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Abstract

Multi-parent genetic algorithms (MPGASs) generalize genetic algorithms (GAs) by al-
lowing more than two parents participating in crossover and have received a consider-
able number of satisfactory results. However, various issues arising from the increase
of parents are still left open: What is the beneficial number of parents? Who should be
mated? When will MPGAs outperform GAs? Why do MPGAs perform better?

This thesis addresses these open issues through design and analysis of MPGAs. First,
a novel mating strategy is proposed to deal with the mating issue and the number of
parents in MPGAs. Parents are filtered according to the tactics of tabu search for
a balance of maintaining population diversity and supplying selection pressure. The
resultant validity of mating is further used to adjust the number of parents adaptively.
Consequently, the mating and the number of parents in MPGAs are well controlled.
The experimental results on a series of common test functions show the superiority of
this approach over GA and MPGA in terms of convergence speed and solution quality.

Second, we conduct a theoretical analysis on the influence of increasing the number
of parents over the performance of crossover. The analysis focuses on uniform scanning
crossover (U-Scan) and occurrence based scanning crossover (OB-Scan) since both
of them are multi-parent generalizations of uniform crossover — the most popular
crossover in GAs. A simple yet effective analytical model, the uniform population model,
is presented as a systematic population environment for analysis. Under the assumption
of uniform population, the analytical results reveal that on the one hand the number of
parents in U-Scan exerts no influence on the performance of MPGAs; on the other hand,
increasing the number of parents in OB-Scan will intensify the exploitation in MPGAs.
Restated, raising parents in OB-Scan accelerates the convergence but is vulnerable to
premature convergence. These theoretical claims are validated in an empirical manner.

Third, a Markov model for MPGAs is developed to understand the behavior of
MPGASs, to investigate the causes of the superiority of MPGAs over GAs, and to
discover the parameters that benefit MPGAs. Inceptively, we look into the variation
of gene frequency affected by each MPGA operator. The integral influence of these
operators is further formulated by Markov chain theory. Thus the proposed Markov
model considers the separate as well as the integral effects of the population size,



v Abstract

selection intensity, the number of parents, mutation rate, and generation gap in the
course of evolution. Through this model, we show that U-Scan is essentially a special
case of OB-Scan; precisely, U-Scan with any number of parents performs analogously
with 2-parent OB-Scan, i.e. uniform crossover. Furthermore, we prove that the increase
of parents in MPGAs using OB-Scan speeds up genetic drift and reinforces the bias of
drift toward allele 1 or 0.

In addition, we make use of this Markov model to explore the convergence of MPGAs
in the Generalized OneMax problems, including the OneMax problem and the BinInt
problem. The analytical results of the mean fitness in these problems demonstrated
that, as mutation is applied, MPGAs using OB-Scan gain preferable solution quality
at the cost of convergence time. However, the defects do not outweigh the merits.
Concerning the convergence speed, MPGAs using OB-Scan for particular numbers of
parents are able to converge faster than GAs. Even in a short running time, MPGAs
using n-parent OB-Scan with n > 2 are proved to be capable of better solution quality
than GAs. The proposed Markov model, therefore, can explicitly predict the behavior
of MPGAs and helps to find out the optimal setting of MPGAs for the Generalized
OneMax problems. Furthermore, these outcomes can afford to hint the appropriate
setting of MPGAs for other problem domains, which is of great benefit to extend and
improve the utility of MPGAs.
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Introduction

This thesis is about design and analysis of multi-parent genetic algorithms. Genetic
algorithms (GAs) have received a great deal of attention on their effectiveness in a
variety of optimization problems [43, 44, 48]. The basic idea of GAs is to enhance the
candidate solutions of a given problem by simulating the mechanisms of natural evo-
lution, such as selection, crossover, and mutation [55]. Crossover is the most salient
operator in GAs. Traditionally, GAs adopt two parents in crossover to reproduce off-
spring. This idea is reasonable because, to the best of our knowledge, the form of sexual
reproduction on Earth is absolutely of two parents. In computer world, multi-parent
crossovers break through this natural limitation by allowing more than two parents
in reproduction of offspring. Multi-parent genetic algorithms (MPGAS) represent the
GAs using multi-parent crossover. With respect to the number of parents, MPGAs are
generalizations of GAs.

Several multi-parent crossovers and MPGAs have been proposed and shown their
superiority over GAs in a considerable number of problems [24, 25]. However, various
issues arising from the increase of parents are still left open: What is the suitable
number of parents for a given problem? Who should be mated? When will MPGAs
outperform GAs? Why do MPGAs perform better? In this thesis, we will deal with
these issues by means of design and analysis of MPGAs.

This introductory chapter recapitulates the algorithms GAs and MPGAs. Moreover,
we will demonstrate the open issues in MPGAs and our goals. The contributions of this
thesis will be shown afterwards. Finally, we will outline the organization of this thesis.

1.1 Genetic Algorithms

Genetic algorithms (GAs) are well-known meta-heuristic algorithms and have shown
their effectiveness in a variety of fields, for instance, machine learning [48, 69|, numer-
ical optimization problems [20, 66], combinatorial problems [51, 82|, multi-objective
optimization problems [15, 21, 118], and design |7, 43]. The general principle of GAs
is to simulate the mechanisms of natural evolution, such as selection, crossover, and
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mutation [55]. Based on Darwin’s theory “Survival of the Fittest” [17], GAs are be-
lieved to be capable of evolving candidate solutions into better ones. To this end, GAs
encode candidate solutions as chromosomes. Bit strings are widely used as the struc-
ture of chromosomes, while other structures, like real number, order (sequence), etc.
are also applicable in GAs. Instead of a single chromosome, GAs evolve with a set
of chromosomes, called the population. The fitness function is devised to evaluate the
quality (fitness) of candidate solutions (chromosomes). Intuitively, for a maximization
problem, the better the solution, the higher the fitness.

For binary-coded GAs, the chromosomes and the population are defined as follows.

Definition 1.1 (Chromosome and Population).

1. A chromosome c is encoded as a bit string, i.e. ¢ def (c1,...,¢) € {0,1}, where ¢;
denotes a gene and [ is the chromosome length.

2. The population C is a set of chromosomes: C def {c1,...,cm}, where c; € {0,1}
and m s the population size.

Here we clarify the notion of ‘locus—gene—allele’ used in this thesis.

Definition 1.2 (Locus—Gene—Allele). For a gene ¢; € {0,1}, the index (position) i
denotes the locus of ¢;, and the potential values 0 and 1 are both alleles of ¢;.

Figure 1.1 demonstrates the process of GAs. The evolution of GAs begins with the
initialization of the population. Afterwards, GAs embark on the process of reproduc-
tion. First, the selection operator picks two chromosomes from the population to serve
as parents. Next, GAs perform crossover on these two parents to reproduce their off-
spring. The predetermined probability, crossover rate, defines the probability to perform
crossover. Analogously, mutation is performed with a probability, mutation rate, on the
offspring reproduced by crossover to slightly alter some genes. This process of repro-
duction repeats until the set of offspring, called the subpopulation, is filled. Acting on
“Survival of the Fittest”, the survivor operator draws the fittest chromosomes out of
the subpopulation with (or without) the primitive population; the chosen chromosomes
will constitute the population for the next generation. Following this procedure, GAs
evolve until a predetermined termination criterion is met. The pseudocode of GAs is
given in Algorithm 1.

Crossover (or recombination) is the most salient feature of GAs. It reproduces off-
spring by exchanging and recombining genetic material from two parents. Figure 1.2
illustrates three common crossovers: one-point crossover |20, 55|, two-point crossover
[20, 55], and uniform crossover [99]. One-point crossover divides each parent into two
sections by one crossover point; then it exchanges and recombines one of the two sec-
tions with another parent. Similarly, two-parent crossover divides each parent into
three segments by two crossover points and exchanges the middle section with another
parent. Instead of sectionally, uniform crossover treats each locus independently and
determines the donor at random. It is deserving of note that one-point, two-point,
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Selection

Population

Survivor

Mutation

Fig. 1.1. Process of GAs

Algorithm 1 Genetic Algorithms
t—0
Initialize population C(t)
Evaluate C(t)
repeat
repeat
c1, ¢z — Select(C(t))
ci,ch «— Crossover(ci,ca)
c?,cy «— Mutate(cl,ch)
Ct+1)«—Ct+1)u{ct,cy
until (C(t + 1) is filled)
C(t+ 1) « Survivor(C(t),C(t + 1))
t—t+1
until (termination criterion is satisfied)

and even multi-point crossovers are special cases of uniform crossover. In other words,
uniform crossover is a generalization of these k-point crossovers.

The way of exchanging material in crossover implies that crossover is subject to the
representation of chromosomes. The three crossovers shown in Fig. 1.2, for example, are
applicable to binary-coded GAs as well as real-coded GAs, but they are inapplicable
to order-based GAs. For order-based GAs, some other crossovers are proposed, such
as partially mapped crossover (PMX) [49], order crossover (OX) [18], cycle crossover
(CX) [78], and the series of edge recombination (EX) [23, 65, 76, 98, 102, 115]. On the
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Parent 1 ¢> Offspring 1 [1]0[1[1]4]4]o[1]
Parent 2 Ilﬂl Offspring 2 [4]4]0]1[0[0[0]1]

(a) One-point crossover

Parent1 [1]0}1]1]0]o]0]1] E> Offspring 1 [1]0[0]1]1]0]0]1]
Parent2 [1]1]o1]1|1]o]1] Offspring 2 [1]1]1][1]o[1]0]1]

(b) Two-point crossover

Parent1 [1]0[1[1]0[o[o]1] Offspring 1 [1[o[0l1 HI#IoJ4]
>
Parent2 [1l1lolt[7l7Io] Offspring 2 [4]4]1 [4To[oJol1]

(c) Uniform crossover

Fig. 1.2. One-point crossover, two-point crossover, and uniform crossover

other hand, these crossovers are not suitable for binary-coded GAs. Regarding the key
role of crossover in the performance of GAs, a growing number of crossovers [7, 95] are
devised to improve the performance or to handle specific problems and representation.

The performance of GAs is mostly examined in an empirical manner owing to
their intrinsically stochastic property. The development of theory, nevertheless, is a
paramount research topic in GAs. Several theoretical methods have been proposed to
substantiate the merits of GAs or introduced to describe and predict the behavior of
GAs. In the following paragraphs we briefly describe some important methods of them.
For an overview of theoretical aspects of GAs refer to [31, 58, 86, 88, 91, 92].

1. Schema Theorem:

This theorem was first proposed by Holland [55] and was deemed as the fundamental
to explain the power of GAs. A schema stands for a hyperplane in the search space;
the order of a schema is the number of definite positions (0 or 1) in the hyperplane.
The schema theorem shows that a GA processes nearly O(m?) schemata at each
generation; this phenomenon leads to the notion of implicit parallelism in GAs. The
building block hypothesis (BBH) [48| further states that GAs can yield long and
high-order schemata by progressively combining short low-order ones. However,
the schema theorem is controversial [4, 70, 80| and cannot describe the dynamic
behavior of GAs.

2. Markov Chain Theory:
The process of GAs is only relevant to the previous generation but is irrelevant to
the events earlier than the previous generation. In consideration of this memoryless
property, Markov chain theory is particularly appropriate for modeling the behavior
of GAs [5, 13, 50, 56, 64, 100] and for analyzing the global convergence of GAs
[2, 19, 26, 77, 85, 113]. Even though Markov chain theory serves as a powerful
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tool to describe and predict the behavior of GAs in theory, the enormous degree of
transition matrix hinders its applicability in practice: the transition matrix in Nix

and Vose’s model |77, 113], for example, has (m;Q2_l1_ 1) columns and rows.

3. Quantitative Genetics:

The concept of GAs is inspired by natural evolution; thus, it is intuitive to ana-
lyze GAs by means of existing analytical methods in genetics. Through theories
in quantitative genetics, Miihlenbein [72, 73] developed a theory to analyze the
time complexity and to predict the behavior of a specific GA — the breeder genetic
algorithm (BGA). The defects of this theory include the assumption of spherical
symmetry for the fitness and the assumption of infinite population, both of which
are inapplicable to conventional GAs [31, 87, 88].

4. No Free Lunch Theorem (NFL):

The no free lunch theorem [117] states that all optimization methods have equiva-
lent performance, if averaged over all fitness functions. In other worlds, no GA can
outperform any other optimization methods in all kinds of problems. This theorem
reveals that any evolutionary algorithm has its cost and [limit in its superiority of
performance. Nonetheless, intense and contentious debate over the utility of NFL
theorem was sparked and is still ongoing in the evolutionary computation commu-
nity: First, the average performance over all fitness functions is of little interest
in practice [22, 88|. Second, the NFL assumes no revisiting of the same point in
the search space, which does not hold in GAs unless some memory mechanism is
adopted.

1.2 Multi-Parent Genetic Algorithms

Traditionally, GAs adopt two parents in crossover to reproduce offspring. This idea
is reasonable because, to the best of our knowledge, the form of sexual reproduction
on Earth is absolutely of two parents. However, in computer world it is feasible to
break through this natural limitation. Multi-parent crossovers are the very crossovers
that break through the ‘2-parent’ confines and allow for operation with more than two
parents.

Multi-parent genetic algorithms (MPGAs) are genetic algorithms using multi-parent
crossover. Simply speaking,

MPGAs = GAs + Multi-Parent Crossover.

With respect to the number of parents, MPGAs are generalizations of GAs.

The debut of multi-parent crossovers in evolutionary computation was as global re-
combination in evolutionary strategies (ES) [9, 93]. Global recombination determines
each offspring gene according to the whole population rather than only two parents.
Such a global form, as a result, allows an offspring to inherit from more than two
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parents. For GAs, several multi-parent crossovers were proposed afterwards. By gen-
eralizing uniform crossover and one-point crossover, Eiben et al. proposed two multi-
parent crossovers: scanning crossover [30] and diagonal crossover |35, 36]. Depending
on the heuristics applied to it, scanning crossover has three variations: uniform scan-
ning crossover (U-Scan), occurrence based scanning crossover (OB-Scan), and fitness
based scanning crossover (FB-Scan). Experimental results [30, 34, 35, 36] on several
test functions show that, in terms of success rate, both scanning crossover and diagonal
crossover outperform their 2-parent versions, namely uniform crossover and one-point
crossover. The results also indicate that there exists a positive correlation between the
success rate and the number of parents in diagonal crossover. Such a correlation, never-
theless, does not hold in scanning crossover. In terms of convergence speed, the superi-
ority of these two multi-parent crossovers over their 2-parents versions is inconclusive.
Eiben and Béck [27, 28] further examined the performance of these two multi-parent
crossovers in ES. They concluded that multi-parent crossovers are practically sound for
ES from experimental results on seven numerical problems.

Aside from diagonal crossover and scanning crossover, Miihlenbein et al. [74, 112]
introduced the concept of global recombination into GAs as gene pool recombination
(GPR). Rather than from two parents, GPR samples the genes for crossover from the
gene pool, which consists of several pre-selected parents. The studies show that GPR
and its variants are easier to analyze and these methods can converge faster than 2-
parent recombination. Tsutsui and Jain [110] proposed multi-cut crossover (MX) and
seed crossover (SX). Noteworthily, multi-cut crossover generalizes the classic two-point
crossover and was shown empirically to outperform diagonal crossover.

Some multi-parent crossovers for the GAs using representation other than bit string
have been proposed as well. For real-coded GAs, Tsutsui and Ghosh [108, 109| pre-
sented a series of multi-parent crossovers: center of mass crossover (CMX), multi-parent
feature-wise crossover (MFX), and seed crossover (SX). Experimental results demon-
strate that these multi-parent crossovers can lead to better performance although the
performance is problem-dependent. Another multi-parent crossover, simplex crossover
(SPX) [111], reproduces by the simplex sampled from multiple parents. Their results
show that this method performs well with three or four parents for multimodal and
epistatic problems. Moreover, Kita et al. [61] introduced multiple parents into unimodal
normal distribution crossover (UNDX) to enhance the diversity of offspring. This multi-
parent extension of UNDX exhibits its improvement in search ability on highly epistatic
problems.

For order-based GAs, Eiben et al. [30] devised adjacency based crossover (ABC),
which is similar to edge recombination [115, 116] but extends the number of parents to
an arbitrary value. In addition, some of the multi-parent crossovers for binary-coded
GAs can be directly applied to order-based GAs. For example, scanning crossover [30]
was adopted to solve the graph coloring problem and the traveling salesman problem
(TSP). However, experimental results point out that the benefit of using more than
two parents in either ABC or scanning crossover is inconclusive.
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To tackle multi-objective optimization problems, Lis and Eiben [63] introduced the
concept of sex into multi-parent crossover as multisezual genetic algorithm (MSGA).
The sex is appended to each chromosome in order to indicate a specific criterion to
optimize. Restated, the fitness is evaluated by the objective function corresponding
to the sex. Esquivel et al. [38, 39| extended this method into the multi-sezual-parents-
crossover genetic algorithm (MSPC-GA) by enabling multiple parents per sex and mul-
tiple crossovers per mating. This approach obtains a satisfactory result in the number
of non-dominated solutions on the Pareto front. Leiva et al. [62] further incorporated
this approach with local search and received even better results.

A few studies aim for theoretical analysis on multi-parent crossovers. Concerning
diagonal crossover and scanning crossover, Eiben et al. [36] investigated the effects
of these two crossovers on distributions by Walsh product. For a GA using 10-bit
representation and no mutation, their analytical results indicate that the performance of
3-parent uniform scanning crossover is very close to that of 3-parent diagonal crossover;
specifically, their difference in the expected fitness on the inverted Rastrigin function
is less than 1. In addition, Eiben and Schippers [32] looked into the impact of the
number of parents on NK-landscape [59] and confirmed the advantage of using more
parents in mildly epistatic problems: The performance of diagonal crossover improves
with the increase of parents, and yet this correlation does not hold in uniform scanning
crossover. The number of donors, namely the parents really participating in the process
of crossover, is further examined in [96]. This analysis shows that almost all parents
will be donors if the number of parents is relatively small to the chromosome length;
however, for short chromosome length only a fraction of parents will become donors.
Moreover, Schippers [90] carried out a study on the genetic drift of scanning crossovers.
Genetic drift [53] is a phenomenon that in a finite population without external forces
(e.g. selection and mutation) the genetic variability of a locus will decay with time and
eventually get fixed to some allele. Schippers proved that uniform scanning crossover
has no influence on genetic drift whilst occurrence based scanning crossover induces
severe genetic drift as the number of parents is increased.

The above-mentioned research on practical and theoretical aspects of MPGAs
showed the power of MPGASs in optimization problems and demonstrated some char-
acteristics of MPGAs. Nonetheless, various issues arising from the increase of parents
in crossover remain open: What is the suitable number of parents? Who should be
mated? When will MPGAs outperform GAs? Why do MPGAs perform better? Sec-
tion 1.3 will shed light on these issues and present our goals for them. In addition,
this thesis is concerned with diagonal crossover and scanning crossover since these two
crossovers generalize the most common 2-parent crossovers: one-point crossover and
uniform crossover, respectively. The analysis of MPGAs, in particular, concentrates
on scanning crossover in that this crossover further generalizes diagonal crossover.
More detailed descriptions and formal definitions of diagonal crossover and scanning
crossovers, including U-Scan and OB-Scan, are given below.
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1.2.1 Diagonal Crossover

Diagonal crossover was first proposed by Eiben [35, 36] as a generalization of one-point
crossover. For n parents, diagonal crossover divides each parent into m sections by
(n—1) crossover points. Thereafter the crossover picks one section respectively from each
parent in a diagonal way and recombines these sections into a complete offspring. This
manner of picking sections gives the name ‘diagonal’ crossover. Figure 1.3 illustrates
3-parent diagonal crossover and 2-parent diagonal crossover, i.e. one-point crossover.
Note that in these examples, one execution of diagonal crossover reproduces only one
child. Clearly, diagonal crossover with 2 parents coincides with one-point crossover;
that is, diagonal crossover generalizes one-point crossover.

Definition 1.3 (Diagonal Crossover). Given n parents ci,...,c, € C and the
crossover points i, ...,Tn—1 € {1,...,1} with v1 <we<---<x,_1. Diagonal crossover
reproduces the offspring ¢’ = (c},...,c)) by

¢, = (cj), foraj_1 <k <y,

where (c;), denotes the Eh gene of parent cj, zo =1 and x, = 1.

s O
Parent 2 ..m. aren
parent3 [0]0j1]of1]1|olo]

Offspring [1]0]1]1]1]1]0[1] Offspring [1/0]0[1]1]1[0]0]

Fig. 1.3. Examples of 2-parent diagonal crossover (left) and 3-parent diagonal crossover (right)

1.2.2 Uniform Scanning Crossover (U-Scan)

Uniform scanning crossover is a multi-parent generalization of uniform crossover. In
uniform crossover, the donor to an offspring gene is randomly chosen from two par-
ents. Analogously, U-Scan determines the donor at random but extends the number
of parents from two to an arbitrary number larger than one. Owing to the random
manner of choosing donors, each parent has equal likelihood to give its gene in both
uniform crossover and U-Scan. Figure 1.4 illustrates 2-parent U-Scan and 4-parent U-
Scan, where 2-parent U-Scan corresponds to uniform crossover. The formal definition
of U-Scan is given as follows.

Definition 1.4 (U-Scan). Given n parents ci,...,c, € C. U-Scan reproduces the
offspring ¢’ = (c},...,¢)) by
¢ = (cj)y fork=1,...,1,

where (cj), denotes the k™ gene of parent cj and j € {1,...,n} is generated randomly
for each k.
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Parent 1 Parent 1
Parent 2 > Parent2
Offspring [1]0[1]1]0]0]o[1] Parent3
Parent 4

1 rendomseleeton Offspring

Fig. 1.4. Examples of 2-parent U-Scan (left) and 4-parent U-Scan (right)

1.2.3 Occurrence Based Scanning Crossover (OB-Scan)

Occurrence based scanning crossover is another multi-parent generalization of uniform
crossover. Rather than random, OB-Scan determines offspring genes depending on the
occurrence of parental genes at that locus. Specifically, it picks the majority of parental
genes as the offspring gene for each locus. Note that in this thesis OB-Scan is defined
to break ties by randomly' choosing a binary number. Figure 1.5 gives examples of
2-parent OB-Scan (corresponding to uniform crossover) and 4-parent OB-Scan.

Definition 1.5 (OB-Scan). Given n parents ci,...,c, € C. OB-Scan reproduces the
offspring ¢ = (c},...,¢)) by

0 if 25— (eh)), <
k> fork=1,...,1,

d=11 i X0 (e)
Rand(0,1) otherwise

(SIS RIS

where (c;), denotes the k™ gene of parent c; and Rand (0,1) € {0,1} is a binary
random function.

Parent1 [1]0[1]1]0]0l0[1 Parent1 [1]0[1]1]0]olo[1]
Parent2 [1[1]0[1[1[4lo[1] [~ Parent2 [lojo[111/1l0[1]
offspring KL 'K | K Parent3 [0]0[1]0[1[1]o]0]
Parent4 [0[1[1]0[1]0[1]1]

W the majority
[ random selection Offspring .0 1 .1 .0 1

Fig. 1.5. Examples of 2-parent OB-Scan (left) and 4-parent OB-Scan (right)

! The original OB-Scan [30] breaks ties by directly inheriting the gene from the first selected parent.
However, random tie break conforms to the generalization of uniform crossover.
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1.3 Issues and Goals

The fundamental issue of MPGASs is:
Can GAs benefit from the increase of parents?

Most of the existing work on MPGAs, as reviewed in the previous section, focuses on
design of multi-parent crossover for more than two parents to participate in crossover,
and ordinarily verifies the benefit of the resultant MPGA in an empirical manner.
However, various issues arising from the increase of parents in GAs are essential but
still left open:

What is the suitable number of parents?
Who should be mated?

When will MPGAs outperform GAs?
Why do MPGAs perform better?

The present thesis aims to resolve these open issues. According to their genre, these
issues are categorized as issues in design of MPGAs and issues in analysis of MPGAs.
The following sections will discuss these issues and present our goals for them.

1.3.1 Issues and Goals in Design of MPGAs
Issue 1: What is the suitable number of parents?

This issue is a consequential issue of raising the number of parents. Many studies, as
reviewed in Section 1.2, have indicated that the number of parents plays an important
role in the performance of MPGAs, and a lot of experiments have been conducted to
find the suitable number of parents for particular test functions. However, like other
parameters in GAs, e.g. population size and mutation rate, there is no winner of the
number of parents for all problems. That is to say, the suitable number of parents is
problem-dependent. In addition, this number is subject to the setting of other MPGA
operators since the performance of MPGAs is an integral effect of all operators. Thus,
this issue also manifests the importance of the third and the fourth issues, which help
to find the suitable number of parents for a given problem with regard to a setting of
MPGA operators.

The first goal of this thesis is to establish a rule to determine the number of parents
that is beneficial to the performance of MPGAs. Considering the fruitfulness of adaptive
approaches on tuning the GA parameters [29, 54, 97|, an adaptive method to adjust
the number of parents during evolution is preferred. To this end, we propose to adjust
the number of parents in response to the status of population diversity. Through the
adaptiveness, this method can overcome the difficulty in determining the appropriate
number of parents for different problems.
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Issue 2: Who should be mated?

In the conventional GAs, no mating strategy is applied to the results of selection; in
other words, parents are approved without any further examination after they are se-
lected at random or by fitness. Indeed, mating in nature is more complicated. The
mating of human beings, for example, is restricted by the blood relationship, which
is irrelevant to fitness. Whitley [114] pointed out that a well-balanced mating strat-
egy regarding population diversity and selection pressure can substantially improve
GAs. In MPGAs, the increase of parents complicates the situation of mating, and the
role of mating becomes more crucial. Hence a well-designed mating strategy will be
advantageous to the performance of MPGAs.

The second goal is to develop a mating strategy for MPGAs in order to improve
their performance. We will implant the tactics of tabu search in the mating of MPGAs.
As a result, parents are filtered in thoughtful consideration of the balance between
maintaining population diversity and supplying selection pressure. Additionally, this
mating strategy will utilize the rule designed for the first goal in order to adaptively
adjust the number of parents in MPGAs. The mating strategy will be amenable to
indicating the ideal mates and determining the appropriate number of parents for
different problems. Consequently, an improvement in performance of MPGAs will be
achieved.

1.3.2 Issues and Goals in Analysis of MPGAs
Issue 3: When will MPGAs outperform GAs?

This issue concerns the interaction between multi-parent crossover and other MPGA
operators. In addition to crossover, MPGA (or GA) operators include selection, muta-
tion, and survivor. The performance of MPGAs, therefore, is attributed to not only the
crossover but also the synergy of all operators. Let us consider the exploitation and the
exploration of evolutionary search. Generally, selection affects the evolutionary search
in both exploitation and exploration, crossover can be exploitative or exploratory, and
mutation focuses on exploration. That is, each operator has it own effect on the evolu-
tionary search, and this effect also interacts with other operators. Thus, to investigate
the influence of raising parents upon MPGAs, we need to take all the properties of
genetic operators into account, in addition to multi-parent crossover.

