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Abstract

In this thesis titled “Geometric Spanners for Topology Control in Wireless Networks” we develop
and analyze algorithms for communication in wireless networks. Especially, we consider ad
hoc networks which are known as spontaneous wireless networks without a fixed infrastructure
and without centralized administration. We distinguish between static, dynamic, and mobile ad
hoc networks. In a static ad hoc network, we do not allow the participants any dynamics and
movements and all hosts are stationary. In a dynamic ad hoc network, we allow the hosts to enter
and/or leave the network. Finally, in a mobile ad hoc network (MANET), every host can move
around without any restriction.

A special feature of this work is that we consider power-variable ad hoc networks, i.e. net-
works in which every participant is allowed to adjust the transmission range(s) of its sender(s). In
addition, we distinguish between omnidirectional (radio) and directional (beam radio, infrared)
communication.

The goal of this work is the development and the analysis of resource-efficient wireless com-
munication structures (topologies). We focus on the resources routing time and energy consump-
tion. For this purpose we introduce models, develop algorithms, and identify suitable measures.
We use mathematical analyses to develop topologies with provably good graph and communi-
cation properties. Furthermore, we demonstrate experimentally that the results of our work are
also suitable for real-world applications. Therefore we have developed and implemented differ-
ent testbeds and present the outcome of our extensive experimental evaluations. We show that
it is possible to build up and maintain wireless topologies using distributed, local algorithms
without the need for any geographical positioning system.

In this work we model wireless networks using geometric graphs and use and extend methods
in computational geometry.

Most of the results presented in this work have already been published in preliminary form in
various international conference proceedings and journals. The results of Chapter 3 extend the
results in [SVZ04]. Chapter 4 is based on [MSVG02, GLSV02, MSVG04] and contains technical
motivation and background discussed in [GRSV03]. The results of Chapter 5 partially extend
[SLRV03]. Finally, Chapter 6 summarizes and partially extends [Vol02, RSVG03, Vol04a].
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Chapter 1

Introduction

The idea of long-distance wireless communication is not new. It already existed 100 years ago
when morse codes were transmitted from ships to shore via wireless telegraphs. Since then there
has been a long history of different radio and cellular systems. Nevertheless, wireless networks
are very popular and widely used today. Nearly everyone has a mobile phone or other wireless
device and wants to have wireless connections, e.g., to the Internet. For example, people access
voice and data services via mobile phones, bluetooth technology replaces awkward cables with
wireless links and wireless networking is possible via IEEE 802.11 compatible network equip-
ment. These wireless networks can be divided into two categories: wireless networks with in-
frastructure (see Figure 1.1(a)) and wireless networks without infrastructure (see Figure 1.1(b)).
Usually, in a wireless network with infrastructure, devices exchange their data packets with fixed
base-stations (access points) that connect them with a wired backbone. However, in applications
such as search and rescue missions, spontaneous get-together via laptops, space exploration, or
environmental monitoring, no explicit communications infrastructure is available. In addition,
the wireless devices usually have a very limited power supply and their communication range is
limited, so that target devices are not always (directly) reachable. In these cases the data has to be
routed via intermediate devices (multi-hop communication). For this purpose, each device has to
have router capabilities. Such spontaneous multi-hop networks without fixed infrastructure and
without centralized administration are called ad hoc networks.

(a) With fixed infrastructure (b) Without fixed infrastructure

Figure 1.1: Wireless networks: fixed versus ad hoc

An ad hoc network is a collection of (mobile) hosts connected by wireless links (dynamically)
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2 INTRODUCTION

forming a temporary network without the aid of any established infrastructure or centralized ad-
ministration [JM96, Per01]. In this thesis we concentrate on three special types of wireless
networks without a fixed infrastructure: static ad hoc networks, dynamic ad hoc networks and
mobile ad hoc networks. In a static ad hoc network, we do not allow the participants any dynam-
ics and movements and all hosts are stationary. In a dynamic ad hoc network, we allow the hosts
to enter and/or leave the network. Finally, in a mobile ad hoc network (MANET), every host can
move around without any restriction.

Since ad hoc networks change their topology frequently and often without any regular pat-
tern, topology maintenance and enabling fast and reliable communication is a challenging task
in such spontaneous networks. The network’s wireless topology may dynamically change in
an unpredictable manner. One of the most important challenges in designing MANETs is how
to provide high throughput and low-energy wireless access to mobile nodes. Energy efficiency
is of paramount importance for MANETs design, since the mobile nodes in such networks are
typically battery powered, which are often not rechargeable. The main goal of this thesis is to
design and analyze topologies as basic network structures for ad hoc networks of the different
types which allow us efficient point-to-point communication with regard to routing time and
energy consumption. By point-to-point communication we mean the process of moving infor-
mation across a network from a source to a destination. For this purpose we develop models,
algorithms, and measures and present topologies for wireless networks which provably optimize
routing time and/or energy consumption. Furthermore, we point out technical limitations, e.g.,
we show that, in general, it is not possible to optimize routing time and energy consumption in a
wireless network at the same time.

A special feature of this thesis is that we consider so-called power-variable ad hoc networks,
i.e. networks in which every participant is allowed to adjust its transmission range(s). We will
show that we can achieve improvements in energy consumption and routing time. Furthermore,
we distinguish between omnidirectional (radio) and directional (beam radio, infrared) commu-
nication. Both communication models allow us different possibilities to form networks. To give
an example, the question “what is the minimum transmission range for every node of a set of
wireless devices each equipped with an omnidirectional antenna that guarantees connectivity?”
is very hard to solve. Its decision problem is known to be NP-hard [KKKP00, CPS04]. We show
that this problem is easy to solve using the directional communication model. Here, we present
localized algorithms that do not need any geographical positioning system to build up power-
efficient and routing time-efficient topologies. We model our networks using geometric graphs,
use and prove geometric properties, investigate communication features and test our algorithms
experimentally using realistic settings. For the mobility of the hosts in a MANET, we introduce
a worst case model and show how to maintain a network with arbitrary movements.

1.1 Outline

Most of the chapters focus on point-to-point communication problems. We start with a theoreti-
cal study on spanners which builds the fundament for the results on topology control in wireless
networks. We first present analyses on static ad hoc networks, then we extend our model and



1.1 OUTLINE 3

allow station dynamics, where radio stations can enter and/or leave the network, and finally,
we investigate networks using worst case movements of its participants. In the last chapter, we
present our results concerning realistic mobile ad hoc networks based on extensive simulations.
In the following, we give a detailed overview of the chapters of this thesis.

Chapter 2 - Preliminaries. In Chapter 2 we give a short summary of the basic terminology for
topology control in wireless networks using geometric graphs. We introduce the omnidirectional
(radio) and the directional (beam radio, infrared) communication model and review physical
aspects of wireless transmissions. In the most common attenuation model the received signal
power at distance d from a sender falls proportionally to 1/dδ for any δ between 2 and 4 or
even 8. Since we assume in this thesis that there is only one given transmission frequency, we
discuss the problem of interference. Furthermore, we introduce basic definitions, e.g., the δ-
cost of a path in a geometric graph, and present the challenges of topology control. A good
topology has low stretch, low degree, low energy consumption, and is locally constructable. We
use spanners, weak spanners, and power spanners to build up topologies that provably fulfill
these requirements and review the theoretical background. Finally we discuss (multi-hop) point-
to-point communication and mention traditional routing protocols for MANETs such as AODV,
DSDV, and DSR.

Chapter 3 - Spanners, Weak Spanners, and Power Spanners. In Chapter 3 we investigate
the relations between spanners, weak spanners, and power spanners in R

D for any constant D.
For c ∈ R, a c-spanner is a subgraph of the complete Euclidean graph satisfying the condition
that between any two vertices there exists a path of length at most c-times their Euclidean dis-
tance. Based on this ability to approximate the complete Euclidean graph, sparse spanners have
found many applications, e.g., in FPTAS, geometric searching, and radio networks. In a weak
c-spanner, this path may be arbitrarily long, but must remain within a disk or sphere of radius
c-times the Euclidean distance between the vertices. Finally in a c-power spanner, the total en-
ergy consumed on such a path, where the energy is given by the sum of the squares of the edge
lengths on this path, must be at most c-times the square of the Euclidean distance of the direct
edge or communication link.

While it is known that any c-spanner is also both a weak C1-spanner and a C2-power spanner
for appropriate C1, C2 depending only on c but not on the graph under consideration, we show
that the converse is not true: there exists a family of c1-power spanners that are not weak C-
spanners and also a family of weak c2-spanners that are notC-spanners for any fixedC. However
a main result of this thesis reveals that any weak c-spanner is also a C-power spanner for an
appropriate constant C.

We further generalize the latter notion by considering (c, δ)-power spanners where the sum
of the δ-th powers of the lengths has to be bounded; so (c, 2)-power spanners coincide with the
usual power spanners and (c, 1)-power spanners are classical spanners. Interestingly, these (c, δ)-
power spanners form a strict hierarchy where the above results still hold for any δ ≥ D; some
even hold for δ > 1 while counter-examples exist for δ < D. We show that every self-similar
curve of fractal dimensionDf > δ is not a (C, δ)-power spanner for any fixed C, in general.
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Chapter 4 - Static and Dynamic Ad Hoc Networks. In Chapter 4 we investigate static and
dynamic ad hoc networks and present solutions concerning the problem of point-to-point com-
munication for a set of n radio stations. We concentrate on single frequency ad hoc networks
in which every station is allowed to adjust its transmission range to decrease energy consump-
tion and to avoid interference. Such networks are also called power-variable ad hoc networks.
Furthermore, we distinguish between omnidirectional (radio) and directional (beam radio or in-
frared) communication. In both communication models we first investigate static vertex sets,
before we extend our considerations to dynamic vertex sets.

For static point-to-point communication we define measures for congestion, dilation, and en-
ergy consumption that take interference among communication links into account. Furthermore,
we introduce the (bidirectional) interference number and show that energy-optimal path selection
for radio networks can be computed in polynomial time. Then we introduce the diversity g(V )
of a set V ⊆ R

D for any constant D. It can be used to upper bound the number of interfering
edges. For real-world applications it can be regarded as Θ(log n).

A main result is that every weak c-spanner allows us to approximate an energy-optimal path
system with a constant factor and a congestion-optimal path system with a factor ofO(g(V )). We
introduce the Hierarchical Layer Graph (HL-graph) and show that this graph is a c-spanner for a
constant c. Since the (bidirectional) interference number in the HL-graph can be upper bounded
by O(g(V ), the HL-graph allows us an O((log n)2) approximation of a congestion optimal path
system in real-world applications. Furthermore, we investigate trade-offs and show that it is not
possible to optimize more than one measure at the same time, in general. The relation between
congestion and energy is even worse.

Then we show that we can construct better topologies using the directional communication
model than using the omnidirectional one. We introduce the unidirectional interference number
and present a sectorized, theoretically interference-free topology, the so-called sparsified Yao-
graph (SparsY-graph), which allows us to approximate an energy-optimal path system with a
constant factor and a congestion-optimal path system with a factor ofO(g(V )), i.e. withO(log n)
in realistic settings. A main result is that we prove that the SparsY-graph is a weak c-spanner
for a constant c. Hence, we can apply our results of Chapter 3 to show that the SparsY-graph
is a C-power spanner for some constant C depending only on c. We compare the SparsY-graph
with other sectorized topologies, known as the Yao-graph and the SymmY-graph and investigate
degree and spanner properties as well as communication features with regard to interference.
In general, we show that the SymmY-graph is neither a weak spanner nor a power spanner, but
nevertheless it is connected. Note that some of these results require an appropriate number of
sectors/senders per node. But most of our results hold already if this number is greater than 6.

Finally, we discuss the handling of interference and compare the abilities of these topolo-
gies to handle dynamic changes of the network when radio stations enter or leave the network
and present other geometric structures that can be used as basic network topologies in wireless
networks.

Chapter 5 - Mobile Ad Hoc Networks In Chapter 5 we investigate distributed algorithms for
moving radio hosts with adjustable transmission power in a worst case scenario. We consider
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two models to find a reasonable restriction on the worst case mobility. In the pedestrian model
we assume a maximum speed vmax of the radio hosts, while in the vehicular model we assume a
maximum acceleration amax of the participants.

Our goal is to maintain persistent routes with good communication network properties like
small diameter, low energy-consumption, low congestion, and low interference. A route is per-
sistent, if we can guarantee that all edges of this route can be upheld for a given time span ∆,
which is a parameter denoting the minimum time the mobile network needs to adopt changes,
i.e. update routing tables, change directory entries, etc. This ∆ can be used as the length of an
update interval for a proactive routing scheme.

We extend some known notions such as transmission range, interference, spanner, weak span-
ner, power spanner, and congestion to both mobility models and introduce a new parameter called
crowdedness that states a lower bound on the amount of radio interference. Then we prove that
a mobile weak spanner hosts a path system that polylogarithmically approximates the optimal
path system for congestion.

We present distributed algorithms based on a grid clustering technique and a high-dimensional
representation of the dynamic start situation which construct mobile (weak) spanners with low
congestion, low interference, low energy-consumption, and low degree. We measure the opti-
mality of the output of our algorithm by comparing it with the optimal choice of persistent routes
under the same circumstances with respect to pedestrian or vehicular worst case movements. Fi-
nally, we present solutions for dynamic position information management under both mobility
models.

Chapter 6 - Experimental Analyses and Results In Chapter 6 we present the results of our
extensive experimental evaluations. We have developed two different testbeds to perform a num-
ber of significant simulations that demonstrate the properties of our algorithms and/or analyses
using realistic settings.

We describe our simulation environment for mobile ad hoc networks, SAHNE, developed for
analyzing (directional) communication in MANETs. SAHNE allows us both, simulating omnidi-
rectional as well as directional wireless transmissions. We use it to close the gap between theoret-
ical investigations of communication protocols in wireless networks and real-world applications.
For this purpose we have implemented realistic models for radio and infrared transmissions. For
point-to-point communication we examine experimentally the Yao-graph, the SparsY-graph, the
SymmY-graph, and the HL-graph. First, we present communication strategies using idealized
assumptions. Then we consider topology control using realistic propagation models. Our dis-
tributed algorithms build up the sectorized graphs in time O(log n) per node without the use of
any geographical positioning system. They are based only on local knowledge and local deci-
sions and make use of power control to establish communication links with low energy-cost. We
compare these algorithms with respect to congestion, dilation, and energy. For congestion we in-
troduce different measures that allow us to investigate the difference between real-world wireless
networks and models for wireless communication at a high level of abstraction. Our experimental
results show that these topologies and algorithms work well in a distributed environment.

Furthermore, we present our interactive tool for checking graph properties, ITGraP. Here,
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our aim was not to go into technical detail, but more to present a theoretical study of important
graph properties on normal vertex sets where the nodes are placed uniformly at random. We have
implemented the Yao-graph and its variants as well as the Hierarchical Layer Graph to perform
simulations and to find out about the performance of our topologies. In general, it is assumed
that the sectors of the nodes underlie a fixed orientation or that they are oriented as a result of
the movement of nodes. We extend this model and allow each node to adjust the orientation
of its senders independently of any other conditions. We introduce new optimization tasks and
present algorithms which improve the stretch factors of known sectorized topologies only by
adjusting the orientation of some sectors of the nodes. Our aim is to improve the quality, espe-
cially the stretch factors, of the sectorized topologies. We show improvements experimentally
and present algorithms to compute exactly the stretch factors of a given graph G = (V,E) in
time O(|V |2 log |V |+ |V ||E|). Hence, we can determine these factors for sparse graphs in time
O(|V |2 log |V |). We use the algorithms to compute a lower bound for an optimal orientation of
all senders, e.g., with regard to energy consumption, in polynomial time. We use this bound to
analyze the simulation results.

Our extensive experimental evaluation of the sectorized topologies on random vertex sets
using different sector alignments shows that we can improve the known stretch factors and that
the considered topologies perform well on “normal” vertex sets where the nodes are placed uni-
formly at random.
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Most of the results presented in this thesis have already been published in preliminary form in
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Chapter 2

Preliminaries

In this thesis we try to contribute to solutions to the problem of topology control in ad hoc net-
works using geometric structures. We use this chapter to present basic definitions and founda-
tions concerning wireless transmissions, geometric structures, topology control, and routing. We
model wireless networks using geometric graphs and suggest a graph-theoretical point of view
for topology control. Based on our topologies, other tasks like forwarding packets and selecting
routing paths can take place. Our focus lies on the problem of point-to-point communication.

2.1 Wireless Transmission

In an ad hoc network, each node is equipped with a wireless transmitter and a receiver with ap-
propriate antenna, which may be omnidirectional, highly directional, possibly steerable, or some
combination thereof [AZ03]. In this work we distinguish between two types of wireless net-
works. In the first one, the omnidirectional communication network, every node is equipped with
an omnidirectional antenna whereas in the second one, the directional communication network,
every node has k sending and receiving devices (e.g., directional antennae, adaptive antennae,
beam-forming antennae, infrared diodes) which are located such that a node can communicate
in parallel within each of its k (non-overlapping) sectors with angle θ = 2π/k (see Figure 2.1).

v v

uu

Figure 2.1: Omnidirectional versus directional transmission

In our analyses, e.g., in Chapter 4, we assume that these sectors are non-overlapping and
have fixed borders. In reality, sectors overlap, borders are not fixed, and physical effects like
areas with no reception occur. One aim of our experiments, presented in Chapter 6, was to

9
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evaluate our theoretical results using realistic settings. For this purpose we simulate realistic
signal propagation and deal with overlapping sectors in simulations.

It is very important to understand distinguishing features of radio transmissions when de-
signing and analyzing topologies for wireless networks. When electrons move, they create
electromagnetic waves that can propagate through space (even in a vacuum). The number of
oscillations per second of a wave is called its frequency f and is measured in Hz (Hertz). The
distance between two consecutive maxima (or minima) is called the wavelength, which is usu-
ally designated by λ. When an antenna of the appropriate size is attached to an electrical circuit,
the electromagnetic waves can be broadcast efficiently and received by a receiver some distance
away. All wireless communication is based on this principle [Tan96]. In vacuum, all electro-
magnetic waves travel at the speed of light c (approximately 3 · 108 m/sec), no matter what their
frequency is. The fundamental relation between f, λ and c in vacuum is

λ · f = c .

Waves of different frequencies are assigned to frequency bands. An overview of the electromag-
netic spectrum and its uses for communication is given in Figure 2.2.
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Figure 2.2: Frequencies and frequency bands [Tan96]

The radio, microwave, infrared, and visible light portions of the spectrum can all be used
for transmitting information by modulating the amplitude, frequency, or phase of the waves.
Ultraviolet light, X-rays, and gamma rays would be even better, due to their higher frequencies,
but they are hard to produce and modulate, do not propagate well through buildings, and are
dangerous to living things. In this thesis we assume that only one frequency for transmission is
given, e.g., radio or infrared. These waves follow the ground or they are refracted/reflected by
the ionosphere and sent back to the earth. One advantage of radio waves is that they pass through
obstacles, infrared waves do not. In the rest of this thesis we assume propagation in free space
and without any obstacles. We neglect effects like reflection, diffraction, and scattering [AZ03].
Free space is an ideal propagation medium. The received signal power at distance d from a sender
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falls proportionally to 1/dδ where δ, the propagation exponent, is a constant between 2 and 6 or
even 8 depending on side-effects like absorption, multi-path propagation or fading [Rap96]. For
example, for the ideal free space propagation model we have δ = 2, for the so-called two ray
model, which also considers multipath fading, we have δ = 4.

Energy conservation is one of the most important issues in wireless networks for node and
network lifetime, as the nodes, in general, have only limited power supply.

Since we allow the hosts only one transmission frequency, signals can interfere and this effect
may result in data loss. A common measure for interference is the signal-to-interference-ratio
(SIR) or signal-to-interference-plus-noise-ratio (SINR). We will discuss and use this in Chap-
ter 6. In our analyses we use a model that is easier to handle. We assume that if there is a
node receiving more than one signal at the same time, e.g., two or more nodes are sending at
the same time with the necessary transmission range, then this node can not receive anything.
In Chapter 4 we introduce interference models for the omnidirectional model as well as for the
directional model. There, we also review some special interference problems known as the hid-
den terminal problem (HTP) and the exposed terminal problem (ETP). Since we consider single
frequency power-variable ad hoc networks, i.e. each host is allowed to adjust its transmission
power to decrease energy consumption and to avoid interference, a third interference problem
can occur. We will introduce this as the asymmetric interference problem.

2.2 Geometric Graphs

We model wireless networks using geometric graphs. A geometric graph G = (V,E) consists of
a set of vertices (or nodes) V ⊂ R

D forD ∈ N and a set of edges (or links) E. We define the size
of G as the number of nodes contained in G denoted by |V |. For all u, v ∈ V , let (u, v) denote a
directed edge from u to v, and {u, v} denote an undirected edge connecting u and v. We call G
undirected if E ⊆ {{u, v} | u, v ∈ V }, and directed if E ⊆ {(u, v) | u, v ∈ V }. For all u, v ∈ V
let |u − v| be defined as the Euclidean distance between u and v, this is, for completeness,
√

∑D
i=1(ui − vi)2. A finite sequence P = (u = u1, u2, . . . , u` = v) of nodes ui ∈ V such that

(ui−1, ui) ∈ E for all i ∈ {2, . . . , `} is called a path from u to v in G. Occasionally, we also
encounter the more general situation of a path from u to v that is not necessarily in G. This
means that ui ∈ V still holds, but the requirement (ui−1, ui) ∈ E is dropped. The radius of P is
the real number maxi=1,...,` |u − ui|. The (Euclidean) length of P is given by

∑`
i=2 |ui − ui−1|.

Then the hop length is `− 1 and for δ ≥ 0 we define the δ-cost of a path P by

||P ||δ :=
∑̀

i=2

|ui − ui−1|δ .

The length is just the 1-cost whereas the hop length coincides with the 0-cost. The δ-cost
for δ ≥ 2 reflects the transmission properties of radio networks. In this case δ is also called
the propagation exponent. The graph G is called connected if for every pair of nodes u, v ∈ V ,
there is a path in G from u to v. If {u, v} ∈ E then u is called a neighbor of v. The number of
neighbors of v gives the degree of v denoted by deg(v). The degree of G is defined as deg(G) :=
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maxv∈V deg(v). For directed graphs, we define the number of edges ending at a node v the
in-degree of v, and the number of edges leaving v the out-degree of v.

In Chapter 3 we concentrate on families of graphs. A family of graphs

G = {Gn | Gn is a geometric graph for n ∈ N}
fulfills a given property if and only if Gn fulfills this property for all n ∈ N. Later on, if it is
clear to which family a graph belongs, we say that this graph fulfills a property if and only if its
family fulfills the same property.

2.3 Topology Control in Wireless Networks

The simplest topology for a wireless network is given by the complete geometric graph denoted
by Kn for n nodes. But, typically, the transmission range of a node in such a network is limited.
For a wireless network consisting of a set V of wireless nodes where the maximum transmission
range is given by a constant and is equal on all nodes, the most commonly used topology is
the unit disk graph UDG(V ). Using proper scaling, we assume that all nodes have a maximum
transmission range equal to one unit. Then for u, v ∈ V the edge {u, v} is contained in UDG(V )
if and only if |u− v| ≤ 1.

Both topologies, the complete geometric graph and the unit disk graph, have the major draw-
back that the number of edges in these graphs can be as large as the square of the number of
nodes in the network. Maintaining such a number of links is not practicable and would tend to
a network with high interference which results in high congestion. Hence, a subgraph of the
complete geometric graph or of the unit disk graph has to be constructed which has to contain
some important properties. First of all, the number of edges should be linear in the number of
nodes. A graph satisfying this requirement is called sparse graph. Furthermore, the degree of
each node should be upper bounded by a constant and the complete structure should be buildable
locally in an efficient way; all this under the side condition that the subgraph, the topology, is
still relatively good regarding the quality of the routes between nodes compared to the complete
graph or the unit disk graph (low stretch). We will use geometric spanners to build up wireless
topologies that provably fulfill these requirements. It is known that low degree and/or sparseness
alone does not imply low interference, see Figure 4.5 in Section 4.1 or [BvRWZ04].

Complete graph Unit disk graphGood approximation Bad approximation

Figure 2.3: A good approximation of the complete graph can result in a bad approximation of
the corresponding unit disk graph

Note that in general a good approximation of the complete graph will not always result in a
good approximation of the unit disk graph (see Figure 2.3). We present topologies that give good
approximations of the complete graph as well as of the unit disk graph.
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The field of topology control for wireless networks is relatively new. Recently, lots of papers
have been published concerning topology control and routing. Excellent surveys are presented
by X.-Y. Li [Li03b, Li03a, Li03c] and R. Rajaraman [Raj02]. In the following chapters we will
mention some related works in more detail. To the best of our knowledge, we are one of the
first to combine theoretical algorithmic research and prototypical realization of the directional
communication model. On the one hand, we present mathematical analyses and prove interesting
properties. On the other hand, we have implemented our algorithms in testbeds as well as in
prototypical environments in cooperation with electrical engineers and show that they perform
well in realistic scenarios.

2.4 Geometric Spanners

First of all, we give the definition of a spanner, a weak spanner, and a power spanner. Let
G = (V,E) be a directed geometric graph with finite V ⊆ R

2 and c > 0. G is a c-spanner,
if for all u, v ∈ V there is a path P from u to v in G of length ‖P‖1 at most c · |u − v|. G
is a weak c-spanner, if for all u, v ∈ V there is a path P from u to v in G of radius at most
c · |u − v|, i.e. the path P lies completely in a bounded disk of radius at most c · |u − v|. For
δ ≥ 0, G is a (c, δ)-power spanner if for all u, v ∈ V there is a path P from u to v in G of
δ-cost ‖P‖δ at most c · |u − v|δ. G is a c-power spanner, if G is a (c, 2)-power spanner. We
call factor c the length stretch factor, weak stretch factor or power stretch factor, respectively.
Roughly speaking, spanners approximate the complete Euclidean graph on a set of geometric
vertices. Mostly, another goal is to have only linearly many edges.

Finally, when power consumption is of minor interest and the focus lies on the routing time,
which is dominated by the number of individual steps, sparse graphs are desired which guarantee
that any two vertices are connected by a path containing at most c additional vertices. These are
the so-called c-hop spanners [ALW+03]. In Chapter 5 we extend these notions and introduce
mobile spanners to investigate worst case mobility in MANETs.

Geometric spanners were first introduced to computational geometry by Chew [Che86]. Pe-
leg and Schaffer introduced them in the context of distributed computing [PS89]. They have ap-
plications in motion planning [Cla87], they were used for approximating the minimum spanning
tree [Yao82], and for a fully polynomial time approximation scheme for the traveling salesman
and related problems [AGK+98, RS98]. A good survey of spanning trees and spanners is given
by Eppstein in [Epp00].

Weak spanners were introduced for special range searching problems in walkthrough systems
[FLZ98, FMS97]. We use them in Chapter 4 for optimizing routing time in wireless networks,
i.e. for approximating congestion-optimal path systems.

Recently, (power) spanners have been used for routing and topology control in ad hoc net-
works to build up power efficient wireless network topologies [ALW+03, Raj02, JRS03, GLSV02,
MSVG04, Li03b, Li03a, Li03c].

In Chapter 3 we investigate the relations between these various types of spanners. The ques-
tion on the relation between spanners and weak spanners is whether any weak c-spanner is a
C-spanner for some value C depending only on c. Based on a construction from [Epp96], we
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answer this negatively. For some weak c-spanners it is proven that they are also C-power span-
ners for some value C [GLSV02, JRS03] using elaborated constructions. One major contribution
of Chapter 3 generalizes and simplifies such results by showing that in R

D in fact any weak c-
spanner is a C-power spanner with C = O(c2D). Moreover, we introduce and investigate the
notion of a (c, δ)-power spanner which

• for δ = 0 coincides with c-hop spanners, i.e. graphs with diameter c

• for δ = 1 coincides with c-spanners

• for δ = 2 coincides with (usual) c-power spanners

• for δ > 2 reflects transmission properties of radio networks (e.g., for δ ≤ 8) .

We show that these form a strict hierarchy: for ∆ > δ > 0, any (c, δ)-power spanner is also
a (C,∆)-power spanner with C depending only on c and ∆/δ; whereas we give examples of
(C,∆)-power spanners that are not (c, δ)-power spanners for any fixed c. Our main contribution
is that any weak c-spanner is also a (C, δ)-power spanner for arbitrary δ ≥ D with C depending
on c and δ only. Finally, we show that this claim is best possible by presenting weak c-spanners
which are not (C, δ)-power spanners for arbitrary δ < D and any fixed C.

Sometimes we shorten the notion of a spanner, a weak spanner and a power spanner and omit
constant parameters. So, if we say that a family of graphs is a (good) spanner, then there exists a
constant c such that all its members are c-spanners. If it is clear to which family a graph belongs,
we say that this graph is a spanner, a weak spanner or a power spanner, if and only if its family
is a spanner, a weak spanner or a power spanner.

2.5 Point-to-Point Communication (Multi-hop)

Suppose that we are given an ad hoc network and a set of source-destination pairs. For each
of these source-destination pairs, we want to solve the resulting point-to-point communication
problem (routing problem), i.e. we want to choose a selection of edges on which it is possible
to transmit the data, in the form of packets, from the source to the destination. Mainly, routing
is the process of moving information across a network from a source to a destination. It can be
divided into two parts: the determination of routing paths (path selection) and the transport of
information units (typically called packets) along the paths. Our focus is on path selection. Since
the nodes in our network have limited energy supply and since the links have limited bandwidth,
we have to ensure that all packets reach their destinations power-efficiently and quickly, in the
sense of routing time.

In this thesis we concentrate on analyzing and constructing topologies as basic structures
for routing in wireless networks. Based on these topologies the routing task takes place and
the developer of a routing protocol can decide in some cases which criteria he wants to op-
timize. Traditional routing protocols for MANETs such as AODV, DSDV, and DSR [Per01]
usually choose the path with the lowest hop count. There also exist power-aware routing proto-
cols that use different metrics (e.g., energy consumed per packet, variance in node power level)
to choose the best route in order to extend the lifetime of individual nodes or the whole network
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[SR98, SW98, CT00]. The congestion of a route is usually not regarded directly, but some rout-
ing protocols choose routes with the shortest route discovery, assuming that the route with the
quickest response is less congested (e.g., SSA [DRWT97]). All these routing protocols assess
the paths that have been found by route discoveries according to a cost function. Many further
routing algorithms have recently been proposed for mobile ad hoc networks. In all these pro-
tocols, the routing task is performed using a proactive, a reactive scheme, or a combination of
both. Examples of proactive protocols that have been suggested are OLSR, DSDV, and WRP.
Examples of reactive protocols are DSR, LAR, RDMAR, AODV, and TORA. A combination of
both concepts can be found in ZRP and LANMAR. Surveys can be found in [Per01, RT99].
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Chapter 3

Spanners, Weak Spanners, and Power
Spanners

In this chapter we investigate the relations between spanners, weak spanners, and power spanners
in R

D for D ∈ N. First, for simplicity, we formulate our results for the case D = 2, and then
we extend our results to the more general, higher-dimensional case. In Section 2.4 we already
defined that for c ∈ R a c-spanner is a subgraph of the complete Euclidean graph satisfying
the condition that between any two vertices there exists a path of length at most c-times their
Euclidean distance. In a weak c-spanner, this path may be arbitrarily long, but must remain
within a disk of radius c-times the Euclidean distance between the vertices, i.e. the path has
a radius of at most c-times the Euclidean distance between the vertices. Finally in a c-power
spanner, the total energy consumed on such a path, where the energy is given by the sum of the
squares of the edge lengths on this path, must be at most c-times the squares of the Euclidean
distance of the direct link.

u v
u v

vu

(a) Bounded length (b) Bounded radius (c) Bounded energy

Figure 3.1: Spanner, weak spanner, and power spanner

The attentive reader might have observed that our definition of a power spanner does not
exactly match that from [GLSV02]. The latter required that the δ-cost of some path P from u
to v in G is bounded by c-times the δ-cost of any path Q (not necessarily in G) from u to v, i.e.
there exists a path P in G with ||P ||δ ≤ minQ=(u1,...,u`),`∈N

∑`−1
i=1 |ui − ui+1|δ . However, both

approaches are in fact equivalent: let G = (V,E) be a (c, δ)-power spanner, u, v ∈ V , and let
Q denote some path Q = (u = u1, . . . , u` = v) (not necessarily in G) from u to v of minimum

17
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δ-cost. For each i = 2, . . . , ` there exists by presumption a path Pi in G from ui−1 to ui of δ-cost
at most c · |ui − ui−1|δ. The concatenation of all these paths yields a path P from u to v in G
with δ-cost ‖P‖δ at most c · ‖Q‖δ.

Observe that any strongly connected finite geometric graph is a C-spanner for some value C.
For this, e.g., consider for any pair u, v of vertices some path from u to v and the ratio of its length
to the distance between u and v. Then taking for C the maximum over the (finitely many) pairs
u, v will give the value C. Therefore the question on the relation between spanners and weak
spanners rather asks whether any weak c-spanner is a C-spanner for some value C depending
only on c. While it is known that any c-spanner is also both, a weak C1-spanner and a C2-power
spanner for appropriate C1, C2 depending only on c, but not on the graph under consideration,
we show that the converse is not true: there exists a family of c1-power spanners that are not
weak C-spanners and also a family of weak c2-spanners that are not C-spanners for any fixed C.
However the most significant result in this chapter reveals that any weak spanner is also a power
spanner. We further generalize the latter notion by considering (c, δ)-power spanners where the
sum of the δ-th powers of the lengths has to be bounded; so (c, 2)-power spanners coincide with
the usual power spanners and (c, 1)-power spanners are classical spanners. Interestingly, these
(c, δ)-power spanners form a strict hierarchy where the above results still hold for any δ ≥ D;
some even hold for δ > 1 while counter-examples exist for δ < D. We show that every self-
similar curve of fractal dimensionDf > δ is not a (C, δ)-power spanner for any fixed C.

This chapter is organized as follows. In Section 3.1, we show that, while any c-spanner is
also a weak c-spanner, a weak c-spanner is, in general, not a C-spanner for any C depending just
on c. Section 3.2 similarly reveals the relations between spanners and power spanners. In the
main Section 3.3 of this chapter, we investigate the relation between weak spanners and power
spanners. Theorem 3.3 gives an example of a power spanner which is not a weak spanner. Our
major contributions then prove that, surprisingly, any weak c-spanner is also a C-power spanner
with C depending only on c. For different values of δ, we obtain different upper bounds to
C in terms of c: for δ = 2 (power spanners in the original sense), we show C ≤ O(c8), see
Theorem 3.5; for δ > 2, we have C ≤ O

(

c2+δ/(1 − 22−δ)
)

, see Theorem 3.4. However for
δ < 2, we present counter-examples of unbounded C, that is, in this case provably not every
weak c-spanner is a (C, δ)-power spanner, see Theorem 3.6. Furthermore, we generalize our
construction and analysis to self-similar fractal curves. Section 3.4 finally shows that for different
δ, the respective classes of (c, δ)-power spanners form a strict hierarchy. In Section 3.5 we extend
our results to higher-dimensional cases, before we summarize our results in Section 3.6.

3.1 Spanners versus Weak Spanners

Every c-spanner is also a weak c-spanner. Our first result shows that the converse is not true, in
general.

Theorem 3.1 There is a family of graphs G = (V,E) with V ⊆ R
2 all of which are weak

(
√

3 + 1/2)-spanners but not C-spanners for any fixed C ∈ R.
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Figure 3.2: EPPSTEIN’S construction: a fractal curve with high dilation (not a spanner but a
weak spanner)

Proof: We show the claim using the fractal construction presented in [Epp96] (see Figure 3.2).
We briefly review its recursive definition which is similar to that of a KOCH Curve. At the
beginning, there are two vertices with distance 1. In the following steps we replace each edge by
5 new edges of equal length as follows: one horizontal, one at angle π/4, a second horizontal,
another one at angle −π/4 and a third horizontal. After i steps we have a graph consisting of 5i

edges and 5i + 1 vertices. As shown in [Epp96] this graph has unbounded length stretch factor.
We argue that there exists a constant c such that it is a weak c-spanner. It is known that the
area under the constructed curve is bounded by a constant and that the path between two vertices
u, v ∈ V lies completely in a disk around the midpoint of the segment between u and v with
radius at most (2 ·

√
3/2) =

√
3 (see KOCH’s Snowflake, Figure 3.9). Applying Observation 3.1

proves the claim.
The following observation says that, except for constants, it makes no difference in the defi-

nition of a weak spanner whether the radius is bounded with respect to center u (the starting one
of the two points) or with respect to center (u+ v)/2 (the midpoint of the segment between the
two points).

Observation 3.1 Let P = (u = u1, . . . , u` = v) be a path in the geometric graph G = (V,E)
such that |u− ui| ≤ c · |u− v| for all i = 1, . . . , `. Then w := (u+ v)/2 satisfies by the triangle
inequality

|w − ui| = |u− ui + (v − u)/2| ≤ |u− ui|+ |v − u|/2 ≤ (c+ 1
2
) · |u− v| .

Conversely if P has |w − ui| ≤ c · |u− v| for all i, then

|u− ui| = |w − ui + (u− v)/2| ≤ |w − ui|+ |u− v|/2 ≤ (c+ 1
2
) · |u− v| .

3.2 Spanners versus Power Spanners

The first result of this section shows that, for δ > 1, every c-spanner is also a (cδ, δ)-power
spanner.

Theorem 3.2 For δ > 1, every c-spanner is also a (cδ, δ)-power spanner.

Proof: Let G = (V,E) be a c-spanner, u, v ∈ V , and POPT = (u = u1, u2, . . . , u` = v) be an
optimal path from u to v concerning the δ-cost (not necessarily in G). Since G is a c-spanner,
for each edge (ui, ui+1) on the path POPT, there is a path Pi = (ui = w1, w2, . . . , w`i

= ui+1) in
G with ||Pi|| =

∑`i−1
j=1 |wj −wj+1| ≤ c · |ui− ui+1|. Now let P be the concatenation of all these

paths Pi for i = 1, . . . , `− 1, then we get a path P from u to v in G with:
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||P ||δ =

`−1
∑

i=1

||Pi||δ ≤
`−1
∑

i=1

(c · |ui − ui+1|)δ = cδ ·
`−1
∑

i=1

(|ui − ui+1|)δ = cδ · ||POPT||δ

However, conversely, for any δ > 1, there are (c, δ)-power spanners which are notC-spanners
for any fixedC: this follows from Theorem 3.3 presented below, in Section 3.3, as anyC-spanner
is a weak C-spanner as well.

3.3 Weak Spanners versus Power Spanners

Now we turn to the main contribution of this chapter and present our results concerning the
relation between weak spanners and power spanners. Surprisingly, it turns out that any weak
c-spanner is also a C-power spanner for some C depending only on c. But first observe that the
converse is not true, in general:

Theorem 3.3 In the plane and for any δ > 1, there is a family of (c, δ)-power spanners which
are not weak C-spanners for any fixed C.

Proof: Let V := {u = v1, . . . , vn = v} be a set of n vertices placed on a circle scaled such
that the Euclidean distance between u and v is 1 and |vi − vi+1| = 1/i for all i = 1, . . . , n− 1.
Now consider the graph G = (V,E) with edges (vi, vi+1). First observe that G is a (c, δ)-power
spanner with c independent of n. Indeed, its δ-power stretch factor is dominated by the δ-cost of
the (unique) path P in G from u to v which amounts to

‖P‖δ =
n−1
∑

i=1

(1/i)δ ≤
∞
∑

i=1

(1/i)δ =: c

a convergent series since δ > 1. This is compared to the cost of the direct link from u to v of
1. On the other hand, the Euclidean length (the 1-cost) of the polygonal chain from u to v is
given by the unbounded harmonic series

∑n−1
i=1 (1/i) = Θ(logn). Therefore the radius of this

polygonal chain also cannot be bounded by any C independent of n, either.
Subsequently, we show that, conversely, any weak c-spanner is a (C, δ)-power spanner for

both δ > 2 (Subsection 3.3.1) and δ = 2 (Subsection 3.3.2) with C depending only on c and δ.
A counter-example in Subsection 3.3.3 reveals that this, however, does not hold for δ < 2. We
extend our results in Section 3.5 to higher dimensions.

3.3.1 Weak Spanners are Power Spanners for δ > 2δ > 2δ > 2

In this subsection, we show that any weak c-spanner is also a (C, δ)-power spanner for any δ > 2
with C depending only on c and δ. By definition between vertices u, v, there exists a path P in
G from u to v that remains within a disk around u of radius c · |u− v|. However on the course of
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this path, two of its vertices u′ and v′ might come very close so that P , considered as a subgraph
of G, in general, is not a weak c-spanner. On the other hand, G being a weak c-spanner, there
also exists a path P ′ of small radius between u′ and v′. Based on such repeated applications of
the weak spanner property, we first assert the existence of a path which, considered as a subgraph
of G, is a weak 2c-spanner.

