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Introduction

The theory of additive and multiplicative functions has made great progress during the
past years; in particular, we want to mention the mean-value theorems by H. Delange [9],
E. Wirsing [83], [84] and G. Halsz [22], as well as, the first elementary proof of the
theorem of Hadsz by H. Daboussi and K.-H. Indlekofer [8].

H. Delange [9] characterized those multiplicative functignshich satisfy|f| < 1 and

for which a non-zero mean-value
R
M(f) = lim —> " f(n)
n=1

exists. It turned out to be more difficult though to characterize those multiplicative func-
tions f with |f| < 1, for which a mean-valud/( f) exists and is zero. It was done in
essentially two steps; for real-valued functions by E. Wirsing [83], [84], this included
the proof of an old conjecture, variously ascribed todsrdnd Wintner, to the effect
that a mean-valué/(f) always exists whenevef assumes only the valuesl; and for
complex-valued functions by G. Hadz [22] using an analytic method. The first elemen-

tary proof of the theorem of Hasz was given by H. Daboussi and K.-H. Indlekofer [8].

The Erdds-Wintner conjecture includes the prime number theorem because the assertion
M(u) = 0, wherepu denotes the Nbius function, is equivalent to the prime number

theorem

t{p|p prime, p <z} =: 7(zx) ~ as T — 00 ,

log x



Introduction

as was shown by E. Landau [56]. The elementary proofs by Wirsing and Daboussi-
Indlekofer provide, among other things, an elementary proof of the prime number the-

orem.

While these theorems use the hypothégis< 1, many results not based on this condi-
tion are also known now. In this context, let us mention the papers by H. Daboussi [6],
P.D.T.A. Elliott [13], K.-H. Indlekofer [25], J. Knopfmacher [54] and W. Schwarz [75].

All these results provide valuable methods for the investigation of additive and multi-
plicative functions, as well as, for prime number theory. However, the actual calculation
of values of additive and multiplicative functions requires knowledge of the prime factor
decomposition of a number, while usually its g-adicadic representation (“Cantor

expansion”) is given.

Let {¢, },>1 be a sequence of natural numbers wjith> 2, and letQ, = 1, Q, = ¢,Q,_;
for r > 1. Each nonnegative integerhas a uniqué&-adic representation (“Cantor ex-

pansion”)

n = Zar(n)Qr

r>0

if the following condition is satisfied
0<e(n)<guy1, r=>0.
In the casey, = ¢ > 2 we will use standard notation gfadic representation.

This motivates the investigation of functions that are additive or multiplicative with re-
spect to these representations. Such functions are gajleeadditive, org-, Q-multiplicative,
respectively. Mean value theorems hold for this setting, too, and the methods and results
bear certain analogies to the classical case; however, there are also some peculiari-

ties. The caséf| < 1 for g-multiplicative functions has been treated by H. Delange [10]

to great extent, and its generalizationQeadic representations for the cdge < 1 by J.

8



Introduction

Coquet in his thesis [4]. The results for g-additive functions — which can be derived in
some cases from the theory of g-multiplicative functions — provide interesting statistical

tests for the randomness of data (see E. Man&tav[63]).

In this thesis, we prove, both for thieadic case and gener@ladic representations, new
theorems about the average of multiplicative functions without the assumjftient; it
turns out that the class ahiformly summable functions the appropriate generalization.

In this context, we also investigatealmost-periodic g-multiplicative functions.

To make the analogy to "classical” additive and multiplicative functions apparent, it is

appropriate to summarize results related to these first.

We proceed as follows: Chapter 1 presents some well-known facts about additive func-
tions. G. H. Hardy and S. Ramanujan proved thand(2 have the normal ordésg log n.

P. Tuan found a new proof of Hardy and Ramanujan’s result using an inequality which
is analogues to Tschebycheff's inequality. This gave M. Kac the idea of thinking about
the role of independence in the application of probability theory to number theory. The
generalization of this inequality is the famous dao¥Kubilius inequality. The important
theorems of P. Eiiis [14], M. Kac [15], [17] and A. Wintner [16] are introduced.

Since the main difficulties arise from the fact that the asymptotic density gives only a
finitely additive measure (or content or pseudo-measure) on the family of subggts of
where it is defined, one constructs a sequence of finite, purely probabilistic models which
approximate the number theoretical phenomena, and then use arithmetical arguments for
"taking the limit”. J. Kubilius [55] constructed such finite probability spaces on which in-
dependent random variables could be defined to mimic the behaviour of truncated additive
functions. K.-H. Indlekofer [46] presents an integration theorfNarsing the Stonéech

compactificationsN of N which can be generalized to arbitrary sets.

In Chapter 2, we describe the mean behaviour of complex-valued multiplicative functions

f such that|f(n)| < 1 for every positive integen. These functiong’ which satisfy

9



Introduction

|f(n)] < 1foralln € N and for which a non-zero mean-value exists were characterized
by H. Delange [9] in 1961, but his method could not be modified to consider the case
M(f) = 0. In 1967, E. Wirsing [84] proved his celebrated mean-value theorem which
asserts, in particular, that any real-valued multiplicative functibo$ modulus< 1, has

a mean-value. This solved a famous conjecture obErand Wintner. His proof was
done by elementary methods (and thus, he gave another elementary proof of the prime
number theorem), but he could not handle the complex-valued case in its full generality.
Only by an analytic method, found by G. Hak [22] in 1968 the asymptotic behaviour

of Z f(n) could be fully determined for all complex-valued multiplicative functighs

n<x

of modulus smaller than or equal to one.

The first elementary proof of the theorem of Eis¢ was given by H. Daboussi and K.-
H. Indlekofer [8] in 1992. More general, K.-H. Indlekofer, 1akai and R. Wagner [44]
in 2001, compare the asymptotic behaviorE f(n) anng(n) for multiplicative

n<lz n<lz

functionsf andg, respectively, whergf| < g. They obtain generalizations of Wirsing’s

result and extend the theorem of Hst.

In Chapter 3, we introduce the spaté of uniformly summable functions; this notion

was introduced by K.-H. Indlekofer. Let € R with o > 1, and let
L% = {fIf :N = C,||flla < 00}

be the vector-space of arithmetical functighwith bounded semi-norm

1flla = <h2ﬂfo%p% > \f(n)la) -

n<N

An arithmetical functionf € L' is said to be uniformly summable if

1

lim sup — n)l =0,

Jm s 31500
IF(m)I>K

and the space of all uniformly summable functions is denote@*hy
Let > o > 1, then
B o * 1
LPG L gL gLl

10



Introduction

The idea of uniform summability turned out to provide the appropriate tools for describ-

ing the mean behaviour of a large class of multiplicative functions. As typical results, we

mention the theorem by K.-H. Indlekofer, which generalizes results of Daboussi, Delange,
Halasz and Wirsing. In addition, the spac®s, D~ and.A“ of a-even,a-limit-periodic

and a-almost-periodic arithmetical functions are considered. Finally, a complete char-

acterization ofa-almost-periodic multiplicative functions given by K.-H. Indlekofer is

presented without proof.

The main topic of Chapter 4 is the investigationyeddditive,g-multiplicative functions,

and Q-additive, andQ-multiplicative functions, respectively. Observing thaadditive
functions are sums of “almost independent random variables”, we give a new proof of
the Tu&n-Kubilius inequality forg-additive functions which is much shorter than the
proof given by M. Peter and J. Spilker [78] in 2001, and which extends this proof to
Q-additive functions. In the case of theadic scale, necessary and sufficient conditions
for the existence of an asymptotic distribution for a real-valgediditive function and

the mean behaviour @gfmultiplicative functions of modulus. 1 have been given by H.
Delange [10] in 1972. J. Coquet [4] considered in 1975 the same kind of problems in the
cases ofd-adic scales and obtained mainly sufficient conditions. Their main results are

formulated.

Chapter 5 and 6 contain our main results. The aim of Chapter 5 is to study the be-

haviour of the meanﬁl\—] > fn) and% > 1f(n)|* asN — oo, a > 0, wheref is

uniformly summable arylléfvmultiplicative?;ﬁd we give a complete characterization of
these means. To our surprise, we find thatdgaenultiplicative functions the space®

for everya > 0 coincides with the spacé*. Furthermore, applying our main results,
we investigate finitely distributeg-additive functions and find characterizations fer

multiplicative functions belonging to the spa® of limit-periodic functions and the

11



Introduction

spaceA’® of almost-periodic functions by their respective spectet(y).

In Chapter 6, we extend the results of Chapter 5 to uniformly sumnizbheltiplicative
functions. In the case of a bounded sequefigé,~, we have similar theorems as in the
g-adic case. In the case of an unbounded sequgpée.; the situation is quite different.
Unavoidable for unbounded sequendes},>; is the existence of a so-called first digit
phenomenon.
We investigate the mean behaviour of uniformly summableultiplicative functions
that belong taC? and for which the first digit condition
1 U
—Z\f(aQT_l)—l\QHO as r — 00

max -
1sjsar—1j + 1 £
holds.
Acknowledgment

| like to express my gratitude to Professor Indlekofer for valuable discussions, helpful

suggestions and comments.
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Chapter 1

Additive functions

In this chapter, we present some well-known facts about additive functions. Furthermore,
the Tu@n-Kubilius inequality and Efs’ characterization of finitely distributed functions

is discussed.

1.1 Definition and introduction

We denote byN, Ny, P, R, andC the sets of positive integers, non-negative integers,
prime, real, and complex numbers, respectively. An "arithmetical function” is a map
f : N — C, defined on the sé¥ of natural number. The sé&t" of arithmetical functions
becomes aC-vector-spaceCY, +, ) by defining addition and scalar multiplication as

follows:

(f+9):inm f(n)+gn), A-f:n—X f(n)
Definition 1.1.1. An arithmetical functiory is additive if
g(m-n) =g(m)+ g(n) 1.1

whenevem andn are coprime. If (1.1) holds for alt, n, then f is calledcompletely

additive. An additive functiory is calledstrongly additive if the values ofy at prime-

13



1 Additive functions

powers are restricted by the condition

Because of the canonical representation
peP

of the integers: € N we have

g (Hpapm)) =3 g (p).

pEP peP
G. H. Hardy and S. Ramanujan [23] considered the arithmetical functiamsl(2, where
w(n) andQ)(n) denote the number of different prime divisors and of all prime divisors -
i.e. counted with multiplicity - of an integer, respectively. They proved thatand(?
have the normal ordeldglogn”. Here we say, roughly, that an arithmetical functipn
has the normal ordef, if f(n) is approximately?'(n) for almost all values of..! More

precisely, this means that
(1—¢e)F(n) < f(n) <(l+¢)F(n)

for every positives and almost all values of.

In 1934, P. Tuan [80] gave a simple proof of Hardy and Ramanujan’s result. It depended
upon the readily obtained estimation

Z(w(n) —loglogz)* < c¢-x -loglog x.

n<x
for some constant

This inequality - reminding us of Tschebycheff’s inequalithad a special effect, namely

1A property E is said to hold for almost alt if lim z~'#{n < x : E does not hold forn} = 0.
2At that time P. Tuan knew no probability (see chapter 12 of [12]). The first widely accepted axiom

system for probability theory, due to A. N. Kolmogorov, had only appeared in 1933.

