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Introduction

The theory of additive and multiplicative functions has made great progress during the

past years; in particular, we want to mention the mean-value theorems by H. Delange [9],

E. Wirsing [83], [84] and G. Halász [22], as well as, the first elementary proof of the

theorem of Haĺasz by H. Daboussi and K.-H. Indlekofer [8].

H. Delange [9] characterized those multiplicative functionsf which satisfy|f | ≤ 1 and

for which a non-zero mean-value

M(f) = lim
x→∞

1

x

x∑
n=1

f(n)

exists. It turned out to be more difficult though to characterize those multiplicative func-

tions f with |f | ≤ 1, for which a mean-valueM(f) exists and is zero. It was done in

essentially two steps; for real-valued functions by E. Wirsing [83], [84], this included

the proof of an old conjecture, variously ascribed to Erdős and Wintner, to the effect

that a mean-valueM(f) always exists wheneverf assumes only the values±1; and for

complex-valued functions by G. Halász [22] using an analytic method. The first elemen-

tary proof of the theorem of Halász was given by H. Daboussi and K.-H. Indlekofer [8].

The Erd̋os-Wintner conjecture includes the prime number theorem because the assertion

M(µ) = 0, whereµ denotes the M̈obius function, is equivalent to the prime number

theorem

]{p | p prime, p ≤ x} =: π(x) ∼ x

log x
as x →∞ ,
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Introduction

as was shown by E. Landau [56]. The elementary proofs by Wirsing and Daboussi-

Indlekofer provide, among other things, an elementary proof of the prime number the-

orem.

While these theorems use the hypothesis|f | ≤ 1, many results not based on this condi-

tion are also known now. In this context, let us mention the papers by H. Daboussi [6],

P.D.T.A. Elliott [13], K.-H. Indlekofer [25], J. Knopfmacher [54] and W. Schwarz [75].

All these results provide valuable methods for the investigation of additive and multi-

plicative functions, as well as, for prime number theory. However, the actual calculation

of values of additive and multiplicative functions requires knowledge of the prime factor

decomposition of a number, while usually its q-adic orQ-adic representation (“Cantor

expansion”) is given.

Let {qr}r≥1 be a sequence of natural numbers withqr ≥ 2, and letQ0 = 1, Qr = qrQr−1

for r ≥ 1. Each nonnegative integern has a uniqueQ-adic representation (“Cantor ex-

pansion”)

n =
∑
r≥0

εr(n)Qr

if the following condition is satisfied

0 ≤ εr(n) < qr+1 , r ≥ 0.

In the caseqr ≡ q ≥ 2 we will use standard notation ofq-adic representation.

This motivates the investigation of functions that are additive or multiplicative with re-

spect to these representations. Such functions are calledq-, Q-additive, orq-, Q-multiplicative,

respectively. Mean value theorems hold for this setting, too, and the methods and results

bear certain analogies to the classical case; however, there are also some peculiari-

ties. The case|f | ≤ 1 for q-multiplicative functions has been treated by H. Delange [10]

to great extent, and its generalization toQ-adic representations for the case|f | ≤ 1 by J.

8



Introduction

Coquet in his thesis [4]. The results for q-additive functions — which can be derived in

some cases from the theory of q-multiplicative functions — provide interesting statistical

tests for the randomness of data (see E. Manstavičius [63]).

In this thesis, we prove, both for theq-adic case and generalQ-adic representations, new

theorems about the average of multiplicative functions without the assumption|f | ≤ 1; it

turns out that the class ofuniformly summable functionsis the appropriate generalization.

In this context, we also investigateα-almost-periodic q-multiplicative functions.

To make the analogy to ”classical” additive and multiplicative functions apparent, it is

appropriate to summarize results related to these first.

We proceed as follows: Chapter 1 presents some well-known facts about additive func-

tions. G. H. Hardy and S. Ramanujan proved thatω andΩ have the normal orderlog log n.

P. Tuŕan found a new proof of Hardy and Ramanujan’s result using an inequality which

is analogues to Tschebycheff’s inequality. This gave M. Kac the idea of thinking about

the role of independence in the application of probability theory to number theory. The

generalization of this inequality is the famous Turán-Kubilius inequality. The important

theorems of P. Erd̋os [14], M. Kac [15], [17] and A. Wintner [16] are introduced.

Since the main difficulties arise from the fact that the asymptotic density gives only a

finitely additive measure (or content or pseudo-measure) on the family of subsets ofN,

where it is defined, one constructs a sequence of finite, purely probabilistic models which

approximate the number theoretical phenomena, and then use arithmetical arguments for

”taking the limit”. J. Kubilius [55] constructed such finite probability spaces on which in-

dependent random variables could be defined to mimic the behaviour of truncated additive

functions. K.-H. Indlekofer [46] presents an integration theory onN using the Stone-̌Cech

compactificationβN of N which can be generalized to arbitrary sets.

In Chapter 2, we describe the mean behaviour of complex-valued multiplicative functions

f such that|f(n)| ≤ 1 for every positive integern. These functionsf which satisfy
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Introduction

|f(n)| ≤ 1 for all n ∈ N and for which a non-zero mean-value exists were characterized

by H. Delange [9] in 1961, but his method could not be modified to consider the case

M(f) = 0. In 1967, E. Wirsing [84] proved his celebrated mean-value theorem which

asserts, in particular, that any real-valued multiplicative functionsf of modulus≤ 1, has

a mean-value. This solved a famous conjecture of Erdős and Wintner. His proof was

done by elementary methods (and thus, he gave another elementary proof of the prime

number theorem), but he could not handle the complex-valued case in its full generality.

Only by an analytic method, found by G. Halász [22] in 1968 the asymptotic behaviour

of
∑
n≤x

f(n) could be fully determined for all complex-valued multiplicative functionsf

of modulus smaller than or equal to one.

The first elementary proof of the theorem of Halász was given by H. Daboussi and K.-

H. Indlekofer [8] in 1992. More general, K.-H. Indlekofer, I. Kátai and R. Wagner [44]

in 2001, compare the asymptotic behavior of
∑
n≤x

f(n) and
∑
n≤x

g(n) for multiplicative

functionsf andg, respectively, where|f | ≤ g. They obtain generalizations of Wirsing’s

result and extend the theorem of Halász.

In Chapter 3, we introduce the spaceL∗ of uniformly summable functions; this notion

was introduced by K.-H. Indlekofer. Letα ∈ R with α ≥ 1, and let

Lα := {f |f : N→ C, ‖f‖α < ∞}

be the vector-space of arithmetical functionsf with bounded semi-norm

‖f‖α :=

(
lim sup

N→∞

1

N

∑
n<N

|f(n)|α
) 1

α

.

An arithmetical functionf ∈ L1 is said to be uniformly summable if

lim
K→∞

sup
N≥1

1

N

∑
n<N

|f(n)|≥K

|f(n)| = 0,

and the space of all uniformly summable functions is denoted byL∗.

Let β > α > 1, then

Lβ $ Lα $ L∗ $ L1.

10



Introduction

The idea of uniform summability turned out to provide the appropriate tools for describ-

ing the mean behaviour of a large class of multiplicative functions. As typical results, we

mention the theorem by K.-H. Indlekofer, which generalizes results of Daboussi, Delange,

Halász and Wirsing. In addition, the spacesBα, Dα andAα of α-even,α-limit-periodic

andα-almost-periodic arithmetical functions are considered. Finally, a complete char-

acterization ofα-almost-periodic multiplicative functions given by K.-H. Indlekofer is

presented without proof.

The main topic of Chapter 4 is the investigation ofq-additive,q-multiplicative functions,

andQ-additive, andQ-multiplicative functions, respectively. Observing thatq-additive

functions are sums of “almost independent random variables”, we give a new proof of

the Tuŕan-Kubilius inequality forq-additive functions which is much shorter than the

proof given by M. Peter and J. Spilker [78] in 2001, and which extends this proof to

Q-additive functions. In the case of theq-adic scale, necessary and sufficient conditions

for the existence of an asymptotic distribution for a real-valuedq-additive function and

the mean behaviour ofq-multiplicative functions of modulus≤ 1 have been given by H.

Delange [10] in 1972. J. Coquet [4] considered in 1975 the same kind of problems in the

cases ofQ-adic scales and obtained mainly sufficient conditions. Their main results are

formulated.

Chapter 5 and 6 contain our main results. The aim of Chapter 5 is to study the be-

haviour of the means
1

N

∑
n<N

f(n) and
1

N

∑
n<N

|f(n)|α asN → ∞, α > 0, wheref is

uniformly summable andq-multiplicative, and we give a complete characterization of

these means. To our surprise, we find that forq-multiplicative functions the spaceLα

for everyα > 0 coincides with the spaceL∗. Furthermore, applying our main results,

we investigate finitely distributedq-additive functions and find characterizations forq-

multiplicative functions belonging to the spaceD1 of limit-periodic functions and the
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spaceA1 of almost-periodic functions by their respective spectrumσ(f).

In Chapter 6, we extend the results of Chapter 5 to uniformly summableQ-multiplicative

functions. In the case of a bounded sequence{qr}r≥1 we have similar theorems as in the

q-adic case. In the case of an unbounded sequence{qr}r≥1 the situation is quite different.

Unavoidable for unbounded sequences{qr}r≥1 is the existence of a so-called first digit

phenomenon.

We investigate the mean behaviour of uniformly summableQ-multiplicative functions

that belong toL2 and for which the first digit condition

max
1≤j≤qr−1

1

j + 1

j∑
a=0

|f(aQr−1)− 1|2 → 0 as r →∞

holds.

Acknowledgment

I like to express my gratitude to Professor Indlekofer for valuable discussions, helpful

suggestions and comments.
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Chapter 1

Additive functions

In this chapter, we present some well-known facts about additive functions. Furthermore,

the Tuŕan-Kubilius inequality and Erd̋os’ characterization of finitely distributed functions

is discussed.

1.1 Definition and introduction

We denote byN, N0, P, R, andC the sets of positive integers, non-negative integers,

prime, real, and complex numbers, respectively. An ”arithmetical function” is a map

f : N→ C, defined on the setN of natural number. The setCN of arithmetical functions

becomes aC-vector-space(CN, +, ·) by defining addition and scalar multiplication as

follows:

(f + g) : n 7→ f(n) + g(n), λ · f : n 7→ λ · f(n).

Definition 1.1.1. An arithmetical functiong is additive if

g(m · n) = g(m) + g(n) (1.1)

wheneverm andn are coprime. If (1.1) holds for allm,n, thenf is calledcompletely

additive. An additive functiong is calledstrongly additive if the values ofg at prime-

13



1 Additive functions

powers are restricted by the condition

g(pk) = g(p), if k = 1, 2, . . . .

Because of the canonical representation

n =
∏

p∈P
pαp(n) with pαp(n)‖n

of the integersn ∈ N we have

g

(∏

p∈P
pαp(n)

)
=

∑

p∈P
g

(
pαp(n)

)
.

G. H. Hardy and S. Ramanujan [23] considered the arithmetical functionsω andΩ, where

ω(n) andΩ(n) denote the number of different prime divisors and of all prime divisors -

i.e. counted with multiplicity - of an integern, respectively. They proved thatω andΩ

have the normal order ”log log n”. Here we say, roughly, that an arithmetical functionf

has the normal orderF , if f(n) is approximatelyF (n) for almost all values ofn.1 More

precisely, this means that

(1− ε)F (n) < f(n) < (1 + ε)F (n)

for every positiveε and almost all values ofn.

In 1934, P. Tuŕan [80] gave a simple proof of Hardy and Ramanujan’s result. It depended

upon the readily obtained estimation

∑
n≤x

(ω(n)− log log x)2 ≤ c · x · log log x.

for some constantc.

This inequality - reminding us of Tschebycheff’s inequality2 - had a special effect, namely

1A propertyE is said to hold for almost alln if lim
x→∞

x−1#{n ≤ x : E does not hold forn} = 0.
2At that time P. Tuŕan knew no probability (see chapter 12 of [12]). The first widely accepted axiom

system for probability theory, due to A. N. Kolmogorov, had only appeared in 1933.

14



1.1 Definition and introduction

gave M. Kac the idea of thinking about the role of independence in the application of

probability theory to number theory. Making essential use of the notation of independent

random variables, the central limit theorem, and sieve methods, M. Kac together with P.

Erdős proved in 1939 [15], and 1940 [17] the following result:

Proposition 1.1.2 (Erd̋os - Kac). For a real-valued strongly additive functionf , let

A(x) :=
∑
p≤x

f(p)

p
(1.2)

and

B(x) :=

(∑
p≤x

f 2(p)

p

)1/2

. (1.3)

Then, if|f(p)| ≤ 1, and ifB(x) →∞ asx →∞, the frequencies

Fx(z) :=
1

x
#{n ≤ x :

f(n)− A(x)

B(x)
≤ z}

converge weakly to the limit law

G(z) :=
1√
2π

∫ z

−∞
e−w2/2dw

asx →∞ (which we will denote byFx(z) ⇒ G(z)).

Proof. see [12], Theorem 12.3.

Thus, forf(n) = ω(n), P. Erd̋os and M. Kac obtained a much more general result than

G. H. Hardy and S. Ramanujan. In this case,

A(x) =
∑
p≤x

1

p
= log log x + O(1),

and

B(x) =

(∑
p≤x

1

p

)1/2

= (1 + o(1))(log log x)1/2 ,

so that
1

x
#{n ≤ x :

ω(n)− log log x√
log log x

≤ z} ⇒ 1√
2π

∫ z

−∞
e−w2/2dw.

15



1 Additive functions

A second effect of the above mentioned paper of P. Turán was that P. Erd̋os, adopting

Turán’s method of proof, showed in 1938 [14] that, whenever the three series

∑
p

|f(p)|>1

1

p
,

∑
p

|f(p)|≤1

f(p)

p
,

∑
p

|f(p)|≤1

f 2(p)

p

converge, then the real-valued strongly additive functionf possesses a limiting distribu-

tion F , i.e.
1

x
#{n ≤ x : f(n) ≤ z} ⇒ F (z)

with some suitable distribution functionF . It turned out that the convergence of these

three series was in fact necessary (see Erdős and Wintner [16]).

All these results can be described as effects of the fusion of (intrinsic) ideas of probability

theory and asymptotic estimations. In this context, divisibility by a primep is an event

Ap, and all the{Ap} are statistically independent of one another, where the underlying

”measure” is given by theasymptotic density

δ(Ap) := lim
x→∞

1

x
#{n ≤ x : n ∈ Ap}

= lim
x→∞

1

x

∑
n≤x
p|n

1

(
=

1

p

)
(1.4)

If the limit

M(f) := lim
x→∞

1

x

∑
n≤x

f(n)

exists, then we say that the functionf possesses an (arithmetical)mean-valueM(f).

