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b1 Beta1

b2 Beta2

BBK Belastungs-Beanspruchungs-Konzept

Belkom. Belastungskomplex

Bel.rel. Belastungsrelation (Belastungsanteil zur maximalen Vortestbelastung)

BISp Bundesinstitut für Sportwissenschaft

BP Bereitschaftspotential (engl. Readiness Potential)

C3 Elektrode links-zentraler Kortex

C4 Elektrode rechts-zentraler Kortex

CATEEM Computer Aided Topographical Electro-Encephalometry Measurement

CATERPA Computer Aided Topographical Events-Related Potential Analysis

CLIA Chemie-Luminescence Immuno Assey

cm Zentimeter

CNV Contingent-Negativ-Variation

Cor Cortisol

Cz Centro-zentrale Elektrode

d Delta

DC Direct Current

DMS Dehnungs-Messstreifen

Dop Dopamin

Dops Dopaminsulfat

ebd. ebenda

ECG Electro-Cardiogram (deutsch: Elektro-Kardiogramm EKG)

EEG Elektroenzephalographie

EHI Edinburgh Handedness Inventory
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EKG Elektro-Kardiogramm (engl. Electro-Cardiogram ECG)

EKP Ereigniskorreliertes Potential (engl. Events Related Potential (ERP))

EMG Elektro Myographie

engl. englisch

EOG Elektro-Okulogramm

EPSP Exitatorisches Postsynaptisches Potential

ERP events related potential (deutsch: ereigniskorreliertes Potential EKP)

Ery Erythrozyten

F Force

FB Fahrradergometrie Belastung

FDG [18F]-2-Fluro-Deoxy Glycose

FFQ Food Frequency Quastionaire

FFT Fast- Fourier-Transformation

fMRI funktional Magnet-Resonanz-Imaging

fpro relativer Fehleranteil

FQ Fehlerquotient

F-Ratio Prüfgröße zur Varianz innerhalb und zwischen den Gruppen

frw Fehler-Roh-Wert

Fz fronto-zentrale Elektrode

GLM General Linear Model

glu Glucose

HF Herzfrequenz

HPLC-ED High Pressure Liquid Chromatography and Electrochemical Detection

htc Hämatokritwert

Hz Hertz (Schwingung pro Sekunde)

IG Intrapsychischer Gleichgewichtszustand

IMP Inosinmonophosphat

IPSP Inhibitorisches Postsynaptisches Potential

kΩ Kilo-OHM (103 Ω)

KB Kognitive Belastung

kg Kilogramm

KLT Konzentrations-Leistungs-Test

Krea Kreatinin

l Liter

La Laktat

lat Latenz

Leu Leukozyten
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LQ Lateralitätsquotient

lrel relativer Konzentrationsleistungswert

lrw Leistungs-Roh-Wert

lsw Leistungs-Standard-Wert

M Messzeitpunkte

MΩ Mega-OHM (106 Ω)

MAF Mittlere Alpha Frequenz

MANOVA Mehrfaktorielle Analysis of Variance

max Lass maximaler Laktat-Steady-State

max maximal

MD Median (geometrisches Mittel)

MEP Motor Evoked Potential

mI Milliliter (10-3 Liter)

MI Primary Motor Area

MII Secondary Motor Area

min Minute

mmol Millimol (10-3 mol)

mol Mol (Substanzmenge zum Kohlenstoffnuclids12C)

MP Motor Potential

MRCP Movement-Related-Cortical Potential

ms Millisekunde (10-3 Sekunde)

MU Motor Unit

MVC Maximal Voluntary Contraction

Mw Mittelwert (arithmetisches Mittel)

Mz Messzeit

n Anzahl

NA Noradrenalin

Nanomol (10-9 mol)

NAs Noradrenalinsulfat

ng/l Nanogramm pro Liter (weitere Einheit für Katecholamine)

NH3 Ammoniak

NS Negative Slope

OB Armkurbelergometrie Belastung

p Signifikanzniveau

P1-P5 Stufenleistungen (bei Belastungsstufen 1-5)

PET Positronen-Emissions-Tomographie

Pmax Vortest Leistung maximal
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PNC Purinnukleotidzyklus

Pro Prolaktin

Pz parieto-zentrale Elektrode

r Korrelationskoeffizient

R Ruhemessung

1 Aufwärmung (Belastungsstufe 1)

2 Belastungsstufe 2

3 Belastungsstufe 3

4 submaximale Belastung (Belastungsstufe 4)

5 maximale Belastung (Belastungsstufe 5)

rCBF regionaler zerebraler Blutfluss

RP Readiness Potential (deutsch: Bereitschaftspotential)

RR Blutdruck nach Riva Rocci Methode

s Sekunde

SAA Somatosensory Association Area

SD Standardabweichung

SE Soziale Extrovertiertheit

SI Primary Somatosensory Area

SII Secondary Somatosensory Area

SMA Supplementary Motor Area

SP Silent Period

t Time

tanaf Tangenz Alpha (Steigung)

Throm Thrombozyten

TMS Transkraniale Magnet Stimulation

U Unit

V Volt

VG Vigilanz

VT Vitalität

ZNS Zentrales Nervensystem

µmol Mikromol (10-6 mol)

µV Mikrovolt (10-6 Volt)

µV² Power (Leistung eines Frequenzbandes oder MRCP Kurvenverlaufes)

µV²/Hz Spektrale Leistungsdichte (Leistung dividiert durch Frequenzbandbreite)
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2 Einleitung

Sportliche Aktivität belastet den menschlichen Organismus in vielfältiger Art und Weise

und ruft Anpassungen hervor, die allgemein unter den Begriffen Adaptation (biologisch)

oder Trainingseffekt (trainingswissenschaftlich) bekannt sind. Die Kenntnisse über

Auswirkungen von Trainingsbelastungen auf unsere organismischen Teilsysteme sind

von außerordentlicher Bedeutung für eine langfristige und gesunde Leistungsopti-

mierung. Die wissenschaftliche Betrachtung des Sports und dessen Einflussnahme auf

den Menschen hat verschiedenste Forschungsdisziplinen und Fachausrichtungen aus

Sportwissenschaft, Biologie, Psychologie und Sportmedizin bemüht. Die Forschungs-

arbeit dieser und anderer Fachrichtungen führen zu der Überzeugung, dass das Gehirn

als steuerndes und kontrollierendes Organ wesentliche Voraussetzungen für die

sportmotorische Leistungserbringung unter Einbeziehung motivationaler und emotio-

naler Faktoren schafft (vgl. MECHAU 2001; BEYER ET AL. 1994; SCHUMANN ET AL.1993a;

1993b; HOLLMANN ET AL. 1993).

Sportliche Belastungen und daraus resultierende Beanspruchungen führen zu soforti-

gen Adaptationen des steuernden „Zentralen Nervensystems“ (ZNS) bei der Gene-

rierung von willkürlichen Bewegungen. Erst wenn diese Anpassungen nicht mehr ge-

lingen, kommt es zu Veränderungen des Bewegungsablaufes, zu dessen Abbruch oder

- im Extremfall - zu Verletzungen. Diese Zusammenhänge werden im Allgemeinen mit

Ermüdungsphänomenen diskutiert, die in ihrer Begrifflichkeit nicht unumstritten sind

(OLIVIER 2001; OLIVIER & DILLINGER 2003). Als Ermüdung wird die durch körperliche

und geistige Belastungen hervorgerufene vorübergehende Einschränkung der Lei-

stungsfähigkeit verstanden. In der Nachbelastungsphase geschehen dann Anpassun-

gen, die den allgemeinen Funktionszustand wiederherstellen. Man unterscheidet mo-

dellhaft zwei Arten von Ermüdung:

a) Modell der peripheren Ermüdung: die „Ermüdung“ des Muskels aufgrund mangeln-

der Energiebereitstellung;

b) Modell der zentralen Ermüdung: die „Ermüdung“ des Nervensystems aufgrund ver-

änderter Transmittersubstanzen (NEWSHOLME 1986, NEWSHOLME & BLOMSTRAND

1995).

Beide Formen der „Ermüdung“ sind insofern schwer voneinander trennbar, als sie bei-

de je nach Beanspruchungssituation lokal und/oder allgemein auftreten können

(JONATH 1986).

Insbesondere die zentralen Einflüsse machen die Erforschung des informationsverar-

beitenden Systems im ZNS auch für bewegungswissenschaftliche Ansätze zu einem

neuen Zielgebiet, das HOLLMANN ET AL. (2003 zitiert nach HOLLMANN & LÖLLGEN 2002)
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als „Bewegungs-Neurowissenschaft“ bezeichnet. Als Methode zur Erforschung der

zeitlich sehr schnell ablaufenden Prozesse des ZNS im Sport hat sich die nicht-

invasive Elektroenzephalographie (EEG) bei kortikalen Aktivierungen (MECHAU 2001,

S. 140; SCHUMANN 1996, S. 113; BEYER ET AL. 1994, S. 120), als auch die Erfassung

von movement related cortical potentials (MRCP) im EEG (BARTHEL ET AL. 2002,

JOHNSTON ET AL. 2001; SLOBOUNOV ET AL. 1998) erwiesen. Somit bieten sich geeignete

„Werkzeuge“ zur Erforschung der zentralen Bewegungsorganisation sowie Re-

gulationsvorgänge auf kortikaler Ebene.

In der vorliegenden Arbeit werden zentrale Bewegungsorganisationen in Abhängigkeit

von verschiedenen sportlichen Beanspruchungssituationen erfasst. Hierbei erfolgt

erstmals eine methodische Trennung zwischen zentralen und peripheren Ermüdungs-

einflüssen durch den Einsatz unterschiedlicher Belastungsregime mit Fahrrad- und

Armkurbelergometrie sowie rein kognitiver Belastung. Dadurch entstehen drei Bedin-

gungen unterschiedlicher Beanspruchung: Die ersten beiden basieren auf physischen

Beanspruchungen, in denen die Testbewegungsmuskulatur einmal gleichzeitig mitbe-

ansprucht und einmal ausgeruht ist. Im dritten Fall dient eine kognitive Beanspruchung

zur Aufdeckung möglicher psychischer Belastungseinflüsse auf die zentrale Bewe-

gungsgenerierung.

In einem weiteren Untersuchungsansatz werden zur Analyse des richtigen Verhält-

nisses von Beanspruchung und Regeneration zentrale Regulationsmechanismen in der

Umstellung von Ergotropie zu Trophotropie nach erschöpfender physischer Belastung

anhand hirnelektrischer Aktivitätsverschiebung beurteilt. Hieraus lassen sich unter-

schiedliche Regenerationsphasen charakterisieren.

Zum Einstieg erfolgt ein Exkurs in die sportwissenschaftliche Diskussion über die

Sichtweise von Belastung und Beanspruchung. Hierzu werden zwei unterschiedliche

Arbeitsmodelle vorgestellt.

Danach wird der wissenschaftliche Kenntnisstand zum Einfluss des Gehirns bei der

Bewegungsplanung mit besonderer Berücksichtigung sportlicher Beanspruchungen

anhand neuer hochauflösender bildgebender Messverfahren und des EEGs aufgear-

beitet.

Anschließend folgt die Darstellung des derzeitigen Wissensstandes zu den For-

schungsansätzen dieser Arbeit. Mit Betrachtung elektrophysiologischer Belastungs-

auswirkungen auf die zentralnervale Bewegungsplanung und –steuerung, wird die Er-

fassungsmöglichkeit über MRCPs bei willkürlicher sportmotorischer Bewegung herge-

leitet. Nachfolgend wird die derzeitige Vorstellung zum Einfluss der Leistungsfähigkeit

bei kortikaler Downregulation nach physisch erschöpfenden Beanspruchungen behan-

delt.
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Aus den Forschungsdefiziten leiten sich die untersuchungsrelevanten Forschungsan-

sätze und Hypothesen ab, die fortan als Belastungskomplex 1 und Belastungskomplex

2 bezeichnet werden.

Im weiteren Verlauf werden umfassend die Methodik und die Ergebnisse vorgestellt.

Aufgrund der Vielfalt der Messparameter sind diese Systemkreisen zugeordnet und im

Ergebnisteil für beide Belastungskomplexe getrennt dargestellt.

Die Diskussion ist fokussiert auf die Hauptziele der Arbeit und mündet in eine Beurtei-

lung der aufgestellten Forschungshypothesen und eine Schlussfolgerung.

Im Ausblick wird auf neue, weiterführende Ansätze mit dem gewählten Verfahren und

auf die Zukunft psychophysiologischer Forschung bei sportwissenschaftlichen Frage-

stellungen Bezug genommen.



Theoretische Betrachtung 4

3 Theoretische Betrachtung zu körperlichen Belastungsaus-
wirkungen und zentralnervösen Mechanimen

3.1 Exkurs zur Betrachtung sportlicher Belastungsauswirkungen

In den frühen achtziger Jahren wurde von den Arbeitsmedizinern Rohmert und Ruten-

franz (ROHMERT 1984; ROHMERT & RUTENFRANZ 1983) das Belastungs-

Beanspruchungs-Konzept (BBK) zur Schaffung menschengerechter Arbeitsbedin-

gungen erstellt. Vornehmlich wurde eine begriffliche Trennung der Bezeichnungen

Belastung und Beanspruchung vereinbart. Dieses Konstrukt hielt in den Neunzigern

Einzug in die Sportwissenschaft und erfuhr zunehmende Unterstützung von verschie-

denen Bewegungswissenschaftlern (POLLMANN 1993, S. 251; OLIVIER 1996; POLLMANN

& WILLIMCZIK 2001, S. 59FF).

Die Begriffsbestimmung stimmt heutzutage grundsätzlich mit der von ROHMERT und

RUTENFRANZ (1975, S. 8) in den siebziger Jahren verfochtenen Trennung der Begriffe

Belastung (engl. load) und Beanspruchung (engl. strain) in der Arbeitspsychologie

überein. SCHÖNPFLUG (1987, S. 133) übernimmt die Definitionen von ROHMERT und

RUTENFRANZ (1975, S. 8), in der unter Belastung nur „...objektive, von außen her auf

den Menschen einwirkende Größen und Faktoren...“ zählen sollten. Der Begriff Bean-

spruchung bedeutet vielmehr die subjektive „...Ausfärbung“ der Belastungsaus-

wirkungen auf den Organismus. Er meint also „...deren Auswirkungen im Menschen

und auf den Menschen“ (SCHÖNPFLUG 1987, S. 133).

Im sportwissenschaftlichen Kontext sorgte in den letzten Jahren besonders die Ar-

beitsgruppe um OLIVIER (1996; 2001; OLIVIER ET AL. 2001; OLIVIER & DILLINGER 2003)

mit Hilfe von SCHÖNPFLUGs Ressourcentheorie (1991) für ein dem sportlichen Training

und Wettkampf angepasstes, ausdifferenziertes phänomenorientiertes BBK. Demnach

werden Belastungen durch Faktoren wie Komponenten, Arten, Höhe und zeitliche Ab-

folge differenziert. Deren Folgewirkungen sind abhängig von Eigenschaften, Fähigkei-

ten und Fertigkeiten des Individuums und werden in Teilbeanspruchungen verschie-

denster Organsysteme darstellbar. Hierdurch sind die Belastungsauswirkungen auf

Subsysteme bzw. deren Beanspruchungen differenzierter beschreibbar und mit geeig-

netem Methodeninventar besser erforschbar (OLIVIER & DILLINGER 2003, S. 336; 340).

Legt man dem BBK rationale Stresskonzepte zugrunde, so erfolgt die Beanspruchung

aufgrund subjektiv wahrgenommener, sportlicher Belastung und es spielt zukünftig ei-
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ne zentrale Rolle in vielen Feldern des Sports, der Psychologie und der Stressfor-

schung (STOLL 2004, Internetquelle).

Bei der Beurteilung von Einflüssen konditioneller Beanspruchungen auf sportliche Be-

wegungsqualitäten sollte trotz einer differenzierten Betrachtung einzelner organis-

mischer Teilsysteme, Raum für Kompensationserklärung zwischen den Systemen ver-

bleiben. Vor dem Hintergrund, dass im Sport häufig Situationen auftreten, in denen

trotz beanspruchter bzw. erschöpfter Teilsysteme vom Organismus Spitzenleistungen

vollbracht werden. Beispielsweise sei die erhöhte Körpertemperatur in der Endphase

beim Marathonlauf angeführt, die unter Normalbedingungen gefährliches Fieber be-

deuten würde (PICKENHAIN 1992, S. 17).

Auch eine sportlich „gute Technik“ zeichnet sich nach POLLMANN & WILLIMCZIK (2001)

dadurch aus, dass sie offensichtlich eine bessere Kompensation von Bean-

spruchungseffekten bewirkt. Zudem scheinen auch Verletzungsrisiken nach HOT-

TENROTT & HOOS (2003) nicht durch die Beanspruchungsauswirkungen an sich gege-

ben, sondern aufgrund nachlassender Kompensationseigenschaften der beanspruch-

ten Organsysteme. Olivier schlägt in diesem Kontext (1996; OLIVIER & DILLINGER 2003)

ein drei Faktorenmodell vor, welches die Einflussvariation individueller, zentralnervöser

und neuromuskulärer1 Teilsysteme beim Zustandekommen des Bewegungsergebnis-

ses einer motorischen Aufgabe, berücksichtigt.

Kompensation ist also ein wichtiges Stichwort, bei einer nach Differenzierung streben-

den Betrachtungsweise von Beanspruchungen in organischen Teilsystemen.

Bei allen Differenzierungsbestrebungen wissenschaftlicher Disziplinen werden mög-

licherweise die Berührungspunkte und Systemüberschneidungen, gewissermaßen die

Verzahnungen der Subsysteme und deren Beeinflussung untereinander, vernachläs-

sigt.

Eine weitere, in der Psychophysiologie weitverbreitete Betrachtungsweise von Belas-

tung und Beanspruchung entstammt dem „Synergistischen Ansatz“.

PICKENHAIN erweiterte die Diskussionen um das BBK im Sport bereits (1992, S. 9FF),

indem er dem derzeitigen Modell eine synergistische Betrachtungsweise unterzog.

Diese basiert auf der Grundannahme, dass ein selbstorganisiertes biologisches Sys-

tem „Mensch“ eine komplexe interaktive Einheit zwischen Organismus und Umwelt

darstellt, die sich ständig neu organisiert und stabilisiert. Demnach sind innerhalb die-

                                                
1 Als „neuromuskuläre“ Teilsysteme verstehen die Autoren alle efferenten und afferenten Ver-

bindungen zwischen Rückenmark und Muskulatur. Dagegen meint „zentralnervös“ den höhe-
ren Einfluss des ZNS (DILLINGER 2001, S.73).
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ser Betrachtung Ordnungsparameter entscheidend, die die selbstorganisierten Unter-

systeme „versklaven“, also einer vorrangigen Zielvorstellung unterordnen, um auf

breiterem Niveau Stabilität aufrecht zu erhalten (also zu kompensieren).

Bei der Suche nach den Ordnungsparametern kommt der mentalen Repräsentations-

ebene mit ihren psychischen Ausprägungen eine entscheidende Rolle zu (PICKENHAIN

1996, S. 39). Zur Unterstreichung dieser These stellt PICKENHAIN (1992, S. 17) eigene

Ergebnisse aus mentalen Trainingsstudien vor, in denen bei Leistungsschwimmern

idiomotorische Bewegungsvorstellungen Atemveränderungen wie beim realen

Schwimmen hervorriefen, obwohl sie ruhig auf einem Stuhl saßen (PICKENHAIN 1979).

Auch bei BERNSTEINS (1975) Thesen zur „probabilistischen Programmierung des Künf-

tigen“ spielt die interne Repräsentation in unserem Gehirn die entscheidende Rolle.

Hier bilden Ereignisse und Empfindungen der Vergangenheit und Gegenwart Reprä-

sentationen, die einen wahrscheinlichen Entwurf zukünftiger Handlungen zu schaffen

vermögen (siehe auch SPITZER 2002, S. 176; PICKENHAIN 1992, S. 24; 1996, S. 35),

wobei es zur Kontrolle und Korrektur der Bewegungshandlung ständiger interner und

externer Rückmeldungen bedarf (SPITZER 2002, S. 118FF).

NITSCH & MUNZERT (1997, S. 67) stellen diesen synergistischen Ansatz der Bewe-

gungsorganisation in der Sportwissenschaft als bisher wenig quantifizierbar bezüglich

psychosozialer Einflussfaktoren dar.

Je nach Forschungsstandpunkt sind bspw. die Psychophysiologen mit zentralen Mess-

verfahren (ZNS) eher der synergistischen Betrachtungsweise, die Bewegungswissen-

schaftler mit exakter Differenzierung und begrifflichen Definitionen eher dem BBK zu-

geneigt.

PICKENHAIN (1992, S. 21) stellt heraus, dass innerhalb einer synergistischen Betrach-

tung des BBK eine begriffliche Trennung von Belastung und Beanspruchung bezogen

auf die zentrale Repräsentationsebene (ZNS) unangebracht erscheint. Bezogen auf

Teilsysteme (periphere Organsysteme, Annahme des Verfassers) stellt sie allerdings

ein durchaus hilfreiches Konstrukt bei der Erforschung von sportlichen Belastungsaus-

wirkungen dar. Auf der anderen Seite räumen OLIVIER & DILLIGER (2003, S. 339) ein,

dass zentrale Einflussnahmen (Kompensationen) auf Kortexebene (also Repräsen-

tationsebene, Annahme des Verfassers) immer möglich sind.

Beide Modellansätze scheinen sich demnach gegenseitig zu akzeptieren. Es ist ab-

hängig vom Betrachtungsstandpunkt, welcher Ansatz verfolgt wird.

Eine umfangreichere Darstellung diverser Modelle verschiedenster Forschungsdis-

ziplinen, die sich auf die Bewegungsorganisation beziehen, findet sich bei NITSCH &
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MUNZERT (1997, S. 109FF), die aus den jeweiligen Vorteilen eine handlungstheo-

retische Sichtweise entwickelt haben.

Da sich die vorliegende Arbeit mit den Belastungsauswirkungen im „Zentralen Nerven-

system“ (ZNS) und deren Repräsentationen mit Ableitungen der elektrischen Hirn-

aktivität beschäftigt, wird bei Erklärungen dem synergistischen Ansatz gefolgt. Dage-

gen hilft die Sichtweise des phänomenorientierten BBK auch im Methodikteil dieser Ar-

beit bei der Einschätzung und Beschreibung peripherer Systemkreise und Beanspru-

chungsparameter zur Belastungsabschätzung und Normierung.

Zusammenfassend scheinen bei der Beurteilung sportlicher Belastungsauswirkungen

die individuellen Fertigkeiten in den motorischen Hauptbeanspruchungen im Bewusst-

sein mit psychischen Faktoren wie Motivation, Aufmerksamkeit, Leistungswillen, Affek-

tivität mit Persönlichkeitseigenschaften wie Zielstrebigkeit, Ehrgeiz und Selbstkonzept

zu verschmelzen. Hierbei entstehen mannigfaltige psychophysische Kompensations-

möglichkeiten zur Handlungserfüllung trotz hoher Beanspruchung.

Dies geschieht im ZNS, dem höchsten Steuerungsorgan, und kann dort mit modernen

Messverfahren erfasst werden (HOLLMANN & STRÜDER 1996, S. 47).

Die neue Forschungsrichtung des „Brainmappings“ (bildgebende Hirnmessverfahren),

welches die zentralen Repräsentationen bei Beanspruchung sichtbar zu machen ver-

mag, bringt möglicherweise einen Entwicklungsfortschritt in der Hirn- und Bewegungs-

forschung mit sich (BIRBAUMER & SCHMIDT 1999, S. 7). Jüngste Symposien der Sport-

medizin „Exercise and Brain2 2000“ (KÜNSTLINGER 2000) und der Bewegungswissen-

schaft „EWOMS3" 2003 (SCHÖLLHORN ET AL. 2003) zeigen, dass diese Methoden Ein-

zug in die Sportwissenschaft finden und helfen können, die „black box“ allmählich auf-

zuhellen. Die folgende Arbeit soll helfen, neue Erkenntnisse zu sportlichen Belastungs-

auswirkungen auf kortikaler Steuerungsebene zu gewinnen und mögliche kompensato-

rische Einflussnahme gegen Ermüdung darzustellen, sowie die hirnelektrische Um-

stellung von Ergotropie zu Trophotropie abzubilden.

Im nächsten Abschnitt werden gängige Hirnmessverfahren kurz vorgestellt. Anschlie-

ßend folgt ein kurzer Literaturüberblick, der den wissenschaftlichen Kenntnisstand und

das Forschungsdefizit markiert. Hieraus begründet sich das Thema dieser Arbeit.

                                                
2 Internationales Satellitensymposium „Exercise and Brain“ im Rahmen des Eröffnungskongres-

ses „Dekade des menschlichen Gehirns 2000“ auf dem Petersberg in Bonn, Germany.
3 Der European Workshop of Movementscience (EWOMS) hat stattgefunden im Mai 2003 in

Münster, Germany.
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3.2 Psychophysiologie: Methodische Möglichkeiten

Beim Überblick über den Forschungsstand zu sportlichen Belastungsauswirkungen auf

das ZNS, ist es sinnvoll, nach Messmethoden und Versuchsanordnungen zu unter-

scheiden. Der Grund: gewonnene Schlussfolgerungen sind sehr eng an die Untersu-

chungsbedingungen geknüpft und lassen sich nur schwer verallgemeinern.

Die Messung des regionalen zerebralen Blutflusses (rCBF) nutzt die Abhängigkeit der

Strahlungsintensität radioaktiv markierter Substanzen von der lokalen Hirndurchblu-

tung. Durch Markierung und Verabreichung diverser Substanzen (Glucose, Sauerstoff,

Edelgas) können verschiedene Aspekte des Hirnstoffwechsels sichtbar gemacht wer-

den (BIRBAUMER 1999, S. 503). Häufig wird die rCBF-Bestimmung mit funktioneller

Magnet-Resonanz-Imaging (fMRI) oder Positronen-Emissions-Tomographie (PET)

durchgeführt, welche die momentan dominierenden, bildgebenden Brainmapping-

Verfahren darstellen.

Funktionelle Magnet-Resonanz-Imaging (fMRI) ist ein bildgebendes Instrumentarium

zur Erzeugung von Schnittbildern des menschlichen Körpers mit Beurteilung der Stoff-

wechselsituation. Hierbei wird z.B. um den Kopf ein homogenes Magnetfeld platziert.

Durch dieses Feld werden die Wasserstoffatomkerne, die normalerweise im Körper ei-

ne eher zufällige Anordnung besitzen und deren elektrische Felder sich gegenseitig

kompensieren, angeregt. Damit ändern sie ihren Energiezustand, indem sie sich ent-

weder parallel oder antiparallel an dem angelegten Feld ausrichten (Anregung). Da-

nach kehren die Wasserstoffatomkerne wieder in den Ausgangszustand zurück (Rela-

xation). Der Kontrast der MRIs beruht darin, dass sich die verschiedenen Gewebe in

ihren Relaxationszeiten differenzieren und somit erfassbar unterscheiden lassen (GALL

ET AL. 2002, S. 155). Die Messung der Durchblutungsänderung mit fMRI ist in ihrer

zeitlichen Auflösung beschränkt, aber räumlich sehr genau. In Kombination mit der

Elektroenzephalographie (EEG) stellt es derzeit das optimale Messverfahren der Neu-

rowissenschaften dar.

Positronen-Emissions-Tomographie (PET) basiert auf der Detektion radioaktiver Zer-

fälle von Positronen in Radioisotopen (BIRBAUMER 1999, S. 505). Die Zahl der Kollisio-

nen (Zerfälle) wird gezählt und als Bild (Image) des Blutflusses für eine Minute nach

der Injektion des Radioisotopes dargestellt. Durch Verwendung verschiedener Radioi-

sotope als Markierungssubstanzen lassen sich spezifische Transmitter und Stoffwech-

selprodukte im Gehirn beobachten. Aufgrund der geringeren zeitlichen, aber der aus-

gezeichneten räumlichen Auflösung, erlaubt diese Methode strukturelle anatomische

Lokalisation neuronaler, metabolischer Aktivität (auch in subkortikalen Hirnregionen).
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Die beschriebenen Methoden finden aufgrund ihrer hohen Kosten4, der Strahlenbela-

stung und ihres apparativen Aufwandes selten Anwendung bei sportwissenschaftlichen

Fragen zu ZNS-Beanspruchungen.

Allerdings liefern diese Verfahren zur Zeit die räumlich genauesten Einblicke in unser

ZNS, finden aber aufgrund der erwähnten Nachteile (teuer, zeitlich beschränkt, große

Apparatur) derzeit vorrangig in den klinischen molekularbiologischen Grundlagenfor-

schungen und weniger in den Bewegungswissenschaften Anwendung. Das bedeutet

nicht, dass diese Forschungsergebnisse nicht zum bewegungswissenschaftlichen Er-

kenntnisgewinn beitragen können. Durch interdisziplinären Wissenstransfer können

neue Sinnzusammenhänge geschaffen werden (siehe HOLLMANN ET AL. 2003, S. 65FF;

PICKENHAIN 1996, S. 44FF).

Die Elektroenzephalographie (EEG) ist ein nicht-invasives Verfahren zur Untersuchung

neuronaler Aktivitäten des Gehirns. Das Messergebnis repräsentiert Erregungsprozes-

se größerer Neuronenverbände, die primär aus der Hirnrinde (Kortex) stammen (GALL

ET AL. 2002, S. 74FF). Man geht heute davon aus, dass die synchronen und manchmal

rhythmischen Erregungen ihrerseits durch subkortikale Hirnregionen (Thalamus, Hip-

pocampus) gesteuert oder moduliert werden (MAIER ET AL.1994, S. 220; BIRBAUMER &

SCHMIDT 1999, S. 493). Insofern stellt das EEG das elektrische Korrelat summierter er-

regender Nervenzellaktivitäten5 (EPSP) dar (BIRBAUMER & SCHMIDT 1999, S. 492). Die

EEG-Kurven bilden periodische Spannungsverläufe ab, die durch Amplituden (1-

200µV) und Frequenzen (0,5-50 Hz) oder Leistungsdichten6 (µV²/Hz) beschreibbar

sind (MEIER ET AL. 1994, S. 221). Mit ansteigender Frequenz unterscheidet man Delta-,

Theta-, Alpha- und Beta-Frequenzen. Sie liefern neuerdings auch farblich codierte, to-

pographische Hirnkarten und können als „Kompromissmethode“ auch zu den Brain-

mapping- Verfahren gezählt werden.

Man unterscheidet allgemein zwischen spontaner7 EEG- und evozierter8 (reizabhängi-

ger) Potentialaktivität (MAIER ET AL.1994, S. 22). Zur letzteren werden u.a. auch die in

dieser Arbeit behandelten movement-related-cortical Potentials (MRCPs) gezählt.

                                                
4 PET zählt zu den teuersten neurowissenschaftlichen Messverfahren (Birbaumer 1999, S.

505).
5 EEG Wellen beruhen auf summierten exitatorischen postsynaptischen Potentialen (EPSP) der

Hirnrinde. Inhibitorische Postsynaptische Potentiale (IPSP) tragen kaum zur Generierung von
Feldpotentialen bei.

6 Leistungsdichte [µV²/Hz] gibt die Gesamtleistung einer Frequenz dividiert durch deren Band-
breite an (MECHAU 1998, S.10).

7 Spontanaktivität meint die kontinuierlichen Spannungsschwankungen, die ohne zeitlichen Be-
zug zu einem Ereignis- also spontan- im EEG auftreten.
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Die hohe zeitliche Auflösung des EEGs (ms) und die „Nichtinvasivität“ sowie die kleine-

ren Apparaturen machen das EEG zum klassischen psychophysiologischen Messver-

fahren bei der Betrachtung höherer zentraler Steuerungsebenen (SCHUMANN 1996, S.

113). Trotz der heutzutage eingesetzten mathematisch statistischen Prozeduren mit

zunehmend genauerer Lokalisation der elektrischen „Generatoren“ bleibt eine örtliche

Ungenauigkeit des EEGs erhalten. Um absolut genaue räumliche Lokalisationen zu er-

halten, müssten die Messungen durch PET oder MRI ergänzt werden (BIRBAUMER &

SCHMIDT 1999, S. 490). Eine detaillierte Darstellung zur Entstehung des EEGs und

evozierten Potentialen findet sich bei BIRBAUMER & SCHMIDT (1999, S. 490FF) oder bei

MECHAU (1998, S. 10-13).

3.2.1 Brainscan-Untersuchungen: Erkenntnisse zum Einfluss höherer Zentren

bei der Bewegungsplanung nach erschöpfenden Beanspruchungen

Im sportmedizinischen Kontext existieren zum Teil theoretische Vorstellungen über die

positive Beeinflussung der „Hirngesundheit“ durch körperliche Aktivität, die aber über-

wiegend aus tierexperimentellen Untersuchungsergebnissen hergeleitet werden

(HOLLMANN ET AL. 2003, S. 65FF). Es ist aber nach wie vor umstritten, ob sich das

menschliche Gehirn in Untersuchungen wie das von Ratten oder Mäusen verhält. Das

menschliche Gehirn ist ein auf der „Neuronalen Plastizität“ basierendes, hochkomple-

xes dynamisches System, das sich im ständigen Austausch mit Umweltgegebenheiten,

den eigenen Körpersystemen und vererbten Eigenschaften befindet. Dabei lernt es,

entwickelt sich und bildet ein Gedächtnis aus (SCHIEPEK ET AL. 2003, S. 9FF;

BIRBAUMER & SCHMIDT 1999, S. 8). Bei Versuchstieren, wie auch bei Menschen, kön-

nen sich zwar Hirnfelder in ähnlicher Weise ausbilden, deren Zusammenwirken unter-

liegt aber externen und internen Entwicklungseinflüssen der Phylo- und Ontogenese.

Deshalb sollten vor der Übertragbarkeit von Tierexperimenten auf den Menschen diese

erst durch humane, neuropsychologische Untersuchungen nachgewiesen werden

(BIRBAUMER &SCHMIDT 1999, S. 4).

Es existieren nur wenige Studien zum Themenkomplex „Gehirn und Sport“. SCHMIDT ET

AL. (2001) beschäftigen sich z.B. mit dem Einfluss von Ausdauertraining auf die zere-

bralen Repräsentationen von episodischen Gedächtnisprozessen mit Wortpaarasso-

                                                                                                                                           
8 Hirnelektrische Erscheinungen, die einen zeitlichen und funktionellen Zusammenhang zu ei-

nem modalitätsspezifischen Reiz aufweisen, werden als evozierte Potentiale (EP) oder er-
eigniskorrelierte Potentiale (EKP), engl. events related potentials (ERP) bezeichnet (BARTHEL
1998, S. 16). Beide Begriffe werden synonym in dieser Arbeit verwendet.
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ziationen und finden bei Untrainierten verstärkte präfrontale Stoffwechselaktivität, die

auf größere Anstrengung hinweist. Die meisten Arbeiten beschäftigen sich mit Reprä-

sentationen bei Bewegungsprogrammierung (REISER ET AL. 2003; WEILLER ET AL. 1996;

ROLAND ET AL. 1980).

In den letzten Jahren wurden viele Forschungsarbeiten mit PET und fMRI-Methodik

veröffentlicht. Die behandelten Forschungsarbeiten orientieren sich hauptsächlich an

klinischen, molekularbiologischen und medizinischen Basisfragen. Die jüngsten Studi-

en, die sich allgemein mit Bewegungen auseinandersetzen, zielen bspw. auf dopami-

nergen Einfluss am Belohnungssystem und dessen Zusammenhang zur Motivation ab

oder visualisieren funktional anatomische Hirngebiete bei kognitiver Bewegungsvorbe-

reitung und -ausführung (MARTIN-SOELCH ET AL. 2001; JOHANNSEN ET AL. 2001). Oder

sie haben die kortikalen Repräsentationen bei Bewegungsausführung und –kontrolle

zum Gegenstand (SAHYOUN ET AL. 2004; JOHANNSEN ET AL. 2001; EHRSSON ET AL.

2000). Diese werden aber meist nur bei Eingelenksbewegungen ermittelt (SAHYOUN ET

AL. 2004; BABILONI ET AL. 2003; JOHANNSEN ET AL. 2001; EHRSSON ET AL. 2000; MIMA ET

AL. 1999).

Wenige Arbeiten finden sich zu sportrelevanten Belastungsauswirkungen mit den

Themenbereichen „PET“, „exercise“ oder „brain“ (TASHIRO ET AL. 2001; CHRISTENSEN

ET AL. 2000; ITEMITSU ET AL. 2000; LOTZE ET AL. 1999).

CHRISTENSEN ET AL. (2000) zeigen mit PET bei der Generierung rhythmischer Bewe-

gungshandlungen im Vergleich aktiver zu passiver Tretkurbelarbeit die aktive Teilnah-

me höherer Hirnzentren (Primär-, supplementär motorische Kortizes). ITEMITSU ET AL.

(2000) analysieren indirekt die Energieverbräuche durch [18F]-2-fluro-deoxy glycose

(FDG) Aufnahme nach Laufbelastungen an verschiedenen Körperorganen mit PET.

Sie finden eine stabile Stoffwechselrate im Gehirn, vermehrten Glycogenverbrauch in

der Bein- und Herzmuskulatur und „kompensatorisch“ verringerten Glycogenstoffwech-

sel in der „Bauchregion“ im Vergleich zum Ruhezustand. Mit gleicher Methode stellen

TASHIRO ET AL. (2001) bei Läufern (4-5 Km) gegenüber einer Kontrollgruppe (Ruhe)

relativ vermehrten Energieverbrauch in parieto-okzipitalen Gebieten im Vergleich zur

motorischen Rindenregion fest. Die Autoren begründen dies mit höherem Energiever-

brauch bei multimodaler sensorischer Informationsverarbeitung gegenüber der reinen

Bewegungsgenerierung. LOTZE ET AL. (1999) untersuchen mit fMRI die reine Vorstel-

lung und die Ausführung von Handbewegungen und finden gleiche Beteiligung spezifi-

scher Hirnstrukturen (prä- und supplementärmotorischer Kortex sowie der Primär Mo-

torkortex) unter beiden Bedingungen. Aufgrund festgestellter Unterschiede im somato-
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sensorischen Kortex und in den Kleinhirnstrukturen (nur ausführungsaktiv) formulieren

sie die These, dass das Kleinhirn bei Bewegungsvorstellung die Ausführung hemmt.

Insgesamt werden bei zitierten Brainscanstudien für einen möglichen Sportbezug nur

sehr geringe, unspezifische Belastungen erzeugt, während die Probanden in sportun-

typischer Körperlage bspw. in einem „Scannertunnel“ liegen (TASHIRO ET AL. 2001;

CHRISTENSEN ET AL. 2000; LOTZE ET AL. 1999) oder es wird ein „post exercise“ Zustand

erfasst (Itemitsu et al. 2000) und auf „exercise“ bezogen. Bei zuletzt zitierter Arbeit

werden z.B. keine Zeitangaben gemacht, welcher Zeitraum zwischen „exercise“ Termi-

nierung und Messbereitschaft verging. Bei Pausen, die eine längere Dauer als 3 Mi-

nuten haben, können sich die Probanden in der Frühphase der Erholung befinden, so

dass der pauschale Schluss auf „exercise“ Zustand angezweifelt werden darf.

Die Arbeiten, die sich mit der Vorstellung von Bewegungen (imagination of move-

ments) und deren zentralen Repräsentationen bei mentalem Training beschäftigen,

zeigen sehr gut, dass die Bewegungsausführungen und die reinen Vorstellungen da-

von dieselben Hirnareale involvieren (MALOUIN ET AL. 2003; SAHYOUN ET AL. 2004). Da-

bei beeinflussen möglicherweise Kleinhirnstrukturen mit ihrer Hemmfunktion die Nicht-

ausführung (LOTZE ET AL. 1999).

Es finden sich keine PET- und fMRI-Studien zum Themenkomplex ermüdender, er-

schöpfender Beanspruchung („exercise und fatigue“). Dies hängt vermutlich mit der

aufwendigen und sehr teuren Methodik zusammen, die eine stationäre große Appara-

tur verlangt. Darin müssen im zeitlichen Vorlauf die Markierungssubstanzen injiziert

werden. Erst durch Verwendung von Subtraktionsverfahren sind Veränderungen von

Grundzuständen methodisch hervorzuheben, so dass der Einsatz von fMRI-Methoden

bei Verlaufsuntersuchungen schwierig ist. Das zeitlich hoch-auflösende EEG hat somit

bei Verlaufsuntersuchungen zu kortikalen Auswirkungen sportlicher Belastungen be-

gründbare Vorteile.

3.2.2 EEG-Untersuchungen bei sportlicher Beanspruchung

Das EEG als klassisches Untersuchungsinstrumentarium der Psychophysiologie hat

bis Mitte der 90-er Jahre auch zu grundsätzlichen Erklärungshilfen mit Fokussierung

auf die „höchste Steuerungsebene“ bei sportwissenschaftlichen Fragen beigetragen

(SCHUMANN 1985; SCHUMANN 1996, S. 73). Ein Überblick über repräsentative EEG-

Arbeiten in verschiedenen Sportdisziplinen findet sich bei MECHAU (1998, S. 16F). Die

Hauptaussagen beziehen sich auf das kortikale Aktivierungsverhalten topographischer

Hirnregionen vor, während und kurz nach sportlichen Beanspruchungen (MECHAU
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2001; KUBIZ & MOTT 1996; SCHUMANN 1996; BRACH ET AL. 1994; BEYER ET AL. 1994;

SCHRODE 1986; BEYER & SCHUMANN 1981; BEYER ET AL. 1981). Teilweise ergibt sich

bei Untersuchungen des Aktivierungsverhaltens die Einteilung von spezifischen „Be-

lastungssituationen“ (SCHOBER 1987, S. 103FF). Andere Autoren haben Asymmetrien

bei hirnelektrischen Aktivierungen festgestellt (PETRUZZELLO & LANDERS, 1994; WIESE

ET AL. 1983). Fast alle diese Arbeiten (mit Ausnahme von MECHAU 2001; SCHRODE

1986) betrachten ausschließlich die mittleren Alpha-Frequenzen (MAF) und Beta-

Frequenzen. Diese Frequenzen besitzen eine bessere Signalstabilität (geringere

Störanfälligkeit) (SCHUMANN & SEIBT 1993, S. 169). Damit erhöhen die Autoren die

Aussagekraft ihrer Forschungsergebnisse (Annahme des Verfassers).

Aus verschiedenen Arbeiten geht hervor (MECHAU 2001, STOCK ET AL. 1996

YOUNGSTEDT ET AL. 1983), dass sportliche Beanspruchungen in mehreren EEG-Fre-

quenzbändern für Veränderungen sorgen. Deshalb sollte auf deren Messung, trotz

noch fehlender Erklärungsansätze, nicht verzichtet werden (u.a. MECHAU 1998). Diese

These wird beim Literaturüberblick zum zweiten Forschungsschwerpunkt dieser Arbeit

verdeutlicht.

3.2.2.1 Ermüdende Belastungsauswirkungen auf elektrophysiologische, zen-

tralnervale Einflüsse bei kortikaler Bewegungsplanung und -steuerung

Resultat verschiedener Arbeiten ist, dass ermüdende Muskelarbeit Einfluss auf die

Qualität der Bewegungsausführung hat (BENDAHAN ET AL. 2004; NORDLUND ET AL.

2004; GANDEVIA 2001; LATASH ET AL.1994). Dies wird mit der Unfähigkeit, Kraftwerte

aufrecht zu erhalten begründet (ebd.). Beispielsweise wird das Beibehalten des

Gleichgewichts beeinflusst (GANDEVIA 2001; JOHNSTON ET AL. 1998), die Stabilität der

Muskelkoordination in Mitleidenschaft gezogen (CARPENTER ET AL. 1998) und die Be-

wegungskontrolle der Extremitäten erschwert (JARIC ET AL.1997).

Die Datenlage zu ermüdungsbedingten Veränderungen in biochemischen Prozessen

und Muskelstoffwechsel ist relativ gut (ALLEN & WESTERBLAD 2001; KENT-BRAUN 1999;

WESTERBLAD ET AL. 1998; SHALIN ET AL. 1998). Ebenso gut untersucht sind die Verän-

derungen im Rekrutierungs- und Feuerungsverhalten der motorischen Einheiten (MU)

der Muskulatur im ermüdeten Zustand (LATTIER ET AL. 2004; PAASUKE ET AL. 1999;

ESPOSITO ET AL. 1998; MORITANI ET AL. 1986; MORITANI ET AL. 1985). Weniger ist über

das ZNS und dessen „zentrale Einflussnahme“ bei Erschöpfung bekannt. Hieraus leitet

sich der erste Forschungsschwerpunkt dieser Arbeit ab. Häufig wird eine zentral ver-

mittelte Einflussnahme auf die MU Aktivität bei Ermüdung angenommen (BIGLAND-
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RITCHIE ET AL. 1986, CORCOS ET AL. 1989; GOTTLIEB 1993; KROGH-LUND & JORGENSEN

(1992); NORDLUND ET AL. 2004; LEPERS ET AL. 2002; CORCOS ET AL. 2002) ohne direkt

zentrale Messungen vorzuweisen. BIGLAND-RITCHIE ET AL. (1986) vermuten eine Be-

einflussung der Motorik durch veränderte zentralnervale Prozesse mit der Folge des

“...declining motor drive“, ohne Ursachen und Größen des Einflusses zu spezifizieren.

LEPERS ET AL. (2002) stellen diese „zentrale Antriebsabnahme“ erst nach langer Belas-

tungsdauer fest. Auch GOTTLIEB (1993) und CORCOS ET AL. (1989) schließen auf die

zentrale Einflussnahme in ihren Modellen zur Organisation bei Eingelenksbewegungen

nach EMG-Studien. Bei diesen Forschungsansätzen wird häufig nur die agonistische

Muskelgruppe betrachtet, obwohl funktional die Bewegung nur in Koordination mit dem

Antagonisten gelingt. Bis auf JARIC ET AL. (1997), die den Agonisten mehr Beteiligung

an ermüdungsbedingter Veränderung zuschreiben als vergleichsweise der antagonisti-

schen Muskulatur, wurde die Rolle der Antagonisten bei ermüdender Muskelarbeit

nicht untersucht.

Ebenso untersuchen KROGH-LUND & JORGENSEN (1992) die Veränderungen im myo-

elektrischen Leistungsspektrum und stellen Zusammenhänge zwischen Leitgeschwin-

digkeit und Frequenzfeuerungsrate her. Hieraus leiten die Autoren (ebd.) die zentrale

Einflussnahme ab, obwohl nur periphere Messparameter vorliegen.

Studien, die die zentralen Einflüsse bei ermüdenden Muskelbeanspruchungen mess-

technisch zu erfassen versuchen, bedienen sich hauptsächlich der „Transkranialen

Magnet Stimulation“ (TMS). Bei dieser Methode wird der Kortex durch einen externen

Magnetimpuls stimuliert. Dessen elektrische Antworten rufen im Zielmuskel-EMG spe-

zifische Veränderungen hervor, die als „motor evoked potentials“ (MEPs) und „silent

periods“ (SP) Rückschlüsse auf kortikale Interaktionen zulassen (GANDEVIA 2001;

1998; LIEPERT ET AL. 2001; TERGAU ET AL. 2000; TAYLOR ET AL. 1996; MCKAY ET AL.

1996; LJUBISABLEJEVIC ET AL. 1996).

TMS kann aber keine Information über bewegungsvorbereitende, kontrollierende und

steuernde Prozesse bei und nach ermüdender Belastung liefern. Außerdem spiegelt

das Verfahren nicht die natürlichen elektrophysiologischen Prozesse wider, da das In-

itiierungssignal aus externer Stimulation und nicht aus willkürlichem Verhalten stammt.

Dies ist aber von Bedeutung, denn auch oder gerade die Willkür oder der Wille kann

neurophysiologisch gehemmt sein, z.B. als Folge eines ermüdenden Prozesses. Die-

ser Prozess besitzt einen lokalen Bezug zwischen MI versus SMA und limbischem Sy-

stem.
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Eine Untersuchungsmöglichkeit bietet das EEG mit der Erfassung motorisch evozierter

kortikaler Potentialverläufe (MRCPs) während bzw. vor willkürlicher Bewegungshand-

lungen im Zustand zunehmender Ermüdung.

Die MRCPs beinhalten terminologisch die bewegungsabhängigen hirnelektrischen

Phänomene früherer Forschung, wie Contingent-Negativ-Variation (CNV), Bereit-

schaftspotentialverläufe (BPs) und langsame Gleichspannungsverschiebungen vor der

eigentlichen Bewegung. Da diese Potentialformen das bioelektrische Korrelat zerebra-

ler Entscheidungs- und Kontrollprozesse vor zielgerichteten, willkürlichen Bewegungs-

handlungen darstellen (KORNHUBER ET AL.1980, S. 239; SCHOBER 1987), können auch

die MRCPs so interpretiert werden. Als Generatoren für die MRCPs werden die sup-

plementär-motorischen Areale (SMA) bzw. der Primär- (MI) und Sekundär-Motorkortex

(MII) angesehen (KNÖSCHE ET AL. 1996, S. 186; PRAAMSTRA ET AL. 1996, S. 473;

DEECKE 1990, S. 617FF). Mit der Vielzahl von Verbindungen der SMA zum limbischen

System und den Basalganglien, Thalamus und Kleinhirn (BROOKS ET AL. 1986, S. 211),

wird über diese Hirnregionen eine steuernde Einflussnahme des Antriebs und/oder der

Motivation bei der Vorbereitung von Willkürbewegungen vermutet (ROLAND 1985, S.

160). Die SMA scheint neben der MI eine der Schlüsselstrukturen bei der kortikalen

Bewegungsplanung zu sein. Ihr wird besonders bei komplexeren bimanuellen Bewe-

gungsabläufen eine Timingfunktion zugesprochen (DEECKE ET AL. 1985, S. 151FF).

Magnetenzephalographische Untersuchungen von DEECKE (1990, S. 617) zeigen, dass

die SMA bei komplexeren Bewegungen zeitlich früher aktiv ist als die MI (vgl. DEECKE

ET AL. 1985, S. 151). Bei kortikaler „Bewegungsentstehung“, das verdeutlichen Blut-

flussuntersuchungen, ist die SMA bereits bei reinen Bewegungsvorstellungen aktiv

(ROLAND 1985, S. 157), während der primär-motorische Kortex (MI) nur bei tatsächli-

cher Ausführung aktiv ist. Das wird auch im Vergleich aktiver mit passiver Tretkurbel-

arbeit mittels PET Verfahren bestätigt (CHRISTENSEN ET AL. 2000). Bei der MI Aktivität

wird eine direkte Ansteuerung der korticospinalen Bahnen vermutet (ROLAND 1985;

KLINKE & SILBERNAGEL 1994, S. 618) mit Einfluss auf Kraft und Richtungseinstellung

(SCHMIDT & BIRBAUMER 1995, S. 121), während die SMA mehr Bewegungskontroll-

funktion besitzt (SHAYOUN ET AL. 2004; BABILONI ET AL. 2003). Vor der eigentlichen will-

kürlichen Bewegung zu den Zeiten der internen kortikalen Programmierung werden

über diese Kortexregionen die langsamen, negativen MRCPs registriert (PICKENHAIN ET

AL. 1985, S. 227). Unterschiede bei den MRCPs scheinen auf unterschiedliche Zell-

aktivität der motorischen Kortizes bei der Bewegungsgenerierung, durch Verrechnung
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interner und externer Modalitäten zustande zu kommen (vgl. BRUNIA & VAN BOXTEL

2000, S. 510F).

Hierin scheint sich ein wissenschaftlicher Weg zur Erforschung der kortikalen Bewe-

gungsplanung und -kontrolle anzudeuten, der ebenso die kompensatorischen Verände-

rungen bei zunehmender physischer Beanspruchung zu erfassen vermag. (vgl. Hallett

1994).

Während die Grundlagen zum MRCP und Bewegungshandlungen gut erarbeitet sind -

ein zusammenfassender Überblick findet sich bei BARTHEL (1998) - existieren nur we-

nige Arbeiten, die sich mit ermüdenden Belastungsauswirkungen bei willkürlichen Be-

wegungshandlungen und deren elektrischen kortikalen Repräsentationen beschäftigen

(BARTHEL ET AL. 2002; JOHNSTON ET AL. 2001; SLOBOUNOV ET AL.1999; FREUDE &

ULLSPERGER 1987).

