'L‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Fakultat fiir Elektrotechnik, Informatik und Mathematik
Institut fiir Informatik
Arbeitsgruppe Softwaretechnik
Warburger Straf3e 100
33098 Paderborn

Data-oriented Reengineering

2

Reddmom

Dissertation submitted in partial fulfillment
of the requirements for the degree of
,Doctor of Natural Science* (Dr. rer. nat.)

Schriftliche Arbeit
zur Erlangung des Grades
"Doktor der Naturwissenschaften" (Dr. rer. nat.)

vorgelegt von

Dipl.-Inform. Jorg P. Wadsack
Ferrariweg 34
33102 Paderborn

Paderborn, Dezember 2003



© JORG P. WADSACK, UNIVERSITY OF PADERBORN, GERMANY. ALL RIGHTS RESERVED.



ABSTRACT

Today, information system evolution primarily consists of extending the legacy systems
and migrate them to modern platforms related to the Web and mobile devices. This dis-
sertation tackles the problem of understanding and adapting legacy web information sys-
tems based on the systems’ data. In this context several methods and tools have been
proposed for reengineering. Since legacy systems have grown over years and lack suffi-
cient documentation, reengineering is a complex and hard task. Tool supported reengi-
neering approaches and processes reduce the complexity and risks during web
information system maintenance. Still, current reengineering approaches and tools often
tackle only specific system parts or dedicated maintenance aspects. This thesis aims to
overcome these limitations by providing a process that combines tools for reengineering
the data as well as the applications. Our focus is to handle uncertain knowledge by sus-
taining human exploration and iteration during a tool supported reengineering process. In
practice uncertain knowledge during reengineering plays a fundamental role but it is often
neglected by exiting approaches due to idealistic assumptions.

The presented data-oriented reengineering process provides concepts that combine exist-
ing data and application design reengineering approaches to maintain web information
systems. Since it is unrealistic to presume that reengineering can follow a strictly waterfall
like process without iterations, inconsistencies occur during the reengineering process.
The chosen combined approaches fulfil the requirement to deal with such inconsistencies.
We based our process on models because models provide the possibility to represent (in-
consistent) knowledge at different levels of abstraction. Moreover, models can be accu-
rate enough to enable code generation. In this dissertation, we base the system’s models
on graphs. We employ graph transformation theory to provide mechanisms that detect,
handle and resolve inconsistencies of the models automatically. The results are imple-
mented within the REDDMOM project. We use the FUJABA TOOL SUITE for tool integration
and evaluate our concepts with a case study in the Health Care domain.

il



v



AKNOWLEDGEMENTS

Many people have influenced my research during the past five years. I am especially
obliged to Wilhelm Schéfer who supported me in every occasion and provided a phenom-
enal working environment. Special thanks go to Jens Jahnke and Albert Ziindorf. Both are
»responsible® for this thesis since they convinced me that I am able accomplish it. Beside
office and beer sharing, the fruitful discussions with them were the basis for most of the
thesis results. Jens Jahnke welcomed my as a member of his research group at the Univer-
sity of Victoria and as a guest in his house. Many thanks to Anke at this point! During this
period the fundamental parts of this thesis were settled. A special thank you goes to Jorg
Niere for many fruitful discussions about our theses.

The achievement of this thesis would not have been possible without the contributions of
many colleagues and students. I thank all persons involved in the REDDMOM project. Ev-
eryone that somehow contributed to the FUJABA environment: thanks. Further, I thank all
people at the University of Victoria, especially those involved in the palliative care case
study, for the great support during my stay. Finally, I thank all my colleagues of the Soft-
ware Engineering Group sharing ideas, jokes, planes, beds, offices, (sparkling) wine, beer
and coffee with me.

Special thanks go the ,,proof readers*: Holger Giese, Jens Jahnke, Ekkart Kindler, Jorg
Niere, Matthias Meyer, Wilhelm Schéifer, Matthias Tichy, Robert Wagner, Lothar Wen-
dehals and Albert Ziindorf.

I thank Jiirgen Maniera for the great technical support. I am obliged Jutta Haupt who
helped me surviving the bureaucracy jungle and for many chats.

Without the support of my friends and my family, especially my wife Sonja and my son
Simon, this would never have been possible.

I love you.



vi



To my family






CONTENTS

LIST OF FIGURES AND TABLES. . . .« oottt X111
CHAPTER 1: INTRODUCTION . . . .ttt ittt e e e e a e 17
1.1 Background: Web Information System Reengineering . . ... .. 17

1.2 Problem Definition. . .......... ... ... ... ... .. .. ..... 18

1.3 Our Data-oriented Reengineering Approach ............... 18

1.4 DissertationOutline .. ............ ... ..., 21

CHAPTER 2: DATA-ORIENTED REENGINEERING: A CASE STUDY. . .... 23
2.1 An Health Care Web Information System ................. 24

2.1.1 The Legacy (Web) Information System ............. 24

2.1.2 The Considered Target Web Information System. . . . .. 25

2.2 The Data-oriented Reengineering process . ................ 27

2.2.1 Understanding Phase............................ 27

222 AdaptingPhase ........... ... .. ... ... ... 30

2.2.3 Model Maintenance. . .. ...........ouiiiininn... 33

CHAPTER 3: DATA-ORIENTED REVERSE ENGINEERING . . ... ........ 37
3.1 Reverse Engineering Data Components. . ................. 37

3.1.1 Reverse Engineering Steps . ...................... 38

3.1.2 Relationships and Data Dependencies .............. 40

3.1.3 Model Representation........................... 45

3.2 DataModel Recovery........... ... .. i, 49

3.2.1 SchemaRecovery ............. ..., 49

3.2.2 Retrieval of Hidden Schema Parts ................. 50

323 SchemaMapping. ..........cooiriiiininanan.. 53

3.2.4 Conceptual Schema Refactoring. .................. 63

X



CHAPTER 4:

3.3 Relationship Retrieval ................................ 66
3.3.1 Code Fragment Extraction and Parsing ............. 67
3.3.2 Pattern Definition.............................. 73
3.3.3 Pattern Instance Retrieval . .. ..................... 79
3.3.4 Handling Uncertainty using Fuzzy Beliefs. .......... 85

3.4 Tool Support. . ...ov i 92

35 Related Work .. ... ... 96

3.6 Summary and Future Work ............................ 99

DATA COMPONENT EXTENSION . .. ... ...t 101

4.1 Extension Approach.......... .. ... .. .. ... .. ... ... 101

4.2 Data Component Clustering and Classification............ 103
4.2.1 Data Component Clustering .. ................... 103
4.2.2 Clustering Strategies. . . .. .....voveienenennen... 107
4.2.3 Data Component Classification .................. 110

4.3 Architectural Patterns for Data Mediation. . ............... 111
4.3.1 Architectural Pattern: Data Portal. .. .............. 113
4.3.2 Architectural Pattern: Data Fusion................ 116
4.3.3 Architectural Pattern: Data Transducer ............ 119
4.3.4 Architectural Pattern: Data Connection . ........... 121
4.3.5 Architectural Pattern Application Examples . ....... 124

4.4 Access Layer Generation and Model Execution . .......... 126
4.4.1 Transactional Access Layer ..................... 126
442 MediationLayer............ ... ... ... ....... 129
4.43 PublishingLayer.............................. 131
4.44 Multimediaextension.......................... 134

4.5 Tool Support. . . ..ot e 135

4.6 Related Work . ...... ... .. . 140

4.7 Summary and Future Work . .......... ... .. ... ... ... 142



CHAPTER 5: MODEL CONSISTENCY MANAGEMENT . . ... ..o vun. .. 143

5.1 Data Component Model Consistency Maintenance . . . ... ... 143

5.2 Graph-based History Mechanism....................... 145

5.2.1 Background: History Graph Mechanism. ........... 145

5.2.2 Simple Undo History Graph Mechanism ........... 152

5.2.3 Selective Undo History Graph Mechanism. ......... 158

5.2.4 Composed History Graph Mechanism ............. 163

5.3 Tool Support. . ...t 168

54 Relatedwork. ....... .. . . 170

5.5 Summary and Future Work. .. ...... ... ... .. ... . ... 172

CHAPTER 6: CONCLUSIONS . . . . oottt e 173
6.1 Summary. ...... ... ... 173

6.2 Transferability of Results .. ........................... 175

6.3 OpenProblems............ ... ... .. ... 176

6.4 Future Directions . .......... ... ..., 176
REFERENCES . . . ittt e e e e 179
Chapter 1: Introduction. . . ........ ... . ... ... 179

Chapter 2: Data-oriented Reengineering: A Case Study .. ... 183

Chapter 3: Data-Oriented Reverse Engineering. .. ......... 186

Chapter 4: Data Component Extension .................. 197

Chapter 5: Model Consistency Management . .. ........... 206

Chapter 6: Conclusions. . .. ..., 207

INDEX CCXI1

xi



Xii



L1ST OF FIGURES AND TABLES

CHAPTER 1: INTRODUCTION
Figure 1.1: Data-oriented Reengineering proCess..........eecveeueerueerieenieenieeneesnneeneeeenn. 20

CHAPTER 2: DATA-ORIENTED REENGINEERING: A CASE STUDY

Figure 2.1 Health Care Web Information System: Considered Target System .......... 26
Figure 2.2: Case study understanding phase...........c.ccccuerieeiienieniiienieeieeieeeee e 28
Figure 2.3: Parsed data models OVEIVIEW .........cocoevuiiiirieniieiinieieeesce e 28
Figure 2.4: Table clone eXample.........ccoeiirieriiiienieniieiesieieeeseee e 29
Figure 2.5: Palliative care conceptual schema excerpt in UML...........cccccccveeirennennne. 30
Figure 2.6: Case study adating phase...........ccccoeveeriieiiienienieeeeeie e 31
Figure 2.7: Clustering eXample.........coooieiiieiiienieeieeie et 32
Figure 2.8: New data components integration eXamples..........cceeveeieerieenveeireennnennn. 32
Figure 2.9: : Case study administrating phase ..........cccceeevveevieerieeiieenienieeieeeee e 33
Figure 2.10: Consistency violation eXample...........ccoeeveeieeviienieeciienieeieenee e 34

CHAPTER 3: DATA-ORIENTED REVERSE ENGINEERING

Figure 3.1: Web information system understanding............cccceeevveeeciieeriveeenieescnneenne, 38
Figure 3.2: Data Component Reverse Engineering - OVerview .........cccceeeevveeeveeennee. 39
Figure 3.3: Relationships and Data Dependencies OVerview..........c.ccoeeveeeeuveernreennee. 41
Figure 3.4: Conceptual schema view (relationships)........ccccceeeeieinciieeriieenieesiieeee, 46
Figure 3.5: Pysical aspect view as package diagram............cccceeveevreeeririeenveenenneenne, 47
Figure 3.6: Conceptual schema view eXample .........cccceoveeeviiieeiieeniieeciie e 48
Figure 3.7: Variant and optimisation structure example..........cccceeveveeriieenieeeeveenne. 51
Figure 3.8: Patient variant eXample ........cccceovvvieiiieeiieeeie e 52
Figure 3.9: Optimisation structure eXample ...........cccueeevieeeiiieeniiieeniie e 53
Figure 3.10: Triple-graph-grammar fundamental idea example............cccceeveeennennne. 53
Figure 3.11: Schema mapping graph model ............cccoeeviiieiiiienciieciieeeeee e 56
Figure 3.12: MapEntityToClass mapping rule..........cccceevvveeviiienciieiniie e 58
Figure 3.13: MapEntityToClass relating rule (story diagram)...........cccccveeeeveernnennee. 59

xiil



Figure 3.14: MapEntityToClass foward rule (story pattern) ........c..cccceevveveenervenenn 60
Figure 3.15: MapEntityToClass reverse rule (story pattern)...........ccceevereveeneenveenen. 60
Table 3.1: Mapping Rule OVEIrvIEW ........ccceevuieriieiiiiiiieieerie et 61
Figure 3.16: Mapping rule features in the MapAttrToAttr rule ..........cccceveevieiennnene. 62
Figure 3.17: Graphical constraint with story diagram...........ccccecceveveveniinienennenenn. 62
Figure 3.18: moveAttribute refactoring operation .............cceecueeveeeceeeneeniieeneeneeennen. 63
Figure 3.19: splitClass refactoring Operation ............cceecueeveeecieeniieecieenieeeieeeneeeveeees 64
Table 3.2: Refactoring operation OVEIVIEW ...........ccceeveeerueenreenieenieeireenneenens 65
Figure 3.20: Extracting code fragments of interrest...........ceeeveerirecieeneeeiiienieeieenee. 68
Figure 3.21: Code fragment of INtEIest .......cc.eevvirierieneriiniieieeieseeeseee e 70
Figure 3.22: sliced code fragment of interest.........cccueveeverieniinenieniiicnieneeienne 71
Figure 3.23: Type Graph Model.........cccooiiiiiiiiiiiieieeceeeeee e 73
Figure 3.24: Simplified annotated abstract syntax graph instance...............ccccuvnnee. 74
Figure 3.25: IND pattern definition.........ccceeiereriierieneenienieneeieseeieeee e 75
Figure 3.26: Sample IND code and annotated abstract syntax graph ........................ 76
Figure 3.27: IND annotations........cc.eeverueerienienierientenieetesieesie et 76
Figure 3.28: R-IND pattern definition.........coceevervuerieneriienieneeieseeieeeseeee e 77
Figure 3.29: Association code example and pattern definition............ccccceeevuveennennne. 78
Figure 3.30: Replication code example and pattern definition ...........ccccceceevueriennene. 79
Figure 3.31: Duplication pattern definition...........ccoceeveriierieneniienienenieseeieeeeeenee 81
Figure 3.32: Sample analysis €XECULION ......ccueruirriirierieiieeiienieeie st 82
Figure 3.33: Retrieval process statechart ...........ccceveeverienienenieneeiesenceeceeeee 85
Figure 3.34: Code samples for duplication .............ccceeeeueeriieniieniienieeieeieeeeee e 86
Figure 3.35: Alternative duplication pattern definitions ..........c.ccceceeveeveriineeniennne. 87
Figure 3.36: Imprecise duplication and insert pattern definitions...........c.cceeevvennne 88
Figure 3.37: Sample analysis execution with fuzzy values..........c.cccocevviniininiennnne 89
Figure 3.38: Annotated conceptual VIEW.........ccceevueriiniriiinieniieienieieeiesceeeee e 91
Figure 3.39: Conceptual schema view (data dependencies) ........c.ccoccevveerienueniennenne 91
Figure 3.40: Architecture of the REDDMOM reverse engineering tools...................... 93
Figure 3.41: SplitClass composed transformation example.........c.ccccceeverieneriennene 94
CHAPTER 4: DATA COMPONENT EXTENSION
Figure 4.1: Web information system adaption ............cccceeveeeieerieniieenieeieesieeeeeenn 101

X1V



Figure 4.2: Data Component Extension: OVeIrvVIEW..........cccceeevverieneenieneenieeneeneen. 102

Figure 4.3: Sample of the palliative care conceptual schema............cccceeceerveiennene. 105
Figure 4.4: Clustered palliative care conceptual schema: sample 1 ..........ccccccueneee. 106
Figure 4.5: Clustered palliative care conceptual schema: sample 2 ..........c..ccueneee. 106
Figure 4.6: Schema Integration..........ccoceevuiriiniiiienienieiecteeee e 108
Figure 4.7: Application INteration ...........ccecceeriieniieniienieeieeeeee e 108

Table 4.1: Relationship Weighting for Clustering ............cccoeeveevvvenveeieenennne. 109
Figure 4.8: Architectural patterns: OVEIVIEW .........cceeevueeriieriieeniieeiieniieeieeieeeeveenenes 112
Figure 4.9: Data Portal Pattern USE .........cccooeeviiriieriiniiiienieeeieeeeeee e 113
Figure 4.10: Structure of the Data Portal Pattern............ccoceeverveniininiiniiniiicnene 114
Figure 4.11: Participant View of the Data Portal Pattern............ccccoceeveriiniencnnene. 115
Figure 4.12: Data Portal Pattern sample ........cc.cooevieriiienieninieniceeceeeeeee 116
Figure 4.13: Data Fusion Pattern US€..........ccceveeviirieniiiienienieeicceeieeeetee e 117
Figure 4.14: Structure of the Data Fusion Pattern ...........cc.ccoceeveniiniiiinincncnne 117
Figure 4.15: Data Fusion Pattern sample...........ccccoveviriiininiiniiniiicnicncceeee 118
Figure 4.16: Data Transducer Pattern US€..........ccceveeririiinieninieneeiereesceeeieeieenne 119
Figure 4.17: Structure of the Data Transducer Pattern ...........ccccoceveiiiniiininncnnene. 120
Figure 4.18: Data Transducer Pattern sample..........ccccoeverieninieniininieniiienieee 121
Figure 4.19: Data Connection Pattern Use ..........ccceeveeiienieniieniieeiieiecieeee e 122
Figure 4.20: Structure of the Data Connection Pattern...........cccceeoveveeviniinenniennene. 123
Figure 4.21: Architectural pattern application examples..........ccceeeveevveriienieenneennen. 125
Figure 4.22: Modelled and generated [ayers...........ccceevueeriienieeiieniieiieieeeeeee e 126
Figure 4.23: Access layer generator OVEIVIEW.........cecueveevuerienieenienienieeeesieenie e 127
Figure 4.24: ACID transaction related patterns [Gra99] ........cccccoevveviiiiiienienieennen. 127
Figure 4.25: Transactional access layer generator OVEIrview ...........cccceeeeveerueeeveennen. 128
Figure 4.26: Examples of links between different object kinds ...........cccccevveenennnene. 130
Figure 4.27: Examples of a <<search>> link........c..ccccccccervuirirneniinininiinicenene 130
Figure 4.28: Sample Data Fusion pattern modelled with a story diagram ............... 131
Figure 4.29: Abstract syntax graph publishing............cccccccevviiiiiiiiiniiiiieieeeeee, 132
Figure 4.30: Sample publishing layer: web portal...........cccccooeeviniininiininiiicnne 132
Figure 4.31: Sample publishing layers for a data transducer.............cccceevuervenennnene. 133
Figure 4.32: Architecture of the Reddmom extension tools...........cccceeveereerieniennnenn 135
Figure 4.33: Design transformations pushAttribute and generalise .............c..c....... 136

XV



Table 4.2: (Re)Design Transformations ............ccceecveeeveerieecieenieeieeneeseeennen. 136
Figure 4.34: Pattern Editor: pattern instantiation eXxample ..........cccceeeveerveeieenneenne. 138
CHAPTER 5: MODEL CONSISTENCY MANAGEMENT
Figure 5.1: Web information system model maitenance..........c..cceceeveeveneeneenennen. 143
Figure 5.2: Model Consistency Management: OVEIVIEW...........cceeeveerreerrverveenneennn. 145
Figure 5.3: History (GXL) Graph model ..........ccccoevieriieiiieniieiieieeeeee e 147
Figure 5.4: Graph production SplitClass ...........cccceeeiierieeiiienieeieeieeee e 148
Figure 5.5: Template of History Graph Transformation .............cccceeeeevieienvencnnene 148
Figure 5.6: History Graph Transformation splitClass ..........c.cccecvvevveeviienieeieennnnne. 149
Figure 5.7: Application of production splitClass ..........ccccevereerirriniienieienieeeens 149
Figure 5.8: Basic structure of a History Graph ...........cccoovviienciiiniiiineeeeeee, 151
Figure 5.9: Sample HiStory Graph .........cccoecvieviiiiiieiienieeieesie e 152
Figure 5.10: Interaction with the History Graph Mechanism .............c.ccccveevvenneenee. 153
Figure 5.11: Undo History Graph Mechanism...........cccccoeevieviieeiienieenienie e, 155
Figure 5.12: Determine affected transformations............ccecceveereeiienienieesiencenennens 156
Figure 5.13: Affected History Graph: simple undo...........cceevveveiienienciienienieenenne, 157
Figure 5.14: Updated History Graph: simple undo...........ccceceveeeiienieeciienienieenene, 157
Figure 5.15: Reevaluate transformations ..........ccocceeceeniiiiiinicnicinienceeeeeceeee 159
Figure 5.16: History Graph: directly affected transformations............cccccevvenennee 161
Figure 5.17: History Graph: indirectly affected transformations.............cccccceeuenee 161
Figure 5.18: History Graph: reevaluated transformations...........ccccceceveererveneennens 162
Figure 5.19: Composed History Graph: OVeIVIEW ..........ccecceviereriiinienieeienceieeens 164
Figure 5.20: Composed History Graph: reevaluation ..........c.ccoeceeveeienieneniencnnens 165
Figure 5.21: History Graph Sequence Example..........ccccoevvveviiiciiinieeiienieeieee, 166
Figure 5.22: Reevaluation of HG I1.a......cccooiiiiiiiiiiiiiiieicceeeeeeee e 167
Figure 5.23: Reevaluation of HG IIL.a .....co.cooiiiiiiiiiiieceee 167
Figure 5.24: Reevaluation of HG IV ......ccociiiiiiiiiieceeeeeee e 168
Figure 5.25: Architecture of the History Graph Mechanism tool support................ 169
CHAPTER 6: CONCLUSIONS
Figure 6.1 Tool Support for the Data-oriented Reengineering process.................... 174

xvi



CHAPTER 1: INTRODUCTION

Observe constantly that all things take place by change, and ac-
custom thyself to consider that the nature of the Universe loves
nothing so much as to change the things which are, and to make
new things like them.

MARCUS AURELIUS ANTONINUS
Roman emperor and philosopher (121 - 180)

1.1 Background: Web Information System Reengineering

Current trends in the field of information technology, like eHealth, eGovernment or ePro-
curement, lead to the emergence of web information systems. Today’s (web) information
systems require constantly functional extensions due to new requirements, i.e., the heter-
ogeneous distributed information systems become increasingly heterogeneous and dis-
tributed. Further, these (web) information systems interface more and more with the
clients through the Web and include a growing number of mobile devices.

These web information systems are legacy systems, i.e., they are inherited systems which
have evolved over years and still evolve. These systems are mission-critical to the com-
panies. Further, these systems are generally poorly documented and only partially under-
stand. New development or even replacement of the legacy systems is often not
practicable. Web information system’s reengineering is the only solution to keep the mis-
sion-critical systems running and to manage their inherent evolution. ,,Reengineering (...)
is the examination and alteration of a subject system to reconstitute it in a new form and
the subsequent implementation of the new form.* -- [CC90]

The evolution of web information systems is intrinsic to their existence. The enduring,
highly complex and rapid evolution of web information systems requires continuous re-
engineering processes. Iterations and incremental changes occur during reengineering
processes. Reengineering is typically highly explorative, i.e., human-centered, because of
incomplete and uncertain knowledge. To manage the reengineering process’ complexity
tool support is needed [JWOOb].

Maintenance covers over two thirds of the expenses spent in information technology
[Bas90, ZSG79]. Reengineering, including re-documentation, activities accounts for the
largest part of these budgets. Nevertheless, the legacy web information systems have to
be kept running and thus the business logic and the data have to be reengineered. The busi-
ness logic processes the data. Consequently, understanding a web information system

17



INTRODUCTION

consists of understanding the data as well as the business logic. Finally, the maintenance
of the regained knowledge is crucial for the reengineering process and necessary to avoid
cost explosion.

1.2 Problem Definition

The persistent data structure is the central part of a legacy web information system
[Aik96]. Thus, the basis for web information system reengineering is to understand the
data organisation of the system. The importance of the system’s data and its organisation
is further reflected in the increasing interest dedicated to data security, data mining, etc.

The volume of data, the data heterogeneity and the data distribution in web information
systems determine the system’s complexity. Since volume, heterogeneity and distribution
of the data increase, the complexity of the system increases. Moreover data consistency
(management) increases the system’s complexity. Data consistency is complicated by the
volume, the heterogeneity and the distribution of the data. This complexity of web infor-
mation systems makes data reengineering hard.

The fact that business logic and data (structures) are interwoven, makes data reengineer-
ing of web information systems even harder because it increases the complexity of the
systems further. Unfortunately, systematic processes and techniques for data reengineer-
ing of web information systems are hardly available.

Assume a simple two tier architecture for web information systems composed of the data
and the applications. Existing reengineering approaches cover either the data or the appli-
cations. Feasible data reengineering approaches tackle only single data repositories or da-
tabases, e.g., [EH99, Jah99]. Other approaches focus on application design recovery, e.g.,
[MTW93, GCBM96, KSRLO1, Nie03]. At a higher level of abstraction, application archi-
tecture recovery, e.g., [BH99, GAK99, SK01, PG02], identifies the component interac-
tion but rarely establishes a link to the data or application design.

Process guidelines in form of strategic decisions for legacy system reengineering are pre-
sented, e.g., in [Mil98, War99]. System evolution support is often considered only for new
software, e.g., [GroO1, OLHLO2], or only of small dedicated parts, e.g., [ORHO02]. A pro-
cess that supports system evolution, especially system extension, considering the data and
the applications do not exist. Such a process must recover documentation to enable under-
standing and facilitate reliable extension to keep the legacy web information systems run-
ning.

1.3 Our Data-oriented Reengineering Approach

Our approach is focused on reengineering the data organisation of web information sys-
tems. We call our approach data-oriented reengineering. We base our data-oriented re-
engineering process on component-based software engineering and model-driven
development (for forward engineering). Since the starting point is a legacy system, our

18



OUR DATA-ORIENTED REENGINEERING APPROACH

process deals with pre-existent (data-related) system parts, i.e., data components (e.g., a
database or a data replication service). Our approach is model-based because abstraction
through models enables better understanding and facilitates system extension.

We provide a semi-automatic process for data reengineering of web information systems
that manages incomplete and uncertain knowledge and supports iterations. To resolve in-
consistency and uncertainty emerging during the process, human interaction is needed. It-
eration is needed to explore the existing system by making assumptions that can be
validated or refuted. To unburden the reengineer from error-prone and recurrent tasks,
tool support automating these tasks is indispensable.

We divided the process in two phases

* Understanding the system’s data components and how they interoperate and
* Adapting the data components to the (new) requirements.

Figure 1.1 shows the data-oriented reengineering process. The first phase is Data-oriented
Reverse Engineering. ,,Reverse engineering is the process of analyzing a subject system
to (1) identify the system’s components and their interrelationships and (2) create repre-
sentations of the system in another form or at higher level of abstraction.* -- [CC90].

We start with the reengineering of the data. The data models of the different legacy system
databases are recovered based on Jahnke’s data reverse engineering approach [Jah99].
These data models are recovered and mapped to a representation at higher level of abstrac-
tion. Further, these data models are refactored by the reengineer.

The application code is analysed to restore hidden data dependencies that are fundamental
for the system’s understanding. These data model relationships are retrieved based on
Niere’s (application) design recovery approach [Nie03]. Further, application models are
retrieved and linked to the data models. The result of this understanding phase are Data
Component Models.

The Data Component Extension is the second phase. Since in both phases the Data Com-
ponent Models are transformed, for some activities we use the same tools in both phases.
The adaptation of the data components aims at extending the system by transforming the
retrieved conceptual data component models and design new parts by model-driven de-
velopment. Therefore the retrieved and new data components are clustered and classified
before they are redesigned. We propose architectural patterns to (re)structure the data
components. Based on the regained knowledge an interface to the legacy databases can
automatically be generated to access the data. Finally, the old retrieved and newly created
models can be executed.

To support exploration and iteration during long-lasting reengineering, the Data Compo-
nent Models have to be maintained. Model Maintenance means in this context that the dif-
ferent models are kept consistent to each other, i.e., changes in one model that affect other
models are propagated. Therefore, we provide model consistency management. The web

19



INTRODUCTION

Web
Information

|
|
/> SYStem \ :
|
1 1
| |
| .

Il\.IeW. . Model Maintenance:: | 1. Understanding: |
Applications | Model | ' Data-oriented Reverse !
4 ' Consistency ! Engineering !
Management , 1.1 Data Model Recovery |
| History Graph | I 1.2 Mapping & Refactoring !
Mechanism X | 2. Relationship Retrieval |
_I | |
—_— - M - I I
. ! 1
' S~ .4 1
Data | I I
Component , ; :
1 1
I | I
1 I
I '
_ _— _— ] — — I
r 2. Adapting: : | |
| Data Component Extension ! | !
1. Data Component Clustering & Classification | |
Data Component (Re)Design : :
| 2. Architectural Pattern Application ) | I
3. Generation and Model Execution e !

L - _ —
legacy new database schemas and partial —1— data access — - —> model transformations
O system l:l applications O application models — information flow —=model correspondances

Figure 1.1: Data-oriented Reengineering process

information system Data Component Models, including their representation at different
level of abstraction, are internally represented as graphs. We elaborate a mechanism,
called History Graph Mechanism, that provides consistency for all model-based systems
parts through explicit model transformation logging.

We consider the two phases as distinguishable states in the recurring cycle of iterations
during data-oriented reengineering. Our process is flexible such that the phases as well as
the activities performed during these phases are extendable and exchangeable. This im-
plies that the participating tools can be exchanged by newer versions or by more adequate
tools, and that new tools can be integrated.

The main research contributions of this dissertation have partly been published and can
be summarised as follows:

20



DISSERTATION OUTLINE

We have developed the data-oriented reengineering process to support the mainte-
nance of web information system. The process allows iterations and the manage-
ment of uncertain and inconsistent reengineering knowledge. The regained
information is documented with conceptual models. Enduring reengineering after an
initial reverse engineering phase is possible [SWJ04, Wad03, JSWZ02, WJ02,
GWO1, JW99al].

Our data-oriented reverse engineering is a combination of a data reverse engineer-
ing approach and an application design recovery approach. To this end, we defined
patterns to detect dependencies between the data component models in the applica-
tion code [NWWO03, WNGJ02, NSW+02, NWZ01, NWWO01, JNWO00, JW00a,
JW99c].

For web information system extension we provide

- clustering to partition the web information system into different data components
and a classification for these data components, and

- architectural patterns to (re)structure the web information systems [JGWO02]
before the parts required for extension can be (re)design.

Based on the Data Component Models we provide code generation for an access
layer and model exection. We maintain all the (regained) knowledge about the web
information system in these models at the different level of abstraction. This enables
code generation for accessing the legacy databases as well as for the newly designed
parts.

Iteration and exploration during the process as well as code generation are based on
the Model Maintenance. We keep the Data Component Models consistent with our
History Graph Mechanism [WJ03, JWZ02, ZWRO01, JW99b].

We implement our approach in the REDDMOM project as part of the FUJABA TOOL
SUITE (FUJABATYS), partially by integrating existent tools, and use a case study in the
Health Care domain as a proof of concept [BGN+03, NNWZ00].

1.4 Dissertation Outline

This dissertation is organised as follows:

Chapter 2 describes a case study in the growing field of Health Care. We describe the
overall case study and point out our involvement. We use this case study to exemplify our
concepts and techniques, i.¢., it serves as running example for this dissertation.

Chapter 3 introduces our data-oriented reverse engineering process that enables legacy
web information system understanding. We use a flexible combined data and design re-
verse engineering approach based on graph transformations. The recovered database log-
ical
representation is improved by refactoring operations and enriched with inter-schema de-

schemas are mapped into a conceptual representation. This rough object-oriented

21



INTRODUCTION

pendencies and relationships to application models. Inconsistency and uncertainty occur-
ring during the process is managed using fuzzy logic.

Chapter 4 covers the model-driven extension of the web information systems. To classify
the data components we cluster them following the adopted integration strategy. We pro-
pose architectural patterns for data mediation. Based on the retrieved web information
system and newly designed models, code is generated.

Chapter 5 outlines the consistency management of the compiled data component models.
Our History Graph Mechanism is based on composed graphs of the models where selec-
tive undo operations can be performed. The consistency between model and code is re-
solved by code generation.

All three technical chapters (3, 4 and 5) are closed with the corresponding tool support,
related work and a short discussion. Chapter 6 concludes the dissertation. The transfer-
ability of results is presented and open questions and future directions of this work are dis-
cussed.

22



CHAPTER 2: DATA-ORIENTED REENGINEERING:
A CASE STUDY

Pain (any pain--emotional, physical, mental) has a message. The
information it has about our life can be remarkably specific, but
it usually falls into one of two categories: "We would be more
alive if we did more of this," and, "Life would be more lovely if we
did less of that." Once we get the pain's message, and follow its
advice, the pain goes away.

PETER MCWILLIAMS, IN LIFE 101
United States Author (1950 - 2000)

The aim of this chapter is to corroborate the need of a data-oriented reengineering with a
case study. Current approaches provide only little support for data-oriented reengineering
of web information systems. Most of them do not consider the evolutionary and explor-
atory nature of the (data-oriented) reengineering process [HEH+95]. Tools are indispens-
able to unburden the reengineer from manually error-prone and/or repeating assured tasks.
A semi-automatic data-oriented reengineering process able to handle inconsistencies and
uncertainty is required. This process must allow human interaction and iteration to sustain
exploration and evolution.

Based on the definitions of reengineering [CC90, TS95] and data reverse engineering
[HA00, HHH+00] we define:

- Data-oriented reengineering is the systematic transformation of existing system
parts concerning the persistent data into a new form to realise improvements. This
includes some data-oriented reverse engineering followed by some data-oriented
forward engineering activities.

- Data-oriented reverse engineering is the process of recovering a conceptional
(high level of abstraction) representation of the persistent data to facilitate the
understanding of the data structure and interrelationships of an existent system.

- Data-oriented forward engineering is the process of modifying an existing
system’s conceptional, implementation-independent data structure representation
followed by the physical implementation.

The case study of the Health Care web information system shows that our tool-supported
data-oriented reengineering approach is able to handle uncertainty and inconsistencies
during the data-oriented reverse engineering process. Further, the case study demonstrates
that our approach supports iterations. In this chapter we give a case study overview, de-
tailled examples are given within the next chapters.

23



DATA-ORIENTED REENGINEERING: A CASE STUDY

2.1 An Health Care Web Information System

In Health Care data is fundamental. Indeed, without patient data, drug data, health re-
search data, etc., prevention or treatment is not possible. In Health Care, data has long
only been collected, but over the last few years it has been realised that valuable knowl-
edge may be contained within the data. The existing web information systems have to be
extended for achieving data knowledge extraction beside data collection and data storage
[RT02, Wil03].

By using data analysis tools such as data mining tools, knowledge can be extracted from
the data so that it may be used to improve the delivery of Health Care. Knowledge discov-
ery within Health Care has been described as an enumeration of symbols and the arrange-
ment of those symbols into meaningful structures [Cim00]. Such a process is made easier
if the data, representing the symbols, share common terminology and definitions. How-
ever, with different organisations having different data models and data definitions, data
that is gathered for analysis is often heterogeneous. By using mediation technology it is
possible to gather data from multiple health organizations and converge them, e.g., into a
common data warechouse with a common data definition [ Wei02].

To build a Health Care web information system, which contains information from a mul-
titude of sites and can be widely accessed, data management facilities have to be put in
place. Only collecting data, storing data and extracting knowledge from data is not
enough. Beside the management of data on the local sites, a global data management is
required. Further various mediation strategies are needed to fulfil the requirements of to-
day’s various static and mobile clients.

A central point of (Health Care) web information systems is that they base on distributed
legacy systems containing the data. These legacy systems have to be analysed before they
can be integrated together.

2.1.1 The Legacy (Web) Information System

The case study involves a Palliative Care Network System in Canada. The goal is to es-
tablish a network between different canadian Palliative Care Centers. The current situa-
tion is that several databases exist in each center. The different centers are not connected
and have different data models. Further a Palliative Care Data Warhouse, where all data
are collected and processed, is planned.

Data from a single Health Care institution is limited in its knowledge discovery potential.
The ideal situation is to incorporate data from multiple sites to increase the knowledge
discovery potential. However, that presents the problem of different formats and defini-
tions of data from different sites. Palliative Care Center Victoria, e.g., has different data
definitions and data collection requirements than either Palliative Care Center X or YL A

1. For political reasons, we are not able to make public the names of the involved centers.

24



further complication is that the data at different institutions may actually be stored in dif-
ferent database applications such as Microsoft Access, Microsoft SQL Server or Oracle.
Another problem, which is experienced, is that there may be different information needs
within the same center. Palliative Care Centers X or Y may gather large volumes of patient
data, whereas individual sub-organisations such as pharmacy, lab and finance may only
need certain subsets of that data.

Another problem is the actual collection of data. As traditionally done in health institu-
tions, much of the data collection such as patient charting is done in a paper-based format
that is later transcribed into an information system. Because that method requires a dupli-
cation of efforts, there is a potential for errors to be made during the process. Collecting
patient data with mobile devices such as PDAs, electronic tablets and cellular phones is a
way to avoid this error prone effort. Many Health Care institutions are experimenting in
this direction [MRF+03]. However, because of differences in data collections from the
different mobile devices it can still give a heterogeneous collection of data.

Currently, the University of Victoria is building this Palliative Care Network System. The
tasks are (1) the reengineering and of the existing systems; and (2) the construction of an
Health Information Grid for sharing the information [BBD+03].

The first task, i.e., data-oriented reengineering, is subject of the thesis. Our involvement
in the project is restricted to a part of this Palliative Care Network System. This has two
main reasons. Firstly, the period of our involvement was limited. Secondly, for political
reasons not all the needed system insights were given to us or can be presented in this the-
sis. Therefore we concentrate on one Health Care web information system: the Palliative
Care Center Victoria.

The second task, the integration of different Health Care systems in a configurable net-
work of interconnected organisations, is achieved by wrapping the existing systems
[OBJ03]. These wrappers use web services and industry standards to provide a uniform
and adaptable interface with functionalities for interoperability as well as secured and
controlled access among the individual systems. This is done within a Grid Federation
Envelope described in [Ona03].

2.1.2 The Considered Target Web Information System

Figure 2.1 depicts the target systems architecture. The Palliative Care Center Victoria is
composed of three Microsoft Access databases (DB), an Application and two portals. After
reverse engineering and wrapping the three databases, the data mediation portal (DMP)
and the WebPortal are constructed. The WebPortal enables new access from inside the
center with browsers. This WebPortal runs in parallel with the existing applications. The
data mediation portal (DMP) provides access through Data Mediation Services to the oth-
er two subsystems.

25



DATA-ORIENTED REENGINEERING: A CASE STUDY

Medical
Diagnosis ES o
Physician
m = Browser
3
s
Internal ©
Center Application =
Browser
Patient
Palliative Care Browser
Center Victoria =
-— 5
O
s ] E —
Appli- 1 ard
— 3 ceﬁri)on E Mediation
m A p| Services
KK
E WebPortal
Appli-
pb DB
: cation
database <—)p data flow connection
@ (legacy) subsystem |:| application Information
b browser web portal or data Management
L! WD browser mediation portal (DMP) System

Figure 2.1 Health Care Web Information System: Considered Target System

The system incorporates three kinds of static clients in form of browsers. Except the data
flow from the WebPortals to the browsers, all other data is exchanged via Data Mediation
Services.

The Data Mediation Services play a central role in this architecture by managing the data
flow between the other subsystems. The benefit of such services is their flexibility, loose
coupling and technology independence. Each service passes the data to a mediator that
puts the data into a common format before storing it in a database. The data, regardless of
its initial format or the application in which it was created, is now in a format which is
much more valuable for data analysis and knowledge discovery.

The Information Management System is composed of a database (DB), an Application and
portals. The database stores all system users’ information like roles, access rights, docu-
ment versions, etc. The Application incorporates the management tasks regarding access

26



THE DATA-ORIENTED REENGINEERING PROCESS

rights and documentation. The WebPortal allows access from all browsers with respect to
the users’ role. The data mediation portal (DMP) is used, via the Data Mediation Services,
by the other subsystems for user identification or document access. Further it is extended
to handle multimedia data.

The Information Management System is based on two systems, DSD and BEETLE, that are
customised for handling documents in a medical context. At the software engineering
group from the University Paderborn the distributed software development (DSD) system
[GGTO1] was build. The core of the system is based on the concurrent version system
[CVS]. The concurrent version system functionality is encapsulated in Jini services
[AOS+99]. A pure Java client permits the access of the Jini services and the Sybase data-
base. Moreover a document report system called BEETLE exists. This system is based on
a MySQL database, Java and Java Server Pages. The combination of these two systems
enables the versioning and processing of documents during workflows in the Health Care
domain.

The Medical Diagnosis Expert System is a prototype that includes one database (DB)
hosting the knowledge base. The Application includes the inference and the inference Ap-
plication Programming Interface (API). This API is accessible through two portals. The
WebPortal permits access from a browser used by physicians. The data mediation portal
(DMP) permits the access of electronic patient records for the diagnosis and treatment.

2.2 The Data-oriented Reengineering process

2.2.1 Understanding Phase

We follow a divide and conquer approach in the understanding phase and aim for a rapid
(semi-)automatic bottom-up reverse engineering step followed by a top-down explorative
human-driven reverse engineering. This activity is based on Jahnke’s database reverse
engineering approach VARLET [Jah99] and Niere’s incremental pattern instance recogni-
tion approach [Nie03].

Figure 2.2 gives an overview of the understanding phase. Conceptual schemas of the da-
tabases are retrieved. During this process logical schemas are also recovered. The rela-
tionships are retrieved from the application code. In addition to the schemas, parts of the
applications that are related to the schemas are also retrieved. The results of this phase is
one cluster that contains data models from the different (web) information system.

The process starts with the reverse engineering of the logical schemas. Figure 2.3 sketches
the schemas of the three databases, namely hospdata, bvmtdata and outcomes_be, of the
Palliative Care Center Victoria. The parsed initial logical schemas only contain the prima-
ry and foreign keys that are explicitly defined in the databases. This step is followed by
the schema analysis that consists of structural completion and semantical enrichment
[Jah99]. The next step is the mapping from the logical schemas to conceptual schemas. A
set of triple-graph-grammar rules [SL96] creates this conceptual representation in the

27



DATA-ORIENTED REENGINEERING: A CASE STUDY

oy

outcomes

[>S

outcomes_be

hopsdata

bvmtdata

Bug_ Report

—
BeetleDB

5
<

DB_DSD

data- logical

base schema

conceptual appli-

schema

[ ]

cation

partial appl. cluster

model —> data access

—

information flow

relationship

Figure 2.2: Case study understanding phase

Unified Modeling Language (UML) [BRJ99]. The resulting conceptual schemas are then
refactored by the reengineer to improve the understandability. Since these steps stem from
the VARLET approach, we skip the details here, and refer to Section 3.2 and [Jah99].

hospdata

rugs
[Deliurn: varchar 50)

Ipescription: varchar (50)
(10)

prug
1 [pruaTyp: varchar (5

[pysprea: varchar (50)
[

ouDrugsDIug Profle

ot lokis 1D varchar

IPO Meci: double (15, 1)
lPain:varchar (50)

[RespCong: varchar (50)
J5C Medd: double (15, 1)

PatientQug Profle
(45 08: varohar

bvmtdata

[Event Date: datetme

ontact Reasons
[Dste. datetime

it Groups

Senvos: varohar G0

Fee Payment varchar (20)
datetime

rehar (1
tion. varchar (50)

«
[peseription. varchar

[Genes:varchar (0
HS ID# varchar ()
on

[orevor Suft varchar (1. 0

RCHIVE DATE: datetime.
[BIRTHDATE: datetime

[Request Date. datetime

&0
LLIE:G\ES et (azearosto) ervice Requested: varchar (50) [CAUSE OF varchar (50)
s o m— AU oF
¥ ot varchar 50 e varcnar 1 RGENCY <24 HOURS vathor (1 S A - vartar 13 ‘
L} T naxexm /H8 ID# varchar (7) ‘ [DEATHDATE: datetime o nar (9
i [DEATH DATE: datetime 0.1 0.0 FIRST! i ek
1 CELL,TVPE/D\SEASE varcnav (80) [PISCHARGE DATE: datetime VMNT CODE: smallint (6) [NTAKE NOTES: long (536870810) Elle Name; varchar 75)
[CELL_TYPE/DISEASEZ: varchar (50} [DISCHARGE TIME: datetime AUSE OF DEATH: varchar (40) Gieor S varchar (1) INTERVAL START DATE: datetime.
1 s varnar 50 FIRST NAVE varcrar (25 LENT REL o) _mmpewsn ot LASTHANE varchar 25 [roup Cocatons |
MET SITE1: smallint (6) [HOME PHONE: varchar (20) VHS 108 vachai@) Reference ATE OF DEATH: datetime re: PLACE OF DEATH CODE: varchar (7) pidaress: varchar (30)
1 |MET SITE2: smallint (6) [PHN# varchar (14) 0.1 0. DATE OF SESSION: datetime \ge: Bmﬂ”lﬂl ® PLACE OF
MET SITE3: smalint 6) IPLACE OF DEATH: varchar (7) IAME OF DECEASED: varchar (25) veat varchar (50) o] 6.1 POSTAL varchar (7
1 MET SITE4: smallnt (6) [POSTAL CODE: varchar (7) HONE: varchar (20) fcity.varchar (25) [REGISTRATION TYPE varchar (50)
, WETSIES: craiin Ec varcrar (1 LAGE OF DEATH vaonar 15) [Commenis long 536670310) ETREET.varchar ) ate: oaen
MET SITES: smalint (6) [STREET ADDRESS: varchar (50) REFERRED BY. varchar (125) Ty
e T A B eoaton oA o by oo cnary
& varitar () ELATIONSH vachar 1) FER OATE datsime froun Deccroton vachar (504
0 |MET2 SITE3: smallint (6) on 0.1 lVHS ID#: varchar [TME OF SESSION: datetime: 0 /HS 1D#: varchar (7)
w@ In Catchment Area?: varbinary (10)

EH
EH
]
83

2
2
H

[BPECIFIC_DISEASE: varchar (50)
0

il Em—un ns & b
NTICIP#GRIEF varchar (1) ’
URRENTLC it
DMIT DATE. datelime
DHIT TIME: datetime

AM PHYS 1D smallint (6)
HON D#: smalint (5

s 08: varonar o0
Rotgorce?

HS D varchar ()

e LLast Name: varchar (5) [[ime: datetime
Linked Mai o, |

. ostal Cade: varchar (7) e ontact Types

[FAM PHYS D% smalint 6)
IHCN DISTRICTH smallint (5)
IHCN OFFICE varchar (&)

IHS AGENCY. varchar (2

LLTC CASE MGR ID# smalirt (6)
LLTC OFFICE: varchar

1SS CME: smalint (5)
1513 CNS: smallint (5)
ISITS PHYS: smallit 5)
1SITS RA: smallint (6)

treet: varchar (55)

IName: varchar (255)
[End Date: datetime TILE: varchar (50)

[Cortact Description; varchar (50)

[End Time: datetme
fite: varchar (5)

puration tem?: varbinary (10)

HS D# varchar ()

Interval: smatint &)

1)
Jsart Date: datetime

Gavement Reason
[BEREAVEMENT REASON. varchar (0)
lgnT

[Btar Time_ datetime.

fen
archar ( IDAYS ON PROG: double (15,-1) REGISTRATION DATE: catetime.

HS AGENCY.varchar (25) DMITTED FROM.vachar 5) [DEATH PRONOUNGER. varchar (st IREL OF SUPPORT varchar (25)

1 e it ©) ateime IREL OF SUPPORT B: varchar (26) 1

TG GFFICE vartor ) 0% varchar () ISEATH T cattme RELOF SUPPORT Cvrchar (29 t b

v fieo onsuLT varehr 1) ISCHARGE DATE: dttme DISCHARGE STATUS varhar ) RELATIONSHIPvaahar o ' outcomes be

4 PPe consULT-varchar (1) [DISCHARGE TINE: dateime IDRUG BOX NUMBER: in (10) ISUPPORT & NANE: varchar 255) - — — — — — — — —_— — ——
PHoNE varnar (20 ISCHARGED TO.varchar (5 IDRUG BOKUSED: varchar (1) UPRORT & PHONE varenar (259 r |

N [REASON1: smalit 6) [BUPPORT © NAME: varchar (25 [oiTreatments \ kpBod ocation [bibase

REGISTRATION DATE. dalelime | [REASON2 varchar (50) [REASONZ: smaliint () ISUPPORT C PHONE: varchar (255) [pate dateime ! 50 | | Descrition varchar 50} - pate:catetma

1 RELATIONSHE:varchar (20) [REASONS varchar (50) [REASONS: smalint () IEUPPORT NANE: varchar 255) ¢ [ [pescrim ) lpose: <urn

4 FucoNsULT varenar 1) REASON varchar (50) [REASON: sl () [EUPPORT PHONE varchar (255) [Time: dateime Pocecaunt double 15,1

M8 ID#: varchar (7 HS ID# varcha s 0 varchr. i 102 varchar @ @

N [IreatmentsID: nt (10) lkpTreatments fikpTitie blnwvestigations [prug: varchar (5
e T offices | etationshis Pronouncers ] b varchar 50 L @ [Bodocation:vrchar 60} o1 mne: archar (50)

1 [CURRENTLS ILTC OFFICE archar (0] | rch: d Rsauzsmw DescRPTION I r5ﬂ> FRonUNCER o | comEm 1 [Bss: SatSE [provicer varchar (50
Bom. vaenar 7c Sice iy varnar REauesTon ne varcnr ronoUCER e varner 5 [ormotos "

1 |DFIRST NAVE:varchar (10) e aasay ssesementD in (17 [Foquestodty varehar (01 froute varta (50)

3 DOFFICE PHONE:varchar () isease - Speciic Taces Bercavement Reason e WHED: rcha () [Descrpton varchar 5 [tartstop: varbinary (10)
[oPOSTAL CODE varchar (1) 08 Ciassication doutle (1%,1)  PlaceCode varchar [BEREAVEMENT REASON.varshar (25) MpVHSID: varchar " it [fime: datetime

¥ [DPRIVATE PHONE varchar (20) | BPECIFC. E | lewnT CoDE: smatint amhar HSID: varchar (50)

(ABET7E3-CO44-4C(4 9BCT-31389D91 4513)

e v
eam, varchar (5

IikpDrugPurpose
Types. nts iPU Bed Status T
;i tatu: ar ‘ Restock Units: smallint 8)  prug Descnpnnn vavcmv(f-m IPU mi‘ﬂ lour
ey varchar rug ld: varchar Ll he
f ‘ Ikey:varshar (50) by vararcn - vare ssessmenlD. Int (10 Lastiame v e

onorrer
{CN OFFI
N OFHCE PHONE aener 2y

e (50 ]
OE Dmi D anaini 6

Name varchav(zﬁ)

]
[CompareDatedatetime]

To.varchar (7

y PRIReasm
1 [Reasons:varshar 51

IDISEASES: varchar (50)

C08 End Rubric: doutle (15,-1)
|CDG Start Rubiic: double (15,1

datetime]

tastases Sites
METNUM. smallint (&
JEITE: varchar (15)

aunir 29 | @) ost oube 15,

sl Doscrton: varchar besoroton-varcrar 5

S oFicE s - [ dateme 5 o — [nvestigationType: varchar (50)
Wit varhar g0y it vaoner 60

Figure 2.3: Parsed data models overview

28

L - - — = =



THE DATA-ORIENTED REENGINEERING PROCESS

The results of these first reverse engineering steps are independent refactored conceptual
schemas. Since the VARLET approach supports an iterative explorative process that man-
ages inconsistencies, in this phase the reengineer has two possibilities. The reengineer can
either rapidly produce uncertain abstract results or analyse sequentially the (independent)
schemas completely.

