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Abstract

Within the airline industry’s complex operational environment, any
disturbance to normal operations has dramatic impact, and usually
imposes high additional costs. Because of irregular events during day-
to-day operations, airline crew schedules can rarely be operated as
planned. When disruptions occur, crew schedules are affected due
to the resulting infeasible flight schedule and improper assignments.
Therefore, airlines need to recover disrupted crew schedules as soon
as possible, and minimize the extra cost as well as the impact on

subsequent operations.

The task of the airline crew recovery is to obtain one or more reason-
able, perfectly optimal, recovery solutions from current disruptions,
which has to be achieved within an acceptable period of time. The
final solutions are optimized in terms of the amount of additional

operational costs and variations from the original planned schedule.

In this thesis, we develop a decision support system that incorpo-
rates exact optimization methods and several dedicated heuristics to
solve real-life airline crew recovery problems in the setting of Euro-
pean airlines. To solve such a problem, a column generation method
and a genetic algorithm based heuristic are proposed and tested. The
proposed solution methods are customized with a dedicated setting
of parameters, which forms a set of strategies to deal with different
disrupted situations. Furthermore, a so called strategy mapping pro-
cedure is developed to assist airline coordinators in recovering crew
schedules more effectively by investigating the given disruption and

proposing a suitable strategy with a proper solution method.
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Chapter 1

Introduction

Passenger airlines operate their business in an extremely complex environment. In
their daily operations many essential elements are deeply involved, ranging from
sophisticated machines to highly skilled humans. Taking information technology
(IT) systems as examples, airlines deploy a wide spectrum of tools and software to
assist their normal operations, such as reservation systems, revenue management
systems, tracking systems, scheduling systems, operations control systems, etc.
Each such system is highly sophisticated and has a great impact upon the overall
performance of an enterprise.

The increasingly competitive domestic and global markets make it even more
difficult to maintain a lucrative and growingly profitable business. To improve
their core competence, airlines invest a large amount of time and money in carry-
ing out research which, in turn, supports their business in various ways. During
the past decades the airline industry has attracted great attention of many re-
searchers from various areas. Consequently, current airline industry is able to
provide the passenger transportation service experienced today by virtue of suc-
cessful applications of many emerging techniques. However, there still is much
room left for airlines to improve their performance.

Generally, the performance of an airline is subject to various factors, both in-
ternal and external. For example, the oil price, as an external influencing factor,
has economically a dramatic impact as one may observe nowadays. In contrast,
internal factors comprise many issues, such as company culture, marketing strat-

egy, human resource management etc., which contribute to the overall efficiency
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as well.

The essential product provided by a scheduled passenger airline is the flight
schedule which consists of a set of flights between two or more airports, where
each flight is conducted under a given flight number. In order to provide such
a public transportation service, many planning processes have to be carried out
to manage various types of resources distinctly, such as flight scheduling, crew
scheduling, gate scheduling, and so on.

However, in practice airline schedules often cannot be carried out as planned
due to many types of unavoidable disturbances. Therefore, airlines need to effi-
ciently manage frequent disruptions and recover their disturbed schedules during
irregular operations. Concerning crew schedules, airlines have to find an updated
crew schedule with respect to given disruptions and other goals such as cost sav-
ing, disturbance minimization, and so on. Because of the complexity of such a
task, it is imperative to investigate the recovery process and to establish a system
which incorporates a bundle of dedicated problem solving techniques.

This thesis is motivated through the fact that airlines perform their disruption
management mostly manually, although computer-based decision support tech-
niques exist that could be used in order to improve the decision quality. However,
disruption management tasks are very complex and partially not well structured,
so that it is hardly possible to provide optimal solutions in practical disrupted
situation. As a matter of fact, it is not clear what is an optimal solution because
usually many considerations have to be taken into account simultaneously, and
the solution to be adopted in practice is often a compromise taking different goals
into account. Furthermore, only during recent years mathematical optimization
techniques, software, and hardware have been developed so far that it is possible
to try to solve practical disruption problems in airlines.

Because there are many types and sizes of disruptions and decision support
techniques to approach them as well as many different goals, it is unlikely that
there will be one single method able to solve all airline disruption problems.
Thus, a decision support system for airline crew recovery should integrate sev-
eral algorithmic techniques and manual solution processes of human dispatchers.
Furthermore, it should provide a first classification to coordinators in order to

determine a suitable solution technique to try first. The system should be usable
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through an intuitive graphical user interface, and it should be fast in providing a
solution, because there is no time to wait in a disrupted situation.

Thus, the goal of the thesis is to improve the current situation at least in small
and medium-size airlines through a basic decision support system that integrates
several solution methods and chooses them according to classification criteria
to be developed within the thesis. After this goal has been achieved, one may
proceed towards larger airlines in subsequent research projects.

Prior to the discussion of the problem examined in this work (Section 1.2),
a short overview is given about airline planning and the crew management issue
in Section 1.1. In Section 1.3 various decision support systems (DSS) that are
commonly applied to schedule crew in airlines are introduced briefly. Finally the

structure of the thesis is given in Section 1.4.

1.1 Airline Planning and Crew Management

Schedule generation is one of the most elaborate tasks that an airline carries out
throughout its operations, as it includes many complex sub-steps. Basically, the
overall scheduling process can be composed as a sequence of the following steps

(based on the airline scheduling process proposed by Suhl, 1995):
e Block and ground time estimation
e Demand estimation
e Network planning
e Capacity planning
e Fleet assignment
e Aircraft routing
e Flight scheduling
e Crew scheduling

e Tail assignment
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e Ground operation scheduling
e Operational rescheduling

Crew management plays a crucial role within the scheduling process, as the
cost for managing crew constitutes the second largest expense of an airline after
fuel consumption. Unlike other types of expenses, crew costs fall into one of the
internal groups of factors that affect an airline’s actual revenue. Most importantly,
crew costs are relatively controllable by the airline itself. It hence implies great

potential to boost revenues by establishing efficient crew management systems.

Flight Scheduling

Fleet Assignment

Aircraft Routing

Crew Scheduling

‘ Request Management ‘

‘ Training Scheduling ‘

‘ Crew Pairing

‘ Crew Assignment ‘

PIanning ‘ Tracking

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

‘ Aircraft Recovery ‘

‘ Passenger Recovery‘

Figure 1.1: Crew management in airline schedule planning process

As one can see in Fig. 1.1, the crew management issue covers two main phases:
planning and operations. In the planning phase, the airline crew scheduling prob-
lem (CSP) takes place after flight scheduling (determines the flights and their
departure and arrival times based on the market demands), fleet assignment (as-
signs the aircraft type to each flight), and aircraft routing (individual aircraft

is assigned to flights so as to guarantee adequate time for undergoing routine
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maintenance checks at specific airports)!. Purpose of the CSP is to determine
individual work plans for all crew members as a sequence of flights and breaks
in between, according to various internal and external regulations. However, in
operations phase, crews often need to be rescheduled in order to carry out the
updated schedule after disruptions. The problem to be solved here is usually
called the airline crew recovery problem (CRP).

Airline crew management systems typically consist of many sub-systems that
tend to solve individual problems related to crew management. Some commonly
deployed systems are crew request management, training scheduling, crew pairing,
crew assignment, tracking, operations control, etc. These will be discussed in
detail later in this thesis.

An airline crew typically receives a monthly or semi-monthly schedule which
has to fulfill numerous work rules and regulations. There is a bundle of rigid rules
imposed by civil aviation authorities, union contracts, and company policies. In
addition, less rigid rules considering crew satisfaction and personal preferences
may be applied as well. For these reasons, the problem becomes very difficult to
solve, and more complex when the size of the problem increases.

The task of the CSP is to assign all flights of a given timetable together with
further activities to a limited number of crew members stationed at one or several
home bases. Besides the consideration of all given activities, operational cost has
to be minimized, and workload should be evenly distributed among home bases
and crew members?.

Every crew schedule consists of several sequences of flights and other types
of activities, assigned to crews in such a way that each flight is covered exactly
or at least once by the required crew complement. A crew complement consists
of a given number of crew members each one belonging to a given position, such
as pilot, first officer or cabin attendant. The number of crew members for each
position can vary from flight to flight; the crew assignment problem can sometimes

be treated separately for each position.

IThe order described above fits to most American airlines. However, in most European
national airlines, the sequence is: fleet assignment, flight scheduling, aircraft routing, and crew
scheduling, because of the emphasis of economical use of resources (see Suhl, 1995, for further
details).

2Tt is especially the case in most European airlines.
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As Fig. 1.1 illustrates, due to its complexity the airline CSP is typically
divided into two sequential sub-problems: Firstly, in the airline crew pairing
problem (CPP) a set of pairings is generated that minimizes operational cost in
such a way that each flight belongs to exactly one pairing. A pairing means a
sequence of flights that is carried out as one piece by a given crew (“pair” of
crew members). Secondly, the airline crew assignment problem (CAP) or airline
crew rostering problem! assigns the given pairings to individual crew members
taking into account other scheduled activities, such as training, vacation days,
and requested off-duty periods. In order to build legal crew schedules for each
crew member, an airline must consider all company rules and legal regulations.
Therefore, the assignment process may differ from airline to airline, because of
different regional or local rules. There are three basic approaches to the air-
line crew assignment problem: bidlines, personalized rostering and preferential
bidding. The traditional crew scheduling approach in North America is based
on bidlines, where the set of crew schedules (bidlines) is first generated, crew
members place bids on the given schedules, and the assignment is determined
by seniority basis. Personalized rostering is usually applied in Europe meaning
that individual wishes and restrictions of crew members are taken into account
already in the schedule generation phase, and no bidding is needed. Preferential
bidding can be seen as a combination of the two first approaches. More details

will be discussed in Chapter 3.

1.2 Crew Disruption Management in Airlines

After publication of flight and crew schedules, conducting some slight or major
modifications is not unusual for every airline before actual operations. Due to
frequent disruptions, such as aircraft mechanical problems, severe weather con-
ditions, sick crews, air congestions etc, schedules are actually seldom operated
exactly as planned. Consequently, disturbances to normal operations change the
planned schedule to a certain degree, and often require tremendous costs addi-

tionally.

Tn order to differentiate the abbreviations applied in this thesis, CAP stands for both the
airline crew assignment problem and the airline crew rostering problem.
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Tangible consequences of the lack of operational reliability in airline schedules
are flight delays and increasing operating costs due to them. Meanwhile, some
intangible losses come from passengers’ ill will and time value losses as well (Wu,
2003). It has been reported by the National Air Space (NAS) of the United States
that 27% of flights were delayed in 2001. Qantas, the Australian carrier, estimates
that 1% improvement of schedule punctuality will bring Qantas an additional $15
million profit in a year.

According to reports of ERA (European Regions Airline Association) (Euro-
pean Regions Airline Association, 2003), most traffic indicators have maintained
a steady growth throughout the year. Contrary to the traffic growth, yield has
been reduced today to levels last seen in 2000. A considerable percentage of
flights has to be rescheduled, even though departure punctuality has shown a
steady improvement. During 2003, the percentage of on-time departures, and
departures with a delay up to 15 and 60 minutes, was 65%, 86% and 98% respec-
tively. Moreover, within the year 2003 2% of all flights were cancelled, and 34.9%
flights were reported being delayed due to various types of disruptions.

Similar observations were also reported in the annual report 2003 of Eurocon-
trol (European Organization for the Safety of Air Navigation, see Eurocontrol,
2003). The average delay per movement for departures, for all causes of delay,
was nine minutes, a decrease of 6.5% within one year. Roughly 40% of all flights
were delayed on departure, with 16% out of them delayed by more than fifteen
minutes. On the positive side, 11% of all flights departed before their sched-
uled time. The number of arrival delays fell significantly; down by 7.5% to ten
minutes. 38% of the flights were delayed on arrival, with 17% delayed by more
than fifteen minutes.

The data above picture the operation environment of an airline literally. They
also demonstrate the relatively high frequency of disruptions. It, therefore, turns
out to be the reason that an effective disruption management plays a crucial role
in airlines.

What does disruption management do? Basically, it is a series of actions that
an airline takes within disrupted circumstances. The reaction of an airline to
any disruption may strongly depend on the type of the disruption, where and

when it takes place, what and who are affected either directly or indirectly, and
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so on. The main concern may be the minimization of customers’ (passengers’)
inconvenience, meanwhile operable subsequent schedules have to be carried out
within a short period of time.

Because of disruptions, parts of crew schedules become no longer feasible. For
instance, the originally scheduled aircraft has been rerouted, which may require
the substitution of crews because of a change in aircraft type (originally assigned
crews may not be qualified to operate the new plane). In such a case, crews who
are available may be called in to serve the flight. Further rescheduling tasks may
be necessary, in case there are not enough crews available.

Therefore, crew recovery aims to find a solution which includes the reschedul-
ing of crews so that any changes caused by disruptions are considered. It is to
find the “right” people to operate the “right” flights at the “right” time. Every
flight has to be properly served by a number of required crew members, so that

the airline does not need to pay too much extra cost.

1.3 Decision Support in Airline Crew Manage-
ment

Generally speaking, decision support systems (DSS) are computer based systems
which support managers, planners or controllers in core decision functions in
all divisions of an enterprise. Since the introduction of DSS in the 1970s, they
have received great attention which has led important development activities
over decades. Instead of replacing decision makers, a DSS is meant to be an
adjunct to key decision makers to extend their capabilities and thus to support
and improve the efficiency and efficacy of decision making. A DSS may solve or
assist in solving considerably complex problems by applying techniques developed
in areas of Operations Research (OR, also known as Operational Research) and
Management Science (MS). OR/MS is traditionally characterized through the
use of mathematical techniques and models to support decision making which
are able to cope with the complexity of airline crew scheduling and recovery. For
example, the two key components in OR/MS, optimization and simulation, have

been systemically studied, and appear in many decision support systems.
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Nowadays, the capability of a decision support system has been greatly en-
riched by combining more and more new emerging technologies. The substan-
tial progress of DSS during recent years comes from the significant improvement
in algorithms, problem solving methodologies, software development, hardware,
problem process development, knowledge management, etc., together. Today de-
cision support systems are more and more used in key decision making processes,
assisting users to make crucial decisions with highly complex and dynamic char-
acteristics. According to the fast growth of hardware technology and operations
research methodologies, decision support systems of today are able to handle
problems that need mass computation for finding optimal solutions, which was
not realistic some years ago.

Within tourism airline industry, various decision support systems have been
widely applied since many years to support solving complex problems encountered
by airlines. However, the boom of the air transport sector and the expansion of
the network coverage lead to a wider range of difficulties than anytime before.
Because of such a fast growth of the airline industry, there are urgent needs of
further substantial support, which spur the scientific efforts.

Traditionally, DSS play an important role in the airline schedule planning
process, whereby aircraft and crew scheduling are most important and complex
planning problems. The general task is to manage scarce resources efficiently and
effectively in order to meet the public transportation demands. Because of a large
number of aircraft, crews and flights, producing schedules may require days or
weeks of work, if it is carried out manually by humans. Furthermore, resources
involved in these processes are usually rather expensive, so that every decision
is actually cost intensive. Therefore, high cost savings can be achieved through
systems to support crucial decisions of the schedule planning.

Because of the complexity of the airline crew scheduling problem involving a
huge number of crews and flights, great attention has been paid to it by many
researchers over the years. Many scientific publications within the last years show
rapid development in introducing efficient algorithms and building comprehensive
decision support systems for airline crew scheduling.

However, the problem of rescheduling crews becomes more and more crucial

recently. Disruptions happen frequently, constantly affecting the normal opera-
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tion and introducing chaos, but there is a lack of dedicated methods and systems
for airlines to recover their operations. For most airlines, the recovery is pri-
marily a manually driven decision process, which involves complex decisions that
cannot be easily handled by humans manually. Especially, the recovery of crew
schedules compared to the recovery of aircraft is very sensitive because the re-
source involved is humans instead of machines. Such a particular need motivates
this research to design and develop a decision support framework for solving the
airline crew recovery problem, in which many different techniques and strategies

can be combined.

1.4 Organization of the Thesis

This thesis is organized as follows. In Chapter 2 the detailed description and defi-
nition of the airline crew recovery problem is given. It is followed by the literature
review (Chapter 3) in which state-of-the-art techniques related are presented re-
garding both airline crew scheduling and rescheduling problems. In Chapter 4,
the problem is mathematically formulated, and corresponding exact optimization
methods are presented. Heuristic solution methods are presented in Chapter 5,
which includes a genetic algorithm based method and a constructive algorithm.
In order to apply proper strategies to solve such a problem, a classification of pos-
sible disruptions and a corresponding strategy mapping are introduced in Chapter
6. In Chapter 7, a dedicated decision support system and its major components
are described in detail. Finally, in Chapter 8 conclusions are made based on the
results achieved, and the direction of the future research is given in the end of
the thesis.

10



Chapter 2

The Airline Crew Recovery
Problem

Anecdotal evidence suggests that most airline carriers never experience a single
day without disruptions. Planned operations are often changed based on various
types of disturbances. In the setting of passenger airlines, a disruption is a situa-
tion in which an airline is prevented from normal operations as planned because
one or more unexpected events happen. Most disruptions, as disturbances to
airlines’ normal operations, have dramatic impacts in many ways. Within a dis-
rupted situation, passengers may get stuck at airports because of cancellations or
delays of their flights, which definitely makes them dissatisfied with the services
provided. An airline may face a temporary shortage of flight crews or aircraft,
which makes it more difficult to recover and operate later flights. Furthermore,
disruptions that occur simultaneously or closely to each other may interfere and
imply even more serious problems if they are not managed in a proper way.
During irregular operations, the operations control center (OCC) of an airline is
usually the department in charge to handle all disruptions that occur.

As described in Chapter 1, expenses paid for the management of airline crews
are extremely high, especially for those highly skilled airline crews who operate
aircraft, so that effective management of flight crews implies great cost reduction.
If operations are disrupted, a large amount of money has to be paid in order to
get back to the original schedule. For example, more aircraft may be needed,
reserve crews may be called in, compensation to passengers may be paid because

of flight cancellations and so on.
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2. THE AIRLINE CREW RECOVERY PROBLEM

To diminish the impact of disruptions that cause serious problems, an airline
has to do many things. Basically there are two fundamental ways that can help
airlines to reduce disruptions significantly. The first way is to establish “robust”
flight and crew schedules ahead of their actual operations. The term robust or
robustness of a schedule indicates that the schedule published cannot be easily
affected by certain types of disruptions and can be degraded locally with the
minimal impact on the entire schedule. As an example, the degree of the robust-
ness of a schedule can be achieved to a certain extent by relaxing the durations
of those short layovers that are very likely to be disrupted and cannot be easily
recovered. The issue of establishing robust crew schedules is not the focus of
this work, we, therefore, refer to Ageeva (2000), Chebalov and Klabjan (2002)
and Klabjan and Schwan (2000). The second common way to do so is to deploy
a recovery system that can bring back normal operations in a proactive manner
quickly and efficiently. As the focus of this work, details of a crew recovery system
will be described in the later chapter.

This chapter starts with a brief description of the operation environment of
airlines and the general crew recovery problem are described briefly in Section
2.1. It is followed by Section 2.2, in which the detailed structure of such a prob-
lem, including the resources involved, activities, constraints, disruption scenarios,
disrupted /recovery period and cost structure, are discussed in detail. Section 2.3
addresses the general objectives of crew recovery problem. Furthermore, a brief
review of airline crew recovery processes in practice is given in Section 2.4. Fi-
nally, Section 2.5 gives a short description of the testing instances examined in

the research.

2.1 Problem Environment

In this section, we will give a brief overview of the operation environment of the
airline crew management. It is divided into two subsections: In Section 2.1.1
we will present the basic planning process that an airline usually carries out to
generate schedules; in Section 2.1.2 we will elaborate on the airline’s operation

recovery process in disrupted situations.
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2.1 Problem Environment

2.1.1 The Planning Process as Basis for Operations

In most major commercial airlines, e.g., U.S. domestic operations, a hub-and-spoke
network is often applied. Within such a network, each hub represents a high rate
of departure/arrival of flights, while a spoke is an airport with a limited amount
of daily departures/arrivals connected with one hub. In contrast, some European
airlines and most international flight networks adopt so called point-to-point net-
works, in which flights are operated between pairs of airports. Due to the sig-
nificant difference between hub-and-spoke and point-to-point operations, we may
need different models and approaches for both. In this thesis, we mainly focus on
the latter taking into account special features of European tourist airlines. Such
special features have been more or less neglected in scientific literature, whereas
there are many publications available focusing on hub-and-spoke networks.
Within the airline schedule planning process, several sub-processes, namely
flight scheduling, fleet assignment and aircraft routing, must be finished before
crew scheduling actually starts (Antes, 1997). At the beginning of crew schedul-
ing, each flight leg (also called leg in short, meaning a non-stop flight trip from
one airport to another) already has a fixed departure/arrival time and an associ-
ated aircraft type (for example Boeing 737-300, Boeing 747-400, Airbus 310-300,
Airbus 300-600 etc). With regard to the given flight service demand, the crew
scheduling process partitions flight legs into a hierarchical set of sequences: flight
duty, pairing, and roster (also called line-of-work, LoW). Flight duty, equivalent
to duty period or simply duty, is a set of consecutive flight legs which can be
legally assigned to one single crew member. Normally it refers to one day’s work
of a crew member, satisfying all required rules and contractual restrictions. The
duration of a flight duty normally starts 1 hour before the departure of the first
flight on duty (briefing) and ends 15 minutes after the arrival of the last flight
(debriefing). A pairing normally consists of one or more flight duties, which starts
and ends at the same airport (called home base) where crews usually start their
service, while a roster is the schedule of a crew member within the planning period
given (e.g., a complete half or one month work schedule of a crew member can

be considered as his or her individual roster).
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Figure 2.1: An example of crew pairing

An example of crew pairing is given in Fig. 2.1. It includes two flight duties
and one overnight hotel stay at airport D, where airports with possible hotel stays
are called hotel bases. An overnight stay (e.g., H depicted in Fig. 2.1) at city D is
necessary for this crew member due to the fact that his/her first flight on the next
day (flight F4) starts from the same city. By chaining several pairings together
during planning, airline planners can form one possible roster for a specific crew
member, which satisfies all the rules that are relevant to such a process.

As shown in Fig. 2.2, besides typical flight services an airline crew member is
also involved in regular training events, flight simulator and office work, and so
on. A limited number of vacation days are also guaranteed with respect to the
regulation imposed by civil aviation authorities, labor unions, and the airlines
themselves. Together with off-duty days requested by crews (called requested-
off ), the three kinds of activities mentioned above sketch the availability of crew
members which in turn represent the crew capacity within the given planning
period. With the availability information of every crew member, planners are
able to create personalized schedules for everyone prior to the actual operation
of flights.

Usually the crew scheduling task in the planning phase can be performed in
either a sequential or an integrated fashion (see Fig. 2.2). Traditionally, common
research adopts the sequential approach by dividing it into two sub-steps: crew

pairing and crew assignment. However, some integrated approaches have also
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Figure 2.2: Airline crew scheduling process

appeared recently, and will continue to be the future direction due to the fast
growth of computing power. Some more details will be given in Chapter 3.

Crew scheduling requires an optimally scheduled coverage of all flights with
regard to given flight timetables. Large airlines usually use computer-based op-
timization techniques to determine a cost-minimal crew schedule. Depending on
the size of the instance, each sub-step may require a long computational time to
find an optimal solution, ranging from minutes to even days or they may be non-
tractable with optimization methods. For extremely large instances, the actual
goal is, therefore, to find a solution close to an optimal one by applying heuris-
tic techniques step by step. More details regarding the solution methods of the
airline crew scheduling are given in Section 3.1 of the next chapter.

In most research, the topic of airline crew management, especially the topic
of airline crew scheduling, focuses on onboard crews (also called flight personnel,
flight crews or aircrews) including two groups: cockpit crews and cabin crews (also
called flight attendants). The crews work in the cockpit and cabin, respectively, to
operate the plane and to provide service to passengers. Depending on the type of
the aircraft, a flight leg is assigned to a certain crew complement with given crew
positions and a given number of crew members per position required for the flight.
There are significant differences between the scheduling processes for cockpit and

cabin crews, because of different legal regulations and union agreements, as well

15



2. THE AIRLINE CREW RECOVERY PROBLEM

as the different group size per aircraft, so that optimization models for cockpit
and cabin should be developed and solved separately. In this work, we focus on
the requirements for cockpit personnel, because they build the more expensive
crew part with more complex regulations. The methods developed for cockpit
crews can be then applied for cabin personnel as well. Hence the term crew
intends to mean cockpit crew in the rest of the thesis unless there is a particular
explanation. Regarding the scheduling problem for airline cabin crews, we refer
to Day and Ryan (1997) and Kwok and Wu (1996) for more details.

2.1.2 The Recovery Process at Operations Time

Although flight schedules have been published, actual operation of a schedule is
subject to many internal and external factors which may induce changes to the
schedule. A schedule may thus be modified in scenarios caused by disruptions.
In reality, it is often a fact that frequent disruptions imply high additional costs
in today’s complex and uncertain operational environment, namely schedules are
seldom operated exactly as planned. On the contrary, they are constantly dis-
rupted by irregular events during day-to-day operations. As a result, disturbances
to normal operations change the planned schedule totally or at least partly. More

importantly, tremendous costs have to be paid in order to recover from them.

Disruption Identification

L

Preprocessing

e |

Aircraft Recovery Passenger Recovery

N

Crew Recovery

Figure 2.3: Airline crew recovery process

The crew recovery process takes care of disrupted situations in which origi-

nal crew schedules require several, sometimes major, modifications to keep the
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airline’s operations running after an unplanned occurrence. When disruptions
happen, a set of flights has to be delayed and even cancelled. Additional air-
craft, crews and flights are required in order to have enough resources to serve all
the flights that need to be operated. Usually, aircraft are first rerouted to cover
disrupted flights, and to pass maintenance airports for regular checking. In this
process the flight schedule is modified. The rescheduling of crews is then carried
out based on the newly updated flight schedule and crews’ availabilities. After the
generation of new crew schedules, a certain number of crew members influenced
by the updated schedule are notified through the communication system.

Fig. 2.3 illustrates the basic steps that an airline takes to recover its disrupted
schedules. Disruptions can be identified either by an automated system or manu-
ally. However, some disruptions cannot be easily identified, e.g., in a case that a
given delay causes further delays for subsequent flights in completely other parts
of the schedule. Sometimes few short delays may not cause any problem because
there is a way to absorb them by pre-scheduled buffer time between flights. How-
ever, in other cases even a minor delay may cause severe problems, if it cannot
be compensated through buffer time. In the case of severe weather conditions,
the disruption information must often be collected manually. Clear and sufficient
information regarding the disruption has to be gathered, such as its source and
duration, who or what is affected, and so on. Furthermore, a “snapshot” of the
current situation has to be presented to the decision makers: status of each air-
craft, location of crews, situation of each affected airport, real-time information
of every flight, etc.