14



1.1 Definition and introduction

gave M. Kac the idea of thinking about the role of independence in the application of
probability theory to number theory. Making essential use of the notation of independent
random variables, the central limit theorem, and sieve methods, M. Kac together with P.
Erdbs proved in 1939 [15], and 1940 [17] the following result:

Proposition 1.1.2 (Erdds - Kac). For a real-valued strongly additive functiofy let

Ax) == Z % (1.2)

1/2
) . (1.3)

Then, if| f(p)| < 1,and if B(x) — oo asz — oo, the frequencies

f(n) — Alz)
B

and

B(z) = (Z figp)

p<z

F.(2) := é#{n <z

converge weakly to the limit law

1 z 2
G(z) = E/ e 2 dw

asz — oo (which we will denote by, (z) = G(z)).

Proof. see [12], Theorem 12.3.

Thus, forf(n) = w(n), P. Erdds and M. Kac obtained a much more general result than

G. H. Hardy and S. Ramanujan. In this case,

Az) = Zl = loglogx + O(1),

p<z

and

1/2
B(x) = <Z 1) = (1+0(1))(loglogz)*?

p

p<z
so that
w(n) — loglog x

1 ? 2
<z}=>—— “ 2.
loglogz g V21 /_ooe v

é#{nﬁx:

15



1 Additive functions

A second effect of the above mentioned paper of Paitwas that P. Eis, adopting
Turan’s method of proof, showed in 1938 [14] that, whenever the three series
3 1 3 f(p) 3 f*(p)
) . p Y . p

5. D
|f(p)|>1 [f(p)|<1 If(p)|<1

converge, then the real-valued strongly additive functigrossesses a limiting distribu-
tion F, i.e.

é#{ngmf(n) <z} = F(z)

with some suitable distribution functiof. It turned out that the convergence of these

three series was in fact necessary (se@&ahd Wintner [16]).

All these results can be described as effects of the fusion of (intrinsic) ideas of probability
theory and asymptotic estimations. In this context, divisibility by a prime an event

A,, and all the{ A, } are statistically independent of one another, where the underlying
"measure” is given by thasymptotic density

0(4,) == lim l#{n <z:ne€A}

r—0o0 U

o1 1

n<x
pln

If the limit
M) = lim Y fn)

n<x
exists, then we say that the functigrpossesses an (arithmeticaipan-valueM (f).

Then, for strongly additive functiong, we get

f= Zf(p)gp

. , 1
wheree, denotes the characteristic functionAf, andM (¢,) = —
p

16



1.1 Definition and introduction

The main difficulties concerning the immediate application of probabilistic tools arise
from the fact that the arithmetical mean-value (1.4) defines only a finitely additive mea-
sure (or content or pseudo-measure) on the family of subsé{shalving an asymptotic
density; thus, one constructs a sequence of finite, purely probabilistic models, which ap-
proximate the number theoretical phenomena, and one then uses arithmetical arguments
for "taking the limit”. This theory, starting with the above mentioned results of Fogrd

M. Kac, and A. Wintner, was developed by J. Kubilius [55]. He constructed such finite
probability spaces on which independent random variables could be defined to mimic the
behaviour of truncated additive functions

Z f(p)ep.

p<r

This approach is effective if the rat;-le?ﬂ essentially tends to zero asuns to infinity.
ogx
Then J. Kubilius was able to give necessary and sufficient conditions in order that the

frequencies

1

—{n <x: f(n) - Alz) < 2B(2)}

i
weakly converge as — oo, assuming thaf belongs to a certain class of additive func-
tions. This opened the door for the investigation of ir@ormalisationof additive func-
tions, i.e. the question to determine when a given additive fungtimay be renormalized

by functionsa(z) andj(z), such that the frequencies
f(n) — a(z)
B(x)

possess a weak limit as— oo (see Elliott [12], Kubilius [55], Levin and Timofeev [58]).

é#{ngx: <z}

In [46], K.-H. Indlekofer presented an integration theory¥r(which can be general-
ized to arbitrary sets) which is based on the following characterization of the Stecte-
compactificationsN of N:

If A is an algebra inN, then

EZ:{zCBNIz:ClgNA,AGA}

17



1 Additive functions

is an algebra inGN.

If an algebraA in N, and a finitely additive measupeon A are given, then the function

5 on A defined bys(A) = §(A), A € A, is a premeasure oA. By a suitable closure of

the set of step functions he obtains spaces of number theoretical functions which contain
e.g. the Mbbius function. Furthermore, the “construction” of these spaces yields new,
elementary proofs of the famous results of E. Wirsing, G.adaland H. Delange for

multiplicative functionsf, | f| < 1. We will introduce this in Chapter 3.

1.2 The Turan-Kubilius inequality

If ¢ is strongly additive, then

éZg(n) = ézzg(p) = izg(p) - [=/pl,

n<x n<z pln p<lz

and sog(n) is approximate toz: M. The so-called Tum-Kubilius inequality gives an
p
p<zx

estimation for the difference of the values of the function minus the “expectation”:

g(n)—Z%

p<z

in mean square.

Let g be a complex-valued additive arithmetic function, then we set

gn) = g(®").

pFln

For real number: > 0, we set

pF<z p
s = 0 (1))

18



1.3 Finitely distributed functions

and
E:w
pk<z

In its general form, the T@n-Kubilius inequality appears as follows.

Proposition 1.2.1 (Turan-Kubilius inequality). There exist constants;, ¢, with the

property that for every: > 2, and for any additive function the inequalities

—Z\g (2)] < e - D*(x)
n<x
and
—Z|g 2)]* < ¢ - D*(x)
n<x

hold. In fact, it is possible to takg = 30, ¢, = 20.

Proof. see [77], Theorem 4.1.
The Tu@an-Kubilius inequality has often been applied to the study of additive and multi-
plicative functions. We formulate an analogous inequality in Chapter 4 foy-duitive

andQ-additive functions, and we use this inequality in Chapter 5 and 6.

1.3 Finitely distributed functions

In [18], P. Erdbs introduced the notion of finitely distributed functionsin
A function g is said to bdinitely distributed if there are positive constants andc,, and
an unbounded sequence of real numbgrs< z, < ... such that for each; at leastk

positive integers; < a; < ... < a; < x; may be found, withk > ¢;z;, and
l9(am) — g(an)] < e l<m<n<k.

For additive functions he proved the following characterization

19



1 Additive functions

Proposition 1.3.1 (Erdds [18]). An additive functiory is finitely distributed if and only

if there is a constant and a function: such that
g(n) = clogn + h(n),

where the series

3 1 3 h?(p)
hpy>1 7 <1 P
both converge.
It follows from Proposition (2.2.2) that
i |37 expitg(n)
xl—>Holol' <w xpletgin

always exists. It will become clear thais finitely distributed if and only if there is a set

of realt-values of positive Lebesgue measure for which the value of this limit is not zero.

20



Chapter 2

Multiplicative functions of modulus <1

In this chapter, we describe the mean behaviour of complex-valued multiplicative func-

tions f such that f(n)| < 1 for every positive integen.

2.1 Definition

Definition 2.1.1. An arithmetical functiory is multiplicative if f # 0, and if for all pairs

m, n Of positive integers the conditigttd(m, n) = 1 implies
fm-n) = f(m)- f(n). (2.1)
If (2.1) holds for allm, n, thenf is calledcompletely multiplicative.

Every multiplicative functionf satisfiesf(1) = 1, sincef(n-1) = f(n) - f(1), and
an integemm may be chosen for whicli(n) # 0. If f; and f, are multiplicative, then
the point-wise producf; - f, also is multiplicative, the same is true for the convolution-
productf; x fo; if fis multiplicative andf(n) # 0 for everyn, thenl/ f is multiplicative.

A multiplicative functionf is determined by its values at the prime-powers:

! (Hpa“"’) =[1r ™).

pEP pEP

21



2 Multiplicative functions of modulust 1

In this formula, according to the fundamental theorem of arithmetic, an inteigevritten

uniquely as

n = Hpap(”)

pEP

as a product of prime powers whetg(n) = max{« : p®|n}.

An important multiplicative function is th# obius function, defined by

(—1)*(™) if n is squarefree,
p(n) = .
0 otherwise.

TheEuler totient function given by

a1

is another well-known multiplicative function which enumerates the number of coprime

residue classes (mad.

2.2 Mean-value theorem for multiplicative functions of
modulus < 1

The problem of establishing the existence of mean-values was considered by A. Wintner
in his book on Erathostenian averages [82], he asserted that if a multiplicative fugiction
may have only values 1, then the mean-valuk/( f) always exists. But, the sketch of his
proof could not be substantiated, and the problem remained open as tie\Eiatner
conjecture.

These functionsf which satisfy|f(n)| < 1 for all n € N and for which anon-zero

mean-value exists were characterized by H. Delange [9] in 1961, he proved

Proposition 2.2.1 (Delange [9]).Let f : N — C be a multiplicative function satisfying

|| < 1. Then the following conditions are equivalent:

1 : .
(A) The mean-valud/(f) = lim e Z f(n) exists, and it is non-zero.

n<x

22



2.2 Mean-value theorem for multiplicative functions of moduus

(B) () The seriesS;(f) = % is convergent,

i > L‘ik) £ () for all primesp.

0<k<oo p

k
Z f(i ) > % for every primep > 3. There-
0<k<o0

fore, as did H. Delange, the validity ¢B(ii)) has to be assumed only fpr= 2, and it

The assumptionf| < 1 implies that

may be substituted by Delange’s condition
f(2F) # —1 for some k > 1.

But his method could not be modified to consider the des¢) = 0.
To get an impression of the remaining case, we note thatifu is the Mobius function,

then the validity of the assertion

S w0 (@ —0)

n<z
essentially is (see E. Landau [56]) as difficult as to obtain as the proof of the prime number
theorem.
In his paper [84] of 1967, E. Wirsing proved his celebrated mean-value theorem which
asserts, in particular, that any real-valued multiplicative functipn$ modulus< 1 has
a mean-value. This solved the afore-mentioned conjecture @isEadd Wintner.
In this paper, E. Wirsing adopts a more general formulation: he compares the behaviour

of ) f(n) with that of > ~ f*(n), where f* is a nonnegative multiplicative function
n<lz n<lx

and|f| < f*. His proof was done by elementary methods (and thus, he gave another
elementary proof of the prime number theorem), but he could not handle the complex-
valued case in full generality. Only by an analytic method, found by Gasiain 1968,
and published in his paper [22], the asymptotic behaviouEff(n) could be fully

n<x

determined for all complex-valued multiplicative functioh®f modulus smaller than or

eqgual to one. His main result is given by the following

23



2 Multiplicative functions of modulust 1

Proposition 2.2.2 (Hahsz [22]). Let f be a complex-valued multiplicative arithmetical

function satisfyingf| < 1.

(1) If there is a real numbet for which the series

Z (1 — Ref(p)p_m) (22)

- p

is convergent, then the asymptotic relation

1+ia

> =i 11 (1 - }3) (1 + ;pmw@f@m)) +o(a)

n<x

holds.

(2) If the series (2.2) is divergent for every real numhbethen

(3) In both cases, there are constants «, and a slowly oscillating functior, of

modulug L| = 1 such that the asymptotic formula

> f(n) = Dz L(log x) + o(x)

n<x

holds.

The functionLZ, and the constants, D may explicitly be given (see for example Hak

[22]).

In 1986, A. Hildebrand [24] gave a new elementary proof of Wirsing’s theorem based on
a large sieve inequality which is simpler than Wirsing’s proof but does not work in the

complex-valued case.

In [8], H. Daboussi and K.-H. Indlekofer succeeded in finding an elementary proof of

Halasz's theorem, and thus, a new elementary proof of Wirsing’s result (see also In-

dlekofer [26] for a simplified and shorter proof).