Definition 3.1 Let G = (V,E) be a directed geometric graph and e1 := (u1, v1), e2 := (u2, v2)
two of its edges. By their distance we mean the number

min
{

|u1 − u2|, |v1 − v2|, |u1 − v2|, |v1 − u2|
}

,

that is, the Euclidean distance of the closest pair of their vertices (see Figure 3.3(b)).PSfrag replacements
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Figure 3.3: Construction of a path with low power stretch factor in a weak spanner

Lemma 3.1 Let G = (V,E) be a weak c-spanner and u, v ∈ V . Then there is a path P from u
to v in G which, as a subgraph of G, is a weak 2c-spanner.

Proof: We consider a path P from u to v inG that fulfills the weak spanner property and modify
this path step by step until the required property is guaranteed. The idea is to locally replace each
part of P connecting vertices u′ and v′ that violates the weak spanner property in G(P ) by a path
from u′ to v′ in G. However for these iterated improvements to eventually terminate, we perform
them in decreasing order of the lengths of the edges involved.

W.l.o.g. we assume |u− v| = 1. Since G is a weak c-spanner, there exists a path P = (u =
u1, . . . , u` = v) from u to v in G that lies completely within a disk around u of radius c. In
particular, any edge on this path has a length of at most 2c, see Figure 3.3(a).

Now consider all edges on this path of length between c and 2c. For any pair e1 = (ui, ui+1)
and e2 = (uj, uj+1) with j > i closer than 1

2
(Definition 3.1), w.l.o.g. let ui and uj be the closest

pair of their vertices, replace the path from ui to uj with a path according to the weak spanner
property. This improvement is applied to vertices of distance at most 1

2
, so this sub-path remains

within a disk of radius c/2; in particular, any edge introduced to P has length at most c and thus
does not affect the edges of length between c and 2c currently considered. Moreover, after having
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performed such improvements to all edges of length between c and 2c, the modified path P has
radius c + c/2, although it might now leave the disk around u of radius c.

Next, we apply the same process to edges of length between c and c/2 and perform im-
provements on those closer than 1

4
. The path P thus obtained remains within a disk of radius

c + c/2 + c/4 while, for any pair of vertices u′ and v′ improved in the previous phase, the
sub-path between them might increase in radius from c · |u′ − v′| to at most (c+ c/2) · |u′ − v′|.

As G is a finite graph, repeating this process for edges of length between c/2 and c/4 and so
on, will eventually terminate and yield a path P from u to v remaining within a disk of radius
c + c/2 + c/4 + . . . = 2c. Moreover, for any pair of vertices u′, v′ in P , the sub-path between
them has radius at most (c + c/2 + c/4 + . . .) · |u′ − v′| which proves that P is indeed a weak
2c-spanner.

Lemma 3.2 Let P = (u1, . . . , u`) be a weak 2c-spanner, ui ∈ R
2, |u1 − u`| = 1. Then P

contains at most (8c + 1)2 edges of length greater than c; more generally, P contains at most
(8c+ 1)2 · 4k edges of length greater than c/2k.

Proof: Consider two edges (ui, ui+1) and (uj, uj+1) on P both of length at least c with j > i.
P being a weak 2c-spanner implies that, between vertices ui and uj, the sub-path in P from
ui to uj (which is unique and passes through ui+1), satisfies c ≤ |ui − ui+1| ≤ 2c · |ui − uj|;
hence, |ui − uj| ≥ 1

2
, see Figure 3.3(c). In particular, placing an Euclidean disk Bi of radius 1

4

around each starting vertex ui of an edge of length at least c results in these disks being mutually
disjoint. If m denotes the number of edges of length at least c, these disks thus cover a total area
of mπ(1

4
)2. On the other hand, as all ui lie within a single disk around u1 of radius 2c, all disks

Bi together cover an area of at most π(2c+ 1
4
)2. Therefore,

m ≤ π(2c+ 1
4
)2

π(1
4
)2

= (8c+ 1)2 .

For edges (ui, ui+1) and (uj, uj+1) on P longer than c/2k, one similarly obtains |ui − uj| ≥
2−k−1 so that, here, Euclidean disks of radius 2−k−2 can be placed mutually disjoint within the
total area of π(2c+ 2−k−2)2.

Theorem 3.4 Let G = (V,E) be a weak c-spanner with V ⊆ R
2. Then G is a (C, δ)-power

spanner for δ > 2 where C := (8c+ 1)2 · (2c)δ

1− 22−δ
.

Proof: Fix u, v ∈ V , w.l.o.g. |u− v| = 1. In the following we analyze the δ-cost of the path P
constructed in Lemma 3.1 for δ = 2 + ε. We consider all edges on this path and divide them into
classes depending on their lengths. According to Lemma 3.2, there are at most (8c + 1)2 edges
of length between c and 2c, each one inducing δ-cost at most (2c)δ. More generally, we have at
most (8c + 1)2 · 4k edges of length between c/2k and 2c/2k and the δ-cost of any such edge is
at most (2c/2k)δ. Summing up over all possible edges of P , thus yields a total δ-cost of P of at
most

‖P‖δ ≤
∞
∑

k=0

(8c+ 1)2 · 4k ·
(

2c

2k

)δ

= (8c+ 1)2 · (2c)δ

1− 22−δ
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3.3.2 Weak Spanners are Power Spanners for δ = 2δ = 2δ = 2

The preceding subsection showed that, for fixed δ > 2, any weak c-spanner is also a (C, δ)-power
spanner. The present subsection yields the same for δ = 2, a case which, however, turns out to
be much more involved. Moreover, our bounds on C in terms of c become slightly worse. In
fact, the most significant result of this chapter is the following:

Theorem 3.5 Let G = (V,E) be a weak c-spanner with V ⊆ R
2. Then G is a (C, 2)-power

spanner for C := O(c8).

Proof: First recall that between vertices u, v ∈ V there is a path P in G from u to v which
remains inside a square of length ` := 2c · |u − v| and center u. We denote such a square by
Su(`). By s we denote the starting point of the path and by t the end (target) point. We denote
by V (P ) the vertex set of a path and by E(P ) the edge set of a path.

D

d s

P

t

L

Q Q Q

QQQ

Q Q Q

Figure 3.4: Idea and most important parameters for the proof of Theorem 3.5

We give a constructive proof of the Theorem, i.e. given a path in G obeying the weak spanner
property we construct a path which obeys the

(

O(c8), 2
)

-power spanner property. For this we
iteratively apply a procedure called clean-up to a path, yielding paths with smaller and smaller
costs. Besides the path P in G this procedure has parameters L, d,D ∈ R

+. Hereby, L denotes
the edge length of a square with central point s containing the whole path. The parameters d,D
are in the range 0 < 3(2c

√
5+2)d ≤ D ≤ L and can be chosen arbitrarily, yet fulfillingD/d ∈ N

and L/D ∈ N. These parameters define two edge-parallel grids Gd and GD of grid size d and
D such that boundaries of GD are also edges of Gd. These grids fill out the square Su(L), while
the boundary edge of Su(L) coincides with the boundary of Gd and GD, see Figure 3.4. The
outcome of the procedure clean-up is a path P ′ = clean-up(P, L, d,D) which reduces the cost
of the path while obeying other constraints, as we show shortly.

In Figure 3.6 we describe the procedure clean-up which uses the procedure contract de-
scribed in Figure 3.5. Let D(A) denote the diameter of the area A.

Lemma 3.3 Let P = (v1, . . . , vm) and P ′ = contract(P,A) = (v1, . . . , vi−1, vi = w1, . . . , wk =
vj, vj+1, . . . , vm). Then the following properties are satisfied.
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Procedure contract (P = (v1, . . . , vm) : path, A : area)
begin

Let vi be the first vertex of P in A
Let vj be the last vertex of P in A
Let P ′ = (w1, . . . , wk) be a path between vi = w1

and vj = wk satisfying the weak spanner property
return (v1, . . . , vi−1, w1, . . . , wk, vj+1, . . . , vm)

end

PSfrag replacements

vi−1

vi

vj

vj+1

P

P ′

Figure 3.5: The contract procedure

• Locality: ∀u ∈ {w1, . . . , wk}: minp∈A |u− p| ≤ c ·D(A) and maxp∈A |u− p| ≤ (c+ 1) ·
D(A).

• Continuity of long edges: ∀e ∈ E(P ′) : |e| > 2c ·D(A) =⇒ e ∈ E(P ).

Proof: The maximum distance between vi and vj is at most D(A). The replacement path
(w1, . . . , wk) is inside a disk of radius c ·D(A). Hence for all vertices u of this replacement path
we have |u− vi| ≤ cD(A) and therefore minp∈A |u− p| ≤ |u− vi| ≤ cD(A). From the triangle
inequality it follows

max
p∈A
|u− p| ≤ D(A) + min

p∈A
|u− p| ≤ D(A) + cD(A) = (c+ 1)D(A) .

The second property follows from the fact that all new edges inserted in P ′ lie inside a disk
of radius cD(A).

Lemma 3.4 For D ≥ 3(2c
√

5 + 2)d the procedure P ′ =clean-up(P, L, d,D) satisfies the four
properties power efficiency, locality, empty space, and continuity of long edges.

1. Locality For all vertices u ∈ V (P ′) there exists v ∈ V (P ) such that

|u− v| ≤ (
√

2 +
√

5) · c · d .

2. Continuity of long edges For all edges e ∈ E(P ′) with |e| > 2c
√

5d it holds e ∈ E(P ).

3. Power efficiency For all k > 2c
√

5:

∑

e∈E(P ′):2c
√

5d<|e|≤kd

|e|2 ≤ k2 d2 #F (P,Gd) ,

where #F (P,Gd) denotes the number of grid cells of Gd where at least one vertex of P
lies which is the end point of an edge of length at least 2c

√
5d.
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4. Empty space For all grid cells C ofGD we have at least one Gd-sub-cell within C without
a vertex of P ′.

Proof: All cells of Gd are called sub-cells in this proof for distinguishing them from the cells of
GD

Procedure clean-up (P, L, d,D)
begin

while three edges exist in P longer than 2c
√

2d starting or ending in the same cell of Gd

do
Let C be such a cell in Gd

P ← contract(P,C)
od
while there exists a cell in GD where at least one vertex of P is in each of its Gd-sub-cells
do

Let C be such a cell of GD

Let rankP (u) be the position of a vertex u in P
Sort all cells Z1, . . . , Z(D/d)2 of Gd in C according to minu∈Zi∩V (P ){rankP (u)}
Sort all cells Z ′1, . . . , Z

′
(D/d)2 of Gd in C according to maxu∈Z′

i∩V (P ){rankP (u)}
i← 1
while cell Zi is neither horizontally neighboring to one of the cells {Z ′1, . . . , Z ′i}

nor cell Z ′i is horizontally neighboring to one of the cells {Z1, . . . , Zi}
do
i← i + 1

od
Let z and z′ be the two neighboring cells from {Z1, . . . , Zi} and {Z ′1, . . . , Z ′i}
P ← contract(P, z ∪ z′)

od
return P

end

Figure 3.6: The clean-up procedure

Observe that the clean-up procedure uses only contract-operations to change the path. As
parameters for this procedure we use either a grid sub-cell C of edge length d and diameter
D(C) =

√
2d or two horizontally neighboring grid sub-cells Z and Z ′ with edge lengths d with

diameter D(Z ∪ Z ′) =
√

5d.
Further note that in the first loop each sub-cellC of the gridGd will be treated by the contract-

procedure once. The reason is that the contract procedures produce edges with lengths of at most
2c
√

2d, while each sub-cell will lose all but two edges of P with minimum length greater than
2c
√

2d. This also proves that the first loop always halts.
Now consider the second while-loop and concentrate on the part inside the loop before the

contract-operation takes place. Since in every sub-cell of C we have a vertex of P we can
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compute the ordering Zi and Z ′i as described by the algorithm. The main observation is that until
the first two neighboring sub-cells Z and Z ′ from these sets are found, no two sub-cells Z and
Z ′ from Z ∈ {Zj}j≤i and Z ′ ∈ {Z ′j}j≤i are horizontally neighboring. Considering only points
of P lying in these sub-cells implies that there is at least one empty sub-cell in C.

The situation changes slightly if we apply the contract-operation. Then an intermediate path
will be added and possibly some of the empty sub-cells will start to contain vertices of the path.
However, only sub-cells in a Euclidean distance of c

√
5d from sub-cells Z and Z ′ are affected by

this operation. Now consider a squareQ (see Figure 3.4) of (2c
√

5+2)d×(2c
√

5+2)d sub-cells
in the middle of C. Then at least two horizontally neighboring sub-cells will not be influenced
by this contract-operation and thus remain empty.

One cannot completely neglect the influence of this operation to a neighboring grid cell of
C. However, since D ≥ 3(2c

√
5 + 2)d the inner square Q is not affected by contract-operation

in neighboring grid cells of C because of the locality of the contract-operation.
This means if a cell C was object to the second while-loop, then an empty sub-cell will

be produced which remains empty for the rest of the procedure. Hence, the second loop also
terminates. We now check the four required properties.

Locality. After the first loop the locality is satisfied even within a distance of c
√

2d. For
this, observe that all treated cells contain end points of edges longer than 2c

√
2d which cannot be

produced by contract-operations in this loop. Hence, if a cell is object to the contract-operation
it was occupied by a vertex of P from the beginning. Then from Lemma 3.3 it follows that for
all new vertices on the path P there exists at least one old vertex in distance c

√
2d after the first

loop.
For the second loop we need to distinguish two cases. First, consider a cell C where in the

inner square an empty sub-cell exists. In this case this cell will never be treated by this second
loop. If new vertices are added to the path within this cell, then this will be caused by a contract-
operation in a neighboring cell and will be considered in the second case.

Now consider all cells with preoccupied inner squares (preoccupation refers to the outcome
of the first loop). These cells can be object to contract-operations of the second loop. However,
they will add only vertices to their own sub-cells or to the outer sub-cells of neighboring cells.
So, new vertices are added within a distance of c

√
5d of vertices in the path at the beginning of

the second loop. As we have seen above every such vertex is only c
√

2d away from an original
vertex of a path. This gives a locality of distance (

√
2 +
√

5)cd.
Continuity of long edges. Since the parametrized areas for the contract operation have a

maximum diameter of
√

5d this property follows directly from Lemma 3.3.
Power efficiency. After the first loop the number of edges longer than 2c

√
2d is bounded

by #F (P,Gd), because in every occupied sub-cell at most two edges start or end and each edge
has two end points. Clearly, this number is an upper bound for edges longer than 2c

√
5d. In the

second loop no edges longer than 2c
√

5d will be added. This directly implies the wanted bound.
Empty space. As we have already pointed out the second loop always halts. Therefore the

empty space property holds.

Lemma 3.5 Given a path P1 with source s and target t such that ∀u ∈ V (P1) : |u − s| ≤
L, where L = c · |s − t|. Iteratively apply Pi+1 = clean-up(Pi, Li, di, Di) for i = 1, 2, . . .
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where Li =
∑i

j=1Dj, Di = Lβ1−i, di = Lβ−i for β = 3(2c
√

5 + 2). Then Pm for m =

max{1, dlogβ−1(minu,v∈V |u− v|)/Le} is a path connecting s to t obeying the
(

O(c8), 2
)

-power
spanner property.

Proof: For this proof we make use of the four properties of the clean-up procedure. First note
that the square of edge length Li containing all vertices of path Pi can increase (see Figure 3.7).
However we can bound this effect by the locality property, giving Li+1 ≤ Li + 2(

√
2 +
√

5)cdi,
where di = L · β−i. Since, 2(

√
2 +
√

5)c ≤ 8c ≤ 6c
√

5 + 6 = β for c ≥ 1, we get Li+1 ≤
Li + Di. Hence, our choice of Li fulfills the requirements and we get an upper bound of Li =
Li−1 +Di−1 ≤ L +

∑∞
j=2Dj ≤ 2L for all i > 1.

s

t

PSfrag replacements L1
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Figure 3.7: Increase in path and lower bound for empty space

Let Fi = #F (Pi, Gdi
). Then Ai = (di)

2Fi denotes the area of all grid cells in Gdi
with a

vertex of the path Pi which is the end point of an edge with length of at least 2c
√

5di. In the next
iteration near the middle in each of these cells an empty space will be generated with an area of
(di+1)

2 (see Figure 3.7). Because of the locality property at most the following term of the side
length of this area is subtracted

∞
∑

j=i+2

(
√

2 +
√

5)cdj ≤
∞
∑

j=i+2

β(
√

2 +
√

5)cdj

β
<

1

3

∞
∑

j=i+2

dj−1 ≤
1

3

∞
∑

j=i+1

dj ≤
1

3
di+1 .

Hence, an empty area of at least 1
9
(d2

i+1) remains after applying all clean-up procedures. LetEi be
the sum of all these areas in this iteration, thenEi ≥ Fi·(1

9
)·(di+1)

2 = Fi·(1
9
)·(di)

2· 1
β2 . Therefore

we have Ai ≤ 9β2Ei. Clearly, these empty areas in this iteration do not intersect with empty
areas in other iterations (since they arise in areas which were not emptied before). Therefore all
these spaces are inside the all-covering square of side length 2L yielding

∑∞
i=1Ei ≤ 4L2.
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Because of the long edge continuity property, edges of minimum length 2c
√

5di do not appear
in rounds later than i. Therefore, the following sum S gives an upper bound on the power of the
constructed path.

S =

∞
∑

i=1

∑

e∈E(Pi):

2c
√

5di≤|e|<2c
√

5βdi

|e|2 .

Now from the power efficiency property it follows

S ≤
∞
∑

i=1

20c2β2(di)
2#F (Pi, Gdi

) = 20c2β2

∞
∑

i=1

(di)
2Fi = 20c2β2

∞
∑

i=1

Ai

≤ 180c2β4
∞
∑

i=1

Ei ≤ 720 c2β4L2 ≤ 720 c4β4(|s− t|)2 = O(c8(|s− t|)2) .

This lemma completes the proof of the theorem.

3.3.3 Weak Spanners are not always Power Spanners for δ < 2δ < 2δ < 2

In this subsection we show that there exist weak c-spanners that are not (C, δ)-power spanners
for any constant C and δ < 2. We introduce a new fractal curve that is similar to the HILBERT

Curve (see Figure 3.9) to prove this claim.

Theorem 3.6 To any δ < 2, there exists a family of geometric graphs G = (V,E) with V ⊆ R
2

which are weak c-spanners for a constant c but not (C, δ)-power spanners for any fixed C.

Proof: As δ < 2, there is a k ∈ R such that 2 < k < 41/δ . We present a recursive construction
(see Figure 3.8). Fix u1 = (1/2, 1/2) ∈ R

2. In each following recursion step j, we replace
every existing vertex ui = (ui

x, u
i
y) by four new vertices u4i−3 = (ui

x − d, ui
y + d), u4i−2 =

(ui
x + d, ui

y + d), u4i−1 = (ui
x + d, ui

y − d), and u4i = (ui
x − d, ui

y − d) where d := 1/(2kj).
Finally, we consider the graph Gj := (Vj, Ej) with Vj := {ui | i ∈ {1, . . . , 4j}} and Ej :=
{(ui, ui+1) | i ∈ {1, . . . , 4j − 1}}. The resulting graph after 4 recursion steps with k = 2.1 is
given in Figure 3.8(b). Let u = u1 and v = u4j

.

Lemma 3.6 The graph Gj is a weak c-spanner for c :=
√

2k(k−1)
k−2

independent of j.

Proof: We prove the claim by induction over j. For j = 1 the weak stretch factor is dominated
by the path between u and v. The distance between u and v is 1/k. The farthest vertex on the
path from u to v is u3. It holds that |u − u3| ≤

√
2/k. Hence, we get the weak stretch factor√

2 ≤
√

2k(k−1)
k−2

= c. Now we consider Gj for any j. We can divide the graph Gj into four parts
G1

j , . . . , G
4
j . By the definition of our recursive construction each part equals the graph Gj−1. For

two vertices in one part the required weak c-spanner property holds by induction. We have to
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Figure 3.8: Recursive construction: the underlying idea and two examples for k = 2.1

concentrate on two vertices which are chosen from two different parts. Since Gi
j is connected

to Gi+1
j it is sufficient to consider a vertex from G1

j and a vertex from G4
j . On the one hand,

the weak stretch factor is affected by the shortest distance between such chosen vertices. On the
other hand, this distance is given by (see also Figure 3.8(a))

(1

2
·
(

1 +
1

k
−

j
∑

i=2

( 1
k
)i
)

− 1

2

)

· 2 =
1

k
−

j
∑

i=2

( 1
k
)i ≥ k − 2

k(k − 1)

The entire construction lies in a bounded square of side length 1, and hence we get a weak stretch
factor of at most

√
2k(k−1)
k−2

= c.

Lemma 3.7 The graphs Gj are not (C, δ)-power spanners for any fixed C.

Proof: It suffices to consider the δ-cost of the path from u to v. The direct link from u to v has
δ-cost at most 1. For any path P from u to v in G, it holds that

‖P‖δ ≥ 3 · 4j ·
(

( 1
k
)j
)δ

= 3 ·
(

4

kδ

)j

which goes to infinity if j →∞ for k < 41/δ.
Combining Lemma 3.6 and Lemma 3.7 proves Theorem 3.6.

3.3.4 Fractal Dimension

In this subsection we generalize the analysis used in Lemma 3.7. For this purpose we consider a
self-similar polygonal fractal curve Γ as the result of repeated application of some generator K
being a polygonal chain with starting point u and end point v. This is illustrated in Figure 3.2
showing a generator (left) and the resulting fractal curve (right part); see also [Tri95, Epp05].
But there are plenty of other examples: the KOCH Snowflake, SIERPINSKI’s Arrowhead Curve



30 SPANNERS, WEAK SPANNERS, AND POWER SPANNERS

Figure 3.9: Three generators and the fractal curves they induce due to KOCH, HILBERT and
SIERPINSKI

or the space filling HILBERT Curve (see Figure 3.9). Recall that the fractal dimension of Γ is
defined as

log(number of self-similar pieces)
log(magnification factor)

Theorem 3.7 Let K be a polygonal chain, Γn the result of n-fold application of K, and Γ the
final self-similar polygonal fractal curve with dimension Df . Then, for all δ < Df , there is no
fixed C such that Γn is a (C, δ)-power spanner for all n.

Proof: Let p denote the number of self-similar pieces in Γn and m the magnification factor.
Then by definition, we have Df = log(p)/ log(m). Now consider the δ-cost of the (unique) path
P in Γn from u to v. Since Γn is constructed recursively we get in the n-th step:

‖P‖δ = pn ·
(

(

1
m

)n
)δ

=
( p

mδ

)n

Note that ‖P‖δ is unbounded iff p/mδ > 1, that is, iff δ < log(p)/ log(m) = Df .
The fractal dimensions of KOCH’s, SIERPINSKI’s and HILBERT’s Curves are well-known.

Therefore by virtue of Theorem 3.7, the KOCH Curve is not a (c, δ)-power spanner for any c
and δ < log(4)/ log(3) ≈ 1.26; similarly, SIERPINSKI’s Arrowhead Curve is not a (c, δ)-power
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spanner for any c and δ < log(3)/ log(2) ≈ 1.58; and HILBERT’s Curve is not a (c, δ)-power
spanner for any c and δ < 2. One can show that KOCH’s Curve is a weak spanner (the proof
is analogously to Theorem 3.1). However, both SIERPINSKI’s and HILBERT’s Curves are not
weak spanners as their inner vertices come arbitrarily close to each other. Further examples for
self-similar polygonal curves can be found in [Tri95, Epp05].

3.4 Power Spanner Hierarchy

In the following we show that for ∆ > δ > 0, a (c, δ)-power spanner is also a (C,∆)-power
spanner with C depending only on c and ∆/δ. Then we show that the converse is not true, in
general, by presenting to each ∆ > δ > 0 a family of graphs which are (c,∆)-power spanners
for some constant c but not (C, δ)-power spanners for any fixed C.

Theorem 3.8 Let G = (V,E) be a (c, δ)-power spanner with V ⊆ R
2, 0 < δ < ∆. Then G is

also a (C,∆)-power spanner for C := c∆/δ.

Proof: Let u, v ∈ V be two arbitrary vertices. Since G is a (c, δ)-power spanner there exists a
path P = (u = u1, . . . , u` = v) with ‖P‖δ =

∑`−1
i=1 |ui − ui+1|δ ≤ c · |u − v|δ. The function

f(x) = x∆/δ is convex on [0,∞[, hence we can apply JENSEN’s inequality and get

‖P‖∆ =
`−1
∑

i=1

|ui−ui+1|∆ =
`−1
∑

i=1

(

|ui − ui+1|δ
)∆/δ ≤

(

`−1
∑

i=1

|ui − ui+1|δ
)∆/δ

≤ c∆/δ · |u− v|∆ .

Theorem 3.9 Let 0 < δ < ∆. There is a family of geometric graphs which are (c,∆)-power
spanners but not (C, δ)-power spanners for any fixed C.

Proof: We slightly modify the construction from the proof of Theorem 3.3 by placing n vertices
u = u1, . . . , un = v on an appropriately scaled circle such that the Euclidean distance between
u and v is 1 and |vi − vi+1| = (1/i)1/δ for all i = 1, . . . , n − 1. Now in the graph G = (V,E)
with edges (vi, vi+1), the unique path P from u to v has ∆-cost

‖P‖∆ =

n−1
∑

i=1

(1/i)∆/δ ≤
∞
∑

i=1

(1/i)∆/δ =: c

a convergent series since ∆/δ > 1. This has to be compared to the ∆-cost and/or to the δ-cost of
the direct link from u to v which amount both to 1. On the other hand, the δ-cost of P is given by
the harmonic series

∑n−1
i=1 (1/i)δ/δ = Θ(log n) and thus cannot be bounded by any constant C.



32 SPANNERS, WEAK SPANNERS, AND POWER SPANNERS

3.5 Higher-Dimensional Case

For simplicity, most results in this chapter have been formulated for the case of (not necessarily
planar) geometric graphs in the plane. In this section, we show that our results will also hold in
higher dimensions. The results of Section 3.1, Section 3.2 and Section 3.4 can be immediately
applied to higher dimensions as well. The analysis of the relations concerning weak spanners
requires an extended definition for higher dimensions. Now let V ⊆ R

D for any constant D.
Mainly, we consider D-dimensional spheres instead of disks. So, in a weak c-spanner, there is a
path between any two vertices which remains within a (D-dimensional) sphere of radius c-times
the Euclidean distance between the vertices.

Corollary 3.1 Let G = (V,E) be a weak c-spanner with V ⊆ R
D. Then G is a (C, δ)-power

spanner for δ > D where C := (8c+ 1)D · (2c)δ

1−2D−δ

Proof: Let kD := πD/2

(D/2)!
, then kDrD is the volume of a D-dimensional sphere of radius r. In

the proofs of Lemma 3.1, Lemma 3.2 and Theorem 3.4 we replace disks by spheres and see that
Lemma 3.1 still holds. In Lemma 3.2 we get the following new bound for the number mk of
edges of length between c/2k and 2c/2k:

mk ≤
kD(2c+ 1

4
)D

kD(1
4
)D

·
(

2D
)k

= (8c+ 1)D · (2D)k .

Applying the same facts given in Theorem 3.4 gives the upper bound for the δ-cost:

‖P‖δ ≤
∞
∑

k=0

(8c+ 1)D · (2D)k ·
(

2c

2k

)δ

= (8c+ 1)D · (2c)δ

1− 2D−δ

Corollary 3.2 Let G = (V,E) be a weak c-spanner with V ⊆ R
D. Then G is a (C,D)-power

spanner for C := O(c4D).

Proof: Now we extend the proof of Theorem 3.5 to the higher-dimensional case and replace
disks by D-dimensional spheres and, in addition, squares and cells by D-dimensional cubes.
Both, the contract and the clean-up procedure, remain unmodified. Remember that we have
parameters L, d,D ∈ R

+ fulfilling some requirements (see Theorem 3.5). It is easy to see that
the parameters of the following four properties increase and depend on D. At first, we must
ensure that D ≥ 3(2c

√
D + 3 + 2)d.

1. Locality For all vertices u ∈ V (P ′) there exists v ∈ V (P ) such that

|u− v| ≤ (
√
D +

√
D + 3) · c · d .

2. Continuity of long edges For all edges e ∈ E(P ′) with |e| > 2c
√
D + 3d it holds e ∈

E(P ).
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3. Power efficiency For all k > 2c
√
D + 3:

∑

e∈E(P ′):2c
√
D+3d<|e|≤kd

|e|D ≤ kD dD #F (P,Gd) ,

where #F (P,Gd) denotes the number of grid cubes of Gd where at least one vertex of P
lies which is the end point of an edge of minimum length 2c

√
D + 3d.

4. Empty space For all grid cubes C of GD we have at least one sub-cube of GD within C
without a vertex of P ′.

Next we apply Lemma 3.5 with β = 3(2c
√
D + 3 + 2) and get the following sum S as an upper

bound on the power of the constructed path.

S =

∞
∑

i=1

∑

e∈E(Pi):

2c
√
D+3di≤|e|<2c

√
D+3βdi

|e|D .

Again from the power efficiency property it follows (Ei ≥ Fi · (1
3
)D · ( 1

β
)D)

S ≤
∞
∑

i=1

2DcD(D + 3)D/2βD(di)
D#F (Pi, Gdi

)

= 2DcD(D + 3)D/2βD
∞
∑

i=1

(di)
DFi = 2DcD(D + 3)D/2βD

∞
∑

i=1

Vi

≤ 2D3DcD(D + 3)D/2β2D
∞
∑

i=1

Ei ≤ 2D3DcD(D + 3)D/2β2DLD

≤ 2D3Dc2D(D + 3)D/2β2D(|s− t|)D = O(c4D(|s− t|)D)

Finally, we can also show that a weak spanner is not a power spanner for δ < D. We extend
our recursive construction to the higher dimensional case.

Corollary 3.3 To any δ < D, there exists a family of geometric graphs G = (V,E) with V ⊆ R
D

which are weak c-spanners for a constant c but not (C, δ)-power spanners for any fixed C.

Proof: We choose similar parameters as in the proof of Theorem 3.6. The extension is that our
recursive construction now grows inD dimensions in the same way as given in the proof for two
dimensions. An example of the resulting graph in three dimensions is given in Figure 3.10.

The first corollary is that the resulting graph Gj is a weak c-spanner for c :=
√
Dk(k−1)

k−2

independent of j. The second is that there exists a path which has δ-cost of at least

(2D − 1) · (2D)j ·
(

( 1
k
)j
)δ

= (2D − 1) ·
(

2D

kδ

)j

which goes to infinity if j →∞ for k < 2D/δ.
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Figure 3.10: Our recursive construction in three dimensions for k = 2.1

3.6 Conclusions

In this chapter we investigated the relations between spanners, weak spanners, and power span-
ners for V ⊆ R

D for any constant D. The results are summarized in Table 3.1. An entry in the
table should be read from left to right downwards, e.g., every c-spanner is a (cδ, δ)-power span-
ner). For δ ≥ D it turns out that being a spanner is the strongest property, followed by being a
weak spanner and finally being a (c, δ)-power spanner. For 1 < δ < D, spanner is still strongest
whereas weak spanner and (c, δ)-power spanner are not related to each other. For 0 < δ < 1
finally, (c, δ)-power spanners are both spanners and weak spanners. All stretch factors in these
relations are constant and are pairwise polynomially bounded.

c-spanner c c (cδ, δ)
(

O
(

c2D+ε/(1− 2−ε)
)

,D + ε
)

weak c-spanner (unbounded) c
(

O(c4D),D
)

(

unbounded,D − ε
)

(c, δ)-power spanner (unbounded) (unbounded) for ∆ > δ: (c∆/δ,∆)

for ∆ < δ: (unbounded,∆)

⇒ -spanner -weak spanner -power spanner

Table 3.1: Our results on the relations between spanners, weak spanners and power spanners

Although our results are exhaustive with respect to the different kinds of geometric graphs
and in terms of δ, one might wonder about the optimality of the bounds obtained for C’s de-
pendence on c; for instance: any c-spanner is a (C, δ)-power spanner for C = cδ, δ > 1 ; and
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this bound is optimal. But is there some C = o(c2D) such that any weak c-spanner is a (C, δ)-
power spanner as long as δ > D ? Is there some C = o(c4D) such that any weak c-spanner is a
(C, δ)-power spanner ?
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Chapter 4

Static and Dynamic Ad Hoc Networks

In this chapter we investigate static and dynamic ad hoc networks and present solutions concern-
ing the problem of point-to-point communication for a set of n radio stations. We concentrate
on single frequency power-variable ad hoc networks, i.e. networks in which every station is
allowed to adjust its transmission range to decrease energy consumption and to avoid interfer-
ence. Furthermore, we distinguish between omnidirectional (radio, Section 4.1) and directional
(beam radio or infrared, Section 4.2) communication. In both communication models we first
investigate static vertex sets, before we extend our considerations to dynamic vertex sets.

A main result of Section 4.1 is that every weak c-spanner allows us to approximate an energy-
optimal path system by a constant factor and a congestion-optimal path system by a factor of
O(g(V )) where g(V ) denotes the diversity of a vertex set V ⊆ R

D for any constant D. In real-
world applications, the diversity can be regarded as Θ(log n). In general, the diversity can only
be upper bounded by O(n). We introduce the Hierarchical Layer Graph (HL-graph) and show
that this graph is a c-spanner for a constant c. For the HL-graph, the (bidirectional) interference
number, which we define as a measure for the amount of interference, can be upper bounded by
O(g(V )). Hence, the HL-graph allows us anO((log n)2) approximation of a congestion optimal
path system in real-world applications. Furthermore, we investigate trade-offs and show that it
is not possible to optimize more than one measure at the same time, in general. The relation
between congestion and energy is even worse.

In Section 4.2 we show that we can construct better topologies using the directional commu-
nication model than using the omnidirectional one. We introduce the unidirectional interference
number and present a sectorized, theoretically interference-free topology, the so-called sparsified
Yao-graph (SparsY-graph), which allows us to approximate an energy-optimal path system by a
constant factor and a congestion-optimal path system by a factor of O(g(V )), i.e. by O(log n)
in realistic settings. A main result is that we prove that the SparsY-graph is a weak c-spanner
for a constant c. Hence, we can apply our results of Chapter 3 to show that the SparsY-graph
is a C-power spanner for some constant C depending only on c. We compare the SparsY-graph
with other sectorized topologies, known as the Yao-graph and the SymmY-graph, and investigate
degree and spanner properties as well as communication features with regard to interference.
In general, we show that the SymmY-graph is neither a weak spanner nor a power spanner, but
nevertheless it is connected. Note that some of these results require an appropriate number of

37
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sectors/senders per node. But most of our results hold already if this number is greater than 6.
In Section 4.3 we discuss the handling of interference in a distributed wireless setting and,

finally, in Section 4.4 we focus on the question how to maintain our basic network topologies un-
der dynamic changes when stations appear and disappear, i.e. wireless devices enter and/or leave
the network. For this we measure the number of radio stations involved and present distributed
algorithms for repairing the network structure. We show that linear time algorithms are necessary
in the worst case to repair the Yao-graph and its variants when a station appears or disappears. In
this case the number of involved stations can be linear in the number of nodes. For the HL-graph
we present algorithms that need time linear in the diversity. Hence, under realistic placements,
the HL-graph can be updated in logarithmic time.

In our proofs we make use of the results of the last chapter, Chapter 3. These results can be
seen as the theoretical fundament on which the following investigations are based. In this chapter
we develop and analyze wireless network topologies for static vertex sets. Results concerning
mobile vertex sets are presented in Chapter 5. The outcome of our extensive experimental anal-
yses can be found in Chapter 6.

4.1 Omnidirectional Communication

In this section we consider ad hoc networks based on omnidirectional communication. In such
a radio network, every station is equipped with a power-variable omnidirectional antenna. Our
assumption is that only one frequency can be used for wireless transmission. We investigate
the problem of path selection in radio networks for a given static set of n nodes in two- and
three-dimensional space. For static point-to-point communication, we define measures for con-
gestion, dilation, and energy consumption that take interference among communication links
into account. Furthermore, we introduce the (bidirectional) interference number and show that
energy-optimal path selection for static ad hoc networks can be computed in polynomial time.
Then we introduce the diversity g(V ) of a set V ⊆ R

D for any constant D. It can be used to
upper bound the number of interfering edges. For real-world applications, it can be regarded
as Θ(logn). A main result is that a weak c-spanner construction as a communication network
allows one to approximate the congestion-optimal path system by a factor of O(g(V )2).

Furthermore, we show that there are vertex sets where only one of the performance param-
eters congestion, dilation, and energy can be optimized at a time. We show trade-offs lower
bounding congestion × dilation and dilation × energy. The trade-off between congestion and
dilation increases with switching from two-dimensional to three-dimensional space. For conges-
tion and energy, the situation is even worse. It is only possible to find a reasonable approximation
for either congestion or energy minimization, while the other parameter is at least a polynomial
factor worse than in the optimal path system.

In Subsection 4.1.1 we introduce our model of radio networks, and define and motivate our
notions of congestion, dilation, and energy. Then, in Subsection 4.1.2, we relate congestion and
dilation to the routing time in radio networks and present upper and lower bounds for the rout-
ing time. In Subsection 4.1.3 and in Subsection 4.1.4, we present strategies for path selection
that provably optimize energy consumption and give an O(g(V )2)-factor approximation of con-
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gestion where g(V ) is defined as the diversity that describes the number of magnitudes of all
node-to-node distances. Two distances d1, d2 are in the same magnitude if blog d1c = blog d2c.
In Subsection 4.1.5, as a main insight, we can conclude that no two of these measures can be
minimized simultaneously. Trade-offs between two measures are unavoidable.

4.1.1 Modeling Radio Networks

We consider a set V ⊆ R
D of n radio stations (or vertices, or nodes) for D ∈ {2, 3}. In order to

transmit a message from a radio station u to a radio station v, u is able to adjust its transmission
radius to |u − v|, the Euclidean distance between u and v (see Section 2.2). We say that u
establishes the communication link e = {u, v}. Instead of sending the packet directly from u to
v, multi-hop communication is also possible by using a path (u = u1, . . . , u` = v) of stations. In
order to deliver a packet from u to v, the communication links {ui, ui+1}, i = 1, . . . , `− 1, have
to be established.

Consider now a routing problem f : V × V → N0, where f(u, v) packets have to be sent
from u to v, for all u, v ∈ V . A collection of paths, one for each packet, forms a path system P
for f . In this section we assume (as in [MBH01]) that each transmission along a link {ui, ui+1}
has to be acknowledged, so that the communication from ui+1 to ui also has to be established.
Thus the edges of the paths have to be used in both directions. The undirected graph on V
defined by the undirected edges of the paths in P is the communication network N defined by
P . In one communication step exactly one packet can be transmitted along an edge e = {u, v} ∈
N . The routing time of a network N defined by the path system P is the minimum number
of communication steps that are necessary to guarantee that all packets defined by the routing
problem have reached their destinations. We define the dilation of P analogously to its well-
known definition in wired networks, see [Lei92], i.e. the dilation is the maximum of the lengths
of all paths in P . In order to define congestion, we have to look at the specific properties of
radio networks. For wired networks, the load `(e) of an edge e = {u, v} of the communication
network N is defined as the number of packets to be forwarded along e. This load is often called
congestion of e in a wired network, see [Lei92]; we will use the notion “load” to distinguish it
from our notion of congestion for radio networks, to be described below.

A B C

(a) Hidden terminals

A DCB

(b) Exposed terminals

A B

DC

(c) Asymmetric interference

Figure 4.1: Interference problems in radio networks

A major problem in radio networks is the effect of interfering radio signals. If two nodes
A and C are in range of a third listening node B, but cannot hear each other, a collision occurs
at B if A and C transmit simultaneously. This is the hidden terminal problem [Bha98] (see
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Figure 4.1(a)). Solutions exist that reduce this effect. In the IEEE 802.11 standard, see [IEE97],
sender A and receiver C reserve the channel by sending request-to-send (RTS) and clear-to-send
(CTS) packets prior to the data communication (similar to MACA and MACAW [Tan96]). Other
nodes, also the nodes that cannot hear the sender, hear at least one of these packets and suspend
all transmissions until the channel is free. However, this also reduces the network capacity since
any node C that hears the CTS of B cannot start a transmission even if A is outside of C’s
range and thus no collision would occur. This is the exposed terminal problem [Bha98] (see
Figure 4.1(b)). Since we allow each node to adjust its transmission power for sending data, a
third interference problem can occur due to the fact that a short communication link between two
nodes C and D cannot be heard by nodes A and B establishing a long communication link. This
is the asymmetric interference problem (see Figure 4.1(c)).

