JAN KLEIN

EFFICIENT COLLISION DETECTION FOR
PoOINT AND POLYGON BASED MODELS

Efficient Collision Detection for
Point and Polygon Based Models

Dissertation

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften von

Jan Klein

Heinz Nixdorf Institut und
Fakultét fiir Elektrotechnik, Informatik und Mathematik
Institut fir Informatik
Universitat Paderborn

Mai 2005

Acknowledgements

First and foremost, I wish to thank my advisor, Prof. Dr. Friedhelm Meyer
auf der Heide, for his great support. His constructive comments, ideas and
optimism have always inspired me during the past years.

I feel fortunate to have met Prof. Dr. Gabriel Zachmann at VRST’02. Since
then, we have had a fruitful and warmhearted cooperation, resulting in several
publications which constitute the basis for this work. Moreover, I would like to
thank him for many exiting and fascinating after-conference trips, e.g., climbing
in the Western Alps or hiking in Yosemite.

[am grateful to Prof. Dr. Reinhard Klein and to Prof. Dr. Odej Kao for
agreeing to co-referee this thesis and for their encouraging words. I am also
very thankful to my other thesis committee members, Prof. Dr. Gerd Szwillus
and Dr. Michael Thies.

For useful comments, ideas and for answering several questions, my thanks go to
Dr. Michael Wand as well as to all my colleagues. For the excellent introduction
into computer graphics during my studies, my thanks go also to Prof. Dr. Gitta
Domik.

I thank my parents for always being there for me and for their very kind support
over all the years.

Last but not least, I would like to thank Birgitta for all her love and care
throughout my studies. This work would not have been finished without her
invaluable help.

Paderborn, May 2005 Jan Klein

Contents

[Acknowledgements|

(I__Introduction

2 Related Work

[2.2 Polygonal Collision Detection|

[2.2.1 Bounding Volume Hierarchies

[2.2.2 Space-Subdivision Approaches

223 Distance Fieldd

[3 An Average-Case Approach for Real-Time Collision Detection|

[3.1 Overview of our Approach|

B.2 Terms and Definitiond

[3.4 Probability Parameters|

[3.4.1 Uniform polygon distribution|

[3.4.2 Non-uniform polygon distribution|

[3.5 Probability Computations|

[3.5.1 Probability of collision cellsf

[3.5.2 Probability of collision]

[3.5.3 Probability of intersection ma cell]

(3.6 Intersection Volumel

Vil

Contents

[3.7 Expected Running Time of Hierarchical Collision Detection|. . .

.81 Benchmark Scenariol
B.8.2 Distribution of Possible Collision Cells
[3.8.3 Preprocessing] 0oL
[3.8.4 Performance and Quality].
[3.9 Summary and Discussion|.
.10 Future Workf.o oo
[Point Cloud Surfaces using Geometric Proximity Graphs|
(4.1 Implicit Surface Model
W11 WIS Surface Definitionf
“1.2 Problems with the Fuclidean Kernell
4.2 Geodesic Distance Approximation|
M21 GeodesicKernell. L.
[4.2.2 Proximity by Delaunay Graph|{.
[4.2.3 Proximity by Sphere-of-Influence Graph|
U244 Fxtensions of the SIGI
[4.2.5 Automatic and local bandwidth computation].
[4.2.6 Automatic boundary detection|.
427 Smooth Surfaced L.
4.3 Running time and Complexityl
{4.3.2 Pre-computations ot Proximity Graphs|
B33 Function Evaluation]
[4.3.4 Dynamic Point Clouds|
A Resultd o oo
[4.5 Summary and Discussion|.o
Mo Future Workl. oo
5 Poini Cloud Collision D onl
b1 Terms and Definitions
(5.2 An Efficient Point Cloud Hierarchy Traversal|.
[>.2.1 Point Cloud Hierarchyl
[>.2.2 Exclusion and Priority Criterion|.
[>.2.3 RST: Randomized Sampling Techniquel
I$i|2l l] ‘lllls:_gzl il‘lg:i!l E:g!ll‘l{ ‘l!!ll lgg:!s:!:l i!!lll
0.2.5 Automatic Bandwidth Detectionl
[>.2.6 Sample Sizel
[>.2.7 Running time and Complexity]

viil

Contents

b28 Resultd. 95

[>.3 Interpolation Search for Point Cloud Intersection| 100
[>.3.1 Root Bracketing., 101
[>.3.2 Size of Neighborhoods and Surtel Density|. 104
b.3.3 Completing the Brackets] 106
[b.3.4 Interpolation Search| 108
.35 Models with Boundaried 111
b.3.6 Precise Intersection Ponts 111
[>.3.7 Complexity Considerations|. 112
b38 Resultd. 114

[b.4 Summary and Discussion|.o 116
b Future Workl. 118
6 Conclusions and Future Work| 121
bliograp 123

X

1 Introduction

fficient collision detection of 3D objects is needed in many highly interac-

tive applications such as medical education, physically-based simulations,
virtual prototyping, robotics, and 3D games.
In physically-based simulations, where the objects should obey the laws of
physics, collision detection is used to ensure that no bodies penetrate each
other. In virtual prototyping, clearances can be determined by the collision
detection process, and in computer games, collision detection ensures that col-
liding objects bounce and slide on contact instead of passing pointlessly through
each other.
Interactive 3D computer graphics requires efficient collision detection algorithms
combined with object representations that provide fast answers to collision
queries. This is a prerequisite in order to simulate plausible physical behav-
ior, and in order to allow a user to interact with the virtual environment in
real-time. In this thesis we are concerned with the collision detection of point-
based and polygon-based models. While polygonal objects are still the standard
representation, point clouds have become a popular shape representation over
the past few years. This is due to two factors: first, 3D scanning devices have
become affordable and thus widely available [RHHL02]; second, points are an
attractive primitive for efficient rendering of complex geometry for several rea-

Figure 1.1: Collision detection is needed in many highly interactive applications, e.g.,
in order to model interactions between objects in a surgical simulation
system or for virtual prototyping in the automotive industry (models
courtesy of SimSurgery® and www.3dbarrel.com).

1 Introduction

sons [PvBZG00, RL00, [ZPvBG02, BWGO03|. However, only very little work has
been done on the interaction of such object representations and the inherent
collision detection process.

At first glance, determining whether two objects (independent of their rep-
resentation) intersect, seems quite simple. However, the demands on current
applications and the constraints of modern computers complicate the situation
dramatically.

First, hard, real-time requirements lead to very small time budgets for each
collision query. To aggravate the situation, a scheduler interrupts the collision
detection process in time-critical environments. Existing approaches however,
give absolutely no hint as to the confidence in the result in such cases.
Second, there are several factors that contribute to imprecision of the collision
detection because of errors in a model or the simulation. For example, there are
approximations in the abstraction, inaccuracy in the data, or numerical errors
in the computation. As a consequence, unnecessary errors, e.g. introduced by
conversions, should be avoided if any possible.

Third, users really do not like long preprocessing times nor conversions of object
representations into other ones where additional files are produced. However,
no efficient algorithm has been proposed to detect collisions between point cloud
models directly without any conversion that obviously introduces errors in the
surface.

Last but not least, memory usage is an important factor and should always be
taken into account. Small design errors during the specification can result, e.g.,
in memory-expensive bounding volume hierarchiesﬂ, which — if constructed
carefully — have proven to be a very efficient data structure for collision detec-
tion, even for (reduced) deformable models [JP04].

Although researchers have been concerned with collision detection for more
than a quarter-century, there are several unsolved problems. From the design
issues mentioned above, we would like to emphasize two problems that are very
important for the real-time collision detection in interactive environments.

1. There are several areas of collision detection, e.g., medical training or
games, where absolute accuracy is not needed, but where efficiency and
speed is very important. However, no method has supported application-
driven “levels-of-detail” of collision detection where the application can

I The idea of bounding volume hierarchies is to partition the set of object primitives, e.g.
polygons or points, recursively until some leaf criterion is met. In most cases, each leaf
contains a single primitive, but the partitioning can also be stopped when a node contains
less than a fixed number of primitives. Each node in the hierarchy stores a subset of the
primitives and a bounding volume that encloses this subset.

specify an allowable error rate beforehand. Moreover, theoretical founda-
tions concerning the error incurred by an incomplete traversal have not
been given by any approach. Thus, we aim for a continuous and control-
lable balancing between the running time and the accuracy of collision
detection.

2. Prior to our work, no efficient algorithm has been proposed to detect col-
lisions between the implicit surfaces defined by point clouds. Our goal
is to never explicitly reconstruct the surface in order to avoid the addi-
tional storage overhead and additional error that would be introduced by
polygon reconstruction.

In this thesis, we present algorithms and data structures for those two prob-
lems. Theoretical and experimental evidence is given to show their efficiency.
Except for some few algorithms and data structures we explicitly mention, all
approaches are implemented and evaluated prototypically. The main contribu-
tions can be summarized as follows.

1. We introduce a novel framework for collision detection using an average-
case approach, thus extending the set of techniques for plausible simula-
tion. To our knowledge, this is the first time that the quality of collision
detection can be decreased in a controlled way while increasing the speed,
such that a numeric measure of the quality of the results is obtained
(which can then be related to the perceived quality). Our method utilizes
bounding volume hierarchies. The main idea is to consider sets of poly-
gons at inner nodes of such a hierarchy, and then, during traversal, we
derive an estimation of the probability that there exists a pair of inter-
secting polygons based only on a small number of parameters describing
the density of the polygon sets. This probability can be used to guide and
to abort the simultaneous traversal of the hierarchies. Our approach can
be applied to virtually any hierarchical collision detection algorithm.

2. We present an efficient approach for time-critical collision detection of
point clouds. Based solely on the point representation, it can detect in-
tersections of the underlying implicit surfaces without reconstructing a
polygonal model. Thus, we can avoid its additional error. Moreover, it
can be used to construct the intersection curves. The surfaces do not need
to be closed. Our data structure, a point hierarchy, can be built efficiently.
Each node stores a sufficient sample of the points plus a sphere covering
of a part of the surface. These are used to derive criteria that guide our
hierarchy traversal so as to increase convergence. One can be used to

1 Introduction

prune pairs of nodes, the other one is used to prioritize pairs of nodes still
to be visited. At the leaves we efficiently determine an intersection by
estimating the smallest distance.

3. An algorithm for point cloud collision detection that does not need any
hierarchical data structure is introduced. Our approach utilizes a prox-
imity graph for a quick interpolation search for a common zero of the two
implicit functions. If a constant number of intersection points is sufficient,
our approach has a running time of O(logn), where n denotes the size of
the point cloud. For non-deformable point clouds, the running time can
be bounded by only O(loglogn). Moreover, it can also be used to acceler-
ate our first approach for point cloud collision detection using point cloud
hierarchies.

4. We give a new definition of an implicit surface over a noisy point cloud,
based on the weighted least squares approach. Our main idea is to use
a different kernel function that approximates geodesic distances on the
surface by utilizing a geometric proximity graph. Given a point cloud
consisting of n points, the implicit function can be evaluated very quickly
in time O(logn), but artifacts are significantly reduced. The proximity
graph allows us to estimate the local sampling density, which we utilize
to automatically adapt the bandwidth of the kernel and to detect bound-
aries. Consequently, our method is able to handle point clouds of varying
sampling densities without manual tuning. Therefore, it constitutes the
optimal basis for our point cloud collision detection approaches.

5. A theoretical model to estimate the expected running time of hierarchical
collision detection is proposed. We show that the average running time
for the simultaneous traversal of two binary bounding volume hierarchies
with n leaves depends on two characteristic parameters: the overlap of
the root bounding volumes and the bounding volume diminishing factor
within the hierarchies. With this model, we show that the average running
time is in O(n) or even in O(logn) for realistic cases. This approach can
be used for analyzing the running time of our average-case approach as
well as for our hierarchical point cloud collision detection.

This work is organized as follows. In Chapter[2] we start by defining the problem
of collision detection and give an overview of the related work. We categorize
the algorithms with respect to the kind of geometry they are developed for, as
well as the type of used data structure.

In Chapter [3] our average-case approach for time-critical collision detection is
presented [KZ03al, [KZ03b]. Moreover, we analyze the running time for any
hierarchical collision detection algorithm in the average case [KZ05a].

The following Chapter []is concerned with our new surface definition over point
clouds [KZ04al [KZ04d, [KZ04d|, which is based on proximity graphs. There, we
show how to approximate geodesic distances by shortest path in a proximity
graph, and how to compute the local kernel bandwidth automatically. Fur-
ther, we analyze the running time and complexity of our algorithms and data
structures, respectively.

In Chapter [our point cloud collision detection algorithms using a point cloud
hierarchy are proposed [KZ04b]. Moreover, the idea of utilizing an interpolation
search for the collision detection is shown [KZO05b]. Note that the proof of
occupying the surfelsﬂ used to initialize the interpolation search was already
given in [KKFT02, KKFT04] in a different context.

Finally, Chapter [0] concludes this thesis and describes possible avenues for fur-
ther work. Note that each chapter also consists of a summary and ideas for
future work. In contrast to Chapter [f] these are much more technical and
detailed.

2Unlike classical surface discretizations, i.e., triangles or quadrilateral meshes, surfels (sur-
face elements) are point primitives without explicit connectivity. Surfel attributes com-
prise depth, texture color, normal, and others [PvBZG00).

2 Related Work

Boyse [Boy79] presented one of the first 3D collision detection approaches for
the purpose of robotics and automation. More than 25 years later, collision
detection is still a very fascinating area of research and, more than ever, is a

very hot topic at SIGGRAPH [JP04, IGKJT05].

In the following, we describe the literature most relevant to our problem. This
chapter is organized as follows: after the problem statement, we classify polygo-
nal collision detection algorithms with respect to their data structures, followed
by an overview of point cloud collision detection approaches. Thereafter, time-
critical methods for approximate collision detection are considered. Finally, we
summarize and discuss the work.

2.1 Problem Statement

We define a collision as the configuration (also called constellation) of two ob-
jects whose surfaces intersect. In the following, we are interested in configura-
tions that change over time, that means the objects are moving in space. In
the real world, such motion is usually a continuous flow of the object configura-
tions. In computer animation systems, however, this motion is often simulated
by discrete updates of the objects [vdB03].

That means, the actual collision can fall between two discrete time steps where
the object positions are updated. As a consequence, backtracking methods
can be used to compute the time of first contact, which is often required in
constraint-based dynamics simulation methods [MWSS, [Bar90]. Here, we are
not interested in detecting such in-between collisions [BFA(02, RKC02] which is
the goal of continuous collision detection.

The main focus of our work is to detect efficiently whether two given objects in
a certain constellation collide.

Note that we are not concerned with the broad phase of collision detection
(also called n-body processing) that identifies smaller groups of objects that
may collide and quickly excludes objects that definitively do not collide.

2 Related Work

2.2 Polygonal Collision Detection

Modern graphics hardware still use polygons as the fundamental rendering prim-
itiveEI As a consequence, most collision detection approaches were developed
only for polygonal object representations. In the case of polygonal meshes, the
collision detection algorithm can exploit some features, e.g., it can distinguish
between inside and outside of an object. However, in most cases, the polygons
are given only as unordered polygon soups.

2.2.1 Bounding Volume Hierarchies

Bounding volume hierarchies (BVHs), see [ZL03, ITKH05] for an overview,
have proven to be a very efficient data structure in the area of collision detection,
even for (reduced) deformable models [JP04].

The idea of BVHs is to partition the set of object primitives, e.g. polygons
or points, recursively until some leaf criterion is met. In most cases, each leaf
contains a single primitive, but the partitioning can also be stopped when a
node contains less than a fixed number of primitives. Each node in the hierarchy
stores a subset of the primitives and a bounding volume (BV) that encloses this
subset.

There are two conflicting constraints for choosing an appropriate BV. On the
one hand, a BV-BV overlap test during the traversal should be done as fast as
possible. On the other hand, BVs should enclose their subset of primitives as
tight as possible so as to minimize the number of false positives with the BV-
BV overlap tests. As a consequence, a wealth of BV types has been explored
in the past, such as spheres [Hub96, PG95], OBBs [GLM96], DOPs [KHM™98,
Zac98], Boxtrees [Zac02, AdBGT01], AABBs [vdB97, [LAMOI], spherical shells
[KGLTI98b| and convex hulls [ELO1] (for a thorough discussion of “optimal”
BVs and BVHs see, e.g., [Got00, [K1098, [ZacO(]). In order to capture these two
characteristics and to estimate the time required for a collision query, the cost
function

T = N,C, + N,C, + N,,C,, + C;
was proposed, where

N,,C, = number and average costs of BV overlap tests

N,,C, = number and average costs of primitive intersection tests

Lalthough a polygon is not a natural modeling primitive that often arises not before the
post-processing of the designer’s work.

2.2 Polygonal Collision Detection

traverse(A, B)

if A and B do not overlap then
return
if A and B are leaves then
return intersection of primitives enclosed by
Aand B
else
for all children A; and B; do
traverse(A;, B;)

Algorithm 1: Most hierarchical collision detection methods implement this algo-
rithm, or a variation thereof, to traverse two given BVHs. (For sake of simplicity,
the case of intersection between inner BV and leaf BV has been omitted.) The
corresponding BV test tree can be found in Figure

N,, C, = number and average costs of BV updates

C; = initialization costs.

An example of a BV update is the transformation of the BV into a different
coordinate system. During a simultaneous traversal of two BVHs, the same BVs
might be visited multiple times. However, if the BV updates are not saved,
then N, = N,. This cost function was introduced by [WHGS84] to analyze
hierarchical methods for ray tracing and later adapted to hierarchical collision
detection methods by [GLM96, KHM™98, [He99].

In an asymptotic analysis, N,, the number of overlap tests, defines the running
time, i.e., T(n) ~ N,(n), because N, = LN, in a binary tree and N, < N,.
While it is obvious that N, = n? in the worst case, the expected running time
in the average case was not analyzed in the past (we show the expected running
time of simultaneous BVH traversals in Section .

Hierarchical Bounding Volume Traversal

Now, given two BV hierarchies for two objects, virtually all collision detection
approaches traverse the hierarchies simultaneously by an algorithm similar to
Algorithm It allows to quickly zoom into areas of close proximity. The
algorithm (usually) stops if an intersection is found or if the traversal has visited
all relevant sub-tree]

A non-simultaneous traversal was introduced by [vdB97]. He tries to minimize

2Note that Algorithm [1| does not take into account cases where an inner node and a leaf
node intersect.

2 Related Work

the probability of an intersection as fast as possible. Therefore, it is proposed
to test the node with the smaller volume against the children of the node with
the larger volume.

The simultaneous traversal has the benefit of more quickly traversing to the
leaves and making fewer internal node-node overlap tests [Eri04]. However, it
has been shown [Chu98| [Eri04] that in some special cases, this rule will not prune
the search space as effectively as the traversal strategy proposed in [vdB97].
For massive data sets, hybrid approaches such as a grid of trees are commonly
more effective than a single BVH [Eri04].

The characteristics of different hierarchical collision detection algorithms lie in
the type of BV used, the overlap test, and the algorithm for constructing the
BVH. In the case of boolean collision detection where no (discrete) collision
points are needed but only the information whether two objects collide, the
traversal criterion that decides to which pair of BV priority is given, is another
very important factor.

Constructing and Updating BVHs

There are different possibilities for constructing BVHs: insertion [GS87], bot-
tom-up [RL85], and top-down, which is the most commonly used strategy.
Gottschalk et al. presented an approach that utilizes the principal component
analysis for finding splitting planes [GLM96]. Alternatively, a balanced tree can
be constructed by placing the splitting plane through the median of all points.
However, it is not clear whether balanced trees lead to faster collision queries.
For AABBs, it has been shown that any splitting heuristic should try to min-
imize the volumes of the children [Zac02]. Let A and B denote the direct
predecessors of the BVs A; and B; of two differen hierarchies. Then, using
Minkowski sums @ of BVs (see Figure , one can estimate the probability of
a BV overlap during the traversal by

. VOl(Al D Bl> _ VOI(A1> + VOI(Bl)
Pridin B #2) = Vol(A® B) ~ Vol(A) + Vol(B)

(2.1)

in the case of AABBs. Since Vol(A) + Vol(B) has already been committed by
an earlier step in the recursive construction, Equation [2.1] can be minimized
only by minimizing Vol(A;) 4+ Vol(B).

Volino and Magnenat-Thalmann [VM94, VM95] as well as Provot [Pro97] use
a different kind of strategy based on the mesh topology of the objects. These
connectivity-based approaches yield advantages in speeding-up self-collision of
deformable objects [ZY00, BW02, [FGLO03|, HTGO04].

A different approach to reducing query times is to try to learn and model the
query probability distribution either before the hierarchy construction [ACTO00]

10

2.2 Polygonal Collision Detection

Ax

—qm---

locuses for P! set of locuses possible
such that A; !

I

I

|

I

I

I

I

l

I

|

. i |
T v |

!

|

|

I

|

|

|

|

l

|

overlaps B |

I Lo |
| [!

| i | ‘
: Ay® Bi: L I :

i

I set of possible | :
I

|

I

|

|

|
|
for anchor point P l
|
|

Figure 2.1: The probability of an overlap for A; and B; can be determined by
Minkowski sums [Zac02].

or at running time [AMTO02] (i.e., the construction is done on-demand). While
being quite effective, their data structures and traversal algorithms are still
pretty much the classical ones (besides the fact that they apply the approach
only to the problem of detecting an intersection between a line segment and the
environment /object).

The influence of the arity of the BVHs were examined by [LAMO1, MKEQ3].
It turned out that there is no substantial difference for rigid objects, while a
degree of 4 or 8 seems to be optimal for deformable objects [TKH™05].

In case of deformable objects (see [TKZ™04, TKH™05, [ZTK"05] for a compre-
hensive survey), a BVH has to be updated each time step. To avoid a complete
update of all corresponding BVs, different update strategies have been devel-
oped. Larsson and Akenine-Mller [LAMOI] showed that if many deep nodes
are reached during the traversal, the bottom-up strategy performs better, while
otherwise the top-down approach is faster. Mezger et al. [MKEQ3] proposed
a lazy hierarchy update to accelerate the update process for slow parts of the
scene and for small time step sizes.

2.2.2 Space-Subdivision Approaches

In contrast to the object-partitioning methods, space-subdivision approaches
are mainly used in case of deforming objects as they are independent of changes
in the object’s topology. For the partitioning, an octree [BT95 [KSTKO98], BSP
tree [Mel00] or a voxel grid [Tur90, MPT99, I(GDOO00, ZY00] can be used.

11

2 Related Work

Agarwal et al. partition the space into polygonal cells with some specific prop-
erties so that the next time step of an event can directly be determined using
a cinetic data structure [ABGT01]. Unfortunately, often such approaches are
known only for the two dimensional case, or are very complex in 3D so that an
implementation would not be worthwhile.

In [THM™03| spatial hashing with a uniform grid was proposed for deformable
tetrahedral meshes. Their hash function allows for a very memory efficient
data structure and for handling potentially infinite regular spatial grids with a
non-uniform or sparse distribution of object primitives.

2.2.3 Distance Fields

In general, non-hierarchical data structures seem to be more promising for colli-
sion detection for deformable objects [ABG™T01, HMBO1, [FLO1], although some
geometric data structures suggest a natural BV hierarchy [LCLL02]. Many
approaches use distance fields, e.g., [FLO1, VSCO01) ISPG03, [FSGO03| that are
updated after a deformation.

A distance field specifies the minimum distance to a surface for all (discrete)
points in the field. In literature, different data structures have been proposed
for representing distance fields, e.g., octrees, BSP trees or uniform grids. The
problem of uniform grids, the large memory consumption, can be solved by a
hierarchical data structure called adaptively sampled distance fields [FPR.J00].
For the collision detection problem, special attention to the continuity between
different levels of the tree has to be paid [BMF03]. In [KEHKL™99] an approach
was proposed for computing generalized Voronoi diagrams that can be used to
build distance meshes for each site. Sigg et al. [SPGO3| have proposed an
algorithm utilizing the graphics hardware to determine the distance field in
linear time.

Distance fields are most powerful for collision detection between deformable and
rigid objects [TKH'05]. Then, vertices of the deformable object can quickly
be determined by evaluating the distance field [FSGO03]. However, distance
fields cannot be updated in real-time, although [VSCOI] proposed an image-
based approach utilizing the graphics hardware for computing distance values
very efficiently. In order to reduce memory consumption, the resolution of the
distance field can be decreased so that it allows to balance speed and accuracy.

2.2.4 Hardware-Assisted Collision Detection

In the last few years, GPU-based algorithms have become very popular. Their
incredible increasing power and several new features are very interesting and

12

2.2 Polygonal Collision Detection

tempting to do the collision detection [SE9T [MOK95, [LCN99, BW03|, IGZ03,
GLMO04] and/or self-collision detection [BWO02, [GLMO3] on the graphics hard-
ware. Most of these methods utilize the stencil buffer or the feedback mechanism
of OpenGL.

However, most of the algorithms mentioned above have restrictions to the geom-
etry (e.g., the objects have to be convex or closed), need a lot of time to transfer
the data from the graphics hardware to the CPU, and compete with the ren-
dering module for the graphics resources (unless one spends another board just
for the collision detection). Note that with modern graphics hardware, buffer
readbacks are not necessary any longer [Eri04], because they can be replaced
by hardware-assisted occlusion queries. A full GPU implementation for parti-
cle systems using fragment shaders was proposed by [KLRS04]. Their collision
detection is based on depth maps that represent the outer shape of an object.
Note that all image-space techniques work with discretized object representa-
tions so that they do not allow for exact collision detection. That means, the
accuracy and running time can be balanced by changing the resolution of the
rendering.

An alternative idea is to build a special hardware architecture for a single-chip

accelerator, only for the collision detection process [ZK03]. To get maximum
performance, they use BVHs defined by k-DOPs.

2.2.5 Theoretical Results

In the past few years, some very interesting theoretical results on the collision
detection problem have been shown.

One of the first results was presented by Dobkin and Kirkpatrick [DK83| [DKS85|
DK90]. They have shown that the distance of two convex polytopes can be
determined in time O(log® n), where n = max{|A|, |B|} and |A| and | B| are the
number of faces of object A or B, respectively. This result was obtained by
using a hierarchy that can be built in time O(n). If one of the objects is not
convex, the intersection can be determined in time O(nlogn) [DHKS93].

For two general polytopes whose motion is only along fixed trajectories, it has
been shown that there is an O(ng“) algorithm for rotational movements, where
€ is an arbitrary positive constant [ST95]. Moreover, they proposed an o(n?)
algorithm for a more flexible motion that still has to be along fixed, known
trajectories [ST96].

Suri et al. [SHHOS8] have proven that for a set of n convex polytopes which all
are well-shaped (with respect to aspect ratio and scale factor) all intersections
can be computed in time O((n + K,)log®n), where K, denotes the number of
intersecting object pairs. They have generalized their approach [ZS99] where

13

2 Related Work

kind of objects running time
two convex polytopes O(log®n)
convex and non-convex polytope O(nlogn)
two non-convex polytoptes
(motion along fixed trajectories) o(n?)

2

two arbitrary objects (arbitrary motion) O(n?)

Table 2.1: Worst case running time for different kinds of objects.

they proposed the first average-shape results in computational geometry. Let

p = nf}’(denote the performance of the BV heuristic, where K denotes the

number of colliding bounding-box pairs and K, the number of colliding object

pairs. Then, they have shown that p = @(aigalimn%), where ay,, is the average
aspect ratio and oy, denotes the average box scale factor.

In [ZS00a] they extend their work in one important direction: they analyzed the
performance of bounding boxes when all objects in the collection are convex.
Assuming 1the3objects are in 3D, the performance p improves in the average
case: O(ady o) ni).

Under some mild coherence assumptions, Vemuri et al. [VCC98| have shown a
linear expected time complexity for the collision detection between n convex
objects. In the worst case, their approach has a running time of O(nlogn).
Their basic idea is to use known data structures, namely octrees and heaps,
along with the concept of spatial coherence.

The Lin-Canny algorithm [LC91] is based on a closest-feature criterion and
makes use of Voronoi regions. Let n be the total number of features, the ex-
pected running time is between O(y/n) and O(n) depending on the shape, if no
special initialization is done.

Recently, it has been shown by Agarwal et al. [AGNT04], that collision detection
between deforming necklaces can be done in time O(ng_%) using predefined
BVHs (d denotes the dimension).

An overview of the collision detection running time for different kinds of objects
can be found in Table 211

2.3 Point Cloud Collision Detection

From the set of non-polygonal representations, mainly parametric surfaces like
NURBS, splines [Far02] or subdivision surfaces [ZS00b] were examined for
the collision detection process [KMI7, IKGL™98al [JCI8| [(GSO1) LCLL02] (note

14

2.3 Point Cloud Collision Detection

that parametric surfaces can become inefficient for deformations and topology
changes [PKKGO03]). Point clouds, however, are virtually not examined for the
purpose of collision detection.

After a short overview of defining surfaces over point clouds, the existing work
on point cloud collision detection is discussed.

2.3.1 Surface Definition

Point clouds [KB04] are a very popular object representation due to modern
acquisition methods, like 3D scanning or sampling synthetic objects. As a
consequence, a series of efficient rendering techniques were developed [RLO0,
PvBZG00, WFPT01, [KV03, Wan04, BSK04]. However, only very little work
has been done on the interaction of such object representations and the inherent
collision detection process.

An attractive way of handling point clouds is to define the surface as the zero
set of an implicit function that is constructed from the point cloud. Usually,
this function is not given analytically but “algorithmically” [AA03] [AA04a
AA04Db]. This is a general method that can be used for reconstruction as well
as ray-tracing or collision detection. Another very popular method is to define
the surface as the set of fixed points of a projection operator based on local
polynomial regression [AK04].

2.3.2 Algorithms for Point Cloud Collision Detection

Geometric queries on point clouds have been studied extensively. An inter-
esting result related to our problem can be found in [CLRI0, p.908f]. They
use a divide-and-conquer algorithm to find the closest pair of n points in time
O(nlogn) which is, of course, not applicable to realtime collision detection.
However, there is very little literature on geometric queries (and the collision
detection process) on the implicit surfaces defined by point clouds.

In [ADO3] an algorithm to perform Boolean operations for solids is presented.
Although the problem of constructing a new solid by Boolean operations and
the problem of detecting an intersection in a time-critical scenario are somewhat
related, there are many obvious, significant differences. In addition, [ADO3]| rep-
resent objects by surfels. In contrast, we consider a continuous surface defined
by a set of points. Furthermore, their approach can handle only solids, because
they partition space in “inside” and “outside” by an octree. Our approach is
general, i.e., it can handle non-closed geometry.

Tanaka et al. [TEY00] proposed to sample an implicit function with a stochastic
differential equation to detect intersections. Since it is a method for general

15

2 Related Work

implicit surfaces, they do not exploit the topology of the surface (as we do by
utilizing a proximity graph). In addition, our new method is much simpler and,
thus, more practical.

Pauly et al. [PKKGO03] use a Newton scheme to obtain the intersection curve
of point-sampled geometry. First, they determine all points that are close to
the intersection curve by evaluating the distance function induced by the MLS
projection operator. Then, they look at all closest pairs of these points and
compute a point on the intersection curve using a Newton-type iteration.

