
Page Migration in Dynamic Networks

Dissertation

by

Marcin Bienkowski

Fakultät für Elektrotechnik, Informatik und Mathematik
Institut für Informatik und Heinz Nixdorf Institut

Universität Paderborn

Paderborn, July 2005

Reviewers:

• Prof. Dr. Friedhelm Meyer auf der Heide, Universität Paderborn, Germany

• Prof. Dr. Burkhard Monien, Universität Paderborn, Germany

• Prof. Dr. Susanne Albers, Universität Freiburg, Germany

For Ewa and

little Joanna

Acknowledgements

I am deeply grateful to my advisor, Prof. Friedhelm Meyer auf der Heide for his contin-
uous encouragement during all the stages of this thesis. It is not common for advisors
to be that supportive, but it is a rarity to be simultaneously supportive and unobtrusive.
While he showed me the possible paths, I never felt forced to follow any.

I am also truly indebted to the people with whom I collaborated, mainly the members
of the working group “Algorithms and Complexity”. As the life in graduate school
does not consist of having brilliant ideas only, I am thankful to all of them who were
willing to listen to all these unproven theories and false theorems that crossed my
mind. While I profited from their scientific help and they were all fun to work with,
their moral support, and daily conversations about life, universe and everything, made
the life in the rainy town Paderborn as cheerful as it could possibly be. In alphabetic
order they are André Brinkmann, Jarek Byrka, Valentina Damerow, Gereon Frahling,
Mirek Korzeniowski, Jarek Kutyłowski, Peter Mahlmann, Harald Räcke, Kay Salzwedel,
Christian Schindelhauer, Christian Sohler, and Martin Ziegler.

Additional credits I owe to Mirek Korzeniowski and Jarek Kutyłowski for reading
parts of these thesis. Their comments helped me to improve the readability of this work.

Last but not least, I thank my wife, Ewa Dacko, for being here for all these years,
proofreading all my papers, keeping the companion and cheering me up. Without her
love nothing would have been possible.

v

Contents

1 Introduction 1
1.1 Static networks . 2

1.1.1 Competitive analysis . 3
1.2 Dynamic networks . 4

1.2.1 Our model . 5
1.2.2 Our contribution . 8

1.3 Related work . 10
1.4 Bibliographical notes . 14

2 Basics 15
2.1 Optimal offline solution . 15
2.2 Reduction Lemma . 17
2.3 Two-node networks . 17

2.3.1 Randomized algorithm E . 18
2.3.2 Lower bound for oblivious adversary 22

2.4 Trivial algorithms . 25
2.4.1 Algorithm J . 25
2.4.2 Reusing Page Migration algorithms 27

3 Adversarial Scenario 31
3.1 Randomization against adaptive adversary 32

3.1.1 Algorithm D . 34
3.1.2 D in the first part of a step . 36
3.1.3 D in the second part of a step . 42
3.1.4 Combining Dwith other algorithms 43

3.2 Marking algorithms . 44
3.2.1 Deterministic algorithm M . 51

vii

viii C

3.2.2 Randomization against oblivious adversary 58
3.2.3 Proofs of Phase Lemmas . 68

3.3 Lower bounds . 74
3.3.1 Lower bound against adaptive-online adversary 75
3.3.2 Lower bound against oblivious adversary 83

3.4 Concluding remarks . 86
3.5 Proofs of technical claims . 87

4 Brownian Motion Scenario 89
4.1 Majority algorithms . 91

4.1.1 Epochs . 93
4.1.2 Competitiveness of M . 95

4.2 Bounding cost of M . 100
4.3 Bounding cost of O . 105

4.3.1 Narrow sets . 110
4.3.2 Precondition: smooth movement . 113
4.3.3 Precondition: scattered nodes . 114
4.3.4 Proof of the Crucial Property . 118

4.4 Extensions and conclusions . 123
4.5 Proofs of technical claims . 124

5 Stochastic Requests Scenario 129
5.1 Lower bound for the extended cost model 131
5.2 Algorithm M . 132

5.2.1 Lower bound for O . 138
5.2.2 Upper bound for M . 142
5.2.3 Expected competitive ratio . 146

5.3 Extensions and conclusions . 149
5.4 Proofs of technical claims . 150

5.4.1 Proof of the concentration bound . 152

6 Summary and Outlook 155

Bibliography 163

Appendix 165
A.1 Notations . 165
A.2 Mathematical tools . 166

C       1

Introduction

In the last couple of decades, network connected systems have gradually replaced cen-
tralized parallel computing machines. Current computational challenges like protein
folding, weather prediction, theorem proving, or even search of extraterrestrial intel-
ligence in space require computing power, which neither can be delivered by a single
mainframe, nor is easily affordable. On the other hand, vast computing resources are
within reach by means of the Internet and other large, unstructured networks.

In contrast to traditional parallel computers, networks of workstations deliver com-
puting power which is relatively cheap, but scattered and distributed. In consequence,
writing a network application that runs in a distributed environment is substantially
more difficult than writing an analogous program running on a single multi-processor
machine. Basic services which are taken for granted in the latter case do not exist per se
in a distributed network. One of the most crucial services used in every single parallel
program is providing an application with a transparent access to variables, databases,
memory pages, or files, which are shared by the instances of programs running at nodes
of the network.

An implementation of the variable sharing is essential to the performance of a dis-
tributed application. However, the traditional approach of storing the shared data in
one or a few central repositories does not scale up well with the increase of the network
size and is therefore inherently inefficient. One of the most straightforward, yet impre-
cise solution, is to abandon these central storage systems and use local memories of the
nodes to store the shared objects.

In this thesis we investigate data management strategies that try to exploit topological
locality, i.e., try to migrate the shared data in the network in such a way that a node
accessing a data item finds it “nearby” in the network. Accesses to the shared data can
be modelled as an online problem. While we briefly discuss several such models, in this
work we deal with the classical, most basic one, called Page Migration.

1

2 I

However, in contrast to previous works on data management in networks, we focus on
the page migration in a dynamic setting. We assume that the network is no longer static,
but is subject to change, and the costs of communication between nodes may change
with time. Such a situation is typical in mobile ad-hoc networks, but occurs also in large
distributed systems, which are used concurrently by many applications and users. Thus,
we have to deal with two sources of online events, namely the requests from nodes to
data items and the changes in the network. The new challenges, both for modelling and
algorithm design and analysis, arising from the combination of data management with the
network dynamics are the main topic of this thesis.

1.1 Static networks

In many applications, access patterns to a shared object change frequently. This is
common, for example, in parallel pipelined data processing, where the set of processors
accessing shared variables changes in the runtime. In these cases, any static placement
of the object copies is inefficient. Moreover, the knowledge of the future accesses to the
objects is in reality either partial or completely non-existing, which renders any solution
based on static placement infeasible. Instead, a data management strategy should
migrate the copies to further exploit the locality of accesses. This poses an algorithmic
problem, central to this thesis.

Without knowledge of the future accesses to the shared objects, decide,
whether it is worth to change the positions of their copies.

To keep the bookkeeping overhead small, it is often required that only one copy of
each object is stored in the system. Additionally, in a typical situation in the parallel
environments, shared objects are usually bigger than the part of their data that is being
accessed at one time. Usually, processors want to read or change only one single unit
of data from the object, or one record from a database. On the other hand, the data of
one object should be kept in one place to reduce the maintenance overhead. This leads
to a so-called non-uniform model, where migrating or copying the whole object is much
more expensive than accessing one unit of data from it.

This traditional paradigm, called Page Migration (PM) was introduced by Black and
Sleator [BS89]. It models an underlying network as a connected, undirected graph, where
each edge e has an associated cost c(e) of sending one unit of data over the corresponding
communication channel. In case of wired networks, this cost might represent the load
induced by sending data through this communication link. The cost of sending one
unit of data between two nodes va and vb is defined as the sum of costs of edges on

1.1.1 C  3

the cheapest path between va and vb. There is only one copy of one single object of size D,
which is further called a (memory) page, stored initially at one fixed node in the network.

A PM problem instance is a sequence of nodes (σt)t, which want to access (read or
write) one unit of data from the page. In one step t, one node σt issues a request
to the node holding the page and appropriate data is sent back. For such a request,
an algorithm for PM is charged a cost of sending one unit of data between σt and the
node holding the page. At the end of each time step the algorithm may move the page
to an arbitrary node. Such a transaction incurs a cost which is D times greater than the
cost of sending one unit of data between these two nodes.

The goal is to compute a schedule of page movements to minimize the total cost.
Furthermore, computing an optimal schedule offline, i.e., on the basis of the whole input
sequence I = (σt)t, is an easy task, which can be performed in polynomial time. Thus,
the main effort was placed on constructing online algorithms, i.e., ones which have to
make decision in time step t solely on the part of the input up to step t.

1.1.1 Competitive analysis

To measure the performance of online strategies for the PM problem, the competitive
analysis (see, e.g., [ST85, BE98]) was used. This kind of evaluation, primarily introduced
by Sleator and Tarjan [ST85], compares the cost of an online solution to the cost of the
optimal offline strategy. In the following we assume that an optimal solution is denoted
by O, and for any algorithm A, CALG(I) denotes the cost of this algorithm on input
sequence I = (σt)t.

An online deterministic algorithm A is R-competitive, if there exists a constant A,
such that for any input sequence I, it holds that

CALG(I) ≤ R · COPT(I) + A . (1.1)

If A = 0, then we call A strictly R-competitive. For a randomized algorithm A we
replace its cost in the definition above by its expectation E[CALG(I)]. The expected value
is taken over all possible random choices made by A.

However, in the randomized case, the power given to the adversary has to be further
specified. Following Ben-David et al. [BBK+90], we distinguish between three types of
adversaries: oblivious, adaptive-online and adaptive-offline. An oblivious adversary has to
construct the whole input sequence in advance, not taking into account the random bits
used by an algorithm. The other two types are adaptive ones; they may decide about
the next requests upon seeing the algorithm’s current page position. Since they are
dependent on the algorithm’s random choices, we have to replace COPT(I) by its expec-
tation (taken over these random choices). These two adaptive types differ, however, in
the way they construct an optimal solution, which is later compared with the solution

4 I

of A. An adaptive-online adversary must provide an answering entity, which creates
an “optimal” solution parallelly to A. This solution may not be changed afterwards.
An adaptive-offline adversary may construct an optimal solution at the end, knowing the
whole input sequence.

The power of these adversaries can be related as shown in [BBK+90]. Let ROBL,
RAD−ONL, RAD−OFF are the best competitive ratios for randomized algorithms against
oblivious, adaptive-online, and adaptive-offline adversaries, respectively. Let RDET be
the best possible ratio for deterministic algorithm. Then

ROBL ≤ RAD−ONL ≤ RAD−OFF = RDET . (1.2)

This relation implies that the randomization does not help against the adaptive-offline
adversary. Hence in this thesis, we focus on the other three types of adversaries.

While we give complete overview of the algorithms for Page Migration and related
problems later, here we mention only that this area has been explored thoroughly by
many researchers [BS89, Wes92, ABF93a, CLRW93, LRWY99, BCI01], and algorithms
achieving constant competitive ratios were designed for all the types of adversaries
presented above.

1.2 Dynamic networks

In the past, an application executed on a parallel machine was running in a virtually
static and invariable environment and one could safely assume that the interconnecting
network is predictable and reliable. Such assumptions, which substantially reduced the
complexity of the basic services design, ceased to hold when applications started to run
in open and unknown networks.

First of all, the network has begun to be prone to link failures or bandwidth short-
ages. Second, other applications running in the network might behave completely
unpredictably or even antagonistically, creating high loads on particular links, e.g., by
flooding them with messages. Third, if the network consists of mobile stations, its
topology may be changed due to nodes mobility.

In our considerations we do not take into account the dynamics induced by nodes
joining and leaving the network. In fact, a model where nodes may become active and
inactive was already investigated by Awerbuch, Bartal, and Fiat [ABF98] in context of
a data management subproblem, a file allocation.

Basic services for mobile wireless networks and dynamically changing wired networks
are a relatively new area. The topology control (the problem of computing and maintaining
a connected topology stretched on the network nodes) and routing in wireless mobile
networks received attention in a past few years. See [Raj02] for a survey by Rajaraman.

1.2.1 O  5

Some effort was also placed on constructing routing algorithms for wired networks,
where an adversarial entity not only injects packets to be routed but also may arbitrarily
deactivate/activate any links. Surprisingly, for this very strong model, where the ad-
versary is essentially able to destroy existing connections between each pair of nodes,
Awerbuch, Brinkmann, and Scheideler [ABS03] were able to construct the robust routing
(both path selection and packet switching) algorithm. The model assumed that drop-
ping packets is admissible, and thus the algorithm was able to cope with the situations
of routing packets with unreachable destinations. However, the fraction of delivered
(not dropped) packets was provably close to the number of packets which an optimal
algorithm could route. Related models of network dynamics are further discussed in
a survey by Scheideler [Sch02].

In comparison, basic services related to data management problems in dynamically
changing networks are still in their infancy. Till recently, no theoretical analysis or even
experimental evaluation was present in this area, which might have been influenced by
the fact that no reasonable model of network changes was proposed. In particular, any
model similar to the one described in [ABS03], with possible adversarial link failures,
would be too strong for any data management scheme. This follows from the observation
that it is relatively easy to construct a sequence of accesses to a shared object, which
eventually forces any competitive algorithm to move all the copies of this object to
one node. Afterwards, the link failures may disconnect this node from the rest of the
network, leaving the algorithm no chance to access or migrate the data now or in the
future.

Hence, for theoretical modelling dynamics of networks, we assume that an adversary
may modify the costs of point-to-point communication arbitrarily, as long as the pace
of these changes is restricted by, say, an additive constant per step. Intuitively, this
gives the data management algorithm time to react to the changes. Such a model can be
motivated by a reality-close pedestrian model by Schindelhauer, Lukovszki, Rührup, and
Volbert [SLRV03], where mobile stations might be moved arbitrarily by an adversary, as
long their speed is bounded. The model of slow changes in the communication costs,
formally defined in the next section, tries also to capture slow changes in bandwidth
available in wired networks, which are inherently induced by other programs running
or users using (not abusing) the network.

1.2.1 Our model

To model the Page Migration problem in dynamic networks we make the following
assumptions. The network is modelled as a set of n mobile nodes (processors) labelled

6 I

v1, v2, . . . , vn. These nodes are placed in a metric space (X, d), where the distance between
any pair of points from X is given by the metric d.

Time is discrete and slotted into time steps t = 0, 1, 2, To model dynamics we
assume that the position of each node is a function of t, i.e., pt(v) denotes the position
of v in time step t. As a natural consequence, the distance between a pair of nodes may
also change with time. The distance between any pair of nodes va and vb in time step t
is denoted by

dt(va, vb) := d(pt(va), pt(vb)) . (1.3)

Note that such a distance can be equal to zero in two different cases. The first one occurs,
if va and vb are different nodes occupying the same position inX. The second one occurs
when a = b, in which case we are dealing with a single node (and we write va ≡ vb).

A tuple describing the positions of all the nodes in time step t is called configuration in
step t, and is denoted byCt.1 A configuration sequence (Ct)T

t=0 contains the configurations
in the first T + 1 time steps, beginning with the initial configuration C0.

The changes in nodes’ positions over time are arbitrary, as long as the nodes move
with a bounded speed, as mentioned in the previous section. Formally, for any node vi, its
positions in two consecutive time steps t and t + 1 cannot be too far apart, i.e.,

d(pt(vi), pt+1(vi)) ≤ δ , (1.4)

for some fixed constant δ. An adversarial entity creating sequence of configurations
is called δ-restricted, if it obeys the inequality above. Furthermore, if X is a bounded
metric space, then let λ denote its diameter, i.e., the maximum possible distance between
two points from X. For an unbounded space, λ = ∞. We call λ the (maximum) extent of
the network.

Any two nodes are able to communicate directly with each other. Essentially, the com-
munication cost is proportional to the distance between these two nodes, plus a constant
overhead. This overhead represents the startup cost for establishing connection. Pre-
cisely, the cost of sending a unit of data from node va to vb at time step t is defined by
a cost function ct(va, vb), defined as

ct(va, vb) := dt(va, vb) + 1 , (1.5)

if va and vb are different nodes. The communication within one node is free, i.e., if va ≡ vb,
then ct(va, vb) = 0.

1 The actual representation of these positions in complicated metric spaces is not relevant. The only
requirement is that the distances between any pair of nodes in time t are computable on the basis of Ct.

1.2.1 O  7

Naturally, the changes in the network themselves (described by the (Ct)T
t=0 sequence)

do not constitute a problem of its own. According to the described Page Migration model,
a copy of memory page of size D is stored at one of the network’s nodes, initially at v1.
In each time step t ≥ 1, exactly one node, denoted by σt, tries to access one unit of data
from the page. Since the model assumes that there is only one copy of the object stored
in the system, there is no need of making distinction between read and write accesses.
We refer to them as accesses or requests and we call σt the requesting node. The requests
create the sequence (σt)T

t=1, complementary to the configuration sequence (Ct)T
t=0.2

In each step an algorithm for the Page Migration in dynamic networks has to serve the
request, and then to decide, whether it wants to migrate the page to some other node.
Precisely, for any algorithm A the following stages happen in time step t ≥ 1.

1. The positions of the nodes in the current step are defined by Ct.

2. A node σt wants to access one single unit of data from the page. It sends a write or
a read request to PALG(t), the node holding A’s page in the current step.

3. A serves this request, i.e., it sends a confirmation in case of write, or a requested
unit of data in case of read. This transaction incurs a cost ct(PALG(t), σt).

4. A optionally moves the page to another node of its choice, called a jump candidate.
A movement to P′ALG(t) incurs a cost D · ct(PALG(t),P′ALG(t)).

In fact, the only part which A may influence is choosing a new node P′ALG(t) in the
fourth stage. The problem, to which we further refer as Dynamic Page Migration (DPM), is
to construct a schedule of page movements to minimize the total cost of communication
for any pair of sequences (Ct)t, (σt)t. We will usually abbreviate this notion to (Ct, σt)t.

Before we proceed with the considerations on the complexity of the DPM problem,
we point out that the DPM model is more general than Page Migration itself. If the
network is static, i.e., Ct = Ct−1 for all t ≥ 1, and we neglect the constant overhead in
the cost function definition, then DPM is capable of modelling any situation, in which
cost function satisfies the triangle inequality. Note that even if the underlying graphs
are not metrical, the page migration algorithm chooses shortest paths instead of direct
connections, and thus the triangle inequality is fulfilled.

It is also straightforward, that the constant overhead may be neglected, if the minimum
cost of communication in the network is large. For the Page Migration problem in a static
network we may assume this property, since, without loss of generality, the costs defined
by any instance of the problem might be scaled up by any factor.

2 Note that nodes issue requests from the first step. The initial configuration in time step 0 is introduced
to simplify the notation only.

8 I

1.2.2 Our contribution

Like in the Page Migration case, the problem of minimizing the total cost incurred is
relatively easy, if both (Ct)t and (σt)t are given in offline setting, i.e., if an algorithm may
read the whole input beforehand. In fact, we present an easy dynamic programming
approach, which is able to find an optimal schedule of page movements for any instance
of the DPM problem consisting of T steps, usingO(T·n2) operations andO(T·n) additional
space.

However, as mentioned earlier, DPM has to be primarily solved in an online setting,
where an algorithm must make its decisions (where to move the page) in time step t,
exclusively on the sequence C0,C1, σ1,C2, σ2, . . . ,Ct, σt. To evaluate an online strategy for
the DPM problem, we use competitive analysis. Since the input sequence consists of two
practically independent streams, (σt)t describing the request patterns and (Ct)t reflecting
the changes in network topology, it is reasonable to assume that they are created by two
separate adversarial entities, a request adversary and a configuration (network) adversary.

In this thesis, we design algorithms for different powers of adversaries, and rigorously
analyze them using competitive analysis and its variants. However, not only we have
to precise the power of a single adversary, but also we have to decide whether these
adversaries cooperate in creating an input sequence. This yields different scenarios
depending on the ways in which these adversaries interact.

Adversarial (cooperative) scenario

The most straightforward modelling creates a task, which is most difficult to solve. It
arises when both adversaries may cooperate to create the combined input sequence. In
fact, this is equivalent to having one adversary capable of constructing the whole input
sequence and brings the problem back to the classical formulation of online analysis.

We investigate this scenario in Chapter 2 and Chapter 3. We construct deterministic
and randomized memoryless strategies, which are O(min{n ·

√
D,D, λ})-competitive. As

main non-trivial building blocks, they use O(n ·
√

D)-competitive algorithms M and
D, respectively. In the randomized case, the ratio is attained against an adaptive-
online adversary. Recall that λ denotes the maximum distance that occurs between
two nodes during runtime. Furthermore, these algorithms are up to a constant factor
optimal, due to the presented matching lower bound for adaptive-online adversaries.

Further, we show how to randomize the deterministic algorithm M to get a com-
petitive ratio ofO(

√
D · log n,D, λ}) against an oblivious adversary. This result is asymp-

totically optimal in the case of D ≥ log3 n, due to the presented lower bound of
Ω(min{

√
D · log n,D2/3, λ}). All the presented competitive ratios are strict, which means

that the constant A occurring in (1.1) is equal to zero.

1.2.2 O  9

The competitive ratios of the best possible algorithms for DPM problem are large, even
against the weakest, oblivious adversaries. It can be inferred that the poor performance
of algorithms for this scenario is caused by the fact that the network and request adver-
saries might combine and synchronize their efforts in order to destroy our algorithm. If
cooperation between them was forbidden, then one might hope for a provably better
performance. However, it is semantically not clear what non-cooperativeness means.
Therefore we propose that the DPM problem could be analyzed in another extreme case,
where one of the adversaries is replaced by a stochastic process. This leads to another
two scenarios.

Brownian motion scenario

In this scenario, presented in Chapter 4, requests are given by the adversary, but the
movement of nodes is random. Precisely, the mobile nodes perform a random walk on
a bounded area of diameter B, and the request adversary dictates which nodes issue
requests during runtime. By area we mean a d-dimensional discrete torus or mesh of
diameter B, where d is a constant.

The request adversary is “oblivious”, i.e., it has to create the whole request se-
quence (σt)t in advance, without knowledge of the actual configuration sequence (Ct)t

induced by a random walk. The definition of competitiveness has to be adapted ap-
propriately to reflect the fact that the input sequence is created both by an adversary
and a stochastic process. Motivated by the research in the smoothed analysis of online
algorithms, and the corresponding performance metric called smoothed competitive ratio
[BLM+03, SS04], we introduce the following notions.

A deterministic algorithm A is R-competitive with probability p, if there exists
a constant A, such that for all request sequences (σt)t it holds that

Pr(Ct)t

[
CALG((Ct, σt)t) ≤ R · COPT((Ct, σt)t) + A

]
≥ p , (1.6)

where the probability is taken over all possible configuration sequences generated by
the random movement.

A deterministic algorithm A is R-competitive in expectation (achieves expected
competitive ratio of R), if there exists a constant A, such that for all request sequences
(σt)t it holds that

E(Ct)t

[
CALG((Ct, σt)t) − A

COPT((Ct, σt)t)

]
≤ R . (1.7)

We emphasize that our notion of expected competitive ratio is usually stronger and gives
more realistic estimates than the similar E[CALG]/E[COPT] ratio introduced by Koutsou-
pias and Papadimitriou [KP00b].

10 I

We present an algorithm M, which is O(min{ 4√D,n} · polylog(B,D,n))-competitive
in this scenario. This result holds for 1-dimensional areas if 3√D ≤ B ≤

√
D, or for any

constant-dimensional areas if B ≥
√

D. The ratio is achieved with both in expectation
and with high probability. In this context high probability means that the probability p
occurring in (1.6) can be amplified to 1 − (B · D)−γ, by setting A = γ · A0 for a fixed
constant A0.

Stochastic requests scenario

This is a scenario, discussed in Chapter 5, which is symmetric to the Brownian mo-
tion one. It assumes that requests appear with some given frequencies, i.e., in step t,
σt is a node chosen randomly according to a fixed probability distribution π. Anal-
ogously, a deterministic algorithm A is R-competitive with probability p, if there
exists a constant A, such that for all possible network topology changes (configuration
sequences) (Ct)t and all possible probability distributions π, it holds that

Pr(σt)t

[
CALG((Ct, σt)t) ≤ R · COPT((Ct, σt)t) + A

]
≥ p . (1.8)

The probability is taken over all possible request sequences (σt)t generated according
to π. We define the expected competitive ratio in the same manner as in the Brownian
requests scenario.

We present an algorithm M-T-F-R, achieving strict O(1)-competitive
ratio, in expectation and with high probability. In this context, high probability means
that for any γ, one can achieve probability 1 − D−γ, if the input sequence is sufficiently
long. Moreover, the algorithm can be slightly modified to also handle the following cost
function

ct(va, vb) = [dt(va, vb)]
α + 1 , (1.9)

for any constant α, still remaining O(1)-competitive. For the case of wireless radio
networks, one can choose the parameterα to respect a propagation exponent of the medium
(see, e.g., [Rap96]). For example by setting α = 2, the cost definition reflects the energy
consumption used to send a message in the ideally free space along a given distance.
Thus, this result minimizes, up to a constant factor, the total energy used in the system.

1.3 Related work

To our best knowledge, the only work that exists in the area of data management in dy-
namically changing networks is the paper by Awerbuch, Bartal, and Fiat on distributed
paging [ABF98]. However, they consider a setting, in which nodes may appear and
disappear, which is in fact orthogonal to our model. In particular, their results, which
we present in one of the following sections, are inapplicable in our scenario.

1.3 R  11

On the other hand, the area of data management in static networks has been success-
fully explored in the past years by numerous researchers. Since we build the thesis on
top of these algorithms, we briefly state some of their results below.

Page migration

The Page Migration problem was thoroughly investigated for different types of ad-
versaries. While we shortly state the results below, for a gentle introduction to the
algorithms mentioned here, we refer the reader to the survey by Bartal [Bar96a].

First randomized solutions presented by Westbrook [Wes92] were a memoryless algo-
rithm which was 3-competitive against an adaptive-online adversary and a phase-based
algorithm whose competitive ratio against an oblivious adversary tends to 2.618 as
D goes to infinity. The former result was proven to be tight by Bartal, Fiat, and Ra-
bani [BFR95, Bar96a]. The lower bound construction was a slight modification of the
analogous lower bound for deterministic algorithms by Black and Sleator [BS89]. On
the other hand, the exact competitive ratio against an oblivious adversary is not a com-
pletely settled issue. The currently best known lower bound, 2 + 1

2D , is due to Chrobak,
Larmore, Reingold, and Westbrook [CLRW93]. It is matched only for certain topologies,
like trees or uniform networks (see [CLRW93] and [LRWY99], respectively).

The first deterministic, phase-based, 7-competitive algorithm M-T-Mwas given
by Awerbuch, Bartal, and Fiat [ABF93a]. The result was subsequently improved by the
M-T-L-M algorithm [BCI01] attaining competitive ratio of 4.086. On the
other hand, [CLRW93] showed a network with a lower bound of approximately 3.148.

Data management

In this part we give a brief overview of extensions of Page Migration that allow more
flexible data management in networks. One of the possible generalizations of PM is
allowing more than one copy of an object to exist in the network. This poses new inter-
esting algorithmic questions which have to be resolved by a data management scheme.

• How many copies of shared objects should be created?

• Which accesses to shared objects should be handled by which copies?

A basic version of this problem, where only one shared object is present in the system,
called file allocation, was first examined in the framework of competitive analysis by
Bartal, Fiat, and Rabani [BFR95]. They presented a randomized strategy that achieves
an asymptotically optimal competitive ratio of O(log n) against an adaptive-online ad-
versary, by a reduction to the online Steiner tree problem [IW91, AA92]. Additionally,

12 I

they showed how to get rid of the central control (which is useful for example for lo-
cating the nearest copy of the object) and create O(log4 n)-competitive algorithm, which
works in a distributed fashion. Awerbuch, Bartal, and Fiat [ABF93a] showed that the
randomization is not crucial by constructing deterministic algorithms (centralized and
distributed ones) for file allocation problem attaining asymptotically the same ratios.

For uniform topologies, Bartal, Fiat, and Rabani [BFR95] showed an optimal deter-
ministic 3-competitive algorithm. Lund, Reingold, Westbrook, and Yan [LRWY99] gave
a 3-competitive algorithm for trees, which is based on work functions technique.

If the shared data is read-only, then the file allocation becomes a page replication
problem. It was also introduced by Black and Sleator [BS89]. Unlike page migra-
tion, in general networks, this problem reduces to online Steiner tree and one cannot
hope for a competitive ratio better than Ω(log n). Therefore the research on page repli-
cation conducted by Albers and Koga [Kog93, AK98], and by Fleisher, Głazek, and
Seiden [Gła99, FS00, Gła01, FGS04] concentrated on particular topologies like trees,
uniform networks, and rings. For all these topologies O(1)-competitive deterministic
and randomized algorithms were given; the ratios for trees and uniform networks are
optimal.

Memory constraints

If multiple objects are present in the network and the local memory capacity at nodes
is limited, then running a file allocation scheme independently for each single object
in the network might encounter some problems. Above all, it is not possible to copy
an object into a node’s memory, if it is already full. Possibly, some other object copies
have to be dropped, which induces problems, if they were the last copies present in
the network. This leads to a so called distributed paging problem, where file allocation
solutions have to be combined with schemes known from uni-processor paging (see for
example [ST85, KMRS88, FKL+91, MS91, ACN00]).

For uniform networks, Bartal, Fiat, Rabani [BFR95] presented the deterministic O(m)-
competitive Distributed-Flush-When-Full algorithm, where m denotes the total number
of copies that can be stored within the network. They also proved that this bound is
tight by showing a lower bound ofΩ(m) for competitiveness against an adaptive-online
adversary. Awerbuch, Bartal, and Fiat [ABF93b] used randomized uni-processor paging
algorithms [FKL+91, MS91, ACN00] to get an up to a constant factor optimal algorithm
H & D, which is O(max{log(m − f), log k})-competitive against an oblivious ad-
versary. In this context, f is the number of different objects in the network, and k is the
maximum number of files that can be stored at any node. If we again restrict the number
of object’s copies to one, it results in a problem called page migration with memory con-
straints. Albers and Koga [AK95] presented deterministic and randomized algorithms

1.3 R  13

for this problem, which are much simpler than their distributed paging counterparts,
and attain competitive ratios O(n) and O(log n), respectively.

For general networks Awerbuch, Bartal, and Fiat [ABF98] adopted the model sug-
gested primarily for uniprocessor paging [ST85], which goes beyond pure competitive
analysis. In order to compensate the optimal offline algorithm advantage of know-
ing the future, Sleator and Tarjan [ST85] proposed limiting the memory capacity that
the optimal algorithm has at its disposal. This extension, which is sometimes referred
to as resource augmentation, allowed the authors of [ABF98] to present a deterministic
O(polylog n)-competitive algorithm, under the assumption that the online algorithm has
O(polylog n) times more memory than the optimal algorithm.

For the case of page migration in general networks with memory constraints, Bartal
[Bar96b, Bar98] gave an O(log m · log n · log log n)-competitive randomized algorithm.
The construction uses the solution for a tree, and probabilistically approximates any
graph metric by a tree metric.

Optimizing congestion

In case of wired networks the communication cost between a pair of nodes might be
measured in terms of the load generated by sending the data through a communication
link. All the algorithms presented above were designed to minimize the total com-
munication load. A more challenging task it to derive fine-grained algorithms, whose
objective is to minimize congestion, i.e., the maximum load on each single link.

Maggs, Meyer auf der Heide, Vöcking, and Westermann [MMVW97] developed a dis-
tributed data management strategy for tree networks, which was 3-competitive for the
uniform model (the size of object equal to 1). The aforementioned 3-competitive algo-
rithm for trees by Lund, Reingold, Westbrook, and Yan [LRWY99] was proven to be also
competitive with respect to congestion minimization, and worked for the non-uniform
model. However, as it was based on computing work-functions, it was inherently
centralized. Meyer auf der Heide, Vöcking, and Westermann [MVW99] fixed this de-
ficiency, presenting a deterministic 3-competitive distributed strategy for trees for the
non-uniform model.

However, the main result of [MMVW97] was a bisimulation technique. It was shown
that for some regular networks like meshes of clustered networks, the original problem
instance can be, without enlarging congestion, mapped into a virtual network, a so
called access tree. As mentioned above, solving the problem on a tree is relatively easy.
Finally, the virtual tree was randomly mapped back into the original network, so that the
congestion increases at most by a factor of O(log n), with high probability. This yields
a randomized algorithm, which is O(log n)-competitive against an oblivious adversary.

14 I

Similar results for fat trees and hypercubic networks, as well as O(1)-competitive algo-
rithms for uniform networks, were presented in [MVW00, Wes00] and experimentally
evaluated in [KMR+02]. Finally, Räcke [Räc02, Räc03] proved the existence of access trees
for any network topology, showing an O(log3 n)-competitive construction. Bienkowski,
Korzeniowski, and Räcke [BKR03] showed that these access trees are computable in
polynomial time, losing an additional O(log n) factor in the ratio. The result of [Räc02]
was independently improved to O(log2 n · log log n) (which was also a polynomial-time
construction) by Harrelson, Hildrum, and Rao [HHR03].

Furthermore, Meyer auf der Heide, Vöcking, and Westermann [MVW00] and later
Westermann [Wes00] showed how to extend these strategies to respect the capacity
constraints on the local memory modules. Their algorithms also exploit the paradigm
of resource augmentation, giving to the online algorithm O(log n) times more memory
than to the offline strategy. The competitive ratios are asymptotically the same as in the
case without memory capacity restrictions.

1.4 Bibliographical notes

Most of the results presented in this thesis have been published in a preliminary form
previously. The DPM problem was defined in [BKM04], where the possible scenarios
were discussed, and performance metrics were proposed.

The preliminary version of the randomized memoryless O(min{n ·
√

D,D, λ})-compe-
titive strategy, together with the matching lower bound, presented in Chapter 3, were
constructed in [BKM04]. The deterministic algorithm M was given in [BDK05]. In
the same paper a simple randomization R-M was presented. This randomization
was subsequently improved to the O(

√
D · log n)-competitive strategy E in [BB05].

The results for the Brownian motion scenario in Chapter 4 extend the paper [BK05],
which is, in turn, a generalization of a preliminary result of [BKM04]. The results of
the complementary, stochastic requests scenario presented in Chapter 5 were previously
published in [Bie05].

Finally, the results presented in this thesis were briefly described in a joint survey on
Page Migration in Dynamic Networks [BM05].

C       2

Basics

In this chapter we analyze the adversarial model of DPM and present a polynomial-time
optimal offline solution. As in this thesis we consider only constant-restricted network
adversaries, we prove that all such adversaries are up to a constant factor equivalent.

Further, we turn our attention to basic properties of online algorithms for DPM. To give
a gentle introduction to the online algorithms for general networks presented in the next
chapter, we analyze networks consisting only of two nodes here. We give a randomized
algorithm E, which attains the competitive ratio O(

√
D) against an adaptive-online

adversary in such networks. We also present an Ω(min{
√

D, λ}) lower bound for any
algorithm against an oblivious adversary, whereλ is the maximum extent of the network
(i.e., the maximum possible distance between two nodes). By relation between the power
of adaptive-online and oblivious adversaries (see Section 1.1.1), we infer that E is up
to a constant factor optimal in networks with extent λ = Ω(

√
D).

Although the results for two-node networks presented in this chapter are redundant,
since in the next chapter we give algorithms for the general case, they may give the
reader a deeper insight into the problem, and present techniques we are exploiting
in the subsequent sections. In particular, we use potential function analysis of online
algorithms (see [Tar85, ST85]) to analyze E. For proving a lower bound we employ
the Yao’s min-max rule [Yao77, NM44].

Finally, we present two simple deterministic algorithms for general networks, and
a randomized memoryless one, achieving competitive ratios O(D), O(λ), and O(λ),
respectively. We use them as building blocks in the next chapter.

2.1 Optimal offline solution

We show how to compute the optimal offline solution for any DPM problem instance in
polynomial number of operations.

15

16 B

v1 v1 v1v1v1v1 v1 v2 v2 v2v2 v2

1 2 3 4 3 3 3 3 3 3 2 1

0 0 0 0 0 3 6 9 12 12 12 11

2 4 6 8 6 6 6 6 6 6 8 9

1 2 3 4 5 6 7 8 9 10 11 120

∞

St,1:

St,2:

t =
request at:

ct(v1, v2):

0

Figure 2.1: Example of constructing optimal schedule

Lemma 2.1. For any T and for any input instance (Ct, σt)t of the DPM problem consisting of
T steps, an optimal schedule of page movements can be computed using O(T · n2) operations and
O(T · n) additional memory.

Proof. We compute the cost of the optimal solution by a straightforward dynamic pro-
gramming. For any 0 ≤ t ≤ T, i ∈ [n] let St,i be the cost of serving requests σ1, . . . , σt and
ending step t with the page at node vi. Since at the beginning the page is at node v1,
we obtain boundary conditions: S0,1 = 0 and S0,i = ∞ for any i ∈ {2, . . . ,n}. Using the
recurrence relation

St+1,i = min
j∈[n]

{
St, j + ct+1(v j, σt+1) +D · ct+1(v j, vi)

}
, (2.1)

we can compute St+1,i values from St,i ones in time O(n2), using O(n) additional memory.
Thus, to fill the whole St,i table we need O(T · n) space and O(T · n2) time.

The cost of the optimal solution is given by min j∈[n] ST, j. Assume that in addition to
filling the [St,i] table, for each entry St+1,i we store also a pointer to the previous column

Pt+1,i = arg min
j∈[n]

{
St, j + ct+1(v j, σt+1) +D · ct+1(v j, vi)

}
, (2.2)

with ties broken arbitrarily. We say that an entry (t+ 1, i) points to (t,Pt+1,i). Then we
can traverse the [Pt,i] table, starting from the entry (T, kT), where kT = arg min j∈[n]{ST, j},
and in each step follow the pointers. This results in a sequence (T, kT), (T − 1, kT−1), . . . ,
(1, k1), (0, k0), where k0 = 1. The reversed part of this sequence, i.e., k0, k1, . . . , kT−1, denotes
the indices of nodes holding the page in steps 1, 2, . . . ,T, respectively, in an optimal
solution.

If we are interested in the cost of an optimal schedule, and not in the schedule itself, it is
sufficient to store only one column of the table St,i. This reduces the memory requirement
to O(n).

An example of the computed St,i table, with Pt,i pointers shown, is depicted in
Figure 2.1. We considered a two-node network there, a page of size D = 2, and a sequence
of 12 steps. The nodes issuing requests and the costs of communication between these
two nodes are also depicted in this figure. We shaded an optimal schedule of page
movements of cost 9 found by this approach.

2.2 R L 17

2.2 Reduction Lemma

In this thesis we consider network adversaries which are δ-restricted, where δ is a con-
stant. For convenience reasons, we usually choose δ = 1

2 , since this assures that the
distance between any two nodes can change only by 1 per time step. However, the
presented theorems can be extended to any constant-restricted network adversary by
means of the following Reduction Lemma.

Lemma 2.2 (Reduction Lemma). Assume that there exists a k-competitive (possibly random-
ized) algorithm A against an a-restricted network adversary. Then A is k-competitive against
a b-restricted network adversary for b ≤ a. Additionally, for any b ≥ a there exists a (randomized)
algorithm B, which is b

a · k-competitive against any b-restricted network adversary.

Proof. If b ≤ a, then A is k-competitive against a b-restricted adversary, since it was
k-competitive against a stronger a-restricted adversary.

If b ≥ a, let (Ct, σt)t be any input sequence. B simulates the behavior of A on the
sequence (C′t, σt)t, and repeats A’s choices on (Ct, σt)t. C′t denotes the configuration Ct

with all the original distances divided by b/a. Clearly, if (Ct) was created by a b-restricted
adversary, then (C′t)t sequence might be created by an a-restricted adversary. We have

CB((Ct, σt)t) ≤
b
a
· CA((C′t, σt)t)

≤
b
a
· k · COPT((C′t, σt)t)

≤
b
a
· k · COPT((Ct, σt)t) ,

and thus B is b
a · k-competitive. For the proof for randomized algorithms we can replace

the algorithm’s cost by its expected value.

We note that the Reduction Lemma holds also if the request adversary is randomized,
for example, in the stochastic requests scenario, presented in Chapter 5.

2.3 Two-node networks

In this section we present an algorithm and a lower bound for networks consisting of two
nodes.

In the following we assume that the adversary is restricted to choosing the distance
between v1 and v2 only from integers. Note that this simplification is not relevant, if we
are interested in the asymptotic performance only, since we may consider an adversary
which is not restricted in this manner, round the dictated distances up to the next integer,
and thus increase the corresponding costs of communication at most twice. Besides, this
simplification allows for much clearer presentation in this case.

18 B

Further, we assume that D ≥ 2. If it is not the case, we may always use the O(D)-
competitive algorithm J presented in the Section 2.4.1 to get constant competitive-
ness.

2.3.1 Randomized algorithm EDGE

Let Xt denote the cost of sending one unit of data between our two nodes in time step t,
i.e., Xt = ct(v1, v2). From the assumption above follows that Xt is an integer, greater than
or equal to 1. One step of algorithm E is described as follows. First, it serves the
requests. Then, if the request was issued at the node opposite to the node holding the
page of E, the algorithm moves to that other node with probability B(Xt), where
B :N+ → R is a function (called a jump function) defined as

B(x) = 3 ·
x

k(x)
, (2.3)

where

k(x) =

D − 1 +
∑x

i=1 i if x ≤ 2 ·D − 2 ,

D · x otherwise .
(2.4)

The plot of x/k(x) function is shown in Figure 2.2. In the remaining part of this section
we prove the following theorem.

Theorem 2.3. E is strictly O(
√

D)-competitive against an adaptive-online adversary in the
adversarial scenario of the DPM.

Potential functions and amortized analysis

We briefly present a very general potential functions technique (see for example [Tar85,
ST85]), useful for proving competitiveness of online algorithms. See also [CLR97, chap-
ter 18] for a detailed introduction to the amortized analysis method.

In our proofs, we follow the general scheme. We take any input sequence I = (Ct, σt)t

and we run our algorithm A together with an optimal algorithm O on the same input
sequence. This is especially useful in analyzing algorithms playing against adaptive-
online adversaries, since the optimal algorithm’s moves are chosen then in each step by
the adversary. In particular, in each step we know the current configuration of both A
and O. In our case, the interesting part of algorithm configurations is the position of
the memory page. We denote these positions by PALG and POPT, respectively.

2.3.1 R  E 19

We define a potential function Φ, which is a function of A and O configurations,
e.g., a function of the distance between PALG and POPT,1 into the reals, having the
following properties

1. At the beginning of input sequence, Φ = 0.

2. For all configurations of A and O, which may occur, Φ ≥ 0.

We fix any time step t, and denote by CALG(t) and COPT(t) costs incurred on the algorithms
A and O, respectively in time step t. By∆Φ(t) we denote the change in the potentialΦ
in this step t. If one can prove that for any step t

CALG(t) + ∆Φ(t) ≤ R · COPT(t) , (2.5)

then summing it over all time step of any input I, and using two properties of the
potential function, we get that the algorithm A is (strictly) R-competitive. In the
following, we usually omit t subscripts, when it does not lead to ambiguity.

For proving the competitiveness of randomized algorithms, we may replace the term
CALG(t) + ∆Φ(t) by its expected value E[CALG(t) + ∆Φ(t)].