The airline crew scheduling process has basically to reschedule a subset of the
flights that the crew scheduling process has taken care of. In the recovery case,
those flights that are directly or indirectly disrupted by irregular events have to
be reassigned. Besides those crews that are in operation, two additional groups of
crews may be considered: standby crew and reserve crew. Standby crews are crew
members positioned at large airports (normally home bases), ready to substitute
any other crew member who is not able to fly her/his flights. Reserve crews
normally stay at home being ready to be called to serve open flights that cannot
be assigned to any other person. When calling reserve crews, a predefined period

of time is given to allow them to get to the airport, and be ready to fly. If there
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2. THE AIRLINE CREW RECOVERY PROBLEM

are not enough crews available at an individual airport, crews from other airports
may be transferred by taking a plane (deadhead), or by another public transport

system (transit, e.g., by taxi, train, etc).

Table 2.1: Comparison between CSP and CRP

Crew scheduling Crew recovery
Activities .Scheduled flight legs .Scheduled flight legs

.Pre-scheduled activities .Pre-scheduled activities

.Requested-off .Requested-off

.Updated flight legs

.Newly scheduled flight legs
Crew .Operating crew .Operating crew

Standby crew

.Reserve crew

Duration .One month or half a month .Hours
.Days
Time .Weeks ahead of operations Daily
.Revise few days before operations .Directly after disruption(s)
Cost [Transit cost Transit cost
.Hotel cost .Hotel cost

.Cost of using standby crews
.Cost of using reserve crews
.Cost of changes

Table 2.1 shows the comparison between the two processes at different stages:
planning and operational phase. The comparison is made in terms of the activities
involved: crews, duration, costs and times when they take place. As one can see
from the table, the primary differences that the recovery process possesses can

be explained as follows:
e More activities are involved, e.g., updated and newly added flights
e Standby and reserve crews are considered additionally

e The time horizon for the recovery process is much shorter than the one in

the scheduling process

e Times when the two processes take place are different

18



2.2 The Structure of the Recovery Problem

e More cost factors are involved in the recovery process

A more elaborate description is given in the next two sections.

2.2 The Structure of the Recovery Problem

In this section, the general structure of the airline crew recovery problem is given
by introducing the resources involved, classification of activities, constraints, dis-

ruption scenarios, the disrupted /recovery period and the relevant cost structure.

2.2.1 Resources Involved

Within a disrupted time period, three kinds of resources must be recovered: air-
craft, crews, and passengers (see Fig. 2.4). Each resource has a great impact
on the new schedule. For example, a shortage of aircraft may cause not only
unexpected delays and cancellations, but also some additional difficulties to the
later crew rescheduling, because crews may lose their connections or get stuck
at an unfavorable airport. Due to the complexity, the overall recovery problem
is usually decomposed into a sequence of sub-problems, each of which is solved
independently. Usually, the aircraft recovery problem is solved first so as to
restore the flight schedule with respect to all company rules and maintenance
requirements. The impact of disruptions upon passengers is reduced as much as
possible by minimizing their inconvenience, such as missing connections and fur-
ther delays. Finally, crews have to be rescheduled under the updated situation.
Notably, the way to decompose the entire recovery problem differs from airline
to airline because of heterogeneous company rules. The reason for applying a
sequential approach relies on the fact that a completely integrated three-phase
problem cannot be solved with today’s technologies because of its extremely high
complexity.

Basically, all resources involved in a disturbance have to be reconsidered or
reallocated. This makes the overall recovery problem extremely difficult to solve,
as each single sub-problem might already be a rather complex task. Moreover,
any changes regarding one resource may have a distinctive impact on the total

situation, which, in turn, may cause further conflicts.
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Crew

Final updated schedule

Figure 2.4: Resources involved in the recovery process

Since the purpose of this thesis is to study the airline crew recovery problem,
we assume that the aircraft recovery problem has already been solved prior to the
crew recovery. In other words, a newly proposed flight schedule is already given
where some flights may be cancelled, delayed, rerouted or added. We define all
these flights as affected flights through the given disruption. Thus the departure
or arrival times and types of the aircraft of affected flights are known before

airlines reschedule their crews.

2.2.2 Activities of Cockpit Crews

Basically, there are three groups of activities: flights, pre-scheduled activities and
requested-offs. Generally speaking, all three groups have to be included in the
final updated crew schedule, i.e., assigned to individual crew members. However,
crew requests may not be satisfied in some situations where more crews are needed
to cover all open flights.

In the group of flights within the affected time period, originally scheduled

flights normally constitute the largest portion of all flights. Exceptions are given
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in extreme situations, such as the September 11 terrorist attack on the World
Trade Center in New York City. The rest of an updated schedule includes resched-
uled flights (with updated departure or arrival time) and newly added flights. New
flights are usually added when a flight has been cancelled for some reason.
Pre-scheduled activities are those activities assigned to crews as parts of their
daily work, so that their starting times and durations are predefined. Typical

pre-scheduled activities are:
Vacation: for example yearly vacation.

Simulator: a special training with flight simulator of a certain type of aircraft

required to maintain a crew’s qualification.
Office duty: regular office work

Courses: other courses or training besides simulator provided and required by

airlines

Other: further ground duties, such as medical checks

2.2.3 Constraints

When solving the crew recovery problem, a bundle of rigid rules and regulations
have to be applied which are imposed by civil aviation authorities in each coun-
try, union contracts and company policies. For example, in the United States
the Federal Aviation Authority (FAA) regulates airlines’ operation for crews’
safety. Such regulations limit the length of duty periods and specify the rest
necessary between duty periods. In Germany, the Luftfahrt-Bundesamt (LBA)
is fully responsible for similar regulations concerning every crew scheduling (and
rescheduling) problem.

Although the structure of the problem remains the same for all major North
American airlines, specific collective agreements change this picture slightly. In
Europe, collective agreements are usually much stronger than governmental reg-
ulations. Collective agreements are typically very detailed and change frequently.

In addition, some rules that apply locally are quite different from airline to airline.
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2. THE AIRLINE CREW RECOVERY PROBLEM

Rules can be seen as “hard” or “soft” with respect to their rigidity. Hard
rules often imposed by civil aviation authorities and union contracts, have to
be followed by an airline without any violations. Soft rules, in contrast, may
be violated in some specific situations, which have been clearly documented. A
schedule is considered to be legal only when it fulfills all relevant hard and soft
regulations and rules.

As described in Section 2.1, the flight schedule (roster) for one crew member
can be decomposed into subsequent levels: pairings, flight duties and flight legs.
There are a large number of rules that have to be applied on each roster, flight
duty and flight leg. Typically, they express restrictions on the length of the
working periods as well as require appropriate rest periods between flight legs,
flight duties, and pairings. In the following, the most important rules are briefly
described:

e Maximum daily/weekly/monthly /yearly flight hours, for example, the max-
imum flight time between two daily rest periods is limited to at least 10
hours, and it can only be violated by extending to up to 14 hours if the
crew member gets an extra off-day next day. Maximum monthly or yearly
flight hours normally are determined through the individual contract of a

Crew.

e Maximum flight duty hours, normally referring to the hours without off-

duty rest time.

e Minimum off-duty interval, meaning the required interval between two con-

secutive flight duties.

e Maximum time away from crew’s home base: It restricts the total time that
a crew member can work outside his or her home base. Certain compensa-

tion policy is applied in this respect by every airline.

e Minimum daily /monthly flight hours: A certain number of flight hours are
required based on an individual crew’s contract. Usually, in European Air-

lines the planners try to distribute extra work evenly among crew members.
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e Maximum number of daily landings: For example, the total number of

landings that a crew has within a day cannot be more than 4.

e Minimum daily /weekly/yearly rest: For example, between any two flight
duties, a 10-hour minimum rest is guaranteed. It may increase if the flight
hour served exceeds 10 hours. Another commonly observed rule is that two

consecutive off-duty days must be given within each seven day period.

Moreover, other restrictions may be also applied on overall crew schedules.
For example, an upper bound on the complete cost of the final solution may be
given, pre-calculated based on instances. In some airlines, especially in European
ones, flight hours should be evenly distributed among home bases and crew mem-
bers. This procedure guarantees a certain degree of fairness. In the case of crew
recovery, one particular rule is set to reduce the completing time of the recovery,
e.g., minutes instead of hours is fairly desirable. However, this cannot be explic-
itly modeled, but by applying particular algorithms or methods that may reduce
the complexity of the problem examined. This issue will be discussed in more
detail in Chapter 6 and 7.

2.2.4 Disruption Scenarios

Generally, the number of different causes of airline disruptions is large. They can

be grouped into the following seven categories:

Weather: Flight traffic is very sensitive to weather. Inclement weather condi-
tions, such as heavy snow, storm, typhoon, and so on, often cause severe

disruptions affecting a large number of flights and crews.

Flight operations: Disruptions may be caused through an airline’s own proce-
dure (or those of its handling agent), especially during the period of pre-

flight preparation, such as loading, aircraft landing etc.

Aircraft /equipment technical problems: Disruptions may be caused by tech-
nical problems of an aircraft or problems of equipment on board, such as

aircraft engine failure, communication system problem etc.
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ATC (Air Traffic Control): ATC often assigns delays induced by the general
air traffic situation, e.g., a requested departure ’slot’ of a given flight may

not be available.

Reactionary: This category means late arrivals of incoming aircrafts, causing
further delays. Such a delay is commonly observed as a primary delay
inducing a disrupted schedule. For example, an aircraft which suffers an
ATC delay at the start of its working day may carry that through as a
reactionary delay on subsequent flights until the delay is absorbed.

Passenger: Individual passengers may cause disruptions through late boarding

or other specific reasons.

Other: There are a number of further possible causes that do not belong to any

categories listed above but affect the normal operation.

Generally, reactionary causes constitute the most frequent disruptions to nor-
mal operations, followed by delays caused by operations of ATC. As reported
both in European Regions Airline Association (2003) and in Eurocontrol (2003),
around 35% of delay causes are reactionary delays, which are propagated over
time.

In order to develop a decision support system to assist disruption management,
we would like to classify disruptions and the techniques to cope with different
types. One possibility is to classify the disruptions according to their severeness
into three groups: minor, medium and major. A disrupted situation is treated
as a minor disruption when there are only few affected flights (those flights that
have to change their schedule may be reassigned to other crew members). Major
disruptions, however, involve a huge number of affected flights. For example, a
major disruption occurs when a busy hub experiences a serious snow storm which
causes stop of service for hours. The rest of disruptions that lie in between minor
and major groups belong to medium scenarios.

However, there are no clear boundaries for the three groups of disruptions
introduced above. This is due to the fact that a small disruption, such as delay
of a single important flight, may imply a large number of changes, and sometimes

a seemingly large disruption may be handled with only a few changes. On top
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of that, the seriousness of a disruption may be measured in several ways. The
following criteria show some hints of measuring the impact of disruptions on the

current operation:
e The total number of flights in the instance examined
e The number of flights that are directly affected by disruptions

e The number of flights that are affected due to the propagation of delays

and cancellations
e The total number of crew members in the instance examined
e The number of crew members who are affected by disruptions

e The number of standby and reserve crew who are available during the pe-
riod, especially those who are available at the airport where disruptions

occur
e The number of daily flights in average
e The total duration of the time period with changes in the schedule

Each factor alone is not able to represent the seriousness of a disruption.
Instead, they should be considered as a group when one tries to investigate the
disruptions occurred. In the following, we discuss an example that shows how to
measure the seriousness of a disruption in a straightforward way (notably, this
may not be applicable for some cases). We assume that during a pre-investigation
a set of flights has been rescheduled either in terms of their departure/arrival times
or through changing their airports. We consider a situation with less than 5% of
total flights changed as a ‘minor’ disruption, and a situation with more than 15%
of all flights that has been rescheduled in order to recover from the disruption as
a ‘major’ disruption. The rest in between can be seen as ‘medium’ disruptions
which have moderate impacts on the current operation.

In order to handle the problem more efficiently, airlines have to make con-
certed efforts to develop specialized strategies for each specific case. The strategy
adopted, therefore, must reflect the seriousness and characteristics of the given

disruption. Further relevant discussions are given in Chapter 6.
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2.2.5 Disrupted and Recovery Period

After rerouting aircraft and considering passengers’ connections, some flights are
delayed, cancelled or newly added. That also can be understood as a set of flights
whose departure or arrival times have been updated. Eventually, the earliest and
latest updated flights can both be easily found out.

Before starting the actual recovery process, coordinators in an operations
control center usually have to make efforts to ascertain the range within which
flights can be possibly reassigned to different crews. Outside such a range, no
flights are allowed to be reassigned. The purpose of this is to reduce the difficulty
induced by the increasing number of activities involved. A longer range of flights
may produce many more possibilities to find a “good” solution. Meanwhile, this
can also be interpreted as more open flights that need to be reassigned, which

normally requires intense computations.
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Figure 2.5: Disrupted and recovery periods

In our approach we distinguish between disrupted period and recovery period.
The disrupted period starts from the departure time of the first updated flight
(the schedule of the flight that has been changed), and ends with the new arrival
time of the last updated flight. As illustrated in Fig. 2.5, the period between t;
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and t, is defined as the disrupted period, where t; is the new departure time of
flight leg F'1 and t5 is the new arrival time of F4. Further details will be discussed
in 4.1.2

In contrast, the length of the recovery period is not deterministic. It denotes
the period to recover from a disruption, with other words the recovery period
lasts until all changes caused by the disruption have been carried out, where there
may be many more changes than the originally disrupted schedule. The recovery
period starts at the same time with the beginning of the corresponding disrupted
period or earlier, and ends at the same time with the end of the disrupted period
or later. The decision of the length of such a period strongly depends on the
scale of disruptions and the size of the instance. For example, one may choose a
considerably longer recovery period, if the size of the instance is not large and the
effect of disruptions is not significant. Likewise, a shorter recovery period may
be helpful in recovering from a large instance, simply because only few activities

and crews are considered.

2.2.6 Cost Structure

The cost of airline operations recovery can be excessively high. Taking aircraft as
an example, an airline has to reroute some aircraft in order to carry out flights in
disrupted situations, which may require more fuel. Extra aircraft may be ferried
in urgent situations, which often costs a large amount of money. In the rest of
this section, we solely discuss the underlying cost structure within an airline crew
recovery process.

Regardless of the difference between the crew scheduling in the planning phase
and the crew recovery in the operational phase, the large proportion of cost for
both processes are operational cost and crew payment. The operational cost is the
sum of the cost of all assignments which require extra money to make schedules
feasible. Further description is given in Section 2.3.1 and 4.2.

The payment for airline flight crews may vary depending on airlines. For ex-
ample, in the U.S. airlines do not measure the cost of a crew schedule in monetary

terms. It is calculated in terms of minutes of pay-and-credit, and crews are paid
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proportionally to the number of pay-and-credit minutes they accumulate (fur-
ther details we refer to Barnhart et al., 1999a; Gershkoff, 1989). In contrast, in
Europe the payment for crews is normally based on a regular salary for up to a
certain number of flight hours per month or year. The monthly base payment is
applied independent of the number of flight hours a crew member flies monthly.
The excessive flight hours have to be paid additionally. Moreover, further cost
has to be paid for calling in any reserve or standby crew members during the
recovery process, normally in the situation of “tough” disruptions. The number
of reserve and standby crew members who are called to work should be minimized
because of the high cost that has to be additionally paid. The fact that a number
of reserve and standby crews have to remain available for any possible further

disruptions causes higher cost even if the persons are not called for duty.

2.3 General Problem Objectives

Factors that determine economical sustainability of passenger airlines include cost
efficiency, good yield management, service quality, appropriate network coverage,
and so on. Because each of these factors has a dramatic influence on the overall
performance of an airline, working on one or more of them may partially compen-
sate for the high cost. Saving of cost becomes extremely important in cases with
a fast increasing cost component, such as high fuel price today. Consequently,
this leads to a high complexity of strategies.

In the case of airline crew recovery, various objectives have to be considered,
including some that are particularly important for this type of problem. Gener-
ally, cost efficiency is not the only determining objective for the crew recovery
process. Service quality, satisfaction of crew, appropriate recovery period, and
problem solving time are also highly required from airlines and their customers.

In this section, three objectives will be examined and described in Section
2.3.1, 2.3.2, and 2.3.3 respectively.

2.3.1 Minimization of Additional Cost

The major costs concerned in the crew recovery are those additional costs paid

to reschedule crews. In order to serve all open flights, standby and reserve crews
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may be called to work, which imposes additional payment to them. Furthermore,
a large amount of money has to be paid to transfer crew members from one
airport to another to serve their next scheduled flight. In every airline, there are
formulae which are adopted to calculate it. Moreover, costs for overnight hotel
stays (normally at airports with pre-selected hotels) are also calculated.
Therefore, the most concerned objective is to minimize the sum of the three
groups of costs incurred by additional new schedules. Usually such extra cost of
the recovery can be reduced by finding a solution with less hotel stays, transit
and also fewer standby/reserve crews who are used for substitutions. For further

details, we refer to 4.1.1.

2.3.2 Solution Time Restriction

In the crew recovery problem, the time restriction becomes more serious, com-
pared with the crew scheduling in the planning phase or problems in other sectors.
Unlike the planning process, airlines immediately need a recovery solution when-
ever they find it necessary to reschedule because of disruptions. It is usually the
wish to bring back the schedule planned within minimal period of time.

Often it is desirable to find a solution of a recovery problem within minutes,
since longer time may cause further propagated disruptions over time. In some
situations, however, a longer solution time may be necessary in order to find at
least one feasible recovered crew schedule due to the complexity of the problem.
Nevertheless, airlines cannot afford to wait for hours for an optimally recovered
solution. Today in practice, usually a feasible, not optimal, solution has to be

chosen, even though tremendous cost has to be paid.

2.3.3 Crew Disturbance Reduction

Another objective is to reduce the disturbance to all crews who have been affected
by disruptions and the final updated schedule. This can often be measured by
crews themselves. One simple way is to evaluate if crews are willing to accept
their new schedule, and if there are difficulties for them to change schedules. In
short, general criteria are needed to measure the disturbance of crews, in terms

of convenience, fairness etc.
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Crew convenience can be increased either by minimizing the number changes
scheduled for the following days, minimizing the total number of notifications
about changes over all crew members, or simply minimizing the number of crew
members that face changes in their schedules. Reducing the number of notifica-
tions expresses that fewer crew members will be informed about new schedules.
Therefore, fewer crews may possibly complain about the updated schedules. Fur-

thermore, savings in communication costs can be achieved as well.

2.4 Crew Recovery in Practice

As described previously in Section 2.2.1, three resources are involved in the overall
recovery process: aircraft, passengers and crews. In practice, the three resources
are controlled separately by different sub-departments of an operations control
center. As illustrated in Fig. 2.6, crew coordinators, aircraft coordinators and
passenger coordinators are responsible for each disrupted situation, and provide

proposals of relocations of individual resources.

Operations Control Center (OCC)

|

Aircraft Coordinators
Crew Coordinators
Passenger Coordinators

Figure 2.6: Operations recovery

The author of this thesis together with a graduate student recently conducted

an interview with operations control personnel in one of the major European
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airlines!, especially with operations managers and crew coordinators. The main
purpose of the interview was to conduct an analysis regarding practical issues of
the airline crew recovery problem.

As the airline reported, they usually divide disruptions into two categories:
crew-triggered disruptions and operations-triggered disruptions. Crew-triggered
disruptions, roughly 25% of total disruptions, are those problems caused by crews

themselves directly or by a factor related to them. Possible examples include:

e Violations of rules, regulations and contractual limits, e.g., duty hours, rest

time etc.

Missing luggage of a crew member

Illness of a crew member

Qualification problems that happen when a crew member is not qualified

to operate or serve a certain type of aircraft

Missing crew members

If crew-triggered disruptions happen, they are usually forwarded immediately
to crew coordinators, skipping to report to other departments in the OCC in
order to speed up the recovery process.

By operations-triggered disruptions, we mean disruptions caused by all types
of operational irregularities, such as flight cancellations, non-regular mainte-
nances, bad weather, rescheduled flights, etc. During the interview, we were
told that they constitute the majority of disruptions faced by airlines, 70% in
general. Normally, when such a disruption happens, the problem is first reported
to the OCC where it is measured and classified preliminarily. The pre-examined
problem, therefore, is forwarded to one or more divisions depending on the type
of the problem. For instance, a disruption that causes not only rerouting aircraft
but also rescheduling crews has to be handled by both divisions simultaneously.
Further interactions often take place between OCC and its three departments.

The final confirmation is given by the center before any proposed rescheduling is

!The interview was carried out at Lufthansa Passage, Frankfurt/Main
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2. THE AIRLINE CREW RECOVERY PROBLEM

carried out, due to the fact that any decision may have an impact on the recovery
in other departments.

In the crew control center, crew coordinators try to find a feasible recov-
ery solution by using a system that provides a graphical representation of crew
schedules. Certain actions may be taken to build a feasible and “good” recovery

solution. Most common strategies are:

e Using stranded crew

e Crew swapping

e Deadheading or transferring crew

e Using standby /reserve crew

e Delaying flights for a short time, e.g., minutes
e Delaying flights for a long time, e.g., 1 hour

e Advancing flights for a short time

e Advancing flights for a long time

Cancelling flights

The decision of choosing a specific action is subject to various factors: (1)
Whether it is expensive; (2) Whether it can cause further changes to aircraft
routes or difficulty to passengers; (3) Whether it can be applied easily. How-
ever, some general principles are applied as rule of thumb. For instance, using
stranded crew members is always desirable because the airline does not need to
pay additionally. Standby or reserve crews are also considered as an expensive
resource, hence the use of them should be minimized. Notably, delaying or can-
celling flights are usually treated as the last resort since it may produce further
impact in many other sectors.

In solving the crew problem of irregular operations, the most pressing issue is
often not to adopt the optimal solution that has normally been determined during

the crew scheduling in the planning phase. Instead it attempts to find solutions
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with “good” quality within the time frame faced by crew coordinators. It appears
to be not reasonable if no solutions are taken in the end of the recovery, while it
is possible for planners to re-optimize in the crew scheduling stage. During the
interview, we were told that the crew recovery is usually completed within 45
minutes manually, regardless of the type of disruptions (as long as the disruption
is controllable for the airline).

As has been reported in Wei et al. (1997), in most major airlines in the U.S.,
the task can be addressed as: (1) to find crews for disrupted flights whose crews
are not available due to disruption, and (2) to fix the broken pairings caused
by the disruption. In other words, it is to cover as many disrupted flights as
possible. Therefore, the problem can be stated either as covering all flights while
maintaining the integrity of a maximal number of crew pairings or as repairing
the disrupted pairings while covering a maximal number of flights. In practice,
crew coordinators follow the so called “buy-time” strategy. This makes them
focus primarily on the current moment, and solve the most urgent problem first.
In some cases they may even solve the current problem by creating a new problem
that will be handled later.

Currently, the crew recovery is primarily a manually driven decision process,
i.e., decisions are usually made in an empirical manner based on limited informa-
tion and support. Only few airlines report that they use decision support systems

to deal with this particular problem (sample applications can be found in Section
3.2).

2.5 Test Instances

All test instances presented in this thesis are from a medium-sized European
tourist airline, where its operating network is a mixture of a hub-and-spoke net-
work and a point-to-point network. Within such a network, multiple home bases
are located in Germany, while many other airports are spread out around Eu-
rope. The airports outside Germany are normally resorts which attract a large
number of travelers every year. Passengers, therefore, usually spend some days
at a destination and come back a few days or weeks later. An effect of such

a characteristic is that a large portion of the flights can be organized as round
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trips. In other words, a typical schedule for one crew member may be a trip to
one city, returning within the same day if he/she has only two flights to serve.
Sometimes a crew member may not fly back directly after he/she arrives at the
destination, but goes somewhere else instead. This happens when his/her next
flight starts from that airport heading for another place. However, it is also usual
that there are other flights going back to his/her departure airport, and the flight
is operated by other crew members.

In the setting of the airline involved, crew members, particularly cockpit crew,
are qualified to operate only limited types of aircraft. Therefore, airlines group
their aircraft into fleets regarding an aircraft’s generic specification. This makes
it possible for us to decompose the problem and examine it fleet by fleet. For
example, we use ‘A’ as the first letter of one fleet initially, which denotes a fleet
of aircraft with a limited number of types of Airbus.

The planning period is usually half a month or one complete month, within
which the number of crew members with one crew position (e.g., captain or first
officer) ranges from around 50 to nearly 200 for one fleet. The number of flights
involved may grow to around 2000 for only half a month, depending on the size
of the fleet.
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Chapter 3

Literature Review

Optimization problems in large public transportation networks, such as airlines
(both cargo and passenger airlines), railways and bus companies, are one of
the major fields in operations research since about forty years. A high num-
ber of research articles and reports have been published over years to address the
planning problems arising in these transportation networks. Notably, numerous
planning and scheduling problems arising in scheduled passenger airline indus-
try have drawn many researchers’ attention for decades. As stated in Barnhart
et al. (2003), the airline industry is the only sector, with possible exception of
military operations, with which operations research has been linked so closely,
because airlines provide a natural context for the application of OR techniques
and models.

In fact, operations research has been one of the principal contributors to
the enormous growth that the air transport sector has experienced during the
past 50 years. Numerous articles (see Barnhart and Cohn, 2004; Etschmaier
and Mathaisel, 1985; Gopalan and Talluri, 1998; Rushmeier et al., 1995) and
recent books (Barnhart et al., 1999a; Yu, 1998) address many planning problems
and related solution methods in airline industry. The problems, such as fleet
assignment, aircraft routing, gate assignment, crew scheduling, etc, have been
systematically studied in theory and practice.

In this chapter, an overview of solving the airline crew recovery problem is
given from both theoretical and practical perspectives. In Section 3.1 we discuss

literature on the airline crew scheduling problem, including the airline CPP and
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CAP. In Section 3.2 recent research work on the airline crew recovery problem is
presented in great detail. Finally, Section 3.3 contains a short summary of the
literature review, and presents the general objectives of this research at the end

of the chapter.