In our radio model we allow the stations only one radio frequency. Now, if two packets are
transmitted at the same time, we may experience a radio interference. Hence at a given time
step only one or none packet can be received. The area covered by sending and acknowledging
a packet from u to v along an edge e = {u, v} is D(e) := Dr(u) ∪Dr(v), where Dr(u) denotes
a disk with center u and radius r := |e| (see Figure 4.2). Now, if another packet q has to be sent
or received by a node within D(e), the radio interference prevents the successful transmission
of q. Since nodes adjust their transmission powers for sending packets, interference may not be
symmetric.

radio station

path of a packet

transmission disk

radio interference

acknowledgement disk

Figure 4.2: Stations, packet paths, and induced radio interference

As mentioned before, for radio networks we need to reflect the impact of radio interference
on the delay of a packet. Therefore, we define the set of edges (bidirectionally) interfering with
an edge e = {u, v} of N as

BInt(e) := {e′ ∈ E(N) \ {e} | u ∈ D(e′) or v ∈ D(e′)} .
Thus, sending a packet along e is successful only if no other edges from BInt(e) are sending
concurrently. We define the (bidirectional) interference number of a communication link by
|BInt(e)|. The (bidirectional) interference number of the network N is the maximum (bidirec-
tional) interference number of all edges denoted by BInt(N). Now we define the congestion of
the edge e of N = (V,EP) defined by the path system P by

CP(e) := `(e) +
∑

e′∈BInt(e)

`(e′) .
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The congestion of the path system P for V is defined by

CP(V ) := max
e∈EP

{CP(e)} .

The variable choice of the transmission power allows us to reduce the energy consumption,
saving on the tight resources of batteries in portable radio stations and reducing interference. The
energy needed to send over a distance of d is given by d2. It turns out that in practice the energy
consumption goes up to O(d6) or even O(d8). However, all results besides Theorem 4.5 can be
easily transferred to higher exponents.

We distinguish two energy models reflecting the power consumption by link maintenance
and packet transmission. In the first model, called the unit energy model, we assume that main-
taining a communication link e is proportional to |e|2, where |e| denotes its Euclidean length.
We completely neglect any impact of power consumption by packet delivery. Therefore, the unit
energy U-Energy used by radio network N = (V,EP) defined by the path system P is given by

U-EnergyP(V ) :=
∑

e∈EP

|e|2 .

The flow energy model of a radio network N = (V,EP) defined by the path system P reflects
the energy actually consumed by transmitting all packets of a routing problem f . We neglect any
power consumption by link maintenance. Here, the power consumption of a communication link
e is weighted by its load `(e):

F-EnergyP(V ) :=
∑

e∈EP

`(e)|e|2 .

We subdivide the design of a routing strategy for f into the following three steps:

• Path selection: select a path system P for f .

• Interference handling: design a strategy, that realizes the transmission of a packet along a
link in the presence of interference.

• Packet switching: decide when and in which order packets are sent along a link.

4.1.2 Upper and Lower Bounds for Routing Time

It is easy to see, and is well known, that both the dilation and the maximum load maxe∈E{`(e)}
lower bound the routing time, even in wired networks. In this subsection we show that the routing
time in radio networks can also be lower bounded in terms of our extended notion of congestion
(Theorem 4.1). We further present an upper bound for the routing time (Theorem 4.3).

Theorem 4.1 Consider a radio network N = (V,EP) in D-dimensional space for D ∈ {2, 3}
defined by the path system P for a routing problem f with congestion C and dilation D. Let T
be its routing time. Then it holds for c2 = 6 and c3 = 20 that

T ≥ max

{

C

2cD
, D

}

= Ω(C +D) .
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Proof: Let e = {u, v} ∈ N be an edge with maximum congestion C. Now we try to calculate
the number of edges along which successful transmissions can take place simultaneously to e.
We partition the D-dimensional space into regions R1, . . . , RcD (see Figure 4.3).

R2

R1R3

R4

R5

R6 R7

R8

R9

R10

R11

R12

Figure 4.3: Partitioning the two-dimensional space into regions R1, . . . , R12

The main property of these regions is that, for every pair of points r, s ∈ Ri for all i, the angle
between ur and us is less than or equal to π

3
. Clearly, for two-dimensional space we have c2 = 6.

In [HSS97] it has been shown that c3 ≤ 20. Similarly we consider the analogous partitioning
RcD+1, . . . , R2cD with v as the corner point of angles. Define

Ei := {{p, q} | (p ∈ Ri ∨ q ∈ Ri) ∧ {p, q} ∈ BInt(e)} .

Note that by a straightforward geometric argument, for two edges e′, e′′ ∈ Ei, it holds that either
e′ ∈ BInt(e′′) or e′′ ∈ BInt(e′). Therefore, all transmissions over edges in Ei ∪ {e} have to be
done sequentially. Let `i := `(e) +

∑

e′∈Ei
`(e′). Then

∑2cD
i=1 `i ≥ C. Hence,

T ≥ max
i∈[2cD]

{`i} ≥
1

2cD

2cD
∑

i=1

`i ≥
C

2cD
.

We now turn to upper bounding the routing time. Consider a communication network N =
(V,EP) defined by the path system P with congestion CP(V ). Following the approach of lo-
cal probabilistic control protocols for the MAC layer (also called LPC schemes , see [AS98]),
we use the following protocol for handling interference. If u wants to send a packet (or an
acknowledgement) along link e to v, u proceeds as follows. The link e is activated with prob-
ability ϕ(e) and so, in each step, it decides with probability ϕ(e) to send a packet. We choose
ϕ(e) := min{1

2
, `(e)

CP(V )
}. Then it holds that ϕ(e) +

∑

e′∈BInt(e) ϕ(e′) ≤ 1. We have the following
for a transmission between two nodes:

Lemma 4.1 The probability of a successful transmission on a link e is at least 1
4
ϕ(e). Therefore,

the expected time for a successful transmission is at most 4
ϕ(e)

. Furthermore, if u has decided to
send a message to v, this transmission attempt has a success probability of at least 1/4.
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Proof: Note that 1 − p ≥ 1
4p for p ∈ [0, 1

2
]. Let BInt(e) be defined as {e1, ..., em}. Then the

following holds:

Prob[Transmission on link e is successful] = ϕ(e)
m
∏

i=1

(1− ϕ(ei))

≥ ϕ(e)

m
∏

i=1

4−ϕ(ei) = ϕ(e)4−
∑m

i=1 ϕ(ei) ≥ 1

4
ϕ(e) .

The bounds for the expected transmission time and the constant success probability follow di-
rectly.

Definition 4.1 ([AS98], Definition 2.2) Let the probabilistic communication graph (or PCG in
short) G = (V, ϕ̃) be defined as a complete directed graph with node set V and edge labels
determined by the function ϕ̃ : V × V → [0, 1]. Every edge e can forward a packet in one time
step, but only succeeds in doing this with probability ϕ̃(e).

The authors of [AS98] transform the problem of routing in wireless networks to routing in
PCGs. Since we have a constant success probability, we can use the same technique to transform
the problem of routing in our graphs to routing in PCGs.

We adopt the following result, but we need some other notation from [AS98]. Let the maxi-
mum edge latency L̃ of a PCGG be defined as the maximum expected time and the minimum edge
latency l̃ as the minimum expected time needed to successfully transmit a packet along an edge
in G. Note that our interference handling guarantees: L̃ ≤ ∞ and l̃ ≥ 2, since 1/2 ≥ ϕ(e) ≥ c
for all e ∈ E and a constant c ∈ R. Given a collection P of simple paths in some PCG G, the
PCG-dilation D̃ of P is defined as the maximum over all paths in P of the sum of 1/ϕ̃(e) over
all edges e used by it (that is, D̃ denotes the maximum expected time a packet needs to traverse
a path in P), and the PCG-congestion C̃ of P is defined as the maximum over all edges e of
1/ϕ̃(e) times the number of paths in P that cross it (that is, C̃ denotes the maximum expected
time spent at an edge e to forward all packets which contain e in their path). The size m of an
arbitrary path collection is defined as the number of packets given by the routing problem.

Theorem 4.2 ([AS98], Theorem 2.12) There is an online protocol for sending packets along
an arbitrary path collection of size m with PCG-dilation D̃, PCG-congestion C̃, maximum edge
latency L̃, and minimum edge latency l̃ in time O(C̃ + D̃ log(m · L̃/l̃)) with probability at least
1−m−c for any constant c.

Applying this to our model yields:

Theorem 4.3 Consider a radio network N = (V,EP) defined by the path system P of size m
for some routing problem f with maximum interference number I , congestion C, and dilation
D. There is an online routing protocol that needs routing time O(C + D · I · log(m · I)), with
probability at least 1−m−c for any constant c.

Proof: By definition we have that 1/ϕ(e) ≤ I for all e ∈ E. This implies directly that
D̃ ≤ D · I and by definition we have C̃ = C . The maximum edge latency L̃ is given by
maxe∈E{1/ϕ(e)} = O(I). The minimum edge latency l̃ is at least 2, by definition of ϕ(e). Now
we consider the PCG G = (V, ϕ) and use Theorem 4.2 to complete the proof.
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4.1.3 Minimizing Energy

In this subsection we try to minimize unit energy and flow energy. We show that energy-optimal
path selection for radio networks can be computed in polynomial time.

The unit energy of a radio network given by a path system is defined as the energy consump-
tion necessary to deliver one packet on each communication link. It turns out that the paths of a
minimum spanning tree (MST(V )) optimize unit energy, i.e., power consumption for maintain-
ing links while neglecting all additional energy consumption for packet delivery. Note that the
hardness results shown in [KKKP00, CPS04] do not apply because in our model the transmission
radii are adjusted for each packet.

Theorem 4.4 The unique paths defined by a minimum spanning tree result in an optimal path
system for a radio network N = (V,E), V ⊆ R

D for any D, with respect to the unit energy.

Proof: Consider the complete graph on V , where each edge e gets weight |e|2. The minimum
energy network can be constructed using Prim’s or Kruskal’s algorithm for minimum spanning
tree. Note that the decisions in this algorithm are based on comparison of the length of some
edges e and e′, i.e. |e| ≤ |e′|. Thus, the minimal network for energy is also the minimum
spanning tree for Euclidean distances.

For the flow energy model, the best network is not necessarily a tree. However, one can
compute the minimal flow energy network in polynomial time. In consideration of the flow
energy we use the Gabriel Graph (GG(V )) introduced in [GS69]. It consists of all edges {u, v}
such that the open sphere using the line from u to v as diameter does not contain any other
node from V ⊆ R

D,D ∈ {2, 3}. It turns out that MST(V ) ⊆ GG(V ). Let G̃G(V ) denote the
weighted version of GG(V ) where each edge e has weight |e|D. The following holds:

Theorem 4.5 For a given vertex set V and a routing problem f , the shortest paths between
vertices u, v ∈ V with f(u, v) 6= 0 of G̃G(V ) form an optimal path system for a radio network
with respect to the flow energy.

Proof: By the Theorem of Thales, the flow-optimal path between two nodes u and v only
contains edges of GG(V ) (see Fig. 4.4). Thus, it is a shortest path in GG(V ), where each edge e
has weight |e|D, i.e., in G̃G(V ). By definition of flow energy of a path system, the collection of
all flow-optimal paths for packets of the routing problem f form a flow-optimal path system.

Note that a flow-optimal path system can easily be computed in polynomial time by an all-
pairs-shortest-paths algorithm. There are situations where edges of the Gabriel Graph can be
replaced by less energy-consuming paths, even if no node lies inside the disk described by the
edge. In this case, the edge of the Gabriel Graph is not part of any energy optimal route.

4.1.4 Optimizing Congestion and Dilation

In this subsection we try to minimize the routing time in terms of congestion and dilation. i.e.
we try to find nearly optimal path systems for a given vertex set V and a routing problem f . It
is clear that the complete network is the optimal choice for dilation. So we only have to focus
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c
a

b

Figure 4.4: Communication on an edge c is more expensive with regard to unit energy than
communication on the edges a and b (a2 + b2 < c2)

on congestion. We present an approximation of a congestion-optimal path system. But first, we
begin with the introduction of the diversity g(V ) of a set V that can be used to upper bound
the number of interfering edges. After this we present a data structure that approximates the
congestion-optimal communication network by a factor of O(g(V )2).

Diversity of a Vertex Set

Sometimes the location of the radio stations does not allow us any routing without incurring high
congestion. Consider a vertex set V = {v1, . . . , vn} on a line, with distances |vi − vi+1| = 2i−1.
The edge {vi, vi+1} interferes with all edges {vj, vj+1} for j ≤ i, see Figure 4.5. Therefore
the interference number of the network is n − 2 = O(n). Suppose only v1 and vn want to
communicate, then the better solution for congestion is to disconnect all interior nodes and to
realize only the edge {v1, vn}. Of course this is not an option when interior nodes need to
communicate.

Figure 4.5: The high diversity of the vertex set causes high interference, resulting in high con-
gestion

It turns out that a determining parameter for the realization of optimal communication net-
works for radio networks is the number of magnitudes of distances. Distances have different
magnitudes if they differ by more than a factor of 2.

Definition 4.2 The diversity g(V ) of a point set V in Euclidean space is defined by g(V ) :=
|Q(V )|, where Q(V ) := {m ∈ Z | ∃u, v ∈ V : blog |u − v|c = m} denotes the levels of
different magnitudes of all distances.
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Note that in the scenario of Figure 4.5 we observe almost maximum diversity of n (and a high
interference number). We first show the close connection between interference number and
diversity for vertices on a line.

Theorem 4.6 The interference number of a line graph G = (V,E) with edges between direct
neighbors, i.e. V = {v1, . . . , vn} ⊆ R and E = {{vi, vi+1} | i ∈ [n− 1]}, is at most 6 · g(V ).

Proof: For q ∈ N0 at most six edges of a length in a distance in the range [2q, 2q+1) can exist
with an endpoint within distance 2q+1 of a given edge e. Three edges left and three edges right
of e. These are the only edges of this length that possibly can interfere with e. Hence, the overall
number of interfering edges is at most 6 · |Q(V )|.

Because of this relationship between interference of radio networks and the diversity of ver-
tex sets, we take a closer look at the possible range of the diversity. It is upper bounded by
(

n
2

)

= O(n2), because it is defined over all possible distances. A divide-and-conquer argument,
however, gives an upper bound of O(n logn). With a randomization technique we will show
that the diversity grows at most linear in the number of nodes. Such a worst case is depicted in
Figure 4.5.

On the other hand, the diversity is at least logarithmic in the number of nodes. Such small
diversity can be observed for equidistant nodes on a line or an m×m grid.

In the following we present results concerning the diversity g(V ) of n nodes V ⊆ R
D. By

r0 := minu,v∈V,u6=v |u− v| we denote the minimum distance of two different points u and v.

Lemma 4.2 g(V ) = Ω
(

log n
D
)

.

Proof: Note that all pairs of points u 6= v have a minimum distance |u− v| ≥ r0. For a point u
we consider all points W which are at most 2r0-distant to u. Now observe that all spheres with a
center of W and radius r0/2 do not intersect (yet may be tangent) and are included in the sphere
with center u and radius 5

2
r0 (This results from distance 2r0 between center points and u plus

r0

2
for the rest of the spheres). Hence, the sum of volumes of all the spheres with radius r0/2 is

at most the volume of the larger sphere. Note that the volume of a D-dimensional sphere with
radius r is given by kDrD, where kD := πD/2

(D/2)!
. This leads to the following inequality:

|W | · kD
(r0

2

)D
≤ kD

(

5r0
2

)D

This yields:
|W | ≤ 5D .

Now pick an arbitrary point of V , erase all points of V that are closer than 2r0 to this point,
and reiterate this step until all points in the resulting set V ′ have a minimum distance 2r0. The
above observation implies |V ′| ≥ |V |

5D
, since every point has at most 5D other points in its 2r0-

neighborhood.
Now we iterate this process on the reduced point set V ′, with r′0 = minu,v∈V ′:u6=v |u − v|,

until only one point is left. This process takes at least dlog5D |V |e = Ω
(

log n
D
)

iterations. In every
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iteration step we find at least one new element of Q(V ), since the minimum distance after each
reduction of the point set is at least twice as large as before.

Therefore, the number of rounds of this process gives a lower bound on the diversity of V .

Lemma 4.3 For D = 1, i.e., V ⊆ R, we have g(V ) = O(n).

Proof: The main difficulty for the proof of this statement arises from side effects due to the
rounding in the definition of the diversity. We overcome this problem by randomization, in
particular we multiply each number of V = {v1, . . . , vn}, where v1 < v2 < . . . < vn, by the
same factor k = 2R yielding v′i = kvi, where R is a continuous uniform random variable over
[0, 1]. Let VR = {v′1, . . . , v′n} be the resulting set of real numbers and define for all i ∈ [n]:
Qi := Q({v′1, . . . , v′i}). We will prove for i ∈ {2, . . . , n}:

E[|Qi \Qi−1|] ≤ 5 . (4.1)

We concentrate on elements in the set Si defined by

Si := {m ∈ Z | ∃j ∈ [i− 1] : m = blog(kvi − kvj)c} ,

because Qi \Qi−1 ⊆ Si \ Si−1. We give a short proof that this inclusion is valid: m ∈ Qi \Qi−1

holds if and only if

∃j ∈ [i− 1] : m = blog(kvi − kvj)c ∧ ∀` ∈ [i− 1], ∀j ∈ [`− 1] : m 6= blog(kv` − kvj)c

This implies

∃j ∈ [i− 1] : m = blog(kvi − kvj)c ∧ ∀j ∈ [i− 2] : m 6= blog(kvi−1 − kvj)c

which holds if and only if m ∈ Si \ Si−1 .
For fixed i ∈ [2..n] let x := vi − vi−1, yj := vi−1 − vj, and zj := vi − vj . Analogously, we

define x′ := v′i− v′i−1 = kx, y′j := v′i−1 − v′j = kyj, and z′j := v′i − v′j = kzj. In this notation we
have

Si = {m ∈ Z | ∃j ∈ [i− 1] : m = blog z′jc} .
If we observe yj ≤ 2yj+1 in an interval j ∈ [a..b − 1], we can conclude that zj ≤ 2zj+1,

since x + yj = zj . A further implication is that y′j ≤ 2y′j+1 and z′j ≤ 2z′j+1. The consequence of
yj ≤ 2yj+1 is that the rounded logarithms blog y ′jc ∈ Si−1 form a consecutive interval of integer
values

{blog y′ac, blog y′a+1c, . . . , blog y′bc} = [blog y′ac..blog y′bc] ⊆ Si−1 .

Yet, the same is true for Si:

{blog z′ac, blog z′a+1c, . . . , blog z′bc} = [blog z′ac..blog z′bc] ⊆ Si .

If x ≤ yb we have z′b = x′ + y′b ≤ 2y′b. Thus, log z′b ≤ 1 + log y′b and therefore the only
contribution of the set {blog z′jc | j ∈ [a..b]} to Si \ Si−1 is one element at the most, namely
blog z′bc.
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Furthermore, the probability that this element occurs decreases proportionally to 1/zb as we
will see now. For this, we estimate the probability that blog z ′bc 6= blog y′bc. An equivalent
representation of this inequality is

bR + δ + log ybc 6= bR + log ybc ,

where δ = log zb − log yb = − log zb−x
zb

= − log(1 − x
zb

). Clearly, the probability for satisfying
this inequality is given by max{δ, 1}, since R is chosen uniformly from [0, 1]. Note that for
r ∈ [0, 1

2
] it holds that log(1−r) ≥ −2r. Substituting r = x

zb
we can conclude δ ≤ 2x

zb
if zb ≥ 2x.

Putting it all together, we see that if zj ≤ 2x we have

log z′j ≤ 1 + log zj ≤ 2 + log x

and hence at most the elements q := bxc, q + 1 and q + 2 might be added to Si \ Si−1.
For all zj > 2x we partition [i − 1] into intervals Ik = [ak..bk] with ak ≤ bk < ak+1 such

that for all j ∈ Ik \ {bk} we have yi ≤ 2yi+1 and ybk
> 2yak+1

> 2ybk+1
. The probability for

blog z′bk
c ∈ Si \Si−1 is at most 2x

zb
. Since 2x

zb1
≤ 1, and zbk+1

≥ 2zbk
, the expected number of such

elements is bounded by
∑∞

k=1 2k−1 ≤ 2. Since Qi \Qi−1 ⊆ Si \Si−1, this proves equation (4.1).
As a consequence of equation (4.1) it follows (note that Q1 = ∅)

E[|Q(VR)|] = E

[

n
∑

i=2

|Qi \Qi−1|
]

=

n
∑

i=2

E[|Qi \Qi−1|] ≤ 5(n− 1) .

Now we derandomize: if for the random variable R ∈ [0, 1] the expected value is bounded by
E[|Q(VR)|] ≤ 5(n− 1), there exists a concrete choice r ∈ [0, 1] such that |Q(Vr)| ≤ 5(n− 1).

The relationship between Q(Vr) and the diversity is the following. If ` ∈ Q(Vr), then either
` ∈ Q(V ) or `− 1 ∈ Q(V ). Therefore |Q(V )| ≤ 2|Q(Vr)|, which shows that

g(V ) = |Q(V )| ≤ 2Q(Vr) ≤ 10(n− 1) .

Lemma 4.4 g(V ) = O(D(logD) n) for D > 1.

Proof: For every point u let u1, . . . , uD ∈ R denote its coordinates in R
D. It holds for any

points u, v ∈ V , u 6= v, that

|u− v| =

√

√

√

√

D
∑

i=1

(ui − vi)2 ≤
√

D · (max
i∈[D]
|ui − vi|)2 =

√
Dmax

i∈[D]
|ui − vi| .

We get

|u− v|√
D

≤ max
i∈[D]
|ui − vi| ≤ |u− v| .
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This implies

blog |u− v|c − 1

2
logD ≤ max

i∈[D]
blog |ui − vi|c ≤ blog |u− v|c .

Now we consider all different values for blog |ui − vi|c. These include also the values for
maxi∈[D]blog |ui − vi|c which in combination with the last inequality allow us an estimation
of the different values for blog |u − v|c. Hence, let m be the number of different values for
blog |ui − vi|c for all i ∈ {1, . . . ,D} and u, v ∈ V , then the number of different values for
blog |u− v|c is bounded by m( 1

2
logD + 1).

Note that for a fixed i the set {blog |ui−vi|c | u, v ∈ V } describes the diversity levels of a one-
dimensional point set und thus has at most 10(n− 1) elements. Summing over all D dimensions
gives m ≤ 10D(n − 1) bounding the diversity of V by g(V ) ≤ 10 D(n − 1)( 1

2
logD + 1) =

O(D(logD) n).

Lemma 4.5 g(V ) ≤ 2 + log
maxu,v∈V |u−v|

minu,v∈V ∧u6=v |u−v|

Proof: It holds by definition that min(Q) > (log minu,v∈V :u6=v |u − v|) − 1 and max(Q) ≤
log maxu,v∈V |u− v|. Therefore

g(V ) ≤ max(Q)−min(Q) + 1

≤ 2 + log max
u,v∈V

|u− v| − log min
u,v∈V :u6=v

|u− v|

= 2 + log
maxu,v∈V |u− v|

minu,v∈V :u6=v |u− v|
.

Lemma 4.6 For a point set V randomly chosen from [0, 1]D the diversity is at most O(log n) +
1
2
logD with probability 1− n−c, for any constant c > 0.

Proof: The maximum distance between two points in [0, 1]D is maxu,v∈[0,1]D |u−v| ≤
√
D. Now

we try to estimate the minimum distance. There exist constants c and c′ such that the probability
that two random coordinates ui, vi are closer than 1

nc′ is at most 1
nc . Since |u − v| ≥ |ui − vi|

we get |u− v| ≥ 1
nc′ with probability 1 − n−c. We apply Lemma 4.5 and get the bound for the

diversity, i.e. g(V ) ≤ 2 + log(nc′
√
d) ≤ 2 + c′ logn + 1

2
logD = O(log n) + 1

2
logD.

We summarize the results for the diversity g(V ) of n points V ⊆ R
D:

g(V ) = Ω

(

log n

D

)

,

g(V ) = O(n) for D = 1, i.e. V ⊆ R,

g(V ) = O(D(logD) n) for D > 1,

g(V ) ≤ 2 + log
maxu,v∈V |u− v|

minu,v∈V ∧u6=v |u− v|
,

g(V ) = O(logn) +
1

2
logD with probability 1− n−c for any constant c > 0,

if the point set V is randomly chosen from [0, 1]D
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There are many reasons why for real-world scenarios the diversity can always be assumed
to be bounded by O(log n). Radio stations must be positioned with high accuracy such that
most radio stations are closer than any polynomial fraction of the largest distance to achieve a
high diversity. Note that assuming a polynomial bound on the fraction between the largest and
smallest distance of radio stations implies logarithmic diversity, compare Figure 4.5. A further
reason may be that there are not many orders of magnitude between the transmission range of a
radio station and the physical size of the antenna the radio station is equipped with. A commonly
used model for radio networks are civilized graphs [WL02, HBHMR+98] satisfying the property
that the distance between any two nodes in this graph is larger than a positive constant λ.

Approximating Congestion with the Hierarchical Layer Graph

Now we try to approximate congestion-optimal path systems for radio networks. For this purpose
we introduce the Hierarchical Layer Graph (HL-graph) with bounded degree, see Figure 4.6.
Adopting ideas from clustering [GGH+01a, GGH+01b] and generalizing an approach of [AS98]
we present a graph consisting of w layers L1, L2 . . . , Lw. The union of all these layers gives
the HL-graph. The lowest layer L1 contains all vertices V . The vertex set of a higher layer is a
subset of the vertex set of a lower layer until in the highest layer there is only one vertex, i.e.

{v0} = V (Lw) ⊆ · · · ⊆ V (L2) ⊆ V (L1) = V .

The crucial property of these layers is that in each layer Li vertices obey a minimum distance:
∀u, v ∈ V (Li) : |u− v| ≥ ri. Furthermore, all nodes in the next-lower layer must be covered
by this distance: ∀u ∈ V (Li) ∃v ∈ V (Li+1) : |u − v| ≤ ri+1. Our construction uses
parameters α ≥ β > 1, where for some r0 < minu,v∈V :u6=v |u− v| we use radii ri := βi · r0 and
we define in layer Li the edge set by E(Li) := {(u, v) | u, v ∈ V (Li) ∧ |u− v| ≤ α · ri}.

Note that if V (Li) = V (Lj) for i < j, then all edges of Li are also in Lj , i.e.E(Li) ⊆ E(Lj).
Hence, we omit the lower layer and consider only layers i1 < i2 < . . . < iw that form a strict
hierarchy, i.e. that V (Lij ) ⊂ V (Lik) and for all k ∈ [ij−1+1, . . . , ij]: V (Lk) = V (Lij ). The only
exception to this rule is the uppermost layer with |V (Liw)| = 1, where we choose the minimum
iw with |V (Liw)| = 1.

Using this subset of layers L′j := Lij we extend the indices of the layers also to negative
values, i.e. ij ∈ Z. As a side effect, we avoid any dependency between the parameter r0 and the
minimum distance of two points.

Figure 4.6 shows the idea behind the HL-graph. Note that the highest layer is omitted. The
graph is comparable to a map. For example, to drive from one city to another you can choose
different ways. You could use small streets and drive from hickstown to hickstown, in our case
this path would optimize energy consumption, or you drive via highways through big towns, this
is a good solution concerning hop minimization, or you use a combination of both to optimize
congestion. In the following we will more formalize these observations. It turns out that the
number of layers grows linear with the diversity of the point set.

Lemma 4.7 The number of layers of the HL-graph of a point set of n nodes is bounded by
g(V )(2 + 1

log β
) + O(1). If the orders of magnitudes of all distances Q(V ) form a consecutive

interval, then the number of layers is bounded by g(V )
log β

+O(1).



4.1 OMNIDIRECTIONAL COMMUNICATION 51

Figure 4.6: The idea of the Hierarchical Layer Graph

Proof: We start with the case that Q(V ) is consecutive, i.e. Q(V ) = {q0, . . . , qmax}, where
qmax > q0. Then there are no vertices u, v ∈ V with |u− v| < 2q0 . For all layers Li with ri < 2q0

we have V (Li) = V . Therefore, the first layer of the HL-graph is i1 := b q0

log β
c.

For qmax = max{Q(V )} we observe that all vertices u, v ∈ V satisfy |u − v| < 2qmax+1.
Hence, in the layer Li with ri ≥ 2qmax+1 there is exactly one vertex. The index of this layer is
iw = d qmax+1

log β
e.

So, we get the following maximum number of layers.

w = iw − i1 + 1 ≤
⌈

qmax + 1

log β

⌉

−
⌊

q0
log β

⌋

+ 1

=

⌈

q0
log β

+
g(V )

log β

⌉

−
⌊

q0
log β

⌋

+ 1

≤
⌈

g(V )

log β

⌉

+ 2 .

If Q(V ) is non-consecutive, there are m sets {q ′i, . . . , q′i + δi} ⊆ {q0, . . . , qmax} such that
{q′i, . . . , q′i + δi} ∩ Q(V ) = ∅. Note that qmax − q0 + 1 −∑m

i=1 δi = g(V ). For all i ∈ [m]
there exists no pair u, v ∈ V such that 2q′i ≤ |u − v| < 2q′i+δi+1. Hence, no points u, v ∈ V

exist with distance β
q′i

log β ≤ |u − v| < β
q′i+δi+1

log β , which implies that layers Lj with j ∈ {1 +
dq′i/ log βe, . . . , b(q′i + δi + 1)/ log βc − 1} are omitted in the HL-graph. The number S of all
omitted layers can be lower bounded as follows using m ≤ g(V ).

S ≥
m
∑

i=1

⌊

q′i + δi + 1

log β

⌋

−
⌈

q′i
log β

⌉

− 1

≥
⌈

m +
∑m

i=1 δi
log β

⌉

− 2m

≥
∑m

i=1 δi
log β

− 2g(V ) .

Subtracting S from the number of layers in the consecutive case with lowest level q0 and upper-
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most level qmax we obtain the following for the number of layers w by using m ≤ g(V ).

w ≤
⌈

qmax − q0
log β

+ 2

⌉

−
∑m

i=1 δi
log β

+ 2g(V )

≤ qmax − q0
log β

+ 3− qmax − q0 + g(V )− 1

log β
+ 2g(V )

≤ 2g(V ) +
g(V )

log β
+ 3

In the following, we will see that the weak c-spanner property has implications for minimiz-
ing congestion. First, we show that the Hierarchical Layer Graph is a spanner which implies that
it is also a weak spanner.

Theorem 4.7 If α > 2 β
β−1

the HL-graph is a c-spanner for c = β α(β−1)+2β
α(β−1)−2β

.

Proof: In the following we define a directed tree T on the vertex set V × [w] where w is the
number of layers. The leafs of T are all pairs V × {1}. If u ∈ V (Li), then (u, i) is a vertex of
T . T consists of the following edges: for i ≥ 2 if u ∈ V (Li), then {(u, i− 1), (u, i)} ∈ E(T ).
If u ∈ V (Li) \ V (Li+1) then choose arbitrary v ∈ V (Li+1) with {u, v} ∈ E(Li) and add
{(u, i), (v, i+ 1)} to the edge set of the tree T . The tree has depth w and the root is (v0, w).

Now for two vertices u, v ∈ V we define a clamp of height j, which is a path connecting u
and v. The clamp consists of two paths

P j
u := (u, p(u), p2(u), . . . , pj(u)) and P j

v := (v, p(v), p2(v), . . . , pj(v))

of length j − 1, where pi(w) denotes the ancestor of height i of a vertex w in the tree T . These
two paths are connected by the edge {pj(u), pj(v)}.
Lemma 4.8 If for vertices u, v the distance is bounded by |u− v| ≤ fj , where

fj = rj

(

α− 2
β − 1

βj

β − 1

)

,

then a clamp of height at most j is contained in the HL-graph.

Proof: First, it holds that
j
∑

i=0

ri =

j
∑

i=0

βi · ro = ro ·
βj+1 − 1

β − 1
=
rj+1 − r0
β − 1

= rj

(

β − 1
βj

β − 1

)

.

Hence we have

|u− v| ≤ fj = αrj − 2

j
∑

i=0

ri .

Consider the paths (u, p(u), p2(u), . . . , pj(u)) and (v, p(v), p2(v), . . . , pj(v)). They are contained
in the HL-graph, since |pi(u)− pi+1(u)| ≤ ri+1 and |pi(v)− pi+1(v)| ≤ ri+1. Furthermore, the
edge {pj(u), pj(v)} is in the HL-graph since |pj(u)−pj(v)| ≤ |u−v|+2

∑j
i=0 ri ≤ αrj. Hence,

a clamp of height j is contained in G.
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Lemma 4.9 A clamp of height j has maximum length gj, where

gj = rj

(

α + 2
β − 1

βj

β − 1

)

.

Proof: Recall that the length of the paths P j
u and P j

v is bounded by 2
∑j

i=1 ri, the edge

{pj(u), pj(v)} has length of at most αrj and
∑j

i=0 ri = rj

(

β− 1

βj

β−1

)

. This gives

||C|| ≤ αrj + 2

j
∑

i=0

ri = gj .

For any pair of vertices u, v with fj−1 < |u− v| ≤ fj there is a clamp of height j and length
gj. Hence, the stretch factor c can be upper bounded by c ≤ gj

|u−v| ≤
gj

fj−1
.

c ≤ gj

fj−1
=
gj

fj
· fj

fj−1
=
gj

fj
· β · α(β − 1)− 2β + 2β−j

α(β − 1)− 2β + 2β−j+1

≤ β · gj

fj
= β · α(β − 1) + 2β − 2β−j

α(β − 1)− 2β + 2β−j
≤ β · α(β − 1) + 2β

α(β − 1)− 2β
.

In Figure 4.7 the stretch factors of the HL-graph are given. We varied the parameter β and
computed the required value for α and the length stretch factor c.

Lemma 4.10 For any finite point set V ⊂ R
D and every layer Li of a HL-graph with parameters

α ≥ β > 1 we have the following.

1. For any u ∈ R
D, the number of points v ∈ V (Li) with |u− v| ≤ cri is at most (2c+ 1)D.

2. The degree of the sub-graph Li is at most (2α+ 1)D.

3. The interference number of Li is bounded by (2α + 1)2D.

Proof: Recall that kD := πD/2

(D/2)!
where kDrD is the volume of a D-dimensional sphere with

radius r.

1. For all u, v ∈ V (Li) we have |u − v| ≥ ri. Hence, all spheres with radii ri

2
and center

points u ∈ V (Li) do not intersect. If |u − v| ≤ cri then the sphere with center u and
radius ri

2
lies inside a sphere with center v and radius (c + 1

2
)ri. Let m be the number of

the smaller spheres inside this larger one. Then it follows

mkD
(ri

2

)D
≤ kD

((

c+
1

2

)

ri

)D
=⇒ m ≤ (2c+ 1)D .
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Figure 4.7: Length stretch factors of the HL-graph for different parameters α and β.

2. Follows by combining the preceding with the fact that the edge {u, v} ∈ E(Li) if u, v ∈
V (Li) and |u− v| ≤ αri.

3. Two edges each of length αri can only interfere if their end points have at most distance
αri. For each layer the number of such points of the same layer is bounded by (2α + 1)D.
Every of these points is adjacent to at most (2α+ 1)D edges of Li. Hence, the interference
number in Li is bounded by (2α+ 1)2D.

Theorem 4.8 For a vertex set V with diversity g(V ) the degree of the HL-graph is at most
g(V )(2 + 1

log β
)(2α + 1)D + O(1). The interference number is at most g(V )(2 + 1

log β
)(2α +
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1)2D + O(1). If Q(V ) is consecutive, the degree is bounded by g(V ) (2α+1)D

log β
+ O(1) and the

interference number is at most g(V ) (2α+1)2D

log β
+O(1).

Proof: We apply Lemma 4.7, bounded number of layers in the HL-graph, and Lemma 4.10,
bounded number of neighbors and egdes of a node in the HL-graph. For each point we observe
that there are at most (2α + 1)D vertices in a layer Li with distance αri. Each of these nodes
has at most (2α+ 1)D edges of length at most αri. Therefore, a vertex may suffer under at most
(2α + 1)2D interfering edges per layer. Summing up over all layers this observation proves the
upper bound of the interference number of the HL-graph.

A typical feature of radio communication is that transmitting information blocks a region for
other transmissions. We formalize this observation and define the capacity of a region following
a similar approach presented in [GK00]. Let A(R) denote the area of a geometric region R.

Definition 4.3 Given a network G = (V,E) and a load ` : E → R
+
0 we define the interference

function of an edge e ∈ E and a point x ∈ R
D as

f`(e, x) :=

{

`(e) , if x ∈ D(e) ,
0 , elsewhere.

The communication load κG,` of a point x and a bounded geometric region R ⊆ R
+ for a

given network G and load ` is defined as follows.

κG,`(x) :=
∑

e∈E(G)

f`(e, x) and κG,`(R) :=

∫

R

κG,`(x) dx .

An equivalent description of the communication load can be done by partitioning the region
R into elementary regions, where the same subset of edges interfere. For such an elementary
region R′ we observe

κG,`(R
′) =

∑

e∈E(G):R′⊆D(e)

`(e) · A(R′) ,

where A(R′) denotes the area or volume of R′.
For a non-elementary bounded region R we consider a partitioning into elementary regions

R1, . . . , Rm and get κG,`(R) :=
∑m

i=1 κG,`(Ri) .

The following lemma will help to understand the relationship between the communication
load of an elementary area and the congestion.

Lemma 4.11 For a graph G = (V,E) with V ⊂ R
D, load ` and a point x ∈ R

D it holds for
D ∈ {2, 3}

κG,`(x) ≤ cD · max
e∈E(G)

∑

e′∈BInt(e)

`(e′) ,

where c2 = 6 and c3 = 20.
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Proof: For the point x we partition the space into cD disjoint sub-spaces A1, . . . , AcD such that
for all u, v ∈ Ai |u − x| ≤ |v − x|, then |u − v| ≤ |v − x|. Then the angle between xu and
xv is at most π/3. Clearly, for two dimensions the optimal choice is cD = 6, which resembles
six sectors centered at x. For three dimensions, one can show that c3 = 20 cones starting at x
suffice. Therefor, one has to cover the surface of a sphere with disks whose diameter equals the
radius of the sphere. In [HSS97] it is shown that 20 such disks cover a sphere.

Now choose for each non-empty sub-space Ai a vertex ui ∈ Ai that minimizes the distance
|x − ui|. For every edge {v, w} with x ∈ D({v, w}) we show that there exists a vertex ui with
ui ∈ D({v, w}). Assume w.l.o.g. that x ∈ D|v−w|(v) and let ui be in the sub-space where v lies.
Since |ui − x| ≤ |x− v| we have |ui − v| ≤ |x− v| ≤ |v − w|. Therefore we have

κG,`(x) ≤
cD
∑

i=1

∑

e∈E(G):ui∈D(e)

`(e) ≤ cD · max
u∈V (G)

∑

e∈E(G):ui∈D(e)

`(e) ≤ cD · max
e∈E(G)

∑

e′∈BInt(e)

`(e) .

We get the following relationship between capacity, area, and congestion.

Lemma 4.12 Let R be a bounded region of area or volume A(R) and CP the congestion of a
path system P . Then the communication load of R is bounded by κ(R) ≤ cD ·A(R) ·CP , where
c2 = 6 and c3 = 20.

Proof:

κG,`(R) =

∫

R

κG,`(z) dz =

∫

R

∑

e∈E(G)

∑

e′:z∈D(e)

`(e′)dz ≤
∫

R

cD · CP dz = cD · CP · A(R) .

Every edge e with load `(e) has a certain impact on the capacity of the area covered by
the radio network. The following lemma claims that an edge e with load `(e) induces at least
communication load kD`(e)|e|D into a region R with D(e) ⊆ R.

Lemma 4.13 Consider an edge e in a region R, i.e. D(e) ⊆ R. Let K be the communication
load of R without any load on e and K ′ be the communication load of R with load `(e) on e
without any load change on the other edges. Then we observe

K ′ −K ≥ kD`(e)|e|D .

Proof: The proof follows from the definition of f`(e, x) and the fact that the volume of D(e)
for e = {u, v} is at least V (D|u−v|(u)) = kD|u− v|D.