2.4 Time-Ciritical Collision Detection

It has often been noted previously, that the perceived quality of a virtual en-
vironment and, in fact, most interactive 3D applications, crucially depends on
the real-time response to collisions [US97], and not on an exact simulation.
At the same time, humans cannot distinguish between physically correct and
physically plausible behavior of objects (at least up to some degree) [BHW96].
Analogously to rendering, a number of human factors determine whether or not
the “incorrectness” of a simulation will be noticed, such as the mental load of
the viewing person, cluttering of the scene, occlusions, velocity of the objects
and the viewpoint, point of attention, etc. Since collision detection is still the
major bottleneck of many of these simulations and interactions, it is obvious
that this is where the best speedup can be achieved.

BVHs lend themselves well to time-critical collision detection, i.e., the sched-
uler interrupts the traversal when the time budget is exhausted. This has
been observed by several researchers [DOO0, Hub96]. Hubbard presented the
idea of interruptible collision detection using sphere trees [Hub96]. Dingliana
and O’Sullivan [DO00] are concerned with modeling contacts based on inter-
rupted sphere tree traversals. The method described there can be applied in our
framework, proposed in Section [3] too. However, they do not provide any the-
oretical foundations concerning the error incurred by an incomplete traversal.
In addition, their methods do not support application-driven “levels-of-detail”
of collision detection where the application can specify an allowable error rate
beforehand.

Another approach that offers the possibility to balance the quality of the col-
lision detection against computation time is to select random pairs of colliding
features as an guess of the potential intersecting regions [RCEC03]. To identify
the colliding regions when objects move or deform, temporal as well as spatial
coherence can be exploited [LC92]. This stochastic approach, which was im-
proved by Kimmerle et al. [KNF04], can be applied to several collision detection

16

2.5 Summary and Discussion

problems [GD02, [DDCBO1].

Guy and Debunne |[GD04] presented a Monte-Carlo based technique for colli-
sion detection. Samples are randomly generated on every object in order to
discover interesting new regions. Then, the objects are efficiently tested for
collision using a multiresolution layered shell representation, which is locally
fitted according to the distance of the objects.

2.5 Summary and Discussion

There are several different approaches to the collision detection process. While
BVHs are shown to be very efficient for rigid objects, space-subdivision ap-
proaches are mainly used for deformable models. For scenarios where de-
formable objects have to be tested against rigid objects, distance fields are
a very elegant and simple solution that also provides collision information like
contact normals or penetration depths. Stochastic methods are very interesting
for time-critical scenarios because they allow for balancing speed versus accu-
racy. Hardware-assisted approaches, especially full GPU implementations, are
a very promising technique. However, they do not allow for exact collision de-
tection. Point cloud collision detection is a very new research area and not even
a handful of algorithms have been proposed in the last few years.

It is impossible to compare all these techniques for several reasons. Only in a
very few cases, a theoretical estimation of the running time is given. Moreover,
the approaches provide different collision information, make different assump-
tions, or are specialized for some applications. Last but not least, the ap-
proaches require different input data so that a practical evaluation of different
algorithms using all the same data set is not achievable.

Therefore, we are not interested in developing and implementing data struc-
tures and collision detection approaches that run faster for some test objects
under some assumptions. We are rather interested in algorithms that allow for
new applications, namely collision detection for point clouds and reducing the
quality of collision detection in a controlled way.

17

3 An Average-Case Approach for
Real-Time Collision Detection

In this section, we introduce a novel framework for collision detection using
an average-case approach. To our knowledge, this is the first time that the
quality of collision detection has been decreased in a controlled way (while
increasing the speed), such that a numeric measure of the quality of the results
is obtained (which can then be related to the perceived quality). Our methods
can be applied to virtually any hierarchical collision detection algorithm.

It is, of course, possible to just cut off the BV traversal any time the application
or scheduler deems suitable [Hub96]. The problem with this approach is that
it gives absolutely no hint as to the confidence in the result.

In contrast, our novel approach enables an application to trade accuracy for
speed in a controlled fashion, so that it always has a “measure of confidence”
in the result reported by the collision detection algorithm.

3.1 Overview of our Approach

Conceptually, the main idea of the new algorithm is to consider sets of polygons
at inner nodes of the BV hierarchy, and then, during traversal, check pairs of sets
of polygons. However, we neither check pairs of polygons derived from such a

§

Figure 3.1: Bounding volume hierarchies (BVHs) allow for efficient collision detec-
tion. Our average-case approach allows one to reduce the quality for
the benefit of running time in a controlled way, if assuming a uniform
distribution of the polygons inside the intersection volume of two BVs.

19

3 An Average-Case Approach for Real-Time Collision Detection

Figure 3.2: We partition the intersection volume with a grid. Then, we determine
the probability that there are collision cells where polygons of different
objects can intersect (highlighted in grey).

pair of polygon sets, nor store any polygons with the nodes. Instead, based on a
small number of parameters describing the distribution within the polygon sets,
we derive an estimation of the probability that a pair of intersecting polygons
exists. This probability can be used to guide and to abort the simultaneous
traversal of the hierarchies.

The design of our algorithm was influenced by the idea of developing an algo-
rithm that works well and efficiently for most practical cases — in other words,
that works well in the average case. Therefore, we estimate the probability of
a collision within a pair of BVs using some characteristics of the average distri-
bution of the polygons, but we do not use the exact positions of the polygons
during the collision detection.

This has two advantages:

1. The application can control the running time of the algorithm by speci-
fying the desired “quality” of the collision detection (to be defined later).

2. The probabilities can guide the algorithm to those parts of the BV hier-
archies that allow for faster convergence of the estimate.

Conceptually, the intersection volume of A and B, AN B, is partitioned into
a regular grid (see Figure . If a cell contains enough polygons of one BV,
we call it a possible collision cell and if a cell is a possible collision cell with
respect to A and also with respect to B, we call it a collision cell (a more precise
definition is given in Section .

Given the total number of cells in A N B, the number of possible collision cells
from A and B, respectively, lying in A N B, we can compute the probability
that there are at least x collision cells in AN B.

20

3.2 Terms and Definitions

This probability can be used to estimate the probability that the polygons
from A and B intersect. For the computations, we assume that the probability
of being a possible collision cell is evenly distributed among all cells of the
partitioning because we are looking for an algorithm that works well in the
average case where the polygons are uniformly distributed in the BVs or in the
intersection volume, respectively.

Of course, this assumption is more realistic for smaller BVs (compared to the
object size) than for larger ones. Later in Section we pay special attention
to uneven polygon distributions.

An outline of our traversal algorithm is given by Algorithm [2} Function com-
puteProb estimates the probability of an intersection between the polygon sets
of two BVs. By descending first into those sub-trees that have highest proba-
bility, we can quickly increase the confidence in the result and determine the
end of the traversal. Basically, we are now dealing with priorities of pairs of
nodes, which we maintain in a priority queue.

The priority queue contains only pairs whose corresponding polygons can in-
tersect. It is sorted by the probability of an intersection. Instead of a recursive
traversal, our algorithm just extracts the front node pair from the queue and
inserts a number of child pairs.

The quality and speed of the collision detection strongly depends on the accu-
racy of the probability computation. Several factors contribute to that, such as
the kind of partitioning and the size of the polygons relative to the size of the
cells. This is discussed in more detail in Section [B.8l

There are two other important parameters in our traversal algorithm, p,,;, and
kmin, that affect the quality and the speed of the collision detection. Both can
be specified by the application every time it performs collision detection. A
pair of collision nodes is found if the probability of an intersection between
their associated polygons is larger than p,,;,. A collision is reported if at least
kmin such pairs have been found. The smaller p,,;, or k., is, the shorter the
running time is and, in most cases, the more errors are made.

The remainder of this section explains this framework more precisely in a top-
down manner.

3.2 Terms and Definitions

For the sake of accuracy and conciseness, we introduce the following terms and
definitions. We treat the terms bounding volume (BV) and node of a bounding
volume hierarchy (BVH) as synonym. A and B will always denote BVs of two
different hierarchies.

21

3 An Average-Case Approach for Real-Time Collision Detection

traverse(A, B)
priorityQueue ¢, k:=0
g.insert(A, B, 1)
while ¢ is not empty do
A, B := q.pop
for all children A[i] and B[j] do
:= computeProb(A[i], B[j])
if p > ppin then
k:=k+1
if k& > k,,;, then
return ”"collision”
if p > 0 then
q.insert(Ali], B[j], p)
return "no collision”

Algorithm 2: Our algorithm traverses two BV hierarchies by maintaining a pri-
ority queue of BV pairs sorted by the probability of an intersection. In case of
interrupting the traversal, the maximal probability that has been determined
so far can be returned.

Definition 1. All polygons of the object contained in BV A or intersecting A
are denoted as P(A).

Let ¢ be a cell of the partitioning of AN B. The total area of all polygons in
P(A) clipped against cell ¢ is denoted as area.(A).

maxArea(c) denotes the area of the largest polygon that can be contained com-
pletely in cell c.

Definition 2 (possible collision cell). Given a BV A and a cell c. ¢ is a possible
collision cell, if area.(A) > maxArea(c).

Definition 3 (collision cell). Given two intersecting BVs A and B as well as
a partitioning of AN B. Then, A and B have a (common) collision cell iff
dc : area.(A) > maxArea(c) A area.(B) > maxArea(c) (with suitably chosen
maxArea(c)).

Definitions [2] and [3] are actually the first steps towards computing the proba-
bility of an intersection among the polygons of a pair of BVs. In particular,
Definition [3] is motivated by the following observation. Consider a cubic cell
¢ with side length a, containing exactly one polygon from A and B, respec-
tively. Assuming area.(A) = area.(B) = maxArea(c), then we must have ex-
actly the configuration shown in Figure [3.3] i.e., an intersection, if we choose

22

3.3 Data Structure

Figure 3.3: Left: a cubic collision cell ¢ with side length a. area.(A4) and area.(B)
must be at least maxArea(c) = a?v/2, which is exactly the area of the two
quadrangles. Right: although the cell contains enough polygons, there is
no collision inside.

maxArea(c) = a®v/2. Obviously, a set of polygons is not planar (usually), so
even if area.(A) > maxArea(c) there might still not be an intersection. But
since almost all practical objects have bounded curvature in most vertices, the
approximation by a planar polygon fits better and better as the polygon set
covers smaller and smaller a surface of the object.

Definition 4 (lower bound [b(AN B)). Given an arbitrary collision cell ¢ from
the partitioning of AN B. A lower bound for the probability that a collision
occurs in ¢ is denoted as [b(AN B).

Let us conclude this subsection by the following important definition.

Definition 5 (Prin.;(AN B) >z |). The probability that at least x collision
cells exist in AN B is denoted as Prn., (AN B) > x].

Overall, given the probability Prn.;(A N B) > 1], a lower bound for the
probability that the polygons from A and B intersect is given by

Pr[P(A) N P(B) # 2] > Prine(AN B) > 1] - 1b(AN B). (3.1)

A better lower bound is given in Section [3.5.1] where x > 1 is used for the
probability Pr[n..(A N B) > z|. Section will derive Prin. (AN B) > z,
while Section will derive Ib(A N B).

3.3 Data Structure

As mentioned before, our approach is applicable to virtually all BV hierarchies
by augmenting them with a simple description of the distribution of the set of
polygons. The resulting hierarchies are called ADB trees (average-distribution
trees). In the following, we explicitly mention the type of BV only if necessary.

23

3 An Average-Case Approach for Real-Time Collision Detection

ADB Trees

Our function computeProb(A, B) needs to estimate the probability Pr[n..(AN
B) > z] that is defined in the previous section. However, partitioning AN B at
runtime is too expensive.

Therefore, we partition each BV after the construction of the hierarchy into a
fixed number of cuboidal cells, (the partitioning is discussed in more detail in
Section and then we count the number of possible collision cells according
to Definition [2] and store it with the node. Note that, thanks to our average-
case approach making the assumption that each cell of the partitioning has
the same probability of being a possible collision cell, we are not interested in
exactly which cells are possible collision cells, but only in their number. As
a consequence, this additional parameter per node incurs only a very small
increase in memory footprint of the BV hierarchy, even when utilizing very
“light-weight” nodes such as spheres [Hub96] or restricted boxes [Zac02]. Tt
is, of course, computed during preprocessing after the construction of the BV
hierarchy.

With rectangular BVs at the nodes of the hierarchy, this kind of partitioning
obviously causes no problems. Using other BVs, such as DOPs, some of the
cells at the border of a BV are not cubic. It is clear that the total area of
polygons in such a cell does not need to be as large as in other cubic cells, in
order to qualify as a possible collision cell. This is why Definitions [2] and
depend on maxArea(i).

Note that we do not need to store any polygons or pointers to polygons in leaf
nodes. A possible intersection is determined solely based on the probabilities
described so far.

In addition to the ADB trees, we will need a number of lookup tables in order
to compute Pr{n. (AN B) > z] efficiently (see Section [3.5]). Fortunately, they
do not depend on the objects nor on the type of BV, so we need to precompute
the lookup tables only once.

Counting Possible Collision Cells

We propose two algorithms for computing the number of possible collision cells.
It is convenient to do this after the BV hierarchy has already been built.

The first one is very simple and computes an exact value of the number. It
partitions each node into a grid, clips the polygons associated with the node,
inserts the fragments into the grid, and counts the number of possible collision
cells. Assuming a complete binary BVH, the running time of this algorithm
can be estimated as

Ty = cynlogm + ¢ym,

24

3.3 Data Structure

posColCells(A4, A’)
pc:=0
if Vol(A’") < Vol(c4) then
if area(A’) > maxArea(cs) then
return 1
else
if A’ is a leaf then
if area(A’) > maxArea(A’) then

Vol(A”) 1
return 1 - .
Vol(ca) ?/VOI(A’)
Vol(cy)

else
for all children A’[i] do
pc = pc+ posColCells(A, A'[i])
return pc

Algorithm 3: The number of possible collision cells in BV A can be approximated
efficiently by propagating polygon areas up through the tree. ¢4 denotes an
arbitrary cell of A, n,.,(A) := posColCells(A, A).

where n is the number of polygons and m is the number of nodes in the hierarchy.
¢; is the cost of clipping and inserting one polygon, while ¢} is the (average)
cost of counting the number of possible collision cells of one node.

cinlogm time is needed because for each of the logm tree levels, n polygons
have to be clipped and inserted, and ¢;m is needed for counting the number of
possible collision cells for all nodes.

The second algorithm (Algorithm [3|) approximates the number n,.,(A) of pos-
sible collision cells for a node A. Its main idea is to use the sub-tree of A
for the computation of ny.,(A). The algorithm looks for child nodes A" of A
with Vol(A’) < Vol(ca), which is the size of one cell of A. If such a child
node contains enough polygons (in some sense), then we increase ny.,(A) by 1.
Therefore, we do not need to partition A into a grid and test each cell.
Instead, we look for “cells” that are arbitrarily positioned in A and check
whether they are possible collision cells.

Of course, the recursive search for such cells could end at a leaf node A’. Then,

if this node contains enough polygons we approxmlate the number of possible

collision cells by nyee(A’) :=1- \\géig i/VOl(A,)
Vol(cy)

We will explain this later in Section (Equation [3.6). Note that the al-
gorithm posColCells(A4, A) (see Figure [3) determines only n,.,(A), and not

25

3 An Average-Case Approach for Real-Time Collision Detection

Npeol(A’), where A" denotes a child of A. As a consequence, posColCells has to
be started for each node of the hierarchy.

Let ¢y denote the cost for checking one node whether it is a possible collision
cell. Then, the running time for computing n,.,(A) for all nodes of a complete
binary BVH can be estimated by

d
T, = X:CQQZ'(TFZ'le —2) = 2% (d — 1) +2 < cymlogm
=0

because for a node of depth ¢, maximal 24~**!1 —2 child nodes have to be checked.
Obviously, To < Ti, because ¢} > logm, and because ¢; is a very expensive
operation compared to cy. Of course, these considerations are only valid, be-
cause the construction of the BV hierarchy (which is done in the first phase)
is not the dominant factor. Indeed, our experiments in Section [3.8] show that
our second algorithm is substantially faster than the first one so that it can be
performed at startup time (note that m = O(n), so that the possible collision
cells can be determined in time O(nlogn)). This is very important for indus-
trial applications, because it is very difficult to establish additional data files in
the workflow and data flow of design and production processes.

3.4 Probability Parameters

As will be explained in Section Pr(nei(ANB) > x| can be computed from
the following three parameters only:

s = # cells contained in AN B,
sa = # possible collision cells from A in AN B,
sp = # possible collision cells from B in AN B.

In this section, we explain how to determine them during the collision detection
process. Algorithm] gives an overview of computing the probability that the
polygons in A and B intersect.

3.4.1 Uniform polygon distribution

For a moment, let us assume that BVs A and B are of the same size and that
the polygons are uniformly distributed in both of them. Later in this section,
we will lift both assumptions. Let n.(A) denote the number of cells lying in A.

26

3.4 Probability Parameters

computeProb(4, B)

compute 8,84, Sp

look up for Prin.; (AN B) > z]
using (s, S4, Sp)

estimate Pr[P(A) N P(B) # @] by
Pring (AN B) > x| and [b(AN B)

Algorithm 4: This algorithm estimates the probability Pr[P(A) N P(B) # <]
by only three parameters, that can be computed efficiently on the fly.

Then, the number s of cells in A N B can easily be approximated by

_ Vol(AN B)

Analogously, the parameters s, and sg are computed depending on the num-
ber of possible collision cells of A and B that have been determined during
preprocessing.

Obviously, the cells of the preprocessing partitioning of A and B are not con-
gruent with the cells of the partitioning of AN B. But congruence is not needed,
because our probability computations are only based on the number of possible
collision cells and the number of cells lying in A N B; they are not based on
geometrical properties.

Differently sized BVs

Now, consider the case that A and B are of different size. Without loss of
generality, the cells in A are smaller than the cells in B. Then, we first compute
s and s, as described above. If we would also compute sg this way, we would get
too small a probability of collision because the number of possible collision cells
would be assumed too small. In practice, the quality of the collision detection
would not be affected but the performance, because the traversal would stop
later than necessary.

As a remedy, we have to compute sp depending on a partitioning with a cell
size equal to the cell size of the BV A. Therefore, we look for child nodes of B
whose sizes are (almost) equal to the size of A and compute sz depending on
these nodes. As a consequence, we have to traverse to the child nodes of B and
we stop the traversal at a node B; if Vol(B;) < Vol(A). Let n,e(B;) denote
the number of possible collision cells lying in B;. Then, we compute sp, by

~ Vol(B;N A)

$B;, = Vol(Bl) : npcol(Bi) (33)

27

3 An Average-Case Approach for Real-Time Collision Detection

A A
cell of B; cell of B; cell of B;
Figure 3.4: While the cell sizes differ by 7ap, = Vol(B;)/ Vol(A), the number of

possible collision cells differs by 74p,-1/.y/7ag;, if the polygons are aligned
as shown in this figure.

and sp depending on the n nodes B; where the traversal was aborted

=1

In the case the traversal has reached a leaf node B;, it could happen that Vol(B;)
is still larger than Vol(A). Then, we compute sp, by Equation [3.3[and derive
sp; that denotes the number of possible collision cells lying in AN B; depending
on a partitioning, where the cell size is equal to that of A.

It is self-evident to compute sp; by increasing sp, depending on the ratio be-
tween the sizes of A and B;. But if we would only increase sp, by

Tap = Vol(B;)/ Vol(A) (3.5)

it could happen that this would be an overestimate. Figure illustrates the
problem. A single cell from the partitioning of the BV B; (left) encloses the
same volume as the 8 cells in the middle and as the 27 cells in the right. The
cells in the middle and on the right have the same volume as the cells of a BV
A. That means, the cell sizes differ by a factor of 8 and 27, but the number of
possible collision cells differs only by 8-1/2 =4 and 27-1/3 = 9.

Of course, this is only correct, if the polygons are aligned as shown in the
figure. But as we are dealing with leaf nodes, the assumption that the polygons
can be approximated by a single plane (as shown in our figure) is realistic for
real-world models. We will discuss this later in detail in Section B.5.3 As a
consequence, we compute sp; by Equation and use this instead of sp, for
evaluating Equation [3.4}

1
_ _ 3/ -2
Spl = 5B, " TAB, * =8B, " \/Tip, (3.6)

JTAB;

28

3.4 Probability Parameters

level 0 level 1

Figure 3.5: The assumption, the polygons are evenly distributed in a BV could be
too strong. As a remedy, we propose to use two boundaries for each BV:
an inner and an outer boundary. Right: an inner boundary can quickly
be determined by testing some BVs centered at the point of gravity of
the outer BV (or at a point in its neighborhood).

3.4.2 Non-uniform polygon distribution

Until now, we have assumed that the polygons are uniformly distributed in the
BVs A and B. In practice, this is obviously not always correct so that the
parameters s,s4, and sp could lead to probabilities that are too low or too
high. The problem arises because there can be a lot of free space within a BV
where no polygons are inside. Using only a tighter BV (e.g., a convex hull)
would not improve the situation a lot.

As a remedy, we propose to use two boundaries for each BV: an inner and an
outer boundary, as shown in Figure [3.5] where the polygons lie between those
two boundaries. More precisely, the outer boundary is just the bounding volume
enclosing all the polygons. The inner boundary is of the same type (AABB,
OBB, DOP, ...) as the outer one. However, no polygons are allowed to lie
within the inner boundary. Corresponding to the type of BV used, we denote
the resulting BV consisting of two boundaries a 2-AABB, 2-OBB, 2-DOP, and
SO on.

In comparison with a simple BV, the assumption the polygons are evenly dis-
tributed within those boundaries is much more realistic because there is clearly
less free space where no polygons are inside. During the traversal, the intersec-
tion volume of two such BVs has to be determined, which is very easy in the
case of two 2-AABBs (see Figure |3.6).

The inner boundary should be computed in the preprocessing. Unfortunately,
to the best of our knowledge, there is no efficient algorithm to determine an
optimal inner boundary, that means a boundary that encloses the maximal
possible volume. The work of Cohen-Or et al. [DCOTO03] is related to that
problem. However, they determine only an inner-cover of a non-convex polygon.
As a consequence, we propose a simple heuristic to determine a good inner

29

3 An Average-Case Approach for Real-Time Collision Detection

Figure 3.6: The intersection volume V of two 2-A ABBs can efficiently be determined:
V=W-Vi-Va+ Vs

boundary, whose corresponding volume can be smaller than the optimal one.
First, we determine the center c of the outer BV. Then, we test for some
differently sized BVs centered at c, whether the polygons lie completely outside
that BV. Finally, we take the BV with the largest volume as inner boundary.
Note that we can move the center a little bit to test some more constellations.
The situation is illustrated in Figure (right).

3.5 Probability Computations

In this section, we explain the computation of the probability Pr[n.;(ANB) >
x] and its usage.

3.5.1 Probability of collision cells

Recall that computeProb(A, B) estimates the probability that polygons con-
tained in two BVs A and B intersect (see Figure {).

Given a partitioning of AN B and the numbers s, s4, sg, the question is: what is
the probability that at least x of the s cells are possible collision cells of the s4
cells and are also possible collision cells of the sp cells? This is the probability
that at least = collision cells exit.

Note that the s4+sp possible collision cells are randomly but not independently
distributed among the s cells: obviously, it can never happen that two or more
of the s4 or sg, respectively, possible collision cells are distributed on the same
cell, i.e., s4 possible collision cells are distributed on exactly the same number
of cells of the partitioning. This problem can be stated more abstractly and
generalized by the following definition.

Definition 6 (Pr([# filled bins > x]). Given u bins, v blue balls, and w red
balls. The balls are randomly thrown into the u bins, whereby a bin never gets
two or more red or two or more blue balls. The probability that at least x of the
u bins get a red and a blue ball is denoted as Pr[# filled bins > x].

30

3.5 Probability Computations

Figure 3.7: The probability, that exactly ¢ of the u bins get a red and a blue ball can
be determined by the hypergeometric distribution. Here, the probability
is shown for a fixed u = 100 depending on z = v = w and y = t.

I[fu=s,v=s4and w = sp, this definition is related to our original problem by
the following observation, because we assume that each cell of the partitioning
has the same probability of being a possible collision cell.

Observation 1.
Pr(ne.i (AN B) > x| ~ Pr|# filled bins > x].

Now, let us determine Pr[# filled bins > x]. The probability, that exactly t of
the u bins get a red and a blue ball, is
(1) (%)
()

Figure illustrates this probability]]

Explanation: Let us assume, the w red balls have already been thrown into the
u bins. Now, the question is: what is the probability that ¢ of the v blue balls
are thrown into bins containing a red ball? (Z) is the number of possibilities
to distribute the v blue balls to the u bins. The number of possibilities that ¢
of the v blue balls are distributed to bins already filled with a red ball is (f)
And the remaining v — t blue balls have to be distributed simultaneously to the
u — w empty bins.

Thus, the probability that at least x of the u bins get a red and a blue ball, is

Prl# filled bins > z] =1 — mz_l w (3.7)

= ()

! The corresponding probability space (2,3, P) is defined as: Q = {w;}, where w; denotes
the event, that exactly ¢ of the v blue balls are thrown into bins containing a red ball;
¥ = P(Q), the power set of €2, denotes a o-algebra on 2; the probability measure P is

(D)

u

defined by a hypergeometric distribution, P(w;) =

31

3 An Average-Case Approach for Real-Time Collision Detection

1 $=100, s,=40, s,=40,

o low(A~B)=0.9
>
= 081 \
o)
8 $=300, s,=50, s;=50,
9 061 T\ low(A~B)=0.7
= $=100, 5,=20, s,=10,
§ 044 low(A~B)=0.7 — \
B
027 $=300, 5,=50, 5,=50,
. low(A~B)=0.1
0 2 4 6 8 10 12

X

Figure 3.8: Usually, (1—(1—1b(ANB))*) - Pr[ne,(ANB) > z] is maximal for z < 10.

In the case x = 1, this equation can be simplified yielding

Pr(# filled bins 21]:1_(1;)

; (3.8)
= -l —

uU—v+1

It is obvious that in Equation 3.8 u—v has to be computed only once. Therefore,
4v + 1 operations are necessary to compute Pr[# filled bins > 1] and in the
worst case (where v = 8% A w = 8%) 4 x 8 + 1 = 2049 operations are necessary
to calculate Pr[# filled bins > 1] for a single pair of nodes. Of course, this
would be too expensive during running time. Therefore, we compute a complete
lookup table for Pr[# filled bins > z|, which has to be done only once for our
algorithm. Note that Pr[# filled bins > z] is completely independent of the
type of BV or model.

3.5.2 Probability of collision

Until now, for computing a lower bound for Pr[P(A) N P(B) # @] (see Equa-
tion we have only used the probability that at least one collision cell exists
in AN B. Although the algorithm achieves very good quality using only that
probability, we can improve the lower bound by using the probability that sev-
eral collision cells are in the intersection, i.e., by using Prn.(A N B) > x|,
x> 1.

Obviously, Pr{n.(A N B) > x| decreases as x increases. But the more colli-
sion cells (with high probability) in the intersection volume are, the higher the
probability is that a collision really takes place in the pair of BVs.

32

3.5 Probability Computations

Figure 3.9: Probability Pr[P(A) N P(B) # @] for a fixed s (=300). Here, z = s4
and y = sp. Left: [b(AN B) = 0.5, right: Ibl(AN B) =0.1.

Let a partitioning of AN B be given. Then, a lower bound for the probability
Pr|P(A) N P(B) # @] can be computed by

PrlP(A) N P(B) # 2] >
max {Pr[ncol(A NB)>a]- (1—(1—Ib(AN B))l“)} (3.9)

x<min{sa,sp}

because (1 — (1 —Ib(AN B))*) denotes a lower bound for the probability that
in at least one of the z collision cells a collision takes place. Note that, if we
use the approximation shown in Observation [1} this is not a lower bound any
longer, but only a good estimation of it.

In practice, it is sufficient to evaluate Equation for small z, because for
realistic values of s, s4, sg, and Ib(A N B), it assumes the maximum at a small
z (see Figure B.8). Consequently, we bound x by a small number (e.g., 10) in
Equation [3.9]

To give an overview of the behaviour of Pr[P(A) N P(B) # @], Figure
visualizes Equation[3.9)for different s4 and sp (x is bounded as described above).
Summarizing this section, in order to get a better lower bound for the collision
probability, Pr[P(A) N P(B) # @] can be computed by Equation [3.9] instead of
Equation [3.1}

3.5.3 Probability of intersection in a cell

It remains to derive (b(AN B), which denotes a lower bound for the probability
of an intersection in an arbitrary collision cell from the partitioning of AN B
(see Definition []).

For most real-world models, we can assume that the curvature of the surfaces
is bounded (possibly except in a finite number of curves on the surface). Now

33

3 An Average-Case Approach for Real-Time Collision Detection

‘A

B A (AmB) /

Figure 3.10: The intersection volume (highlighted area) could be approximated by
taking the three best slabs [BH99].

consider a collision cell ¢ C AN B, i.e., it contains two sets of polygons, P(A)
and P(B). Because we are looking for a lower bound, we can only assume that
area.(A) and area.(B) are equal to maxArea(c).

Suppose the cell ¢ is large compared to the size of the objects. Then, the possible
curvature of the surface parts in P(A) and P(B) can lead to convex hulls of
P(A) and P(B) that are small with respect to ¢. Therefore, the probability of
an intersection is small.

On the other hand, as the traversal of the BVHs reaches lower levels, ¢ becomes
small compared to the size of the objects. Then, because of the bounded cur-
vature, P(A) and P(B) can be approximated better and better by two plane
polygons. In the extreme, we reach the situation shown in Figure [3.3] There-
fore, we estimate the lower bound [b(A N B) by

das+dp
dmaa:A + dmaxB

Ib(ANB) ~ ,
where d 4, dg are the depth of node A, B in their respective BV hierarchies, and
a4 > Amazp are the maximum depths. In other words, the larger the depth of
the nodes of A and B, the smaller the BVs, and the larger is the probability
that the polygons in a collision cell intersect.

Note that if we approximate (b(A N B) as described, the lower bound given in
Equation [3.9)is not a lower bound any longer, but only a good estimation of it.

3.6 Intersection Volume

Since Equation has to be computed once per node pair during the hierarchy
traversal, we need a fast way to compute Vol(A N B). However, an exact
computation is prohibitively expensive for most BVs (except spheres), even for
cubes, because they are not aligned with each other. So we need to resort to
approximations. A simple and efficient one is to enclose the BVs by spheres and
compute their intersection volume. Unfortunately, this is also a very inaccurate

34

3.6 Intersection Volume

- P e .
midpoint of BV point of intersection

Figure 3.11: We estimate the intersection volume for two not necessarily aligned BV's
by the maximum of three corresponding aligned cases, max{Vy, Vo, V3},
which is an upper bound. Note that, also for non-cubic BVs, the line
through the midpoints of the two BVs has to intersect the vertices
and/or edges of the BV of the intersection volume as shown.

one. In the case of DOPs (note that cubes are special 6-DOPs), we could also
enclose one of A or B by an aligned DOP efficiently [Zac98]. Another method
that works only for boxes (and similarly for DOPs) is to choose three slabs out
of the 2 x 3 slabs defined by two boxes A and B [BH99]. Figure[3.10]illustrates
this idea. The volume of the resulting parallelepiped can be computed by the
scalar triple product.