24



2.2 Mean-value theorem for multiplicative functions of moduus

Remark. K.-H. Indlekofer, |. Katai and R. Wagner [44] compare the asymptotic behavior
of >~ f(n)and) _ g(n) for multiplicative functionsf andg, respectively, whergf| < g.

n<x n<x

Their results extend relevant theorems by E. Wirsing and Gas#alThey established the

following theorem which generalizes Wirsing's result and extends the theorem astial

Proposition 2.2.3 (Indlekofer, Katai, Wagner [44]). Let g be a multiplicative function

and

Zg 1
ogp ~ T -loguw, T — 00,
p<lz

hold with a constant > 0. Furthermore, leyy(p) = O(1) for all primesp, and let

2.2 4
p k>2
Besides this, if < 1, then let

> g(pk)=0(102x>,

P k>2,pF<z

and let f be a complex-valued function which satisfié&:)| < g(n) for every positive

integern. If there exists a real numbey such that the series

> (9(p) = Re f(p)p~™) (2.3)

» p

converges forn = ag, then

iao

R - — g™
> fln) = 1+za0H< Z 1+w0>< +> ot

n<lz m= m=1

+o <Z g(n)) : (2.4)

n<x

)> > g(n)

n<x

asr — oc. If the series (2.3) diverges for all € R, then

S sy =0 (ng)) (v = o0). (2.5)

n<x n<x
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2 Multiplicative functions of modulust 1

In both cases there are constants,, and a slowly oscillating functiof with | L(u)| = 1

such that

Zf(n) = (cwaL log z) + o > Zg as T — o0. (2.6)

n<x n<z
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Chapter 3

Uniformly summable functions

In this chapter, the spaces of uniformly summableyven a-limit-periodic andx-almost-
periodic arithmetical functions are considered. In addition, the mean behaviour of uni-
formly summable multiplicative functions and a complete characterizatienramost-

periodic multiplicative functions given by K.-H Indlekofer are presented.

3.1 Definition

Leta € R with o > 1, and let
L= {fIf :N=C, | flla < oo}

be the vector space of arithmetical functighwith bounded semi-norm

[ flla = (15{?_?0%1)% > \f(n)la) :

n<N
A characterization of multiplicative functions € L (a > 1) which possess a nonzero
mean-valueV/ ( f) was independently given by P.D.T.A. Elliott [13], and using a different
method, by H. Daboussi [6].
In 1980, K.-H. Indlekofer [25] introduced the following
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3 Uniformly summable functions

Definition 3.1.1. An arithmetical functiory € L' is said to beuniformly summable if

1

lim sup — n)| =0,

Jm sy 31500
[f(n)|2K

and the space of all uniformly summable functions is denotetby

It is easy to show that, if > o > 1,

Lf gL gL gl

3.2 Mean behaviour of uniformly summable multiplica-

tive functions

The idea of uniform summability turned out to provide an appropriate tool for the descrip-
tion of the mean behaviour of a large class of multiplicative functions. As typical results,
we mention the theorem by K.-H. Indlekofer which generalizes results of H. Daboussi, H.

Delange, G. Hdlsz, and E. Wirsing.

Proposition 3.2.1 (Indlekofer [25]). (A generalization of Delange’s result)

Let f : N — C be multiplicative, and letv > 1. Then, the following two assertions hold.

() If feL*nLe, and if the mean-value
o1
M(f) = lim — > f(n)
n<x
of f exists and is non-zero, then the series

Zf(p;—17 > If(p)—1|2’ 5 If(p)|A7Z If(pl’:)lA (3.1)

p p P p
If(p)|<3 |f(p)—1|>3

converge for all\ with 1 < X\ < «, and, for each prime,

o0 k
1+§:f§)%o. (3.2)
k=1
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3.2 Mean behaviour of uniformly summable multiplicative functions

(ii) If the series (3.1) converge, th¢ne L*N L%, and the mean-value¥ (f), M (|f]*)
exist for allA with 1 < X < «. If, in addition (3.2) holds, thed/ (f) # 0.

Note that the membership 6 N L* and the existence of a non-zero mean value together
are equivalent to a set of explicit conditions on prime powers. Further, observe that these

conditions imply the existence of the mean valiég f|*) forall 1 < )\ < a.

Proposition 3.2.2 (Indlekofer [28]). (A generalization of Wirsing’s result)
Let f € L* be areal-valued multiplicative function. Then, the existence of the mean value
M(|f|) implies the existence @/ (f).

Note that Theorem 3.2.2 is an appropriate generalization of Wirsing’s result, foisif
multiplicative and f| < 1, the mean value o¥/(| f|) always exists.
In this connection it is interesting to mention the following characterization of non-

negative multiplicative functions ai*.

Proposition 3.2.3 (Indlekofer [29]). Lete > 0, and letf € L'+ N L* be a non-negative
multiplicative function. Ifi|f||; > 0, thenf!*¢ € L*, and there exist positive constants

c1, ¢ such that, ag — oo,

firep) —1

M(f'**) = exp (Z .

p<w

) (e +0(1))

~ exp (Z %) (e2 + (1))

p<z

from which we deduce that the existencéfff+<) implies the existence af/ (f).

A complete characterization of the asymptotic behaviour of the sir:nﬁ(n) asr — oo
n<x

for complex-valued multiplicative functions € L* was given by K.-H. Indlekofer in

[30]. He proves the following
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3 Uniformly summable functions

Proposition 3.2.4 (Indlekofer [30]). (A generalization of Halsz'’s result)

Let f € L* be multiplicative, and lef f||; > 0. If we define

Y

g<p>{ Lo it f(p) £ 0

1 otherwise

then the following two assertions hold.

() If there exists a constamt, € R such that the series

3 (1 —Re ﬁ(p)p”) (3.3)

p

converges forn = ag, then there exists a constafyt€ C such that, ifr — oo,

i Z f(n) = z' exp (Z w) (co+o(1)),

n<x p<lzx p

where
1 1 = f(p") 1— f(p)p~ie
= 1-=-) (1 : AN S
T T g 1;[ ( p) ( i ;p’f(””) =P p
If
. Imf(p)p~"*
A*(z) == Z L,
p<xz p

then

lim sup |A*(y) — A*(z)| = 0.

TTO0 p<y<a?
(i) If the series (3.3) diverges for all € R, then the mean-valuk/( f) of f exists and

equals zero.

This result generalizes the theorem of & [22] on multiplicative functionsf| < 1.
We will extend above proposition to uniformly summalgtenultiplicative functions in
Chapter 5.
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3.3 Mean behaviour at-almost-periodic multiplicative functions

3.3 Mean behaviour ofa-almost-periodic multiplicative
functions

Definition 3.3.1. Letr be a positive integer. An arithmetic functigns called

r-periodic, if f(n +r) = f(n) for every positive integet,

r-even if f(n) = f(ged(n,r)) for every positive integet.

f is termed periodic (resp. even) if there isafor which f is r-periodic (resp.r-even).

Obviously, an-even function ig-periodic.

Standard examples ofperiodic functions are the exponential functiepswheres = 9,
,

fora € Z,r € N, and wherezg(n) = exp(2mi - 3 - n).

TheRamanujan sume, is a special exponential sum:

c¢(n) = Z exp <27Ti : % : n)

1<a<r
ged(a,r)=1

=T )

t| ged(r,n)
The vector spac, of r-even functions can be generated by the Ramanujan sgms

whered|r, i.e.,

BT = Linc[cd . d"l"],

and each element of the vector spateof r-periodic functions can be written as a linear

combination of exponential functions, i.e.,
D, = Lingleg)r : 1 <a <1,

The vector space of all even and all periodic functions is denoteB by U B, and

r=1

D := | D, respectively. Finally, we define the vector space
r=1

A = Lingleg : f € R/Z]
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3 Uniformly summable functions

of complex linear combinations of the functions

Using the semi-nornfj f||,., the spaces

B> = ||.||, - closure of B (a-almost-evenfunctions)
D = |.||« - closure ofD (a-limit-periodic functions)
A® = ||.||« - closure ofA (a-almost-periodic functions)

may be constructed.

The obvious inclusion relatior8 ¢ D C A imply
B C D* C A“,

wherea > 1.

For~ < «, Holder’s inequality gives

V/a a/(a=)
E:If@N”SZ{EZIfWNa} ~{§:1} ;

therefore,
£l < Iflla iy <a

and so
B*C B, D*C DY, and A“ Cc A, if v < a.

Furthermore, we have the inclusions

1 1 1 *
BLC DI C AN C LY

For every functionf € A!, the mean-valué/(f), and for every3 € R, the Fourier
coefficient

F3) = Jim 5 3 fo)

0<n<N

exist (see, for example, W. Schwarz and J. Spilker [77] Chap. IV and VI).
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3.3 Mean behaviour at-almost-periodic multiplicative functions

>0}.

For f € L, theFourier-Bohr spectrum o( f) is defined by

% > f(n)e_g(n)

n<N

o(f) = {ﬂ € R/Z : limsup

N—oo

If f € A!, theng € o(f) ifand only if f(3) # 0.
In his paper [27], K.-H. Indlekofer gave a complete characterizationalimost-periodic
multiplicative functions. He proved the following results.

Proposition 3.3.2 (Indlekofer [27]). Let f € A' be multiplicative. Then)/(|f|) = 0 if
and only ifo(f) = 0.

Proposition 3.3.3 (Indlekofer [27]). Let f € A“ be multiplicative. Thenf is a-limit-

periodic.

Proposition 3.3.4 (Indlekofer [27]). Let f : N — C be multiplicative. Then, the follow-

ing assertions are equivalent.
(i) fe A~ and]f]: > 0.
(i) f € A% and the spectrura(f) of f is non-empty.

(i) f e LN L* and there exists a Dirichlet-charactgr such that the mean-value

M (fx) of fx exists and is different from zero.

(iv) There exists a Dirichlet-charactey such that the series

3 f(p)xj(jp) -1 3 ‘f(p)X(;) -1 (3.4)

P
[f(p)|<3/2

and

p
[1f(p)|—1|>1/2 p k>2

converge forall with1 < \ < a.
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3 Uniformly summable functions

Remark. The equivalence of (ii) and (iv) was proved by H. Daboussi [7]. The equivalence
of (ii), (iii) and (iv) was shown by K.-H. Indlekofer in [30], Corollary 7.
In Chapter 5, we give a complete characterizatioma-@lmost-periodig;-multiplicative

functions.
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Chapter 4

Q-additive and Q-multiplicative

functions

In this chapter, we start our investigationgadditive and;-multiplicative functions and
Q-additive and2-multiplicative functions, respectively. We give a new proof of theahur
Kubilius inequality forg-additive functions, and we extend this proof@eadditive func-

tions.

4.1 Definition

Let {¢, },>1 with ¢. > 2 be a sequence of natural numbers, an@let= 1, Q, = ¢,Q,_;

whenr > 1. For each nonnegative integehas a unigue representation

n=> &9 (4.1)

r>0

if the following condition is satisfied
0<e(n)<q¢uy1, r=>0.

If ex(n) # 0 ande,j(n) = 0 for all j > 1, thene,(n) andk will be called the first digit

and the order of., respectively.
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4 Q-additive andQ-multiplicative functions

The functiong : Ny — C, satisfying the relation

g(n) =Y g(er(n)2)

r>0

for eachn € N having the form (4.1) witly(0) = 0, will be calledQ-additive function.

Similarly, we say thaf : Ny — C is aQ-multiplicative function if f(0) = 1 and

fn) =[] fer(n)2Q))

r>0

for eachn € N having the form (4.1).

In the casey, = g > 2, we will use standard notation gfadic representation.

We consider the so-calledadditive functionsg : Ny, — C which are defined by

g(n)=> g(e,(n)g’)  and f(0) =0,

and theg-multiplicative functionsf : Ny — C which are defined by

fn)=1]fem)q) and f(0)=1.