The third goal is to model the behavior of MPGAs. A theoretical analysis will be
conducted on the variation of gene frequency caused by selection, crossover, mutation,
and survivor, respectively. Moreover, we will build a Markov model to formulate the
variation of gene frequency over time, from which the mean fitness can be derived.
Consequently, the individual and the integral effects of all MPGA operators are derived.
Instead of empirically, this model provides theoretical evidence when MPGAs are able
to outperform GAs. Through this model we can determine the suitable number of
parents associated with the setting of other MPGA operators, such as selection bias
and mutation rate.
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Issue 4: Why do MPGAs perform better?

Many MPGAs have been shown to outperform GAs; nonetheless, the effectiveness of
them is mostly validated in an empirical manner. The characteristics and the impact
of raising parents on GAs are still left open in theory. Without knowledge about them,
we can merely choose the number of parents through trial and error when applying
MPGAs. This time-consuming job by no means meets our expectation of MPGAs.
Theoretical analysis on multi-parent crossovers, therefore, is not only essential to en-
hance the knowledge about the behavior of MPGAs but also valuable for the application
of MPGAs.

The fourth goal of this thesis is to theoretically analyze the influence of raising the
number of parents on MPGAs. To this end, we will investigate the likelihood for a
multi-parent crossover to reproduce better, equal, or worse offspring, and the impact of
increasing the number of parents on it. As a result, the correlation between the number
of parents and the performance of multi-parent crossover can be explored. The resultant
likelihood also contributes to characterize the behavior of MPGAs and to explore the
advantages or disadvantages of applying more parents in MPGAs. In addition, the
proposed Markov model will be used to examine the genetic drift in MPGAs. This will
provide an insight into how fast the population diversity in MPGAs is lost with respect
to the adopted number of parents.

1.4 Contributions

In meeting the above goals, the present thesis makes some solid contributions to the
theoretical as well as the practical aspects of MPGAs. Moreover, since GAs are special
cases of MPGAs, the contributions of this thesis are also applicable to conventional
GAs.

e Theoretical Foundations: In this thesis we propose the uniform population model
for theoretical analysis of crossover, investigate the variation of gene frequency
caused by each MPGA operator, and build a Markov model for MPGAs. First,
the uniform population model establishes a simple yet effective way to analyze in
theory the probability for a crossover to reproduce better, equal, or worse offspring.
Second, beyond the constraint of uniformity in the population, the variation of gene
frequency is investigated and the outcome successfully specifies the respective ef-
fects of MPGA operators on gene frequency. Finally, we formulate by Markov chain
theory the integral influence of MPGA operators upon the gene frequency in the
course of evolution. The proposed Markov model can give the expected fitness over
time and predict the mean convergence fitness and the mean convergence time. All
the theoretical results, furthermore, are examined empirically and show a high level
of consistency with the experimental results.

e Characterization of the Role of Parents in MPGAs: Two characters of MP-
GAs are investigated: the exploitation and the genetic drift. The analysis based on
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uniform population model clues the impact of multi-parent crossover on exploitation
of MPGAs. Moreover, the analysis based on Markov chain theory gives the expected
time (generations) that population diversity drains away and the probability to drift
into allele 1 or allele 0.

e Predictive Model for MPGAs: This thesis builds a Markov model for MPGAs,
which concerns the integral influence of the population size, the selection intensity
in selection, the number of parents in crossover, the mutation rate in mutation, and
the generation gap in survivor over generations. This Markov model can precisely
predict the behavior of MPGAs and helps to find the optimal setting for the above
parameters in MPGAs.

e Improvement of Performance: A mating strategy for MPGAs is proposed to
deal with the mating issue and the number of parents. First, this mating strategy
sifts the parents for a balance between population diversity and selection pressure.
Second, it adjusts the number of parents in response to the diversity in the popu-
lation. The MPGA using this mating strategy is shown to be able to improve the
original MPGA in solution quality and convergence speed. Moreover, the presented
theoretical analyses characterize the behavior of MPGAs and give guidelines for
parameter setting — both help to enhance the performance of MPGAs.

e Guidelines for Determining the Optimal Parameters in MPGAs: We
achieve this goal by means of design and analysis of MPGAs. Depending on design,
the MPGA using the proposed mating strategy adaptively controls the number of
parents according to the situation of the population. On the other hand, theoretical
analysis gives useful hints on determining the appropriate number of parents. The
above-mentioned Markov model is helpful for finding the optimal setting for popu-
lation size, selection intensity, mutation rate, and generation gap in MPGAs for the
Generalized OneMax problem. These outcomes also clue the appropriate parameter
setting of MPGASs for other problem domains.

1.5 Organization

The remainder of this thesis is organized as follows. Chapter 2 proposes a mating strat-
egy to cope with the mating issue and the number of parents in MPGAs. The proposed
mating strategy sorts out the parents who are beneficial to balance population diver-
sity and selection pressure. An accompanied rule is further established to adaptively
reduce the number of parents according to the remaining diversity of the population.
As a result, this mating strategy achieves a harmony in exploitation and exploration
of MPGAs and adjusts the number of parents adaptively. A series of experiments will
be conducted to inspect the merits of this strategy.

In Chapter 3 and Chapter 4, we perform theoretical analysis to explore the char-
acteristics of MPGAs and to investigate the whys and the wherefores that MPGAs
outperform GAs. Chapter 3 analyzes the performance of multi-parent crossover under
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the assumption of a specific population model — the uniform population model. A
criterion based on uniform population is further presented to evaluate the performance
of crossover. Accordingly, we conduct analysis on two multi-parent crossovers: uniform
scanning crossover (U-Scan) and occurrence based scanning crossover (OB-Scan). The
analysis calculates the probabilities for a crossover to reproduce better, equal, or worse
offspring. These probabilities serve to identify how effectively a crossover leads the
evolutionary search toward promising region. In addition, they imply the tendency of
crossover toward exploitation or exploration. We will carry out experiments on common
test functions to verify the capability of this analysis.

Chapter 4 builds a Markov model based on the variation of gene frequency in MP-
GAs. First, we look into the respective effects of MPGA operators on gene frequency.
Next, we model by Markov chain theory the integral influence of these operators over
generations. The proposed Markov model, therefore, concerns the separate as well as the
integral effects of the selection intensity in selection, the number of parents in crossover,
the mutation rate in mutation, and the generation gap in survivor in the course of evo-
lution. Furthermore, we apply this Markov model to analyze two aspects of MPGAs:
the genetic drift and the convergence. The theoretical results will be examined by a
series of experiments.

Finally, Chapter 5 draws the conclusions including the summary of each chapter,
the contributions of this thesis, and the directions for future work.
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Design for MPGAs

This chapter proposes a mating strategy based on tabu search to deal with two issues
in MPGAs:

e Whom are ideal to mate with?
e What is the suitable number of parents?

The proposed algorithm, called tabu multi-parent genetic algorithm (TMPGA), uti-
lizes the tabu restriction and the aspiration criterion of tabu search to sift parents
in consideration of population diversity and selection pressure. The resultant validity
of mating is further used to adaptively adjust the number of parents participating in
mating. Consequently, the disruptiveness caused by the increase of parents in crossover
is controlled. Experimental results on four common test functions show that TMPGA
can achieve better performance than both GA and MPGA in convergence speed and
solution quality.
The present chapter is based on the work [105, 107].

2.1 Introduction

Multi-parent genetic algorithms have shown their effectiveness in a considerable number
of optimization problems. However, there exist two issues of applying multi-parent
crossovers: the number of parents and the selection of mates. Concerning the number
of parents, MPGAs break through the limitation of using two parents but commonly
set the number of parents fixed. Adaptive methods for 2-parent crossovers or mutations
have received a lot of satisfying results |29, 54, 97|; thus, it is promising to tune the
number of parents adaptively in MPGAs.

Conventionally, no mating strategy is applied to the results of selection in GAs;
that is to say, parents are approved without any further examination after they are
selected at random or just by fitness. Indeed, mating in nature is more complicated.
For example, with respect to human beings, as well as specific factors such wealth and
appearance that objectively contribute to fitness, some implicit factors also potentially
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guide mating, such as blood relationship. Inspired by this observation, a number of mat-
ing strategies [107] for GAs have been proposed and shown success stories in dealing
with population diversity and selection pressure. Nevertheless, the increase of parents
complicates the situation of mating. In addition, a notable augmentation of disruptive-
ness arises from the increase of parents participating in crossover. This disruptiveness
on the one hand leads to a more diverse exploration, which helps to prevent premature
convergence. On the other hand, it slows down convergence speed. Therefore, a well-
balanced mating strategy in maintaining population diversity and supplying selection
pressure is needed to enhance the performance of GAs as well as MPGAs.

In this chapter, we propose the tabu multi-parent genetic algorithm (TMPGA) to
deal with the above issues by integrating tabu search (TS) into MPGAs. Instead of
running the two algorithms alternatively, TMPGA implants the characteristics of TS
in MPGA’s mating strategy: First, the tabu list, the memory structure in TS, is used
to record the trajectory of evolution and to preclude certain chromosomes from mating
in consideration of diversification. Second, the aspiration criterion is applied to supply
selection pressure for intensification under the restriction of tabu. The advantage of such
a strategy has been validated for 2-parent crossover to harmonize selection pressure
and population diversity [106, 107]. In TMPGA, the tabu strategy further adjusts
the number of parents according to the condition of mating pool. As a result, the
disruptiveness caused by multi-parent crossover is depressed. Several experiments will
be conducted to examine the effectiveness of TMPGA in comparison to GA and MPGA.

The rest of this chapter is organized as follows. Section 2.2 gives a brief description
of TS. In Section 2.3 we describe the proposed TMPGA in detail. Section 2.4 presents
experimental results of TMPGA. Finally, conclusions are drawn in Section 2.5.

2.2 Tabu Search

Tabu search (TS) is a meta-heuristic algorithm and has shown its power in a lot
of optimization problems, especially in combinatorial problems [45, 46, 47]. This ap-
proach uses explicit memory structures to record the search trajectory. According to
its “forbiddance-versus-permission” tactic based on the recorded information, TS guides
the search in consideration of both intensification and diversification. The basics of TS
are listed below.

1. Mowe: The process from a solution to another one, e.g. the process from the current
solution to its neighbor.

2. Neighborhood: The set of candidate solutions related to the current solution. The
hamming distance is commonly used to define the range of neighborhood.

3. Tabu list: A memory structure used to record the forbidden moves. This is the most
salient feature of TS. The concept of tabu list is to prevent the search from being
mired in the local optima by indicating certain moves are tabu, i.e. forbidden. The
size of tabu list affects the level of restriction to the search. A large size of tabu list
encourages the search to explore unvisited territory, that is, diversification [3].
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4. Aspiration criterion: The very criterion to override the tabu restriction. Specifically,
it allows the superior solution to be chosen despite the restriction of tabu. This
criterion supports the ability of intensification for the search.

As Algorithm 2 shows, TS begins with an initial candidate solution, which is ordinarily
generated at random. Then the generate-and-test process follows. First, it generates
the neighborhood N (z) of the current solution x, and sorts them into a descent order
for maximization problems. From the best neighbor to the worst one, TS checks the
neighboring solutions one by one. A solution is acceptable only if it meets the two
conditions: it is not in the tabu list or it satisfies the aspiration criterion. Once an
acceptable neighbor 2’ is found, this check will be terminated and the neighbor will be
passed to next step as the current solution. Meanwhile, the move from z to 2’ is included
in the tabu list. This process is repeated until the predetermined maximal number of
runs is reached; the best solution obtained so far is the output of this algorithm.

Algorithm 2 Tabu search (for maximization problems)

Choose z € X
T—¢
t—0
xt—x
repeat
Generate neighborhood N(z)
Sort elements in N(z): N(z) = {z,...,z,} with f(z}) > --- > f(z1,)
Find the smallest k € {1,...,n} such that x}, ¢ T or f(z}) > f(z*)
T — T},
T—TuU{z}
z* «— max(z*, z)
t—t+1
until (¢ > taax)

2.3 Tabu Multi-Parent Genetic Algorithm (TMPGA)

The tabu multi-parent genetic algorithm (TMPGA) integrates the strategy of TS into
the mating strategy of MPGA. First, the tabu list restricts the mating in an incest-
prevention manner to maintain diversity. Second, the aspiration criterion releases the
tabu restriction on mating in order to supply selection pressure. Such a synergy of the
tabu list and the aspiration criterion is expected to achieve a harmony in maintain-
ing population diversity and supplying selection pressure [107]. Moreover, the outcome
of mating affects the number of parents participating in multi-parent crossover. The
TMPGA therefore addresses the issues of the mating and the number of parents. How-
ever, some modifications to MPGA are necessary in order to incorporate the strategy of
TS into it. The following sections will elaborate on the components and the algorithm
of TMPGA.
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2.3.1 Representation

To accommodate the memory structure of TS to GA, two components are appended
to the representation of chromosomes. First, a clan number is introduced to identify
chromosomes. This number is assigned uniquely during initialization. In the process of
reproduction, offspring will inherit the clan number from one of their parents randomly.
Second, the tabu list, which records a set of forbidden clans to mate with, is appended
to the structure of chromosomes as well. A formal definition is given as follows.

Definition 2.1 (Representation in TMPGA). Let G = (c1,...,¢) be the genes of
chromosomes in GAs, o be the clan number, and T = (11,...,7,) be the tabu list of
size v. In TMPGA, the chromosomes are represented as

def
c = (G,0,T) = (c1,...,C1,0,T1,...,Ty).

Example 2.2. Figure 2.1 illustrates a representation for binary-coded TMPGA. The
genes are encoded in bit string G = (1,0, 1,...,0) concerning the solutions of the given
problem. The clan o = 8 and the tabu list ' = (2,6) carry the additional information
for the mating strategy.

1011......0100 B2
— —~ J\_r)%/_/

genes clan tabu list

Fig. 2.1. Representation of chromosomes

2.3.2 Mating Strategy

In TMPGA, the mating of multiple parents is not unbridled but is restricted by the
strategy of TS. The mating strategy of TMPGA is made up of two tactics in TS —
the tabu restriction and the aspiration criterion. First, the clans in the tabu list are
forbidden for the chromosome to mate with. A check on parents is carried out to see
whether the mating of these parents is forbidden or not. Such a restrictive mechanism
is helpful for maintaining population diversity through an incest-prevention manner
[16, 37, 94]. Furthermore, TMPGA adopts the concept of polygamy: the check is only
carried out on the relationship between the first parent and the other parents, which
needs 2v(n — 1) times of checks in the worst case. In contrast to the number nv(n —1)
of complete checks between all parents in the worst case, the manner of TMPGA
largely reduces the computation cost in checking tabu and still preserves certain level
of restriction. As shown in Fig. 2.2, the tabu restriction occurs when the first parent
discovers that its clan exists in the tabu lists of other parents, and vice versa. Once
the tabu occurs, the mating is judged to be invalid, unless the aspiration criterion is
satisfied.
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Definition 2.3 (Tabu). Suppose we have n parents ci,...,c,. Let o; be the clan and
T; be the tabu list of the parent c; with i € {1,...,n}. The function Tabu in TMPGA
1s defined by

Tabu(cy,co,...,cp) =

def | True if i€ {2,...,n}:01 €T, oro; €Ty,
False otherwise.

parent1 [1011......0100 EY2AE

— Tabu!

parent2 [0110......1101 2]

parent3 [1000......1010 EX 2]

Fig. 2.2. Tabu checking procedure

The aspiration criterion defines that a mating is acceptable if the resultant offspring
is superior to the best chromosome so far, even though this mating is tabu. This re-
lease from restriction provides moderate reinforcement in selection pressure. That is to
say, the aspiration criterion is provided against the tabu restriction so as to balance
diversification and intensification in search. The interaction of the tabu restriction and
the aspiration criterion consequently achieves a harmony in diversity maintenance and
selection pressure.

Definition 2.4 (Aspiration). Suppose we have s offspring c,...,cl. Let f be the

) st
fitness function for mazimization and c be the best chromosome so far. The function
Aspiration in TMPGA is defined by

Aspiration(c, ch, . .., c,

3 def {True if die {1,...,s}: f(ch) > f(c),

False otherwise.

A mating is classified nwvalid and is not allowed, if the tabu restriction takes place and
the aspiration criterion is not satisfied.

Definition 2.5 (Validity of Mating). Suppose we have n parents cq, ..., cy,. Perform
the reproduction with these n parents and we obtain the offspring |, ..., c.. The validity
of mating is then defined by

Valid  if (Tabu(cy,...,c,) = False)
Mating % or (Aspiration(c],...,c) = True),

rvs

Invalid otherwise.



20 2 Design for MPGAs

Note that only the offspring reproduced from a valid mating are allowed to be put
into the subpopulation. After a valid mating, the parents who participated in it need
to update their own tabu lists: The first parent adds all its mates’ clans to its tabu
list, while the other parents only add the clan of the first parent to their tabu lists.
In addition, the offspring will inherit the updated tabu list from one of their parents.
The operation of updating the tabu list works in a FIFO (first-in-first-out) manner.
The oldest clans will be released from the tabu list, as the tabu list is full and new
forbidden clans are added to it. These released clans regain the permission to be mated
with. Figure 2.3 illustrates the procedure for updating the tabu list. The first parent
adds the clans (3, 4) of the mates to its tabu list; other parents only add the clan (8)
of the first parent to their own tabu lists. The released clan (6) means that the first
parent regains the permission to mate with the chromosomes belonging to clan (6).

parent1 [1011......0100 FEEIE1E [

release

update

parent2 [0110......1101 BT

parent3 [1000......1010 B 7]

Fig. 2.3. Update of tabu list

According to the validity of mating, TMPGA controls the reproduction and the
number of parents in the following way: If a mating is valid, its offspring will be put
into the subsequent subpopulation. Otherwise, TMPGA will remove all the tabu parents
to enable this mating valid and then perform crossover with the remaining parents to
reproduce offspring again. In case that all mates of the first parent are removed, the
selection operator will randomly choose a new mate from the population to keep the
mating having at least two parents. The number of parents, therefore, varies with the
situation of the population. In the beginning of evolution, the number of parents is
relatively large because the tabu restriction is less likely to occur and the aspiration
criterion is easier to meet, compared to the later phase of evolution. This large number of
parents leads to a more diverse search around the problem space [36]; that is, it enhances
the exploration. In the course of evolution, the probability of invalid mating will become
higher and higher owing to the loss of population diversity. The number of parents will
then decrease in response to the increasing rate of invalid mating. Finally, the number
of parents will be reduced to two — at that time, multi-parent crossover will degenerate
into 2-parent crossover. In view of diagonal crossover, this decline of parents keeps the
search from violent disruptiveness when the search is approaching the promising region.
On the whole, the mating strategy adjusts the number of parents under consideration
of both exploration and exploitation in different phases of evolution.
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2.3.3 Algorithm

The proposed algorithm TMPGA is presented in Algorithm 3. Most procedures of
TMPGA follow the original MPGA except the screening process of tabu strategy. An
additional rule is proposed to reduce the computation cost of tabu checking. This rule
initially sets the number n to the predetermined maximal value. At each generation
the number n is changed to the largest number of parents among all valid mating in
the previous generation. Using the rule, the number of parents is adjusted according
to the situation of population in the preceding generation. Generally it will decrease
the number of parents participating in a mating. As the number is reduced to two, the
checks of tabu restriction and aspiration criterion will be omitted and the multi-parent
crossover will degenerate into a 2-parent crossover. The reason to omit the check is that
the population at that time has lost most of its diversity and will yield an extremely
high probability of invalid mating — it implies that most of the mating will be invalid
when the trial number of parents is reduced to two. In this case, performing checks will
be trivial and will pay the expensive cost of computation in the check and the removal
of tabu parents. Omitting the check procedure as n = 2, therefore, can substantially
reduce the number of trivial checks and then the computation cost.

Algorithm 3 TMPGA
t—20
Initialize population C(t)
Evaluate C(t)
n =MAX _PARENTS

repeat
n* «— 2
repeat
X1,...,Xn < Select(C(t))
Yi,...,¥n < Reproduce(X1,...,Xn)

if ((n > 2) AND (Tabu(xi,...,Xn)

AND (NOT Aspiration(yi,...,yn))) then
X1,...,Xp — RemoveTabu(xi,...,Xn)
Z1,...,Zy — Reproduce(Xi,...,X,)
Cit+1)«—Ct+1)U{z1,...,2,}

n* +— max(n*,n’)
else
Ct+1)—Ct+1)U{y1,...,yn}
n* «— max(n*,n)
until (C(t + 1) is filled)
C(t+ 1) « Survivor(C(t),C(t + 1))
n«—n*
t—t+1
until (termination criterion is satisfied)
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2.4 Experimental Results

Multi-parent crossovers can be classified into ‘n-parents-n-children’ crossovers (e.g. di-
agonal crossover) and ‘n-parents-1-child’ crossovers (e.g. scanning crossover) according
to the number of offspring reproduced by every performance of crossover. This num-
ber of offspring, however, has an effect on the likelihood of aspiration and further the
validity of mating. As aforementioned, this validity on the one hand sifts the parents
and, on the other hand, controls the number of parents. In the following sections we
will examine the effectiveness of TMPGA on these two sorts of crossovers. In terms of
n-parents-n-children crossovers, we adopt diagonal crossover in the experiments. For
n-parents-1-child crossover, two scanning crossovers (U-Scan and OB-Scan) will be ex-
amined. Since an n-parents-n-children crossover can be used as an n-parents-1-child
crossover by randomly picking one child from n children, we additionally experiment
with diagonal crossover for MPGAs using n-parents-1-child crossover.

2.4.1 MPGAs Using n-parents-n-children Crossover

In this section we focus on diagonal crossover, an n-parents-n-children crossover. Four
common test functions [8, 20, 33| are adopted in our experiments: De Jong’s second test
function (F2), the Rastrigin (RAS), the Schwefel (SCH), and the Griewangk (GRI).
Table 2.1 describes these test functions' and the related parameters used in our exper-
iments. The simple GA (using two parents) and MPGA (using more than two parents)
are additionally implemented for performance comparison with TMPGA.

Table 2.1. Test functions
Function N Bitsof z; [
fr2 =100 (22 — 23)” + (21 — 1)?, 2 € [~2.048, 2.047] 2 12 24
N
fras = 10N + Y [27 — 10cos (27a;)] , @i € [-5.12,5.11] 20 10 200

=1

N
fscn = 418.98291N + 3" —zsin (\/|x¢|) La; € [-512,511] 10 10 100
i=1

N 22 N o
fer =1+ 3 555 — 11 cos (%) @i € [-512,511] 10 10 100

The setting of GA is listed in Table 2.2. This setting is also applied to MPGA
and TMPGA. Each experiment setting includes 50 independent runs. The crossover
for MPGA and TMPGA is diagonal crossover and that for GA is 2-parent diagonal
crossover, i.e. one-point crossover. Here we only show the results of the MPGA using
15 parents because it performs best among our experiments with 11 to 15 parents?.

1 A more detailed description of these functions is given in Appendix A.
2 These numbers of parents were adopted and showed superior success rates in the original work of
diagonal crossover [36].
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The number of parents for TMPGA follows MPGA by setting 15 parents initially; this
number will be adjusted adaptively by the strategy of TS afterwards. The size of tabu
list in TMPGA is empirically set to 10 for a moderate restriction.

Table 2.2. The setting of GA in experiments

GA type Generational GA
Representation Bit string
Population size 200

Selection Roulette wheel selection

Crossover Diagonal crossover
Crossover rate 1.0

Mutation Bit-flip mutation
Mutation rate 1

Termination 100 generations

Figure 2.4 compares the convergence of TMPGA with those of GA and MPGA on
the four test functions. The results show that TMPGA converges faster than both GA
and MPGA on all test problems, except the first half of convergence on F2. In addition,
MPGA converges faster than GA on SCH and GRI, but converges slower than GA on
F2 and RAS. In terms of solution quality, TMPGA yields better solutions than GA does
on all functions and than MPGA does on RAS. The differences of the best solutions
obtained from MPGA and TMPGA are insignificant on F2, SCH, and GRI.

The above comparison concerning the number of generations is not so fair since
TMPGA spends additional computation on tabu checking and trivial mating in each
generation. For this, we further compare these algorithms with respect to running
time. The comparing algorithms are coded in C language and run on an Intel Pen-
tium IIT — 1.7GHz machine. Figure 2.5 demonstrates that the additional computation
of TMPGA slightly depresses its superiority, compared to the results in Fig. 2.4. How-
ever, TMPGA still achieves faster convergence than GA on RAS, SCH, and GRI. The
algorithm TMPGA also converges faster than MPGA does on all test functions, while
the convergence of TMPGA and that of MPGA are close on SCH and GRI. The su-
periority of TMPGA supports that the extra computation cost of tabu checking is
worthwhile in terms of convergence speed.

Table 2.3 further quantifies the improvements of MPGA and TMPGA in the con-
vergence speed of GA. These results indicate the number of generations as well as the
time taken for MPGA and TMPGA to achieve GA’s best fitness in our experiments.
Table 2.3 shows that TMPGA converges faster than GA by 24 to 66 generations or by
0.881 to 3.352 seconds; namely, TMPGA saves 22% to 69% of GA’s convergence time.
MPGA also converges faster than GA except on RAS, where MPGA performs similarly
to GA. The presented performance comparison validates the superiority of TMPGA
over GA and MPGA in convergence speed.
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Fig. 2.4. Performance comparison of GA, MPGA, and TMPGA in terms of generations

Table 2.3. Comparison of generations and time for MPGA and TMPGA to achieve the best fitness

of GA
Generations Time (sec)
GA MPGA TMPGA GA MPGA TMPGA
F2 96 53 35 4.840 2.036 1.488
RAS 100 97 62 4.398 4.277  3.041
SCH 199 38 34 4.207 1.478 1.470
GRI 100 84 76 4.009 3.289 3.128

We further investigate the impact of the tabu restriction and the aspiration criterion
on TMPGA’s performance and the number of parents. The number of tabu events, as
shown in Fig. 2.6, peaks around 40 generations on F2 and around 20 to 25 generations
on RAS, SCH, and GRI. Compared to the convergence of TMPGA in Fig. 2.4, the
peak of tabu events corresponds to the turning point of convergence. We attribute this
correspondence to the exhaustion of population diversity: In the course of evolution the
population will inevitably lose its diversity if the mutation rate is not comparable to
the rate of genetic drift. The resulting similarity of chromosomes in the population is
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Fig. 2.5. Performance comparison of GA, MPGA, and TMPGA in terms of running time

reflected in the high probability of tabu events since the population is full of chromo-
somes with the same clans. The peak of tabu events implies that the population is too
similar for the search to explore the search space effectively. Therefore, the convergence
of TMPGA slows down after the peak of tabu events.