A crucial factor for understanding the web information system’s data structure is the re-
trieval of the implicit inter-schema relationships. Figure 2.4 shows an example for a typ-
ical situation occurring in web information system evolution. Two tables Bereavement
Reason exist in two different databases (hospdata and bvmtdata) storing the same infor-
mation at the beginning of system’s evolution. During maintenance activities only the ta-
ble in the bvmtdata database is updated. The table in the hospdata database remains as
inconsistent copy. Such relationships are valuable indicators for maintaining the system,
i.e., for the reengineering responsible for the system extension and improvement. Other
examples of inter-schema relationships are described in Section 3.3 and [WNGJ02].

B Bereavement Reason : Tabelle

BvMNT CODE BEREAYEMENT REASON

1| Emational Crisis]

2 Professional referral

3 Physical problems

4 Information

5 Multiple Losses

6 Social Recommendation

7 Other - See Comrments Field

3 Difficult Circumstances Surrounding Death
2 Complicated Farnily Dynamics

10 Addictions

11 Perceived Lack of Support by Bereaved
12 Sudden Death

‘Bereavement Reason’ tables in the hospdata
and bvmtdata databases

& Bereavement Reason : Tabelle

BMNT CODE | BEREAVEMENT REASCR
» 1 Emational crisis

2 Professional referral

3 Physical problems

4 Information

9 Other losges

b Social Recommendation

7 Other

LT TTTITTI ]+

Figure 2.4: Table clone example

The detection of such inter-schema relationships is based on source code analysis with a
pattern instance recognition mechanism. The first step is the identification of code frag-
ments of interest with island grammar parsing [vDK99, Moo01] and slicing [Wei84].
These code fragments are then analysed with Niere’s incremental pattern instance recog-
nition approach [Nie03]. Patterns in source code that indicates (inter-schema) relation-
ships are not certain. Niere’s approach enables an iterative recovery process definition
that can handle uncertainty and is based on (composed) pattern definition. Examples are
given in Chapter 3. Here again the chosen approach enables an iterative explorative pro-
cess that manages inconsistencies, which rapidly produces first results.

Figure 2.5 shows some inter-schema relationships of the three databases hospdata, bvmt-
data and outcomes_be. The central database is the hospdata database which contains all
Patient related data. The outcomes_be database stores results from examinations and fi-
nally the bvmtdata database includes information related to bereavement. Figure 2.5
shows (four relationships inside the hospdata schema and) four relationships between da-

29



DATA-ORIENTED REENGINEERING: A CASE STUDY

tabase schemas. Firstly, we have the duplication between the two Bereavement Reason
classes. Secondly, a duplication of the deathdate between Patient and Deceased is re-
trieved. Thirdly, a replication between DrugProfile and tbiDose is detected, which main-
tains information about the last drug dose, purpose and route that was given to a patient.
Fourthly, an inter-schema foreign key relates classes Patient and tblOutcomes.

Finally, the conceptual schemas can be refactored, compared to each other and views can
be build from parts of the different schemas. One task from the adaptation phase can be
used in the understanding phase: clustering. For further understanding clusters can be
build [TWBKS89] and used as views for exploring different system aspects.

zpersistents
BereavementReason
==copy==> coligpsed =
¥ hereavement reason oaon
a.n
A reason
0.1
o.n zpersistents zpersistents
«persistents Bereavement Drugs hospdata
BereavementReason colfansed collapsed =
colizpsecd + O.n aon
& hereavement & drugs
0.1 a.n
“deathdate ==copy== «persistents zpersistents
* nrofile
bvmldala 0.1 Patient - - DugProfile
. n
0.1 coligpsed = collapsed =
«persistents 0.1 a.n
Deceased ==inter-schema==
¥ outcomes A drugdose
colfapsed [ ==replica==
O.n 0o.n
«persistents zpersistents
thiOutcomes hiDose outcomes be
coligpsed = coliapsed =

Figure 2.5: Palliative care conceptual schema excerpt in UML

2.2.2 Adapting Phase

After understanding major parts of the system, the reengineer needs support for exten-
sions. Figure 2.6 gives an overview of the adapting phase. New system parts were con-
structed. The different old and new data component models are clustered, (re)structured,
(re)designed and connected. Finally, new application are generated that accesses existing
or new databases.

The first step in the adapting phase is clustering the web information system parts to data
components. Out of the recovered conceptual schemas and their interrelationships, classes
can be grouped according to their interrelationships. An example is the clustering pro-

30



THE DATA-ORIENTED REENGINEERING PROCESS

posed by [SPPB02] that groups classes (representing entities) according to the primary
keys of their corresponding entities, cf. Figure 2.7.

[ [ [
| Patient Data Application | | Diagnosis Expert System | | Document Management |

A
/ l AN

oo [ER

I (%*

] .

existing
parts

existing
parts

Knowledge Base BeetleDB
4; /\

data- :: logical Ecnnccpluz\l |:| appli- partial appl. cluster ~— information flow
base schema schema cation model —> relationship

data access

outcomes_be

hopsdata bvmtdata

>l‘

(0

Figure 2.6: Case study adating phase

Further, in iteration with redesign, the clustering can support the reengineer in the concep-
tual partitioning of the data related parts based on relationships to application classes, i.¢.,
construct external schemas. In this case study, an external schema to the Palliative Care
Center Victoria databases was constructed that interfaces the Diagnosis Expert System
prototype application. Moreover, clusters of classes to data components and clusters of
data components are built and classified into corporate data components, data mediation
components and ubiquitous data components to support the reengineer.

The next step is redesign. We propose four architectural patterns to facilitate data media-
tion between the different data components. The Data Portal pattern can be seen as a fa-
cade or interface to data components. The Data Fusion pattern and the Data Transducer
pattern merges and transform exchanged data. The exchange itself is realised with the
Data Connection pattern that cope with update, synchronisation and reachability prob-
lems of participating data components. To redesign the models themselves we provide a
(design) pattern instantiation mechanism and a redesign transformation catalogue. Rede-
signed or newly designed data components are included in an existing data component
cluster or form a new one.

31



DATA-ORIENTED REENGINEERING: A CASE STUDY

BVMNT CODE
— | l:_—’ cluster
Bereavement |0.n <<copy>> 0.n| Bereavement [ class
Reason bereavement Reason  eocintion
reason 0..n
[ VHS_ID# | reason DrugID |
0.1
Drugs
| Bereavement | | & |
0..n
0..n
bereavement drugs
0.1 0.n
<<COPY== .1 - 0.1 0..n
Deceased |21 A "Patient | =~ Drug Profile
: deathdate I_WI profile | g - |
<<inter-schema>> <<replica>>
Outcomelel outcomes D()schl drugdose
0..n 0..n
| tblOutcomes | | tblDose

Figure 2.7: Clustering example

In this case study a prototype of a Medical Diagnosis Expert System was constructed.
Currently the medical diagnosis expert system is a sample prototype. The prototype is
composed of a Knowledge Base, the Expert System application and a user interface (Di-
agnosis GUI). These data components collaborate with the existing web information sys-
tem of the Palliative Care Center Victoria. Figure 2.8 shows an overview of this extension.

<+—>» (data flow E application tier

@ persistent tier O presentation tier

black  existing parts
grey integrating parts
dashed extending parts

P e

.7 T)i_agnos}s\ ~,
™ Gu .

Se -

X hospiceGUL

I Knowledge Base ' —~ - _ _ Prm e - 3
_________ 1 Expert System € - - - -
— g - -~ P —-=--- a
— L
hopsdata S o
e — EI =l I o
2 0 )I outcomes |
£
% ) >| service [
bvmtdata = |
— O~

Figure 2.8: New data components integration examples

32



THE DATA-ORIENTED REENGINEERING PROCESS

The model correspondences retrieved during the understanding phase and added during
the adapting phase are used to generate an object-oriented access layer to the existing da-
tabases.

The adapting phase terminates with model execution facilities. Modelling and generating
an entire application, using the chosen (middleware) technologies, is a hard task. The aim
in this thesis for model execution is on the one hand to facilitate the modelling and gen-
eration of small data mediation components (web services) that exchange data in eXch-
nageable Markup Language (XML). On the other hand to facilitate prototyping based on
the retrieved system models.

2.2.3 Model Maintenance

The data-oriented reverse engineering and the data component extension are not fully au-
tomated nor performed sequentially. On the contrary, they are part of an iterative process,
i.e., reengineers explore the web information system in several iterations to understand
and adapt it. Therefore the models have to be maintained. The data models and their inter-
relationships have to be consistent to preserve the consistency of the data. We developed
the History Graph Mechanism that provides model consistency through explicit model
transformation logging and selective undo for iterations, cf. Chapter 5. Figure 2.9 depicts
that changes (@ ) can then be traced through the models ({ ).

i |
| Patient Data | | Expert_System (DlaJ'nOSIS) | | Document Management
‘ A
/ /

Pz /
= \_:?/EZ\

A

]
A |

| outcomes

2]

bvmt |

J V 47
S— LYV
&6 hopsdata bvmtdata
A - A\

logical

data-
) base

gica E conceptua ll
schema schema

ca mon

E7 partial appl. C_) cluster

model data access

— information flow

relationship

Figure 2.9: : Case study administrating phase

33



DATA-ORIENTED REENGINEERING: A CASE STUDY

A sample is depicted in Figure 2.10. A duplication between class Deceased and class Pa-
tient is retrieved in a first understanding phase. The duplication is based on the attributes
deathdate and death_date.

In a second understanding phase the reengineer detects variants in table *Patient’. This has
to be reflected in the conceptual model, i.e., class Patient becomes the superclass of new
classes DischargedPatient and DeceasedPatient. Because attribute death date has
moved from class Patient to class DeceasedPatient, the duplication between class De-
ceased and class Patient is no longer valid. Instead it has to exist between class Deceased
and class DeceasedPatient.

The History Graph Mechanism reestablish consistency by undoing previously applied
model transformations. This means that the creation of the duplication between class De-
ceased and class Patient is undone. Other schema transformations, e.g., during clustering
or redesign, are also affected from this change. Not all of them are necessarily undone;
only those transformations that are not longer valid are undone. Finally, the reengineer
can browse the list of undone schema transformations and may reapply some of them in
a slightly different context like it is the case here for the duplication deathdate between
class Deceased and class DeceasedPatient.

Deceased Deceased
VHS_ID#: string VHS_ID#: string
deathdate: timestamp deathdate: timestamp
0..1
<<copy>> deatt q‘
deathdate death ‘
0..1
Patient Patient
VHS_ID#: string change VHS_ID#: string
discharge date: timestamp ﬁ&
discharge time: timestamp

death_date: timestamp
death_time: timestamp
place of death: string

DischargedPatient DeceasedPatient

discharge date: timestamp death_date: timestamp
discharge time: timestamp | | death_time: timestamp

place_of death: string
class <]7 inheritance —— association

Figure 2.10: Consistency violation example

34



THE DATA-ORIENTED REENGINEERING PROCESS

For the sake of completeness, we shortly report about the Information Management Sys-
tem that coordinates the management task regarding access rights and documentation. In
the understanding phase the two systems DSD and BEETLE were reverse engineered.
Since DSD and BEETLE are stand alone applications, the outcome of the understanding
phase were two coexisting conceptual schemas that handle similar data. One problem was
that they were based on two different databases. Data was hold twice without replication
concept neither implementation. Further different client technologies was used and the
data access was implemented with embedded Structured Query Language (SQL) [Dat89]
statements.

In order to use this system as an information management system in Health Care follow-
ing requirements had to be fulfilled. The document handling had to be extended to multi-
media data, e.g., the parallel versionning of image files (radiology pictures) with
corresponding audio files (explanations), the management of different movie files that be-
long together (sequences from an operation), etc. Further, the integration of the two data-
base schemas was needed to achieve consistent document management. After schema
integration, two options arise. Firstly, use the new virtual schema as external schema and
stepwise migrate both applications to use it. Secondly unify the databases to one database
and stepwise migrate both applications. We choose the second option because of technical
reasons. The concrete resulting tasks (database integration, application migration and ex-
tension) are not further disscused in this thesis.

35



DATA-ORIENTED REENGINEERING: A CASE STUDY

36



CHAPTER 3: DATA-ORIENTED REVERSE
ENGINEERING

If data cannot be correctly understood, it cannot be combined
with other information. Instead, it is just data pollution.

UNKNOWN

3.1 Reverse Engineering Data Components

Web information systems consist of large amount of heterogeneous data spread over mul-
tiple locations and platforms. These systems have to be understood for maintenance and
especially for extension. As the persistent data structure is the central part of a legacy
(web) information system [Aik96], our data-oriented reverse engineering approach fo-
cusses on the web information system parts related to the data, i.e., data components:

A data component is a unit that encapsulates capabilities and functionalities to
store and/or manage data.

In this thesis a data component is mainly composed of one or more models, i.e.,
persistent data models (schemas) and/or application models, and relationships
between the models. A data component can be composed (1) exclusively of sche-
mas, (2) exclusively of application models or (3) of a combination of schemas and
application models.

Further, each data component has a defined interface to interact with other data
components. Data components can be composed and exchange data via connec-
tions. A data component can be deployed independently. The basic idea of a data
component is based on the component/connection philosophy presented by
Szyperski [Szy99]. Note that the legacy data components may not fulfill all these
characteristics entirely.

We distinguish between three kinds of data components:

» data components within corporate organisations (corporate data components),
» data components among corporate organisations (data mediation components) and

» data components between corporate information systems and mobile, embedded
smart devices (ubiquitous data components).

The focus of our approach is the recovery and retrieval of the schemas from the distributed
databases of legacy (web) information systems. This implies that along with the schemas
the dependencies resulting from distribution have to be reverse engineered. The black

37



DATA-ORIENTED REVERSE ENGINEERING

parts of Figure 3.1 illustrate this situation. By analysing the databases and the legacy ap-
plications, (1) the logical schemas are recovered and then (2) the conceptional schemas
with inter-schema relationships and parts of application models are retrieved. Several ap-
proaches and tools exist for these reverse engineering subtasks. In this approach we use,
combine and extend some of them. The light grey parts of Figure 3.1 can be ignored here.

CSl %IST}/EK%'S—'A?K CSm

LSm

DBm

data- :i logical E conceptua 1[ appli- partial appl. cluster ~— information flow
base schema schema cation model data access relationship

Figure 3.1: Web information system understanding

3.1.1 Reverse Engineering Steps

We divide the reverse engineering of web information systems into two steps. Firstly, the
schema of each database is recovered and conceptualised. Secondly, the data dependen-
cies between these schemas and the application model parts are retrieved.

Figure 3.2 gives an overview of these reverse engineering activities. Four data compo-
nents are depicted but only two of them store data and consequently contains schemas. In
the activity 1.1 Data Model Recovery1 the physical schema is parsed and represented in
an Extended Entity Relationship (EER) [Che76, BCN92] notation. This EER model rep-
resents the logical schema. It is (structurally) enriched and (sematically) completed during
an iterative explorative analysis process involving reengineers and domain experts. Next,
the logical schema is mapped to a conceptual schema. This initial object oriented concep-
tual schema in UML notation can then be refactored by model transformations (1.2 Map-
ping and Refactoring).

1. The Activity 1.1 Data Model Recovery is represented twice for layout reason.

38



REVERSE ENGINEERING DATA COMPONENTS

Once the schemas are identified, enriched and completed, the definition of how they in-
teroperate is needed. In the second process activity 2. Relationship Retrieval the relation-
ships between the different data component models are investigated. This task also
involves code reverse engineering and consequently uncertainty management. Again
(only) a semi-automatic, iterative approach is feasible. The reengineer typically refactores
the resulting conceptual schemas.

Data
Data Component Component
o - 5
nent ;
b (2B | Lzem g
I - % Code
Code 3
: I
1.1 Data 2. Rela- 1.1 Data
Model tionship Model
Recovery Retrieval Recovery
A
<+—>
Logical ERR Domain Reengineer
Schema Expert Logical ERR
Representation Schema
1.2 Mapping Representation |
\ 4 and Refactoring
Conceptual UML yy
Representation l
] fn?er_—p_ac_k;gg |
1 . -
Relationship
— — ! . ! |
|_{DB|—{Port.] 1 | _ _]??Eal-ls- - Data
] e Component
D Med (class diagram)
ata Component
Extension

usersand  _ conceptual dependency : : :
@ . ceptual dey “] ency data — data component logical - — = = relationship
experts —> information flow : ! ! :
! ) ¢ component representation Lo list
( ) activity - P link to next process step
: data component conceptual representation

Doc.) Documentation application code |DB| database I:I__l (DB: Database; Med.: Data Mediation; Por.: Data Portal)

Figure 3.2: Data Component Reverse Engineering - Overview

39



DATA-ORIENTED REVERSE ENGINEERING

From each activity, backward iterations to the precedent process activities are needed be-
cause of misinterpreted, incomplete or even erroneous intermediate results. Summarising,
the two activities of the data-oriented reverse engineering process are done in iterations.

3.1.2 Relationships and Data Dependencies

Web information systems underlie frequent changes and integration. In contrast to non-
distributed systems no overall structural representations are available and thus system un-
derstanding is rather difficult. To understand the system data components entities and re-
lationships, the data models have to be reverse engineered. While recovering entities is
relatively simple, relationship retrieval can become quite complex.

Often occurring relationships are foreign keys or attributes named like attributes of other
entities (“immaterial foreign keys*). Complex functional dependencies are used when the
relevant relationships are computed on-the-fly by combining the values of multiple stored
attributes. While revealing the first case is relatively simple [Jah99], instances of the latter
case are rather hard to detect. Moreover, assume a set of database entries which is spread
over the different databases. They might depend on each other in various different ways
and the intended coupling can have different semantic properties. Relevant relationships,
however, will manifest themselves in the applications.

Relationships are dependencies between entities based on attribute relations. These rela-
tionships exist between attributes within an entity or between attributes of different enti-
ties. Further relationships exist between attributes of entities in different schemas. We
distinguish between:

* intra-entity relationships:
relationships between attributes within one entity.

* inter-entity relationships:
relationships between attributes of different entities, that we divide in:

- intra-schema relationships:
relationships between attributes of different entities within one schema.

- inter-schema relationships:
relationships between attributes of different entities of different schema.

Figure 3.3 gives an overview of relationships that we consider, as a class diagram. Exam-
ples will be given in Section 3.3.2; others can be found in [WNGJ02].

A data component model is composed of Entities with Attributes and Relationships. A Re-
lationship is a Homonym, a Primary Key, a Data Dependency, a Usage Relationship or a
Join. A Data Dependency is an inclusion dependency (IND), a Redundancy dependency
or a Constraint. Relationships classes are mostly based on Attribute indicators, i.e., rela-
tions between Attributes and attribute properties. Attribute properties (AttrProp) are:

* name similarity (NS)
names of two attributes are syntactically close to each other

40



REVERSE ENGINEERING DATA COMPONENTS

40| Relationship M—D partlclpate Constralnt
.n 0..n

relships l.n
Data Dependency |<]—
0.nf 10..n

| Redundancy |

| | AN
O.I.Jlomonym —| Surplus |

homonyms " _| Synonym |

| PrimaryKey —

0..1 —| Duplication |
keys |Inheritance|
ggregation Renlicati
—| eplication
2.n 1.n " p |
. ] attrs . entities ..
Attlgutle X ll Entity |72 joins
2.n ..n
composed by
0.n
propreties

similarities | INSERT I UPDATE
0.n_]0.n 0.n
DELETE SELECT

AttrSim composed of
AwrNS| [ NS class

0..n
4 —P* __ association

<—— generalisation

Figure 3.3: Relationships and Data Dependencies Overview

* name equivalence (NE)
names of two attributes are equal
* type compatibility (TC)
values of two attributes can be exchanged without converting the values, e.g., *char’
and ’varchar(18)’, *varchar(30)’ and ’varchar(50)’ or numeric’ and ’double’.
* type equivalence (TE)
types of two attributes are equal

41



DATA-ORIENTED REVERSE ENGINEERING

We combine these attribute properties to four different indicators for attributes:

* attribute similarity (AttrSim=NS&TC),

* attribute name similarity (AtrNS=NS&TE),

* attribute name equivalence (AttrNE=NE&TC) and
« attribute equivalence (AttrEQu=NE&TE).

Note that the attribute indicator classes follow an inheritance hierarchy, e.g., if two at-
tributes are equivalent they are also similar. This also holds for other classes involved in
inheritance hierarchies, cf. Figure 3.3.

Primary Key

The sole pure intra-entity relationship we consider here is the PrimaryKey. A primary key
is one attribute or a set of attributes that enables the unambiguous identification of an en-
tity. This concept stems from the relational database model [Cod70].

Homonym

A relationship where two attributes of two different entities have the same name but store
different information is a Homonym. These are attributes that are not related through the
application code but solely by name equivalence. Homonyms help to avoid confusion
about equivalent named attributes during the understanding process. Note that omitted re-
lationship update during integration may lead to false homonyms. Indeed, attributes with
the same name that store the same information but without explicit relationship in the ap-
plication code can be recovered as homonyms. Checking the data can help the reengineer
to detect such false homonyms.

Joins

The basis for all data dependencies are relationships between attributes, i.e., Join opera-
tions (joins). Following SQL we consider four types of joins: INSERT, DELETE, UP-
DATE and SELECT. Attributes in access code (not only SQL statements) that implements
such a join operation will be assigned as taking part in the operation, i.e., joins are
composed_by attributes.

Data Dependencies

Data dependencies are relations between entities, more precisely between their attributes.
We classify them into three basic kinds:

* redundancy dependency:
the same information is held - and maintained - (at least) twice

* inclusion dependency:
an attribute (set of attributes) in one entity holds a part or the same information as an
attribute (set of attributes) of a second entity

* constraint dependency:
condition(s) over two or more data dependencies to assign information

42



REVERSE ENGINEERING DATA COMPONENTS

Redundancy Dependency

The first inter-schema Data Dependency type is called Redundancy dependency. A re-
dundancy dependency can be Synonym, Surplus, Duplication or Replication. In our ap-
proach redundancy dependencies must be related within the application code.

Synonym

Synonyms are attributes that hold the same information but have different names. Non
name similar, type compatible attributes where information is inserted and updated to-
gether are synonym candidates. Exclusively an insert operation or exclusively an update
operation is not sufficient to indicate a synonym. Therefore, synonyms imply joins (at
least one insert and one update), type compatibility but no name similarity (includes name
equivalence).

In some cases data is never updated because the information system uses keys that are
never altered. For this case further more complex investigation has to take place which is
based on attribute semantic resemblance. Semantic resemblance and in consequence se-
mantic equivalence (synonym) are hard to determine and subject of current work.

Surplus

We have "real" redundancy if the same information is maintained but not inserted togeth-
er. In addition to attribute similarity, a Surplus dependency is revealed when the attributes
are updated but not inserted together (at least one update but no insert operation).

Duplication

We talk about Duplication if an explicit copy is made (at specific points in the application)
but the copied information is not kept consistent. Thus, attribute similarity with at least
one insert operation but no update operation indicates a duplication. Note that the inser-
tion do not have to take place at the same time, i.e., the insert operations may be spread
over the code. Such duplications are hard to detect.

Replication

Replication is an explicit copy, which is held consistent, i.e., a controlled redundancy.
Thus, it is the occurrence of attribute similarity and at least one insert and one update op-
eration. In general these operations will be performed together, but, in analogy with the
duplication, the operations can be distributed in the code.

IND (Inclusion Dependency)

Inclusion dependencies (INDs) are known from (single) relational databases [EN94]. We
identify an IND as a data dependency where the attributes are similar and at least one se-
lect operation exists. They build the basis for interpreting the semantics of foreign keys

43



DATA-ORIENTED REVERSE ENGINEERING

(associations and inheritances). We use the classical definition of the inclusion dependen-
cy in data reengineering. We classify INDs into R-INDs, C-INDs or I-INDs according to
[FV95]. An R-IND describes a relationship which is not separated by a separate entity (re-
lation schema). An C-IND describes a cardinality constraint and an I-IND describes an is-
a relationship (inheritance).

Association (R-IND, C-IND)

An Association is an inclusion dependency, i.e., an R-IND with an C-IND as option. An
R-IND is an IND where the included attribute (set of attributes) is a PrimaryKey of the cor-
responding data (Entity). In contrast to foreign keys, an association can have a n:m cardi-
nality. This corresponds to a reference table and a 1:n foreign key and a 1:m foreign key.
In case of EER diagrams, which represent databases, we only have inclusion dependen-
cies. The cardinality of an association is determined by the R-IND and the C-IND if it is
classified as one.

Aggregation

An Aggregation is a special kind of association which represents a ,,has_a‘“ relationship.
In contrast to an association, an aggregation represents a ,,whole / part* relationship mod-
el [BRJ99].

Inheritance (I-IND)
Inheritance is a generalisation.
»A generalization is a relationship between a general thing (called the superclass or
parent) and a more specific kind of that thing (called subclass or child).*
[BRJ99]
In terms of EER diagrams it is an IND classified as [-IND.

Constraint

Dependencies that relate data (attributes) in more complex manner are classified as Cons-
traint dependencies. A constraint incorporates parts of the application model, i.e., business
logic. Therefore an exact definition as well as a sub-classification of constraint dependen-
cies are hard to give. The notion of a constraint can be refined when used in further anal-
ysis and re-design steps to identify the essential business rules and the business logic in
systems that affect multiple databases.

Usage Relationship

In addition to the data dependencies it is useful for the reengineer to understand relation-
ships between the persistent and transient parts of the web information system. We clas-
sify this kind of relationship as Usage relationship. A usage relationship is the usage of

44



REVERSE ENGINEERING DATA COMPONENTS

data by transient parts of the web information system, i.e., an interface using the data de-
pendencies for the connection to the "transient world", e.g., the application or the internet.

3.1.3 Model Representation

Data storage is mainly done in tables, records or files. Data management uses multiple
data types which are assigned with values from the data storage structures. To represent
these aspects we consider two models, namely the EER model and UML diagrams as ob-
ject-oriented model.

Internally we use an object-oriented abstract syntax graph to represent the data component
models (EER and UML) as well as the data manipulating code (application models). We
refer to [Zlin01] and [Nie03] for details.

We use EER diagrams to represent data model’s data structures at the logical view level.
A logical schema is composed of entities with attributes and relationships. The attributes
have assigned data types which allows the distinction of the type of data stored. Attributes
are used for identification (primary key) and search (indexes). The different relationships
are represented with foreign keys or integrity constraints.

UML Class diagram

The UML enables the conceptual representation of data management aspects indepen-
dently from the physical data storage kind. Instead of entities we have classes with at-
tributes. Relationships are associations, aggregations, generalisations and constraints.
Moreover, at the conceptual level, we consider data dependencies that occur with the dis-
tribution of the data component models. Of course also data types are used although they
are different from the physical ones.

The reasons to introduce a conceptual representation are on the one hand the higher level
of abstraction for understanding and on the other hand the representation of behaviour.
Data management, i.e., data access and manipulation, is done in methods, procedures or
functions which can be represented with UML.

As mentioned we represent an entity in the conceptual schema as a class. We differentiate
the entities, i.e., persistent classes, from transient classes that do not represent persistent
data structures. We mark a persistent class with the stereotype <<persistent>>. Attributes
are represented with their respective types according to the type mapping.

We represent all relationships of Figure 3.3 except the attribute similarity (including sub-
classes), INDs! and Joins. They are schema annotations from the code that are used to re-
cover data dependencies. Beside the fact that representing all these three kind of

1. Note that INDs are represented in the logical schema (EER diagram) but only refined INDs, i.¢.,
R-INDs, C-INDs and I-INDs, are mapped to the conceptual schema (UML class diagram).

45



DATA-ORIENTED REVERSE ENGINEERING

relationships will overload and confuse the schema representation, their information is en-
closed in the represented data dependencies.

Relationships are represented with UML associations except primary key, inheritance and
constraint. We conserve the primary key information, when existing, to enable mappings
from classes (conceptual schema) to entities (logical schema). Attributes belonging to a
primary key are underlined. Inheritance is represented by UML generalisation. A con-
straint is represented within an additional class with stereotype <<constraint>> containing
the constraint itself. The relationships to the (attributes of the) classes involved in the con-
straint are represented as aggregations, cf. Figure 3.4.

“subrales

XMLWorker <=ysages= P roles zpersistents " _
coliapsed 0 - Roles 4 subprojects
collansed [+ collapsed A projectroles 0.n

n f.n " 0] «persistents [0
* hasroles arales projects
collapsed
0.1
«persisterts | 01 zCanstraints 0.1 Ifauserhas arale in a project,
Ausers ] i i
users SubProjectRales then the u;er hasth.ls rnlg in
o.n g Ve === = all subprojects ofthis project.
collapsed coffapsed [+

Figure 3.4: Conceptual schema view (relationships)

All relationships represented as associations and are always assigned a stereotype, except
the association itself:

* Homonym <<homonym>>

* Synonym <<synonym>>

* Surplus <<surplus>>

* Duplication <<copy>>

* Replication <<replica>>
 Association none or <<inter-schema>>
» Usage Relationship <<usage>>

The abstract relationships used for the relationship retrieval are of course not assigned a
stereotype because they cannot be instantiated. To further improve the understanding we
distinguish between intra-schema and inter-schema associations. We add a stereotype
<<inter-schema>> for inter-schema associations, cf. Figure 3.39.

46



REVERSE ENGINEERING DATA COMPONENTS

UML Package diagram

We represent the logical schema with EER diagrams, the conceptual schemas with UML
class diagrams, but how can we represent architectural aspects like distribution, redundan-
cy or views? Since the architectural aspects are considered based on the conceptual sche-
mas, using UML for representation purposes seems to be the most appropriate notation.

Schemas are represented by package diagrams, i.e., the entities, attributes and relation-
ships are represented in class diagrams which are enclosed in a package. The relationships
between the entities of different packages are grouped and represented as inter-package
relationship. Further, we employ the following UML notation elements:

* stereotype, to differentiate packages (and classes and relationships)
* note, to show comments or annotations.

We further use packages to visualise packages of data manipulating classes, e.g., con-
straints, web interfaces or portals. Representation problems occur when a class is con-
tained in more than one package that is to visualise. Such we restrict the representation of
inter-connected packages in package diagrams to packages that do not have overlapping
classes. If views are build such that a class can participate in more that one view, we rec-
ommend to use view diagrams instead of package diagrams.

Nevertheless, inter-connected packages are useful to represent certain kind of views on
the system. Of course the representation of the physical aspects (how the system is phys-
ically distributed) is one of these views. This corresponds to the conceptual schemas and
the manipulating data classes as they are stored and organised in the databases and files,
cf. Figure 3.5. Another example of a system view divided in disjunctive connected pack-
ages are representations resulting from clustering. A clustering criterion may be to group
the classes related by inheritances and redundancy relationships. For such purposes pack-
ages that contain packages, as long as the packages remain disjunctive, can be visualised.

<<directory>> <<directory>>
admin outcomes

N/

¥

<<database>>
<<database>> t b
— / hospdata outcomes_be
<<directory>>
bvmt
\ <<database>> <<directory>>
bvmtdata service

Figure 3.5: Pysical aspect view as package diagram

47




DATA-ORIENTED REVERSE ENGINEERING

In case that view diagrams are judged not to be appropriate, a set of overlapping views on
the system can also be organised in a package diagram. Overlapping packages can be vi-
sualised together without any connection between them. Such a diagram may be the result
of manual analysis or can be the result of the automatic application of a view builder. Then
the packages will be represented next to each other without any (visible) connection. Only
the package name will guide the reengineer. Again, packages can be organised in sub-
packages if desired.

View diagram

A view diagram is a sub-diagram of a class diagram where only selected classes and rela-
tionships are visualised. The idea of views is not new and well known in the database field
[EN94, Dat00]. Database (logical) views are directly mapped to conceptual schema
views, cf. Figure 3.11. Note that a materialised view correspond more to a logical schema
than to a database view since they are redundant subschemas and should be handled ac-
cordingly.

Further (conceptual) schema views can be defined by the reengineer. Schema views are
representations of parts of schemas. That these parts are from a single schema is not man-
datory. Since schema views represent aspects from the whole system, they are not fixed
because changes of the underlying schemas should be reflected in the views. The reengi-
neer can use predefined filters or define filters which dynamically calculate the schema
views.

A filter is defined through the context of a class (schema entity) or a set of classes. The
context of a class is the set of reachable classes from this class via relationships. The ex-
ample of Figure 3.6 shows the 1-context relative to the inheritance relationships of class
Patient. Operations can be either applied to schema elements in the corresponding under-

| Fujaba [PalliativeCare] - HealthCare_WIS.fpr.gz
File Edit Diagrams Class Diagram ImportE=port Tools Options Help
DEE SEnE

=

Class diagrams
l:g prato_KB
= DED
l:g Bestle
@ l:g Palliative Care
W gutcomes
= hvmit
& Patient
% hospdata
B phvrnitdata
& outcomes_be
B admin
B senice
(2] Activity diagrams

zpersistents

Patient

coifapsed [

rf |

zpersistents

zpersistents
Deceased

Discharged

death_date : Timestamp
discharge_date : Timestamp death_time : Timestamp
discharge_time : Timestamp - place_of_death : String =

T
| =
|
| =
|®

[[¥]

I\.Ill'elcome to Fujaba Toaol Suite! IB MByte of 11 MByte allocated

Figure 3.6: Conceptual schema view example

48



DATA MODEL RECOVERY

lying schema or in one of the schema views. Note that also data manipulating (transient)
classes can be part of the views. Further details concerning view and filter definition can
be found in [RecO01].

3.2 Data Model Recovery

Recovering the data structures of the web information model is the basis of the data-ori-
ented reengineering process. We enhance the understanding of the data models by provid-
ing a conceptual knowledge-centric view on the models. We use annotations on the data
models to represent the automatically and manually recovered knowledge. A fundamental
aspect is that data model recovery is embedded in the iterative reverse engineering pro-
cess.

The data model recovery is divided into two main activities: recovering the physical sche-
ma into a logical schema and constructing a conceptual schema. In the first activity the
explicit data model elements can be parsed but hidden schema parts have to be recovered,
i.e., data model elements that are implicitly enclosed in the schemas. The construction of
the conceptual schema is done be an automated ad-hoc mapping followed by a manual re-
factoring phase.

3.21 Schema Recovery

The data of the data repositories participating in a web information system is organised in
schemas. A data model can be represented by different schemas at different levels of ab-
straction. The common schema levels are the physical schema, the logical schema and the
conceptual schema. We assume that the data model exists as physical schema. Such we
recover a logical schema (before transforming it to a conceptual schema).

The first step is to recover the explicit data structures contained in the physical schema.
We achieve this by parsing the according physical schema. A physical schema can be
parsed through JDBC!, or an XMLSchema? or a Document Type Definition (DTD) pars-
er. JDBC drivers are provided for almost all data repositories. Note that we are not re-
stricted to Java applications, we only use java as programming language to recover the
schemas.

The easiest schema parts to recover are entities and attributes. They can be read (parsed)
directly from the database. Depending on the database management system logical prop-
erties like primary keys can also be parsed. However, in most cases not all schema ele-
ment properties are explicitly defined.

The most valuable schema elements for understanding are the dependencies between en-
tities, namely foreign keys, inclusion dependencies, links and references. Again some of

1. The JDBC API provides Java applications with access to all major database systems and file
formats, via SQL. According to Sun, JDBC is not an acronym for Java Database Connectivity.
2. http://www.w3.org/XML/Schema

49



DATA-ORIENTED REVERSE ENGINEERING

them may be explicitly encoded in the database schemas, but most of them are hidden in
the application code.

In case of a relational database additional information may enrich the schema knowledge,
e.g., indices, stored procedures or (materialised) views. Further in federated or multi-da-
tabases the different schemas (local, component, export) may also be a valuable source of
information.

3.2.2 Retrieval of Hidden Schema Parts

As mentioned above parts of the schema are hidden and cannot be parsed directly from
the data repository. The most hidden parts are also the most valuable for the reengineers
understanding. There are two main reasons why schema parts are hidden, i.e., not declared
explicitly. Firstly, the database system does not have the language constructs to express
all schema parts in an appropriate way. Secondly, like the lack of correct and complete
documentation, the schemas are not attached with all the possible and desirable descrip-
tions for many different reasons.

Why do we need this hidden schema parts? Well, basically because they enrich the data
schemas with valuable reengineering knowledge. We distinguish between two ways for
retrieving hidden schema parts: (1) a semi-automatic process where indicators of missing
schema elements are retrieved automatically, before the reengineer validates or refutes
them; (2) a manual process where the reengineer annotates the schema with knowledge
that he derives from information sources like interviews, documentation, code reviews,
tests or application executions.

To enrich the schemas with knowledge, operations to create schema annotations are need-
ed, e.g., createPrimaryKey. Indeed, assume a user has gained knowledge of a certain sche-
ma for example by using a data retrieval tool. He afterwards wants to transfer this
knowledge into that schema so that other reengineers can benefit from this regained
knowledge.

These schema annotation operations are also used by the semi-automatic process. The an-
notations are endowed with a fuzzy value between 0 and 100 to express the certainty of
the according annotation. Depending on his certitude the reengineer can also add uncer-
tain knowledge to the schema. In case of the automated recovery the certainty degree de-
pends on indicator significance that is predefined. The underlying logical model is
presented in [Jah99].

Operations are needed for each schema element. Three different operations per schema
element exist: create an element, remove an element and update an element. The create
operation is always attached a fuzzy value. The delete operations can be bundled to a gen-
eral deleteElements operation. Updates can be subdivided into several operations, e.g.,
updateAttribute can be subdivided into renameAttribute, changeType and changeFuzzy-
Value.

50



DATA MODEL RECOVERY

The basic element types for a schema are entity, attribute, primary key and foreign key.
Primary keys can be tagged as candidate keys. Foreign keys can be tagged as IND and
classified as R-IND, I-IND or C-IND, cf. page 43.

Special elements resulting from reverse engineering practice or database features are vari-
ant, index, view, stored procedure, optimization structure and materialised view. A variant
of an entity is a sub-categorisation of the entity into different logical entities, e.g., the en-
tity patient has attributes for death date & time and discharge date & time. We have two
variants for patient here; a patient can only have a death date & time or a discharge date
& time. The other elements are well known from the database field and such we refer to
the corresponding literature.

Automatic schema recovery covers all elements. Entities and attributes are easy to recover
through JDBC. Relationship (primary and foreign keys) retrieval will be discussed in Sec-
tion 3.3. Indices, views, stored procedures and materialised views need special parsing de-
pending on the database management system. Variants and optimization structures are
more likely to be retrieved.

Figure 3.7 shows three tables and an IND as an excerpt of a database schema from the
palliative care information system. This example is depicted as it was parsed with the JD-
BC, i.e., no analysis was performed nor annotations added. The table Patient contains
three variants and table Medical contains optimisation structures. Note that the foreign key
Referenced is automatically retrieved through the JDBC based parser.

Medical
BIOPSY1 DATE: datetimeD
BIOPSY2 DATE: datetime etastases Sites Patient
CELL_TYPE/DISEASE: varchar (EU)"? METHUM: smallint (B LLERGIES: [ong (53687081 0)
CELL_TYPE/DISEASEZ: varchar (50) SITE: varchar (15) CITY: varchar (13)
=P DISEASE: varchar (50) DATE OF BIRTH: datefime

MET SITE1: smallint (6)
MET SITEZ: smallint (6)
MET SITEZ: smallint (8)
MET SITE4: smallint (6)
MET SITES: smallint (6)

DEATH DATE: datetime
\DEATH TIME: datetime
DISCHARGE DATE: datetime
DISCHARGE TIME: datetime

MET SITER: lint (6 FIRST MAME: varchar (29)
MET2 SITEﬁ'S;nrier]ini ()E} ) HOME FHOME: varchar (200
' PHMN#: varchar (14)
mgg ggg; Sma::?”ﬁ Eg; * Feforanced  VHS I0f: varshar gy |IPLACE OF DEATH. varchar (7) |
zmallin WHS ID#: varchar (7) .
POSTAL CODE: varchar (7
METZ SITE4: srmallint (8) 0.n o )

: ) SEx: warchar (13
MET2 SITES: smallint (B) STREET ADDRESS: varchar (50)
MET2 SITER: smallint (5) SURNAME: varchar (26)

FRIMARY_CAMCER_2: varchar (SU)D TITLE: varchar (4)

== REFERRAL DX varcr.]ar(EU) HES 1D varchar (73
SPECIFIC_DISEASE: varchar (50 jmes ORK PHOME: varchar (20)

HES 1D#: varchar (7}

Figure 3.7: Variant and optimisation structure example

51



DATA-ORIENTED REVERSE ENGINEERING

Variants can be found in code or by analysing the data. Figure 3.8 shows a simplified code
fragment, sketches the three variants as three sample tuples and depicts a possible concep-
tual representation. Tuples belonging to variant 1 (patient is discharged) have NULL val-
ues for the three attributes related to the death of a patient. Variant 2 (patient is deceased)
has the NULL values for the discharged date and time. If the patient is still in treatment
(variant 3) all five attributes concerning the death or discharging of a patient have NULL
values. Conceptually this results in three classes Patient, Discharged and Deceased de-
pending the status of the patient. The code fragment outlines a status request for a patient
of a given patientID. Note that this code fragment is a sample, still even more complex
fragments can be detected and thus serve as indicators. For further details concerning vari-
ants we refer to [Jah99].

Several optimisation structures occur in the table Medical of Figure 3.7. Attributes RE-
FERRAL DX and DISEASE stores the patient’s referral reason and disease. The other at-
tributes store two biopsies where BIOPSY1 DATE corresponds BIOPSY2 DATE,
SPECIFIC_DISEASE corresponds PRIMARY_CANCER_2, etc. Each biopsy has six at-
tributes to store metastases sites. Figure 3.9 shows a code sample as indicator for the op-
timised 1:n foreign key between Metastases Sites to Medical. Patients are searched where
metastases where detected at SITE :site. Therefore all attributes of both biopsies has to be
compared to the corresponding METNUM.

variant|| DEATH DATE | DEATH TIME | PLACE OF DEATH | DISCHARGE DATE | DISCHARGE TIME | VHS_ID#

1 NULL NULL NULL

2 NULL NULL

3 NULL NULL NULL NULL NULL

dt lect DEATH DATE, DEATH Patient

ate = ,sSelecC ’ .

TIME from Patient where VHS—ID#: string q

VHS ID# = :patientID";

status = ,deceased"; Deceased

if (NULL == date) { death_date: timestamp
date = ,select DISCHARGE DATE, . e
DISCHARGE TIME from Patient - death_time: tlmeSta.m p
where VHS ID# = :patientID™; Discharged place_of_death: string
status = ,discharged™; } discharge date: timestamp

if (NULL == date) { discharge time: timestamp class
status = ,in treatment"“; } q inheritance

Figure 3.8: Patient variant example

The table Medical would correspond to three tables if no optimisation were introduced: a
table ,,Disease® to store the patient’s referral reason and disease; a table ,,Biopsy* storing
the different biopsies for a patient; and a table ,,Biopsy Metastases Sites* for the detected
metastases sites during a biopsy. This last table would have the 1:n foreign key to Meta-
stases Sites. For further details concerning optimisation structures we refer to [Bew98].

52



DATA MODEL RECOVERY

M = ,select METNUM from METASTASES SITES where SITE = :site“;

patientID = ,select VHS ID from MEDICAL where
(MET SITE1 = :M or MET SITE2 = :M or
MET SITE3 = :M or MET SITE4 = :M or
MET SITE5 = :M or MET SITE6 = :M)
or
(MET2 SITE1 = :M or MET2 SITE2 = :M or

or MET2 SITE4
or MET2 SITEG6

MET2 SITE3 =
MET2 SITES =

:M
:M

Figure 3.9: Optimisation structure example

3.2.3 Schema Mapping

Once the logical schema is recovered, at least judged as recovered by the reengineer at
this point in time, it can be mapped into a conceptual schema. The conceptual schema pro-
vides a higher level of abstraction, which makes it easier to understand the major points
of interest. The conceptual representation is done with UML class diagrams. Such a map-
ping between logical schemas and the conceptual schemas is needed. The schema map-
ping is described in detail in [Jah99], we will only present the relevant parts here.

This meta-model mapping is done with triple-graph-grammars [Sch94, Lef95, SL96]. The
fundamental idea of triple-graph-grammars is that two documents are integrated and such
kept consistent through a third document, the integration document. Figure 3.10 depicts
an example for document integration with triple-graph-grammars. A triple-graph-gram-
mar rule relates elements of document A to elements of the integration document and
those elements of the integration document to elements of document B. In Figure 3.10 this

can be seen for a<---i--->b or (a1,a2)<---i1--->b1.
—_—> intra-document relation - — — > inter-document relation ‘
document A integration document dokument B
<« — +— — 1 — - — 71—
- — 11 -—rr—- -
al [ I - N I
—/ (2 e~~~ J J

Figure 3.10: Triple-graph-grammar fundamental idea example

53



DATA-ORIENTED REVERSE ENGINEERING

From a triple-graph-grammar rule, three rules are generated. These rules can be applied
to the documents without any rule ordering or prioritisation. Firstly, the forward rule maps
elements of the left document to elements of the right document, e.g., a of document A
exist and i and b are created. Secondly, the reverse rule maps elements of the right docu-
ment to elements of the left document, e.g., b of document B exist and i and a are created.
Thirdly, the relating rule which relates elements of the left document and elements of the
right document, e.g., a of document A and b of document B exist and i is created. If none
of these three rules can be applied to an element of document A or B, this element is re-
moved.

The gererated rules are graph productions. Generally, graph productions are defined as a
pair of graphs, a set of application conditions, and a set of attribute-transfer-clauses. The
two graphs are called the left-hand side and the right-hand side of the production, respec-
tively. Graph elements of the left-hand side that also appear on the right-hand side are
called the interface graph, i.e., they are neither created nor deleted. Graph productions
and their application semantics have been formalised based on algebra theory, for a com-
plete formalisation of these concepts we refer to [Roz99].

The characteristic of the triple-graph-grammar formalism is that it permits consistency
management. For this purpose the integration document has a crucial importance. Assume
that two documents are related like in Figure 3.10 document A and B. During editing do-
cument A we remove element a. In case that we do not have an integration document, we
cannot decide whether we have to remove b or (re-)create a. In the case that we have the
integration document, after removing a, i and b exist and we know that they should also
be removed. This situation also could be handled with some overhead without an integra-
tion document, but consider the more complex case that we remove a1. The relation is di-
fined as (a1,a2)<---i1--->b1, such i1 and b1 have to be removed. Without an integration
document the removal of b1 would result in the removal of a2, as inverse consequence of
the document consistency.

In our case this means that the logical meta-model instances are related to the conceptual
meta-model instances and later kept consistent. Hence we need a mapping model, i.e., the
integration document that connects the two meta-models and a set of rules. Figure 3.11
shows the mapping model. This mapping model is adapted from the migration graph mod-
el from [Jah99]. We will give a short overview of the mapping model.

The meta-model for the analysed logical schema is represented as an abstract syntax graph
on the left side of Figure 3.11. The node of type LSchema represents the root of the model
for a logical schema. This root contains following classes: LView, which represents views
of the logical schema; Entity, which represents the entities; and LType which represents
the types of the entities attributes (LAttribute). Each Entity has an attribute ename that
stores the name of the represented Entity. An Entity is composed by a non-empty set of
named (vname) Variants, a primary key (LKey) that is referenced by the pkey association,
and a set of alternative keys which are referenced by the association akeys. Each Variant

54



DATA MODEL RECOVERY

contains a set of foreign-keys (FKey) and a set of attributes (LAttribute). An attribute has
an Itype association to refer to its type. An IND is represented by one of the three types I-
IND, C-IND and R-IND (cf. page 43 and [FV95]), and has two associations lkey and fkey
that point to a primary key and a foreign key.

The rational for selecting the conceptual schema is driven by following observations.
Many variations and extensions of the Entity-Relationship (ER) model [Che76] have been
proposed to facilitate the description of data structures. The most common extensions to
extended Entity-Relationship models are concepts for abstraction like aggregation and in-
heritance [BCN92]. In our application domain, i.e., web information systems, the distrib-
uted programming language Java is widely used for integration and extension of legacy
systems. Multiple inheritance is not allowed by the type system of Java [SCC+93]. Such
we have restricted our conceptual model to classes to have at most one generalisation.
Note that this restriction affects only the data models, that we want to access through a
Java layer, and not the application programming languages of the reengineered legacy
system.

The meta-model that specifies the chosen conceptual model is displayed on the right side
of Figure 3.11. The class CSchema is the root of the conceptual schema abstract syntax
graph. By analogy with the logical schema, this CSchema contains views (CView), class-
es (Class) and attribute types (CType). A boolean attribute (abstract) is used to store the
information whether a class is abstract or not, i.e., whether a class can be instantiated. The
name of a class is stored in attribute clname. Inheritance relationships are represented by
nodes of type Inheritance with two associations sub and sup to the subclass and the su-
perclass, respectively. Classes are composed by a set of CAttributes and an optional key
(CKey). A CKey is composed by a non-empty set of CAttributes. Each Association has a
name (aname) and attributes srcname and tarname store the role names of the classes that
participate as source and target of the relationship, respectively. Attributes srccard and
srctotal, and tarcard and tartotal represent the information about the cardinality of the
source class and target class, respectively. The value of attribute srccard (tarcard) defines
the maximum cardinality for the source (target) of the relationship. If the attribute srctotal
(tartotal) is true, the relationship is total with respect to its source (target), cf. [EN94].

The schema mapping model connects the abstract syntax graphs of the logical and the
conceptual schema and represents their associations. The elements of the schema map-
ping model are depicted in Figure 3.11. Their purpose is motivated and described in more
detail in [Jah99].

MapSchema is used to connect the roots of both abstract syntax graphs. To map attribute
types MapType is used. Each variant in the logical schema is mapped to a concrete class
in the conceptual schema. If an entity has more than one variant, it implies usually that
common attributes are comprised which leads to an inheritance hierarchy with abstract
classes in the conceptual schema. Consequently, an abstract class is mapped to more than
one variant, namely all variants which are represented by its concrete subclasses. These

55



DATA-ORIENTED REVERSE ENGINEERING

| LSchema Ill left : ‘|I MapSchema |I . right ! CSchemal
T J1 [0n B ; 1|1
Itypes ctypes
LType left ManTVvpe right CType
ltypef\_r\ . 1 0.1 plyp 0.1 1 0.n ctype
. M 1 1
T|ltname: string ctname: string —/\—f{—
Iviews cviews
0.n] LView left NPT right CView  |o.n
~string | 0.1 TEPYIEW o7 evname: strin
entities |1VName: string : g
0..n O.n  Classes
ents cls
0.n 0.n 0.n 0..n
Entit - right 1 Class
y' 1 |MapVar1ant|0..l ] e
ename: string variants o 1| ciname: string
1 1 l.n 1 efi | 1] abstract: boolean
Variant - super -nf 1 1 |1 |1
pkey vname: string
l.n |l.n
akeys|
fkeys - . '
lattributes B right id
| 0.nl . I—0..1|_| it o
N_M M_le ———10-
[ LKey 0.n o.7]_MapKey 57 L CKey ey
0.. .
! ! N LAttribute cattr 01 attributes
lattrs | 1..n| eft right l.n : 0..n
l—r MapAdttribute (57 1 CAttribute
0.n caname: string f——
attrs_via sre|  tar
0.n |0.n
. Association
right
0.n MapAssoc [0.1 1 aname: string

R-IND

invkb: boolean

assocs_via
left MapRIND 57—
0..1 - -

srcname: string
tarname: string

attrs
I.n 0O.n

class
association

generalisation

srctotal: boolean
tartotal: boolean
srccard: integer

Figure 3.11: Schema mapping graph model

tarcard: integer

correspondences among classes and variants are represented by nodes of type MapVari-

ant.