Lemma 4.14 Let C∗ be the congestion of the congestion-optimal path system P ∗ under an op-
timal network N ∗ for a vertex set V . Then every weak c-spanner N can host a path system P ′
such that the induced load `(e) in N is bounded by `(e) ≤ c′g(V ) C∗ for a positive constant c′.
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Proof: Given a path P of the path system P∗, we replace every edge e = {u, v} of N ∗ that does
not exist in the weak c-spanner N with a path P (u, v) from u to v in N such that the new route
lies completely inside a disk of radius (c− 1

2
)|u− v| and center 1

2
(u+ v). The existence of such

a path follows from the weak spanner property, since we consider undirected edges. In the case
of directed edges there is a new route which lies completely inside a disk of radius (c+ 1

2
)|u− v|

and center 1
2
(u+ v), see Observation 3.1 in Chapter 3. As you can see, in this case we would get

c+ 1
2

instead of c.
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Figure 4.8: Left: the edge e interferes with other edges (at least) within the central disk. Its
information is rerouted on P , lying completely within the outer-disk with radius (c − 1

2
)|e|.

Right: the idea behind the upper bound for the rerouting. The traffic of the edge e = (u, v) is
rerouted to the edge e0 = (u0, v0). The disk or sphere around z reduces the capacity of the area
around z0.

For the path system P∗ there may have been interference between e and other edges. For
simplicity we underestimate the area where e can interfere with other communication by the disk
D1(e) with center 1

2
(u+ v) and radius 1

2
|u− v| (see Figure 4.8 (left)).

We want to describe the impact of rerouting of all edges in E(N ∗) to a specific edge e0 ∈
E(N) in the weak c-spanner N . If such an edge e0 = {u0, v0} ∈ E(N) transmits the traffic of
a detour for an edge e = {u, v} ∈ E(N ∗) of length |e|, then the distance between u as well as v
and any point of the tour is at most c|e|. Hence, also for the center z0 := 1

2
(u0 + v0) of e0 and

z := 1
2
(u+ v) we observe |z0 − z| ≤ c|e|.

Now consider the edge set Ei,e0
⊆ E(N∗) of edges e with length |e| ∈ [2i, 2i+1) for i ∈ Z

which reroute their traffic to e0. Their center points are located inside a sphere with radius c2i+1

and center z0. The region where e interferes has been defined by D(e). D(e) has volume of at
least kD2Di−D and lies completely inside the sphere D with radius 2i+1(c+1) and center z0. The
volume of D is kD2D(i+1)(c+ 1)D (see Figure 4.8 (right)).

Lemma 4.13 shows that every edge e reduces the capacity in D by at least kD`(e)2Di−D.
Because of Lemma 4.12, the overall capacity is at most

κG,`(D) ≤ cDkD2D(i+1)(c+ 1)DC∗ .
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This implies the following
∑

e∈Ei,e0

`(e)kD2Di−D ≤ cDkD2D(i+1)(c + 1)DC∗

=⇒
∑

e∈Ei,e0

`(e) ≤ cD22D(c+ 1)DC∗ .

There are at most g(V ) non-empty sets Ei,e0
. This implies for the sum of loads `(e) of the set

Ee0
:=
⋃

iEi,e0
⊆ E(N∗):

∑

e∈Ee0

`(e) ≤ cD22D(c+ 1)Dg(V )C∗ .

Theorem 4.9 Let P∗ be the congestion optimal path system for the vertex set V . Then the HL-
graph contains a path system P with congestion O(g(V )2CP∗(V )).

Proof: From Theorem 4.7 we know that the HL-graph is a c-spanner with c = β α(β−1)+2β
α(β−1)−2β

for α > 2β β
β−1

. Since a c-spanner is also a weak c-spanner, we can use Lemma 4.14 to
show that there exists a routing such that the load of an edge e is bounded by `(e) ≤ 2D(c +
1)Dg(V )CP∗(V ). Theorem 4.8 shows that the interference number of the network is bounded by
O(g(V )). Hence we get that CP(V ) = O(g(V )2CP∗(V )).

In practical scenarios the diversity can be seen as a logarithmic term (e.g., because the ratio
between longest and shortest distance is polynomial in the number of vertices, or the points
are chosen according to some uniform probability distribution). In these cases the HL-graph
provides a O((logn)2)-approximation for congestion.

4.1.5 Trade-Offs

We have seen efficient ways for selecting paths to optimize energy and approximate conges-
tion. One might wonder whether an algorithm can compute a path system for a radio network
optimizing congestion, dilation, and energy at the same time. It turns out that this is not the case.

Congestion versus Dilation

Let n ∈ N and W = c · n2 for any constant c ∈ N. For a vertex set Gn given by a
√
n×√n-grid

with unit grid distance the best choice to minimize congestion is to connect grid points only to
their neighbors given the demand f(u, v) = W/n2 for all pairs of vertices (see Figure 4.9). Then
the congestion isO(W/

√
n) and the dilation is given byO(

√
n). In [GK00] it is shown that such

a congestion is best possible in a radio network. A fast realization is given by a tree featuring a
hop-distance of O(logn) and congestion O(W ). Such a tree-construction for the Cost-distance
problem is presented in [SW01]. In both cases we observe CP(Gn)DP(Gn) = Ω(W ). This also
is true for any other path selection.

In 3-dimensional space we place the vertices on a 3
√
n × 3

√
n × 3

√
n-grid and experience

minimal congestion of O(Wn−2/3) with dilation O(n1/3).
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Figure 4.9: The grid Gn

Theorem 4.10 Given the grid vertex set Gn in D-dimensional space for D ∈ {2, 3} with traffic
W then for every path system P the following trade-off between congestion CP(Gn) and dilation
DP(Gn) exists:

CP(Gn) · (DP(Gn))D−1 = Ω(W ) .

Proof: For n = (3p)D we partition the 2-dimensional grid into three p × 3p rectangle shaped
vertex sets V1, V2, V3, such that V1 contains all left vertices, V3 all right vertices and V2 the vertices
in the middle. Similarly, we partition the 3-dimensional grid into three p×3p×3p cubicle shaped
vertex sets V1, V2, V3.

In both cases G denotes the complete graph with vertex set Gn and P denotes a path system
for the demand f . We concentrate on 1

9
th of the demand starting at V1 heading for vertices in V3.

We define by pi,j the route from vertex vi to vertex vj . Let `(pi,j) := f(ui, uj) := W/n2 denote
the information flow on path pi,j.

Consider two vertices vi ∈ V1 and vj ∈ V3. Then the path pi,j has at most DP(G) edges.
It follows from Lemma 4.13 that the induced communication load κG,`(pi,j) of the path pi,j is
at least κG,`(pi,j) ≥ kD`(pi,j)

∑

e∈pi,j
|e|D = kD

W
n2

∑

e∈pi,j
|e|D. This term is minimized if the

path uses the maximum possible number DP(G) of edges and all edges have equal length of
|e| = |ui−vj |

DP(G)
. Since |ui − vj| ≥ p = 1

3
D
√
n, this implies κG,`(pi,j) ≥ kDW

3DnDP(G)D−1 .

The length of the diagonal of the grid can be upper bounded by
√
D D
√
n (a side of the grid

has length 3p = D
√
n). Hence, all points with non-zero communication load reside in a square

S with edge length 3
√
D D
√
n. Lemma 4.12 states that the communication load of S with area

A(S) = (3
√
D)Dn is bounded by

κ(G, `)(S) ≤ cD · CP(G)A(S) = cD · CP(G) · (3
√
D)Dn .

The sum of the communication load induced by all paths pi,j cannot extend the communication
load of S.

∑

vi∈V1

∑

vj∈V3

κG,`(pi,j) ≤ κG,`(S) .
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Combining the inequalities we get

n2

9

kDW

3DnDP(G)D−1
≤
∑

vi∈V1

∑

vj∈V3

κG,`(pi,j) ≤ κG,`(S) ≤ cD · CP(G) · (3
√
D)Dn .

This states the claim, since

CP(G)(DP(G))D−1 ≥ kDW

cD9D+1
√
DD

.

Dilation versus Energy

The simplest location of nodes is the line vertex set Ln as investigated in [KKKP00], see Fig-
ure 4.10. Here all vertices Ln = {v1, . . . , vn} are placed on a line of length ∆ with equal
distances |vi − vi+1| = ∆

n−1
for i ∈ {1, . . . , n}. Only the leftmost and the rightmost node want

to exchange messages, i.e. f(v1, vn) = W and f(v, w) = 0 for all other pairs (v, w). The
energy-optimal network for unit and flow energy is the path (v1, v2, . . . , vn), given the unit en-
ergy U-EnergyP(Ln) = (n − 1) ∆2

(n−1)2
= ∆2

n−1
, the flow energy F-EnergyP(Ln) = ∆2W

n−1
and the

dilation n.

Figure 4.10: The line Ln

The fastest network realizes only the edge {v1, vn} with hop-distance 1 and unit energy ∆2

(and flow energy W∆2). There are path systems that can give a compromise between these
extremes. However, it turns out that the product of dilation and energy cannot be decreased:

Theorem 4.11 Given the vertex set Ln with diameter ∆ then for every path system P the fol-
lowing trade-offs between dilation D and unit energy U-Energy (resp. flow energy F-Energy)
exist:

DP(Ln) · U-EnergyP(Ln) = Ω(∆2) ,

DP(Ln) · F-EnergyP(Ln) = Ω(∆2W ) .

Proof: Let m be the hop length, i.e. the number of edges on the longest path of P (w.l.o.g. we
assume that there are only edges with non-zero information flow `(e) > 0). For the unit energy
model we can assume that there is only a path P from v1 to vn, since introducing more edges
needs additional energy without decreasing the dilation. We have to minimize U-EnergyP(p) :=
∑m

i=1(Li)
2 defined by the edge lengths L1, . . . , Lm, where

∑m
i=1 Li = ∆. Clearly, the energy

sum is minimal for L1 = L2 = · · · = Lm = ∆
m

giving U-EnergyP(p) ·DP(p) ≥ ∆2 . The bound
for the flow energy follows analogously.
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The Incompatibility of Congestion and Energy

We show that for some vertex sets congestion and energy are incompatible. This is a worst case
trade-off-situation since there is no possible compromise between congestion and energy.

The vertex set Uα,n for α ∈ [0, 1
2
] consists of two horizontal parallel line graphs Lnα and

contains n vertices. Neighbored (and opposing) vertices have distance ∆
nα for any ∆. There is

only demand W/nα between the vertical pairs of opposing vertices of the line graphs. The rest
of the n − nα vertices are equidistantly placed between the vertices of each line graph and the
leftmost vertical pair of vertices (see Figure 4.11).

Figure 4.11: Vertex set Uα, n

The minimum spanning tree consists of n vertices and n − 1 edges where all edges have
length Θ(∆/n). This results in a total unit energy of

U-EnergyMST(Uα,n) = O(∆2n−1)

and flow energy of

F-EnergyMST(Uα,n) = O(W∆2n−1) .

The congestion of the same network is given by

CMST(Uα,n) = O(W ) .

The congestion optimal path system P ′ connects only vertices with non-zero demand. Its
congestion is

CP ′(Uα,n) = O(Wn−α)

and its unit energy is

U-EnergyP ′(Uα,n) = O(∆2n−α) .

The flow energy is given by

F-EnergyP ′(Uα,n) = O(Wn−α∆2) .

Lemma 4.15 For α ∈ [0, 1
2
) and the vertex set Uα,n with diameter ∆ let x ∈ {0, . . . , nα} be the

number of edges of length at least ∆n−α of a path system for the radio network and let r ∈ [0,W ]
be the information flow on these edges. Then we have for the congestion C, unit energy and flow
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energy:

U-EnergyP(Uα,n) ≥ max

{

∆2

4n
,
x∆2

n2α

}

, (4.2)

CP(Uα,n) ≥ W

x + 1
, (4.3)

F-EnergyP(Uα,n) ≥ max

{

W
∆2

4n
, r

∆2

n2α

}

, (4.4)

CP(Uα,n) ≥ max
{ r

12nα
,W − r

}

. (4.5)

Proof: The energy consumption of the minimum unit energy network is given by the U-shaped
path (MST). The minimum hop-distance between the half of the communication partners is at
least n/2. Hence, the minimum energy is at least ∆2

2n
. For x edges of length ∆/nα the unit energy

cost of theses edges alone is x∆2

n2α . In the case of flow energy, we get the additional factors.
For simplicity we call an edge with minimum length ∆/nα a long edge. Note that every long

edge {u, v} that connects two points on the same horizontal line or one of the leftmost vertical
pair and a horizontal line does not reduce the congestion of any point that lies between u and v
according to the minimum unit energy network. So, let x denote the number of edges connecting
nodes of the lower row with the upper row. Using these x edges the minimum cut of the path
system between upper row and the lower row is x + 1. Hence, the minimum load on every edge
of this cat is W

x+1
. If we optimistically assume that these edges do not interfere we obtain the

lower bound.
Now let r denote the number of messages that are delivered on long edges connecting the

lower with the upper row. Now consider the rectangular region R between the rows. The com-
munication load of each of these long edges e induced into this region R of area A(R) = ∆2

nα is
at least ∆2

2n2α `(e). Therefore the communication load induced by all these edges is at least r ∆2

2n2α

and at most c2CP(Uα,n)A(R) = 6∆2

nαCP(Uα,n). This implies

CP(Uα,n) ≥ r

12nα
.

The residual W − r packets need to be routed between the shorter edges of the leftmost vertices.
Even without radio interference at least congestion Wr will occur.

Theorem 4.12 There exists a vertex set V with a path system minimizing congestion to C ∗, and
another path system optimizing unit energy by U-Energy∗ and minimal flow energy by F-Energy∗

such that we have for any path system P on this vertex set V

CP(V ) = Ω(n1/3C∗) or

U-EnergyP(V ) = Ω(n1/3U-Energy∗) ,

CP(V ) = Ω(n1/3C∗) or

F-EnergyP(V ) = Ω(n1/3F-Energy∗) .

Proof: The claim follows directly by Lemma 4.15 using the graph V = U1/3,n.
Hence, it is not possible to optimize more than one parameter at the same time. The wireless

network designer has to decide in favor of small congestion or low energy consumption.
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4.2 Directional Communication

In this section, we focus on directional single frequency, power-variable ad hoc networks. We
assume that every station is equipped with a fixed number k of wireless transmitters and can
send and receive radio signals independently and in parallel in k (disjoint) sectors or cones.
Every node is allowed to adjust the transmission power in each of its sectors.

In comparison with the traditional use of omnidirectional transmitters, we show improve-
ments in efficiency and capacity of ad hoc networks due to directional communications which
can also be described as one kind of space multiplexing. In the following subsections, we com-
pare different network topologies for basic networks, i.e. the Yao-graph (or θ-graph or sector
graph or YG) and some also known related topologies, which will be called the SparsY-graph (or
sparsified Yao-graph or YY) and the SymmY-graph (or symmetric Yao-graph or YS).

We compare elementary graph properties and consider the communication features. Espe-
cially, we investigate how these network topologies bound the amount of (unidirectional and
bidirectional) interference and whether these basic networks allow us to approximate energy-
and/or congestion-optimal path systems. It turns out that in a worst case scenario, the SparsY-
graph combines good performance in terms of interference, congestion, and energy: for energy
it allows us a constant factor approximation and a O(logn) approximation of congestion using
realistic settings.

In cooperation with electrical engineers, we have developed an infrared communication mod-
ule for the mini-robot Khepera [MFG99, KTe00] that can transmit and receive data in eight sec-
tors using infrared light with variable transmission distances up to one meter (see Figure 4.12).
We have used a colony of Khepera robots, each equipped with such a module, to show that the
directional approach is also suitable in practical situations. Besides our simulations, see Chap-
ter 6, this has been very helpful to evaluate our results using realistic settings. Our hardware
model allows us sector-independent directional communication, adjustable transmission power,
one frequency, and interference detection. Nowadays communication techniques make it also
possible to build up such a wireless network using directional antennae, adaptive antennae, or
beam-forming antennae. There exists a lot of works concerning wireless networks using direc-
tional antennae, e.g., [HP96, BGLA02, Oka98, Ram01, TMBR02, CYVR02, GY04, KSV00].

Figure 4.12: The mini-robot Khepera equipped with an infrared communication module
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To the best of our knowledge we are one of the first who combined theoretical algorithmic
research and prototypical realization of the directional communication model. On the one hand,
we present mathematical analyses and prove interesting properties. On the other hand, we have
implemented our algorithms in testbeds as well as in prototypical environments in cooperation
with electrical engineers and show that they perform well in realistic szenarios. In the meantime,
similar algorithmic approaches using a directional or a cone-based or a sectorized modeling can
be found, e.g., in [WLWF02, LWW01, WL02, ALW+03, LHB+01, SWL04, WL03]. But all
works differ in assumptions. In some works the knowledge of coordinates is assumed given by a
GPS module or there is some centralized administration necessary, e.g., in [CJBM01, XHE01],
or sectorized topologies are used in an omnidirectional communication model to approximate the
unit disk graph. In the last case the omnidirectional antennae have to be equipped with additional
functionalities like the detection of the angle of incoming signals to get a rough estimation in
which sector a signal is received. Excellent surveys of applications of computational geometry
in ad hoc networks, especially with focus on topology control and routing, are presented by X.-Y.
Li [Li03b, Li03a, Li03c] and R. Rajaraman [Raj02].

The remainder of this section is organized as follows. In Subsection 4.2.1 we introduce our
communication and our hardware model in which we allow each node to transmit data in parallel
in a fixed number of (non-overlapping) sectors. In addition, we discuss assumptions concern-
ing the location of nodes. In Subsection 4.2.2 we present three different sectorized topologies,
namely the Yao-graph, the SparsY-graph, and the SymmY-graph. In Subsection 4.2.3 we prove
that the SparsY-graph is a weak c-spanner for a constant c if more than 6 sectors/senders per
node are available. Hence, we can apply our results of Chapter 3 to show that the SparsY-graph
is a C-power spanner for some constant C depending only on c. This implies directly that the
SparsY-graph allows us to approximate an energy-optimal path system by a constant factor. Fur-
thermore, we show that the SymmY-graph is neither a weak spanner nor a power spanner, in
general. Nevertheless, we prove that it is connected if every station is equipped with more than
6 transmitters. In Subsection 4.2.4, we introduce the unidirectional interference number and
compare network properties. Since a weak spanner as a communication network allows us an
approximation of a congestion optimal path system by a factor of O(g(V )), where g(V ) denotes
the diversity of V (see Section 4.1), we prove that the Yao-graph gives an O(n · g(V )) approx-
imation in consideration of bidirectional interference which can be regarded as O(n log n) in
real-world applications. For the SparsY-graph this approximation factor is given by O(g(V ))
resp. O(logn) taken unidirectional interference into account.

4.2.1 Modeling Directional Communication

One aim of this thesis was to design, to analyze, and to implement algorithms for ad hoc networks
based on the directional communication model. Besides the traditional use of omnidirectional
antennae, we wanted to investigate the effect of space multiplexing techniques and variable trans-
mission powers on the efficiency and capacity of ad hoc networks. Therefore our stations can
send and receive radio signals independently in k sectors of angle θ = 2π/k using one frequency.
Furthermore, our radio stations can regulate its transmission power for each transmitted signal.
As mentioned already in Section 4.1 a major problem in wireless networks is the effect of inter-
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fering (radio) signals. Analogously to the interference problems in the omnidirectional commu-
nication model, see Figure 4.1, we have directed hidden and exposed terminals as well as directed
asymmetric interference in the directional communication model, see Figure 4.13. Solutions ex-
ist that reduce the negative outcome of these problems. For example, in [KSV00, CYVR02] the
authors attempt to design new MAC protocols suitable for ad hoc networks based on directional
antennae, i.e. directional MAC (D-MAC) schemes that combine the use of omnidirectional and
directional control packets to reserve the channel.

B

C

A

a)

B

b)

A

C

D

B

c)

A

D C

Figure 4.13: Directed hidden and exposed terminals: a) Node A is transmitting to node B. When
C listens, C does not receive the signal from A, starts transmitting and the signals will interfere,
b) B is transmitting to A. C listens (the sector in which D lies). Since it seemed to be busy, C does
not start transmitting and throughput is decreased. Asymmetric interference: c) C is transmitting
to D, the transmission power had been adjusted. For A the channel to B seems to be free and A
also begins to send data. The shorter link breaks down.

We assume that most of the time the ad hoc network is stable and performs a communication
protocol according to a given routing problem. In Section 4.1 we showed that the quality of the
routing depends on the choice of the underlying network that we call the (basic) communication
network or the topology. We want to investigate a distributed network model where the only
information available is given by incoming radio signals and in which sector it is received. This
gives a rough estimation of the direction to the sender.

In our communication model, we assume that a radio station u is able to detect three types
of incoming signals: no signal indicates that no radio signal is transmitted at all or that all radio
stations in distance d send with some transmission distance d′ < d. The interference signal
indicates that at least one radio station v transmits to a station w in this time step in a sector in
which u lies and |v − u| ≤ |v − u|. A clear signal is received by u if one radio signal with
appropriated transmission power to cancel out weaker incoming signals is reaching u’s antenna.
Then u can read the transmitted information m ∈ {0, 1}p of some length p. A communication
round is the time necessary to send one packet of length p, where p is large enough to carry
some elementary information like the sending station, the addressed stations (if specified), the
transmission distance, and some control information.

We assume that there is a timing schedule adapted to the topology that allows the stations
in a static time period to transmit and acknowledge packets over the network routes with only
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small number of interfering packets. During such a phase we can neglect the interfering impact
of acknowledgment signals. In [GRSV03] it is shown that assuming such a phase is realistic.

However when a connection is established the sending and answering signal have the same
small length, because only control information needs to be transmitted. Then the impact of an-
swering signals is the same as those of sending signals. Therefore, we consider two types of
interference: the unidirectional interference in the routing mode and the bidirectional interfer-
ence when connections are established or network changes are compensated.

In our hardware model, every node can choose the transmission power according to s dis-
crete choices p1, . . . , ps. The energy to send over distance d is given by dδ for some constant δ ≥
2, see Section 2.1. This defines the transmission distances di = (pi)

1/δ for all i ∈ {1, . . . , s}. Ev-
ery node u has k sending and receiving devices which are located such that they can communicate
in parallel within each of its k disjoint sectors with angle θ = 2π/k. Every node u has been ro-
tated by an angle αu ∈ [0, 2π/k) which is unknown to u. Note that the radio stations have differ-
ent offset angles αu. If u sends a signal in the sector i for i ∈ {0, . . . , k−1} it actually sends into
a direction described by the intervalR = [αu + iθ, αu +(i+1)θ) and can be received by the node
v in sector j for j ∈ {0, . . . , k−1} ifR∩[(αv+jθ+π) mod 2π, (αv+(j+1)θ+π) mod 2π) 6= ∅.
Of course v receives the packet from u only if in addition u sends this signal with transmission
distance di ≥ |u− v|.

Furthermore, we allow the radio stations to measure distances only by sending messages
with varying transmission power. Then the receiving party can only decide whether the signal
arrives or not. This restricts transmission distances to the set S = {d1, . . . , ds}. Define D̃ :
R → {∅, 1, . . . , s} as the minimum discrete choice of transmission power to send over a given
distance by

D̃(x) :=

{

min{i | di ≥ x} if x ≤ ds

∅ if x > ds

Define ^(u, v) as the number of u’s sector containing the edge (u, v) (note that θ = 2π/k), i.e.

^(u, v) :=

⌊

[](v − u)− αu]

θ

⌋

mod k ,

where ](x) denotes the angle of a vector x in R
2.

One of the most delimiting properties is that radio stations do not know their locations. In the
following we want to clarify some assumptions concerning the location of nodes. As mentioned
in Section 2.3 we search for a good subgraph of the complete geometric graph or of the unit
disk graph which fulfills specific properties. In this section every node can choose from a set of
transmission distances, such that the maximum transmission range is bounded, i.e. it is not always
possible to build up a complete graph, if it is wished, but we get a graph which is comparable
with a unit disk graph. Here, it makes no sense to consider wireless networks where nodes take
abnormal positions. We want to neglect problems occurring when the maximum transmission
distance is shorter than distances between nodes. Therefore, in our practical setting, we assume
a nice and normal vertex set. This particularly means that there is always only one nearest
neighbor in each sector.
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Definition 4.4 A vertex set V is in general position, if there are no vertices u, v, w ∈ V with
v 6= w and |u−v| = |u−w|. We call a vertex set normal, if for a fixed polynomial p(n) we have

maxu,v∈V |u− v|
minu,v∈V,u6=v |u− v|

≤ p(n) .

Because of the discrete model for the transmission distances we cannot distinguish distances
within [di, di+1). However, we assume that these distances form a fine granular scale.

Definition 4.5 We call the locations of radio stations nice, if we have D̃(|u − v|) 6= ∅ for all
u, v, w ∈ V and

v = w ⇐⇒ ^(u, v) = ^(u, w) ∧ D̃(|u− v|) = D̃(|u− w|) .

Note that we do not need nice and normal vertex sets for our mathematical analyses. We need
only the assumption that the node set V is not degenerated, i.e. no point in V is placed on the
boundary of a sector of another point in V , and we assume unlimited transmission ranges.

4.2.2 Directional Topologies

We consider a set of n nodes distributed in the Euclidean plane. Since every node has k ∈ N

transmission devices that allow each node sending data in sectors, we divide the area around a
node into k equal non-overlapping sectors of angle 2π/k, see Figure 4.14. This is an idealized
assumption because we assume that these sectors do not overlap and have fixed borders. In
reality, sectors overlap, borders are not fixed, and physical effects like areas with no reception
occur. In Chapter 6 we present the results of our simulations using realistic propagation models.

Figure 4.14: The area around a node is divided into a fixed number of sectors, in this case 6. In
each of its sectors a node can establish communication links.

Since our underlying hardware model allows a node to communicate in k (disjoint) sectors
in parallel, a straight-forward approach is to choose as a communication partner the nearest
neighbor in a sector. This leads directly to the definition of the Yao-graph. Here, in each sector a
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node establishes a communication link to the nearest node in this sector. Note that the definition
of nearest neighbor differs in some approaches because of additional side conditions. We use
the definition where the nearest node in a sector is given by the node with the shortest Euclidean
distance. Furthermore, we assume that a nearest neighbor is unique, i.e. we do not consider
the case of degenerated vertex sets or in the case of more than one nearest neighbor in a sector
we choose the one with the lowest identification (see [WL02]) respectively. Hence, the out-
degree of the Yao-graph is bounded by k, but a node can be the nearest neighbor of many nodes.
To overcome this problem of high in-degree resulting time-consuming interference resolution
schemes (high interference), we present further Yao-graph based topologies. In the SparsY-graph
(or sparsified Yao-graph or YY) every node accepts only the shortest incoming communication
link. Finally, in the SymmY-graph (or symmetric Yao-graph or YS) only links are established that
are symmetric. More formally, we get the following definitions (note that we have investigated
these structures in parallel to the authors of [LWW01, WLWF02]):

Definition 4.6 Let V ⊆ R
2, k ∈ N and G = (V,E) be a geometric graph. The area around a

node u ∈ V is divided into k non-overlapping sectors or cones of angle θ = 2π/k. We denote
the sector of u in which a node v ∈ V lies by ^(u, v).

• G is the Yao-graph (Yao(V )) of V , if E := {(u, v) | ∀w 6= u : ^(u, v) = ^(u, w) ⇒
|u− v| < |u− w|}.

• G is the SparsY-graph (SparsY(V )) of V , if E := {(u, v) ∈ E(G) | ∀w 6= u : ((w, v) ∈
E(G) and ^(v, w) = ^(v, u)) ⇒ |u − v| < |w − v|} where G denotes the Yao-graph of
V .

• G is the SymmY-graph (SymmY(V )) of V , if E := {(u, v) ∈ E(G) | (v, u) ∈ E(G)}
where G denotes the SparsY-graph of V .

Figure 4.15: Yao(V ) of a random vertex set V of 500 nodes with 8 sectors.
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Figure 4.16: SparsY(V ) and SymmY(V ) of a random vertex set V of 500 nodes with 8 sectors.

All three topologies or graphs are sparse graphs, i.e. the number of edges in a graph is upper
bounded by O(|V |), in this case even exactly by k · |V |. Examples of the Yao-graph and its
variants are given in Figure 4.15 and Figure 4.16. We used our tool presented in Section 6.2 to
generate the three graphs of a random vertex set V of 500 nodes in wich every node is equipped
with 8 sectors/senders. The reader should observe the decreasing edge density from the first to
the third picture. Brighter edges indicate edges which appear in the SparsY-graph but not in
the SymmY-graph. Clearly, the SparsY-graph and the SymmY-graph are graphs with bounded
in- and out-degree. Definition 4.6 directly implies that the SymmY-graph is a subgraph of the
SparsY-graph, and that the SparsY-graph is a subgraph of the Yao-graph. The figures point out
this relation. It is known that all three graphs can be constructed locally, e.g., using a sweepline
algorithm in time O(n log n) if the orientation of the sectors on the nodes is fixed and equal on
all nodes (see [FLZ98, FMS97]).

4.2.3 Elementary Graph Properties

The Yao-graph [Yao82] was first introduced to computational geometry for constructing mini-
mum spanning trees in k-dimensional space and related problems. In [FLZ98] it was proven that

Yao(V ) is a weak
(

√

3 +
√

5
)

-spanner for k = 4. In [FMS97], the authors showed that Yao(V )

is a weak max
{

√

1 + 48 sin4(π/k),
√

5− 4 cos(2π/k)
}

-spanner for k ≥ 6. Furthermore, it is

known that Yao(V ) is a 1/(1− 2 sin(π/k))-spanner for k > 6 [RS91].
It is easy to construct examples for k ≤ 3 such that the Yao-graph with k sectors is not

connected when the orientation of the sectors on the nodes is fixed and equal on all nodes. In this
case Yao-graphs are provably connected for k ≥ 4. There exist placings such that the Yao-graph,
the SparsY-graph, and the SymmY-graph are not connected using less than 6 sectors when we
assume an offset angle αu for each node (see Figure 4.17). Later on, we show that SymmY-
graphs are always connected for k > 6, i.e. all three variants guarantee connectivity for k > 6.
The case k = 6 depends on assumptions: if we assume non-degenerated vertex sets, i.e. no point



70 STATIC AND DYNAMIC AD HOC NETWORKS

PSfrag replacements

k = 1 k = 2
k = 3

k = 5

Figure 4.17: Yao-graphs are not always connected for k ≤ 3 when the orientation of the sectors
on the nodes is fixed and equal on all nodes (left). In our model we assume an arbitrary offset
angel αu for each node u, such that all three graphs are not always connected for k ≤ 5 (right).

in V is placed on the boundary of a sector of another point in V , all the following results for
k > 6 hold also for k = 6. In real-world applications we can assume non-degenerated node
placements due to technical inaccuracies, e.g., very small differences in the size of the hosts or
in the alignment of transmitters etc.

Observation 4.1 Let V ⊆ R
2 and n:=|V |. Then SymmY(V ) ⊆ SparsY(V ) ⊆ Yao(V ) and

Topology Yao(V ) SymmY(V ) SparsY(V )

in-degree n− 1 k k
out-degree k k k
degree n− 1 k 2k

Now we show that the Yao-graph is a c-power spanner for some constant c.

Theorem 4.13 Let V ⊆ R
2 and k > 6. Then Yao(V ) is a

(

(

1
1−2 sin(π/k)

)δ

, δ

)

-power spanner.

Proof: Since Yao(V ) is a c-spanner for k > 6 and c = 1/(1 − 2 sin(π/k)), we apply Theo-
rem 3.2: every c-spanner is (cδ, δ)-power spanner and the claim follows directly.

Theorem 4.14 shows a stronger result proven in [LWW01].

Theorem 4.14 [LWW01] Let V ⊆ R
2 and k > 6. Then Yao(V ) is a

(

1
1−(2 sin(π/k))δ , δ

)

-power
spanner.

It is an open problem whether all SparsY-graphs are c-spanners, i.e. the shortest path between
vertices in the network is at most c-times longer than the Euclidean distance. It was proven in
[WL02] that SparsY-graphs are c-spanners for a constant c in civilized graphs. In a civilized
graph the distance between any two nodes is larger than a positive constant λ. The power spanner
property follows analogously in civilized graphs. In the following we show that SparsY-graphs
are weak c-spanners for a constant c, in general. But first, we need a technical lemma.
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Lemma 4.16 Let V ⊆ R
2 and k > 6. Consider two vertices u, v, then for all w ∈ V with

|u−w| ≤ |u−v| and ^(u, w) = ^(u, v) it holds that |u−w|+|w−v| < |u−v|+2 sin (π/k)|u−v|.

Proof: Let w′ be the point on the line segment uv with |u − w′| = |u − w|. Then |w′ − v| =
|u− v| − |u−w′| = |u− v| − |u−w| and therefore |u−w| = |u− v| − |w′− v|. Furthermore,
we have |w − w′| < 2 sin (π/k)|u− v| and |w − v| ≤ |w − w′|+ |w′ − v|. Combining the facts
yields the claim.

Now we are ready to prove that every SparsY-graph is a weak spanner if more than 6 sec-
tors/senders per node are available.

Theorem 4.15 Let V ⊆ R
2 and k > 6. Then SparsY(V ) is a weak c-spanner for c = 1

1−2 sin(π/k)
.

Proof: Let G = (V,E) be the SparsY-graph and GY = (V,EY ) be the underlying Yao-graph.
For any two vertices u, v ∈ V we will show how to find a directed path from u to v in the
SparsY-graph that is inside a disk with center u and radius |u− v|/(1− 2 sin(π/k)).

For a sector i, define the Yao-neighbor w of the vertex u as the (unique) vertex w with
(u, w) ∈ EY . Now if u has no directed edge in a sector i in G, then either the sector is empty, i.e.
there is no edge in the Yao-graph, or there is a Yao-neighbor w in sector i, i.e. (u, w) ∈ EY . In
the second case there must be another vertexw′ in another sector of u, but in the same sector of w
as u, with (w′, w) ∈ E and |w′−w| < |u−w| and |u−w′| < |u−w| since k > 6, see Figure 4.18
(left). Note that u has at least one nearest neighbor w′′ in a sector, i.e. ∃w′′ ∈ V : (u, w′′) ∈ E.
This is the vertex w′′ ∈ V with the shortest Euclidean distance to u.
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Figure 4.18: Weak spanner property of the SparsY-graph

Now we recursively construct the path P (u, v) from u to v using some of the Yao-neighbors
of u. An example of such a path is given in Figure 4.18 (right). If (u, v) ∈ E then P (u, v) =
(u, v), if u = v then P (u, v) = (u = v). If in sector i = ^(u, v) the Yao-neighbor, called q0,
is not directly connected to u. Then we know that there exists an edge (p0, q0) ∈ E, where p0

is in a sector i1 6= i0 of u and |u − p0| < |u − q0| since k > 6. Furthermore, we have that
|u − q0| ≤ |u − v|. Then we repeat this consideration for the sector i1 and replace p0 by v.
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This iteration ends when a Yao-neighbor qm or pm is directly connected to u, i.e. (u, qm) ∈ E or
(u, pm) ∈ E. Because every node has at least one neighbor in E this process terminates.

Now we recursively define the path P (u, v) from u to v that terminates at node qm by

P (u, v) = (u, qm) ◦ P (qm, pm−1) ◦ (pm−1, qm−1) ◦ . . . ◦ P (q1, p0) ◦ (p0, q0) ◦ P (q0, v).

For pm the path can be defined analogously: we replace (u, qm) by (u, pm) ◦ (pm, qm). Note
that all nodes pi, qi are inside the disk with center u and radius |u − v|, see Figure 4.18 (right).
Furthermore, we have |qi − pi−1| < |u − v|. In the next recursion step, i.e. if we assume that
the same construction works for all P (qi, pi−1), vertices of the path may lie outside of this disk.
However Lemma 4.16 implies that the maximum disk amplification of this recursion step can be
bounded by 2 sin(π

k
) |u− v|. Now let r be the depth of the recursion, then by

r
∑

i=0

(

2 sin
(π

k

))i

|u− v| ≤ 1

(1− 2 sin(π
k
))
· |u− v|

it follows, that the path P (u, v) from u to v lies completely inside the disk with center u and
radius |u− v|/(1− 2 sin(π

k
)).
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Figure 4.19: Stretch factors of the Yao-graph and the SparsY-graph.
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Figure 4.19 gives an overview of the stretch factors of the Yao-graph and the SparsY-graph.
The length and the weak stretch factors are given respectively. Furthermore, the power stretch
factors of the Yao-graph given by Theorem 4.14 are presented for different values of δ. In the
following we present an upper bound for the δ-cost of the path constructed in Theorem 4.15. If
we assume that in a recursion step all k sectors are used as specified in Theorem 4.15 then there
is only one edge of length at most |u− v| in the first step, see Figure 4.18 (right), and in step i
there are at most ki new edges of length at most (2 sin(π/k))i|u − v|. Hence, the δ-cost of the
path P (u, v) from u to v is given by

||P (u, v)||δ ≤
∞
∑

i=0

(k · (2 sin(π/k)δ)i|u− v|δ ≤ 1

1− k · (2 sin(π/k))δ
· |u− v|δ

for k · (2 sin(π/k))δ < 1. If we assume that sin 1
k
≈ 1

k
, we get: k > (2π)

δ
δ−1 . In the case that

this upper bound is also an upper bound for the δ-cost of any path between u and v we could
directly follow that SparsY(V ) is a (c, δ)-power spanner for k > (2π)

δ
δ−1 where c = 1

1−k·(2 sin π
k
)δ .

This means that SparsY(V ) would be a power spanner for k > 4π2, i.e. at least 40 sectors are
necessary to fulfill the power spanner property for δ = 2. Of course, this is not a proof but in the
following we show a better result: SparsY(V ) is already a power spanner for k > 6.

The SparsY-graph was investigated experimentally in [LWW01, WLWF02, Vol04a], see also
Section 6.2 of Chapter 6, on uniformly and randomly distributed vertex sets. One conclusion was
that the SparsY-graph might be a spanner and also a power spanner. The first conjecture is still
open, while the latter was independently investigated in [JRS03] and [GLSV02]. In [GLSV02]
we presented only the idea of a proof. The authors of [JRS03] presented a technical proof with
lots of different cases and assumed further that θ ≤ π/60, i.e. when at least k ≥ 120 sectors are
present. Combining our results on the relation between weak spanners and power spanners and
Theorem 4.15 we can show that the SparsY-graph is already a power spanner for k > 6 sectors.

Corollary 4.1 Let V ⊆ R
2 and k > 6. Then SparsY(V ) is a c-power spanner for a constant c.

Proof: We combine Theorem 4.15 and Theorem 3.5 and the claim follows directly.

Now we solve the open problem stated in [WL02], whether the SymmY-graph is a c-spanner, or
a power spanner by giving a negative answer:

Theorem 4.16 Let V ⊆ R
2 and k = 6. Then SymmY(V ) is neither a weak c-spanner for any

constant c ∈ R, nor a (c, δ)-power spanner for any constant c ∈ R and δ > 1.

Proof: We present a construction (see Figure 4.20) for n points in the plane, such that the
SymmY-graph of these points is not a weak c-spanner for any constant c and not a (c, δ)-power
spanner for any constant c and δ > 1.

Let `1 and `2 be two vertical lines of unit distance from each other, such that `2 is right
to `1. Rotate `1 clockwise around its intersection point with the x-axis by a very small angle
γc, and rotate `2 counter clockwise around its intersection point with the x-axis by an angle
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Figure 4.20: SymmY(V ) for k = 6: construction with large stretch factors

γc. We denote the rotated lines by `′1 and `′2. Consider the vertex sets U = {u1, . . . , um} and
V = {v1, . . . , vm}, m = n/2, placed on `′1 and `′2, respectively, as follows. Assume that for
each point u ∈ U , the half-line, halving the ith sector of u is horizontal and directed in positive
x-direction, and for v ∈ V , the half-line, halving the i′th sector of v is horizontal and directed in
negative x-direction. The vertex u1 is placed on the intersection point of `1 and the x-axis. We
place v1 on `′2 such that v1 is in the ith sector of u1 and it is very close to the upper boundary
of the ith sector of u1. The vertex u2 is placed on `′1 in the i′th sector of v1 close to the upper
boundary of that sector. The vertex v2 is placed on `′2 in the ith sector of u2 close to the upper
boundary of that sector and so on. Then the SymmY-graph does not contain any edge (u, v)
such that u ∈ U \ {um} and v ∈ V \ {vm}. The nearest neighbor of u1 in sector i is v1, while
v1 has u1 and u2 also in sector i′, where u2 is nearer, etc. Only the last link um, vm will be
established. Therefore, even if there is a path from u1 to v1 in the SymmY-graph, its length is at
least |u1 − um|+ |um − vm|+ |vm − v1|. For any given c we can choose γc appropriately small,
in order to get |u1− um|, |vm− v1| ≥ c/2. Analogous arguments hold if we look at the δ-cost of
this path.