Since the above mentioned methods can all produce fairly gross overestimations,
and since the latter two methods are also quite expensive (for our purpose), we
propose a different method. The idea is shown in Figure [3.11

Given two bounding boxes of (nearly) the same size at a specific distance d
that are not necessarily aligned with each other. Then, an upper bound of
their intersection volume is given by two BVs of the same size with the same
distance d, that are aligned as one of the 3 cases shown in Figure As a
consequence, we only need to tentatively compute the intersection volume V;
for each of them. Then, max{V}, Vs, V53} is an upper bound of the intersection
volume. In the following, let a, b, and ¢ denote the side lengths of the BVs,
where a > b > ¢. Then

d
Vi = a-b-c-(l——?) =(a—d)-b-c
d
Vo = a-b-c- (1 — ——)>2
? (\/a2+b2)
d 3

Vi = abc (1l - ——mm—m—m
: S e

To prove this claim, one has to perform two steps. First of all, assume that the
boxes are axis-aligned. Without loss of generality, let one box be centered at the

35

3 An Average-Case Approach for Real-Time Collision Detection

Al [E] (AB)
Al [A] [By [By @@@@

Figure 3.12: The BV test tree (BVTT) shows all possible pairs of BVs that might
need to be tested for overlap. All hierarchical collision detection algo-
rithms basically perform a traversal through this (conceptual) tree.

origin and the other centered at P = (z,y,z). Then, the intersection volume
is V = (a—z)(b—z)(c— x), which has to be maximized under the constraint
that 22 +y*+ 22 = d?. Then, one has to show that V' < max{Vi, Vs, V3} always
holds. In the second step, one has to prove that for a rotated BV the intersection
volume is smaller or equal than when aligning that BV while keeping the same
distance. If the difference of the size of the two bounding boxes is above a
certain threshold, we use the intersection volume of the two bounding spheres
as an estimate. In our experience this seems to work well.

3.7 Expected Running Time of Hierarchical
Collision Detection

In this section, we will derive a model that allows to estimate the number N,,
the number of BV overlap tests (see Section . This is equivalent to the
number of nodes in the BVTT (see Figure that are visited during the
traversal. The order and, thus, the exact traversal algorithm are irrelevant.
For the most part of this section, we will deal with 2-dimensional BVHs, for
sake of illustration. At the end, we extend these considerations to 3D, which is
fairly trivial.

Let]\75[) denote the number of nodes on level [in the BVTT where a BV pair
overlap could possibly occur. We define the (conditional) probability that the
BV pair (AZ(-l), B](-l)) on level [overlaps as

P =PrAVNBY £ 2| ANB £ @A) > 0],

where (A, B) is the parents node of (A", BJ(D) in the BVTT. In principle, we
would need a different probability for each individual pair of BVs, but we will
see that this is not necessary. Let X; denote the number of nodes we visit on

36

3.7 Expected Running Time of Hierarchical Collision Detection

, L
e iy
1 [
i e
L's = I+
a, < 401 =2 i
1
Ay x; :s\ I
a = A i i
[2 Gl p
> (1) A [=
Sl 019 i < 1
- A,
< ~ [2
- = > A] [
= i = S i =
[g ! -
B, —= B =l : B ! By
(S I - - A 1
B, B B

Figure 3.13: Left: general configuration of the boxes, assumed throughout our prob-
ability derivations. For sake of clarity, boxes are not placed flush with
each other. Middle: The ratio of the length of segments L and L’ equals
the probability of A; overlapping Bj. Right: ditto for po;.

level [in the BVTTH Then, its expected number E(X;) can be determined by
B(X) = NP - T]p",

where we only assume that the two root BVs A and B overlap (i.e., p® =
1). Overall, the expected total number of nodes we visit in the BVTT is

d l
ZXZ => NI, (3.10)
=1 =1

where d = log,(n?) = lg(n) is the depth of the BVTT (equaling the depth of
the BVHs).

In the following, we will first derive an estimate for p®, then for N9

Preliminaries
For sake of simplification, we assume that the child boxes of each BV sit in

opposite corners within their respective parent boxes, so that A; and B overlap
before Ay and By do (if at all), see Figure In addition, we assume that

2The probability space (2,3, P) is defined as: Q = {w(l }, where w) denotes the event,
that ¢ nodes of the BVTT at level | are visited; ¥ = P(Q), the power set of €, denotes a

o-algebra on §; the probability measure P is defined as P ~ Bi(]\?l(,l), H§:1 p(l)), because

we consider a Nél)—step Bernoulli experiment (Hé=1 p® denotes the probability that a BV
pair on level [overlaps, assuming the two root BVs A and B(©) overlap).

37

3 An Average-Case Approach for Real-Time Collision Detection

~

=

-5
S—

probability p®

<1/4

1/4
\/WQO.?)E)
1/2

3/4

1

0w =
3
~—

L2

S
[\
~— &

oo

~—

SO0 OO

S

Table 3.1: Effect of the probability p() on the running time of a simultaneous hier-
archy traversal.

there is a constant BV diminishing factor throughout the hierarchy, i.e.,
al, = agay, Uy = Qyay, ete.

Only for sake of clarity, we assume that the scale of the boxes is about the same,
i.e.,
by = ag, b =al, etc.

This assumption allows us some nice simplifications in Equation and
as well as the use of a single w in Equation [3.13] but it is not necessary at all.

Probability of Overlap

Similarly to [Zac02], we could estimate p) by the volume of Minkowski sums.
However, in that model all positions of B with respect to A would be equally
likely, which is not true in practice.

Instead we assume, without loss of generality, that the root box B(® penetrates
A by some known distance 05?) := 0 along the x axis from the right. Our
analysis considers all configurations as depicted in Figure [3.13] where ¢ is fixed
but B is free to move vertically, under the condition that A and B overlap.
First, let us consider p;; (in the following, we will drop the superscript (1)) (see
Figure B.13). By precondition, A overlaps B, so the point P (defined as the
upper left (common) corner of B and B;) must be on a certain segment L,
which has the same x component as the point P and which length is defined by
ay+b,. (The BV B and, thus, P can be chosen arbitrarily, under the condition
that A and B still overlap. L would be shifted accordingly, but its length would
be the same.) Note that for sake of illustration, segment L has been shifted
slightly to the right from its true position in Figure m (center). If we restrict
the position of B such that A; and B; overlap, too, then P remains on segment

38

3.7 Expected Running Time of Hierarchical Collision Detection

Gy (0%
Ay o0 Ay S0 5
B
0{()11 i 0 b;
a, al, e
A 7 B
b, 7
case 7’217 case 7227

(@)

Figure 3.14: Denotations for computing 0; for a child pair. The case “12” is sym-

metric to “217, and the case “11” is trivial. Here, w = ag;o)ag(l ay) =
a(xo)(l — ay).
L'. Thus,
Length(L') a, +
P = = = Q. (3.11)

Length(L) a, +b,

Next, let us consider po; (see Figure m for sake of clarity, we re-use some
symbols, such as a/). For the moment, let us assume 0() > 0; in Section
we estimate the likelihood of that condition. Analogously as above, P must be
anywhere on segment L', so ps; = o, = p11 and, by symmetry, p1o = pa;. Very
similarly, we get pss = a,. At this point, we have shown that p) = oy, in our
model.

Positive x-Overlap

We can trivially bound MS”, the number of nodes whose x-overlap is > 0, by
4!, Plugging this in Equation yields

)d+1 1

<Z4l ol = 4% — (4o, # 1)
€ O((4ay)) = O(nlg‘*%). (3.12)

The corresponding running time for different p) can be found in Table For
p) > 1/4 the running time is in O(n°), 0 < ¢ < 2.

Clearly, Ny M < 4lis not a tight bound. So, in the following, we derive a better
one.

39

3 An Average-Case Approach for Real-Time Collision Detection

=3 : : : 230

=
Py 0.60 Beo
w0 - Y 2 = . - - - -
Elamizen s
% 41 Qe = . 540 - .
= ot 1 Za20p -
= , - S, | I I 1
%0 200 600 1000 % 1000 2000 3000 4000 5000
© num leaves num leaves

Figure 3.15: Overall expected number of overlapping BV pairs Ny(n) (= nodes in
the BVTT), which is proportional to the expected running time. Left:
d = 0.4; right: 6 = 0.15 (note that we chose o = ayy = ;).

Each pair (Agl), B](-l)), when projected onto the x axis, has a specific amount
0] 0]
ij - € ij
intersect (remember that NV denotes the number of these pairs).

Given 0%-1)’ the x-overlap of (A/=1, BU=D) we can easily compute oz(é») for each

case (see Figure [3.14)):

of overlap, o As mentioned before, only pairs with o;/ > 0 can possibly

case 17 = 11: ogll) = ogll_l),

case 17 = 21: ogll) = ogll_l) —w,
_ (3.13)
o _19. o _ (-1
case ij =12: 079 =09 —Ww,
case 1] = 22: 0&2 = 092_1) — 2w.

with w = a”al=1(1 — a,) and a!” = the extent of the root BV.

x

So, in order to determine whether or not a pair of boxes AEZ), BJ(-I) on level [
could possibly overlap, we need to determine whether its 05? > 0. We can do

this by starting at the root of the BVTT, initializing og)) := 0, the overlap of
the root boxes when projected onto the x axis. Then we g)roceed down through
the BVTT along the path to AE”, B](.l), decrementing og) with each step by 0,
w, or 2w according to Equation depending on which child we go into.

Clearly, N9 depends on the Farameters a, and d. So, for a range of parameter
values, we could tabulate Nvl), and then compute a much better estimate for

the number of BV overlap tests using Equation [3.10)

3D Collision Detection
As mentioned, our considerations can simply be extended to 3D. Then, L and
L' of Equation [3.11] are not line segments any longer, but 2D rectangles in 3D

40

3.7 Expected Running Time of Hierarchical Collision Detection

dc=1.0 alpha_x= 0.794, alpha_y=0.5 dc=0.4
400 1750 150
——alpha_x=0.63 Y — de= » ——lock

350 | a0 " gt500 dc=0.2 7 o125 | car
£ 300 |- X< =] —=—dc=0.4 _ 3 Lo
7] alpha_x=0.5 1250 =] pipes
[o) — — d -
£ 950 g o ——dc=0.75 _ ;100
a — I73 -
& §1000 | | +-dc=1.0 7 z
B 200 A = _ - L 75
S1s0{ § 750 [mdenls g
2 ——— 2500 | 8%
o 100 47 e 5 3
* 50 fee daso{ z 25

o ‘ ‘ ‘ Foweae———————3 ¥ | ‘ ‘ ‘ ‘
0 75000 n 150000 225000 0 2000 4000 6000 8000 0 30000 60000 n 90000 120000
n

Figure 3.16: Number of BV overlap tests depending on the number n of leaves (left,
center: artificial BVHs, right: BVHs for models shown in Figure .
Left: the distance dc between centers of the root BVs is set to 1. Center:
if o, is chosen so that a,, = 0.5, the number of BV overlap tests is linear
in n, independent of the distance dc. Right: plots for our models at
distance dc = 0.4.

which are perpendicular to the x axis lying in the y/z plane. The area of L'
can be determined by (a;, +b))(a’, + b)) and the area of L by (a, +b,)(a. +0b.).
Thus,
L al +b)(al, + b, 4a! a’,
P11 = area() = (Y y)<) = L = OéyOéZ. (314)
area(L) (ay+by)(a,+b,) 4daya,
The other probabilities p;; can be determined analogously as above, so that
P11 = Pi2 = D21 = D22 = oyo,. Then, we can estimate the number of BV
overlap tests by

d
Ny(n) =Y N -al-al, (3.15)
=1

where d = log,(n?) = lg(n). Figure shows this number for different para-
meters o, . (that means o, ay, o) and 0.
Note that Table Bl is still valid in the 3D case.

Experimental Support

We implemented (using C++4) the traversal algorithm shown in Figure [l| using
AABBs as BVs. As we are only interested in the number of visited nodes in
the BVTT, we switched off the intersection tests at the leaf nodes.

We used a set of CAD objects, each of them with varying complexities with
respect to the number of polygons (Figure . Benchmarking is performed
by the procedure of [Zac02], which can compute the average number of overlap-
ping BVs for a distance dc between two identical objects (for more detail see

Section (3.8.1)).

41

3 An Average-Case Approach for Real-Time Collision Detection

car (20026 polygons)

081 ZRRN AABB
s 97 N Octree
bl L
(%] 06 FRTe ; "
Z 054 R / B
< 04 " a
® - !
£ 03 A A el
02 /N

— A\ - N — \
01— / S\ -
0 :

o0 o8 ! Hizstaan " ' ?

Figure 3.17: Left: comparison of our ADB trees based on an octree and on a binary
AABB tree. Here, the results for the car body with 20,000 polygons are
shown, but we obtained similar ones for all other objects of our suite.
Right: A snapshot of the benchmarking procedure (objects courtesy of
VW). The two boxes show one pair of BVs that contain at least one
collision cell with high probability.

Figure [3.16] (right) shows the number of BV overlap tests for our models de-
pending on their complexities for a fixed distance dc = 0.4. Clearly, the average
number of BV overlap tests behaves logarithmically for all our models.
We also examined, whether p¥ can be estimated by the volume of Minkowski
sums where all positions of B with respect to A are equally likely [Zac02]. In
this case,

p) = Qi Oy Q.

To measure the the number of BV overlap tests, we used artificial BVHs where
we can adjust oy, ., and thus p. There, the child pairs of each node are
placed in its opposite corners. Fig. (left) shows the number of BV overlap
tests depending on n for different choices of a, .. If ay,. = 0.5, then p) =
0.125 and, as also shown by Table B.I] the running time seems to be constant.
Moreover, the plot shows that, if a,, . = 0.63 so that p¥) = 0.25, the number
behaves logarithmically.

If vy .~ is chosen so that p¥ = 0.5, then the number of overlaps behaves linear
as one can see in Fig. [3.16] (center). Overall, p can be approximated by the
volume of Minkowski sums.

3.8 Results

Because our approach is applicable to most hierarchical BVHs, we decided to
implement two basic data structures, namely an octree and a binary AABB
tree, that are used in many VR applications and that can easily be turned into

42

3.8 Results

Figure 3.18: Some models of our test suite: Infinity Triant (www.3dbarrel.com), lock
(courtesy of BMW) and pipes.

ADB trees. The construction heuristic of the AABB tree is the same as that
used for the restricted boxtree [Zac02], so that the corresponding ADB tree
can be built in time O(nlogn) (note that the possible collision cells can be
determined in time O(nlogn) as shown in Section [3.3).

Figure [3.17] shows the timing results of a comparison between our ADB trees
based on the octree and the AABB tree. Obviously, the AABB tree performs
better by a factor > 3 and we obtained similar results with all other models.
Therefore, all the following benchmarks were performed using a binary ADB
tree based on AABBs.

We implemented our new algorithm in C++-. To date, the implementation is not
fully optimized. Note that we have not implemented the idea of inner bound-
aries as proposed in Section [3.4.2} In the following, all results were obtained on
a 2.4 GHz Pentium-IV with 1 GB main memory.

3.8.1 Benchmark Scenario

For timing the performance and measuring the quality of our algorithm, we used
a set of CAD objects, each of them with varying complexities (see Figure .
Benchmarking is performed using the procedure proposed in [Zac02], which
computes average collision detection times for a range of distances between two
identical objects.

Two identical objects are positioned at a specific distance from each other.
The distance is measured between the centers of the BVs and both objects
are scaled uniformly so that they fit in a cube of size 23. Then, one of them
performs a full tumbling turn about the z and z axes in a fixed, large number
of small steps (5000). With each step, a collision query is done, and the average
collision detection time for a complete revolution at that distance is computed.
Then, the distance between the objects is decreased, and a new average collision

43

3 An Average-Case Approach for Real-Time Collision Detection

lock

o2 |

— 207290

sttt Aot o

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
cell number x cell number x cell number x

Figure 3.19: Histogram of the number of times, db(z), cell z occurred as a possible
collision cell in the ADB tree. The number in parentheses in the legend
gives the number of polygons.

detection time is determined.

Figure (right) shows a snapshot of this benchmarking procedure, where
one pair of BVs has been highlighted which contains at least one collision cell
with high probability.

3.8.2 Distribution of Possible Collision Cells

One premise of our average-case approach is the assumption that the probability
of being a possible collision cell is evenly distributed among all cells of the
partitioning (see Section . Here, we give some empirical results suggesting
that in practical cases this assumption is actually valid.

The basic idea is to show that the possible collision cells are evenly distributed
throughout the hierarchy. Assuming each cell has the same probability of lying
inside the intersection volume, then the probability of being a possible collision
cell is also evenly distributed among all cells of the partitioning.

Given an ADB tree, we can identify corresponding cells of all nodes by a number
x € {1,...,512}. Thus, for all x we can count for all nodes how often that cell
is a possible collision cell throughout the tree (this number db(z) < n).

Figure [3.19] shows the distribution of the possible collision cells for different
models with varying complexities. We have obtained similar plots for all other
models of our benchmark suite.

Obviously, our assumption seems to be met by almost all objects occurring in
practice. An exception might be the door-lock model with 207290 polygons,
where max{db(z)} and min{db(x)} are about 30% larger and smaller than the
average.

Note that the distribution of possible collision cells inside the intersection vol-

44

3.8 Results

memory consumption

N
S

BV hierarchy Bytes i]
ADRB tree based on AABBs 36 Q
sphere tree 16 5
AABB tree 28 @
OBB tree 64 51
24-DOP tree 100
0

Figure 3.20: Left: the table compares the amount of memory per node for our ADB
tree with some traditional ones. Right: memory usage of our ten lookup
tables.

ume depends on the trajectories of the objects and their rotations which are
not considered here. Therefore, these experiments are only a hint that our as-
sumption can be valid for most practical cases. In Section [3.10]we propose some
ideas for future work on how to analyze the distribution in a more general way.

3.8.3 Preprocessing

Memory requirements

Figure (left) summarizes the number of bytes per node for different BVHs.
Note that we do not need to store any polygons or pointers to polygons in leaf
nodes. Therefore, we need exactly the same number of bytes for each node in
our hierarchy. We use 24 bytes for storing two vectors that define the BV, 4
bytes for a pointer to child nodes, 4 bytes for storing possible collision cells, and
4 bytes for storing the volume of the BV.

Partitioning of BVs

As mentioned in Section B.I} the quality of the collision detection depends, to
some extent, on the number of cells a BV is partitioned into.

The finer the partitioning, the more possible collision cells are stored at each
node and the larger s4 and sp are, but also the larger s is. Nevertheless, the
probability of an intersection increases if the partitioning gets finer (assum-
ing the ratio of s and s, p remains constant). The situation is illustrated in
Figure [3.21

Our experiments have shown that 8 cells per node is a good choice: if the
nodes are partitioned into remarkably more or fewer cells, the collision quality
(in the sense of the error rate) decreases.

45

3 An Average-Case Approach for Real-Time Collision Detection

0.81
0.6
044

024/

20 40 ', 60 80 100

Figure 3.21: Probability p = Pr[P(A) N P(B) # @] of an intersection depending on
the number = < 100 of cells lying in the intersection volume. In the
left plot, s4 and sp are chosen so that s4 = sgp = 5. The right plot
shows p, also depending on y = s4 = sp < §. Here, we have chosen

Ib(AN B) = 0.25.

An other reason for restricting the number of cells by 8 is that the finer the
subdivision into cells, the larger the lookup tables are (and the higher the
memory usage is), because the values s, s4 and sp directly depend on the
partitioning.

The number of possible collision cells can be computed by our algorithms shown
in Section [3.3] For our models, the exact algorithm needs about 2 minutes on
average for the computation of possible collision cells for one complete BVH,
while the approximate algorithm only needs less than 2 seconds for our most
complex model of 200,000 polygons. All our measurements were performed
using the exact algorithm, but the approximate one reduces the quality of the
collision detection only by about 0.2% points on average.

Lookup Tables

As mentioned, we need a lookup table for the probabilities Pr[# filled bins >
z] with w,v,w € {1,...,512} and = < 10 (see Section [.5.1)). By exploiting
the fact that Pr[# filled bins > z] for u = v,v = v/, w = W' is equal to
Prl# filled bins > z] for u = v/, v = w',w = v, we can reduce memory usage
of that lookup table by a factor 2. Still, for each x, the lookup table would
contain 512 - 215121@ entries amounting to about 256 MB. Fortunately, we can

reduce the number of entries significantly by exploiting the monotonicity of
Prl# filled bins > z] in the variables v and w. If the probability for v =
', v =1, w=wisclose to 1 (e.g., >1—10.9-107°), then we do not compute
the probabilities for u = v/,v = v, w > w' + 1; instead, we continue at u =
u',v=0v"4+1,w=v"+ 1. On average, this reduces the number of probabilities
for one lookup table by a factor of 17. Figure m (right) gives an overview of

46

3.8 Results

car 12 pipes lock
08 —— 20026 11 [9814 E 06 i —— 12624
o 28167 . - 21295 s O 62023
206 60755 $o8 81932 | §0,4 % J\?'”\“' 207290
T DOP (28167) | Eoe | | 124736 -l B VRS DOP (62023)
Eoa = E DOP (9814) Eo3 A -
2 . 2o4 VAl "N ° Ao N
£ 7\ £ N A
+0,2 o / \ 1 < o N] AL
e S cird X\’Vj'?m;e’/)\/,\ 0,2 acdprenes PSSV) < \L\\’"‘\w:
0 - /\ﬁ 0+ T T T T T T 0 - V\\M .
04 06 08 1 12 14 16 18 2 04 06 08 1 12 14 16 18 2 04 06 08 112 14 16 18 2
istance

distance

Figure 3.22: Timings for different models and different polygon counts (kpi, = 10
and ppin = 0.99). Also, a running time comparison to a DOP tree is

shown.
car pipes lock
6 M 9 NU I
—— 20026 [£¢% ML 87| —o9814 f“_\ e A — 12624
57| 28167 F ‘i | L] 21295 [7 P 62023
Ry 60755 n j L\ =, 81932 4 26 - 207290
"/ = 3 =5
g3 f H\\ g (54 124736 \ 23
o2 \‘J W ©3 o3
1 ' 2 f\(2
) : | ¥ !
0 - T 0+ T T T + T T T 0+ — : :
04 06 08 1 12 14 16 18 2 04 06 08 1 12 14 16 18 2 04 06 08 1 12 14 16 18 2
distance distance distance

Figure 3.23: Error rates corresponding to the timings in Figure [3.22

memory usage for storing the lookup tables.

Note that when computing Pr[# filled bins > z], the binomial coefficients can
become very large. Therefore, in order to compute the probabilities as accu-
rately as possible, one should use arbitrary precision for numeric calculations.
Using Maple, the time for computing all ten tables took about 93 hours. As
mentioned earlier, these lookup tables are independent of the models, so that
they have to be computed only once and can be stored in a file.

3.8.4 Performance and Quality

Time and Quality versus Complexity

Each plot in Figure |3.22) shows the running time for a model of varying com-
plexity (the legend gives the number of polygons per object). In most cases,
the running time is fairly independent of the complexity.

There are exceptions, for instance, the pipes with 9,814 polygons even take
slightly longer than the pipes modelled with 124,736 polygons. We conjecture

47

3 An Average-Case Approach for Real-Time Collision Detection

car (20026 polygons)

car (20026 polygons)

0.3 7 —— pmin=0.99 /\ﬁj 50 - |— pmin=0.50 “‘\‘
{ .

. 0,25 - pmin=0.90 / | w0 pmin=0.90 n
2 021 pmin=0.50| | | S ~— pmin=0.99 | ‘

E i 330 |
Sots iy Py L ; g n
€ 014 V\f\ﬂ A MH A 620 | |

R N N\, |
0,05 - SRS \ 10 4 / ,\\ ,;‘w“, J‘
Sy / PR -
0 T T T T T T T — 0 T T T T T N\/ T \\
04 06 08 1 12 14 16 18 2 04 06 08 1 12 14 16 1,8 2

’ ’ T ' ' ' ' distance
distance

Figure 3.24: Running time and error comparisons for the car body with 20,000 poly-
gons for different ppin (kmin = 10).

car (timings) car (errors)
035 12 4 —
03 — pmin=0.99 10 ,“/‘\ /’ —r mfnio.gg
I pmm=0_90 Y . pm|n—0.90
g 0251 ~~ pmin=0.80 . 81 g . |2 pmin=0.80
£ 02 s . SO
T 5 6 % A
£ o151 2 i
0] 4 - L
£ 014
0.05 o \\4\,/-;\,;,A_\;;;,)_;;:ﬁr s, ‘\;\ 2
0 : | ‘ 0 : ; |
12 14 16 18 2 12 14 16 18 2
distance distance
Figure 3.25: Controllable balancing between the running time and the accuracy of

collision detection. However, we cannot guarantee an upper bound for
the error rate because the assumption of uniformly distributed polygons
is not always met in practice.

that this is caused by larger polygons in the coarser resolution of the model
which allows the construction heuristic fewer possibilities to construct optimal
BVHs.

Figure [3.23| shows the error rates corresponding to the timings in Figure [3.22]
Here, the error is defined as the percentage of wrong detections. To measure
them, we compared our results with an exact approach. Only collision tests
are considered where at least the outer BVs, which enclose the whole objects,
intersect. Apparently, the error rates are always relatively low and mostly
independent of the complexities: on average, only 1.89% (car), 1.54% (door
lock), and 2.10% (pipes) wrong collisions are reported if the objects have a
distance between 0.4 and 2.1, and about 3.19% (car), 1.71% (door lock), and
3.15% (pipes) wrong collisions are reported for distances between 1 and 2.

48

3.8 Results

car (20026 polygons) car (20026 polygons)
0.3 1 : 12 1 W
— kmin=1 —— kmin=1 [\V]
- |
o2 kmin=5 | | 10 4| kmin=5 [
$ 0,2 kmin=10 X g - kmin=10 [
= > | \
” | :
Eo015 4, p Al 56 ;.J,“ w“ \/’Q\J'\ﬂ
0,05 D2 A \\\\/,,\”;\,\\,,\ R f\k 2 | J \L / 1
0 T T T T T T T T 0 1 T 1 ‘J T i T T T
04 06 08 1 1214 16 18 2 04 06 08 1 12 14 16 18 2

distance distance

Figure 3.26: Timings and error comparisons for different kpin (Pmin = 0.99).

Time versus Quality

In this section, we examine how the running time depends on the quality of the
collision detection.

As mentioned in Section[3.]] the running time and the quality can be influenced
by the values of pin and k, (see Algorithm : the smaller p,,in or kpin is,
the shorter the running time is and, usually, the more errors are made.

Figure on the left shows the correlation between the running time and
Pmin (car, 20026 polygons). The corresponding error rates are shown on the
right. Obviously, as p,.:, increases, the error rate decreases. There are a few
exceptions, where more errors are made when using a larger p,,;,. We conjecture
that this is caused by pairs of BVs where corresponding polygons (that do
intersect) have a low probability of intersection. For p,,;, = 0.9 and p;, = 0.99
the errors differ only by less than 2% points while for p,,;, = 0.9 and p,;, = 0.5
the errors differ by about 5% points on average (object distances between 1.2
and 2).

In Figure m (left), the timings and the corresponding errors for different k,,;,
(the number of pairs of collision nodes that have to be found before the traversal
stops) are compared (car, 20026 polygons).

Only about 0.2% points fewer errors are made if k,,;, increases from 5 to 10,
while 2% points fewer errors occur if k,;, is changed from 1 to 5 (object dis-
tances between 1.2 and 2). Comparing the timings for k,,;, = 5 and k;,, = 10,
it is questionable whether an increase in accuracy of 0.2% points justifies a
decrease in speed by a factor ~ 2.3.

Performance comparison

A running time comparison between our approach and a DOP tree implemen-
tation, where no probabilities are utilized, can be found in Figure [3.22] We
implemented the DOP tree with the same care as for our new approach. The

49

3 An Average-Case Approach for Real-Time Collision Detection

0,4

0,35 1 — priorities
— greedy
— random

0,3

0,25
0,2

0,15

time / millisec.

0,1 1

0,05

0 T T T T T T T 1
04 0,6 0,8 1 1.2 1.4 16 1.8 2

distance

Figure 3.27: On average, our traversal strategy (priorities) has a running time of
0.13 millisec. The greedy traversal needs about 0.16 and the random
strategy about 0.18 millisec.

running time for the DOP tree is only shown for a single resolution at which
the highest performance was achieved using the DOP tree approach. As you
can notice, our algorithm is always remarkably faster, e.g., in the case of the car
body, our new algorithm is &~ 3 times faster on average (ki = 10, ppin = 0.99)
and > 6 times faster, if the error rate is permitted to increase by only 0.2%
points (kpmin = 5, Pmin = 0.99).

Traversal-Criterion

We proposed to give priority to those pairs of BVs with the highest probability
of intersection. We compared this traversal criterion with two other strategies.
The random strategy always takes a random pair during the traversal, while
the greedy strategy gives priority to those pairs with the highest intersection
volume.

The results for the car model can be found in Figure[3.27] Our strategy is about
20% faster than the greedy strategy and about 28% faster than the random
strategy.

3.9 Summary and Discussion

We have presented a general method to turn a conventional hierarchical collision
detection algorithm into one that uses probability estimations to decrease the
quality of collision detection in a controlled way. To our knowledge, this is the
first such approach to this problem.

Our algorithm can be utilized to increase the perceived quality of simulations

20

3.10 Future Work

and interactions by increasing the performance without noticeably decreasing
the accuracy. More precisely, our novel framework can be useful in several ways:

e [t allows applications that do not need precise collision detection to take
advantage of that opportunity by specifying a desired quality threshold,
thus decreasing the collision detection time significantly.

e [t allows a scheduler to interrupt the collision detection while still allowing
the collision detection to make a better effort than in the traditional
traversal schemes and return a kind of measure of confidence in the result.

Note that in both cases, the application can still obtain meaningful contact
information in order to handle the collision.

Our approach is made possible by augmenting traditional BV hierarchies with
just a few additional parameters per node, which are utilized during traversal to
efficiently compute the probability of a collision occurring among the polygons
of a pair of BVs. These probabilities are then used as priorities to direct the
traversal into those parts of the BV trees with higher probability.

We implemented our ADB trees (average-distribution trees) based on AABBs
(that can be constructed in time O(nlogn) and present performance measure-
ments and comparisons with a fast traditional algorithm, namely the DOP tree.
The results show a speedup by about a factor 3 to 6 with only about 4% error
on average. Furthermore, the error rates are almost independent of the number
of polygons.

We compared our traversal strategies with two others (greedy and random) and
found out that our strategy performs up to 30% better on average.

Moreover, we have presented an analysis for simultaneous hierarchical BV tra-
versals that provides a better understanding of the performance of hierarchical
collision detection that has been observed in the past. Our analysis is indepen-
dent of the order of the traversal. We performed several experiments to support
the correctness of our model, and have shown that the running time behaves
logarithmically for real world models, even for a large overlap between the root
BVs.

3.10 Future Work

We believe that our algorithms, data structures and techniques presented in
this section open up a number of additional avenues for future work.

Until now, our approach has assumed that the polygons are evenly distributed
within the BVs. This assumption becomes more and more incorrect, the deeper

51

3 An Average-Case Approach for Real-Time Collision Detection

the nodes are stored in the hierarchy. Then, the locus of a polygon depends on
the other polygons because of their restricted curvature. As a consequence, the
polygons are not independently and randomly distributed in space. Therefore,
one should improve our approach so that it does not need this assumption any
longer.