Inheritance relationships in the conceptual model can correspond in two different ways to
constructs in the logical schema. Firstly, they can correspond to the inclusion of more spe-
cific variants in less specific variants that belong to the same entity. This is represented by
an inheritance relationship in the conceptual model which is mapped by MapVarTolnh.

56



DATA MODEL RECOVERY

Association left_vs is used to reference the variant which is more specific, while associa-
tion left_vg references the variant which is more general. Secondly, the other possibility
is to map INDs in the logical schema that have been classified as inheritance relationships
(I-INDs) in the analysis process to inheritance relationships. In this case, the mapping is
represented by a node of type MaplIND.

MapKey is used to map primary keys in the logical schema to keys in the conceptual sche-
ma. According to the ODMG 3.0 (Object Data Management Group) data model
[CBB+00], our conceptual model includes the notion of unique object identifiers for in-
stances of classes. Note that it is not required that every class contains a value-based key.
Still, if we aim for object-relational data integration, unique object identifiers have to be
resolved to value-based keys in the logical data model. For this purpose, every class has
an association of type right_id that references a MapKey class in the schema mapping.

Attributes are mapped to attributes by nodes of type MapAttribute. To provide the flexi-
bility to allow for different alternative schema mappings, we admit that attributes of a sin-
gle class can be mapped to attributes in different entities. For such attributes, the access
path from the entity that includes the value-based key associated to the class and the entity
which includes such attributes has to be maintained. This is done by the association
attrs_via. If a MapAttribute node does not have an attrs_via link, the mapped column be-
longs to the entity that contains the key referenced by the right_id association of the class
that contains the mapped attribute. Otherwise, the mapped column belongs to a different
entity and the attrs_via link of the corresponding MapAttribute node refers to a set of
MapRIND nodes. These nodes represent the access path from the entity that contains the
key referenced by the right_id association to the entity that contains the mapped column.
Each MapRIND is connected to R-IND which logically represents a foreign key that has to
be dereferenced to access the mapped column. In analogy with columns, MapAssoc and
assocs_via associations are used to map Associations to sets of foreign keys (represented
by R-INDs).

An example for a mapping rule is given in Figure 3.12. The MapEntityToClass mapping
rule relates an entity including variant and primary key to a class with corresponding key.
The prerequisite for this rule is that the logical root (LSchema) has a correspondent con-
ceptual root (CSchema). This is the case if they are related by a MapSchema node. The
prerequisites are represented in black whereas the elements which have to be related are
in grey (green) and marked by a <<create>> stereotype. The side of each element is indi-
cated by <<left>>, <<map>> and <<right>> corresponding to the left (logical schema), in-
tegration (mapping schema) and right (conceptual schema) document, respectively. Note
that for execution reasons <<input>> and <<output>> nodes can be defined and are
marked correspondingly. Further constraints and assignments can be expressed (e.g.,
LEFT : cl.clname:=v.vname;). The side stereotype expresses if the constraint or assign-
ment is considered during generation.

57



DATA-ORIENTED REVERSE ENGINEERING

«lefts srmnaps sinputs fight
. & B
Is:LSchema <left ms MapSchema > Tight
cs:CSchema
acheates
v entities
screates «lefts
e:Entity wCleates
wChEat e
Key vclasses
woyeates
«oreates «maps goreates grights
v variants «creales «lef < leftacreates wcreates » right k:CK
K :LKE]{ mk :MGEKEI Lk:LRey
ight_id A Ckey
eates srflates

grreates «lefty srteates «maps «outputs goreatas arights

v:\ariant < left «crestes fiv:Man\ariant wcreates» right clClass
LEFT : cl.abstract:=false; MAP - vamame==cl.clname; RIGHT : vamame:=cl.clname;
LEFT : cl.ciname:=v.ymame; RIGHT/MAP - empty(cl.-right_id-»);

RIGHT/MAP ; cl.abstract==false;

Figure 3.12: MapEntityToClass mapping rule

From this mapping rule three rules are generated: a rule that creates the conceptual ele-
ments from the logical ones (forward rule), a rule for the opposite direction (reverse rule)
and a rule which relates logical and conceptual elements if they already exist (relating
rule). The resulting rules are generated as story diagrams. A story diagram is an activity
diagram where each activity contains either (Java) code or a story pattern. A story pattern

is a graph production with an adapted collaboration diagram notation. We refer to
[FNTZ98] for details.

Figure 3.13 shows the relating rule MapEntityToClassRelating as a story diagram. The
MapSchema node ms is the input node, i.e., the node where the subgraph matching starts.
The first activity initialises the MapVariant output node outParam. The next activity is a
story pattern. Starting form the bound object ms, the black nodes are searched. For the re-
lating rule, these are all logical and conceptual elements belonging to an entity and its cor-
responding class including the variant and keys. The variant v and class cl have the same
name, cl is not abstract and does not have a value-based key assigned (empty(cl.-right_id-
>)). These constraints are all marked as MAP or RIGHT/MAP in the mapping rule. Once
the subgraph has a corresponding match in the abstract syntax graph, the nodes in grey
(green) will be created with the corresponding links. In this case MapKey and MapVariant
nodes are created to relate the entity e, variant v and key Ik to class cl and key ck. If the
subgraph matching and creation of nodes is successful then the last activity assigns the

58



DATA MODEL RECOVERY

MappingRules:MapEntityToClassRelating (ms: MapSchema): MaptYariant (-
. 5 Maptariant outParam = null; )
Is:LSchema < left ms > right cs:CSchema
ve{\iﬂies
e :Entity
v classes
v pkey ==reatas=
i ey : creates = right ck:CH
v vdriants kLK < left «crestes mk :MapKey « = 2 TigY ey
<right_id Crestes A ckey
==pregate==
v :Variant <left ccrestes nw :MapVariant screstes > right cl:Class

{ empty{cl-right_id-=); }
{ wyname==clciname; } { clabstract==rfalse; }

Ucoess |

[l/failure ]

@ \\ outParam = mv,

outParam

Figure 3.13: MapEntityToClass relating rule (story diagram)

MapVariant node mv to outParam. Otherwise the outParam remains null as assigned dur-
ing initialisation. Finally the rule returns the outParam.

In analogy with the relating rule the forward rule (Figure 3.14) and the reverse rule (Figure
3.15) are generated. Only the story patterns are presented because the remaining of the
story diagram is identical to Figure 3.13 except the rule names. The constraint and assign-
ments are generated accordingly to the side they were defined for.

Other mapping rules are needed to establish a full correspondence between the logical and
conceptual schema. The Table 3.1 gives an overview over the mapping rules needed for
a bidirectional mapping and consistency preservation between the schemas.

Catalogues of (forward) mapping rules are given in [Wad98] and [Jah99]. To specify all
rules special graph-grammar constructs are employed. The mapping rule MapAttrToAttr
depicted in Figure 3.16 contains examples of a path construct, optional nodes and graph-
ical constraints. A path enables the navigation through the abstract syntax graph from one
node (or set of nodes) to another node (or set of nodes) even when they are not directly
related by an association. A simple path from v:Variant to Ik:LKey is given in Figure 3.16.
This path <-variants-.-pkey-> accesses the entity primary key from the variant it starts
from. Optional nodes are used in this rule to relate attributes that belong to a key. If an
attribute belongs to a key the corresponding key nodes will be matched and the needed

59



DATA-ORIENTED REVERSE ENGINEERING

Is:LSchema <left ms > right cs:CSchema
v ehtities
e:Entity srfeates
v pki D v classes
crestes right ==preates=
< &
L Key <leftecresies ) miMaphey ! ck:CKey
¥ vgriants
A key
Eilnd (=52 115
<left scredtes “etreale= screstes > right <=l eates:
v:Wariant I i
v :MapWariant cl:Class

{ clabstract=false; }

{ cl.clname:=vxname; }

Figure 3.14: MapEntityToClass foward rule (story pattern)

. < -
ls:LSchema left ms > right cs:CSchema
sChestes
v entities
«=rreates
e Entity
L= Esie» vclpsses
#Cheates ey
vuariamts .. pooio- ==preate==
< left «crestes . screates > right ck:CHey
kLK mk :MapKey
A eRey
==rreatess «=iraatess
v:iVariant <left  ccrestes mv:MapVariant «crester > right cl:Class
{ wyname:=cl.clname; } { emptyicl-right_id-=); }

{ clabstract==false; }
Figure 3.15: MapEntityToClass reverse rule (story pattern)

links to reflect this information will be created. If an attribute do not belong to a key the
nodes containing information about a key will not be matched. The generated rules will

60



DATA MODEL RECOVERY

not fail because the nodes where declared as optional and thus are not required for the suc-
cessful application of the rules. Finally, we have two graphical constraints.

mapping rule description
MapSchema Relates the root nodes of the logical and conceptual schema.
MapType Relates the logical types to the conceptual types. In our case mainly data-
base types to Java types, e.g., varchar to string.
MapView Relates database views to UML class diagram views, cf. Section 3.1.3.
MapEntityToClass Relates entities to concrete classes, including the primary keys.

MapVariantToConcreteClass | Relates additional entity variants to concrete classes.

MapVariantToAbstractClass | Relates variants to abstract classes in case that variant structures repre-
sent inheritance hierarchies.

Map VariantToInheritance Relates variant hierarchal structures with the inheritance relationships of
the corresponding hierarchy of concrete and abstract classes.

MapAttrToAttr Relates the attributes of the entity variants and the related classes.

MapRINDToAssoc[1:1] Relates an inversely key-based R-IND to a total one-to-one association.

MapRINDToAssoc[N:0,1] Relates a non inversely key-based R-IND that has an inverse C-IND to a
left-total one-to-many association.

MapRINDToAssoc[0,N:0,1] | Relates all R-INDs that are not inversely key-based and do not have an
inverse C-IND to partial one-to-many associations.

MaplINDTolnheritance Relates I-INDs to inheritances.

Table 3.1: Mapping Rule Overview

Figure 3.17 shows the graphical constraint IsNotForeignKeyAttribute. A graphical con-
straint is expressed with a story diagram and attached to a node. The constraint is only
checked if the attached node is a prerequisite of the rule. IsNotForeignKeyAttribute checks
if the logical attribute is not a foreign key attribute in at least one variant. Logical at-
tributes that contains information about foreign keys have no related attribute in the con-
ceptual schema. This information is implicitly contained in associations. For this reason
no such check is needed when a conceptual attribute is mapped to a logical attribute. The
story diagram checks for the given attribute la that is contained in a variant, if a path via
a foreign key from this variant to the given attribute does exist. If this is the case then the
success variable becomes true and the constraint (“if (success)”) will return “false”, oth-
erwise the failure variable becomes true and consquently the constraint will return “true”.

The presented mapping is partial, e.g., many-to-many associations or aggregations are not
considered. Mapping rules for such constructs can be defined in analogy with the present-
ed rules. These rules lead to ambiguities, e.g., relating an R-IND to an association or an

61



DATA-ORIENTED REVERSE ENGINEERING

aggregation. These ambiguities can be resolved by ordering mapping rules or adding fur-
ther semantic annotations to the logical schema. Our experience shows that the number
and the complexity of rules then grows considerably. We adopt a solution that enables a
fully automatic mapping between the logical and conceptual schema with the limited set
of twelve rules of Table 3.1. The reengineer can use conceptual schema refactoring oper-
ations to add conceptual constructs to the conceptual schema. In Section 3.2.4 we present
an extensible catalogue of conceptual schema refactoring operations, which maintain au-
tomatically the correspondences to the logical schema.

left: . .
i ot pimais snputs_ > right <rights
— =~ -I mv:MapVariant |'

<yariants-.-pkey-> \

acleates
—em e s ms o s o o s s

v catiributes

IBoNmBeIongTonIIMoreGeneraNariants-l

optional nodes

wtreatas «Mmaps «outputs

-|.| ma :Map#ttribute L|.

| - v ud
«oreates «lefts

— o o — — . N <left =creates

screstes right

graphical
constraints .
zlefts «Mmaps . «rights
It Type ||= < left -|-| mt :MapType |.|- > right =|| ct:CType
RIGHT : la.laname:=ca.caname; MAP : ca.caname==la.laname;

LEFT : ca.caname:=la.laname;

Figure 3.16: Mapping rule features in the MapAttrToAttr rule

ConstraintRules:IsNotF orreignideyAttribute {la: LAltribute): Boolean

i

< lattributes
- -] b .
la Tkeys-.< fkattrs v:\ariant
[ it (failure) then {freturn true; } ] [ if (success)|then {return false;} |

® ®

Figure 3.17: Graphical constraint with story diagram

62



DATA MODEL RECOVERY

3.2.4 Conceptual Schema Refactoring

According to [Fow99], refactoring is the modification of the internal structure of software
without changing its observable behaviour, to make the software easier to understand,
modify and maintain. The fundamental idea of refactoring is also reflected in conceptual
schema refactoring, i.e., modifying the conceptual schema structure without changing the
(observable) information capacity, to make the schema easier to understand, use and
maintain.

Refactoring is a complex task regarding the impact analysis that a refactoring operation
has to perform before it can be applied. This holds for software refactoring [Fow99], da-
tabase (physical schema) refactoring [Amb02] and even logical schema refactoring. For
conceptual schema refactoring this is different because the conceptual schema is not (yet)
used by third parties. Indeed, the conceptual schema is newly created for understanding
and will be used as capsule for the data access only after the reengineering. Two factors
must be taken into account for conceptual schema refactoring: (1) the schema transforma-
tions must preserve the information capacity and (2) consistency between the conceptual
schema and logical schema has to be preserved. While the first will be discussed subse-

BasicOperations: moveattribute (assoc: Association, attr, CAtribute): Yoid

!

4ass0C

-Src-» or -tar-» -SrC-= Or -tar-» .
cl1:Class stocard == Src-> or -tar cl2 Class

tarcard==1

wdgstroys
v catiributes

« cattrib

right

attr ma :Mapattribute

{ if (tl == assoc-sre-=) {assoc. sretotal;} else {assoc tartotal;} )

UCCEsE |

[|failure ]

—
mr :MapRIND L]

=-right-.<-assocs_via-

4550C

sCreates

®

=

Figure 3.18: moveAttribute refactoring operation

63



DATA-ORIENTED REVERSE ENGINEERING

quently, the latter is satisfied (guaranteed) by the mapping consistency mechanism with
triple-graph-grammars (cf. Section 3.2.3).

Refactoring operations must preserve the information capacity [BCN92] of the schema.
Crucial for an information capacity preserving operation is that the schema contains data
structures, which enclose the same data before and after the operation application. An ap-
plication, which runs and uses data described by the schema, must still run after schema
refactoring, i.e., the data is still fully available. Formal graph transformations that pre-
serve information capacity are presented for database integration [GO00] and database re-
engineering [JZ99].

An example for a basic refactoring operation is moveAttribute. Figure 3.18 shows the im-
plementation of moveAttribute as a story diagram. Attribute attr is moved from class cl1
to class cl2 via association assoc. The prerequisite for this operation is that the move op-
eration is done via a one-to-one association. This is done with assertions. An assertion is
a constraint that is part of the matched node, e.g., srccard==1. Further the association has
to be total with respect to class cl1. In other cases moving an attribute via an association
would change the information capacity. Further the attribute has to have a link to a
MapAttribute node. This ensures that attr has a corresponding attribute in the logical sche-

|
f Select Transformations r Assign PL@ameter Wildcards r Specify C 1 Transformati |
Create a composed transformation
Available Transformations Transformations to be combined
createClass createClass
createfttribute createAssoc
createAssoc createLink
renameClass Add selected createMapNode
renamedfttribute ) loop
Add selected in loop |
renameRelationship _ maoveittribute
Add selected as optional |
agyregate end loop
disagoregate Remaove selected |
maovedttribute aggregate
swaphssocDirection end optional
createLink
createMapiode
assocToClass =
| Create | | Cancel

Figure 3.19: splitClass refactoring operation

64



DATA MODEL RECOVERY

ma. If the activity is applied the link between cl1 and attr is deleted and a link between cl2
and attr is created. After successful completion of this activity possible access pathes have
to be updated. Note, if no MapRIND node is found the operation still terminates correctly.

Refactoring operations can be divided in basic schema transformations and composed
schema transformations. Indeed much operations are based on several basic operations.
Figure 3.19 shows splitClass which is an example for a composed refactoring operation.
On the left hand the available transformations are listed. The new composed transforma-
tion is on the right side. The splitClass operation is composed of two basic design trans-
formations createClass and createAssoc. Before moving the attributes from the old class
to the new class, the correspondences to the logical schema are maintained with mapping
transformations. createLink creates a link of type ’right id’ between the given new class
and MapKey node. The new class is mapped to all variants, the old class is mapped to
(createMapNode). Finally, the basic refactoring operation moveAttribute is applied in a
loop to a passed set of attributes. Optionally the new class is aggregated (Aggregate).

Table 3.2 gives an overview of all refactoring operations classified into basic refactoring
(BR) and composed refactoring (CR) operations. Note that operations, which do not pre-
serve information capacity if they are applied separately (design operations), may be
needed for composed refactoring operations, e.g., createClass in splitClass. Further, the
correspondences to the logical schema have to be maintained, cf. MappingOperations Fig-
ure 3.19.

name description kind
renameClass Updates the name of a class with a given new class name. BR
renameAttribute Updates the name of an attibute with a given new attribute name. BR
renameRelationship | Updates the name of a relationship with a given new relationship name. | BR
Aggregate Converts an association to an aggregation. Limited to associations inside | BR
packages.
Disaggregate Converts an aggregation to an association. BR
MoveAttribute Moves attributes from a class to an associated class via a given one-to- | BR
one relationship.
SwapAssocDirection | Exchanges the source and target of a given association. BR
renamePackage Updates the name of a package with a given new package name. BR
moveClass Moves a class from a package to another package if this class is not BR
aggregated to any other class. A constraint class cannot be moved alone.
unifyAttrs Merges two attributes to one attribute if they are related by a redundancy | BR
dependency.

Table 3.2: Refactoring operation overview

65




DATA-ORIENTED REVERSE ENGINEERING

name description kind

AssocToClass Replaces an association between two classes by an intermediate class CR
with two associations with calculated cardinalities to the initial two clas-
ses. Limited to relationships inside packages.

ClassToAssoc Replaces a class with two associations, both not many-to-many, to an CR
association with calculated cardinalities.

SplitClass Divides a class into two classes associated by a one-to-one association or | CR
aggregation and moves the given attributes to the new class.

MergeClasses Merges two classes associated by a one-to-one relationship or an aggre- | CR
gation into a single class.

moveClasses Moves a given set of classes from a package to another package if these | CR
classes are not aggregated to any other classes outside the given set.

MergePackages Merges two packages into a single package. CR

SplitPackages Divides a package into two packages and moves the given classes to the | CR
new package.

Table 3.2: Refactoring operation overview

3.3 Relationship Retrieval

The great data heterogeneity existent in web information systems and the various mecha-
nisms used to integrate the subsystems make relationship retrieval quite complex. There-
fore, we divide the retrieval problem into smaller problems, namely (1) the single schema
recovery (cf. Section 3.2), (2) extracting code fragments of interest from the web infor-
mation system and (3) the retrieval of relationships based on the extracted code fragments
and the single schemas.

Retrieving relationships between schemas makes sense only if these are considered as
completely reverse engineered. A complete schema in this context means complete after
data model recovery. Nevertheless, not all schemas have to be recovered; our incremental
process allows the addition of schemas later in the process such that relationships to these
schemas can then be retrieved. Due to results of the relationship retrieval those schemas
may have to be further analysed which can engender changes.

In contrast to the recovery of a single data model the inter-schema relationships are locat-
ed in access and management data components, i.e., application code. Hence a code re-
covery mechanism is needed. Since we are only interested in the data related aspects of
the code and parsing the entire existing code may not be scalable, we extract code frag-
ments of interest. In some cases simple incremental parsing will be sufficient. In more
complex cases we use island grammar parsing [VDK99, Moo01] and slicing [ Wei84].

66



RELATIONSHIP RETRIEVAL

For the relationship retrieval, we use a pattern instances detection mechanism of patterns
which interrelate data component model elements [Nie03]. The pattern instance detection
is based on a (design) pattern instance recovery mechanism [NSW-+02] which uses fuzzy
logic to express uncertainty [NWWO01, NWWO03]. Validation of detected relationships
which results in the adaptation of the associated fuzzy value can be done by several satel-
lite activities. Finally, the reengineer confirms or rejects the retrieved relationships.

3.3.1 Code Fragment Extraction and Parsing

Relationships between attributes of entities in different schemas may occur everywhere in
the application code and in various kinds. Such the problems we face for code fragment
extraction are to determine which fragments are fragments of interest and how these frag-
ments looks like. In case of web (thus, heterogeneous) information systems, however, the
extraction problem is even more difficult because it deals with multiple different program-
ming languages. Such we have to resolve an occurrence heterogeneity problem.

The code fragments of interest are those which manipulate the data. Such we have to ex-
tract all fragments that somehow accesses or manipulates the data through their corre-
sponding data structures. This implies that we have to know if the data manipulating
fragments are delimited by keywords and if they are multi-lingual.

In general, distributed transactions are used to ensure data integrity for the access and ma-
nipulation of multiple databases. The code used within such a distributed transaction may
be spread over a set of methods. In practice besides local method calls also remote method
calls are used. Within the application tier the current transaction context is propagated ei-
ther in an implicit [COS98, OTS98] or explicit [AOS+99] manner. The resulting transac-
tion boundaries can determine the relevant excerpt of code fragments for the analysis of
relationships. Such the fragments are delimited which reduces the lines of code dramati-
cally and allows us to handle also large applications.

Further, relationships are included in the application code where the database access is
done by using API’s provided by the database itself. For example, JDBC is a standard in-
terface to access various kinds of databases. The interface provides data structures which
can be accessed and modified in the Java programming language. Hence a complete anal-
ysis of an application is too expensive regarding the analysis time, we can use the JDBC
interface declarations as starting points for extracting fragments of interest only. This also
holds for specific in house interfaces.

An easy case of fragment extraction is when the data manipulation is done via query log
files. Query log files contain all the access and manipulation operations normally in the
database manipulation language, e.g., SQL. These files are called by the application code
to perform the data manipulations, such as done with scripts. Such a query log files can
be seen as a result of fragment extraction. In fact, in this case is more a fragment detection
than extraction. Nevertheless, the files also have to be located.

67



DATA-ORIENTED REVERSE ENGINEERING

To find the fragments of interest we apply two techniques: island grammar parsing and
slicing. The island grammar parsing covers the cases where the fragments are delimited
but not entirely the multi-language problem. Since we start from the data models, we
know the entities and attribute names. We can use a slicer to find all the occurrences of
these entities and attributes. To extract the fragments of interest, they do not need to be
delimited and multi-language fragments can be handled. The drawback of slicing is the
size and number of fragments extracted this way. Indeed, slicing the application code for
all entities and attributes would cover huge parts of the code. Only selective slicing is
manageable and scalable.

Therefore we define the following extraction process. We start with the identification of
fragments by using an island grammar parser, cf. Figure 3.20. So called islands are ex-
tracted according to the grammar definition. Next, in case that an island is encapsulated
in a method, we extract the method signature and slice the method calls backwards. Final-
ly, the such extracted code fragments are parsed and attached to the abstract syntax graph

representing the data component models.
1 island me= slice
abstract
D code Q step
syntax
information flow
graph o e

Grammar
Parser

N,

——>  backward slicing

L %
i == N

application code

[

Figure 3.20: Extracting code fragments of interrest

Island grammar parsing

To automate the extraction of code fragments of interest, we make use of parser technol-
ogy to import the legacy code into the abstract syntax graph that can be further processed.
This is not new and has been done for decades in numerous reverse engineering tools. To-
day, parsers, or parser generating grammars, are available for a wide variety of languages,
including database languages like SQL and programming languages like COBOL, C and
Java. These parsers have been used to build extractors for reverse engineering homoge-
neous systems, i.e., systems implemented in a single language.

In case of web (thus, heterogeneous) information systems, however, the extraction prob-
lem is more difficult because it deals with multiple different programming languages. Us-

68



RELATIONSHIP RETRIEVAL

ing multiple different parsers solves the problem only partially, because this approach
fails to capture the relationships between software artefacts written in different languages.
This problem gets worse for multi-language systems where certain languages are embed-
ded in other languages. This situation is typical for many web information systems: most
database management systems provide proprietary data manipulation languages embed-
ded in various host languages like C, COBOL, Java, etc. In addition, the code fragments
may contain code pieces from multiple modules integrated in the application tier via in-
teroperable interfaces [Cha96, Ib96, COR99].

Parsers for extracting relationships among distributed schemas have to deal with code
fragments, that are amalgamations of different languages including proprietary dialects.
This feature renders the reuse of existing parsers highly unlikely. In addition, experiences
show that the construction of multi-lingual custom parsers might become a fairly complex
task. The reduction of reverse engineering effort achieved by the resulting extractor may
be lost when building and adapting a multi-lingual custom parser. However, the code frag-
ments of interest are not arbitrary amalgamations of different languages but rather the well
separated code fragments executed within distributed transactions. Therefore, we can
simplify the task by looking at its specific characteristics.

Still, it is important to note that the code fragments of interest for extracting relationships
among distributed schemas are typically in a fairly small subset of the multi-language
grammar. Therefore, it is viable to construct more simple parsers that filter out only those
"interesting" parts of the multi-language syntax and ignore everything else. A naive way
of performing this filtering is using a pre-processing step with a lexical analyser such as
the Unix grep command.

Reverse engineering researchers have started to investigate more powerful approaches,
one of them being island grammars [VDK99]. An island grammar can informally be de-
fined as a set of production rules that describe the language fragments of interest (so-
called islands) plus another set of production rules that catch the rest (so-called water).
Obviously, the idea behind the concept of island grammars is to make the water signifi-
cantly less descriptive than the islands in order to decrease the complexity of the associ-
ated parser. For a formal definition of island grammars and how to build robust island
grammar parsers we refer to [MooO1].

The definition of an island grammar for our application, the extraction of relationships
among distributed, heterogeneous information systems, is a task that requires an intimate
understanding of the concept of island grammars and a highly explorative process. To
simplify this process, [Chu04] developes a tool for interactively creating island grammars
based on code examples of interest identified by the user.

This tool, called BUFFY, initially assumes that the entire input code represents water.
When the user identifies instances of interesting code fragments, BUFFY suggests a set of
island productions for this instance. Subsequently, the user can interactively correct and
refine these productions to characterise the associated island. Then, the user can generate

69



DATA-ORIENTED REVERSE ENGINEERING

public class Database implements DatabaseBackendInterface

public String getValue (int databaseConnectionID, String keyName, String table-
Name, String[] attributeName, String[] attributeValue, String[] type)
{
ResultSet result = null;
String sglString = "SELECT " + keyName + " FROM " + tableName + " WHERE ";
// loop around the array
for(int n = 0; n<attributeName.length; n++)
{
if( n == (attributeName.length - 1) )
{
1f( typeln].toUpperCase () .equals ("STRING") ||
typel[n].toUpperCase () .equals ("DATE") )

sglString = sqglString + attributeName[n] + " = '" +
attributevValue[n] + "'";
} else {
sglString = sglString + attributeName[n] + " = " + attributeValue[n];
}
} elsef

if( typeln].toUpperCase().equals ("STRING") ||
typeln].toUpperCase () .equals ("DATE") )

|
+

sqlString = sqglString + attributeName[n] + " =
attributevalue[n] + "' AND ";
} else {
sglString = sglString + attributeName[n] + " =
attributeValue[n] + " AND ";

|
+

}

String retValue = "Q@ERRORQ";

try {
this.lastUsedConnection.put ( new Integer (databaseConnectionID),

new Long(System.currentTimeMillis()) );

result = select( databaseConnectionID, sglString );
result.next () ;
retValue = result.getString( keyName );

} catch (Exception ex) {
retValue = "@ERRORQ";

}

return retValue;

Figure 3.21: Code fragment of interest

a prototype extractor and run it against other parts of the input code in order to verify if
this island recognises other instances of this pattern. Depending on the result of this veri-
fication step the user might iteratively refine the description of the island. Resulting, the

70



RELATIONSHIP RETRIEVAL

fragment extractor yields islands (code fragments) delimited by transaction boundaries or
method definition including the indicators for the relationship retrieval.

Figure 3.21 shows an example of a code fragment of interest. In this case it is the whole
method getValue. The island grammar production for this code fragment is relatively sim-
ple: fragments of interest contains the keywords ,,SELECT", ,, FROM* and ,,WHERE*
and methods build the fragments boundaries. Still, this fragment on its own is not a com-
plete indicator, to identify the elements involved further recovery is needed.

Slicing

To trace the use of code fragments of interest inside methods we employ slicing [Wei84].
Various notions of slicing have been proposed. For an overview we refer to [Tip95,
HGI8]. To slice the programs for nested method calls interprocedural static backward
slicing is appropriate. Starting from the method declaration the calls of this method are
sliced backwards.

in DatabaseBackendInterface:

public String getValue (int databaseConnectionID, String keyName,
String tableName, String[] attributeName, String[] attributeValue,
String[] type) throws RemoteException;

in DatabaseConnection:

public String getValue( String keyName, String tableName, String[] attribute-
Name, String[] attributeValue, String[] type)
{

String retValue = "";

try {
this.checkConnection () ;
retValue = this.databaseBackend.getValue ( this.databaseConnectionID,

keyName, tableName, attributeName, attributeValue, type);

} catch (Exception ex) {

if (this.out)

{

ex.printStackTrace () ;

}

retvalue = "";
}
return retValue;

}
in XMLWorker (lines 479 and 559):

roleid=this.databaseConnection.getValue ("roleid", "roles",

new String[]{"userid", "projectid", "rolename"},
new String[]{userid, projectid, "programmer"},
new String[]{"int", "int", "String"}):;

Figure 3.22: sliced code fragment of interest

71



DATA-ORIENTED REVERSE ENGINEERING

Figure 3.22 sketches an example where the method containing the code fragment from
Figure 3.21 is sliced backwards. Starting point is the method getValue in class Database.
Class Database implements the (abstract) class DatabaseBackendInterface where getVa-
lue is declared. In the class DatabaseConnection method getValue is called inside another
method getValue. Note that the method signatures are different. This second method get-
Value is finally called in class XMLWorker with concrete values.

The difficulty of such slices is to know the depth of nested method calls. Two solutions
are considered. Firstly, from our experience a depth of 3 is largely sufficient to cover all
nested methods until the call with concrete values. The drawback is that often the slices
produced are larger than required because the nested method call depth is less than 3. Con-
trariwise all nested method calls greater than 3 are not sliced to their end. Secondly, the
slicing can be done user-driven until the method call with concrete values. The drawback
here is that the fragment extraction is not longer automatic and thus user intensive.

We opt for the first solution because we search for indicators only. Moreover we try to
reduce the user involvement in this early activity. The example of Figure 3.21 and Figure
3.22 is of depth 1. The starting method declaration is getValue from Figure 3.21. The first
nested call 1s in class DatabaseConnection. The call in XMLWorker is not nested; it is the
call with concrete values. Note that the method calls sliced backwards of depth 2 and 3
were omitted in this example.

Parsing

Our pattern instance recovery approach is graph based. Therefore, we represent the sche-
mas as well as the manipulating source code as an abstract syntax graph. This abstract syn-
tax graph is an object-oriented graph, cf. [Ziin01, Nie03]. The code fragments are parsed
into abstract syntax graphs. Additionally, these (code fragments) abstract syntax graphs
are attached to internal schema abstract syntax graphs.

The output of the island grammar parser are either code fragments of interest embedded
in methods (followed by slicing) or standalone code fragments of interest. In both cases
the result will be an abstract syntax graph. In case that the corresponding method calls
have to be sliced the abstract syntax graph is not yet attached to schema abstract syntax
graph. The standalone code fragments are directly attached to the schema abstract syntax
graph.

The slicing results and query log files have to be parsed and attached to the schema ab-
stract syntax graph. In case of the slicing the linking elements are the method declaration
headers. Otherwise, the linking of the abstract syntax graphs is done via attributes and
classes of the object-oriented graph.

For mid-sized unilingual web information systems a sequential incremental parsing can
avoid code fragment extraction. The files containing code are parsed sequentially and the
resulting abstract syntax graphs are only stored temporally. An iterative process is then

72



RELATIONSHIP RETRIEVAL

needed that combines the parsing and pattern instance recovery. A file is parsed followed
by the pattern instance recovery. Only the recovered pattern annotations remain in the
schema abstract syntax graph and the code abstract syntax graph is deleted. Then the next
file is parsed and so on. Classes, attributes and method headers are directly parsed and rep-
resented in an abstract syntax graph. The method bodies are incrementally parsed on de-
mand. This parsing on demand has then to be triggered from the pattern instance retrieval
process.

3.3.2 Pattern Definition

Detecting instances of patterns for relationship retrieval requires that patterns be formally
defined, since informally described parts of the patterns are not amenable to (semi-)auto-
matic recovery. The most formal part of patterns is the structure part. In our approach pat-
terns (and subpatterns) are defined with respect to the abstract syntax graph. Subpatterns
define abstract syntax graph structures that are constituent parts of other patterns or sub-
patterns.

Using an abstract syntax graph representation has several advantages over using a textual
source code representation. It is easily combinable with representation of the schemas
which is generally done with graphs, in our case also with abstract syntax graphs. It avoids
white space and formatting problems. It automatically normalises the code for simple syn-
tactic variants such as ’SQL SELECT”’ vs. ,,Select”. Abstract syntax graphs also provide
additional information, such as identifier application and declaration links, that is useful
in further analysis.

We use a simplified abstract syntax graph model for readability reasons for examples in
this thesis. Figure 3.23 shows an excerpt of the type graph model underlying the pattern
definition as an UML class diagram. We omit the complete graph model and just present
the classes Node, ASGNode and Annotation. Each element of the abstract syntax graph is
represented by a corresponding subclass of class ASGNode. Each annotation used in a
pattern definition is a subclass of class Annotation. The attribute kind qualifies the pattern,
e.g. SELECT and Comparison in Figure 3.23. The Annotation nodes are associated to
Node nodes, i.e., ASGNode nodes or Annotation nodes, in the graph by a qualified asso-

<<abstract>> '
Node < annotation Annotation
0.n {qualified} 0.n
JAN kind: String

fuzzyValue: Float

ASGNode threshold: Float class
ﬁk <}—— generalisation

association

Figure 3.23: Type Graph Model

73



DATA-ORIENTED REVERSE ENGINEERING

ciation. The qualifier must be unique. The other two attributes of Annotation are used for
handling uncertainty in the retrieval process.

Recognising an instance of a pattern or subpattern in the abstract syntax graph under anal-
ysis results in the addition of a corresponding annotation. The oval-shaped node :SELECT
shown in Figure 3.24 is an annotation which identifies attributes refid and fileid as partic-
ipating in a select join. In generally, oval-shaped nodes are annotations which identify cer-
tain subgraphs of the abstract syntax graph as matching the named subpatterns. The
rectangles represent nodes of the abstract syntax graph. The nodes are linked together in
accordance to the underlying type graph model. The indirect link between class “Update-
Service” and :PTAssignment indicates that the assignment is contained in the class, i.e.,
abstract syntax graph nodes where omitted. Further we omitted abstract syntax graph
nodes in the WHERE clause and just show the :Comparison annotation.

// Select Jjoin embedded in Java code
result=this.databaseConnection.selectSQLVector (
"Select files.path
from product, files
where (product.refid = files.fileid)
AND
(files.name = updateFile )"
);

source
type -
:Class :Attribute ) :Class
e
name="Database- name="result” 3P name="ResultType”
Connection” lhs
:PTVariable B
methods | target o :PTAssignment f------- 1 Class
name="this . — P
- Ths name="UpdateService
:PTLink
:Operation Tight objects links
name:”selecj- Xyz node direct
SQLVector
@ annotation | - - - - indirect
params :Attribute
> type
| -Param | name="path
is :Class
name="files”
:SQLStatement |—| :F |7 ‘Class
I Q rom ontity — o~
name="product YD Atribute composed_by

—

:Attribute
- composed by
- name="fileid”
:Attribute type

> 5 t
comp left name="name ype

:Variable
name="updateFile”

:Comparison

Figure 3.24: Simplified annotated abstract syntax graph instance

74



RELATIONSHIP RETRIEVAL

In our approach each pattern is formally defined by a graph production. The correspond-
ing graph production annotates the abstract syntax graph with additional nodes and links
(the oval-shaped nodes and corresponding links in Figure 3.24) to indicate which sub-
graph of an abstract syntax graph correspond to the pattern. Such subgraphs can then be
used by rules defining other patterns that contain the defined pattern as a constituent part.

The rule definition is graph based, means the approach needs only a graph representation
of the schemas, code or any other graph representing information of a system, e.g. data-
flow or control-flow graphs. Therefore, the presented approach is not bound to any par-
ticular program language or any particular programming paradigm.

As an example of such a pattern definition, Figure 3.25 shows the graph production de-
fining a pattern which is an IND between two entities'. In the notation used, the subgraph
to be matched in the host graph is defined by the black nodes and edges. The subgraph to
be added is defined by the grey (green) node annotated with the stereotype <<create>>
and grey (green) edges. This simple notation can be used because the rules only add in-
formation to the host graph and never delete any. The formal definition and theory under-
lying such graph productions is given in [SWZ95]. The stereotype <<trigger>>, as well as
the values 100 / 0, will be explained later in this chapter.

:Class

String kind = "LSchema"

sche ema
ercreates

sClass enhtities IND entities sClass

String kind = "Entity" oo 7o String kind = "Entity"

atrs atrs
| vl
) composed_by composed_by . -
Attribute | SELECT : Attribute
imilarities similariti
Attrsim

Figure 3.25: IND pattern definition

Figure 3.26 shows an example of an SQL query which contains two INDs. We have oc-
currences of the SELECT and AttrSim pattern for (users.userid, roles.userid) and

1. Note that internally, i.e., in the abstract syntax graph, all schema elements are
represented in an object oriented graph like defined in [ZiinO1] and [Nie03].

75



DATA-ORIENTED REVERSE ENGINEERING

(roles.projectid, projects.projectid). Applying the graph production from Figure 3.25 to
this code will result in the annotations of two INDs. One between entities users and roles
and one between entities roles and projects. These three entities are part of the same log-
ical schema, i.e., from the DSD database (cf. Chapter 2). The resulting IND annotations in
the abstract syntax graph are shown in the lower part of Figure 3.26.

the role rname

// get the email addresses from project +mailModuleName+ for all persons having

result=this.databaseConnection.selectSQLVector ("Select users.email from us-
ers,roles,projects where

(users.userid = roles.userid ) AND (roles.projectid =

projects.projectid) AND (projects.name='"+mailModuleName+"') AND (roles.role-
name=rname) ") ;
:Class objects links
kind="LSchema”
name="DSD” node ——  direct
schema .
schemal i\lz/ annotation | - — - new
:Class entities entities Class
kind="Entity” [ =~ = 7 -] " d.—”E oo schema
name="users” mnd= ”n 1 Y I ~ - entities
1 name="roles -~ entities
attrs 1 it @ — - - :Class
joins ,I |attrs |a s kind="Entity”
:Attribute ‘ :Attribute :Attribute U name="roles”
EETRUETS PR ST oins
name="userid I/ name="userid name="projectid J “ composed_by | attrs
:Attribute
1—54 :SELECT ) —
composed_by @ composed_by composed_by name="projectid”

similarities @ similarities

similarities @ similarities

Figure 3.26: Sample IND code and annotated abstract syntax graph

Figure 3.27 shows the IND annotations presented to the reengineer, i.e., between entities

in the EER diagram.

cvs_passwoard: varchar (2559
dsdPassword: varchar (258)
email: varchar (50)

ullname: varchar (50)

roles

parentid: numeric (18, 0)
projectid: numeric (18, 0
roleid: numeric (18, 0)
rolename: varchar (50)
userid: numeric (18, 0)

ame: varchar {255)

cvsHostname: varchar (255)
cvsPart numeric {18,

rojectid: numeric (18, 0
repository: varchar (2548)
=ubprojectid: numeric {18, 0

)]

A

entities entities

zpatterns

IND
100

A

entities

A

entities

zpatterns

IND
100

Figure 3.27: IND annotations

76




RELATIONSHIP RETRIEVAL

An IND is a subpattern for an R-IND. In case that two entities were annotated with an IND
and that one side of the participating Attributes are a PrimaryKey we have an R-IND, cf.
Figure 3.28. To ensure that the Attributes composing the IND are chosen the SELECT an-
notation is used. Finally, we ensure that the IND was not already annotated as IIND be-
cause [-INDs and R-INDs exclude themselves mutually, cf. [FV95]. The IND examples
of Figure 3.26 are R-INDs because userid and projectid are primary keys of users and pro-
jects, respectively.

sCreates

:Class

:Class

String kind = "Entity" entities entities String kind = "Entity"

atrs atrs

Aot composed by ‘/E‘TE—JLE::T\‘ composed_by @
- Atribute \___,/' : Attribute

Figure 3.28: R-IND pattern definition

The graph productions for I-INDs and C-INDs are similar to the R-IND rule. Definitions
of these patterns and subpatterns, e.g., AttrSim, PrimaryKey or SELECT, can be found in
[Bew98] and [Jah99]. Note that annotations can also by added be the reengineer.

In case of inter-schema relationships the pattern definition, i.e., the graph productions, are
composed of elements of the conceptual schemas. Figure 3.29 shows the Association pat-
tern specification which is in analogy with the specification of an R-IND (Figure 3.28).
The code example shows an association between tblOutcomes in database outcomes_be
and Patient in database hospdata. The key is VHS_ID# from Patient. In analogy with R-
IND, Association and Inheritance exclude themselves mutually.

Finally, we present a definition of a redundancy dependency namely replication. The ex-
ample code of Figure 3.30 shows an INSERT query for tbiIDose followed by a nested
UPDATE / SELECT query that indicates replication. Attributes LastDose, LastPurpose
and LastRoute from hospdata.DrugProfile are updated with the corresponding attribute
values of Dose, Purpose and Route from tblOutcomes.tblDose. The WHERE clause can
be discarded for replication retrieval. The Replication pattern definition of Figure 3.30 ex-
actly covers such situations. However replication can be implemented in different ways.

71



DATA-ORIENTED REVERSE ENGINEERING

// get the the symtomes for a patient

SQL SELECT Patient.VHS ID#, tblOutcomes.symtomeDescription, tblOutcomes.Date,
tblOutcomes.Time FROM outcomes be.tblOutcomes, hospdata.Patient WHERE tblOut-
comes.VHSID = Patient.VHS_ID# AND Patient.SURNAME = :SN AND Patient.FIRST NAME
= :FN;

aireatas

Association
100/ 0

1Class affiggers 1Class
entities A entities ——
String kind = "Class" \E‘D String kind = "Class

atrs atrs
[
composed composed
:Attribute | P by SELECT i hy : Aftribute

Figure 3.29: Association code example and pattern definition

Defining a pattern for every possible implementation would result in a multitude of pat-
tern definitions and consequently graph productions. For this reason we group the defini-
tions. An example is the Comparison pattern:

* product.refid = files.fileid (Figure 3.26)
* DrugID = (SELECT DrugID FrROM ... (Figure 3.30)

In both cases a comparison of the attributes is done within the WHERE clause from a SEL-
ECT statement. The abstract syntax graph enables that one pattern definition covers both
implementations. Another example is the R-IND and Association pattern definitions.
These two patterns differ only in the schema they can be applied. If we ignore that the par-
ticipating entities are either entities or classes and treat an [IND as an Inheritance, both
pattern definitions are identical.

Figure 3.3 represents an excerpt of the domain model that underlies the pattern definition,
1.e., it gives an overview of the relationships and data dependencies. In the domain model
we do not distinguish between elements of the logical or conceptual schema. For example
we have entity, attribute, PrimaryKey, IND, association, inheritance, etc. Depending
whether we are in the logical or conceptual schema an entity is an entity or a class, or an

78



RELATIONSHIP RETRIEVAL

SQL INSERT INTO tblOutcomes.tblDose VALUES (dose id, PatientID, date, time,
drug, dose, route, purpose, provider, NULL, NULL, NULL);

SQL UPDATE hospdata.DrugProfile SET LastDose, LastPurpose, LastRoute SELECT
Dose, Purpose, Route FROM tblOutcomes.tblDose WHERE (VHSID = PatientID) AND

(DrugID = (SELECT DrugID FROM hospdata.Drugs WHERE Description = drug)) ;
gCreatas
iti icati entities
“Class entities Replication - Class
100 /0

gtriggers
xKtrs

similarities similarities .
: Aftribute || ‘/;ﬂ_r;r:’l\ : Aftribute

Figure 3.30: Replication code example and pattern definition

inheritance is an [IND or inheritance. Note that, e.g., INDs are annotated in both schemas
but only shown in the logical schema representation (EER diagram).

Nevertheless, grouping of annotations in the domain model and of pattern definitions still
results in a multitude of graph productions. We refer to [NWWO03] were this is shown for
association detection in Java code. We overcome this problem by introducing uncertainty
in our graph productions and thus pattern definitions. This will be discussed in Section
3.3.4.

3.3.3 Pattern Instance Retrieval

We described an effective formalism for defining a catalogue of patterns as the basis for
pattern instance retrieval. The retrieval process for pattern instances (in web information
systems) is inevitably an iterative one. Typically, the reverse engineer first applies an ini-
tial set of patterns, then repeatedly examines the results, adjusts the patterns to address
perceived deficiencies and reapplies them until a satisfactory outcome is achieved. To
support this process the engineer needs tool support that applies the pattern instance re-
trieval process to the system involved and displays the results obtained.

79



DATA-ORIENTED REVERSE ENGINEERING

To devise a tool that meets this requirement we adopt a threefold strategy. Firstly, we min-
imise the rule scalability problems by adopting the best available analysis algorithm. Sec-
ondly, we adapt this algorithm to deliver useful results incrementally rather than on
completion. Thirdly, we involve the reverse engineer in the analysis process, to avoid un-
necessary computation of unwanted analysis results. We give an overview of this strategy,
deeper details can be found in [Nie03].

The basic analysis algorithm

Pattern-based retrieval is a deductive analysis problem where patterns, or rules, are re-
peatedly applied to the abstract syntax graph to arrive at the most complete characterisa-
tion of the system permitted by the rules. Pure deductive analysis algorithms typically
apply the rules involved level by level, bottom-upl, according to their natural hierarchy,
and produce useful results only when analysis is complete. Results from other researchers,
such as [Qui94] and [Wil96], suggest that a reverse engineering tool providing fully au-
tomatic analysis based on this approach cannot scale for larger software systems.

Where patterns are defined as graph productions, as in our case, graph transformation sys-
tems are the natural choice for implementing the tool. However, the scalability problem
also applies to graph transformation systems such as PROGRES [Ziin95] or AGG [AGG],
which apply the rules in an arbitrary sequence usually determined by the internal data
structures used.

In practical application it has been experienced that rules are generally applied in a given
context. Therefore, FUIABATS, in contrast to other graph transformation systems, applies
rules given a context, normally one object in the graph. The advantage is that it reduces
the runtime complexity of the rule matching algorithm to polynomial size, whereas the
original sub-graph matching problem is NP-complete [Meh84]. This restriction to the
original theory of graph grammars has been shown not to be a problem. For more details
we refer to [Ziin01] and [FNTZ98].

By adopting FUJIABATS as the platform for our tool, we therefore reduce the problem of
scalability compared to systems using standard approaches to deductive analysis. For the
reverse engineer, however, this does not necessarily solve the performance problems in-
volved.

Adapting the analysis algorithm

Although FUIABATS reduces the computational complexity of analysis, a fully-automatic
tool based on FUIABATS is still undesirable, as the results are made available only when

1. In comparison, pure top-down approaches starting with top-level rules in the topology hierarchy
are only of theoretical interest, because of the search-space implied. Even when a specific rule is
identified for application, without an adequate starting context its top-down application is
impractical.

80



RELATIONSHIP RETRIEVAL

analysis is complete. Given that reverse engineering is an iterative process, such tool be-
haviour does not lead to an efficient overall process.

Suppose, for example, the Duplication pattern of Figure 3.31 does not include the attribute
similarity (AttrSim) check. The resulting false positives manifest themselves early in the
analysis, but the reverse engineer has to wait until analysis is complete to recognise them.
For reverse engineering, therefore, a semi-automatic process is likely to be more effective,
in which useful intermediate results are produced and the engineer is allowed to interact
with them, either to add information and request that analysis continues or to revise the
rule definitions and restart analysis.

zCreates
: Class entities Duplication entities
——— tClass
100 f 40 ===
atrs SELECT aftrs
COmpos, compaosed_hy

[ ——

: similarities similarities
s Aftribute | | @ - Attribute

Figure 3.31: Duplication pattern definition

To support such a process, the analysis algorithm itself must produce intermediate results
useful to the engineer as early as possible, and be amenable to interruption and resumption
without loss of results to date. Since the results most useful to the engineer are those pro-
duced by rules at the highest levels in the rule hierarchy, we adopt an analysis algorithm
which combines a bottom-up strategy and a top-down strategy. Note that the algorithm
affects only the execution sequence of patterns and does not violate their formalisation as
graph productions.

To define the algorithm, the dependency hierarchy of the rules is levelled, such that each
rule has a level number. A rule depending only on objects in the initial abstract syntax
graph gets number 1. A rule depending on other rules, i.e., whose definition includes an-
notations created by other rules, gets a higher number consistent with the natural topolog-
ical order of the rules. Rules included in cycles concerning their dependencies get the
same level number and are marked as recursive.

Figure 3.32 shows a snapshot of our analysis algorithm. The grey rectangle at the bottom
represents all objects in the abstract syntax graph. The black oval identifies an annotation

81



DATA-ORIENTED REVERSE ENGINEERING

already created by bottom-up analysis (with a link to the annotated object a1) while grey
ovals, together with the grey links, represent a top-down analysis in progress. Directed
arcs indicate the scheduling sequence of the rules. Variables at the arcs represent objects
passed to the scheduled rule as context. We omit the links for :AttrSim, :NS and :TC for
readability reasons.

