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Foreword                                                                      

Piezoelectric actuators find widespread applications in almost all fields of engineering. 

Ultrasonic welding, traveling wave motors or ultrasonic scalers are examples of systems 

operated in resonance. Diesel injection valves, optical scanners and atomic force microscope 

are examples of systems operating in a quasistatic mode. 

The performance of piezoelectric actuators in a given application is mainly determined from 

the tuning of the actuator characteristics to the load characteristics. Except for some very 

limited special cases, no simple general design guidelines can be given today. Mathematical 

methods for the optimization of piezoelectric actuators are therefore a very important tool for 

the system designer. 

In most engineering design tasks, multiple optimization criteria must be met. Despite 

tremendous progress in the mathematical sciences, knowledge on methods and algorithms for 

multicriteria optimization problems is limited in the engineering community. 

Bo Fu was a scholar at the Paderborn Institute for Scientific Computation (PaSCo) and his 

thesis work was funded within the DFG-Graduiertenkolleg “Scientific Computation: 

Application-oriented Modeling and Development of Algorithms”. His thesis concentrates on 

the study of multicriteria optimization problems arising in the design of piezoelectric 

actuators and on mathematical methods which were developed for this class of optimization 

problems. Classical and novel methods are studied in detail and applied to various typical 

design problems of piezoelectric transducers. The results are of interest for all engineers 

working on the design of piezoelectric actuators, which are interested in mathematical 

background of multicriteria optimization, as well as for all mathematicians working in 

multicriteria optimization, which are interested in engineering applications. 

 

 

 

Paderborn, September 2005 

 

 

 

 

(Prof. Dr.-Ing. Jörg Wallaschek) 

 

 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Acknowledgments 

First of all, I would like to express my sincere gratitude and appreciation to my thesis advisor, 

Prof. Dr.-Ing. Jörg Wallaschek, for his continuous encouragement, support and patience 

throughout my Ph.D. study. His observations and comments helped me to establish the overall 

direction of my research and to move forward with investigation in depth, and his technical 

and editorial advice was essential to the completion of this dissertation. I thank him for giving 

me the opportunity to work with him. 

I would also like to thank my co-advisor, Prof. Dr. Michael Dellnitz, for providing many 

valuable comments and suggestions during the work. I am furthermore grateful to the other 

members of my examining committee, Prof. Dr.-Ing. Roland Span and Prof. Dr.-Ing. Ansgar 

Trächtler, for their valuable comments. 

I would additionally like to thank all members of the Mechatronics and Dynamics research 

group at the Heinz Nixdorf Institute for their help and support over the last few years. 

Particular thanks go to Dr.-Ing. Tobias Hemsel for the valuable comments that were very 

helpful in improving the presentation and contents of this dissertation. Thanks also to Dipl.-

Ing. Reinhard Böer, Dr.-Ing. Thomas Sattel, Dipl.-Ing. Michael Brökelmann, Dipl.-Ing. Maik 

Mracek, Dipl.-Ing. Rafal Krol und Dipl.-Ing. Christian Potthast for their discussions and 

support. Special thanks to Mrs. Marina Kassühlke and Mrs. Kerstin Hille for their help and 

support throughout my Ph.D. study. 

All the members of the Graduiertenkolleg of the Paderborn Institute for Scientific 

Computation (PaSCo) are also due many thanks for the pleasant environment, assistance and 

friendship. Particular thanks to M.Sc. Fang Wang for several disscussions and Dipl.-Ing. 

Nicolai Neumann for proof-reading some of the chapters.  

I gratefully acknowledge the China Scholarship Council, the Graduiertenkolleg of the PaSCo 

and the Heinz Nixdorf Institute for providing scholarships to pursue doctoral studies in 

Germany. 

Finally, last, but not least, I would like to thank my family, my wife Ling and son Yiheng, for 

their love, encouragement, patience and understanding during the past few years.  

Thank you all. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

To my mother, my father, my wife and my son 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CONTENTS I 

 

Contents 

1 Introduction .......................................................................................................1 

1.1 Motivation ............................................................................................................. 1 

1.2 Objective ............................................................................................................... 2 

1.3 Scope ..................................................................................................................... 2 

2 Piezoelectric Actuators ....................................................................................5 

2.1 Piezoelectric Effect................................................................................................ 5 

2.2 Piezoelectric Actuators.......................................................................................... 8 

2.3 Models of Piezoelectric Actuators ........................................................................ 9 

2.3.1 Nonparametric Models .............................................................................. 9 

2.3.2 Continuum Models .................................................................................. 12 

2.3.3 Finite Element Method ............................................................................ 18 

2.3.4 Lumped Parameter Models...................................................................... 18 

2.4 Typical Design Goals .......................................................................................... 23 

2.4.1 One Stroke Driving.................................................................................. 23 

2.4.2 Resonant Driving..................................................................................... 23 

2.5 State of the Art of Optimization of Piezoelectric Actuators ............................... 24 

3 Multiobjective Optimization Methods............................................................29 

3.1 Basic Concepts of Multiobjective Optimization ................................................. 29 

3.2 Traditional Multiobjective Optimization Methods.............................................. 31 

3.2.1 Weighted Sum Method............................................................................ 32 

3.2.2 ε-Constraint Method ................................................................................ 33 

3.2.3 Weighted Metric Methods....................................................................... 33 

3.2.4 Value Function Method........................................................................... 34 

3.3 Multiobjective Evolutionary Algorithms ............................................................ 35 

3.3.1 Basic Principles of Evolutionary Algorithms.......................................... 35 

3.3.2 Fitness Assignment and Fitness Sharing ................................................. 39 

3.3.3 General Procedures of Multi-objective Evolutionary Algorithms .......... 41 

3.3.4 Multiobjective Genetic Algorithm ......................................................... 42 

3.3.5 Non-dominated Sorting Genetic Algorithm ........................................... 43 

3.3.6 Strength Pareto Evolutionary Algorithm ................................................ 43 



II CONTENTS 

3.3.7 Elitist Non-dominated Sorting Genetic Algorithm.................................. 45 

3.4 Constraint Handling in Multiobjective Evolutionary Algorithms....................... 45 

3.4.1 Methods based on Preserving Feasibility of Solutions............................ 46 

3.4.2 Methods based on Penalty Functions ...................................................... 46 

3.4.3 Methods based on Feasibility and Domination of Solutions................... 47 

3.5 Performance Metrics for  Evaluating  MOEAs ................................................... 48 

4 Multiobjective Optimization of Piezoelectric Transducers..........................51 

4.1 Langevin Transducers ......................................................................................... 51 

4.2 Performance Criteria ........................................................................................... 53 

4.3 Determination of Optimal Prestress .................................................................... 57 

4.3.1 Freely Vibrating Transducers .................................................................. 61 

4.3.2 Transducers with a Mechanical Load...................................................... 62 

4.4 Modeling of Langevin Transducers using Transfer Matrix Methods ................. 65 

4.5 Optimization of Symmetrical Langevin-type Transducers ................................. 70 

4.5.1 Derivation of the Whole Transfer Matrix................................................ 71 

4.5.2 Problem Formulation of the Symmetrical Transducer without Loads .... 73 

4.5.3 Implementation of the Optimization Process .......................................... 78 

4.6 Optimization of Langevin-type Transducers with a Stepped Horn..................... 91 

4.6.1 Derivation of the Whole Transfer Matrix................................................ 91 

4.6.2 Problem Formulation of Transducers without Loads.............................. 92 

4.6.3 Implementation of Optimization ............................................................. 95 

4.6.4 Problem Formulation of Transducers with a Mechanical Load ............ 105 

4.6.5 Implementation of Optimization ........................................................... 108 

5 Results and Discussions..............................................................................113 

5.1 Discussion of the Results  for the Symmetrical Transducer ............................. 113 

5.1.1 Analysis of the Results of the Optimization.......................................... 114 

5.1.2 Determination of the Preferred Solution ............................................... 116 

5.2 Discussion of the Results for Stepped-horn Transducers without Load ........... 122 

5.2.1 Analysis of the Results of the Optimization.......................................... 124 

5.2.2 Determination of the Preferred Solution ............................................... 125 

5.3 Discussion of the Results for Stepped-horn Transducers with Load ................ 132 

5.3.1 Analysis of the Results of the Optimization.......................................... 134 

5.3.2 Determination of the Preferred Solution ............................................... 135 



CONTENTS III 

 

5.3.3 Load Characteristics of Stepped-horn Transducers............................... 139 

6 Summary and Outlook..................................................................................141 

Appendix A  Derivation of Individual Transfer Matrix ........................................145 

Appendix B  Developed Programs.......................................................................149 

Bibliography...........................................................................................................151 

 

 

 

 

 



 



LIST OF SYMBOLS  V 

  

List of Symbols 

 

α  electromechanical transformation factor 

Ap cross area of piezoelectric elements 

Ab cross area of metal blocks 

Sβ , Tβ  dielectric impermeability matrix 

c modal stiffness 

Lc  load stiffness 

D
c , E

c  elastic modulus (Young’s modulus) matrix 

cp, cm wave speed 

C electric capacitance 

d modal damping  

Ld  load damping 

d piezoelectric charge constant matrix 

Dp diameter of piezoelectric elements  

Dt outer diameters of back blocks, front blocks, input side of horns and piezo-rings  

Dt2    outer diameter of the output end of horns 

D dielectric displacement vector 

S
ε  , T

ε  absolute dielectric constant matrix 

e piezoelectric constant matrix 

f frequency 

E elastic modulus (Young’s modulus) 

E electric field strength vector  

Ec coercive field strength 

F force 



VI LIST OF SYMBOLS 

g piezoelectric voltage constant matrix 

hp thickness of piezoelectric rings/discs 

H piezoelectric constant matrix 

j 1−  

k, keff coupling factor 

kp wave number 

Kϕϕ  dielectric matrix 

Kuu stiffness matrix 

Kuϕ 

,Kϕ u 
piezoelectric matrix 

Lb length of back and front blocks 

Lf1, Lf2 length of the first part of horns, length of the second part of horns 

Lp length of piezoelectric elements 

Lm mechanical inductance 

pλ  power efficiency 

m modal mass 

M piezoelectric quality number 

Mp mass matrix 

Ν number of piezoelectric rings, population size 

η efficiency 

ηe electrical loss factor 

ηm mechanical loss factor 

ηp piezoelectric loss factor 

me ϕϕ ,  phase difference 

ϕ  electric potential field 

ep  electrical power 



LIST OF SYMBOLS VII 

P polarization 

Pa, Pma apparent electrical and mechanical power  

Pe, Pm effective electrical power and mechanical power 

rP  remanent polarization  

Pr prestress 

ρ density 

Q electric charge 

Qm mechanical quality factor 

R electric resistance 

D
s , E

s  elastic compliance matrix 

S strain vector 

t time 

δtan  loss factor 

Typb material of back and front blocks  

Typf material of horns 

Typp material of piezo-rings 

T stress vector 

u, u3 displacment 

U voltage 

v velocity 

ω angular frequency 

1w , 2w  pseudo-weight of objective 1, pseudo-weight of objective 2 

Ω exciting angular frequency 

ζ  diameter transformation ratio 

 

In this dissertation, complex quantities are characterized by underline. Amplitudes are 

characterized by a hat “^”.



 

  

 



LIST OF PUBLICATIONS  IX 

  

 

 

 

Parts of this work have already been published in terms of conference contributions: 

 

Fu, Bo; Hemsel, Tobias; Wallaschek, Jörg: Model-based Diagnosis for Sandwiched 

Ultrasonic Transducers. Proceedings of the 18th International Congress on Acoustics, ICA 

2004, Kyoto, Japan Bd. 3, 2004, S. 2243-2246 

Fu, Bo; Hemsel, Tobias; Wallaschek, Jörg: Multiobjective Optimization of Piezoelectric 

Transducers using Evolutionary Algorithms. Proceedings of 2nd International Workshop on 

Piezoelectric Materials and Applications in Actuators, Paderborn, 2005, (in print) 

Fu, Bo; Hemsel, Tobias; Wallaschek, Jörg: Piezoelectric Transducer Design via 

Multiobjective Optimization. World Congress Ultrasonics 2005, Beijing, P. R. China, (to be 

published in 2006) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



INTRODUCTION 1  

 

1 Introduction                                                                             

1.1    Motivation 

Over the last decades the demand for piezoelectric actuators has been increased significantly. 

Different types of piezoelectric actuators such as high strain multilayers, ultrasonic 

transducers, converters and ultrasonic motors etc. have been developed. They have been 

widely used in engineering fields like e.g. micro-positioning, active vibration control, 

ultrasonic welding and machining. Piezoelectric actuators, like almost all mechanical systems, 

are always expected to be “optimal”. However, the design of piezoelectric actuators is a 

difficult task, because the overall characteristics of piezoelectric actuators are affected by 

various factors such as dimensions of active and passive parts, inherent properties of 

piezoelectric materials, electrical and mechanical boundary conditions, etc. Obviously, 

empirical and intuitive design methods cannot well accomplish the design task. Systematic 

optimization techniques are the most appropriate tool to be used in the design task of 

piezoelectric actuators. 

The design of a piezoelectric actuator can be described as a process of finding optimal design 

variables like e.g. the dimension and material types of piezoelectric elements and mechanical 

parts, which minimize or maximize a certain number of objectives like e.g. output amplitude, 

input power, output power, subject to a certain set of specified requirements, like e.g. 

resonance frequency, limits on input voltage and pre-stress, geometric constraints, etc. This is 

a constrained multiobjective optimization problem (MOP) involving continuous and discrete 

design variables. Commonly, in this problem some of the multiple objectives are conflicting 

to each other and it is impossible to find a solution at which each objective function gets its 

optimal value simultaneously. In this case, one tries to find a set of optimal compromises 

namely Pareto-optimal solutions from which the designer can select one.  

MOPs are often solved by traditional methods based on scalarization techniques. The 

common ground of these methods is to convert a multiobjective (vector) optimization 

problem into a single (scalar) optimization problem. After transformation the widely 

developed theory and methods for single objective optimization can be used. However, 

traditional methods show some difficulties. For example, they require some problem 

knowledge before optimization is performed. Some techniques may be sensitive to the shape 

of the Pareto-optimal front. Moreover, they require several optimization runs to obtain an 

approximation of the Pareto-optimal set. Evolutionary algorithms (EAs), on the other hand, 

are able to find multiple Pareto-optimal solutions in a single simulation run due to their 

population-approach. They are well suited for multiobjective optimization and the problems 

with discrete variables. Indeed, from the point of view of engineering only one best solution 

needs to be implemented. If one knows the exact trade-off among objectives before the 

problem is solved, there is no need to find multiple solutions. The exact trade-off between 
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objective functions, however, is usually not clear before optimization is performed. Therefore, 

it is better to find the Pareto-optimal set and then select one solution by some criteria.  

Over the past decades many multiobjective optimization methods in particular multiobjective 

evolutionary algorithms (MOEAs) have been developed. It is meaningful to apply them in the 

design of piezoelectric actuators in order to improve performances of products and reduce the 

cost of the product development. Although some studies concerning optimization of 

piezoelectric actuators have been published and some optimization methods have been used, 

these studies mainly concentrate on single objective optimization and continuous variables. 

Multiobjective optimizations of piezoelectric actuators including continuous and discrete 

design variables, especially the formulation of problems and the application of various 

MOEAs have not been reported. Obviously, there is a need for a contribution to this topic.  

1.2   Objective  

The objective of this thesis work is to present an integrated procedure for piezoelectric 

actuator design via multiobjective optimization methods. The work concentrates on the 

formulation of MOPs, the application of different multiobjective optimization methods, the 

evaluation of optimized results and the determination of the preferred design. There exist a 

large variety of multiobjective optimization methods and it is not possible to apply every 

existing method. The thesis mainly concentrates on the application of MOEAs. Regarding 

classical scalarization methods the algorithms of single objective optimization will not be 

stressed but the ways to converting the MOP to a single objective problem will be pointed 

out. As far as optimization problems of piezoelectric actuators are concerned, one practical 

MOP, namely the two-objective optimal design of Langevin-type transducers involving 

continuous and discrete design variables, is considered. The transfer matrix method based on 

continuum models of piezoelectric and mechanical rods and the lumped parameter method 

based on the electromechanical analogies are mainly applied in formulation of optimization 

problems. 

1.3   Scope  

The present thesis work is organized as follows: 

In chapter 2, fundamentals of piezoelectric actuators are presented. First, the piezoelectric 

effect and typical piezoelectric actuators are introduced. Then, four models of piezoelectric 

actuators namely nonparametric models, continuum models, finite element models and 

lumped parameter models based on the electromechanical analogies are described. After that, 

typical design goals for typical piezoelectric actuators are presented. Finally, the state of the 

art of optimization of piezoelectric actuators is reviewed.   
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Chapter 3 presents multiobjective optimization methods. The basic concepts of multiobjective 

optimization are first introduced. Classical multiobjective optimization methods (scalarization 

methods) are then described briefly. Finally, five MOEAs are studied.  

Chapter 4 presents the multiobjective optimization of Langevin-type transducers.  First, the 

Langevin transducer is introduced. Then performance criteria for the transducer are described. 

After that, optimal prestress of the Langevin transducer for multiple objectives is discussed. 

The modeling of the transducer using the transfer matrix method based on continuum models 

is then described. Finally, MOPs for the design of Langevin-type transducers are formulated. 

These problems are then solved by two-level optimization using MOEAs described in chapter 

3. The first level optimization is performed in this chapter.  

In chapter 5, the second level optimization is preformed and the preferred design is 

determined. First, the non-dominated solutions are searched in the results of the first level 

optimization obtained in chapter 4 for the transducers with 2, 4 and 6 piezo-rings. Second, the 

results of the second level optimization are analyzed and the preferred design is determined 

using various methods. Finally, the load characteristics of the Pareto-optimal transducers are 

discussed. 

The last chapter gives a summary to this thesis work and outlook for future work.  

 



 

  

 



PIEZOELETRIC ACTUATORS                                                                                        5  

 

2   Piezoelectric Actuators                                                         

For the optimization of piezoelectric actuators two different kinds of techniques are needed. 

One is the modeling of the actuators; the other is an appropriate optimization method. In this 

chapter the most important fundamentals concerning piezoelectric actuators are described. 

First, the piezoelectric effect and piezoelectric actuators are introduced. The models of 

piezoelectric actuators are then described. After that, the typical design goals for different 

types of piezoelectric actuators are present and the state of the art of optimization of 

piezoelectric actuators is reviewed.  

2.1 Piezoelectric Effect 

The piezoelectric effect was first discovered by Pierre and Jacques Curie in 1880. They found 

that when mechanical stress T was applied to a particular crystal material, electrical charges Q 

were generated and a voltage U between the surfaces of the material was generated. About 

one year later the inverse piezoelectric effect, which is the fundamental for applying 

piezoelectric elements as actuators, was also examined by the Curies [Ike96].   

The piezoelectric effect can appear only in crystals which have polar axes, i.e. in the crystals 

which possess no center of symmetry. Many naturally occurring crystals, e.g. quartz, 

tourmaline and Rochelle salt have this character. Piezoelectric ceramics (PZT-based 

ceramics), which are probably the most important piezoelectric materials, may be considered 

as a mass of randomly oriented piezoelectric crystallites. These materials have a perovskite 

crystal structure. In the high temperature no-polar phase there is no spontaneous polarization 

because the crystallites are cubic symmetric. Below the transition temperature known as the 

Curie point, i.e. in a non-centrosymmetric ferroelectric phase, spontaneous polarization occurs 

and the crystallites exhibit the tetragonal or rhombohedral structures. In the unpolarized state, 

the polarizations of grains (crystallites making up a polycrystalline ceramic) or domains are 

randomly oriented so that no overall polarization or piezoelectric effect appears. The 

piezoelectricity of the polycrystalline ceramics may, however, be aligned in any chosen 

direction by a poling treatment which involves applying a strong electric field (>3 kV/mm) to 

align the polarization direction of each grain or domain as much as possible, heating the 

material to beyond its Curie point and cooling the material below this point to “lock” the 

domain structure. The polycrystalline ceramic therefore becomes anisotropic and has a 

permanent polarization as if it were a single-domain crystal [Cul96] and [Uch97]. Details 

concerning the configuration and fabrication of piezoelectric ceramics are described in 

[JC71], [Phi 88] and [Set02].  

The piezoelectric effect couples the electrical and mechanical behavior. It can be 

approximately described by the following linear piezoelectric constitutive fundamental 

equations [Ike96], [Phi91] and [Hem01]:  
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EεdTD

EdTsS

T

t

E

+=

+=
                            (2.1) 

In the above equations the full tensor notation has been abbreviated into simpler matrix 

notation. D, E, S and T are the vectors of the dielectric displacement, the electric field 

strength, the strain and the stress respectively. T
ε , s

E
 and d are the matrices of the absolute 

dielectric constant, the elastic compliance and the piezoelectric charge constant. The 

superscripts T and E refer to the quantities to be kept constant (T=E=0) when measuring 

material constants [IE87], [DI483] and [DI324]. Similar relations are found for various 

choices of independent variable sets. The constitutive equations can be arranged in several 

ways and the four types of the piezoelectric constitutive equation set are shown in Table 2.1. 

By calculations one set of constants can be expressed by another, see e.g. [DI483] and 

[DI324].  

As poled piezoelectric ceramics are anisotropic, the material constants depend on the 

directions of the stimulation and reaction. These are described by a (right hand) Cartesian 

coordinate system. Usually the direction of polarization is taken to be that of the 3-axis (z 

axis), see Fig. 2.1. The material constants are complied in the following elastoelectric matrix, 

see Table 2.2. The material constants are generally written with two subscripts. The first 

subscript indicates the direction of the excitation, and the second gives the direction of of the 

system response. It is worth noticing that not all elements of the elastoelectric matrix are 

occupied.    

These material constants are identified by the measurement on geometrically simple 

specimens under a small electric excitation [DI324] and [Rus95]. They are only applied for 

the description of the small signal behavior and subject to a high fluctuation range [DI324] 

and [Hem01].  

Table 2.1 Types of fundamental piezoelectric constitutive equations 

  Independent variable                      Piezoelectric constitutive equation 
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Fig. 2.1 Coordinate System  

For large mechanical strains and large electrical field strengths the material behaves 

nonlinear. Fig. 2.2(a) shows the relationship between the applied electric field strength E and 

the induced polarization P. There appears a hysteresis caused by the transition of the 

spontaneous polarization between the positive and negative directions. Fig. 2.2(b) shows the 

relationship between the applied electric field and the strain, i.e. the so-called butterfly 

hysteresis curve. When the applied field is small, the induced strain is nearly proportional to 

the field. The piezoelectric constant can be obtained from the slope. As the field becomes 

larger (i.e. greater than about 100V/mm), the strain curve deviates from this linear trend and 

significant hysteresis is exhibited. If the drive electric field passes the coercive field, the 

hysteresis changes into a butterfly shape. Such strain hysteresis during an electric field cycle 

is caused by the change of the ferroelectric domain status. The detailed physical 

interpretations on hysteresis are shown in e.g. [Sch96] and [Uch97]. Commonly, the losses 

can be approximately described by complex material constants [Wal00] and [Hem01]. 

Piezoelectric ceramics are also temperature-dependent and exhibit total depolarization above 

the Curie point, which, depending on the composition, ranges from 150°C to 400°C. As the 

Curie point is approached the values of the piezoelectric constants decrease. 

Table 2.2 Elastoelectric matrix for the stress T and the electric field E  as independent 

variables   

 T1 T2 T3 T4 T5 T6 E1 E2 E3 

S1 s11 s12 s13      d31 

S2 s12 s11 s13      d31 

S3 s13 s13 s33      d33 

S4    s44    d15  

S5     s44  d15   

S6      2(s11-s12)    

D1     d15  ε11   

D2    d15    ε11  

D3 d31 d31 d33      ε33 
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a)                                                                         b) 

Fig. 2.2 a) Polarization P as a function of field strength b) Mechanical deformation (strain) 

as a function of field strength 

2.2    Piezoelectric Actuators 

Piezoelectric actuators convert voltage and charge into force and motion. According to the 

electrical drive method, they can be divided into two categories: the resonant driven 

piezoelectric actuators and the non-resonant driven piezoelectric actuators. The resonant 

driven piezoelectric actuators include e.g. ultrasonic transducers (converters), ultrasonic 

motors and piezoelectric transformators. The non-resonant driven piezoelectric actuators 

include various one-stroke actuators. Their operating frequency range is from quasistatic up to 

about half of the first resonant frequency of the mechanical system.  

In practice a variation of the electric field strength will deform a piezoelectric body in 

different directions with different intensities. According to the type of the utilized 

piezoelectric effect (the directions of the applied electric field and the extension), 

piezoelectric actuators can be divided into three main groups, see Fig. 2.3. 

In longitudinal actuators, also called d33-actuators, the applied electric field, the utilized 

extension and the polarization have the same direction. They are usually used for small 

movements and high forces and generally have because of high stiffness. Transversal actuator 

actuators, also called d31-actuators, have the electric field applied in the direction of the 

polarization and the main deformation is in the direction perpendicular to the polarization. 

They are also used for small movements and high forces and also have high stiffness. In 

flexural actuators, also known as d15-actuators or bimorphs, the electric field is applied in the 

direction perpendicular to the polarization and the flexural deformation is utilized. They are 

mainly used for large movements and have low stiffness.  
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Fig. 2.3 Piezoelectric actuators a) d33  ; b) d31; c) d15 

Typical strain levels that can be obtained by piezoelectric actuators are in the region of 0.1%, 

occurring at field strength in the region of 1000V/mm. This maximum field strength is limited 

to approximately 0.75 of the value of the coercive field. In order to increase the total 

displacement capability of a piezoelectric ceramic actuator, multilayer stacks as well as 

amplifying mechanisms are often used [Cul96] and [Hen01]. 

In addition to hysteresis, other effects such as zero point drift, creep and aging are also 

encountered in piezoelectric actuators [Sch96] and [Uch97]. 

A piezoelectric actuator commonly consists of several components including piezoelectric 

ceramics and metal housing, which are assembled to form an integral entity. Piezoelectric 

actuators have been widely used in various fields such as micro-positioning of tools, active 

vibration control, ultrasonic welding and machining, common rail diesel injection systems.  

2.3    Models of Piezoelectric Actuators 

In any optimization problem two phases can be distinguished: formulation and solution. 

Broad experience in solving problems has shown that the time needed to formulate a problem 

makes up 70-85% of the total time required for a complete treatment, from the formulation to 

results [SM95]. An adequate mathematical model is the fundamental of the formulation of 

optimization problems. This section presents four models which can be used to describe the 

dynamic behavior of piezoelectric actuators. In order to interpret the models more clearly, a 

typical longitudinal piezoelectric actuator as shown in Fig. 2.4 a) is used as an example for 

modeling. 

2.3.1 Nonparametric Models  

The nonparametric model deals with the piezoelectric actuator as a type of “black box” and 

directly estimates the impulse or the frequency response of the system. This model does not 

impose any assumptions about the actuator, other than that of linearity. In this context, a 

piezoelectric actuator can be regarded as an electromechanical four-pole network element, 

which has electric input quantities (the voltage U and the current I ) and mechanical output 

quantities (the force F and the velocity v) , see Fig. 2.4 (b).  
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Fig. 2.4 a) Piezoelectric actuator b) Piezoelectric actuator as a four-pole network element 

For harmonic vibrations of the piezoelectric actuator, the relation between inputs and outputs 

can be written as  









⋅







=









F

U

yy

yy

v

I

ˆ

ˆ

ˆ

ˆ

2221

1211  ,               (2.5) 

where Û , Î , F̂ and v̂  are complex amplitudes. Y  is the transfer matrix, which also is called  

the conductance matrix. The elements of the transfer matrix are defined as follows: 

U

I
y

ˆ

ˆ

11
= : the short-circuit input admittance              (2.6) 

U

v
y

ˆ

ˆ
21

=   : the short-circuit core admittance (forward)                                        (2.7) 

F

I
y

ˆ

ˆ

12
=  : the short-circuit core admittance (backward)                                      (2.8) 

F

v
y

ˆ

ˆ
22

=  : the short-circuit output admittance                                                     (2.9) 

Fig. 2.5 shows the typical variation of the amplitude magnitude and phase shift of the short-

circuit input admittance 
11

y  as a function of frequency (Bode plot) for a piezoelectric 

actuator. Fig. 2.6 gives the corresponding locus of 
11

y  in the complex plane (Nyquist plot). 

According to Fig. 2.6, a piezoelectric quality number is geometrically defined as follows 

[LeI75]. 

c

r

Y

Y
M =                                                                                                       (2.10) 

where Yr = Ymax-Ymin is the diameter of the locus of 
11

y  as shown in Fig. 2.6. Ymax and Ymin are 

the values of 
11

y at the frequencies fm and fn , respectively. 
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Fig. 2.5 Variation of admittance magnitude and phase angle with frequency 
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Fig. 2.6 Frequency response in the complex plane 

There are three pairs of characteristic frequencies, which are characteristic for these plots, 

namely fs and fp , fm and fn as well as fr and fa . The series resonant frequency fs is the 

frequency at which the admittance in the equivalent model becomes infinite if the electrical 

loss R and the mechanical loss d are neglected (see section 2.3.4). The parallel resonant 

frequency fp is the frequency at which the admittance in the equivalent model becomes zero if 

R and d are neglected (also see section 2.3.4). The frequency fm is the frequency at which the 

admittance becomes maximum and the frequency fn is the frequency at which the admittance 

becomes minimum. The resonant frequency fr and antiresonant frequency fa are the 

frequencies at which the phase angle of 
11

y  is equal to zero. These frequencies are 

approximately equal for the piezoelectric ceramics with a piezoelectric quality number M>>2, 

i.e. fs ≈ fr  ≈ fm  and fp ≈ fa ≈ fn .  

The coupling factor k is a measure of the effective energy conversion in the piezoelectric 

actuator. For quasistatic operation, the coupling factor k is defined as follows [Ike96]: 

11
y  

( )
11

yArg

 

( )
11

Im y  

( )
11

Re y  
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energy electrical supplied

energy mechanical stored d,transforme2 =k                                                    (2.11a)   

or 

           
energy mechanical supplied

energy electrical storedd,transforme2 =k                                                        (2.11b) 

This definition gives a conceptual picture of the coupling factor, but it is not effective in 

determining the value of 2
k of an actual actuator. It is possible to express the coupling factor 

based on the frequencies defined above. This results in [Phi91] 

2

22

2

p

sp

f

ff
k

−
=                           (2.12) 

As an approximation, when k << 1 one may write 

pp

sp

f

f

f

ff
k

∆
=

−
= 222              (2.13) 

It is worth to point out that though a high k
2
 is usually desirable for efficient transformation, 

the coupling factor must not be mistaken for efficiency, since the losses are not considered in 

the coupling factor. The unconverted energy is not necessarily lost (converted into heat) and 

can mostly be recovered. 

The mechanical quality factor Qm is used as a measure for the resonance rise of the 

piezoelectric actuator. It can be derived from the 3dB bandwidth of the admittance at fs if 

k
2
Qm>10 [Rus95] resulting in   

12)3( ff

f

dBf

f
Q s

s

s

m
−

=
∆

=                                                                                   (2.14) 

The frequencies f1 and f2 are frequencies that correspond to the admittances that are 3dB lower 

than the maximal admittance, respectively.    

The advantage of nonparametric models is that they are able to analyze the dynamic behaviors 

of all types of piezoelectric actuators, without knowing the concrete structure of the system. 

As no parameters are used in the models, obviously, they are not suitable to the optimization 

problem. Nonparametric models, however, play an important role in the experimental 

characterization of dynamic behaviors of piezoelectric actuators.  

2.3.2 Continuum Models 

In continuum models the piezoelectric actuator is considered as a mechanical continuum with 

additional degrees of freedom for the electrical behavior. Its behavior is described by the 
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partial differential equations of motion, which involve derivatives with respect to spatial 

coordinates as well as with respect to time. Moreover, the electromechanical coupling of the 

piezoelectric material is approximately described by the constitutive equations [BCJ64] and 

[WH00].  

It is difficult to find an analytical solution of the partial differential equations of motion of 

continuous systems having complex geometry and boundary conditions. Therefore, 

continuum models are mostly used for piezoelectric actuators with simplified geometry (rod, 

beam, plate etc.) and boundary conditions. 

In the following the continuum model of the piezoelectric actuator shown in Fig. 2.4(a) will 

be described. Fig. 2.7 gives its dimensions. 

Assumptions: It is assumed that the actuator has the shape of a slender rod and only the 

longitudinal vibration is taken into account. The problem is then reduced to the one-

dimensional case by following assumptions: 

• Dp < λ/4 (slender rod, λ is wavelength) 

• T1= T2= T4= T5=T6= 0  (uniaxial stress condition) 

• E1= E2 = 0 (non leakage electrical field) 

• D1= D2 = 0 (surrounding medium air)  

Governing equations The fundamental piezoelectric constitutive relation (T, E)-type (see 

Table 2.1) for loss-free piezoelectric material is  

3333333   EdTsS
E +=                                                                                              (2.15) 

3333333   ETdD
Tε+=                            (2.16) 

 

Dp
X (z)3

X2

X1

z dz

u3

F3

dz

Ap

 

Fig. 2.7 Dimensions of the piezoelectric actuator  

dz
z∂

∂
+ 3

3

F
F  
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This is rearranged to give the relation of (S, E)-type as follows 

3333333 EeScT
E −=                   (2.17) 

3333333 ESeD
Sε+=                          (2.18) 

where ETSEEE
sdsdesc 33

2

3333333333333333 /,/,/1 −=== εε  

Eliminating E3 gives 

3

33

33
3333 D

e
ScT

S

D

ε
−=               (2.19) 

where   SED
ecc 33

2

333333 /ε+=    

When the energy losses in the piezoelectric materials should be taken into account, the 

following complex moduli can be introduced into the model 

)1(3333 m

EE
jss η−=               (2.20) 

)1(3333 e

TT
jηεε −=                (2.21) 

)1(3333 pjdd η−=               (2.22) 

Equations (2.20), (2.21) and (2.22) describe mechanical loss, dielectric loss and piezoelectric 

loss, respectively. The loss factors mη , eη  and pη describe the phase shifts between the stress 

and the strain, between the electric field strength and dielectric displacement as well as 

between the strain and the electric field strength, respectively. The application of complex 

moduli in the modeling will be discussed further in chapter 4. 