The technique of “machine learning” could possibly be used to solve the prob-
lem. Its idea is to learn from examples a (functional) context. That means
that the assumption of a uniform distribution can incrementally be adapted for
two objects and their special collision behavior. This technique allows us to
determine a probability distribution for some training examples x1, ..., x,,, € X
that corresponds to the distribution of x1,...,x,,. For our problem, z; could
denote the event of a collision occurring in cell . Then, during the collision
detection, it should be determined which cell has what probability of collision,
and to use this information in order to decide whether the assumption of a
uniform distribution was suitable.

Of course, the resulting dependencies should be updated in the corresponding
BVs. That means, if the distribution within a leaf changes, how the distribution
changes in the parent nodes should be examined. Moreover, we should think
about an efficient description for those uneven distributions.

Another very interesting point that should be examined in the future, is to
follow up our idea of 2-AABBs, 2-OBBs and 2-DOPs. While for 2-AABBs the
intersection volume can easily be determined, an efficient way to do this for
the other types of BVs should be considered. We believe, provided an efficient
overlap test exists, that these BVs are very well suited for all other hierarchical
collision detection approaches and perform better than the classical ones. As a
side effect, the error rate of our approach should clearly be improved.
Moreover, adapting our approach to simple BVHs, in particular DOP trees and
Restricted Boxtrees, would be very promising. In addition, an examination
can be made to see if it can be applied to non-hierarchical data structures for
deformable collision detection.

A very useful extension of our new algorithm would be the modeling of contacts
and an estimation of the separation distance (if non-colliding) or penetration
depth (in the case of collision). Both are extremely helpful for speeding up
physically-based simulations, and they are even essential for force-feedback.
We believe that our approach can easily be adapted to point-based geometry.
Assuming the models can be approximated by surfels, it should be quite easy
to determine (possible) collision cells (the surfel radius can be estimated as
proposed in the next section). Moreover, cell sizes adapted to the local sampling
density could improve the quality of the collision detection process.

There are many areas in computer graphics that utilize BVHs, such as ray

52

3.10 Future Work

tracing, occlusion culling, or shadow rendering. Thus, a natural question is
whether an average-case approach can be applied there too.

Several existing methods for hierarchical collision detection may benefit from
our analysis and our model for estimating the expected running time. Especially
in time-critical environments or real-time applications it could be very helpful
to predict the running-time of the collision detection process only with the help
of two parameters that can be determined on the fly.

Furthermore, it would be very interesting to apply our technique to other areas,
such as ray tracing. And, finally, we believe one could exploit these ideas to
obtain better bounding volume hierarchies.

23

4 Point Cloud Surfaces using
Geometric Proximity Graphs

A point cloud sampled from a 3D model can be used to approximate and re-
construct the original surface. So, a point cloud can be seen as a representation
of an implicit function f(x), whose zero set S

S ={x|f(x) =0,x € R*}

approximates the original surface.

The weighted least squares (WLS) approach [LS81], Lev98] for defining such
implicit surfaces, that was originally introduced by McLain [McL74] in the
context of contouring, is quite attractive and can be evaluated very quickly. As
we are aiming at interactive collision detection between point clouds (without
an explicit reconstruction of the surface), this surface definition seems to be very
suitable for our problem. Moreover, in contrast to parametric representations,
surfaces with highly complex topology can be represented easily and the global
consistency of the surface is guaranteed by construction [PKKGO03]. Extreme
geometric deformations and even topology changes can be achieved by simply
modifying the weight coefficients of the respective basis functions [PKKGO3].
However, there are some problems, like

e the distance in the weighting kernel is not adapted to the “topology” of
the original surface (Section {4.1.2)),

% &

Figure 4.1: Left: two implicit surfaces that are defined over point clouds. Right:
(discrete) points lying on the intersection curve.

95

4 Point Cloud Surfaces using Geometric Proximity Graphs

e the (local) kernel bandwidth determination (Section [4.2.5), and
e the boundary detection (Section [4.2.6))

which we explain in detail in the following sections.

As a consequence, it can suffer from artifacts in the surface. Therefore, we
propose a new definition of a surface over a possibly noisy point cloud. It
builds on an implicit function which is defined using weighted least squares
regression. For weighting the points, we propose to use geodesic distances
along the surface so that artificial zero sets can be avoided. The basic idea
for approximating geodesic distances is to utilize a geometric proximity graph
which also allows for easy bandwidth and boundary detection.

Our techniques can be applied to other surface definitions as well, such as
Levin’s popular projection operator [Lev03] which is based on moving least
squares approximation. Note that we are not concerned with actually render-
ing the implicit surface. This can be done with ray tracing [AA04a], sphere
tracing [OBAT03, [Har90], or tesselation [Blo94].

This section is organized as follows. Section introduces the WLS surface
definition and its problems with the Euclidean kernel. In the next Section, our
new surface definition based on geometric proximity graphs is explained. We
examine the Delaunay graph and the sphere-of-influence graph in detail, and
propose several extensions for the sphere-of-influence graph to adapt it opti-
mally to our problem. Moreover, our new automatic bandwidth and boundary
detections are described. Section [4.3] gives an overview of the complexity of our
data structures and the time for evaluating the implicit function using our new
geodesic kernel. We conclude the section with a short summary and discussion,
followed by some ideas for future work.

4.1 Implicit Surface Model

In this section, we first give a quick recap and then explain the problem with
the conventional weighted least squares (WLS) method (see [Nea04] for an
overview of different least squares methods). In the following, we assume that
points are in R3, but all methods work, of course, in any dimension.

For the sake of accuracy, we introduce the following definition.

Definition 7 (Cloud point). Fach point p; of a given point cloud P is denoted
as a cloud point.

26

4.1 Implicit Surface Model

Figure 4.2: A normal n(x) is estimated in each x that minimizes the weighted squared
distances to the plane E : n(x) - (a(x) —x) = 0. f(x) is the distance of
x to that plane.

4.1.1 WLS Surface Definition

Let a point cloud P with n points p; € R? be given. Then, the surface from P
is the zero set

S ={x|f(x) =0,x € R*}
of an implicit function [AAQ3]
f(x) =n(x) - (a(x) - x), (4.1)
where a(x) is the weighted average of all points P

> 0(x,pi)pi
Z?:l Q(X, pi)

The situation is illustrated in Figure . Usually, a Gaussian kernel (weight
function)

a(x) = (4.2)

0(x,p) = e P d(x,p) = |]x — pl| (4.3)

is used, but other kernels work as well (see below).

The bandwidth of the kernel, h, allows us to tune the decay of the influence of
the points. It should be chosen such that no holes appear.

Theoretically, 8’s support is unbounded. However, it can be safely limited to
the extent where it falls below the machine’s precision, or some other, suitably
small threshold 6.. Alternatively, one could use the cubic polynomial [LeeQ0]

0(x,p) = 2(@)3 —S(W)QJF 1,

o7

4 Point Cloud Surfaces using Geometric Proximity Graphs

1.00

va0 Gauss
cubic

0.80
tricube
0.704 Wendland

f(x, p) 050~
0.504

0.40 -
0.30
0.20
0.10

0.00

d(xﬁ‘p) I I h
Figure 4.3: Our method is independent of the mapping from distances to weights, so
different weight functions can be used.

or the tricube weight function [CL95]

dc.p) = (1- |2’

or the Wendland function [Wen95]

d(x,p)*,d(x,p)
9(X,p)-<1 :) (4 . +1),
all of which are set to 0 for d(x,p) > h and, thus, have compact support (see
Figure for a comparison). However, the choice of kernel function is not
critical [Har90)].
The normal n(x) is determined by weighted least squares. It is defined as the
direction of smallest weighted covariance, i.e., it minimizes

>_(n(x) - (alx) = p) 0(x. p:) (4.4)
i=1
for fixed x and under the constraint |n(x)|| = 1.
Note that, unlike [AAO3], we use a(x) as the center of the PCA, which seems
to make f(x) much more well-behaved (see Figure [1.4). Also, we do not solve
a minimization problem like [Lev03l IABCOT™03], because we are aiming at an
extremely fast method.
The normal n(x) defined by is the smallest eigenvector (that means, the
vector corresponding to the smallest eigenvalue \g) of the centered covariance
matrix B(x) = {b;;(x)} with

bij(x) = Y 0(x, pr)(e:(pr — a(x)))(e;(pr — a(x))), (4.5)

o8

4.1 Implicit Surface Model

Figure 4.4: Visualization of the implicit function f(x) over a 2D point cloud. Points
x € R? with f(x) = 0, i.e., points on or close to the surface, are shown
magenta. Red denotes f(x) > 0 and blue denotes f(x) < 0. (a) point
cloud; (b) reconstructed surface using the definition of [AA03]; (¢) utiliz-
ing the centered covariance matrix produces a better surface, but it still
has several artifacts; (d) surface and function f(x) based on our more
geodesic kernel using the sphere-of-influence graph.

where e;,i € {0,1,2} is a basis of R3.

If we assume that a(x) and n(x) are continuously differentiable functions (and
that n(x) is unique), then the surface S is a 2D surface.

There are several variations of this simple definition, but for sake of clarity,
we will stay with this basic one. Our new method can be applied to more
elaborated ones as well.

4.1.2 Problems with the Euclidean Kernel

The main problem with the above definition, and virtually all of its variants, is
that the Euclidean distance function d(x,p) = ||x — p|| in Equations {4.3] is
not adapted to the topology of the surface and, therefore, makes points “close”
to query pointﬂ x that are really topologically far away.

As a consequence, such points are weighted too heavily and artifacts in the
surface S can appear (see Figure and Figure [4.5)).

There are two typical cases. First, assume x is halfway between two (possibly
unconnected) components of the point cloud; then it is still influenced by both
parts of the point cloud, which have similar weights in Equation and [£.4]
This can lead to an artificial zero subset C S where there are no points from
P at all.

1For each query point x, the approximate distance to the surface can be seen as the value
of the implicit function f(x).

29

4 Point Cloud Surfaces using Geometric Proximity Graphs

zero set is biased towards the “outside” of the cavity,

artifical zero subsets

Figure 4.5: The Euclidean kernel can produces artifacts as shown in the figure.

Second, let us assume that x is inside a cavity of the point cloud. Then, a(x)
gets “drawn” closer to x than if the point cloud was flat. This makes the zero
set biased towards the “outside” of the cavity, away from the true surface. In
the extreme, this can lead to cancellation near the center of a spherical point
cloud where all points on the sphere have a similar weight.

This thwarts algorithms based solely on the point cloud representation, such
as ray-tracing [AAO4a] or our collision detection algorithm for point clouds
described in the next Chapter [5] In all of these cases, the problem is caused by
the following deficiency in the kernel ([£.3). The Euclidean distance ||x — pl],
p € P, can be small, while the distance from x to the closest point on S and
then along the shortest path to p on S (the geodesic) is quite large.

The problems mentioned above could be alleviated somewhat by restricting the
surface to the region {x : ||x — a(x)|| < ¢} (since a(x) must stay within the
convex hull of P). However, this does not help in many cases involving cavities.

4.2 Geodesic Distance Approximation

As mentioned above, we propose to use a different distance function that is
based on geodesic distances on the surface S. Unfortunately, we do not have
an explicit reconstruction of S, and in many applications, we do not even want
to construct one.

Therefore, the idea of our method is to utilize (conceptually) a Voronoi diagram
to find the nearest neighbor of a query point x, and then traverse the Voronoi
diagram breadth-first to compute approximate geodesic distances between the

60

4.2 Geodesic Distance Approximation

1% = Pllgeo

p

. ix—pl
X

Figure 4.6: Instead of the Euclidean distance, we use an approximate geodesic dis-
tance based on the close-pairs shortest-paths matrix over a proximity
graph.

query point and the cloud points. Since the Voronoi diagram, in this context,
basically provides just an adjacency relation based on some notion of proximity,
we can also use other proximity graphs where the nodes are points € 73E|

In such proximity graphs, nodes p and q are connected by an edge if some
geometric proximity predicate holds. So, it is obvious that geodesic distances
between the points can be approximated by shortest paths on the edges of the
graph.

There is a whole spectrum of different proximity graphs over a set P, for instance
the Delaunay graph DG(P), the Gabriel graph, the relative neighbor graph, and
the nearest neighbor graph [JT92]. These are all subgraphs of the DG, with
different densities, so we choose to investigate the DG. Another interesting
proximity graph seems to be the sphere-of-influence graph SIG(P) introduced
by Toussaint [Tou88]|, because it is not a subgraph of the DG, and because it
seems to capture the notion of sampling density fairly well (see below).

In the following, the length of an edge is the Euclidean distance ||p — q|| (or
any other metric).

4.2.1 Geodesic Kernel

We define our new distance function dgeo(x, p) as follows. Given some location
x, we compute its nearest neighbor pj(x) € P. Then, we compute the closest
point p(x) to x that lies on an edge adjacent to pi(x). Let pj(x) denote the
other point adjacent to that edge (see Figure and let [(p*,p) denote the
accumulated length of the shortest path from p* to p for any p € P.

2 Another way to encode approximate geodesic distances is a triangle mesh. However, here
we would have a “bootstrapping” problem, because the mesh would have to be created
by some kind of tesselation, which would need to evaluate the implicit function at many
points in space.

61

4 Point Cloud Surfaces using Geometric Proximity Graphs

Figure 4.7: Interpolating geodesic distances between pj(x) and p3(x) allows for defin-
ing the distance function with as few discontinuities as possible.

Now, conceptually, the distance from x to any p € P could be defined as

Ayeo (X, P) = min l(p*,p) + ||[p(x) — p*|.
geo(X, P) et o) (p*,p) +[p(x) — Pl

The accumulated length I(p*, p) can be multiplied by the number of “hops”
along the path: if an (indirect) neighbor p is reached by a shortest path with
many hops, then there are many points in P that should be weighted much
more than p, even if the accumulated length of the shortest path from p* to p
is small. This is independent of the concrete proximity graph used for computing
the shortest paths. That means, we can weight two points differently, although
their distances along shortest paths to point x is the same. Especially in very
irregular sampled point clouds, this seems to be very promising.

However, it is not obvious that this is always the desired distance. In addition,
it is desirable to define the distance function with as few discontinuities as
possible. Therefore, we just take the weighted average (see Figure @

[1(pi(x),p) + [|P(x) — P} (x)]]]

dgeo (X’ p) =

100 = P3|
Ip(x) - pi()] (4.6)

[[(P3(x),p) + [D(x) — P2(x)]I].
Note that we do not add ||x — p(x)||. The effect is that f(x) is non-zero

everywhere far away from the point cloud.
Overall, we use the following geodesic kernel

0(x,p) = e~ daeo(x:)?/1? (4.7)

when computing f by (4.1])—(4.5).

62

4.2 Geodesic Distance Approximation

Figure 4.8: Different proximity graphs. (a) DG(P), (b) DG(P) where edges are
pruned according to Q3 + IQR, (c) 1 — SIG(P), (d) 3 — SIG(P), (e)
3 — SIG(P) with pruning.

4.2.2 Proximity by Delaunay Graph

It is very intuitive to use the Delaunay graph DG(P) for our problem, because
[ASCL02] described an intriguing algorithm for reconstructing a polygonal sur-
face over a point cloud without noise from its Voronoi diagram (which is the dual
of the Delaunay graph). Later, [DG04] extended this to provable reconstruction
from noisy models.

So we investigated the possible use of the DG(P) as a proximity graph. Since
it induces a neighborhood relation that also includes “long distance” neighbor-
hoods, some shortest paths can “tunnel” through space that should really be a
gap in the model (see Figure left). Therefore, we prune edges from DG(P)
based on criteria that involve an estimation of the local spatial density of the
point cloud (see below). However, this can make the DG(P) too sparse, while
at the same time it does not always prune all “long” edges. This will cause
artifacts in the surface (see Figure left).

If our point cloud is well-sampled in the sense of [ASCL02], then we could prune
all edges incident to a point p € P that are longer than the distance of p from
the medial axis of S — provided we knew that distance for each p. This is, of
course, not feasible.

Therefore, we propose to utilize a statistical outlier detection method to prune
edges. This is motivated by the observation that most of the unwanted “long
distance” edges are local outliers, or form a cluster of outliers. In the following,

63

4 Point Cloud Surfaces using Geometric Proximity Graphs

Figure 4.9: Surface induced by different proximity graphs. Clearly, the pruned DG
and the plain SIG incur artifacts, due to sparsity and disconnected com-
ponents. In our experience, the 4- or 5-SIG, with pruning, seems to work
well in all cases.

we describe a simple outlier detection algorithm that seems to perform well in
our case, but, of course, other outlier detection algorithms [VB94] should work
as well.

In statistics, an outlier is a single observation which is far away from the rest
of the data. One definition of “far away” in this context is “greater than Q3 +
1.5 IQR”, where ()3 is the third quartile, and IQ R is the interquartile range
@3 — Q1. Our experiments showed that best results are achieved by pruning
edges with length of at least Q3 + IQR.

4.2.3 Proximity by Sphere-of-Influence Graph

The sphere-of-influence graph (denoted as SIG) is a fairly little known proximity
graph [Tou88, BLS00, MQO3|. The idea is to connect points if their “spheres
of influence” intersect. More precisely, for each point p; the distance d; to its
nearest neighbor is determined and two points p; and p; are connected by an
edge, if ||p; — p;ll < di + d;.

As a consequence, the SIG tends to connect points that are “close” to each other
relative to the local point density. In contrast to the DG(P), no “long distance”
neighbor relations are created (see Figure ¢), except for some pathological
cases when the surface is very irregularly sampled.

64

4.2 Geodesic Distance Approximation

Figure 4.10: The sphere-of-influence graph can be extended to a sphere-of-influence
complex in 3D, which allows better geodesic approximations than the
sphere-of-influence graph (in 3D). Note that only a few of all simplices
of the complex for this point set are shown.

4.2.4 Extensions of the SIG

In the following, we propose several extensions to the plain SIG.

The r-th order SIG

In noisy or irregularly sampled point clouds, there can be several pairs of points
that are placed much farther apart from each other than their inter-pair sepa-
ration. In such situations, the SIG(P) would consist of a lot of isolated “mini-
clusters”, even though there are no holes in the original surface (see Figure
middle). Consequently, the corresponding surface could not be reconstructed
correctly, because the approximated geodesic distances are too imprecise: on
the one hand, they are too large because points close together can only indi-
rectly be accessed through the graph by visiting other nodes; on the other hand
— in the case of unconnected components — for some points in space, too few
cloud points are considered for the reconstruction.

To overcome this problem, we propose to use the r-SIG [GPS92]: instead of
computing the distance to the nearest neighbor for each node, we compute the
distance to the r-nearest neighbor and then proceed as in the case of r = 1. It
is obvious that the larger r, the more nodes are directly connected by an edge,
and that too large r can result in “long distance” edges as in the case of the
DG(P) (see Figure 4.8/ d).

In our experience, it seems best to choose r = 3 or » = 4, and then prune away
all “long” edges by an outlier detection algorithm as described in Section [4.2.2
(see Figure e), which yields almost always a nice surface (see Figure

65

4 Point Cloud Surfaces using Geometric Proximity Graphs

Figure 4.11: We propose the anisotropic SIG to adapt the “spheres”-of-influence bet-
ter to the neighborhood of the points, thus yielding a better proximity
graph for our purposes.

right).

Sphere-of-Influence Complex

In 3D, we can either stay with the »-SIG presented so far, or we can extend the
definition analogously to contain triangles as well. Thus, we obtain a complex
that consists of the vertices, the edges as defined before, and triangles. The
latter are formed among all triples of points (p,q,r) that are close to each
other: p,q,r are considered close iff B, N B, N B, # &, where B, is the sphere
of influence around x with radius r,] Figure shows a few triangles and
points from such a complex.

The advantage of such a complex is that we can compute much better approxi-
mations to geodesic paths than if the paths were restricted to edges only [KS00),
CH90, [AHPKO0Q]. We propose the algorithm of Kanai and Suzuki [KS00] with
some slight modifications to determine efficiently approximate shortest path on
the triangles [Sch04].

Anisotropic SIG

Sometimes, the “post-processing” of the r-SIG, as described above, can prune
away too many or too few edges. In order to reduce the susceptibility of the
proximity graph to the pruning threshold, and in order to adapt it better to our
problem, we propose the anisotropic SIG. The idea is to use ellipsoids instead
of spheres around the points, where the axes of the ellipsoids are the principal
components of a suitable number of neighboring points (see Figure .

For each point p € P, we construct its “ellipsoid”-of-influence as follows. We
start with its k nearest neighbors, k being small (3 or 4)E| Then, we compute

3 This is somewhat related to the Czech complex. However, in the Czech complex all spheres
have the same radius.

4 Should these, including p, be (almost) coplanar, we take more until we get a non-coplanar
set.

66

4.2 Geodesic Distance Approximation

the principal axes of this set and determine radii so that the ellipsoid contains
the setﬂ Then, we (conceptually) scale the ellipsoid until it contains one more
pointﬂ With this increased neighborhood point set, we compute a new ellipsoid,
as before. We repeat this procedure, until the ellipsoid contains r points, or
until o(p) = m exceeds a predefined threshold. Here, \; is the smallest
eigenvector, so that o(p) captures the surface variation [PGKO02].

The advantage of this is, that in areas with small variance, we can automatically
choose large spheres-of-influence, while in areas with high curvature or close
sheets these spheres are kept small. Thus, the edges of the anisotropic SIG are
less prone to “short-circuit” sharp features (as depicted in Figure .
Finally, for determining the edges of the anisotropic SIG, we need to check
intersections of ellipsoid. This could be computed exactly by [Sch94, Ch. 3.3],
for instance, but we have opted for a simpler, approximate check: we just sample
each ellipsoid by a number of points and check whether any of them is contained
in the other one.

4.2.5 Automatic and local bandwidth computation

A critical parameter is the bandwidth A in . On the one hand, if this is
chosen too small, then variance may be too large, i.e., noise, holes, or other
artifacts may appear in the surface. On the other hand, if it is chosen too large,
then bias may be too large, i.e., small features in the surface will be smoothed
out. To overcome this problem, [PGKO02] proposed to scale the parameter h
adaptively.

Here, we can use the proximity graph (the r-SIG) to estimate the local sampling
density, r(x), and then determine h accordingly. Thus, A itself is a function
h = h(x).

Assuming the terminology from Section [1.2.1] (see Figure 1.7, let r1(x) and
r9(x) be the lengths of the longest edges incident to pj(x) and p3(x), respec-
tively. Then, we determine r(x) as the weighted average of ri(x) and r9(x)
subdivided by r, the number of nearest neighbors that determine the radius of
each sphere-of-influence

Ipsx) —pi " T) — i)l

5 Alternatively, we could have computed a smallest enclosing ellipsoid by [Wel91], but the
benefit seemed questionable.

6 This can be done efficiently by transforming the points in the coordinate system of the
ellipsoid and then choosing the closest one.

67

4 Point Cloud Surfaces using Geometric Proximity Graphs

F

plain WLS, h = 22 2-SIG with pruning, plus boundary detection
n=17

Figure 4.12: Our method offers automatic sampling density estimation individually
for each point, which allows to determine the bandwidth automatically
and independently of scale and sampling-density (middle), and to detect
boundaries automatically (right).

hx) = 1T (49)

where 6. is a suitably small value (see Section . Thus, p; with distance
nr(x) from p(x) will be assigned a weight of 6. (see Equation [1.3)).

We have now replaced the scale- and sampling-dependent parameter h by an-
other one, n, that is independent of scale and sampling density. In our expe-
rience, this can just be set to 1, or it can be used to adjust the amount of
“smoothing”. Note that this automatic bandwidth detection works similarly
for many other kernels as well (see Section [£.1.1).

Depending on the application, it might be desirable to involve more and more
points in , so that n(x) becomes a least squares plane over the complete
point set P as x approaches infinity. In that case, we can just add ||x — p(x)|
to (3.

Figure[£.12)shows, that the automatic bandwidth determination allows the WLS
approach to handle point clouds with varying sampling densities without any
manual tuning. Notice that the smoothing of the different sampling densities
is very similar, compared to the “scale” (i.e., density).

4.2.6 Automatic boundary detection

Another benefit of the automatic sampling density estimation is a very sim-
ple boundary detection method. Our method builds on the one proposed by

68

4.2 Geodesic Distance Approximation

p.? hd

shortcut/

edge T~

surface

Ps

Figure 4.13: Shortcuts across cavities lead to imprecise approximate geodesic dis-
tances, especially if the path length is multiplied by the number of hops
along the path.

[AAO4a].

The idea is simply to discard points x with f(x) = 0, if they are “too far
away” from a(x) relative to the sampling density in the vicinity of a(x). More
precisely, we define a new implicit function

A f(x), if |f(x)| >eV]x—a(x)] <2r(x

fo = {100 1001 > 2V x a0 < 2r(x) 0
|x —a(x)||, else .

Figure [£.12] (right) shows, that this simple method is able to handle different

sampling densities fairly well.

4.2.7 Smooth Surfaces

It has been shown that well-sampled surfaces lead to smooth distance fields with
non-zero gradients. Therefore, the MLS surface is a continuously differentiable
C* manifold, iff the weighting function is continuously differentiable [Lev98|
Lev03].

Moreover, the proximity graph should not contain edges which significantly
“short-circuit” cavities. In that case, the shortcut would lead to much higher
weights for farther points than for some points in-between. This problem is
illustrated in Figure Assume, point p; is the closest point to some space
point x. Then, p, can have a higher approximate geodesic distance from p;
than ps from p;.

An outlier detection algorithm as proposed in Section cannot guarantee
that there are no shortcuts any longer, especially if the lengths of neighboring
edges are nearly the same. To overcome the problem, we could do the following
(note that this is only an idea for future work). As we will show in Section [4.3.1]
it is sufficient to use only paths up to some length and store them in a CPSP

69

4 Point Cloud Surfaces using Geometric Proximity Graphs

(close-pairs shortest-path) lookup table, because computing shortest paths on
the fly would be too expensive. As a consequence, we could precompute simple
B-splines through sets of points that are connected through the graph and lie
within a certain radius. Thus, the proximity graph is only used for the parti-
tioning /preselection of the points, and the B-splines are used for determining
the lengths of shortest paths (note that in 3D the preselection becomes more
difficult; probably B-spline surfaces could also be used).

However, there can be still discontinuities in our geodesic dge, and, thus, in the
function f. These can occur at the borders of the Voronoi regions of the cloud
points, in particular at borders where the Voronoi sites are far apart from each
other, such as the medial axis.

More precisely, they can occur at points x where the point p(x) jumps to
a different edge. In the case that the new edge is adjacent to the old one,
only the length I(p%, p) changes. Otherwise, both lengths I(p}, p) and [(p3, p)
change. That means, given two points x; and x5 that are very close to each
other (||x; —x2|| < ¢€), the difference between their geodesic distances to a point
p € P can be large

|dge0(xla p) — dgeo(XQ, p)| > e,

so that the geodesic distance function is not continuous

I}LH;Q dgeo (X17 p) 7é dgeo(X% p)
This problem could be reduced by interpolating a small set of neighboring
splines. Using a simple Gaussian distribution of points around the point x, we
could interpolate the geodesic distances for that points.

4.3 Running time and Complexity

This section gives an overview of the complexity of our auxiliary data structures
and the time for evaluating f(x) in the 3D case. Therefore, we introduce the
following definition of sampling radius. Since our surfaces do not interpolate
the point cloud, we do not use the notion of e-sampling [ACDL00]. In addition,
we believe our definition is more practical.

Definition 8 (Sampling radius). Consider a set of spheres, centered at points
p; € P, that cover the surface defined by P, where all spheres have equal radius.
We define the sampling radius r(P) as the minimal radius of such a sphere
covering.

70

4.3 Running time and Complexity

m-r(P) \

AP m=4

AN

Figure 4.14: Under reasonable assumptions, the close-pairs shortest-paths map has
size O(n). Left: a sphere with radius m - 7(P) can be covered by O(m?)
spheres with radius r(P). Right: [v/3-m]? uniformly distributed points
inside.

4.3.1 Close-Pairs Shortest-Paths

Computing shortest paths on the fly during the computations of our geodesic
distances would be, of course, prohibitively expensive, so we pre-compute them.
However, computing and storing an all pairs shortest paths (APSP) matrix
would also be infeasible for larger point clouds. As a consequence, we propose
to compute only a relevant subset of shortest paths.

Since the Gaussian decays fairly quickly (for reasonable choices of h), and
other weight functions have bounded support, we need to store only paths up to
some length [= dgeo(x, p). The contribution of nodes in Equations and
that are farther away can be neglected. The length [should be chosen so that
0(x,p) falls below the machine’s precision, or some other, small threshold ..
In practice, I < m - r(P) with m = 5 has shown to be suitable (when the
bandwidth of # is automatically detected as described in Section .
However, now there are regions in R? where only a small number of p; are taken
into account for computing a(x) and n(x). We amend this by dismissing points
x for which the number ¢ of p; taken into account would be too small. Note that
c and 6. are independent parameters. We remark here that [AA04a] proposed
an amendment, too, although differently specified and differently motivated.
Overall, we define the surface S as the constrained zero-set of f, i.e.,

S={xeR’|f(x)=0,#{peP:|p—x| <r.}>c} (4.11)

where Equation implies r. = h - /| log 6.|.
The following lemma shows how to compute the relevant subset of shortest
paths in linear time.

71

4 Point Cloud Surfaces using Geometric Proximity Graphs

Lemma 1. Let a proximity graph or complex G over a point cloud P with n
uniformly distributed points as well as an arbitrary constant m be given. If we
restrict the all-pairs shortest-path problem to find only path up to some length
m - r(P) in G, we can solve it in time O(n). The resulting paths can be stored
in a CPSP (close-pairs shortest path) map of size O(n).

Proof: Let 6(d) = e~%/". As assumed, only points p; with 8(||x — p,||) >
@(m-r(P)) have an influence in Equation As a consequence, for each point
p; € P we can run a single-source shortest-path (SSSP) algorithnﬂ for the
source p; to points p;, where §(dgeo(Pi, P;j)) < 6(m - 7(P)). Such points p; are
obviously contained in a sphere S; with radius m-r(P) centered at p;, and they
can easily be determined by a depth-first or breath-first search starting at p;.

The following lemma shows that only a constant number of points is inside S;,
if P is a uniform (possibly noisy) sampling of a surface. As a consequence, we
have to start n times a SSSP algorithm for a point set of constant size. Overall,
our CPSP map can be computed and stored in O(n) time and space. .

Lemma 2. Let a point cloud P with uniformly distributed points p; € R?
(d € {2,3}) and sampling radius r(P) be given. Then, at most [/d-m]¢ points
€ P lie in a sphere with radius m - r(P).

Proof: In the following, we consider only the 3D case (d = 3), the 2D case can
be shown analogously.

A sphere S; with radius m - 7(P) can be covered with at most ¢ := [v/3-m]?
smaller spheres of radius r(P). This has already been shown by Rogers [Rog63]:
the sphere S can be covered by a cube with side length 2mr(P) and the smaller

spheres with radius r(P) cover cubes with side length \/gr(P) (see Figure|4.14

left). As a consequence, the larger cube can be covered by
¢ [2mr(P) s (4.12)
57(P)

smaller cubes and therefore by the same number of spheres with radius r(P).
That means, ¢ uniformly distributed spheres of radius r(P) with centers in S}
cover S7. Only if the spheres are not uniformly distributed, more than ¢ spheres
with sampling radius r(P) are necessary to cover Sj. "
Note that in many practical cases where S; contains only a single 2D surface
with low curvature, O([v/2 - m]?) is already an upper bound for the number of
points inside S;.