~«—— execution direction

entities entities

annotating links

annotation

:Duplication

composed by il
part of

attrs attr

al:Attribute

il:INSERT | | a2:Attribute L3S 7-Class

cl:Class

| — | — | — | abstract syntax graph o | e |

Figure 3.32: Sample analysis execution

Bottom-up strategy

After the abstract syntax graph is created, the analysis starts in bottom-up mode. Initially,
all abstract syntax graph objects schedule level 1 rules, i.e., those depending on abstract
syntax graph objects only. Scheduling initially only level 1 rules is sufficient to ensure that
all necessary rule applications are eventually considered. It avoids many top-down fail-
ures that would otherwise occur, because the information available is not enough to estab-
lish a high level rule. Consider, for example, a Duplication rule scheduled by a single class
or attribute. The inherent search space is too large to justify its top-down investigation.

An object o scheduling a rule R creates a rule/context pair R(o) which is added to a bot-
tom-up priority queue held in descending order of rule level number. The use of rule level
numbers to order the rule/context pairs in the bottom-up queue is not critical. Any order-
ing that promotes higher-level rules will do. This fact can be exploited to further tune the
algorithm [NSW-+02].

The algorithm continues in bottom-up mode by dequeueing the first rule/context pair, in
our example INSERT(i1), cf. Figure 3.32. This rule is immediately applicable, so an IN-
SERT annotation j is created, annotating the attribute a1, which is accessible via the IN-
SERT object i1. In contrast to abstract syntax graph objects, which schedule level 1 rules

82



RELATIONSHIP RETRIEVAL

only, creation of'i schedules all rules depending on the INSERT rule, e.g., the top-level Du-
plication rule.

Since Duplication is a top-level rule, the pair Duplication(i) is taken next from the bottom-
up queue. At this point, however, Duplication(i) cannot be applied successfully, since an-
notations have yet to be created by the other rules on which Duplication depends (SELECT
and AttrSim).

Top-down strategy

When a rule that depends on other rules cannot be applied in bottom-up mode, the algo-
rithm switches to top-down mode, which uses a separate top-down priority queue. The
top-down strategy tries to make the other rules create the missing annotations based on
currently available information. In this case, the search space is quite strictly delimited by
the information available, e.g., that inherent in the :INSERT.

Consideration of Duplication(i) in top-down mode thus schedules the SELECT and the At-
trSim rules, cf. Figure 3.32. Where such rules depend on other rules, rule scheduling con-
tinues recursively. In our case, for example, the AttrSim rule now schedules NS rule and
TC rule, as Figure 3.3 implies.

To establish a Duplication consistent with i, the relevant context for the SELECT rule is
the INSERT annotation i. For the AttrSim rule the attributes a1 and a2 obtained from i and
s, respectively, are an alternative context, which have to be considered.

The rule/context pair at the front of the top-down mode queue is not dequeued if the rule
involved schedules other lower-level rules. Instead, pairs added to the top-down queue are
queued in ascending order of their level number. This means that the higher-level rule will
be reconsidered after the lower-level rules on which it depends (if these succeed). Using
a priority queue rather than a stack means that the top-down algorithm goes as far down
the abstract syntax graph as quickly as possible. This encourages earliest possible failure
in top-down mode, while maintaining an appropriate sequence of rule applications for
top-down success. If a rule marked as recursive is added to the top-down queue, however,
stack behaviour is adopted until all rules marked as recursive have been removed from the
stack/queue.

When the rule at the front of the top-down queue can be applied, a corresponding annota-
tion is created, all dependent rules are scheduled for bottom-up consideration, the front
entry of the top-down queue is dequeued and the next element of the top-down queue is
considered. The newly scheduled rules join the bottom-up queue since they represent
analysis results that would have been created later in bottom-up mode anyway and need
further investigation.

The algorithm runs in top-down mode until the top-down queue is empty or a rule in the
queue fails with no alternative contexts left to explore. The first case means that the rule
that started this top-down phase has been successfully applied, in our example the Dupli-

83



DATA-ORIENTED REVERSE ENGINEERING

cation rule. In the second case the starting rule cannot be applied in the given context. In
either case the algorithm switches back to bottom-up mode.

Intermediate results

With the algorithm as described, each annotation once created represents an intermediate
result that is not affected by subsequent analysis. In principle, therefore, the execution can
be interrupted for inspection of results by the engineer at any stage. In practice, however,
it is illogical to allow interruption during a top-down interlude, when some but not all of
a closely related set of annotations may have been created.

Since the algorithm tries to establish high level rules using the top-down strategy, the in-
termediate results are likely to be useful information for the reverse engineer, e.g., redun-
dancy dependency patterns. The engineer reviews such patterns to determine if the
analysis should continue on the current basis. The algorithm is also robust to certain
changes by the engineer prior to resumption. Addition of annotations by the engineer is
valid at this stage, provided these add all corresponding rule/context pair for dependent
rules to the bottom-up queue. Marking a rule as ‘to-be-deleted’! is also acceptable, as the
consequences of deletion can be systematically propagated to both the results to date and
the resumed analysis. Such actions may be useful to the engineer as ‘proofing actions’ pri-
or to permanent change to the rules themselves. Any addition or modification to the rules,
however, invalidates the analysis to date and requires restart of the overall analysis.

The overall analysis finishes when the bottom-up queue is empty. In this case the algo-
rithm has analysed all abstract syntax graph objects and created annotations on the objects
for all rules that could be applied.

Integration of the reverse engineer

Integrating the described analysis algorithm into a semi-automatic reverse engineering
process is easy because it is interruptible. Figure 3.33 shows our pattern retrieval process
as a statechart. The process starts by creating abstract syntax graph representation, fol-
lowed by loading a particular pattern catalogue. The engineer can then make initial mod-
ifications before starting the analysis algorithm by sending a start() event.

The complex state on the left-hand side with its two internal states bottom-up strategy and
top-down strategy represents the analysis algorithm described above. The algorithm halts,
and the reverse engineer can look at the results, if the algorithm has finished or the reverse
engineer interrupts the execution by sending a stop() event. As mentioned above, it is log-
ical to confine such interruptions to bottom-up mode purely for pragmatic reasons.

The reverse engineer then has the opportunity to look at the results to see if the patterns
selected still seem appropriate. By sending an adapt() event, he/she can mark patterns for
deletion or create annotations that will steer the algorithm to a part of the source code that

1. Note that the rules are not deleted but only marked as ’to-be-deleted’ for exploration.

84



RELATIONSHIP RETRIEVAL

he/she wants to have analysed. Resuming rather than restarting the algorithm systemati-
cally propagates the consequences of such changes to both the prior and subsequent anal-
ysis. If the analysis to date fails to meet the engineer’s needs in other ways, the patterns
can be modified, but in this case the whole analysis must restart from the beginning.

create abstract load pattern
syntax graph catalogue
analysis algorithm
(& I

bottom-up

modify, add,
delete pattern

start()
modify()

strate o
2y m =
[change \ 5
Strat] [change mark patterns for g
/ Strat] deletion; create
annotations

stop() or
[finished]

top-down

\ strategy /

adapt()

show
(‘load ’)‘ @ @ @ states (intermediate)
start() = control flow @ results

Figure 3.33: Retrieval process statechart

3.3.4 Handling Uncertainty using Fuzzy Beliefs

The performance of the retrieval process is crucial regarding the involvement of the re-
engineer in the process. The presented retrieval process solves the performance problem
only partially. As mentioned before large abstract syntax graphs, i.e., a large search space,
creates this performance problem. The large number of graph productions describing pre-
cisely a pattern intensifies the performance problem. Reducing the search space means
that the system is only analysed partially, i.e., information is lost  NWWO03, Nie03]. Re-
ducing the number of graph productions means to reduce the number of patterns covered
and thus get incomplete results. Identifying common parts of different graph productions
and replace them by one graph production leads to many false positives. The reengineer
is then not longer able to distinguish correct results from false positives.

Our approach is to allow reducing the number of graph productions and therefore get im-
precise results but also allow expressing the degree of impreciseness by assigning fuzzy
beliefs to the graph productions. In addition to the fuzzy results, our approach allows to
filter the results with fuzzy values higher than a certain threshold. This enables the reengi-
neer to profit from appropriate time-limit results and valuing the found matches of a pat-
tern. Our experience shows that even precise pattern definitions produce false positives.
Such this approach is a trade of between the number of graph productions and the number

85



DATA-ORIENTED REVERSE ENGINEERING

of false positives to produce rapid intermediate results with the benefit that the uncertainty
is presented to the reengineer.

Indicator Impreciseness

Another reason for adding impreciseness to graph productions is the impreciseness of in-
dicators that can be found in the code. This uncertainty problem of indicator-based retriev-
al processes is discussed [Jah99] in the context of (single) database reengineering
processes. The code example 2 of Figure 3.34 shows such indicator impreciseness for a
Duplication pattern. The two INSERT statements get the same value :DD and are precon-
ditioned to be ,,close® to each other, i.e., within the same transaction boundaries. Never-
theless we do not have the certainty that the value of :DD is not changed between the two
statements.

// example 1
SQL INSERT INTO bvmtdata.Deceased (DEATHDATE) SELECT Patient. (DEATH DATE) FROM
hospdata.Patient WHERE Patient.VHS ID# = Deceased.VHS ID#;

// example 2
SQL INSERT INTO bvmtdata.Deceased (DEATHDATE) VALUES :DD;

SQL INSERT INTO hospdata.Patient (DEATH DATE) VALUES :DD;

// example 3

DD = ,SQL SELECT Patient. (DEATH DATE) FROM hospdata.Patient WHERE Pa-
tient.VHS_ID# = PatienID;

SQL INSERT INTO bvmtdata.Deceased (DEATHDATE) VALUES :DD;

Figure 3.34: Code samples for duplication

Figure 3.34 shows three examples of possible code fragments that indicate duplication. In
each example the DEATH DATE of Patient is duplicated into DEATHDATE of Deceased.
These three occurrences of a duplication are covered by the graph productions of Figure
3.31 and Figure 3.35.

We introduce a so called fuzzy belief for each graph production that expresses its precise-
ness. The fuzzy belief of a rule is a value between 0 and 100. By this value, the reengineer
expresses his estimation that, e.g., 20% of all matches are false positives. Thus, 80% of
all matches would be correct and the value would be 80. In Figure 3.31 and Figure 3.35
the fuzzy belief is defined in the green Duplication annotations that are created when the
graph productions are applied. The fuzzy belief is the first value in the pair of numbers;
the second is explained in the adapted analysis execution. Note that a fuzzy belief of 100
for all graph productions is equivalent to the retrieval process where uncertainty is not
considered like described in Section 3.3.3.

86



RELATIONSHIP RETRIEVAL

:Class% attrs :Class}

: Aftribute

sAftribute I

B - en T
entities arities similarities

zireate

«rreate

Duplication
80/ 40

Duplication
80 ! 40

ins value

similarities similarities

entities en

ﬂﬂl attrs JI : Attribute : Class | attrs { - Attribute

Figure 3.35: Alternative duplication pattern definitions

Managing Uncertainty

An exact graph production for each implementation variant has the benefit of few false
positives in the analysis results, but it leads to performance problems because of the high
number of rules. We introduce further abstraction into the rule definitions so that one or
only few graph productions cover a large variety of implementations. This reduces the
number of rules and improves the performance. To define a new graph production with
further abstraction the reengineer, first, chooses a set of implementations or pattern defi-
nitions that should be covered by the new rule. Common parts have to be identified. The
common parts, then, form the new graph production. All implementations or patterns
from the set are then at least covered by this new graph production. In addition, there will
be implementations or patterns that were not intended to be found by the rule. Some of
them are not instances of the searched pattern, i.e., false positives. Others are correct
matches that were not considered when defining the graph production. This is a kind of
uncertainty that has also to be managed.

Figure 3.36 depicts a new graph production for Duplication that is designed to replace all
three graph productions from Figure 3.31 and Figure 3.35. Therefore, the definition of IN-
SERT and InsertValue were revisited. The nested INSERT / SELECT of example 1 as
well as the examples 2 and 3 in Figure 3.34 are covered by imprecise InsertValue graph

87



DATA-ORIENTED REVERSE ENGINEERING

productions. Consequently, all three examples are covered by the new INSERT definition
and thus by the Duplication graph production.

zrreates

tClass | entities Duplication entities :Class

70040

lriggers
: INGERT p——20 : Attribute

comppsed_by

screatas
INSERT
80 1 50

comppsed_by

atrs atrs

insetvalue

[ similarities similarities - Afiribut
: Attribute | | g

Insertvalue

Figure 3.36: Imprecise duplication and insert pattern definitions

The impreciseness of a graph production that stems from reducing the number of rules has
to be valued to be useful to the reengineer. The value should describe the ratio between
correct matches and all matches of a certain rule including false positives, i.e. the precise-
ness of a rule. After all applications of a rule, this ratio can be calculated. At the time of

the rule definition the number of false positives produced by the rule can only be estimat-
ed.

In our example we estimate that 30% of all matches for Duplication are false positives. We
reduced it compared to the three ,,precise graph productions. Only the indicator impre-
ciseness was considered so far. Thus, the ratio is 70. For the INSERT annotation we esti-
mate the ratio to 80.

Adapted analysis execution

In the following we revisit a part of the algorithm to show how the fuzzy values of the
results are calculated and influence the analysis execution. The graph productions create
annotations with a certain fuzzy value. The fuzzy value is calculated during rule applica-
tion for each match of the graph production. They are stored in the fuzzyValue attribute
of the Annotation nodes (cf. Figure 3.23). The fuzzy beliefs of the graph productions are
the basis for the fuzzy value calculation. The fuzzy value of a match is computed as the
minimum of the fuzzy values of all annotation nodes occurring in the match and the fuzzy
belief of the rule [Jah99, Nie03]. Thus, calculation of the fuzzy values is similar to fuzzy
grammars, cf. [Zad65].

88



RELATIONSHIP RETRIEVAL

To apply the Duplication graph production of Figure 3.36 two annotations (:INSERT and
:AttrSim) are needed. The fuzzy belief of the Duplication graph production is 70. In Figure
3.37 a cut-out of the graph during an analysis execution is shown. The INSERT graph pro-
duction has created an annotation i with value 80 on insert i1. Upon this annotation i the
Duplication graph production has created annotation d. Since a Duplication also needs an
AttrSim annotation top-down analysis is performed to detect a with value 95. A fuzzy val-
ue of 70 (the minimum of 80, 95 and 70) is assigned to the annotation node d. The fuzzy
belief of 70 of the Duplication graph production is the minimum, compared to 80 and 95
of the other two annotations. Thus, the fuzzy belief of the graph production is an upper
bound for the fuzzy values computed.

- CXCCUUO“ dil‘CCliOll ann()tuti()n
. ot annotating links - .
anlcatlon E ‘ ASGNode

70
entities

a:AttrSim
95

similarities

LINSERT
80

similarities

composed by

attrs attr attrs

c2:Class

al:Attribute il:INSERT

cl:Class

g N |_| abstract syntax graph a2:Attribute |_attr | i2:INSERT

Figure 3.37: Sample analysis execution with fuzzy values

A node in the graph production may have multiple valid matching annotation nodes in the
host graph that have different fuzzy values. In that case the annotation node with the max-
imum fuzzy value is chosen as match such that the new annotation created by the graph
production application uses the most reliable source of information. Assume that later a
second annotation i:INSERT with value 60 is detected. This annotation would not be con-
sidered furthermore because it has a fuzzy value of 60 which is lower than the fuzzy value
80 of annotation i used in the match of the Duplication. Therefore, the fuzzy value of an
annotation corresponds to the maximum fuzzy value of all derivations of the annotation,
cf. [Zad65].

As a way to limit the graph production applications to reasonable cases we introduced
thresholds, cf. attribute threshold in Figure 3.23. In Figure 3.36 the threshold is defined in
the grey (green) annotation nodes that are created when the graph productions are applied.

89



DATA-ORIENTED REVERSE ENGINEERING

It is the second value in the pair, i.e., 40 for Duplication and 50 for INSERT. In our sample
analysis execution of Figure 3.37 the value of the annotation i is 80. The annotation d is
created because 80, as well as 95 later for a, is greater than 40 (the Duplication threshold).

If any annotation that is part of the subgraph to match has a fuzzy value lower than the
threshold, the graph production would not be applied. This helps to minimise computation
time and memory resources that would otherwise be used for investigation of unreliable
and imprecise information. Thus, the thresholds improve the scalability of our approach.
They are chosen by the rule developer based on personal experience and/or historical data.

Note that the threshold of the Duplication (40) is lesser than the threshold of INSERT (50).
Defining the threshold of a subpattern (INSERT) higher than the threshold of a pattern
(Duplication) based on this subpattern makes only sense if the pattern is based on another
subpattern (AttrSim). In case that the annotation a would have a fuzzy value of 30 the Du-
plication is not created because the value 30 is lesser than the Duplication threshold of 40,
but a does not affect the INSERT subpattern with threshold 50.

Tuning Fuzzy Beliefs and Values

One problem remaining in this incremental semi-automatic pattern instance retrieval pro-
cess is the exact choice of the fuzzy beliefs and thresholds of the graph productions. Both
values are estimated by the reengineer or at the best adapted manually over the time by
the reengineer during the incremental process. In [Nie03] an automatic adaptation of the
fuzzy beliefs and thresholds is presented. This adaptation is based on the comparison be-
tween the given values and calculated values from pattern instance occurrences based on
the corrections of the reengineer.

The impreciseness of the indicators can be further reduced. Therefore validation of detect-
ed relationships, which results in the diminution, confirmation, attenuation or augmenta-
tion of the associated fuzzy values, is done by several satellite activities.

One possibility to verify assumptions is looking at the data, e.g., checking a primary key
by validating the uniqueness of each data column. Assume that a column, which is anno-
tated to be a primary key, contains identical values several times. This indicates that the
primary key assumption may be false. The number of counterexamples relative to the
number of present data determines the fuzzy value in this case, cf. [Jah99]. Note that if no
counterexample is found for enough present data the fuzzy value will be augmented.

Finally, the reengineer has to accept or reject the annotations [Jah99, Wen01, Nie03]. An
annotation that is confirmed by the reengineer is attributed a fuzzy value of 100. In case
of rejection the fuzzy value is set to 0. For this activity of confirming or rejecting annota-
tions, the reengineer has the possibility to look into the code. Slicing the involved entities
for a recovered relationship shows uses of the entities different from pattern instances in-
dicators. Some code fragments may not be covered by the island grammar parser and/or
the pattern instance retrieval and can therefore provide further information to the reengi-
neer.

90



RELATIONSHIP RETRIEVAL

Figure 3.38 shows some annotations from the examples of Section 3.3. We see the Asso-
ciation between Patient and tblOutcomes (Figure 3.29) and the Replication between Drug-
Profile and tbiDose (Figure 3.30). The Duplication between Patient and Deceased (Figure
3.34 and Figure 3.36) is Confirmed by the reengineer. The association profile was retrieved
as R-IND in the logical schema and mapped to the conceptual schema.

spersistents

Deceased "
< entities
colfapsed -
# k4
i spatterns
< entiies A - Duplication
gsociation - "
- entities » «persistents < entities 70
ot Patient Confiri
spersistents Reiect
coliansed .
thiOutcomes Setvalue
colfapsed o
prafile
W
zpatterns a.n
itz L] Bntities > epersistents
100
DrugProfile
ersistent:
* ’ < entiies coliapsed
thiDose
collapsed

Figure 3.38: Annotated conceptual view

zphersistents
< deathdate

Deceased o
- SSCOpy=s
collapsed & oy
0.1
epersistents «persistents
< outcomes  ==inter-schema== -
thiOutcomes Patient
a.n 0.1
collapzed [+ colfapsed [
0.1
profile
"
o.n
«persistents . .
==replica== drugdose = «persistents
thiDose
.n o.n DugProfile
colfansad [+

coliapsed [

Figure 3.39: Conceptual schema view (data dependencies)

91



DATA-ORIENTED REVERSE ENGINEERING

Finally, when the reengineer confirms a data dependency pattern instance it is trans-
formed into an association with the corresponding stereotype, cf. Figure 3.39. Note that
the reengineer has the possibility to confirm all pattern instances greater or equal a cust-
omisable fuzzy value.

3.4 Tool Support

The tool support for the data-oriented reengineering process is located in the REDDMOM
project. REDDMOM is mainly based on the FUIABATS and part of the FUIABA Reengineer-
ing tool (FUJIABARE). FUJABATS has a plug-in architecture allowing developers to add
functionality easily while retaining full control over their contributions. This plug-in ar-
chitecture enables extension and integration at the meta-model level. Details can be found
in [BGN+03].

REDDMOM (and FUJABARE) uses this plug-in architecture to reuse and combine existing
tools. Figure 3.40 shows an overview of the REDDMOM tools for data-oriented reverse en-
gineering. Several figures in the precedent sections show screenshots from the different
tool user interfaces. The grey rectangles represent tools from other universities that we
use. Dashed rectangles express that the tools in question are (largely) generated. The tools
inside the grey area were developed in FUIABARE. The remaining tools were constructed
in REDDMOM.

Data Model Parser

We use the JDBC API as interface to parse the physical data models of the different data
sources. Presumed that a JDBC driver exists for a data storage facility the Data Model Par-
ser can parse the data structure. Note that meta-data can only be parsed if they were in-
troduced in the data repository. An XML parser and especially an XMLSchema parser is
currently inserted in FUTABARE. From the output of these parsers the corresponding ab-
stract syntax graph is directly created.

EER Editor

The EER Editor represents the logical (schema) abstract syntax graph in an EER diagram,
1.e., entities, attributes and relationships. We added specific data reverse engineering con-
structs, e.g., views or variants, to the editor. It is similar to the analysis Front-end of the
VARLET ANALYST [Jah99]. The schema elements and detected pattern annotations are
represented. The reengineer can apply schema transformations (e.g. createRIND) and an-
notation related operations (e.g. confirmAnnotation or setFuzzyValue).

Triple-Graph-Grammar Editor

To provide inter-model consistency between the logical and conceptual schema we use
triple-graph-grammar rules, cf. Section 3.2.3. These rules can be defined in the Triple-
Graph-Grammar Editor. From these rules in a first step story diagrams are generated and

92



TooL SUPPORT

_ — _ generated/generates
—» information flow

Tranformation Editor
(schema ASG model)

Data Model
Parser
(via JDBC)

A

Information

A

y

Triple-Graph-
Grammar Editor

(mapping graph model)
I

System \ 4 \ 4
EER Editor Mapping UML Editor
(logical schema l Rules (conceptual schema
ASG model) L—== ASG model)
r - d | i
C((J) e/I;a(l)rEer provided by
ava .
JavaCO) »|  Pattern FUJABARE
il U Instance
Retrieval | — — Pattern
Java Slicer (GFRN/FPN) |¢&———— Specification
P (BANDERA) Editor
I (schema ASG model)
v _ 1 _ _
<+“—>

[sland Grammar
o

L

I

Parser |
(BUFFY, MANGROOVE)

Domain Reengineer

Expert

Figure 3.40: Architecture of the REDDMOM reverse engineering tools

in a second step Java code is generated with FUIABARE, see Figure 3.12 to Figure 3.17.
The mapping graph model (Figure 3.11) connects the logical and conceptual model via
the FUTABATS meta-model integration pattern [BGN+03].

Mapping Rules

The Mapping Rules are the generated Java code from mapping rules defined as triple-
graph-grammar rules in the Triple-Graph-Grammar Editor. For runtime optimisation we
ordered the rule application sequence and assign each rule a context with an input param-
eter, i.e., a node of the abstract syntax graph where to start the sub-graph matching.

93



DATA-ORIENTED REVERSE ENGINEERING

Transformation Editor

The reengineer can define basic graph transformations with REDDMOM, cf. Figure 3.18.
The Transformation Editor enables the reengineer to construct composed graph transfor-
mations out of basic or composed graph transformations. In REDDMOM the Transformati-
on Editor permit the construction of graph transformations for the logical as well as the
conceptual schema, cf. Figure 3.41. Wildcards are used to assign the parameters of the
SplitClass operation to the parameters of createClass, createAssoc, moveAttribute, etc.,

cf. Figure 3.19.

ﬂ Create a new composed transformation

f Select Transformations r Assign Parameter Wildcards r Specify Composed Transformation |
Specify details for composed transformation

Composed Transformation Name SplitClass |

ActionlD

Specify parameter details

Parameter Hame agor

Parameter Type hoolean | -

Remove Parameter | | Add Parameter |

Wildcard Parameter Mame | Parameter Type |

claz cl Class

name new Ik arme string

namez2 assochlame string

ralet srcRole string

role? tarRole string

attrs attrs lterator

SALgr agar hoolean

Figure 3.41: SplitClass composed transformation example

Code Parser

The abstract syntax graph is produced by the JavaCC source code parser [JCC]. Our Code
Parser can read SQL and Java. The Java parser stems from FUJABARE and REDDMOM
added the SQL parser. The Java parser is incremental, i.e., classes, attributes and method
headers are directly parsed and presented in an UML class diagram. The method bodies
are only parsed on demand when a user wants to see a method body. Both parsers are cur-
rently adapted to incrementally parse files, like described in Section 3.3.1. We refer to

[Sch01] for incremental parser details.

94



TooL SUPPORT

UML Editor

The UML Editor covers UML class diagrams, views [RecOl] and story diagrams
[FNTZ98] with the respective functionalities. It is the core of FUIABATS together with the
Java code generation. REDDMOM added stereotypes for associations to the class diagram.
The story patterns, i.e., the activities in story diagrams, were extended with a path con-
struct.

Pattern Specification Editor

The Pattern Specification Editor was developed in [PalO1] and part of FUTABARE. In Sec-
tion 3.3.2 several pattern definitions are shown. Further, the Pattern Specification Editor
contains a pattern catalogue, that is automatically created during pattern specification,
which shows the dependencies between the pattern graph productions, cf. [Nie03].

Pattern Instance Retrieval

The Pattern Instance Retrieval tool is based on the Generic Fuzzy Reasoning Nets
(GFRN) [JSZ97, Jah99]. The analysis execution takes place on Fuzzy Petri Nets [KM96].
Details of the implementation can be found in [Wen01] and [Nie03]. This tool is part of
FUJABARE and runs the algorithm presented in Section 3.3.3 and Section 3.3.4.

Island Grammar Parser

Island Grammar Parsers can either be generated by MANGROOVE or BUFFY. Both tools
are prototypes from other researchers; we present them shortly.

Mangrove [Moo01] is a parser generator that takes an island grammar in SDF [HHKRS89]
format and produces an extractor for this (partial) language. The definition of an island
grammar requires an intimate understanding of the concept of island grammars and is a
highly explorative process. Still, simple island grammars can also produce good results.

BUFFY [Chu04] generates extractors based on code fragment examples. The user intro-
duces an interesting code fragment into BUFFY. Then, BUFFY suggests a set of island pro-
ductions for this instance. Subsequently, the user can interactively correct and refine these
productions to characterise the associated island. Then, the user can run the generated ex-
tractors against the code and verify the island definition. Depending on the result of this
verification step the user might iteratively refine the description of the island.

Java Slicer

BANDERA [HDZ00] is a Java model checker which incorporates a Java Slicer. This slicer
enables the detection of method calls of code fragments of interest such as described in

Section 3.3.1 and the slices for entities involved in a retrieved relationship, cf. Section
3.3.4.

95



DATA-ORIENTED REVERSE ENGINEERING

3.5 Related Work

Considerable effort has been made to develop concepts and methods to reverse engineer
legacy information systems. Some of these methods have been implemented in computer-
aided reengineering tools to automate laborious activities and reduce the complexity of
the data reengineering problem. As the persistent data structure is the central part of a leg-
acy information system [Aik96], many approaches focus on

* data model (database schema) analysis and/or
» model (schema) translation and transformation.

Most existing approaches to data model analysis aim to recover a complete model (logical
schema), e.g., [PB94, SLGC94]. Premerlani and Blaha propose a set of simple, loosely
coupled tools for textual search and data analysis, e.g., grep, awk-scripts, and predefined
database queries [PB94]. Signore et al. present a knowledge-based approach based on
backward reasoning to infer schema constraints from collected indicators [SLGC94]. An
example for an approach that annotates schemas semantically is presented in [RH96,
RH97] based on the idealistic assumption of a structurally complete schema description
[HCTJ93].

Various algorithms for canonical translation of logical to conceptual schemas (e.g.,
[BDH+87, NA87, JK89, MM90, SK90, And94, PKBT94, MCAHO9S5, Fon97, RH97]) are
fully automatic approaches and often make unrealistic assumptions about the quality of
the legacy system, like structurally complete schema description. All these approaches
provide very little support for iteration and in particular lack the ability to detect and prop-
agate inconsistencies between a (modified) legacy system and its representation.

Vossen and Fahner suggest combining an initial automatic translation with a subsequent
manual transformation phase but do not provide any tool support for this human-intensive
activity [FV95]. In [BGD97], Behm et al. propose an interactive schema migration envi-
ronment that provides a set of alternative schema mapping rules. In this approach, which
is similar to the migration environment presented in [JSZ96], the reengineer repeatedly
chooses an adequate mapping rule for each schema artifact that has to be mapped. It
turned out that the set of rules become very large and that a transformation phase after an
initial translation phase is much easier for the reengineer. Jeusfeld and Johnen propose an
approach to schema migration that employs a generic meta-model as mediator [JJ94]. The
advantage of this approach over direct translation is questionable as it was only evaluated
for translation of relational schemas to ER schemas.

The observations described by Blaha and Premerlani motivate user-centric, interactive re-
verse engineering approaches [BP98]. Indeed, one of the most important limitations of
most data reverse engineering tools is that they do not consider the evolutionary and ex-
ploratory nature of the reengineering process [HEH+95]. Therefore, Hainaut et al. skip the
initial translation step completely and also use a common generic data model that sub-
sumes conceptual constructs as well as logical (and physical) constructs [Hai89,

96



RELATED WORK

HHH+96]. In the DB-MAIN tool [EH99], the reverse engineering process is invoked by
predefined scripts which look at the application code [HHH+99] to extract data structures.
Data depenpency elicitation is supported through variable dependency graph and program
slicing [HHO1]. Based on the common data model, they have defined a catalogue of sche-
ma transformations which are used to gradually replace low-level implementation con-
structs by more abstract concepts [HTJC94]. However, the execution of in-place
transformations impedes the iterative process because the original (logical) schema im-
plementation is lost during the process.

A notable exception is VARLET [Jah99] that covers all phases of database reverse engi-
neering from schema recovery up to building a conceptual schema. In VARLET an inter-
active process to handle uncertainty and inconsistency during recovery of information
models (comprising relationships) is based on Generic Fuzzy Reasoning Nets [JSZ97]
which revert to code and data analysis. Moreover it considers variants structures that are
largely used in forward engineering [BCN92, HHEH96] during analysis. This analysis
phase is followed by an initial automatic translation and schema transformation. It pro-
vides many adapted conceptual redesign transformations proposed by [BP98]. The VAR-
LET approach is limited to single schemas.

Valuable stand-alone approaches exist that focus on the retrieval of semantic constraints.
Relationship retrieval based on stereotypical (code) patterns are presented in [PKBT94,
PTBK96] and [And94]. Soutou presents an algorithm to recover n-ary associations
[Sou98b] followed by a method to retrieve aggregations [Sou98a]. In [BR97] methods
from the inductive logic programming domain are adopted to detect relationships.

All these data reverse engineering approaches are limited to one model (single schema)
analysis and do not consider distributed schemas. They lack the flexibility for recovering
inter-schema relationships. An overview of reverse engineering methods and tools that
can further be used and adapted for data reverse engineering is given in [MJS+00]. The
field of recovering inter-schema relationships is poorly explored.

A catalogue for inter-database/-schema dependencies has not been published yet. Rusink-
iewisz et al. [RSK91] present two examples of interdatabase dependencies: (1) replicated
data that is characterised as "identical copies of data in two or more databases" for which
"we can tolerate inconsistencies (...) for no more than one day" by the authors; (2) exis-
tential constraints which are, e.g., referential integrity constraints requiring immediate up-
dates. Both correspond to the redundancy dependency with respect to copies that have to
be kept consistent. Our approach also discovers possible redundant data by duplicated
schema elements.

A theory of attribute equivalence in databases on a semantic basis is presented in
[LNES89]. The approach uses semantic attribute equivalence for integration of database
schemas. Therefore, the characteristics of the attribute equivalence are very detailed and
restrictive. In contrast to schema integration, schema reverse engineering needs flexible
and general attribute property (characteristic) definitions.

97



DATA-ORIENTED REVERSE ENGINEERING

Identifying and solving conflicts in inter-schema knowledge in cooperative information
systems has been presented in various references, e.g. [BLN86, CL93, TGF00]. In these
approaches the discovery and representation of inter-schema assertions is studied to
"make explicit the knowledge which a human integrator uses implicitly to identify seman-
tic similar schema concepts" [TGFO00]. This is different from the inter-schema knowledge,
i.e., explicit dependencies between the distributed databases, we retrieve.

Several approaches exist for pattern recognition. Harandi and Ning [HN90] present pro-
gram analysis based on an Event and Plan Base. The analysis process starts by firing ru-
dimentary events constructed from source code. Plans define the correlation between one
or more (incoming) events and they fire a new event corresponding to the intention of the
plan. Each plan definition corresponds to exactly one implementation variant, which leads
to a high number of definitions. This applies also to the approach of Paul and Prakash
[PP94], where a matching algorithm for syntactic patterns based on a non-deterministic
finite automaton is introduced.

An approach to recognise clichés, i.e., commonly used computational structures, is pre-
sented in [Wil96], within the GRASPR system. Legacy code to be examined is represent-
ed as flow graphs by GRASPR, clichés are encoded as an attributed graph grammar. The
recognition of clichés is formulated as the sub-graph parsing problem which is NP-com-
plete [Meh84]. This approach allows analysing only some thousand lines of code, which
was sufficient to detect data structures or search and sorting algorithms. Applying the ap-
proach to larger programs had failed.

Kramer and Prechelt [KP96] use Prolog in order to detect design patterns [GHIJV95] in
C++ source code. The source code is parsed into facts and rules describing the relations.
Prolog’s execution mechanism applies the rules in arbitrary sequence and uses back-
tracking where necessary. The approach is able to analyse larger programs, but its precise-
ness is very low, because the approach uses information of header files only. An analysis
of method bodies is not supported.

An approach producing more precise results is presented by Antoniol et al. [AFC98,
TA99]. They use metrics, such as the number of method calls within a method body, to
include a method body analysis without time-intensive graph productions. Unfortunately,
the used metrics are inadequate to express detailed information, e.g. method calls within
loops. Therefore, a lot of false positives remain.

Keller et. al. present an approach [KSRP99] to recover design patterns. Patterns are de-
fined using UML and a pattern matching algorithm matches patterns on an abstract syntax
graph representation of the source code, also using the UML notation. The matching pro-
cess is executed using scripts and adoption of patterns is hard to follow especially when
patterns are highly interrelated. In addition Seemann and von Gudenberg [SvG98] present
an approach to recover design patterns starting with inheritance relations, call graphs,
naming conventions, and programming guide lines. The pattern definition of higher order
patterns allows a reverse engineer to compose patterns out of subpatterns and reduces

98



SUMMARY AND FUTURE WORK

thereby the number of definitions. Both approaches are also feasible for the pattern based
analysis task, but cannot deal with large programs.

Radermacher [Rad99] uses the graph rewrite system Progres [Z{in95] to match patterns
on the program. Patterns are defined as graph transformation rules and thus similar to
ours. Radermacher uses the execution mechanism of the Progres environment, whereas
the execution is not incremental.

3.6 Summary and Future Work

In this chapter we presented our data-oriented reverse engineering process to legacy (web)
information systems based on existing approaches and tools. The chapter started with a
process overview. Then we presented a classification for relationships of data component
models in web information systems. After sketching our way of data component model
representation, the process was presented. Based on the VARLET approach [Jah99] we pre-
sented the data model recovery that consists of schema recovery, hidden schema part re-
trieval, schema mapping and schema refactoring. The relationship retrieval started with
code fragment extraction and parsing based on island grammars [vDK99] and slicing
[Wei84]. The pattern instance retrieval, based on Niere’s approach [Nie03], was present-
ed in three steps: the pattern definition, the inference algorithm and the handling of uncer-
tainty. Finally, we pointed out tools that support the iterative nature of this process.

The hard part of this process is the relationship retrieval. Several additional indicators can
be used for tuning the certainty of the retrieved relationships. Data profiling tools, e.g.,
SAS/STAT®!, dfPower® Studio? or Evoke Axio™?, permit to find schema overlapping,
schema incompleteness or redundancy. Rank aggregation techniques, e.g., like presented
in [SA03], enables a relationship weighting. In analogy, the number of identical (similar)
indicators can be used for tuning. This also holds for software clones. In case that we find
multiple indicators for the same relationship but that the code fragments in question are
clones, the fuzzy value may be adapted. Dead code analysis that finds out if the code frag-
ments are still executed, may also be used to adapt the fuzzy value of a retrieved relation-
ship. Note that relationships detected in dead code are also of interest and should not be
rejected automatically. Finally, the pattern based recovery can be extended to dynamic
analysis [Wen03]. For code fragment extraction the Multi-Language Tool [LCBOO03],
which detect dependencies between Java and C/C++ code, can be adapted to our purposes

1. http://www.sas.com
2. http://www.dataflux.com/
3. http://www.evokesoft.com

99



DATA-ORIENTED REVERSE ENGINEERING

100



CHAPTER 4: DATA COMPONENT

EXTENSION

He who moves not forward, goes backward.

JOHANN WOLFGANG VON GOETHE
German dramatist, novelist, poet & scientist (1749 - 1832)

4.1 Extension Approach

After understanding the web information system, the next step is to extend it in order to
meet new requirements. Our approach focusses on the modelling of new applications and
schemas, followed by the integration of these models. In Chapter 3 we describe how con-
ceptual data component models of a legacy web information system can be retrieved. We
base our extension approach on these retrieved models, i.e., models of the old data com-
ponents, and the models of the new data components. Figure 4.1 shows the system parts
considered for data component extension. The central parts are the conceptual models that
permit, among other things, to generate access to the databases of the legacy web infor-

mation system.

new App. | | new App. | |

new App. | |

new App.

i 1 1

A

_

CSp

CS1 CSm | CSnI/ g

P 5

appli-

data- logical E' cnnccplu\l
L) base chema schema cation

model

partial appl. cluster

data access

— information flow

relationship

Figure 4.1: Web information system adaption

101



DATA COMPONENT EXTENSION

The process of data component extension consists of integrating the different retrieved
parts and new parts to (clusters of) data components. The integration of data components
requires the following activities: Data Component Clustering, Classification and (Re)De-
sign, cf. Figure 4.2. These activities are preformed iteratively by the reengineer. Then, we
(re)structure the web information system with architectural patterns. We conclude the in-
tegration with the Generation of a data access layer and Model Execution.

Data-Oriented Reverse
Clusters ]'I

_ - ¥ Engineering

-

| Data Components h «°~ T
| v
1 N |

i =5

1.1. Data Component
Clustering

1.2. Data Component

Classification
Classified l

Data Component
(Re)Design

Clusters

Corporate Data Ubiquitous Data
2. Architectural Components Components

Pattern — o
Application Data Mediation O prototype
Components system

@ activity
data component

A 4 Web I:I——l cluster
. (&

¢ ) 33_5(;1;\;2?;(1)11 Information Ousus and experts
Domain Reengmeer Execution System —» information flow
Expert link to previous

<“-> process step

Figure 4.2: Data Component Extension: Overview

The Data Component Clustering is the starting point of our approach. We use the data
components knowledge retrieved during the reverse engineering phase to cluster the sys-
tem into data components. This supports the reengineer during data component integra-
tion.

Then, the data components are classified in either Corporate Data Components, Data Me-
diation Components or Ubiquitous Data Components. This classification helps to de-
scribe the data components’ functionality and the actions they perform. Of course, during

102



DATA COMPONENT CLUSTERING AND CLASSIFICATION

the classification some data components may need to be adjusted concerning their cluster
affiliation.

During Architectural Pattern Application the web information system is (re)structured fol-
lowing four architectural patterns we propose.

During these activities, the reengineer may redesign data components that exist. Data
component parts, that are strongly related, have to be refined and / or adapted. Missing
data component parts or data components which are needed for new functionality have to
be designed. Data Component (Re)Design enables the reengineer to implement these
parts with design patterns, like suggested by [GHJV95], and/or to use (Re)Design Trans-
formations we propose. Since design patterns and model-driven design are well docu-
mented and understood, we pass on explaining it in this thesis and only consider it for tool
support, cf. Section 4.5.

The retrieved models enable the Generation of object-oriented access layers for the legacy
databases. Of course, this can also be done for new schemas/databases if they are mod-
elled accordingly. Further, this approach enables the modelling of functionality such that
data components can interact, i.e., exchange data. We propose to construct prototypes to
validate the (re)design. If the reengineer follows this model-driven design approach, the-
ses prototypes can be run by Model Execution.

4.2 Data Component Clustering and Classification

Before the reengineer designs new system parts, he may rearrange the existing web infor-
mation system by splitting it up into clusters (data components) and classify them. Thus,
the first activity of data component extension is data components clustering followed by
their classification. Generally the retrieved system parts will not fit the reengineers mind
model of the system. Thus, redesign takes place in parallel.

Before explaining the clustering, we clarify the membership of persistent classes to data
components. A persistent class represents the data structure from its corresponding data-
base entity, but a persistent class can exist and be deployed independently. This means that
a persistent class and its corresponding database entity can be located in different data
components. A persistent class can access the data via a defined interface. Consequently,
persistent classes representing entities from the same database do not necessarily belong
to the same data component, i.e., the same cluster.

4.2.1 Data Component Clustering

Resulting from the reverse engineering we have the logical schemas and the redesigned
conceptual schemas, including the mapping from the logical schemas to the conceptual
schemas. To facilitate (re)design we build data component clusters, which are classified
in the next step.

103



DATA COMPONENT EXTENSION

These clusters enable different views on the system. Entity and schema comparison along
the relationships, especially the redundancy dependencies, is possible. For example,
strongly related entities of different schemas can be grouped to sustain schema integra-
tion. Further the classification of clusters is simpler and faster than the classification of
each data component by itself. Finally, clustering helps to integrate new data components
and thus identifying interfaces and connectors.

The advantages and benefits of clustering are primarily the semi-automatic aspect of the
task and the endorsement of our iterative reengineering approach, i.e., repetitions of the
same clustering tasks are allowed and wanted. Further, the clustering can be used for un-
derstanding by constructing views.

We use the BUNCH tool [MMCG99] to compute clusters. Therefore we will shortly intro-
duce the clustering approach used in BUNCH. The basic assumption is that the modules
and dependencies are mapped to a Module Dependency Graph (MDG):

»MDG = (M, R ) is a graph where M is the set of named modules of a software
system, and R — M x M is the set of ordered pairs ( u , v ) that represent the source-
level dependencies (e.g., procedural invocation, variable access) between modules u
and v of the same system. “ [MMCG99]

In our case M is the set of named entities or data components (modules) and such
(u,v) e R are pairs of entities or data components that are related. Further in BUNCH it
is possible to attribute a weight, in form of an integer, to each pair. The clustering problem
is to find a ,,good partition” of the MDG. A ,,good partition* is the decomposition of all
modules into disjoint clusters, where (highly) interdependent modules are grouped into
clusters and in opposite (highly) independent modules are assigned to different clusters.

Based on our experience and the observations in [Lun98] difficulties and limitations of
clustering activities can occur because:

» Reverse engineering does not generate precise and complete information, i.e., not
all relationships are considered or identified

* Occurrence of omnipresent modules [MOTU93] or data components, i.e., data com-
ponents that have much more connections than other data components and which
seem not to belong to any cluster

* Some data components perform a specific task and are comparatively small to other
data components

* The existing partitioning was not well done by the designer(s)
* Inappropriate choice of clustering techniques

These limitations coincide with the limitations that were detected in a first version of
BUNCH and are mainly resolved in the BUNCH version we use [MMCG99]. Two lists of
omnipresent modules, one for clients and one for suppliers, can be specified either man-
ually or automatically. These client and supplier modules are assigned to two separate

104



DATA COMPONENT CLUSTERING AND CLASSIFICATION

clusters. Further, user-specified clusters enable the handling of predefined (by domain-
knowledge) or existing clusters. Optionally the locking of these clusters can be enabled
and the addition of modules to the user-specified clusters is possible. To handle the inte-
gration of new modules or when modules undergo structural changes the orphan adoption
technique [TH97] was introduced to BUNCH. Scalability and performance problems are
minimised because of the predefined clusters, e.g., conceptual schemas, and algorithms
for sub-optimal results, i.e., hill-climbing and genetic algorithms. For more details we re-
fer to [MMR+98, MMCG99].

Figure 4.3 shows an excerpt of the palliative care conceptual schema, which contains 66
classes and about 100 relationships. The different relationships are marked by stereotypes,
except the intra-schema associations.

Bereavement |0.n <<copy>> 0.n| Bereavement [ class
Reason bereavement Reason esocintion
reason 0.n
reason
0..1
- Drugs
| Bereavement | | g |
0..n
0..n
bereavement drugs
0..1 0..n
<<copv>>
|Deceasedl0"1 PY™Z 0.1 Patient ||0"1 0-1 Dy rug Profile |
deathdate | profile |
0..1 0..n
<<inter-schema>> <<replica>>
outcomes drugdose
0.n 0.n
| tblOutcomes | | tblDose

Figure 4.3: Sample of the palliative care conceptual schema

Figure 4.4 and Figure 4.5 depict clustering results. The clusters, which are or can be seen
as subsystems, are represented with UML package diagrams. This corresponds to the
UML notation of subsystems as suggested in [HCO1]. Each cluster is visualised by one
package; such a package can contain a class diagram or other packages. We do not visu-
alise relationships between elements of different packages for clarity reasons. Such rela-
tionships are bundled to one relation between packages. Details of the relationships are
shown as a list.

Figure 4.4 shows the clustering of the conceptual schema corresponding to the physical
schemas. The conceptual schema is divided into the three database schemas bvmtdata,
hopsdata and outcomes_be. Relationships between packages, i.e., the inter-schema rela-
tionships, are bundled and the details available as a list. In this sample this is the case for

105



DATA COMPONENT EXTENSION

the duplications bereavement reason and deathdate, the replication drugdose and the in-
ter-schema association outcomes.

bvmtdata hospdata
Bereavement Bereavement
Reason - lnleason
reason
0..1
| Drugs
! | Bereavement| | g |
! 0.n
1 0.n
bercavement| o bereavement drugs .
| reason... | .. ..n
(deahdare .| [ Patient o 22 Drug Profile |
hhat : profilc |

FP_———— bl
| outcomes ... |

- = - 4 drugdose ... 1
outcomes_be LT,

E package - bundled
~ . associations | tblOutcomes | tblDose
[ ] class association

Figure 4.4: Clustered palliative care conceptual schema: sample 1

bereavement reason E kege (L1 bundicd
=7 _-_ associations
Bereavement |0..n <<COPY>> 0.n] Bereavement |:| class association
Reason bereavement Reason
reason 0..n
reason
drug profile
0.1
[ Bereavement | | Drugs |
0.n
- | _ _ I bereavement ... 1
patient Lo - K drugs
0..n
<<copy>> ¢ 1 .
Deceased |- z Patient F—— =

[Deceased [P Patient || .-o.-. | [DrugProfile |

0..1 e m oy =d 0..n

7
<<inter-schema>> e
outcomes drugdose
0..n 0.n
| tblOutcomes | tblDose

Figure 4.5: Clustered palliative care conceptual schema: sample 2

106



DATA COMPONENT CLUSTERING AND CLASSIFICATION

Figure 4.5 shows the clustering of classes related by redundancy dependencies. We attrib-
uted a weight of *10’ for every redundancy dependency and a weight of ’1” for all other
relationships. In Figure 4.5 we can see that classes participating on a redundancy depen-
dency, i.e., the redundancy dependency pairs (Bereavement Reason, Bereavement Rea-
son), (Patient, Deceased) and (Drug Profile, tbiIDose), are located in the same packages.

Changing the clustering parameters does not affect the result except for one class: Be-
reavement is either located in the bereavement reason package or the patient package.
Omitting the weights for the relationships has only a limited impact, although the redun-
dancy dependency pairs are not clustered in the same package each time. The reason for
this limited impact is the size of the chosen sample which does not allow much variations.

The result of the clustering is the partitioning of the web information system into data
components.

4.2.2 Clustering Strategies

For data component extension, we emphasize the integration of existing data components
with each other or the integration of existing and new data components. To determine the
way of clustering. i.e., the clustering strategy, we need to determine the integration strat-
egy. To clarify the integration scenario we assume a three tier architecture. The schema
tier describes the information data structure (schemas) of our web information system.
The application tier contains all the functionality to manipulate the information stored in
the schemas. The graphical user interface (GUI) tier represents the interface to the real
world, i.e., the users.

Schema versus Application Integration

Integration of web information systems can be done in various ways. To discuss the inte-
gration strategies we consider the two following extreme strategies: (1) schema integra-
tion which provides a consistent virtual schema located between the schema and
application tier containing the integrated schemas; (2) application integration which re-
sults in an additional virtual application tier in-between the application and GUI tier.

In Figure 4.6 the schema integration is presented. The different application specific sche-
mas are integrated into an overall virtual schema (grey). The schemas can be merged into
a single (virtual) schema. A virtual schema can be a physical virtual schema which is
served by a single homogenous distributed database management system. A virtual sche-
ma can also be realised by code with a schema access layer. System evolution in form of
an additional application would result in (optionally) a new schema, an updated virtual
schema, a new application and (optionally) a new GUI.

The application integration scenario in contrast would integrate an additional application
without modifying the different schemas, cf. Figure 4.7. Instead, the virtual application
tier (grey) is used to coordinate the applications as required. This additional application
tier does further permit to use different heterogeneous and physically distributed database

107



DATA COMPONENT EXTENSION

management systems when support for distributed transaction processing standards
[XA94] is present. For example this is the case when extending the system by a new ap-
plication with its own new schema and GUI, cf. dashed parts in Figure 4.7. The required
coordination however has to be realized by code in the virtual application tier. The identi-
fied application integration strategy is strongly related to enterprise application integra-
tion [Lin99] approaches, but we assume that the application composition does not involve
event processing as realised either by polling on a shared database or using specific appli-
cation APIs.

o <—>» data flow
e €t application . 7 ENSERE
- = 7’ e b .
. schema - . applcation ¥ e V=" persistent tier
& - |:| application tier

> application @
' © presentation tier
| application black existing parts

. @ grey integrating parts
application

dashed extending parts

virtual schema

Figure 4.6: Schema Integration

The application integration approach requires the realisation of coordination activities. A
suitable solution is to employ available middleware technology. For the schema integra-
tion approach the same technology can be applied when the virtual schema tier is realised
by code, still, also database technology like views can be used. Depending on whether a
code or strict database solution has been chosen, the flexibility of the virtual tier permits
variations to a great extent. A more detailed comparison of both integration strategies can
be found in [GWO1].

o femm— o - o ----- _’,’é[}f‘ <—>» data flow

. schema < - _aPI_)llcf't_lO_n_ <t - P Si R @ persistent tier
application |1 _; :: : |:| application tier
e =3 O presentation tier
application I:: = black  existing parts
——— ST é grey integrating parts
apphcatlon I:: > dashed extending parts

Figure 4.7: Application Integration

Clustering Strategy Decision

In addition to the integration strategy, the reengineer has to decided which aspect is more
important for the integration and consequently for the clustering. We distinguish between
two aspects. Firstly, the aspect of data similarity preponderates, i.¢., the integration is con-

108



DATA COMPONENT CLUSTERING AND CLASSIFICATION

centrated around data that contains similar information. Secondly, the aspect of functional
similarity preponderates, i.e., the integration is concentrated around application function-
ality that perform similar data manipulation tasks.