Considering an element of length dz, the application of Newton’s second law to the free body 

of the element shown in Fig. 2.7 yields  

2

3

2

3  
t

u

z

T

∂

∂
=

∂

∂
ρ                (2.23) 

and the conservation of charge leads to 

03 =
∂

∂

z

D
                                        (2.24) 

Substituting equations (2.17) and (2.18) into equations (2.23) and (2.24) as well as using   

  
z

u
S

∂

∂
= 3

3                 (2.25) 

and  



PIEZOELETRIC ACTUATORS                                                                                        15  

 

z
E

∂

∂
−=

ϕ
3                (2.26) 

 yield the following governing equations 

2

3

2
2

2

3

2

 
z

u
c

t

u
p

∂

∂
=

∂

∂
                                    (2.27) 

2

3

2

33

33

2

2

 
z

ue

z
S ∂

∂
=

∂

∂

ε

ϕ
                                                                                                   (2.28) 

Equation (2.27) is the one-dimensional wave equation, in which the wave speed is given by        

ρD

p cc 33= .  

Solutions of governing equations   

The solution of the wave equation (2.27) is generally obtained by means of the separation-of-

variables method, where u3 (z, t) is expressed as the product of a function of time and a 

function of the space coordinate. The solution ϕ (z, t) of the governing equation (2.28) can 

also be obtained by means of the same method. If the input voltage is a harmonic vibration 

with frequency Ω , the displacement u and the electric potential ϕ  are also considered as 

harmonic vibrations with the same frequency. Therefore, the function of time in the 

separation-of-variables method can be directly expressed as tj
e

Ω . Using complex variables to 

express the displacement and potential fields yield  

tjezutzu Ω= )(ˆ),( 33                                                (2.29) 

tj
eztz

Ω= )(ˆ),( ϕϕ                                                           (2.30) 

Substituting equations (2.29) and (2.30) into equations (2.27) and (2.28) yields the following 

governing equations 

0ˆ
ˆ

3

2

2

3

2

=+ uk
dz

ud
p               (2.31) 

2

3

2

33

33

2

2
ˆˆ

zd

ude

dz

d

Sε

ϕ
=                 (2.32) 

where kp=Ω / cp is called wave number. 

Since two arbitrary constants are required in the solution of a second-order ODE, the general 

solution of the equation (2.31) has the following complex form 

zjkzjk pp eCeCzu
−

+= 213 )(ˆ                                                                                     (2.33) 
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Introducing equation (2.33) into equation (2.32) the solution ϕ̂  can be expressed as follows 

( ) 4321

33

33)(ˆ CzCeCeC
e

z
zjkzjk

S

pp +++=
−

ε
ϕ                                                          (2.34) 

The undetermined constants C1, C2, C3 and C4 can be computed from electrical and 

mechanical boundary conditions. For example, when the piezoelectric actuator shown in the 

Fig. 2.4(a) and Fig. 2.7 is fixed at one side (z=0) and a harmonic force tjeFtF Ω= 33
ˆ)(  is 

applied at the other side (z = Lp), the boundary conditions are: 

ULzz

A

F
LzTzu

p

p

p

ˆ)(ˆ,0)0(ˆ

ˆ
)(ˆ,0)0(ˆ 3

33

−====

====

ϕϕ

                                             (2.35) 

After introducing these boundary conditions into equations (2.33), (2.17), (2.34) and (2.34) 

four linear equations in terms of C1, C2, C3 and C4 can be obtained. The unknown constants 

are then determined based on solving the four linear equations ( 3F̂  and Û  are assumed as 

given quantities). Therefore, the complex amplitudes of the vibration displacement and 

electric potential are obtained according to the equations (2.33) and (2.34), respectively.  

Similarly, the dielectric displacement ),(3 tzD can also be described by means of the 

separation-of-variables method as follows 

 tjezDtzD Ω= )(ˆ),( 33               (2.36) 

Considering the equations (2.25) and (2.26) and introducing the equations (2.36), (2.29) and 

(2.30) into the equation (2.18) it follows  

dz

zd

dz

zud
ezD

S
)(ˆ)(ˆ

)(ˆ
33

3
333

ϕ
ε−=             (2.37) 

Substituting the equations (2.33) and (2.34) into the equation (2.37) and with simple 

computations, the complex amplitude of the dielectric displacement is given by 

3333 )(ˆ CzD
Sε−=               (2.38) 

The electric current can be derived through integrating the dielectric displacement over the 

area Ap of the electrode and then calculating the derivative with respect to time. Considering 

0
2

3

1

3 =
∂

∂
=

∂

∂

x

D

x

D
the electric current is given by  

pADjI 3
ˆˆ Ω=                                      (2.39) 
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The vibration velocity at the free side (z = Lp) of the actuator can also be obtained through 

differentiating the displacement with respect to time. Its complex amplitude is given by 

3
ˆˆ ujv Ω=                (2.40) 

Consequently, the electromechanical transfer behaviors of the actuator as shown in Fig. 2.4 

(a) are well-established. In the same way, a four-pole network element which has two input 

quantities and two output quantities as shown in the Fig. 2.4 (b) can be used. Its transfer 

functions can be described by the same form as expression (2.5). According to the equations 

(2.39) and (2.40), the expressions of the elements of the conductance matrix are 

)sin()cos()(

)cos()(
)(

2
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2
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=Ω
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        (2.42) 

)sin()cos()(
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2
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2

33

2
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ppppp

SE

ppp

pp

S

p

LkeALkceLkA

LkLj
y

−+

Ω
=Ω

ε

ε
        (2.43)

        

Obviously, the analytical model makes the “black box” in the nonparametric model clear and 

into a “white box”. In the present case a four-pole network element was obtained. For more 

general boundary conditions, piezoelectric actuators can also be considered as a six-pole 

network element. This will be discussed further in chapter 4.  

Using the expression of the short-circuit input admittance 
11

y  shown in equation (2.41) the 

series and parallel resonant frequencies of the piezoelectric actuator fixed at one side and free 

at the other side can be calculated. According to the definitions described in section 2.3.1, the 

series resonance frequency is the frequency at which the admittance 
11

y  becomes infinite if 

the energy losses in the piezoelectric material are neglected. This can be achieved when the 

denominator of the expression of 
11

y  is equal to zero. Therefore, the series resonant frequency 

can be determined by solving the characteristic equation  

0)sin()cos()(
2

333333

2

33

2
=−+ pppp

SE

pp LkeLkceLk ε                                             (2.44) 

Similarly, the parallel resonant frequency can be obtained by solving the equation 

0cos =











Ω

p

p

c

L
               (2.45) 

As continuum models are based on material data and geometrical parameters, they can 

generally be used already in the design process for the formulation of optimization problems 

of piezoelectric actuators. 



18                   CHAPTER 2 

2.3.3 Finite Element Method 

The finite element method (FEM) is an approximation of the continuum models that is 

particularly well suited to computation. Generally it is applied in the computation of the 

vibration behavior of piezoelectric actuators with complex geometry and boundary 

conditions. In the FEM, the continuous structure of the piezoelectric actuator is discretized 

into a number of finite elements. Besides the mechanical degrees of freedom ui (translation 

and rotation displacements), an electrical degree of freedom ϕi (electrical potential) is added 

at each node. The FEM solution vector consists of the displacement values ui and electric 

potential values ϕi at the nodes i. The displacement and voltage fields at arbitrary locations 

within the element are assumed as a linear combination of the nodal values of these fields, 

respectively. The coupled electromechanical field is described by means of the linear 

piezoelectric constitutive equations. The analysis then proceeds to writing a set of differential 

equations of motion and Maxwell’s equations [Ler90] and [Abb98]. For the nodes of finite 

elements a coupled equation system can be obtained as follows [Ans01] and [HKL98]: 


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0
            (2.46) 

where Mp, Kuu , Kϕϕ , Kuϕ (Kϕu) are the mass, stiffness, dielectric and piezoelectric matrices, 

respectively. F and Q are the nodal mechanical force and nodal electrical charge vectors, 

respectively. In the case of damped systems, a proportional damping, i.e., a damping matrix, 

which can be expressed as a linear combination of the mass and stiffness matrixes, is 

generally added [Gen95].  

Considering time harmonic excitation the above system of equations can be transformed into 

an algebraic equation system: 
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            (2.47) 

where û ,ϕ̂ , F̂ and Q̂  are complex amplitudes. The displacement field and electrical field can 

be first obtained by solving this algebraic equation system taking into account boundary 

conditions. The eigenfrequencies and eigenfuctions can be obtained by solving eigenvalue 

problems [WH00] and [SK99]. The time of numerical calculation will rise remarkably if 

damping is considered in the FEM model. For more details concerning FEM applied to 

piezoelectric actuators, refer to [Hem01], [HKL98], [Ans01] and [Abb98].   

If optimization problems are formulated by means of the FEM, the number of the variables is 

usually very large. The cost of numerical computation in the FEM is notably higher than the 

cost in continuum models. Therefore, the FEM is not well suited for optimization problems 

occurring in the early design stages where the optimal results usually need to be obtained in 
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short time and without high costs. The FEM, however, is usually used when the accurate 

geometrical details of the actuator need to be specified. 

2.3.4 Lumped Parameter Models 

The dynamic behavior of a linear system subjected to a harmonic excitation can usually be 

described accurately by superposing only a few of the normal modes. Each normal mode 

dominates the vibration behavior of the system in the range of the respective eignenfrequency. 

Therefore, if the system is driven in the range of one of its eigenfrequencies, its behavior can 

be described with reasonable accuracy by a model with only one degree of freedom.  

Based on electro-mechanical analogies the vibration behavior of a piezoelectric actuator 

operating in the vicinity of one of it’s eigenfrequencies can be described by an equivalent 

mechanical or electrical model as shown in Fig. 2.8 [Len75], [Wal00] and [Hem01]. In these 

models m, c, and d are modal mass, modal stiffness and modal damping, respectively. C and 

R are electric capacitance and electric resistance. α is the electromechanical transformation 

factor that describes the transmission ratio of electrical and mechanical quantities. U and Q 

are input voltage and charge, u and F are modal displacement and mechanical load. 

According to these models, the dynamics of the system can be described by  

                                                                                                                                                                                                    

FUαucudum +=++ &&&                        (2.48)                             

( ) ( ) UuαQRuαQ
C

=−+− &&1
                                                                                 (2.49) 

The conductance matrix for oscillations with harmonic excitation tjeUtU Ω⋅= ˆ)(  can be 

obtained as 

 

 

a)                                                                      b) 

Fig. 2.8 Equivalent models for a piezoelectric actuator 
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where QjI ˆˆ Ω=  and ujv ˆˆ Ω= . 

In particular the following admittance functions can be obtained:      
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                                                                               (2.52) 

The frequency responses of the above admittance functions can be described by the Bode plot 

similar to Fig. 2.5 as well as the Nyquist plot similar to Fig. 2.6. Fig. 2.9 shows the Nyquist 

plot of the 
11

y  given by equation (2.51) in the case of R=0. As described in section 2.3.1 there 

exist three pairs of characteristic frequencies: sω and pω , mω and nω as well as rω and aω , 

which are approximately equal for a piezoelectric actuator with a piezoelectric quality number 

2>>M . 

These frequencies can be derived from the expressions shown in (2.51) as follows: 

• The series resonant frequency                 
m

c
s =ω                     (2.53) 

The parallel resonant frequency              
m

C
c

p

2α

ω
+

=                     (2.54) 

 

Fig. 2.9 The frequency response of the admittance 
11

y  in the complex plane 
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• The maximum admittance frequency      mω for 
11

y max   

The minimum admittance frequency       nω for 
11

y min     

• The resonance frequency                         rω for 0)Im(
11

=y  

The antiresonance frequency                   aω for  0)Im(
11

=y  

Several performance criteria of piezoelectric actuators can be readily expressed by means of 

model parameters of the equivalent model. According to equation (2.52) the ratio between the 

amplitude of the modal displacement û  at the resonance frequency sω and its static 

counterpart can be calculated. This ratio represents the mechanical quality factor Qm. It can be 

expressed as  

d

c

d

cm
Q

s

m
ω

==               (2.55) 

The equivalent models can be reduced by transforming mechanical quantities into the 

electrical side of the models using the transformation factor α. Fig. 2.10 shows the reduced 

equivalent electrical model, where Rm, Cm and Lm are the mechanical resistance, capacitance 

and inductance respectively. They are as follows: 

2α

d
Rm = , 

c
Cm

2α
= ,  

2α

m
Lm =             (2.56) 

Then the admittance corresponding to the mechanical characteristic of the actuator is 


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mm Lj
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1             (2.57) 

In general, the value of R representing the electric loss (mainly dielectric loss) of the 

piezoelectric material is small and can be neglected [Uch04].  In the case of R =0, the 

admittance corresponding to the electrical characteristic of the actuator is  

 

Fig. 2.10 The reduced equivalent electrical model 

 

R

C
U

Q C
m

Rm Lm

F



22                   CHAPTER 2 

CjYe Ω=                           (2.58) 

Therefore the admittance function 
11

y  is given by: 

me YYy +=
11

               (2.59) 

The ratio between the magnitudes of the mY and eY  at the resonance frequency 

( mcs ==Ω ω ) defines a piezoelectric quality number 
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                                                          (2.60)                                                                                                     

The piezoelectric quality number is an important performance parameter. It presents the 

extent of the phase rise or phase drop of the admittance functions and is appropriate to 

classifying piezoelectric actuators concerning electrical behaviors. Fig. 2.11 and Fig. 2.12 

show the Bode plot and the Nyquist plot of the admittance function 
11

y  for three groups of 

special values of M (here the electric loss R is neglected), respectively. It is noted that M = 2 

is a critical value, at which the 0°-line is tangential to the phase-frequency plot of the 
11

y  (see 

Fig. 2.11) and the real axis is tangent to the Nyquist plot (see Fig. 2.12). When M > 2 the 0°-

line intersects the phase-frequency plot and the real axis intersects the Nyquist plot 

correspondingly. When M<2, the intersections do not exist any more. The values of M will 

affect the design of the power electric device for driving the piezoelectric actuator. This will 

be further discussed in Chapter 4.   

 

 

 

Fig. 2.11  
11

y  as a function of the frequency for three groups of the quality number M 
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Fig. 2.12  
11

y  as a function of the frequency in the complex plane for three groups of the 

quality number M 

The above lumped parameter models can well describe the vibration behavior of the 

piezoelectric actuator operating in the vicinity of one of it’s resonant frequencies. Fig. 2.13 

shows comparisons of measured and calculated admittance frequency responses for a 

piezoelectric actuator. As shown in the figure, the calculated results from the expressions 

(2.51) and (2.52) do agree with experimental results quite well. Generally, the values of 

model parameters can be estimated by experiments [Fu04]. They can also be obtained by the 

analytical calculation or FEM. Therefore, the equivalent model can be considered as a “gray 

box” model of the piezoelectric actuator. The advantage of equivalent models is that the 

dynamic behavior of the actuator can be described by simple algebraic equations and it is 

convenient to formulate the performance criteria of actuators.   

 

Fig. 2.13 Comparisons of the frequency responses 
11

y and 
21

y  measured and calculated from 

lumped parameter models 
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2.4 Typical Design Goals  

Piezoelectric actuators have been widely used in different fields. For different applications 

there exist different design goals. It is very difficult to describe all design goals for all 

application fields. In this section, only typical design goals of piezoelectric actuators for one 

stroke driving and resonant driving will be discussed.    

2.4.1 One Stroke Driving  

The piezoelectric actuators for one stroke driving generally operate well below the 

fundamental resonance frequency. They may be divided into two classes. One is usually used 

in precision instrumentation, which requires precise but minute motion (<10µm), where the 

positioning precision is a typical design goal and only small forces are required. The other 

one, which often has displacement amplifying mechanisms, is used in the fields, where large 

stroke (>200µm) is needed at large forces, like e.g. the control of helicopter rotors [DLL00]. 

Here the maximum stroke or maximum magnification factor is a typical design goal while the 

accuracy is of minor interest. For piezoelectric actuators used for one stroke driving, the 

typical design goals can be concluded as follows 

• large stroke per unit of length 

• positioning with high precision  

• fast response time  

• large mechanical energy density  

• low power consumption 

• compact size 

2.4.2 Resonant Driving  

The most widely used piezoelectric actuators for resonant driving are piezoelectric 

transducers and ultrasonic motors. Piezoelectric transducers are extensively used in acoustic 

wave generation devices such as power ultrasonic transducers used in industrial machining, 

welding, etc. [Lit03]. For these applications the typical design goals are  

• specified mechanical resonance frequency 

• sufficient frequency separation between the primary and all secondary (undesired ) 

resonance frequencies 

• high efficiency, low energy loss 

• compact size 

• low cost 



PIEZOELETRIC ACTUATORS                                                                                        25  

 

In [Hem01] typical design goals for a piezoelectric linear motor were summarized. Different 

design requirements for the vibrator, contact and rotor were proposed.  

Most of the piezoelectric transducers used in ultrasonic machining and bonding has a 

sandwich construction. They are known as Langevin transducers. In chapter 4, the practical 

design goals for the special piezoelectric transducers will be further discussed.   

2.5    State of the Art of Optimization of Piezoelectric Actuators 

The performance of piezoelectric actuators can usually be remarkably improved, if 

mathematical optimization methods are applied in their development. According to the 

different applications, there exist various optimization problems. As piezoelectric actuators 

couple the electric and mechanical quantities, their optimization characterizes 

multidisciplinary optimization problems. In recent decades, a number of optimization 

problems of piezoelectric actuators have been studied. Some optimization algorithms have 

been used successfully. In this section, the state of the art of optimization of piezoelectric 

actuators is briefly reviewed. The review will mainly concentrate on the formulation of 

optimization problems and the applied optimization methods.  

A large number of studies have been carried out into optimization problems of piezoelectric 

actuators in intelligent structures. An intelligent structure is the structure that can actively 

sense and react to its environment via onboard sensors, actuators and computational/control 

capabilities [SC93]. Such a structure provides an efficient method to implement various tasks 

such as active control, shape control and health monitoring, see e.g. [CL87], [Cra94], 

[LOM00], [CTS02] and [Pre02]. Among the various available materials for actuators of 

intelligent structures, piezoelectric materials are excellent since they are light weight and can 

be easily incorporated into a structure by surface bonding or embedding. They produce only 

less significant inertial loads [CSe94]. It is important to determine optimal dimension, 

placement and controls of piezoelectric actuators in the intelligent structure in order to 

improve the performances. Current applications of intelligent structures are mainly in the field 

of the active vibration control of aerospace structures, which often do not possess sufficient 

passive damping to reduce severe vibration often resulting from a minor disturbance force. In 

[SC93], [CS94] and [CSJ99] the optimum designs of intelligent structures for the active 

vibration control have been studied. These problems are mixed continuous-discrete 

optimization problems. There exist continuous and discrete design variables. The continuous 

design variables include dimensions and control gains of piezoelectric actuators. The location 

of piezoelectric actuators is the discrete design variable. Design criteria included the energy 

dissipated by the piezoelectric actuators, electric power requirements, vibration reduction and 

the fundamental frequency. Constraints were placed on total energy, input voltage, 

displacements and mass. The multiple design objectives and constraints were usually 

combined into a single unconstrained function which was then minimized. A simulated 

annealing approach was used for the discrete search. A deterministic gradient-based search 
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was used for the continuous search. Gradients of the continuous design variables were 

computed by a finite-difference technique. In these works, however, the conflicts between 

objectives were not analyzed and Pareto-optimal solutions were not discussed. In [SWW93], 

[HL99] and [ZLG00] genetic algorithms have been used to find the optimal placement of 

piezoelectric actuators and sensors for active vibration control of a plate. The results showed 

that genetic algorithms are effective optimization tools. But multiobjective optimization was 

not mentioned in these studies. Besides the works described above, there are many 

publications about optimization of actuators and sensors for active control, see e.g. [HM03], 

[YV96] and [BMF00]. Active control using piezoelectric actuators has been the subject of 

attraction.  

Topology optimization of piezoelectric actuators is another subject widely studied. The 

purpose of topology optimization is to find the optimal layout of a structure in a specified 

domain, i.e., the optimal distribution of the material and void phases in the design domain, in 

order to minimize (maximize) defined objective functions or achieve specified properties 

[BS03]. Topology optimization comprises several steps. First, the geometry of the design 

domain, boundary conditions and loading are prescribed. Second, the design domain is 

discretized by finite elements, and each element is assigned a design variable, which 

determines the absence or the presence of material at the particular location. Third, the finite-

element analysis and sensitivity analysis are used to give the function value and the first-order 

sensitivity (gradient) of the objective and constraint. After that, the optimization algorithm is 

used to solve the optimization problem. Finally, the optimum topology is interpreted and 

refined. In the literature, there are two classes of methods to solve the topology optimization 

problem. One class is to solve the topology optimization problem directly as an integer 0-1 

problem [Bec99] and [BS03]. The more effective method to solve this problem is to relax the 

design domain, i.e., to replace the integer variables with continuous variables. A material 

model that relates the material properties such as the elastic modulus in each point of the 

domain to some design variable must be defined, and this model must allow materials with 

intermediate properties and not only zero or full material [SNF98]. The relaxation can be 

realized by two approaches, namely the homogenization method and the SIMP method (Solid 

Isotropic Material with Penalization), see [BK88] and [BS03]. In the former the concept of 

perforated microstructure is introduced. The problem is posed as optimizing the material 

distribution in a perforated structure with infinite microscale voids. The size of each 

microvoid is the design variable. In the latter material properties are assumed constant within 

each element and the relative density of each element is the design variable. After relaxation 

the mathematical programming techniques with continuous design variables can be used to 

solve the optimization problem. The optimum result is a material distribution over mesh with 

some intermediate values of density (“gray scale”) that represent the presence of intermediate 

materials (composite), which are difficult to fabricate in practice. They can be eliminated by 

using some form of penalty in the optimization procedure, see [BS03], or by applying the 

image-based technique (IBT), see [SNK00]. Topology optimization methods have been 

applied to design amplifying mechanisms (also termed mechanical amplifiers) of the 
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displacement of piezoelectric actuators, see e.g. [LDG00], [DLL00], [SNK00], [CF00] and 

[BhF02]. Various formulations can be posed to obtain the optimum topology of the 

amplifying mechanisms. In [Sig97] an inverting displacement amplifier using the formulation 

of maximum mechanical advantage, namely the ratio of output force and input force, for static 

response was investigated. In [LDG00] and [DLL00] three formulations for the maximum 

output stroke, magnification factor and mechanical efficiency respectively were used for both 

static and dynamic operations. The design problem was solved as a 2D material distribution 

problem using Method of Moving Asymptotes (MMA). In [SNF98] and [SNK00] a 

flextensional actuator was designed for simultaneously maximizing mean transduction and 

mean stiffness. A multiobjective function was defined as the weighted sum of these two 

objectives. In [SK99] a topology optimization method was proposed for design piezoelectric 

transducers. The problem is posed as an eigenvalue optimization problem in structural 

optimization. Three multiobjective functions were defined. The first one consists of the 

maximization of the eletromechanical coupling factor for a specific mode or set of modes. 

The second one is related to the design of a transducer with specified resonance frequencies. 

The third one is related to the design of narrowband or broadband transducers. The sequential 

linear programming (SLP) was used to obtain the optimized solution. However, Pareto optima 

were not discussed. Topology optimization requires efficient and reliable large-scale 

nonlinear optimization algorithms, because a fine mesh is required and a large number of 

design variables are included in the problem. Usually, dual methods such as Method of 

Moving Asymptotes (MMA) are more efficient than primal methods such as sequential linear 

programming (SLP) and sequential quadratic programming (SQP) [DLL00]. Although the 

topology of the structure obtained by using topology optimization methods is generally 

difficult to manufacture, the topology optimization technique is one rational systematic design 

methodology for the structural design if the physical size and the shape and connectivity of 

the structure are unknown.  

Some researchers have studied optimization problems concerning ultrasonic motors, 

transducers and piezoelectric transformers. In [PRF03] the optimization of the geometrical 

and material parameters defining the motor stator was studied, based on a parametric model 

of a traveling wave ultrasonic motor including stator, rotor and a simplified rotor-stator 

interface model. Three performance indicators, namely the piezoelectric coupling coefficient, 

the efficiency and the output power were used as objective functions. However, in this work 

the optimization process was based on single variable and no mathematical optimization 

algorithms were applied. In [Hem01] high efficiency, high shear force and velocity, small size 

and low cost were postulated as optimization goals for a novel piezoelectric linear motor. For 

each goal the corresponding design requirements for the oscillator, the contact, the rotor and 

the drive were introduced. No mathematical optimization methods were used in this work. In 

[JNL00] the optimization of the velocity of a piezoelectric ceramic actuator was performed, 

with driving voltage and system parameters being design variables. The Sequential Quadratic 

Programming (SQP) method was used. Each variable was explored individually. No 

optimization was performed for multivariable. The optimization of a piezoelectric transformer 
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for maximum power transfer was studied in [HLH03], but no optimization algorithm was 

mentioned in this work. In [Lit03] the optimization of a power ultrasonic transducer based on 

an equivalent model was investigated. The optimization objectives, namely the vibration 

amplitude and efficiency were analyzed. However, no mathematical optimization methods 

were applied in this work. 

Although a number of studies concerning optimization of piezoelectric actuators have been 

reported in the above reviewed literature, there is a necessity for further investigations, 

because an important class of optimization methods, namely multiobjective optimization 

methods (in particular MOEAs) have hardly been applied in the systematic design of 

piezoelectric actuators. Multiobjective optimization of piezoelectric actuators involving 

continuous and discrete design variables is scarcely reported. There is a need to present an 

integrated procedure for the piezoelectric transducer design via multiobjective optimization 

methods. This is concerned with the modeling, the problem formulation, the application of 

optimization algorithms and the selection of optimum results. In the next sections of this 

dissertation, the above mentioned several aspects will be discussed.    
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3 Multiobjective Optimization Methods     

In Chapter 2 the modeling of the piezoelectric actuators has been introduced. The models of 

the actuators provide the base for formulating the multiobjective optimization problems 

(MOPs) for piezoelectric actuators. On the other hand, in order to solve MOPs, an appropriate 

optimization method is needed. Many multiobjective optimization methods have been 

developed over the past decades. A comprehensive summary of some of these methods can be 

found in [Mie99], [Deb02] etc. In this chapter, the multiobjective optimization methods which 

are most commonly used in engineering will be described. The study concentrates on those 

methods which will be used in the next chapter for solving the MOPs of piezoelectric 

actuators. The structure of this chapter is as follows: First, the basic concepts of 

multiobjective optimizations are described. Then basic multiobjective optimization methods 

are introduced. Finally, as the main part of this chapter, the most commonly used 

multiobjective evolution algorithms (MOEAs) will be studied.     

3.1    Basic Concepts of Multiobjective Optimization 

The MOP is an extension of the single-objective (scalar) optimization problem. In the MOP, a 

number of objective functions are to be optimized simultaneously. Losing no generality, a 

MOP can be stated as follows: 
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where nR∈x   is a vector of n decision variables (design variables), which describe a solution. 

The side constraints u

ii

l

i xxx ≤≤ , the inequality constraints 0)( ≥xjg  and the equality 

constraints 0)( =xkh define a feasible region G in the decision variable space nR . For each 

solution x in the feasible region G exists a point (objective vector) in the objective space mR , 

denoted by mR∈)(xF , where ( )T

mzzz ,...,,)( 21== zxF , )(xvv fz =  for all mv ,...,2,1= . The 

set of these objective vectors is called the feasible objective region Z. Fig. 3.1 represents the 

mapping from decision variable space into objective function space for a two-dimensional 

case.  As a vector of objectives, instead of a single objective, is optimized, multiobjective 

optimization is also called vector optimization.  
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                        Fig. 3.1 Mapping from decision space into objective space 

In the single-objective optimization, one can find a solution, which is absolutely best with 

respect to all other alternatives. In the MOP, because of incommensurability and conflict 

among objectives, it is not always possible to find a solution at which each objective function 

gets its optimal value simultaneously. The solutions of a MOP are therefore given in the non-

dominance or Pareto optimality sense. For such solutions, no improvement in any objective 

function is possible without deterioration to at least one of the other objective functions. A 

more formal definition of non-dominance and Pareto optimality is as follows [Mie99] and 

[Deb02]: 

Definition 3.1: A solution )1(x  is said to dominate the other solution )2(x  if  

)()( )2()1(
xx ii ff ≤  for all mi ,...,1=  and )()( )2()1( xx jj ff < for at least one index j.  

If solution )1(x  dominates solution )2(x , the following terms are also commonly used: 

• Solution )1(x  is non-dominated by solution )2(x  

• Solution )2(x  is dominated by solution )1(x  

• Solution )1(x  is non-inferior to solution )2(x  

Definition 3.2: A decision vector x̂  is non-dominated with respect to a set P if it is not 

dominated by any other member of the set P. An objective vector ẑ  is non-dominated if its 

image point in the set P is non-dominated. 

The set of non-dominated solutions is called the non-dominated set and the set of non-

dominated solutions in the objective space is called non-dominated front.  

If the non-dominance concept is extended to the entire feasible space G, the Pareto-optimality 

can be defined as follows: 

Definition 3.3:  A decision vector G∈x̂  is Pareto-optimal if there does not exist another 

decision vector G∈x  such that )ˆ()( xx ii ff ≤  for all mi ,...,1=  and )ˆ()( xx jj ff < for at least 

one index j. An objective vector Z∈ẑ  is Pareto-optimal if its image point in the set G is 

Pareto-optimal. 
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The set of Pareto-optimal solutions is called Pareto-optimal set and the set of Pareto-optimal 

solutions in the objective space is called Pareto-optimal front. Because of PG ⊇ , obviously a 

Pareto-optimal set is always a non-dominated set.  

Fig. 3.2 shows the non-dominated and Pareto-optimal solutions in the objective space for a 

two-objective minimization problem. The fat line represents the Pareto front. Points A and B 

represent two Pareto-optimal points of the front. Although points C and D are non-dominated 

with respect to each other locally, they are not Pareto-optimal with respect to entire feasible 

region Z, because clearly point B dominates points C and D and point A dominates point C. 

Therefore, the non-dominated set is Pareto-optimal set if only if it is a non-dominated set with 

respect to the entire feasible space Z. 

In many multi-objective optimization algorithms, Pareto-optimal solutions are usually found 

based on non-domination concept. Many approaches have been suggested for finding the non-

dominated set of solutions from a given set of solutions. In [Deb02] three approaches (Naïve 

and Slow, Continuously Updated and Efficient Methods) have been described in detail.  

3.2   Traditional Multiobjective Optimization Methods 

Basically, there are three kinds of methods for handling MOPs: (1) generating approaches; (2) 

preference-based approaches (3) interactive methods [Coh85] and [Mie99]. In the generating 

methods, the entire set of Pareto optimal solutions is identified first, and then the best 

compromise solution is chosen from the obtained set by using higher-level information. No 

prior knowledge of preference structure over objectives is used. On the other hand, 

preference-based approaches require decision makers to give their preferences in a formal and 

structured way and then a composite single objective function is constructed. In interactive 

methods, the decision maker works with an interactive computer program and progressively 

provides preference information during the optimization process. The generating method is 

more practical and less subjective, while the preference-based method is more subjective and 

not straightforward. Interactive methods can be presumed to produce the most satisfactory 

results. 

Most traditional methods convert the MOP into a single (scalar) or a family of single 

objective optimization problems by using some user-defined preference structures, and then 

solve the problem using the widely developed methods for single objective optimization. In 

the following, some most commonly used methods will be introduced. Details can be found in 

[Mie99], [GCh00] and [Deb02]. 
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Fig. 3.2 Pareto-optimal solutions 

3.2.1   Weighted Sum Method  

The weighted sum method scalarizes a set of objectives into a single objective by assigning 

weights to each objective function. This method is the simplest and the most widely used 

method. It can be formulated as follows: 
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The weight wv represents the relative importance of the objective and usually 1
1

=∑
=

m

v

vw . If all 

the weights are positive the optimal solution to the problem is Pareto optimal for the initial 

MOP. By choosing more than one set of positive weights other optimal solutions can be 

generated. If F(x) is convex then all the optimal solutions of F(x) are Pareto-optimal 

solutions. However, if F(x) is non-convex certain Pareto-optimal solutions cannot be found. 

