
[

) S N I S I) N I S N 11 1 I | S S I N IS N | I 0

0 20 40 60 80
move operation

0,001

Figure 5.16: Benchmark scene 1: the scene bubble and the view bubble are stored in the main
memory (storage type TuMemory).

We use the benchmark scene 1 shown in Fig. A scene bubble stores the whole
scene and a view bubble contains the objects to be rendered. We execute two test series:
the one uses a TuDisk bubble to store the scene on the hard disk, and the other uses
a TuMemory bubble to store the whole scene in the memory. In both cases, the view
bubble stores the objects in the memory (TuMemory). We move the view bubble along
the path from marker 1 to marker 4. The radius of the view bubble changes when we
reach the next marker. The radius is of size 50 from marker 1 to 2, 100 from marker 2
to 3, and 300 from marker 3 to 4.

The blue curve shows the number of objects of the view bubble. The curve is formed
as a three-stepped stair caused by the changing radius of the view bubble. The average
number of the objects is 10 for radius 50, 38 for radius 100, and 379 for radius 300.
The dashed red curve shows the running time for the MOVE(x, Az) operation. After

111

5 Implementation and Evaluation

radius 50 radius 100 radius 300
o tmo tmo+su o tmo tmo+su o tmo tmoJrsu
minimum 7 0,0014 0,0157 32 0,0050 0,0445 373 0,0354 0,3762

average 10,52 0,0023 0,0277 | 38,43 0,0071 0,0688 | 379,18 0,0431 0,4840
maximum 15 0,0038 0,0532 45 0,0168 0,2015 387 0,1858 2,5570

Table 5.3: Statistical data of Fig.[5.16] the scene is stored in memory. o: number of objects. t,,,:
running time for move operations. t,,04s,: running time for move operation plus updating
the scenegraph.

radius 50 radius 100 radius 300
‘ o tmo tmo-i—su o 7f'mo tmo-‘rsu o tmo tmo-‘rsu
minimum 7 1,40 1,41 31 6,07 6,12 372 53,13 53,49
average 10,56 1,97 2,00 | 38,36 7,28 7,34 | 379,36 55,80 56,23
maximum 15 2,72 2,76 45 9,43 9,50 387 58,38 59,91

Table 5.4: Statistical data of Fig. the scene is stored on disk. o: number of objects. t,:
running time for move operations. t,,,4s,: running time for move operation plus updating
the scenegraph.

TuMemory ;,TuMemory TuDisk /4TuDisk TuDisk /TuMemory
‘ tSU /tmo 2(’-'mo /tsu t o+su/tmo+su

minimum 5,29 25,09 23,43
average 9,77 120,67 109,07
maximum 13,89 218,79 194,43

Table 5.5: Averaged running time ratios of MOVE(z, Ax) operations to updating the scenegraph
(data from Fig. and Fig. . tmo: running time for move operations. tg,: running time
for updating the scenegraph. to+su ‘= tmo + tsu. In each case for storage type TuMemory
and TuDisk.

executing the operation, the polygon data of the objects must be inserted into the
scenegraph. The solid red line shows the running time for the MOVE(z, Ax) operation
plus the time for updating the scenegraph. The test with storage type TuMemory (see
Fig. shows that updating the scenegraph is 9.77 times more expensive on average
than the MOVE(z, Az) operation. The ratio ranges from 5.29 to 13.89 (see Table [5.F)).
The results are inverse for the test with storage type TuDisk (see Fig. [5.17). The time
for the MOVE(z, Az) operation is 120.67 times more expensive on average than the time
for updating the scenegraph. The ratio ranges from 25.09 to 218.79 (see Table .
The time for the MOVE(z, Az) operation is so large that the sum of the MOVE(z, Az)
operation plus updating the scenegraph has nearly the same values. Therefore, in Fig.
5.17] we see only one red curve although both curves are plotted. The red curves of Fig.

112

5.5 Motions Through the Scene

frames per second [1/s]

1 O A I T
400 600 800
measuring point

1 00 T T T 17 L T I T 1T T 1T T 1T 17T I T 1T T 1T T 1T 17T | 400

e—e time: move + scenegraph
o — e time: move

w
o
o

e—e Objects: view bubble

(2]

©

L

— o)
8, o
@) g —)
g 10 200;
h B o
€

—{100 2

1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 I 0

0 20 40 60 80
move operation

Figure 5.17: Benchmark scene 1: The scene bubble is stored on disk (storage type TuDisk) and
the view bubble is stored in the memory (storage type TuMemory).

show a peak if we increase the radius from 50 to 100 and from 100 to 300. This
is due to the large number of objects to be inserted into the scenegraph. Subsequent
MovVE(z, Az) operations generate fewer objects to be inserted.

We compare the running time of the MOVE(x, Ax) operation plus the scenegraph
update for the storage types TuDisk and TuMemory. The third column of Table [5.5
shows the average values of the red curves of Fig. and We calculated the
ratio for each measuring point and calculated the average afterwards. The ratio of
a MOVE(x, Az) operation executed on disk to one executed in the main memory is
an average of 109.07. The ratios range from 23.43 to 194.43. This means that the
movement of the bubble stored on disk takes 109 times longer than movement of a
scene that is stored in main memory.

Now, we investigate the frame rates that we achieve during a walk through the

113

5 Implementation and Evaluation

‘ radius 50 radius 100 radius 300
average TuMemory 34,54 19,15 3,26
average TuDisk 25,59 15,95 3,27

Table 5.6: Averaged frame rates for view bubbles of different radii and storage types.

scene (see the upper diagram of Fig. and . Like the running time for the
MOVE(z, Az) operation, the frame rate is formed as a three-stepped staircase. Due to
the larger number of objects in a view bubble with a large radius, the frame rate drops
for larger bubbles. Except for the positions where the move operation is executed, the
frame rates are approximately equal independent of the storage type. The frame rates
of the scene stored in memory are of the same order as the one stored on the disk.
Because we execute the move operations after 10 units, the system executes only the
rendering of the objects without any influence on operations of the sectorgraph. The
Table [5.6| shows the average frame rates for the three parts of the path. The average
frame rates of the system depend on the type of storage because during the execution
of the MOVE(x, Azx) operation, the system waits resulting in a frame rate nearly zero.
Due to the more expensive operation of TuDisk, the average is worse for a scene stored
on disk.

In contrast to the curves for the running time of the MOVE(x, Ax) operations, the
number of measuring points is distinct for each of the three parts of the path. Due to
the longer rendering times for larger bubbles, the system needs more time to move the
bubbles although the lengths of the three parts are equal. Because the system does
not skip positions, it generates more measuring points. Therefore, the number of the
measuring points for the frame rate is proportional to the time used to move the bubble.

5.5.4 Movements with two Bubbles

In this section, we investigate buffered movement, i.e., we use two TuMemory bubbles
that are slotted in the scene bubble. So far, we have used a single view bubble that is
slotted in the scene bubble. The disadvantage of this configuration is that the system
must frequently reload objects from the scene bubble for each movement. If the viewer
explores his neighbourhood and moves forward and backward several times, the system
thrashes, i.e., it loads and deletes the objects of the neighbourhood frequently. To
avoid this type of thrashing, we use the buffer bubble that is slotted in the scene bubble
(see Fig. [5.15). The view bubble is slotted in the buffer bubble. The buffer bubble
works as a spatial cache for the view bubble. Even if in this configuration thrashing
occurs between the view bubble and the buffer bubble, the problem is defused because

114

5.5 Motions Through the Scene

30 C T T T T T T T T T T T T T T T]
-g 20 R B | B L R | SRR ST LR R R RRRRRY [RERLY LR (1| AFT R R R R R Rt (1 ' EERCRRERRRp Y NOE I
0 -
(0] - -
2 15 TR SRR RN CERRCIRCRN L | G R R B LK R LA 1 L1107 Rt RERERE ERCRRERRLES iy || -]
o r]
o - 4
n 10 | RIS IR I, SIS SIS SRR SIS ST I, T |
(0] - -
IS o]
E 5 R EE T L NPT -]
ok P | IS IR N | 1
0 200 400 600 800 1000
measuring point (bubble path)
T T T T T T I T T T T T T T T 512
100 oo 2o fs IR (N
10} e e e e -— 256 _g
2
— Qo
2 1 | SN | ES o
GE) ©
= 0,1 3
E
2
0,01

0,001 —+
0 50 100 150

— time: move + scenegraph move operation — — objects: buffer bubble
—— time: move —— objects: view bubble

Figure 5.18: Benchmark scene 2: The scene bubble is stored on disk and the view and buffer
bubbles are stored in memory. The radius of the buffer bubble is of size 300.

the buffer bubble is stored in the main memory so that fast access to the objects is
possible. The system moves the buffer bubble as soon as the view bubble crosses the
border of the buffer bubble.