"In case of a Sphere-of-Influence Complex G, we have to use our modified algorithm [Sch04]
to determine efficiently (in time O(n)) approximate shortest path on the triangles.

72

4.3 Running time and Complexity

4.3.2 Pre-computations of Proximity Graphs

Although the complexity of the 3D Delaunay graph can be quadratic in the
worst-case, it can be shown that the complexity of the 3D Delaunay graph is
linear, if we impose two (mild) sampling conditions on the point cloud. First,
the points must be uniformly distributed on a fixed number of facets of R3.
Second, the sample cannot become arbitrarily dense locally. These conditions
can be expressed in a more formal way by the notion of (e, k)-sampling [AB04].

Lemma 3. If a point cloud P is a (€, k)-sample of the true surface, the com-
plexity of the corresponding 3D Delaunay graph is linear in n = |P|. Moreover,
it can be constructed in time O(nlog”n).

Proof: Attali and Boissonnat [AB04] showed recently, that the complexity of the
Delaunay graph is linear in the number of points, if the point cloud is a (¢,)-
sample of the true surface. Chan et al. [CSY97] proposed an output sensitive
algorithms to compute the Delaunay graph. Their result says, that one can
construct the Delaunay graph in 3D in time O((n + f)log® f), where f is the
number of faces in the Delaunay triangulation. Applied with f = O(n) (which
is the result of Attali and Boissonnat) gives an upper bound of O(nlog?n). =

Lemma 4. Ther-SIG can be determined in time O(n) on average for uniformly
and independently point-sampled models with size n in any fized dimension.
Moreover, it consumes only linear space in the worst case.

Proof: Dwyer [Dwy95| proposed an algorithm to determine a SIG in linear time
in the average case for uniform point clouds. As r is constant, this algorithm
can easily be modified, so that it can also compute the r-SIG in linear time (see
Algorithm . The algorithm consists of three steps.

First, the algorithm identifies the r-nearest neighbors of each point by utilizing
the spiral search proposed by [BWYS(]: the space is subdivided into O(n)
hypercubic cells, the points are assigned to cells, and the r-nearest neighbors
of each point p are found by searching the cells in increasing distance from the
cell containing p. As O(1) cells are searched for each point on average and a
single query can be done in O(1) [BWYS0], this first step can be done in time
O(n).

Second, each point is inserted into every cell that intersects the r-nearest-
neighbor sphere. On average, most spheres are small, so that each point is
inserted into a constant number of cells, and a constant number of points is
inserted into each cell.

Finally, within each cell, all pairs of points that have been assigned to this
cell are tested for intersection of their spheres-of-influence. Because each cell
contains only a constant number of points, this can also be done in time O(n).

73

4 Point Cloud Surfaces using Geometric Proximity Graphs

constructSIG(P)

initialize grid with n cells
for all p € P do
assign p to its grid cell
for all p € P do
find r-th nearest neighbor to p by searching the grid cells in
spiral order around p with increasing distance
for all p € P do
for all cells around p that intersect the sphere-of-influence
around p (in spiral order) do
assign p to cell
for all cells in the grid do
for all pairs p;, p; of points assigned to the current cell do
if spheres-of-influence of p; and p; intersect then
create edge pip;

Algorithm 5: Simple algorithm to compute the m-SIG in O(n) time on average.

[AH85] have shown that the 1-SIG has at most ¢-n edges, where ¢ is a constant.
This ¢ is always bounded by 17.5 [AH85, [ERWR&9]. [GPS92] extended this result
to the 7-SIG over a point cloud from R? and showed that the number of edges
is bounded by ¢4 - 7 - n where the constant ¢; depends only on the dimension d.
That means, the r-SIG consumes O(n) space in the worst case. n
Moreover, as mentioned in [Tou8§|, ElGindy has observed that the line-segment
intersection algorithm introduced by [BOT9] can be used to construct a SIG
in the plane in O(nlogn) time in the worst case. The algorithm of [GPS92]
constructs the r-SIG in time

92
O(n”” @71 4+ rplog®n),

for any € > 0 in the worst case.

4.3.3 Function Evaluation

Lemma 5. The implicit function f(x) using our new geodesic kernel can be
evaluated in time O(logn). This is the same time as in the case of the Fuclidean
kernel.

Proof: For evaluating f(x) we have to compute a couple of geodesic distances,
but all paths are starting from the same point p(x). That means, the nearest
neighbor search has to be performed only once.

74

4.3 Running time and Complexity

Under mild conditions, this can be done in O(logn) time by utilizing a Delaunay
hierarchy [Dev02], but this may not always be practical. Using a modified k-d
tree (BBD tree), an approximate nearest neighbor can be found in O(logn)
[AMNTO8]. Note that the BBD tree can be constructed in time O(nlogn)
in any dimension and consumes only O(n) space. Alternatively, a simple k-d
tree, whose nodes are always cut on the longest side, allows for an approximate
nearest neighbor search in time O(log®n) [DDGOQ].

As shown in Section all points p; influencing x can be determined in
constant time by a depth-first or breadth-first search.

Overall, f(x) can be determined in O(logn), which is the same time as in the
case of the Euclidean kernel, if we would also restrict the influence of points
there. .
In order to achieve also a fast practical function evaluation, we implemented
the following algorithm for computing the smallest eigenvector.

First, we compute the three eigenvalues by determining the roots of the cubic
characteristic polynomial of B [PFTV93]. Let A be the smallest of them. Then,
we compute the associated eigenvector using the Cholesky decomposition of
B - \L

The second step is possible, because B — Al is positive semi-definite (because
A is the smallest of all eigenvalues). Thus, the Cholesky decomposition can be
performed, if full pivoting is done [Hig90].

Let /\(B) = {/\1,/\2,/\3} with 0 < /\1 <)\2 <)\3. Then, /\(B — /\I) = {0,)\2 —
A, A3 — A1} Let B— Al = USUT be the singular value decomposition. Then,
27(B — M)z =2"USU 2 = y"Sy > 0.

In our experience, this method is faster than the Jacobi method by a factor of
4, and it is faster than singular value decomposition by a factor 8.

4.3.4 Dynamic Point Clouds

Because of their lack of inherent connectivity, point-based models seem to be
very suitable in dynamic settingsﬂ In this section, we discuss the computational
overhead for updating our additional data structures in dynamic settings.

In the worst case, inserting or deleting a point p; in the general Delaunay
graph or SIG can change ©(n) edges. However, we can bound that number by
O(1), because we are only interested in paths up to some length mr(P) (see
Section [£.3.1)). The following lemma summarizes our results.

8 Note that this advantage vanishes if, for instance, hierarchical data structures are used to
accelerate the rendering.

75

4 Point Cloud Surfaces using Geometric Proximity Graphs

25 T T T T T T T T |
(&) 20 I~ i
z — S
& L
g 15r Euclidean —+
i SIG
o 10F SIG, autom. h----_|
[<b]
LR S o o

0

010 20 30 40 T%0 60 70 80 90 100
1
Figure 4.15: Average evaluation time of f(x) depending on the kernel bandwidth h.
The timings for SIG(P) and DG(P) are nearly identical (therefore, we

omit one of them). Please note that our implementation is not yet fully
optimized. Timing was done on a 1 GHz Pentium 3.

Lemma 6. Given an arbitrary proximity graph where each node has only a
constant number of neighbors. Then, our CPSP map and the corresponding
graph can be updated in O(logn) time, if a point is inserted. Deletion can be
performed in constant time.

Proof: As we are only interested in paths up to some length mr(P), the neighbor
relations have to be updated for a constant number of points, namely for the
points inside the sphere S; centered at p; and with radius mr(P). Thereby,
not only edges inside the sphere have to be added or removed, also edges to
points outside the sphere can change. Of course, those edges have also only
a maximum length of mr(P), so that the number of edges, which have to be
modified, remains constant. That means, we have to update the graph inside a
sphere S! centered at p; with radius 2mr(P).
In the case of inserting a point, the computation of the point set inside S
causes an additional factor of O(logn) using a Delaunay hierarchy or BBD
tree, respectively, as we have to perform a nearest neighbor search in the graph
to find the starting point
After updating the proximity graph, all affected entries in our CPSP map have
to be recomputed. The paths in S; can easily be updated by an APSP algo-
rithm on the set P N S;. As already shown in Section P NS; (which has
constant size) can be determined by a simple depth-first or breath-first search
in time O(1), and therefore, our CPSP map and the corresponding graph can
be updated in time O(logn).

|

Note that the modified k-d tree for finding the nearest neighbors also has to be

76

4.4 Results

WLS, h 5 WLS, h 10 WLS, h=14 SIG autom. h

Figure 4.16: Reconstructed surface based on WLS and our new surface definition
(rightmost) for a noisy point cloud obtained from the 3D Max Planck
model (leftmost). Notice how our new definition, including automatic
bandwidth detection, is able to handle fine detail, as well as sparse
sampling, without manual tuning.

updated. This can be done in time O(logn) [AMNTIg].

4.4 Results

We implemented our new point cloud surface definition in C++. It is easy to
implement and can be evaluated very quickly: once the graphs are built, we
can evaluate f(x) simply by finding the nearest neighbor, traversing the graph,
computing a number of weights from the CPSP table, and finally one eigenvector
by Cholesky decomposition. Note that we have not implemented the idea of
smoothing the surface using B-splines (Section , the sphere-of-influence
complex and the anisotropic SIG.

First of all, Figure [4.15| shows the performance that can be achieved using our
new surface definition for a reasonable choice of h. Although our implementa-
tion is not fully optimized, the performance is of the same order as that of the
Euclidean kernel.

Figure [£.16] [£.18 and [£.19] illustrate the quality depending on the Euclidean
kernel and our new geodesic one, respectively. Moreover, in order to give a
numerical hint of the quality, we determined the root mean square error (RMSE)

7

4 Point Cloud Surfaces using Geometric Proximity Graphs

Figure 4.17: RMSE depending on the bandwidth, A, of the kernel. Our new kernel
is less sensitive to the choice of h than the old one. Refer to Figure |4.16
and Figure [L.I§ for the corresponding models.

plain WLS pruned DG pruned 4-SIG

Figure 4.18: Comparison of the Euclidean and our new geodesic kernel for a noisy
point cloud. In each example, the bandwidth was chosen so that the
RMSE is minimal.

for the deviation (i.e., distance) of the reconstructed surface from the original
surface

[1
EZ]C(X)a

where S denotes a sampling of the original surface.

Obviously, our geodesic kernel approximates the surface very well, while the
Euclidean kernel produces several artifacts. Even when the bandwidth h (see
Equation is chosen optimally with respect to the RMSE, the Euclidean
kernel produces severe artifacts (see Figure .

We also performed experiments to assess the sensitivity of our surface definition
with respect to the kernel bandwidth h. The plots in Figure (left and
center) show that our new kernel is less sensitive to the choice of h than the old
one for two different example surfaces: for a large range of the bandwidth, the
RMSE using our new surface definition is quite low. In contrast, the Euclidean

78

4.5 Summary and Discussion

source Euclidean kernel pruned DG pruned 3-SIG

Figure 4.19: Artifacts at cusps (where the surface is not C! continuous) can also be
avoided by our new kernel.

kernel yields a relatively low RMSE only for a small bandwidth. Note that in
almost every case, the RMSE of the Fuclidean kernel is larger than the RMSE
of our new kernel. Note further, that in most cases the minimal RMSE of
our new definition is clearly smaller than the minimal RMSE of the old one.
However, sometimes the minimal RMSE of the Euclidean kernel is smaller than
or new one, although the surface quality of the Euclidean kernel is lower. Thus,
it should be thought about a better error measurement, e.g., the Hausdorff
distance.

It might seem that there is still one parameter in our new approach, which
requires fine-tuning, namely r, the radius of our modified sphere-of-influence
graph r-SIG. However, numerous measurements for different point clouds sug-
gest that r € [3...6] seems to be a good choice for all models.

4.5 Summary and Discussion

We proposed a geodesic distance function dgeo(p,q) for implicit surfaces de-
fined over point clouds. Our main idea is to approximate geodesic distances by
shortest path in a geometric proximity graph or complex.

This distance function can be evaluated in time O(logn) for arbitrary points
(if the points are not on the surface, we determine their nearest neighbor on
an edge or triangle of the graph or complex, respectively). Furthermore, we
also showed that the implicit function f(x) using our geodesic kernel can be
determined in O(logn) time.

The results in Section .4 showed that artifacts in the surface can be reduced
dramatically in all cases. The automatic determination of the local bandwidth
allows for defining surfaces over noisy and irregularly sampled point clouds. The
results are much better than using a fine-tuned, but fixed bandwidth. For well-

79

4 Point Cloud Surfaces using Geometric Proximity Graphs

sampled point clouds, the automatic determination is as good as fine-tuning,
and in practice it saves a lot of time. For objects with boundaries, we can
efficiently use our automatic sampling density estimation in order to detect the
boundaries.

One important factor why point clouds have become such a popular shape rep-
resentation is their property of simple and fast updates with respect to insertion,
deletion or moving single points. Thus, point clouds constitute a good basis for
deformable objects. As a consequence, it is very important that our auxiliary
data structure (CPSP map) can also be updated very efficiently. We have shown
that our CPSP table can be updated in time O(logn) for inserting or moving
points. If points are deleted, the CPSP map can be updated in constant time.

4.6 Future Work

Although we have proposed some ideas to reduce discontinuities in the surface,
an unsolved problem is that we cannot guarantee that the surface is continuously
differentiable under all circumstances. For the kind of collision detection we are
dealing with, the C'*° is not really essential. Rather it is important for us that
f(x) gives a good approximation of the distance from x to the surface, which
can only be achieved if no artifacts occur in the surface. However, for collision
handling and collision response, smooth surfaces with consistent normals are
desirable. Furthermore, in the area of CAD systems, high order continuous
surfaces are sometimes required [Cha0l]. Therefore, it would be very appealing
if a slight modification of our new definition could solve this problem.
Moreover, we believe that the approximation of geodesic distances can be im-
proved. This could probably be achieved by alternative paths in the proximity
graphs, e.g., by defining a new “long path” with the restriction of a certain cur-
vature. In the 3D case, the shortest or “long” path can also be determined on
the 2-simplices of the sphere-of-influence complex instead of computing them
only on the edges.

80

5 Point Cloud Collision Detection

Given two point clouds P4 and Ppg, the goal is to determine whether or not
there is an intersection, i.e., a common root f4(x) = fg(x) = 0, and, possibly,
to compute a sampling of the intersection curve(s), i.e., of the set

Z={xeR®| fa(x) = f(x) = 0}.

Finding common roots of two (or more) nonlinear functions is extremely dif-
ficult [PETV93]. Even more so here, because the functions are not described
analytically, but algorithmically.

One could just utilize one of the many general root finding algorithms [PETV93|
PKKGO03]. However, by exploiting the special structure and additional knowl-
edge of the problem, we can make this decision much faster.

In the following, we present novel algorithms and data structures to check
whether or not there is a collision between two point clouds. The algorithms
treat the point clouds as a representation of an implicit function that approxi-
mates the point cloud, as described in Chapter [

Note that we never explicitly reconstruct the surface. Thus, we avoid the ad-
ditional storage overhead and additional error that would be introduced by a
polygonal reconstruction.

In the first part of this section, we present a novel algorithm for constructing
point hierarchies by repeatedly choosing a suitable subset. This incorporates

Figure 5.1: Given the implicit surfaces over point clouds, we would like to determine if
there is a collision between them and/or would like to compute a sampling
of the intersection curve(s). Right: point cloud models.

81

5 Point Cloud Collision Detection

Figure 5.2: Our approach constructs a point hierarchy where each node stores a
sample of the points underneath, which yields different levels of detail
of the surface. In addition, we store a sphere covering of the surface
of each node. Note that we compose a sphere covering of many more
spheres.

a hierarchical sphere covering, the construction of which is motivated by a
geometrical argument.

This hierarchy allows us to formulate two criteria that guide the traversal to
those parts of the tree where a collision is more likely. That way we obtain
a time-critical algorithm that returns a “best effort” result should the time
budget be exhausted. In addition, the point hierarchy makes it possible for the
application to specify a maximum “collision detection resolution” instead of a
time budget. At the leaves, a pair of nodes is interrogated by a number of test
points.

In the second part, we propose an approach that exploits spatial coherence of
the surface in a different way, namely by its topology, captured with the help of
geometric proximity graphs. Our approach can be used without any additional
BVH, so that it fits very well with deformable point clouds. The running time
can be bounded by O(logn) for deformable point clouds and by O(loglogn) for
rigid ones. It is well understood, that it can also be combined with the method
proposed in the first part. For instance, the first approach could determine close
areas of the point clouds, while the second one actually determines intersections.

82

5.1 Terms and Definitions

traverse(A, B)

if simple BVs of A and B do not overlap then
return

if sphere coverings do not overlap then
return

if A and B are leaves then
return approx. distance between surfaces in-
side

for all children A; and B; do
compute priority of pair (4;, B;)

traverse(A;, B;) with largest priority first

Algorithm 6: Outline of our hierarchical algorithm for point cloud collision de-
tection.

5.1 Terms and Definitions
For the sake of accuracy and conciseness, we introduce the following definitions.

Definition 9 (Bounding volumes A, B). We treat the terms bounding volume
(BV) and node of a hierarchy synonymous. A and B will always denote BVs
of two different hierarchies. The hierarchies are built over two point clouds Py

and Psy.

Definition 10 (Cloud points Pa, Pg). Given a point cloud Py, the subset PyNA
is denoted as Pa. Moreover, for a second point cloud Py, we define Pg = PoNB.
Of course, if A and B are the root BVs of P1 and Ps, then Py, = Py and
P = Ps.

Definition 11 (Sample points Py, Py). A sample of the point set P4 is denoted
as P!y (P4 C Pa). Analogous, Py is a sample of Pg.

Definition 12 (Test points). A test point is an arbitrary point, that is not
necessarily contained in a given point cloud.

5.2 An Efficient Point Cloud Hierarchy Traversal

Given two point clouds P4 and Pg, we pursue a hierarchical approach to quickly
determine points x such that fs(x) = fg(x) = 0 by exploiting the spatial
knowledge of the surface.

83

5 Point Cloud Collision Detection

The idea of our algorithm is to create a hierarchy where the points are stored in
its leaves. At each inner node, we store a sample of the point cloud underneath,
a simple BV (such as a box), and a sphere covering for the part of the surface
corresponding to the node (see Figure . The point cloud samples effectively
represent a simplified surface, while the sphere coverings define a neighborhood
around it, that contains the original surface.

The sphere coverings, on the one hand, can be used to quickly eliminate the
possibility of an intersection of parts of the surface. The simplified point clouds,
on the other hand, together with the sphere coverings, can be used to determine
kind of a likelihood of an intersection between parts of the surface.

Given two such point cloud hierarchies, the corresponding objects can be tested
for collision by simultaneous traversal (see Algorithm@, controlled by a priority
queue. For each pair of nodes that still needs to be visited, our algorithm tries
to estimate the likelihood of a collision, assigns a priority, and descends first
into those pairs with largest priority.

If the traversal reaches two leaves, we have to test whether there is a colli-
sion between the implicit surfaces inside. For that purpose, we propose two
approaches: a simple and easy to implement randomized sampling technique
(RST, Section and an interpolation search (iSearch, Section on the
proximity graph over the point cloud.

5.2.1 Point Cloud Hierarchy

In this section, we will describe a method to construct a hierarchy of point
sets, organized as a tree, and a hierarchical sphere covering of the surface. This
hierarchy is used by our collision detection algorithm.

In order to make our point hierarchy memory efficient, we do not compute an
optimal sphere covering, nor do we compute an optimal sample for each inner
node. Instead, we combine both of them, so that the sphere centers are also
the sample.

In the first step, we construct a binary tree where each leaf node is associated
with a subset of the point cloud. In order to do this efficiently, we recursively
split the set of points by a top-down process. We create a leaf when the number
of cloud points is below a threshold. We store a suitable BV with each node to be
used during the collision detection process. Since we are striving for maximum
collision detection performance, we should split the set so as to minimize the
volume of the child BVs [Zac02].

Note that so far, we have only partitioned the point set and assigned the subsets
to leaves.

84

5.2 An Efficient Point Cloud Hierarchy Traversal

Figure 5.3: The set of convex hulls induced by the leaves underneath an inner node
of our hierarchy can be covered by spheres thus obtaining a neighborhood
around P containing the surface.

Remember that we limit the region of influence of points by our CPSP map so
that the surface is defined as

S={xeR’|f(x)=0,#{peP:|p—x| <r}>c}, (5.1)

where Equation implies 7. = h - y/|logf|. As a consequence, we have to
assign some neighboring points p; lying in the r.-border around A to each node
A. So, if x € A, we need to consider only the points inside the BV A plus
the points within its r.-border in order to evaluate the implicit function f(x).
Note that in the following, P4 denotes the points from P; lying inside A or its
r.-border.

In the second step, we construct a simplified point cloud and a sphere covering
for each level of our hierarchy. Actually, we will do this such that the set of
sphere centers are exactly the simplified point cloud. One of the advantages is
that we need virtually no extra memory to store the simplified point cloud.

In the following, we will derive the construction of a sphere covering for one
node of the hierarchy, such that the centers of the spheres are chosen from the
points assigned to the leaves underneath. In order to minimize memory usage,
all spheres of that node will have the same radius. (This problem bears some
relationship to the general mathematical problem of thinnest sphere coverings,
see [CS93] for instance, but here we have different constraints and goals.)
More specifically, let A be the node for which the sphere covering is to be
determined. Let Aj,..., A; be the leaves underneath A. Denote by P4 all
cloud points lying in Aj or its r.-border, and let CH(Py4;) be its convex hull.
Let Py = U PA;-

For the moment, assume that the surface in A does not have borders (such as
intentional holes). Then,

vx € A;: a(x) € CH(Pa).

85

5 Point Cloud Collision Detection

Figure 5.4: Using the BVs and sphere coverings stored for each node, we can quickly
exclude intersections of parts of the surfaces.

Therefore, if x € A and f(x) = 0, then x must be in H = |J; CH(P4).

So instead of trying to find a sphere covering for the surface contained in A
directly, our goal is to find a set K = {K;} of spheres, centered at k; € Py,
and a common radius 74, such that Vol(K) = Vol(|J K;) is minimal, with the
constraints that K covers H, and bounded size |K| < c4 (see also Figure [5.3)).
This problem can be solved by a fast randomized algorithm, which does not
even need an explicit representation of the convex hulls (see below). (An exact
solution would be an expensive combinatorial optimization problem over an
exponential number of possible sets {k;}. In addition, constructing the convex
hulls and minimal enclosing spheres are fairly expensive, too.) In Section [5.2.5]
we will derive suitable bounds ¢4 on the size of K.

Our randomized algorithm first tries to determine a “good” sample P’y C Py
as sphere centers k;, and then computes an appropriate r4. In both stages, the
basic operation is the construction of a random point within the convex hull of
a set of points, which is trivial.

Construction of P/;:

The idea is to choose sample points k; € P4 in the interior of H so that the
distances between them are of the same order. Then, a sphere covering using
the k; should be fairly tight and thin.

We choose a random point q lying in BV A; then, we find the closest point
p € P4 (this is equivalent to randomly choosing a Voronoi cell of P, with
probability depending on its size); finally, we add p to the set P/. We repeat
this random process until P’; contains the desired number of sample points (see
Section. In order to obtain more evenly distributed k;’s, and thus a better
P, we can use quasi-random number sequences.

Since we want to prefer random points in the interior over points close to the
border of H, we compute q as the weighted average of all points P4 of a

86

5.2 An Efficient Point Cloud Hierarchy Traversal

randomly chosen A..

Determining 7 4:

Conceptually, we could construct the Voronoi diagram of the k;, intersect that
with H = |J; CH(Py,), determine the radius for the remainder of each Voronoi
cell, and then take the maximum. Since the construction of the Voronoi diagram
in 3D takes O(n?) in the worst case (n = number of sites) [dBvKOS00], we
propose a method similar to Monte-Carlo integration as follows.

Initialize 74 with 0. Generate randomly and independently test points q € H.
If g ¢ K, then determine the minimal distance d of q to P/, and set r4 = d.
Repeat this process until a sufficient number of test points has been found to
be in K.

In other words, we continuously estimate

Vol(K N H) _ # points € KN H
Vol(H) = # points € H

(5.2)

and increase r4 whenever we find that this fraction is less than 1. In order
to improve this estimate, we can apply kind of a stratified sampling: when
q ¢ K was found, we choose the next r test points in the neighborhood of q
(for instance, by a uniform distribution confined to a box around q).

5.2.2 Exclusion and Priority Criterion

Utilizing the sphere coverings of each node, we can quickly eliminate the pos-
sibility of an intersection of parts of the surface (see Figure . Note that we
do not need to test all pairs of spheres. Instead, we use the BV of each node to
eliminate spheres that are outside the BV of the other node.

As mentioned above, we strive for a time-critical algorithm. Therefore, we need
a way to estimate the likelihood of a collision between two inner nodes A and
B, which can guide our Algorithm [f]

Assume, for the moment, that the sample points in A and B describe closed
manifold surfaces f4 = 0 and fp = 0, respectively. Then, we could be certain
that there is an intersection between A and B, if we would find two points on
fa, that are on different sides of fg.

Here, we can achieve only a heuristic. Assuming that the points P’y are close to
the surface, and that f} is close to fz, we look for two test points p1, ps € Py
such that f5(p1) <0 < f5(p2) (Figure[5.5).

In order to improve this heuristic, we consider only test points p € P/, that are
outside the rg-neighborhood around fg, because this decreases the probability
that the sign of fg(p1) and fp(p2) is equal.

87

5 Point Cloud Collision Detection

neighborhood
f\ /% aroundf,

Figure 5.5: Using the sample of two nodes and their r-neighborhoods, we can effi-
ciently determine whether or not an intersection among the two nodes is
likely.

Figure 5.6: Visualization of the implicit function f(x) over a 2D noisy point cloud
(black dots). Points x € R? with f(x) ~ 0, are shown magenta. Red
denotes f(x) > 0 and blue denotes f(x) < 0. The normal n(x) flips
only across the red dashed line.

Overall, we estimate the likelihood of an intersection proportional to the number
of points on both sides.

This argument holds only, of course, if the normal ng(x) in Equation does
not “change sides” within a BV B. In our experience, fortunately, this appears
to be rarely the case, in particular, if one uses the covariance matrix centered
at a(x) as proposed in Equation (see Figure [5.6).

From perturbation theory we know how changes in the matrix B (cf. Equa-
tion [4.5)) affect the eigenvectors. Let A; be the eigenvalues with right eigenvec-
tors x; of B. Let matrix F, |F|2 = 1, be a perturbation of B. By a continuity
argument, we have

(B + eF)xi(e) = M(e)xk(e) , |Ixx(e)]]2 = 1, (5.3)

where y; are the left eigenvectors. One can show [GvL89] that x,(g) behaves

88

5.2 An Efficient Point Cloud Hierarchy Traversal

Figure 5.7: In order to efficiently estimate the distance between the surfaces con-
tained in a pair of leaves, we generate a number of random test points
(left) and estimate their distance from A and B (right).

like

Orxt 3 I o) (5.4
Xp(e) = x — X € .
F g L ()\k -)\i)yTXi

i=1,itk ¢
Here, we are interested in the sensitivity of the smallest eigenvector, x3. We
assume that Az is singular. Then, a necessary condition for x3 to be “well
behaving” is that its eigenvalue is well separated from the other two eigenvalues.
In other words, if the smallest eigenvalue of B is well separated from the other
two eigenvalues for all points x € B (the BV), then we can hope that n(x) does
not “flip”, and fz(x) will indeed assume consistently different signs on different
sides.

5.2.3 RST: Randomized Sampling Technique

When the traversal has reached two leaf nodes, A and B, we could just apply
the traversal criterion again, and return an intersection, if it is met.

Ideally, however, we would like to find a test point p such that fa(p) = fs(p) =
0 (where f4 and fp are defined over P4 and Pp, respectively).

Note that it would not be sufficient to compute the distances between the points
stored in A and B, because an intersection point is not necessarily close to a
cloud point.

In practice, such an intersection point cannot be found in a reasonable amount
of time, so we generate randomly and independently a constant number of test
points p lying in the sphere covering of object A (see left of Figure . Then,
we take

dag ~ min{|f4(p)] + |2(p)]} (55

89

5 Point Cloud Collision Detection

as an estimate of the distance of the two surfaces (see right of Figure , and
report an intersection if dap < d..

More precisely, if a precise collision point’s distance from the surfaces is to be
smaller than 2¢, we cover each sphere of the sphere covering of A lying inside
B by s smaller spheres with radius e. Then, we sample each sphere by O(s1n s)
points so that each of the s spheres gets a point with high probability (see
Lemma |f|7 Section [5.3.1)). For each of these, we just determine the distance to
both surfaces.

Rogers [Rog63] showed that a sphere with radius a-b can be covered by at most
s = [v/3-a]® smaller spheres of radius b. Since we would like to cover a sphere
of radius 74 by spheres with radius b = ¢, we have to choose a = 2, so that
a-b=r4. As a consequence,

\/g'TA

€

s=1 13

In order to obtain a better and faster estimate, we propose in Section [5.3] an
approach that utilizes a geometric proximity graph for both, for the surface
definition and for the collision detection process.

5.2.4 Time-Critical Collision Detection

The traversal prioritization and the leaf intersection test described above, facili-
tate a time-critical approach: on the one hand, if the time budget is exhausted,
the collision detection process returns a “best effort” answer to the collision
query (depending on the minimal distance between the objects that has been
found so far). This is needed in time-critical applications where a real-time
response is needed under all circumstances. On the other hand, if there is still
time left, our algorithm can spend more time on the collision detection in leaf
nodes to increase the accuracy.

This is done by trying to spend the same time t,,,, for each collision query by
adjusting the number of test points and the distance d. that has to be found
between the objects (see Section . If the time needed is larger than .,
the number of test points is gradually decreased and d. is increased, and vice
versa otherwise.

5.2.5 Automatic Bandwidth Detection

Our algorithm has to evaluate f(x) for subsets P, C P, which have different
sampling densities. As a consequence, we could automatically adjust the band-
width h to the sampling density as proposed in Section so that no holes

90

5.2 An Efficient Point Cloud Hierarchy Traversal

appear higher up in our point cloud hierarchy. It is, of course, inevitable that
intentional holes in the surface are closed at higher levels, but this just produces
a few “false positives” during the traversal.

If, for any reason, our surface definition proposed in Section [4]is not used and,
thus, the bandwidth cannot be estimated as in Section [£.2.5 we propose an
alternative to determine the bandwidth automatically without any proximity
graph. For that, we first extend the notion of sampling radius, introduced in

Section [.3] for a sample P),.

Definition 13 (Sampling radius of P/;). Let a point cloud Pa as well as a subset
Py C Py be given. Consider a set of spheres, centered at P'y, that cover the
surface defined by Pa (not P'y), where all spheres have equal radius. We define
the sampling radius r(P'y) as the minimal radius of such a sphere covering.