Proof of competitiveness

Obviously, x/k(x) ≥ 1
D . Additionally, byM we denote the maximum value achieved by

the fraction x/k(x) (see Figure 2.2). We may prove the following upper bound onM.

Lemma 2.4. For D ≥ 2 it holds thatM ≤ 1/
(√

2 · (D − 1) + 1/2
)
= O

(
1/
√

D
)
.

Proof. It is sufficient to show that 1
M

is at least
√

2 · (D − 1) + 1/2.

1
M
= min

x∈N+

{
k(x)

x

}
= min

 min
x∈N+

x≤2·D−2

D − 1 +
∑x

i=1 i
x

, min
x∈N+

x>2·D−2

D · x
x


= min

 min
x∈N+

x≤2·D−2

{D − 1
x
+

x + 1
2

}
, D


≥ min

{
min
x∈R+

{D − 1
x
+

x + 1
2

}
, D

}
1 We sometimes abuse the notation, writing distance between A and O.

20 B

Θ(
√

D) 2 ·D − 2 x

M = Θ(1/
√

D)

y

1/D

Figure 2.2: y = x/k(x) function plot

We can analytically check that D−1
x +

x+1
2 achieves its minimum for x =

√
2 · (D − 1). Thus,

1
M
≥ min

{√
2 · (D − 1) +

1
2
, D

}
≥

√
2 · (D − 1) +

1
2
,

where the last inequality follows from D ≥ 2.

For the sake of the proof of competitiveness of E, we conceptually divide each
step t into two parts.

1. The adversary moves nodes to create configuration Ct. Both E and O serve
the request issued at σt. E (optionally) moves the page.

2. O (optionally) moves the page.

Let Lc denote the cost of sending one unit of data between the nodes holding the pages
of E and O. We define the potential as

Φ =

6 · M
B(Lc) ·D · Lc if Lc > 0 ,

0 if Lc = 0 .
(2.6)

ClearlyΦ = 0 at the beginning of the input sequence, and is always non-negative. Thus,
for proving the competitiveness of E, it is sufficient to prove that for any time step t,
for either of these two parts of the step, the amortized cost might be bounded using the
optimal offline cost, i.e., E[CEDGE + ∆Φ] ≤ O(

√
D) · COPT.

Lemma 2.5. For the first part of any step t, it holds that

E[CEDGE + ∆Φ] ≤ 10 · M ·D · COPT .

Proof. Without loss of generality we can assume that E is at v1. We consider four
cases depending on σt and the position of O’s page.

2.3.1 R  E 21

1. O is at v1, and σt = v1. In this case the lemma follows trivially, since

CEDGE = ∆Φ = COPT = 0 .

2. O is at v1 and σt = v2. Both E and O pay Xt for serving the request. Since
they are both at the same node, the adversarial change in the network topology,
i.e., the change in the distance between v1 and v2, does not influence the potential.
Additionally, with probability B(Xt), Emoves to v2. Thus, the expected cost of
CEDGE is

E[CEDGE] = Xt +B(Xt) ·D · Xt

≤ (1 + 3 · M ·D) · Xt

≤ 4 · M ·D · Xt .

Initially, the potential is equal to 0, and it raises to 6 · M
B(Xt)
· D · Xt, if E moves

(with probability B(Xt)). Thus,

E[∆Φ] = B(Xt) · 6 ·
M

B(Xt)
·D · Xt

= 6 · M ·D · Xt .

Combining the two inequalities above,

E[CEDGE + ∆Φ] ≤ 10 · M ·D · COPT .

3. O is at v2 and σt = v1. O pays Xt for serving the request, while E pays
nothing and does not move. However, the potential may change due to the
change in the distance between E and O.

E[∆Φ] = 6 ·
M

B(Xt)
·D · Xt − 6 ·

M

B(Xt−1)
·D · Xt−1

≤ 6 · M ·D ·
1
3
· (k(Xt) − k(Xt−1))

≤ 2 · M ·D · Xt

≤ 2 · M ·D · COPT .

4. O is at v2 and σt = v2. This is the hardest case, since COPT = 0 and the cost of the
algorithm, which is the same as in case 2, i.e.,

E[CEDGE] ≤ 4 · M ·D · Xt ,

22 B

has to be amortized by the negative change in the potential. The change in the
potential is twofold. First, it may increase due to the adversarial change in the
network as in case 3. Second, with probabilityB(Xt) it decreases from 6 · M

B(Xt)
·D ·Xt

to 0. In total, we have

E[∆Φ] ≤ 2 · M ·D · Xt − B(Xt) · 6 ·
M

B(Xt)
·D · Xt

Thus,

E[CEDGE + ∆Φ] ≤ 4 · M ·D · Xt − 4 · M ·D · Xt

= 0

= COPT

In all four cases, it holds that E[CEDGE + ∆Φ] ≤ 10 · M ·D · COPT.

Lemma 2.6. For the second part of any step t it holds that

E[CEDGE + ∆Φ] ≤ 2 · M ·D · COPT

Proof. If O does not move then the lemma follows trivially. Otherwise, O moves
between v1 and v2 paying D ·Xt. Since E does nothing, CEDGE = 0. On the other hand,
the potential at the end of the second part is maximized if O and E end at different
nodes, in which case

Φ = 6 ·
M

B(Xt)
·D · Xt

≤ 2 · M ·D ·D · Xt .

Since Φ is non-negative at the beginning of the second part,

CEDGE + ∆Φ ≤ 0 + 2 · M ·D2
· Xt

≤ 2 · M ·D · COPT .

This finishes the proof of the lemma.

Proof of Theorem 2.3. By applying M = Θ(1/
√

D) to Lemma 2.5 and Lemma 2.6, we
get that for any step t, E[CEDGE+∆Φ] ≤ O(

√
D) ·COPT. SinceΦ is a non-negative potential

function, the O(
√

D)-competitiveness of E follows.

2.3.2 Lower bound for oblivious adversary

In this subsection we prove a lower bound for any algorithm for DPM problem in a two-
node network with extent λ. We prove that for the oblivious adversary, any randomized
algorithm is at least Ω(min{

√
D, λ})-competitive.

2.3.2 L     23

Yao min-max principle

In proving lower bounds for randomized algorithms the Yao min-max principle [Yao77,
NM44] turned out to be a very useful tool. Consider any minimization problem P, and
let π be any distribution over the set of possible inputs. In essence, the principle claims
that the expected cost of the best deterministic algorithm (which knows π), is a lower
bound on the (expected) cost of any randomized algorithm for P. The expected cost
of the deterministic algorithm is taken over all possible inputs chosen according to the
probability distribution π. A detailed discussion on this principle is presented in [MR95,
chapter 2].

This principle can be also applied for constructing lower bounds for an online ran-
domized algorithm playing against oblivious adversaries. The general discussion and
proofs can be found in [BE98, chapter 7 and 8]. However, for our needs a simpler formu-
lation and a straightforward proof presented by Chrobak, Larmore, Lund, and Reingold
[CLLR97] is sufficient.

Lemma 2.7 (Yao min-max principle [CLLR97]). Consider any cost minimization problem.
Suppose that for arbitrarily large γ there exists a probability distribution π over request se-
quences I, such that

(i) Eπ[COPT(I)] ≥ γ, and

(ii) For any deterministic algorithm D it holds that Eπ[CDET(I)] ≥ R · Eπ[COPT(I)].

Then no randomized online algorithm is R′-competitive (even against an oblivious adversary)
for any R′ < R.

Lower bound

Let Bexp = min{
√

D, λ}. First, we construct a probability distribution π over inputs of
arbitrary length and prove that for any deterministic algorithm D, which knows this
distribution, it holds that Eπ[CDET(I)] ≥ Ω(Bexp) · Eπ[COPT(I)].

We divide time into phases, each of length D + 2 · Bexp steps. Each phase consists
of an expanding part, which lasts for Bexp steps, a main part lasting for D steps, and
a contracting part lasting also for Bexp steps. Let Rt denote the distance between v1 and v2

in time step t. Each phase begins with Rt set to 0 (v1 and v2 occupy the same point in the
space). Then within the expanding part, nodes are moved apart, so that in the t-th step
of the expanding part Rt = t − 1. Throughout the whole main part Rt = Bexp. Finally,
in the contracting part the nodes are moved closer to each other, so that in the t-th step
of the contracting part Rt = Bexp − t. Note that the movements of the nodes are fixed
deterministically. The distances in one phase are depicted in Figure 2.3.

24 B

v1

v2
Bexp=min{

√
D,λ}

expanding part main part contracting part

requests
requests with probability 1/2

t

Rt

Figure 2.3: A lower bound for two-node network

Next, we have to explain where the requests are issued in each phase. In the expanding
part all the requests are issued at v1, and all the requests of the contracting part occur
at v2. Futher, in the main part, with probability 1/2, all the requests are issued at v1, and,
with probability 1/2, all the requests are issued at v2.

Lemma 2.8. Fix any T. Let I be a randomly generated input sequence consisting of T phases,
where each phase is chosen as described above. Then for any deterministic algorithm D for the
DPM problem,

EI[CDET(I)] ≥ Ω(Bexp) · EI[COPT(I)] ,

where the expectation is taken over possible random choices of I.

Proof. We concentrate on one single phase of I. The optimal offline algorithm knows at
which node the requests in the main part are issued. Assume that they are issued at v2;
if they are issued at v1, the analysis is symmetric. Then O can move at the beginning
of the phase to v2 (if it is not already at v2). Since at that time the nodes are in the same
point of the space, the cost of this movement is D. Then O has to pay

∑Bexp−1
t=0 (t + 1)

for serving all the requests in the expanding part, paying nothing for the requests in the
main or contracting part. Thus, the optimal cost for the whole input sequence I is at
most

COPT(I) ≤ T ·

D +
Bexp∑
t=1

t

 ≤ 3 ·D · T .

Note that we were able to bound COPT(I) for any randomly chosen I, although a bound
on EI[COPT(I)] would be sufficient.

On the other hand, consider a deterministic online algorithm D. It can only base
its decisions on the past requests. In particular, in the last step of the expanding part
it has to decide, whether to end this step at node v1 or v2. Independently of D’s
choice, with probability 1/2, all the next D requests in the main part are given at the
opposite node. In other words, at the beginning of the main part, D is in a “wrong”
node with probability 1/2. Assume that it is the case. If Dmoves the page within the

2.4 T  25

main part, then it pays D · (Bexp + 1) > D · Bexp for moving the page. Otherwise, it pays
D · (Bexp + 1) > D · Bexp for serving the requests during this part. Thus, the expected cost
of D in one phase is at least 1

2 ·D · Bexp. Summing it over all phases, we get

EI[CDET(I)] ≥ T ·
1
2
·D · Bexp .

Thus, the lemma follows.

Theorem 2.9. Consider any randomized algorithm Awhich is c-competitive against an obliv-
ious adversary for DPM problem in a two-node network. Then c = Ω(min{

√
D, λ}), where λ is

the maximal extent of the network.

Proof. First, note that in any phase O pays at least Ω(min{D,B2
exp}). Indeed, if O

moves within a phase, it pays D, otherwise it has to payΩ(B2
exp) either for serving all the

requests in the expanding part or for all the requests in the contracting part. Thus, we
can easily create a sequence with an arbitrarily high cost of the optimal schedule.

Hence, we may apply the Yao min-max principle to the result of the lemma above,
which finally yields the theorem.

We note that the construction used the proofs above does not use non-integer dis-
tances Rt.

2.4 Trivial algorithms

In this section we present how to construct a simple deterministic algorithm achieving
competitive ratioO(D). We also show how to transform two algorithms for Page Migra-
tion, so that they work in dynamic networks, losing a factor of O(λ) in the competitive
ratio. What is more important, we can give explicitly their potential functions, and we
may scale them up by any constant factor. This becomes important when we want to
combine these algorithms with the algorithms presented in the next chapter.

2.4.1 Algorithm JUMP

Let J be a deterministic memoryless algorithm which upon receiving a request from
the node σt serves this request and jumps to σt. We prove the following theorem

Theorem 2.10. J is O(D)-competitive in the adversarial scenario of the DPM

Proof. To maintain coherence with the notation used in the proof of competitiveness of
the E, let Lc be the communication cost between PJUMP and POPT. We define a potential

Φ = 3 ·D · Lc . (2.7)

26 B

POPT

PJUMP

σt

Yt

Kt

Xt

a)

PJUMP POPT ≡ σt

Lc − 1

b)

Figure 2.4: Illustration of the algorithm J

It is sufficient to prove that in each step t, it holds that

CJUMP + ∆Φ ≤ O(D) · POPT . (2.8)

If, in step t, PJUMP ≡ POPT ≡ σt then (2.8) follows trivially. Otherwise, analogously to the
proof of the competitiveness of E, we divide each time step into two parts.

1. In the first part, the adversary changes the network to create configuration Ct out
from Ct−1. This might increase Lc by at most 1, thus increasing the potential by D.

If POPT ≡ σt, then J pays Lc for the request and D · Lc for moving to σt. This is
depicted in Figure 2.4a. Due to the movement, the potential decreases from 3 ·D ·Lc

to 0. Thus, in total

CJUMP + ∆Φ ≤ Lc · (1 +D) +D + (0 − 3 ·D · Lc)

≤ 0 .

It POPT . σt then we introduce some notation. We denote the distances in step t
between PJUMP and σt, between POPT and σt, and between PJUMP and POPT, by Xt,
Yt, and Kt, respectively. The situation is depicted in Figure 2.4b. Again CJUMP =

Lc · (1+D), where, by the definition of costs, Lc ≤ 1+Xt. As POPT . σt, COPT = 1+Yt.
The change in the potential due to the J’s movement from PJUMP to σt is at most
3 ·D · (1 + Yt) − 3 ·D · Kt. Thus, summing up

CALG + ∆Φ ≤ (1 + Xt) · (1 +D) + D + 3 ·D · (1 + Yt) − 3 ·D · Kt

≤ 2 ·D · (1 + Xt) +D − 3 ·D · Kt + 3 ·D · COPT

≤ 3 ·D + (2 ·D · Xt − 3 ·D · Kt) + 3 ·D · COPT .

Finally, we use the the triangle inequality for the term in brackets

CALG + ∆Φ ≤ 3 ·D + 2 ·D · Yt + 3 ·D · COPT

≤ 6 ·D · COPT .

2.4.2 R PM  27

2. In the second part of the step t, the optimal algorithm potentially moves to a new
destination along a distance of Y′t. Obviously, CJUMP = 0 in this case, and again by
the triangle inequality follows that the distance between CJUMP and COPT increases
by at most Y′t. Thus, the increase in the potential is bounded by

∆Φ ≤ 3 ·D · (Y′t + 1) = 3 · COPT .

Hence, in both parts Inequality 2.8 holds, and thus the theorem follows.

2.4.2 Reusing Page Migration algorithms

It is relatively easy to show that if the maximum extent of the network is λ, then
using any O(1)-competitive algorithm for Page Migration as a black box, we may con-
struct O(λ)-competitive algorithms for the DPM problem. However, to combine these
O(λ)-competitive algorithms with the algorithms given in the next chapter, we will
need explicitly the potential functions used in their proofs. Moreover, these poten-
tial functions must be sufficiently large. Thus, we present a general simple scheme of
transforming some Page Migration algorithms into DPM ones.

Lemma 2.11. Let A be a strictly c-competitive algorithm for Page Migration in uniform
networks. Then there exists an algorithm A′ for DPM, which is at most strictly ((λ + 1) · c)-
competitive in the adversarial scenario.

Proof. Let I = (Ct, σt)t be any input for DPM problem. A′ simulates A on the
uniform graph with edges of length 1 on the sequence (σt)t, and repeats its movements
onI. Since the communication costs duringI are at most λ+1, the cost increases at most
by factor λ+ 1. Let O be an optimal solution for Page Migration on (σt)t. Obviously, it
constitutes a lower bound for an optimal solution O′ for instance I of DPM problem,
since all communication costs (between two different nodes) during I are at least 1.
Combining these observations, we conclude

CALG′(I) ≤ (λ + 1) · CALG((σt)t)

≤ (λ + 1) · c · COPT((σt)t)

≤ (λ + 1) · c · COPT′(I) .

Step potential proofs

We would like to have algorithms, for which we may construct potential-based proofs
with potential functions explicitly given. We introduce a notion of a step potential proof.
Let A be any online algorithm, and B be any algorithm (possibly the optimal offline
one) for Page Migration problem. Let PB denote the node holding the page of B.

28 B

Additionally, let m denote the memory state of the algorithm A. In particular, it
contains PALG, and if, for example, A uses counters, then m contains a tuple consisting
of their current values. Let Φ be any non-negative function of PB and m, which for
PALG ≡ PB and initial state of m is equal to 0.

We call a memory state m legal if there exists a sequence (σt)t, after serving which A
is (in case of randomized algorithms, is with non-zero probability) in state m. Then we
say that an algorithm A has a step potential proof of c-competitiveness, if there exists
a potential function Φ, such that for any PB, any legal m, and for any step request σt in
any step t, it holds that

E[CALG(t) + ∆Φ(t)] ≤ c · CB(t) (2.9)

If we sum Inequality 2.9 over all steps, we get that the cost of algorithm A is at most c
times larger than the cost of any algorithm, in particular the optimal offline one. Thus,
if an algorithm has a step potential proof of c-competitiveness, it is c-competitive.

Note that in (2.9) we compare algorithm A to any other algorithm, not necessarily
the optimal one. Therefore, this definition might potentially exclude algorithms, which
rely on some properties of the optimal solutions. However, this is not the case for the
Page Migration algorithms we want to reuse. In particular, we have two facts.

Fact 2.12. Strictly 3-competitive deterministic algorithm M [BS89] for the Page Migration
problem in uniform networks has a step potential proof.

Fact 2.13. Strictly 3-competitive randomized memoryless algorithm C-F [Wes92]
for the Page Migration problem in uniform networks has a step potential proof. The algorithm is
competitive against an adaptive-online adversary.

Transformation from PM to DPM

By Lemma 2.11, the two facts above imply the existence of 3 · (λ + 1)-competitive algo-
rithms for DPM problem. However, we could get a stronger result.

Lemma 2.14. Let A be a strictly c-competitive algorithm with step potential proof for the
Page Migration problem in uniform networks, and let Φ be the potential used. Fix any
number k ≥ 1. Then there exists an algorithm A′ for the DPM problem which is strictly
(k · (λ + 1) · c)-competitive in the adversarial scenario, and also has a step potential proof. More-
over, the potential used in the latter proof is equal to Φ′ = k · (λ + 1) ·Φ.

Proof. Let I = (Ct, σt)t be any input for DPM problem. As in the previous construction,
A′ simulates A on the uniform graph with edges of length 1 on the sequence (σt)t,
and repeats its movements on I. Let Φ′ = k · (λ + 1) · Φ. Let B′ be any solution for I,

2.4.2 R PM  29

and B be the same schedule of page movements, but on the uniform graph with edges
of length 1. For any step t it holds that

E[A′(t) + ∆Φ′(t)] ≤ k · (λ + 1) · E[A(t) + ∆Φ(t)]

≤ k · (λ + 1) · c · B(t)

≤ k · (λ + 1) · c · B′(t) .

Note that the last inequality would not necessarily hold, if we took a more straightfor-
ward approach and chose B′ as an optimal algorithm forI and B as an optimal algorithm
for sequence (σt)t.

When we combine Lemma 2.14 with Fact 2.12 and Fact 2.13, and we look at the po-
tential functions used in the proofs of algorithm M and C-F, we immediately
get the corollary below.

Corollary 2.15. There exist a deterministic algorithm D-M and a randomized memoryless
algorithm D-CF (competitive against an adaptive-online adversary), such that for any con-
stant k, there exists a proof of theirO(λ)-competitiveness, which uses a potential functionΦwith
the following properties. Assume that the algorithm is compared with an algorithm B, and they
both start from the same node. Then

(i) if the algorithm has the page in the node different than PB, then Φ ≥ k · (λ + 1) ·D,

(ii) if the algorithm has the page in PB, then Φ ≥ 0,

(iii) at the beginning of input sequence, Φ = 0.

Thus, we may place any multiplicative constants in the potential function without
changing the asymptotic performance of the algorithms D-M and D-CF.

C       3

Adversarial Scenario

In this chapter we thoroughly analyze the case where both configuration and request
sequence are generated by an adversary.

First, we show how to generalize algorithm E to n nodes. A new randomized,
memoryless algorithm D (D) uses asymptotically the same jump function.
However, due to the adversarial changes in the network, we cannot restrict potential
page holders to the nodes which issued requests. Thus, D tries to place the page
not exactly at the accessing node, but in its close neighborhood. Unfortunately, since
such a neighborhood may contain all the nodes, the competitive ratio increases by
n to O(n ·

√
D) (against an adaptive-online adversary). We define the paradigm of

“catching O” and show how D follows its guidelines. Finally, we combine D
with theO(λ)-competitive algorithm D-CF and theO(D)-competitive algorithm J,
proving an upper bound of O(min{n ·

√
D,D, λ}) on the competitive ratio.

Second, we show how to get rid of the randomization and replace it by counters and
marks. We construct a whole class of marking algorithms; a deterministic member of
this class is a O(n ·

√
D)-competitive algorithm M. Again it is possible to combine

it with D-M and J getting the deterministic upper bound of O(min{n ·
√

D,D, λ}).
We prove that these results are up to a constant factor optimal, by presenting a matching
lower bound for any randomized algorithm against an adaptive-online adversary.

Thus, the only chance to beat this lower bound in the adversarial scenario of the DPM
problem, is to consider oblivious adversaries. We show two randomizations of M:
R-M and E, which still use marking information, but reduce the competitive ratio
toO(

√
D·log n) and toO(

√
D · log n), respectively. By combining the latter algorithm with

the algorithms D-M and J, we show that the competitive ratio in the oblivious case
is O(min{

√
D · log n,D, λ}). Finally, using Yao min-max principle, we present an almost

matching lower bound of Ω(
√

D · log n,D2/3, λ}).
We note that all competitive ratios are strict, i.e., we do not need an additive constant

31

32 A S

A in the definition of the competitive ratio (1.1). We conclude with some open questions
and conjectures.

General remarks

In this chapter we consider only 1
2 -restricted adversaries. By the Reduction Lemma

(see Section 2.2, page 17) all constant-restricted adversaries are equivalent (up to a con-
stant factor in competitive ratios) and our results hold asymptotically for any constant-
restricted adversary.

By a subsequence we understand any contiguous time interval of the input sequence.
For simplifying the notation, we also treat subsequences as sets of the corresponding
time steps. For any subsequence S and any algorithm A, by CALG(S) we denote the
cost (of serving requests within S and moving the page) incurred by S on A. In
particular, by Owe denote the optimal offline algorithm, and by COPT(S) its cost in S.

3.1 Randomization against adaptive adversary

In this section we present a randomized online algorithm D, which achieves a compet-
itive ratioO(n ·

√
D) against an adaptive-online adversary. We show that we can combine

Dwith J and D-CF to achieve the optimal competitive ratioO(min{n ·
√

D,D, λ})
against an adaptive-online adversary. Although in the next section we prove asymptoti-
cally the same upper bound for the stronger, deterministic case, the algorithm presented
in this section has an advantage of being memoryless, i.e., it does not have any state
information. The ratio is provably asymptotically optimal, as we present an up to
a constant factor matching lower bound in Section 3.3.1.

Last request based algorithms

Before we construct our algorithms for the general case, we argue, why the simple exten-
sion of the E algorithm does not work. Consider a class of randomized algorithms
which may move only to the node which issued a request in the current step. This
class we call last request based. All previous randomized algorithms for Page Migration
(presented for example in [Wes92, CLRW93, LRWY99]) as well as our J algorithm fall
into this category. We show that such an algorithm has no chance of being better than
Ω(D)-competitive against an adaptive-online adversary in networks with extent λ = ∞.

Consider a three-node network. A is any (possibly randomized) last request based
algorithm. Without loss of generality, we may assume that A starts in v1. The
adversary chooses to keep O’s all the time in v3. Initially, all nodes occupy the same

3.1 R    33

a)
v1 = v2 = v3

v1 = v2 = v3

v2 = v3

v1 = v3

v1 = v2 = v3

b) c)

d) e)

page at v1

v1

page at v2

v2

a node with the page

a node without the page

jump to v1

jump to v2

page at v1

Figure 3.1: A lower bound for last request based algorithms

place in the space, which is depicted in Figure 3.1a. Assume also that the adversary is
1-restricted.

We divide the time into phases. In the first phase, requests are given at v2, and v1 is
moved apart with the maximum possible speed, i.e., in step t of this phase, the distance
between v1 and v2 (or v3) is t − 1. At some point of the time A decides to move1 (see
Figure 3.1b). As a jump candidate it can only choose v2.

Let X denote the distance between v1 and v2 at the moment of jump. In the next X + 1
steps requests are given at v2, and nodes are contracted, i.e., v1 is moved to v2 and v3

with the maximum possible speed, till it reaches the initial configuration (Figure 3.1c).
After contracting, the phase ends, having lasted 2 · (X + 1) steps. In this phase O pays
2 · (X + 1) and A pays D · (X + 1) +

∑X
t=1(t + 1) ≥ D · (X + 1).

We can continue this process for any number of phases. The even phases are symmetric
to the first one, i.e., the roles of v1 and v2 are reversed (see Figure 3.1d and 3.1e). The
odd phases follow the same rules as the first one. Thus, we conclude that A is at least
D/2 = Ω(D)-competitive.

Catching OPT

Hence, we take a step back and try to understand the reason why a last-request-based
algorithm failed. If we run O and A, in parallel, on some input sequence, we could
see the whole process as a “chasing game”. Assume that at some time step Amoves to
the node which stores also O’s page. We say that A has caught O. As long as O
and A remain at one node, they pay the same for serving requests, which is obviously
advantageous for our algorithm. Thus, in order to destroy our algorithm, the adversary
has to separate its page from the algorithm’s page, which leaves him, essentially, two
options. The first one is to move to another node, paying at least D. The second one is
to force A to move, by issuing requests at a different node than the one holding O
and A page. In the latter case, though, A could easily incur a certain cost on O

1 If A never moves, then trivially its competitive ratio is unbounded.

34 A S

just by waiting before jumping to another node. Specifically, Amay either wait till the
cost of serving requests from the current place reaches some given threshold, or move
to another node with a certain small probability. In either case, O has to pay (at least
in expectation) a certain amount before the pages are separated.

Therefore, if only Awas able to catch O, the cost of O could be raised. Note that
the argument above does not work against an adaptive-offline adversary, since in that
case the position of the optimal algorithm can be chosen afterwards (offline). Moreover,
unlike Page Migration problem, it is not sufficient to have the page close to O’s page,
but an algorithm has to catch O frequently. The problem with the last request based
approach is that it is possible (and it was the case in our example above) that O is
never caught by the algorithm.

Hence, in order to construct an algorithm with a non-trivial competitive ratio, we have
to employ a slightly different approach. We consider moving not only to a node which
has just issued a request, but also to its nearest surroundings. In this way we are trying
to stay close to the place where most of the requests are, but we increase our chances of
catching O.

3.1.1 Algorithm DIST

The algorithm D (and its proof of competitiveness) is a generalization of the algorithm
E defined in Section 2.3.1, and is formally depicted in Figure 3.2. We explain the
behavior of the algorithm in one fixed time step t. Let Xt := dt(PDIST, σt) denote the
distance between PDIST, the node holding the D’s page, and the request. If PDIST ≡ σt,
then the algorithm does nothing. Otherwise, D serves this request, and it moves to
another node with probability B(Xt), where B(·) is a jump function defined in Figure 3.2.
B depends on a constant b, which will be defined later. We note that B is a continuous
function and it differs only by a constant factor from the jump function of the algorithm
E. Naturally, we have to specify where D moves to. It chooses its destination
(further called a jump candidate) uniformly at random from a so called Jump Set.

Definition 3.1. For any time step t, let Jump Set, denoted by J(t), be the set of all nodes which
are at a distance of at most

√
D from σt, i.e., J(t) = {v ∈ V : dt(v, σt) ≤

√
D}.

In other words, the algorithm Dmoves to any of the nodes from J(t) with probability
B(Xt)/|J(t)|. Note that if PDIST ∈ J(t), then PDIST may also be chosen as a jump candidate.

Amortized analysis

In this and the next two sections we prove the following theorem.

3.1.1 A D 35

Let B(x) :=



b · 1
D if 0 ≤ x < 1

b · x
D if 1 ≤ x <

√
D

b · 1
x if

√
D ≤ x ≤ D

b · 1
D if x > D

Serve the request
Let Xt = dt(PDIST, σt)
if PDIST . σt then

With probability 1 − B(Xt) do not move
With probability B(Xt) do

Choose uniformly at random one node P′DIST from the set J(t)
(each node with probability 1

|J(t)|)
Move the page to P′DIST

Figure 3.2: Algorithm D in step t

Theorem 3.2. There exists a constant b in the definition of the jump function B, such that the
algorithm D achieves a competitive ratio of O(n ·

√
D) against an adaptive-online adversary

in the adversarial scenario of the DPM.

In the following we set b := 8. To assure that the probability given by the jump function
B(x) is valid, i.e., not greater than 1, we assume that b ≤

√
D. If it is not the case, then

D ≤ 64 and we may use the J algorithm to easily get a constant competitiveness.
In the analysis of the algorithm D we are not aiming at minimizing the constants

but rather at the simplicity of the proof. Since we concentrate on a single step t only, for
clarity we omit t subscripts in PALG, CALG, etc. Similarly as for the algorithm E, we
concentrate on the analysis of the amortized cost and prove that such a cost in one step
is bounded. However, now we define two potential functions: Φ, which measures the
distance between O and D, and Θ, which puts emphasis on the fact that catching
O is a desired event. Formally, in any moment, let L denote the distance between POPT

and PDIST. Then,

Φ = f1 · F (L), where F (L) = L ·
√

D ·min
{
L,
√

D
}
, (3.1)

and

Θ =

 f2 · n ·D ·
√

D if PDIST . POPT ,

0 if PDIST ≡ POPT ,
(3.2)

36 A S

where f1 = 32 and f2 = f1 + 22 are constants. Clearly, Φ and Θ are initially 0 and are
always non-negative. Thus, to prove Theorem 3.2 it is sufficient to prove that for any
time step, it holds that

E[CALG] + E[∆Φ] + E[∆Θ] ≤ O
(
n ·
√

D
)
· COPT , (3.3)

where the expected value is taken over the random choices of the algorithm.
As in the proof of competitiveness of the algorithm E (see Section 2.3.1), we

conceptually divide each step t into two parts.

1. The adversary moves nodes to create configuration Ct. Both D and O serve
the request issued at σt. D (optionally) moves the page.

2. O (optionally) moves the page.

In the next two sections, for each part separately, we prove that (3.3) holds.

Proof of Theorem 3.2. The competitiveness of D immediately follows by summing
Inequality 3.3 over all time steps of the input, and by non-negativity of the potential
functions Φ and Θ. Since at the beginning of the input Φ = Θ = 0, the achieved
competitiveness is strict.

3.1.2 DIST in the first part of a step

In the first part of any step t the adversary does not move its page. If PDIST ≡ σt, then
(3.3) is trivially fulfilled,

CDIST + ∆Φ + ∆Θ = 0 ≤ COPT .

Hence, in the remaining part we assume that PDIST . σt. Consider the following thought
experiment. Assume that D decides to move. Then instead of moving directly to
a randomly chosen jump candidate P′DIST ∈ J(t), it moves first to σt, and then to P′DIST. By
the triangle inequality the cost of D may only increase through such an experiment.
This experiment divides the first part of the step into two stages: a jumping stage, which
contain actions of the algorithm including the movement to σt, and a spreading stage,
which includes the jump from σt to P′DIST. Thus, we may divide the cost of D as
follows

1. Let CA
DIST be the cost of serving requests and moving to σt (with probability B(Xt)).

2. Let CB
DIST be the cost of moving (only if we have just moved to σt) to a randomly

chosen jump candidate P′DIST.

3.1.2 D        37

POPT

PDIST

σt

J(t):
Yt

Kt

Xt

Figure 3.3: Illustration of the algorithm D

As mentioned above, CDIST ≤ CA
DIST + CB

DIST, and thus E[CDIST] ≤ E[CA
DIST] + E[CB

DIST].
Analogously, we define the change in the potential induced by these two movements
by ∆ΦA and ∆ΦB; the actual expected change in the potential Φ is bounded by E[∆Φ] ≤
E[∆ΦA] + E[∆ΦB].

Let COPT be the cost of the optimal algorithm in the first part of the step. By half-
amortized cost of some action of D we understand the cost of the algorithm plus the
corresponding change in the potential Φ (not counting the change in the potential Θ).
For showing that (3.3) holds in the first part of the step, we prove two lemmas. The
first one bounds the half-amortized cost in the jumping stage, and the second one in the
spreading stage. They both utilize the triangle inequality to show that these costs are
both smaller than O(

√
D) · COPT plus some additive term of order B(Xt) ·D ·

√
D.

Finally, we combine these two lemmas with the change in the potential Θ. We show
that either COPT was large in the first part of the step, i.e., of order of the additive
term B(Xt) · D ·

√
D, or D had a great chance of catching O, lowering in this way

its potential Θ. In the latter case we show that the negative change in this potential
majorizes the additive term above.

Half-amortized cost in the jumping stage

Lemma 3.3. In the first part of any time step t, it holds that

E[CA
DIST] + E[∆ΦA] ≤ O

(√
D
)
· COPT + 21 · B(Xt) ·D ·

√

D .

Proof. Let Yt and Kt be the distances between POPT and σt, and PDIST and POPT, respec-
tively (see Figure 3.3). Additionally Kt−1 denotes the distance between PDIST and POPT at
the beginning of the time step, before the adversary moves the nodes, or equivalently, in
the previous time step. We begin with computing the expected values of CA

DIST and ∆ΦA.

E[CA
DIST] = (Xt + 1) +B(Xt) ·D · (Xt + 1) .

38 A S

Using B(Xt) ≥ b
D ≥

1
D , and

√
D ≥ 2, we get

E[CA
DIST] ≤ 2 · B(Xt) ·D · (Xt + 1)

≤ 2 · B(Xt) ·D · Xt︸ ︷︷ ︸
=:CA

+ B(Xt) ·D ·
√

D .

The first inequality above follows from B(Xt) ≥ b
D ≥

1
D , and in the second one we use

√
D ≥ 2. Later, we concentrate on restricting only the CA part of the cost.

The change in the potential in the jumping stage is twofold as in case 4 in the proof
of competitiveness of E (see Lemma 2.5 on page 20). First, Φmay change due to the
adversarial changes in the network. Second, with probability B(Xt), Φ changes because
Dmoves its page. In total,

E[∆ΦA] = f1 · (F (Kt) − F (Kt−1)) + f1 · B(Xt) · (F (Yt) − F (Kt)) .

To upper-bound the first summand we may assume that Kt ≥ Kt−1. The first derivative
of F is equal to

F
′(L) def

=
dF (L)

dL
=

2 ·
√

D · L for L <
√

D ,

D for L >
√

D .

For any L, F (L) ≤ 2 ·D, and thus F (Kt) − F (Kt−1) ≤ 2 ·D. Additionally, for Kt ≤
√

D and
L ∈ [Kt−1,Kt] holds F ′(L) ≤ 2 ·

√
D · Kt, and thus F (Kt) − F (Kt−1) ≤ 2 ·

√
D · Kt. We may

conclude that

E[∆ΦA] ≤ 2 · f1 ·min
{
Kt ·
√

D, D
}
+ f1 · B(Xt) · (F (Yt) − F (Kt)) . (3.4)

We consider three cases. In each case we bound CA +E[∆ΦA] either by 20 ·B(Xt) ·D ·
√

D,
or by O(

√
D) · COPT.

1. Yt ≥ Xt/4.

This is the most straightforward case, since Yt (and thus the cost paid by O) is
large compared to Xt. Additionally, it follows from the triangle inequality that
Kt ≤ Yt + Xt ≤ 5 · Yt. Using F (x) ≤ D · x and B(Xt) ≤ b/

√
D, we obtain

CA + E[∆ΦA] ≤ 2 · B(Xt) ·D · Xt + 2 · f1 ·
√

D · Kt + f1 · B(Xt) · F (Yt)

≤ 8 ·
b
√

D
·D · Yt + 10 · f1 ·

√

D · Yt + f1 ·
b
√

D
·D · Yt

= O
(√

D
)
· Yt

≤ O

(√
D
)
· COPT

3.1.2 D        39

2. Yt < Xt/4 and Xt ≤
√

D

In this case the distances from PDIST and POPT to the request σt are small, i.e., smaller
than

√
D. Additionally, Kt ≤ Xt + Yt ≤

5
4 · Xt ≤

5
4 ·
√

D. We use B(Xt) ≥ b
D to bound

the half-amortized cost by term O(1) · B(Xt) ·D ·
√

D.

CA + E[∆ΦA] ≤ 2 · B(Xt) ·D · Xt + 2 · f1 ·
√

D · Kt + f1 · B(Xt) · F (Yt)

≤ 2 · B(Xt) ·D ·
√

D +
5
2
· f1 ·
√

D · Xt + f1 · B(Xt) ·D · Yt

≤

(
2 +

5
2
· f1 ·

1
b
+

1
4
· f1

)
· B(Xt) ·D ·

√

D

≤ 20 · B(Xt) ·D ·
√

D

3. Yt < Xt/4 and Xt ≥
√

D.

This is the most complex case, as we have to amortize the cost of our algorithm by
the change in the potential induced by a jump of D. Luckily, since Yt ≤

1
4 · Xt,

and therefore Kt ≥ Xt − Yt ≥
3
4 · Xt, the term F (Yt) − F (Kt) occurring in (3.4) is

negative and equal to −Θ(D · Xt), as follows from the two inequalities below.

F (Kt) ≥ F ((3/4) · Xt)

= (3/4) · Xt ·
√

D ·min
{
(3/4) · Xt,

√

D
}

≥ (3/4) · Xt ·
√

D · (3/4) ·
√

D ,

and

F (Yt) ≤ F ((1/4) · Xt)

= (1/4) · Xt ·
√

D ·min
{
(1/4) · Xt,

√

D
}

≤ (1/4) · Xt ·
√

D ·
√

D .

Thus, F (Yt) − F (Kt) ≤ − 5
16 · D · Xt. Additionally, for Xt ≥

√
D it holds that

1
b · B(Xt) · Xt ≥ 1. Thus, we get

CA + E[∆ΦA] ≤ 2 · B(Xt) ·D · Xt + 2 · f1 ·D + f1 · B(Xt) · (F (Yt) − F (Kt))

≤

(
2 + 2 · f1 ·

1
b
−

5
16
· f1

)
· B(Xt) ·D · Xt

= 0 .

40 A S

In either case we have

E[CA
DIST + ∆Φ

A] ≤ CA +B(Xt) ·D ·
√

D + E[∆ΦA]

≤ O

(√
D
)
· COPT + 21 · B(Xt) ·D · Xt .

This finishes the proof of the lemma.

Half-amortized cost in the spreading stage

Lemma 3.4. In the first part of any time step t, it holds that

E[CB
DIST] + E[∆ΦB] ≤ (1 + f1) · B(Xt) ·D ·

√

D .

Proof. We bound the amortized cost incurred on D in the spreading stage as follows.
CB

DIST, the cost of movement from σt to P′DIST ∈ J(t) is at most D ·
√

D. We note that we
do not consider a constant overhead for the communication (i.e., we have not written
D · (

√
D + 1), as it was already taken into account while analyzing the jump stage.

Additionally, the movement in the spreading part happens with probability B(Xt), and
thus

E[CB
DIST] ≤ B(Xt) ·D ·

√

D . (3.5)

We can bound∆ΦB analogously. As Dmoves (with probabilityB(Xt)) along a distance
of at most

√
D, the distance between PDIST and POPT can increase only by

√
D. Therefore,

E[∆ΦB] ≤ f1 · B(Xt) ·D ·
√

D . (3.6)

By summing up (3.5) with (3.6) we get the lemma.

Total amortized cost in the first part of the step

Lemma 3.5. In the first part of any time step t, it holds that

E[CDIST] + E[∆Φ] + E[∆Θ] ≤ O(n ·
√

D) · COPT .

Proof. First, we can combine Lemma 3.3 with Lemma 3.4 to get

E[CDIST] + E[∆Φ] ≤ O
(√

D
)
· COPT + (22 + f1) · B(Xt) ·D ·

√

D

= O
(√

D
)
· COPT + f2 · B(Xt) ·D ·

√

D .
(3.7)

Thus, it remains to bound the term f2 · B(Xt) ·D ·
√

D using the change in the potentialΘ.
The brief idea is as follows. We may prove that either POPT is inside a jump set J(t) and
D catches it with a certain probability, substantially lowering the potential Θ, or POPT

is outside J(t), and thus O pays at least
√

D for serving request in this time step. We
consider two cases

3.1.2 D        41

1. POPT < J(t) or POPT ≡ PDIST.

In this case we can prove that

B(Xt) ·D ≤ b · COPT . (3.8)

If POPT < J(t), then dt(POPT, σt) >
√

D, and thus COPT >
√

D. This, in turn, implies
that B(Xt) ·D ≤ (b/

√
D) ·D ≤ b · COPT. On the other hand, if POPT ∈ J(t), then from

the case assumption POPT ≡ PDIST. In this case Xt ≤
√

D is also the distance between
POPT and the request. Thus, B(Xt) · D = b · Xt

D · D = b · Xt ≤ b · COPT. In either case
Inequality 3.8 follows.

Now, the increase in the potential Θmay be at most f2 · n ·D ·
√

D and occurs with
probability B(Xt). Thus,

E[∆Θ] ≤ f2 · n · B(Xt) ·D ·
√

D .

Summing this up with Inequality 3.7, we get

E[CDIST + ∆Φ + ∆Θ] ≤ O
(√

D
)
· COPT + 2 · f2 · n · B(Xt) ·D ·

√

D

≤ O

(√
D
)
· COPT + 2 · f2 · n ·

√

D · b · COPT

≤ O

(
n ·
√

D
)
· COPT

2. POPT ∈ J(t) and POPT . PDIST

In this case, at the beginning of the step Θ = f2 · n ·D ·
√

D. This potential remains
unchanged, if D does not move, or if it moves to a node different from POPT.
However, with probability B(Xt)/|J(t)|, Dmoves to POPT lowering Θ to 0. Thus,

E[∆Θ] ≤ −
B(Xt)
|J(t)|

· f2 · n ·D ·
√

D

≤ − f2 · B(Xt) ·D ·
√

D ,

where the second inequality follows from |J(t)| ≤ n. Summing this with (3.7), we
get

E[CDIST + ∆Φ + ∆Θ] ≤ O
(√

D
)
· COPT + (f2 − f2) · B(Xt) ·D ·

√

D

= O
(√

D
)
· COPT .

This finishes the proof of the Lemma 3.5.

42 A S

POPT

P′DIST

P′OPT

Yt

Kt

Xt

Figure 3.4: Algorithm D. Omoves its page.

3.1.3 DIST in the second part of a step

Now we prove that the Inequality 3.3 holds also in the second part of each time step, in
which the adversary moves the page.

Lemma 3.6. In the second part of any time step t, it holds that

E[CDIST] + E[∆Φ] + E[∆Θ] ≤ O(n ·
√

D) · COPT .