We use benchmark scene 2 and scene 3 (see Fig. [5.15). The radius of the view bubble
is of size 100 units. The radius of the buffer bubble is of size 300 in scene 2, and 200
in scene 3. For the scene bubble, we use storage types TuMemory and TuDisk. Storage
type TuNetwork is investigated at the end of this section. We measure the frame rate
of the system and the running time of the MOVE(z, Az) operations. The results of
the four test series are shown in Fig. .20} Fig. [5.21} Fig. [5.18] and Fig. We plot
the frame rate in the upper diagram (green curve). In the lower diagram, we plot the
number of objects of the view bubble and buffer bubble with the axis on the right side

115

5 Implementation and Evaluation

30 T T T I T T T T T T T T T T T T

N
(&)}

N
o

frames per second [1/s]
o

10]
5 :
0 C
0 200 400 600 800
256
100
108 128}?;
—_ Q
NS o
GE) ©
£ 4 5
= 01k 4 3
€
2
0,01 a0
0,001
0 50 100 150
— time: move + scenegraph move operation — — objects: buffer bubble
— time: move —— objects: view bubble

Figure 5.19: Benchmark scene 3: The scene bubble is stored on disk and the view and buffer
bubbles are stored in memory. The radius of the buffer bubble is of size 200.

(blue curves). We plot the running time of the MOVE(z, Az) operation (view bubble
plus buffer bubble) in the lower diagram (red curve). The black curve results from the
red curve plus the running time for updating the scenegraph.

The running times of the MOVE(x, Az) operations (view bubble plus buffer bubble,
red curves) show large peaks at the positions where the buffer bubble is moved. Between
those peaks, only the view bubble is moved.

Frame Rate

The first question is how the configuration influences the frame rate of the system. The
frame rate of the two test series for storage type TuDisk (buffer bubble radius 200 and
300) shows a comparable characteristic in quality and quantity (Fig. and Fig.
5.19)). This does not hold for the positions where the buffer bubble is updated. At

116

5.5 Motions Through the Scene

30 T T T I T T T T T T T T T T T T]
g‘ 25 b Ao oo e oo e e
— I
o] 1
g 20 RV E NI || | RN | ISR ||/ N A D Y | Y| U BT 11 R W | 1 (T IO !
o r
[0] - .
2 15 % EEREEIIEEN R R B LAt IR || ALAR T A . L U I PO P L BB | A 4 | S LU AR S | Y . -]
[r]
o - 4
n 10 L |
(0] - .
IS o]
B e]
0 : 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 :
0 200 400 600 800
measuring point (bubble path)
1 E T T T T T T T T I T T T T T T T T 512
E ________________________ \e /T T T T T, b
C 1
o _—1256 &
(6]
O f b e AlNA bl m e e O
— F, Neo)
@ = 128 2
[0} - o
£ X o
0,01 64 £
F >
F [
y 32
0,001
0 50 100 150
— time: move + scenegraph move operation — — objects: buffer bubble
—— time: move —— objects: view bubble

Figure 5.20: Benchmark scene 2: Scene bubble, view bubble, and buffer bubble are stored in
memory. The radius of the buffer bubble is of size 300.

those positions, the frame rate drops down to zero. During the movement, the system
makes 10 updates for radius 300, and 19 updates for radius 200. Except for those points
of updates, the minima and maxima of the frame rate are at approximately the same
measuring points on the path. The maxima and minima are mainly influenced by the
number of objects to be rendered. The curve for the number of objects of the view
bubble has its maxima at that point where the frame rate shows minima.

We can answer the question whether the type of storage influences the frame rate.
Fig. and Fig. show the same two test series for the scene that is stored in the
main memory. Both curves (frame rates) show a comparable characteristic in quality
and quantity. Furthermore, they are similar to the two curves for the storage type
TuDisk. The main difference is that they miss the points of updating the buffer bubble

117

5 Implementation and Evaluation

30 T T T T T T T T T T T T T T T]
g' 25 T 1T e IR S Y e 7
— m
g 20 BP0 | (18 A (1| AP R B Y P It (I | PP | TN S5 ¥1! (N . Ao L HENY
[$] r 4
[0] _ .
2 15 BRI SRR | & R B 1 LITRR ! CITIL S | 1 D N LOUOUU \WOUOURPRPRPRRS | | § I L1 B LU L1 N U8 41 b) | DO P O .
[C]
o L 4
n 10 L .
(0] - .
IS o]
Y SRR]
0 : 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 :
0 200 400 600 800
e 256
N @
0.1k 128 g
—_ A Ne)
k2N 'y o
o L 5
£ - 64 %
0,01} £
E >
[
32
0’001 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
0 50 100 150
— time: move + scenegraph move operation — — objects: buffer bubble
—— time: move —— objects: view bubble

Figure 5.21: Benchmark scene 3: Scene bubble, view bubble, and buffer bubble are stored in
memory. The radius of the buffer bubble is of size 200.

where the frame rate drops down to zero. Because the scene is stored in main memory,
the execution of the MOVE(x, Az) operation is faster so that the system achieves a
better frame rate.

The average frame rate for the storage types TuMemory and TuDisk and for radius
300 and 200 is shown in Table The average frame rates are of approximately the
same size. Only the minimum is nearly zero for the TuDisk type because of the long
running times to execute the MOVE(z, Ax) operation.

Radius of the Buffer Bubble and Speed of the Viewer

The next question is how we have to choose the radius of the buffer bubble. A large
radius allows the exploration of a large neighbourhood, so that we can move arbitrarily
inside the neighbourhood. This is advantageous if we are staying in the same area for a

118

5.5 Motions Through the Scene

300 200 300 200
minimum 5,88 10,75 | 0,03 0,02
average 18,93 19,22 | 18,18 19,01
maximum || 25,24 25,24 | 25,34 25,24

‘ TuMemory ‘ TuDisk

Table 5.7: Average frame rate dependent on storage type and radius.

scene radius | part 1-2 [s] part 2-3 [s] part 3-4 [s] total [s]
TuMemory 300 179.14 168.72 185.01 532.86
TuMemory 200 175.57 166.40 182.71 524.68
TuDisk 300 577.49 582.65 584.99 1745.12
TuDisk 200 540.56 533.72 500.21 1574.49

Table 5.8: The time for the motion of the viewer.

‘ TuMemory [s] TuDisk [s] TuNetwork [s] ooiss. — Iufetuork

‘uMemory ‘uMemory
radius 200 0,0647 55,45 79,22 857 1224
radius 300 0,1526 119,58 141,25 783 925

Table 5.9: The average running time of the MOVE(z, Az) operation from markers 1 to 4.

long time. However, a large radius of the buffer bubble is disadvantageous if we move
straight ahead to a far away position. Although we need fewer updates for larger buffer
bubbles, the total number of objects to be loaded is larger. In consequence, we need
more time to move from point A to B.

Table .8 shows the time that our viewer and his view bubble need to move from
marker 1 to marker 4 of scene 2 or scene 3. The route takes more time for radius 200
than for radius 300. That holds for both storage types. Because of slow loading of the
objects from disk, the viewer needs more time if the scene is stored on disk.

Bubble Movements Across the Network
The preceding test series shows that the type of storage influences the average frame
rate, but has no influence on the frame rate between subsequent MOVE(x, Az) oper-
ations. As long as the view bubble moves inside the buffer bubble, the frame rate of
the system is independent of the type of storage of the scene bubble. Therefore, the
following test series investigates the running time of the MOVE(x, Azx) operation of a
TuMemory bubble that is slotted into a TuNetwork bubble.

The benchmark is the same as in the preceding tests except that we investigate the
view bubble without a buffer bubble and the 3D renderer. The tests are executed on
the workstations used in our tests for the construction of the scene. We move a view

119

5 Implementation and Evaluation

180 T 450
i ho -t _¢’ ";’,:o =it\-r - ‘?\
160~ N = e W 400
NI i : . !\
e P VA T BN 5 -
~. - - _./ \\ N _Q
”- ; ; . . 350
140~ / -t
o : : L
L , Vo 1]
¢ vy 300 ©
120 - a2 \ q\ _GQ_)‘
@ s N [S)
o i ,'/ A 250 ©
= / 8
1004 | | 3
! 5 i 200 >
/ <N “ b
! e :
804 ‘.,‘ A
‘ 150
60 @ —eo time: radius 300 -0 ébjects: radius 300 100
e—¢ time:radius 200 e—e objects: radius 200
q : .
40 Il Il Il Il Il Il Il Il Il : Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il 50
0 10 20 30

measuring point (bubble path)

Figure 5.22: The scene is stored across the network (TuNetwork bubble). We slot a TuMemory
bubble into the scene bubble. The path is the same as for scene 2 and scene 3 in Fig. [5.15]

bubble along the path defined in scene 2 and scene 3 of Fig. We carry out two
test series, one with radius 300, and the other with radius 200. The results are shown
in Fig. We plot the number of objects of the view bubble and the running time
of the MOVE(x, Ax) operation against the measuring points of the path.

From markers 1 to 3, the number of objects of the bubble varies only a little (see blue
curves). At the end of the path, the curves drop down because the view bubble reaches
the border of the scene at marker 4 and half of the view bubble is empty because it juts
out the scene. The running time of the MOVE(x, Ax) operations (red curves) shows
the same characteristic only in the middle and at the end of the path. The running
time drops down at the end of the path (marker 4) too, because our search algorithm
starts its search near the border of the scene and finds fewer objects. However, the
characteristic of the running time differs from the number of objects at the beginning
of the path (marker 1). The running time drops although the number of objects is large.
This is caused by the stretch factor of our sectorgraph. Marker 1 has the coordinates

120

5.6 Summary and Discussion

(300, 300). Therefore, both bubbles (radius 200 and 300) are lying completely inside
the scene. However, our search algorithm must search twice as wide as the radius of
the bubble. Therefore, some parts of the area to be searched lie outside the scene
containing no objects. These measurements show that the running time depends not
only on the number of objects of the bubble, but also on the number of neighbouring
objects depending on the stretch factor of the sectorgraph.