Figure 2.7 depicts the variation in the number of parents on the four test func-
tions. Clearly, the number of parents decreases from 15 to 2 in the course of evolution.
As mentioned in Section 2.3, the validity of mating affects the number of parents in
TMPGA. Considering the growing number of tabu events and the shrinking number of
aspiration events shown in Fig. 2.6, the mating becomes more likely to be invalid. As a
result of the increasing number of invalid mating, the number of parents decreases with
generations, which contributes to restrain the disruptiveness caused by the increase of
parents in diagonal crossover. It is noteworthy that the influence of the tabu strategy on
the number of parents is two-way: The tabu restriction reduces the number of parents,
while the reduced number of parents will further lower the probability to induce the
tabu restriction in the next generation. All in all, the synergy of the tabu restriction
and the aspiration criterion achieves not only a harmonious mating but an adaptive
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Fig. 2.6. Variation in the numbers of tabu events (top) and aspiration events (bottom) averaged over
50 runs of TMPGA on the four test functions

restraint on disruptiveness; consequently, it leads to the superiority of TMPGA over
GA and MPGA.

2.4.2 MPGAs Using n-parents-1-child Crossover

In this section we consider diagonal crossover and two scanning crossovers: U-Scan
and OB-Scan. The test suite used in the previous section is also adopted here. We
additionally extend the F2 function to 10 variables as the F2e function. Table 2.4
presents these test functions and the related parameters. The GA and MPGA are
implemented for performance comparison with TMPGA. The setting of GA, MPGA,
and TMPGA is listed in Table 2.5. Each experiment setting includes 100 independent
runs. The crossover for GA is 2-parent diagonal crossover (i.e. one-point crossover) and
2-parent scanning crossover (i.e. uniform crossover). The number of parents is set to
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Fig. 2.7. Variation in the number of parents averaged over 50 runs of TMPGA on the four test
functions

6 and 15 for MPGA and TMPGA, where this number in TMPGA will be adjusted
adaptively during evolution. The size of tabu list in TMPGA is set to 6 for a looser
restriction in response to the smaller population than that used in the previous section.

Table 2.4. Test functions

Function N Bitsof z; [
fr2 =100 (z2 — x%)Q + (x1 — 1)%, z; € [-2.048, 2.047) 2 12 24
N—-1

free= Y [100 (i1 — 22)° + (2 — 1)2] ,x; € [—2.048,2.047] 10 12 120

i=1

N
fras = 10N + Y [z} — 10cos (27z;)] ,; € [-5.12,5.11] 10 10 100
i=1
N
foon = 418.98201N + 3 —xsin («/|xi|> @ € [~512, 511] 10 10 100
N a2 N .
fert =14 3 55— [T cos (7) @i € [~512, 511] 10 10 100

Figure 2.8 compares the convergence of TMPGA with those of GA and MPGA
using diagonal crossover, U-Scan, and OB-Scan with respect to 15 and 6 parents on
SCH. More performance comparisons on F2, RAS, GRI, and F2e are presented in
Figs. B.1-B.3. These figures show that TMPGA using diagonal crossover outperforms
GA and MPGA using diagonal crossover. In the case of 6-parent diagonal crossover,
the improvement of TMPGA over MPGA is more significant. As for U-Scan, there
exists little difference in the convergence of these three algorithms, regardless of the
number of parents adopted in U-Scan. Moreover, these figures reveal that the MPGA
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Table 2.5. The setting of GA in experiments

GA type Generational GA
Representation Bit string
Population size 128
Selection Linear ranking (n* = 1.5)
Crossover Diagonal crossover, U-Scan, and OB-Scan
Crossover rate 1.0
Mutation Bit-flip mutation
Mutation rate % and 0.1
Termination 500 generations

using OB-Scan with mutation rate % performs poorly in comparison with GA, and

yet TMPGA can improve the poor performance of MPGA, especially in the solution
quality. However, the performance of TMPGA using OB-Scan is still inferior to GA
using uniform crossover.

We further conduct experiments with a high mutation rate 0.1 and show the results
on SCH in Fig. 2.9. More experimental results on other test functions are presented
in Figs. B.4-B.6. Basically, the comparative outcomes of GA, MPGA, and TMPGA
with mutation rate 0.1 are similar to those with mutation rate %, but the superior-
ity of TMPGA over GA and MPGA becomes more significant in mutation rate 0.1.
By contrast to mutation rate %, MPGA using OB-Scan with mutation rate 0.1 per-
forms comparably and even better than GA. Furthermore, TMPGA can reinforce this
improvement and far outperform MPGA and GA in the use of OB-Scan.

2.5 Summary

This chapter presented the tabu multi-parent genetic algorithm (TMPGA) to deal with
two issues in MPGAs: the mating and the number of parents. The algorithm TMPGA
integrates the tactics of TS into the mating of MPGA. An additional memory structure
consisting of the clan number and the tabu list is appended to the original structure of
chromosomes. This memory structure records the trajectory of evolution and serves as
the basis of the mating strategy. First, the tabu list forbids certain chromosomes from
mating so that the population diversity can be maintained in an incest-prevention way.
Second, the aspiration criterion provides a possibility to override the tabu restriction
in order to supply selection pressure. As a result of the synergy of the tabu restriction
and the aspiration criterion, TMPGA controls the mating of more than two parents
with a good balance between exploration and exploitation. The validity of mating,
furthermore, adjusts the number of parents adaptively.

Several experiments are conducted to verify the effectiveness of TMPGA. Experi-
mental results show that TMPGA outperforms GA and MPGA in convergence speed
and solution quality on four common test functions. Furthermore, we investigated the
influence of tabu and aspiration on the convergence and the variation of the number of
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parents in TMPGA. The results indicate that the peak of tabu events corresponds to
the turning point when the convergence slows down. In addition, the growing number
of tabu events and the shrinking number of aspiration events lead to the decrease of
parents. This reduced number of parents, on the other hand, will lower the probabil-
ity to induce the tabu event. Thus the influence of tabu restriction on the number of
parents is two-way.

The above preferable performance of TMPGA validates the capability of the pro-
posed mating strategy. However, these consequences are empirical. In addition, even
though TMPGA concerns the variation in the number of parents and its correlation
with tabu restriction, it provides little information about the general impact of raising
parents on the performance of multi-parent crossover and the whole MPGA. In the fol-
lowing chapters, we will conduct theoretical analysis to explore the role of the number
of parents in the performance of MPGAs.



30 2 Design for MPGAs

2200
2000 ~
1800

1600 [~
1400 [
1200

1000 [

Fitness (SCH)

800

600

40
Generations

(a) diagonal crossover (15 parents)

2200

2000 [

1800 -

1600 -

1400

1200

Fitness (SCH)

1000

800

600 -

200 L L L

i GA ——
MPGA —+— |
TMPGA

.

0 20 40
Generations

(¢) U-Scan (15 parents)

2200

2000

1800

1600

1400

1200

Fitness (SCH)

1000

800

600

400 : : :
40 60

Generations

(e) OB-Scan (15 parents)

100

Fitness (SCH)

Fitness (SCH)

Fitness (SCH)

2000

1800

1600

1400

1200

1000

800

600

400

200

2200

2000

1800

1600

1400

1200

1000

800

600

400

200

2200

2000

1800

1600

1400

1200

1000

800

600

400

(f) OB-Scan (6 parents)

. . . B
0 20 40 60 80 100
Generations
(b) diagonal crossover (6 parents)
"GA —x—
L MPGA — |
TMPGA —=—
0 20 40 60 80 100
Generations
(d) U-Scan (6 parents)
NI - ]
\‘\\I\,
I e
L GA —— 4
MPGA —=—
TMPGA T ) ) )
0 20 40 60 80 100
Generations

Fig. 2.8. Performance comparison of GA, MPGA, and TMPGA using diagonal crossover, U-Scan,

and OB-Scan with mutation rate 0.01
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Analysis Based on Uniform Population Model

This chapter addresses the following questions through an analysis based on a specific
population model:

e When will MPGAs outperform GAs?
e Why do MPGAs perform better?

The procedure for analysis, as illustrated in Fig. 3.1, focuses on one generation rather
than the whole evolution (cf. Fig. 1.1). First, a simplified population model, called uni-
form population, is presented as a systematic population environment for analysis. Sec-
ond, a criterion based on uniform population is presented to evaluate the performance
of crossover. Accordingly, we analyze two multi-parent crossovers: uniform scanning
crossover (U-Scan) and occurrence based scanning crossover (OB-Scan). The analysis
reveals the ineffectiveness of adopting more than two parents in U-Scan; moreover, it
proves that increasing the number of parents will intensify the probability for OB-Scan
to reproduce better or worse chromosomes. The experimental results on four test func-
tions show a high level of consistence with the analytical claims, which validates the
capability of this analysis.
The present chapter extends the work [101].

3.1 Introduction

A number of theoretical analyses on MPGAs have been proposed. Nevertheless, as
concluded in Chapter 1, the influence of raising parents on the performance of crossover
is still left open. For that matter, we conduct a theoretical analysis on the effect of
applying more parents in two multi-parent crossovers: U-Scan and OB-Scan.

The analysis presented in this chapter is based on an assumption about the pop-
ulation: the wniform population model. The chromosomes in uniform population are
defined to have the same hamming distance from the unique optimal solution. The
composition of population, under the assumption of uniform population, is simplified
systematically and then becomes tractable for analysis. A relevant criterion is further
presented to evaluate the performance of crossover. The analysis gives the probability
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Fig. 3.1. Procedure for analysis based on uniform population

for U-Scan and OB-Scan to reproduce better, equal, or worse offspring. In addition, a
conjecture about the correlation between the number of parents and the level of ex-
ploitation in OB-Scan is proposed according to the analytical results. These claims are
further examined by a series of experiments on four common test functions.

The rest of the present chapter is organized as follows. In Section 3.2 we present the
uniform population model. Section 3.3 elaborates on the theoretical analysis of U-Scan
and OB-Scan. Section 3.4 presents the experimental validation. Finally, conclusions are
drawn in Section 3.5.

3.2 Uniform Population

In this chapter, we present the uniform population model as the basis for analyzing
the effectiveness of crossover. Crossover is an operator used to recombine and exchange
the genetic material of parents. The outcome of crossover, nevertheless, depends upon
the composition of population and the selection process. To overcome the difficulty
arising from these two factors in analysis, we propose a systematic population model,
called uniform population, to simplify the conditions of population. Based on uniform
population, a criterion for evaluating the performance of crossover will be presented in
the next section.

Assume that there exists one unique optimal solution for the given problem. Uniform
population is defined as the population in which each chromosome differs from the
optimal solution by k genes. In other words, the hamming distance between the optimal
solution and each chromosome in uniform population is exactly k. Here the value k is
called the order of uniform population. For example, without loss of generality we
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assume the optimal solution to be ‘000...000’. A 3-order uniform population consisting
m chromosomes is illustrated in Fig. 3.2.

[ genes
~ " ~
B 1-
-l----—-- 1---1--
N CEET TP I P
Us= : m chromosomes
“l----1-------~ 1
~1---1-1-----——~

Fig. 3.2. A 8-order uniform population (‘1’ represents the bit 1, and ‘-’ represents the bit 0)

Definition 3.1 (Distinct Genes).

1. For a chromosome c, the distinct genes of c are the different genes between the
chromosome ¢ and the optimal solution c*.
2. Let D(c) be the set of distinct genes in ¢ and |D(c)| be the cardinality of D(c). We
have
[D(c)| = H (¢, c"),

where H : {0,1}! x {0,1} — {0,1,...,1} is the hamming distance function.

Definition 3.2 (k-positive, k-ineffective, and k-negative). Given k € N, we clas-
sify a chromosome ¢ as

k-positive if |D(c)| <k,
c is { k-ineffective if |D(c)| =k,
k-negative if |D(c)| > k.

Definition 3.3 (k-order Uniform Population). A k-order uniform population, de-
noted as Uy, 1s defined by

def
Ugy {c lce{0,1} and |D(c)| = k:}

3.3 Analysis Based on k-order Uniform Population

This section analyzes the influence of using more parents upon the performance of U-
Scan and OB-Scan. As aforementioned, crossover is dependent upon the composition
of the population and the selection process. In the previous section we have proposed
uniform population as the composition of population. Here we additionally assume the
selection process is a random selection. Under these two assumptions, we embark on
the analysis of the influence of increasing parents in crossover.

First, we define the criterion for evaluating the performance of crossover.
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Definition 3.4. Let ¢’ be the offspring reproduced by a crossover X with n parents
selected from U(yy. The symbols pt, p=, and p~ are defined by the probability that ¢’ is
k-positive, k-ineffective, and k-negative, respectively. For example, the probability p™ is
defined by

pr (X, n,Ugyy) def Pr{c’ is k-positive | ¢’ = X(c1,...,¢, | ¢; € Uyy)}
= Pr{‘D(X(Cl,...,Cn))‘ <k ’ C; € U(k)}

Remark 3.5. In scanning crossover, the sequence of parents has no influence on the
probability p*, p=, and p~.

Definition 3.6 (Performance of Crossover). The performance F of crossover X
with n parents selected from Uy is defined by

def

F(X,n,Upy) = (pH(X,n, Ugy),
p:(Xan) U(k‘)))
p (X, n,Uyy) ).

The equivalence! of performance is further defined by
‘7:(‘)(’/1” U(k)) = ‘7:(‘)(’7/’ U(k))
< (p), =py)and (p, =p;)and (p, =p,), (3.1)
where p/f denotes pT (X, p, Uwy), and so forth?.

Next, we investigate the performance of scanning crossover by calculating the expected
number of distinct genes in the offspring. To this end, we need the probability p that
the distinct gene occurs at a parental locus. Based on this probability p, we can derive
the probability that there exist x of n given parents possessing the distinct gene at
some locus. In the following analysis we will make use of binomial distribution [79].
The probability mass function (p.m.f) B(x;n,p) of binomial distribution B(n,p) is

B(x;n,p) = (Z)px(l -p)"" (32)

where n,x € Z,. It holds for the expectation of a binomial random variable X that

E [X] :Zx-B(:c;n,p) = np. (3.3)

z=0

! Here we only discuss the equivalence of performance. However, the correlation between (t, p=p7)
and the performance of MPGAs is an issue worthy of future study.
2 In fact, any two conditions in (3.1) suffice the equivalence of performance since p* +p~ +p~ = 1.
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Lemma 3.7. Given a chromosome c selected from Uy, the probability that a gene ¢;

with i € {1,...,l} is a distinct gene is p = %

Proof. The definition of k-order uniform population tells that each chromosome in this
population has exact k distinct genes. Therefore, for a chromosome selected from Uy,
the probability that c; is a distinct gene is

k
p = Pr{c; is a distinct gene} = T
O

Lemma 3.8. Given n parents randomly selected from Uy, , the probability that x of n
parents hold the distinct gene at locus i € {1,...,l} is B(x;n,p).

Proof. According to Lemma 3.7, the probability for a chromosome selected from Uy,
to possess the distinct gene at locus ¢ is p = % Since the random selection is a Bernoulli
process, the number of selected chromosomes having the distinct gene at locus ¢ holds
a binomial distribution B(n,p). Hence the probability that z of n chromosomes possess
distinct genes at some locus is B(x;n,p). 0

3.3.1 Analysis of U-Scan

In the operation of U-Scan, offspring inherit a gene randomly from one of the parents
for each locus. This random manner implies the probability is equal for each parent
to give its genes. Additionally, Lemma 3.8 showed the probability that x of n parents
possess the distinct gene at some locus. According to these properties, we can derive
the probability that an offspring locus is assigned with the distinct gene. Furthermore,
the expected number of distinct genes in the offspring can be derived.

Lemma 3.9. Given n parents selected from U, the probability p, for U-Scan X, to
yield a distinct gene for a locus is

_k

Pu = 7
Proof. Let ¢’ be the offspring reproduced by X,. Assume z of n selected parents possess
the distinct gene at locus i € {1,...,l}. Since U-Scan chooses the parent to give genes

randomly, the probability for each parent to be chosen is 1/n. This gives the probability
for the offspring to inherit the distinct gene

Pr{c} is a distinct gene | 2} = L

n

Using the p.m.f. of x in Lemma 3.8 and (3.3), we have the probability

n
Py = ZPr {¢} is a distinct gene | z} - Pr(z)

=0
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Theorem 3.10 (Performance of U-Scan). Using k-order uniform population Uy,
the number of parents has no effect on the performance of U-Scan. That is,

F(Xu,n, Upy) = F(Xy,n, Um) for n,n’ € Nyj.

Proof. Let ¢’ be the offspring reproduced by X, and |D(c’)| be the number of distinct
genes in ¢’. Lemma 3.9 gives the probability p, that U-Scan assigns the distinct gene to
an offspring locus. In addition, scanning crossover processes each gene of an offspring
independently. Therefore, processing ! genes in this way, U-Scan has the probability
that ¢ distinct genes occur in the offspring c’:

l _
Pe{|De)] =5} = () ()" (1= ) = B L), 3.4
This gives the probability p™, p=, and p~ of U-Scan X, respectively:
k—1
p* (X, Uy) = Pr{|D(c)| <k} = B(81,pu) (3.5)
6=0
p~ (X, n,Uyy) =Pr{|D(c')| = k} = B (k;l,pu) (3.6)
l
p~ (X, Uy) =Pr{|D(c)| > k} = > B(5l,pu) (3.7)
o=k+1

Clearly, the above probabilities are independent of the value n as p, is independent of
n. This implies that for n,n’ € Ny

f(?(u,n, U(k;)) = f(?(u,n', U(k))
]

Figure 3.3 plots the performance (p*,p~,p~) of U-Scan in k-order uniform population
by (3.5)-(3.7). Here chromosomes are assumed to be encoded as 100-bit strings and
the order k ranges from 1 to [ — 1. Figure 3.3 only shows 2-parent U-Scan because
Theorem 3.10 has proved that the performance of U-Scan is independent of the number
n. This figure indicates that the probabilities for U-Scan to reproduce k-positive and
k-negative offspring are around 0.44; in addition, both profiles are smooth in terms of
the order k. This phenomenon implies U-Scan and its degenerated version, i.e. uniform
crossover, can perform stably in the course of evolution.

Corollary 3.11. Let e, be the expected number of distinct genes in the offspring repro-
duced by n-parent U-Scan X,. Subject to uniform population Uy, the expectation e,
is equal to the order k, regardless of the adopted number of parents n. Precisely, the
expectation is

eu(n,Ugy) =k for n € Noy
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Fig. 3.3. Performance of U-Scan F (X, 2, Uy)

Proof. Let ¢’ be the offspring reproduce by Xy, D(c’) be the set of distinct genes in ¢/,
and |D(c’)| be the cardinality of D(c’). From (3.3) and (3.4), the expectation ey(n, U))
can be derived:

l
eu(n,Ugy) =E[|D(c)]] =) _6-Pr{|D(c)| = 6}
6=0

l

225-3(5;l,pu):l-pu:k:.
6=0

O

Corollary 3.11 shows that U-Scan is expected to yield the same number of distinct
genes as the parents on average; that is to say, there is no tendency for U-Scan toward
better or worse solutions with respect to the number of distinct genes.

3.3.2 Analysis of OB-Scan

Instead of random, OB-Scan determines an offspring gene depending on the occurrence
of parental genes at that locus. Specifically, OB-Scan assigns the majority of parental
genes to the offspring. In this section we will examine the performance of OB-Scan
under the assumption of k-order uniform population.
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Lemma 3.12. Given n parents selected from Ugy,, the probability poy for OB-Scan Xy,
to assign the distinct gene to an offspring locus is

ZZ:%H B (z;n,p) + %B (%;n,p) if n is even,

3.8
Z;L [2] B (x;n,p) otherwise. (3.8)
12

Pob =

Proof. Assume x of n parents hold the distinct gene at locus i € {1,...,l}. Since OB-
Scan picks the majority of parental genes as the offspring gene, the probability for
OB-Scan to assign the distinct gene to the offspring ¢} is

1 ifx>3,
Pr {c; is a distinct gene | x} =405 ifz=1%,
0 if v < 3.

From Lemma 3.7 and Lemma 3.8 we know the p.m.f. of the variable z is B (x;n,p)
with p = % The probability pop, for n € 2N can then be derived:

n
Pob = ZPr {c; is a distinct gene | x} - Pr(z)

=0
° 1 n i
= ) 1-B(znp) +5 B <§;n,p) +>_0-B(x;n,p)
z:%+1 =0
- 1 n
= Y B(zn,p)+5B (—;n,p) :
2 2
r=5+1
The probability pop for n € 2N + 1 can be derived analogously. ad

Theorem 3.13 (Performance of OB-Scan). Given n parents selected from U, for
the performance of OB-Scan X, we have

k—1 !
F(Xow, n, Ugry) = (ZB(z‘;z,pow,B(k;l,pob), > B(z‘;z,pow),
=0

i=k+1
where pey, s the probability defined in Lemma 3.12.
Proof. Let ¢’ be the offspring reproduced by Xy}, and |D(c’)| be the number of distinct
genes in ¢’. From Lemma 3.12, we have the probability p., that OB-Scan assigns the
distinct gene to an offspring locus. In addition, scanning crossover processes each gene of

an offspring independently. Processing [ genes in this way, OB-Scan has the probability
that ¢ distinct genes occur in the offspring c’:

Pr{|D(c')| = 6} = <é> (Pob)” (1 = pob)' ™ = B (51, pob) - (3.9)
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This gives the probability p™, p=, and p~ of OB-Scan X,,, respectively:

k-1

pH (Xow,n, Uy) = Pr{|D(c)| <k} = B(8;1,pob)
0=0
p:(Xob,n, U(k)) = PI‘{‘D(C/)‘ = k?} =B (k;l,pob)
l

P (Xop,n, Uy) = Pr{|D(c)| > k} = Y B(8;l,pop)
d=k+1

Hence the performance of OB-Scan is given by

k—1 l
F(Xob’naU(k)) = (p+ap:’p_) = (ZB(i§l,Pob)’B(k§l’Pob)a Z B(/L';lapob)> .
=0 i=k+1

O

Corollary 3.14 (Pairwise Equivalence). Subject to uniform population, the perfor-
mance of (2a)-parent OB-Scan is equivalent to that of (2a—1)-parent OB-Scan with
a € Nsy:

F (Xob’ 2CL, U(k;)) =F (Xoba 2&—1, U(k)) .

Proof. Theorem 3.13 shows the performance of OB-Scan depends upon the probability
Pob- According to (3.8), the probabilities pop, for n = 2a and n = 2a—1 are respectively

a—1
Pob.odd = 1- ZB (.%'; 2a — 1,]7) (310)
=0
a—1 1
Pob.even = 1- ZB (.%'; 2a,p) - EB (a; 2a,p) .
=0
Since
B(xin,p)=p-B(x—Lin—-1,p)+(1—p) B(z;n—1,p),
we have
a—1
1
Pobeven = 1= Y [pB (x = 1;2a = 1,p) + (1 = p)-B (2320 — 1,p)] — 5B (a; 20, p)
=0
a—1
=1-> B(x;2a—1,p)
=0

a—1
1
—pY [B(z—1;2a—1,p) — B(x;2a — 1,p)] - 3B (a;2a,p).
=0
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Using (3.10), the previous equation can be rewritten as

1
Pob.even = Pob.odd + P+ B (a —1;2a — 1ap) - §B (a; 2&,]))

(2a —1)! 1 (2a)!
= Pob.odd +pmp“ f1-p) - 2 alal p*(1-p)*

a (2a)!  1(2a)!

= Dob.odd + | — _Z
Pob.odd 2a ala! 2 ala!

p*(1—p)*
= Pob.odd-

This equivalence of pop.even and Pop.odq gives identical probabilities p*, p=, and p~
for (2a)-parent OB-Scan and (2a—1)-parent OB-Scan. According to Theorem 3.13, we
complete the proof of F(Xop, 2a, Uny) = F(Xop, 2a—1,Ugy,) for a € Nog. O

Corollary 3.15. Given n parents selected from Uy, the expected number eq, of distinct
genes in the offspring reproduced by OB-Scan is

eob(na U(k)) =1+ Pob- (311)

Proof. Let ¢’ be the offspring reproduce by X,},, D(c¢’) be the set of distinct genes in ¢/,
and |D(c’)| be the cardinality of D(c’). From (3.3) and (3.9) we have the expectation

l
eon(n, Uy) = E[|D(c)|] =) _6-Pr{|D(c)| = 6}
0=0

l
=Y 6B (5l,po)
6=0
=1 Pob-

a

Different from U-Scan, the performance of OB-Scan is dependent on the number of
parents n as pep, is dependent on n. Figure 3.4 respectively plots the performance
pt, p~, and p~ of OB-Scan according to Theorem 3.13 for | = 100. Owing to the
pairwise equivalence, here we only show the performance of OB-Scan with even numbers
of parents. As the figures show, OB-Scan with more parents accounts for a higher
probability (even approximates to 1.0) to reproduce k-positive offspring, as the order
k is smaller than a half of chromosome length (k < £ = 50). On the other hand,
it accounts for a higher probability to yield k-negative offspring when the order is
larger than a half of chromosome length (k > 50). Additionally, the area of transition
phase around k = % becomes narrower as the number of parents increases. That is
to say, in terms of the number of distinct genes, OB-Scan tends to reproduce better
offspring as k < % while it tends to reproduce worse offspring as k > é Raising
parents, furthermore, increases the influence of order k upon the tendency of OB-Scan
to reproduce better or worse offspring.
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Figure 3.5 shows the expected number of distinct genes eqn(n,Uy)) using Corol-
lary 3.15 for [ = 100. The profile of 2-parent OB-Scan, i.e. uniform crossover, demon-
strates that offspring will averagely inherit the same amount of distinct genes as their
parents. Raising parents in OB-Scan, however, causes two opposing effects. As the order
k is smaller than %, OB-Scan is expected to yield solutions with fewer distinct genes,
namely better solutions. On the contrary, if the order k is larger than %, OB-Scan
will reproduce worse offspring. Nonetheless, the difference in expectation eq(n, U(k))
caused by increasing parents gradually diminishes as n is increased. In Fig. 3.4, we can
find a similar trend in the probabilities p™, p=, and p~.

Expectation e,

0 10 20 30 40 50 60 70 80 90 100
Order (k)

Fig. 3.5. Expected number e, (n, Ugyy) of distinct genes in the offspring for I = 100

At first glance, raising parents in OB-Scan seems advantageous to performance be-
cause of its expected reduction of distinct genes. However, we should carefully consider
the case that the order k is larger than a half of chromosome length. In this case, OB-
Scan is less likely to reproduce better offspring. In addition, raising parents in OB-Scan
reinforces the improvement or the deterioration in 2-parent OB-Scan. As above-stated,
this reinforcement will tend to be steady as n is large. The foregoing phenomenons can
be summed up in the following conjecture.

Conjecture 3.16. Raising parents in OB-Scan intensifies exploitation of the search.

The conventional wisdom tells that intensified exploitation accelerates the search; on
the other hand, it may cause premature convergence. OQur conjecture therefore antici-
pates that raising parents in OB-Scan will receive an accelerated but likely premature
convergence. Furthermore, it reveals the necessity of balancing exploration and ex-
ploitation when using OB-Scan with more than two parents.
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3.4 Experimental Validation

In this section, we conduct a series of experiments to validate our theoretical anal-
ysis of U-Scan and OB-Scan. Four common test functions are used as benchmarks:
the extended De Jong’s F2 (F2e), the Rastrigin (RAS), the Schwefel (SCH), and the
Griewangk (GRI) functions. Table 3.1 lists the properties and the parameters of these
functions®. The setting of MPGA employed in our experiments is listed in Table 3.2.
Note that two to twenty parents are adopted in both crossovers to identify the influ-
ence of the number of parents. In addition, the survival strategy is to delete the worst
chromosome with ‘no duplicates’ policy. Each experiment includes 100 independent
runs.

