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Einleitung

Ihren großen Aufschwung erlebte die nichtlineare Optik mit der Erfindung des La-
sers als kohärente monochromatische Srahlungsquelle hoher Leistungsdichte im Jahr
1960 [Mai60]. Eine hohe optische Leistungsdichte hat in einem Dielektrikum zur Fol-
ge, dass der Zusammenhang zwischen dem elektrischen Feld und der mikroskopischen
Polarisation nicht weiter linear ist. Das führt dazu, dass neben der in das Dielek-
trikum eingestrahlten Welle optische Partialwellen anderer Frequenzen entstehen und
sich ausbreiten. Mit Hilfe dieser Partialwellen kann unter bestimmten Voraussetzungen
ein effektiver Energietransfer zwischen Wellen verschiedener Frequenz (Wellenlängen)
erreicht werden. Dieses Phänomen nennt man auch λ-Konversion.

Nichtlinear optische Prozesse klassifiziert man dabei nach der „Ordnung“ der nichtlinea-
ren Polarisation. Sehr vereinfacht drückt die Ordnung aus, ob die nichtlineare Polarisat-
ion in zweiter oder in dritter Potenz mit dem elektrischen Feld skaliert. In Materialien
ohne Inversionssymmetrie kann sehr effizient die nichtlineare Polarisation zweiter Ord-
nung verwendet werden. Typische Materialien sind hier Kaliumniobat (KNbO3), Po-
tassiumtitanylphosphat (KTiOPO4, KTP), Lithiumtantalat (LiTaO3) und schließlich
das dieser Arbeit zugrunde liegende Substrat Lithiumniobat (LiNbO3).

Eine effektive Konversion kann jedoch nur dann stattfinden, wenn Partialwellen glei-
cher Frequenz konstruktiv interferieren. In dispersiven Medien ist das im allgemeinen
nicht der Fall. Durch die Wahl eines bestimmten Arbeitspunktes — bestimmt durch
Temperatur, Wellenlängen und Polarisation der beteiligten Wellen — kann die Dop-
pelbrechung ausgenutzt werden, um eine sogenannte Phasenanpassung zu realisieren
[HS88]. Durch die Wahl einer bestimmten Temperatur können dann die Wellenlängen
über einen gewissen Bereich eingestellt werden. Ein Nachteil dieser Methode ist, dass
aufgrund der Wechselwirkung von Wellen verschiedener Polarisation nicht der grösste
nichtlineare Koeffizient (Abschnitt 1.4) verwendet werden kann, der Wellen gleicher Po-
larisation miteinander verknüpft. Auch ist man bei der Wahl des Arbeitspunktes durch
die Materialdispersion und die erforderliche Temperaturstabilisierung eingeschränkt.
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4 EINLEITUNG

Schon Armstrong et. al. [ABDP62] haben die Methode der Quasi-Phasenanpassung1

vorgestellt. Die QPM beruht auf einer periodischen Änderung der Kristallachse, die der
optischen Achse entspricht [Hec87]. Das Vorzeichen der nichtlinearen Polarisation ist
korreliert mit der Richtung der optischen Achse. Mikroskopisch bedeutet Phasenanpas-
sung, dass die von den Hertz’schen Dipolen der nichtlinearen Polarisation emittierten
Partialwellen konstruktiv interferieren. Das Prinzip der QPM ist es, eine maximale
Phasendifferenz zwischen Hertz’schen Dipol und Partialwelle von ∆φ ∈ [−π/2, π/2]

zuzulassen. Durch die Inversion der optischen Achse gelangt man von ∆φ = π/2 zu
∆φ = −π/2 und im Mittel können die Partialwellen konstruktiv interferieren. Abbil-
dung 1 veranschaulicht das Prinzip. Als Beispiel wird hier die Leistung einer frequenz-
verdoppelten Welle — auch zweite Harmonische — innerhalb der ersten 5 Mikrodomä-
nen gezeigt. Die eingestrahlte Leistung sei 10 mW. Die Kohärenzlänge Lc ist die Länge,
nach der sich zwischen den Partialwellen emittierender Dipole eine Phasendifferenz von
π akkumuliert. Ohne periodische Inversion der optische Achse oder auch periodische

1engl.: Quasi Phase Matching (QPM)
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Abbildung 1: Entwicklung der zweiten Harmonischen während der ersten 5 Mi-
krodomänen. Ohne Phasenanpassung beginnt nach der Strecke z = Lc destruktive
Interferenz und die Leistung der zweiten Harmonischen wird wieder abgebaut. Inver-
tiert man das Vorzeichen der nichtlinearen Polarisation bzw. invertiert die optischen
Achse, kommt es wieder zu konstruktiver Interferenz. Im Mittel ergibt sich somit nä-
herungsweise eine quadratische Abhängigkeit der Leistung der zweiten Harmonischen
mit der Wechselwirkungslänge.
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Domäneninversion erkennt man eine Oszillation der Leistung mit kleiner Amplitude.
Das Maximum wird jeweils nach einem ungerade Vielfachen der Kohärenzlänge erreicht.
Die physikalische Ursache der Oszillation ist eine alternierende konstruktive und de-
struktive Interferenz der durch die Dipole der nichtlinearen Polarisation generierten
Partialwellen bei der Frequenz der zweiten Harmonischen. Invertiert man aber nach
einer Kohärenzlänge das Vorzeichen der nichtlinearen Polarisation durch eine Inversion
der Domänenrichtung, kommt es im Mittel wieder zu konstruktiver Interferenz.

Dieser Methode hat gegenüber der Phasenanpassung durch Doppelbrechung wesent-
liche Vorteile:

1. Die Wahl des Arbeitspunktes ist prinzipiell beliebig und wird nur durch die
technologische Realisierbarkeit der notwendigen Mikrostrukturierung beschränkt.
Demgegenüber ist die Durchstimmbarkeit bei der Phasenanpassung durch Dop-
pelbrechung auf einen relativ kleinen Bereich beschränkt.

2. Es besteht die Möglichkeit der Wechselwirkung zwischen Wellen gleicher Polari-
sation; dadurch kann der größte nichtlineare Koeffizient verwendet werden.

3. Durch die Überlagerung verschiedener Gitter ergibt sich ein Schwebungsmuster,
was die gleichzeitige Phasenanpassung mehrerer Prozesse ermöglicht.

Gleichwohl konnte das Problem der reproduzierbaren Strukturierung der Kristallori-
entierung erst Ende der 80er Jahre gelöst werden. Mittlerweile ist die Inversion der
optischen Achse zu einem Standardverfahren gereift (z.B. [Jan98][Sch02][KFSN98]),
mit dem Substrate von bis zu 9 cm Länge periodisch gepolt werden können.

Entscheidend für eine signifikant nutzbare nichtlinearen Polarisation ist vor allem eine
sehr große Intensität der Wellen in dem optischen Medium. Das kann in Volumen-
kristallen durch eine sehr starke Fokussierung erreicht werden; jedoch hat eine starke
Fokussierung eine sehr große Strahldivergenz zur Folge. Das schränkt die mögliche nutz-
bare Wechselwirkungslänge stark ein. Wellenleitende Strukturen ermöglichen durch die
divergenzfreie Ausbreitung optischer Wellen im Prinzip eine beliebige Verlängerung der
Wechselwirkungslänge. Allerdings wird die Wellenleitung erkauft durch eine Erhöhung
der Streuverluste, was insbesondere in resonanten Strukturen von großem Nachteil
ist. Mittels Titandiffusion lassen sich jedoch in Lithiumniobat Wellenleiter mit sehr
geringen Streuverlusten ausbilden [LSS80]. Auf der Basis dieser optischen Wellenlei-
ter können in Lithiumniobat integriert optische Frequenzkonverter mit extrem hoher
Konversion realisiert werden. In Abbildung 2 ist ein Ti:LiNbO3 -Streifenwellenleiter
zusammen mit dem in dieser Arbeit verwendeten Labor-Koordinatensystem skizziert.
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Abbildung 2: Skizze eines Ti:LiNbO3 -Streifenwellenleiters und die spezielle Wahl
der Laborkoordinaten.

Die Orientierung des Kristalls ist so gewählt, dass die kristallographische Z-Achse mit
der y-Achse (kurz: Z-Cut) und die kristallographische X-Achse mit der z-Achse (kurz:
X-Propagation) zusammenfällt. In Verbindung mit der periodischen Strukturierung
konnten nichtlinear-optische Frequenzkonverter mit sehr guten Eigenschaften realisiert
werden [Haa98][Hof01][Sch02].

Je nach Anfangsbedingung bzw. experimenteller Voraussetzung kann der Energiefluss
dabei grundsätzlich sowohl hin zu höheren als auch zu tieferen Frequenzen stattfin-
den. In Kapitel 1 wird gezeigt, dass die Phase zwischen den drei beteiligten Wellen
die bestimmende Größe ist. Beispiele für den ersten Fall sind die Erzeugung der zwei-
ten Harmonischen und die Erzeugung der Summenfrequenz. Abbildung 3 skizziert
die Erzeugung der Summenfrequenz: aus zwei Wellen (ωc, ωs) kleinerer Frequenz ent-
steht eine Welle, deren Frequenz der Summe (ωsf) der beiden eingestrahlten Frequenzen

Abbildung 3: Schema der Summenfrequenzerzeugung. Der Energiefluss geht hin
zur höheren Frequenz. In der Entartung spricht man von der Erzeugung der zweiten
Harmonischen.



EINLEITUNG 7

Abbildung 4: Schema der Differenzfrequenzerzeugung. Es wird sowohl eine Welle
mit der Frequenz ωi erzeugt als auch die eingestrahlte Welle der Frequenz ωs verstärkt.

entspricht. Die Erzeugung der zweiten Harmonischen ist der entartete Fall — die Fre-
quenzen der zwei erzeugenden Wellen sind identisch — der Summenfrequenzerzeugung.
Demgegenüber steht die Erzeugung der Differenzfrequenz. Bei diesem Prozess werden
zwei Wellen mit unterschiedlicher Frequenz in den periodisch gepolten Wellenleiter
eingestrahlt; die nichtlineare Wechselwirkung führt dann zu einer Verstärkung bzw.
Generation der niederfrequenteren Welle. In den letzten Jahren wurden verstärkt auch
kaskadierte Frequenzkonversionen demonstriert, bei denen simultan mehrere Prozesse
stattfinden [SLQ+01][al.02][MLL+03].

Diese Arbeit beschäftigt sich mit der theoretischen Beschreibung der Dynamik nicht-
linearer Wechselwirkungen in periodisch gepolten Wellenleitern. Eine Modellierung die-
ser Prozesse ist für ein gutes Design integriert optischer nichtlinearer Bauelemente
unumgänglich. Im ersten Kapitel werden die erforderlichen mathematische Methoden
und das physikalische Prinzip vorgestellt. Ausgehend von den Maxwellgleichungen wird
das Konzept der gekoppelten Moden eingeführt, das sich in der Methodik an die zeit-
abhängige Störungsrechunug anlehnt. Als Störung wird die nichtlineare Polarisation
eingeführt und das Konzept der Quasi-Phasenanpassung wird mathematisch beschrie-
ben. Im zweiten bzw. dritten Kapitel werden nichtlineare Konversionsprozesse in ver-
schiedenen Konfigurationen modelliert. Der Schwerpunkt liegt hier insbesondere auf
der Analyse der Dynamik und des Einflusses der Laufzeitunterschiede der beteiligten
Pulse. Im Rahmen dieser Arbeit sind hierzu Software-Pakete entwickelt worden, die
eine sehr effiziente und flexible Berechnung dieser Prozesse ermöglichen. Im vierten
Kapitel wird ein semiklassisches Modell zur Beschreibung der optisch parametrischen
Fluoreszenz im Bereich hoher Konversion vorgestellt. Die parametrische Fluoreszenz
beruht auf spontanen Zerfällen von Photonen in nichtlinearen Medien und ist demnach
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nur quantenmechanisch zu beschreiben. Diese spontanen Zerfälle werden inkohärent
überlagert und die nichtlineare Konversion wird dann mit den unter Kapitel 1 vorge-
stellten Methoden berechnet. Es konnte gezeigt werden, dass sehr hohe Leistungen der
Pumpwelle und damit eine sehr hohe Konversion zu einer inkohärenten Verbreiterung
des Spektrums der parametrischen Fluoreszenz führen. Dabei ist es gelungen, die Kluft
zwischen quantenmechanischer Beschreibung und der klassischen Behandlung der Pro-
zesse im Bereich sehr hoher Leistung ein gutes Stück zu schließen. Im letzten Kapitel
wird das Verhalten optisch parametrischer Oszillatoren (OPO) modelliert. Optisch pa-
rametrische Oszillatoren basieren auf einer nichtlinearen Frequenzkonversion innerhalb
eines Farbry-Perot-Resonators (FBR). Insbesondere wird ein rigoroses Verfahren zur
Beschreibung des Abstimmverhaltens vorgestellt. Abschließend wird auf der Basis der
in Kapitel 4 vorgestellten parametrischen Fluoreszenz das dynamische Verhalten der
OPOs im gepulsten Betrieb simuliert. Durch die fundierte Beschreibung der sponta-
nen Fluoreszenz können mit der entwickelten Methode realistische Annahmen über das
Anschwingverhalten integriert optischer parametrischer Oszillatoren gemacht werden.