This can be illustrated geometrically. Consider the two-objective case in Fig. 3.3 (a). In the 

objective function space a straight line L1: ∑
=

=
2

1

1)(
v

vv Ffw x   is drawn. The minimization of 

equation (3.2) can be interpreted as finding the value of F1 for which the line L1 is tangential 

to the boundary of objective space Z and lies in the bottom-left corner of the objective space 

Z. If different weight vector is selected, then the different slope of the straight line L1 is 

defined. This leads to the different optimal solution point where the line L1 is tangential to the 

boundary of objective space Z. However, when the lower boundary of the search space Z is 

non-convex, the Pareto-optimal solutions between A and B is not available, see Fig. 3.3 (b).  
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(a) (b) 

Fig. 3.3 The weighted sum method for (a) convex (b) non-convex part of objective functions 

3.2.2   εεεε-Constraint Method  

ε-Constraint method can overcome some of the convexity problems of the weighted sum 

method. In this method the MOP is reformulated by just keeping one of the objectives and 

transfer the others into constraints. This approach is able to identify a number of Pareto-

optimal solutions on a non-convex boundary. It is formulated as  
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3.2.3   Weighted metric methods  

The weighted metric method (or compromise method) identifies solutions closest to the ideal 

point *z . The ideal point (objective vector) *z  is defined as ( )Tmfff
**

2

*

1

** ,...,,== Fz , where 

mvfv ,...,2,1,* =  is the minimum value for the v-th objective function individually. For the 

conflicting objectives the ideal point is not attainable because the conflicting objective 

functions are impossible to be minimized simultaneously. However, it is obvious the closer to 

the ideal point the solutions are, the better the solutions. Therefore the ideal point is usually 

used as a reference point. For a point Z∈z  the distance from z  to the *z  may be 

approximated by a Lp-norm as follows 
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where ],1[ ∞∈p . If different degrees of importance for objectives are considered, a weight 

vector  ),...,,( 21 mwww=w  is used. Therefore, for non-negative weights, the weighted Lp- 

norm is as follows 
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where G∈x . The MOP is then transferred to a problem of minimizing the weighted Lp – 

norm. The parameter p will affect the optimal results. When p=1 the resulting method is equal 

to the weighted sum method.  When ∞=p  the problem reduces to weighted Tchebycheff 

problem: 
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The parameter p will affect the optimal results. With 2or 1=p , not all Pareto optimal 

solutions can be obtained. Although the weighted Tchebycheff method can find any Pareto-

optimal solution, as p increases the problem becomes complex.  

3.2.4   Value Function Method   

In the value function (or utility function) method, a preference structure is mathematically 

represented using a value function RRU q →: , which maps solutions in the objective space 

into a real number so that the greater the number, the more preferred the solution in the 

objective space. The problem is then as follows: 
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where ( )T
qff )(),...,(1 xxF(x) = . The solution to the problem entirely depends on the chosen 

value function. Because of the difficulty in obtaining value function, this method is limited for 

solving MOPs.  

In addition to the above described methods, there are many interactive methods and other 

conventional multi-objective optimization methods like e.g. NIMBUS (Nondifferentiable 

Interactive Multiobjective BUndle-based optimization System).  A detailed discussion on 

these approaches can refer to [Mie 99]. 
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3.3 Multiobjective Evolutionary Algorithms 

In a MOP, different decision makers with different preferences may select different Pareto-

optimal solutions. Therefore, it is important to find as many Pareto-optimal solutions as 

possible so that the decision maker can choose the best one according to his preference. 

Therefore, there are two goals in a multi-objective optimization [Deb 02]: 

1. to find a set of solutions as close as possible to the true Pareto-optimal front 

2. to find a set of solutions as diverse as possible 

Conventional multi-objective optimization methods solve the MOP by scalarization. For these 

methods, there exist many difficulties in finding multiple Pareto optimal solutions. For 

example, they require some problem knowledge before optimization is performed. Some 

techniques such as weighted sum methods may be sensitive to the shape of the Pareto-optimal 

front. Moreover, they require several optimization runs to obtain an approximation of the 

Pareto-optimal set [Zit99]. Over the past decade, multi-objective evolutionary algorithms 

(MOEAs) have been developed. The basic feature of MOEAs is multiple directional and 

global search through maintaining a population of potential solutions from generation to 

generation [GCh00]. Due to their population-approach, MOEAs can find multiple Pareto-

optimal solutions in one single simulation run. Moreover, by using a diversity-preserving 

mechanism, MOEAs also can find widely different Pareto-optimal solutions. In the next 

section, the basic principles of evolution algorithms are first described, and then the mostly 

used MOEAs are introduced. 

3.3.1   Basic Principles of Evolutionary Algorithms 

EAs imitate natural evolutionary principles to constitute search and optimization procedures. 

The best known EAs include genetic algorithms (GAs), evolution strategies and evolutionary 

programming. GAs are the mostly widely used EAs in the field of optimization.   

The terminology used in GAs is borrowed from natural genetics. Individuals (solutions) in a 

population are called strings or chromosomes. Chromosomes are made of units called genes, 

each of which encodes a particular feature of the organism. The position of a gene in a 

chromosome also reflects a particular characteristic of organism. Each chromosome consists 

of several segments. Each segment refers to a particular value of a variable. In the simplest 

case a chromosome contains only a segment, which refers to a particular value of a variable 

and by a binary string, for example, 0110 in which each digit is treated as a gene. If 0110 is 

transformed into the decimal system as follows:  

620212120 0123 =⋅+⋅+⋅+⋅  

The value 6 may represent the value of a variable, which is used to calculate the value of an 

objective function in optimization. In order to use GA to find the optimal decision variables, 

various methods are used to encode them into a chromosome. Binary encoding and real-
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number encoding are two mostly used encoding methods [GCh00]. In the binary encoding, 

each decision variable is encoded as a bit using standard binary coding. For a problem having 

N variables, x=(x1,…,xn), a chromosome contains n segments of a bit string as follows: 

321L321321
nxxx

11...1001...1101...11

21

  

Therefore, if each variable xi is coded in mi bits, the length of a complete chromosome is  

∑ =

n

i im
1

. As the binary encoding of continuous variable usually results in many difficulties 

[Deb02], a real-number presentation is usually used in the problems having continuous 

variables.  In the real-number encoding, each chromosome is represented as a vector of real 

numbers (decimal system). For example, for a problem with n variables, the real-number 

vector is  

{ { { 









=

nxxx

168,,6,23x
21

L  

Fig. 3.4 shows a standard GA flowchart. 

Initialization An initial population of N individuals (solutions) is generated randomly. Each 

individual refers to a design, which contains n design variables. Each individual is represented 

by a chromosome (string), which contains n segments corresponding to n design variables     

 

 Initialization   Evaluation

Crossover

Mutation

 

 

Fig. 3.4 The standard GA flowchart 
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Evaluation During evaluation, each individual is evaluated to give some measure of its 

fitness. In the unconstrained single-objective optimization problem, the fitness of a solution is 

assigned a value which is a function of the value of the corresponding objective function. In 

MOPs, special approaches are needed to determine the fitness value of a solution according to 

multiple objectives. These approaches will be introduced in the next sections.  

Selection The primary task of the selection operator is to select and duplicate good solutions 

to create a new mating pool of N parent solutions. There exist a number of selection methods. 

Tournament selection, proportionate selection and ranking selection are some common types 

[Deb02]. 

In the tournament selection, tournaments are played between two randomly chosen 

chromosomes and the better chromosome is chosen and placed in the mating pool. The 

process is repeated N times until the mating pool is full.  

In the proportionate selection, the selection probability or survival probability for each 

chromosome is determined in proportion to its fitness value. Then a roulette wheel can be 

constructed displaying these probabilities. Thereafter, the wheel is spun N (population size) 

times, each time selecting a chromosome. The wheel features the selection method as a 

random sampling procedure. Therefore, the chromosome that has higher fitness value will be 

copied into mating pool more often than the chromosome with lower fitness. The roulette-

wheel concept can be simulated on a computer.  A random and deterministic version of the 

above method is stochastic remainder roulette-wheel selection (SRWS) operator. In this 

operator, the selection probabilities are multiplied by the population size and the expected 

number of copies is calculated. Each chromosome is allocated copies according to the integer 

part of the expected number, and then the remaining slots in the mating pool is filled by using 

the RWS operator on the entire population with the fractional part of the expected number as 

fitness. In [Bak85] the stochastic universal sampling (SUS), another version of RWS is 

proposed. In this method, N (population size) numbers, which have equal space distances, are 

generated as follows: 

1mod
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rn

N
rn

N
rnrnLR                                                  (3.8) 

where rn is a random number between 0 and 1. Each element of LR represents a location of 

the roulette wheel, see Fig. 3.5. Therefore, only a random number is needed in order to select 

N solutions. 

In ranking selection, the population is sorted from the best (rank N ) to the worst (rank 1) 

according to their fitness, and then the selection probability of each chromosome is assigned 

according to the ranking but not its raw fitness. Thereafter a roulette wheel is applied with the 

selection probability and N chromosomes are chosen for the mating pool.  
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Fig. 3.5 Roulette wheel with a population of 8 solutions 

Crossover The crossover operator provides the search mechanism of the GA. It creates new 

solutions (offspring) by exchanging features of two parent solutions picked from the mating 

pool at random. For a binary-coded chromosome, the single-point crossover operator and the 

two-point crossover operator are usually used. In a single-point crossover operator, the 

crossover operation is performed by choosing a crossing site along the string at random and 

exchanging all bits on the right side of the crossing site, as shown in the following example: 

                      Parents                                                    Offspring 

          

 

 

In a two-point crossover operator, two different crossing sites are chosen randomly and the 

crossover operation is completed by exchanging middle substrings. Following this idea, n-

point crossover can also be implemented. With the increase of crossover sites the extent of 

string preservation reduces. In order to preserve some good chromosomes, not all strings in 

the mating pool are used in a crossover. Usually, a crossover probability of pc is used. 

For a real-parameter GA, crossover operation is implemented by using a pair of real-

parameter decision variable vectors to create a new pair of offspring vectors. Linear 

crossover, blend crossover (BLX-α), and boundary operator are some commonly used 

crossover. 

In linear crossover operator, three solutions, ,5.05.0 ),2(),1( t
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i xx  at generation t . 

The best two solutions will be chosen as offspring [Deb02]. 
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where ααγ −+= ii u)21( . iu is a random number in [0,1] and α is user-specified parameter. It 

is reported that BLX-α with 5.0=α  performs better than BLX operators with any other α 

value [Deb02].  

Boundary operator was proposed in [SM97]. Considering that the global solution for many 

optimization problems usually lies on the boundary of the feasible region, for many 

constrained optimization problems, it may be beneficial to search just the boundary of the 

search space defined by the constraints. An example of such an approach is sphere crossover. 

Two parent solutions ),2(),1(  and t

i

t

i xx  create one offspring )1,1( +t

ix  according to  

),2(),1()1,1( )1( t

i

t

i

t

i xxx αα −+=+                                                                            (3.10) 

where i =1,…, n , α is a random number in [1, n]. 

There exist many other crossovers, such as simulated binary crossover (SBX), unimodal 

normally distributed crossover (UNDX), fuzzy connectives based crossover and direction-

based crossover, etc. For details refer to [GCh00]. 

Mutation The mutation operator is used to perform a local search to find an improved 

solution. For the binary-coded chromosome, the bitwise mutation operator changes a 1 to 0 

and vice versa with a mutation probability of pm . For the real-parameter coded chromosome, 

random mutation, non-uniform mutation and Gaussian mutation are the most commonly used 

real-parameter mutation operators [Deb02]. 

The above three operators, namely selection, crossover and mutation operators constitute the 

main part of a GA. Through them a new population is created in every generation (iteration). 

Finally, termination conditions are checked. If the specified maximum number of generations 

is arrived, or another stopping criterion is satisfied, the iteration stops, otherwise the surviving 

population become the starting population for the next generation.  

Preferred Solution Generally, a best solution needs to be selected for the implementation. 

In addition to GAs, evolution strategies and evolutionary programming are also usually used. 

Good introduction material for the latter two methods can be found in [Bäc96]. 

3.3.2    Fitness Assignment and Fitness Sharing 

As EAs can find multiple optimal solutions in a single run due to their population-to-

population approach, it is natural to apply them in MOPs. According to two goals in a multi-

objective optimization stated before, two aspects must be addressed in order to adapt EAs to 

MOPs. First, special approaches are needed for accomplishing fitness assignment and 

selection respect to multiple objectives, respectively, in order to guide the search towards the 

Pareto-optimal front. Second, appropriate techniques are needed for maintaining population 

diversity in order to achieve a well distributed and well spread non-dominated set.  
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During the past decade several fitness assignment methods have been developed. These 

methods can be classified as follows [GCh00]: 

• Vector evaluation approach 

• Weighted-sum method 

• Goal programming approach 

• Pareto-based approach 

According to these different fitness assignment methods, various MOEAs have been 

proposed. These will be described in subsequent section. 

In order to maintain population diversity, fitness sharing technique [GR87] is usually applied 

in MOEAs. The basic idea is to reduce the reproduction ability of a solution crowded by 

many solutions through degrading its fitness value if  using the sharing function concept. 

Typically the following function is defined as the sharing function: 
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where α is a constant, shareσ  is the niche radius, which represents the minimal distance 

between two solutions desired by the designer. The parameter ijd  is the metric of distance 

between any two solutions i and j. Therefore, if 0=ijd , then 1)(Sh =ijd . This means a 

solution has full sharing on itself. If shareijd σ≥ , then 0)(Sh =ijd . This means two solutions 

which are at least a distance away from each other do not have any sharing effect on each 

other.  For any other distance d two solutions have partial effect. A niche count nci, which 

gives an estimation of the extent of the crowding near the i-th solution, is then calculated as 

follows: 

)(Sh
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N
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=                                                                                                (3.12) 

The sum includes the ith solution itself. Thus, inc  is always greater than or equal to one 

because at least 1)(Sh =iid . Finally, the shared fitness value '

if  for the i-th solution is 

calculated as follows 
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Thus, if the ith solution does not have any sharing effect on any other solution in the 

population, namely 1=inc , its fitness value will not be degraded. Otherwise, the sharing 

function will degrade fitness according to the crowding extent near the i-th solution.  

3.3.3   General Procedures of Multi-objective Evolutionary Algorithms 

As stated before, the dual goals in a multi-objective optimization are to find a set of solutions 

as close as possible to the Pareto-optimal front and simultaneously as diverse as possible. 

According to different ways to maintain the two goals, various MOEAs have been proposed. 

In [Deb02] and [GCh00] one can find the detailed descriptions for various MOEAs. Here only 

the Pareto-based MOEAs, which will be applied in the next chapter, are introduced. 

Except the fitness assignment (evaluation) method for multiple objectives, the basic structure 

of a Pareto-based MOEA is similar to that of an GA described before. The general procedures 

are as follows: 

Step1. Initialization: randomly create an initial population 

Step2. Evaluation: identify non-dominated individuals from the population, assign the    

           fitness of each individual using an appropriate fitness assignment method 

Step3. Selection: select parents for genetic operations using an appropriate selection  

           approach     

Step4. Generation:  generate offspring using genetic (crossover and mutation) operators,  

Step5. Elite Preservation: ensure that the elite individuals enter the next generation using        

           an elite-preserving strategy 

Step6. Termination: if the prespecified maximal number of generations is reached, stop;      

          otherwise   return to step2 

Step7. Determination of the preferred solution: a best solution is selected for  

           implementation 

It is noted that in most single-objective EA, the best α solutions (α=1 to 0.1N, N is the 

population size) are used as the elitist solutions [Deb 02]. In MOEA implementations, the best 

α non-dominated fronts (for example the fronts with rank 1 and rank 2) are used as the elitists. 

The proportion of the elitists from the population must be chosen carefully. If the proportion 

is too large, the population will lose its diversity, whereas the convergence performance can 

not be improved if the proportion is too small. In the following, some salient Pareto-based 

MOEAs including Pareto ranking or Pareto tournament are introduced.  

In Pareto ranking methods, the fitness of individuals is assigned not according to the values of 

the objective functions, but in terms of the Pareto ranking of individuals. The basic procedure 

of the Pareto ranking (Goldberg’s ranking) is as follows [Gol89]: first, non-dominated 

individuals with respect to the population are identified and assigned rank 1. Then these 

solutions are removed from the population. Next, the non-dominated solutions with respect to 
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the remaining population are found and assigned rank 2. This procedure is continued until the 

entire population is ranked. Fig. 3.6 illustrates this approach for a two-objective minimisation 

problem. The multi-objective GA [FF93] and the non-dominated sorting GA [SD95] are two 

representative methods based on Pareto ranking.   

3.3.4   Multiobjective Genetic Algorithm (MOGA) 

In this method, the population is ranked according to the follow expression:   

ii nr +=1                                                                                                              (3.14) 

where ir  presents the rank of the i-th solution. ni is the number of the solutions which 

dominate the solution i. Obviously, the minimum rank is 1 (for the non-dominated solutions 

with respect to population) and the maximum rank is no more than the size of the population. 

The smaller the rank ri , the better the solution is. The population is sorted according to the 

ranks and a raw fitness is assigned to a solution by using a mapping function from the best 

solution to the worst solution. And then the raw fitnesses of the solutions within the same 

rank are averaged. In order to maintain diversity among non-dominated solutions, the shared 

fitness as described in the previous section is applied. Here a normalized distance of solution i 

from each solution j having the same rank is calculated in objective space as follows 
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where max

nf  and min

nf  are maximum and minimum objective function values of the n-th 

objective. Except the fitness assignment method, the rest of this method is the same as that in 

a standard GA.  
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Fig. 3.6 Goldberg’s ranking 
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3.3.5   Non-dominated Sorting Genetic Algorithm (NSGA)  

In this method, the population is first ranked using the basic procedures of the Pareto ranking. 

A large fitness value is assigned to the individuals in the first non-dominated front, namely 

the set of the non-dominated individuals with rank 1. In order to maintain the goal of 

diversity, the sharing strategy is applied and the shared fitness of each individual in front 1 is 

obtained. Then a fitness value that is smaller than the minimum shared fitness value of the 

previous front is assigned to the individuals in the next front. The sharing strategy is used and 

the shared fitness of each individual in front 2 are obtained. This procedure is continued until 

the shared fitnesses of individuals in all fronts are obtained. A stochastic remainder roulette-

wheel selection (SRWS) operator is used to generate new population. By means of this 

method, the non-dominated solutions in front 1 are emphasized and simultaneously the 

diversity is maintained.  

In this method, the normalized Euclidean distance dij of the solution i from another solution j 

in the front 1 (Fr1) is calculated in the parameter space as follows: 
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Where max

nx  and min

nx  are the maximum and minimum objective decision variable values of   

the n-th decision variable, respectively. 1Fr  represents the number of non-dominated 

solutions in front 1. The sharing function value and niche count are then calculated using 

equations (3.11) and (3.12) respectively. Finally the shared fitness of the solution i is obtained 

by using equation (3.13). Once again, the sharing is performed in the solutions in front 2 (Fr2) 

and the corresponding shared fitness value computed. This process continues until the shared 

fitnesses of all solutions are obtained. 

In the above two methods, no mechanism is used to assure that the non-dominated solutions 

generated during evolutionary process enter the next generation, therefore, some non-

dominated solutions obtained may get lost during evolution. In order to avoid this problem, in 

the following MOEAs an elite-preserving strategy is used.  

3.3.6   Strength Pareto Evolutionary Algorithm (SPEA and SPEA2)  

SPEA [ZT99] introduces the elite-preserving strategy by using an archive 'P  containing the 

non-dominated solutions found so far (the so-called external non-dominated set). At each 

generation, all non-dominated individuals in the current population P are copied to the 

archive 'P . Then domination-check is performed among the members of the archive. Any 

dominated individuals are removed from 'P . If the size of 'P  still exceeds a given limit, 

further non-dominated solutions stored in 'P  are deleted by means of clustering without 

destroying the characteristics of the non-dominated front. The fitness of each member in the 
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current population P and archive 'P  is then assigned. For each individual in the archive 'P  a 

strength value )1,0[∈is  is computed, which represents the fitness value of the corresponding 

individual. The strength is is calculated as follows: 

1+
=

N

n
s i

i                                (3.17) 

Where in  is the number of current population members that are dominated by an archive 

member i. N is the size of the current population P. The fitness of an individual j in the 

current population P is calculated by summing the strengths of all archive members i that 

dominate j. It is given by 
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This definition guarantees that members of 'P  have better fitness than members of P. Here a 

small fitness corresponds to a high reproduction probability. According to this definition, 

individuals near the Pareto-optimal front are preferred and simultaneously distributed along 

the Pareto-optimal front. This kind of fitness assignment provides a niching method based on 

Pareto domination. 

After fitness values are assigned, individuals for the mating pool are selected from P+ 'P by 

using a binary tournament selection operator. Finally the crossover and mutation operations as 

usual can be performed. In original study, a clustering approach, the average linkage method, 

has been used to reduce the size of the external non-dominated set.  

In [ZLT02], an improved version of SPEA has been proposed. SPEA2 uses an improved 

fitness assignment scheme, a nearest neighbor density estimation technique and a new archive 

truncation method. In SPEA2, the size of archive 'P (external non-dominated set) is fixed. All 

non-dominated individuals in 'PP +  are copied to the archive. If the number of non-

dominated individuals exceeds the archive size, the truncation operator is used. If the number 

of non-dominated individuals is less than the archive size, the archive is filled up by 

dominated individuals according to the fitness values. In order to fill the mating pool, the 

binary tournament selection is performed on the archive. Similarly, the crossover and 

mutation operators are applied to the mating pool to generate the offspring population. Unlike 

SPEA, in SPEA2 each individual i in the population P and archive 'P  is assigned a strength 

value is , which represents the number of individuals in  'PP +  which are dominated by the 

individual i. The raw fitness if of an individual i is calculated by summing the strengths of all 

individuals that dominate i. A nearest neighbor density estimation technique is introduced to 

distinguish between individuals that have identical raw fitness values. The density di 

corresponding to i-th individual is calculated as follows 
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where k

iσ  represents the distance to the k-th nearest individual. Here h is equal to the square 

root of the size of 'PP +  . The final fitness of an individual i is defined by  

  iii dfF +=                (3.20) 

In archive truncation, the non-dominated individual having the minimum distance is first 

removed from the archive. If there are several individuals having minimum distance the 

individual with the second smallest distances is deleted and so on.  

3.3.7   Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II)  

In NSGA-II [Deb02], an offspring population Qt is first generated from the parent population 

Pt . Then these two populations are combined to form a population Rt  of size 2N and a non-

dominated sorting is performed. Then the new population of size N is filled by the first non-

dominated front, the second non-dominated front, and so on, until all slots in the new 

population Pt+1 is filled up. The remaining fronts are deleted. When the solutions in the last 

front that is used to fill the new population are more than the remaining slots in the new 

population Pt+1, a niching strategy is used and the solutions that locate in the least crowded 

region are selected.  This algorithm provides not only an elite-preservation but also maintains 

a better spread among the solutions. Fig. 3.7 illustrates the procedure of NSGA-II. 

In this algorithm, a crowded tournament selection operator is used. In the tournament 

selection, two solutions i and j are compared. If they have different ranks, the solution that has 

a better rank wins. If they have same rank, the solution that has a better crowding distance 

wins. The crowding distance represents a measure of the density of solutions in the 

neighborhood. It estimates half of the perimeter of the cuboids formed by the nearest 

neighbors as the vertices.                    

The distance-based Pareto genetic algorithm is another commonly used elitist MOEA [OK 

95] and [OK 96]. The basic idea is to assign fitness to each solution according to a distance 

measure with respect to the non-dominated solutions in the proceeding generation. 

3.4   Constraint Handling in Multiobjective Evolutionary Algorithms 

Most constraint handling methods in MOEAs can be classified into three categories: methods 

based on preserving feasibility of solutions, methods based on penalty functions and methods 

based on feasibility and domination of solutions.   
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Fig.3.7 Schema of NSGA-II  [Deb02] 

3.4.1   Methods based on Preserving Feasibility of Solutions 

In this method, solution that violates any of the constraints is discarded. An equality 

constraint can be handled using explicit or implicit method. In the explicit method, the 

explicit expression of a decision variable is derived from the equality constraint and then 

substituted into all objective functions and other constraint functions. In this way, the number 

of decision variables is reduced and this equality constraint is automatically satisfied in the 

optimization process. When a variable is difficult to be expressed explicitly, the implicit 

method can be used. For example, for each solution vector x=(x1, x2,…,xn ), the value of a 

variable x1 is determined by finding the root of an equality constraint h(x)=0 in terms of 

variable x1. Therefore, the equality constraint is also automatically satisfied in the 

optimization process.  

3.4.2   Methods based on Penalty Functions 

The penalty technique is probably the most common technique to for constrained MOPs. In 

this method, a constrained MOP is transformed into an unconstrained MOP by penalizing 

infeasible solutions, where a penalty term is added to each objective function for any 

constraint violation. Based on the objective function )x(mf  and the penalty term )x(mp , the 

new objective function is given by  

)x()x()x(
~

mmm pff +=                                                                                        (3.21) 

Once the new objective functions are formed, any unstrained multi-objective optimization 

methods described before can be used. 

Generally, there are two classes of penalty function: static penalty and dynamic penalty. The 

static penalty function is usually given by 
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where mr  is a penalty parameter for the m-th objective function. )x(~
jg  is constraint violation 

of the j-th constraint for the solution x . For the minimization problem and the inequality 

constraints of the form “ ≥ ”, the constraint violation is calculated as follows:  

 

                                                    (3.23) 

where )(x
j

g  is  the normalized constraint function of the constraint )(xjg . That is, J 

constraint violations ),...2,1(|)(| Jjg
j

=x  have the same order of magnitude.  

In the dynamic penalty function method, the penalty parameter is changed with the 

generation. There are many dynamic penalty methods. A commonly used method is as 

follows [JH94]: 
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where t is generation counter. Cn , γ  and β are user-defined constants. It is suggested that γ=1 

and β=2.  

3.4.3   Methods based on Feasibility and Domination of Solutions 

The basic idea of these methods is to determine the winner of a tournament selection mainly 

according to three criteria: prefer the feasible solution to the infeasible solution, prefer the 

non-dominated solution to the dominated solution and prefer the solution residing in a less 

crowded region of the objective space or decision variable space to the solution residing in 

more crowded region.  

In [JVG99] feasible and infeasible solutions are evaluated and a niche strategy is used to 

maintain the diversity of Pareto-optimal solutions. A binary tournament selection operator is 

used and a basic procedure is proposed: first, two solutions are picked up from the parent 

population. Then a tournament is played. If one solution is feasible and the other is infeasible, 

the former wins. If two solutions are feasible, a subpopulation of feasible solutions is selected 

from parent population and then a procedure similar to the niched Pareto GA described before 

is used. If two solutions are infeasible, a subpopulation of infeasible solutions is selected from 

parent population and a procedure similar to the niched Pareto GA is followed, where the 

constraint violation or nearness to a constraint boundary can be used as a criterion for 

comparison.      

The constrained tournament method [Deb02] is another commonly used method. In this 

method, a constrain-domination concept is used to sort the population and then a binary 

tournament selection is performed. A solution (i)x  is said to constrain-dominate the other 

solution (j)x , if any of the following conditions is true: 
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1. solution (i)x is feasible and solution (j)x  is infeasible 

2. two solutions (i)x  and (j)x are both infeasible, but solution (i)x has a smaller constraint 

violation 

3. both solution  (i)x  and (j)x are feasible and solution (i)x  dominates solution (j)x  

Therefore, this allows a non-dominated sorting in the feasible region, and the solutions in the 

infeasible region are classified according to their constraint violation values. Similarly, the set 

of non-constraint dominated solutions can be defined as those that are not constrain-

dominated by any member of the population. On the analogy of the procedure of the non-

dominated sorting described in the previous section, the non-constrain-dominated sorting for 

the population is performed. A binary tournament selection operator is then used. First, two 

solutions are picked from the non-constrain-dominated population. If one solution belongs to 

a better non-constrain-dominated front, this solution wins. If two solutions belong to the same 

non-constrain-dominated front, the solution, which resides in a less crowded region based on 

a niched distance measure, will be chosen. A niched distance can be calculated using niche 

count metric based on sharing function, head count metric or crowding distance metric. 

Instead of defining constraint-domination for infeasible solutions based on an overall 

constraint violation obtained by simply adding all constraint violations together, the non-

domination check of constraint violations for infeasible solutions is suggested in [RTS01]. In 

this method, three different non-dominated sorting procedures, namely a non-dominated 

sorting only with respect to the objective functions, a non-dominated sorting only according 

to the constraint violation values and a non-dominated sorting with respect to a combined 

objective function and constraint violation values, are performed. And then solutions are 

chosen with these three different rankings and a new population is constructed. 

3.5   Performance Metrics for Evaluating MOEAs 

In the multi-objective optimization of piezoelectric transducers, it is expected that the 

obtained non-dominated solutions are not only closer to the true Pareto-optimal front but also 

convenient to be selected. These are also two general goals from the point of view of 

engineering.  

As stated before, there are two goals in multi-objective optimization: 1. find solutions as close 

to the true Pareto-optimal front as possible. 2. find solutions as diverse as possible in the 

obtained non-dominated front. These are also two general goals from the point of view of 

engineering. The former emphasizes the precision of the optimized results. The latter 

emphasizes the convenience of the selection of the results. In order to evaluate an 

optimization method in terms of these two aspects, a number of performance metrics have 

been developed. These performance metrics can be classified into three groups [Deb02]: The 

first group is used to measure the extent of the solutions close to the Pareto-optimal solutions. 

The second group is used to measure the diversity of the obtained solutions. The third group 
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is used to measure both aspects above using two metrics in an implicit manner. In this work, 

set coverage metric is used to evaluate the closeness to the Pareto-optimal front. The diversity 

among obtained non-dominated solutions is evaluated using two metrics that take into account 

the uniformity of distribution and the extent of spread of solutions, respectively.       

If A and B represent two sets of no-dominated solutions obtained using two different 

optimization methods, the set coverage metric C (A, B) calculates the proportion of solutions 

in the set B, which are dominated by solutions in the set A as follows[Zit99]: 

  of solutions ofnumber  The

  of solutionsby  dominated are which ,in  solutions ofnumber  The
),(

B

AB
BAC =            

                                                                                                                                        (3.25) 

Unlike those comparisons of different multi-objective optimization algorithms where one or 

several test problems are designed artificially and true Pareto-optimal front are known, the 

true Pareto-optimal fronts for the multi-objective optimization problems of discussed here are 

difficult to be known. Therefore, the set coverage metric C (A, B) can only be used to evaluate 

the relative convergence of the two sets of solutions with respect to the Pareto-optimal front 

of the optimization problem.  

In order to evaluate the diversity of the non-dominated solutions obtained by using the three 

MOEAs, the following metric is used [Deb02]: 
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min  represents the minimum value of the sum of the 

distances in the objective space between the i-th solution and any other solution.  
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 represents the mean value of these distances.  Ns  represents the number of 

the members in the non-dominated set Ns . m is the number of the objectives, here 2=m . The 

more uniformly the solutions are spaced, the smaller the metric SP.   

In order to evaluate the extent of spread of the solutions the following metric is applied 

[Zit99]: 
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For the two-objective problem, the metric DI measures the length of the hypotenuse of a 

triangle formed by the extreme solutions in the objective space. The larger the value of the 

metric DI  is,  the larger the extent of spread of the solutions.  

In this chapter, the basic concepts of multi-objective optimization were introduced. The basic 

ideas behind various multi-objective optimization methods using scalarization technique and 
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evolutionary algorithms were described. Some representative MOEAs have been introduced 

in detail. In the next chapter, multi-objective optimization of piezoelectric actuators using 

several MOEAs will be discussed. 

 

 

 



MULTIOBJECTIVE OPTIMIZATION OF PIEZOELECTRIC TRANSDUCERS 51     

 

4   Multiobjective Optimization of Piezoelectric Transducers 

As the basis for multi-objective optimization of piezoelectric actuators two different kinds of 

techniques have been studied in chapter 2 and chapter 3.  In this chapter, an integrated 

procedure for piezoelectric transducer design via multi-objective optimization is studied. The 

structure of this chapter is as follows: First, the Langevin transducer and its performance 

criteria are introduced. Then based on lumped parameter models the optimal prestress for 

transducers considering multiple objectives is studied. After analytical models based on the 

transfer matrix method are introduced, several multi-objective optimization problems of 

piezoelectric transducers are studied. In these problems two types of mechanical boundary 

conditions, the freely vibrating transducer and the transducer subjected to a mechanical load 

are considered.  

4.1 Langevin Transducers 

In ultrasonic machining and bonding as well as in many other applications, ultrasonic 

transducers are used to transfer high frequency electrical energy into high frequency 

mechanical vibration of a tool. The ultrasonic process is performed by the tool, which vibrates 

at a resonance frequency, generally between 20 kHz and 100 kHz. Piezoelectric transducers 

are the most commonly used type of ultrasonic transducers. Fig. 4.1 gives the principle 

description of an ultrasonic machining (or bonding) system. Fig. 4.2 shows two typical 

applications of piezoelectric transducers. 

Most of the piezoelectric transducers have a setup, which can be in principle reduced to a 

sandwich construction, where piezoelectric material is sandwiched between metal end blocks 

(back section and front section or horn). They are known as so-called Langevin transducers or 

sandwiched transducers, see Fig. 4.3. Langevin transducers have the following advantages 

[Hul73], [Nep73] and [Rus95]:   

Power 
electronics

Control  
electronics

Transducer Booster Tool Work piece 

AC

Energy flow 

Information flow

Ultrasonic machining unit 

Electric control unit

 

Fig. 4.1 Ultrasonic machining (bonding) system 
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Fig.4.2 Typical piezoelectric transducers  

 

Front section

Back section

Piezoelectric 
rings/disks

 

Fig. 4.3 Basic construction of Langevin-type transducers [Phi91] 

1. A mechanical prestress may be imposed on the piezoelectric elements by means of a 

central bolt or peripheral sleeve. Thus, the admissible dynamic stress amplitude and 

hence the maximum power intensity are considerably increased. The mechanical 

contact between the parts is improved and hence the mechanical damping decreases.  

2. The mechanical quality factor of metal is generally higher than that of piezoelectric 

material. The metal end sections are good heat-sinks, so that the transducer can be 

driven at higher vibration levels than other types of ultrasonic transducers.   

3. As the manufacture of metal is much easier than that of piezoelectric materials, more 

variations of the shape and dimension of transducers are available.  

4. As a part of piezoelectric material is replaced by metal, material costs decrease, also 

the influence of active material on characteristics of transducers. 