Proof. In this part CDIST = 0 and we have already taken into account the changes in the
potential caused by the adversarial changes in the network topology. Algorithm D
already moved to a new position, called P′DIST (possibly P′DIST ≡ PDIST). Assume that the
adversary moves its page to a node P′OPT. We reuse notation from the previous proof,
i.e., let Kt, Xt and Yt denote the distances between P′DIST and POPT, P′DIST and P′OPT, and
POPT and P′OPT, respectively. See Figure 3.4 for an illustration.

Since the adversary does not jump to the same node it is already at, COPT = D · (Yt+1).
We have to show only that the change in the potentials Φ and Θ can be bounded
appropriately. Naturally, the total increase in Θ is bounded by f2 · n ·D ·

√
D. Thus,

∆Θ ≤ f2 · n ·D ·
√

D

≤ O

(
n ·
√

D
)
· COPT .

On the other hand, ∆Φ = F (Xt) − F (Kt). We have to consider only the cases in which
Xt > Kt, otherwise ∆Φ ≤ 0 and the lemma would trivially follow. We use the triangle
inequality and consider two cases. If Kt ≤

√
D, then

∆Φ ≤ F (Xt)

≤ Xt ·D

≤ (Yt + Kt) ·D

≤ (Yt +
√

D) ·D

≤ COPT +
√

D · COPT

≤ O(
√

D) · COPT .

3.1.4 C D    43

Otherwise, if Kt >
√

D, then

∆Φ = F (Xt) − F (Kt)

= Xt ·D − Kt ·D

≤ Yt ·D

≤ COPT .

Thus, in either case it holds that CDIST + ∆Φ + ∆Θ ≤ O(n ·
√

D) · COPT.

3.1.4 Combining DIST with other algorithms

We showed that D is a memoryless randomized algorithm achieving competitive
ratio of O(n ·

√
D). If we know the exact values of D, n and λ, then at the beginning we

may choose either D, or O(D)-competitive J, or O(λ)-competitive D-CF, which
yields the upper bound of O(min{n ·

√
D,D, λ}) for randomized memoryless algorithms.

While the knowledge of n and D seems reasonable, and our algorithms use these
values anyway, it appears that we can get the strictO(min{n ·

√
D,D, λ})-competitiveness

without prior knowledge of maximum network extent λ.
First, we start O(λ)-competitive algorithm D-CF. If at some point of the time the

distance between any pair of nodes is equal of greater than D (or n ·
√

D, whichever
is smaller), then algorithm starts using algorithm J (or, respectively, D) from
this step. We have to show that this strategy is strictly O(min{D, λ})-competitive (or
respectively strictly O(min{n ·

√
D, λ})-competitive).

Lemma 3.7. If we combine D-CF and J in this way, then the resulting strategy is strictly
O(min{D, λ})-competitive.

Proof. Consider any input sequence I. If the switching to J never occurs, then
λ < D. Since D-CF is strictly O(λ)-competitive, the lemma follows.

On the other hand, if the strategy switches to J at some point of the time, then
λ ≥ D. In this case, it is sufficient to prove that the strategy is O(D)-competitive. Let I1

and I2 be the parts of the input I processed by D-CF and J, respectively. Let t1

be the last step of I1, and t2 be the last step of I2. Note that switching decision occurs
in fact in step t1 + 1, but since it is made before the node movement, we may assume
for the analysis that this decision is made at the end of step t1. Let ΦDYN−CF and ΦJUMP

be the potential functions used in the proof of D-CF and J competitiveness. Since
the maximal distance occurring in I1 is at most D, we have

E[CDYN−CF(I1) + ΦDYN−CF(t1) −ΦDYN−CF(0)] ≤ O(D) · E[COPT(I1)] .

44 A S

On the other hand, from the competitiveness of J

E[CJUMP(I2) + ΦJUMP(t2) −ΦJUMP(t1)] ≤ O(D) · E[COPT(I2)] .

Summing up, and taking into account that ΦDYN−CF(0) = 0, and ΦJUMP(t2) ≥ 0, we get

E[CDYN−CF(I1) + CJUMP(I2) + ΦDYN−CF(t1) −ΦJUMP(t1)] ≤ O(D) · E[COPT(I)] .

Thus, the strategy is O(D)-competitive. To show strict competitiveness, it suffices to
show that the potential of D-CF at the moment of switch (i.e., at the end of time
step t1) between the algorithms is greater than the starting potential of J. If at
the end of time step t1, the algorithm has its page in the same node as O, then by
Corollary 2.15 (see page 29), ΦDYN−CF(t1) ≥ 0 = ΦJUMP(t1). Otherwise, by the same
corollary, ΦDYN−CF(t1) ≥ k · (D + 1) ·D for any chosen constant k. If we choose k = 3, then
ΦDYN−CF(t1) ≥ ΦJUMP(t1), as the maximum distance at the end of t1 is at most D.

Lemma 3.8. If we combine D-CF and D in this way, then the resulting strategy is strictly
O(min{n ·

√
D, λ})-competitive.

Proof. The proof follows an identical pattern as the previous one. Similarly, it suffices
to show that the potential does not increase at the moment of switch from D-CF to
D. If the algorithm has its page at the same node as O, then ΦDYN−CF(t1) ≥ 0 =
ΦDIST(t1) + ΘDIST(t1). Otherwise, by Corollary 2.15, ΦDYN−CF(t1) ≥ k · (n ·

√
D + 1) · D for

any chosen constant k. If we pick k = f1 + f2, then

ΦDYN−CF(t1) ≥ f1 · n ·
√

D ·D + f2 · n ·D ·
√

D

≥ ΦDIST(t1) + ΘDIST(t1) ,

which finishes the proof.

By combining the two lemmas above we get the following corollary.

Corollary 3.9. There exists a randomized memoryless strategy, which upon knowing n and D (or
at least their constant approximations), isO(min{n ·

√
D,D, λ})-competitive against an adaptive-

online adversary in the adversarial scenario of the DPM.

3.2 Marking algorithms

In this section we show that the randomization is not crucial, presenting a deterministic
algorithm M, which achieves asymptotically the same competitive ratio as the D
algorithm described in the previous section.

3.2 M  45

Later on, we show that by adding a randomization to the M’s core, we may
trivially reduce its competitiveness to O(

√
D · log n) against an oblivious adversary. By

fine-tuning its parameters we get a randomized algorithm E, whose competitive ratio
of O(

√
D · log n) beats the best possible ratio ofΩ(

√
D · n) against an adaptive adversary.

Moreover, in Section 3.3.2 we show that this ratio is optimal for D ≥ log3 n.
The algorithm M is partially inspired by the M-T-M algorithm by Awer-

buch, Bartal and Fiat [ABF93a]. A brief idea the 7-competitive algorithm M-T-M
is as follows. It works in chunks of length D, i.e., it divides the input sequence into
chunks of such length, in each chunk serves all the requests, and moves only at the end
of chunks to a so-called gravity center. A gravity center is a node, which would be the
best place for the page in the last chunk, i.e., it minimizes the sum of distances to all the
requests issued.

M takes the chunk-based approach after M-T-M. The chosen chunk’s length
must be long enough to allow amortization of the page movements against the cost
incurred by serving requests, and short enough to make the network changes negligible.
In this whole section, K denotes the length of the chunk. K is a parameter, different for
different algorithms. For now we assume only that K ≤ 2 ·

√
D.

In addition, on the beginning of the input sequence, the algorithm works in chunks
of length K̃ := 2 ·

√
D for a short period. This run-up is needed to ascertain only that the

marking algorithms using K < 2 ·
√

D could be strictly competitive.2

Gravity centers

Since in our setting the distances can change with time, we have to be careful with
defining gravity centers. Consider any subsequenceS of length ` steps. We number this
steps from 1 to `. Let σi be the node which issues a request in the i-th step of I and di(·),
ci(·) be the distance and cost functions, respectively, in the i-th step.

Definition 3.10. A gravity center for a subsequenceS of length ` is a vertex v, which minimizes
the sum

∑`
i=1 d`(v, σi). We denote it byGS. If there is more than one such vertex, then the gravity

center is the one labelled with the smallest index.3

Design rationale

However, if we consider the lower bound for last request based algorithms presented
in Figure 3.1, we see that it also applies for an algorithm which considers only gravity
centers as jump candidates. Actually, v3 from that example would never be chosen.

2 This will be become clear after the proof of Lemma 3.23.
3 We could apply any tie breaking method here. Moreover, the algorithms presented would still work, if

we chose a node which minimizes
∑`

i=1 di(v, σi) or
∑`

i=1 ci(v, σi).

46 A S

Keeping in mind that storing the page close to the gravity center is, generally, a good
idea, we strive for adapting the “chasing OPT game” to the deterministic setting. In
other words, we have to ascertain that M frequently catches O. To achieve this,
we introduce a marking scheme and build M on top of it.

A short motivation behind the scheme is following. Mwill be, in essence, a deran-
domization of the D algorithm. The gravity center tries to approximate the position,
at which D would be after serving all the requests from one chunk. In particular, if
all the requests within one chunk are given at a node v∗, whose distance to the node
holding the page is roughly

√
D, then in each step D would move to the jump set of

this node with probability Θ(1/
√

D). If the length of the chunk is chosen close to
√

D,
then at the end of such a chunk Dwould be in the neighborhood of v∗ with a constant
probability. Hence, we aim for this in constructing M, i.e., after a chunk I, it should
move to the neighborhood of the gravity center GI.

Furthermore, D tries to catch O (assuming that O is in the jump set) by randomly
choosing a node from the jump set. In order to simulate this, M has to distinguish
between the potential jump candidates, not to choose the same node twice. This is the
place, where the marking scheme comes to play. Generally, the nodes, in which M
has been already are marked, and will not be visited by M again. Additionally,
as mentioned in Section 3.1 (in the part about catching O), we have to assure that
each time when M catches O, a certain cost is incurred on O. This is achieved by
making the marking of a node dependent on the cost, which is incurred on the algorithm
remaining for the whole time at this node. Thus, we introduce the following definition.

Definition 3.11. For any subsequenceS, a counter Ai(S) denotes the cost of serving the requests
within S from node vi. Equivalently, it is the cost of an algorithm, which remains at vi for the
whole S and does not move.

The considerations above sketch the following rough picture of M. M works
in chunks of length K = 2 ·

√
D. Chunks are grouped in epochs, each epoch begins with

all nodes unmarked. In each epoch we track Ai counters for the part of the epoch seen
so far. If such a counter exceeds D, then the corresponding node becomes marked. At
the end of a chunk, in which all nodes are already marked, the current epoch ends,
the scheme unmarks all nodes, and a new epoch begins. The marking process runs
completely independently from any algorithm.

On the other hand, M uses this scheme in the following way. It remains in a node
till the end of the chunk, in which this node gets marked and then moves to a node,
which is not marked yet. In the proof we show that this approach guarantees that nodes
chosen for jump candidates are close to the gravity centers.

3.2 M  47

Let Mi be the number of marks vi has.

Run-up epoch:
Set Mi := 0 for all vi /∗ unmark all the nodes ∗/
E0 := ∅ /∗ E0 is the zeroth epoch ∗/
while (M1 = 0) do

I := next K̃ steps from I
E0 := E0] I
M1 := bA1(E0)/

(
1
4 · K̃

2
)
c /∗ compute current marks of v1 ∗/

Regular epochs:
Set Mi := 0 for all vi /∗ unmark all the nodes ∗/
Let T := D/

(
1
4 · K

2
)

(I1, I2, I3, . . . , Im) := I \ E0 /∗ divide remaining part of I into chunks I j

of length K ∗/
E := ∅ /∗ E is the current epoch;

the first epoch begins ∗/
for j = 1 to m do
E := E] I j

for each vi ∈ V
Mi := bAi(E)/

(
1
4 · K

2
)
c /∗ compute current marks ∗/

if Mi ≥ T for all vi then /∗ if all nodes are marked at least T times ∗/
Set Mi := 0 for all vi /∗ unmark all the nodes
E := ∅ a new epoch begins ∗/

Figure 3.5: Marking scheme for input sequence Iwith regular chunks of length K

Marking scheme

While the M’s description above is sufficient to derive a proof of its competitiveness,
we make the marking scheme more general, and present M as an example of marking-
based algorithms (a class of algorithms, which we define later). This allows us to capture
the common parts of M and its randomized successors, R-M and E, and reuse
crucial lemmas. Above all, we parameterize the regular chunk length, allowing them
to be shorter than 2 ·

√
D, and we parameterize number of times each node is marked

before an epoch ends.

We define the marking scheme in Figure 3.5. The marking scheme depends on one
parameter — the value of K, the chunk length chosen by the algorithm. We divide

48 A S

run-up epoch regular epoch
t

2 1 1, 2 2 1, 3 1, 2, 3 1, 2, 2 3 2, 3, 3

Figure 3.6: Example of marking scheme for T = 4

input sequence I into chunks. The initial ones (called run-up chunks) are of length
K̃, the remaining ones (called regular chunks) are of length K. The last chunk possibly
has a shorter length. As a byproduct, the marking scheme computes the division of I
into epochs. Each epoch contains one or more chunks, i.e., the partition into chunks is
a refinement of the partition into epochs. The zeroth epoch (called also run-up epoch)
starts with the beginning of the input sequence I and contains all run-up chunks.

In each epoch E we are tracking the Ai counters for the part of the epoch E seen so
far. Each node vi has an associated counter Mi, denoting the number of marks it got.
Initially, at the beginning of each epoch nodes begin unmarked, i.e., all Mi are set to 0.
One can view marks as a rough approximation of the corresponding Ai counters, i.e.,
Mi = bAi(E)/(1

4 · K
2)c. Additionally, marks are computed only at the end of each chunk.

If after some chunk I a counter Mi increases, then we say that vi was marked in I, or that I
is a marking chunk for vi.

Epoch zero ends with the chunk, in which v1 was marked (this implies that A1(E0)
counter exceeds D). Recall that any algorithm begins with the page initially at v1. For the
next epochs (called also regular epochs), their ending condition is slightly more complex.
A node which is marked at least T = D/(1

4 · K
2) times we call saturated. For a saturated

node vi the corresponding counter Ai(E) exceeds D. If at the end of some chunk all nodes
are saturated, then the current epoch ends.

When an epoch ends, before the next chunk begins, we unmark all the nodes, i.e.,
all Mi are set to 0. A new epoch begins with the next chunk. Possibly, at the end of the
input sequence, there is one epoch which is not ended; such an epoch we call unfinished.

We note that the division into epochs and chunks as well as the marking scheme is
independent of the algorithm and depends only on the input sequence and the value of K.
For clarity of the presentation, we assume that K is so chosen, that both K and T are
integers. If it is not the case, we can always increase D a little bit, so that K becomes an
integer, and use a new value of D in the analysis of the algorithm. Since this increase
changes D only by a constant factor, asymptotically all the bounds hold. Finally, we
assume that D ≥ 4. If it is not the case, we may use the algorithm J to achieve
constant competitiveness.

An example of marking scheme for K =
√

D and a three-node graph is presented in
Figure 3.6. The chosen value of K implies that T = 4. The figure contains one run-up
epoch followed by one regular epoch; numbers above the chunks in this figure denote

3.2 M  49

Serve all requests in chunk I

if I is a finished chunk then
if I is the last chunk in the current epoch
then

v∗ := GI

Move to v∗

else
If PMB is marked in I then

Choose a jump candidate v∗ /∗ placeholder ∗/
Move to v∗

Figure 3.7: Framework of a marking-based algorithm MB

indices of nodes, which are marked in these chunks.

We have a trivial lower bound on O in any finished epoch.

Lemma 3.12. For any finished epoch E it holds that COPT(E) ≥ D.

Proof. If the optimal offline algorithm moves its page within E then it pays at least D.
Otherwise, it remains for the whole epoch E in one node vi, paying Ai(E). For the zeroth
epoch, O starts and remains in v1, and therefore it pays A1(E0) ≥ 1

4 · K̃
2 = D. For

a regular epoch E, any node vi is marked at least T times within E, and thus O pays
Ai(E) ≥ T · 1

4 · K
2 = D.

Marking-based algorithms

Now we show how to use the marking information in our “chasing OPT” game. We can
view the online problem as a request-answer game (see [BBK+90] or [BE98, chapter 7]
for an introduction to such games), between the adversary (and O) and our algorithm.
For this argument we consider a deterministic algorithm, although the rationale makes
sense also for randomized ones.

As we have a lower bound for O guaranteed by Lemma 3.12, it is the role of our
algorithm to force the adversary to end the epoch, i.e., to have all the nodes marked at
least T times as quick as possible.

Note that the algorithm could hardly trigger that marking event, if it is at a saturated
node. In that case the adversary may issue requests at a node with a low number of
marks, deferring this way the end of the current epoch. In fact, the Ai counters for
other not yet saturated nodes increase in this case, but it may happen that the increase

50 A S

is only 1 per round, while the increase in our algorithm’s cost could be huge. Therefore,
the rationale of our algorithm would be to remain at a node with small number of marks,
until it gets marked in some chunk I, and then move to another unsaturated node. Note
that for K = 2 ·

√
D a node is saturated when it is marked at least one time, and this

justifies the M algorithm moving to any not yet marked node.
At the end of the last chunk of any epoch (for any regular epoch all nodes are saturated

then) the algorithm could move to the gravity center. These considerations lead us to
the following definition.

Definition 3.13. An algorithm MB we call marking-based if MB moves only at the end of the
chunk I, which

(i) was a marking chunk for PMB, the node holding the page of MB, or

(ii) was the last chunk in epoch.

Additionally, if condition (ii) is met, then MB moves to GI.

Clearly, each marking-based algorithm is also chunk-based. For making our argu-
ments concise, we assume that after condition (i) or (ii) of Definition 3.13 occurs, the
algorithm always move, although in the rare cases it may move to the same node it is
currently in. The framework for any marking-based algorithm is depicted of Figure 3.7.
We distinguish between choosing a jump candidate inside epoch and choosing a jump
candidate at the end of epoch. In the latter case the jump candidate is always the gravity
center of the last epoch’s chunk. Choosing a jump candidate inside an epoch is a place-
holder which will be filled by a specific marking-based algorithm that we will analyze.
In the next subsection, we prove that even if we base our algorithm on the marking
information only, we can still ascertain that it moves to the neighborhood of the gravity
centers.

We call a subsequence between two movements of such an algorithm a phase. Alter-
natively speaking, a phase is a sequence of consecutive chunks, in which the algorithm
remains at one node. Recall that chunks, phases, and epochs are all subsequences of
input sequence. Moreover, the whole input sequence is partitioned into epochs, each
epoch into phases, and each phase into chunks. If the input sequence ends with an
unfinished epoch, it ends possibly with an unfinished phase, too. We already know that
the division into epochs and chunks is independent from any algorithm. Additionally,
the run-up epoch consists of only one phase. The division of each regular epoch into
phases depends directly on the choice of jump candidates inside epochs.

3.2.1 D M 51

Regular chunks’ length: K = 2 ·
√

D

Choosing a jump candidate v∗ inside epoch:
v∗ is any not yet marked node

Figure 3.8: M properties

3.2.1 Deterministic algorithm MARK

In this subsection we present a deterministic M. Although it was informally de-
scribed before, we restate it as a marking-based algorithm.

It is necessary to provide only two pieces of information (see Figure 3.8): the chunk
length K and the way of choosing jump candidates inside epoch. Let K = 2 ·

√
D, i.e.,

the chunks length is the same in all epochs (run-up and regular ones). This implies that
T = 1, i.e., a regular epoch ends, if all the nodes are marked at least once. Additionally,
for a jump candidate inside epoch M chooses any not yet marked node.

In the remaining part of this section we prove the following result.

Theorem 3.14. The algorithm M is O(n ·
√

D)-competitive in the adversarial model of
the DPM.

First, we prove a bound on the number of Mmovements in each phase. Each node
that M visits during an epoch is marked and will not be visited again during the
same epoch. This implies the following lemma.

Lemma 3.15. The number of M phases in any epoch (even unfinished one) is at most n.

Proof. The run-up epoch contains one phase of any marking-based algorithm, and thus
the lemma trivially holds there.

Any other epoch begins with all nodes unmarked and ends with all nodes marked.
Additionally, in each phase at least one node is marked. Thus, the number of phases
cannot be higher than n. Obviously, the proof works for an unfinished epoch as well.

Generalized Jump Sets

First, we prove that if Mmoves after some chunk, then as a jump candidate it chooses
a node, which is close to the gravity centers corresponding to this chunk. In order to
do this we adapt the definition of a jump set from the algorithm D. We make the
definition slightly more general than needed for the analysis of the M algorithm; we
use it later for a randomized version of M. Below we concentrate on a single chunk I,
and we number its steps from 1 to K.

52 A S

Jk(I) :
ΓV :

R

7 · k · K

2 · k · K

GI

vi

Figure 3.9: Jump Set Jk(I)

Definition 3.16. For any chunk I and any integer k ≥ 1, a k-JumpSet, which we denote by
Jk(I), is the set of all nodes whose distance to GI, measured in the last step of I, is at most 7 · k ·K,
i.e., Jk(I) = {v ∈ V : dK(v,GI) ≤ 7 · k · K}.

Intuitively, if an algorithm remains at a node which was far away from the gravity
center or outside some jump sets, it had to pay much. This is formalized in the following
lemma.

Lemma 3.17. For any chunk I of K steps, any node vi ∈ V, and any k ≥ 1, if vi < Jk(I) at the
end of I, then Ai(I) ≥ k

4 · K
2.

Proof. We look at the configuration of nodes in time step K. Let R := dK(GI, vi). Since
vi < Jk(I), R > 7 · k · K. By Γ we denote a set of time steps t from chunk I, such that the
K-th step distance between σt and vi is at most 2 · k · K. Formally,

Γ := { t ∈ I : dK(σt, vi) ≤ 2 · k · K } . (3.9)

The situation in time step K is depicted in Figure 3.9. ΓV, shown there, is a multi set of
nodes induced by Γ, i.e.,

ΓV = {σt : dK(σt, vi) ≤ 2 · k · K} . (3.10)

Intuitively, ΓV is the set of nodes, which issued requests in I and are now close to vi.
The idea of the proof is simple. We show that at least a constant fraction of nodes

accessing the page are outside ΓV. Then we argue that these nodes were far away from
vi at the moment when requests were issued at them, and therefore they must have
incurred a high cost on the algorithm remaining at vi for the whole chunk I.

3.2.1 D M 53

First, we prove that |Γ| ≤ 3
4 · K. Assume the contrary, i.e., |Γ| > 3

4 · K. Using the triangle
inequality we obtain

K∑
t=1

dK(vi, σt) =
∑
t∈Γ

dK(vi, σt) +
∑
t<Γ

dK(vi, σt)

≤ |Γ| · 2 · k · K +
∑
t<Γ

(dK(vi,GI) + dK(GI, σt))

< 2 · k · K2 +
1
4
· K · R +

∑
t<Γ

dK(GI, σt)

<
3
4
· K · (R − 2 · k · K) +

∑
t<Γ

dK(GI, σt) ,

where the last inequality follows from R > 7 · k · K. Since 3
4 · K < |Γ| and in the last step

of I, the distance between GI and any node from Γ is at least R − 2 · k · K, we get

K∑
t=1

dK(vi, σt) <
∑
t∈Γ

dK(GI, σt) +
∑
t<Γ

dK(GI, σt)

=

K∑
t=1

dK(GI, σt) .

This contradicts that GI is a gravity center.
Since |Γ| ≤ 3

4 ·K, at least 1
4 ·K of the requests were issued “far away” from vi. Precisely,

since during K steps each distance can be changed at most by an additive term of K,
each of these requests was issued at the distance of at least 2 · k · K − K ≥ k · K from vi.
Therefore, Ai(I) ≥ (K − |Γ|) · k · K = k

4 · K
2 and the lemma follows.

By the definition of the marking scheme we immediately conclude the following.

Corollary 3.18. For any chunk I and a node vi, if vi is outside Jk(I) at the end of I, then vi

received at least k marks in I.

This corollary claims that by choosing nodes which have small number of marks
we choose nodes which are close to the gravity center. After any chunk I, for a jump
candidate v∗ the algorithm M either chooses the gravity center of I, or a node which
is not yet marked. But in the latter case by Corollary 3.18 such a node has to belong to
the 1-JumpSet of I.

Corollary 3.19. If M moves its page after I, then for a jump candidate v∗ it always chooses
a node belonging to J1(I), the 1-JumpSet of I.

54 A S

Amortized analysis

In this subsection we complete the proof of Theorem 3.14 using Lemma 3.12 and Corol-
lary 3.19. In the proof we use potential function analysis. However, unlike in the D
case, we cannot show that the amortized cost in each step is bounded by a term propor-
tional to COPT. Instead, we prove a bound for amortized cost of M in any (finished
or unfinished) epoch.

Let L denote the distance between the nodes holding the pages of M and O,
respectively. Then we define a potential as

Φ = f ·D · L , where f = 2 . (3.11)

Clearly, at the beginning of an input sequence Φ = 0 and is always non-negative. For
any subsequence S, by ∆Φ(S) we denote the difference between the potential after S
(after both O and Mmoved their pages), and before S (at the very end of the step
preceding S; if S starts at the beginning of input, then the starting potential equals 0,
since at that point of time L = 0). By an amortized cost of an action (e.g., serving requests
or moving the page) we understand the actual cost of this action plus the change in the
potential this action induced.

In fact, we can extend the definitions above to any marking-based algorithm. Most of
the lemmas below holds for any such algorithm. In particular Φ may be the potential
function for any marking-based algorithm MB, in which case it is equal to f · D times
the distance between the pages of MB and O.

First, we bound the cost of M is one finished phase P. Let P consist of ` chunks,
numbered from 1 to `, i.e., P = (I1, I2, . . . , I`). From a definition of a phase, we get that
M remains at one node in the whole P. In the last step of the phase it moves to a jump
candidate v∗.

Consider the following thought experiment. If M first moved to GI` , and then
to v∗, then its total amortized cost could only increase. Thus, in order to upper bound
the amortized cost of M in P, we divide its cost into two parts which we bound
separately.

1. The amortized cost of serving all requests in P and moving to GI` . We denote this
cost by CA

MARK(P).

2. The amortized cost of moving from GI` to v∗. We denote this cost by CB
MARK(P).

Note that the second part of the cost is non-existent for the last phase in the epoch, as
for such phases v∗ ≡ GI` . In particular, it does not occur in the only phase of epoch E0.
We can bound these two parts as follows.

3.2.1 D M 55

Lemma 3.20 (Phase Lemma). Let MB be any marking-based algorithm and P = (I1, . . . , I`) be
one of its finished phases. Let K be the length of I j chunks and Φ is the potential function of MB.
Assume that at the end of P, MB moves to GI` . Then

CMB(P) + ∆Φ(P) ≤ O(D/K) · COPT(P) + O(D · K) .

The proof of the Phase Lemma was moved to Section 3.2.3 for clarity reasons. Obvi-
ously, since M is defined as a marking-based algorithm, we may utilize the lemma
above for any finished phase P to get that CA

MARK(P) ≤ O(D/K) · COPT(P) + O(D · K). The
bound on CB

MARK can be derived easily, as an analogous bound on CB
DIST.

Lemma 3.21. For any finished phase P of M, it holds that

CB
MARK(P) ≤ O(D · K) .

Proof. By Corollary 3.19, a jump candidate v∗ lies inside 1-JumpSet of I`. Thus, the
distance between GI` and v∗ is at most 7 · K. The (non-amortized) cost of moving the
page between GI` and v∗ is, therefore, at most D · (7 ·K+ 1) = O(D ·K). An increase in the
potential induced by this movement is at most f ·D ·7 ·K = O(D ·K). Thus, the amortized
cost, CB

MARK(P) = O(D · K).

For an unfinished phase of any marking-based algorithm we prove a counterpart of
the Phase Lemma.

Lemma 3.22 (Auxiliary Phase Lemma). Let MB be any marking-based algorithm and P be
its unfinished (possibly empty) phase, containing chunks of length K. Let ΦB be the potential at
the beginning of P. Then

CMB(P) ≤ ΦB + O(D/K) · COPT(P) + O(D · K) .

We postpone the proof to Section 3.2.3, as it is closely related to the proof of the Phase
Lemma. Instead, we show how to use these lemmas to prove competitiveness of M.
As the first step we show a lower bound on O’s cost, and as the second one an upper
bound for M in any sequence of phases.

Lemma 3.23. For any input sequence I consisting of k + 1 epochs, with the last one possibly
unfinished, and any marking-based algorithm MB, either

(i) COPT(I) = CMB(I), or

(ii) COPT(I) = Ω((k + 1) ·D).

Proof. Let I = (E0,E1,E2, . . . ,Ek) be the division of input into epochs. We proceed with
the case analysis.

56 A S

1. k ≥ 1. By Lemma 3.12, for each i < k, COPT(Ei) ≥ D. Thus,

COPT(I) ≥ k ·D = Ω((k + 1) ·D)

2. k = 0. In this case I consists of only one (run-up) epoch E0. If E0 is finished then
again by Lemma 3.12, COPT(I) ≥ D. If O moves within E0, then its cost is at
least D. Otherwise, O remains in v1 for the whole unfinished epoch E0. MB
also starts in v1. Its first phase is not finished, and thus it remains in v1, paying
CMB(I) = A1(E0) = COPT(I).

Hence, in either case the lemma follows.

Note that the lemma above would not hold, if the run-up epoch was not present and
K = o(

√
D). In that case it could be possible that the input sequence ends right after the

first marking chunk for v1 (and v1 is marked exactly once in that chunk). Then the cost
of the algorithm for moving to another node would be at least D and the cost of O
would be lower-bounded only by the value of counter A1, i.e., by Θ(K2) = o(D). This
justifies the existence of run-up chunks and the run-up epoch.

Lemma 3.24. Assume that input I is divided by M into p finished phases and possibly one
not finished. Then

CMARK(I) ≤ O(D/K) · COPT(I) + (p + 1) · O(D · K) .

Proof. We number finished phases from P1 to Pp. Potentially, there exists also an un-
finished phase Pp+1 at the end. Let ΦB denote the potential at the beginning of Pp+1.
Then,

CMARK(I) =
p∑

j=1

CMARK(P j) + CMARK(Pp+1)

=

p∑
j=1

[
CMARK(P j) + ∆Φ(P j)

]
+

(
−ΦB + CMARK(Pp+1)

)
.

We bound the first summand using Phase Lemma and Lemma 3.21, and the second one
using Auxiliary Phase Lemma, getting

CMARK(I) ≤
p∑

j=1

[
O

(D
K

)
· COPT(P j) + O(D · K)

]
+ O

(D
K

)
· COPT(Pp+1) + O(D · K)

≤ O(D/K) · COPT(I) + (p + 1) · O(D · K) .

3.2.1 D M 57

We may combine the two lemmas above, finishing the proof of M’s O(n ·
√

D)-
competitiveness.

Proof of Theorem 3.14. Let I be any input sequence. Assume that it consists of k + 1
epochs, where the last one is possibly unfinished, i.e., I = (E0,E1,E2 . . . ,Ek). By
Lemma 3.23, either COPT(I) = CMARK(I), in which case the competitiveness of M
follows trivially, or COPT(I) = Ω((k + 1) ·D). We consider the latter case.

The number of finished phases inI is, by Lemma 3.15, at most n·(k+1). By Lemma 3.24,
we get

CMARK(I) ≤ O(D/K) · COPT(I) + (n · (k + 1) + 1) · O(D · K)

= O(D/K) · COPT(I) + O(n · K) · COPT(I)

= O(n ·
√

D) · COPT(I) ,

which finishes the proof.

Combining MARK with other algorithms

Similarly to the case of algorithm D, it is possible to combine M with the O(D)-
competitive algorithm J and O(λ)-competitive algorithm D-M, getting a deter-
ministic upper bound of O(min{n ·

√
D,D, λ}). We show that it is possible to switch

between these algorithms on-line, without prior knowledge of the maximum network
extent λ. In fact, we present a general scheme that allows to transform any marking-
based R-competitive algorithm MB into an O(min{R,D, λ})-competitive strategy. We
assume that MB uses a potential function Φ = 2 ·D · L, where L is the distance between
the pages of MB and O.

The strategy is the same as in the case of the algorithm D. It uses the algorithm
D-M, till the maximum distance in the network exceeds D or R, whichever is smaller,
and then it switches appropriately either to the algorithm J or to MB. However, if
it switches to MB, then we modify slightly the definition of MB. Let vS denote the node
holding the algorithm’s page at the moment of switch. MB’s run-up epoch ends after
the chunk which is marking for vS (and not after the marking chunk for v1).

Lemma 3.25. If we combine D-M and J in this way, then the resulting deterministic
strategy is strictly O(min{D, λ})-competitive.

Proof. The proof is identical to the proof of Lemma 3.7 (see page 43) concerning switch-
ing between D-M and J. In this case, we may omit expected values, as both
algorithms are deterministic.

Lemma 3.26. If we combine D-M and MB in this way, then the resulting deterministic
strategy is strictly O(min{R, λ})-competitive.

58 A S

Proof. First, analogously to the proof of Lemma 3.8 (see page 44), we prove that the
change in the potential at the moment of switch is negative. If the algorithm has its page
at the same node as O, then ΦDYN−M(t1) ≥ 0 = ΦMB(t1). Otherwise, by Corollary 2.15
(see page 29), ΦDYN−M(t1) ≥ k · (R+ 1) ·D for any chosen constant k. If we pick k = 2, then
ΦDYN−M(t1) ≥ 2 ·D · R ≥ ΦMB(t1).

However, in the proof of competitiveness of a marking-based algorithm MB, our
argument required more than just bounding the change in the potential. Specifically, we
heavily relied on the fact that the cost of O in any epoch is either at least Ω(D) or is
equal to the cost of the algorithm (see Lemma 3.23 and Lemma 3.12). If at the moment
of switch O is at the same node as the algorithm, then all these bounds hold, as the
situation in indistinguishable from the normal starting situation. Below we argue that
even if O and MB are at the different nodes at the switching point, then by choosing
appropriately large constant k we can also prove the desired competitiveness.

Assume that after switching to MB, the remaining part of the input sequence (which
we denote by I2) is divided into ` + 1 epochs. In finished regular epochs we can still
guarantee that the cost of O is at least D, as this bound does not depend on the starting
positions of O in such an epoch. Thus, since there are at least ` − 1 finished regular
epochs, the cost of O is at least (` − 1) ·D, which is Ω((` + 1) ·D) for ` ≥ 2.

If ` < 2, then we have at most 2 epochs. In proof of MB’s competitiveness we used the
guarantee of Lemma 3.23, claiming that COPT(I2) ≥ Ω(2 · D), and thus we were able to
bound a term of at most O(R · 2 ·D) against the cost of the optimal algorithm. Although
we cannot guarantee such a lower bound on COPT, we may can use the potential gathered
by D-M instead. It is sufficient that the k is chosen, so that ΦDYN−M(t1) ≥ k · (R + 1) ·D
is greater than the term O(R · 2 ·D).

A straightforward corollary follows from the two lemmas above.

Corollary 3.27. There exists a deterministic strategy, which upon knowing n and D (or at least
their constant approximations), is O(min{n ·

√
D,D, λ})-competitive in the adversarial scenario

of the DPM.

3.2.2 Randomization against oblivious adversary

In this section we show how to use randomization with marking scheme to improve
the competitive ratio achieved by algorithm M to O(

√
D · log n) against an oblivious

adversary. Before we construct this algorithm, we show that a straightforward random-
ization of M already yields an algorithm, which is O(

√
D · log n)-competitive against

such an adversary.

3.2.2 R    59

Regular chunks’ length: K = 2 ·
√

D

Choosing a jump candidate v∗ inside epoch:
v∗ is a randomly (uniformly) chosen not yet marked node

Figure 3.10: R-M properties

Easy randomization: algorithm R-MARK

Let R-M be an algorithm described in Figure 3.10. R-M is defined almost exactly
as M; the only difference is that inside an epoch, for a jump candidate v∗, R-M
chooses from the set of not yet marked nodes not any node but a random one.

Theorem 3.28. The algorithm R-M is O(
√

D · log n)-competitive against an oblivious ad-
versary in the adversarial model of DPM.

We note that all the phase lemmas hold, since R-M is a marking-based algorithm.
In particular, we could divide the cost of R-M in a phase P into two parts, CA

R−MARK(P)
and CB

R−MARK(P), as it was done in the analysis of M. Then the worst-case bounds on
these costs presented in the Phase Lemma, the Auxiliary Phase Lemma, and the bound
on CB

R−MARK(P) guaranteed by Lemma 3.21 still apply. In effect, Lemma 3.24 holds too,
i.e., if an input I is divided by R-M into p finished phases and possibly one not yet
finished, then

CR−MARK(I) ≤ O(D/K) · COPT(I) + (p + 1) · O(D · K) . (3.12)

However, for R-M we are able to derive a better bound on the (expected) number
of phases in one epoch. Recall that by Lemma 3.15 the number of M phases in one
epoch is not greater than n.

Lemma 3.29. The expected number of R-M phases in any epoch (finished or unfinished) is
O(log n). The expectation is taken over all random choices made by R-M.

Proof. A run-up epoch contains a single phase, and thus the lemma holds trivially.
For a regular epoch, let {bi}

n
i=1 be the nodes in the order they get the first mark in

epoch E. Ties are broken arbitrarily. Assume that in a phase P (not the last one) the
algorithm is in a node bk. Then at the end of phase P, it chooses a new node v∗ uniformly
at random from n − k nodes, i.e., from the set B+k := {bi : k + 1 ≤ i ≤ n}. Actually, it might
happen that some of the nodes from B+k were also marked at the end of phase P, in which
case the algorithm has even fewer than n − k nodes to choose randomly from. Consider

60 A S

the moment at the end of any phase P. Let Tk be the expected number of remaining
phases, provided that k nodes are still unmarked. We have a recursive formula

T0 = 0 ,

Tk = 1 +
k−1∑
i=0

1
k
· Ti ,

(3.13)

where the second equality follows from the linearity of the expected value. By a few
technical transformations (see Section 3.5) we get the following claim.

Claim 3.30. For any k ≥ 0, it holds that Tk+1 = Tk +
1

k+1 .

Thus, Tk = Hk =
∑k

i=1
1
i . In fact, the expected number of phases can be even smaller

than Tk, as some nodes might get marked concurrently, in which case R-M has fewer
nodes to choose from.

At the beginning of an epoch, R-M is in a fixed node. After the first phase finishes,
it chooses a jump candidate from a proper subset of V. Therefore, the expected number
of phases in any epoch is at most 1 + Tn−1 ≤ 1 +Hn−1 = O(log n).

Clearly, the argument above works also for an unfinished epoch.

We use the bounds on the expected number of phases to conclude with the competi-
tiveness of R-M.

Proof of Theorem 3.28. Take any input sequence I, consisting of k + 1 epochs, where
the last one is possibly unfinished, i.e., I = (E0,E1,E2 . . . ,Ek). By Lemma 3.23, either
COPT(I) = CR−MARK(I), in which case the competitiveness of R-M follows trivially, or
COPT(I) = Ω((k + 1) · D). We consider the latter case. Let p be the number of finished
phases in I. By (3.12) we get

CR−MARK(I) ≤ O(D/K) · COPT(I) + (p + 1) · O(D · K) .

By Lemma 3.29, E[p] = O((k + 1) · log n), where the expected value is taken over the
random choices of the algorithm. Applying this, and using the lower bound on O, we
get

E[CR−MARK(I)] ≤ O(D/K) · COPT(I) + ((log n) · (k + 1) + 1) · O(D · K)

= O(D/K) · COPT(I) + O(K · log n) · COPT(I)

= O
(√

D · log n
)
· COPT(I) .

(3.14)

This finishes the proof of R-M competitiveness.

3.2.2 R    61

Balancing algorithm EBM

If we take a closer look at the proof of Theorem 3.28, we note that at the end we have
two summands in (3.14), describing the upper bound on E[CR−MARK(I)]. These are
O(D/K) · COPT(I) and O(K · log n) · COPT(I), respectively. They would become balanced,
if K was reduced to Θ(

√
D/ log n). However, for the analysis to hold, we should be able

to guarantee that the cost in each phase can be bounded as before, and that each epoch
consists (in expectation) of at most O(log n) phases.

At first glance, it is not clear whether the latter is possible at all. Assume for a while
that in the marking-based algorithm, we may choose any node for a jump candidate,
and we can guarantee that the cost of such jump and serving requests can be amortized
against the optimal cost, as it was the case for M and R-M. This means that we
only want to minimize the number of phases in one regular epoch. This simplified task
we call chunk traversing.

Let T be the number of times each node has to be marked (recall that for M and
R-M, T = 1, and if K = 2 ·

√
D/ log n, then T = log n) in order for an epoch to finish.

Fix any epoch E consisting of m chunks (I1, I2, . . . , Im).
Obviously, each node is marked at least T times in E. Moreover, there exists one

node, which has less than T marks at the end of Im−1, because epoch E would have
lasted shorter otherwise. In the first phase, any marking-based algorithm is in some
fixed node. After that, we have a process consisting of several iterations. One iteration
involves choosing a jump candidate v∗, and remaining at v∗ either till the end of the next
marking chunk for v∗, or till the end of an epoch, whichever comes first. Note that the
number of phases in epoch is equal to the number of iterations plus one.

For this informal introduction we may assume that during the very first phase of
epoch E exactly one node is marked. Note that this is the wost case for the algorithm. If
T = 1, then a trivial deterministic algorithm is able to traverse the remaining part of E in
n − 1 iterations, by choosing not yet marked nodes for jump candidates. This is exactly
what the algorithm M does. On the other hand, it is straightforward that for any
deterministic algorithm it is possible to construct a sequence of nodes’ marking, which
requires n − 1 iterations.

As we have seen before, chunk traversing can be speeded-up to O(log n) iterations,
if the algorithm is permitted to use randomization. It is not difficult to prove that this
result is asymptotically optimal.

If T = log n, a trivial approach may repeat log n times the approach of R-M. In other
words, at the beginning it chooses the nodes which are not marked as jump candidates.
Then if there are not any, it chooses nodes which are marked at most once. This process
continues, till all nodes are marked T times. Unfortunately, one can construct a sequence
of node marking, which requires in expectationΩ(log2 n) iterations. An example of such

62 A S

Regular chunks’ length: K = 2 ·
√

D/ log n

Choosing a jump candidate v∗ inside epoch:
vi is chosen with probability 2−Mi∑

k∈[n] 2−Mk

Figure 3.11: E properties

a construction is an epoch consisting of n · log n chunks; in each chunk exactly one node
is marked. The sequence of marked nodes is equal to (v1, v2, . . . , vn−1, vn), repeated log n
times.

Why did this concept fail to get the number of iterations below Ω(log2 n)? If there
are only a few nodes with a certain number of marks, then this approach concentrates
too much on these nodes. Hence, for reducing the number of rounds to o(log2 n), we
have to resort to assigning different probabilities to different jump candidates, so that
the nodes with low number of marks are preferred, but nodes with high number of
marks are also taken into consideration. In particular, we consider an algorithm called
Exponential Balancing Marking (E), which chooses a node vi for a jump candidate
with a probability inversely proportional to 2Mi , where Mi is the number of marks vi has.

The marking-based algorithm E is formally described on Figure 3.11. We introduce
an additional notation for the marking scheme. If S is any subsequence, then by Mi(S)
and M′

i(S) we denote the number of marks vi has before S and after S, respectively.
We also define ∆Mi(S) = M′

i(S) −Mi(S). It appears that we can reasonably bound the
number of E’s jumps within one epoch.

Lemma 3.31. The expected number of E phases in one epoch (also unfinished one) isO(log n).
The expectation is taken over all random choices made by E.