Now we extend the result of Theorem 4.16 to k > 6. Note that we have to modify the
construction, since it does not work for k > 6. An important observation is that the construction
for k = 6 does not change its characteristics if the placed nodes are not close to the boundaries
of the sectors. All the arguments for k = 6 still hold for arbitrary distances between ui and ui+1

if it is ensured that vi is placed on `′2 in the middle between ui and ui+1.
In the following we discuss the problem for k > 6. First, we consider the case for even k > 6.

As you can see in Figure 4.21 (left) we have not only to look at neighboring sectors but also in
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Figure 4.21: SymmY(V ) for even k > 6: a lot of transverse edges may appear

sectors that lie crossways in the construction. These sectors are empty by construction for k = 6.
In some of these sectors symmetric links will be established, e.g., between ui and vj , and hence
the length of the path is shortened. A first try to avoid these links could be to place some new
points, for example, the white points in Figure 4.21 (right), but this does not help. The nearest
neighbor of the point ui is given by the lowest white point in this sector, if γc is appropriately
small. The nearest neighbor of the lowest white point in its corresponding sector is always ui or
the highest white point above ui in its sector. Anyway, we get a symmetric link. We can solve
the problem by adjusting the orientation of the sectors of all nodes on the line `′2 by an angle of
π/k. Then, always, the nearest neighbor of a node on the left line is not the nearest neighbor
of a node on the right line (see also Figure 4.21), if the number of placed nodes on the lines is
large enough. With this modification we can use the same arguments as done in Theorem 4.16.
Finally, note that now the case odd k > 6 is obvious, since the orientation of the nodes placed
on the line `′1 differs by an angle of π/k from that of the nodes on line `′2, since the number of
sectors is odd. Hence, we get the following corollary.

Corollary 4.2 Let V ⊆ R
2, k > 6 and we can adjust the orientations of the sectors. Then

SymmY(V ) is neither a weak c-spanner for any constant c ∈ R, nor a (c, δ)-power spanner for
any constant c and δ > 1.

Note that in our robot scenario the adjustment of sectors is irrelevant since the robots have
a fixed communication module and its orientation depends on the movement of a robot. Hence,
such a worst case construction might be possible. We leave it as an open problem to show
that SymmY(V ) is a weak c-spanner or a c-power spanner for even k > 6 using fixed sector
orientations for all vertex sets V and a constant c or to construct a counter-example. Nevertheless,
we can prove the following positive property of SymmY(V ).

Theorem 4.17 Let V ⊆ R
2 and k > 6. Then SymmY(V ) is connected.
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Proof: We prove this by an induction over the distance of vertices |u− v|. First, note that the
closest pair of vertices forms an edge in Symmy(V ). Now assume two vertices u, v: either there
is an edge from u to v or there is a vertex w with ^(u, v) = ^(u, w) and |u−w| < |u−v|. Since
k > 6 we have |v − w| < |u− v|. By induction there is a path from u to w and a path from w to
v which implies the claim that there is a path from u to v.

4.2.4 Network Properties

In Subsection 4.1.1 we modeled radio networks, formulated routing problems, and introduced
the network parameters (bidirectional) interference number, congestion, dilation, and energy for
the omnidirectional communication model. In this subsection we extend these notions to the
directional communication model in which we allow the nodes two communication modes: in
the packet routing mode acknowledgement signals are very short and we can neglect its impact
on the interference. Here, we account only for unidirectional interference. In the control mode,
when control messages have to be exchanged, sending and answering signals are both short, then
we have to consider also bidirectional interference and combinations thereof. The directed edge
(u, v) interferes unidirectionally with an edge (r, s), if |u− s| ≤ |u− v| and ^(u, v) = ^(u, s)
as well as ^(s, r) = ^(s, u) (see Figure 4.22 a)). We denote the set of of edges unidirectionally
interfering with an edge (r, s) by UInt(r, s). The directed edge (u, v) interferes bidirectionally
with an edge (r, s), if (u, v) ∈ UInt(r, s) or (u, v) ∈ UInt(s, r) or (v, u) ∈ UInt(s, r) or (v, u) ∈
UInt(r, s) (see Figure 4.22 b)). The set of edges birectionally interfering with an edge (r, s) is
defined by BInt(r, s).

a) b)
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Figure 4.22: Directional interference: a) (u, v) unidirectionally interferes with (r, s), b) (u, v)
bidirectionally interferes with (r, s),

We denote the (bidirectional) interference number of an edge e by |BInt(e)| and the unidirec-
tional interference number by |UInt(e)|. The (bidirectional) interference number of a graph G is
the maximum (bidirectional) interference number of all edges, BInt(G). Analogously, we define
the unidirectional interference number of a graph G by UInt(G).

Note that this definition of bidirectional interference matches the definition given in Sub-
section 4.1.1. The omnidirectional communication model is equal to the directional one with 1
sector/sender per node. Furthermore, both types of interference are asymmetric, i.e. e ∈ BInt(f)
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does not imply that f ∈ BInt(e) and also e ∈ UInt(f) does not imply that f ∈ UInt(e) for
two edges e,f , since we allow the nodes adjustable transmission ranges (see also Section 2.1,
asymmetric interference).

Observation 4.2 Let G1 = (V1, E1) and G2 = (V2, E2) be two geometric graphs. It holds

UInt(G1) ≤ BInt(G1) ,

UInt(G1 ∪G2) ≤ UInt(G1) + UInt(G2) ,

BInt(G1 ∪G2) ≤ BInt(G1) + BInt(G2) .

Proof: Let e ∈ E1 be an edge with maximum unidirectional interference number, i.e. |UInt(e)| =
UInt(G1) = maxe′∈E1

{|UInt(e′)| . By definition at least |UInt(e)| edges bidirectionally interfere
with this edge. Hence, UInt(G1) = |UInt(e)| ≤ |BInt(e)| ≤ BInt(G1). An edge e in G1 ∪ G2

can be interfered by edges in G1 and in G2. Let u1 the number of interfering edges from E(G1)
and u2 the number of E(G2). Then u1 + u2 gives an upper bound on |UInt(e)| in G1 ∪G2. The
proof for the bidirectional case works analogousy.

With these types of interference we define the parameters congestion, dilation, and energy
analogously to Subsection 4.1.1. We have already shown in Theorem 4.14 that the congestion of a
network is connected to the weak spanner property in consideration of bidirectional interference.
This result implies directly that both, the Yao-graph and the SparsY-graph, can host a path system
that approximates a congestion optimal path system by a factor of O(n · g(V )) where g(V )
denotes the diversity of V . If we assume a nice and normal vertex set V the diversity is g(V ) =
O(log n), i.e. we get an approximation factor of O(n logn). Since there exists placements in
which the unidirectional interference number of the Yao-graph can be Θ(n), this result for the
Yao-graph also holds taken unidirectional interference into account. For the SparsY-graph we
get an improved approximation factor of O(g(V )) (resp. O(log n) for nice and normal vertex
sets), if we consider unidirectional interference, since Theorem 4.14 (a weak c-spanner allows us
a good approximation of an optimal path system for congestion) still because the unidirectional
interference number is smaller than the bidirectional interference number, see Observation 4.2.
The second argument is that the unidirectional interference number of the SparsY-graph is given
by a constant. Now, we clarify the relation between energy consumption in a wireless network
and power spanners.

Theorem 4.18 Let V ⊆ R
2 and G = (V,E) be the network formulated as a geometric graph. If

G is a (c, δ)-power spanner, thenG allows us a path system that approximates the energy-optimal
path system by a constant factor c.

Proof: Let Q denote some path Q = (u = u1, . . . , u` = v), not necessarily in G, from u to v of
minimum δ-cost, i.e. an energy-optimal path from u to v. For each i = 2, . . . , ` there exists by
presumption a path Pi in G from ui−1 to ui of δ-cost at most c · |ui − ui−1|δ. The concatenation
of all these paths yields a path P from u to v in G with δ-cost ‖P‖δ at most c · ‖Q‖δ.

The following theorem summarizes the results concerning the Yao-graph and its variants.
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Corollary 4.3 Let V ⊆ R
2 and n := |V |. Then in worst case it holds

unidirectional bidirectional Energy Congestion
Topology interference interference Spanner approx. approx.

number number factor factor

Yao(V ) n− 1 n− 1 yes O(1) O(n logn)
SparsY(V ) 1 n− 1 weak and power O(1) O(logn)1

SymmY(V ) 1 1 only connected — —

4.3 Handling Interference

The standard mode of our ad hoc network is the packet routing mode. In the lucky case of
SymmY-graphs there is no interference between messages and acknowledgements of different
edges theoretically. For the SparsY-graph packets sent along the direction of the edges cannot
interfere with other packets on different edges. However, acknowledgement signals of such
edges can interfere. Since in the normal transportation mode data packets are long compared to
the short acknowledgments, we neglect this interaction.

In the Yao-graph and the HL-graph we have to resolve (unidirectional) interference. Solu-
tions exist that reduce the amount of interference, especially the effects of (directed) hidden and
exposed terminals (see Section 4.1 and Section 4.2), e.g., using request-to-send (RTS) and clear-
to-send (CTS) mechanisms. An overview of MAC-protocols for ad hoc networks, e.g., CSMA,
CSMA/CA, MAC, MACAW, FAMA, IEEE 802.11 MAC DCF, DBTMA, D-MAC, and lots of
other are given in [HS02]. Power control approaches suggest to use more than one transmission
frequency, e.g., PAMAS [SR98]. Further details concerning medium access control can also be
found in [Tan96].

Since we allow the nodes only one transmission frequency and consider power-variable ad
hoc networks in which also asymmetric interference can occur, standard solutions can not be
directly applied. There exist approaches for power control which propose, e.g., to transmit RTS
and CTS packets with the maximum power level and DATA and ACK (acknowledgement) pack-
ets with the minimum necessary power level [JV02]. We want to completely avoid sending with
the maximum power level and distinguish between two strategies: non-interfering deterministic
schedules and interfering probabilistic schedules.

Non-interfering deterministic schedule

In general it is an NP-hard problem to compute a schedule that resolves all interference within
optimal time, see [ET90, EGMT84, RP89, BGLA02]. However, in the HL-graph in each layer
the bidirectional interference number is a constant, Lemma 4.10. Hence, it is easy to define a
deterministic schedule that ensures each edge a time frame of 1

c log n
, which in the worst case slows

down communication only by this logarithmic factor. For the Yao-graph, both, the unidirectional
interference number and the bidirectional interference number, are given by the in-degree. Hence

1Taking only unidirectional interference into account. Note that in consideration of bidirectional interference
this factor is O(n log n).
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a straight-forward strategy is to assign each of these incoming senders a time frame of same size.
Unlike as for the HL-graph this schedule is far away from being optimal, since it does not reflect
the actual load on the edges.

The main advantage of such a non-interfering schedule is that collisions immediately indicate
that dynamic changes have occurred.

Interfering probabilistic schedule

Following the ideas presented in [AS98] and already used in Section 4.1 every link e is activated
with probability ϕ(e) and, in each step, it decides with probability ϕ(e) to send a packet. We
can choose ϕ(e) ≤ 1

2
for all edges e, such that there is a constant probability of at least 1

4
that a

packet is transferred successfully without being interfered by another packet (see Lemma 4.1).
The detection of dynamic network changes may need more time than in non-interfering

schedules. Here, since with probability of at least 1
4

every receiver does not get an input sig-
nal, it suffices to repeat the dynamic change signal for someO(logn) rounds. Then all nodes are
informed with probability 1− 1/p(n) for some polynomial p(n).

The only information necessary to maintain such a probabilistic schedule is the local uni-
directional interference number, or an approximation of that number. Therefore, a node has to
inform all itsm interfering nodes, that they interfere and how many of them interfere. A straight-
forward approach is that we contact all m interfering nodes directly and this takes time O(m).
Note that this is only possible if all nodes have the same maximum transmission range and send
its control messages with maximum power because of the problem of asymmetric interference
(see Subsection 4.2.1).

4.4 Maintaining Networks

In this section we focus on the question how to maintain our basic network topologies under
dynamic changes when stations appear and disappear, i.e. enter and/or leave the network. Here, it
makes no sense to consider ad hoc networks where the nodes take abnormal positions. Therefore,
we assume a nice and a normal vertex set, see Definition 4.4 and Definition 4.5 of Section 4.2.
This implies that the diversity is given by Θ(log n).

We assume that if a station enters the network it will send out control messages to stop
normal packet routing for the (hopefully short) time needed to update the network structure.
All packets are stored on the radio stations and delivered when the network structure has been
restored. In contrast to this reactive approach, one can also take advantage of synchronized
clocks if available. If a periodically time period is reserved that is known to all nodes (including
new ones), the maintenance of the network can be done in this special maintenance period. Thus,
no control packets are necessary to stop the packet routing mode and collisions caused by the
control packets can be prevented.

We claim that a node entering a network knows this situation, e.g., because it is switched
on or it eavesdrops on existing communication from the network. A node leaving the system is
equivalent to a complete node failure. This means that it is not necessary that the leaving node
informs the network. Such dynamic changes are the most frequent changes of a radio network
besides the motion of radio stations, see Chapter 5.
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In our view its very unlikely that all mobile radio station would start (or leave) at the same
time. And even if this is enforced one can easily add a probabilistic strategy that prevents this
situation. Then the establishment of the complete network turns out to be a series of single
stations entering an existing network. This approach makes sense, since nobody expects that a
radio connection to the network is instantly established and we will see that there exist network
structures where entering and leaving will only need some logarithmic communication rounds.

In this chapter, we do not address the problem of moving radio stations. However, if the
movement is not too fast, the moving node can reestablish the correct network by triggering a
leave- and an enter-operation. Furthermore, we hope that the basic routines developed for this
switching dynamics provide basic techniques for more sophisticated maintenance techniques
of mobile ad hoc networks. We investigate two elementary dynamic operations necessary to
maintain dynamic wireless networks:

• Enter: While the network is distributing some packets, one radio station wants to enter
the network. It will send a special signal causing a special interference signature that will
cause all radio stations in some specified distance to stop the packet routing communica-
tion mode and switch to a special enter mode. Then this part of the network devotes its
communication to insert the new node into the network topology. After this, it will resume
to the normal packet routing mode.

• Leave: A single station stops sending and receiving. At some time a neighboring node
notices this failure and signals it to other nodes of the network. These nodes halt routing
packets and rebuild the network.

The two important resources in these update processes are time and number of involved sta-
tions. If these parameters are minimized, then the impact of the network disturbance can be kept
to a minimum.

Theorem 4.19 Let V ⊆ R
2 be nice and normal. Then rebuilding the Yao-graph, the SparsY-

graph, and/or the SymmY-graph after an enter/leave operation affects Θ(|V |) edges. For the
HL-graph this number is upper bounded by O(g(V )), i.e. by O(log n).

Proof: We consider the following graph G = (V,E) with V = V1 ∪ V2 where V1 :=
{u1, . . . , um} and V2 := {v1, . . . , vm} define two parallel lines, such that the edge (ui, vi) is
orthogonal to (u1, um) and (v1, vm) and all nodes in V1 are in the same sector of a node in V2

and vice versa, see Figure 4.23. In this situation we have m = n/2 edges in the Yao-graph and
its variants, which all have to be erased if a node w pops up in the middle of the network. The
inverse situation occurs if we switch off this node.

For the HL-graph the situation is not so bad. We consider each of the O(g(V )) layers,
Lemma 4.7, separately. If a station enters a layer, then at most a constant number of edges have
to be added while no edges have to be erased, see Lemma 4.10. When a node disappears in
a layer, we might have to determine only a constant number of replacement nodes. These are
chosen from the lower layer. In both cases only a constant number of edges is involved.

Clearly, this worst case behavior is not the typical situation. Therefore, we introduce the
number of involved vertices m as an additional parameter into the analysis of the time behavior
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Figure 4.23: A bad situation for the Yao-graph and its variants, if the node in the middle appears.
Here, all nodes are placed on a line. When we assume nice and normal vertex sets we must
replace the points a bit but we will get the same result.

of the enter/leave algorithms. Remember, that our hardware model supports s discrete choices
for transmission powers (see Subsection 4.2.1). Our analysis also uses this parameter.

Theorem 4.20 Let V ⊆ R
2 be nice and normal and m be defined as the number of involved

edges when a node enters and/or leaves the network. Then the Yao-graph and its variants can be
updated in time O(m log s). For the HL-graph the time is bounded by O(g(V ) + log s), i.e. by
O(log n+ log s).

Proof: First, we show how to reconstruct the Yao-graph and its variants in timeO(m log s) after
an enter and/or leave operation.

Enter: Let us assume that a node u0 appears in the network. The node u0 informs all neigh-
bors by sending out control messages in all sectors. Theoretically, this can be done in parallel but
practically no two neighboring sectors should be used at the same time because of physical ef-
fects like overlapping radio/infrared waves. All informed nodes immediately halt normal packet
transportation. This needs only a constant number of rounds. Afterwards u0 searchs for nearest
neighbors in each of its sectors. This can be accomplished in timeO(log s) using a binary search
algorithm. Note that since other communication is inhibited, we can interpret interference sig-
nals as answers. Then every informed node starts searching for a nearest neighbor in each of its
empty sectors in the same way in time O(log s) per node and hence in time O(m log s). Finally,
for each sector all nodes u who had already a nearest neighbor v in a sector are asked to test
whether u0 is closer than this neighbor by sending with transmission distance dD̃(|u−v|)−1. If u0

now receives a signal it can successively determine all these m nodes and establish all the links
in time O(m log s).

In the case the SymmY-graph or the SparsY-graph is established, we have to extend the al-
gorithm. Then a control message contains the transmission distance di with that it has been
transmitted. After establishing all edges of the Yao-graph, every involved node checks the num-
ber of ingoing edges in its sectors. If there is a sector in which more then one node is connected,
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then it sends back one control message to the farthest node in this sector with the transmission
distance of the shortest ingoing edge. All nodes receiving this message now know forbidden
edges and interference also indicates that there is a forbidden edge. This extension builds up
only edges which are part of the SparsY-graph. Finally, to construct only edges of the SymmY-
graph we check not only the distance but also the node identification. It follows that all three
graphs can be rebuild in time O(m log s).

Leave: Let us assume that a node u0 leaves the network. If u0 has no neighbors, nothing has
to be done. In the other case let u′ be a neighbor of u0. During the normal packet routing scheme
u′ notices that u0 has left. Then u′ informs interfering nodes by sending a control message to
immediately halt packet transportation and to switch to the control mode. All informed nodes
immediately halt packet transportation and this needs only constant rounds. Afterwards u0 starts
to determine new nearest neighbors. For this u0 can use a reduced version of the enter-algorithm
and starts a binary search starting with the known transmission distance of the lost node. This
costs O(log s) rounds per node and sector. Hence, after O(m log s) rounds all new links can be
established, since m is the number of involved edges.

Now we show how to rebuild the HL-graph in time O(g(V ) + log s) after an enter and/or
leave operation.

Enter: Let us assume that a node u0 appears in the network. The node u0 switches to the
control mode and informs the nodes in a layer by sending a control message. This needsO(log s)
steps, since the minimum distance in the network is unknown. All informed nodes immediately
halt packet transportation and establisch a connection. Lemma 4.10 shows that the degree of a
layer is constant such that this update is possible in constant time. Since we have to check at
most O(g(V )) different layers the rebuilding is possible in O(g(V ) + log s) rounds.

Leave: Let us assume that a node u0 leaves the network. Again, if u0 has no neighbors,
nothing has to be done. The other case is more difficult, since possibly replacement nodes have
to be assigned in the layers where u0 was present. To overcome this problem nodes which notice
that u0 is down send out a control message and inform neighboring nodes. These nodes perform
iteratively the enter operation. Since u0 has only a constant number of neighbors in each layer
and the informed nodes also have only a constant number of neighbors, this update process is
also possible in time O(g(V )).

In Chapter 6 we present implementations of these algorithms in more detail. Furthermore,
we present the results of our extensive simulations.

4.5 Further Geometric Structures and Works

In Section 4.1 and Section 4.2 we distinguished between omnidirectional and directional wire-
less transmission. In both communication models we have designed and analyzed basic network
topologies to approximate a complete topology, e.g., a complete graph or a unit disk graph, that
can be used for higher tasks like routing, selecting routing paths, and forwarding routing packets.
We have also implemented most of these topologies and present the results of our experimental
evaluations in Chapter 6. The directional approach has the advantage that we can theoretically
build interference-free topologies. In realistic environments we could see that a lot of practi-
cal problems coming with directional senders exist. We will also discuss some of them also in
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Chapter 6. As already mentioned, it is also possible to use the sectorized or cone-based topolo-
gies using the omnidirectional communication model if additional communication features are
given (e.g., angle detecting of incoming signals). In this case, the Yao-graph and its geometric
variants can be used to build a sparse communication network for a set of nodes where each
node is equipped with an omnidirectional antenna which can detect the angle of incoming sig-
nals. Several other geometrical structures (e.g., unit disk graphs, relative neighborhood graphs,
combinations between Yao-graphs and gabriel graphs, local delaunay graphs, topologies based
on connected dominating sets, topologies based on mobile k-centers, etc.) have been studied
recently by computational geometry scientists as well as by network engineers. Overviews of
main concepts and structures with applications in computational geometry in wireless networks
and in sensor networks are given by X.-Y. Li [Li03b, Li03a, Li03c] and R. Rajaraman [Raj02].

4.6 Conclusions

In this chapter we have developed and investigated static and dynamic single frequency power-
variable ad hoc networks using two different communication models. We have introduced the
diversity g(V ) of a vertex set V as an important parameter regarding the amount of interference.
A high diversity indicates high interference. In real-world applications or if we assume nice and
normal vertex sets, it can be regarded as Θ(logn).

The results achieved for a communication network N defined by the path system P for a
vertex set V of n vertices using the omnidirectional communication model are summarized in
Table 4.1 and Table 4.2. Table 4.3 describes the network properties of the topologies considered
in this chapter. Let k be defined as the number of sectors/senders per node then in Table 4.4 we
give an overview of elementary graph properties of the sectorized topologies in whiconsidered
for the directional communication model and the Hierarchical Layer Graph.

Congestion Dilation Unit Energy Flow Energy

Structure HL(V ) Complete MST Gabriel
Network Sub-Graph

Approx.-factor O(log2n) optimal optimal optimal

Table 4.1: Approximation results for logarithmic diversity

One can see an overview of the trade-offs between congestion and dilation as well as between
dilation and energy. Furthermore, we showed that the relation between congestion and energy is
even worse. It is only possible to find a reasonable approximation for either congestion or energy,
while the other parameter is at least a polynomial factor worse than in an optimal network.

It turns out that the best dynamic behavior can be achieved by the HL-graph, if g(V ) =
O(log n) which can be assumed for real-world applications. Comparing the HL-graph with the
Yao-graph and its variants shows that the SparsY-graph outperforms the HL-graph with regard
to congestion approximation. The SymmY-graph gives the worst impression in this worst case
consideration. Nevertheless, it allows us a connected interference-free topology. Therefore, for
a small number of radio stations or average locations, it may outperform all the other graph



84 STATIC AND DYNAMIC AD HOC NETWORKS

Dilation Congestion

Congestion CP(V ) ·DP(V ) = Ω(W ) —

Unit Energy DP(V ) · UEP(V ) = Ω(d2) CP (V ) = Ω(n1/3C∗
P

(V )) or
UEP(V ) = Ω(n1/3UE∗

P(V ))

Flow Energy DP(V ) · FEP(V ) = Ω(d2W ) CP (V ) = Ω(n1/3C∗
P

(V )) or
FEP(V ) = Ω(n1/3FE∗

P(V ))

Table 4.2: Trade-offs and incompatibilities on network parameters

types. In Chapter 6 the results of our extensive experimental analyses using realistic assumptions
support this statement.

Congestion Energy time for enter/leave
Topology approx. factor approx. factor enter/leave involved nodes

Yao(V ) O(n log n) O(1) O(n log s) Θ(n)
SparsY(V ) O(log n)1 O(1) O(n log s) Θ(n)

SymmY(V ) — — O(n log s) Θ(n)

HL(V ) O(log2 n) O(1) O(log n + log s) O(log n)

Table 4.3: Network properties for logarithmic diversity and dynamic operations for nice and
normal vertex sets

The Yao-graph and the HL-graph fulfill all of the spanner properties. It is still an open
problem whether all SparsY-graphs are spanners or not. It turns out that the SymmY-graph is not
a good choice for a power-efficient topology in general, but it allows us theoretically interference-
free communications. In Chapter 6 we show experimentally that all three sectorized graphs are
spanners on random vertex sets where the nodes are placed uniformly at random.

Topology Connected Power Spanner Weak Spanner Spanner

Yao(V ) k ≥ 4 k > 6, c =
(

1
1−2 sin π

k

)δ

k = 4, c =
√

3 +
√

5 k > 6, c = 1
1−2 sin π

k

k > 6, c = 1
1−(2 sin π

k
)δ k ≥ 6, c = max{

√

1 + 48 sin4(π/k),
√

5− 4 cos(2π/k)
}

SparsY(V ) k > 6 c exists for k > 6 k > 6, c = 1
1−2 sin π

k

Open

SymmY(V ) k > 6 — — —

HL(V ) α > 2 β
β−1 α > 2 β

β−1 , α > 2 β
β−1 , α > 2 β

β−1 ,

c =
(

β α(β−1)+2β
α(β−1)−2β

)δ

c = β α(β−1)+2β
α(β−1)−2β c = β α(β−1)+2β

α(β−1)−2β

Table 4.4: Elementary graph properties of omnidirectional and directional topologies

1Taking only unidirectional interference into account. Note that, in consideration of bidirectional interference,
this factor is O(n log n).



Chapter 5

Mobile Ad Hoc Networks

In this chapter we investigate distributed algorithms for power-variable mobile ad hoc networks
in a worst case scenario. We consider two models to find a reasonable restriction on the worst
case mobility. In the pedestrian model we assume a maximum speed vmax of the radio devices,
while in the vehicular model we assume a maximum acceleration amax of the hosts.

Our goal is to maintain persistent routes with good communication network properties like
small diameter, low energy-consumption, low congestion, and low interference. A route is per-
sistent, if we can guarantee that all edges of this route can be upheld for a given time span ∆,
which is a parameter denoting the minimum time the mobile network needs to adopt changes,
i.e. update routing tables, change directory entries, etc. This ∆ can be used as the length of an
update interval for a proactive routing scheme.

We extend the notions transmission range, interference, spanner, weak spanner, power span-
ner, and congestion introduced in Chapter 4 for static and dynamic ad hoc networks to both
mobility models and introduce a new parameter called crowdedness that states a lower bound for
the amount of radio interference. Then we prove that a mobile weak spanner hosts a path system
that polylogarithmically approximates the optimal congestion.

We present distributed algorithms based on a grid clustering technique and a high-dimensional
representation of the dynamic start situation which constructs mobile spanners with low conges-
tion, low interference, low energy-consumption, and low degree. We measure the optimality of
the output of our algorithm by comparing it to the optimal choice of persistent routes under the
same circumstances with respect to pedestrian or vehicular worst case movements. Finally, we
present solutions for dynamic position information management under our mobility models.

5.1 Motivation

We investigate the problem of constructing a wireless ad hoc network under a worst case as-
sumption for mobility. We consider two different models for the movement of n mobile stations
or hosts in the Euclidean plane, the velocity bounded and the acceleration bounded model.

For the first model, the velocity bounded, we picture to ourselves a large number of pedestri-
ans using mobile, wireless communication devices in a rather small area. Clearly, the maximum

85
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speed is bounded by a small constant. The standard approach in a static ad hoc network scenario
is to build up connections between nearest neighbors, see Chapter 4. If the mobility is very high,
like on a crowded sidewalk, this leads to short communication links, that survive for only short
time periods. Although it is possible to build up these connections and transmit some data, it
is nearly impossible to maintain packet routes or maintain directories for efficient localization
of users. Therefore, we need communication links to sustain for some time span ∆ to enable
the routing layer to keep up with the dynamic changes. We can guarantee that a communication
link between two moving stations sustains for this period if we adjust the transmission range to
a value, which covers all possible distances the communication partners can reach in time ∆.
Since, we know the maximum speed, this implies that the transmission power must be chosen
such that the transmission range is at least an additive term 2vmax∆ larger than the distance at the
beginning of the time interval. The task is now to appropriately build up the basic communica-
tion links such that the routing algorithm can choose routes with low energy or low congestion,
while the number of edges and interfering edges is small.

A motivating example for the acceleration bounded model is given by vehicles of high
speed, like cars, trains, or aircrafts. For example, we have in mind trains where each wagon
carries a mobile radio station. Now consider a scenario, where two such trains pass each other
in opposite directions, as shown in Figure 5.1. If we take a snapshot of this moment and build
a static ad hoc network using the temporary positions, then this static approach may lead to a
ladder-like network which can also be seen in Figure 5.1. But the communication links forming
the rungs of the ladder can be upheld only for a short time period since the trains move with high
speed. After a short period all rung links need to be replaced by new ones. Therefore this static
network design is not a good choice.

Figure 5.1: Two trains passing each other in opposite directions.

We allow all nodes to accelerate by some maximum amount of amax to generalize from linear
movements to some worst case settings. Let si(t) be the coordinates of a mobile station si at
time t, s′i(t) the velocity vector and s′′i (t) the vector describing the acceleration, then |s′′i (t)| ≤
amax. Now, if we try to adjust the transmission range r of a connection such that the moving
communication partners si and sj of known relative speed v = s′i(t)− s′j(t) and distance vector
d = si(t)− sj(t) sustain for a time span ∆, we need a transmission distance that covers at least
the distance d at the beginning and the distance at the end stretched by a possible acceleration, i.e.
r = max{|d|, |d+v∆|+amax∆

2}. In the train example this implies that the communication links
between the passing trains are more expensive than one expects looking only at a snapshot. If
we add to the two position coordinates the vertical and horizontal speed coordinates, we map the
dynamic aspect of the scenario into four dimensions, as shown in Figure 5.2 (vertical speed and
location coordinates are left out). In this setting the speed difference separates the trains. Hence,
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rung links between the trains add radio interference with other edges. It is straightforward that
a small number of rung connections between the trains improve the mobile network, while the
edges inside should follow a static ad hoc network policy.

Figure 5.2: Horizontal speed and directions in the train example. Each point represents a wagon.

Our goal is to build up a mobile ad hoc network that is stable and prefers short links. In a
high-speed scenario one cannot provide both features at the same time. We will try to present
a reasonable compromise. We allow the nodes any movement within these restrictions and will
compare the performance of our network solutions with the best offline solution for this dynamic
scenario.

In the following we mainly extend our results on congestion, dilation, and energy in radio
networks presented in Section 4.1 of Chapter 4 to mobile ad hoc networks considering two worst
case mobility models. The remainder of this chapter is organized as follows. In Section 5.2 we
first present some basic known mobility models. We review models used in simulations as well
as models considered in theoretical analyses like kinetic data structures. In Section 5.3 we intro-
duce our network model. Assuming that a fixed time interval of length ∆ is given, we describe
how we construct the mobile ad hoc network for a set of stations to solve routing problems.
Furthermore, we innovate the pedestrian and the vehicular mobility as two worst case mobility
models. In Section 5.4 we define some network parameters which partly extend measures and
definitions like transmission range, interference number, spanner, power spanner, and conges-
tion to mobile networks. Furthermore, we introduce a measure called crowdedness that states a
lower bound on the amount of radio interference. We concentrate on the distributed computa-
tion of the network at MAC and physical layer, see Figure 6.1 in Chapter 6 concerning the ISO
OSI reference model, and show the main result that a mobile weak spanner hosts a path system
that polylogarithmically approximates the optimal congestion. In Section 5.5 we give techniques
how to construct such mobile (weak) spanners with small congestion, small interference number,
small energy-consumption, and small degree. We present the Hierarchical Grid, an extension of
the Hierarchical Layer Graph, based on a grid-cluster technique and prove that its interference
number can be upper bounded by a logarithmic term if we assume the crowdedness to be log-
arithmic. One assumption in this chapter is that all positioning information is available to all
nodes. We discuss this problem in Section 5.6 and present two solutions: the first is based on a
positioning system and the second uses distances as location information. This yields to a very
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dynamic data structure, the so-called Mobile Hierarchical Layer graph that fulfills all our re-
quirements. We conclude this chapter with an overview of the results and discuss open questions
in Section 5.7.

5.2 Related Mobility Models

Many mobility models have been proposed as a basis for simulation of cellular and ad hoc net-
works. Most of them use a random process to vary speed or direction of the moving objects, like
the random walk model and its variants. The most common model for simulations of cellular
networks is a random walk model which describes mobility as a stop-and-go motion between
cells. According to the fluid flow model every object moves with a randomly chosen speed and
direction for a predefined time interval. In contrast to the random walk the motion is more pre-
dictable. The Gauss-Markov model [LH99] is a bit of both the random walk and the fluid flow
model: speed and direction are changed with an adjustable amount of randomness, ranging from
completely random to predictable, linear motion.

In the random waypoint model [JM96] the objects move between randomly chosen positions
where they pause for a certain time interval. Their speed is uniformly distributed between zero
and a maximum. The speed chosen for the next motion period does not depend on the speed of
the previous period. Thus sharp turns and sudden stops are possible, i.e. the acceleration is not
bounded.

Besides these models, in which the movement of each object is independent from others,
there are mobility models that regard mobility of a group of objects, e.g., the reference point
group mobility model [HGPC99] that defines for groups of objects a logical center that deter-
mines direction, speed, and acceleration of each object. Other examples are the column model,
the pursue model, and the nomadic community model. These models are less suitable to model
worst case mobility as they provide some kind of smoothed or uniform mobility pattern.

Surveys of mobility models are [CBD02, Bet01b, Bet01a, BH04]. In [Bet04] C. Bettstetter
gives an overview of mobility modeling, tries to classify known models for mobility in wireless
networks, and presents simulation-based studies.

In the network model of Chatzigiannakis et al. [CNS01] the nodes are allowed to move arbi-
trarily while the support (a set of nodes controlled by the protocol that form a virtual backbone)
moves randomly. The authors abstract from the geometric properties of this movement and divide
the motion space into cubes that approximate a sphere that is given by a predefined transmission
range. These cubes are represented by the nodes of a motion graph, adjacent cubes are connected
by an edge. Then mobility of the support is modeled by a random walk on this motion graph.

Another way to deal with mobility in ad hoc networks is to consider what happens to the
underlying topology when the nodes are moving. This leads to the adversarial network model
[ABBS01] in which all communication links are under control of an adversary. A worst case
for mobility corresponds with the topological changes the adversary may perform within some
predefined restrictions.

Recently, a novel general technique, based on renewal theory, for analyzing mobility models
in ad hoc networks were proposed in [LNR04]. A technique is presented that enables an accu-



5.3 THE MODEL 89

rate derivation of the steady state distribution functions for node movement parameters such as
distance and speed. The main contribution is a new methodology for simulating mobility which
guarantees steady state for node movement distributions from the start of the simulation. The
authors give formal proofs as well as extensive simulations.

Further models like the contraction, the expansion model, and combinations thereof have
been investigated by simulations, see [LLGH04]. The contraction model emulates movement of
mobile nodes toward a logical center from all directions. The expansion has the opposite effect
of movement pattern compared to the contraction model. Nodes in the area will move toward the
edges away from the center on a line.

An intrinsic property of mobile ad hoc networks is the mobility of the nodes. Despite of this
fact the network topology is mostly designed for quasi-static nodes. Then according to some
events, a new network topology is computed.

In the context of computational geometry Basch et al. introduced the concept of kinetic data
structures (KDS) [BGH99] that describes a framework for analyzing algorithms on mobile ob-
jects. In their model the mobility of objects is described by pseudo-algebraic functions of time
and fully or partially predictable. The analysis of a KDS is done by counting the combinatorial
changes of the geometric structure that is maintained by the KDS. Therefore the worst case mo-
bility depends on the specific application for which the KDS is designed. Another approach that
captures unpredictable mobility is the concept of soft kinetic data structures (SKDS) [CS01].
These data structures maintain an approximate geometric structure that is updated by property
testing and reorganization. SKDS are evaluated with respect to the dynamics of the system,
which is measured by the number of errors the data structure contains due to the mobility of
objects. Worst case mobility is rather described as number of changes that violate the internal
structure than as a random process. The mobility is regarded with respect to the specific purpose
of the SKDS. It is not characterized in terms of velocity and direction.

The idea of kinetic data structures is also used in [GGH+01a] to maintain a clustering of
moving objects. This approach is used in [GGH+01b] to determine the head of each cluster
in a mobile network. In each cluster the nodes are directly connected to the head. The heads
and some intermediate gateway nodes are connected by a Delaunay graph with restricted edge
lengths that forms a backbone network. In this network routing can be performed by a geometric
forwarding scheme. The clustering is updated by an event-based kinetic data structure.

In [BV05] a generic mobility model and a framework to analyze it is presented. The frame-
work provides a rich set of well understood models that can be used to simulate mobile networks
with independent node movements.

5.3 The Model

In our model we consider a fixed set S of n mobile stations s1, . . . , sn in the Euclidean plane.
We denote by si(t) the coordinates of a mobile station si at time point t and by s′i(t) = dsi(t)/dt
its speed vector. Furthermore, s′′i (t) = ds′i(t)/dt denotes the acceleration of si at time t, i.e. the
change of the speed.

All mobile stations remain active all the time. We allow the nodes adjustable transmission
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power for each connection, which is high enough such that all mobile stations never leave the
maximum transmission range of a mobile station. The mobile stations use omnidirectional ra-
dio antennae, i.e. all mobile stations inside a disk with the sender as center and the transmis-
sion distance as radius can receive the message or will be disturbed while receiving data on a
different connection. We assume bidirectional communication on a single frequency with time-
multiplexing, i.e. using different time slots. Data need to be acknowledged and for simplicity
we assume that the impact of acknowledgments is similar to the impact of sent data, compare
Section 4.1.

5.3.1 The Mobile Ad Hoc Network

We try to keep all connections alive for at least a fixed time interval of length ∆. This parameter
is an over-all network parameter which induces some stability into the network. It should be
chosen sufficiently large to set up the communication links between neighbors, to update routing
tables, and deliver some amount of data. For a practical realization it may not be necessary to
adopt a synchronous round model as we will do now.

We assume that all nodes work synchronized in subsequent time intervals of length ∆. Then
during each time interval of length ∆ every mobile station of the mobile ad hoc network performs
the following operations.

1. Compute new positions and speed vectors of reasonable communication partners

2. Establish communication links to selected neighbors

3. Update routing information, e.g., routing tables

4. Deliver data packets of higher layers, e.g., of applications

Note that this approach embodies the concept of a network protocol stack. The first phase
refers to the physical layer, where physical data like transmission power and the change of the
incoming signal can be used to estimate relative distances and relative speed. The second phase
describes the task of the Medium Access Layer (MAC). Note that the specific routing requests
are not known in this layer. Its task is to build up a general-purpose network which allows us
efficient routing, while the network graph is pruned such that the number of interfering edges is
small.

In the third phase the routing algorithm can rely on a stable communication network for
some time span ∆. Then the routing in the mobile network is reduced to routing in a (temporary)
static network and standard techniques are applicable. The packet routes are chosen to minimize
latency, traffic-induced congestions, and, typically for mobile devices, to reduce the transmission
energy. In Section 4.1 we showed that even in the static case it is not possible to optimize more
than one of these parameters at the same time. However, in the static case it is possible to build up
a general-purpose-network which enables the routing algorithm to choose its optimization policy
afterwards. The fourth phase of our model describes the activity induced by the upper-most layer
of the network protocol stack, the application layer.

In this chapter we concentrate on the distributed computation of the interconnection network
by the MAC layer and the problem of distributing location information in the physical layer.
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5.3.2 Pedestrian Mobility

The pedestrian mobility model is a worst case approach relying on all mobile stations obeying
a speed limit of vmax. In this velocity bounded model the starting position si := si(0) is known
and for the speed vector s′i(t) = dsi(t)/dt it holds |s′i(t)| ≤ vmax. This implies for the relevant
time interval ∆ that all mobile stations remain in a disk with radius vmax ·∆ around the starting
position si, i.e.

for t ∈ [0,∆] : |si(t)− si| ≤ vmax ∆.

As a technical condition we require a polynomial bound on the maximum distances, i.e. for
some constant k we claim |si − sj| = O((vmax∆)k).