Kapitel 1

Grundlagen

Die Führung optischer Wellen basiert in klassischen Wellenleitern1 auf einer lokalen Er-
höhung des Brechungsindexes. Im strahlenoptischen Bild kann Wellenführung verstan-
den werden als fortgesetzte Totalreflexion. Die Maxwellgleichungen bilden die zugrunde
liegende Axiomatik zur Beschreibung der Ausbreitung elektromagnetischer Wellen. In
Abschnitt 1.1 werden Eigenwertgleichungen hergeleitet, deren Lösungen ein vollständi-
ges Orthonormalsystem bilden, nach denen jede Feldverteilung entwickelt werden kann.
Die Eigenwerte dieser Feldverteilungen sind die Wellenzahlen β, mit der sich die Pha-
senfronten harmonisch entwickeln. Die formale Struktur dieser Gleichungen erinnert
stark an die Schrödingergleichung der Quantenmechanik [Str91]. Wie hier finden sich
gebundene diskrete und „strahlende“ kontinuierliche Lösungen.

Die Analogie hat zur Folge, dass wesentliche Konzepte der Quantenmechanik über-
nommen werden können. Die in Abschnitt 1.3 beschriebene Theorie gekoppelter Moden
basiert auf der zeitabhängigen Störungsrechnung, die formale Rolle der Zeit wird durch
die Ausbreitungskoordinate z übernommen.

Die Ursache der Kopplung zwischen den Moden — die Störung — ist in der nichtlinea-
ren Optik die nichtlineare Polarisation, welche in Abschnitt 1.4 näher beschrieben wird.
Damit ein effizienter Energietransfer zwischen den optischen Wellen stattfindet, müssen
die durch die nichtlineare Polarisation erzeugten Partialwellen konstruktiv interferie-
ren. Diese Phasenanpassung kann durch Ausnutzung der Doppelbrechung in LiNbO3

[Her91] oder durch periodische Modulation der nichtlinearen Eigenschaften des Sub-

1Ein neues und sehr modernes Feld der Optik sind die sogenannten photonischen Kristalle, in
denen periodische Variationen des Brechungsindexes zur Führung und Manipulation optischer Wellen
ausgenützt werden. In diesen periodischen Strukturen können Wellenleiter hergestellt werden, die im
Mittel einen geringeren Brechungsindex haben als die Umgebung.
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10 KAPITEL 1. GRUNDLAGEN

strats [ABDP62][Hof01][Sch02] erreicht werden. Auf diesen Punkt wird in Abschnitt
1.6 näher eingegangen.

1.1 Feldgleichungen

James C. Maxwell (1831 bis 1879) beschrieb in den Jahren 1861 bis 1864 alle damals
bekannten Phänomene in einer einzigen Axiomatik, den Maxwellgleichungen. Im Di-
elektrikum lauten diese:

∇ · ~̂D(~r, t) = 0 (1.1)

∇ · ~̂B(~r, t) = 0 (1.2)

∇× ~̂E(~r, t) = − ∂

∂t
~̂B(~r, t) (1.3)

∇× ~̂H(~r, t) =
∂

∂t
~D(~r, ω) (1.4)

Es folgt unmittelbar die Fouriertransformierte der Maxwellgleichungen2:

∇ · ~D(~r, ω) = 0 (1.5)

∇ · ~B(~r, ω) = 0 (1.6)

∇× ~E(~r, ω) = −iω ~B(~r, ω) (1.7)

∇× ~H(~r, ω) = iω ~D(~r, ω) (1.8)

~E(~r, ω) ist das elektrische und ~H(~r, ω) das magnetische Feld. Die dielektrische Verschie-
bung ~D(~r, ω) und die magnetische Induktion ~B(~r, ω) sind mit den Feldgrößen über die
Materialgleichungen verknüpft und beschreiben die Antwort eines Mediums auf ein
elektromagnetisches Feld. In Dielektrika ist der Zusammenhang zwischen ~H(~r, ω) und
~B(~r, ω) in der Regel sehr einfach und ergibt sich durch eine skalare Multiplikation mit
einer reellen Konstanten µ0. Die dielektrische Verschiebung ~D(~r, ω) ist schwerer zu be-
schreiben und im allgemeinen ist das Materialverhalten weder isotrop noch linear. Für
kleinere Feldintensitäten kann das Verhalten jedoch näherungsweise linear beschrieben
werden. Dann lauten die Materialgleichungen:

~B(~r, ω) = µ0
~H(~r, ω) (1.9)

~D(~r, ω) = ε0
~E(~r, ω) + ~P (~r, ω)

= ε0

(
1 + χ(1)(~r, ω)

)
~E(~r, ω). (1.10)

2ω = 2πf ist die Kreisfrequenz und f die eigentliche Frequenz. Im folgenden werden beide Größen
jedoch Frequenz genannt und parallel verwendet.
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χ(1) heisst Suszeptibilität. Zeit- und Frequenzbereich sind über die Fouriertransforma-
tion verbunden. Im Zeitbereich sind die Felder reelle Größen. Daher gilt:

~E(~r, ω) = ~E∗(~r,−ω) χ(1)(~r, ω) = χ(1)∗(~r,−ω) (1.11)

Die Fouriertransformation lässt sich dann mittels 3

~̂E(~r, t) =
1√
2π

∞∫

0

dω exp (iωt) ~E(~r, ω) + c.c. (1.12)

~̂H(~r, t) =
1√
2π

∞∫

0

dω exp (iωt) ~H(~r, ω) + c.c. (1.13)

ausdrücken.

Eine genaue Analyse der Maxwellgleichungen ergibt, dass von den sechs Komponenten
des elektrischen und magnetischen Feldes vier linear unabhängig sind. Im allgemeinen
bedient man sich der beiden Potentialen ~A(~r, ω) und φ(~r, ω), aus denen dann die Fel-
der bestimmt werden. Alternativ lässt sich die Analyse der elektromagnetischen Felder
auch auf eine Betrachtung von vier der sechs Komponenten des elektrischen und magne-
tischen Feldes reduzieren. Bei der Beschreibung der Feldgrößen in Wellenleitern wählt
man oft die transversalen Feldgrößen. Mit der Geometrie aus Abbildung 2 lassen sich
die Feldgrößen in transversale und longitudinale Komponenten aufteilen:

~Et =




Ex

Ey

0


 , ~Ez =




0

0

Ez


 , ~Ht =




Hx

Hy

0


 , ~Hz =




0

0

Hz


 . (1.14)

Lithiumniobat ist ein optisch einachsiger Kristall. In Hauptachsenform finden sich bei
dem dielektrischen Tensor nur Einträge auf der Hauptdiagonalen:

ε =




εxx 0 0

0 εyy 0

0 0 εzz


 =




εxx 0 0

0 εyy 0

0 0 0




︸ ︷︷ ︸
ε

t

+




0 0 0

0 0 0

0 0 εzz




︸ ︷︷ ︸
ε

z

. (1.15)

Die relative Dielektrizitätszahl kann auch durch den optischen Brechungsindex ausge-
drückt werden4:

εxx = ε0n
2
x, εyy = ε0n

2
y, εzz = ε0n

2
z.

3Die Abhängigkeiten (~r, ω) bzw. (~r, t) werden im folgenden nicht weiter aufgeführt. ·̂ bezeichnet
den Zeitbereich.

4Die Brechungsindizes hängen von den Lateralkoordinaten ab.
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Der Nablaoperator lässt sich in einen transversalen und einen longitudinalen Teil auf-
spalten:

∇t =




∂/∂x

∂/∂y

0


 , ∇z =




0

0

∂/∂z


 (1.16)

Mit diesen Definitionen ergibt sich schließlich aus den Maxwellgleichungen:

∇z × ~Et − i

ω
∇t × 1

εzz

∇t × ~Ht + iωµ0
~Ht = ~0 (1.17)

∇z × ~Ht +
i

ωµ0

∇t ×∇t × ~Et − iωε
t
~Et = ~0. (1.18)

Die Longitudinalkomponenten berechnen sich dann leicht aus den Transversalkompo-
nenten.

~Ez = − i

ωεzz

∇t × ~Ht (1.19)

~Hz =
i

ωµ0

∇t × ~Et. (1.20)

Bisher wurden die Maxwellgleichungen (1.5) - (1.8) auf eine alternative Form (1.17)
und (1.18) reduziert. Im nächsten Abschnitt wird nun näher auf den speziellen Fall im
Wellenleiter eingegangen.

1.2 Optische Moden in Wellenleitern

Liegt Translationsinvarianz in einer Koordinate — in diesem Fall in z-Richtung des
Laborsystems — vor, erhält man Lösungen mit harmonischer z-Abhängigkeit5. Diese
Lösungen werden als Moden bezeichnet. Zur Berechnung der Moden bietet sich der
folgende Ansatz an:

~E(~r, ω) = ~E(x, y, ω) exp (−iβ(ω)z) (1.21)
~H(~r, ω) = ~H(x, y, ω) exp (−iβ(ω)z) (1.22)

Setzt man diesen Ansatz in (1.17) und (1.18) ein, so erhält man nach kurzer Rechnung:

−iβ~ez × ~E t − i

ω
∇t × 1

εzz

∇t × ~Ht + iωµ0
~Ht = 0 (1.23)

−iβ~ez × ~Ht +
i

ωµ0

∇t ×∇t × ~E t − iωε
t
~E t = 0. (1.24)
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Es handelt sich um eine gekoppelte Eigenwertgleichung. Der Eigenwert β mit der Ein-
heit 1/m definiert die Periode der harmonischen Abhängigkeit, während ~E t und ~Ht die
Feldverteilungen und somit die Phasenfronten und relativen Amplitudenverteilungen
definieren. Die Wellenzahl β liegt in der Regel zwischen der Wellenzahl ebener Wellen
der unmittelbaren Wellenleiterumgebung und der des maximalen Brechungsindexes des
Wellenleiters. Daher bietet es sich an, den effektiven Brechungsindex einzuführen:

β =
2π

λ
neff . (1.25)

5In z-Richtung wird das Verhalten durch exp (−iβz) beschrieben.

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Abbildung 1.1: Beispiele für Feldverteilungen in einem Titan-diffundierten Wel-
lenleiter für das mittlere Infrarot bei einer Wellenlänge von λ = 1500 nm. Die Grund-
mode ist oben links gezeigt. Dann folgen die ersten höheren Moden in einer bzw. in
beiden lateralen Koordinaten. Die Breite des gezeigten Bereichs beträgt 70 µm und
die Tiefe beträgt 35 µm.
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Diese Eigenlösungen — Moden — bilden ein vollständiges Orthogonalsystem mit dis-
kreten gebundenen und kontinuierlichen ungebundenen Lösungen aus [Mar91]. Jede
beliebige Feldverteilung lässt sich danach mit6

~E(~r, ω) =
1

2

∑
µ

aµ(ω)~Eµ(x, y, ω) exp (−iβµz) +

1

2

∞∫

−∞

dρ a(ρ, ω)~E(ρ, x, y, ω) exp (−iβ(ρ)z) (1.26)

~H(~r, ω) =
i

ωµ0

∇× ~E(~r, ω)

=
1

2

∑
µ

aµ(ω) ~Hµ(x, y, ω) exp (−iβµz) +

1

2

∞∫

−∞

dρ a(ρ, ω) ~H(ρ, x, y, ω) exp (−iβ(ρ)z) (1.27)

entwickeln. Die Orthogonalitätsrelation folgt nach einigen algebraischen Schritten di-
rekt aus den Maxwellgleichungen [Tam79]7:

∫∫
dxdy

{
~Eµ × ~H∗

ν + ~E∗ν × ~Hµ

}
· ~ez = 4P0δµν (1.28)

δµν steht im Fall zweier Strahlungsmoden für die Dirac’sche Deltafunktion, im Fall
zweier gebundener Moden und im gemischten Fall für das Kronecker-Symbol.