We calculated the average running time of the MOVE(z, Az) operation for the three
storage classes (TuMemory, TuDisk, and TuNetwork) from the preceding test series (path
of scene 2/3). Table shows the running times for radius 300 and 200. The ratios
of the different classes are somewhere in the order of the ratios that we measured for
the construction of the scene. However, the running time relative to the number of
objects is better than the running time of the algorithm for the graph construction
because the latter is more complex than the search algorithm. The algorithm for the
graph construction sorts all objects three times and makes six scan line conversions.
The search algorithm of the MOVE(z, Ax) operation carries out a single breadth first
search.

5.6 Summary and Discussion

We investigate the time for the construction of the sectorgraph. The algorithm is
not only for the basic construction of the sectorgraph from scratch, but also for the
algorithms of the INSERT(z,0) and DELETE(z) operations.

The results show that fast construction of a scene from scratch is possible. A value
of 16 minutes for construction 260,000 objects on hard disk is a usable value, because
construction from scratch is executed only once for the initial definition of the scene.
Later on, the sectorgraph will be modified only by the manipulation operations of the
modeller.

The construction of larger scenes stored across a network is more expensive. The
running time of 90 minutes for 10,000 objects is capable of improvement. The ratio of the
running times for different storage types (see Table shows that the implementation
causes no problems. The ratios show typical values for accesses to memory, hard disk,
and network. The problem is caused by the constant factor of the asymptotic running
time. As sketched in Section [4.4.4] we can overcome the problem by a computation of
parts of the graph in the main memory and the storage of the graph on remote disks
afterwards. This improves the running time for the construction on remote disks, but
causes other problems, e.g., partitioning of the scene.

The results show that an interactive manipulation of the scene is possible. Typically,

121

5 Implementation and Evaluation

a bubble consists of 5,000 to 10,000 objects. The running time of size 1-2 seconds is a
usable value for the storage type TuMemory. Capable of improvement are the running
times for TuDisk and TuNetwork. The running time for 5,000 to 10,000 objects ranges
from 2 to 6 minutes, too slow for an interactive manipulation. We can overcome the
problem by the recomputation of the sectorgraph of the bubble in the main memory
and the storage of the computed graph on disk afterwards.

Our investigations of the movement through the scene show that the system makes
frame rates independent of expensive accesses to the disk and network possible if the
bubbles are configured as spatial caches. The movement with a view bubble inside a
buffer bubble generates frame rates depending only on the number of objects of the view
bubble. Not until the view bubble moves outside the buffer bubble do problems occur,
then the user must wait and the frame rate drops. To prevent the long running times for
loading objects from disk and network, the system could be improved by implementing
prefetching and concurrent loading of objects. Because of that, the viewer must not
stop. However, this causes other problems. The viewer could turn back suddenly or
stand confusedly at the border of the bubble waiting for the objects.

122

6 Conclusion and Further Development

Conclusion

We propose a system for the management, rendering, navigation, and manipulation
of a distributed virtual environment. The system uses a data structure that supports
distributing scenes across a network and walkthrough and manipulation of scenes -
concurrently by many users at runtime. Our theoretical analysis of the data structure
proves that navigation and manipulation can be executed in a period of time that only
depends on the complexity of the neighbourhood of the user, independently of the
total size of the scene. The locality of the data structure makes these results possible.
In the same way, the locality of the data structure permits the system to manage a
conceptually unbounded extension and size of the virtual environment.

Outlook and Further Development

Although the running times of the system are independent of the total size of the scene,
the experiments show that the running times are too expensive for fast interactive
manipulation of the scene. The system is capable of improvements to speed-up the
navigation and manipulation.

In order to speed-up navigation, we should use prefetching of the buffering bubble if
we detect that the user moves the view bubble to the border of the buffering bubble.
We fetch the objects of the buffering bubble concurrently with the movement of the
user.

In order to speed-up the insertion and deletion of objects, we should implement these
operations in two phases: in the first phase, we allow the modeller the temporary
modification of the scene in his memory. Afterwards, in the second phase, we copy
and store the modified data structure across the network on remote workstations. This
avoids the expensive modification of the sectorgraph across the network, and reduces
expensive communication.

In order to speed-up both navigation and manipulation, we should block neighbouring
objects. For example, we store all neighbours of an object as a single block of data on a
single remote hard disk. If we access the objects, we load all of them into the memory.
A single access of the whole block is faster than access to one object after another.

Further problems that should be tackled are the balancing and the management of

123

6 Conclusion and Further Development

landmarks. Landmarks are references to fixed positions (objects) of the scene. We can
jump to an object directly if we have the landmark of the object. This is especially
useful for our system because the data structure does not support point location.

So far, we have distributed the objects randomly or in sequential order on remote hard
disks. Alternatively, we can store all objects of a large neighbourhood onto the same
hard disk. However, this kind of distribution needs sophisticated balancing algorithms
to distribute equally sized parts of the scene evenly among the network.

124

Bibliography

[1]

[10]

Howard Abrams, Kent Watsen, and Michael Zyda. Three-tiered interest management for
large-scale virtual environments. In Proc. ACM Symposium on Virtual Reality Software
and Technology (VRST ’98), pages 125-129, 1998.

Howard Allan Abrams. Extensible Interest Management for Scalable Persistent Distributed
Virtual Environments. PhD thesis, Naval Postgraduate School, Monterey, California,
December 1999.

Pankaj K. Agarwal. Range searching. Technical Report CS-1996-05, Duke University,
Department of Computer Science, September 1996.

Pankaj K. Agarwal. Range searching. In J. Goodmand and J. O’Rourke, editors, Handbook
of Computational Geometry. CRC Press, second edition, 1997.

Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives. Ad-
vances in Discrete and Computational Geometry - Contemporary Mathematics, 223:1-56,

1999.

Pankaj K. Agarwal, Edward F. Grove, T. M. Murali, and Jeffrey Scott Vitter. Binary
space partitions for fat rectangles. SIAM Journal on Computing, 29(5):1422-1448, 2000.

Timo Aila and Ville Miettinen. SurRender Umbra™ Reference Manual. Hybrid Holding,
Eteldinen Makasiinikatu 4, 6th Floor, 00130 Helsinki, Finnland, 2.3 edition, March 2001.

Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and
Claudio T. Silva. Point set surfaces. In Proc. 12th IEEE Visualization 2001 Conference
(VIS '01), pages 21-28, 2001.

Andrei Alexandrescu. Modern C++ Design - Generic Programming and Design Pattern
Applied. Addison Wesley, 2001.

Daniel Aliaga, Jon Cohen, Andrew Wilson, Eric Baker, Hansong Zhang, Carl Erikson,
Kenny Hoff, Tom Hudson, Wolfgang Stuerzlinger, Rui Bastos, Mary Whitton, Fred
Brooks, and Dinesh Manocha. MMR: an interactive massive model rendering system
using geometric and image-based acceleration. In Proc. 1999 Symposium on Interactive
8D Graphics, pages 199-206. ACM Press, 1999.

125

Bibliography

[11]

[16]

[17]

Daniel Aliaga, Jon Cohen, Andrew Wilson, Hansong Zhang, Carl Erikson, Kenneth Hoff,
Thomas Hudson, Wolfgang Stuerzlinger, Eric Baker, Rui Bastos, Mary Whitton, Fred
Brooks, and Dinesh Manocha. A framework for the real-time walkthrough of massive
models. Technical Report UNC TR#98-013, Department of Computer Science, University
of North Carolina at Chapel Hill, March 1998.

Daniel G. Aliaga and Anselmo Lastra. Architectural walkthroughs using portal textures.
In Proc. 8th IEEE Visualization 1997 Conference (VIS '97), pages 355-362, 1997.

Ingo Althofer, Gautam Das, David Dobkin, and Deborah Joseph. Generating sparse
spanners for weighted graphs. In Proc. 2nd Scandinavian Workshop on Algorithm Theory
(SWAT °90), volume 447 of LNCS, pages 26-37, 1990.

Ingo Althofer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse
spanners of weighted graphs. Discrete € Computational Geometry, 9:81 — 100, 1993.

Sunil Arya, Gautam Das, David M. Mount, Jeffrey S. Salowe, and Michiel Smid. Euclidean
spanners: Short, thin, and lanky. In Proc. 27th ACM Symposium on Theory of Computing
(STOC ’95), pages 489-498, 1995.

Sunil Arya and David M. Mount. Approximate range searching. Computational Geometry:
Theory and Applications, 17(3-4):135-152, 2000.

Sunil Arya, David M. Mount, and Michiel Smid. Randomized and deterministic algorithms
for geometric spanners of small diameter. In Proc. 35th IEEE Symposium on Foundations
of Computer Science (FOCS °94), pages 703-712, 1994.

Sunil Arya, David M. Mount, and Michiel Smid. Dynamic algorithms for geometric
spanners of small diameter: Randomized solutions. Computational Geometry: Theory
and Applications, 13(2):91-107, 1999.