5.3.3 Vehicular Mobility

The vehicular mobility model describes the movement of n stations with bounded acceleration
amax. It refers to transportation vehicles which can operate at high speeds, where the limitation
by the change of speed has a higher impact on the movement than the maximum possible speed,
e.g., cars, trains, aircrafts. Let s′′i (t) = ds′i(t)/dt denote the acceleration vector of a mobile
station si, then we claim that for all mobile stations |s′′i (t)| ≤ amax. Now the starting speed
vector s′i := s′i(0) at the beginning of the time interval ∆ can be arbitrarily large. Yet, we assume
that at the beginning of the time interval [0,∆] we know all locations s1, . . . , sn and all speed
vectors s′1, . . . , s

′
n. Then we can estimate the position of station i at time point t ∈ [0,∆] by

|si(t)− ts′i − si| ≤
1

2
amaxt

2 ≤ 1

2
amax∆

2 .

As a technical condition we require a polynomial bound on the maximum distances and
relative speed differences, i.e. for some constant k we claim |si− sj|+ |s′i− s′j| = O((amax∆)k).

5.4 Mobility and Network Parameters

In our worst case approach scenarios may appear where even optimal networks have bad per-
formance. We introduce a network independent measure, called crowdedness, to identify such
scenarios. We will see that it states a lower bound on the amount of radio interference and the
maximum degree of reasonable connection networks. In the velocity bounded model we define
the crowd of a node u by

Crowdv(u) := {w | w ∈ S \ {u} and |u− w| ≤ 2vmax∆} .

Its cardinality defines crowdv(u), the crowdedness of u. In the acceleration bounded model
we define the crowd of a node u by

Crowda(u) := {w | w ∈ S \ {u}, |u− w| ≤ 1

2
amax∆

2 and |u′ − w′| ≤ 1

2
amax∆} ,
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where u, w denote the starting positions, and u′, w′ the starting speed vector of mobile stations
for the time interval [0,∆]. The crowdedness crowda(u) is defined by its cardinality. It can be
interpreted as the number of nodes that can approach u with maximum acceleration amax in time
∆ such that si(∆) = sj(∆) and s′i(∆) = s′j(∆).

The overall crowdedness of a set of stations S is given by the maximum crowdedness for
α ∈ {a, v}:

crowdα(S) := max
u∈S
{crowdα(u)} .

Transmission Range One crucial property of our mobile network approach is to build up
persistent links for the time interval [0,∆]. The only method to ensure this property for a com-
munication link is to increase the transmission radius such that the maximum distance that two
stations can reach is covered. In the velocity bounded pedestrian model we therefore redefine
the transmission distance of two stations u, w ∈ S by (see Figure 5.3)

|u− w|v := 2vmax∆ + |u− w| .

PSfrag replacements u w

vmax∆vmax∆

|u− w|v = |u− w|+ 2vmax∆

Figure 5.3: Transmission range using pedestrian mobility

In the vehicular model the necessary transmission range is described by (see Figure 5.4)

|u− w|a := |(u, u′)− (w,w′)|a := max{|u− w|, |u− w + (u′ − w′)∆|+ amax∆
2} .

Lemma 5.1 shows that both definitions are symmetric and fulfill the triangle inequality. For
a shorter notation we denote the tuple (u, u′), which represents a quadruple (ux, uy, u

′
x, u

′
y) for

u, u′ ∈ R
2, simply by u. Note that |u− u|α 6= 0 for α ∈ {a, v}.

Lemma 5.1 The distance measures |u− w|v and |u− w|a are symmetric and fulfill the triangle
inequality.

Proof: For the velocity bounded model the symmetry and the triangle inequality of the dis-
tance measure follows from the symmetry and triangle inequality of the Euclidean metric. For
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PSfrag replacements

u w

u′∆ w′∆

1
2
amax∆

21
2
amax∆

2

|u− w|a = max{|u− w|, |u− w + (u′ − w′)∆|+ amax∆
2}

Figure 5.4: Transmission range using vehicular mobility

the acceleration bounded model the symmetry of the distance measure also follows from the
symmetry of Euclidean metric. We prove the triangle inequality:

Let |u− w|∗
a

be defined as |u− w + (u′ − w′)∆|+ amax∆
2. Then we get

|u− w|∗
a
= |u− w + (u′ − w′)∆|+ amax∆

2

= |u− v + v − w + (u′ − v′ + v′ − w′)∆|+ amax∆
2

≤ |u− v + (u′ − v′)∆|+ |v − w + (v′ − w′)∆|+ amax∆
2

≤ |u− v + (u′ − v′)∆|+ amax∆
2 + |v − w + (v′ − w′)∆|+ amax∆

2

= |u− v|∗
a
+ |v − w|∗

a

Now we can prove the triangle inequality for |u− w|a. Note that max{a, b} = 1
2
|a+ b|+ 1

2
|a−

b| ∀a, b ∈ N0.

|u− w|a = max{|u− w|, |u− w|∗
a
}

= max{|u− v + v − w|, |u− v + v − w|∗
a
}

≤max{|u− v|+ |v − w|, |u− v|∗
a
+ |v − w|∗

a
}

=
1

2

∣

∣

∣
|u− v|+ |v − w|+ |u− v|∗

a
+ |v − w|∗

a

∣

∣

∣

+
1

2

∣

∣

∣
|u− v|+ |v − w| − |u− v|∗

a
− |v − w|∗

a

∣

∣

∣

≤ 1

2
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∣

∣
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a
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∣

∣
+

1

2
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∣

∣
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a
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∣

∣

+
1

2

∣

∣

∣
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a

∣

∣

∣
+

1

2

∣

∣

∣
|v − w| − |v − w|∗

a

∣

∣

∣

= max{|u− v|, |u− v|∗
a
}+ max{|v − w|, |v − w|∗

a
}

= |u− v|a + |v − w|a

Diameter and Degree The union of all (bidirectional) communication links E describes the
mobile ad hoc network. The diameter diam(G) of this undirected graph G is described by the
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maximum hop-distance between a pair of nodes. The degree deg(v) of a node v is the number
of established communication links at v.

Interference Modern communication networks use many frequencies and sophisticated
spread spectrum techniques, that allow many senders to share the same medium. However, in
most systems the bandwidth of the medium can be outnumbered by the communication load of
the participants. For a theoretical approach we assume that such spread spectrum systems behave
like a single frequency network with a probabilistic time schedule.

In our single frequency model with adjustable transmission distances edges interfere if a
mobile station is inside the transmission area of an edge and messages are sent simultaneously,
see Section 4.1. Because of our little knowledge about the movement of the mobile stations, we
cannot exactly predict interference. For an accurate analysis one has to take into account the
sending time of a message, the movements of senders and receivers, their transmission radii, the
impact of control data induced by distance measurements and acknowledgments.

For a theoretical approach we need a simple definition that allows us to classify mobile net-
works. Radio interference result from a combination of bad timing, bad locations, and large
transmission radii. We want to concentrate on the geographical cause of interference and count
all communication links that could interfere at some time. In the static wireless network sce-
nario this can be described by deciding, whether a node resides in the transmission area of a
communication link. In our worst case mobility scenario the situation is more difficult.

We do not know in advance whether the mobile station could move into the transmission area
of a link. If we consider the worst case motion for radio interference we encounter numerous
such interdependencies. This approach would lead to a definition where small local changes of
positions can influence the radio interference of all other mobile stations. We would like to use
a practical local definition for radio interference, which only uses knowledge from the mobile
stations of the interfering and interfered links. Furthermore, we want to exclude the timing of the
movement from the definition of radio interference.

We took several alternative models for interference into consideration. One of the possible
approaches is to count every radio interference that could happen for some time under every
allowed movement. But this turns out being too pessimistic. We also considered a too optimistic
model where we only count interfering links that must interfere under every possible movement.
For a reasonable compromise between these two extreme models assuming a certain adversarial
or friendly behavior of the mobile stations, we consider a compromise assuming that we only
count interfering edges of mobile stations using the average route. In the pedestrian model the
average route is to remain on the starting position, while in the vehicular model it describes the
unaccelerated floating with the original speed.

So, we define interference as if the distance between two interfering stations is not stretched
by the additional constant that is given by the velocity bound in the pedestrian model and the ac-
celeration bound in the vehicular model. Thus, in our pedestrian model we count interfering links
as if the radio stations are not moving at all. For the vehicular model we count only interfering
links as if the interfering mobile stations are not accelerating (yet using an oversized transmission
radius to compensate for worst case movements). Furthermore, we count only interfering links
if they interfere for the complete time span ∆.

In this interference model two edges do not interfere even if they pass each other at a close
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distance with high relative speed. One may argue that in this case the interaction between the
links is so short that it can be neglected. Of course we are aware of worst case scenarios of
passing mobile clusters giving a counter-example. As a physical argument, the large relative
speed difference may be large enough to cause a frequency shift, known as Doppler-effect, which
prevents radio interference.

In the velocity bounded model an edge g = {p1, p2} interferes with an edge e = {q1, q2} if

∃pi ∈ g : ∃qj ∈ e : |pi − qj| ≤ |p1 − p2|v .

In the acceleration bounded model we model interference only between edges which in-
terfere for the complete interval [0,∆], if the velocity vectors of their nodes remain the same.
Formally we define that an edge g = {p1, p2} interferes with an edge e = {q1, q2} if

∃pi ∈ g : ∃qj ∈ e : |pi − qj| ≤ |p1 − p2|a and |p̃i − q̃j| ≤ |p1 − p2|a ,

where ũ := u+ ∆u′ denotes the position of u at time point ∆ if the speed vector of u remained
unchanged during [0,∆].

For α ∈ {a, v}, i.e. in both mobility models, we define BIntα(e) as the set of edges that
interfere with the edge e. The interference number BIntα(G) of a mobile network G is given by
the maximum interfered set of edges:

BIntα(G) := max
e∈E(G)

{|BIntα(e)|} .

Now the crowdedness of the underlying set of mobile stations states a lower bound on the
amount of interference every connected mobile network produces.

Theorem 5.1 For α ∈ {a, v} we observe for all connected graphs G = (S,E)

BIntα(G) ≥ crowdα(S)− 1 .

Proof: Let u ∈ S be a node for which crowdα(u) is maximal inG, i.e. crowdα(u) = crowdα(S),
and let e be an arbitrary edge incident to u. Such an edge exists, because G is connected.
We define the set E(Crowdα(u)) as the set of edges incident to a node from Crowdα(u), i.e.
E(Crowdα(u)) := {g = {w, z} : w ∈ Crowdα(u)}. Consider the Graph Ĝ which is obtained
from G by substituting each node of S \ Crowdα(u) by the new node û. (The position of û is ir-
relevant.) The edges which are incident to a node from S \Crowdα(u) in G become incident to û
in Ĝ (multiple edges are deleted). Note that u ∈ S \Crowdα(u), so S \Crowdα(u) is not empty.
Therefore the number of nodes in Ĝ is crowdα(u) + 1. Furthermore, each edge in Ĝ is incident
to a node of Crowdα(u) and so contained in E(Crowdα(u)). Since G is connected, the graph
Ĝ is also connected. Hence, the number of edges of E(Crowdα(u)) in Ĝ is at least crowdα(u).
Since each edge in Ĝ is incident to a node of Crowdα(u), it is contained in E(Crowdα(u)).
Hence |E(Crowdα(u))| ≥ crowdα(u). We show that each of the edges in E(Crowdα(u)) \ {e}
is interfering with e. This will imply that BIntα(G) ≥ crowdα(u)− 1 = crowdα(S)− 1.

In the velocity bounded model Crowdv(u) is defined as the set {w ∈ S | |u − w| ≤
2vmax∆ and w 6= u}. Then each edge g = {w, z} ∈ G incident to a node w ∈ Crowdv(u)
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interferes with e, because |u− w| ≤ 2vmax∆ ≤ |w− z|+ 2vmax∆ = |w− z|v holds. Therefore,
E(Crowdv(u)) \ {e} ⊆ BIntv(e).

In the acceleration bounded model the set Crowda(u) is defined as {w ∈ S | |u − w| ≤
1
2
amax∆

2 and |u′ − w′| ≤ 1
2
amax∆ and w 6= u}. Every edge g = {w, z} ∈ G incident to a node

w ∈ Crowda(u) interferes with e, because |u− w|+ |u′ − w′| ≤ amax∆
2 ≤ max{|w− z|, |w −

z + (w′ − z′)∆|+ amax∆
2} = |w − z|a holds. Hence E(Crowda(u)) \ {e} ⊆ BInta(e).

Mobile Spanner Analogously to Section 2.4 a graph G = (S,E) is called a mobile c-
spanner according to pedestrian or vehicular mobility, i.e. for α ∈ {a, v}, if for all nodes u, w ∈
S there is a path P = (u = u1, . . . , u` = w) in G such that

∑̀

i=2

|ui−1 − ui|α ≤ c · |u− w|α ,

for some constant c. In a mobile weak c-spanner the radius of this path is at most c · |u− w|α,
i.e.

max
ui∈P,i=1,...,`

|u− ui|α ≤ c · |u− w|α .

The definitions imply directly that every mobile c-spanner is also a mobile weak c-spanner.
For the optimization of energy consumption we use again the model that transmission power for
sending to a distance d increases as a function dδ, where δ ≥ 2 (see Section 2.1). Therefore, in a
mobile (c, δ)-power spanner there is a path P = (u = u1, . . . , u` = w) in G such that

∑̀

i=2

(|ui−1 − ui|α)δ ≤ c · (|u− w|α)δ ,

for some constant c. G is a mobile c-power spanner, if G is a mobile (c, 2)-power spanner.

Lemma 5.2 For α ∈ {a, v} every mobile c-spanner is a mobile (cδ, δ)-power spanner.

Proof: Consider a mobile c-spanner G and a path (u = u1, . . . , u` = w) in G from u to w.

∑̀

i=2

(|ui−1 − ui|α)δ ≤
(

∑̀

i=2

|ui−1 − ui|α
)δ

≤ (c · |u− w|α)δ = cδ · (|u− w|α)δ

Congestion Following our approach in Section 4.1 we observe on each communication link
e some packet load `(e), which will be delivered in time interval [0,∆]. This load is caused
by packets following routes (also called paths) which include e. The union of all these paths is
called a path system P.

As a worst case estimation on the number of packets that cause a congestion at link e we
have to count all packets `(e) as well as all packets being transported on interfering edges, which
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leads to the following definition of congestion Cα,P(e) of an edge e with respect to a path system
P for α ∈ {a, v}:

Cα,P(e) := `(e) +
∑

e′∈BIntα(e)

`(e′) .

We describe the mobile network congestion by

Cα,P(G) := max
e∈E(G)

Cα,P(e) .

If we know the optimal path system P in advance, the definition of the underlying optimal
network is given by all edges used in the path system. However, because of the structure of the
protocol stack we have to determine the network before knowing a path system or even routing
requests. We solve this problem by showing that a mobile weak spanner hosts a path system that
polylogarithmically approximates the optimal congestion.

Theorem 5.2 Given a mobile weak c-spanner G then for every optimal path system P on a
complete network N there exists a path system P ′ on G such that for α ∈ {v, a}

Cα,P ′(G) = O(Cα,P(N) · BIntα(G) · logn) .

Proof: We apply the techniques of Subsection 4.1.4 used for approximating congestion in static
ad hoc networks. Remember Lemma 4.11, Lemma 4.12, Lemma 4.13, and Lemma 4.14.

Now let Kv := 2vmax∆ and Ka := amax∆
2. Let D(v) = 2 and D(a) = 4. In the pedestrian

model the relationship between the L2 norm and the transmission distance is

|u− w|v = |u− w|+Kv .

In the vehicular model we define the distance |u− w|am by

|u− w|am := max{|u− w|, |u− w + (u′ − w′)∆|} .

Note that dist(u, w) = |u − w|am now defines a metric. Since we have |u − w|a = max{|u −
w|, |u− w + (u′ − w′)∆|+Ka}, we get

|u− w|a −Ka ≤ |u− w|am ≤ |u− w|a .

Define the interference region Dα(e) of an edge e = {u, w} as the set of points, which can be
interfered by an edge e, i.e.

Dv(e) := {x ∈ R
2 | ∃p ∈ e : |x− p| ≤ |u− w|v} ,

Da(e) := {x ∈ R
4 | ∃p ∈ e : |x− p|am ≤ |u− w|a } .

For the vehicular distance measure we need the following Lemma.

Lemma 5.3 There are ca ≤ 72 disjoint sub-spacesA1, . . . , Aca
⊂ R

4 such that ∀i ∈ {1, . . . , ca} :
∀u, p, w ∈ Ai : |u− w|am ≤ |u− p|am =⇒ |p− w|am ≤ |u− p|am .
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Proof: W.l.o.g. let u = (0, 0, 0, 0). For k, j ∈ {0, . . . , 5} we define

A6j+k+1 :=
{

x ∈ R
4 | ](x1, x2) ∈

[

k
π

3
, (k + 1)

π

3

)

and ](x3, x4) ∈
[

j
π

3
, (j + 1)

π

3

)

and |x1 − x2| ≥ |x3 − x4|
}

,

A36+6j+k+1 :=
{

x ∈ R
4 | ](x1, x2) ∈

[

k
π

3
, (k + 1)

π

3

)

and ](x3, x4) ∈
[

j
π

3
, (j + 1)

π

3

)

and |x1 − x2| < |x3 − x4|
}

.

where ](a, b) denotes the angle between the vector (a, b) and the vector (1, 0). Furthermore, let
p = (p1, p2, p3, p4), w = (w1, w2, w3, w4) ∈ A6j+k+1 for k, j ∈ {0, . . . , 5}. Then |0 − w|am =
|(w1, w2)| and |0 − p|am = |(p1, p2)|. By assumption we have |u − w|am ≤ |u − p|am, i.e.
|(w1, w2)| ≤ |(p1, p2)|. Note that the angle between the vector (p1, p2) and the vector (w1, w2) is
smaller than π

3
. This implies that |(p1, p2)− (w1, w2)| ≤ |(p1, p2)|.

Since |(w3, w4)| ≤ |(w1, w2)| ≤ |(p1, p2)| and |(p3, p4)| ≤ |(p1, p2)| it follows that |(p3, p4)−
(w3, w4)| ≤ |(p1, p2)|. This implies |p−w|am = max{|(p1, p2)−(w1, w2)|, |(p3, p4)−(w3, w4)|} ≤
|(p1, p2)|.

Now, let p = (p1, p2, p3, p4), w = (w1, w2, w3, w4) ∈ A36+6j+k+1 for k, j ∈ {0, . . . , 5}. Then
|0−w|am = |(w3, w4)| and |0−p|am = |(p3, p4)|. By assumption we have |u−w|am ≤ |u−p|am,
i.e. |(w3, w4)| ≤ |(p3, p4)|. Note that the angle between the vector (p3, p4) and the vector (w3, w4)
is smaller than π

3
. This implies that |(p3, p4)− (w3, w4)| ≤ |(p3, p4)|.

Since |(w1, w2)| < |(w3, w4)| ≤ |(p3, p4)| and |(p1, p2)| < |(p3, p4)| it follows that |(p1, p2)−
(w1, w2)| ≤ |(p3, p4)|. This implies |p−w|am = max{|(p1, p2)−(w1, w2)|, |(p3, p4)−(w3, w4)|} ≤
|(p1, p2)|.

We extend the notion of congestion to nodes by counting all traffic which send out radio
interference to the location of the point:

Cα,P(x) :=
∑

e∈E(P):x∈Dα(e)

`(e) .

Cα,P(x) defines the capacity of the point x. For an edge e = {u, w} the following relationship
is valid.

max{Cα,P(u), Cα,P(w)} ≤ Cα,P(e) ≤ Cα,P(u) + Cα,P(w) .

Lemma 5.4 shows that the maximum congestion of any point in R
D is linearly bounded by

the congestion of the network.

Lemma 5.4 For all graphs G = (V,E) with V ⊂ R
D(α), all path systems P and all points

x ∈ R
D(α):

Cα,P(x) =
∑

e∈E:x∈Dα(e)

`(e) ≤ cα ·max
e∈E

∑

e′∈BInt(e)

`(e′) = cαCα,P(G) ,
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for constants cα > 1. In the pedestrian model we have cv = 6 and in the vehicular model we
get ca ≤ 72.

Proof: Let kv := 2 and ka := am. For the point x we partition the space into cα disjoint
sub-spaces A1, . . . , Acα such that for all u, v ∈ Ai |x − u|kα ≤ |x − v|kα implies |v − u|kα ≤
|x− v|kα.Then for the pedestrian mobility model the angle between xu and xv is less or equal
than π/3. Clearly, the optimal choice is cv = 6, which resembles six sectors centered at x. For
the vehicular model it follows by Lemma 5.3 that ca ≤ 72 suffices.

Now choose for each non-empty sub-space Ai a vertex ui ∈ Ai that minimizes the distance
|x − ui|kα . For every edge e = {v, w} with x ∈ Dα(e) we now show that there exists a vertex
ui with ui ∈ Dα(e). Assume that x ∈ Dα(e) and let Ai be the sub-space where v lies in. Since
|ui − x|kα ≤ |x− v|kα we have |ui − v|kα ≤ |x− v|kα ≤ |v − w|α. This implies

Cα,P(x) =
∑

e∈E:x∈Dα(e)

`(e) ≤
cα
∑

i=1

∑

e∈E:ui∈Dα(e)

`(e)

≤ cα · max
u∈V (G)

∑

e∈E:u∈Dα(e)

`(e)

≤ cα ·max
e∈E

∑

e′∈BInt(e)

`(e′) ≤ cαCα,P(G) .

Lemma 5.5 Let C∗α,P be the congestion of a given congestion-optimal path system P ∗ for a
vertex set V and α ∈ {a, v}. Then every mobile weak c-spanner N can host a path system P ′
such that the induced load `(e) in N is bounded by `(e) ≤ c̃ C∗α,P log n for a constant c̃ > 0.

Proof: Note that |u − w|α ≥ Kα for all u, w. Now we replace every edge e = {u, w} of the
optimal path system P∗ by the path P (u, w) = (u = u0, . . . , u` = w) from u to w in N with
|u − ui|α ≤ c · |u − w|α and |w − ui|α ≤ c · |u − w|α (we consider only bidirectional edges).
Analogously to Lemma 4.14 we consider the edge set Eα,i,e0

⊆ E(P∗) of edges e = {u, w}
with length |u− w|α ∈ [2iKα, 2

i+1Kα) for i ∈ N0 which reroute their traffic to e0 = {u0, w0}.
The region where e interferes has been defined by Dα(e). Now we use the same arguments with
regard to capacity, area, and congestion, applied in Section 4.1.

In the pedestrian model Dv(e) is a sphere with volume of at least π22i+2v2
max∆

2 and lies
completely inside the sphere Dv with radius (c + 1)2i+2vmax∆. The volume of Dv is π(c +
1)222i+4v2

max∆
2. We apply Lemma 4.12 and Lemma 4.13 in the same way and get

∑

e∈Ev,i,e0

`(e) ≤ 4cv(c+ 1)2C∗
v,P(G) .

In the vehicular model we try to underestimate the volume of Da(e) denoted by vol(Da(e)).
First, we define Da(u) := {x ∈ R

4 | |u− x|am ≤ |u− w|a}. Clearly, vol(Da(u)) ≤ vol(Da(e)).
Note that

|u− x|am = max{|u− x|, |u− x+ (u′ − x′)∆|} ≥ max{|u− x|1, |u− x+ (u′ − x′)∆|1} .
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Hence the 4-dimensional parallelepiped with volume

(
√

2 · 2iamax∆
2)× (

√
2 · 2iamax∆

2)× (
√

2 · 2
iamax∆

2

∆
)× (
√

2 · 2
iamax∆

2

∆
) = 24i+2a4

max∆
6

lies completely inside Da(u). Furthermore, we have

|u− x|am = max{|u− x|, |u− x+ (u′ − x′)∆|} ≤ max{|u− x|∞, |u− x+ (u′ − x′)∆|∞} .

Since |p− q|a ≤ c · |u0 − w0|a ≤ c · 2i+1amax∆
2 for p ∈ {u, w} and q ∈ {u0, w0}, all volumes

vol(Da(e)) lie completely inside the 4-dimensional parallelepiped with volume

((c+ 1)2i+1amax∆
2 +
√

2 · 2iamax∆
2)4 .

Note that ∆ > 0 and amax are constants. With the same arguments used in the pedestrian model,
we can conclude that

∑

e∈Ea,i,e0

`(e) ≤ ca
((c+ 1)2i+1 +

√
2 · 2i)4a4

max∆
8

24i+2a4
max∆

6
= O(C∗

a,P(G)) .

For all mobile stations, we assume that |si − sj| = O((vmax∆)k) in the pedestrian model
and |si − sj| + |s′i − s′j| = O((amax∆)k) in the vehicular model for some constant k. This
implies that there are at most O(log n) different intervals [2iKα, 2

i+1Kα). For the sum of loads
`(e) of the set Eα,e0

:=
⋃

iEα,i,e0
⊆ E(P∗) we get:

∑

e∈Eα,e0

`(e) = O(cα · log n · C∗α,P) = O(log n · C∗α,P) .

Lemma 5.5 shows that the number of packets transfered on detours is at mostO(log n) higher
than the congestion in the optimal network. We denote by BIntα(G) the maximum interference
number in the mobile weak c-spanner G. If the loads of all interfering edges can be bounded by
m, then the overall congestion is at most m · BIntα(G), which proves Theorem 5.2.

5.5 Constructing Mobile Networks

Now we present techniques to construct mobile (weak) spanners with low interference. We use a
grid-cluster technique which adopts ideas of [AS98] for static ad hoc networks. We have already
used such techniques in Chapter 4 to approximate static congestion optimal path systems with
the Hierarchical Layer Graph.

In the pedestrian model we consider a grid of cell size vmax∆. For every grid cell, where
at least one mobile station resides at the beginning of the time interval [0,∆], we elect one of
them as a cluster head uc. All other mobile stations in this cell have a communication link to
the cluster head forming a star for each cell. The set of cluster heads Sc will be connected by a
(static) spanner, e.g., the HL-graph.
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In the vehicular model we consider a 4-dimensional grid Gj,k,`,m, where each cell forms a
4-dimensional box. A mobile station si with coordinates (p1, . . . , p4) = (si,x, si,y, s

′
i,x, s

′
i,y) is in

the grid cell q = (q1, . . . , q4) ∈ Z
4, i.e. si ∈ Gq, if qı̂ = bg(p)ı̂c, where

g(x, y, vx, vy):=

(

x

6amax∆2
,

y

6amax∆2
,

vx

2amax∆
,

vy

2amax∆

)

.

Like in the pedestrian model we elect a cluster head for each cell and a star-like communi-
cation network in each cell. All cluster heads will be connected by a (static) four-dimensional
spanner.

Lemma 5.6 The grid-cluster-technique constructs mobile spanners for both mobility models.

Proof: For a given mobile station u let h(u) denote the cluster head of the cell where u is
located. We choose as a path for two given nodes u, w the shortest path between h(u) and h(w)
using only cluster heads combined with the edges (u, h(u)) and (h(w), w).

For the velocity bounded mobility model the transmission distance between a node and its
cluster head is at most

√
2vmax∆ + 2vmax∆ = (

√
2 + 2)vmax∆.

For the acceleration bounded mobility model the transmission distance between a node and
its cluster head is at most

√
72∆2 + 4∆amax∆

2 + amax∆
2.

The number of hops h between the cluster heads is linearly bounded by the Manhattan-
distance between u and w according to the grid.

Hence, the additional impact of every hop of the path is linearly bounded by the distance.
In the case that the two nodes are very near, i.e. |u − w| < Kα, one uses that |u − w|α ≥ Kα.
Because of the nearness of the cluster heads, there is only a constant number of hops and a linear
long detour with respect to Kα ≤ |u− w|α.

Note that the spanner property does not imply a bound on the interference number. For this,
we can use the Hierarchical Layer Graph construction presented in Section 4.1 as a spanner.
Here, we use a simplified approach, called Hierarchical Grid (because of the knowledge of
absolute coordinates). An example of the resulting Hierarchical Grid Graph for pedestrians is
given in Figure 5.5.

We start with the grid G0 = G introduced above and the set of all stations S0 := S, and
promote for each cell one mobile station for being cluster head. The set of these cluster heads
form the set S1. In this level only cluster heads may communicate with nodes in their cell.
Besides these links, cluster heads have communication links with all cluster heads in neighboring
cells sharing at least a corner of the grid.

We iterate this extended grid-cluster-technique until only one point is left. Formally, in the
i-th level of the network structure, we start with a set of stations Si and consider the gridGi, with
grid coordinates gi(sj).

gi(sj) = gi(sj,x, sj,y, s
′
j,x, s

′
j,y):=

(

sj,x2
−i

6amax∆2
,
sj,y2

−i

6amax∆2
,
s′j,x2

−i

2amax∆
,
s′j,y2

−i

2amax∆

)

.

A cell q ∈ Z
4 contains all points p with bgi(p)`c = q`. We assign for each cell a cluster head

and add it to the set Si+1. We connect each of the cluster heads to all nodes of rank i in its cell.
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Figure 5.5: The hierarchical grid graph for pedestrians

Then we connect all cluster heads to all cluster heads of neighboring cells. For the pedestrian
model we use an analogous construction based on the two-dimensional grid cell size 2vmax∆.

Theorem 5.3 For both mobility models, i.e. for α ∈ {v, a}, the Hierarchical Grid Graph consti-
tutes a mobile spanner with interference number of at most O(crowdα(V ) + log n).

Proof: We start with the proof that the Hierarchical Grid Graph is a mobile spanner. If two
nodes lie in the same grid cell of G0, then they have hop-distance of at most 2, since both of
them are connected with the cluster head. Since |u− w|a ≥ amax∆

2 and |u− w|v ≥ 2vmax∆ for
each pair of nodes u, w and the cell size is linear in this distance, this case is settled. Note that
|u− u|a = amax∆

2 and |u− u|v = 2vmax∆ hold for each node u.
We now prove that the mobile spanner property holds with respective to the grid distance

measure |g0(u) − g0(w)|. We recursively define a path P (u, w) from u to w. Let i be the
lowest level of the hierarchical grid, where the ancestor u∗ of u and the ancestor w∗ of w are in
neighboring grid cells, i.e. the cell of u∗ and the cell of w∗ are sharing at least one corner, where
the ancestor of a node is defined recursively as its cluster-head and an ancestor of its cluster-
head. Such a level exists, since at the second highest level each pair of cells are neighbors of
each other. The nodes u∗ and w∗ are connected in level i by an edge {u∗, w∗} per definition. We
add the edge {u∗, w∗} to P (u, w). Now we must construct a path P (u, u∗) and P (w,w∗). This
paths consist of the edges from a node to its cluster-head. Then the path P (u, w) is defined as
P (u, u∗) ∪ {u∗, w∗} ∪ P (w,w∗).

Now we give a bound on the length of P (u, w). Let x be the side length of the cells at level
i. Then |u− w| ≥ x/2, since the ancestor of u and w are not in neighboring cells at level i− 1,
otherwise they would be still connected by an edge at this level. The Euclidean length of the
edge {u∗, w∗} is at most two times the length of the diagonal of a cell at level i, i.e. it is at most
2x
√
D ≤ 4x, where D is the dimension of the grid. The length of P (u, u∗) is the sum of the

lengths of the edges in P (u, u∗), which is at most x
√
D∑i

j=0 2−j ≤ 4x. Similarly, the length of
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P (w,w∗) is at most 4x, and therefore the length of P (u, w) is at most 12x. This implies that the
Euclidean stretch factor is at most 24.

We assume that ∆, amax, and vmax are constants. Then it remains to show that for each pair
of nodes u and w

|g0(u)− g0(w)| = Θ(|u− w|α) , for |g0(u)− g0(w)| ≥ 1 (5.1)

This follows immediately from the definition of the cell size.
For the interference number, it is essential that every edge e connecting neighboring cells in

Gi only interferes with an edge e′, if for a node u of e and w of e′ it holds |gi(u)−gi(w)| = O(1).
This follows directly from (5.1). Hence, most of the interfering occur at the lowest level of the
grid G0, where a mobile station can suffer under the amount of radio interference of at most
O(crowdα(S)) mobile stations in some constant number of near cells. In every higher grid level
this amount reduces to a constant interference number, because only one cluster head resides in
a cell and the number of connections with cluster heads of next lower or same level is constant.
We assume that |si − sj| = O((vmax∆)k) in the pedestrian model and |si − sj| + |s′i − s′j| =
O((amax∆)k) in the vehicular model for some constant k. This implies that we have at most
O(log n) grid levels, which completes the proof.

5.6 Position Information Management

In the previous sections, we have assumed that all positioning information is available to all
nodes. But distributing this information is a non-trivial task. This process has to be done in
the physical layer, where routing is not available. But the physical layer may use a positioning
system (e.g., GPS [DJ96]) which enables every mobile station to learn its position and absolute
speed. Then it can use short radio broadcast messages, called beacons, to inform all neighbors in
the transmission range.

Another solution is to measure the distances between mobile stations by comparing the trans-
mission power (which the sender may write in a data packet) with the received power. At first
sight this looks similar to the position beacon model. However, using only distance information
it is impossible to compute the relative speed of the communication partner.

We dedicate this section to present ideas for dynamic position information management using
the vehicular mobility model which can be also applied to the pedestrian mobility model as
well.

5.6.1 Coordinating Location Beacons

If the mobile stations can determine their absolute coordinates (and thus can compute absolute
speed vectors), we suggest to broadcast this information in the physical layer in order to construct
the basic network of the next round (of time span ∆).

A straightforward solution is sending special beacon signals carrying location and identifi-
cation information. One can assign special time slots for these beacon signals, which are not
propagated by other nodes. However, if all nodes send these beacons at maximum transmission
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range, then n beacon signals would interfere at each node. It turns out that a data structure as the
Hierarchical Grid helps to reduce the necessary transmission range and the size for the beacon
time slot. For this, we use the following observation.

Lemma 5.7 Let si, sj be mobile stations using vehicular mobility and let s̃i := si(∆), s̃j :=
sj(∆). Then for k > 0

2

3
|gk(si)− gk(sj)|∞ − 2−k ≤ |gk(s̃i)− gk(s̃j)|∞ ≤

4

3
|gk(si)− gk(sj)|∞ +

1

6
2−k .

Proof Sketch: The relative change of the position coordinates x(si) − x(s̃i) is bounded by at
most ±(∆ · |(x(s′i) − x(s′j)| + amax∆

2), while the relative change of the velocity coordinate
x(s′i) − x(s̃′i) is bounded by ±2amax∆ and analogously for the y-coordinates. The rest of the
proof follows straightforward by a case distinction.

This observation helps to bound the dynamic changes of the Hierarchical Grid Graph. If a
node u has rank i > 1 in round t, then the number of nodes of equal rank in the same cell as u is
bounded by 9 in the pedestrian model and by 81 in the vehicular model.

5.6.2 Distances as Location Information

There is a number of reasons why absolute coordinates in mobile stations are not available,
e.g., size and cost of GPS subsystems, reachability, accurateness. However, we will show that
little relative distance information is sufficient to maintain a good mobile network structure.
We assume, that a mobile station can measure the distance to another station by measuring the
receiving transmission power. Such measurements can be performed in the physical layer of
the protocol stack and we reduce the number of measurements, while still maintaining a mobile
network similar to a grid-cluster network. Define δi,j(t) = |si(t)− sj(t)|.

Lemma 5.8 Given distances δi,j(−∆) and δi,j(0) it is possible to approximate the transmission
distance |si − sj|a by a factor of 5.

Proof: We use
δ̃ := max{δi,j(0), |2 δi,j(0) − δi,j(−∆)|, amax∆

2}
as an approximation for |si − sj|a and show that δ̃ ≤ |si − sj|a ≤ 5δ̃ . Assume si measures
the distance to sj(−∆) and sj(0). Let d := si(0) − sj(0) the distance at time 0 and v(t) :=
s′i(t) − s′j(t) the relative velocity. Since both stations may accelerate we assume that si is fixed
and sj may accelerate with 2amax.

First we prove that δ̃ ≤ |si − sj|a. Because δi,j(0) = |si − sj| we only have to show
that |2δi,j(0) − δi,j(−∆)| ≤ |d + v∆| + amax∆

2. The term |δi,j(0) − δi,j(−∆)| represents the
estimated average velocity during [−∆, 0]. If si lies in the middle between sj(−∆) and sj(0),
the measured velocity is 0 and thus underestimated. Apart from this exceptional case, the true
relative velocity at time 0 may differ from the estimated average value by an error of ±amax∆
because sj may accelerate/decelerate with 2amax. Thus |2δi,j(0)−δi,j(−∆)| = |d+v∆±amax∆|
and δ̃ ≤ |si − sj|a.
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Now we show that |si − sj|a ≤ 5δ̃. We can minimize δ̃ if we position si in the middle
of sj(−∆) and sj(0). |d + v∆| can be maximized if sj accelerates with 2amax during [−∆, 0]
(The acceleration in [0,∆] is irrelevant). For the distance estimation δi,j(0) = 1

2
(|v(−∆)|∆ +

amax∆
2) =: r. The estimation yields δ̃ = max{r, 2r − r, amax∆

2}. At time 0 the velocity
v(0) = v(−∆) + 2amax∆ and thus |si − sj|a = r + |v(−∆)|∆ + 3amax∆

2 = 3r + 2amax∆
2. If

we choose v(−∆) = amax∆ so that r = amax∆
2, then the ratio |si − sj|a/δ̃ is maximized and at

most 5.
Based on the physical restriction on the movements of mobile stations, we have found a

dynamic data structure, called Mobile Hierarchical Layer graph (MHL-graph). Essentially, it
uses the same ideas as the Hierarchical Grid graph if one replaces the grid distance measure with
the Euclidean L2-norm. Again, one can show that this distance measure can be approximated by
two distance measurements at different time points. The notion of cells will be replaced with a
disk around nodes of certain rank. These MHL-graphs are mobile spanners and approximate the
minimum amount of mobile interference by a constant factor.

5.7 Conclusions

The main contribution of this chapter is the model of worst case mobility which was defined in
a formal way. We have discussed two worst case models for mobility. In the first pedestrian
motivated model, we bound the speed by a speed limit of vmax. In the other model designed for
the special mobility induced by high-speed vehicles, we assume that the acceleration of all nodes
is bounded by a constant amax. Our idea is to adjust the transmission range of senders such that
we can guarantee the persistence of all communication links for at least a time period of length
∆ to ensure some elementary stability in a wireless ad hoc network.

For network construction we concentrate on the medium access layer, which builds up com-
munication links without known routing tasks. We have presented a distributed algorithm to
build such an elementary mobile network, which allows us low congestion, low interference, low
energy data routes, small degree, and small diameter as summarized in the following corollary.

Corollary 5.1 There exist distributed algorithms that construct mobile ad hoc networks for the
velocity bounded and the acceleration bounded mobility model with the following properties:

1. The mobile network allows us data routes on this mobile network inducing a congestion of
at most O(log2 n) times the congestion of the optimal routing.

2. The interference number of the mobile network approximates the optimal interference num-
ber by a factor of O(logn).

3. Energy-optimal routes can be approximated by a constant factor.

4. The degree is bounded by O(crowdα(V ) + log n) and the diameter is at most O(logn).

For the routing problem, this does not imply that low congestion, low energy, and short routes
can be optimized using the same routing policy. Already for the static case of wireless networks,
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one experiences trade-offs between any two of these measures, see Section 4.1. However, the
algorithms presented here, build up a general-purpose communication network which performs
well for all kinds of routing requests and has reasonable approximation ratios for any routing
policy with regard to congestion, energy or dilation.

As a side effect of our network construction for the vehicular mobility model, we achieve
a data structure, where clustering takes locality of positions and movement into account. E.g.,
consider a highway of two lanes in each direction, see Figure 5.6. All algorithms and data struc-
tures, neglecting the impact of relative speed, build up too many communication links between
the opposing lanes. However, these links are very unstable and hence expensive. In our model,
communication links along each direction are much more frequent and, if there is a choice, then
the communication link across the middle of the highway will be established between slower
moving vehicles (e.g., trucks) instead faster ones (and this is even the case if the fast vehicles are
nearer to each other).

Figure 5.6: Vehicles on a highway with different speed vectors

Finally, we want to mention that there are some open questions concerning our first approach
to velocity and acceleration bounded mobility. The modeling of the interference of moving edges
presented here is only a rough estimation. It is not clear how a mobile network design may look
for a more accurate model. The movements of the communication partners also affect the routing
algorithms. We have neglected the problem of long routes which require an update time of length
greater than ∆. Possibly, communication can be improved if for the communication paths those
nodes are preferred that also move towards the receiver’s direction.

The distributed measurement and computation of the relative locations and relative speed
vectors states a problem. We have seen that a rough approximation can be deduced from the
receiving transmission energy and its change in time. However, for the construction of a rea-
sonable basic network, a direct implementation of previous approaches needs some interaction
between location beacons and distance measurements.