Then, for strongly additive functionsf , we get

f =
∑

p

f(p)εp

whereεp denotes the characteristic function ofAp, andM(εp) :=
1

p
.

16



1.1 Definition and introduction

The main difficulties concerning the immediate application of probabilistic tools arise

from the fact that the arithmetical mean-value (1.4) defines only a finitely additive mea-

sure (or content or pseudo-measure) on the family of subsets ofN having an asymptotic

density; thus, one constructs a sequence of finite, purely probabilistic models, which ap-

proximate the number theoretical phenomena, and one then uses arithmetical arguments

for ”taking the limit”. This theory, starting with the above mentioned results of P. Erdős,

M. Kac, and A. Wintner, was developed by J. Kubilius [55]. He constructed such finite

probability spaces on which independent random variables could be defined to mimic the

behaviour of truncated additive functions

∑
p≤r

f(p)εp.

This approach is effective if the ratio
log r

log x
essentially tends to zero asx runs to infinity.

Then J. Kubilius was able to give necessary and sufficient conditions in order that the

frequencies
1

x
#{n ≤ x : f(n)− A(x) ≤ zB(x)}

weakly converge asx → ∞, assuming thatf belongs to a certain class of additive func-

tions. This opened the door for the investigation of therenormalisationof additive func-

tions, i.e. the question to determine when a given additive functionf may be renormalized

by functionsα(x) andβ(x), such that the frequencies

1

x
#{n ≤ x :

f(n)− α(x)

β(x)
≤ z}

possess a weak limit asx →∞ (see Elliott [12], Kubilius [55], Levin and Timofeev [58]).

In [46], K.-H. Indlekofer presented an integration theory onN (which can be general-

ized to arbitrary sets) which is based on the following characterization of the Stone-Čech

compactificationβN of N:

If A is an algebra inN, then

A := {A ⊂ βN : A = clβNA, A ∈ A}

17



1 Additive functions

is an algebra inβN.

If an algebraA in N, and a finitely additive measureδ on A are given, then the function

δ̄ on A defined byδ(A) = δ(A), A ∈ A, is a premeasure onA. By a suitable closure of

the set of step functions he obtains spaces of number theoretical functions which contain

e.g. the M̈obius function. Furthermore, the “construction” of these spaces yields new,

elementary proofs of the famous results of E. Wirsing, G. Halász and H. Delange for

multiplicative functionsf , |f | ≤ 1. We will introduce this in Chapter 3.

1.2 The Turán-Kubilius inequality

If g is strongly additive, then

1

x

∑
n≤x

g(n) =
1

x

∑
n≤x

∑

p|n
g(p) =

1

x

∑
p≤x

g(p) · [x/p],

and sog(n) is approximate to
∑
p≤x

g(p)

p
. The so-called Tuŕan-Kubilius inequality gives an

estimation for the difference of the values of the function minus the “expectation”:
∣∣∣∣∣g(n)−

∑
p≤x

g(p)

p

∣∣∣∣∣

in mean square.

Let g be a complex-valued additive arithmetic function, then we set

g(n) =
∑

pk‖n
g(pk).

For real numberx > 0, we set

A(x) =
∑

pk≤x

g(pk)

pk
,

E(x) =
∑

pk≤x

g(pk)

pk
·
(

1− 1

p

)

18



1.3 Finitely distributed functions

and

D2(x) =
∑

pk≤x

|g(pk)|2
pk

.

In its general form, the Turán-Kubilius inequality appears as follows.

Proposition 1.2.1 (Turán-Kubilius inequality). There exist constantsc1, c2 with the

property that for everyx ≥ 2, and for any additive functiong the inequalities

1

x

∑
n≤x

|g(n)− A(x)|2 ≤ c1 ·D2(x)

and
1

x

∑
n≤x

|g(n)− E(x)|2 ≤ c2 ·D2(x)

hold. In fact, it is possible to takec1 = 30, c2 = 20.

Proof. see [77], Theorem 4.1.

The Tuŕan-Kubilius inequality has often been applied to the study of additive and multi-

plicative functions. We formulate an analogous inequality in Chapter 4 for theq-additive

andQ-additive functions, and we use this inequality in Chapter 5 and 6.

1.3 Finitely distributed functions

In [18], P. Erd̋os introduced the notion of finitely distributed functions onN:

A functiong is said to befinitely distributed if there are positive constantsc1 andc2, and

an unbounded sequence of real numbersx1 < x2 < . . . such that for eachxj at leastk

positive integersa1 < a2 < . . . < ak ≤ xj may be found, withk ≥ c1xj, and

|g(am)− g(an)| ≤ c2 1 ≤ m ≤ n ≤ k.

For additive functions he proved the following characterization

19



1 Additive functions

Proposition 1.3.1 (Erd̋os [18]). An additive functiong is finitely distributed if and only

if there is a constantc and a functionh such that

g(n) = c log n + h(n),

where the series
∑

|h(p)|>1

1

p
,

∑

|h(p)|≤1

h2(p)

p

both converge.

It follows from Proposition (2.2.2) that

lim
x→∞

1

x

∣∣∣∣∣
∑
n≤x

exp(itg(n))

∣∣∣∣∣

always exists. It will become clear thatg is finitely distributed if and only if there is a set

of realt-values of positive Lebesgue measure for which the value of this limit is not zero.

20



Chapter 2

Multiplicative functions of modulus ≤ 1

In this chapter, we describe the mean behaviour of complex-valued multiplicative func-

tionsf such that|f(n)| ≤ 1 for every positive integern.

2.1 Definition

Definition 2.1.1. An arithmetical functionf is multiplicative if f 6= 0, and if for all pairs

m,n of positive integers the conditiongcd(m,n) = 1 implies

f(m · n) = f(m) · f(n). (2.1)

If (2.1) holds for allm,n, thenf is calledcompletely multiplicative.

Every multiplicative functionf satisfiesf(1) = 1, sincef(n · 1) = f(n) · f(1), and

an integern may be chosen for whichf(n) 6= 0. If f1 andf2 are multiplicative, then

the point-wise productf1 · f2 also is multiplicative, the same is true for the convolution-

productf1 ∗f2; if f is multiplicative andf(n) 6= 0 for everyn, then1/f is multiplicative.

A multiplicative functionf is determined by its values at the prime-powers:

f

(∏

p∈P
pαp(n)

)
=

∏

p∈P
f

(
pαp(n)

)
.

21



2 Multiplicative functions of modulus≤ 1

In this formula, according to the fundamental theorem of arithmetic, an integern is written

uniquely as

n =
∏

p∈P
pαp(n)

as a product of prime powers whereαp(n) = max{α : pα|n}.
An important multiplicative function is theMöbius function, defined by

µ(n) =





(−1)ω(n) if n is squarefree,

0 otherwise.

TheEuler totient function given by

ϕ(n) = n ·
∏

p|n

(
1− 1

p

)

is another well-known multiplicative function which enumerates the number of coprime

residue classes (modn).

2.2 Mean-value theorem for multiplicative functions of

modulus≤ 1

The problem of establishing the existence of mean-values was considered by A. Wintner

in his book on Erathostenian averages [82], he asserted that if a multiplicative functionf

may have only values±1, then the mean-valueM(f) always exists. But, the sketch of his

proof could not be substantiated, and the problem remained open as the Erdős-Wintner

conjecture.

These functionsf which satisfy|f(n)| ≤ 1 for all n ∈ N and for which anon-zero

mean-value exists were characterized by H. Delange [9] in 1961, he proved

Proposition 2.2.1 (Delange [9]).Let f : N → C be a multiplicative function satisfying

|f | ≤ 1. Then the following conditions are equivalent:

(A) The mean-valueM(f) = lim
x→∞

1

x
·
∑
n≤x

f(n) exists, and it is non-zero.
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2.2 Mean-value theorem for multiplicative functions of modulus≤ 1

(B) (i) The seriesS1(f) =
∑

p

f(p)− 1

p
is convergent,

(ii)
∑

0≤k<∞

f(pk)

pk
6= 0 for all primesp.

The assumption|f | ≤ 1 implies that

∣∣∣∣∣
∑

0≤k<∞

f(pk)

pk

∣∣∣∣∣ ≥
1

2
for every primep ≥ 3. There-

fore, as did H. Delange, the validity of(B(ii)) has to be assumed only forp = 2, and it

may be substituted by Delange’s condition

f(2k) 6= −1 for some k ≥ 1.

But his method could not be modified to consider the caseM(f) = 0.

To get an impression of the remaining case, we note that iff = µ is the Möbius function,

then the validity of the assertion

1

x

∑
n≤x

µ(n) → 0 (x → 0)

essentially is (see E. Landau [56]) as difficult as to obtain as the proof of the prime number

theorem.

In his paper [84] of 1967, E. Wirsing proved his celebrated mean-value theorem which

asserts, in particular, that any real-valued multiplicative functionsf of modulus≤ 1 has

a mean-value. This solved the afore-mentioned conjecture of Erdős and Wintner.

In this paper, E. Wirsing adopts a more general formulation: he compares the behaviour

of
∑
n≤x

f(n) with that of
∑
n≤x

f ∗(n), wheref ∗ is a nonnegative multiplicative function

and |f | ≤ f ∗. His proof was done by elementary methods (and thus, he gave another

elementary proof of the prime number theorem), but he could not handle the complex-

valued case in full generality. Only by an analytic method, found by G. Halász in 1968,

and published in his paper [22], the asymptotic behaviour of
∑
n≤x

f(n) could be fully

determined for all complex-valued multiplicative functionsf of modulus smaller than or

equal to one. His main result is given by the following
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2 Multiplicative functions of modulus≤ 1

Proposition 2.2.2 (Haĺasz [22]). Let f be a complex-valued multiplicative arithmetical

function satisfying|f | ≤ 1.

(1) If there is a real numbera for which the series

∑
p

(1− Re f(p)p−ia)

p
(2.2)

is convergent, then the asymptotic relation

∑
n≤x

f(n) =
x1+ia

1 + ia

∏
p≤x

(
1− 1

p

) (
1 +

∞∑
m=1

p−m(1+ia)f(pm)

)
+ o(x)

holds.

(2) If the series (2.2) is divergent for every real numbera, then

lim
x→∞

1

x

∑
n≤x

f(n) = 0.

(3) In both cases, there are constantsD, α, and a slowly oscillating functionL of

modulus|L| = 1 such that the asymptotic formula

∑
n≤x

f(n) = Dx1+iαL(log x) + o(x)

holds.

The functionL, and the constantsα, D may explicitly be given (see for example Halász

[22]).

In 1986, A. Hildebrand [24] gave a new elementary proof of Wirsing’s theorem based on

a large sieve inequality which is simpler than Wirsing’s proof but does not work in the

complex-valued case.

In [8], H. Daboussi and K.-H. Indlekofer succeeded in finding an elementary proof of

Halász’s theorem, and thus, a new elementary proof of Wirsing’s result (see also In-

dlekofer [26] for a simplified and shorter proof).
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2.2 Mean-value theorem for multiplicative functions of modulus≤ 1

Remark. K.-H. Indlekofer, I. Ḱatai and R. Wagner [44] compare the asymptotic behavior

of
∑
n≤x

f(n) and
∑
n≤x

g(n) for multiplicative functionsf andg, respectively, where|f | ≤ g.

Their results extend relevant theorems by E. Wirsing and G. Halász. They established the

following theorem which generalizes Wirsing’s result and extends the theorem of Halász.

Proposition 2.2.3 (Indlekofer, Kátai, Wagner [44]). Let g be a multiplicative function

and
∑
p≤x

g(p)

p
· log p ∼ τ · log x, x →∞,

hold with a constantτ > 0. Furthermore, letg(p) = O(1) for all primesp, and let

∑
p

∑

k≥2

g(pk)

pk
< ∞.

Besides this, ifτ ≤ 1, then let

∑
p

∑

k≥2,pk≤x

g(pk) = O

(
x

log x

)
,

and letf be a complex-valued function which satisfies|f(n)| ≤ g(n) for every positive

integern. If there exists a real numbera0 such that the series

∑
p

(g(p)− Re f(p)p−ia)

p
(2.3)

converges fora = a0, then

∑
n≤x

f(n) =
xia0

1 + ia0

∏
p≤x

(
1 +

∞∑
m=1

f(pm)

pm(1+ia0)

)(
1 +

∞∑
m=1

g(pm)

pm

)−1 ∑
n≤x

g(n)

+o

(∑
n≤x

g(n)

)
. (2.4)

asx →∞. If the series (2.3) diverges for alla ∈ R, then

∑
n≤x

f(n) = o

(∑
n≤x

g(n)

)
(x →∞). (2.5)
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2 Multiplicative functions of modulus≤ 1

In both cases there are constantsc, a0 and a slowly oscillating functioñL with |L̃(u)| = 1

such that

∑
n≤x

f(n) =
(
cxia0L̃(log x) + o(1)

) ∑
n≤x

g(n), as x →∞. (2.6)
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Chapter 3

Uniformly summable functions

In this chapter, the spaces of uniformly summable,α-even,α-limit-periodic andα-almost-

periodic arithmetical functions are considered. In addition, the mean behaviour of uni-

formly summable multiplicative functions and a complete characterization ofα-almost-

periodic multiplicative functions given by K.-H Indlekofer are presented.

3.1 Definition

Let α ∈ R with α ≥ 1, and let

Lα := {f |f : N→ C, ‖f‖α < ∞}

be the vector space of arithmetical functionsf with bounded semi-norm

‖f‖α :=

(
lim sup

N→∞

1

N

∑
n<N

|f(n)|α
) 1

α

.

A characterization of multiplicative functionsf ∈ Lα (α > 1) which possess a nonzero

mean-valueM(f) was independently given by P.D.T.A. Elliott [13], and using a different

method, by H. Daboussi [6].

In 1980, K.-H. Indlekofer [25] introduced the following
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3 Uniformly summable functions

Definition 3.1.1. An arithmetical functionf ∈ L1 is said to beuniformly summable if

lim
K→∞

sup
N≥1

1

N

∑
n<N

|f(n)|≥K

|f(n)| = 0,

and the space of all uniformly summable functions is denoted byL∗.

It is easy to show that, ifβ > α > 1,

Lβ $ Lα $ L∗ $ L1.

3.2 Mean behaviour of uniformly summable multiplica-

tive functions

The idea of uniform summability turned out to provide an appropriate tool for the descrip-

tion of the mean behaviour of a large class of multiplicative functions. As typical results,

we mention the theorem by K.-H. Indlekofer which generalizes results of H. Daboussi, H.