3.1 Review of the Airline Crew Scheduling

Crew scheduling issues involved in various transportation problems have attracted
great attention of many researchers all around the world. Voluminous literature
and reports appeared in the areas of bus drivers scheduling (e.g., Dias et al.,
2001), railway crew scheduling (e.g., Caprara et al., 1998), and airline flight crew
scheduling (e.g., Suhl, 1995). Crew scheduling problems in different areas have
a certain similarity, whereas, each problem has its own distinctive characteristic
leading to different dedicated solution methods.

Beasley and Cao (1998) discuss a generic crew scheduling problem that is
clearly defined, and can be possibly applied in other particular industries. They
consider the crew scheduling problem as a problem of assigning K crews to tasks
with fixed start and finish times such that each crew does not exceed a limit
on the total time it can spend working. Therefore, such a generic problem is
formulated in a way that it tries to find K time limit constrained vertex disjoint
paths which visit all vertices on a network. A lower bound is found via dynamic
programming, and it is improved through a Lagrangean based penalty procedure
and subgradient optimization. In their article, a number of randomly generated
problem instances involving between 50 and 500 tasks are tested.

In practice, the problem becomes more involved and complex. It is one of
the most difficult combinatorial problems which have been studied in scientific
literature (Freling et al., 2001; Yunes et al., 2000). Early studies from 1960s,
e.g., a survey from Arabeyre et al. (1969) already present approaches based on
mathematical programming, including 0-1 integer programming, network flow ap-
proach, etc. However, at that time the solution methods, software and hardware
were not able yet to cope with problems of practical dimension. The first com-
mercial computer-based crew scheduling system was TRIP (Trip Reevaluation

and Improvement Program) developed by IBM as reported by Rubin (1973).
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Generally, the task of crew scheduling is to assign all flights of a given timetable
together with further activities to a limited number of crew members stationed
at one or several home bases. Besides the consideration of all given activities,
operational cost has to be minimized, and workload should be evenly distributed
among home bases and crew members.

An airline crew typically receives a monthly or semi-monthly schedule which
has to fulfill numerous work rules and regulations. There is a bundle of rigid rules
imposed by civil aviation authorities, union contracts, and company policies (see
Barnhart et al., 1999b; Kohl and Karisch, 2002; Mellouli, 2003; Suhl, 1995, for
example). Less rigid rules considering crew satisfaction and personal preferences
can be applied as well. For these reasons, the problem becomes very difficult to

solve, and more complex when problem size increases.

Crew Pairing

Integrated

Crew Assignment Crew
Scheduling

Bidlines
Rostering
Preferential
Bidding

Figure 3.1: Airline crew scheduling approaches

Due to its complexity the CSP is typically divided into two sequential sub-
problems (see Barnhart et al., 1999b), as depicted in Fig. 3.1:

e The airline crew pairing problem: Building a collection of crew pairings
for all crews, such that each flight is covered by such set of pairings in a
way that the underlying workforce demand is satisfied. The resulting set of

pairing is optimized in terms of the achieving of minimum cost.

e The airline crew assignment problem: Constructing crew work schedules

by chaining previously generated pairings into legal rosters (lines of work)
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for a given planning period, and assign those to individual crew members

considering their pre-scheduled activities and minimizing operational costs.

Previous research on the two sub-problems will be described in the following
sections 3.1.1 and 3.1.2.

3.1.1 The Airline Crew Pairing Problem

Basically, the airline crew pairing problem (CPP) is the task of generating a set of
pairings, which fulfills all the rules and regulations. The pairing set should include
all or necessary pairings that may potentially be included in the final solution.
And then a complete coverage of all flight legs examined must be projected after
the selection of pairings. Most importantly, the cost of the total pairings should

be minimized.

3.1.1.1 Problem Formulations

As one may observe in a number of papers, the airline CPP is usually formulated
as a set partitioning problem (SPP) or set covering problem (SCP) (see Klabjan
et al., 2001; Mingozzi et al., 1999; Wedelin, 1995, for examples). The problem,
therefore, is to find a subset of pairings with minimal cost, in which every single
flight leg is covered by exactly one chosen pairing (for SPP formulation, and being
included by more than one pairing indicates the application of SCP).

One commonly studied SPP model is proposed by Barnhart et al. (1999a). It

is expressed as follows

min Z CoYp (3.1)

peEP

sty yp=1 (3.2)
y, € {0,1} pe P

where P (with index p) is the set of all feasible pairings constructed based on
the set of flight legs F'. The decision variable y, is equal to 1 if the pairing

p is included in the solution, and 0 otherwise. As shown in 3.1, the objective
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is basically the minimization of the cost of the set of selected pairings, while
Equation 3.2 guarantees that every flight leg is covered exactly once.
In the case that SCP formulation is applied, the above equation 3.2, therefore,

is changed to

g1 (3.3)
pieP
This restriction allows the possibility that more than one finally selected pairing
include one single flight leg. To this particular problem, this modification can be
understood as that crews can be deadheaded by means of planes. Deadhead is
allowed in some airlines, but the number of deadheads is normally considered to
be minimized.
For the case that multiple home bases exist, one additional constraint is usu-

ally added (see constraint 3.4).

lup < Z Yp S Ubp (3.4)
p€Pup

Let lyp and uyp be the lower and upper bound on the total number of crew
members available at home base H B, respectively. Pgp is the set of pairings that
have their first flight starting and last flight ending at home base HB. Notably,
ugp is usually much larger than the actual number of crew members stationed at
home base H B due to the fact that one crew member may serve several pairings
within the planning period examined.

Pairings are generated for crew members anonymously (see Barnhart et al.,
1999a). A pairing is considered as legal as long as it fulfills some of the rules
introduced in Section 2.2.3. Because of the anonymous generation of assignments,
rules that explicitly consider individual crew members will not become applicable
during the phase of the pairing generation. Follows are a list of rules that are

usually examined for generating legal pairings:
e maximum daily/weekly flight hours

e maximum flight duty hours
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e minimum off-duty interval
e maximum number of daily landings

e rest period between flights

When a pairing is created, these rules must be applied. By doing this, the
legal pairings are selected and collected. Therefore, the task turns out to be how
to generate such a set of legal pairings. Notably, the above SPP/SCP formulation
requires the complete set of all possible pairings that has to be explicitly enu-
merated (Vance et al., 1997). Enumerating pairing can be an extremely complex
task because of the large number of potential pairings and a number of rules that
have to checked for each possible pairing. For example, a domestic problem in
the U.S., on a hub-and-spoke network with several hundred flights, typically has
billions of pairings (Barnhart et al., 1999a), let alone instances with around two
thousand flights.

3.1.1.2 Solution Approaches

Relatively small instances may be applicable to be solved directly by a commer-
cial or standard IP (integer programming) or MIP (mixed integer programming)
optimizer, such as ILOG CPLEX (ILOG, 2002), or MOPS (Suhl, 1994, 2000)
etc. But for practical problems it still is a formidable challenge for airlines to
do. Therefore, an airline often starts with building flight duties, when a flight
instance for a week or a day is being solved. With the help of such a set with a
limited number of legal flight duties, the construction of pairings may turn out to
be less difficult. Nevertheless, dedicated methods that show the great efficiency
are desirable due to the increasing growth of airlines’ scale and arising practical
issues.

Since a set partition or covering model is commonly applied for solving such
problems, methods that are applicable for SPP/SCP may have potential for find-
ing “good” or even optimal solutions for the airline CPP. Some of them can be
seen as exact methods that provide an optimal solution at the end, while others

normally solve the problem heuristically.
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Since the best known exact algorithm for linear integer programs is the Branch-
and-Bound method (Ernst et al., 2004), many approaches are carried out based
on the method of Branch-and-Bound. Generally, it starts with a solution to the
linear relaxation of the original integer program. For each integer variable of
the linear program which is not integer in the optimal solution of the relaxed
problem, two options (branches) of rounding that value up or down are created
as a constraint to a further linear program. In addition, the resulting solution
is evaluated (bounding, including lower bound and upper bound), by which the
number of branches can be reduced. The procedure is repeated until an optimal
integer solution is found. Various branching strategies are widely adopted within
the process. For further details, we refer to Anbil et al. (1992).

Andersson et al. (1997) report that the gap between the optimal objective
of the continuous relaxation and the optimal objective of the integer program is
very small, based on computational experiments. And small instances often have
integer solutions but may have a gap of up to a few percent. However, larger
problems rarely have integer solutions to the continuous relaxation, but the gap
is always extremely small. For example, it is also mentioned in the article that a
study conducted based on over one hundred large instances from several European
airlines, the gap is almost always less than 0.5% and typically 0.1% for the largest
problems.

When the size of the problem increases, explicit enumeration of all possible
crew pairings becomes more and more intractable. Enumeration of crew pairings
becomes the most time consuming task, which makes those algorithms imprac-
tical because of the explicit enumeration. Recent approaches follow the idea of
column generation (Anbil et al., 1998; Crainic and Rousseau, 1987; Desrosiers
and Liibbecke, 2003; Lavoie et al., 1988). Its basic idea is to implicitly consider
all possible pairings (columns) by pricing out “good” ones, namely explicitly gen-
erating only a small subset of them. A small initial set of pairings is generated
(e.g., in a heuristic way), which is treated a basis. By doing this, it is possible
to consider a restricted master problem, the LP relaxation of the corresponding
integer program, instead of the problem with all columns. After the restricted
master problem has been solved, the resulting optimal dual vector 7 is used to

find new columns that have negative reduced cost. The procedure is repeated
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until no more columns with negative reduced cost can be found. It is proven that
the optimal solution of the restricted master problem is the optimal solution of
the linear relaxation of the original integer problem with all possible variables.
The optimal integer solution can be found by applying e.g., a branch-and-bound
method (Anbil et al., 1994).

The subproblem turns out to be the generation of columns, which is usually
formulated as a resource constrained shortest path problem. Therefore, a network
is constructed either by building arcs from flight legs (Desrochers and Soumis,
1989; Desrosiers et al., 1991, 1995; Minoux, 1984) or duty periods (Anbil et al.,
1994; Barnhart et al., 1994; Lavoie et al., 1988; Vance et al., 1997). The significant
difference between the two network representations can be seen as large differences
in network sizes and in the number of labels needed in the multilabel shortest
path algorithm (Barnhart and Cohn, 2004).

Hoffman and Padberg (1993) propose a branch-and-cut method to solve the
problem optimally as a set partitioning problem with side constraints. They
generate cutting planes based on the underlying structure of the polytope defined
by the convex hull of the feasible integer point and incorporate these cuts into a
tree-search algorithm that uses automatic reformulation procedure, heuristics and
linear programming to assist in the solution. Various experiments are conducted
based on a large number of instances from several North American airlines. Great
cost saving is also reported in the article.

Lately, a number of approaches fall into the class of branch-and-price. In short,
branch-and-price dynamically applies a column generation procedure through-
out the branch-and-bound tree. The major difference to traditional branch-and-
bound is that column generation is applied to solve LP relaxation at each node of
the branch-and-bound tree to create bounds. Recent development can be found
in Barnhart et al. (1998), Desaulniers et al. (1998) and Freling et al. (2001)

Alternatively, network flow models can be applied in a number of approaches.
Yan and Tu (2002) introduce a network model to improve the efficiency and
effectiveness of solving China Airlines crew scheduling problems using real-life
constraints. The problem, with relatively simple work rules, is formulated as

a pure network flow problem. The network simplex method is used to solve
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the defined problem. Computational results are reported based on a number of
instances representing particular routes.

A so-called state-expanded aggregated time-space network flow approach is pro-
posed by Guo et al. (2003) and Mellouli (2001, 2003). The basic idea of applying
states used for the vehicle maintenance routing problem is adopted to solve the
airline pairing problem, precisely the airline crew pairing chain problem (as de-
fined in the articles above).They observe that aircraft or trains are routed in order
to regularly pass through a maintenance base, e.g., every three to four operation
days for inspection. Likewise, crews are scheduled so as to “pass through” their
home bases on a regular basis, e.g., weekly rest after five working days. This
analogy is utilized to solve the crew scheduling problem. A mixed-integer flow
model based on a state-expanded aggregated time-space network is developed.
The mathematical model, formerly used to solve large-scale maintenance rout-
ing problems for German Rail’s Intercity trains, is then extended to the airline
crew pairing problem where “maintenance states” are replaced by “crew states”.
The advantages of such resulting network flow approach include the consideration
of crews’ time-dependent availability and the network with multiple crew home
bases.

Besides the wide application of exact optimization methods introduced above,
various heuristics, such as constructive, local-search based, and evolutionary
heuristics etc, have also been used for the airline crew scheduling problem. Heuris-
tics are widely applied in most of airlines today due to the nature of the simplicity
and the performance. For example, early research done by Baker et al. (1979)
describes a dedicated heuristic set covering algorithm, which gradually improves
the solution. Several solution improvement procedures are also presented, e.g.,
an 2-opt algorithm.

Meta-heuristics, e.g., tabu search (TS), simulated annealing (SA), genetic al-
gorithm (GA) etc, are also studied by many researchers recently. Emden-Weinert
and Proksch (1999) report their experience of applying a simulated annealing al-
gorithm to solve the airline crew scheduling problem, more precisely the airline
crew pairing problem. In the article they propose a run-cutting formulation which
models the cutting of segments from aircraft rotations and pasting them together

to form pairings. The linkages between pairings and crew home bases are created,
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representing the minimization of global proceeding and hotel costs in view of the
distribution of crew members over a couple of home bases. Computational results
are reported for some real-world short- to medium-haul test problems with up to
4600 flights per month.

Cavique et al. (1999) introduce a tabu search based algorithm for solving the
crew scheduling problem, in which an effective ejection chain method and the
oscillation strategy are applied.

Timucin Ozdemir and Mohan (1999) present a graph based genetic algorithm
that adopts a new graph based representation which demonstrates efficient mem-
ory usage. Various operators are applied in their approach, e.g., recombination
operators (set based operator, time based operator and distance preserving oper-
ator) and the mutation operator.

Due to the large number of flight legs, the computational time of solving one
specific crew pairing problem is comparably long even though efficient algorithms
are already applied. Therefore, many researchers focus on parallelized algorithms
to take over the task that is computation intensive. Details of various parallel
algorithms can be found in e.g., Alefragis et al. (2000), Klabjan and Schwan
(2000) and Sanders et al. (1999).

It is remarkable if research has practical applications. Scientific research re-
sults may help in solving problems that are too complex and difficult to resolve
traditionally. Various applications in airline industry have been reported in sci-
entific literature, particularly the airline crew scheduling problem. In Andersson
et al. (1997); Hjorring and Hansen (1999); Hjorring et al. (2000); Karisch (2003),
the authors present the pairing construction system, commercialized by Carmen
Systems AB, which is in operation at most major European airlines. Firstly, a
so-called pairing generator is used to create a set of pairings. It is basically a
depth first search procedure in a search tree determined by the connection matrix
representing all legal connections between flight legs. Secondly, a cover optimizer
is applied to handle huge amount of pairings generated. The optimizer is an ap-
proximation algorithm for solving such large 0-1 integer programming problem,
which is fine tuned to meet practical needs. This makes it possible to solve large

practical instances. More applications of the airline crew pairing problem can be
found in Anbil et al. (1991).

44



3.1 Review of the Airline Crew Scheduling

3.1.2 The Airline Crew Assignment Problem

The airline crew assignment problem (CAP) focuses on assigning pairings to lines
of work and takes into account the need to provide sufficient rest periods between
flights and to satisfy regulative requirements and collective bargaining agreements
(Barnhart et al., 1994). It is the procedure of creating lines of work within a
period of half or one month, linking pairings with pre-scheduled activities, such

as training, vacations, requested off-duty periods, rest period etc.

4 )

In other words, it is the process of the “personalization” of schedules for each
individual crew member by taking into account his/her availability and scheduled
activities. that the goal is that the resulting schedules require minimal cost, and
all flights and other activities are correctly served. The result of the assignment
expresses the complete work that a crew member undertakes for the next half of
or one month.

The assignment is the subsequent step that follows the airline CPP previously
introduced in Section 3.1.1. As the pairings generated within the CPP are used
for the CAP, the two concepts are interdependent. As described previously, due to
the complexity the total airline crew scheduling problem is divided into two steps.
As a consequence, the second step, the airline CAP, works at the level of pairings

rather than flight legs, which reduces difficulty of the problem significantly.

3.1.2.1 Characteristics of the Crew Assignment Problem

Despite the fact that the task of CAP stated above stays the same for most airlines
all around the world, there are several ways to cope with it. Various factors,
such as the payment system, work rules, quality-of-life etc, lead the difference of
assignment approaches (see Fig. 3.1). In North America, flight crews are able to
bid their flying schedule, called bidline, for next month based on their seniority. A
bidline generation approach constructs anonymous cost-minimizing bidlines and
then lets individual crew members express their preferences through a bidding
process (Campbell et al., 1997; Christou et al., 1999).

However, the seniority principle does not apply in European airlines (see
Kohl and Karisch, 2004). The personalized rostering approach, or assignment

approach, usually constructs personalized lines of work for each individual crew
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member by taking into account his or her working contract, pre-scheduled activi-
ties and requests. Another major concern is the even distribution of the workload
among all crew members examined, namely the fairness for all crew members
takes priority over others.

Apart from rules that are mainly considered in the previous pairing genera-
tion step (see Section 3.1.1.1), the following rules are the most important ones

presented in most existing airline crew assignment approaches.

e maximum monthly/yearly flight hours
e maximum time away from crew’s home base
e minimum monthly flight hours

e minimum weekly/yearly rest

Recently, preferential bidding becomes more and more the approach selected.
Generally speaking, it represents a compromise between the bidline and rostering
approaches in that it generates personalized schedules simultaneously taking into
account a set of bids that have been weighted to reflect the employees’ prefer-
ences. Gamache et al. (1998) present a preferential bidding system that is used
at Air Canada since May 1995. They generate a set of weighted bids that reflect
individual preferences of each crew member. The assignment is carried out under
strict seniority restrictions: The construction of a maximum-score schedule for
a particular crew member must never be done at the expense of a more senior
employee. For each employee, from the most senior to the most junior, an integer
model is solved to determine the crew member’s maximum-score schedule while
taking into account all the remaining crews until the entire problem is solved.
The solution of such an integer model is generated by a column generation pro-
cedure embedded in a branch-and-bound tree. Further similar approaches can be
found in Achour et al. (2003), Campbell et al. (1997) and Jarrah and Diamond
(1997).

The reason for these different assignment “philosophies” lies in the differing
nature of working contracts in various parts of the world (Doerner et al., 2003).

Taking airlines in North America as an example, work schedules involving high
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workload result in high pay and vice versa. In short, crews are highly paid if they
fly more. By contrast, flight crews in Europe work under their work contracts
that guarantee fixed payment for a certain minimum amount of flying hours (so-
called block hours), no matter whether a crew member actually performs given
flight hours or not. This makes airlines in Europe concentrate on producing crew
schedules whose workload should be higher than the guaranteed lower bound
written in crews’ contracts. At the same time, the operational cost is minimized.

In this thesis, we mainly study the assignment task that is normally exam-
ined in European airlines: the personalized rostering problem. Therefore, the
discussion of the airline crew rostering problem will dominate the rest of this sec-
tion. In Section 3.1.2.2, the commonly applied mathematical model is introduced.

Various solution approaches are discussed in Section 3.1.2.3.

3.1.2.2 Problem Formulations

In this section, we give a basic mathematical model proposed by in Barnhart
et al. (1999a) and Gamache and Soumis (1998). Let set P be the resulting set
of pairings from the process of pairing generation. We are given a set of crew
members W, and a set of activities A that represent all pre-scheduled activities.
The set R denotes all feasible rosters that can be assigned to each specific crew
member. The task, therefore, is to find the subset R which represents the partition
covering all p € P and a € A. Most importantly the total cost of assignments is

minimized. Therefore, the model is built as

min Z Z clxy (3.5)

weW re Rw
sty > ypat>n, VpeP (3.6)
weW re Rw
dal=1 VweWw (3.7)
ReRY

zy €{0,1} Vre R YweW

where R" denotes the set of feasible roster of the crew member w € W, and

n, represents the minimum number of crew members required by the pairing p.
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Binary value ~, is 1 if pairing p belongs to roster r and 0 otherwise. The decision
variable 2V equals 1 if roster r is assigned to crew member w and 0 otherwise. ¢’
expresses the cost of assigning a roster r to crew member w (the calculation of the
cost may differ from airline to airline). As one may observe, the objective function
3.5 is the minimization of the sum of all costs for every roster examined. The
constraint 3.6 guarantees that each pairing p is served by the required number n,,
of crew members, while 3.7 makes sure that each crew member w receives exactly
one roster for the given planning period.

Generally, the cost ¢’ may be the combination of the real operational cost and
other artificial cost, such as the transformed monetary cost of crews’ quality-of-
life. Comparing with the airline CPP, the cost in CAP, therefore, may be difficult
to calculate due to aspects that are not well-defined. In addition, the real cost
discussed here is not the same as that observed in North America because of the
application of the rostering principle in European airlines. In Europe, the real
cost normally refers to the money paid for transits and hotel stays instead of
crews’ salary.

The airline CAP is normally decomposed by crew functions. This is partic-
ularly the case when a rostering problem for cockpit is examined. Accordingly,
it can be divided into two subproblems, for captain and first officer respectively
(e.g., for short-haul cockpit crew scheduling problem). In such case, the formula

3.6 may be rewritten as

Z Z Yr, =1 VpeP (3.8)

wEW reRw

The advantage of this decomposition is obvious because the complexity of the
problem is reduced significantly. Therefore, the possibility of finding better or
even optimal solution is significantly raised. On the other hand, this decomposi-
tion may have certain drawbacks in the case that aspects, such as downgrading
and team principle, are considered. The purpose of downgrading is to fill in
positions required for lower ranked crew by higher ranked crew, further details
we refer to Dawid et al. (2001) and Koénig and Strauss (2000). For increasing
work efficiency and safety, team building is concerned by airlines. A thorough

discussion of team aspects can be found in Thiel (2004).
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3.1.2.3 Solution Approaches

Essentially, the airline CPP and CAP have a great similarity. The basic math-
ematical models, namely SPP or SCP, are analogous to each other except that
CPP is dealing with pairings but CAP takes care of rosters. Another evident
difference lies in the phase where pairings or rosters are generated, because they
have to fulfill a certain number of work rules and restrictions. Consequently, to
some extent the methods applied for solving the airline CPP can also be possibly
used to tackle the airline CAP, such as constructive heuristics, column generation,
branch-and-price and so on (see Kohl and Karisch, 2004, as an overview).
Therefore, in this section we do not introduce the basic ideas of some particular
algorithms that are already mentioned in Section 3.1.1.2. Instead, we summarize
it in a way that algorithms appearing in literature are singled out and distilled

into following groups (the revision of the work by Gamache et al., 1999):
1. Constructive heuristics that construct rosters gradually.

(a) Rosters are built by assigning high-priority activities to high priority
employees (Glanert, 1984; Marchettini, 1980).

(b) Rosters are built by assigning pairings day by day. For each day of the
roster period pairings are assigned to individuals that are chosen from
a pool of available crew members (Buhr, 1978; Nicoletti, 1975; Sarra,
1988; Tingley, 1979).

(c) Monthly rosters are constructed for individual crew members sequen-
tially, starting with those with higher seniority (Byrne, 1988; Moore
et al., 1978).

(d) The combination of two methods above, where rosters are first con-
structed sequentially for each crew member, and then reoptimized day
by day (Giafferri et al., 1982).

2. The simulated annealing algorithm is also widely studied for crew schedul-
ing. For example, in Luci¢ and Teodorovié (1999) a simulated annealing
algorithm is developed to improve the solution that is created by the pilot-

by-pilot heuristic initially.
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3. The approach from El Moudani et al. (2001) uses genetic algorithms to
generate new solution sets with reduced operational cost over a sequence of
generations. A new mathematical formulation which takes into account the
satisfaction of the crew members is proposed. A genetic algorithm based
heuristic approach is adopted to produce reduced cost solutions associated
to acceptable satisfaction levels for the crew staff. The application of the
proposed approach to a medium-sized airline is evaluated. Timucin Ozdemir
and Mohan (1999) also propose a genetic algorithm for solving the airline
crew scheduling problem, in which a graph based representation is adopted.
Marchiori and Steenbeek (2000) develop an evolutionary algorithm for large
scale set covering problems, and the application to the airline crew schedul-
ing is described. Other similar approaches can be found in Levine (1996),
Kerati et al. (2002).

4. A generalized set partitioning model is used to solve the rostering problem.
A heuristic first produces a prior set of feasible rosters for each crew member
and then constructs a constraint matrix that helps the search for an integer
solution. Then the utilization of specialized integer programming solves the
rostering problem. For example, Ryan (1992), Ryan and Falkner (1988) and
Butchers et al. (2001) present details on linear relaxation and branch-and-

bound technique. A further extension to handle the downgrading issue is

added by Dawid et al. (2001).

5. A 0-1 multicommodity flow model is built by Cappanera and Gallo (2001,
2004), in which each crew member represents a commodity in the network.
Several small instances from a medium-sized Italian carrier are solved with
the CPLEX MIP solver.

6. Column generation is applied within the branch-and-bound scheme. The
subproblem, generation of columns, is solved as a constrained shortest path
problem (Fahle et al., 2002; Gamache and Soumis, 1998; Gamache et al.,
1999; Junker et al., 1999). In Yunes et al. (1999), Yunes et al. (2000)
and Yunes et al. (2001), a hybrid column generation algorithm, combining

constraint logic programming (CLP) and integer programming techniques,
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is developed for solving several real-life airline crew scheduling problem
instances. The performance of their algorithms is evaluated in terms of
faster problem solving and better solutions found. The branch-and-price
algorithm is described in Freling et al. (2001).

3.1.3 Integrated Airline Crew Scheduling

One important reason for adopting the two-step sequential approach is that it
is usually impossible to solve the joint airline crew pairing and crew assign-
ment /rostering problem in one step because of the high combinatorial complexity
of both problems. For large practical cases, it is not even possible to find an exact
optimum for any one of the two steps with current state-of-the-art technologies.
However, a fully integrated approach to the airline crew scheduling remains un-
doubtedly difficult. Therefore, it remains an important and challenging research
task to find out ways of partial integration of the two steps, so that the drawbacks
mentioned above can be removed at least to a certain extent. Especially nowa-
days, the increasing computational power has made it possible to solve seemingly
impossible problems observed in the past. In summary, the integrated airline
crew scheduling approach will continue to be the future research trend.