Chapter 6

Experimental Analyses and Results

In this chapter we present the results of our extensive experimental evaluations. We have devel-
oped two different testbeds to perform a number of significant simulations that demonstrate the
applicability of our algorithms and/or analyses using realistic settings.

In the first section, we describe our simulation environment for mobile ad hoc networks,
SAHNE. We use SAHNE to close the gap between theoretical investigations of communication
protocols in wireless networks and realistic wireless environments. For this purpose we have
implemented realistic models for radio and infrared transmissions to test our algorithms using
the omnidirectional as well as using the directional communication model presented in Chapter 4.
Furthermore, we have developed and integrated an interface between mathematical modeling and
prototypical realization that allows us to use the same source code of our algorithms, that we have
implemented and successfully tested in our simulation environment, directly on the mini robot
Khepera (see Subsection 4.2.1).

In the second section we present our interactive tool for checking graph properties, ITGraP.
Here, our aim was not to go into technical detail, but more to present a theoretical study of
important graph properties on vertex sets where the nodes are placed uniformly at random. We
have implemented the Yao-graph and its variants as well as the HL-graph to perform simulations
and to find out about the performance of our topologies. In addition, we allow each node to
adjust the orientation of its senders to improve the quality, especially the stretch factors, of the
sectorized topologies. We show improvements experimentally and present algorithms to compute
the stretch factors of a given graph exactly.

6.1 A Simulation Environment for Mobile Ad Hoc Networks

Modern computer networks are designed in a highly structured way. Most networks are orga-
nized as a series of layers, each one built upon its predecessor, to reduce their design complexity.
The OSI model [Spo93, Tan96], shown in Figure 6.1, is based on a proposal developed by the
International Standards Organisation (ISO) as a first step toward international standardization of
the protocols used in the various layers. The model is called the ISO OSI (Open Systems In-
terconnection) reference model, shortly OSI model, and consists of seven layers. Note that the
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OSI model just tells what each layer should do. It is not a network architecture, since it does not
specify the exact services and protocols to be used in each layer.
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Figure 6.1: The OSI reference model minus the physical medium [Tan96]

For mathematical investigations the complexity of communication in networks is sometimes
to difficult to handle. Therefore abstract models and simple, sometimes restricted, assumptions
have to be used. Based on these models algorithms are developed and analyzed on a high level
of abstraction. For example, in Chapter 4 we have investigated point-to-communication using
two different types of wireless communication models and for our analyses we have introduced
abstract models for interfering signals. In real-world applications interference appear in a differ-
ent way. Furthermore, we have to consider other physical side-effects like overlapping of sectors
and areas with no reception. The whole communication process between two nodes in a network
including all communication overhead has to be taken into consideration.

We have developed a simulation environment for mobile ad hoc networks, SAHNE [Vol01,
Vol02, Rüh02, RSVG03], for analyzing communication in MANETs based on the directional
communication model to get realistic experimental results. The omnidirectional communication
model in SAHNE can be simulated using the directional one with one sector/sender per node.
Free existing simulation environments for MANETs, e.g., ns-2[FV98], GloMoSim[ZBG98, LL00],
or OMNet++[Var01], are not specially designed for directional communications used in our sce-
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nario. In addition, especially in ns-2, every communication layer is implemented in high detail
and this has the disadvantage that only small sets of nodes can be simulated in a short time. In
SAHNE it is possible to simulate hundreds of nodes in a wireless environment. But nevertheless
we have also performed simulations of omnidirectional communication with ns-2. Here, we have
implemented the Hierarchical Layer Graph.

One goal during the development of our simulation environment SAHNE has been to build
up a flexible, well-expandable, and easy-to-use-environment, with which nearly every communi-
cation layer can be simulated. The focus of this thesis is on routing (multi-hop communication)
and topology control in wireless networks. Hence, we have been interested in realistic implemen-
tations of some lower layers, i.e. especially the network and the data link layer, see Figure 6.1.
Furthermore, SAHNE simulates effects like interference and uses realistic models for radio and
infrared signal propagation.

next lower layernext higher layer
Output buffer of the

next higher layer
Input buffer of the

Input buffer of the

next lower layer
Output buffer of the

Name

Figure 6.2: Layout of one communication unit

We have designed SAHNE with respect to the OSI model (see [Spo93, Tan96]) and the
functionality of the nodes in SAHNE has been divided into several communication units (see
Figures 6.2 and 6.3). The number of these units is not fixed and it is easy to integrate new units.
The main functional units that are already implemented in SAHNE have the following tasks.

Transfer

MediumLayer 2Layer 3Layer 4 upwards

User

User Scheduler

Scheduler Router

Router Transmitter

Transmitter

Figure 6.3: Most important communication units of SAHNE

The user is equivalent to the application layer and it is comparable with a data transfer service.
In this unit data will be generated and destinations have to be chosen for the initiated packets.
The user can be extended by new application services that are arranged in higher layers.

As the first part of the network layer the scheduler determines what should be done with
packets received by the user. Packets will be scheduled (e.g., forwarding packets via a random
target that acts as a stopover, or splitting packets into smaller packets and vice versa).

As the second part of the network layer the router forwards packets received by the scheduler
to its targets. Especially, there will be created and chosen routes and it will be decided how
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to transmit information along these routes. The router uses topology knowledge, e.g., it knows
every node in the neighborhood.

The transmitter represents the MAC (Medium Access Control) layer of the data link layer.
It is responsible for direct data transmissions between two neighboring nodes. In this layer,
problems depending on the network architecture will be simulated such as the occurrence of
interference in MANETs. The transmitter acquires direct neighbors, builds up topologies, and
decides when to use established edges, e.g., using a probabilistic channel transmission protocol.

The medium models the communication channel. Data will be forwarded from its source to
its target with consideration of physical channel properties.

Two nodes are able to communicate at every layer of this model. In general these functional
units will be used in the following way to generate and to process network traffic. A user gen-
erates a packet with a target and forwards it to the scheduler of the same node. The scheduler
decides whether to send the packet directly to the target, or via another node, or something like
this, and forwards it to the router. The router knows where the target is and chooses a node that
will get the packet next. The wireless transmission will be performed by the transmitter. The last
two steps will be repeated until the packet arrives at the target. Then it goes again through the
scheduler to another scheduler or directly to the user. In fact, this is a very simple example. In
parallel, at every layer, other tasks can take place. For example, the transmitter transmits control
packets beside data packets to establish communication links and to build up and to maintain a
topology.

Network
(Simulation kernel)

Packet processing

Data structureNode

Routing

Transport

Data link

Statistic

Mobility

Visualization

Figure 6.4: Internal structure of SAHNE

SAHNE has been implemented in C++ using various data structures and several advanced
data types of LEDA [MN99]. The development has been done with great care to be platform
independent (SAHNE was tested on several operating systems: Solaris, Linux, Windows). The
units in SAHNE are realized as C++ classes and the whole environment is based on an object-
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oriented model. SAHNE can be compiled in two different ways, either in textual mode or in
interactive mode. In both cases simulation parameters will be read from a configuration file (e.g.,
a textfile called sahne.cfg). Additionally, in the interactive mode they can be edited interactively
via a graphical user interface (GUI). In the textual mode the simulation runs until the number of
simulation steps will be finished. In the interactive mode the user is able to change parameters,
check nodes/edges, view statistics, and some others interactively. At the end of a simulation
with SAHNE, local and global statistics will be given and some files will be generated that can
be used directly as an input for the gnuplot tool [WK86] to produce statistics. In Figure 6.4 an
overview of the internal structure of SAHNE is given. Beside the communication units there
exist further classes. The network class is the most important one. Here, we have integrated the
simulation kernel in which we have implemented our models for signal propagation. Main data
structures for realizing fast range queries necessary for computing receiving nodes when signals
are transmitted are also part of the network class. A link to a packet processing library connects
simulation and prototypical realization. It is possible to use the same source code implemented
in this library directly on the Khepera robot.

We have additional classes for visualization, mobility, and statistics. The visualization class
is completely independent from other classes, i.e. it can be easily replaced by other libraries. The
mobility class regulates motion patterns. Every node can move around without any restriction
in a MANET and therefore motions have to be calculated at each simulation step. In SAHNE
miscellaneous movement strategies have been implemented. The most known is the random
waypoint model. In this model, a node chooses a destination with a uniform random distribution
over the given area, moves there with a velocity, waits for some simulation steps, and then repeats
this behaviour (see [JM96, Per01]). We have implemented this model and some extensions.
More details about mobility models are given in Chapter 5. Known motion patterns such as
the Brownian Motion Model, the Column Model, and the Pursue Motion Model [San98] are also
available in SAHNE. For fixed motion sequences it is possible to define trajectories in SAHNE on
which nodes have to move. This is very helpful to perform simulations using special (movement)
szenarios, e.g., two trains passing each other.

During a simulation we assume that all nodes wishing to communicate with other nodes
within the MANET are willing to participate fully in the protocols of the network. In particular,
each node participating in the network should also be willing to forward packets for other nodes
in the network. Information will be transmitted by packets. Every packet has a clear identification
(ID), a source, and a target. Furthermore, it can contain additional information such as parameters
or data like files, audio- or videodata, text, etc. A packet needs one time step to make a single
hop in the network, regardless of the distance to the destination node. In many situations it
is more time- and resource-efficient for a message to perform a sequence of hops, multi-hop-
communication, instead of one single hop to its final destination. The sequence of nodes used for
the hops is called route or path of a message. All nodes in SAHNE work in a synchronized way.

6.1.1 Communication Strategies using Idealized Assumptions

In this subsection we present routing and topology control algorithms and experimental results
for the Yao-graph using idealized assumptions. Here, we assume that each node is equipped with



112 EXPERIMENTAL ANALYSES AND RESULTS

k ∈ N transmitting devices that allow a node sending data in sectors. We divide the area around a
node in k equal non-overlapping sectors of angle 2π/k and use one transmitting device per sector.
We assume that there is given only one frequency for transmissions and that each node can adjust
the transmission power of its devices. The attentive reader might have observed that this matches
exactly our assumptions in Section 4.2. In this subsection we perform simulations without a
realistic model for signal propagation, i.e. we assume that the borders of a sector are straight,
the senders on a node are fixed, and the nodes have always the same orientation (no rotation is
possible). The visualization of such idealized data-transmissions is shown in Figure 6.5.

Figure 6.5: Visualization of data-transmissions in SAHNE

A transmission failure or an interference occurs, if and only if more than one signal is received
in the same sector a the same time. Furthermore, a node can send out at most one packet at a time
per sector. If a node v attempts to send a packet with transmission power t, then all nodes needing
less than α · t power to receive a packet from v are blocked, where α > 1 is some fixed constant
[AS98]. Any information transmitted to a blocked node is not received. Note that this means that
it is possible that no transmission during a single time step was succesful. A transmission conflict
caused by interference cannot be detected by the sending node. In Chapter 4 we have already
discussed hidden and exposed terminals as well as asymmetric interference. We assume that
every sender will be received only within its sector and nodes are only allowed to communicate
with their neighbors in these particular sectors.

We have implemented in SAHNE several strategies for routing and topology control us-
ing different assumptions. These algorithms can be regarded as exemplary implementations.
SAHNE can easily be extended by other strategies. In the following we will describe first, sim-
ple algorithms for the most important communication units of SAHNE, see also Figure 6.3.
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The transmitter is responsible for construction and maintenance of the Yao-graph. In this
subsection we assume that every node is equipped with a GPS-module [DJ96] to get its physical
location. In reality, position information provided by GPS includes some amount of error, which
is the difference between GPS-calculated coordinates and the real coordinates. In this case we
assume that each node knows its current location precisely. The transmitter collects the following
information about each of its k neighbors: name (ID), physical location, distance, and the time,
at which the last information update by a packet took place.

If in a sector of a node more than one packet is received, then all the packets are removed.
Otherwise the packet is received correctly. The transmitter processes only received packets and
uses these to collect necessary information about directly connected neighbors. Every trans-
mitter periodically transmits neighbor-control-packets (NNP) in each sector with some constant
probability to produce neighbor information. The transmission range of such a message can be
chosen randomly from a fixed interval or is fixed. In this manner edges of the Yao-graph will be
established. Transmitters may have random transmission breaks to reduce the number of colli-
sions in a time step. Packets to higher layers will be forwarded as soon as they will be received
completely. Packets from higher layers will be split before being forwarded if they are oversized.
The maximum size of a packet and other values can be set by the simulation parameters.

The routing unit handles and forwards packets in the order of their arrivals: First-In-First-
Out (FIFO). Other packet switching schemes can easily be integrated. At the beginning of a
simulation, the user is able to choose whether packets should be sent with acknowledgments
or not. Some other parameters can also be adjusted. In the following, we distinguish between
two routing schemes: pq-routing and hop-minimization. Both algorithms use the information
collected by the transmitter to route packets.

The pq-routing works as follows: assume a packet p arrives at node u. Let the target of p be
the node w and i the sector of u in which w lies. Then p will be forwarded over a neighboring
node v in sector i. We call sector i the target-sector. In this way p will be transmitted until the
destination is reached. A precondition is that the targets of the packets are known. Remember
the proof that the Yao-graph is a c-spanner for a constant c. The proof is constructive and pq-
routing exactly uses the idea given in the proof to find a path from a source to its destination.
Such routing protocols are called localized routing since the decision to which node a packet
is forwarded is based only on the information in the packet header and the local information
gathered by the node from a small neighborhood [Li03b, Li03a, Li03c].

We assume that the underlying wireless network is connected, but since the maximum trans-
mission range in a MANET is bounded, it might be possible that we get empty sectors. Sectors
in which no connection to a nearest neighbor is possible. Then the pq-routing will not work
correctly. Known solutions to this kind of problems use simple heuristics like compass routing,
right hand rule, face, or greedy routing (see [Li03b, Li03a, Li03c]). We consider a very simple
strategy to investigate the problem of empty sectors. If there is no connection to a node in the
target-sector possible, we will forward the packet to a node in the sector on the left/on the right,
each with probability of 1/2, until we will find a node to forward the packet.

The hop-minimization is a distance-vector algorithm that operates like the Destination Se-
quenced Distance Vector protocol (DSDV, [Per01]). Every node creates a routing table that in-
cludes the destination’s address (e.g., the node number), the number of hops required to reach the
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destination, the neighbor required to reach the destination with a minimal number of hops, and
the creation time of the information received regarding that destination, as originally stamped by
the destination. Every node periodically broadcasts to all of its neighbors its current estimation
of the shortest distance to every other node in the network without the information about the
neighboring node (to avoid loops) to keep the data up to date. The router looks in its routing
table at the entry regarding the destination of p to forward a packet p, and if it is not empty, p
will be transmitted via the located neighbor. Otherwise the packet will be held. Storing of the
routing table requires O(n) space per node for a network with n nodes.

The scheduler is responsible for the scheduling of packets. All the packets should have a
limited size that is much smaller than the maximum size of a TCP/IP packet to transmit packets
error free and to reduce the number of collisions. For this purpose the scheduler can split data
packets into many several packets. These smaller packets will be forwarded and routed sepa-
rately. The scheduler forwards packets either directly or via a randomly selected node that acts
as a stopover which sometimes improves network parameters, see Valiant’s trick [Val82].

Finally, in the node unit, network traffic will be generated. Several selected nodes create data
packets, choose destinations for them, and forward them to the scheduler. The creation of packets
will take place in one simulation step with some constant probability which gives the injection
rate, if packets are generated asynchronously. In case of synchronous creation packets will be
injected after a fixed number of simulation steps. The size of packets can be chosen randomly or
it can be fixed.

Parameter Value(s)

Simulation area: 500 m× 300 m
Max. transm. range: 200 m
Number of nodes: 60 (2 fixed)
Simulation time: 10 s (= 100,000 simulation steps)
Bandwidth: 2 MBit/s (≈ 209 Bit/simulation step)
Link utilization: 80 %
Fixed packet size: 512 Byte
Injection: 100 packets/s

(= exp. every 1,000 simulation steps)
Motion pattern: random motion pattern, 15 km/h
Pause time: 2 s (= 20,000 simulation steps)
Number of sectors: 6
Upd. of routing inf.: 10 updates/s

Every node of the network creates data packets.
The destinations for these packets will be chosen randomly.

The transfers are similar to a permutation routing.

Table 6.1: Simulation parameters

Simulation Results using Idealized Assumptions

We carried out a number of experiments modeling different possible situations. The results
presented in the following are based on parts of the diploma thesis of the author of this work.
We have chosen only a very small choice from all results and want to refer to the diploma thesis
for more details, see [Vol01]. The most important parameters of our simulations are listed in
Table 6.1. At the beginning of a simulation the nodes will be placed over the given simulation
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area uniformly at random. We compare the algorithms with regard to the expected injection
distance, the number of sectors of the Yao-graph, the transmission range, and the velocity of the
nodes. Finally, the accessibility will be illustrated depending on the number of sectors and on
the transmission range.
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Figure 6.6: Varying the injection distance and the number of sectors

In Figure 6.6(a) the exploration of the expected injection distance is illustrated. The rate of
successfully received packets of the pq-routing as well as of the hop-minimization decreases with
an increasing number of generated packets. The pq-routing is better than the hop-minimization,
since no further overhead is needed for transmissions. The amount of interference of the pq-
routing is reduced.
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Figure 6.7: Varying the number of sectors and the transmission range

The number of sectors in the directional communication model is a very interesting parame-
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ter. In Figure 6.6(b) one can see that the ratio of receiving increases with an increasing number
of sectors. But this conclusion is not always correct. Be careful, because in this simulation the
transmission range is high (200 m).

In Figure 6.7(a), the expected result can be seen. The transmission range is low (100 m) and
the pq-routing will be bad, if more than 7 sectors are available. The explanation is simple. The
more sectors available the longer are the edges of the Yao-graph. Thus, many packets will be
held at some nodes, if pq-routing is used. In this case, a spare strategy gives better results. But
the hop-minimization will be the best, because it only uses edges that exist (pq-routing possibly
tries to use sectors in which no edges are available).

A simple assumption is that the ratio of receiving will be better, if the transmission power
is very high. Figure 6.7(b) shows that this is correct, but beginning with a certain transmission
range the best ratio cannot be exceeded. If the transmission range is too high, the ratio will be
worse because of the high number of collisions.
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Figure 6.8: Varying the velocity and both, the transmission range and the number of nodes

The exploration of the influence of motion in Figure 6.8(a) clarifies that a higher velocity
entails a worse ratio of receiving. The hop-minimization is more concerned as the pq-routing.
The necessary information to update the routing tables cannot arrive in time.

The last Figure 6.8(b) gives an overview of the accessibility in the simulated MANETs. A
node v will be accessible, if all other nodes can send v a packet. The number of correct routes
was counted and compared to the number of all possible routes.

6.1.2 Topology Control using Realistic Propagation Models

Now we try to close the gap between our theoretical investigations of wireless network topolo-
gies and realistic wireless environments. For point-to-point communication, we examine the
Yao-graph, the SparsY-graph, the SymmY-graph (see Section 4.2), and the HL-graph (see Sec-
tion 4.1). We present distributed algorithms that can be used to build up the Yao-graph and its
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variants in time O(logn) per node without the use of any geographical positioning system. Our
algorithms are based only on local knowledge and local decisions and make use of power con-
trol to establish communication links with low energy-cost. We compare these algorithms with
respect to congestion, dilation, and energy. For congestion we introduce different measures that
allow us to investigate the difference between real-world wireless networks and our models for
wireless communication at a high level of abstraction. For more realistic simulations we have
extended our simulation environment SAHNE, see Figure 6.9. We use a realistic transmission
model for directional communication that uses sector subdivision. Finally, our experimental re-
sults show that our topologies and algorithms work well in a distributed environment and we
give some recommendations for topology control based on our simulations. The experiments
presented in this subsection were performed by Stefan Rührup in the context of his diploma the-
sis [Rüh02] under the supervision of the author of this work. We present some selected results.

Figure 6.9: SAHNE - A simulation environment for mobile ad hoc networks

As already mentioned, we investigate topology control at the medium access layer (MAC) in
wireless ad hoc networks and our research aims at the implementation of such a network based
on distributed robust communication protocols. Here, we want to show how the (sparse) graphs
with promising network and graph properties, presented in Chapter 4, perform in practice. We
use space multiplexing techniques and variable transmission powers to realize the topologies.
Therefore, the network nodes, e.g., a colony of robots equipped with a suitable communication
device, can send and receive radio or infrared signals independently in k disjoint sectors of
angle θ using one communication channel. We call this ability sector subdivision or directional
communication model or sectorized approach, compare Section 4.2. Furthermore, every device
is able to regulate its transmission power for each transmitted signal.
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On the one hand, a number of distributed topology control algorithms [WLBW01, RM98,
RH00, LHB+01], proximity graphs [LWW01, WLWF02], and geometric spanner graphs [GLSV02,
WL02, HP00, GGH+01b] have been proposed that model communication networks at a high
level of abstraction, see also Subsection 4.2.2. On the other hand, we have developed a com-
munication module for the mini robot Khepera [GRSV03] that can transmit and receive in eight
sectors, using infrared light with variable transmission powers to show that these approaches are
also suitable in practical situations. In this section, we try to investigate theoretical results using
realistic conditions given by the Khepera robots. We want to close the gap between theoretical
investigations of wireless network topologies and real-world wireless environments. For simu-
lations we use our simulation environment for mobile ad hoc networks, SAHNE, presented in
the previous section. As seen, SAHNE allows us to implement, test, and evaluate algorithms for
communication in MANETs.

In the following we discuss known models for signal propagation and reception, present
extensions for SAHNE that allow us more realistic simulations, and present algorithms and ex-
perimental results for power- and time-efficient topology control. We distinguish between the
omnidirectional and the directional communication model.

Signal Propagation and Reception

In Section 2.1 we have already discussed some distinguishing features of radio transmissions
that are important for designing and analyzing wireless network topologies. During wireless data
transmissions between nodes, the bits have to be modulated in a waveform suitable for transmis-
sion over the air. The channel distorts the waveform in various ways. For example, the waveform
can reach the receiver directly and via a reflection from an obstacle. The resulting two waves
are phase-delayed and the superimposition of both waves is received by the destination node.
Due to the phase-delay, intersymbol interference is observed at the receiver. This effect is called
multipath fading and can be reduced by appropriate techniques at the receiver, e.g., maximum-
likelihood sequence detection with the Viterbi algorithm [BB99, MMF98]. We assume that the
physical layer solves this kind of problems. However, some aspects of the physical transmission
have to be considered for performing realistic simulations suitable for developing medium ac-
cess control algorithms. Signal propagation and signal reception are the most important ones.
A model of the signal propagation is necessary since we want to adjust the transmission power
dynamically. In wireless networks, several nodes can transmit signals simultaneously to one re-
ceiver, therefore the reception of signals has to be modeled to decide when interfering signals
cause collisions.

We first describe the propagation models used. For omnidirectional communication, we ap-
ply the well-known free space propagation model:

Pr =
PtGtGrλ

2

(4πd)2L
(6.1)

where Gt and Gr are the gains of the transmitting and receiving antennae, λ is the wavelength
of the radio signal, Pt the transmission and Pr the receiving power, d the distance between
sender and receiver, and L the path loss due to the sender and receiver hardware [Kra88, Par92,
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AZ03]. For directional communication, we adapt a well-known model from directed infrared
(IR) communication, that shows the relation between the transmission power Pt and the received
power Pr:

Pr = Aeff(ψ)
1

d2
Rt(ϕ)Pt (6.2)

whereAeff(ψ) is the effective area of the IR sensor, d is the distance between sender and receiver,
and Rt(ϕ) is the radiant intensity of the IR transmitter [KB97]. The angular characteristics of
the sensors and the diodes can be accurately modelled by

f(α) = c[(m+ 1)/2π] cosm α, m = − ln 2/ ln(cosα1/2) (6.3)

where c accounts for the characteristics of the optical transducers (e.g., the area of the receiver)
and α1/2 is the semi-angle at which half of the signal intensity is emitted/detected.

Signal reception depends on the received signal strength Pr of the data signal. If it is high
enough compared to interfering signals and noise, the data signal can be extracted from the
received superimposed signal. The signal-to-interference-plus-noise-ratio (SINR) expresses this
relation [LP99]:

SINR =
Pr,d

∑m
i=1 Pr,i + Pn

> SINRmin (6.4)

where Pr,d is the signal strength of the data signal, Pr,i are the signal strengths of them interfering
signals and Pn is the noise power. If the SINR exceeds the threshold SINRmin, the data signal
can be decoded with a low bit error rate (BER). The threshold SINRmin is usually chosen such
that the BER is below 10−6. The signal-to-interference-ratio is considered when no noise power
is modeled:

SIR =
Pr,d

∑m
i=1 Pr,i

> SIRmin (6.5)

Hence, in our communication models we assume propagation in free space and without any
obstacle and the quality of a channel is characterized by the signal-to-interference-plus-noise
ratio (SINR) and the signal-to-interference ratio (SIR). When the radio waves reach close to an
obstacle, we had to consider also other effects like reflection, diffraction and scattering [AZ03].
We have extended our simulation environment SAHNE accordingly. The propagation models
are used to calculate the signal strength of transmitted data packets. The packet with the highest
reception power is selected as the data packet and the SIR is computed. If it exceeds the threshold
SIRmin, the packet has been correctly received. All other interfering packets are discarded. A
collision is produced if equation 6.5 is not fulfilled.

SAHNE-Extensions for Realistic Simulations

We concentrate on algorithms for the medium access (MAC) layer, a sublayer of the data link
layer (see Figure 6.1), that build up the Yao-graph and/or its variants using realistic propagation
models. For this purpose we have modified the network- and the transmitter-unit of SAHNE.
A first version was already presented in the last subsection. Furthermore, we have extended the
simulation kernel with the described realistic signal propagation models. Table 6.10 shows new
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SAHNE extensions and some differences between the former, idealized directional simulation
model assumed in Subsection 6.1 and the newer, more realistic model. The main difference be-
tween the idealized omnidirectional simulation model and the more realistic one is the modeling
of interference. In our analyses and in Subsection 6.1 we assumed that a packet gets lost when
more than one transmitter is active at the same time on the same channel. Here, we use the SIR
with a threshold to decide when packets get lost. As you can see, this model is not so strong,
since sometimes it is possible to receive data correctly also when more then one transmitter use
the channel. Theoretically, nothing is received error-free, but practically the packet with the
highest reception power could be received correctly.

Idealized Model Realistic Model

Sectors with fixed borders Ellipsoidal transmission range

Fixed sector orientation Variable sector orientation

Transmitted signals will be Transmitted signals will be received
received in at most one sector in different sectors depending on

the receiver characteristic

Interference results always Signal-to-interference-ratio (SIR)
in complete data loss

Figure 6.10: Differences between idealized and more realistic modeling

The new simulation kernel allows us to simulate effects like interfering signals (SIR), over-
lapping of sectors, or rotation of senders (see Figure 6.11). Some special problems that only
occur using the directional communication model are pointed out. You can see areas where no
reception is possible, overlapping of signals when two neighboring senders transmit at the same
time, and ellipsoidal signal propagation. At all points of the ellipse the same transmission power
is received. Hence, estimate the distance to a (nearest) neighbor is not always possible. In the
following we present algorithms that do not need it. Furthermore, the channel is non-reciprocal,
i.e. even under free space propagation it could happen that a node can reach another node with a
given transmission power but not viceversa with the same transmission power.

Distributed Algorithms

A main advantage of the Yao-graph and its variants is that they can be constructed locally with-
out using any geographical positioning system. We have implemented a distributed algorithm for
constructing these topologies: the Sector-Based Topology Control (SBTC)-Algorithm builds up
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(1) (2) (3)

Figure 6.11: (1) Overlapping regions (A) and regions with no reception (B). The non-reciprocity
of the channel (2): a node u can reach v but not vice versa, although both, u and v, use the same
transmission power. (3) Node u can reach v and w with the same transmission power.

the Yao-graph. It takes interference into account and does not need a reciprocal channel. Trans-
missions with maximum power are avoided if possible. The algorithm can easily be extended
with the capability to build up the SparsY- and/or the SymmY-graph.

According to our simulation model the algorithm must comply with the following precon-
ditions: a node can transmit and receive messages in k sectors independently. It can vary the
transmission power. There is a fixed number of power levels available. It can detect interference,
but it cannot determine how many signals interfere. A node knows neither its position nor its
orientation, see Section 4.2 for further details.

The SBTC-Algorithm, that builds up the Yao-graph, is presented in Figure 6.12. The main
task of the algorithm is to find the nearest neighbor in each sector. The nearest neighbor is the
node that can be reached with the minimal power level. It is determined by exchanging the
so-called control messages. The algorithm consists of two phases:

During the first phase a node (called the initiator) searches for a neighbor independently
in each sector: first it sends a “Hello”-message with the minimal power. If no one answers, it
increases the power so that the range is doubled. This is repeated until an acknowledgement is re-
ceived or the maximum power is reached. Interference between two or more acknowledgments,
that are received simultaneously, are resolved by an exponential backoff algorithm. This is nec-
essary because the initiator cannot distinguish if an interference is caused by nodes within the
sector or nodes outside the sector. Acknowledgements are transmitted with the same power as
the transmission power of the “Hello”-message. During the second phase the power is adapted
to the neighbor found in the first phase (called the responder): with repeated transmission of
power control messages the initiator performs a binary search. The upper bound is the power
level from the first phase. The lower bound is the minimum power level. Acknowledgements
from the responder are transmitted with the power of the last acknowledgement in the first phase.
This is crucial for the reachability of the nodes, because the channel is not reciprocal.

After these two phases, the initiator can establish an edge to the responder. If a neighbor can-
not receive a “Hello”-message due to interference, the initiator does not find him or establishes
an edge to another node. Therefore the search is repeated. If the initiator finds the same neighbor
again, the search interval is increased to reduce power consumption and interference. That way
we obtain the Yao-graph. To avoid interference while searching neighbors the initiator must not
start the search in adjacent sectors at the same time. After the neighbors have been found the
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Preliminaries

CREATEEDGE(addr, p, s) establishes an edge to the node with
the address addr, that can be used by sending a message in sector
s with the transmission power p.
UPDATEEDGE(addr, p, s) updates the transmission power.
DELETEEDGE(addr, s) deletes an edge.
SEND(type, target, p, s) sends a message to the node with the
address target in sector s with transmission power p.

1/pδ is the expected length of an interval between updating a
neighbor.
M is a list of messages a node receives.
N [s] denotes information about the neighbor in sector s,
containing the following data:
addr is the address of the neighbor.
psend is the transmission power needed to reach the neighbor.
precv is the received power of a message received from the
neighbor.

The Algorithm

SBTC()
1 for t← 1 to∞
2 do for s← 1 to sectors

3 do parallel
4 with Probability pδ

5 do UPDATENEIGHBOR(s)

UPDATENEIGHBOR(s)
1 Nold ← N [s]
2 FINDYAONEIGHBOR(s)
3 if N [s] 6= NIL

4 then if Nold = N [s]
5 then UPDATEEDGE(N [s].addr,N [s].psend, s)
6 decrease pδ

7 else CREATEEDGE(N [s].addr,N [s].psend, s)
8 reset pδ

9 if Nold 6= NIL

10 then DELETEEDGE(Nold .addr, s)
11 else if Nold 6= NIL

12 then DELETEEDGE(Nold .addr, s)
13 reset pδ

FINDYAONEIGHBOR(s)
1 p← 1 // phase 1
2 a← 1
3 while M = ∅ and p ≤ pmax
4 do M ← ∅
5 interference ← false

6 SEND(Hello-Packet, undef, p, s)
7 wait 2a time steps
8 and add received acknowledgements to M
9 update interference

10 if M = ∅
11 then if interference
12 then a← a + 1
13 else p← 4 · p // doubling the range
14 a← 1
15 if M = ∅
16 then ABORT

17 plow ← 1 // phase 2
18 phigh ← p
19 a← 1
20 while plow + 1 ≤ phigh
21 do M ← ∅
22 interference ← false

23 SEND(Power-Control-Packet , undef, p, s)
24 wait 2a time steps
25 and add received acknowledgements to M
26 update interference
27 if M = ∅
28 then if interference
29 then a← a + 1
30 else plow ← p
31 a← 1
32 p← (plow + phigh)/2
33 else phigh ← p
34 a← 1
35 p← (plow + phigh)/2
36 if M = ∅
37 then ABORT

38 msg← message with the max. received power in M
39 if (p < N [s].psend) or
40 (p = N [s].psend and msg.precv > N [s].precv)
41 then N [s].no = msg.sender
42 N [s].psend = p
43 N [s].precv = msg.precv

Figure 6.12: The sector-based topology control algorithm (SBTC)

transmission powers are adjusted, so data transmission in adjacent sectors is possible, unless the
angular characteristics of the receiver does not allow it. If the opening angle of the receiver is
high, a node has to schedule the communication on ingoing edges (this is a problem when using
non-reciprocal channels) or it has to acknowledge every message. Furthermore, we want the
algorithm to react on node failures and mobility so we infinitely repeat the search.

A modified version of this algorithm constructs the SparsY-graph and/or the SymmY-graph:
for the SparsY-graph it is necessary that every node keeps track of its ingoing edges. If the
initiator wishes to establish an edge to the responder, he first has to apply for this edge. If the
responder knows no other ingoing edge in the corresponding sector that is “shorter", then the new
edge is accepted. If the new edge replaces another ingoing edge, the responder has to inform the



6.1 A SIMULATION ENVIRONMENT FOR MOBILE AD HOC NETWORKS 123

owner of the old edge.
In the case of the SymmY-graph, the nodes also have to apply for an edge to a neighbor. If

the initiator applies for an edge and if he is already known to the responder as a Yao-neighbor,
then the requested edge can be established on both sides. So the nodes do not have to store
information about ingoing edges.

Theorem 6.1 For a vertex set V in general position with n nodes and s power levels per node
the Yao-graph and its variants can be constructed in time O(logn · log s) (the time one node
needs to find its neighbors).

Proof: Phase 1 uses power doubling and needs O(log s) steps until some first nodes will
be reached. The time needed for sending a successful acknowledgement can be bounded by
O(log n), since at most all nodes could answer and in this case we need the time to resolve the
collisions by the binary exponential backoff algorithm. Phase 2 is just a binary search algorithm
based on the number of power levels. In this phase we need at most O(log s) steps to adjust
the transmission power to the nearest neighbor and at each of these steps O(log n) time slots to
resolve collisons.

For omnidirectional communication we have also implemented a distributed algorithm for
constructing the Hierarchical Layer Graph: the Hierarchical Layer Topology Control (HLTC)-
Algorithm, presented in Figure 6.13.

The two main tasks of the HLTC-algorithm are the selection of nodes, i.e. to decide in which
layer a node lies, and the establishing of connections inside the layers. We assume that the lowest
radius r0 or an approximation of that distance is known to all nodes.

Essentially, a node sends a claim for leadership (CFL) packet to appear in a next higher layer.
If there is no other node having a higher rank given by its unique identification then the node
climbs up to a next higher layer. In the case that there is another node with a higher rank, this
node answers back sending a disagreement (DIS) packet. At the beginning, every node is only a
member of layer L0.

When a node is a member of a layer, it can send a neighbor notification packet (NNP) in-
cluding the transmission power necessary in this layer to inform other nodes such that they can
establish bidirectional connections if they are also member of the same layer. NNP packets are
created and transmitted uniformly at random in the layers of a node. Control information are
stored in the packets. A CFL packet in a new layer i is transmitted such that all nodes in distance
ri are able to receive this packet. An NNP packet in a layer i should achieve all nodes in distance
α · ri. The HLTC-algorithm uses an exponentiell backoff scheme to avoid interference. Fur-
thermore, we have intregrated known algorithms for congestion control, e.g., additive increase
and multiplicative decrease (AIMD), to increase the througput. Some more details can be found
in Figure 6.13. Note that this is only one possible implementation of the HL-graph. Modified
versions use other algorithms to decide in which layery a node lies.

Experimental Results

In Chapter 4 we have investigated the basic network parameters congestion (that takes interfer-
ence into account), dilation, and energy. Here, we extend the definition of congestion to practical
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Preliminaries

RANDOM(x0, . . . , xi) generates a random number uniformly chosen from {x0, . . . , xi} ⊂ N.
SEND(type, target, p, i) sends a message to the node with the address target in layer i with
transmission power p.

r gives the highest layer in which a node currently lies, it can be regarded as a rank.
1/pδ is the expected length of an interval between updating a neighbor.
M is a list of messages a node receives.
pα[i] is the power necessary to achieve a node in distance α · ri in layer i
pβ [i] is the power necessary to achieve a node in distance ri in layer i

The Algorithm

HLTC()
1 r← 0
2 for t← 1 to∞
3 do with Probability pδ

4 do if RANDOM(0, 1) = 0
5 then `← RANDOM(0, ..., r)
6 SEND(NNP, undef, pα[`], `)
7 else a← 1
8 repeat
9 M ← ∅

10 interference ← false

11 SEND(CFL, undef, pβ [r + 1], r + 1)
12 wait 2a time steps
13 and add received LVAL −Messages to M
14 update interference
15 a← a + 1
16 until interference = false or M 6= ∅
17 if M = ∅
18 then r = r + 1

Figure 6.13: The hierarchical layer topology control algorithm (HLTC)

environments where interference are modeled by the signal-to-interference-ratio (SIR) and the
fact, that transmitted signals are received in more than one sector at a time. In our simulations
we consider three types of congestions to measure the quality of topologies and algorithms. We
begin each simulation with a set of nodes randomly placed in the simulation area. No edges are
established at the beginning. Then we start an algorithm to build up one selected topology, e.g.,
the Yao-graph, the SparsY-graph, the SymmY-graph, or the HL-graph. At some time steps we
stop the topology control and calculate network and communication properties. For our con-
gestion values we construct a permutation routing problem: every node u creates one packet
for each possible destination node v. Now we consider two path systems on the constructed
topology. The path system Pd that optimizes dilation, which is given by the maximum of the
lengths of all paths in Pd, and the path system Pe that optimizes flow energy, which is defined
by
∑

e∈E(Pe) `(e)|e|2. Both schemes can be computed in polynomial time. Now we simulate the
transport of all packets and count the number of packets that go through an edge e and define it as
the load `(e) of e. This load is often called congestion in wired networks, compare [Lei92] and
Section 4.1. We define the load L of a path system as L := maxe∈E `(e). In Chapter 4 we have
extended this definition to an intuitive definition of congestion in wireless networks. Remember
Section 4.1 that the congestion of an edge e of N = (V,EP) defined by a path system P is given
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by

C(e) := `(e) +
∑

e′∈BInt(e)
`(e′) .

The congestion C of the path system P for V is defined by C := maxe∈EP
C(e). For our

experimental results we modify this parameter further and introduce the realistic congestion Cr.
The realistic congestion combines load, interference, power attenuation, and SIR. The definition
is the same as for congestion, but for the definition of interference we take the realistic SIR
into account. Let us assume, that transmissions take place on all edges. An edge interferes
with another edge only if the receiver can not extract the transmitted signal from the received
superimposed signal.

In our experiments we chose the following parameters: the nodes are placed uniformly at
random in an area of size 50m × 30m and also the sector orientations of the nodes are chosen
uniformly at random. Every node has 8 sectors (transceivers) and can change its transmission
power at 256 power levels. The transmission range at maximum power is about 50m. The
directional characteristic is based on the specification of the IR communication modules: the
transmitter has a semi-angle of 20◦, the receiver a semi-angle of 50◦. The probability pδ for
repeating the UPDATENEIGHBOR procedure is initially set to 1/500, see Figure 6.12.
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Figure 6.14: Load and congestion during network build-up

The left diagram in Figure 6.14 shows the progression of load and congestion during the
build-up of the Yao-graph. In every time step we do an offline-computation of an all-pairs
shortest-path algorithm to obtain a path system on which congestion is calculated. The path
system is computed with either hop minimization or energy minimization. As hop minimization
yields better congestion, we do not present the results of energy minimization. The resulting
values are averaged over 30 vertex sets.

In the diagram all curves grow until a peak at 500 time steps is reached. One time step stands
for the time needed to transmit one control packet. At this time the last edge that is necessary
to make the network connected has been established. Then the major part of the load is allotted
to this edge. When more edges are established, the load is distributed over more paths, so load
and congestion decrease. Finally the curves balance out and the build-up process converges after
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nearly 4000 simulation steps. The diagram also shows that the difference between idealized and
realistic congestion is small.