Delange, G. Haĺasz, and E. Wirsing.

Proposition 3.2.1 (Indlekofer [25]). (A generalization of Delange’s result)

Letf : N→ C be multiplicative, and letα ≥ 1. Then, the following two assertions hold.

(i) If f ∈ L∗ ∩ Lα, and if the mean-value

M(f) := lim
x→∞

1

x

∑
n≤x

f(n)

of f exists and is non-zero, then the series

∑
p

f(p)− 1

p
,

∑
p

|f(p)|≤ 3
2

|f(p)− 1|2
p

,
∑

p
|f(p)−1|≥ 1

2

|f(p)|λ
p

,
∑

p

∑

k≥2

|f(pk)|λ
pk

(3.1)

converge for allλ with 1 ≤ λ ≤ α, and, for each primep,

1 +
∞∑

k=1

f(pk)

pk
6= 0. (3.2)
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3.2 Mean behaviour of uniformly summable multiplicative functions

(ii) If the series (3.1) converge, thenf ∈ L∗∩Lα, and the mean-valuesM(f), M(|f |λ)
exist for allλ with 1 ≤ λ ≤ α. If, in addition (3.2) holds, thenM(f) 6= 0.

Note that the membership ofLα∩L∗ and the existence of a non-zero mean value together

are equivalent to a set of explicit conditions on prime powers. Further, observe that these

conditions imply the existence of the mean valuesM(|f |λ) for all 1 ≤ λ ≤ α.

Proposition 3.2.2 (Indlekofer [28]). (A generalization of Wirsing’s result)

Letf ∈ L∗ be a real-valued multiplicative function. Then, the existence of the mean value

M(|f |) implies the existence ofM(f).

Note that Theorem 3.2.2 is an appropriate generalization of Wirsing’s result, for iff is

multiplicative and|f | ≤ 1, the mean value ofM(|f |) always exists.

In this connection it is interesting to mention the following characterization of non-

negative multiplicative functions ofL∗.

Proposition 3.2.3 (Indlekofer [29]). Letε ≥ 0, and letf ∈ L1+ε ∩L∗ be a non-negative

multiplicative function. If||f ||1 > 0, thenf 1+ε ∈ L?, and there exist positive constants

c1, c2 such that, asx →∞,

M(f 1+ε) = exp

(∑
p≤x

f 1+ε(p)− 1

p

)
(c1 + o(1))

= exp

(∑
p≤x

f(p)− 1

p

)
(c2 + o(1))

from which we deduce that the existence ofM(f 1+ε) implies the existence ofM(f).

A complete characterization of the asymptotic behaviour of the sums
∑
n≤x

f(n) asx →∞

for complex-valued multiplicative functionsf ∈ L∗ was given by K.-H. Indlekofer in

[30]. He proves the following
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3 Uniformly summable functions

Proposition 3.2.4 (Indlekofer [30]). (A generalization of Haĺasz’s result)

Letf ∈ L∗ be multiplicative, and let‖f‖1 > 0. If we define

%(p) =





f(p)
|f(p)| if f(p) 6= 0

1 otherwise
,

then the following two assertions hold.

(i) If there exists a constanta0 ∈ R such that the series

∑
p

(1− Re %(p)p−ia)

p
(3.3)

converges fora = a0, then there exists a constantc0 ∈ C such that, ifx →∞,

1

x

∑
n≤x

f(n) = xia0 exp

(∑
p≤x

f(p)p−ia0 − 1

p

)
(c0 + o(1)),

where

c0 =
1

1 + ia0

∏
p

(
1− 1

p

) (
1 +

∞∑

k=1

f(pk)

pk(1+ia)

)
exp

{
1− f(p)p−ia0

p

}
.

If

A∗(x) :=
∑
p≤x

Imf(p)p−ia0

p
,

then

lim
x→∞

sup
x≤y≤x2

|A∗(y)− A∗(x)| = 0.

(ii) If the series (3.3) diverges for alla ∈ R, then the mean-valueM(f) of f exists and

equals zero.

This result generalizes the theorem of Halász [22] on multiplicative functions|f | ≤ 1.

We will extend above proposition to uniformly summableq-multiplicative functions in

Chapter 5.
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3.3 Mean behaviour ofα-almost-periodic multiplicative functions

3.3 Mean behaviour ofα-almost-periodic multiplicative

functions

Definition 3.3.1. Let r be a positive integer. An arithmetic functionf is called

r-periodic, if f(n + r) = f(n) for every positive integern,

r-even, if f(n) = f(gcd(n, r)) for every positive integern.

f is termed periodic (resp. even) if there is anr for whichf is r-periodic (resp.r-even).

Obviously, anr-even function isr-periodic.

Standard examples ofr-periodic functions are the exponential functionseβ, whereβ =
a

r
,

for a ∈ Z, r ∈ N, and whereeβ(n) = exp(2πi · β · n).

TheRamanujan sumcr is a special exponential sum:

cr(n) =
∑

1≤a≤r
gcd(a,r)=1

exp
(
2πi · a

r
· n

)

=
∑

t| gcd(r,n)

t · µ
(r

t

)
.

The vector spaceBr of r-even functions can be generated by the Ramanujan sumscd,

whered|r, i.e.,

Br = LinC[cd : d|r],

and each element of the vector spaceDr of r-periodic functions can be written as a linear

combination of exponential functions, i.e.,

Dr = LinC[ea/r : 1 ≤ a ≤ r].

The vector space of all even and all periodic functions is denoted byB :=
∞⋃

r=1

Br and

D :=
∞⋃

r=1

Dr, respectively. Finally, we define the vector space

A = LinC[eβ : β ∈ R/Z]
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3 Uniformly summable functions

of complex linear combinations of the functionseβ.

Using the semi-norm‖f‖α, the spaces

Bα = ‖.‖α - closure ofB (α-almost-evenfunctions)

Dα = ‖.‖α - closure ofD (α-limit-periodic functions)

Aα = ‖.‖α - closure ofA (α-almost-periodic functions)

may be constructed.

The obvious inclusion relationsB ⊂ D ⊂ A imply

Bα ⊂ Dα ⊂ Aα,

whereα ≥ 1.

Forγ < α, Hölder’s inequality gives

∑
n≤N

|f(n)|γ ≤
{∑

n≤N

|f(n)|α
}γ/α

·
{∑

n≤N

1

}α/(α−γ)

,

therefore,

‖f‖γ ≤ ‖f‖α if γ ≤ α,

and so

Bα ⊂ Bγ, Dα ⊂ Dγ, and Aα ⊂ Aγ, if γ ≤ α.

Furthermore, we have the inclusions

B1 $ D1 $ A1 $ L∗.

For every functionf ∈ A1, the mean-valueM(f), and for everyβ ∈ R, the Fourier

coefficient

f̂(β) := lim
N→∞

1

N

∑
0≤n<N

f(n)e−β(n)

exist (see, for example, W. Schwarz and J. Spilker [77] Chap. IV and VI).
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3.3 Mean behaviour ofα-almost-periodic multiplicative functions

Forf ∈ L1, theFourier-Bohr spectrum σ(f) is defined by

σ(f) =

{
β ∈ R/Z : lim sup

N→∞

∣∣∣∣∣
1

N

∑
n≤N

f(n)e−β(n)

∣∣∣∣∣ > 0

}
.

If f ∈ A1, thenβ ∈ σ(f) if and only if f̂(β) 6= 0.

In his paper [27], K.-H. Indlekofer gave a complete characterization ofα-almost-periodic

multiplicative functions. He proved the following results.

Proposition 3.3.2 (Indlekofer [27]). Let f ∈ A1 be multiplicative. Then,M(|f |) = 0 if

and only ifσ(f) = ∅.

Proposition 3.3.3 (Indlekofer [27]). Let f ∈ Aα be multiplicative. Then,f is α-limit-

periodic.

Proposition 3.3.4 (Indlekofer [27]). Let f : N→ C be multiplicative. Then, the follow-

ing assertions are equivalent.

(i) f ∈ Aα, and‖f‖1 > 0.

(ii) f ∈ Aα, and the spectrumσ(f) of f is non-empty.

(iii) f ∈ Lα ∩ L∗, and there exists a Dirichlet-characterχ such that the mean-value

M(fχ) of fχ exists and is different from zero.

(iv) There exists a Dirichlet-characterχ such that the series

∑
p

f(p)χ(p)− 1

p
,

∑
p

|f(p)|≤3/2

|f(p)χ(p)− 1|2
p

, (3.4)

and
∑

p
||f(p)|−1|>1/2

|f(p)|λ
p

,
∑

p

∑

k≥2

|f(pk)|λ
pk

(3.5)

converge for allλ with 1 ≤ λ ≤ α.
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3 Uniformly summable functions

Remark. The equivalence of (ii) and (iv) was proved by H. Daboussi [7]. The equivalence

of (ii), (iii) and (iv) was shown by K.-H. Indlekofer in [30], Corollary 7.

In Chapter 5, we give a complete characterization ofα-almost-periodicq-multiplicative

functions.
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Chapter 4

Q-additive and Q-multiplicative

functions

In this chapter, we start our investigation ofq-additive andq-multiplicative functions and

Q-additive andQ-multiplicative functions, respectively. We give a new proof of the Turán-

Kubilius inequality forq-additive functions, and we extend this proof toQ-additive func-

tions.

4.1 Definition

Let {qr}r≥1 with qr ≥ 2 be a sequence of natural numbers, and letQ0 = 1, Qr = qrQr−1

whenr ≥ 1. For each nonnegative integern has a unique representation

n =
∑
r≥0

εr(n)Qr (4.1)

if the following condition is satisfied

0 ≤ εr(n) < qr+1 , r ≥ 0.

If εk(n) 6= 0 andεk+j(n) = 0 for all j ≥ 1, thenεk(n) andk will be called the first digit

and the order ofn, respectively.
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4 Q-additive andQ-multiplicative functions

The functiong : N0 → C, satisfying the relation

g(n) =
∑
r≥0

g(εr(n)Qr)

for eachn ∈ N having the form (4.1) withg(0) = 0, will be calledQ-additive function.

Similarly, we say thatf : N0 → C is aQ-multiplicative function if f(0) = 1 and

f(n) =
∏
r≥0

f(εr(n)Qr)

for eachn ∈ N having the form (4.1).

In the caseqr ≡ q ≥ 2, we will use standard notation ofq-adic representation.

We consider the so-calledq-additive functionsg : N0 → C which are defined by

g(n) =
∑
r≥0

g(εr(n)qr) and f(0) = 0,

and theq-multiplicative functionsf : N0 → C which are defined by

f(n) =
∏
r≥0

f(εr(n)qr) and f(0) = 1.

These functions were first introduced by A. O. Gelfond [21]. The sum of digits
∑
r≥0

εr(n)

of n is a typical and mostly investigated example ofq-additive functions (see for example

Delange [11]; Coquet [5]). Exponentiating aq-additive function gives aq-multiplicative

function.

We recall that a real-valued functiong(n) has an asymptotic distribution if there is a dis-

tribution functionG such that for all continuity pointsy of G, the probability measures

defined byNx(y) := x−1]{n ≤ x; g(n) ≤ y} tend toG(y) asx tend to infinity.
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4.2 Generalized Turán-Kubilius inequalities forQ-additive functions

4.2 Generalized Tuŕan-Kubilius inequalities for Q-additive

functions

Observing thatq-additive functions are sums of “almost independent random variables”,

we prove the following inequality which is interesting in itself.

Theorem 4.2.1.LetF be an arbitrary nonnegative-valued increasing function satisfying

the inequality

F (2x) ≤ ρF (x)

for some constantρ > 0. Letg : N0 → C beq-additive and letcqR−1 ≤ N < (c+1)qR−1

with R ∈ N and forc ∈ N with 0 < c < q.

We set

ER(g) =
R−2∑
r=0

1

q

q−1∑
a=0

g(aqr),

and

ER,c(g) = ER(g) +
1

c

c∑
a=1

g(aqR−1).

Then, the following assertions hold.

(i) For some constantM > 0, we have

1

N

∑
n<N

F (|g(n)− ER,c(g)|)

≤ M ·


F




(
R−2∑
r=0

1

q

q−1∑
a=0

|g(aqr)|2 +
1

c

c∑
a=1

|g(aqR−1)|2
)1/2




+
R−2∑
r=0

1

q

q−1∑
a=0

F (|g(aqr)|) +
1

c

c∑
a=1

F (|g(aqR−1)|)
}

. (4.2)

(ii) If, in addition,F fulfills

F (x + y) À F (x) + F (y),
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4 Q-additive andQ-multiplicative functions

then, for some constantM ′ > 0, we have

1

N

∑
n<N

F (|g(n)− ER,c(g)|)

≤ M ′ · F



(
R−2∑
r=0

1

q

q−1∑
a=0

|g(aqr)|2 +
1

c

c∑
a=1

|g(aqR−1)|2
)1/2


 . (4.3)

To prove Theorem 4.2.1, we use the Burkholder’s inequality (see Burkholder [3], Ruzsa

[68] and Indlekofer [35])

EF

(∣∣∣∣∣
n∑

j=1

ξj

∣∣∣∣∣

)
¿ F

((∑
E(|ξj|2)

)1/2
)

+
∑

EF (|ξj|) , (4.4)

where theξj ’s are independent variables of zero mean, E denotes an expectation, andF

is an arbitrary nonnegative-valued increasing function satisfying the inequality

F (2x) ≤ ρF (x)

for some constantρ; the value of the implied constant depends on thisρ.

Proof of Theorem 4.2.1.

(i) Each nonnegative integern < N has a unique representation

n =
R−1∑
r=0

εr(n)qr,

which0 ≤ εr(n) < q. We obtain

g(n) =
R−1∑
r=0

g(εr(n)qr).

Let ηr(n) = g(εr(n)qr), then η0, . . . , ηR−1 are independent random variables in the

Laplace space{0, 1, · · · , (c + 1)qR−1}, andg =
R−1∑
r=0

ηr.

We define the functiong∗

g∗(aqr) =





g(aqr) for r < R− 1, 0 ≤ a < q ,

or r = R− 1, 0 ≤ a ≤ c ;

0 for r > R− 1, 0 ≤ a < q ,

or r = R− 1, c < a < q .
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4.2 Generalized Turán-Kubilius inequalities forQ-additive functions

Then,ξr = ηr − E(ηr) are independent random variables of zero mean, and

g∗ − E(g∗) =
R−1∑
r=0

ξr ,

whereE(g∗) = ER,c(g).