Based on these criteria, Table 4.1 shows which relationships have to be highly weighted
for the clustering.

Regarding schema integration and the data similarity aspect, two relationship kinds give
the best hints. Entities that have similar primary keys generally contains similar informa-
tion. Thus clustering classes together, where the corresponding entities have similar pri-
mary keys, enables schema integration regarding the data similarity aspect. This also
holds for classes related by redundancy dependencies because the redundancy dependen-
cies express that similar data is stored in the participating classes (entities).

In case of schema integration and the functionality similarity aspect, several relationship
kinds have to be considered. Since the preponderate aspect is functionality, relationships
that relate classes by means of data manipulation purposes are relevant. In our case this
includes replication, constraints, usage and inter-schema relationships. Replication is
done for purpose of data access efficiency or data safety. The other three relationships
form the basis for data manipulation, accessing data (usage), relating data (inter-schema)
and controlling data (constraints).

Schema integration Application integration
data similar primary keys usage relationships preceded by
similarity | redundancy dependencies similar primary keys and/or

redundancy dependencies
usage relationships usage relationships preceded by
functional | inter-schema relationships replications, constraints and
similarity | replications inter-schema relationships
constraints usage relationships preceded by

intra-schema relationships

Table 4.1: Relationship Weighting for Clustering

Clustering for application integration is harder. Regarding the data similarity aspect, the
first step is the clustering of persistent classes that contain similar information. Then from
these predefined clusters, the transient classes related via usage relationships are clus-
tered. Thus, the transient classes manipulating similar information are clustered together.

Regarding application integration and the functional aspect, two scenarios exist. Firstly,
like for schema integration, relationships that relate classes by means of data manipulation
(except data access) purposes are relevant, i.e., replication, constraints and inter-schema
relationships. After clustering the persistent classes in analogy with the schema integra-
tion case, the transient classes related via usage relationships are clustered considering the
predefined clusters. Secondly, we start with the clustering according to the physical sche-

109



DATA COMPONENT EXTENSION

mas (intra-schema relationships). Based on these predefined clusters, the transient classes
are clustered together that manipulate the same physical schema (via usage relationships).

Based on the clustering startegy, two ways of clustering are possible in our case: from
coarse-grained clusters to fine-grained clusters and vice versa.

In the first case we start with a general clustering to find a coarse-grained partition of en-
tities and data components. Next these coarse-grained clusters are then partitioned in
smaller clusters by weighting the dependency types.

In the second case the fine-grained clustering by weighting the dependency types takes
place first. Then the resulting clusters themselves are clustered by weighting the number
of dependencies between the clusters. This weighting can be refined by a combined cal-
culated value of the number of dependencies and the weight of dependency types. In both
cases predefined clusters, e.g., conceptual schemas, have to be respected.

Which way of clustering is best for data component integration in web information sys-
tems depends on the reengineering settings. In case of multiple (small) systems that have
to be integrated into a web information system a first coarse-grained clustering is certainly
meaningful. This gives the reengineer an overview about how the existing and new data
components are related. This holds especially when each involved conceptual schema
stems from exactly one legacy system.

The opposite case is when few (bigger) systems, that should remain independent as far as
possible, have to be integrated. The most data components will remain as they are and
only for the new data components a fine-grained clustering is needed. Next, these new
fine-grained clusters can be clustered together with the existing ones from the legacy sys-
tems. The final decision of how the clustering takes place is therefore the reengineers’
task, depending on his experience and the settings. Note that in some cases both ways may
be tried, followed by a partition comparison.

4.2.3 Data Component Classification

In Chapter 3 we introduced three data component kinds: corporate data components, data
mediation components and ubiquitous data components. In this thesis every data compo-
nent is assigned to exactly one of these three kinds.

Once the clusters are determined, the data components can be classified according to the
three data component kinds. In case that a cluster contains more than one data component,
all these data components normally are of the same kind. Therefore, when a data compo-
nent kind is assigned to a cluster, this means that this kind is assigned to all data compo-
nents in this cluster. In case that a data component in a cluster has a different kind than the
cluster kind, we assigned this different kind to the data component in question. Such an
exception is a cluster of omnipresent data components.

110



ARCHITECTURAL PATTERNS FOR DATA MEDIATION

A data component (cluster) should be classified as “corporate” if it is part of mediation
within the same organisation. From a user perspective such components (clusters) look
like a single system. Corporate middleware from one vendor is generally used for inte-
grating such data components. In general, a data component cluster that incorporates a
data source will be classified as “corporate” or ,,ubiquitous®. Indeed, the storage of infor-
mation mainly takes place within an organisation or a mobile device. Note that the data
interfaces and portals are classified accordingly.

Omnipresent data components, i.e., a data component that is connected to many other data
components, should be avoided. This situation corresponds more to a monolithic system
than to a web information system. Still, within a cluster, i.e., corporate or ubiquitous data
component, such central data components can exist. This can be seen as ,,Jocal omnipres-
ence® which is resolved locally depending on the technology employed in the organisation
or mobile device in question. The reengineer should distribute the data components to ex-
isting clusters or created explicitly a cluster with them. Nevertheless, such omnipresent
data components can be interesting for reuse purposes.

Data component clusters that do not contain a data source and are not omnipresent, i.e.,
remain, should be classified as ,,mediation®. Indeed, these remaining clusters generally
exchange or preprocess (format) data. They connect largely autonomous data compo-
nents, i.e., they typically handle data that is replicated, duplicated and synchronised ac-
cording to certain interoperability policies.

During the classification inconsistencies may emerge that require a cluster reevaluation
or even a data component redesign. For this reason iteration support is needed. In a sim-
plified way two iteration loops exist. Firstly, iteration that goes back to the clustering and
redesign. Entities, relationships or data components may be changed (redesigned) or re-
located in another cluster. Further, the clustering may be redone or reevaluated, e.g., by
applying the orphan adoption technique. Secondly, a wider iteration can even go back to
the reverse engineering. The integration steps or problems during integration may suggest
further and deeper investigations of the underlying legacy systems.

4.3 Architectural Patterns for Data Mediation

As stated before we propose architectural patterns to (re)structure the web information
system. These architectural patterns can be implemented by instantiating design patterns.
Note that we do not restrict the design patterns those proposed by [GHIJV95].

Traditional architectures for web information systems are based on the procedure-call par-
adigm, i.e., clients call service operations on server objects. This traditional development
paradigm implies that the client programmer knows about the servers at the development
time of the client software. This is disadvantageous in case of rapidly evolving architec-
tures. Therefore, software engineers have recently started to migrate to a new paradigm
called component-oriented software development.

111



DATA COMPONENT EXTENSION

The component-oriented software development paradigm promotes connection-based
programming. This means that components are defined with well-defined interfaces in
partial ignorance of each other. The actual connections among components are instantiat-
ed and deployed later. In other words, connections are now treated as “active” first-order
citizens in distributed architectures [Szy99]. This supports networked evolution because
it facilitates adding and removing connections with little changes to the components in a
system. The patterns we propose are component-based and promote connection-based
programming for web information systems.

In general, architectural patterns define the responsibility of typical parts of a system. Fur-
thermore, they provide rules and guidelines for relationships between those components.
Architectural patterns express and separate the concerns of fundamental structures in soft-
ware systems [BMR+96].

We present four architectural patterns for data mediation:

* Data Portal

* Data Fusion

* Data Transducer

* Data Connection
Figure 4.8 depicts their relationships. Distributed information management (corporate or
ubiquitous data) components are interfaced by means of the Data Portal pattern. The Data
Portal is just one of three general Mediator Component patterns that can be connected
through instances of the Data Connection pattern. The Data Fusion pattern is used to
merge information from separate sources. Finally, the Data Transducer translates data
into a different structure. This pattern is used for mediating among different data repre-
sentations, as well as for rendering data for presentation to human clients (e.g., in web
browsers). We describe these four architectural patterns in the next sections.

connection A

architectural

Data 0..n 1
Connection connection B
. 1

0.. s
2..n‘<'/ b

’ 3 specialisation

Mediator
Component

pattern

connection

pattern

g generalisation

connection

input Data Data
T\ Fusion Portal

Figure 4.8: Architectural patterns: overview

112



ARCHITECTURAL PATTERNS FOR DATA MEDIATION

4.3.1 Architectural Pattern: Data Portal

Name
Data Portal

Intent

A Data Portal is an interface of web information subsystems to the world. Its purpose is
to make selected parts of the data (maintained within a subsystem) accessible for autho-
rised external clients (services or users). We distinguish between two different versions of
this pattern: Export Data Portal, which is responsible for making internal data available
outside the subsystem; and Import Data Portal, which is used to import information from
external sources into the subsystem data source(s). In practical applications, a clear dis-
tinction between these two patterns might not always be possible. The combination of ex-
porting internal data and importing external data is an Export & Import Data Portal.

Motivation

Three main motivations exist for the Data Portal, namely resolving heterogeneity, provid-
ing data safety, and increasing data availability. Heterogeneity reflects on the fact that dif-
ferent web information system participants utilise various heterogeneous platforms and
technologies for their data repositories. Interoperability between these different partici-
pants requires that this heterogeneity is resolved. The Data Portal serves this purpose by
exploiting interoperability standards.

The requirement for data safety stems from the fact that, in many cases, external clients
should not have access to all the data stored in internal databases (e.g., for protecting in-
tellectual property, personal or sensitive information, etc). The Data Portal provides a lev-
el of isolation between the external schema (as it is perceived by the external client), and
the source schemas of the internal databases in question.

Finally, the Data Portal facilitates fast access to a unified view of internal data structures.
This is needed because data is often distributed among various different transactional and
analytical repositories within organisations. The Data Portal serves as a fagade for these

| admin | | bvmt | |outc0mes| servicel | admin | | bvmt | |outcomes| service |

Data
Portal

bvmtdata

data portal
D clients
@ data source

<«—p dataflow

outcomes_be

hospdata bvmtdata | [outcomes_be

hospdata

Figure 4.9: Data Portal Pattern use

113



DATA COMPONENT EXTENSION

various data sources, in which the external schema is a buffered view of the collection of
schemas of all the involved data sources.

The Data Portal provides more than only a unified interface, it also handles safety and het-
erogeneity aspects. An example for the use of a data portal is given in Figure 4.9. The pal-
liative care data sources are encapsulated for its accessing clients.

Applicability

The Data Portal pattern can be used whenever a subsystem needs to make available part
of its data to participants outside its intranet. The Export Data Portal specialises in allow-
ing external participants to query the internal data sources, while the Import Data Portal
is used to update the internal data sources with data from the outside of the subsystem.

Structure
Figure 4.10 shows the structure of the Data Portal pattern.

connection A

(-

data portal

connection

<

generalisation

clients

connection B

Figure 4.10: Structure of the Data Portal Pattern

Participants
Figure 4.11 shows the participants of the Data Portal pattern.
* source schemas
are the schemas of the different data sources of the web information subsystem.

+ external schema
is the schema of the subsystem data as seen by the external clients.

* mapping function
is a function that converts the source schemas (each conforming to the different data
sources) to the external schema.

Collaborations

Each of the internal data sources is described with its own schema (a source schema).
An external client, however, is not expected to be able to see any of these source schemas.

114



ARCHITECTURAL PATTERNS FOR DATA MEDIATION

/—\
v
data source external
source I schema | schema
data 4 source
source 11 schema II Data
N~ -
C > mapping Portal
.
— function
data | __ source
source 111 schema III
D data source information
P— flow
data source data |:| schema correspon-
source IV schema IV @ portal )  function dance
\_/

Figure 4.11: Participant View of the Data Portal Pattern

Instead, the client has access only to the “view” that the subsystem allows. This view is
described using the external schema. The mapping function is responsible for resolving a
request from the client (based on the external schema) into a request to the internal data-
bases (described by the source schemas).

Consequences

There is a single entry point to external access and updates of the internal subsystem’s da-
tabases. From the point of view of the (external) client, there is a single schema that cor-
responds to a single data source. The client does not have to worry about the different data
sources, their types (whether they are ODBC, file-based, or other) nor how to query or up-
date them individually. The subsystem, on the other hand, can filter and block access to
sensitive information in the source databases. A disadvantage is that the complexity of
building this access layer is significantly higher than using direct access, e.g., by using
JDBC.

Example (Case Study)

Figure 4.12 shows a sample instantiation of the pattern. Each of the three databases of the
palliative care hospice has one (logical) source schema. These schemas are mapped to a
(conceptional) external export schema and a (conceptional) external import schema.
These schemas are the basis for the Export Data Portal and Import Data Portal. An addi-
tional Import&Export Data Portal is built for clients that receive and pass data to the data-
bases. The used Data Connection pattern is explained in Section 4.3.4.

115



DATA COMPONENT EXTENSION

external
> export

hospdata schema

schema

mapping
outcomes_be function

outcomes_be
schema

Data
Connection

mapping
S bvmtdata function

bvmtdata
schema

clients <—p]

ate te data source
data portal L external
data connection l:l schema 1mp0rt B C :
onnection
<> data flow @ function schema
<= correspondance connection

Figure 4.12: Data Portal Pattern sample

Related patterns

Facade: Provides a unified interface to a set of interfaces in a subsystem. Facade defines
a higher-level interface that makes the subsystem easier to use [GHJV95].

Patterns similar to the Facade pattern found in [Ris00] are: Facade [Coc96], Whole-Part
[BMR+96], Wrapper Facade [Sch99], Abstract Database Interface [ABM96], Shared re-
pository and (Legacy) Wrapper [Mul95].

Data Abstraction and Object-Oriented Organization: In the architectural style based on
data abstraction and object-oriented organisation, data representations and their associat-
ed primitive operations are encapsulated in an abstract data type or object [SG96].

4.3.2 Architectural Pattern: Data Fusion

Name

Data Fusion

Intent

To combine the data received from two or more data sources, into a single, unified data
source.

116



ARCHITECTURAL PATTERNS FOR DATA MEDIATION

Motivation

One of the goals of the semantic Web (as defined by the W3C) is the availability of a va-
riety of data sources. These data sources will be mined by intelligent agents, which will
understand their schemas, manipulate and combine their data, and then present it to the
client as a unified data source. The client does not need to deal with these complexities,
and instead, can assume a unique data source. Figure 4.13 shows a sample for the use of
the Data Fusion Pattern. Data is collected from two data sources (:Source1 and ;Source?2).
Then it is merged and sent to the ;Client.

| :Sourcel | | :Sou.rce2 | | :Data Fusion | | :Client |
I I_LI_I_ collect() — :
_____ -S| |
< collect() L data
1 S damT T T T T T T i merTe()
O send() ’!- .

Figure 4.13: Data Fusion Pattern use

Applicability

A web information system often combines and aggregates data from several sources into
a common data stream.

Structure

Figure 4.14 shows the structure of the Data Fusion pattern.

Data Fusion

Server Data
Connection

Collector

Client Data
Connection

packages

data fusion components

data data

- Merger |
connection A \g

Figure 4.14: Structure of the Data Fusion Pattern

connection fusion

connection —— stream

N
»

117



DATA COMPONENT EXTENSION

Participants

» Server Data Connections
A Data Connection is created to connect the Data Fusion to each of the servers.
* Client Data Connection
The Data Connection to the client.
 Collector
Queries the different servers and receives their results.
* Merger
The Merger is responsible for merging the results from the different data sources.

Collaborations

The instance of the Data Fusion pattern creates Server Data Connections to each of the
servers. When the instance of the pattern receives a query, it translates it into a sequence
of queries, each intended for a different server. The Collector is then responsible for exe-
cuting these queries (using a Data Connection to the corresponding server). The Collector
receives the results and passes them to the Merger, who proceeds to combine them. The
resulting data is then sent to the client using the Client Data Connection.

Consequences

The availability of data, e.g. in XML, from different Mediator Components requires the
existence of Data Fusion instances that merge these sources into a unified data source. A
client application that uses a Data Fusion pattern does not need to worry about the com-
plexities of accessing and merging multiple data sources.

Example (Case Study)

The medical diagnosis expert system needs data from the knowledge base as well as from
the palliative care hospice, cf. Chapter 2. Based on the patients data, e.g., symptoms and /

data data
portal connection

Knowledge
Base
Data Portal

data

connection

Server Data
Connection

fusion

Palliative
Care
Data Portal

Client Data
Connection

Server Data
Connection

Fusion

Figure 4.15: Data Fusion Pattern sample

118



ARCHITECTURAL PATTERNS FOR DATA MEDIATION

or checkup results, the knowledge base is queried for diagnostic suggestions. Figure 4.15
shows that the Data Fusion receives data from both Export Data Portals via the Server
Data Connections. The merged data, i.e., the diagnostic suggestions are then passed to the
diagnosis GUI via the Client Data Connection.

Related patterns
Glue: Join a number of (multimedia) artefacts into a single composite artefact [CLOO].

4.3.3 Architectural Pattern: Data Transducer

Name

Data Transducer

Intent
Convert data of a given source format into data of a different target format.

Motivation

There are cases where the client might not be able to interpret the data in its original for-
mat. In that case, the Data Transducer pattern converts the source data into a target format
that the client expects. Figure 4.16 shows a sample for the use of the Data Transducer Pat-
tern. Data sent from a data :Source is converted into the target format and sent to the :Cli-
ent.

:Source | :Data Transducer | | :Client
‘ send() g convert()
1! ) send()

Lo 1
[T

Figure 4.16: Data Transducer Pattern use

Applicability

Whenever an application requires data in a different format than the one that the data
source provides, the Data Transducer pattern can be used. A client application might be
designed with a given format in mind, but the server might provide data in a different for-
mat. Transducing the data from one format to another will allow both applications to in-
teract without changes in either one of them. For example, the client expects data in an
XML document with a different XMLSchema definition or DTD than the source produc-
es.

119



DATA COMPONENT EXTENSION

Structure

Figure 4.17 depicts the structure of the Data Transducer pattern.

Source Data\ connection B /' Data ; connection A /Target Data
Connection \Transducerf Connection

Figure 4.17: Structure of the Data Transducer Pattern

data

connection

data

transducer

connection

Participants
» Source Data Connection
A Data Connection to the source of the data.
» Target Data Connection
A Data Connection to the consumer of the data.
* Source Format
The format of the original source data.
* Target Format
The desired format for the resulting data.
* Transducing Function
A function that converts the data from the source format into the target format.

Collaborations

The producer of data is connected to the Data Transducer using a Source Data Connec-
tion; similarly, the consumer of the data is connected to the Data Transducer using a Tar-
get Data Connection. The Source Data Connection pulls the data to be transduced. This
data conforms to the source format and it is used as input to the transducing function. The
output data, which conforms to the target format, is then fed to the Target Data Connec-
tion.

Consequences

This pattern allows the interaction of two applications that are designed with different
schemas, i.e, that exchange data in different formats, to interoperate. The two applications
do not need to be aware that the exchange format of the other is different. The disadvan-
tage of this pattern is that the transduction could lose information because the target sche-
ma might not be able to convey all the data of the source schema.

Example (Case Study)

The example of Figure 4.18 shows a Data Transducer acting as renderer. The patient data
from the Palliative Care Export Data Portal is rendered into a PDA compatible format.

120



ARCHITECTURAL PATTERNS FOR DATA MEDIATION

Related patterns

Adapter: Converts the interface of a class into another interface clients expect. Adapter
lets classes work together that could not otherwise because of incompatible interfaces

[GHIV95].
PDA Import
Data Portal

Target Data
Connection

Palliative Care
Import &
Export Data

Portal

Source Data
Connection

data data
portal transducer

. data
connection

connection

Figure 4.18: Data Transducer Pattern sample

4.3.4 Architectural Pattern: Data Connection

Name

Data Connection

Intent

Proactive service for pulling data of interest from a given data source and pushing this
data to a given data sink.

Motivation

Traditionally, data exchange is controlled by either the client or the server of a web infor-
mation system. This concept limits scalability and flexibility for rapidly evolving distrib-
uted architectures of web information systems. Therefore, engineers have begun to treat
(data) connections as first-order citizens in their architectural designs. This trend is merely
reflecting on a general trend in current software engineering practice from the traditional
call-procedure paradigm to the new paradigm of connection-based programming [Szy99].

For the application domain of engineering web information systems, a Data Connection
is an instance that controls the exchange of electronic data among several components. A
Data Connection is not a placeholder but a system component. Figure 4.19 shows two
samples for the use of the Data Connection Pattern. On the left side we have a static link
to the :Source and a dynamic link to the :Client. The Connection Policy is an Updater, i.e.,
the :Source updates the :Client. The :DataConnection stores the data until the :Client con-
nects to it and an update can be performed. On the right side both links are static, but we

121



DATA COMPONENT EXTENSION

have a Synchroniser Connection Policy. The :DataConnection collects the data from
:Source and :Client, syncrhronises it and updates the :Source and the :Client.

]
:Source ||:Data Connectionl | :Client ||| :Source ||:Data Connectionl
. . I . ;

update() check() I update() > !
™~ collect() ) collect() |
< connect() data data .
o synchronise()

L < update() F T update()

1
[ S

|

|

|

> |

e 4 update() “} I
|

|

|

1

Figure 4.19: Data Connection Pattern use

Applicability

Whenever we need to constantly retrieve data from or send data to a mediator component.

Structure

Figure 4.20 shows the structure of the pattern.

Participants

* server connection and client connection

These connections are created as instance of the Data Connection pattern to the ser-
ver and the client, and can be either static or dynamic links. A Static Link assumes a
reliable connection between the client and the server, while a Dynamic Link can
handle a change in the Internet Protocol (IP) address of the client and temporal dis-
connection between client and server (both situations are common in mobile
devices).

» Connection Policy
Indicates the properties of the data connection. An Updater (data connection) is only
concerned with handling continuous updates to the client (stock market prices, news
updates), while the Synchroniser assumes that the client has a copy of the data and
needs to synchronise it with the master copy in the server.

» Server
The Mediator Component that exports data, i.e., to which the client wants to con-
nect.

* Client
The Mediator Component that imports data, i.e., that needs to connect to a server.

122



ARCHITECTURAL PATTERNS FOR DATA MEDIATION

7 S€rver

Data Connection 7 connection

Connection ‘
Policy B: Link
AN -
/s
VA
Updater Link < — ] A:Link
Synchoniser ﬁk ﬁl

Static Dynamic
Link Link

client
\\connection

data connection @ data connection composants

connection <}—— specialisation <— — instance of

Figure 4.20: Structure of the Data Connection Pattern

Collaborations

When instantiated, the Data Connection pattern creates communication links to both, the
client and the server. The instance of the Data Connection pattern, according to its con-
nection policy, receives requests from the client and converts them into requests to the
server. The reply from the server is then translated and sent to the client. The Data Con-
nection is responsible for the issues related to the connection to the component, such as
authentication, encryption, roaming, temporal disconnection, etc.

Consequences

The main benefit of connection-based programming is late binding of Mediator Compo-
nents. This means that it becomes possible to develop Mediator Components with well-
defined interfaces more-or-less in isolation from each other, and flexibly connect them at
a later point in time. The Data Connection pattern is also responsible for handling the
complexities of the communication with the Mediator Component, allowing the client to
be unaware of them.

Example (Case Study)

Figure 4.12 depicts two static Data Connections with an Updater policy. A dynamic Data
Connection with Synchroniser policy is the Target Data Connection of Figure 4.18.

123



DATA COMPONENT EXTENSION

Related patterns

Broker: Produces distributed software systems with decoupled components that interact
by remote service invocations. A broker component is responsible for coordinating com-
munication, such as forward requests, as well as for transmitting results and exceptions
[BMR+96], see also Broker [Mul95].

Connector: Decouple service initialisation from the services provided [Sch97], see also
Client-Dispatcher-Server (p. 34) and Forwarder/Receiver [BMR+96].

Data Filter Architecture Pattern: Filters the contents of client requests in a distributed
system, according to predefined policies. Filtering can occur locally or remotely [FF99].

Mediator: Define an object that encapsulates how a set of objects interact. Mediator pro-
motes loose coupling by keeping objects from referring to each other explicitly, and it lets
you vary their interaction independently [GHIV95].

Pipes and Filters: Provides filter components which encapsulate processing steps for data
streams. The pipes pass through the data between adjacent filters [Meu95, BMR+96,
SGI6].

Proxy: Provide a surrogate or placeholder for another object to control access to it
[GHIV95].

4.3.5 Architectural Pattern Application Examples

Figure 4.21 shows three prototypes in the Health Care web information system where ar-
chitectural patterns are applied. The overall architecture integrates the three organisation-
al sites, namely the Palliative Care Center Victoria, the Medical Diagnosis ES (expert
system) and Information Management System and the ubiquitous site Physician PDA.
Further a Physician Browser and a Patient Browser are integrated. Different Data Portals
per site hide the complexity and heterogeneity.

The Physician PDA has the purpose of viewing and collecting data from clinical practice.
This mediation is realised by the prototype 1 by means of two Data Connections and a
Data Transducer pattern for rendering clinical data on the PDA. The link from the Target
Data Connection to the PDA Import & Export Data Portal is a dynamic link and the con-
nection policy is a Synchronizer since the PDA can be used off-line (see Section 4.3.4 and
Figure 4.18).

Furthermore, Figure 4.21 shows that the Data Fusion pattern is used for combining the
data sets from the different organisational sites. In cases where data sets are not structur-
ally compliant to the chosen web information systems format, a Data Transducer pattern
is instantiated to provide the structural translation, cf. data stemming from the Information
Management System. All instances of Data Connection deployed between the organisa-
tional sites enact an Updater policy, because information is communicated only in one di-
rection. Data Transducers render the data for the browsers.

124



ARCHITECTURAL PATTERNS FOR DATA MEDIATION

____________________ .7 . P === === =1
| Palliative Care Center Victoria J o Physician PDA
! ' ! Import &
I |loutcomes_be| | bvmtdata s A s
| - S <A P Export
! I
e 3 to------Z_ .
I'l hospdata Patient
| Browser
I
I
I
! .
| Client/
| Source
L

Target/
Server

Target/
Server
@

Client/
Source

Target ranslator
Renderer e 0
I .
= | Information
| Management
Source I System _
I
S 4
Physician
S B Source
‘ » prototype 1 rowser 4

prototype 2

]
r = 1 corporate or ubiquitous data data data data data
| | o ~n . .
[R— system parts source portal transducer fusion connection

Dbrowser . schemas & mappings ___y, data flow —— static connection <—> dynamic connection

Figure 4.21: Architectural pattern application examples

Prototype 2 enables the patients to access their data via a browser (Patient Browser). The
prototype 3 which consists of all architectural patterns that are not of the two other proto-
types, permits data access for the physicians. Note that the input from the Physician
Browser is transduced before it is passed to the organisational sites.

125



DATA COMPONENT EXTENSION

4.4 Access Layer Generation and Model Execution

During the extension, i.e., clustering, classifying and restructuring, the retrieved corre-
spondences to the databases are maintained through the schema mappings. For new sche-
mas these correspondences are established. Thus, every element of a conceptual schema
has a correspondent in the logical schema and consequently in the database. This enables
us to generate a transactional access layer to support open nested transactions on the ex-
tended web information system.

Further, we validate the extensions by implementing prototypes. For prototyping, we
model only system (data component) parts. The focus is to provide code for the manipu-
lation and exchange of data. The mediation layer provides transition between persistent
and transient classes, i.e., usage relationships, and the manipulation of data inside the tran-
sient classes. The publishing layer reads and writes XML documents that contain the data
to exchange.

Figure 4.22 depicts the layers along with their connections, the data and the users. The
data access is done via the transactional access layer where the data portal pattern is im-
plemented. Implemented data fusion and/or data transducer patterns occur in the media-
tion layer. The mediation layer has connections to publishing layers, which are interfaces
between two mediation layers or between a mediation layer and a GUI.

:t - mediation publishing
ransactional | g——»| ——>
layer layer
access layer

<«—» data flow |:| application tier
v
database persistent tier O presentation tier
\—/

Figure 4.22: Modelled and generated layers

4.4.1 Transactional Access Layer

The complexity of building an access layer is significantly higher than using direct access,
e.g., by using JDBC. Nevertheless the retrieved conceptual schemas (cf. Chapter 3) rep-
resent an object-oriented access layer to the data of the web information system. The re-
engineer does not have to know the logical or even physical schemas nor which specific
databases are involved. An access layer can be generated from the conceptual schemas
and enables database independent access to the data.

Figure 4.23 shows an overview of the access layer generator. After a conceptual schema
is retrieved from the data sources, the generator uses the retrieved information to gener-
ate an access layer. The logical schemas, schema mappings and conceptual schema are

126



ACCESS LAYER GENERATION AND MODEL EXECUTION

used to assign each generated conceptual schema element to the corresponding logical
schema element. The configuration enables the explicit allocation of the logical schema
elements to the databases internal physical schema elements via JDBC. The generated ac-
cess layer can then access the data.

logical schema
mappings

data sources schemas

configuration conceptual
schema

access /< generator — information flow
layer —3P  dataaccess

Figure 4.23: Access layer generator overview

ACID transaction

Further, the access layer has to support transactions in order to allow distributed and con-
current access. Grand [Gra99] presented four transaction related patterns. Figure 4.24
shows the four patterns which are a solid basis for transaction management. The ACID
transaction pattern enables the compliance of the ACID (atomicity, consistency, isolation,
durability) properties of a transaction. The nesting of transactions is done within the com-
posite transaction pattern. The two phase commit pattern enables the atomicity for the
composite transaction pattern. History management for ACID transactions is done by the
audit trail pattern.

We only explain the ACID transaction pattern that directly accesses the data and omit a
detailed description of the three other patterns. The ACID transaction pattern has to be re-
alised in accordance with the generated access layer, i.e. the schemas and mapping. Such,

—p uses
] pattern ACID
transaction
two phase composite audit
commit I transaction trail

Figure 4.24: ACID transaction related patterns [Gra99]

127



DATA COMPONENT EXTENSION

the generation of the transactional access layer consist of two intertwined tasks: generat-
ing the (data) access layer and implementing the ACID transaction pattern.

We introduce an intermediate schema that is an object-oriented counterpart of the logical
schema. A logical schema represents the physical schema and thus the data structure of
the database. The intermediate schema, i.e., the object-oriented part of this logical sche-
ma, is responsible for the object-oriented encapsulation of the data. We have a one-to-one
correspondence between the relational and object-oriented part of the logical schema. Fig-
ure 4.25 depicts these one-to-one mappings which precede the schema mappings. Note
that the schema mappings as presented in Section 3.2.3 are not affected because the in-
termediate schemas are “copies” of the logical schemas.

) logical one-to-one intermediate
| databases schemas mappings schemas
¥

)

configuration

schema
X A 4 mappings
// intermediate intermediate layer
layer generator
object-oriented . ' conceptual
/ layer / 7/~ object-oriented schema
& layer generator

transactional
access layer

\ generator

—— information flow
—> data access

transaction
manager

Figure 4.25: Transactional access layer generator overview

The intermediate schemas are used to guarantee ACID properties. The generator is di-
vided in two generators: the intermediate layer generator and the object-oriented layer
generator, cf. Figure 4.25. The transaction manager comprises the ACID transaction im-
plementation, is considered for generation and used by the transactional access layer dur-
ing data access. Additionally to the object-oriented layer, the intermediate layer is
generated.

Since the transactional access layer accesses distributed heterogeneous data sources, not
only databases, it has to guarantee the ACID properties by itself. To guarantee atomicity
and isolation the additional intermediate layer is needed to cache values during transac-
tion execution on the object-oriented layer. Atomicity is realised by caching the old values
in the intermediate layer during transaction execution. Only after a successful storage in
the database the new values are stored in the intermediate layer. In case of a transaction
failure the old values from the intermediate layer overwrite the new values of the object-
oriented layer. The same cache mechanism is used for isolation. When during a transac-

128



ACCESS LAYER GENERATION AND MODEL EXECUTION

tion execution another transaction wants to access a same data value, the old consistent
value from the intermediate layer will be provided. This is realised with a read-/write-lock
mechanism.

Consistency and durability are harder to achieve. Consistency depends on a correct trans-
actional access layer. This includes a correct transaction manager. Correctness is ensured
through the generation of the transactional access layer. Repeated manual implementa-
tion is an error prone task compared to code generation. Durability depends on the under-
lying data sources. A database management system provides durability whereas it is hard
to guarantee for a file system. For further details of the transactional access layer genera-
tion we refer to [Wol01].

4.4.2 Mediation Layer

The transactional access layer provides access to the persistent data. We divide the medi-
ation layer in data access interfaces and data manipulation services. Both layer parts are
modelled with UML class diagrams and story diagrams. Code is than generated from
these models. A data access interface establishes the transition between the persistent and
transient parts of the web information system. Data access interfaces are normally built
on top of a transactional access layer. Data processing is done within data manipulation
services. Data manipulation services are generally situated between a data access inter-
face and a publishing layer or between two publishing layers.

Data access interfaces

Data access interfaces implement external schemas. Modelling such interfaces means
modelling transitions between persistent and transient objects. Links between transient
objects only exist if the participating objects exist, e.g., d: Diagnosis and pi1: Patientinfo
in Figure 4.26. For links between persistent objects we have a similar situation, a link ex-
ists if the participating persistent objects exist in the data source. In contrast to the tran-
sient case, a lookup into the data source may be needed, e.g., p1: Patient and p3: Patient
in Figure 4.26. This is handled by the transaction manager. If the objects already exist as
(persistent) memory objects the lookup is not needed, e.g., p1: Patient and n: Notes in
Figure 4.26.

In all cases we have the same clear modelling concept: a link is established if the source
and target exist.

For links on the transition, i.e., links between persistent and transient objects, we have two
situations. Firstly, the persistent object exists already as memory object and thus can be
accessed from a transient object like another transient object, e.g., pi1: Patientinfo and
p1: Patient in Figure 4.26. Secondly, if the persistent object does not exist as memory ob-
ject, a data source lookup has to take place to create the correspondent memory object be-
fore it can be accessed, pi3: PatientInfo and p3: Patient in Figure 4.26.

129



DATA COMPONENT EXTENSION

pl: Patient @l (persitent)
VHS_ID# ==00-0001 memory objects
o e e e e = - m o m Em E Em Em o ow
' ' 1 p3: Patient persitent
pi3: PatientInfo VHS_ID% =—=00-0003 objects
pil: PatientInfo ‘lookup
Patient

VHS ID# CITY |POSTAL CODE
00-0001 SIDNEY V8L-3H6
00-0002 | VICTORIA V8X-1P2
00-0003 | VICTORIA V8S-4H7

transient

objects d: Diagnosis

link

I:' object

Figure 4.26: Examples of links between different object kinds

The present clear modelling concept is obfuscated if no distinction between these two sit-
uations can be made. Both situations take place in the transient world. In the first case the
source and target of the links exist. In the second case only the source exists and the target
has to be created.

The first situation is handled with the existing constructs, i.e., a link between a transient
object and a persistent object only considers existing memory objects. To cover the second
situation we introduced a stereotype <<search>>. When a transient object has to access a
persistent object whether the persistent object already exist as memory object or not, in
the story pattern the accessed persistent object and the corresponding link are marked with
the stereotype <<search>>, cf. Figure 4.27. The semantics of <<search>> is as follows:

Diagnosis:getPatient {id: Integer): Patient

]
==gearch==
this | > patientinfo ;4 \patientinfo #SEARCH: > patient 1:Fatient
WHS_ID#==1d -

v
®

ni

Figure 4.27: Examples of a <<search>> link

130



ACCESS LAYER GENERATION AND MODEL EXECUTION

try to find the persistent object as memory object; if it does not exist as memory object try
to create this object with a data source lookup; only if in both cases the persistent object
cannot be matched, the link cannot be established. Figure 4.27 shows a <<search>> link
for the transition between pi1: Patientinfo and p1: Patient in a story diagram.

Data manipulation services

The data can be accessed. Next, it is processed by manipulating objects inside the data ma-
nipulation services. We call data objects the objects that hold data. The data is exchanged
via XML documents. These XML documents are internally represented by the data ma-
nipulation services as data objects. Data is processed either with data objects that directly
access the data through the data access interfaces or with data objects that are received
through the publishing layer. The object manipulation itself is done with story diagrams.

Diagnosis:possibleDisease O Void

!

this > patientinfo pi:Patientinfo > symptoms g oms
[ eachtime ]
=<preate==
. ctens di

this coredter > disease p:PossibleDisease
dizsease =cdisease -

v Corresp

¢ :CorrespondenceSymptomDisease

symptomld==s.symp_id = @

Figure 4.28: Sample Data Fusion pattern modelled with a story diagram

Figure 4.28 depicts a story diagram which models a Data Fusion pattern. Recorded patient
Symptoms are collected from the hospdata database followed by a check for a possible
disease in the knowledge base. Possible diseases are linked to the current Diagnosis ob-
ject. The possible diseases can then be published to the physician for diagnostic support.

4.4.3 Publishing Layer

The publishing layer writes data object structures into XML documents and vice versa,
1.e., reads XML documents and creates the corresponding data objects. In order to perform
these read and write operations the publishing layer needs a referencing data object model
for the exchanged data. Data object models are represented as class diagrams. Conform-

131



DATA COMPONENT EXTENSION

ing to these data object models the publishing layer reads XML documents into data ob-
jects or writes data objects into XML documents.

FPR /XML GXL
FUJABATS parser
internal | FPR | ——— |FUIABA|  yvq1 1 | XMLSchema
< > < >
parsers DOM W XML XMI
parser § abstract syntax graph

[] format — data flow

Figure 4.29: Abstract syntax graph publishing

The read and write operations from data object models to XML documents are depicted
in Figure 4.29. A data object model is internally represented as abstract syntax graph. An
abstract syntax graph is parsed into the FUJABATS proprietary FPR (Fujaba PRojekt file)
format, which is itself parsed into a proprietary FujabaXML format. Finally this XML doc-
ument can be transformed with XSLT (Extensible Stylesheet Language Transformation)
to other formats like GXL (Graph eXchange Lnaguage), XMLSchema, (XML Metadata
Interchange) XMI, etc. The way back is, in analogy, from XML documents to FujabaXML
(via XSLT), followed by an XML parser into a DOM (Document Object Model) structure
and finally into an abstract syntax graph. Details of abstract syntax graph publishing can
be found in [HLO2].

We give two samples for publishing layers. Firstly, we present a HTML-based data portal.
which is a special case of publishing layer. The HTML-based data portal reads HTML
template pages and returns them as filled HTML pages. Figure 4.30 shows a scenario for

Patient: 00-0001 [ ] D HTML page [—=_ servlet
Symptoms: B

cough, nausea gzlbslmcl syntax graph
Possible diseases: (1) (2) () mediation layer parts

diseasel —p data flow

disease?2

«senlets datamanipulation

Patient; 00-0001 DiagnasisSystem service

Symptoms: coliapsed
cough, nausea collapaed

Possible diseases:
1) Lung Neoplasms
2) Chronic Obstructive (8) (7)

Pulmonary Disease
3)..

data access
interface

Figure 4.30: Sample publishing layer: web portal

132



ACCESS LAYER GENERATION AND MODEL EXECUTION

filling a HTML template page. The template page, i.e., the page with placeholders
disease1, disease2, etc., is read by the DiagnosisSystem servlet (1). The abstract syntax
graph corresponding to the template page is built (2) in accordance to HTML 4.01'. This
abstract syntax graph is then passed to a data manipulation service (3). The data manip-
ulation service accesses the data source via a data access interface (4) and (5) and modi-
fies the abstract syntax graph. The modified abstract syntax graph is then parsed (7) into
the result HTML page and posted to the client (8). Details of the modelling and code gen-
eration of servlets are described in [KamO03].

Secondly, a publishing layer that reads data and a publishing layer that writes data for a
data transducer. Figure 4.31 shows the correspondence between the input Patient descrip-
tion and the output Patient description. The input document only shows the Surname ob-
ject description in GXL (upper part of Figure 4.31). This input document is read into an

...// input document ’sd’

<node id="id1445"> <type xlink:href="de.uni_paderborn.fujaba.uml.UMLObject" xlink:type="simple"/>
<attr name="de.uni_paderborn.fujaba.uml.UMLODbject::objectName"> <string>s</string> </attr>

<attr name="de.uni_paderborn.fujaba.uml. UMLObject::objectType"> <string>Surname</string> </attr>

</node>
= ul
read
v Hame
wCheates
transduced
s :Surhame ¥ fame
vlirst ==greate==
p:Patienthame .
f:Firsthame value = svalue, fvalue - write

... /| output document ’td’

<node id="id1446"> <type xlink:href="de.uni_paderborn.fujaba.uml.UMLObject" xlink:type="simple"/>
<attr name="de.uni_paderborn.fujaba.uml. UMLObject::objectName"> <string>p</string> </attr>

<attr name="de.uni_paderborn.fujaba.uml.UMLODbject::objectType"> <string>Patientname</string> </attr>
</node>

<edge from="id1446" to="id1451"> <type xlink:href="de.uni_paderborn.fujaba.uml.UMLObject::revTarget"/> </edge>

<node id="1d1362"> <type xlink:href="de.uni_paderborn.fujaba.uml. UMLAttrExprPair" xlink:type="simple"/>
<attr name="de.uni_paderborn.fujaba.uml. UMLAttrExprPair::name"> <string>value</string> </attr>

<attr name="de.uni_paderborn.fujaba.uml.UMLAttrExprPair::expression"> <string>s.value, f.value</string> </attr>
</node>

Figure 4.31: Sample publishing layers for a data transducer

1. http://www.w3.org/TR/html401

133



DATA COMPONENT EXTENSION

object structure with nodes for the document sd, the surname s: Surname and the first-
name f: Firstname. These objects are transduced into the target document (td) object struc-
ture. Figure 4.31 shows the story pattern, which creates p: Patientname that unifies the
s: Surname and f: Firstname values. Finally the output document is written. In Figure
4.31 only the Patientname object, including its value and the edge between them, is de-
picted. The read and write operations are performed through the abstract syntax graph
publishing, cf. Figure 4.29.

4.4.4 Multimedia extension

Medical data nowadays consists among other data of multimedia data, e.g., videos or
commented radiographs. Therefore the existing legacy systems have to be extended to
handle multimedia data. Multimedia data owns peculiarities. We consider the following
meaningful peculiarities:

* huge size (gigabytes are the lower bound),

* enclosed meta data (e.g., title and duration of a video, ...),

* particular formats (e.g., video, associated images and audio, ...),

* specific operations (e.g., displaying, real time streaming, ...),

* time dependence (e.g., life streaming audio and video synchronisation, ...) and

» combination of discrete and continuous data (e.g., associated images and audio, ...).
To sustain these peculiarities, extensions in the data tier are needed. The extension of a
data source is hard to achieve. Therefore the transactional access layer has to handle some
of the extensions. By dividing the data for storage and re-combining it for retrieval the
size, format and meta data problems can be handled. Unsupported formats and meta data

are resolved by storing extra data, e.g., format characteristics are stored additionally to the
essential data.

Dividing the data is needed because of capacity restrictions for data storage and efficiency
of data retrieval. This leads to data distribution and thus to the need of ACID transaction
management, which is provided by the transactional access layer. The read-/write-lock
mechanism has to be refined. Further the strategy pattern [GHJV95] is used for providing
different partitioning/combining algorithms. For further details we refer to [Wag01].

The extensions for multimedia data in the mediation layer are numerous. Modelling for
indexing, sorting and searching multimedia data are required. Further multimedia data has
to be composed and synchronised before it can be published. Many approaches exist to
cope with these issues, e.g., [vC97, Man99, CL00, ES02].

The publishing layer would be mainly responsible for displaying the multimedia contents
to the clients. Various solutions exists how to achieve publishing, real-time displaying,
etc. These problems are out of the scope of this dissertation, such we refer to the literature
for details.

134



TooL SUPPORT

4.5 Tool Support

The tool support for the data component integration process is located in the REDDMOM
project. REDDMOM (and FUJIABARE) uses the FUJIABATS plug-in architecture [BGN+03]
to reuse and combine existing tools. Figure 4.32 shows an overview of the REDDMOM
tools for data component extension. The Clustering Tool (BUNCH) in grey is available from
the Drexel University in Philadelphia. The dashed part of the web information system ex-
presses the generated parts. The tools inside the grey area are provided by FUTABARE. The
remaining tools were constructed in REDDMOM.

_ — _ generated/generates Tranformation Editor
—» information flow (schema ASG model)

Pattern Definition
Web and Use Editor
Information . P (conceptual schema
System UML Editor € ASG model)

(conceptual schema
ASG model)

Dobs /
DolLittle

provided by
FUJABARE

Figure 4.32: Architecture of the REDDMOM extension tools

Generator
(logical & intermediate -
schema ASG model, Clustering
mappings, configuration, Tool
transaction manager,) (BUNCH)

UML Editor

The UML Editor is currently extended with UML package diagrams and consists of UML
class diagrams, views and story diagrams as described in Section 3.4. Packages can con-
tain other packages or a UML class diagram view. Further, REDDMOM introduces the pos-
sibility to import and export UML class diagrams (data object models) as (XML)
documents, e.g., in XMLSchema or GXL [HWSSO00]. Further, REDDMOM extended the
story patterns with the <<search>> stereotype construct.

Transformation Editor

The Transformation Editor is described in Section 3.4. In analogy with refactoring opera-
tions, design operations can be defined. We give a short overview of the design operations
to give the reader insight into (re)design.

135



DATA COMPONENT EXTENSION

Figure 4.33 depicts pushAttribute (in a story diagram) as example for a basic design op-
eration and generalise as example for a composed design operation. pushAttribute is a
simple operation, the given attribute attr is pushed from the class clazz to the given sub-
or superclass cl. A concrete or an abstract class is created by generalise, followed by push-
ing the given attributes and relationships to the newly created superclass. The parameters
for a composed design transformation are assigned in another dialog, cf. Chapter 3.

Since the design operations change the conceptual schema information capacity, these
changes have to be reflected in the data sources. The logical (and physical) schema is up-
dated by the mapping rules (cf. Section 3.2.3), e.g., the new superclass created by gener-
alise is mapped to a new variant of the entity corresponding to the superclass’ subclass.
Note that also refactoring operations (cf. Section 3.2.4) can be used for implementing
composed design transformations.

BasicOperations:pushattribute (attr: Cattribute, ol Class): Void

!

Transformations to be combined

optional

createClass

end optional

clazz:Class optional

createfbstractClass
end optional

loop

pushittribute

end loop

loop

pushRelationship

end loop

Figure 4.33: Design transformations pushAttribute and generalise

In Table 4.2 we present design operations. The refactoring operations of Table 3.2. are a
subset of design operations and thus not listed again. The design operations are classified
into basic design (BD) and composed design (CD) operations.

name description
createClass Creates a new (concrete) class. BD
createAttribute Creates an attribute in a given class. BD
create Association Creates an association between two given classes. BD
createlnheritance Creates an inheritance between two given classes. BD

Table 4.2: (Re)Design Transformations

136



TooL SUPPORT

name description

createKey Creates a key for a given classes. BD

createPackage Creates a new package. BD

nestingPackage Interleaves two given packages. BD

addToPackage Adds given classes to a given package. BD

changeRelshipCard | Modifies the cardinality of an association or aggregation. | BD

changeAttrType Changes the type for a given attribute. BD

unifyAttributes Merges two or more given attributes with the same type | BD
into one of the given attributes.

convertAbstract Sets a given concrete class to an abstract class. BD

convertConcrete Sets a given abstract class to a concrete class. BD

pushClass Moves a given class from its package to a given super- or | BD
sub package.

pushAttribute Moves a given attribute from its class to a given speciali- | BD
sation or generalisation.

pushRelationship Moves a given association or aggregation from its class | BD
to a given specialisation or generalisation.

remove Deletes a given conceptual schema element. BD

createAbstractClass | Creates a new abstract class. CD

generaliseNew Creates a new concrete or abstract superclass without CD
attributes for a given class.

specialiseNew Creates a new concrete or abstract subclass without attri- | CD
butes for a given class.

generalise Creates a concrete or abstract superclass for a given class | CD
and pushes up the given attributes and relationships.

specialise Creates a concrete or abstract subclass for a given class CD
and pushes down the given attributes and relationships.

superPackage Creates a super package for a given package. CD

Table 4.2: (Re)Design Transformations

137




DATA COMPONENT EXTENSION

name description
subPackage Creates a sub package for a given package. CD
removeAll Deletes all given conceptual schema element. CD

Table 4.2: (Re)Design Transformations

Pattern Definition and Use Editor

Today, patterns that represent good design solutions to recurring problems are frequently
used. The design patterns of [GHIV95] are well known, but patterns for all kinds of ap-
plication domains exist and can be found, e.g., in [Ris00].

The Pattern Definition and Use Editor enables the reengineer to define (design) patterns.
A pattern consists of a structural part which defines classes and structural relationships,
e.g. associations, between them and a behavioral part which defines how the classes in-
teract. Since our design takes place on the conceptual schemas we use UML class dia-
grams for the specification of the structural part of a pattern. The behavioral parts, i.e., the
methods, are specified with story diagrams. Finally, the defined pattern is exported to
GXL.

The use of a pattern is realised by instantiating it, i.e., integrating it into an actual model
of a system. The corresponding GXL description is imported into a UML class diagram.
The different constituents of a pattern, e.g., classes or methods, can be matched to existing
UML class diagram elements. Some of the classes, associations, and methods of the pat-
tern may already exist in the actual design. The users then has to assign existing design

- PattemEditor [x]
Server «persistents Paltzrn:‘ Extended Chain of Responsibility —
files » IClasses
cofignsed [+ MMFile MovieHandler (W C1ass)y
0.1 0.n
T lAudioHandler AudioHandler (new class)
coliansed collapsed
Server Server
0.1 PictureHandler PictureHandler (new classy
Handler (new class)
handler Methods
v Server( : Constructor Server) : Constructor (new methody
0.1 <
Handler 0.1 SUCCRSSOr
colfapsed[ g 4 | [ . I
A Autributes
coliansed <]—' MovieHandler : Handler handler : Handler (new attribute) -~
colignsed 3
handleRequest (mrfile:MMFile 3 Boolean -
N Assocs
PictureHandler handler (new assoQ -
- coliansed o
AudioHandler -
handleRequest (mrmifile:mbFile ) Boolean =
collapaed +
handleRequest (mmfile:MdFile ) Boolean - ok | [—Cmm
I

Figure 4.34: Pattern Editor: pattern instantiation example

138



TooL SUPPORT

elements to elements specified by the pattern, i.e., the existing design elements and the
pattern elements are merged. The remaining elements of the pattern are then created dur-
ing the instantiation. This allows a seamless integration of patterns into an existing design.
Of course, for newly designed data components or data component parts, patterns can also
be instantiated and build the starting point for a new design.