These functions were first introduced by A. O. Gelfond [21]. The sum of d@sr(n)
r>0
of n is a typical and mostly investigated exampleyeddditive functions (see for example

Delange [11]; Coquet [5]). Exponentiatingzaadditive function gives g-multiplicative
function.

We recall that a real-valued functigrn) has an asymptotic distribution if there is a dis-
tribution functionG such that for all continuity pointg of GG, the probability measures
defined byN, (y) := z7*{n < z; g(n) < y} tend toG(y) asx tend to infinity.
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4.2 Generalized T@an-Kubilius inequalities foR-additive functions

4.2 Generalized Tuan-Kubilius inequalities for Q-additive

functions

Observing that-additive functions are sums of “almost independent random variables”,

we prove the following inequality which is interesting in itself.

Theorem 4.2.1.Let F be an arbitrary nonnegative-valued increasing function satisfying
the inequality
F(2z) < pF(x)

for some constant > 0. Letg : Ny — C beg-additive and let¢"* ' < N < (c+1)¢f*!

with R € Nand forc € Nwith0 < ¢ < ¢.

We set
R—2 q—1
1
= - g(a
r=0 q a=0
and
1 C
ER,C( - + - g
C
a=1
Then, the following assertions hold.
(i) For some constanmt/ > 0, we have
1
N > " F(lg(n) — Ere(g))
n<N
R—2 1 q—1 1 c 1/2
< M F - |2 - R—1\|2
< ( 22 lg(a)] +- 2 lglag )!)
r=0 a=0 a=1
R-2 1 qg—1 1 c
£ 02 Fllgtad)) + ZFug(aqR—lm} . (42)
r=0 a=0 a=1

(i) If, in addition, F' fulfills

F(z +y)> F(z) + F(y),
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4 Q-additive andQ-multiplicative functions

then, for some constadt’ > 0, we have

+ 3 Fllg(n) ~ o))

n<N
R—2 1 q—1 1 c 1/2
< M-F <Z . > lglad )P+ =3 |g(aqR‘1)l2> . (43)
r=0 a=0 a=1

To prove Theorem 4.2.1, we use the Burkholder’s inequality (see Burkholder [3], Ruzsa
[68] and Indlekofer [35])

BF ( . ) <r((Trleh) )+ Tereh. @4

2.6
7j=1
where theg;’s are independent variables of zero mean, E denotes an expectatiofl, and

is an arbitrary nonnegative-valued increasing function satisfying the inequality
F(2z) < pF(x)

for some constant; the value of the implied constant depends on this

Proof of Theorem 4.2.1.

(i) Each nonnegative integer< N has a unique representation

R-1
n= Y e,
r=0

which0 < ¢,.(n) < ¢q. We obtain

R—-1
g(n) =Y _g(e(n)q").

r=0
Let n.(n) = g(e,(n)¢"), thenn,...,np_; are independent random variables in the
Laplace spacg0,1,---,(c+1)¢® '}, andg = RZ:ln,,.
We define the functiog* =

glag”) for r<R—-1,0<a<gq,
orr=R—-1,0<a<c;
9*(aq") =

0 for r>R—1,0<a<q,

orr=R—-1lc<a<gq.
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4.2 Generalized T@an-Kubilius inequalities foR-additive functions

Then,é,. = n, — E(n,) are independent random variables of zero mean, and
R-1
g - E(g*> = Z&’ )
r=0

whereE(g*) = Er.(9)-
Applying the Burkholder’s inequality (4.4), we obtain

1 S° Flg(n) — Erelg)))

R-1
(c+ 1) n<(c+1)gf=1

2 1/2
R-2 a1 = L L 2
< F =D lolaa) = = > Tg(ba)| + =D lglag™ ) = = g(bg"™ )
r=0 q a=0 q b=0 ¢ a=1 b=1
) 4
R*21Q*1 1‘1*1 1 c 1 c
+Y - ) F aq’) — - b )| | +=> F ag® 1) — = bgt1
5 <g<q> q;am) 'y (g<q RN

For the estimation of the first ter(d, ), we observe

1 & 1 & o 4|8 ’
= lglag)y = = Tgbg)| <= (4D lglag)P+ =D g(bg")
q a=0 q b=0 q a=0 q b=0

< é (42 lg(aq)]> +4) Ig(bqr)|2>
1 )
=38 (52 l9(aq")] ) :

In the same way, we get

c

% > lglag"™ ) - %Zg(bqR‘l)

b=1

(i)
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4 Q-additive andQ-multiplicative functions

For the second terrfY,), we have

qg—1

i:F ( glaq") — $Zg(bq’") ) < i:F (20@%@(@(1 )|)

< SF (s oo )

a=0 0<a<q
q—1
<qpY_ Fllglag")]) .
a=0

In the same way, we get

iF ( glag™
a=1

Since

n<N
]' *
< % F(lg*(n) — Erc(9)])
n<(c+1)gh-1
L S F(lg' () — Ere()))
- c <C+ 1)qR_1 g R,C g

n<(c+1)gk

the inequality (4.2) follows.
(i) Since
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4.2 Generalized T@an-Kubilius inequalities foR-additive functions

we then have

o> Fllgteq)) + ¢ 3 Fllglaa™ )
R—2 = 1/2 |- 1/2
< F ((5 |g(aqr)\2> +F (ZZW(GQR_I)’Q)

The inequality (4.3) follows.

For F'(x) = P with p > 1, we obtain a recent result by M. Peter and J. Spilker [78]

for some constamt/” > 0.

If p = 2, we obtain an analog of the Tam-Kubilius inequality from Theorem 4.2.1.

Corollary 4.2.2. Letg : Ny — C beg-additive,c¢®™! < N < (c+1)¢®* ' withR € N

and some € Nwith0 < ¢ < q.

We set
R—2 1 q—1
Er(g)=)> > glaq"),
r=0 q a=0
and
] — B
Ere(9) = Erl(9) + - g(ag™™)
a=1
Then,
1 R—2 1 q—1 1 c
~ 2 l9(n) = Bre(g) <2 ( p lg9(ag")” + — > !g(aqR’l)F) . (45
n<N r=0 a=0 a=1
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4 Q-additive andQ-multiplicative functions

Analogously, we get

Theorem 4.2.3.Let F' be an arbitrary nonnegative-valued increasing function satisfying
the inequality
F(2z) < pF(x)

with some constant > 0. Letg : N, — C beQ-additive, letcQr 1 < N < (¢+1)Qr_
with R € N and some € Nwith0 < ¢ < gx.
We set

:lo
—
[}
S

|
—

S |-

g(aQT—1>7

=0

Er(g) =

\3
Il
—

e

and

c

ER,c(g) = ER(Q) + % ZQ(GQR_l).

a=1

Then, for some constant; > 0,

% 3 Fllg(n) — Eacl9))

n<N

IN

_ gr—1 1/2
(z S a2+ 2 Sl )
rlraO

)
) oo

aQr 1 _Z er 1
&=

C

1
Q(CLQR—l) - E g(bQR—l)

b=1

R-1
n= ZgT(n)Qr,
r=0
which0 < ¢,(n) < ¢,4+1. We obtain
R-1
g(“) = Zg(gr<n)Qr)
r=0
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4.2 Generalized T@an-Kubilius inequalities foR-additive functions

Let n.(n) = g(e(n)Q,), thenno,...,ng_, are independent random variables in the

R—-1
Laplace spac0, 1, -, (c+ 1)Qr_1}, andg = > _n,.
r=0
We define the functiog*
)
9(aQ,) for r<R—-1,0<a< g1,
. orr=R—-1,0<a<c;
9" (aQ,) =

0 for r>R—1,0<a<q41,

\ orr=R—-1,c<a<qgr.

Then¢, = n,. — E(n,) are independent random variables of zero mean, and
R—-1
g* - E(g*> - ZST )
r=0
whereE(g*) = Eg(g).

Applying the Burkholder’s inequality (4.4), we obtain

1
Y Fllg(n) - Endlo))
(C + 1)QR_1 n<(c+1)Qr—1
i 1 ! ?
< FLD]=> |9(aQy) = => " g(bQ,1)
= I = T =
o\ 1/2
c 1 c
+ - g(aQp_1) — - Zg(bQR—l) )
a=1 b=1
R—1 1 qr_l 1 qT_l
+ Z — Z F{lg(aQr—1) —— > g(bQ1)
r=1 1" a=0 ar b=0
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4 Q-additive andQ-multiplicative functions

We estimate the first summand as in Theorem 4.2.1.

2

gr—1 1 gr—1 1 gr—1 4 gr—1
- Z aQr 1 Z g(erfl) S — | 4 Z |g(aQr71)‘2 + — Z g(erfl)
™ =0 qr a=0 qr b=0
1 gr—1 gr—1
<-4 > lgaQ )PP +4) 909,
r a=0 b=0

QT_l
( S ot
qr =0

In the same way, we get

Since

IN
|

5 Y R o) - Baelo))

n<(c+1)Qr—1

c+1 1
¢ (c+1)Qp 2

7 n<(c+1)Qr 1

IN

the inequality (4.6) follows.

F(lg"(n) = Erc(9)]),

)

)

Corollary 4.2.4. Letg : Ny — C beQ-additive,cQr_; < N < (¢ +1)Qr_; withR € N

and some: € Nwith0 < ¢ < ¢p.

We set
R—1 1 qr—1
Er(g)=)> — > g(aQ,_1)
r=1 I a=0
and
1 C
Er(9) = + - Zlg(aQR .
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4.3 Limit distributions ofQ-additive functions

Then,

NZ’Q — Egr.( )’2§2<

n<N

=)

-1

r

(=}

1 1 «
o |9(aQ,1)[* + p > \Q(CLQRM?) . (4.7)
r=1 1" a=0 a=1

4.3 Limit distributions of Q-additive functions

In the case of th@-adic scale, necessary and sufficient conditions for the existence of
an asymptotic distribution for a real-valugeadditive function have been given by H.

Delange [10] in 1972, he proved the following theorem

Proposition 4.3.1 (Delange [10])Let g be a real-valued;-additive function. Thep has

a limit distribution if and only if the series

oo q—1

> glaq),

r=0 a=0
and

oo q—1

> d'lag

r=0 a=0
converges.

The limit distribution has as characteristic function the infinite product

0 1 q—1 '
[T 1+ explitg(aq)) | .
r=0 q a=1

which converges for all real

This is similar to the theorem of E8@ - Wintner [16] for the ordinary additive functions.

J. Coquet [4] considered in 1975 the same kind of problems in the cases Ofatie

scales and obtained mainly sufficient conditions, he proved the following theorems
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4 Q-additive andQ-multiplicative functions

46

e If {¢.},>1 is bounded:

Proposition 4.3.2 (Coquet [4]).Let g be a real-valued-additive function.

Then,g has a limit distribution if and only if the series

o) 1 gr—1
s L (z g<agr_l>) |
r=1 qr a=0

and
[ele} 1 gr—1
o (z g2<agr_1>)
r=1 qr a=0

converge.

The limit distribution has as characteristic function the infinite product

H q_lT (1 + TZ exp(itg(aQr—1)>>

a=1

which converges for all real.

If {¢,},>1 is unbounded:

Proposition 4.3.3 (Coquet [4]).Let g be a real-valued2-additive function.

We set
Q,_q) if Q1) <1,
g (a2, 1) = 9(aQ,—1) if [g(aQ,1)]
1 if |g(aQ,-1)| > 1,

and

j 2
By = sup (j%Zg*(aQr_l)).