Applying the Burkholder’s inequality (4.4), we obtain

1

(c + 1)qR−1

∑

n<(c+1)qR−1

F (|g(n)− ER,c(g)|)

¿ F







R−2∑
r=0

1

q

q−1∑
a=0

∣∣∣∣∣g(aqr)− 1

q

q−1∑

b=0

g(bqr)

∣∣∣∣∣

2

+
1

c

c∑
a=1

∣∣∣∣∣g(aqR−1)− 1

c

c∑

b=1

g(bqR−1)

∣∣∣∣∣

2



1/2



︸ ︷︷ ︸
I1

+
R−2∑
r=0

1

q

q−1∑
a=0

F

(∣∣∣∣∣g(aqr)− 1

q

q−1∑

b=0

g(bqr)

∣∣∣∣∣

)
+

1

c

c∑
a=1

F

(∣∣∣∣∣g(aqR−1)− 1

c

c∑

b=1

g(bqR−1)

∣∣∣∣∣

)
.

︸ ︷︷ ︸
I2

For the estimation of the first term(I1), we observe

1

q

q−1∑
a=0

∣∣∣∣∣g(aqr)− 1

q

q−1∑

b=0

g(bqr)

∣∣∣∣∣

2

≤ 1

q


4

q−1∑
a=0

|g(aqr)|2 +
4

q

∣∣∣∣∣
q−1∑

b=0

g(bqr)

∣∣∣∣∣

2



≤ 1

q

(
4

q−1∑
a=0

|g(aqr)|2 + 4

q−1∑

b=0

|g(bqr)|2
)

= 8

(
1

q

q−1∑
a=0

|g(aqr)|2
)

.

In the same way, we get

1

c

c∑
a=1

∣∣∣∣∣g(aqR−1)− 1

c

c∑

b=1

g(bqR−1)

∣∣∣∣∣

2

≤ 8

(
1

c

c∑
a=1

∣∣g(aqR−1)
∣∣2

)
.
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4 Q-additive andQ-multiplicative functions

For the second term(I2), we have

q−1∑
a=0

F

(∣∣∣∣∣g(aqr)− 1

q

q−1∑

b=0

g(bqr)

∣∣∣∣∣

)
≤

q−1∑
a=0

F

(
2 max

0≤a<q
|g(aqr)|

)

≤ ρ

q−1∑
a=0

F

(
max
0≤a<q

|g(aqr)|
)

≤ qρ

q−1∑
a=0

F (|g(aqr)|) .

In the same way, we get

c∑
a=1

F

(∣∣∣∣∣g(aqR−1)− 1

c

c∑

b=1

g(bqR−1)

∣∣∣∣∣

)
≤ cρ

c∑
a=1

F
(∣∣g(aqR−1)

∣∣) .

Since
1

N

∑
n<N

F (|g(n)− ER,c(g)|)

≤ 1

N

∑

n<(c+1)qR−1

F (|g∗(n)− ER,c(g)|)

≤ c + 1

c
· 1

(c + 1)qR−1

∑

n<(c+1)qR−1

F (|g∗(n)− ER,c(g)|)

the inequality (4.2) follows.

(ii) Since
q−1∑
a=0

F (|g(aqr)|) ¿ F

(
q−1∑
a=0

|g(aqr)|
)

≤ F


√q

(
q−1∑
a=0

|g(aqr)|2
)1/2




¿ F




(
q−1∑
a=0

|g(aqr)|2
)1/2


 ,
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4.2 Generalized Turán-Kubilius inequalities forQ-additive functions

we then have
R−2∑
r=0

1

q

q−1∑
a=0

F (|g(aqr)|) +
1

c

c∑
a=1

F (|g(aqR−1)|)

¿
R−2∑
r=0

F




(
1

q

q−1∑
a=0

|g(aqr)|2
)1/2


 + F




(
1

c

c∑
a=1

|g(aqR−1)|2
)1/2




¿ F




(
R−2∑
r=0

1

q

q−1∑
a=0

|g(aqr)|2 +
1

c

c∑
a=1

|g(aqR−1)|2
)1/2


 .

The inequality (4.3) follows.

ForF (x) = xp with p ≥ 1, we obtain a recent result by M. Peter and J. Spilker [78]

1

N

∑
n<N

|g(n)− ER,c(g)|p

≤ M ′′ ·
(

R−2∑
r=0

1

q

q−1∑
a=0

|g(aqr)|2 +
1

c

c∑
a=1

|g(aqR−1)|2
)p/2

for some constantM ′′ > 0.

If p = 2, we obtain an analog of the Turán-Kubilius inequality from Theorem 4.2.1.

Corollary 4.2.2. Let g : N0 → C beq-additive,cqR−1 ≤ N < (c + 1)qR−1 with R ∈ N
and somec ∈ N with 0 < c < q.

We set

ER(g) =
R−2∑
r=0

1

q

q−1∑
a=0

g(aqr),

and

ER,c(g) = ER(g) +
1

c

c∑
a=1

g(aqR−1).

Then,

1

N

∑
n<N

|g(n)− ER,c(g)|2 ≤ 2

(
R−2∑
r=0

1

q

q−1∑
a=0

|g(aqr)|2 +
1

c

c∑
a=1

|g(aqR−1)|2
)

. (4.5)
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4 Q-additive andQ-multiplicative functions

Analogously, we get

Theorem 4.2.3.LetF be an arbitrary nonnegative-valued increasing function satisfying

the inequality

F (2x) ≤ ρF (x)

with some constantρ > 0. Letg : N0 → C beQ-additive, letcQR−1 ≤ N < (c + 1)QR−1

with R ∈ N and somec ∈ N with 0 < c < qR.

We set

ER(g) =
R−1∑
r=1

1

qr

qr−1∑
a=0

g(aQr−1),

and

ER,c(g) = ER(g) +
1

c

c∑
a=1

g(aQR−1).

Then, for some constantM1 > 0,

1

N

∑
n<N

F (|g(n)− ER,c(g)|)

≤ M1 ·


F




(
R−1∑
r=1

1

qr

qr−1∑
a=0

|g(aQr−1)|2 +
1

c

c∑
a=1

|g(aQR−1)|2
)1/2




+
R−1∑
r=1

1

qr

qr−1∑
a=0

F

(∣∣∣∣∣g(aQr−1)− 1

qr

qr−1∑

b=0

g(bQr−1)

∣∣∣∣∣

)

+
1

c

c∑
a=1

F

(∣∣∣∣∣g(aQR−1)− 1

c

c∑

b=1

g(bQR−1)

∣∣∣∣∣

)}
. (4.6)

Proof. Each nonnegative integern < N has a unique representation

n =
R−1∑
r=0

εr(n)Qr,

which0 ≤ εr(n) < qr+1. We obtain

g(n) =
R−1∑
r=0

g(εr(n)Qr).
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4.2 Generalized Turán-Kubilius inequalities forQ-additive functions

Let ηr(n) = g(εr(n)Qr), then η0, . . . , ηR−1 are independent random variables in the

Laplace space{0, 1, · · · , (c + 1)QR−1}, andg =
R−1∑
r=0

ηr.

We define the functiong∗

g∗(aQr) =





g(aQr) for r < R− 1, 0 ≤ a < qr+1 ,

or r = R− 1, 0 ≤ a ≤ c ;

0 for r > R− 1, 0 ≤ a < qr+1 ,

or r = R− 1, c < a < qR .

Thenξr = ηr − E(ηr) are independent random variables of zero mean, and

g∗ − E(g∗) =
R−1∑
r=0

ξr ,

whereE(g∗) = ER,c(g).

Applying the Burkholder’s inequality (4.4), we obtain

1

(c + 1)QR−1

∑

n<(c+1)QR−1

F (|g(n)− ER,c(g)|)

¿ F







R−1∑
r=1

1

qr

qr−1∑
a=0

∣∣∣∣∣g(aQr−1)− 1

qr

qr−1∑

b=0

g(bQr−1)

∣∣∣∣∣

2

+
1

c

c∑
a=1

∣∣∣∣∣g(aQR−1)− 1

c

c∑

b=1

g(bQR−1)

∣∣∣∣∣

2



1/2



+
R−1∑
r=1

1

qr

qr−1∑
a=0

F

(∣∣∣∣∣g(aQr−1)− 1

qr

qr−1∑

b=0

g(bQr−1)

∣∣∣∣∣

)

+
1

c

c∑
a=1

F

(∣∣∣∣∣g(aQR−1)− 1

c

c∑

b=1

g(bQR−1)

∣∣∣∣∣

)
.
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4 Q-additive andQ-multiplicative functions

We estimate the first summand as in Theorem 4.2.1.

1

qr

qr−1∑
a=0

∣∣∣∣∣g(aQr−1)− 1

qr

qr−1∑

b=0

g(bQr−1)

∣∣∣∣∣

2

≤ 1

qr


4

qr−1∑
a=0

|g(aQr−1)|2 +
4

qr

∣∣∣∣∣
qr−1∑

b=0

g(bQr−1)

∣∣∣∣∣

2



≤ 1

qr

(
4

qr−1∑
a=0

|g(aQr−1)|2 + 4

qr−1∑

b=0

|g(bQr−1)|2
)

= 8

(
1

qr

qr−1∑
a=0

|g(aQr−1)|2
)

.

In the same way, we get

1

c

c∑
a=1

∣∣∣∣∣g(aQR−1)− 1

c

c∑

b=1

g(bQR−1)

∣∣∣∣∣

2

≤ 8

(
1

c

c∑
a=1

|g(aQR−1)|2
)

.

Since
1

N

∑
n<N

F (|g(n)− ER,c(g)|)

≤ 1

N

∑

n<(c+1)QR−1

F (|g∗(n)− ER,c(g)|)

≤ c + 1

c
· 1

(c + 1)QR−1

∑

n<(c+1)QR−1

F (|g∗(n)− ER,c(g)|),

the inequality (4.6) follows.

Corollary 4.2.4. Letg : N0 → C beQ-additive,cQR−1 ≤ N < (c + 1)QR−1 with R ∈ N
and somec ∈ N with 0 < c < qR.

We set

ER(g) =
R−1∑
r=1

1

qr

qr−1∑
a=0

g(aQr−1),

and

ER,c(g) = ER(g) +
1

c

c∑
a=1

g(aQR−1).
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4.3 Limit distributions ofQ-additive functions

Then,

1

N

∑
n<N

|g(n)− ER,c(g)|2 ≤ 2

(
R−1∑
r=1

1

qr

qr−1∑
a=0

|g(aQr−1)|2 +
1

c

c∑
a=1

|g(aQR−1)|2
)

. (4.7)

4.3 Limit distributions of Q-additive functions

In the case of theq-adic scale, necessary and sufficient conditions for the existence of

an asymptotic distribution for a real-valuedq-additive function have been given by H.

Delange [10] in 1972, he proved the following theorem

Proposition 4.3.1 (Delange [10]).Letg be a real-valuedq-additive function. Theng has

a limit distribution if and only if the series

∞∑
r=0

q−1∑
a=0

g(aqr),

and
∞∑

r=0

q−1∑
a=0

g2(aqr)

converges.

The limit distribution has as characteristic function the infinite product

∞∏
r=0

1

q

(
1 +

q−1∑
a=1

exp(itg(aqr))

)
,

which converges for all realt.

This is similar to the theorem of Erdős - Wintner [16] for the ordinary additive functions.

J. Coquet [4] considered in 1975 the same kind of problems in the cases of theQ-adic

scales and obtained mainly sufficient conditions, he proved the following theorems
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4 Q-additive andQ-multiplicative functions

• If {qr}r≥1 is bounded:

Proposition 4.3.2 (Coquet [4]).Letg be a real-valuedQ-additive function.

Then,g has a limit distribution if and only if the series

∞∑
r=1

1

qr

(
qr−1∑
a=0

g(aQr−1)

)
,

and
∞∑

r=1

1

qr

(
qr−1∑
a=0

g2(aQr−1)

)

converge.

The limit distribution has as characteristic function the infinite product

∞∏
r=1

1

qr

(
1 +

qr−1∑
a=1

exp(itg(aQr−1))

)

which converges for all realt.

• If {qr}r≥1 is unbounded:

Proposition 4.3.3 (Coquet [4]).Letg be a real-valuedQ-additive function.

We set

g∗(aQr−1) =





g(aQr−1) if |g(aQr−1)| ≤ 1,

1 if |g(aQr−1)| > 1,

and

β∗r = sup
1≤j≤qr−1

(
1

j + 1

j∑
a=0

g∗(aQr−1)

)2

.

If β∗r → 0, and the series

∞∑
r=1

1

qr

(
qr−1∑
a=0

g∗(aQr−1)

)
,
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4.4 Mean-value theorem forQ-multiplicative functions

and
∞∑

r=1

1

qr

(
qr−1∑
a=0

g∗(aQr−1)
2

)

are convergent, theng has a limit distribution, its characteristic function is

∞∏
r=1

1

qr

(
1 +

qr−1∑
a=1

exp(itg(aQr−1))

)
.

4.4 Mean-value theorem forQ-multiplicative functions

In the same paper, H. Delange [10] asserts that for everyq-multiplicative functionf with

|f | ≤ 1, whereNx = b log x
log q

c,

m(x) :=
1

x

∑
n<x

f(n) =
Nx−1∏
r=0

1

q

(
q−1∑
a=0

f(aqr)

)
+ o(1),

asx →∞.

From this, he deduced thatlim
x→∞

|m(x)| always exists and equals

∞∏
r=0

∣∣∣∣∣
1

q

q−1∑
a=0

f(aqr)

∣∣∣∣∣

which is nonzero if and only if

∞∑
r=0

q−1∑
a=0

Re (1− f(aqr)) (4.8)

converges, and
q−1∑
a=0

f(aqr) 6= 0 (for all r ∈ N0). (4.9)

Furthermore, he proved thatlim
x→∞

m(x) exists, and is nonzero if and only if (4.9) holds

and the series

∞∑
r=0

q−1∑
a=0

(1− f(aqr)) (4.10)

47



4 Q-additive andQ-multiplicative functions

is convergent.

As an analogue of the Delange result, J. Coquet [4] proved the following mean-value

theorems forQ-multiplicative functions modulus≤ 1.

• If {qr}r≥1 is bounded:

Proposition 4.4.1 (Coquet [4]).Letf be aQ-multiplicative function with|f | ≤ 1.

(i) If the mean-value off exists, and is nonzero, then the series

∞∑
r=1

1

qr

(
qr−1∑
a=0

(1− f(aQr−1))

)
(4.11)

converges, and

1 +

qr−1∑
a=1

f(aQr−1) 6= 0

for all r ∈ N.

(ii) If the series(4.11)converges, then the mean-value off is equal to

∞∏
r=1

{
1

qr

(
1 +

qr−1∑
a=1

f(aQr−1)

)}
,

which converges.