1.2.1 Geführte Leistung

Eine sich ausbreitendeWelle hat einen stetigen Energietransport zur Folge. Die Energie-
stromdichte des elektromagnetischen Feldes wird durch den nach John Henry Poynting
(1852-1914) benannten Poynting-Vektor bestimmt [Hec87]:

~̂S(~r, t) = ~̂E(~r, t)× ~̂H(~r, t). (1.29)

Die Einheit des Poynting-Vektors ist [ ~̂S] = W/m2. Drückt man die zeitabhängigen
Felder ~̃E und ~̃H via (1.12) und (1.13) durch ihre spektralen Komponenten aus, so

6An dieser Stelle ist der Faktor 1
2 erst einmal willkürlich. Er wird eingeführt um eine Konsistenz

mit den in der Literatur häufig verwendeten Felddefinitionen zu erreichen.
7P0 = 1 W ist die Normierungsleistung.
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erhält man8:

~̂S(~r, t) =

∞∫

0

dω

∞∫

0

dω′
1

2π
exp (i(ω + ω′)t) ·

{
~E × ~H + ~E × ~H∗ + ~E∗ × ~H + ~E∗ × ~H∗

}

(1.30)

Die gesamte geführte Energie ist bestimmt durch das Integral über die Zeit und über
den Wellenleiterquerschnitt.

E =

∞∫

−∞

dt

∫∫
dxdy ~̂S(~r, t) · ~ez (1.31)

Im Fall einer kontinuierlichen Quelle oder einer unendlichen Pulsfolge wird dieses In-
tegral divergieren. Die Darstellung ist jedoch sinnvoll, da sich die Dirac’sche Deltadis-
tribution verwenden lässt. Eine Definition der Dirac’schen Deltadistribution ist [Del]

δ(ω + ω′) =
1

2π

∞∫

−∞

dt exp {i(ω + ω′)t} .

Mit den Eigenschaften der Distribution [BSMM95], den Feldentwicklungen (1.26),
(1.27) und der Orthogonalitätsrelation (1.28) folgt schließlich:

E = P0

∑
µ

∞∫

0

dω |aµ(z, ω)|2 (1.32)

Mit (1.32) lässt sich die im gesamten Spektrum geführte Energie innerhalb eines — im
obigen Fall unendlichen — zeitlichen Integrationsfensters ermitteln. In der Praxis ist
man jedoch häufig an anderen Größen interessiert. Zum einen ist es wichtig, die geführte
Energie zeitlich aufzulösen. In den Fällen digitaler Informationsübertragung ist die
zeitliche Pulslänge und deren Auflösbarkeit ein wichtiges Kriterium zur Bestimmung
der maximalen Datendichte. Zum anderen ist das Spektrum der geführten Energie
häufig auf einen Bereich eng um eine Trägerfrequenz beschränkt. Nimmt man an, dass
die Modenform ~Eµ(x, y; ωk) innerhalb dieses engen Spektrums konstant ist, so folgt mit
der Abkürzung βk

µ = βµ(ωk) und mit

âµ(z, t) =
1√
2π

∞∫

0

dω exp {i(ω − ωk)t} aµ(z, ω) exp
{−i

(
βµ(ω)− βk

µ

)
z
}

(1.33)

8 ~E = ~E(~r, ω), ~H = ~H(~r, ω′)
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aus (1.12) und (1.13):

~̂E(~r, t) =
1

2

∑
µ

{
âµ(z, t) exp

{
i(ωkt− βk

µz)
}

~Eµ(x, y; ωk) + c.c.
}

(1.34)

~̂H(~r, t) =
1

2

∑
µ

{
âµ(z, t) exp

{
i(ωkt− βk

µz)
}

~Hµ(x, y; ωk) + c.c.
}

. (1.35)

Mit der Rücktransformation von (1.33) folgt aus (1.32) nach kurzer Rechnung:

E = P0

∑
µ

∞∫

−∞

dt |âµ(z, t)| (1.36)

Man erkennt leicht, dass die von einer Mode geführte Leistung dann wie folgt berechnet
wird:

P (t) = P0

∑
µ

|âµ(z, t)|2 (1.37)

An dieser Stelle sei erwähnt, dass die Amplituden im Zeitbereich bei dieser Normierung
einheitenlos sind. Die Amplituden im Frequenzbereich haben somit die Einheit s.

[âµ(z, t)] = 1

[aµ(z, ω)] = s

1.2.2 Skalare Wellengleichung

Im allgemeinen ist das System gekoppelter Differentialgleichungen (1.17) und (1.18)
aufwendig zu lösen. Hat man aber — wie im planaren Wellenleiter — Translationsin-
varianz in einer lateralen Koordinate (∂/∂x → 0), so entkoppelt das System in zwei
Gleichungen jeweils für eine nichtverschwindende Komponente des magnetischen bzw.
elektrischen Feldes. Die Lösungen heißen transversal magnetisch (TM) oder transversal
elektrisch (TE) [Mar91].

In Titan-diffundierten Wellenleitern findet sich eine ähnliche Situation. Zwar verschwin-
det keine der partiellen Ableitungen, jedoch ist der Indexhub — typischerweise im
Bereich 10−3 — sehr klein. Die Folge ist, dass es Lösungen mit einer dominierenden
Komponente des elektrischen bzw. magnetischen Feldes gibt. Man spricht von quasi
transversal elektrisch (QTE) oder quasi transversal magnetisch (QTM)9. Zur Lösung

9In der Literatur wird häufig auf die Bezeichnung „Quasi-“ verzichtet.
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der Feldgleichungen wählt man den plausiblen Ansatz10

~E =



Ex

0

Ez


 , ~H =




0

Hy

Hz


 (1.38)

für QTE und

~E =




0

Ey

Ez


 , ~H =



Hx

0

Hz


 (1.39)

für QTM-Moden. Mit dieser Näherung entkoppeln (1.17) und (1.18) wieder. Nach eini-
gen Umformungen findet man schließlich zwei nichtgekoppelte Eigenwertgleichungen11

[Str91].
{

n2
x

n2
z

∂2

∂x2
+

∂2

∂y2
+ k2

0

(
n2

x − n2
eff

)} Ex = 0 QTE (1.40)
{

∂2

∂x2
+ n2

y

∂

∂y

1

n2
x

∂

∂y
+ k2

0

(
n2

y − n2
eff

)}Hx = 0 QTM (1.41)

Die übrigen Komponenten lassen sich dann mittels

Ez = − i

β

n2
x

n2
z

∂

∂x
Ex, Hy =

β

µ0ω
Ex, Hz =

i

µ0ω

∂

∂y
Ex QTE

Hz = − i

β

∂

∂x
Hx, Ey = − β

ε0n2
yω
Hx, Ez =

i

ε0n2
zω

∂

∂y
Hx QTM

bestimmen. Häufig verwendet man in (1.41) die Näherung

n2
y

∂

∂y

1

n2
x

∂

∂y
→ n2

y

n2
z

∂2

∂y2
.

Diese Näherung ist wegen des „seichten“ Verlaufs des Indexprofils zulässig. Die Eigen-
wertgleichungen (1.40) und (1.41) werden damit symmetrisch und unterscheiden sich
nur durch einen reellen Faktor vor den partiellen Ableitungen und durch ein anderes
Indexprofil (Anhang A). Zur Lösung dieser Gleichungen finden verschiedene Verfah-
ren Verwendung. Ein genaues, aber numerisch aufwendiges Verfahren ist die Methode
der Finiten Elemente (FEM) [Str], [SBM88]. Ein weiteres bekanntes Verfahren ist das

10Für QTE-Moden gilt Ex À Ez À Ey. Analoges gilt für QTM. D.h, dass die jeweilige y-Komponente
nicht exakt Null ist.

11Die Abhängigkeiten der Brechungsindizes von den Lateralkoordinaten werden hier nicht explizit
aufgeführt.
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Abbildung 1.2: Feldverteilung einer QTM-Mode in einem Standardwellenleiter
für das nahe Infrarot. Die Wellenlänge beträgt 1550 nm. Deutlich erkennt man, dass
die optische Leistung im wesentlichen in der lateralen Komponente geführt wird.

Effektiv-Index-Verfahren (EIM) [HB77]. Ein Ritz-Ansatz führt auf die Gauß-Hermite-
Gauß-Approximation [KMB+82] (Anhang B). Je nach Problemstellung wurde eines
dieser Verfahren verwendet. Die meisten Ergebnisse basieren auf dem GHG-Verfahren,
welches sich sehr effizient auswerten lässt.

1.3 Theorie gekoppelter Moden

Wie bereits oben erwähnt, besteht eine formale Analogie zwischen der Quantenme-
chanik und der Theorie optischer Wellenleiter. Den skalaren Wellengleichungen (1.40),
(1.41) sieht man die Ähnlichkeit zur zeitunabhängigen Schrödingergleichung unmit-
telbar an. Unter (1.1) wurde gezeigt, dass auch die Moden optischer Wellenleiter ein
vollständiges Orthonormalsystem (1.26), (1.27) bilden. Diese Analogie bietet die Mög-
lichkeit, die zeitabhängige Störungsrechnung [Nol03] entsprechend der Beschreibung
optischer Wellen anzupassen. Das führt zur Theorie gekoppelter Moden12.

Im Folgenden sollen die wesentlichen Konzepte der Theorie gekoppelter Moden darge-
stellt werden [Rus00], [Mar91], [Str91]. Eine beliebige geführte Feldverteilung lässt sich
an jeder Stelle z unter Vernachlässigung der strahlenden Moden13 mit z-abhängigen

12engl.: Coupled Mode Theory (CMT)
13Die Berücksichtigung eines kontinuierlichen Modenspektrums ist in der Störungstheorie sehr auf-
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Entwicklungskoeffizienten aµ entwickeln:

~E(~r, ω) =
1

2

∑
µ

aµ(z, ω)~Eµ(x, y, ω) exp (−iβµz) (1.42)

~H(~r, ω) =
1

2

∑
µ

aµ(z, ω) ~Hµ(x, y, ω) exp (−iβµz) (1.43)

Die Vernachlässigung des strahlenden Anteils ist möglich, da es sich hier um eine kleine
Störung handelt und die Ausbreitungsform der Moden nicht signifikant beeinflusst wird.
An dieser Stelle muss erwähnt werden, dass die in der Literatur oft erwähnte Näherung
langsam veränderlicher Amplituden14 in den folgenden Ausführungen nicht unmittelbar
zu erkennen ist. Sie steckt implizit in (1.42) und (1.43). Wie man leicht nachrechnet, ist
die Maxwell’sche Gleichung (1.7) nur unter Vernachlässigung der partiellen z-Ableitung
der explizit ortsabhängigen Entwicklungskoeffizienten aµ erfüllt.

Die Störung wird in Form einer Störpolarisation angesetzt. Eine Störpolarisation be-
einflusst die dielektrische Verschiebung:

~Dt = ε
t
~Et + ~P st

t (1.44)

Setzt man diese Störung in die, für das zugrunde liegende Substrat LiNbO3
15 bereits

vereinfachten, Feldgleichungen (1.17) und (1.18) ein und berücksichtigt man man (1.23)
und (1.24), so folgt nach einigen algebraischen Schritten:

∑
µ

{
∇z × aµ

~Eµt exp (−iβµz)− i

ω
∇t × 1

εzz

∇t × aµ
~Hµt exp (−iβµz) +

iωµ0aµ
~Hµt exp (−iβµz)

}
= ~0

⇒
∑

µ

∂aµ

∂z
·
(
~ez × ~Eµt

)
· exp (−iβµz) = ~0 (1.45)

∑
µ

{
∇z × aµ

~Hµt exp (−iβµz) +
i

ωµ0

∇t ×∇t × aµ
~Eµt exp (−iβµz)−

iωε
t
aµ

~Eµt exp (−iβµz)

}
− 2iω ~P st

t = ~0

⇒
∑

µ

∂aµ

∂z
·
(
~ez × ~Hµt

)
exp (−iβµz) = 2iω ~P st

t (1.46)

wendig, jedoch grundsätzlich möglich.
14slowly varying amplitude approximation → SVAA
15optisch einachsig, orthogonale Basis
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Ziel ist es nun, Entwicklungsgleichungen für die Feldamplituden aµ(z, ω) zu erhalten.
Dazu multipliziert man (1.45) mit H∗

νt, (1.46) mit −E∗νt, integriert über den Wellenlei-
terquerschnitt und verwendet schließlich (1.28):

∂aµ(z, ω)

∂z
= −i

ω

2P0

exp (iβµz)
∑

ν

∫∫
dxdy ~E∗νt · ~P st

t (1.47)

In der Regel sind die optischen Spektren — beispielsweise die eines Lasers — um eine
Trägerfrequenz ωk konzentriert und nur in einem engen Bereich von Null verschieden.
Um die rechte Seite weiter zu vereinfachen, werden neue Entwicklungskoeffizienten
eingeführt:

bµ(z, ω − ωk) = aµ(z, ω) exp (−iβµ(ω)z) (1.48)

Somit folgt schließlich:

{
∂

∂z
+ iβµ(ω)

}
bµ(z, ω − ωk) = −i

ω

2P0

∑
ν

∫∫
dxdy ~E∗νt · ~P st

t (1.49)

Bei der Herleitung wurde die Kopplung über die Longitudinalkomponenten des Feldes
vernachlässigt. Da sich die Feldamplituden der dominanten und der nichtdominanten
Komponenten um mindestens eine Größenordnung unterscheiden (siehe Abbildung
1.2) und auch die im nächsten Kapitel eingeführten nichtlinearen Koeffizienten für diese
Kopplung sehr klein sind, ist der Beitrag dieser Kopplung zur Konversion sehr gering.