Guo et al. (2003) propose a partially integrated procedure to solve the air-
line crew scheduling problem. They develop a special network flow model, called
state-expanded aggregated time-space network flow model that generates not only
pairings, but most importantly pairing chains as sequence of pairings which cov-
ers the scheduled time period, incorporating weekly rests so that all valid rules
and regulations are taken into account. By taking guaranteed pre-scheduled ac-
tivities of individual crew members into account, the real number of available
crew members on each day — called dynamic crew capacity — can be exactly con-
sidered already in the pairing generation phase, thus improving the total solution
quality.

Klabjan et al. (2002) propose a partial integration of crew scheduling and
aircraft routing in which they consider the feasibility of aircraft routing by adding
plane count constraints to the crew problem. It is reported that resulting solutions

to the crew scheduling problem have significantly lower costs than those obtained
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from the traditional model. Cohn and Barnhart (2003) present the so-called
extended crew pairing model which integrates key decisions of aircraft routing
with crew pairing.

Similar integration ideas appear in other transportation areas as well, e.g.,
for vehicle and crew scheduling problem in bus companies. Freling et al. (2000)
propose new mathematical formulations for vehicle and crew scheduling problems
in a completely integrated fashion. In their approach, Lagrangian relaxation is
addressed, together with an implementation using column generation applied to a
set partitioning type of model. Based on the computational results tested on real
life data, they analyze the performance of algorithms proposed by comparing with
traditional sequential approaches. The applicability of the proposed techniques

to practical integrated problems is approved.

3.2 Review of the Airline Crew Recovery

After the schedules have been planned, the operations phase is about to start.
Unfortunately, one never knows what might happen in future, simply because
many unforeseeable events or situations may occur. The uncertainty about the
operation environment ahead forces airlines to make concerted efforts to recover
from any disruptions that have happened to them.

During the day of operations, unexpected events keep happening from time to
time as discussed in Section 2.1. A rescheduling activity is typically carried out
by airline operations controllers who are typically located in the airline operations
control center (see Clarke et al., 2002; Yu et al., 2003).

The recovery problem, also called disruption management, is usually com-
posed of three processes (see Section 2.2.1). When an irregular operation occurs,
some aircraft may be rerouted within an aircraft recovery process. Besides rerout-
ing aircraft, decisions on delaying and cancelling flights are also made in this stage.
It is followed by the process of crew recovery, where new itineraries may be as-
signed to crews (but not necessarily changed if possible). In order to reschedule
crew, coordinators may use operating, standby, and reserve crews to cover all
open flights. At the end is the passenger reaccommodation process, where pas-

sengers are rerouted to alternative itineraries. Clearly the new schedule must
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conform to all regulatory and contractual rules. Contractual rules for operations
are usually different from those in planning. Notably, crew management dur-
ing irregular operations is usually the bottleneck of the whole system-recovering
process due to complicated crew schedules and restrictive crew legalities as well
as the size and scope of the hub-and-spoke networks adopted by major carriers

(Wei et al., 1997).

3.2.1 Problem Formulations

The detailed description of the airline crew recovery problem is already given in
Chapter 2. Here we discuss a basic mathematical model proposed by Wei et al.
(1997), which basically can be viewed as an integer multi-commodity network
flow problem (3.9-3.12).

minz Chjp Thiy (3.9)
kjk
SEY T, > 1 i=1ton (3.10)
kjk
Y =1 k=1tom (3.11)
Jk
i, = {0,1} (3.12)

Here ji is the jith pairing for crew member k£ € K, and ¢ is the index of flight
leg set. a;x;, equals to 1 if flight ¢ is covered by pairing ji of crew member k, 0
otherwise. c¢y;, denotes the cost of assigning pairing ji to crew member £. The
decision variable xy;, is 1 if pairing jj of crew member k is part of the solution,
0 otherwise. In this model, each crew member, including standby /reserve crew,
represents a commodity. The first set of constraints (3.10) shows the coverage
constraints, requiring that each flight in the network must be covered. The second
set of constraints (3.11) denotes flow conservation, which restricts that one crew
be assigned to only one pairing. The objective function (3.9) represents the
minimization of the cost of assigning all pairings.

As one may see from the model above, all pairings have to be pre-constructed

before the problem solving actually starts. Therefore, it can also be understood
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as a crew pairing repair approach. One advantage of such an approach is that
it does not require too long time to solve, which is particularly important for a

recovery problem in practice.

3.2.2 Solution Methods

Today the work in solving the airline crew recovery is still at the beginning stage.
As delegates from major airlines all around the world gathered at AGIFORS
Crew Management Study Group 2003 Conference, it was widely acknowledged
that almost all airlines rely primarily on manual methods to face such challenges.
They described the challenge of tackling such problems as their day-to-day work
without a dedicated system that may fundamentally assist them to fix the prob-
lem.

Some researchers have conducted a number of experiments to solve irregu-
larities occurred during airlines’ daily operations. Many observations about the
problem have been shown in research papers, including methodologies and various
practical considerations. In this section, a literature review on the airline crew
recovery problem is given, in which the latest solution methods and practices are
reviewed based on previous research.

Abdelghany et al. (2004) present a practical application of a decision sup-
port tool that automates crew recovery during irregular operations for large-scale
commercial airlines. The system adopts a rolling approach in which a sequence
of optimization assignment problems is solved such that it recovers flights in
chronological order of their departure times. In each of them, the objective is to
recover as many flights as possible while minimizing total system cost resulting
from resource reassignments and flight delays. The advantage of their approach
over the existing ones is that it recovers projected crew problems that arise due
to current system disruptions ahead of their occurrence. In addition, it gives a
wide flexibility to react to different operation scenarios. A test case is presented
to illustrate the model capabilities to solve a real-life problem for one of the major
commercial airlines in the U.S.

Lettovsky et al. (2000) proposed a pairing generation method with special

branching strategies for solving the crew recovery problem. They build a pairing
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based model similar to the model normally observed in crew pairing problems. In
their model, each pairing is specific to a particular crew, thus not anonymous as is
the case for the crew pairing problem. The objective of the model is to minimize
the cost of adjusted pairings, reserve crews, and deadheaded crews, as well as
the cost of cancelling flights. The cancellation cost is the cost of reassigning
passengers to other flights as well as hotel and meal costs for affected passengers
and some estimate of the loss of good will.

Nissen (2003) presents a duty-period-based network model for solving the
airline crew rescheduling problem. A network is built with nodes representing
airports, and arcs representing duty periods. All possible duty periods are gen-
erated prior to the creating of the network. The solution method is basically a
branch-and-price scheme, in which a column generation procedure is embedded
into a branch-and-bound framework. The sub-problem of the column generation
is tackled by the resource-constrained shortest path algorithm. Experiments are
conducted based on two instances: short-haul and medium-haul. Both instances
include only one hub, with 8 and 35 routes respectively.

In Stojkovié et al. (1998) authors present a column generation approach which
is a slight deviation from the one that is used to solve the crew pairing problems.
Basically the algorithm is designed to generate personalized pairings, and the
assignment of them is carried out simultaneously. In short, they solve such prob-
lems as an integer nonlinear multi-commodity network flow model with time win-
dows and additional constraints. Dantzig- Wolfe decomposition combined with a
branch-and-bound method is proposed. The corresponding sub-problem of col-
umn generation is a constrained shortest path problem where a duty-period-based
network is constructed for each crew candidate with duty periods represented as
nodes. Computational results are reported testing problems with up to 16 crew
candidates and 210 tasks in total with two different (1 or 7 days) operational
period. Depending on problem instances, the solution times ranged from a few
seconds to 20 minutes.

Stojkovi¢ and Soumis (2001) describe and solve the operational pilot schedul-
ing problem for one day of operations. They attempt to simultaneously modify
the existing flight departure schedules and planned individual work days (flight

duties) while keeping planned aircraft itineraries unchanged. The problem is
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addressed as the coverage of all flights for one day of operations with available
pilots while minimizing changes in both the flight schedule and the next day’s
duties planned. The problem is mathematically formulated as an integer non-
linear multi-commodity network flow model with time windows and additional
constraints. To solve the problem, a Dantzig-Wolfe decomposition combined with
a branch-and-bound method has been used. The master problem comprises the
flight covering constraints and a new set of flight precedence constraints. Sub-
problems consisting of time-constrained shortest-path problems with linear time
costs are solved by a specialized dynamic-programming algorithm. Many tests
are conducted based on several input data sets with up to 59 pilots and 190 flights
in total, all of which could be solved in very short computational time.

A heuristic-based framework for handling disruptions is presented by Wei et al.
(1997), in which a multi-commodity integer network flow model (see Section 3.2.1)
and a heuristic search algorithm are developed to reschedule crew during irregular
operations. The basic idea of their approach is to repair the broken pairings due
to the modification of schedules that is mostly caused by the aircraft recovery.
The primary goal of the approach, therefore, is to return the entire operation
to its original schedule as soon as possible in a cost-effective way. Based on
their quantitative analysis, a depth-first branch-and-bound search algorithm is in
essence devised and implemented. A generic state representation of the problem
is defined which characterizes each node of the search tree. At each node, the
problem is represented by a set of uncovered flights and a list of pairings that
are modified so far in the search process. The legality of each pairing is checked
through a legality checking module that is invoked after the pairing generation
and modification. Through the search process, a list of solutions is saved and is
updated whenever a new and better solution is found. Further development of
such approach can be seen in Song et al. (1998).

Yan and Lin (1997) describe the rescheduling problem caused by the closure of
airports, not particularly for the rescheduling of crew. The problem is formulated
as a pure network flow problem with side constraints, and solved by using the
network simplex method and a Lagrangian relaxation based algorithm. A case

study is given in the article which is based on real life data from China Airline’s
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international operations. However, problem instances examined in the article are
relatively small.

Yu et al. (2003) report several stories of successful recovery of some disruption
scenarios, such as snowstorms and the September 11th terrorist attack. In the
article they describe an award-winning real-life application employed by Conti-
nental Airlines in the U.S., in which the problem is treated as a set covering
problem and a so-called generate-and-test heuristic is applied to generate rosters.
An initial problem is first converted into a generic one by collecting the uncovered
flights and repairing the broken pairings. A generic network is constructed in the
same way as proposed by Wei et al. (1997), which may encourage the algorithm
(negative-cost shortest-path algorithm) to assign crews to their originally assigned
flights (as arcs). Pairings are regenerated if an uncovered flight is assigned to a
given crew member, which is a similar process to the converting procedure, and
uses the same network and algorithm. Once pairings have been generated, their
legality is checked by an isolated component, the legality-checking module.

Issues regarding airline irregular operations are also discussed in Clarke (1995),
Clarke et al. (1996), Clarke (1997), Clarke (1998), Clarke et al. (2002), Irrgang
(1995), Rosenberger et al. (2002) and Rosenberger et al. (2003). In addition, the
aircraft recovery problem is presented in Bard et al. (2001), Lgve et al. (2001)
and Thengvall et al. (2003), and the description of flight rescheduling problem
can be found in e.g., Stojkovi¢ et al. (2002).

Undoubtedly, further development in the subject of airline crew recovery
will continue to be carried out. Many research groups and commercial solution
providers have been deeply involved, and start to make great effort to develop
dedicated software. For a further overview and a survey, we refer to Barnhart
et al. (1999a) and Filar et al. (2001) respectively.

3.3 Summary

The state-of-the-art research work in the area of airline crew scheduling and
rescheduling is pictured in this chapter. It shows the substantial contribution
made by many researchers since decades. However, there is still much room left

for further developments, especially regarding the newly emerged topic — the
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airline crew recover problem. In addition, the existing work was mainly carried
out in the circumstances that only fit to the operation environment in North
America. Much research is still needed to be conducted under the setting of
European airlines. Accordingly, our research is highly motivated, and attention

is paid to this particular subject.
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Chapter 4

Mathematical Programming and
Optimal Recovery Solution

As already discussed in Chapter 3, many optimization problems arising in large
public transportation networks can be considered as planning problems in gen-
eral, therefore methods for planning problems can be adopted for the problem
examined in this thesis. For a long time various types of solution methods have
been discussed in the areas of operations research and heuristics. Planning prob-
lems from different areas, such as airlines, railways and bus companies, have a
certain degree of similarity in terms of their problem structure and corresponding
solving methods.

In this chapter, mathematical formulations of the airline crew recovery prob-
lem are presented in Section 4.1 and 4.2. Later in Section 4.3, the exact optimiza-
tion methods are described in detail, which attempts to solve such problems to
optimality. Computational results tested on real-life instances from a European
tourist airline are reported in Section 4.4. Finally, a brief summary regarding

mathematical solutions of the problem is given in Section 4.5.

4.1 General Requirements

Prior to the mathematical formulation, some basic concepts and characteristics
of the airline crew recovery problem are given in this section and followed by the

mathematical model presented in Section 4.2.
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4. MATHEMATICAL PROGRAMMING AND OPTIMAL
RECOVERY SOLUTION

4.1.1 Cost Minimization

Optimization of planning problems in the airline industry is often highly moti-
vated by the potential cost savings, i.e., the cost saving factor usually comes as
the first motivation for most relevant research in this area. Accordingly, the cost
is normally considered as the most important factor when a planning problem is
modeled mathematically. The airline crew schedule recovery is no exception and
needs to be cost effective as well. It is not acceptable if a recovery solution in a
disrupted situation costs too much additional money. For example, a recovered
crew schedule may be technically feasible, with even distribution of workload
among crew members examined, but requires much additional transferring be-
tween airports. It is also unacceptable if there are too many crew members who
have to be notified because of changes, even though the recovered crew schedule
does not need any additional operational cost.

Therefore, the minimization of additional operational cost C' can be seen as

{minimize(C) | C = C — Cpry} (4.1)

where ¢ is the result of subtracting the operational cost for originally planned
crew schedule C,,, from the updated operational cost C'. This cost constitutes
the major part of the objective. Given a certain problem instance and a planning
period, the original operational cost of scheduling a set of crew members, Cog,
is constant and can be computed directly based on the results produced by the
planning system (airline crew scheduling system in the planning phase). Conse-
quently, the minimizing of additional operational cost can be transformed into

the minimization of updated operational cost C' as shown below

minimize(C — Copy.) = minimize(C') (4.2)

4.1.1.1 Operational Cost

Generally, the significant difference between airline crew scheduling (and reschedul-
ing) approaches in Europe and that in the U.S. is the payment system. In Europe,
flight crews are guaranteed a certain salary which represents a minimum num-

ber of block hours. However, in North American airlines crews are compensated
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based on the number of working hours, which might significantly deviate between
crew members and time periods. That is to say, fixed salaries for crews are pre-
dominant in most European airlines, which differs from the payment structure
appearing in most published literature that address the same or similar crew re-
covery problems in North America. This expresses the fact that operational cost
dominates the cost structure to a certain degree. It basically includes the cost of
transferring crew members and accommodating them when staying outside their

home base overnight. The operational cost C,, can, therefore, be calculated as

COPZ = Z Z C;firs + Z Z C’;’Ltl (43)

1€ER V trs 1€ER V htl

where ¢, denotes the cost of a transit which takes place in roster i € R. ¢},
expresses the cost of a overnight stay at a hotel, which is included in roster 7 € R.
The operational cost in total is the sum of costs occurred for every transit and
hotel stay of all rosters examined. The set of all rosters is collected over all home
bases examined. The values of ¢!, , differ from one another, as they denote the
transit cost from one city to another. It depends on the distance between the two
cities and the way how the crew member is transfer — by train, taxi or airplane.
Likewise, the value of ¢}, may also vary, depending on the rate that the chosen
hotel charges. Usually, only a certain number of airports are considered as hotel
bases (e.g., over 20 hotel bases are available in the setting of the airline examined
in our approach).

There are limits to introduce transits between airports instead of considering
all possible transits between two airports. Transferring a crew member from
one airport, e.g., one home base inside Germany, to another one that is located
somewhere in Spain is in no way reasonable if there are other cheaper options.
Normally, the creation of transits depends on the physical distance between cities,
and also other public transport systems that can be taken. For example, transit
by train might be much cheaper than taking a taxi, but only if there is no time
pressure for the crew member. A comparably long time is necessary for crews if
they take a train, because they need some time to get to the airport where they

will serve their next flight.
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Taking a taxi, however, also requires certain concerns, as it is very expensive.
Some European airlines have set up particular rules regarding this issue. For
instance, one rule may be expressed as: From airport A to B, it is allowed to
take taxi only if the number of crew members who need to be transferred from
A to B exceeds 8. Therefore, only one or two taxis are needed instead of calling
one for each crew member. It is rather useful for flight attendants due to the
fact that they usually work as groups. However, it is not very likely that enough
pilots may share one taxi from one airport to another. Furthermore, this makes
the problem more complicated because it is usually decomposed into the level of
fleets and crew functions. Due to the focus of this work on rescheduling pilots
(cockpit crews), we do not consider to form a certain number of crews before
creating a transit. But, as desired by some airlines we limit the possibility of
transits to a subset of all possible pairs of cities, say home bases together with

those cities that are very close to them.

4.1.1.2 Cost For Using Standby/Reserve Crew

Apart from transfer and hotel cost mentioned above, the additional cost incurred
by calling reserve crews is also another big concern expressed by airlines. It
is another major difference between the process of crew rescheduling and the
scheduling process in the planning phase. A cost is then added if a standby or
reserve crew member is used to serve one or more flights. In this work, we consider
such cost as a constant penalty for each assignment to a standby or reserve crew
member. The penalty for the use of standby /reserve crews is then set to a value

that is nearly the same as the estimated cost.

4.1.1.3 Change Cost

Another most desired feature is to diminish the variation from the schedule orig-
inally planned. As a certain subsequent action must be taken directly after a
change occurs, the decision of changing original assignment may possibly cause
further troubles, such as missing crews due to unexpected changes to him/her.
Likewise, a single change may also cause complaints and put considerable incon-

venience to affected crew members.
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Basically, the cost of variations (or changes) from the original schedule ¢4

can be computed as

Cchg = Z Z ctjjhg (44)

i€ER feF (1)

which is the sum of change costs cfhg over all rosters in the final solution. It
can be calculated in a way that a certain amount of penalty is set to each change
occurred. Such cost may be expressed in monetary form, so that it can be modeled
directly. In a flight level, a direct change is introduced whenever it is reassigned
to a different crew member other than its original owner. However, changes also
differ greatly to one another, because of their distinctive patterns in terms of
locations in the schedule. In our approach we take three different cases into

consideration:

e A constant penalty P1 is imposed when the change is covered by the dis-
rupted period (see Section 2.2.5 and 4.1.2) and the crew member who is
chosen to operate the flight in the end is not originally affected by disrup-
tions. In other words, his or her original schedule has nothing to do with
the newly updated flight schedule, i.e., there is no intersection with the
set of updated flights. It is simply because there is no direct need for this
specific crew member to change his or her original schedule and it is also
very likely that the crew member does not like such changes (sometimes,
no matter what changes). This may, in turn, be one source of complaint,

although crews seldom reject schedule changes.

e No penalty is introduced if the crew member who takes the flight in the final
solution is originally and directly affected by disruptions. If a crew member
is originally affected by a disruption, it can be understood that his or her
original assigned flight is updated and different from the old one in terms of
the schedule. Consequently, it is in no way possible that the crew member

can keep his or her original schedule rather than having a new schedule.

e Another relatively higher penalty is added if the change is not covered by

the disrupted period but inside the recovery period. As one can see in (4.5),
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it is calculated based on how long the change is away from the disrupted
period. d is the number of days away from the disrupted period. D is
the total examined time period in days and P2 is a constant value that
is estimated for the change. By using sl, we are able to penalize more if
airlines prefer keeping changes inside the disrupted period. The exponent

sl is set to 1 in our approach.

(0 if the change is in the disrupted period, and
the crew member is originally affected;
cfhg =< P1 if the change is in the disrupted period, but (4.5)

the crew member is not originally affected;

| (£)°'- P2 otherwise

Another possible way to minimize changes is to decrease the number of notifi-
cations. Due to the change of schedule, airlines have to inform their crew members
involved about the changes immediately after the new schedule has been created.
A solution that requires too many notifications is certainly not desirable. We can

distinguish these different cases as:

e A notification is not desirable if it is about a change that will occur within
the disrupted period but the crew member is not originally affected by

disruptions.

e [t is comparably easy to accept changes if the crew member is originally and
directly affected by disruptions. It will also not cause further troubles in
terms of unable to contact him or her, because he or she normally expects

changes in such a particular situation.

e The number of notifications that inform crew members some changes on

the next day or a few days later should also be minimized.

Basically, the goal of minimizing changes can be achieved in both ways. We
choose the first approach due to the fact that it is more flexible to control changes

in flight level.
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4.1.2 Recovery Period

Due to the nature of the airline crew recovery problem, we usually consider only
a shorter recovery period than is used within the planning process. The length of
the recovery period chosen may have a great impact on the general performance
of the recovery. First of all, it may influence the quality of the final recovery
solution. Secondly, it may have an impact on the time that the problem solution
procedure takes.

As described in 2.2.5, two types of periods are basically involved in this prob-
lem: disrupted period D P and recovery period RP. Here we make the assumption
that some flights in the problem instance examined have been updated. Namely,
their departure or arrival times are changed, or flights are newly added or can-
celled due to current disruptions.

In order to determine the two periods, we first give following definitions:

tap.start the departure time of the first flight that is updated due to the di-
sruptions and has not been operated yet

tapena  the arrival time of the last flight that is updated due to the disrup-
tions and has not been operated yet

trpstart the starting point of time where flights operated later than this po-
int may be possibly rescheduled. Flights operated earlier than this
point remain intact

trpena  the ending point of time where flights operated earlier than this po-
int, but later than ¢, 54+, may be possibly rescheduled. Flights op-
erated later than this point remain intact

Based on the description above, we get the sequence of the four points of time:

trp.start S tdp.start < tdp.end S trp.end

Therefore, the disrupted period and the recovery period can be calculated as

shown in Equation 4.6 and 4.7 respectively.

DP = tdp.end - tdp.sta’rt (46)

RP = Zfrp.encl - trp.start (47)
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Notably, the significant difference between the two periods is the fact that the
disrupted period is fixed, while the recovery period is open rather than decisive.
The recovery period is determined in respect of the specific need that reflects the
given disrupted situation. Airlines may need a longer recovery period in order
to deal with serious disruptions. In contrast, it might be shorter for a larger
fleet with many crew members and flights involved, because the larger size of
the problem instance normally requires a longer computational time to solve the
problem.

It is an interesting question whether the starting time of the recovery period
trp.start should be exactly the same as the starting time of the disrupted period
tap.start- The answer that we propose is that the starting time relies on the situa-
tion examined. One reason that ¢,, s, is earlier than ¢4y s¢qr¢ is that the problem
can be relaxed, since it provides more possibilities of finding a better solution.
Another reason to set an earlier starting time of recovery period is that disrup-
tions are detected ahead of their actual occurrences and airlines can be able to

handle the problem proactively.

4.1.3 Active and Frozen Flights

Once the recovery period RP has been determined, we may divide the flight legs
into two groups: active flights and frozen flights. Flight legs that are scheduled to
be operated earlier or later can be considered as “frozen” because of unnecessary
modifications. In contrast, those flight legs that are operated within the recovery
period are seen as “active” flights, which indicate the possible reassignment to
other crew members. The reason is that the recovery period cannot be too long
since the problem has to be resolved in a reasonable period of time. Therefore,

4

a shorter one is set up as the “working” period for the crew recovery process.
Within the period, we may assume there are sufficient flights and crew members
to find a solution that withstands the given disruption.

As illustrated in Fig. 4.1, active and frozen flight legs can be determined.
It is quite obvious that flight legs must belong to the group of active flights if

both departure and arrival time of that flight are within the recovery period.
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trp.start trp.end

B BEN [

‘ (F] (7] i .
L F | EF] ‘

Recovery period

Active flight Frozen flight

Figure 4.1: Active and frozen flight legs

Furthermore, a flight leg is also considered to be frozen if only one of the depar-
ture/arrival times is in the recovery period. For example, a flight that departs
slightly earlier than the beginning of the recovery period but arrives later than
it must be treated as frozen because there is no way to reassign such a flight
to any other crew member. In other words, it is not necessary to consider the

rescheduling of such a flight.

4.1.4 Decomposition

In the setting of the airline involved, crew members, particularly cockpit crew,
are qualified to operate only a limited number of aircraft types. Airlines group
their aircraft into fleets regarding an aircraft’s generic specification. Therefore, in
our approach we may decompose the problem and examine it fleet by fleet. This
reduces the complexity of the problem dramatically. Moreover, crew positions
(captain, first officer, second officer etc.) are usually not interchangeable, thus

further decomposition can be made by separating an airline’s crew positions.
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Notably, more than one crew position is also considered in the case that a certain
level of teamwork is required, e.g., the team may be built among captains and
first officers. However, this is not in the scope of this approach, and the team

issue is not considered in this work.

4.2 Set Partitioning Models for Airline Crew
Recovery

After giving the general requirements of the problem, in this section the corre-
sponding mathematical models are presented in detail. We discuss two models
where the second model is a revised version of the first one, and show their dif-

ferent perspectives.

4.2.1 Basic Model

Similar to the airline CSP, the airline CRP can be mathematically formulated as
a set partitioning type model, where a set of affected flights caused by disruptions
needs to be assigned or reassigned exactly once. The disrupted flights grouped
with previously planned flights are chained into a huge amount of rosters, which
represent all possible individual schedules for crew members within a certain
time period. Each crew member, therefore, will be finally assigned to at most
one revised schedule for the examined period with respect to all the regulations
and rules.