• If {qr}r≥1 is unbounded:

Proposition 4.4.2 (Coquet [4]).Letf be aQ-multiplicative function with|f | ≤ 1.

(i) If max
1≤j≤qr−1

{
1

j + 1

j∑
a=0

(1− Re f(aQr−1))

}
→ 0, asr →∞, and the series

∞∑
r=1

1

qr

(
qr−1∑
a=0

(1− f(aQr−1))

)
(4.12)

48



4.4 Mean-value theorem forQ-multiplicative functions

converges, then the mean-value off is equal to

∞∏
r=1

{
1

qr

(
1 +

qr−1∑
a=1

f(aQr−1)

)}
,

which converges.

(ii) If the mean-value off exists, and it is nonzero and

∞∑
r=1

1

qr

qr−1∑
a=0

(1− Re f(aQr−1)) < ∞,

then the series(4.12)converges and

1 +

qr−1∑
a=1

f(aQr−1) 6= 0

for all r ∈ N.

It appears to be essential to have information on the difference

1

x

∑
0≤n<x

f(n)−
∏

0<r≤r(x)

1

qr

∑
0≤a<qr

f(aQr−1) ,

wheref(·) is anyQ-multiplicative function of modulus≤ 1, and more precisely, to get a

characterization of

lim
x→∞


1

x

∑
0≤n<x

f(n)−
∏

0<r≤r(x)

1

qr

∑
0≤a<qr

f(aQr−1)


 = 0. (4.13)

In fact, if the sequence{qr}r≥1 is bounded, the relation 4.13 is true always. But if{qr}r≥1

is unbounded, the situation is quite different. For example, in [1], G. Barat constructed a

Q-multiplicative functionh with values 1 or -1 such that

lim
x→∞

∏

0<r≤r(x)

1

qr

∑
0≤a<qr

h(aQr−1)
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4 Q-additive andQ-multiplicative functions

exists, and it is a positive number while

lim inf
x→∞

1

x

∑
n<x

h(n)

is less than or equal to zero.

This difference is due to the existence of afirst digit phenomenonwhich is unavoidable

for unbounded sequences{qr}r≥1 (see E. Manstavičius [63]).
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Chapter 5

Mean behaviour of uniformly

summableq-multiplicative functions

and its applications

The aim of this chapter is to study the behaviour of the means
1

N

∑
n<N

f(n) and
1

N

∑
n<N

|f(n)|α

asN → ∞, for α > 0, wheref is uniformly summable andq-multiplicative. To our

surprise, we find that forq-multiplicative functions the spaceLα for everyα > 0 coin-

cides with the spaceL∗. Furthermore, applying our main results, we investigate finitely

distributedq-additive functions and find characterizations forq-multiplicative functions

belonging to the spaceD1 of limit-periodic functions and the spaceA1 of almost-periodic

functions by their respective spectrumσ(f).

5.1 Main results

Here we recall that an arithmetical functionf ∈ L1 is said to beuniformly summable if

lim
K→∞

sup
N≥1

1

N

∑
n<N

|f(n)|≥K

|f(n)| = 0,
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and the space of all uniformly summable functions is denoted byL∗. f is q-multiplicative

if f(0) = 1 and

f(aqr + b) = f(aqr) · f(b)

for every pair of integer(a, b) satisfying

0 ≤ a < q and 0 ≤ b < qr .

Definition 5.1.1. Letf beq-multiplicative function, we define

Π̃R,α :=
∏
r<R

(1 + ũr,α),

and

ΠR :=
∏
r<R

(1 + ur)

with ũr,α :=
1

q

q−1∑
a=1

(|f(aqr)|α − 1) andur :=
1

q

q−1∑
a=1

(f(aqr)− 1).

The following theorem describes a complete characterization ofq-multiplicative uni-

formly summable functions.

Theorem 5.1.2.Let f be aq-multiplicative function. Then, the following assertions are

equivalent.

(i) f ∈ L∗, and‖f‖1 > 0.

(ii) Letα > 0. The series
∞∑

r=0

1

q

q−1∑
a=0

(|f(aqr)|α − 1)2 (5.1)

is convergent, and for some constantsc1(α), c2(α) ∈ R, for all R and for some

sequence{Ri}, Ri →∞, the inequalities

∑
r<R

1

q

q−1∑
a=0

(|f(aqr)|α − 1) ≤ c1(α) < ∞, (5.2)
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and
∑
r<Ri

1

q

q−1∑
a=0

(|f(aqr)|α − 1) ≥ c2(α) > −∞ (5.3)

hold.

(iii) f ∈ Lα, and‖f‖α > 0 for all α > 0.

The mean behaviour of such functions is given in

Theorem 5.1.3.Letf ∈ L∗ be aq-multiplicative function, and let‖f‖1 > 0. Further, let

qR−1 ≤ N < qR with R ∈ N. Then, asN →∞,

1

N

∑
n<N

f(n) = ΠR + o(1)

and, for everyα > 0,
1

N

∑
n<N

|f(n)|α = Π̃R,α + o(1).

An immediate consequence is the following

Corollary 5.1.4. Letf beq-multiplicative. Then, the following assertions hold.

(i) Letf ∈ L∗. If the mean-valueM(f) of f exists, and if it is different from zero, then

the series
∞∑

r=0

q−1∑
a=0

(f(aqr)− 1), (5.4)

and
∞∑

r=0

q−1∑
a=0

|f(aqr)− 1|2 (5.5)

converge, and
q−1∑
a=0

f(aqr) 6= 0 for each r ∈ N0.
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(ii) If the series (5.4) and (5.5) converge, thenf ∈ L∗, and the mean-valueM(f) of f

exists,

M(f) =
∞∏

r=0

(
1

q

q−1∑
a=0

f(aqr)

)
,

and‖f − fR‖1 → 0 asR →∞, where

fR(n) =
∏
r≤R

f(εr(n)qr) 0 ≤ εr(n) < q.

(iii) Letf ∈ L∗. If the mean-valueM(f) of f exists, and if it is different from zero, then

the mean-valueM(|f |α) of |f |α exists for eachα > 0 (and is different from zero).

The case of mean-value zero is contained in

Corollary 5.1.5. Letf ∈ L∗ beq-multiplicative. Then, the mean-valueM(f) of f is zero

if and only ifΠR = o(1) asR →∞.

5.2 Preliminary results

To prove our main theorem, we need to show the following lemmata

Lemma 5.2.1.Letf ∈ L∗ beq-multiplicative and let‖f‖1 > 0. Then,

∞∑
r=0

1

q

q−1∑
a=0

(|f(aqr)|α − 1)2 < ∞

for all α > 0.

Proof. Because of‖f‖1 > 0, we can find a sequence{xi} such that

∑
n<xi

ε<|f(n)|α<K

1 >> xi,

asi →∞ for some suitableε,K > 0.
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We define anq-additive functiong by

g(aqr) =





log(|f(aqr)|α) if f(aqr) 6= 0

1 if f(aqr) = 0.

Then,
∑
n<xi

−c1<g(n)<c2

1 ³ xi

with c1 = log 1/ε andc2 = log K.

For real numberst, we define the functions

H(x, t) =
∑
n<x

exp(itg(n)),

for anyx > 0.

Delange [10] proved that the limitl(t) := lim
x→∞

1

x
|H(x, t)| always exists, andl(t) 6= 0

holds if and only if
∞∑

r=0

1

q

q−1∑
a=0

(1− cos(tg(aqr)))

converges.

Further, we define the functionD by

D(ν) =





(
sin πν

πν

)2
if ν 6= 0,

1 if ν = 0.

Then, for each real numbery, we have

∫ ∞

−∞
e2πiνyD(ν)dν =





1− |y| if |y| ≤ 1,

0 otherwise.

Interchanging summation and integration shows that for positiveλ
∫ ∞

−∞
λ|H(x, t)|2D(λt)dt =

∑
n1,n2≤x

|g(n1)−g(n2)|≤λ

(
1− 1

λ
|g(n1)− g(n2)|

)
.

We divide byxi, let xi →∞, and apply Lebesgue’s theorem for dominated convergence.

If λ is sufficiently large, then
∫ ∞

−∞
λl(t)2D(λt)dt > 0.
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More exactly, ifg(n) satisfies the condition given in the definition of finitely distributed

functions, and ifλ ≥ 2c2, then the value of this integral is at least as large asc2
1/2.

It follows that there is a setE, of positive Lebesgue measure, on whichl(t) > 0.

Now, ∞∑
r=0

(1− cos(tg(aqr))) < ∞

for every0 ≤ a ≤ q − 1 and for allt ∈ E. It means

∞∑
r=0

(1− cos(tg(aqr))) ≤ c

for all t ∈ E∗, whereE∗ is some subset ofE andm(E∗) > 0. This is equivalent to

∞∑
r=0

sin2

(
t

2
g(aqr)

)
≤ c < ∞

for all t ∈ E∗.

In view of the inequality

sin2(x± y) ≤ 2 sin2 x + 2 sin2 y

and applying Steinhaus’s lemma1 we can find aT > 0 such that for all0 ≤ a ≤ q − 1,

and for|t| ≤ T , we get

∞∑
r=0

(1− cos(tg(aqr))) ≤ 4c < ∞ (5.6)

Integrating (5.6) from 0 toT and multiplying with1/T , we have

∞∑
r=0

h(Tg(aqr)) ≤ 4c < ∞ (5.7)

whereh(u) = 1− sin u

u
for u 6= 0 andh(0) = 0.

Sinceh(u) ≥ 0 for all real numbersu, andh(u) ≥ 1/2 for u ≥ 2, we conclude that

|g(aqr)| ≥ 2/T for only finitely manyr.

1(see [12], Lemma (1.1) The differences generated by a set of real numbers of positive measure, cover

an open interval about the origin.)
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Thus, there is anMa > 0 such that|g(aqr)| ≤ Ma for all r ≥ 0, and there isma > 0 such

thath(u) ≥ mau
2 for |u| ≤ TMa.

Hence,
∞∑

r=0

(g(aqr))2 ≤ 2q log 2

maT 2
,

and the series
∞∑

r=0

1

q

q−1∑
a=0

(g(aqr))2 converges.

Since(log |x|)2 ³ (|x| − 1)2 if ||x| − 1| ≤ 1/2, the proof of Lemma 5.2.1 is finished.

Lemma 5.2.2.Letf beq-multiplicative andR ∈ N. Then,

qR−1∑
n=0

|f(n)|α = qRΠ̃R,α

for everyα > 0, and
qR−1∑
n=0

f(n) = qRΠR.

Proof. Induction overR yields the following formulas

qR+1−1∑
n=0

|f(n)|α =

q−1∑
a=0




qR−1∑

l=0

|f(aqR + l)|α

 ,

and
qR+1−1∑

n=0

f(n) =

q−1∑
a=0




qR−1∑

l=0

f(aqR + l)


 ,

which prove Lemma 5.2.2.

Lemma 5.2.3.Letf ∈ L∗ beq-multiplicative and‖f‖1 > 0. Then,

Π̃R,α = (c(α, |f |) + o(1)) exp

(∑
r<R

ũr,α

)

for all α > 0 with some constantc(α, |f |) ∈ R.
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Proof. It is easy to see that, because of the convergence of the series in Lemma 5.2.1, we

have

Π̃R,α =
∏
r<R

(1 + ũr,α)

= exp

(∑
r<R

log(1 + ũr,α)

)

= exp

(∑
r<R

ũr,α + O

(∑
r<R

(ũr,α)2

))

= (c(α, |f |) + o(1)) exp

(∑
r<R

ũr,α

)

for all α > 0, and some constantc(α, |f |) ∈ R.

Lemma 5.2.4.Letf ∈ L∗ beq-multiplicative with‖f‖1 > 0, and letα > 0. Then, there

are some constantsc1(α), c2(α) ∈ R such that

∑
r<R

1

q

q−1∑
a=0

(|f(aqr)|α − 1) ≤ c1(α) < ∞ (5.8)

for all R and

∑
r<Ri

1

q

q−1∑
a=0

(|f(aqr)|α − 1) ≥ c2(α) > −∞ (5.9)

for some sequence{Ri}, Ri →∞.

Proof. Sincef ∈ L1 and‖f‖1 > 0, by Lemma 5.2.3, we get the inequalities (5.8) and

(5.9) forα = 1. Now, letα > 0, and let

||f(aqr)| − 1| ≤ 1

2
,
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then

|f(aqr)|α − 1 = (|f(aqr)| − 1 + 1)α − 1

= α(|f(aqr)| − 1) + O((|f(aqr)| − 1)2),

which implies the inequalities (5.8) and (5.9) for allα > 0.

Remark. Let f ∈ L∗ beq-multiplicative with‖f‖1 > 0, and letα > 0.

If

∑
n<x

|f(n)|α ³ x

then

∑
r<R

1

q

q−1∑
a=0

(|f(aqr)|α − 1) = O(1)

asR →∞.

The next lemma shows a general method for getting upper estimations.

Lemma 5.2.5.Let f beq-multiplicative and letqR−1 ≤ N < qR with R ∈ N. Then, for

everyh ∈ N, we have

∣∣∣∣∣
∑
n<N

f(n)

∣∣∣∣∣ ≤
h∑

r=1

∣∣∣∣∣∣
qR−rΠR−r

r−1∏
t=1

f(εR−t(N)qR−t)

εR−r(N)−1∑
a=0

f(aqR−r)

∣∣∣∣∣∣

+

(
R−1∏

r=R−h

|f(εr(N)qr)|
)
·O(qR−h),

where theO-constant depends only onf .

Proof. Let N = cqR−1 + b, where1 ≤ c < q, andb =
∑

r<R−1

εr(N)qr < qR−1, where
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0 ≤ εr(N) ≤ q − 1. Then,

∑
n<N

f(n)

=
c−1∑
a=0




qR−1−1∑

l=0

f(aqR−1 + l)


 +

b−1∑

l=0

f(cqR−1 + l)

=
c−1∑
a=0

f(aqR−1)

qR−1−1∑

l=0

f(l) + f(cqR−1)
b−1∑

l=0

f(l)

= qR−1ΠR−1

c−1∑
a=0

f(aqR−1)

+qR−2ΠR−2f(cqR−1)

εR−2(N)−1∑
a=0

f(aqR−2)

+qR−3ΠR−3f(cqR−1)f(εR−2(N)qR−2)

εR−3(N)−1∑
a=0

f(aqR−3)

+

...