Der negative MRCP-Verlauf beinhaltet Komponenten bzw. Parameter, deren Amplitu-

den und Latenzen vor Bewegungsbeginn spezifische Informationsverarbeitung der kor-

tikalen Bewegungsplanung widerspiegeln. Zu frühen Komponenten zählen ausgehend

vom MRCP-onset: die langsam steigende Negativität ca.-1500 ms bis -400 ms vor Be-

wegungsbeginn, das Bereitschaftspotential (BP) (engl. (RP)). Zu den späten Kompo-

nenten von -400 ms bis Bewegungsbeginn zählen die durch stärker ansteigender Ne-

gativität geprägten Potentiale, wie die „negative slope“ (NS‘) und die „motor potentials“

(MP) unmittelbar vor Bewegungsbeginn (HALLETT 1994, 2002 Internetquelle). Letzteren

werden eindeutige Beziehungen zur aufgewandten Kraft und Geschwindigkeit der Ziel-

bewegung zugeschrieben (SLOBOUNOV ET AL. 1998, SIEMIONOV ET AL. 2000).

SLOBOUNOV ET AL. (ebd.) finden in den späten MRCP-Komponenten eine Belastungs-

abhängigkeit mit größerer frontaler und präzentraler Aktivierung (Negativierung). Diese

kraftabhängigen größeren MRCP-Negativierungen in fronto-zentralen und zentralen

Hirnarealen reflektieren größere SMA-Aktivität (ODA ET AL. 1996, S. 252). Die MPs re-

präsentieren nach SLOBOUNOV ET AL. (ebd.) die zentral organisierte neurale Aktivität

des planenden Subjekts zur Erfüllung seines Handlungsziels. Methodisch sind bei

SLOBOUNOV ET AL. (1999) Einflüsse durch Orientierungsreaktionen nicht ausgeschlos-

sen9.

Der Ermüdungsaspekt im MRCP wird von FREUDE & ULLSPERGER (1987) bei einfachen

repetitiven Handkontraktionen (Faustschlüssen) unterschiedlicher Beanspruchungen

(20%, 50% und 80% „maximal voluntary contractions“ (MVC)) untersucht. Sie stellen

                                                
9 Autoren arbeiteten mit visuellem Feedback zur Bewegungsstandardisierung (Geschwindigkeit,

Bewegungsausmaß) bei verschiedenen Belastungen.
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ebenfalls eine Kraftabhängigkeit der MRCPs fest (ebd.). Mit zunehmender „Ermüdung“

(nachlassende Kraft bei 80%MVC) nehmen die BPs zu. Außerdem finden sie bei ge-

ringkräftigen Faustschlussbewegungen (20%MVC) ebenfalls ein ansteigendes BP.

Dieses Phänomen wurde von den Wissenschaftlern mit dem größeren Einsatz von

Konzentration und Aufmerksamkeit interpretiert (ebd.). Damit zeigen die Autoren, dass

affektive Fähigkeiten Einfluss auf kortikale Bewegungsplanung nehmen können und

fordern die weitere Untersuchung zum MRCP unter Ermüdung mit Berücksichtigung

dieser psychologischen Aspekte (vgl. FREUDE & ULLSPERGER 1987).

In einer zweiten MRCP-Studie mit progressiver Muskelermüdung bei Greifbewegungen

(„maximal voluntary contractions“ (MVCs)) stellen JOHNSTON ET AL. (2001) einen di-

rekten Zusammenhang zwischen Motorkortex und Aktionslevel des Alphamotoneu-

ronenpools in Aussicht. Sie finden bei zunehmender Ermüdung eine kortikale Aktivie-

rung (Zunahme der MRCPs), besonders im supplementär-motorischen Areal (SMA)

und den sensomotorischen Arealen. Dies wird jüngst in einer PET-Studie VON

KOROTKOV ET AL. (2005) unterstützt. Die Autoren bestätigen die zunehmende kortikale

Aktivierung in motorischen (u.a. MI, SMA) und somatosensorischen (SI, SII, SAA) Rin-

dengebieten und deuten diese als Anstrengung, um im Ermüdungszustand Kraftwerte

aufrecht zu erhalten. Nach Meinung der Autoren werden im Zustand zunehmender Er-

müdung insbesondere die sensorischen Hirnregionen auf höhere „Reizlevel“ aktiviert,

so dass Afferenzen weniger wirksam werden und der Kraftoutput erhalten bleibt. Der

Ermüdungszustand wird in der zitierten Arbeit mit nachlassendem Kraftniveau bei nur

50% MVC definiert und die übliche pre-post MVC nachträglich durch Kontolluntersu-

chung (ohne PET) überprüft und bestätigt. Aber auch wenn ein Ermüdungszustand

möglicherweise nicht erreicht wird, sind kortikale Kompensationen bei muskulären Be-

anspruchungen, infolgedessen möglicherweise sensorisch afferente Einflussänderun-

gen entstehen, denkbar. Zumindest sieht GANDEVIA (1998) die kompensatorischen Me-

chanismen bei Ermüdungsphänomenen bereits oder gerade vor den sichtbaren Bewe-

gungsbeeinträchtigungen. Zusammenfassend lässt sich folgendes festhalten:

Sowohl bei JOHNSTON ET AL. (2001) als auch bei allen Studien, die ermüdende, er-

schöpfende muskuläre Beanspruchungen und deren kortikale Auswirkungen auf die

Bewegungskontrolle untersuchen, ist keine Trennung zwischen zentralen und periphe-

ren Ermüdungsphänomenen möglich. Immer wird die ausführende Testbewegungs-

muskulatur im Untersuchungsdesign gleichzeitig mitbeansprucht und ermüdet. Außer-

dem handelt es sich überwiegend um kleine isolierte Bewegungen (Kontraktionsbewe-

gungen), die mehr dem Test dienen, als dass sie eine „Bewegungsbedeutung“ besit-
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zen. Im übernächsten Kapitel wird der Untersuchungsansatz dieser Arbeit hergeleitet,

der eine sportmotorische Bewegungshandlung in das MRCP-Testparadigma integriert

und Beanspruchungssituationen so gestaltet, dass periphere Ermüdungseinflüsse

methodisch ausgeschlossen werden können.

3.2.2.2 Einfluss der Leistungsfähigkeit auf die kortikale Umstellung von Ermü-

dung auf Erholung und Wiederherstellung und deren elektrischer Dar-

stellung im EEG

Im folgenden zweiten Forschungsschwerpunkt wird der Einfluss der Ausdauerleis-

tungsfähigkeit auf die kortikale Umstellung im Nachbelastungs-EEG untersucht.

Die Kenntnisse über Auswirkungen von unterschiedlicher Ausdauerleistungsfähigkeit

bspw. auf die sympatho-adrenerge Regulation (LEHMANN & KEUL 1987; MEREDITH ET

AL. 1991; PLOURDE ET AL. 1991) und Regeneration im Muskelstoffwechsel (MCCULLY ET

AL. 1992; 1989; KUNO ET AL. 1992) sind recht fundiert. Nur wenige Arbeiten beschäfti-

gen sich mit den elektro-„physiologischen“ Vorgängen in der Umstellungsphase im ge-

sunden menschlichen Gehirn nach sportlicher Beanspruchung (ODA ET AL. 1999;

MECHAU ET AL. 1998; STOCK ET AL. 1996; KUBITZ & MOTT 1996). Die Untersuchung der

„Erholungsphase“ im EEG wird oft beschränkt auf Alpha1- bzw. Alpha2- und Beta1-

Frequenzen (KUBITZ & MOTT 1996; JACOBS ET AL. 1996). Aber STOCK ET AL. (1996) fin-

den in der Erholungsphase nach Krafttraining ebenfalls Veränderungen im Delta-,

Theta- und Beta2-Frequenzband. Ebenso kann man im Tierexperiment das Auftreten

langsamer EEG-Frequenzen mit Erschöpfungszuständen nachweisen (ANGYAN &

CZOPF 1998). Dass die hirnelektrischen Aktivitäten nach erschöpfenden Beanspru-

chungen längere Zeit verändert sind, zeigen die Arbeiten von MECHAU ET AL. (1998).

Obwohl bei der Autorin (ebd.) das Hauptinteresse der differenzierten Belastungsaus-

wirkungen auf die kortikale Hirnaktivität galt, ist hier selbst nach 30- minütiger Erholung

eine erhöhte Alpha1- und Beta-Leistungsdichte gegenüber der Ausgangsmessung

feststellbar. Unter Einfluss von autogenem Training finden JACOBS & LUBAR (1989)

beim Menschen eine Zunahme der Theta- und Abnahme der Alpha1-Leistung. Da bei

keiner dieser Arbeiten nach Leistungsfähigkeit differenziert wird, ist nach wie vor un-

klar, wie sich eine gute Ausdauerleistungsfähigkeit in der kortikalen Umstellung von

Ergotropie in Trophotropie auswirkt.

Da neben dem Trainingszustand auch die psychophysische Belastung die sympatho-

adrenerge Regulation beeinflusst (STOCK 1993), sind Unterschiede im zentralnervalen

Regenerationsprozess zu erwarten. Die downregulierende Aktivität im Zentralnerven-
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system lässt sich mittels moderner EEG-Mappingmethoden analysieren und gibt somit

die Möglichkeit, grundsätzliche Umstellungsprozesse nicht nur auf peripherer Ebene zu

studieren. Zur Untersuchung der Ausdauerleistungsfähigkeit auf die Umstellungsfähig-

keit im zentralen Nervensystem nach standardisierter physischer Stressbelastung

diente das Studiendesign zum Belastungskomplex 2.

4 Übergang vom Theoretischen zum Praktischen, eigene For-
schungsansätze und -hypothesen

Nach vorangegangener Literaturübersicht lässt sich zusammenfassend feststellen,

dass es kaum wissenschaftlichen Kenntnisse gibt, wie das ZNS Ermüdungseinflüsse

bei willkürlicher kortikaler Bewegungsgenerierung zu kompensieren vermag. Die mei-

sten Studien basieren auf kleinen isolierten Testbewegungen und/oder maximalen

isometrischen willentlichen Kontraktionsaufgaben (MVC), oder sie stimulieren extern

(TMS) und schließen aus EMG Antworten auf kortikale Einflussnahme bei peripherer

Muskelaktivität (EMG-Quantifiziert). Mit den aus dem EEG ermittelten MRCPs scheint

sich ein wissenschaftlicher Weg zur Erforschung der kortikalen Bewegungsplanung

und –kontrolle zu eröffnen, der ebenso die kompensatorischen hirnelektrischen Verän-

derungen bei zunehmender physischer Beanspruchung zu erfassen vermag. Die

MRCPs stellen das bioelektrische Korrelat zerebraler Entscheidungs- und Kontrollpro-

zesse vor zielgerichteten, willkürlichen Bewegungshandlungen dar, die durch Nerven-

zellaktivität der motorischen Kortizes bei der Bewegungsgenerierung zustande kom-

men. Nur zwei Studien behandeln streng kontrolliert die kortikale Bewegungsgenerie-

rung in MRCPs bei muskulärer Ermüdung (JOHNSTON ET AL. 2001; FREUDE &

ULLSPERGER 1987).

Bei keiner Arbeit ist eine Trennung zwischen zentralen und peripheren Ermüdungs-

phänomenen möglich. Die ausführende Testbewegungsmuskulatur wird in den Unter-

suchungsdesignen immer gleichzeitig mitbeansprucht und „ermüdet“.

Für eine Weiterentwicklung ist es nötig, die erschöpfende, ermüdende Belastung mit

unterschiedlichen Muskelgruppen in vergleichbarer Weise zu erzeugen, so dass es

mindestens eine vergleichbare Bedingung mit ausgeruhter Testbewegungsmuskulatur

gibt. Darüber hinaus sollte eine kontrollierbare, willkürliche sportmotorische Bewe-

gungshandlung in das MRCP-Testparadigma eingebracht werden, um mögliche affek-



Theoretische Betrachtung 20

tive Einflüsse wie Leistungswille und Motivation in ihrer kortikalen Kompensationsei-

genschaft im MRCP besser widerzuspiegeln.

Unter diesen Aspekten entsteht der erste Untersuchungsansatz, der im Weiteren als

„Belastungskomplex 1“ bezeichnet wird.

Ferner gibt es nach Literatursichtung zum zweiten Forschungsansatz keine Kenntnis

über die kortikale Umstellung im gesamten elektrischen Leistungsspektrum in Abhän-

gigkeit von der individuellen maximalen Leistungsfähigkeit und deren Beziehung zu

bekannten peripheren Beanspruchungsparametern.

Aus diesem Grund werden im einem weiteren Projekt mit der Bezeichnung „Belas-

tungskomplex 2“ zur Erweiterung des Wissensstandes über den Beanspruchungs-Er-

holungs-Zyklus die natürlichen elektrophysiologischen Prozesse im Gehirn nach er-

schöpfender Belastung im gesamten EEG-Spektrum dargestellt. Weiterhin wird der

Einfluss der Leistungsfähigkeit auf die kortikale Downregulation untersucht und die kor-

relativen Zusammenhänge zur sympathico-adrenergen Regulation betrachtet.

Es ergeben sich folgende Hypothesen für die hirnelektrischen Untersuchungsansätze

im Belastungskomplex 1 und 2.

4.1 Hypothesen zum Belastungskomplex 1:

(1.1) MRCPs sind auch nach hoher dynamischer Beanspruchung ableitbar.

(1.2) Nach hoher dynamischer Beanspruchung zeigen diese MRCPs Unterschiede

gegenüber dem Zustand in Ruhe als Ursache einer veränderten „zentralnervö-

sen Aktivierungssituation“.

(1.3) Diese belastungsabhängigen MRCP-Veränderungen werden durch lokale Be-

anspruchungszustände der Testbewegungsmuskulatur beeinflusst.

(1.4) Die MRCP-Veränderungen sind ebenfalls nachweisbar, wenn die Testbewe-

gung mit nicht beanspruchter Muskulatur ausgeführt wird.

(1.5) Auch rein kognitiv erschöpfende Beanspruchungen beeinflussen die sich im

MRCP abbildende, kortikale Bewegungsvorbereitung.

4.2 Hypothesen zum Belastungskomplex 2:

(2.1) Zur Einschätzung der natürlichen elektrophysiologischen Umstellungsprozesse

im Gehirn nach erschöpfender Belastung reicht eine alleinige Betrachtung der

Alpha- und Beta-Frequenzen nicht mehr aus.

(2.2) Es zeigen sich Unterschiede der kortikalen „Downregulation“ in Abhängigkeit

zur aeroben Ausdauerleistungsfähigkeit.
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(2.3) Es gibt Zusammenhänge zwischen zentraler hirnelektrischer und peripherer

sympathico-adrenerger Umstellungsreaktionen nach erschöpfenden Beanspru-

chungen.
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5 Methodik

Das Kapitel Methodik gliedert sich in die folgenden drei Bereiche (A-C):

Der erste Teil (A) stellt die beiden Untersuchungsansätze vor und erklärt, bei wem was

zu welchem Zeitpunkt gemessen wurde. Es werden spezifische Bedingungen der

durchgeführten Studienreihen zum Belastungskomplex 1 und zum Belastungskomplex

2, aufgrund der unterschiedlichen Zielsetzungen, nacheinander vorgestellt.

Im weiteren Teil (B) werden allgemeine Bedingungen zu den durchgeführten Untersu-

chungsreihen und Studiendesigns aufgeführt.

Anschließend werden im dritten Abschnitt (C) die Messmethoden und die Registrier-

technik, der erhobenen Parameter sowie deren Bestimmung und die verwendeten sta-

tistischen Prozeduren für die beiden Untersuchungskomplexe dargestellt.

In der vorliegenden Abhandlung werden die zusätzlich durchgeführten Supplementa-

tionsuntersuchungen im Belastungskomplex 1 (Fahrradergometer Belastung) und Be-

lastungskomplex 2 nicht dargestellt. Hierbei sind unterschiedliche Substanzen rando-

misiert, placebo-kontrolliert und doppelblind auf ihre zentralnervöse Wirkung hin gete-

stet worden. Die in dieser Arbeit vorgestellten Studien stellen jeweils die Placebo-

Versuchsreihen dar und sind somit nicht durch die getesteten Substrate beeinflusst.

Einige Untersuchungen zum Belastungskomplex 1 und 2 erfuhren vom Bundesinstitut

für Sportwissenschaft (BISp) finanzielle Förderung (VF 0407/01/36/98 und Az

0407/01/30/2002). Folgende Veröffentlichungen sind daraus hervorgegangen: (WEHR

1998; BAUM ET AL. 1999; BARTHEL & WEIß 2002; BARTHEL ET AL. 2002; 2001; 2000;

BAUM & WEIß 2001; REINSBERGER ET AL. 2003; 2001; WEIß ET AL. 2001).

5.1 Methodik A: Untersuchungsansätze für Belastungskomplex 1 und 2

Die Untersuchungsansätze wurden so entwickelt, dass die Probanden einem reprodu-

zierbaren, standardisierten, individuell angepassten physischen/ psychischen Stress

ausgesetzt waren. In dessen Folge wurden hirnelektrische Vorgänge der Probanden in

einer Testbewegung (Belastungskomplex 1) oder bei deren Umstellprozessen in der

Nachbelastungsphase (Belastungskomplex 2) ermittelt.
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5.1.1 Belastungskomplex 1

Zur Untersuchung der kortikalen Belastungsauswirkungen diente die Messung der

MRCPs im EEG vor willkürlichen Pedalantritten in einem selbst entwickelten Testpara-

digma (BARTHEL 1998).

Es wurden drei Studien (unabhängige Variable) mit unterschiedlichem Belastungs-

regime durchgeführt, innerhalb derer die MRCPs bei willkürlichen Pedalantritten mit

beanspruchter oder unbeanspruchter Bewegungsmuskulatur nach unterschiedlich ho-

hen Belastungsintensitäten ermittelt wurden (abhängige Variablen) (siehe Abb. 1):

I. Fahrradergometrie (FB): erschöpfende10 Stufenbelastung (Beanspruchungs-

situation durch zunehmende Herz-Kreislaufbelastung mit gleichzeitiger Belas-

tung der Testbewegungsmuskulatur für die MRCPs)

II. Armkurbelergometrie (OB): erschöpfende10 Stufenbelastung (Beanspruchungs-

situation durch zunehmende Herz-Kreislaufbelastung ohne Belastung der Test-

bewegungsmuskulatur für die MRCPs)

III. Kognitive, mentale Belastung (KB): Ein auf vierzig Minuten ausgedehnter Kon-

zentrations-Leistungs-Test (KLT) (DÜKER & LIENERT 1959) (Beanspruchungssi-

tuation rein kognitive Belastung, ohne körperliche Belastung)

Abb. 1: Untersuchungsschema zum Belastungskomplex 1: Erfassung der MRCPs bei willkürli-
chen Pedalantritten mit dem rechten Bein nach vorausgehenden Belastungsregimen: Nach in-
dividuell angepasster, erschöpfender Fahrradergometer- (FB) bzw. Oberarmergometrie- (OB)
sowie „Kognitiver Belastung“ (KB).

                                                
10Zustand, der trotz großer Willensanstrengung zum Belastungsabbruch führte.
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5.1.1.1 Probanden

Insgesamt nahmen 17 freiwillige, trainierte Ausdauersportler11 an den Studien teil.

Krankheitsbedingt mussten zwei Teilnehmer nach den ersten Voruntersuchungen aus-

geschlossen werden. Tab. 1 zeigt Sportart- und Trainingsanamnese und Leistungsfä-

higkeit der Teilnehmer an den einzelnen Teilstudien. 15 Teilnehmer beendeten die FB-

Studie. Bei einem Teilnehmer gelang die MRCP-Auswertung aufgrund starker Gleich-

spannungsschwankungen nicht.

14 gesunde, ausdauertrainierte Sportler aus verschiedenen Disziplinen verblieben

schließlich zur Analyse der FB-Untersuchung (Tab. 1). Bis auf einen Teilnehmer12 wa-

ren hier alle ausgewiesene Rechtshänder (n=13) ermittelt durch die vom Autor über-

setzte Fassung (BARTHEL 1998) des „Edinburgh Handedness Inventory“ (EHI) nach

OLDFIELD (1971) (siehe Tab. 2 Lateralität).

In der Testreihe OB verblieben 11 männliche, ausdauertrainierte Sportler verschiede-

ner Disziplinen mit eindeutiger Rechtshändigkeit im (EHI) (Tab.1, Tab.2).

Den Testdurchgang KB absolvierten 10 rechtshändige Sportler (siehe Tab.1, Tab.2).

Tab. 1: Sportdisziplinbezogene Probandengruppierung der einzelnen Studien (Studien: Fahr-
rad- (FB), Armkurbelergometrie- (OB) und Kognitive Belastung (KB)) in Anzahl [n] und Mittel-
wert / Standardabweichung (Mw) / (SD)

Diszi-
plin
Grup-
pe

Triathlon
Anzahl [n]

Radsport
Anzahl [n]

Laufen
Anzahl [n]

Trainings
-zeit
[Jahre]

Umfang
[Std/
Woche]

Leistungs-
fähigkeit
relativ
[Watt/Kg]

FB 7 4 3 7 ± 2,0 12 ± 2,0 4,8 ± 0,5

OB 7 2 2 6 ± 2,0 12 ± 2,0 4,9 ± 0,3

KB 6 2 2 6 ± 2,0 12 ± 2,0 4,9 ± 0,5

                                                
11 Einschlusskriterien: Trainingszeit >10h / Woche über Trainingsjahre> 3 Jahre.
12 Nach individueller Prüfung der MRCP-Daten konnte der Proband zwecks Probandenmaximie-

rung im Untersuchungskollektiv belassen werden.
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Tab. 2: Anthropometrische Daten der Probanden (Studien: Fahrrad- (FB), Armkurbelergometrie-
(OB) und Kognitive Belastung (KB)) in Mittelwert und Standardabweichung

Studie Anzahl
[n]

Alter
[Jahre]

Gewicht
[kg]

Größe
[cm]

Lateralität
[score]

Links-
füßig
[n]

Rechts-

FB 14 26 ± 3 71,8 ± 3,6 178,9±5,6 67,4 ± 46 6 8

OB 11 25 ± 4 72,2 ± 3,8 178,6±4,6 76,1 ± 24 5 6

KB 10 25 ± 4 72,6 ± 3,2 178,5±4,9 77,0 ± 25 5 5

füßig
[n]

5.1.1.2 Untersuchungsdesigns

Die Gruppen der Studien FB und OB unterzogen sich jeweils einer wöchentlich vor-

ausgehenden Voruntersuchung und der eigentlichen Hauptuntersuchung, wohingegen

die Studie KB nur aus einer Hauptuntersuchung bestand.

5.1.1.2.1 Voruntersuchung

Bei der Vortestterminierung wurde das Probandenkollektiv nach Befragung im Vorfeld

in Vor- und Nachmittagsgruppen unterteilt, wobei die persönlichen Vorlieben wie

„Frühaufsteher“ oder „Morgenmuffel“ berücksichtigt wurden. Die persönlichen Vorlie-

ben fanden zur Vermeidung zirkadianer Einflussnahme (MECHAU 1998) bei den Vor-

untersuchungen und Hauptuntersuchungsterminen Berücksichtigung und wurden bei

allen Untersuchungsgängen eingehalten.

Der Gesundheitszustand und die sportliche Belastbarkeit wurden durch eine medizini-

sche Anamnese, ein Elektrokardiogramm (EKG) und einen Leistungstest innerhalb der

Voruntersuchung ermittelt und sichergestellt. Nach Erfüllung der studienspezifischen

Probandenkriterien wurde die Präferenz der dominanten Bewegungslateralität über ei-

nen Händigkeitstest ermittelt und das Sprungbein erfragt. Anschließend wurden die

Probanden mit dem jeweiligen Studienablauf vertraut gemacht. Zur Gewöhnung an die

Testsituation, das Labor, die Untersucher und die Messapparatur wurden die Teilneh-

mer komplett mit allen Messaufnehmern ausgerüstet.

Danach übten sie nach genauer Instruktion den MRCP-Testablauf.

Vor dem eigentlichen Leistungstest erfolgte eine 15- bis 20-minütige Ruhephase in be-

quemer Sitzposition zur Vermeidung von Orthostasereaktionen in einem ruhigen, ab-

gedunkelten separierten Raum.
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Zur Leistungsfeststellung absolvierten die Probanden einen Stufentest mit einem Dreh-

kurbel-Ergometer13 bis zum erschöpfungsbedingten Abbruch.

In den Voruntersuchungen FB und OB wurde im Ergometertest ein Standard-Belas-

tungsschema gewählt (siehe Abb. 3 und Abb. 4), so dass es keine durch die Messung

hervorgerufenen unkalkulierten Erholungszeiten gab. Die Vortestbelastungen hatten

folgende Schemata:

Fahrradergometrie (FB): Anfangsleistung=100 Watt; Stufendauer ∆t=6 min; Leistungs-

steigerung ∆P=50 Watt).

Oberarmergometrie (OB): Anfangsleistung=30 Watt; Stufendauer ∆t=5 min; Leistungs-

steigerung ∆P=20 Watt.

Der Vortestablauf nach der Ruhephase wird in Abb.3 veranschaulicht.

Abb. 2: Foto vom Vortest
zeigt Probanden mit
Messaufnehmern; im
Hintergrund den Unter-
sucher, der den Proban-
den über den späteren
Untersuchungsablauf in-
struiert.

Abb. 3: Schematische Darstellung der Leistungsvortests zu Studie
FB und OB nach Vorbereitung und Ruhephase.

Individuelle Beanspruchungsdefinition
Damit die individuellen Belastungsabstufungen trotz unterschiedlicher Belastungsregi-

me (FB und OB) eine vergleichbare Beanspruchungssituation herbeiführten, wurden

die Stufenbelastungen über definierte Stoffwechselcharakteristika der Laktat-

Leistungskurven vergleichbar ermittelt (Tab. 3).

                                                
13 Umbaubar, Fahrrad-Oberarmergometer (Excalibur Typ 911900, Fa. Lode, Groningen).
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Tab. 3: Ermittlung der Belastungsabstufungen für die Hauptuntersuchungen und Angleichung
anhand definierter Stoffwechselcharakteristika

Belastungsstufe Stoffwechselcharakteristika Laktatkonzentration
in mmol/l

Erwärmung (1) Laktatelimination >> Laktatproduktion <2

Belastungstufen (2,3,4)

submaximaler Bereich

Mischstoffwechsel:

aerob-anaerober Übergangsbereich

beginnende Laktatakkumulation

2-4

Maximalstufe (5) Laktatproduktion >> Laktatelimination

anaerober Energiestoffwechsel

>6,5

Die Belastungshöhe für die Aufwärmphase (10 Minuten) sollte demnach in Höhe des

Basislaktats (aerobe Energiebereitstellung) liegen. Für die weitere stufenförmig anstei-

gende, submaximale Belastungscharakteristik von 3 Stufen mit jeweils 6 bzw. 5 Minu-

ten wurde der Bereich des aerob-anaeroben Energiestoffwechsels vereinbart. Die ma-

ximale Belastungsstufe (6 bzw. 5 Minuten) wurde durch die Bilanzierung vorwiegend

anaerober Energiebereitstellung definiert und sollte demnach nahe der maximalen Lei-

stungsfähigkeit (siehe Tab. 3) liegen.

Die Tritt-/Kurbelfrequenz am Ergometer von 80-100 min-1 wurde bei allen Stufen ge-

fordert und konstant eingehalten.

5.1.1.2.2 Hauptuntersuchungen: Belastungsregime zum Belastungskomplex 1

In den Hauptuntersuchungen der Studien zum Belastungskomplex 1 (FB und OB) ab-

solvierten alle Probanden vergleichbare, definierte Belastungsintensitäten aus den er-

mittelten Vorgaben. Daraus ergaben sich folgende Regime (siehe Tab. 4 für FB

(BARTHEL ET AL. 2002) und Tab. 5 für OB).

Tab. 4: Belastungsregime für FB mit Stufenangabe und Stufenzeit. Die geforderte Stoffwechsel-
lage ist repräsentiert durch die Laktatkonzentration und den Leistungsanteil [%] der Vortest Lei-
stung (Pmax) in Mittelwert und Standardabweichung

Stufe Zeit
[Minuten]

Belastungsqualität Laktatkon-
zentzentration
[mmol/l]

Leistungsanteil [%] der max.
Ausdauerleistung (Pmax)

1 10 Erwärmung unter 2 27 ± 6
2 6 um 2 44 ± 5
3 6 um 3-4 60 ± 5
4 6 Submax. Belastung um 5 77 ± 4
5 6 Maximale Belastung über 7 94 ± 4
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Tab. 5: Belastungsregime für OB mit Stufenangabe und Stufenzeit. Die geforderte Stoffwech-
sellage ist repräsentiert durch Laktatkonzentration und den Leistungsanteil [%] der Vortest Lei-
stung (Pmax) in Mittelwert und Standardabweichung

Stufe Zeit
[Minuten]

Belastungsqualität Laktatkon-
zentration
[mmol/l]

Leistungsanteil [%] der max.
Ausdauerleistung (Pmax)

1 10 Erwärmung unter 2 17 ± 5
2 5 um 2 36 ± 5
3 5 um 3-4 55 ± 5
4 5 Submax. Belastung um 4 73 ± 6
5 5 Maximale Belastung über 6 97 ± 5

Das Regime der Studie-KB sah für die Probanden eine rein kognitive Belastung vor.

Um eine allgemeine psychische Belastung zu initiieren wurde ein auf 40 Minuten aus-

gedehnter Konzentrations-Leistungs-Test, kurz KLT (Düker & Lienert), absolviert.

5.1.1.3 Belastungskomplex 1: Systemkreise und Beanspruchungsgrößen

Im Folgenden werden die zur Beurteilung herangezogenen Parameter verschiedenster

Teil-Systeme kurz vorgestellt. Genauere Informationen zur Bestimmungsmethode fol-

gen im Methodikteil C.
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Tab. 6a u. b: Systemkreise, Beanspruchungsgrößen und Parameter sowie deren Messzeiten
bei Belastungsregime FB, OB, KB im Belastungskomplex 1 (1= nur bei FB, 2=nur bei KB,
3=nicht bei KB)

System-
kreise

Beanspruch-
ungsgrößen

Parameter Bezeich-
nung

Ein-
heit

Messzeit-
punkte

Leistungsfähigkeit Pmax Watt VortestErgometrieleistung
leistung

Stufenbelastungen P1-P5 Watt 1, 2, 3, 4,
5

Relative
Konzentrations-
leistung zur Norm

Klt-lrel % 5Konzentrations-
Leistungs-Test
(KLT)22

Fehlerquotient FQ 5
Herzfrequenz HF 1/min R, 1, 2, 3,

4, 5

Peripheres-
System

Herz-Kreislauf

Blutdruck1 RR mmHg R, 1, 411, 5
Laktat La mmol/l R, 1, 2, 3,

4, 5
Meta-
bolisches
System

Muskelstoff-
wechsel

Ammoniak NH³ µmol/l R, (411), 5
Erythrozyten Ery 10³/µl R, 5
Leukozyten Leu 106/µl R, 5

Blutzellen

Thrombozyten Throm 10³/µl R, 5
mean cell volum mcv µm³ R, 5
mean cell
hemoglobin

mch pg R, 5

Blutbild

Zelleigenschaften

mean cell
hemoglobin
concentration

mchc g/dl R, 5

Dopamin Dop nmol/l R, 5+25‘
Noradrenalin NA nmol/l R, 5+25‘

Stress-
System

Katecholamine

Adrenalin A nmol/l R, 5+25‘
Vitalität VT Punkte R, 5
Vigilanz VG Punkte R, 5
Intrapsychisches
Gleichgewicht

IG Punkte R, 5

Soziale
Extrovertiertheit

SE Punkte R, 5

Basler
Befindlichkeits
Skala (BBS)

Gesamtbefindlichkeit Sum Punkte R, 5
Frage Subjektive

Ausbelastung
Ja, etwas,
nein

Häufig
keit

5

Leistungs-Roh-Wert Klt-lrw Anzahl 5
Fehler-Roh-Wert Klt-frw Anzahl 5
Fehleranteil F% % 5
Relative
Konzentrationsleistu
ngen zur Norm

Klt-lrel % 5

Konzentrations-
Leistungs-Test
(KLT)22

Fehlerquotient FQ 5

Psycho-
metrie

Edinburgh
Handeness
Inventory (EHI)

Lateralitätsquotient LQ +/-100 Vortest
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System-
kreise

Beanspruch-
ungsgrößen

Parameter Bezeich-
nung

Ein-
heit

Messzeit-
punkte

Kraftäquivalenz Fmax V R, (1, 4)33,5
Kraftzunahme pro
Zeit

tanα V/s R, (1, 4)33,5

Bewegungsverzö-
gergerung

tt-tp S R, (1, 4)33,5

Kraftlatenz Tm-tt ms R, (1, 4)33,5

Bewegungs-
system

Antritts-
bewegungen

Lateralitätsquotient LQ +/-100 R, (1, 4)33,5
Früheste Prä-Trigger
Baselineabweichung
d. MRCP-Verlaufes

MRCPonse
t

ms R, (1, 4)33,5

Maximale Prä-
Trigger MRCP-
Amplitude

MRCP-
max

µV R, (1, 4)33,5

Zeitpunkt d.
MRCPmax, (Minus =
Prä-Trigger; Plus =
Post-Trigger

MRCP-
max-t

ms R, (1, 4)33,5

MRCP-Ausmaß
Fläche unterhalb d.
Analogkurve

MRCP-
power

µV² R, (1, 4)33,5

MRCP-Amplitude
bei –100 ms Prä-
Trigger

MRCP-
100

µV R, (1, 4)33,5

Mittlere MRCP-
Amplitude zw. –100
bis 0 ms Prä-Trigger

MRCP-
100-0

µV R, (1, 4)33,5

Zentrales
Nerven
System
(ZNS)

EEG / MRCP
über Mitte d.
frontalen (FZ),
zentralen (Cz),
parietalen (Pz)
Kortexregion

Mittlere MRCP-
Amplitude zw. –500
bis 100 ms Prä-
Trigger

MRCP-
5-100

µV R,(1,4)33,5

5.1.1.4 Untersuchungsablauf zum Belastungskomplex 1

Der Zeitraum für die Hauptuntersuchungen lag zwischen 7-12 Uhr bei der Vormittags-

gruppe und zwischen 12-17 Uhr in der Nachmittagsgruppe. Die Probanden nahmen

um 8 Uhr/13 Uhr das Standardfrühstück im Institut ein, wobei die Nachmittagsgruppe

ihr erstes Frühstück nach Vorgabe (siehe Anhang II) zu Hause einnehmen durfte. Die

Stunde Vorlaufzeit zwischen Eintreffen und Frühstück war notwendig, um bei „nüchter-

nen“ Probanden zusätzlich Blut-, Urinanalysen- und Echokardiographiemessungen

durchzuführen (BAUM & WEIß 2001), die im Rahmen dieser Arbeit keine Darstellung

erfahren.

Der Untersuchungsstart war um 9.00 Uhr/14.00 Uhr. Die Probanden wurden mit den

Messaufnehmern14 versehen und wiederholten die Testinstruktionen. Anschließend

                                                
14 EEG-Haube, Electro-Cardio-Gramm (ECG), Elektro-oculo-gramm (EOG), Polar Sporttester.
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hatten die Teilnehmer eine 20-minütige Ruhephase, an deren Ende das subjektive Be-

finden erhoben wurde. Der Zeitpunkt nach der Ruhephase wurde als Null-Position oder

Ausgangswert für die Untersuchung angesehen. Nachdem eine venöse Blutentnahme

und eine zusätzliche Echokardiographie (Ergebnisse hier nicht vorgestellt BAUM & WEIß

2001) vorgenommen wurden, nahmen sie ihre Radfahrerposition auf dem Ergometer

ein und die Untersuchung begann mit besagter Ruhemessung (R)=MRCP im unbelas-

teten Zustand.

Anschließend folgte in den Studien FB und OB ein warm up am Ergometer, woran sich

die dazu gehörige Messphase (1)=MRCP anschloss. Darauffolgend traten bzw. kur-

belten die Probanden drei weitere Belastungsstufen à 6 bzw. 5 min bis zu ihrer indivi-

duellen submaximalen Belastungsstufe (4) mit sofort anschließender Messung

(4)=MRCP. Die letzte Stufe à 6 bzw. 5 min nahe maximaler Belastbarkeit (nach Vor-

test) wurde direkt im Anschluss mit dazugehöriger Messphase (5)=MRCP absolviert.

In der KB Studie entfiel eine Erwärmungs- und submaximale Messphase, so dass nur

die beiden Messungen: in Ruhe (R) und direkt nach Belastung (5) vorgenommen wur-

den. Abb. 4 zeigt schematisch die einzelnen Untersuchungsabläufe zum Belastungs-

komplex 1. Die Vorbereitung, die Ruhephase, die Befindlichkeitserhebung, die venösen

Blutabnahmen, die Laktat-, Herzfrequenz- und Ammoniakbestimmungen sowie der

MRCP-Test (vor und nach Belastung) fanden bei allen Belastungsregimen (FB, OB

und KB) gleich statt.

Bei den submaximalen Messphasen sind Einschränkungen in der Vergleichbarkeit mit

der KB-Studie gegeben, da hier nur Parameter vor und nach Absolvierung des Kon-

zentrations-Leistungs-Tests erhobenen wurden.

Die Prozeduren im MRCP-Test, der Befindlichkeitserhebung sowie Abnahmen von Ka-

pillar- und venösem Blut, waren mit denen in FB und OB vergleichbar (Abb. 4).

5.1.1.4.1 MRCP-Testablauf

Die EEG-Messungen zur Erfassung der MRCPs fanden auf dem Fahrradergometer

statt. Hierbei wurden bei kontinuierlicher EEG-Ableitung wiederholt willkürliche Pedal-

antritte mit dem rechten Bein absolviert. Mit den getriggerten Bewegungsanfängen lie-

ßen sich die EEG-Abschnitte in Vorbewegungsintervalle zerlegen, woraus letztendlich

eine gemittelte Potentialkurve, eine MRCP-Kurve, entsteht. Diese beinhaltet die gene-

rellen kortikalen Stellmechanismen vor der eigentlichen Bewegungsausführung. Vor

der Messphase wurde ein „Gel-Pad-Überzug“ über den Sattel gezogen, um eine be-

queme Sitzposition zu erreichen. Das rechte, nach vorne gestellte Pedalwerk, wurde
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mit einer speziellen Blockiervorrichtung fixiert. Darin war ein Triggerschalter zur Erfas-

sung des Bewegungsbeginns integriert, der das Signal für die Ermittlung der MRCPs

durch das CATEEM-CATERPA-System15 lieferte. Mit einem Keil unter dem linken Pe-

dal wurde das Pedalwerk spielfrei in horizontaler Lage fixiert. Darüber hinaus wurden

biomechanische Kennwerte des Antritts aus den aufgezeichneten, gemittelten Kraft-

Zeit-Verläufen aller Antritte erhoben.

Während der EEG-Aufzeichnung zur Ermittlung des MRCPs musste der Proband mit

seinem Blick einen beliebigen Punkt fixieren und eine möglichst aufrechte Sitzposition

beibehalten. Es bestand die Möglichkeit, sich an dem 90 Grad nach oben gedrehten

Rennlenker leicht zu stützen oder die Antritte mit dem rechten Antrittsbein aus freier

Haltung durchzuführen. Die aufrechte Sitzhaltung war notwendig, um Muskelartefakte

oder Störfaktoren durch Atmung und Kopfbewegungen (MECHAU 2001, 109FF) zu mi-

nimieren. Hinsichtlich der Antritte bei der Messung des MRCPs waren die Probanden

ausdrücklich instruiert, sich auf jeden Bewegungsantritt neu zu konzentrieren. Sie soll-

ten jedesmal einen willkürlichen Antritt vollziehen, ohne einen Rhythmus zu entwickeln.

Die gedachte Formulierung: „ICH TRETE JETZT!“, stellte hierbei eine Art Formel für

jeden Antritt der Probanden dar. Aus Voruntersuchungen war bekannt, dass der Start

der Bewegungsaktion mit dem Wort „JETZT“ leichter fällt (BARTHEL 1998; WEHR 1998).

Die Probanden waren zur Artefaktvermeidung bei der Ableitung zuvor darin geübt wor-

den, sowohl kurz vor, als auch kurz nach der Antrittsbewegung Schluck- und Gesichts-

bewegungen sowie Augenlidschläge zu unterdrücken. Dem aufgestauten Blinzelzwang

konnte der Proband in selbstgewählten Entspannungspausen nachkommen.

Zur Sicherstellung gleichbleibender Datenqualität diente vor jeder EEG-Aufzeichnung

eine Impedanzmessung aller Elektrodenpositionen.

Aufgrund der einfachen automatisierten Antrittsbewegung und des in der Voruntersu-

chung trainierten Testschemas wurde kein Lernprozess bei Folgemessungen erwartet.

Zwischen Ende der jeweiligen Belastungsphase und Beginn der EEG-Messung verstri-

chen durchschnittlich 3 Minuten durch Pedalwerkblockierung, kapillare Blutentnahmen,

Impedanzmessung und Artefaktbeseitigungen.

Die MRCPs wurden in ein- bis viermaligen 3-Minuten-Messintervall aufgezeichnet. In

der Regel wurden in der Vor-Belastungsphase, in Ruhe (R) und nach Aufwärmung (1)

zwei Messintervalle, d.h. 3-6 Minuten, benötigt. Mit zunehmender Belastungshöhe wa-

ren dann z.T. nach der submaximalen (4) und maximalen Stufe (5) bis zu vier Auf-

                                                
15 Computer Aided Topographical Electro-Encephalometry Measurement / Computer Aided To-

pographical Events-Related Potential Analysis.
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zeichnungsintervalle, also 12 Minuten, notwendig, um eine für die zuverlässige Mitte-

lung ausreichend große Anzahl artefaktfreier EEG-Abschnitte zu erhalten. Besonders

nach den intensiveren Belastungen (FB, OB) kontaminierten Augenbewegungen,

Schweiß und Muskelartefakte die EEG-Aufzeichnungen.

Abb. 4: Untersuchungsabläufe, Belastungsregime und Messinterventionen im Belastungskom-
plex 1: FB Fahrradergometrie-, OB Armkurbelergometrie- und KB „Kognitive Belastung“: T
Testgetränk, Q Befindlichkeitsfragebogen, QB Beanspruchungsfrage, BS Blutabnahme, La
Laktat, NH3 Ammoniak (angelehnt an BARTHEL ET AL. 2002).
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5.1.2 Belastungskomplex 2

Im Belastungskomplex 2 wurde die Fähigkeit zur Rückstellung der elektrischen Aktivität

in der Hirnrinde nach einer physisch nahe maximalen Belastung unter Berücksichti-

gung der Leistungsfähigkeit als unabhängige Variable untersucht.

Die Belastung als Intervention zur Beeinflussung des hirnelektrischen Leistungsspek-

trums (abhängige Variablen) erfolgte wegen der individuell guten Dosierbarkeit und

Reproduzierbarkeit als Fahrradergometrie-Belastung (FB).

Gängige periphere Beanspruchungsparameter helfen, das Beanspruchungsausmaß zu

beurteilen und deren Dynamik im Wiederherstellungsprozeß zu beschreiben. Die un-

abhängige Variable wird durch die maximale Leistungsfähigkeit und die Erholungszeit

definiert.

5.1.2.1 Probanden

21 gesunde, männliche, über Ziele und Ablauf informierte, Freiwillige (25±3 Jahre,

180,6±6,9 cm, 76,3±9kg) wurden anhand ihrer maximalen Leistungsfähigkeit in einem

vorgezogenen Ergometer-Stufentest (∆t=3 min; ∆P=50Watt) in 10 mäßig Leistungsfä-

hige (3,52±0,22 Watt/kg) und 11 gut Leistungsfähige (4,54±0,42 Watt/kg) gruppiert

(siehe Tab. 7). Alle Probanden waren frei von Medikamenten und Stimulanzien und

gaben nach genauer Aufklärung ihre schriftliche Einverständniserklärung zur Studien-

teilnahme.

Tab. 7: Anthropometrische Daten und Leistungsfähigkeit der Untersuchungsgruppen in Mittel-
wert (MW) und Standardabweichung (SD) und Anzahl (n)

Leistungsgruppe

mäßig trainiert gut trainiert

Alter [Jahre] 26,30 ± 3,65 23,45 ± 2,84

Größe [cm] 179,10 ± 7,75 182 ± 6,13

Gewicht [kg] 77,60 ± 11,83 75,14 ± 5,67

Maximale Leistung [Watt] 275,00 ± 54,01 340,91 ± 37,54

Relative Leistung [Watt/kg] 3,52 ± 0,22 4,54 ± 0,42

Maximale HF [S/min] 179,90 ± 8,85 189,73 ± 6,29

Händigkeit 2=rechts[n, (%)] 9, (90) 7, (64)

Sprungbein 1=links [n, (%)] 5, (50) 8, (73)
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5.1.2.2 Untersuchungsdesign

Die Studie zum Belastungskomplex 2 beinhaltet ebenfalls eine Vor- und eine Haupt-

untersuchung.

In standardisierten Versuchsbedingungen, nach Frühstück im Institut und Messvorbe-

reitung (EEG-Haube, Verkabelung, Anlegen einer Braunüle), absolvierten die Proban-

den eine individuell standardisierte 16-minütige Ergometerbelastung (16 min=4x3

min+1x4 min). Die vorgegebenen gleichförmigen Intensitätssteigerungen der fünf Be-

lastungsstufen der Hauptuntersuchung lagen zwischen 20 und 100 Prozent der indivi-

duell, maximal 3 Minuten durchgehaltenen Vortestleistung (Pmax.).

Anschließend regenerierten die Probanden passiv liegend in einem ruhigen, abgedun-

kelten Raum. Die Messabstände im Regenerationsverlauf betrugen 3 min, 45 min, 60

min, 75 min und 135 min nach Belastungsende und sind in Abb. 5 dargestellt.

5.1.2.3 Beurteilte Systemkreise und Beanspruchungsgrößen

Tab. 8: Systemkreise, Beanspruchungsgrößen und Parameter sowie deren Messzeiten im Be-
lastungskomplex 2

System-
kreise

Beanspruch-
ungsgrößen

Parameter Bezeich-
nung

Ein-
heit

Messzeit-
punkte M

Leistungs-
fähigfähigkeit

Pmax Watt VortestErgometrie-
leistungleistung

Stufen-
belastunbelastungen

P1-P5 Watt M1, M2, M3,
M4, M5

Herzfrequenz HF 1/min M1, M2, M3,
M4, M5

Peripheres-
System

Herz-Kreislauf

Dopamin Dop ng/l M1, M2, M3,
M4, M5

Noradrenalin NA ng/l M1, M2, M3,
M4, M5

Stress-
System

Katecholamine

Adrenalin A ng/l M1, M2, M3,
M4, M5

Cortisol Cor nmol/l M1, M2, M3,
M4, M5

Hormone

Prolaktin Pro nmol/l M1, M2, M3,
M4, M5

Blutzucker Glucose Glu mmol/l M1, M2, M3,
M4, M5

Erythrozyten Ery 106/µl M1, M2, M3,
M4, M5

Blutzellen

Leukozyten Leu 10³/µl M1, M2, M3,
M4, M5

Stress-
Reaktives-
System und
Blutpara-
meter

Kontrollparameter Kreatinin Krea mmol/l M1, M2, M3,
M4, M5

Delta d µV²/Hz M1, M2, M3,
M4, M5

Theta t µV²/Hz M1, M2, M3,
M4, M5

Alpha 1 a1 µV²/Hz M1, M2, M3,
M4, M5

Alpha 2 a2 µV²/Hz M1, M2, M3,
M4, M5

Beta1 b1 µV²/Hz M1, M2, M3,
M4, M5

Zentrales
Nerven
System
(ZNS)

Kortikale
Rückstellfähigkeit
im EEG als mittl.
spektrale
Leistungsdichten
über 17
Hirnrindengebiete
frontal: F 3,7,z,4,8
zentral: C3,z,4
parietal: P3,z,4
temporal:T3,5,4,6
okzipital: O1,2 Beta 2 b2 µV²/Hz M1, M2, M3,

M4, M5
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5.1.2.4 Untersuchungsablauf zum Belastungskomplex 2

Die Testdurchgänge für die Studie zum Belastungskomplex 2 wurden in wöchentlichen

Abständen absolviert. Die Untersuchungen begannen immer morgens zur gleichen Zeit

(um 8:00, 8:35 oder 10:20  Uhr a.m.) mit dem standardisierten Frühstück für drei Ver-

suchspersonen pro Tag. Anschließend wurde den Probanden ein Venenkatheder

(Braunüle) in den Unterarm gelegt und sie wurden mit Messaufnehmern16 verkabelt.

Nach Überprüfung der Messvorrichtung und Sicherstellung der notwendigen EEG-

Elektrodenimpedanz startete das physische Stressexperiment mit der Ergometerbe-

lastung eine Stunde später um 9:00, 9:35 oder 11:20  Uhr a.m. (siehe Ablaufplan im

Anhang V). Innerhalb einer Minute nach der Ergometerbelastung begaben sich die er-

schöpften Sportler zur passiven, liegenden Erholung in das EEG-Messlabor. Die Mes-

sungen erfolgten im Liegen mit geschlossen Augen in einem separaten, abgedunkelten

Raum. Nach Messung 1 erhielten die Versuchspersonen ein Placebo-Fruchtsaftge-

tränk (330 ml). Die weitere Erholungsphase erfolgte auf der Untersuchungsliege ru-

hend im Messraum (angeschlossen an Messapparaturen)17, so dass Effekte durch

Orthostase und individuell unterschiedlich gestaltete Erholungsstrategien ausgeschlos-

sen waren.

Abb. 5: Untersuchungsschema zum Belastungskomplex 2. Messungen: Blutabnahmen / EEG-
Ableitungen jeweils 3 min (Augen geschlossen) M1=Referenzmessung 3 min-, M2=45 min-,
M3=60 min-, M4=75 min-, M5=135 min nach Belastung. Nach M1 tranken die Probanden 330
ml eines Fruchtsaftgetränkes ohne Wirkeinfluss (Placebo).

                                                
16 EEG-Haube, Polar Sporttester, ECG Handgelenksmanschetten.
17 Die EEG-Messungen konnten so vom Monitoring Raum aus gestartet werden, wodurch sich

eine Reduzierung der Probandenbeeinflussung durch die Untersucher ergab.
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5.2 Methodik B: Allgemeine Studienbedingungen

5.2.1 Probanden

Alle Teilnehmer wurden über Ziele, Ablauf und mögliche Risiken der Untersuchungen

aufgeklärt und gaben ihre schriftliche Einwilligung, die geforderten Anforderungen ein-

zuhalten. Die Probanden nahmen freiwillig an den Testreihen teil und erhielten nach

der letzten Untersuchung eine finanzielle Aufwandsentschädigung in Höhe von 50 und

100 Euro. Um die strengen Standardisierungsauflagen für Supplementationsforschun-

gen zu erfüllen, wurden ausschließlich männliche Probanden im Alter zwischen 20 und

30 Jahren rekrutiert, die folgenden Bedingungen genügten.

Gesundheit: Nach anamnestischer Eingangsuntersuchung und ergonomischen Be-

lastungstests (Voruntersuchungen) waren die meist studentischen Probanden als ge-

sund, medikamentenfrei und sportlich belastbar einzustufen.

Kontaktlinsenträger wurden aus den Untersuchungen zum Belastungskomplex 1 aus-

geschlossen oder mussten eine Brille tragen, da ihnen die geforderte Augenlidschlag-

unterdrückung18 mit Linsen nicht hinreichend gut gelang.

Ernährungs-/ Lebensgewohnheiten: Die Probanden erklärten sich schriftlich mit den

allgemeinen Studienbedingungen einverstanden, in den letzten 48 Stunden vor den

Untersuchungen auf Medikamenteneinahme zu verzichten, keinen Alkohol zu trinken

und mindestens 12 Stunden zuvor auf coffeinhaltige und nikotinhaltige Stimulanzien zu

verzichten, um eine Beeinflussung des EEGs auszuschließen. An Untersuchungstagen

durften keine Koffein- oder Teeinhaltigen Getränke, kein Kakao, Saft, Müsli oder Bana-

nen zu sich genommen werden, um so eine mögliche Beeinflussung adrener-

ger/purinerger Transmittersysteme zu vermeiden. Während der einzelnen Untersu-

chungen durfte Mineralwasser19 getrunken werden. Ebenso verpflichteten sich die Stu-

dienteilnehmer, ihre Lebensgewohnheiten (Ernährungs- /Trainingsgewohnheiten, Prü-

fungsphasen) im Untersuchungszeitraum nicht zu verändern (siehe Probandenaufklä-

rung im Anhang I und IV). Um dies zu kontrollieren, führten die Probanden in der Un-

tersuchungsphase zum Belastungskomplex 1 ein Trainingsprotokoll20 und in der Unter-

suchung zum Belastungskomplex 2 einen Ernährungsfragebogen (Food Frequency

Quastionaire FFQ). Ferner wurde der Gebrauch von Supplementen, Energie- und Mi-

                                                
18 Erfahrung aus Voruntersuchungen (BARTHEL 1998).
19 Nürburg Quelle, Hermann Kreuter & Co., Mineral und Heilbrunnen, Dreis/Vulkaneifel.
20 SchriftlicheTrainingskonzeption bis 4 Wochen vor Untersuchungsbeginn wurde eingereicht.