1.4 Nichtlineare Polarisation

Bisher wurde angenommen, dass das Medium bzw. das Substrat des Wellenleiters lin-
ear auf das elektrische Feld reagiert. Dann wurde eine Störpolarisation eingeführt, um
eine störungstheoretische Behandlung der Wechselwirkungen herzuleiten. Im Fall li-
nearer Wechselwirkungen, wie beispielsweise bei Bragg-Reflektoren oder gekoppelten
Wellenleitern [Str91], handelt es sich um eine einfache Variation des Brechungsindexes
bzw. um eine phasenrichtige Anregung mittels eines evaneszenten Feldes. Die zugrun-
de liegende Basis der in dieser Arbeit beschriebenen Wechselwirkungen ist die nicht-
lineare Polarisation zweiter Ordnung. Als Ursprung der modernen nichtlinearen Optik
kann sicher eine bahnbrechende Arbeit aus dem Jahr 1962 [ABDP62] (Bloembergen,
Nobelpreis 1981) angesehen werden. Abbildung 1.3 veranschaulicht auf vereinfach-
te Weise die physikalische Ursache der nichtlinearen Polarisation. Das anharmonische
interatomare Elektronenpotential hat ein nichtlineares Kraftgesetz zur Folge, somit ist
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sind Auslenkungen der Elektronen im elektrischen Feld nicht proportional zur elektri-
schen Feldstärke.

Die nichtlineare Polarisation16 lässt sich im Frequenzbereich mit der folgenden Reihe
beschreiben17:

~P (~r, ω) = ε0

∞∑
n=1

∞∫

−∞

dω1 · · ·
∞∫

−∞

dωn−1χ
(n)(ω; ω1, .., ωn) : ~E(~r, ω1) : ... : ~E(~r, ωn) (1.50)

ω =
n∑

i=1

ωi

Der Index n bestimmt die Ordnung der nichtlinearen Polarisation. Es wird deutlich,
dass die Polarisation n-ter Ordnung durch einen Tensor n + 1-ter Stufe beschrieben
wird. Bei der Behandlung optisch nichtlinearer Probleme beschränkt man sich in der

Abbildung 1.3: Physikalische Ursache der nichtlinearen Polarisation. Die Elek-
tronen befinden sich interatomar nur näherungsweise in einem harmonischen Poten-
tial. Die Folge ist ein unproportionales Auslenken der Elektronen beim Anlegen eines
elektrischen Feldes.

Regel auf die erste höhere nicht verschwindende Ordnung, da die Polarisationsbeiträge
verschiedener Ordnungen sich um Größenordnungen unterscheiden [BMST90]. In Ma-
terialien mit Inversionssymmetrie (viele Halbleiter) ist das der Tensor vierter Stufe,
der Wechselwirkung dritter Ordnung beschreibt. Dieser Tensor „mischt“ vier Wellen
miteinander und Prozesse wie der quadratische Starkeffekt oder die Selbstfokussierung
werden dadurch beschrieben.

16An dieser Stelle sei erwähnt, dass in der Elektrodynamik der Begriff Polarisation doppelt belegt
ist. Zum einem wird eine spezielle Feldorientierung (TE, TM) als Polarisation bezeichnet. Zum anderen
auch die Reaktion eines Dielektrikums auf ein externes elektrisches Feld. Aus dem Zusammenhang
wird jedoch in der Regel leicht ersichtlich, was gemeint ist.

17: bezeichnet die jeweilige Tensorverknüpfung
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LiNbO3 besitzt keine Inversionssymmetrie. Daher beschränkt sich die weitere Betrach-
tung auf die nichtlineare Polarisation zweiter Ordnung ~P (2). Die Komponenten der
nichtlinearen Polarisation ergeben sich nun wie folgt18:

P
(2)
k (~r, ω) = ε0

3∑

l=1

3∑
m=1

∞∫

−∞

dω′χ(2)
klmEl(~r, ω

′)Em(~r, ω − ω′) (1.51)

(1.51) beschreibt die nichtlineare Polarisation für beliebige Feldverteilungen und Spek-
tren. Im weiteren Verlauf soll jedoch die Wechselwirkung geführter Wellen beschrieben
werden. Des weiteren sollen die Wellenleiter derart dimensioniert sein, dass es nur eine
gebundene Lösung für den langwelligen Bereich gibt19. Geht man ferner wieder von
schmalbandiger Laserstrahlung aus, kann näherungsweise eine konstante Modenform
über das Spektrum der optischen Wellen angenommen werden. Das liefert folgenden
Ansatz für das elektrische Feld:

~E(~r, ω) =
1

2

{
bi(ω − ωi) ~E (ωi)

+ b∗i (−ω − ωi) ~E∗(ωi)
}

+

1

2

{
bj(ω − ωj) ~E (ωj)

+ b∗j(−ω − ωj) ~E∗(ωj)
}

(1.52)

Bei dieser Darstellung wurde bereits die spezielle Symmetrie der Felder (1.11) ver-
wendet. Abbildung 1.4 veranschaulicht die Antisymmetrie der imaginären Spektral-
komponenten und die Orientierung auf der Frequenzachse. Dieser Ansatz soll jetzt im

18k, l, m ∈ [1, 2, 3]
19engl. single mode

Abbildung 1.4: Imaginärteil eines Beispielspektrums. Während der Imaginärteil
punktsymmetrisch ist, verhält sich der Realteil achsensymmetrisch.
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Folgenden in (1.53) eingesetzt und analysiert werden20:

P
(2)
k (~r, ω) =

1

4
ε0 E (ωi)

l E (ωi)
m

∞∫

−∞

dω′χ(2)
klmbi(ω

′ − ωi) bi(ω − ω′ − ωi) + (ω = 2ωi)

1

4
ε0 E (ωi)

l E∗(ωi)
m

∞∫

−∞

dω′χ(2)
klmbi(ω

′ − ωi) b∗i (−ω + ω′ − ωi) + (ω = 0)

1

4
ε0 E (ωi)

l E (ωj)
m

∞∫

−∞

dω′χ(2)
klmbi(ω

′ − ωi) bj(ω − ω′ − ωj) + (ω = ωi + ωj)

1

4
ε0 E (ωi)

l E∗(ωj)
m

∞∫

−∞

dω′χ(2)
klmbi(ω

′ − ωi) b∗j(−ω + ω′ − ωj) + (ω = ωi − ωj)

1

4
ε0 E∗(ωi)

l E (ωi)
m

∞∫

−∞

dω′χ(2)
klmb∗i (−ω′ − ωi) bi(ω − ω′ − ωi) + (ω = 0)

1

4
ε0 E∗(ωi)

l E∗(ωi)
m

∞∫

−∞

dω′χ(2)
klmb∗i (−ω′ − ωi) b∗i (−ω + ω′ − ωi) + (ω = −2ωi)

1

4
ε0 E∗(ωi)

l E (ωj)
m

∞∫

−∞

dω′χ(2)
klmb∗i (−ω′ − ωi) bj(ω − ω′ − ωj) + (ω = −ωi + ωj)

1

4
ε0 E∗(ωi)

l E∗(ωj)
m

∞∫

−∞

dω′χ(2)
klmb∗i (−ω′ − ωi) b∗j(−ω + ω′ − ωj) + (ω = −ωi − ωj)

1

4
ε0 E (ωj)

l E (ωi)
m

∞∫

−∞

dω′χ(2)
klmbj(ω

′ − ωj) bi(ω − ω′ − ωi) + (ω = ωj + ωi)

1

4
ε0 E (ωj)

l E∗(ωi)
m

∞∫

−∞

dω′χ(2)
klmbj(ω

′ − ωj) b∗i (−ω + ω′ − ωi) + (ω = ωj − ωi)

1

4
ε0 E (ωj)

l E (ωj)
m

∞∫

−∞

dω′χ(2)
klmbj(ω

′ − ωj) bj(ω − ω′ − ωj) + (ω = 2ωi)

1

4
ε0 E (ωj)

l E∗(ωj)
m

∞∫

−∞

dω′χ(2)
klmbj(ω

′ − ωj) b∗i (−ω + ω′ − ωi) + (ω = 0)

20Gemäß der Einstein’schen Summenkonvention wird über doppelt auftretende Indizes summiert.
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1

4
ε0 E∗(ωj)

l E (ωi)
m

∞∫

−∞

dω′χ(2)
klmb∗j(−ω′ − ωj) bi(ω − ω′ − ωi) + (ω = −ωj + ωi)

1

4
ε0 E∗(ωj)

l E∗(ωi)
m

∞∫

−∞

dω′χ(2)
klmb∗j(−ω′ − ωj) b∗i (−ω + ω′ − ωi) + (ω = −ωj − ωi)

1

4
ε0 E∗(ωj)

l E (ωj)
m

∞∫

−∞

dω′χ(2)
klmb∗j(−ω′ − ωj) bj(ω − ω′ − ωj) + (ω = 0)

1

4
ε0 E∗(ωj)

l E∗(ωj)
m

∞∫

−∞

dω′χ(2)
klmb∗j(−ω′ − ωj) b∗j(−ω + ω′ − ωj) (ω = −2ωi).

(1.53)

Die Koeffizienten b sind nur von Null verschieden, wenn die Funktionsargumente in
einem engen Bereich um Null liegen. In der rechten Spalte ist notiert, bei welcher
Frequenz ω die jeweiligen Integrale nicht verschwindende Werte liefern. Hier lassen
sich verschiedene Klassen ausmachen.

Optische Gleichrichtung oder auch optical rectification (OR). Dieser Beitrag bildet
im Kristall ein statisches elektrisches Feld aus.

Frequenzverdopplung oder auch second harmonic generation (SHG).

Summenfrequenzerzeugung oder auch sum frequency generation (SFG). Dieser
Beitrag hat eine treibende nichtlineare Polarisation bei der Summe beider Fre-
quenzen zur Folge.

Differenzfrequenzerzeugung oder auch difference frequency generation (DFG). In
der quantenmechanischen Betrachtung ist dieser Beitrag auch verantwortlich für
die parametrische Fluoreszenz.

Dazu einige Anmerkungen: Bei der Betrachtung der rechtsseitig notierten Frequenzen
erkennt man, dass jede Frequenz sowohl positiv als auch negativ vorhanden ist. Da
die Spektralkomponenten bei positiven und negativen Frequenzen eindeutig miteinan-
der verknüpft sind (1.11) ist im Weiteren eine Betrachtung nur der Beiträge positiver
Frequenzen hinreichend. Analoge Gleichungen erhält man für die negativen Spektral-
komponenten.

Es treten sowohl Summen- als auch Differenzfrequenzen auf. Optische Gleichrichtung
entspricht einer Differenz zweier gleicher Frequenzen. Die Erzeugung der Differenzfre-
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quenz entspricht im quantenmechanischen Bild dem stimulierten Zerfall eines Pump-
photons über ein virtuelles Niveau und die Bedingung

ω0 = ω1 + ω2 (1.54)

wird auch gemeinhin als Energieerhaltung interpretiert.