As the displacement of the piezoelectric material is limited, a horn is used to amplify this 

limited displacement. There are four general designations of horns: constant, linear, 

exponential and stepped, which refer to the degree to which the area changes from the base to 

the tip. The thesis work concentrates on the design of constant-horn (also symmetrical) and 

stepped-horn transducers via multiobjective optimization methods. In the practical 

applications, piezoelectric transducers, like almost all mechanical systems, are always 
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expected to be “optimal”. In order to achieve optimum performances, optimum pre-stress, 

geometrical and material parameters of the transducer must be determined.  

4.2 Performance Criteria  

There exist different performance criteria for piezoelectric transducers in the different 

applications. For the piezoelectric transducers used in ultrasonic machining and bonding 

devices, the most commonly applied performance criteria (some of which have been already 

described in chapter 2) are collected here.  

Resonance frequency The resonance frequency of the transducer should be equal to the 

specified working frequency. Commonly, this resonance frequency is that of the first 

longitudinal vibration mode, which is often known as so-called λ/2 vibration mode. The cause 

of designing a transducer based on the λ/2 vibration mode is that the transducer can be 

combined with other λ/2 parts like booster and tool to form a whole ultrasonic machining 

device without obvious changes of the eigenform compared with that of each part before 

synthesis [Lit03]. The advantage of the λ/2-synthesis is that in the ideal case no forces act at 

the interfaces between individual parts. Therefore, the boundary conditions of each part in the 

whole synthesized system are the same of those of each part free at both sides. Under this 

condition, each part (transducer, booster or tool) can be first developed according to the 

specified resonance frequency and then they are synthesized into a whole device. Fig. 4.4 

describes the λ/2-synthesis principle schematically.                                                                                 

Electrical input power The input power of the transducer is: 

)()()( tItUtpe ⋅=                 (4.1) 

where U(t) and I(t) are the AC input voltage and current respectively. If the system is not 

driven exactly at resonance it will show a capacitive or inductive behavior. The mean power 

or effective power is then given by  
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Transducer Booster Tool

 

Fig. 4.4 The principle of the λ/2-synthesis 
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In the case of harmonic U(t) and I(t) the effective power results as 

  eaee PIUP ϕϕ cosˆcosˆˆ
2

1ˆ ==                (4.3) 

where IUPa
ˆˆ

2

1ˆ = is the apparent power, eϕ  is the phase difference between the U(t) and I(t). 

eϕcos  is the power factor representing the proportion of the effective power which can be 

obtained from the apparent power. Obviously the power factor should approach 1 as closely 

as possible. The apparent power determines the size of the power electric device used to drive 

transducers. Therefore, in order to reduce the size of the power electric device, the apparent 

power should be minimized for a given output requirement such as a given amplitude or 

mechanical power.   

Mechanical output power By analogy with the definition of the electrical power the moment 

mechanical output power of a transducer can be calculated as follows 

)()()( tvtFtpm =                 (4.4) 

In a work period T, the effective mechanical power of the transducer is then given by  
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                (4.5) 

For the harmonic vibration the effective power results as follows  

mammm PvFP ϕϕ cosˆcosˆˆ
2

1ˆ ==               (4.6) 

where vFPma
ˆˆ

2

1ˆ =  is the apparent mechanical output power, mϕ  is the phase difference 

between the F(t) and v(t). mϕcos  is the power factor representing the proportion of the 

effective mechanical output power which can be obtained from the apparent mechanical 

output power. Similarly the power factor should approach 1 as closely as possible. For a given 

input power or input voltage, the effective mechanical output power should be maximized. 

Coupling factor A coupling factor (also called the electromechanical coupling coefficient) k 

can be defined for each vibration mode in the piezoelectric transducer. Besides the definitions 

described given in chapter 2 there exist several definitions for the coupling factor depending 

on the manner in which the ratio of mechanical and electrical energy is computed [Ike96]. For 

optimization problems of piezoelectric transducers the definition of the coupling factor based 

on the equations of a four-pole network element may be preferred since they include the 
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transducer dimensions. Generally, the fundamental relation for a piezoelectric transducer can 

be expressed in integral form as follows: 

FyUyv

FyUyI

ˆˆˆ
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2221
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+=

+=
                                                                                                   (4.7) 

Where Î , v̂ , Û and F̂ are the complex amplitudes of electric current, vibration velocity, 

voltage and force, respectively. Each admittance expression 
ij

y  is a function of the driving 

frequency Ω. That is, the admittances depend on the excitation frequency Ω. From equation 

(4.7) the coupling factor can be derived as follows 
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For quasi-static operation, the coupling factor keff   results as 

2
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lim effkk
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=                                                                                                         (4.9) 

The coupling factor is an overall measure for the excitation and energy conversion. It is noted 

that the coupling factor does not represent conversion efficiency.  

Power efficiency The power efficiency λp can be defined as the ratio between the mechanical 

energy delivered and the electrical energy absorbed by the transducer, see [Cer00]. For the 

harmonic vibration of the transducer, this results in   
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i.e. the power efficiency is the quotient of the effective mechanical output power and apparent 

electrical input power of the transducer. Obviously, the power efficiency of the transducer 

should be maximized.   

Efficiency The efficiency η is defined as a ratio of the output mechanical energy to the 

consumed electrical energy or the output electrical energy to the consumed mechanical 

energy. In a work cycle, the input electrical energy is transformed into mechanical energy 

partially and the remaining is stored as electrical energy in a transducer if there is no electrical 

loss. The stored energy can be returned to the source during discharge of the transducer. For 

the harmonic vibration of the transducer, the efficiency η    can be calculated as follows 
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The efficiency η refers to the quotient of the effective mechanical output power and effective 

electrical input power of the transducer. It should be maximized. 

The above performance criteria can also be explained according to the energy balance of the 

transducer as shown in Fig. 4.5. Respectively, they can be defined as follows 
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Mechanical quality factor As described in Chapter 2, the mechanical quality factor Qm 

describes the resonance rise of the piezoelectric transducer. It is defined as an inverse of the 

loss factor mδtan . Obviously, a large mechanical quality factor Qm corresponds to a large 

efficiency of the piezoelectric transducer and a large resonant amplitude. The material and 

structural damping of the piezoelectric transducer mainly determine the mechanical quality 

factor.   

Piezoelectric quality number According to the description in chapter 2, the piezoelectric 

quality number M presents the phase rise or descend of the admittance functions of the 

piezoelectric transducer. When M<2, the resonance and anti-resonance frequencies do not 

exist any more, the transducer can not be driven with zero reactive power. More apparent 

power is needed resulting a large power electric device. Therefore, the piezoelectric quality 

number of the transducer used in ultrasonic bonding and machining should be larger than two. 

Furthermore, the larger the value of M is, the better the phase reserve of the transducer, 

compare Fig. 2.11 and Fig. 2.12 in chapter 2. M>2 assures that the resonance frequency exists 

and that the transducer can be driven with zero reactive power even though the load damping 

may be large.  
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Fig. 4.5 The energy balance of the transducer 
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Volume of piezoelectric materials In general, piezoelectric materials are expensive. 

Therefore, the volume of piezoelectric materials should be minimized in order to reduce the 

cost of the whole transducer. However, the small volume will result in the increase of the 

strain in the piezoelectric material and further leads to the rise of the temperature of the 

piezoelectric material when the transducer is driven at resonance. This will increase the 

mechanical loss of the transducer. Therefore a trade-off for the volume of piezoelectric 

material should be considered.   

Mass and size For the ultrasonic hand machining or drilling device the light and small 

piezoelectric transducer is expected. The material type of the metal end blocks mainly 

determines the mass and size of the piezoelectric transducer. For a given vibration mode and 

resonant frequency, different mass and size of the transducer will be obtained if different 

material types are used. Therefore the material types must be selected carefully in order to 

optimize the mass and size of the transducer.    

There are two cases when the above performance criteria are used as objective functions in 

Multi-objective optimization problems. One case is that all performance criteria used as 

objective functions can be improved simultaneously in the optimization process. This means 

that the minimum solution corresponding to any objective function is the same. Therefore, 

one can find the optimum design variables for all considered performance criteria using only 

one criterion as the objective functions. The other case is that all performance criteria used as 

objective functions cannot be improved simultaneously in the optimization process. This 

means that the objectives are conflicting to each other. There exist multiple Pareto-optimal 

solutions. Indeed, the latter is more interesting and also the concentration of this thesis work. 

In [Sat03] the variations of the values of some performance criteria with respect to some 

geometrical and material parameters of a transducer have been studied qualitatively. This can 

be used as reference for determining objective functions in the following optimization 

problems.  

In the following, the optimal prestress for the transducer is first determined. Then optimum 

geometrical and material parameters for each type of the transducer are discussed 

respectively.    

4.3   Determination of Optimal Prestress 

Prestress is a very sensitive parameter in the design of the Langevin transducer. As the 

influence of the prestress on the resonance performance of the transducer can not be modeled 

in theory, experimental study will be applied. The basic steps are: first, lumped parameter 

models are applied and optimization problems are described using model parameters. Then, 

model parameters are identified from experimental results according to different prestress. 

Finally, the optimum prestress for multiple objectives is determined. Because the model 

parameters are estimated from experiments, this approach can be applied for any transducer 

configuration. Losing no generality, a bolt-clamped Langevin-type piezoelectric transducer of 
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length 70 mm has been constructed as shown in Fig. 4.6. A piezoelectric stack consisting of 4 

piezoelectric rings, 4 copper electrodes and a force washer are clamped between two same 

steel rods by means of a bolt. The bolt is insulated from the center electrode using a thin PVC 

sleeve.  The force washer based on strain gauge techniques was used to monitor pres-stress.  

An experimental setup including an impedance analyzer (HP4192) and a laser vibrometer was 

used for measure of admittance frequency responses UI ˆˆ  and Uv ˆˆ  with respect to various 

levels of the prestress between 20MPa and 100MPa. Fig.4.7 shows the measured admittance 

function UI ˆˆ  and Uv ˆˆ in the vicinity of the first longitudinal vibration mode according to 

different pre-stress. Obviously, the locations of resonance and anti-resonance frequencies as 

well as admittance maxima and minima vary when prestress varies.  

When a piezoelectric transducer operates in the vicinity of a resonance frequency, an 

equivalent electrical or mechanical model shown in Fig. 2.8 in chapter 2 can describe its 

vibration behavior. Similarly, the electrical and mechanical admittance functions UI ˆˆ  and 

Uv ˆˆ  can be approximated as follows: 
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Model parameters can be calculated analytically from measured admittances [Kro99] and 

[Hem01]. In this work, the nonlinear least-square estimation technique was used for the 

parameter identification, based on the measurement of the electrical admittance frequency 

response eŶ  only. 

Force washer

 

Fig. 4.6 Bolt-clamped Langevin transducer 
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Fig. 4.7 Admittances as functions of prestress 
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The parameter identification problem can be formulated as a least-square optimization 

problem as follows 
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where [ ]T
RdCmc α=φ is estimated parameter vector. Yi and iY  are the measured and 

estimated magnitudes of admittance function eŶ  at the i-th sample point frequency (i=1, 2,…, 

q), respectively. iY∠  and iY∠  are  the measured and estimated phases of admittance function 

eŶ  at the i-th sample frequency point frequency (i=1,2,…, q). Here q=200 sample frequency 

points are used for parameter identification. Fig. 4.8 shows model parameters estimated with 

respect to varying prestress levels between 20MPa to 110MPa. The functional expressions of 

the model parameters with respect to the prestress Pr were then acquired by means of curve 

fitting with polynomials in the least-square sense. The resulting expressions are: 
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Applying the above expressions, the performance criteria can be expressed as functions of 

prestress Pr if the transducer is modeled as a lumped mass system. Next some optimization 

problems related to prestress are discussed.  

When only one performance criterion is considered as the optimization objective in every 

optimization process, single-objective optimization is performed. However, in most practical 

applications multiple performance criteria with conflicting objectives are encountered and 

Pareto-optimal solutions need to be found.  
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Fig. 4.8 Estimated model parameter values as functions of pre-stress. The values are             

normalized to the corresponding maxima. 

4.3.1   Freely Vibrating Transducers  

From the point of view of ultrasonic engineering the coupling factor 2
k and piezoelectric 

quality number M are two important performance criteria. Here they are considered as 

objective functions that need to be maximized simultaneously. The expressions of these two 

objectives can be obtained according to equations (2.12) and (2.60) in chapter 2, respectively. 

The optimization problem can then be formulated as follows: 

    ( )
2

2

2

22

2

1maximize
α

α

ω

ωω

+
=

−
==

Cc
kPrf

p

sp
                                                (4.22a) 

dC
MPrf

sω

α 2

2 )(maximize ==                                                                       (4.22b) 

            MPa110MPa20 subject to ≤≤ Pr  

As there is only one design variable Pr, Pareto-optimal solutions can be readily found. Fig. 

4.9(a) shows the two objectives 2
k and M as functions of pre-stress, respectively. The values 

of the objectives are normalized with respect to the corresponding maxima. The maximum of 

each objective function can be found using normal numerical optimization method. The 

prestress corresponding to the maximum effective coupling factor 2
k = 0.068 is Pr = 55.5MPa, 

to the maximum piezoelectric quality number M=22.3 is obtained for Pr = 80.7MPa. 

Obviously, the Pareto-optimal set is the interval [55.5MPa, 80.7MPa].  Fig. 4.9(b) presents 

values of objective functions in the objective space. Though this two-objective optimization 

problem appears to be trivial, it gives some interesting results: 
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                                (a)                                                                         (b) 

Fig. 4.9 (a) 
2

k and M as functions of prestress (b) Pareo-optimal solutions in the objective 

space 

 

1. Varying prestress will lead to the variation of the resonance frequencies of                                                        

piezoelectric transducers. This will result in the change of resonance performances.  

2. The performance criteria 2
k  and M with respect to prestress can not arrive at optimum 

simultaneously. There exist Pareto-optimal solutions. For the transducer prototype here 

studied, the set of the Pareto optimal prestress is the interval [55.5 MPa, 80.7 MPa]. 

Correspondingly, the set of resonance frequencies is [25.09 kHz, 25.86 kHz].   

Similarly, other two or multiple performance criteria can be considered as optimization 

objectives and the corresponding Pareto-optimal solutions with respect to prestress can be 

searched for. 

4.3.2 Transducers with a Mechanical Load  

In ultrasonic bonding and machining, piezoelectric transducers operate against loads (the 

bonded or machined work pieces). In general, for simplicity, the load can be modeled as a 

spring-damping load with a stiffness cL and a damping dL. Fig. 4.10 shows the equivalent 

mechanical model of the transducer with a mechanical load. Here, the effective coupling 

factor 2
k  and the power efficiency λp are considered as objective functions.  

According to the equivalent model shown in Fig. 4.10, the following equations are obtained: 

      ( ) αUuduccudum LL +−=+++ &&&&             (4.23) 

     ( ) ( ) UuαQRαuQ
C

=−+− &&1
                                                                              (4.24) 

If the input voltage is tjeUtU Ω⋅= ˆ)(  , the following harmonic responses are obtained: 
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Fig. 4.10 Equivalent mechanical model of the transducer with a mechanical load 
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By analogy with equations (2.53) and (2.54) in chapter 2, the series and parallel resonant 

frequencies in this case are calculated as follows: 
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According to the definition of the coupling factor 2
k , the first objective function is 
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When the transducer is driven at the resonant frequency, i.e. sr ωω ≈=Ω ,  
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The output force of the transducer is given by   
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Applying the equations (4.32) and (4.34), the effective mechanical power mP̂  delivered at 

resonance, with respect to Pr is given by  

mresresm vFP ϕcosˆˆ
2

1ˆ =               (4.35) 

Where resresm Fv ˆˆ ∠−∠=ϕ  is the phase difference between resv̂  and resF̂ . The apparent 

electrical input power aP̂  at resonance can be calculated as follows: 

 UIP resa
ˆˆ

2

1ˆ =                      (4.36) 

Applying equations (4.35) and (4.36), the second objective function, namely the power 

efficiency λp  at resonance, with respect to Pr is given by  

  
a

m

p
P

P
Prf

ˆ

ˆ
)(2 == λ               (4.37) 

In the following the typical values 27.1=Lc kN/µm and sLd ω/4.25= Ns/m have been 

chosen. The optimization problem is then formulated as follows: 

)(maximize 1 Prf  

)(maximize 2 Prf  

MPa110MPa20 subject to ≤≤ Pr  

                       V36ˆ =U  

where model parameters α, d, c, m, C, and R in the expressions of the objective functions are 

determined by equations (4.16) to (4.21), respectively.  
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                          (a)                                                                   (b)                            

Fig. 4.11 (a) 
2

k  and λp as functions of pre-stress (b) Pareto-optimal solutions in objective 

space 

Similarly, as there is only one design variable, the Pareto-optimal solutions can be readily 

described by the plots as shown in Fig. 4.11. The values of the objectives are normalized with 

respect to the corresponding maxima. The maximum of each objective function (the inverse 

of the minimum of the objective function) can be found using normal numerical optimization 

method. The prestress corresponding to the maximum coupling factor 2
k  =0.034 is Pr = 62.3 

MPa, to the maximum power efficiency λp = 0.78 is Pr = 85.9 MPa. The Pareto-optimal set is 

the interval [62.3MPa, 85.9MPa].  

In the above optimization problems, Pareto-optimal prestress has been studied individually 

based on experiments and lumped parameter models. Next, optimization of the piezoelectric 

transducer with respect to the design variables other than prestress will be discussed. First, 

modeling of the transducer using the transfer matrix method based on continuum models is 

introduced. This modeling method will be used in all optimization problems discussed later. 

Then, the optimization problems of the transducer with a constant horn (i.e. symmetrical 

transducers) and the transducer with a stepped horn will be discussed in turn.  

4.4   Modeling of Langevin Transducers using Transfer Matrix Methods 

The goal of modeling is to construct the mathematical expressions between the input 

quantities and output quantities of the transducer. As described in chapter 2, continuum 

models are directly related to dimensions, material parameters and boundary conditions and 

are suitable for the formulation of the optimization problem. However, they can generally 

only deal with simple and homogeneous elements. In order to apply continuum models in the 

design of Langevin transducers, here the transfer matrix method based on continuum models 

is introduced.  

If the lateral dimensions of the whole transducer are smaller than one quarter of the 

wavelength in the frequency range of interest, the simple rod theory is well adequate for the 

k
2
 

λp 
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approximation of their vibration behaviors. Therefore, the basic processes of the transfer 

matrix method are: First, the whole transducer is split into elementary mechanical and 

piezoelectric rod parts, which are homogeneous and geometrically simple and connected in 

series or in parallel. Second, for each rod part the transfer matrix relation is derived by means 

of the rod theory. Third, in terms of the deformation continuity and force equilibrium, all 

transfer matrix relations are concatenated to form a whole transfer matrix model for 

describing the electromechanical behavior of the whole transducer. In the following, the 

transfer matrix method is first introduced, and then the expressions of transfer matrixes are 

derived.  

For each block the analytical model allows the computation of the vibration velocity and force 

at the right side of the block with respect to the vibration velocity and force at its left side. 

According to Fig. 4.12 a transfer matrix relation for each mechanical block can be written as 

follows 
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where 
mA  is the 22×  transfer matrix , which is derived from analytical models. The 

expression can be reduced to the following form 
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where 
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In the case of a piezoelectric block (see Fig. 4.13), the transfer matrix relation can be written 

as 

 

   

Lb Ab

Fe Fa Fe Fa

ve va

Rod element Mechanical schematic

Description

Four-pole 

description 

z

ve va

FaFe

ve va

 

Fig. 4.12 Rod element, mechanical scheme and four-pole description 



MULTIOBJECTIVE OPTIMIZATION OF PIEZOELECTRIC TRANSDUCERS 67     

 

 

U  I 

Ap
 

Fe 

ve  

U  I  UI
 

z  

hp

Fa

 

va  

Fe Fa

ve  va  

Fe Fa

 

Fig. 4.13 Piezoelectric rod element, mechanical scheme and four-pole description 
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where Î  and Û  are the electric current and voltage, respectively. PA  is a 33×  transfer 

matrix, which is derived from analytical models. Similarly, it can be rewritten as 
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where PmA , PemA ( PmeA ) and PeA  are 22× , )21(12 ×× and 11× transfer matrices, 

respectively. They describe the mechanical field, electric field and electrometrical coupling 

effects of the piezoelectric block, respectively. 

The whole transfer matrix relation of the transducer can be obtained by connecting transfer 

matrices of the elementary blocks in terms of interface conditions between two blocks. There 

are four fundamental connections shown in Table 4.1. Using these fundamental connections 

and the corresponding transfer matrices, the whole transfer matrices for various Langevin-

type transducers can be assembled. The transfer matrices of these fundamental connections 

are derived as follows: 

Connection 1: connection of two mechanical blocks in series 

According to equations (4.38) and (4.39), the transfer matrix relations for block 1 and block 2 

can be respectively written as follows 

e1

m

1a1 XAX = , e2

m

2a2 XAX =                                                                                (4.43) 

Assuming that the deformation is continuous at the interface of two block elements, there 

exist the following interface conditions 

2121
ˆˆ,ˆˆ

eaaa FFvv ==                                                                                           (4.44) 
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Table 4.1 Basic connections and their transfer matrices 

 Mechanical schematic and four-pole 

description  

Transfer matrix relations 
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3. Connection 

of one 
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block (left) and 

a piezo block 

(right) 
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From equations (4.43) and (4.44), the whole transfer matrix relation is obtained as follows 
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2a2 XAAX =                                                                                                  (4.45) 

Following this approach, the whole transfer matrix relation for N blocks in series can also be 

derived.  

Connection 2: connection of two piezoelectric blocks mechanically in series and 

electrically in parallel  

According to equation (4.42), the transfer matrix relations for piezoelectric block1 and block2 

can be respectively written as follows 
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Similarly, using the interface conditions 2ea1 XX =  , the whole transfer matrix relation can be 

obtained as follows  
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Where 
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Following this approach, the whole transfer matrix relation for a piezoelectric stack consisting 

of N piezoelectric blocks is available.   

Connection 3:  a mechanical rod (left) + a piezoelectric element (right) 

According to equations (4.39) and (4.42) the transfer matrix relations for the mechanical 

block 1 and the piezoelectric block 2 can be written as follows 
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Applying the interface conditions e2a1 XX =  yields the whole transfer matrix relation as 

follows 
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where  
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Connection 4: a piezoelectric element (left) + a mechanical rod (right) 

Applying a similar approach as in connection 3, the whole transfer matrix relation can be 

obtained as follows 
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where 
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The expressions of the transfer matrices of the fundamental block elements can be derived 

using the analytical models based on rod theory, respectively. A detailed derivation can be 

found in Appendix. In the next sections, the optimization problems of symmetric transducers 

and transducers with stepped horn will be discussed. 

4.5   Optimization of Symmetrical Langevin-type Transducers 

The symmetric Langevin-type transducer is the simplest Langevin-type transducer. Fig. 4.14 

shows a typical design. A piezoelectric stack consisting of N (for example N=4) piezoelectric 

rings and copper electrodes is clamped between two same metal rods by means of a bolt. The 

piezoelectric rings and metal rods have the same outer diameter. Table 4.2 gives those 

parameters which affect the performances of the transducer.  
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Fig. 4.14 A symmetrical Langevin transducer 
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Fig. 4.15 Four-pole network element description of the symmetrical Langevin transducer 

Table 4.2 Parameters that affect the performances of the transducer 

    

      Û :  Input voltage  

       Lb:  Length of the metal parts 

       Dt:  Outer diameter of metal rods and piezo-disks/rings 

       Di:  Inner diameter of piezo-rings and diameter of the bolt 

      Lbt:  Length of the bolt 

       hp:  Thickness of piezoelectric rings  

 

        N:  Number of piezoelectric disks or rings 

   Typb:  Material parameters of metal end blocks 

   Typp:  Material parameters of piezo-rings  

 

4.5.1   Derivation of the Whole Transfer Matrix  

The whole transducer is considered as a combination of two mechanical rod elements and a 

piezoelectric stack in series. Then the whole transfer matrix relation of the transducer can be 

derived from the transfer matrices of the fundamental rod elements shown in Table 4.1. Fig. 

4.15 gives the four-pole network element description. Considering the modeling in the earlier 

design stage, the bolt has not been modeled as a separate element. The actual piezoelectric 

rings are modeled as piezoelectric discs. The electrodes are not taken into account in the 

model.  These simplifications will not cause obvious deterioration of the model.  
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Based on the transfer matrix relation of the fundamental connection 2 shown in Table 4.1, it is 

easy to obtain the transfer matrix relation for the piezoelectric stack consisting of N 

piezoelectric rings in series. It is noted that all piezoelectric rings here have the same 

thickness hp. They are connected in parallel electrically and the whole current for the piezo-

stack is 
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The whole mechanical output (the vibration amplitude and force) on the right side of the 

piezoelectric stack is 
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According to equations (4.52) and (4.53), the whole transfer matrix relation for the 

piezoelectric stack can be written as follows   
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Applying the above equation (4.54) and the transfer matrix relations of the fundamental 

connections 3 and 4 shown in Table 4.1 yields the whole transfer matrix relation for the 

symmetrical Langevin-type transducer as follows: 
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It should be pointed out that the matrix elements )3,2,1,( =jia
PT

ij  are functions of the material 

parameters, dimensional parameters and the vibration frequency of the transducer. Their 

explicit mathematical expressions are not given here because the expressions are very 

complex. They are derived automatically in the programs. 

4.5.2   Problem Formulation of the Symmetrical Transducer without Loads 

Optimization objectives For the resonant driven piezoelectric transducer, the free vibration 

amplitude and input power at the resonance operation are two important performance criteria. 

Here they are considered as objective functions. For a given exciting voltage, the vibration 

amplitude should be maximized. In the meantime, the input power of the transducer should be 

minimized. In the following, the mathematical descriptions of these two objectives will be 

derived from the above model. In order to predict vibration amplitude and current at 

resonance frequency, losses due to material properties are included in the model using 

complex moduli instead of real moduli. 

For the transducer free at both sides, there exist the following boundary conditions 

1
ˆ

eF =0,  0ˆ
3 =aF                                                                         (4.56) 

Introducing (4.56) into (4.55) yield the following expressions 

U
a

a
v

PT

PT

e
ˆˆ

21

23

1 −=                                                                                                      (4.57) 

Uavav
PT

e

PT

a
ˆˆˆ

131113 +=                                                                                           (4.58) 

UavaI
PT

e

PT ˆˆˆ
33131 +=                                                                                              (4.59) 

After inserting equation (4.57) into equation (4.58), the solution of 3
ˆ

av  is obtained as follows: 









==

PTPT

PTPT

aa

aa

2221

1211mPSmmPTm AAAA









==

PT

PT

a

a

23

13PSemmPTem AAA

[ ]PTPT aa 3231== mPSmePTme AAA

PT
a33== PSePTe

AA
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 U
a

aa
av

PT

PTPT

PT

a
ˆˆ

21

2311

133 







−=              (4.60) 

where 

0Im
21

2311

13 =







−

PT

PTPT

PT

a

aa
a                                                              (4.61)  is 

the so-called characteristic equation representing the resonance of the transducer free at both 

sides. 

When the transducer is driven by the voltage tjeU Ωˆ , the vibration velocity 3
ˆ

av  at resonance 

can be calculated from equation (4.60). Therefore, the vibration amplitude at the right side of 

the transducer can be obtained from 

U
a

aa
a

j
u

PT

PTPT

PT

a
ˆ1

ˆ
21

2311

133 







−

Ω
=                                                                          (4.62) 

Equation (4.62) gives the expression of the first objective function, which should be 

maximized. As optimization methods applied in this work only handle minimization 

problems, the inverse of the above expression will be used as the objective function in the 

optimization problem. It is given by 

Uaaaa

a
f

PTPTPTPT

PT

ˆ
23112113

21

1

Ω

−
=                                                                                   (4.63) 

Introducing equation (4.57) into equation (4.59) yields the input current 

 U
a

aa
aI

PT

PTPT

PT ˆˆ

21

2331

33 







−=              (4.64) 

 Therefore the input electrical power (apparent power) for the harmonic vibration is 

PT

PTPT

PT

a
a

aa
a

U
UIP

21

2331

33

2

2

ˆ
ˆˆ

2

1ˆ −==                                                                           (4.65) 

Equation (4.65) gives the expression of the second objective function. It is given by 

aPf ˆ
2 =                 (4.66) 

Design variables The parameters that affect the performances of the transducer with specified 

resonance frequency and vibration mode have been shown in Table 4.2. There are two types 

of the parameters. The input voltage U and the dimensions of the transducer are of continuous 

type. The number of the piezoelectric rings and material of the backing rod, front rod and 

piezoelectric rings are of discrete type. In this work, the number of the piezoelectric rings N is 
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assumed as one of the elements of the set {2, 4, 6}. The metal rods take one of 4 pre-specified 

material types (represented by corresponding density ρ, elastic modulus E and loss factor 

tanδ). Not all parameters need to be determined by the optimization process. Some parameters 

can be given before optimization. Here the following parameters are considered as given 

quantities: the number of the piezoelectric rings }6,4,2{∈N , the input exciting voltage Û  and 

the material type of the piezo-rings. As stated before, the inner diameter of the piezo-rings 

and the dimensions of the bolt will not be considered as design variables individually. The 

remaining design variables, which will be determined by the optimization process, are shown 

in Table 4.3. Table 4.4 gives material data. 

Constraints The transducer should operate at the specified resonance frequency rω . Equation 

(4.61) gives the resonance condition of the transducer free at both sides. Under the condition 

that the values of the above given parameter are known, equation (4.61) describes an equality 

constraint g1 with respect to the design variables Lb, hp and the material type of the metal end 

rods. It is noted that there exist multi-mode solutions to equation (4.61) according to Lb and hp 

for a given material type of the end rods. This can be illustrated with Fig. 4.16, which shows 

the locus of roots of equation (4.61) in the ranges mm 5mm2.0 ≤≤ ph and 

mm200mm5 ≤≤ bL  for the following given parameter values:  

• the number of the piezoelectric rings N=2 

• the material type of the backing and front rods: steel 

• the piezoelectric material: PIC181 

• the input voltage VU 100ˆ =  

• the resonance frequency kHzf r 20=    

  

Table 4.3 Design variables for the symmetrical transducer 

        Lb:  Length of the metal parts  

        Dt:  Outer diameter of metal rods and piezo-rings 

        hp:  Thickness of piezoelectric rings  

    Typb:  Material of metal end blocks (represented by corresponding  

              density ρ, elastic modulus E and loss factor tanδ)                                                  
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Table 4.4 Material types and corresponding parameters 

Material  

characteristics 

Steel Titanium Aluminum 

bronze 

Brass       PIC 181 

(PI Ceramic Gmbh) 

Density  ( ρ) 

 [ ]3kgm−  

7900 4430 8500 8400 7850 

Elastic modulus ( E) 

[ ]211 Nm10 −×  

2.1 1.15 1.4 0.9 0.7 

Loss 

factor( tanδ ) 

[ ]410−×  

4.3 11.4 4.3 3.3 29 

Charge constant ( d33) 

[ ]-112 mV10−×  

 

-- -- -- -- 265 

Voltage 

constant (g33) 

[ ]-13 VmN10−×  

 

-- -- -- -- 25.2 

Relative 

permittivity  

( )0

T

33 εε  

-- -- -- -- 1200 

Binary String 00 01 10 11  

 No. 1 2 3 4  
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Fig. 4.16 Locus of roots of equation (4.61) 
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The locus of roots shown in Fig. 4.16 contains the first four vibration modes of the transducer. 

In order to obtain the solutions for a specified vibration mode (here the first vibration mode, 

also λ/2-mode) and to avoid the “switching” of the vibration modes during search, the search 

ranges of the variables hp and Lb must be defined accordingly. The corresponding bounds of 

hp and L are determined as follows: The lower bounds of hp and Lb are specified by the 

designer. The upper bound of hp is either set by the designer or obtained by searching the root 

of equation (4.61) corresponding to the lower bound of Lb. Similarly, the upper bound of Lb is 

determined by searching the root of equation (4.61) corresponding to the lower bound of hp. 

As the derivative of the constraint function g1 can not be found in a closed form analytical 

solution, the secant method is used to numerically search solutions of equation (4.61). The 

starting values must be picked carefully and tried sufficiently so that the secant method can 

find the solutions only for the λ/2 mode. The plot of solutions to equation (4.61) can be used 

for specifying the starting values for searching the upper bounds of Lb. For example, 

according to Fig. 4.16, the two starting values for searching the upper bound of Lb can be 

selected as 5 mm and 50 mm. Similarly, for the transducer with other material of metal end 

blocks and number of the piezo-rings, the corresponding locus of roots of equation (4.61) can 

be obtained and be used for specifying the starting values.    

Considering design requirements for the electric driving device of the transducer, the 

maximum apparent input power maxP̂  and current maxÎ  need to be limited. The constraints can 

be concluded as follows: 

g1: 0Im
21

2311
13 =








−

PT

PTPT
PT

a

aa
a , where rr fπω 2==Ω   

g2: max

6 ˆˆVA10 PPa ≤≤−  

g3: max

6 ˆˆA10 II ≤≤−   

g4:  DtD UbDLb ≤≤  

g5: hph UbhLb ≤≤  

g6: LbL UbLLb ≤≤                                             

The first constraint assures that the transducer operates at the specified resonance 

frequency rf . The second and third constraints limit the input power and input current. Î  and 

aP̂  are given by the equations (4.64) and (4.65) respectively. Obviously, they must be positive 

quantities. Bounds of 610− VA and 610− A are imposed on aP̂  and Î  to avoid division by zero. 