Methodik 38

neraldrinks genau protokolliert. Diese Daten wurden überprüft, aber nicht zur Analyse

herangezogen.

Physische Erholtheit: Mit Einwilligung der Probanden wurden die Untersuchungster-

mine so gewählt, dass eine erschöpfende Arbeitsbelastung mindestens bis 24 Stunden

vor der Untersuchung ausgeschlossen werden konnte. Ebenso sollten erschöpfende

Trainings- und Wettkampfbelastungen mindestens 72 Stunden zurückliegen. Aerobes

Ausdauertraining durfte bis 48 Stunden und regenerative Trainingsbelastungen bis

spätestens 24 Stunden vor den Untersuchungstagen nach Herzfrequenzvorgabe (aus

Leistungsvortest) absolviert werden.

So konnten die Probanden als ausgeruht eingestuft werden. Dies war wichtig, um die

strenge Standardisierung der Ausgangswerte und die Belastungsauswirkung sicherzu-

stellen.

5.2.2 Belastungsbedingungen und Studiendesigne

Voruntersuchungen: Hier wurden der Gesundheitszustand und die sportliche Belast-

barkeit (maximale Leistungsfähigkeit) sowie die standardisierte individuelle Belas-

tungsabstufung der Teilnehmer zur Erreichung vergleichbarer Beanspruchungsniveaus

festgestellt. Die individuellen Sitzpositionen, Lenkerhöhen und -weiten wurden an den

Ergometern ermittelt und notiert.

Außerordentlich wichtig war die Instruktion, das Training und die Gewöhnung der Teil-

nehmer an die Testsituation und die Aufgabe zur Reduzierung von möglichen affekti-

ven Einflüssen, Gewöhnungs- und Lerneffekten.

Die Probanden wurden über mögliche Risiken, Pflichten und geforderte Kriterien auf-

geklärt und befragt. Gegebenenfalls wurde zusätzlich die motorische Lateralität (Hän-

digkeit) mit Messinventaren festgestellt.

Anschließend wurde eine gemeinsame Terminplanung für die Hauptuntersuchung vor-

genommen.

Hauptuntersuchungen: Die Hauptuntersuchungen fanden in wöchentlichen Abstän-

den an Tagen nach reduzierter Trainingsbelastung und ausreichender kohlenhydratrei-

cher Ernährung statt. Zwei bzw. eine Stunde vor dem eigentlichen Untersuchungsbe-

ginn nahmen die Probanden kontrolliert im Institut ihr standardisiertes Frühstück21 ein.

Anschließend wurden die Probanden mit den Messaufnehmern und ggf. mit venösen

                                                
21 Dieses bestand aus zwei Brötchen, Streichfett, Mineralwasser, Kräuter- oder Früchtetee und

einem Maltodextrin-haltigen Energiedrink, um Glykogenverarmung und Hypoglykämie als
Ermüdungsursachen auszuschließen.
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Zugängen (Belastungskomplex 2) versehen. Da der Ablauf, die Bewegungsaufgabe,

das Messverfahren und das Gefühl, verkabelt zu sein, aus den Voruntersuchungen be-

kannt war, gab es hierbei keine Anpassungsprobleme.

Die eigentliche Untersuchung startete jeweils mit einer 10- bis 20-minütigen Ruhepha-

se in bequemer Sitzposition in einem separierten, ruhigen und abgedunkelten Raum.

Dort waren die Probanden aufgefordert, sich die kommenden Testhandlungen noch-

mals zu verinnerlichen. Hierbei trugen sie in der Regel zur zusätzlichen Abschirmung

Schlafbrillen und Ohrenstöpsel22. Am Ende der Ruhephase wurde die Befindlichkeit

psychometrisch über einen Fragebogen erfasst (Belastungskomplex 1). Anschließend

begaben sich die Probanden in die jeweiligen Testsituationen zum Belastungskomplex

1 oder Belastungskomplex 2 (Methodik A).

5.3 Methodik C: Messmethoden und Statistik

5.3.1 Periphere Beanspruchungsparameter und Bestimmungsmethoden

5.3.1.1 Maximale Leistung (Pmax) [Watt]

In einem Ergometer-Stufentest wurde in einer Voruntersuchung die maximale Leistung

bis zum erschöpfungsbedingten Abbruch ermittelt und daraus wurden die Testbelas-

tungen für die Hauptuntersuchungen festgelegt.

5.3.1.2 Stufenleistungen (P1-P5) absolut [Watt] und relativ zu Pmax [%]

Über definierte Stoffwechsellage (Belastungskomplex 1), ermittelt aus der Laktatleis-

tungskurve des Vortests, wurden die „Stufenbelastungen“ (P1-P5) [Watt] ermittelt und

deren „Belastungsrelationen“ (1-5) [%] von der jeweiligen maximalen Leistung

(Pmax=100%) berechnet. Im Belastungskomplex 2 wurde die maximale Vortestleistung

(100%) in fünf Stufen mit 20%iger Leistungszunahme unterteilt.

5.3.1.3 Herzfrequenz (HF) [1/min]

Die Herzfrequenz wurde kontinuierlich während des gesamten Testablaufes mit dem

Sport Tester TM23 aufgezeichnet. Die Errechnungsintervalle lagen bei 15 sec (Belas-

tungskomplex 1) bzw. 5 sec (Belastungskomplex 2). Zusätzlich wurden zum Zeitpunkt

                                                
22 Hansaplast Lärmstop sanft, Fa. Beiersdorf AG, Hamburg Germany.
23 Fa. Polar, Gross-Gerau, Germany.
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der Interventionen (z.B Kapillarblutabnahmen) Marker gesetzt. Die Auswertung erfolgte

über eine systemeigene Software.

5.3.1.4 Blutdruck (RR) [mmHg]

Systolischer und diastolischer Blutdruck wurden durch die Druck-Manschettenmethode

nach Riva-Rocci [mmHg] ermittelt (Belastungskomplex 1).

5.3.2 Periphere metabolische Beanspruchungsparameter aus dem Kapillarblut

5.3.2.1 Laktat (La) [mmol/l]

Aus dem hyperämisierten Ohrläppchen wurden jeweils 20 µl Blut entnommen und in

Perchlorsäure sofort enteiweißt. Nach vorherig eingeleiteter enzymatischer Reaktion24

wurde die Laktatkonzentration photometrisch25 bestimmt.

5.3.2.2 Ammoniak (NH3) [µmol/l]

Zur Bestimmung der Ammoniakkonzentration diente ein reflektorischer Ammoniak-

Checker26. Hierzu wurden ebenfalls 20 µl Kapillarblut aus dem hyperämisierten Ohr-

läppchen entnommen und auf einen Testchip aufgetragen. Eine der Ammoniakkon-

zentration proportionale pH-Farb-Änderung wird in diesem System reflektrometrisch

bestimmt (HAGELOCH & WEIKER 1988).

5.3.3 Beanspruchungsparameter aus dem Stress- und stressreaktiven System

5.3.3.1 Katecholamine [nmol/l] bzw. [ng/L] je nach Labor

Zu den Katecholaminen zählen (Noradrenalin (NA), Adrenalin (A), Dopamin (Dop)).

Aus dem Blutplasma wurden sowohl freie als auch sulfatierte Katecholamine mittels

„High Pressure Liquid Chromatography“ mit elektrochemischer Detektion27  (HPLC-ED)

bestimmt28. Die freien Katecholamine wurden nach Adsoption von Aluminiumoxid und

                                                
24 Laktat für die Sportmedizin, Fa. Boehringer Mannheim, Germany.
25 Epos Analyser, Fa. Eppendorf, Hamburg, Germany.
26 Fa. Kyoto Dailchi Kagaku; Vertrieb für Deutschland: Fa. HEK Pharma, Lübeck, Germany.
27 Typ EP 30, Fa. Biometra, Göttingen, Germany.
28 Fa. Kontron Instruments GmbH, Neufahrn, Germany.
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Re-Eluierung mit dem Komplett-Testkit29 bestimmt. Die sulfatierten Katecholamine

wurden nach enzymatischer Trennung der Sulfatgruppe ebenso bestimmt. Eine ge-

naue Beschreibung der Katecholaminbestimmung findet sich bei WEICKER (1988).

5.3.3.2 Hormone [mmol/l]

Bei den Hormonen fiel die Bestimmungsauswahl auf Cortisol (Cor) und Prolaktin (Pro).

Diese wurden extern im Labor Falke in Hofheim mit einem Analysegerät „Automatic-

Chemie-Luminescence-System“ (ACS:180)30, welches mit dem Chemie-Luminescence

Immuno Assey (CLIA) Verfahren arbeitet, bestimmt.

5.3.3.3 Kreatinin (Krea) [mmol/l]

Kreatinin, harnpflichtiger Stoffwechselmetabolit von Kreatin wurde als Nebenparameter

zu Kontrollzwecken der Nierengesundheit vorgesehen. Die Bestimmung aus dem Se-

rum fand ebenfalls extern im Labor Falke mit dem “Chemie-Moped“ Vitros 25031 statt.

                                                
29 Fa. Recipe Chemicals & Instruments, Wilhelm-Riehl Str. 11, 80687 München, Germany.
30 Fa. Beyer Vital GmbH Diagnostika, 51368 Leverkusen, Germany.
31 Fa. Life Scan, Ortho-Clinical Diagnostic GmbH, Karl-Landsteiner-Str. 1, 69151 Neckarge-

münd, Germany.
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5.3.4 Zentralnervale (ZNS), kortikale Beanspruchungsparameter und mess-

technische Erfassung

Abb. 6: Schematische Darstellung der EEG- und MRCP- Registrierung in Anlehnung an
MECHAU (1998, S. 45).

5.3.4.1 Kortikale Beanspruchungsparameter aus dem spontanen EEG

Die mittleren spektralen Leistungsdichten [µV²/Hz] pro EEG-Messphase wurden aus

102 Parametern (je 6 Frequenzen und 17 Elektrodenpositionen) quantitativ statistisch

ausgewertet.

Tab. 9: Frequenzspektrum und Bezeichnung des spontanen EEG’s sowie die Map-Farbcodie-
rung im CATEEM für 17 Elektrodenpositionen.

Bezeichnung Frequenzbereich (Hz) Darstellung der
spektralen
Leistungsdichten
[µV²/Hz] im Map

Delta (δ) 1,25 – 4,50 Rot

Theta (ϑ) 4,75 – 6,75 Braun

Alpha-1 (α1) 7,00 – 9,50 Gelb

Alpha-2 (α2) 9,75 – 12,50 Grün

Beta-1 (β) 12,75 – 18,50 Hellblau

Beta-2 (β2) 18,75 – 35,00 Dunkelblau
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5.3.4.2 Mittlere spektrale Leistungsdichten [µV²/Hz] aus spontanem EEG

Die Hirnpotentiale wurden an 17 Zinn-Napf Elektroden, eingearbeitet in einer Elektro-

denhaube32 und angeordnet im internationalen 10:20 System (JASPER 1958), mit Cz

als physikalische Referenz bipolar abgeleitet. Die Elektrodenhaube war der individuel-

len Kopfgröße angepasst (BLOM & ANNEVELDT 1982) und wurde während des gesam-

ten Experiments nicht abgenommen, so dass die genaue Elektrodenplatzierung sicher

gestellt werden konnte. Durch eine Gelbrücke33 wurde ein praktisch widerstandsfreier

Elektrodenkontakt zur Schädeloberfläche hergestellt. Die betreffenden Hautbezirke

wurden vor Aufsetzen der Elektrodenhaube gereinigt und entfettet. Zur zusätzlichen

Artefakterkennung diente ein Elektro-Okulogramm (EOG) und ein Elektro-Cardio-

gramm (ECG).
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Abb. 7: Platzierung und Bezeichnung der Elektroden im 10-20 System und Kortexkartierung
(Anlehnung an BIRBAUMER & SCHMIDT 1996, S. 490).

Technisch wurden die abgeleiteten EEG-Signale in einen batteriebetriebenen Gleich-

spannungsverstärker34 (AC=10MΩ; DC=20MΩ / 512 Hz/12 bit) gespeist und dort digital

gewandelt. Die Eingangsbandbreite des Verstärkers lag bei 0,1-300 Hz. Bei der Spon-

tan-EEG-Erfassung wurde mit Hochpassfiltereinstellung von 0,86 Hz gearbeitet.

Ein ausreichender Signal-Störabstand konnte durch die hohen Eingangswiderstände

des Verstärkers und die niedrigen Elektrodenimpedanzen (< 50 kΩ) gewährleistet wer-

den. Über ein Glasfaserkabel gelangten die Daten elektromagnetisch störungsfrei zum

                                                
32 Fa. Electro Cap Co., Eaton, USA.
33 Spectra 360 Electrode Gel, Parker Laboratories, INC., New Jersey, USA.
34 Fa. MediSyst GmbH, Linden, Germany.
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CATEEM-CATERPA8 System. Durch systemeigene Artefakterkennung und offline

Nachbearbeitung wurde gesichert, dass nur artefaktfreie EEG-Abschnitte in die Analy-

se eingingen.

Das Spontan-EEG wurde durch Fast Fourier-Transformation in sechs Frequenzberei-

che unterteilt (siehe Tab. 9). Diese wurden über die Messzeit als mittlere spektrale Lei-

stungsdichten (µV²/Hz), topographisch für alle Elektrodenpositonen (17 reale plus 82

virtuelle) zur qualitativen Bearbeitung, farblich codiert als Hirnkarte, wiedergegeben.

5.3.4.3 MRCPs

Die MRCPs werden erst mit einer Mittelungstechnik, dem so genannten „averaging“

sichtbar. Hierbei werden getriggerte reizstabile Ereignisse aus einem „verrauschten Si-

gnal“ hervorgehoben. Die reizabhängigen Ereignisse stellen in unserem Fall die

MRCPs dar, die sich aus dem mehr oder weniger zufälligen Spontan-EEG Schwan-

kungen, mit zunehmender „Mittelung“, hervorheben. Aus den „Average“ Potentialkur-

ven der MRCPs werden charakteristische Parameter bestimmt, die kalkuliert und dar-

gestellt werden können und Rückschlüsse auf eine kortikale Informationsverarbeitung

der willkürlichen Bewegungsprogrammierung zulassen.

Zur Erfassung des MRCP‘s wurde analog der Empfehlung von DESMEDT (1977, S. 14)

eine Hochpassfiltereinstellung von 0,05 Hz gewählt, welches einer Zeitkonstante von 3

Sekunden entspricht. Über ein kraftabhängiges, druckempfindliches Schaltsystem35,

integriert in der Pedalblockierung, wird der Beginn der Antrittsbewegung für die EEG-

Aufzeichnung getriggert (vgl. auch BARTHEL 1998, S. 95). Zur Ermittlung des MRCPs

wurden die EEG-Abschnitte von 2000 ms vor bis 1000 bzw. 10 ms nach dem getrig-

gerten Antritt aufsummiert und auf eine relative Baseline 2000 bis 1700 ms vor Trigger

berechnet (COOPER ET AL. 1984, S. 205). Mit hinreichend großer Anzahl36 artefaktfreier

EEG-Abschnitte wurden die charakteristischen MRCP-Verläufe erkennbar (BARTHEL

1998, S. 93).

Zur Analyse wurden die über der Mitte der frontalen, zentralen und parietalen (Fz, Cz,

Pz) Hirnregionen aufgezeichneten MRCP’s herangezogen. Diese Reduzierung be-

gründet sich zum einem in dem für die Antrittsbewegung relevanten motorischen Kor-

                                                
8 Computer Aided Topographical Electro-Encephalometry Measurement / Computer Aided To-

pographical Events-Related Potential Analysis.
35 Prototypentwicklung: Fachbereich Elektrotechnik der Universität Paderborn, welche im We-

sentlichen auf der Funktion einer DMS-Messbrücke basiert (Typ 120T-B, Fa. KYOWA).
36 Es mussten mindestens 16 EEG-Datenabschnitte aus 90 – 240 willkürlichen Antritten vor-

handen sein.
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texareale und zum anderen in der höheren Artefaktanfälligkeit oder geringen DC-Akti-

vität der übrigen Hirnregionen, repräsentiert durch fronto-laterale, okzipitale und tempo-

rale Elektrodenpositionen.

Zur Quantifizierung wurden aus den MRCP-Verläufen Charakeristika wie Amplituden

und Latenzen als Parameter ermittelt und quantitativ ausgewertet (Abb. 8) (BARTHEL

1998, S. 96).

Tab. 10: MRCP-Parameter

• MRCPonset [ms]: ist die erste Abweichung von der relativen Baseline in negative

Richtung) und wird als MRCP-Beginn festgelegt (bei Fz-Elektrode, sowohl positive

als auch negative Abweichung.

• MRCPmax [µV]: ist der Wert der maximalen MRCP-Amplitude.

• MRCPmax-t [ms]: ist der Zeitpunkt der MRCPmax, wobei das Vorzeichen (Minus =

prätrigger; Plus = posttrigger) den Messbereich widerspiegelt.

• MRCPpower [µV²]: dient zur Quantifizierung des MRCP-Ausmaßes und wird aus

der Fläche unterhalb der Analogkurve berechnet.

• MRCP100 [µV]: ist die MRCP-Amplitude bei Latenz –100 ms vor dem Trigger.

• MRCP100-0 [µV]: gibt die mittlere MRCP-Amplitude im Zeitfenster zwischen –100

bis 0 ms (Trigger) wieder (späte Komponente).

• MRCP5-100 [µV]: gibt die mittlere MRCP-Amplitude im Zeitfenster zwischen –500

bis -100 ms (vor Trigger) wieder (frühe Komponente).

Abb. 8: Darstellung der Parameter zur MRCP-Charakterisierung.
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In den Ergebnisdarstellungen werden die MRCP-Bezeichnungen durch die jeweilige

Elektrodenposition ergänzt. Z.B. MRCPmax der Cz-Elektrode wird mit Czmax usw. be-

zeichnet.

5.3.5 Biomechanische Antritts-Parameter

5.3.5.1 Erfassung der Antrittsdaten

Über einen Aluminium-Tritt-Druckaufnehmer37, der im wesentlichen auf einer DMS-

Messbrücke38 (Dehnungs-Messstreifen) basiert, wurde die Antrittskraft erfasst und das

Messsystem39 getriggert (BARTHEL 1998, 81FF) (Anhang VI). Das elastische Durchbie-

gen der Druckplatte durch den Antritt bewegt den Messaufnehmer der DMS-Einheit,

die ihrerseits eine kraftproportionale Spannungsänderung erzeugt. Diese wurde von

dem Signalverarbeitungssystem DIAdem40 aufgezeichnet und bearbeitet. Die untere

Kraftgrenze wurde mit Gewichten und einem Volt-Meter so geeicht, dass nur aktive

Antritte und keine Gewichtsverlagerungen als Triggersignal Verwertung fanden. Der

Schaltbeginn lag bei einer Kraftschwelle von ca. 171,7 N (1,4 V bei 17,5 kg Eichge-

wicht). Zur Ermittlung biomechanischer Kennwerte der Antrittsbewegung wurden alle

Antritte jeder Messphase in einem Spannungs-Zeit-Verlauf aufgezeichnet und gemit-

telt. Aus den mittleren Antrittskurven ließen Steigungen und Maximalwerte Rück-

schlüsse auf die Antrittsgeschwindigkeit und Antrittskraft zu. Da die Spannungsverläufe

ein Kraftäquivalent darstellen, wird im weiteren von einem Kraft-Zeit-Verlauf gespro-

chen. Folgende Antrittsdaten wurden für die Charakterisierung der Bewegung berück-

sichtigt:

• F-Max [V] Maximum des Kraft-Zeit-Verlaufes

• tan α [V/s] mittlere Steigung der Kraftzunahme pro Zeit

• tm-tt [s] Kraftlatenzzeit vom Trigger bis zum Maximum des Kraft-Zeit-Verlaufes

• tt-tp [s] Bewegungsverzögerungszeit von erster prätrigger Baselineabweichung bis

zum Triggerzeitpunkt des Kraft-Zeit-Verlaufes

                                                
37 Spezielle Entwicklung vom Fachbereich Elektrotechnik der Universität Paderborn.
38 Force/Displacement Transducer, Typ 120T-B, Fa. KYOWA.
39 Systemzugehörig:Trägerfrequenz-Messverstärker der Fa. Hottinger Baldwin Messtechnik,

Darmstadt, Typ KWS 3073.
40 Fa. GfS mbH, Pascalstr. 17, 52076 Aachen, Germany.
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5.3.6 Psychometrische Parameter

5.3.6.1 Händigkeitsanalyse

Die Händigkeit wurde mit Hilfe eines errechneten Lateralitätsquotienten (LQ) aus der

übersetzten Fassung des „Edinburgh Handedness Inventory“ (EHI) von ODFIELD (1971)

ermittelt. Für Rechtshänder beträgt der maximale LQ +100, für Linkshänder –100. Im

Bereich zwischen ±30 lassen sich Intermediärtypen erfassen (siehe Anhang VI).

5.3.6.2 Basler-Befindlichkeitsskala

Die subjektive Befindlichkeit wurde mit Hilfe der Basler-Befindlichkeitsskala (HOBI,

1985) ermittelt. Es handelt sich hierbei um einen in der klinischen Psychologie vali-

dierten Fragebogen mit 16 Adjektiven zur Beschreibung von Stimmungszuständen, die

bipolar in ihrem Extrem angegeben sind und vier Items repräsentieren.

Bei der siebenstufigen Skala zwischen den Eigenschaftsextremen (ohne Zahlenvorga-

be) kennzeichnet die Mitte einen durchschnittlichen Zustand. Die differenzierte Aus-

weisung der Items: Vigilanz und Vitalität, sowie die schnelle Testdurchführung (in ca. 2

Minuten) und die ökonomische Testauswertung begründeten die Auswahl dieses Self-

Rating Inventars zur Bestimmung der Befindlichkeit im Belastungskomplex 1. Zur Ver-

meidung des Erinnerungseinflusses bei in kurzen Abständen wiederholter Stimmungs-

abfrage wurden die Fragebögen umgestellt und mit unterschiedlichem Layout gestaltet

(Anhang VII).

Der Basler Test liefert neben der Gesamtbefindlichkeit Punktwertungen für die vier

Items:

• Vitalität (VT), [Punkte]

• Intrapsychischer Gleichgewichtszustand (IG), [Punkte]

• Soziale Extrovertiertheit (SE), [Punkte]

• Vigilanz (VG), [Punkte]

5.3.6.3 Beanspruchungsfrage:

Zusätzlich sollte nach dem Belastungstest zur Feststellung der subjektiven Ausbelas-

tung eine Selbsteinschätzung zur Frage einer weiteren Belastungssteigerung angege-

ben werden. Die Antworten wurden nach ja=3, nein=1, teilweise=2 differenziert und

bewertet.
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5.3.6.4 Konzentrations-Leistungs-Test (KLT)

Der KLT ist ein Messinstrument zur Erfassung der Konzentrationsfähigkeit und psychi-

schen Belastbarkeit, Ausdauer und Ermüdungsresistenz (DÜKER & LIENERT 1959). Er

besteht aus 250 Rechenaufgaben, beansprucht Kurzzeitgedächtnis, Schnelligkeit und

Arbeitsgenauigkeit und misst somit Quantität und Qualität über die Dauer von einer 30

minütigen Testzeit. Die Anzahl der gerechneten Aufgaben (Quantität) werden als Leis-

tungs-Roh-Wert (lrw) und die fehlberechneten Aufgaben (Qualität) als Fehler-Roh-Wert

(frw) ausgezählt. Der relative Fehleranteil (fpro) [F%] wird errechnet frw*100/lrw=fpro.

Der Fehlerquotient (FQ) ergibt sich aus Fehleranteil [F%] dividiert durch den Refe-

renzfehler der jeweiligen Normgruppe [MF%]; FQ=F%/MF%. FQ<0,7 bedeut einen

unterdurchschnittlichen Fehleranteil, 0,7<FQ<1,3 einen durchschnittlichen Fehleranteil,

FQ>1,3 einen überdurchschnittlichen Fehleranteil (DÜKER & LIENERT 1959, S. 8).

Aus Normtafeln können zum Vergleich mit einer repräsentativen Stichprobe (Berufs-

gruppe, Geschlecht, Alter) mittlere Standardwerte für die Konzentrationsleistung Leis-

tungs-Standard-Wert (lsw) und mittlere Fehleranteile (Referenzfehler) [MF%] ausgele-

sen werden.

Der Test wird ausgewiesen zur Diagnostik von Ermüdungswirkungen, Motivationsef-

fekten oder pharmakologischen Einflüssen auf die Konzentrationsfähigkeit (Düker &

Lienert 1959).

Zur groben Beanspruchungsbeurteilung wurden zusätzlich „relative Konzentrations-

leistungswerte“ (lrel) [%] der Untersuchungsgruppe in Bezug auf die maximalen Refe-

renzwerte, dem Leistungs-Standard-Wert (lsw), berechnet: lsw/lrw *100 =lrel. Die Be-

anspruchung lässt sich nun aus der Höhe der relativen Konzentrationsleistungswerte

(lrel) >100% höher und (lrel)<100% geringer als die repräsentative Norm (Studenten

n=40) beurteilen. Des Weiteren kann der Fehleranteil der Untersuchungsgruppe (F) in

Beziehung zum Referenzfehler gesetzt werden. Der sich daraus ergebende Fehler-

quotient (FQ) lässt nach DÜKER UND LIENERT (1959) ebenfalls eine Beurteilung zu s.o..
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5.3.6.5 Verzehrshäufigkeitenfragebogen (FFQ)

Im „Food Frequency Questionaire“ (FFQ) des „Sportmedizinischen Instituts Paderborn“

werden die Verzehrhäufigkeiten für ca. 170 Lebensmittel retrospektiv für 2 Monate er-

fasst. Die Portionsgrößen sind vorgegeben. Die Auswertung erfolgt mit Hilfe eines

Computerprogrammes und liefert detaillierte Informationen im Hinblick auf die Nähr-

stoffaufnahme. Die Vorteile dieser Methode sind:

• guter Überblick über Ernährungsgewohnheiten

• standardisierte Methode

• geringer Zeitaufwand (ca. 10 Minuten)

Das Instrumentarium (FFQ) diente ohne zusätzliche Analyse der Überprüfung, ob das

Studienkriterium im Belastungskomplex 2 (unveränderte Ernährungsgewohnheiten)

eingehalten wurde.

5.3.7 Statistik

Die Daten im Belastungskomplex 1 wurden mittels des Kolmogorov-Smirnov-Tests auf

ihre Verteilungsform überprüft. Anschließend wurden Mittelwert (MW) und Standard-

abweichung (SD) mit der SPSS-Software41 berechnet.

Datensätze mit hinreichender Normalverteilung wurden mit dem „General Linear Mo-

dell“ (GLM mit Messwiederholung) (früher: MANOVA mehrfaktorielle parametrische Va-

rianzanalyse) auf einen generellen Messzeiteffekt (innerhalb des Subjekts) bzw. einen

Effekt über die verschiedenen Studien (Zwischensubjekteffekt) untersucht. Bei signifi-

kantem „Innersubjekteffekt“ wurden bei normalverteilten Datensätzen mit dem T-Test

für gepaarte Stichproben Unterschiede zum vorangegangenen Messzeitpunkt unter-

sucht. Signifikante „Zwischensubjekteffekte“ wurden mit dem t-Test für unverbundene

Stichproben mit der Gruppenvariablen „Studie“ weiterverfolgt.

Nicht normalverteilte Daten wurden bzgl. der Messzeit mit dem nichtparametrischen

Test nach Friedman und post hoc dem Wilcoxon-Test unterzogen. Zur Aufdeckung von

Unterschieden zwischen den Studien fand der Test nach Kruskal-Wallis Anwendung,

dessen Ergebnisse wiederum mit dem Test nach Mann-Whitney-U verifiziert wurden.

Die Korrelationsberechnungen wurden mit Hilfe des Spearman-(Rang) Korrelations-

koeffizienten bei mindestens einer ordinalskalierten Variablen oder bei nichtparametri-

schen Datensätzen durchgeführt. Ansonsten wurde bei intervallskalierten und parame-

                                                
41 Fa. SPSS GmbH Software, München, Germany.
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trischen Daten mit dem Person-Korrelationskoeffizienten gerechnet. Bei dichotomen

Variablen wird in SPSS statt einer „Punktbiseriale Korrelation“ (BORTZ 2005) eine

Rangkorrelation vorgesehen (BÜHL & ZÖFEL 1994, S. 240).

Im Belastungskomplex 2 wurde ebenfalls die quantitative Analyse mit der SPSS Soft-

ware durchgeführt. Bei Normalverteilung fand die Prozedur GLM mit Messwiederho-

lung mit dem Innersubjektfaktor „Regenerationszeit“ und dem Zwischensubjektfaktor

„Leistungsgruppe“ Anwendung. Post hoc wurden t-Tests für abhängige (bei Innersub-

jektsignifikanz) und unabhängige Stichproben (bei Zwischensubjektsignifikanz) durch-

geführt. Bei nichtparametrischen Daten kamen der Friedman- und post hoc der

Wilcoxon-Test zum Einsatz. Die Ergebnisse wurden als Mittelwert und Standardabwei-

chung bzw. als Median angegeben.

Bivariate Korrelationen wurden mit Pearson- (bei intervallskalierten und parametri-

schen Daten) bzw. Sperman Rang Korrelationkoeffizienten (mindestens ein ordinalska-

lierter oder nichtparametrischer Datensatz) zu M1 zwischen Katecholaminen, Hormo-

nen, Leistungsdaten und statistisch auffälligen EEG-Parametern durchgeführt (vgl.

BARTHEL & WEIß 2002).

Insgesamt wurde als Maß des korrelativen Zusammenhangs mit r<0,5 als gering,

0,5<r<0,7 als mittel und 0,7<r<0,9 als hoch bezeichnet (BÜHL & ZÖFEL 1994).

Das Signifikanzniveau wurde bei p<0,05 schwach-signifikant, p<0,01 signifikant und

p<0,001 hoch-signifikant festgelegt.
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6 Ergebnisse

Die Ergebnisdarstellungen sind nachfolgend für die beiden Belastungskomplexe 1 und

2 nach den betrachteten Systemkreisen untergliedert. Innerhalb der jeweiligen Syste-

me werden statistisch auffällige Parameter abgebildet. Die deskriptiven Tabellen aller

erhobenen Parameter können dem Anhang VIII-XXII entnommen werden.

Insgesamt gilt für alle Abb. diese Legende:

p<0,001 ***, p<0,01 ** und p<0,05 * parametrische Prüfung p<0,001=+++, p<0,01=++,

p<0,05=+ nichtparametrische Prüfsignifikanz.

6.1 Belastungskomplex 1

6.1.1 Anthropometrie, Leistungen und Beanspruchung

Die ausgewählten Probanden erweisen sich trotz Teilnehmerfluktuation in den durch-

geführten Untersuchungsreihen als nicht verschieden bezüglich der anthropometri-

schen- und trainingsspezifischen Voraussetzungen.

Die einfaktorielle ANOVA liefert erwartete hoch-signifikante (p=0,000, F(426,262))

Gruppenunterschiede zwischen den maximalen Vortestleistungen (Pretestpowermax)

der physischen Belastungsregime. Im Mittel werden größere Wattleistungen in der

Fahrradergometrie (346+/-30,8 Watt) verglichen zur Armkurbelergometrie (136+/-15,7

Watt) erreicht.

In den nicht physischen, sondern der rein „Kognitiven Belastungs“ Untersuchung (KB)

(siehe Abb. 20) bearbeiten die Probanden 117+/-40 Aufgaben. Das sind im Mittel 20

Aufgaben mehr, als die Vergleichsnormgruppe (94+/-8) erzielt. Dieser Unterschied ist

statistisch schwach-signifikant (p=0,044, T2,344).

Die unterschiedlichen Belastungsregime stellen verschiedenartige Anforderungen an

das Untersuchungskollektiv. Während in den Untersuchungen mit physischer Belas-

tung die Leistungsunterschiede durch Involvierung unterschiedlich trainierter und gro-

ßer Muskelgruppen zustande kommen, stellen die KB-Durchgänge Ansprüche an kog-

nitive Modalitäten. Das Maß der Beanspruchung soll trotz verschiedener Belastungs-

regime vergleichbar sein und wird anhand ausgewählter Parameter verschiedener Sys-

temkreise überprüft. Die nachfolgend ihre Darstellung erfahren.
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6.1.2 Periphere Beanspruchung

Aus genannten Gründen der Vergleichbarkeit werden anstelle der absolut vollbrachten

Leistungen die relativierten Leistungswerte vorgestellt. Die Beanspruchungen als Rela-

tionen der maximalen Leistungswerte der Testbelastungen werden miteinander vergli-

chen. Diese Belastungsrelationen zeigen signifikante Belastungs- (p=0,000,

F3097,466) und Studieneffekte (p=0,017, F=6,659), die sich im Einzelnen wie in Abb. 9

darstellen. Die Stufenbelastungen (FB und OB) zeigen im „GLM“ einen hoch-

signifikanten Messzeit- (p=0,000, F1820,214) und Studieneffekt (p=0,000, F213,785).

Diese generellen Ergebnisse bestätigen sich post-hoc jeweils zum nächst höheren

Messzeitpunkt (Belastungsstufe) und zwischen FB und OB (siehe Anhang IX).

Abb. 9: Relative Testleistungen [%] bei den verschiedenen Belastungsregimen (Fahrradergo-
metrie- (FB), Armkurbelergometrie- (OB) und „Kognitive Belastung“ (KB). Belastungsrelation [%]
der Stufenbelastungen bezogen auf die maximale Leistungsfähigkeit. Konzentrationsleistung
von der Normreferenz und Fehleranteil [%] sowie Normfehleranteil und Fehlerquote.

Die Belastungsrelationen der physischen Belastungsregime wie in Abb. 9 (FB und OB)

nehmen von Stufe zu Stufe hoch-signifikant zu (p=0,000, T-20,393 bis-51,564) und lie-

gen in der letzten Stufe (Bel.rel.5) mit (94+/-4%) und (97+/-5%) nahe an der maximalen

Leistungsfähigkeit, die im jeweiligen Vortest bis zur Erschöpfung ermittelt wurde. In den

hohen Belastungsstufen (4, 5) finden sich keine Unterschiede mehr zwischen den Be-

lastungsregimen FB und OB. Die Sportler (KB) erreichen einen schwach-signifikant

(p=0.007, Z-2,701) niedrigeren Fehleranteil (5,2%) und eine 20% höhere, nicht-

signifikante relative Konzentrationsleistung als die Vergleichsnorm. Die fehlenden

Gruppenunterschiede in den hohen Belastungsstufen (FB, OB) und die höheren Kon-

zentrationsleistungen KB lassen die Studienvoraussetzungen als erfüllt erscheinen.
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Abb. 10: Mittlere Herzfrequenzen [1/min] nach Belastungshöhe (R=Ruhe, 1.-5.=Belastungs-
stufe) bei Belastungsregime Fahrradergometrie- (FB), Armkurbelergometrie- (OB) und „Kogniti-
ve Belastung“ (KB).

Die Herzfrequenzen (HF) als Parameter der Herz-Kreislauf Beanspruchung zeigen sich

generell hoch-signifikant durch einen Messzeit- (Belastungs-) (p=0,000, F440,933) und

einen Studieneffekt (p=0,000, F18,880) beeinflusst. Die HFs der unterschiedlichen

Belastungsregime werden in Abb. 10 dargestellt.

Die gemessenen Blutdruckwerte bei FB zeigen einen ähnlich deutlichen Belastungs-

effekt (p=0,000, F149,076), die von Ruhe 120/76+/-8 mmHg mit jeder höheren Belas-

tungsstufe systolisch um ca. 16 mmHg hoch-signifikant (p=0,000, T-4,597 bis –10,313)

ansteigen und nach maximaler (5) Belastung im Mittel bei 208/70 +/-17 mmHg liegen.

Da nur Druckwerte von der FB-Untersuchungsreihe vorliegen, wird auf eine detaillierte

Abbildung verzichtet.

Als Anhaltspunkt der subjektiven Ausbelastung dienen die quantifizierten Antworten auf

die Frage einer möglichen Belastungssteigerung nach der maximalen Belastungsstufe.

Dieser Parameter wird in dieser Arbeit unter dem Systemkreis „Psychometrie“ aufge-

führt. Dieser Messwert hilft bei der Beurteilung peripherer Beanspruchung. Es zeigt

sich, dass die subjektiv erlebte Erschöpfung zwischen den physischen Belastungsre-

gimen (FB, OB) nicht-signifikant, aber jeweils zu KB (Studieneffekt) signifikant

(p=0,004, Chi²10,322) unterschiedlich ist. Die detaillierten Ergebnisse werden als Ant-

worthäufigkeiten in Abb. 19 dargestellt und beschrieben.
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6.1.3 Metabolische Beanspruchung

Die Laktatkonzentrationen aller Belastungsregime weisen in der GLM einen hoch-

signifikanten Messzeiteffekt (p=0,000, F399,758) und, wie erwartet, keinen Studienef-

fekt auf. Für weitere Details siehe Abb. 11.

NH3 zeigt einen hoch-signifikanten Messzeit (p=0,000, F94,962) und Studieneffekt

(p=0,000, F14,255) (Abb. 12).

NH³ [µmol/l]

**
**

Abb. 11: Mittlere Laktatkonzentration [mmol/l]
nach Belastungshöhe (R=Ruhe, 1.-5.=Belast-
ungsstufe) bei Belastungsregime Fahrrader-
gometrie- (FB), Armkurbelergometrie- (OB)
und „Kognitive Belastung“ (KB).

Abb. 12: Mittleres Ammoniak (NH3) [µmol/l]
nach R=Ruhe –submaximaler (4) und maxi-
maler Belastung (5) bei Belastungsregime
Fahrradergometrie- (FB), Armkurbelergome-
trie- (OB) und „Kognitive Belastung“ (KB).

In Abb. 11 wird die Laktat-Leistungsbeziehung in üblicher Form dargestellt, die einen

Eindruck über die zugrunde liegende Kinetik vermittelt. Erkennbar ist bei allen Studien,

dass sie von einem Ruhelaktatspiegel um ca. 1mmol/l ausgehen. Dieser Wert hält sich

auch in der ersten Belastungsstufe oder nahm sogar leicht ab. Danach steigen die

Laktatkonzentrationen ab der 2ten Stufe zur nächsten - bis zur maximalen (5ten) Bela-

stungsstufe hoch-signifikant an (p=0.000, T-5,187 bis -18,879). In der FB-

Untersuchung stellen sich die Laktatkonzentrationen in den Belastungsstufen mit Aus-

nahme der maximalen Belastung (5) im Mittel etwas niedriger dar als bspw. in der OB-

Testreihe. Die einzelnen Werte liegen nach Belastungsstufe 1 bei 1mmol/l, nach Stufe

2 um 1,5 mmol/l und steigen nach Stufe 3 auf ca. 2-3 mmol/l. Belastungsstufe 4 liefert

Laktatwerte zwischen 3,5 und 4,5 mmol/l und die maximale Belastung liegt im Mittel bei

6,7+/-0,8 mmol/l (FB) und 5,7+/-1,4 (OB).

Die NH3-Konzentrationen aller Untersuchungen nehmen hoch-signifikant (p=0.000, T-

10,153) von Ruhe zwischen 25-40 µmol/l auf submaximale (4) Belastungswerte ca.

50µmol/l bei FB zu. Die 5te (maximale) Belastungsstufe lässt die gemessenen NH3-
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Werte abermals hoch-signifikant (p=0.000, T-4,744) auf ca. 65µmol/l im Mittel anstei-

gen.

Die maximalen NH3-Konzentrationen im KB Versuch bleiben auf Ruheniveau

(25µmol/l) und fallen deshalb hoch-signifikant niedriger aus als bspw. bei OB (p=0.000,

T –8,832) und FB (p=0.000, T- 7,264). Der Ausgangsruhewert für NH3 liegt in der FB-

Untersuchung mit 25 µmol/l signifikant niedriger als bei der OB–Gruppe (p=0.001 (T-

3,767) und im KB-Test (p=0.003, T- 3,388) beide um etwa 40µmol/l.

6.1.4 Stress-System

Die Reaktionen des Stress-Systems auf die unterschiedlichen Belastungsregime (FB,

OB, KB) werden durch die im venösen Blut gemessenen Katecholamine (NA, A, DOP)

repräsentiert. Da die Nachbelastungsmessungen aus methodischen Gründen 25 Mi-

nuten nach der maximalen Belastungssituation stattfanden, wurde den sulfatierten

Katecholaminfraktionen wegen der längeren Halbwertzeiten bei statistischer Auffällig-

keit mehr Bedeutung zugemessen. Sowohl A in freier und sulfatierter Form als auch

freies DOP zeigen keine Belastungs- und Studieneffekte.

NA (frei (p=0,006, F8,931) und NA-Sulfat (p=0,009, F7,952)) und DOP-Sulfat (p=0,001,

F12,888) zeigen einen signifikanten Messzeiteffekt, der in vorliegender Konstellation

(R=Ruhe, 5= 25‘ nach maximal Belastung) aus der FB-Testbelastung resultiert (für NA-

Sulfat und DOP-Sulfat siehe Abb. 13 und Abb. 14). Es finden sich keine Gruppenunter-

schiede aufgrund der Belastungsregime.

Noradrenalin Sulfat (NAs)
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Abb. 13: Noradrenalinsulfat (NAs) [nmol/l] bei
R=Ruhe und 5=25‘ nach maximaler Belastung
in unterschiedlichen Belastungsregimen: Fahr-
radergometrie- (FB), Armkurbelergometrie-
(OB) und Kognitiver Belastung (KB).

Abb. 14: Dopaminsulfat (DOPs) [nmol/l] bei
R=Ruhe und 5=25‘ nach maximaler Belastung
in unterschiedlichen Belastungsregimen: Fahr-
radergometrie- (FB), Armkurbelergometrie-
(OB) und Kognitiver Belastung (KB).

Abb. 14 stellt die sulfatierten DOPs Konzentrationen vor und nach maximaler Testbela-

stung aller Gruppen signifikant (p=0,001, T3,770) abnehmend dar. Im Einzelnen finden
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sich schwach-signifikante Konzentrationsabnahmen bei FB (p=0,019, T2,779) und KB

(p=0,036, T2,522) nach der maximalen Belastung (5) im Vergleich zum jeweiligen Ru-

hewert um ca. 15 nmol/l. Die OB-Bedingung scheint diesen Parameter nicht zu beein-

flussen.

Der post hoc Test für NAf in KB zeigt eine schwach-signifikante (p=0,016, T-2,977)

Konzentrationserhöhung des freien NA nach Belastung gegenüber einem im Gruppen-

vergleich niedrigeren Ausgangswert (hier nicht dargestellt). Bei FB und OB ist eine

tendenzielle Konzentrationszunahme nach Belastung feststellbar, ohne Signifikanzni-

veau zu erreichen (siehe Anhang X).

6.1.5 Blutbilder

Die Feststellung des Blutbildes dient in den Studien FB, OB, KB:

1) der Sicherstellung und Dokumentation des Gesundheitszustandes der Probanden,

2) als Stress-Marker (Stress-Leukozytose),

3) zur Korrektur von Blutparametern für den Fall einer signifikanten Plasmavolumen-

verschiebung aufgrund belastungsbedingter Hämokonzentrationen.

Es finden sich generell signifikante Belastungseffekte bei den Blutzellen {Leuko-

(p=0,002, F11,092); Erythro- (p=0,000, F50,203); Thrombozyten (p=0,038, F4,698)}

und der Hämatocritwerte (p=0,000, F57,369) sowie Gruppeneffekte, die nur bei den

Leukozyten schwach-signifikant sind (p=0,013, F11,092).

Tab. 11 zeigt die zunehmenden Werte bei Leu, Ery, Throm und Htc durch die Belas-

tung (zwischen R und 5) mit deutlicher Ausprägung in den Testsituationen mit physi-

scher Belastung (FB, OB).

Gruppenunterschiede zeigen sich zwischen FB und KB bei den weißen Blutzellen -

Leu. Sowohl die Ruhewerte im Mittel ca. 4,18 10³/µl (p=0,014, T2,666), als auch die

Nachbelastungswerte (5) mit 4,34 10³/µl (p=0,005, T3,082) sind bei KB schwach- bis

signifikant niedriger als im FB-Durchgang.
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Tab. 11: Statistisch auffällige Blutbildparameter in Mittelwert und Standardabweichung nach
Messzeit (Mz): Ruhe=R und maximal Belastung=5 im Belastungsregime Fahrradergometrie-
(FB), Armkurbelergometrie- (OB), Kognitive Belastung (KB); p<0,05=*, p<0,01=**, p<0,001=***

Belastungsregime
FB OB KBBlutparameter

Mz MW+/-SD MW+/-SD MW+/-SD Sig.
Erythrozyten (ery) -R
[106/µl] R 4,73+/-0,28 4,97+/-0,21 4,80+/-0,27
Erythrozyten (ery)-5
[10 6/µl]

5 4,93+/-0,30 5,17+/-0,19 4,97+/-0,26

Leukozyten (leu) -R
[10³/µl]

R
5,41+/-1,21 4,79+/-1,11 4,18+/-0,96

Leukozyten (leu)-5
[10³/µl]

5 6,10+/-1,57 5,00+/-1,01 4,34+/-1,04  **

Thrombozyten
(throm) R [10³/µl]

R
250,00+/-50,15 256,91+/-59,60 241,10+/-53,16

Thrombozyten
(throm)-5 [10³/µl]

5 268,50+/-55,84 266,09+/-59,26 241,30+/-57,51  *

Hämatocrit (htc) -R
[l/l]

R
0,42+/-0,02 0,43+/-0,03 0,41+/-0,03

Hämatocrit (htc)-5 [l/l] 5 0,44+/-0,02 0,45+/-0,02 0,43+/-0,02  ***

***

**

*

6.1.6 Psychometrie

Die Ergebnisse der psychometrischen Daten stellen die reflektierte Wahrnehmung der

Testbelastungen, also die subjektiv empfundene Beanspruchung, dar.

Der Gesamtwert für die Befindlichkeit, Summe aller Items (hier nicht abgebildet), liegt

bei OB und KB sowohl bei Ruhe als auch nach den Belastungen auf ähnlichem Niveau

(82-84+/-9 Punkte). Unter FB Bedingung nehmen die Befindlichkeitswerte deutlich,

aber nicht-signifikant, auf 77+/-14 Punkte ab.

Die Unterkategorien der Befindlichkeit zeigen schwach- bis hoch-signifikante abneh-

mende Belastungseffekte bei den Subitems Vitalität (VT) (p=0.031, F5,075), Intrapsy-

chischer Gleichgewichtszustand (IG) (p=0,038, F4,669) und zunehmende Effekte bei

Sozialer Extrovertiertheit (SE) (p=0.000, F16,095).

Außer bei der subjektiv erlebten „Erschöpfung“ (Ausbelastungsfrage), die signifikant

(p=0,004, Chi²10,322) durch die Belastungsregime (Studieneffekt) beeinträchtigt ist,

konnten keine weiteren Studieneffekte festgestellt werden.
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Abb. 15: Mittlere Vitalitätsempfindung (VT)
[Punkte], ausgeruht (R) und nach maximaler
Testbelastung (5) im Belastungsregime FB,
OB, KB.

Abb. 16: Mittlere „Wachheitsempfindung“, „Vi-
gilanz“ (VG) [Punkte], ausgeruht (R) und nach
maximaler Testbelastung (5) im Belastungsre-
gime FB, OB, KB.
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Abb. 17: Mittlere „Ausgeglichenheitsempfin-
dung“, „Intrapsychisches Gleichgewicht“ (IG)
[Punkte], ausgeruht (R) und nach maximaler
Testbelastung (5) im Belastungsregime FB,
OB, KB.

Abb. 18: Mittlere „Außenzuwendungsempfin-
dung“, Soziale Extrovertiertheit (SE) [Punkte],
ausgeruht (R) und nach maximaler Testbela-
stung (5) im Belastungsregime FB, OB, KB.
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Abb. 19: Subjektiv erlebte Ausbelastung in
Häufigkeiten [N]. Belastungsfrage nach maxi-
maler Belastung (5) bei Belastungsregime FB,
OB, KB gestellt.

Abb. 20: Mittlere Konzentrationsleistung [Auf-
gabenanzahl] der Untersuchungsgruppe KB im
Vergleich zur Normreferenz (Studenten, n=40)
n. 30 Minuten Konzentrations-Leistungs-Test.
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Abb. 19 zeigt, dass es im Vergleich der physischen Belastungsregime (FB/OB) keine

Gruppenunterschiede im subjektiven Ausbelastungsempfinden gibt. Andererseits

zeichnen sich aber aufgrund des hohen „nicht Ausbelastungsgefühls“ der KB-Gruppe,

9 von 10 Probanden geben an „nicht ausbelastet zu sein“, signifikante Gruppenunter-

schiede zwischen FB/KB (p=0.002, Z -3,117) und OB/KB (p=0.020, Z –2,567) ab.

In der KB-Untersuchung (siehe Abb. 20) bearbeiten die Probanden im Mittel 117+/-40

Aufgaben. Das sind ca. 20 Aufgaben mehr als die Vergleichsnorm (94+/-8) nach 30

Minuten Testzeit. Dieser Unterschied ist statistisch schwach-signifikant (p=0,044,

T2,344).

6.1.7 Bewegungssystem

Die biomechanischen Messdaten der Antrittsbewegung [maximales Kraftäquivalent,

mittlere Kraftzunahme pro Zeit, Bewegungsverzögerung und mittlere Kraftlatenz, (siehe

Abb. 21, Abb. 22, Abb. 23, Abb. 24)] zeigen keine signifikanten Veränderungen, weder

im Messzeitvergleich noch im Studienvergleich.

In der Einzelbetrachtung der Belastungsregime lässt sich nicht-signifikant ein um ca.

0,5V stärkerer Antritt in FB-Bedingung, verglichen mit OB und KB, feststellen (Abb. 21).

Ebenso findet sich nicht-signifikant bei FB eine bis zur submaximalen Belastung (4) um

ca. 5V/s schnellere Kraftzunahme pro Zeit (Abb. 22).

Die Bewegungsverzögerung (Abb. 23) in FB und KB erweist sich stabil im Mittel bei

etwa 40 ms. In der OB-Untersuchung schwankt die Verzögerung im Mittel zwischen 35

und 40 ms. Ein ähnliches Bild liefert die Kraftlatenz (Abb. 24) mit stabileren Latenzen

bei FB (im Mittel ca. 100-112 ms), während diese in OB (83-92 ms) und KB (90-99 ms)

teilweise um 10-20 ms kürzer sind, das bedeutet, dass das Kraftmaximum in der OB-

und KB-Beanspruchung früher erreicht wird als in der FB-Bedingung.

Antrittskraftäquivalent [V] 

3,00
3,50
4,00
4,50
5,00
5,50

R 1 4 5

Messzeitpunkt

Sp
an

nu
ng

 [V
]

FB OB KB

Mittlere Kraftzunahme pro Zeit [V/s]

20,00
30,00
40,00
50,00
60,00
70,00

R 1 4 5
Messzeitpunkt

[V
/s

]

FB OB KB

Abb. 21: Antrittskraftäquivalent [V] nach Belas-
tungshöhe R=Ruhe, 1. – 5. Belastungsstufe im
Belastungsregime FB, OB, KB.

Abb. 22: Mittlere Kraftzunahme pro Zeit [V/s]
nach Belastungshöhe R=Ruhe, 1. – 5. Belas-
tungsstufe im Belastungsregime FB, OB, KB.
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Abb. 23: Mittlere Bewegungsverzögerung [s]
nach Belastungshöhe R=Ruhe, 1. – 5. Belas-
tungsstufe im Belastungsregime FB, OB, KB.

Abb. 24: Mittlere Kraftlatenz [s] nach Belas-
tungshöhe R=Ruhe, 1. – 5. Belastungsstufe im
Belastungsregime FB, OB, KB.

Da sich die erwähnten Unterschiede der Antrittsparameter in Abhängigkeit vom Belas-

tungsregime innerhalb der Streubereiche der Daten bewegen, also keiner signifikanten

Abweichung entsprechen, kann von einer relativen Stabilität in der Ausführung der An-

trittsbewegung ausgegangen werden. Diese Konstanz ist für die Interpretation mögli-

cher MRCP-Veränderungen von großer Bedeutung.