+qR−hΠR−hf(cqR−1)f(εR−2(N)qR−2) · · · f(εR−h+1(N)qR−h+1)

εR−h(N)−1∑
a=0

f(aqR−h)

+f(cqR−1)f(εR−2(N)qR−2) · · · f(εR−h+1(N)qR−h+1)f(εR−h(N)qR−h)

bh−1∑

l=0

f(l),

wherebh < qR−h, and

∣∣∣∣∣
bh−1∑

l=0

f(l)

∣∣∣∣∣ ≤
qR−h−1∑

l=0

|f(l)| = O(qR−h).

In the following lemmata 5.2.6, 5.2.7 and 5.2.8, we collect some more properties ofq-

multiplicative functionsf ∈ L∗ with ‖f‖1 > 0.
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Lemma 5.2.6.Letf ∈ L∗ beq-multiplicative and‖f‖1 > 0. Then, the series

∞∑
r=0

1

q

q−1∑
a=0

|f(aqr)− 1|2

is convergent if and only if

∑
r<Ri

1

q

q−1∑
a=0

(Re f(aqr)− 1) ≥ c3 > −∞

for some constantc3 ∈ R and some sequence{Ri} with Ri ↑ ∞.

Proof. We have

∑
r<R

1

q

q−1∑
a=0

|f(aqr)− 1|2 =
∑
r<R

1

q

q−1∑
a=0

(|f(aqr)| − 1)2

+2
∑
r<R

1

q

q−1∑
a=0

(|f(aqr)| − 1)

−2
∑
r<R

1

q

q−1∑
a=0

(Re f(aqr)− 1)

=:
∑

1 +2
∑

2−2
∑

3 .

By Lemma 5.2.1,
∑

1 is convergent and, by Lemma 5.2.4,
∑

2 is bounded from above for

some sequence{Ri} for Ri →∞. Thus, Lemma 5.2.6 holds.

Lemma 5.2.7.Letf ∈ L∗ beq-multiplicative, and let‖f‖1 > 0. If

∑
r<Ri

1

q

q−1∑
a=0

(Re f(aqr)− 1) ≥ c3 > −∞

for some constantc3, and for some sequence{Ri} with Ri ↑ ∞, then

ΠR :=
∏
r<R

(1 + ur)

= (c(f) + o(1)) exp

(∑
r<R

ur

)

for some constantc(f) 6= 0.
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Proof. If
∑
r<Ri

1

q

q−1∑
a=0

(Re f(aqr)− 1) ≥ c3 > −∞ for some constantc3, and for some

sequence{Ri} with Ri ↑ ∞, then by Lemma 5.2.6, we have

∞∑
r=0

|ur|2 ≤
∞∑

r=0

1

q

q−1∑
a=0

|f(aqr)− 1|2 < ∞,

and we obtain

ΠR :=
∏
r<R

(1 + ur)

= exp

(∑
r<R

ur + O

(∑
r<R

|ur|2
))

= (c(f) + o(1)) exp

(∑
r<R

ur

)

with some constantc(f) 6= 0.

Lemma 5.2.8.Letf ∈ L∗ beq-multiplicative, and let‖f‖1 > 0. If

lim
R→∞

∑
r<R

1

q

q−1∑
a=0

(Re f(aqr)− 1) = −∞,

thenΠR → 0 asR →∞.

Proof. Obviously,

|ΠR| = exp

(∑
r<R

log |1 + ur|
)

,

and

log |1 + ur| =
1

2
log((1 + Re ur)

2 + (Imur)
2)

=
1

2
log(1 + 2Re ur + |ur|2)

≤ Re ur +
1

2
|ur|2 .
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Since

|ur|2 ≤ q − 1

q
· 1

q

q−1∑
a=0

|f(aqr)− 1|2

=
q − 1

q

{
1

q

q−1∑
a=0

(|f(aqr)| − 1)2 +
2

q

q−1∑
a=0

(|f(aqr)| − 1)− 2Re ur

}
,

we observe

Re ur +
1

2

(
q − 1

q
· (−2Re ur)

)
=

1

q
Re ur

which implies

|ΠR| ¿ exp

(∑
r<R

1

q
· 1

q

q−1∑
a=0

(Re f(aqr)− 1)

)
,

and the assertion of Lemma 5.2.8 follows.

Remark. Let f ∈ L∗ be q-multiplicative and‖f‖1 > 0. Then, by Lemma 5.2.7 and

Lemma 5.2.8,ΠR = o(1) if and only if

∑
r<R

1

q

q−1∑
a=0

(Re f(aqr)− 1) → −∞

asR →∞.

Using the Tuŕan-Kubilius inequality (Corollary 4.2.2), we prove

Lemma 5.2.9. Let f ∈ L∗ be q-multiplicative,‖f‖1 > 0 and qR−1 ≤ N < qR where

R ∈ N. Further, let
∞∑

r=0

1

q

q−1∑
a=0

|f(aqr)− 1|2 < ∞.

Then, for anyh ∈ N, ∣∣∣∣∣
1

N

∑
n<N

f(n)− ΠR

∣∣∣∣∣ ≤ c̃q−h + o(1)

asN →∞, with some constant̃c ∈ R which only depends onf .

Proof. We set

fR(n) =
R∏

r=0

f(er(n)qr).
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Then, for anyh ∈ N, we have

∣∣∣∣∣
1

N

∑
n<N

f(n)− ΠR

∣∣∣∣∣ ≤
1

N

∑
n<N

|f(n)− fR−h(n)|

+
1

N

∣∣∣∣∣
∑
n<N

fR−h(n)−NΠR−h+1

∣∣∣∣∣ + |ΠR−h+1 − ΠR|

=:
∑

1 +
∑

2 +4

Ad
∑

1:

We chooser0 ∈ N such that|f(aqr) − 1| ≤ 1
10

for all r, a ∈ N with r > r0, 0 ≤ a < q,

and we define the functiongR

gR(n) :=





∑
r>R

log f(er(n)qr) for R ≥ r0 ,

0 for R < r0 .

Then, the functionsgR areq-additive.

Now,

1

N

∑
n<N

|f(n)− fR−h(n)|

=
1

N

∑
n<N

|fR−h(n)|| exp(gR−h(n))− 1|

≤ 1

N

∑
n<N

|gR−h(n)|(|f(n)|+ |fR−h(n)|)

≤
(

1

N

∑
n<N

|gR−h(n)|2
)1/2




(
2

N

∑
n<N

|f(n)|2
)1/2

+

(
2

N

∑
n<N

|fR−h(n)|2
)1/2


 .

Applying the Tuŕan-Kubilius inequality forq-additive functions (Corollary 4.2.2), we ob-
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tain

1

N

∑
n<N

|gR−h(n)|2

≤ 2

N

∑
n<N

∣∣∣∣∣gR−h(n)−
∑

R−h<r<R

1

q

q−1∑
a=0

gR−h(aqr)

∣∣∣∣∣

2

+
2

N

∑
n<N

∣∣∣∣∣
∑

R−h<r<R

1

q

q−1∑
a=0

gR−h(aqr)

∣∣∣∣∣

2

≤ 4

( ∑

R−h<r<R−1

1

q

q−1∑
a=0

| log f(aqr)|2 +
1

c

c∑
a=1

| log f(aqR−1)|2
)

+

+2

∣∣∣∣∣
∑

R−h<r<R

1

q

q−1∑
a=0

log f(aqr)

∣∣∣∣∣

2

,

wherecqR−1 ≤ N < (c + 1)qR−1 with some integerc with 0 < c < q.

Now, sinceh is fixed, andlog f(aqr) → 0 for r →∞, such that

lim
R→∞

lim
N→∞

1

N

∑
n<N

|gR−h(n)|2 = 0.

Using Lemmata 5.2.1, 5.2.3 and 5.2.4 forα = 2 showf , fR−h ∈ L2, and thus,

1

N

∑
n<N

|f(n)− fR−h(n)| = o(1).

Ad
∑

2:

For all0 ≤ a < q with 0 ≤ n < qR−h+1, we have

fR−h(aqR−h+1 + n) = f(n) ,

and for alll ∈ N, we get

lqR−h+1−1∑
n=0

fR−h(n) = l

qR−h+1−1∑
n=0

f(n) = lqR−h+1ΠR−h+1 .

Further, forN = lqR−h+1, we obtain

1

N

∑
n<N

fR−h(n)− ΠR−h+1 = 0
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and forlqR−h+1 < N < (l + 1)qR−h+1 andl ≥ 1, we conclude

∣∣∣∣∣
∑
n<N

fR−h(n)−NΠR−h+1

∣∣∣∣∣

=

∣∣∣∣∣∣
−(N − lqR−h+1)ΠR−h+1 +

N−1∑

n=lqR−h+1

fR−h(n)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
−(N − lqR−h+1)ΠR−h+1 + fR−h(lq

R−h+1)

N−lqR−h+1−1∑
n=0

f(n)

∣∣∣∣∣∣

≤ c(N − lqR−h+1)

< cqR−h+1

with some constantc depending only onf .

Ad 4: Obviously (cf. proof of Lemma 5.2.8)

|ΠR − ΠR−h+1| = |ΠR−h+1|
∣∣∣∣∣

(
R−1∏

r=R−h+1

1

q

q−1∑
a=0

f(aqr)

)
− 1

∣∣∣∣∣

≤ c

R−1∑

r=R−h+1

∣∣∣∣∣
1

q

q−1∑
a=0

(f(aqr)− 1)

∣∣∣∣∣ .

Sinceh is fixed, andf(aqr) tends to 1 asr runs to infinity, we have|ΠR − ΠR−h| = o(1)

asR →∞.

5.3 Proof of main results

Proof of Theorem 5.1.2.The implication (i)⇒ (ii) is proved as follows.

If f ∈ L∗ and‖f‖1 > 0, we conclude, by Lemma 5.2.1, that the series (5.1) is convergent.

Lemma 5.2.4 shows the inequalities (5.2) and (5.3) for allα > 0.
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Proof of (ii)⇒ (iii).

By Lemma 5.2.2 and the convergence of (5.1), we show, as in the proof of Lemma 5.2.3,

1

qR

qR−1∑
n=0

|f(n)|α = Π̃R,α = (c(α, |f |) + o(1)) exp(
∑
r<R

ũr,α)

for all α > 0 with some constantc(α, |f |) ∈ R. Observing, ifqR−1 ≤ N < qR,

1

N

∑
n<N

|f(n)|α ¿ 1

qR

∑

n<qR

|f(n)|α = Π̃R,α,

and the inequality (5.2) givesf ∈ Lα, and (5.3) implies‖f‖α > 0.

The implication (iii)⇒ (i) is obvious.

Proof of Theorem 5.1.3. First, we assume thatΠR = o(1). Then, by Lemma 5.2.5
1

N

∑
n<N

f(n) = o(1). Now, letΠR 6= o(1). Then, by Lemma 5.2.6 and Lemma 5.2.9, we

have
1

N

∑
n<N

f(n) = ΠR + o(1).

FurthermoreΠ̃R,α 6= o(1), because of0 < ‖f‖1 ≤ ‖f‖α for all α > 0. Then, by Lemma

5.2.1 and Lemma 5.2.9 the second assertion of Theorem 5.1.3 follows.

Proof of Corollary 5.1.4. (i) Let f ∈ L∗ beq-multiplicative. If the mean-valueM(f) of

f exists and is nonzero, then obviously‖f‖1 > 0.

We know that (see the proof of Lemma 5.2.8)

|ΠR| ¿ exp

(∑
r<R

1

q2

q−1∑
a=0

(Re f(aqr)− 1)

)
.

Further,
∞∑

r=0

1

q

q−1∑
a=0

(Re f(aqr)− 1) > c3 > −∞ for some constantc3 ∈ R, since the

mean-valueM(f) of f exists, and it is different from zero.
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By Lemma 5.2.6, the series (5.5) converges, and Lemma 5.2.7 gives

ΠR :=
∏
r<R

1

q

q−1∑
a=0

f(aqr)

= (c(f) + o(1)) exp

(∑
r<R

1

q

q−1∑
a=0

(f(aqr)− 1)

)
,

with some constantc(f) 6= 0.

Since the mean-valueM(f) of f exists, and it is nonzero, the series (5.4) converges, and
q−1∑
a=0

f(aqr) 6= 0 for eachr ∈ N0.

(ii) If the series (5.4) and (5.5) converge then the infinite productlim
R→∞

ΠR exists, and it is

zero if and only if a factor equals zero. Thus,0 < Π̃R,1 for all R and

∑
r<R

1

q

q−1∑
a=0

(|f(aqr)| − 1) > c4 > −∞

for some constantc4 ∈ R.

Now,
∑
r<R

1

q

q−1∑
a=0

|f(aqr)− 1|2 =
∑
r<R

1

q

q−1∑
a=0

(|f(aqr)| − 1)2

+2
∑
r<R

1

q

q−1∑
a=0

(|f(aqr)| − 1)

−2
∑
r<R

1

q

q−1∑
a=0

(Re f(aqr)− 1),

holds, and the convergence of the series (5.4) and (5.5) shows that the series

∑
r<R

1

q

q−1∑
a=0

(|f(aqr)| − 1)2,

and
∑
r<R

1

q

q−1∑
a=0

(|f(aqr)| − 1)

converge. Then, by Theorem 5.1.2, we havef ∈ Lα and‖f‖α > 0.

Furthermore, by Lemma 5.2.6 and Lemma 5.2.9, we know that the mean-valueM(f) of
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f exists, andM(f) =
∞∏

r=0

(
1

q

q−1∑
a=0

f(aqr)

)
.

A small modification of the proof for the estimation of
∑

1 in Lemma 5.2.9 yields, because

of the convergence of the series (5.4) and (5.5), that‖f − fR‖1 → 0 asR →∞.

(iii) Using Theorem 5.1.2 and the same arguments as above, we conclude that the series

∞∑
r=0

q−1∑
a=0

(|f(aqr)|α − 1),

and
∞∑

r=0

q−1∑
a=0

(|f(aqr)|α − 1)2

converge, and thus the mean-valueM(|f |α) of |f |α exists for eachα > 0 (and it is

different from zero).

Proof of Corollary 5.1.5. Obvious.

5.4 Application to q-additive functions

Let us now turn toq-additive functions. Here we recall that a functionf : N → C is

q-additive iff(0) = 0 and

f(aqr + b) = f(aqr) + f(b)

for every pair of integer(a, b) satisfying

0 ≤ a < q and 0 ≤ b < qr .

The main results are as follows.

Theorem 5.4.1.Letg beq-additive. Then, the following assertions hold.

(i) If g is finitely distributed, then the series
∞∑

r=0

q−1∑
a=0

(g(aqr))2 converges.
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(ii) If, for someα(x),

1

x
]{n ≤ x : g(n)− α(x) ≤ y} ⇒ G(y)

whereG is a distribution function, theng is finitely distributed.