Moreover, we can define the sampling radius for the set P4 as a special case
with P’y = P4 in the definition above. And, as a special case of that, we define
the sampling radius r(P) of the whole point cloud P, where A is the root BV in
the definition above. The last definition is equal to that proposed in Section [£.3]
Since our surfaces do not interpolate the point cloud, we do not use the notion of
e-sampling [ACDL00]. In addition, we believe our definition is more practical.
Given 7(P’y), we can determine the bandwidth h such that points up to a
distance of about m times the sampling radius will have an influence in Equa-
tion if x is close to the surface:

. \/_M 5.6

with 6. < 1. This follows from Equation .3 and Equation [5.1] where we restrict
the horizon of influence of points by our CPSP map.

Obviously, we could plug in r4 as sampling radius 7(P/) at inner nodes. How-
ever, this can be an overestimate, because the spheres, as constructed in Sec-
tion [5.2.1} could cover intentional holes, which results in an imprecise h.

Alternatively, we estimate r(P’;) by

[Pl
A

r(P)y) = 17(Pa) (5.7)

which is explained in detail in Section [5.3.2]in a very similar context.

91

5 Point Cloud Collision Detection

90 30
C\=
801 . c,=60
[Cln [c.=120)
60 { |----c,=240
50 T
T 401 T
30 7 ISR
20 4 e -
10)l
7
0 : ‘ ‘ ‘
0 50000 100000 150000 200000 250000
. . depth of A'in tree
point cloud size
. P
Figure 5.8: Left: 7 = \/‘C—J depending on the point cloud size |P| for different sam-

pling densities c4 = |P/|. Right: 74 depending on the depth of A in the
binary tree. In this plot, we restrict the depth of the tree by 13 and the
number of points per leaf by [P4|.

5.2.6 Sample Size

A criterion for the number of sample points to be stored in each node is the
quality of the corresponding surface. Obviously, the quality depends on the
sampling radius: the smaller the sampling radius, the fewer errors occur in the
surface (a comparison of the traversal time depending on the quality of the
surface can be found in Section [p.2.§).

Using Equation [5.7] we can derive an estimate for the number c4 of sample
points needed in a node A in order to achieve a radius r(P)) that is only 74
times larger than r(Py)

r(PY) < 7a-1(Pa)
[Pal
P4l

=P’
A > Pl

=

17(Pa) < 7a-7(Pa) (5.8)

As a consequence, given a point cloud P, the sampling radius is at most 7-7(P)
throughout the point hierarchy, if ¢4 = |P|/7? points per node are stored. Then,
the largest sampling radius 7 - 7(P) can be found in the root node, while the
sampling radius in the leaves is r(P). For instance, if the sampling radius in
every node is to be at most 504°(P) and the point cloud consists of 75 000 points,
then at most ¢4 = 30 points per node need to be stored.

92

5.2 An Efficient Point Cloud Hierarchy Traversal

1200

tau_A=10
woe -\ tau_A=15
800 1 -~ tau_A=20
o tau_A=25
600 |
400 {
2001 N
0 ; ‘
0 3 9 12

6
depth of A'in tree

Figure 5.9: If 74 is constant throughout the hierarchy, the quality of the recon-
structed surface is roughly the same for different nodes (of same cur-
vature). Then, the number ¢4 = |P/| of sample points depends on the
depth of A in the tree. The deeper A in the hierarchy, the fewer points
have to be stored.

Figure .§ (left) shows the dependence of 74 on the point cloud size for different
choices of c4. Moreover, the right plot in Figure 5.§|shows 74 depending on the
depth of a node A for different numbers c4 = |P’| of sample points per node

B \/2tmaztA . |7DA,IL ’
TA =)
Ca

where t,,,, denotes the maximum depth of the point cloud hierarchy, ¢, denotes
the depth of A and |P 4| denotes the number of points per leaf (we assume that
each leaf node contains the same number of points).

Of course, if 74 changes, the quality of the reconstructed (parts of) surfaces
may also change. To avoid this, we can choose 74 = 7 constant throughout the
hierarchy and adjust the number of sample points for each node depending on
its depth

tmaz—1tA .
_ 2 L
= 3 .

CA
T

Then, the quality of the reconstructed surfaces is roughly the same for different
nodes of same curvature. The corresponding plot is shown in Figure Of
course, we always use 74 = 1 for a leaf node A, in order to miss no intersections
because of imprecise reconstructed surfaces.

93

5 Point Cloud Collision Detection

& @ i ”"
b V. 4
& —

points: 148,689 # points: 89,036 # points: 35,700 # points: 62,299 # points: 35,056 # points: 137,125 # points: 197,315

Figure 5.10: Some of the models of our test suite, by courtesy of (left to right): Poly-
gon Technology Ltd, Stanford, Volkswagen. The two artificial models
(spheres and grid) show that our approach works well with non-closed
geometry, too. The numbers are the sizes of the respective point clouds.

Car Buddha Aphrodite Elephant Grid

cloud points 35,056 62,299 89,036 148,689 197,315
sample points 45,012 90,068 134,376 180,180 360,404
avg. depth of a node 11 12 13 13 14

Table 5.1: Comparison of the number of cloud points and sample points as well as the
average depth of a node in the hierarchy (only objects with appreciably
different values are listed).

94

5.2 An Efficient Point Cloud Hierarchy Traversal

hierarchy construction

0 50000 100000 150000 200000
cloud points

Figure 5.11: This plot shows the build time of our point cloud hierarchies for various
objects.

5.2.7 Running time and Complexity

The complexity of constructing our point cloud hierarchy is in O(nlogn), where
n is the number of points. Our algorithm first constructs a hierarchy where the
points are only stored at its leaves. This hierarchy is built so as to minimizes
the volumes of the child BVs [Zac02]. The running time for constructing this
(preliminary) hierarchy in a top down manner is in O(nlogn) [Zac02]. Note
that during the construction we can easily assign the points in the r.-border to
each node using two splitting planes with distance r. to the original one. As,
for a given node, the number of points in the r.-border is constant, our modified
construction causes no extra costs.

Then, for each of the O(n) nodes of the hierarchy, we construct the samples
P’y and the radius r4. Thereby, for each node we generate a constant number
of points and determine their nearest neighbors which can be done in O(logn),
e.g., by using a modified k-d tree [AMNTO8]. Overall, the samples and the
radius can also be determined in time O(nlogn).

As we perform a BVH traversal where the costs at each leaf node are constant,
the running time of our approach can be analyzed by the technique proposed

in Section B 17

5.2.8 Results

We implemented our new algorithms in C++. To date, the implementation is
not fully optimized. In the following, all results were obtained on a 2.8 GHz
Pentium-IV.

For timing the performance and measuring the quality, we have used a set
of objects (see Figure [5.10)), most of them with varying complexities (with

95

5 Point Cloud Collision Detection

timings (various objects) difference to polygonal collision detection (various objects)

3 Buddha 64 Buddha
Elephant Elephant
—-—-~- Aphrodite 54 |- = - Aphrodite
---—-- Sharan —- Sharan

time / millisec
different answers / %

T T = T 1 T 1
0 0,5 1 15 2 25
0 0.5 1 distance 15 2 25 distance

Figure 5.12: Left: timings for different objects. Right: differences to polygonal col-
lision detection of the objects; note that the polygonal models are not
a tessellation of the true implicit surface, but just a mesh of the point
cloud. The results for the teddy are very similar to that of the car, and
are therefore omitted.

respect to the number of points). Benchmarking is performed by the procedure
proposed in Section which computes average collision detection times for
a range of distances between two identical objects.

Hierarchy Construction

Our point cloud hierarchies can be built in a fairly short time, so that the
construction can be performed at startup time (see Figure .

The memory usage of a hierarchy is low: with each node, we store a BV, a
pointer to the child nodes, one float for the radius r4, a constant number ¢; of
pointers to the sample or to the cloud points lying in A, and also a number ¢y of
pointers to points in the r.-border of the BV. That means, we need 32+4(c;+c¢3)
bytes for each node. In practice, c; +cs is between 15 and 30 so that at most 150
bytes per node is needed. For example, the hierarchy of our largest model (the
grid) consisting of about 65,000 nodes consumes about 9 MB main memory. Of
course, we also have to store the cloud points in main memory. Table gives
an overview of the number of sample points stored at inner nodes as well as the
average depth of a node in the hierarchy.

Time and Quality

Each plot in Figure (left) and Figure (left) shows the average running
time for a model of our test suite, which is in the range 0.5-2.5 millisec (the two
artificial models are considered later in this section). This makes our new al-
gorithm suitable for real-time applications, and, in particular, physically-based
simulation in interactive applications. Using our time-critical approach, the

96

5.2 An Efficient Point Cloud Hierarchy Traversal

timings (Happy Buddha)

2,5 - difference to polygonal collision detection (Happy Buddha)

4875

2 A ———9830
L ------24810

---- 62299

- 4875
— 9830
- 24810

62299

o
|

time / millisec
different answers / %

0157,': .

o = N W b~ 0O O N
L L L L L L L

0 0,5 1 1,5 2 0 0,5 1 1,5 2

distance distance

Figure 5.13: Left: timings for different object complexities (# points) of the happy
buddha model. Right: differences to polygonal collision detection of the
objects.

detection time can be decreased even further (e.g., when there are too many
collisions going on). Details are given at the end of this section.

For each object of our test suite, we have also compared the outcome of our new
algorithm with a traditional polygonal collision detection using a very high-
resolution polygonal model. That way, we can give some experimental hints
about the error probability of our new algorithm. Note that the polygonal
models are not a tessellation of the true implicit surface, but just a tessellation
of the given point cloud. The results in Figure (right) and Figure
(right) show that the difference is always relatively low on average. For dis-
tances between 0.6 and 2, about 1.2% (happy buddha), 1.06%(elephant), 1.20%
(aphrodite) and 0.64% (car) different answers are reported. Here, only collision
tests were considered where at least the root BVs intersect. The differences can
be explained by two facts: first, the implicit surface defined by the vertices of a
polygonal object is obviously different from the polygonal model. Second, our
intersection finding algorithm in the leaf nodes is very simplistic at the moment
(an improvement is given in Section [5.3).

Equivalent measurements for our two artificial models can be found in Fig-
ure Note that the models have boundaries, and that the spheres model
consists of several unconnected components. Obviously, our approach achieves
results as good as for the other models.

Note that for large distances between the two grid models the running time
decreases, but the difference to the polygonal collision detection increases. It
is obvious, to spend more time in such cases (by generating more test points)
which is explained in the following.

97

5 Point Cloud Collision Detection

time / millisec.

timings (artifical models)

grid
- spheres

difference to polygonal collision detection (artifical models)

grid
spheres

0,5 1 1,5
distance

Figure 5.14: Timings and difference to polygonal collision detection of artificial mod-
els. The differences can be reduced by increasing the number of test

time / millisec

points if the time budget is not exhausted (see Figure [5.15]).

timings (time-critical collision detection)

grid (time-critical)
elephant (time-critical)
grid (non-time-critical)
elephant (non-time-critical)

different answers / %

difference to polygonal collision detection

grid (time-critical)
elephant (time-critical)
grid (non-time-critical)
elephant (non-time-critical)

0,5 1 1,5
distance

Figure 5.15: Timings and differences using both the time-critical and non-time-
critical algorithms. The differences measure not errors but the number
of different reports from the point-based versus the polygonal collision
detection algorithms.

98

5.2 An Efficient Point Cloud Hierarchy Traversal

4
35 I\
30 points
34 | 60 points
-é 25 - 240 points
E o2
© 1,5
IS
= 14
0,5
0 ‘ ‘ | ‘
0 05 1 1,5 2

distance

Figure 5.16: Running time for different sample sizes using our Elephant model (about
150,000 points): 30 points (7 = 70), 60 points (7 = 50), 240 points
(7 = 25). The best performance is achieved for 7 = 50. Note that the
leaves constitute always the whole point cloud.

Time-Critical Collision Detection

The results using our time-critical extension can be found in Figure Ob-
viously, it always spends almost the same amount t,,,, of time on the collision
detection. Therefore, it can adapt the number of test points in the leaves of the
point hierarchy much better.

Note further that the measured average collision query time is sometimes lower
than t,,,x, because sometimes a result can be achieved earlier, and sometimes
the traversal does not reach any leaf nodes.

Running Time depending on Sample Size

We found out, that the running time behaves similar for different objects, if the
surfaces are of the same quality (with respect to the sampling radius). That
means, if choosing the sample size at inner nodes using a fixed 7 (so that the
sampling radius is smaller than 77(P) throughout the hierarchy), similar results
are achieved for different hierarchies.

For example, if the surface quality at inner nodes is very high, then the traversal
time is also very high. Note that a high quality at inner nodes will not improve
the quality of the collision detection. Moreover, if the sample size is chosen
too small, then during traversal a lot of “false positives” are produced. As a
consequence, priority is given to regions of the objects where no collision takes
place. Figure [5.16]illustrates the situation and shows that for 7 = 50 the best
results are achieved. We have obtained similar results for all our other objects.

99

5 Point Cloud Collision Detection

5.3 Interpolation Search for Point Cloud
Intersection

The approach proposed in the previous section can be applied very well to rigid
point clouds. However, if the point clouds are deformable, updating our point
cloud hierarchies at runtime would probably be too expensive because changes
in the leaves have to be propagated to upper nodes (including the calculation
of bounding boxes, bounding spheres and the computation of the points sets,
that approximate the surface).

In general, non-hierarchical data structures seem to be more promising for colli-
sion detection for deformable objects [ABG™T01, HMBO1, [FLO1], although some
geometric data structures suggest a natural BV hierarchy [LCLL02].

Furthermore, it would be desirable to have an approach that exploits the topol-
ogy of the surfaces in order to determine the intersection points more quickly.
In contrast, the RST approach proposed in the previous section generates test
points independently of the two surfaces inside the intersection volume of two
leaf nodes.

In the following, we propose an approach that needs no BV hierarchy at all.
It builds only on top of a geometric proximity graph, e.g., on the sphere-of-
influence graph that can be updated in time O(logn). Therefore, it constitutes
the basis for collision detection for arbitrary deformable point clouds. Moreover,
it can also be applied to any kind of hierarchical data structure to increase the
performance for the intersection tests at the leaves. If a constant number of
intersection points is sufficient, our approach has a running time of O(logn).
For non-deformable point clouds, the running time can be bounded by only
O(loglogn), because the proximity graph does not need to be updated.

An outline of our approach is given in Figure[5.17 First, our algorithm tries to
bracket intersections by two points on one surface and on either side of the other
surface. Second, for each such bracket, it finds an approximate point in one of
the point clouds that is close to the intersection (see Figure . We utilize
our proximity graph and perform an interpolation search along the shortest
path between each pair of bracket points for this. Finally, this approximate
intersection point is refined by subsequent sampling. This last step is optional,
depending on the accuracy needed by the application.

In the following, we describe each step in detail.

100

5.3 Interpolation Search for Point Cloud Intersection

.)
Pairs of points

o — L S
(

Interpolation

Point clouds - (pup) € Alying search along
Aand B RealoEe cliie) Sl on different > paths in graph
. sides of B

P A] P
Intersection _ Discrete
areas L Sampling |y | intersection

points

\\—/ E

Figure 5.17: Outline of our point cloud collision detection using an interpolation
search. The sampling of the intersection areas (second row) can option-
ally be used if the collision points are to be determined very precisely.

5.3.1 Root Bracketing

Our algorithm starts by constructing pairs of points on different sides of one of
the surfaces. Here, we have the following goals in order to implement a collision
detection that is as fast and accurate as possible:

e The pairs should evenly sample the surface.

e The two points should not be too far apart from each other.

e An explicit spatial data structure should be avoided.

e The number of brackets should always be bounded by a constant number.

Only if the pairs are evenly distributed over the surface, all intersection points
with respect to a certain sampling density can be found. If two points of such a
pair are too far apart from each other, we have no local control over the resulting
intersection points. Moreover, the consistency of the normals defined by the
weighted least squares approach cannot be guaranteed over large distances. Of
course, we do not want to use an explicit spatial (hierarchical) data structure
so that our approach can be used for deformable point clouds. The last point,
a constant number of brackets, is necessary in order to guarantee an overall
running time of O(logn) for deformable point clouds and a running time of
O(loglogn) for rigid objects.

An exhaustive enumeration of all pairs is, of course, prohibitively expensive.
Therefore, we propose the following randomized (sub-)sampling procedure.
Let Vol(AN B) denote the intersection volume of two point clouds P4 and Pg.
Further, let P, = P4 N Vol(A N B) denote the points from P, lying in the
intersection.

101

5 Point Cloud Collision Detection

Figure 5.18: Two point clouds P4 and Pp and their intersection spheres I; and Is.
Our root finding procedure, when initialized with py, p2 € P4, will find
an approximate intersection point inside the intersection sphere I.

Now, assume that the implicit surface is conceptually approximated by surfels
(2D discs) of equal size [PvBZG00, RL00] (see also Figure p.19b). Then, we
want to randomly draw points p; € P4 such that each surfel s; gets occupied
by at least one p;. Here, “occupied by p;” means that the projection of a(p;)
along the normal n(p;) onto the supporting plane of s; lies within the surfel’s
radius. These randomly chosen points P/, constitute the candidate points for
the root brackets (Figure [p.19).

Then, for each candidate p; € P} we determine another point p;, € P/ (if
any) in the neighborhood of p; so that p;, and p; lie on different sides of fp
(described in the next sections). We represent the neighborhood of a point p;
by a sphere S; centered at p;. Note that p; is chosen only from the candidate
points.

An advantage of this is, that the application can specify the density of the
intersection points, which are reported by our algorithm. From these, it is fairly
easy to construct a discretization of the complete intersection curves (e.g., by
utilizing randomized sampling again).

Note that we never need to actually construct the surfels, or assign the points
from P4 explicitly to the neighborhoods, which we describe in the following
Section

In order to sample P, such that each (conceptual) surfel is represented by at
least one point in the sample, we use the following

Lemma 7. Let Pa be a uniformly sampled point cloud. Further, let Sa denote
the set of conceptual surfels approzimating the surface of P inside the inter-
section volume of Pa and Pp, and let a = |Sa|. Then, in order to occupy each
surfel with at least one point with probability p = 6(6%6), where ¢ is an arbitrary
constant, we have to draw N = O(alna + c-a) random and independent points
from P4. These points are denoted as P'y.

102

5.3 Interpolation Search for Point Cloud Intersection

() () o) @

Figure 5.19: (a) An implicit surface defined over a point cloud. (b) The implicit
surface can be approximated by surfels of the same size. (¢) Candidate
points for the root bracketing can be found by occupying each surfel by
at least one point from point cloud P4. (d) Pairs of candidate points
are tested whether they lie on different sides of the surface defined by
Pp. These pairs can be obtained by a sphere-of-influence graph over
the candidate points.

Proof: We can reduce the problem to a simple urn model. Given a bins (cor-
responding to the number of surfels), how many balls (corresponding to the
number of points to be drawn) have to be thrown i.i.d. into the bins so that
every bin gets at least one ball with high probability?

Let X denote the number of drawings required to put at least one ball into each
bin. It is well known that the expectation value of X is a-H,, where H, is the
a-th harmonic number [MR95| p. 571].

Let ¢ be an arbitrary constant. The a-th harmonic number is about Ina + 1
which is asymptotically sharp, and so c-a additional balls are enough to fill each
bin with probability p which depends on c¢. Overall, N = alna + c-a balls have
to be thrown.

To compute the dependence of p on ¢, we refer to the proof given by Motwani
and Raghavan [MR95] p. 61ff]. They showed that the probability p = Pr[X <

N] can be determined by p = 6@%) for a sufficiently large number of bins. =

For instance, if we want p > 97%, we have to choose ¢ = 3.5, and if a = 30,
then N =~ 200 random points have to be drawn.

The next section will show how to choose an appropriate size for the neighbor-
hoods S;, or, if a constant size of the neighborhoods is desired, how to choose
a, the number of surfels, properly. After that, Section [5.3.3] will propose an
efficient way to determine the other part p; of the root brackets, given a point
p; € P}

103

5 Point Cloud Collision Detection

Figure 5.20: If the spherical neighborhoods S; (red) are too small, not all collisions
can be found. (i) adjoining neighborhoods do not overlap sufficiently,
their intersection contains no randomly chosen cloud point. (ii) surface
is not covered by neighborhoods S;.

5.3.2 Size of Neighborhoods and Surfel Density

One of our goals for the root bracketing is that the number of brackets can
always be bounded by a constant number. There are two possibilities to fulfill
this requirement:

e We set the number of surfels to be constant under all circumstances. As
a consequence, the size (radius) of the neighborhoods has to be adapted
according to the intersection volume of the two point clouds. The larger
the intersection volume, the larger the neighborhoods have to be chosen.

o We set the size of the neighborhoods to be constant. Therefore, the surfel
density (the number of surfels inside the intersection volume) has to be
adapted to the intersection volume. The larger the intersection volume,
the more surfels have to be chosen.

Constant number of surfels

If the number a of surfels has to be constant for an arbitrary constellation of
the objects and, thus, for an arbitrary intersection volume, the radius of the
spherical neighborhoods S; has to be chosen so that, on the one hand, all S;
cover the whole surface defined by P4. On the other hand, the intersection
with each adjoining neighborhood of S; has to contain at least one candidate
point in P’ so as to not miss any collisions lying in the intersection of two
neighborhoods. The situation is illustrated in Figure [5.20)

The minimal radius of a spherical neighborhood S; can be determined by the
sampling radius of the sample points P/, (see Definition . It is easy to see

104

5.3 Interpolation Search for Point Cloud Intersection

Figure 5.21: Left: simple arrangement of surfels so that no holes are between
them. Right: a comb-shaped arrangement reduces the number of surfels
needed to cover the implicit surface.

that spheres with radius 2r(P/) centered at points in P’y contain always points
of the neighboring spheres and, of course, cover the surface. Therefore, the
radius of .S; is set to 2r(P)).

The sampling radius r(P’) can obviously be estimated as the radius rs of a
surfel s; € Sy, the set of surfels approximating the surface of Py.

Let F4 denote the surface area of the implicit surface over P4 and let us assume
P4 is a uniformly sampled point cloud. Then, the surfel radius r, can be
determined by

F F
Al = r~ \/ -4, (5.9)
a Ta

However, the surfels cannot cover the surface without overlapping each other
(which was assumed in Equation . Of course, we could say that each surfel
covers only the area of the largest square that fits into a given surfel (Figure
left). Then, a surfel with radius 7, covers only 2r,? area instead of 77,2, A better
covering would require a comb-shaped arrangement of the surfels as shown in
Figure [5.21] (right). In that case, each surfel covers the area of the largest
hexagon lying inside, namely 3/2v/3r,2 & 2.6r,? surface area. That means, a
better approximation can be given by

| Fa
rs A ——.
2.6a
Assume that the implicit surface over P, can also be approximated by surfels
of size r(P4). Then, F4 can be estimated by

Fyr [Pa]-2.6r(Pa)?

105

5 Point Cloud Collision Detection

or by

[Vol(AN B) - surface area of Py
AT Vol(A) ’

where Vol(AN B) denotes the intersection volume of A and B. Overall, r(P/;)
can be estimated by r;

— , Vol(ANB) |
- [Pl ;"(PA) ~ Vol(A()z |Pal S (P) (5.10)

if both P4 and P’; do not contain significant discrepancies (i.e., the local sam-
pling radius does not vary too much). The size of P4 can be estimated depend-
ing on the ratio of Vol(A) and Vol(AN B), the sampling radius r(P4) can easily
be determined in the preprocessing.

Constant size of neighborhoods

As shown, the size of a neighborhood can be seen as the diameter of a single
surfel from S4. That means, if the size of the neighborhood is chosen constant
under all circumstances, the number a of surfels has to be adjusted, so that
they cover the implicit surface defined by P4 inside the intersection volume.
Using Equation [5.10} the number a can easily be determined as

Vol(ANB
Vc(>1(2))|PA| -7(Pa)?

ar = . (5.11)

5.3.3 Completing the Brackets

Given a candidate point p; € P/, we have to determine other points p,; € P4NS;
on the other side of fp in order to bracket the intersections. For that, we use
fe(p:) - fe(p;) < 0 as an indicator. This, of course, is reliable only if the
normals n(x) are consistent throughout space. If the surface is manifold, this
can be achieved by a method similar to [HDD*92].

Utilizing our proximity graph (which is a supergraph of the nearest-neighbor
graph), we can propagate a normal to each point p; € P4. Then, when defining
f(x), we choose the direction of n(x) according to the normal stored with the
nearest neighbor of x in P4 [f]

L Surprisingly, the direction of n(x) is consistent over fairly large volumes without any
preconditioning.

106

5.3 Interpolation Search for Point Cloud Intersection

From a theoretical point of view, finding points on the other side could be
done by testing f(p;) - f(p;) < 0 for all points p; € P4 N.S; in time O(1),
because |P/| can be bounded by a constant if a is chosen constant as proposed
in Section . In practice however, the sets P/, N S; cannot be determined
quickly. Therefore, in the following, we propose two adequate alternatives that
work in time O(loglogn) and time O(1), respectively.

Sampling the anulus around p;

We observe that P, NS; = P, NA,;, where A; := {x|2r;—0 < |[|x—p;|| < 2rs}
is an anulus around p; (or, at least, these are the p; that we need to consider
to ensure a certain bracket density). By construction of P/, P’y N A; has a
similar distribution as P4 N A;. Observe further, that we do not necessarily
need p; € P.

Overall, the idea is to construct a random sample Pj C P4 N S; such that
Py C A;, |Py| = |Py N A;|, and such that P/ has a similar distribution as
PN A;. Then, we test all points from that set P}, whether they lie on different
sides.

The sample Pj can be constructed quickly by the help of Lemma mz we just
choose randomly O(blnb) many points from P4 N A;, where b := [P, N S;|. As
one can see, the anulus is used to restrict the point set P4, N S; from which
we generate our approximate set P/, N S;. As a consequence, fewer points have
to be considered, and, the more important thing, P} contains no points from
P4 — A;, which are usually not contained in P/, N S;.

We can describe the set P4 N A; very quickly, if the points in the CPSP map
stored with p; are sorted by their geodesicﬂ distance from p;. Then, we just need
to use interpolation search to find the first point with distance 2r,—¢ and the last
point with distance 2r, from p;. This can be done in time O(loglog |P4NS;|) per
point p; € P’y. Thus, the overall time to construct all brackets is in O(loglogn).

Completing the brackets utilizing the sphere-of-influence graph

Remember, that for a candidate point p; € P/, we first want to determine all
points p; € P4 N S; (after that, we can easily test all that points, whether
they lie on the other side compared to p;). Note further that the radius of the
spherical neighborhoods S; is always the same for a fixed constellation of the
objects. That means, the points p; € P N S; can exactly be determined by
the help of a sphere-of-influence graph. More precisely, after drawing the |P]
candidate points from the intersection volume, we construct a SIG over the set
P!y (Figurep.19d) where all the spheres have the same radius rs. Then, for each

2 By using the geodesic distance (or, rather, the approximation thereof) we basically impose
a different topology on the space, where P4 is embedded, but this is actually desirable.

107

5 Point Cloud Collision Detection

pi € P!, we test all points adjacent to p;, whether they lie on the other side.
As the size of set P/, can be bounded by a constant (see Section[5.3.2)), the SIG
over P’y can be constructed in constant time and, as a consequence, the overall
time to construct all brackets is in O(1).

5.3.4 Interpolation Search

Having determined two points p;, p; € Pa on different sides of surface Ppg,
the next goal is to find a point p € P4 “between” p; and p; that is “as close
as possible” to Pg. In the following, we will call such a point approximate
intersection point (AIP). The true intersection curve fp(x) = fa(x) = 0 will
pass close to p (usually, it does not pass through any points of the point clouds).
Depending on the application, p might already suffice. If the true intersection
points are needed, then we refine the output of the interpolation search by the
procedure described in Section [5.3.6]

Here, we can exploit the proximity graph: we just consider the points Py, that
are on the shortest path between p; and p;, and we look for p that assumes
mite , {|/(P)]}.

Instead of doing an exhaustive search along the path, we can utilize interpola-
tion search to look for p with f(p) = OH This makes sense here, because the
“access” to the key of an element, i.e., an evaluation of fp(x), is fairly expen-
sive [Sed89]. The average running time of interpolation search is in O(loglog m),
where m is the number of points along the shortest path. For that, fz has to
be monotonic along the path p;p;. The pivot element p, between two points
p:; and p, lying on different sides can be interpolated by

Algorithm [7] for our interpolation search assumes that the shortest paths are
precomputed and stored in the CPSP map (Section . Analogously to
Lemmall] it is easy to see that the storage is still linear.

However, in practice, memory usage for storing the shortest paths could be too
large for huge point clouds. In that case, we can compute the path P on the
fly at runtime by Algorithm [§] Theoretically speaking, the overall algorithm
is now in linear time. However, in practice, it still behaves sublinear, because
the reconstruction of the path is negligible compared to evaluating fz (see Sec-
tion. Note that in the case our root finding algorithm returns two points

3 In practice, the interpolation search will never find exactly such a P, but instead a pair of
adjacent points on the path that straddle B

108

5.3 Interpolation Search for Point Cloud Intersection

iSearch(P)
l,r=1m
diy = f5(Py), fi(Pa)
while |d;| > e and |d,| > eand [<r do
v =1+ 72— 0] {*}
if d, <0 then
l,r=ux,r
else
lL,r=1x
return p;, p,

Algorithm 7: Pseudo-code of our root finding algorithm based on interpolation
search. P is an array containing the points of the shortest path from p; = P,
to p; = Pp,, which can be precomputed. d; = fg(F;) approximates the distance
of P, to object B. (*) Note that either d; or d, is negative.

far away from each other, so that their geodesic distance is not included in the
CPSP map, we just have to use the Euclidean distance measure in Algorithm [§]
Of course, we can also integrate the path finding algorithm into the interpolation
search (see Algorithm E[) to improve the result for irregularly sampled point
clouds. Using this algorithm, we can find a pivot element p, by interpolating the
geodesic distance between p; and p; depending on their approximate distances
to the surface defined by Pg. In contrast, in Algorithm [7] we only interpolate
the indices of the array P depending on the distances of p; and p, to the surface
over Pg. That means, Algorithm |Z| will achieve its best results (with respect
to the running time) for regularly sampled point clouds while Algorithm |§| fits
also very well to noisy or irregularly sampled point sets.

If fg is not monotonic along the paths between the brackets, but the sign of
fB(x) is consistent, then we can utilize binary search to find p. The complexity
in that case is O(logm).

If the sign of fp is not consistent, but fp is bitonic (that means, |fp]| is
monotonic), we could utilize the golden section search [PFTV93| p.397f]. In
that case, we can find the minimum, if there is only a single minimum between
p1 and ps. Otherwise, we cannot ensure that the golden section search has not
found only a local minimum. The golden section search guarantees that each
new function evaluation will bracket the minimum to an interval just 0.61803
times the size of the preceding interval. This is comparable to, but not quite as
good as, the 0.5 that holds when finding the roots by bisection.