Sunil Arya and Michiel Smid. Efficient construction of a bounded degree spanner with
low weight. In Proc. 2nd European Symposium on Algorithms (ESA ’94), volume 855 of
LNCS, pages 48-59, 1994.

Sunil Arya and Michiel Smid. Efficient construction of a bounded-degree spanner with
low weight. Algorithmica, 17(1):33-54, 1997.

Inc. Avid Technology. softimage, data sheet. http://www.softimage.com, 2004.

Dirk Bartz and Claudio Silva. Rendering and visualization in parallel environments. In
Tutorial of EUROGRAPHICS 2001, Tutorial 9. Eurographics Association, 1995.

Jit{ Bittner. Hierarchical techniques for visibility determination. Postgraduate Study
Report DC-PSR-99-05, Czech Technical University, Faculty of Electrical Engineering,
Department of Computer Science and Engineering, March 1999.

Jit{ Bittner, Vlastimil Havran, and Pavel Slavik. Hierarchical visibility culling with oc-
clusion trees. In Proc. Conference on Computer Graphics International (CGI "98), pages
207-219, 1998.

126

Bibliography

[25]

William Blanke, Chandrajit Bajaj, Donald Fussell, and Xiaoyu Zhang. The metabuffer:
A scalable multiresolution multidisplay 3-D graphics system using commodity rendering
engines. Technical Report TR 2000-16, University of Texas at Austin, 2000.

Ted Boardman. 3ds max 6 Fundamentals. New Riders Publishing, 2004.

Sven Bormann. Virtuelle Realitdt: Genese und Evaluation. Addison-Wesley Publishing
Company, 1994.

Ulrik Brandes and Dagmar Handke. Np-completeness results for minimum planar span-
ners. Discrete Mathematics & Theoretical Computer Science, 3(1):1-10, 1998.

Leizhen Cai and Derek G. Corneil. Tree spanners. SIAM Journal on Discrete Mathematics,
8(3):359-387, 1995.

Paul B. Callahan. Dealing with Higher Dimensions: The Well-Separated Pair Decompo-
sition and Its Applications. PhD thesis, Johns Hopkins University, Baltimore, Maryland,
1995.

Paul B. Callahan and S. Rao Kosaraju. A decomposition of multi-dimensional point-sets
with applications to k-nearest-neighbors and n-body potential fields. In Proc. 2/th ACM
Symposium on Theory of Computing (STOC ’92), pages 546-556, 1992.

Paul B. Callahan and S. Rao Kosaraju. Faster algorithms for some geometric graph prob-
lems in higher dimensions. In Proc. 4th ACM-SIAM Symposium on Discrete Algorithms
(SODA ’93), pages 291-300, 1993.

Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM,
42(1):67-90, 1995.

Rikk Carey and Gavin Bell. The Annotated VRML 2.0 Reference Manual. Addison-Wesley
Professional, 1997.

Edwin Catmull. A Subdivision Algorithm for Computer Display of Curved Surfaces. PhD
thesis, University of Utah, Salt Lake City, 1974.

Edwin Catmull. Computer display of curved surfaces. In Proc. IEEE Conference on
Computer Graphics, Pattern Recognition and Data Structures, pages 11-17, 1975.

Edwin Catmull. Computer display of curved surfaces. In Rosalee Wolfe, editor, Seminal
Graphics: Pioneering Efforts That Shaped The Field, pages 35—41. ACM Press, 1998.

Alan Chalmers, Tim Davis, Toshi Kato, and Erik Reinhard. Practical parallel processing
for todays rendering challenges. In Course Notes of the 28th Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH 2001), Course No. 40. ACM Press,
2001.

Alan Chalmers and Erik Reinhard. Parallel and distributed photo-realistic rendering. In
Course Notes of the 25th Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH 1998), Course No. 3. ACM Press, 1998.

127

Bibliography

[40]

[41]

[51]

[52]

[53]

Bradford Chamberlain, Tony DeRose, Dani Lischinski, David Salesin, and John Snyder.
Fast rendering of complex environments using a spatial hierarchy. In Proc. Graphics
Interface ’96, pages 132141, 1996.

Barun Chandra. Constructing sparse spanners for most graphs in higher dimensions.
Technical Report CS 93-05, University of Chicago, Department of Computer Science,
May 1993.

Barun Chandra. Approximation and Online Algorithms for Graph Problems. PhD thesis,
University of Chicago, Department of Computer Science, 1994.

Barun Chandra. Constructing sparse spanners for most graphs in higher dimensions.
Information Processing Letters, 51(6):289-294, 1994.

Barun Chandra, Gautam Das, Giri Narasimhan, and José Soares. New sparseness results
on graph spanners. In Proc. 8th ACM Symposium on Computational Geometry, pages
192-201, 1992.

Barun Chandra, Gautam Das, Giri Narasimhan, and José Soares. New sparseness results
on graph spanners. Technical Report CS 92-09, University of Chicago, April 1992.

Barun Chandra, Gautam Das, Giri Narasimhan, and José Soares. New sparseness results
on graph spanners. International Journal of Computational Geometry € Applications,
5:125-144, 1995.

Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: 1. A data structuring
technique. Algorithmica, 1(2):133-162, 1986.

Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: II. applications. Algo-
rithmica, 1(2):163-191, 1986.

Baoquan Chen and Minh Xuan Nguyen. POP: A hybrid point and polygon rendering
system for large data. In Proc. 12th IEEE Visualization 2001 Conference (VIS 01),
pages 45-52, 2001.

Danny Z. Chen, Gautam Das, and Michiel Smid. Lower bounds for computing geometric
spanners and approximate shortest paths. In Proc. 8th Canadian Conference on Compu-
tational Geometry (CCCG ’96), pages 155-160, 1996.

Danny Z. Chen, Gautam Das, and Michiel Smid. Lower bounds for computing geometric
spanners and approximate sortest paths. Discrete Applied Mathematics, 110(2-3):151-167,
2001.

L. Paul Chew. There is a planar graph almost as good as the complete graph. In Proc.
2nd ACM Symposium on Computational Geometry, pages 169-177, 1986.

L. Paul Chew. There are planar graphs almost as good as the complete graph. Journal
of Computer and System Science, 39(2):205-219, 1989.

128

Bibliography

[54]

[55]

[56]

P. Cignoni, C. Montani, and R. Scopigno. A comparison of mesh simplification algorithms.
Computer & Graphics, 22(1):37-54, 1998.

James H. Clark. Hierarchical geometric models for visible surface algorithms. Communi-
cations of the ACM, 19(10):547-554, 1976.

James H. Clark. Hierarchical geometric models for visible surface algorithms. In Rosalee
Wolfe, editor, Seminal Graphics: Pioneering Efforts That Shaped The Field, pages 43—50.
ACM Press, 1998.

Edith Cohen. Fast algorithms for constructing ¢-spanners and paths with stretch ¢. In
Proc. 34th IEEE Symposium on Foundations of Computer Science (FOCS ’93), pages
648-658, 1993.

Edith Cohen. Fast algorithms for constructing ¢-spanners and paths with stretch t. STAM
Journal on Computing, 28(1):210-236, 1998.

Jonathan Cohen, Amitabh Varshney, Dinesh Manocha, Greg Turk, Hans Weber, Pankaj
Agarwal, Frederick Brooks, and William Wright. Simplification envelopes. In Proc. 23th
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 1996), pages
119-128. ACM Press, 1996.

Jonathan D. Cohen, Daniel G. Aliaga, and Weiqgiang Zhang. Hybrid simplification: Com-
bining multi-resolution polygon and point rendering. In Proc. 12th IEEE Visualization
2001 Conference (VIS '01), pages 37-44, 2001.

Michael F. Cohen and John R. Wallace. Radiosity and Realistic Image Synthesis. Aca-
demic Press Professional, 1993.

Daniel Cohen-Or, Yiorgos L. Chrysanthou, Claudio T. Silva, and Frédo Durand. A sur-
vey of visibility for walkthrough applications. IEEE Transactions on Visualization and
Computer Graphics, 9(3):412-431, 2003.

Daniel Cohen-Or, Yair Mann, and Shachar Fleishman. Deep compression for stream-
ing texture intensive animations. In Proc. 26th Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH 1999), pages 261-267, 1999.

Daniel Cohen-Or and Eyal Zadicario. Visibility streaming for network-based walk-
throughs. In Proc. Graphics Interface ’98, pages 1-7, 1998.

Satyan Coorg and Seth Teller. Real-time occlusion culling for models with large occluders.
In Proc. 1997 Symposium on Interactive 3D Graphics, pages 83-90. ACM Press, April
1997.

Thomas Crockett. Parallel rendering. ICASE Report No. 95-31, NASA Langley Research
Center, Institute for Computer Applications in Science and Engineering, Hampton, VA,
1995.

129

Bibliography

[67]

[68]

[69]

[70]

Franklin C. Crow, Gary Demos, Jim Hardy, John Mclaughlin, and Karl Sims. 3D im-
age synthesis on the connection machine. In Proc. International Conference on Parallel
Processing for Computer Vision and Display, pages 254-269, 1988.