6.1.8 Belastungsauswirkungen im zentralen Abbild

Exkurs zum Verständnis der zentralen Ergebnisse.

MRCPs sind negative Gleichspannungspotentialverläufe, die vor willkürlichen Bewe-

gungshandlungen am Kortex abgeleitet werden können. Die MRCP-Stärke stellt sich in

höherer Negativität dar. Deshalb wird im folgenden Abschnitt von negativer Zunahme

die Rede sein. Damit wird keine Wertung vorgenommen, sondern die Potentialpolung

beschrieben, damit auch der Sprachgebrauch „Zunahme“ bei größer werdenden Wer-

ten gewahrt werden kann. Außerdem wird in diesem Zusammenhang bei langsamer

Negativierung von Aktivierung gesprochen (Ressourcenbereitstellung), während positi-

ve Potentialverschiebungen mehr den Verbrauch der Ressourcen (Deaktivierung) dar-

stellen (BirbaUMER & SCHMIDT 1996, S. 503; SCHOBER 1987, S. 56). Dies darf nicht mit

der Nomenklatur der Aktivierungstheorien verwechselt werden.

Die MRCP-Verläufe sind vor willkürlichem Bewegungsbeginn langsam ansteigende,

negative Gleichspannungspotentiale, die ihr Maximum etwa kurz vor dem Triggerzeit-

punkt erfahren (je nach Messtechnik) und die anschließend abrupt depolarisieren (ab-

nehmen). Diese Kurven entstehen durch Averaging42 wiederholter willkürlicher Bewe-

gungen und treten somit aus dem Spontan-EEG an bewegungsspeziellen motorischen
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und sensomotorischen Hirnarealen hervor. Für die qualitative Analyse werden die

mittleren MRCPs der Probandengruppe in einem „Grand Average43“ dargestellt.

6.1.8.1 Qualitative Analyse

-500-1000-1500-2000 Bewegungsanfang

Prätrigger Posttrigger

φ Cz
-10 µV

Abb. 25: Typischer MRCP-Kurvenverlauf 2000 ms vor Bewegung im Grand Average (n=14) bei
willkürlichen rechtsbeinigen Antritten, mit Herausstellung der Potentialkomponenten (letzten 100
ms vor Bewegung), die in die Map-Darstellung (Ausschnitt) eingehen.

Die Abb. 25 zeigt eine exemplarische „Grand Average“ MRCP-Kurve der Cz-Elektro-

denposition der FB-Gruppe nach rechtsbeiniger willkürlicher Antrittsserie. Der blaue

Kurvenanteil stellt das Prätriggerpotentialverhalten (eigentliche MRCPs), der rote die

Posttriggerphase dar. In die Mapdarstellungen (Aufsicht) gehen die mittleren MRCPs

der letzten 100 ms vor Antrittsbeginn (aller Antritte) aller Messelektroden ein. Im Map

selbst sind die Potentiale durch den Farbcode repräsentiert (blaue Farben entsprechen

negativen Potentialen, rote Farbtöne stellen positive Polarität dar). Die Intensität

(Spannungshöhe) wird im „Glühmodus“ (Farbhelligkeit) widergespiegelt. Somit sind bei

qualitativer Betrachtung der Maps und Kurvenverläufe, topographische MRCP-Verän-

derungen, schnell erfassbar.

Die Ruhemessung (vgl. Abb. 26) zeigt in Map Darstellung die mittlere Hirnaktivität im

„Grand Average“ in den letzten 100 ms Zeitraum vor Testbewegungsbeginn. In FB er-

kennt man eine Aktivierung über dem zentralen Kortex, die sich parietal symmetrisch

und rechts-präfrontal leicht asymmetrisch darstellt. Die maximale Negativität findet sich

über dem Vertex (Cz-Elektrodenposition). OB zeigt insgesamt eine etwas geringere

Aktivierung, die sich parietal, zentral symmetrisch und links-frontal asymmetrisch aus-

bildet. Auch hier ist die höchste Spannungsintensität über dem Vertex zu finden. Die

                                                                                                                                           
42 Wegen ungünstigen „signal to noise“ Ratio (-10µV zu +/-100µV) wird durch Mittelung mehre-

rer getriggerter Ereignisse das ereignisstabile Signal hervorgehoben.
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KB-Gruppe liefert ein ähnliches Bild wie OB, aber mit einer leicht rechts-frontalen Kor-

texaktivierung.

Die Analogkurven unterstreichen die in den Maps visualisierte „Aktivierung“. Während

sich bei FB über Fz „kein typischer MRCP-Verlauf“ abbildet, stellt sich in OB und KB

ein eher positives Potential kurz vor Trigger dar. Bei Cz- und Pz-Messelektroden ist ein

„charakteristisches MRCP“ mit unterschiedlichem Verlauf und Ausmaß erkennbar. Die

mittleren Spannungen der letzten 100 ms zeigen die größten negativen Werte im FB-

Belastungsprofil über Cz, Pz, und mit Einschränkung, auch bei Fz.

Im warm up Map (Abb. 27) erkennt man bei FB eine ähnliche, leicht rechts-frontale

asymmetrische Aktivierungsverteilung wiederum mit einem Maximum über der Vertex-

region (Cz). In OB ist ein deutlich umgrenzteres Gebiet mit geringerem „Aktivierungs-

ausmaß“ und mit symmetrischer Verteilung (höchste negative Spannung über dem

zentralen Kortex und nach parietal und frontal abnehmend) zu erkennen. Einen deutli-

chen Unterschied stellt die Negativitätsverteilung bis weit in den Frontalkortex in der FB

Testsituation dar.

Die Analogkurven zeigen über Fz-Elektrode einen leicht positiven Potentialverlauf kurz

vor dem Trigger (MRCP-ähnlich). Über der Cz-Elektrode ist jeweils ein charakteristi-

scher MRCP-Verlauf zu erkennen, mit größeren Negativspannungen bei FB im Ver-

gleich zu OB. Auch über der Elektrodenposition Pz ist ein MRCP-Verlauf erkennbar,

mit ebenfalls größerer mittlerer Aktivierungen bei FB.

Die stärkere mittlere frontale (Fz) Negativität 100 ms vor Antrittsbeginn bei FB findet

sich auch numerisch um -2µV gegenüber –0,6µV in der OB-Situation wieder.

Abb. 26: MRCP im Grand Average vor dem
Test in Ruhesituation, als Map- und Analog-
kurvendarstellung bei Belastungsregime FB,
OB, KB.

Abb. 27: MRCP im Grand Average nach 1.
Belastungsstufe, Warm-up-Messsituation, als
Map- und Analogkurvendarstellung bei Belas-
tungsregime FB, OB.

                                                                                                                                           
43 Mittlung aller gemittelten Potentialverläufe.



Ergebnisse 63

Abb. 28: MRCP im Grand Average nach 4.
Belastungsstufe, submaximale Messsituation,
als Map- und Analogkurvendarstellung bei
Belastungsregime FB, OB.

Abb. 29: MRCP im Grand Average nach 5.
Belastungsstufe, maximale Messsituation, als
Map- und Analogkurvendarstellung bei Belas-
tungsregime FB, OB, KB.

Abb. 28 zeigt ein MRCP-Map nach submaximaler Belastung. In der FB-Untersuchung

ist wieder die Negativierung, deutlich ausgeprägter über dem zentralen Kortex mit

asymmetrischer Einbeziehung bis weit in die frontalen (rechts) und parietalen (rechts)

Areale der rechten Hemisphäre zu erkennen. Bei OB hingegen fällt die Aktivierung ge-

genüber FB zentral deutlich geringer aus. Topographisch sind die frontalen und pa-

rietalen Gebiete, etwas eingegrenzt, aber symmetrisch miteinbezogen.

Die fronto-zentralen Hirnpotentialkurven zeigen bei OB eine Negativierung aus einer

positiven Spannung heraus. In FB ist ein „MRCP-ähnlicher Verlauf“ zu erkennen (Fz=-

3,796µV). Über den Elektrodenpositionen Cz und Pz sind in FB und OB typische

MRCP-Verläufe zu erkennen, mit großen Aktivierungen und frontal-parietaler Vertei-

lung, besonders bei der FB-Testreihe.

Nach maximaler Belastung zeigt sich das Grand Average MRCP-Map wie in Abb. 29

dargestellt. Zu erkennen ist bei FB eine deutliche Aktivierung, die sich weit über die

zentralen, parietalen Areale und fast symmetrisch in die Frontallappen ausbreitet. Nach

den Belastungen der OB entsteht eine eher umgrenzte, zentrale und symmetrische

Aktivierung, die sich leicht parietal ausbreitet und frontal nur geringe Negativität er-

reicht. In KB ist die Negativierung noch etwas geringer als bspw. in der OB-Situation.

Es zeichnet sich auch hier bei allen Studien eine symmetrische Potentialverteilung mit

Maximum über der Cz-Elektrodenposition (Vertex) ab.

Die Betrachtung der Analogkurven führt zum gleichen Ergebnis. Während in FB über

der Fz-Elektrode eine MRCP-typische Negativierung erfasst wird, fehlt diese bei OB

und KB, oder sie weisen entgegengesetzte Potentialverläufe in die positive Ladungs-

richtung auf.
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„Typische MRCP-Kurven“ lassen sich quervergleichend bei allen Belastungsregimen

(FB, OB, KB) und längsvergleichend über alle Messzeitpunkte, auch nach maximaler

Belastungsanforderung, über dem motorischen (Cz) und sensomotorischen (Pz) Kortex

mit unterschiedlicher Ausprägung ermitteln. In FB ist die kortikale Negativierung größer

ausgeprägt als bei den OB und KB. Die Unterschiede bei den der Bewegung voraus-

gehenden MRCPs mit zusätzlich beanspruchter Testmuskulatur (FB) zeigen die starke

Einbeziehung frontaler und parietaler Hirnregionen. Die physische Beanspruchung

scheint sich mehr auf die zentralen MRCPs auszuwirken (OB), während die KB-Unter-

suchungen keine nennenswerten Unterschiede aufweisen. Dieser Eindruck wird im fol-

genden Abschnitt quantitativ überprüft.

6.1.8.2 Quantitative Analyse

Statistisch auffällige Charakteristika für die MRCPs werden aus den Analogkurven für

die Ergebnisdarstellung ausgewählt: frontale (Fz), zentrale (Cz) und parietale (Pz)

MRCPs (siehe Tab. 6b). Hier nicht aufgeführte Parameter sind in den deskriptiven Ta-

bellen im Anhang XII-XIII zu finden.

Die über parieto-zentralen Hirnregionen (Pz) abgeleiteten MRCP-Parameter weisen

weder einen Belastungs- noch einen Studieneffekt auf und werden bis auf den Tabel-

lenteil im Anhang nicht explizit dargestellt.

Der qualitative Eindruck findet sich in den zentralen maximal Amplituden (Czmax) im

MRCP mit schwach-signifikantem Belastungseffekt bei FB und OB (p=0,027, F4,025)

bestätigt. Signifikante Gruppenunterschiede können aber nicht nachgewiesen werden.
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Abb. 30: Maximale MRCP-Amplitude an der Elektrodenposition (Cz) [µV] bei R=Ruhe und nach
1. – 5. Maximaler Belastungsstufe bei Belastungsregime FB, OB, KB.

Cz-max (Abb. 30): Die maximalen MRCP-Amplituden wachsen insgesamt (FB, OB) mit

zunehmender Belastung stetig an. Zwischen „warm up“ (1) und submaximaler Vorbe-

lastung (4) liegt die negative Amplitudenzunahme bei ca. 1,5-2µV schwach-signifikant

(p=0,023, T2,423). Die höchsten Werte finden sich nach der maximalen physischen

Belastung (OB und FB) (5) im Bereich –10 bis -13 µV, wobei insgesamt im Verlauf der

OB-Beanspruchung im Schnitt um 2µV geringere Amplituden gemessen werden. Die

KB-Messungen unterscheiden sich in Ruhe nicht von den anderen Testsituationen und

bleiben durch die Beanspruchung unverändert auf dem Ausgangsniveau von –9µV.

In den fronto-zentralen (Fz) MRCPs treten die deutlichsten Gruppen- und Messzeitun-

terschiede auf. Hier kann bei Fzpower ein hoch-signifikanter Belastungseinfluss

(Messzeit) (p=0,000, Chi²16,360) und in den höheren Belastungsstufen (4) (p=0,037,

Chi²4,365) bzw. (5) (p=0,023, Chi²7,533) ein schwach-signifikanter Einfluss der ver-

schiedenen Belastungsregime festgestellt werden (Abb. 31).

Der in Abb. 31 nachvollziehbare Anstieg der Medianwerte (von 2,2 bis 5,4µV²) mit

leicht unterschiedlichen Ausgangsniveaus führt mit zunehmender Belastung bis auf

Werte nach der höchsten Belastung von 20,6µV² (FB) / 5,3µV² (OB) und 3,0 µV² (KB)

am Ende der Testsituationen. Insgesamt sind bei ähnlichem Verhalten bei OB die

Werte niedriger mit schwach-signifikanten Unterschieden bei submaximaler (p=0,038,

Z2,089) Belastung. Der Unterschied zwischen FB und KB nach Maximalbelastung ist

signifikant (p=0,009, Z-2,570).
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Die maximalen MRCP-Amplituden an Fz (Fzmax) zeigen sich ebenfalls signifikant

durch die Belastung (p=0,001, F7,594) und die Studien (p=0,019, F6,957) beeinflusst.

In Abb. 32 werden die mittleren maximalen Amplituden (Fzmax) nach Vorbelastung

und nach Belastungsregime differenziert dargestellt. Bei physischem Belastungsregime

(FB, OB) war eine stetige Amplitudenzunahme mit zunehmender Belastungshöhe fest-

stellbar. Der generelle Belastungseffekt manifestierte sich post hoc zwischen der 1.

(warm up) und der 4. (submaximale) Messsituation als schwach-signifikant

(p=0,013,T2,727).

Die Amplituden steigen in FB, ausgehend von einem hohen Ruheniveau (–5,1 µV), mit

zunehmender Belastung am höchsten bis auf –8,917 µV. In OB ist ausgehend von ei-

nem niedrigen Niveau um –2,4 µV eine belastungsabhängige Amplitudenzunahme bis

zur Stufe 4 (–6,0 µV) feststellbar. Bei Maximalbelastung kommt es bei OB nicht zu ei-

nem weiteren Anstieg, sondern im Mittel sogar zu einer leichten Abnahme auf -5,0 µV.

Bei KB ist nach Belastung ein leichter Amplitudenrückgang auf –3,6 µV gegenüber

dem auf mittleren Niveau liegenden Ruhewert (-4,0 µV) zu verzeichnen. Die Gruppen

FB und OB unterscheiden sich im Ruhewert (p=0,05, T2,072) und nach warm up (1)

(p=0,049, T2,094) schwach-signifikant. Zwischen FB und KB erreichen die Unterschie-

de nach maximaler Belastung (5) (p=0,005, T-3,242) Signifikanzniveau.
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Abb. 31: FzPower (Fläche zwischen MRCP
Kurve und Baseline) [µV²] in Median und 75%
Perzentil an der Elektrodenposition (Fz) bei
R=Ruhe und nach 1. – 5. maximaler Belas-
tungsstufe bei Belastungsregime FB, OB, KB;
logarhymische Skalierung.

Abb. 32: Mittelwerte der maximalen MRCP-
Amplituden an der Elektrodenposition (Fz) [µV]
bei R=Ruhe und nach 1. – 5. maximaler Belas-
tungsstufe bei Belastungsregime FB, OB, KB.



Ergebnisse 67

Messzeitpunkt

Fz100 [µV] 

-8,00

-6,00

-4,00

-2,00

0,00

2,00

4,00

6,00
R 1 4 5

 S
pa

nn
un

g 
[µ

V]

FB OB KB

*
*

Messzeitpunkt

*

Fz_5-100 [µV]
Spannung [µV]

Abb. 33: Fz100=Mittelwerte der MRCP-Ampli-
tuden an der Elektrodenposition (Fz) [µV] 100
ms vor Trigger bei R=Ruhe und nach 1. – 5.
maximaler Belastungsstufe bei Belastungsre-
gime FB, OB, KB.

Abb. 34: Fz5-100=mittlere MRCP-Amplituden
an der Elektrodenposition (Fz) [µV] zwischen
500 und 100 ms vor Trigger bei R=Ruhe und
nach 1. – 5. maximaler Belastungsstufe bei
Belastungsregime FB, OB, KB.

Die GLM Analyse deckt beim Parameter Fz100 eine, post hoc unbestätigte, signifi-

kante Veränderung (p=0,007, F8,247) über die Belastungen und einen schwach-signi-

fikanten Studieneffekt (p=0,036, F(3,689) auf (siehe  Abb. 33).

In FB ist wiederum die größte Negativität feststellbar. Die Gruppenunterschiede erwei-

sen sich zwischen FB und OB sowohl bei Erwärmung (0,045, T-2,117), als auch bei

submaximaler Messung (0,029, T-2,328) um –2-3 µV schwach-signifikant negativer.

Die auffällig unterschiedlichen Ausgangswerte haben keinen Einfluss auf die statisti-

sche Bedeutsamkeit, wie die normierte Analyse im nächsten Kapitel aussagt.

Fz500-100 Abb. 34: Bei diesem Parameter kann die Prüfstatistik einen signifikanten

Belastungs- (p=0,008, F5,142) und schwach-signifikanten Studieneffekt (p=0,038,

F4,856) feststellen. Während die mittleren Amplitudenwerte insgesamt (FB, OB, KB)

trotz unterschiedlicher Wertausmaße einen stetigen Anstieg mit steigender Belas-

tungshöhe aufweisen, ist der generelle Belastungseffekt post hoc nicht zu bestätigen.

Ausgehend von einer im Mittel positiven Gleichspannung zwischen –2 und +2 µV neh-

men die Amplitudenwerte von Messsituation zu Messsituation um etwa –1µV zu und

erreichen in FB ihr Maximum bei –3+/-4 µV.

In OB ist ein ähnlicher Verlauf zu beobachten, der jedoch aus einer größeren Positivität

erwächst. KB zeigt nach Belastung auch eine Tendenz zur Erreichung der Amplituden

in Richtung Negativität, ohne die positive Polarität zu verlassen. In der maximalen

Messsituation zeigen sich die mittleren Amplitudenwerte bei Gruppe FB gegenüber KB

schwach-signifikant (P=0,019, T-2,610) erhöht.
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6.1.8.2.1 Quantitative Analyse normierter MRCP-Relationen

Nachträglich wurden alle MRCP-Messparameter relativ zu ihren Ausgangswerten nor-

miert und der statistischen Prüfprozedur unterzogen. So konnte ein denkbarer Einfluss

unterschiedlicher Ausgangswerte auf die Testergebnisse sicher ausgeschlossen wer-

den. Vorweggenommen bestätigen sich die bisherigen Testergebnisse weitestgehend

und sind nicht weiter dargestellt.

6.1.9 Korrelationen

In dem folgenden Gliederungspunkt wird ein zusammenfassender Überblick über kor-

relative Beziehungen zwischen den definierten Systemkreisen und ggf. wichtigen Pa-

rametern gegeben. Die Darstellungsauswahl begründet sich aus der Relevanz zur Fra-

gestellung, Überprüfung bekannter Zusammenhänge aus der Fachliteratur zu MRCPs

und aus statistischer Auffälligkeit. In Abhängigkeit vom Skalenniveau und von der Ver-

teilungsform kommen verschiedene Korrelationsverfahren zur Anwendung (Pearson,

Spearman, Kreuztabellen mit Punkt-biseriale Korrelation und Kendall taub), deren Kor-

relationskoeffizienten in der folgenden Beschreibung nicht ausdifferenziert wurden

(Bortz 2005, S. 224; Bühl & Zöfel 1994, S. 240ff). Zur detaillierten Kenntnisnahme wird

auf die Datentabellen im Anhang XV-XVII verwiesen, in denen sämtliche Ergebnisse

zusammengefasst dargestellt sind.

Die korrelative Betrachtung anthropometrischer Daten mit den übrigen Systemkreisen,

insbesondere der MRCP-Parameter, liefert beim Vergleich des Trainingsumfangs mit

der FB-Leistungfähigkeit eine (p=0,002) mittlere positive Beziehung (0,513) mit den

Befindlichkeitswertungen („Vigilanz“ und „Intrapsychisches Gleichgewicht“) mittleren

negativen Einfluss (-0,64 bis –0,4) und eher schwache negative Rangkorrelationen (-

0,5 bis 0,35) zu zentralen MRCP-Relationen (Czpower 5, Czpower 5p, Cz5-100 5p,

Fzpower 4p) (p=0,002 -0,043).

Die Sprungbeinpräferenz zeigt signifikante (p=0,000), mittlere bis schwache Beziehun-

gen (0,5 bis 0,47) zu den ermittelten Antrittsdaten (max. Kraftäquivalent und Kraftzu-

nahme pro Zeit).

Der Lateralitätsquotient korreliert schwach positiv mit Wachheits- (VG) und Ausgegli-

chenheitsempfindungen (IG) (0,47 bis 0,38) nach Belastung und bezüglich zentraler

Parameter überwiegend mit MRCP-Größen wie CzPower positiv (0,7 bis 0,41) und

vereinzelten frontalen MRCP-Parametern negativ.



Ergebnisse 69

Die Korrelationen zwischen peripherer Beanspruchung und den übrigen Systemkreisen

liefern folgendes Bild. Die ermittelte FB max. Vortestleistung als auch die max. Stufen-

belastung korrelieren schwach bis mittel positiv mit maximaler Laktatkonzentration und

Herzfrequenz (0,65 bis 0,5) (p=0,000-0,032).

Mittlere bis schwache negative Korrelationen (-0,527 bis -0,339) lassen sich sowohl

zwischen maximalen Wattleistungen und Dopaminwerten, als auch zu Befindenswer-

tungen (VT, VG) feststellen. Je höher die max. Leistung, desto weniger fühlen sich die

Probanden „vital“. Ebenso zeigen die maximalen Herzfrequenzen eine mittlere negati-

ve Beziehung (p=0,000) zur subjektiven Ausbelastungsempfindung (-0,613).

Die Korrelationen zu den zentralen Parametern zeigen, dass die max. FB-Leistung die

zentralen und frontalen MRCP-Amplituden eher schwach negativ beeinflussen (-0,4 bis

-0,5), während die OB-Leistung mehr mit den MRCP-Latenzen der zentralen MRCPs in

einem vereinzelt mittleren bis hohen (-0,71 bis -0,408) negativen Zusammenhang ste-

hen.

Die maximalen Herzfrequenzen korrelieren mittelstark positiv mit Pzpower 5p und

Fzpower 5p (0,65 bis 0,57). Die Fehleranzahl (klt_frw) im KB Testdurchgang weist eine

mittelstarke Beziehung (0,66) zu Fzmaxt 5 (Latenz) auf.

Die metabolische Beanspruchung zeigt beim Parameter max. Laktat eine schwach ne-

gative Beziehung (-0,43) zu der subjektiv empfundenen Ausbelastung. Werden die

metabolischen Parameter nach max. Belastung in Beziehung zu den MRCPs (Fzpo-

wer5) gesetzt, resultieren mittlere bis schwache positive Korrelation (0,59 bis 0,42),

d.h., je höher die max. Laktat bzw. NH3 Werte desto größer die frontalen MRCPs.

Die Parameter des Stress- und Blutsystems weisen bei Dopaminwerten schwach posi-

tive (0,51 bis 0,31) Korrelationen zu den erhobenen Befindlichkeits- und Ausbela-

stungswerten auf. Außer bei den Blutzellen (Leuko-,Erythrozyten) werden keine korre-

lativen Zusammenhänge zu MRCPs gefunden.

Die psychometrisch erhobenen Befindlichkeitsdaten besitzen einen schwachen positi-

ven (0,48 bis 0,38) Zusammenhang mit überwiegend zeitlichen MRCP-Komponenten

der frontalen und parietalen Hirnregionen. Nur das Ausbelastungsempfinden ist bezüg-

lich der normierten Fzpower (5p) schwach negativ (-0,43).

Die Antrittsparameter maximales Kraftäquivalent (Fmax) und die Kraftzunahme pro Zeit

(tanaf) gewissermaßen die „Antrittsgeschwindigkeit“ - liefern in allen Belastungsmes-

sungen einen schwachen positiven Zusammenhang (0,57 bis 0,37) mit zeitlichen Kom-

ponenten der frontalen (Fz) und zentralen (Cz) MRCPs und vereinzelt negative Zu-

sammenhänge mit Cz-Amplitudenrelationen.
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6.1.10 Ergebniszusammenfassung zum Belastungskomplex 1

Im Belastungskomplex 1 wurden drei Belastungsregime konzipiert. Diese Regime be-

inhalteten standardisierte Antrittserien mit Erfassung der hirnelektrischen Daten

(MRCPs) nach individuell an die Leistungsfähigkeit angepasster physischer Belas-

tungsintensität oder kognitiver Belastung. Während sich die drei Belastungsregime und

die jeweils darin abverlangten Leistungen unterscheiden, sollen die Beanspruchungen

für die Probandenkollektive vergleichbar sein. Die Differenzierung der Probandenkol-

lektive nach Trainingsumfang, Sprungbeinpräferenz und motorischer Lateralität scheint

nach Literaturstudium und Korrelationsergebnissen sinnvoll zu sein. Es ergeben sich

schwache positive Beziehungen zwischen dem Faktor Trainingsumfang mit FB-Leis-

tungsparametern und Befindlichkeitswertungen. Ferner nimmt die Sprungbeinpräferenz

mittelstarken positiven Einfluss auf die gemessenen Antrittsparameter. Die Lateralität

korreliert schwach positiv mit zentralen MRCP-Powerwerten und teilweise negativ mit

frontalen Parametern.

Die geforderten vergleichbaren Beanspruchungen lassen sich folgendermaßen be-

schreiben: Es zeigt sich, dass sich die relativierten Leistungswerte bei FB gegenüber

OB zumindest in den hohen Belastungsstufen nicht signifikant unterscheiden. Außer-

dem erreichen sie im Gruppenmittel zwischen 94-97% somit nahezu die maximale Lei-

stungsfähigkeit (100%). Die KB-Untersuchung zeigt zum Normvergleich eine um 20%

höhere Aufgabenbewältigung im Konzentrationsbelastungstest mit signifikant geringe-

rem Fehleranteil. Die peripheren Beanspruchungsparameter wie Herzfrequenz, Blut-

druck und Leistungen liefern signifikante Zunahmen mit zunehmender Belastungs-

intensität und die Herz-Kreislauf Beanspruchung (HF) zeigt signifikante Gruppenunter-

schiede zwischen FB, OB und KB. Die höchsten Werte werden bei der FB-Untersu-

chung ermittelt. Des Weiteren zeigte sich, dass das subjektive Ausbelastungsgefühl

(Erschöpfung) nur nach physischer (FB, OB), nicht nach kognitiver Belastung, erreicht

wird. Es zeigen sich korrelative positive Beziehungen zwischen der FB-Leistungsfähig-

keit zu absolvierter maximaler Stufenbelastung, Herzfrequenz und metabolischem Sys-

tem (Laktat, Ammoniak).

Die metabolischen Beanspruchungsparameter Laktat und Ammoniak liefern signifi-

kante Belastungsabhängkeit mit hohen Konzentrationen bei hohen Belastungen. Die

Untersuchungsgruppen unterscheiden sich ausschließlich beim Ammoniak zwischen

physischem (FB, OB) und kognitivem KB-Belastungsregime. Allerdings sind Grup-

penunterschiede bei den Ausgangswerten mit niedrigeren Werten bei FB im Vergleich

zu OB und KB beobachtbar.



Ergebnisse 71

Die Parameter im Stress-System zeigen sinkende Dopaminsulfatspiegel zwischen

Ausgangs- und maximalen Belastungswerten bei FB und KB. Dass diese Abnahmen

größer sind, je höher die maximale FB-Leistung ist, besagt die negative Korrelation

zwischen den Parametern. Blutzellen und Hämatokrit nehmen nach maximaler Belas-

tung signifikant zu. Die Testreihe FB liefert signifikant höhere Leukozytenzahlen als die

KB-Untersuchung. Des Weiteren können keine weiteren Gruppenunterschiede festge-

stellt werden.

Die psychometrisch erfassten Befindlichkeiten zeigen keine signifikante Veränderung

der Gesamtbefindlichkeit. Allerdings gibt es tendenzielle Abnahmen und niedrigste

Wertungen bei FB-Untersuchung. Die Differenzierung zwischen den Subkategorien

„Vitalität“, „Vigilanz“ und „Intrapsychisches Gleichgewicht“ liefert bei physischen Belas-

tungen (FB und OB) signifikante Abnahmen, während die Punktwertungen für „Außen-

zuwendung“ (SE) bei OB und bei KB zunehmen. In FB fühlen sich die Probanden er-

schöpfter als in den anderen Untersuchungen. In KB hingegen fühlen sie sich trotz hö-

herer Testleistungen und geringerer Fehlerzahl zur Vergleichsnorm nicht ausbelastet.

Korrelativ zeigt sich, dass mit zunehmender Testleistung die Vitalitäts- und Vigilanz-

empfindungen abnahmen. Ebenso nehmen die Probanden mit größerer maximaler

Herzfrequenz eine stärkere Ausbelastung wahr.

Die Antrittsbewegungen entsprechen bei allen Untersuchungen gleicher maximaler

Kraft und „Geschwindigkeit“ (Kraftzunahme pro Zeit). Somit sind die Ergebnisse der

zentralnervalen „antrittsevozierten“ MRCPs auch in Hinblick auf das Beanspruchungs-

ausmaß vergleichbar.

Feststellen lassen sich belastungsabhängige Zunahmen der zentralen (Cz) Negativität

bei physischer Belastung in Maximal-Amplitude und Ausmaß (Power). Deutliche Unter-

schiede bei den MRCPs zeigen sich frontal und parietal, wenn die Bewegungsmusku-

latur zuvor zusätzlich beansprucht wurde (FB). Hierbei sind besonders die MRCP-In-

tensität (Negativitätshöhe), -Ausmaß und -Verbreitung (Topographie) beeinflusst. Be-

stätigung finden diese Ergebnisse in der gegenläufigen Korrelation besagter FB-Leis-

tung mit zentraler (Cz) und frontaler MRCP-Negativität. Die OB-Leistung weist hinge-

gen mehr negativen Einfluss auf die zeitlichen Komponenten (Latenzen) der zentralen

(Cz) MRCPs auf.

Die psychometrischen Befindlichkeitseinflüsse und Antrittsbewegungseinflüsse auf die

hirnelektrischen MRCPs weisen überwiegend schwache positive Einflüsse zu zeitlichen

MRCP-Komponenten auf.
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6.2 Belastungskomplex 2

Alle statistisch ermittelten Ergebnisse sind vollständig im Anhang XVIII -XXII nachzule-

sen. Aus Gründen der Übersichtlichkeit werden nur die für die Fragestellung bedeut-

samen Ergebnisse abgebildet. Alle anderen sind in ergänzenden Tabellen im Anhang

XXII dargestellt.

6.2.1 Beanspruchungsparameter

Die GLM liefert bei 21 untersuchten Sportlern zwischen den Untersuchungsgruppen si-

gnifikante Zwischensubjekteffekte in der absoluten (Pmax in Watt) [p=0,004, F-Ratio -

3,274] und relativen (Prel in Watt/kg) [p=0,000, F-Ratio 6,785] Leistungsfähigkeit. Zur

Betrachtung der Messwerte mit Gruppendifferenzierung siehe Abb. 35 oder Tab. 7 im

Methodikteil.
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Abb. 35: Mittlere Leistungsfähigkeit (Pmax)
[Watt] nach Leistungsgruppen (mäßig-, gut
trainiert) differenziert.

Abb. 36: Herzfrequenzen [S/ min] in Mittelwert
und Standardabweichung während passiv lie-
gender Regeneration nach individuell maxi-
maler Ergometerbelastung bei mäßig (n=10)
und gut trainierten (n=11) Sportlern.

Die Herzfrequenzen (HF) zeigen bezüglich des Faktors Regenerationszeit einen signi-

fikanten Effekt [p<0.001, F-Ratio 204.945]. Die HF (siehe Abb. 36) nehmen vom Maxi-

mum direkt nach Belastung (M1) in der weiter folgenden Regeneration (zunächst steil

bis M2 und dann flach) signifikant von Messzeit zu Messzeit bis 2 Stunden nach Belas-

tungsende ab [p<0,001], nur mit tendenziell höheren Werten bei den leistungsfähigeren

Probanden.

6.2.2 Stress-System und Blutparameter

Die GLM bzw. der Friedman-Test zeigt bei den Katecholaminen (siehe Abb. 37)

höchst-signifikante Regenerationszeiteffekte, jedoch keine Gruppeneffekte.Die Ergeb-
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nisse im Einzelnen: Dopamin (Dop) [p<0.001, F-Ratio 13.822], Noradrenalin (NA)

[p<0.001, F-Ratio 78.178], Adrenalin (A) [p<0,001 Z-Ratio 8.699].

Abb. 37: Mittelwert u. Standardabweichung
bzw. Mediane der Katecholamine [ng/l] (Do-
pamin, Noradrenalin und Adrenalin) während
passiv liegender Regeneration zur Messzeit
M1= 3 min, M2= 45 min, M3= 60 min, M4= 75
min, M5= 135 min nach individuell maximaler
Ergometerbelastung bei mäßig (n=10) und gut
trainierten (n=11) Sportlern. Die Ergebnisse
der post hoc Prüfstatistik ohne Gruppeneffekt
n=21 für p<0,001: *** nach t-Test und +++
nach Wilcoxon.

Abb. 38: Stressreaktive Parameter: Prolaktin
(Pro), Cortisolwerte (Cor) und Glucose (gluc)
[mmol/l] in Mittelwert u. Standardabweichung
während passiv liegender Regeneration zur
Messzeit M1= 3 min, M2= 45 min, M3= 60 min,
M4= 75 min, M5= 135 min nach individuell ma-
ximaler Ergometerbelastung bei mäßig (n=10)
und gut trainierten (n=11) Sportlern. Die Er-
gebnisse der post hoc Prüfstatistik ohne Grup-
peneffekt, n=21 für p<0,001: *** nach t-Test
und +++ nach Wilcoxon.

Abb. 37 zeigt die beanspruchungsbedingt erhöhten Werte im Mittel für Dop (40-110

ng/l), für NA (50-2900 ng/l) und für A (35-500 ng/l) in der Frühregeneration (M1), die bis

45 min nach Belastung signifikant in den oberen Normbereich abfallen. In der weiteren

Regeneration sind keine signifikanten Verschiebungen vom oberen in den mittleren

Normbereich zu verzeichnen. Auffallend sind die deutlich höheren Katecholaminwerte

bei der „gut-leistungsfähigen“ Gruppe gegenüber der „mäßig-Leistungsfähigen“. Die
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statistische Analyse mit dem Faktor „Leistungsgruppe“ kann aber nicht mehr als einen

Trend bei NA [p=0.055, F-Ratio 4.19] aufzeigen.

Prolaktin (Pro) [p<0.001, F-Ratio 19.995], Cortisol (Cor) [p<0.001, F-Ratio 13.865] und

Glucose (Glu) [p<0,001, F-Ratio 17,920] zeigen in der GLM signifikante Regenerati-

onszeiteffekte und keine Gruppeneffekte (siehe Abb. 38). Im Einzelnen liegt Pro nach

Belastungsende (M1) im hohen Normbereich (50-400 mIU/l) und zeigt im Regenerati-

onsverlauf einen gleichmäßigen signifikanten Abfall bis zu M4 in den unteren Normbe-

reichen. Beim Cor ist ein ähnliches Verhalten im Normbereich (8-16 mIU/l) mit zeitli-

chem „delay“ beim Rückgang und Rückkehr in den Tagesrhythmus festzustellen.

Die Blutzuckerkonzentration (Gluc) liefert tendenziell leicht höhere Konzentrationen

(M2-M5) bei den „gut-Leistungsfähigen“. Die gemessene Glucosekonzentration im Blut

steigt von M1 zu M2 signifikant [p<0.001, F-Ratio -5.804] an, bevor sie von M2 zu M3

[p=0.004, F-Ratio 3.248] bzw. M3 zu M4 [p<0.001, F-Ratio 4.780] schrittweise signifi-

kant abnimmt. Dies ist ein Effekt des zuckerhaltigen Regenerationsdrinks.

Die gemessenen Erythrozytenzahlen (Ery) und Leukozytenzahlen (Leu) sind der Abb.

39 zu entnehmen.
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Abb. 39: Blutzellen: Erythrozyten (ery) [106/µl], Leukozyten (leu) [10³/µl] während passiv liegen-
der Regeneration zur Messzeit M1= 3 min, M2= 45 min, M3= 60 min, M4= 75 min, M5= 135 min
nach individuell maximaler Ergometerbelastung bei mäßig (n=10) und gut trainierten (n=11)
Sportlern. Die Ergebnisse der post hoc Prüfstatistik ohne Gruppeneffekt, n=21 für p<0,001: ***
nach t-Test und +++ nach Wilcoxon.

Es können keine signifikanten Unterschiede zwischen den Leistungsgruppen festge-

stellt werden, obwohl die gut-leistungsfähigen Sportler tendenziell höhere Ery-Konzen-

trationen aufweisen.

Allerdings zeigen sich bezüglich des Faktors Regenerationszeit signifikante Verände-

rungen. Im Einzelnen: die Ery-Konzentration fällt ausgehend von einem Ausgangsni-
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veau von 5-5,5 106/µl in der Frühregeneration (M1 zu M2) signifikant [p<0.001, F-Ratio

9.484] auf Werteniveau um 4.5 106/µl ab. Erst zu M5 nehmen die Erys wieder signifi-

kant [p=0.016, F-Ratio -2.629] zu.

Bei den Leu findet zwischen M1 und M2 eine signifikante Abnahme [p<0.001, F-ratio

14.913] statt und zwischen Regenerationsminute 45 und 60 (M2-M3) bildet sich ein

Plateau. In der weiteren Erholungszeit ist eine stufenweise signifikante Zunahme (M3-

M4), [p<0.001, F-Ratio -4,721]; (M4-M5) [p<0.001, F-Ratio –5.888] zu erkennen.

Der Kontollparameter Kreatinin (Krea), hier nicht dargestellt, zeigt einen Erholungsef-

fekt [p<0,001, F-Ratio 29,079] aber keinen Gruppeneffekt. Er fällt von erhöhten Norm-

werten um 1,15mmol/l direkt nach Belastung (M1/M2) höchst-signifikant [p<0,001, F-

Ratio 10.401] auf niedrigere Normwerte, die konstant auf ca. 1mmol/l im weiteren Er-

holungsverlauf verbleiben.

6.2.3 Spontan-EEG Frequenzspektrum im Regenerationsverlauf

6.2.3.1 Qualitative Analyse

Das EEG in der Regenerationsphase stellt sich in Frequenzen und Topographie höchst

unterschiedlich dar. Die hier nicht dargestellten Theta- und Alpha1-Frequenzbänder

zeigen keinen Messzeiteffekt. Zur Datenreduktion werden in der Abb. 40 nur Frequen-

zen qualitativ dargestellt, die statistisch signifikante Veränderungen in der Regenerati-

onsphase aufweisen. Entsprechend dem jeweiligen Skalenniveau (rechte Spalte) be-

deuten im Glühfarbenmodus niedrigere Leistungsdichten „kalte“-rot bis schwarze

Glühfarben, hohe Leistungsdichten bedeuten “heiße“-blau bis weiße Glühfarben. Die

Hirnkarten sind dargestellt mit frontaler Orientierung links.
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Abb. 40: Qualitative Darstellung der spektralen Leistungsdichten, statistisch relevanter Fre-
quenzbänder (Delta=1,25-4,5Hz, Alpha2=9,75-12,5Hz, Beta1=12,75-18,5 Hz, Beta2=18,75-35
Hz) im EEG während passiv liegender Regeneration zur Messzeit M1= 3 min, M2= 45 min, M3=
60 min, M4= 75 min, M5= 135 min nach individuell maximaler Ergometerbelastung bei gesun-
den Sportlern (n=21). Die spektralen Leistungsdichten sind im Glühfarbenmodus (ab unterem
Skalenniveau schwarz mit zunehmender Leistungsdichte über rot, gelb bis oberem Skalenni-
veau hellblau und darüber weißlich) als Hirnkarten dargestellt. Die Skalen für das jeweilige Fre-
quenzband stehen in der rechten Spalte, die Farbkodierung ist oben links zu entnehmen. Die
Hirnkarten stellen eine Aufsicht auf den Kortex dar, die Orientierung ist dabei links=frontal (sie-
he oben links).

Während die elektrischen Leistungen in der „langsamen“ Deltafrequenz (1,25-4,5 Hz)

im Verlauf von Früh- (M1) über Mittel- (M2-3) und Spätregeneration (M4-5) besonders

in motorisch und sensomotorischen Regionen mit links-zentraler Gewichtung (M2-M5)

kontinuierlich bis zum Ende des Beobachtungszeitraumes abnehmen (mehr Rotfär-

bung), zeigen die schnelleren Alpha2-, Beta1- und Beta2-Frequenzen, nach dem
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ebenfalls vor allem frontal und zentral die Leistung zurückgegangen war,

,„Reboundanstiege“ in späten Messzeitpunkten (M5 bzw. M4). Im Alpha2-Band fällt die

zunächst hohe elektrische Leistungsdichte (hellblaue Gebiete) fast über dem gesamten

Kortex mit Ausnahme okzipitaler Regionen im weiteren Erholungsverlauf hirntopogra-

phisch unterschiedlich ab. Die Abnahme ist in der frühen- (M1) und mittleren Erho-

lungsphase (M2) präfrontal und parieto-zentral -asymmetrisch rechts betont (schneller).

In der 75. Erholungsminute (M4) ist die Alpha2-Rückstellung parieto-zentral symme-

trisch, großflächiger ausgeprägt mit Einbeziehung auch temporaler Regionen. Diesem

Zustand folgt in der späten Erholungsphase (M5) im Vergleich zu M4 ein von okzipital

und links-zentralem besonders augeprägter Alpha2-Wiederanstieg (hellblau und gelbe

Rindenregionen).

Beta1 zeigt ebenfalls eine relativ hohe Leistungsdichte (gelb und hellbau) in der Früh-

erholung (M1). Die Rückstellungen der Beta1-Leistungen sind unstetig. Erst zum spä-

teren Zeitpunkt (M4) ist eine deutliche Abnahme vor allem in frontalen- sowie parieto-

zentralen (sensomotorischen) Rindenregionen erkennbar. In der Spätphase der Erho-

lung (M5) entsteht der eingangs beschriebene „Reboundanstieg“ der Beta1-

Leistungsdichte mit topographischen „Schwerpunkten“ präfrontal-links. Die Beta2-

Leistungsdichte zeigt im Regenerationsverlauf (M1-M3) eine stetige gesamtkortikale

Abnahme mit regionaler rechts-parietaler Betonung. In M4 verglichen zu M3 ist eine

Beta2-Leistungszunahme insbesondere in frontalen- und rechts-parietalen Arealen er-

kennbar, die in M5 bis auf einen kleinen frontalen Streifen wieder abnimmt.

6.2.3.2 Quantitative Auswertung des Regenerationszeiteffektes im spektral-

topographischen EEG

Außer Theta- und Alpha1 lieferten die übrigen EEG-Frequenzen signifikante Regene-

rationseffekte in verschiedenen Hirngebieten, die wie folgt zusammengefasst werden:

• Delta an 8 Messpositionen: temporal, frontal, rechts-zentral, mehrheitlich hemi-
sphärisch [p=0,028-0,002; F=2,875-4,749].

• Alpha2 an allen 17 Messorten [p=0,010-0,000] bzw. [p=0,024-0,000; F=2,981-
5,775].

• Beta1 an 15 Positionen der Hirnrinde außer (Fz, F4) mit [p=0,039-0,000; F=2,657-
10,743].

• Beta2 an 17 Elektroden: gesamte Hirnrinde [p=0,015-0,000, F=3,308-14,069], bzw.
[p=0,046-0,004].

Die post hoc Ergebnisse sind in Tab. 12 aufgeführt. Sie bestätigen die vorher be-

schriebenen qualitativen Muster von Zeit und Ort.
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Tab. 12: „Regenerationszeiteffekte“ im EEG: Leistungsdichten zu M1 Mittelwert [MW] und Stan-
dardabweichung [SD] (nichtparametrische Parameter als Median [MD]) nach post hoc Prüfstati-
stik (t-Test bzw. Wilcoxontest). Richtungstrend der Werte und Signifikanz (*/+= p<0,05, **/++=
p<0,001)

Parameter
Frequenz-
Elektrode

MD bzw.
Mw ±SD
[µV²/Hz]

Regenerationseffekt Post Hoc Test
Faktor: Zeit ( p * =0.05 T-Test/+
p=0.05 Wilcoxon)

M1 M2-M1 M3-M2 M4-M3 M5-M4
Delta_c4 5.6 ↓ ↑ ↓ ↑+
Alpha2_c4 6.1±3.9 ↓* ↓ ↓ ↑*
Alpha2_c3 4.9 ↑ ↓+ ↑ ↓
Alpha2_cz 5.5 ↓ ↓+ ↑ ↓
Alpha2_f3 9.9 ↓ ↓+ ↑ ↓
Alpha2_f4 9.4 ↓ ↓+ ↑ ↓
Alpha2_f7 8.8 ↓ ↓+ ↑ ↓
Alpha2_f8 9.3 ↓ ↓+ ↑ ↓
Alpha2_o1 25.6 ↓ ↓+ ↑ ↓
Alpha2_o2 23.8 ↓ ↓++ ↑ ↓
Alpha2_p4 12.6 ↓ ↓+ ↑ ↑
Alpha2_pz 10.2 ↓ ↓+ ↑ ↑
Beta1_pz 2.3±1.3 ↓ - ↓* ↑
Beta1_p4 2.5±1.4 ↓ ↓ ↓* ↑*
Beta1_01 4.0±2.0 ↓ ↓* ↓ ↑
Beta1_f8 2.3±1.0 ↓ ↑ ↓* -
Beta1_f7 2.3±0.9 ↓* ↑ ↓ -
Beta1_f3 2.4±1.3 ↓* ↑ ↓* ↑
Beta1_c3 1.7±1.0 ↓ - ↓* -
Beta2_pz 1.6±0.8 ↓* ↓* ↓ ↑
Beta2_p4 1.6±0.8 ↓ ↓* - ↑*
Beta2_p3 1.6±0.8 ↓* ↓ ↓ ↑*
Beta2_o2 2.6±1.4 ↓* ↓* - -
Beta2_o1 2.4±0.9 ↓* ↓** ↓ ↑
Beta2_fz 2.0±0.9 ↓ - ↓* ↑
Beta2_f7 2.1±0.8 ↓* ↓ ↑ -
Beta2_f4 2.0±0.8 ↓* - ↓ ↑
Beta2_f3 2.0±0.8 ↓* - ↓ ↑
Beta2_c4 1.5±0.9 ↓ ↓ ↓ ↑*
Beta2_c3 1.6±0.9 ↓ ↓ ∗ - -
Beta2_cz 1.4 ↑ ↓ ↓+ ↑

-*

Statistisch signifikant sind die Alpha2-Abnahmen nach mittlerer Erholungszeit (zw. M2 -

M3), besonders frontal, zentral, okzipital und etwas in parietaler Hirnrinde (Tab. 12).

Die Beta1-Leistungsdichten zeigen im Erholungsverlauf frontal-, parietal- und links-

zentral (C3)- schwankende Abnahmen, die überwiegend erst in später Regenerati-

onsphase (M4) Signifikanzniveaus erreichen. Einzige Ausnahme bildet die Beta1-

Leistung links-frontal zu M3 (siehe Tab. 12). In der Beta2-Frequenz finden sich bereits
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in der Früherholung (M1 - M2) frontal- okzipital- und links-parieto-zentral signifikante

Abnahmen (Abb. 40 und Tab. 12). Im weiteren Erholungsverlauf erweisen sich die Be-

ta2-Abnahmen in M3 rechts-parieto-zentral und okzipital signifikant mit „Reboundan-

stieg“ in M4 anhaltend bis M5.

Die mittleren EEG-Leistungsdichten des jeweiligen Frequenzbandes mit Elektrodenpo-

sition, Messzeit und Verteilungsform (nichtparametrisch/ parametrisch), die nicht nach

Gruppen differenziert sind, finden sich im Anhang XIX - XXI.

6.2.3.3 Spontan-EEG: Einfluss der Leistungsfähigkeit

Im EEG-Frequenzspektrum detektiert die GLM signifikante Gruppenunterschiede aus-

schließlich im Thetaband über dem fronto-zentralen Kortex (Fz) [p=0,045, F-Ratio

4,594] mit signifikant geringeren Leistungsdichten bei den „gut-Leistungsfähigen“ in M1

[p=0,05, F-Ratio 2,039] und M5 [p=0,028, F-Ratio 2,378] (siehe Abb. 41). Der Fried-

man Test für nichtparametrische Verteilung liefert ebenfalls einen signifikanten Grup-

peneffekt in parieto-zentraler Alpha2-Leistungsdichte [p=0,045] mit signifikant erhöhter

Alpha2-Leistung im M5 [p=0,045, Z-Ratio –2,008] bei „gut-Leistungsfähigen“ (siehe

Abb. 42). Darüber hinaus können keine signifikanten Gruppeneffekte festgestellt wer-

den.

Messzeitpunkt

mäßig trainiert gut trainiert

Theta-Fz

0.0

2.0

4.0

6.0

8.0

10.0

12.0

M1 M2 M3 M4 M5

P [µV²/Hz] mäßig trainiert gut trainiert

+

Messzeitpunkt

Alpha 2-Pz

Abb. 41: Fronto-zentrale Thetaleistungsdichte
[µV²/Hz] in Mittelwert u. Standardabweichung
während passiv liegender Regeneration zur
Messzeit M1= 3 min, M2= 45 min, M3= 60 min,
M4= 75 min, M5= 135 min nach individuell max-
imaler Ergometerbelastung bei mäßig (n=10)
und gut trainierten (n=11) Sportlern. Die Ergeb-
nisse der post hoc Prüfstatistik nach Grup-
peneffekt für p<0,05: * nach t-Test für unab-
hängige Stichproben.

Abb. 42: Parieto-zentrale Alpha2 Leistungs-
dichte [µV²/Hz] in Mediandarstellung während
passiv liegender Regeneration zur Messzeit
M1= 3 min, M2= 45 min, M3= 60 min, M4= 75
min, M5= 135 min nach individuell maximaler
Ergometerbelastung bei mäßig (n=10) und gut
trainierten (n=11) Sportlern. Die Ergebnisse
der post hoc Prüfstatistik nach Gruppeneffekt
für p<0,05: + nach Mann Whitney-U Test.
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6.2.4 Symphatico-adrenerge Downregulation (korrelative Betrachtung)

Es wurden nur Korrelationen zu M1 berechnet. Die Korrelationsmatrixen werden auf-

grund des Umfangs nicht dargestellt.

Zusammenfassend werden die korrelativen Ergebnisse zwischen zentralem System

(EEG) und stressreaktivem peripheren System (Katecholamine, Hormone) in Tab. 13

dargestellt.

Die Korrelationen zwischen EEG-Werten die im Erholungsverlauf statistisch signifi-

kante Veränderungen aufwiesen und den Katecholaminen zeigen signifikante Zusam-

menhänge von NA mit frontaler, zentraler und rechts-parietaler Alpha2-Leistungsdichte

mit Korrelationskoeffizienten zwischen 0,45 und 0,63 und höchst-signifikante Korrela-

tionen mit frontaler, links-zentraler und parietaler Beta2-Leistungsdichte (Koeffizienten

zwischen 0,43 und 0,75). Des Weiteren liefert NA signifikante Korrelationen zur relati-

ven maximalen Leistung und maximalen Herzfrequenz. Dop korreliert signifikant mit

links-zentraler Alpha2-Leistung (0,49) und mit parietaler Beta2-Leistungsdichte (0.5-

0.6). Die Parameter Cortisol und Prolaktin liefern keine signifikanten Assoziationen

zum EEG in M1.