109

5 Point Cloud Collision Detection

shortestPath(p;, p;)
g.insert(p;); clear P
P =D
while p # p; and ¢ is not empty do
P = ¢.pop
P.append(p)
for all p; adjacent to p do
if dgeo(pk’a p]) < dgeo(pivpj) then
insert py into ¢ with priority
dgeo (plm p])

Algorithm 8: This algorithm can be used to initialize P for Algorithm [7]if storing
all shortest paths in the CPSP map is too expensive. (g is a priority queue where
priority is given to points with lowest geodesic distance.)

iSearch2(p;, p;)
P: = Pi, Pr = Pj
insert p; into ¢
dy = fs(p1),dr = fp(pr)
while |d;| > € and |d,| > € and ¢ is not empty do
Pz = q.pop
if dgeo(pampr) S |dr|/(|dl| + |dr|) : dgeo(pla pr) then
if d;-d, <0 then
Pr = vadr = fB(pr)
if d,-d, <0 then
P = Ps, di = f5(P1)
else
for all p; adjacent to p, do
if dgeo<pk7pr> < dgeo<pla pr) then
insert py into ¢ with priority dye,(px, Pr)
return p;, p-

Algorithm 9: This root finding algorithm determines a (subset of the) shortest
path from p; to p; on the fly. As a consequence, we can find a pivot element
p. by interpolating the geodesic distance between p; and p; depending on their
approximate distances to the surface of Pg.

110

5.3 Interpolation Search for Point Cloud Intersection

Figure 5.22: Models with boundaries can cause errors. The AIPs p; and ps could
remain undetected, which can be avoided by “virtual” edges e; and eo
in the proximity graph.

5.3.5 Models with Boundaries

If the models have boundaries and the sampling rate of our root bracketing
algorithm is too low, not all intersections can always be found (see Figure [5.22]).
In that case, some AIPs might not be reached, because they are not connected
through the proximity graph.

Therefore, we propose to modify the r-SIG. After constructing the graph, we
usually prune away all “long” edges by an outlier detection algorithm (see Sec-
tion and Section . Now, we only mark these edges as “virtual”.
Thus, we can still use the r-SIG for defining the surface as before. For our
interpolation search, however, we can also use the “virtual” edges so that small
holes in the model are bridged (Figure [5.22).

5.3.6 Precise Intersection Points

If two point clouds are intersecting, our interpolation search computes a set
of AIPs. More precisely, it computes a set of pairs of AIPs, where each pair
consists of two points p1, pa € P/ with f5(p1)- fs(P2) < 0. A sphere containing
those two points of radius

r = max([[x — pu ||, [x — p2l|)
centered at a point x

S dy+dy

X =p1+AP2—P1), A

contains also a true intersection point, where d; = fp(p;). We call this sphere
an intersection sphere.

111

5 Point Cloud Collision Detection

T

e [N
| \(
N\

Figure 5.23: Left: an intersection sphere centered at x contains a true intersection
point. Its radius r can be computed approximately by the help of the
two AIPs p; and py. The center x is determined by the intercept
theorem. Right: the intersection sphere can be sampled by points placed
at a regular grid.

N \T\
/.

7
Ny

The idea is illustrated in Figure Assuming the surfaces were flat within
the intersection sphere, the center x determined by the intercept theorem would
be the real intersection point. However, this assumption is not always true so
that the real intersection point(s) are within the sphere. So if the AIPs are
not precise enough, then we can sample each such sphere to get more accurate
(discrete) intersection points.
Of course, we could use our RST, proposed in Section [5.2.3] again. However,
in contrast to the situation in Section [5.2.3] now the volume that has to be
sampled is very simple, namely a single sphere. Therefore, a regular sampling
would cause fewer sample points at the same output quality.
That means, if a precise collision point’s distance from the surfaces is to be
smaller than €, we cover a given intersection sphere by a regular grid with a cell
size of (%6)3 and place a sample point in each cell. For each of these, we just
determine the distance to both surfaces. That means, the intersection sphere
of radius r is sampled by

V3

518 = [P
V3

points. The situation is illustrated in Figure (right).

5.3.7 Complexity Considerations

In this section, we analyze the running time and memory usage of our novel
approach as well as the number of evaluations of the implicit function that are

112

5.3 Interpolation Search for Point Cloud Intersection

15 —— N=50
——N=100
——N=150
9 —— N=200

error / %

happy budha

e L S i S
0 0,

0 "

5 1 1,5 2 25

distance (relative to bbox size)

Figure 5.24: If the sampling density is too small, our approach can miss some inter-
sections, N = O(alna).

necessary to detect all intersections for a given sampling density described by
the number a of surfels.

In general, evaluating f(x) takes O(logn) time, even if the support of the kernel
is bounded, because the nearest neighbor of x has to be determined (using, for
instance, a kD tree). Here, fortunately, one evaluation can be done in only O(1)
time: the root bracketing and interpolation search evaluate f(x) only at points
X € P4 U Ppg, and computing the precise intersection points can use a brute
force nearest neighbor search in constant time, starting from the AIP.

As shown in Section [5.3.3] our root bracketing algorithm can be done in O(1)
time.

Then, for at most O(alna) many pairs, our interpolation search has to be
started. In the average case, each single interpolation search needs O(loglogm)
evaluations of fg, where m denotes the number of points along the shortest
path between p; and p;.

Overall, fp has to be evaluated O(alnaloglogm) times in the average case
where we assume a uniform and independent distribution of the point clouds.

As n > m and a can be bounded by a constant, this number can also be
bounded by O(loglogn).

Our approach uses two additional data structures, the CPSP map and the
sphere-of-influence graph. As already shown in Section both data struc-
tures consume only linear space in the number of points.

If we would like to do collision detection for deformable point clouds, the running
time increases up to O(logn), because the proximity graph as well as the close-
pairs shortest-path map have to be updated.

113

5 Point Cloud Collision Detection

timings (dino) timings (happy buddha) timings (grid)
——iSearch (new) / \ /'\ —— iSearch (new) . —iSearch (new)
I \ 4
1wy L% | \”/\ ARSI YV
Al \/ A A —a ,’/\ A AN AR VA
f rJ J \/\/\/ LRVASVARYaLY
) :

A N £

[\
AV R VAS. S U e

n
X
n
&
~
@

N
3
n
S
~

=]
&
el

S
=]

time / msec.

time / msec.
time / msec.

e
@
o
o

°
o
o

0 0 15 2 25 3 0

.5 ,
distance (relative to bbox size)

w
)

05 1 15 2 25 05 1 15 2 25
distance (relative to bbox size) distance (relative to bbox size)

Figure 5.25: Timings for different models. Comparison of our interpolation search
and the RST of Section E.2.3

complexity (dino) complexity (happy buddha) complexity (grid)
1000 750 250

a0 | |~ RST (0) 600 | “\ —RST (old) 200 | |7 RST (0ld)
— iSearch (new) /w‘f\/ A ——iSearch (new) —— iSearch (new)
600 /\ Y ,\/\ 150
| /\ |
\/\‘ \ 300 | A/V\/
\

400 a\ 100 r\,«f\/\/*v/\v\,ﬂ/\.(\\rw
W /My
200 150 \ 50

Rl TR PR P SIS —
0 0 0

0 3 0 05 1 15 2 25 3 0
distance (relative to bbox size)

3

evaluations f(x)
evaluations f(x)
evaluations f(x)

e \]
\ e SN '\/‘\4'\'/\»-\/”“ LAY

05 1 15 2 25 05 1 15 2 25
distance (relative to bbox size) distance (relative to bbox size)

Figure 5.26: The number of evaluations of f(x) can be decreased by an order of
magnitude by our interpolation search.

5.3.8 Results

We implemented our new algorithm in C++. All results were obtained on a
2.8 GHz Pentium-IV using the benchmark procedure proposed in Section [5.2.8]
Note that we have not implemented the golden section search that should be
used if f is bitonic.

Minimal Bracket Density

As mentioned, if the number of (conceptual) surfels is too small, then the size of
their neighborhoods can become too large, and, as a consequence, the likelihood
increases that the normal n(x) flips its sign without x actually changing sides.
In this case, our method could fail to find pairs of points on different sides of
the surface.

Therefore, we propose to estimate the minimum number of surfels (which di-
rectly influences the radius of the spherical neighborhoods) using the following
preprocessing procedure. We denote a sphere of radius 7, (the surfel radius),
that is centered at an arbitrary point from P’; as a collision sphere, if there
is a collision inside. For each distance between the two point cloud models, a
large number of collisions tests is performed. Thereby, we count the number of

114

5.3 Interpolation Search for Point Cloud Intersection

collision spheres and compare them with the number that is obtained using an
exact method. This yields the following error measure

collision spheres (iSearch)

error = 1 — .
collision spheres (exact method)

Note that the RST using a very fine sampling can be seen as an exact algorithm
for the comparison.

Each of our tests is performed with a different sampling density, expressed
by the number N = O(alna) (see Section [5.3.1). Then, we use the minimal
sampling density for which all collisions have been found.

The results for one object can be found in Figure which shows the error
rate depending on different sampling densities. All our other models of our test
suite show a similar behavior and it turned out that N;, = 200 is the minimum
number, so that the error rate of all intersection tests for all our models is at
most 1.0%. This number was used for all further tests.

Interpolation Search vs Randomized Sampling

In order to evaluate the performance of our new algorithm, we compared it to
the randomized sampling technique (RST) proposed in Section No BV
hierarchies were used.

The number N, of sample points, that have to be generated for the RST, can
be determined as proposed in Section depending on the same e that is
used for our new approach. As this number would always be large, we once
again terminate both collision detection algorithms after the first intersection
is found.

However, in the case of non-collision, in particular in the case of larger overlaps
between the objects, the running time of the RST would be very long, because
of the large N,, which is a big drawback of the old method. Therefore, if N,
is too large, we bound this number by 500. Note that in such cases the old
method fails to report all intersection tests correctly, in contrast to our new
method, which is another drawback of the old method.

Figure [5.25|shows that the collision queries can be answered much more quickly
by our new approach.

The corresponding number of evaluations of the implicit function can be found
in Figure Note that the number of evaluations can exceed N; in the case
of the RST, since two evaluations are necessary for each random point.

Timings depending on Point Density
Figure shows the running time for detecting all intersections between two
objects, depending on different densities of the point clouds. We define the

115

5 Point Cloud Collision Detection

- N
o N o0
. .

avg. time / msec.

—— buddha
—=— aphrodite

o
&}
.

1000 2500 4000 5500 7000 8500
density / points per volume unit

Figure 5.27: The plot shows the running time depending on the size of the point
clouds. The running time is the average of all timings for distances
between 0 and 1.5.

density of an object A with n points as the ratio of n over the number of
volume units of the AABB of A (which is at most 8 as each object is scaled
uniformly so that it fits into a cube of size 23). This experiment supports our
theoretical considerations of Section

Note that the CPSP maps (see Section were built, so that the time for
evaluating the implicit function remains constant.

We also measured the time that would be needed to compute all nodes on the
shortest path between (p;,p;) used to initialize the interpolation search (see
Algorithm . For all our models, this was at most 10% of the overall running
time. Therefore, a significant amount of memory in the CPSP map can be
saved by computing array P in Algorithm []] at runtime.

5.4 Summary and Discussion

In the first part of this section, we presented a point cloud hierarchy that
allows for an efficient BVH traversal into parts of the surface where a collision
is very likely. The incorporating sphere coverings are used to quickly discard
pairs of BVs that do not collide. Our hierarchies are built, so that the sample
points are also the centers of the sphere coverings. As a consequence, this data
structure can be stored very memory efficiently. The traversal criterion depends
on the consistency of the normals, but no errors occur at all, if the normals are
inconsistent. Then, they just produce a few “false positives”, so that only some
more pairs of BVs are examined. The randomized sampling technique (RST) at
the leaves allows for the computation of approximate collision points where the
precision can be adjusted by the user or by our time-critical extension. Given

116

5.4 Summary and Discussion

a certain time budget, this extension returns a “best effort” result, so that we
can guarantee a real-time response under all circumstances.

We have shown how to adjust the kernel bandwidth, if not using our surface
definition based on proximity graphs (Section , in order to define the surface
even at inner nodes with as few artifacts as possible. Moreover, we examined the
relation between the sampling radius (and, thus, between the surface quality)
and the sample size of points stored in inner nodes of our hierarchy.

Finally, we have shown that the point cloud hierarchy can be built in O(nlogn),
and that the running time of our approach can be analyzed by the technique
proposed in Section We have also performed several measurements which
show that for all our models, the collision queries can be done within a very
short time and with very little error.

In the second part, we proposed an approach to accelerate the root finding
process. The idea is to use the proximity graph not only for defining the sur-
face, but also for finding common roots using an interpolation search along the
shortest path in the proximity graph between two points lying on one surface
and on either side of the other surface. This approach does not necessarily use
any kind of hierarchical space partitioning data structure, so that it should be
well-suited to deformable objects. Furthermore, we have shown how to handle
models with boundaries.

If a constant number of intersection points to be reported is sufficient, the
running time can be bounded by O(loglogn) or by O(logn) for deformable
point clouds, respectively. Moreover, our approach can be used, for instance,
to accelerate hierarchical collision detection or Boolean operations for this kind
of object representation.

Our measurements show that the number of function evaluations is reduced by
an order of magnitude and a speedup by factor 5-10 is achieved in many cases,
compared to our randomized sampling technique (RST).

Note that our approach can make some errors, although our experiments have
shown that the error rate is always very low. For example, if the surface is not
uniformly sampled, the covering of all surfels could fail. As a result, parts of
the surface are not tested for collision. Moreover, if the sampling rate is too
low, or the sampling radius of the randomly chosen point set P/, is estimated
too low, our approach could miss some collisions. As mentioned, if gaps are
not bridged by virtual edges and our sampling rate is too low, the interpolation
search cannot be started for pairs of points lying on an interrupted shortest
path. But it is not very complicated to avoid or to minimize these errors by
increasing the number of sample points or the sampling radius. Moreover, we
should try to bridge gaps using virtual edges.

If the normals based on our WLS approach are not consistent throughout space,

117

5 Point Cloud Collision Detection

finding points on the other side could fail. Fortunately, our experiments show
that the normals are consistent over fairly large volumes without any precon-
ditioning. So, if the size of the surfels is not chosen too large, n(x) will be
consistent most of the time.

The interpolation search converges if f is monotone along the shortest path. In
case the normals are not consistent so that the sign of f(x) is not consistent,
too, we could use the golden section search if f is bitonic. If f is not monotone
or bitonic, we could use a simple binary search if the sign of f is consistent.

5.5 Future Work

There are many avenues for further work. On the one hand, performance and
accuracy can be increased during the traversal of the point cloud hierarchies.
For instance, at inner nodes, the traversal criteria can probably be improved,
e.g., by applying knowledge of the separation of the eigenvalues.

On the other hand, the point hierarchy and the hierarchical sphere covering
could be improved so as to allow for faster collision detection. For instance,
the sphere covering could be made tighter. Additionally, our method could be
combined with the one presented by [CBCT01].

Another very important point regarding our hierarchy is how to draw the sam-
ples at inner nodes so as to minimize surface errors. Obviously, an adaptive
sampling strategy that draws more points at critical parts of the objects seems
to be more promising than a uniform sampling. Therefore, we first have to
examine the question: which parts of the objects are critical with respect to
the collision detection process. These parts could be areas with high curvature,
exposed parts, or very fine or thin objects with a high aspect ratio. Possible
criteria are the ratio of the size of the eigenvalues of the local covariance ma-
trix or local eccentricities. A sampling strategy, that also allows for describing
the quality of the reconstructed surface using some kind of error measure (e.g.,
the Hausdorff distance), could improve our approach. Until now, the surface
quality can only be described by our sampling radius.

Starting from the finest resolution, an algorithm could remove points step by
step that cause the minimum change of the Hausdorff distance to the original
surface. As a consequence, an adaptive sampling strategy can automatically
be achieved. Of course, we should store the Hausdorff distances at the cor-
responding inner nodes to allow for a time-critical collision detection: during
the traversal of two BVHs, we can determine the likelihood that two parts of
the surface will collide depending on the corresponding sample and Hausdorft
distance.

118

5.5 Future Work

The approach using our interpolation search to determine common roots more
quickly could be a way to handle deformable point clouds, since it does not
utilize any spatial acceleration structure. Moreover, the SIG (and the CPSP
map) can be updated in time O(log®n) or O(logn), respectively, if using the
BBD trees for finding the approximate nearest neighbors. From a theoretical
point of view, a mathematically more rigorous estimation of the minimal bracket
density would be appealing.

119

6 Conclusions and Future Work

This chapter summarizes the preceding chapters at a more abstract level and
shows the most important directions for future work. Note that each chapter
already concludes with a more detailed summary and a discussion of future
work.

In this thesis, we were concerned with efficient algorithms and data structures
for collision detection for polygon-based and point-based models. Our average-
case approach for approximate collision detection does not need any intersection
tests between the object’s surfaces. The only condition of our approach is, that
the surface has to be given or can be reconstructed during the construction of
the BVH, so that the number of possible collision cells can be determined. As
a consequence, our average-case approach is applicable to virtually all types
of BVHs. Our measurements have shown that, if sufficient time is available,
the error rate is always very low compared with a traditional, conservative
approach, but is clearly faster (factor 3 to 6) than a sophisticated DOP tree
algorithm. Moreover, we have shown that with decreasing available processing
time, the error increases in a controlled way. With existing methods, this was
not possible.

One of the most important points for future work is to ensure that the assump-
tion of evenly distributed possible collision cells becomes even more realistic. As
a possible solution, we propose to use two boundaries for each BV: one classical
outer boundary that encloses the whole object and one inner boundary where
no object primitives are allowed to lie within the corresponding inner volume.
Moreover, it would be very interesting to examine this kind of BV for other
collision detection approaches to accelerate them further.

In contrast to our average-case approach, our method for collision detection
based on point cloud hierarchies does explicitly use the object’s surface for
guiding the traversal into those parts of the hierarchy where the collision is more
likely, and also uses them for determining the intersection curves (or discrete
intersection points) in the leaves. Our interpolation search does not need any
hierarchies at all, and, because the corresponding data structure, the proximity
graph, can be updated in logarithmic time, this method should be suitable for
deformable point clouds as well. To the best of our knowledge, this is the first
efficient algorithm (yielding a O(logn) behavior in the average case) that can

121

6 Conclusions and Future Work

determine the intersections between implicit surfaces over point clouds.

If one would like to compare the average-case approach with our point cloud col-
lision detection, it can be observed that with roughly same object complexities,
the average-case approach is about 3 times faster, but has a higher error rate
and does not compute the (discrete) intersection points. The most important
point for future work is to implement and evaluate our approach for deformable
objects.

Our method for analyzing the running time of collision detection algorithms
can be used for any hierarchical approach that uses simultaneous BVH traversal
(thus, it can be used for our approaches). It explains the sublinear running time
behavior that has been observed for a long time.

In order to minimize the errors during the collision detection for point clouds, we
have improved the surface definition based on weighted least squares by utilizing
a new, approximate geodesic kernel. Previous to our work, the bandwidth of the
kernel had to be determined manually, which now can be done automatically
by using the proximity graph. Moreover, we have extended this definition so
that it can handle objects with boundaries just as well. Compared to previous
work, the artifacts can clearly be reduced by our approach.

In this thesis, we introduced novel approaches and data structures into the area
of computer graphics, namely,

e an average-case approach for collision detection,

e a proximity graph for defining surfaces over point clouds,

e a point cloud BVH that approximates the surface at different levels, and
e an interpolation search for determining the zero set of implicit functions,

that allow us to estimate the running time and the quality of the collision
detection process. Our evaluations, as well as our theoretical analysis, have
shown that our methods are efficient and can be used in real-time environments
and time-critical scenarios.

More importantly, we have shown new directions for future research and, all
the more, new directions in the area of collision detection, namely approximate
collision detection with controllable errors, and collision detection between point
clouds.

122

Bibliography

[AA03]

[AAO04al

[AAO4D]

[ABO4]

[ABCO*03]

[ABGT01]

[ACDLOO0]

Anders Adamson and Marc Alexa. Approximating and inter-
secting surfaces from points. In Proc. Furographics Symp. on
Geometry Processing, pages 230-239, 2003.

Anders Adamson and Marc Alexa. Approximating bounded, non-
orientable surfaces from points. In Shape Modeling International,
pages 243-252, 2004.

Anders Adamson and Marc Alexa. On normals and projection op-
erators for surfaces defined by point sets. In Furographics Sympo-
sium on Point-Based Graphics (SPBG’04), pages 149-155, 2004.

Dominique Attali and Jean-Daniel Boissonnat. A linear bound on
the complexity of the delaunay triangulation of points on polyhe-
dral surfaces. Discrete and Computational Geometry, 31(3):369—
384, 2004.

M. Alexa, J. Behr, Daniel Cohen-Or, S. Fleishman, D. Levin, and
C. T. Silva. Computing and rendering point set surfaces. IEFEE
Trans. on Visualization and Computer Graphics, 9(1):3-15, 2003.

Pankaj K. Agarwal, J. Basch, L. J. Guibas, J. Hershberger, and
L. Zhang. Deformable free space tiling for kinetic collision de-
tection. In Algorithmic and Computational Robotics: New Direc-
tions (Proc. 5th Workshop Algorithmic Found. Robotics), pages
83-96, 2001.

N. Amenta, S. Choi, T. K. Dey, and N. Leekha. A simple algo-
rithm for homeomorphic surface reconstruction. In Proceedings

of the sixteenth annual symposium on Computational geometry,
pages 213-222. ACM Press, 2000.

123

Bibliography

[ACT00]

[ADO3]

[AdBG*01]

[AGN*04]

[AHS5]

[AHPKOO]

[AKO4]

[AMN*9g]

[AMTO2]

[ASCL02]

124

Sigal Ar, Bernard Chazelle, and Ayellet Tal. Self-customized BSP
trees for collision detection. Computational Geometry: Theory
and Applications, 15(1-3):91-102, 2000.

Bart Adams and Philip Dutré. Interactive boolean operations
on surfel-bounded solids. ACM Transactions on Graphics (SIG-
GRAPH 2003), 22(3):651-656, 2003.

Pankaj K. Agarwal, Mark de Berg, Joachim Gudmundsson,
Mikael Hammar, and Herman J. Haverkort. Box-trees and r-trees
with near-optimal query time. In Proc. Seventeenth Annual Sym-
posium on Computational Geometry (SCG 2001), pages 124-133,
2001.

Pankaj Agarwal, Leonidas Guibas, An Nguyen, Daniel Rus-
sel, and Li Zhang. Collision detection for deforming necklaces.
Computational Geometry: Theory and Applications, 28:137-163,
2004.

David Avis and Joe Horton. Remarks on the sphere of influence
graph. Discrete geometry and convezity, Annals of the New York
Academy of Sciences, 440:323-327, 1985.

Pankaj K. Agarwal, Sariel Har-Peled, and Meetesh Karia. Com-
puting approximate shortest paths on convex polytopes. In Proc.
16th ACM Sympos. Comput. Geom., pages 270 — 279, 2000.

Nina Amenta and Yong Kil. Defining point-set surfaces. ACM
Transactions on Graphics (SIGGRAPH 2004), 23(3):264-270,
2004.

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Wu. An optimal algorithm for approximate nearest neighbor
searching in fixed dimensions. Journal of the ACM, 45:891-923,
1998.

Sigal Ar, Gil Montag, and Ayellet Tal. Deferred, self-organizing
BSP trees. Computer Graphics Forum (Proc. of EUROGRAPH-
ICS 2002), 21(3):269-278, September 2002.

Nina Amenta, Tamal K. Dey S. Choi, and N. Leekha. A simple
algorithm for homeomorphic surface reconstruction. Intl. Journal
on Computational Geometry € Applications, 12:125-141, 2002.

Bibliography

[Bar90]

[BFA02]

[BH99

[BHWOG]

[Blo94]

[BLS00]

[BMF03]

[BOT9]

[Boy79]

[BSK04]

David Baraff. Curved surfaces and coherence for non-penetrating
rigid body simulation. ACM Transactions on Graphics (SIG-
GRAPH 1990), 9(3):19-28, 1990.

Robert Bridson, Ronald Fedkiw, and John Anderson. Robust
treatment of collisions, contact and friction for cloth animation.
ACM Transactions on Graphics (SIGGRAPH 2002), 21(3):594—
603, 2002.

Wilhelm Barth and Ernst Huber. Computations with tight
bounding volumes for general parametric surfaces. In Proc. 15th
European Workshop on Computational Geometry (CG 1999),
pages 123-126, 1999.

Ronen Barzel, John Hughes, and Daniel N. Wood. Plausible mo-
tion simulation for computer graphics animation. In Proc. Euro-
graphics Workshop Computer Animation and Stmulation, pages
183-197, 1996.

Jules Bloomenthal. An implicit surface polygonizer. In Paul
Heckbert, editor, Graphics Gems IV, pages 324-349. Academic
Press, Boston, 1994.

Elizabeth D. Boyer, L. Lister, and B. Shader. Sphere-of-influence
graphs using the sup-norm. Mathematical and Computer Mod-
elling, 32(10):1071-1082, 2000.

R. Bridson, S. Marino, and R. Fedkiw. Simulation of cloth-
ing with folds and wrinkles. In Proceedings of the 2003 ACM

SIGGRAPH /Eurographics Symposium on Computer animation
(SCA ’03), pages 28-36. Eurographics Association, 2003.

J. L. Bentley and T. A. Ottmann. Algorithms for reporting and
counting geometric intersections. Transactions on Computing,

28(9):643- 647, 1979.

John W. Boyse. Interference detection among solids and surfaces.
Commun. ACM, 22(1):3-9, 1979.

Mario Botsch, Michael Spernat, and Leif Kobbelt. Phong splat-
ting. In Furographics Symposium on Point-Based Graphics
(SPBG’04), pages 25-32, 2004.

125

Bibliography

[BT95]

[BW02]

[BW03]

[BWGO03]

[BWY80]

[CBC*01]

[CHY0]

[Cha01]

[Chu9g|

126

S. Bandi and D. Thalmann. An adaptive spatial subdivision of
the object space for fast collision detection of animating rigid
bodies. Computer Graphics Forum (Proc. of EUROGRAPHICS
1995), 14(3):259-270, 1995.

George Baciu and Wingo Sai-Keung Wong. Hardware-assisted
self-collision for deformable surfaces. In Proc. ACM Symposium
on Virtual Reality Software and Technology (VRST 2002), pages
129-136, Hong Kong, China, November 2002.

George Baciu and Wingo Sai-Keung Wong. Image-based tech-
niques in a hybrid collision detector. IEEE Transactions on Vi-
sualization and Computer Graphics, 9(2):254-271, 2003.

Kavita Bala, Bruce Walter, and Donald P. Greenberg. Com-
bining edges and points for interactive high-quality rendering.
ACM Transactions on Graphics (SIGGRAPH 2003), 22(3):631-
640, 2003.

Jon Louis Bentley, Bruce W. Weide, and Andrew C. Yao. Opti-
mal expected-time algorithms for closest point problems. ACM
Transactions on Mathematical Software, 6(4):563-580, 1980.

Jonathan C. Carr, Richard K. Beatson, Jon B. Cherrie, Tim J.
Mitchell, W. Richard Fright, Bruce C. McCallum, and Tim R.
Evans. Reconstruction and representation of 3D objects with

radial basis functions. ACM Transactions on Graphics (SIG-
GRAPH 2001), 20(3):67-76, 2001.

J. Chen and Y. Han. Shortest paths on a polyhedron. In Proc.
6th ACM Symp. on Computatinal Geometry, pages 360 — 369,
1990.

Pavel Chalmoviansky. Subdivision surfaces in geometric mod-
elling. In Furopean Research Consortium for Informatics and
Mathematics (ERCIM) News, No. 44, page 9, January 2001.

Adrian J. Chung. Re: Obb trees, comp.graphics.algorithms.
usenet newsgroup article, jun 1998. http://groups.google.com/
groups?’selm=~6le9nue f91@magpie.doc.ic.ac.uk.

Bibliography

[CL95]

[CLRO0]

[CS93]

[CSY97]

[dBvKOSO0]

[DCOTO3]

[DDCBO1]

[DDGOO]

[Dev02]

[DGO4]

W. S. Cleveland and C. L. Loader. Smoothing by local regression:
Principles and methods. In W. Haerdle and M. G. Schimek, edi-
tors, Statistical Theory and Computational Aspects of Smoothing,
pages 10—49. Springer, New York, 1995.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. The MIT Press, 1990.

John Horton Conway and Neil James Alexander Sloane. Sphere
Packings, Lattices, and Groups. Springer-Verlag, New York, 2
edition, 1993.

T. M. Chan, J. Snoeyink, and C. K. Yap. Primal dividing and
dual pruning: Output-sensitive construction of 4-d polytopes and
3-d Voronoi diagrams. Discrete Comput. Geom., 18:433-454,
1997.

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geometry: Algorithms and Appli-
cations. Springer-Verlag, Berlin, Germany, 2nd edition, 2000.

A. Karol D. Cohen-Or, S. Lev-Yehudi and A. Tal. Inner-cover
of non-convex shapes. International Journal of Shape Modeling,
9(2):223-238, 2003.

Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and
Alan H. Barr. Dynamic real-time deformations using space and
time adaptive sampling. ACM Transactions on Graphics (SIG-

GRAPH 2001), 20(3):31-36, 2001.

Matthew Dickerson, Christian A. Duncan, and Michael T.
Goodrich. K-d trees are better when cut on the longest side.

In Proc. of the 8th Annual European Symposium on Algorithms
(ESA 2000), pages 179-190, 2000.

Olivier Devillers. The Delaunay hierarchy. Internat. J. Found.
Comput. Sci., 13:163-180, 2002.

Tamal K. Dey and Samrat Goswami. Provable surface recon-

struction from noisy samples. In Proc. Symp. on Computational
Geometry, pages 330-339, 2004.

127

Bibliography

[DHKS93]

[DK83]

[DK85]

[DK90]

[DOO0]

[Dwy95]

[ELO1]

[Eri04]

[ERW8Y]

[Far02]

128

David P. Dobkin, John Hershberger, David G. Kirkpatrick, and
Subhash Suri. Computing the intersection-depth of polyhedra.
Algorithmica, 9(6):518-533, 1993.

David P. Dobkin and David G. Kirkpatrick. Fast detection of
polyhedral intersection. Theor. Comput. Sci., 27:241-253, 1983.

David P. Dobkin and David G. Kirkpatrick. A linear algorithm
for determining the separation of convex polyhedra. J. Algo-
rithms, 6(3):381-392, 1985.

David P. Dobkin and David G. Kirkpatrick. Determining the
separation of preprocessed polyhedra - a unified approach. In
Proceedings of the seventeenth international colloguium on Au-

tomata, languages and programming (ICALP), pages 400-413,
1990.

John Dingliana and Carol O’Sullivan. Graceful degradation
of collision handling in physically based animation. Computer
Graphics Forum (Proc. of EUROGRAPHICS 2000), 19(3):239—
247, August 2000.

Rex A. Dwyer. The expected size of the sphere-of-influence graph.
Computational Geometry: Theory and Applications, 5(3):155—
164, 1995.

Stephan A. Ehmann and Ming C. Lin. Accurate and fast prox-
imity queries between polyhedra using convex surface decompo-
sition. Computer Graphics Forum (Proc. of EUROGRAPHICS
2001), 20(3):500-510, 2001.

Christer Ericson. Real-Time Collision Detection. Series In Inter-
active 3D Technology. Elsevier, San Francisco, United States of
America, 2004.

Herbert Edelsbrunner, Giinter Rote, and Emo Welzl. Testing the
necklace condition for shortest tours and optimal factors in the
plane. Theoretical Computer Science, 66(2):157-180, 1989.

Gerald Farin. Curves and surfaces for CAGD: a practical guide.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2002.