Ross Cunniff. Visualize fx graphics scalable architecture. In SIGGRAPH FEurographics
Graphics Hardware Workshop 2000, Hot3D Session, pages 29-38, August 2000.

Gautam Das, Paul Heffernan, and Giri Narasimhan. Optimally sparse spanners in 3-
dimensional Euclidean space. In Proc. 9th ACM Symposium on Computational Geometry,
pages 53-62, 1993.

Gautam Das and Paul J. Heffernan. Constructing degree-3 spanners with other sparse-
ness properties. In Proc. 4th International Symposium on Algorithms and Computation
(ISAAC ’93), volume 762 of LNCS, pages 11-20, 1993.

Gautam Das and Paul J. Heffernan. Constructing degree-3 spanners with other sparseness
properties. International Journal of Foundations of Computer Science, 7(2):121-136,
1996.

Gautam Das and Deborah Joseph. Which triangulations approximate the complete graph?
In Proc. International Symposium on Optimal Algorithms, volume 401 of LNCS, pages
168-192, 1989.

Gautam Das and Giri Narasimhan. A fast algorithm for constructing sparse Euclidean
spanners. In Proc. 10th ACM Symposium on Computational Geometry, pages 132-139,
1994.

Mark de Berg. Linear size binary space partitions for uncluttered scenes. Algorithmica,
28(3):353-366, 2000.

Mark de Berg, Marc van Kreveld, Marc Overmars, and Otfried Schwarzkopf. Computa-
tional Geometry: Algorithms and Applications. Springer Verlag, 1997.

Jauvane C. de Oliveira and Nicolas D. Georganas. VELVET: An adaptive hybrid archi-
tecture for very large virtual environments. Presence, 12(6):555-580, 2003.

Michael Deering and David Naegle. The SAGE graphics architecture. In Proc. 29th
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 2002), pages
683-692, 2002.

Discreet. 3ds max, Data Sheet [Data Sheet of 3D Studio Max]. Retrieved April 12, 2000
from http://www.discreet.com.

David P. Dobkin, Steven J. Friedman, and Kenneth J. Supowit. Delaunay graphs are
almost as good as complete graphs. In Proc. 28th IEEE Symposium on Foundations of
Computer Science (FOCS ’87), pages 20-26, 1987.

David P. Dobkin, Steven J. Friedman, and Kenneth J. Supowit. Delaunay graphs are
almost as good as complete graphs. Discrete & Computational Geometry, 5:399-407,
1990.

130

Bibliography

[81]

[82]

[83]

Frédo Durand. 3D Visibility: Analytical Study and Applications. PhD thesis, Université
Joseph Fourier, Grenoble I, July 1999.

Frédo Durand. A multidisciplinary survey of visibility. In ACM SIGGRAPH course notes:
Visibility, Problems, Techniques, and Applications, July 2000.

Frédo Durand, George Drettakis, and Claude Puech. The 3D visibility complex: A new
approach to the problems of accurate visibility. In Rendering Techniques 96, Proc. 7th
FEurographics Workshop on Rendering, pages 245256, 1996.

Frédo Durand, George Drettakis, and Claude Puech. The 3D visibility complex: A unified
data structure for global visibility of scenes of polygons and smooth objects. In Proc. 9th
Canadian Conference on Computational Geometry (CCCG °97), 1997.

Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery, and
Werner Stuetzle. Multiresolution analysis of arbitrary meshes. In Proc. 22th Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH 1995), pages 173-182.
ACM Press, 1995.

Daniel R. Edelson. Smart pointers: They’re smart, but they’re not pointers. In Usenix
C++ Conference, pages 1-20, 1992.

David Eppstein. Spanning trees and spanners. Technical Report 96-16, University of
California, Dept. Information and Computer Science, May 1996.

Carl Erikson. Polygonal simplification: An overview. Technical Report TR96-016, Uni-
versity of North Carolina at Chapel Hill, Department of Computer Science, 1996.

John Eyles, John Austin, Henry Fuchs, Trey Greer, and John Paulton. Pixel-planes 4:
A summary. In Alphonsus A. M. Kuijk and Wolfgang Strasser, editors, Advances in
computer graphics hardware II, Eurographics '87, 2nd Workshop on Graphics Hardware,
pages 183-207. Springer-Verlag, 1988.

Raphael A. Finkel and Jon Louis Bentley. Quad trees: A data structure for retrieval on
composite keys. Acta Informatica, 4(1-9), 1974.

Matthias Fischer, Tamas Lukovszki, and Martin Ziegler. Geometric searching in walk-
through animations with weak spanners in real time. In Proc. 6th European Symposium

on Algorithms (ESA ’98), volume 1461 of LNCS, pages 163-174, 1998.

Matthias Fischer, Tamas Lukovszki, and Martin Ziegler. A network based approach for re-
altime walkthrough of massive models. In Proc. 2nd Workshop on Algorithms Engineering
(WAE ’98), pages 133-142, 1998.

Matthias Fischer, Tamas Lukovszki, and Martin Ziegler. Partitioned neighborhood span-
ners of minimal outdegree. In Proc. 11th Canadian Conference on Computational Geom-
etry (CCCG 99), pages 47-50, 1999.

131

Bibliography

[94]

[95]

[96]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Matthias Fischer, Friedhelm Meyer auf der Heide, and Willy-B. Strothmann. Dynamic
data structures for realtime management of large geometric scenes. In Proc. 5th European
Symposium on Algorithms (ESA ’97), volume 1284 of LNCS, pages 157-170, 1997.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer
Graphics: Principles and Practice. Addison Wesley, 1996.

Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. On visible surface generation by a
priori tree structures. In Proc. 7th Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH 1980), pages 124-133. ACM Press, 1980.

Thomas A. Funkhouser. RING: A client-server system for multi-user virtual environments.
In Proc. 1995 Symposium on Interactive 3D Graphics, pages 85-92, 209, 1995.

Thomas A. Funkhouser and Carlo H. Séquin. Adaptive display algorithm for interactive
frame rates during visualization of complex virtual environments. In Proc. 20th Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH 1993), pages 247-254.
ACM Press, 1993.

Thomas A. Funkhouser, Carlo H. Séquin, and Seth J. Teller. Management of large amounts
of data in interactive building walkthroughs. In Proc. 1992 Symposium on Interactive 3D
Graphics, pages 11-20. ACM Press, 1992.

Michael Garland. Multiresolution modeling: Survey & future opportunities. In STAR -
State of the Art Reports, EUROGRAPHICS ’99. Eurographics Association, 1999.

Michael Garland. Quadric-Based Polygonal Surface Simplification. PhD thesis, Carnegie
Mellon University, School of Computer Science, 1999.

Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics.
In Proc. 24th Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
1997), pages 209-216. ACM Press, 1997.

Andrew S. Glassner, editor. An Introduction to Ray Tracing. Morgan Kaufmann Pub-
lishers, 1989.

Dan Gordon and Shuhong Chen. Front-to-back display of BSP trees. IEFEE Computer
Graphics and Applications, 11(5):79-85, 1991.

Henri Gouraud. Continuous shading of curved surfaces. IEEFE Transactions on Computers,
C-20(6):623-629, 1971.

Henri Gouraud. Continuous shading of curved surfaces. In Rosalee Wolfe, editor, Seminal
Graphics: Pioneering Efforts That Shaped The Field, pages 87-93. ACM Press, 1998.

Naga K. Govindaraju, Avneesh Sud, Sugn-Fui Yoon, and Dinesh Manocha. Parallel oc-
clusion culling for interactive walkthroughs using multiple gpus. In Proc. IEEE Workshop
on Commodity Based Visualization Clusters, 2002.

132

Bibliography

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]
[120]

[121]

[122]

Ned Greene, Michael Kass, and Gavin Miller. Hierarchical Z-buffer visibility. In Proc.
20th Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 1993),
pages 231-238. ACM Press, 1993.

Chris Greenhalgh and Steve Benford. MASSIVE: a distributed virtual reality system in-
corporating spatial trading. In Proc. 15th International Conference on Distributed Com-
puting Systems (DCS’95), pages 27-34, 1995.

Markus H. Gross, Oliver G. Staadt, and Roger Gatti. Efficient triangular surface approxi-
mations using wavelets and quadtree data structure. IEEE Transactions on Visualization
and Computer Graphics, 2(2):130-143, 1996.

J. P. Grossman. Point sample rendering. Master’s thesis, Massachusetts Institute of
Technology, Department of Electrical Engineering and Computer Science, August 1998.

J. P. Grossman and William J. Dally. Point sample rendering. In Rendering Techniques
98, Proc. 9th Eurographics Workshop on Rendering, pages 181-192, 1998.

Digital Display Working Group. Digital visual interface 1.0 specification. Retrieved April
12, 2004 from http.//www.ddwg.org.

Prosenjit Gupta, Ravi Janardan, and Michiel Smid. On intersection searching problems
involving curved objects. In Proc. 4rd Scandinavian Workshop on Algorithm Theory
(SWAT ’94), pages 183-194, 1994.

Dagmar Handke. Graphs with Distance Guarantees. PhD thesis, Universitdt Konstanz,
Fakultét fiir Mathematik und Informatik, 1999.

Dagmar Handke. Independent tree spanners: Fault-tolerant spanning trees with constant
distance guarantees. Discrete Applied Mathematics, 108(1-2):105-127, 2001.