In our approach, we apply the concept of integration. Due to the shorter
recovery period the problem is solved in an integrated way instead of addressing
pairing generation prior to the assignment phase. Rosters for individual crew
members are generated directly from flight leg level. The model presented in this
section is similar to the one proposed by Wei et al. (1997) but without generating
pairings, considering the special setting in a European airline. The problem is
treated as a set partitioning model below, where a set of rosters is given and needs
to be assigned to a certain number of the individual crew members, by which all
the flights will be covered exactly once. By roster, we mean a slightly different

concept to conventional definition of roster in the airline CSP, because a roster
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here is a shorter line of work for a crew member (with the length of the recovery
period). We start with the following definitions prior to the complete model:

(the roster is slightly different from )

F', set of active flight legs (see Section 4.1.3) within the recovery period

F':set of affected flights (see 2.2.1)

D, set of original rosters which represent the previously planned crew sched-
ule for each crew member

R, set of possible rosters

W, set of crew members involved

¢, operational cost of assigning the roster 7 to the crew member w

uy, additional cost, if the flight leg f is assigned to a standby or reserve crew
member

vy, bonus of assigning an original roster d to its originally assigned crew mem-
ber w

ay; = 1, if the flight leg f is included in the roster ¢, 0 otherwise

byq = 1, if the flight leg f is included in the original roster d, 0 otherwise

eqw = 1, if the roster ¢ belongs to the crew member w, 0 otherwise
The binary decision variables are:

x’ = 1, if the roster ¢ is assigned to the crew member w, 0 otherwise

yr = 1, if flight f is not assigned to a standby or reserve crew, 0 otherwise

zy = 1, if the original roster d is chosen by the crew member w, 0 otherwise

Therefore, the model can be expressed as:

min Z Zcf’x;" + ZUfyf + Z vai”zfi” (4.8)

weW i€R feF weW deD
st Y > apaf+yp+ Y Y brazy =1 VfEF (4.9)
weW ieR weW deD
Zeiwx;” <1 YweW (4.10)
1€ER
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z €{0,1} Vie R, we W
yfe{O,l} VfeF
zy €{0,1} Yde D, we W (4.11)

The first two parts of the main objective denote minimizing the total opera-
tional cost ¢;’ and the additional cost uy for those flights which are assigned to a
standby or reserve crew member. In our approach, we do not explicitly model the
assignments to standby /reserve crews, but instead we penalize all those flights
that are not assigned to any operating crew. Minimization of the disturbances
to the crew is realized by calculating the changes vy in a monetary sense, where
a bonus is attached to all rosters that are the same or similar to the originally
scheduled rosters. The calculation of the costs will be described later. Constraint
(4.9) guarantees that all the flights (f € F') are covered exactly once (more than
once would imply the usage of deadhead flights by choosing a set covering type
of model), while constraint (4.10) ensures that each crew member (w € W) takes
at most one roster (i € R). Obviously, one additional constraint is that all pre-
scheduled activities for each crew member falling in the examined time period
have to be covered by their corresponding owner. This constraint is satisfied by
building legal possible rosters.

The advantage of such a model can be seen when we are dealing with a
disrupted situation where only small changes are applied in the outcome schedule.
Due to the strong encourage of choosing originally planned schedules, more crew
members will be likely to keep their old schedules instead of getting small changes
for everyone. Notably, this advantage can only be true when the disruptions are

considerably minor disruptions.

4.2.2 Revised Model

The model presented above has certain drawbacks. Firstly, the variable 2] may
be possible to be eliminated if we treat every type of roster (newly built and
originally planned ones) identically. Secondly, the accuracy is limited because

rosters that are “slightly” different from originally planned ones are considered
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as a completely new built roster rather than a slightly changed plan. Furthermore,
the model above cannot easily be adopted by the heuristic approach which will be
described in Chapter 5. Due to these reasons, a revised model of (4.12) — (4.16)
is proposed below.

Basically, the problem is still treated as a set partitioning model, where a set
of rosters is given and needs to be assigned to a certain number of individual crew
members, by which all the flights are covered exactly once. Firstly, a set of new

or revised notations are listed below:

v¥, the penalty to changes (variations) from originally planned schedule

biw, = 1, if the roster i belongs to crew member w, 0 otherwise

Therefore, the model can be revised to:

min Z Z (¢ +vf)xy + ZUfyf (4.12)

weW i€R fer
st Y > apri+yr=1VfeF (4.13)
weW ieR
D bl <1 VweW (4.14)
1€ER
z €{0,1} Yie R, we W (4.15)
yr €{0,1} VfeF (4.16)

The first part of the objective function (4.12) denotes minimizing the total
operational cost ¢}’, together with the effect of the disturbances to the crew v;’
realized by expressing the changes in a monetary sense. v}’ equals zero, if the
corresponding roster is identical with an original roster. The calculation of ¢’
and v" can be found in Section 4.1.1. Those flights which cannot be assigned to
any crew member in service, require reserve and standby crews, which imposes
additional costs uy. Constraint (4.13) guarantees that all flights (f € F) are
covered exactly once, while constraint (4.14) ensures that each crew member

(w € W) takes at most one roster (i € R). Such a revised model distinguishes
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the differences of changes. Consequently, it allows us to manipulate variations in

a more flexible way, since every individual change is calculated.

4.3 Model Solving

This section is organized as follows. We first propose a dedicated network struc-
ture in Section 4.3.1, through which the enumeration of rosters is realized. Solv-
ing the mathematical models as pure integer models is then described: Firstly,
the direct solving procedure is introduced in Section 4.3.2; Secondly, a column

generation approach is then discussed in Section 4.3.3.

4.3.1 Network Representation

In this section, we embark on building a specialized network in order to execute
the roster enumeration and to apply the column generation approach later. Gen-
erally, the network is defined in a similar fashion as those proposed by Desrochers
and Soumis (1989).

First, a multi-layer network G' = (N’, A’) is constructed, in which departure
and arrival events (nodes) are connected by flight legs (including newly added
and updated flights), waiting connections, transits, and hotel stays (arcs) which
are operated at multiple home bases (layers). It is an intuitive way to construct
such a network initially by representing schedules of crews who station in each
home base. That is why we call it multi-layer network. As depicted in Fig. 4.2,
each timeline is associated with one corresponding airport (including home bases)
p € P. All nodes on a timeline are created in chronological order.

The final network G = (N, A), also seen as an acyclic time-space network, is
built by eliminating layers and combining timelines that belong to the same air-
ports or home bases (see Fig. 4.3). Additionally, a source and a sink are created,
which can only be visited as the first node and the last node, respectively, i.e.,
N = N'"U{Source, Sink}. By using dummy arcs, source node is connected with
each departure node in the network, and sink node is connected with each arrival
node. Possible connections between flights can be created between flights when
sufficient period of time required for two consecutive flights is found. This can

be done by going through all airports, especially home bases, and checking each
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HB 1

HB 1 (Layer 1)

HB2

HB 2 (Layer 2)

HBn

HB n (Layern)

— Flightarcs

-» Waiting arcs

- == Transit and hotel arcs

Figure 4.2: Sample multi-layer network G’

pair of arrival node and departure node that may be possibly connected. Addi-
tionally, connection arcs are also added between an arrival node and a departure

node when it is possible to create a transit in between.

Al

HB 1

A2

A3

HB 2

A4

AS

— Flightarcs

» Waiting arcs
=-=-9% Dummy arcs
===-> Connection arcs

Figure 4.3: Network structure
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4.3.2 Problem Solved as an Integer Model

Set partitioning problem is a well-known NP-hard problem (see Garey and John-
son, 1979) which is a problem to find an optimal partition which covers every
element exactly once. The examined problem (4.12) — (4.16) is NP-hard, since it
can be seen as an instance of set partitioning problem with additional constraints.
Similar to a number of practical problems that are examined in many other areas,
the airline crew recovery problem formulated as a set partitioning problem has a
huge amount of variables. This makes the problem extremely difficult to solve.

The enumeration of all feasible rosters for every crew member is difficult be-
cause of the huge number of possible rosters and a number of rules. But it can
still be done, at least for small- and medium-sized instances, by enumerating ros-
ters through the network proposed above, since a certain number of basic rules
have been considered when building the network, e.g., connections between flight
legs. In addition, the recovery period of such a crew recovery problem is usually
much shorter than the planning period widely examined in the airline CSP. This
thus makes it possible to explicitly create feasible rosters by finding a path in the
network. Therefore, apart from exhaustive enumeration method, we also consider
enumerate columns by going through all paths in the network in a straightfor-
ward way. In summary, all paths are created based on the network, and then
translated into rosters for crew members.

In order to find legal rosters for each specific crew member, the network G is
first duplicated for each crew member w € W. The resulting network G, includes
all active flights that the crew member may choose within the given recovery
period. Based on the current location and the status of the crew member, there
are only a limited number of airports that can be taken as starting locations. If
the current location is not the departure airport of the first flight, a transit must
be provided prior to the flight. The possibilities of creating a transit between two
airports are limited due to the airline’s policy. Therefore, a subset of airports is
selected and considered as possible starting locations. This can be accomplished
by eliminating dummy arcs that end with departure nodes starting from undesired
airports. Therefore, all paths from the source node to the sink node can likely

delineate a possible roster for the crew member examined.
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The overall process is a similar procedure to the depth-first-search. Within the
search process, a backtracking method is applied to find paths that include nodes
with multiple arcs. Each path is then converted to the roster representation,
and verified by an isolated module that checks rosters with all relevant rules
and regulations. Once a roster is verified and considered as legal, it is added to
the roster set R. The above process is repeated for every crew member in the
instance. Ultimately, the complete set of all legal rosters for all crew members is
created, each of them is then a corresponding variable in the mathematical model
presented in Section 4.2.

Once the model is built by enumerating all possible rosters, it can be possibly
solved by most standard or commercial IP or MIP optimizers. In our approach
we use ILOG CPLEX version 8.0 MIP Solver (ILOG, 2002) to solve the given
model. Further discussion will be given in Section 4.4.

When applying the complete enumeration mechanism, small problem instances
can be solved very fast. However, it appears to be not practical at all to consider
such an approach to solve medium and large instances because of the undesired
long solution time. We typically need a long time to enumerate all possible ros-
ters, and the length of time required by CPLEX is also very long. For some
instances, the whole process may take several hours to reschedule flights within
only a two day period, and CPLEX may take also even hours to solve the resulting
model. This drives us to find out a more efficient way to consider such a problem.
In the rest of this chapter, a column generation approach will be introduced in

detail, which builds the model in an implicit way.

4.3.3 A Column Generation Approach

In general, the airline crew (re)scheduling problem, known as an NP-hard combi-
natorial optimization problem, usually becomes very hard to solve directly when
the problem size increases. In dealing with a practical problem, the direct solving
turns out to be inefficient with today’s technologies. Even conducting a complete
enumeration of all possible rosters can be an extremely difficult task, let alone
solving it. Therefore, we have implemented a column generation approach which

implicitly builds a promising subset of rosters. Therefore, we may tackle large
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problems more efficiently. Besides, based on the behavior of such a method we
are able to learn the characteristics that the examined instances have.

As mentioned in Chapter 3 for several airline crew pairing problems, column
generation methods have been proposed starting with an initial subset of all
rosters (columns) as the basis, rather than enumerating a large number of columns
explicitly. The master problem (MP) is the LP relaxation of the original IP model.
Because the master problem is restricted in a sense of limited number of columns
initiated in the basis, it is called restricted master problem (RMP). The roster
with negative reduced cost is added into the basis until no more such roster is
available. An integer solution is then achieved by embedding the above procedure
into a branch-and-bound scheme.

One of the most compelling aspects of column generation is the ability to
implicitly create columns that produce the linear optimal solution in the end.
Constructing columns in this way allows us to solve large-scale problem instances
potentially because we do not have to construct all possible columns as a set
beforehand. To demonstrate the procedure, we first describe the basic of column

generation method. Given a linear problem, which is formulated as
min. Z =cx : Ar>b, x>0

where z and c are decision variables and their cost coefficients respectively, and
they are both n vectors. b is a m vector which represents resource assumptions.
A is am x n matrix, in which each column a; is associated with a decision
variable z; (j € J). For some problem types, it is impractical or even impossible
to build the model with a large number of variables. When solving above linear
problem with simplex method, a non-basic variable is priced out in each iteration,

entering the basis. The pricing is determined by
arg min {¢; := ¢; —u’a;|j € J}

where ¢; is the objective function coefficient associated with non-basic variable
xj, and u is the non-negative vector of dual variables.
Since |J| may be huge, a RMP with a reasonably small subset J' C J of

columns is considered. Let A and @ be primal and dual optimal solutions of the
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RMP, respectively. When column a;, j € J are given as elements of the set A,
and the respective cost coefficients ¢; can be computed via a functionc : A — Q,
the subproblem, also called the column generator or the generation problem, can

be formulated as
¢ := min {c(a) — " a|a € A}

Columns priced out then enter the initial subset, and the RMP is solved
again. Until there are no further columns whose reduced cost is negative, the
problem is solved optimally. In addition, it allows us to deal with complex rules
when solving the subproblem, i.e., during the process of columns generation. For
a more elaborate description, we refer to Desrosiers and Liibbecke (2003) and
Liibbecke and Desrosiers (2004).

The subproblem can be solved typically by: (1) explicit enumeration, (2) con-
strained shortest path problem by Dynamic Programming, (3) resource-constrained
shortest path and (4) constraint programming. The method applied for solving
individual problems may vary depending on the characteristic of the problem ex-
amined. In our approach we model the problem as a constrained shortest path
problem which is solved using dynamic programming. Details of the approach
will be discussed in Section 4.3.3.3.

Here we outline the column generation method to explain how it works (see
Algorithm 1). A set of columns Rgyp is constructed by creating an initial set
of columns that is able to produce feasible solutions. The restricted problem is
solved through function solveLP(), by which the dual vector w is obtained. With
the dual information, the subproblem is solved to find a new set of columns R’ in
which each column r € R’ has the negative reduced cost. The restricted master
problem is then extended by adding the columns in set R’. The above procedure
is repeated until there is no further column that has negative reduced cost, and
the process ends.

For an integer problem (or mixed integer problem), one cannot apply column
generation directly as linear programming duality theory is not valid for (M)IPs.
Therefore, the LP relaxation of the original integer problem is first created. The
column generation is then used to solve the LP relaxation to optimality. But

notably, it does not guarantee optimality (sometimes even no feasible integer
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Algorithm 1 Column Generation
Require: set of all variables R
Ensure: linear optimal solution to RMP
Rryp < Initialization()
assert(RMP is feasible)
repeat
u <= solveLP(Rgap)
R' <= solveSubproblem(u)
Rrvp <= Rrup U R
until R = o

solutions) to the original integer problem, although the optimal solution of its
LP relaxation problem is achieved. It is because there might be columns which
do not price-out correctly but might be in the optimal integer solution. One way
to achieve optimal solution is to add all columns that have a reduced cost smaller
than a “gap” value, where gap is defined to be the difference between the optimal
linear programming solution and a known feasible integer solution (see Rushmeier
et al., 1995). For a range of problems, it is known that the gap between optimal
linear programming solution and optimal integer solution of RMP is small enough
so that the gap can be acceptable. However, the column generation process
may become prohibitive when the gap is large. Another alternative to achieve
optimality is applying branch-and-price. By applying column generation at each
node in the Branch-and-Bound search tree to obtain a bound on IP solution. For

a complete review regarding column generation in integer programming, we refer

to Wilhelm (2001).

4.3.3.1 Master Problem

In our approach, the master problem can be created by relaxing the integer

variables into real variables. Therefore, the constraint 4.15 and 4.16 becomes

¥ >0 Vi€ R weW (

4.17)
yr >0 VfeF (4.1

8)

where ¥ and y; are now non-negative real variables. Therefore, the model (4.12)
— (4.14), (4.17) and (4.18) represents the LP relaxation of the original integer
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model which becomes the master problem in the column generation approach.
Because only a small part of rosters is initially constructed, the master problem
that only includes these initial columns is the restricted master problem of this
approach.

The RMP, therefore, is used and solved throughout the column generation
procedure interactively. First, it is constructed with an initialization method
which attempts to find a small portion of all possible rosters that is able to
produce feasible solutions. Once the initial subset of columns is created, dual
values that are calculated to price out new columns become available.

The subproblem in our approach is basically a special roster generator which
does not aim to find only possible and feasible rosters but rosters that have
negative reduced cost. In other words, we seek to construct rosters which can
potentially improve the solution value of the RMP. During each iteration of the
column generation procedure, new rosters are constructed based on updated dual
values.

In the next two section, 4.3.3.2 and 4.3.3.3, we will introduce the initialization

methods and specialized subproblem respectively.

4.3.3.2 Initialization

The restricted master problem, as described above, initially includes only a subset
of all possible columns. In order to start the column generation, we have to assure
that the initial subset provides at least a feasible solution, otherwise dual values
cannot be available for pricing out more columns later on. Therefore, a procedure
that is able to generate a set of columns and guarantees the feasibility becomes
necessary. As proved in Garey and Johnson (1979), finding a feasible solution
to a general set partitioning problem is also NP-hard problem. Therefore, the
initialization of such a set of columns is a difficult task in general.

In our approach, we have implemented two initialization methods. The first
one (see Algorithm 2) is basically a method that creates an initial set of columns
little by little. By considering every affected flight, the initialization method tries
to create the rosters that contains at least one affected flight. All feasible ros-
ters (set R,y ) that are originally planned are still considered and added into the

basis (set Rrap). Because of disruptions, current RMP is definitely infeasible.
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Therefore, additional rosters that include affected flights should be generated
and should enter the RMP. After locating each departure node and each arc of
an affected flight, we create paths in the network G, which represents a num-
ber of (MaxRoster Per Af fectedFlight) feasible anonymous rosters and includes
the affected flight. For each crew member, a number of (MaxRoster PerC'M)
feasible rosters are created by examining the feasibility of assigning one of the
rosters generated above to the crew member. Finally, the feasibility of the RMP
is tested with CPLEX. If CPLEX cannot find any feasible solutions, the value
MazxRoster Per Af fectedFlight and Max Roster PerC' M are both increased. Then

the procedure above is repeated again until the RMP includes feasible solutions.

Algorithm 2 Initialization Procedure 1
Require: affected flights set F’ # &
Ensure: RM PisFeasible is true
MaxRoster PerCM < nl — incl
MaxRoster Per Af fectedFlight <= n2 — inc2
RM PisFeasible < false
initial set of rosters Rpyp < O
Rryup <= Rrup U Rog
while RM PisFeasible is false do
MaxRoster PerCM < MaxRoster PerC' M + incl
MaxRoster Per Af fectedFlight <= MaxRoster Per Af fectedFlight + inc2
R <o
for all f € F' do
for i« = 1 to MaxRoster Per Af fectedFlight do
r’ < anonymousroster (f)
R < R U{r'}
end for
end for
for all crew member w € W do
for j =1 to MaxRoster PerCM do
r <feasibleRoster(R’)
Rryup <= Rryup U{r}
end for
end for
RM PisFeasible < feasibility(Rrarp)
end while

Generally speaking, the initialization method described above can effectively
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generate a limited number of rosters that are able to produce a feasible solution
of RMP. It performs well with small- and medium-sized instances. However,
it may require a too long period of time to accomplish, as the problem size
increases dramatically. Therefore, we improve the above initial heuristic to fulfil

the practical demands.

Algorithm 3 Initialization Procedure 2
Require: affected flights set F' # &
Ensure: RM PisFeasible is true
MazxRoster PerC'M <= nl
MaxRoster Per Af fectedFlight <= n2
initial set of rosters Rpyp < @
Rryp <= Rryup U Rog
RM PisFeasible <= false
Fune = F'
while RM PisFeasible is false do
R <o
for all f € F,,,. do
for i = 1 to MaxRoster Per Af fectedF'light do
r’ < anonymousroster (f)
R < R U{r'}
end for
end for
for all crew member w € W do
for j = 1 to MaxRoster PerCM do
r <feasibleRoster(R’)
Rryp <= Rpyp U {r}
end for
end for
RM PisFeasible < feasibility(Rpup)
if RM PisFeasible is false and uncovered flights exist then
F,,. <= uncovered flights
else if RM PisFeasible is false and no enough crews then
Fone =0
MaxRoster PerCM < incl
end if
end while

As shown in Algorithm 3, the second initialization method attempts to find

more columns by checking which flights are not covered after the restricted mas-
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ter problem is solved every time. In other words, the first method introduced
previously is not blindly repeated if the restricted master problem is infeasible.
A so called uncovered set (F,,.) of affected flights is given, which is initially the
same with the complete set of affected flights (F”). Then the first initialization
method is used once, and the resulting RMP is solved. If the model is infeasible,
we update the uncovered set Fi,. with only those flights that are not covered
and cause the infeasibility, reported by CPLEX. With such a considerably small
number of uncovered flights, the above procedure is repeated until the RMP is
feasible.

In case of infeasibility, another possible reason is that there are not enough
crew members. In other words, some crew members have to take more than one
roster in order to assign all flights entirely. In this case, more rosters will be
generated for each crew member by changing the value of MaxRoster PerCM.
The procedure is then repeated until a feasible solution can be found. In our
approach, we observed that such case of infeasibility only happened in a few
tests, but the majority of cases is that some flights are not uncovered.

In our approach, we first set the values of both Max Roster Per Af fectedF'light
and MaxRoster PerC' M to 1 in favor of possible reduction of the complete time.
If the resulting RMP after the first iteration is infeasible and the reason of in-
feasibility is uncovered flights, both values are increased by 2. For medium- and
large-sized instances, the value is set comparatively larger, e.g., 4 or 6. If the in-
feasibility is caused by the limited number of crew members, the same number of
rosters is generated repeatedly for every crew member until the problem becomes

feasible.

4.3.3.3 Subproblem

Solving the RMP presented in Section 4.3.3.1 yields the dual multipliers u; and
u,, for constraints (4.13) and (4.14), respectively. Accordingly, the reduced cost

for each column (variable) ¥ can be expressed as

¢ = (¢ +v') — ufTaZ- — uwa,- (4.19)
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Therefore, the subproblem examined here is to find columns which have negative
reduced cost calculated above. In our approach, an enumeration method and a
constrained shortest path algorithm are implemented and tested to achieve the

task of rosters generation.

-.—-% Prescheduled activity

Figure 4.4: The reduction of the network

First we consider the possible reduction of the network by pruning nodes and
arcs that are unnecessary for specific crew members. The significant reduction
can be achieved when pre-scheduled activities of a crew member are incorporated
into the network as arcs. Because the arcs representing pre-scheduled activities
must be passed by any valid paths, all arcs and nodes that lie within the periods
of them can be seen as unnecessary ones therefore can be eliminated from the
network. As illustrated by the example in Fig. 4.4, a crew member has been
assigned one pre-scheduled activity that takes place at the end of the recovery
period. Therefore, those nodes and arcs that conflict with the pre-scheduled
activity in terms of time can be safely removed from the network. Furthermore,
only the arrival node of such a pre-scheduled activity arc is connected to the sink
node, because this arc must be taken and there is no arrival node available after
the pre-scheduled activity arc. Notably, such arcs may appear in the middle of
the recovery period. Accordingly it is possible to eliminate not only the nodes
and arcs that have conflicts in time, but also the arcs from the source node to
all departure nodes after the pre-scheduled activity and the arcs from all arrival

nodes before the pre-scheduled activity to the sink node.
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Prior to the implementation of the constrained shortest path algorithm, we
make a preliminary experiment using an enumeration method to generate columns
that have negative reduced costs. Basically, it is a comparably inefficient way to
find eligible columns, but it is still faster than the pure enumeration method
introduced previously. All valid paths are created by starting from the source
node to the sink node in the network. The legality of each path is examined
by considering rules, e.g., flight duty time limit, and the cost is calculated if the
corresponding roster is legal. All remaining rosters are then sorted by their costs.
That is to say, rosters with no transit and hotel stay will stay on the top of others.
The reduced cost of each roster is calculated, and rosters with negative reduced
cost are kept. Once the set of rosters with negative reduced cost is built, a certain
number of such rosters are added to form a new restricted master problem.

Before the description of the constrained shortest path algorithm, we define
the cost ¢} for each arc of the network. By incorporating the dual values uy, we

calculate such a cost as

r=chul— Y up  ijeEA (4.20)
feri;
Where ¢} and vjj denote the operational cost and the change cost of the arc
(1,7), respectively, Note that the flight arc does not impose any operational cost
but possibly change cost. In contrast, those arcs that are translated into transits
and hotel stays incur operational cost (see Section 4.1.1) but no change cost is
introduced.

Further restrictions on paths can be modeled by attaching the associated
vector of resources consumption RC, = (RC41, RCya, ..., RCy,) to cach arc a € A
from node 7 to j, where ¢ is the number of resources examined in the approach.
In our approach, flight duty time and weekly rest restrictions are handled as
resources. The quantities of each resource consumption for a path from source to
the node j can be calculated by adding the corresponding resources consumption
that are accumulated from the source until node i. Therefore, the legality of the
path can be checked by examining the associated lower and upper bound for each

resource. We define the label for a path as the following vector:
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I ( gc ) (4.21)

Consider two paths a and b ending at node ¢, a is dominated by b if L, > L.
This dominance process can also be understood as an elimination procedure, in
which unpromising paths are discarded. In other words, at a given node ¢, any
illegal and dominated path from the source node to the node 7 is eliminated.

Start with the source node, all nodes are visited by flowing along arcs. At
given node ¢, all valid and nondominated paths from the source to the node i are
stored and compared. Finally, at the sink node paths with negative cost are added
into the master problem. After the updated restricted master problem is solved,
the new dual information is obtained and the procedure above is repeated until
no further paths with negative reduced cost exist. For more elaborate description

of such an algorithm, we refer to Desrosiers et al. (1995).

4.4 Computational Experiences

In our approach, we carry out a number of experiments based on the data from
a Furopean airline. The characteristics of the problem instances have been dis-
cussed in Section 2.5. Numerous test runs have been conducted on a regular PC
with Intel Pentium IV 2.2 GHz CPU, 2 GB main memory, running Microsoft
Windows XP Professional operating system.

The applied optimizers were ILOG CPLEX 8.0 (ILOG, 2002). We used the
default parameter settings for CPLEX, except that we set the parameter Probe
to 1, indicating a higher probing level slightly above default. In doing this, the
solution time may decrease slightly. After numerous experiments, we observed
that invoking aggressive cut strategies generated a large number of cuts, but also
increased the solution time significantly. Therefore, it is not worth generating
cuts aggressively, since it slows down the solving process in most cases.

Table 4.1 lists a collection of practical problem instances we tested in our
approach. The table provides an overview of these instances in terms of the

numbers of home bases, airports, flights, crew members etc.
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Table 4.1: Overview of the problem instances

Home Hotel Total Crew Duration

Instances bases bases Airports flights members (day)
Al 6 8 52 159 A7 15
A2 5 10 o7 228 42 15
A3 6 13 66 268 42 10
A4 6 14 65 275 42 10
A5 6 14 66 406 42 15
A6 6 16 69 415 42 15

Bl 11 21 66 1,287 188 10

Table 4.2: Disruption scenarios based on instances A3 and Bl

Disruption Inst. Disruption summary Recovery Active
scenario Unavailable Affected period (day) flights
crew members flights

A3-1-1 A3 0 2 1 27
A3-1-2 A3 2 2 1 27
A3-2-1 A3 4 2 2 53
B1-1-1 B1 1 0 1 117
B1-2-1 B1 2 4 2 242
B1-2-2 B1 3 4 2 242
B1-2-3 B1 1 6 2 242
B1-2-4 B1 2 4 2 242

Various artificial disruption scenarios are created based on available instances.
Scenarios proposed are usually one or two days recovery period, within which a
certain number of flights are affected (delayed, cancelled or newly added) and
several crew members are not available. Out of the variety of available problem
instances we present a selection within the following table 4.2.