The last three constraints give the region of search for the optimum. The values of DLb , DUb , 

L hb , U hb and LLb  are determined according to manufactory specifications and the 

requirements for the piezoelectric transducer. The value of the upper bound LUb  is dynamic 
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upper bound. It varies according to the selected material type of the end blocks. It is 

determined using the search method described before.   

Denoting the variable vector ),,,(),,,( 4321 bbpt TypLhDxxxx ==x , the objective vector 

[ ])(),()( 21 xxx ffF =  and the constraint vector [ ]6,...,1, == igG i , the two-objective 

optimization problem is formulated as follows: 

GtoSubject

FMinimize )(x
                                                                                                  (4.67)    

4.5.3   Implementation of the Optimization Process 

The optimization process can be divided into two levels. In the first level, optimization is 

performed individually for each given number N of piezoelectric rings. The respective non-

dominated solutions are searched for. In the second level optimization, non-dominated 

solutions are searched again in the non-dominated solutions obtained in the first level 

optimization. Here only the first level optimization is performed. The second level 

optimization will be performed in chapter 5. For the optimization problem, the following 

parameter values are assumed: 

•  20=rf kHz, λ/2 vibration mode 

•  100ˆ =U V, 4ˆ
max =I A 

• 8=DLb  mm , 50=DUb mm 

• 2.0=hLb mm, 5=hUb mm 

• 5=LLb mm 

For the given Û and maxÎ , the maximum electrical input power maxP̂ is determined 

correspondingly. Therefore the constraint g2 can be deleted. In the following, four MOEAs, 

namely MOGA, NSGA, SPEA and NSGA-II are first used to solve the constrained MOP of 

the transducer with 2 piezo-rings respectively. Then the most appropriate MOEA is selected 

from the four MOEAs according to their optimized results and is applied in optimization of 

the transducers with 4 and 6 piezo-rings.  

Two strategies have been used to handle constraints. In MOGA, NSGA and SPEA, the 

constrained MOP is transferred into a non-constrained MOP by using the penalty function 

approach, whereas the constrain-domination concept is applied in NSGA-II.  

In the penalty function approach, the constraints g3 is normalized (converted into the “ ≥  „ 

form) as follows: 
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                                                                                    (4.68) 

For each solution, the constraint violation for each constraint is calculated as follows: 
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gif

gifg
g

i

ii

i 3,3
0)(,0

0)(|,)(|
)(~ =







≥

<
=

x

xx
x                                                            (4.69) 

Then the new objective functions (penalized functions) are defined as follows: 

)](~)(~[)()(
~

)](~)(~[)()(
~

33222

33111

xxxx

xxxx

lu

lu

ggpff

ggpff

++=

++=
                                                                  (4.70) 

The penalty parameter 1p  and 2p  should be chosen so that both of  )(xif  and 

)](~)(~[ 33 xx lui ggp +  have the same order of magnitude, where 2,1=i . Many static and 

dynamic strategies can be used to choose penalty parameters. Here static values of penalty 

parameters are used. In order to determine penalty parameters, the optimization was first 

performed for a small number of generations. The values of penalty parameters were then 

determined according to the obtained values of the original objective functions and constraint 

violations. Here 2

1 102×=p and 4

2 104×=p  are chosen.  

The values of two penalty parameters must be chosen properly so that the algorithms work 

well. If the penalty parameter is not chosen adequately, Pareto-optimal solutions may not be 

found or a poor distribution of solutions may be occur. In order to avoid choosing any explicit 

penalty parameter, the constrain-domination concept instead of penalty function approach is 

used in NSGA-II.  

Four MOEAs here used differ in the way each solution is evaluated and selected to fill the 

mating pool for offspring production. The rest of the algorithms (crossover and mutation 

operations) are the same. After the mating pool is filled up, a crossover operator and a 

mutation operator are applied to the strings of the mating pool to create new solutions. 

In each MOEA, a mixed coding scheme with a mixed crossover and a mixed mutation 

operator is used. A mixed coding (chromosome) for a typical design (individual or solution) 

of the symmetric transducer with 4 design variables is as follow: 

{ { { {
bpbt LhTypD

6.378.15100.2  

The first variable Dt is a continuous variable, which takes a real value in the range of 

mm50mm8 ≤≤ tD . The second variable Typb  is a discrete variable, which take a two-bit 

binary string representing a set values of ρ, E and tanδ of a specified material type. The 

strings and corresponding material types are shown in Table 4.4. The third variable hp is a 
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continuous variable, which takes a value in the range of mm5mm2.0 ≤≤ ph . The last 

variable Lb is continuous type, which takes a value in the range of Lb UbL ≤≤mm5 . The LUb  

is dynamic upper bound for the variable Lb. It varies from one generation to another and its 

value is determined by solving the equality constraint g1 using the secant method.  

In each generation, two chromosomes are selected from the mating pool randomly. A blended 

crossover (BLX-α) operation is performed on the continuous parts Dt and hp. For the discrete 

part Typb a single-crossover is used. A bit-wise mutation is only performed on the discrete 

part. The value of the design variable Lb is determined by solving the equality constraint g1 

using the secant method. Hereto, one offspring solution consisting of 4 variable values has 

been obtained. Similarly, the other offspring solution can also be obtained. 

Table 4.5 Parameters and techniques that are used in the four MOEAs. 

MOEAs Parameters and 
techniques 

MOGA NSGA SPEA NSGA-II 

Constraint 
handling 
strategy 

Penalty function Penalty 
function 

Penalty function Constrain -
domination 

Approach to find 
non-dominated 
set 

Continuous updated 
method 

Continuous 
updated 
method 

Continuous 
updated method 

Continuous 
updated 
method 

Fitness 
assignment 

Pareto ranking ( the rank 
of a certain individual 
corresponds to the 
number of individuals in 
the current population by 
which it is dominated) 
and the shared fitness 

Pareto ranking 
(Goldberg’s 
ranking) and 
the shared 
fitness 

Pareto-based 
method  (the 
fitness is 
assigned 
according to the 
strength of the 
individual) 

Pareto ranking 
(Goldberg’s 
ranking) and 
the shared 
fitness 

Niching 
technique 

Fitness sharing in 
objective space 

Fitness sharing 
in parameter 
space 

Pareto-based 
method in 
objective space 

Fitness sharing 
in parameter 
space 

Elite –
preserving  

No No Yes  Yes 

Selection 
operation 

SRWS SRWS Binary 
tournament 
selection 

SRWS and the 
crowded 
tournament 
selection 

Crossover 
probability 

0.9 0.9 0.9 0.9 

Mutation 
probability 

0.5 0.5 0.5 0.5 

shareδ  0.5 0.184 -- 0.184 

Population size 50 50 50 50 
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Table 4.5 gives some important parameters and techniques that are used in the four MOEAs. 

It is pointed out that in NSGA-II the crowded tournament selection operator here is only used 

in the process of creating the new population Pt+1 of size N from the combined population Rt 

of size 2N consisting of the parent population Pt and the offspring population Qt. The SRWS 

operator is still used to select the solutions in Pt+1 into the mating pool. 

Optimization is performed first for the transducer with 2 piezo-rings using the above four 

MOEAs, respectively. Figs. 4.17 to 4.20 show the respective non-dominated solutions in 

objective spaces after 300 generations. Tables 4.6 to 4.9 give the corresponding values of 

design variables and objective functions for the non-dominated solutions. 
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Fig. 4.17 Non-dominated solutions obtained by using MOGA for the symmetrical transducer 

with 2 piezo-rings 

 

Table 4.6 Values of design variables and objective functions for non-dominated solutions 

obtained by using MOGA for the symmetrical transducer with 2 piezo-rings 

 

Design Dt [mm] Typb hp [mm] Lb [mm] 3
ˆ

au  [µm] 
aP̂  [VA] 

 
1

2

3

4

5

6

7

8

9

10

11

12 

 
8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8. 

 
2

4

4

4

2

4

4

4

4

4

2

4 

 
0.2

0.2

0.3

0.4

0.4

0.4

0.5

0.5

0.6

0.6

0.6

0.7 

 
63.4

40.7

40.5

40.5

63.

40.4

40.2

40.2

40.1

40.1

62.7

40.  

 
33.44

92.19

88.09

85.94

32.64

83.22

80.15

79.82

78.12

77.57

32.14

75.29 

 
16.23

53.43

51.01

49.77

15.59

48.2

46.42

46.24

45.26

44.95

15.33

43.63 
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Table 4.6 continued 

Design Dt [mm] Typb hp [mm] Lb [mm] 3
ˆ

au  [µm] 
aP̂  [VA] 

 
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34 

 
8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.1

8.1

8.1 

 
4

2

2

2

4

2

4

2

2

4

4

4

4

4

4

4

4

4

4

4

4

4 

 
0.7

0.7

0.7

1.

1.5

1.4

1.2

1.9

1.7

1.7

1.9

2.2

1.8

2.2

2.

2.2

2.6

3.

2.9

3.6

3.7

3.6 

 
40.

62.6

62.5

62.

39.

61.4

39.4

60.6

60.9

38.8

38.5

38.1

38.6

38.1

38.3

38.1

37.5

37.1

37.2

36.3

36.1

36.3 

 
75.14

31.91

31.85

30.94

58.06

29.91

64.41

28.61

29.

55.3

52.84

49.09

53.15

48.48

50.68

48.38

44.1

41.18

41.77

36.54

35.83

36.5  

 
43.55

15.22

15.19

14.76

33.68

14.27

37.42

13.66

13.85

32.14

30.71

28.51

30.9

28.17

29.49

28.14

25.65

23.96

24.31

21.25

20.84

21.24 
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Fig. 4.18 Non-dominated solutions obtained by using NSGA for the symmetrical transducer 

with 2 piezo-rings 
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Table 4.7 Values of design variables and objective functions for non-dominated solutions 

obtained by using NSGA for the symmetrical transducer with 2 piezo-rings 

  

Design Dt [mm] Typb hp [mm] Lb [mm] 3
ˆ

au  [µm] 
aP̂  [VA] 

     

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.2

8.3

8.4 

2

2

4

4

4

4

4

2

2

4

2

2

2

4

2

4

4

4

4

4

2

4

2

4 

0.2

4.4

0.2

1.

1.1

1.3

3.2

1.6

2.7

0.4

2.1

2.7

0.9

1.1

1.

2.8

2.1

0.2

0.9

2.4

1.5

0.7

0.2

0.2 

63.4

56.5

40.6

39.7

39.6

39.3

36.8

61.1

59.3

40.4

60.3

59.4

62.3

39.4

62.

37.3

38.2

40.7

39.7

37.9

61.2

40.1

63.4

40.7 

33.44

23.54

91.49

69.06

66.6

62.65

39.13

29.44

26.73

85.52

28.09

26.84

31.35

64.75

30.92

42.4

49.63

92.19

69.27

46.75

29.58

76.67

33.44

92.19 

16.23

11.13

53.01

39.93

38.49

36.2

22.48

13.98

12.68

49.81

13.42

12.84

15.1

37.99

14.93

24.89

29.27

54.76

41.07

27.76

14.55

46.32

17.53

58.38 
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Fig. 4.19 Non-dominated solutions obtained by using SPEA for the symmetrical transducer 

with 2 piezo-rings 
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Table 4.8 Values of design variables and objective functions for non-dominated solutions 

obtained by using SPEA for the symmetrical transducer with 2 piezo-rings 

 

Design Dt [mm] Typb hp [mm] Lb [mm] 3
ˆ

au  [µm] 
aP̂  [VA] 

 
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35 

 
8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8. 

 
2

2

2

2

2

4

4

2

4

4

4

4

4

2

2

2

2

4

2

4

4

2

4

4

4

2

4

4

4

4

2

2

4

2

2 

 
0.3

0.7

1.4

1.6

5.

0.2

1.5

0.8

3.8

0.3

4.

0.7

4.

4.7

1.

1.8

3.7

3.7

4.2

2.5

2.1

3.1

1.8

2.7

2.2

0.9

0.7

2.6

2.7

2.

2.4

2.4

3.3

3.

2.3 

 
63.2

62.6

61.5

61.

55.5

40.7

39.

62.4

36.1

40.5

35.8

40.1

35.8

56.

62.1

60.8

57.6

36.1

56.8

37.7

38.3

58.6

38.6

37.5

38.1

62.2

40.

37.6

37.5

38.3

59.8

59.7

36.7

58.8

59.9 

 
33.12

31.92

29.94

29.26

22.58

92.19

58.08

31.55

35.39

87.19

34.09

76.27

34.21

23.05

31.03

28.9

24.68

35.81

23.8

45.56

50.11

25.92

53.98

43.76

49.01

31.13

75.12

44.7

43.84

50.9

27.5

27.31

38.89

26.17

27.59 

 
15.89

15.19

14.22

13.89

10.66

53.43

33.55

15.

20.28

50.47

19.52

44.11

19.59

10.89

14.75

13.72

11.68

20.53

11.26

26.25

28.9

12.28

31.16

25.2

28.26

14.8

43.45

25.75

25.25

29.37

13.04

12.95

22.35

12.4

13.09 
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Fig. 4.20 Non-dominated solutions obtained by using NSGA-II  for symmetrical transducer 

with 2 piezo-rings 

 

Table 4.9 Values of design variables and objective functions for non-dominated solutions 

obtained by using NSGA-II  for the symmetrical transducer with 2 piezo-rings 

 

Design Dt [mm] Typb hp [mm] Lb [mm] 3
ˆ

au  [µm] 
aP̂  [VA] 

 
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 

 
8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8. 

 
2

2

2

4

4

2

2

2

2

2

2

4

4

4

4

4

4

4

4

4

4

2

2

2

2 

 
0.2

1.4

3.

0.3

3.6

0.8

1.8

1.9

2.

3.6

4.

0.2

0.8

1.3

1.6

1.7

2.

2.9

3.1

4.

4.

1.7

1.7

3.

3.1 

 
63.4

61.4

58.7

40.5

36.4

62.4

60.8

60.7

60.5

57.9

57.1

40.7

39.8

39.3

38.8

38.7

38.3

37.2

37.

35.8

35.8

60.9

60.8

58.7

58.7 

 
33.44

29.82

26.05

86.43

37.04

31.61

28.84

28.69

28.43

25.01

24.2

92.19

71.56

61.75

56.32

55.15

50.89

41.77

40.54

34.43

34.17

29.07

28.97

26.02

26.01 

 
16.23

14.16

12.34

50.02

21.26

15.03

13.69

13.62

13.49

11.84

11.45

53.43

41.37

35.68

32.52

31.84

29.36

24.03

23.31

19.72

19.57

13.8

13.75

12.33

12.33 
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Table 4.9 continued 

Design Dt [mm] Typb hp [mm] Lb [mm] 3
ˆ

au  [µm] 
aP̂  [VA] 

 
26

27

28

29

30

31 

 
8.

8.

8.

8.

8.

8. 

 
2

2

2

2

4

2 

 
4.1

4.1

4.2

5.

4.

3.7 

 
57.1

57.

56.8

55.5

35.8

57.6 

 
24.12

24.1

23.83

22.58

34.26

24.7  

 
11.41

11.4

11.27

10.66

19.62

11.69 

 

In the following, the above four MOEAs will be evaluated in terms of the relative 

convergence of the non-dominated solutions, the diversity of the non-dominated solutions, the 

computing cost and the ability of finding non-dominated solutions. Then the most appropriate 

MOEA will be selected and used to solve the optimization problems of the transducer with 4 

and 6 piezo-rings.  

In order to compare the optimized results visually, the non-dominated solutions obtained 

above are plotted again according to the same axes (see Fig. 4.21). Based on Fig. 4.21, 

however, it is difficult to identify which algorithm is better in terms of the convergence of 

non-dominated solutions. Therefore, the set coverage metric C (A, B) has been applied, see 

the definition of C (A, B) in chapter 3. Table 4.10 gives the calculated values of the set 

coverage metric C (A, B), where A represents a non-dominated set obtained by using a 

MOEA in the column and B represents a non-dominated set obtained by using a MOEA in the 

row correspondingly. 

Since no member of the non-dominated set NSGA-ΙΙ is dominated by the members of the 

others, the set NSGA-ΙΙ has a better convergence to the Pareto-optimal front than the rest 

relatively. Compared with SPEA, however, NSGA-ΙΙ has not an obvious advantage in terms 

of the convergence because the metric C(NSGA-ΙΙ, SPEA) is very small.  
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Fig. 4.21 Non-dominated solutions in objective space obtained by using four MOEAs after 

300 generations for the symmetrical transducer with 2 piezo-rings 
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Table 4.10 The values of metrics C(A,B) for non-dominated solutions obtained by four 

MOEAs  after 300 generations for the symmetrical transducer with 2 piezo-rings 

A                  B        NSGA NSGA-II MOGA SPEA 

NSGA - 0 0 0 

NSGA-II 4/24 - 4/34 1/35 

MOGA 6/24 0 - 0 

SPEA 4/24 0 5/34 - 

 

Table 4.11 Values of metrics SP and DI and the computation cost for non-dominated   

solutions obtained by four MOEAs after 300 generations for the symmetrical transducer with 

2 piezo-rings 

 

Metric NSGA NSGA-II MOGA SPEA 

SP 1095 683 398 479 

DI 31637 33434 24106 33434 

Computation time        
[s] 

1714 14656 5797 5146 

Number of the non-
dominated solutions 

24 31 34 35 

 

In order to compare the generated solutions in terms of the diversity, the metric SP and DI, 

which evaluate the uniformity of distribution of solutions and the extent of spread of solutions 

respectively, are applied. Table 4.11 gives the calculated values of the metrics. According to 

the definitions of SP and DI, the more uniformly the solutions are distributed, the smaller the 

metric SP; the larger the value of the metric DI is, the larger the extent of spread of the 

solutions. It is obvious that the algorithms MOGA and SPEA perform better than the 

algorithms NAGA and NSGA-ΙΙ   in terms of the uniformity of distribution of solutions in 

objective space, whereas the non-dominated set obtained by NSGA and SPEA has the largest 

extent of spread relatively. 

The reason that the algorithms MOGA and SPEA perform better than the algorithms NAGA 

and NSGA-ΙΙ   in terms of the uniformity of distribution of solutions in objective space is that 

the former performs the niching strategy in the objective variable space, whereas the latter 

performs the niching strategy in the design variable (parameter) space. The better diversity of 

the solutions in objective space is expected if the niching strategy is performed in objective 

space. In general, a good diversity of the solutions in objective space may not result in a good 
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diversity of the solutions in design variable space, and vice versa. The choice between 

decision-space niching or objective-space niching depends on what is desired in the obtained 

non-dominated set. If diversity in decision variable values is emphasized, decision-space 

niching should be performed. On the other hand, if diversity in objective function values is 

emphasized, objective-space niching should be performed.  

Table 4.11 also shows the computation time and the number of the non-dominated solutions 

after 300 generations using the four MOEAs. Obviously, the computation cost of the NSGA is 

the lowest and the computation cost of NSGA-ΙΙ is the largest. Although the short 

computation time is always expected, the closeness to the Pareto-optimal front and the 

diversity of non-dominated solutions are more important in the optimal design of transducers. 

In terms of finding non-dominated solutions, SPEA shows a better performance.   

According to above results of the comparison, it is concluded that SPEA show the best overall 

performance for the two-objective optimization problem of the symmetrical transducer. 

Therefore, it has been applied for optimization of the symmetrical transducer with 4 and 6 

piezoelectric rings, respectively. Figs. 4.22 and 4.23 show the respective non-dominated 

solutions after 300 generations for the transducer with 2 and 4 piezo-rings. Tables 4.12 and 

4.13 give the values of the design variables and objective functions for the non-dominated 

solutions.  

After all non-dominated solutions for the transducer with 2, 4 and 6 piezo-rings are obtained, 

the second-level optimization can be performed. This will be described in chapter 5.  
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Fig. 4.22 Non-dominated solutions obtained by using SPEA  for  the symmetrical transducer 

with 4 piezo-rings 
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Table 4.12 Values of design variables and objective functions for the non-dominated solutions 

obtained by using SPEA for the symmetrical transducer with 4 piezo-rings 

 

Design Dt [mm] Typb hp [mm] Lb [mm] 3
ˆ

au  [µm] 
aP̂  [VA] 

 
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 

 
8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8. 

 
2

2

2

2

2

2

4

2

2

4

4

2

2

4

2

2

2

4

4

4

4

4

2

2

2

4

2

2

4

4

2

4

2

2

4

4

2

2 

 
5.

3.9

3.8

3.4

3.2

2.3

1.9

1.9

2.4

2.1

1.7

2.2

1.9

1.9

1.9

1.7

2.

1.6

0.8

1.7

0.3

0.4

1.1

1.

0.9

0.9

0.2

0.2

0.3

0.8

0.2

0.2

1.8

0.7

1.8

1.7

1.6

0.4 

 
47.3

50.8

51.2

52.5

53.1

56.1

36.2

57.5

55.7

35.7

36.6

56.6

57.4

36.

57.5

58.

57.1

36.8

39.

36.5

40.1

40.

60.2

60.5

60.6

38.5

63.

63.

40.2

38.8

62.9

40.3

57.8

61.2

36.4

36.5

58.4

62.4 

 
33.81

37.88

38.4

40.22

41.12

46.22

71.75

49.14

45.5

67.2

76.63

47.21

48.92

70.16

49.14

50.28

48.27

78.64

116.51

75.22

153.58

147.79

56.17

56.83

57.22

105.04

65.57

65.41

159.7

112.31

65.07

163.97

49.83

59.22

74.59

74.81

51.25

63.22  

 
31.37

35.49

36.02

37.84

38.74

43.75

82.45

46.61

43.07

77.11

88.26

44.75

46.42

80.63

46.64

47.75

45.8

90.66

135.01

86.64

178.24

171.49

53.48

54.11

54.5

121.66

62.85

62.67

185.41

130.16

62.27

190.41

47.35

56.44

85.95

86.21

48.75

60.37  
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Fig. 4.23 Non-dominated solutions obtained by using SPEA  for  the symmetrical transducer 

with 6 piezo-rings 

 

Table 4.13 Values of design variables and objective functions for the non-dominated solutions 

obtained by using SPEA  for the symmetrical transducer with 6 piezo-rings 

 

Design Dt [mm] Typb hp [mm] Lb [mm] 3
ˆ

au  [µm] 
aP̂  [VA] 

 
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29 

 
8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8. 

 
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

4

2

2

2

2

2

2

2 

 
5.

5.

4.1

3.9

4.3

4.1

4.1

3.7

3.6

3.6

3.5

3.6

3.6

3.1

2.6

2.9

2.8

1.

2.4

2.1

1.2

1.4

1.2

2.

0.9

2.

1.3

1.1

0.6 

 
39.

39.1

43.4

44.7

42.6

43.4

43.6

45.5

45.9

46.2

46.7

45.7

45.8

48.2

50.7

49.6

49.7

59.

51.9

53.3

57.7

35.7

57.9

53.9

59.2

54.

57.5

58.2

61.  

 
40.75

40.91

45.44

47.09

44.5

45.5

45.73

48.17

48.71

49.09

49.84

48.45

48.6

52.15

56.58

54.54

54.74

79.09

58.92

62.19

74.58

101.1

75.1

63.43

80.14

63.78

73.72

76.32

87.47 

 
55.03

55.28

62.48

65.04

61.02

62.58

62.94

66.72

67.56

68.15

69.29

67.16

67.39

72.83

79.5

76.45

76.74

112.57

83.02

87.89

106.06

173.83

106.85

89.76

114.16

90.28

104.85

108.64

124.82 
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4.6   Optimization of Langevin-type Transducers with a Stepped Horn 

In ultrasonic machining and bonding, it is generally required that piezoelectric transducers 

have a working frequency between 10 kHz and 100 kHz and in the meantime have a  large 

vibration amplitude (10 to 50 micros at 20 kHz). It is difficult to achieve such large vibration 

amplitude using the transducer configurations described in sections 4.5. In order to magnify 

the vibration amplitude, the front block is usually designed as a linear (cone), exponential or 

stepped acoustic horn (sonotrode). Fig. 4.24 shows the three mostly used forms of horns. 

Here, a stepped-horn transducer is studied. 

Fig. 4.25(a) shows a typical configuration of a Langevin-type transducer with a stepped horn. 

It has been shown that the impedance transformation ration in the case of both Lf1 and Lf2 

being λ/4 long is given by ( )2

21 ff AA , and the amplitude transformation ratio is given by 

( )
21 ff AA . Af1 and Af2 are the profile areas of the input side and output side of the horn. The 

larger the ratio is, the larger is the vibration amplitude at the end of the horn [BPF91]. As seen 

before, in addition to the vibration amplitude there exist other important performance criteria. 

Therefore, multiple design goals should be considered. 

4.6.1   Derivation of the Whole Transfer Matrix 

The whole transducer is considered as a connection of a piezoelectric stack element and three 

mechanical elements in series, where the stepped horn consists of two mechanical elements. 

Fig. 4.25(b) gives four-pole network element description. Similarly, applying equation (4.94) 

and the transfer matrix relations of the fundamental connection 1, 3 and 4 shown in Table 4.1, 

the whole transfer matrix relation for this transducer can be written as follows: 


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Fig. 4.24 Shape (-), vibration amplitude (-) and strain (--) on three horns: a) exponential 

horn, b) cone horn, c) stepped horn  
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Fig. 4.25 Langevin transducer with a stepped horn (a) typical configuration (b) four-pole 

element descriptions  

 

Similarly, the detailed expressions of the matrix elements )3,2,1,( =jia
H

ij  are not given here 

because the expressions are very complex. They are derived automatically in the programs. 

4.6.2   Problem Formulation of Transducers without Loads 

In this section, the objective functions, design variables and constraints are defined. The 

multi-objective optimization for the transducer at free vibration is discussed. 

Optimization objectives Similarly, the free vibration amplitude and input electrical power at 

the resonance operation are considered as objective functions. For a given exciting voltage, 

the former should be maximized and the latter should be minimized. By analogy with 
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equation (4.63), the first optimization objective, which represents the inverse of the vibration 

amplitude at resonance, is formulated as follows 

Uaaaa

a
f

HHHH

H

ˆ
23112113

21
1

Ω

−
=              (4.72) 

According to equations (4.64) and (4.65) the expressions of the input current Î  and apparent 

power aP̂  for this problem are given by  

          U
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1ˆ −==                                                    (4.74) 

Equation (4.74) gives the expression of the second objective function. It is given by  

aPf ˆ
2 =                                                  (4.75) 

Design variables The parameters which affect the performances of the transducer with a 

stepped horn are shown in Table 4.14. Similarly, there are two types of parameters. N and 

material are the discrete type. The others are continuous type. The inner diameter of piezo-

rings and the dimensions of the bolt will not be considered as design variables individually. It 

is also assumed that the piezoelectric transducer has been pre-stressed optimally. In this 

problem, the following parameters are then considered as design variables: 

The dimensional parameters: Dt, Dt2 ( ζ= Dt2 / Dt ), Lb, hp, Lf1, Lf2  

The material type:  Typb (ρb, Eb , tgδb) and Typf (ρf, Ef , tgδf) 

The rest is considered as given quantities. N can take one of the elements of the set {2, 4, 6}. 

Constraints On the analogy of equation (4.61), the resonance condition for the transducer 

with a stepped horn free at both sides is given by  

0Im
21

2311

13 =







−

H

HH

H

a

aa
a               (4.76) 

The equation (4.76) describes an equality constraint for the design variables. Similarly, the 

secant method will be used in searching the solutions to equation (4.76). As there are multi-

mode solutions to equation (4.76) in the specified variable ranges, the bounds of the variables 

and two starting points must be picked carefully using similar method described before so that 

only the solutions for the λ/2 mode are found.  
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Table 4.14 Parameters that affect the performances of the transducer  

   

      Û : Input voltage  

      Lb:  Length of back blocks  

     Lf1:  Length of the first part of horns 

     Lf2:  Length of the second part of horns 

      Dt:  Outer diameter of back blocks, input end of horns and piezo-rings 

     Dt2:  Outer diameter of the output end of horns 

      hp:  Thickness of piezoelectric rings  

      Di:  Inner diameter of piezo-rings and outer diameter of bolts 

     Lbt:  Length of bolts 

 

      N:   Number of piezoelectric disks or rings 

  Typb:  Material of back blocks  

   Typf:  Material of horns  

  Typp:  Material of piezo-rings  

 

 

In addition to equality constraint, there exist design requirements for electrical quantities and 

dimensional quantities. All constraints for this optimization problem can be concluded as 

follows: 

g1: rrH

HH

H
f

a

aa
a πω 2where,0Im

21

2311

13 ==Ω=







−   

g2: max

6 ˆˆVA10 PPa ≤≤−  

g3: max

6 ˆˆA10 II ≤≤−  

g4: tuttl DDD ≤≤  

g5: ul ζζζ ≤≤  

g6: bubbl LLL ≤≤  

g7: phppl hhh ≤≤  

g8: hfflf LLL 111 ≤≤  

g9: hfflf LLL 222 ≤≤  

Similarly, the first constraint assures that the transducer operates at the specified resonance 

frequency rf . The second and third constraints limit the input power and input current. 

Obviously, they must be positive quantities. Bounds of 610− VA and 610− A are imposed on aP̂  

and Î  to avoid division by zero. The last six constraints give the region of search for the 

optimum. The values of the lower bounds and upper bounds of tD , ζ , bL  and ph  as well as 
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the values of lower bounds of 1fL  and 2fL  are determined according to manufactory 

specifications and the requirements for the piezoelectric transducer. The upper bounds hfL 1  

and hfL 2 are dynamic upper bounds. They vary according to the selected material type of the 

end blocks and the values of other continuous design variables. They are searched using the 

secant method in the process of optimization.   

Denoting the variable vector  

),,,,,,,(),,,,,,,( 2187654321 ffpfbbt LLhTypTypLDxxxxxxxx ζ==x , the objective vector 

[ ])(),()( 21 xxx ffF =  as well as the constraint vector [ ]9,...,1, == igG i , the two-objective 

optimization problem can be written as follows: 

            
GtoSubject

FMinimize )(x
                                                                                                  (4.77) 

4.6.3   Implementation of Optimization  

Similarly, two-level optimization is performed. In the first level, the optimized solutions for 

each given number N of piezoelectric rings are searched. In the second level optimization, 

Pareto-optimal solutions are searched again in all optimized solutions which obtained from 

the first level optimization. For all optimization problems in the first level, the following 

parameter values are assumed: 

• kHzf r 20= , λ/2 vibration mode 

•  VU 100ˆ = , AI 4ˆ
max =  

• 1,2.0,mm50,mm8 ==== ultutl DD ζζ  

• mm5,mm2.0mm,5.58,mm5 ==== puplbubl hhLL  

• mm2,mm5 21 == lflf LL  

The optimization problem for 2 piezo-rings is first solved using MOGA, NSGA, NSGA-ΙΙ 

and SPEA2. Then the most appropriate MOEA is selected and applied in optimization of the 

transducers with 4 and 6 piezo-rings. MOGA, NSGA and NSGA-ΙΙ are the same methods as 

are used for symmetrical transducers before. SPEA2 is an improved version of SPEA. Unlike 

SPEA, SPEA2 uses an improved fitness assignment scheme, a nearest neighbor density 

estimation technique and an enhanced archive truncation method. Similarly, the parameters 

and techniques shown in Table 4.5 are also used in these methods.  

The constraints are handled using the following methods. For the given Û  and maxÎ , the 

upper bound maxP̂ of the electrical input power is determined correspondingly. Therefore the 
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constraint g2 can be deleted. The g3 is dealt with using the penalty function approach similar 

to that in section 4.5.3. The side constraints g4 to g9 are handled by directly limiting the values 

of the design variables in the regions given by the respective side constraints. When any value 

of the design variables goes outside the bounds, this value is replaced by the corresponding 

bound. The equality constraint will be dealt with in each generation using the following 

method: First, determine the upper bound Lf1u of the variable Lf1 for the λ/2 mode using the 

secant method according to the obtained values of the variables ζ, Lb, Typb , Typf , hp  and the 

lower bound Lf2l. Replace the value of Lf1 with the corresponding bound if the value of Lf1 

goes outside the range ufflf LLL 111 ≤≤ . Second, determine the value of the variable Lf2  using 

the secant method.  

As the design variables include continuous and discrete types, a mixed coding scheme with a 

mixed crossover and a mixed mutation operator are used in each MOEA. The chromosome 

for a typical design is as follows: 

{ { { { { { { {
21

3.636.199.201116.2227.03.10
ffpfbbt LLhTypTypLD ζ

 

The first variable Dt is continuous variable, which takes a real value in the range of 

mm50mm8 ≤≤ tD . The second variable ζ  takes a real value in the range of 10.2 ≤≤ ζ . 

The third variable Lb takes a real value in the range of mm5.58mm5 ≤≤ bL . The fourth and 

fifth variables Typb  and  Typf  are discrete variables, which take a two-bit binary string and 

represent a set values of ρ ,E and tgδ of a specified material type, respectively. The strings 

and corresponding material types are shown in Table 4.4. The sixth variable hp is a continuous 

variable, which takes a value in the range of mm5mm2.0 ≤≤ ph . The last two variables 1fL  

and 2fL  are continuous type, which take a value in the rang of uff LL 11mm5 ≤≤ and 

uff LL 22mm2 ≤≤ , respectively. ufL 1  and ufL 2  are dynamic upper bounds. They vary from 

one generation to another and their values are determined using the secant method. 

In order to create offspring of the discrete parts Typb and Typf , two two-bit strings are 

connected into a four-bit string and the  single-crossover operator is used. For the continuous 

variables the blended crossover (BLX-α) is applied. It is noted that the crossover and 

mutation operations will not be applied to the continuous variables Lf2, whose value is 

determined by solving the equality constraint according to other values of the variables.  