Jan C. Hardenbergh, Gavin Bell, and Mark D. Pesce. VRML: Using 3D to surf the web.
In Course Notes of the 22th Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH 1995) Course No. 12. ACM Press, 1995.

Taosong He, Lichan Hong, Arie Kaufman, Amitabh Varshney, and Sidney Wang. Voxel
based object simplification. In Proc. 6th IEEE Visualization 1995 Conference (VIS ’95),
pages 296-303. IEEE Computer Society, 1995.

Donald Hearn and M. Pauline Baker. Computer Graphics. Prentice Hall, 1994.

Paul S. Heckbert. Survey of texture mapping. IEEE Computer Graphics and Applications,
pages 5667, November 1986.

Paul S. Heckbert and Michael Garland. Multiresolution modeling for fast rendering. In
Proc. Graphics Interface 94, pages 43-50, 1994.

Paul S. Heckbert and Michael Garland. Survey of polygonal surface simplification algo-
rithms. In Multiresolution Surface Modeling Course, SIGGRAPH ’97. ACM Press, 1997.

133

Bibliography

[123]

[124]

[125]
[126]

[127]

[128]

[129]

[130]

[131]

[132]
[133]
[134]
[135]

[136]

Mark Henne, Hal Hickel, Ewan Johnson, and Sonoko Konishi. The making of toy story.
In Proc. 41st IEEE International Computer Conference COMPCON 96, pages 463—468,
1996.

Gerd Hesina, Dieter Schmalstieg, Anton Fuhrmann, and Werner Purgathofer. Distributed
open inventor: A practical approach to distributed 3D graphics. In Proc. ACM Symposium
on Virtual Reality Software and Technology (VRST ’99), pages 74-81, 1999.

Rudy Hirschheim. Not just fun and games anymore.
http://disc.cba.uh.edu/Thirsch/fall96/doug.htm, 2004.

Hugues Hoppe. Progressive meshes. In Proc. 23th Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH 1996), pages 99-108, 1996.

Hugues Hoppe. View-dependent refinement of progressive meshes. In Proc. 24th Confer-
ence on Computer Graphics and Interactive Techniques (SIGGRAPH 1997), pages 189—
198. ACM Press, 1997.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle.
Mesh optimization. In Proc. 20th Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH 1993), pages 19-26. ACM Press, August 1993.

Greg Humphreys, Matthew Eldridge, lan Buck, Gordan Stoll, Matthew Everett, and Pat
Hanrahan. WireGL: A scalable graphics system for clusters. In Proc. 28th Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH 2001), pages 129-140, 2001.

Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D. Kirchner,
and James T. Klosowski. Chromium: A stream-processing framework for interactive
rendering on clusters. In Proc. 29th Conference on Computer Graphics and Interactive

Techniques (SIGGRAPH 2002), pages 693-702, 2002.

IBM. 3D Interaction Accelerator (3DIX).
http://www.research.ibm.com/3dix,
http://domino.research.ibm.com/comm/wwwr_thinkresearch.nsf/pages
/news296.html, 2004.

Aravind Kalaiah and Amitabh Varshney. Differential point rendering. In Rendering
Techniques 01, Proc. 12th Eurographics Workshop on Rendering, pages 139-150, 2001.

A. Kaufman. Volume visualization: Principles and advances. In Course Notes of the 2/th
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 1997), 1997.

J. Mark Keil. Approximating the complete Euclidean graph. In Proc. 1st Scandinavian
Workshop on Algorithm Theory (SWAT ’88), volume 318 of LNCS, pages 208-213, 1988.

J. Mark Keil and Carl A. Gutwin. Classes of graphs which approximate the complete
Euclidean graph. In Discrete € Computational Geometry, volume 7, pages 13-28, 1992.

David G. Kirkpatrick. A note on delaunay and optimal triangulations. Information
Processing Letters, 10(3):127-128, 1980.

134

Bibliography

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145)

[146]

[147]
[148]

[149]

[150]

[151]

Jan Klein, Jens Krokowski, Matthias Fischer, Michael Wand, Rolf Wanka, and Friedhelm
Meyer auf der Heide. The randomized sample tree: A data structure for interactive
walkthrough. In Proc. ACM Symposium on Virtual Reality Software and Technology
(VRST 02), pages 137 — 146, 2002.

Guy Kortsarz and David Peleg. Generating sparse 2-spanners. In Proc. 3rd Scandinavian
Workshop on Algorithm Theory (SWAT ’92), pages 73-82, 1992.

Guy Kortsarz and David Peleg. Generating low-degree 2-spanners. In Proc. 5th ACM-
SIAM Symposium on Discrete Algorithms (SODA ’94), pages 556-563, 1994.

Guy Kortsarz and David Peleg. Generating sparse 2-spanners. Journal of Algorithms,
17:222-236, 1994.

Guy Kortsarz and David Peleg. Generating low-degree 2-spanners. SIAM Journal on
Computing, 27(5):1438-1456, 1998.

Christos Levcopoulos and Andrzej Lingas. There are planar graphs almost as good as
the complete graphs and as short as minimum spanning trees. In Proc. International
Symposium on Optimal Algorithms, volume 401 of LNCS, pages 9-13, 1989.

Christos Levcopoulos and Andrzej Lingas. There are planar graphs almost as good as
the complete graphs and almost as cheap as minimum spanning trees. Algorithmica,
8:251-256, 1992.

Christos Levcopoulos, Giri Narasimhan, and Michiel Smid. Efficient algorithms for con-
structing fault-tolerant geometric spanners. In Proc. 30th ACM Symposium on Theory of
Computing (STOC ’98), pages 186-195, 1998.

Christos Levcopoulos, Giri Narasimhan, and Michiel Smid. Improved algorithms for con-
structing fault-tolerant spanners. Algorithmica, 32(1):144-156, 2002.

Marc Levoy and Turner Whitted. The use of points as a display primitive. Technical
Report TR 85-022, University of North Carolina at Chapel Hill, 1985.

Arthur L. Liestman and Thomas C. Shermer. Grid spanners. Networks, 23:123-133, 1993.

Tony T. Y. Lin and Mel Slater. Stochastic ray tracing using SIMD processor arrays. The
Visual Computer, 7(4):187-199, 1991.

John Michael Lounsbery. Multiresolution Analysis for Surfaces of Arbitrary Topologi-
cal Type. PhD thesis, University of Washington, Department of Computer Science and
Engineering, 1994.

Kok-Lim Low and Tiow-Seng Tan. Model simplification using vertex-clustering. In Proc.
1997 Symposium on Interactive 3D Graphics, pages 75—-81. ACM Press, 1997.

David Luebke. A survey of polygonal simplification algorithms. Technical Report TR97-
045, University of North Carolina at Chapel Hill, Department of Computer Science, 1997.

135

Bibliography

[152]

[153]

[154]

[155]

[156]

[157]

[158]
[159]
[160]

[161]

[162]

[163]

[164]

[165)]

David Luebke and Chris Georges. Portals and mirrors: Simple, fast evaluation of poten-
tially visible sets. In Proc. 1995 Symposium on Interactive 8D Graphics, pages 105-106.
ACM Press, 1995.

David Luebke, Martin Reddy, Jonathan D. Cohen, Amitabh Varshney, Benjamin Watson,
and Robert Huebner. Level of Detail For 3D Graphics. Morgan Kaufmann Publishers,
2003.

David P. Luebke. View-Dependent Simplification of Arbitrary Polygonal Environments.
PhD thesis, University of North Carolina at Chapel Hill, Department of Computer Science,
1998.

Michael R. Macedonia, Michael J. Zyda, David R. Pratt, Paul T. Barham, and Steven
Zeswitz. NPSNET: A network software architecture for large scale virtual environments.
Presence, 3(4):265-287, 1994.

Paulo W. C. Maciel and Peter Shirley. Visual navigation of large environments using
textured clusters. In Proc. 1995 Symposium on Interactive 3D Graphics, pages 95-102.
ACM Press, 1995.

Yair Mann and Daniel Cohen-Or. Selective pixel transmission for navigating in remote
virtual environments. EUROGRAPHICS ’97, Computer Graphics Forum, 16(3):201-206,
1997.

Jiff Matousek. Geometric range searching. ACM Computing Surveys, 26(4):422-461,
1994.

Tomas Moller and Eric Haines. Real-Time Rendering. A K Peters, Natick, Massachusetts,
1999.

Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A sorting classification
of parallel rendering. IEEE Computer Graphics and Applications, 14(4):23-32, 1994.

Steven Molnar, John Eyles, and John Poulton. Pixelflow: High-speed rendering using
image composition. In Proc. 19th Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH 1992), pages 231-240, 1992.

Ketan Mulmuley. Computational Geometry: An Introduction Through Randomized Algo-
rithms. Prentice Hall, Englewood Cliffs, 1994.

Beatrice Ng, Antonio Si, Rynson W.H. Lau, and Frederick W.B. Li. A multi-server
architecture for distributed virtual walkthrough. In Proc. ACM Symposium on Virtual
Reality Software and Technology (VRST '02), pages 163-170, 2002.

NVIDIA. GeForce 6800 - Performance Specification[Data Sheet of GeForce 6800]. Re-
trieved July 17, 2004 from http://www.nvidia.com.