For column generation approach, the number of columns generated during
each iteration also affect the total number of iterations needed. As one can see
from Fig. 4.5, the more columns we generate in each iteration, the less number
of iterations we need to complete the overall solving process.

In addition, the number of columns generated during each iteration may affect
the total solution time of the enumeration based column generation (see Fig. 4.6).

As illustrated by the figure, a value around 40 appears to be the best number of
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Figure 4.5: The effect of the number of columns generated during each iteration
to the number of iterations

columns during each iteration.

15 T T T T T

Solution Time (minute)

L
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The number of columns per iteration

Figure 4.6: The effect of the number of columns generated during each iteration
to the total solution time

In Table 4.3, a comparison among the different approaches is presented. In
these tests, we simplify the calculation of the change cost v}" by associating a

negative constant change cost to rosters that are the same as originally planned
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Table 4.3: Computational performance between enumeration based approach and
column generation approach
Disruption  Direct solving ~ Col-gen (enumeration)®  Col-gen (CSPP)

scenario  time’ obj. iter. time obj. iter. time  obj.
A3-1-1 10 100% 2 12 100% 2 7 100%
A3-1-2 9 100% 2 9 100% 2 7 100%
A3-1-2 15 100% 3 11 100% 3 8 100%
B1-1-1 51 100% 2 32 100% 2 21 100%
B1-2-1 3643 100% 8 235 100% 12 61 100%
B1-2-2 3719 100% 7 229 100% 10 59 100%
B1-2-3 3560 100% 7 226 100% 10 47  100%
B1-2-4 3287 100% 7 220 100% 12 35 100%

%40 columns per iteration
bComputational time in seconds

ones. The negative value used is the same as the bonus value applied in the basic
model. Both column generation based approaches provide faster solution times
than the direct solving approach. Especially for large instances, the column gen-
eration approaches can reduce the total solution time significantly, because the
direct solving method requires a tedious enumeration of all possible rosters. The
direct solving approach needs not only a longer time for solving the huge model
generated, but also a longer time to generate all possible rosters and to calculate
their costs. Interestingly, both column generation approaches can produce an
optimal solution in all cases presented here, and it sometimes is not identical to
the solution found by the direct solving approach. The reason that the column
generation method can possibly find an optimal solution in our approach is be-
cause there exist multiple optimal solutions which introduce the same cost but

with different assignments.

4.5 Summary

In this chapter, we model the airline crew recovery as set partitioning problems.
A column generation method is proposed to solve the problem in an implicit
way. Its performance is compared with a direct solving approach, which shows a

significant improvement in terms of the required computational time. Mostly, the
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column generation method can find optimal solution although it is not guaranteed
theoretically. After conducting the comparison between the two methods for
solving the subproblem, we observe that constrained shortest path algorithm can
solve the subproblem much faster than the enumeration based one. Therefore,
as shown by the computational results, the column generation shows the greater
potential to find an optimal recovery solution.

However, certain problems also arise as it is applied to deal with large problem
instances. A large number of daily flights and crew members and a long recovery
period all have dramatic influence on the general recovery performance signifi-
cantly. In such a case, the proposed method may require longer computational
time to find a final solution, which may exceed the limit of desired recovery time.
Therefore, it is necessary to develop a solution method which can find an accept-
able and applicable solution within a reasonable period of time. This practical
observation therefore motivates us to develop heuristics which will be introduced
in Chapter 5.
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Chapter 5

Heuristics for Airline Crew
Recovery

For several decades a variety of heuristical methods have been proposed to solve
combinatorial optimization problems and become more and more popular re-
cently, particularly for some real life problems that seem to be extremely difficult
to solve. Due to their simplicity and rapid problem solving characters, various
categories of heuristic algorithms have been chosen to deal with a number of prac-
tical problems, e.g., planning and scheduling problems, where they are able to
produce good or even optimal solutions within a reasonable amount of time. Ex-
cept for those heuristics that are solely dedicated to a specific problem, heuristics
can be classified into several groups, such as constructive heuristics, local search
based heuristics, evolutionary algorithms etc.

Over the last 15 years much of the research effort has been concentrated on
the development of metaheuristics, using mainly two principles: local search and
population search (see Hertz and Widmer, 2003, for an overview). Basically, local
search based methods perform the intensive exploration of the solution space by
moving at each step from the current solution to another promising solution in
its neighborhood, such as simulated annealing, tabu search and variable neigh-
borhood search etc. Differently, population search consists of maintaining a pool
of solutions and recombining them in order to hopefully produce better solu-
tions, such as genetic algorithm (GA) and adaptive memory procedures etc. In
many papers it is approved by many researchers that these techniques show great

efficiency in solving “hard” problems.
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As one may see in many scientific publications, genetic algorithms have been
successfully applied to solve many problems, as they can gradually find better
solutions during the course of an evolution. Lots of research has been carried out
after the concept of genetic algorithm was first introduced by Holland (1975).
For example, the set covering and partitioning problem, as classical combinatorial
problems, were systematically examined by Beasley and Chu (1996) and Chu and
Beasley (1995) respectively, who observed the potential for solving these types of
problems. Although genetic algorithms may not be computationally competitive
for every problem, Chu and Beasley have observed and envisaged that for solving
set partitioning problems their GA will become more effective than CPLEX either
when the problem is very big or when there is a considerable gap between the LP
relaxation solution value and the optimal integer solution value. More specific
applications can be found in e.g., Alcaraz and Maroto (2001), Dias et al. (2001),
Fu et al. (2003), Wall (1996) and Xu and Louis (1996).

As an analogy to the theory of evolution in biology, a genetic algorithm ba-
sically works with a group of candidate solutions (individuals or chromosomes),
called population. Each individual in the population is encoded into a specific
representation with regard to the problem. The new generation (offspring) is pro-
duced from one or more individuals (parents) by applying recombination methods
called variation operators, e.g., crossover and mutation. Every individual is mea-
sured and attached a value (fitness value) showing how “good” it is. The selection
of parents and the survival of offspring may be determined randomly or based
on their fitness value. In this way, the convergence to an acceptable or optimal
solution is accomplished. The outline of a general GA is given in Algorithm 4.

One reason that genetic algorithms are an interesting solution approach for
the airline CRP may be the following: (1) GA is very flexible by applying various
operators and examining a number of parameters; (2) GA shows the implicit
parallelism and the “intelligent” probabilistic search; (3) GA can be extended by
incorporating other search methods, e.g., local search based heuristics; (4) Similar
approaches have been widely studied, e.g., GA for generalized and specific set
partitioning/covering problems.

The emphasis of this chapter lies on heuristic based methods for solving the

airline crew recovery problem. We begin with a dedicated genetic algorithm in
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Algorithm 4 Outline of Genetic Algorithm
g<=0
p < initPopulation()
evaluate(P)
repeat
{pl,p2} < selection(P)
p’ < crossover(pl, p2)
mutate(p’)
evaluate(p’)
survive(p', P)
g&=g+1
until terminating condition

Section 5.1, and then introduce a constructive heuristic in Section 5.2.

5.1 A Genetic Algorithm for the Airline Crew
Recovery Problem

In this approach, we customize the conventional genetic algorithm into a hybrid
genetic algorithm. It includes a set of heuristics with the knowledge of the nature
and domain of this specific problem, together with a so-called local improvement
procedure acting as a supplementary local search to the genetic algorithm.

To our knowledge, a pure genetic algorithm is not able to perform well if
the problem centered methods are not implemented and incorporated. Through-
out this section, one can observe that the knowledge of this particular problem,
namely the airline crew recovery problem, influences every part of the algorithm.

In this section, we will solely elaborate on a genetic algorithm based ap-
proach to solve the airline crew recovery problem. Starting with a dedicated
two dimensional representation (Section 5.1.1), we describe the initialization of
the population in Section 5.1.2, the application of various operators in Section
5.1.3, the evaluation of individuals in Section 5.1.4, the feasibility maintenance
in Section 5.1.5, and selection and replace scheme in Section 5.1.6 and 5.1.7, re-
spectively. Finally, computational results tested on data from a medium-sized

European airline are given in the end of this section.
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5.1.1 Two Dimensional Representation

Unlike other previous attempts for the airline crew (re)scheduling problem, we
apply an intuitive matrix based two dimensional representation, which is inspired

naturally by the two dimensional structure of airline crew schedules.

5.1.1.1 Matrix Encoding Scheme

The most natural representation of a chromosome in context of GA is probably a
one-dimensional string type of form, such as the ordered city list for the traveling
salesman problem (see Michalewicz and Fogel, 2000, chap. 7) and the activity
permutation list for the resource-constrained project scheduling (see Hartmann,
1998). However, according to our experience, string representation is not suitable
to solve the airline crew scheduling and recovery problems because of the complex
structure of their solutions. Most previous attempts adopt one dimensional string
representation as the encoding scheme, e.g., El Moudani et al. (2001) apply a
non-binary string representation, in which the ith component of the chromosome
indicates that the corresponding crew member is assigned to the ith pairing. In
other words, such an encoding scheme requires a set of pairings created prior to
the GA. Another disadvantage is the lack of possibility of manipulating pairings,
since the result of such approach is the final crew schedules that are personalized

and assigned to individual airline crew members.

Time Slots t

F2 F7
F3 F9
F6 F11

F1*

F5 F10
F4 F8

Crew members
located in different home bases

Figure 5.1: Two-dimensional representation
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However, due to the specific problem structure we propose a two-dimensional
matrix based encoding scheme which represents the direct assignment of flight legs
to crew members. One example chromosome can be seen in Fig. 5.1. As depicted
in the figure, each column of the matrix indicates a certain time slot (e.g., each
time slot represents one hour time span), within which a set of flights depart.
Each row stands for a roster of an individual crew member who is associated
with the current row, i.e., the number of rows is exactly the same as the total
number of crew members examined. All elements of the matrix represent the
sequential numbers of the flight legs, which is unique for every problem instance.
In addition, pre-scheduled activities, such as vacancies, simulators and requested
off-duty etc., are represented as special flight legs with the additional indication
that they are fixed and hence cannot be changed and/or removed from the given
cell (marked with an asterisk, e.g., the flight leg F1 in the first column in Fig.
5.1).

The benefit of such an encoding scheme can be seen as follows. Firstly, pairings
are not involved in the approach, i.e., we directly deal with flight legs instead.
This makes it possible to construct better solutions or achieve a global optimal.
Secondly, the matrix based representation eases the implementation of various
operators introduced later, as a one-dimensional string representation cannot
model the complex solution structure. It becomes more difficult for the string

type of encoding if there are multiple home bases available in the given problem.

5.1.1.2 Constraints Consideration in the Matrix Encoding

By adopting the concept of time slots in the matrix, we are able to avoid possible
violations of some constraints on forming a legal crew schedule. Every change in
the matrix thus directly reflects the change in the crew schedule. Due to such
a specialized representation, changes to the crew schedule underlie the following

assumptions:

e Flight legs can only be moved between rows but cannot be moved to different

columns as the departure times are fixed to exactly one time slot (column).
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e One cell in the matrix can only contain at most one flight leg, because no
pair of two sequential flight legs depart within the same time slot. (it is

impossible to service two flights in less than one hour)

e A flight leg can only be assigned to one crew member, as only one crew
position is involved at a time, i.e., each flight leg is unique within one

matrix.

5.1.2 Population Initialization

Initialization is a process to generate the initial population which allows the
application of variation operators. A certain number (population size) of indi-
viduals, exhibiting equal or similar genome structures, is created either randomly
or heuristically. Generally speaking, seeding with a randomly generated solu-
tion in the initial population comes along with wide diversity. However, some
researchers have reported that a population with a higher quality starting solu-
tions obtained from dedicated procedures can help the algorithm perform faster
and find better solutions (see Reeves, 1993, chap. 4). As a result, the risk of
premature convergence also increases.

The random initialization of the starting population is done within two steps.
First, it assigns the pre-scheduled activities to their corresponding crew mem-
bers, such as vacation days, flight simulators or other requested-off. Because
these activities cannot be assigned blindly and changed by mutation or crossover
operators, they have to stay in their predefined cells. In the second step, the
flight legs are randomly assigned to the crew members by simply putting them to
one of the rows in the matrix. Notably, flight legs are only placed in the matched
columns of their corresponding time slot.

In this approach, apart from the random initialization of the population, two
other strategies are applied to generate initial individuals: The first initialization
heuristic checks the arrival time of the previous flight leg, every time a flight
leg is assigned. If the flight leg does not fit in a specific position of the matrix,
another crew member needs to be evaluated. If no further row is found, the flight
leg is assigned randomly. By using this heuristic, the individuals start with a

higher fitness value, although most of them may be still infeasible. However, the
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drawback is that individuals sometimes get very similar and the risk of ending

up in local optima increases.

Algorithm 5 Evolutive Initialization
Require: affected flights set F' # &
Ensure: [/ =2
F<F-F
for all f € F’ do
while f is not assigned do
w < random (w | w € W)
if feasible assignment(f,w) is true then
assign (f,w)
F < F - {f}
end if
end while
end for

Here one can note the fact that one part of the objective function is to mini-
mize the changes from the original schedule, i.e., parts of the final solution stay
unchanged. Therefore, we take the advantage of such characteristics of the prob-
lem, a procedure, evolutive initialization, is implemented. It generates a certain
number of individuals by keeping unaffected flights Fiafr (Funarsr C F) intact
and assigning the rest to crew members who are able to provide the service (see
Algorithm 5). In other words, most crew members do not change their schedules,
if they are not directly influenced by current disruptions.

According to our experience, in order to apply an effective genetic algorithm,
an initial population with a high diversification is very useful and seeding individ-
uals also fasten the convergence. Therefore, it can be achieved by combining the
three methods described above, i.e., random, heuristic and evolutive initialization
procedure. In this approach, we create 20 percent of individuals by the random
initialization method and 1 individual using evolutive initialization method, and

the rest is generated through the heuristical procedure described previously.

5.1.3 Variation Operators

For the string representation based genetic algorithm, two commonly applied

operators are two-point crossover and single bit mutation. However, specific
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operators have to be designed for this real-life complex problem. In this approach,
two main categories of variation operators were applied and tested. The first
category involves the crossover type operators which select two individuals as
parents and recombine them; the second category includes the mutation type

operators which are applied on only one individual.

5.1.3.1 Crossovers

We started with implementing a simple crossover operator, row-based crossover,
in which a given range of rows of one parent are replaced by corresponding rows
from the other parent (see Fig. 5.2). However, as a consequence a flight leg is
often served by more than one crew member in the offspring, or a flight leg is not
included at all. Therefore, we propose a correction procedure to deal with both

effects by inserting missing flight legs randomly, and deleting doubled flight legs

randomly.
Parent 1 Parent 2
F2 F7 F5
F3 F9 F3 F7 F11
F6 F11
X e
F4 F8
5 F10 F2 F9
F4 F8 F6 F10
Y
F2 F7
E3 F11
F6 F9 .
Offsprin
F1% Pring
F4 F8
75 F10

Figure 5.2: Row-based crossover operator

In contrast to the row-based crossover, a so-called column-based crossover was
designed. Its basic idea is to construct new offspring in a way that columns are

selected randomly or heuristically from the parents chosen. As illustrated in Fig.
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Parent 1 Parent 2
F2 F7 F5
F3 F9 F3 F7 F11
F6 F11
F1* X F1*
F4 F8
F5 F10 F2 F9
F4 F8 F6 F10
F2 F7
F3 F11
F6
Eq* Offspring
F4 F8
F5 F9 |[F10

Figure 5.3: Column-based crossover operator

5.3, in order to maintain the feasibility of the offspring, this special crossover
tries to preserve “good” ranges of the columns containing valid pairings. In
other words, feasibilities are likely preserved, when two consecutive flight legs are
connected at the same airport, and there is sufficient time between the two flight
legs. However, it is still possible to have infeasible sequence of flights assigned
to a crew member. For example, in the figure one can see that the sequence of
F9 and F10 can express infeasibility, because the departure time of F10 is earlier
than the arrival time of F9, or the ground time between the two flights is not

adequate.

5.1.3.2 Mutations

The intention of mutation operators is to avoid getting trapped in local optima
through increasing the diversity of the population. It usually modifies the re-
sulting offspring slightly by changing only few values or varying a part of the
individual. Here we introduce two mutation operators which have been applied
in our approach.

First, a so-called basic mutation chooses randomly one flight leg f from a
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chromosome to be mutated and one candidate crew member in the crew member
set W. If the position of the chosen destination row is empty, it is moved to
that position (see Fig. 5.4.a). If not, these two flight legs are swapped (see Fig.
5.4.b). Nothing is changed, if the new position is exactly the same to the current

position. By doing this, we are able to slightly modify an individual and generate

a new one.
F2 F7 F2 F7
F3 F9 F3m. F9
F6™\, F11 "\, F6 F11
F1* ) F1* \
# |
F5 F10 Fs/ F10
F4 F8 F4 4 F8
a. basic mutation, reassigning b. basic mutation, swapping
F2 F7
F3 FOT™N
F6 \| F11
F1* )
L
F5 F10
F4 F8

c. advanced mutation, reassigning well-formed flights

Figure 5.4: Mutation operators

The second mutation operator, advanced mutation, includes a heuristic pro-
cedure that substitutes the random selection of the new crew member described
above. After a flight leg is randomly chosen, a candidate crew member (one row in
the matrix) is selected and evaluated according to certain restrictions: We take
into account whether the possible transit exists and whether subsequent flight
legs are suitable for the new inserted flight leg with regard to their departure and
arrival airport and the underlying times. For all crew members satisfying the
above restrictions, the corresponding cost is calculated for assigning the flight
leg (the detail of the cost calculation can be found in Subsection 5.1.4). The
crew member with the lowest cost is, therefore, chosen, and the flight leg is then

assigned to this crew member. Similarly, if some flights already occupy the given
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position, then these two flight legs are swapped. Furthermore, a complete se-
quence of flight legs is also moved to the new row, if the sequence of flights can
be recognized as “well-formed” (normally but not necessarily one day work for
a crew member, see Fig. 5.4.c as an example). Such a sequence of flights can
be identified by checking arrival/departure airports, as well as arrival/departure

times of the flight legs.

5.1.4 Evaluation

According to the nature of the evolution, one has to find out which individual
may survive in what sense of the measurement. The fitness of an individual is
determined through a proper evaluation function. Normally, each individual’s
fitness value calculated by the evaluation procedure is a number expressing the
quality of the solution.

Generally speaking, one common way to calculated fitness value of an individ-
ual is to combine its cost and the penalty. The cost of an individual can be easily
translated from the objective function of the given problem. However, it does
not take infeasibility into account and individuals in the population are likely
infeasible solutions, hence an appropriate penalty has to be incorporated into the

evaluation process. Accordingly, the fitness function f(z) can be of the form

f(x) = c(x) + p(x) (5.1)

where ¢(x) is the objective function value (cost) and p(z) is a penalty method
which is usually problem specific. In this section, we attempt to elaborate on the
calculation of the cost and the penalty which are associated to each individual.
Basically, the evaluation procedure is applied to each individual, determining
its quality compared to the whole population. In our approach, three “costs”,
real cost, virtual cost and change cost, are associated with each individual. As the
objective is to minimize the cost calculated by the objective function introduced
in Chapter 4, the real and change costs constitute the cost function ¢(z). p(z)
then becomes the function that calculates the virtual cost associated with each

individual.
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The real cost C,,; (operational costs) is the incurred cost in the corresponding
solution that is translated from the individual. It consists of hotel stay cost that
arises when a crew member takes an overnight rest at another airport rather
than his or her home base, and also the transit costs that are imposed when crew
members are transferred from one airport to another by means of taxi or train.
Detailed description is already given in Section 4.1.1.1 of the last chapter.

The virtual costs Cj,s have been implemented as a penalty for those individ-
uals that do not comply with restrictions, i.e., they are infeasible solutions. For
example, in the case that it is impossible to create a feasible connection between
two flight legs, a high penalty for the connection is introduced. Likewise, a cer-
tain penalty is also imposed, if the time between two flight legs is too short for
the crew member to check-out and check-in. Obviously, a penalty must be given
if the next flight starts even earlier than the arrival time of the previous flight.
Because an effective penalty method should be strong enough so that the GA may
not search only among infeasible individuals (see Richardson et al., 1989). There-
fore, the penalty method applied in our approach is of “strong”, since constraints
that are violated by infeasible solutions are considerably “hard” constraints to
the given problem.

In addition to these main restrictions, there are other restrictions which the
algorithm has to take into account. These rules and regulations are normally
defined by the airline, collective labor agreements and civil aviation authorities.

For example, the violation of the following rules may incur virtual costs:

e Maximum daily/weekly /monthly flight hours
e Minimum rest time between flight duties
e Maximum sequential working days and minimum weekly rest days

e Weekly rest at crew member’s home base

These rules are checked by examining each row of the matrix. For example,
the flight time is accumulated, and a penalty is imposed whenever it exceeds the
given upper bound of the total flight time within a day. More details can be
found in Section 2.2.3.
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The change cost Cey is the sum of change penalty v;” of all the rosters in
the solution. It is calculated in a way that a certain amount of penalty is set to
each change depending on how much the flight is involved in the situation and
which category the change belongs to. (4.4) and (4.4) show the calculation of

such change cost.

5.1.5 Feasibility Maintenance

Although the traditional genetic algorithm works well on some particular prob-
lems, hybrid genetic algorithms, especially in combination with algorithms re-
flecting specific knowledge of the examined problem, usually perform better. As
stated in Levine (1996), many researchers have provided mounting experimental

evidence showing that hybridizing a GA with a local search heuristic is beneficial.

Algorithm 6 Local Improvement Procedure
Require: individual s
Ensure: feasible solution s
for i =1 to ROW do
for j =1to COL do
if s[i][j] # @ and sli][j] is not pre-scheduled then
f <= slillj]
if checkFeasibility(f, s) is false then
sli]lj] < @
{wy,ws, ...,w,} < availableCM(f, W, s)
if ¢ > 0 then
w < random({wy, wa, ..., w,})
assign(f,w, s)
else
w' < findPotential CM(f, W, s)
Swap(fv f/a w, w/)
end if
evaluate(s)
end if
end if
end for
end for

As some of the operators presented above might produce an infeasible solution,

a dedicated local search procedure, called local improvement, is applied under a
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specified probability right after the generation of new offspring. Strictly speaking,
the purpose of such a procedure is to improve the solution by finding one of its
feasible neighbor solutions.

Basically, this procedure goes through all infeasible assignments in the solu-
tion, and repairs them by reassigning the flight legs to other crew members (see
Algorithm 6). A flight leg f € F with infeasible assignment is assigned to one of
randomly selected crew members that is found by function availableCM(f, W, s).
Feasibility is maintained by adding a filter into the function to select only those
crew members who are approved to be suitable to take the flight, or by swapping
flights between crew members which will produce a feasible solution and possibly
improve the current solution. The reason why we choose such a straightforward
heuristic method rather than other well-known modern heuristics (e.g., simulated
annealing), is that the running time for those type of local searches is usually very

long therefore not acceptable in practice.

5.1.6 Selection Method

The selection of parents is the process that provides a change of reproduction to
every individual in the population. As described earlier, some types of variation
operators, such as crossovers, require two or more parents to produce new off-
spring. The quality of the resulting offspring may depend on its parents because
most parts of the offspring are inherited from them. A number of selection meth-
ods are devised and applied, such as random selection, proportionate selection
(roulette-wheel), fitness scaling, tournament selection, truncation selection and
ranking-based selection. Because the detailed introduction of different selection
methods is beyond the scope of this thesis, hence we refer to Bolte and Thone-
mann (1996), Michalewicz and Fogel (2000) and Thierens and Goldberg (1994)
for more details.

In our approach, in order to guarantee an appropriate selection and repro-
duction, a ranking-based selection scheme is considered. Because the variance
among fitness values can be quite large, the risk that some individuals dominate
the whole population after a few generations must be taken into account. Hence,

ranking-based selection strategies rather than strategies based on the absolute
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fitness value seem to be more applicable for this specific problem. The possibility

that an individual is selected to the reproduction is determined by

_ RGP

T <N /s
Zj:l R(j)

where R(7) is the rank of the individual ¢ according to its fitness value. Because

P{) i€ {1, .. N} (5.2)

the examined airline crew recovery problem is to find the solutions that have
minimal costs (fitness value), the algorithm intends to find the individuals with
lowest fitness value. In other words, the lower the fitness value is the better the
individual is. Therefore, the individual ranked as the last position represents
the best one in the population. N equals the total number of individuals in the
population, also the ranking of the best individual in the population. The sum
Z;.V:l R(j)* normalizes the probabilities to ensure that Y% | P(i) = 1. With the
exponent s, it is possible to produce the probabilities according to the rankings
more significantly. If s > 1, the differences between two probabilities increases. In
doing this, better individuals have not only a much higher chance to be selected.

After a number of tests, setting s to 1 mostly produces better overall performance.

5.1.7 Replacement Strategy

In light of the evolution process, new offspring produced by the GA operators
replace individuals in the population. The average fitness of the population then
can be improved over generations. For years, many researchers have proposed
and tested various replacement schemes. But basically, they can be seen as two
important groups. Individuals in the population are replaced either completely or
partially, which are called generational and steady-state replacement, respectively.

The generational replacement strategy, defined originally by Holland (1975),
is to replace the entire population after a new population is generated. Note that
such a method allows the possibility that the “best” individual is also replaced,
i.e., it does not survive to the next generation. Likewise, individuals that carry
important “building blocks” may not survive as well. In contrast, the steady-
state replacement scheme aims to replace individuals that are “less fit”, usually
below average, or only a few individuals at a time (see Beasley and Chu, 1996;

Levine, 1996). One advantage of such a strategy is that newly produced offspring
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can be selected for further reproduction immediately after it is generated. In
addition, the “best” solution so far in the population is always kept. Therefore, a
GA incorporating a steady-state replacement strategy usually tends to converge
faster than the one using the generational replacement strategy.

Based on our experimental experiences, we apply a steady-state replacement
scheme in the approach. The population is not replaced by the new offspring as a
whole, instead a certain percentage of individuals in the population is replaced by
their offspring. In our approach a value around 80% is adopted in the experiments,
which is higher than approaches that only replace individuals below average.
Limited computational experience shows us that such a method may provide a

faster convergence.

5.1.8 Computational Results

Because our approach aims to tackle a real-life complex problem, the efficiency
of the algorithm must be justified by computational results. Therefore, several
experiments were conducted based on the real-life practical setting of a medium-
sized European tourist airline. The input data are the real-life flight schedules of
one fleet together with the information regarding the crew members’ availability
and their home bases and destination airports. An overview of the seven tested
instances is shown in Table 4.1, where one can see the scale of the problems by

the given figures.