Table 3.1. Test functions

Function N Bitsof z; [
N—-1
free = 3 [100 (ziv1 — a2)° + (2 — 1)2} LT € [—2.048,2.047] 10 12 120

i=1

N
fras = 10N + Y [27 — 10cos (27x;)] , @i € [—5.12,5.11] 10 10 100
i=1
N
foon = 418.98291N + 3" —asin <\/|xi|> i € [~512,511] 10 10 100
g2 N .
fort =1+ % g5 — 11 cos (%) @i € [-512,511 10 10 100

Table 3.2. The setting of MPGAS in experiments

GA type Steady-state GA
Representation Bit string
Population size 100
Selection Linear ranking selection with bias 1.25
Crossover U-Scan / OB-Scan with n =2,...,20
Crossover rate 1.0
Mutation Bit-flip mutation
Mutation rate %

Figure 3.6 compares the mean of the best fitness obtained from MPGAs using U-
Scan and MPGAs using OB-Scan with different numbers of parents on the four test
functions. These experimental results show a high level of consistence with our theo-
retical arguments: First, the profiles of U-Scan in Fig. 3.6 remain constant for different
numbers of parents, which corresponds to Theorem 3.10: the number of parents has no
effect on the performance of U-Scan. Second, as Theorem 3.14 indicated, the profiles
of OB-Scan in Fig. 3.6 show an analogy between odd numbers and even numbers of

3 A more detailed description of these functions is given in Appendix A.
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Fig. 3.6. The mean of the best fitness for U-Scan and OB-Scan with different numbers of parents
over 100 runs

parents in solution quality. Moreover, the solution quality of OB-Scan deteriorates as
the number of parents increases.

We further perform a two-tailed t-test to examine whether there exists statistically
significant difference in solution quality for MPGAs using more parents. Table 3.3
shows the results of a t-test on the best solutions of MPGASs using 2 and n parents for
n =3,...,20. With significance level a = 0.01, the P-values in this table demonstrate
that, in general, the difference in solution quality between 2-parent U-Scan and n-parent
U-Scan is not significant. This table also validates that raising parents in OB-Scan
causes a highly significant deterioration in solution quality, compared with 2-parent
OB-Scan. Additionally, Table 3.4 compares the best solution of MPGAs using n—1
and n parents for n = 3,...,20. This table shows no significant difference in solution
quality between (n—1)-parent U-Scan and n-parent U-Scan, yet the P-values of OB-
Scan exhibit periodic significance as n < 13. This periodic equivalence supports the
pairwise equivalence claimed in Theorem 3.14. As aforementioned, the influence of the
increase of parents will tend to be steady; thus the difference for n > 13 is less likely to
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Table 3.3. P-values of t-test (o« = 0.01) on the solution quality between 2 and n parents (only
significant values in U-Scan are marked by boldface)

U-Scan OB-Scan
2vs.n F2¢e RAS SCH GRI F2e RAS SCH GRI
3 19918 .0033 .8875 .2492 5.89e-31 7.76e-31 2.31e-36 1.08e-28
4 36564  .0311 .8132 .0531 1.35e-12 2.28e-20 3.27e-30 4.13e-22
5 8711 .0073 .1075 .2990 1.49e-39 1.73e-58 6.94e-68 2.09e-44
6 4387 7155 .2434 .1896 7.30e-40 1.84e-58 9.13e-67 1.79e-40
7
8

7143 .0224 .0801 .2107 7.18e-44 2.35e-70 2.11e-85 1.28e-50

3454 4994 1156 .1944 6.40e-45 1.41e-73 1.06e-89 1.49e-51
9 .8068 .9060 .0215 .1528 3.13e-45 9.37e-75 9.73e-91 7.39e-57
10 6269 .6848 .2469 .0866 4.27e-42 4.23e-82 1.65e-90 7.28e-62
11 .6950 .0052 .0825 .1203 6.22e-40 6.52e-83 1.51e-102 5.45e-61
12 4953 5202 .0961 .1009 1.11e-43 3.76e-82 7.95e-104 5.92e-59
13 8186 .5009 .0776 .6734 1.53e-43 1.54e-85 6.56e-103 3.24e-59
14 .8539 .3605 .0009 .1765 2.27e-39 1.58e-89 3.71e-97 1.65e-65
15 7102 4948 .0971 .0276 3.88e-47 2.14e-89 5.11e-93 1.1le-62
16 8192 .7844 .0223 .1914 1.25e-38 4.18e-90 5.01e-106 6.45e-65
17 1845 .7419 .0007 .1577 9.64e-46 1.96e-94 1.25e-106 2.07e-61
18 4465 .3070 .0772 .0122 4.17e-46 7.24e-98 3.48e-102 2.15e-59
19 0763 .3645 .0232 .0062 1.95e-45 3.30e-92 9.20e-117 1.17e-58
20 .5537 5181 .0689 .0173 4.85e-43 1.26e-91 6.00e-111 7.43e-59

be significant. The statistical results shown in Tables 3.3 and 3.4 therefore reconfirm
the effectiveness of our analytical claims in solution quality.

Next, we examine the convergence of MPGAs using U-Scan and OB-Scan individu-
ally. Figure 3.7 plots the convergence for U-Scan and OB-Scan with different numbers
of parents. Here only the result in SCH is presented owing to the similarity of profiles
in the four test functions. Obviously, the overlapping convergence of U-Scan in Fig. 3.7
restates that the number of parents is ineffective in the performance of U-Scan. On the
other hand, the convergence of OB-Scan strongly depends upon the adopted number
of parents: The profiles of OB-Scan with 3 and 4 parents are very similar, and so are
those with 5 and 6 parents, and with 7 and 8 parents — these similarities validate The-
orem 3.14. Furthermore, Fig. 3.7 demonstrates that increasing parents accelerates con-
vergence in the beginning but thereafter gets trapped in premature convergence, which
is a classic characteristic of overly-intensified exploitation. This outcome confirms our
conjecture: raising parents in OB-Scan will intensify exploitation of the search. Conse-
quently, this intensified exploitation causes premature convergence of OB-Scan in the
test functions.

3.5 Summary

This chapter gave a formal analysis of two scanning crossovers, which are multi-parent
generalizations of uniform crossover. First we proposed a simplified population model,
the wniform population model, to provide a systematic population environment for
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Table 3.4. P-values of t-test (o = 0.01) on the solution quality between n and n — 1 parents (all
significant values are marked by boldface)

U-Scan OB-Scan
n-1vs. n F2¢ RAS SCH GRI F2¢ RAS SCH GRI
9918 .0033 .8875 .2492 .0000 .0000 .0000 .0000
.3588 .8314 .9281 .5137 .6471  .0220 .5543 .7480
.2629 .9869 .1650 .3210 .0000 .0000 .0000 .0000
5231 1754  .6135 .7390 .0579 .7198 .7699 .2906
.6823 .2410 .5643 .9706 .0000 .0000 .0000 .0000
1845 .3332 .9153 .9843 1188  .6444 .7905 .9926
.2048 .6673 .4769 .9139 .0006 .0000 .0000 .0000
7933 .6675 .2493 7771 9502 .0392 4272 .3143
10 - 11 9312 .0561 .5450 .9255 .0013 .0106 .0000 .0078
11 -12 7706 1473 .7997 .9679 4223 .8611 .0593 .6612
12 -13 .3460 .3016 .7859 .2176 .0303 .0108 .0002 .0648
13-14 .6636 .8808 .1336 .3382 5572 9303 .8287 .3299
14 - 15 8378 9222 1113 .4425 .6151 .0581 .5913 .3638
15 - 16 .8811 .7487 .5378 .3272 9056 .1307 .0944 .1188
16 - 17 .2685 .9771 .3154 .9057 2761 5796 .4744 .6175
17 - 18 .b843 .2979 .1153 .2135 14915 9630 .3919 .3556
18 - 19 3139 9381 .6242 .7165 4342 1237 .1282 .8630
19 - 20 2434 .9744 5750 .5782 4763 .3998 .0375 .3567

00 ~J O Ui W N
1
© 00~ O Ot W

Nel
]

—_

o

analysis. A criterion based on uniform population was further presented to evaluate
the performance of crossover. Accordingly we analyzed U-Scan and OB-Scan to identify
the influence of applying more than two parents on their performance.

Several interesting results emerge out of our analysis. Concerning the question
“When and why will MPGAs perform better?”, first, we proved that the number of
parents exercises no influence upon the performance of U-Scan. That is to say, U-Scan
with more than two parents will perform the same as its 2-parent version, i.e. uniform
crossover. Second, contrary to U-Scan, the number of parents plays an important role
in the performance of OB-Scan. Under the assumption of uniform population, OB-Scan
with an even number n of parents is proved to perform equally to OB-Scan with n—1
(an odd number) parents. In addition, the analysis reveals that using more than two
parents in OB-Scan will intensively lead to better solutions, as the order of uniform
population is smaller than a half of chromosome length; on the other hand, it will
yield worse offspring as the order is larger than a half of chromosome length. Further-
more, the analysis shows that increasing the number of parents will further reinforce
the improvement (or deterioration). According to the analytical results of OB-Scan, a
conjecture is made that raising parents in OB-Scan will intensify exploitation of the
search.

The analytical claims are further verified by a series of experiments. We applied
MPGAs with U-Scan and OB-Scan individually to solve four common test functions.
Experimental results show a high level of consistence with our analytical arguments:
First, raising parents in U-Scan, as expected, makes no significant difference with 2-
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parent U-Scan in both solution quality and convergence. Second, OB-Scan shows pair-
wise equivalence in solution quality as well as convergence. Moreover, experimental
results reveal that increasing parents in OB-Scan causes an accelerated but premature
convergence — a common consequence of overly-intensified exploitation. In a word,
these experimental results validate our analytical claims and conjecture.

To some extent the proposed uniform population is too simple to represent the
real population; nonetheless, it provides a tractable population environment and a
convenient way to analyze crossover theoretically. Furthermore, the analytical results
based on uniform population are capable of identifying the influence of applying more
parents on the performance of multi-parent crossovers. However, the present analysis
concentrates on one generation and only gives the trend for a MPGA toward better,
equal, or worse performance. Beyond that, the following chapter will extend the notion
of this chapter to an advanced analysis on the correlation between the number of
parents and the convergence of MPGAs, in consideration of the whole evolution and
the regular population.
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Fig. 3.7. The convergence of MPGAs using U-Scan and OB-Scan with different numbers of parents
in the Schwefel function
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Analysis Using Markov Chain Theory

This chapter models MPGAs by Markov chain theory to deal with the following two
issues:

e When will MPGASs outperform GAs?
e Why do MPGAs perform better?

First, we look into the variation of gene frequency affected by selection, multi-parent
crossover, and mutation individually. Following the framework of MPGAs, the gene
frequency at each stage (selection, crossover, and mutation) can be derived. Next,
we formulate the variation of gene frequency over generations by Markov chain theory.
Here the survivor strategy is considered. As a result, the separate as well as the integral
effects of population size, selection intensity, the number of parents, mutation rate, and
generation gap on the gene frequency over generations are modeled. The evolution in
MPGAs, as Fig. 1.1 illustrates, is comprehensively analyzed.

The proposed Markov model can afford to resolve the above two issues in MPGAs.
First, we examine the genetic drift, the principal measure of how fast population di-
versity diminishes. To this end, no mutation, i.e. zero mutation rate, is applied to the
model. The consequent Markov model gives the definite number of generations when
population diversity will drain away. That is to say, it explicitly indicates the speed of
genetic drift in MPGAs. Second, we use the Markov model to investigate the conver-
gence of MPGAs in the OneMax problem; furthermore, we extend this model to deal
with the Generalized OneMax problem. The proposed Markov model not only indi-
cates the correlation between the number of parents and the expected fitness, but also
identifies the impact of other MPGA operators. Consequently, this model can point out
whether MPGASs can outperform GAs with respect to a particular parameter setting,
which helps us to explore the situations and the causes of MPGASs’ superiority over
GAs.

Part of the content presented in this chapter was published in [103, 104].
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4.1 Variation of Gene Frequency

Gene frequency represents the proportion of a particular allele in the population and
is widely used as a quantitative measure of genetic variation in population genetics
[53, 75]. It also suffices to clue us in on the course of evolution in GAs. In this section
we analyze the variation of gene frequency caused by U-Scan, OB-Scan, and mutation
respectively. Based on the gene frequency, the next section will build the model with
Markov chain theory.

Definition 4.1 (Gene Frequency). The gene frequency pi(a,t) is defined as the
proportion of allele o at locus k in the population at time t. Let C = {c1,...,cpn} be
the population at time t and let Cx(a) = {c € C | ¢y = a} be the subset in which
chromosomes possess allele a at locus k. The gene frequency is defined by

Cia
O

where |Cland |Cy ()| represent the cardinality of set C' and Cy(«).

In this thesis, chromosomes in GAs are represented as binary strings. Thus there exist
two gene frequencies pg(1,t) and pg(0,t) with pg(0,t) = 1 —pi(1,¢) for locus k at time
t. For simplicity, we refer to the gene frequency py(1,t) as px(t) and refer to pg(0,t) as
(1 — pg(t)). Incidentally, the symbol pg(t) is referred to as py whenever the indication
of time ¢ is irrelevant.

Remark 4.2. In GAs, we have

def _1
pi = Ela] = — > o, (4.1)
ceC
2 def — _
oj, = Var(ck) = pr(1 — pk), (4.2)

where E[-] denotes the expectation and Var(-) denotes the variance.

Definition 4.3 (Variation of Gene Frequency in GAs). Let pi(t), pi(t), pi*(t) be
the gene frequencies after performing selection, crossover, and mutation at generation
t. The process of GAs with respect to gene frequency can be expressed as

selection 5( t) crossover px ( t) mutation pm ( t) survivor

p(t) Pk k k pr(t +1). (4.3)

The variation of gene frequency caused by U-Scan, OB-Scan, and bit-flip mutation will
be analyzed in the subsequent sections. The effect of the survivor strategy on the gene
frequency will be examined in Section 4.3 and Section 4.4.3. The selection, however, is
associated with the fitness of chromosomes while the fitness depends upon the given
problem. This implies that the influence of selection on the gene frequency is problem-
dependent. We will investigate this influence in the OneMax problem in Section 4.4 and
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the influence in the Generalized OneMax problem in Section 4.5. Before that, we simply
assume the selection is a random selection; that is, the gene frequency pj(t) = pi(t).

In the analysis we will make use of two well-known probabilistic distributions [79].
First, the probability mass function (p.m.f) B(x;n,p) of binomial distribution B(n,p)
is

B(a;n,p) = <Z>px(1 -p)"",

where n,x € Z, and and 0 < p < 1. Second, the p.m.f. H(z;n,r,m) of hypergeometric
distribution H(n,r,m) for z,n,r,m € Z, is

() G)
()

H(xz;n,r,m) =

4.1.1 Variation Caused by U-Scan

Section 1.2 has introduced how U-Scan and OB-Scan operate. Here we analyze the gene
frequency affected by U-Scan. In the next section we will further investigate the gene
frequency affected by OB-Scan. Since both U-Scan and OB-Scan are multi-parent gen-
eralizations of uniform crossover, the analyses and results presented here are applicable
to uniform crossover as well.

Lemma 4.4. Suppose we have the gene frequency pj, of the selected parents. For the
gene frequency, denoted by py, of the offspring reproduced by n-parent U-Scan X, with
n € N1, we have

Pk = P
Proof. Let X be the number of parents possessing the allele 1 at locus k& among n
selected parents. Since the process of selection is independent, i.e. the i*" selection ex-

ercising no influence on the j* selection, the process is a Bernoulli process. Performing
this selection n times, the number X will hold a binomial distribution with p.m.f.

Pr(X =2x) = B(z;n,p;) = (Z) (pp)* (L =pp)" ",

Let 1 denote the event that U-Scan assigns the allele 1 to the offspring locus k. Since
U-Scan chooses the donor randomly, the number x out of n parents possessing the allele
1 yields

Pr(®, | X =2) = %

Hence the gene frequency

pi=Pr(D1) =Y Pr(D1| X =z)-Pr(X =)

z=0

=3 () Baingp.
=0
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Since the expectation of binomial distribution ), xB(x;n,p) = np, the above equation
becomes

1
u__ S\ — s.
pk—n(”pk) Pg
O

Corollary 4.5. The number of parents in U-Scan has no influence upon the gene fre-
quency.

The above corollary can be easily proved by Lemma 4.4: U-Scan yields the same gene
frequency pj! with the given p;, no matter how many parents are adopted. That is to
say, in terms of gene frequency, n-parent U-Scan performs identically with its 2-parent
degeneration, viz uniform crossover. In Section 4.4, we will show that this ineffectiveness
yields identical mean fitness at any time ¢ and identical mean convergence time for
different numbers of parents adopted in U-Scan.

4.1.2 Variation Caused by OB-Scan

Before conducting the analysis of OB-Scan, we introduce the incomplete beta function
for simplifying the expression of equations.

Definition 4.6 (Incomplete Beta Function). The incomplete beta function is de-
fined as

def 1 C a1 b—1
Labh) % —— [ et —ptar,
(a,5) Beta(a,b)/o ( )

where a,b > 0 and Beta(a,b) is the beta function.

The following properties hold for the incomplete beta function:

1. (26.5.24 [1]) For the binomial distribution B(n, p),
ZB(i;n,p) =Ip(a,n—a+1). (4.4)

2. (26.5.16 [1])

I.(a,b) = (1 — z)° + L(a + 1,b). (4.5)

1
a - Beta(a, b)
Now we embark on the analysis of OB-Scan’s impact on the gene frequency.

Lemma 4.7. Suppose we have the gene frequency pj, of the selected parents. For the
gene frequency, denoted by pzb, of the offspring reproduced by n-parent OB-Scan Xgp
with n € Ns1, we have

pzb = IPZ (a7 a)v

where I, denotes the incomplete beta function and a = {%1
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Proof. Let X be the number of parents possessing the allele 1 at locus k& among n
selected parents. Since the process of selection is independent, it is a Bernoulli process.
Performing this selection n times, the number X holds a binomial distribution with
p.m.f.

Pr(X =x) = B(z;n,p;) = (Z) ()" (X =pp)" ",

Let ©1 denote the event that OB-Scan assigns the allele 1 to the offspring locus k.
According to Definition 1.5, OB-Scan yields

1 ifz>n/2,
Pr(® | X =2)=<0 ifzx<n/2
3 ifz=n/2

For OB-Scan with an odd number of parents n = 2a—1 for a € N5 (remark: a = [%1 ),

P =Pr(®1) =Y Pr(D| X =z)-Pr(X =)
z=0
2a—1

> Bl2a- 1)

r=a
= Ip: (a,a) (from (4.4))
Similarly, for OB-Scan with an even number of parents n = 2a for a € N (remark:

a=[3]),

P => Pr(® | X =x) Pr(X =)
z=0

2a 1
= Y B(x;2a,p}) + 5 Bla;2a,pp)

et
= Iy (a+1,a)+ %(i?) (pi)* (1 = pi)*
= I (a,a) — aBet;(a’ oy PR (1= pi)

+ % (i?) (o) (1 —p})” (from (4.5))
= hgla) + [~ B 2B e 1 gy
— I (a,a) + [—% (j!‘;)!' + % (jf;),'] ()" (1 —p})"
— I:(a,a)
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Comparing the gene frequencies associated with U-Scan and OB-Scan in Lemma 4.4
and Lemma 4.7, we obtain the correlation between p) and pzb as follows.

Corollary 4.8. Let pzb(") and pz(n)
OB-Scan and n-parent U-Scan, respectively. For any n € Ns1, we have

be the gene frequencies corresponding to n-parent

b(2
P =pp® = pi.
This corollary indicates that U-Scan with any number of parents corresponds to OB-
Scan with 2 parents in the gene frequency. Hence, U-Scan can be viewed as a special
case of OB-Scan with n = 2. According to this correlation, in the subsequent analyses
we will only discuss OB-Scan. Some more properties of OB-Scan in the gene frequency
are presented below.
Corollary 4.9 (Pairwise Equivalence). Let pzb(n) be the gene frequency pzb corre-
sponding to n-parent OB-Scan. For n € 2N and n > 4, we have

ob(n) _ pzb(n—l) .

Dy,
Proof. Trivial (since [2] = [251] for n € 2N in Lemma 4.7). O
f ) P
Corollary 4.10. Let pzb(n) be the gene frequency pzb corresponding to n-parent OB-
Scan. For n € Ns1, it holds for the gene frequency pzb(n+2) that
< pzb(") if 0 < pj, < 0.5,

pp LS M 05 < ps < 1,
= pzb(n) otherwise.
Proof. Refer to Appendix D.1. O

Corollary 4.11. For n € N<o, it holds for the gene frequency pzb that

<p; if0<p; <0.5,
P > pp if 0.5 <pf <1,

=p;. otherwise.
Proof. Refer to Appendix D.2. O

Figure 4.1 plots the differential of gene frequency (pzb — p;). As indicated in Corol-
lary 4.11, the differential is divided by the gene frequency p; = 0.5 into two parts:
negative differential for 0 < p; < 0.5 and positive differential for 0.5 < p; < 1. In addi-
tion, raising parents in OB-Scan intensifies the tendency toward allele 0 or 1, depending
on the given gene frequency p;.
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The intensification induced by OB-Scan can be beneficial if at all, one can select
parents with a preference always for those owning the correct genes. Otherwise, OB-
Scan with more than two parents may be harmful. This two-sided effect reveals the
sensitivity of OB-Scan to the selection, and this sensitivity is further aggravated by the
increase of parents. However, it is less likely to have a perfect selection for every locus,
especially in the highly epistatic problems [55]. Therefore, a mechanism, e.g. mutation,
that can remedy the harm caused by OB-Scan will be vital to the overall performance.

02 | B

01+ B o

P - b

02| N=6 - 4

PR
Fig. 4.1. The differential of gene frequency (p5°—p;) induced by performing n-parent OB-Scan with
P

4.1.3 Variation Caused by Mutation

In this chapter, the analysis of mutation focuses on the most popular mutation — bit-
flip mutation. Bit-flip mutation randomly chooses a locus and then flips the gene at
this locus, i.e. 0 — 1 and 1 — 0. A parameter ~,,, called mutation rate, is introduced
to determine the probability for a gene to be mutated. The variation of gene frequency
caused by bit-flip mutation is shown in the following lemma.

Lemma 4.12. Suppose we have the gene frequency pi. Given the mutation rate 7,
for the gene frequency of the offspring mutated by bit-flip mutation, we have

pit =P+ Ym(1 — 2p%).

Proof. Considering bit-flip mutation, the cases to yield the gene 1 at locus k are: 0—1
(mutated) and 1—1 (not mutated). Let ¢ be the gene at locus k before mutation and
¢}, be the gene after mutation. The gene frequency is
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pp=Pr{c, =1|cx =0}Pr{cy =0} + Pr{c), =1 | cx = 1} Pr{c,, = 1}
= ym(1 = i) + (1 = ym)pi
= Pk + Ym(1 — 2p).

O

Figure 4.2 plots the differential of gene frequency (pj'—p7,) induced by bit-flip mutation.
Comparing Figs. 4.1 and 4.2, we learn that mutation exerts an influence contrary to
OB-Scan in the gene frequency: For 0 < py < 0.5, mutation has a positive differential,
i.e. p* > pi. On the other hand, for 0.5 < pj, < 1, mutation results in p;* < py. Simply
speaking, mutation intends to pull the gene frequency back to the dividing frequency
0.5. Furthermore, the higher the mutation rate -,,, the stronger the force of pullback.
These characteristics match what we mentioned in the previous section: Mutation plays
an important role in balancing the intensified preference by OB-Scan. In the following
sections we will further demonstrate this point theoretically and empirically.

;
Yy=0 —
Ym=0.01
- Ym=0.05 -------- i
02 =005
Ym=0.20
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Pk

Fig. 4.2. The differential of gene frequency (pi'—pf) induced by bit-flip mutation with mutation rate
Ym

4.2 Modeling with Markov Chain Theory

Markov chain theory has been used to model the behavior of GAs [5, 13, 50, 56, 64, 100]
and to analyze the global convergence of GAs [2, 19, 26, 77, 85, 113]. In this thesis, we
use Markov chain theory to formulate the variation of gene frequency in the course of
evolution.
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4.2.1 Markov Chains

Genetic algorithms are commonly viewed as stochastic processes or stochastic optimiza-
tion algorithms. A stochastic process is a series of random variables { X (¢)} over time t.
According to the index set type of time ¢, a stochastic process {X(t)} is categorized as
a continuous-time stochastic process if ¢ € [0,00), or a discrete-time stochastic process
if t € Z,. A large class of stochastic processes have the property that the prediction of
value X (t+ 1) depends only upon the present value X (¢) and is independent of the his-
torical values {X(0), X(1),...,X(t —1)}. Such processes are called Markov processes;
the memoryless property is known as the Markov property. In Markov processes, the
possible values of {X(t)} are called states, and the set of all possible states is called
state space. In this work we refer to a discrete-time Markov process as a Markov chain
if the state space is finite or countably infinite. Some well-known definitions about
Markov chains [10, 12, 60| are given in Definition 4.13-4.15 below.

Definition 4.13 (Markov Chains). A stochastic process {X(t) : t € Z.} with finite
state space S is said to be a Markov chain if for all ig,41,...,%-1,1,7 € S

Pr{X(t+1)=j|Xt)=4,X{t—-1)=1i-1,...,X(0) =ip}
=Pr{X(t+1)=5]|X(t) =1}
def

= pij(t) -

The |S| x|S| square matriz P(t) = (p;j(t)) is called the transition matrix of the Markov

chain {X (t)}. The probability p;;(t) is called the transition probability of state i to state
7 at time t.

Definition 4.14 (Homogeneous Markov Chains). A Markov chain is said to be
homogeneous if its transition probabilities are independent of time. That is, for all
t €7y

piy = Pr{X(t+1) = j | X(t) = i}.

A Markov chain consists of a family of random variables; therefore it has a probability
distribution of states for each random variable. In terms of Markov processes, this
probability distribution is called state distribution.

Definition 4.15 (State Distribution).

1. Denoted by a probability vector w(t) = (mo(t),...,mn(t)), the state distribution of a
Markov chain {X (t)} with state space S = {0, ..., N} represents the unconditional
probabilities of states. Precisely, fort € Z, and i € S

mi(t) € Pr{X() =i} and Y m(t)=1.

€S

2. The vector w(0) is called the initial distribution of {X(¢)}.
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Next, we introduce a useful theorem for the state distribution of homogeneous Markov
chains.

Theorem 4.16 ([12, p.57]). Suppose we have a homogeneous Markov chain with tran-
sition matriz P. Given the initial distribution 7(0), the state distribution at time t can
be obtained by

w(t) = w(0)P?, (4.6)

where Pt is the t™ power of matriz P.