(iii) Let
∞∑

r=0

q−1∑
a=0

(g(aqr))2 converge, and letα(x) :=
∑
r<Nx

1

q

q−1∑
a=0

g(aqr), Nx := b log x
log q

c.
Then,

1

x
]{n ≤ x : g(n)− α(x) ≤ y} ⇒ G(y),

whereG is some distribution function.

Assertion (iii) of Theorem 5.4.1 has already been proved by J. Coquet (see [4], Theorem

II. 4).

Proof.

(i) The assertion is an immediate consequence of the proof of Lemma 5.2.1.

(ii) We choose the numberγ sufficiently large, and such that±γ are continuity points of

the limiting distribution ofg(n)− α(x). Then,

S :=
1

x
]{n ≤ x : g(n)− α(x) ≤ γ} >

1

2
.

Moreover, letm andn be any two elements ofS, then

|g(m)− g(n)| ≤ |g(m)− α(x)|+ |α(x)− g(n)| ≤ 2γ,

from which it is clear thatg(n) is finitely distributed.

(iii) Let

ϕx(t) :=
1

x

∑
n<x

eitg(n).

Then, we shall prove that

ϕx(t)e
−itα(x) → ϕ(t) (x →∞)
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for all t ∈ R, whereϕ(t) is continuous att = 0.

By Theorem 5.1.3, we have
1

x

∑
n<x

eitg(n) =
∏

r<Nx

(
1 +

1

q

q−1∑
a=0

(
eitg(aqr) − 1

)
)

+ o(1).

Let ur(t) =
1

q

q−1∑
a=0

(
eitg(aqr) − 1

)
andvr(t) =

it

q

q−1∑
a=0

g(aqr).

For |t| ≤ T , we obtain

|ur(t)| ≤ T

q

q−1∑
a=0

|g(aqr)|,

|ur(t)|2 ≤ T 2(q − 1)

q2

q−1∑
a=0

(g(aqr))2

and

|ur(t)− vr(t)| ≤ T 2

2q

q−1∑
a=0

(g(aqr))2.

Hence, the infinite product
∞∏

r=0

(1 + ur(t))e
−vr(t) is uniformly convergent fort ∈ [−T, T ]

and defines the characteristic function of a distribution functionG.

5.5 Characterization of almost-periodicq-multiplicative

functions

The aim of this section is to find corresponding characterizations forq-multiplicative

functions belonging toD1 andA1, respectively. Here, we recall thatf is calledα-almost-

periodic, if for every ε > 0, there is a linear combinationh of exponential functions2

eβ, β ∈ R, such that‖f − h‖α ≤ ε. The linear space ofα-almost-periodic functions is

denoted byAα. If h can always be chosen to be periodic thenf is calledα-limit-periodic.

The linear space ofα-limit-periodic functions is denoted byDα. We have the inclusions

D1 $ A1 $ L∗.

2eβ : N→ C with eβ(n) := exp(2πiβn) is aq-multiplicative function.
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A first step in this direction was done by J. Spilker [79] who proved the following

Proposition 5.5.1 (Spilker [79], Theorem 4).Letf beq-multiplicative and the following

two series
∞∑

r=0

q−1∑
a=0

(f(aqr)− 1) (5.10)

and
∞∑

r=0

q−1∑
a=0

|f(aqr)− 1|2 (5.11)

converge. Then,

(i) f ∈ Dα, α ≥ 1.

(ii) M(f) =
∞∏

r=0

(
1

q

q−1∑
a=0

f(aqr)

)
.

(iii) f̂(β) =





∞∏
r=0

(
1

q

q−1∑
a=0

f(aqr)e− c
b
(aqr)

)
if β =

c

b
,

0 if β irrational.

Remark. Assertion (iii) of Proposition 5.5.1 is not correct as it stands. Choose, for

example,f = 1 andβ =
1

p
wherep is a prime which does not divideq. Then,f̂(β) = 0,

and for allr ∈ N0,

q−1∑
a=0

f(aqr)e− 1
p
(aqr) =

1− e(qr+1/p)

1− e(qr/p)
6= 0,

i.e. the infinite product
∞∏

r=0

(
1

q

q−1∑
a=0

f(aqr)e− 1
p
(aqr)

)
does not converge in this case.

We shall characterize theq-multiplicative functionsf ∈ D1 andf ∈ A1 \ D1 by their

respective spectrumσ(f). First we show that the spectrum is empty only in the trivial

case. We prove

Theorem 5.5.2.Letf ∈ A1 beq-multiplicative. ThenM(|f |) = 0 if and only ifσ(f) = ∅.
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In the special case that the mean value exists and is different from zero, using Corollary

5.1.4, we obtain

Theorem 5.5.3.For everyq-multiplicative functionf , the following assertions are equiv-

alent:

(a) f ∈ D1 and the mean-valueM(f) is nonzero.

(b) The series (5.10) and (5.11) are both convergent and
q−1∑
a=1

f(aqr) 6= 0 for each

r ∈ N0.

(c) f ∈ L∗ and the mean-valueM(f) exists and is nonzero.

(d) f ∈ Dα for all α ≥ 1 and the mean-valueM(f) is nonzero.

(e) f ∈ A1 and the mean-valueM(f) is nonzero.

(f) f ∈ Aα for all α ≥ 1 and the mean-valueM(f) is nonzero.

(g) f ∈ Lα for all α ≥ 1 and the mean-valueM(f) exists and is nonzero.

We use the following well-known result to prove Theorem 5.5.2 and Theorem 5.5.3.

Lemma 5.5.4. (see [77] Chap. VI.8. Proposition 8.2 ) Forα ≥ 1 and every arithmetical

functionf , f ∈ Aα if and only iff ∈ A1 and|f | ∈ Aα.

Proof of Theorem 5.5.3.The implications “(a)⇒(e)⇒(c)” are obvious and “(c)⇒(b)⇒(a)”

hold by Corollary 5.1.4, (i) and (ii). Using Lemma 5.5.4 together with Corollary 5.1.4 for

|f |α, α ≥ 1, gives “(c)⇒(d)”, whereas the implications “(d)⇒(f)⇒(g)⇒(c)” are again

obvious. This proves Theorem 5.5.3.

Proof of Theorem 5.5.2. If M(|f |) = 0 then obviouslyσ(f) = ∅. Assume that

M(|f |) 6= 0. Then, by Theorem 5.5.3,|f | ∈ A2 andM(|f |2) 6= 0, and Lemma 5.5.4

impliesf ∈ A2. By Parseval’s equalityM(|f |2) =
∑

β∈σ(f)

|M(f · e−β)|2, andσ(f) = ∅
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impliesM(|f |) = M(|f |2) = 0. This contradiction proves Theorem 5.5.2.

Concerning the description of the spectrumσ(f) for q-multiplicative functionsf ∈ D1 or

f ∈ A1 \D1 we establish

Theorem 5.5.5.Letf ∈ D1 beq-multiplicative with non-empty spectrumσ(f).

(a) If M(f) 6= 0 then

σ(f) ⊂ {β| β =
c

b
mod 1,

c

b
∈ Q; p prime, p|b ⇒ p|q;

q−1∑
a=0

f(aqr)e−β(aqr) 6= 0 for all r ∈ N0}.

(b) If M(f) = 0 then there exists someβ0 ∈ Q/Z such that

σ(f) ⊂ {β| β = β0 +
c

b
mod 1,

c

b
∈ Q; p prime, p|b ⇒ p|q;

q−1∑
a=0

f(aqr)e−β(aqr) 6= 0 for all r ∈ N0}.

Corollary 5.5.6. Let f ∈ A1 \ D1 be q-multiplicative with non-empty spectrumσ(f).

Then there exists someβ0 ∈ (R \Q)/Z such that

σ(f) ⊂ {β| β = β0 +
c

b
mod 1,

c

b
∈ Q; p prime, p|b ⇒ p|q;

q−1∑
a=0

f(aqr)e−β(aqr) 6= 0 for all r ∈ N0}.

Proof of Theorem 5.5.5 and Corollary 5.5.6.Let f ∈ D1 beq-multiplicative and let the

mean-valueM(f) be nonzero. Then the series (5.10) and (5.11) both converge forf . Let

β ∈ σ(f). Thenβ ∈ R/Z and the mean-valueM(f · e−β) is nonzero. Puttingg = f · e−β

implies that
∞∑

r=0

q−1∑
a=0

|g(aqr)− 1|2 (5.12)
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is convergent. We show that this happens if and only ifβ =
c

b
is a rational number and

each prime divisor ofb dividesq. We consider three cases.

• Case 1: Let β be irrational. The functione−β is q-multiplicative and its absolute

value is equal to 1. By Delange’s result [10] forq-multiplicative functionsf of

absolute value less or equal to 1 whose mean-valueM(f) exists, the series

∞∑
r=0

1

q

q−1∑
a=0

|e−β(aqr)− 1|2 (5.13)

converges if and only if the representationM(e−β) =
∞∏

r=0

(
1

q

q−1∑
a=0

(e−β(aqr))

)

holds. SinceM(eβ) = 0 and
1

q

q−1∑
a=0

(e−β(aqr)) 6= 0 for all r ∈ N0 the series (5.13)

diverges.

• Case 2:Let β =
c

b
be rational and assume there is a primep which dividesb, but

does not divideq. Then for allr the numbers
c

b
qr are not integers. This implies:

∣∣∣exp
(
−c

b
qr

)
− 1

∣∣∣ ≥
∣∣∣∣1− exp

(
−1

b

)∣∣∣∣ ,

and the series
∞∑

r=0

1

q

q−1∑
a=0

|e− c
b
(aqr)− 1|2 (5.14)

diverges.

• Case 3:Let β =
c

b
be rational, and assume that for each prime divisor ofb divides

q, too. Then for alla = 0, 1, · · · , q − 1 and allr ≥ r0, we havee−β(aqr) = 1.

Now

|1− e−β(aqr)|2 ¿ |1− g(aqr)|2 + |1− f(aqr)|2.

Since the series (5.11) and (5.12) converge, cases 1 and 2 can not occur. Therefore, the

mean-valueM(f · e−β) is zero for the cases 1 and 2. In case 3 the series

∞∑
r=0

1

q

q−1∑
a=0

(g(aqr)− 1)2
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and
∞∑

r=0

1

q

q−1∑
a=0

(g(aqr)− 1)

converge. Then

M(g) =
∞∏

r=0

1

q

q−1∑
a=0

g(aqr) (5.15)

and the mean-valueM(g) is nonzero if and only if each factor of (5.15) is nonzero. This

proves (a).

For the proof of (b) and Corollary 5.5.6, let the mean-value off be zero, and letβ0 ∈ R/Z

such that the mean-value off · e−β0 is nonzero . Thenf · e−β0 ∈ D1. Sincef ∈ A1 \D1

if and only if β0 is irrational, (a) yields (b) and Corollary 5.5.6.

Example. Let f = eβ whereβ ∈ (R \ Q)/Z. Then, obviously, the mean-valueM(f)

equals zero andσ(f) = {β}.

76



Chapter 6

Mean behaviour of uniformly

summableQ-multiplicative functions

In this chapter, we extend the results of Chapter 5 to uniformly summableQ-multiplicative

functions. In the case of a bounded sequence{qr}r≥1, we have similar theorems as in

the q-adic case. In the case of an unbounded sequence{qr}r≥1, the situation is quite

different. Unavoidable for unbounded sequences{qr}r≥1 is the existence of a so-called

first digit phenomenon. We investigate the mean behaviour of uniformly summableQ-

multiplicative functions that belong toL2 and for which the first digit condition

max
1≤j≤qr−1

1

j + 1

j∑
a=0

|f(aQr−1)− 1|2 → 0 as r →∞

holds.

6.1 Main results

Let {qr}r≥1 with qr ≥ 2, be a sequence of natural numbers, and letQ0 = 1, Qr = qrQr−1

whenr ≥ 1. Here, we recall thatf is Q-multiplicative if f(0) = 1, and

f(aQr + b) = f(aQr) · f(b)
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for every pair of integer(a, b) satisfying

0 ≤ a < qr+1 and 0 ≤ b < Qr .

Definition 6.1.1. Letf beQ-multiplicative function, we define

Π̃R :=
∏
r<R

(1 + ũr),

and

ΠR :=
∏
r<R

(1 + ur)

whereũr :=
1

qr

qr−1∑
a=0

(|f(aQr−1)| − 1) andur :=
1

qr

qr−1∑
a=0

(f(aQr−1)− 1).

Theorem 6.1.2.Letf ∈ L2 beQ-multiplicative function. If

max
1≤j≤qr−1

1

j + 1

j∑
a=0

|f(aQr−1)− 1|2 → 0, (6.1)

then, forQR−2 ≤ N < QR−1, N →∞

(a)
1

N

∑
n<N

f(n) = ΠR + o(1),

(b)
1

N

∑
n<N

|f(n)| = Π̃R + o(1).

Theorem 6.1.3.Letf ∈ L2 beQ-multiplicative function. If the conditions

(i) max
1≤j<qr

1

j + 1

j∑
a=0

|f(aQr−1)− 1|2 → 0,

(ii)
∞∑

r=1

1

qr

qr−1∑
a=0

|f(aQr−1)− 1|2 < ∞,

(iii)
∞∑

r=1

1

qr

qr−1∑
a=0

(f(aQr−1)− 1) converges,
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(iv) 1 +

qr−1∑
a=1

f(aQr−1) 6= 0.

hold, then, the mean-valueM(f) of f exists and is different from zero.

Theorem 6.1.4.Letf ∈ L2 beQ-multiplicative function. Suppose the mean-valueM(f)

of f exists and is different from zero,

max
1≤j<qr

1

j + 1

j∑
a=0

|f(aQr−1)− 1|2 → 0,

and
∞∑

r=1

1

qr

qr−1∑
a=0

|f(aQr−1)− 1|2 < ∞.

Then,
∞∑

r=1

1

qr

qr−1∑
a=0

(f(aQr−1)− 1)

converges, and

1 +

qr−1∑
a=1

f(aQr−1) 6= 0.

6.2 Preliminary results

To prove our main theorem, we need to show the following lemmata

Lemma 6.2.1.Let z1, . . . , zk ∈ C are complex numbers, then

|z1 · · · zk − 1| ≤
k∏

j=1

max(|zj|, 1)
k∑

j=1

|zj − 1|.

Proof.

|z1 · · · zk − 1| ≤ |zk||z1 · · · zk−1 − 1|+ |zk − 1|
≤ max(|zk|, 1)(|z1 · · · zk−1 − 1|+ |zk − 1|)

≤
k∏

j=1

max(|zj|, 1)
k∑

j+1

|zj − 1|.