Table 5.1: Disruption scenarios
Cate- Sce-  Affected Aggregated Affected Affected Recovery

gory nario flights affected home crew period
flights bases member  (hours)

minor A1S1 1 1 1 1 15
A2S2 1 2 1 1 12

A3S3 2 3 1 2 16

A454 2 2 2 2 20

medium  A5S5 4 5 1 4 24
A5S6 4 5 1 4 36

A6ST 4 3 2 4 40

major A5S8 5 7 1 5 72
B1S9 13 15 1 13 111
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Before elaborating on the details of the observed results, a brief introduction to
the testing scenarios is given (see Table 5.1). We classify all disruptions into three
main categories by their scale, namely, minor, medium, and major disruptions.
This can be understood as the total number of affected flights together with those
subsequent flights which are influenced by them, indicating how many flights have
to be rescheduled at least. In addition, the number of affected home bases and
crew members as well as the length of the recovery period are further crucial
factors for the difficulty of the instances.

The entire approach has been implemented in ANSI C++, and numerous tests
were conducted on a regular PC with Intel Pentium IV 2.2 GHz CPU, 2 GB main

memory, running Microsoft Windows XP Professional operating system.

17000

16500

16000

Best solution

15500

15000 L L L . L
0 10 20 30 40 50 60
Population size

Figure 5.5: Effect of the population size

After a number of tests, the results show that the best parameter setting for
one instance does not perform the same in all the other instances, e.g., the number
of generations for solving a small instance is relatively lower than that for large
instances. Furthermore, a larger population size normally produces better results
(see Fig. 5.5, the test is based on instance A5), the best size, however, varies
from instance to instance. Based on the results of the experiments, a population
size of 25 shows more efficiency for most medium-sized and large-sized instances,

while a setting with 45 or more performs better for small instances.
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Figure 5.6: Comparison between using and not using local improvement

The local improvement procedure usually produces faster convergence and
better results. The comparison indicating the difference between using and not
using the local improvement procedure can be seen in Fig. 5.6. In this example,
we take the scenario A6S7, and the improvement procedure starts after 300 gen-
erations. As one can see, the best individual is always better than the one found
by the algorithm without the local improvement after 300 generations. Because
the local improvement method maintains feasibility of new offspring, the speed
of improving solutions, therefore, can be much faster.

The result produced by the column-based crossover operator is slightly better
than that produced by the row-based crossover. Interestingly, the combination of
these two operators with a certain probability (0.5 used in the example) sometimes
performs even better than one crossover alone, but it needs mostly more com-
putational time. The best solutions found by using the two different crossovers
and the combination of both are listed in Table 5.2. As depicted in Fig. 5.7
and 5.8, the general performance on different instances is presented, in which the
algorithms with column-based crossover usually produces faster convergence and

better final solutions. Furthermore, the mixture of two crossovers may sometimes
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Table 5.2: The performance of different crossover operators

Row-based Column-based Mixed
Instance & scenario crossover crossover Crossover

Cost® Time’ Cost Time Cost Time
A1S1 1300 9.6 1300 9.6 1300 9.6
A252 6950 12.9 6780  13.2 6880  12.8
A3S3 8260 14.2 8260  14.7 8260 14.2
A454 11000 14.3 11590 14.5 11320 14.5
Ab5SH 16390 21.8 16165  22.3 16125  22.3
A5S6 15750 22.4 15890  22.6 15870  22.3
A6S7 18635 22.7 18195  22.7 18430  23.3
A5S8 15965 23.2 16470  23.2 15315  29.9
B1S9 26290 372.8 25945 363.2 26530 482.8

%Qperational cost, lower is better
YComputational time for each generation (millisecond)

find better results than using each one alone.

Regarding the quality of the final solution, the algorithm can find an optimal
solution rather fast for small instances with around five hundred generations.
But it turns out to be difficult to find an optimal solution for larger problems,
e.g., A6 and B1l. It is true especially when the recovery period is comparably
long, i.e., the total number of involved flight legs is large. However, for large
instances the solutions finally found after a certain number of generations are
all reasonable and acceptable in terms of the minimization of operational cost
and the variation from the original crew schedule. For large problem instances,
the algorithm normally needs about two thousand generations, after which the
improvement over generations becomes very small and converges slowly. For
example, the largest instance B1S9 examined in our approach needs 12.1 minutes
to complete two thousand generations. However, other instances normally need
about one minute and less generations. The results also show that the final
solution, for most instances with minor disruptions, is feasible, and does not
produce any further operational cost. In addition, for most cases only a limited

number of notifications is required, which is acceptable in practice.
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5.2 Constructive Heuristics

In our approach, a greedy algorithm is also developed for solving crew recovery
problem in a constructive way. It is inspired by a similar approach applied in
the airline crew assignment problem (see Section 4 in Guo et al., 2003), due to
the great similarity between the two problems. In this section, we first briefly
introduce the algorithm that is used to solve the crew assignment in Section 5.2.1,
and then in Section 5.2.2 we give the detail of how this method is applied to solve

the airline crew recovery problem.

5.2.1 Multi-weight based Greedy Heuristics for Crew As-
signment

In (Guo et al., 2003), a partially integrated approach is addressed to solve airline
crew scheduling, including pairing generation and assignment. The so called
crew pairing chain generation approach already considers crew availabilities, pre-
scheduled activities, and crew requests. The assignment, therefore, may take
advantage of such partial integration. The possibility of restructuring pairings
can be significantly reduced. Eventually, a dedicated constructive heuristic for the
assignment task turns out to be applicable. In this section we first describe the
multi-weight based heuristic algorithm (MWHA) for the personalized rostering
applied in the airline crew scheduling approach.

After pairing chains are generated, crew capacities have been calculated anony-
mously and the balancing among crew members is not fulfilled. Thus, a so called
situation-based heuristic including three phases is carried out sequentially: ni-
tial assignment, global balancing over all home bases, and local balancing of each
modified home base.

The constructive algorithm is applied within the initial assignment step, whose
task is to allocate all given activities for a specific home base among all available
individual crew members in terms of best fitting. This is achieved by the decom-
position of patterns (output of the pairing chain generation) into atomic pairings
(parts of pairings corresponding to home base to home base trips). Firstly, pre-
scheduled activities are linked to their corresponding crew members. Secondly,

several multi-weight based selection strategies are adopted: Each of them aims
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to map the most “promising” atomic pairing to the most “promising” available
crew member within the examined home base. All work rules must be com-
pletely satisfied in the context of the individual crew member, e.g., maximum of
daily /weekly /monthly flight time, flight duty time, and work time, minimum re-
quirements for rest time between flights and flight duties, and special restrictions

on early and late night flights.
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Figure 5.9: Multi-weight based assignment heuristic

Two initiated queues store dynamically all remaining atomic pairings and
available crew members for those items, which can be interpreted as the set for
linking mutual candidates (see Fig. 5.9). We have adopted two alternative criteria
to sort and process the queue of atomic pairings: by start time and by duration.
Focusing on start time fills the generated crew schedule from the first to the last
day of the planning period (visually from left to right side), whereas sorting based
on duration follows the idea of assigning long pairings first because of their low
likelihood in finding a suitable free slot later when more pairings have already
been assigned.

The available crew member list is dynamically updated since permanent cross-
checking has to ensure the consistence of the already assigned rosters of all given
crew members at the examined home base. For this queue several weighting

strategies are applied as well, such as sorting by decreasing remaining contracted
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flight hours, or choosing the crew member having less working days left than
others for a comparable amount of remaining flight hours.

After selection and assignment of the best mutual candidates, the new situa-
tion enforces an update of the queues’ composition and resorting by the chosen
strategies. Since this simple, but sufficient greedy heuristic is acceptably fast
even for larger instances tested, various strategy combinations for queue sorting
on both items can be performed in order to choose the best solution.

In the rarely occurring case that few atomic pairings remain unassigned due to
the set of granted work rules, a 2-opt procedure with backtracking tries to merge
the remaining atomic pairings into the corresponding home base. If successful, no
further investigation on those domiciles is required, since these “intra” home base
changes do not cause any additional cost in terms of hotel and transit. Otherwise,
after handling all home bases as described above, phase two for global rebalancing

is required.

5.2.2 Application for Crew Recovery

For the airline crew recovery problem, a similar procedure can be taken to assign
affected flights instead of atomic pairings examined in the last section. The basic
idea is to repair a disrupted crew schedule rather than to create a completely
new schedule. Since it is the recovery process, we may only consider activities
within the recovery period RP. The length of DP often is one or several days.
Outside such a period, flights and activities are set to frozen activities, which have
to remain intact. Furthermore, unlike the crew assignment problem, for such a
recovery problem it is not necessary to reschedule all flights within the examined
recovery period.

As shown in Algorithm 7, we first remove the original assignment of affected
flights from the original crew schedule s. The status of each crew member is
checked in terms of his/her current location, elapsed flight hours, working days
within the week contractual flight hours, desired destination after the recovery
period, and so on. This information is extremely important because we attempt

to find crew members who are the most “promising” for the given affected flight.
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Algorithm 7 Outline of Multi-weight based Heuristic
Require: RP > DP >0V F'# @&
Ensure: solution s
init(RP)
init(DP)
init(strategyl)
init(strategy?2)
init(strategy3)
s < getOriginalSchedule()
removeAffectedFlight (F”, s)
getStatus(W)
Qcvu = 0
while I’ # @ do
sort(F’, strategyl)
<=
Qcon < findAvailableCM(f, W, s)
sort(Qcnr, f, strategy2)
if Qon # @ then
w = Qo]
assign(f,w, s)
F< -
updateStatus(w)
Qcv <= 2
else
Qcn < findPotential CM( f, T, s)
if Qo # 9 then
sort(Qco, strategy3)
w = Qeull]
Fonflict <= removeOriginal Assignment(w)
assign(f,w, s)
F/<:F/_{f}+Fconflict
else
assignToStandbyReserveCM( f, s)
end if
end if
end while
output(s)
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The affected flights set is first sorted in a way that the most “urgent” flights
stay on the top. We define the term urgent as how soon the flight will be op-
erated, because the early flights should be considered particularly for a recovery
process. Other aspects, such as the duration, may not be as important as the
departure time of the flight. For each flight f € F’ in the set of affected flights
(also can be seen as unassigned flights), the algorithm tries to find a set of crew
members Q¢ which is available for serving flight f. Here we say a crew member
is available means that he/she is able to operate the flight without violating any
rules and regulations. The set Q¢ is also sorted using a certain strategy. Pos-
sible strategies in this problem setting include the ascending order of incurring
operational cost ¢y, change cost c.pq, working hours h or the combination of all
of them. In our approach, we first compare the sum of ¢,y and cq,y and then
the working hours h secondly. If there exist available crew members, the best of
them is chosen to operate the flight.

In the case that the set Qcys is empty, we need to find another set of crew
members in which all crew members may potentially take the flight. Every crew
member who stations at the appropriate airport and has assigned flights at that
time will be considered as a potential candidate for operating the examined flight.
The sorting strategy of such a set is similar to the one used above, but it includes
one additional criterion: the number of flights that need to be reassigned in favor
of assigning the current one. If the set is not empty, the flight is assigned to the
best suitable crew member by producing further unassigned flights(f € Fronfiict)-
Otherwise, the flight is assigned to standby or reserve crew since there is no way
to find an operating crew member who may possibly operate it.

The above process is repeated until there is no affected flight left without being
assigned. Based on our computational experience, the algorithm usually require
less one minute to find a solution, including solving large problem instances. The
generated solution is feasible, but it is also very likely that the solution is not
optimal. Despite not the optimal solution, it is applicable in most cases. Further-
more, we found this algorithm is useful in those urgent cases where coordinators
may need to save the recovery time by shortening the recovery period, or even

disruption period by leaving some affected flights for later rescheduling.
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5.3 Comparison of Solution methods

In Chapters 4 and 5, we have presented computational results for the airline
disruption management problem with exact optimization, genetic algorithms and
constructive heuristics. It is difficult to directly compare their quality, because
the problem formulations and the goal functions are not identical. However, some
preliminary conclusions will be derived here indicating at least in some typical
cases which method might be favorable in a given situation.

The mixed-integer optimization models (4.8 — 4.11) and (4.12 — 4.16) can be
solved optimally for minor disruptions with state-of-the-art software, however, the
solution takes about one hour (on a state-of-the-art Intel-based PC) ! for a rather
small problem which is too long to wait. Through column generation the solution
time can be reduced, and we were able to solve slightly disrupted problems within
10 minutes which is close to being acceptable. For larger disruptions or larger
airlines, however, the column generation technique is not able to find an optimal
solution within reasonable time either.

The genetic algorithm proposed in Section 5.1 provides acceptable results
within a few minutes for small problems, and needs about 10 minutes to compute
feasible solutions for the largest test problem. However, this method may be
stopped any time, and the best solution so far can be made feasible through a
fast correction algorithm. Additionally, with the local improvement procedure
feasible solutions can be maintained in the population.

Finally, the constructive heuristic is usually able to compute a feasible solution
fast, however, the solution quality cannot be judged directly and may be far below
that of the column generation method.

We conclude that it would make sense to include all three approaches in a
decision support system for coordinators, and will next work on finding a suitable

classification of disrupted situations in Chapter 6.

lall computing time refer to a PC with Pentium 4, 2,2 GHz and 2 GB memory

117



5. HEURISTICS FOR AIRLINE CREW RECOVERY

118



Chapter 6

Disruption Classification and
Strategy Mapping

In this chapter, we embark on the task of finding an appropriate strategy that may
ease the problem solving in terms of efficiency. As we all know, it is quite natural
that knowing more about things that one intends to do may be significantly
helpful to achieve goals expected. Such a principle applies for the airline crew
recovery problem as well. When disruptions occur, coordinators of an airline have
to make concerted efforts to investigate them before making any decisions. They
need to know what causes disruptions, how serious disruptions are, what must
be essentially achieved, and so on.

Once coordinators learn all the facts regarding the disrupted situation, one
of the strategies at hand has to be chosen to deal with the given problem. The
decision of selecting a particular strategy may have a dramatic influence on the
overall performance of the crew recovery process. However, choosing an appro-
priate strategy often is a difficult task, since the selecting process is not decisive.
In addition, numerous options may be involved, so that a deep understanding
of their specific aspects and their impacts are necessary. This drives airlines’
coordinators to consider a systematical method that can assist them in making
decisions.

Based on our experiments, we concluded in the previous chapters that a deci-
sion support system for airline crew recovery should incorporate several solution

techniques and help in choosing the right one in each situation. Our first attempt
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to classify disruptions was based on their severity (minor, medium, major), how-
ever, it turned out soon that this rough classification is not helpful in choosing a
solution method (see Chapter 2, Section 2.2.4). Thus, in this chapter we present
a new classification scheme based on the specific type and, especially, specific goal
of a given recovery process. Furthermore, we apply an evaluation and selection
procedure able to incorporate several goals with selected priorities.

This chapter begins with a description of the disruption classification in Sec-
tion 6.1, in which disruptions are examined so as to build relationships with
criteria of given strategies. In Section 6.2, we propose a strategy mapping ap-
proach using Analytic Hierarchy Process (AHP), by which a particular strategy
is adopted out of a bundle of alternatives to handle the given disrupted situation.

In the end, we give an example of the overall mapping process in Section 6.3.

6.1 Disruption Classification

As already described in Chapter 2, there are a wide range of possible causes which
lead onto the development of disruptions. Different sources may have divergent
impacts on the operating of flight schedule. It is important to learn what actually
causes disruptions when they occur, but more indicative information lies in what
airlines intend to attain after the recovery process under the given circumstance.
For instance, in a particular situation where an unserious disruption causes small
changes in the crew schedule, an airline may prefer to find a recovery solution
which does not introduce additional operational cost and only few changes. In
contrast, in other serious disruptions the airline has to face the tough challenge
and emphasize a rapid recovery process. Despite the fact that a fast recovery
process may produce the best solution in terms of cost, the airline can save time
in order to bring back the normal operation as practical as possible.

There are several factors that influence the decision of choosing a proper
strategy. Regardless the actual source which causes disruptions, the following

measurement may give ideas how serious a given situation is:
e M, the number of delayed flights

e M., the number of cancelled flights
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e M, the number of new flights that need to be operated

M,., the number of crew members whose schedule is disrupted

M,,, the number of available crew members

M,, the number of daily flights in average
e M,, the length of the disrupted period

Therefore, we give a measurement vector M for each disrupted situation,

which can be presented as

M = (MdaMmMn;MT;MmJMa?MU>T (61)

Given two disruptions A and B and their associated measurement vectors
M4 and M4, comparing the severity of the two disruptions becomes the task of
evaluating the values in the measurement vectors. Therefore, we give a severity
vector S which includes two elements: s; and s,,. sy denotes the percentages of
daily flights that are affected by the disruption, while s,, means what percent of

crews are affected by the given disruption. We give the calculations of them as

Md+Mc+Mn
M, M,
S — ( Sf ) - (6.2)
Sw M,

m

therefore, two severity vectors, S, and Spg, are computed. Disruption A is severer
than B, if spa > sgp Or g4 = St A Spwa > SwB-

As already discussed in Chapter 2, we define three groups of disruption sever-
ity: minor, medium and major. To distinguish disruptions in this way, we give
two bounds S1 and S2, which are the bound between minor and medium and
the bound between medium and major, respectively. We define a disruption is
minor if the values of sy and s,, are both lower than S1 (e.g., S1 = 0.05). A dis-
ruption is considered as major, if one or both have a value larger than S2 (e.g.,
S2 = 0.15). Others are thus treated as medium disruptions. Such a calculation
may differ from airline to airline, since the scale and the operation of every airline
differ significantly. Accordingly, the difference may be reflected by changing the

two bounds S1 and S2 fitting to an airline’s individual scenario.
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Basically, the calculation of a disruption’s severity may give coordinators the
impression how serious it is. A series of considerations or actions may be con-
ducted based on such information. However, after a variety of experiments, such
a classification proposal turns out to be not intuitive for a coordinator to choose
an appropriate solution method and its corresponding setting. Since there is no
clear and direct connection between solution methods and the severity of disrup-
tions, it is ambiguous to select one single solution method for a given disruption.
As a solution method, together with its specific setting, may have higher potential
to achieve a particular goal over others, we propose another classification scheme
based on the specific type and goal of a given recovery process. In other words,
we examine the type of the recovery process and give a set of goals associated
with their importance. The Analytic Hierarchy Process (AHP) is then applied to
select a method and its specific setting out of a number of combinations, which
may potentially achieve the goals examined previously. In the following sections,
we will give so-called strategy mapping procedure to single out an appropriate

strategy for a given disruption, in which the AHP technique is utilized.

6.2 Strategy Mapping

In this section, we will first give the foundation of the AHP in Section 6.2.1 and
then describe the steps of applying the AHP in the setting of the airline crew

recovery problem.

6.2.1 Basis of the Analytic Hierarchy Process

Many decision making processes involve preferential selection among a finite set
of alternatives or courses of action. To handle such a situation, the Analytic
Hierarchy Process was developed by Saaty (1980) to provide the prioritization
of alternatives through evaluation of a set of criteria elements. It helps struc-
ture decision making processes in complex environments by using ratio scales to
quantify subjective judgments. For years it has been used in a wide variety of
applications and has proven to be an accepted methodology in many areas.

The AHP can be basically described as the following steps:
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Step 1 The given problem is decomposed and structured as a hierarchy of
a goal, criteria, sub-criteria and alternatives. Such a hierarchy represents the
relationship between elements of one level with those of another level below.
Saaty suggests to build a hierarchy by working down from the goal as far as one
can, and then working up from the alternatives until the levels of two processes
are linked. With such a hierarchy, we can start to establish a pairwise comparison
matrix.

Step 2 Decision makers or experts give pairwise comparisons of alternatives
on a qualitative scale according to the given hierarchy. A comparison can be
rated as 1 (equal importance), 3 (slightly strong importance), 5 (strong impor-
tance), 7 (very strong importance), 9 (absolute importance), values in between
(2,4,6,8, fuzzy intermediate values) and reciprocals of above (dominance of second
alternative). Below shows how to establish the pairwise comparison matrix.

Let C4, (s, ..., C, be the set of elements in a hierarchy. wy, ws, ..., w, are their
weights of influence. a;; indicates the strength of C; when compared with Cj.

Therefore, a reciprocal matrix A can be built as follows

1 12 cr Qip
1/@12 1 st A9
1/&1n 1/a2n e 1

where each element a;; = w;/w; (1,7 =1,...,n).

Step 3 Once the pairwise comparison matrix A has been constructed, the
eigenvalue method is used to rank the elements. The principal eigenvalue and
the corresponding normalized right eigenvector ¢ of the matrix A gives the priority
of the criteria.

Step 4 Since the value of a;; usually is an estimate as a judgment, the consis-
tency of the matrix A must be tested. The consistency index (CI) and consistency

ratio (CR) are proposed to check the consistency, which are calculated as

CI = (Apaz —n)/(n—1) (6.4)
CR=CI/RI (6.5)
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where A4, is the maximum eigenvalue of the matrix A and random index RI is
randomly generated reciprocal matrix from the scale 1 to 9.

Step 5 Firstly, the ratings of each alternative are multiplied by the weights
of the sub-criteria, which are aggregated to get local ratings. Secondly, the local
ratings are multiplied by the weights of the criteria, which are then aggregated

to obtain the global ratings, namely priorities of the alternatives.

6.2.2 Ciriteria in the Airline Crew Recovery Problem

In the context of the airline crew recovery, in order to properly recover crew
schedules from disruptions, airlines need to choose a proper strategy out of a
set of alternatives with respect to the given disrupted situation. Usually, crew
managers or coordinators of an airline make decisions based on their rule of
thumb and practical experiences. In such a process, the AHP certainly shows its
potential to assist this decision making. Therefore, we propose an AHP based
strategy mapping method to assist coordinators selecting strategies.

The main criteria in this problem are usually concerned by airlines with re-
spect to many aspects, such as economic perspective, efficiency and convenience.

In our approach, we give the following four criteria:

Additional cost The extra money that needs to be paid for repairing the dis-

rupted crew schedule. The calculation of such a cost can be found in (4.1);

Solution time The computational time to find the final solution. In other

words, how fast does an airline recover its crew schedules;

Notifications The number of crew members that need to be notified because of
the schedule updates. It also can be seen as changes examined in previous

chapters;

Updated period The duration of the period starting from the time of the first
updated flight assignment to the last one;

Disturbance to crew The number of schedule changes to crew members and

unbalanced workload among them.
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6.2.3 Solution Strategies

The strategies are usually defined by experts from both airlines and the develop-
ment organization. A finite strategy set S is built based on the empirical expe-
rience after a large amount of experiments. A strategy can be understood as a
combination of a disruption scenario setting and a solution method together with
its parameters. It reflects the given disruption scenario and the result expected.

After a disruption is identified, the corresponding disruption scenario has to

be defined. It normally includes the following aspects:

e The length of the recovery period RP. It can be set to a relatively long
period as the disruption does not seriously affect the operation and the
airline has enough time to consider a fairly good or optimal recovery solu-
tion. In contrast, it may be set to a very short period, e.g., within the day,
because of considerable time pressure and the large number of flights and

crew members involved.

e The number of home bases involved. This can sometimes be smaller than
the total number of the home bases of the airline, since it is practical if the
problem can be localized. Therefore, in this case it is unnecessary to involve
all home bases into the recovery process, which can reduce the problem size

significantly.

e The number of the crew members. Similar to the previous one, the number

of crews involved in the process can be reduced to a certain degree.

Basically, two groups of solution methods are considered, exact optimization

methods and heuristic based methods. Further explanations are given as follows:

Exact Optimization based Strategies Asintroduced in Chapter 4, this group
of solution methods includes the direct solving approach and a column gen-
eration based method. Generally, regarding the size of the problem two
criteria may have a great impact on the overall performance: the length
of the recovery period (the period within which the schedule needs to be
recovered), and the number of home bases and crew members involved in

the process.
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Table 6.1: Example strategies for solving the airline crew recovery problem

Strategies: CGLO CGLA CGSA GALO-SS GALA-SS-LI
.Col-Gen .Col-Gen .Col-Gen .GA .GA
Key .LRP® .LRP .SRP? .LRP .LRP
aspects: .OHBs® .AHBs? .AHBs .OHBs .AHBs

Solution Seeding® .Solution Seeding

.Local Improvement

“Long recovery period

bShort recovery period

¢Only those home bases affected by disruptions

?All home bases in the instance

¢Seed some individuals representing original schedule with little changes

Heuristic based Strategies The group of heuristic based methods mainly in-
clude two heuristics introduced in Chapter 5. One is a constructive heuris-
tic and the other is a hybrid genetic algorithm incorporating a number of
sub-processes with knowledge of this particular problem. The performance
of the algorithms is subject to numerous parameters proposed in our ap-
proaches. Taking the GA based method as an example, the chosen variation
operators and their corresponding rate have dramatic impacts on the overall

problem solving.

As mentioned previously, the finally selected strategy is the combination of
the disruption scenario, a solution method and its relevant parameters. They
can be enumerated by combining them together. Certainly, there are a number
of possible combinations. But only a subset of them is typically considered in
practice. Table 6.1 gives some example strategies, e.g., the strategy CGLO de-
notes the use of the column generation method, and it only recovers the disrupted
schedules of home bases that are affected by disruption, with a 4 or 5 days long

recovery period.
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6.2.4 Strategy Mapping Process

Once we have defined criteria and have built all possible strategies that deal with
disruptions, we are able to establish the hierarchy. A sample hierarchy can be
seen in Fig. 6.1), which has three levels, 5 criteria and n available strategies.
With the influence weights and the comparisons in between criteria, we can find
a best-fitted strategy by going through the five steps introduced in Section 6.2.1.
Below we give the detail of applying the AHP technique to map a strategy onto
the given disrupted situation.

After investigating occurred disruptions, the pairwise comparisons are con-
ducted between each two criteria with respect to their importance or influence to
the final decision. A criteria matrix A = [a;;] is built with the weight ratios a;;.
The normalized principal right eigenvector Cof A represents the priority of those
criteria of a proper recovery. We compare the strategies on each of the criteria by
examining how efficient one strategy may handle the given problem. Same to the
number of available strategies, n strategy matrices W;, ¢ = 1,2, ..., n are produced,
and the priority vector I/ffi,z’ = 1,2,...,n for each strategy can be calculated in
the same way described above. The final priority vector W = (W, 1 =1,2,...,n]

can be thus calculated as

W = (W, Wy Wy W,|C (6.6)

where W gives the final ranking of the strategies with respect to the given dis-
ruption. The highest priority value denotes the proper strategy for the examined
situation. It can, therefore, be chosen as the most suitable strategy and method

to solving the current disruption.