Tab. 13: Ausgewählte Korrelationen zum ersten Messzeitpunkt (M1) zwischen Katecholaminen
und statistisch auffälligen EEG- bzw. Beanspruchungsparametern: mit Pearson- oder Sper-
man=Fettdruck Korrelationskoeffizienten und Irrtumswahrscheinlichkeit (p)

Korrelationen zu M1 bei Parametern: Katecholaminen (NA, A, Dop) und EEG Frequenzleistungen
sowie Beanspuchungsdaten (HF, max Pretestpower, PPO)
Parameter Messposition/

Korrelations-
koeffizient/p

Messposition/
Korrelations-
koeffizient/p

Messposition/
Korrelations-
koeffizient/p

Region Korrelationsbeziehung in max-min.
Korrelationskoeffizient

NA - Beta2 F3/0.50/0.02 Fz/0.48/0.03 F4/0.43/0.05 Frontal Frontal/0.05-0.43/
NA - Beta2 C3/0.44/0.05 Cz/0.45/0.04 C4/-/- Zentral Linkszentral/0.45-0.44
NA - Beta2 P3/0.75/0.000 Pz/0.58/0.006 P4/0.60/0.004 Parietal Parietal/0.75-0.58
NA - Alpha2 F3/0.53/0.01 Fz/-/- F4/0.46/0.04 Frontal Frontolateral/0.53-0.46
NA - Alpha2 C3/0.63/0.002 Cz/0.56/0.009 C4/0.57/0.006 Zentral Zentral/0.63-0.56
NA - Alpha2 P3/-/- Pz/0.55/0.009 P4/0.52/0.01 Parietal Rechtsparietal/0.55-0.51
Dop - Alpha2 C3/0.49/0.003 Cz/0.48/0.003 C4/-/- Zentral Linkszentral/0.49-0.48
Dop - Beta2 P3/0.5/0.02 Pz/0.54/0.01 P4/-/- Parietal Linksparietal/0.54-0.50
NA-relmaxPPO/0.51/0.01 peripher/0.51
A - maxHF /0.71/0.000 peripher/0.71

6.2.5 Ergebniszusammenfassung zum Belastungskomplex 2

Im Belastungskomplex 2 wurde die hirnelektrische Rückstellung nach reproduzierbarer,

physischer „Stressauslenkung“ durch maximale Fahrradergometrie (FB) untersucht.

Die Hypothese, dass gut ausdauerleistungsfähige Sportler besser/kürzer regenerieren,

wird im Nachbelastungszeitverlauf anhand des Gruppenfaktors „Leistung“ überprüft.
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Die Untersuchungsgruppen erweisen sich (einfaktoriellen ANOVA) in der maximalen

Ausdauerleistungfähigkeit als signifikant verschieden (p=0,004, T-3,274). Die „gut-Leis-

tungsfähigen“ leisten 340+/-54 Watt (etwa 4,5 Watt/kg) signifikant mehr als die „mäßig-

Leistungsfähigen“ mit 275+/-38 Watt (etwa 3,5 Watt/kg). Beide Gruppen erbringen

100% ihrer vorgetesteten maximalen Leistungsfähigkeit. Die hohe körperliche Bean-

spruchung in den Test-Situationen wird durch die hohe Auslenkung der physischen Pa-

rameter aus den gewählten Systemkreisen belegt. Z.B. zeigen die maximalen Herzfre-

quenzen mit 180-190 1/min die Auslenkung der Katecholaminwerte (DOP, NA, A),

Hormone (Pro, Cor), Kreatinin, Blutzellen (Erythro-, Leukozyten) im oberen Normbe-

reich ohne Gruppenunterschiede. In der Rückstellphase zeigen die Parameter signifi-

kante Regenerationseffekte, die besonders in der Frühregeneration 3 bis 45 min nach

Belastung auftreten.

Die Ausdauerleistungsfähigkeit zeigt nur schwach-signifikante Gruppeneffeke mit ge-

ringerer fronto-zentraler Theta-Leistung (p=0,045, F-Ratio=4,594) in der frühen (3-45

min) und höherer parieto-zentralen Alpha2-Leistungsdichte (p=0,045) in der späten

Phase (135 min) bei den „gut-Leistungsfähigen“.

Signifikante Regenerationseffekte zeigen außer der rechts-zentralen Delta-Frequenz

besonders die schnelleren EEG-Frequenzen ab Alpha2 bis Beta2 in unterschiedlicher

Weise. Während die Alpha2-Leistungen rechts-parietal in mittlerer Regenerationspha-

se zurückgehen, nehmen die frontalen Beta1-Leistungen besonders in der Frühregene-

ration ab, gefolgt von teilweisen „Reboundanstiegen“ in der letzten Ruhephase. Fron-

tale, zentrale und okzipitale Beta2-Leistungen haben einen ähnlichen Verlauf, d.h. Ab-

nahmen bis zur 75ten min, gefolgt von „Reboundanstiegen“ nach 135 min Regenerati-

on. Der Rückgang der elektrischen Leistung fängt bei schnellen Frequenzen an und

geht dann zu den langsamen, ist frontal und okzipital deutlicher. Möglicherweise ist die

Erholung abgeschlossen, wenn der Wiederanstieg erfolgt. Darin unterscheiden sich pa-

rietal und zentral die besser Leistungsfähigen von den mäßig Leistungsfähigen.

Korrelationen wurden nur zur frühregenerativen Messung (M1) berechnet. Es finden

sich keine Zusammenhänge zwischen stressreaktiven Hormonen (Cor, Pro) und EEG-

Parametern. Schwache bis mittlere Korrelationen bezüglich peripherer Stressparame-

ter NA ergeben sich mit frontaler, zentraler und rechts-parietaler Alpha2- sowie

schwach bis hohe Zusammenhänge mit frontaler, links-zentraler und parietaler Beta2-

Leistung. Dop zeigt eher Beziehungen zur links-zentralen Alpha2- und parietaler Be-

ta2-Leistungsdichte. Weitere Korrelationen zeigen NA zu Leistungs- und Beanspru-

chungsparametern wie beispielsweise zur HF.
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7 Diskussion

In der vorliegenden Arbeit wurden zwei Forschungsansätze zu sportlichen Belastungs-

auswirkungen auf das ZNS verfolgt: 1.) Die Auswirkungen unterschiedlicher Belas-

tungsregime bis zur Erschöpfung auf die kortikale Planung einer sportartspezifischen

Bewegung: Antritt des Radfahrens, 2.) Das zentralnervöse Erholungsverhalten nach

erschöpfender Ergometriebeanspruchung im hirnelektrischen Abbild des topographi-

schen EEGs in Abhängigkeit vom Leistungszustand.

Zur Beurteilung der Beanspruchungen wurden periphere Kontrollparameter verschie-

denen Systemkreisen zugeordnet und blutchemisch, biomechanisch und psychome-

trisch ermittelt.

Zur Identifizierung kortikaler Repäsentationen der willentlichen Bewegungsgenerierung

diente im Belastungskomplex 1 die Messung der Movement-Related-Cortical-

Potentials (MRCPs) (vgl. KORNHUBER ET AL. 1980, S. 239; SCHOBER 1987). Die Eig-

nung dieser Verfahren auch zur Erfassung von Ermüdungsphänomenen auf der ZNS-

Ebene wurde bereits untersucht (BARTHEL ET AL. 2002; JOHNSTON ET AL. 2001; FREUDE

& ULLSPERGER 1987).

Als sportspezifische Bewegungshandlung wurden willkürliche, rechtsbeinige Pedalan-

tritte auf dem Fahrradergometer im ausgeruhten (Ausgangswert), erwärmten und sub-

maximal und maximal beanspruchten Zustand und deren MRCPs untersucht (vgl.

BARTHEL ET AL. 2002).

Die bisherigen Arbeiten zu der Thematik konnten nicht zwischen zentralen und peri-

pheren Einflüssen bei Ermüdung differenzieren (BARTHEL ET AL. 2002, JOHNSTON ET AL.

2001, FREUDE & ULLSPERGER 1987). Dies ist aber von Bedeutung für ein besseres

Verständnis zentraler Belastungsauswirkungen.

Deshalb erfolgte in dem vorliegenden Forschungsansatz „Belastungskomplex 1“ eine

Differenzierung durch den Einsatz unterschiedlicher Belastungsregime mit vergleichba-

rem Beanspruchungsniveau. Hierbei wurden die Probanden fahrradergometrisch (FB),

armkurbelergometrisch (OB) und rein kognitiv belastet (KB), so dass zwei Bedingun-

gen mit körperlichen Beanspruchungen entstanden, in denen einmal die Testbewe-

gungsmuskulatur beansprucht und einmal ausgeruht war. Zur Aufdeckung möglicher

psychischer Belastungseinflüsse auf die zentrale Bewegungsgenerierung diente die

zusätzliche Untersuchungsbedingung kognitiver Beanspruchungen (KB).
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Im zweiten Forschungsansatz „Belastungskomplex 2“ wurde das kortikale Umstel-

lungsverhalten bei passiver Erholung bis 2 Stunden nach physisch erschöpfender Be-

lastung mit dem Spontan-EEG erfasst. Das EEG stellt ein gängiges psychophysiologi-

sches Messverfahren dar (MECHAU 2001; SCHUMANN 1996, S. 73; BRACH 1996;

SCHUMANN 1985), welches seine Eignung bei Aktivierungsmessungen bewiesen hat

(MECHAU 2001; BRACH 1996; KUBIZ & MOTT 1996; BRACH ET AL. 1994; SCHRODE 1986;

BEYER & SCHUMANN 1981). Daher ist es naheliegend, dass es sich deshalb auch für

die kortikale Umkehrung dieser Prozesse eignen sollte (vgl. MECHAU 2001; STOCK

1996; KUBITZ & MOTT 1996). Im vorliegenden Ansatz wird nach Empfehlung von

MECHAU (2001) das gesamte EEG-Spektrum in der Umstellung von Ergotropie zu Tro-

photropie nach erschöpfender Fahrradergometrie untersucht, da auch langsamere

EEG-Frequenzbänder signifikante Umstellungsunterschiede aufweisen (MECHAU 2001

S. 25; STOCK 1996; SCHRODE 1986; WARRENBURG ET AL. 1980, S. 90). Um den Einfluss

von Bewegungsartefakten und Regulationseinfüssen durch Lageänderungen auszu-

schließen, wurden die EEG-Messungen, wie die gesamte Erholung, passiv liegend ab-

solviert (vgl. MECHAU 2001, S. 109).

7.1 Belastungskomplex 1

7.1.1  Belastungsabstufung

Für die Vergleichbarkeit der hirnelektrischen Messergebnisse ist es von Bedeutung,

dass trotz unterschiedlicher Belastungsregime vergleichbare Beanspruchungen ent-

stehen. Diese Vorgaben, abgeleitet aus Vortests in den Belastungsregimen FB und

OB, wurden standardisiert und durch periphere Kontrollparameter überprüft. Die Er-

gebnisse der anthropometrischen Voraussetzungen liefern eine prinzipielle Vergleich-

barkeit. Die Leistungen in den einzelnen Belastungsregimen sind erwartungsgemäß si-

gnifikant verschieden, da die physischen Belastungsregime mit unterschiedlich großen

Muskelgruppen realisiert werden. Das stellt die geforderte Unabhängigkeit der Grup-

penvariable sicher. Die Beanspruchungen werden u.a. anhand der relativen Testlei-

stung zum Vortest definiert. Hier zeigt sich in den physischen Belastungsregimen (FB,

OB), zumindest in den submaximalen (4) und maximalen (5) Messbedingungen, ein

vergleichbar hohes Beanspruchungsniveau. Maximal lagen die Leistungen bei 94%

bzw. 97% der 100%-Vortestleistung (PPOmax). Die Ergebnisse der Blutuntersuchun-

gen und Katecholamine liefern erwartungsgemäße signifikante Anstiege mit physischer

Beanspruchung, aber nur einen schwachsignifikanten Gruppeneffekt bei den Leuko-
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zyten, der sich zwischen FB und KB manifestiert. Vermutlich wird dieser Effekt durch

unterschiedliche Ausgangswerte beeinflusst (siehe Tab. 11).

In den unteren Belastungsstufen erweisen sich die relativen Stufenbelastungen signifi-

kant verschieden. Die KB-Untersuchung stellt sich insofern als nicht vergleichbar her-

aus, da sie offensichtlich eine gänzlich andere Modalität beansprucht als die physi-

schen Belastungsbedingungen. In der KB-Bedingung erreichen die Probanden im Ver-

gleich zur Referenzgruppe eine schwach-signifikant bessere KLT-Testleistung, gerin-

gere Fehleranteile und einen unterdurchschnittlichen Fehlerquotienten (0,5). Diese Er-

gebnisse lassen nach DÜKER & LIENERT (1959, S. 8) auf eine außerordentlich gute

Testleistung schließen, die ebenfalls ein hohes Maß an Beanspruchung mentaler und

kognitiver Systeme mit einschließt.

Zur Überprüfung der Beanspruchung dienen vor allem Kontrollparameter aus dem

Herz-Kreislaufsystem und dem metabolischen System. Diese Parameter sind aller-

dings nur zur Beurteilung der physischen Belastungsregime brauchbar. Die signifikan-

ten Anstiege der Herzfrequenz, des Laktats und des Ammoniaks bei zunehmender

Belastungsintensität dokumentieren die steigende Beanspruchung der jeweiligen Kör-

persysteme. Die signifikant geringeren HF-Werte für OB gegenüber FB sind auf die ge-

ringeren Leistungen und den geringeren Sauerstoffverbrauch der kleineren Muskel-

gruppen und damit auf die geringere Kreislaufbelastung zurückzuführen. Der fehlende

Laktatunterschied zwischen FB und OB ist durch die Leistungsstandardisierung erklär-

bar und beweist die Erfüllung der Belastungsvorgabe. Diese sah eine rein aerobe Er-

wärmungsstufe 1, eine primär aerobe Energiebereitstellung unterhalb des maximalen

Laktat Steady-States (max Lass) bei Stufe 2-3, eine stark aktivierte Glykolyse mit Lak-

tatakkumulation bei submaximaler Stufe 4 und einen deutlichen Anteil anaerober Ener-

giebereitstellung bei Laktatwerten um 6 mmol/l bei den maximalen Belastungsstufen 5

vor (FB, OB). Die hohe Beanspruchung des Stoffwechsels findet durch die kapillare

Ammoniakkonzentration ebenfalls Bestätigung. Bei hohen anaeroben Belastungen

weisen Ammoniakkonzentrationen nach NEUMANN ET AL. (1993, S. 80) und LEHNERTZ &

MARTIN (1988, S. 7F) hohe Korrelationen mit Laktatwerten auf. Auffallend ist bei KB die

schwach-signifikante Abnahme der Ammoniakkonzentration, die auf die geringe Stoff-

wechselbelastung zurückzuführen ist.

Exkurs: Interpretation der Stoffwechselparameter in FB und OB.

Bei vermehrt anaerober Belastung wird im Purinnukleotidzyklus (PNC) das Adenosin-

monophosphat (AMP) zu Inosinmonophosphat (IMP) und Ammoniak (NH3) verstoff-

wechselt. Bei erhöhter Muskelarbeit gelangt das vermehrt im Muskel gebildete Ammo-
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niak über die Blutbahn ins Gehirn und diffundiert in die Hirnzellen, was dort eine Am-

moniakakkumulation zur Folge hat (LEHNERTZ 1989, S. 88F). LEHNERTZ (1989) berück-

sichtigt in seiner Arbeit nicht die Möglichkeit der Detoxifizierung des Ammoniaks durch

Glutamat. Dies wird bei MECHAU (2001, S. 145) mit einer möglichen Reduzierung des

Neurotransmitters Glutmat diskutiert. Durch die Pufferwirkung von Glutamat für eintre-

tendes Ammoniak ist eine Aktivitätsverschiebung im spontanen EEG zu langsamen

Frequenzbereichen denkbar (ebd.). Glutamat ist selbst Neurotransmitter und Vorläufer

des hemmenden Neuromodulators GABA (Gamma-Amino-Buttersäure). Ob allerdings

bei der vorliegenden Untersuchung in der Kürze der Zeit die Anhäufung ausreichender

Ammoniak-Mengen erfolgt, um im Neurotransmitterstoffwechsel auf zentrale Steuerung

und Antrieb Einfluss zu nehmen, bleibt eine Frage weiterer Untersuchungen. Die

schwachen bis mittleren positive Korrelationen zwischen metabolischen Parametern

(Ammoniak und Laktat) und frontalem MRCP-Power deuten auf solche Zusammen-

hänge hin. Während die Blut-Hirn-Schranke Ammoniak passieren lässt, wird sie als

kaum „permeable“ für Laktat angesehen (MECHAU 2001, S. 143). Es ist also unklar, wie

viel Laktat auf welchem Wege zentral Einfluss nehmen kann. Diese Substanz ist eher

als Zwischenprodukt des Glucosestoffwechsels anzusehen. Infolgedessen ist sie ein

Indikator für eine zunehmende metabolische Azidose, die über pH-Wert Absenkung die

Enzymaktivität verschlechtert und schließlich die Energiebereitstellung verlangsamt

und somit die Leistungsabgabe zurücksetzt.

Die kognitive Belastung in KB kann also mit den Kreislauf- und Stoffwechselparame-

tern nicht hinreichend quantifiziert werden und die psychometrisch ermittelten Befind-

lichkeitswerte und die Ergebnisse im KLT lassen keine Rückschlüsse auf erhöhte Be-

anspruchung im KB-Versuch zu. Die Frage zur subjektiven Ausbelastung ergab nach

Konzentrationsbelastung signifikant niedrigere Werte als bei den physischen Bela-

stungsbedingungen (siehe Abb. 19). Dennoch war die Leistung besser als im Refe-

renzkollektiv der Testentwickler. Offenbar setzt eine deutlich gute Konzentrationslei-

stung nicht zwangsläufig eine höhere Beanspruchung voraus. Nach dem BBK (OLIVIER

& DILLINGER 2003, S. 336) spräche dies für die Berücksichtigung der individuellen Res-

sourcen für die geforderte Aufgabe, die in dieser Arbeit für KB nicht erfasst werden

konnten. Eine weitere Möglichkeit bestünde darin, dass die von DÜKER UND LIENERT

(1959, S. 13) gelieferten Referenzen nicht repräsentativ für das Untersuchungskollektiv

sind. Die Autoren (ebd.) sprechen selbst einschränkend von „einigermaßen repräsen-

tativen“ Stichproben bei der Normgruppe.
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Einen besseren Belastungsindikator stellt möglicherweise die Konzentrationserhöhung

der Katecholamine nach der mental kognitiven Testreihe KB dar. Im Sinne eines eher

psychischen als physischen Stresses wurde ein Anstieg von Adrenalin erwartet. Aller-

dings kann dieser Anstieg auch aus zeitlichen Abnahmeschwankungen resultieren.

Während im KB-Durchgang die Blutabnahmen genau 25 min nach Belastungsende

stattfinden konnten, kam es nach der physischen Maximalbelastung oft zu Verzöge-

rungen durch artifizielle Einflüsse. Da die höhere Priorität bei der MRCP-Messung lag,

kann nicht ausgeschlossen werden, dass eine zeitlich verzögerte Messung stattfand.

Zu berücksichtigen sind bei der Interpretation die unterschiedlichen Halbwertzeiten der

Katecholamine. Diese betragen bei den freien Fraktionen ca. 2 min, während sie bei

den sulfatierten zwischen 20 - 180 min liegen (STROBEL 2002, S. 84; STROBEL ET AL.

1999; WEICKER & STROBEL 1994). Somit beeinflusst eine mögliche Zeitverschiebung

besonders die gemessenen freien Katecholamine.

7.1.2  MRCPs

MRCPs sind über präzentralen Kortexarealen ableitbare negative Gleichspannungs-

potentialverläufe vor willkürlichen Bewegungshandlungen. Sie stehen im Zusammen-

hang mit informationsverarbeitenden Prozessen der Bewegungsgenerierung. Damit

stellen sie ein Erfolg verspechendes Werkzeug zur Erforschung der kortikalen Bewe-

gungsplanung und –kontrolle dar (vgl. Brunia & Van Boxtel 2000, S. 510-11; Hallet

1994; Kornhuber et al. 1980; Schober 1987, S. 239; Deecke & Kornhuber 1977, S.

133). Negative Potentialverschiebungen werden als Aktivierung interpretiert (Ressour-

cenbereitstellung), während positive Potentialverschiebungen eher den Verbrauch der

Ressourcen (Deaktivierung) darstellen (BIRBAUMER & SCHMIDT 1996, S. 503; SCHOBER

1987, S. 56). Der charakteristische MRCP-Verlauf zeigt eine zunächst flach zuneh-

mende Negativierung etwa 1,5-1 s vor dem definierten Bewegungsanfang. Ca. 0,4 s

vor der Bewegung - erfolgt eine stärkere Steigung der MRCP-Kurve, die etwa im Be-

wegungsbeginn ihr Maximum erfährt, gefolgt von sofortiger „explosiver“ Depolarisation

(vgl. HALLET 1994; KORNHUBER ET AL. 1980, S. 240; KORNHUBER & DEECKE 1965).

Der charakteristische MRCP-Kurvenverlauf ist in den „Grand Average“ Darstellungen

aller Studien zum Belastungskomplex 1 auch nach hoher dynamischer Beanspruchung

(Abb. 24-28) erkennbar (vgl. BARTHEL ET AL. 2002, S. 27). Die MRCP-Ergebnisse beim

Pedalantritt stimmen mit denen klassischer Studien zu Fuß- und Handbewegungen

(BRUNIA & VAN DEN BOSCH 1984, S. 523) sowie zu Fuß- und Beinbewegungen

(BÖCKER ET AL. 1994, S. 292FF; BOSCHERT & DEECKE 1986, S. 176; SHIBASAKI ET AL.
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1981, S. 509) überein. Die topographische Verteilung der Hirnpotentiale vor Fußbewe-

gungen mit dem größten MRCP über dem Vertex (SHIBASAKI ET AL.1981, S. 512,

BOSCHERT & DEECKE 1986, S. 177; DEECKE & KORNHUBER 1977, S. 133), trifft bei allen

Studien im Belastungskomplex 1 zu (Abb. 25-28).

In den vorgestellten Untersuchungen zum Belastungskomplex 1 finden sich überwie-

gend symmetrisch verteilte Aktivierungen 100 ms vor der Bewegung. Eine ähnliche

Verteilung registrieren SHIBASAKI ET AL. (1981, S. 513) vor Finger- und Fußbewegun-

gen, allerdings in früher Phase des Potentialverlaufs. Sie stellen Lateralitätsasymmetri-

en in den späten Phasen des MRCPs fest und folgern daraus, dass die frühe MRCP-

Phase eine nichtspezifische Funktion und die späte Phase (NS‘) eine spezifische Auf-

gabe bei der kortikalen Vorbereitung der auszuführenden Bewegung einnimmt (ebd.).

Bei topographischer MRCP-Verteilung vor Fußbewegungen wird manchmal eine „pa-

radoxe ipsilaterale Hemisphärenpräponderanz“ beschrieben (BOSCHERT & DEECKE

1986, S. 177FF; BRUNIA & VAN DEN BOSCH 1984). Hiermit ist eine stärkere Negativie-

rung der späten MRCP-Komponenten auf der (paradoxen) ispilateralen Hemisphäre

gemeint. Als Erklärung für dieses Phänomen sehen die Autoren die tiefere Lage der

Fuß und Bein repräsentierenden Areale in der „Zentralfurche“, die ein Dipolfeld erzeu-

gen können, welches die paradoxe ipsilaterale Negativierung widerspiegelt (BÖCKER ET

AL. 1994; BOSCHERT & DEECKE 1986, S. 177FF; BRUNIA & VAN DEN BOSCH 1984).

Die in Belastungskomplex 1 beschriebene symmetrische Aktivierung kann im unbe-

wussten Mitbewegen des passiven linken Beines im Bewegungsmuster des Antritts

begründet liegen, da sich die Untersuchungsgruppen überwiegend aus raderfahrenen

Sportlern (Triathleten und Radsportlern) zusammensetzten, die nach Trainingszeit und

Leistungsstand über ein aktives „Zug-Druckmuster“ beim Pedalantritt verfügen dürften

(siehe Tab. 1).

Durch die vorgenomme Parametrisierung der MRCP-Kurve sind die zeitlichen Kompo-

nenten MRCP-onset und MRCPmax-t abhängig von der Technik des Triggers für den

definierten Bewegungsanfang. Gute Übereinstimmungen gibt es beim dargestellten

MRCP-onset (ca. -1500 bis -1300 ms), NS‘ (zwischen -500 bis -300 ms) und

MRCPmax-t (-50 bis -80 ms) mit Ergebnissen von Forschergruppen, die ebenfalls mit

Schaltertriggerung arbeiten (BÖCKER ET AL. 1994, S. 290 FF; BRUNIA & VAN DEN BOSCH

1984, S. 516). Wissenschaftler, die bspw. mit EMG-Trigger arbeiten, stellen prinzipiell

vergleichbare Forschungsergebnisse mit kürzeren Latenzen fest (SHIBASAKI ET

AL.1981, S. 509).
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BÖCKER ET AL. (1994, S. 291) ermitteln z.B. ein „motor potential“ (MP) bei einer durch-

schnittlichen Latenz um –31 ms vor der Bewegung. In einem ähnlichen Latenzbereich

werden die MRCP-max Amplituden in dieser Arbeit gemessen. Mit dem qualitativen

MRCP-Verlauf und der Referenz von DEECKE UND KORNHUBER (1977, S. 139FF) ist da-

her anzunehmen, dass die MRCP-max Amplituden das MP repräsentieren. Die Aus-

prägungen der mittleren MRCP-max Amplituden über der Cz-Elektrode entsprechen

den Resultaten von SHIBASAKI ET AL. (1981, S. 509).

Die MPs repräsentieren die zentral organisierte neurale Aktivität des planenden Sub-

jekts zur Erfüllung seines Handlungsziels (vgl. SLOBOUNOV ET AL. 1998). Die MPs gel-

ten als abhängig von der Kraft und der Geschwindigkeit der Testbewegung (SIEMIONOV

ET AL. 2000; SLOBOUNOV ET AL. 1998; WALLENSTEIN ET AL. 1995, S. 56FF). Aufgrund der

konstanten Antrittsparameter (siehe Abb. 21-Abb. 24) kann eine veränderte Antrittsbe-

wegung als Ursache ausgeschlossen werden, so dass die bewegungsbezogene Kor-

texaktivität als „hirnelektrische Kompensationserscheinung“ zur Aufrechterhaltung der

Testbewegung verstanden werden muss.

Allerdings fällt im nachhinein auf, dass die MRCP-Parametereinteilung in der vorlie-

genden Arbeit keine wirkliche Unterscheidung für frühe Komponenten vorsieht. Damit

ist eine Vergleichbarkeit bzgl. der frühen MRCP-Komponenten mit anderen Untersu-

chungsergebnissen eingeschränkt. Neben den zeitlichen MRCP-Parametern wie

MRCP-onset, stellen die mittleren Amplituden MRCP 500-100 die früheste Kompo-

nente dar, die ihrerseits bereits Anteile des NS‘ beinhalten (HALLET 1994).

Insgesamt ist es gelungen, zu einer sportartspezifischen Handlung gehörige MRCPs

auch nach hoher dynamischer Beanspruchung bei unterschiedlichen Belastungsregi-

men (FB, OB, KB) zu ermitteln. Damit ist die erste Zielsetzung dieser Arbeit erfüllt. Im

nächsten Abschnitt gilt es zu klären, ob es mit diesem Messverfahren möglich ist,

MRCP-Veränderungen aufgrund psychophysischer Ermüdungseinflüsse auf die zen-

tralnervöse Bewegungsplanung herauszufinden und hierfür charakterisierende Mess-

größen zu ermitteln.

7.1.3 Einfluss der Beanspruchung durch unterschiedliche Belastungsregime

auf das MRCP

Innerhalb der FB- und OB-Untersuchungsreihe kann anhand der qualitativen Analyse

der Hirnpotentiale (vgl. Abb. 26 - Abb. 29) gezeigt werden, dass nach zunehmender

physischer Belastung charakteristische Veränderungen der MRCPs vorkommen und

sich topographisch unterschiedlich ausdehnen. Die mentale Belastung der KB-Studie
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löst diesen Trend nicht aus. Bei vergleichender Betrachtung der MRCPs in den einzel-

nen Studien fällt wiederum auf, dass die MRCP-Aktivitäten vor Antrittsbewegungen

nach hohen fahrradergometrischen Belastungen (FB) nicht nur insgesamt größer sind,

sondern sich überdeutlich in den frontalen Kortex ausweiten. Die Belastung mit Arm-

kurbelergometrie (OB) zeigt ebenfalls eine zunehmende MRCP-Negativität, symme-

trisch begrenzt über präzentral-zentraler und parietaler Rindenregionen, aber eben

nicht frontal. Der mögliche Einwand, dass die Testreihenfolge und die damit verbunde-

nen Bedingungen für diese Ergebnisse verantwortlich sind, kann zum Teil entkräftet

werden, da die Probanden bereits im FB-Durchgang 2 bis 4 Mal den Test absolvierten,

und ein augeprägter Lerneffekt bzgl. der einfachen und beherrschten Testbewegung

nicht zu erwarten ist. Offensichtlich erfordert die Antrittsbewegung mit zunehmender

Erschöpfung mehr frontale MRCP-Aktivität, wenn die Testmuskulatur zusätzlich bean-

sprucht (FB) ist. Denn dies ist nicht der Fall, wenn die Testbewegungsmuskulatur un-

beansprucht ist (OB). Die Akkumulation von Stoffwechselprodukten oberhalb des

„Steady-States“ erfordert zunehmende Kompensationseigenschaften von beteiligten

Körpersytemen und einen höheren zentralen Antrieb.

Dieses qualitativ beschriebene Phänomen lässt sich anhand verschiedener Parameter

(Amplituden, Powerwerte) für die MRCPs über spezifische Cz, Fz-, Pz- Elektrodenpo-

sitionen quantitativ statistisch erhärten.

Die maximalen frontalen (Fz) und zentralen (Cz) MRCP-Amplituden zeigen eine

schwach-signifikante Beanspruchungsabhängigkeit mit höherer Negativität bei größe-

rer physischer Vorbeanspruchung (FB, OB) (Abb. 29 und 31).

Aber nur die frontalen (Fz100, Fz5-100, FzPower) und teilweise die parietalen (Pzon-

set, PzPower) MRCP-Parameter liefern zusätzliche schwach-signifikante Studienef-

fekte (Abb. 31 - Abb. 34). Ausgangswertunterschiede haben nach Datenrelativierung

und statistischer Überprüfung keine Auswirkung auf die genannten Ergebnisse. Der si-

gnifikante Studieneffekt zeigt einen bedeutsamen Einfluss bei zusätzlich ermüdeter

Antrittsmuskulatur auf die MRCP-Ergebnisse an.

Der allgemeine Beanspruchungseinfluss in der Armkurbelergometrie (OB) bis zur Er-

schöpfung bringt nur tendenziell zunehmende fronto-zentrale MRCPmax Amplituden

hervor. Während bei zusätzlich überlagernder Beanspruchung der Antrittsbewegungs-

muskulatur (FB) die zunehmenden MRCP-Negativitäten (Czmax, Fzmax, Fzpower,

Fz100, Fz5-100) eine viel höhere Aktivität abbilden. Diese MRCP-Aktivitäten im fron-

talen Kortex bei FB weisen schwach-signifikante Studienunterschiede zu OB auf.
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Nachdem veränderte Bewegungsbedingungen (siehe biomechanische Messwerte) in

der vorliegenden Untersuchung ausgeschlossen werden können, müssen die kortika-

len Veränderungen als Kompensationseigenschaften aufgefasst werden.

Eine psychische Einflussnahme, die durch Konzentration und Aufmerksamkeit im Er-

müdungszustand die MRCP-Negativität beeinflusst, wird für möglich gehalten (FREUDE

& ULLSPERGER 1987; KORNHUBER & DEECKE 1965, S. 9; KRISTEVA & KORNHUBER 1980,

S. 181; DEECKE ET AL. 1985, S. 150; MC ADAM & SEALES 1969, S. 72FF).

Konzentrations- und Aufmerksamkeitsverlust wurden nicht durch spezifische Tests er-

fasst. Elektrophysiologische Veränderungen, die auf mentale Ermüdung schließen las-

sen, waren im vorliegenden Experiment nicht auszumachen. Psychometrische Tests

wurden nicht durchgeführt, Vitalität und Vigilanz waren nach der Basler Befindlich-

keitsskala unverändert. Die MRCP-Messphasen im Belastungskomplex 1 besitzen In-

tervallcharakter, so dass auch eine Erholung in den Intervallpausen nicht ausgeschlos-

sen werden kann. Andererseits kann aus dem Ergebnis vorsichtigerweise geschlossen

werden, dass die erbrachte Konzentrationsleistung in KB (Rechnen) eine Beanspru-

chung in einer anderen Modalität verursacht, als Testprozeduren mit rein motorischen,

willkürlichen, monotonen, wiederholten simplen Bewegungen.

Offenbar müssen die ermüdenden Beanspruchungen für die Testbewegung spezifisch

sein, um sich messbar zentralnervös auszuwirken. Betrachtet man die Untersuchungen

mit physischen Beanspruchungen, zeigt der Vergleich der MRCPs im Zustand vor dem

Test mit dem Zustand nach submaximaler bzw. maximaler Belastung, dass die MRCPs

nach maximaler Belastung eine zunehmende Negativität in Leistungs- und Amplitu-

denwerten aufweisen (vgl. Abb. 30 - Abb. 34).

Diese Ergebnisse stimmen mit JOHNSTON ET AL. (2001) überein, die bei zunehmender

Ermüdung eine kortikale Aktivierung (Zunahme der MRCPs), besonders im Supple-

mentär-motorischen Areal (SMA) und in den sensomotorischen Arealen fanden. Nach

ODA ET AL. (1996, S. 252) spiegelt fronto-zentrale und zentrale Negativität größere

SMA-Aktivität wider.

Eine denkbare Erklärung für die frontale und parietale MRCP-Zunahme bei FB nach

der Belastung ist möglicherweise die kortikale Kompensation der verschlechterten Be-

wegungsbedingungen, die aus der bewegungsausführenden Muskulatur durch senso-

rische Afferenzen gemeldet und durch Aufmerksamkeits-, Konzentrations- und Motiva-

tionserhöhung kompensiert werden, um die Testbewegung weiterhin korrekt durchfüh-

ren zu können. In diesem Kontext könnte man die psychologischen Komponenten zu-

sammenfassend auch als Willensstärke gegen physische Erschöpfung beschreiben.
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Die schwach-signifikante Abnahme der Vitalität und tendenzielle Abnahme der Vigilanz

nach Belastung in FB deuten vermutlich auf eine Beanspruchung dieser Eigenschaften

hin sowie die überwiegende Ausbelastungseinschätzung der Probanden nach physi-

scher Belastung.

In neuen PET-Untersuchungen finden KOROTKOV ET AL. (2005) bei Muskelermüdung

Aktivierungen des primären Motorkortex (MI), der primären- und sekundären somato-

sensorischen Areale (SI, SII), der somatosensorischen Assoziationsareale (SAA), der

temporalen Areale (AA) und der supplementär motorischen Areale (SMA). Nach diesen

Autoren deuten diese Aktivierungen auf komplexe Verarbeitung exitatorischer und inhi-

bitorischer Verschaltungen hin (ebd.). Sie vermuten aufgrund des erhöhten Aktivie-

rungslevels, dass die einlaufenden sensorischen Afferenzen aus der Arbeitsmuskulatur

weniger Einfluss ausüben und somit die Kraft und Bewegung trotz verschlechterter Be-

dingungen aufrecht erhalten werden kann.

Willentliche motivationale Erhöhung der Aktivität in somatosensorischen und assoziati-

ven Kortexarealen mit Schaltwirkung ist eine These, die es zukünftig zu untersuchen

gilt. Problematisch erweist sich dabei nur die messtechnische Erfassung der Motivation

oder der Willenskraft, zumal man nicht einmal weiß, ob es den „freien Willen“ gibt

(HALLET 2001, Internetquelle; MECHSNER 2003).

Zur vorläufigen Interpretation kann man die Funktion des supplementärmotorischen

Areals (SMA) bei der Umsetzung des motorischen Programmes in motorische Aktionen

in Betracht ziehen. Ihre Aktivität kennzeichnet das “Go“-Signal des vorausgewählten

Bewegungsplans, welcher z.T. aus tieferen Hirnstrukturen stammt (DEECKE ET AL.

1985, DEECKE 1990, S. 618). In dieser Modellvorstellung ist es denkbar, dass Amplitu-

denveränderungen beim MRCP eine Umorientierung subkortikaler Funktionsschleifen

reflektieren, die eine Bewegungssequenz durch Hemmung unnötiger Bewegungsan-

teile verstärken. Die Ausweitung in der Map-Darstellung (Abb. 28) bei FB stellt vermut-

lich das neurophysiologische Korrelat für die Unterdrückungsanstrengung störender

Bewegungsimpulse dar (LANG ET AL. 1994, S. 406; JOHNSTON ET AL. 2001). Eine weite-

re Möglichkeit wäre, dass die subkortikalen Strukturen mehr Informationen unter Er-

müdung brauchen, da das Bewegungsmuster nicht mehr so räumlich-zeitlich gegliedert

werden kann, wie es erlernt war. Es entspricht nicht mehr der auszuführenden Bewe-

gungsanforderung (Kraft, Schnelligkeit). Dadurch wird es notwendig, sich an die neuen

Umstände anzupassen und den Bewegungsplan zu modifizieren, was einer Kompen-

sation gleichkommt. Dies würde den Czmax-Anstieg bei FB und OB erklären. Zusätz-

lich könnte durch die Verschiebung des Czmax-t in Richtung Trigger die Zeit der effe-
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renten Entladungssalven verkürzt sein. Hinweise auf einen Zusammenhang zwischen

Anpassungs- und Lernprozessen auf das MRCP lieferte bereits TAYLOR (1978). Die to-

pographische Ausweitung des MRCPs in den frontalen Kortex könnte auf zunehmende

Motivation für die Bewegungsausführung hinweisen.

Zusammenfassend lässt sich faktisch feststellen, dass ohne Beanspruchung der Test-

muskulatur die späten MRCP-Komponenten bei willkürlichen Pedalantritten über den

zentralen Rindenregionen nach hoher dynamischer Beanspruchung nur gering verän-

dert sind. Ist primär die Testmuskulatur beansprucht, zeigen sich vorwiegend die Lei-

stungen und späten Amplitudenanteile der MRCPs in frontalen und parietalen Hirn-

arealen beeinflusst. Rein mentale konzentrative Beanspruchungen haben keinen Ein-

fluss auf die kortikale Bewegungungsgenerierung im MRCP.

Somit ergeben sich aus der Diskussion 7.1 für die Beurteilung der Forschungshypothe-

sen 1.1) bis 1.5) folgende Aussagen:

Hypothese 1.1) wird bestätigt. Es ist gelungen, das zu einer sportartspezifischen

Handlung gehörige MRCP auch nach hoher dynamischer Beanspruchung bei unter-

schiedlichen Belastungsregimen (FB, OB, KB) zu ermitteln.

Hypothese 1.2) kann bestätigt werden. Nach hoher dynamischer Vorbeanspruchung

stellen sich die MRCP-Negativitäten im Vergleich zur Ruhesituation nach JOHNSTON ET

AL. (2001) im Sinne einer zentralnervösen Aktivierung dar.

Hypothese 1.3) wird ebenfalls bestätigt. Die lokale Beanspruchungssituation der Test-

muskulatur beeinflusst besonders die frontalen MRCP-Veränderungen.

Hypothese 1.4) muss verworfen werden. Die MRCP-Veränderungen sind, wenn über-

haupt, nur tendenziell in der präzentralen Hirnrinde erkennbar.

Hypothese 1.5) kann nicht beantwortet werden. Es gibt keine Lösung, da kein er-

schöpfender Zustand durch kognitive Beanspruchung erzeugt werden konnte. Kon-

zentrative (Rechen) Leistungen beeinflussen die kortikale Bewegungsvorbereitung im

MRCP nicht.

7.2 Belastungskomplex 2

7.2.1 Wie stellt sich der elektrophysiologische Erholungsprozess im Gehirn

nach erschöpfender Beanspruchung dar?

Das downregulierende hirnelektrische Verhalten nach erschöpfender Beanspruchung

zeigt in den verschiedenen Frequenzbereichen zeitliche und topographische Unter-

schiede bei der Abnahme der spektralen EEG-Leistungsdichten im Verlauf der 135-



Diskussion 93

minütigen Regenerationsphase. Ausgehend von der Kenntnis der Aktivierungszunah-

me bei physischer Belastung ist diese Umkehrung in der Erholung plausibel. Insofern

sind die Ergebnisse von STOCK ET AL. (1996) heranziehbar, die nach standardisiertem

Krafttraining im gesamten Frequenzspektrum indes einen Anstieg feststellen. Aller-

dings wurde in der vorliegenden Untersuchung keine Ruhemessung als Baselinemes-

sung vorgenommen, so dass keine Bewertung des Ausmaßes der Leistungsdichtenzu-

nahme durch die Belastung möglich ist. Mit der Kenntnis früherer Forschungsergebnis-

se kommt es während einer Belastung zu einer kortikalen elektrischen Aktivierung mit

Depression in Alpha- und Zunahmen bei Beta-Leistungen (SCHUMANN ET AL. 1993A;

BRACH ET AL. 1994; KUBITZ & MOTT 1996), die nach Belastung in einer Deaktivierung

münden (Alpha hoch, Beta Abnahme) (KUBITZ & MOTT 1996). Eine prinzipielle Beein-

flussung des gesamten EEG-Frequenzspektrums nach extensiver und intensiver Lauf-

belastung wird ebenfalls bei MECHAU ET. AL. (1995) konstatiert. Die dort gefundenen,

auf den ersten Blick konträren Ergebnisse zu STOCK ET AL. (1996) (Abnahme in vielen

Frequenzleistungen), sind vermutlich im Messprotokoll begründet. Während bei

MECHAU ET AL. (ebd.) die EEG-Messprozedur exakt im Belastungsabbruch stattfand,

um direkt auf Beanspruchungssituationen zu schließen, wurde bei STOCK (ebd.), wie

auch bei der vorliegenden Studie, das „postexercise“ EEG nach venöser Blutentnahme

abgeleitet. Somit befand sich die Messung (M1), ähnlich wie STOCK ET AL. (1996) zwi-

schen drei und sechs Minuten nach Belastungsabbruch, also in der frühen Regenerati-

onsphase.

Es gilt festzuhalten, dass aufgrund jetziger Erkenntnisse sowie aufgrund früherer Un-

tersuchungen (BARTHEL ET AL. 2002; MECHAU 2001; STOCK ET AL. 1996; MECHAU ET AL.

1995) beim Nachbelastungs-EEG eine Betrachtung über das gesamte Frequenzspek-

trum sowohl möglich als auch notwendig ist, und sich nicht nur auf die Alpha-

Frequenzen beschränken darf. Die Veränderungen in den verschiedenen Leistungs-

spektren zu unterschiedlichen Regenerationszeiten können als elektrophysiologische

Mechanismen zur Umschaltung in verschiedene Regenerationsphasen verstanden

werden.

7.2.2  Welche Beziehung besteht zu sympathico-adrenerger Downregulation?

Die Werte der Katecholamine unmittelbar nach Belastung entsprechen der Bela-

stungshöhe in der Nähe der Maximalleistung in analogen Labortests, wozu es neben

der Mobilisierung physischer Ressourcen auch einer emotionalen Komponente (Auf-

bringen von Willenskraft) bedarf (WEICKER ET AL. 1981). Fehlende Gruppenunterschie-
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de im Hormonverhalten dürften Ausdruck der erfolgreichen, individuellen Anpassung

der Belastung sein, wobei leicht höhere NA- und DOP-Werte der leistungsfähigeren

Sportler für die Fähigkeit sprechen, diese Systeme stärker zu mobilisieren und damit

auch entsprechend Kreislauf (HF) und Stoffwechsel (La) stärker zu aktivieren. Auf-

grund fehlender Trainingsprotokolle kann dieser hypothetische Trainingseffekt nicht

beantwortet werden, denn für eine bessere Symphatikusaktivieung und höhere Lei-

stungssteigerungen bei Leistungsfähigeren fehlen nach Strobel (2002, S. 84) bislang

geeignete Studien.

Die ermittelten Korrelationen der Katecholamine mit Alpha2- und Beta2-Frequenzen

über prämotorischen, motorischen und sensomotorischen Kortexarealen deuten auf

interne Konsistenz der zerebralen und extrazerebralen Aktivierungssysteme hin. So

muss am physischen und emotionalen Geschehen eine gemeinsame Beteiligung vor-

liegen, die indirekt oder direkt ähnlich wie an der zentralen Mitinnervation gekoppelt ist.

Dieser mathematisch führbare Hinweis auf Interaktivität zentraler Mechanismen mit pe-

ripheren Mechanismen der Stress-Bewältigung (und im Folgenden der Downregulation

von Stress) ist so bisher kaum diskutiert worden. STOCK ET AL. (1996) finden ebenfalls

Korrelationen mit besagten Frequenzen und diskutieren eine hypothalamische Aktivie-

rung des symphatischen Nervensystems oder eine Art Rück-Stimulierungs-Fähigkeit

aufgrund hoher Plasmakatecholamin-Konzentrationen auf das ZNS. Dieses wird auch

von DRISCHEL & DETTMAR (1972) im Tierversuch dagestellt. Die gleichbleibend auf

niedriges Niveau gesunkenen Werte der Katecholamine ab der 45 min Messung wei-

sen auf Rückkehr zur Basisaktivität des symphatico-adrenergen Systems hin und fin-

den Bestätigung bei STOCK ET AL. (1996), die nach 45 min einen Rückgang der Ka-

techolamine auf Vorbelastungwerte feststellen. Vermutlich ist damit in dieser Hinsicht

der Erholungsvorgang abgeschlossen. Der Grund warum sich die EEG-Daten auch

noch danach verändern, muss zum derzeitigen Stand der Forschung offen bleiben.

7.2.3  Welchen Einfluss hat die aerobe Leistungsfähigkeit auf die kortikale

Downregulation?

Signifikante Unterschiede der Sportlergruppen in der Leistungsfähigkeit bei identischen

anthropometrischen Daten stellen die Einteilung in unabhängige Gruppen sicher.

Es können im EEG, bei den gut-leistungsfähigen Sportlern signifikant geringere fronto-

zentrale Theta-Leistungen sowohl nach 3 min, als auch nach 135 min und erhöhte Al-

pha2-Leistungen nach 135 min Regeneration gemessen werden.
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Dieses ist ein neues Ergebnis, welches bisher noch nicht festgestellt worden ist.

SCHRODE ET AL. (1986) interpretieren eine Theta-Zunahme bei Abnahme anderer Fre-

quenzen im Sinne eines meditativen Zustandes in automatisierten Bewegungen.

BÖSEL (1993) diskutiert zentrale und präzentrale Theta-Erhöhung als extensive hand-

lungsrelevante Gedächtnisaktivierung. AFTANAS & GOLCHEIKINE (2001) schlussfolgern

in Meditationsgruppen, bei geringem zentralen Theta eine fehlende Fähigkeit meditati-

ven Status zu halten. BASAR ET AL. (2001) diskutieren mit MILLER (1991) eine Interak-

tion zwischen frontaler Theta- und Hippocampusaktivität bei der Kontrolle eingehender

sensorischer Stimuli (vgl. auch DIETL ET AL. 1999). Denkbar ist eine Beeinflussung des

fokalen Thetabandes durch Enthemmung des limbischen Systems. Dies besitzt ausge-

prägte Funktionsschleifen zum Hippocampus-Septum. Einen Bezug zwischen Hippo-

campus- und Theta-Aktivität liefert BÖSEL (1993, S. 85). Ein zusammenfassender

Überblick über Hippocampusaktivität und Thetaeinfluss findet sich bei SIMMEL (1999).

Zur Aufklärung dieses Zusammenhangs ist es sinnvoll, zukünftig die temporalen Mess-

elektroden in die Analytik mit einzubeziehen, da diese den emotionalen Hirnzentren

(limbisches System) am nächsten kommen.

Die höheren Katecholaminwerte und niedrigeren fronto-zentralen Theta-Leistungen bei

den „gut-Leistungsfähigen“ sind lohnenswert, weiter mit der Hypothese zu verfolgen,

dass entweder eine große Sensitivität des adrenergen Systems auf Theta-Aktivierung

vorliegt oder die Aktivität des peripheren Symphatikus eher hemmend auf Theta wirkt.

Zentro-parietale größere Alpha2-Leistungen (9,75-12,5Hz) bei der gut-leistungsfähigen

Gruppe nach 135 min Regeneration könnte auf eine beginnende Aktivierung hindeu-

ten. KLIMESCH (1999) konstatiert in seinem Reviewartikel bei jungen, gesunden Er-

wachsenen mit niedrigen Theta- und großen Alpha2-Leistungen eine gute geistige Lei-

stungsfähigkeit.

Nach vorangeganger Diskussion im Abschnitt 7.2 kann Folgendes festgehalten wer-

den.

Hypothese 2.1 kann bestätigt werden. Zur Beschreibung elektrophysiologischer Um-

stellungsprozesse im Gehirn nach erschöpfender Beanspruchung reicht eine Fokussie-

rung auf die Alpha- und Beta-Frequenzen nicht aus.

Hypothese 2.2 muss verworfen werden. Es zeigen sich keine eindeutigen Unterschiede

in kortikaler Downregulation in Abhängigkeit von der Leistungsfähigkeit.

Hypothese 2.3 kann bestätigt werden. Es gibt zwischen zentraler hirnelektrischer und

peripherer sympathico-adrenerger Umstellungsreaktion zumindest in der Frühregene-

ration korrelative Zusammenhänge.
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7.3 Schlussfolgerungen

Es konnte im ersten Untersuchungsansatz ausführlich gezeigt werden, dass sich die

MRCPs auch nach intensiveren sportlichen Beanspruchungen bei willkürlichen sport-

artspezifischen Bewegungshandlungen erfassen lassen. Die MRCPs zeigen in Abhän-

gigkeit vom jeweiligen Belastungregime unterschiedliche topographische Verteilungen

und Amplituden. So nehmen die Parameter MRCPpower und MRCPmax mit zuneh-

mender Belastung (FB und OB) zu. Die Ausbreitung eines MRCPs in die frontalen Hir-

nareale spiegelt vermutlich den Einfluss verstärkter Motivation oder stärkerer Bewe-

gungskontrolle durch Hemmung unnötiger Zusatzbewegungen wider. Dies ist zudem

der Fall, wenn die Testbewegungsmuskulatur zusätzlich beansprucht ist (vgl. FB). Hier

spielen vermutlich die frontale Steuerung und Integration somatosensorischer Areale

bei der Verarbeitung sensomotorischer Afferenzen eine Rolle. Bei ausgeruhter Test-

bewegungsmuskulatur zeigen sich nur tendenziell die MRCP-Negativierungen mit der

Beanspruchung, wobei die frontalen Elektroden nur geringe (OB) oder keine (KB)

MRCP-„Aktivität“ liefern. Eine hohe kognitive Konzentrationsleistung in KB bedeutet

nicht zwangsläufig eine hohe Beanspruchung. Hierauf deuten unbeeinflusste MRCPs

bei der kortikalen Bewegungsorganisation und konstante periphere Kontrollparameter,

mit Ausnahme der Katecholamine, hin.

Im zweiten Untersuchungsansatz konnte im vorliegenden Modell nicht eindeutig be-

wiesen werden, dass eine bessere Ausdauerleistungsfähigkeit die zentralnervale Er-

holung positiv beeinflusst. Hier besteht weiterer Forschungsbedarf. Allerdings wird eine

downregulierende Beeinflussung auf das gesamte EEG-Frequenzspektrum festgestellt.

Diese gesamtspektralen Veränderungen können als elektrophysiologische Mechanis-

men zur Umschaltung in verschiedene Regenerationsphasen verstanden werden. Eine

Interaktion zwischen zentralen und peripheren Mechanismen der Stress-Bewältigung in

der Downregulation kann korrelativ ermittelt werden. Die fronto-zentrale Thetaaktivität

als Ausdruck emotionaler Beteiligung ist bei „gut-leistungsfähigen“ Sportlern geringer

und kann bei gleichzeitigen höheren Apha2-Leistungen für eine gute kognitive Fähig-

keit sprechen und damit für eine bessere Erholung stehen.
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8 Zusammenfassung

Problem: Sportliche Belastungsauswirkungen beschränken sich nicht nur auf periphe-

re muskuläre Systeme, sondern sie beziehen die zentrale Steuerungsebene mit ein.

Ebenso ist das richtige Verhältnis von Beanspruchung und Erholung zentraler Regula-

tionsmechanismen für eine nachhaltige sportliche Leistungsentwicklung von Bedeu-

tung.