The two-objective optimization problem of the stepped-horn transducer with two piezo-rings 

was solved by the four MOEAs, respectively. Figs. 4.26 to 4.29 show the respective 

optimization results in the objective function space after 300 generation. Tables 4.15 to 4.18 

give the corresponding variable values and objective function values.  
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Fig. 4.26 Non-dominated solutions obtained by using MOGA for the freely vibrating stepped-

horn transducer with 2 piezo-rings   

 

Table 4.15 Values of design variables and objective functions for non-dominated solutions 

obtained by MOGA for the freely vibrating stepped-horn transducer with 2 piezo-rings   

 

Design 
Dt 

[mm] 
ζ 

Lb 
[mm] 

Typb Typf 
hp 

[mm] 
Lf1 

[mm] 
Lf2 

[mm] 
4

ˆ
au  

[µm] 
aP̂  

[VA] 

  
1

2

3

4

5

6

7

8

9

10

11

12

13 

 

  
8.

8.

8.

8.3

8.3

8.4

8.6

12.7

15.2

15.6

17.9

19.9

21.5 
 

 

 
0.2

0.2

0.2

0.2

0.2

0.21

0.21

0.26

0.3

0.3

0.33

0.36

0.38 

 

  
5.

5.

5.

6.2

6.2

6.6

7.5

22.1

31.

32.6

40.7

48.

52.8 
 

 

    
1

1

3

1

2

2

1

1

2

1

1

1

1 
 

 

    
1

2

4

1

2

3

4

4

4

4

4

4

4 
 

 

   
5.

5.

5.

4.9

4.9

4.9

4.8

3.5

2.7

2.5

1.8

1.1

0.7 
 

  
68.2

69.4

55.5

60.

64.

68.2

54.6

45.7

40.7

35.7

32.

21.4

19.4 

 

 
63.6

62.1

38.7

63.9

62.6

48.8

38.3

36.2

38.1

37.1

36.6

38.4

38.2 

 

 
44.12

36.09

119.46

46.21

26.81

58.02

133.61

149.76

137.21

166.81

173.56

176.31

181.57 
 

 
0.48

0.43

2.43

0.58

0.29

0.89

4.25

32.63

28.08

56.37

94.16

99.14

132.65 
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Fig. 4.27 Non-dominated solutions obtained by using NSGA for the freely vibrating stepped-

horn transducer with 2 piezo-rings   

 

 

Table 4.16 Values of design variables and objective functions for non-dominated solutions 

obtained by NSGA for the freely vibrating stepped-horn transducer with 2 piezo-rings   

 

Design 
Dt 

[mm] 
ζ 

Lb 
[mm] 

Typb Typf 
hp 

[mm] 
Lf1 

[mm] 
Lf2 

[mm] 
4

ˆ
au  

[µm] 
aP̂  

[VA] 

1

2

3

4

5

6

7

8

9

10

11

12

13

14 

 
8.

8.

8.

8.

8.

8.

8.

8.

9.2

10.

10.3

12.3

15.8

17.9 
 

 

0.2

0.2

0.2

0.2

0.21

0.21

0.21

0.27

0.22

0.2

0.2

0.22

0.26

0.25 

 
5.

5.4

5.

5.

5.

14.7

5.

5.

9.2

35.1

34.7

21.7

35.1

38.6 
 

 
3

3

1

2

4

4

4

2

4

3

3

1

4

4 
 

 
4

4

2

4

4

4

4

3

4

3

4

4

4

4 
 

 
5.

4.7

5.

5.

5.

2.3

5.

5.

4.7

0.2

0.2

3.6

1.9

1.5 
 

5.

5.

5.3

5.8

6.4

5.9

7.4

19.3

8.5

5.

5.5

8.7

18.4

15.9  

42.

42.

65.4

42.2

42.

41.7

41.9

52.3

41.6

51.1

41.1

41.2

39.5

39.6 

 
97.32

99.28

37.18

79.73

92.32

135.65

89.19

39.34

106.27

140.94

181.13

139.06

192.13

203.49 
 

1.23

1.28

0.44

0.86

1.19

2.54

1.14

0.62

2.28

8.04

8.62

7.19

37.77

47.31 
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Fig. 4.28 Non-dominated solutions obtained by using NSGA-II for the freely vibrating 

stepped-horn transducer with 2 piezo-rings  

 

Table 4.17 Values of design variables and objective functions for non-dominated solutions by 

using NSGA-II for the freely vibrating stepped-horn transducer with 2 piezo-rings   

 

Design 
Dt 

[mm] 
ζ 

Lb 
[mm] 

Typb Typf 
hp 

[mm] 
Lf1 

[mm] 
Lf2 

[mm] 
4

ˆ
au  

[µm] 
aP̂  

[VA] 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21  

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8. 
 

 

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.21

0.2

0.21

0.21

0.2

0.2

0.2

0.2

0.2

0.2

0.21 

5.

5.

5.

5.

5.

7.1

5.6

5.7

10.2

6.2

17.7

8.4

27.5

7.4

15.7

10.8

11.8

13.6

14.6

16.3

14.5 
 

 

2

3

3

1

1

3

2

2

3

3

4

2

4

3

2

2

2

3

1

1

2 
 

 

4

3

2

4

2

4

4

2

4

4

4

3

4

4

4

4

4

4

4

4

4 
 

5.

5.

5.

5.

5.

3.5

4.9

4.9

3.5

4.9

3.7

4.6

2.7

5.

3.9

4.4

4.1

3.5

3.2

2.4

4.  
 

8.1

46.5

28.2

9.7

21.5

5.

41.9

14.6

9.

25.

23.

37.2

21.4

14.5

13.

13.2

15.4

10.7

8.2

5.

18.7 

42.

50.3

64.

41.7

64.4

42.1

40.3

64.9

41.6

40.9

40.6

50.7

40.2

41.3

41.4

41.5

41.4

41.3

41.5

41.7

41.2 

73.74

49.71

28.51

83.12

28.98

107.97

62.98

27.43

110.07

78.11

139.87

42.33

184.81

90.83

94.67

81.04

80.1

120.76

124.03

138.67

85.14  
 

0.7

0.51

0.28

0.89

0.29

1.51

0.51

0.26

1.55

0.79

2.73

0.39

5.11

1.12

1.19

0.88

0.84

1.91

2.01

2.48

0.97 
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Table 4.17 continued 

Design 
Dt 

[mm] 
ζ 

Lb 
[mm] 

Typb Typf 
hp 

[mm] 
Lf1 

[mm] 
Lf2 

[mm] 
4

ˆ
au  

[µm] 
aP̂  

[VA] 

 

22

23

24

25

26

27

28

29

30

31

32

33

34  

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.2

8.2

8.2

8.2

8.2 
 

 

0.21

0.21

0.21

0.21

0.21

0.21

0.22

0.21

0.21

0.21

0.22

0.22

0.21 

20.7

17.8

36.7

30.4

37.9

37.

55.9

45.3

43.3

41.8

53.2

53.2

44.3 
 

 

2

1

1

3

4

2

3

2

1

1

4

4

3 
 

 

4

4

4

4

4

4

4

4

4

4

4

4

4 
 

3.3

3.7

1.6

2.6

1.6

1.5

0.4

1.

0.8

1.

0.2

0.2

0.7 
 

19.7

12.

12.4

16.

15.

5.8

16.3

13.1

5.

6.5

8.8

7.8

5.  

41.1

41.1

40.8

40.5

40.1

41.4

39.6

40.8

41.

41.

39.6

39.7

40.8 

100.77

128.38

170.71

171.48

210.13

151.31

245.08

158.23

180.33

177.65

232.59

225.94

188.06 
 

1.38

2.27

4.12

4.42

6.83

3.35

10.15

3.93

4.67

4.52

9.26

8.87

5.18  
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Fig. 4.29 Non-dominated solutions obtained by using SPEA2 for the freely vibrating stepped-

horn transducer with 2 piezo-rings 

 

Table 4.18 Values of design variables and objective functions for non-dominated solutions 

obtained by SPEA2 for the freely vibrating stepped-horn transducer with 2 piezo-rings   

 

Design 
Dt 

[mm] 
ζ 

Lb 
[mm] 

Typb Typf 
hp 

[mm] 
Lf1 

[mm] 
Lf2 

[mm] 
4

ˆ
au  

[µm] 
aP̂  

[VA] 

1

2

3

4

5

6 

 

  
8.

8.

8.

8.

8.

8. 
 

0.2

0.25

0.7

0.72

0.64

0.67 

 
58.1

52.9

5.

5.

5.3

5.  
 

 
1

4

2

2

2

2 
 

 
4

4

1

2

1

2 
 

 
0.6

0.2

2.7

2.6

3.2

3.1 
 

5.3

9.1

47.3

48.9

42.3

44.6 

40.7

39.2

68.8

64.

69.7

65.1 

 
192.92

224.91

14.32

10.4

17.35

11.84

 

4.8

11.1

0.88

0.65

1.02

0.68 
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Table 4.18 continued 

 

Design 
Dt 

[mm] 
ζ 

Lb 
[mm] 

Typb Typf 
hp 

[mm] 
Lf1 

[mm] 
Lf2 

[mm] 
4

ˆ
au  

[µm] 
aP̂  

[VA] 

 

7

8

9

10

11

12

13

14

15

16

17 

8.

8.

8.

8.

8.

8.

8.

8.

8.1

8.1

8.1 
 

0.65

0.65

0.59

0.58

0.22

0.23

0.2

0.2

0.2

0.2

0.2  

5.1

5.

6.2

6.4

55.7

55.

58.5

58.2

58.2

58.5

58.5 
 

2

2

2

2

4

4

2

1

4

2

4 
 

 

1

1

3

3

4

4

4

4

4

2

2 
 

3.1

3.1

3.4

3.5

0.2

0.2

0.4

1.2

1.2

2.7

2.7 
 

42.7

42.9

38.

37.5

7.1

7.6

5.

5.2

5.2

5.

5.  

69.8

69.8

51.7

51.8

39.4

39.3

40.8

40.7

39.4

63.3

61.5 

16.56

16.27

23.02

23.78

222.9

223.51

175.81

190.54

213.8

65.41

82.98  
 

0.95

0.93

1.21

1.26

8.98

9.4

4.39

4.7

6.8

1.34

2.11 

 

Similarly, the four MOEAs are evaluated in order to select the most appropriate MOEA, 

which will be used to solve the optimization problems of the transducer with 4 and 6 piezo-

rings. Fig. 4.30 shows non-dominated solutions in objective space obtained above. In order to 

evaluate their convergence and diversity, the performance metric C(A, B), SP and DI  have 

been calculated. The corresponding results are shown in Table 4.19 and Table 4.20.  

According to Table 4.19, it is obvious that the set NSGA-ΙΙ has the best convergence to the 

Pareto-optimal front than the rest relatively. According to the values of SP and DI shown in 

Table 4.20, NSGA and NSGA-II distribute do better than the others in terms of the uniformity 

of distribution of solutions, whereas the set of solutions obtained by SPEA2 has the largest 

spread.  

Table 4.20 also shows the computation time and the number of the non-dominated solutions 

after 300 generations using the four MOEAs. Obviously, the computation cost of the NSGA is 

the lowest and the computation cost of SPEA2 is the largest. In terms of finding non-

dominated solutions, NSGA-II shows the best performance. 

Considering that NSGA-II shows the obvious advantage in terms of the convergence of 

solutions and the ability of finding non-dominated solutions in this optimization problem, it 

has been applied for optimization of the stepped horn transducer with 4 and 6 piezoelectric 

rings, respectively. Figs. 4.31 and 4.32 show the respective non-dominated solutions after 300 

generations for 4 and 6 piezo-rings. Table 4.21 and Table 4.22 give the values of the design 

variables and objective functions for the non-dominated solutions. 

After all non-dominated solutions for the transducer with 2, 4 and 6 piezo-rings are obtained, 

the second-level optimization can be performed. The results will be described in chapter 5.  
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Fig.4.30 Non-dominated solutions in objective space obtained by using four MOEAs  for the 

freely vibrating stepped-horn transducer with 2 piezo-rings 

 

Table 4.19 Values of metrics C (A, B) for the freely vibrating stepped-horn transducer without 

2 piezo-rings 

A                   B        NSGA NSGA-II MOGA SPEA2 

NSGA - 0 8/13 10/17 

NSGA-II 11/14 - 12/13 13/17 

MOGA 1/14 0 - 8/17 

SPEA2 5/14 4/34 6/13 - 

 

Table 4.20 Values of metrics SP and DI and the computation cost for the freely vibrating 

stepped-horn transducer with 2 piezo-rings 

Metric NSGA NSGA-II MOGA SPEA2 

SP 487 857 2734 3849 

DI 21982 32372 31793 91739 

Computation time [s] 4290 23373 17393 52200 

Number of the non-
dominated solutions 

14 34 13 17 
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Fig. 4.31 Non-dominated solutions obtained by using NSGA-II for the freely vibrating 

stepped-horn transducer with 4 piezo-rings  

 

Table 4.21 Values of design variables and objective functions for the non-dominated solutions 

obtained by NSGA-II for the freely vibrating stepped-horn transducer with 4 piezo-rings  

 

Design 
Dt 

[mm] 
ζ 

Lb 
[mm] 

Typb Typf 
hp 

[mm] 
Lf1 

[mm] 
Lf2 

[mm] 
4

ˆ
au  

[µm] 
aP̂  

[VA] 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 

 
8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8. 
 

 

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2 

 
12.4

10.2

5.

8.5

21.5

5.

5.

9.4

11.5

13.1

14.1

15.

8.8

11.3

17.1

18.7

13.1

14.3

16.8

17.

8.6

24.8

11.

9.9

8.9  
 

 
1

4

4

2

2

2

1

3

2

3

2

2

3

1

2

3

2

3

2

2

3

4

4

1

2 
 

 
4

2

2

2

4

2

4

2

4

2

2

4

2

2

4

2

2

4

4

2

4

2

2

2

4 
 

 
2.5

3.2

4.1

3.8

1.

3.2

3.3

4.3

3.2

3.

3.

2.8

4.1

3.8

2.7

1.9

2.6

3.

3.

2.8

3.1

1.6

3.8

3.

3.  
 

6.

5.9

5.9

5.6

5.8

6.2

6.1

5.3

5.7

5.6

5.4

5.4

5.4

5.3

5.5

5.5

5.7

5.4

5.6

5.3

6.1

5.2

5.2

6.

5.8 

41.5

64.4

64.6

64.8

41.9

65.2

41.7

64.2

41.7

64.3

64.8

41.7

64.3

64.3

41.6

64.3

65.

41.3

41.5

64.7

41.5

63.9

64.2

64.6

41.8 

 
242.77

91.74

77.01

75.07

251.75

65.81

188.67

90.93

203.43

98.5

84.6

220.03

89.05

92.88

228.54

109.33

82.4

259.74

226.91

89.27

222.46

120.12

94.65

88.45

188.88 
 

7.77

2.57

1.82

1.75

8.18

1.37

4.65

2.53

5.48

2.95

2.21

6.44

2.43

2.64

6.95

3.62

2.11

9.22

6.9

2.45

6.55

4.35

2.74

2.38

4.66 
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Table 4.21 continued 

 

Design 
Dt 

[mm] 
ζ 

Lb 
[mm] 

Typb Typf 
hp 

[mm] 
Lf1 

[mm] 
Lf2 

[mm] 
4

ˆ
au  

[µm] 
aP̂  

[VA] 

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 

 
8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8. 
 

 

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2 

 
18.5

26.6

26.5

13.8

15.2

5.3

12.4

21.9

13.6

22.2

12.7

20.6

13.6

5.8

5.  
 

 
1

4

4

1

1

3

2

1

1

3

2

4

3

1

1 
 

 
2

4

4

2

2

2

4

2

2

2

4

4

2

2

4 
 

 
2.7

1.

1.1

3.1

2.6

3.5

3.4

1.6

3.3

1.6

3.6

1.8

3.2

4.7

5.  
 

5.4

5.2

5.2

5.4

5.8

5.8

5.2

5.3

5.4

5.3

5.4

5.2

5.2

5.1

5.2  

64.1

41.1

41.1

64.3

64.3

64.7

41.6

64.3

64.2

64.2

41.5

41.2

64.2

64.4

41.4 

 
105.75

334.68

332.49

97.66

100.06

77.53

210.05

111.42

97.27

114.75

211.34

301.42

99.86

80.15

199.08 
 

3.38

14.33

14.26

2.89

3.03

1.84

5.89

3.76

2.87

3.97

5.99

11.96

3.02

1.96

5.47  
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Fig.4.32 Non-dominated solutions obtained by using NSGA-II for the freely vibrating 

stepped-horn transducer with 6 piezo-rings  

 

 

 

 

 

 

 

 



MULTIOBJECTIVE OPTIMIZATION OF PIEZOELECTRIC TRANSDUCERS 105     

 

 

Table 4.22 Values of design variables and objective functions for the non-dominated solutions 

obtained by using NSGA-II for the freely vibrating stepped-horn transducer with 6 piezo-rings  

 

Design 
Dt 

[mm] 
ζ 

Lb 
[mm] 

Typb Typf 
hp 

[mm] 
Lf1 

[mm] 
Lf2 

[mm] 
4

ˆ
eu  

[µm] 
aP̂  

[VA] 
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.1 
 

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2 

7.9

50.

20.4

25.

18.6

58.5

5.

18.6

5.

5.

17.

15.8

16.8

5.

18.8

5.

11.7

15.6

5.6

6.6

29.2

26.2

5.

5.2

19.4

8.9

8.4

9.6

8.4

5.7

6.3

9.2

5.5  
 

4

1

4

1

3

4

2

3

2

2

1

1

2

2

2

2

1

2

2

2

1

3

4

2

1

3

3

1

4

1

4

1

2 
 

4

4

4

4

4

4

4

4

3

3

4

4

4

1

4

3

4

4

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4 
 

1.2

0.2

0.7

0.2

0.8

0.2

1.3

0.8

1.5

1.4

1.

1.1

1.

1.3

0.7

1.2

1.

0.9

1.5

1.3

1.

1.

1.3

1.

1.

1.4

1.6

1.4

1.6

1.4

1.5

1.6

1.8 
 

48.8

5.6

21.8

5.

24.7

5.

42.4

23.9

49.7

43.7

27.8

29.8

29.4

40.3

16.8

35.3

27.9

24.1

47.3

39.4

20.6

22.8

31.3

21.5

23.1

34.9

36.

35.2

41.6

39.2

37.5

30.5

35.8 

39.6

40.9

40.7

41.5

40.6

39.6

40.4

40.7

50.3

50.6

40.6

40.5

40.8

65.

41.3

51.

40.8

41.

50.4

40.5

40.5

40.3

40.8

41.4

40.7

40.4

40.3

40.4

40.

40.4

40.4

40.6

40.6 

340.97

561.83

441.49

487.2

412.6

648.77

153.78

406.38

102.15

93.85

380.69

372.16

260.58

81.81

277.37

87.8

289.66

239.88

108.23

168.02

499.12

521.78

191.9

134.86

398.55

296.52

306.24

297.58

343.39

227.89

253.2

290.1

183.69 
 

16.15

39.66

24.83

31.15

21.82

57.59

3.36

21.17

2.52

2.32

18.72

17.95

8.71

2.23

10.15

2.3

10.78

7.52

2.72

3.9

33.44

37.77

4.9

3.09

20.83

11.53

12.42

11.63

16.34

6.86

8.43

11.02

4.43  

4.6.4   Problem Formulation of Transducers with a Mechanical Load 

Optimization objectives In ultrasonic machining and bonding, piezoelectric transducers 

operate against loads. The load has much influence on the behavior and vibration form of the 

transducer. In order to study the effect of loads on the resonance performances, a simple 

spring-damping load model is studied here. In the case of loading, the mechanical output 

power and electrical input power are two important performance criteria. Here they are 

considered as optimization objectives. For a given exciting voltage, the former should be 

maximized, and in the meantime the latter should be minimized 
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For the transducer with a spring-damping load on one end (see Fig. 4.33), there exist the 

following boundary conditions 

0ˆ
1 =eF                  (4.78) 

          44
ˆ)(ˆ

aL

L
a vd

j

c
F +

Ω
=                                                                                             (4.79)                  

Substituting the boundary conditions (4.78) and (4.79) into (4.71), with simple computations 

the following equations can be obtained        

U
acajadj

acadjaj
v

HT

L

HH

L

H

L

H

L

H

e
ˆˆ

112111

131323

1 








+Ω−Ω

−Ω−Ω
=                                                                  (4.80) 

Uavav
H

e

H

a
ˆˆˆ

131114 +=               (4.81) 

UavaI
H

e

H ˆˆˆ
33131 +=                                                                                                (4.82) 

Applying equation (4.80) into equation (4.81), the solution of 4
ˆ

av  is obtained as follows: 

 U
acajadj

aajaaj
v

HT

L

HH

L

HHHH

a
ˆˆ

112111

13211123

4 








+Ω−Ω

Ω−Ω
=            (4.83) 

where 

0Im
112111

13211123 =








+Ω−Ω

Ω−Ω
HT

L

HH

L

HHHH

acajadj

aajaaj
                                                           (4.84)   

is the characteristic equation representing the resonance of the transducer free at one end and 

with a load on the other end.                         
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Fig.4.33 Scheme of a stepped-horn transducer with a mechanical load 
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The effective mechanical output power is 

maam vFP ϕcosˆˆ
2

1ˆ
44=                                                                                           (4.85) 

where mϕ  is the phase difference between 4
ˆ

aF  and 4
ˆ

av . Applying equations (4.79) and 

equations (4.83) yields  

mHT

L

HH

L

HHHH

L

L

m U
acajadj

aajaaj
d

j

c
P ϕcosˆ

2

1ˆ 2

112111

13211123

+Ω−Ω

Ω−Ω
+

Ω
=                                    (4.86)    

Equation (4.86) gives the expression of the first optimization objective, which should be 

maximized. Because only minimization problems will be handled in all algorithms here 

applied, the above objective for maximization is transformed into an objective for 

minimization by using the inverse of the original objective. Therefore, the first objective 

function is defined as 

mP
f

ˆ

1
1 =                                             (4.87) 

Introducing equation (4.80) into equation (4.82) yields the input current 

 Ua
acajadj

aacaadjaaj
I

PT

HT

L

HH

L

PTPT

L

PTPT

L

HH

ˆˆ
33

112111

133113313123









+

+Ω−Ω

−Ω−Ω
=          (4.88) 

Therefore the input apparent power can be expressed as  

2

33

112111

133113313123 ˆ
2

1ˆˆ
2

1ˆ Ua
acajadj

aacaadjaaj
UIP

PT

HT

L

HH

L

PTPT

L

PTPT

L

HH

a +
+Ω−Ω

−Ω−Ω
==                         (4.89) 

Equation (4.89) gives the expression of the second objective function, which should be 

minimized. It can be written as 

aPf ˆ
2 =                                                                                                       (4.90) 

Design variables The given quantities and design variables are the same as those of the 

stepped-horn transducer without load described before. It is assumed that the load is a typical 

spring-damping load for ultrasonic bonding [Brö02], which has the following parameter 

values:  

cL=1.27 kN/µm,                               (4.91) 

dL=25.4/Ω Ns/µm                          (4.92)       

where Ω is the vibration frequency of the transducer. 
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Constraints Equation (4.84) gives the resonance condition of the transducer with a load at the 

given resonance frequency rf . It describes an equality constraint for the design variable. The 

constraints g2 to g9 in section 4.6.2 are also here used.  

The two-objective optimization problem for the stepped-horn transducer with a mechanical 

load can be written as follows: 

)(

)(

x

x

GtoSubject

FMinimize
                                                        (4.93) 

Where [ ])(),()( 21 xxx ffF = ,  

           [ ]9,...,1),()( == igG i xx , 

           ),,,,,,,(),,,,,,,( 2187654321 ffpfbbt LLhTypTypLDxxxxxxxx ζ==x  

4.6.5   Implementation of Optimization  

Considering that NSGA-ΙΙ shows a better overall performance in the optimization of the 

freely vibrating transducer with a stepped horn, NSGA-ΙΙ  is here applied for the all 

optimization problems of the transducer with 2, 4 and 6 piezo-rings. The optimization 

procedures similar to those in section 4.6.3 are used.   

Figs. 4.34 to 4.36 show the obtained optimized solutions in the objective space after 300 

generations for the number of the piezo-rings N =2, 4 and 6 respectively. Tables 4.23 to 4.25 

give the corresponding design variable values and objective functions values. Similarly, the 

second level optimization can be performed in the obtained all non-dominated solutions for 

the transducer with 2 , 4 and 6 piezo-rings. This will be described in chapter 5.  
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Fig. 4.34 Non-dominated solutions for the stepped horn transducer with a mechanical load 

and 2 piezo-rings 
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Table 4.23 Values of design variables and objective functions corresponding to non-

dominated solutions for the stepped horn transducer with a mechanical load and 2 piezo-

rings  

Design 
Dt 

[mm] 
ζ Lb [mm] Typb Typf 

hp 

[mm] 
Lf1 

[mm] 
Lf2 

[mm] 
mP̂  

[Nm/s] 

aP̂  

[VA] 

 
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 

 
8.

8.

8.5

8.8

9.2

9.4

9.7

10.2

10.3

10.4

10.4

10.5

10.5

10.5

10.7

11.

11.3

11.4

11.7

11.8

11.8

11.9

11.9

11.9

12.

12.8

13.2 

 
0.86

0.96

0.88

0.86

0.85

0.86

1.

0.98

0.79

0.8

0.91

0.9

0.89

0.9

0.97

0.89

0.93

0.99

0.8

0.92

0.81

0.86

0.86

0.78

0.78

0.66

1.  

 
34.3

18.3

34.8

35.7

28.

41.5

44.3

51.3

42.9

45.

34.8

34.6

34.8

46.

43.7

44.3

40.8

53.1

40.7

36.7

46.1

41.4

40.2

41.7

42.

47.8

40.9 

 
3

4

4

4

3

3

1

2

3

2

4

4

4

3

1

3

1

2

3

4

3

1

2

4

3

3

3 

 
3

1

3

4

3

1

3

3

1

1

3

1

3

1

2

1

3

1

1

1

1

1

3

3

1

1

3 

 
4.6

5.

4.5

4.2

4.7

4.

3.3

4.

4.1

4.

3.8

3.8

3.9

3.5

3.5

3.5

3.4

3.9

3.7

3.4

3.5

3.5

3.5

3.7

3.7

3.9

2.6 

 
29.9

15.3

32.6

33.9

32.7

42.4

31.8

8.7

43.1

32.6

41.8

42.

41.7

31.4

30.

31.9

39.3

6.9

39.2

49.2

28.3

37.9

39.3

34.2

38.1

42.3

36.2 

 
24.3

72.9

12.8

2.

29.6

16.7

20.

41.7

14.4

48.9

4.

17.7

3.9

23.4

35.4

26.1

16.9

53.5

26.6

5.9

30.6

36.7

30.2

2.

26.4

9.1

14.2 

 
0.22

0.19

0.34

0.27

0.31

0.72

0.62

0.73

1.

0.51

0.84

1.14

0.87

1.04

0.36

1.25

1.05

1.73

1.49

1.91

1.35

1.39

0.76

1.26

1.57

2.37

2.2  

 
0.3

0.27

0.43

0.36

0.41

0.85

0.77

0.87

1.16

0.67

1.

1.31

1.02

1.22

0.54

1.45

1.26

1.93

1.72

2.17

1.58

1.63

0.98

1.47

1.82

2.66

2.56 
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Fig. 4.35 Non-dominated solutions for the stepped horn transducer with a mechanical load 

and 4 piezo-rings 
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Table 4.24 Values of design variables and objective functions corresponding to non-

dominated solutions for the stepped horn transducer with a mechanical load and 4 piezo-

rings  

Design 
Dt 

[mm] 
ζ Lb [mm] Typb Typf 

hp 

[mm] 
Lf1 

[mm] 
Lf2 

[mm] 
mP̂  

[Nm/s] 

aP̂  

[VA] 

 
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31 

 
8.

8.

8.

8.

8.

8.

8.1

8.2

8.5

8.7

9.2

10.5

11.6

11.6

11.6

11.8

12.1

12.4

12.8

12.9

13.

13.2

13.4

13.6

13.7

14.

14.1

14.1

15.

15.

16.3 
 

 
0.56

0.64

0.76

0.8

0.81

0.89

0.61

0.66

0.71

0.62

0.89

0.66

0.9

0.51

0.35

0.54

0.6

0.32

0.69

0.79

0.32

0.82

0.65

0.44

0.2

0.24

0.73

0.49

0.73

0.8

0.76 

 
20.3

24.9

31.6

24.2

16.2

5.

27.4

22.6

10.2

27.3

53.3

22.2

18.

44.7

33.

50.1

32.9

57.7

24.8

32.

39.2

29.8

28.4

27.8

44.9

51.1

35.5

34.4

31.1

33.8

37.1 

 
3

2

4

4

3

3

1

1

4

4

2

3

2

1

4

3

3

4

3

4

4

2

3

2

3

2

3

4

2

4

4 
 
 

 

 

1

4

4

1

4

2

3

3

3

1

4

3

1

4

3

4

1

4

3

4

3

4

4

4

3

4

4

3

4

2

3 

 
3.9

3.7

3.1

2.7

3.7

5.

3.5

4.

5.

4.

2.1

4.2

4.2

3.8

3.6

3.

3.5

4.1

3.

4.1

3.4

4.4

3.2

4.1

3.1

4.5

3.

3.8

4.2

3.9

3.8 

 
48.2

44.3

33.3

69.2

47.7

32.2

45.5

27.5

28.4

28.2

9.7

31.1

32.9

29.8

33.9

20.6

36.1

6.8

53.5

27.8

28.3

28.2

39.3

42.8

32.9

27.8

34.7

28.8

26.3

33.

27.1 

 
45.9

16.

2.

5.7

2.

53.8

17.5

38.9

42.6

40.7

30.7

32.5

60.4

2.

9.7

17.

34.4

2.

5.3

2.

2.

21.8

2.

19.7

2.

2.

2.

12.5

26.5

21.2

2.  

 
0.34

0.3

0.71

1.39

0.49

0.11

0.83

0.29

0.22

0.82

0.86

1.26

1.72

3.12

4.27

2.01

4.16

1.15

6.89

4.84

6.23

2.89

5.69

2.36

8.79

6.8

7.29

8.66

3.38

5.4

16.89 

 
0.68

0.59

0.92

1.68

0.69

0.33

1.1

0.58

0.46

1.09

1.3

1.64

2.11

3.59

4.94

2.6

4.82

1.48

7.72

5.44

6.97

3.42

6.48

3.15

9.8

7.51

8.23

9.6

4.08

6.17

18.06 
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Fig.4.36 Non-dominated solutions for the stepped horn transducer with a mechanical load 

and 6 piezo-rings 

 

Table 4.25 Values of design variables and objective functions corresponding to non-

dominated solutions for the stepped horn transducer with a mechanical load and 6 piezo-

rings  

Design 
Dt 

[mm] 
ζ Lb [mm] Typb Typf 

hp 

[mm] 
Lf1 

[mm] 
Lf2 

[mm] 
mP̂  

[Nm/s] 

aP̂  

[VA] 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 

 
8.

8.

8.

8.

8.

8.

8.1

8.1

8.3

8.3

8.5

8.7

8.7

9.2

9.2

9.3

9.4

10.

10.

10.5

10.5

10.6

10.7

10.8

11.2 
 

 

1.

1.

1.

1.

1.

1.

1.

0.94

0.99

0.68

0.92

0.95

0.95

0.91

0.91

0.91

0.92

0.89

0.85

0.82

0.94

0.85

0.77

0.97

0.92 

 
58.5

46.6

46.8

52.1

53.7

58.5

40.6

40.1

39.9

40.6

54.9

48.3

48.1

45.7

45.7

41.5

47.7

48.6

45.4

45.2

27.

43.6

51.9

33.3

49.6 
 

 
2

2

4

2

2

3

3

1

1

4

3

2

1

3

2

1

1

3

2

3

3

3

1

3

1 
 

 
1

2

2

1

3

1

4

1

3

3

2

4

2

1

3

1

4

1

4

4

4

1

3

2

3 
 

 
5.

4.9

5.

4.8

5.

4.7

5.

5.

5.

5.

5.

4.9

4.9

4.9

4.9

4.9

4.8

4.7

4.9

4.9

4.7

4.8

4.3

5.

4.  
 

6.6

12.8

3.1

13.

5.

3.4

10.1

5.8

5.

5.

5.

10.6

10.4

8.1

8.

7.8

8.9

8.9

6.4

5.

7.2

5.8

12.3

5.

7.3  

4.4

19.4

2.

3.9

8.2

2.

2.

13.6

11.6

5.1

5.3

7.4

15.6

3.7

14.1

11.8

6.

2.

16.3

7.9

16.7

10.2

6.3

25.4

13.3 

0.96

1.01

0.49

1.32

1.12

0.59

1.

1.46

1.49

0.86

0.78

1.62

1.26

1.68

2.57

2.48

1.98

2.18

2.59

2.5

3.68

3.26

3.99

3.17

5.28 

 
1.11

1.2

0.62

1.51

1.29

0.73

1.17

1.67

1.7

1.02

0.94

1.87

1.49

1.93

2.9

2.81

2.28

2.5

2.98

2.87

4.17

3.69

4.51

3.62

5.93 
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Table 4.25 continued  

Design 
Dt 

[mm] 
ζ Lb [mm] Typb Typf 

hp 

[mm] 
Lf1 

[mm] 
Lf2 

[mm] 
mP̂  

[Nm/s] 

aP̂  

[VA] 

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 

 
11.2

11.3

11.3

11.5

11.5

11.8

12.

12.

12.

12.2

12.5

12.7

13.2

13.3

13.4 
 

 

0.78

0.91

0.92

0.9

0.92

0.66

0.77

0.94

0.93

0.96

0.9

0.92

0.79

0.48

0.93 

 
36.5

40.6

28.4

41.9

37.7

45.7

34.