1<j<qr—1

If 37 — 0, and the series



4.4 Mean-value theorem f&-multiplicative functions

and Z (qzlg " )

are convergent, them has a limit distribution, its characteristic function is

H ! (1 + i exp(itg(aQ,_ 1))) :

1 dr p—

4.4 Mean-value theorem forQ-multiplicative functions

In the same paper, H. Delange [10] asserts that for eyenyltiplicative functionf with
|f| < 1, whereN, = | &z

loggqd?

13 ) = H (Zfag)

asxr — oQ.

From this, he deduced thadim |m(x)| always exists and equals

[e.o]

IS far)
r=0 q a=0

which is nonzero if and only if

oo q—1
> > Re(l- f(aq")) (4.8)
r=0 a=0
converges, and
q—1
> flag)#0  (forallr € No). (4.9)
a=0

Furthermore, he proved thdim m(z) exists, and is nonzero if and only if (4.9) holds

Tr—00

and the series

[y

q—

> 7)) (4.10)

r=0 a

Il
=)
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4 Q-additive andQ-multiplicative functions

is convergent.

As an analogue of the Delange result, J. Coquet [4] proved the following mean-value

theorems fo-multiplicative functions modulusgt 1.

e If {¢.},>1 is bounded:
Proposition 4.4.1 (Coquet [4]).Let f be aQ-multiplicative function with f| < 1.

(i) If the mean-value of exists, and is nonzero, then the series

00 gr—1
> (Z(l - f(aQH))) (4.11)
r=1 1 a=0

converges, and

gr—1

1+ > f(aQ1) #0
a=1

forall » € N.

(if) If the serieg4.11)converges, then the mean-valuefas equal to

i ()

which converges.

e If {g,},>1 is unbounded:

Proposition 4.4.2 (Coquet [4]).Let f be aQ-multiplicative function with f| < 1.

1<j<qr—1 +1
a=0

j
(i) If max {L Z(l — Re f(aQTl))} — 0, asr — oo, and the series
J

S <i<1 - f(aer))> (4.12)
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4.4 Mean-value theorem f&-multiplicative functions

converges, then the mean-valuefas equal to
[e's) 1 qr—1
I {— (1 5 f(aQr_l)) } |
r=1 r a=1

(i) If the mean-value of exists, and it is nonzero and

which converges.

QT_I

Z Zl—RefaQr 1) < oo,

then the serie$4.12)converges and

gr—1

L+ > f(aQ1) #0

for all » € N.

It appears to be essential to have information on the difference

=D INOE | B SIS

0<n<zx 0<r<r(z) O<a<q,

wheref(-) is anyQ-multiplicative function of modulus< 1, and more precisely, to get a

characterization of

lim i Y rm- 1] — Z f(aQ,_) | =o0. (4.13)

0<n<x 0<r<r(z) 0<(l<(]r

In fact, if the sequencéy, },>1 is bounded, the relation 4.13 is true always. Bytif},>;
is unbounded, the situation is quite different. For example, in [1], G. Barat constructed a

Q-multiplicative functionh with values 1 or -1 such that

hm IT o 3 hlao)

0<r<r(z) QT 0<a<gr
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4 Q-additive andQ-multiplicative functions

exists, and it is a positive number while
1m inr — n
r—o0 I
n<x
is less than or equal to zero.
This difference is due to the existence diirat digit phenomenowmwhich is unavoidable

for unbounded sequencég. },>, (see E. Manstatius [63]).
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Chapter 5

Mean behaviour of uniformly
summableg-multiplicative functions

and its applications

The aim of this chapter is to study the behaviour of the m%nz f(n and— Z |f(n

n<N
asN — oo, for a > 0, where f is uniformly summable and multlpllcatlve To our

surprise, we find that fog-multiplicative functions the spacé” for everya > 0 coin-
cides with the spac€*. Furthermore, applying our main results, we investigate finitely
distributedg-additive functions and find characterizations femultiplicative functions
belonging to the spacB! of limit-periodic functions and the space of almost-periodic

functions by their respective spectrurff).

5.1 Main results

Here we recall that an arithmetical functigne £! is said to bauniformly summable if

1

lim sup — n)| =0,

Jm s S 17
IF(m)>K

51
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and the space of all uniformly summable functions is denoted'byf is g-multiplicative
if f(0)=1and

flag" +b) = f(aq") - f(D)

for every pair of integefa, b) satisfying

0<a<gqand 0<b<q".

Definition 5.1.1. Let f beg-multiplicative function, we define

Mgo = [0 +u70),

r<R
and
HR = H(l +U7~)
r<R
14 14
with u, ,, = a 1) andu, := — aq”) — 1).
, QEZU?Q q}:U(Q) )

a=1 a=1

The following theorem describes a complete characterizatiog-ratiltiplicative uni-

formly summable functions.

Theorem 5.1.2.Let f be ag-multiplicative function. Then, the following assertions are

equivalent.

(i) felLr and|f|: > 0.

(i) Leta > 0. The series

52
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=}

=S (If(agh)] = 1) (5.1)
r=0

is convergent, and for some constantéa), co(«) € R, for all R and for some

Q| =

S)
Il
o

sequencé R;}, R; — oo, the inequalities

> - Z [f(aq")|” = 1) < cia) < oo, (5.2)

r<R



5.1 Main results

and

(1f(ag")* = 1) = es(@) > —o0 (5.3)
hold.

(i) f e L, and| f]lo > 0forall o > 0.

The mean behaviour of such functions is given in

Theorem 5.1.3.Let f € L* be ag-multiplicative function, and lef f||; > 0. Further, let
¢ < N < ¢ with R € N. Then, asV — oo,

1

N Zf(n) = Iz + o(1)
n<N
and, for everyx > 0,
1 —
5 2 ) = Tra + 0(1).
n<N

An immediate consequence is the following
Corollary 5.1.4. Let f beg-multiplicative. Then, the following assertions hold.

(i) Letf e L*. If the mean-valud/ (f) of f exists, and if it is different from zero, then

the series

S (fag') - ). (5.)
-

S5 o) - 1 55)

ﬁ
Il
o
)
Il
o

converge, and

i
L

flag") #0 for each r € Ny.

S
Il
o
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(i) If the series (5.4) and (5.5) converge, ther L*, and the mean-valug/( f) of f

exists,

(i) Letf e L*. Ifthe mean-valué/(f) of f exists, and if it is different from zero, then
the mean-valud/(|f|*) of | f|* exists for eaclw > 0 (and is different from zero).
The case of mean-value zero is contained in

Corollary 5.1.5. Let f € L* beg-multiplicative. Then, the mean-valaé(f) of f is zero

if and only iflIz = o(1) asR — oc.

5.2 Preliminary results

To prove our main theorem, we need to show the following lemmata
Lemma5.2.1.Let f € L* beg-multiplicative and let| f||; > 0. Then,

>

r=0 a

1
(If(ag")|* = 1)* <

q

Q| =
I
o

for all a > 0.

Proof. Because of| f||; > 0, we can find a sequende;} such that

Z 1>>

n<x;
5<\f(n)|0‘<K

asi — oo for some suitable, K > 0.
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5.2 Preliminary results

We define amy-additive functiong by

aq) = log(|f(ag")|*) if f(ag") #0
1 if f(aq") =
Then,

n<x;
—c1<g(n)<cg

with ¢; = log 1/ andcy, = log K.
For real numbers, we define the functions

=) exp(itg(n))

n<x

foranyx > 0.

Delange [10] proved that the limitt) := lim l]H(:zc,zf)| always exists, and(t) # 0

r—00 I

holds if and only if

—_

Sig

r=0 a

1 — cos(tg(aq")))

Q|
Il
o

converges.

Further, we define the functioh by
S 2
sSin wv f 0’
D(V) — ( v’ ) v %
1 ifv=0.

Then, for each real numbegr we have

0 , 1— if ly| <1,
/ 627rwyD(V)dV _ ‘y| ‘y| —
—00 0 otherwise.

Interchanging summation and integration shows that for positive

JAR LR LTS (1_§|g(n1>_g(n2)|),

0 ni,ng<x

lg(n1)—g(n2)|<A

We divide byz;, letz; — oo, and apply Lebesgue’s theorem for dominated convergence.
If \is sufficiently large, then

/OO M(t)2D(\t)dt > 0.

o
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More exactly, ifg(n) satisfies the condition given in the definition of finitely distributed
functions, and if\ > 2¢,, then the value of this integral is at least as large;#2.
It follows that there is a sdt, of positive Lebesgue measure, on whi¢h > 0.

Now,

e}

Z(l —cos(tg(aq"))) < oo

r=0
forevery0 < a < ¢ —1andforallt € E. It means

o0

Z(l —cos(tg(aq"))) < c

r=0

forall t € E*, whereE* is some subset of andm(E*) > 0. This is equivalent to

= t
Zsin2 (§g(aqT)) <c< oo
r=0

forall t € E*.

In view of the inequality
.2 .2 .2
sin“(x +y) < 2sin”z + 2sin”y

and applying Steinhaus’s lemfmae can find & > 0 such thatforald < a < ¢ — 1,
and for|t| < T, we get

o0

Z(l —cos(tg(aq"))) < 4e < o0 (5.6)

r=0

Integrating (5.6) from 0 t@" and multiplying with1/T", we have

> h(Tg(aq")) < 4e < oo (5.7)
r=0

sin

whereh(u) =1 — ” for u # 0 andh(0) = 0.
Sinceh(u) > 0 for all real numbers:, andh(u) > 1/2 for u > 2, we conclude that

lg(ag")| > 2/T for only finitely manyr.

1(see [12], Lemma (1.1) The differences generated by a set of real numbers of positive measure, cover

an open interval about the origin.)
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Thus, there is ai/, > 0 such thatg(aq”)| < M, for all» > 0, and there isn,, > 0 such
thath(u) > mau? for ju] < TM,.

Hence,
- 2qlog2
)2
;(g(aq )" < T
00 q—1
and the serleg 2 converges.
= a:0

Since(log |z|)? < (Jz| — 1)%if ||z| — 1| < 1/2, the proof of Lemma 5.2.1 is finished.

Lemma 5.2.2.Let f be¢-multiplicative andR € N. Then,

q"-1

> ) = ¢ Mg
n=0
for everya > 0, and
f(n) = ¢"lg.
n=0
Proof. Induction overR yields the following formulas

R+1_1 qR—l

Z F)* =D > [ flag™ + D) |,
a=0 =0

and
q—1

> fln) = > flagd®+1) ],

=0

i
o
S}

which prove Lemma 5.2.2.

Lemma 5.2.3.Let f € L* beg-multiplicative and|| f||; > 0. Then,

M = (cla, | f]) + o(1) p(z)

r<R

for all « > 0 with some constant«, |f|) € R
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Proof. It is easy to see that, because of the convergence of the series in Lemma 5.2.1, we

have
Mpo = [[(+ua)

r<R

= exp (Z log(1 + m)>

r<R

— exp (ZN +0 (Z(%F))

r<R r<R

= (ca, | f]) +o(1)) exp (Z ur,a)

r<R

for all & > 0, and some constantq, |f|) € R.

Lemmab5.2.4.Let f € L* beg-multiplicative with|| f||; > 0, and leta: > 0. Then, there

are some constants(«), co(«) € R such that

SIS (A @)l = 1) < o) < oo (5.8)
r<R q a=0
for all R and
LS (15 (agh)® = 1) = ex(a) > —oo (5.9)
r<R; q a=0

for some sequendgR; }, R; —

8

Proof. Sincef € L! and||f||; > 0, by Lemma 5.2.3, we get the inequalities (5.8) and

(5.9) fora = 1. Now, leta > 0, and let

Y

N | —

[1f(aq")] = 1] <
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5.2 Preliminary results

then
|flag")|* =1 =(|f(ag")| =1+ 1)* =1
= a(|f(ag")| = 1) + O((| f(ag")| — 1)),

which implies the inequalities (5.8) and (5.9) for alt> 0.