Proof. The lemma follows trivially for run-up epochs.
For regular epochs, we define a value of a node after any chunk I as n · 2−M′i (I). The total

value after I is defined as the sum of nodes’ values, i.e.,WI :=
∑

i∈[n] n · 2−M′i (I). We make
two key observations. First, WI is monotonically non-increasing within E. Second,
WI ≤ n2 for any chunk I ∈ E, andWIm−1 ≥ 1 (because, as mentioned earlier, after Im−1

there is at least one node having less than log n marks). We show that, with probability
at least 1/2, one iteration reduces the total value by a constant factor or ends the whole
epoch. We call such an iteration successful.

After I, the choice of the jump candidate v∗ determines where the next phase ends:
either at the end of the first marking chunk for v∗, or at the end of Im, if v∗ is not marked
in the remaining part of E. This chunk we call stopping for v∗. We sort the nodes in the
order induced by their stopping chunks, obtaining a sorted sequence vi1 , vi2 , . . . , vin . Let

3.2.2 R    63

pi1 , pi2 , . . . , pin be the probabilities of choosing these nodes as jump candidates. Let j be
the smallest index for which

∑ j
k=1 pik ≥ 1/2, and I′ be the stopping chunk for vi j . Since

j is the smallest index with this property, it follows immediately that, with probability∑n
k= j pik ≥ 1/2, E chooses one of vi j , vi j+1 , . . . , vin for a jump candidate. Any such choice

guarantees that the phase lasts at least to the end of I′. If I′ = Im then this iteration
ends epoch E, and the proof follows. Otherwise, note that between the end of I and
the end of I′, nodes vi1 , vi2 , . . . , vi j are marked at least once. Since probabilities pik are
directly proportional to the corresponding values of nodes and

∑ j
k=1 pik ≥ 1/2, these

nodes’ values constituted at least one half of the total valueWI. By marking them once,
one half of their values (and thus at least 1/4 of the total value) was removed. Thus,
WI′ ≤

3
4 ·WI.

We need at most log4/3 n2 successful iterations to end the epoch or reduce the total
value from n2 to 1. Therefore, in expectation at most 2 · log4/3 n2 = O(log n) iterations
suffice to either finish the epoch, or to end after the chunk Im−1. In the latter case we have
at most one additional phase containing only chunk Im. Since the number of phases is
equal to the number of iterations plus one, the lemma follows. Clearly, for an unfinished
epoch the same bound holds.

Analysis of EBM phase

Since E is a marking-based algorithm, the scheme of choosing jump candidates is co-
herent with the gravity center based approach in the sense guaranteed by Corollary 3.18
In particular, it implies the following.

Corollary 3.32. For any chunk I and a node vi, vi belongs to the (∆Mi(I) + 1)-JumpSet at the
end of I.

We note that Emay choose nodes that already have log n or more marks. Thus, we
cannot bound the cost of transporting the page in the worst case, as we did for bounding
the CB

MARK or CB
R−MARK. Instead, we show that even if sometimes Emoves to the nodes

which are far away from the gravity centers, it moves there only occasionally.
Similarly to the proof of competitiveness of M or R-M, we divide the cost in

any phase P, consisting of ` chunks (I1, I2, . . . , I`), into three parts.

1. The amortized cost of serving all requests in P and moving to GI` . We denote this
cost by CA

EBM(P).

2. The amortized cost of moving from GI` to the boundary of the 1-JumpSet. We
denote this cost by CB

EBM(P).

3. The amortized cost of moving from the boundary of the 1-JumpSet to a randomly
chosen jump candidate v∗. We denote this cost by CC

EBM(P).

64 A S

transport of CA
EBM(P)

transport of CB
EBM(P)

transport of CC
EBM(P)

J1

J2

J3 Jk Jk+1

a node

GI`

Figure 3.12: Transports at the end of phase P = (I1, . . . , I`)

Note that for the last phase in a finished epoch, parts CB
EBM(P) and CC

EBM(P) do not exist,
as in that case E moves only to the gravity center. This conceptually divides the
movement of the page to the jump candidate v∗ into three parts, called transports. These
transports are schematically depicted in Figure 3.12.

For each epoch E consisting of p phases, we separately bound the expected values of
these three parts. We define the same potential function Φ as for M and R-M.
The bound on CA

EBM follows directly from the Phase Lemma.

Corollary 3.33. For any finished phase P, it holds that

CA
EBM(P) ≤ O(D/K) · COPT(P) + O(D · K) .

On the other hand, since CB
EBM describes a transport within the first jump set, the bound

for this part is identical as the analogous bound on M presented by Lemma 3.21.

Corollary 3.34. For any phase P, it holds that

CB
EBM(P) ≤ O(D · K) .

We note that in the two corollaries above we bound the random variables CA
EBM(P),

CB
EBM(P) in the worst case, not only their expected values. On the other hand, we cannot

hope for a reasonable worst case bound on CC
EBM(P), as E may jump very far away

from the gravity center. Moreover, even if we bound the expected value of CC
EBM(P) for

any single phase P, we may not combine it with the logarithmic bound on the expected
number of phases in one epoch, as both bounds hold only on expectation and may
depend on each other.

Therefore, we strive for constructing a bound for E[CC
EBM(P)] that depends on the

number of marks at the beginning and at the end of phase P. We show how, for any
epoch E, this yields a bound on E[CC

EBM(E)] independently of the number of phases
epoch E consists of.

3.2.2 R    65

Lemma 3.35. For any phase P, it holds that

E[CC
EBM(P)] ≤ 21 ·D · K · log

∑i∈[n] 2−Mi(P)∑
i∈[n] 2−M′i (P)

 .
Proof. We denote the last chunk of P by I`. By Corollary 3.32, at the end of I`, each node
vi lies inside (∆Mi(I`) + 1)-JumpSet, and thus inside (∆Mi(P) + 1)-JumpSet. Intuitively,
the marking system is coherent with the approach of choosing nodes close to the gravity
centers — if a node is far away from the gravity center, it has many marks and the
probability that Emoves to such node is exponentially small.

Formally, if we transport the page to vi, the CC
EBM(P) part of the cost reflects only the

cost of moving the page from the boundary of 1-JumpSet to a node within (∆Mi(P)+ 1)-
JumpSet, i.e., the cost at most D·(7·K ·∆Mi(P)). We do not consider the constant overhead
for the communication, since it was already taken into account in the CB

EBM(P) part of
the cost. As the corresponding change in the potential is at most twice this cost, the
amortized cost of such a movement is at most 21 · K · D · ∆Mi(P). Thus, the expected
amortized cost of moving the page to v∗ (taken over all possible random choices of v∗) is

E[CC
EBM(P)] ≤

∑
i∈[n]

2−M′i (P)∑
k∈[n] 2−M′k(P)

· ∆Mi(P) · 21 ·D · K .

To bound this, we use the following technical claim, which follows from the Jensen’s
Inequality [HLP88] (see Appendix A.2), and is proven at the end of this chapter.

Claim 3.36. Fix any sequences {ai}
n
i=1, {bi}

n
i=1, such that 1 ≤ ai ≤ bi for all i. Then∑

i 2−bi · (bi − ai)∑
i 2−bi

≤ log
∑

i 2−ai∑
i 2−bi

.

By applying the claim with bi =M′

i(P) and ai =Mi(P), we immediately get the lemma.

Lemma 3.37. For any epoch E = (P1,P2 . . .Pp), it holds that

E

∑
P j∈E

CC
EBM(P j)

 = O(D · K · log n) .

Proof. Note that CC
EBM(Pp) = 0. Thus, it is sufficient to prove that

∑p−1
j=1 E[CC

EBM(P j)] =
O(K ·D · log n). Utilizing Lemma 3.35,∑p−1

j=1 E[CC
EBM(P j)]

21 · K ·D
≤ log

 p−1∏
j=1

∑
i∈[n] 2−Mi(P j)∑
i∈[n] 2−M′i (P j)


= log

 ∑
i∈[n] 2−Mi(P1)∑

i∈[n] 2−M′i (Pp−1)

 .

66 A S

Since Mi(P1) = 0 for all i, the numerator in the last term above is equal to n. There exists
a node vi, which has less that log n marks at the end of Pp−1, otherwise epoch E would
be finished earlier. Thus, the corresponding denominator is at least 1/n, and we get

p−1∑
j=1

E[CC
EBM(P j)] ≤ 21 ·D · K · log

n
1/n
= O(D · K · log n) .

This finishes the proof.

Competitiveness of EBM

Finally, we combine the lemmas above to obtain the following bound on the amortized
cost in any epoch.

Lemma 3.38. For a finished epoch E, it holds that

E[CEBM(E) + ∆Φ(E)] ≤ O(D/K) · COPT(E) + O(D · K · log n) .

Proof. Any finished run-up epoch consist only of one phase P, and cost of E in P
consists only of CA

EBM(P) part, as the algorithm moves to the gravity center at the end
of P. Thus, by Lemma 3.33, we get CEBM(E) ≤ O(D/K) · COPT(E) + O(D · K).

For a finished regular epoch E, let E consists of p phases, (P1,P2, . . . ,Pp). We have

E[CEBM(E) + ∆Φ(E)] = E

 p∑
j=1

(
CEBM(P j) + ∆Φ(P j)

)
≤ E

 p∑
j=1

(
CA

EBM(P j) + CB
EBM(P j)

) + E

 p∑
j=1

CC
EBM(P j)

 .
Applying Lemma 3.33, Lemma 3.34, and Lemma 3.37, we get

E[CEBM(E) + ∆Φ(E)] ≤ E

 p∑
j=1

(
O(D/K) · COPT(P j) + O(D · K)

) + O(D · K · log n)

≤ O(D/K) · COPT(E) + E
[
p · O(D · K)

]
+ O(D · K · log n) .

Note that by Lemma 3.31 the expected number of phases isO(log n), and the termO(D·K)
occurring in the expected value is a constant (not a random variable). Hence, we finally
get a bound

E[CEBM(E) + ∆Φ(E)] ≤ O(D/K) · COPT(E) + O(D · K · log n) .

This finishes the proof for the regular epochs.

3.2.2 R    67

Lemma 3.39. For an unfinished epoch E, if ΦB is the potential at the beginning of E, then

E[CEBM(E) −ΦB] ≤ O(D/K) · COPT(E) + O(D · K · log n) .

Proof. For any unfinished run-up epoch, we may apply the Auxiliary Phase Lemma to
its only (unfinished) phase to get CEBM(E) ≤ O(D/K) · COPT(E) + O(D · K).

For an unfinished regular epoch E, let E consist of p+1 phases (P1,P2, . . . ,Pp+1), where
the last one is unfinished (Pp+1 might be also empty). Let ΦB(p) be the potential at the
beginning of Pp+1. Then,

E[CEBM(E) −ΦB] = E

 p∑
j=1

(
CEBM(P j) + ∆Φ(P j)

) + E

CEBM(Pp+1) −ΦB(p)


The first summand can be bounded exactly as in the previous lemma, as the bound
on p holds also for unfinished phases. The second summand may be bounded again
by the Auxiliary Phase Lemma, by O(D/K) · COPT(Pp+1) + O(D · K). Hence, in total,
E[CEBM(E) −ΦB] ≤ O(D/K) · COPT(E) + O(D · K · log n)

By combining the two lemmas above we get the proof of E competitiveness.

Theorem 3.40. The algorithm E isO(
√

D · log n)-competitive against an oblivious adversary
in the adversarial model of the DPM.

Proof. Consider any input I consisting of m + 1 epochs (E0,E1, . . . ,Em) (the last one is
possibly unfinished). Summing the amortized cost over all epochs, by Lemma 3.38 and
Lemma 3.39,

E[CEBM(I)] ≤ O(D/K) · COPT(I) + (m + 1) · O(D · K · log n) .

By Lemma 3.23, either COPT(I) = CEBM(I), in which case competitiveness follows triv-
ially, or COPT(I) = Ω((m + 1) ·D). In the latter case,

E[CEBM(I)] ≤ O(D/K + K · log n) · COPT(I)

= O
(√

D · log n
)
· COPT(I) .

Thus, E is O(
√

D · log n)-competitive.

Combining EBM with other algorithms

It is again possible to combine Ewith J and D-M. Since the proofs we presented
in Lemma 3.25 and Lemma 3.26 work for any marking-based algorithm, we get the
following corollary.

Corollary 3.41. There exists a randomized strategy, which upon knowing n and D (or at least
their constant approximations), is O(min{

√
D · log n,D, λ})-competitive against an oblivious

adversary in the adversarial scenario of the DPM.

68 A S

3.2.3 Proofs of Phase Lemmas

In this section we prove Lemma 3.20 (the Phase Lemma) and Lemma 3.22 (the Auxiliary
Phase Lemma). Let MB be any marking-based algorithm working in chunks of length
K. Let P be any (finished or unfinished) phase of MB. We assume that P consists of
` intervals I1, I2, . . . , I`. Let vP denote the node in which algorithm MB has its page in
whole phase P. We assume that at the end of P, MB moves to GI` . We note that vP is
marked not earlier than in I`, although if P is the last phase, it might be not marked at
all within P.

We divide the cost of MB in P into two parts: the cost incurred by (I1, I2, . . . , I`−1) and
the cost incurred by I`. If P is a finished phase, then the latter is not only the cost of
serving requests, but includes the cost of movement to GI` . On the other hand, if P is
an unfinished phase, then I` possibly has less then K time steps.

A bound for all chunks but the last one

Lemma 3.42. Let P be any phase consisting of ` chunks (I1, I2, . . . , I`) and let P′ be the first `− 1
chunks of P. Then

CMB(P′) + ∆Φ(P′) ≤ O(D/K) · COPT(P′) + O(D · K) .

Proof. First, we note that the cost of serving requests within P′, CMB(P′) = AP(P′) <
1
4 ·K

2 = O(D ·K), because otherwise vP would be marked within P′, and the phase would
last shorter. Thus, it remains to bound the change in potential, ∆Φ(P′).

Let s = |P′|; we number the time steps within P′ from 1 to s. Intuitively, since the cost
of serving requests is small, we know that the total sum of distances between vP and
requests is even smaller, i.e.,

∑s
t=1 dt(vP, σt) ≤ 1

4 ·K
2. We call a request close, if it was issued

at the distance at most K/2 from vP. Otherwise, we call a request far. Clearly, at most
K/2 requests from P′ are far.

We denote the distance between vP and POPT, the node holding O’s page in step t,
by Lt. The intuition behind the proof is described below. If the potential at the end of P′

is large, then O’s page is far away from MB’s page. We show that even considering the
possible adversarial changes of the network topology and possible movements of O’s
page, there are sufficiently many steps t in which the distance Lt ≥ K. In such steps the
close requests are at the distance of at least K − K/2 = K/2 from POPT, and they incur
a high cost on the optimal offline algorithm. Therefore, we can amortize the change in
the potential against the increase of O’s cost.

3.2.3 P  P L 69

Formally, the distance between M’s and O’s pages can increase only due to the
adversarial changes to the network, in which case Lt+1 − Lt ≤ 1 or due to the jump of
O. Let J denote the total distance across which the optimal offline algorithm moved4

within P′. Then in any k steps of P′ the increase in the distance between the node holding
O’s page and vP is at most k + J. This observation we call a bounded change condition.

Consider Ls, the distance between vP and POPT at the end of P′. We can derive two
bounds on∆Φ(P′). ∆Φ(P′) ≤ f ·D ·Ls, since the increase in the potential is at most its final
value, and ∆Φ(P′) ≤ f · D · (s + J), which follows from the bounded change condition.
Therefore, if Ls is small, i.e., Ls ≤ J + 3

2 · K, then we immediately get

∆Φ(P′) ≤ f ·D · Ls

≤ f ·D · J +
3
2
·D · K

≤ O(1) · COPT(P′) + O(D · K) .

Otherwise, Ls ≥ J + 3
2 · K, and we consider two cases.

1. J + K ≤ Ls ≤ s + J + K.

Consider any of the last Ls − J − K steps of P′, and denote it by t0. It follows from
the bounded change condition that the increase in the potential between step t0

and step s is at most (s − t0) + J ≤ (Ls − J − K) + J = Ls − K. Thus, Lt0 ≥ K.

2. Ls ≥ s + J + K.

In the same way we can prove that for each step t0 in P′, Lt0 ≥ K.

In either case there are at least min{s, Ls − J − K} steps in which Lt ≥ K. At most
K/2 of these steps contain a far requests, and thus at least min{s, Ls − J − K} − K/2 ≥
min{s + J + K, Ls} − J − 3

2 · K ≥ 0 of these steps contain a close request. Since in each
such step (with a close request) the distance between vP and POPT is at least K, and the
distance between vP and the requesting node is at most K/2, it follows from the triangle
inequality that the distance between POPT and the request is at least K/2. Therefore,
summing over all such steps we get

COPT(P′) ≥
K
2
·

(
min {s + J + K,Ls} − J −

3
2
· K

)
.

4 We count here only the jumps of the algorithm, not movements incurred by the adversarial changes in
the network.

70 A S

Thus,

∆Φ(P′) ≤ f ·D ·min {s + J,Ls}

≤ f ·D ·min {s + J + K,Ls}

= f ·D ·
(
min {s + J + K,Ls} − J −

3
2
· K

)
+ f ·D · J +

3
2
· f ·D · K

= O(D/K) · COPT(P′) + O(1) · COPT(P′) + O(D · K) .

Finally, we get that CMB(P′) + ∆Φ(P′) = O(D/K) · COPT(P′) + O(D · K).

A bound for the last chunk

The remaining part of this subsection, concerning bounding the cost in I`, is inspired
by the proof of 7-competitiveness of M-T-M algorithm [ABF93a]. However, in
our proof the chunk lengths are shorter than D, and additionally we have to take into
account the movement of the nodes, which makes the proof more entangled.

Before we bound the amortized cost of MB in I`, we construct a lower bound on O’s
cost in this chunk. Let K0 be the length of I`. As D ≥ 4, K0 ≤ K ≤ 2 ·

√
D ≤ D. We number

all time steps within I` from 1 to K0.
By at−1 and at we denote the position of O, respectively at the beginning and at the

end of the t-th step. In particular a0 = POPT(0) and aK0 = P′OPT(K0). In step t ∈ [1, . . . ,K0],
O pays ct(at−1, σt) for serving a request and D · ct(at−1, at) for moving the page. Thus,

COPT(I`) =
K0∑
t=1

[ct(at−1, σt) +D · ct(at−1, at)] . (3.15)

An example of O’s behavior in several steps is given in Figure 3.13.

Lemma 3.43. For the chunk I` of length K0 ≤ D and any time step T ∈ [1, . . . ,K0], it holds that

COPT(I`) + O(K2
0) ≥

K0∑
t=1

dt(aT, σt) .

Before we prove the lemma above, note that if we replace term
∑K0

t=1 dt(aT, σt) by∑K0
t=1 ct(aT, σt) (in fact these terms differ by at most K0) and we neglect the constant O(K2

0),
we can infer that by remaining at one node ai throughout the whole chunk, O could
lower its cost in a single chunk. This may even lead to a false conclusion: “Why does
not O remain at one node, if this incurs a lower cost?”. But O has to serve the whole
input sequence optimally, not just minimize its cost in a single chunk. In particular, if
the sets of the requesting nodes in two consecutive chunks are disjoint, and O remains
at one requesting node in both chunks, then between the chunks it would have to move.

3.2.3 P  P L 71

p0(a0)
p1(a0)

p1(a1)
p2(a1) = p2(a2) (a1 ≡ a2)
p3(a2) = p3(a3) (a2 ≡ a3)
p4(a3)

p4(a4)
p5(a4)

p5(a5)

p1(σ1)

p2(σ2)

p3(σ3), p4(σ4)

p5(σ5)

Jumps of O

Areas where a node can be
moved by an adversary

Figure 3.13: Illustration of O’s cost

Proof of Lemma 3.43. It follows from the triangle inequality that

K0∑
t=1

dt(aT, σt) ≤
K0∑
t=1

dt(at−1, σt) +
K0∑
t=1

dt(aT, at−1) . (3.16)

The first summand of (3.16) is at most
∑K0

t=1 ct(at−1, σt), the term which appears in (3.15),
the definition of O’s cost for serving requests in I`. Thus, we can concentrate on the
second summand. Assume that we could prove that for any step t ∈ [1, . . . ,K0] and any
0 ≤ i ≤ j ≤ T it holds that

dt(ai, a j) ≤
K0∑

k=1

dk(ak−1, ak) + O(K0) . (3.17)

Then it would follow from (3.16) that

K0∑
t=1

dt(aT, σt) ≤
K0∑
t=1

dt(at−1, σt) +
K0∑
t=1

 K0∑
k=1

dk(ak−1, ak) + O(K0)


≤

K0∑
t=1

ct(at−1, σt) + K0 ·

K0∑
k=1

dk(ak−1, ak) + O(K2
0)

≤ O(I`) + O(K2
0) ,

where in the last inequality we used K0 ≤ D. Therefore, it remains to prove (3.17).

72 A S

Fix any t ∈ [1, . . . ,K0] and any 0 ≤ i ≤ j ≤ T. Then using the fact that the adversary is
1
2 -restricted we get

dt(ai, a j) = d(pt(ai), pt(a j))

≤ 2 · (K0/2) + d(pi(ai), p j(a j)) .

The situation is exemplified on Figure 3.13. Using the triangle inequality we get

dt(ai, a j) ≤ K0 +

j−1∑
k=i

d(pk(ak), pk+1(ak+1))

≤ K0 +

j−1∑
k=i

(
d(pk(ak), pk+1(ak)) + d(pk+1(ak), pk+1(ak+1))

)
≤ K0 +

j−1∑
k=i

1
2
+

j−1∑
k=i

dk+1(ak, ak+1)

≤ O(K0) +
K0−1∑
k=0

dk+1(ak, ak+1) .

This proves (3.17), and thus completes the proof of Lemma 3.43.

Now using the lower bound on O presented above, we can bound the cost of serving
the requests in the chunk, i.e., AP(I`) can be either paid from the potential at the beginning
of the chunk or amortized against the cost of the optimal algorithm.

Lemma 3.44. Let ΦB denote the cost at the beginning of the chunk I`. Then

AP(I`) −ΦB/2 ≤ COPT(I`) + O(D)

Proof. We have ΦB = f ·D · d0(vP, a0). Utilizing the triangle inequality, Lemma 3.43, and
K0 ≤ 2 ·

√
D ≤ D, we get

AP(I`) −ΦB/2 =

K0∑
t=1

ct(vP, σt) −D · d0(vP, a0)

≤

K0∑
t=1

(1 + dt(vP, a0) + dt(a0, σt)) −D · d0(vP, a0)

≤ K0 +

K0∑
t=1

(K0 + d0(vP, a0)) +
K0∑
t=1

dt(a0, σt) −D · d0(vP, a0)

≤ K0 + K2
0 +

K0∑
t=1

d0(vP, a0) +
(
COPT(I`) + O(K2

0)
)
−D · d0(vP, a0)

≤ COPT(I`) + O(D) ,

3.2.3 P  P L 73

which finishes the proof.

We can use the lemma above to prove that for finished phases the amortized cost of
MB in the last chunk is also bounded.

Lemma 3.45. If I` is a last chunk of a finished phase of MB, then

CMB(I`) + ∆Φ(I`) ≤ O(D/K) · COPT(I`) + O(D · K) .

Proof. In this proof we use the triangle inequality, and the inequality ct(x, y) ≤ 1+dt(x, y).
Since the chunk is finished, its length is equal to K. The adversary is 1

2 -restricted, and
therefore the distance between two nodes can change by at most K within I`. Let
ΦE = f · D · dK(GI` , aK) denote the potential at the end of the chunk I`, after MB jumps
to GI` . The amortized cost of MB in I` is equal to

CMB(I`) + ∆Φ(I`) = AP(I`) +D · cK(vP,GI`) + ΦE −ΦB .

By Lemma 3.44 we get

CMB(I`) + ∆Φ(I`) ≤ COPT(I`) + O(D) +D · dK(vP,GI`) +D + ΦE −ΦB/2

≤ COPT(I`) +D · dK(vP,GI`) + 2 ·D · dK(GI` , aK) −D · d0(vP, a0) + O(D)

≤ COPT(I`) +D · dK(vP,GI`) + 2 ·D · dK(GI` , aK) −D · dK(vP, a0) + O(D · K)

≤ COPT(I`) +D · dK(GI` , a0) + 2 ·D · dK(GI` , aK) + O(D · K) .

Thus, it is sufficient to prove that for any 0 ≤ T ≤ K it holds that

D · dK(aT,GI`) ≤ O(D/K) · COPT(I`) + O(D · K) . (3.18)

To prove the inequality above, note that by the triangle inequality we have

D · dK(aT,GI`) ≤
D
K
·

K∑
t=1

(
dK(aT, σt) + dK(σt,GI`)

)
.

Since GI` is a gravity center of I`,
∑K

t=1 dK(GI` , σt) ≤
∑K

t=1 dK(aT, σt), and thus

D · dK(aT,GI`) ≤ 2 ·
D
K
·

K∑
t=1

dK(aT, σt)

≤ 2 ·
D
K
·

K∑
t=1

(K + dt(aT, σt)) .

By Lemma 3.43, we finally get

D · dK(aT,GI`) ≤ O(D/K) · COPT(I`) + O(D · K) ,

which proves (3.18), and finishes the proof.

74 A S

Phase Lemmas

The proofs of phase lemmas are straightforward consequences of the lemmas above.

Proof of Lemma 3.20 (Crucial Phase Lemma). We want to bound amortized MB’s cost
in a finished phase P = (I1, . . . , I`). By Lemma 3.42,

CMB((I1, . . . , I`−1)) + ∆Φ((I1, . . . , I`−1)) ≤ O(D/K) · COPT((I1, . . . , I`−1)) + O(D · K) ,

and by Lemma 3.45,

CMB(I`) + ∆Φ(I`) ≤ O(D/K) · COPT(I`) + O(D · K) .

Summing up these inequalities, we get the proof of the Crucial Phase Lemma.

Proof of Lemma 3.22 (Auxiliary Phase Lemma). We want to bound amortized MB’s
cost in an unfinished phase P = (I1, . . . , I`). By ΦB and ΦB(I), we denote the potential
at the beginning of P and at the beginning of I`, respectively. By Lemma 3.42,

CMB((I1, . . . , I`−1)) + ∆Φ((I1, . . . , I`−1)) ≤ O(D/K) · COPT((I1, . . . , I`−1)) + O(D · K) ,

and by Lemma 3.44

CMB(I`) −ΦB(I) ≤ COPT(I`) + O(D) .

Summing up these inequalities, we get

CMB(P) −ΦB ≤ COPT(P) + O(D · K) .

3.3 Lower bounds

In this section we prove a matching lower bound of Ω(min{n ·
√

D,D, λ}) for any ran-
domized algorithm against an adaptive-online adversary. This implies optimality of the
randomized memoryless strategy against an adaptive-online adversary and the opti-
mality of the deterministic strategy presented in this chapter. For oblivious adversaries,
we prove a lower bound of Ω(min{

√
D · log n,D2/3, λ}), which is up to a constant factor

tight for D ≥ log3 n.

3.3.1 L   -  75

3.3.1 Lower bound against adaptive-online adversary

Let λ be the maximum possible extent of the network. In this subsection we prove the
following theorem.

Theorem 3.46. Consider any randomized, c-competitive algorithm for the adversarial scenario of
the DPM problem playing against an adaptive-online adversary. Then c = Ω(min{n·

√
D,D, λ}).

We assume that D ≥ 16, otherwise the theorem trivially holds. We may also safely
assume that

√
D is an integer, otherwise we could use b

√
Dc instead and lose only

a constant factor in the analysis. Furthermore, we assume that n ≥ 3 and λ ≥
√

D. For
the case where n = 2 orλ <

√
D we can use Theorem 2.9 concerning oblivious adversaries

(see Section 2.3.2 on page 25), since an Ω(min{
√

D, λ}) lower bound guaranteed by this
theorem holds also in our stronger, adaptive case.

Let R = 1
14 ·min{n ·

√
D,D, λ}. Under the assumptions above, it is sufficient to show

that for any randomized algorithm A, and for any `, there exists an adaptive-online
adversary A, which adaptively creates an input sequence I of length at least `, such
that

E[CALG(I) − R · CADV(I)] ≥ 0 , (3.19)

where CADV is the cost of the answering part of adversary A. We also show that such
a sequence incurs a cost of at least Ω(` ·D) on A.

The core of this proof is to show that there exists a class A` of adaptive-online ad-
versaries, such that for any online deterministic algorithm D, most of the adversaries
from this class incur a high competitive ratio on D. Then we use a standard argument
to show (non-constructively) that for any online randomized algorithm A, there exists
an adaptive-online adversary which incurs a high competitive ratio on A.

Construction of class A`

Before we precisely define classA`, we try to give an informal description of a reasonable
adaptive adversary for the DPM problem.

The adversary will follow the general construction of the proof of Theorem 2.9, i.e., it
will try to move PALG, the node holding algorithm’s page, away from the requests. Since
the adversary is adaptive, it knows exactly which node to move away from the others.
The other nodes will be grouped in the same place, and the requests will be given at an
arbitrary node from this group. Again, since the adversary is adaptive, it does not have
to stop the expanding part (the one, in which PALG is moved apart) at some fixed point
of the time, but it may continue to increase this distance, till PALG moves to any other
node. After the jump, nodes are contracted and a new phase (consisting of expanding
and contracting part) begins. For this informal description we assume that λ = ∞.

76 A S

Once again we explore the paradigm of O catching game. Even if the positions of the
A’s page are determined afterwards, it has to reside at some node. Thus, if A tries to
jump, consecutively, to all the nodes, then at some point it catches A. Then A has to
either move to another node, or its page will be moved apart, together with PALG, from
the requests. If the adversary is adaptive-offline, it may decide afterwards, which one
of these two options costs less. This would extremely simplify the analysis. However,
since we are primarily interested in developing a lower bound against an adaptive-online
adversary, we have to resort to an attempt to fool the algorithm.

Assume that the adversary moves its page at the beginning to a random position.
(In the formal proof, we get rid of the randomization and replace it by the average
argument). Assume that a randomized algorithm Amoves at some point to the node
holding A page. Note that this occurs, in expectation, after n/2 jumps. If Amoves
immediately to another node, then a simple algorithm A, which moves in each step
to another node, might incur one jump of A for each n steps, trivially achieving
competitive ratio of O(n). On the other hand, if A waits in this node till A moves
its page, then the expanding part may last for D steps. The costs of both A and A
in this phase are Θ(D2) then, and again such an event occurs once for n phases.

To balance these two heuristics, if PALG ≡ PADV at the beginning of a phase, Amay
allow the expanding part to last

√
D steps. If A jumps after X <

√
D steps, then A

does nothing, as the cost incurred on it is Θ(X2), and the A’s cost in this phase is
Ω(D · X). If A does not move after

√
D steps, then A initiates the contracting part

itself, and after this phase it jumps to a randomly chosen node. Note that in this case
A may also explicitly “tell” the algorithm, “Yes, you have just caught me”. There
are two corollaries. First, if A wants to force A to move, it has to wait at least

√
D

steps in the expanding part, before moving the page. Then the cost incurred on A is
at least D ·

√
D. Second, the event of catching A happens in expectation once for n/2

steps. Thus, the A′s cost between its two jumps is approximately O(D), and the cost
of A is in expectation Ω(n · D ·

√
D), which yields a lower bound of Ω(n ·

√
D) on the

competitive ratio. These intuitions are formalized below.

The class A` is constructed as follows. It consists of n` adversaries, each identified
by a finite sequence r, consisting of ` integers from the set [n], i.e., r = (r1, r2, . . . , r`) and
ri ∈ [n]. We define an adaptive-online adversary Ar as follows. At the beginning all
nodes are in the same point of X, and the page of the adversary, as well as the page
of the algorithm, is at the node v1. In the first step the adversary issues a request in v1

and moves to vr0 . Next steps are divided into phases. Each phase consists of two parts:
an expanding part and a contracting part.

Let PALG and PADVr be the nodes at which the algorithm and the adversary, respectively,
have their pages. During the whole request sequence, the requests are issued at v1, unless

3.3.1 L   -  77

expanding part contracting part

position of A’s page

t

Rt

λ

Kt

Xt

va

vb

Figure 3.14: k-th (long) phase

PALG ≡ v1, in which case the request are issued at v2.
In each step of the expanding part the adversary increases the distance between

PALG and the rest of the nodes, i.e., in the t-th step of the expanding part we have
d(PALG, vi) = min{t − 1, λ} for any vertex vi . PALG. The distances between any other
pairs of nodes remain equal to 0.

If PALG . PADVr at the beginning of the phase, then the expanding part continues till
the algorithm decides to move its page to a new vertex, say from va to vb.5 Let Xk be
the duration of the expanding part in the k-th phase. Then Kk := min{Xk − 1, λ} is the
distance to which algorithm’s page at the node va was moved away from the rest of the
nodes. Then a contracting part comes, in which the node va is moved closer to the other
nodes. Formally, the contracting part of phase k takes Kk + 1 time steps and in the t-th
time step of this part dt(va, vi) = Kk− t+1, for all vi . va. The distances between any other
pairs of nodes remain equal to 0. Illustration of such a phase is given in Figure 3.14,
where Rt denotes the distance between va and the rest of the nodes. Note that in terms
of the notation from the proof of Theorem 2.9, the expanding part contain these time
steps, which we previously called the expanding and the main part.

However, if at the beginning of the phase PALG ≡ PADVr then the expanding part
lasts at most

√
D steps. If the algorithm did not move its page in

√
D steps, then the

adversary starts the contracting part by itself. If it happens, the algorithm can be sure
that the adversary is at the same node as the algorithm, and we say that the algorithm has
detected the adversary’s position. In either case, the contracting part takes the same number
of time steps as the expanding part did. After the contracting part, if the adversary’s
position has been detected, the adversary moves its page to the next place from the
sequence r.

Additionally we call a phase long, if its expanding part is at least
√

D, and short
otherwise. The adversary maintains a counter of the long phases since it has moved its
page last time, and if this counter exceeds bn/2c, the adversary moves its page, in the last

5 Note that if the algorithm never jumps, the expanding part would last forever. After some point of time
the algorithm would pay at least λ + 1 for step, while the adversary cost would still be 1. This would
immediately result in CALG ≥ Ω(λ) · CADVr .

78 A S

step of the bn/2c-th long phase, to the next place from the sequence r. This additional
ending condition will simplify the analysis later.

Moving a page by the adversary at the end of some phases partitions the sequence of
phases into epochs. Formally, an epoch begins with a jump of A and contains all the
phases till the next jump of A. Therefore, in epoch i the position of the adversary is
fixed and equal to ri.6 The game between the adversary Ar and the algorithm ends
after ` epochs, i.e., after a phase after which the adversary would normally move its
page to the next position from the sequence r, but it has already used all elements of r.

Note, that for a given r the behavior of the adversary Ar is completely deterministic
and depends only on the behavior of the algorithm A.

It is possible to prove that if we choose r uniformly at random (e.g., by choosing each
element of r sequence uniformly at random from the set [n]), then for any deterministic
algorithm A, the expected cost of the adversary is smaller by a factor of R than the
cost of this algorithm.

Lemma 3.47. Let ` be any positive integer. Fix any deterministic algorithm D. If we choose
r uniformly at random from [n]`, then

Er[CDET − R · CADVr] ≥ 0 ,

where Ar are the adversaries from the classA`. The expected value is taken over the possible
choices of r.

Before we prove this lemma, we argue how the lower bound for any randomized
algorithm follows from it.

Proof of Theorem 3.46. Let A be any but fixed online randomized algorithm. Since
we do not impose any memory restrictions on A, A is equivalent to some probability
distribution {pk}k over the set of all possible deterministic algorithms {Dk}k. See [BE98,
chapter 6] for a discussion on the equivalence of behavioral and mixed strategies of the
randomized online algorithms.

Fix any `. We construct a matrix M, with rows indexed with all possible deterministic
algorithms Dk, and columns indexed with all possible `-element sequences of integers
from the set [n], i.e., columns are elements of [n]`. We set the values in this matrix to

Mk,r := CDETk − R · CADVr . (3.20)

6 In the very first step A and the request are at v1. This incurs no cost on A. At the end of the first
step A jumps and the first epoch begins.

3.3.1 L   -  79

It follows from Lemma 3.47 that the average over each row is at least 0, i.e., for any k,∑
r

1
n` ·Mk,r ≥ 0. Thus, it is also the case for the sum over all deterministic algorithms,

weighted with pk. ∑
k

∑
r

pk ·
1
n`
·Mk,r ≥ 0 (3.21)

Then there exists a column r in which the average (weighted with pk) is non-negative.
Otherwise, if for each column r holds

∑
k pk ·Mk,r < 0, then this inequality summed over

all possible r ∈ [n]` would contradict (3.21). In other words, there exists a deterministic
adversary Ar such that Inequality 3.19 is fulfilled, i.e.,

E[CALG − R · CADVr] =
∑

k

pk ·Mk,r ≥ 0 .

The expected value is taken over all possible random choices of the algorithm.
Since we proved it for any sequence of length `, we may construct input sequences

that are arbitrarily long. Note that an algorithm may only catch Ar (and force Ar

to move to the next element from sequence r) in a long phase. In such a phase A pays
at least Ω(D) for serving the requests. Thus, we may construct a sequence which incurs
an arbitrarily high cost on A, which implies that the cost of A cannot be hidden
in a constant A occurring in the definition (1.1) of the competitive ratio. Hence, the
competitive ratio of any randomized algorithm against adaptive-online adversary is at
least R = Ω(min{n ·

√
D,D, λ}), which finishes the proof.

Proof for random adversary

Fix any deterministic algorithm D. In this part we prove that if choose a random
adversary Ar ∈ A`, then in expectation the D’s cost is high in comparison to the
Ar’s cost. This will lead to a proof of Lemma 3.47.

We consider the i-th epoch. Note that the behavior of the algorithm can depend only
on the past events, such as detecting the adversary’s position in previous epochs. In
particular, till the last phase (in which it may potentially detect the adversary’s position),
it does not depend on the adversary’s position ri in this epoch.

Assume for a while that the algorithm never detects the position of the adversary.
Then the adversary ends the epoch after the bn/2c-th long phase. We number all phases
(within the current epoch) starting from 1. Let P j be a node in which the algorithm has
its page during the expanding part of the j-th phase, and let X j be the duration of the
expanding part of phase j. Then the sequence of (P j,X j) j completely characterizes the
algorithm’s behavior in this epoch (whether it detects the adversary’s position or not),
and we call it a canonic sequence in epoch i.

80 A S

Note that the canonic sequence can be computed independently of the information,
where the adversary has its page. When this sequence is fixed, the performance of
the algorithm depends only on ri, the position of the adversary in epoch i. In fact, the
behavior of the algorithm follows the canonic sequence, either till the phase in which the
algorithm detects the position of the adversary (i.e., till the end of the first long phase j
such that P j = ri), or till the end of the whole canonic sequence if the algorithm does not
detect A’s position.

To prove Lemma 3.47, it is sufficient to show that for any epoch i, any choice of
the algorithm’s canonic sequence leads in expectation to Eri[CDET(ri)] ≥ R · Eri[CADV(ri)],
where ri is the position of the adversary’s page. By CDET(ri) and CADV(ri) we denote
the costs of the algorithm and the adversary, respectively, in the current epoch i, under
the assumption that during the epoch the adversary is in node ri. Since ri are picked
uniformly from the set [n], it is equivalent to proving∑

ri∈[n]

CDET(ri) ≥ R ·
∑
ri∈[n]

CADV(ri) . (3.22)

To prove this inequality, we introduce a couple of definitions first. We define S as the
set of indices of all short phases from the canonic sequence, and L as the set of indices
of long phases. From the definition of canonic sequence follows that |L| = bn/2c. Note
that for some choices of ri, if the canonic sequence contains a long phase with P j ≡ ri

(detection of the adversary), the epoch ends earlier and does not contain all phases from
S or L. However, there exists at least dn/2e ≥ n/2 choices of ri, such that the epoch does
contain all the phases from canonic sequence.

In the following we divide the cost
∑

ri∈[n] CDET(ri) into
∑

ri∈[n] CSDET(ri) and
∑

ri∈[n] CLDET(ri),
the cost incurred in short and long phases, respectively. We divide

∑
ri∈[n] CADV(ri) in the

same way. Moreover, the adversary moves exactly once in the epoch, and for the analysis
we assume that this cost was incurred in a long phase. In this proof by total cost we
mean the sum of costs for epoch i for all possible choices of ri, e.g., the total cost of A
is

∑
ri∈[n] CADV(ri). We now show how to relate the total costs of A and D.

Lemma 3.48. For any epoch i, and any corresponding canonic sequence (P j,X j) j of D, it holds
that ∑

ri∈[n]

CSDET(ri) ≥ R ·
∑
ri∈[n]

CSADV(ri) .

Proof. In short phases A does not move, and its cost of serving requests might be
bounded as follows. Fix any short phase j. Since λ ≥

√
D, PALG is moved away during

3.3.1 L   -  81

the whole expanding part, and thus K j = X j − 1. Therefore, the adversary pays

2 ·
K j∑

k=0

(k + 1) = X2
j + X j if ri ≡ P j ,

2 · X j if ri . P j .

Thus, the total cost in short phases is∑
ri∈[n]

CSADV(ri) ≤
∑
j∈S

(
X2

j + X j + (n − 1) · 2 · X j

)
≤

∑
j∈S

(√
D · X j + 2 · n · X j

)
,

(3.23)

where the last inequality follows from X j ≤
√

D for any short phase
Since λ ≥

√
D, the cost of moving the D’s page after a short phase j is equal to

D · (K j + 1) = D · X j. We forgive D the cost of serving requests in short phases. As
mentioned before, there are at least n/2 choices of ri, for which the epoch contains all the
phases from the canonic sequence. Thus, the total cost of D is at least∑

ri∈[n]

CSDET(ri) ≥
n
2
·

∑
j∈S

D · X j . (3.24)

Combining bounds (3.23) and (3.24), we obtain

R ·

∑
ri∈[n]

CSADV(ri) ≤ R ·
∑
j∈S

(√
D · X j + 2 · n · X j

)
≤

∑
j∈S

(n
14
·

√

D ·
√

D · X j +
n
7
·D · X j

)
≤

∑
ri∈[n]

CSDET(ri) ,

which proves the lemma.

Lemma 3.49. For any epoch i, and any corresponding canonic sequence (P j,X j) j of D, it holds
that ∑

ri∈[n]

CLDET(ri) ≥ R ·
∑
ri∈[n]

CLADV(ri) .

Proof. The easiest part is to bound the total cost of A’s movement. Since each of n
adversaries move the page exactly once, along distance 0, it incurs a total cost of n · D
Since 3 · |L| = 3 · bn/2c ≥ n, the total cost of movement is at most

∑
j∈L 3 ·D.

82 A S

On the other hand, if we fix any long phase j then the cost of serving requests in this
phase is equal to

2 ·

√
D∑

k=0

(k + 1) = D + 3
√

D + 2 < 2 ·D if ri ≡ P j ,

2 · X j if ri . P j .