The right diagram in Figure 6.14 compares the realistic congestion of the Yao-graph, the
SparsY-graph, and the SymmY-graph during the network construction. It shows that the Yao-
graph can be built up quickly. Constructing the SparsY-graph and the SymmY-graph takes longer,
because the nodes have to apply for an edge and so additional messages have to be exchanged.
The diagram also shows that the Yao-graph provides smaller congestion than the SparsY-graph
and/or the SymmY-graph. There are two reasons: First, the load of the Yao-graph is usually lower
than that of the SparsY-graph or SymmY-graph. Second, the SparsY-graph and the SymmY-
graph do not prevent interference in our simulation model due to the angular characteristic of the
receiver (in contrast to the idealized sector model)!
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Figure 6.15: The relation of load, congestion, and number of nodes

Figure 6.15 also points out this behavior. It shows congestion and realistic congestion for
different numbers of nodes. The values are averaged over 15 vertex sets and were taken after
the network had been constructed. Note that the area has always the same size so that a growing
number of nodes implies a growing density. If we compare the two diagrams, we can see that the
congestion of the Yao-graph is similar to the load of the SparsY-graph and SymmY-graph.

Figure 6.16 shows dilation and flow energy for the Yao-graph and its variants, based on a
hop-optimal path system. Flow energy is measured in standard energy which is defined as the
energy needed to transmit 1 bit relative to the energy consumption of a transmission at maximum
power, divided by the number of sectors. It turns out that the SparsY-graph and the SymmY-
graph have similar dilation and flow energy values, because for randomly distributed vertex sets
there are no significant differences between the SparsY-graph and the SymmY-graph. The edges
in the Yao-graph that are not allowed in the SparsY-graph or the SymmY-graph are usually longer
edges. So in the Yao-graph the distances can be spanned by a path over fewer hops than in the
SparsY-graph or SymmY-graph. Thus dilation for the Yao-graph is smaller than for the SparsY-
graph and SymmY-graph. Although paths that contain long edges are not energy efficient, the
SparsY-graph and the SymmY-graph provide better values for flow energy in our simulation.

The Hierarchical Layer Graph of a vertex set V is defined by the parameters α and β, see
Section 4.1. We performed a lot of simulations to find approriate values for these parameters.
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Figure 6.16: Dilation and flow energy

By definition it must hold that α ≥ β > 1. Theorem 4.7 shows that the HL-graph is a c-
spanner for some constant c for α > 2 β

β−1
. In the following we present only a small selection

of our simulations concerning the HL-graph. The path system is computed with either hop
minimization or energy minimization. We assumed at most 10 layers for each vertex set and
varied the number of nodes from 15 up to 160. The propagation exponent δ is equal to 2. The
resulting values are averaged over 15 vertex sets. The vertical bars depict the standard error.
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Figure 6.17: The relation of load, congestion, and number of nodes

Figure 6.17 shows the load and the realistic congestion of the HL-graph under energy and
hop minimization varying the number of nodes. Be careful because of the different scaling. Note
that the transmission power to send over a link e is not exactly adjusted to |e|δ but to the distance
required by the layer in which this link is established. This makes it more diffcult to compare
energy and hop minimization. As you can see there is a big gap between the load and the realistic
congestion. This is caused by high interference in the omnidirectional communication model.
There was nearly no difference between congestion and realistic congestion.

Another interesting observation is that, on the one hand, there is a major difference between
the loads of path systems that optimize energy and hop minimization. But, on the other hand, the
curve progressions of the realistic congestions for both path systems are nearly the same.
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Figure 6.18: Dilation and flow energy

Figure 6.18 points out expected values for dilation and flow energy: the path system opti-
mized for the energy yields better results than the path system optimized for the hop distance, if
we look at the flow energy. We observe the converse if we look at the dilation.

6.1.3 Further Extensions and Simulations

In parallel to our investigations concerning topology control at the MAC layer, we have per-
formed experiments at the network layer (see Figure 6.1). Here, our focus was not on deep math-
ematical analyses which we have performed already in Chapter 4 but more on the realization of
distributed algorithms for path selection based on our implemented topologies. We have imple-
mented and experimentally evaluated an algorithm proposed for fixed networks in [ABBS01] on
our MANETs. Our simulations showed that the original version is only suitable for networks
with symmetric edges. Furthermore, we have implemented the Dynamic Source Routing (DSR)
protocol [JM96] in SAHNE and analyzed its performance on our integrated topologies based
on the Yao-graph and its variants [Eik03]. Besides these implementations, we also tried to find
first solutions to compute the required probability ϕ(e) of an edge e ∈ E, see Lemma 4.1 of
Section 4.1, in a communication network N = (V,E) in a local and distributed manner using
the directional communication model [Pos03].

6.2 Interactive Tool for Checking Graph Properties

In this section we present the results of our extensive experimental analysis of graph properties of
the sectorized topologies considered in Section 4.2 on randomly generated vertex sets. Namely,
we compare the Yao-graph, the SparsY-graph, and the SymmY-graph with regard to energy con-
sumption, given by the power spanner property, and to congestion, given by the (weak) spanner
property. We concentrate on sets of static devices that are randomly distributed over a given area.

In addition, we introduce in this section a new dimension and use this to improve known
stretch factors experimentally. In general, it is assumed that the sectors of the nodes underlie a
fixed orientation or that they are oriented as a result of the movement of nodes. We assume an



6.2 INTERACTIVE TOOL FOR CHECKING GRAPH PROPERTIES 129

extended model and allow each node to adjust the orientation of its senders independently of any
other conditions. We introduce new optimization tasks and present algorithms which improve the
stretch factors of known sectorized topologies only by adjusting the orientation of some sectors
of the nodes.

Furthermore, we present new algorithms to calculate the power stretch factor and the weak
stretch factor of a graph G = (V,E) in time O(|V |2 log |V | + |V ||E|) exactly. Hence, we can
determine these factors for sparse graphs in time O(|V |2 log |V |). Applying this yields a lower
bound for an optimal orientation of all senders, e.g., with regard to energy consumption, that can
be computed in polynomial time. We use this bound to analyze the simulation results.

Our extensive experimental evaluation of the three sectorized topologies on random vertex
sets using different sector orientations show that we can improve the known stretch factors and
that the considered topologies perform well on “normal” vertex sets where the nodes are placed
uniformly at random.

6.2.1 Motivation

We assume directional communication (see Section 4.2) as the underlying communication model
and compare the Yao-graph, the SparsY-graph, and the SymmY-graph experimentally on ran-
domly generated vertex sets using a new extension. Note that in all existing theoretical works
concerning topology control in wireless networks it is assumed that the orientation of the senders
is fixed or it is affected by the movement of a node. In our Khepera test environment the orienta-
tion depends on the forefront of a Khepera-robot, see Section 4.2. We introduce a new dimension,
since we allow each node to control the orientation of its sectors/senders to improve the energy
consumption or to decrease the amount of interference. To the best of our knowledge, we are the
first who study this additional freedom for the devices in wireless networks.

Our model also diverges from the standard model coming from computational geometry
where the sectors on all nodes are fixed and equal oriented. We perform an extensive experi-
mental evaluation of the Yao-graph, the SparsY-graph, and the SymmY-graph using the extended
communication model. A fixed orientation of the sectors has the advantage that the construction
of the Yao-graph and its variants is possible centrally in time O(n log n), e.g., using a sweepline
algorithm [FLZ98, FMS97], where n is the number of nodes. In our model, if the orientation can
be arbitrary, there is only the naive algorithm which needs time O(n2).

A challenge in wireless networks is to spare energy and to avoid congested communication
links having the amount of interference so low as possible. From a graph theoretic point of view
this means that we want to build up a graph that gives at least one path between two arbitrary
nodes with low energy-cost, low interference, and low congestion. For this purpose we consider
spanners, weak spanners, and power spanners (see Chapters 3 and 4). One aim of this section
is to measure and compare the stretch factors given by the definitions of these structures. On the
other hand we use the extended communication model to improve the stretch factors and show
the improvement experimentally. We developed a testbed [Vol04b] which can also be used over
the World Wide Web and we present new algorithms we used to perform our simulations.

The aim of this section is not to go into technical detail, but more to present first algorithms,
ideas, and experimental results for the extended communication model. It is more a theoreti-
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cal study on the question: assumed each node can adjust the orientation of its senders, what is
possible concerning energy consumption? In contrast to the works investigating wireless net-
works using directional antennae we consider three known topologies using the extension that
each node can adjust its sectors/senders. We want to evaluate the length stretch factor, the power
stretch factor, and the weak stretch factor experimentally. In literature, there exist already exper-
imental results concerning these graphs on random vertex sets, e.g., [WLWF02], but they are not
comprehensive and there it is not allowed to adjust the orientation of the sectors.

In Subsection 6.2.2 we first present algorithms to determine the power stretch factor and the
weak stretch factor of a given graph G = (V,E) exactly. We show that this can be done, in
general, in time O(|V |2 log |V | + |V ||E|) and in time O(|V |2 log |V |) if we consider the Yao-
graph and its variants. In Subsection 6.2.3 we introduce the extended communication model and
present first algorithms to orientate sectors. We can improve the length stretch factor of the Yao-
graph by a factor of 2 and the power stretch factor by a factor of 2δ, where δ is a constant that
depends on transmitting characteristics (see Section 2.1), if it is allowed to adjust the sectors for
all nodes on a complete path from a source node to a destination node. In Subsection 6.2.4 we
present a lower bound for an optimal orientation of the sectors. We construct a graph in which we
can calculate lower bounds for the stretch factors of the Yao-graph using any orientation of the
sectors in polynomial time. Finally, in Subsection 6.2.5 we present the results of our extensive
experimental evaluation.

6.2.2 Calculating Stretch Factors

In this subsection we present new algorithms we need to efficiently compute the length stretch
factor, the power stretch factor, and the weak stretch factor. In [NS00] algorithms are presented
for approximating the length stretch factor, but in this work we want to compute the exact values.
Let G = (V,E) be a geometric graph and n := |V | and m := |E|. The length stretch factor
can be calculated by solving the all-pairs-shortest-path problem (APSP). We check all n(n −
1) = O(n2) directed shortest paths and determine the maximum length stretch factor. Hence,
running Dijkstra’s algorithm using Fibonacci heaps gives the length stretch factor of G in time
O(n2 log n+nm) (see [CLSR01] for further details). The power stretch factor can be calculated
in the same way if we use |u− v|δ as the cost of an edge e = (u, v) instead of |u− v|.

In Figure 6.19 you see the main part of our algorithms based on Dijkstra’s algorithm. An
exact calculation of the weak stretch factor seems to be more complicated since we know nothing
about the length of a path in a weak spanner. Nevertheless, we can prove that we can also
compute the weak stretch factor in the time needed by Dijkstra’s algorithm for solving the APSP
problem. The main idea of the algorithm is presented in Figure 6.19 b).

We run the algorithms for all n nodes and then calculate the maximum over these n stretch
values. In the following we show that both algorithms terminate and calculate the required values
correctly. We denote by dist(u) the δ-cost of a cheapest path found so far from s to u (power
stretch) or the smallest radius found so far of a disk in which a path from s to u lies (weak
stretch). Let d(u) be the value of dist(u) at the time when u is dequeued. In the following we
consider a) the power stretch factor and b) the weak stretch factor at the same time.
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POWERSTRETCH(G = (V, E), V ⊆ RD, s ∈ V )
1 for all v in V
2 do dist(v)←∞, pre(v)← ∅
3 dist(s)← 0, pre(s)← s,Q← V
4 while Q 6= ∅
5 do u← EXTRACTMIN(Q)
6 for each v ∈ Adj[u]
7 do if dist(u) + |u− v|δ < dist(v)
8 then dist(v)← dist(u) + |u− v|δ , pre(v)← u
9 power-stretch ← 0

10 for all v in V \ {s}
11 do if dist(v)/|s − v|δ > power-stretch
12 then power-stretch ← dist(v)/|s − v|δ

WEAKSTRETCH(G = (V, E), V ⊆ RD , s ∈ V )
1 for all v in V
2 do dist(v) ←∞, pre(v)← ∅
3 dist(s)← 0, pre(s)← s,Q← V
4 while Q 6= ∅
5 do u← EXTRACTMIN(Q)
6 for each v ∈ Adj[u]
7 do if max{dist(u), |s− v|} < dist(v)
8 then dist(v) ← max{dist(u), |s− v|}, pre(v)← u
9 weak-stretch ← 0

10 for all v in V \ {s}
11 do if dist(v)/|s− v| > weak-stretch
12 then weak-stretch ← dist(v)/|s − v|

Figure 6.19: Calculating a) power stretch factor and b) weak stretch factor

Lemma 6.1 If u is dequeued before v we have d(u) ≤ d(v).

Proof: We assume that there exist two nodes u and v with u is dequeued before v and d(u) >
d(v). W.l.o.g. let v be the first such node. At the time u is dequeued, it holds that d(u) =
dist(u) ≤ dist(v). By the definition d(u) is never changed again and hence dist(v) has to be
decreased. This happens only if a node w is dequeued and a) dist(v) = dist(w) + |w − v|δ or
b) dist(v) = max{dist(w), |s − v|}is set. W.l.o.g. let w be the last such node. Then we have
a) d(v) = d(w) + |w − v|δ or b) d(v) = max{d(w), |s − v|}. By the choice of v it holds that
d(u) ≤ d(w). Furthermore, a) |w− v|δ ≥ 0 or b) max{d(w), |s− v|} ≥ d(w). In both cases, we
get a contradiction: d(v) ≥ d(u).

Lemma 6.2 LetQ be empty. Then a) dist(v) ≤dist(u)+|u−v|δ or b) dist(v) ≤ max{dist(u), |s−
v|} for all (u, v) ∈ E.

Proof: It is easy to see that in both cases the claim holds at the time u is dequeued. After
this point of time the claim breaks only, if dist(u) is decreased. Since dist(v) is never increased,
this can only happen when a node w is dequeued and a) dist(u) = d(w) + |w − u|δ or b)
dist(u) = max{d(w), |s − u|} is set. From Lemma 6.1 it follows that d(w) ≥ d(u). With
a) |w − u|δ ≥ 0 or b) max{d(w), |s − u|} ≥ d(w) we get that dist(u) ≥ d(u) and this is a
contradiction.

Theorem 6.2 a) POWERSTRETCH(G, s) calculates the maximum power stretch factor over all
paths starting at s, b) WEAKSTRETCH(G, s) calculates the maximum weak stretch factor over
all paths starting at s.

Proof: We prove the claim by induction. Let v ∈ V and u := pre(v) be a predecessor of v
on an optimal path from s to v concerning the a) δ-cost or b) radius of a disk. By induction
we can assume that dist(u) is the minimum a) δ-cost of a path from s to v or b) radius of a
disk which contains the whole path from s to v. Since a) dist(v) ≤ dist(u) + |u − v|δ or b)
dist(v) ≤ max{dist(u), |s − v|} (Lemma 6.2) we get that dist(v) is the a) δ-cost of a cheapest
path from s to v or b) minimum required radius of a disk such that the whole path from s to v
lies in this disk. The last operation gives the maximum over all stretch values.
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6.2.3 Adjusting Sector Orientations

In this subsection we present the extended communication model and present first heuristics to
improve the length stretch factor, the power stretch factor, and the weak stretch factor of the
Yao-graph and its variants. We consider a static ad hoc network consisting of n nodes given by
V ⊆ R

2. Furthermore, let k ∈ N be the number of senders with that a node is equipped. In
general, it is assumed that the orientation of the senders on a node is fixed or that the orientation
depends on node movements. We allow each node to adjust not only the transmission power of
a sender but also the orientation. Therefore, the area around a node is subdivided into k sectors
of equal size and each node can set an angle where the first sector begins. The orientation can
be changed at any time or can be fixed, e.g., when an optimal orientation is computed for a static
vertex set. The angle is given by a rotation function r : V → [0, 2π/k). Hence, e.g., sector i of
a node u ∈ V goes from r(u) + (i − 1) · 2π/k to r(u) + i · 2π/k. In a fixed model, assumed
in computational geometry where, e.g., the Yao-graph is used as a data structure to calculate
properties like nearest neighbors efficiently, we have r(u) = 0 for all u ∈ V . In Section 4.2
and in Subsection 6.1.2 r(u) is defined by the forefront of the used robot and so depends on the
movement of a robot (remember the offset angle αu for a node u). Since we allow each node u
to adjust r(u), we got questions like

• What is the best orientation for which measure?

• How can we compute an optimal orientation concerning a specific stretch factor?

• What is the complexity of this problem?

• Is it possible to improve the stretch factors using simple algorithms?

• Is it possible to adjust the orientations such that the SparsY-graph will be a spanner?

• Is it possible to adjust some orientations such that the SymmY-graph will be a spanner, a
weak spanner, or at least a power spanner?

Note that under fixed orientation it is still an open problem whether the SparsY-graph is a spanner
or not. The aim of this subsection is not to answer all these questions, but to discuss some of
them and to present the results of an extensive experimental evaluation of some new algorithms
for the new communication model. We do not know how to find a best orientation for a node set
with regard to a given measure in a time faster than the time needed by a naive approach trying
all possible combinations which is possible in exponential time. Optimizing measures are, e.g.,
the stretch factors, the energy needed to keep up all network links, the number of links, or the
in-degree of the nodes to reduce the amount of interference.

Now we show that it is possible to improve the stretch factors by adjusting orientations. We
present first algorithms that use these results to improve all three stretch factors.

Lemma 6.3 Let G = (V,E) be the Yao-graph and k ∈ N the number of sectors per node. If
it is allowed to adjust the orientation of the sectors on the nodes at any time and to establish
a communication link between two nodes u, v ∈ V , then G is a c-spanner with length stretch
factor c = 1

1−sin (π/k)
for k > 3 .
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Figure 6.20: Adjusting a sector

Proof: We consider two nodes u and v and give a path construction for a path PG(u, v) from u
to v. We rotate the sector of u in which v lies such that v is placed on the bisector. In the worst
case there exist two further nodes u1 and u2 on the opposite boundaries of this sector and both
are nearer to u than v (see Figure 6.20).

Now it is not possible to get an edge directly to v. From Lemma 4.16 it follows that this
placement is the worst case (see also [RS91]). If we assume that the same construction works for
the path from u1 to v and for u2 to v and so on recursively, we get an upper bound for the path
length between u and v:

||PG(u, v)|| ≤
∞
∑

i=0

(

sin
(π

k

))i

|u− v| ≤ 1

1− sin(π/k)
|u− v|

As you can see, in the best case, we can improve the length stretch factor of the Yao-graph by
a factor of 2. Applying this result to the power stretch factor of the Yao-graph, see Lemma 3.2

and Subsection 4.2.3, yields to a better power stretch of the Yao-graph of
(

1
1−sin (π/k)

)δ

. It is

possible to improve the power stretch factor of the Yao-graph to 1
1−(sin (π/k))δ using the analysis

of Li et al. [LWW01]. Hence, we can get an energy improvement by a factor of at most 2δ.
Another interesting and helpful observation for the search for an orientation which improves

stretch factors is that there is always a symmetric communication link to the nearest neighbor
of a node (the nearest neighbor over all nearest neighbors in its sectors). This link exists in all
possible orientations.

Lemma 6.4 Let G = (V,E) be the Yao-graph and u, v ∈ V with ∀w ∈ V : |u−w| ≤ |u−v| ⇒
w = v. Then (u, v) ∈ E and (v, u) ∈ E for k ≥ 6.

Proof: Let u, v ∈ V with ∀w ∈ V : |u − w| ≤ |u − v| ⇒ w = v. It follows directly that
(u, v) ∈ E. Now we consider the sector of v in that u lies. For k ≥ 6 the disk around u with
radius |u− v| contains the complete area of this sector of v up to the distance of |u− v|. If there
would be a nearer neighbor of v then this node would also be a nearer neighbor of u. Hence,
(v, u) ∈ E and the claim follows.

Now we are ready to present algorithms that adjust the sectors of the nodes. Our main focus
in the following is on the improvement of the maximum stretch factors. Lemma 6.4 shows that
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it makes no sense to adjust the sectors to nearest node neighbors because they are connected
by a symmetric link in all possible sector orientations. Mainly, we differ between four sector
orientations:

• Fixed Sector Orientation: This is the assumption that comes with the definition of the
Yao-graph from computational geometry. The orientation of the sectors is fixed and uni-
formly arranged on all nodes. Hence, in our definition we have r(u) = 0 for all u ∈ V .

• Farthest Sector Orientation: Here, we adjust the orientation of the sectors on a node to
the farthest possible neighbor. In Section 6.2.4 we present an algorithm to compute all
possible neighbors of all nodes in time O(n2 log n). We apply this algorithm to determine
the farthest possible neighbors of all nodes in the same time (farthest possible neighbor of
one node in time O(n logn)).

• Random Sector Orientation: Every node u ∈ V chooses r(u) uniformly at random from
[0, 2π/k).

• Targeted Sector Orientation: We begin with a fixed sector orientation and compute a
specific stretch factor, i.e. the length, the weak or the power stretch factor. In addition to
this stretch factor of the network, we get the source node s and the target node t which are
responsible for this bad stretch factor. Now we use the result of Lemma 6.3 and adjust the
sector of s in which t lies to t such that t is exactly on the bisector. Again, we compute the
corresponding stretch factor and repeat the process until no improvement of the maximum
stretch factor is achieved.

6.2.4 Lower Bound for an Optimal Adjustment

In this subsection we present algorithms to compute lower bounds for the stretch factors of the
Yao-graph in the new model where each node can adjust the orientation of its senders. Let G =
(V,E) be the Yao-graph of V with k sectors and n := |V |. Now we construct the extended graph
G∗ which is defined by V and all anyhow possible Yao-edges denoted byE∗. Hence, (u, v) ∈ E∗
if there exists an orientation of the sectors of u such that (u, v) is an edge in the resulting Yao-
graph of V . It is obvious that the stretch factors of this extended graph yield to lower bounds
for the stretch factors in a Yao-graph in general and hence for an optimal adjustment with regard
to a specific stretch factor. Our algorithm works as follows. Each node u ∈ V determines all
its possible neighbors. Therefore, u sorts all other n − 1 nodes according to their Euclidean
distance. This needs timeO(n log n) per node. The nearest node v1 and the second nearest node
v2 are always possible neighbors of u. It is possible to adjust the sectors such that v1 and v2 are
nearest neighbors in two different sectors. We insert them into a sequence sorted by the angle,
e.g., for v1 the angle is given by the three points (u(x) + 1, u(y)), u, v1. For a following node
vi, i > 2, we determine again the angle (u(x) + 1, u(y)), u, vi and look up the sequence for the
node which builds the next smaller angle and for the node which builds the next greater angle.
If the difference between these two angles is greater than 2π/k it is possible to build up an edge
from u to vi and we insert vi with its angle into the sequence. In the other case there exists no
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adjustment such that the link between u and vi is also an edge of the Yao-graph. As you can see
each node is inserted at most once into the sequence and so we need timeO(n log n). Altogether
over all nodes we need time O(n2 log n) to calculate G∗ centrally.

Corollary 6.1 LetG = (V,E) be the Yao-graph ofG using any sector orientation with k sectors,
c be its length (weak, power) stretch factor and c∗ be the length (weak, power) stretch factor of
G∗ as defined before. Then c∗ ≤ c.

6.2.5 Experimental Analysis

We have implemented an interactive tool for checking graph properties, ITGraP, in Java. We use
it to evaluate all variants of the sectorized topologies using different sector orientations [Vol04b].
In contrast to our simulation environment SAHNE, presented in Section 6.1, we do not simulate
communication layers, physical effects, and signal propagation. ITGraP is a testbed that allows
us to visualize the Yao-graph and its variants (see Figure 6.21) using variable, adjustable sector
orientations. It is easy to construct random sectorized graphs as well as fixed arrangements. The
sectors of every node can be arbitrarily rotated and functions to compute stretch factors, optimal
orientations, and lower bounds were implemented.

Figure 6.21: ITGraP - Interactive tool for checking graph properties

In Figure 6.21 the Yao-graph of a random vertex set V of 500 nodes in wich every node is
equipped with 8 sectors/senders is illustrated. Brighter edges indicate edges which appear in the
SparsY-graph but not in the SymmY-graph.
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Figure 6.22: Maximum length stretch factors of Yao-graph, SparsY-graph and SymmY-graph

In the following we concentrate on sets of wireless devices given in the Euclidean plane
and assume that the energy needed to transmit some data over a distance d is given by dδ with
propagation exponent δ = 2, see Section 2.1.

Mainly, we compare stretch factors, number of edges, node degrees, edge lengths, and net-
work energy consumption of the Yao-graph and its variants using fixed, farthest, random, and
targeted sector orientation. We assume that there is given a static set of nodes and the number of
nodes varies from 5 to 200. The number of senders per node goes from 6 to 11. All nodes are
placed uniformly at random over the given area of size 652 × 476. For each measurement we
performed 500 passes and computed the average and/or the maximum over all these 500 values to
get significant simulation results. Our main focus is on improving the maximum stretch factors.
We want to reduce energy consumption of the topology on which other tasks like selecting rout-
ing paths and forwarding packets take place. Furthermore, we want to give a complete overview
of the properties of the Yao-graph and its variants using random vertex sets. In the following, we
present our simulation results. Sometimes we placed four graphics in one figure then you should
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Figure 6.23: Average length stretch factors of Yao-graph, SparsY-graph and SymmY-graph

notice that one graphic occurs twice to see the differences between different measurements. This
kind of top view is better than a view where three small graphics are placed side by side in one
figure. In each illustration we have arranged the y-axes.

Stretch Factors The maximum stretch factors, especially the length and the power stretch
factor, of a wireless network should be minimized since energy conservation is a critical issue
for node and network lifetime.

In Figure 6.22 the maximum length stretch factors of the Yao-graph and its variants are
presented. We compare them using different sector orientations with regard to the lower bound
shown in Section 6.2.4. It is known that the length stretch factor of the Yao-graph and the weak
stretch factor of the SparsY-graph can be upper bounded by 1/(1 − 2 sin(π/k)), see Chapter 4.
For 8 sectors this value is given by 4.262. The diagram shows that the maximum length stretch
factor on random vertex sets is smaller and far away from this upper bound. The average length
stretch factors, given in Figure 6.23, point out this behavior.

As expected the length stretch factor of the Yao-graph is the best, followed by the factor of the
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Figure 6.24: Maximum power stretch factors of Yao-graph, SparsY-graph and SymmY-graph

SparsY-graph and finally the factor of the SymmY-graph. Furthermore, it is shown that a farthest
sector orientation yields to bad length stretch factors. A targeted sector orientation betters the
length stretch factor of a fixed sector orientation in all three graphs. Hence, on random vertex
sets it is very useful to adjust some sectors of the nodes to get better results concerning energy
consumption.

Another very interesting observation, comparing the three diagrams in Figure 6.22, is that the
quality of a random orientation increases with decreasing the number of edges. In the Yao-graph
a random orientation gives nearly the same results as a fixed orientation. In the SparsY-graph
there is already a relatively small difference between a fixed and a random orientation. But in
the SymmY-graph it makes more sense to orientate the sectors at random instead of using a fixed
orientation. Randomness helps improving the length stretch factor.

We got similar results for the maximum power stretch factors and for the maximum weak
stretch factors (see Figure 6.24 and Figure 6.25). The diagrams concerning the power stretch
factors show that there is only a small difference between the maximum power stretch factor
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Figure 6.25: Maximum weak stretch factors of Yao-graph, SparsY-graph and SymmY-graph

of the Yao-graph and its variants. On random vertex sets they have nearly the same maximum
power stretch factors. The difference between a random sector orientation and a fixed one is not
so high as before.

Comparing the maximum weak stretch factors it stands out that in the Yao-graph a random
sector orientation is worse than a fixed orientation, but in the SymmY-graph it is suddenly better
than a fixed as well as a targeted orientation. All results show that for a given graph the weak
stretch factors have the smallest values, followed by the power stretch factors and the highest
values are given by the length stretch factors. But this behavior is not really amazing. We can
argue that the Yao-graph and its variants on random vertex sets are spanners, weak spanners, and
power spanners. Furthermore, our extended communication model allows us to improve their
stretch factors.

Finally, we varied the number of sectors from 6 to 11 to investigate how this affects the behav-
ior of the different sector orientations. The results of the SymmY-graph are given in Figure 6.26
and Figure 6.27. Again, best stretch factors are achieved using targeted orientation. It is known



140 EXPERIMENTAL ANALYSES AND RESULTS

1

1.2

1.4

1.6

1.8

2

2.2

2.4

20 40 60 80 100 120 140 160 180 200

Le
ng

th
 s

tr
et

ch
 fa

ct
or

Number of nodes

SymmY-graph (fixed orientation)

6 sectors
7 sectors
8 sectors
9 sectors

10 sectors
11 sectors

1

1.2

1.4

1.6

1.8

2

2.2

2.4

20 40 60 80 100 120 140 160 180 200

Le
ng

th
 s

tr
et

ch
 fa

ct
or

Number of nodes

SymmY-graph (targeted orientation)

6 sectors
7 sectors
8 sectors
9 sectors

10 sectors
11 sectors

1

1.2

1.4

1.6

1.8

2

2.2

2.4

20 40 60 80 100 120 140 160 180 200

Le
ng

th
 s

tr
et

ch
 fa

ct
or

Number of nodes

SymmY-graph (targeted orientation)

6 sectors
7 sectors
8 sectors
9 sectors

10 sectors
11 sectors

1

1.2

1.4

1.6

1.8

2

2.2

2.4

20 40 60 80 100 120 140 160 180 200

Le
ng

th
 s

tr
et

ch
 fa

ct
or

Number of nodes

SymmY-graph (random orientation)

6 sectors
7 sectors
8 sectors
9 sectors

10 sectors
11 sectors

Figure 6.26: Maximum length stretch factors of SymmY-graph varying the number of sectors

that the values of the stretch factors of the Yao-graph converge to 1 if the number of sectors goes
to infinity. The figures point out this behavior for all stretch factors. The curve progression of
the maximum length stretch factor of the SymmY-graph using 6 senders per node differs from
the characteristic of the other curves. It is interesting that the curves of a fixed sector orientation
form a double pack: the curves representing the results using 7 and 8 senders as well as using
9 and 10 senders are nearly identical but there is a small gap between these two progressions.
A targeted orientation balances the curves and a random orientation gives homogeneous curves
without remarkable effects.

Number of Edges Figure 6.28 shows the number of edges of the Yao-graph and its variants
unsing fixed and targeted sector orientation. On the one hand, the maximum number of edges of
the Yao-graph is upper bounded by kn. Hence, using 8 senders per node we can have at most 8n
edges. On the other hand, all three graphs are connected such that we have at least n− 1 edges.
As you can see in the diagrams there is nearly no difference between the number of edges using
different sector orientations. We could observe this behavior during all other simulations and
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Figure 6.27: Maximum stretch factors of SymmY using targeted orientation
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Figure 6.28: Number of edges in the Yao-graph and its variants

we were not wondered about that. Both diagrams show expected values: the Yao-graph has the
highest number of edges, followed by the SparsY-graph and the SymmY-graph at position three.

Node Degrees In this paragraph we present the results concerning the maximum in-degree
of a node. The in-degree is very important since there is only one transmission frequency given.
A high in-degree can result in a high amount of interference. In this work the focus was not on
improving the in-degree but for completeness we want to present the maximum in-degree of the
graphs (Figure 6.29 left) and the average in-degree of a node (Figure 6.29 right). Simulations
showed that the type of orientation does not influence the in-degrees appreciably.

The maximum in-degree of the Yao-graph can only be upper bounded by the trivial bound of
n− 1. The maximum in-degree of the other both variants converges relatively fast to the number
of senders per node. On random vertex sets we can assume that the average in-degree of the
Yao-graph is also given by a constant. The Yao-graph consists of at most kn edges and hence,
the average in-degree of a node should converge to kn/n = k. This observation can be seen in
the diagrams.
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Figure 6.29: Maximum and average in-degree of the nodes using fixed sector orientation

Edge Lengths In order to spare energy in a wireless network we consider the edge lengths
that appear in the sectorized graphs using different sector orientations. Figure 6.30 gives an
overview of the maximum edge lengths.

Note that it is clear that a farthest orientation brings longest edges. Furthermore, the longest
edge of the Yao-graph should be longer than the longest edge of the SparsY-graph which should
be longer than the longest edge of the SymmY-graph. The figures point out this behavior. An in-
teresting observation is that a random orientation yields to best values concerning longest edges
in the Yao-graph. You have to notice that we performed 500 passes per measurement and this
diagram points out that the extended communication model brings an improvement to energy
consumption. In the sparser variants a fixed and a targeted orientation gives best results. Our
simulations showed, looking at the average edge lengths, that there are only very small differ-
ences between the curves.

Network Energy Consumption Finally, we compare the topologies with regard to the
energy-cost of the whole network structure. We sum up over the energy-cost of all existing
communication links and present the results.

As expected the SymmY-graph has lowest energy consumption maintaining all edges, fol-
lowed by the SparsY-graph and then by the Yao-graph (see Figure 6.31). We observe the same
behavior as for the edge lengths: a random orientation is wise in case of the Yao-graph. Other-
wise a fixed or a targeted orientation is adequate.

6.3 Conclusions

In this chapter we have presented the results of our extensive experimental evaluations. We have
developed and implemented two different tools, SAHNE and ITGraP, to study topologies for the
omndidirectional and the unidirectional communication model.

We have used our simulation environment SAHNE to analyze communication strategies us-
ing realistic communication models. SAHNE can be easily extended, e.g., for simulating (wire-
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Figure 6.30: Maximum edge lengths

less) sensor networks or by implementing additional propagation models. For the omnidirec-
tional communication model we have implemented and experimentally investigated the Hier-
archical Layer Graph and for the unidirectional communication the Yao-graph and its variants.
By simulations we have shown how these graphs can be used as congestion-efficient and/or
energy-efficient topologies for wireless networks. Besides the use of omnidirectional antennae
we have studied communication devices that can send and receive data in a fixed number of
sectors in parallel with variable transmission power and proposed local, distributed algorithms
to maintain the incoming and outgoing communication links of these topologies. To close the
gap between abstract communication models used in the theoretical studies and realistic signal
propagation and reception, we have extended our simulator SAHNE with well-known models for
signal propagation and reception. The results of our simulation studies show that the Yao-graph
can be constructed faster and yields smaller congestion values than the SparsY-graph and the
SymmY-graph. However, the SparsY-graph is more energy-efficient than the Yao-graph since it
uses shorter edges.
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Figure 6.31: Network energy consumption: summation over all communication links

Furthermore, we have investigated an extended communication model where we allow each
node to adjust the orientation of its senders. This is an important and interesting addition to
variable and directional transmissions. We showed using simulations that the extended model
allows us the improvement of the stretch factors of the Yao-graph and its variants.

For our experimental evaluation we implemented and used an interactive tool for checking
graph properties. We presented new algorithms for computing stretch factors efficiently. We can
exactly determine the length, the power, and the weak stretch factor of a graph consisting of n
nodes and m edges in time O(n2 log n + nm). Since the Yao-graph and its variants are sparse
graphs of at most O(n) edges, we need only time O(n2 logn) to calculate the stretch factors for
these graphs. We used these results to give lower bounds to the stretch factors and applied this in
our simulations.

For the extended communication model, we introduced new algorithms motivated theoreti-
cally and showed experimentally that a targeted orientation improves the results of the Yao-graph,
the SparsY-graph, and the SymmY-graph with regard to energy consumption.
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Finally, we want to point out some unsolved questions. It is (still) open whether the SparsY-
graph is a spanner or not, in general. We extend this problem and ask whether it is possible to
adjust the sectors of a node set or only of some nodes such that the SparsY-graph is a spanner
depending on a specific orientation. Is it even possible to adjust some sectors of nodes of the
SymmY-graph such that it results in a spanner, a weak spanner or power spanner? Our simula-
tions showed that this holds on random vertex sets. On the other hand, further research can be
done extending our communication model. For example, we could consider the case in which the
size of the angle of each transmitter can also be controlled or the case where the number of sec-
tors per device is variable. The first model presents new problems since the area around a node
is not necessarily divided into non-overlapping regions. By the way, in real-world applications
we have nearly always overlapping regions if we use unidirectional communication.
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Summary and Outlook

Recently, wireless networks, especially mobile ad hoc networks and sensor networks, have be-
come more important and many researchers as well as developers and engineers are trying to
contribute to this field. Current topics are, e.g., heterogeneous mobile ad hoc networks or large-
scale sensor networks.

In this thesis the focus was on topology control in power-variable, single frequency ad hoc
networks using geometric spanners. We have used geometric graphs to model static, dynamic,
and mobile ad hoc networks. Mainly, we have developed and analyzed algorithms for point-
to-point communication using two different communication models. For the omnidirectional
communication model we have suggested the Hierarchical Layer Graph and the Hierarchical
Grid Graph. For the unidirectional communication model we have investigated the Yao-graph
and two variants, namely the SparsY-graph and the SymmY-graph. Our goal was to construct
ad hoc networks which are optimized for routing time and energy-consumption. We could relate
methods in computational geometry and topology control in wireless networks. Furthermore,
we have solved open problems stated by other researchers working on the same topic and could
prove interesting relations, e.g., that every weak spanner is a power spanner, which can also be
applied in other fields of research.

Besides our mathematical analyses we have also perfomed extensive simulations. For this
purpose we have implemented two different platforms that enabled us to see whether our topolo-
gies are qualified for real-world applications. We used realistic settings and well-known models
for signal propagation of (radio) waves.

Nevertheless, there are some open questions. First of all, one of the most interesting question
is: is the SparsY-graph a spanner? This was also one of the most frequently asked question during
this work and we have thought about it in almost the same manner. In the context of spanners,
one can ask how optimal are our results on the relations, i.e. is there some C = o(c4D) such that
any weak c-spanner is a (C, δ)-power spanner? Since we distinguished between two different
communication models, one can ask for studies in which the combination of these models is
investigated. Other heterogeneous properties may also be investigated. We presented lower and
upper bounds for the routing time in ad hoc networks. Is it possible to improve these bounds/to
close the gap? We introduced a new dimension to wireless networks using the unidirectional
communication model, since we allow each node to adjust the orientation of its sectors/senders.
Theoretical results are open. For physical purposes, it would be interesting to consider further
models for signal propagation besides free space propagation or to account for physical effects
in even more detail.

147
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Mobility has been a major challenge in wireless networks. For example, what is realistic
mobility? We tried to contribute to modelling of worst case movements, but there are some open
questions. The modeling of interference of moving edges presented in this thesis is only a rough
estimation. It is not clear how a mobile network design may look for a more accurate model.
Furthermore, the distributed measurement and computation of the relative locations and relative
speed vectors need to be further investigated.



Appendix

Notation

The following list summarizes some basic denotations used in this thesis:

• N = {1, 2, 3, . . .},N0 = N ∪ {0}, Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

• R represents the set of all real numbers

• For n ∈ N we define [n] := {1, . . . , n}

• Let f(n) and g(n) be two functions. Following [CLSR01] we denote byO(f(n)), Ω(f(n)),
Θ(f(n)), and o(f(n)) the sets of functions

– O(f(n)) = { g(n) | ∃c ∈ R
+ and no ∈ N : ∀n ≥ no f(n) ≤ c · g(n)}

– Ω(f(n)) = { g(n) | ∃c ∈ R
+ and no ∈ N : ∀n ≥ no f(n) ≥ c · g(n)}

– Θ(f(n)) = { g(n) | g(n) = O(f(n)) and g(n) = Ω(f(n)}
– o(f(n)) = { g(n) | ∀c ∈ R

+ ∃ no ∈ N : ∀n ≥ no f(n) < c · g(n)}

• For two functions f(n) and g(n) we mean by f(n) = O(g(n)) that f(n) ∈ O(g(n)); in an
analogous manner, the same holds for Ω(f(n)), Θ(f(n)), and o(f(n))

• By log we mean the logarithm to the base 2, i.e. log2

• |u− v|2 = |u− v| is the Euclidean distance between u and v

• |e| is the Euclidean length of the edge e

• |x|2 = |x| is the L2-norm for an n-dimensional vector x

• |M | is the cardinality of the set M

• For x ∈ R we define by dxe the smallest n ∈ N with n ≥ x

• For x ∈ R we define by bxc the largest n ∈ N with n ≤ x

• By w.l.o.g. we mean without loss of generality
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• δ ∈ R: propagation exponent

• D ∈ N: dimension

• Df ∈ R: fractal dimension or Hausdorff dimension

• kD ∈ R: constant factor for the volume of a sphere kD := πD/2

(D/2)!

• BInt(e),UInt(e): set of edges bidirectionally/unidirectionally interfering with the edge e

• BInt(G),UInt(G): bidirectional/unidirectional interference number of a graph G

• BIntα(G),BIntα(e): the same as above but for worst case mobility for α ∈ {v, a}

• CP(e): congestion of an edge e in the network defined by the path system P

• Cα,P(e): CP(e) using pedestrian or vehicular mobility, i.e. for α ∈ {a, v}

• g(V ): diversity of a vertex set V ⊆ R
D
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