Insofern können erschöpfende Beanspruchungen zu kompensatorischen Anpassungen

des Zentralnervensystems in der Bewegungsgenerierung führen. Bisher konnten die

zentralen und peripheren Ermüdungsformen in Beanspruchungssituationen kaum diffe-

renziert werden, da sie sowohl lokal als auch allgemein auftreten können. Nach einfüh-

rendem Exkurs zur sportwissenschaftlichen Einschätzung von Belastung und Bean-

spruchung wird der wissenschaftliche Kenntnisstand zu Belastungsauswirkungen auf

das Gehirn mit Berücksichtigung neuester bildgebender Verfahren dargestellt. Die For-

schungsansätze werden mit elektroenzephalographischen (EEG) Methoden unter-

sucht. Dieses Verfahren hat Vorteile, weil die informationsverarbeitenden Prozesse

sehr schnell ablaufen und das EEG eine gute zeitliche Auflösung besitzt und sich für

Verlaufsuntersuchungen eignet. In zwei Forschungsansätzen werden movement-

related-cortical potentials (MRCPs) bei willkürlichen sportspezifischen Bewegungs-

handlungen und die zentralnervale Umstellung im Erholungs-EEG erfasst. Die Unter-

suchungen werden von folgenden Hypothesen geleitet:

(1.1) MRCPs sind auch nach hoher dynamischer Beanspruchung ableitbar.

(1.2) Nach hoher dynamischer Beanspruchung zeigen diese MRCPs Unterschiede ge-

genüber dem Zustand in Ruhe als Ursache einer veränderten „zentralnervösen

Aktivierungssituation“.

(1.3) Diese belastungsabhängigen MRCP-Veränderungen werden durch lokale Bean-

spruchungszustände der Testbewegungsmuskulatur beeinflusst.

(1.4) Die MRCP-Veränderungen sind ebenfalls nachweisbar, wenn die Testbewegung

mit nicht beanspruchter Muskulatur ausgeführt wird.

(1.5) Auch rein kognitiv erschöpfende Beanspruchungen beeinflussen die sich im

MRCP abbildende, kortikale Bewegungsvorbereitung.

(2.1) Zur Einschätzung der natürlichen elektrophysiologischen Umstellungsprozesse im

Gehirn nach erschöpfender Belastung reicht eine alleinige Betrachtung der Alpha-

und Beta-Frequenzen nicht aus.
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(2.2) Es zeigen sich Unterschiede der kortikalen „Downregulation“ in Abhängigkeit der

aeroben Ausdauerleistungsfähigkeit.

(2.3) Es gibt Zusammenhänge zwischen zentraler hirnelektrischer und peripherer sym-

pathico-adrenerger Umstellungsreaktionen nach erschöpfenden Beanspruchun-

gen.

Methoden und Untersuchungsansätze: Im ersten analytischen Forschungsansatz

(Belastungskomplex 1) wird methodisch erstmals eine Trennung zwischen zentralen

und peripheren Ermüdungseinflüssen durch den Einsatz standardisierter, unterschied-

licher bis zur Erschöpfung führender Belastungsregime mit Fahrrad- (FB) Armkurbel-

(OB) und rein kognitiver Belastung (KB) vorgenommen. Die kortikale Bewegungsgene-

rierung wird mit Messung des MRCPs in einem gelernten, willkürlichen rechtsbeinigen

Pedalantritt Testparadigma erfasst. Hierdurch entstehen zwei Bedingungen mit hohen

körperlichen Beanspruchungen, wobei einmal die Testbewegungsmuskulatur gleich-

zeitig mitbeansprucht und einmal ausgeruht ist. Es wird eine weitere Bedingung mit

kognitiver Beanspruchung zur Kontrolle der rein psychischen Belastungseinflüsse auf

die zentrale Bewegungsorganisation geschaffen.

Im zweiten, eher beschreibenden, Forschungsansatz (Belastungskomplex 2) wird der

Beanspruchungs-Erholungs-Zyklus der elektrophysiologischen Prozesse im Gehirn

nach erschöpfender Fahrradergometrie im gesamten EEG-Spektrum dargestellt, der

Einfluss der Leistungsfähigkeit darauf untersucht und korrelative Zusammenhänge zur

symphatiko-adrenergen Regulation betrachtet.

Im Belastungskomplex 1 nehmen cross-over in FB 14 testgeübte, freiwillige, rechts-

händige, ausdauertrainierte, gesunde männliche Sportler teil. Davon verblieben 11 in

der OB- und 10 in der KB-Studie.

Im Belastungskomplex 2 nehmen 21 gesunde, freiwillige männliche Studenten teil, die

aufgeteilt in Leistungsgruppen < 4Watt/kg< die EEG und Regenerationsstudie nach

standardisierten physischen Stress durchlaufen.

In beiden Ansätzen dient ein physisches Stressmodell zur Belastungsinduzierung

durch Ergometer-Stufentests bis zur erschöpfenden Leistung in einem Vortest.

Im Belastungskomplex 1 wird die Leistungsfähigkeit für vergleichbare Beanspruchun-

gen bei unterschiedlichen physischen Belastungsregimen (FB, OB) über den Stoff-

wechselparameter Laktat standardisiert. Beim psychischem Belastungsregime KB wird

die Beanspruchung durch den validierten Konzentrations-Leistungs-Test hervorgeru-

fen. Weitere Herz-Kreislauf-, Stoffwechsel-, Stresshormone- und psychometrische Pa-
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rameter dienen der Kontrolle und Beschreibung der Beanspruchungssituationen in bei-

den Belastungskomplexen.

Zu definierten und vergleichbaren Zeitpunkten werden im Belastungskomplex 1 die

MRCPs bei willkürlichem Antrittsparadigma in einem averaging-Verfahren aus dem

EEG ermittelt und anschließend qualitativ und quantitativ anhand charakteristischer

Parameter ausgewertet.

Beim Belastungskomplex 2 wird der Rückstellungsprozess direkt nach Belastung, so-

wie in Abständen bis zu 2 Stunden danach, im Gesamtspektrum des spontanen EEGs

und in peripheren Kontrollparametern dokumentiert.

Ergebnisse: Im Belastungskomplex 1 bestätigen die Kontrollparameter die zwar hohe,

aber vergleichbare physische Beanspruchungssituation (94-97% der max. Leistungs-

fähigkeit) bei dem fahrrad- und oberarmergometrischen Belastungsregime (FB, OB).

Das rein kognitive Belastungsregime schafft keine vergleichbare Beanspruchungs-

situation. Innerhalb der physischen Beanspruchungssituation finden sich die maxima-

len Auslenkungen der Kontrollparameter in der FB-Bedingung.

Qualitative und quantitative Zunahmen der MRCPs, besonders der maximalen Ampli-

tude (MRCPmax) und Gesamtausmaß (Power), in frontalen (Fz) und zentralen (Cz)

Rindenregionen sind mit zunehmend physischer Beanspruchung bei identischen An-

tritten feststellbar. Signifikant größere frontale und bedingt parietale Negativität der

MRCPs zeigen sich nach hohen Belastungen bei gleichzeitig mitbeanspruchter An-

trittsmuskulatur (FB). Im Vergleich dazu ist das nicht der Fall, wenn die Testbewe-

gungsmuskulatur ausgeruht (OB) ist. KB beeinflusst die gemessenen MRCPs nicht.

Beim Belastungskomplex 2 können im EEG signifikante Gruppeneffekte mit geringeren

Theta-Leistungen fronto-zentral in Früh- und Spätregeneration, erhöhte Alpha2-Leis-

tungen zentro-parietal in Spätregeneration bei „gut-leistungsfähigen“ Sportlern festge-

stellt werden. Bis auf die HF zeigen sich keine weiteren Gruppeneffekte, aber tenden-

ziell höhere Katecholaminwerte bei den „gut-Leistungsfähigen“. Verschiedene Blut- und

EEG-Parameter erweisen sich im Frühregenerationsverlauf signifikant verändert.

Schlussfolgerungen: Im ersten Untersuchungsansatz kann die Erfassung von

MRCPs aus dem EEG bei sportspezifischen willkürlichen Bewegungshandlungen auch

nach hohen physischen Beanspruchungen prinzipiell nachgewiesen werden. Die

wachsende MRCP-Negativität mit zunehmender Beanspruchungssituation und die

Ausweitung in frontale Hirngebiete spiegelt vermutlich affektive Einflüsse wider, wobei

die frontale Steuerung und Verarbeitung sensomotorischer Afferenzen via somato-
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sensorischer Hirnareale eine Rolle spielt. Eine kognitive Belastung beeinflusst die

MRCPs nicht.

Im zweiten Untersuchungsansatz kann im vorliegenden Modell die positive Einfluss-

nahme besserer Ausdauerleistung auf das zentralnervale Erholungsverhalten nicht

eindeutig bewiesen werden. Es wird allerdings eine downregulierende Beeinflussung

des gesamten Frequenzspektrums festgestellt, die als elektrophysiologische Um-

schaltung in verschiedenen Regenerationsphasen verstanden werden kann. Der Zu-

sammenhang zentraler und peripherer Mechanismen der Stress-Bewältigung in der

Erholung wird korrelativ ermittelt. Geringere fronto-zentrale Thetaaktivität als Ausdruck

emotionaler Beteiligung bei den „gut-leistungsfähigen“ Sportlern, bei gleichzeitiger hö-

herer Alpha2-Leistung spricht für eine gute kognitive Leistungsfähigkeit und lässt damit

auf eine bessere Erholung schließen.

Ausblick: Zukünftige Untersuchungen sollten neben der Erfassung der MRCPs mit

definierten Beanspruchungssituationen die spontane EEG-Aktivität im Hinblick auf par-

tielle Aktivierungen in Eingangsgebieten sensorischer Afferenzen betrachten. Ein

EMG-Monitoring ist hilfreich. Ferner sollten die MRCP-Parameter eindeutig in frühe

und späte Komponenten differenzierbar sein. Trennscharfe Kontrollparameter zur Be-

urteilung emotionaler Einflussfaktoren müssten gefunden werden.

Das downregulierende, gesamtspektrale EEG-Verhalten sollte auf Reproduzierbarkeit

überprüft werden. Kürzere Messintervalle innerhalb der ersten 3 Minuten oder aus ei-

nem kontinuierlichen EEG-Verlauf heraus könnten helfen, mögliche Vigilanzeinflüsse

aufzudecken und in die Erklärungsansätze mit einzubeziehen. Die Analyse temporaler

EEG-Messelektroden bringt möglicherweise Aufschluss über emotionale Beteiligung

und sollte zukünftig nicht von der Auswertung ausgeschlossen werden.
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9 Ausblick

Hirnphysiologische Vorgänge, die einer Willkürbewegung vorausgehen oder nach

sportlicher Belastung die Systemparameter wiederherstellen, beinhalten entscheidende

Informationen für das Gesamtverständnis sportmotorischer und psychologischer Belas-

tungsauswirkungen für eine optimierte Leistungserbringung in Training und Wettkampf.

Mehr als bisher scheint es zukünftig wichtig, wie sich aus den vorangegangenen Er-

gebnissen abgezeichnet hat, elektrophysiologische Messmethoden mit direkter Erfas-

sung des ZNS-Abbildes in die sportwissenschaftliche Forschung verstärkt zu integrie-

ren. Eine Erfolg versprechende Kombination ist die Verbindung von Bewegungswis-

senschaft und einer physiologisch orientierten Sportmedizin oder Neurowissenschaft in

fachübergreifenden Arbeitsgruppen.

Zur Verifizierung einer neuen Hypothese sollten Untersuchungen partieller Aktivie-

rungsmuster funktioneller Hirnregionen im spontanen EEG bei unterschiedlich er-

schöpften Zuständen durchgeführt werden. Zusätzlich müssten die MRCPs bei einer

Beibehaltung der Antrittstestbewegung durch EMG-Monitoring beider Extremitäten er-

weitert werden. Dadurch sind genauere Aussagen über etwaige Bewegungsabwei-

chungen möglich. Bei weiteren Einsätzen der MRCPs sollten repräsentative Parameter

neben den späten Komponenten auch die frühen Komponenten differenzierbar ma-

chen, da hier möglicherweise generelle kortikale Einstellungen zum Tragen kommen.

Für eine bessere Einschätzung affektiv emotionaler Einflüsse sollten trennscharfe

Kontrollparameter gefunden werden, um somit eine ganzheitliche synergistische Be-

trachtung vom „Wollen“ oder „Nichtwollen“ beschreibbar und damit beurteilbar zu ma-

chen. Gerade bei den emotionalen Ressourcen spielen möglicherweise auch Bewusst-

seinsprozesse eine bedeutende Rolle und deuten auf weitere Berührungspunkte des

Lernens und des Bewegens hin.

Das downregulierende gesamtspektrale EEG-Verhalten am physischen Stressmodell

sollte auf Reproduzierbarkeit überprüft werden. Dabei ist zu überlegen, die 3 Minuten

Messphasen in Subphasen unterzudifferenzieren, um mögliche Vigilanzeinflüsse her-

auszufiltern und in Erklärungsansätze mit einzubeziehen. In diesem Kontext sind die

temporalen Hirnregionen von besonderem Interesse und sollten analytisch nicht aus-

geschlossen werden. Somit sind genauere Regenerationseinteilungen von der zentral-

nervalen Steuerungsebene ableitbar und bewertbar, die die wesentlichen Vorausset-
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zungen für die Leistungssteigerung oder die optimierte Setzung sportmotorischer Lern-

reize im Training und im Wettkampf bilden können.

Neue interdisziplinäre Erklärungsansätze unter Einbeziehung neurowissenschaftlicher

Methoden würden zur Belebung sportwissenschaftlicher Forschung beitragen. Der

Sport bietet das geradezu ideale explorative Feld zum Studium der Bewegungsorgani-

sationen und die Psychophysiologie schafft die Plattform für fachübergreifende Ar-

beitsgruppen und Betrachtungsweisen. Neben der Bildung solcher quasi „infrastruktu-

reller“ Voraussetzungen fehlt es an geeigneten generellen Modellen der Bewegungs-

organisation, die eine Vorwegnahme von Untersuchungsergebnissen a priori ermögli-

chen und damit einen schrittweisen Erkenntnisgewinn planbar machen. Erste Bemü-

hungen sind aus jüngeren Symposien mit Themengebieten des Sports, z.B. „Exercise

and Brain“ und der Bewegungswissenschaft „European Workshop of Movement Sci-

ence“, abzulesen. Es bleibt abzuwarten, ob sich dieses Forschungsfeld, das Prof. W.

Hollmann u.a. als „Bewegungs-Neurowissenschaft“ oder Prof. H. Liesen als „Exercise

and Brain“ bezeichnet, ein zentrales Gebiet in der Sportwissenschaft wird. Zufrieden-

stellend ist jedoch die Tatsache, dass wissenschaftliches Potential sowie wissenschaft-

licher Untersuchungsbedarf und fachgerechte Untersuchungsmethoden zur Verfügung

stehen und „Exercise“ ohne „Brain“ nicht funktionieren kann.
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Anhang I

11 Anhang

11.1  Probandeninfo und Einverständnis (Belkom. 1)

Probandeninform
ation

U
ntersuchung zur W

irkung eines M
ischgetränkes auf die 

zentralnervöse
A

ktivität, das H
erz-K

reislauf-System
 und den Energiestoffw

echsel

Bisher w
urde in der m

edizinischen Leistungsdiagnostik der Energiebereitstellung eine
entscheidende R

olle zugeordnet, w
ogegen die 

zentralnervöse Aktivität kaum
 

Berücksich-
tigung fand. Leistungsvoraussetzend für m

otorische Bew
egungen ist der Kopf als steuerndes

und kontrollierendes Elem
ent, zusätzlich zu einer ökonom

ischen 
H

erz-Kreislauf-A
rbeit und

einem
 angepaßten Energiestoffw

echsel.

D
ie Studie soll nun überprüfen, ob und inw

iefern ein M
ischgetränk Einfluß auf die

zentralnervöse Aktivität, die 
Ö

konom
isierung des H

erz-K
reislauf-System

s und die 
Energie-

bereitstellung hat.

Es w
erden Kapillarblut-Abnahm

en aus dem
 O

hrläppchen, venöse Blutabnahm
en, EKG

- und
EEG

-Ableitungen durchgeführt. Ein gesundheitliches R
isiko besteht nicht.

Insgesam
t m

uß jeder Proband an vier U
ntersuchungsterm

inen m
it einer 

fahrradergo-
m

etrischen Stufenbelastung teilnehm
en:

1. 
Voruntersuchung: Erfassung der individuellen Leistungsfähigkeit
(Festlegung der Belastungsdosierung für die H

auptuntersuchungen)
2. 

H
auptuntersuchungen: Stufentest nach Trinken des Testgetränks bzw

. den Kontrollen
(3-W

ochen-Periodik: Jeder Proband erscheint am
 selben Tag und zur selben U

hrzeit, um
identische Bedingungen zu erfüllen. D

ie E
innahm

e eines standardisierten Frühstücks
w

ird im
 Sportm

edizinischen Institut durchgeführt.)

Ein eventueller 
M

edikam
entengebrauch ist frühzeitig m

itzuteilen. D
er Konsum

 von
coffeinhaltigen Stim

ulanzien
 (Kaffee, 

C
ola, 

Energydrinks, schw
arzer Tee, Kakao,

Schokolade, Zitronentee, Koffeintabletten, usw
.) ist anzugeben.

E
ine grobe 

Trainingskonzeption der letzten 4 W
ochen vor der H

auptuntersuchung ist
einzureichen. W

ährend des U
ntersuchungszeitraum

es ist das Training und der G
ebrauch

von S
upplem

enten, E
nergie- und M

ineraldrinks genau zu protokollieren.

A
ngaben zur Trainingsbelastung vor den U

ntersuchungen:
Trainingstage  vor  den

U
ntersuchungen

Trainingsinhalt
D

auer
B

em
erkung

2
G

rundlagenausdauer (G
A1)

M
ax. 2h

Keine Kraftausdauer

1
R

egeneration
M

ax. 1h
M

ax. P
uls w

ird nach
der Voruntersuchung

m
itgeteilt

A
ngaben zu N

ahrungs- und G
enußm

itteln vor den U
ntersuchungen:

Bis zu 48 Std. vor der U
ntersuchung: keine M

edikam
ente, Alkohol u. N

ikotin
Am

 U
ntersuchungstag selber: keine Stim

ulanzien w
ie Kaffee, schw

arzer Tee und Kakao

B
itte rückseitig bestätigen

Sportm
edizinisches Instiut

U
niversität-G

H
 Paderborn

H
ierm

it erkläre
ich,die

beigefügte
Probandeninform

ation
gelesen

und
verstanden

zu
haben. D

esw
eiteren

w
erde

ich
m

ich
nach

den
U

ntersuchungs bedingungen
richten.Ich

bin über die m
öglichen

R
isiken

derU
ntersuchung

unterrichtetw
orden

und
ge be

m
it

m
einer U

nterschriftm
ein

Einw
illigungsverständniszurfreiw

illigen
Teilnahm

e
an

der
Studie.

N
ach der letzten

U
ntersuchung

(4.)w
ird

eineA
ufw

andsentschädigung
von

200
D

M
überw

iesen. Zusätzlich
w

ird
ein

kleinesw
eiteresG

eschenk
ü bergeben.

____________________
____________________
              D

atum
U

nterschrift

N
am

e des K
ontoinhabers:

N
am

e des G
eldinstituts:

B
ankleitzahl:

K
ontonum

m
er:



Anhang II

11.2  Untersuchungsablauf (Belkom. 1)

Information zum Untersuchungszeitablauf:

7.00 (12.00) Uhr Frühstück im Spomed Institut: 1-2 Brötchen oder 2 Scheiben Brot
mit Streichfett; Getränke: Mineralwasser, Kräuter- und Früchtetee
(kein Kaffee, schwarzer Tee, Kakao, Saft, Müsli, da Stimulanzien
enthalten sind, die die Meßergebnisse verfälschen)

8.30 (13.30) Uhr Umziehen etc.

9.00 (14.00) Uhr Untersuchungsbeginn

• Verkabelung/Haube
• Ruhephase (20min); Fragebogen
• Venöse Blutentnahme

10.00 (15.00)Uhr Aufbau, Verkabelung, Bewegungsaufgabe rezitieren

1. EEG-MRCP-MRCP Messung

1. Stufe Aufwärmen (10min)

2. EEG-MRCP-Messung

2. Stufe (6min)

3. Stufe (6min)

4. Stufe  (6min)

3. EEG-MRCP-Messung

5. Stufe maximal (6min)

4. EEG-MRCP-Messung

Fragebogen

Venöse Blutentnahme

12.00 Uhr (17.00) Uhr  Ende

Kapillare Blutentnahmen zur Bestimmung von:
Laktat in Ruhe und in den letzten 30 s der jeweiligen Stufe
Ammoniak bei Ruhe, Stufe 4, Stufe 5 jeweils 3min. nach Belastung.

Blutdruckmessung in Ruhe und jew. 2 min. vor Stufenende
Herzfrequenzmessung kontinuierlich mit Polar Tester

Anmerkung für die Nachmittagstermine: Frühstück nach Wahl. Um 12.00 Uhr
standardisiertes zweites Frühstück (s.o.) im Sportmedizinischen Institut.
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11.3  Trainingsprotokollvorlage (Belkom. 1)



Anhang IV

11.4 Probandeninfo, Einverständnis (Belkom. 2)

Probandeninform
ation für die H

erbs and Fruit Studie

D
as angew

andte 
P

räperat soll das 
K

atecholam
insystem

 und die
R

egenerationsfähigkeit beeinflussen. D
es w

eiteren w
irkt es sich auf  die

elektrophysiologische H
irnaktivität aus. H

ieraus 
ensteht die H

ypothese, es einen
entspannenden E

ffekt und A
usw

irkungen auf das 
Stressm

anagem
ent und die

Stressbew
ältigung hat. U

m
 dieses zu 

objektivieren, w
urde diese Studie entw

ickelt,
bei der E

EG
- M

essungen und B
lutuntersuchungen in der R

uhephase nach einer
E

rgom
eterbelastung durchgeführt w

erden.

M
ethodik:

Probanden:15 gesunde, 
nichtrauchende, sportliche (allerdings nicht spezifisch

ausdauer- bzw
. krafttrainierte)  Studenten, A

lter 20-30 Jahre

Studiendesign: Voruntersuchung und H
auptuntersuchung

- 
Voruntersuchung: 

E
rgom

etertest (Feststellung der Leistungsfähigkeit und
Festlegung der B

elastungsintensität für die H
auptuntersuchung)

- 
H

auptuntersuchung: 3 U
ntersuchungstage im

 A
bstand von jew

eils einer W
oche

(in diesem
 Zeitraum

 sollten die körperlichen A
ktivitäten nicht sehr stark variiert

und die 
E

ssgew
ohnheiten protokolliert w

erden), w
obei ein 

random
isiertes,

präparatkontrolliertes doppelblindes D
esign verw

endet w
ird.

U
ntersuchungsgang: D

ie E
rnährungsgew

ohnheiten der P
robanden w

erden m
ittels

Food 
Frequency Verfahren (

FFQ
) (Vital &

 A
ktiv) erhoben. H

ierbei w
ird die

quantitative Zufuhr w
ichtiger N

ährstoffe in den letzten 3 W
ochen vor den Tests

abgeschätzt.
A

m
 U

ntersuchungsterm
in kom

m
en die P

robanden um
 8.00 U

hr (bzw. 8.35, 10.20
U

hr)  nüchtern und ausgeschlafen ins Sportm
edizinische Institut w

obei am
 Vortag auf

intensives Training, A
lkoholkonsum

 und exzessive N
ahrungsaufnahm

e verzichtet
w

erden soll. N
ach B

efindlichkeitserhebung und standardisiertem
 Frühstück findet die

E
rgom

eterbelastung. (4 ansteigende, 
subm

axim
ale Stufen a 3 M

in., 1 m
axim

ale
Stufe a 4 M

in.) statt. A
nschließend w

ird das Testgetränk verabreicht, B
lut

abgenom
m

en und eine E
E

G
- M

essung absolviert. W
ährend der 2- 

stündigen
R

uhephase w
erden 4 w

eitere E
E

G
- M

essungen/ B
lutabnahm

en und zum
 

S
chluss

eine U
rinprobe durchgeführt.

E
s w

erden 
K

apillarblut-A
bnahm

en aus dem
 O

hrläppchen, venöse B
lutabnahm

en,
U

rinproben und Fragebögen, durchgeführt. E
in gesundheitliches R

isiko besteht nicht.

Vielen D
ank,

E
uer Spom

ed- Team

Sportm
edizinisches Instiut

U
niversität-G

H
 P

aderborn

H
ierm

iterkläre ich, die
beigefügte

P
robandeninform

ation
gelesen

und
verstanden

zu
haben.

D
esw

eiteren w
erde

ich
m

ich
nach

den
U

ntersuchungsbedingungen
richten.

Ich
bin

über die m
öglichen

R
isiken

derU
ntersuchung

unterrichtetw
orden

und
gebe

m
itm

einer U
nterschriftm

ein
E

inw
illigungsverständnis

zurfreiw
illigen

Teilnahm
e

an
derStudie.

N
ach

derletzten U
ntersuchung

w
ird

eine
A

ufw
andsentschädigung

von
150

D
M

überw
iesen.

D
atum

U
nterschrift

N
am

e des K
ontoinhabers:

N
am

e des G
eldinstituts:

B
ankleitzahl:

K
ontonum

m
er:
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11.5  Untersuchungsablauf, Checkliste (Belkom. 2)
A

blauf H
auptuntersuchung

Zeit
U

hr
Proband

Labor
E

rgo
K

üche

8.00-8.20
A

Frühstück
8.25-8.55

A
Braunüle, Verkabeln,

Im
pedanzm

essung
8.35-8.55

B
Frühstück

9.00-9.16
0.00

A
E

rgom
eterbelastung

9.05-9.30
0.05

B
Braunüle, Verkabeln,

Im
pedanzm

essung
9.17-9.22

0.17
A

M
essung O

9.22-9.30
0.22

A
B

lase entleeren,
Testgetränk
9.30

0.30
A

B
eginn der R

uhephase
9.35-9.51

0.35
B

E
rgom

eterbelastung
9.52-9.57

0.52
B

M
essung O

9.57-10.05
0.57

B
B

lase entleeren,
Testgetränk
10.00-10.05

1.00
A

M
essung 1

10.05
1.05

B
B

eginn der R
uhephase

10.15-10.20
1.15

A
M

essung 2
10.20-10.40

1.20
C

Frühstück
10.30-10.35

1.30
A

M
essung 3

10.35-10.40
1.35

B
M

essung 1
10.45-11.15

1.45
C

Braunüle, Verkabeln,
Im

pedanzm
essung

10.50-10.55
1.50

B
M

essung 2
11.05-11.10

2.05
B

M
essung 3

11.20-11.36
2.20

C
E

rgom
eterbelastung

11.30-11.35
2.30

A
M

essung 4
11.37-11.42

2.37
C

M
essung 0

11.42-11.50
2.42

C
B

lase entleeren,
Testgetränk
11.50

2.50
C

B
eginn der R

uhephase
12.05-12.10

3.05
B

M
essung 4

12.20-12.25
3.20

C
M

essung 1
12.35-12.40

3.35
C

M
essung 2

12.50-12.55
3.50

C
M

essung 3
13.50-13.55

4.50
C

M
essung

4

C
heckliste

Frühstück:
- 20 m

in
- U

m
ziehen

- 2 B
rötchen m

it Streichfett
- dazu M

ineralw
asser bzw

. Früchtetee

B
raunüle, Verkabeln, Im

pedanzm
essung:

- 30 m
in

- zuerst B
raunüle vom

 A
rzt legen

- P
ulsgurt,

- H
aube vorgelen, aufsetzen, nachgelen

- E
og vorbereiten (K

eberinge/G
el) und anlegen

- E
cg

- E
lektroden (S

ym
patograph)

- Im
pedanzm

essung (evtl. nachgelen)

Ergom
eterbelastung:

- ca. 5 m
in Vorbereitung

- 16 m
in B

elastung (300,350 oder 400 W
att P

rogram
m

)
- danach unverzüglich ins M

esslabor

M
essung 0, 1, 2, 3, 4:

- 5 m
in

- B
lutabnahm

e durch den A
rzt

- w
ährendessen E

cg anlegen, K
abel anschließen und Im

pedanz
- E

EG
 M

essung



Anhang VI

11.6  Übersetzte Fassung des Händigkeitstests

11.7  Schalteinheit für Trigger



Anhang VII

11.8  Basler Befindlichkeitstest (Grundversion)



Anhang VIII

11.9  Deskription (Belkom. 1)

Häufigkeitstabellen: Belastungskomplex 1 (Armkurbelergometer Belastung)
Statistiken

Haendigkeit
Sprungbeinp

raeferenz
Coffeinge
wöhnung SportDisziplin

Subj.Ausbel
astungWert
-5 [Punkte]

Gültig 11 11 11 11 11n
Fehle
nd 0 0 0 0 0

Haendigkeit

Häufigkeit Prozent
Gültige

Prozente
Kumulierte
Prozente

Gültig Rechtshaen
der 11 100,0 100,0 100,0

Sprungbeinpraeferenz(a)

Häufigkeit Prozent
Gültige

Prozente
Kumulierte
Prozente

Linksfuessl
er 5 45,5 45,5 45,5

Rechtsfues
sler 6 54,5 54,5 100,0

Gültig

Gesamt 11 100,0 100,0

SportDisziplin

Häufigkeit Prozent
Gültige

Prozente
Kumulierte
Prozente

Triathlon 7 63,6 63,6 63,6
Radsport 2 18,2 18,2 81,8
Laufen 2 18,2 18,2 100,0

Gültig

Gesamt 11 100,0 100,0

Subj.AusbelastungWert-5 [Punkte]

Häufigkeit Prozent
Gültige

Prozente
Kumulierte
Prozente

total
verausgabt 4 36,4 36,4 36,4

z.T.
verausgabt 4 36,4 36,4 72,7

nicht
verausgabt 3 27,3 27,3 100,0

Gültig

Gesamt 11 100,0 100,0

Häufigkeitstabellen: Belastungskomplex 1 (Kognitive Belastung)

Statistiken

Haendigkeit
Sprungbeinp

raeferenz
Coffeinge
wöhnung SportDisziplin

Subj.Ausbel
astungWert
-5 [Punkte]

Gültig 10 10 10 10 10n
Fehle
nd 0 0 0 0 0

Haendigkeit

Häufigkeit Prozent
Gültige

Prozente
Kumulierte
Prozente

Gültig Rechtshaen
der 10 100,0 100,0 100,0

Sprungbeinpraeferenz

Häufigkeit Prozent
Gültige

Prozente
Kumulierte
Prozente

Linksfuessl
er 5 50,0 50,0 50,0

Rechtsfues
sler 5 50,0 50,0 100,0

Gültig

Gesamt 10 100,0 100,0

SportDisziplin

Häufigkeit Prozent
Gültige

Prozente
Kumulierte
Prozente

Triathlon 6 60,0 60,0 60,0
Radsport 2 20,0 20,0 80,0
Laufen 2 20,0 20,0 100,0

Gültig

Gesamt 10 100,0 100,0

Subj.AusbelastungWert-5 [Punkte]

Häufigkeit Prozent
Gültige

Prozente
Kumulierte
Prozente

total
verausgabt 1 10,0 10,0 10,0

nicht
verausgabt 9 90,0 90,0 100,0

Gültig

Gesamt 10 100,0 100,0

Häufigkeitstabellen: Belastungskomplex 1 (Fahrradergometer Belastung)
Statistiken

Haendigkeit
Sprungbeinp

raeferenz
Coffeinge
wöhnung SportDisziplin

Subj.Ausbel
astungWert
-5 [Punkte]

Gültig 14 14 14 14 14n
Fehle
nd 0 0 0 0 0

Haendigkeit

Häufigkeit Prozent
Gültige

Prozente
Kumulierte
Prozente

Linkshaend
er 1 7,1 7,1 7,1

Rechtshaen
der 13 92,9 92,9 100,0

Gültig

Gesamt 14 100,0 100,0

Sprungbeinpraeferenz

Häufigkeit Prozent
Gültige

Prozente
Kumulierte
Prozente

Linksfuessl
er 6 42,9 42,9 42,9

Rechtsfues
sler 8 57,1 57,1 100,0

Gültig

Gesamt 14 100,0 100,0

SportDisziplin

Häufigkeit Prozent
Gültige

Prozente
Kumulierte
Prozente

Triathlon 7 50,0 50,0 50,0
Radsport 4 28,6 28,6 78,6
Laufen 3 21,4 21,4 100,0

Gültig

Gesamt 14 100,0 100,0

Subj.AusbelastungWert-5 [Punkte]

Häufigkeit Prozent
Gültige

Prozente
Kumulierte
Prozente

total
verausgabt 5 35,7 35,7 35,7

z.T.
verausgabt 7 50,0 50,0 85,7

nicht
verausgabt 2 14,3 14,3 100,0

Gültig

Gesamt 14 100,0 100,0



Anhang IX

Anthropometrie

26 3 n=14 26 23 28 25 4 n=11 26 22 29 25 4 n=10 25 22 29

71,3 4,0 n=14 71,9 68,1 74,2 . . n=0 . . . . . n=0 . . .

71,8 3,6 n=14 71,7 69,5 74,7 72,2 3,8 n=11 71,0 69,7 75,4 72,6 3,2 n=10 72,3 69,8 75,1

4,84 ,46 n=14 4,74 4,49 5,15 1,88 ,26 n=11 1,85 1,73 1,95 . . n=0 . . .

1,88 ,26 n=11 1,85 1,73 1,95 1,88 ,26 n=11 1,85 1,73 1,95 1,90 ,27 n=10 1,86 1,80 1,98

178,9 5,6 n=14 179,8 175,6 181,2 178,6 4,6 n=11 180,0 179,5 181,0 178,5 4,9 n=10 180,0 177,3 181,2

67,44 45,96 n=14 86,66 64,67 92,76 76,07 23,60 n=11 86,21 65,71 92,31 77,01 24,66 n=10 86,66 64,67 94,23

2 0 n=14 2 2 2 2 0 n=11 2 2 2 2 0 n=10 2 2 2
2 1 n=14 2 1 2 2 1 n=11 2 1 2 2 1 n=10 2 1 2
1 1 n=14 1 1 2 2 1 n=11 2 1 2 2 1 n=10 2 1 2
2 1 n=14 2 1 2 2 1 n=11 1 1 2 2 1 n=10 1 1 2
7 3 n=14 6 4 9 6 2 n=11 5 4 7 6 2 n=10 5 4 7

12 2 n=14 12 10 14 12 2 n=11 12 10 14 12 2 n=10 12 10 14

346,43 30,79 n=14 350,00 337,50 350,00 135,45 15,72 n=11 130,00 130,00 150,00 . . n=0 . . .

346,43 30,79 n=14 350,00 337,50 350,00 350,00 31,62 n=11 350,00 350,00 350,00 350,00 33,33 n=10 350,00 337,50 362,50

135,45 15,72 n=11 130,00 130,00 150,00 135,45 15,72 n=11 130,00 130,00 150,00 136,00 16,47 n=10 130,00 130,00 150,00

. . n=0 . . . . . n=0 . . . 122,06 30,62 n=10 118,24 94,47 149,19

. . n=0 . . . . . n=0 . . . ,52 ,34 n=10 ,40 ,29 ,81

Alter Stand 8/98 [Jahre]
Gewicht Voruntersuchung
[kg]
Koerpergewicht z. HU [kg]
Rel.Max.
Leistungsfähigkeit FB
(PmaxGewicht) [Watt/kg]
Rel.Max.Leistung OB
(Pmax/Gewicht) [Watt/kg]
Körpergröße [cm]
Lateralitätsquotient (LQ)
[Punkte]
Haendigkeit
Sprungbeinpraeferenz
Coffeingewöhnung
SportDisziplin
TrainZeit [Jahre]
TrainUmfang [h/Woche]
Pretestpower (PPmax)
[Watt]
Leistungsfähigkeit
(PmaxFB) [Watt]
Leistung (PmaxOB) [Watt]
klt_
Konzentrationsleistung z
Norm (lrel) [%]
klt_Fehlerquotient (fq)
[(F%/MF%]
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Beanspruchung (peripher)

94,29 26,52 n=14 100,00 70,00 105,00 23,64 8,97 n=11 20,00 20,00 25,00 . . n=0 . . .

150,71 26,45 n=14 155,00 136,25 160,00 49,09 11,14 n=11 50,00 40,00 50,00 . . n=0 . . .

208,57 28,52 n=14 210,00 197,50 220,00 74,09 14,11 n=11 75,00 60,00 80,00 . . n=0 . . .

265,71 31,31 n=14 265,00 253,75 280,00 99,09 17,44 n=11 100,00 80,00 110,00 . . n=0 . . .

326,43 32,25 n=14 320,00 315,00 350,00 131,82 16,01 n=11 130,00 120,00 135,00 . . n=0 . . .

27,0 6,3 n=14 28,6 22,1 30,8 17,2 4,5 n=11 15,4 15,4 19,2 . . n=0 . . .

43,3 5,1 n=14 44,3 40,0 45,7 36,0 4,6 n=11 34,6 33,3 38,5 . . n=0 . . .

60,1 4,6 n=14 60,0 57,0 62,9 54,5 5,3 n=11 53,8 53,3 57,7 . . n=0 . . .

76,6 4,4 n=14 75,7 74,0 80,0 72,9 6,3 n=11 73,3 72,7 76,9 . . n=0 . . .

94,2 3,8 n=14 92,0 91,4 98,1 97,4 4,9 n=11 100,0 92,3 100,0 . . n=0 . . .

. . n=0 . . . . . n=0 . . . 117 40 n=10 110 83 151

. . n=0 . . . . . n=0 . . . 94 8 n=10 93 87 101

. . n=0 . . . . . n=0 . . . 33 26 n=10 24 10 56

. . n=0 . . . . . n=0 . . . 6 4 n=10 5 3 8

. . n=0 . . . . . n=0 . . . 5,17 3,36 n=10 3,94 2,92 8,10

. . n=0 . . . . . n=0 . . . 10 0 n=10 10 10 10

. . n=0 . . . . . n=0 . . . ,52 ,34 n=10 ,40 ,29 ,81

. . n=0 . . . . . n=0 . . . 100 0 n=10 100 100 100

. . n=0 . . . . . n=0 . . . 122,06 30,62 n=10 118,24 94,47 149,19

2 1 n=14 2 1 2 2 1 n=11 2 1 3 3 1 n=10 3 3 3

68 12 n=14 66 59 74 69 11 n=11 70 62 80 72 13 n=10 67 64 86

100 10 n=14 102 96 107 79 10 n=11 77 72 90 . . n=0 . . .
115 9 n=14 115 111 120 93 13 n=11 98 80 102 . . n=0 . . .
136 13 n=14 136 126 144 109 17 n=11 113 90 125 . . n=0 . . .
159 14 n=14 160 151 168 130 22 n=11 131 109 146 . . n=0 . . .
174 10 n=14 175 167 182 154 18 n=11 159 139 167 75 9 n=10 78 65 81

120 8 n=13 120 118 120 . . n=0 . . . . . n=0 . . .

76 7 n=13 80 70 80 . . n=0 . . . . . n=0 . . .

144 10 n=13 145 140 150 . . n=0 . . . . . n=0 . . .
72 9 n=13 70 65 80 . . n=0 . . . . . n=0 . . .

159 12 n=13 160 150 163 . . n=0 . . . . . n=0 . . .
71 9 n=13 70 60 80 . . n=0 . . . . . n=0 . . .

175 16 n=13 180 163 190 . . n=0 . . . . . n=0 . . .
69 10 n=13 70 60 80 . . n=0 . . . . . n=0 . . .

192 18 n=13 200 180 208 . . n=0 . . . . . n=0 . . .
67 11 n=13 70 60 78 . . n=0 . . . . . n=0 . . .

208 17 n=13 210 190 225 . . n=0 . . . . . n=0 . . .
70 10 n=13 70 60 80 . . n=0 . . . . . n=0 . . .

100,0 ,0 n=14 100,0 100,0 100,0 100,0 ,0 n=11 100,0 100,0 100,0 . . n=0 . . .

Stufenbelastung 1 (P1)
[Watt]
Stufenbelastung 2 (P2)
[Watt]
Stufenbelastung 3 (P3)
[Watt]
Stufenbelastung 4 (P4)
[Watt]
Stufenbelastung 5 (P5)
[Watt]
Belastungsrelation 1 (P1/
Pmax) [%]
Belastungsrelation 2 (P2/
Pmax) [%]
Belastungsrelation 3 (P3/
Pmax) [%]
Belastungsrelation 4 (P4/
Pmax) [%]
Belastungsrelation 5 (P5/
Pmax) [%]
klt_LeistungsRohWert
(lrw) [Anzahl]
klt_
LeistungsStandartWert
(lsw) [Normanzahl]
klt_
LeistungsProzentRang
(lpr) [ProzRangNormgr]
klt_FehlerRohWert (frw)
[Anzahl]
klt_Fehlerprozent (fpro)
[F%]
klt_Referenzfehlerprozent
[MF%]
klt_Fehlerquotient (fq)
[(F%/MF%]
klt_
Konzentrationsleistung
Norm (lswrel) [%]
klt_
Konzentrationsleistung z
Norm (lrel) [%]
Subj.AusbelastungWert-5
[Punkte]
Herzfrequenz (HF) -R
[1/min]
HF -1[1/min]
HF -2 [1/min]
HF -3 [1/min]
HF -4[1/min]
HF -5[1/min]
Blutdruck systolisch (Bd.
syst.) -R [mmHg]
Blutdruck diastolisch (Bd.
diast.) -R [mmHg]
Bd.syst.-1 [mmHg]
Bd.diast. -1 [mmHg]
Bd.syst. -2 [mmHg]
Bd.diast.-2 [mmHg]
Bd.syst. -3 [mmHg]
Bd.diast. -3 [mmHg]
Bd.syst.-4 [mmHg]
Bd.diast. -4 [mmHg]
Bd.syst.--5 [mmHg]
Bd.diast.--5 [mmHg]
Max.Bel.rel. (Pmaxrel) [%]

MW SD n MD 25P 75P
Fahrradergometerbelastung

MW SD n MD 25P 75P
Oberarmergometerbelastung

MW SD n MD 25P 75P
Kognitive Belastung

Teile der BISP-Studie [1-3]



Anhang X

Beanspruchung (metabolisch)

1,4 ,3 n=14 1,4 1,1 1,6 1,0 ,2 n=11 1,0 ,9 1,2 1,0 ,3 n=10 1,0 ,8 1,1
1,1 ,2 n=14 1,1 ,9 1,3 1,2 ,4 n=11 1,2 ,9 1,3 . . n=0 . . .
1,3 ,3 n=14 1,2 1,1 1,4 1,7 ,4 n=11 1,5 1,3 1,8 . . n=0 . . .
1,8 ,6 n=14 1,7 1,4 1,9 2,5 ,5 n=11 2,5 2,1 2,6 . . n=0 . . .
3,5 ,7 n=14 3,5 2,8 4,0 3,8 ,7 n=11 4,1 2,9 4,3 . . n=0 . . .
6,7 ,8 n=14 6,9 5,8 7,4 5,7 1,4 n=11 5,9 4,2 6,3 ,9 ,2 n=10 ,9 ,7 ,9
24 8 n=14 22 20 28 37 9 n=11 36 30 46 35 8 n=10 35 29 43
51 11 n=14 52 40 58 . . n=0 . . . . . n=0 . . .
69 17 n=14 65 61 72 66 12 n=10 68 60 76 27 7 n=10 27 22 30

Lactat -R [mmol/l]
Lactat -1 [mmol/l]
Lactat -2 [mmol/l]
Lactat -3 [mmol/l]
Lactat -4 [mmol/l]
Lactat -5 [mmol/l]
Amoniak (NH³) -R[µmol/l]
NH³ -4 [µmol/l]
NH³ -5 [µmol/l]
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Blutbild

4,73 ,28 n=14 4,64 4,49 4,97 4,97 ,21 n=11 4,95 4,79 5,08 4,80 ,27 n=10 4,79 4,55 5,04

4,93 ,30 n=14 4,90 4,63 5,17 5,17 ,19 n=11 5,18 5,06 5,27 4,97 ,26 n=10 4,96 4,73 5,15

5,4 1,2 n=14 5,4 4,6 6,2 4,8 1,1 n=11 4,6 4,2 5,2 4,2 1,0 n=10 4,2 3,5 4,7

6,1 1,6 n=14 6,0 5,0 7,0 5,0 1,0 n=11 5,1 4,5 5,4 4,3 1,0 n=10 4,1 3,6 5,2

250 50 n=14 254 205 276 257 60 n=11 248 204 292 241 53 n=10 238 207 273

269 56 n=14 266 221 308 266 59 n=11 261 212 312 241 58 n=10 236 205 261

14,2 ,7 n=14 14,1 13,9 14,8 14,7 ,7 n=11 14,4 14,3 15,2 14,3 ,7 n=10 14,4 13,5 14,8
14,8 ,8 n=14 14,9 14,2 15,2 15,1 ,7 n=11 15,0 14,4 15,6 14,7 ,7 n=10 14,8 14,1 15,2
,42 ,02 n=14 ,41 ,41 ,42 ,43 ,03 n=11 ,43 ,41 ,45 ,41 ,03 n=10 ,42 ,39 ,43
,44 ,02 n=14 ,44 ,43 ,44 ,45 ,02 n=11 ,45 ,43 ,46 ,43 ,02 n=10 ,43 ,40 ,45

30,1 1,3 n=14 29,9 29,0 31,1 29,6 1,3 n=11 30,0 28,7 30,7 29,8 1,4 n=10 30,0 28,9 31,0

30,0 1,0 n=14 30,1 29,2 30,5 29,2 1,1 n=11 29,2 28,4 30,1 29,7 1,3 n=10 29,5 28,8 30,8

34,2 ,8 n=14 34,3 33,6 34,8 34,4 1,6 n=11 34,2 33,0 35,4 34,6 1,5 n=10 34,6 33,1 36,3

34,0 ,7 n=14 34,0 33,6 34,5 33,9 1,2 n=11 33,7 32,7 34,7 34,5 1,0 n=10 34,6 33,7 35,4

88 4 n=14 88 85 90 86 5 n=11 84 83 90 86 4 n=10 86 83 88

88 4 n=14 88 86 91 86 5 n=11 85 83 90 86 4 n=10 86 83 88

Erythrozyten (ery) -R [10
6/µl]
Erythrozyten (ery)-5 [10
6/µl]
Leukozyten (leu) -R
[10³/µl]
Leukozyten (leu)-5 [10³/µl]
Thrombozyten (throm) R
[10³/µl]
Thrombozyten (throm)-5
[10³/µl]
Hämoglobin (hb) -R [g/dl]
Hämoglobin (hb)-5 [g/dl]
Hämatocrit (htc) -R [l/l]
Hämatocrit (htc)-5 [l/l]
mean cell hemoglobin
(mch)-R [pg]
mch-5 [pg]
mean cell hemoglobin
concentration (mchc)-R
[g/dl]
mchc-5 [g/dl]
mean cell volum (mcv)-R
[µm³]
mcv-5 [µm³]
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Beanspruchung (Stress-System)

,11 ,05 n=9 ,13 ,07 ,15 ,12 ,05 n=11 ,12 ,09 ,16 ,09 ,04 n=7 ,10 ,04 ,12

,14 ,07 n=10 ,14 ,10 ,17 ,11 ,06 n=11 ,10 ,07 ,11 ,10 ,03 n=9 ,10 ,07 ,12

,23 ,11 n=11 ,22 ,14 ,28 ,86 ,92 n=8 ,42 ,19 1,68 ,49 ,67 n=9 ,20 ,16 ,57

,38 ,28 n=11 ,28 ,24 ,39 ,78 1,13 n=10 ,36 ,16 ,86 ,33 ,27 n=10 ,19 ,15 ,57

,78 ,23 n=11 ,70 ,63 1,02 ,76 ,33 n=11 ,58 ,54 1,17 ,76 ,26 n=10 ,72 ,54 ,88

,80 ,21 n=11 ,72 ,63 1,00 ,72 ,31 n=11 ,59 ,54 ,78 ,77 ,34 n=10 ,69 ,52 ,88

16,97 10,47 n=11 15,00 9,50 21,40 18,30 17,98 n=7 9,20 8,50 21,80 13,46 4,20 n=9 12,90 9,55 17,05

12,72 6,04 n=11 11,70 7,50 15,10 18,80 15,77 n=8 10,30 8,23 36,23 11,93 3,90 n=9 11,30 8,20 15,80

1,75 ,87 n=11 1,81 ,69 2,50 1,69 ,56 n=11 1,53 1,22 2,36 1,30 ,27 n=10 1,30 1,04 1,49

2,08 ,91 n=11 1,73 1,46 2,39 1,78 ,45 n=11 1,61 1,51 2,03 2,35 1,25 n=10 2,01 1,34 3,29

9,07 4,31 n=11 8,43 5,39 10,10 8,34 4,68 n=9 6,53 5,12 10,52 7,05 2,25 n=10 6,67 5,71 8,00

10,71 3,24 n=11 10,00 8,64 11,40 8,66 3,17 n=8 7,76 6,57 10,65 7,26 2,19 n=10 7,38 5,82 8,88

Adrenalin frei (A_f)-R
[mmol/l]
A_f-5 [mmol/l]
Adrenalin sulphat (A_
s)-R [mmol/l]
A_s-5 [mmol/l]
Dopamin frei (DOP_
f)-R [mmol/l
DOP_f-5 [mmol/l]
Dopamin sulphat
(DOP_s)-R [mmol/l]
DOP_s-5 [mmol/l]
Noradrenalin frei
(NA_f) R [mmol/l]
NA_f-5 [mmol/l]
Noradrenalin sulphat
(NA_s)-R [mmol/l]
NA_s-5 mmol/l]
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Psychometrie/Konzentrationsleistung

84 9 n=14 86 79 93 84 9 n=11 85 81 88 82 10 n=10 86 76 90

77 14 n=14 78 71 88 85 12 n=11 84 78 93 85 12 n=10 88 78 93

21 3 n=14 20 19 24 21 3 n=11 22 18 23 20 3 n=10 22 18 22
18 3 n=14 19 16 21 19 4 n=11 19 16 23 20 3 n=10 21 18 23
21 4 n=14 22 18 24 22 4 n=11 23 20 25 21 4 n=10 21 19 22
18 5 n=14 19 13 22 21 4 n=11 21 20 23 22 4 n=10 22 20 25
24 3 n=14 24 22 27 24 4 n=11 25 22 28 24 3 n=10 23 22 26
23 4 n=14 24 21 25 24 4 n=11 25 21 26 23 4 n=10 24 21 26
18 4 n=14 19 16 20 17 4 n=11 16 13 21 18 3 n=10 18 15 20
18 4 n=14 18 16 22 21 4 n=11 20 19 24 21 3 n=10 21 18 24

2 1 n=14 2 1 2 2 1 n=11 2 1 3 3 1 n=10 3 3 3

. . n=0 . . . . . n=0 . . . 117 40 n=10 110 83 151

. . n=0 . . . . . n=0 . . . 94 8 n=10 93 87 101

. . n=0 . . . . . n=0 . . . 33 26 n=10 24 10 56

. . n=0 . . . . . n=0 . . . 6 4 n=10 5 3 8

. . n=0 . . . . . n=0 . . . 5,17 3,36 n=10 3,94 2,92 8,10

. . n=0 . . . . . n=0 . . . 10 0 n=10 10 10 10

. . n=0 . . . . . n=0 . . . ,52 ,34 n=10 ,40 ,29 ,81

. . n=0 . . . . . n=0 . . . 100 0 n=10 100 100 100

. . n=0 . . . . . n=0 . . . 122,06 30,62 n=10 118,24 94,47 149,19

Befindlkt.Summe-R
[Punkte]
Befindlkt.Summe-5
[Punkte]
Vitalität-R [Punkte]
Vitalität-5 [Punkte]
Vigilanz-R [Punkte]
Vigilanz-5 [Punkte]
Intrpsy.Glgew.-R [Punkte]
Intrpsy.Glgew.-5 [Punkte]
Soziale Extrov.-R [Punkte]
Soziale Extrov.-5 [Punkte]
Subj.AusbelastungWert-5
[Punkte]
klt_LeistungsRohWert
(lrw) [Anzahl]
klt_
LeistungsStandartWert
(lsw) [Normanzahl]
klt_
LeistungsProzentRang
(lpr) [ProzRangNormgr]
klt_FehlerRohWert (frw)
[Anzahl]
klt_Fehlerprozent (fpro)
[F%]
klt_Referenzfehlerprozent
[MF%]
klt_Fehlerquotient (fq)
[(F%/MF%]
klt_
Konzentrationsleistung
Norm (lswrel) [%]
klt_
Konzentrationsleistung z
Norm (lrel) [%]
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Anhang XI

Antrittsparameter

4,045 1,034 n=14 4,057 3,459 4,426 3,478 1,037 n=11 3,700 2,130 4,118 3,541 1,096 n=10 3,263 2,859 4,019

3,877 ,892 n=14 3,784 3,256 4,519 3,483 1,071 n=11 3,515 2,270 4,314 . . n=0 . . .