4.2.2 The Model for Gene Frequency

In the light of gene frequency, a GA can be viewed as a stochastic process ma-
nipulating the number of allele 1 (or 0) in the population: Let random variables
Gr(t) € {0,1,...,m} be the number of allele 1 at locus k at generation ¢. The process
of GAs on the gene frequency can be represented as {Gy(t) : t € Z,}. Since for every
0,01, yitr1 € {0,1,...,m} the process {G(t)} satisfies

PI‘{Gk(t + 1) =ty ‘ Gk(t) = 1, Gk(t — 1) =T 1,-.-- ,Gk(O) = io}
= PI’{Gk(t + 1) = it+1 ’ Gk(t) == ’it},

the process {G(t)} is a Markov chain. A formal definition of the Markov chain for
gene frequency is given as follows.

Definition 4.17 (Markov Model for Gene Frequency). In the Markov chain
{Gk(t)} for the gene frequency at locus k € {1,...,l} in GAs,

1. the state is defined as the number of allele 1 at locus k in the population; thereby
the state space is {0,1,...,m}. A state i in {Gi(t)} gives the gene frequency

1
P = —.
m
2. The transition matrix of {Gk(t)} is defined as

P00 Po1 * Pom

Pdgf P'10 P'11-'-

where p;j s the transition probability of state ¢ to state j.

pi; & Pr{GL(t+1) = j | Gp(t) = i}.

In the following sections we will utilize this Markov model for gene frequency to inves-
tigate the genetic drift and the convergence of MPGAs.
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4.3 The Genetic Drift of MPGASs

Genetic drift is a phenomenon that in a finite population without external forces, e.g.
selection and mutation, the genetic variability of a locus will decay with time and
eventually get fixed to some allele. The cause of genetic drift is the cumulation of
sampling errors [40, 53|. In population genetics, the rate of genetic drift serves as an
important index of how fast population diversity is lost. Recently this rate is applied
to analysis of GAs as a quantitative measure of the losing rate of population diversity
[5, 100]. Note that the conditions to examine genetic drift — no selection pressure and
no mutation — imply the setting of random selection and zero mutation rate in GAs.
The procedure for analysis of genetic drift in GAs is illustrated in Fig. 4.3.

Initialization

Population

Evolution

(Single Locus)

Survivor

Fig. 4.3. Procedure for analysis of genetic drift in GAs

In the light of MPGAs, Schippers [90] studied the genetic drift of MPGAs using
U-Scan and OB-Scan. His work revealed that U-Scan has no influence on genetic drift
whilst OB-Scan induces severe genetic drift, as the number of parents is increased.
Nevertheless, Schippers only compared the probabilities of drift in and drift out; the
rate of genetic drift in MPGAs is still an open question.

In this chapter we investigate in theory the genetic drift of MPGAs using U-Scan
and OB-Scan to answer the following questions:

e How long (in generations) will a locus in MPGAs get fixed? Namely, how fast is the
genetic drift of MPGAs?
e How likely will this locus get fixed to allele 1 (or 0)?

To this end, we utilize the Markov model for gene frequency presented in Definition 4.17
to derive the mean convergence time — the principal measure of genetic drift in GAs [5].
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With regard to the genetic drift for a single locus, the term ‘convergence’ represents
the occurrence of all-zeros or all-ones population. In general, random selection and zero
mutation rate are assumed for analysis of genetic drift. Therefore the variation of gene
frequency in GAs, referring to Definition 4.3, turns out to be:

pk(t) crossover pz(t) survivor pk(t-i-l). (47)
Following the above framework and the analytical results in the previous section,

we derive the transition probability of the Markov chain for analysis of genetic drift in
MPGAs.

Theorem 4.18. For a GA using random selection, n-parent OB-Scan, and no muta-
tion, the transition probability p;; of the Markov chain {Gy(t)} corresponding to that
GA is
Generational GA:  p;j = B(j;m,p},)
Steady-state GA: p;j =pj, - H(j —1;m —1,i,m)
+ (1 =pl) - Hsm = 1,i,m)

=1, (21 3])

Proof. Recall that the state ¢ of transition probability p;; gives the gene frequency pj, =
%. From Lemma 4.7 we can obtain the gene frequency pj of the offspring reproduced
by a GA using random selection, n-parent OB-Scan, and no mutation. Following the
sequence of GAs described in (4.7), the gene frequency is

e, (5L

In generational GAs, the population is completely replaced with the subpopulation
consisting of m offspring, which are reproduced by m times of selection-crossover-
mutation process. Since this process is independent, the number of allele 1 holds a
binomial distribution B(m,pj,). Hence, the transition probability is

pij = Pr{Gp(t +1) = j | Gi(t) = i}

with

In steady-state GAs, the subpopulation consists of only one offspring and will re-
place one chromosome randomly selected from the population at each generation. The
probability that the offspring holds allele 1 at locus k is simply pj . Moreover, selecting
one chromosome out of the population can be viewed as sampling (m—1) members from
the population without replacement [83]. Thus the number of allele 1 in the remaining
population at locus k holds a hypergeometric distribution H(m — 1,4, m). Accordingly
the transition probability is

pij = v - H(G—Lm—1i,m)+ (1 —py) - H(j;m —1,i,m)
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Theorem 4.19. For a GA using random selection, n-parent U-Scan, and no mutation,
the transition probability p;; of the Markov chain {Gy(t)} is

Generational:  p;; = B(j;m, i)
m

Steady-state: p;j = (i) H(Gj—1,m—1,i,m)
m
+ (1 - i) H(j;m —1,i,m)
m

Proof. Lemma 4.4 tells the gene frequency pj of the offspring reproduced by a GA
using random selection, n-parent U-Scan, and no mutation is

Py = Py = Dk-

The state ¢ of transition probability p;; gives the gene frequency pj = % Referring to
the proof of Theorem 4.18, we have the transition probability for generational GAs:

i

and for steady-state GAs:
pij =Dy - H(j —L;m —1,4,m) + (1 = py) - H(j;m — 1,4,m)
- <i> HG—1;m—1,4,m) + (1 _ i) H(j;m —1,i,m).
m m
O

Remark 4.20. The transition probability for U-Scan is independent of the number of
parents n.

Remark 4.21. Comparing Theorem 4.18 and Theorem 4.19, we learn that the result in
Theorem 4.19 is a special case of OB-Scan with n = 2. This consequence corresponds
to Corollary 4.8. Again, since this correspondence of n-parent U-Scan with 2-parent
OB-Scan, in the following text we only discuss OB-Scan.

Proposition 4.22. The Markov chain {Gi(t)} for the GA given in Theorem 4.18 is
homogeneous.

Proof. A Markov chain is said to be homogeneous if the transition probabilities remain
constant over time. The transition probability p;; of the Markov chain {Gg(t)}, as
shown in Theorem 4.18, is independent of time ¢. Therefore, the Markov chain {G(t)}
is homogeneous. a

Since the Markov chain {Gj(¢)} given in Theorem 4.18 is homogeneous, we can utilize
(4.6) to compute its state distribution.
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4.3.1 Convergence in Genetic Drift

Theorem 4.18 gave the transition matrix of the Markov chain {G ()} for the GA using
random selection, n-parent OB-Scan, no mutation, and generational or steady-state
survivor. Of particular interest to us is, if at all, the convergence of {Gi(t)} — at that
time the population turns out to be all-zeros or all-ones. By means of Markov models,
conventional GAs without mutation have been shown to hold such a convergence [50].
In this section we will show that MPGAs without mutation have this convergence
property as well. For this, we need to prove that the Markov chains corresponding to
the aforementioned MPGAs belong to a special kind of Markov chains, called absorbing
Markov chains. As implied by the name, this kind of Markov chains will absorb the
process into certain states. From the properties of absorbing Markov chains we will
derive the mean time and the probability of convergence.

First of all, we draw some well-known definitions (Definitions 4.23-4.25) related to
absorbing Markov chains [10, 79].

Definition 4.23 (Absorbing States).

1. The closed set S€ is a set of states whose transition probabilities
pij =0 forallie S ¢S°.
2. A state i is said to be absorbing if and only if
35¢: 8¢ = {i} <= pii = 1.
3. A Markov chain with absorbing states is called an absorbing Markov chain.

Definition 4.24 (First Passage Probability). Let fi(;) be the probability that start-
ing from state i, the process for the first time reaches state j in t steps. For a Markov

chain {X(t)},

FOEPHX () = 5, X (v) £ for 0 < v < t] X(0) = i}.

The first passage probability f;; is defined as the probability that starting from state 1,
the process ever reaches state j:

o
def (t)
eI
t=1
Definition 4.25 (Transient States). A state i is said to be persistent (or recurrent)

if fii = 1. Otherwise (fi; < 1), the state i is said to be transient (or non-recurrent).

According to the above definitions, we prove that the Markov chain associated with
the genetic drift of MPGAs is an absorbing Markov chain.
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Proposition 4.26. Suppose we have a GA wusing random selection, n-parent OB-
Scan, no mutation, and either generational or steady-state survivor. The Markov chain
{Gk(t)} corresponding to this GA is an absorbing Markov chain with exactly two ab-
sorbing states: 0 and m.

Proof. According to the definition of absorption,
{Gk(t)} is absorbing <= i : p; = 1. (4.8)

Next, we prove the absorption of {Gk(t)} in generational GAs and steady-state GAs
individually.

1. Generational GAs: From Theorem 4.18 we know
Ji: pii =1 <= Fi: B(i;m,py) = 1.
2

(i) ¢ = 0 with pj, = 0 and (ii) ¢« = m with pj, = 1. This leads to, for the Markov
chain {G(t)},

The solutions of B(i;m,p),) = 1 subject to p) = I# ([%],[%]) and n € N5y are

P00 = Pmm =1 = {Gi(t)} is absorbing .
2. Steady-state GAs: The transition probability in Theorem 4.18 gives

pi =P H(@ —1;m —14,m) + (1 —p)) - H(i;m — 1,i,m)
) Gd) () ()

ST )

/ 1’ /
p— P— 1 —_ .
Pe- + (1 =)

e (-2) (1)

The definition of absorption implies

aizpiizlﬁaiz(l—%)—<1—%>I#~qg]jg]):1.

For all n € Ny; and m € N, the solutions of the above equation are ¢ = 0 and
i = m. Therefore, for the Markov chain {Gy(t)} of steady-state GAs, we have

+ (1 —pp) -

m—1

P00 = Pmm =1 = {Gg(t)} is absorbing .

Concluding the cases in generational GAs and in steady-state GAs, we complete the
proof that the Markov chain {G(t)} is absorbing with exactly two absorbing states 0
and m. ad
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With respect to absorbing Markov chains, of interest to us are the time and the probabil-
ity to get absorbed into the absorbing states. The absorption probability of an absorbing
state is the probability that the process starts from a transient state and eventually
gets absorbed into that absorbing state. Recall that the first passage probability f;;
represents the probability that starting from state ¢, the process ever reaches state j.
Thus, the probability f;; represents the absorption probability for an absorbing state
7 and a transient state .

To compute the absorption probability and the mean time to absorption, we in-
troduce the fundamental matrix [12| in Definition 4.27 and its related properties in
Theorem 4.28.

Definition 4.27 (Fundamental Matrix). For a Markov chain with b absorbing
states, the transition matriz can be rewritten as

(L, O
P= (R Q> ) (4.9)
where Iy is a b x b identity matriz. Denoting by I the identity matriz, the fundamental
matrix for the absorbing Markov chain is defined as

FE(I-Q)

Theorem 4.28 ([12, p.155]). Of an absorbing Markov chain, let F be the fundamental
matriz and R be the matriz described in the preceding definition.

1. The components of FR = (fi;) represent the absorption probability fi; of transient
state © to absorbing state j.

2. The fundamental matric ¥ = (7;;) stands for the mean time 7;; that the process
spends at transient state j assuming it starts from transient state i.

Using Theorem 4.28, we derive the mean convergence time of MPGAs without muta-
tion, that is, the rate of genetic drift.

Theorem 4.29 (Mean Convergence Time of MPGAs without Mutation). Sup-
pose we have a GA using random selection, n-parent OB-Scan, no mutation, and either
generational or steady-state survivor. Let F = (7;;) be the fundamental matriz of the
Markov chain {Gy(t)} corresponding to this GA. For locus k € {1,...,l}, given its
initial state distribution w(0) = (mo(0),..., 7 (0)), the mean convergence time is

—1m—1
7 (0)7i5.

1

3
3

\1
Il

i=1

<.
Il

Proof. We have shown that the Markov chain {G(¢)} has two absorbing states 0 and m
corresponding to the predefined GA. Let A be the set of absorbing states in {G(t)},
namely A = {0,m}. Theorem 4.28 indicates the fundamental matrix of the Markov
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chain {G(t)} representing the mean time that the process spends at state j € A
starting from state ¢ € A. The mean time 7; that the process spends among transient
states, assuming it starts from transient state ¢, can be derived:

T = E Tij-
jeA

Therefore, given the initial state distribution 7 (0), we have the mean convergence time

m—1 m—1 m—1m—1
T=) #Pr(i[t=0)=> mm0)=> > m(0)7;.
=1 i=1 i=1 j=1

O

Theorem 4.30 (Probability of Convergence). Let {Gy(t)} be the Markov chain
corresponding to the GA using random selection, n-parent OB-Scan, and no mutation.
For locus k € {1,...,l}, given the initial state distribution w(0) = (mo(0),...,mn(0)),
the probabilities of convergence to all-zeros and all-ones population are respectively

-1

3

tlim Pr{Vec € C : ¢, = 0} = m(0) + mi(0) - (FR),o,

1M

1
tlim Pr{vc e C : ¢, =1} = m(0) + i (0) - (FR) s,
1

.
I

where (FR);; denote the (i,7) element of the matriz product FR.

Proof. Since {G(t)} is an absorbing Markov chain with two absorbing states 0 and m,
the absorption probabilities

fio = tlirgo Pr{Gk(t) = 0| Gr(0) = i},
fim = tllglo PI‘{Gk(t) =m ’ Gk(O) = Z}
Theorem 4.28 tells the absorption probability of transient state i € {1,...,m — 1} to
absorbing state j € {0,m}:
fiy = (FR);.
Additionally, the absorption probability for i,5 € {0,m} is

1 ifi=j
fij =0y = e
{O ifi £ j
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Hence the probability for the GA to converge to all-zeros population is

tlim Pr{vVce C:¢, =0} = tlim Pr{G(t) =0}

= lim > Pr{Gi(t) = 0] Gx(0) = i} Pr{G,(0) = i}
=0

= fiomi(0)
i=0
m—1

=m(0) + > mi(0) - (FR)ig

i=1
The probability of convergence to all-ones population can be proved similarly. ad

Example 4.31. Consider the locus k of a generational GA using population size 6, ran-
dom selection, 3-parent OB-Scan, and no mutation. According to Theorem 4.18, the
transition matrix of the corresponding Markov chain is

0 1 2 3 4 ) 6

1 0 0 0 0 0 0
0.63 0.30 0.06 6.5e-3 3.9e-4 1.2e-5 1.7e-7
0.17 035 0.30 0.14 0.04 5.2e-3 3.0e-4
0.02 0.09 .023 0.31 0.23 0.09 0.02
3.0e-4 5.2e-3 0.04 0.14 0.30 0.35 0.17
1.7e-7 1.2e-5 3.9e-4 6.5e-3 0.06 0.30 0.63

0 0 0 0 0 0 1

S U W N~ O

Obviously, the states 0 and 6 are absorbing states; thus this chain is absorbing. Fol-
lowing Definition 4.27, the transition matrix can be rewritten as

0 6 1 2 3 4 )

0 1 0 0 0 0 0 0
6 0 1 0 0 0 0 0
P 1 0.63 1.7e-7 0.30 0.06 6.5e-3 3.9e-4 1.2e-5
2 0.17 3.0e-4 0.35 0.30 0.14 0.04 5.2¢-3
3 0.02 0.02 0.09 .023 0.31 0.23 0.09
4 | 3.0e-4 0.17 5.2¢-3 0.04 0.14 0.30 0.35
5 \1.7e-7 0.63 1.2e-5 3.9e-4 6.5e-3 0.06 0.30
with
0.63 1.7¢-7 0.30 0.06 6.5¢-3 3.9¢-4 1.2¢-5
0.17 3.0e-4 0.35 0.30 0.14 0.04 5.2e-3
R=| 002 002 |,andQ=| 0.09 .023 0.31 0.23 0.09
3.0e-4 0.17 5.2e-3 0.04 0.14 0.30 0.35

1.7e-7 0.63 1.2e-5 3.9e-4 6.5e-3 0.06 0.30
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The mean time 7;; for 4,5 € {1,...,5} can then be obtained from the fundamental

matrix
1.51 0.15 0.05 0.03 0.02
0.88 1.66 0.40 0.24 0.19

(rij)) =F=(1-Q)"'=| 0.57 0.67 1.74 0.67 0.57 |,
0.19 0.24 0.40 1.66 0.88
0.02 0.03 0.05 0.15 1.51

and the absorption probabilities f;; for i € {1,...,5}, j € {0,6}

0.981 0.019
0.836 0.164

(fij) =FR = 0.5 0.5
0.164 0.836
0.019 0.981
Assume the population is initialized randomly. The elements of the initial distribution
are

1
m:(0) =B <i;6,§) fori=0,1,...,6,
and therefore the initial distribution is
(0) = 1 6 15 20 15 6 1
T =\ 64646464 64 64’ 64 )
The mean convergence time is derived by

1.51 + 0.15 + 0.05 + 0.03 + 0.02
0.88 + 1.66 + 0.40 + 0.24 + 0.19
15 20 1
= <%, 6—2, 6—2, 6—2, 6%) | 0.57+0.67+1.74+0.67+0.57 | =3.23 .
0.19 + 0.24 + 0.40 + 1.66 + 0.88
0.02 4 0.03 + 0.05 + 0.15 + 1.51

Moreover, the probability of convergence to all-ones population is

0.019
0.164
1 (/6 1520 15 6
I ==t (2,2 20D | o5 [=05.
fim Prive € C:ep =1} 64+<64’64’64’64’64> 05 05
0.836
0.981

More theoretical results of the mean time and the probability of convergence to allele

1 are presented in the following section.
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4.3.2 Theoretical Results and Experimental Validation

This section demonstrates the theoretical results obtained from the above theorems
with regard to the mean time and the probability of convergence. Moreover, we conduct
experiments on a single locus (I = 1) to verify these results. The setting of MPGAs used
in our experiments is generational GA, bit-string representation, random selection, and
no mutation. Each experiment setting includes 1000 independent runs.

4.3.2.1 Generational MPGAs

First we check the results of MPGAs using OB-Scan. Figure 4.4 depicts the mean
convergence time for n parents and population size m. First, this figure shows that
our theoretical results fit the experimental results very well. Second, it shows that for
n € 2N-; a GA using n-parent OB-Scan performs correspondingly to that using (n—1)-
parent OB-Scan, which confirms the pairwise equivalence claimed in Corollary 4.9.
Third, this figure indicates that using more than two parents in OB-Scan causes a
drastic decrease in mean convergence time, compared to the use of two parents in
OB-Scan. Nonetheless, raising parents from more than two parents only yields a small
decrease. The mean convergence time for m = 256 and n = 2, for example, amounts
to 351.55 generations while it takes only 10.17 generations for n = 3 (or 4) and 6.94
generations for n = 5 (or 6). This speedup in convergence reflects that OB-Scan with
more than two parents accelerates genetic drift.
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Fig. 4.4. The mean convergence time 7 for n-parent OB-Scan and population size m (the lines
representing the theoretical results and the symbols representing the experimental results)
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The above results are obtained from random initialization, namely, the expected
initial gene frequency being % On the mean convergence time, the influence of the
initial gene frequency is further examined. We denote by [ the bias of initial gene
frequency to the allele 1. Figure 4.5 shows the mean convergence time for the bias
8= 3—12 and § = %. Similar to random initialization, applying bias at initialization also
has the tendency that raising parents will reduce the mean convergence time, especially
from two to three parents. Concerning the effect of bias, the small bias (3%) slightly
decreases the mean convergence time, compared to no bias (i.e. random initialization)
shown in Fig. 4.4. However, the bias 3 = % substantially reduces the mean convergence
time for more than two parents. In other words, it further accelerates genetic drift.
Additionally, the difference between different population sizes is relatively little in mean
convergence time for § = %.

10

The Mean Convergence Time (1)
(2]

w

Number of Parents [n/2]

400

The Mean Convergence Time (1)
N
T

m=256 (gxp
1 2

Number of Parents [n/2]

Fig. 4.5. The mean convergence time 7 for n-parent OB-Scan and population size m with initialization
bias 3 = 55 (top) and 8 = ¢ (bottom)



72 4 Analysis Using Markov Chain Theory

Figure 4.6 compares the progress of genetic drift of uniform crossover (i.e. 2-parent
OB-Scan) and 3-parent OB-Scan for population size m = 32 under initialization bias
8 = 3% The rate of genetic drift for 3-parent OB-Scan is much faster than that for
uniform crossover. Interestingly, the distribution of convergence probability of uniform
crossover differs from that of 3-parent OB-Scan either. Asoh and Miihlenbein [5] have
shown the convergence probability of uniform crossover equals the initialization proba-
bility, which is reflected in Fig. 4.6. Yet, adopting more parents does not follow this rule.
The 3-parent OB-Scan gives a probability (= 0.6) higher than the initialization proba-
bility (% ~ 0.531). This outcome implies the number of parents in OB-Scan exerts an
influence upon the probabilities of convergence to all-zeros and all-ones population. To
investigate this influence, we examine the convergence probability for different num-
bers of parents and population sizes under initialization bias (. Figure 4.7 shows the
probabilities of convergence for initialization bias 3 = 3% and 0 = %. Obviously, using
more than two parents has a higher probability of convergence to the allele 1: the larger
the initialization bias, the higher the probability. Raising the number of parents further
increases this probability. In a word, using more parents will intensify the preference
of the initialization. However, the increment of preference has its limit. As shown in
Fig. 4.7, it receives no significant increase in the probability of convergence as the
number of parents is more than 10.
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16 |
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16
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Fig. 4.6. The progress of genetic drift of 2-parent OB-Scan (top) and 3-parent OB-Scan (bottom)

for population size m = 32 with initialization bias 8 = %
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Fig. 4.7. The probability of convergence to all-ones population for the GA using n-parent OB-Scan
and initialization bias 8 = 25 (top) and 3 = % (bottom)

Next, we examine the convergence of MPGAs using U-Scan. The mean convergence
time, as shown in Fig. 4.8, does not vary significantly with the number of parents for
all the four sizes of population. In addition, Fig. 4.9 demonstrates that the difference in
convergence probability between U-Scan using different numbers of parents is insignif-
icant: the probabilities all stand round the initialization probability. This invariance
with different numbers of parents in U-Scan becomes clearer, compared to the results
of OB-Scan in Fig. 4.4 and Fig. 4.7. These outcomes validate our argument: The number
of parents in U-Scan has no influence upon the gene frequency, and further the mean
time and probability of convergence. Recall that both 2-parent U-Scan and 2-parent
OB-Scan correspond to uniform crossover. It is sufficient to say that U-Scan with any
number of parents performs identically with uniform crossover in terms of the effect on
genetic drift.
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4.3.2.2 Steady-State MPGAs

This section examines the genetic drift in steady-state MPGAs using OB-Scan. Fig-
ure 4.10 compares the theoretical and the experimental mean convergence time of MP-
GAs using OB-Scan under no initialization bias (8 = 0) and 8 = % for different sizes
of population. Figure 4.11 further depicts the probability for the MPGA to converge
to allele 1. The good fit between the theoretical and the experimental results in these
figures confirms the capability of the proposed Markov model for the genetic drift in
steady-state MPGAs. In addition, the tendencies of steady-state MPGASs in mean con-
vergence time and probability are very similar to those of generational MPGAs: First,
the pairwise equivalence also holds in steady-state MPGAs using OB-Scan. Second, the
mean convergence time increases drastically from the number of parents n =2 ton =3
(or 4), but then increases gradually from n = 3 (or 4) to n = 5 (or 6). Third, raising
parents in OB-Scan gains a higher probability of convergence than the initialization
bias to allele 1.
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We further compare the mean convergence time and probability of steady-state MP-
GAs with those of generational MPGAs. Here the number of generations in steady-state
MPGAs is divided by population size m for an equivalent number of fitness evaluations
to generational MPGASs in one generation. Figures 4.12 and 4.13 respectively compare
the mean convergence time and probability of generational and steady-state MPGAs
using OB-Scan. These two figures show that steady-state MPGAs have longer mean
convergence time and lower probability of convergence to allele 1 than generational MP-
GAs. In addition, the number of generations reduced by adding parents in steady-state
MPGAs is smaller than that in generational MPGAs; however, the difference between
them is small, precisely, not more than 5 generations except for n = 2. In a word, the
number of parents in OB-Scan has a stronger influence over generational MPGAs than
over steady-state MPGAs in terms of genetic drift, to wit, the mean convergence time
and probability.
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4.4 The Convergence of MPGAs

This section investigates the influence of raising parents on the convergence of MPGAs
using U-Scan and OB-Scan. In this section, the analysis will focus on the OneMax
problem domain. This problem is widely used in the analysis of evolutionary algo-
rithms since it supports several useful probabilistic properties and the building block
hypothesis [48]. Even though the OneMax problem is relatively simple, the analysis on
it founds a basic understanding of how the (MP)GA operators work and interact in the
course of evolution. Furthermore, the analytical models for the OneMax problems are
promisingly applicable to other problem domains [68, 89].

In Section 4.1 we analyzed the variation of gene frequency affected by crossover
and mutation. Here we further explore the impact of selection on the gene frequency
in the OneMax problem. Using the Markov model for gene frequency proposed in
Section 4.2, we model the variation of gene frequency over time for the evolution of
MPGAs. The procedure for our analysis on the convergence of MPGAs is illustrated
in Fig. 4.14. Additionally, the mean convergence fitness and time for MPGAs in the
OneMax problem will be derived. Through this Markov model we examine in theory
the separate as well as the integral influences of population size, selection intensity,
the number of parents, mutation rate, and gemeration gap on the convergence speed
and solution quality of MPGAs. Accordingly we are able to deal with the following
questions:

e When or in which situations will MPGAs outperform GAs, concerning selection
intensity, the number of parents, mutation rate, and generation gap?
e What is the best number of parents in the OneMax problem?

Selection

I

Population

Dy

Survivor

Ve

Mutation

Y

Fig. 4.14. Procedure for analysis of convergence of MPGAs
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4.4.1 Background: The OneMax Problem

Recall the fact that most of the selection operators in GAs depend on fitness — a phe-
notypic property of chromosomes. Conversely, gene frequency concerns the genotypes
of chromosomes. The mapping from genotypes to phenotype is problem-dependent in
essence. Thus the analysis associated with selection depends on the problem domain.
In this section, our analysis focuses on the OneMax problem. This problem domain
is commonly used for theoretical analysis of evolutionary algorithms because of the
following reasons. First, the fitness function of the OneMax problem provides a direct
way to bridge the gap between phenotype and genotype. Second, even though the One-
Max problem is relatively simple, the theoretical analysis for it provides an insight into
how selection interacts with crossover, mutation and survivor, and how these operators
affect the overall performance in theory. Furthermore, the analysis for the OneMax
problem is promisingly applicable to other problem domains [68, 89].