Figure 4.34 shows an example for a pattern instantiation. We refined the chain of respon-
sibility pattern [GHJV95] for multimedia handling. A Server passes the file to process to
a Handler which is either an AudioHandler, a PictureHandler or a MovieHandler, cf. the
class diagram of Figure 4.34. Given an MMFile and a Server, the extended chain of re-
sponsibility is instantiated to handle the MMFile instances. The right part of Figure 4.34
shows the corresponding dialog. It depicts the merging of the existing Server with the pat-
tern’s Server class. All other classes are created. In analogy, this is applied to methods,
attributes and associations.

Clustering Tool (BUNCH)

BUNCH is a clustering tool intended to aid the software developer and maintainer in un-
derstanding, verifying and maintaining a source code base. To do this, BUNCH lets the user
evaluate the quality of an application's modularisation, by analysing the source code
graph. BUNCH relies solely on the information contained in a module dependency file,
considering nodes as program units or modules, such as files or classes, and edges be-
tween the nodes as calls or relationships between those modules, such as function calls or
inheritance relationships. With this graph, BUNCH can find what a "good" clustering for
the system is (thus helping when documentation of the code is nonexistent or outdated),
and it can also use predefined clusters to measure or improve the quality of the system's
clustering. The BUNCH tool is described in [MMCG99], more details can be found on the
BUNCH web pages (http://serg.cs.drexel.edu/SERG/Projects/Bunch/).

Generator

The Generator for the different layers is based on the Java code generation included in FU-
JABARE. Extensions in REDDMOM were done for the database access layer (persistent ob-
jects and multimedia objects), the servlets and the data access interface code generation.
Details for these extensions are described in [Wol01], [WagO1] and [KamO03].

Dobs / DoLittle

To facilitate simulation and graphical debugging of the generated application, the FUJA-
BATS environment provides the DOBS (Dynamic Object Browsing System) plug-in. DOBS
uses Java runtime type information and dynamic method invocation features for analysing
Java runtime object structures and for the user driven execution of application specific
methods. DOLITTLE is an extension of DOBS for the transactional access layer, i.e., to
browse persistent objects enclosed in transactions with DOBS. For details we refer to
[Wol01] and [GZ02].

139



DATA COMPONENT EXTENSION

4.6 Related Work

Techniques to determine clusters (subsystems) using source code component similarity
[MOTU93, SH94, CS90], concept analysis [LS97, vK99, Anq00], or information avail-
able from the system implementation such as module, directory, and/or package names
[AL99] are available. An introduction and overview to clustering can be found in
[Wig97]. Mostly clustering is used for software reverse engineering and re-modularisa-
tion [DB00, SMB+03]. The BUNCH software clustering system [MMR+98, MMCG99],
unlike the other software clustering techniques, uses search techniques to determine the
subsystem hierarchy of a software system, and has been shown to produce good results
for many different types of systems.

In the context of data models clustering is used for ER schema abstraction [FM86]. Other
approaches facilitate user comprehension [TWBKS89], consider relationship abstraction
and clustering [JOS93] or cluster relations for databases reverse engineering [SPPB02].
All these approaches have in common that they focus on large ER schemas and conse-
quently on intra-schema relationships.

Architectural patterns are related to the notion of architectural styles [SG96]. Architectur-
al styles do not result in a complete architecture but can rather be seen as an architectural
framework. Architectural styles are specific views for one subsystem at different levels of
a system. In contrast, architectural patterns [BMR+96] are problem oriented. They ex-
press and separate the concerns of fundamental structures in software systems

The Fagade pattern defines and provides a unified interface to a set of interfaces in a sub-
system [GHJV95]. The presented Data Portal pattern is an architectural variant of the
Facade design pattern. Data Portals provide unified interfaces to data components of the
system. A possible technology-driven instantiation of Data Portal is the Abstract Data-
base Interface pattern [ABM96]. Abstract Database Interface makes an application inde-
pendent from the underlying database platform.

Buschmann at al. [BMR+96] define two architectural patterns that are related to Data
Connection. The first pattern is called Broker and coordinates communication of decou-
pled components that interact by remote service invocations. The second pattern is Pipes
and Filters that provides filter components which encapsulate processing steps for data
streams. The pipes pass through the data between adjacent filters. Further, Gomaa, Mena-
scé and Shin [GMSO01] described component interconnection patterns for synchronous,
asynchronous and brokered communication. A designer of a new distributed application
can use their patterns for appropriate component interaction. In contrast to those commu-
nication centric patterns, Data Connection mediates data and can be compared to the Me-
diator pattern [GHJIV95] at architectural level.

In terms of extension, only few approaches tackle the problem of system migration. Behm
et al. [BGD97] and [Fon97], e.g., propose a complete replacement of relational by object-
oriented databases. Based on the schema mappings, they present algorithms to automati-

140



RELATED WORK

cally migrate the data. According to [War99], system ,,replacement™ is an expensive and
risk-prone task that should only be considered when continued maintenance or reengi-
neering is not feasible.

Data component extension is based on reverse engineered data models, thus in this thesis
we focus on integration of the data related legacy system parts. A prerequisite that inte-
gration has to meet in order to fulfil the new technology requirements is to enable the leg-
acy system to act as components, i.e., black boxes that exchange data. Sneed presents an
approach to wrap legacy systems with interfaces exchanging the data via XML [Sne02].
A prerequisite of this approach is to reengineer the existing interfaces. An approach com-
bining model-integrating computing with component middleware is presented
[GSNWO02]. The advantage of this approach is that components can be reused and the
modelling tools have only to generate the interfaces. The drawback is that this process
starts with the integrated data models.

The Clio project is a system that manages data transformation and integration [MHH+01].
It supports the generation and management of schemas, correspondences between sche-
mas and mappings (queries) between schemas. The weakness of Clio is the inter-schema
correspondences mining that could be augmented as stated by the authors themselves.
Schema mappings are the basis for providing uniform data access to heterogeneous dis-
tributed database systems. Many approaches use object-oriented data models to integrate
multiple databases, e.g., [RL82, ADD+91, CHK+91, FGS93]. The TSIMMIS project
[PGMWOS] strives to integrate a broad range of repositories. The Garlic project
[CHS+95, HMN+99] provides an object-oriented view, not only to databases and record-
based files, but also in media-specific data repositories with specialised search facilities.
The integration itself in form of wrappers and mediators [Wie92, Wie95] are poorly sup-
ported.

The InterDB approach [THB+98] integrates the construction of abstract interfaces to ac-
cess independent heterogeneous distributed databases in DB-Main. It provides generation
of conceptual wrappers, i.e., software layers that interface a database based on the recov-
ered conceptual schema [TCHH99]. These wrappers are based on data conversion pro-
grams which consist of a concatenation of the applied schema transformations. The
drawback here is that this approach can hardly be used as input for commercial off-the-
shelf middleware because the schema correspondences are implicitly defined in the data
conversion programs. Approaches like [Sie98, CER99, Tho99, Obj99b, Obj99a] provide
such support based on previous determined schema mappings.

Remaining problems are the construction of such schema mappings and that the reengi-
neer is not aware of the overlapping schema information. The VARLET approach [Jah99]
maintains an explicit schema mapping during the reverse engineering of single schemas
that can serve as input. Still, given schemas of different data sources have to be related.

Schema integration and matching approaches go in this direction. Schema integration
[RR98] mainly tackles the reverse engineering problem of determining inter-schema re-

141



DATA COMPONENT EXTENSION

lationships. Schema matching provides a mapping between two schemas that semantical-
ly correspond to each other. A detailed overview on existing partially automated schema
matching techniques is given in [RBO1]. Schema matching techniques are used for data
integration and to detect schema overlapping. The drawback of most tools is that they as-
sume semantically similar schemas and/or are focussed on one-to-one matching.

An approach that defines model mappings based on semantics approximation is presented
in [K6198]. The mappings form the basis to establish a cooperative coexistence of new and
legacy information systems. The weakness of this approach lies in the manual analysis of
the legacy systems to derive a flat reverse object-oriented model.

For multimedia extension, Cybulski and Linden [CLOO0] describe a pattern language that
is used to define a multimedia authoring environment capable of producing and utilising
multimedia components. Each of the presented patterns describes one well-known ap-
proach to multimedia authoring, e.g. joining and breaking artefact groups, defining and
filling in templates, arranging and re-arranging artefact collections, creating and holding
presentations, synchronising multiple multimedia channels, etc. Van den Broecke and
Coplien propose a pattern-based approach to design software for the rapidly changing
field of multimedia networking [vC97]. Engels and Sauer [ES02] present an approach to
object-oriented hypermedia and multimedia modeling with OMMMA-L a visual, object-
oriented modelling language that is an extension of the UML. To search in large amount
of information, Manolescu works with an alternative, a simpler representation of the data,
i.e., the representation contains only the information that is relevant for the problem at
hand [Man99].

4.7 Summary and Future Work

In this chapter we presented our approach to extend the web information system. The
chapter started with a process overview. The process starts with the clustering of data
component models based on the BUNCH Tool [MMCG99]. After discussing different
clustering strategies, the data components resulting from clustering are classified in three
kinds. This classification is followed by (re)structuring the web information system based
on the presented architectural patterns. The maintained data component model dependen-
cies enable the generation of an object-oriented transactional access layer to the legacy
databases. Next, a short overview for modelling prototypes and multimedia extension was
given. Finally, we presented the tool support for this process.

A consequent step is the integration of patterns that enable further generation and thus
model execution, like presented in [HKO02] for Enterprise JavaBeans or in [LB03] for
ubiquitous computing. Further, architectures of web information systems are constantly
in flux and organisations have to be able to respond quickly to changing requirements.
This engenders component-oriented development as presented in [CWMY02] or model-
driven development of web services [Amb02].

142



CHAPTER S: MODEL CONSISTENCY
MANAGEMENT

Historical knowledge is indispensable for those who want to build
a better world.

LUDWIG VON MISES
Austrian economists (1881 - 1973)

5.1 Data Component Model Consistency Maintenance

In the two previous chapters, we present reengineering activities for web information sys-
tems that are based on their data component models. These models represent the old and
new data components at different levels of abstraction. The models depend on each other.
Inconsistencies between those models often cause update problems. Whenever a reengi-
neer discovers new information, e.g., about the real semantics of implementation con-
structs in the legacy physical schema, the conceptual representation that has been created
so far must be updated accordingly.

—
:_/Ez:_J@ﬁ—l
CSl1 Csi | Csj | CSm | CSn CSp
A A A ) A A
—

| legacy App. |

|legacy App. | | legacy App

ﬂ data- 1 logical E' conceptus 11 appli- E7 partialappl. () cluster ~— information flow
(___J base schema schema cation model data access relationship

Figure 5.1: Web information system model maitenance

143



MODEL CONSISTENCY MANAGEMENT

Figure 5.1 shows how the models depend on the databases and legacy applications; and it
shows the dependencies and relationships between models. A typical source of inconsis-
tencies are on-the-fly modifications to the implementation of the legacy data sources due
to urgent requirements while reengineering activities are in progress. These iterations dur-
ing the reengineering activities that imply model changes lead to inconsistencies between
the different models. Detecting and eliminating such inconsistencies manually is a time-
consuming and error prone activity. Hence, a commonly used alternative is to discard all
created (conceptual) models of the system and generate default representations anew. In
this case, the reengineering work that has been performed manually so far is lost and has
to be repeated. Obviously, both alternatives are unsatisfactory.

The overall goal (of our research) is the development of mechanisms that facilitate incre-
mental and iterative reengineering processes. Traceability is the most important prerequi-
site for such a mechanism, i.e., in case of process iterations, we have to be able to trace
and propagate modifications of the initial representation of the legacy system to its trans-
formed representation in order to re-establish model consistency. The requirement for
traceability implies some sort of “logbook” about the interdependencies of all operations
invoked by the environment, i.e., a reengineer (user) or a tool.

We ensure tracability inside and between the models representing the web information
system. This means that all reengineering activities have to be model-based. Since our
models are maintained as abstract syntax graphs, only modifications performed with
graph productions are considered for tracability. Therefore, this only holds for model-
based reverse engineering and model-driven development for the extension activities,
e.g., manual code changes cannot be considered. Further, the legacy applications cannot
be updated because we lack their models and thus tracability for them.

We have developed an incremental approach to traceability in graph-based activities. It
turns out that graph-based structure is most suitable to maintain the interdependencies. We
call the corresponding graph History Graph because it reflects the transformation history
of the different models. The developed History Graph Mechanism provides the traceabil-
ity necessary for iterative (reengineering) processes. The core idea is an explicit depen-
dency relation among all performed graph transformations. Let us assume that a software
artefact has been updated during the iteration. The dependency information stored in the
proposed History Graph Mechanism enables the selective removal of only those transfor-
mations that (transitively) depend on the changed information.

Figure 5.2 shows an overview of the History Graph Mechanism that provides model con-
sistency management. The Data-Oriented Reverse Engineering and Data Component Ex-
tension activities transform the models (abstract syntax graphs) representing the web
information system data components. The History Graph Mechanism receives as input a
start graph and History Graph Transformations, i.e., all executed operations that modify
the web information system data components. To re-establish consistency between mod-

144



GRAPH-BASED HISTORY MECHANISM

els the reengineer runs the History Graph Mechanism. The output produced is on the one
hand the consistent Updated Models and on the other hand the Undone History Graph
Transformations. The Updated Models can then be modified, e.g., reapply adapted un-
done operations, and further data-oriented reengineering activities can take place.

. . . 6ata Component Extensiom
Data-Oriented Reverse Engineering

- 1. Data Component
1.1 Data 1.2 Mapping Clustering and
Model and Classification

Recovery Refactoring
Data Component
2. Relationship > Histo P
. —> ry Graph |«
>\< Retrieval j Transformation 2. Architectural
(graph production) Pattern

Application

History /
Graph )
Mechanism Und
. naone Updated
History Graph Model j
Transformation odels

(graph production)

—Jp information flow Q users and experts
( ) activity l:l graph transformation
E‘ data component conceptual representation

Figure 5.2: Model Consistency Management: Overview

Note that the History Graph Mechanism establish consistency for the models. The consis-
tency to the generated code has to be established by generating the code anew.

5.2 Graph-based History Mechanism

We have employed the concept of History Graphs for consistency management during it-
erations in reengineering processes since 1998. We present background knowledge and
basics before we explain the History Graph Mechanism in more details.

5.2.1 Background: History Graph Mechanism

Assume that midway during a database reverse engineering process the reengineer learns
about additional dependencies in the legacy database. Ideally, (s)he would like to add this
new information to the initially extracted representation of the legacy database and vali-
date those operations which might have to be undone due to the new knowledge. The His-
tory Graph Mechanism was developed exactly to serve this purpose. With its help the
reengineer can get back to the initial representation of the legacy database, make all de-

145



MODEL CONSISTENCY MANAGEMENT

sired changes, and determine which operations might have lost their validity [JW99]. In
the VARLET project [Jah99], we implemented a first History Graph Mechanism prototype
[Wad98]. This prototype was tightly integrated with the VARLET tool and could not be re-
used by other existing tools.

Therefore, we have developed a lightweight History Graph Mechanism that can loosely
be integrated with existing reengineering tools [JWZ02]. Graphs are commonly used by
reengineering tools for internal representation of software artefacts. Of course, the specif-
ic graph models used in different tools might comprise variations with respect to their ex-
pressiveness. Nevertheless, most graph models have in common that they support
different node- and edge types, attributes and directed edges. We use the GXL graph mod-
el [HWSSO00]. Note that the History Graph Mechanism does not depend on this particular
model.

The History Graph Mechanism makes use of the theoretical concept of graph transforma-
tion systems [Roz99]. The History Graph Mechanism is a specific implementation of the
general concept of a graph process as introduced by Corradini et al. [CMR96]. Corradini
defines a graph process as a partially ordered structure, plus suitable mappings which re-
late the elements of this structure to those of a given typed graph grammar. This theoret-
ical basis allows us to uniformly describe various kinds of processes in terms of graph
processes.

History Graph Model

The History Graph Model is based on the GXL graph model. In the following we give a
brief, semi-formal introduction to the GXL graph model. We refer to [Roz99] for a com-
plete formalisation of attributed graph models. A more in-depth discussion of GXL can
be found in [HWSSO00]. Figure 5.3 shows a UML specification of the GXL graph model.

A Graph can be directed or undirected, defined in isdirected from LocalConnection. It
contains GraphElements in form of Nodes, Edges, and Relations. Relations contain a set
of links pointing to one graph element each. All graph elements have unique identifiers.
GXL also includes the notion of hypergraphs, i.e., graph elements can themselves contain
sub-graphs. Furthermore, GXL supports typed graph elements (where the type of a graph
element is itself a graph element of a type graph). We omit a more detailed discussion of
the GXL typing concept since it is not necessary for the History Graph Mechanism. Note
that the actual exchange of GXL graph instances is performed in a canonical textual for-
mat based on XML [HWSSO00].

Further Figure 5.3 shows the graphical specification for the History Graph model. We ex-
tend the GXL graph model for maintaining the History Graph: we introduced Transfor-
mation nodes that carry a timestamp and a name. The timestamp is used to log the time
when a History Graph Transformation has occurred. The name of the corresponding op-

146



GRAPH-BASED HISTORY MECHANISM

{—— composition class . H
€— aggregation | attr class 4ﬁrlbut€dElement 0.n  hasAttribute
—— association  (}— generalisation id O
A On
- Attribute
-1 refersType |
r name
| Type |<> 0| T ypedElement| )
1 0.1 hasType ¢\q 4& kind
TrefersDocument |
0..1 . 0.1 from
. 0..n contains 1
| GXLDocument bm%‘ Graph GraphElement
0..1 “Nrole | contains 0..n T/N0.0] 0.1 1 to
edgeids s =
hypergraph 2 [in2 fout
edgemode sl =
0..1} 0..1
relatesTo LocalConnection Transformation
Relend 5= —
ol - 1sdirected name
direction /\ timestamp
startorder hasRelend . doe 100
..n

Figure 5.3: History (GXL) Graph model

eration is logged within the name attribute. Input and output dependencies are represented
by the ordered associations in and out.

History Graph Transformations

We use graph productions (cf. Section 3.2.3) to formalise and implement History Graph
Transformations. The left-hand side of a graph production represents the input of the cor-
responding (History Graph) transformation, while its output is represented by the right-
hand side. For example, let us consider splitClass (cf. Figure 3.19) in Figure 5.4.

Unique identifiers of the nodes allow identifying identical nodes on both sides of the pro-
duction, e.g., cl is passed as input parameter and a bound object on both sides. Node cl
represents the class to be splitted. Nodes attrs represent the set of attributes that will be
moved to the new class (Node newCIName: Class). Nodes ca: cattributes represents the
edges from the class ¢l to the attributes attrs. These edges do not occur an the right-hand
side of the production. Consequently, these edges will be deleted during the productions
application. On the right-hand side new nodes occur. Node newCIName: Class represent
the new class. Node assocName: Association represents the new association between the
old class ¢l and the new class newCIName: Class. The source and target edges are repre-
sented by the node :src and node :tar, respectively. Finally, the edges :cattributes between

147



MODEL CONSISTENCY MANAGEMENT

production splitClass (cl:Class, newCIName: string, assocName: string,
attrs:CAttributes [0..n];

newCl-
cl c cl from [, src : tar to T
| " — . Name: Class
Graph Tom
Element to from
ca. cat- -
’to” and *from’ tributes m from
links between — Association
GraphElement =
and Edge in to - -
GXL attrs . cattri-
attrs \ , to butes
left-hand side right-hand side

Figure 5.4: Graph production splitClass

the new class ¢l and the attributes attrs are created. Note that an identifier is not mandatory
for nodes that are created.

In order to maintain the application contexts of transformations, i.e., if we want to main-
tain input/output dependencies of applied transformations, we have to store information
about the matches for the corresponding graph productions. We identify the graph ele-
ments of the left- and right-hand sides and represent them explicitly in the History Graph.
Figure 5.5 shows the template for transformations.

GraphElements that appear on the left-hand side but not on the right-hand side, i.e., de-
leted elements, are associated to the Transformation node by in links. We call such nodes
consumed History Graph elements. In opposite, GraphElements that appear on the right-
hand side but not on the left-hand side, i.e., that are created, are associated to the Trans-
formation node by out links. These nodes are called the current History Graph elements.
A node that appear on both sides is associated to the corresponding transformation by an

GraphElement
. . GraphElement
| GraphElement i — I Transformation | ST GraphElement
History Graph (bold) current History (grey) consumed Transformation
Transformation Graph Element History Graph Element ’in” and ’out’ edges

Figure 5.5: Template of History Graph Transformation

148



GRAPH-BASED HISTORY MECHANISM

ca :cat- to attrs: :cattri- i Graol
tributes [ == - -~ i- from istory Graph
— CbAtttl‘l butes JI'~ . Transformation
utes
1 . —— newCl- (bold) current History
! newCl- t N Cl Graph Element
. . Sraph Eleme
i Name: in/out ou dame: L 1ass I
I string out ’ - (grey) consumed
: sTng : to History Graph Element
! assoc- § htCIaSSi ! o Transformation
g: Name: in Transformation out - tz;r ’in” and “out’ links
*": string out = \\from - — - ’to’ and ’from’ links
1 out > between GraphElement
1 assocName: and Edge in GXL
: . Association (grey means consumed)
. in/out
cl: ’
— from .srch 7O
Class - - — == c cc e e e e e e e e e e = == =] B Y
Figure 5.6: History Graph Transformation splitClass
F=——====n1 . - e e - - - - L]
I remaining !} Patient: I remaining ]
1 1 . 1 1
i graph : Class % v graph 1
1
, elements |, f Class ! elements !,
1 rom ! ! \
it - from ool
T T .
| : patient: tt' ;
—L 1 . src .cafiri- Vi
Patient: | splitClass > o butes !
1 |t0 /
Class | — /
address: to !
from ! o !
I Association
. 1 STREET ADDRESS,
t—ci’)c?t' ! from CITy,
lributes !
i ; address: POSTAL CODE,
I tar HOME PHONE,
to 1 — WORK PHONE
1
1 [
STREET ADDRESS,
CITY,
POSTAL CODE, graph elements participating ’to” and ’from’ links links to the
G & _l R to” and "from’ links ks to the
HOME PHONE, in the graph production  ___ between GraphElement - — — - remaining
WORK PHONE GG remaining graph elements and Edge in GXL graph elements
| =l

Figure 5.7: Application of production splitClass

in link and by an out link. We represent this situation with a single link labelled in/out.
These nodes are also current History Graph elements.

The corresponding transformation to the graph production splitClass example of
Figure 5.4 is depicted in Figure 5.6. The splitClass: Transformation has five input nodes
and seven output nodes. In addition to the three left-hand side nodes of the graph produc-
tion, the two (string) input parameters are represented as (consumed) nodes in the trans-

149



MODEL CONSISTENCY MANAGEMENT

formation. This is necessary to maintain the entire application context of the
transformation. The current nodes are identical to the right-hand side nodes of the graph
production.

Application of History Graph Transformation

In analogy with the treatment of transformations as graph productions, we can view trans-
formation applications as applications of graph productions. As an example, Figure 5.7
shows an application of transformation splitClass to class Patient. The left-hand side of
Figure 5.7 shows the left-hand side subgraph that fulfills all left-hand side application
conditions of the graph production splitClass. A set of attributes (STREET ADDRESS,
CITY, POSTAL CODE, HOME PHONE and WORK PHONE) is linked to class Patient via
the edge :cattributes and link from. This match is depicted by the three nodes with plain
border. The remaining graph is represented by the remaining graph elements with a
dashed border. Links are represented accordingly. The right-hand side of Figure 5.7
shows the subgraph that contains all elements that occur on the right-hand side of the
graph production splitClass. In this example class Address and Association address, with
roles (edges) patient and address, are created. The attributes are linked to class Address.

Creating Reengineering Histories with Graph Processes

Graph transformation systems are typically defined as a start graph and a set of graph pro-
ductions. Graph elements on the left-hand side of a graph production that do not appear
on the right-hand side are deleted. The main difference to the History Graph Mechanism
is that deleted nodes are not removed (from the History Graph) but are isolated, i.e., all
their incomming and outgoing links in the corresponding abstract syntax graph are deleted
and only the links to the transformation nodes are maintained.

Figure 5.8 illustrates the basic structure of a History Graph: applied transformations are
explicitly represented by n-nodes with corresponding input and output edges to graph el-
ements (G-nodes). The number n gives the chronological order of the transformations ac-
cording to their timestamps. The current valid graph is composed of the nodes with bold
borders. Consumed graph elements, i.e., graph elements that are isolated during transfor-
mation application, have grey borders.

The History Graph, which represents a particular model transformation history, contains
the current abstract syntax graph of the web information system as a subgraph. This sub-
graph can easily be determined by filtering all graph elements that have not been con-
sumed by transformations, i.e., that are not exclusively sourced by an in edge that points
to a transformation node (bold G-nodes in Figure 5.8). Likewise, the History Graph also
subsumes all previous states of the abstract syntax graph during the interactive transfor-
mation process. Thus, it is possible to trace back to any past state in the editing history.

150



GRAPH-BASED HISTORY MECHANISM

o _o_ I ; History Graph
o in/out ;7 ) —I s \r(im Transformation
1 in -
/ in/out dut .
i 1d) current History
out I 7 |in out - (bo Y
from1 : E Graph Element
1 out .
ou; 1 - 4
from 1 out \ in ou GF. to - (grey) consumed
== I History Graph Element
from G - out \\ / ;) from yoraph Bleme
o=~ o N in/out out Transformation

’in’ and ’out’ links

’to” and from’ links
between GraphElement

and Edge in GXL

(grey means consumed)

from - tE _ ‘ in/out out out
from out - Z--" , _ out .
out - out in/out n on s to
1 1 g \1 from
fo! n/out : (g in out :
1 J
AR N R re] B

Figure 5.8: Basic structure of a History Graph

Formal definitions of the History Graph, History Graph Transformations (graph produc-
tions) and the application of transformations in the History Graph can be found in [Jah99,
JIWZ02, JISWZ02].

Example

Figure 5.9 shows a snapshot of a History Graph of our case study. It is the same graph as
depicted in Figure 5.8, where the graph elements and transformations are represented as
G-nodes and n-nodes, respectively.

Starting points are the variants Deceased and Patient of the corresponding entities. The
mapping rule MapVariantToConcreteClass is applied for both variants. The correspond-
ing nodes, especially classes Deceased and Patient, are created (cf. Section 3.2). Both
mapping rules are stored in the History Graph as transformations. We replaced the times-
tamp of the six transformations occurring by numbers from 1 to 6 according to the chro-
nological order they were applied, i.e., transformation with timestamp {1} was applied
before transformation with timestamp {2}. Next, the transformation splitClass is applied
on class Patient (cf. Figure 5.7). During recovery activity the Annotation 'Duplication’ be-
tween the classes Deceased and Patient is created. We omit the precondition details and
represent them as one node set. The Annotation 'Duplication’ is confirmed and replaced by
the Association 'deathdate’ with stereotype <<copy>>, cf. Figure 3.38 and Figure 3.39.
Finally, a second transformation splitClass is applied on class Deceased.

151



MODEL CONSISTENCY MANAGEMENT

Variant ‘ CAt- to cattrl— from Class
]?eceased WOut }ff:mt]e, - - buteS =~ 7 7 1 Contact’
| : ) attrs
. Transformation 1 String  m—
5 : 1 : = :
tog MapVarlantT? X ’Contact’ in/out
1 ConcreteClass . N
1 2} ] string Transformation ! from
I left I'ot £l "contact’ "’"TH/ “splitClass’
u 2 _ (6} Assomatlon
in
from : out ¢ out : boolean _contact”
Map- i *false’ |
, n/out o

Variant
F === nght p - ___J from
from E‘ o Class ¥_ _ _ _ _ _____ M o _______

’Deceased’ | ~ -

\10 - _tg -
" -entities "=
in/out out - in out ~ from
I from ~
- - Transformation iati
Precondi- infout Transformation Annotation *createAssociation’ fkdssomatlor’l
] ’ Duplication’ e eation” F—1 eathdate
tions createDup Duplication” [f5 N out , ,
(4) out i {5} <<copy>>
out fr
I from g out P
in/out ‘entities from _ —qsrc
’ - -
f to 7 to ——
rom S
Map- | --- -I rl‘%Et I' -= =1 Class -~ from
Variant Patien” [~~~ - TTTTTTT oo To-==-
1 ; out to
o, in/out
from!  out out . ., ,\51‘1;1.] o lin
1 : Address \ Transformation out Aggregation
- 1 string . ’splitClass’ address
out | Transformation £ "nddr":; | in___— 3 v
. = C CSS
! "MapVariantTo = . out I from
1 s in
to! ConcreteClass : boolean out
1 {1} . “true’ g in/out out
.I c'llttl‘i " CAt- cattri-
Variant in/out b‘m N to tribute to butes from Class
*Patient’ S | attrs2” |77 7] == =~ 1 Address’
History Graph (bold) current History (grey) consumed Transformation
'1'~ sformati jraph Eleme e
ransformation Graph Element History Graph Element in” and "out’ links
’to” and ’from’ links between FIRSTNAME, LASTNAME, TITEL, STREET ADDRESS, CITY,
- — - GraphElement and Edge in  attrs1:  STREET, CITY, POSTAL, HOME attrs2: POSTAL CODE, HOME
GXL (grey means consumed) PHONE, BIRTHDATE PHONE, WORK PHONE

Figure 5.9: Sample History Graph

5.2.2 Simple Undo History Graph Mechanism

In this section, we describe how the History Graph can be used for incremental undo
(change propagation). The sequence diagram in Figure 5.10 illustrates an interaction sce-
nario between the environment (Tool/Reengineer) and the History Graph Mechanism.
Note that the diagram covers a single iteration only.

152



GRAPH-BASED HISTORY MECHANISM

The process starts with the creation of the start graph by passing it to the History Graph
Mechanism (addGraph(startGraph)). During this operation a copy of the startGraph is
made and stored. Then, a sequence of transformations is performed. These transforma-
tions are logged in the History Graph. This is done by calling function addTransforma-
tion(leftGraph_i, rightGraph_i, name_i), where leftGraph_i and rightGraph_i denote in-
and output of the transformation with name_i, respectively. For each call, the History
Graph Mechanism automatically creates the transformation node and returns trafo_i, the
signature (name and input parameters) and the timestamp, to the environment.

At any point in time, the valid graph before the execution of trafo_j (currentGraph) or the
transformation history ({trafo_1, ..., trafo_n}) can be requested. When invoking the cre-
ateHistory() operation, the list of all valid applied transformation {trafo_1, ..., trafo_n} is

Tool/Reengineer History Graph Mechanism
| 1
addGraph (startGraph) !
addTransformation (leftGraph_1, rightGraph 1, name 1) >
e (wmhbl) ]
getGraph(trafo_j) >
currentGraph
« — — — — — (currentGraph) ~__ _ _ _ _ |
addTransformation (leftGraph_n, rightGraph_n, name n) >
 _ _ _ _ __ (wfonm) ]
createHistory() >
trafo 1, ..., trafo n
e (mfolwfony) ]
getGraph(trafo 1) >
startGraph
e (saGraph) |
addChanges(startGraph, changedStartGraph) >
propagateChanges() >
newCurrentGraph
€ — — — — _ (newCurrentGra ph)  _ _ _ _ _ .
. :
Iy | 1
L oo '

Figure 5.10: Interaction with the History Graph Mechanism

153



MODEL CONSISTENCY MANAGEMENT

returned. Based on the transformation list, any intermediate graph can be restored by call-
ing the getGraph(trafo_i) operation.

When an iteration of the reengineering process is required, the initial startGraph can be
restored by invoking getGraph(trafo_1). Since trafo_1 is the first transformation, the valid
graph before the execution of the first transformation is the initial startGraph. Subse-
quently, the user can perform all necessary additions and/or modifications to the initial
graph of the legacy systems and submit the changes (addChanges(startGraph, changed-
StartGraph)). Likewise, the user may perform changes to any intermediate graph by re-
storing it, by editing it and finally by submitting the changes. Now the consistency can be
re-established through an incremental undo of all transformations that depend on the
changes to the start graph (propagateChange()). The result of this operation is the current
valid graph newCurrentGraph.

The algorithm in Figure 5.11 describes the work performed by the History Graph Mech-
anism. At the beginning, it receives the start graph from the reengineering tool. This start
graph (startGraph) becomes the initial history graph (HG) and further help graphs are ini-
tialised. Then, the History Graph Mechanism performs a Loop where iterations can take
place. The History Graph Mechanism logs all invoked transformations in HG. If process
iterations occur, the History Graph Mechanism recovers the requested graph (resultG) and
returns it (line 9). Line 7 specifies that the requested graph resultG can be recovered by
taking all graph elements from HG that:

* do not represent transformations (type(g)= Transformation’),
* do not participate in any transformation (g.-in->=J) or
» are the output of transformations,
- which have been executed before the given transformation
(t1.timestamp < trafo_j.timestamp) and
- which are not consumed by a previous transformation.

All isolated graph elements that are again valid in resultG are restored (line 8 - restoreEle-
ments(resultG)). How graph elements can be restored is described in Section 5.2.3.

Once the modifications to the graph are performed, they are sent back as modified graph
changedG to the History Graph Mechanism (line 11). Then the affected transformation
are calculated and returned as affectedT (line 12). The method calculateAffected Transfor-
mation( HG, originalG, changedG) is presented in Figure 5.12.

The affected transformations (affectedT) and all graph elements that are exclusively out-
put of the affected transformations ( { geHG | 3 teaffectedT, g := (t.-out-> A —(t.<-in-)) } )
are removed (line 14). Next, all isolated input graph elements that are valid again are re-
stored; and all superfluous input graph elements of deleted affected transformations are
removed (line 15). The resulting current graph updatedG (line 16) is processed in analogy

154



GRAPH-BASED HISTORY MECHANISM

1.
2.
3.

Algorithm Undo History Graph Mechanism

10.
11.
12.
13.

14.

15.
16.

17.
18.
19.
20.
End

Graph HG, resultG, updatedG, affectedT;
addGraph (startGraph);

HG := startGraph; // startGraph becomes the initial History Graph
resultG := HG; // initialise the result graph

updatedG := HG; // initialise the unpdated graph

affectedT := &; // initialise the affected transformations

Loop

addTransformation (leftGraph i, rightGraph i, name 1i);
// log all transformations in HG

if (getGraph (trafo j) )// if the graph before trafo j is regeusted

{ resultG := { geHG | type(g)#'Transformation’ A
( (g.-in->=@) v ( 3tleHG, tl:=(g.<-out-) | V t2eHG, t2:=(g.-in->)
type (tl)="Transformation’ Atype(t2)='Transformation’ A
tl.timestamp < trafo j.timestamp A
tl.timestamp >= t2.timestamp ) ) };
// recover the current graph before trafo j
resultG := restoreElements (resultG);
return resultG;
bi
addChanges (originalG, changedG) // receive the changed graph

if ( propagateChanges() )// if request to propagate changes is received
{ affectedT := calculateAffectedTransformation( HG, originalG, changedG );
// determine all affected transformations
HG := HG- (affectedT U { geHG | JteaffectedT, g := (t.-out-> A—(t.<-in-)) } );
// undo affected transformations
HG := restoreElements (HG); // restore or remove isolated elements
updatedG := { geHG | type(g)#’ Transformation’ A
( (g.-in->=0) v ( tleHG, tl:=(g.<-out-) | Vt2€HG, t2:=(g.-in->)
type (tl)="Transformation’ Atype(t2)=’Transformation’ A
tl.timestamp >= t2.timestamp ) ) };

// compute updated current graph
return updatedG;
displayUndoReport (affectedT);
bi
EndLoop

Figure 5.11: Undo History Graph Mechanism

with resultG (line 7) and then retured (line 17). The only difference is that no given trans-
formation has to be taken into account. Finally, a the list of undone transformation dis-
played (line 18).

Figure 5.12 shows how the input/output dependencies in the History Graph are used to de-
tect all transformation applications which are affected by the modifications in the graph
changedG compared to the graph resultG. It requires the calculation of the changeSet
which represents the set of all graph elements that have been modified, cf. diff (originalG,
changedG) in line 3. First, all transformations that have a changed graph element as input

155



MODEL CONSISTENCY MANAGEMENT

Graph calculateAffectedTransformation( Graph HG, Graph originalG, Graph changedG )
{
1. Graph changeSet, affectedT, affectedT’;

2. changeSet := ; // initialise the changed elements set

affectedT := &; // initialise the affected transformations

affectedT’ := affectedT; initialise help graph
3. changeSet := diff (originalG, changedG);

// determine the changes between the two graphs resultG and changedG
4. affectedT := { teHG | type(t) =’'Transformation’ A ( V gechangeSet, t = g.-in-> ) };
5. Repeat // collect all following transformations
6. affectedT’ := affectedT;
7. affectedT := { teHG | type(t) ='Transformation’ A

( Vt’eaffectedT, t = t’.-out->.-in-> At.timestamp >= t’.timestamp ) };

8. Until (affectedT == affectedT’)
9. return affectedT

Figure 5.12: Determine affected transformations

are added to the affected transformations set affectedT (line 4). Then, all subsequent trans-
formations, i.e., transformations that are reachable from affected transformations and that
have been executed after the affected transformations, are added to the affected transfor-
mation set affectedT (line 7). This is done as long as no new affected transformation is
found (line 5, 6 and 8). Finally, the set of affected transformation is returned (line 9).

Figure 5.13 illustrates the History Graph Mechanism applied on the case study snapshot
from Figure 5.9. We use the representation of Figure 5.8 for layout reasons.

We assume that the History Graph exists and start with the changePropagation() call (cf.
line 11 in Figure 5.11). The lifted index (gg )represents a changed graph element (Variant
'Patient’ in Figure 5.9). Starting from this graph element all transformations depending on
it are marked affected as described in Figure 5.12. This is shown by the hand with a point-
ing index ( ). We marked all affected graph elements with a circle (( ) to enhance
the readers understanding. In Figure 5.13 all transformations except ’2’ are affected.
Transformation ’2’ does not follow an affected transformation, i.e., it has no input graph
element that is affected.

The removed graph elements are highlighted with a fist (W@ ) in Figure 5.14. Note that
not all output graph elements of affected transformations are deleted. Output graph ele-
ments that are also input graph elements of an affected transformation are retained. Fur-
ther, an output graph element of an affected transformation, which is also an output graph
element of another not affected transformation, is retained.

Obviously, in both cases the graph elements are part of the currently valid graph. Further-
more not all consumed input graph elements are retained. Consumed input graph elements
that are isolated, i.e., which have no link to any graph element, are deleted.

156



GRAPH-BASED HISTORY MECHANISM

to F (bold) current |
-{G sp changed
@ sﬁrom element o
N

& clement

(grey) consumed affected
\ element

> out ” element
bl—u'w
GJ \ transformation
~ 1from n ’in” and
\l(,)' affected N
out\} = l"‘ . . out” links
= 1t transformation
1G).
4

’to” and ’from’ links
" (grey means consumed)

in/out

to to
b in/out 7 ._
out

from1 OY out

Glioa|G] oo

element “out’ links
(grey) consumed . to f”_m
from’ links
element - — -

(grey means

transformation consumed)

elements and

G (bold) current ’in’ and
G} o —

o~ ~ @ changed .sg transformations
& clement "~ to be deleted
: to ~
in/out ! i ~
] 2 infout ~~ -
in/oulE— ot i I

in/out

Figure 5.14: Updated History Graph: simple undo

157



MODEL CONSISTENCY MANAGEMENT

The remaining graph elements (cf. Figure 5.9) are the Variant ‘Deceased’, the Class 'De-
ceased’ and the corresponding mapping nodes (left, MapVariant, right). Additionally, the
Transformation 'MapVariantToConcreteClass’ remains. Further the CAttributes ’attrs?1’
inclusive the edges cattributes, the Preconditions, the Variant 'Patient’ and the CAttributes
‘attrs2’ are not deleted.

5.2.3 Selective Undo History Graph Mechanism

The impact of one little change seems to be massive, but considering the whole palliative
care information system only a small part is affected. Nevertheless, transformations were
undone that not needed to. Obviously, the splitClass transformation applied to the Class
'Deceased’ is still valid since it is not influenced by Variant 'Patient’. To reduce the loss
of reengineers work further, we elaborate a selective undo History Graph Mechanism.

The main difference to the single undo History Graph Mechanism is that the affected
transformations are not simply undone, i.e., removed, but they are reevaluated. The His-
tory Graph Mechanism exports the transformation to be reevaluated to the environment
(tool/reengineer) and gets the successful or failed transformation back. The algorithm re-
mains the same as the one of Figure 5.11 except to line 14; restoreElements(HG) can be
discarded because transformations are reevaluated, i.e., the consumed input graph ele-
ments of transformations that will be valid again are restored before the transformations
reevaluation. Further, calculateAffectedTransformation( HG, resultG, changedG) of
Figure 5.12 is replaced by reevaluateTransformation( HG, resultG, changedG), cf. Figure
5.15.

Lines 1 to 10 are in analogy with the lines 1 to 9 in Figure 5.12. A changedSet is calcu-
lated and all depending transformations are collected in affectedT. These directly affected
transformations have to be validated, i.e., are then reevaluated.

However, some of these transformations depend on input graph elements which were con-
sumed or which values were changed by a transformation. These isolated graph elements
have to be reproduced before the dependent transformation can be reevaluated. Reproduc-
ing these graph elements means to reevaluate all transformations that have been applied
to produce them. Some of the transformations that have to be reevaluated might not have
been marked because they are not directly affected by the changed graph elements. Hence,
we need a further affected transformation collection, i.e., collecting the indirectly affected
transformation. This is done in lines 11 to 14. Note that the reapplication of the transfor-
mations also reproduces the links between graph elements.

The selection of the transformations, which have to be reevaluated, for the graph elements
that have to be restored in the simple undo case is done in analogy. After collecting all
isolated input graph elements that are valid again, the indirectly affected transformations
are collected and then reevaluated. In case that the graph element to be restored is an ini-
tial graph element, i.e., member of the start graph, we use the copy of the start graph. The

158



GRAPH-BASED HISTORY MECHANISM

Graph reevaluateTransformation (Graph HG, Graph originalG, Graph changedG )

{
1. Graph changeSet, affectedT, reevaluateT, dependendT, dependendT, affectedT’;
2. changeSet := J; // initialise the changed elements set

affectedT := &; // initialise the affected transformations

reevaluateT := ; // initialise the transformations to be reeavluate

dependentT := ; // initialise the dependend transformations

failedT := &; // initialise the affected transformations

affectedT’ := affectedT; initialise help graph
3. Transformation o0ldT, newT;
4. 0ldT := J;

newT := J;
5. changeSet := diff (originalG, changedG);
// determin the changes between the two graphs resultG and changedG
affectedT := { teHG | type(t) ='Transformation’ A ( V gechangeSet, t = g.-in-> ) };
Repeat // collect all directly affected transformations

affectedT’ := affectedT;

O 0 J o

affectedT := { teHG | type(t) ='Transformation’ A
( Vt’eaffectedT, t = t’.-out->.-in-> At.timestamp >= t’.timestamp ) };
10. Until (affectedT == affectedT’)

11. Repeat // collect all indirectly affected transformations

12. affectedT’ := affectedT;
13. affectedT := { teHG | type(t) ='Transformation’ A
( Vt’eaffectedT, (t’.<-out-)¢changeSet : t = t’.<-out-.<-in- };
14. Until (affectedT == affectedT’)
15. Repeat
16. reevaluateT := { teHG | type(t) =’Transformation’ A
( Vt’eHG, t’ = t.<-out-.<-in- : t’¢gaffectedT) };
// select all transformations that do not follow an affected one
17. 0ldT := tereevaluateT; // select one transformation to be reevaluate
18. newT := reevaluate (HG, o01dT);
19. if (newT #O) // succesful reapplied transfomation oldT
20. { replace (0ldT, newT); // replace oldT by newT
21. affectedT := affectedT-{o0ldT}; // clean up affectedT
22. } else // failed reapplied transfomation oldT
23. { Repeat // collect all depending transformations
24, affectedT’ := dependentT;
25. dependentT := { teaffectedT | 3geHG, g=o0ldT.-out-> Ag#oldT.<-in-
t = g.-in-> }
26. Until (dependentT == affectedT’)
27. affectedT := affectedT-dependentT; // clean up affectedT
28. failedT := failedT U {0ldT} U dependentT;
29. }
30. Until (affectedT == )
31. return failedT;
32.}

Figure 5.15: Reevaluate transformations

159



MODEL CONSISTENCY MANAGEMENT

unique identifiers of GXL enable an unambiguous matching and update of the graph ele-
ments in question.

Next, the transformations that do not depend on another affected transformation are cho-
sen (line 16). Reevaluating transformations that do not have actual input graph elements
is superflous. Out of the transformations with actual input, one transformation oldT is se-
lected and reevaluated (lines 17 and 18). Reevaluating a transformation means to apply
the corresponding transformation anew to the current (maybe changed) graph elements.
The reevaluation itself is performed by the environment (tool or reengineer) in order to
check the application constraints. The new transformation newT is returned. Note that for
some reevaluations initial graph elements may be restored first by the unambiguous
matching and update. Finally, when the reevaluated transformation is successfully reap-
plied (newT = ), it is replaced by the new transformation (line 20) and removed from the
set of affected transformations (line 21).

In the case that the transformation has lost its applicability (line 22), all dependent trans-
formations dependentT are collected (lines 23 to 26). The dependent transformations are
also no longer applicable because their input is not revalidated. Subsequently, the failed
transformation oldT and these dependent transformations dependentT are removed from
the affected transformations (line 27) and added to the failed transformations failedT (line
28). The reevaluation finishes when all affected transformations were reevaluated (line
30). Instead of all transformations that are affected by the changes, only transformations
that are not longer applicable are returned to the algorithm of Figure 5.11 (line 31).

To illustrate the History Graph Mechanism process Figure 5.16 to Figure 5.18 show the
selective undo applied on the case study snapshot from Figure 5.9. Again we use the rep-
resentation of Figure 5.8 for layout reasons.

Figure 5.16 shows the directly affected transformations (marked with ) and graph el-
ements (marked with ) by the change of Variant 'Patient’ (marked with é). Entity
"Patient’ is not longer composed of the single Variant 'Patient’ but of three Variants: 'Pa-
tient’, ’Discharged’ and ’Deceased’, cf. Figure 3.8. Thus the Class 'Patient’, which is the
output of transformation with timestamp ’1°, no longer contains the same attributes prior
to the change. Note that the directly affected transformations are the same as the affected
transformations in the simple undo case. Therefore, Figure 5.13 and Figure 5.16 are iden-
tical.

Figure 5.17 shows all indirectly affected transformations(—29®). The indirectly affected
graph elements are marked in consequence (O).

The marked transformations are then reevaluated in the predefined order of their input/
output dependencies. Figure 5.18 shows the reevaluation. In this case, the first reevaluat-
ed transformation is either transformation 1’ or transformation ’2’. Transformation ’3’
depends only on transformation ’1’° and thus can precede transformation ’2’. Transforma-

160



GRAPH-BASED HISTORY MECHANISM

.i Gb (bold) current ’in” and
) 4 sf;rom element “out’ links
’to” and

(grey) consumed o
from’ links
\ element - -

(grey means

‘ to . ) i
transformation consumed)

\
= ifrom
out \l»(’J: Ly, changed ,__directly affected
Fa g element i transformation

affected
element

-

-

rom

-

(bold) current ’in” and
element “out’ links
’to’ and

(grey) consumed Lo
"from’ links

element

(grey means

transformation consumed)

L_,, changed directly affected

g element l‘— transformation
Ffected indirectly
affecte -
) ‘E}" affected
element = . .
transformation

tirom

Figure 5.17: History Graph: indirectly affected transformations

161



MODEL CONSISTENCY MANAGEMENT

tion ’3’ is successfully reevaluated because the involved attributes remained in Class 'Pa-
tient’. No other transformation is reevaluate prior these three transformations because all
three remaining affected transformations depend on them. Next transformation ’4’ is re-
evaluated. Because of the changes (missing attributes) of the new Variant 'Patient’, the ap-
plication of transformation ’4’ (createDuplication) fails. Subsequently transformation ’5’
(createAssociation) is no longer applicable because it depends on transformation ’4’. This
is shown by the ® symbol. Transformations ’6’ is not removed from the affected trans-
formation set although it depends on transformation ’4’. The reason is that the linking
graph element is also input of transformation ’4’ and thus a reevaluation can be success-
ful. Indeed, in our case splitClass (transformation ’6’) is still applicable. Transformation
’6’ 1s successfully reevaluated because Class '‘Deceased’ did not changed. Finally, all
transformations that are no longer applicable and exclusively their output graph elements
are deleted (marked with W& ).

(bold) current ’in’ and
element “out’ links
’to’ and

out (grey) consumed oo
G element __’from links

(grey means

transformation consumed)
elements and

l"’ changed ((fs transformations
& clement T to be deleted

‘.’ reapplied
no longer U transformations
applicable

N ‘ U failed
transformations transformations

- -
-

in/out

Figure 5.18: History Graph: reevaluated transformations

In a first time, the impact seems to be even more massive then for the simple undo case.
Again, considering the whole palliative care information system only a small part is af-
fected. The advantages of reevaluating the transformations are obvious comparing
Figure 5.14 and Figure 5.18. In case of the simple undo all transformations are undone ex-
cept transformation ’2’ whereas in the selective undo case only transformations ’3’ and
’5” were undone.

162



GRAPH-BASED HISTORY MECHANISM

5.2.4 Composed History Graph Mechanism

So far the History Graph Mechanism is based on one single graph which traces all the
transformations. To further sustain iterative and explorative processes we introduce the
composed History Graph Mechanism. We get following benefits from the composition of
History Graphs:

* branches
Try-outs during iteration are possible, i.e., from a common start graph several
branches can be processed in parallel. To get the best possible result the same task
can be performed by two distinct reengineers and later be compared. The merging of
graphs resulting from different branches is not addressed for the moment.

structured process

Each process activity can be attributed an own History Graph (as far as it is possi-
ble). Thus, a History Graph is self contained for each process activity. This enables
parallel work since the transformations are logged in different History Graphs, e.g.,
working in parallel on distinct graphs that are only united later. Working in parallel
on graphs that depend on each other is only meaningful if the impact of changes is
limited.

impact reduction

A consequence of several smaller History Graphs is that the number of transforma-
tions to be reevaluated is reduced. The reason is that inside a History Graph reevalu-
ation no check is made if the output graph elements are ,,really* affected. This could
be achieved by investigating if a graph element was changed by the reevaluated
transformation. This investigation automatically takes place for some transforma-
tions during the composition of History Graphs.

prevention of scaling problems

We have shown that our approach is scalable [JSWZ02]. Nevertheless, scaling
problems may occur if a single History Graph stores all transformations for long-
lasting processes. The division into several smaller History Graphs prevents such
scaling problems.

Three composition kinds of History Graphs are provided by the composed History Graph
Mechanism, i.e., sequence, union and branch. Figure 5.19 shows these kinds in the figure
compartments B to D. Compartment A depicts a History Graph chronology: the start
graph is transformed into the current graph; both are included in the History Graph (com-
plete graph).

A sequence of History graphs is shown in compartment B. In the History Graph I, graph 1
is transformed into graph 2. In History Graph Il, graph 2 is transformed into graph 3. The
sequence is realised by copying the current graph of History Graph | (graph 2) and using
it as start graph of History Graph II.