The first formula follows, since A begins a contracting part after at most
√

D steps.
Therefore, the total cost of serving requests in such phases is bounded by

∑
j∈L(2 ·D+ n ·

2 · X j). Adding the cost of moving the page, we get∑
ri∈[n]

CLADV(ri) ≤
∑
j∈L

(
2 · n · X j + 5 ·D

)
. (3.25)

To bound D’s cost, we consider any long phase j. If the length of its expanding part X j

is not greater than λ, then the cost of moving the page at the end of the expanding part
is D · X j (and again we forgive D the cost of serving requests). Otherwise, the cost of
serving requests in the expanding part is

∑λ
k=0(k+1)+(X j−λ−1)·(λ+1) ≥ X j·λ−λ

2

2 ≥
1
2 ·λ·X j,

and the cost of moving the page afterwards is (λ+ 1) ·D ≥ D ·
√

D. As mentioned above
there are dn/2e ≥ n/2 choices of ri, which cause all the long phases from the canonic
sequence to really occur.∑

ri∈[n]

CLDET(ri) ≥
n
2
·

 ∑
j∈L and X j≤λ

D · X j +
∑

j∈L and X j>λ

(1
2
· λ · X j +D ·

√

D
) . (3.26)

By combining bounds (3.25) and (3.26), we get

R ·

∑
ri∈[n]

CLADV(ri) ≤ R ·
∑

j∈L
Xj≤λ

(
2 · n · X j + 5 ·D

)
+ R ·

∑
j∈L

Xj>λ

(
2 · n · X j + 5 ·D

)
≤

∑
j∈L

Xj≤λ

(n
7
·D · X j +

5 · n
14
·D ·
√

D
)
+

∑
j∈L

Xj>λ

(n
7
· λ · X j +

5 · n
14
·D ·
√

D
)

As j ranges over long phases only, in the first summand we may bound 5·n
14 · D ·

√
D by

5·n
14 ·D · X j. Thus,

R ·

∑
ri∈[n]

CLADV(ri) ≤
∑

j∈L
Xj≤λ

n
2
·D · X j +

∑
j∈L

Xj>λ

(n
7
· λ · X j +

5 · n
14
·D ·
√

D
)

≤

∑
ri∈[n]

CLDET(ri) ,

which finishes the proof of the lemma.

3.3.2 L     83

We may combine these two lemmas to prove Lemma 3.47.

Proof of Lemma 3.47. By adding the guarantees of Lemma 3.48 and Lemma 3.49, we
get that for any epoch i, Inequality 3.22 holds, i.e.,

∑
ri∈[n] CDET(ri) ≥ R ·

∑
ri∈[n] CADV(ri). By

dividing both sides by n, we get

Eri[CDET(ri)] ≥ R · Eri[CADV(ri)] .

By summing it over all ` epochs in the input sequence and using linearity of expectation,
we get the lemma.

3.3.2 Lower bound against oblivious adversary

In this section we show that no randomized online algorithm can achieve a competitive
ratio better than Ω(min{

√
D · log n,D2/3, λ}) even against an oblivious adversary. We

present a generic scheme, based on the proof of Ω(min{
√

D, λ}) lower bound (see Theo-
rem 2.9 in Section 2.3.2). This scheme will be parameterized by four variables p, Bmain,
Bexp, and Bfix. Later, we show how to choose these variables to achieve the lower bound
of Ω(min{

√
D · log n, λ}) and a lower bound of Ω(min{D2/3, λ}), which, combined, yield

the result.
We construct a probability distribution over inputs and prove that each deterministic

algorithm (even knowing this distribution) has a high competitive ratio. Then we apply
the Yao min-max principle (see Section 2.3.2) to show that the same lower bound holds
for any randomized algorithm against an oblivious adversary.

We assume that n is a power of 2. If it is not the case, then the adversary can give
requests only in the first 2blog nc = Θ(n) nodes, placing the other nodes exactly at the same
point of space X as v1. Then, for any algorithm A that uses these additional nodes,
there exists an algorithm A′ which uses v1 instead and has a cost at most as large as
A. We may also assume that λ ≥

√
D. Otherwise, we could use the Theorem 2.9,

which would yield the lower bound of Ω(λ).
In the following we number the nodes from 0 to n − 1. Hence, we may assume that

the binary representation of each node’s number has length log n. We call this the binary
representation of a node. For all 1 ≤ i ≤ log n, let V0

i be the set of all the nodes, whose
binary representation has the i-th bit set to 0. V1

i is the set of all remaining nodes, i.e.,
the ones, whose binary representation has the i-th bit set to 1.

We divide time into epochs, each epoch containing p ≤ log n phases, each of length
Bmain + 2 ·min{Bexp, λ}. In the i-th phase we divide the set V into two sets V0

i and V1
i . In

this phase the positions of all nodes from set V0
i are the same; the same holds for nodes

from V1
i . Therefore, in step t of phase i, the distance between the sets V0

i and V1
i is well

defined and we call it Ri(t).

84 A S

V0
i

V1
i

min{Bexp, λ}

Bfix

expanding part main part contracting part

easy requests

hard requests

t

Ri(t)

√
D

Figure 3.15: Lower bound: The i-th phase of an epoch

First, we describe the movement of nodes in the i-th phase. The situation is depicted
in Figure 3.15. Each phase consists of an expanding part, which lasts for min{Bexp, λ}
steps, in which the sets V0

i and V1
i are moved apart, a main part, lasting for Bmain steps,

and a contracting part also of length Bexp, in which the sets V0
i and V1

i are brought closer.
In the t-th step of the expanding part the distance Ri is set to t − 1. In all the steps of the
main part the distance between sets V0

i and V1
i is exactly min{Bexp, λ}. Finally, in the j-th

step of the contracting part, Ri is equal to Bexp − t. Hence, the nodes’ movement is fixed
deterministically.

The first Bfix ≤
√

D requests in the expanding part of a phase are always given at v0.
The last Bfix requests in the contracting part are always given at v2i−1 . We call these
requests easy. The requests in the remaining steps of a phase are given in one node —
with probability 1/2 all are given at v0 (belonging to V0

i), and with probability 1/2 all
are given at node v2i−1 (belonging to V1

i). We call these requests hard, and we call the set,
whose node issued these requests, a requesting set. Note that the main part is a (usually
proper) subset of a sequence containing all the hard requests.

Before we continue with the analysis, we note that if we set Bexp = Bfix =
√

D, Bmain = D,
and p = 1, then we get the construction of theΩ(min{

√
D, λ}) lower bound, presented in

Section 2.3.2 on page 22.

Lemma 3.50. Fix any T. Let I be a randomly generated input sequence of T epochs, each
constructed as described above. Then for any deterministic algorithm D for the DPM problem,

EI[CDET(I)] ≥ Ω
(

min{D · Bfix, Bexp · Bmain, λ · Bmain}

Bmain + Bexp + B2
fix +D/p

)
· COPT(I) .

Proof. Consider any randomly generated p phases of epoch E.
Since p ≤ log n, there exists a node v+, which is in the requesting set for all the phases.

As its distance to hard requests in each phase is 0, the cost incurred by hard requests
on an algorithm, which remains for the whole epoch in v+, is at most 1 per request,
which sums up to p · (Bmain + 2 ·min{Bexp, λ}) = O(p · (Bmain + Bexp)) in total. The optimal

3.3.2 L     85

algorithm could move to v+ at the beginning of the epoch, paying at most D. Finally,
the cost incurred by easy requests on any algorithm is at most 2 ·

∑Bfix
j=1 j = O(B2

fix) in each
phase, which accounts for O(p · B2

fix) for all requests in epoch E. Thus,

COPT(E) = O
(
p ·

(
Bmain + Bexp + B2

fix

)
+D

)
.

On the other hand, for any i, when hard requests start in the i-th phase, any determin-
istic algorithm D has its page in the “wrong” set with probability 1/2. At this point,
and for all hard requests, Ri(t) = Bfix. Hence, if Dmoves its page to the other set within
the hard requests, it pays at least D ·Bfix. Otherwise, it has to pay min{Bexp, λ} for serving
each of Bmain hard requests in the main part of a phase. Therefore, the expected cost of
D in epoch E is

E[CDET(E)] ≥
1
2
· p ·min{D · Bfix, Bexp · Bmain, λ · Bmain} .

By summing these bounds on D’s and O’s cost over all T epochs, and using linearity
of expectation we get the lemma.

In the following we choose Bmain = Bexp = D/p and Bfix =
√

D/p. This way the
denominator of the ratio guaranteed by Lemma 3.50 is equal to Θ(D/p). Thus, by the
lemma above, for a randomly generated input I

EI[CDET(I)] ≥ Ω
(
min

{√
D · p, D/p, λ

})
· COPT(I) .

If log n ≤ 3√D, then by setting p = log n, EI[CDET(I)] = Ω(min{
√

D · log n, λ}). If log n ≥
3√D, then by setting p = 3√D, EI[CDET(I)] = Ω(min{D2/3, λ}). Thus, in either case we may

choose p, such that

EI[CDET(I)] ≥ Ω
(
min{

√
D · log n, D2/3, λ}

)
· COPT(I) . (3.27)

We may apply this inequality to prove the desired lower bound.

Theorem 3.51. Consider any randomized algorithm A which is c-competitive against an
oblivious adversary for DPM problem in a network with maximal extent λ. Then

c = Ω
(
min

{√
D · log n, D2/3, λ

})
.

Proof. The cost of O in any phase is at least Ω(min{D,Bfix}), as O has either to pay
at least 1 for half of the easy requests, or move the page in the meantime. Thus, it
is possible to create a sequence with an arbitrarily high cost of the optimal schedule.
Hence, applying the Yao min-max principle to Inequality 3.27 yields the theorem.

86 A S

Algorithm Lower bound Upper bound

Deterministic Ω
(
min

{
n ·
√

D,D, λ
})

O

(
min

{
n ·
√

D,D, λ
})

Randomized against
Ω

(
min

{
n ·
√

D,D, λ
})

O

(
min

{
n ·
√

D,D, λ
})

adaptive-online adversary
Randomized against

Ω
(
min

{√
D · log n,D2/3, λ

})
O

(
min

{√
D · log n,D, λ

})
oblivious adversary

Table 3.1: Competitive ratios in the adversarial scenario

3.4 Concluding remarks

The results of this chapter, dedicated to the adversarial scenario of the DPM problem,
are gathered in Table 3.1. We note that both for deterministic case as well as for the case
of adaptive adversaries, we created strategies which are up to a constant factor optimal
(in terms of competitive ratios).

An interesting task would be to close the gap for randomized algorithms playing
against oblivious adversaries. The following argument might seem vague, but it tries
to explain why it is unlikely for a lower bound to be easily improved. Assume that n is
very large, i.e., log n = ω(3√D) and we still want to get a lower bound ofΩ(

√
D · log n). If

we use the same construction as in the proof of Theorem 3.51, we have to set Bexp to at
least Ω(

√
D · log n), i.e., use distances of order

√
D · log n = ω(D2/3). Otherwise, a trivial

O(λ)-competitive algorithm would be O(
√

D · log n)-competitive.
On the other hand, to balance (for the optimal algorithm) the cost of moving the page

with the cost of serving requests, the length of an epoch should be Θ(D), as O has to
pay at least 1 for each request. Formally, in each time step, O does not have to pay 1,
but all the Ai counters but one increase by at least 1. Even if O chooses to remain at
the only node for which Ai counter is low, the algorithm might quickly detect it and
catch O.

This reasoning leaves the adversary only o(3√D) = o(log n) phases to use. Therefore,
we suppose that for a large n, the adversary simply does not have enough time steps to
really use all the nodes to deceive the algorithm. On the other hand, in the construction
or the analysis of the algorithms presented in this chapter, we have not exploited the
fact, that O pays 1 for most of the steps. Thus, we conjecture the following.

Conjecture 3.52. There exists a randomized algorithm, which achieves a competitive ratio of
O(D2/3) against an oblivious adversary in the adversarial scenario of the DPM. Moreover, it
is possible to combine this algorithm with E and D-M, getting an asymptotically optimal
O(min{

√
D · log n,D2/3, λ})-competitive strategy.

3.5 P    87

3.5 Proofs of technical claims

Proof of Claim 3.30. From the definition of Tk we have

Tk = 1 +
k−1∑
i=0

1
k
· Ti .

Adding
∑k−1

i=0 Ti to both sides,

k∑
i=1

Ti = 1 +
k−1∑
i=0

k + 1
k
· Ti .

By dividing both sides by k + 1, we get

1
k + 1

·

k∑
i=1

Ti =
1

k + 1
+

1
k
·

k−1∑
i=0

Ti .

Again applying the definitions of Tk and Tk+1 to both sides, respectively, we get

Tk+1 − 1 =
1

k + 1
+ Tk − 1 ,

which directly implies the lemma.

Proof of Claim 3.36. Let f (x) := x · log 1
x . It is easy to check that f is continuous and

concave up for all x > 0. Therefore, we can apply Jensen’s Inequality [HLP88] (see
Appendix A.2) to get

f

∑
i

pi · xi

 ≥∑
i

pi · f (xi) ,

for any xi > 0 and for 0 ≤ pi ≤ 1, such that
∑

i pi = 1. Let pi = 2−ai/
∑

k 2−ak and xi = 2−bi+ai .
Then we have

∑
i pi · xi =

∑
i 2−bi/

∑
i 2−ai , and therefore∑

i 2−bi∑
i 2−ai

· log
∑

i 2−ai∑
i 2−bi

≥

∑
i

2−ai∑
k 2−ak

· 2−bi+ai · log
(1
2−bi+ai

)
=

∑
i 2−bi∑
k 2−ak

· (bi − ai) .

Multiplying both sides by
∑

i 2−ai/
∑

i 2−bi , we get

log
∑

i 2−ai∑
i 2−bi

≥

∑
i 2−bi · (bi − ai)∑

i 2−bi
,

which finishes the proof.

C       4

Brownian Motion Scenario

In this chapter we consider a scenario in which the network adversary is replaced by
a random process. We concentrate on the case, in which the spaceX is a one-dimensional
discrete torus (or, alternatively speaking, a discrete ring) of diameter B. By diameter
we understand the number of points on this ring. We assume that each node performs
a simple random walk described below. Later, in Section 4.4, we argue that our results
partially extend to the multi-dimensional case, or to the case where torus is replaced by
a discrete mesh of the same diameter.

In Section 4.1 we construct a deterministic algorithm M for this scenario. Roughly
speaking, M computes frequencies of requests at individual nodes and moves to the
one which issued a majority of requests in the recent steps. We prove that M achieves
a competitive ratio of O(max{1,min{

√
B,
√

D/B,n}} · polylog(D,B,n)) on rings with di-
ameters B ≥ 3√D. The ratio is achieved both with high probability and in expectation.
For the case of smaller ring sizes, we may use the O(λ) = O(B)-competitive algorithm
D-M presented in Section 2.4.2.

The algorithm M would perform well also in static uniform networks, which is
caused by the fact that it uses information about node positions in a very limited manner.
The proof of its competitiveness assumes the largest possible cost of communication for
the M algorithm, and shows that in this scenario the optimal offline algorithm is
rarely able to exploit the nodes’ movement, or use short distances occurring sometimes
between pairs of nodes. We give the roadmap of the proof in the same section, and
formally prove the bounds in Section 4.2 and Section 4.3.

We conclude with some extensions and open questions.

Scenario definition

First, we formally define how the input sequence I is generated. At the beginning, the
request adversary picks the request sequence (σt)t and the network adversary chooses

89

90 BM S

the initial configuration C0 of n points. They may cooperate while creating these parts of
input. The rest of the configuration sequence (Ct)t is generated randomly, i.e., for each t,
Ct+1 is generated from Ct in the following way. For each node v, we compute its new
position. Let pt(v) denote its current position (coordinate) at step t. For each node v we
define a random variable Zt(v).

Zt(v) =


−1 with probability 1/3

0 with probability 1/3
1 with probability 1/3

(4.1)

Then, the position of v in step t + 1 is defined as

pt+1(v) = pt(t) + Zv(t) . (4.2)

These two formulas above are further referred to as the movement rule.
In time step t ≥ 1, the positions of the nodes are set according to Ct, and then a request

is issued at the node σt. In the remaining part of time step t, the algorithm serves requests
and (optionally) moves its page.

We emphasize that the sequence (σt)t is created without knowledge of the actual
outcome of the random walk of nodes, i.e., without knowledge of the configuration
sequence (Ct)t.

Performance metric

As already mentioned in Chapter 1, in order to analyze the performance of an online
algorithm in the Brownian motion scenario, we adapt classical competitive analysis
[ST85, BE98] to the model, where the input sequence is created both by the adversary
and the stochastic process. We say that an algorithm A achieves a competitive ratio
R (or is R-competitive) with probability p, if there exists a constant A, such that for all
request sequences (σt) it holds that

Pr(Ct)t

[
CALG((Ct, σt)t) ≤ R · COPT((Ct, σt)t) + A

]
≥ p , (4.3)

where CALG((Ct, σt)t) and COPT((Ct, σt)t) are costs of A and the optimal offline algorithm,
respectively. The probability is taken over all possible configuration sequences generated
by the random movement (4.1). We say that A isR-competitive in expectation, if there
exists a constant A, such that for all request sequences (σt)t it holds that

E(Ct)t

[
CALG((Ct, σt)t) − A

COPT((Ct, σt)t)

]
≤ R . (4.4)

4.1 M  91

Results

We present a solution which works for diameters B greater than 3√D. Namely, we
construct two deterministic online algorithms: ML and MS. While they differ in
details, they share the same framework, which we call M. ML was designed to
work well when the ring diameter B is long, i.e., B ≥

√
D, while MS is for short ring

diameters, i.e., for B ∈ [3√D,
√

D]. We prove that both algorithms achieve a competitive
ratio of O(R), where

R = log2(B · n) ·max
{
1,min

{√
B,

√
D/B,n

}}
. (4.5)

The competitive ratio is achieved both with high probability and in expectation. Note
that these results imply that the competitive ratio is Õ(min{ 4√D,n}). This also immedi-
ately yields a competitive ratio of O(log2(n · B)) for the network consisting of constant
number of nodes, as well as for the case of large diameters, where B = Ω(D).

4.1 Majority algorithms

The underlying intuition and rationale for our algorithms is described below. If nodes
perform independent random walks on the ring, then the distance between any two
fixed nodes is usuallyΩ(B). Since the adversary has to choose the request sequence (σt)t

beforehand, i.e., before the actual outcome of the random walk of nodes, we claim that
it leaves the adversary, essentially, two options.

• The adversary gives requests at one node for a long period of time. In this case
the algorithm may detect such a situation and move to the requesting node. It is
hard for the adversary to synchronize the moment in which it changes requesting
node to another one with the point of time where these two nodes are close to each
other. Hence, usually, any algorithm, even the optimal one, has to pay a certain
amount for the movement. On the other hand, when the decision about a potential
movement is already made, the algorithm may want to wait for its source and
destination nodes to come closer, as the cost paid for the requests in this waiting
period might be smaller than the gain of moving the page at shorter distances. We
show that for short diameters B, waiting for such a good opportunity with moving
the page is a sound tactic.

• The adversary changes the accessing nodes frequently. But in this case, since the
adversary has no control over the configuration sequence (Ct)t, the requests will
be scattered on the whole ring. Thus, any algorithm would pay a lot in this case,
and our algorithm does not have to move to achieve a good competitive ratio.

92 BM S

This informal argument motivates us to construct an algorithm, which would perform
well in the static uniform network and then show that it also performs well when nodes
move. Certainly, the algorithms presented in the previous chapter are not well suited,
as their competitive ratios in static networks are Ω(

√
D). On the other hand, there exist

simple majority algorithms, which achieve constant competitive ratio in static networks.
A majority algorithm works in phases of some fixed length K. It keeps counters of

how many requests in the current phase were issued at individual nodes. Formally, for
any time interval I and a node v, weight of v in I, is defined as the number of requests
issued by v during I. We denote this weight by wI(v). After the end of each phase, the
algorithm decides to move to a node v∗, which issued a strict majority of requests in
this phase, i.e., whose weight in this phase is greater than K/2. As mentioned above,
for short diameters the algorithm waits some additional number of steps, hoping that
the chosen jump candidate v∗ gets closer to the node currently holding the page. If all
nodes’ weights are at most K/2, then the algorithm remains at the same node.

Algorithm MAJ

In this section we formally present two algorithms ML and MS. Although they differ
in details, their framework is essentially the same. For the sake of this presentation, we
denote the algorithm by M; the two algorithms will be just refinements of the M
framework.

M is an example of a majority algorithm. It works in phases of fixed length K, where
K = D for ML and K = B2

· log B for MS. In a phase P, M remains in one node
denoted PMAJ(P).

If there exists a node v∗ . PMAJ(P) such that wP(v∗) ≥ K/2, then M decides to move
to v∗, otherwise it remains in the same node. The decision is made in the last step of P
(where M has the full knowledge of the past requests), however the actual movement
might be postponed a little bit to some time step in the future. If the algorithm decides
to move, we distinguish between two cases depending on the length of the diameter B.

• For long diameters, Mmoves immediately in the last step of P.

• For short diameters, the next 6·B2
·log B steps after such a phase are called migration

sequence. If at some step of the migration sequence the distance between PMAJ(P)
and v∗ becomes at most 1, M moves to v∗ in this step. If these nodes are always
further than 1 within the migration sequence, then M moves at the end of it.
Note that migration sequence always lasts 6 · B2

· log B steps, independently of
when Mmigrates its phase.

4.1.1 E 93

The next phase begins right after the end of migration sequence (or right after the current
phase, if there is no migration sequence). Note that phases and migration sequences do
not overlap. Thus, for long diameters the input consists entirely of phases, and for short
diameters the input can be partitioned into phases and migration sequences.

In this chapter we prove that M is O(R) competitive with high probability and in
expectation. While we concentrate on proving the former, we get the latter as a byprod-
uct.

Theorem 4.1. M is O(R)-competitive in the Brownian motion scenario of the DPM, with
high probability.

We show that there exists a constant A (depending on B, D, and n, but independent
of the input sequence), such that for any γ, any input sequence (σt)t and any starting
configuration C0, if (Ct)t is generated according to (4.1), then it holds that

Pr(Ct)t

[
CMAJ((Ct, σt)t) ≤ O(R) · COPT((Ct, σt)t) + γ · A

]
≥ 1 − 6 · (B ·D)−γ . (4.6)

In the next section we show some basic properties: for the analysis we group phases
into epochs and show a global bound on M’s cost in one epoch. Then in Section 4.1.2
we start with a roadmap of the proof of M’s competitiveness. We define a useful
notion of auxiliary weight and propose two lemmas, which relate the costs of M and
O in individual epochs, to the auxiliary weight. In the same section we combine these
bounds to prove Theorem 4.1. The proposed lemmas are the crucial part of our analysis,
but as their proofs are rather lengthy and tedious, they are presented later in Section 4.2
and Section 4.3.

4.1.1 Epochs

We group the phases (and the corresponding migration sequences) into epochs. For
ML an epoch consists of dB2/De phases; for MS an epoch consists of just one phase,
optionally with its migration sequence. This grouping might seem a little bit artificial,
it will however become clear in Section 4.3, where we explicitly require that each epoch
length is at least B2. It can be easily checked that our definition of an epoch fulfills this
property. The described parameters of epochs and phases are gathered in Table 4.1.

An important property of such division into phases, corresponding migration se-
quences, and epochs is the independence of the configuration sequence or the algorithm,
i.e., the division can be determined entirely on the basis of the request sequence (σt)t.

94 BM S

Diameter Long Short
Algorithm ML MS

B B ≥
√

D 3√D ≤ B ≤
√

D
Migration sequence none optional

Epoch dB2/De phases 1 phase +migration sequence
Phase length D B2

· log B

Table 4.1: M parameters for different diameter lengths

Cost in a single epoch

It is possible to prove that in any single epoch the cost of M is bounded. Let

Lp = 2 · B2
· log B , (4.7)

Cp = 4 · B3
· log B +D · B . (4.8)

Lemma 4.2. For any epoch E (also for an unfinished one at the end of the input sequence) its
length is at most Lp and CMAJ(E) ≤ Cp.

Proof. Using information from Table 4.1, we may compute that each epoch’s length is
at most

max{ dB2/De ·D, B2
· log B } ≤ 2 · B2 + B2

· log B

≤ 2 · B2
· log B

= Lp

We note that the cost of communication on the ring is bounded by dB/2e + 1 ≤ B (as
B ≥ 2), and thus the cost of moving the page is at most D · B. M moves the page at
most once for each phase. Thus, for long diameters, it moves the page at most dB2/De
times in one epoch, paying at most D · B · dB2/De ≤ 2 · B3, whereas for short diameters
Mmoves the page at most once, paying at most D · B.

Since the total cost of serving requests is at most Lp · B, the total cost of M in any
epoch E is bounded by

CMAJ(E) ≤ Lp · B + 2 · B3 +D · B

≤ 4 · B3
· log B +D · B

= Cp ,

which finishes the proof.

4.1.2 C M 95

4.1.2 Competitiveness of MAJ

We fix any input sequence I and divide it into epochs E1,E2,E3 By Lemma 4.2, the
cost in the last unfinished epoch is at most Cp; we show that we may neglect it. Thus,
we may restrict our considerations to the input sequences consisting of whole epochs
only.

We want to relate the expected cost of M to the expected cost of the optimal offline
algorithm O in each epoch. Later, we are going to apply concentration bounds to
get that this relation holds also with high probability. However, to do this, it would be
necessary that this relation is independent for each epoch, and we cannot guarantee such
a strong condition. Nevertheless, it turns out that it is possible to construct randomized
bounds on M’s and O’s costs in each epochE, show the relation between these bounds
and claim that these bounds depend only on random walks of nodes in epoch E, and
two epochs preceding E. Hence, by considering these bounds for each third epoch, we
get that these bounds are independent. This coarse-grained description as well as the
notion of a randomized bound will be precised and explained below.

In fact, we do not establish a direct relation between M and O, but we propose
a notion of auxiliary weight, which depends only on the request sequence (σt)t and tries
to characterize how costly the epoch is for any algorithm. Further, we relate auxiliary
weight to the bounds on costs of M and O.

Auxiliary weight

The notion of auxiliary weight is defined for any time interval I. It describes the discrep-
ancy of the requests within this interval and will play a central role in our considerations.

Definition 4.3 (Auxiliary weight). Fix any time interval I. Let vmax be the node which has
the maximal weight in interval I, with ties broken arbitrarily. We define auxiliary weight of I
as WA(I) = |I| − wI(vmax).

We note that WA(I) depends only on the subsequence of (σt)t in I and is, in a sense, a
measure of how expensive the requests in I can be. If it is low, then there exists a node
vmax, such that the algorithm which remains in this node within I pays relatively few.
Unfortunately, if the discrepancy is high, it does not directly imply that the cost of any
algorithm is high. In particular, it may happen that all nodes are very close to each other
throughout the whole interval I, which means that the cost of some algorithm in I could
be very low. However, we show that such a configuration sequence is very unlikely to
occur.

96 BM S

The auxiliary weight can be also computed for non-contiguous periods of time, e.g.,
for a union of two disjoint intervals. Note that this may substantially differ (i.e., be
larger) from the sum of auxiliary weights of these two intervals. For example, if we have
two intervals I1 and I2, both of length `, and in I1 all requests are given at v1, and in I2 all
requests are given at v2, then WA(I1) +WA(I2) = 0, but WA(I1] I2) = `.

Randomized bounds

In this part, we present two lemmas relating the costs of M and O in individual
epochs to the auxiliary weight of some intervals. In the following we sometimes treat
epochs as sets of phases, thus by “for all P ∈ E j” we understand “for all the phases from
epoch E j”. Furthermore, if P is a phase, then by Pprev we denote the phase preceding
P, and by Pmigr, we denote the migration sequence right after P. If P does not have
a migration sequence, then Pmigr = ∅.1

We define the weight of an epoch E j as

W j = B ·
∑
P∈E j

WA(Pprev] P) (4.9)

We observe that this notion depends only on the request sequence (σt)t in epochs E j−1

and E j (in fact, only the last phase of epoch E j−1 is involved).
We relate the costs incurred on M in E j and on O in epochs (E j−1] E j) to W j.

However, as mentioned before, if we just relate the random variables (or rather their
expected values) E[CMAJ(E j)] and E[COPT(E j−1] E j)] to W j, then later we will not be
able to apply the concentration bounds to relate CMAJ(I) and COPT(I) to

∑
E j∈I

W j, with
high probability. The reason is, naturally, that for two different epochs E j1 and E j2

COPT(E j1−1] E j1) and COPT(E j2−1] E j2) may depend on each other.
However, it is possible to show that this dependence is rather limited. Alternatively

speaking, it is possible to construct a randomized upper bound on CMAJ(E j) and a randomized
lower bound on COPT(E j−1] E j). These bounds are random variables, which we call
CU

MAJ(E j) and CL
OPT(E j−1]E j), respectively or shortly CU

MAJ(j) and CL
OPT(j). To specify their

properties we introduce two definitions.

Definition 4.4. A random variable X we call two-valued if

X =

a with probability p

b with probability 1 − p

for some real values a,b, and 0 ≤ p ≤ 1. We purposely do not specify the probability space here,
as we will assume that different two-valued random variables are always independent.
1 As in the previous chapter we treat phases and time intervals either as sequences or sets of time steps.

4.1.2 C M 97

One may think of two-valued variable as about an outcome of the biased coin tossing.
All bounds CU

MAJ(j) and CL
OPT(j) will be two-valued random variables. Now, we clarify

what we understand by a randomized bound.

Definition 4.5 (Stochastic dominance). Let X and Y be two real-valued random variables.
We say that X dominates Y, if for all real x it holds that

Pr[X ≥ x] ≥ Pr[Y ≥ x] .

However, if the variable CU
MAJ(j) stochastically dominates CMAJ(E j), then this would not

be sufficient to claim that the sum of CU
MAJ(j) stochastically dominates the sum of CMAJ(E j).

Since we are going to bound the latter using a bound on former, we need a notion
stronger than the stochastic dominance. We say that CU

MAJ(j) stochastically dominates
CMAJ(E j) with respect to a time interval I, if CU

MAJ(j) stochastically dominates CMAJ(E j) for
any fixed outcomes of random walks outside I. Analogously, we will construct CL

OPT(j),
which is stochastically dominated by COPT(E j−1]E j) with respect to some time interval I.
Note that for any two intervals I1 ⊆ I2, stochastic dominance with respect to I1 implies
stochastic dominance with respect to I2. In practice, we will prove stochastic dominance
for CU

MAJ(j) and CL
OPT(j) with respect to interval (E j−2] E j−1] E j). Later, we will show

how the stochastic dominance with respect to disjoint intervals implies the stochastic
dominance for sums of variables.

Below we propose two lemmas specifying properties of variables CU
MAJ(j) and CL

OPT(j).

Lemma 4.6 (Upper bound on MAJ). There exist constants c1 and c2, such that for any j ≥ 3,
there exists a two-valued random variable CU

MAJ(j), such that

(i) CU
MAJ(j) stochastically dominates CMAJ(E j) with respect to (E j−2] E j−1] E j),

(ii) c1 ·W j ≤ CU
MAJ(j) ≤ c2 ·W j ·

√
D,

(iii) E
[
CU

MAJ(j)
]
= O(W j).

Lemma 4.7 (Lower bound on OPT). There exist constants c3, c4, and c5, such that for any
j ≥ 3, there exists a two-valued random variable CL

OPT(j), such that

(i) CL
OPT(j) is stochastically dominated by COPT(E j−1] E j), with respect to (E j−2] E j−1] E j),

(ii) c3 ·
1
R
·

1
B ·W j ≤ CL

OPT(j) ≤ c4 ·
1
R
·W j,

(iii) E
[
CL

OPT(j)
]
≥ c5 ·

1
R
·W j.

98 BM S

For clarity reasons, the proofs of these crucial lemmas are presented in Section 4.2
and Section 4.3, respectively. In the remaining part of this section we show how to
use these bounds to prove the competitiveness of M. First, we formulate a lemma,
which shows that if we consider a set of each third epoch from the input sequence, e.g.,
a setM = {E3,E6,E9,E12, . . .}, then the variable

∑
E j∈M

CU
MAJ(j) stochastically dominates∑

E j∈M
CMAJ(E j).

Lemma 4.8 (Stochastic dominance for sums). Consider a product probability space Ω =
Ω1×Ω2×. . .×Ωm, where eachΩi is a discrete event space. Let {Xi}

n
i=1 be random variables defined

on Ω, and {Yi}
n
i=1 be a sequence of n independent variables, such that for all i, Yi stochastically

dominates Xi with respect to Ωi. Formally, this mean that for any fixed random experiments
(ω′1, ω

′

2, . . . , ω
′

i−1, ω
′

i+1, . . . , ω
′

m) ∈ Ω1 ×Ω2 × . . . ×Ωi−1 ×Ωi+1 × . . .Ωm, and all real x, it holds
that

Pr[Y j ≥ x] ≥ Prωi∈Ωi[X(ω′1, ω
′

2, . . . , ω
′

i−1, ωi, ω
′

i+1, . . . , ω
′

m) ≥ x] .

Then
∑n

i=1 Yi stochastically dominates
∑n

i=1 Xi.

The proof can be found at the end of this chapter. In our example we might apply the
lemma with Xi = CMAJ(E3·i), Yi = CU

MAJ(3 · i), and Ωi containing all possible outcomes of
random walk within (E3·i−2] E3·i−1] E3·i). Equivalently, we may prove a version where
Yi are stochastically dominated by Xi, and infer that

∑
E j∈M

CL
OPT(j) is stochastically

dominated by
∑
E j∈M

COPT(E j−1] E j).

Relating global costs

We defer the proofs of the two lemmas above to the next sections and instead we show
how Theorem 4.1 follows from these lemmas. To prove it we use one of the theorems
concerning concentration of the measure, the Hoeffding bound [Hoe63]. We use its
variant presented in [RPRR01] (see Appendix A.2 for an exact formulation).

Proof of Theorem 4.1. We show that there exists a constant A, such that for any con-
stant γ, Inequality 4.6 holds. Let A = 3 · cA · A0 + 3 · Cp, where

A0 = 2 ·max
{

c2
2

c2
1

,
c2

4

c2
5

}
·D · Cp · ln(D · B) , (4.10)

cA = c2 ·
√

D . (4.11)

Constants c1, c2, c3, c4, and c5 are the ones guaranteed by Lemma 4.6 and Lemma 4.7. We
fix any input I and divide it into epochs E1,E2, Clearly, the cost incurred on M
in the first two epochs together with the cost incurred in the last unfinished epoch is at
most 3 · Cp, and can be therefore hidden in the additive constant A.

4.1.2 C M 99

We divide the remaining epochs into three disjoint setsM0,M1, andM2, where

Mχ := {E j : j ≡ χ mod 3} .

Assume that for anyMχ we could prove that

Pr
[
CMAJ(Mχ) ≤ O(R) · COPT(I) + γ · cA · A0

]
≥ 1 − 2 · (B ·D)−γ . (4.12)

If we sum this guarantee over all three sets and add the cost of M in the first, the
second and the last epoch, we would get

Pr
[
CMAJ(I) ≤ O(3 · R) · COPT(I) +

(
γ · 3 · cA · A0 + 3 · Cp

)]
≥ 1 − 6 · (B ·D)−γ ,

which is all that we need to claim that M is O(R)-competitive with high probability.
Thus, it remains to prove Inequality 4.12 for any setMχ.

We consider the value of
∑
E∈Mχ

W j. If it is smaller than γ · A0, then by Lemma 4.6,
CMAJ(Mχ) is at most c2 · (γ · A0) ·

√
D ≤ γ · cA · A0, and (4.12) trivially follows.

Otherwise, we get
∑
E∈Mχ

W j ≥ γ · A0. Since all CU
MAJ(j) are independent for Ei ∈ Mχ,

we use Hoeffding inequality to bound the probability that the cost of M in epochs from
Mχ deviates much from its expected value. By Lemma 4.6, c1 ·W j ≤ CU

MAJ(j) ≤ c2 ·
√

D ·W j,
and therefore we get

Pr

 ∑
E j∈Mχ

CU
MAJ(j) >

3
2
·

∑
E j∈Mχ

E
[
CU

MAJ(j)
] ≤ exp

− 2 ·
(

1
2 ·

∑
E j∈Mχ

E
[
CU

MAJ(j)
])2

∑
E j∈Mχ

(
c2 ·
√

D ·W j

)2

 .
We denote the exponent by (−M). By (4.9), the definition of W j, we get W j ≤ 2 ·Cp. Using
this and CU

MAJ(j) ≥ c1 ·W j, we obtain

M ≥
1
2
·

c2
1 ·

(∑
E j∈Mχ

W j

)2

c2
2 ·D ·

∑
E j∈Mχ

W2
j

≥
c2

1

2 · c2
2

·

(∑
E j∈Mχ

W j

)2

D ·
(∑
E j∈Mχ

W j

)
·maxE j∈Mχ{W j}

≥
c2

1

2 · c2
2

·
γ · A0

2 ·D · Cp

= γ · ln(D · B) .

Analogously, we can get the bound on CL
OPT. In fact, for variables CL

OPT we do not even
have the factor D in the denominator, thus achieving high probability is easier.

Pr

 ∑
E j∈Mχ

CL
OPT(j) <

1
2
·

∑
E j∈Mχ

E
[
CL

OPT(j)
] ≤ (D · B)−γ

100 BM S

These bounds combined with the results of the Lemma 4.6 and Lemma 4.7 imply that∑
E j∈Mχ

CU
MAJ(j) = O(1) ·

∑
E j∈Mχ

W j , with probability 1 − (D · B)−γ∑
E j∈Mχ

CL
OPT(j) = Ω(1) · (1/R) ·

∑
E j∈Mχ

W j , with probability 1 − (D · B)−γ

By stochastic dominance (see Lemma 4.8), the same bounds apply also for random
variables

∑
E j∈Mχ

CMAJ(E j) = CMAJ(Mχ) and
∑
E j∈Mχ

COPT(E j−1]E j) ≤ COPT(I), respectively.
Therefore, with probability at least 1 − 2 · (D · B)−γ, CMAJ(Mχ) = O(R) · COPT(I), and thus
Inequality 4.12 follows. This finishes the proof.

As a corollary we get that the expected competitive ratio is O(R), as well.

Corollary 4.9. Algorithm M achieves an expected competitive ratio of O(R) in the Brownian
motion scenario of the DPM.

Proof. Fix any request sequence (σt)t, and an initial configurationC0. By Lemma 4.6 and
Lemma 4.7, for all randomly generated configuration sequences (Ct)t, it holds that

CU
MAJ(j) = O

(
B ·
√

D · R
)
· CL

OPT(j) ,

and thus for I = (Ct, σt)t

CMAJ(I) = O
(
B ·
√

D · R
)
· COPT(I) .

The bound above is the worst-case bound, i.e., it holds always. Now, we fix a constant
A as in the proof of Theorem 4.1. Then the expected value of the quotient

(
CALG(I)−A

COPT(I)

)
can

be bounded as

E(Ct)t

[
CALG(I) − A

COPT(I)

]
≤ O(R) ·

(
1 −

6
D · B

)
+ O

(√
D · B · R

)
·

6
D · B

= O(R) .

This proves the expected competitive ratio of M.

4.2 Bounding cost of MAJ

In this section we show that the performance of the M algorithm inE j depends directly
on the sum of auxiliary weights of phases from E j−1 and E j. We charge M maximum
cost, B, for each request issued at a node different from the node holding its page.
Thus, CU

MAJ, the bound on M’s cost, does not depend the configuration sequence (Ct)t,

4.2 B  M 101

except for the migration sequences, in which (Ct)t decides whether a good opportunity
occurs. We show that in expectation the cost of M’s in the migration sequences can
be neglected when compared to the cost of M in the corresponding phase. Finally, we
use these results to prove Lemma 4.6.

While we finally construct a random variable CU
MAJ(E j), in the meanwhile we introduce

several randomized bounds on the M’s cost in different parts of E j. We also call them
CU

MAJ(·).

MAJ’s cost in one phase

First, we present a useful characterization of the M’s phases. Fix any phase P of
length K. We distinguish between three cases.

1. Wait phase occurs, if wP(PMAJ(P)) > K/2.

2. Mixed phase occurs, if for all nodes v, wP(v) ≤ K/2.

3. Change phase occurs, if there exists a node v∗ . PMAJ(P) such that wP(v∗) > K/2.

Clearly, the migration sequence occurs (for short diameters), if and only if the corre-
sponding phase is a change phase. We begin with creating a bound on the M’s cost in
any single phase P. Recall that by Pprev we denote the phase preceding P. We choose

CU
MAJ(P) := 4 · B ·WA(Pprev] P) . (4.13)

Lemma 4.10. For any phase P, it holds that CMAJ(P) ≤ CU
MAJ(P).

Proof. Note that in this lemma we are comparing two real numbers, and not random
variables. The cost of paying for any request is at most B. We proceed with case analysis.

1. If P is a wait phase, then M pays for K − wP(PMAJ(P)) ≤ WA(P) requests. Thus,
CMAJ(P) ≤ B ·WA(P).

2. If P is a mixed phase, then wP(v) ≤ K/2 for all nodes v, and hence WA(P) ≥ K/2.
M pays for at most K requests, and thus CMAJ(P) ≤ K · B ≤ 2 · B ·WA(P).

3. If P is a change phase, then M pays for at most K requests. Additionally, if the
diameter is long, then M moves at the end of P, paying at most D · B = K · B.
Thus, CMAJ(P) ≤ 2 · B · K.

On the other hand, there exists a node v∗ . PMAJ(P) (to which M moves at the
end of P, or in the corresponding migration sequence). However, wPprev(v∗) ≤ K/2,
because otherwise M would have moved to v∗ after phase Pprev,2 and would
remain in v∗ in the whole phase P. Therefore, wPprev]P(v∗) ≤ 3

2 · K.

2 By “after phase Pprev” we mean “in the last step of Pprev or during the migration sequence of Pprev”.

102 BM S

This inequality holds also for any vi. Indeed, since wP(v∗) > K/2, for any node
vi . v∗ it holds that wP(vi) < K/2, and hence wPprev]P(vi) < 3

2 · K.

Therefore, WA(Pprev] P) ≥ K/2, and thus CMAJ(P) = 4 · B ·WA(Pprev] P).

For the first two cases, we note that WA is monotonic, and thus WA(P) ≤ WA(Pprev] P).
Hence, for any phase P, it holds that CMAJ(P) ≤ 4 · B ·WA(Pprev] P) = CU

MAJ(P).

MAJ’s cost in migration sequence

Additionally, we may prove that the expected cost incurred in the migration sequence
is asymptotically not greater than the cost incurred in the corresponding phase. First,
we compute the probability that a good opportunity occurs in a migration phase.

Lemma 4.11. Consider any two nodes va and vb. If both move according to the movement rule,
then, with probability at least 1 − 1/B, there exists a time step t within the next 6 · B2

· log B
steps, such that dt(va, vb) ≤ 1.

Proof. We show that if we start from any positions of va and vb, then with probability 1
2

they will meet (will be at the distance of at most 1) at some time step within next 6·B2 steps.
These steps constitute one round. The lemma will follow immediately, as the event that
nodes fail to meet in any of log B rounds, happens with probability at most (1/2)log B = 1

B .

Let Xt be the distance, counted clockwise, between va and vb in step t. In each step t,
Zt(va) − Zt(vb) is the change in this distance. By E we denote the event that after 6 · B2

steps the total change in this distance,
∑6B2

t=1[Zt(va) − Zt(vb)] belongs to (−B,B). Clearly, if
E does not occur, then there must have been a step where the points va and vb met. Thus,
it suffices to prove that Pr[E] ≤ 1/2.