32.4

32.8

27.4

47.3

23.7

49.8

58.1

46.8 
 

 
2

3

1

1

3

2

2

1

1

3

2

2

1

2

2 
 

 
3

1

1

1

3

3

1

1

4

4

3

4

1

1

1 
 

 
4.3

4.8

4.6

4.4

4.8

3.8

4.1

4.6

4.6

5.

3.6

4.9

3.6

3.2

4.1 
 

11.1

6.7

8.6

18.5

6.3

15.4

25.3

13.1

13.3

5.

7.6

5.2

8.3

21.5

10.5 

29.9

9.7

25.8

4.9

10.3

25.6

31.

16.2

10.3

16.2

24.8

30.4

26.1

17.3

21.2 

4.85

4.75

8.58

7.44

5.27

5.64

11.02

10.74

7.02

6.84

10.42

6.52

8.84

13.03

17.69 

 
5.5

5.31

9.35

8.2

5.88

6.45

11.99

11.62

7.8

7.59

11.44

7.31

10.52

14.3

18.73 
 

 

In this chapter, several two-objective optimization problems for Langevin-type transducers 

have been studied. Based on experiments, applying lumped parameter models and parameter 

identification the optimal pre-stress for multiple objectives have been found. Using transfer 

matrix methods, the optimization problems for the symmetrical transducer and the transducer 

with a stepped horn were formulated. Optimizations were performed using MOGA, NSGA, 

NSGA-II, SPEA and SPEA2 and the results have been obtained. In next chapter, the results 

obtained will be analyzed and discussed. 
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5   Results and Discussions  

In chapter 4, non-dominated solutions for transducers with 2, 4 and 6 piezoelectric rings have 

been obtained. In order to identify the final Pareto-optimal solutions of each optimization 

problem, the non-domination check (the second level optimization) needs to be performed in 

these solutions. After the second level optimization is finished, an important problem is how 

to determine the preferred solution for the implementation of the optimal design. In this 

chapter, first, the results of the second level optimization are presented and analyzed. Then 

the preferred solution is selected by means of different selection methods. Finally, the load 

characteristics of the Pareto-optimal stepped-horn transducer are studied.  

5.1 Discussion of the Results for the Symmetrical Transducer 

The non-dominated solutions for the symmetrical Langevin transducer with 2, 4 and 6 piezo-

rings under the condition of no load have been given in chapter 4 (refer to Figs. 4.19, 4.22 and 

4.23 as well as Tables 4.8, 4.12 and 4.13). Here they are plotted in Fig. 5.1. The Pareto-

optimal solutions were searched again in these non-dominated solutions. Fig 5.2 shows the 

non-dominated solutions in objective space after the search is finished.  
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Fig. 5.1 Non-dominated solutions in objective space for the symmetrical transducers with 2, 4 

and 6 piezo-rings  
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Fig. 5.2 Non-dominated solutions in objective space for the symmetrical transducer obtained 

after the second level optimization 

5.1.1 Analysis of the Results of the Optimization  

It is obvious that the set of non-dominated solutions for the transducer with 6 piezo-rings are 

dominated by members of the non-dominated sets of the transducers with 2 and 4 piezo-rings. 

Therefore, they do not appear in the final results. The final set of Pareto-optimal solutions 

consists of all 35 members of the non-dominated set for 2 piezo-rings and 7 members for 4 

piezo-rings. Table 5.1 gives the values of the design variables and objective functions for 

these Pareto-optimal solutions. It is noted that the value of the diameter of the transducer for 

all solutions is equal to the lower bound of this design variable. This situation can be 

explained from the point of view of engineering. The smaller the diameter of the transducer 

is, the smaller the capacitance of the piezo-rings and the loss of the material. This will result 

in the decrease of the input power and the increase of the vibration amplitude. Table 5.1 also 

shows that the front and back metal sections of the symmetrical transducer should be made of 

titanium or brass when the electrical input power and the vibration amplitude at the resonance 

are considered as objective functions. In addition, compared with the transducers with 2 

piezo-rings, the transducers with 4 piezo-rings have the larger electrical input power and 

vibration amplitude. It is also noticed that the total length of the transducers with two end 

blocks made of brass is shorter than that of the transducers with two end blocks made of 

titanium. The end blocks of the all transducers with 4 piezo-rings are made from brass.      
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Table 5.1 Values of design variables and objective functions as well as the corresponding 

pseudo weights after the second level optimization for the symmetrical transducer 

Design 
Dt 

[mm] 
Typb 

hp 

[mm] 
L 

[mm] 
N 

3
ˆ

au  

[µm] 
(Obj1) 

aP̂  

[VA] 
(Obj2) 

1w  2w  

 
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42 

 
8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8. 

 
2

2

2

2

2

4

4

2

4

4

4

4

4

2

2

2

2

4

2

4

4

2

4

4

4

2

4

4

4

4

2

2

4

2

2

4

4

4

4

4

4

4 

 
0.3

0.7

1.4

1.6

5.

0.2

1.5

0.8

3.8

0.3

4.

0.7

4.

4.7

1.

1.8

3.7

3.7

4.2

2.5

2.1

3.1

1.8

2.7

2.2

0.9

0.7

2.6

2.7

2.

2.4

2.4

3.3

3.

2.3

0.8

0.3

0.4

0.9

0.3

0.8

0.2 

 
63.2

62.6

61.5

61.

55.5

40.7

39.

62.4

36.1

40.5

35.8

40.1

35.8

56.

62.1

60.8

57.6

36.1

56.8

37.7

38.3

58.6

38.6

37.5

38.1

62.2

40.

37.6

37.5

38.3

59.8

59.7

36.7

58.8

59.9

39.

40.1

40.

38.5

40.2

38.8

40.3 

 
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4 

 
33.12

31.92

29.94

29.26

22.58

92.19

58.08

31.55

35.39

87.19

34.09

76.27

34.21

23.05

31.03

28.9

24.68

35.81

23.8

45.56

50.11

25.92

53.98

43.76

49.01

31.13

75.12

44.7

43.84

50.9

27.5

27.31

38.89

26.17

27.59

116.51

153.58

147.79

105.04

159.7

112.31

163.97 

 
15.89

15.19

14.22

13.89

10.66

53.43

33.55

15.

20.28

50.47

19.52

44.11

19.59

10.89

14.75

13.72

11.68

20.53

11.26

26.25

28.9

12.28

31.16

25.2

28.26

14.8

43.45

25.75

25.25

29.37

13.04

12.95

22.35

12.4

13.09

135.01

178.24

171.49

121.66

185.41

130.16

190.41 

 
0.28

0.26

0.23

0.21

0.

0.53

0.45

0.25

0.31

0.52

0.29

0.5

0.29

0.02

0.24

0.21

0.09

0.31

0.06

0.39

0.41

0.13

0.43

0.38

0.41

0.25

0.5

0.39

0.38

0.42

0.17

0.17

0.34

0.14

0.18

0.75

0.94

0.9

0.7

0.97

0.73

1.  

 
0.72

0.74

0.77

0.79

1.

0.47

0.55

0.75

0.69

0.48

0.71

0.5

0.71

0.98

0.76

0.79

0.91

0.69

0.94

0.61

0.59

0.87

0.57

0.62

0.59

0.75

0.5

0.61

0.62

0.58

0.83

0.83

0.66

0.86

0.82

0.25

0.06

0.1

0.3

0.03

0.27

0.  
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5.1.2 Determination of the Preferred Solution   

In the practical design of piezoelectric actuators, generally, only one solution needs to be 

implemented. Therefore, how to select a particular solution from the set of non-dominated 

solutions obtained is an important task from point of view of engineering.  

The methods to determine the preferred solution from the obtained non-dominated solutions 

can be divided into two classes. One class is to choose the preferred solution from the whole 

set of non-dominated solutions according to high-level information. Since every solution is 

considered in these methods, the best solution according to the high-level selection 

information will not be lost. However, the cost to evaluate solutions in these methods is high 

because in general the size of the non-dominated set is large. The other class is first to reduce 

the size of the set of non-dominated solutions and then to determine the preferred solution 

from the remaining solutions according to high-level information. The advantages of this 

class of methods are the low cost to evaluate solutions and the convenience to determine the 

preferred solution. However, the best solution may be lost in the process of reducing the size 

of the non-dominated set.     

If certain high level information is known, the preferred solution can be chosen according to 

this high level information. As far as optimization problems of piezoelectric actuators are 

concerned, any performance except those performance criteria used as optimization objectives 

in the optimization problem can be considered as the high level information. From the point 

of view of the ultrasonic technique, the piezoelectric quality number, the power efficiency and 

the effective coupling factor are some important performance criteria. In addition to using 

performance criteria of piezoelectric actuators, many techniques for multiple criteria decision-

making can also be adopted to select the preferred solution [Mie98]. One of the techniques is 

using pseudo-weight vectors  

After the non-dominated solutions were obtained, a pseudo-weight vector can be calculated 

for each solution according to the following equation: 

( ) ( )

( ) ( )∑
=

−−

−−
=

m

j

jjjj

iiii
i

ffff

ffff
w

1

minmaxmax

minmaxmax

                                                                       (5.1) 

where max

if  and min

if  represent the maximum (worst) and minimum (best) values of the i-th 

objective function in the obtained non-dominated solutions. m is the number of the 

optimization objectives. The weight vector iw  gives a relative important factor for the i-the 

objective corresponding to the solution. Obviously, the weight iw  is maximum for the best 

solution for the i-th objective function.   

The clustering technique is a technique usually used to reduce the size of the set of non-

dominated solutions. Here, for the two-objective optimization problem the following 

procedures of the clustering are used [Zit99]: first, sort the obtained non-dominated solutions 
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in ascending order of the value of objective function 1. Second, consider each of the solutions 

as a separate cluster and find the centroid of each cluster, then calculate the Euclidean 

distance between all pairs of the clusters in order. Third, combine the two clusters which have 

a minimum distance. Next, find the centroid of each cluster, calculate the Euclidean distance 

between all pairs of the clusters, and combine the two clustering having a minimum distance 

into a cluster. Continue these steps until the required number of the clusters is achieved. 

Finally, in each cluster the solution closest to the centroid is kept and the rest is abandoned. In 

the whole process of clustering the two extreme solutions are always taken into account as 

separate clusters.    

In the following, the preferred design for implementation will be determined using the 

methods described above. 

Selection according to weight vectors The preferred solution can be determined according to 

pseudo-weight vectors. Table 5.1 gives the calculated weights 1w  and 2w , where 1w  is for the 

vibration amplitude and 2w  for the electrical input power.  A solution can be selected 

according to a designer-preferred weight vector.  For example, if a weight value of 70% is 

assigned to the objective 1 (the vibration amplitude) and a weight value of 30% to the 

objective 2 (the input power), solution (design) 39, which has a similar weight vector, can be 

chosen. Design 5 and Design 42 are two extreme solutions among the obtained non-

dominated solutions. The former represents the Pareto-optimal design of a symmetrical 

transducer which has the smallest electrical input power. The latter represents the Pareto-

optimal design of a symmetrical transducer which has the largest vibration amplitude. It is 

noted that the larger the pseudo-weight of the objective function 1 (namely the larger the 

vibration amplitude) is, the smaller the thickness of the piezo-stacks. On the other hand, the 

larger the pseudo-weight of the objective function 2 (namely the smaller the input electrical 

power) is, the larger the thickness of the piezo-stacks.  

Table 5.2 Four designs used for explaining how to determine the preferred solution for the 

symmetrical transducer 

Design Dt [mm] Typb hp [mm] Lb [mm] N 3
ˆ

au [µm] 

(Obj1) 
aP̂ [VA] 

(Obj2) 
1w  2w  

3 8 2 1.4 61.5 2 29.94 14.22 0.23 0.77 

5 8 2 5 55.5 2 22.58 10.66 0 1 

23 8 4 1.8 38.6 2 53.98 31.16 0.43 0.57 

42 8 4 0.2 40.3 4 163.97 190.41 1 0 
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Selection according to performance criteria  In the optimization problem of the 

symmetrical transducer, the input electrical power and the vibration amplitude at resonance 

have been considered as optimization objectives. The rest of performance criteria can be used 

as high-level information for the selection of optimized results. As stated before, the 

piezoelectric quality number, the power efficiency, the effective coupling factor are important 

performance criteria. Here the effective coupling factor k is first considered. 

As described in chapter 2 and chapter 4, the effective coupling factor k describes the effective 

energy conversion in piezoelectric transducers. The larger the value of k, the more electrical 

energy is transferred into mechanical energy. The effective coupling factor k corresponds to 

the distance between resonance frequency and anti-resonance frequency for a vibration mode. 

Therefore, the design corresponding to the largest distance between resonant and anti-

resonant frequencies should be chosen. The resonance and anti-resonance frequencies can be 

readily obtained if the frequency response of the admittance function UI ˆˆ is plotted. The 

frequency response of the admittance function UI ˆˆ for the symmetrical transducer can be 

calculated from equation (4.64). Therefore, the frequency responses of the admittance 

functions UI ˆˆ for every members of the set of the final Pareto-optimal solutions shown in 

Table 5.1 can be plotted and the preferred design having the best coupling factor k can be 

determined. Here, as an example to explain how to determine the preferred selection 

according to the high level information k, 4 designs in Table 5.1 have been studied. These 

designs are shown in Table 5.2. Fig. 5.3 shows the frequency responses of the admittance 

functions UI ˆˆ  for the 4 designs. It is shown in Fig. 5.3 that the distance between the 

resonance and anti-resonance frequencies increases with the increase of the thickness phN ⋅ of 

the piezoelectric stack. Design 5, which has the largest thickness of the piezo-stack 

( mm1052 =×=⋅ phN ), has the largest distance between resonance and anti-resonance 

frequencies. Therefore, according to the coupling factor k Design 5 is the preferred design 

among these 4 Pareto-optimal designs.  

Selection by means of clustering technique In order to perform the required selection more 

easily, the size of Pareto-optimal solutions can be reduced by means of the above described 

clustering technique before the selection is performed. Fig. 5.4 shows the results after 

clustering operation with a choice of 6 final solutions in the objective space. Table 5.3 gives 

the values of the design variables and objective functions for the 6 final solutions. The 

configurations of the transducers for the 6 final solutions are shown in Fig. 5.5. 
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Fig.5.3 Admittance frequency responses for the 4 designs given by Table 5.2 
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Fig. 5.4 Six final Pareto-optimal solutions after clustering for the symmetrical transducer  
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Table 5.3 Values of design variables and objective functions as well as weights for 6 Pareto-

optimal solutions after clustering for the symmetrical transducer 

Design 
Dt 

[mm] 
Typb 

hp 
[mm] 

Lb 

[mm] 
N 3

ˆ
au [µm] 

(Obj1) 
aP̂ [VA] 

(Obj2) 
1w  2w  

2 8 2 0.7 62.6 2 31.39 15.19 0.26 0.74 

5 8 2 5 55.5 2 22.58 10.66 0 1 

22 8 2 3.1 58.6 2 25.92 12.28 0.13 0.87 

25 8 4 2.2 38.1 2 49.01 28.26 0.41 0.59 

39 8 4 0.9 38.5 4 105.04 121.66 0.7 0.3 

42 8 4 0.2 40.3 4 163.97 190.41 1 0 
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Fig. 5.5 Configurations of the symmetrical transducers for 6 Pareto-optimal solutions after 

clustering 

After clustering is finished, similarly, the high level information described before can then be 

applied to determine a preferred design from the results of clustering for implementation. It is 

pointed out that in the optimization problems in chapter 4 the set of Pareto-optimal solutions 

is searched under the condition of a given voltage VU 100ˆ = . If the range of the working 

voltage is given, the ranges of the objective function values are also determined. This 

information is available for determining the preferred solution. The variations of two 

objective function values with respect to different values of the input voltage between 10V to 

300V for six Pareto-optimal designs obtained after clustering (see Table 5.3) have been 
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calculated. Fig. 5.6 shows the results for the input power at resonance smaller than 100 VA 

and the vibration amplitude at resonance larger than 10µm. The number of the piezo-rings 

will affect the range of the input power and the vibration amplitude of the transducer for the 

given range of voltage. For example, the vibration amplitude of Design 42 with 4 piezo-rings 

is not smaller than about 16 µm (refer to point A). The vibration amplitude of Design 5 with 2 

piezo-rings will not be larger than about 57 µm (refer to point B). Its input power will not be 

more than about 67 VA. Obviously, Design 42 is the best design because the others do not 

dominate the set of its Pareto-optimal solutions with respect to the input voltage. That is, in 

order to arrive at a given vibration amplitude (here not smaller than about 16 µm), the 

transducer corresponding to Design 42 needs the minimum input power among the 6 Pareto-

optimal designs. Therefore Design 42 is the preferred design for implementation. It is noticed 

that the material of the end blocks and the total thickness of the piezo-stack affects the 

performances of transducers for a given range of the input voltage. However, the 

performances are first determined by material and then by the thickness. The transducers with 

the end blocks made of brass have better performance than those with the end blocks of 

titanium. Under the condition of the same material, the transducers with a thin piezo-stack 

have better performances than the others.  

In the above sections, the Pareto-optimal solutions for the symmetrical freely vibrating 

transducer have been analyzed. The methods to determine the preferred design have been 

discussed. Some important rules for designing the symmetrical Langevin-type transducers via 

multiobjective optimization are concluded as follows: 
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Fig. 5.6 Values of the input power and the vibration amplitude of the symmetrical transducers 

for 6 Pareto-optimal designs obtained after clustering for a given range of the input voltage 

from 10V to 300V 
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1. Brass and titanium are two kinds of preferred material of the end blocks for Pareto-

optimal designs. If a Pareto-optimal transducer is expected to have good performance 

(lower electric input power and higher vibration amplitude) in a given range of the 

voltage, brass is the preferred material for the end blocks. Furthermore, the total 

thickness of the piezo-stack should be as small as possible. However, if a larger 

effective coupling factor is expected, a thicker piezo-stack needs to be used. 

2. The number of the piezoelectric rings will affect the ranges of the values of objective 

functions. For a given voltage range, the maximum input power of the transducer with 

2 piezo-rings is smaller than that of the transducer with 4 piezo-rings. On the other 

hand, the minimum vibration amplitude of the transducer with 2 piezo-rings is lower 

than that of the transducer with 4 piezo-rings. 

It should be pointed out the implemented Pareto-optimal solution here is selected from many 

known candidates which are obtained using MOEAs. This is different from the process of 

obtaining a Pareto-optimal solution by using a traditional scalarization method, where a 

preference structure over objectives is given in advance and then an implemented Pareto-

optimal solution is found. Obviously, the approach in which the entire set of Pareto-optimal 

solutions is first identified and the preferred solution is then chosen is more practical and less 

subjective.  

5.2 Discussion of the Results for Stepped-horn Transducers without Load 

Fig. 5.7 shows three sets of non-dominated solutions for the stepped-horn transducers with 2, 

4 and 6 piezo-rings obtained in the first level optimization (refer to Figs. 4.28, 4.31 and 4.32 

as well as Tables 4.17, 4.21 and 4.22). Similarly, the Pareto-optimal solutions were searched 

again in these non-dominated solutions. Fig 5.8 shows the results after non-domination check. 

Table 5.4 gives the values of the design variables and objective functions for these Pareto-

optimal solutions after the second level optimization.              
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Fig. 5.7 Non-dominated solutions in objective space for the freely vibrating stepped-horn 

transducer with 2 , 4 and 6 piezo-rings  
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Fig. 5.8 Non-dominated solutions in objective space for the freely vibrating stepped-horn 

transducer obtained after the second level optimization 

 

Table 5.4 Values of design variables and objective functions for the non-dominated solutions 

obtained after the second-level optimization for the freely vibrating stepped-horn transducer  

 

Design 
Dt 

[mm] 
ζ 

Lb 
[mm] 

Typb Typf 
hp 

[mm] 
Lf1 

[mm] 
Lf2 

[mm] 
N 4

ˆ
au  

[µm] 
aP̂  

[VA] 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 

 
8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.1

8.1

8.1

8.1

8.1

8.

8.

8.

8.  
 

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.21

0.2

0.21

0.2

0.2

0.2

0.2

0.2

0.2

0.21

0.21

0.21

0.21

0.21

0.21

0.2

0.2

0.2

0.2  

 
5.

5.

5.

7.1

5.6

10.2

6.2

17.7

8.4

7.4

15.7

10.8

11.8

13.6

14.6

16.3

14.5

20.7

17.8

36.7

30.4

37.

12.4

21.5

5.

11.5 
 

 
2

3

1

3

2

3

3

4

2

3

2

2

2

3

1

1

2

2

1

1

3

2

1

2

1

2 
 

 
4

3

4

4

4

4

4

4

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4 
 

 
5.

5.

5.

3.5

4.9

3.5

4.9

3.7

4.6

5.

3.9

4.4

4.1

3.5

3.2

2.4

4.

3.3

3.7

1.6

2.6

1.5

2.5

1.

3.3

3.2 
 

8.1

46.5

9.7

5.

41.9

9.

25.

23.

37.2

14.5

13.

13.2

15.4

10.7

8.2

5.

18.7

19.7

12.

12.4

16.

5.8

6.

5.8

6.1

5.7  

42.

50.3

41.7

42.1

40.3

41.6

40.9

40.6

50.7

41.3

41.4

41.5

41.4

41.3

41.5

41.7

41.2

41.1

41.1

40.8

40.5

41.4

41.5

41.9

41.7

41.7 

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

4

4

4

4 

73.74

49.71

83.12

107.97

62.98

110.07

78.11

139.87

42.33

90.83

94.67

81.04

80.1

120.76

124.03

138.67

85.14

100.77

128.38

170.71

171.48

151.31

242.77

251.75

188.67

203.43 

0.7

0.51

0.89

1.51

0.51

1.55

0.79

2.73

0.39

1.12

1.19

0.88

0.84

1.91

2.01

2.48

0.97

1.38

2.27

4.12

4.42

3.35

7.77

8.18

4.65

5.48 
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Table 5.4 continued 

Design 
Dt 

[mm] 
ζ 

Lb 
[mm] 

Typb Typf 
hp 

[mm] 
Lf1 

[mm] 
Lf2 

[mm] 
N 4

ˆ
au  

[µm] 
aP̂  

[VA] 

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63 

 
8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.1

8.1 
 

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2 

 
15.

17.1

8.6

8.9

26.6

26.5

12.4

12.7

20.6

5.

7.9

50.

20.4

25.

18.6

58.5

5.

18.6

17.

15.8

16.8

18.8

11.7

15.6

6.6

29.2

26.2

5.

19.4

8.9

8.4

9.6

8.4

5.7

6.3

9.2

5.5  
 

 
2

2

3

2

4

4

2

2

4

1

4

1

4

1

3

4

2

3

1

1

2

2

1

2

2

1

3

4

1

3

3

1

4

1

4

1

2 
 

 
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4 
 

 
2.8

2.7

3.1

3.

1.

1.1

3.4

3.6

1.8

5.

1.2

0.2

0.7

0.2

0.8

0.2

1.3

0.8

1.

1.1

1.

0.7

1.

0.9

1.3

1.

1.

1.3

1.

1.4

1.6

1.4

1.6

1.4

1.5

1.6

1.8 
 

5.4

5.5

6.1

5.8

5.2

5.2

5.2

5.4

5.2

5.2

48.8

5.6

21.8

5.

24.7

5.

42.4

23.9

27.8

29.8

29.4

16.8

27.9

24.1

39.4

20.6

22.8

31.3

23.1

34.9

36.

35.2

41.6

39.2

37.5

30.5

35.8 

41.7

41.6

41.5

41.8

41.1

41.1

41.6

41.5

41.2

41.4

39.6

40.9

40.7

41.5

40.6

39.6

40.4

40.7

40.6

40.5

40.8

41.3

40.8

41.

40.5

40.5

40.3

40.8

40.7

40.4

40.3

40.4

40.

40.4

40.4

40.6

40.6 

4

4

4

4

4

4

4

4

4

4

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6 

 
220.03

228.54

222.46

188.88

334.68

332.49

210.05

211.34

301.42

199.08

340.97

561.83

441.49

487.2

412.6

648.77

153.78

406.38

380.69

372.16

260.58

277.37

289.66

239.88

168.02

499.12

521.78

191.9

398.55

296.52

306.24

297.58

343.39

227.89

253.2

290.1

183.69 
 

6.44

6.95

6.55

4.66

14.33

14.26

5.89

5.99

11.96

5.47

16.15

39.66

24.83

31.15

21.82

57.59

3.36

21.17

18.72

17.95

8.71

10.15

10.78

7.52

3.9

33.44

37.77

4.9

20.83

11.53

12.42

11.63

16.34

6.86

8.43

11.02

4.43  

5.2.1   Analysis of the Results of the Optimization 

The final set of Pareto-optimal solutions for the stepped-horn transducer consists of 22 

members from the set of the non-dominated solutions for 2 piezo-rings, 14 members from the 

set for 4 piezo-rings and 27 members from the set for 6 piezo-rings. Unlike the final results 

after the second level optimization for the symmetrical transducer, the final results for the 

stepped-horn transducer include some members of the set of non-dominated solutions for 6 

piezo-rings. This is because not all members of the set of non-dominated solutions of the 
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stepped-horn transducer with 6 piezo-rings are dominated by the members of the set of non-

dominated solutions of the transducer with 2 and 4 piezo-rings. It is noted that the diameter of 

the transducers for all solutions is equal or nearly equal to the lower bound of this design 

variable. The reason for this phenomenon has been given in section 5.1.1. Furthermore, all 

amplitude transformation ratios ζζζζ, namely the ratio of the diameter between the output side 

and input side of the horn, are equal or nearly equal to the lower bound of this design variable. 

This is because a horn with the ratio ζζζζ < 1 is a mechanical amplifier. For a given vibration 

amplitude at the input side of the horn, the smaller the ratio ζζζζ is, the larger the vibration 

amplitude at the output side. Therefore, in order to obtain the maximum vibration amplitude 

at the output side of the horn, ζζζζ needs to be as small as possible. It should be noted that a large 

transformation will result in a “sensitive” transducer, i.e. a transducer where the output load 

has a large influence on the system’s behavior. In the present optimization problem, however, 

this effect has not been taken into account in the formulation of the objective functions. In all 

Pareto-optimal designs, there are four types of material (steel, titanium, aluminum bronze and 

brass) for the back section but only two types (aluminum bronze and brass) for the horn. Most 

horns are made of brass. Since a horn is used as mechanical amplifier, the stepped-horn 

transducer can produce the larger vibration amplitude for a given input power compared with 

the symmetrical transducer.  

5.2.2   Determination of the Preferred Solution  

Similarly, there are two classes of methods to determine the preferred design for 

implementation from the results of the second level optimization. One class is to determine 

the preferred solution directly from the whole set. The other is to determine the preferred 

solution from the reduced set of Pareto-optimal solutions. In the following, several methods 

are discussed respectively.  

Selection according to weight vectors The pseudo-weight vectors of two design objectives 

for all Pareto-optimal solutions shown in Table 5.4 have been calculated using equation (5.1). 

They are shown in Table 5.5. Then the preferred solution can be selected according to a 

designer-preferred weight vector. For example, if a weight value of 40% is prepared for 

objective 1 (the vibration amplitude) and a weight value of 60% for the objective 2 (the input 

power), Design 4 can be chosen. Design 9 and Design 42 are two extreme solutions among 

the obtained non-dominated solutions. The former represents the Pareto-optimal design of a 

stepped-horn transducer that consumes the smallest electrical input power among all designs. 

The latter represents the Pareto-optimal design of a stepped-horn transducer that has the 

largest vibration amplitude. 
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Table 5.5 Values of the pseudo-weight vectors of the objective function for the non-dominated 

solutions obtained after the second level optimization for the freely vibrating stepped-horn 

transducer  

Design 1w  2w  Design 1w  2w  Design 1w  2w  

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 

0.314

0.137

0.346

0.399

0.26

0.402

0.33

0.438

0.

0.367

0.375

0.34

0.337

0.417

0.42

0.435

0.352

0.387

0.426

0.463

0.464 

 
0.686

0.863

0.654

0.601

0.74

0.598

0.67

0.562

1.

0.633

0.625

0.66

0.663

0.583

0.58

0.565

0.648

0.613

0.574

0.537

0.536 
 

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42 

0.448

0.504

0.507

0.473

0.482

0.491

0.496

0.493

0.473

0.553

0.552

0.486

0.487

0.536

0.48

0.564

0.759

0.628

0.679

0.606

1.  

0.552

0.496

0.493

0.527

0.518

0.509

0.504

0.507

0.527

0.447

0.448

0.514

0.513

0.464

0.52

0.436

0.241

0.372

0.321

0.394

0.  

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63 

0.45

0.601

0.583

0.578

0.512

0.522

0.528

0.502

0.46

0.699

0.739

0.475

0.598

0.532

0.539

0.533

0.565

0.496

0.509

0.529

0.47  

0.55

0.399

0.417

0.422

0.488

0.478

0.472

0.498

0.54

0.301

0.261

0.525

0.402

0.468

0.461

0.467

0.435

0.504

0.491

0.471

0.53  

 

 It is noticed that the weight vectors are not uniformly distributed, because the final Pareto-

optimal solutions are not distributed evenly in the objective space. Therefore, not all designer-

preferred weight vectors can find corresponding designs in the set of the Pareto-optimal 

solutions. In this case, other high level information is needed. It needs to be pointed out that 

the pseudo weight of the electrical input power doesn’t increase with the increase of the 

thickness of the piezo-stack any more. For example, the total thickness of the piezo-stack for 

Design 36 is larger than the total thickness for Design 5 and the weight of the input power for 

the former is smaller than that for the latter. This is different from the situation for the 

symmetrical transducer. Moreover, in most cases, the larger the number of the piezo-rings is, 

the larger the input power.  

Selection according to performance criteria Any performance criterion which is not used as 

the objective function can be considered as high level information to determine the preferred 

design. For the symmetrical transducer, the effective coupling factor k has been considered. 

Here, however, another important performance parameter of transducers, namely the 

piezoelectric quality number M is considered as high-level information.  

As described in chapter 2 and 4, the piezoelectric quality number M presents the phase 

descend of the admittance function of the transducer. The larger the value of M is, the higher 
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the extent of the phase reserve. A large phase reserve ensures that a resonance frequency 

exists in the true sense of the meaning, and the transducer can be driven with zero reactive 

power even though the damping of the load may be large. The frequency response of the 

admittance function UI ˆˆ for the stepped horn can be calculated according to equation (4.73). 

Figs. 5.9 and 5.10 show the Bode plot and the Nyquist plot of the admittance function UI ˆˆ  

for 6 Pareto-optimal designs (Design 8 to Design 13). According to Fig. 5.9, it can be 

obtained that Design 8 has a largest phase descend. That is, it has the largest piezoelectric 

quality number M. This can be explained more clearly by Fig. 5.10. As stated in section 2.3.1, 

the piezoelectric quality number is geometrically defined as the ratio between the diameter 

rY of the locus of UI ˆˆ and the offset cY of its center from the real axis, namely 

cr YYM = (see Fig. 5.9). Obviously, Design 8 has the largest M and should be preferred for 

implementation.   
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Fig. 5.9 Admittances UI ˆˆ of 6 designs from Table 5.4 as functions of frequencies (the Bode 

plot) 
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                                                                            Re( UI ˆˆ ) 

Fig. 5.10 Admittances UI ˆˆ of  6 designs from Table 5.4 as functions of frequencies in the 

complex plane (the Nyquist plot) 

It is noticed that the 0°-line in Fig. 5.9 is almost tangential to the phase-frequency plots of 

Design 9. Correspondingly the real axis in Fig. 5.10 is nearly tangential to the Nyquist plot of 

Design 9. That is, the piezoelectric quality number of Design 9 is nearly equal to 2. If the load 

damping is large, it is possible that the intersections do not exist any more. The transducer can 

not be driven with zero reactive power. Therefore, it is avoided to select Design 9 as the 

optimal design of the transducer for ultrasonic bonding and machining. 

It can be seen that Design 8 also has the largest distance between resonance and anti-

resonance frequencies. That is, Design 8 has the largest coupling factor. It should be pointed 

out that for the Pareto-optimal stepped-horn, increasing the thickness of the piezo-stack 

doesn’t mean the coupling factor will increase. Here, the material of the end blocks will affect 

the coupling factor. For these 6 Pareto-optimal designs, the designs whose end blocks are 

made of brass have better coupling factor than the others.  

Similarly, these selection methods can be applied in other Pareto-optimal designs shown in 

Table 5.4. Therefore, all solutions can be compared according to high level information and 

the preferred design can be determined.   

Selection by means of clustering technique There are 63 members in the set of Pareto-

optimal solutions obtained after the second level optimization. If all Pareto-optimal solutions 

are evaluated according to high level information, the computation cost is large. In order to 

reduce the size of the set of Pareto-optimal solutions, the clustering technique is used here. 

Fig. 5.11 shows the results after performing the clustering operation similar to that used for 

the symmetrical transducer with a choice of 5 final solutions in the objective space. Tables 5.6 

and 5.7 give their corresponding values of the design variables, objective functions and 

weights.  