Terme der Frequenzverdopplung treten einmal auf, Differenzen bzw. Summen jedoch
zweimal. Da die Reihenfolge der Felder keine Rolle spielen darf, permutieren l und m.
Daher lassen sich die Integrale bei doppelt auftretenden Frequenzen zusammenfassen.
Die Permutation der hinteren Indizes lässt sich in der Voigt-Notation21 ausdrücken.

k11 k22 k33 k32 = k23 k31 = k13 k12 = k21
k1 k2 k3 k4 k5 k6

Tabelle 1.1: Voigt-Notation

Daraus folgt unmittelbar, dass sich die 27 Elemente des Tensors dritter Stufe auf die
Darstellung als 3×6-Matrix reduzieren lässt. Unabhängig davon ist es allgemein üblich,
dklm = 1

2
χ

(2)
klm zu definieren. Berücksichtigt man ferner die spezielle Kristallsymmetrie

3m von LiNbO3 , verbleiben drei unabhängige Tensorelemente [Yar91], [DGN91]:

d31 = d32 = d15 = d24, d22 = −d21 = −d16 und d33 (1.55)

Somit werden die nichtlinearen Koeffizienten in LiNbO3 durch folgenden d-Tensor be-
schrieben: 


0 0 0 0 d31 −d22

−d22 d22 0 d31 0 0

d31 d31 d33 0 0 0


 (1.56)

Die Elemente des d-Tensors sind frequenzabhängig [Ser01]. Miller [Mil64] entwickelte
schon früh auf der Basis eines anharmonischen Oszillators ein Modell für den Frequenz-
gang der Suszeptibilitäten. Dabei führte er die frequenzunabhängigen Miller’schen ∆’s
ein:

∆klm =
dklm(−ωp, ωs, ωi)

(n2(ωp)− 1) · (n2(ωs)− 1) · (n2(ωi)− 1)
. (1.57)

21Die Indizes des Tensors dritter Ordnung können mittels der Voigt-Notation zusammengefasst
werden. Entscheidend ist der zweite Index der zweiten Reihe, der die letzten beiden Indizes des Tensors
zusammenfasst. Komponenten gleicher Orientierung werden durch Koeffizienten mit den Indizes 1-
3 verknüpft. Der Index gibt in diesem Fall die Raumrichtung der Komponenten an. Komponenten
unterschiedlicher Orientierung werden durch Koeffizienten mit den Indizes 4-6 verknüpft. Der Index
gibt in dem Fall die verbleibende Raumrichtung an.
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Mit Hilfe eines Messwertes in einem beliebigen Arbeitspunkt ließe sich dann mit (1.57)
die Suszeptibilität extrapolieren. In der Praxis erweist sich jedoch die Annahme ei-
nes einzelnen anharmonischen Oszillators als sehr grobe Näherung, so dass in realen
Materialien die Miller’schen ∆’s nicht konstant sind.

Shoji et. al. [SKK+97] haben im Jahr 1997 eine Arbeit veröffentlicht, in der die Fre-
quenzabhängigkeit der Suszeptibilitäten und der Miller’schen ∆’s näher untersucht
wurden. Tabelle 1.2 zeigt die in dieser Arbeit ermittelten Werte der Koeffizienten d31

und d33 in LiNbO3 für verschiedene Wellenlängen. Der Wert des d22 ist aus [MEF+95]
entnommen. Angegeben ist die Wellenlänge der Fundamentalwelle. Die Suszeptibilitä-
ten zeigen eine sehr starke Wellenlängenabhängigkeit, insbesondere zwischen 1064 nm
und 1331 nm ist eine große Differenz zu erkennen:

1331 nm 1064 nm 852 nm

d33 [pm/V] 19.5 25.2 25.7
d31 [pm/V] 3.2 4.6 4.8
d22 [pm/V] 2.1

Tabelle 1.2: Experimentell ermittelte Werte der nichtlinearen Koeffizienten in
LiNbO3 .

1.5 Parametrische Verstärkung in der nichtlinearen
Optik

Allgemein bezeichnet man den Energietransfer zwischen zwei Schwingungen aufgrund
einer periodischen Modulation von Parametern als parametrische Verstärkung [RSW86].
Ein einfaches und sehr anschauliches Beispiel parametrischer Verstärkung findet man in
der Mechanik. Nimmt man an, dass die Länge eines mathematischen Pendels periodisch
verändert wird (Abbildung 1.5), so ergibt sich die folgende linearisierte Bewegungs-
gleichung [Dem98]:

ẍ + ω0{1 + h cos(Ω t)} x = 0. (1.58)

Eine genauere Analyse liefert ein exponentielles Anwachsen der Schwingungsamplitude,
wenn Ω in einem engen Intervall um 2 ω0 liegt.

In der nichtlinearen Optik kommt es zu einer induzierten periodischen Änderung des
optischen Mediums. Je nach Phasenlage kann es so zu der Verstärkung bzw. Ab-
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Abbildung 1.5: Wird bei einem Pendel periodisch die Pendellänge variiert, kann
es zu einem effektiven Energietransfer zum Pendel kommen.

schwächung einer sich ausbreitenden Welle kommen. Im Folgenden wird bis auf wei-
teres davon ausgegangen, dass die wechselwirkenden Wellen in der Grundmode ge-
führt werden. Das Design der Wellenleiter ist so gewählt, dass die niederfrequente-
ren Wellen einmodig geführt werden. Setzt man ferner zur Analyse drei Spektren22

an, deren Schwerpunkte die Bedingung (1.54) erfüllen und ordnet man die Terme
(1.53) entsprechend der rechts aufgetragenen Frequenzen, um dann die Störpolarisati-
on für die CMT-Analyse (1.49) zu finden, ergibt sich schließlich das folgende Integro-
Differentialgleichungssystem23:

{
∂

∂z
+ iβ(ω) +

α0

2

}
b0(z, ω − ω0) =

− iD(z)
ε0ω0 χ

(2)
klm

4P0

∫∫
dxdy E∗(ω0)

k E (ω1)
l E (ω2)

m ·
∞∫

−∞

dω′b1(z, ω
′ − ω1)b2(z, ω − ω′ − ω2)

(1.59){
∂

∂z
+ iβ(ω) +

α1

2

}
b1(z, ω − ω1) =

− iD(z)
ε0ω1 χ

(2)
klm

4P0

∫∫
dxdy E∗(ω1)

k E (ω0)
l E∗(ω2)

m ·
∞∫

−∞

dω′b0(z, ω
′ − ω0)b

∗
2(z,−ω + ω′ − ω2)

(1.60){
∂

∂z
+ iβ(ω) +

α2

2

}
b2(z, ω − ω2) =

22In der Literatur wird die kurzwellige Welle als Pump-, die langwelligen willkürlich als Signal- bzw.
Idlerwelle bezeichnet

23Es gilt wieder die Einstein’sche Summenkonvention.
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− iD(z)
ε0ω2 χ

(2)
klm

4P0

∫∫
dxdy E∗(ω2)

k E (ω0)
l E∗(ω1)

m ·
∞∫

−∞

dω′b0(z, ω
′ − ω0)b

∗
1(z,−ω + ω′ − ω1)

(1.61)

D(z) bezeichnet die Orientierung der kristallographischen c-Achse (optische Achse)
relativ zum Laborsystem. Eine Modulation der optischen Achse dient der im Folgen-
den noch zu diskutierenden Quasi-Phasenanpassung. Je nach Richtung der optischen
Achse — entweder parallel oder antiparallel zur z-Achse des Laborsystems — gilt
D(z) = ±1. Heuristisch werden zudem die Streuverluste αi

24 berücksichtigt. In dieser
Arbeit werden Wechselwirkungen zwischen Wellen beschrieben, die allesamt QTM-
polarisiert sind. Im Laborkoordinatensystem (Abbildung 2) sind somit die domi-
nanten elektrischen Feldkomponenten die y-Komponenten. Die Wechselwirkung über
andere Komponenten kann an dieser Stelle vernachlässigt werden, da sich diese um
mindestens eine Größenordnung von der dominierenden Komponente unterscheiden.
Das Koppelintegral25 reduziert sich somit auf

κ =

∫∫
dxdy E (ω0)

y E (ω1)
y E (ω2)

y (1.62)

und ist für alle Gleichungen identisch und reell. Zur Berechnung der Modenverteilungen
und damit auch der Koppelintegrale wird zumeist die GHG-Approximation verwendet
[KMB+82]. Ein Vergleich der mit dieser Methode ermittelten Koppelintegrale mit de-
nen mittels genauerer FEM [Str91] ermittelten, liefert eine Abweichung von 1-3 %.
Der Ritz’sche Ansatz (GHG) unterdrückt zwar das evaneszente Feld der Mode, da die
Hermite-Gauss-Funktion an der Grenzfläche zur Luft identisch Null ist, jedoch spielt
das bei Wechselwirkungen wie in der nichtlinearen Optik, die sich über den ganzen
Wellenleiterquerschnitt verteilen, keine große Rolle.

Zur besseren Auswertbarkeit sollen noch schnelle Oszillationen extrahiert werden. Sei
ωi die Trägerfrequenz, definiert

ci(z, ω − ωi) = bi(z, ω − ωi) exp {iβ(ωi)z} . (1.63)

langsam veränderliche Amplituden. Verwendet man die in der Literatur für die Erzeu-
gung der Differenzfrequenz übliche Bezeichnung pump, signal und idler, definiert man
βi = β(ωi) und die Phasenfehlanpassung

∆βDFG = βp − βs − βi, (1.64)

24Experimentell werden die Streuverluste in dB/cm angegeben.
25Die Definition des Koppel- oder auch Überlappintegral ist in der Literatur nicht konsistent. Je nach

Normierung der Feldbeschreibungen ändern sich Einheit und Betrag. Hier hat das Überlappintegral
die Einheit [κ] = V3/m.
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so ergibt sich schließlich:
{

∂

∂z
+ i(β(ω)− βp) +

αp

2

}
cp(z, ω − ωp) =

− iD(z)
ε0ωpd33κ

2P0

· exp (i∆βDFGz) ·
∞∫

−∞

dω′cs(z, ω
′ − ωs)ci(z, ω − ω′ − ωi)

(1.65){
∂

∂z
+ i(β(ω)− βs) +

αs

2

}
cs(z, ω − ωs) =

− iD(z)
ε0ωsd33κ

2P0

· exp (−i∆βDFGz) ·
∞∫

−∞

dω′cp(z, ω
′ − ωp)c

∗
i (z,−ω + ω′ − ωi)

(1.66){
∂

∂z
+ i(β(ω)− βi) +

αi

2

}
ci(z, ω − ωi) =

− iD(z)
ε0ωid33κ

2P0

· exp (−i∆βDFGz) ·
∞∫

−∞

dω′cp(z, ω
′ − ωp)c

∗
s (z,−ω + ω′ − ωs)

(1.67)

Diese Gleichungen beschreiben sowohl die Summen- als auch die Differenzfrequenzer-
zeugung oder optisch parametrische Verstärkung. Die Richtung des Energietransfers
wird bestimmt durch die relative Phasenbeziehung und das Vorzeichen des nichtlinea-
ren Koeffizienten:

φDFG = arg(cp)− arg(cs)− arg(ci)− π ·D(z) = φSFG + π (1.68)

Auf die besondere Rolle von D(z) wird bei der Diskussion der Phasenanpassung genau
eingegangen.

Auf die gleiche Weise findet man die Gleichungen für die Erzeugung der zweiten Har-
monischen. Der wesentliche Unterschied ist, dass in (1.53) die Terme der nichtlinearen
Polarisation bei der doppelten Frequenz nur einfach auftreten.
{

∂

∂z
+ i(β(ω)− βfh) +

αfh

2

}
cfh(z, ω − ωfh) =

− iD(z)
ε0ωfhd33κ

2P0

· exp (−i∆βSHGz) ·
∞∫

−∞

dω′c∗fh(z,−ω′ − ωfh)csh(z, ω − ω′ − ωsh)

(1.69){
∂

∂z
+ i(β(ω)− βsh) +

αsh

2

}
csh(z, ω − ωsh) =
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− iD(z)
ε0ωshd33κ

2P0

· exp (i∆βSHGz) · 1

2

∞∫

−∞

dω′cfh(z, ω
′ − ωfh)cfh(z, ω − ω′ − ωfh)

(1.70)

fh steht hier für fundamental harmonic und sh für second harmonic. Zudem gilt ∆βSHG =

βsh−2βfh und natürlich ωsh = 2ωfh. Diese beiden Gleichungssysteme bilden das Grund-
gerüst für sämtliche kaskadierten nichtlinearen optischen Wechselwirkungen zweiter
Ordnung. Durch eine Kombination beider Gleichungen lässt sich unter anderem die
Erzeugung der dritten Harmonischen26 beschreiben, die auf der Summenfrequenzer-
zeugung der Fundamentalwelle mit der zweiten Harmonischen beruht.

Erstmals tritt an dieser Stelle der Faktor exp (i∆βz) auf. ∆β ist ein Maß, inwieweit
eine propagierende Welle und eine in ihrer Frequenz oszillierende Polarisation in der
Phase auseinanderlaufen. Den größtmöglichen Energietransfer erhält man, wenn sich
die emittierten Partialwellen der schwingenden Dipole der nichtlinearen Polarisation
konstruktiv überlagern. Das ist allerdings nur in Ausnahmefällen und oft nur nähe-
rungsweise möglich. Ursache ist die Dispersion des Materials, die verschiedene Phasen-
geschwindigkeiten für verschiedene Wellenlängen zur Folge hat. Hierauf soll im nächsten
Kapitel genauer eingegangen werden.