Bibliography

[FGLO3]

[FLO1]

[FPRJOO]

[FSGO3]

[GDO02]

[GDO4]

[GDO00]

[GKJ*05]

[GLMO6]

[GLMO3]

Arnulph Fuhrmann, Clemens Grof; and Volker Luckas. Inter-
active animation of cloth including self collision detection. In
WSCG, pages 141-148, 2003.

Susan Fisher and Ming Lin. Fast penetration depth estimation
for elastic bodies using deformed distance fields. In Proc. Inter-
national Conf. on Intelligent Robots and Systems (IROS), pages
330-336, 2001.

Sarah P. Frisken, Ronald N. Perry, Alyn P. Rockwood, and
Thouis R. Jones. Adaptively sampled distance fields: A general

representation of shape for computer graphics. ACM Transac-
tions on Graphics (SIGGRAPH 2000), 19(3):249-254, 2000.

A. Fuhrmann, G. Sobottka, and C. Grof3. Distance fields for rapid
collision detection in physically based modeling. In Proceedings
of GraphiCon 2003, pages 5865, Moscow, September 2003.

Stéphane Guy and Gilles Debunne. Layered shells for fast colli-
sion detection. Technical report, INRIA, 2002.

Stéphane Guy and Gilles Debunne. Monte-carlo collision detec-
tion. Technical Report RR-5136, INRIA, March 2004.

F. Ganovelli, J. Dingliana, and C. O’Sullivan. Buckettree: Im-
proving collision detection between deformable objects. In Proc.
of Spring Conference in Computer Graphics (SCCG2000), pages
156-163, Bratislava, 2000.

Naga Govindaraju, David Knott, Nitin Jain, Ilknurk Kabal, Ras-
mus Tamstorf, Russel Gayle, Ming C. Lin, and Dinesh Manocha.
Interactive collision detection between deformable models using
chromatic decomposition. ACM Transactions on Graphics (SIG-
GRAPH 2005), 24(3), August 2005.

Stefan Gottschalk, Ming Lin, and Dinesh Manocha. OBB-Tree:
A hierarchical structure for rapid interference detection. ACM
Transactions on Graphics (SIGGRAPH 1996), 15(3):171-180,
1996.

Naga K. Govindaraju, Ming C. Lin, and Dinesh Manocha. Fast
self-collision detection in general environments using graphics

129

Bibliography

[GLMO4]

[Got00]

[GPS92]

[GS87]

[GS01]

[GvL89]

[GZ03]

[Hzr90]

[Har96]

[HDD*92]

130

processors. Technical Report TR03-044, University of North Car-
olina at Chapel Hill, 2003.

Naga K. Govindaraju, Ming C. Lin, and Dinesh Manocha. Fast
and reliable collision culling using graphics hardware. In Sympo-
sium on Virtual Reality Software and Technology (VRST 2004),
2004.

Stefan Aric Gottschalk. Collision queries using oriented bounding
bozes. PhD thesis, University of North Carolina, 2000. Director-
Dinesh Manocha and Director-Ming C. Lin.

L. Guibas, J. Pach, and M. Sharir. Generalized sphere-of-
influence graphs in higher dimensions. In Manuscript, 1992.

Jeffrey Goldsmith and John Salmon. Automatic creation of ob-
ject hierarchies for ray tracing. [EFEE Comput. Graph. Appl.,
7(5):14-20, 1987.

Eitan Grinspun and Peter Schroder. Normal bounds for

subdivision-surface interference detection. In Proceedings of
IEEFE Visualization (VIS 2001), pages 333-340, 2001.

G. H. Golub and C. F. van Loan. Matriz computations. Johns
Hopkins University Press, Baltimore, MD, 2nd edition, 1989.

Alexander Gress and Gabriel Zachmann. Object-space interfer-
ence detection on programmable graphics hardware. In SIAM
Conf. on Geometric Design and Computing, Seattle, Washing-
ton, November13-17 2003.

W. Hardle. Applied nonparametric regression, volume 19 of
Econometric Society Monograph. Cambridge University Press,
New York, 1990.

John C. Hart. Sphere tracing: a geometric method for the an-
tialiased ray tracing of implicit surfaces. The Visual Computer,
12(9):527-545, 1996.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald,
and Werner Stuetzle. Surface reconstruction from unorganized
points. ACM Transactions on Graphics (SIGGRAPH 1992),
11(3):71-78, 1992.

Bibliography

[He99]

[Hig90]

[HMBO1]

[HTGO4]

[Hub96]

[JC98]

[JP04]

[JT92]

[KB04]

Taosong He. Fast collision detection using quospo trees. In SI3D
’99: Proceedings of the 1999 symposium on Interactive 3D graph-
ics, pages 5562, 1999.

Nicholas J. Higham. Analysis of the Cholesky decomposition of
a semi-definite matrix. In M. G. Cox and S. J. Hammarling,
editors, Reliable Numerical Computation, pages 161-185. Oxford
University Press, 1990.

Suejung Huh, Dimitris N. Metaxas, and Norman I. Badler. Col-
lision resolutions in cloth simulation. In IEEE Computer Anima-
tion Conf., pages 122-127, Seoul, Korea, November 2001.

B. Heidelberger, M. Teschner, and M. Gross. Detection of colli-
sions and self-collisions using image-space techniques. In Pro-
ceedings of the 12-th International Conference in Central Eu-
rope on Computer Graphics, Visualization and Computer Vi-
sion’2004 (WSCG’2004), pages 145-152, University of West Bo-
hemia, Czech Republic, February 2004.

Philip M. Hubbard. Approximating polyhedra with spheres for
time-critical collision detection. ACM Transactions on Graphics,
15(3):179-210, July 1996.

David E. Johnson and Elaine Cohen. A framework for efficient
minimum distance computations. In Proc. IEEE Intl. Conf. Ro-
botics and Automation, pages 3678-3684, 1998.

Doug L. James and Dinesh K. Pai. BD-Tree: Output-sensitive
collision detection for reduced deformable models. ACM Trans-
actions on Graphics (SIGGRAPH 2004), 23(3):393-398, August
2004.

J. W. Jaromczyk and Godfried T. Toussaint. Relative neighbor-
hood graphs and their relatives. Proc. of the IEEE, 80(9):1502—
1571, 1992.

Leif Kobbelt and Mario Botsch. A survey of point-based tech-

niques in computer graphics. Computers €& Graphics, 28(6):801—
814, 2004.

131

Bibliography

[KEHKL*+99]

[KGL198a]

[KGL*98b]

[KHM*98]

[KKF+02]

[KKF+04]

[K1098]

[KLRS04]

132

[T Kenneth E. Hoff, John Keyser, Ming Lin, Dinesh Manocha,
and Tim Culver. Fast computation of generalized voronoi dia-

grams using graphics hardware. ACM Transactions on Graphics
(SIGGRAPH 1999), 18(3):277-286, 1999.

S. Krishnan, M. Gopi, M. Lin, Dinesh Manocha, and A. Pattekar.
Rapid and accurate contact determination between spline models
using shelltrees. Computer Graphics Forum, 17(3):315-326, 1998.

Shankar Krishnan, M. Gopi, Ming C. Lin, Dinesh Manocha, and
A. Pattekar. Rapid and accurate contact determination between
spline models using ShellTrees. Computer Graphics Forum (Proc.
of EUROGRAPHICS 1998), 17(3):315-326, September 1998.

James T. Klosowski, Martin Held, Jospeh S. B. Mitchell, Henry
Sowrizal, and Karel Zikan. Efficient collision detection using
bounding volume hierarchies of k-DOPs. IEEE Transactions on
Visualization and Computer Graphics, 4(1):21-36, January 1998.

Jan Klein, Jens Krokowski, Matthias Fischer, Michael Wand,
Rolf Wanka, and Friedhelm Meyer auf der Heide. The randomized
sample tree: A data structure for interactive walkthroughs in
externally stored virtual environments. In Symposium on Virtual
Reality Software and Technology (VRST 2002), pages 137 — 146,
Hong Kong, China, November 2002.

Jan Klein, Jens Krokowski, Matthias Fischer, Michael Wand,
Rolf Wanka, and Friedhelm Meyer auf der Heide. The random-
ized sample tree: A data structure for interactive walkthroughs in
externally stored virtual environments. Journal of PRESENCE:
Teleoperators & Virtual Environments, 13(6):617 — 637, Decem-
ber 2004. The MIT Press.

James Thomas Klosowski. Efficient Collision Detection for Inter-
active 3D Graphics and Virtual Environments. PhD thesis, State
University of New York at Stony Brook, 1998. Adviser-Joseph S.
Mitchell.

Andreas Kolb, Lutz Latta, and Christof Rezk-Salama. Hardware-
based simulation and collision detection for large particle sys-
tems. In Proc. of Graphics Hardware 2004, pages 123-131, 2004.

Bibliography

[KMO7]

[KNF04]

[KS00]

[KSTKOg]

[KV03]

[KZ03a]

[KZ03b]

[KZ04a]

[KZ04b]

Shankar Krishnan and Dinesh Manocha. An efficient surface
intersection algorithm based on lower-Dimensional formulation.
ACM Transactions on Graphics, 16(1):74-106, January 1997.

Stefan Kimmerle, Matthieu Nesme, and Francois Faure. Hier-
archy accelerated stochastic collision detection. In Proc. 9th In-
ternational Fall Workshop Vision, Modeling, and Visualization

(VMV 2004), 2004.

Takashi Kanai and Hiromasa Suzuki. Approximate shortest path
on a polyhedral surface based on selective refinement of the dis-
crete graph and its applications. In Proc. Geometric and Process-
ing, pages 241 — 250, 2000.

Yoshifumi Kitamura, Andrew Smith, Haruo Takemura, and Fu-
mio Kishino. A real-time algorithm for accurate collision de-
tection for deformable polyhedral objects. Presence, 7(1):36-52,
1998.

Aravind Kalaiah and Amitabh Varshney. Statistical point geom-
etry. In Proceedings of the Eurographics/ACM SIGGRAPH sym-
posium on Geometry processing 2003, pages 107-115. Eurograph-
ics Association, 2003.

Jan Klein and Gabriel Zachmann. ADB-trees: Controlling the
error of time-critical collision detection. In Proc. 8th Interna-
tional Fall Workshop Vision, Modeling, and Visualization (VMV
2003), pages 37-45, Mnchen, Germany, November 2003.

Jan Klein and Gabriel Zachmann. Time-critical collision detec-
tion using an average-case approach. In Proc. ACM Symposium
on Virtual Reality Software and Technology (VRST 2003), pages
22-31, Osaka, Japan, October 2003.

Jan Klein and Gabriel Zachmann. Nice and fast implicit surfaces
over noisy point clouds. In ACM SIGGRAPH 2004, Sketches
Session, Los Angeles, USA, August 2004.

Jan Klein and Gabriel Zachmann. Point cloud collision detection.

In Computer Graphics Forum (Proc. EUROGRAPHICS 2004),
pages 567-576, Grenoble, France, September 2004.

133

Bibliography

[KZ04¢]

[KZ04d]

[KZ05a]

[KZ05b)]

[LAMOT]

[LC91]

[LC92]

[LCLL02]

[LCN99]

[Lee00]

134

Jan Klein and Gabriel Zachmann. Point cloud surfaces using
geometric proximity graphs. Computers and Graphics, 28(6):839—
850, December 2004. Elsevier.

Jan Klein and Gabriel Zachmann. Proximity graphs for defining
surfaces over point clouds. In Furographics Symposium on Point-
Based Graphics (SPBG’04), pages 131-138, Zurich, Switzerland,
June 2004.

Jan Klein and Gabriel Zachmann. The expected running time
of hierarchical collision detection. In ACM SIGGRAPH 2005,
Poster Session, Los Angeles, USA, August 2005. to appear.

Jan Klein and Gabriel Zachmann. Interpolation search for point
cloud intersection. In Proceedings of the 13-th International Con-
ference in Central Furope on Computer Graphics, Visualization
and Computer Vision’2005 (WSCG’2005), pages 163-170, Plzen,
Czech Republic, February 2005.

Thomas Larsson and Tomas Akenine-Moller. Collision detection
for continuously deforming bodies. In Eurographics, pages 325
333, 2001. short presentation.

Ming C. Lin and John F. Canny. A fast algorithm for incremental
distance calculation. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1008-1014, 1991.

Ming C. Lin and John F. Canny. Efficient collision detection for
animation. In Proc. of 8rd Eurographics Workshop on Animation
and Simulation, Cambridge, England, 1992.

Rynson W. H. Lau, Oliver Chan, Mo Luk, and Frederick W. B.
Li. A collision detection method for deformable objects. In Proc.

ACM Symposium on Virtual Reality Software and Technology
(VRST 2002), pages 113-120, November 2002.

Jean-Christophe Lombardo, Marie-Paule Cani, and Fabrice
Neyret. Real-time collision detection for virtual surgery. In Proc.
of Computer Animation, pages 82-90, Geneva, Switzerland, May
1999.

[.-K. Lee. Curve reconstruction from unorganized points. Com-
puter Aided Geometric Design, 17(2):161-177, 2000.

Bibliography

[Levog)

[Lev03]

[LS81]

[McL74]

[Mel00]

[IMKEO03]

[MOK95]

[MPT99]

[MQO3]

[MR95]

[MWSS]

[Nea04]

David Levin. The approximation power of moving least-squares.
Mathematics of Computation, 67(224):1517-1531, 1998.

David Levin. Mesh-independent surface interpolation. In
Hamann Brunnett and Mueller, editors, Geometric Modeling for
Scientific Visualization, pages 37-49. Springer, 2003.

Peter Lancaster and Kes Salkauskas. Surfaces generated by

moving least squares methods. Mathematics of Computation,
37(155):141-158, 1981.

D. H. McLain. Drawing contours from arbitrary data points.
Computer Journal, 17(4):318-324, 1974.

Stan Melax. Dynamic plane shifting bsp traversal. In Graphics
Interface 2000, pages 213-220, 2000.

Johannes Mezger, Stefan Kimmerle, and Olaf Etzmuf}. Hierar-
chical Techniques in Collision Detection for Cloth Animation.
Journal of WSCG, 11(2):322-329, 2003.

Karol Myszkowski, Oleg G. Okunev, and Tosiyasu L. Kunii.
Fast collision detection between complex solids using rasterizing
graphics hardware. The Visual Computer, 11(9):497-512, 1995.

William A. McNeely, Kevin D. Puterbaugh, and James J. Troy.
Six degrees-of-freedom haptic rendering using voxel sampling.
ACM Transactions on Graphics (SIGGRAPH 1999), 18(3):401—
408, 1999.

T. S. Michael and Thomas Quint. Sphere of influence graphs and
the lo-metric. Discrete Applied Mathematics, 127(3):447 — 460,
2003.

R. Motwani and P. Raghavan. Randomized Algorithms. Cam-
bridge University Press, 1995.

Matthew Moore and Jane Wilhelms. Collision detection and re-
sponse for computer animation. ACM Transactions on Graphics

(SIGGRAPH 1988), 7(3):289-298, 1988,

Andrew Nealen. An as-short-as-possible introduction to the least
squares, weighted least squares and moving least squares methods

135

Bibliography

[OBA+03]

[PFTV93]

[PGY5)

[PGK02]

[PKKGO03]

[Pro97]

[PvBZG00]

[RCFCO3]

136

for scattered data approximation and interpolation. Technical re-
port, Discrete Geometric Modeling Group, TU Darmstadt, May
2004.

Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and
Hans-Peter Seidel. Multi-level partition of unity implicits. ACM
Transactions on Graphics (SIGGRAPH 2003), 22(3):463-470,
2003.

William H. Press, Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. Numerical Recipes in C. Cambridge Uni-
versity Press, Cambridge, England, 2nd edition, 1993.

Ian J. Palmer and Richard L. Grimsdale. Collision detection

for animation using sphere-trees. Computer Graphics Forum,
14(2):105-116, June 1995.

Mark Pauly, Markus H. Gross, and Leif Kobbelt. Efficient sim-
plification of point-sampled surfaces. In Proceedings of IEEE
Visualization 2002 (VIS 2002), pages 163-170, 2002.

Mark Pauly, Richard Keiser, Leif P. Kobbelt, and Markus Gross.
Shape modeling with point-sampled geometry. ACM Transac-
tions on Graphics (SIGGRAPH 2003), 22(3):641-650, 2003.

Xavier Provot. Collision and self-collision handling in cloth model
dedicated to design garments. In Proc. of Graphics Interface
1997, pages 177 — 189, 1997.

Hanspeter Pfister, Jeroen van Baar, Matthias Zwicker, and
Markus Gross. Surfels: Surface elements as rendering primitives.
ACM Transactions on Graphics (SIGGRAPH 2000), 19(3):335—
342, 2000.

Laks Raghupathi, Vincent Cantin, Francois Faure, and Marie-
Paule Cani. Real-time simulation of self-collisions for virtual
intestinal surgery. In Nicholas Ayache and Hervé Delingette,
editors, Proceedings of the International Symposium on Surgery
Simulation and Soft Tissue Modeling, number 2673 in Lecture
Notes in Computer Science, pages 15—26. Springer-Verlag, 2003.

Bibliography

[RHHLO02]

[RKC02]

[RL85]

[RLOO]

[Rog63]

[Sch94]

[Sch04]

[Sed89]

[SF91]

[SHHOS]

[SPGO3]

Szymon Rusinkiewicz, Olaf Hall-Holt, and Marc Levoy. Real-
time 3D model acquisition. ACM Transactions on Graphics,
21(3):438-446, July 2002.

Stephane Redon, Abderrahmane Kheddar, and Sabine Coquil-
lart. Fast continuous collision detection between rigid bodies.
Computer Graphics Forum (Proc. of EUROGRAPHICS 2002),
21(3), 2002.

Nick Roussopoulos and Daniel Leitker. Direct spatial search on
pictorial databases using packed R-trees. In SIGMOD Confer-
ence, pages 17-31, 1985.

Szymon Rusinkiewicz and Marc Levoy. QSplat: A multiresolu-
tion point rendering system for large meshes. ACM Transactions

on Graphics (SIGGRAPH 2000), 19(3):343-352, 2000.

C.A. Rogers. Covering a sphere with spheres. Mathematika,
10:157-164, 1963.

Sven Schonherr. Computation of smallest ellipsoids around point
sets. Diploma thesis, Freie Universitat Berlin, Berlin, Germany,
1994.

Dirk Schlenke. Approximative gedodétische Distanzen auf 3d
Modellen. Bachelor thesis, University of Paderborn, Germany,
2004.

Robert Sedgewick. Algorithms. Addison-Wesley, Reading, 2 edi-
tion, 19809.

Mikio Shinya and Marie-Claire Forgue. Interference detection
through rasterization. The Journal of Visualization and Com-
puter Animation, 2(4):132-134, October—December 1991.

Subhash Suri, Philip M. Hubbard, and John F. Hughes. Collision
detection in aspect and scale bounded polyhedra. In SODA, pages
127-136, 1998.

Christian Sigg, Ronald Peikert, and Markus Gross. Signed dis-
tance transform using graphics hardware. In IEEE Vis2003,
pages 83-90, 2003.

137

Bibliography

[ST95]

[ST96]

[TFY00]

[THM*03]

[TKHT05]

[TKZ+04]

[Tou8s]

[Tur90]

[US97]

138

E. Schémer and C. Thiel. Efficient collision detection for moving
polyhedra. In 11th Annual Symposium on Computational Geom-
etry, pages 51-60, June 1995.

E. Schémer and C. Thiel. Subquadratic algorithms for the gen-
eral collision detection problem. In 12th European Workshop on
Computational Geometry, pages 95-101, March 1996.

Sotoshi Tanaka, Yasushi Fukuda, and Hiroaki Yamamoto. Sto-
chastic algorithm for detecting intersection of implicit surfaces.
Computers and Graphics, 24(4):523 — 528, 2000.

Matthias Teschner, Bruno Heidelberger, Matthias Miiller, Danat
Pomerantes, and Markus H. Gross. Optimized spatial hashing for
collision detection of deformable objects. In Proc. 8th Interna-
tional Fall Workshop Vision, Modeling, and Visualization (VMV
2003), pages 47-54, 2003.

Matthias Teschner, Stefan Kimmerle, Bruno Heidelberger,
Gabriel Zachmann, Laks Raghupathi, Arnulph Fuhrmann,
Marie-Paule Cani, Francois Faure, Nadia Magnenat-Thalmann,
Wolfgang Strasser, and Pascal Volino. Collision detection for de-
formable objects. Computer Graphics Forum, 24(1):61-81, 2005.

Matthias Teschner, Stefan Kimmerle, Gabriel Zachmann, Bruno
Heidelberger, Laks Raghupathi, Arnulph Fuhrmann, Marie-Paule
Cani, Frangois Faure, Nadia Magnetat-Thalmann, and Wolfgang
Strasser. Collision detection for deformable objects. In Proc.
FEurographics, State-of-the-Art Report, pages 119-135, Grenoble,
France, 2004.

Godfried T. Toussaint. A graph-theoretical primal sketch. In
Godfried T. Toussaint, editor, Computational Morphology, pages
229-260, 1988.

Greg Turk. Interactive collision detection for molecular graph-
ics. Technical Report TR90-014, University of North Carolina at
Chapel Hill, 1990.

S. Uno and Mel Slater. The sensitivity of presence to collision
response. In Proc. of IEEE Virtual Reality Annual International
Symposium (VRAIS), page 95, Albuquerque, New Mexico, March
1997.

Bibliography

[VB94]

[VCCIg|

[vdB97]

[vdB03]

[VM94]

[VMO5]

[VSCO01]

[Wan04]

[Wel91]

[Wen95]

T. Lewis V. Barnett. Qutliers in Statistical Data. John Wiley
and Sons, New York, 1994.

Baba C. Vemuri, Y. Cao, and L. Chen. Fast collision detection
algorithms with applications to particle low. Computer Graphics
Forum, 17(2):121-134, 1998.

Gino van den Bergen. Efficient collision detection of complex
deformable models using AABB trees. Journal of Graphics Tools,
2(4):1-14, 1997.

Gino van den Bergen. Collision Detection in interactive 3D en-
vironments. Series In Interactive 3D Technology. Elsevier, San
Francisco, United States of America, 2003.

P. Volino and Nadia Magnenat Thalmann. Efficient self-collision
detection on smoothly discretized surface animations using geo-

metrical shape regularity. Computer Graphics Forum (Proc. of
FEUROGRAPHICS 199/), 13(3):155-166, 1994.

Pascal Volino and Nadia Magnenat Thalmann. Collision and
self-collision detection: Efficient and robust solutions for highly
deformable surfaces. In Computer Animation and Simulation "9,
pages 5565, September 1995.

T. Vassilev, B. Spanlang, and Y. Chrysanthou. Fast cloth ani-
mation on walking avatars. Computer Graphics Forum (Proc. of
EUROGRAPHICS 2001), 20(3):260-267, September 2001.

Michael Wand. Point-Based Multi-Resolution Rendering. PhD
thesis, Department of computer science and cognitive science,
University of Tiibingen, 2004.

Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In
H. Maurer, editor, New Results and New Trends in Computer
Science, volume 555 of Lecture Notes Comput. Sci., pages 359—
370. Springer-Verlag, 1991.

Holger Wendland. Piecewise polynomial, positive definite and

compactly supported radial basis functions of minimal degree.
Advances in Computational Mathematics, 4:389-396, 1995.

139

Bibliography

[WEP+01]

[WHGS4]

[Zac9§]

[Zac00]

[Zac02]

[ZK03]

[Z1.03]

[ZPvBG02]

[Z599]

140

Michael Wand, Matthias Fischer, Ingmar Peter, Friedhelm Meyer
auf der Heide, and Wolfgang Strafler. The randomized z-buffer
algorithm: Interactive rendering of highly complex scenes. ACM
Transactions on Graphics (SIGGRAPH 2001), 20(3):361 — 370,
2001.

Hank Weghorst, Gary Hooper, and Donald P. Greenberg. Im-
proved computational methods for ray tracing. ACM Trans.
Graph., 3(1):52-69, 1984.

Gabriel Zachmann. Rapid collision detection by dynamically
aligned DOP-trees. In Proc. of IEEE Virtual Reality Annual
International Symposium (VRAILS 1998), pages 90-97, Atlanta,
Georgia, March 1998.

Gabriel Zachmann. Virtual Reality in Assembly Simulation
— Collision Detection, Simulation Algorithms, and Interaction
Techniques. PhD thesis, Darmstadt University of Technology,
Germany, May 2000.

Gabriel Zachmann. Minimal hierarchical collision detection. In
Proc. ACM Symposium on Virtual Reality Software and Technol-
ogy (VRST 2002), pages 121-128, Hong Kong, China, November
2002.

Gabriel Zachmann and Gilinter Knittel. An architecture for hi-
erarchical collision detection. In Journal of WSCG 2003, pages
149-156, University of West Bohemia, Plzen, Czech Republic,
February3—-7 2003.

Gabriel Zachmann and Elmar Langetepe. Geometric data struc-
tures for computer graphics. In Proc. of ACM SIGGRAPH. ACM
Transactions of Graphics, 27-31July 2003.

Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and
Markus Gross. EWA splatting. [EEE Trans. on Visualization
and Computer Graphics, 8(3):223-238, 2002.

Yunhong Zhou and Subhash Suri. Analysis of a bounding box
heuristic for object intersection. Journal of the ACM, 46(6):833—
857, 1999.

Bibliography

[ZS004a]

[ZS00b]

[ZTK*05]

[ZY00]

Yunhong Zhou and Subhash Suri. Collision detection using
bounding boxes: Convexity helps. In Proceedings of the 8th
Annual European Symposium on Algorithms (ESA 2000), pages
437-448, 2000.

D. Zorin and P. Schréder. Subdivision for modeling and anima-
tion. In ACM SIGGRAPH 2000, Course, 2000.

Gabriel Zachmann, Matthias Teschner, Stefan Kimmerle, Bruno
Heidelberger, Laks Raghupathi, and Arnulph Fuhrmann. Real-
time collision detection for dynamic virtual environments. In
Tutorial #4, IEEE VR, pages 1-32, Bonn, Germany, 2005.

Dongliang Zhang and Matthew M. F. Yuen. Collision detection
for clothed human animation. In Proceedings of the 8th Pacific
Conference on Computer Graphics and Applications, pages 328—
337. IEEE Computer Society, 2000.

141

Index

>, 5
n-body processing, see broad phase
2-AABB,

2-DOP, 29

2-OBB, 29

AABB,

ADB tree, 24]

AIP, see approximate intersection
point

anisotropic SIG,

approximate intersection point, [T08]

average-case approach,

balls into bins, [103]

bandwidth, [57] [67]

benchmark,

bitonic, [109

boundary detection,

bounding volume hierarchy,

bounding volume traveral, [J]

Boxtree,

broad phase, [7]

BVH, see bounding volume hierar-
chy

close-pairs shortest-paths,

cloud point,
collision, [7]

collision cell,

constellation, [7]

continuous collision detection, [7]
convex hulls,

covariance matrix, [5§]

CPSP, see close-pairs shortest-paths

Delaunay graph, [63]
distance fields,

DOP,
dynamic point cloud,

Euclidean kernel,

geodesic,

geodesic kernel,

golden section search,
GPU-based collision detection,

Hausdorff distance, [118
hypergeometric distribution,

implicit surface,

interpolation search, [L00]
interquartile, [64]

intersection volume,
IQR, see interquartile

lookup table, [46]

machine learning,
Minkowski sum,

143

Index

NURBS, [[4]

OBB,
outliers,

parametric surfaces,

point cloud collision detection,
5 11

point cloud hierarchy;,

polygonal collision detection,

possible collision cell,

proximity graph, 5]
quartile,

randomized sampling technique,

RMSE, see root mean square error

root bracketing, [101

root mean square error, [77]

RST, see randomized sampling tech-
nique

sample point,

sampling density, [67]

sampling radius, [70]

SIG, see sphere-of-influence graph
space-subdivision approaches,
sphere-of-influence complex,

sphere-of-influence graph, [64]
spherical shell,

splines, [I4] [70]

subdivision surfaces,

surfel,

test point, [83]

time-critical approaches,

traversal, see bounding volume trav-
eral

Voronoi, [12} [I4} [60] [63]

weighted least squares,
WLS, see weighted least squares

144

	Acknowledgements
	1 Introduction
	2 Related Work
	2.1 Problem Statement
	2.2 Polygonal Collision Detection
	2.2.1 Bounding Volume Hierarchies
	2.2.2 Space-Subdivision Approaches
	2.2.3 Distance Fields
	2.2.4 Hardware-Assisted Collision Detection
	2.2.5 Theoretical Results

	2.3 Point Cloud Collision Detection
	2.3.1 Surface Definition
	2.3.2 Algorithms for Point Cloud Collision Detection

	2.4 Time-Critical Collision Detection
	2.5 Summary and Discussion

	3 An Average-Case Approach for Real-Time Collision Detection
	3.1 Overview of our Approach
	3.2 Terms and Definitions
	3.3 Data Structure
	3.4 Probability Parameters
	3.4.1 Uniform polygon distribution
	3.4.2 Non-uniform polygon distribution

	3.5 Probability Computations
	3.5.1 Probability of collision cells
	3.5.2 Probability of collision
	3.5.3 Probability of intersection in a cell

	3.6 Intersection Volume
	3.7 Expected Running Time of Hierarchical Collision Detection
	3.8 Results
	3.8.1 Benchmark Scenario
	3.8.2 Distribution of Possible Collision Cells
	3.8.3 Preprocessing
	3.8.4 Performance and Quality

	3.9 Summary and Discussion
	3.10 Future Work

	4 Point Cloud Surfaces using Geometric Proximity Graphs
	4.1 Implicit Surface Model
	4.1.1 WLS Surface Definition
	4.1.2 Problems with the Euclidean Kernel

	4.2 Geodesic Distance Approximation
	4.2.1 Geodesic Kernel
	4.2.2 Proximity by Delaunay Graph
	4.2.3 Proximity by Sphere-of-Influence Graph
	4.2.4 Extensions of the SIG
	4.2.5 Automatic and local bandwidth computation
	4.2.6 Automatic boundary detection
	4.2.7 Smooth Surfaces

	4.3 Running time and Complexity
	4.3.1 Close-Pairs Shortest-Paths
	4.3.2 Pre-computations of Proximity Graphs
	4.3.3 Function Evaluation
	4.3.4 Dynamic Point Clouds

	4.4 Results
	4.5 Summary and Discussion
	4.6 Future Work

	5 Point Cloud Collision Detection
	5.1 Terms and Definitions
	5.2 An Efficient Point Cloud Hierarchy Traversal
	5.2.1 Point Cloud Hierarchy
	5.2.2 Exclusion and Priority Criterion
	5.2.3 RST: Randomized Sampling Technique
	5.2.4 Time-Critical Collision Detection
	5.2.5 Automatic Bandwidth Detection
	5.2.6 Sample Size
	5.2.7 Running time and Complexity
	5.2.8 Results

	5.3 Interpolation Search for Point Cloud Intersection
	5.3.1 Root Bracketing
	5.3.2 Size of Neighborhoods and Surfel Density
	5.3.3 Completing the Brackets
	5.3.4 Interpolation Search
	5.3.5 Models with Boundaries
	5.3.6 Precise Intersection Points
	5.3.7 Complexity Considerations
	5.3.8 Results

	5.4 Summary and Discussion
	5.5 Future Work

	6 Conclusions and Future Work
	Bibliography