The definition of the OneMax problem and its related properties are given as follows.

Definition 4.32 (The OneMax Problem). The OneMaz problem is to find the bi-
nary string ¢ = (c1, ..., c;) € {0, 1} that mazimizes the following function f : {0,1}! —
{0,1,...,1}:

k=1

The OneMax problem has the following properties:

1. The contribution of gene to fitness is identical and independent.
2. The genes are independent of each other.
3. It supports the building block hypothesis.

The first property is clear since in the OneMax problem the contribution of allele 1 to
fitness is exactly one (zero for allele 0), regardless of the locus. In addition, the genes at
different loci are independent of each other. For the third property, due to the length of
building blocks in the OneMax problem being one, crossover will not disrupt the built
blocks. This characteristic supports the building block hypothesis, even for uniform
crossover [99].

The independence of genes in the OneMax problem leads to the following lemma.

Lemma 4.33. In the OneMazx problem, the covariance of the genes at any two loci
u,v € {1,...,1} is
Cov(cy, cy) = 0.

Proof. Since the genes are independent of each other in the OneMax problem, the
expectation E[c,c,] = E[e,]E[c,]. Therefore, it holds for the covariance that

Cov(cy, ¢y) = Eleyey] — Eley]E[ey] = 0.
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4.4.2 Variation of Gene Frequency Caused by Selection

Definition 4.3 expressed the process of GAs on the gene frequency as

selection 5( t) crossover pm ( t) mutation pm ( t) survivor

Pi(t) —— i K K Pi(t +1).

In Section 4.1 we have derived the variation of gene frequency following the above
process, except the variation caused by selection. In this section we will deal with
the remaining part: pg(t) selection p;(t). Consequently, all the influences of MPGA
operators on the gene frequency are acquired.

Before conducting the analysis, we give a definition of mean fitness, which will be
extensively discussed later on. The relation between mean fitness and the gene frequency
will be presented afterwards.

Definition 4.34 (Mean Fitness). The mean fitness of a population C is defined as
Z /(e
CEC

Lemma 4.35. Let py be the gene frequency at locus k. In the OneMaz problem the
mean f and the variance 0% of fitness are

|
—

of = Z (1 —pk)
=1

k=1

ol

Proof. The mean fitness can be obtained by (4.1):

l

! !
f=E[f]=E lzck] => Elal =) _m
k=1 k=1

k=1

According to Lemma 4.33, we can derive the variance of fitness by

!
0% = Var(f) = Var <Z ) ZVar (ck) +ZCOV (cu, )

k=1 UFv

I I
=2 ok =2 L —pr).
k=1 k=1
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Remark 4.36. Similarly, let C® be the set of selected parents, we have the gene frequency
of allele 1 among the selected parents

1
L —
pk—’Cs’ ch’

ceCs

and the mean fitness of the selected parents

l
Fr= g 2 f@) =300k
k=1

ceCs

To compute the variation of gene frequency caused by selection, here we introduce the
concept of selection intensity, which originates from quantitative genetics [40] but now
is commonly used in the evolutionary computation (EC) community as a quantitative
measure of selection pressure [11, 71, 72, 100]. The definitions of selection differential
and selection intensity are given as follows.

Definition 4.37 (Selection Differential). Let f(t) and f*(t) be the mean fitness of
the population and that of selected parents at generation t, respectively. The selection

differential S(t) is defined as
S(t) = F*(t) = F(t).

Definition 4.38 (Selection Intensity). Let S(t) be the selection differential and

O'%(t) be the variance of fitness in the population at gemeration t. The selection in-

tensity is defined as

S0 F - )
or(t) op(t)

As above-stated, this selection intensity Z serves as a quantitative measure in the
influence of selection on fitness. However, we need another measure to examine the
impact of selection on the gene frequency. In this work, a selection intensity for gene
frequency is additionally defined in order to measure the effect of selection upon the
gene frequency.

I(t) = (4.10)

Definition 4.39 (Selection Intensity for Gene Frequency). The selection inten-
sity I, for gene frequency at locus k € {1,...,1} is defined as

Dj. — Dk

)

p def
1, =
Ok

where o is the standard deviation, defined as the square root of the variance J,%.

Lemma 4.40. In the OneMaz problem, the expected selection intensity for gene fre-
quency is

Var(o)
E2lo] -

E[1P] = % 1+ (4.11)



4.4 The Convergence of MPGAs 83

Proof. The definition of selection intensity for gene frequency tells
D — Dk = I};)O'k.
Since I};’ and oy, are independent, averaging all loci gives
E[p°’] - E[p] = E[Z”] E[o]. (4.12)
According to Lemma 4.35 and (4.10), the above equation can be rewritten as

Ep*] —E[p]  +3%api— 1t hame - T

Bl=—"%mr ~ Eo] =TR[]
_ Zop 1y 22:1 o _I\IE[p?] I |[E[0?%
~ IE[0c]  [E[d] ~ IElo]  VI\| E?lo]’

The variance Var(o) = E[0?] — E?[o]. Thus,

oy LI [E?[o]+Var(o) I Var (o)
E[“‘W\/W—M‘W V]

O

Remark 4.41. As Var(c) < E?[0], the expected selection intensity for gene frequency is

7z
EZP]~ — .
2] 7i
Here we utilize the above expectation as the selection intensity for gene frequency at any
locus k. Consequently, the variation of gene frequency caused by selection approximates

to
~ pi + Ok- 4.
R WAL

A practical advantage of (4.13) is its correlation with selection intensity Z. Accord-
ingly, we can utilize the existing analytical results, e.g. [11], on the selection intensity
T of diverse selection operators in GAs. Note that the selection intensity for gene
frequency in (4.13) is based on the assumption Var(c) < E?[o]. Even though this as-
sumption does not necessarily hold in the course of evolution, we will empirically show
this approximation can work well in Section 4.4.5.

In addition, equation (4.13) indicates that a positive selection intensity will result
in a gene frequency p; higher than the gene frequency pj. The stronger the selection
intensity, the higher the increment of gene frequency. Figure 4.15 plots the differential
of gene frequency induced by selection in the 100-bit OneMax problem, i.e. [ = 100.
Obviously, raising selection intensity increases the differential of gene frequencies be-
tween p; and pg. In the OneMax problem it means that raising selection intensity will
always improve the mean fitness of selected parents. On the other hand, a long chro-
mosome length will lower the increment of gene frequency. Precisely, the increment of
gene frequency, as shown in (4.13), is in inverse proportion to the square root of .
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intensity Z on py

4.4.3 The Markov Model for MPGAs

Beyond separate influence, the integral influence of MPGA operators upon the perfor-
mance is considered in this section. To this end, we follow the Markov model proposed
in Definition 4.17 to formulate the variation of gene frequency over generations. More-
over, in the following analysis we will prove that the utilization of mutation in MPGAs
leads to an ergodic Markov chain instead of an absorbing chain. From this Markov
model, the mean fitness at generation ¢ and the mean convergence time in the OneMax
problem will be derived.

Before presenting the Markov model, we give the definition of survivor and genera-
tion gap adopted in this thesis.

Definition 4.42 (Survivor and Generation Gap). Subject to the generation gap

Vg def % with A € {1,...,m}, the survivor randomly selects A\ chromosomes from the

population and replaces them with X offspring.

With reference to the Markov model for gene frequency {Gj(t)} presented in Definition
4.17, we derive below its transition probabilities considering the integral influence of
selection, crossover, mutation, and survivor.

Theorem 4.43. For a GA using selection with selection intensity I, n-parent OB-
Scan, bit-flip mutation with mutation v,,, and survivor with generation gap v, = %,

the transition probability p;; of the Markov chain {Gy(t)} corresponding to that GA is

A
pij = > Blw;Aph) - H(j — wym — X i,m)
=0
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with

=1y i (331 (121 oy (51 51)

Proof. The starting state 7 of transition probability p;; gives the gene frequency p;, = %
From (4.13), Lemma 4.7, and Lemma 4.12, we can compute the gene frequency pj, of
the offspring reproduced by the predefined GA:

Pl = DF + m (1 — 2p%)

e (3] L21) e - (31210
Syl )

+m (1 B 2ka+% pre(1-pr) ([g—‘ ’ {g—‘)>
=1, (5] [51) +m (121, s (151 5))-

Regarding generation gap v, = %, there will be A out of m chromosomes randomly
selected from the population and replaced with A offspring. According to Rogers and
Priigel-Bennett’s manner [83], the resulting population can be regarded as a union
of a subset A consisting of A offspring and a subset B formed by selecting (m — \)
members at random from the population without replacement. Denote by |A;| and
|B1| the number of allele 1 in A and B, respectively. Since offspring are reproduced
independently by X times of selection-crossover-mutation process, the number | A1| holds
a binomial distribution B(\,p}). Hence, the p.m.f.

Pr{|A)] = 2 | Gi(t) = i} = B(as A, p})-

Furthermore, the number of allele 1 in B holds a hypergeometric distribution H(m —
A, 1,m) because of random selection without replacement. Thus,

Pr{[Bi[ = y | Gx(t) = i} = H(y;m — A,i,m).
Since A and B are independent, the transition probability is
pij = Pr{Gr(t +1) = j | Gi(t) = i}

= Z Pr{|Ai| = z,|B1| =y | Gi(t) = i}
r+y=j

A
S Pr{|Ay] = & | Gi(t) = i} Pr{|Bi| = j — ¢ | Gi(t) = i}

=0

A
= ZB(w;A,p;)-H(j —x;m — Ai,m).
=0
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Remark 4.44. For generational GAs (generation gap 7, = 1) and steady-state GAs
(generation gap v, = %), the above theorem gives the transition probabilities of the
corresponding Markov chains:

Generational GAs:  p;; = B(j;m,pz)

Steady-state GAs:  p;; = (1 —pfg) -H(j;m—1,i,m)

+pi - H(j—1;m —1,4,m)

Remark 4.45. According to Corollary 4.8, for the predefined GA but using U-Scan, the
transition probability is equal to that of OB-Scan with n = 2 in Theorem 4.43.

Proposition 4.46. The Markov chain {Gy(t)} corresponding to the GA given in The-
orem 4.43 1s homogeneous.

Proof. A Markov chain is said to be homogeneous if the transition probabilities remain
constant over time. The transition probability p;; of the Markov chain {Gj(t)}, as
shown in Theorem 4.43, is independent of time ¢. Therefore, the Markov chain {Gy(t)}
is homogeneous. ad

Since the Markov chain {Gj(¢)} given in Theorem 4.43 is homogeneous, we can utilize
(4.6) to compute the state distribution at generation ¢. This leads to the following
theorem.

Theorem 4.47 (Mean Fitness). Suppose we have the state distribution w(t) =
(mo(t),...,mm(t)) corresponding to the GA given in Theorem 4.43. In the OneMazx
problem, the mean f(t) and the variance o%(t) of fitness are

:%ZW“
l m
= —22 m = j)m;(t
=0

Proof. Given the state distribution (¢ ) for locus k € {1,...,l} at generation ¢, we
have the gene frequency pg(t)

pi(t) = ji:(:) <m> Pr{Gy(t) ZJ”J

With the above equation, from Lemma 4.35 we obtain the mean fitness at generation ¢

l m
&)= pr(t) == jm;(t)
k=1 =0
and the variance
! m ] ] 2 I m
) =3 (lt) - p}(0) =13 (a -(2) ) wi(0) = 3 3 gl — 1)
k=1 7=0 7=0
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4.4.4 Convergence

Theorem 4.43 gave the transition matrix of the Markov chain {G ()} for the GA using
selection with selection intensity Z, n-parent OB-Scan, bit-flip mutation with mutation
rate 7, and survivor with generation gap 4. In this section, we look further into
the convergence of {Gy(t)} — at that time the state distribution will stay invariant
once the process achieves it. In terms of Markov chains [12], such a state distribution is
referred to as stationary distribution (or equilibrium distribution) and this chain is called
stationary. We will show that the MPGA given in Theorem 4.43 has this convergence
property. Furthermore, the mean convergence fitness and time in the OneMax problem
will be derived.

Lemma 4.48 (Ergodicity [10, p.50]). A Markov chain is ergodic' if and only if its
transition matriz is primitive, i.e.

3teZ,:P >0,

where 0 denotes zero matrix and P! > 0 represents that all components in P! are
strictly positive.

Theorem 4.49 (Stationary Distribution [10, p.50]). For an ergodic Markov chain
with state space {0,1,...,m},

1. the powers Pt of the transition matriz P converge componentwise to a matriz whose
all rows are equal. If we denote a typical row by ™ = (mp,...,Tm), then we have
7 >0 and Y, m =1 for all i € {0,...,m}.

2. 7 1s the unique vector such that

P =m. (4.14)

This unique 7 1s called the stationary distribution associated with the chain.

It is worthy of note that the stationary distribution 7r is independent of the initial
distribution 7(0). In other words, the process with any given initial distribution will
converge to the same distribution, viz the stationary distribution. In addition, the
stationary distribution represents a fixed status, i.e. convergence, of gene frequency.
Yet, an issue arises: Does there exist such a stationary distribution in the Markov
chain {G(t)}? To prove the existence, we need to prove this chain is ergodic.

Lemma 4.50 ([57, p.517]). If an n X n matriz A is nonnegative and irreducible, and
if all the main diagonal entries of A are positive, then A"~ > 0.

Proposition 4.51. With mutation rate 0 < v, < 1, the transition matriz P corre-
sponding to the GA given in Theorem 4.43 is irreducible.

Proof. The matrix P is irreducible if the entries p;;—1 > 0 for all 0 < ¢ < m and
pii+1 > 0 for all 0 <14 < m. We individually prove these two inequalities as follows.

! The term ergodic is also referred to as irreducible and aperiodic.
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. For p;;—1 with 0 <4 < m: From Theorem 4.43, we have the transition probability

Y
Pii—1 = ZB(SC;)\,P%)H(Z' —1—z;m—Ai,m).

z=0
with
P = Pi +m (1 — 2pF).
Since 0 < 7, < 1 and 0 < pf <1 (Probability Axiom), the probability p). is

0<p) <L
This gives the binomial distribution
B(x; A\, py,) > 0. (4.15)
For the p.m.f. of hypergeometric distribution, we have
Hi—-1—xz;m—XNim)>0<«<=i>i—1—zandi—(i—1—2)<m—(m—N\)
— —1<zx<Ai-1

Therefore,
>0 if —1<x<)A—1,

] (4.16)
=0 otherwise.

H(i—l—x;m—)\,i,m){
According to (4.15) and (4.16), it holds for the transition probability with A\ €
{1,...,m} that

A—1
piic1 =Y Bxs A pi)H(i —1—zym — Xi,m) > 0, (4.17)
=0

. For p; ;41 with 0 <4 < m: Theorem 4.43 gives the transition probability

A
Piitl = ZB(.%‘; )\,pﬁg)H(i +1—x;m—\i,m).
=0

Similarly, (4.15) holds in this case. For hypergeometric distribution, the p.m.f.

Hi+1l—xz;m—XNim)>0<=i>i+1l—zandi—(i+1—z)<m—(m—2N)
— 1<x<A+1

Hence we have

>0 ifl<z<A+1,

) (4.18)
=0 otherwise.

H(i—i—l—x;m—)\,i,m){
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According to (4.15) and (4.18), it holds for the transition probability with A\ €
{1,...,m} that

A
piit1 = Y B \pi)H(i+1—z;m—\,i,m) >0, (4.19)
rx=1

Equations (4.17) and (4.19) give p;;—1 > 0 for 0 <i < m and p; ;41 > 0 for 0 <i < m.
Therefore, the transition matrix P is irreducible. ad

Proposition 4.52. With mutation rate 0 < v, < 1, the Markov chain corresponding
to the GA given in Theorem 4.483 is ergodic.

Proof. Theorem 4.43 gives the diagonal entries of transition matrix P corresponding
to the predefined GA:

A
Pii = Z B(x; N\, pp)H (i — x5m — X, i,m). (4.20)

=0

Equation (4.15) indicates B(xz; A, p)) > 0 for 0 < v,,, < 1. The hypergeometric part of
(4.20) is

H(i—xz;m—XNim)>0<=i>i—zandi— (i —x) <A\
<0<z <A
Since B(z; A, py,) > 0 and H(i —x;m — A, i,m) > 0 for 0 <z < A, from (4.20) we have

the diagonal entries
pii > 0.

In addition, the transition matrix P is defined to be nonnegative and Proposition 4.51
shows this transition matrix is irreducible. Accordingly, Lemma 4.50 gives P > 0,
and Lemma 4.48 further indicates the ergodicity. a

Lemma 4.53. Let {Gy(t)} be the Markov chain corresponding to the GA given in The-
orem 4.43 at locus k € {1,...,1}. For the chain {Gy(t)} there exists the stationary
distribution 7 = (71, ...,m), which gives

tlim Pr{Gy(t) = j} = 7;.

Proof. Proposition 4.52 shows the Markov chain {G(t)} is ergodic. Referring to Theo-
rem 4.49, there exists the unique stationary distribution 7 giving for all j € {0,...,m}

m; = lim Pr{Gy(t) = j}.
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Theorem 4.54 (Mean Convergence Fitness). In the OneMaz problem, for the
mean f* and variance U%* of convergence fitness of the GA given in Theorem 4.43,
we have

f*Z%Zjo

=0
l m

oF = ) Zj(m = J)m;
=0

Proof. Substitute stationary distribution 7t given in Theorem 4.53 into the equations
in Theorem 4.47; then we complete the proof. ad

In addition to stationary distribution, we investigate the mean time for the process
of GA to achieve these states. To this end, we introduce the fundamental matrix for
ergodic chains [12] in Definition 4.55. The mean time can then be derived from the
fundamental matrix.

Definition 4.55 (Fundamental Matrix of Ergodic Chains). For an ergodic Markov
chain, the fundamental matriz

2 (@1 (-,

where
™ ™0 Tm,
T T T
H = = A
T T T

Theorem 4.56 ([12, p.230]). Let j1;; be the mean time to state j starting from state i.
The matriz M % (pij) is given by

M = (I— Z + 1diag(Z)) diag (II) ",

where 1 represents the matriz with all entries equal to 1 and diag(Z) is the diagonal
matriz which has the same diagonal as Z. Alternatively, the above equation can be
explicitly written as®

pij = (0i5 = 2ij + 25) /75
Now we launch the derivation of the mean time for the process to achieve stationarity.

Lemma 4.57. In the fundamental matrix Z, for any row i the sum of entries in this
row 1s one; that is,
Z Zz'j =1.
J

2 Refer to Theorem 7.7 [10, p.55]
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Proof. The fundamental matrix can be represented as®

Z=1+) (P'—1I).

t>1

For any t, each row in the matrices P! and II satisfies
Zpgi) =1 and Zﬂj =1
J J

Hence the sum of entries in any row ¢ of the fundamental matrix

Z’ZU:Z 5ij+Z(,Ol(-;)—7Tj> :1+ZZ(,OZ(-;)—7T]'> =1.
J J

t>1 t>1 j
d

Theorem 4.58 (Mean Convergence Time). Let {Gy(t)} be the Markov chain cor-
responding to the GA given in Theorem 4.43 at locus k € {1,...,l} and let Z be the
fundamental matriz of {Gr(t)}. The mean convergence time p is given by

p=y diag(Z)=) =z
j=0

Proof. Proposition 4.52 has shown {G(¢)} is ergodic. According to Definition 4.55 and
Theorem 4.56, the mean time f;; to state j starting from state 4 for 4,5 € {0,...,m}
is

pij = (0i5 = 2ij + 25) /75
Let u; be the mean time starting from state 7. Given the stationary distribution 7, we
have

m

m

pi =y pgm =y (8 — zij + 25)

=0 =0
m m

=1-> =i+ 2 (4.21)
§=0 §=0

Lemma 4.57 shows for any i the sum 7" z;; = 1. Thus (4.21) turns into
m m
uizl—l—i—szj:szj. (4.22)
j=0 j=0

3 Refer to [12, p.226]
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Since ), m;(0) = 1, the mean convergence time p is obtained by

m m m m
p= wmi(0) = | Yz | Ym0 =)z
=0 =0 =0 =0

O

Remark 4.59. Equation (4.22) reveals that the mean time to equilibrium p; is indepen-
dent of the starting state ¢. That is to say, the initial distribution has no effect on the
mean time p; — this property corresponds to the ineffectiveness of initial distribution
on stationarity.

This section built a Markov model to formulate the variation of gene frequency in the
course of evolution. The proposed model concerns the effects of selection intensity Z
in selection, the number of parents n in multi-parent crossover, mutation rate =, in
mutation, and generation gap v, in survivor. This model demonstrates the influence
of these factors on the mean fitness for the OneMax problem. Furthermore, the mean
convergence fitness and time are derived from this Markov model. More theoretical
results are presented in the next section.

4.4.5 Theoretical Results and Experimental Validation

This section demonstrates theoretical results obtained from the above theorems. More-
over, we conduct a series of experiments on the OneMax problem to validate these
theoretical arguments. The setting of MPGAs used in our experiments is listed in
Fig. 4.16. The size of the OneMax problem is set to be 100 bits. Each experiment
setting includes 100 independent runs.

GA type Generational GA
Representation Bit string (I = 100)
Population size 128

Selection Linear ranking selection

Selection bias 1™ 1.5

Crossover U-Scan and OB-Scan with n =2,...,20
Crossover rate vz 1.0

Mutation Bit-flip mutation

Mutation rate vy, 0.01, 0.05, 0.1, and 0.2
Termination 1000 generations

Fig. 4.16. The setting of MPGAs in experiments
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4.4.5.1 Impact of Selection and Mutation

First of all, we examine MPGAs without selection, i.e. the selection intensity Z is zero.
This zero selection intensity removes the potential error caused by adopting the ex-
pectation as the real selection intensity for gene frequency in (4.13). Accordingly, the
model proposed in Theorem 4.43 becomes an exact model. Note that zero selection
intensity yields a random selection with no preference for allele 0 or 1. The expected
gene frequency will then stay at 0.5, which cannot afford to examine the effects of
crossover and mutation. For this we turn to initialize the chromosomes with a prede-
termined bias. We denote by 3 the initialization bias in favor of allele 1. Figure 4.17
compares the theoretical and the experimental mean fitness for the MPGA using ini-
tialization bias § = % with mutation rate v, = 0.01 and 0.1 respectively. The good
fit between theoretical and experimental results demonstrates the effectiveness of our
proposed model. In Fig. 4.17, the profiles of U-Scan stay constant for all numbers of
parents. That is, U-Scan with any number of parents corresponds to 2-parent U-Scan
and 2-parent OB-Scan. This phenomenon validates Corollary 4.5 and Remark 4.45:
The number of parents has no influence on the performance of U-Scan. In other words,
n-parent U-Scan with n € N5 performs analogously to 2-parent OB-Scan. Moreover,
Fig. 4.17 shows that, without selection pressure the mean fitness of 2-parent OB-Scan
(viz uniform crossover) is much worse than that of n-parent OB-Scan with n > 2. Pre-
cisely, 2-parent OB-Scan converges to the fitness /(0.5 + () while using more parents
results in higher fitness. This improvement, as mentioned in Section 4.1.2, is attributed
to the effect of intensification in OB-Scan. As for the effect of mutation, the increase of
mutation rate not only enlarges the variance of convergent fitness but also counteracts
the intensification caused by raising parents in OB-Scan. The latter is demonstrated
by the deterioration of fitness as mutation rate is increased from 0.01 to 0.1.

Next, we consider MPGAs with selection, specifically, GAs using selection with
selection intensity Z > 0, n-parent OB-Scan, bit-flip mutation with 0 < ~,, < 1,
and survivor with generation gap 74. In this section we adopt linear ranking selection
[52, 114] as the selection operator. The linear ranking selection, as its name tells, assigns
the probability for a chromosome to be selected according to a linear formula based
on the rank of this chromosome. Let i € {1,...,m} be the rank (1 for the worst
chromosome and m for the best one), the probability

1 1—1
Pr{c; to be selected} = — |n~ + (n™ —n~
r{c; to be selected } —|n +(n n)m—l )
where 1 < n™ < 2 and = = 2 — ™ are two parameters used to control the linear

relation [6]. Precisely, % and % are the expected probabilities for the worst and the
best chromosome to be selected, respectively. For the linear ranking selection, Blickle
and Thiele [11] derived its selection intensity. In the following text we will use their
formula to compute the selection intensity of linear ranking selection:
1
In=01-n)—==0"-1)—. 4.23
R=( )= ) (4.23)
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after 1000 generations
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Figures 4.18 and 4.19 compare the mean fitness computed by Theorem 4.47 with the
mean fitness averaged over 100 runs. First, these figures show the theoretical and the
experimental results fit very well. Second, we can see the profiles of n-parent OB-Scan
with an even n are very close to those of (n—1)-parent OB-Scan. This confirms the
pairwise equivalence claimed in Corollary 4.9. Third, for mutation rates v, > 0.05, OB-
Scan with n > 2 achieves higher fitness and even faster convergence than OB-Scan with
n = 2, viz uniform crossover. Nevertheless, there is no winner in the number of parents
for all these four mutation rates: the best number of parents is dependent upon the
mutation rate. It is noteworthy that the profiles of 7-parent and 8-parent OB-Scan at
Ym = 0.2 continue climbing after 20 generations while others turn into steady then. This
condition also occurs for 3-parent and 4-parent OB-Scan at v, = 0.1. Although the
mutation rates in these two cases are relatively strong to the common setting v, = %,
they drive MPGAs using OB-Scan to advance in fitness. These results indicate the
important role of mutation in the performance of MPGA using OB-Scan.

Furthermore, we examine the mean fitness for 1000 generations. Figure 4.20 depicts
the experimental and the theoretical fitness means at 1000 generations (¢ = 1000);
additionally it plots the theoretical mean convergence fitness (¢t — oo) according to
Theorem 4.54. First, we can see that the theoretical and the experimental results fit
very well except two cases: n = 3,4 for 7, = 0.1 and n = 9,10 for 7, = 0.2. In these
two cases experimental fitness values are higher than theoretical ones. We attribute
this discrepancy to the violation of the assumption: Var(c) < E*[o]. Recall that in
(4.13) we approximate the impact of selection on the gene frequency by the expectation
E [ZP] = Z/V/1 based on the assumption Var(c) < E?[o]. Once this assumption does
not hold, (4.11) implies that the consequent gene frequency pj will be higher than the
value computed by (4.13). In the OneMax problem it leads to a higher fitness, which
is reflected in the discrepancy between theoretical and experimental mean fitness in
those two cases. Second, as shown in Fig. 4.20, the closeness in mean fitness between
n-parent and (n—1)-parent OB-Scan for n € 2N+ reconfirms the pairwise equivalence.
Third, the GA using 2-parent OB-Scan performs best at v, = 0.01 but does worst at
Ym > 0.05 in the experimental mean fitness at ¢ = 1000. In fact, the mean fitness for 2-
parent OB-Scan decreases monotonically with the increase of mutation rate. Contrary,
experimental results at ¢ = 1000 show that putting mutation rate up may improve
MPGASs using more than two parents in OB-Scan. As ¢ — oo, the mean convergence
fitness for OB-Scan, regardless of the adopted number of parents, turns to decrease
with mutation rate absolutely. Figure 4.20 further points out that, in theory, MPGAs
using OB-Scan with more than two parents will converge to higher fitness than MPGAs
using 2-parent OB-Scan. In addition, there exists a gap in fitness between ¢t = 1000 and
t — oo. Intuitively, this gap should be caused by the shortage of running generations
for the test MPGAs to convergence. An advanced investigation on this gap will be
conducted in Section 4.4.5.2.