3,928 1,031 n=14 3,969 2,901 4,850 3,671 1,122 n=11 3,368 2,691 4,584 . . n=0 . . .

3,743 1,145 n=14 3,656 2,645 4,764 3,840 ,998 n=11 3,407 3,131 5,045 3,638 1,224 n=10 3,239 2,794 4,194

42,942 21,580 n=14 40,930 24,008 55,624 33,534 17,276 n=11 31,850 17,490 50,757 38,198 18,216 n=10 32,895 26,587 47,404

38,184 18,841 n=14 35,460 25,032 49,412 32,825 15,557 n=11 37,823 17,800 45,050 . . n=0 . . .

40,759 19,087 n=14 40,390 24,574 62,747 37,364 17,578 n=11 34,627 19,527 48,715 . . n=0 . . .

38,365 22,216 n=14 31,902 20,466 54,277 38,254 18,732 n=11 34,397 21,170 53,323 42,603 20,444 n=10 36,426 26,918 66,391

,104 ,046 n=14 ,095 ,071 ,119 ,092 ,045 n=11 ,081 ,057 ,099 ,099 ,038 n=10 ,083 ,071 ,137
,109 ,075 n=14 ,085 ,071 ,134 ,084 ,046 n=11 ,071 ,048 ,099 . . n=0 . . .
,112 ,058 n=14 ,080 ,072 ,146 ,083 ,039 n=11 ,078 ,057 ,099 . . n=0 . . .
,098 ,045 n=14 ,081 ,062 ,143 ,088 ,042 n=11 ,084 ,060 ,099 ,090 ,050 n=10 ,072 ,052 ,119

,042 ,016 n=14 ,038 ,027 ,060 ,035 ,017 n=11 ,030 ,027 ,048 ,040 ,017 n=10 ,036 ,029 ,047

,042 ,013 n=14 ,039 ,032 ,056 ,041 ,025 n=11 ,039 ,030 ,048 . . n=0 . . .

,042 ,011 n=14 ,045 ,034 ,049 ,039 ,034 n=11 ,033 ,018 ,051 . . n=0 . . .

,045 ,013 n=14 ,042 ,036 ,060 ,033 ,018 n=11 ,033 ,018 ,042 ,040 ,017 n=10 ,036 ,026 ,049

Max.Kraftäquivalent
(Fmax)-R [V]
Max.Kraftäquivalent
(Fmax)-1 [V]
Max.Kraftäquivalent
(Fmax)-4 [V]
Max.Kraftäquivalent
(Fmax)-5 [V]
Kraftzunahme pro Zeit
(tan alpha)-R [V/s]
Kraftzunahme pro Zeit
(tan alpha)-1 [V/s]
Kraftzunahme pro Zeit
(tan alpha)-4 [V/s]
Kraftzunahme pro Zeit
(tan alpha)-5 [V/s]
Kraftlatenz (tm-tt)-R [s]
Kraftlatenz (tm-tt)-1 [s]
Kraftlatenz (tm-tt)-4 [s]
Kraftlatenz (tm-tt)-5 [s]
BewegungsVerzögerung
(tt-tp)-R [s]
BewegungsVerzögerung
(tt-tp)-1 [s]
BewegungsVerzögerung
(tt-tp)-4 [s]
BewegungsVerzögerung
(tt-tp)-5 [s]
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Anhang XII

MRCP-Parameter Cz-Elektrode

-1446,1 295,9 n=14 -1444,6 -1717,8 -1310,6 -1519,8 278,2 n=10 -1502,5 -1805,1 -1306,7 -1316,7 458,0 n=10 -1457,6 -1738,5 -791,1
-1464,1 323,2 n=14 -1543,5 -1724,7 -1264,7 -1268,8 447,6 n=10 -1397,7 -1667,7 -864,9 . . n=0 . . .
-1290,6 231,0 n=14 -1379,2 -1500,0 -1071,7 -1341,3 429,7 n=11 -1434,9 -1720,2 -952,6 . . n=0 . . .
-1111,8 783,0 n=14 -1406,7 -1500,0 -1038,6 -1397,1 315,4 n=11 -1532,7 -1628,4 -1034,7 -1207,8 392,6 n=10 -1161,4 -1534,3 -967,2
-10,250 5,958 n=14 -7,999 -13,318 -6,172 -8,394 5,131 n=11 -8,708 -12,420 -3,526 -8,975 4,782 n=10 -7,817 -12,224 -5,717
-10,362 5,316 n=14 -9,192 -14,784 -6,897 -7,876 6,137 n=11 -7,461 -10,621 -3,411 . . n=0 . . .
-12,495 6,069 n=14 -10,199 -15,201 -7,796 -9,375 4,465 n=11 -8,375 -11,544 -7,198 . . n=0 . . .
-12,383 7,144 n=14 -8,994 -15,778 -8,070 -10,126 6,450 n=11 -8,435 -11,753 -6,318 -9,142 5,651 n=10 -8,412 -11,589 -4,149

-8,408 5,900 n=14 -6,354 -9,873 -4,864 -6,591 4,641 n=11 -6,723 -8,593 -2,344 -7,124 4,835 n=10 -6,107 -9,891 -3,404
-5,541 8,253 n=14 -5,754 -10,940 -4,359 -6,177 6,202 n=11 -7,252 -9,190 -1,628 . . n=0 . . .

-10,375 5,401 n=14 -9,131 -12,718 -6,412 -8,430 5,945 n=11 -7,078 -14,179 -3,450 . . n=0 . . .
-10,309 7,254 n=14 -8,172 -13,542 -4,873 -8,133 6,197 n=11 -6,965 -11,169 -4,796 -7,228 5,598 n=10 -6,662 -10,040 -2,225

-5,039 3,228 n=14 -4,193 -5,944 -2,817 -3,405 2,110 n=11 -3,745 -5,259 -1,850 -3,901 2,269 n=10 -3,725 -5,948 -1,968
-5,674 3,325 n=14 -4,774 -7,752 -2,976 -3,784 2,602 n=11 -3,026 -5,995 -1,830 . . n=0 . . .
-6,684 2,378 n=14 -6,132 -8,313 -5,186 -4,768 2,337 n=11 -3,936 -7,220 -2,820 . . n=0 . . .
-6,552 4,892 n=14 -6,108 -8,641 -3,552 -5,237 2,384 n=11 -4,875 -5,787 -3,667 -4,515 2,393 n=10 -4,052 -5,775 -2,657
-7,540 4,825 n=14 -5,826 -8,427 -4,702 -5,235 3,233 n=11 -5,165 -7,050 -2,690 -5,935 3,811 n=10 -5,530 -9,459 -2,701
-7,922 4,924 n=14 -6,450 -12,473 -3,704 -5,762 4,093 n=11 -6,182 -8,750 -2,750 . . n=0 . . .
-9,466 4,340 n=14 -7,414 -11,566 -6,944 -6,239 3,042 n=11 -6,504 -8,007 -2,967 . . n=0 . . .
-8,799 6,423 n=14 -7,064 -11,666 -6,047 -6,449 3,746 n=11 -5,837 -8,722 -4,228 -6,921 4,176 n=10 -6,004 -10,481 -2,940
41,64 58,16 n=14 19,07 11,02 39,57 24,98 24,47 n=10 22,68 5,11 29,26 29,50 31,30 n=10 14,91 7,73 46,82
43,61 43,62 n=14 24,20 13,75 85,36 31,33 39,11 n=10 20,35 7,35 36,79 . . n=0 . . .
60,94 54,45 n=14 41,96 21,80 84,96 33,45 31,05 n=11 20,33 8,46 46,77 . . n=0 . . .
77,41 97,56 n=14 36,92 13,08 117,07 42,81 48,74 n=11 24,87 17,96 52,32 35,44 43,89 n=10 25,10 7,05 41,91
-51,1 41,2 n=14 -55,0 -90,2 -16,8 -55,4 77,3 n=11 -41,0 -60,1 -14,6 -50,3 48,0 n=10 -48,6 -85,9 -11,1
-63,6 74,7 n=14 -55,9 -81,6 -19,3 -84,2 103,2 n=11 -61,0 -81,1 -28,8 . . n=0 . . .
-40,6 51,7 n=14 -33,0 -78,8 9,3 -62,3 101,3 n=11 -11,7 -86,9 -3,4 . . n=0 . . .
-39,7 46,6 n=14 -39,7 -77,0 9,3 -75,5 98,5 n=11 -35,2 -167,0 9,8 -100,2 157,2 n=10 -47,6 -107,4 -22,2

Czonset-R [ms]
Czonset-1 [ms]
Czonset-4 [ms]
Czonset-5 [ms]
Czmax-R [µV]
Czmax-1 [µV]
Czmax-4 [µV]
Czmax-5 [µV]
Cz100-0-R [µV]
Cz100-0-1 [µV]
Cz100-0-4 [µV]
Cz100-0-5 [µV]
Cz5-100-R [µV]
Cz5-100-1 [µV]
Cz5-100-4 [µV]
cz5-100_5 [µV]
Cz 100-R [µV]
Cz 100-1 [µV]
Cz 100-4 [µV]
Cz 100-5 [µV]
Cz Power-R [µV²]
Cz Power-1[µV²]
Cz Power-4 [µV²]
Cz Power-5 [µV²]
Czmax-t-R [ms]
Czmax-t-1 [ms]
Czmax-t-4 [ms]
Czmax-t-5 [ms]
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MRCP-Parameter Fz-Elektrode

-1093,4 606,8 n=11 -1265,6 -1734,9 -512,7 -1100,7 327,3 n=9 -1289,1 -1378,2 -717,6 -1282,5 494,7 n=10 -1480,5 -1710,0 -859,2
-1164,2 587,3 n=9 -1465,8 -1574,4 -555,9 -929,6 585,5 n=10 -888,9 -1460,1 -464,7 . . n=0 . . .
-1080,9 347,7 n=10 -1183,9 -1358,3 -794,2 -1148,2 530,5 n=9 -1257,8 -1589,9 -781,5 . . n=0 . . .
-1059,7 288,9 n=10 -1031,0 -1393,1 -811,0 -1235,5 508,5 n=10 -1374,0 -1677,0 -752,7 -1035,6 576,2 n=10 -778,3 -1761,8 -525,5
-5,100 3,552 n=13 -5,018 -7,761 -2,333 -2,392 2,389 n=10 -3,402 -4,267 -,005 -4,162 4,765 n=10 -3,958 -7,825 -,482
-6,347 4,163 n=12 -5,442 -9,731 -3,321 -2,954 3,259 n=10 -2,468 -6,507 -1,077 . . n=0 . . .
-8,256 4,002 n=13 -7,616 -9,936 -5,577 -6,043 3,174 n=9 -5,540 -7,517 -3,600 . . n=0 . . .
-8,917 3,900 n=10 -8,868 -12,605 -6,262 -5,084 4,580 n=11 -3,826 -9,515 -1,730 -3,611 3,402 n=10 -4,275 -6,313 -,714
-2,295 2,899 n=14 -1,456 -3,245 -,529 -,261 2,367 n=11 -,932 -2,196 1,064 -,971 3,251 n=10 -1,389 -3,787 2,164
-2,110 4,418 n=14 -1,351 -4,479 ,316 -,379 2,726 n=11 -,787 -1,413 ,694 . . n=0 . . .
-3,031 5,073 n=14 -2,919 -7,524 ,716 -,458 2,805 n=11 -,513 -2,764 1,189 . . n=0 . . .
-4,874 5,268 n=14 -4,781 -9,282 -1,437 -1,964 3,161 n=11 -1,802 -4,473 ,431 -,779 2,070 n=10 -,978 -2,153 ,673

,307 2,153 n=14 ,461 -,434 1,615 1,234 ,717 n=11 1,332 ,833 1,863 1,134 1,591 n=10 ,847 -,210 1,871
-,747 2,970 n=14 -,049 -2,797 1,078 ,884 ,891 n=11 ,747 ,230 1,874 . . n=0 . . .

-1,938 3,271 n=14 -2,054 -5,144 ,751 -,049 2,156 n=11 ,575 -2,102 1,517 . . n=0 . . .
-2,736 4,430 n=14 -1,265 -4,550 -,151 -,529 2,732 n=11 ,219 -2,304 1,875 ,523 1,252 n=10 ,988 -,896 1,248

-,369 2,432 n=14 ,156 -,965 1,515 1,264 1,421 n=11 1,146 -,043 1,901 1,448 2,616 n=10 ,843 -,329 3,878
-,779 2,731 n=14 ,232 -3,089 1,367 1,216 1,700 n=11 ,817 -,275 2,692 . . n=0 . . .

-2,112 3,315 n=14 -1,793 -5,323 ,509 ,850 2,942 n=11 1,835 -,162 2,358 . . n=0 . . .
-2,642 4,486 n=14 -1,672 -5,358 ,042 ,052 2,750 n=11 1,026 -2,500 2,304 ,357 2,116 n=10 1,009 -1,777 2,342
10,03 12,37 n=14 3,73 1,40 15,04 3,30 2,64 n=9 2,19 1,43 4,66 6,21 3,78 n=10 5,40 2,74 10,28
13,80 19,68 n=14 5,83 2,88 18,36 4,30 4,80 n=10 2,87 1,22 5,63 . . n=0 . . .
20,10 15,64 n=11 16,55 4,39 37,67 6,57 4,47 n=9 5,12 3,11 10,46 . . n=0 . . .
32,44 42,59 n=10 20,63 4,23 44,59 10,29 13,32 n=10 5,31 2,56 12,56 3,49 1,72 n=10 3,01 2,22 5,17

-2,7 17,1 n=14 4,3 -11,1 9,3 2,0 17,3 n=10 9,8 3,1 9,8 8,2 5,1 n=10 9,8 9,8 9,8
-65,4 231,9 n=12 9,3 -14,4 9,8 4,8 7,1 n=10 8,6 1,1 9,8 . . n=0 . . .

3,8 10,9 n=13 9,3 ,3 9,8 6,6 5,8 n=9 9,8 3,6 9,8 . . n=0 . . .
-5,8 22,6 n=10 7,5 -31,5 9,3 7,8 4,5 n=11 9,8 9,8 9,8 6,7 7,9 n=10 9,8 8,3 9,8

Fzonset-R [ms]
Fzonset-1 [ms]
Fzonset-4 [ms]
Fzonset-5 [ms]
Fzmax-R [µV]
Fzmax-1[µV]
Fzmax-4 [µV]
Fzmax-5 [µV]
Fz100-0-R [µV]
Fz100-0-1 [µV]
Fz100-0-4 [µV]
Fz100-0-5 [µV]
Fz5-100-R [µV]
Fz5-100-1 [µV]
Fz5-100-4 [µV]
Fz5-100-5 [µV]
Fz 100-R [µV]
Fz 100-1 [µV]
Fz 100-4 [µV]
Fz 100-5 [µV]
Fz Power-R [µV²]
Fz Power-1 [µV²]
Fz Power-4 [µV²]
Fz Power-5 [µV²]
Fzmax-t-R [ms]
Fzmax-t-1 [ms]
Fzmax-t-4 [ms]
Fzmax-t-5 [ms]
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MRCP-Parameter Pz-Elektrode

-906,8 479,4 n=13 -976,1 -1352,6 -432,4 -1243,7 243,7 n=9 -1329,1 -1430,7 -1057,2 -949,2 449,8 n=10 -694,1 -1461,3 -637,7
-1312,5 523,2 n=14 -1518,8 -1782,7 -849,9 -1264,2 336,0 n=10 -1310,6 -1530,6 -997,7 . . n=0 . . .
-928,5 457,0 n=11 -703,1 -1359,4 -617,2 -1264,9 426,4 n=11 -1324,2 -1685,5 -919,9 . . n=0 . . .

-1182,8 247,4 n=9 -1166,5 -1449,7 -976,6 -1150,1 441,6 n=10 -1238,3 -1534,1 -820,7 -907,6 463,8 n=10 -740,5 -1297,9 -540,4
-3,356 1,445 n=13 -2,862 -4,601 -2,142 -3,392 2,682 n=9 -2,786 -5,753 -1,764 -4,430 2,829 n=10 -3,415 -5,827 -2,545
-4,428 4,043 n=13 -4,076 -5,768 -1,968 -2,872 2,634 n=11 -2,685 -4,682 -2,032 . . n=0 . . .
-7,026 4,506 n=12 -7,058 -11,775 -2,753 -3,935 3,167 n=11 -3,790 -6,162 -1,612 . . n=0 . . .
-4,363 3,257 n=12 -4,100 -6,351 -1,529 -4,473 1,905 n=11 -4,090 -5,136 -3,414 -3,924 1,925 n=10 -2,955 -6,092 -2,387
-1,665 2,115 n=14 -1,531 -3,453 -,372 -,660 3,275 n=11 -,219 -2,115 2,144 -2,199 3,049 n=10 -1,629 -4,744 ,548
-2,561 3,293 n=14 -2,056 -4,796 -,818 -1,716 3,069 n=11 -1,334 -3,380 -1,027 . . n=0 . . .
-3,904 4,812 n=14 -2,190 -7,699 ,049 -2,085 3,769 n=11 -2,168 -5,799 1,098 . . n=0 . . .
-2,684 3,974 n=14 -1,470 -5,564 ,277 -2,480 2,421 n=11 -2,672 -4,107 -,587 -1,996 2,161 n=10 -,876 -3,584 -,339
-1,691 1,266 n=14 -1,505 -2,639 -,643 -1,130 1,884 n=11 -1,503 -2,894 -,336 -2,200 1,207 n=10 -2,113 -2,834 -1,576
-2,764 3,714 n=14 -1,721 -4,534 -,445 -1,358 1,742 n=11 -1,573 -2,608 -,813 . . n=0 . . .
-4,119 4,020 n=14 -3,641 -6,016 -,984 -1,754 3,399 n=11 -1,729 -5,050 ,385 . . n=0 . . .
-1,719 3,723 n=14 -1,328 -4,263 ,345 -2,508 1,414 n=11 -2,331 -3,316 -1,703 -2,070 1,307 n=10 -1,801 -2,686 -1,474
-2,253 1,456 n=14 -2,032 -2,989 -1,443 -2,258 2,289 n=11 -2,365 -4,525 -,293 -2,825 1,954 n=10 -2,810 -3,623 -1,470
-3,199 3,216 n=14 -3,158 -4,682 -,329 -2,185 2,471 n=11 -2,534 -4,594 -1,162 . . n=0 . . .
-4,599 4,118 n=14 -3,683 -7,025 -1,058 -2,556 3,756 n=11 -2,282 -4,912 -,280 . . n=0 . . .
-2,314 4,080 n=14 -,917 -4,949 -,260 -3,425 1,523 n=11 -3,402 -4,452 -2,269 -2,923 1,709 n=10 -2,464 -4,022 -1,802

5,13 4,01 n=13 4,03 1,76 7,54 6,00 5,58 n=9 3,85 2,27 10,40 7,84 7,35 n=10 4,35 2,79 12,05
12,93 16,14 n=13 5,99 3,49 18,89 7,47 7,23 n=10 4,75 1,67 13,78 . . n=0 . . .
26,18 33,48 n=11 12,61 6,25 28,65 13,15 12,30 n=11 8,15 3,09 20,52 . . n=0 . . .
24,64 30,88 n=9 17,01 1,54 46,04 9,47 8,28 n=10 6,90 4,32 11,27 6,83 6,89 n=10 3,25 1,94 10,98

-102,4 59,3 n=13 -88,9 -160,1 -56,4 -85,5 54,2 n=9 -70,8 -125,3 -53,8 -95,9 61,2 n=10 -89,2 -128,6 -56,1
-110,6 70,6 n=13 -85,0 -141,3 -66,9 -126,1 152,1 n=11 -85,4 -188,0 -37,6 . . n=0 . . .
-109,8 73,6 n=12 -107,2 -126,6 -40,1 -110,3 111,6 n=11 -98,1 -138,2 -23,4 . . n=0 . . .
-111,2 104,2 n=12 -78,6 -136,3 -53,3 -96,4 99,3 n=11 -76,2 -112,3 -40,5 -141,3 173,4 n=10 -84,3 -247,4 -12,7

Pzonset-R [ms]
Pzonset-1 [ms]
Pzonset-4 [ms]
Pzonset-5 [ms]
Pzmax-R[µV]
Pzmax-1[µV]
Pzmax-4 µV]
Pzmax-5 [µV]
Pz100-0-R [µV]
Pz100-0-1[µV]
Pz100-0 [µV]
Pz100-0-5 [µV]
Pz5-100-R [µV]
Pz5-100-1 [µV]
Pz5-100-4 [µV]
Pz5-100-5 [µV]
Pz 100-R [µV]
Pz 100-1 [µV]
Pz 100-4 [µV]
Pz 100-5 [µV]
Pz Power-R [µV²]
Pz Power-1 [µV²]
Pz Power-4 [µV²]
Pz Power-5 [µV²]
Pzmax-t-R [ms]
Pzmax-t-1 [ms]
Pzmax-t-4 [ms]
Pzmax-t-5 [ms]
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Anhang XIII

FZ-MRCP-Relativ [%] vom Ausgangswert (r)

100,00 ,00 n=14 100,00 100,00 100,00 100,00 ,00 n=11 100,00 100,00 100,00 100,00 ,00 n=10 100,00 100,00 100,00
167,49 134,19 n=6 106,94 66,28 324,11 110,87 80,30 n=8 107,78 43,05 183,08 . . n=0 . . .
131,74 108,06 n=9 96,13 67,07 175,97 119,79 85,77 n=8 100,17 49,68 214,54 . . n=0 . . .
135,97 130,12 n=8 94,89 64,26 134,36 117,69 66,09 n=8 99,43 67,64 182,11 84,07 32,23 n=10 89,74 60,22 107,26
100,00 ,00 n=14 100,00 100,00 100,00 100,00 ,00 n=11 100,00 100,00 100,00 100,00 ,00 n=10 100,00 100,00 100,00
123,85 53,75 n=12 120,88 86,59 166,92 157,43 176,29 n=10 119,14 66,13 168,35 . . n=0 . . .
429,26 905,51 n=12 121,16 86,08 287,09 232,37 273,03 n=9 182,12 104,72 326,86 . . n=0 . . .
391,89 646,03 n=9 145,78 121,48 333,52 113,38 156,44 n=10 98,47 -11,25 280,40 -41,44 383,37 n=10 60,16 31,90 105,80
100,00 ,00 n=14 100,00 100,00 100,00 100,00 ,00 n=11 100,00 100,00 100,00 100,00 ,00 n=10 100,00 100,00 100,00
116,08 294,36 n=14 98,06 34,71 222,72 -475,65 1376,41 n=11 51,25 -73,97 156,67 . . n=0 . . .
165,37 547,02 n=14 132,59 -105,73 175,87 -785,15 2350,88 n=11 64,07 -17,04 155,63 . . n=0 . . .
359,30 603,92 n=14 188,73 114,14 473,69 -694,22 2969,71 n=11 69,07 -2,73 351,82 60,84 92,86 n=10 51,36 1,86 98,45
100,00 ,00 n=14 100,00 100,00 100,00 100,00 ,00 n=11 100,00 100,00 100,00 100,00 ,00 n=10 100,00 100,00 100,00

-548,79 1597,48 n=14 25,79 -193,91 106,49 51,36 93,63 n=11 56,25 12,36 132,26 . . n=0 . . .
127,54 798,54 n=14 56,35 -359,92 622,61 -70,82 244,02 n=11 34,41 -268,19 81,43 . . n=0 . . .
172,69 835,93 n=14 1,71 -329,84 474,86 26,32 412,59 n=11 26,29 -93,56 170,44 156,94 279,24 n=10 92,96 32,29 237,13
100,00 ,00 n=14 100,00 100,00 100,00 100,00 ,00 n=11 100,00 100,00 100,00 100,00 ,00 n=10 100,00 100,00 100,00
282,24 1654,52 n=14 71,27 -234,96 120,16 251,22 463,75 n=11 104,17 22,02 272,16 . . n=0 . . .
260,68 1713,00 n=14 -22,95 -395,28 256,81 -584,45 1628,88 n=11 61,36 -596,91 96,53 . . n=0 . . .
681,19 1210,20 n=14 153,09 -57,46 1124,92 748,04 2460,56 n=11 75,01 -90,24 247,49 308,60 1360,86 n=10 13,62 -198,55 126,51
100,00 ,00 n=14 100,00 100,00 100,00 100,00 ,00 n=11 100,00 100,00 100,00 100,00 ,00 n=10 100,00 100,00 100,00
245,80 211,43 n=14 201,78 74,43 470,65 90,59 52,24 n=8 96,41 38,47 126,99 . . n=0 . . .
562,14 840,59 n=11 172,38 113,17 553,23 422,84 786,69 n=8 153,16 71,82 262,07 . . n=0 . . .
766,86 1179,53 n=10 337,49 107,07 881,56 574,13 837,49 n=8 181,50 67,47 1184,21 74,34 47,20 n=10 53,71 43,05 118,23
100,00 ,00 n=14 100,00 100,00 100,00 100,00 ,00 n=11 100,00 100,00 100,00 100,00 ,00 n=10 100,00 100,00 100,00

4262,08 15487,79 n=12 74,18 -60,54 100,00 64,40 41,89 n=10 87,24 22,19 100,00 . . n=0 . . .
42,73 412,90 n=13 100,00 -62,26 117,16 37,90 72,57 n=9 89,80 -38,04 100,00 . . n=0 . . .

410,53 889,21 n=10 96,24 36,81 556,21 54,03 65,07 n=11 100,00 -23,90 100,00 43,02 105,94 n=10 100,00 -8,67 100,00

Fzonset-Rp [%]
Fzonset-1p [%]
Fzonset-4p [%]
Fzonset-5p [%]
Fzmax-Rp [%]
Fzmax-1p [%]
Fzmax-4p [%]
Fzmax-5p [%]
Fz100-0-Rp [%]
Fz100-0-1p [%]
Fz100-0-4p [%]
Fz100-0-5p [%]
Fz5-100-Rp [%]
Fz5-100-1p [%]
Fz5-100-4p [%]
Fz5-100-5p [%]
Fz100-Rp [%]
Fz100-1p [%]
Fz100-4p [%]
Fz100-5p [%]
Fzpower_rp [%]
Fzpower_1p [%]
Fzpower_4p [%]
Fzpower_5p [%]
Fzmax-t-Rp [%]
Fzmax-t-1p [%]
Fzmax-t-4p [%]
Fzmax-t-5p [%]

MW SD n MD 25P 75P
Fahrradergometerbelastung

MW SD n MD 25P 75P
Oberarmergometerbelastung

MW SD n MD 25P 75P
Kognitive Belastung
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Pz-MRCP-Relativ [%] vom Ausgangswert (r)

100,00 ,00 n=14 100,00 100,00 100,00 100,00 ,00 n=11 100,00 100,00 100,00 100,00 ,00 n=10 100,00 100,00 100,00
201,95 159,83 n=13 123,98 81,21 356,34 105,65 28,37 n=9 106,15 86,41 129,74 . . n=0 . . .
138,87 131,43 n=10 98,59 50,75 181,45 118,04 32,87 n=9 122,89 90,34 147,87 . . n=0 . . .
202,17 113,51 n=8 155,98 108,95 328,38 92,86 29,30 n=8 101,70 64,51 119,45 117,31 84,86 n=10 93,23 53,35 169,02
100,00 ,00 n=14 100,00 100,00 100,00 100,00 ,00 n=11 100,00 100,00 100,00 100,00 ,00 n=10 100,00 100,00 100,00
128,74 137,67 n=12 102,98 56,58 227,40 57,41 138,77 n=9 99,13 75,12 116,74 . . n=0 . . .
228,96 184,21 n=11 196,22 93,90 344,54 124,43 170,95 n=9 120,53 86,80 173,86 . . n=0 . . .
185,55 157,30 n=11 145,97 51,36 373,23 7,69 359,16 n=9 113,50 61,62 157,73 109,57 68,68 n=10 90,41 57,75 144,18
100,00 ,00 n=14 100,00 100,00 100,00 100,00 ,00 n=11 100,00 100,00 100,00 100,00 ,00 n=10 100,00 100,00 100,00

3,19 377,76 n=14 92,95 -68,24 179,77 -233,68 1381,23 n=11 79,61 -47,90 102,54 . . n=0 . . .
204,39 249,41 n=14 145,63 8,98 330,18 204,16 441,89 n=11 129,77 33,23 214,61 . . n=0 . . .
144,32 284,84 n=14 76,27 -34,46 318,55 18,65 535,94 n=11 -19,19 -103,16 126,34 57,55 95,42 n=10 57,12 -37,49 135,04
100,00 ,00 n=14 100,00 100,00 100,00 100,00 ,00 n=11 100,00 100,00 100,00 100,00 ,00 n=10 100,00 100,00 100,00

-372,33 1906,16 n=14 91,18 -68,20 331,56 125,42 91,36 n=11 113,87 77,03 158,02 . . n=0 . . .
-152,98 2031,82 n=14 148,33 21,55 880,52 174,50 223,29 n=11 165,73 20,72 231,80 . . n=0 . . .
317,21 700,87 n=14 85,95 -20,34 290,57 167,56 302,66 n=11 114,58 -8,27 295,24 386,92 936,82 n=10 103,43 49,26 157,21
100,00 ,00 n=14 100,00 100,00 100,00 100,00 ,00 n=11 100,00 100,00 100,00 100,00 ,00 n=10 100,00 100,00 100,00

11,59 426,03 n=14 112,01 -,78 195,43 53,40 101,06 n=10 90,87 -57,65 118,30 . . n=0 . . .
116,92 403,93 n=14 141,74 54,10 261,93 150,90 209,64 n=10 130,59 -25,95 257,82 . . n=0 . . .
125,07 235,68 n=14 56,01 -26,09 265,13 129,28 178,27 n=10 128,37 68,12 144,89 64,93 127,01 n=10 81,14 61,08 135,82
100,00 ,00 n=14 100,00 100,00 100,00 100,00 ,00 n=11 100,00 100,00 100,00 100,00 ,00 n=10 100,00 100,00 100,00
329,36 477,88 n=12 145,83 84,54 371,65 229,29 294,74 n=9 108,43 59,90 355,39 . . n=0 . . .
570,88 570,47 n=10 344,63 116,39 912,72 436,73 777,16 n=9 136,29 89,12 381,61 . . n=0 . . .

1097,95 1448,87 n=8 584,98 113,63 1724,13 223,26 141,62 n=8 166,16 115,19 376,41 104,29 71,61 n=10 82,41 48,22 189,93
100,00 ,00 n=14 100,00 100,00 100,00 100,00 ,00 n=11 100,00 100,00 100,00 100,00 ,00 n=10 100,00 100,00 100,00
137,84 105,97 n=12 111,90 50,76 166,90 101,08 54,59 n=9 99,73 69,84 146,76 . . n=0 . . .
138,99 111,93 n=11 87,25 59,79 166,32 120,93 154,63 n=9 49,01 29,79 181,74 . . n=0 . . .
212,79 375,34 n=11 112,04 74,39 145,57 109,00 95,64 n=9 87,52 51,81 162,10 372,74 821,88 n=10 94,75 36,68 255,98

Pzonset-Rp [%]
Pzonset-1p [%]
Pzonset-4p [%]
Pzonset-5p [%]
Pzmax-Rp [%]
Pzmax-1p [%]
Pzmax-4p [%]
Pzmax-5p [%]
Pz100-0-Rp [%]
Pz100-0-1p [%]
Pz100-0-4p [%]
Pz100-0-5p [%]
Pz5-100-Rp [%]
Pz5-100-1p [%]
Pz5-100-4p [%]
Pz5-100-5p [%]
Pz100-Rp [%]
Pz100-1p [%]
Pz100-4p [%]
Pz100-5p [%]
Pzpower_rp [%]
Pzpower_1p [%]
Pzpower_4p [%]
Pzpower_5p [%]
Pzmax-t-Rp [%]
Pzmax-t-1p [%]
Pzmax-t-4p [%]
Pzmax-t-5p [%]

MW SD n MD 25P 75P
Fahrradergometerbelastung

MW SD n MD 25P 75P
Oberarmergometerbelastung

MW SD n MD 25P 75P
Kognitive Belastung

Teile der BISP-Studie [1-3]



Anhang XIV

11.10  Zusammenfassung: Prüfstatistik (Belkom. 1)

Prüfstatistik für Belastungskomplex 1: (GLM-Messwiederholung); Post-hoc Vergleich
(t-Test bzw. Mann Whitney U bzw. Wilcoxon)
Messparameter Messzeitunterschiede

FB +OB+KB
Gruppenunterschiede

1-2
Gruppenunterschiede

1-3
Gruppenunterschiede

2-3
Anthropometrie t-Test abh./Wilcoxon t-Test unabh./MWU t-Test unabh./MWU t-Test unabh./MWU
Klt_lrw-klt_lsw p=0.044 (T 2,344)
Kltfpro-Refproz p=0.007 (Z-2,701) - - -
Pmax-PmaxOB p=0.000 (Z-4,958) - -
Strain peripher t-Test abh./Wilcoxon t-Test unabh./MWU t-Test unabh./MWU t-Test unabh./MWU

Power [Watt]1-5 1-2: p=0.000 (T-12,710)
2-3: p=0.000 (T-12,497)
3-4: p=0.000 (T-12,589)
4-5: p=0.000 (T-15,596)

 P1: p=0.000 (T 9,313)
P2: p=0.000 (T 11,839)
P3: p=0.000 (T 14,282)
P4: p=0.000 (T 15,786)
P5: p=0.000 (T 18,265)

X X

Power relativiert
[%von Pmax]1-5

1-2: p=0.000 (T-36,889)
2-3: p=0.000 (T-51,564)
3-4: p=0.000 (T-47,943)
4-5: p=0.000 (T-20,393)

P1: p=0.000 (T 4,305)
P2: p=0.001 (T 3,687)
P3: p=0.009 (T 2,833)

X x

Herzfrequenz R-1: p=0.000 (T-6,826)
1-2: p=0.000 (T-12,602)
2-3: p=0.000 (T-12,559)
3-4: p=0.000 (T-18,593)
4-5: p=0.000 (T-10,381)

HF1: p=0.000 (T 5,177)
HF2: p=0.000 (T 4,834)
HF3: p=0.000 (T 4,412)
HF4: p=0.000 (T 4,086)
HF5: p=0.000 (T 3,591)

HF5: p=0.000 (T 24,374) HF5: p=0.000 (T 13,096)

Blutdruck
systolisch

R-1: p=0.000 (T-10,313)
1-2: p=0.000 (T-4,962)
2-3: p=0.001 (T-4,597)
3-4: p=0.000 (T-16,763)
4-5: p=0.000 (T-7404)

x x x

Metabolic strain
Lactat 1-2: p=0.000 (T-5,187)

2-3: p=0.000 (T-10,691)
3-4: p=0.000 (T-18,879)
4-5: p=0.000 (T-12,100)

- - -

NH³ 4-R: p=0.000 (T-10,153)
5-R: p=0.000 (T-4,744)

R: p=0.001 (T- 3,767) R: p=0.003 (T- 3,388)
5: p=0.000 (T- 7,264)

5: p=0.000 (T –8,832)

Messparameter Messzeitunterschiede
FB +OB+KB

Gruppenunterschiede
1-2

Gruppenunterschiede
1-3

Gruppenunterschiede
2-3

Stress-System t-Test abh./Wilcoxon t-Test unabh./MWU t-Test unabh./MWU t-Test unabh./MWU
Noradrenalin
frei

R-5: p=0.011 (T-2,705) - - -

Noradrenalin
sulfat.

R-5: p=0.01 (T-2,761)- - - -

Dopamin sulfat. - R-5: p=0.001 (T 3,770) - - -
Psychometrie

VT R-5: p=0.018 (T-2,478) - - -.
SE R-5: p=0.01 (T-3,535) - - -
IG R-5: p=0.029 (T 2,285) - -
Selbsteinschzg x - 5: p=0.002 (Z -3,117) 5: p=0.020 (Z –2,567)

Blutwerte
Leucozyten R-5: p=0.001 (T-3,511) R: -

5: -
R: p=0.014 (T 2,666)
5: p=0.005 (T 3,082)

R:-
5: -

Erythrozyten R-5: p=0.000 (T-7399) - - -
Thrombozyten R-5: p=0.022 (T-2,397) - - -
Hämatocrit R-5: p=0.000 (T-7,911) - -
Antrittsparam.
Cz-MRCPs t-Test abh./Wilcoxon t-Test unabh./MWU t-Test unabh./MWU t-Test unabh./MWU
CzMax 1-4: p=0.023 (T2,423) -- - -
Fz-MRCPs
FzMax 1-4: p=0.013 (T 2,727) R: p=0.051 (T- 2,072)

1: p=0.049 (T- 2,094)
5: p=0.005 (T- 3,242)

Fz500 - - 5: p=0.019 (T- 2,610) -
Fz100Ampl. - 1: p=0.045 (T- 2,117)

4: p=0.029 (T- 2,328)
- -

FzPower - 4: - p=0.038 (Z- 2,089) 5: - p=0.009 (Z- 2,570) -
Fzmax [%] - - 5: - p=0.002 (Z- 2,939) -
Fzpow [%] - - 5: - p=0.001 (Z- 3,175) 5: - p=0.016 (Z- 2,399)
FzmaxLat [%] R-1: p=0,028 (Z-2,201) - - -
P-MRCPs
Pzon [%] - 5: p=0,021 (Z –2,310) - -
Pz100-0 [%] 1-4: -p=0,003 (Z-2,946)

4-5: p=0,014 (Z-2,462)
- - -

Pzpow [%] - - 5: p=0,027 (Z –2,221) 5: p=0,043 (Z –2,044)
Legende:R = Messung vor dem Test
1 = Messung nach Warm Up
4 = Messung nach submaximaler Belastung
5 = Messung nach maximaler Belastung

Fettdruck =Parameter nicht hinreichend Normalverteilt



Anhang XV

11.11  Korrelationen (Belkom. 1)

Korrelationen: Anthropometrie - periphere Beanspruchung/Psychometrie,
Antritt/Stress/zentrale MRCP Parameter; R=Spearman-, r=Pearson
Koeffizienten, R=Ruhewert, 1.-5. =Belastungsstufen (5=Maximal, 4=submax.,
1=warm up)

Periphere Beanspruchung
TainingsUmfang max.

Leistungsfähigkeit FB
R 0,513 Latquotient IntrapsyGleichg

ewR
R 0,377

p 0,002 p 0,026
Psychometrie

IntrapsyGleichg
ewR

R -0,573 Vigilanz R R 0,375

p 0,000 p 0,027
Vigilanz R R -0,568 IntrapsyGleichg

ew 5
R 0,424

p 0,000 p 0,011
IntrapsyGleichg
ew 5

R -0,635 Vigilanz 5 R 0,466

p 0,000 p 0,005
Vigilanz 5 R -0,386 Vitalität 5 R 0,423

p 0,022 p 0,011
Antritt

Sprungbein Kraftlatenz 5 Eta 0,510
Chi²0,003 taub p 0,000
tanaf 5 Eta 0,470
Chi²0,006 taub p 0,000

MRCP
TainingsUmfang Czpower 5 R -0,406 Latquotient Czpower R R 0,503

p 0,016 p 0,020
Czpower 5p R -0,349 Czpower 1 R 0,406

p 0,043 p 0,049
Cz5-100 5p R -0,500 Czpower 4 R 0,445

p 0,002 p 0,036
Fzpower 4p R -0,460 Czpower 5 R 0,595

p 0,048 p 0,000
Czmaxt 5p R -0,345

p 0,019
Cz100-0 5p R -0,378

p 0,025
Fzmaxt 5 R -0,542

p 0,002
Fz100-0 5p R -0,414

p 0,019



Anhang XVI

Korrelationen: StressBlut-Psychometrie/Antritt/zentrale MRCP Parameter. R=Spearman-,
r=Pearson Koeffizient. R-5. =Belastungsstufen (5=Maximal, 4=submax., 1=warm up, R=Ruhe)

Psychometrie

Naf R Vitalität R r 0,417
p 0,018

DOPs R Vitalität R r 0,399
p 0,039

IntrapsyGleichgew R r 0,508
p 0,007

DOPs 5 SubjAuslstg R 0,314
p 0,038

MRCP
Leukos 5 Czmax 5 r -0,429 Leukos R Fzmax R r -0,522

p 0,010 p 0,002
Cz5-100 5 r -0,560 Fz100 R r -0,582

p 0,000 p 0,000
Fzmax 5 r -0,646 Fz5-100 R r -0,528

p 0,000 p 0,001
Fz100 5 r -0,605 Pzmax R r 0,555

p 0,000 p 0,001
Fz5-100 5 r -0,545 Pz5-100 R r 0,556

p 0,001 p 0,001
Pz5-100 5 r -0,408 Erys R Cz5-100 R r 0,391

0,015 p 0,020
Erys 5 Pz5-100 R r -0,346 Fzmax R r 0,578

p 0,042 p 0,000
Fz100 R r 0,393

p 0,019
Fz5-100 R r 0,520

p 0,001

Metabolische Beanspr.-Stress/Psychometrie/Antritt/zentrale MRCP Parameter.
R=Spearman-, r=Pearson Koeffizient. R-5. =Belastungsstufen (5=Maximal, 4=submax., 1=warm
up, R=Ruhe)

Stress/Blut

NH³ 5 Naf 5 r 0,399
p 0,041

HF5 Naf 5 r 0,388
p 0,038
Psychometrie

Laktat 5 SubjAusbelastg R -0,426
p 0,011

MRCP
Laktat R Fzmaxt R R -0,494

p 0,003
Laktat 5 Fzpower 5 R 0,421

p 0,020
Fzpower 5p R 0,577

p 0,001
Pzpower 5p R 0,588

0,002
NH³ R Pzonset 5p R 0,494

p 0,010
NH³ 5 Fzpower 5 R 0,511

p 0,005

Korrelationen: Psychometrie-Antritt/zentrale MRCP Parameter.  R=Spearman-, r=Pearson
Koeffizient.
 R-5. =Belastungsstufen (5=Maximal, 4=submax., 1=warm up, R=Ruhe)

MRCP
Vitalität R Pzonset R r 0,482 Vitalität 5 Cz100-0 5p R 0,377

p 0,005 p 0,026
IntrapsyGleichgw
R

Pzonset R r 0,482 Fzmaxt 5 r 0,427

p 0,005 p 0,010
Pzmax R r 0,365 Pzonset 5 r 0,448

p 0,040 p 0,015
Vigilanz R Pzoset R r 0,425 IntrapsyGleic

hgw 5
Fzmaxt 5 R 0,391

p 0,015 p 0,030
Pzmax R r 0,437 SozExtrov 5 Pzoset 5 r 0,375

p 0,012 0,045
Pz5-100 R r 0,448 Pzmaxt 5 r 0,428

p 0,007 p 0,013
SubjAusbeas
tg 5

Fzpower 5p R -0,428

p 0,023



Anhang XVII

Korrelationen: Periphere - metabolische Beanspruchung/Stress-
Blutparameter/Psychometrie/Antritt/zentrale MRCP Parameter. R=Spearman-,
r=Pearson Koeffizient. R=Ruhewert, 1.-5. =Belastungsstufen (5=Maximal, 4=submax.,
1=warm up)

Metabolische Parameter
Max Pretestpower Laktat 5 r 0,492 Stufenbel. 5 Laktat 5 r 0,399

p 0,032 p 0,048
Herzfrequenz 5 r 0,651 Herzfrequenz 5 r 0,677

p 0,000 p 0,000
RelmaxLeistung
FB

Herzfrequenz 5 r 0,642

p 0,001 Pmax.OB Naf R R -0,349
Stress/Blut Parameter p 0,014

Pmax.FB Dops R R -0,407
p 0,009

Dops 5 R -0,339 Stufenbel. 5 Ery R r -0,411
p 0,003 p 0,041

Max Pretestpower Ery R r -0,410 Ery 5 r -0,408
p 0,042 p 0,043

Ery 5 r -0,411
p 0,041

RelmaxLeistung
FB

Ery R r -0,466

p 0,019
Ery 5 r -0,487

p 0,013 Pmax.OB SE R R -0,399
p 0,024

Psychometrie
RelmaxLeistung
FB

VT R r -0,443 VT 5 R -0,480

p 0,010 p 0,005
VT 5 r -0,392 Herzfrequenz

5
SubjAusbel.5 R -0,613

p 0,027 p 0,000
VG 5 r -0,527

p 0,002
Antrittsparameter

Relmax.OB Fmax R r -0,422
p 0,016

Fmax 5 r -0,479
p 0,006

Herzfrequenz 5 Fzmax 5 r -0,413
p 0,021

MRCP
Leistung FB Czpower R R -0,454 Leistung OB Czpower 4 R -0,515

p 0,007 p 0,014
Czpower 4 R -0,422 Czmaxt R R -0,408

p 0,036 p 0,020
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11.12  Deskription (Belkom. 2)

MW , SD, MD und Perzentile von HF- und Blutbilddaten nicht Leistungsdifferenziert

185 9 186 181 193 n=21
115 15 117 100 123 n=21

74 9 70 68 81 n=21

66 10 65 59 73 n=21

68 8 65 63 73 n=21

8,92 1,98 8,50 7,80 10,25 n=21
4,57 ,99 4,50 4,00 5,20 n=21
4,67 ,99 4,60 4,00 5,30 n=21
5,02 1,01 4,90 4,34 5,86 n=21
5,78 1,29 5,80 4,90 6,75 n=21
7,56 1,55 7,72 6,12 8,55 n=21
4,63 ,94 4,67 3,86 5,25 n=21
4,86 1,10 4,74 3,97 5,56 n=21
5,04 1,05 4,92 4,28 5,96 n=21
5,78 1,29 5,80 4,90 6,75 n=21
5,18 ,42 5,16 4,87 5,47 n=21
4,62 ,30 4,66 4,35 4,81 n=21
4,57 ,34 4,43 4,29 4,82 n=21
4,57 ,32 4,46 4,36 4,71 n=21
4,66 ,29 4,57 4,46 4,81 n=21

15,96 1,00 16,00 15,05 16,60 n=21
14,07 ,91 14,10 13,50 14,80 n=21
13,91 1,00 13,90 13,05 14,65 n=21
14,07 ,98 13,90 13,40 15,00 n=21
14,19 ,87 14,20 13,70 14,65 n=21

,45 ,03 ,45 ,43 ,47 n=21
,39 ,03 ,39 ,37 ,42 n=21
,39 ,03 ,38 ,37 ,41 n=21
,39 ,02 ,39 ,38 ,41 n=21
,40 ,02 ,40 ,38 ,41 n=21

85,38 3,96 86,00 83,50 88,50 n=21
84,86 3,81 85,00 83,00 88,00 n=21
84,90 3,74 86,00 83,50 87,50 n=21
85,05 3,93 86,00 83,00 88,00 n=21
84,95 3,85 86,00 83,00 88,00 n=21
30,70 1,70 31,00 30,10 31,85 n=21
30,46 1,72 31,00 29,50 31,55 n=21
30,55 1,88 30,90 29,30 32,05 n=21
30,54 1,95 30,90 29,60 31,90 n=21
30,52 1,70 30,90 29,75 31,75 n=21
35,94 1,04 36,10 35,20 36,70 n=21
35,89 1,00 35,90 35,25 36,80 n=21
35,97 1,20 35,80 35,35 36,80 n=21
35,92 1,28 36,10 35,50 36,45 n=21
35,83 1,03 35,80 35,30 36,40 n=21
94,25 18,67 92,42 80,47 106,81 n=20

122,02 19,20 124,41 106,46 138,15 n=20
108,39 16,21 112,33 93,73 119,15 n=20
94,46 10,43 93,65 87,11 102,22 n=20
91,80 9,35 93,73 86,92 97,39 n=20
77,66 15,60 77,17 64,91 89,77 n=20

100,61 17,30 102,47 84,48 115,34 n=20
112,65 19,24 119,39 95,37 126,25 n=20
97,05 14,13 93,38 89,05 107,81 n=20
91,80 9,35 93,73 86,92 97,39 n=20

max. HF
Herzfrequenz nach 2 min
Herzfrequenz nach 60
min
Herzfrequenz nach 120
min
mittlere Herzfrequenz
zwischen 60' und 120'
min
Leukozyten M1
Leukozyten M2
Leukozyten M3
Leukozyten M4
Leukozyten M5
Leukozyten M1 korr.
Leukozyten M2 korr.
Leukozyten M3 korr.
Leukozyten M4 korr.
Leukozyten M5 korr.
Erythrozyten M1
Erythrozyten M2
Erythrozyten M3
Erythrozyten M4
Erythrozyten M5
Hämoglobin M1
Hämoglobin M2
Hämoglobin M3
Hämoglobin M4
Hämoglobin M5
Hämatocrit M1
Hämatocrit M2
Hämatocrit M3
Hämatocrit M4
Hämatocrit M5
MCV M1
MCV M2
MCV M3
MCV M4
MCV M5
MCH M1
MCH M2
MCH M3
MCH M4
MCH M5
MCHC M1
MCHC M2
MCHC M3
MCHC M4
MCHC M5
Glucose M1
Glucose M2
Glucose M3
Glucose M4
Glucose M5
Glucose M1 korr.
Glucose M2 korr.
Glucose M3 korr.
Glucose M4 korr.
Glucose M5 korr.