6.3 Case Study

A case study is presented to demonstrate the strategy mapping and proposed
solution method. The instance is from a FEuropean airline with multiple home
bases inside Germany and more than 30 destinations spreading around Europe.
In this case study, we consider three criteria: additional cost, solution time and

notifications. Only two strategies are used for the purpose of simplicity, e.g.,
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Disturbance to crew

Stfategy n

Updated period

Proper Recovery
from Disruptions
Notifications

[}
E >
= en
b 8
= =
.2 («E
=
=
=
o
19%5)
—
\ >
&0
0]
o
2]
-
B
+ wnn
w2
o
(&)
—
[<+]
=
.2 »
= g
e )
= e
4 < =
4 &
8 @
— g )
) 2 )
> = >
2 15} 2

Figure 6.1: A sample AHP hierarchy for strategy mapping, with 5 criteria and n
strategies
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Table 6.2: Pairwise comparison matrix of criteria

additional cost(AC) solution time (ST) notifications (N) priority

AC 1 1/3 5 0.38
ST 3 1 5 0.54
N 1/5 1/5 1 0.08

Table 6.3: Pairwise comparison matrix of strategies on the criteron AC

AC CGLA GALO-SS-LI priority
CGLA 1 2 0.667
GALO-SS-LI 1/2 1 0.333

CGLA and GALO-SS-LI. Furthermore, a disruption situation is given with the
measurement vector (2, 1,2,2, 188,85, 6)T, which indicates a minor disruption on
a comparably large size of problem instance.

A hierarchy can be built as Fig. 6.1 by eliminating two criteria and replac-
ing strategies with only two example strategies: CGLA and GALO-SS-LI. The
pairwise comparison matrix of criteria can be seen in Table 6.2, whose values
are set by coordinators of the airline based on their empirical experiences. The
normalized priority vector, therefore, is C' = [0.297,0.617, 0.086].

The comparisons between strategies are done based on criteria, with one ma-
trix being created for each criterion (see Table 6.3, 6.4 and 6.5). With the above
method (6.6), we obtain the final priority vector W= [0.371,0.626] which clearly
shows that the second strategy GALO-SS-LI is superior to CGLA by reflecting

the priorities among the introduced criteria. After a variety of experiments were

Table 6.4: Pairwise comparison matrix of strategies on the criteron ST

ST CGLA GALO-SS-LI priority
CGLA 1 1/3 025
GALO-SS-LI 3 1 0.75
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Table 6.5: Pairwise comparison matrix of strategies on the criteron N

N CGLA GALO-SS-LI priority
CGLA 1 1/3 0.25
GALO-SS-LI 3 1 0.75

conducted, the results show that the strategy GALO-SS-LI produced a slightly
worse solution than that the CGLA could find. But the solution time is dramat-

ically reduced into the acceptable period of time.

6.4 Summary

Because of diverse disruptions, in this chapter we propose a disruption classifi-
cation process and a strategy mapping procedure using AHP to cope with the
difficulty arising from specific problem scenarios. The disruption classification
can help coordinators understand disruptions better and form more seasonable
and specific strategies. The strategy mapping method turns out to be very effec-
tive to individual problem instances comparing with approaches with the generic

setting.
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Chapter 7

A Decision Support System for
the Airline Crew Recovery

On top of having strengths, human decision makers certainly have weaknesses to
make crucial decisions within a complex business environment. As documented in
literature, humans frequently rely on simplifying heuristics rather than normative
methods that are able to solve problems optimally, due to limited information
processing capabilities. The result from a manual decision process, therefore, may
have certain drawbacks which are primarily led by human biases and the lack of
information. However, the emergence of decision support systems changes the
way humans make decisions, since a DSS is able to provide significant support to
decision makers’ information processing.

For the airline crew scheduling and recovery problems, a DSS can fundamen-
tally assist airline planners and coordinators. For both problems, they have to
put a lot of effort into the generation or the update of crew schedules, since a huge
amount of data and the complex problem structure make the process extremely
difficult. In the planning phase, for example, it is a great mental challenge for
humans to manually find an optimal crew schedule out of thousands of flights
and hundreds of crews. Likewise, it is quite difficult for coordinators to find an
alternative crew schedule in a short period of time, which has limited additional
costs and does not produce too much disturbances to the future operation and
crew members. Therefore, a DSS needs to be deployed to assist them and propose

applicable solutions.
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In this chapter, we begin with a general description of DSS and reason the
necessity of applying a DSS for the examined problem in Section 7.1. In Section
7.2 we give the requirements of developing a DSS for both planning and recovery
problems. It is then followed by a dedicated DSS architecture in Section 7.3 and
the reviewing of the process in which airlines handle disruptions using the DSS.

Finally, we give a brief summary concerning the proposed DSS in Section 7.5.

7.1 What Can a DSS bring to the Airline Crew
Management?

With wide range of applications, decision support systems have played pivotal
roles within a variety of decision making processes, since its early introduction in
1970s. The concept of DSS keep developing over the years, especially after the
confluence of different concepts, such as OR/MS, Information Systems, Computer
Science. Generally speaking, a commonly accepted explanation of DSS is that it is
the combination of Computer-based Information Systems and OR/MS. However,
precisely defining DSS is not a straightforward task, although it was done by
many researchers all over the world. But there is no single definition of DSS that
is agreed by everyone.

A DSS can be understood in many ways. For instance, it may be defined
in terms of problem type, system function, interface characteristics, usage pat-
tern, system components, development process etc. However, it is approved by
researchers that two aspects must be given to a DSS: (1) it assists human decision
makers to make decisions; and (2) it does not make decisions or replace humans
completely. In this thesis we adopt a broad definition that was proposed in Silver
(1991):

A Decision Support System (DSS) is a computer-based information

system that affects or is intended to affect how people make decisions.

The framework of DSS addresses the numerous elements involved in providing
computer-based decision support. It provides and combines underlying technolo-
gies, decision making processes, system architectures, designs, analysis, visual-

izations, evaluation, implementation etc. Each of them identifies itself in its own
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way, and meets decisional needs differently. Instead of simply listing all functional
capabilities, describing a DSS requires considering how the individual capabilities

fit together to form a whole, contemplating the likely effects on decision makers’

behavior.
Other computer-based < > Network
systems
\_// Data L N Model L .| External
Internal management management models
data
~N—
Mee_
Knowledge-based
. subsystems
~N y,
y
External User
data interface
A
A
Organizational User

knowledge base

Figure 7.1: The general structure of a DSS

Basically, a DSS consists of many components or subsystems which provide
distinctive functionalities. Turban and Aroson (2000) identify four elementary
components of a DSS: data management, model management, knowledge-based
management and user interface. As Fig. 7.1 depicts, the general structure of a
DSS proposed in the book shows interrelationships between these four compo-
nents and how they are connected with other computer-based systems through
various types of networks.

As mentioned in Chapter 2, planners and coordinators in airlines make con-
certed efforts to generate crew schedules that utilize one of the most cost inten-

sive resources — flight crew. Researchers are bestirred to develop a large number
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of computer-based systems that assist airlines in managing resources more effi-
ciently and systematically. In terms of quantity, the literature concerning decision
support systems for the airline crew (re)scheduling problem has no shortage of
mathematical models, algorithms, and the like. But there is a lack of the full
description of a DSS that may take full advantage of DSS and its substantive
elements.

In this chapter, we present a decision support system that supports both the
airline crew scheduling and the crew recovery process during irregular operations
for a European tourist airline. Apart from generating crew schedules ahead of
their actual operations, the system is also designed for recovering disrupted crew
schedules, which produces an updated crew schedule at minimum additionally
required cost with respect to various restrictions. The system takes advantage
of mathematical models and various solution methods proposed previously, and

measures disrupted scenarios for the purpose of the efficient problem solving.

7.2 Requirements for Decision Support Systems

It is well acknowledged that various types of decision support systems were de-
ployed in airlines to schedule their flights and crews. However, only few airlines
have set up a complete decision support system for managing the entire process
of the crew scheduling, especially the problem of rescheduling their crews in dis-
rupted situations. One example development is described by Yu et al. (2003),
in which they presented a commercial product, CrewSolver, applied successfully
in Continental Airlines in the U.S. to generate globally optimal, or near opti-
mal crew recovery solutions. Nevertheless, manual recovery procedures can be
often observed in most airlines all over the world, particularly in medium-sized,
small-sized tourist airlines and low-cost airlines.

Therefore, there is an apparent lack of such a DSS that can systematically han-
dle frequent disruptions to crew schedules. The desired decision support system
should be able to present the examining problem and propose recovery solutions
with the intervention of humans. The duration of such a process should be as

limited as practical, which may potentially save costs and prevent further chaos.
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The cost of recovery actions must be minimized in terms of their imposed opera-
tional costs and the influence on crews and future operations. Furthermore, the
system has to interact with the crew schedule planning process, since there exist
a great deal of shared data and identical processes. Therefore, the two systems
should work as a whole, or function as a complete system that covers the entire
life circle of a crew schedule.

Clearly, due to the different problem structures the sub-systems for the two
problems differ from each other in terms of their functionalities required. Ta-
ble 7.1 shows a detailed comparison concerning their functionalities between the
crew scheduling in the planning phase and the crew recovery in operations time.
We discuss the differences within seven groups of components: graphical user
interface, data communication, solution methods, simulation, visualization, pub-
lication /notification and statistics.

As described in Chapter 2, Section 2.1, the airline crew scheduling process
determines the assignment of flights to crew members during the planning phase.
The input of the process includes the flight schedule, aircraft rotations, individual
crews’ pre-scheduled activities, cost structures, contract data, rules set, and so
on. The output, however, is the final crew schedule which usually covers one or
half a month long period and requires minimum operational costs.

Therefore, the DSS has to process the complex data with different structures.
It needs to involve dedicated solution methods in combination with appropriate
strategies. Because of the huge amount of data and the cost intensive aspect, the
DSS is required to include an optimal solution method which produces econom-
ically optimized crew schedules. The generated solutions still require intensive
testing and evaluations in terms of their quality and robustness. Once the re-
sulting schedule is evaluated by conducting simulations, it is officially published
to crews and visualized in a clear and understandable way. Furthermore, sta-
tistics help to uncover latent problems by analyzing history schedules and their
operations.

For the crew recovery problem, the input differs from the planning process. In
addition to the flight schedule, history crew schedules and static data, the CRP
has to consider the given disruptions, updated flight schedules and the originally

planned crew schedule. The output is a repaired crew schedule which is applicable
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RECOVERY

Table 7.1: DSS functionality for the airline crew scheduling and recovery

DSS DSS Functionality
Component Crew Scheduling Crew Recovery
(planning phase) (operational phase)
Graphical . Generation of crew sched- Monitoring and handling
User ules by the planning depart- of disruptions by OCC
Interface ment . Providing multiple strate-
gies and their configuration
Data . Flight schedule . Detected disruptions
Communication . previous crew schedule . updated flight schedule
. Static data regarding crew, . Original crew schedule and
airports, aircraft etc previous schedule
. Static data regarding crew
status, airport, aircraft etc
Solution Dedicated methods with . Dedicated methods
Methods specific configuration . Preprocessing
. Optimality is required Real-time solution meth-
ods are more important than
optimality
Simulation . Evaluation of crew sched- Analysis of impacts re-
ules regarding robustness garding current and further
and bottlenecks possible disruptions in the
future
Visualization Representation of result- Representation of recov-
ing crew schedules in differ- ered crew schedules
ent steps . Visualization of variations
from original schedules
Visualization of conflicts
in the schedule
Publication/ Regular publication of Notifications to affected
Notification crew schedules Crews
. Consideration of crews’ lo-
cations
Statistics . Generating schedule qual- . Generating recovery qual-

ity indicators

ity indicators

. Review on recovery strate-
gies, impact analysis, detec-
tion of disruption regulari-
ties etc
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in the given disrupted situation and does not impose too much further costs and
disturbances. Furthermore, the recovery process needs to be completed within a
reasonable length of period, which introduces further difficulty comparing with

the CSP.

Accordingly, the DSS for crew management in the operational phase has to
deal with not only the originally scheduled activities and crews, but also unex-
pected events which disturb the normal operation of the crew schedule. Solution
methods that can find solutions within short period of time should be accorded
high priority. It is also important to reveal disruptions’ impact on the remaining
schedule and to act quickly and appropriately towards the full schedule recovery.
After the recovery process, the resulting crew schedule is visualized to represent
the new schedule together with its changes and possible conflicts. Moreover, the
subsequent analysis has to be carried out to review the overall performance of the
recovery process and find out the efficiency of individual strategies. The detection
of possible disruption regularity may help airlines to generate more robust crew

schedules in advance and to handle disruptions proactively.

Because of the complexity of the crew recovery process, the DSS ought to
classify disruptions and investigate possible strategy which may find recovered
solutions more effectively. Due to the large number of possible solving techniques
and strategies, the system needs to manage them in a way that users can select
one of them with respect to the given situation. Within each strategy, a solu-
tion technique is prioritized and customized in order to handle a specific type of

disruption more efficiently and effectively.

To sum up, such a decision support system for the airline crew recovery prob-
lem should be characterized by the following: (1) It assists coordinators to classify
disruptions and adopt a suitable strategy to handle them; (2) It proposes recovery
solutions to coordinators with respect to all the requirements; (3) It analyzes the

performance of the recovery and provides possible further improvement.
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7.3 A Dedicated Decision Support System Ar-
chitecture

In this section, we first propose a decision support system architecture that is
designed to cover the complete airline crew management process, including the
planning and the operational phase. This makes it possible to handle the two
different tasks within one infrastructure in which several common components
can be shared for both problems. It thus may provide higher levels of interaction
between each stage of the entire process, and general problem solving techniques
can be incorporated seamlessly into the system. Consequently, in addition to the
benefit from the application of sophisticated solution methods, better results can
be achieved in such a system level.

Fig. 7.2 shows the architecture of the decision support system for the airline
crew management. It emphasizes the two major stages in the process of the
airline crew management, namely crew scheduling in the planning phase and
crew recovery in the operational phase.

The DSS architecture presented above can be seen as three tiers from the
left side to the right side: users, core components and data. In the following

subsections, the three parts will be described in detail.

7.3.1 Users and User Interface

In the context of the airline crew management, two main groups of users are
involved: planners and coordinators. We differentiate them by their divergent
work content in different stages. Planners mainly work in a planning department
where they create crew schedules, while coordinators solely work in operations
control center where they carry out the reparation of disrupted crew schedules.
The graphical interface (GUI) is the connection between users and the system,
which allows them to interact with the different components of the DSS. Both
groups of users use similar GUI as the two problems have great similarity except

that few distinctive functions are required by each problem (see Table 7.1).
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7.3.2 Core Components

The core components characterize the DSS and provide the individual function-
alities. In our approach, we take nine important components into account, and
incorporate them into the system. In the following, we briefly discuss these es-
sential components.

DSS configuration: The system configuration is a central component as it
constitutes the basis of the DSS. A bundle of functions, parameters and settings
are set up with respect to the given situation. It reflects the definition of the
airline’s objectives and scheduling process. Based on a specific configuration,
other components provide their intended functionalities.

Data communication: This component provides the transferring of data
between the components, and also with other systems or databases. Because of
the high similarity of input data for both of the crew management tasks, a fully
shared component can be built for both of them.

Solution methods: Based on the objectives of the task and the given pa-
rameters, a set of solution methods is provided. This includes mathematical
programming, network flow model, column generation, constructive algorithms,
local search and population based heuristics, e.g., genetic algorithms, simulated
annealing etc. Each of them can be customized into a specific setting and there-
fore may solve problems more efficiently.

What-if analysis: This component examines alternatives or individual changes
of decisions by presenting possible consequences. With such a component, plan-
ners or coordinators may test different problem settings, which introduce alter-
native solutions.

Simulation: Since the operation of an airline is not deterministic, the appli-
cation of a simulation component is very useful. With simulation, it is possible to
evaluate more stochastic characteristics of crew schedules, e.g., robustness against
delays, and their impacts on the entire system. For crew recovery, it can test how
well the recovered crew schedule will be operated.

Visualization: Both crew scheduling and rescheduling problem include a
huge amount of data with complex structures. A proper visualization helps the

user to understand the underlying information more easily. The essential goal
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of the visualization in our approach is to present crew schedules in a way that
adequate information is included and they can be easily understood. In addi-
tion, changes in a recovered crew schedule are also shown indicating the new
assignment.

Evaluation: This component is responsible for the complex evaluation of
alternative solutions, through which it supports the final decision making. After
several solutions are generated, an evaluation scheme has been defined which
determines the pros and cons among the alternatives and provides a concrete
suggestion on how to react in the current situation.

Publication/Notification: All decisions that are made during the crew
management need to be published. It has to be done in a way that all individual
crew members involved in the scheduling process or affected by the updated
schedules are informed accordingly by printouts or via terminal stations at their
current location.

Statistics: This component provides the analysis of history data which may
produce additional benefits. Derived from the experienced problems, expert rules
can be extracted and future disruptions might be avoided before their occurrence.
For the recovery problem, it investigates the performance of each recovery, which

may help airlines build more reasonable recovery strategies and methods.

7.3.3 Data

On the right side of the architecture (Fig. 7.2), we present several types of data
involved in the crew management process. They are basically divided into two
groups: static data and rules and expertise.

Static data: For the crew management the input data is stored in several
databases: They include information of crew members (e.g., individually con-
tracted flying hours, vacations, pre-scheduled activities and home bases), the
flight plan (e.g., flights with arrival and departure times, requested crew quali-
fications and fleet requirements etc.), and airport information (such as landing
capacities, hotel availability). Furthermore, a tracking database provides the

real-time data as it is executed during operations which also monitors possible
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disruptions such as delays, cancellations, crew sickness/absentness etc. A knowl-
edge base covers all less structured information, such as general guidelines and
concepts, specific knowledge, and so on.

Rules and expertise: In addition, regulations and rules imposed by gov-
ernments, union agreements or company internal rules are collected and have to
be satisfied during the crew scheduling and rescheduling. Furthermore, expert
rules are usually created taking specific situations into account. They are usually

defined based on the users’ experience.

7.4 Crew Recovery Process Flow

As the focus of this work is to solve the airline crew recovery problem, in this
section we will describe the use of such a decision support system from a coordi-
nator’s perspective. Especially, we will show the process flow of how they handle
disruptions.

As shown in the process flow depicted in Fig. 7.3, a preprocessing step is taken
to investigate disruptions and possible strategies. Disruptions are classified and
the set of goals of the recovery is prioritized with respect to their characteristics.
Usually, the number of strategies at hand is increasing gradually through exam-
ining more and more disruptions. The more disruptions an airline experienced in
the past, the more possible and suitable strategies can be defined by combining
different solution methods and the parameters’ setting.

Such a preprocessing may, therefore, reduce intensive computations by identi-
fying a proper strategy based on the evaluation of given disruptions. The chosen
strategy customized with the eligible method and its dedicated parameters thus
may cut down the solution time of solving the problem. The detailed introduc-
tion of the disruption classification and the strategy definition can be found in
Chapter 6.

The preprocessing procedure can also be seen as the process that initializes
the configuration of the DSS. For the airline crew recovery problem, the DSS
configuration involves mainly three parts: airline scenario, instance, and strat-
egy (see Fig. 7.4). An airline scenario includes a set of regulations and rules,

together with the airline’s policies. It can be seen as the basis of the problem
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setting and the system configuration, as other parts of the configuration are set
up based on it. An instance is basically selected with corresponding parameters
by answering the following questions: Which fleet tends to be planned; what time
period is examined; which crew position is taken into consideration; what type of
disruptions occur and how flight schedule is changed because of the disruptions.
The parameters have tremendous effects on the size of the problem and the com-
plexity for solving the problem. However, a strategy can be understood as the
combination of several strategic decisions made to solve the problem differently
and efficiently. As shown in the third part of the figure, five most important
units play a significant role to form a strategy: preprocessing, objective function,
recovery period, solution method and the setting of corresponding parameters.
After the preprocessing, a strategy mapping is carried out to find an appropri-
ate strategy for the given disrupted situation. The problem is, therefore, solved
with the specific method proposed in the strategy. One or more recovery solutions

are finally produced and then evaluated. In the case that the generated solutions
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fail to prove applicable or useful, coordinators will repeat the strategy mapping
procedure to choose another strategy and solve the problem again until an accept-
able solution is found. The final step is to update and publish the crew schedule
with respect to all changes made in the new schedule. The newly generated crew
schedule is stored in a XML document, in which every change is marked with an
attribute indicating a new assignment. A certain number of notifications have
to be made in order to inform relevant crews about the changes. Ultimately, the
crew schedule is recovered from disruptions through such crew recovery process
flow. Within each step in the whole recovery process, the DSS provides dedicated
tools, support, methods or techniques which are able to accomplish goals in a

systematic way.

7.5 Summary

In this chapter, we propose a decision support system that covers the complete
life cycle of the airline crew scheduling process, which is designed to meet the
requirements for both planning and operational phase. We develop a general
infrastructure for the crew management processes in which alternative solution
methods, such as mathematical programming and heuristics, can be easily incor-
porated. Within the system, we suggest a dedicated crew recovery approach to
handle unexpected disruptions. The system is able to single out one strategy,
with which the examined problem can be solved more efficiently by customizing
different solution methods. With such a system, we can cope with the damage of

crew schedules more effectively than the approach with a single specific method.
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Chapter 8

Conclusions and Future Research

In previous chapters, we have studied the airline crew recovery problem and
proposed several solution methods, a strategy mapping scheme, as well as the
prototype of a dedicated decision support system. This chapter concludes the
thesis by highlighting our contributions to this particular problem, and suggesting
some potential directions for future research.

During the initial involvement in the area of the airline crew scheduling, the
emphasis of our research was placed on the two sub-problems — crew pairing
and crew rostering — and the integration of both. After we studied the solu-
tion methods for crew scheduling in the planning phase, we observed another
challenging task faced by airlines every day to handle disrupted situations in the
operational phase, namely the airline crew recovery problem. Only recently this
problem begins to attract researchers’ attention, therefore relatively limited work
has been done on this specific topic. The fast growth of the air traffic and the
complexity of airlines’ operational environment frequently causes disturbances
to normal operations. Therefore, addressing efficient algorithms and supporting
systems becomes more and more urgent. This motivates us to work on the prob-
lem of rescheduling crews during irregular operations and to develop a dedicated
decision support system that incorporates and manages several algorithms.

Our first contribution provides a detailed description of the airline crew re-
covery problem, especially in the setting of most European tourist airlines. In
Chapter 1 and 2, we elaborated on airlines’ operation environment in which air-

lines generate their crew schedules and update them for the purpose of recov-
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ering from disruptions. The detailed problem structure was presented including
involved resources, activities, constraints, cost structure, and so on. The crew
recovery process in practice was also reported, in which several practical issues
were discussed in the case that the process is carried out in a manual manner.
Additionally, significant differences between the airline crew scheduling in the
planning phase and the recovery process in the operational phase were explained,
which led to the development of real-time solution methods for solving the recov-
ery problem.

Because of the great similarity and the close relationship, we conducted a
literature review on both the airline crew scheduling and rescheduling problem
in Chapter 3. As the concepts and techniques developed for the former problem
can be applied to the crew recovery problem, we provided a survey of previous
work on both problems. It concluded the lack of research on the crew recovery
problem in the setting of European airlines, and also showed the need to build a
dedicated decision support system.

In Chapter 4, we modeled this task as two different set partitioning problems
which differ from previous attempts since our approaches do not address the con-
cept of pairing. In other words, crew rosters with the length of the recovery
period are constructed directly from the flight level. Since it does not introduce
any sub-problems, it allows us to achieve better global solutions. In addition to
the direct solving approach, we designed and implemented a column generation
approach to solve the problem in an implicit way. The subproblem of the column
generation is solved by a constrained short path algorithm using dynamic pro-
gramming. The column generation approach showed a dramatic improvement in
terms of solution time compared with the direct solving method. Furthermore,
the result has demonstrated the high possibility of finding an optimal solution
because multiple ones exist in this particular type of problems.

The time restriction imposed by this particular problem motivated us to de-
velop heuristics that can solve the problem in a short period of time. In Chapter 5
we presented two heuristic approaches including a GA based heuristic and a con-
structive algorithm. The constructive algorithm solves the problem in a simple
and intuitive way, which leads to a fast solution approach but mostly finds solu-

tions with limited quality. Therefore, we proposed a GA based approach in which
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a new two dimensional matrix representation is adopted and various heuristics
are applied accounting for specific characteristics of the problem. Several varia-
tion operators have been implemented and tested. With the GA approach, we
can solve very large problem instances in reasonable time and produce acceptable
recovery solutions.

Due to the complexity of the examined problem, no one single method can
solve all problem instances better than others. Therefore, in Chapter 6 we pro-
posed a strategy mapping procedure using the AHP technique, by which we can
single out an appropriate strategy based on the preliminary investigation of the
given disruption.

Finally, in Chapter 7 we presented the prototype of a dedicated decision sup-
port system, in which all solution methods presented earlier and the strategy
mapping procedure are incorporated. Coordinators of airlines can therefore re-
cover the damaged crew schedule using a dedicated solution method selected by
the strategy mapping procedure. Furthermore, the decision support system was
merged with the approach for crew scheduling in the planning phase. There-
fore, the resulting system is able to cover the entire life cycle of the airline crew
scheduling process.

Although the column generation approach can solve most problem instances
and mostly find an optimal solution, it cannot guarantee an optimal integer solu-
tion theoretically. Therefore, one further research direction is to embed it into a
branch-and-bound procedure, which forms a branch-and-price approach (as stud-
ied in Barnhart et al., 1999a). However, further work on branching strategies and
bounding techniques has to be conducted in order to reduce the total solution
time, especially for large problem instances. Another further research direction
is to extend the GA based heuristic by implementing more variation operators.
One direction is to develop a similar crossover to the so called conflicts-based
crossover proposed by Lewis and Paechter (2004) to solve the school timetabling
problem. However, in our problem, we may randomly select a flight leg f and
identify collections of building blocks that are applicable to common crew mem-
bers. Therefore, this operator can potentially improve the average quality of the

population over generations.
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With the fast development of computer hardware, we may also consider other
recovery processes into one single approach in future, namely aircraft and pas-
senger recovery. By integrating the three approaches or at least increasing the
interaction in between, airlines may handle disruptions even better in terms of

cost saving, fast response, and less conflicts.
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