Yr Yc 

Im( UI ˆˆ ) 
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Fig. 5.11 Five final Pareto-optimal solutions after clustering for the stepped-horn transducer 

 

Table 5.6 Values of 5 Pareto-optimal solutions in design variable spaces after clustering for 

the stepped-horn transducer 

 

Table 5.7 Values of objective functions for 5 Pareto-optimal solutions and corresponding 

weights for the stepped-horn transducer 

 

Design 
Dt 

[mm] 
ζ  Lb 

[mm] 
Typb Typf 

hp 
[mm] 

Lf1 

[mm] 
Lf2 

[mm] 
N 

2 8 0.2 5. 3 3 5 46.5 50.3 2 

5 8 0.2 5.6 2 4 4.9 41.9 40.3 2 

10 8 0.21 7.4 3 4 5 14.5 41.3 2 

16 8 0.2 16.3 1 4 2.4 5. 41.7 2 

48 8 0.2 18.8 2 4 0.7 16.8 41.3 6 

Design 
Amplitude [µm] 

(Obj1) 
Input Power [VA] 

(Obj2) 1w  2w  

2 49.71 0.51 0.14 0.86 

5 62.98 0.51 0.26 0.74 

10 90.83 1.12 0.37 0.63 

16 138.67 2.48 0.43 0.57 

48 277.37 10.15 0.52 0.48 

Design 2 

Design 5 

Design 10 

Design 16 Design 48 
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The configurations of the stepped-horn transducers for the above 5 Pareto-optimal solutions 

are shown in Fig. 5.12. It is noticed that the diameter and amplitude transformation factor ζ of 

the transducers for all 6 designs are equal to the lower bounds of the design variables Dt 

and ζ , respectively. That is, for this two optimization objectives (maximizing the vibration 

amplitude and minimizing the input power of the transducer) the lower bounds of design 

variables Dt and ζ will affect the optimized results. They should be defined according to 

practical design requirements. Design 2 is the minimum input power design, but the vibration 

amplitude is the smallest. Design 48 is the maximum vibration amplitude design. However its 

input electrical power is the largest. The material types of the back section and horn affect the 

length of the whole transducer. Among the 5 designs, the transducer with the back section of 

steel and the horn of brass has small length. If a short transducer is expected, the transducer 

corresponding to Design 16 is preferred.  A finally implemented design can also be selected 

from these 5 designs according to a designer-preferred weight vector or other high level 

information such as piezoelectric quality number M, coupling factor k or the like. In the 

following, the coupling factor k is considered.  

        

    

 

PIC181

Design 2

Design 5

Design10

Design 16

Design 48
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Fig. 5.12 Configurations of the stepped horn transducers without load for 5 Pareto-optimal 

solutions after clustering  
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As stated before, the effective coupling factor k can be represented by the distance between 

the resonance and anti-resonance frequencies for a vibration mode of the transducer. The 

resonance and anti-resonance frequencies can be determined by the frequency response of the 

admittance function UI ˆˆ . Fig. 5.13 gives the frequency responses of the admittance function 

UI ˆˆ  for the 5 designs, where the frequency at which the admittance is maximum corresponds 

to the resonance frequency. The frequency at which the admittance is minimum corresponds 

to the anti-resonance frequency. Obviously, Design 10 and 16 have larger distances between 

the resonance and anti-resonance frequencies. Considering that the length of the transducer 

with Design 16 is shorter than that of the transducer with Design 10, therefore, Design 16 is 

preferred.  
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Fig. 5.13 Admittance UI ˆˆ as functions of frequencies for 5 Pareto-optimal designs of 

stepped-horn transducers without load obtained after clustering.  

 



132 CHAPTER 5 

5.3   Discussion of the Results for Stepped-horn Transducers with Load 

The non-dominated solutions of the transducers with 2, 4 and 6 piezo-rings under a 

mechanical load have been obtained in chapter 4 (refer to Figs. 4.34, 4.35 and 4.36 as well as 

Tables 4.23, 4.24 and 4.25). Here they are plotted in Fig.5.14. The non-dominated solutions 

were searched for again in these solutions and the results are shown in Fig.5.15 and Table 5.8 
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Fig. 5.14 Three sets of non-dominated solutions of the stepped-horn transducer with load for 

2, 4 and 6 piezo-rings 
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Fig. 5.15 Non-dominated solutions of the stepped-horn transducer with load for 2, 4 and 6 

piezo-rings after the second level optimization  
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Table 5.8 Values of design variables and objective functions for the non-dominated solutions 

obtained after the second level optimization for the stepped-horn transducer with load  

Design 
Dt 

[mm] 
ζ  Lb 

[mm] 
Typb Typf 

hp 

[mm] 
Lf1 

[mm] 
Lf2 

[mm] 
N mP̂  

[Nm/s] 

aP̂  

[VA] 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 

 
8.

8.

8.5

8.8

9.2

9.4

9.7

10.2

10.3

10.4

10.4

10.5

10.5

10.5

10.7

11.

11.3

11.4

11.7

11.8

11.8

11.9

11.9

12.

12.8

13.2

11.6

11.6

12.1

12.8

12.9

13.

13.2

13.4

13.7

14.

14.1

15.

15.

16.3 
 

0.86

0.96

0.88

0.86

0.85

0.86

1.

0.98

0.79

0.8

0.91

0.9

0.89

0.9

0.97

0.89

0.93

0.99

0.8

0.92

0.81

0.86

0.78

0.78

0.66

1.

0.51

0.35

0.6

0.69

0.79

0.32

0.82

0.65

0.2

0.24

0.49

0.73

0.8

0.76 

 
34.3

18.3

34.8

35.7

28.

41.5

44.3

51.3

42.9

45.

34.8

34.6

34.8

46.

43.7

44.3

40.8

53.1

40.7

36.7

46.1

41.4

41.7

42.

47.8

40.9

44.7

33.

32.9

24.8

32.

39.2

29.8

28.4

44.9

51.1

34.4

31.1

33.8

37.1 
 

 
3

4

4

4

3

3

1

2

3

2

4

4

4

3

1

3

1

2

3

4

3

1

4

3

3

3

1

4

3

3

4

4

2

3

3

2

4

2

4

4 
 

 
3

1

3

4

3

1

3

3

1

1

3

1

3

1

2

1

3

1

1

1

1

1

3

1

1

3

4

3

1

3

4

3

4

4

3

4

3

4

2

3 
 

 
4.6

5.

4.5

4.2

4.7

4.

3.3

4.

4.1

4.

3.8

3.8

3.9

3.5

3.5

3.5

3.4

3.9

3.7

3.4

3.5

3.5

3.7

3.7

3.9

2.6

3.8

3.6

3.5

3.

4.1

3.4

4.4

3.2

3.1

4.5

3.8

4.2

3.9

3.8 
 

29.9

15.3

32.6

33.9

32.7

42.4

31.8

8.7

43.1

32.6

41.8

42.

41.7

31.4

30.

31.9

39.3

6.9

39.2

49.2

28.3

37.9

34.2

38.1

42.3

36.2

29.8

33.9

36.1

53.5

27.8

28.3

28.2

39.3

32.9

27.8

28.8

26.3

33.

27.1 

24.3

72.9

12.8

2.

29.6

16.7

20.

41.7

14.4

48.9

4.

17.7

3.9

23.4

35.4

26.1

16.9

53.5

26.6

5.9

30.6

36.7

2.

26.4

9.1

14.2

2.

9.7

34.4

5.3

2.

2.

21.8

2.

2.

2.

12.5

26.5

21.2

2.  

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

4

4

4

4

4

4 

0.22

0.19

0.34

0.27

0.31

0.72

0.62

0.73

1.

0.51

0.84

1.14

0.87

1.04

0.36

1.25

1.05

1.73

1.49

1.91

1.35

1.39

1.26

1.57

2.37

2.2

3.12

4.27

4.16

6.89

4.84

6.23

2.89

5.69

8.79

6.8

8.66

3.38

5.4

16.89 

0.3

0.27

0.43

0.36

0.41

0.85

0.77

0.87

1.16

0.67

1.

1.31

1.02

1.22

0.54

1.45

1.26

1.93

1.72

2.17

1.58

1.63

1.47

1.82

2.66

2.56

3.59

4.94

4.82

7.72

5.44

6.97

3.42

6.48

9.8

7.51

9.6

4.08

6.17

18.06 
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Table 5.8 continued  

Design 
Dt 

[mm] 
ζ 

Lb 
[mm] 

Typb Typf 
hp 

[mm] 
Lf1 

[mm] 
Lf2 

[mm] 
N mP̂  

[Nm/s] 

aP̂  

[VA] 

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76 

 
8.

8.

8.

8.

8.

8.

8.1

8.3

8.5

8.7

9.2

9.3

9.4

10.

10.

10.5

10.5

10.6

10.7

10.8

11.2

11.2

11.3

11.3

11.5

11.5

11.8

12.

12.

12.

12.2

12.5

12.7

13.2

13.3

13.4 
 

1.

1.

1.

1.

1.

1.

0.94

0.99

0.92

0.95

0.91

0.91

0.92

0.89

0.85

0.82

0.94

0.85

0.77

0.97

0.92

0.78

0.91

0.92

0.9

0.92

0.66

0.77

0.94

0.93

0.96

0.9

0.92

0.79

0.48

0.93 

 
58.5

46.6

46.8

52.1

53.7

58.5

40.1

39.9

54.9

48.3

45.7

41.5

47.7

48.6

45.4

45.2

27.

43.6

51.9

33.3

49.6

36.5

40.6

28.4

41.9

37.7

45.7

34.

32.4

32.8

27.4

47.3

23.7

49.8

58.1

46.8 
 

 
2

2

4

2

2

3

1

1

3

2

2

1

1

3

2

3

3

3

1

3

1

2

3

1

1

3

2

2

1

1

3

2

2

1

2

2 
 

 
1

2

2

1

3

1

1

3

2

4

3

1

4

1

4

4

4

1

3

2

3

3

1

1

1

3

3

1

1

4

4

3

4

1

1

1 
 

 
5.

4.9

5.

4.8

5.

4.7

5.

5.

5.

4.9

4.9

4.9

4.8

4.7

4.9

4.9

4.7

4.8

4.3

5.

4.

4.3

4.8

4.6

4.4

4.8

3.8

4.1

4.6

4.6

5.

3.6

4.9

3.6

3.2

4.1 
 

6.6

12.8

3.1

13.

5.

3.4

5.8

5.

5.

10.6

8.

7.8

8.9

8.9

6.4

5.

7.2

5.8

12.3

5.

7.3

11.1

6.7

8.6

18.5

6.3

15.4

25.3

13.1

13.3

5.

7.6

5.2

8.3

21.5

10.5 

4.4

19.4

2.

3.9

8.2

2.

13.6

11.6

5.3

7.4

14.1

11.8

6.

2.

16.3

7.9

16.7

10.2

6.3

25.4

13.3

29.9

9.7

25.8

4.9

10.3

25.6

31.

16.2

10.3

16.2

24.8

30.4

26.1

17.3

21.2 

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6 

0.96

1.01

0.49

1.32

1.12

0.59

1.46

1.49

0.78

1.62

2.57

2.48

1.98

2.18

2.59

2.5

3.68

3.26

3.99

3.17

5.28

4.85

4.75

8.58

7.44

5.27

5.64

11.02

10.74

7.02

6.84

10.42

6.52

8.84

13.03

17.69 

1.11

1.2

0.62

1.51

1.29

0.73

1.67

1.7

0.94

1.87

2.9

2.81

2.28

2.5

2.98

2.87

4.17

3.69

4.51

3.62

5.93

5.5

5.31

9.35

8.2

5.88

6.45

11.99

11.62

7.8

7.59

11.44

7.31

10.52

14.3

18.73 

 

5.3.1 Analysis of the Results of the Optimization   

There are 76 individuals in the final set of Pareto-optimal solutions for the stepped-horn 

transducer with load, where 26 individuals come from the set of the non-dominated solutions 

for 2 piezo-rings, 14 individuals from the set for 4 piezo-rings and 36 individuals from the set 

for 6 piezo-rings. It is noticed that not all diameters of the transducers are equal or nearly 

equal to the lower bound of this design variable. Unlike the amplitude transformation ratio ζ      

under the condition of no load, here the ζ  of most transducers are near to the lower bound of 
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this design variable, but rather have values around ζ  = 0.8. Some of them are near to 1, which 

refers to a constant horn, a special type of the stepped horn. Furthermore, four material types 

have been applied for both the back section and horn. The thickness of all piezo-rings is more 

than 3mm. 

5.3.2   Determination of the Preferred Solution  

In the front sections, two classes of methods and some high-level information have been used 

to determine the preferred design for implementation. Here the similar methods and high level 

information can be adopted. In the following, first, the size of the set of solutions is reduced 

by clustering operation. Then, the coupling factor, the piezoelectric quality number and the 

power efficiency as high-level information are applied in determining a preferred design. 

Reduction of size of the set of non-dominated solutions There are 76 solutions in the set of 

Pareto-optimal solutions obtained after the second level optimization. In order to reduce the 

size of the set of Pareto-optimal solutions, a clustering technique similar to that used before is 

applied here. Fig. 5.16 shows the results with a choice of 5 final solutions in the objective 

space after clustering. Tables 5.9 and 5.10 give their corresponding values of the design 

variables, objective functions and pseudo weights. Fig. 5.17 shows their respective 

configurations. 
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Fig. 5.16 Five Pareto-optimal designs obtained after clustering operation for the stepped-

horn transducer with load 
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Table 5.9 Values of 5 Pareto-optimal designs in design variable spaces after clustering for 

the stepped-horn transducer with load 

 

Table 5.10 Values of objective functions for 5 Pareto-optimal designs after clustering and 

corresponding weights for the stepped-horn transducer with load 

 

Selection according to performance criteria For the stepped-horn transducer under the 

condition of load, the effective coupling factor k, and piezoelectric quality number M as well 

as the power efficiency are important characteristics. They can be considered as high level 

information to determine the preferred design from the 5 solutions obtained after clustering.   

In order to compare the coupling factors and piezoelectric quality numbers of these 5 designs, 

the frequency responses of the admittance functions UI ˆˆ  for the 5 solutions were calculated 

according to equation (4.88). The respective Bode plots and the Nyquist plots are shown in 

Figs. 5.18 and 5.19. 

Obviously, Design 76 has the largest distance between the resonance and anti-resonance 

frequencies among those of the five designs. This is means the coupling factor k of Design 76 

is the best. Furthermore, Design 76 has also the largest phase descend (the largest offset of the 

center of the Nyquist plot from the real axis). Therefore the piezoelectric quality number M of 

Design 76 is the largest among those of these designs. For the transducer operating against 

load, the power efficiency is one of the most important characteristics as well. It can be used 

as high-level information for determining a preferred solution.  The power efficiency of the 

Design 
Dt 

 [mm] 
ζ  Lb 

[mm] 
Typb Typf 

hp  

[mm] 
Lf1 

[mm] 
Lf2 [mm] N 

76 13.4 0.93 46.8 2 1 4.1 10.5 21.2 6 

75 13.3 0.48 58.1 2 1 3.2 21.5 17.3 6 

74 13.2 0.79 49.8 1 1 3.6 8.3 26.1 6 

67 11.8 0.66 45.7 2 3 3.8 15.4 25.6 6 

21 11.8 0.81 46.1 3 1 3.5 28.3 30.6 2 

Design 
Mechanical output 

power [Ns/m] (Obj1) 
Electrical Input power 

[VA] (Obj2) 1w  2w  Efficiency 

76 17.69 18.73 1 0 0.94 

75 13.03 14.3 0.81 0.19 0.91 

74 8.84 10.52 0.69 0.31 0.84 

67 5.64 6.45 0.59 0.41 0.87 

21 1.35 1.58 0.48 0.52 0.85 
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stepped-horn transducer under the condition of load can be readily derived from equations 

(4.86) and (4.89). It is given by  

a

m

p
P

P

ˆ

ˆ
=λ                  (5.2) 

The power efficiencies of the above 5 Pareto-optimal transducers have been calculated and 

the results are shown in Table 5.10.  It is obvious that Design 76 has the highest power 

efficiency.  

Compared with the other designs, Design 76 has the advantages in terms of the coupling 

factor, the piezoelectric quality number and the power efficiency. Therefore, it is the preferred 

design for implementation.  
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Fig. 5.17 Configurations of the stepped horn transducers with load for 5 Pareto-optimal 

solutions after clustering 
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Fig. 5.18 Admittances UI ˆˆ of 5 designs in Table 5.9 for the stepped-horn transducers with 

load as functions of frequencies (the Bode plot) 
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Fig. 5.19 Admittances UI ˆˆ of the 5 designs in Table 5.9 for the stepped-horn transducers 

with load as functions of frequencies in the complex plane (the Nyquist plot) 
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5.3.3 Load Characteristics of Stepped-horn Transducers 

In the above multiobjective optimization problem of the stepped-horn transducer with load, a 

spring-damping load has been assumed. For the given load, the set of Pareto-optimal designs 

of the transducer has been obtained by means of MOEAs.  In ultrasonic machining and 

bonding, piezoelectric transducers operate against loads. It is then a natural question how the 

load affects the behavior. In order to study the effect of loads on the resonance performances, 

in the following, the damping is not a fixed value, whereas the other parameters are not 

changed. 

The power efficiency and mechanical output power of the 5 Pareto-optimal transducers as 

functions of the damping were calculated according to equations (5.2) and (4.86) and plotted 

in Figs. 5.20 and 5.21, respectively. The efficiencies of the 5 solutions increase rapidly in the 

range of less than about dL=80Ns/m (for Design 21, Design 67, Design75 and Design 76) as 

well as dL=500Ns/m (for Design 74) and decrease with increasing the load damping 

gradually. It is noted that the efficiencies have maxima at the region of about 25-80 Ns/m for 

Design 21, Design 67, Design75 and Design 76. For Design 74 the range is around 400-500 

Ns/m. The mechanical output powers of Designs 67, 75 and 76 increase rapidly in the range 

of about less than 40Ns/m and rapidly decrease with the increase of the load damping, 

whereas for Designs 21 and 74 the variation of mechanical power is not obvious.  It is noticed 

that Design 76 has larger power efficiency and mechanical power than the others in a wide 

range of the damping load. 

If the damping of the transducer matches the load damping, the maximum power efficiency 

and mechanical power can be obtained. Generally, for a given load damping, the match of 

damping can be achieved by changing the structure of the transducer. It should be pointed out 

that the power efficiencies and mechanical powers of 5 Pareto-Optimal designs for the 

stepped-horn transducer didn’t arrive at their respective maximum values in the 

multiobjective optimization problem before, where the load damping dL is equal to about 202 

Ns/m (see section 4.6.4). Since two trade-off objectives must be considered simultaneously, it 

is not possible to achieve a match of the transducer to the load damping by changing the 

structure of the transducer. However, the electrical input power and mechanical output power 

of the 5 designs are Pareto-optimal, respectively.     

The load characteristics of other Pareto-optimal transducer designs can be analyzed similarly. 

Obviously, load characteristics can be used a high level information to determine the 

preferred transducer for implementation.  

In this chapter, the optimized results of the optimization problems for Langevin-type 

transducers have been evaluated and discussed. In order to search for the preferred solutions 

various selection methods and high level information can be applied. The optimized results 

show that the performances of the Pareto-optimal transducer are obviously affected by the 

material of the end blocks. Titanium and brass are preferred materials. The load has much 

influence on the behavior and vibration form of the Pareto-optimal transducer obtained under 
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the condition of no load. In all multiobjective optimization problems discussed here, only 

two-objective optimization problem considering the vibration amplitude and electrical input 

power at a given resonance frequency as design objectives have been studied. For other 

optimal design objectives, similar methods can be used. The methods and procedures for 

designing piezoelectric transducers via multiobjective optimization can be applied in other 

MOPs.  
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Fig. 5.20 Power efficiencies of 5 designs shown in Table 5.9 as functions of the load damping 

for the stepped-horn transducer      
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Fig. 5.21 Mechanical output powers of 5 designs shown in Table 5.9 as functions of the load 

damping for the stepped-horn transducer 
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6 Summary and Outlook                                                                        

The design of piezoelectric actuators is usually based on single-objective optimization only. 

In most practical applications of piezoelectric actuators, however, there exist multiple design 

objectives which often are contradictory to each other by their very nature. This dissertation 

has studied various multiobjective optimization methods and applied them in the design of 

piezoelectric transducers. The main contribution has been to formulate the design of a 

piezoelectric transducer as a constrained multiobjective optimization problem involving 

continuous and discrete design variables and to find Pareto-optimal solutions using 

multiobjective evolutionary algorithms. The determination of the preferred designs using high 

level information was also addressed.  

As the basis for the optimization of piezoelectric actuators the most important fundamentals 

concerning piezoelectric actuators were first described. In order to formulate optimization 

problems, the behaviors of piezoelectric actuators were modeled. The fundamental equations 

for describing electromechanical behaviors of piezoelectric actuators are piezoelectric 

constitutive equations. Four models that can be applied to describe the vibration behavior of 

the piezoelectric actuator were described by using the modeling of a longitudinal piezoelectric 

actuator as an example. These models are nonparameter models, continuum models, finite 

element models and lumped parameter models. Nonparameter models are predominantly 

applied in the experimental characterization of dynamic behaviors of piezoelectric actuators. 

As no parameters are used in the models, they are not suitable to the optimization problem. 

Continuum models can well describe the vibration behavior of piezoelectric actuators with 

simple geometry. As material data and geometrical parameters are taken into account in 

models, continuum models can be used in the design process for the formulation of 

optimization problems. Finite element models can describe the vibration behavior of 

piezoelectric actuators with complex geometry and boundary conditions. However, the cost of 

numerical computation in the finite element models is notably higher than the cost in 

continuum models. They are not well suited for optimization problems occurring in the early 

design stages. Lumped parameter models can well describe the vibration behavior of the 

piezoelectric actuator operating in the vicinity of one of its resonant frequencies. Their 

advantage is that the vibration behavior of the actuator can be described by simple algebraic 

equations and it is convenient to formulate the performance criteria for actuators using these 

models.  Piezoelectric actuators have been widely used in different fields. For different 

applications, there exist different design goals. The typical design goals of piezoelectric 

actuators for one stroke driving and resonant driving were introduced. The state of the art of 

optimization of piezoelectric actuators was reviewed. Although various optimization 

problems have been studied in literature, piezoelectric actuator design via multiobjective 

optimization was scarcely reported. A latent need for studying the integrated optimal design 

procedure of piezoelectric actuators including modeling, mathematical formulation, 

optimization algorithms and implementation was identified.  
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The models of the piezoelectric actuators provide the base for formulating MOPs. In 

combination with an appropriate optimization method the underlying MOP can be solved. In a 

MOP, because of conflict among objectives, it is not always possible find a solution for which 

each objective arrives at its optimal value simultaneously. Therefore, the concepts of non-

domination and Pareto-optimality were introduced. The solutions of a MOP were given in the 

non-domination or Pareto-optimality sense. To find solutions belonging to a better non-

dominated front and simultaneously to maintain diversity in the non-dominated solutions are 

two important goals in a multiobjective optimization.  

Most traditional multiobjective optimization methods convert the MOP into a single objective 

problem and then solve the problem using widely developed methods for single objective 

optimization. Some commonly used traditional multiobjective optimization methods 

including weighted sum methods, ε-constraint methods, weighted metric methods and value 

function methods were described in brief. These methods require some problem knowledge 

before optimization is performed. Some techniques may be sensitive to the shape of the 

Pareto-optimal front. Moreover, they require several optimization runs to obtain an 

approximation of the Pareto-optimal set. Evolutionary algorithms (EAs), on the other hand, 

are able to find multiple Pareto-optimal solutions in a single simulation run due to their 

population-approach. They are well suited for multiobjective optimization and the problems 

with discrete variables. By using a diversity-preserving mechanism, moreover, MOEAs can 

also find widely different Pareto-optimal solutions. The basic structure of a MOEA is similar 

to a single-objective GA. Since a scalar fitness is needed for reproduction in an EA, the 

essence of a MOEA is how to assign a scalar fitness to each individual from multiple 

objective functions. According to different fitness assignment methods, various MOEAs have 

been developed over the past decades. In this dissertation, the multi-objective GA (MOGA), 

the non-dominated sorting GA (NSGA), the elitist NSGA (NSGA-II), the strength Pareto EA 

(SPEA) and the improved SPEA (SPEA2) were studied. In MOGA and NSGA, the fitness of 

each individual is first assigned according to their respective Pareto-ranking methods. Then 

the shared fitness is calculated in order to maintain diversity among non-dominated solutions. 

Proportionate selection operators are used in the two GAs. In the two GAs mentioned above, 

no elite-preservation is performed. NSGA-II, SPEA and SPEA2 are three MOEAs with elite-

preservation. In NSGA-II, non-dominated sorting is first performed among a population of 

size 2N consisting of offspring and parent populations. A new population of size N is then 

filled by individuals first according to their ranks and then according to the crowding 

distances. This provides an elite-preservation. The crowded tournament selection operator is 

used for obtaining the mating pool. In SPEA, the elites are preserved by using an external 

population. The fitness (strength) of each elite individual and the fitness of each individual in 

the current population are assigned according to respective expressions related to the number 

of dominated solutions. A clustering technique is used to reduce the size of external 

population when its size is larger than the specified size. A binary tournament selection 

operation is performed in this MOEA. SPEA2 is an improved version of SPEA. An improved 

fitness assignment scheme, a nearest neighbor density estimation technique and a new archive 
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truncation method are used in this MOEA. The methods for handling constraints in MOPs 

were studied. The penalty function approach and the constrained tournament method are two 

commonly used methods. 

Based on modeling and multiobjective optimization techniques, multiobjective optimal design 

problems of Langevin-typed piezoelectric transducers were studied. For the transducers used 

in ultrasonic bonding and machining, the most important design criteria are the resonance 

frequency, electrical input power, mechanical output power, coupling factor, power 

efficiency, efficiency, mechanical quality factor, piezoelectric quality number, volume of 

piezoelectric materials and mass and size of the transducer. These performance criteria can be 

considered as objective functions in MOPs of transducers. In this dissertation, two-objective 

optimization problems were studied. As the influence of prestress on the resonance 

performance of the transducer can not be modeled in theory, experimental study was applied 

in determining optimal prestress. The coupling factor and piezoelectric quality number were 

considered as design objectives. Lumped parameter models and parameter identification were 

used in the formulation of optimization problems. The Pareto-optimal pre-stresses for the 

freely vibrating transducer and the transducer with a mechanical load were found respectively. 

Two kinds of Langevin-typed transducers (the symmetrical transducer as well as the 

transducer with a stepped horn) were designed via multiobjective optimization. The transfer 

matrix method based on continuum models was applied in formulations of MOPs. For the 

MOPs of freely vibrating transducers, the minimum electrical input power and the maximum 

resonant amplitude were considered as two design objectives. For the MOPs of transducers 

with a mechanical load, the maximum mechanical output power and the minimum electrical 

input power were considered as design objectives. In all problems, an equality constraint is 

used to assure that the transducer operates at the specified resonance frequency and several 

inequality constraints are used to specify the ranges of the input power, input current and 

dimensions of the transducer respectively. Each MOP of the freely vibrating transducer with 2 

piezoelectric rings was solved by using MOGA, NSGA, NSGA-II and SPEA (SPEA2), where 

penalty functions were used to transfer constrained MOPs into non-constrained MOPs. Each 

MOP of the freely vibrating transducer with 2 piezoelectric rings was also solved by using 

NSGA-II where constrained tournament method instead of the penalty function approach was 

used. Unlike the common NSGA-II, the crowded tournament selection operation was 

performed only for creation of the new population. In MOGA and SPEA (SPEA2), the 

niching strategy was performed in the objective space. The other MOEAs used parameter-

space niching. As the design variables include continuous and discrete types, a mixed coding 

scheme was used in each MOEA. The blended crossover (BLX-α) was applied to the 

continuous variables. For the discrete variables a single-crossover was used. The mutation 

operation was only applied to discrete variables.  

Optimization results were evaluated in terms of the extent of the obtained non-dominated 

solutions close to the true Pareto-optimal front and the diversity in the obtained non-

dominated solutions. For MOPs of symmetrical transducers, the SPEA did better than the 

others relatively. It was then applied in the MOPs of symmetrical transducers with 4 and 6 
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piezoelectric rings, respectively. For MOPs of the transducer with a stepped horn, NSGA2 

using the penalty function method did better than the others. It was then used to solve the 

MOPs of the transducer with a stepped horn. In each MOP, after all non-dominated solutions 

for transducers with 2, 4 and 6 piezoelectric rings were obtained, the second level 

optimization was performed and Pareto-optimal solutions were searched among all obtained 

non-dominated solutions. In the practical design of piezoelectric transducers, generally, only 

one solution is needed to be implemented finally. Methods for determining preferred solutions 

from obtained Pareto-optimal solutions were studied. The preferred solution was chosen 

according to the specified weight vector and the performance criteria which were not used as 

design objectives, respectively. The coupling factor, the piezoelectric quality number and 

power efficiency as high-level information have been applied in determining the preferred 

designs. In order to reduce the size of obtained Pareto-optimal solutions, a clustering 

technique was applied. The NSGA2 using the penalty function method was also applied in the 

MOP of the stepped-horn transducers with a mechanical load. The second level optimizations 

and clustering were performed .The preferred solutions were determined using similar 

methods. The load characteristics were discussed. 

This dissertation has presented an integrated procedure for piezoelectric transducer design via 

multiobjective optimization methods. The integrated procedure can be applied in other two-

objective or Mutiobjective optimization problems of piezoelectric actuators. In order to obtain 

better optimized results, further investigations can be performed in two aspects. First, the 

quality of models of piezoelectric actuators can be improved if fewer simplifications are used. 

In this dissertation, some simplifications have been introduced into the modeling. For 

example, the bolt was not modeled as a separate element, but the characteristics of the bolt 

were incorporated in the backing and front rods. The actual piezoelectric rings were modeled 

as piezoelectric discs. The electrodes were not taken into account in the model. The nonlinear 

characteristic of piezoelectric material under high electrical field strength was not considered. 

Second, in addition to MOEAs used here there exist other MOEAs and other multiobjective 

optimization methods such as set oriented subdivision algorithms (see [DSH04] and 

[SMD03]) and multi-objective particle swarm optimization (MOPSO) methods [MT03]. They 

can also be applied to MOPs of piezoelectric actuators. 
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Appendix A 

Derivation of Individual Transfer Matrix  

In this section, the expressions of the transfer matrices of the fundamental block elements are 

derived using the analytical models based on rod theory, respectively. In the following 

expressions, all material moduli are considered as real values. If material loss is taken into 

account, complex moduli can be applied instead of real moduli.    

Mechanical Rod Elements The vibration behavior of a mechanical rod element (see Fig. 

4.12) can be described by the one-dimensional wave equation  

),(" ),(
2

tzuctzu m=&&                (A.1) 

with motion and force boundary conditions. Where cm is the wave propagation speed  

ρ

E
cm =                 (A.2) 

The axial force and vibration velocity in the rod element are 

      ),('),(),( tzEuAtzTAtzF bb ⋅=⋅=              (A.3) 

      ),(),( tzutzv &=                (A.4) 

There are the following motion and force boundary conditions  

     )(),(    ,)(),0( tvtLutvtu abe == &&              (A.5) 

        )( ),('  ),(),0(' tFtLEuAtFtEuA abbeb ==             (A.6) 

As the complex expressions will be used in the computation, the velocity and force quantities 

at both sides of the rod element for harmonic vibrations are written as 

         , ˆ)(   , ˆ)( tj

aa

tj

ee evtvevtv ΩΩ ==              (A.7) 

        , ˆ)(   , ˆ)( tj

aa

tj

ee eFtFeFtF ΩΩ ==              (A.8) 

The above boundary value problem can be solved by means of the separation-of-variables 

method described in chapter 2 for the case of harmonic vibrations. That is 

      ( ) tjzjkzjk
eeCeCtzu mm Ω−+= 21),(              (A.9) 

where mm ck Ω=  is the wave number. 
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Substituting the equation (A.9) into the equations (A.5) and (A.6) and considering the 

equations (A.7) and (A.8) yield the following transfer matrix relation 
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Using Euler’s equation this may be written as 
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Therefore, the transfer matrix of the mechanical rod element is obtained as follows 
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Piezoelectric Elements The transfer model matrix for a piezoceramic element can be derived 

by means of the method described in chapter 2. Here the brief derivation is given.  

According to equations (2.17) and (2.18) in chapter 2 the axial force and the current applied in 

the piezoceramic element (see Fig. 4.13) can be described as follows 
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E
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),('),('),(),( 3333 tztzuetzDAtzI
S

p φε &&& −=⋅=                                                      (A.14) 

Besides mechanical boundary quantities shown in equations (A.7) and (A.8), for the 

piezoceramic element there exist electrical boundary quantities 

       tjtj eItIeUtU ΩΩ == ˆ)(,ˆ)(                                                                                  (A.15) 

According to equations (2.27) and (2.28) the governing equations for describing the vibration 

behaviors of the piezoceramic element are 
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According to equations (2.33) and (2.34), solutions of the above governing equations can be 

written as  
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        tjzjkzjk

S
eCzCeCeC

e
tz pp Ω−









+++= 4321

33

33 )(),(
ε

ϕ                         (A.19) 

There are the following mechanical and electric boundary conditions (see Fig. 4.13) 
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Substituting the equations (A.18) and (A.19) into (A.20), (A.21) and (A.22) it follows 
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Eliminating C1, C2, and C3 and getting av̂ , aF̂ and Î  in terms of ev̂ , eF̂ and Û from the above 

equations, the transfer matrix relation can be obtained as follows 
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Similarly, (A.29) may be written as 
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Appendix B 

Developed Programs   

B.1   Multiobjective Optimization of Symmetrical Langevin Transducers 

     1.   Optimal design of symmetrical Langevin transducers using MOGA 

     2.   Optimal design of symmetrical Langevin transducers using NSGA 

     3.   Optimal design of symmetrical Langevin transducers using SPEA 

     4.   Optimal design of symmetrical Langevin transducers using NSGA-II  

B.2   Multiobjective Optimization of Stepped-horn Transducers 

     1.   Optimal design of stepped-horn transducers without load using MOGA 

     2.   Optimal design of stepped-horn transducers without load using NSGA 

     3.   Optimal design of stepped-horn transducers without load using SPEA2 

     4.   Optimal design of stepped-horn transducers without load using NSGA-II  

     5.   Optimal design of stepped-horn transducers with load using NSGA-II   
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