We have Pr[E] = Pr[−B <
∑12B2

i=1 Ai < B], where Ai are independent random variables
with identical distributions as Zt(v) variables. Let S0 = |{i : Ai = 0}|. We have

Pr[E] ≤ Pr[E | S0 ≤ 6B2] + Pr[S0 > 6B2] . (4.14)

Thus, it remains to show that both summands above are small.
For bounding the second summand of (4.14) we use the Hoeffding bound [RPRR01]

(see Appendix A.2). Since for any i, Ai = 0 with probability 1/3, it holds that E[S0] = 4·B2.
Thus, using B ≥ 2, we get

Pr[S0 > 6 · B2] ≤ exp
(
−

2 · (2 · B2)2

12 · B2

)
≤ e−2·B2/3

≤ e−8/3 .

(4.15)

4.2 B  M 103

For bounding the first summand of (4.14), we assume that S0 ≤ 6 · B2. Then the set
of variables Ai which are different from zero has k := 12 · B2

− S0 ≥ 6 · B2 elements.
Each of these k variables equals 1 with probability 1/2, and −1 also with probability 1/2.
Therefore, for any x ∈ [−k, k] we get

Pr

12B2∑
i=1

Ai = x | S0 = 12 · B2
− k

 =
 1

2k ·

(
k

(k+x)/2

)
≤

1
2k ·

(
k
dk/2e

)
if x + k is even,

0 otherwise.

Summing up over x ∈ (−B,B), we obtain

Pr

12B2∑
i=1

Ai ∈ (−B,B) | S0 = 12 · B2
− k

 ≤ B ·
1
2k
·

(
k
dk/2e

)
.

Note that 1
2k ·

(
k
dk/2e

)
is a monotonically decreasing function of k. It follows from the Stirling

formula [Fel68] (see Appendix A.2), that for even k, it holds that 1
2k ·

(
k

k/2

)
≤

√
2
π ·

1
√

k
. Thus,

Pr

12B2∑
i=1

Ai ∈ (−B,B) | S0 ≥ 6 · B2

 ≤ B ·

√
2
π
·

1
√

6 · B2
=

√
1

3 · π
. (4.16)

Finally, if we apply the bounds on the summands of (4.14), we get Pr[E] ≤
√

1/3π+ e−8/3,
and therefore it can be numerically checked that Pr[E] < 1/2.

Now we can construct a bound CU
MAJ(Pmigr) for CMAJ(Pmigr). If the diameter is long,

then let CU
MAJ(Pmigr) = 0. Otherwise, let CU

MAJ(Pmigr) be a random two-valued variable
equal to 6 · B3

· log B + X, where X is equal to 2 · D with probability 1 − 1/B, and B · D
with probability 1/B. Then we may prove the following.

Lemma 4.12. CU
MAJ(Pmigr) stochastically dominates CMAJ(Pmigr) with respect to Pmigr, and it

holds that
E[CU

MAJ(Pmigr)] = O(1) · CU
MAJ(P) .

Proof. The cost incurred on Mwithin Pmigr consists of the cost of serving requests and
the cost of moving the page. The former can be easily bounded by |Pmigr| ·B ≤ 6 ·B3

· log B.
For the latter note, that by Lemma 4.11 for any starting configuration Ct at the beginning
of Pmigr a good opportunity occurs with probability at least 1 − 1/B, in which case M
pays at most (1+1)·D. Otherwise, Mpays at most B·D. Thus, CU

MAJ(Pmigr) stochastically
dominates CMAJ(Pmigr) with respect to Pmigr.

The expected value of CU
MAJ(Pmigr) can be bounded by

E[CU
MAJ(Pmigr)] ≤ 6 · B3

· log B + 2 ·D · (1 − 1/B) + B ·D · 1/B

≤ 6 · B3
· log B + 3 ·D .

104 BM S

We note that the migration sequence occurs only after a change phase and only if the
diameter is short. Since B ≥ 3√D, the cost accounted for a change phase is

CU
MAJ(P) ≥

1
2
· K · B

=
1
2
· B3
· log B

= Ω
(
E[CU

MAJ(Pmigr)]
)
.

This finishes the proof.

MAJ’s cost in one epoch

We may combine the bounds on the cost in P and Pmigr to prove Lemma 4.6. Let

CU
MAJ(E j) =

∑
P∈E j

(
CU

MAJ(P) + CU
MAJ(Pmigr)

)
.

Proof of Lemma 4.6 (Upper bound on MAJ). We fix any epoch E j. First, we prove the
stochastic dominance. It the ring diameter is long, then CU

MAJ(E j) (denoted also by
CU

MAJ(j)) is a constant and summing the guarantee of Lemma 4.10 over all the phases,
we get that CU

MAJ(j) is always greater than CMAJ(E j). Otherwise, in the case of short
diameters, E j consists of at most one migration sequence Pmigr. Then by Lemma 4.10 and
Lemma 4.12, CU

MAJ(j) stochastically dominates CMAJ(E j) with respect to Pmigr, and thus
also with respect to (E j−2] E j−1] E j).

Second, we prove the bound on the expected value of CU
MAJ(j). By Lemma 4.10 and

Lemma 4.12, we get that for any phase P ∈ E j, it holds that

E[CU
MAJ(P) + CU

MAJ(Pmigr)] = O(1) · B ·WA(Pprev] P) .

By summing this inequality over all the phases within epoch, we get that

E[CU
MAJ(E j)] = O(1) · B ·

∑
P∈E j

WA(Pprev] P)

= O(1) ·W j .

Third, we show the bounds on the variable CU
MAJ(j). For a lower bound, by definition

(4.13), we obtain CU
MAJ(E j) ≥

∑
P∈E j

CU
MAJ(P) ≥ 4 ·W j. For an upper bound, we note that

for long diameters CU
MAJ(j) is a constant, and then CU

MAJ(j) = E[CU
MAJ(j)] = O(1) ·W j. For

short diameters, the variable CU
MAJ(j) can differ at most by a factor of B = O(

√
D) from its

expected value (we showed that on average the cost of movement is O(D), whereas in
the worst case it can be B ·D). Thus, for these diameters

CU
MAJ(j) = O

(√
D
)
· E[CU

MAJ(j)] = O(1) ·
√

D ·W j .

Therefore, all the conditions of the lemma are met.

4.3 B   O 105

4.3 Bounding cost of OPT

In the previous subsection we assume that the cost of serving request by M is B.
However, we cannot hope for the same kind of argument for the optimal algorithm. In
other words, we cannot assure that O pays Ω(B) for each request issued at the node
different from the node holding the O’s page. This makes the construction of a lower
bound for Omuch more complicated.

In this section we present the roadmap of the proof, formulate several lemmas and
show how they lead to the proof of Lemma 4.7. For clarity, the proofs of these lemmas
are divided between the next subsections.

For any fixed request sequence (σt)t within some time interval, there are many possible
choices of positions for nodes, such that the requests are issued in the different parts of
the ring. If positions of the nodes satisfy this property, then we call the nodes scattered.
Intuitively, if we had a static network with scattered nodes, then a high discrepancy of
the requests would cause a high cost on any algorithm. However, in our situation we
might encounter two serious problems. First, even if nodes are scattered at some point,
their random walk may change their positions and destroy their distribution property.
Second, O may use the nodes’ movement to quickly move the page between nodes.
Since O knows the directions, in which the nodes will move in the future, it might
move to a distant node, paying much less than D · B. Luckily, there is one remedy to
both these problems. If the time interval that we consider is short, then we may prove
that with a constant probability nodes are moving slowly, preserving the distribution
property and not allowing O to move at a very low cost. On the other hand, shorter
interval means less requests, and, in consequence, lesser cost. Thus, these two objectives
have to be balanced.

A few notations

We introduce three functions of B, D, and n, which are used throughout this proof.

β =
√

2 · ln(n · B4) , (4.17)

Q0 = min
{√

B,
√

D/B,n
}
, (4.18)

Q = max{1,Q0} . (4.19)

We note that by (4.5), the definition of R,

R = Θ(β4
·Q) . (4.20)

106 BM S

Narrow sets

As mentioned above, the core of constructing lower bound for O within interval
(E j−1] E j) is finding a set A j of disjoint short intervals from (E j−1] E j), such that the
sum of auxiliary weights of these intervals is relatively high compared to W j. Moreover,
we require that these intervals are all contained in a short time period. Formally, for
a setS of intervals, we define span(S) as the shortest time interval containing all intervals
from S. Then our requirement is that |span(A j)| should be small.

We formally enumerate the desired properties of such a short set

Definition 4.13. Let

NA :=
B2

(32 · β)2 and NI :=
min{D,B2

}

Q · (16 · β)2

A set of intervals S we call narrow, if the following conditions hold

(i) |span(S)| ≤ NA

(ii) For any interval I ∈ S, it holds that |I| ≤ NI.

It appears that by using a variant of an average argument, it is possible to extract
a narrow set from (E j−1] E j), such that the sum of auxiliary weights of intervals from
this set is relatively high. The proof of the following lemma is presented in Section 4.3.1.

Lemma 4.14. For any epoch j ≥ 2, it is possible to choose a narrow setA j contained in (E j−1]E j),
such that ∑

I∈A j

B ·WA(I) ≥ b1 ·
1
R
·W j ,

where b1 is a constant.

Since in the previous subsection the expected cost of M in E j was proven to be
proportional to W j, for proving O(R)-competitiveness of M it would be sufficient to
show that with a constant probability the cost of O on any interval from A j is equal
to Ω(B · WA(I)). This probability should depend only on the random walk inside of
(E j−2] E j−1] E j) and hold for any configuration Ct at the beginning of E j−2.3 We cannot
guarantee that, but we can relax the conditions and prove a very similar result, which
also yields O(R)-competitiveness. Namely, we show that with a constant probability
there exists a subsetA′j ofA j such that

• on each interval I ∈ A′j it holds that COPT(I) ≥ B ·WA(I), and

• the auxiliary weights of intervals from A′j constitute a constant fraction of the
auxiliary weights of intervals fromA j.

Obviously a subset of a narrow set is narrow, too.
3 This is what we need to claim the stochastic dominance with respect to (E j−2] E j−1] E j).

4.3 B   O 107

Preconditions

Below we describe two preconditions, which hold with a constant probability. If these
preconditions are met, we may assure that it is possible to lower-bound the cost of O
in a narrow setA j by Ω(

∑
I∈A j

B ·WA(I)).

Precondition A: Scattered nodes

First, we concentrate on a single interval I. As mentioned above, we may hope for a high
cost of O (or any other algorithm) on this interval, if the nodes which issue requests
in I are scattered on the ring. Below we formalize this notion.

Definition 4.15. For any subset R ⊆ X, and any node v, by “v ∈ R”, we understand that the
position of node v is in set R.

Definition 4.16. Fix any nodes configuration Ct in any time step t and an interval I. We say
that the nodes are I-scattered in time t, or that Ct is scattered according to I, if it is possible to
partition the ring into 4 disjoint contiguous segments R1, R2, R3, R4, each containing B/4 points
from X, as presented in Figure 4.1, such that both wI(R1) and wI(R3) are at least 1

16 ·WA(I). By
wI(Ri) we denote the total weight accumulated in the segment Ri, i.e., wI(Ri) =

∑
v∈Ri

wI(v).

An example of such partition into four segments R1,R2,R3, and R4 is presented in
Figure 4.1. We note that this definition makes sense for any, even completely unrelated,
interval I and time step t.

For sets of intervals the definition of being scattered is similar. However we require
only that nodes are scattered according to a sufficiently large fraction of this set.

Definition 4.17. Fix any nodes configuration Ct at any time step t, a set of intervals S, and
a constant c ≤ 1. We say that the nodes are (S, c)-scattered at time t, if there exists a subset
S
′
⊆ S with the following properties.

(i) It holds that ∑
I∈S′

WA(I) ≥ c ·
∑
I∈S

WA(I) .

(ii) For all intervals I ∈ S′ nodes are I-distributed.

Precondition B: Smoothness

Even if the nodes are scattered at the beginning of some narrow set, their random walk
may quickly destroy this property. To describe the desired behavior of the nodes, we
introduce a following notion.

108 BM S

R2R4

R1

R3

Figure 4.1: Ring partitioning

Definition 4.18. We call a configuration sequence of length ` smooth, if for any 1 ≤ i < j ≤ `
and any node v, the positions of node v in time step i and j differ by at most β ·

√
j − i. For any

time interval I, by smooth(I) we denote the event that a configuration sequence in I is smooth.

Intuitively, the nodes during a smooth configuration sequence do not behave too
wildly, i.e., they never run away quickly from their starting positions.

Preconditions are likely

Before we state the result, we informally argue that the probability that both precondi-
tions hold simultaneously is constant. We consider any three consecutive epochs E j−2,
E j−1, and E j, as presented in Figure 4.2. The smoothness is the easier precondition; we
may use elementary combinatorics to prove the following bound (see Section 4.3.2).

Lemma 4.19. For any narrow setA j, it holds that

Pr[smooth(span(A j))] ≥ 1/2 .

Moreover, this probability depends only on the random walks of nodes inside span(A j).

On the other hand, consider any single interval I ∈ A j. Using standard probability
tools (Markov inequality, Hoeffding bound), it is not difficult to prove that if we could
choose the positions of the nodes uniformly at random at the beginning of span(A j),
then with a constant probability they would be (A j,Ω(1))-scattered. We have no chance
for having truly uniform distribution at that point of time; nevertheless, it is possible
to assure an approximately uniform distribution. Namely, assume any (worst possible)
starting configuration Ct at the beginning of E j−2. We call the steps between this point of
time and the beginning of span(A j) a mixing sequence. Such a sequence contains at least
the whole epoch E j−2, and thus has length at least B2. In the whole mixing sequence the
nodes perform independently their random walks, and hence we may infer that their
positions at the beginning of span(A j) are independent random variables with almost

4.3 B   O 109

t
E j−2 E j−1 E j

starting configuration almost uniform distribution

intervals of narrow setA jmixing sequence

Figure 4.2: Epochs E j−2, E j−1, and E j

uniform distribution (on the ring). The argument uses the fact that the Markov chain
(see, e.g., [Fel68, Sen81, Ros95] for a gentle introduction to Markov chains) induced by
a random walk of nodes converges quickly to the uniform distribution. The following
lemma puts together our informal arguments and is proven in Section 4.3.3.

Lemma 4.20. For any configuration at the beginning E j−2 and any narrow set A j belonging
to E j−1] E j, with a constant probability nodes are (A j,Ω(1))-scattered at the beginning of
span(A j). Moreover, this probability depends only on the random walk of nodes in the mixing
sequence.

Since two lemmas above (Lemma 4.19 and Lemma 4.20) depend on different sources
of randomness, i.e., configuration sequences in the mixing sequence and in span(A j),
respectively, their guarantees are independent.

Corollary 4.21. There exists a constant b2, such that for any configuration at the beginning of
E j−2 and any narrow setA j belonging to (E j−1]E j), with a constant probability pprecond, it holds
that

(i) nodes are (A j, b2)-scattered at the beginning of span(A j), and

(ii) the configuration sequence within span(A j) is smooth.

Moreover, this probability depends only on the random walks of nodes inside (E j−2] E j−1] E j).

Lower bound on OPT

Now, we formally state a Crucial Property, using the two preconditions described above
(scattered nodes and smoothness). This property will be directly used to lower-bound
the cost of O.

Lemma 4.22 (Crucial Property). Fix any algorithm A, any narrow setA j, and a constant c.
If at the beginning of span(A j) the nodes are (A j, c)-scattered, and the configuration sequence
within span(A j) is smooth, then

CALG(A j) ≥ b3 · c ·
∑
I∈A j

B ·WA(I) ,

110 BM S

where b3 is a constant.

We defer the proof of this lemma to Section 4.3.4. Here, we show how this Crucial
Property can be used to construct the lower bound on O, specified by Lemma 4.7.

Proof of Lemma 4.7 (Lower bound on OPT). By Lemma 4.14, it is possible to find a nar-
row setA j belonging to (E j−1] E j), whose intervals have high auxiliary weight. Let b1,
b2, and b3, be the constants defined in Lemma 4.14, Corollary 4.21, and Lemma 4.22. Let
pprecond be the probability occurring in Corollary 4.21.

First, we prove that for any configuration sequence it holds that

COPT(A j) ≥
∑
I∈A j

WA(I) . (4.21)

Note that this bound is Θ(B) times weaker than the one we would like to have, but it
holds always and not only with some probability. Fix any I ∈ A j. The length of I is
at most NI. If O remains in one node POPT within I, then it pays at least 1 for each
request issued at a node different from POPT, which in total accounts for at least WA(I).
If it moves within I, then it pays at least D ≥ NI ≥WA(I). Since all intervals fromA j are
disjoint, by summing over all of them, we get that (4.21) holds. Hence, by Lemma 4.14,
COPT(A j) ≥ b1 · (1/B) · (1/R) ·W j.

For showing a better (randomized) lower bound, we note that by Corollary 4.21,
with probability pprecond the nodes are (A j, b2)-scattered at the beginning of span(A j)
and smooth(span(A j)) holds. Then by the Crucial Property, we get COPT(A j) ≥ b2 · b3 ·∑

I∈A j
B ·WA(I). Finally, the auxiliary weights of intervals from the setA j can be bounded

by Lemma 4.14, which implies that COPT(A j) ≥ b1 · b2 · b3 ·
1
R
·W j (with probability at least

pprecond). Thus, if we define CL
OPT(j) as

CL
OPT(j) =

b1 · b2 · b3 ·
1
R
·W j with probability pprecond ,

b1 ·
1
B ·

1
R
·W j otherwise ,

then CL
OPT(j) is stochastically dominated by COPT(A j) ≤ COPT(E j−1] E j), with respect to

(E j−2] E j−1] E j). Since pprecond is a constant, E[CL
OPT(j)] = Ω(1

R
·W j).

In the next four subsections, we formally prove the lemmas stated in this section
(narrow sets, probabilities for both preconditions, and the Crucial Property).

4.3.1 Narrow sets

In this section we show how to choose narrow sets from (E j−1]E j), so that the intervals
in set chosen have high auxiliary weight. We consider three cases.

4.3.1 N  111

1. Short diameters, i.e., B ≤
√

D

2. Long diameters, such that
√

D ≤ B ≤ 64 · β ·
√

D.

3. Long diameters, such that B ≥ 64 · β ·
√

D.

We present three proofs of Lemma 4.14, one for each of the cases listed above. For the
needs of this section, the diameters described by case 2 above are called semi-long.

Construction for short diameters

Proof of Lemma 4.14 for short diameters. For short diameters, an epoch E j consists of
only one phase, which we denote by P. Therefore, the singleton set {(E j−1] E j)} would
be a good candidate for a narrow set, as WA(E j−1] E j) ≥WA(Pprev] P) = 1

B ·W j.
However, this interval is too long, i.e., it has length Θ(B2

· log B). The desired length
of this interval would be min {NA,NI} ≥

min{D,B2
}

(32β)2·Q . As B ≤
√

D, this term is equal to
B2

(32β)2·Q . We may find a subinterval of (E j−1] E j) of this length losing at most a factor of
O(β2

·Q · log B) = O(R) in the auxiliary weight. To do so we apply the following technical
claim to the interval (E j−1] E j).

Claim 4.23 (Average argument for WA). For any interval I and any length 4 ≤ ` ≤ |I|, there
exists an interval J ⊆ I of length `, such that WA(J) ≥ Ω(1) · `

|I| ·WA(I).

The claim is proven at the end of this chapter. We apply this claim with ` set to
min{NA,NI} =

B2

(32·β)·Q . We may safely assume that ` ≥ 4 (otherwise B = O(β2) and we
may use, for example, the algorithm D-M constructed in Section 2.4.2 to achieve the
competitive ratio of O(B) = O(β2)). For A j we choose a singleton set containing the
interval found by Claim 4.23. Clearly, A j is narrow, and it holds that

∑
I∈A j

WA(I) =

Ω
(

1
R

)
·

1
B ·W j.

Construction for long diameters

In case of long diameters, finding a narrow set is more complicated, because each epoch
consists of multiple phases, and we cannot apply Claim 4.23 directly. In the following we
concentrate on an epoch E j and assume that it consists of κ :=

⌈
B2

D

⌉
phases P1,P2, . . . ,Pκ,

each of length D. Let P0 be the last phase of E j−1.

Proof of Lemma 4.14 for semi-long diameters. For such a choice of B, an epoch consists
of at most 64 · β2 phases. Not losing much, we may pick one phase with high auxiliary
weight and then use Claim 4.23 to shorten it to the desired length.

112 BM S

Formally, we choose a phase Pi ∈ E j, for which the value of WA(Pi−1]Pi) is maximized.
It follows from the average argument that there exists at least one phase, say P∗, for
which this value is at least 1

κ ·
∑

P∈E j
WA(Pprev] P) = Ω(1/β2) ·

∑
P∈E j

WA(Pprev] P). Later,
again by Claim 4.23, we may choose a subinterval I of phase P∗ of length at most
min{NA,NI} ≥

D
(32·β)2·Q losing at most a factor of O(β2

·Q). Thus, for this interval it holds
that

WA(I) = Ω
(

1
β4 ·Q

)
·

∑
P∈E j

WA(Pprev] P)

= Ω
(1
R

)
·

1
B
·W j

Moreover the singleton setA j := {I} is narrow, which finishes the proof.

Proof of Lemma 4.14 for long diameters. In this case the number of phases is at least
κ ≥ (64 · β)2. We proceed in three steps. In the first one we choose a contiguous subset
of phases {P0,P1, . . . ,Pκ}, such that the total length of this subsequence is smaller than
NA = B2/(32β)2. In the second step we choose disjoint intervals from this subset, each
consisting of exactly two phases. In the third, final step, using Claim 4.23, we shorten
each of these intervals from length 2·D to the lengthNI =

min{D,B2
}

(16·β)2·Q =
D

(16·β)2·Q . For each step
we carefully count the loss in the auxiliary weight, and prove that in total it diminishes
at most by a factor O(R).

First, we find a contiguous sequence of phases, such that the sum of auxiliary weights
of these phases is large. Divide phases of E j into disjoint chunks, each containing
bNA/Dc − 1 phases; the last chunk is possibly shorter. There are m = d κ

bNA/Dc−1e chunks.
Since NA is quite large, i.e., NA ≥ 4 · D, the rounding incurred by ceiling and floor
functions does not change the asymptotic value of m = Θ

(
1
β2

)
. It follows from the

average argument that there exists one chunk C, for which it holds that∑
Pi∈C

WA(Pi−1] Pi) ≥ Ω
(

1
β2

)
·

∑
Pi∈E j

WA(Pi−1] Pi) . (4.22)

Let C′ be a subset of C created by taking each second phase from C, in such a way that∑
Pi∈C′

WA(Pi−1] Pi) ≥
1
2
·

∑
Pi∈C

WA(Pi−1] Pi) . (4.23)

If C contains only one phase, then we choose C′ = C. As a consequence, each two phases
from C′ are separated by at least one phase not belonging to C′. Let

A
0
j := {(Pprev] P) : P ∈ C′} , (4.24)

4.3.2 P:   113

and thus A0
j is the set of disjoint intervals, each consisting of two phases. The union

of intervals from A0
j contains the whole chunk C (and possibly a phase preceding the

chunk C). On the other hand, A0
j is contained in the bNA/Dc consecutive phases, and

hence |span(A0
j)| ≤ NA. By the construction of A0

j , it follows immediately from (4.22),
(4.23), and (4.24) that

∑
I∈A0

j

WA(I) = Ω
(

1
β2

)
·

∑
Pi∈E j

WA(Pi−1] Pi)

= Ω

(
1
β2

)
·

1
B
·W j .

Since each interval from A0
j has length at most 2 · D, we can use Claim 4.23 to shorten

each I ∈ A0
j to length NI =

min{D,B2
}

(16β)2·Q =
D

(16β)2·Q losing additional factor of O(β2
·Q). LetA j

be the set of shortened intervals fromA0
j . ThenA j is narrow and

∑
I∈A j

WA(I) = Ω
(

1
β2 ·Q

)
·

∑
I∈A0

j

WA(I)

= Ω
(1
R

)
·

1
B
·W j ,

which finishes the construction.

4.3.2 Precondition: smooth movement

In this section we prove that with a constant probability within a narrow set a randomly
generated configuration sequence is smooth. In fact, the only property we use is that
the length of an considered interval is at most B2.

Proof of Lemma 4.19. Let ` = |span(A j)| ≤ B2. For any node v and any steps i, j within
span(A j), we define

Hv(i, j) :=
j∑

t=i+1

Zt(v) .

Then Hv(i, j) is an upper bound on the distance between the positions of v in steps i
and j. Hv(i, j) may be strictly greater than the actual distance, as it might exceed the half
of the ring diameter. Since E[Zv(t)] = 0, E[Hv(i, j)] = 0 as well. Moreover, since Zv(t) are
all independent, we can apply the Hoeffding bound [RPRR01] (see Appendix A.2) to

114 BM S

obtain

Pr
[
Hv(i, j) > β ·

√
j − i

]
≤ exp

−2 ·
(
β ·

√
j − i

)2∑ j
t=i+1 22


≤ e−β

2/2 .

We aim to bound the probability of the event that Hv(i, j) ≤ β ·
√

j − i holds for all nodes v
and all 1 ≤ i < j ≤ `. The probability of the complementary event can be bounded as
follows.

Pr [not smooth(span(A j))] ≤
∑
v∈V

∑
1≤i< j≤`

Pr
[
Hv(i, j) > β ·

√
j − i

]
≤ n ·

1
2
`2 · e−β

2/2

≤
1
2
· n · `2 ·

1
n · B4

≤
1
2
,

which finishes the proof.

4.3.3 Precondition: scattered nodes

Let A j be any narrow set lying inside (E j−1] E j) and let the configuration at the be-
ginning of E j−2 be any but fixed. The proof that nodes are (A j,Ω(1))-scattered at the
beginning of span(A j) consists of several stages. First, we specify a property of almost
uniform distribution of the nodes on the ring. Second, we show that for any fixed starting
configuration at the beginning ofE j−2, nodes at the beginning of span(A j) are almost uni-
formly distributed. Third, we show that if nodes are almost uniformly distributed, then
for a fixed interval I ∈ span(A j) nodes are I-scattered with a constant probability. Finally,
we show that it is (also with a constant probability) possible to extract a subset (with
intervals having high auxiliary weights), such that the nodes are scattered according to
all intervals from this subset. This will ultimately produce a proof of Lemma 4.20.

Convergence

First, we show that for any node configurationCt at the beginning ofE j−2, at the beginning
ofA j nodes are distributed almost uniformly on the ring. To define and prove it formally,
we introduce several definitions. Recall that X denotes our space, i.e., the discrete ring
of diameter B.

4.3.3 P:   115

Definition 4.24. By µ we denote a uniform probability distribution over all points from X.

Definition 4.25. A variation distance between two probability distributions ν1 and ν2 on X, is
defined as ‖ν1 − ν2‖ := maxA⊆X |ν1(A) − ν2(A)|.

Definition 4.26. LetD be the set of all probability distributions over the ring, whose variation
distance to the uniform distribution is at most 1/64. Any ν ∈ D we call an almost uniform
distribution.

The technical lemma below follows from the convergence rate of Markov chain in-
duced by the random walk (4.1).

Lemma 4.27. If a node v starts from any position xt(v) ∈ X at some step t, then its position after
k ≥ B2 steps is a random variable with an almost uniform probability distribution.

Proof. Fix a node v and its position xt(v) in step t. By νt+k we denote the probability
distribution over all possible positions of v in step t + k. The random walk performed
by v is isomorphic to a random walk on finite abelian group Z/(B), i.e., the integers
modulo B, with transition probabilities given by the following matrix P:

P(x, y) =

1/3 if y ∈ {x − 1, x, x + 1},

0 otherwise.
(4.25)

This random walk converges to the uniform distribution on Z/(B). Moreover, one may
construct an explicit bound on its convergence rate (see for example Rosenthal [Ros95]
or Appendix A.2). It holds that

‖νt+k − µ‖
2
≤

exp
(
−

4·π2

3·B2 · k
)

1 − exp
(
−

4·π2

3·B2 · k
) . (4.26)

For k ≥ B2, the numerator is at most e−
4
3π

2
< 2−13, and thus the denominator is greater

than 1/2. It implies that the whole fraction on the right hand side of the inequality is at
most 2−12, and thus the variation distance ‖νt+k − µ‖ ≤ 1/64.

As defined previously, the steps between the beginning of E j−2 and the beginning of
span(A j) a called mixing sequence (see Figure 4.2). Since the random walk of each node
is independent and the mixing sequence has length at least B2, we get the following.

Corollary 4.28. For any configuration of nodes at the beginning of E j−2, the position of each
node at the beginning of span(A j) is a random variable with an almost uniform distribution.
Moreover, all these random variables are independent. We denote such a situation by V ∼ D.

116 BM S

Scattered configurations

In this part we consider any single interval I from the narrow set A j. We show that if
the distribution of nodes on the ring is almost uniform, then with a constant probability
the configuration of nodes is I-scattered.

Lemma 4.29. Fix any interval I. If at some time step t holds V ∼ D, then the probability that
nodes are I-scattered is at least 1/7.

Proof. Since we focus on one interval, we omit I in the subscripts of weight functions,
i.e., we use w(·) and WA in place of wI(·) and WA(I), respectively.

In the following we construct a partition of ring into four segments, and prove that
with probability at least 1/7, both w(R1) and w(R3) are greater than 1

16 ·WA.
Let vmax be the node with the maximal weight in I. We fix the partition of the ring

into segments Ri in any manner, provided that vmax ∈ R1. Now, we can view the
process of randomly distributing the nodes as a process of throwing the remaining
nodes, independently, into four bins Ri. For any node v j, bin Ri is chosen with the
probability ν j(Ri), where ν j ∈ D. Thus, µ(Ri) − 1

64 ≤ ν j(Ri) ≤ µ(Ri) + 1
64 , where µ denotes

the uniform probability distribution overX. Let w′(Ri) be the weight accumulated in Ri,
not counting the weight of vmax. Then

15
64
·WA ≤ E[w′(Ri)] ≤

17
64
·WA . (4.27)

We proceed with the case analysis, depending on how heavy vmax is.

1. w(vmax) ≥W/16.

As vmax ∈ R1, in this case we already have that w(R1) ≥W/16. We have to assure only
that there is sufficient weight accumulated in R3. Achieving this with a constant
probability is not difficult, as the expected value of this weight is already a constant
fraction of WA. Formally, E[w′(R1)+w′(R2)+w′(R4)] ≤ 51

64 ·WA, and thus by applying
the Markov inequality [Fel68] (see Appendix A.2), it follows that

Pr
[
w′(R1) + w′(R2) + w′(R4) ≥

15
16
·WA

]
≤

17
20
.

Therefore, Pr[w′(R3) >WA/16] ≥ 3/20 > 1/7.

2. w(vmax) <W/16

4.3.3 P:   117

In this case the weight is distributed among many nodes, as for each node v different
from vmax it holds that w(v) < WA/15. Since the nodes choose their ring segment
independently, we can apply the Hoeffding bound [RPRR01] (see Appendix A.2),
to show that for each segment Ri, it holds that

Pr
[
w′(Ri) <

4
15
· E[w′(Ri)]

]
< exp

−2 ·
(

11
15 · E[w′(Ri)]

)2∑
v∈V\{vmax}

(w(v))2


≤ exp

− 2 ·
(

11
15 ·

15
64 ·WA

)2∑
v∈V\{vmax}

w(v) ·maxv∈V\{vmax}w(v)


< exp

− 121
2048 ·W

2
A

WA ·WA/15


< exp

(
−

1815
2048

)
.

It can be numerically checked that e−
1815
2048 < 3/7, and thus, by (4.27),

Pr[w′(Ri) <WA/16] < 3/7 .

Therefore the probability that w′(R1) ≥ WA/16 and w′(R3) ≥ WA/16 is at least
1 − 3/7 − 3/7 = 1/7.

Thus, in both cases the lemma holds.

Now we try to generalize the result to the whole sets of intervals. As for two (disjoint)
intervals I1, I2, events that nodes are I1-scattered and that they are I2-scattered may
be (and usually are) dependent, we cannot apply any standard concentration bounds.
However, for our needs a reasoning based on Markov inequality is sufficient.

Lemma 4.30. Fix any set S of k intervals {I1, I2, . . . , Ik}. If at some time step t holds V ∼ D,
then with probability 1/13 nodes are (S, 1

14)-scattered.

Proof. Choose randomly the positions of the nodes (each one independently according
to a probability distribution from D). For any interval Ii ∈ S, let Xi be the random
variable denoting whether nodes are Ii-scattered. Xi is defined as

Xi =

WA(Ii) if nodes are Ii-scattered

0 otherwise

By Lemma 4.29, E[Xi] ≥ 1
7 ·WA(Ii). We want to prove that, with probability at least 1/13,

it holds that
∑k

i=1 Xi ≥
1
14 ·

∑k
i=1 WA(Ii). To achieve this, we define variables Yi as

Yi =WA(Ii) − Xi .

118 BM S

Then E[Yi] ≤ 6
7 · WA(I). By Markov inequality (see Appendix A.2) and linearity of

expectation we obtain

Pr

 k∑
i=1

Xi ≤
1

14
·

k∑
i=1

WA(Ii)

 = Pr

 k∑
i=1

Yi ≥
13
14
·

k∑
i=1

WA(Ii)


≤

E
[∑

i Yi
]

13
14 ·

∑
i WA(Ii)

≤
12
13
,

and therefore the lemma follows.

Finally, we may combine the lemmas above to prove Lemma 4.20

Proof of Lemma 4.20. Fix any configuration at the beginning of E j−2 and any narrow set
A j belonging to (E j−1]E j). By Corollary 4.28, we get that at the beginning ofA j, it holds
that V ∼ D. Then, by applying Lemma 4.30 with t equal to the first step of span(A j), the
lemma immediately follows.

4.3.4 Proof of the Crucial Property

In this part show a lower bound for cost of any algorithm A in a narrow set A j,
provided that the nodes are (A j,Ω(1))-scattered and the movement of nodes within
span(A j) is smooth. We note that bounds of this section hold in the worst case, not only
in expectation. First, we concentrate on a single interval I ∈ A j. To lower-bound CALG(I)
we observe that if smooth(span(A j)) holds, then the smoothness of movement impose
a speed restriction, which creates a tradeoff: any algorithm either moves its page from
one point of X to another slowly, or it has to pay much. To formalize this observation
we need the following definition.

Definition 4.31 (Trails). Fix any algorithm A and any interval I. By a trail TALG(I) we
denote the sequence of points ofX, in which A had its page in interval I. Formally, the trail in
one step t, TALG(t), is defined as

• the position of the node PALG(t) if A does not move,

• the sequence of points on the shortest path between PALG(t) and P′ALG(t) if A moves.

The trail TALG(I) is just a concatenation of TALG(t) for all time steps t from I.

We present two lemmas, lower-bounding the costs of any algorithm which wants to
move along a constant fraction of the ring withing one interval from a narrow set A j.
These lemmas show a lower bound for long and short diameters, respectively.

4.3.4 P   C P 119

Lemma 4.32. Fix any time interval I of length ` ≤ NI and assume that B ≥
√

D. If smooth(I)
and A’s trail TALG(I) contains two points from X lying at the distance of at least B/8, then

CALG(I) = Ω(1/Q) ·D · B .

Proof. We prove that A has to pay at leastΩ(1/Q) ·D · B just for moving its page. We
group time steps of I into a sequence of m stages. In the i-th stage, A remains in one
node denoted by wi, for some number (denoted by Xi) of steps an then jumps to node
wi+1, along a distance Yi. In the last stage, A possibly does not jump. This defines
three sequences (wi)m

i=1, (Xi)m
i=1, and (Yi)m

i=1. Obviously,
∑m

i=1 Xi = `.
Since we charge A only for jumps, we may assume that all wi are different, i.e.,

m ≤ n. A’s cost for moving the page in I is at least

Cmove
ALG (I) ≥

m−1∑
i=1

D · (Yi + 1)

 +D · Ym

= D · (m − 1) +D ·
m∑

i=1

Yi .

As B ≥
√

D, we have Q0 = min{
√

D/B,n} and thus Q = max{1,min{
√

D/B,n}}. We
consider two cases.

1. Amakes many jumps, i.e., m ≥ B·
√

B
√

D
. Then even if we charge it only D for a single

jump, the cost of Awould be high.

Since m ≤ n, n ≥ B·
√

B
√

D
≥
√

D/B, and thus

Cmove
ALG (I) ≥ Ω(D ·m)

= Ω
(
D · B/

√
D/B

)
= Ω

(
max

{
1

√
D/B
,

1
n

})
·D · B

= Ω(1/Q0) ·D · B .

2. Amakes small number of jumps, i.e., m < B·
√

B
√

D
. Then we prove that some of this

jumps have to be far, as the possibilities of using nodes movement to move from
one point of the ring to another are limited.

From the definition of a smooth configuration sequence follows that a node wi can
cover only a distance of β ·

√
Xi. Therefore, the total distance covered by A is at

most
∑m

i=1

(
β ·
√

Xi

)
+

∑m
i=1 Yi, which, from the lemma assumption, is at least B/8.

We can bound the term
∑m

i=1

√
Xi using the following argument.

120 BM S

Since
∑m

i=1 Xi = `, we may apply the Cauchy-Schwarz inequality [HLP88] (see
Appendix A.2) for the sequences (

√
Xi)m

i=1 and (1)m
i=1 to get that

∑m
i=1

√
Xi ≤

√
m · `.

This actually shows that it would be optimal for the algorithm, if all Xi had the
same length. To bound m · ` we use

` ≤ NI ≤
min

{
D,B2}

(16β)2 ·max
{
1,min

{√
D/B,n

}}
and consider two cases.

• If n ≥
√

D/B, then

m · ` ≤
B ·
√

B
√

D
·

D
(16 · β)2 ·max{1,

√
D/B}

≤
B2

(16 · β)2 .

• If n <
√

D/B, then

m · ` ≤ n ·
B2

(16 · β)2 · n

=
B2

(16 · β)2 .

Therefore in either case m · ` ≤ B2

(16·β)2 , which implies
∑m

i=1 Yi ≥
B
8 − β ·

√
m · ` = B

16 .
Hence, we get Cmove

ALG (I) ≥ D ·
∑m

i=1 Yi = Ω(D · B).

Thus, in either case we obtain that Cmove
ALG (I) = Ω(min{1/Q0, 1}) ·D · B = Ω(1/Q) ·D · B.

Lemma 4.33. Fix any time interval I of length ` ≤ NI and assume that B ≤
√

D. If smooth(I)
and A’s trail TALG(I) contains two points from X lying at the distance of at least B/8, then

CALG(I) = Ω(1/Q) ·D · B .

Proof. In this lemma we again bound the cost incurred by page movement only. We
take the division into m stages and the definition of sequences (wi)m

i=1, (Xi)m
i=1 and (Yi)m

i=1

from the previous lemma. As B ≤
√

D, we get Q0 = min{
√

B,n}, and thus Q = Q0. We
apply the reasoning similar to the one from the previous proof, and consider two cases

1. m ≥
√

B. In this case, Cmove
ALG (I) = Ω(D ·

√
B) = Ω(1/Q) ·D · B.

4.3.4 P   C P 121

R2R4

R1

R3

R′i sets

R′′1 and R′′3 sets

Figure 4.3: Changes in ring partitioning

2. m ≤
√

B. To get that the cost of A isΩ(D ·B), it is again sufficient that
√

m · ` ≤ B
16·β .

This follows easily, as

m · ` ≤ min
{√

B,n
}
·

B2

(16 · β)2 ·Q

=
B2

(16 · β)2 .

Hence, in either case we obtain that Cmove
ALG (I) = Ω(1/Q) ·D · B.

On the other hand, it can be proven that if nodes are I-distributed, then any algorithm
either moves along long distances of it has to pay much for serving requests. As we
observed in the two lemmas above, the former case incurs a high cost if the length of I
is short. These observations create a basis for the next lemma.

Lemma 4.34. Fix any algorithm A and any interval I from a narrow setA j. Assume that at
the beginning of span(A j) the nodes are I-scattered and the configuration sequence in span(A j)
is smooth. Then it holds that

CALG(I) = Ω(B ·WA(I)) .

Proof. Since the nodes are I-scattered, it is possible to partition the ring into four seg-
ments R1, R2, R3, R4 (see Figure 4.3), such that wI(R1),wI(R3) ≥ WA(I)/16. In the picture,
the segments Ri are drawn not proportionally, although they all contain B/4 points.
Intuitively, since the configuration sequence in span(A j) is smooth, this partition is ap-
proximately preserved within the whole span(A j), and thus in I. Formally, we define
segments R′1, R′2, R′3, R′4, R′′1 , and R′′3 as shown in Figure 4.3 and described below.

• R′1 (or respectively R′3) has R1 (or R3) in its center and contains B/4+ 2 ·B/32 points.

122 BM S

• R′′1 (or respectively R′′3) has R1 (or R3) in its center and contains B/4+2 ·B/16 points.

• R′2 (or respectively R′4) is located in the center of R2 (or R4) and contains B/8 points.

It follows from these definitions that each pair of points from different R′i sets is separated
by a distance at least B/32. Additionally, R′′1 , R′2, R′′3 and R′4 create a partition of the whole
ring.

Since the configuration sequence in I is smooth, each node initially placed in R1 (or
respectively in R3) can move by at most β ·

√
|span(A j)| ≤ B/32, and thus remains within

the set R′1 (or R′3) during the whole span(A j). This means that the number of requests
issued in I at points from R′1 (or R′3) is at least wI(R1) ≥WA(I)/16.

Now, we claim that A has essentially four options. It either remains in (R′′1]R′2]R′4),
remains in (R′′3]R′2]R′4), or its trail has to contain either all the points from R′2 or all the
points from R′4. We consider two cases, the other two are symmetric.

1. A remains in (R′′1] R′2] R′4) for the whole interval I. Then it has to pay at least
B/32 for each of the requests issued at the points from R′3, i.e., for at least WA(I)/16
requests. Thus, CALG(I) = Ω(B ·WA(I)).

2. The trail of A’s page contains all the points from segment R′2. Since |I| ≤ NI,
we can apply Lemma 4.32 or Lemma 4.33 (depending on whether B is greater or
smaller than

√
D) to get CALG(I) = Ω(1/Q) ·D · B.

Summing up, CALG(I) = Ω(B·min{D/Q,WA(I)}). Since the length of I is at mostNI < D/Q,
we finally get CALG(I) = Ω(B ·WA(I)).

A proof of the Crucial Property is an easy consequence of the lemma above.

Proof of Lemma 4.22 (Crucial Property). Since at the beginning of span(A j) nodes are
(A j, c)-scattered, there exists a subsetA′j, such that

∑
I∈A′j

WA(I) ≥ c ·
∑
I∈A j

WA(I) ,

and the nodes at the beginning of span(A j) are I-scattered for all I ∈ A′j. By Lemma 4.34,
there exists a constant, which we denote by b3, such that for any I ∈ A′j it holds that

4.4 E   123

CALG(I) ≥ b3 · B ·WA(I). Since all intervals fromA′j are disjoint, we obtain

CALG(A j) ≥ CALG(A′j)

=
∑
I∈A′j

CALG(I)

≥

∑
I∈A′j

b3 · B ·WA(I)

≥

∑
I∈A j

c · b3 · B ·WA(I) .

This finishes the proof.

4.4 Extensions and conclusions

In this section we conclude with some possible extensions and open questions.