Um die Gleichungen numerisch auswerten zu können, werden die Gleichungssysteme in
ein mitbewegtes Koordinatensystem überführt. Dazu wird zuerst die retardierte Zeit
eingeführt:

η = t− z

vr

(1.71)

vr ist die Retardierungsgeschwindigkeit, also die Geschwindigkeit, mit der sich das
retardierte Bezugssystem fortbewegt. In der Regel wählt man eine der Gruppenge-
schwindigkeiten der am Prozess teilnehmende Wellen. Im Frequenzbereich hat das zur
Folge, dass die Terme der Wellenvektoren auf der linken Seite der Gleichung modifiziert
werden. Zum Beispiel transformiert die linke Seite der Gleichung für die Fundamentale
Harmonische wie folgt:

β(ω)− βfh → β(ω)− βfh − ω − ωfh

vr

(1.72)

Im Folgenden wird diese Retardierung nicht weiter explizit erwähnt und vorausgesetzt.

26Third Harmonic Generation THG
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1.6 Phasenanpassung und Domäneninversion

Einen effektiven Energietransfer beobachtet man nur, wenn der Betrag von (1.64) klei-
ne Werte annimmt. Große Werte der Phasenfehlanpassung ∆β führen zu einem stark
oszillierenden Term vor den Faltungsintegralen und somit zu keinem Nettoeffekt. Zum
Vergleich: während der Betrag der Wellenzahl der in Abbildung 1.2 skizzierten Mo-
de im Bereich 9 · 106 1/m liegt, findet effektiver Energietransfer nur in einem Bereich
∆βL = ±2π statt. L bezeichnet die Länge der Wechselwirkungsstrecke. Für eine 6 cm
lange Struktur bedeutet das |∆βSHG| < 100 1/m. Es ist leicht einzusehen, dass es sich
um eine sehr kritische Bedingung handelt und so die Erfordernisse an die Herstellungs-
technologie ausserordentlich hoch sind. In der Einleitung wurde eine mikroskopische
Interpretation der Phasenanpassung gegeben und die Möglichkeit der Phasenanpas-
sung durch eine periodische Inversion der optischen Achse vorgestellt. Abbildung 1.6
zeigt ein Photo der Oberfläche eines periodisch gepolten Wellenleiters in Ti:LiNbO3 .
Der Wellenleiter verläuft horizontal. Die Domänen wurden durch ein selektives ätzen
sichtbar gemacht. Dabei wird ausgenutzt, dass die +Z und die -Z-Seite ein unterschied-
liches Ätzverhalten haben. Die Orientierung der Domäne ist jeweils angedeutet.

Mathematisch lässt sich die periodische Inversion mittels einer Fourierreihe darstellen
[Yar73]. In dem Fall einer konstanten Periode und bei gleichen Domänenbreiten für
beide Orientierungen lautet sie (s ∈ N0):

D(z) =
∞∑

m=−∞
Dm exp

(
i2π m

z

2LC

)
=





+1 für 2s ≤ z/Lc < 2s + 1

−1 für 2s− 1 ≤ z/Lc < 2s

Abbildung 1.6: Photo der Oberfläche eines periodisch gepolten, Titan-
diffundierten Streifenwellenleiters für das nahe Infrarot. Die invertierten Domänen
wurden durch ein Ätzverfahren sichtbar gemacht. Dabei wird ausgenutzt, dass das
Ätzverhalten beider Polaritäten des Kristalls (+Z,−Z) unterschiedlich sind.
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mit Dm =





i
2 sign(m)

mπ
für m ungerade

0 für m gerade.
(1.73)

Das Verhältnis einer invertierten Domäne zur Periode bezeichnet man als Tastverhält-
nis oder auch als Duty-Cycle. Ausgedrückt wird das durch den prozentualen Anteil
der beiden Domänen an der gesamten Periode. Beispielsweise ist der Duty-Cycle für
eine homogene Struktur mit gleichen Breiten der inversen Domänen 50:50. Abbil-
dung 1.7 zeigt typische Abstimmkurven der nichtlinearen Frequenzkonversion. Diese
Abstimmkurven sind wie folgt zu lesen: wählt man auf der Abszisse eine Wellenlänge
aus (Pumpwellenlänge), so markieren die beiden Schnittpunkte mit einer vertikalen
Linie jeweils die Wellenlänge von Signal- und Idlerwelle.

Ersetzt man in den Gleichungen für die nichtlinearen Wechselwirkungen D(z) durch die
Fourierreihe (1.73), so lassen sich die reale Phasenfehlanpassung und die Gittervektoren
der Fourierreihe zu einer QPM-Phasenfehlanpassung zusammenfassen:

∆βm = ∆β − 2π

mΛ
(1.74)
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Abbildung 1.7: Phasenanpasskurven für verschiedene Perioden Λ in einem Stan-
dardwellenleiter für das mittlere Infrarot. Wählt man einen Punkt auf der Abszisse,
so werden dem zwei Punkte auf der Ordinate zugeordnet bei denen Phasenanpassung
herrscht.
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Λ = 2LC wird die Periode des Gitters genannt. |m| bestimmt die Ordnung der Pha-
senanpassung. Da Phasenanpassung nur im Mittel gefunden wird, reduziert sich der
nichtlineare Koeffizient gegenüber echter Phasenanpassung um den Betrag der Fourier-
komponente. Das drückt man durch die effektiven nichtlinearen Koeffizienten deff aus.
Im Fall der Quasi-Phasenanpassung in Z-Schnitt Wellenleitern mit X-Ausbreitungs-
richtung ergibt sich:

deff =
2

π
d33 (1.75)

Bei einem nichtidealen Verhältnis der Halbperioden ändern sich die Koeffizienten in der
Reihenentwicklung der Gitterfunktion. Technologisch ist es schwer, exakt gleiche Halb-
perioden herzustellen, da zu dem Wachstum in die Tiefe stets ein laterales Wachstum
hinzukommt [Sch02]. Da jedoch die Periode von einer sehr exakten Maske vorgegeben
ist, muss hier nur eine Änderung des Duty-Cycle in Betracht gezogen werden. Abbil-
dung 1.8 veranschaulicht die Situation. Der Parameter ξ gibt die Verschiebung der
Domänenwand gegenüber der idealen Situation an. ξ = 0 entspricht demzufolge ein
Duty-Cycle von 50:50 und ξ = Λ/4 entspricht 25:75.

Legt man diese Geometrie zu Grunde und definiert man weiterhin

δ =
2ξ

Λ
, (1.76)

so erhält man nach kurzer Rechnung für das Betragsquadrat der Fourierkoeffizienten:

|Dm(δ)| =
2

m2π2
{1− (−1)m cos(mπδ)} (1.77)

Abbildung 1.9 veranschaulicht die Abhängigkeit der ersten vier Fourierkoeffizienten
von der Verschiebung δ. Man erkennt im Wesentlichen zwei Dinge: zum einen ist der
Koeffizient für m = ±1 sehr robust gegen eine Verschiebung der Domänenwand. Selbst

z

y

L

x

Abbildung 1.8: Veranschaulichung der Situation bei einer um ξ verschobenen
Domänenwand.
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Abbildung 1.9: Verlauf der Fourierkoeffizienten der Ordnung m als Funktion von
δ. Bemerkenswert ist, dass bereits für δ = 0.1 — das entspricht einem Duty-Cycle
von 40:60 — die Effizienz der Wechselwirkungen, die in zweiter Ordnung phasenan-
gepasst sind, bereits 10 % der maximal möglichen beträgt.

bei δ = 0.25 (25:75) ist das Betragsquadrat des effektiven nichtlinearen Koeffizienten
immer noch ungefähr 80 % der idealen Situation. Zum anderen erkennt man, dass die
Phasenanpassung gerader Ordnung eine Rolle spielen kann.

Ein weiterer wesentlicher Vorteil der QPM gegenüber der Phasenanpassung durch Dop-
pelbrechung ist die Möglichkeit, Phasenanpassung für mehrere Prozesse gleichzeitig zu
realisieren. Dazu müssen verschiedene Gitter überlagert werden; das Inversionsgitter
ergibt sich dann aus einer Schwebung dieser Untergitter. Mathematisch beschrieben
wird ein solches Gitter durch [NS04]

D(z) = sign

{ ∞∑

k=0

wk sin (∆βkz + φk)

}
. (1.78)

Der Einfluss einer Streuung der Domänenbreite auf die Konversionseffizienz und die
Verstärkungskurve wird ausführlich sowohl semi-analytisch [HA91] als auch numerisch
[Wer99] analysiert. ImWesentlichen ist zwischen zwei Streuungstypen zu unterscheiden:

Korreliert Streuung der Position der Domänenwand. Wird eine Domäne breiter, so
reduziert sich die Breite der benachbarten Domäne. Dieser Typ liegt vor, wenn
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Abbildung 1.10: Fouriertransformierte des Gitters für eine korrelierte und eine
nichtkorrelierte Streuung der Position der Domänenwand.

bei einer perfekten Maske Inhomogenitäten im Substratmaterial das Domänen-
wachstum beeinflussen.

Nichtkorreliert Direkte Streuung der Domänenbreite.

Abbildung 1.10 zeigt die Fourierkoeffizienten ck von Gittern mit unterschiedlichen
Statistiken. Normiert sind die Koeffizienten auf den maximal möglichen Werte 2/π

eines ungestörten Gitters mit einem Duty-Cycle von 50:50. Die Amplitude der Fourier-
koeffizienten sind im Kleinsignalbetrieb proportional zur Effizienz der Erzeugung der
zweiten Harmonischen. Man erkennt, dass die Effizienz und insbesondere die Band-
breite bei einer korrelierten Streuung sehr robust ist. Hingegen kommt es bei einer
nichtkorrelierten Streuung zu einer starken Deformation und besonders zu einer star-
ken Abnahme der Effizienz.

Streuungen bei per Lithographie hergestelltem Domänengitter entsprechen weitgehend
dem korrelierten Typ. Die zur Herstellung verwendeten Masken können mit einer ex-
trem guten Homogenität hergestellt werden. Es ist daher zu erwarten, dass die Git-
terinhomogenitäten in periodisch gepoltenTi:LiNbO3 -Streifenwellenleitern einen sehr
geringen Einfluss auf das Konversionsverhalten haben.
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1.7 Dispersion in Ti:LiNbO3 -Streifenwellenleitern

Wesentlich zur dynamischen Beschreibung der optisch nichtlinearen Wechselwirkungen
ist das Dispersionsverhalten im Wellenleiter. LiNbO3 ist ein Substrat mit einer norma-
len Dispersion27 über den ganzen transparenten Spektralbereich. Die Brechungsindizes
der ordentlichen und der ausserordentlichen Polarisation28 für den in dieser Arbeit maß-
geblichen Bereich sind in Abbildung 1.11 dargestellt. Über den gesamten relevanten
Bereich ist der ordentliche Brechungsindex größer als der ausserordentliche. Das rech-
te Diagramm zeigt den Verlauf des Gruppenindexes. Der Gruppenindex ist über das
Verhältnis von Vakuum-Lichtgeschwindigkeit zur Gruppengeschwindigkeit definiert:

ng =
c0

vg
. (1.79)

Der Gruppenindex kann auch direkt aus dem Brechungsindex gewonnen werden:

ng(λ) = n(λ)− λ
∂n(λ′)

∂λ′

∣∣∣
λ′=λ

(1.80)

27Normale Dispersion:
∂n

∂λ
< 0. Anormale Dispersion:

∂n

∂λ
> 0

28In optisch einachsigen Kristallen bezeichnet „ordentlich“ die Richtung orthogonal zur optischen
Achse.
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Abbildung 1.11: Verlauf von Brechungs- (links) und Gruppenindex für die or-
dentliche und die ausserordentliche Polarisation. Die Orientierung des Substrats ist
Z-Schnitt und X-Ausbreitungsrichtung. Die ordentliche Polarisation entspricht einer
QTE-Mode, die ausserordentliche einer QTM-Mode.
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Der Gruppenindex zeigt qualitativ ein anderes Verhalten. Bei λ = 1925 nm hat der
Gruppenindex ein Minimum; hin zu kürzeren und längeren Wellenlänge wächst er
streng monoton. Beispielsweise werden die später noch beschriebenen Konversionsband-
breiten nichtlinearer Prozesse durch die Differenzen der reziproken Gruppengeschwin-
digkeiten bestimmt. Auch die zur Beschreibung der in Kapitel 5 maßgeblichen freien
Spektralbereiche sind unmittelbar mit der Gruppengeschwindigkeit korreliert. Das ex-
treme Verhalten des Gruppenindexes hat zur Folge, dass beispielsweise die Bandbreite
der optisch parametrischen Verstärkung (Kapitel 2) sehr groß wird.