Remark. Let f € L* beg-multiplicative with || f||; > 0, and leto > 0.
If

> 1f(n)

n<x

then

q—

D

r<R a=

|

(If(ag")|* = 1) = O(1)

asRkR — oo.

The next lemma shows a general method for getting upper estimations.

Lemma 5.2.5. Let f be ¢g-multiplicative and leiy! < N < ¢ with R € N. Then, for

everyh € N, we have

r—1 er—r(N)-1

", [] Fena (Ve S flag™ )

DS

r=1

> fn)

n<N

+<H |f(en (N > O(¢g" ™),

h

where theD-constant depends only gn

Proof. Let N = cq/~! + b, wherel < ¢ < ¢, andb = Y &/(N)q" < ¢""', where
r<R—1
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0<e.(N)<qg-—1.Then,

f(n)
n<N
c—1 gi—1-1 bh—1
= ( Z f(aquJrl)) +Zf(ch L)
a=0\ =0 1=0
c—1 g1 b—1
= Zf(aqR_l) Z F)+ f(cd®™ DY F()
a=0 1=0 1=0

er—2(N)—1
+q" g o f(cg™ ) Z fag™?)
a=0
er—3(N)—1
+q" g5 f (cg" ") f(er-a(N)g"?) Z flag"™?)
a=0

+

er—n(N)—1
+q" Mg f (g™ ) Fer-a(N)G"2) - fleronnn (N D flag™™)

a=0
bp—1

b —1

> )

=0

whereb;, < ¢*~", and

< 3 1f0)l = 0" M.

=0

In the following lemmata 5.2.6, 5.2.7 and 5.2.8, we collect some more propertigs of

multiplicative functionsf € L* with || f||; > 0.
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Lemma5.2.6.Let f € L* beg-multiplicative and|| f||; > 0. Then, the series

is convergent if and only if

Z ZRefaq —1)>c3>—©

r<R;

for some constant; € R and some sequendé; } with R; T oo.

Proof. We have

q—1
- Z|faq S =Y Y )] - 1)
r<R r<R * a=0
1
+2 P (If(ag")| = 1)
r<R a=0
1 )
—2 p (Re f(ag") — 1)
r<R a=0
21 +222 _223'

By Lemma5.2.1) , is convergent and, by Lemma 5.2)4,, is bounded from above for

some sequencgR; } for R, — co. Thus, Lemma 5.2.6 holds.

Lemma5.2.7.Let f € L* beg-multiplicative, and lef| f||; > 0. If

rQ

q—
ZEZRefaq) 1) > e3> —o0
a=0

<R; =

for some constant;, and for some sequengé; } with R; T oo, then

g := H(l + u,)
r<R
= (e(f)+o(1))exp (Z uT>

for some constant(f) # 0
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q—1
Proof. If > - Z (Re f(ag") — 1) > ¢3 > —oo for some constant;, and for some

r<R; = a=0
sequencd R;} with R; T oo, then by Lemma 5.2.6, we have

0 9] -1
Z’W ZEZ flaq") —1* < o0,
r=0 1 a=0

r=0 q

and we obtain

Meo= []+u)

r<R

= exp (Zur + O <Z \ur|2>>
= (elf) + o)) exp (Z u)

r<R

with some constant( f) # 0.

Lemma5.2.8.Let f € L* beg-multiplicative, and let| ||, > 0. If

thenllp — 0 asR — oo.

Proof. Obviously,

Tg| = exp <Zlog 1+ ur|> ,

r<R
and

1
log |1 +u,| = =3 log((1 + Rew,)? + (Imu,)?)
1 2
=3 log(1 + 2Reu, + |u,|?)

1
< Reu, + §|ur|2 :
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Since

2 q_l 1q_1 T 2
ur? < F—-=> [ f(aqg") — 1
q qa:0

qg—11]1 a1 2q 1
= T2 ST ag)] = 12 + 23 (1 (ag")| — 1) — 2Rew, ¢,
q  — q=
we observe
1 -1
Re u, (_q ( 2Reur)) = —Reu,
q

which implies

ITIg| < exp (Z . Z Re f(aq") — 1))

r<R
and the assertion of Lemma 5.2.8 follows.

Remark. Let f € L* be g-multiplicative and||f||; > 0. Then, by Lemma 5.2.7 and
Lemma 5.2.8]1; = o(1) if and only if

Z ZRefaq —1) - -0

7”<R
asRk — oo.

Using the Tuan-Kubilius inequality (Corollary 4.2.2), we prove

Lemma 5.2.9.Let f € L* be g-multiplicative, ||f]l; > 0 and¢®*~! < N < ¢ where
R € N. Further, let

-1

s}

=1
Z— |f(ag") — 1)? < <.
r= qa:O
Then, for anyh € N,
1 L
N D ) = Tla| < g™+ o(1)
n<N

as N — oo, with some constarite R which only depends ofi.

Proof. We set

63



5 Mean behaviour of uniformly summahjemultiplicative functions and its
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Then, for anyh € N, we have

1
NZf(”)—

n<N

—Z|f — fr-n(n)

n<N

1
N Z fr-n(n) = NOg_pi1| + [MTg_py1 — Hg|

n<N

= §:1‘+’§:2+Zl

Ad ) .
We choose, € N such that f(aq") — 1| < 15 forall r, a € Nwithr > 79, 0 < a < g,

and we define the functiogy

> “log f(er(n)q") for R >rg,
gr(n) == 1< >R
0 for R<rg.

Then, the functiongy areq-additive.

Now,

—Zlf — fr-n(n)]

n<N

= —Z|fR n(n)|lexp(gr-n(n)) — 1|

n<N

NZL(JR n()|([f ()] + [ fr-n(n)])

1/2 1/2 1/2
< <%7;V|9Rh(n)‘2> ((%%f(”V) +<%§V|fz%h(”)|2> )

Applying the Tuan-Kubilius inequality fog-additive functions (Corollary 4.2.2), we ob-

IN
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tain
% Z |9r—r(n)
n<N
< =3 gt~ Y zgR w(aq’) %z 3 zg“aq
n<N R— h<r<R n<N |R— h<r<R

IN

4( >, leogfaq )I*+ Z|logf<aqR-1>\2>+

R—h<r<R— 1 a=1
2

> Zlogfaq

R— h<r<R

wherecg?! < N < (¢ + 1)¢®~! with some integee with 0 < ¢ < .

Now, sinceh is fixed, andog f(aq") — 0 for r — oo, such that

lim hm—Z|gR n(n)| =

R—oo N—oo N
n<N

Using Lemmata 5.2.1, 5.2.3 and 5.2.4 for= 2 show f, fr_, € L2, and thus,

Z |f(n) = frn(n)] = o(1).

n<N

Ad ) ,:

Forall0 < a < gwith 0 < n < ¢®"*!, we have

fren(ag™ " +n) = f(n),

and for alll € N, we get

lqR h+1_ 1 qR7h+171
Z fronn) =1 Y f(n)=1g"""Tlp py .
n=0

Further, forN = l¢®~"+1, we obtain

% Z Jr-n(n) =Ilg_pt1 =0

n<N
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and forlg®""*' < N < (1 + 1)¢®"*! andl > 1, we conclude

> froa(n) = Nlg_pp

n<N
N-1
= |=(N = 1g" " g _pia + Z fr-n(n)
n:lqR—h‘H

_ —(N _ lqR—h+1)HR_h+1 + fR—h(lqR_h+1) Z f(n)

S C(N _ lquthl)

< CqR—h-H

with some constant depending only oryf.

Ad A: Obviously (cf. proof of Lemma 5.2.8)

R-1 1 q—1
g — Hr—ps1| = [Hr—p41] ( = f(aqr)> —1
r=R—h+1 q a=0
R-1 1 q—1
<c - (flag") = 1)
r=R—h+1 q a=0

Sincer is fixed, andf(aq”) tends to 1 as runs to infinity, we havelly — I1z_,| = o(1)

asRkR — oo.

5.3 Proof of main results

Proof of Theorem 5.1.2.The implication (i)=- (ii) is proved as follows.
If f € L*and| f|; > 0, we conclude, by Lemma 5.2.1, that the series (5.1) is convergent.
Lemma 5.2.4 shows the inequalities (5.2) and (5.3) fowal 0.
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Proof of (ii) = (iii).

By Lemma 5.2.2 and the convergence of (5.1), we show, as in the proof of Lemma 5.2.3,

q—l

RZ\f )|* = Tlaa = (c(a, [ f]) + o(1) exp(Y " ura)

r<R

for all « > 0 with some constant(a, | f|) € R. Observing, iff®~! < N < ¢¥,

¥ M < 5 3 )" = T

n<N n<qf

and the inequality (5.2) giveg € L%, and (5.3) implied| f||, > 0.

The implication (iii))=- (i) is obvious.

Proof of Theorem 5.1.3. First, we assume thdiz = o(1). Then, by Lemma 5.2.5

— Z f(n . Now, letTlg # o(1). Then, by Lemma 5.2.6 and Lemma 5.2.9, we
n<N
have— > f(n) =Tx+o(1).
n<N

FurthermoreHR,a # o(1), because off < || f||1 < ||f]l« for all « > 0. Then, by Lemma

5.2.1 and Lemma 5.2.9 the second assertion of Theorem 5.1.3 follows.

Proof of Corollary 5.1.4. (i) Let f € L* beg-multiplicative. If the mean-valué/( f) of
f exists and is nonzero, then obviousgly||, > 0.

We know that (see the proof of Lemma 5.2.8)
1
Mg| < exp (Z 7 > (Re f(aq") - 1)) :
r<R a=0

> 1] .
Further, Z = "(Re f(ag") — 1) > c5 > —oo for some constant; € R, since the
q a=0

mean-vaa eVl (f) of f exists, and it is different from zero.
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By Lemma 5.2.6, the series (5.5) converges, and Lemma 5.2.7 gives

g := H Zf aq")

7‘<R

with some constant( f) # 0.

Since the mean-valuk/(f) of f exists, and it is nonzero, the series (5.4) converges, and
q—1

> " flag") # 0 for eachr € Ny
a=0
(ii) If the series (5.4) and (5.5) converge then the infinite proc}igmjt IIx exists, and it is

zero if and only if a factor equals zero. Thils< ﬁ;l for all R and

Z Z|faq | —1)> ¢4 > —00

7‘<R
for some constant; € R.

Now,

Z Zlfaq )—1P= ) - Zlfaq |- 1)?

r<R r<R

+2) - Z|faq |- 1)

r<R

—22 ZRefaq ) —1),

holds, and the convergence of the series (5.4) and (5.5) shows that the series

Z Z\faq )| —1)%

7‘<R

and

> .- Z|faq |—1)

T‘<R

converge. Then, by Theorem 5.1.2, we hgve L~ and|| f||, > 0.
Furthermore, by Lemma 5.2.6 and Lemma 5.2.9, we know that the meanAslfigof
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f exists, andV/(f :H< Zfaq >

A small modification of the proof for the estimation®f, in Lemma 5.2.9 yields, because
of the convergence of the series (5.4) and (5.5), ftliat fz|; — 0 asR — oc.

(i) Using Theorem 5.1.2 and the same arguments as above, we conclude that the series

qg—1

> (f(agh)* = 1),

and

converge, and thus the mean-vallg|f|*) of |f|* exists for eachh > 0 (and it is
different from zero).