Figure 4.21 compares the mean fitness of the MPGA using linear ranking selection
with n* = 1.1 and 1.9. This figure demonstrates the impact of selection intensity on
MPGASs using linear ranking selection, where the selection intensity is controlled by the
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(color thin lines) for the GA using linear ranking selection with ™ = 1.5, n-parent OB-Scan, and
bit-flip mutation with v, = 0.01 (top) and 7y, = 0.05 (bottom)
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Fig. 4.20. The mean fitness of the GA using linear ranking selection with n* = 1.50, n-parent
OB-Scan, and bit-flip mutation with ~,, = 0.01, 0.05, 0.1, and 0.2

parameter 1. For running time ¢ = 1000, the increase of n* from 1.1 to 1.9 significantly
improves the mean fitness for any number of parents. In addition, the number of parents
in OB-Scan makes little difference in mean fitness as ™ = 1.1, which provides slight
selection intensity. Precisely, the selection intensity of linear ranking selection with
n™ =1.1is only 1 of that with y* = 1.5 and § of that with n = 1.9. With such small
selection intensity, MPGAs lack the driving power toward high fitness and then result
in mean fitness around the initial mean fitness 50. In Section 4.1.2 we mentioned that
using more than two parents in OB-Scan will intensify the tendency toward allele O or
1. Thus, even with slight selection intensity, MPGAs using more than two parents in
OB-Scan are expected to achieve a higher mean fitness in the long term. This merit is
demonstrated in the mean fitness as ¢t — oo in Fig. 4.21. In the next section we will
further check the cost of this merit in terms of running time.
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Fig. 4.21. Comparison of the mean fitness for linear ranking selection with ™ = 1.1 and 1.9 in the
GA using n-parent OB-Scan and bit-flip mutation with v, = 0.01 and 0.1

4.4.5.2 Impact of Running Time

The results in the previous section showed a gap in mean fitness between running time
t = 1000 and ¢ — oco. A reason for this gap is that the running time ¢ = 1000 is not
long enough for the test MPGAs to converge. To validate this conjecture, we dive into
the required time for convergence.

Figure 4.22 plots the matrix M of mean time from state i to state j according
to the formula in Theorem 4.56. As these figures show, the contour becomes flatter
but more rugged as the number of parents increases. On the one hand this flattening
suggests that raising parents in OB-Scan will reduce the mean time to attain the
marginal states, e.g. 0 and m. On the other hand, the ruggedness demonstrates that
the mean time p;; differs for different starting states 7 as the number of parents is
increased. That is to say, p;; becomes more dependent on state ¢. We further take
the stationary distribution into consideration. Figure 4.23 compares the mean time p;;
with the stationary distribution 7. Since the profiles of mean time p;; differ with the
starting state ¢, this figure only shows the mean time starting from the central state, i.e.
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GA using linear ranking selection with n* = 1.50, n-parent OB-Scan with n = 2,4, 8,16, and bit-flip
mutation with mutation rate v, = 0.2

i = 5. Note that Y-axis is in logarithmic scale. This figure shows that raising parents
moves the valley of profiles right. This outcome reflects the proneness to higher j as the
parents in OB-Scan is driven up. The stationary distribution 7; shown in the bottom
half of Fig. 4.23 further validates this proneness: The distribution of profiles shifts right
as the number of parents increases. It is deserving of note that the valley of profile is
lifted at n = 16, which implies it takes longer time to attain any state on average.
The mean convergence time for mutation rate v, = 0.2 is presented in Fig. 4.24.
It shows that the mean convergence time increases drastically for OB-Scan using more
than eight parents. Moreover, this figure exposes the predefined 1000 generations for
termination are insufficient for n > 8. As aforementioned, this insufficiency results in
the fitness gap between ¢ = 1000 and ¢ — oo in Fig 4.20. To verify this point, we
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conduct another experiment with terminal condition of 20000 generations. Figure 4.25
compares the theoretical mean convergence fitness with the experimental mean fitness
obtained from 1000-generation and 20000-generation runs. According to the mean con-
vergence time shown in Fig. 4.24, MPGAs using fewer than 11 parents are expected to
converge in 20000 generations. This prediction is validated in Fig. 4.25: For OB-Scan
with fewer than 11 parents, the profiles of 20000-generation experiments match those
of theoretical results. This outcome reveals that using more parents in OB-Scan to-
gether with mutation can achieve better fitness than using two parents, if the running
time is long enough. In other words, MPGAs using more than two parents in OB-Scan
achieves better solution quality at the cost of convergence time. Nonetheless, Fig. 4.20
indicates that MPGAs using OB-Scan with n > 2 are capable of higher fitness in 1000
generations as mutation rate 7, > 0. The results in Figs. 4.18 and 4.19 also show that
MPGASs using OB-Scan can achieve higher fitness and even faster convergence for some
numbers of parents. These outcomes validate the superiority of MPGAs using n-parent
OB-Scan with n > 2 over GAs using 2-parent OB-Scan. That is, multi-parent OB-Scan
outperforms uniform crossover.

4.4.5.3 Impact of Population Size

Here we examine the impact of population size on the performance of MPGAs. Fig-
ure 4.26 depicts the mean fitness of MPGAs for four sizes of population as ¢ = 1000
and ¢t — oo. For a limited running time ¢ = 1000, the mean fitness increases with the
size of population in general. On the other hand, for an infinite running time ¢t — oo,
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Fig. 4.26. The mean fitness for population size m = 32, 64, 128, and 256 of the GA using linear
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the mean fitness differs slightly with respect to four population sizes. In addition, these
figures exhibit the impact of running time on the mean fitness: MPGAs using more
than two parents in OB-Scan gain better mean fitness as the running time increases
from 1000 to an infinite number.

We look further into the impact of population size on the mean convergence time of
MPGAs. Figure 4.27 demonstrates that the mean convergence time increases substan-
tially with the size of population and this increase is reinforced by raising the number of
parents. In other words, MPGAs with a larger population need more time to converge,
especially when using a large number of parents in OB-Scan. As for solution quality,
the increase of population size can improve the mean convergence fitness for n = 2 with
Ym = 0.01 (see Fig. 4.26(b)) and for n > 2 with v, = 0.1 (see Fig. 4.26(d)). The longer
convergence time and the potentially better fitness caused by the increase of population
size validate a conventional wisdom in the GA community: a large population causes
long convergence time but may enhance the solution quality.
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In the light of quick convergence, it seems ideal to adopt small population to obtain
preferable convergence fitness for the use of more than two parents. However, the effect
of mutation rate on the convergence time should be further considered. Figure 4.28 de-
picts the mean convergence for population size m = 32 with respect to four mutation
rates. Obviously, the lower the mutation rate, the longer the mean convergence time.
The use of more than two parents with a small mutation rate needs a vast number of
generations to converge, even in a small population. For example, the MPGA using
4-parent OB-Scan with ,, = 0.01 in Fig. 4.28 amounts to more than 107 generations.
Hence, using more than two parents in OB-Scan has an inevitably long mean conver-
gence time, except for small population with a large mutation rate, e.g. m = 32 with
vm = 0.2. It is also deserving of note that neither population size nor mutation rate has
a significant impact on the mean convergence time of MPGAs using 2-parent OB-Scan.

4.4.5.4 Impact of Generation Gap

This section checks the impact of generation gap on the convergence of MPGAs. Here
MPGAs without selection are examined in order to eliminate the effect of approximation
of selection intensity, as mentioned in Section 4.4.5.1.

Figure 4.29 plots the convergence of MPGAs with initialization bias § = % for four

generation gaps: w= (steady-state GA), 13—228, %, and 1 (generational GA). Clearly,

the theoretical resﬁ?ts are consistent with the experimental results. This consistence
validates the correctness of the theoretical model. In addition, this figure shows that
these four generation gaps make no significant difference in mean fitness. In other words,
the generation gap of the survivor defined in Definition 4.42 has a little impact on the
performance of MPGAs. An interesting point is that MPGAs using 2-parent OB-Scan,

i.e. GAs using uniform crossover, converge to a mean fitness worse than the initial
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mean fitness; on the contrary, MPGAs using OB-Scan with more than two parents
converge to better mean fitness. As no selection intensity is applied, the performance
of MPGAs is only subject to crossover and mutation. The analysis in Section 4.1.3
demonstrated that mutation has the effect of driving the gene frequency back to the
neutral frequency 0.5. Furthermore, in Section 4.1.2 we showed that 2-parent OB-Scan
does not alter gene frequency while OB-Scan with more than two parents intensifies the
preference of gene frequency for allele 0 or 1. Accordingly, the performance of MPGAs
using OB-Scan turns into an outcome of competition between the intensification of OB-
Scan and the pullback of mutation. For MPGAs using 2-parent OB-Scan, there exists
no intensification; therefore, they converge to a worse mean fitness than the biased
initial mean fitness. By contrast, MPGAs using OB-Scan with more than two parents
achieve better mean fitness owing to the stronger influence of OB-Scan than mutation.
The phenomenon—the more the parents, the higher the mean convergence fitness—
also demonstrates the intensification caused by increasing the number of parents in
OB-Scan.

4.5 Convergence in the Generalized OneMax Problem
The previous section has shown the effectiveness of our theoretical analysis in the

OneMax problem. In this section we further extend the analysis for a more general
fitness function. The definition of this problem is given as follows.
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Definition 4.60 (The Generalized OneMax problem). The Generalized OneMax
problem is to find the binary string ¢ = (cy,...,¢) € {0,1} that mazimizes the follow-
ing function

!
fle) = Z WECk»
k=1

where the coefficient wy, € R .

Remark 4.61. The classic OneMax problem and the Binlnt (binary integer) problem
are special cases of the Generalized OneMax problem:

1. The OneMax problem: wy =ws = -+ =w; = 1.
2. The Binlnt problem: wy = 28! for k=1,...,1.

The mean and the variance of fitness in the Generalized OneMax problem are presented
as follows.
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Lemma 4.62. In the Generalized OneMazx problem, we have the mean fitness

l
=" wip. (4.24)
k=1

Assume the covariance Cov(cy,c,) = 0 for any two loci u,v € {1,...,1} and u # v.

The variance J% of fitness s

l l
of =Y wioh = Y wipk(l - pr). (4.25)
k=1 k=1

Proof. For alocus k, the gene frequency py represents E[cg]. The mean fitness can then
be derived by

F=Elf=E

l l l
2%4=§pmm=zpm.
k=1 k=1 k=1

For the variance of fitness we have

1 !
0% = Var(f) = Var (Z wkck> = Zw,%Var(ck) + Zwuvaov(cu, Cp).
k=1

k=1 uFv

Since the covariance Cov(cy, ¢,) is assumed to be zero and the variance o7 stands for
Var(c), we obtain

! ! !
o = S wfVar(en) = Yol = Yttt — )
=1 k=1 k=1
O

Remark 4.63. Lemma 4.33 indicates that the covariance Cov(cy,c,) = 0 holds in the
OneMax problem. However, this zero covariance does not necessarily hold in other
Generalized OneMax problems.

In GAs, the selection operator is generally dependent upon the fitness of chromosomes.
The fitness function, hence, has a direct impact on the mean fitness as well as the gene
frequency affected by selection. Before investigating the variation of gene frequency, we
look into the variation of mean fitness caused by selection. Recall in Section 4.4.2 the
influence of selection on mean fitness is given by

Fof

oF
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Let Af = % — f. The previous equation can be rewritten as

I:<i>Af
OF

This equation is analogous to the Hooke’s law F' = kx in physics, where the selection
intensity Z is regarded as the applied force F', the fraction é is regarded as the spring
constant k, and the selection differential Af is regarded as the extension of spring z.
Assume the selection intensity Z has an identical effect on each locus; the variation of
fitness caused by selection can be represented by a series-connected spring system, as
shown in Fig. 4.30. Let = be the total extension of spring, x; be the extension of the
i*h spring, k be the equivalent spring constant, and k; be the spring constant of the ;!
spring. The spring system in Fig. 4.30 has
F F F F

F
x_z_x1+x2+x3+x4_k_1+k_2+k_3+k_4’

and, analogously, the population has
Af=Top =Af +Afa+ Afz+ Ay,

where Af;, represents the selection differential at locus k. Motivated by this physical
system, we formulate the variation of gene frequency in the following lemma.

k, k, k, k,
L AN
X, X; X X,

Fig. 4.30. A series connection of four springs

Lemma 4.64. Suppose we have the gene frequency pi of the population and the selec-
tion intensity I. In the Generalized OneMax problem, for the gene frequency pj, of the
parents, we have

2
1i=m+1<%%) (4.26)

oF

with
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Proof. From Lemma 4.62 we have the variance of fitness
0% wio} +wios+ - +wio}

oF = — =
oF OF

with
2 2 2 2 2 2 2
0F=w101+w202+---+wlal.

The differential in fitness can be represented by

Af=Afi+Af+---+Af, (4.27)
while the selection intensity gives
2.2 2.2 2.2
Af:IO'F:I<m>+I<%>+"'+I<ﬂ). (4.28)
or OF oF

From Lemma 4.62, we know
Afr = fi = fr = w0} — pr)-
Comparing (4.27) and (4.28) leads to

2 2
W0k

OF

Afk:I< > = w(pj — Pk)-

Hence the gene frequency of the selected parents is

2
pi=pr+I <wk0k) .

oF
O
Corollary 4.65. In the OneMaz problem, assuming p1 = pa = --+ = p;, we have the
gene frequency pj, of the selected parents
- (7)
Px = Pk —7 | Ok-
g Vi
Proof. In the OneMax problem, the coefficients are w; = wo = -+ = w; = 1. In
addition, the assumption p; = ps = -+ = p; gives 01 = 02 = --+ = 0;. According to
Lemma 4.64 and p; = ps = -+ - = py, the gene frequency is
2 2
WEo g
pi=pk+1<0’“)=pk+f -
F \/O‘% + 0%+ 0}

o2 A
=pr+7Z kz :pk‘i‘(W)UIﬁ-
\/loj,
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This corollary corresponds to (4.13); nonetheless, the assumption p; = - -+ = p; in Corol-
lary 4.65 implies Var(o) = 0, which is stricter than the assumption Var(o) < E?[0]
in (4.13). The assumption p; = - -+ = p; is expected to hold for the OneMax problem
but not necessarily for other Generalized OneMax problems. The BinInt problem, for
example, has the specific phenomenon “domino convergence” |64, 100|, where the con-
vergent sequence of genes follows the salience of coefficient wy in the fitness function.
Therefore, it needs to consider each locus individually for the Generalized OneMax
problems. The Markov model for gene frequency proposed in Definition 4.17 is based
on a single locus. To take each locus into account for the Generalized OneMax problem,
we expand the single-locus Markov model to the following multi-loci Markov model.

Definition 4.66 (Markov Model for Multiple Gene Frequencies). The Markov
chain {G(t)} for gene frequencies at all loci are defined by:

1. The state is expressed by a (m~+1)-nary number and the digit represents the number
of allele 1 at the corresponding locus. The state space is thereby {0,1,..., M} with
M= (m+1)'—1. Let i(k) be the k™ digit of the (m~+1)-nary number corresponding
to state i. A state i gives the gene frequency at locus k:

i
e =L,
m

2. The transition matriz of {G(t)} is

P00 Po1 " PoM

Pd:ef P'10 P'11---

where p;; denotes the transition probability of state i to state j:

def . .
pij = Pr{G(t +1) = j | G(t) = i}.
Example 4.67. The following matrix demonstrates a transition matrix for m = 4 and

[ = 4. The state ¢ = 168 represents a pentanary number (1133)s, indicating that there
exist three allele 1 at locus 1 and locus 2, and one allele 1 at locus 3 and locus 4.

O 1 cvvvennns 624
0= (0000)s [/0.260.08 -+ ------ 0.03
1=(0001)5 | 0.16 0.07 - -+ -+ -+ 0.01

P= : S :

168 = (1133)5 | 0.08 0.01 0.15
624 = (4444)5 \0.020.01 --- - --- 0.33
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The transition probability of the Markov chain corresponding to MPGAs is further
given below.

Theorem 4.68. For a GA using selection with selection intensity Z, n-parent OB-Scan,
bit-flip mutation with mutation rate v,,, and survivor with generation gap v, = %, the
transition probability p;; of the Markov chain {G(t)} corresponding to that GA in the
Generalized OneMaz problem is

! A
pi; = [ D Blas A ph) - Hig) — 2m — Aigy,m),
k=1z=0

where i) denotes the k™ digit of the (m+1)-nary number associated with i and the

gene frequency
e (31 F3) om0 2 151 [31)

with
IR iy (m —iw)
/Sy i) (m — i)
Proof. According to Definition 4.66, the number of allele 1 at locus k corresponding to

state 4 is 4(x). Thus the transition probability p;; implies the gene frequency py = Z%)

From Lemmas 4.7, 4.12, and 4.64, we can derive the gene frequency pj of the offspring
reproduced by the defined GA:

=m0~ = ([2], 21 #2125 (12 20)
with

I WO _iw 4 wrigy) (M — i)

VX wez) ™ my Sy Ry (m— i)

Moreover, the proof of Theorem 4.43 gives the transition probability for locus k:

A
Pr{Gr(t+1) = jy | Gr(t) =i} = D Bl@ A ph) - Hjy — 5m — Xy, m),
=0

Thus, the transition probability of the chain {G(¢)} can be obtained by

!
pij = [ Pr{Gr(t +1) = juy | Gu(t) =iy}
k=1

IoA
=[] D _BlaiA i) H(ig — z3m — X i), m).
k=12=0
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The Markov chain {G(¢)} is a multi-loci extension of the chain {Gg(¢)}. The homo-
geneity and ergodicity of the chain {G(t)} (see Section 4.4.3) also hold for the chain
{G(t)}. According to the homogeneity of {G(¢)}, we can use (4.6) to compute state
distribution 7 (t) at generation ¢.

Theorem 4.69. Suppose we have the state distribution w(t) = (w1(t),...,mam(t)) cor-
responding to the GA defined in Theorem 4.68. In the Generalized OneMaz problem,
for the mean f(t) and the variance o%(t) of fitness at generation t, we have

l M
= LSS im0
m : (k)"J
k=1 j=1
M

1 . .
=2 DD Wi (m = jay)mi(t)
k

l
=1j=1

Proof. The state distribution 7 (¢) gives the gene frequency at locus k:

M
mit) =3 (1) pricin i) = . Za(m

J=0

Referring to Lemma 4.62, we have the mean fitness

I
= Z wipk(t) = Z Z Wl (k) 5 (E
k=1

kl]l

and the variance of fitness

O

It is noteworthy that the Markov chain {G(t)} has a large transition matrix, even for
a small population size and a small problem size. Precisely, the transition matrix P
has (m + 1)21 elements. A 100-bit Generalized OneMax problem with population size
m = 128, for instance, has a transition matrix consisting of 129%2%° ~ 1.312 x 10422
elements. Such a matrix is so demanding in memory space that it becomes unpractical
for analysis on large problems. In the following two sections, we will make use of this
Markov model to analyze the convergence of MPGAs in two Generalized OneMax
problems restricted by a small length [.
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4.5.1 Case 1: The Proportionate OneMax Problem

We first analyze the convergence of MPGAs using OB-Scan in the Proportionate One-
Max problem, where the coefficients w; are proportional to the locus k.

Definition 4.70 (The Porportionate OneMax Problem). The Proportionate One-
Maz problem is to find the binary string ¢ = (cq,...,¢;) € {0,1} that mazimizes the
following function f:{0,1} — {0,1,..., @}

l
f(c) = Zk - Cpe
k=1

The Proportionate OneMax problem is a special case (wp = k) of the Generalized
OneMax problem. Using Theorem 4.69, we can compute the mean and the variance of
fitness in the Proportionate OneMax problem:

I M

F) = 37>k juym() (4.29)
k=1j=1
1 I M
op(t) = p DD R G (m = Gy mi(t). (4.30)
k=1 j=1

As aforementioned, the size of transition matrix for multiple gene frequencies in-
creases exponentially with the size of problem, namely the chromosome length [ in the
Generalized OneMax problem. Thus we only conduct theoretical analysis on the 4-bit
Proportionate OneMax problem with population size m = 4. Following Definition 4.66,
the Markov chain {G(t)} has a state space {0,1,...,5%—1} and its transition matrix
is a R925%625 gquare matrix. The setting of MPGAs for experiments follows that used
in Section 4.4.5. Each experiment includes 1000 independent runs.

Figure 4.31 compares the mean fitness computed by (4.29) and (4.30) with the mean
fitness averaged over 1000 runs. The convergence of the mean fitness is additionally
depicted in Figs. C.1 and C.2. First, these figures show that the theoretical results
are consistent with the experimental results. However, their discrepancy becomes more
and more apparent as the mutation rate increases. We attribute the discrepancy to
the violation of the assumption in Lemma 4.62: the covariance Cov(cy,c,) = 0 for
any two loci u,v € {1,...,1}. This violation will affect the estimation of variance o2
in (4.25) and further the computation of gene frequency pj in (4.26). Second, these
figures demonstrate the impact of mutation on the performance of MPGAs using OB-
Scan. For v, = 0, increasing the number of parents receives a faster convergence but
ends up with a worse solution — a typical phenomenon of premature convergence. By
contrast, in the cases of 7, > 0, using more than two parents in OB-Scan gains faster
convergence and better solution quality. This superiority in both convergence speed
and solution quality validates the merits of MPGAs using OB-Scan. It is noteworthy
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Fig. 4.31. The mean and the standard deviation of fitness for the MPGA using linear ranking
selection with n™ = 1.50, n-parent OB-Scan, and bit-flip mutation with ~,, = 0.01, 0.05, 0.1, and 0.2
at ¢ = 1000 generations

that the higher the mutation rate, the lower the mean convergence fitness. In addition,
there is no winner in the number of parents for all mutation rates. The optimal number
of parents for MPGAs using OB-Scan is dependent upon mutation rate.

4.5.2 Case 2: The BinInt Problem

This section further investigates the convergence of MPGAs using OB-Scan in the
BinInt (binary integer) problem. The definition of the BinInt problem is given below.

Definition 4.71 (The BinInt Problem). The Binlnt problem is to find the binary
string ¢ = (c1,...,¢) € {0,1} that mazimizes the following function f : {0,1} —

{0,1,...,2 —1}:
l

fle)y =Y 2"¢.

k=1
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The Binlnt is also a special case (w, = 2F7!) of the Generalized OneMax problem.
Therefore, we can use Theorem 4.69 to compute the mean and the variance of fitness
in the BinInt problem:

. L LM
ft)=— SO 2 g m(t) (4.31)

k=1j=1

I M
1 _1) . .
o (t) = p D> 2B (m = gy )m(t). (4.32)
=1 j=1

Subject to memory space, here we only analyze the 4-bit BinInt problem with popu-
lation size m = 4. As indicated in the previous section, the corresponding Markov chain
{G(t)} has a transition matrix with 625 x 625 elements. For experimental validation,
the setting of MPGAs follows that used in Section 4.4.5. Each experiment includes 1000
independent runs.

Figure 4.32 compares the theoretical mean fitness and the experimental one at ¢t =
1000 for four different mutation rates. The convergence of the mean fitness is plotted in
Figs. C.3 and C.4. In general, the theoretical results and the experimental ones fit well.
Similar to the results in the Proportionate OneMax problem, the discrepancy between
the theoretical results and the experimental results becomes apparent as the mutation
rate increases. Moreover, mutation has similar influences on the convergence of MPGAs
using OB-Scan: Increasing the number of parents incurs premature convergence and
harms the mean fitness for MPGAs without mutation. Nevertheless, as mutation is
adopted, using more than two parents turns into be beneficial. For the mutation rate
Ym > 0, MPGASs using n-parent OB-Scan with n > 2 all outperform those using 2-
parent OB-Scan in terms of convergence speed and solution quality. These preferable
outcomes in convergence speed and solution quality substantially reconfirm the benefits
of using more than two parents in MPGAs using OB-Scan. Additionally, the optimal
number of parents in OB-Scan hinges upon the mutation rate.

4.6 Beyond the OneMax Problem Domain

In this section we conduct experiments to examine the applicability of our theoretical
arguments to other problem domains. The test suite includes the extended De Jong’s
second function (F2), the Rastrigin (RAS), the Schwefel (SCH), and the Griewangk
(GRI) functions*. The properties and the parameters of these functions follow those
listed in Table 3.1. Note that these functions are minimization problems: the lower the
fitness, the better the performance. The setting of MPGAs is presented in Table 4.1.
Owing to the long running time (10* generations), each experiment includes only 10
independent runs.

4 A more detailed description of these functions is given in Appendix A.
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Fig. 4.32. The mean and the standard deviation of fitness for the MPGA using linear ranking
selection with n™ = 1.50, n-parent OB-Scan, and bit-flip mutation with ~,, = 0.01, 0.05, 0.1, and 0.2
at ¢ = 1000 generations

Table 4.1. The setting of MPGASs in experiments

GA type Generational GA
Representation Bit string
Population size 32
Selection Linear ranking selection with bias 1.5
Crossover OB-Scan with n =2,...,20
Crossover rate 1.0
Mutation Bit-flip mutation
Mutation rate 0.01, 0.05, 0.1, and 0.2
Termination 10" generations
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Figure 4.33 depicts the mean of the best fitness at ¢ = 10* on the four test func-
tions. The progress of convergence is additionally plotted in Figs. C.5 and C.6. These
experimental results agree well with our theoretical arguments about MPGAs in the
OneMax problem domain: MPGAs using OB-Scan with n > 2 gain better fitness than
GAs (n = 2) as mutation rate 7, > 0.01 on these four test functions. The best number
of parents, nevertheless, depends upon the adopted mutation rate: uniform crossover
(n = 2) performs best for 7, = 0.01; OB-Scan with n = 3 (or 4) performs best for
Ym = 0.05 and 0.1; OB-Scan with n = 9 (or 10) performs best for 7, = 0.2. These
outcomes are analogous with those in the OneMax problem, as shown in Fig. 4.20.
Moreover, the experimental results in Fig. 4.33 confirm that the mutation rate should
be properly increased for better fitness, when raising the number of parents in OB-Scan.
In addition, the phenomenon of pairwise equivalence occurs partly in Fig. 4.33.