Kapitel 2

Dreiwellen-Frequenzkonversion

In Kapitel 1 wurden die notwendigen Formalismen hergeleitet, um nichtlineare Wechsel-
wirkungen in Streifenwellenleitern zu beschreiben. In diesem Kapitel sollen die Prozes-
se der Dreiwellenmischung klassifiziert, analysiert und mit dem Experiment verglichen
werden. Der Schwerpunkt soll hier insbesondere auf den Einfluss der Gruppengeschwin-
digkeit auf die Dynamik der Wechselwirkung gelegt werden. Der Prozess der optischen
Gleichrichtung wird bei dieser Analyse nicht berücksichtigt, da in dieser Arbeit der
Schwerpunkt auf der Konversion liegt.

Bei der Erzeugung der zweiten Harmonischen handelt es sich letztlich um eine entarte-
te Summenfrequenzerzeugung. Das heisst, dass auch die Frequenzverdopplung formal
als Dreiwellen-Prozess angesehen werden muss. Im klassischen Bild der Maxwelltheo-
rie unterscheidet sich die Erzeugung der Summenfrequenz nur durch eine Phase von
der Erzeugung der Differenzfrequenz. Beide Prozesse treten alternierend auf, wenn die
Wechselwirkung zwischen drei Wellen nicht phasenangepasst stattfindet.

2.1 Zweite Harmonische und Summenfrequenzerzeu-
gung

Die Erzeugung der zweiten Harmonischen ist sicher der bekannteste Prozess in der
nichtlinearen Optik. Neben effizienter interner Erzeugung kohärenter Strahlung zur
Kaskadierung nichtlinearer Prozesse (Abschnitt 2.2) dient sie vor allem auch der Cha-
rakterisierung der nichtlinearen Eigenschaften optischer Frequenzkonverter. Auch las-
sen sich durch eine Untersuchung der Wellenlängenabhängigkeit der SHG wesentliche

38
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Informationen hinsichtlich der Homogenität sowohl der linearen als auch der nichtli-
nearen Eigenschaften der Proben gewinnen.

Im Fall monochromatischer Wechselwirkung lassen sich die beschreibenden Gleichun-
gen stark vereinfachen. Setzt man in (1.69) und (1.70) für die Spektren jeweils Di-
rac’sche Deltafunktionen an, so folgen direkt die Gleichungen für den Dauerstrichbe-
trieb:

∂

∂z
cfh = −αfh

2
cfh − i

ε0ωfhd33κ

2P0

c∗fhcsh exp (−i∆βSHGz) (2.1)

∂

∂z
csh = −αsh

2
csh − i

ε0ωshd33κ

4P0

c2
fh exp (i∆βSHGz) (2.2)

Eine genaue Analyse dieser Gleichungen auch im Fall einer nichtverschwindenden Pha-
senfehlanpassung findet sich in [Wer99]. Hier soll nur kurz die Lösung für den ver-
lustfreien Fall bei ausschließlich eingestrahlter Fundamentalwelle und im Fall der Pha-
senanpassung diskutiert werden. Da während des Konversionsprozesses die Energie
erhalten bleibt, ist die Summe der Amplitudenquadrate von erster1 und zweiter Har-
monischer eine Konstante. Diese Bedingung liefert in Verbindung mit der zweiten Glei-
chung (2.2) eine gewöhnliche nichtlineare Differentialgleichung, die sich durch einen
plausiblen Ansatz lösen lässt. Die Gleichung für die Fundamentalwelle lässt sich dann
leicht integrieren. Es ergibt sich:

cfh = cfh,0sech(gz) (2.3)

csh = −icfh,0 tanh(gz) (2.4)

g =
ε0ωfhd33κ

2P0

|cfh,0|

Oder für die Leistungen:

Psh(z) = Pfh(0) tanh2(gz) = Pfh(0)(gz − 1

3
g3z3 + · · · )2 ≈ Pfh(0)g2z2 (2.5)

Demzufolge ist die Leistung der zweiten Harmonischen im Grenzfall kleiner Konversion
proportional zum Quadrat der Pumpleistung2 und zum Quadrat der Wechselwirkungs-
länge. Die quadratische Abhängigkeit von der Pumpleistung findet Berücksichtigung
in der Definition der normierten Konversionseffizienz

ηSHG = 100 · Psh(z = L)

Pfh(z = 0)2
, (2.6)

0sech(x) =
1

cosh(x)
1erste oder fundamentale Harmonische.
2Da g2 ∼ Pfh(0) gilt.
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welche ein wichtiger Parameter zur Charakterisierung nichtlinearer Frequenzkonver-
ter ist. Die Einheit der normierten Effizienz ist %/W. Beispielsweise wurde in 78 mm
langen periodisch gepolten Ti:LiNbO3 -Streifenwellenleitern bei einer eingekoppelten
Fundamentalleistung von 1.16 mW eine Leistung von 12.6 µW bei der Frequenz der
zweiten Harmonischen gemessen, was einer Effizienz von 935 %/W und 85 % des theo-
retischen Wertes entspricht [Sch02]. In Abbildung 2.1 ist die Effizienz eines typischen
Wellenleiters für das nahe Infrarot (Anhang A) als Funktion der Wechselwirkungs-
länge3 dargestellt. Bei dem numerischen Resultat wurden die internen Streuverluste4
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Abbildung 2.1: Effizienz der Erzeugung der zweiten Harmonischen als Funktion
der Wechselwirkungsstrecke z für verschiedene Fundamentalleistungen. Die Wellen-
länge ist λf = 1560 nm. Streuverluste sind berücksichtigt (siehe Text).

berücksichtigt. Bis zu einer eingekoppelten Fundamentalleistung5 von 10 mW kann
3Periodisch gepolte Titan-diffundierte Wellenleiter in LiNbO3 wurden mit Längen von 3-9 cm her-

gestellt.
4Streuverluste in integriert optischen Wellenleitern werden in dB/cm angegeben. Titan-diffundierte

Wellenleiter in LiNbO3 können mit außerordentlich geringen Streuverlusten realisiert werden, typi-
scherweise um 0.03-0.05 dB/cm für Wellenlängen um 3000 nm. Durch ihre größere Lokalisierung an
der Oberfläche und damit den größeren evaneszenten Feldern im Bereich der natürlichen Oberflächen-
rauhigkeiten haben Wellen kürzerer Wellenlängen höhere Streuverluste. Im Bereich um 780 nm liegen
sie um 0.2-0.3 dB/cm.

5Die Effizienz der Einkopplung wird bestimmt durch die Reflexion an der Stirnfläche des Wellen-
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man in guter Näherung davon ausgehen, dass die Fundamentalleistung nicht von dem
nichtlinearen Prozess beeinflusst wird. Danach führt der Abbau der Fundamentalwelle
aufgrund der nichtlinearen Wechselwirkung zu einer deutlichen Reduzierung der Effi-
zienz.

Im mittleren Infrarot um 3000 nm beobachtet man qualitativ das gleiche Konversions-
verhalten. Jedoch führt die geringere Fokussierung in den größeren MIR-Wellenleitern
zu geringeren Intensitäten und somit zu kleineren nichtlinearen Polarisationen. Mathe-
matisch äußert sich das durch eine kleineres Überlappintegral (1.62). Eine Auswertung
zeigt, dass in guter Näherung die Überlappintegrale im nahen Infrarot um den Faktor
2 größer sind. Da der Koppelfaktor zudem linear mit der Frequenz skaliert, ergibt sich
insgesamt näherungsweise ein Faktor vier bei der Amplitudenkopplung. Berücksichtigt
man die kleineren Streuverluste im mittleren Infrarot6 ergibt sich in grober Näherung

ηNIR

ηMIR
≈ 12 (2.7)

Ein weiteres wichtiges Kriterium bei der Beschreibung der Konversionsprozesse ist die
Bandbreite. Im Falle einer monochromatischen Wechselwirkung lässt sich die gewöhn-
liche Differentialgleichung (2.2) mit der Annahme einer konstanten Pumpleistung7 und
nichtverschwindender Phasenfehlanpassung leicht lösen. Eine Analyse der Gleichungen
im Frequenzbereich ermöglicht hingegen ein tieferes Verständnis der Konversion end-
licher Spektren. Dazu werden die Wellenzahlen in (1.69) und (1.70) bis zum linearen
Glied entwickelt:

β(ω)− βfh =
∂

∂ω
β(ω)

∣∣∣
ω=ωfh

· (ω − ωfh) =
1

vg
fh

· (ω − ωfh) (2.8)

β(ω)− βsh =
∂

∂ω
β(ω)

∣∣∣
ω=ωsh

· (ω − ωsh) =
1

vg
sh

· (ω − ωsh). (2.9)

vg ist die Gruppengeschwindigkeit. Definiert man die Schreibweisen

∂β(ω)

∂ω

∣∣∣
ωfh,sh

= β
′
fh,sh =

1

vg
fh,sh

Cfh,sh(z, ω − ωfh,sh) = cfh,sh exp
(
iβ

′
fh,sh · (ω − ωfh,sh)z

)

leiters, die sich im Fall einer polierten Stirnfläche mit den Fresnel-Gleichungen bestimmen lässt und
durch das Überlappintegral zwischen dem Gauss’schen Strahl des Lasers und der Wellenleitermode.
Das Überlapp der Grundmode mit dem Gauss’schen Strahl beträgt im optimalen Fall ungefähr 0.95.
Experimentell werden Werte von 0.7-0.8 erreicht.

6Kürzere Wellenlänge erfahren höhere Oberflächennahe Streuverluste.
7 ∂

∂z
cfh = 0
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K =
ε0ωfhd33κ

2P0

δ = β
′
fh − β

′
sh,

so folgt nach kurzer Rechnung:

∂

∂z
Cfh(z, ω − ωfh) = 0 (2.10)

∂

∂z
Csh(z, ω − ωsh) = −iK exp {−i∆βSHGz} · exp {iδ · (ω − ωsh)z} ·

∞∫

−∞

dω′Cfh(z, ω
′ − ωfh)Cfh(z, ω − ω′ − ωfh)

︸ ︷︷ ︸
I(ω)

. (2.11)

Die Größe δ ist die Differenz der reziproken Gruppengeschwindigkeiten und wird auch
als group velocity mismatch (GVM) bezeichnet. Sie bestimmt wesentlich den Konversi-
onsprozess im Fall gepulster Wechselwirkung. Abbildung 2.2 zeigt die Gruppenlauf-
zeitdifferenz δ eines typischen MIR-Wellenleiters. Die Einheit ps/cm bedeutet, dass
sich die Schwerpunkte der Einhüllenden zweier Pulse nach einer Ausbreitungsstrecke
von einem Zentimeter im Zeitbereich um den jeweiligen Wert entfernt haben. Aufgrund
des speziellen Verlaufs der Gruppengeschwindigkeit (Abbildung 1.11) verschwindet
die Gruppenlaufzeitdifferenz jedoch bei λv0 = 2739 nm, um bei höheren Wellenlängen
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Abbildung 2.2: Gruppenlaufzeitdifferenz der Grundmode als Funktion der Wel-
lenlänge für einen typischen MIR-Wellenleiter.
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das Vorzeichen zu wechseln. Die Folge ist, dass bei Wellenlängen größer als λv0 der Puls
der zweiten Harmonischen dem Puls der erzeugenden Fundamentalwelle vorauseilt, ob-
wohl sich Ti:LiNbO3 -Streifenwellenleiter über den sichtbaren Spektralbereich normal
dispersiv verhalten.

Das Faltungsintegral I(ω) lässt sich unter der Annahme eines Gauß’schen Pumpspek-
trums

Cfh(z, ω − ωfh) =
C0√
π∆ω

exp

{
−

(
ω − ωfh

∆ω

)2
}

(2.12)

zu

I(ω) =
C0

2

√
2π∆ω

exp

{
−

(
ω − ωsh√

2∆ω

)2
}

(2.13)

vereinfachen. C0 ist an dieser Stelle eine einheitenlose Konstante. Es gilt die Normierung

∞∫

−∞

dω Cfh(z, ω − ωfh) = C0 (2.14)

Man erkennt, dass das erzeugende Spektrum auf der rechten Seite der Gleichung eine
um

√
2 größere spektrale Breite hat. Eine direkte Folge ist, dass die erzeugte zweite

Harmonische im phasenangepassten Fall und unter der Annahme δ · ∆ω · z ¿ 1 im
Zeitbereich um den gleichen Faktor schmaler wird. Des Weiteren rechnet man leicht
nach, dass

lim
∆ω→0

I(ω) = |C0|2 δ(ω − ωsh) (2.15)

gilt. Auf der rechten Seite der Gleichung tritt eine z-Abhängigkeit ausschließlich in den
oszillierenden Termen auf. Daher findet man die Lösung durch einfache Integration:

Csh(z, ω − ωsh) = −iK
i

∆β − δ · (ω − ωsh)
[exp {−i(∆β − δ · (ω − ωsh)) · z} − 1] · I(ω).