NVIDIA. GeForce4 Ti - Product Overview [Data Sheet of GeForce4 Ti]. Retrieved April
12, 2000 from http://www.nvidia.com.

136

Bibliography

[166]
[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177)

[178]

[179]

Mike Paterson and F. Frances Yao. Efficient binary space partitions for hidden-surface
removal and solid modeling. Discrete & Computational Geometry, 5(5):485-503, 1990.

David Peleg and A.A. Schffer. Graph spanners. Journal of Graph Theory, 13:99-116,
1989.

David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube. In Proc.
6th ACM Symposium on Principles of Distributed Computing (PODC’87), pages T7-85,
1987.

David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube. SIAM
Journal on Computing, 18:740-747, 1989.

Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross. Surfels: Surface
elements as rendering primitives. In Proc. 27th Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH 2000), pages 335-342, 2000.

Bui-Tuong Phong. Illumination for computer generated pictures. Communications of the
ACM, 18(6):311-317, 1975.

Bui-Tuong Phong. Illumination for computer generated pictures. In Rosalee Wolfe, editor,
Seminal Graphics: Pioneering Efforts That Shaped The Field, pages 95—-101. ACM Press,
1998.

Harry Plantinga and Charles R. Dyer. Visibility, occlusion, and the aspect graph. Inter-
national Journal of Computer Vision, 5(2):137-160, 1990.

Jovan Popovi¢ and Hugues Hoppe. Progressive simplicial complexes. In Proc. 2/th Confer-
ence on Computer Graphics and Interactive Techniques (SIGGRAPH 1997), pages 217—
224. ACM Press, 1997.

Franco P. Preparata and Michael I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, 1985.

Enrico Puppo and Roberto Scopigno. Simplification, lod and multiresolution - principles
and applications. In FEurographics ‘97 Tutorial Notes, PS97 TN4. Eurographics Associa-
tion, 1997.

E. Reinhard, A. G. Chalmers, and F. W. Jansen. Overview of parallel photo-realistic
graphics. In STAR - State of the Art Reports, EUROGRAPHICS 1998, pages 1-25.
Eurographics Association, 1998.

Amit Reisman, Craig Gotsman, and Assaf Schuster. Parallel progressive rendering of
animation sequences at interactive rates on distributed-memory machines. In Proc. IEEE
Parallel Rendering Symposium (PRS ’97), pages 39-47, 1997.

Jarek Rossignac and Paul Borrel. Multi-resolution 3D approximations for rendering com-
plex scenes. In Proc. Geometric Modeling in Computer Graphics, pages 455 — 465. Springer
Verlag, 1993.

137

Bibliography

[180]

[181]

[182]

[183]
[184]
[185]

[186]

[187]

[188]
[189]
[190]
[191]
[192]

193]

[194]

Jim Ruppert and Raimund Seidel. Approximating the d-dimensional complete Euclidean
graph. In Proc. 3rd Canadian Conference on Computational Geometry (CCCG ’91), pages
207 — 210, 1991.

Szymon Rusinkiewicz and Marc Levoy. QSplat: A multiresolution point rendering sys-
tem for large meshes. In Proc. 27th Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH 2000), pages 343-352, 2000.

Szymon Rusinkiewicz and Marc Levoy. Streaming QSplat: A viewer for networked visu-
alization of large, dense models. In Proc. 2001 Symposium on Interactive 3D Graphics,
pages 63-68, 2001.

J. S. Salowe. Constructing multidimensional spanner graphs. International Journal of
Computational Geometry € Applications, 1(2):99-107, 1991.

Jeffrey S. Salowe:. On euclidean spanner graphs with small degree. In Proc. 8th ACM
Symposium on Computational Geometry, pages 186-191, 1992.

Jeffrey S. Salowe. Euclidean spanner graphs with degree four. Discrete Applied Mathe-
matics, 54(1):55-66, 1994.

Rudrajit Samanta, Thomas Funkhouser, and Kai Li. Parallel rendering with k-way repli-
cation. In Proc. IEEE Symposium on Parallel and Large-Data Visualization and Graphics
(PVG 2001), pages 75-84, 2001.

Rudrajit Samanta, Thomas Funkhouser, Kai Li, and Jaswinder Pal Singh. Hy-
brid sort-first and sort-last parallel rendering with a cluster of pcs. In Proc. SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hardware, pages 97-108, 2000.

Hanan Samet. The quadtree and related hierarchical data structures. ACM Computing
Surveys, 16(2):187-260, 1984.

Hanan Samet. Applications of Spatial Data Structures: Computer Graphics, Image Pro-
cessing, and GIS. Addison-Wesley, 1990.

Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
1990.

Hanan Samet and Robert E. Webber. Storing a collection of polygons using quadtrees.
ACM Transactions on Graphics, 4(3):182-222, 1985.

Hanan Samet and Robert E. Webber. Hierarchical data structures and algorithms for
computer graphics. Part I. IEEE Computer Graphics and Applications, 8(3):48-68, 1988.

Hanan Samet and Robert E. Webber. Hierarchical data structures and algorithms for
computer graphics. Part II. IEEE Computer Graphics and Applications, 8(4):59-75, July
1988.

Dieter Schmalstieg. The Remote Rendering Pipeline - Managing Geometry and Bandwidth
in Distributed Virtual Environments. PhD thesis, Technische Universitdt Wien, Technisch-
Naturwissenschaftliche Fakultat, December 1997.

138

Bibliography

[195]

[196]

[197]

[198]

[199]

200]

[201]

[202]

[203]

[204]

205]

206]

207]

208

[209]

Dieter Schmalstieg and Michael Gervautz. Demand-driven geometry transmission for
distributed virtual environments. EUROGRAPHICS ’96, Computer Graphics Forum,
15(3):421-432, 1996.

William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decimation of triangle

meshes. In Proc. 19th Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH 1992), pages 65-70. ACM Press, 1992.

Otfried Schwarzkopf and Jules Vleugels. Range searching in low-density environments.
Information Processing Letters, 60(3):121-127, 1996.

Jonathan Mark Sewell. Managing Complex Models for Computer Graphics. PhD thesis,
University of Cambridge, Queens’ College, March 1996.

Jonathan Shade, Dani Lischinski, David H. Salesin, Tony DeRose, and John Snyder.
Hierarchical image caching for accelerated walkthroughs of complex environments. In
Proc. 23th Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
1996), pages 75 — 82. ACM Press, 1996.

Chris Shaw, Mark Green, Jiandong Liang, and Yungi Sun. Decoupled simulation in virtual
reality with the MR toolkit. ACM Transactions on Information Systems, 11(3):287-317,
1993.

Peter Shirley and Keith Morley. Realistic Ray Tracing. A K Peters, Natick, Massachusetts,
2003.

Heung-Yeung Shum and Sing Bing Kang. A review of image-based rendering techniques.
Technical report, Microsoft Research, 1999.

Silicon Graphics, Inc. Cosmo3D [Homepage of Cosmo3D]. Retrieved January 23, 2001
from http://www.sgi.com/software/cosmo.

Francois X. Sillion and Claude Puech. Radiosity & Global Illumination. Morgan Kaufmann
Publishers, 1994.

Sandeep Singhal and Michael Zyda. Networked Virtual Environments - Design and Im-
plementation. Addison Wesley, 1999.

José Soares. Approximating Euclidean distances by small degree graphs. Technical Report
CS 92-05, University of Chicago, Department of Computer Science, March 1992.

José Soares. Graph Spanners. PhD thesis, University of Chicago, Department of Computer
Science, 1992.

José Soares. Graph spanners: A survey. Technical Report CS 92-12, University of Chicago,
Department of Computer Science, July 1992.

José Soares. Approximating Euclidean distances by small degree graphs. Discrete €
Computational Geometry, 11:213-233, 1994.

139

Bibliography

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]
[221]
[222]

[223]

Id Software. DOOM [Computer Game]. Retrieved April 12, 2004 from
http://www.idsoftware.com, http://www.doom3.com.

Marc Stamminger and George Drettakis. Interactive sampling and rendering for complex
and procedural geometry. In Rendering Techniques *01, Proc. 12th Eurographics Workshop
on Rendering, pages 151-162, 2001.

Marc Stamminger, Jorg Haber, Hartmut Schirmacher, and Hans-Peter Seidel. Walk-
throughs with corrective texturing. In Rendering Techniques ’00, Proc. 11th FEurographics
Workshop on Rendering, pages 377-388, 2000.

Amthony Steed and Roula Abou-Haidar. Partitioning crowded virtual environments. In
Proc. 10th ACM Symposium on Virtual Reality Software and Technology (VRST '03),
pages 7-14, 2003.

A. James Stewart and Tasso Karkanis. Computing the approximate visibility map, with
applications to form factors and discontinuity meshing. In Rendering Techniques 98, Proc.
9th Eurographics Workshop on Rendering, pages 57-68, 1998.

Gordon Stoll, Matthew Eldridge, Dan Patterson, Art Webb, Steven Berman, Richard
Levy, Chris Caywood, Milton Taveira, Stephen Hunt, and Pat Hanrahan. Lightning-
2: A high-performance display subsystem for PC clusters. In Proc. 28th Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH 2001), pages 141-148, 2001.