163



MODEL CONSISTENCY MANAGEMENT

History Graph : é —W — W

start graph complete graph current graph
compartment A

e R ™ &

\ graph 1 graph2 / \ graph 2 graph 3/
compartment B History Graph I History Graph II
-~ 77 " History Graphla 7
/ graph la graph 2a \

e AT —B

\ graph 1b graph 2b / graph 2a U graph 3
History Graph I.b graph 2b
compartment C History Graph II
______ e e e e e e e e e e e i e e e e e
— transformations I HiStOI'y Graph Il.a

% graph I / graph 2 graph 3a™\
"""" : s @@
-k —— 38 -
\ graph 1 graph 2 / W - >

History Graph | \ graph 2 graph 3b /
compartment D History Graph II.b
Figure 5.19: Composed History Graph: overview

In analogy, compartment C shows the union of History Graphs. The current graphs
(graph 2a and graph 2b) of two or more parallel History Graphs (History Graph l.a and
History Graph |.b) are united to one graph. This graph (graph 2a U graph 2b) is the start
graph of the subsequent History Graph (History Graph II).

Finally, branching of History Graphs is achieved by duplicating a current graph (graph 2
of History Graph I) and introducing it as start graph in two or more subsequent History
Graphs (History Graph Il.a and History Graph Il.b), cf. compartment D.

The reevaluation in composed History Graphs works inside each History Graph like the
reevaluation in single History Graphs. Only the transition, i.e., the correspondence of cur-
rent and start graph, from one History Graph to another has to be determined. Figure 5.20

164



GRAPH-BASED HISTORY MECHANISM

aneformations - | reevaluated
— transformations B graph ﬂ changed graph (‘ vaate updated graph
-4 ST E (% transformations
E -

manual change  (selective) undo

sequence: ?ﬁ>" - . § - ﬁ T, @ﬂ
\graph 1 graph 2 / \ graph 2 graph 3 /

manual change  (selective) undo transfered changes

sequence: ;ZFén ? ﬁ => ﬁ T» ﬁﬁ

\ graph 1 graph 2’ / \ graph 2’ graph 3 /
HGI HGII

Figure 5.20: Composed History Graph: reevaluation

shows the reevaluation in case of the sequence of History Graphs. Two situations can oc-
cur. Firstly, the manual change takes place on graph 2. Then a (selective) undo is done
inside the HG Il and HG | is not affected. Secondly, the manual change takes place in
graph 1. After reevaluation the graph 2 is updated to graph 2. To transfer the changes,
graph 2’ is passed to the HG Il and becomes the new start graph of HG Il. This is done by
calling addChanges(graph 2, graph 2’); graph 2 exist as copy in HG Il and graph 2’ is the
updated current graph of HG I. In term of changes:

changes in start graph (HG II) =
diff ( old startGraph(HG II), updated currentGraph(HG I) )

For the two remaining composition kinds, we only present the changes:

* union:
- changes in start graph (HG II) =
diff ( old startGraph(HGII), updated currentGraph(HGI.a U HGL.b) )
* branch:
- changes in start graph (HG Il.a) =
diff ( old startGraph(HGII.a), updated currentGraph(HGI) )
- changes in start graph (HG IL.b) =
diff ( old startGraph(HGIL.b), updated currentGraph(HGI) )

Figure 5.21 shows an example of History Graph composition in the context of our case
study. The reengineering process starts with the three databases hospdata, bvmtdata and
outcomes_be. To trace and maintain all applied transformations, fourteen history graphs
are involved.

165



MODEL CONSISTENCY MANAGEMENT

Each database is parsed and represented as an initial physical schema. In Figure 5.21 we
only quote the qualifier of the schemas, e.g., physical schema is quoted with ’physical’.
Each physical schema is retrieved into a relational schema (HG l.a, HG I.b and HG I.c).
Then each relational schema is mapped to a conceptual schema (HG Il.a, HG Il.b and
HG Il.c) that is refactored (HG Ill.a, HG Ill.b and HG lll.c). Those transformations can take
place in parallel and thus three initial physical schemas are transformed in three concep-
tual refactored schemas.

HGIla HG IlL.a HG Lb HG IL.b HG IL.c HG IL.c
hospdata hospdata bvmtdata bvmtdata Outcomes_be Outcomes_be

physical relational physical relational physical relational

ol
4 y

hospdata (| hospdata bvmtdata bvmtdata outcomes_be outcomes_be

relational conceptual relational conceptual relational conceptual

/ /
HGIIl.a HG IIL.b J HG IIl.c

outcomes_be
conceptual

outcomes_be
refactored

hospdata
conceptual
hospdata
refactored

bvmtdata
conceptual

bvmtdata
refactored

HGIV v History ——p information flow
palliative Graph () start & current graph
composed
v HG V.a HG VI
palliative palliative palliative palliative palliative
completed / completed redesigned redesigned clustered

HG V.b HG VII

Y __ — branch can — A A
palliative palliative be continued palliative palliative
completed redesigned /|~ ~ > or aborted classified clustered

Figure 5.21: History Graph Sequence Example

The three refactored schemas are united into one composed schema. Since these refac-
tored schemas are disjoint, i.e., they do not have any inter-schema relationships this can
easily be done. The inter-schema relationships are investigated next. The composed sche-
ma is transformed into a completed schema (HG 1V). At this point a single user or more
than one user may try out some redesign transformations on the same completed schema
and decide later which branch will persist. In the scenario of Figure 5.21 two branches are
created. The corresponding (redesign) transformations are logged in HG V.a and HG V.b,

166



GRAPH-BASED HISTORY MECHANISM

respectively. We assume that the branch logged by HG V.a is chosen. HG VI maintains the
transformation related to clustering. Finally, the classification operations are retained in
HG VII.

One benefit of the composed History Graph Mechanism is the impact reduction. This is
shown in Figure 5.22 to Figure 5.24 where we replay the reevaluation of Section 5.2.3.

We start with the changed Variant 'Patient’ in HG Il.a, cf. Figure 5.22. The only affected
transformation is transformation ’1’ because all other transformations, i.e., ’2’ to ’6’ are
located in other History Graphs. Transformation 'MapVariantToConcreteClass’ (transfor-
mation ’1°) is successfully reapplied.