Extension to a multi-dimensional case

We may extend the definition of the scenario to the case, where our space X is not
a ring but a linear array (this is equivalent to having one edge of the ring removed).
Note that for the cost of serving requests by M, this transformation of the scenario
does not change anything, since we already assumed that the cost of communication is
the highest possible, i.e., B for each request. Also the probability that two nodes meet
during the migration sequence changes at most by a constant. For bounding the cost of
the optimal algorithm, we are still able to assure that in Θ(B2) steps the random walk
converges to almost uniform distribution on such an array. The division of the ring into
four segments can be mapped into the division of an array (one segment is possibly split
into two parts but this does not affect our argument). Since our lower bound on Odoes
not depend on particular properties of the random walk, but only on the precondition
of smooth configuration sequence, M is competitive also on a linear array.

We may also extend our scenario to the case whereX is a d-dimensional torus or mesh,
with d > 1. In that case, each node performs a random walk, which is a superposition of
independent random walks in each dimension, each defined by (4.1). A two-dimensional
example is presented in Figure 4.4; each of the 9 new possible node’s positions has the
same probability. The metric chosen for such a mesh could be either the Euclidean
distance or the city metric (sum of distances in each dimension).

124 BM S

1/9

1/9 1/9

1/9

1/9

1/9

1/9

1/9

1/9

Figure 4.4: Random walk in two dimensions

It appears that for B ≥
√

D we are able to guarantee a competitive ratio which is
at most O(d · R). To prove this, it is sufficient to note that in our proofs for M we
always assumed the worst possible bound on the communication cost, B. This bound
increases now to at most d · B (or

√
d · B for the Euclidean metric). On the other hand,

for constructing a lower bound for O we may assume that communication along all
the dimensions but the first one is free. This shows that the lower bound on cost of O
derived for the one-dimensional case still applies.

Open problems

In this chapter we presented an Õ(min{ 4√D,n}) algorithm for the case B ≥ 3√D. One
of the possible research opportunities is to develop an algorithm which works also for
the remaining, smallest diameters. We conjecture that it is possible to find an algorithm
which in expectation performs better than the trivial O(B)-competitive algorithm D-M
(see Section 2.4.2).

In our analysis, we lost a factor of Θ(Q) because the optimal algorithm was able
to use its clairvoyance to exploit the nodes movement to transport its page from one
point of the space to another paying less than D · B (or at least we were not able to
show that it is not the case). If we assume that the height of the competitive ratio is
not the deficiency of our analysis, it might be interesting to look for another models of
mobility, where the algorithm would have more knowledge about the future movement
of nodes. In particular, the random waypoint model (see [CBD02]), where each node
picks randomly a destination and then goes there with a constant speed, seems to be
a promising direction of the further research.

4.5 Proofs of technical claims

Proof of Claim 4.23. In the following we prove that for each 4 ≤ `′ ≤ |I|/3 we can find
a subinterval J ⊆ I, such that |J| = `′ and WA(J) ≥ 1

6 ·
`′

|I| ·WA(I). Therefore, if ` ≤ |I|/3,

4.5 P    125

then the lemma follows. Otherwise, we can choose any interval J′ containing found
interval J, such that |J′| = `. Then

WA(J′) ≥WA(J) ≥
1
6
·
`′

|I|
·WA(I) ≥

1
18
·
`
|I|
·WA(I) ,

and the lemma follows.
Thus, in the following we assume that `′ ≤ |I|/3. Let vmax be the heaviest node in I. We

may assume that wI(vmax) < |I|, otherwise the lemma follows trivially. We number time
steps within I from 1 to |I|. For all 1 ≤ i ≤ |I| − `′ + 1, we define Ji as the subinterval of I,
of length `′, starting at time step i. Let q and r be defined as a unique integer solution of
|I| = q · `′ + r, where 0 ≤ r < `′. We know that q ≥ 3.

Since any two values from the sequence wJ1(v),wJ2(v), . . . ,wJ|I|−`′+1(v) can differ by at
most 1, the following fact, which we call a continuity property, follows. Fix any node v. If
there exist Ja and Jb, such that ka ≤ wJa(v), and wJb(v) ≤ kb, and there is at least one integer
in the interval [ka, kb], then there exists Jc, such that wJc(v) ∈ [ka, kb].

We use the continuity property to prove the lemma. We consider two cases.

1. If wI(vmax) ≥ 5
8 · |I|, then for the sake of this case we treat all the nodes except vmax as

one node vc
max, and thus wI(vc

max) ≤ 3
8 · |I|. We prove that there exists an interval Jc

of length `′, such that wJc(v) ∈
[

1
2 ·
`′

|I| · wI(vc
max), `′/2

]
. In such an interval vmax is the

heaviest node, and thus WA(Jc) = wJc(v) ≥ 1
2 ·
`′

|I| ·WA(I). To prove the existence of Jc

we use the continuity property, and thus we have to assure that the following three
conditions are met.

• There exists an interval Jb, such that wJb(v
c
max) ≤ `′/2. From the relaxed

average argument (see Lemma 4.35 below) follows the existence of Jb, such
that wJb(v

c
max) ≤ 4

3 ·
`′

|I| · wI(vc
max) ≤ `′/2.

• There exists an interval Ja, such that wJa(vc
max) ≥ 1

2 ·
`′

|I| · wI(vc
max). We consider

two cases. If `
′

|I| ·wI(vc
max) < 2, then for Ja we may choose any interval in which

there is one request not at vmax. Then wJa(vc
max) ≥ 1 ≥ 1

2 ·
`′

|I| ·wI(vc
max). Otherwise,

we have `
′

|I| · wI(vc
max) ≥ 2, in which case by the relaxed average argument (see

Lemma 4.35 below), wJa(vc
max) ≥ 3

4 ·
`′

|I| · wI(vc
max) ≥ 1

2 ·
`′

|I| · wI(vc
max).

• The interval
[

1
2 ·
`′

|I| · wI(vc
max), `′/2

]
contains at least one integer. This follows

since wI(vc
max) ≤ 3

8 · |I| and `′ ≥ 4.

2. If wI(vmax) < 5
8 · |I|, then we prove that there exists an interval J, such that WA(J) ≥

`′/6. This obviously implies that WA(J) ≥ 1
6 ·
`′

|I| ·WA(I).

126 BM S

By vmax(i) we denote the heaviest node in Ji (with ties broken arbitrarily). If
there exists an interval Ji such that wJi(vmax(i)) ≤ 5

6 · `
′, then WA(Ji) ≥ `′/6 and

the lemma holds. Assume the contrary, i.e., wJi(vmax(i)) > 5
6 · `

′ for all i. Note
that all vmax(i) cannot be the same node, because the relaxed sum argument (see
Lemma 4.35 below) would imply wI(vmax) > 3

4 ·
5
6 · |I| =

5
8 · |I|. Therefore, there exist

two consecutive intervals Ji and Ji+1, such that vmax(i) . vmax(i + 1). Consider their
overlap Ji ∩ Ji+1. The weights of both vmax(i) and vmax(i + 1) in this interval are at
least 5

6`
′
− 1, and therefore, the total weight accumulated in Ji ∩ Ji+1 is 2 · (5

6`
′
− 1).

But the length of Ji ∩ Ji+1 is `′ − 1, which implies `′ ≤ 3
2 , a contradiction.

Therefore, in either of the two cases above, we are able to find an interval J, which has
the desired auxiliary weight of at least 1

6 ·
`′

|I| ·WA(I).

Lemma 4.35 (Relaxed Sum and Average Argument). Let f be any real valued function
defined on a sequence S = (s1, s2, . . . , s`) of length `. We extend f to any subset X ⊆ S, i.e.,
f (X) =

∑
si∈X f (si). By a subsequence of S we mean a contiguous subsequence of S. Let `′ ≤ `

be any integer and let q := b`/`′c ≥ 1. For all 1 ≤ i ≤ ` − `′ + 1, let Si := (si, si+1, . . . , si+`−1). Si

are all possible subsequences of length `′. Then it holds that

(i) (Sum) If all f (Si) > k for some k, then f (S) > q · k.

(ii) (Lower Average) There exists a subsequence Slow ⊆ S of length `′, such that

f (Slow) ≤
q + 1

q
·
`′

`
· f (S) .

(iii) (Upper Average) There exists a subsequence Sup ⊆ S of length `′, such that

f (Sup) ≥
q

q + 1
·
`′

`
· f (S) .

Proof. We consider a set of subintervals {Ti}
q
i=0, where Ti := S1+i·`′ for 0 ≤ i < q, and

Tq := S`−`′+1.

• For proving the relaxed sum argument we note that Ti are disjoint for all 0 ≤ i < q,
and thus f (S) ≥

∑q−1
i=0 f (Ti) > q · k.

• For relaxed average arguments, assume that for all 0 ≤ i ≤ q it holds that f (Ti) <
q

q+1 ·
`′

` ·

f (S). Since
⋃q

i=0 Ti covers the whole S, f (S) ≤
∑q

i=0 f (Ti) < (q+1) · q
q+1 ·

`′

` · f (S) ≤ f (S),

which is a contradiction. Similarly, assume that for all Si it holds that f (Si) >
q+1

q ·

`′

` · f (S). Then from the relaxed sum argument we have f (S) > (q+1) · `
′

` · f (S) > f (S),
which is also a contradiction.

4.5 P    127

Note that since q ≥ 1, for any `′ we can find Slow and Sup, such that f (Slow) ≤ 2 · `
′

` · f (S)
and f (Sup) ≥ 1

2 ·
`′

` · f (S).

Proof of Lemma 4.8. For any i, we define Zi as a random variable onΩi. For anyωi ∈ Ωi,
let

Zi(ωi) := max
(ω′1,ω

′

2,...,ω
′

i−1,ω
′

i+1,...,ω
′
n)∈Ω1×Ω2×...×Ωi−1×Ωi+1×...×Ωn

{Xi(ω′1, ω
′

2, . . . , ω
′

i−1, ωi, ω
′

i+1, . . . , ω
′

n) } .

Since Yi stochastically dominates Xi with respect to Ωi, it also stochastically dominates
variable Zi. Moreover, all Zi are independent, and thus

∑n
i=1 Yi stochastically dom-

inates
∑n

i=1 Zi. It remains to show that
∑n

i=1 Zi stochastically dominates
∑n

i=1 Xi. In
fact, we may even show that

∑n
i=1 Zi is greater than

∑n
i=1 Xi for any random choice of

ω = (ω1, ω2, . . . , ωn) ∈ Ω1 ×Ω2 × . . . ×Ωn. For any such ω it holds that n∑
i=1

Zi

 (ω) =
n∑

i=1

Zi(ω)

=

n∑
i=1

Zi(ωi)

≥

n∑
i=1

Xi(ω)

=

 n∑
i=1

Xi

 (ω) .

This finishes the proof.

C       5

Stochastic Requests Scenario

In this chapter we consider a scenario symmetric to the Brownian motion one. We as-
sume that the network mobility is adversarial, but the requests are generated randomly
by a stochastic process. In each step the processor issuing the request is chosen indepen-
dently at random, according to some fixed probability distribution π. This is a natural
situation, if we know that the mobile nodes’ accesses to the page appear periodically
with some given frequencies.

In this scenario we generalize the cost function to

ct(va, vb) =

[dt(va, vb)]
α + 1 if va . vb

0 if va ≡ vb
(5.1)

for any integer exponent α. This make sense, if the nodes are mobile stations communi-
cating by means of radio with adjustable transmission power, and we choose α to be the
propagation exponent of the medium (for example equal to 2 for an ideally free space,
see [Rap96]). In such a case, the communication cost between two nodes defined by
(5.1) is proportional to the energy required to send a message. Then the DPM problem’s
objective becomes equivalent to minimizing the total energy consumption in the system,
which consists of mobile stations moving with a constant speed.

Scenario definition

Formally, we construct the stochastic requests scenario of the DPM problem as follows.
First, the whole configuration sequence (Ct)t, including the initial configuration C0, is
created by the δ-restricted network adversary, for some constant δ. The request adver-
sary chooses the probability distribution over all indices of the nodes π : [n]→ (0, 1).
(Later we show how to extend our argument to handle distributions π : [n]→ [0, 1]). In
time step t ≥ 1 the following happens.

129

130 S R S

1. The positions of the nodes in this time step are defined by Ct.

2. A request is generated randomly, i.e., σt is chosen randomly according to the
distribution π and node vσt issues a request. For clarity, we abuse the notation and
write node σt instead of node vσt .

In the remaining part of the time step t, we incorporate the casual model of the DPM,
i.e., the algorithm has to serve the request, and it may optionally move the page.

Performance metric

As in the previous chapter, to analyze the performance in the stochastic requests scenario,
we adapt classical competitive analysis [ST85, BE98] for the model where the input
sequence is created both by the adversary and the stochastic process. We say that an
algorithm A achieves competitive ratio R (or is R-competitive) with probability p,
if there exists an integer Tmin, such that for all configuration sequences (Ct)t of length
T ≥ Tmin and all probability distributions π, it holds that

Pr(σt)t

[
CALG((Ct, σt)t) ≤ R · COPT((Ct, σt)t)

]
≥ p , (5.2)

where CALG((Ct, σt)t) and COPT((Ct, σt)t) are costs of A and the optimal offline algo-
rithm, respectively. The probability is taken over all possible random choices made for
generating sequence (σt).

Similarly to the previous chapter, we define an additional notion of an expected
competitive ratio. We say that an algorithm achieves an expected competitive ratio of
R (or is R-competitive in expectation), if there exists an integer Tmin, such that for all
sequences (Ct)t of length T ≥ Tmin and all π, it holds that

E(σt)t

[
CALG((Ct, σt)t)
COPT((Ct, σt)t)

]
≤ R . (5.3)

To be consistent with the previous definition, we assume that the ratio is 1, if both
CALG((Ct, σt)t) and COPT((Ct, σt)t) are equal to 0. However, we do not permit situations
where COPT((Ct, σt)t) = 0 , CALG((Ct, σt)t).

In the Brownian motion scenario, we were able to always guarantee that in the worst
case the cost of the algorithm was at most O(B) times more than its expected cost. Note
that in the stochastic scenario the maximum extent of the network might be unbounded.
This means that the competitive ratioR achieved with high probability does not directly
imply the expected competitive ratio O(R), since the former notion does not explicitly
exclude inputs, on which the competitive ratio is very large or even infinite.

5.1 L       131

Results

In Section 5.2 we design and analyze a deterministic algorithm M-T-F-R
(M) for the DPM problem. We prove that in the stochastic requests scenario, its
competitiveness is constant1 with high probability, for any constant-restricted network
adversary. In this context, high probability means that for any constant γwe can achieve
probability 1 −O(D−γ) if the input sequence is sufficiently long. Additionally, we prove
that in the worst case (occurring with negligible probability) the competitive ratio of
M is finite. These results assure that the performance of M stabilizes with time,
and additionally allows us to conclude that in expectation its competitive ratio is also
constant. The achieved competitiveness is strict, i.e., the additive constant A in the
definition of the algorithm’s cost (see (1.8) on page 10) is zero.

To show that the model does not become trivial, when we generalize the cost function
(i.e., for α > 1), in the next section we present a lower bound ofΩ(min{D

α
α+1 , λα}), which

holds in the adversarial model even for two-node networks and oblivious adversaries.

5.1 Lower bound for the extended cost model

In this subsection we go back for a while to the adversarial scenario and we consider it
with the generalized cost function. We prove that even against an oblivious adversary
the lower bound on the competitive ratio of any algorithm is at least Ω(min{D

α
α+1 , λα}).

The construction is a slight reformulation of the lower bound for two-node networks
presented in Section 2.3.2.

Again, we resort to Yao min-max principle, and construct a probability distribution,
such that any deterministic online algorithm has a high cost (compared to an optimal
cost) on a randomly chosen input. The construction works for two-node networks. For
larger networks, the adversary can give requests only at v1 and v2, and put the other
nodes exactly in the same point of space X as v1. Then, for any algorithm A that uses
these additional nodes, there exists an algorithm A′ which uses v1 instead, and has
cost at most as large as A.

The construction divides time into phases, each phase consisting of an expanding
part (Bexp steps), a main part (D steps), and a contracting part (Bexp steps), exactly as
it was done in the construction of Section 2.3.2 and in Figure 2.3 on page 24. The
construction of requests is also identical to that one, i.e., all requests in the expanding
part are at v1, in contracting part at v2, and the requesting node for the whole main part
is chosen uniformly at random from {v1, v2}. The only difference between the original
construction is that we now choose Bexp = min{D

1
α+1 , λ}.

1 This constant depends on α, but we assume that α is constant for all practical applications.

132 S R S

In the similar manner as in the proof presented in Section 2.3.2, we may show the
following lemma.

Lemma 5.1. Let P be a phase, randomly generated as described above. Then for any deterministic
algorithm D for the DPM problem,

EP[CDET(P)] ≥ Ω(Bαexp) · EP[COPT(P)] ,

where the expectation is taken over possible random choices of P.

Proof. The optimal offline algorithm may move at the beginning of the phase (paying D)
not to pay anything in the main part. Additionally, O has to pay

∑Bexp−1
t=0 (tα + 1) =

Θ((Bexp)α+1) = Θ(D) for serving all the requests either in the expanding part or in the
contracting part. Therefore, in total, COPT(P) = Θ(D).

On the other hand, a deterministic online algorithm D has to decide in the last step
of the expanding part whether to end this step at node v1 or v2. Independently of D’s
choice, with probability 1/2, all the next D requests in the main part are given at the
opposite node. In that case, if Dmoves the page within the main part, then it pays at
least D · (Bαexp + 1) for moving the page. Otherwise, it pays D · (Bαexp + 1) for serving the
requests during this part. Thus, the expected cost of D in P is at least 1

2 ·D · B
α
exp.

Comparing these two bound completes the proof.

By generating sufficiently many phases we may use the lemma above to prove a lower
bound on any randomized algorithm in the extended cost model.

Theorem 5.2. Consider any randomized algorithm Awhich is c-competitive against an obliv-
ious adversary in the adversarial scenario of the DPM problem with generalized cost function.
Then c = Ω(min{D

α
α+1 , λα}), where λ is the maximal extent of the network, and α is the integer

exponent in the cost function.

Proof. By constructing sufficiently many random phases, we may achieve an arbitrarily
high cost on O. Thus, by using linearity of expectation and applying the Yao min-max
principle to the result of the lemma above, the theorem follows.

5.2 Algorithm MTFR

In this section we present a deterministic algorithm M, which, on sufficiently long
input sequences, achieves a constant competitive ratio in expectation and with high
probability.

5.2 AM 133

Before we formally specify the algorithm, we try to give an informal description of
its desired properties. Assume that the algorithm knows the probability distribution π
beforehand. This assumption makes sense, as on the long run, the algorithm may
learn π, or at least approximate this distribution with an arbitrarily high accuracy. Then
the algorithm may choose a node v∗ that has the highest chance of being picked as the
requesting node, i.e., a node vi, such that π(i) is maximized. The algorithm moves to v∗

at the very beginning, and remains there for the whole request sequence.
The adversary could easily construct a hard input instance, i.e., a distribution π and

the configuration sequence (Ct)t, such that if the request sequence (σt)t is generated
randomly according to π, the algorithm above has a competitive ratio of at least Ω(n).
Briefly, a node v1 has probability of being chosen set to π(1) = 2

n , and the remaining
probability is equally distributed among other nodes. Moreover, the remaining nodes
occupy one point of the space, while v1 is placed at the distance s from them. Then
a randomly generated request, in expectation, incurs cost (1 − π(1)) · s = Ω(s) on our
algorithm, while the expected cost of an algorithm which remains for the whole input
sequence at v2 would be at most π(1) · s + (1 − π(1)) · 1 = Ω(s/n + 1). By choosing a large
s, the expected competitive ratio of the algorithm remaining at v1 would be Ω(n).

While developing algorithms, which try to recognize clusters of nodes having large
probabilities π(i) of being chosen, and then moving to these clusters might be tempting,
there exists a much simpler approach. Although we want our algorithm to be determin-
istic, we may use the random bits delivered with the request stream (σt)t. This allows us
to choose a node v∗ randomly according to the probability distribution π and then move
to v∗. However, if we do this only once for the whole input sequence, we may prove
that the competitive ratio is low in expectation, but we have no chance to guarantee it
with high probability. Thus, the solution would be to choose a new node v∗ from time
to time, move to v∗ and remain there for some number of steps. We have to choose
carefully the number of steps between two movements, because when the time interval
between them is too short, the algorithm may suffer from high costs of frequent page
movements.

Additionally, we note that we do not have to learn the distribution π to be able to
choose nodes according to this distribution, because the request adversary does this job
for us, choosing σt for each step independently, with the distributionπ. This construction
rationale is formalized below.

The algorithm

Let M be a deterministic algorithm which divides time steps into phases of length
` := Dα+1. Without loss of generality, we may assume that D is even, and so is `. In the
first step of each phase, after serving a request, Mmoves the page to the node which

134 S R S

issued a request. In this and the next two subsections we aim to prove the following
theorem.

Theorem 5.3. M is O(1)-competitive, with high probability, in the stochastic requests sce-
nario of the DPM.

Let us introduce some notation. Let πmin = mini {π(i)}. Let

Tγ = mγ · ` , (5.4)

for

mγ =
(
cT · γ ·

ln D
π2

min

)α+1

·

(2 · `
α

)α
, (5.5)

where cT is a constant, which will be specified later. In the following, we prove that
M is O(1)-competitive with probability 1−O (D−γ) if run for T ≥ Tγ time steps. Later,
we prove that on inputs of length T ≥ T(α+1)2 , M achieves expected competitive ratio
of O(1).

The brief idea of the proof of Theorem 5.3 is as follows. We consider an input
sequence I of length T. By P we denote a set of all finished phases of I, i.e., phases of
length `. At the end of Iwe might also have one unfinished phase; we denote it by plast.
This way I = (

⊎
p∈P p)] plast.

For clarity, the proof was divided into subsections. In this subsection, we show some
general relations concerning the algorithm M, and we define Kp as the average cost
of communication in phase p. In Section 5.2.1 we show an Ω(

∑
p∈PKp) lower bound on

the cost of O, which holds with probability 1 − O(D−γ) on input sequences of length
at least Tγ. In Section 5.2.2 we show an analogous upper bound of O(

∑
p∈PKp) for the

cost of M, holding also with probability 1 − O(D−γ). Clearly, combining these two
results yields a constant factor gap between costs of M and O, which holds with
high probability.

We prove a constant competitiveness against a 1
2·α -restricted network adversary. The

proof for any constant-restricted network adversary follows from the Reduction Lemma
presented in Section 2.2. Note that since the adversary is 1

2·α -restricted, the distance
between any two nodes can change only by at most 1/α ≤ 1 per round.

Skewed Triangle Inequality

A property that we heavily exploited in the analysis of the algorithms for the adversarial
scenario was the triangle inequality. For the case α = 1, it holds not only for the
distances, but also for the costs of communication. It appears that up to a constant factor
(depending on α), it holds also for α > 1. In particular, we are able to prove the following
lemma.

5.2 AM 135

Lemma 5.4 (Skewed Triangle Inequality). For any sequence of k + 1 nodes vi1 , vi2 , . . . , vik+1

and any time step t it holds that

k∑
j=1

ct(vi j , vi j+1) ≥
1

kα−1 · ct(vi1 , vik+1) .

Note that for k = 1 and α = 1 this describes the casual triangle inequality on non-
generalized cost function. To prove it, we first introduce a technical claim, based on
Hölder’s Inequality [HLP88] (see Appendix A.2) and proven at the end of this chapter.

Claim 5.5. For any sequence of k non-negative numbers a1, a2, . . . , ak and any integer s ≥ 1, it
holds that ∑

i

ai

s

≤

∑
i

as
i

 · ks−1 .

In the remaining part of this chapter, we mark the inequalities which follow from this
claim with (H)

≤ .

Proof of Lemma 5.4. If vi1 ≡ vik+1 , then ct(vi1 , vik+1) = 0, and thus the inequality follows
trivially. Otherwise, there exists j ∈ {1, . . . , k}, such that vi j . vi j+1 , i.e., ct(vi j , vi j+1) =
1 + [dt(vi j , vi j+1)]

α. In this case,

k∑
j=1

ct(vi j , vi j+1) ≥ 1 +
k∑

j=1

[
dt(vi j , vi j+1)

]α
(H)
≥ 1 +

1
kα−1 ·

 k∑
j=1

dt(vi j , vi j+1)


α

≥ 1 +
1

kα−1 ·
[
dt(vi1 , vik+1)

]α
≥

1
kα−1 · ct(vi1 , vik+1) .

This concludes the proof.

General relations

Let Kt be the average cost of sending a unit of data between two nodes in time step t, i.e.,

Kt :=
n∑

i=1

n∑
j=1

π(i) · π(j) · ct(vi, v j) . (5.6)

136 S R S

Kt is the cost of communication between two nodes chosen randomly with distributionπ.
We note that some of the terms contributing to the average cost Kt are always 0, because
we counted also the nodes sending data to themselves. Therefore, we have

Kt =
∑

i

∑
j

π(i) · π(j) · ct(vi, v j)

=
∑

i

π(i)2
· ct(vi, vi)︸ ︷︷ ︸

=0

+
∑

i

∑
j,i

π(i) · π(j) · (1 + dαt (vi, v j)) .

Let β =
∑

i
∑

j,i π(i)π(j). It follows that Kt ≥ β for any time step t. For the further
considerations we need to relate the Kt values in any two consecutive steps. Let kt =
α
√

Kt/β, i.e.,

Kt = β · kαt . (5.7)

In a sense, kt behaves like an average distance occurring between the nodes.2 In particular,
the following claim can be proven by means of the Jensen’s Inequality [HLP88] (see
Section 5.4 for the proof).

Claim 5.6. For all t, kt ≥ 1, and |kt+1 − kt| ≤ 1/α.

As an immediate consequence we get

Kt+1

Kt
≤

(
kt +

1
α

)α
kαt

≤

(
1 +

1
α

)α
≤ e . (5.8)

The same holds for the quotient of costs of communication between any pair of nodes
in two consecutive steps, i.e., for any va and vb it holds that

ct+1(va, vb)
ct(va, vb)

≤ e . (5.9)

Let cmax
t be the maximum cost of communication between two nodes in time step t.

We may also establish a relation between the average and the worst-case cost of com-
munication in any round t, in essence showing that they may differ by at most O(πmin).

Lemma 5.7. For any time step t, it holds that

Kt ≥ Ω(1) · πmin · cmax
t .

2 If we chose Kt = β · (1 + kαt), then kt would be α-power weighted mean of the distances occurring in the
network. However for our considerations, the form presented in (5.7) is more convenient.

5.2 AM 137

Proof. Fix any time step t. Without loss of generality we can assume that the largest
communication cost occurs between the nodes v1 and v2, i.e., ct(v1, v2) = cmax

t . Then we
have

Kt =
∑

i

∑
j

π(i) · π(j) · ct(vi, v j)

≥ π(1)π(2)ct(v1, v2) + π(2)π(1)ct(v2, v1) +
n∑

i=3

[π(i)π(1)ct(v1, vi) + π(i)π(2)ct(vi, v2)]

≥ π(1) · πmin · ct(v1, v2) + π(2) · πmin · ct(v1, v2) +
n∑

i=3

π(i) · πmin · [ct(vi, v1) + ct(vi, v2)]

By Lemma 5.4, ct(v1, vi) + ct(vi, v2) ≥ 1
2α−1 · ct(v1, v2), and thus

Kt ≥
1

2α−1 · πmin · ct(v1, v2) ·
n∑

i=1

π(i)

=
1

2α−1 · πmin · cmax
t ,

which finishes the proof.

Average phase cost

For any phase p we define the average phase costKp =
∑

t∈p Kt. In the next two subsections
we show how to relate it to the M’s and O’s cost. In particular, we prove the two
following lemmas.

Lemma 5.8. For any input sequence I = (
⊎

p∈P p)] plast of length at least Tγ,

COPT(I) = Ω

∑
p∈P

Kp

 ,
with probability 1 − O(D−γ).

Lemma 5.9. For any input sequence I = (
⊎

p∈P p)] plast of length at least Tγ,

CMTFR(I) = O

∑
p∈P

Kp

 ,
with probability 1 − O(D−γ).

Proof of Theorem 5.3. The O(1)-competitiveness of M follows immediately by com-
bining Lemma 5.8 with Lemma 5.9.

138 S R S

5.2.1 Lower bound for OPT

In this subsection we show that for any phase p ∈ P the cost of O in this phase
is bounded from below by Lp, which is a random variable with expectation Θ(Kp).
Additionally, 0 ≤ Lp ≤

∑
t∈p cmax

t and all Lp are independent for different phases p ∈ P.
Later, we show how to apply concentration bounds to

∑
p∈P Lp, proving that this sum,

and thus O’s cost in all phases, is lower-bounded by Ω(
∑

p∈PKp).

Lower bound in a single phase

Consider any phase p ∈ P, and number all the time steps within this phase from 1 to `.
By [`]odd we denote a set of all odd numbers from {1, . . . `}. For all t ∈ [`]odd, we define

st :=
1
3α
· ct(σt, σt+1) . (5.10)

We note that for odd t, st are independent random variables. This follows from the fact
that the adversary first chooses cost functions ct (by dictating the network mobility), and
then a request sequence (σt)t is picked randomly and independently. Let

Lp :=
∑

t∈[`]odd

st (5.11)

We can show that this sum of st constitutes a lower bound for the O’s cost in phase p.

Lemma 5.10. For any phase p ∈ P it holds that

COPT(p) ≥ Lp .

The inequality holds for all random choices of sequence (σt)t in phase p.

Proof. We prove that for any algorithm A and any time step t the cost of serving
requests σt and σt+1 is at least st. This summed over all t ∈ [`]odd would yield the lemma.

The situation in time step t is depicted in Figure 5.1. PALG(t) and PALG(t + 1) denote
the nodes in which A has its page in step t and t + 1, respectively. If σt ≡ σt+1, then
st = 0 ≤ CALG(σt, σt+1) and the lemma follows trivially. Otherwise, A has to pay
at least ct(PALG(t), σt) + ct+1(PALG(t + 1), σt+1) for the requests in steps t and t + 1, and
D · ct(PALG(t),PALG(t+ 1)) for moving its page at the end of step t. In total, the cost of A
in these two steps is equal to

CALG(t, t + 1) = ct(PALG(t), σt) +D · ct(PALG(t),PALG(t + 1)) + ct+1(PALG(t + 1), σt+1) .

5.2.1 L   O 139

σt
σt+1

PALG(t)

PALG(t + 1)

Figure 5.1: Illustration of Lemma 5.10

We apply Inequality 5.9 and the Skewed Triangle Inequality to get

CALG(t, t + 1) ≥ ct(σt,PALG(t)) + ct(PALG(t),PALG(t + 1)) +
1
e
· ct(PALG(t + 1), σt+1)

≥
1
e
·

1
3α−1 · ct(σt, σt+1)

> st ,

which finishes the proof.

Note that unlike the bounds on O and the algorithm presented in the previous
chapter, this bound relates two random variables defined on the same probability space.
Moreover, the inequality COPT(p) ≥ Lp holds for any fixed sequence (σt)t. This notion is
much stronger than stochastic dominance used previously, and renders results similar
to Lemma 4.8 (see page 98) unnecessary here.

The expected value of Lp can be easily computed.

Lemma 5.11. For any phase p, E[Lp] = Ω(1) · Kp.

Proof. From the definition of st we have

E[st] =
1
3α
·

∑
i

∑
j

π(i) · π(j) · ct(vi, v j)

=
1
3α
· Kt ,

and therefore E[Lp] = E[
∑

t∈[`]odd
st] = 1

3α ·
∑

t∈[`]odd
Kt. It follows from Inequality 5.8 that

any two consecutive Kt can differ at most by a multiplicative factor of e. Therefore,

E[Lp] ≥
1
3α

∑
t∈[`]odd

1
2
·

(
Kt +

Kt+1

e

)
≥

1
2 · e · 3α

∑
t∈[`]odd

(Kt + Kt+1)

=
1

2 · e · 3α
· Kp .

140 S R S

Hence, combining the two lemmas above, and using linearity of expectation we
immediately get a lower bound, i.e., E[COPT(p)] = Ω(Kp). Below we show how to get
from this good bound holding in expectation to an asymptotically the same bound
holding with high probability.

Concentration

Summing up, Lp are independent random variables fulfilling

(i) 0 ≤ Lp =
∑

t∈[`]odd
st ≤

∑
t∈p cmax

t ,

(ii) E[Lp] = Ω(1) · Kp.

We want to prove that
∑

p∈P Lp is at least Ω(
∑

p∈PKp), with high probability. We do
not have any global upper bound on Lp variables, which renders classical Chernoff
bound [Che52] unusable. However, since nodes can move with a constant speed only,
we can relate Kp in any two consecutive phases and use the following concentration
bound. The bound presented in lemma below utilizes Hoeffding bound [RPRR01] (see
Appendix A.2) and is proven at the end of the chapter in Section 5.4.1.

Lemma 5.12 (Concentration bound). Let {Xi}
m
i=1 be the sequence of m independent random

variables. Assume that there exist y1, y2, δ, and a sequence {Ai}
m
i=1, such that for all i, it holds

that

(i) 0 ≤ Xi ≤ y1 · y2 · Aαi ,

(ii) E[Xi] = Ω(1) · y2 · Aαi ,

(iii) |Ai − Ai−1| ≤ δ,

(iv) Ai ≥ 1.

Then there exists a constant c, such that for any γ, if m ≥
(
c · γ · y2

1 · ln D
)α+1
· δα, then it holds

that
m∑

t=1

Xt = Ω

 m∑
t=1

y2 · Aαi

 ,
with probability 1 − D−γ. Moreover, if we replace condition (ii) by E[Xi] = O(1) · y2 · Aαi , then
we get

m∑
t=1

Xt = O

 m∑
t=1

y2 · Aαi

 ,
with probability 1 −D−γ.

5.2.1 L   O 141

To use the concentration bound presented above for the variables Lp, we have to repre-
sentKp and

∑
t∈p cmax

t in the form to which the concentration bound above is applicable.
If we set Ap =

α
√
Kp/(` · β), or equivalently

Kp = ` · β · Aαp , (5.12)

then we may relate two consecutive Ap. It follows from the definition of Kp that Kp =∑
t∈p Kt =

∑
t∈p β · kαt . Then we have an obvious relation

1 ≤ min
t∈p
{kt} ≤ Ap ≤ max

t∈p
{kt} , (5.13)

and thus, by Claim 5.6, for any two consecutive phases pi−1 and pi it holds that

Api − Api−1 ≤ max
t∈pi
{kt} −min

t∈pi−1
{kt}

≤ 2 · ` · (1/α) .
(5.14)

By symmetry, we have the same bound on the absolute difference |Api − Api−1 |.

Proof of Lemma 5.8. We choose y2 = ` · β. By Lemma 5.7 it is possible to choose
y1 = Θ(1

πmin
), such that Kt ≥

1
y1
· cmax

t for any time step t. Then we have the following
properties

(i) 0 ≤ Lp ≤
∑

t∈p cmax
t ≤ y1 · Kp = y1 · y2 · Aαp ,

(ii) E[Lp] = Ω(Kp) = Ω(1) · y2 · Aαp ,

(iii) By (5.14), |Api − Api−1 | ≤ 2 · `/α,

(iv) By (5.13), Ap ≥ 1.

Thus, we may apply Lemma 5.12 to the sequence of variables Lp. We get that there exists
a constant c, such that for any constant γ, if the number of phases of the input sequence
is at least

m ≥

(
c · γ ·

ln D
π2

min

)α+1

·

(2 · `
α

)α
,

then
∑

p∈P Lp = Ω(
∑

p∈P y2 ·Aαp) = Ω(
∑

p∈PKp), with probability 1−D−γ. Thus, if we choose
cT occurring in (5.5) (definition of mγ) to be greater or equal to c, then we guarantee that
on input sequences consisting of at least mγ phases (i.e., of length at least Tγ), it holds
that ∑

p∈P

COPT(p) = Ω

∑
p∈P

Kp

 ,
with probability 1 −D−γ.

142 S R S

5.2.2 Upper bound for MTFR

In this subsection we analyze the cost of M on an input sequence I of length T ≥ Tγ
(for some constant γ). First, we prove that the expected cost of M in any phase p,
but the first and the last one, is O(Kp). Moreover, if we consider only even or only odd
phases, then the costs of M in individual phases are independent random variables.
We show that by applying concentration bound of Lemma 5.12 we may guarantee that
both the total cost in even phases and the total cost in odd phases can be bounded be
O(

∑
p∈PKp), with high probability. Finally, we show that on the request sequences longer

than T1, the cost in the first and the last phase is bounded by O(
∑

p∈PKp) even in the
worst case.

Bounding expected cost in one phase

Fix any phase p different than the first or the last one. We number all time steps within p
from 1 to `. We denote the cost of serving requests by M in step t ≥ 2 by Ft. The cost
in one step t depends on where the request is issued, i.e., at σt, and where the algorithm
has currently its page, i.e., at σ1. We have

E[Ft] =
∑

i, j

Pr [σ1 = i ∧ σt = j] · ct(vi, v j)

=

n∑
i=1

n∑
j=1

Pr [σ1 = i] · Pr [σt = j] · ct(vi, v j)

= Kt .

Summing it over all steps t ≥ 2 from one phase, we get

E

∑̀
t=2

Ft

 ≤ Kp (5.15)

Now, for bounding the total expected cost in phase p, it suffices to bound the cost
incurred in the first step of p. Let pprev denote the phase preceding p, and (pprev)1 be
its first step. At the beginning of p, the algorithm is in node σ(pprev)1 , and thus the
cost of serving the request in the first step of p and moving the page to σ1 is equal to
(1 +D) · c1(σ(pprev)1 , σ1). The expected value of this cost is (1 +D) · K1.3

Since the phase is quite long, we may amortize the expected cost of moving the page
in the first step against the expected cost of serving requests in the remaining part of the
phase. To achieve this, we introduce the following lemma.

3 Note that it is no longer true if we consider the first phase, since then the cost is equal to (1+D) ·c1(v1, σ1).

5.2.2 U  M 143

Lemma 5.13. Fix any legal sequence (Kt)t of length s and choose any step t0. Let Q := Kt0 . Then
it holds that

s∑
t=1

Kt = Ω(β · s + s
1
α+1 ·Q) .

Proof. Recall that by (5.7), Kt = β · kαt . As all kt ≥ 1, we get
∑s

t=1 Kt ≥ β · s. We consider
two cases.

• If Q ≤ β · s
α
α+1 , then the term β · s majorizes the whole term on the right side of the

equation above, and therefore the lemma follows.

• If Q > β · s
α
α+1 , then we have to prove that Kt = Ω(s

1
α+1 ·Q). In this case kt0 = (Q/β)

1
α >

s
1
α+1 . As two consecutive values of kt can differ by at most 1/α ≤ 1, there exist at

least 1
2 · s

1
α+1 time steps t, in which kt ≥ kt0 −

1
2 · s

1
α+1 ≥

1
2 · kt0 . In all these time steps

the value of Kt is at least β · (1
2 · kt0)

α = 1
2α ·Q. Thus,

s∑
t=1

Kt ≥
1
2
· s

1
α+1 ·

1
2α
·Q

= Ω(s
1
α+1 ·Q) .

Hence, in both cases the lemma holds.

We apply the lemma to the sequence of (Kt)`t=2 with t0 = 2. Then we get

K2 · `
1
α+1 = O

∑̀
t=2

Kt

 .
Since by (5.8) any two consecutive Kt can differ by at most a multiplicative factor of e,
the right side of the equation above is at mostKp, and ` = Dα+1, we get

(1 +D) · K1 = O(Kp) . (5.16)

Thus, by (5.15) and (5.16), we have

E[CMTFR(p)] = O(Kp) .

From expectation to high probability

For any p, CMTFR(p) is a random variable, which depends only on the randomly generated
requests in p and in the first step of the phase preceding p. Thus, if we consider each
second phase, the corresponding variables CMTFR(p) are independent and we may apply
our concentration bound.

144 S R S

Lemma 5.14. Let I be any input sequence of length at least Tγ, and let I1 be the set of its all
even phases (without the first and the last phase). Then

CMTFR(I1) = O

∑
p∈P

Kp

 ,
with probability 1 −D−γ. The same holds for the set of all odd phases.

Proof. We prove it only for even phases, as the proof for odd phases is identical. As
mentioned above variables CMTFR(p) are independent for different p ∈ I1. Similarly to the
proof of Lemma 5.8, we choose y1 = Θ(1

πmin
) and y2 = ` · β. The only difference between

this proof and the proof of Lemma 5.8 is that we get E[CMTFR(p)] = O(Kp) = O(1)·y2 ·Aαp .
Then the concentration bound (Lemma 5.12), applied to random variables CMTFR(p),

guarantees that there exists a constant c, such that for any γ, if the number of even phases
of the input sequence is at least

m ≥
(
c · γ ·

ln D
π2

min

)α+1

·

(2 · `
α

)α
,

then

CMTFR(I1) = O

∑
p∈I1

y2 · Aαp


= O

∑
p∈I1

Kp

 ,
with probability 1 − D−α. Thus, it is sufficient that the constant cT occurring in the
definition of mγ is at least 2 · c, and then we get high probability for input sequences
consisting of at least mγ phases.

Bounding cost in the first and the last phase

In this part we prove that on the input sequences longer than T1, the worst-case cost in
the first or in the last phase (possibly unfinished one) can be bounded byO(

∑
p∈PKp). To

prove it for the first phase p1, let t∗ be the first step of p1, and let Q∗ = Kt∗ . We will relate
both the worst-case bound on CMTFR(p1) and the value of O(

∑
p∈PKp) to Q∗. The bound

on the cost in the last phase plast follows almost identically if we consider the value of Kt

in the first step of plast.

5.2.2 U  M 145

We number all the steps within phase p1 from 1 to `. By relation between Kt and cmax
t ,

we get

CMTFR(p1) ≤ D · cmax
1 +

∑̀
t=1

cmax
t

≤ O(1) ·
1
πmin

·

D · K1 +
∑̀
t=1

Kt

 .
(5.17)

To bound the latter summand, we use the following lemma, which is complementary to
Lemma 5.13.

Lemma 5.15. Fix any legal sequence (Kt)t of length s and choose any step t0. Let Q := Kt0 . Then
it holds that

s∑
t=1

Kt = O(β · sα+1 + s ·Q) .

Proof. We have Q = β · kαt0
. We proceed with case analysis.

1. If kt0 ≤ s, then since two consecutive kt can differ by at most 1/α ≤ 1, for all t it
holds that kt ≤ kt0 + s = 2 · s, and thus

∑s
t=1 Kt = s · (β · (2 · s)α) = O(β · sα+1).

2. If kt0 > s, then Q > β · sα and then for any t, kt ≤ (Q/β)
1
α + s ≤ 2 · (Q/β)

1
α . Hence, all

values of Kt are at most 2α ·Q, and thus
∑s

t=1 Kt = O(s ·Q).

Thus, in either case the bound follows.

Therefore, by the lemma above and Inequality 5.17, we get

CMTFR(p1) = O(1) ·
1
πmin

· (β · `α+1 + ` ·Q∗) . (5.18)

We can now compare the bound above to O(
∑

p∈PKp).

Lemma 5.16. Fix any input sequence of length T ≥ T1 and let p1 be its first phase. Then it holds
that

CMTFR(p1) = O

∑
p∈P

Kp

 .
The same holds for the last phase plast.