79



6 Mean behaviour of uniformly summableQ-multiplicative functions

Lemma 6.2.2.Letf beQ-multiplicative andR ∈ N. Then,

QR−1−1∑
n=0

f(n) = QR−1ΠR,

and
QR−1−1∑

n=0

|f(n)| = QR−1Π̃R.

Proof. Induction overR yields the following formulas

QR−1∑
n=0

f(n) =

qR−1∑
a=0

(
QR−1−1∑

l=0

f(aQR−1 + l)

)
,

and
QR−1∑
n=0

|f(n)| =
qR−1∑
a=0

(
QR−1−1∑

l=0

|f(aQR−1 + l)|
)

for all R ≥ 0, which proves Lemma 6.2.2.

Lemma 6.2.3.Letf beQ-multiplicative function and

∞∑
r=1

1

qr

qr−1∑
a=0

(|f(aQr−1)| − 1)2 < ∞ ,

then

Π̃R = (c1(f) + o(1)) exp

(∑
r≤R

ũr

)

for some constantc1(f) ∈ R.

Proof. Since
∞∑

r=1

(ũr)
2 =

∞∑
r=1

1

q2
r

(
qr−1∑
a=0

(|f(aQr−1)| − 1)

)2

≤
∞∑

r=1

1

qr

qr−1∑
a=0

(|f(aQr−1)| − 1)2 < ∞ ,
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is easy to see that

Π̃R =
∏
r<R

(1 + ũr)

= exp

(∑
r<R

log(1 + ũr)

)

= exp

(∑
r<R

ũr + O

(∑
r<R

(ũr)
2

))

= (c(|f |) + o(1)) exp

(∑
r<R

ũr

)
.

As a consequence we get

Corollary 6.2.4. Letf beQ-multiplicative function and

∞∑
r=1

1

qr

qr−1∑
a=0

(|f(aQr−1)| − 1)2 < ∞ ,

then,f ∈ L1, and‖f‖1 6= 0 if and only if for some constantsc1, c2 ∈ R
∑
r<R

ũr ≤ c1 < ∞,

asR →∞, and
∑
r<Ri

ũr ≥ c2 > −∞

for some sequence{Ri}, Ri →∞.

Lemma 6.2.5.Letf beQ-multiplicative function and

∞∑
r=1

1

qr

qr−1∑
a=0

|f(aQr−1)− 1|2 < ∞ ,

then,|ΠR| ³ 1 if and only if

∑
r≤R

(2Re ur + |ur|2) = O(1),

asR →∞.
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Proof. We get

|ΠR| =
∏
r<R

|1 + ur|

= exp

(
log

∏
r<R

|1 + ur|
)

= exp

(∑
r<R

log |1 + ur|
)

.

Since

log |1 + ur| =
1

2
log(1 + 2Re ur + |ur|2)

³ 2Re ur + |ur|2 ,

we obtain

|ΠR| = exp

(∑
r<R

log |1 + ur|
)

³ exp

(∑
r<R

(2Re ur + |ur|2)
)

Lemma 6.2.5 yields the following

Corollary 6.2.6. Letf beQ-multiplicative function and

∞∑
r=1

1

qr

qr−1∑
a=0

|f(aQr−1)− 1|2 < ∞ ,

then,

(i) |ΠR| → c 6= 0 if and only if the series
∑
r≤R

(2Re ur + |ur|2) converges,

(ii) |ΠR| → 0 if and only if the series
∑
r≤R

(2Re ur + |ur|2) diverges,

asR →∞.
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Example 6.2.7.Let

ur = −1

r
+ i

√
2√
r
,

whereur =
1

r + 1

r∑
a=1

f(ar!)− 1 with f(ar!) = 1− r + 1

r2
+ i

(r + 1)
√

2

r
√

r
.

It is easy to see that, the series
∞∑

r=1

Re ur diverges, but the series

∞∑
r=1

(2Re ur + |ur|2) =
∞∑

r=1

1

r2

converges.

Lemma 6.2.8.Letf beQ-multiplicative function. If

max
1≤j<qr

1

j + 1

j∑
a=0

|f(aQr−1)− 1|2 → 0,

and
∞∑

r=1

1

qr

qr−1∑
a=0

|f(aQr−1)− 1|2 < ∞ ,

then,

|ΠR| = (c2(f) + o(1)) exp

(∑
r≤R

2Re ur

)

for some constantc2(f) ∈ R.

Proof. Since
∞∑

r=1

|ur|2 =
∞∑

r=1

∣∣∣∣∣
1

qr

qr−1∑
a=0

(f(aQr−1)− 1)

∣∣∣∣∣

2

≤
∞∑

r=1

1

qr

qr−1∑
a=0

|f(aQr−1)− 1|2 < ∞ ,
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and applying the proof of Lemma 6.2.5, we obtain

|ΠR| = exp

(∑
r<R

log |1 + ur|
)

³ exp

(∑
r<R

(2Re ur + |ur|2)
)

= (c2(f) + o(1)) exp

(∑
r≤R

2Re ur

)
.

Lemma 6.2.9.Letf beQ-multiplicative function. If

max
1≤j<qr

1

j + 1

j∑
a=0

|f(aQr−1)− 1|2 → 0,

and
∞∑

r=1

1

qr

qr−1∑
a=0

|f(aQr−1)− 1|2 < ∞ ,

then,

ΠR = (c3(f) + o(1)) exp

(∑
r≤R

ur

)

for some constantc3(f) ∈ R.

Proof. By the proof of Lemma 6.2.8, we know that,
∞∑

r=1

|ur|2 < ∞.

Hence,

ΠR :=
∏
r<R

(1 + ur)

= exp

(∑
r<R

ur + O

(∑
r<R

|ur|2
))

= (c3(f) + o(1)) exp

(∑
r<R

ur

)
.
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6.3 Proof of main results

6.3 Proof of main results

Proof of Theorem 6.1.2.We set

fT (n) =
T∏

r=1

f(εr(n)Qr−1)

and letM > QT−1, then

1

M

∑
n<M

|fT (n)|2 =
1

M

( ∑

m<QT

|f(m)|2 · ]
{

n

∣∣∣∣∣
T∑

r=1

εr(n)Qr−1 = m ∧ n < M

})
.

PutcQR1−1 ≤ M < (c + 1)QR1−1 with 0 < c < qR1, and to estimate the above term, we

obtain
1

M

∑
n<M

|fT (n)|2 ≤ KQT · (c + 1)qR1−1qR1−2 · · · qT−1

cQR1−1

≤ 2K,

whereK is constant. ThusfT is also aL2 function.

Then, for eachh ∈ N,
∣∣∣∣∣
1

N

∑
n<N

f(n)− ΠR

∣∣∣∣∣ ≤
1

N

∑
n<N

|f(n)− fR−h(n)|

+
1

N

∣∣∣∣∣
∑
n<N

fR−h(n)−NΠR−h

∣∣∣∣∣ + |ΠR−h − ΠR|

=
∑

1 +
∑

2 +∆ .

Ad
∑

1:

We define theQ-additive functiong

g(n) =
∞∑

r=1

g(εr(n)Qr−1)

=
∑

R−h<r<R

g(εr(n)Qr−1)

=
∑

R−h<r<R

|f(εr(n)Qr−1)− 1|
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6 Mean behaviour of uniformly summableQ-multiplicative functions

where

g(εr(n)Qr−1) :=




|f(εr(n)Qr−1)− 1|) if R− h < r ≤ R ,

0 otherwise .

Applying Lemma 6.2.1, we obtain

1

N

∑
n<N

|f(n)− fR−h(n)|

=
1

N

∑
n<N

|fR−h(n)|
∣∣∣∣∣

∏

R−h<r≤R

f(εr(n)Qr−1)− 1

∣∣∣∣∣

≤ 1

N

∑
n<N

|fR−h(n)|
∏

R−h<r≤R

max(|f(εr(n)Qr−1)|, 1)
∑

R−h<r≤R

|f(εr(n)Qr−1)− 1|

≤ 1

N

∑
n<N

|fR−h(n)|
∏

R−h<r≤R

max(|f(εr(n)Qr−1)|, 1)g(n)

≤
(

1

N

∑
n<N

(g(n))2

)1/2

 1

N

∑
n<N

(
|fR−h(n)|

∏

R−h<r≤R

max(|f(εr(n)Qr−1)|, 1)

)2



1/2

.

Using the Tuŕan-Kubilius inequality forQ-additive functions (Corollary 4.2.4), we have

1

N

∑
n<N

(g(n))2

≤ 2

N

∑
n<N

(
g(n)−

∑

R−h<r<R

1

qr

qr−1∑
a=0

g(aQr−1)

)2

+
2

N

∑
n<N

( ∑

R−h<r<R

1

qr

qr−1∑
a=0

g(aQr−1)

)2

≤ 4

( ∑

R−h<r<R−1

1

qr

qr−1∑
a=0

|f(aQr−1)− 1|2 +
1

c

c∑
a=1

|f(aQR−2 − 1)|2
)

+2

( ∑

R−h<r<R

1

qr

qr−1∑
a=0

|f(aQr−1)− 1|
)2

,

wherecQR−2 ≤ N < (c + 1)QR−2, 0 < c < qR−1.
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6.3 Proof of main results

Applying the Cauchy-Schwarz inequality, we conclude

2

( ∑

R−h<r<R

1

qr

qr−1∑
a=0

|f(aQr−1)− 1|
)2

≤ 2h
∑

R−h<r<R

1

(qr)2

(
qr−1∑
a=0

|f(aQr−1)− 1|
)2

≤ 2h
∑

R−h<r<R

r

(qr)2

qr−1∑
a=0

|f(aQr−1)− 1|2.

Sinceh is fixed, and concerning condition (6.1), we obtain

lim
N→∞

1

N

∑
n<N

(g(n))2 = 0.

Now, we define theQ-multiplicative functionf̃ with

f̃(aQr−1) :=




|f(aQr−1)| if 1 ≤ r ≤ R− h

max(|f(aQr−1)|, 1) if R− h < r ≤ R
,

then,

|fR−h(n)|
∏

R−h<r≤R

max(|f(εr(n)Qr−1)|, 1) = f̃(n),

and

1

N

∑
n<N

(f̃(n))2 ≤ 1

cQR−2

∑

n<(c+1)QR−2

(f̃(n))2

=
1

cQR−2

∏

1≤r≤R−h

(qr)

(
1 +

1

qr

qr−1∑
a=0

|f(aQr−1)|2 − 1

)

·
∏

R−h<r≤R−2

(qr)

(
1 +

1

qr

qr−1∑
a=0

|f̃(aQr−1)|2 − 1

)

·(c + 1)

(
1 +

1

c + 1

c∑
a=1

|f̃(aQR−2)|2 − 1

)

=
∏

1 ·
∏

2 ·
∏

3,

wherecQR−2 ≤ N < (c + 1)QR−2 with 0 < c < qR−1.
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6 Mean behaviour of uniformly summableQ-multiplicative functions

The first product
∏

1 equals

∏
1 =

1

cQR−2

∏

1≤r≤R−h

(qr)

(
1 +

1

qr

qr−1∑
a=0

|f(aQr−1)|2 − 1

)

=
1

cQR−2

∑

n<(c+1)QR−2

|fR−h(n)|2.

SincefR−h ∈ L2, such that the product
∏

1 is bounded.

The equivalent of condition (6.1) is

max
1≤j<qr

1

j + 1

j∑
a=0

|f(aQr−1)|>1

|f(aQr−1)|2 − 1 = O(1),

for r →∞, therefor the products
∏

2 and
∏

3 are bounded.

Thus,
1

N

∑
n<N

(f̃(n))2 ≤ 4Kc̃h−1 is bounded, whereK is constant only depends onfR−h,

andc̃ is constant only depends oñf .

Ad
∑

2:

For alla ≥ 0, 0 ≤ n < QR−h,

fR−h(aQR−h + n) = f(n)

holds, and for1 ≤ l ≤ qR−h, applying Lemma 6.2.2, we have

lQR−h−1∑
n=0

fR−h(n) =
l−1∑
a=0

QR−h−1∑

n′=0

fR−h(aQR−h + n′)

=
l−1∑
a=0

QR−h−1∑

n′=0

f(n′)

= l

QR−h−1∑

n′=0

f(n′)

= lQR−hΠR−h.

Further, forN = lQR−h, we obtain

1

N

∑
n<N

fR−h(n)− ΠR−h = 0,
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6.3 Proof of main results

and forlQR−h < N < (l + 1)QR−h, we conclude

∣∣∣∣∣
∑
n<N

fR−h(n)−NΠR−h

∣∣∣∣∣

=

∣∣∣∣∣∣
−(N − lQR−h)ΠR−h +

N−1∑

n=lQR−h

fR−h(n)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
−(N − lQR−h)ΠR−h + fR−h(lQR−h+1)

N−lQR−h−1∑
n=0

f(n)

∣∣∣∣∣∣

≤ c(N − lQR−h)

< cQR−h,

with some constantc only depends onf .

Ad ∆:

We get

|ΠR − ΠR−h| = |ΠR−h|
∣∣∣∣∣

(
R−1∏

r=R−h

1

qr

qr−1∑
a=0

f(aQr−1)

)
− 1

∣∣∣∣∣

≤ c

R−1∑

r=R−h

∣∣∣∣∣
1

qr

qr−1∑
a=0

(f(aQr−1)− 1)

∣∣∣∣∣

≤ c

R−1∑

r=R−h

√
qr − 1

qr

(
qr−1∑
a=0

|(f(aQr−1)− 1)|2
)1/2

≤ c
√

h

(
R−1∑

r=R−h

qr − 1

q2
r

qr−1∑
a=0

|(f(aQr−1)− 1)|2
)1/2

.

Since condition (6.1) holds, andh is fixed, we have|ΠR − ΠR−h| = o(1), asR →∞.

Altogether, we obtain

∣∣∣∣∣
1

N

∑
n<N

f(n)− ΠR

∣∣∣∣∣ ≤ c̃
1

qR−1qR−2 · · · qR−h+1

+ o(1).

89



6 Mean behaviour of uniformly summableQ-multiplicative functions

The proof of assertion (b) is analogous.

Proof of Theorem 6.1.3.By Lemma 6.2.9 and Theorem 6.1.2, the assertion of Theorem

6.1.3 follows.

Proof of Theorem 6.1.4.Follows by Lemma 6.2.9.
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nen, Math. Annalen143, 75-102 (1961).

[84] Wirsing, E.Das asymptotische Verhalten von Summenüber multiplikative Funktio-
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