Proof of Corollary 5.1.5. Obvious.

5.4 Application to g-additive functions

Let us now turn tog-additive functions. Here we recall that a functign N — C is

g-additive if f(0) = 0 and
flag" +b) = f(aq") + f(b)
for every pair of intege(a, b) satisfying
0<a<gqand 0<b<q".
The main results are as follows.
Theorem 5.4.1.Let g be g-additive. Then, the following assertions hold.
g—1

(i) If g is finitely distributed, then the seri€ (g(aq"))? converges.
a=0

g

I
o

T
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(i) If, for somea(z),

“tn < w:g(n) — ale) <y} = G(y)

where( is a distribution function, thep is finitely distributed.

=)
—_

(iii) Letz 2 converge, and let(x Z Zg aq") Hgin

7‘<Nz -
The ,

)
Il
=)

éﬂ{n <z:g(n)—oalr) <y} = Gy),

whered is some distribution function.

Assertion (iii) of Theorem 5.4.1 has already been proved by J. Coquet (see [4], Theorem
Il. 4).

Proof.
(i) The assertion is an immediate consequence of the proof of Lemma 5.2.1.
(i) We choose the number sufficiently large, and such thaty are continuity points of

the limiting distribution ofg(n) — a(z). Then,

S = éﬁ{néx:g(n)—a(:ﬁ) <7t> %

Moreover, letm andn be any two elements &, then

lg(m) = g(n)| < lg(m) — a(z)] + |a(z) — g(n)] < 27,
from which it is clear thay(n) is finitely distributed.
(iii) Let
R )
0 (t) := - Z eI,

n<x

Then, we shall prove that

pa(t)e 1 — o(t) (z — o)
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5.5 Characterization of almost-periodianultiplicative functions

forall t € R, wherep(t) is continuous at = 0.

] 1
By Theorem 5.1.3, we have ) "™ = ] <1 + =) (ettole) — 1)) + o(1).
x n<x r<Ng q a=0
1 q—1 ‘ i q—1
Letu,(t) = - (e”g(aqr) —1) andv,(t) = = > g(aq").
q a=0 q a=0
For|t| < T, we obtain
q—1
lu-(t)] < — > lg(ag")l,
a=0
T2(q B 1) — r
Ju, (t)]* < Z > (g(aq"))?
a=0
and
T2 .
|ur(£) — 0r ()] < % (9(aq"))?
a=0

Hence, the infinite produﬂ(l + u, (t))e™>® is uniformly convergent fot € [—T', T

r=0
and defines the characteristic function of a distribution funotion

5.5 Characterization of almost-periodicg-multiplicative
functions

The aim of this section is to find corresponding characterizationg-foultiplicative
functions belonging t®! and.A!, respectively. Here, we recall thais calleda-almost-
periodic, if for everye > 0, there is a linear combinatioh of exponential functiorfs
es, B € R, such that|f — ||, < . The linear space af-almost-periodic functions is
denoted byA. If h can always be chosen to be periodic thfan calleda-limit-periodic.

The linear space af-limit-periodic functions is denoted <. We have the inclusions

1 1 *
DICAC LY

2e5 : N — C with eg(n) := exp(27ifn) is ag-multiplicative function.
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A first step in this direction was done by J. Spilker [79] who proved the following

Proposition 5.5.1 (Spilker [79], Theorem 4).Let f beg-multiplicative and the following

two series

> (flag") — 1) (5.10)

a=0

(7

I
=)

s

and
q—1

|f(ag") = 1J? (5.11)

a=0

K

Il
=)

r

converge. Then,

() feD a>1.

e’} 1 q—1 c

I[ (5 f(aq’”)e_g(aq’”)> if §= %

0 if (8 irrational.

Remark. Assertion (iii) of Proposition 5.5.1 is not correct as it stands. Choose, for

1 . . . . A
example,f = 1 andjg = . wherep is a prime which does not divide Then,f(3) = 0,

and for allr € Ny,

— r ry 1— e(qT+1/p>
;0 flage_1(aq") = —————7 < /D) # 0,

. o = (1S .

i.e. the infinite produc | (— > f(aqr)e_1(aqr)> does not converge in this case.

q P
r=0 a=0

We shall characterize themultiplicative functionsf € D! and f € A' \ D! by their

respective spectrum(f). First we show that the spectrum is empty only in the trivial

case. We prove

Theorem5.5.2.Let f € A' beg-multiplicative. ThenV/ (| f|) = 0 if and only ifo(f) = 0.
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5.5 Characterization of almost-periodianultiplicative functions

In the special case that the mean value exists and is different from zero, using Corollary

5.1.4, we obtain

Theorem 5.5.3.For everyg-multiplicative functionf, the following assertions are equiv-

alent:

(@) f € D! and the mean-valug/( f) is nonzero.

q—1
(b) The series (5.10) and (5.11) are both convergent 3ndf(aq”) # 0 for each

a=1

r € Ny.
(c) f € L* and the mean-valug/( f) exists and is nonzero.
(d) f € D= forall « > 1 and the mean-valug/( f) is nonzero.
(e) f € A' and the mean-valug/( f) is nonzero.
(f) f € A~forall « > 1 and the mean-valug/( f) is nonzero.
(9) f € L>forall « > 1 and the mean-valug/( f) exists and is nonzero.
We use the following well-known result to prove Theorem 5.5.2 and Theorem 5.5.3.

Lemma 5.5.4.(see [77] Chap. VI.8. Proposition 8.2 ) Far > 1 and every arithmetical
functionf , f € A~ifand only if f € A! and|f| € A~.

Proof of Theorem 5.5.3.The implications “(a-(e)=-(c)” are obvious and “(¢}>(b)=-(a)"
hold by Corollary 5.1.4, (i) and (ii). Using Lemma 5.5.4 together with Corollary 5.1.4 for

f

obvious. This proves Theorem 5.5.3.

* «a > 1, gives “(c)=(d)”, whereas the implications “(ei (f)=-(g)=-(c)” are again

Proof of Theorem 5.5.2. If M(|f|) = 0 then obviouslyo(f) = 0. Assume that

M(|f]) # 0. Then, by Theorem 5.5.3f| € A* and M(|f|*) # 0, and Lemma 5.5.4

implies f € A2. By Parseval’s equality/(| f|?) = Z |IM(f-e_s)?, ando(f) = 0
Bea(f)
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implies M(|f]) = M(|f|*) = 0. This contradiction proves Theorem 5.5.2.

Concerning the description of the spectruafif) for g-multiplicative functionsf € D! or
f € A\ D! we establish

Theorem 5.5.5.Let f € D! beg-multiplicative with non-empty spectrumg f).
(@) If M(f) # 0then
o(f) c{pls =

C

b

f(aq")e_g(aq") # 0 for all r € No}.

mod 1, — € Q; p prime, plb = plg;

Q SO
-

)
Il
=)

(b) If M(f) = 0then there exists soni € Q/Z such that

C C .
Uﬁﬂﬂﬂﬁ=%+gmﬂLBGmeWmPM¢M%
-

flag")e_g(aq") # 0 for all r € No}.

1
a=0
Corollary 5.5.6. Let f € A!\ D! be ¢g-multiplicative with non-empty spectrusd f).

Then there exists somg € (R \ Q)/Z such that

C C .
0UM%M§=%+EWMLZGQPWWMPM¢M%

q—

—_

flag"e—_p(aq") # 0 for all r € Ny}

2
I
o

Proof of Theorem 5.5.5 and Corollary 5.5.6.Let f € D! beg-multiplicative and let the
mean-valuel/( f) be nonzero. Then the series (5.10) and (5.11) both converge fat
B € o(f). Theng € R/Z and the mean-valug/(f - e_z) is nonzero. Putting = f-e_g

implies that

i
L

lg(aq”) — 1]? (5.12)

Nk

ﬁ
Il
=)
S
Il
=)
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5.5 Characterization of almost-periodianultiplicative functions

is convergent. We show that this happens if and on}y # g is a rational number and

each prime divisor ob dividesq. We consider three cases.

e Case 1:Let 3 be irrational. The functior_z is g-multiplicative and its absolute
value is equal to 1. By Delange’s result [10] fgimultiplicative functionsf of

absolute value less or equal to 1 whose mean-vadi¢) exists, the series

Z Z\e (aq") — 1] (5.13)

. . . =~ (1 &
converges if and only if the representatidfi(e_z) = H (5 Z )
q—1 .
holds. Sincel/(eg) = 0 and— Z e_g(aq")) # 0 for all » € Ny the series (5.13)
a=0
diverges.

e Case 2:Let 5 = g be rational and assume there is a prignghich dividesb, but

does not divide;. Then for allr the number%qr are not integers. This implies:

‘exp (—g@”) — 1‘ > ‘1 — exp (—%)

Y

and the series

o0 1 .

Z& le—<(aq") — 1) (5.14)
diverges.

e Case 3:Let = g be rational, and assume that for each prime divisdrai¥ides

¢, too. Thenforalk =0,1,--- ,¢ — 1 and allr > ry, we havee_g(aq") = 1.
Now
11— e plag")® < |1 = g(ag")* + |1 = fag")]*.
Since the series (5.11) and (5.12) converge, cases 1 and 2 can not occur. Therefore, the

mean-valuel/(f - e_3) is zero for the cases 1 and 2. In case 3 the series

>

r=0 a

1

q

1y

|~
I
()
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and
00 1 q—1
> = (glag) - 1)
r=0 q a=0
converge. Then
00 1 q—1
M(g) =] . > glaq") (5.15)
r=0 a=0

and the mean-valug/(g) is nonzero if and only if each factor of (5.15) is nonzero. This

proves (a).
For the proof of (b) and Corollary 5.5.6, let the mean-valug bé zero, and let, € R/Z
such that the mean-value ¢f e_g, is nonzero . Therf - e_g, € D'. Sincef € A' \ D!

if and only if 3, is irrational, (a) yields (b) and Corollary 5.5.6.

Example. Let f = ez whereg € (R \ Q)/Z. Then, obviously, the mean-valué ( f)
equals zero and(f) = {5}.
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Chapter 6

Mean behaviour of uniformly

summable Q-multiplicative functions

In this chapter, we extend the results of Chapter 5 to uniformly sumnabieltiplicative
functions. In the case of a bounded sequefigé,~;, we have similar theorems as in
the ¢-adic case. In the case of an unbounded sequépnde-;, the situation is quite
different. Unavoidable for unbounded sequen{gs, >, is the existence of a so-called
first digit phenomenon. We investigate the mean behaviour of uniformly sumrdable

multiplicative functions that belong t©? and for which the first digit condition

12
1<I}l<quj+12‘fagrl 17—=0 asr — o0

holds.

6.1 Main results

Let {¢. },>1 with ¢, > 2, be a sequence of natural numbers, an@let 1, Q, = ¢,Q,_;

whenr > 1. Here, we recall thaf is Q-multiplicative if f(0) = 1, and

f(aQr +b) = f(aQ,) - f(b)

e



6 Mean behaviour of uniformly summabemultiplicative functions

for every pair of integefa, b) satisfying
0<a<gqgy and 0<b<Q,.