’in” and

’out’ links
’to’ and

from = >from’ links
- _ ==~ "from
~~~~~ -7 (bold) current
frops \ - -
|Lout G element
_l/ affected reapplied )
[l X i ~ (grey) consumed
element transformations
element

to in/out

l-,, changed directly affected
§! element "- transformation transformation

Figure 5.22: Reevaluation of HG Il.a

During refactoring, Class 'Patient’ was split into Class 'Patient’ and Class 'Address’.
Since transformation ’1’ was reapplied, changes occurred, but Class 'Patient’ itself was
not changed. Thus the transfer of changes from HG Il.a to HG lll.a do not affect any input
graph element of transformation ’3’, i.e., splitClass, cf. Figure 5.23.

(bold) current (grey) consumed ’in’ and ’to’ and ’from’ links
transformation —— ) - - -
element element ’out’ links (grey means consumed)

frgm - _to - - ffom

from; IGk—' ot

Figure 5.23: Reevaluation of HG IIl.a

Even if in HG lll.a no transformation was affected, the transfer of changes is pursued. In-
deed, the updated graph elements of HG Il.a have an impact on HG IV. The mapping of
the changed Variant 'Patient’ engender changes in the Preconditions of transformation 4,
cf. Figure 5.24. Like in Figure 5.18, the application of transformation ’4’ (createDuplica-

167



MODEL CONSISTENCY MANAGEMENT

tion) fails and transformation ’5’ (createAssociation) is no longer applicable. Thus the
concerned graph elements are deleted.

(bold) current grey) consumed ’in’ and l-,,_ changed affected
element element - transformation —— >out’ links g element O element
’to” and elements and
__’from’ links ﬂﬁ transformations
(grey means to be deleted

consumed)
directly affected

no longer ‘_ transformation
applicable t failed

transformations ‘ transformations

-_from

rom|

tol

LR ettty e /'to
Figure 5.24: Reevaluation of HG IV

Class 'Deceased’ is affected, but not changed. In analogy with HG lll.a, no impact on
HG V.a and HG V.b is transferred. Note that the changes still have to be transferred further.
In our case the deletion of the duplication Association ‘deathdate’ affects the clustering
and consequently HG VI. We refer to Section 4.2.1 for details of the clustering.

Comparing the reevaluation between the single History Graph Mechanism and the com-
posed History Graph Mechanism in our example, only 2 instead of 5 transformations are
reevaluated. The reason therefore is the duplication of graph elements in the different His-
tory Graphs. On the one hand, a check if the graph element has really changed is done by
transferring the changes to the subsequent History Graph. On the other hand, graph ele-
ments do not have to be restored because they exist in their current state in the correspond-
ing History Graph.

5.3 Tool Support

The GXL-based History Graph Mechanism tool support is joint work with the netlab
Group located at the University of Victoria, Canada. In our context it is located in the
REDDMOM project. REDDMOM is mainly based on the FUTIABATS and especially on parts
of the FUIABARE. The History Graph Mechanism is independent from the tool support for
the undestading phase and the adaption phase. It is accessed via an API. Figure 5.25 shows
an overview of the History Graph Mechanism tool support for model consistency man-
agement. The filled tool parts are currently under development.

168



TooL SUPPORT

External tool

GXLHistoryGraph
(e.g. FUIABARE) < API

(simple undo)

(selective undo) |

~omposed History

Eati Graph

<—» information flow

Figure 5.25: Architecture of the History Graph Mechanism tool support

External tool (prerequisites):

A tool has to meet certain requirements to be able to interface with our History Graph
Mechanism. We have minimised these requirements as much as possible to enable the in-
tegration with many different environments. Basically, a tool has to be able to

« import and export its internal abstract syntax graph structure
(preferably in GXL),

« report for each transformation on the abstract syntax graph
- the graph elements that represent the input of the transformation (in GXL)
- the graph elements that represent the output of the transformation (in GXL), and

* provide an API that enables the reevaluation of a transformation specified by its
name and with given input (in GXL).

GXLHISTORYGRAPH:

The API of the GXLHISTORYGRAPH comprises following operations:
» addGraph(graph)
History Graph initialisation, makes a graph copy.

+ addTransformation(leftGraph i, rightGraph i, name 1)
build the History Graph, returns transformation ’trafo i’.

» createHistory()
returns the list of all applied transfomations {trafo 1, ..., trafo_n}.

* getGraph(trafo j)
calculates the valid graph before the application of transformation trafo j.

 addChanges(graphl, graph2)
transfers the changes between graph1 and graph2 into the History Graph.

* propagateChange()
determines the impact of the changes and returns a ,,change-consistent* graph.

169



MODEL CONSISTENCY MANAGEMENT

All graphs passed to GXLHISTORYGRAPH must be in GXL format.

The simple undo determine the affected transformations and undo them. This is done by
deleting the affected transformations and the corresponding graph elements

The selective undo only undo the transformations that cannot be successfully reevaluated.

Composed History Graph:
The API of the Composed History Graph comprises following operations:

» createHistoryGraph()
creates a new History Graph and returns it. All History Graph (in our case GXLHis-
toryGraph) API operations are available.

* createHistory()
returns the list of all History Graphs {HG I, ..., HG N}.
* getHistoryGraph(HG x)
returns the History Graph HG x.
* propagateChange()
transfers the changes to all History Graphs.
All History Graph API operations are passed to the corresponding GXLHISTORYGRAPH
operations. The GXLHISTORYGRAPH can be replaced by other History Graph implementa-
tions. If an external tool uses a format different from GXL, two solutions are possible.
Firstly, a new History Graph that understands this format has to be implemented. Second-
ly, a converter from this format into GXL and vice versa is needed.

5.4 Related work

The described research is related to various existing approaches maintaining inter-docu-
ment consistency in the software (forward) engineering process. Perhaps the most prom-
inent technology in this regard are mechanisms for version and configuration
management like, e.g., the concurrent versions system [CVS]. In principle, mechanisms
like the concurrent versions system can be used to create version histories of recovered
design documents. However, such version histories do not consider the actual structural
dependencies among the transformations performed in the abstraction process. Instead,
the version history merely reflects a time-oriented view on intermediate stages reached in
the (last iteration of the) recovery process. Consequently, traditional version management
systems can only provide limited support for iteration.

Lefering and Schiirr suggest a dedicated formalism called Triple Graph Grammars for
specifying structure dependencies among abstract syntax graphs [SL96]. This formalism
is used in the IPSEN project for generating integration tools that maintain consistency and
propagate changes from software design documents to the implementation code and vice

170



RELATED WORK

versa [Nag96]. Nowadays, most commercially available development environments pro-
vide (limited) support for change propagating between software documents on different
levels of abstraction.

Unfortunately, very few reengineering tools provide similar support for propagating
changes of the knowledge about a legacy system. In most current tools, the legacy system
analysis and information extraction, the information transformation and abstraction, and
the system and information extension (integration) cannot be iterated without losing the
interactive work performed. They impose a strictly phase-oriented, waterfall-like reengi-
neering process, without the support for iteration. This is an important limitation in prac-
tice, as iterations between reverse engineering and integration steps occur frequently:
when a reengineer learns more about the abstract design of a legacy system, (s)he often
refutes some initial assumptions and does further investigations. Moreover, reengineering
projects might have durations from several months up to years. Urgent (on-the-fly) mod-
ifications of the original system during this period have to be reflected in the target sys-
tem, which, of course, leads to the demand for iteration in the reengineering process. This
problem of consistency management in process iteration is only addressed in DB-MAIN
[HHE+99] and VARLET [Jah99].

DB-MAIN logs the history of all transformations during the reengineer’s interaction.
Each performed transformation is recorded precisely and completely to make its inversion
possible. The history has to be monotone and linear. This makes it possible that changes
can be propagated from one schema level to another. In case that a transformation record-
ed in the history becomes invalid the reengineer has to resolve the inconsistencies manu-
ally. DB-MAIN does not allow the reengineer to get back (and modify) the initial state of
the legacy system. Exploration (branches) and concurrent work are not supported.

The VARLET environment supports iterative data analysis and abstraction processes
[JWO99]. VARLET logs all schema transformations invoked by the user in an automated
logbook (including their pre- and post-conditions and interdependencies). Moreover, the
initial, low-level representation of the legacy schema remains available to the user. When-
ever the initial representation of the legacy system is changed, VARLET uses the logged
transformation dependencies to determine which interactive operations are affected by the
modifications. The pre-conditions of these transformations are then reevaluated and only
those transformations that fail this test are undone. The consistency of the extracted infor-
mation on the legacy system and its interactively created abstraction has been re-estab-
lished. This consistency mechanism is encoded in VARLET and thus cannot be reused by
other tools.

Two related approaches that address change propagation are the Evolvable View Environ-
ment [NR99] and ArchDiff [vv02]. Nica and Rudensteiner [NR99] present an approach
that updates view extents after view synchronisation driven by schema changes. Similar
to our approach, they exploit the knowledge: how the view definition was synchronised

171



MODEL CONSISTENCY MANAGEMENT

and which changes were performed on the view definition after synchronisation. Van der
Westhuizen and van der Hoek [vv02] present algorithms that can be used for understand-
ing architectural changes and propagating those changes among individual architectures
in the product line. The strength of the algorithms lies in their use of a simple, XML-based
representation for capturing architectural changes. Different algorithms build upon this
representation to determine not only those architectural elements that have been added or
removed, but also those sets of elements that represent replacements within the architec-
ture.

5.5 Summary and Future Work

This chapter started with an overview of our model consistency management. The pre-
sented History Graph Mechanism enables to restore consistency between models that rep-
resent web information systems. We provided the background information for our graph-
based approach. Next we explained how model changes are propagated and discussed
successively simple undo and selective undo to restore consistency. Finally, we presented
how History graphs can be combined and the consequent tool support.

We allow composition and duplication (results in branches) of history graphs. This pro-
vides flexibility and sustains iterations, e.g. a parallel try in multiple branches followed
by choosing one branch. The choosing can be done after change propagation to all branch-
es. We recommend that all branches are erased and are not longer used to avoid confu-
sions and runtime overhead. The composition can be refined by passing subgraphs, but
this requires an exact definition of filter (user view). Future improvements would be the
splitting and merging of graphs. This would provide more flexibility, e.g., by merging
branches. Therefore transformations covering several graphs may be needed, what makes
a consistency management hard. Moreover, possibilities to suppress, add or replace a
transformation would increase the usability and support of iteration.

172



CHAPTER 6: CONCLUSIONS

Fundamental progress has to do with the reinterpretation of basic
ideas.

-- ALFRED NORTH WHITEHEAD
British mathematician, logician and philosopher (1861-1947)

6.1 Summary

The costs spent for reengineering are no garantee for successful reengineering. In
[BSS+99] ten reasons that reengineering efforts fail are presented. Seven reasons tackle
project management and technical issues. The remaining three reasons are matched by our
data-oriented reengineering process:

* ,,The organization does not have its legacy system under control.” (reason 4)

We provide understanding of a web information system by data-oriented reverse
engineering and use clustering to partition the web information system.

+ ,Software architecture is not a primary reengineering consideration.* (reason 6)

We consider relationships between data components and proposed architectural pat-
terns to (re)restructure the web information system.

113

+ ,There is no notion of a separate and distinct ,,reengineering process*. “ (reason 7)

We propose our data-oriented reengineering process that includes the management
of the models representing the web information system.

Our data-oriented process is composed of two phases: the understanding phase and the
adapting phase. Figure 6.1 shows the flexible tool support, which sustains iterations and
explorations, that we provide for these two phases. Basic information about the data is re-
gained by parsing the web information system and represented in Data Component Mo-
dels. These Data Component Models are interactively completed, abstracted and
transformed by the reengineer. The web information system can then be extended with
further models. From the regained and new models an access layers and new applications
are generated.

One of the major contributions of this dissertation is the classification and retrieval of re-
lationships in web information systems. We combined existing approaches and tools to re-
cover the data structure of a web information system particularly the data dependencies
between the data components. During this reverse engineering process uncertainty is ex-
pressed with fuzzy logic and inconsistencies are tolerated.

173



CONCLUSIONS

Web

Information
System

1. Understanding:
Data-oriented Reverse
Engineering

Code Parser

Java Slicer
New — e — - — - b
N . ) Island Grammar Parser
Applications Maintenance: !
. 1
Y | Model.-drlven | ' [Data Model
| Consistency | i Parser @
Management !
' o Pattern
1 . .
| GXLHistoryGraph | 1 EER Specification
. . 1 . i
Composed ! ditor Editor
| History Graph | | v\ Pattern
0 Instance
—_ — . I . Retrieval
ﬂ ! Triple-
. T~ Graph- i
Data / : Grammar (_,:@ :
Component g - : Editor i
Models / »: Mapping :
, 1 Rules I
1 I
_ | _ 1L —— a4 |- I
~ | 1 |
| Generator |< : :
| | Editor | .
s Pattern Definition / I
| Do S _/ﬁ and Use Editor : | :
DolLittle Clustering Tool i | Tranformation I
1 1
| 2. Adapting: Data Component Extension \ @ I :
|_ - b e e e o omm e e e e e e —— =
legacy new database schemas and partial Domain Experts
O system D applications @ application models @ and Reengineers
—> dataaccess —3p information flow — . > model transformations —=>model correspondances

Figure 6.1 Tool Support for the Data-oriented Reengineering process

Once models of the data components are reverse engineered, these retrieved models are
redesigned and new functionality, i.e., schemas and/or applications, is modeled. To this
end, we provide clustering of the Data Component Models followed by classification of
the data components. We presented clustering strategies depending on the chosen integra-
tion strategy. To (re)structure the data components we elaborate four architectural pat-

terns.

174



TRANSFERABILITY OF RESULTS

After adapting and extending the web information, we provide code generation facilities.
Firstly, based on the maintained dependencies between the physical schemas and concep-
tual, object-oriented schemas, we generated transactional object-oriented access layers
for the legacy databases. Secondly, for newly modeled data components we generated
Java code that accesses the legacy system via the transactional access layer. The aim is to
enable the construction of data component prototypes by model execution.

We maintain the knowledge of the system by model consistency management. We make
use of graph transformations for the model-based reverse engineering and the model-driv-
en development. We developed an incremental graph-based model change propagation
mechanism, i.e., the History Graph Mechanism, which preserve consistency between
models. This mechanism enables the selective undo of (graph) transformations that be-
come invalid because of changes performed after the transformations’ application.

Finally, we evaluated our data-oriented reengineering process and tool support with a case
study for proof of concepts. This case study deals with the reengineering of a web infor-
mation system in the health care domain.

6.2 Transferability of Results

Most of our results are not limited to the reverse engineering of legacy web information
systems like presented in the case study, i.e., composed of databases and object-oriented
application code. Our data-oriented reverse engineering process can be applied to other
data sources, e.g., file based, and non object-oriented application code, e.g., COBOL.

Similar challenges exist in architectural reverse engineering. As our approach is based on
a combination of data reverse engineering and design recovery, especially design pattern
instances recovery, it can be extended to architectural aspects: (1) either the extension can
be done by adding or exchanging tools for recover architectural models and dependencies;
or (2) the existing parsers and pattern definitions can be adapted or extended.

The relationship retrieval is based on a data related pattern instance recovery approach.
Business rules also depend on the information systems’ data. Defining business rules with
patterns anchored on the systems’ data structure enable their detection with our approach.

The generation of the transactional object-oriented access layer and the model consistency
management enables incremental web information system migration [BS95]. The access
layer builds an interface between the data and the applications. First, the applications’ data
access is shifted to exclusive data access via the generated access layer. Then, the physical
schemas can be changed or migrated in a controlled way and with limited impact into the
generated access layer. Last, data transfer can be automated due to the explicit data com-
ponent model maintenance. The model consistency management enables a long-lasting
maintenance strategy by keeping the models consistent during parallel system evolution.

Different engineering tools have different application domains (e.g., software product line
development, architectural recovery or program understanding) but the vast majority of

175



CONCLUSIONS

tools have in common that they are graph-based, i.e., they store models in abstract syntax
graphs. Most of the engineering processes supported by these tools are iterative. Our His-
tory Graph Mechanism can propagate changes occurring during iteration through any
graph structure. Therefore, every graph-based tool providing the simple History Graph
Mechanism API can benefit from incremental change propagation.

6.3 Open Problems

The case study revealed open problems that need further investigation. The definitions of
the usage and constraint relationship should be subdivided to enable more detailed anal-
ysis and clustering. The kinds of data dependencies used, e.g., replication or duplication,
would provide additional helpful knowledge to the reengineer. Another useful informa-
tion regarding the extension would be how the data dependency is used, e.g., encapsulated
in a method call or directly by an embedded SQL statement.

A related open problem is the clustering. First results during evaluation have demonstrat-
ed the clustering usefulness. The existing clustering approaches and tools are generally
focused on source code re-modularisation or schema abstraction. A deeper investigation
of data component clustering focusing on data distribution is desirable to reach more ac-
curate and reliable results.

Our approach is limited to the generation of transactional object-oriented access layers to
existing databases and of prototypes. Many practical scenarios exist that require platform-
specific application design and thus specific generation. A major improvement would be
the code generation for middleware technologies. Common solution for information sys-
tem integration middleware within organisations is distributed transaction processing
[XA94] as provided by transaction monitors [Hud94, Hal96] and middleware transaction
services [OTS98, JTS99]. A more scalable solution is reliable messaging [Hou98, Lew99]
which results in a reliable asynchronous processing scenario. Liebig and Tai propose an
integration of message-oriented transactions and distributed object transaction to middle-
ware mediated transactions [LTO1].

Existing tools can be integrated by XML file exchange. Nevertheless, tighter tool integra-
tion, e.g., at the meta-model level like realised in the FUIABATS [BGN+03], is desirable.
Further, layout information is often lost during iteration and information transfer between
tools.

6.4 Future Directions

More possible information sources for the data-oriented reverse engineering process can
be found, like sketched in [HHH+00]. One valuable source of information would be to
record the user interactions on the system to find out and increase certainty of data depen-
dencies. Depending on the existent application the databases are queried in various forms.
Approaches that traces user interactions for system understanding are presented in

176



FUTURE DIRECTIONS

[MCO01, ESS02]. We implemented a proprietary approach that propose optimisation mea-
sures depending on the kind of query and the duration a query needs in the different sys-
tem’s tiers [Rot03, Wad03]. This result can be transferred and used for web information
system understanding.

The retrieval can be further improved by adding and combining reverse engineering tech-
niques to our approach [MBPRRO1]. In [DRT98] three reverse engineering patterns are
presented: (1) code duplication detection, (2) architectural extraction using prototyping
and (3) inferring hot spots (a variation in the application domain) from overridden meth-
ods. The code duplication detection can be used to weight the code fragments. Since we
provide prototyping facilities, a further iteration can take place applying this pattern. In-
ferring hot pots can help to recover hidden dependencies. ,,A hidden dependency is a re-
lationship between two seemingly independent components and it is caused by a data flow
inside a third software component.* -- [YRO1] Further the automatic extraction of inter-
faces like presented in [WMLO02] would help the reengineer when (re)structuring the web
information system.

The current information technology trends require the extension of legacy web informa-
tion systems in two directions. Firstly, integrating mobile devices is needed to meet the
ubiquitous computing requirements. Mascolo et al. present a data-sharing middleware for
mobile computing named XMIDDLE [MCZEQ2]. The sharing of XML documents across
heterogeneous mobile hosts is provided by XMIDDLE, allowing on-line and offline access
to data. Replication transparency is abandoned by XMIDDLE to achieve an acceptable per-
formance and scalability. Secondly, a seamless integration to the internet is still a chal-
lenge. Many approaches exist in this direction, e.g., [MGO00, KK01, MMKO02, SL02].

177



CONCLUSIONS

178



REFERENCES

Chapter 1: Introduction

[Aik96]

[Bas90]

[BGN+03]

[BH99]

[CC90]

[EH99]

[GAK99]

P. Aiken. Data Reverse Engineering: Slaying the Legacy Dragon.
McGraw-Hill, 1996.

V.R. Basili. Viewing Maintainance as Reuse-Oriented Software Develop-
ment. IEEE Software, 7(1):19-25, September 1990. IEEE Computer Soci-
ety Press.

S. Burmester, H. Giese, J. Niere, M. Tichy, J.P. Wadsack, R. Wagner,
L. Wendehals, and A. Ziindorf. Tool Integration at the Meta-Model Level
within the FUJABA Tool Suite. In Proceedings of the Workshop on Tool-
Integration in System Development (TIS), Helsinki, Finland, (ESEC / FSE
2003 Workshop 3), pages 51-56, September 2003. online at http://
www.es.tu-darmstadt.de/english/events/tis/documentation/Proceed-
ings.p%df.

I.T. Bowman and R.C. Holt. Reconstructing Ownership Architectures To
Help Understand Software Systems. In Proceedings of the 7th Interna-
tional Workshop on Program Comprehension, Pittsburgh, USA, pages 28—
37. IEEE Computer Society Press, May 1999.

Elliot J. Chikofsky and James H. Cross II. Reverse Engineering and
Design Recovery: A Taxonomy. 1IEEE Software, 7(1):13—17, January
1990. IEEE Computer Society Press.

V. Englebert and J.-L. Hainaut. DB-MAIN: A Next Generation Meta-
CASE. Journal of Information Systems - Special Issue on Meta-CASE:s,
24(2):99-112, June 1999. Elsevier Science Publishers B.V (North-Hol-
land).

GY. Guo, J.M. Atlee, and R. Kazman. 4 Software Architecture Recon-
struction Method. In Proceedings of the 1st Working IFIP Conference on
Software Architecture, San Antonio, USA, pages 22-24. Kluwer Aca-
demic Publishers, February 1999.

179



[GCBMY96]

[GroO1]

[GWO1]

[Jah99]

[JGW02]

[INW00]

[JSWZ02]

[JW99a]

W.G. Grisworld, M.I. Chen, R.W. Bowdidge, and J.D. Margenthaler. Too/
Support for Planning the Restructuring of Data Abstractions in Large Sys-
tems. In Proceedings of the 4th ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, San Francisco, USA, pages 33—45. ACM
Press, October 1996.

Object Management Group. Model Driven Architecture (MDA) Edited by
Joaquin Miller and Jishnu Mukerji. online at http://www.omg.org/cgi-bin/
doc?ormsc/2001-07-01, 492 Old Connecticut Path, Framingham, MA
01701, USA, 2001.

H. Giese and J.P. Wadsack. Reengineering for Evolution of Distributed
Information Systems. In Proceedings of the 3rd International Workshop on
Net-Centric Computing: Migrating to the Web, Toronto, Canada, pages
36-39. ACM Press, May 2001.

J.H. Jahnke. Management of Uncertainty and Inconsistency in Database
Reengineering Processes. PhD thesis, University of Paderborn, Pader-
born, Germany, September 1999.

J.H. Jahnke, D.M. German, and J.P. Wadsack. Architecturals Patterns for
Data Mediation in Web-centric Information Systems. In Proceedings of of
the 3rd ICSE Workshop on Web Engineering, Orlando, USA, May 2002.

J.H. Jahnke, J. Niere, and J.P. Wadsack. Automated Quality Analysis of
Component Software for Embedded Systems. In Proceedings of the 8th
International Workshop on Program Comprehension, Limerick, Irland,
pages 18-26. IEEE Computer Society Press, June 2000.

J.H. Jahnke, W. Schiéfer, J.P. Wadsack, and A. Ziindorf. Supporting Itera-
tions in Exploratory Database Reengineering Processes. Journal of Sci-
ence of Computer Programming, 45(2-3):99-136, November 2002.
Elsevier Science Publishers B.V (North-Holland), (Special Issue on Soft-
ware Maintenance and Reengineering).

J.H. Jahnke and J.P. Wadsack. Human-centered Reverse Engineering
Environments should Support Human Reasoning. In Proceedings of the 1st
Workshop on Soft Computing Applied to Software Engineering, Limer-
ick, Ireland, pages 77—84. Limerick University Press, April 1999.

180



[JW99b]

[JW99c]

[TW00a]

[TW00b]

[TWZ02]

[KSRLO1]

[Mil98]

[MTWO93]

[Nie03]

J.H. Jahnke and J.P. Wadsack. Integration of analysis and redesign activ-
ities in information system reengineering. In P. Nesi and C. Vernoef, edi-
tors, Proceedings of the 3rd European Conference on Software
Maintenance and Reengineering, Amsterdam, The Nederlands, pages
160-168. IEEE Computer Society Press, March 1999.

J.H. Jahnke and J.P. Wadsack. Varlet: Human-Centered Tool Support for
Database Reengineering. In J. Ebert, B. Kullbach, and F. Lehner, editors,
Proceedings Ist of the Workshop Software Reengineering. Bad Honnef,
Germany, pages 149—156. Fachberichte Informatik, Universitit Koblenz-
Landau, July 1999.

J.H. Jahnke and J.P. Wadsack. The Varlet Analyst: Employing Imperfect
Knowledge in Database Reverse Engineering Tools. In In Proceedings of
the 3rd International Workshop on Intelligent Software Engineering, Lim-
erick, Ireland, pages 59-69. IEEE Computer Society Press, June 2000.

J.H. Jahnke and A. Walenstein. Reverse Engineering Tools as Media for
Imperfect Knowledge. In Proceedings of the 7th Working Conference on
Reverse Engineering, Brisbane, Australia, pages 22—-31. IEEE Computer
Society Press, November 2000.

J.H. Jahnke, J.P. Wadsack, and A. Ziindorf. A4 History Concept for Design
Recovery Tools. In Proceedings of the 4th European Conference on Soft-
ware Maintenance and Reengineering, Budapest, Hungary, pages 59-69.
IEEE Computer Society Press, March 2002.

R.K. Keller, R. Schauer, S.Robitaille, and B.Lagu. The SPOOL
Approach to Pattern-Based Recovery of Design Components. In
H. Erdogmus and O. Tanir, editors, Advances in Software Engineering

Topics in Evolution, Comprehension, and Evaluation. Springer Verlag,
2001.

H.W. Miller. Reengineering Legacy Software Systems. Digital Press,
1998.

H. Miiller, S. Tilley, and K. Wong. Understanding Software Systems
using Reverse Engineering Technology: Perspectives from the Rigi
Project. In Proceedings of the 1993 IBM/NRC CAS Conference, Toronto,
Canada, pages 217-226. IBM, October 1993.

J. Niere. Inkremetelle Mustererkennung. PhD thesis, University of Pader-
born, Paderborn, Germany, December 2003.

181



[NNWZ00]

[NSW+02]

[NWWO1]

[NWWO03]

[NWZ01]

[OLHL02]

[ORHO02]

[PG02]

U.A. Nickel, J. Niere, J.P. Wadsack, and A. Ziindorf. Roundtrip Engineer-
ing with FUJABA. In J. Ebert, B. Kullbach, and F. Lehner, editors, Proc of
2nd Workshop on Software-Reengineering (WSR), Bad Honnef, Ger-
many, pages 31-34. Fachberichte Informatik, Universitdt Koblenz-Lan-
dau, August 2000.

J. Niere, W. Schifer, J.P. Wadsack, L. Wendehals, and J. Welsh. Towards
Pattern-Based Design Recovery. In Proceedings of the 24th International
Conference on Software Engineering, Orlando, Florida, USA, pages 338—
348. ACM Press, May 2002.

J. Niere, J.P. Wadsack, and L. Wendehals. Design Pattern Recovery
Based on Source Code Analysis with Fuzzy Logic. Technical Report tr-ri-
01-222, University of Paderborn, Paderborn, Germany, March 2001.

J. Niere, J.P. Wadsack, and L. Wendehals. Handling Large Search Space
in Pattern-Based Reverse Engineering. In Proceedings of the 11th Interna-

tional Workshop on Program Comprehension, Portland, USA, pages 274—
280. IEEE Computer Society Press, May 2003.

J. Niere, J.P. Wadsack, and A. Ziindorf. Recovering UML Diagrams from
Java Code using Patterns. In J.H. Jahnke and C. Ryan, editors, Proceed-
ings of the 2nd Workshop on Soft Computing Applied to Software Engi-
neering, Enschede, The Netherlands. Centre for Telematics and
Information Technology, University of Twende, The Netherlands, Febru-
ary 2001. online at http://trese.cs.utwente.nl/scase/scase-2/Proceed-
ings.pdf.

A. Orso, D. Liang, M.J. Harrold, and R. Lipton. Gamma System: Contin-
uous Evolution of Software after Deployment. In Proceedings of the 2002
International Symposium on Software Testing and Analysis, pages 65—69.
ACM Press, July 2002.

A. Orso, A. Rao, and M. J. Harrold. 4 Technique for Dynamic Updating of
Java Software. In Proceedings of the 2002 IEEE International Conference
on Software Maintenance, Montréal, Canada, pages 649-658. IEEE Com-
puter Society Press, October 2002.

M. Pinzger and H. Gall. Pattern-Supported Architecture Recovery. In Pro-
ceedings of the 10th International Workshop on Program Comprehension,
Paris, France, pages 53—-63. IEEE Computer Society Press, June 2002.

182



[SKO1]

[SWJ04]

[Wad03]

[War99]

[WJ02]

[WJ03]

[WNGJ02]

[ZSG79]

[ZWRO1]

K. Sartipi and K.Kontogiannis. 4 Graph Pattern Matching Approach to
Software Architecture Recovery. In Proceedings of the 2001 IEEE Interna-
tional Conference on Software Maintenance, Florence, Italy, pages 408—
418. IEEE Computer Society Press, November 2001.

W. Schifer, J.P. Wadsack, and J.H. Jahnke. Software Reengineering - Die
Suche nach verlorener Information. ForschungsForum Paderborn, 7-2004,
January 2004. Paderborner Universitidtsmagazin, (to appear).

J.P. Wadsack. Architectural Issues in Data Reengineering. In Report of
the Dagstuhl-Seminar 03061 on Software Architecture Recovery and
Modeling. Schloss Dagstuhl, Germany, February 2003.

I. Warren. The Renaissance of Legacy Systems - Method Support fpr Soft-
wrae-System Evolution. PRACTIONER SERIES. Springer Verlag, 1999.

J.P. Wadsack and J.H. Jahnke. Towards Model-Driven Middleware Main-
tenance. In Proceedings of the OOPSLA 2002 Workshop on Generative
Techniques in the context of Model-Driven Architecture, Seattle, USA,
November 2002. online at http://www.softmetaware.com/oopsla2002/
mda-workshop.html.

J.P. Wadsack and J.H. Jahnke. A History Concept for Recovery and Design
Tools. In Report of the Dagstuhl-Seminar 03061 on Software Architecture
Recovery and Modeling. Schloss Dagstuhl, Germany, February 2003.

J.P. Wadsack, J. Niere, H. Giese, and J.H. Jahnke. Towards Data Depen-
dency Detection in Web Information Systems. In Proceedings of the [CSM
2002 Database Maintenance and Reengineering Workshop, Montréal,
Canada, pages 47—64. IEEE Computer Society Press, October 2002.

M.V. Zelkowitz, A.C. Shaw, and J.D. Gannon. Principles of Software
Engineering and Design. Prentice Hall, 1979.

A. Ziindorf, J.P. Wadsack, and 1. Rockel. Merging graph-like object struc-
tures. In Proceedings of the 10th International Workshop on Software
Configuration Management, Toronto, Canada, May 2001.

Chapter 2: Data-oriented Reengineering: A Case Study

[AOS+99]

K. Arnold, B. Osullivan, R. W. Scheifler, J. Waldo, A. Wollrath, and
B. O’Sullivan. The Jini(TM) Specification. Addison-Wesley, June 1999.

183



[BBD+03]

[BRI99]

[CC90]

[Cim00]

[CVS]

[Dat89]
[GGTO1]

[HA00]

[HEH+95]

[HHH+00]

L. Bilykh, Y. Bychkov, D. Dahlem, J.H. Jahnke, G. McCallum, C. Obry,
A. Onabajo, and C. Kuziemsky. Can GRID Services Provide Answers to
the Challenges of National Health Information Sharing? In D.A. Stewart,
editor, Cascon 2003: Meeting of Minds, Toronto, Canada. IBM, October
2003.

G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Lan-
guage User Guide. Addison-Wesley, Reading, Massachusetts, USA, 1st
edition, 1999.

Elliot J. Chikofsky and James H. Cross II. Reverse Engineering and
Design Recovery: A Taxonomy. IEEE Software, 7(1):13—17, January
1990. IEEE Computer Society Press.

J. J. Cimino. From Data to Knowledge through Concept-oriented Termi-
nologies. American Medical Informatics Association, 7(3):288-297,
2000. Hanley & Belfus, Inc. Medical Publishers.

CVS. Concurrent Versions System - The open standard for version con-
trol. http://www.cvshome.org/.

C.J. Date. 4 Guide to the SOL standard. Addison-Wesley, 1989.

M. Gehrke, H. Giese, and M. Tichy. 4 Jini-supported Distributed Version
and Configuration Management System. In Proceedings of the 2001 Inter-

national Symposium on Convergence of IT and communications, Denver,
USA, August 2001.

K. Hogshead Davis and P. Aiken. Data Reverse Engineering: A Historical
Survey. In Proceedings of the 7th Working Conference on Reverse Engi-
neering, Brisbane, Australia, pages 70—78. IEEE Computer Society Press,
November 2000.

J-L. Hainaut, V. Englebert, J. Henrard, J-M. Hick, and D. Roland.
Requirements for information system reverse engineering support. In Pro-
ceedings of the 2nd Working Conference on Reverse Engineering, Tor-
onto, Canada, pages 136—145. IEEE Computer Society Press, July 1995.

J-L. Hainaut, J. Henrard, J-M. Hick, J. Englebert, and D. Roland. The
Nature of Data Reverse Engineering. In Proceedings of the Data Reverse

Engineering Workshop EuroRef, 7th Reengineering Forum, Reengineer-
ing Week 2002. Zurich, Switzerland, March 2000.

184



[Jah99]

[Moo01]

[MRF+03]

[Nie03]

[OBJ03]

[Ona03]

[RT02]

[SL96]

[SPPB02]

[TS95]

J.H. Jahnke. Management of Uncertainty and Inconsistency in Database
Reengineering Processes. PhD thesis, University of Paderborn, Pader-
born, Germany, September 1999.

L. Moonen. Generating Robust Parsers using Island Grammars. In Pro-
ceedings of the 8th Working Conference on Reverse Engineering, Stut-
tgart, Germany, pages 13-22. IEEE Computer Society Press, October
2001.

M. A. Munoz, M. Rodrigez, J.Favela, A.I. Martinez-Garcia, and
V.M. Gonz lez. Context-Aware Mobile Communication in Hospitals.
IEEE Computer, 36(9):38—46, September 2003. IEEE Computer Society
Press.

J. Niere. Inkremetelle Mustererkennung. PhD thesis, University of Pader-
born, Paderborn, Germany, December 2003.

A. Onabajo, 1. Bilykh, and J.H. Jahnke. Wrapping Legacy Medical Sys-
tems for Integrated Health Network. In NET.ObjectDAYS 2003, Erfurt,
Germany. Springer Verlag, September 2003.

A. Onabajo. GRID FEDERATION ENVELOPE (GFE): Federating Medi-
cal Information Systems. Master’s thesis, Department of Computer Sci-
ence, University of Victoria, Victoria, Canada, September 2003.

W. Raghupathi and J. Tan. Strategic IT Applications oin Health Care.
Communications of the ACM, 45(12):56-61, December 2002. ACM
Press.

A. Schiirr and M. Lefering. Specification of Integration Tools. In M. Nagl,
editor, Building Tightly Integrated Software Development Environments:
The IPSEN Approach, volume 1170 of Lecture Notes in Computer Sci-
ence, pages 324-334. Springer Verlag, 1996.

P. Sousa, M.L. Pedro-de-Jesus, G. Pereira, and F. Brito e Abreu. Cluster-
ing Relations into abstract ER Schemas for database reverse engineering.
Journal of Science of Computer Programming, 45(2-3):137-153, Novem-
ber 2002. Elsevier Science Publishers B.V (North-Holland), (Special Issue
on Software Maintenance and Reengineering).

S.R. Tilley and D.B. Smith. Perspectives on Legacy Systems Reengineer-
ing (draft). Reengineering Center, Softwrae Engineering Institute, Carn-
egie Mellon University, 1995. (available online at http://
www.sei.cmu.edu/reengineering/Isysree.pdf).

185



[TWBKS9]

[VDK99]

[Wei84]

[Wei02]

[Wil03]

[WNGJ02]

T. Teorey, G. Wei, D. Bolton, and J. Koenig. ER Model Clustering as an
Aid for User Communication and Documentation in Database Design.
Communications of the ACM, 32(8):975-987, August 1989. ACM Press.

A. van Dreusen and T. Kuipers. Building Documentation Generators. In
Proceedings of the 9th International Conference on Software Mainte-
nance, Oxford, UK, pages 40-49. IEEE Computer Society Press, Septem-
ber 1999.

M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352-357, July 1984. IEEE Computer Society Press.

G. Weiss. Welcome To The (Almost) Digital Hospital. IEEE Spectrum,
39(3):44-49, March 2002. IEEE Computer Society Press.

E.V. Wilson. Asychronous Health Care Communication. Communica-
tions of the ACM, 46(6):79—84, June 2003. ACM Press.

J.P. Wadsack, J. Niere, H. Giese, and J.H. Jahnke. Towards Data Depen-
dency Detection in Web Information Systems. In Proceedings of the ICSM
2002 Database Maintenance and Reengineering Workshop, Montréal,
Canada, pages 47—64. IEEE Computer Society Press, October 2002.

Chapter 3: Data-Oriented Reverse Engineering

[AFC98]

[AGG]

[Aik96]

[Amb02]

[And94]

G. Antoniol, R. Fiutem, and L. Christoforetti. Design pattern recovery in
object-oriented software. In Proceedings of the 6th International Work-
shop on Program Comprehension, Ischia, Italy, pages 153—-160. IEEE
Computer Society Press, June 1998.

Technical University of Berlin. AGG, the Attributed Graph Grammar sys-
tem. Online at http://www.tfs.cs.tu-berlin.de/agg.

P. Aiken. Data Reverse Engineering: Slaying the Legacy Dragon.
McGraw-Hill, 1996.

S. Ambler. Agile Database Techniques : Effective Strategies for the Agile
Software Developer, chapter 12: Database Refactoring. John Wiley and
Sons, Inc., October 2002.

M. Andersson. Extracting an Entity Relationship Schema from a Rela-
tional Database through Reverse Engineering. In Proceedings of the 13th
International Conference of the Entity Relationship Approach, Manches-
ter, volume 881 of Lecture Notes in Computer Science, pages 403—419.
Springer Verlag, December 1994.

186



[AOS+99]

[BCN92]

[BDH+87]

[Bew98]

[BGD97]

[BGN+03]

[BLNS6]

[BP9S]

[BRY7]

K. Arnold, B. Osullivan, R. W. Scheifler, J. Waldo, A. Wollrath, and
B. O’Sullivan. The Jini(TM) Specification. Addison-Wesley, June 1999.

C. Batini, S. Ceri, and S.B. Navathe. Conceptual Database design. Ben-
jamin/Cummings, 1992.

H. Briand, C. Ducateau, Y. Hebrail, D. Herin-Aime, and
J. Kouloumdjian. From Minimal Cover to Entity-Relationship Diagram.
In Proceedings of the 6th International Conference of the Entity-Relation-
ship Approach, New York, USA, pages 287-304. North-Holland, Novem-
ber 1987.

B. Bewermeyer. Cliche-Erkennung in relationalen Datenbankanwendun-
gen. Master’s thesis, University of Paderborn, Department of Mathematics
and Computer Science, Paderborn, Germany, September 1998.

A. Behm, A. Geppert, and K. R. Dittrich. On the Migration of Relational
Schemas and Data to Object-Oriented Database Systems. In Proceedings
5th International Conference on Re-Technologies for Information Sys-
tems, Klagenfurt, Austria, pages 13-33. Osterreichische Computer Gesell-
schaft, December 1997.

S. Burmester, H. Giese, J. Niere, M. Tichy, J.P. Wadsack, R. Wagner,
L. Wendehals, and A. Ziindorf. Tool Integration at the Meta-Model Level
within the FUJABA Tool Suite. In Proceedings of the Workshop on Tool-
Integration in System Development (TIS), Helsinki, Finland, (ESEC / FSE
2003 Workshop 3), pages 51-56, September 2003. online at http://
www.es.tu-darmstadt.de/english/events/tis/documentation/Proceed-
ings.p%df.

C. Batini, M. Lenzerini, and S. B. Navathe. A Comparative Analysis of
Methodologies for Database Schema Integration. ACM Computing Sur-
veys, 18(2):323-364, 1986. ACM Press.

M. Blaha and W. Premerlani. Object-Oriented Modeling and Design for
Database Applications. Prentice Hall, 1998.

H. Blockeel and L. De Raedt. Relational knowledge discovery in data-
bases. In S. Muggleton, editor, Proceedings of the 6th International Work-
shop on Inductive Logic Programming, Stockholm, Sweden, volume 1314
of Lecture Notes in Artificial Intelligence, pages 199211, Berlin, August
1997. Springer Verlag.

187



[BRI99]

[CBB+00]

[Cha96]

[Che76]

[Chu04]

[CL93]

[Cod70]

[COR99]

[COS98]

[Dat00]

[EH99]

G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Lan-
guage User Guide. Addison-Wesley, Reading, Massachusetts, USA, 1st
edition, 1999.

R. G. G Cattell, D. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell,
O.Schadow, T. Staniendam, and F. Velez. The Object Data Standard:
ODMG 3.0. Morgan Kaufmann Publishers, San Francisco (CA), USA,
2000.

D. Chappell. Understanding ActiveX and OLE - A Guide for Developers
and Managers. Microsoft Press, 1996.

P.P. Chen. The Entity-Relationship Model — Toward a unified view of data.
ACM Transactions on Database Systems, 1(1):9-36, 1976. ACM Press.

D. Church. Using mildly context-sensitive island grammars for semi-
structured data extraction. Master’s thesis, Department of Computer Sci-
ence, University of Victoria, Victoria, Canada, forthcoming in 2004.

T. Catarci and M. Lenzerini. Representing and Using Interschema Knowl-
edge in a Cooperativelnformation Systems. International Journal of Intel-
ligent and Cooperative Information Systems, 2(4):375-398, 1993. IEEE
Computer Society Press.

E.F. Codd. 4 Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6):377-387, June 1970. ACM Press.

CORBA-2.3.1. The Common Object Request Broker: Architecture and
Specification, CORBA/IIOP 2.3.1 Specification. Object Managment
Group, October 1999. Revision 2.3.1: OMG Technical Document formal/
99-10-07.

COSS-2.3. CORBAservices: Common Object Services Specification.
Object Managment Group, December 1998. Revision 2.3, OMG technical
document 98-12-09.

C.J. Date. An introduction to database systems. Addison-Wesley, 7th edi-
tion, 2000.

V. Englebert and J.-L. Hainaut. DB-MAIN: A Next Generation Meta-
CASE. Journal of Information Systems - Special Issue on Meta-CASEs,
24(2):99-112, June 1999. Elsevier Science Publishers B.V (North-Hol-
land).

188



[EN94]

[FNTZ98]

[Fon97]

[Fow99]

[FV95]

[GHIV9S]

[GOO00]

[Hai89]

[HCTI93]

[HDZ00]

R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Ben-
jamin/Cummings, Redwood City, 2nd edition, 1994.

T. Fischer, J. Niere, L. Torunski, and A. Ziindorf. Story Diagrams: A new
Graph Rewrite Language based on the Unified Modeling Language. In
G. Engels and G. Rozenberg, editors, Proceedings of the 6th International
Workshop on Theory and Application of Graph Transformation, Pader-
born, Germany, volume 1764 of Lecture Notes in Computer Science,
pages 296-309. Springer Verlag, November 1998.

J. Fong. Converting Relational to Object-Oriented Databases. ACM SIG-
MOD Record, 26(1):53-58, March 1997. ACM Press.

M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999.

C. Fahrner and G. Vossen. Transforming Relational Database Schemas
into Object-Oriented Schemas according to ODMG-93. In Proceedings of
the 4th International Conference on Deductive and Object-Oriented Data-
bases, Singapur, volume 1013 of Lecture Notes in Computer Science,
pages 429-446. Springer Verlag, 1995.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object Oriented Software. Addison-Wesley, Reading,
MA, 1995.

C.L. Gittens and S.L. Osborn. Database Integration Using Graph Trans-
formation. In Joint 2000 APPLIGRAPH and GETGRATS Workshop on
Graph Transformation Systems, Berlin, Germany, pages 96—105. online at
http://tfs.cs.tu-berlin.de/gratra2000, March 2000.

J.-L. Hainaut. 4 Generic Entity-Relationship Model. In Proceedings of the
IFIP WG 8.1 Conference on Information System Concepts: an in-depth
analysis, Namur, Belgium. North-Holland, 1989.

J-L. Hainaut, M. Chandelon, C. Tonneau, and M. Joris. Contribution to a
Theory of Database Reverse Engineering. In Proceedings of the Working
Conference on Reverse Engineering, Baltimore, USA, pages 161-170.
IEEE Computer Society Press, May 1993.

J. Hatcli, M.B. Dwyer, and H. Zheng. Slicing software for model construc-
tion. Higher-Order and Symbolic Computation, 3(4):315-253, 2000. Klu-
wer Academic Publishers.

189



[HEH+95]

[HG98]

[HHO1]

[HHEH96]

[HHH+96]

[HHH+99]

[HHKRS9]

[HN90]

[HTJC94]

J-L. Hainaut, V. Englebert, J. Henrard, J-M. Hick, and D. Roland.
Requirements for information system reverse engineering support. In Pro-
ceedings of the 2nd Working Conference on Reverse Engineering, Tor-
onto, Canada, pages 136—145. IEEE Computer Society Press, July 1995.

M. Harman and K.B. Gallagher. Program Slicing - Introduction to the
Special Issue on Program Slicing. Information and Software Technology,
40(11):577-581, November/December 1998. Elsevier Science Publishers
B.V (North-Holland).

J.-L. Hainaut and J. Henrard. Data dependency elicitation in database
reverse engineering. In Proceedings of the 5th European Conference on
Software Maintenance and Reengineering, Lisbon, Portugal, pages 11-19.
IEEE Computer Society Press, 2001.

J.-L. Hainaut, J.-M. Hick, V. Englebert, and J. Henrard. Understanding
Implementation of Is-A Relations. In Proceedings of the 15th International
Conference on the Entity-Relationship Approach, Cottbus, Germany, vol-
ume 1157, pages 42—50. Springer Verlag, 1996.

J.-L. Hainaut, J. Henrard, J.-M. Hick, D. Roland, and V. Englebert. Data-
base Design Recovery. In Proceedings of the 8th Conference on Advance
Information Systems Engineering, Crete, Greece, volume 1080 of Lecture
Notes in Computer Science, pages 272-300. Springer Verlag, 1996.

J. Henrard, J-L. Hainaut, J-M. Hick, D. Roland, and J. Englebert. Data
structure extraction in database reverse engineering. In Proceedings of
the 1Ist International Workshop on Reverse Engineering in Information
Systems, Paris, France, pages 149—160, November 1999.

J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The Syntax Definition
Formalism SDF - Reference Manual -. SIGPLAN Notices, 24(11):43-75,
1989. ACM Press.

M. T. Harandi and J. Q. Ning. Knowledge Based Program Analysis. IEEE
Transactions on Software Engineering, 7(1):74—-81, 1990. IEEE Computer
Society Press.

J.-L. Hainaut, C. Tonneau, M. Joris, and M. Chandelon. Transformation-
Based Database Reverse Engineering. In Proceedings of the 12th Interna-
tional Conference on the Entity-Relationship Approach, Dallas, USA, vol-
ume 823, page 364. Springer Verlag, 1994.

190



[1b96]

[Jah99]

[JCC]

[J194]

[JKS89]

[JSZ96]

[JSZ97]

[1Z99]

[KM96]

CORBA IDL-binding. Information technology — Information Resource
Dictionary System (IRDS) Services Interface. ISO/IEC, 1996. Amendment
3:1996 to ISO/IEC 10728:1993 CORBA IDL binding.

J.H. Jahnke. Management of Uncertainty and Inconsistency in Database
Reengineering Processes. PhD thesis, University of Paderborn, Pader-
born, Germany, September 1999.

WebGain, Inc. JavaCC, the Java Parser Generator. Online at http://
www.experimentalstuff.com/Technologies/JavaCC/ (last visited June

2003).

U.A. Johnen and M.A. Jeusfeld. An Executable Meta Model for Re-Engi-
neering of Database Schemas. In Proceedings of the 13th International
Conference on the Entity-Relationship Approach, Manchester, UK, num-
ber 885 in Lecture Notes in Computer Science, pages 533—547. Springer
Verlag, March 1994.

P. Johannesson and K. Kalman. A Method for Translating Relational
Schemas into Conceptual Schemas. In F.H. Lochovsky, editor, Proceed-
ings of the 8th International Conference on Entity-Relationship Approach,
Toronto, Canada, pages 271-285. North-Holland, October 1989.

J. Jahnke, W. Schéfer, and A. Ziindorf. 4 Design Environment for Migrat-
ing Relational to Object-Oriented Database Systems. In Proceedings of
the 6th International Conference on Software Maintenance, Monterrey,
USA, pages 163—170, November 1996.

J.H. Jahnke, W. Schifer, and A. Ziindorf. Generic Fuzzy Reasoning Nets
as a basis for reverse engineering relational database applications. In
Proceedings of the 6th European Software Engineering Conference, vol-
ume 1302 of Lecture Notes in Computer Science, pages 193-210. Springer
Verlag, September 1997.

J.H. Jahnke and A. Ziindorf. Applying Graph Transformations To Data-
base Re-Engineering. In H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, editors, Handbook of Graph Grammars and Computing by
Graph Transformation, volume 2 - Application, Languages and tools.,
pages 267-284. World Scientific, Singapore, 1999.

A. Konar and A. K. Mandal. Uncertainty Management in Expert Systems
Using Fuzzy Petri Nets. IEEE Transactions on Knowledge and Data Engi-
neering, 8(1):96-105, February 1996. Academic Press, London.

191



[KP96]

[KSRP99]

[LCBO03]

[Lef95]

[LNES89]

[MCAHO95]

[Meh84]

[MJS+00]

[MM90]

[MooO1]

C. Kridmer and L. Prechelt. Design recovery by automated search for
structural design patterns in object-oriented software. In Proceedings of
the 3rd Working Conference on Reverse Engineerinung, Monterey, CA,
pages 208-215. IEEE Computer Society Press, November 1996.

R.K. Keller, R. Schauer, S.Robitaille, and P.Page. Pattern-Based
Reverse-Engineering of Design Components. In Proceedings of the 21st
International Conference on Software Engineering, Los Angeles, USA,
pages 226-235. IEEE Computer Society Press, May 1999.

P.K. Linos, Z. Chen, S. Berrier, and B. O’Rourke. 4 Tool for Understand-
ing Multi-Language Program Dependencies. In Proceedings of the 11th
International Workshop on Program Comprehension (IWPC), Portland,
USA, pages 64—72. IEEE Computer Society Press, May 2003.

Martin Lefering. Integrationswerkzeuge in einer Softwareentwicklung-
sumgebung. Informatik. Verlag Shaker, 1995.

J.A. Larson, S.B. Navathe, and R. Elmasri. 4 Theory of Attribute Equiva-
lence in Databases with Application to Schema Integration. IEEE Trans-
actions on Software Engineering, 15(4):449-463, April 1989. IEEE
Computer Society Press.

P. Martin, J.R. Cordy, and R. Abu-Hamdeh. Information Capacity Pre-
serving of Relational Schemas Using Structural Transformation. Techni-
cal report, Dept. of Computing and Information Science, Queen’s
University, Kingston, Ontario, Canada, November 1995.

K. Mehlhorn. Graph Algorithms and NP-Completeness. Springer Verlag,
1st edition, 1984.

H.A. Miiller, J.H. Jahnke, D.B. Smith, M.A. Storey, and K. Wong.
Reverse Engineering: a roadmap. In A. Finkelstein, editor, Future of Soft-
ware Engineering. International Conference on Software Engineering,
Limerick, Ireland, pages 47-60. ACM Press, June 2000.

R.W. Mathews and W.C. McGee. Data modeling for software develpment.
IBM Systems Journal, 29(2):228-235, 1990. IBM.

L. Moonen. Generating Robust Parsers using Island Grammars. In Pro-
ceedings of the 8th Working Conference on Reverse Engineering, Stut-
tgart, Germany, pages 13-22. IEEE Computer Society Press, October
2001.

192



[NAS7]

[Nie03]

[NSW+02]

[NWWO1]

[NWWO03]

[OTS98]

[Pal01]

[PB94]

[PKBT94]

[PP94]

S.B. Navathe and A.M. Awong. Abstracting Relational and Hierarchical
Data with a Semantic Data Model. In Proceedings of the 6th International
Conference of the Entity-Relationship Approach, New York, USA, pages
305-333. North-Holland, November 1987.

J. Niere. Inkremetelle Mustererkennung. PhD thesis, University of Pader-
born, Paderborn, Germany, December 2003.

J. Niere, W. Schifer, J.P. Wadsack, L. Wendehals, and J. Welsh. Towards
Pattern-Based Design Recovery. In Proceedings of the 24th International
Conference on Software Engineering, Orlando, Florida, USA, pages 338—
348. ACM Press, May 2002.

J. Niere, J.P. Wadsack, and L. Wendehals. Design Pattern Recovery
Based on Source Code Analysis with Fuzzy Logic. Technical Report tr-ri-
01-222, University of Paderborn, Paderborn, Germany, March 2001.

J. Niere, J.P. Wadsack, and L. Wendehals. Handling Large Search Space
in Pattern-Based Reverse Engineering. In Proceedings of the 11th Interna-

tional Workshop on Program Comprehension, Portland, USA, pages 274—
280. IEEE Computer Society Press, May 2003.

OTS-1.1. Transaction Service Specification. Object Management Group,
February 1998. The Common Object Request Broker: Architecture and
Specification, CORBA/IIOP 1.1 Specification, Revision 1.1: OMG Tech-
nical Document formal/97-12-17.

M. Palasdies. Design-Pattern Spezifikation und Erkennung auf Basis von
Story-Diagrammen. Master’s thesis, University of Paderborn, Department
of Mathematics and Computer Science, Paderborn, Germany, May 2001.

W.J. Premerlani and M.R. Blaha. An Approach for Reverse Engineering of
Relational Databases. Communications of the ACM, 37(5):42-49, May
1994. ACM Press.

J-M. Petit, J. Kouloumdjian, J-F. Boulicaut, and F. Toumani. Using Que-
ries to Improve Database Reverse Engineering. In Proceedings of 13th
International Conference of the Entity-Relationship Approach, Manches-
ter, UK, number 885 in Lecture Notes in Computer Science, pages 369—
386. Springer Verlag, March 1994.

S. Paul and A. Prakash. 4 Framework for Source Code Search Using Pro-
gram Patterns. IEEE Transactions on Software Engineering, 20(6):463—
475, June 1994. IEEE Computer Society Press.

193



[PTBK96]

[Qui%4]

[Rad99]

[RecO1]

[RH96]

[RH97]

[Roz99]

[RSKO1]

[SA03]

[SCC+93]

J-M. Petit, F. Toumani, J. Boulicaut, and J. Kouloumdjian. Towards the
reverse engineering of denormalized relational databases. In Proceedings
12th International Conference on Data Engineering, pages 218-227, New
Orleans, February 1996. IEEE Computer Society Press.

A. Quilici. 4 Memory-Based Approach to Recognizing Programming
Plans. Communications of the ACM, 37(5):84-93, May 1994. ACM
Press.

A. Radermacher. Support for Design Patterns through Graph Transfor-
mation Tools. In Proceedings of 1999 International Workshop and Sympo-
sium on Applications Of Graph Transformations With Industrial
Relevance, Kerkrade, The Netherlands, volume 1779 of Lecture Notes in
Computer Science, pages 111-126. Springer Verlag, 1999.

C. Reckord. Entwurf eines generischen Sichtenkonzeptes fiir die Entwick-
lungsumgebung Fujaba. Bachelor’s thesis, University of Paderborn,
Department of Computer Science, Paderborn, Germany, February 2001.

S. Ramanathan and J. Hodges. Reverse Engineering Relational Schemas
to Object-Oriented Schemas. Technical Report MSU-960701, Department
of Computer Science, Mississippi State University, USA, July 1996.

S. Ramanathan and J. Hodges. Extraction of Object-Oriented Structures
from Existing Relational Databases. ACM SIGMOD Record, 26(1),
March 1997. ACM Press.

G. Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation, volume 1. World Scientific, Singapore, 1999.

M. Rusinkiewisz, A. Sheth, and G. Karabatis. Specifying Interdatabase
Dependencies in a Multidatabase Environment. 1EEE Computer,
24(12):46-53, December 1991. IEEE Computer Society Press.

M. M. Sufyan Beg and N. Ahmad. Soft Computing Techniques for Rank
Aggregation on the World Wide Web. World Wide Web: Internet and Web
Information Systems, 6(1):5-22, March 2003. Kluwer Academic Publish-
ers.

Y.-P. Shan, T. Cargill, B. Cox, W. Cook, M. Loomis, and A. Snyder. Is
Multiple Inheritance Essential to OOP? SIGPLAN Notices - Proccedings

of the 1993 Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, 28(10):360-363, October 1993. ACM Press.

194



[Sch94]

[Scho1]

[SK90]

[SL96]

[SLGC94]

[Sou98a]

[Sou98b]

[SvG98]

[SWZ95]

Andy Schiirr. Specification of Graph Translators with Triple Graph
Grammars. In Proceedings of the 20th International Workshop on Graph-
Theoretic Concepts in Computer Science, pages 151-163, Herrschin, Ger-
many, June 1994. Spinger Verlag.

M.A. Schwarz. Integration eines inkrementellen Parsing - Algorithmus in
Fujaba. Bachelor’s thesis, University of Paderborn, Department of Com-
puter Science, Paderborn, Germany, September 2001.

F.N. Springsteel and C. Kou. Reverse Data Engineering of E-R Designed
Relational Schemas. In Proceedings of the 1st Databases, Parallel Archi-
tectures and their Applications, Miami Beach, USA, pages 438-440.
Springer Verlag, March 1990.

A. Schiirr and M. Lefering. Specification of Integration Tools. In M. Nagl,
editor, Building Tightly Integrated Software Development Environments:
The IPSEN Approach, volume 1170 of Lecture Notes in Computer Sci-
ence, pages 324-334. Springer Verlag, 1996.

O. Signore, M. Loffredo, M. Gregori, and M. Cima. Reconstruction of ER
Schema from Database Applications: a Cognitive Approach. In Proceed-
ings of 13th International Conference on the Entity-Relationship
Approach, Manchester, UK, number 885 in Lecture Notes in Computer
Science, pages 387—402. Springer Verlag, March 1994.

C. Soutou. [Inference of Aggregate Relationships through Database
Reverse Engineering. In Proceedings of 17th International Conference on
Conceptual Modeling, Singapore, volume 1507 of Lecture Notes in Com-
puter Science, pages 135—149. Springer Verlag, November 1998.

C. Soutou. Relational Database Reverse Engineering: Extraction of Car-
dinality Constraints. Data and Knowledge Engineering, 28(2):161-207,
November 1998. Elsevier Science Publishers B.V (North-Holland).

J. Seemann and J.W. von Gudenberg. Pattern-Based Design Recovery of
Java Software. ACM SIGSOFT Software Engineering Notes, 23(6):10—
16, November 1998. ACM Press.

A. Schiirr, A.J. Winter, and A. Ziindorf. Graph Grammar Engineering
with PROGRES. In W. Schéfer and P. Botella, editors, Proceedings of 5th
European Software Engineering Conference, Barcelona, Spain, volume
989 of Lecture Notes in Computer Science, pages 219-234. Springer Ver-
lag, September 1995.

195



[Szy99]

[TA99]

[TGF00]

[Tip95]

[VDK99]

[Wad98]

[Wei84]

[WenO1]

[Wen03]

C. Szyperski. Component Software Beyond Object-Oriented Program-
ming. Addison-Wesley, 1999.

P. Tonella and G. Antoniol. Object Oriented Design Pattern Inference. In
Proceedings of the 9th International Conference on Software Mainte-
nance, Oxford, UK, pages 230-238. IEEE Computer Society Press, Sep-
tember 1999.

A-R. H. Tawil, W. A. Gray, and N. J. Fiddian. Discovering and Repre-
senting InterSchema Semantic Knowledge in a Cooperative Multi-Infor-
mation Server Environment. In M. T. Ibrahim, J. Kiing, and N. Revell,
editors, Proceedings of the 11th International Conference on Database and
Expert Systems Applications, London, UK, volume 1873 of Lecture Notes
in Computer Science, pages 548—-562. Springer Verlag, September 2000.

F. Tip. A Survey of Program Slicing Techniques. Journal of programming
languages, 3(3):121-189, September 1995. Chapman & Hall.

A. van Dreusen and T. Kuipers. Building Documentation Generators. In
Proceedings of the 9th International Conference on Software Mainte-
nance, Oxford, UK, pages 40—49. IEEE Computer Society Press, Septem-
ber 1999.

J.P. Wadsack. Inkrementell Konsistenzerhaltung in der transformations-
basierten Datenbankmigration. Master’s thesis, University of Paderborn,
Department of Mathematics and Computer Science, Paderborn, Germany,
1998.

M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352-357, July 1984. IEEE Computer Society Press.

L. Wendehals. Cliché- und Mustererkennung auf Basis von Generic Fuzzy
Reasoning Nets. Master’s thesis, University of Paderborn, Department of
Mathematics and Computer Science, Paderborn, Germany, October 2001.

L. Wendehals. Improving Design Pattern Instance Recognition by
Dynamic Analysis. In Proceedings of the ICSE 2003 Workshop on
Dynamic Analysis, Portland, USA, pages 29-32, May 2003. online at
http://www.cs.nmsu.edu/ jcook/woda2003/woda2003.pdf.

196



[Wil96]

[WNGJ02]

[Zad65]

[Ziin95]

[Ziin01]

L.M. Wills. Using Attributed Flow Graph Parsing to Recognize Pro-
grams. In J.E. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors, Pro-
ceedings of 5th International Workshop on Graph Grammars and Their
Application to Computer Science, Williamsburg, USA, volume 1073 of
Lecture Notes in Computer Science, pages 170184, Williamsburg, Vir-
ginia, 1994, November 1996. Springer Verlag.

J.P. Wadsack, J. Niere, H. Giese, and J.H. Jahnke. Towards Data Depen-
dency Detection in Web Information Systems. In Proceedings of the [CSM
2002 Database Maintenance and Reengineering Workshop, Montréal,
Canada, pages 47—64. IEEE Computer Society Press, October 2002.

L.A. Zadeh. Fuzzy Sets. Information and Control, 8:338-353, 1965.
Elsevier Science Publishers B.V (North-Holland).

A. Zindorf. PROgrammierte GRaphErsetzungsSysteme. PhD thesis,
RWTH Aachen, 1995.

A. Ziindorf. Rigorous Object Oriented Software Development. University
of Paderborn, 2001. (draft available online: http://www.uni-paderborn.de/
fachbereich/AG/schaefer/Personen/Ehemalige/Zuend%orf/
AZRigSoftDraft 0 2.pdf).

Chapter 4: Data Component Extension

[ABM96]

[ADD+91]

[AL99]

[Amb02]

A. Aarsten, D. Brugali, and G. Menga. Patterns for Three-Tier Client/
Server Applications. In Proceedings of the 3rd Conference on the Pattern
Languages of Programs, Urbana-Champaign, USA. Washington Univer-
sity, Technical Report# WUCS-97-07, September 1996.

R. Ahmed, P. De Smedt, W. Du, W. Kent, M.A. Ketabchi, W. Litwin,
A. Rafii, and M.-C. Shan. The Pegasus Heterogeneous Multidatabase Sys-
tem. IEEE Computer, 24(12), December 1991. IEEE Computer Society
Press.

N. Anquetil and T. Lethbridge. Recovering software architecture from the
names of source files. In Proceedings of the 6th Working Conference on
Reverse Engineering, Atlanta, USA, pages 235-255. IEEE Computer
Society Press, October 1999.

S.W. Ambler. Deriving Web services from UML models. developerWorks
newsletter: technology edition, March 2002. online at http://www-
106.ibm.com/developerworks/webservices/library/ws-uml1.

197



[Ang00]

[BGD97]

[BGN-+03]

[BMR+96]

[CER99]

[CHK+91]

[CHSH95]

[CLO0]

N. Anquetil. A comparison of graphs of concept for reverse engineering.
In Proceedings of the 8th International Workshop on Program Compre-
hension, Limerick, Irland, pages 231-240. IEEE Computer Society Press,
June 2000.

A. Behm, A. Geppert, and K. R. Dittrich. On the Migration of Relational
Schemas and Data to Object-Oriented Database Systems. In Proceedings
5th International Conference on Re-Technologies for Information Sys-
tems, Klagenfurt, Austria, pages 13-33. Osterreichische Computer Gesell-
schaft, December 1997.

S. Burmester, H. Giese, J. Niere, M. Tichy, J.P. Wadsack, R. Wagner,
L. Wendehals, and A. Ziindorf. Tool Integration at the Meta-Model Level
within the FUJABA Tool Suite. In Proceedings of the Workshop on Tool-
Integration in System Development (TIS), Helsinki, Finland, (ESEC / FSE
2003 Workshop 3), pages 51-56, September 2003. online at http://
www.es.tu-darmstadt.de/english/events/tis/documentation/Proceed-
ings.p%df.

F. Buschmann, R. Meunier, H. Rohnert, P. Somerlad, and M. Stal. Pat-
tern-Oriented Software Architecture - A System of Patterns. John Wiley
and Sons, Inc., 1st edition, 1996.

CERMICS Database Team, 2004 route des lucioles, BP93, 06902 Sophia
Antipolis Cedex, France. ObjectDRIVER V1.1 User Manual, 1999.

T. Connors, W. Hasan, C. Kolovson, M.A. Neimat, D. Schneider, and
K. Wilkinson. The Papyrus Integrated Data Server. In Proceddings of the
Ist International Parallel and Distributed Information Systems Confer-
ence, Miami Beach, USA, page 139. IEEE Computer Society Press,
December 1991.

M-J. Carey, L.M. Haas, PM. Schwarz, M. Arya, W.F. Cody, R. Fagin,
M. Flickner, A.W. Luniewski, W. Niblack, D. Petkovic, J. Thomas, J.H.
Williams, and E.L. Wimmers. Towards Heterogeneous Multimedia Infor-
mation Systems: The Garlic Approach. In M.T. Ozsu and M.C. Shan, edi-
tors, Sth International Workshop on Research Issues in Data Engineering
- Distributed Object Management, Taipei, Taiwan, pages 124—-131. IEEE
Computer Society Press, March 1995.

J.L. Cybulski and T. Linden. Composing Multimedia Artifacts for Reuse.
In N. Harrison, B. Foote, and H. Rohnert, editors, Pattern Languages of
Program Design 4, pages 461—488. Addison-Wesley, 2000.

198



[Coc96]

[CS90]

[CWMY02]

[DB00]

[ES02]

[FF99]

[FGS93]

[FMS6]

[Fon97]

A. Cockburn. Prioritizing Forces in Software Design. In J.M. Vlissides,
J.O. Coplien, and N.L. Kerth, editors, Pattern Languages of Program
Design 2, pages 317-333. Addison-Wesley, 1996.

S. Choi and W. Scacchi. Extracting and restructuring the design of large
systems. IEEE Software, 7(1):66—71, January 1990. IEEE Computer Soci-
ety Press.

F. Chen, Q. Wang, H. Mei, and F. Yang. An Architecture-Based Approach
for Component-Oriented Development. In In Proceedings of the 26th
Annual International Computer Software and Applications Conference,
Oxford, England, pages 450—455. IEEE Computer Society Press, August
2002.

J. Davey and E. Burd. Evaluating the Suitability of Data Clustering for
Software Remodularisation. In Proceedings of the 7th Working Confer-
ence on Reverse Engineering, Brisbane, Australia, pages 268-277. IEEE
Computer Society Press, November 2000.

G. Engels and S. Sauer. Object-oriented Modeling of Multimedia Applica-
tions. In S.K. Chang, editor, Handbook of Software Engineering and
Knowledge Engineering, volume 2, pages 21-53. World Scientific, Sin-
gapore, 2002.

E.B. Fernandez and R. Flanders. Data Filter Architecture Pattern. In Pro-
ceedings of the 6th Conference on the Pattern Languages of Programs,
Urbana-Champaign, USA, August 1999. online at http://jerry.cs.uiuc.edu/
plop/plop99/proceedings.

D.D. Fang, S. Ghandeharizadeh, and A. Si. The Design, Implementation,
and Evaluation of an Object-Based Sharing Mechanism for Federated
Database Systems. In Proceedings of the 9th International Conference on
Data Engineering, Vienna, Austria, pages 467—475. IEEE Computer Soci-
ety Press, April 1993.

P. Feldman and D. Miller. Entity Model Clustering: Structuring A Data
Model By Abstraction. The Computer Journal, 29(4):348-360, 1986.
Oxford University Press.

J. Fong. Converting Relational to Object-Oriented Databases. ACM SIG-
MOD Record, 26(1):53-58, March 1997. ACM Press.

199



[GHIV9S]

[GMSO01]

[Gra99]

[GSNW02]

[GWO1]

[GZ02]

[HCO1]

[HKO2]

[HLO02]

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object Oriented Software. Addison-Wesley, Reading,
MA, 1995.

H. Gomaa, D.A. Menasc, and M. E. Shin. Reusable component intercon-
nection patterns for distributed software architectures. In In Proceedings
of'the 2001 Symposium on Software Reusability: putting software reuse in
context, Toronto, Canada, pages 69—-77. ACM Press, May 2001.

M. Grand. Transaction Patterns: A Collection of Four Transaction
Related Patterns. In Proceedings of the 6th Conference on the Pattern Lan-
guages of Programs, Urbana-Champaign, USA, August 1999. online at
http://jerry.cs.uiuc.edu/ plop/plop99/proceedings.

A. Gokhale, D.C. Schmidt, B. Natarajan, and N. Wang. Applying Model-
Integrating Computing to Component Middleware and Enterprise Appli-
cation. Communications of the ACM, 45(10):65—-69, October 2002. ACM
Press.

H. Giese and J.P. Wadsack. Reengineering for Evolution of Distributed
Information Systems. In Proceedings of the 3rd International Workshop on
Net-Centric Computing: Migrating to the Web, Toronto, Canada, pages
36-39. ACM Press, May 2001.

L. Geiger and A. Ziindorf. Graph Based Debugging with Fujaba. Elec-
tronic Notes in Theoretical Computer Science, 72(2), November 2002.
Elsevier Science Publishers B.V (North-Holland).

G.T. Heinemann and W.T. Councill. Component-Based Software Engi-
neering - Putting the Pieces Together. Addison-Wesley, 2001.

I. Hammouda and K. Koskimies. Generating a Pattern-Based Application
Development Environment for Enterprise JavaBeans. In In Proceedings of
the 26th Annual International Computer Software and Applications Con-
ference, Oxford, England, pages 856—866. IEEE Computer Society Press,
August 2002.

P. Hoven and M. Liebrecht. Entwurf und Implementierung einer Import/
Export Funktionalitdt fiir die Entwicklungsumgebung Fujaba. Bachelor’s
thesis, University of Paderborn, Department of Computer Science, Pader-
born, Germany, August 2002.

200



[HMN-+99]

[HWSS00]

[Jah99]

[J0S93]

[KamO03]

[K6198]

[LBO3]

[Lin99]
[LS97]

L.M. Haas, R.J. Miller, B. Niswonger, M. Tork Roth, P.M. Schwarz, and
E.L. Wimmers. Transforming Heterogeneous Data with Database Mid-
dleware: Beyond Integration. Bulletin of the IEEE Computer Socisty
Technical Committee on Data Engineering, 2(1):31-36, March 1999.
IEEE Computer Society Press.

R.C. Holt, A. Winter, A. Schiirr, and S. Sim. GXL: Towards a Standard
Exchange Format. In Proceedings of the 7th Working Conference on
Reverse Engineering, Brisbane, Australia, pages 162—171, Brisbane, Aus-
tralia, November 2000. IEEE Computer Society Press.

J.H. Jahnke. Management of Uncertainty and Inconsistency in Database
Reengineering Processes. PhD thesis, University of Paderborn, Pader-
born, Germany, September 1999.

P. Jaeschke, A. Oberweis, and W. Stucky. Extending ER Model Clustering
by Relationship Clustering. In R. Elmasri, V. Kouramajian, and
B. Thalheim, editors, Proceedings of the 12th International Conference on
Entity-Relationship Approach, Arlington, Texas, USA, volume 823 of
Lecture Notes in Computer Science, pages 451-462. Springer Verlag,
December 1993.

M.L. Modjo Kamneng. Entwurfsunstresttzung Web-basierter Schnitts-
tellen aud Basis der UML. Master’s thesis, University of Paderborn,
Department of Computer Science, Paderborn, Germany, April 2003.

U. Kolsch. Object-Oriented Re-Engineering of Information Systems in a
Heterogeneous Distributed Environment. In Proceedings of the 5th Work-
ing Conference on Reverse Engineering, Hawaii, USA, pages 104-114.
IEEE Computer Society Press, October 1998.

J.A. Landay and G. Borriello. Design Patterns for Ubiquitous Computing.
IEEE Computer, 36(8):93-95, August 2003. IEEE Computer Society
Press.

D. Linthicum. Enterprise Application Integration. Addison-Wesley, 1999.

C. Lindig and G. Snelting. Assessing modular structure of legacy code
based on mathematical concept analysis. In Proceedings of the 19th Inter-
national Conference on Software Engineering, Boston, USA, pages 349—
359. ACM Press, May 1997.

201



[Lun98]

[Man99]

[Meu95]

[MHH+01]

[MMCG99]

[MMR-+98]

[MOTU93]

[Mul95]

[Obj99a]

[Obj99b]

C.-H. Lung. Software architecture recovery and restructuring through
clustering techniques. In Proceedings of the 3rd international workshop on
Software architecture, Orlando, USA, pages 101-104. ACM Press,
November 1998.

D.-A. Manolescu. Feature Extraction: A Pattern for Information
Retrieval. In N. Harrison, B. Foote, and H. Rohnert, editors, Pattern Lan-
guages of Program Design 4, pages 391-412. Addison-Wesley, December
1999.

R. Meunier. The Pipes and Filters Architecture. In J.O. Coplien and D.C.
Schmidt, editors, Pattern Languages of Program Design 1, pages 427—440.
Addison-Wesley, October 1995.

R.J. Miller, M.A. Hernandez, L.M. Haas, L. Yan, C.T.H. Ho, and R. Fagin
andL. Popa. The Clio Project: Managing Heterogeneity. ACM SIGMOD
Record, 30(1):78-83, March 2001. ACM Press.

S. Mancoridis, B.S. Mitchell, Y. Chen, and E.R. Gansner. Bunch: A clus-
tering tool for the recovery and maintenance of software system struc-
tures. In Proceedings of the 9th International Conference on Software
Maintenance, Oxford, UK, pages 50-59. IEEE Computer Society Press,
August 1999.

S. Mancoridis, B.S. Mitchell, C. Rorres, Y. Chen, and E.R. Gansner.
Using automatic clustering to produce high-level system organizations of
source code. In Proceedings 6th International Workshop on Program
Comprehension, Ischia, Italy, pages 45-52. IEEE Computer Society Press,
June 1998.

H.A. Miiller, M.A. Orgun, S.R. Tilley, and J.S. Uhl. 4 Reverse Engineer-
ing Approach To Subsystem Structure ldentification. Journal of Software
Maintenance, 5(4):181-204, December 1993. John Wiley and Sons, Inc.

D.E. Mularz. Pattern-Based Integration Architectures. In J.O. Coplien and
D.C. Schmidt, editors, Pattern Languages of Program Design 1, pages
441-452. Addison-Wesley, October 1995.

The Object People Inc., 885 Meadowlands Dr., Suite 509, Ottawa,
Ontario. TOPLink for Java 2.0 Users Manual, 1999.

ObjectMatter Inc., 2450 S.W. 137 Ave. Suite 206 Miami, Fl. 33175,
UNITED STATES. Objectmatter VBSF Object-Relational Framework
V2.02 User Manual, 1999.

202



[PGMW95]

[RBO1]

[Ris00]
[RLS2]

[RR9S]

[Sch97]

[Sch99]

[SG96]

[SH94]

[Sic98]

[SMB-+03]

Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange
Across Heterogeneous Information Sources. In P.S. Yu and A.L.P. Chen,
editors, Proceedings of the 11th International Conference on Data Engi-
neering, Taipei, Taiwan, pages 251-260. IEEE Computer Society Press,
March 1995.

E. Rahm and P.A. Bernstein. 4 survey of approaches to automatic schema
matching. The International Journal on Very Large Data Bases,
10(4):334-450, December 2001. Springer Verlag.

L. Rising. The Pattern Almanac 2000. Addison-Wesley, 2000.

R. Rosenberg and T.Landers. An Overview of MULTIBASE. In
H. Schneider, editor, Distributed Databases, pages 153—184. North Hol-
land, 1982.

S. Ram and V. Ramesh. Schema integration: Past, Present, and Future. In
A. Elamagrid, M. Rusinkiewicz, and A. Sheth, editors, Management of
Heterogeneous and Autonomous Databse Systems, pages 119—155. Mor-
gan-Kaufmann, San Mateo, CA, 1998.

D.E. Schmidt. Acceptor and Connector. In R.C. Martin, D. Riehle, and
F. Buschmann, editors, Pattern Languages of Program Design 3, pages
191-229. Addison-Wesley, October 1997.

D.C. Schmidt. Wrapper Facade: A Structural Pattern for Encapsulating
Functions within Classes. In C++ Report, volume 11. SIGS Publications,
February 1999.

M. Shaw and D. Garlan. Software Architecture: Perspectives on an
emerging Discipline. Prentice Hall, 1996.

R.W. Schwanke and S.J. Hanson. Using Neural Networks to Modularize
Software. Machine Learning, 15(2):137-168, May 1994. Kluwer Aca-
demic Publishers.

Siemens AG - C-LAB, Fiirstenallee 11, 33102 Paderborn, Germany.
OpenDM ODMG Users Guide, 1998.

M. Saeed, O. Magbool, H.A. Babri, S.Z. Hassan, and S.M. Sarwar. Soft-
ware Clustering Techniques and the Use of Combined Algorithm. In Pro-
ceedings of the 7th European Conference On Software Maintenance And
Reengineering, Benevento, Italy, pages 301-306. IEEE Computer Society
Press, March 2003.

203



[Sne02]

[SPPB02]

[Szy99]

[TCHH99]

[TH97]

[THB+98]

[Tho99]

[TWBKS9]

[vC97]

H.M. Sneed. Using XML to Integrate Existing Software Systems into the
Web. In In Proceedings of the 26th Annual International Computer Soft-
ware and Applications Conference, Oxford, England, pages 167-172.
IEEE Computer Society Press, August 2002.

P. Sousa, M.L. Pedro-de-Jesus, G. Pereira, and F. Brito e Abreu. Cluster-
ing Relations into abstract ER Schemas for database reverse engineering.
Journal of Science of Computer Programming, 45(2-3):137-153, Novem-
ber 2002. Elsevier Science Publishers B.V (North-Holland), (Special Issue
on Software Maintenance and Reengineering).

C. Szyperski. Component Software Beyond Object-Oriented Program-
ming. Addison-Wesley, 1999.

P. Thiran, A. Chougrani, J-M. Hick, and J-L. Hainaut. Generation of Con-
ceptual Wrappers for Legacy Databases. In Proceedings of the 10th Inter-
national Conference on Database and Expert Systems Applications,
Florence, Italy, pages 678—687. Springer Verlag, September 1999.

V. Tzerpos and R. Holt. The orphan adoption problem in architecture
maintenance. In Proceedings of the 4th Working Conference on Reverse
Engineering, Amsterdam, The Netherlands, pages 76—83. IEEE Computer
Society Press, October 1997.

P. Thiran, J-L. Hainaut, S. Bodart, A. Deflorenne, and J-M. Hick. Interop-
eration of Independent, Heterogeneous and Distributed Databases. Meth-
odology and CASE Support: the InterDB Approach. In Proceedings of the
3rd IFCIS International Conference on Cooperative Information Systems,
New York, USA, pages 54—63. IEEE Computer Society Press, August
1998.

Thought Inc., 657 Mission Street, Suite 202, San Francisco, CA 94105,
USA. CocoBase WhitePaper, 1999.

T.J. Teorey, G. Wei, D.L. Bolton, and J.A. Koenig. ER Model Clustering
as an Aid for User Communication and Documentation in Database
Design. Communications of the ACM, 32(8):975 — 987, August 1989.
ACM Press.

J.A. van den Broecke and J.O. Coplien. Using Design Patterns to Build a
Framework for Multimedia Networking. In Bell Labs Technical Journal,
pages 166—187. Lucent Technologies Inc., winter 1997.

204



[VK99]

[WagO1]

[War99]

[Wie92]

[Wie95]

[Wig97]

[Wol01]

[XA94]

A. van Deursen and T. Kuipers. Identifying objects using cluster and con-
cept analysis. In Proceedings of the 21st International Conference on Soft-
ware Engineering, Los Angeles, USA, pages 246-255. ACM Press, May
1999.

S. Wagner. Datenbank-Erweiterungen fiir multimediale Anwendungen.
Master’s thesis, University of Paderborn, Department of Mathematics and
Computer Science, Paderborn, Germany, 2001.

I. Warren. The Renaissance of Legacy Systems - Method Support fpr Soft-
wrae-System Evolution. PRACTIONER SERIES. Springer Verlag, 1999.

G. Wiederhold. Mediatiors in the architecture of duture information sys-
tems. IEEE Computer, 14(2), March 1992. IEEE Computer Society Press.

G. Wiederhold. Mediation in information systems. ACM Computing Sur-
veys, 27(2), m 1995. ACM Press.

T.A. Wiggerts. Using Clustering Algorithms in Legacy Systems Remodu-
larization. In Proceedings of the 4th Working Conference on Reverse
Engineering, Amsterdam, The Netherlands, pages 33—43. IEEE Computer
Society Press, October 1997.

F. Wolf. Entwicklung eines Generators fr eine objektorientierte Zugriffss-
chicht auf einer relationalen Datenbank. Master’s thesis, University of
Paderborn, Department of Computer Science, Paderborn, Germany, April
2001.

XA. Distributed Transaction processing: The XA+ Specification, version
2. X/Open Group, 1994. X/Open Company, Reading, UK.

Chapter 5: Model Consistency Management

[CMR96]

[CVS]

[HHE+99]

A. Corradini, U. Montanari, and F. Rossi. Graph Processes. Fundamenta
Informaticae, 26(3):241-265, June 1996. 10S Press, Amsterdam.

CVS. Concurrent Versions System - The open standard for version con-
trol. http://www.cvshome.org/.

J.-M. Hick, J.-L. Hainaut, V. Englebert, D. Roland, and J. Henrard. Strat-
egies pour [’evolution des applications de bases de donnees relation-
nelles: I’'approche DB-MAIN. In In XVIle congress INFORSID, La Garde,
France, June 1999.

205



[HWSS00]

[Jah99]

[JSWZ02]

[TW99]

[TWZ02]

[Nag96]

[NR99]

[Roz99]

[SL96]

R.C. Holt, A. Winter, A. Schiirr, and S. Sim. GXL: Towards a Standard
Exchange Format. In Proceedings of the 7th Working Conference on
Reverse Engineering, Brisbane, Australia, pages 162—171, Brisbane, Aus-
tralia, November 2000. IEEE Computer Society Press.

J.H. Jahnke. Management of Uncertainty and Inconsistency in Database
Reengineering Processes. PhD thesis, University of Paderborn, Pader-
born, Germany, September 1999.

J.H. Jahnke, W. Schiéfer, J.P. Wadsack, and A. Ziindorf. Supporting Itera-
tions in Exploratory Database Reengineering Processes. Journal of Sci-
ence of Computer Programming, 45(2-3):99-136, November 2002.
Elsevier Science Publishers B.V (North-Holland), (Special Issue on Soft-
ware Maintenance and Reengineering).

J.H. Jahnke and J.P. Wadsack. Integration of analysis and redesign activ-
ities in information system reengineering. In P. Nesi and C. Vernoef, edi-
tors, Proceedings of the 3rd European Conference on Software
Maintenance and Reengineering, Amsterdam, The Nederlands, pages
160-168. IEEE Computer Society Press, March 1999.

J.H. Jahnke, J.P. Wadsack, and A. Ziindorf. 4 History Concept for Design
Recovery Tools. In Proceedings of the 4th European Conference on Soft-
ware Maintenance and Reengineering, Budapest, Hungary, pages 59-69.
IEEE Computer Society Press, March 2002.

M. Nagl, editor. The IPSEN Approach, volume 1170 of Lecture Notes in
Computer Science. Springer Verlag, 1996.

A. Nica and E.A. Rundensteiner. View Maintenance after View Synchro-
nization. In International Database Engineering and Application Sympo-
sium, Montréal, Canada, pages 215-223. IEEE Computer Society Press,
June 1999.

G. Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation, volume 1. World Scientific, Singapore, 1999.

A. Schiirr and M. Lefering. Specification of Integration Tools. In M. Nagl,
editor, Building Tightly Integrated Software Development Environments:
The IPSEN Approach, volume 1170 of Lecture Notes in Computer Sci-
ence, pages 324-334. Springer Verlag, 1996.

206



[vv02]

[Wad98]

C. van der Westhuizen and A. van der Hoek. Understanding and Propa-
gating  Architecutural Changes. In J. Bosch, W.M. Gentleman,
C. Hofmeister, and J. Kuusela, editors, IFIP 17th World Computer Con-
gress - TC2 Stream / 3rd IEEE/IFIP Conference on Software Architecture,
Montréal, Canada, volume 224 of IFIP Conference Proceedings, pages
95-109. Kluwer Academic Publishers, August 2002.

J.P. Wadsack. Inkrementell Konsistenzerhaltung in der transformations-
basierten Datenbankmigration. Master’s thesis, University of Paderborn,
Department of Mathematics and Computer Science, Paderborn, Germany,
1998.

Chapter 6: Conclusions

[BGN+03]

[BS95]

[BSS+99]

[DRT98]

[ESS02]

[Hal96]

[Hou98]

S. Burmester, H. Giese, J. Niere, M. Tichy, J.P. Wadsack, R. Wagner,
L. Wendehals, and A. Ziindorf. Too! Integration at the Meta-Model Level
within the FUJABA Tool Suite. In Proceedings of the Workshop on Tool-
Integration in System Development (TIS), Helsinki, Finland, (ESEC / FSE
2003 Workshop 3), pages 51-56, September 2003. online at http://
www.es.tu-darmstadt.de/english/events/tis/documentation/Proceed-
ings.p%df.

M.L. Brodie and M. Stonebraker. Migrating Legacy Systems - Gateways,
Interfaces & The Incremental Approach. Morgan Kaufmann Publishers,
San Francisco, 1995.

J. Bergey, D. Smith, Tilley S, N. Weiderman, and S. Woods. Why Reengi-
neering Projects Fail. Technical Report CMU/SEI-99-TR-010, Carnegie
Mellon Software Engineering Institute, Pittsburg, USA, April 1999.

S. Demeyer, M. Rieger, and S. Tichelaar. Three Reverse Engineering Pat-
terns, 1998. darft available at http://www.iam.unibe.ch/ famoos/
Deme98p/threerevpat.pdf.

M. El-Ramly, E. Stroulia, and P. Sorenson. Mining System-User Interac-
tion Traces for Use Case Models. In Proceedings of the 10th International
Workshop on Program Comprehension, Paris, France, pages 21-30. IEEE
Computer Society Press, June 2002.

C. L. Hall. Building Client/Server Applications Using TUXEDQO. John
Wiley and Sons, Inc., 1996.

P. Houston. Building Distributed Applications with Message Queuing
Middleware. Microsoft Cooperation, 1998.

207



[Hud94]

[JTS99]

[KKO1]

[Lew99]

[LTO1]

[MBPRROI]

[MCO1]

[MCZE02]

[MGO00]

[MMEKO02]

E. S. Hudders. CICS: A Guide to Internal Strucure. John Wiley and Sons,
Inc., 1994.

JTS. Java Transaction Service (JTS). Sun Microsystems Inc., December
1999. Version 1.0.

C. Kerer and E. Kirda. Layout, Content and Logic Separation in Web
Engineering. In S. Murugeasn and Y. Deshpande, editors, Web Engineer-
ing - Managing Diversity and Complexity of Web Application Develop-
ment, volume 2016 of Lecture Notes in Computer Science, pages 135—
147. Springer Verlag, 2001.

R. Lewis. Advanced Messaging Applications with MSMQ and MQSeries.
Que, 1999.

C. Liebig and S. Tai. Middleware Mediated Transactions. In Proceedings
of the 3rd International Symposium on Distributed Objects & Applica-
tions. Rome, Italy, pages 340-350. IEEE Computer Society Press, Sep-
tember 2001.

R.T. Mittermeir, A. Bollin, H. Pozewaunig, and D. Rauner-Reithmayer.
Goal-Driven Combination of Softwrae Comprehension Approcahes for
Component Based Development. In Proceedings of the 2001 symposium
on Software reusability: putting software reuse in context, Toronto, Can-
ada, pages 95-102. ACM Press, May 2001.

J. Moe and D.A. Carr. Understanding Distributed Systems via Execution
Trace Data. In Proceedings of the 9th International Workshop on Program
Comprehension, Toronto, Canada, pages 60—-69. IEEE Computer Society
Press, May 2001.

C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich. XMIDDLE: A
Data-Sharing Middleware for Mobile Computing. Journal on Wireless
Personal Communications, 2002. Kluwer Academic Publishers.

S.A. Mondal and K.D. Gupta. Choosing a Middleware for Web-Integra-
tion of a Legacy Application. Software Engineering Notes, 25(3):50-53,
May 2000. ACM Press.

M. Morrison, J. Morrison, and A. Keys. Integrating Web Sites and Data-
bases. Communications of the ACM, 45(9):81-86, September 2002. ACM
Press.

208



[OTS98]

[Rot03]

[SL02]

[Wad03]

[WML02]

[XA94]

[YRO1]

OTS-1.1. Transaction Service Specification. Object Management Group,
February 1998. The Common Object Request Broker: Architecture and
Specification, CORBA/IIOP 1.1 Specification, Revision 1.1: OMG Tech-
nical Document formal/97-12-17.

A. Rott. Werkzeug-untersttzte Optimierung komplexer Datenbank- und
Applikationsserverumgebungen auf Basis von Zugriffsanalysen. Master’s
thesis, University of Paderborn, Department of Computer Science, Pader-
born, Germany, January 2003.

T. Schattkowsky and M. Lohmann. Rapid Development of Modular
Dynamic Web Sites using UML. In J.-M. Jézéquel, H. Hussmann, and
S. Cook, editors, In Proceedings of the 5th International Conference on the
Unified Modeling Language, Dresden, Germany, volume 2460 of Lecture
Notes in Computer Science, pages 336—350. Springer Verlag, October
2002.

J.P. Wadsack. Enterprise Application Performance Optimization based on
Request-centric Monitoring and Diagnosis. In Proceedings of the Work-
shop on Remote Analysis and Measurement of Software Systems, Port-
land, USA, pages 27-30. IEEE Computer Society Press, May 2003.

J. Whaley, M.C. Martin, and M.S. Lam. Automatic Extraction of Object-
Oriented Component Interfaces. In Proceedings of the 2002 International

Symposium of Software Testing and Analysis, Roma, Italy, pages 218—
228. ACM Press, July 2002.

XA. Distributed Transaction processing: The XA+ Specification, version
2. X/Open Group, 1994. X/Open Company, Reading, UK.

Z.Yu and V. Raijlich. Hidden Dependencies in Program Comprehension
and Change Propagation. In Proceedings of the 9th International Work-
shop on Program Comprehension, Toronto, Canada, pages 293-299. ACM
Press, May 2001.

209



210



INDEX

A

access layer
generator 127
generator (transactional)
transactional 126
adapting phase
see process
annotation 74
application architecture recovery 18
application design recovery 18
application model 37
architectural pattern 112
Data Fusion 116
Data Portal 113
Data Transducer
association 44
aggregation 44
see also IND/C-IND
see also IND/R-IND
attribute
equivalence (definition) 42
name equivalence (definition) 42
name similarity (definition) 42
similarity (definition) 42

128

119

B

Bunch 104, 139

ccxi

C

case study
Grid Federation Envelope 25
Health Care web information
system 24
Health Information Grid 25

clustering strategy 107
decision 108
data similarity 108

functional similarity 109
code fragment

extraction 67

of interest 67

parsing 67
constraint 44

D

19, 37

110

data component
classification
clustering 103
corporate 37,
extension 19, 102
mediation 37, 102
membership of persistent

102

classes 103
models 19
ubiquitous 37, 102



data dependency 40, 42
duplication (redundancy
dependency) 43
redundancy dependency 43
replication (redundancy
dependency) 43
surplus (redundancy
dependency) 43
synonym (redundancy
dependency) 43
data model 37
maintenance
mapping 38
persistent
see schema
recovery 38,
refactoring 38
representation 45
data model recovery 49
schema mapping 53
data reengineering 18
data structure
persistent 37
data-oriented reengineering 18
see also reengineering
data-oriented reengineering process
tool support 174
data-oriented reverse engineering
see also reengineering

33

49

19

E

EER 38
Extended Entity Relationship
see EER

F

FujabaRE 92
FujabaTS 92

ccxii

fuzzy
belief 85
belief (definition) 86
value 85
value (definition) 88

G

graph production 54
left-hand side 54
right-hand side 54

H

History Graph 144
affected (simple undo) 157
architecture of the mechanism’s tool
support 169
basic structure 151
composed 164
composed  (reevaluation)
167, 168
composed (Sequence
Example) 166
directly affected
transformations
indirectly affected
transformations
mechanism 20, 144
reevaluated transformations
sample 152
updated (simple undo) 157
History Graph Mechanism 33
see also History Graph
History Graph transformation
graph production
homonym 42

165,

161
161

162

I

Inclusion Dependency
see IND



IND (Inclusion Dependency) 43
C-IND 44
[I-IND 44
R-IND 44
information capacity 64
inheritance 44
see also IND/I-IND

integration
application 108
schema 108

island grammar 69
Island grammar parsing 68
iteration 19

join 42
L

left-hand side
see graph production
legacy system 17

M

mapping

schema 53
mediation Layer

data access interface 129
mediation layer

data manipulation services 131
model

tracability 144
model maintenance 19
Module Dependency Graph 104

N

name
equivalence (definition) 41
similarity (definition) 40

P

Palliative Care
Center Victoria 24, 25
Network System 24
pattern
definition 73
instance retrieval 79
persistent
class 45
primary key 42
process
adapting phase 19, 30, 101
evolutionary and exploratory nature
23
semi-automatic 19
understanding phase 19, 27

R

Reddmom
architecture of the extension tools
135
architecture of the reverse enginee-
ring tools 93
redundancy dependency
duplication 81, 86, 87
replication 77
reengineering 17
data-oriented 23
data-oriented forward
engineering 23
data-oriented reverse
engineering 23
relationship 40
inter-entity (definition) 40
inter-schema (definition) 40
inter-schema 29
retrieval 39, 66
relationships
reverse engineering
steps 38



right-hand side
see graph production

S

schema 37
annotation operations 50
annotations 50
conceptual 49
logical 49
mapping 53
optimisation structures 52
physical 49
recovery 49
refactoring 63
retrieval of hidden parts 50
variant 52

schema mapping
forward rule 58
relating rule 58
reverse rule 58
rule 57

slicing 71

T

threshold 89
transient
class 45
triple-graph-grammars 53
type
compatibility (definition) 41
equivalence (definition) 41

U

understanding phase
See process
usage relationship 44

\%

variant
see schema

W

web information system
evolution 17

CCX1V

17