MW SD MD 25.% 75% n
MW , SD, MD und Perzentile von Katecholaminen und Nebenparameter ParVerteilt nicht

Leistungsdifferenziert

1,13 ,12 1,10 1,04 1,19 n=17
1,02 ,09 1,02 ,94 1,08 n=17
1,03 ,10 1,01 ,95 1,10 n=17
1,01 ,09 1,00 ,96 1,08 n=17
1,02 ,09 1,00 ,95 1,08 n=17

251,24 85,43 234,00 190,00 287,50 n=21
225,00 88,42 197,00 180,00 248,50 n=21
209,67 76,95 187,00 173,00 233,50 n=21
195,33 77,99 173,00 156,00 208,50 n=21
176,81 85,28 163,00 120,00 201,00 n=21
206,67 70,72 180,34 159,14 236,34 n=21
226,17 80,72 203,38 181,83 256,63 n=21
218,41 88,66 190,34 178,27 235,19 n=21
200,93 84,39 179,23 159,81 212,24 n=21
176,81 85,28 163,00 120,00 201,00 n=21
13,79 2,73 13,10 11,30 16,15 n=17
13,27 3,44 13,20 10,50 16,00 n=17
11,60 2,87 11,10 9,85 13,75 n=17
10,55 2,63 10,40 8,45 12,50 n=17

9,11 3,23 8,30 6,50 11,80 n=17
94,10 45,33 85,50 62,00 113,50 n=20
42,70 27,82 37,50 21,25 53,00 n=20
42,70 23,49 38,50 24,75 61,75 n=20
52,90 30,06 47,00 32,50 68,50 n=20
50,40 21,02 50,50 32,25 70,25 n=20
76,18 33,80 70,61 55,12 91,79 n=20
34,94 22,56 30,13 18,09 48,22 n=20
44,30 23,86 39,50 27,04 65,46 n=20
54,44 31,45 51,40 29,84 70,34 n=20
50,40 21,02 50,50 32,25 70,25 n=20

2268,29 1244,33 2221,00 1128,50 2764,50 n=21
203,76 116,03 173,00 119,50 291,00 n=21
194,95 145,06 135,00 91,50 260,00 n=21
205,33 104,32 210,00 96,50 271,00 n=21
212,24 99,12 202,00 138,50 298,00 n=21

1831,58 947,72 1766,28 994,82 2294,22 n=21
167,16 94,71 154,58 103,70 231,85 n=21
200,08 148,23 145,65 93,55 265,64 n=21
208,50 103,56 213,26 101,29 271,05 n=21
212,24 99,12 202,00 138,50 298,00 n=21

142,32 71,49 112,50 74,85 199,85 n=21

63,90 35,12 60,90 39,94 74,74 n=21

54,60 32,87 49,40 35,80 56,15 n=17

82,48 61,94 80,50 50,69 101,30 n=21

94,80 67,65 73,90 58,05 137,09 n=21

101,32 86,60 76,40 56,00 124,50 n=21

77,85 38,58 70,26 44,18 107,45 n=16

131,22 119,97 77,39 60,81 255,47 n=4

92,99 58,55 85,92 55,40 105,35 n=21

51,43 21,88 54,77 25,60 70,76 n=21

47,25 16,78 48,24 37,92 58,32 n=17

57,87 31,40 61,04 40,49 77,80 n=21

68,09 26,29 67,84 47,99 86,85 n=21

73,03 35,06 71,68 46,13 88,55 n=21

68,86 32,89 71,16 40,97 87,92 n=16

72,21 33,32 68,96 52,28 98,27 n=21

100,0 ,0 100,0 100,0 100,0 n=21

80,91 16,36 78,91 71,83 88,12 n=17

132,50 91,60 124,03 84,17 142,88 n=21

159,43 106,67 121,15 91,11 183,15 n=21

169,39 124,97 131,85 81,73 219,53 n=21

125,91 60,29 114,33 71,08 168,16 n=16

161,43 90,82 146,07 87,98 239,52 n=21

Kreatinin M1
Kreatinin M2
Kreatinin M3
Kreatinin M4
Kreatinin M5
Prolaktin M1
Prolaktin M2
Prolaktin M3
Prolaktin M4
Prolaktin M5
Prolaktin M1 korr.
Prolaktin M2 korr.
Prolaktin M3 korr.
Prolaktin M4 korr.
Prolaktin M5 korr.
Cortisol M1
Cortisol M2
Cortisol M3
Cortisol M4
Cortisol M5
Dopamin M1
Dopamin M2
Dopamin M3
Dopamin M4
Dopamin M5
Dopamin M1 korr.
Dopamin M2 korr.
Dopamin M3 korr.
Dopamin M4 korr.
Dopamin M5 korr.
Noradrenalin M1
Noradrenalin M2
Noradrenalin M3
Noradrenalin M4
Noradrenalin M5
Noradrenalin M1 korr.
Noradrenalin M2 korr.
Noradrenalin M3 korr.
Noradrenalin M4 korr.
Noradrenalin M5 korr.
ESG vor Belastung
korrigiert
ESG nach Belastung
korrigiert
ESG nach 15 min
korrigiert
ESG nach 30 min
korrigiert
ESG nach 45 min
korrigiert
ESG nach 60 min
korrigiert
ESG nach 75 min
korrigiert
ESG nach 105 MInuten
ESG nach 135 min
korrigiert
ESG nach Belastung in
Prozent vom Ruhewert
ESG nach 15 min in
Prozent vom Ruhewert
ESG nach 30 min in
Prozent vom Ruhewert
ESG nach 45 min in
Prozent vom Ruhewert
ESG nach 60 min in
Prozent vom Ruhewert
ESG nach 75 min in
Prozent vom Ruhewert
ESG nach 135 min in
Prozent vom Ruhewert

ESG nach 15 min in
Prozent vom
Belastungswert
ESG nach 30 min in
Prozent vom
Belastungswert
ESG nach 45 min in
Prozent vom
Belastungswert
ESG nach 60 min in
Prozent vom
Belastungswert
ESG nach 75 min in
Prozent vom
Belastungswert
ESG nach 135 min in
Prozent vom
Belastungswert

MW SD MD 25.% 75% n

MW , SD, MD und Perzentile vom Katecholamin Adrenalin  NparVerteilt nicht
Leistungsdifferenziert

420,60 568,52 188,00 149,50 526,25 n=20
44,55 28,76 34,50 19,50 69,50 n=20
41,60 28,85 32,50 24,00 47,50 n=20
38,55 19,81 36,50 24,75 49,75 n=20
42,35 21,79 40,00 25,75 54,50 n=20

327,84 406,88 160,13 122,37 433,59 n=20
36,09 21,86 29,68 16,30 55,62 n=20
42,63 27,95 34,03 23,46 50,23 n=20
39,39 19,77 37,84 25,62 46,88 n=20
42,35 21,79 40,00 25,75 54,50 n=20

Adrenalin M1
Adrenalin M2
Adrenalin M3
Adrenalin M4
Adrenalin M5
Adrenalin M1 korr.
Adrenalin M2 korr.
Adrenalin M3 korr.
Adrenalin M4 korr.
Adrenalin M5 korr.

MW SD MD 25.% 75% n



Anhang XIX

MW , SD, MD und Perzentile von EEG Delta Leistungsdichte NparVerteilt nicht
Leistungsdifferenziert

7,06 5,54 5,60 3,15 8,15 n=21
4,90 2,87 3,70 2,85 6,55 n=21
7,97 12,03 4,80 2,85 7,25 n=21
5,57 6,80 4,20 2,65 5,40 n=21
4,43 2,34 4,40 2,55 5,70 n=21
8,44 5,65 6,80 4,00 11,50 n=21
7,14 4,19 6,00 3,70 9,65 n=21
8,60 7,32 6,00 4,05 9,55 n=21
6,98 5,01 5,50 4,00 7,05 n=21
6,53 4,11 4,60 3,55 8,70 n=21

14,50 10,22 12,80 5,95 19,80 n=21
12,18 8,01 9,00 6,40 17,75 n=21
13,29 10,24 11,10 6,80 17,05 n=21
10,47 8,52 7,70 6,05 11,45 n=21
13,27 14,49 9,80 6,25 12,55 n=21
58,42 93,84 33,85 10,58 51,70 n=20
29,00 18,66 27,10 13,25 38,25 n=21
37,84 40,51 24,00 13,40 41,45 n=21
25,24 36,14 15,50 8,10 24,30 n=21
25,04 16,54 22,00 12,55 34,15 n=21
64,30 85,25 41,90 27,55 60,70 n=21
62,08 62,00 38,60 15,05 110,35 n=21
55,57 62,52 30,00 9,95 91,55 n=21
40,12 34,69 26,20 11,35 71,35 n=21
38,09 37,73 28,40 14,45 45,45 n=21
9,23 7,57 5,60 3,80 12,70 n=21
7,79 6,28 5,20 4,05 9,20 n=21
7,99 7,39 6,80 3,85 9,80 n=21

10,11 14,13 5,20 3,75 8,35 n=21
6,36 4,32 4,90 3,45 7,25 n=21

11,94 7,82 9,60 5,00 16,70 n=21
11,40 18,41 6,30 4,00 11,05 n=21
8,87 7,50 6,40 4,30 10,80 n=21
6,85 5,36 5,30 4,10 7,25 n=21
5,88 2,45 5,70 3,95 7,35 n=21

12,07 8,82 10,80 5,50 13,50 n=21
9,37 8,98 8,00 4,75 11,25 n=21
8,25 3,80 8,50 4,60 11,15 n=21
7,00 2,41 6,10 4,95 9,45 n=21
6,96 2,88 6,60 4,70 8,85 n=21

d_c4_m1
d_c4_m2
d_c4_m3
d_c4_m4
d_c4_m5
d_cz_m1
d_cz_m2
d_cz_m3
d_cz_m4
d_cz_m5
d_f3_m1
d_f3_m2
d_f3_m3
d_f3_m4
d_f3_m5
d_o1_m1
d_o1_m2
d_o1_m3
d_o1_m4
d_o1_m5
d_o2_m1
d_o2_m2
d_o2_m3
d_o2_m4
d_o2_m5
d_p4_m1
d_p4_m2
d_p4_m3
d_p4_m4
d_p4_m5
d_pz_m1
d_pz_m2
d_pz_m3
d_pz_m4
d_pz_m5
d_t3_m1
d_t3_m2
d_t3_m3
d_t3_m4
d_t3_m5

MW SD MD 25.% 75% n

MW , SD, MD und Perzentile von EEG Theta Leistungsdichte NparVerteilt nicht
Leistungsdifferenziert

1,95 1,74 1,30 1,00 2,25 n=21
1,56 1,16 1,20 ,80 2,00 n=21
1,82 1,44 1,30 1,00 1,75 n=21
1,43 ,77 1,20 ,90 1,90 n=21
1,58 1,27 1,20 1,00 1,65 n=21
3,45 3,94 1,90 1,45 3,40 n=21
3,59 4,97 2,40 1,55 3,90 n=21
4,08 5,16 2,50 1,70 4,85 n=21
3,30 2,77 2,50 1,50 3,95 n=21
3,88 5,27 2,20 1,40 4,50 n=21
3,93 3,10 2,50 2,05 4,55 n=21
3,58 3,16 2,90 1,85 4,15 n=21
3,75 2,80 3,00 2,25 4,30 n=21
3,02 1,67 2,90 2,05 3,40 n=21
3,49 3,02 2,80 2,25 3,40 n=21
3,93 3,10 2,50 2,05 4,55 n=21
3,58 3,16 2,90 1,85 4,15 n=21
3,75 2,80 3,00 2,25 4,30 n=21
3,02 1,67 2,90 2,05 3,40 n=21
3,49 3,02 2,80 2,25 3,40 n=21
3,12 3,56 1,60 1,10 3,65 n=21
2,53 3,07 1,60 1,00 2,50 n=21
2,69 2,70 1,60 1,10 2,60 n=21
1,96 1,32 1,70 1,00 2,40 n=21
2,43 2,85 1,40 1,15 2,10 n=21
2,71 2,88 1,60 1,20 2,70 n=21
2,61 2,67 1,70 1,40 2,25 n=21
2,88 2,74 1,70 1,30 2,55 n=21
2,22 1,33 1,70 1,35 2,70 n=21
2,43 2,32 1,70 1,30 2,25 n=21
3,03 3,35 1,80 1,30 3,25 n=21
3,04 3,95 1,70 1,30 2,80 n=21
3,62 4,21 2,00 1,30 3,00 n=21
2,28 1,57 1,70 1,35 2,85 n=21
2,57 2,95 1,70 1,20 2,45 n=21
2,58 1,92 2,20 1,30 2,70 n=21
2,62 1,99 2,10 1,40 3,35 n=21
2,66 1,68 2,20 1,40 3,25 n=21
2,33 1,16 2,20 1,20 2,70 n=21
2,49 1,96 2,20 1,45 2,30 n=21
2,70 2,65 1,80 1,40 3,25 n=21
2,79 3,06 1,90 1,25 3,35 n=21
2,84 2,58 2,10 1,60 3,05 n=21
2,29 1,41 2,20 1,20 2,70 n=21
2,46 2,38 1,90 1,45 2,30 n=21
5,02 5,91 2,60 1,95 5,65 n=21
4,61 5,02 2,50 1,80 4,90 n=21
4,74 5,31 2,60 2,00 5,20 n=21
3,82 3,19 2,70 1,85 4,90 n=21
4,74 5,10 3,00 2,10 4,75 n=21

t_c3_m1
t_c3_m2
t_c3_m3
t_c3_m4
t_c3_m5
t_cz_m1
t_cz_m2
t_cz_m3
t_cz_m4
t_cz_m5
t_f8_m1
t_f8_m2
t_f8_m3
t_f8_m4
t_m5_m5
t_f8_m1
t_f8_m2
t_f8_m3
t_f8_m4
t_m5_m5
t_p3_m1
t_p3_m2
t_p3_m3
t_p3_m4
t_p3_m5
t_p4_m1
t_p4_m2
t_p4_m3
t_p4_m4
t_p4_m5
t_pz_m1
t_pz_m2
t_pz_m3
t_pz_m4
t_pz_m5
t_t3_m1
t_t3_m2
t_t3_m3
t_t3_m4
t_t3_m5
t_t4_m1
t_t4_m2
t_t4_m3
t_t4_m4
t_t4_m5
t_t6_m1
t_t6_m2
t_t6_m3
t_t6_m4
t_t6_m5

MW SD MD 25.% 75% n

MW , SD, MD und Perzentile von EEG Delta Leistungsdichte ParVerteilt nicht
Leistungsdifferenziert

16,79 14,48 10,10 5,60 25,35 n=21
12,30 12,25 7,20 5,35 15,00 n=21
11,38 9,27 7,50 5,60 13,50 n=21
9,09 6,20 7,90 5,30 11,00 n=21

10,04 6,88 8,20 5,10 13,50 n=21
13,39 12,60 9,90 5,15 16,20 n=21
9,39 6,11 7,30 5,05 13,60 n=21

10,34 7,67 8,10 5,45 13,10 n=21
8,69 5,39 6,60 5,70 9,95 n=21
8,25 4,37 7,40 5,25 9,95 n=21

10,30 5,55 10,30 5,10 13,50 n=21
9,26 6,79 7,20 4,90 10,70 n=21
8,33 3,64 7,50 5,00 11,25 n=21
7,11 3,06 6,30 4,70 10,15 n=21
6,76 2,60 6,80 4,80 8,15 n=21
9,98 9,72 7,30 3,45 11,90 n=21
6,90 5,19 5,10 3,25 8,65 n=21
6,61 4,98 5,40 3,30 8,65 n=21
6,10 5,38 4,40 3,20 6,90 n=21
5,18 3,08 4,00 3,30 5,70 n=21

64,30 85,25 41,90 27,55 60,70 n=21
62,08 62,00 38,60 15,05 110,35 n=21
55,57 62,52 30,00 9,95 91,55 n=21
40,12 34,69 26,20 11,35 71,35 n=21
38,09 37,73 28,40 14,45 45,45 n=21
23,27 25,25 13,89 9,28 25,60 n=21
14,93 8,07 15,35 7,56 18,91 n=21
14,80 9,25 12,68 8,02 18,63 n=21
11,58 6,80 8,46 6,95 15,85 n=21
11,34 4,36 11,45 8,50 13,25 n=21
12,99 8,27 11,90 5,90 18,05 n=21
11,95 8,70 9,30 6,80 15,25 n=21
13,28 11,67 10,20 6,60 15,80 n=21
11,36 9,39 8,50 6,20 13,90 n=21
9,92 4,42 9,80 6,45 11,70 n=21

25,67 25,37 16,50 8,75 28,55 n=21
17,36 11,14 14,00 9,85 20,25 n=21
15,47 8,33 12,90 8,80 22,30 n=21
12,48 6,64 10,80 7,65 15,55 n=21
14,21 7,10 11,50 8,90 19,80 n=21
34,80 30,03 19,60 10,65 67,20 n=21
25,81 21,77 20,40 8,90 35,90 n=21
21,32 18,39 14,20 7,85 30,25 n=21
16,50 13,71 13,10 8,70 17,10 n=21
19,66 16,93 13,00 8,60 26,50 n=21
15,76 9,98 12,90 6,75 23,90 n=21
12,96 7,97 9,50 7,00 17,45 n=21
12,05 8,97 11,00 6,35 12,85 n=21
9,58 6,05 8,00 6,80 10,45 n=21
9,01 3,82 8,70 6,25 11,70 n=21
5,69 4,34 4,50 2,90 5,80 n=21
4,10 2,07 3,70 2,40 5,65 n=21
4,41 2,66 3,30 2,70 5,45 n=21
3,65 2,18 3,30 2,45 4,15 n=21
3,27 1,33 3,10 2,35 4,10 n=21

d_t6_m1
d_t6_m2
d_t6_m3
d_t6_m4
d_t6_m5
d_t5_m1
d_t5_m2
d_t5_m3
d_t5_m4
d_t5_m5
d_t4_m1
d_t4_m2
d_t4_m3
d_t4_m4
d_t4_m5
d_p3_m1
d_p3_m2
d_p3_m3
d_p3_m4
d_p3_m5
d_o2_m1
d_o2_m2
d_o2_m3
d_o2_m4
d_o2_m5
d_mw_m1
d_mw_m2
d_mw_m3
d_mw_m4
d_mw_m5
d_fz_m1
d_fz_m2
d_fz_m3
d_fz_m4
d_fz_m5
d_f8_m1
d_f8_m2
d_f8_m3
d_f8_m4
d_m5_m5
d_f7_m1
d_f7_m2
d_f7_m3
d_f7_m4
d_f7_m5
d_f4_m1
d_f4_m2
d_f4_m3
d_f4_m4
d_f4_m5
d_c3_m1
d_c3_m2
d_c3_m3
d_c3_m4
d_c3_m5

MW SD MD 25.% 75% n

MW , SD, MD und Perzentile von EEG Theta Leistungsdichte ParVerteilt nicht
Leistungsdifferenziert

4,34 4,41 2,50 1,65 5,95 n=21
3,65 2,96 2,40 1,65 4,85 n=21
4,19 3,77 2,90 1,90 4,75 n=21
3,60 2,38 2,90 1,60 5,10 n=21
3,85 3,81 2,50 1,85 4,20 n=21
8,19 6,45 6,60 3,10 12,15 n=21
7,88 7,23 5,10 3,10 11,05 n=21
6,85 4,28 4,90 3,55 11,20 n=21
6,57 4,22 5,80 3,30 8,50 n=21
6,20 3,71 6,40 3,30 7,55 n=21

11,23 12,78 4,70 2,85 16,50 n=21
7,17 6,54 4,90 3,20 7,90 n=21
7,33 6,61 4,80 2,95 10,95 n=21
6,37 5,45 4,90 2,65 7,45 n=21
6,77 6,42 5,50 2,75 7,20 n=21
4,07 3,30 2,47 1,90 4,99 n=21
3,65 2,86 2,65 1,84 5,03 n=21
3,82 2,99 2,89 1,92 4,54 n=21
3,34 1,88 3,11 1,86 4,49 n=21
3,51 2,83 2,78 2,09 3,83 n=21
3,95 2,95 2,40 2,05 5,00 n=21
4,31 3,04 2,80 2,20 6,35 n=21
4,40 2,92 3,30 2,15 6,25 n=21
5,45 4,83 3,90 2,25 6,40 n=21
4,49 3,24 3,70 2,30 5,35 n=21
4,16 3,55 2,70 2,05 4,95 n=21
3,64 2,77 2,90 1,85 4,55 n=21
3,73 2,72 2,70 2,05 5,25 n=21
3,24 1,63 2,90 1,90 4,00 n=21
3,53 2,76 2,70 2,20 3,65 n=21
3,51 2,42 3,00 1,80 4,50 n=21
3,43 2,07 2,40 2,00 5,95 n=21
3,84 2,76 2,90 1,85 6,20 n=21
3,59 2,15 2,70 1,80 4,75 n=21
3,47 2,32 2,90 2,05 4,10 n=21
3,29 2,46 2,10 1,80 3,90 n=21
3,22 2,14 2,20 1,75 4,45 n=21
3,54 2,38 2,50 1,90 4,80 n=21
3,65 2,46 3,00 1,75 4,55 n=21
3,45 2,25 2,90 2,10 4,15 n=21
2,03 1,72 1,40 1,05 2,25 n=21
1,89 1,38 1,70 ,85 2,20 n=21
2,05 1,47 1,70 1,10 2,55 n=21
1,70 ,85 1,70 ,90 2,35 n=21
1,81 1,27 1,60 1,00 2,20 n=21

t_t5_m1
t_t5_m2
t_t5_m3
t_t5_m4
t_t5_m5
t_o2_m1
t_o2_m2
t_o2_m3
t_o2_m4
t_o2_m5
t_o1_m1
t_o1_m2
t_o1_m3
t_o1_m4
t_o1_m5
t_mw_m1
t_mw_m2
t_mw_m3
t_mw_m4
t_mw_m5
t_fz_m1
t_fz_m2
t_fz_m3
t_fz_m4
t_fz_m5
t_f7_m1
t_f7_m2
t_f7_m3
t_f7_m4
t_f7_m5
t_f4_m1
t_f4_m2
t_f4_m3
t_f4_m4
t_f4_m5
t_f3_m1
t_f3_m2
t_f3_m3
t_f3_m4
t_f3_m5
t_c4_m1
t_c4_m2
t_c4_m3
t_c4_m4
t_c4_m5

MW SD MD 25.% 75% n



Anhang XX

MW , SD, MD und Perzentile von EEG Alpha2 Leistungsdichte NparVerteilt nicht
Leistungsdifferenziert

6,60 4,97 4,90 3,10 8,35 n=21
5,67 4,60 5,00 2,50 7,40 n=21
4,69 6,12 2,80 1,90 4,65 n=21
4,61 5,65 3,20 1,90 5,05 n=21
5,55 7,36 3,00 1,85 6,75 n=21
7,37 6,01 5,50 3,45 9,60 n=21
6,86 6,54 3,70 2,50 10,20 n=21
5,46 8,43 3,00 1,70 5,70 n=21
5,02 6,67 3,30 1,85 5,75 n=21
5,88 8,40 3,10 2,00 7,35 n=21

11,26 8,31 9,90 5,35 12,85 n=21
11,17 9,86 6,70 4,20 19,00 n=21
7,80 9,72 4,30 2,65 9,60 n=21
8,32 9,84 6,60 2,80 8,15 n=21
9,16 10,82 5,50 2,90 11,35 n=21

10,33 6,98 9,40 4,55 12,25 n=21
10,31 8,89 5,80 3,55 16,80 n=21
7,46 9,30 4,70 2,15 8,90 n=21
7,60 8,86 5,90 2,70 7,90 n=21
8,27 9,28 5,00 2,65 11,00 n=21

11,23 9,18 8,80 6,20 11,80 n=21
10,62 8,99 6,80 4,20 17,60 n=21
6,85 7,51 4,70 2,60 9,10 n=21
7,90 8,83 6,10 2,80 7,90 n=21
8,51 8,61 5,00 2,85 10,90 n=21

10,45 7,59 9,30 4,75 11,05 n=21
10,14 8,88 7,30 3,50 16,60 n=21
6,74 7,65 4,60 2,30 8,00 n=21
7,63 8,44 5,70 2,55 7,80 n=21
7,82 7,87 4,70 2,75 9,95 n=21

31,11 26,15 25,60 15,70 36,50 n=21
28,39 26,67 17,90 8,75 40,40 n=21
18,21 24,94 8,20 3,75 25,65 n=21
19,56 22,23 14,20 5,10 24,00 n=21
20,41 24,65 12,70 5,10 18,75 n=21
37,39 46,01 23,80 13,20 38,45 n=21
39,98 53,40 20,60 8,50 51,45 n=21
24,20 47,97 8,50 4,75 22,40 n=21
26,28 46,01 16,10 4,20 23,30 n=21
28,41 52,38 12,50 4,85 20,40 n=21
16,79 14,56 12,60 7,30 20,95 n=21
16,52 15,01 10,80 5,45 25,20 n=21
11,62 16,70 5,40 3,45 12,80 n=21
12,30 14,96 5,80 3,60 15,20 n=21
13,96 17,66 7,00 4,20 18,90 n=21
15,60 17,88 10,20 6,05 18,85 n=21
13,74 15,49 8,20 4,45 15,20 n=21
10,35 16,51 4,20 2,80 7,15 n=21
10,40 13,76 5,20 3,25 8,70 n=21
12,42 19,22 5,80 2,50 13,35 n=21
6,31 3,44 6,20 3,80 8,35 n=21
5,54 3,88 4,20 2,80 8,20 n=21
4,28 3,42 3,50 1,75 5,10 n=21
4,40 3,45 3,80 1,95 4,85 n=21
4,90 4,34 4,00 1,90 4,90 n=21

19,70 17,92 13,90 9,00 23,45 n=21
19,58 21,75 10,50 6,30 22,05 n=21
14,03 22,45 6,90 3,55 16,80 n=21
14,00 19,45 9,80 4,25 15,10 n=21
18,79 30,76 10,00 4,70 17,35 n=21

a2_c3_m1
a2_c3_m2
a2_c3_m3
a2_c3_m4
a2_c3_m5
a2_cz_m1
a2_cz_m2
a2_cz_m3
a2_cz_m4
a2_cz_m5
a2_f3_m1
a2_f3_m2
a2_f3_m3
a2_f3_m4
a2_f3_m5
a2_f4_m1
a2_f4_m2
a2_f4_m3
a2_f4_m4
a2_f4_m5
a2_f7_m1
a2_f7_m2
a2_f7_m3
a2_f7_m4
a2_f7_m5
a2_f8_m1
a2_f8_m2
a2_f8_m3
a2_f8_m4
a2_m5_m5
a2_o1_m1
a2_o1_m2
a2_o1_m3
a2_o1_m4
a2_o1_m5
a2_o2_m1
a2_o2_m2
a2_o2_m3
a2_o2_m4
a2_o2_m5
a2_p4_m1
a2_p4_m2
a2_p4_m3
a2_p4_m4
a2_p4_m5
a2_pz_m1
a2_pz_m2
a2_pz_m3
a2_pz_m4
a2_pz_m5
a2_t4_m1
a2_t4_m2
a2_t4_m3
a2_t4_m4
a2_t4_m5
a2_t6_m1
a2_t6_m2
a2_t6_m3
a2_t6_m4
a2_t6_m5

MW SD MD 25.% 75% n

MW , SD, MD und Perzentile von EEG Alpha1Leistungsdichte NparVerteilt nicht
Leistungsdifferenziert

4,51 5,40 2,40 1,75 5,45 n=21
3,09 2,38 2,00 1,35 4,45 n=21
3,68 5,07 2,50 1,30 3,80 n=21
3,05 2,39 2,30 1,30 4,40 n=21
3,89 4,47 2,80 1,45 4,05 n=21
4,77 6,68 3,00 1,75 4,90 n=21
3,54 2,78 2,60 1,50 5,50 n=21
3,80 5,27 2,30 1,45 3,95 n=21
3,07 2,34 2,10 1,60 4,45 n=21
4,13 5,92 2,70 1,50 4,30 n=21
7,89 10,89 3,90 2,55 8,25 n=21
6,20 7,87 3,60 2,05 7,40 n=21
6,85 10,21 3,80 2,15 5,65 n=21
5,57 6,33 3,40 2,40 5,90 n=21
7,24 10,16 3,40 2,10 6,50 n=21
9,27 11,55 3,80 2,30 9,70 n=21
6,58 7,35 3,50 2,10 7,95 n=21
7,80 10,41 3,40 2,30 7,30 n=21
6,58 7,00 3,60 2,35 7,80 n=21
8,02 8,68 5,30 2,40 9,65 n=21
9,10 12,46 4,10 2,45 7,80 n=21
6,38 6,75 3,60 2,20 8,35 n=21
7,96 11,39 3,50 2,35 6,30 n=21
6,20 6,50 3,50 2,70 7,15 n=21
7,83 9,08 4,70 2,40 9,05 n=21
8,20 8,76 4,60 2,45 11,00 n=21
5,89 5,54 3,70 2,40 7,70 n=21
6,73 8,54 4,70 1,95 5,95 n=21
5,75 5,61 3,90 2,40 6,30 n=21
7,07 7,17 5,50 2,25 7,70 n=21
7,68 9,55 4,20 2,30 7,70 n=21
5,47 5,21 3,20 2,40 7,10 n=21
7,00 10,44 3,80 2,00 5,50 n=21
5,44 5,47 3,50 2,30 5,25 n=21
6,70 7,85 4,60 2,10 7,15 n=21

10,91 14,42 5,30 2,55 10,25 n=21
7,90 8,93 4,10 2,55 9,15 n=21
9,48 13,00 4,20 2,60 7,85 n=21
7,76 8,48 3,80 2,95 9,25 n=21
9,46 11,03 5,50 3,20 10,70 n=21
9,58 11,62 4,98 2,89 10,05 n=21
6,94 6,75 4,33 2,27 8,77 n=21
8,21 11,65 4,42 2,29 8,00 n=21
6,78 6,83 3,79 2,44 8,01 n=21
8,49 9,95 5,88 2,47 9,26 n=21

17,25 19,19 10,10 4,90 19,50 n=21
12,52 14,50 7,50 3,35 14,40 n=21
13,73 17,23 6,70 3,25 12,80 n=21
13,58 17,19 8,60 4,00 12,75 n=21
14,31 15,18 9,70 4,60 17,25 n=21
16,60 19,15 9,30 3,70 18,55 n=21
13,03 14,21 9,00 3,00 15,95 n=21
13,37 16,64 5,50 3,75 15,45 n=21
13,84 18,83 7,10 3,45 13,40 n=21
13,72 14,43 8,50 4,10 19,45 n=21
11,21 19,73 4,60 1,90 8,70 n=21
6,14 7,20 3,00 1,65 8,00 n=21
9,90 23,51 3,00 1,55 7,45 n=21
5,42 5,64 3,40 1,65 7,80 n=21
8,89 15,60 4,00 1,75 7,45 n=21
9,01 12,68 4,50 1,90 8,55 n=21
7,04 6,93 4,70 1,90 10,35 n=21
8,00 11,77 3,80 1,60 7,20 n=21
6,31 6,12 3,90 1,95 7,45 n=21
9,28 11,86 4,20 2,00 11,70 n=21
9,40 13,67 4,10 2,10 10,35 n=21
6,46 7,15 3,60 1,95 9,00 n=21
8,71 15,63 2,90 1,80 9,30 n=21
5,52 5,42 3,50 1,60 8,65 n=21
8,39 13,25 3,70 1,90 10,35 n=21
5,58 6,01 3,20 1,85 7,15 n=21
4,48 3,85 2,90 1,80 6,25 n=21
5,20 6,68 3,00 1,70 5,35 n=21
4,33 3,82 2,90 1,80 6,45 n=21
4,66 4,66 3,60 1,55 5,55 n=21

12,10 16,18 5,80 2,65 14,45 n=21
8,34 7,50 4,60 2,70 15,40 n=21

11,12 19,27 4,50 2,20 10,95 n=21
7,95 7,59 4,60 2,95 12,50 n=21

11,98 18,69 6,00 2,35 12,10 n=21

a1_c3_m1
a1_c3_m2
a1_c3_m3
a1_c3_m4
a1_c3_m5
a1_c4_m1
a1_c4_m2
a1_c4_m3
a1_c4_m4
a1_c4_m5
a1_cz_m1
a1_cz_m2
a1_cz_m3
a1_cz_m4
a1_cz_m5
a1_f3_m1
a1_f3_m2
a1_f3_m3
a1_f3_m4
a1_f3_m5
a1_f4_m1
a1_f4_m2
a1_f4_m3
a1_f4_m4
a1_f4_m5
a1_f7_m1
a1_f7_m2
a1_f7_m3
a1_f7_m4
a1_f7_m5
a1_f8_m1
a1_f8_m2
a1_f8_m3
a1_f8_m4
a1_m5_m5
a1_fz_m1
a1_fz_m2
a1_fz_m3
a1_fz_m4
a1_fz_m5
a1_mw_m1
a1_mw_m2
a1_mw_m3
a1_mw_m4
a1_mw_m5
a1_o1_m1
a1_o1_m2
a1_o1_m3
a1_o1_m4
a1_o1_m5
a1_o2_m1
a1_o2_m2
a1_o2_m3
a1_o2_m4
a1_o2_m5
a1_p3_m1
a1_p3_m2
a1_p3_m3
a1_p3_m4
a1_p3_m5
a1_p4_m1
a1_p4_m2
a1_p4_m3
a1_p4_m4
a1_p4_m5
a1_pz_m1
a1_pz_m2
a1_pz_m3
a1_pz_m4
a1_pz_m5
a1_t4_m1
a1_t4_m2
a1_t4_m3
a1_t4_m4
a1_t4_m5
a1_t5_m1
a1_t5_m2
a1_t5_m3
a1_t5_m4
a1_t5_m5

MW SD MD 25.% 75% n

MW , SD, MD und Perzentile von EEG Alpha2 Lestungsdichte NparVerteilt nicht
Leistungsdifferenziert

7,05 4,97 5,40 3,70 8,70 n=21
6,11 4,52 4,30 2,70 10,50 n=21
4,31 3,51 3,20 2,05 4,95 n=21
4,75 4,14 3,80 2,00 5,85 n=21
5,37 4,66 3,50 2,00 8,15 n=21

13,86 10,04 11,64 6,96 16,22 n=21
13,05 11,24 7,68 4,58 20,85 n=21
9,09 12,12 4,58 3,11 12,19 n=21
9,48 11,28 7,72 3,10 10,45 n=21

10,64 12,88 6,38 3,61 15,22 n=21
6,13 3,93 4,90 2,20 9,10 n=21
4,66 2,89 4,20 2,10 6,90 n=21
4,12 3,72 3,60 1,65 5,20 n=21
3,95 3,61 3,30 1,95 4,65 n=21
4,53 3,90 3,50 1,95 6,15 n=21

a2_t3_m1
a2_t3_m2
a2_t3_m3
a2_t3_m4
a2_t3_m5
a2_mw_m1
a2_mw_m2
a2_mw_m3
a2_mw_m4
a2_mw_m5
a2_c4_m1
a2_c4_m2
a2_c4_m3
a2_c4_m4
a2_c4_m5

MW SD MD 25.% 75% n



Anhang XXI

MW , SD, MD und Perzentile von EEG Beta1 Leistungsdichte ParVerteilt nicht
Leistungsdifferenziert

3,90 2,00 4,10 2,25 5,15 n=21
3,17 1,73 3,00 1,80 4,40 n=21
2,84 1,45 2,10 1,55 4,35 n=21
2,52 1,37 2,30 1,45 3,70 n=21
2,89 1,59 2,70 1,45 3,80 n=21
3,24 1,53 3,10 2,00 4,50 n=21
2,57 1,18 2,40 1,75 3,55 n=21
2,45 ,97 2,30 1,65 3,25 n=21
2,11 ,91 1,90 1,40 2,85 n=21
2,44 1,07 2,50 1,55 3,50 n=21
2,44 1,32 2,20 1,65 3,05 n=21
2,09 1,02 1,80 1,35 2,80 n=21
2,10 1,03 1,90 1,30 2,60 n=21
1,82 1,04 1,60 1,10 2,40 n=21
1,73 ,82 1,60 1,10 2,35 n=21
2,25 1,39 1,90 1,50 2,55 n=21
1,76 ,67 1,60 1,25 2,40 n=21
1,92 ,76 1,70 1,30 2,60 n=21
1,76 ,98 1,70 1,10 2,00 n=21
1,70 ,72 1,50 1,20 2,10 n=21
2,30 1,27 2,00 1,40 2,85 n=21
1,78 ,80 1,60 1,10 2,30 n=21
1,80 ,81 1,80 ,90 2,55 n=21
1,43 ,65 1,20 1,00 2,20 n=21
1,59 ,83 1,40 ,90 2,10 n=21
2,54 1,37 2,10 1,55 3,35 n=21
2,05 1,05 1,80 1,25 2,65 n=21
1,92 1,08 1,60 1,05 2,20 n=21
1,59 ,83 1,30 1,10 2,00 n=21
1,93 1,22 2,00 1,00 2,35 n=21
2,59 1,54 2,30 1,35 3,65 n=21
1,98 ,89 1,70 1,35 2,75 n=21
1,86 ,90 1,70 1,15 2,60 n=21
1,53 ,70 1,30 1,05 2,25 n=21
1,73 ,88 1,30 1,05 2,50 n=21
4,02 2,94 3,40 2,40 4,40 n=21
3,24 2,03 3,10 1,70 3,55 n=21
2,67 1,42 2,20 1,65 3,25 n=21
2,40 1,55 2,10 1,35 2,80 n=21
2,44 1,28 2,40 1,40 3,00 n=21
3,99 1,98 3,70 2,20 5,30 n=21
3,28 1,72 2,80 1,85 4,30 n=21
2,75 1,30 2,30 1,80 3,90 n=21
2,49 1,20 2,30 1,60 3,10 n=21
2,60 1,35 2,20 1,50 3,45 n=21
2,65 1,25 2,51 1,75 3,37 n=21
2,20 ,91 1,97 1,55 2,72 n=21
2,17 ,82 2,01 1,37 2,64 n=21
1,85 ,73 1,84 1,37 2,34 n=21
1,98 ,81 2,06 1,32 2,65 n=21
2,59 1,46 2,10 1,60 3,65 n=21
2,27 1,20 1,90 1,50 2,60 n=21
2,59 1,57 2,00 1,50 3,30 n=21
2,03 1,07 1,70 1,30 3,10 n=21
2,20 1,24 2,00 1,45 2,55 n=21
2,32 ,99 2,10 1,45 3,10 n=21
2,11 ,77 1,90 1,60 2,70 n=21
2,21 ,82 1,90 1,45 2,85 n=21
1,90 ,70 1,80 1,35 2,50 n=21
1,91 ,71 2,10 1,35 2,30 n=21
2,32 ,94 2,20 1,55 3,25 n=21
1,92 ,71 1,80 1,40 2,50 n=21
1,97 ,71 1,90 1,25 2,65 n=21
1,77 ,66 1,70 1,20 2,30 n=21
1,85 ,75 1,80 1,20 2,45 n=21
2,56 1,34 2,20 1,45 3,40 n=21
2,30 1,23 1,80 1,55 2,60 n=21
2,45 1,21 2,30 1,45 3,25 n=21
2,00 ,90 1,80 1,35 2,60 n=21
2,26 1,15 2,20 1,45 2,80 n=21
2,42 1,30 1,90 1,45 3,50 n=21
2,03 1,02 1,70 1,45 2,50 n=21
2,34 1,30 2,00 1,35 3,05 n=21
1,93 ,95 1,60 1,30 2,70 n=21
2,09 1,12 1,60 1,30 2,80 n=21
2,04 1,38 1,70 1,10 2,65 n=21
1,74 ,94 1,40 1,10 2,25 n=21
1,97 1,19 1,40 1,15 2,60 n=21
1,50 ,78 1,40 ,90 2,00 n=21
1,57 ,79 1,40 1,05 2,05 n=21
1,91 1,06 1,80 1,25 2,20 n=21
1,64 ,60 1,50 1,20 1,95 n=21
1,60 ,55 1,40 1,20 1,85 n=21
1,40 ,59 1,40 ,95 1,80 n=21
1,49 ,63 1,40 1,05 1,85 n=21
1,68 ,98 1,50 ,95 2,10 n=21
1,46 ,53 1,40 1,10 1,60 n=21
1,51 ,60 1,30 1,05 1,80 n=21
1,28 ,50 1,30 ,95 1,55 n=21
1,26 ,48 1,40 ,90 1,55 n=21

b1_t6_m1
b1_t6_m2
b1_t6_m3
b1_t6_m4
b1_t6_m5
b1_t5_m1
b1_t5_m2
b1_t5_m3
b1_t5_m4
b1_t5_m5
b1_t4_m1
b1_t4_m2
b1_t4_m3
b1_t4_m4
b1_t4_m5
b1_t3_m1
b1_t3_m2
b1_t3_m3
b1_t3_m4
b1_t3_m5
b1_pz_m1
b1_pz_m2
b1_pz_m3
b1_pz_m4
b1_pz_m5
b1_p4_m1
b1_p4_m2
b1_p4_m3
b1_p4_m4
b1_p4_m5
b1_p3_m1
b1_p3_m2
b1_p3_m3
b1_p3_m4
b1_p3_m5
b1_o2_m1
b1_o2_m2
b1_o2_m3
b1_o2_m4
b1_o2_m5
b1_o1_m1
b1_o1_m2
b1_o1_m3
b1_o1_m4
b1_o1_m5
b1_mw_m1
b1_mw_m2
b1_mw_m3
b1_mw_m4
b1_mw_m5
b1_fz_m1
b1_fz_m2
b1_fz_m3
b1_fz_m4
b1_fz_m5
b1_f8_m1
b1_f8_m2
b1_f8_m3
b1_f8_m4
b1_m5_m5
b1_f7_m1
b1_f7_m2
b1_f7_m3
b1_f7_m4
b1_f7_m5
b1_f4_m1
b1_f4_m2
b1_f4_m3
b1_f4_m4
b1_f4_m5
b1_f3_m1
b1_f3_m2
b1_f3_m3
b1_f3_m4
b1_f3_m5
b1_cz_m1
b1_cz_m2
b1_cz_m3
b1_cz_m4
b1_cz_m5
b1_c4_m1
b1_c4_m2
b1_c4_m3
b1_c4_m4
b1_c4_m5
b1_c3_m1
b1_c3_m2
b1_c3_m3
b1_c3_m4
b1_c3_m5

MW SD MD 25.% 75% n

MW , SD, MD und Perzentile von EEG Beta2 Leistungsdichte NparVerteilt nicht
Leistungsdifferenziert

2,48 2,62 1,40 1,20 2,20 n=21
2,21 2,07 1,60 ,90 2,55 n=21
2,02 2,05 1,50 ,90 2,40 n=21
1,78 1,85 1,30 ,80 2,15 n=21
1,90 2,11 1,40 ,75 2,20 n=21
2,88 4,93 1,80 1,25 2,35 n=21
1,75 ,99 1,60 1,05 2,05 n=21
1,94 1,40 1,70 1,15 2,60 n=21
1,81 1,76 1,20 ,85 2,00 n=21
2,00 1,95 1,40 1,05 1,90 n=21

b2_cz_m1
b2_cz_m2
b2_cz_m3
b2_cz_m4
b2_cz_m5
b2_t3_m1
b2_t3_m2
b2_t3_m3
b2_t3_m4
b2_t3_m5

MW SD MD 25.% 75% n

MW , SD, MD und Perzentile von EEG Beta2 Leistungsdichte ParVerteilt nicht
Leistungsdifferenziert

2,27 ,99 2,20 1,50 2,70 n=21
1,87 ,94 1,70 1,05 2,50 n=21
1,54 ,88 1,40 ,85 2,20 n=21
1,53 ,91 1,40 ,80 1,90 n=21
1,85 1,22 1,50 1,10 2,35 n=21
2,08 1,17 2,00 1,20 2,40 n=21
1,65 ,63 1,60 1,20 2,05 n=21
1,45 ,57 1,40 ,95 1,80 n=21
1,30 ,52 1,40 ,90 1,75 n=21
1,67 ,91 1,40 1,05 2,20 n=21
2,25 1,81 1,80 1,15 2,65 n=21
1,90 1,69 1,40 ,95 2,20 n=21
1,63 1,17 1,40 ,85 1,75 n=21
1,62 1,63 1,20 ,80 1,80 n=21
1,52 1,06 1,20 ,90 1,95 n=21
1,55 ,78 1,50 ,90 2,10 n=21
1,23 ,54 1,20 ,85 1,50 n=21
1,09 ,58 1,00 ,75 1,20 n=21
1,01 ,53 ,80 ,70 1,30 n=21
1,14 ,69 1,00 ,70 1,50 n=21
1,65 ,81 1,50 1,05 2,00 n=21
1,40 ,68 1,30 ,90 1,80 n=21
1,15 ,68 1,00 ,75 1,25 n=21
1,13 ,67 ,90 ,70 1,20 n=21
1,24 ,75 1,10 ,80 1,35 n=21
1,63 ,75 1,50 1,00 2,10 n=21
1,30 ,54 1,30 ,85 1,60 n=21
1,12 ,53 1,10 ,70 1,40 n=21
1,02 ,48 1,00 ,65 1,20 n=21
1,16 ,50 1,10 ,85 1,35 n=21
2,57 1,42 2,40 1,75 2,85 n=21
2,11 1,44 1,80 1,10 2,65 n=21
1,65 1,36 1,40 1,00 1,75 n=21
1,66 1,43 1,50 ,75 1,90 n=21
1,73 1,24 1,60 1,00 1,75 n=21
2,40 ,90 2,40 1,55 3,10 n=21
2,03 ,88 2,10 1,40 2,80 n=21
1,58 ,66 1,50 1,20 2,05 n=21
1,50 ,64 1,60 ,85 2,00 n=21
1,69 ,71 1,70 1,10 2,10 n=21
2,06 ,88 1,91 1,47 2,68 n=21
1,71 ,63 1,78 1,27 2,13 n=21
1,55 ,62 1,51 1,05 1,87 n=21
1,47 ,65 1,54 ,93 1,82 n=21
1,58 ,66 1,45 1,09 1,92 n=21
1,97 ,87 1,90 1,25 2,65 n=21
1,76 ,77 1,60 1,15 2,30 n=21
1,77 ,88 1,60 1,15 2,30 n=21
1,64 ,81 1,60 1,10 2,00 n=21
1,65 ,75 1,70 1,05 2,00 n=21
2,04 ,72 1,90 1,45 2,60 n=21
1,81 ,62 1,70 1,45 2,25 n=21
1,82 ,70 1,80 1,30 2,10 n=21
1,75 ,79 1,70 1,05 2,35 n=21
1,76 ,65 1,60 1,35 2,30 n=21
2,10 ,75 2,10 1,50 2,40 n=21
1,79 ,60 1,70 1,35 2,25 n=21
1,62 ,60 1,60 1,30 1,90 n=21
1,67 ,80 1,40 1,20 2,25 n=21
1,67 ,66 1,50 1,25 2,00 n=21
2,03 ,81 2,00 1,40 2,55 n=21
1,80 ,74 1,60 1,35 2,25 n=21
1,81 ,78 1,80 1,20 2,25 n=21
1,68 ,69 1,50 1,25 2,20 n=21
1,76 ,68 1,80 1,20 2,10 n=21
2,00 ,80 1,90 1,40 2,70 n=21
1,68 ,63 1,50 1,30 2,05 n=21
1,67 ,67 1,70 1,15 2,00 n=21
1,61 ,68 1,50 1,15 2,00 n=21
1,67 ,71 1,70 1,10 2,00 n=21
1,54 ,90 1,30 1,00 2,00 n=21
1,32 ,48 1,20 ,90 1,75 n=21
1,20 ,50 1,10 ,75 1,55 n=21
1,09 ,49 1,10 ,70 1,40 n=21
1,20 ,52 1,20 ,85 1,55 n=21
1,55 ,85 1,30 1,00 2,05 n=21
1,41 ,64 1,30 ,90 1,95 n=21
1,20 ,54 1,20 ,80 1,40 n=21
1,16 ,62 1,10 ,65 1,55 n=21
1,21 ,57 1,10 ,75 1,45 n=21

b2_t6_m1
b2_t6_m2
b2_t6_m3
b2_t6_m4
b2_t6_m5
b2_t5_m1
b2_t5_m2
b2_t5_m3
b2_t5_m4
b2_t5_m5
b2_t4_m1
b2_t4_m2
b2_t4_m3
b2_t4_m4
b2_t4_m5
b2_pz_m1
b2_pz_m2
b2_pz_m3
b2_pz_m4
b2_pz_m5
b2_p4_m1
b2_p4_m2
b2_p4_m3
b2_p4_m4
b2_p4_m5
b2_p3_m1
b2_p3_m2
b2_p3_m3
b2_p3_m4
b2_p3_m5
b2_o2_m1
b2_o2_m2
b2_o2_m3
b2_o2_m4
b2_o2_m5
b2_o1_m1
b2_o1_m2
b2_o1_m3
b2_o1_m4
b2_o1_m5
b2_mw_m1
b2_mw_m2
b2_mw_m3
b2_mw_m4
b2_mw_m5
b2_fz_m1
b2_fz_m2
b2_fz_m3
b2_fz_m4
b2_fz_m5
b2_f8_m1
b2_f8_m2
b2_f8_m3
b2_f8_m4
b2_m5_m5
b2_f7_m1
b2_f7_m2
b2_f7_m3
b2_f7_m4
b2_f7_m5
b2_f4_m1
b2_f4_m2
b2_f4_m3
b2_f4_m4
b2_f4_m5
b2_f3_m1
b2_f3_m2
b2_f3_m3
b2_f3_m4
b2_f3_m5
b2_c4_m1
b2_c4_m2
b2_c4_m3
b2_c4_m4
b2_c4_m5
b2_c3_m1
b2_c3_m2
b2_c3_m3
b2_c3_m4
b2_c3_m5

MW SD MD 25.% 75% n
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11.13  Zusammenfassung: Prüfstatistik (Belkom. 2)

Parameter Regenerationseffekt
Faktor: Zeit (T-Test bzw. Wilcoxon [Fettdruck]) p und (T- bzw. Z-Value)

       M1-M2              M2-M3              M3-M4             M4-M5                   df
Zentrales System: EEG-Frequenzen und Elektrodenpositionen

D_t4 0,026
(2,404)

20

D_mw 0.04 (2.197) 20
D_c4 0.012 (Z-

2.521a)
A2_t3 0.030 (2.332) 20
A2_mw 0.042 (2.174) 20
A2_c4 0.042

(2.161)
20

A2_c3 0.050 (Z-
1.961)b

A2_cz 0.020(-
2.334)b

21

A2_f3 0.051(-
1.947)b

21

A2_f4 0.033(-
2.138)a

21

A2_f7 0.015(-
2.433)a

21

A2_f8 0.023(-
2.277)a

21

A2_o1 0.019(-
2.346)a

21

A2_o2 0.002(-
3.024)a

21

A2_p4 0.039(-
2.068)a

21

A2_pz 0.026(-
2.225)a

21

A2_t4 0.044(-
2.018)a

21

A2_t6 0.027(-
2.207)a

21

B1_t5 0.040
(2.193)

0.036
(2.246)

0.032 (-2.310) 20

B1_pz 0.027
(2.390)

20

B1_p4 0.022
(2.490)

0.035 (-2.266) 20

B1_01 0.023 (2.467) 20
B1_mw 0.034

(2.280)
20

B1_f8 0.039
(2.210)

20

B1_f7 0.020
(2.525)

20

B1_f3 0.039
(2.209)

0.035
(2.260)

20

B1_c3 0.049
(2.094)

20

Parameter Regenerationseffekt
Faktor: Zeit (T-Test bzw. Wilcoxon [Fettdruck]) p und (T- bzw. Z-Value)

       M1-M2              M2-M3              M3-M4             M4-M5                   df
Zentrales System: EEG-Frequenzen und Elektrodenpositionen

B2_t6 0.020
(2.538)

0.038 (2.222) 0.011 (-2.821) 20

B2_t5 0.047 (2.117) 0.037 (-2.253) 20
B2_pz 0.022

(2.491)
0.028 (2.367) 20

B2_p4 0.045 (2.142) 0.038 (-2.225) 20
B2_p3 0.024

(2.436)
0.022 (-2.473) 20

B2_o2 0.009
(2.885)

0.021 (2.499) 20

B2_o1 0.043
(2.165)

0.002 (3.467) 20

B2_mw 0.019
(2.542)

20

B2_fz 0.029
(2.345)

20

B2_f7 0.033
(2.295)

20

B2_f4 0.052
(2.064)

20

B2_f3 0.016
(2.619)

20

B2_c4 0.014 (-2.686) 20
B2_c3 0.023

(2.469)
20

B2_cz 0.017(-
2.387)a

21

Katecholamine
A 0.000 (-

3.921)a
21

A_korr 0.000 (-
3.920)a

21

NA_korr 0.000
(8.319)

20

NA 0.000
(7.890)

20

Dop 0.000
(6.810)

(0.062(-
1.981)

19

Parameter Regenerationseffekt
Faktor: Zeit (T-Test bzw. Wilcoxon [Fettdruck]) p und (T- bzw. Z-Value)

       M1-M2              M2-M3              M3-M4             M4-M5                   df
Stressreaktives System

Pro 0.009
(2.906)

0.001 (3.868) 0.000
(5.502)

20

Prol_korr 0.050 (-
2.082)

0.053 (2.055) 0.000
(4.183)

0.044 (2.147) 20

Cor 0.000 (9.301) 0.001
(4.295)

16

Esg_b 0.001 (-
4.820)

16

Krea 0.000
(10.401)

16

Blutbild
Leu 0.000

(14.913)
0.000 (-
4.721)

0.000 (-5.888) 20

Ery 0.000
(9.484)

0.016 (-2.629) 20

Gluc 0.000 (-
5.804)

0.004 (3.248) 0.000
(4.780)

19

Gluc_korr 0.000
(5.761)

0.023 (-
2.480)

0.000
(4.213)

19

Hb 0.000
(15.683)

20

Hct 0.000
(15.922)

0.023 (-2.470) 20

mcv 0.002
(3.532)

20

Herzkreislauf System
Max-3‘ 3‘-60‘ 60-120‘

HF 0.000
(25.213)

0.000
(14.558)

0.000 (4.580) 20

Legende:
M1-M2 = Veränderungen in Frühregeneration 2-45‘ n. Belastung
M2-M3 = Veränderungen in Mittelregeneration 45‘-60‘ n. Bel.
M3-M4 = Veränderungen in Später Regeneration 60‘-75‘ n. Bel.
M4-M5 = Veränderungen in sehr Später Regeneration 75‘-135‘ n.
Bel.
a basiert auf positive Ränge
b basiert auf negative Ränge

Fettdruck
=Parameter
nicht
hinreichend
Normalverteilt

Zusammenfassung der post hoc Prüfstatistik bei Par/Npar Verteilung t-
Test/Wilcoxon bzgl. vorausgegangenem sign. Zeiteffekt bei GLM/Friedman.
Darstellung der unabhängigen Parameter (linke Spalte) und Testpaarungen im
Zeitverlauf. Prüfergebnisse mit p und T bzw. Z Value () und Freiheitsgrade (df).
Npar Statistik fett.

Post hoc Gruppeneffekte bezüglich des Faktors „Leistungsgruppe“ bei Par/Npar
Verteilung t-Test/Mann Whitney-U bzgl. vorausgegangenem sign. Gruppeneffekt bei
GLM/Friedman Analyse. Darstellung der unabhängigen Parameter (linke Spalte) und
Prüfergebnisse mit p und T bzw. Z Value () und ggf. Freiheitsgrade df. Npar Statistik
fett. Gruppeneffekte mäßig trainiert-gut trainiert T-Test unabhängig / Mann Whitney-U

M1 M3 M4 M5
Pmax 0.004 (-3.274) 19
Prel 0.000 (-6.785) 19
T_fz 0.050 (2.093) 19 0.028 (2.378) 19
A2_pz 0.045 (Z-2.008)
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