Definition 6.1.1. Let f be Q-multiplicative function, we define

M= [[(1+ @),
r<R
and
Hp = [[(1+u)
r<R
1 gr—1 1 qr—1
whered, = - > (1f(aQ—)| = 1) andu, == — Y " (f(aQ,_1) — 1).
" a=0 " a=0

Theorem 6.1.2.Let f € L2 be Q-multiplicative function. If

1 < ,
(X ; | f(aQr-1) =17 = 0, (6.1)

then, forQp_» < N < Qp_;, N — o0

(@ — Zf =TIz +o(1),

n<N

(0) - 3 17| = n + o).

n<N

Theorem 6.1.3.Let f € £? be Q-multiplicative function. If the conditions

J

(i) max ! - > 1f(aQ) = 1P -0,

1<j<qr 9
<j<ar j + 9—0

QT_l

(i) Z Z\faQr 1) — 1? < oo,

rlra()

=

(iil) Z Z f(aQ,_,) — 1) converges,

rlrao
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6.2 Preliminary results

QT_l

(iv) 1+ f(aQ_1) #0.

a=1

hold, then, the mean-valud (f) of f exists and is different from zero.

Theorem 6.1.4.Let f € L? be Q-multiplicative function. Suppose the mean-valdéf)

of f exists and is different from zero,

1 J
max aQ, 1) — 1> — 0,
s 5 2 e~
and
e’e} 1 (Ir_l
DY @2 1P < oo
r=1 qr a=0
Then,
o] 1 qr—1
> = (flaQ) - 1)
r=1 qr a=0
converges, and
qr_l

6.2 Preliminary results

To prove our main theorem, we need to show the following lemmata

Lemma6.2.1.Letz,...,z. € C are complex numbers, then

k k
21z — 1) < [ max(z], 1) S |z — 1.
j=1 J=1

Proof.

21z — 1 <zllzrozeer — 1 4 2 — 1

< max(|z), 1) (|21 21— 1 + 2 — 1))

k k
< [ max(lz, 1) |z — 1.
j=1

Jj+1
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6 Mean behaviour of uniformly summabemultiplicative functions

Lemma 6.2.2.Let f be Q-multiplicative andR € N. Then,

Qp_1—1

Z f(n) = Qp_11lR,
n=0

and
Qp_1—1

Y ()] = QpiTlk.

n=0
Proof. Induction overR yields the following formulas
Qp—1 gr—1 /9Qr-1-1
> f) =), ( > f(aQR_1+Z>>,
n=0 a=0 =0

and

[en]

n=0 a=

for all R > 0, which proves Lemma 6.2.2.

Lemma 6.2.3. Let f be Q-multiplicative function and

qu

Z Z!fagml—l)

then

T = (ex(f) + o(1)) exp (Z a)

r<R

for some constant;(f) € R.

Proof. Since
%S S 1 qr—1 2
> (i) _Z—Q< |faQr1!—1)>
r=1 =1 2r a=0
o0 1 qr— 1
<D D00 = 1) < oo
r=1 1" a=0
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6.2 Preliminary results

is easy to see that

My = [[(+a)

r<R

= exp (Z log(1 + @))

r<R

= exp (Zm +0 (Z(W))

r<R r<R

= (c(|f]) + o(1)) exp (Zw)

r<R

As a consequence we get

Corollary 6.2.4. Let f be Q-multiplicative function and

qu

Z D (1f(aQ1)| - 1)* <

rlTaO

then,f € L', and|| f||; # 0 if and only if for some constants, ¢, € R

ZQLSC1<OO,

r<R

asR — oo, and

ZQLZCQ>—OO

r<R;

for some sequendeR; }, R; — oc.

Lemma 6.2.5. Let f be Q-multiplicative function and

qu

Z Z|faQr1 ) —1* < o0,

r=1 Ir a=0
then,|T1g| < 1 if and only if
> (@Reu, + |u,|*) = O(1),
r<R

asR — oo.
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6 Mean behaviour of uniformly summabemultiplicative functions

Proof. We get
el =T 1 +u

r<R
= exp <log H 11+ ur|>
r<R
= exp (Z log |1 + ur|> :
r<R
Since )
log |14+ u,| = 5 log(1 + 2Re u, + |u,|?)
= 2Reu, + |u,|* ,
we obtain

IIg| =exp <Z log |1 + ur|>

r<R

= exp <2(2Re ur + |ur|2))

r<R

Lemma 6.2.5 yields the following

Corollary 6.2.6. Let f be Q-multiplicative function and

gr—1

>3 If(a,a) ~ 1P < o,
r=1 1" a=0

then,

() Ig| — ¢ # 0ifand only if the seried) " (2Re u, + |u,|*) converges,

r<R

(i) [Tg| — 0ifand only if the serie _(2Rew, + |u,|*) diverges,

r<R

asR — oo.

82



6.2 Preliminary results

Example 6.2.7.Let

1 \/§
Uy _;+ZW’
R : r+1  (r+1)v2
h = — ) — 1 with N=1- .
whereu, ) GEZI f(ar!) with f(ar!) = +1 R

Itis easy to see that, the serigsj Re u, diverges, but the series
r=1

o0

Z(ZReur + |u,?) = 2712

r=1 r=1

converges.

Lemma 6.2.8. Let f be Q-multiplicative function. If

1<j<qr ] ‘I’ a—0
and
o0 1 gr—1
> Q) ~ 1P < oo,
r=1 qr a=0
then,

Iz = (ca(f) + o(1)) exp (Z 2Reur)

r<R

for some constant,(f) € R.

Proof. Since
0o 0o 1 gr—1 2
Dolwl =Y =Y (faQ) — 1)
r=1 r=1 qr a=0
00 1 qr—1
S IOMICCIESTETS
r=1 1" a=0
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6 Mean behaviour of uniformly summabemultiplicative functions

and applying the proof of Lemma 6.2.5, we obtain

Mg| = exp (Z log |1 +url)

r<R

= exp (Z(QRe Uy + |ur\2)>

r<R

= (ea(f) +o(1)) exp (Z 2Reur> .

r<R

Lemma 6.2.9. Let f be Q-multiplicative function. If

1 J
max —— Z |f(aQ, 1) — 1> — 0,
a=0

1<5<qr ] + 1
and
o0 1 qr—1
> =Y faQ) — 1 < o0,
r=1 1" =0
then,

x = (es(f) + o(L)) exp <Z )

r<R

for some constant;(f) € R.

Proof. By the proof of Lemma 6.2.8, we know tha}, |u,|* < oc.

r=1
Hence,

ro= []+u)

r<R

= exp (Zur + 0 (Z \ur|2>>
= (e3(f)+o(1))exp (Z uT> .

r<R
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6.3 Proof of main results

6.3 Proof of main results

Proof of Theorem 6.1.2.We set

and letM > Qp_4, then

=S )P = 5 < PORFICOIEE {n

n<M m<Qp

Zsr(n)Qr_l =mAn< M}) )

PutcQg, 1 < M < (c+ 1)Qg,—1 With 0 < ¢ < gg,, and to estimate the above term, we

obtain

1 2 KQT : (C + 1)QR1*1QR172 e qdr—1
- < < 2K
7 3 el < i <

whereK is constant. Thug; is also aL? function.

Y

Then, for eachh € N,

1

%MZNf(n) el < 5 3160 = fealo)
+% T;vahm) — NTlp_p| + [[g_p — Ig|
= >+, FA.

Ad> -
We define theél-additive functiong

g(n) =3 gler()Q1)

= Z 9(e+(n)Qr—1)

R—h<r<R

- Z | f(er(n)Qr—1) — 1

R—h<r<R
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6 Mean behaviour of uniformly summabemultiplicative functions

where
|lfle,(n)Q—1)—1]) f R—h<r<R,

0 otherwise .

9(er(n)Q,1) == {

Applying Lemma 6.2.1, we obtain

—Zlf — fron(n)]

n<N
= S Ul T o) -
n<N R—h<r<R
1
< NZII‘HW! I[I max(fe(mQ-)l 1) DY 1fe(n)Qm1) — 1
n<N R—h<r<R R—h<r<R
1
< NZVR—h(nM I wmax(If(e(n)Q1)], Dg(n)
n<N R—h<r<R
. 1/2 . 2\ 1/2
< <N2<g<n>>2) NZ<|fR_h<n>| I1 max<|f<sr<n>Qr_1>|,1>> .
n<N n<N R—h<r<R
Using the Tuan-Kubilius inequality folQ-additive functions (Corollary 4.2.4), we have
%n;v(g(n))?

IN

25 ¥ S wa) 2n( v een)

n<N R— h<r<R a=0 n<N R h<r<R a=0

IN

qr—1 c
4< > )~ 1P+ Z|f<aQR_2—1>|2)
a=1

R—h<r<R— 1 a=0

> qil!fagrl ) -1
“( )

R—h<r<R qr a=0

wherecQr_ o, < N < (C"— 1)QR_2, 0<c<qgr_1.
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6.3 Proof of main results

Applying the Cauchy-Schwarz inequality, we conclude

( > Z|faQT1 —1|> < 20 Y ( f(aQH)—u)
R— h<r<R a=0

R— h<r<R a=0

[y

§2hz

R— h<r<R

-1
Z (aQ,_1) — 1|2
=0

Sinceh is fixed, and concerning condition (6.1), we obtain

Now, we define th@-multiplicative functionf with

. |f(aQ,_4)] if1<r<R-h
f(a‘QT‘—1> = s
max(|f(aQ,-1)[,1) f R—h<r<R
then,
[frn(m) [ max(|f(er(n)Q-1)],1) = f(n),
R-h<r<R
and

IN

1 r 2 1 r 2
N TKZN(f (n)) s n<(0§9“(f (n))

1 Q'r_l
- g I o (g B enor )

T2 1<r<R-h
Q'r_l
H ( Z | CLQT 1 - 1)
R—h<r<R-2
= H1'H2'H37

WhereCQR_2 <N (C+ 1)QR_2 with0 < ¢ < qRrR—1-
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6 Mean behaviour of uniformly summabemultiplicative functions

The first produc{ [, equals

M- I @ (H%TDf(aQT_nF—l)

1<r<R-—-h

- Y e

cQp_
R=2 n<(c+1)Qr_»

Sincefr_; € L2, such that the produdf, is bounded.

The equivalent of condition (6.1) is

1 J )
EE T 2 MeeoP-1=00),

a=0
[f(aQp_1)[>1

for r — oo, therefor the productp], and] [, are bounded.

Thus,% Z (f(n))? < 4K&@'is bounded, wher& is constant only depends ¢f3_,

n<N
andc is constant only depends ¢gn

Ad ) ,:

Foralla > 0,0 <n < Qp_y,

fR,h(aQth + Tl) = f(n)

holds, and forl <[ < ¢z_5, applying Lemma 6.2.2, we have

1Qp_p—1 -1 Qr—n—1

Z frn(n) = Z Z Jr—n(aQg_p +n')

n=0 a=0 n/=0

-1 Qr—n—1

= > > f@)

a=0 n/=0

Further, forN = [Qf_;, we obtain

3 () ~ T =0,

n<N
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6.3 Proof of main results

and forlQg_;, < N < (I 4+ 1)Qg_;, we conclude

Z fR—h(n) — Nllg_p,

n<N
N-1
= |=(N —1Qr_p)lz_p + Z fr—n(n)
n=IlQr_n

N—-1Qp_p—1

= |[=(N =19 1)g_n+ frn(Qr_n11) Z f(n)
n=0

IN

C(N - lQR_h)

< CQR—h7

with some constant only depends orf.

Ad A:
We get

Since condition (6.1) holds, aridis fixed, we havellg — IIg_,| = o(1), asR — oc.

Altogether, we obtain

5 1
<c + o(1).
qr—-19R—2 " " " qR—h+1

1
sz(")_HR

n<N
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6 Mean behaviour of uniformly summabemultiplicative functions

The proof of assertion (b) is analogous.

Proof of Theorem 6.1.3.By Lemma 6.2.9 and Theorem 6.1.2, the assertion of Theorem
6.1.3 follows.

Proof of Theorem 6.1.4.Follows by Lemma 6.2.9.
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