Figure 4.33 shows that GAs with =, = 0.01 achieve the best fitness on all the
four test functions; that is, GAs outperform MPGAs. However, as discussed in Sec-
tion 4.4.5.2, an insufficient running time will depress the performance of MPGAs, since
they need longer convergence time when using more than two parents in OB-Scan. We
therefore conduct additional experiments with 10° generations as the termination crite-
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Fig. 4.33. The mean and the standard error of the best fitness at t = 10* on the F2, RAS, SCH, and
GRI functions over 10 runs
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rion. Figure 4.34 compares the mean of the best fitness of 10*-generation runs and that
of 10%-generation runs on the RAS and the SCH functions. The convergence of MPGAs
on these two functions in 10® generations is depicted in Fig. C.7. These experimental
results demonstrate that the prolongation of running time substantially improves the
best fitness of MPGAs as n > 2. They also indicate that MPGAs using OB-Scan with
n = 3 (or 4) can outperform GAs, albeit slightly. The favorable setting, n = 3 with
Ym = 0.05, for the RAS and the SCH functions corresponds to that for the OneMax
problem, as shown in Fig. 4.20(b).

The above results show that our theoretical arguments about MPGAs in the One-
Max problem domain still hold for the four test functions. Thus it verifies the applica-
bility of our theoretical arguments to other problem domains. Furthermore, according
to the analytical results in the OneMax problem, prolonging the running time (> 10°
generations) is expected to reinforce the superiority of MPGAs using more than two
parents in OB-Scan over GAs using uniform crossover on the four test functions.
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Fig. 4.34. Comparison of the mean and the standard error of the fitness between t = 10* and ¢t = 10°
on the RAS and the SCH functions
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4.7 Summary

This chapter analyzed the behavior of MPGAs through Markov chain theory. Specif-
ically, we probed into MPGAs using U-Scan and OB-Scan — both are multi-parent
generalizations of uniform crossover. First, we analyzed the gene frequency altered by
selection, crossover, and mutation individually. The integral effect of these operators
on the gene frequency is further formulated by Markov chain theory. Using this Markov
model, we examined two aspects of MPGAs: the genetic drift and the convergence.

In terms of genetic drift, the mean convergence time of MPGAs without selection
pressure and mutation is concerned. The proposed Markov model turns out to be an
exact model under the assumptions of zero selection pressure. The analytical results
from this model demonstrate that the number of parents in U-Scan exercises no influ-
ence on genetic drift. In addition, the theoretical analysis shows that the number of
parents in OB-Scan plays an important role in the rate of genetic drift: Raising parents
in OB-Scan shortens the mean convergence time; that is to say, it accelerates genetic
drift. This outcome reconfirms Schippers’ claim about the tendency of genetic drift for
scanning crossover; furthermore, our analysis gives the expected time of convergence.
Apart from the rate of genetic drift, the probability of convergence to allele 1 shows
that raising parents in OB-Scan will intensify the preference of initialization for allele
1 or 0. These theoretical results are validated by a series of experiments.

As for the convergence of MPGAs with selection pressure and mutation in the
OneMax problem, the theoretical analysis shows several interesting points:

1. The selection intensity can significantly improve the mean convergence fitness for
n = 2 but has little impact on the mean convergence fitness for n > 2. Additionally,
increasing selection intensity accelerates the progress of fitness and then gains a
higher mean fitness for a short running time.

2. The number of parents in U-Scan exerts no influence on the convergence of MPGAs
in terms of both fitness and convergence time.

3. The number of parents in OB-Scan has a great influence on the performance of
MPGAs: First, there exists the pairwise equivalence in OB-Scan. That is, for an even
number n, the performance of n-parent OB-Scan is equivalent to that of (n—1)-
parent OB-Scan in terms of mean fitness as well as convergence time. Second,
increasing the number of parents in OB-Scan with mutation gains better mean
convergence fitness, but at the cost of convergence time.

4. Mutation is crucial for the use of more than two parents in MPGAs using OB-Scan.
The theoretical results show that MPGAs using more than two parents in OB-Scan
together with mutation, on the one hand, are capable of higher mean convergence
fitness than GAs using 2-parent OB-Scan, viz uniform crossover. On the other hand,
using more parents in OB-Scan needs more generations to achieve convergence,
especially for small mutation rate. However, the defects do not outweigh the merits.
Even in a short running time, MPGAs using OB-Scan with fewer than 10 parents
can achieve higher fitness than those with 2 parents. In addition, the analysis reveals
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that the mutation rate should be duly increased with the number of parents in OB-
Scan.

5. In the way of random survivor, the generation gap exercises little impact on the
performance.

6. The population size has inconsiderable influence over mean convergence fitness but
drastically increases the mean convergence time. However, a large population size
holds the advantage of higher mean fitness for a short running time.

These theoretical results are verified by a series of experiments in the OneMax prob-
lem. It shows that theoretical and experimental results fit very well. This consistency
validates the capability of our proposed model. Moreover, the superiority of n-parent
(n > 2) OB-Scan over 2-parent OB-Scan in the OneMax problem is verified theoreti-
cally as well as empirically.

We further extended the analysis to the Generalized OneMax problem. Considering
the independent character of the gene frequency in this class of problems, we extended
the Markov model for single locus to a model for multiple loci. The convergence of
MPGASs in two small instances of the Proportionate OneMax problem and the BinInt
problem are investigated accordingly. Not only does the remarkable consistence between
the theoretical results and the experimental results reconfirm the power of the proposed
Markov model, but these results also demonstrate the advantage of MPGAs using
OB-Scan over conventional GAs. The experiments on the F2, RAS, SCH, and GRI
functions, furthermore, verified the applicability of our theoretical arguments to other
problem domains.

In summary, the proposed model establishes a theory concerning the separate as well
as the integral influences of population size, selection intensity, the number of parents,
mutation rate, and generation gap on the performance of MPGAs. The theoretical
results show the power and the limit of scanning crossover, and manifest the key role
of mutation in the multi-parent crossover. Since scanning crossover is a generalization
of uniform crossover, the theoretical results and analytical methods proposed in this
work are also applicable to conventional 2-parent GAs with uniform crossover.
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Conclusions

5.1 Summary

Multi-parent genetic algorithms (MPGASs) are genetic algorithms (GAs) using two or
more parents. Traditionally, GAs adopt two parents in crossover to reproduce offspring.
Multi-parent genetic algorithms break through this limitation by allowing more than
two parents participating in crossover. However, issues arise from the increase of parents
about the operation of crossover with more parents, about the number of parents, about
the mating of them, about the situation to use this number, and about the whys and the
wherefores of using it. Even though a considerable number of studies have shown the
effectiveness and advantages of MPGAs, they concentrate on design of multi-parent
crossovers in general. Various issues about MPGAs are still left open: What is the
suitable number of parents for a given problem? Who should be mated? When will
MPGAs outperform GAs? Why do MPGAs perform better?

The objective of this thesis is to resolve these issues by design and analysis of MP-
GAs. In Chapter 2, we designed a novel mating strategy to deal with the mating issue
and the number of parents in MPGAs. The proposed approach, called the tabu multi-
parent genetic algorithm (TMPGA), integrates the tactics of tabu search (TS) into the
mating of MPGAs. TMPGA sifts parents according to the tabu restriction and the aspi-
ration criterion of TS; consequently, this method balances the population diversity and
selection pressure of MPGAs. The resultant validity of mating is further used to adjust
the number of parents adaptively. Experimental results show that TMPGA outperforms
GA and MPGA in terms of convergence speed and solution quality. This superiority of
TMPGA validates the effectiveness of the proposed mating strategy. Moreover, we ex-
amined the correlation between the number of parents and the numbers of tabu events
and aspiration events in the course of evolution. The experimental results demonstrate
that the validity of mating can afford to reflect the level of population diversity and
then to be a satisfactory reference for adjusting the number of parents.

In addition to design, we conducted theoretical analyses to address the issues of the
situations and the reasons that MPGAs can outperform GAs. In Chapter 3, we analyzed
the performance of uniform scanning crossover (U-Scan) and occurrence based scanning
crossover (OB-Scan) — both are multi-parent generalizations of uniform crossover.
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In this chapter a specific population model, called uniform population, was proposed
as a systematic population environment for analysis. A k-order uniform population
is defined as a population in which the chromosomes all have the same distance, k
genes, from the unique optimal solution. A criterion based on uniform population is
further presented to evaluate the performance of crossover. This analysis proved that
the number of parents exercises no influence upon the performance of U-Scan; in other
words, an n-parent U-Scan with n > 2 will perform identically with its 2-parent version,
i.e. uniform crossover. As for OB-Scan, the analysis revealed the pairwise equivalence
phenomenon: OB-Scan with an even number n of parents performs equivalently to
OB-Scan with n—1 (odd number) parents. Depending on the analytical results about
the probability for OB-Scan to reproduce better, equal, or worse offspring, we made
a conjecture that raising parents in OB-Scan will intensify the exploitation of the
evolutionary search. The analytical results from this simplified population model shows
a high level of consistency with the experimental results on four thorny test functions,
which validates the capability of this analysis.

Beyond the assumption of uniform population, in Chapter 4 we used Markov chain
theory to model the behavior of MPGAs and to analyze the number of parents, the
parameter setting, and the whys and the wherefores of the superiority of MPGAs over
GAs. First, we looked into the variation of gene frequency affected by selection, multi-
parent crossover, and mutation individually. Next, we formulated by Markov chain
theory the integral influence of the MPGA operators, including survivor strategy, on
the variation of gene frequency over generations. Accordingly, the proposed Markov
model concerns the separate as well as the integral effects of the population size, the
selection intensity in selection, the number of parents in crossover, the mutation rate
in mutation, and the generation gap in survivor over generations.

Two aspects of MPGAs were investigated in Chapter 4: the genetic drift and the
convergence. In terms of genetic drift, we examined the principal measure of the rate of
genetic drift — the mean convergence time of MPGAs without selection and mutation.
In this case, the proposed Markov model turns out to be an exact model for the rate of
gene drift in MPGAs. The analytical results indicated the number of parents in U-Scan
has no influence while that number in OB-Scan plays an important role in the genetic
drift of MPGAs: Raising parents in OB-Scan accelerates the genetic drift of MPGAs.
Furthermore, we analyzed the probabilities for MPGAs using OB-Scan to converge to
allele 0 and allele 1. This theoretical analysis showed that raising parents in OB-Scan
will intensify the preference of initialization for allele 0 or 1. This outcome verified the
conjecture in Chapter 3 about the intensification of exploitation in MPGAs.

In terms of the convergence of MPGAs, we investigated the complete MPGAs (i.e.
with selection and mutation) in the OneMax problem and further the Generalized One-
Max problem. Several interesting points emerge from this theoretical analysis. First,
we reconfirmed the arguments made by the analysis based on uniform population: The
number of parents indeed exerts no influence on MPGAs using U-Scan, with regard
to mean fitness and mean convergence time. In addition, the pairwise equivalence phe-
nomenon in OB-Scan was proved. Second, the proposed Markov model indicated the
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correlation of the number of parents with the mean fitness and the mean convergence
time of MPGAs using OB-Scan. Third, the analytical results manifested the critical
role of mutation in the performance of MPGAs using OB-Scan. In the Generalized One-
Max problems, including the OneMax problem and the BinInt problem, the theoretical
results showed that MPGAs using more parents in OB-Scan with mutation, on the
one hand, are capable of higher mean convergence fitness than MPGAs using 2-parent
OB-Scan, viz GAs using uniform crossover. On the other hand, they need more gener-
ations to achieve convergence. However, the defects do not outweigh the merits. For a
reasonably short running time, MPGASs using n-parent OB-Scan outperform GAs con-
cerning the solution quality in the Generalized OneMax problems. More importantly,
all these theoretical results were verified by a series of experiments. The good fit be-
tween the theoretical and the experimental results not only validates the soundness of
the theoretical analysis but also demonstrates the effectiveness of the proposed Markov
model.

5.2 Contributions

In regard to the question “Can GAs benefit from the increase of parents?”, the present
thesis stated that:

Yes, GAs can benefit from the increase of parents conditionally.

Centering around the above statement, we proposed designs to improve the performance
of MPGASs and carried out analyses to characterize, describe, and predict the behavior
of MPGAs in order to discover and prove the conditions that benefit MPGAs. More
specifically, the contributions of this thesis can be categorized into theoretical aspect
and practical aspect as follows.

1. Contributions in theoretical aspect:

e Theoretical Foundations: This thesis proposed the uniform population model
for theoretical analysis of crossover, investigated the variation of gene frequency
caused by each MPGA operator, and developed a Markov model for MPGAs.
First, the proposed uniform population affords a simple yet effectual model for
theoretical analysis of crossover. The analysis based on uniform population gives
the probability for a crossover to reproduce better, equal, or worse offspring;
therefore, it shows the effectiveness/ineffectiveness of a given crossover. The the-
oretical results from this analysis are greatly consistent with the experimental
results and with the theoretical results from Markov chain theory. Second, we
built a theoretical foundation of the analysis on the variation of gene frequency
caused by selection, multi-parent crossover, and mutation. It suffices to spec-
ify the respective effects of these operators on gene frequency. Third, a Markov
model was constructed to formulate the integral influence of MPGA operators
on the gene frequency in the course of evolution. This model is capable of de-
scribing and predicting the behavior of MPGAs. These theoretical analyses are
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all examined by a series of experiments. The good fit between the theoretical re-
sults and the experimental results validates the correctness and the effectiveness
of these theoretical analyses.

Characterization of Raising Parents in MPGAs: Two characters of MP-
GAs were explored: the exploitation and the genetic drift. The analysis based on
uniform population clued the impact of multi-parent crossover on exploitation
of the evolutionary search. Moreover, this thesis gave a theoretical analysis on
the genetic drift of MPGAs. This analysis explicitly indicates the expected time
(generations) for the population diversity to drain away and the probability for
MPGAs to drift into allele 1 or allele 0. The theoretical results showed that the
increase of parents in OB-Scan on the one hand will intensify the exploitation
and, on the other hand, will accelerate the genetic drift of MPGAs. For MPGAs
using U-Scan, this thesis proved that the adopted number of parents has no
effect on both exploitation and genetic drift.

Predictive Model for MP G As: We built a Markov model for MPGAs, which
concerns the integral influence of the population size, the selection intensity in
selection, the number of parents in crossover, the mutation rate in mutation,
and the generation gap in survivor over generations. This model was verified in
an empirical manner and successfully showed its power in predicting the mean
fitness over time and the mean convergence time of MPGAs. Through this model,
we are able to discover the optimal setting concerning population size, selection
intensity, the number of parents, mutation rate, and generation gap in MPGAs.

2. Contributions in practical aspect:

Improvement of Performance: A mating strategy was proposed for MPGAs
to sift parents in consideration of the balance between population diversity and
selection pressure. This mating strategy further adjusts the number of parents
in response to the diversity in the population. The MPGA using this mating
strategy was shown empirically to outperform GA as well as the MPGA without
this mating strategy. Moreover, the results from our theoretical analyses sug-
gested several guidelines to improve the solution quality and convergence speed
of MPGAs.

Guidelines for Determining the Number of Parents: We achieved this
goal by means of design and analysis of MPGAs. First, a rule was proposed to
adaptively adjust the number of parents according to the validity of mating.
Second, the theoretical analyses gave several useful hints on determining the
number of parents: For MPGAs using U-Scan, we suggested adopting 2-parent
U-Scan, namely uniform crossover, in that both the analysis based on uniform
population and the analysis based on Markov chain theory pointed to the same
conclusion — the number of parents exerts no influence on the performance
of MPGAs using U-Scan. In that case, raising parents in U-Scan receives no
gains but the cost of selecting extra parents. Thus, two parents are suggested in
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U-Scan. For MPGAs using OB-Scan, this thesis suggested using only odd num-
bers of parents (except n = 2) owing to the pairwise equivalence phenomenon
indicated in our theoretical analyses. In addition, in terms of solution quality
and convergence speed, the conjecture “the more parents, the better” condition-
ally holds in OB-Scan — it strongly depends on the parameter setting of other
operators.

e Guidelines for Determining the Parameters of Other Operators: The
proposed Markov model is able to predict the behavior and to find the opti-
mal setting of MPGAs in the Generalized OneMax problem. For MPGAs using
OB-Scan, this thesis revealed that the utilization of mutation has a significant
influence on the performance of MPGAs. In addition, we argued that the mu-
tation rate should be duly increased with the number of parents in OB-Scan to
enhance solution quality and to prevent premature convergence, because of the
intensified exploitation and the accelerated genetic drift by raising the number
of parents in OB-Scan. For MPGAs using U-Scan, we proved that n-parent U-
Scan with n € Ns1 corresponds to 2-parent OB-Scan. Hence, for the parameter
setting of MPGAs using n-parent U-Scan one can refer to that of MPGASs using
2-parent OB-Scan.

5.3 Future Work

In this thesis, we designed a mating strategy to deal with the mating issue and the
number of parents in MPGAs, and have received preferable results in solution quality
and convergence speed. According to the tabu restriction, this mating strategy filters
parents in an incest-prevention manner. That is to say, this strategy encourages the
mating of distant parents, which can be viewed as a memory-based implementation of
heterosis in MPGAs as well as GAs [107]. Even though heterosis has its advantage in
nature [42, 53] and the mating strategies based on it received many success stories in
GAs [37, 107], it is still lacking in theoretical demonstration of the benefits to use these
heterosis-like approaches.

The uniform population model is capable of a simple yet effectual model for analysis
of crossover. This thesis used it to derive the probability for a crossover to reproduce
better or worse offspring. Several extensions to broaden the usage of this model still
remain for future study: In terms of the performance criterion associated with uni-
form population, we merely aimed for the case of performance equivalence. The probe
into other cases concerning the combinations of k-positive, k-ineffective, and k-negative
probabilities is expected to clue about an operator’s strength in exploitation and explo-
ration. Furthermore, in the analysis we focused on the progress of uniform population
towards its subsequent generation. The evolution was not taken into account; never-
theless, it is of interest to look into the subsequence of uniform population. The results
from this extension can further afford to show the performance of crossover in the long
term.
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The present thesis analyzed in theory the variation of gene frequency caused by
respective MPGA operators, and further formulated the integral influence of these
variations over generations by Markov chain theory. We conducted an analysis on two
scanning crossovers, U-Scan and OB-Scan. These two multi-parent crossovers gener-
alize the classic uniform crossover, while uniform crossover generalizes other common
2-parent crossovers: one-point crossover, two-point crossover, and multi-point crossover.
However, we cannot directly apply the theoretical results of scanning crossover to diago-
nal crossover or multi-cut crossover, which are multi-parent generalizations of one-point
crossover and two-point crossover, respectively. The reason is that the operation of di-
agonal crossover or multi-cut crossover induces linkage of genes in a parent, which is
fundamentally different from the bitwise operation of scanning crossover. An investi-
gation into this linkage factor in the multi-parent crossovers would be challenging yet
fruitful for the advanced knowledge about the role of parents in MPGAs.

As for the problem domains of analysis, this thesis focused on the OneMax prob-
lem and the Generalized OneMax problem. Even though these problems are relatively
simple, the analysis for them is applicable to other problem domains. The analysis
presented in this thesis has successfully identified the influence of raising parents on
MPGAs using U-Scan and OB-Scan. On the other hand, since the mechanism of OB-
Scan is based on majority voting, it seems vulnerable to the deceptive or trapping
problems. The monotonic fitness of the Generalized OneMax problem, therefore, can-
not afford to investigate this vulnerability in theory. An advanced analysis on other
problem domains, especially the deceptive problems, will be of great help for discover-
ing the behavior of MPGAs using, but not restricted to, OB-Scan.

The last but not the least direction to extend this thesis is practical application of
MPGASs. Genetic algorithms are devised to deal with problems which have no satis-
factory solution yet. Commonly GAs are used as an optimization algorithm, for exam-
ple, in machine learning [48, 69| and combinatorial problems [51, 82|. Recently, in the
EC community it is popular to apply evolutionary algorithms to handle problems in
bioinformatics [41, 84|, computer security and cryptology [14, 67|, and art [81, 84]. The
present thesis showed empirically and theoretically the superiority of MPGAs over GAs,
and provided the guidelines to choose parameters and to improve MPGAs. Accordingly,
MPGASs have a great potential to outperform GAs — It is more than promising and
interesting to apply MPGASs to solve practical problems in place of GAs.
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Test Functions

A.1 De Jong’s Function 2 (F2)

De Jong’s F2 function (also known as the Generalized Rosenbrock’s function) [20] can

be generalized by
N-1

2
Jr2e(X) = Z {(ﬂﬁiﬂ — xf) + (z; — 1)2] ;
i=1
where —2.048 < x; < 2.048 and N € Ny . This function is a continuous, unimodal, non-
convex, and N-dimensional quadratic function with a minimum of 0 at x = (1,...,1).
The deep parabolic valley of F2, as shown in Fig. A.1, causes a severe difficulty in
finding the global minimum.

4000

{7
> AT
3000 N9 9 9 4,
LAY
SALATATAT
2000 - ”:’5‘""”"

1000

Fig. A.1. Fitness landscape of F2



128 A Test Functions

A.2 The Rastrigin Function (RAS)

The Rastrigin function is given by

N
fras(x) = 10N + )~ [27 — 10 cos(2mz;)] ,

=1

where —5.12 < z; < 5.12 and N € N. This function is a continuous, multimodal, non-
convex, and N-dimensional function with a minimum of 0 at x = (0,...,0). As Fig. A.2
shows, the RAS function has many and widespread local minima, which hinder search
algorithms from finding the global minimum.

\
(N “%
«%’

WS
O i@
Y ""«"’“ A
YU ’/’,.»” .
o'o;mf\s‘m;r/f(\,,;g,\\.\. o
99

Fig. A.2. Fitness landscape of RAS



A.3 The Schwefel Function (SCH) 129

A.3 The Schwefel Function (SCH)

The Schwefel function is given by

N

fscn(x) = 418.98291N — 3 zsin (\/H> ,

=1

where —512 < z; < 512 and N € N. This function is a continuous, multimodal, non-
convex, and N-dimensional function with a minimum of 0 at x = (420.9687, ... ,420.9687).
In addition, the SCH function is deceptive since its second-best minimum is distant from
the global minimum; thus the search algorithms are potentially directed in the wrong
way. The landscape of a 2-dimensional SCH function is plotted in Fig. A.3.
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A.4 The Griewangk Function (GRI)

The Griewangk function is given by

N 5 N
X s

for(0) =143 ghes - TLeos (25
o 4000 - Vi

where —512 < z; < 512 and N € N. This function is a continuous, multimodal, non-
convex, and N-dimensional function with a minimum of 0 at x = (0,...,0). The GRI
function is a challenging problem because of its exponentially increasing number of local
minima with the dimension N. The enlarged fitness landscape in Fig. A.2 demonstrates
the vast number of local minima in a 2-dimensional GRI function.
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Experimental Results: TMPGA

This section presents the experimental results of GA, MPGA, and TMPGA in four
test functions: De Jong’s second test function (F2), an extended F2 function (F2e), the
Rastrigin function (RAS), and the Griewangk function (GRI). Two numbers (6 and 15)
of parents for MPGA and TMPGA and two mutation rates (% and 0.1) are considered.
Through these experimental results, we compare the performance of GA, MPGA, and
TMPGA with respect to three multi-parent crossovers: diagonal crossover, U-Scan, and
OB-Scan in Section 2.4.2.
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Fig. B.3.
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C

Experimental and Theoretical Results: Convergence of
MPGAs

This section presents the experimental and the theoretical results of MPGAs using
OB-Scan in the Proportionate OneMax problem, the Binlnt problem, the extended
De Jong’s second function (F2), the Rastrigin function (RAS), the Schwefel function
(SCH), and the Griewangk function (GRI). The discussions of these results are pre-
sented in Sections 4.5 and 4.6.
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0.01 (bottom)
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D

Some Proofs

D.1 Proof of Corollary 4.10
Theorem 4.43 indicated the gene frequency

pzb(n) = Iz (a,a) with a= {21 .

2
1. 0 < p} < 0.5:
Refer to (26.5.14) in [1]: For p < 0.5
1 1. ., 1,
I(a,a) = §Il_p/(a, 5) with p' = 4(p — 5) . (D.1)

The differential
1

1 1 1
Ip(a + 1, a+ 1) — Ip(a, a) = 5[1717/(0, =+ 1, 5) — 5[1717/(0,, 5)
1 1

= 511—;7’(@ +1, 5)

NI

1
+ Ilfp/(a' + 17 _)

! [;(1 - ) @) 5

2 | a- Beta(a, 3)

1 na /%
:—m(l—p) (r')z. (D.2)

Since for a € N

and
0<p<05=0<yp <1,

the differential for 0 < p < 0.5

I(a+1,a+1)—I)(a,a) =
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which implies for 0 < p; < 0.5 and a = [%] € Ny

b ([222] [252]) - (2] [2]) <o =2 <. oy

2.05<p <Lt
Equation (26.5.2) in [1] tells

I,(a,b) =1—1I1_p(b,a). (D.4)
Let ¢ = 1—p;. The bound 0.5 < pi < 1 implies 0 < ¢ < 0.5. From (D.3) and (D.4),
we obtain
n+2 n+2 n n
: ’ 1 ([5]-130)
(2] ) m (T D) <o

= [1=neo (|2 [20]) - - (T3 [ED] <0
=5 ([51.5D) -2 (|2 [*57]) <¢

() o poblrn+2)

3. Otherwise:

a) p; = 0.5
Substitute p = 0.5 into (D.4) and we have for all « € N

IQ5(CL,CL) =1- 11,0.5(CL,CL) <~ 10.5(61,61) =0.5
Thus, as p; = 0.5,

Vn € Ny :pzb(n) = 10_5(a,a) =0.5= pz.

b) pj = 0:
As pj =0, for all n € Noy with a = [2]
2a—1 2 — 1 ) .
" = Io(a,a) = ( i )0%1—0)2““ =0="pi
i=a

c) pp =1
Similarly, as p; = 1, for all n € N5 with a = [%]

2a—1

Ob(n)_I( ) = Za 2a -1 11'(1_1)2%17@'_1_ s

pk; = l\a,a) = ’L = _pk
i=a
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D.2 Proof of Corollary 4.11

L05<p; <l
We prove by Mathematical Induction (M.I.):
a = 2: Since

1
Ly (1,1) = > B(i; 1,p}) = p},
i=1
from Corollary 4.10 we have for 0.5 < pj <1
PR — P = Ip: (a,a) — pf = L (2,2) — I (1,1) > 0.

a = i: Assume Ip: (4,7) > pj, holds.
a =1+ 1: For 0.5 < p; <1, from Corollary 4.10 we obtain

Ipz(l—l-l,l—l-l) > Ipz(l,’L) :>Ipz(2+1,2+1) >pz.

According to M.I. we proved that for 0.5 < pj, < 1 and a € N5, the inequality
Ip: (a,a) > pj holds, which implies for n € N5 the gene frequency pzb(n) >y
2. 0<pi <0.5:

Let ¢ = 1 —pj. The bound 0 < pj < 0.5 implies 0.5 < ¢ < 1. From the above proof

and (D.4), we have for a € Ny,

I(a,a) >q=1,(1,1) = 1—-I1_4(a,a) > 1 —11_4(1,1)

S

= Ip;(a,a) < I (1,1) = pj,

Therefore, it holds for 0 < p; < 0.5 and n € N5 that pzb(n) < p;.
3. The proof of the cases pj, = 0, 0.5 and 1 refer to the third part of proof of Corollary
4.10.
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