Thomas Strothotte. Computational Visualization. Graphics, Abstraction and Interactivity.
Springer Verlag, 1998.

Oded Sudarsky. Dynamic Scene Occlusion Culling. PhD thesis, Technion - Israel Institute
of Technology, January 1998.

Seth J. Teller and Carlo H. Séquin. Visibility preprocessing for interactive walkthroughs.
In Proc. 18th Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
1991), pages 61-70. ACM Press, 1991.

Enric Torres. Optimization of the binary space partition algorithm (BSP) for the visual-
ization of dynamic scenes. In FUROGRAPHICS 90, Computer Graphics Forum, pages
507-518, 1990.

Daniéle Tost. An algorithm of hidden surface removal based on frame-to-frame coherence.
In FEUROGRAPHICS ’91, Computer Graphics Forum, pages 261-273, 1991.

Greg Turk. Re-tiling polygonal surfaces. In Proc. 19th Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH 1992), pages 55-64. ACM Press, July 1992.

Pravin M. Vaidya. A sparse graph almost as good as the complete graph on points in k
dimensions. Discrete & Computational Geometry, 6(4):369-381, 1991.

Ingo Wald and Philipp Slusallek. State of the art in interactive ray tracing. In STAR -
State of the Art Reports, EUROGRAPHICS 2001, pages 21-42. Furographics Association,
September 2001.

140

Bibliography

[224]

[225]

[226]

[227]

[228]

[229]
[230]

[231]

[232]

[233]

[234]

[235]

236

[237]

Ingo Wald, Philipp Slusallek, and Carsten Benthin. Interactive distributed ray-tracing of
highly complex models. In Rendering Techniques 01, Proc. 12th Furographics Workshop
on Rendering, pages 274 —285, 2001.

Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. Interactive rendering
with coherent ray tracing. In EUROGRAPHICS 01, Computer Graphics Forum, 2001.

Michael Wand, Matthias Fischer, and Friedhelm Meyer auf der Heide. Randomized point
sampling for output-sensitive rendering of complex dynamic scenes. Technical Report
tr-ri-00-217, University of Paderborn, November 2000.

Michael Wand, Matthias Fischer, Ingmar Peter, Friedhelm Meyer auf der Heide, and
Wolfgang Strafler. The randomized z-buffer algorithm: Interactive rendering of highly
complex scenes. In Proc. 28th Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH 2001), pages 361-370, 2001.

Colin Ware. Information Visualization: Perception for Design. Morgan Kaufmann Pub-
lishers, second edition, 2004.

Alan Watt. 8D Computer Graphics. Addison-Wesley, third edition, 1999.

Young C. Wee, Seth Chaiken, and Dan E. Willard. General metrics and angle restricted
Voronoi diagrams. In Proc. 1st Canadian Conference on Computational Geometry (CCCG
’89), August 1989.

Young C. Wee, Seth Chaiken, and Dan E. Willard. Computing geographic nearest neigh-
bors using monotone matrix searching. In Proc. ACM Conference on Cooperation, pages
49-55. ACM Press, 1990.

Young C. Wee, Seth Chaiken, and Dan E. Willard. On the angle restricted nearest
neighbor problem. Information Processing Letters, 34(2):71-76, 1990.

Josie Wernecke. The Inventor Mentor: Programming Object-Oriented 3D Graphics with
Open Inventor. Addison-Wesley, 1994.

Michael Wimmer, Peter Wonka, and Francois X. Sillion. Point-based impostors for real-
time visualization. In Rendering Techniques 01, Proc. 12th Furographics Workshop on
Rendering, pages 163-176, 2001.

Andrew P. Witkin and Paul S. Heckbert. Using particles to sample and control implicit
surfaces. In Proc. 21th Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH 199/), pages 269-277, 1994.

Craig M. Wittenbrink. Survey of parallel volume rendering algorithms. In Proc. In-
ternational Conference on Parallel Distributed Processing Techniques and Applications
(PDPTA 98), pages 1329-1336, 1998.

Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL Programming Guide.
Addison Wesley, third edition edition, 1999.

141

Bibliography

[238]

[239]

[240]

[241]
[242]

[243]

[244]

[245]

[246]

[247]

L. World. Low-end system animates the depths in seaquest. IEEE Computer Graphics
and Applications, 13(6):93, 1993.

Julie C. Xia and Amitabh Varshney. Dynamic view-dependent simplification for polygonal
models. In Proc. 7th IEEE Visualization 1996 Conference (VIS ’96), pages 327-334. IEEE
Computer Society Press, 1996.

R. Yagel. Volume viewing: State of the art survey. In Course Notes of the 20th Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH 1993), Course No. 40,
pages 109-129. ACM Press, 1993.

Andrew Chi-Chih Yao. On constructing minimum spanning trees in k-dimensional spaces
and related problems. SIAM Journal on Computing, 11:721-736, 1982.

Hansong Zhang. Effective Occlusion Culling for the Interactive Display of Arbitrary Mod-
els. PhD thesis, The University of North Carolina at Chapel Hill, 1998.

Hansong Zhang, Dinesh Manocha, Thomas Hudson, and Kenneth E. Hoff III. Visibility
culling using hierarchical occlusion maps. In Proc. 24th Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH 1997), pages 77-88, 1997.

Matthias Zwicker, Markus H. Gross, and Hanspeter Pfister. A survey and classification
of real time rendering methods. Technical Report CS 332, Fidgenossische Technische
Hochschule Ziirich, Switzerland, December 1999.

Matthias Zwicker, Markus H. Gross, and Hanspeter Pfister. A survey and classification
of real time rendering methods. Technical Report 2000-09, Mitsubishi Electric Research
Laboratories, Cambridge Research Center, March 2000.

Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross. EWA volume
splatting. In Proc. 12th IEEE Visualization 2001 Conference (VIS '01), pages 29-36,
2001.

Michael J. Zyda, David R. Pratt, James G. Monahan, and Kalin P. Wilson. NPSNET:
Constructing a 3d virtual world. In Proc. 1992 Symposium on Interactive 3D Graphics,
pages 147-156. ACM Press, 1992.

142

	1 Introduction to a System for Networked Virtual Environments
	2 Background and State of the Art
	2.1 Classification of Methods for Scene Complexity Reduction
	2.1.1 Level of Detail Concepts
	2.1.2 Polygonal Surface Simplification
	2.1.3 Point Sampling
	2.1.4 Visibility Culling

	2.2 Parallel Rendering and Networked Virtual Environments
	2.2.1 Real-Time Rendering on Clusters
	2.2.2 Remote Rendering
	2.2.3 Visibility-Based Approaches
	2.2.4 Networked Virtual Environments

	2.3 Data Structures from Computational Geometry
	2.3.1 Range Searching
	2.3.2 Graph Spanners and Geometric Spanners
	2.3.3 Spatial Data Structures

	3 Architecture and Functionality of the System
	3.1 Underlying Abstraction of Dynamic, Fully Distributed Scenes
	3.1.1 Scenes Composed from Abstract Objects
	3.1.2 Interactive Multi-User Navigation and Manipulation
	3.1.3 Distributed Virtual Scenes
	3.1.4 Bubbles: A Spatial Hierarchy of Caches

	3.2 Elementary Operations for Navigation and Manipulation
	3.2.1 Reporting from the Scene
	3.2.2 Insertion to and Deletion from the Scene
	3.2.3 Incremental Motion of Bubbles

	3.3 Resulting Requirements to the Data Structure
	3.3.1 Spatial Locality
	3.3.2 Support for Cut and Paste
	3.3.3 Support for Duplication
	3.3.4 Support for a Combined Bubble and Storage Hierarchy

	3.4 Summary and Discussion

	4 Our Data Structure and Algorithms
	4.1 Weak-Spanner Approach
	4.2 The Sectorgraph
	4.2.1 Circular Range Query in Output-Sensitive Time
	4.2.2 Constructing the Sectorgraph in O(n log(n))

	4.3 Limitations and Overcoming Them
	4.3.1 Deserts and Long Edges
	4.3.2 Unbounded Accumulation
	4.3.3 Crowded Scenes, Dummy Balls, and Non-Overlapping Objects

	4.4 Implementation of Bubbles Using the Sectorgraph
	4.4.1 Cutting a Subgraph of the Sectorgraph
	4.4.2 Algorithms for Reporting and Incremental Motion
	4.4.3 Algorithms for Insertion and Deletion
	4.4.4 Composing a Large Scene

	4.5 Summary and Discussion

	5 Implementation and Evaluation
	5.1 Functionality and User Interfaces
	5.1.1 Scene Construction and 2D Viewer
	5.1.2 Generation of an Arbitrary Bubble Hierarchy
	5.1.3 3D Navigation and Manipulation of the Scene

	5.2 Implementation of the Bubbles
	5.2.1 Software Layer
	5.2.2 Interfaces

	5.3 Benchmark
	5.4 Construction and Recomputation of a Scene
	5.4.1 Construction Time for Different Storage Types
	5.4.2 Multiple Managers for a Storage Across a Network

	5.5 Motions Through the Scene
	5.5.1 The Radii of Bubbles
	5.5.2 Benchmark
	5.5.3 Movements with one Bubble
	5.5.4 Movements with two Bubbles

	5.6 Summary and Discussion

	6 Conclusion and Further Development
	Bibliography