Proof. Let I be any input sequence of length T ≥ T1, Let s be the number of steps in
finished phases, i.e., s = |P| · `. By applying Lemma 5.13 to the sequence of all Kt from
the set of finished phases P, we get that∑

p∈P

∑
t∈p

Kt = Ω(β · s + s
1
α+1 ·Q∗)

146 S R S

Since s ≥ T1, s = Ω((`
πmin

)α+1), and we get∑
p∈P

Kp = Ω
(1
πmin

· (β · `α+1 + ` ·Q∗)
)
.

Combining this with Inequality 5.18, we get the lemma.

Lemma 5.9 is an easy consequence of the argument presented in this paper.

Proof of Lemma 5.9. We take any input sequence I of length T ≥ Tγ and divide it into
phases, i.e., I = (

⊎
p∈P p)] plast. Then these phases may be grouped in three parts.

1. I1, set of all even phases, but the first and the last phase,

2. I2, set of all odd phases, but the first and the last phase,

3. I3, the first and the last phase.

Let K =
∑

p∈PKp. Then by Lemma 5.14, we get CMTFR(I1) = O(K) with probability at
least 1 − D−γ, and CMTFR(I1) = O(K) also with probability at least 1 − D−γ. Moreover,
by Lemma 5.16, the cost induced in I3 is at most O(K). Then with probability at least
1 − 2 ·D−γ, it holds that

CMTFR(I) = O(K) ,

which finishes the proof.

5.2.3 Expected competitive ratio

Theorem 5.3, combining the results of two previous subsections, shows that on a se-
quence I of length T ≥ Tγ, the competitive ratio of M is constant, with probability
1 − O(D−γ). In this subsection we prove that it is also constant in expectation.

To show it, we first prove that even if both configuration and request sequences are
generated by an adversary, then M is competitive.

Lemma 5.17. For any input sequence (even when both request and configuration sequences are
chosen by the adversary) the competitive ratio of M is at most O(`α+1).

For the proof we fix any input sequence I of length T. We divide this input into
phases. In the following we concentrate on any phase p of length `0 ≤ ` = Dα+1. We
number all time steps within p from 1 to `0. We assume that the adversary is 1

2 -restricted,
and thus the distances between any pair can change by at most 1 per time step.

Let Lc be the cost of communication between PMTFR and POPT, the nodes holding the
pages of M and O, respectively. We define a potential function

Φ = f ·D · Lc , where f = 2 · 3α . (5.19)

5.2.3 E   147

By a potential at the beginning of phase p, ΦB(p) we understand a potential at the very
beginning of the first time step of p, i.e., before the network adversary moves the nodes.
Respectively, a potential at the end of p, ΦF(p) is a potential measured in the last step
of p, after M and Omove their pages.

At the beginning of the first phase p1, ΦB(p1) = 0, because M and O have their
pages at the same node, v1. For any two consecutive phases pi and pi+1 it holds that
ΦF(pi) = ΦB(pi+1). Thus, for proving that M is O(`α+1)-competitive, it is sufficient to
show that for any phase p it holds that

CMTFR(p) + ΦF(p) −ΦB(p) ≤ O(`α+1) · COPT(p) . (5.20)

We consider two cases, captured by two lemmas below.

Lemma 5.18. Fix any phase p. If COPT(p) = 0, then Inequality 5.20 holds.

Proof. In this case O has to remain at POPT(1) for the whole phase p and all requests
have to be issued at this node, too. On the other hand, in the first step M has to pay
for serving the request and moving the page to σ1 ≡ POPT(1), i.e.,

CMTFR(1) = (1 +D) · c1(PMTFR(1),POPT(1))

≤ 2 ·D · e · c0(PMTFR(1),POPT(1))

≤ ΦB(p) .

After this step, the algorithm remains at the same node as O, paying 0. Therefore, at
the end of the phase PMTFR ≡ POPT, which impliesΦF(p) = 0. Summing up, the amortized
cost of M in p is non-positive and the lemma follows.

Lemma 5.19. Fix any phase p. If COPT(p) ≥ 1, then Inequality 5.20 holds.

Proof. Let F := d0(PMTFR(1),POPT(1)) be the distance between the pages of M and O
at the very beginning of the phase (before the adversary moves the nodes). Clearly,

ΦB(p) ≥ f ·D · Fα .

Let Xt be the distance between σt and POPT(t) in step t. Finally, for any time step 1 ≤ t ≤ `0,
let Yt be the distance across which Omoves its page in time step t.

The cost of O in step t is at least COPT(t) ≥ Xαt +D · Yαt . In the first step, the distance
between M and O is at most F + 1, and therefore the distance between M and
O is at most F + 1 + X1. Thus, M’s cost in the first step is at most

CMTFR(1) ≤ (1 +D) · [F + 1 + X1]α

(H)
≤ 2D · 3α−1

· (Fα + 1 + Xα1)

≤ O(D) + ΦB(p) + O(D) · Xα1

≤ O(D) · COPT(p) + ΦB(p) .

(5.21)

148 S R S

At the end of the first step, M moves to σ1 and the distance between PMTFR(1) and
POPT(1) becomes at most X1 + Y1. In each step t > 1, the distance between PMTFR(t) ≡
PMTFR(1) and POPT(t) can increase by at most 1 due to the changes in the network made
by the network adversary, and additionally by at most Yt due to the movement of the
O’s page. Thus, for any time step t ≥ 1, dt(PMTFR(t),POPT(t)) ≤ X1 + `0 +

∑`0
t=1 Yt. We

denote this bound by U. We have

Uα
(H)
= O(1) ·

Xα1 + `
α
0 +

 `0∑
t=1

Yt


α

(H)
= O(1) ·

Xα1 + `
α
0 + `

α−1
0 ·

`0∑
t=1

Yαt

 .
Since the distance to the request in step t is at most U+Xt, for all steps 1 < t ≤ `0 it holds
that CMTFR(t) ≤ 1+ (U + Xt)

α. Additionally, ΦF(p) ≤ f ·D · [1+Uα]. Summing the M’s
cost over all time steps (but the first one) from the phase, we get `0∑

t=2

CMTFR(t)

 + ΦF(p) ≤
`0∑

t=2

(U + Xt)α + O(D) ·Uα + O(D)

(H)
≤ O(1) ·

`0∑
t=2

Xαt + O(`) ·Uα + O(D)

≤ O(1) ·
`0∑

t=2

Xαt + O(`) ·

Xα1 + `
α
0 + `

α−1
0 ·

`0∑
t=1

Yαt

 + O(D)

≤ O(`α+1) · COPT(p) .

(5.22)

By summing (5.21) with (5.22), we get the lemma.

Proof of Lemma 5.17. Inequality 5.20 follows from the two lemmas above. When we
sum this inequality over all the phases in the input sequence, we immediately get that
M is O(`α+1)-competitive.

Now we can apply this bound on the competitive ratio to compute the expected
competitive ratio of M on any input sequence of length T ≥ T(α+1)2 .

Theorem 5.20. For any input I of length T ≥ T(α+1)2 , M achieves expected constant
competitive ratio of O(1).

Proof of Theorem 5.20. Fix any configuration sequence (Ct)t and a probability distribu-
tion π. Then by Theorem 5.3 and Lemma 5.17 it follows that

E(σt)

[
CALG((Ct, σt)t)
COPT((Ct, σt)t)

]
=

(
1 − O

(1
D(α+1)2

))
· O(1) + O

(1
D(α+1)2

)
· O(`α+1)

= O(1) ,

5.3 E   149

which proves that the competitive ratio of M is constant in expectation.

5.3 Extensions and conclusions

The results of this chapter show that the considered stochastic scenario is much more
favorable than the one where both configuration and request sequences are created
by an adversarial entity. This supports the claim that in fact the competitive ratio in
adversarial scenario is so high, because the network and sequence adversaries may
combine and synchronize their efforts. The constant competitive ratio of the stochastic
scenario presented here follows partially from the fact that it is extremely unlikely that
the random request sequence contains constructions similar to the construction of lower
bound presented in Section 5.1.

Extending probability function

As stated at the beginning of this chapter, we may extend our arguments to the case
where π can additionally take values 0 and 1, i.e., π : [n] → [0, 1]. If for some vi the
probability π is equal to 1, then on the long run our algorithm is the best possible, as all
the requests are given at vi, and M moves there at the very beginning of the input
sequence.

The case where some nodes have zero probabilities is a little more involved, since in our
proof we used the term 1

mini∈[n] π(i) , which obviously does not make sense here. However,
we may treat these zero-probability nodes as non-existent, reducing the situation to the
nodes with positive probabilities. In this case, we define cmax

t as the maximum cost of
communication between nodes vi and v j such that πi, π j > 0. Since our algorithm would
ignore zero-probability nodes, the only place in our proof that may raise concern is the
lower bound on O. Omay potentially use the nodes which have zero probabilities.
However, the proof of Lemma 5.10 does not impose any restrictions on the nodes, holding
O’s page in the individual steps. Thus, COPT(p) majorizes Lp for any phase p, even if O
wants to store its page at the zero-probability nodes. Hence, M is O(1)-competitive
also for a generalized function π.

Open Problems

On the other hand, it might be interesting to consider another scenario where the distri-
bution π is not equal for each time step, but depends, for example, on the node which
issued a request in the previous step. Such a model captures the locality of accesses (e.g.,
if a processor va accesses the page, then either processor vb or vc will access it in the next
step). The competitive ratio of such a Markovian scenario remains unknown. However,

150 S R S

we conjecture that it is possible to construct an algorithm, which achieves a reasonably
low competitive ratio.

Another open question is whether it is possible to construct an algorithm for the
stochastic scenario, which will be better than Ω

(
D(α+1)2

)
-competitive in the worst case,

still assuring constant ratio in expectation. Combining Mwith the algorithms for the
adversarial scenario presented in Chapter 3, might be challenging and yield interesting
results.

It might be also interesting to investigate the extended cost model (i.e., the case ofα > 1)
in other scenarios, especially in the adversarial one. We conjecture that the lower bound
presented in Section 5.1 can be generalized to exploit the number of nodes greater
than 2, similarly to the bounds presented in Section 3.3. On the other hand, extending
algorithms in the adversarial scenarios is not a trivial task since in the generalized cost
model the triangle inequality for the costs of communication (which was extensively
used in Chapter 3) is no longer fulfilled.

5.4 Proofs of technical claims

Proof of Claim 5.5. For s = 1 the lemma follows trivially. Hölder’s Inequality [HLP88]
(see Appendix A.2) states that for any p, q > 1 such that 1

p+
1
q = 1 and for any non-negative

sequences (ai)k
i=1 and (bi)k

i=1, it holds that

k∑
i=1

(ai · bi) ≤

 k∑
i=1

ap
i


1/p

·

 k∑
i=1

bq
i


1/q

.

By setting p = s, q = s
s−1 and bi = 1 for all i we obtain

k∑
i=1

ai ≤

 k∑
i=1

as
i


1/s

· k
s−1

s .

By raising both sides to the s-th power we get the lemma.

Proof of Claim 5.6. We define k′t as α
√

Kt/β − 1. Equivalently Kt = β ·
(
1 + (k′t)

α
)

or

kαt = 1 + (k′t)
α . (5.23)

Let δ = 1/α. As an intermediate step we will prove that k′t+1 − k′t ≤ δ; later we will use it
to prove kt+1 − kt ≤ δ.

From the definition of k′t we have β · (k′t)
α =

∑
i
∑

j,i π(i) ·π(j) ·dαt (vi, v j). For succinctness
of the proof we denote 1

β · π(i) · π(j) by pi, j. Then

(k′t)
α =

∑
i, j

pi, j · (dt(vi, v j))α ,

5.4 P    151

and
∑

i, j pi, j = 1. We will prove that k′t+1 ≤ k′t + δ.
We fix any constant non-negative integer s < α, and consider variables yt(i, j) :=

(dt(vi, v j))α−s for all i , j where i, j ∈ [n]. Since the function f (y) = y
α
α−s is convex and∑

i, j pi, j = 1, we can apply Jensen’s Inequality [HLP88] (see Appendix A.2) for the yt(i, j)
variables to get that ∑

i, j

pi, j · yt(i, j)


α
α−s

≤

∑
i, j

pi, j · [yt(i, j)]
α
α−s .

Thus, by raising both sides to the power α−s
α , we obtain

∑
i, j

pi, j · [dt(vi, v j)]α−s =

∑
i, j

pi, j · [dt(vi, v j)]α

α−s
α

= (k′t)
α−s .

Note that the inequality above holds trivially also for the case of s = α. Hence, we can
multiply both sides of the above inequality by

(α
s

)
·δs and sum them over all s ∈ {0, . . . , α}.

α∑
s=0

∑
i, j

pi, j ·

(
α
s

)
· [dt(vi, v j)]α−s

· δs
≤

α∑
s=0

(
α
s

)
· (k′t)

α−s
· δs

By folding the binomial formula, we get∑
i, j

pi, j · [dt(vi, v j) + δ]α ≤
(
k′t + δ

)α . (5.24)

But from the definition of k′t+1,

(k′t+1)α =
∑
i, j

pi, j · [dt+1(vi, v j)]α ≤
∑
i, j

pi, j · [dt(vi, v j) + δ]α . (5.25)

Combining (5.24) with (5.25), and taking α-th root from both sides, we finally get

k′t+1 ≤ k′t + δ

Now we show how the relation between two consecutive values k′t and k′t+1 implies
the bounded difference between two consecutive values kt and kt+1. Using definition
(5.23), we obtain

kt+1 − kt =
α

√
(k′t+1)α + 1 − α

√
(k′t)α + 1

≤
α

√
(k′t + δ)α + 1 − α

√
(k′t)α + 1 .

152 S R S

The last term is a function of k′t; we denote it by g(k′t). Function g is monotonically increas-
ing, as its first derivative is greater than 0 for k′t, δ ≥ 0. Additionally, limk′t→∞ g(k′t) = δ,
and therefore kt+1 − kt ≤ g(k′t) < δ for all k′t.

The proof of kt − kt+1 ≤ δ is analogous, and thus the claim follows.

5.4.1 Proof of the concentration bound

Before we prove the concentration bound claimed by Lemma 5.12, we show a combina-
torial lemma, which will be essential to the further proof.

Lemma 5.21. Let (Ai)m
i=1 be the sequence of m ≥ 16 real numbers, such that for any i, Ai ≥ 1,

and there exists δ, such that for any i < m, |Ai+1 − Ai| ≤ δ. If δ ≥ 1 and m ≥ δα, then

(∑m
i=1 Aαi

)2∑m
i=1(Aαi)2

≥ b1 ·

(m
δα

) 1
α+1

,

where b1 is a constant.

Proof. First, we scale down all elements of sequence (Ai)i by dividing them by mini{Ai}.
Note that the considered ratio

R :=

(∑m
i=1 Aαi

)2∑m
i=1(Aαi)2

remains invariant, the property |Ai+1 − Ai| ≤ δ still holds, and after scaling we have
mini{Ai} = 1. Let k = maxi{Ai}. Let S be the smallest possible (in terms of the number of
elements) subset of {Ai}with the following properties.

(i) 1, k ∈ S.

(ii) Let (Si)i be the sequence of all elements from set S, sorted in non-descending order.
Then for a pair of consecutive elements Si and Si+1 it holds that |Si+1 − Si| ≤ δ.

The existence of such a set is assured, since {Ai} fulfills these properties itself.
For any integer j, let I j denote the interval (δ(j−1), δ j], and let κ := dk/δe. It is straight-

forward that all the elements of the sequence {Si} belong to the
⊎κ

j=1 I j. Furthermore,
each interval I j from this union contains at least one element of {Si} (from the second
property of set S) and at most two elements of {Si} (from the minimality of S).

5.4.1 P     153

In the trivial case, κ = 1, all elements Ai are between 1 and δ. Therefore,

R =

(∑m
i=1 Aαi

)2∑m
i=1(Aαi)2

≥

(∑m
i=1 Aαi

)2

maxi{Aαi } ·
∑m

i=1 Aαi
≥

m
δα

≥

(m
δα

) 1
α+1

.

In the general case, κ > 1, and we have
|S|∑
i=1

Sαi ≥
κ∑

j=1

[δ(j − 1)]α ≥ a1 · δ
α
· κα+1 , (5.26)

for some constant a1, which depends only on α. On the other hand,

|S|∑
i=1

S2α
i ≤

κ∑
j=1

2
(
δ · j

)2α
≤ a2 · δ

2α
· κ2α+1 , (5.27)

for some constant a2. Thus, combining (5.26) and (5.27),

R =

(∑
i∈S Aαi +

∑
i<S Aαi

)2∑
i∈S A2α

i +
∑

i<S A2α
i

≥

(
a1 · δα · κα+1 +

∑
i<S Aαi

)2

a2 · δ2α · κ2α+1 +
∑

i<S A2α
i

.

Since
∑

i<S A2α
i ≤ maxi {Aαi } ·

∑
i<S Aαi ≤ kα ·

∑
i<S Aαi ≤ (2δ · κ)α ·

∑
i<S Aαi , we obtain

R ≥
a2

1 · δ
2α
· κ2α+2 + 2 · a1 · δα · κα+1

·
∑

i<S Aαi +
(∑

i<S Aαi
)2

a2 · δ2α · κ2α+1 + 2α · δα · κα ·
∑

i<S Aαi
.

By omitting either the first or the third term from the numerator above, we get R ≥
a3 ·

∑
i<S Aαi
δα·κα and R ≥ a4 · κ, for some constants a3, a4. Thus, if κ ≥ (m/δα)

1
α+1 , then the lemma

follows immediately. Otherwise, S contains at most 2 · κ ≤ 2 · m
1
α+1 elements, and thus∑

i<S Aαi ≥ (m − 2 ·m
1
α+1) · 1 ≥ m

2 . Therefore, in this case

R ≥
a3

2
·

m
δα · κα

≥
a3

2
· (m/δα)

1
α+1 ,

and the lemma holds.

154 S R S

Proof of Lemma 5.12 (Concentration bound). We have that for all Xi, E[Xi] ≥ b2 · y2 ·Aαi
for some constant b2. Since all variables Xi are independent, we may apply Hoeffding
bound (see Appendix A.2 for an exact formulation) to get

Pr

 m∑
i=1

Xi <
1
2
·

m∑
i=1

b2 · y2 · Aαi

 ≤ exp

− 2 ·
(

1
2 ·

∑m
i=1 b2 · y2 · Aαi

)2∑m
i=1(y1 · y2 · Aαi)2


≤ exp

− b2
2

2 · y2
1

·

(∑m
i=1 Aαi

)2∑m
i=1(Aαi)2


(5.28)

Let b1 be the constant in the formulation of Lemma 5.21. We choose

m :=
(

2
b1 · b2

2

· γ · y2
1 · ln D

)α+1

· δα .

The precondition of Lemma 5.21, m ≥ δα, is fulfilled, and thus by applying this lemma
we get that (∑m

i=1 Aαi
)2∑m

i=1(Aαi)2
≥

2 · y2
1

b2
2

· γ · ln D .

Substituting this bound into (5.28), we get that

Pr

 m∑
i=1

Xi <
1
2
·

m∑
i=1

b2 · y2 · Aαi

 ≤ D−α

It is straightforward that the same bound would hold for Pr[
∑m

i=1 Xi > 3
2 ·

∑m
i=1 b2 · y2 ·Aαi]

if we had E[Xi] ≤ b2 · y2 · Aαi .

C       6

Summary and Outlook

This thesis aims to bring the dynamic behavior to the world of data management prob-
lems in networks. We consider the most basic of these problems, called the Page Mi-
gration. By dynamics we mean that the network is subject to small continuous changes,
like changes in bandwidth capacity, or the changes in the topology induced by node
mobility. These network alterations induce the changes in the costs of communication
between pairs of nodes. This thesis is based on the first papers concerning the analytic
treatment of this problem. While our model might seem rather simple, it covers quite a
lot of common cases.

Our algorithms exploit topological localities of requests, i.e., they are trying to adapt
to the changing patterns of the accesses to the shared object by moving the object “near”
the requesting nodes. Our main concern was to construct algorithms which are robust
to the network changes. We considered several scenarios, which differed in the way of
how the input sequence was created, and rigorously analyzed each of them, using the
competitive analysis or its variants.

As the exact list of our results can be found in Section 1.2.2 and the open questions
concerning particular results are presented at the ends of the individual chapters, we
refrain from repeating them here. Instead, we try to provide the reader with a broader
view on the new highlights brought by this work, in particular by the modelling used.

One of the most interesting contribution of this thesis is modelling the problem us-
ing two adversaries. Surprisingly, we were not able to locate any prior work, which
considers two independent sources of online events (in our case, network dynamics
and accesses to the memory page). If the corresponding two adversaries are allowed
to cooperate, which is the case presented in Chapter 3, then this modelling is equiv-
alent to having a single adversary and does not lead us beyond the pure competitive
analysis [ST85]. However, we were able to prove that in such adversarial scenario the
competitive ratios are inherently high (see Table 3.1 on page 86).

155

156 S  O

The over-pessimistic estimates of algorithms by the generic online analysis are one
of the reasons why it was criticized in the last years. To compensate this effect, several
methods and refinements were proposed, either giving extra resources to an online algo-
rithm (lookahead properties, resource augmentation [KP00a]), restricting the adversary
(ordered inputs [Mey01], access graph models [BIRS95], diffuse adversaries [KP00b], or
smoothed competitive analysis [BLM+03]), or changing the performance metric (com-
parative analysis [KP00b] or again smoothed competitive analysis).

In our case, hardly any of these simplifications are applicable. Essentially, we wanted
to have a notion which forbids the cooperation between our two adversaries. However,
as it was not semantically clear how to define non-cooperativeness, we have added
another piece to the list of refinements above, considering the case where one of the
adversaries is replaced by a stochastic process. This leads to the case where the input
consists of two interleaving sequences, one of which is the worst-possible and the second
one is generated randomly. We have presented a complementary notion of competitive
ratio attained with high probability and in expectation.1 Although similar, this modelling
substantially differs from the smoothed analysis, where the random distortion is added
to the whole sequence, whereas in our approach only part of the input is randomized.
In Chapter 4 and Chapter 5 we show that our modelling may significantly reduce the
optimal algorithm’s advantage of being clairvoyant. Although our algorithms presented
for this model were specially designed for the DPM problem, we hope that the toolbox
and ideas we have created might be reused for other problems.

There are, however, not many known problems, which allow for a natural division
of the input sequence between two independent online resources. Examples are data
management or scheduling in dynamic networks. The former is an area which we
pioneered with this thesis. Extending our work to file allocation or distributed paging
problems in such dynamic networks might be a challenging task. For the latter, a
noble example is the paper by Leonardi, Marchetti-Spaccamela, and Meyer auf der
Heide [LMM04]. Although they presented a solution to an offline scheduling problem in
a network where free time slots of the network processors appear online, the problem
itself can be easily reformulated to the one in which we have two independent online
input streams (tasks to schedule and free slots of the processors).

1 In fact the notion of expected competitive ratio was considered previously for completely random input
sequences in [SSS02].

Bibliography

[AA92] Noga Alon and Yossi Azar. On-line steiner trees in the euclidean plane.
In Proc. of the 8th ACM Symp. on Computational Geometry (SoCG), pages
337–343, 1992.

[ABF93a] Baruch Awerbuch, Yair Bartal, and Amos Fiat. Competitive distributed file
allocation. In Proc. of the 25th ACM Symp. on Theory of Computing (STOC),
pages 164–173, 1993.

[ABF93b] Baruch Awerbuch, Yair Bartal, and Amos Fiat. Heat & dump: Competitive
distributed paging. In Proc. of the 34th IEEE Symp. on Foundations of Computer
Science (FOCS), pages 22–31, 1993.

[ABF98] Baruch Awerbuch, Yair Bartal, and Amos Fiat. Distributed paging for
general networks. Journal of Algorithms, 28(1):67–104, 1998. Also appeared
in Proc. of the 7th SODA, pages 574–583, 1996.

[ABS03] Baruch Awerbuch, André Brinkmann, and Christian Scheideler. Anycast-
ing in adversarial systems: routing and admission control. In Proc. of the
30th Int. Colloq. on Automata, Languages and Programming (ICALP), pages
1153–1168, 2003.

[ACN00] Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analy-
sis of randomized paging algorithms. Theoretical Computer Science, 234(1–
2):203–218, 2000.

[AK95] Susanne Albers and Hisashi Koga. Page migration with limited local mem-
ory capacity. In Proc. of the 4th Int. Workshop on Algorithms and Data Structures
(WADS), pages 147–158, 1995.

157

158 B

[AK98] Susanne Albers and Hisashi Koga. New on-line algorithms for the page
replication problem. Journal of Algorithms, 27(1):75–96, 1998. Also appeared
in Proc. of the 4th SWAT, pages 25–36, 1994.

[Bar95] Yair Bartal. Competitive Analysis of Distributed On-line Problems — Distributed
Paging. PhD thesis, Tel-Aviv University, 1995.

[Bar96a] Yair Bartal. Distributed paging. In Dagstul Workshop on On-line Algorithms,
pages 97–117, 1996.

[Bar96b] Yair Bartal. Probabilistic approximations of metric spaces and its algorith-
mic applications. In Proc. of the 37th IEEE Symp. on Foundations of Computer
Science (FOCS), pages 184–193, 1996.

[Bar98] Yair Bartal. On approximating arbitrary metrics by tree metrics. In Proc. of
the 30th ACM Symp. on Theory of Computing (STOC), pages 161–168, 1998.

[BB05] Marcin Bienkowski and Jarosław Byrka. Bucket game with applications to
set multicover and dynamic page migration. In Proc. of the 13th European
Symp. on Algorithms (ESA), 2005. To appear.

[BBK+90] Shai Ben-David, Allan Borodin, Richard M. Karp, Gabor Tardos, and Avi
Wigderson. On the power of randomization in online algorithms. In Proc.
of the 22nd ACM Symp. on Theory of Computing (STOC), pages 379–386, 1990.

[BCI01] Yair Bartal, Moses Charikar, and Piotr Indyk. On page migration and other
relaxed task systems. Theoretical Computer Science, 268(1):43–66, 2001. Also
appeared in Proc. of the 8th SODA, pages 43–52, 1997.

[BDK05] Marcin Bienkowski, Miroslaw Dynia, and Miroslaw Korzeniowski. Im-
proved algorithms for dynamic page migration. In Proc. of the 22nd Symp.
on Theoretical Aspects of Computer Science (STACS), pages 365–376, 2005.

[BE98] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Anal-
ysis. Cambridge University Press, 1998.

[BFR95] Yair Bartal, Amos Fiat, and Yuval Rabani. Competitive algorithms for
distributed data management. Journal of Computer and System Sciences,
51(3):341–358, 1995. Also appeared in Proc. of the 24nd STOC, pages 39–50,
1992.

[Bie05] Marcin Bienkowski. Dynamic page migration with stochastic requests. In
Proc. of the 17th ACM Symp. on Parallelism in Algorithms and Architectures
(SPAA), pages 270–278, 2005.

B 159

[BIRS95] Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch Schieber.
Competitive paging with locality of reference. Journal of Computer and
System Sciences, 50(2):244–258, 1995. Also appeared in Proc. of the 23rd
STOC, pages 249–259, 1991.

[BK05] Marcin Bienkowski and Miroslaw Korzeniowski. Dynamic page migration
under brownian motion. In Proc. of the European Conf. in Parallel Processing
(Euro-Par), 2005. To appear.

[BKM04] Marcin Bienkowski, Miroslaw Korzeniowski, and Friedhelm Meyer auf
der Heide. Fighting against two adversaries: Page migration in dynamic
networks. In Proc. of the 16th ACM Symp. on Parallelism in Algorithms and
Architectures (SPAA), pages 64–73, 2004.

[BKR03] Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Räcke. A prac-
tical algorithm for constructing oblivious routing schemes. In Proc. of the
15th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pages
24–33, 2003.

[BLM+03] Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, Guido
Schäfer, and Tjark Vredeveld. Average case and smoothed competitive
analysis of the multi-level feedback algorithm. In Proc. of the 44th IEEE
Symp. on Foundations of Computer Science (FOCS), pages 462–471, 2003.

[BM05] Marcin Bienkowski and Friedhelm Meyer auf der Heide. Page migration in
dynamic networks. In Proc. of the 30th Int. Symp. on Mathematical Foundations
of Computer Science (MFCS), 2005. Invited paper. To appear.

[BS89] David L. Black and Daniel D. Sleator. Competitive algorithms for replica-
tion and migration problems. Technical Report CMU-CS-89-201, Depart-
ment of Computer Science, Carnegie-Mellon University, 1989.

[CBD02] Tracy Camp, Jeff Boleng, and Vanessa Davies. A survey of mobility models
for ad hoc network research. Wireless Communications & Mobile Computing
(WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends and
Applications, 2(5):483–502, 2002.

[Che52] Herman Chernoff. A measure of assymptotic efficiency for tests of a hy-
pothesis based on the sum of observations. Annals of Mathematical Statistics,
23:493–509, 1952.

160 B

[CLLR97] Marek Chrobak, Lawrence L. Larmore, Carsten Lund, and Nick Reingold.
A better lower bound on the competitive ratio of the randomized 2-server
problem. Information Processing Letters, 63(2):79–83, 1997.

[CLR97] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-
tion to Algorithms. The MIT Press, eighteenth edition, 1997.

[CLRW93] Marek Chrobak, Lawrence L. Larmore, Nick Reingold, and Jeffery West-
brook. Page migration algorithms using work functions. In Proc. of the 4th
Int. Symp. on Algorithms and Computation (ISAAC), pages 406–415, 1993.

[Fel68] William Feller. An Introduction to Probability Theory and Its Applications,
volume I. John Wiley & Sons, Inc., third edition, 1968.

[FGS04] Rudolf Fleischer, Włodzimierz Głazek, and Steve S. Seiden. New results
for online page replication. Theoretical Computer Science, 324(2–3):219–251,
2004.

[FKL+91] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D.
Sleator, and Neal E. Young. Competitive paging algorithms. Journal of
Algorithms, 12(4):685–699, 1991.

[FS00] Rudolf Fleischer and Steven S. Seiden. New results for online page repli-
cation. In Proc. of the 3rd Int. Workshop on Approximation Algorithms for
Combinatorial Optimization (APPROX), pages 144–154, 2000.

[Gła99] Włodzimierz Głazek. Lower and upper bounds for the problem of page
replication in ring networks. In Proc. of the 24th Int. Symp. on Mathematical
Foundations of Computer Science (MFCS), pages 273–283, 1999.

[Gła01] Włodzimierz Głazek. Online algorithms for page replication in rings. The-
oretical Computer Science, 268(1):107–117, 2001.

[HHR03] Chris Harrelson, Kirsten Hildrum, and Satish Rao. A polynomial-time tree
decomposition to minimize congestion. In Proc. of the 15th ACM Symp. on
Parallelism in Algorithms and Architectures (SPAA), pages 34–43, 2003.

[HLP88] Godfrey H. Hardy, John E. Littlewood, and George Pólya. Inequalities.
Cambridge University Press, 2nd edition, 1988.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistics Association, 58(301):13–30, 1963.

B 161

[IW91] Makoto Imase and Bernard M. Waxman. Dynamic steiner tree problem.
Journal on Discrete Mathematics, 4(3):369–384, 1991.

[KMR+02] Christof Krick, Friedhelm Meyer auf der Heide, Harald Räcke, Berthold
Vöcking, and Matthias Westermann. Data management in networks: Ex-
perimental evaluation of a provably good strategy. Theory of Computing
Systems, 2:217–245, 2002. Also appeared in Proc. of the 11nd SPAA, pages
165–174, 1999.

[KMRS88] Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel D. Sleator.
Competitive snoopy caching. Algorithmica, 3:77–119, 1988. Also appeared
in Proc. of the 27th FOCS, pages 244-254, 1986.

[Kog93] Hisashi Koga. Randomized on-line algorithms for the page replication
problem. In Proc. of the 4th Int. Symp. on Algorithms and Computation (ISAAC),
pages 436–445, 1993.

[KP00a] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoy-
ance. Journal of the ACM, 47(4):617–643, 2000. Also appeared in Proc. of the
36nd FOCS, pages 214–221, 1995.

[KP00b] Elias Koutsoupias and Christos H. Papadimitriou. Beyond competitive
analysis. SIAM Journal on Computing, 30(1):300–317, 2000. Also appeared
in Proc. of the 35th FOCS, pages 394–400, 1994.

[LMM04] Stefano Leonardi, Alberto Marchetti-Spaccamela, and Friedhelm Meyer
auf der Heide. Scheduling against an adversarial network. In Proc. of the
16th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pages
151–159, 2004.

[LRWY99] Carsten Lund, Nick Reingold, Jeffery Westbrook, and Dicky C. K. Yan.
Competitive on-line algorithms for distributed data management. SIAM
Journal on Computing, 28(3):1086–1111, 1999. Also appeared as On-Line
Distributed Data Management in Proc. of the 2nd ESA, pages 202–214, 1994.

[Mey01] Adam Meyerson. Online facility location. In Proc. of the 42nd IEEE Symp.
on Foundations of Computer Science (FOCS), pages 426–431, 2001.

[MMVW97] Bruce M. Maggs, Friedhelm Meyer auf der Heide, Berthold Vöcking, and
Matthias Westermann. Exploiting locality for data management in systems
of limited bandwidth. In Proc. of the 38th IEEE Symp. on Foundations of
Computer Science (FOCS), pages 284–293, 1997.

162 B

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cam-
bridge University Press, 1995.

[MS91] Lyle A. McGeoch and Daniel D. Sleator. A strongly competitive randomized
paging algorithm. Algorithmica, 6(6):816–825, 1991.

[MVW99] Friedhelm Meyer auf der Heide, Berthold Vöcking, and Matthias Wester-
mann. Provably good and practical strategies for non-uniform data man-
agement in networks. In Proc. of the 7th European Symp. on Algorithms (ESA),
pages 89–100, 1999.

[MVW00] Friedhelm Meyer auf der Heide, Berthold Vöcking, and Matthias West-
ermann. Caching in networks. In Proc. of the 11th ACM-SIAM Symp. on
Discrete Algorithms (SODA), pages 430–439, 2000.

[NM44] John von Neumann and Oskar Morgenstern. Theory of Games and Economic
Behavior. Princeton University Press, 1st edition, 1944.

[Räc02] Harald Räcke. Minimizing congestion in general networks. In Proc. of the
43rd IEEE Symp. on Foundations of Computer Science (FOCS), pages 43–52,
2002.

[Räc03] Harald Räcke. Data management and routing in general networks. PhD thesis,
Universität Paderborn, 2003.

[Raj02] Rajmohan Rajaraman. Topology control and routing in ad hoc networks: a
survey. SIGACT News, 33(2):60–73, 2002.

[Rap96] Theodore S. Rappaport. Wireless Communications: Principles and Practices.
Prentice Hall, 1996.

[Ros95] Jeffrey S. Rosenthal. Convergence rates for Markov chains. SIAM Review,
37(3):387–405, 1995.

[RPRR01] Sanguthevar Rajesekaran, Panos M. Pardalos, John H. Reif, and Jose Rolim.
Handbook of Randomized Computing, volume I and II. Kluwer Academic
Publishers, 2001.

[Sch02] Christian Scheideler. Models and techniques for communication in dy-
namic networks. In Proc. of the 19th Symp. on Theoretical Aspects of Computer
Science (STACS), pages 27–49, 2002.

[Sen81] Eugene Seneta. Non-negative Matrices and Markov Chains. Springer-Verlag,
New York, 2nd edition, 1981.

B 163

[SLRV03] Christian Schindelhauer, Tamás Lukovszki, Stefan Rührup, and Klaus Vol-
bert. Worst case mobility in ad hoc networks. In Proc. of the 15th ACM
Symp. on Parallelism in Algorithms and Architectures (SPAA), pages 230–239,
2003.

[SS04] Guido Schäfer and Naveen Sivadasan. Topology matters: Smoothed com-
petitiveness of metrical task systems. In Proc. of the 21st Symp. on Theoretical
Aspects of Computer Science (STACS), pages 489–500, 2004.

[SSS02] Mark Scharbrodt, Thomas Schickinger, and Angelika Steger. A new average
case analysis for completion time scheduling. In Proc. of the 34th ACM Symp.
on Theory of Computing (STOC), pages 170–178, 2002.

[ST85] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update
and paging rules. Communications of the ACM, 28(2):202–208, 1985.

[Tar85] Robert E. Tarjan. Amortized computational complexity. SIAM Journal on
Algebraic and Discrete Methods, 6(2):306–318, 1985.

[Wes92] Jeffery Westbrook. Randomized algorithms for multiprocessor page mi-
gration. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 7:135–150, 1992.

[Wes00] Matthias Westermann. Caching in Networks: Non-Uniform Algorithms and
Memory Capacity Constraints. PhD thesis, Universität Paderborn, 2000.

[Yao77] Andrew Chi-Chih Yao. Probabilistic computation: towards a uniform
measure of complexity. In Proc. of the 18th IEEE Symp. on Foundations of
Computer Science (FOCS), pages 222–227, 1977.

Appendix

A.1 Notations

The following list summarizes some basic notations used in the thesis.

• N = {0, 1, 2, . . .}, the set of non-negative integers

• Z is the set of all integers

• Z/(n) is the group of integers modulo n

• R is the set of all real numbers

• For n ∈N, [n] := {1, . . . ,n}

• Let f (n) by any function. Following [CLR97, chapter 2], we define the following
sets of functions

– O(f (n)) = {g(n) | ∃c ∈ R+ and n0 ∈N : ∀n ≥ n0 f (n) ≤ c · g(n)}

– Ω(f (n)) = {g(n) | ∃c ∈ R+ and n0 ∈N : ∀n ≥ n0 f (n) ≥ c · g(n)}

– Θ(f (n)) = {g(n) | g(n) = O(f (n)) and g(n) = Ω(f (n))}

– o(f (n)) = {g(n) | ∀c ∈ R+ ∃n0 ∈N : ∀n ≥ n0 f (n) ≤ c · g(n)}

– ω(f (n)) = {g(n) | ∀c ∈ R+ ∃n0 ∈N : ∀n ≥ n0 f (n) ≥ c · g(n)}

For any two functions f (n), g(n), by f (n) = O(g(n)) we mean f (n) ∈ O(f (n)). The
same holds for the other classes of functions defined above.

• As O, Ω, and Θ notation neglect any constants in the function definitions, the
analogous definitions of classes Õ, Ω̃, and Θ̃ neglect the polylogarithmic terms.

• For any two probability distributions ν1 and ν2 defined on some discrete space X,
their variation distance is defined as ‖ν1 − ν2‖ := maxA⊆X |ν1(A) − ν2(A)|.

165

166 A

A.2 Mathematical tools

In this part of the appendix we present some standard mathematical tools, inequalities,
and bounds used throughout this thesis.

Probability theory

Lemma A.1 (Markov inequality [Fel68]). Let X be a random variable taking non-negative
values. Then for all t ∈ R+ it holds that,

Pr[X ≥ t] ≤
E[X]

t
.

Lemma A.2 (Hoeffding bound [Hoe63, RPRR01]). Let X1, . . . , Xn be independent random
variables such that, for all i ∈ [n], there are values ai and bi such that ai ≤ Xi ≤ bi. Let
X =

∑n
i=1 Xi and µ = E[X]. Then for any t ≥ 0

Pr[X − µ > t] ≤ exp
(
−

2 · t2∑n
i=1(bi − ai)2

)
and

Pr[X − µ < −t] ≤ exp
(
−

2 · t2∑n
i=1(bi − ai)2

)
.

Lemma A.3 (Random walk on abelian group [Ros95]). Consider any additive groupZ/(k)
(i.e., integers modulo k with addition). Fix any starting probability distribution π0 over the
elements of Z/(k). Consider a random walk on this group with transition probabilities given by
the following stochastic matrix P:

P(x, y) =

1/3 if y ∈ {x − 1, x, x + 1},

0 otherwise.

After k steps the probability distribution on Z/(k) is equal to πk = Pk
· π0. Then the variation

distance between πk and a uniform distribution µ fulfills,

‖πk − µ‖ ≤

√√√√
exp

(
−

4·π2

3·B2 · k
)

1 − exp
(
−

4·π2

3·B2 · k
) .

Common inequalities

Lemma A.4 (Cauchy-Schwarz inequality [HLP88]). For any sequences (ai)n
i=1 and (bi)n

i=1,
it holds that  n∑

i=1

ai · bi

2

≤

 n∑
i=1

a2
i

 ·  n∑
i=1

b2
i

 .

A.2 M  167

Lemma A.5 (Hölder’s Inequality [HLP88]). For any p, q > 1 such that 1
p +

1
q = 1 and for

any non-negative sequences (ai)k
i=1 and (bi)k

i=1, it holds that

k∑
i=1

(ai · bi) ≤

 k∑
i=1

ap
i


1/p

·

 k∑
i=1

bq
i


1/q

.

Lemma A.6 (Jensen’s inequality [HLP88]). If f is a convex and continuous function, then
for any sequence of numbers (xi)n

i=1 and any (pi)n
i=1, such that 0 ≤ pi ≤ 1 and

∑n
i=1 pi = 1, it holds

that

f

 n∑
i=1

pi · xi

 ≤ n∑
i=1

pi · f (xi) .

Miscellaneous

Lemma A.7 (Stirling formula [Fel68]). For any natural n, let An =
√

2π · nn+1/2
· e−n. Then

An · e1/(12n+1) < n! < An · e1/(12n) .

	1 Introduction
	1.1 Static networks
	1.1.1 Competitive analysis

	1.2 Dynamic networks
	1.2.1 Our model
	1.2.2 Our contribution

	1.3 Related work
	1.4 Bibliographical notes

	2 Basics
	2.1 Optimal offline solution
	2.2 Reduction Lemma
	2.3 Two-node networks
	2.3.1 Randomized algorithm EDGE
	2.3.2 Lower bound for oblivious adversary

	2.4 Trivial algorithms
	2.4.1 Algorithm JUMP
	2.4.2 Reusing Page Migration algorithms

	3 Adversarial Scenario
	3.1 Randomization against adaptive adversary
	3.1.1 Algorithm DIST
	3.1.2 DIST in the first part of a step
	3.1.3 DIST in the second part of a step
	3.1.4 Combining DIST with other algorithms

	3.2 Marking algorithms
	3.2.1 Deterministic algorithm MARK
	3.2.2 Randomization against oblivious adversary
	3.2.3 Proofs of Phase Lemmas

	3.3 Lower bounds
	3.3.1 Lower bound against adaptive-online adversary
	3.3.2 Lower bound against oblivious adversary

	3.4 Concluding remarks
	3.5 Proofs of technical claims

	4 Brownian Motion Scenario
	4.1 Majority algorithms
	4.1.1 Epochs
	4.1.2 Competitiveness of MAJ

	4.2 Bounding cost of MAJ
	4.3 Bounding cost of OPT
	4.3.1 Narrow sets
	4.3.2 Precondition: smooth movement
	4.3.3 Precondition: scattered nodes
	4.3.4 Proof of the Crucial Property

	4.4 Extensions and conclusions
	4.5 Proofs of technical claims

	5 Stochastic Requests Scenario
	5.1 Lower bound for the extended cost model
	5.2 Algorithm MTFR
	5.2.1 Lower bound for OPT
	5.2.2 Upper bound for MTFR
	5.2.3 Expected competitive ratio

	5.3 Extensions and conclusions
	5.4 Proofs of technical claims
	5.4.1 Proof of the concentration bound

	6 Summary and Outlook
	Bibliography
	Appendix
	A.1 Notations
	A.2 Mathematical tools