(2.16)
Für die parametrisch erzeugte Energie eines Pulses der zweiten Harmonischen folgt mit
(1.32) unmittelbar:

Esh(z) =
P0K

2|c0|4
2π∆ω2

z2

∞∫

−∞

dω sinc2

{
∆β − δ · (ω − ωsh)

2
z

}
exp

{
−

(
ω − ωsh

∆ω

)2
}

(2.17)
Der erste Teil des Integranden lässt sich interpretieren als spektrale Filterfunktion. Es
kann nur der Teil des Spektrums der Fundamentalwelle am Konversionsprozess teilneh-
men, bei dem der dazugehörige Wert der sinc2-Funktion signifikant von Null verschieden
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ist. Eine große Gruppenlaufzeitdifferenz δ hat eine schmalbandige Filterung zur Folge.
Durch diese schmalbandige Filterung des Spektrums der Fundamentalwelle kommt es
zu einer Reduzierung der Konversionseffizienz. Eine weitere Folge ist die Zunahme der
Verstärkungsbandbreite. Abbildung 2.3 veranschaulicht diesen Effekt: Eine schmale

Abbildung 2.3: Während der Durchstimmung der Phasenanpassbedingung im ge-
pulsten Betrieb wird die Filterfunktion über das Spektrum des Fundamentalpulses
geschoben.

Filterfunktion bewirkt, dass immer nur eine Ausschnitt des Fundamentalspektrums am
Prozess der Frequenzverdopplung teilnimmt. Im Bereich der zentrale Wellenlänge ist
die Faltung von Spektrum und Filterfunktion eine Funktion mit kleiner Variation. Im
Fall einer monochromatischen Anregung ergibt sich die wohlbekannte Akzeptanzband-
breite der Erzeugung der zweiten Harmonischen

Esh(z) ∼ z2sinc2

(
∆β

2
z

)
. (2.18)

Mit sinc2(1.39) ≈ 1/2 folgt dann analog zu [FMJB92] für die Bandbreite im Fall
monochromatischer Wechselwirkung:

∆ωFWHM
SHG =

2 · 1.39

L
·
∣∣∣∣

1

vg
fh

− 1

vg
sh

∣∣∣∣
−1

=
2 · 1.39

L

1

|δ| (2.19)

Die Bandbreite der SHG ist somit reziprok zur Gruppengeschwindigkeitsdifferenz δ.

Abbildung 2.4 zeigt die auf eins normierten Leistungen der zweiten Harmonischen im
Dauerstrichbetrieb als Funktion der Wellenlänge für zwei verschiedene Arbeitspunkte.
Im linken Diagram ist der Prozess ist bei λf = 1560 nm phasenangepasst. Die Wellen-
leiterlänge beträgt jeweils L = 80 mm, es wurden typische Wellenleiter (Anhang A) für
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das nahe bzw. mittlere Infrarot verwendet. Die Fundamentalleistung beträgt jeweils
100 mW. Es besteht ein großer Unterschied zwischen den Gruppengeschwindigkeiten
der ersten und zweiten Harmonischen; die Folge ist eine schmale Konversionsbandbrei-
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Abbildung 2.4: Konversionsbandbreiten der Erzeugung der zweiten Harmoni-
schen in einem 80 mm langen Wellenleiter im Dauerstrichbetrieb bei verschiede-
nen Arbeitspunkten. Es wurden jeweils typische Wellenleiter für das nahe (links)
bzw. mittlere (rechts) Infrarot verwendet (Anhang A). Wellenleiterverluste wurden
berücksichtigt. Im linken Diagramm besteht ein großen Unterschied in der Grup-
pengeschwindigkeit zwischen der ersten und der zweiten Harmonischen. Im rechten
Diagramm ist der Arbeitspunkt so gewählt, dass die Gruppenlaufzeitdifferenz δ ver-
schwindet. Die Folge ist eine sehr große Bandbreite.

te. Im rechten Diagramm ist der Arbeitspunkt λfh = 2739 nm gewählt. Wie bereits
erwähnt, verschwindet für diesen Arbeitspunkt die Differenz der Gruppengeschwindig-
keiten: vg

fh = vg
sh und δ → 0. Die Folge ist, dass es zu einer sehr großen Konversions-

bandbreite kommt. Da sich die Energie der Pumpwelle im Verhältnis der Frequenzen
auf Signal- bzw. Idlerwelle aufteilt, kann man bei großer Bandbreite eine Asymmetrie
erkennen.

Abbildung 2.5 zeigt deutlich den Einfluss der Gruppenlaufzeitdifferenz auf die Kon-
versionsbandbreiten im nahen (um 1550 nm) und mittleren (um 3100 nm) Infrarot bei
verschiedene Pulslängen. Die Pulse haben jeweils eine Spitzenleistung von 100 mW.
Die Wechselwirkungslänge beträgt wiederum L = 80 mm. Während die Konversions-
bandbreite im mittleren Infrarot gegenüber der Bandbreite im Dauerstrichbetrieb nur
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Abbildung 2.5: Konversionsbandbreiten der Erzeugung der zweiten Harmoni-
schen im Dauerstrich- und im gepulsten Betrieb für verschiedene Pulslängen. Die
Wechselwirkungslänge beträgt wiederum L = 80 mm. Die Pulsenergie ist jeweils der-
art gewählt, dass die Spitzenleistung 100 mW beträgt. Die Verbreiterung der Band-
breite ist im Bereich um 1560 nm sehr viel größer als im Bereich um 3100 nm.

leicht verbreitert ist, ist sie im nahen Infrarot extrem von der Pulslänge abhängig.

Abbildung 2.6 zeigt die Situation im Zeitbereich. Die retardierten Gleichungen be-
schreiben ein Zeitfenster der Breite TD, dass sich mit der Retardierungsgeschwindig-
keit vr, die in der Regel der Gruppengeschwindigkeit eines Pulses entspricht, durch
den Bereich der Wechselwirkung bewegt. Man transformiert dadurch die Gleichungen
in ein mitbewegtes Koordinatensystem. Nach einer Propagationsstrecke von z werden
die Schwerpunkte um die Differenz ∆t = z · (1/vr − 1/vg) relativ zum Ursprung ver-
schoben. Ein transformationsbegrenzter8 Puls bei einer Wellenlänge von 1560 nm und
einer Länge von 5 ps mit einer Pulsenergie von 1 pJ9 erzeugt phasenangepasst über
eine Wechselwirkungslänge von 80 mm einen Puls bei der Wellenlänge der zweiten Har-

8Transformationsbegrenzt heisst, dass das Produkt der spektralen Breite und die Breite im Zeitbe-
reich, das sogenannte Bandbreitenprodukt, eines Pulses minimal ist. Im Fall eines Gauss’schen Pulses
beträgt das Produkt dann ∆f ·∆t = 0.441. In diesem Fall sind arg (ĉ(z, t)) und arg (c(z, ω)) lineare
Funktionen der Zeit bzw. der Frequenz. Verhalten sich die Phasen der komplexen Amplituden nicht
linear, so spricht man von „chirp“.

9Die Pulsspitzenleistung berechnet sich im Fall eines Gauß’schen Pulses exakt durch P Spitze =
EPuls/FWHM · 2

√
ln(2)/π. Jedoch gilt in hinreichend guter Näherung 2

√
ln(2)/π = 0.93943 · · · ≈ 1.
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Abbildung 2.6: Erzeugung der zweiten Harmonischen im gepulsten Betrieb. Die
Verbreiterung des erzeugten Pulses ist näherungsweise proportional zur GVD, die im
mittleren Infrarot in etwa 3 ps/cm beträgt.

monischen. Die Differenz der Gruppengeschwindigkeiten führt im Zeitbereich zu einer
Verbreiterung des erzeugten Pulses. Im Fall kleiner Verstärkung ist diese Verbreiterung
näherungsweise proportional zum Produkt aus der Gruppenlauftzeitdifferenz δ und der
Wechselwirkungsstrecke. Die Vergrößerung der Bandbreite bei kleinerer Pulslänge des
Fundamentalpulses lässt sich im Zeitbereich so erklären, dass die Differenz der Grup-
pengeschwindigkeit zu einer Separation des erzeugenden und des generierten Pulses
führt und somit die Wechselwirkungslänge effektiv verkürzt wird. Zur Bestimmung der
Pulslänge eines generierten Pulses wird experimentell häufig die Autokorrelation

I(∆t) =

∞∫

−∞

dtPi(t) · Pi(t + ∆t). (2.20)

verwendet [MSLK]. Um Rückschlüsse auf die Pulslänge zu erhalten, muss eine plausi-
ble Annahme für die Pulsform gemacht werden. Abbildung 2.7 zeigt die Entwicklung
der Autokorrelation und des Bandbreitenprodukts10 des parametrisch erzeugten Pulses
der zweiten Harmonischen für verschiedene eingekoppelte Pulsenergien des Fundamen-

10Mit Bandbreitenprodukt ist das Produkt der Halbwertsbreiten der Intensitätsprofile im Frequenz-
und Zeitbereich B = ∆f ·∆t gemeint. Im Falle eines transformationsbegrenzten, gaussförmigen Pulses
gilt B = 0.441.
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Abbildung 2.7: Autokorrelationsfunktion und Bandbreitenprodukt der zweiten
Harmonischen für verschiedene Energien des Fundamentalpulses. Die Pulsbreite des
eingekoppelten Fundamentalpulses beträgt 5 ps und die Wechselwirkungslänge 80 mm.

talpulses als Funktion der Wechselwirkungslänge. Für 100 fJ und kurzer Wechselwir-
kungslänge beträgt das Bandbreitenprodukt 0.441 und entspricht somit dem Bandbrei-
tenprodukt eines transformationsbegrenzten Gausspulses. Mit Zunahme der Wechsel-
wirkungslänge nähert sich der Wert dem Bandbreitenprodukt eines rechteckförmigen
Pulses ∆f ·∆t = 0.885. Die Autokorrelation eines Rechtecks ergibt ein Dreieck, dessen
untere Seite dem doppelten Wert der Pulsbreite entspricht. Aus der Skizze lässt sich
entnehmen, dass bei geringer Leistung ein Rechteck mit einer Breite von ungefähr 24 ps
entsteht. Mit steigender Pulsenergie und somit größerer Verstärkung wird der eingekop-
pelte Fundamentalpuls signifikant abgebaut. Das führt zu einer starken Asymmetrie.
Diese Asymmetrie hat zur Folge, dass die Breite der Autokorrelation abnimmt. Das
Bandbreitenprodukt nähert sich dem Wert eines dreieckförmigen Pulses.

Aus physikalischer Sicht sehr ähnlich ist die Erzeugung der Summenfrequenz. Auch
hier kommt es zu einem Energietransfer zur kürzeren Wellenlänge. Monochromatische
Wechselwirkungen werden durch das folgende System gekoppelter Differentialgleichun-
gen beschrieben:

∂

∂z
csf = −αsf

2
csf − i

ε0ωsfd33κ

2P0

cscc exp (i∆βSFGz) (2.21)

∂

∂z
cs = −αs

2
cs − i

ε0ωsd33κ

2P0

csfc
∗
c exp (−i∆βSFGz) (2.22)
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∂

∂z
cc = −αs

2
cc − i

ε0ωcd33κ

2P0

csfc
∗
s exp (−i∆βSFGz) (2.23)

Mathematisch ist die Beschreibung identisch zur Beschreibung der Erzeugung der Diffe-
renzfrequenz. Die DFG wird weiter unten noch ausführlich diskutiert. Eher willkürlich
werden die treibenden Wellen als Signal (cs)- und Kontrollwelle (cc) bezeichnet. Eine
analytische Lösung lässt sich für (2.21)-(2.23) nur finden, wenn die Differentialglei-
chungen linearisiert werden. Wenn man annimmt, dass die Leistung der Kontrollwelle
mindestens eine Größenordnung über der Leistung der Signalwelle liegt und wenn man
die Streuverluste vernachlässigt, so kann man die Leistung der Kontrollwelle in guter
Näherung als konstant betrachten. Im phasenangepassten Fall ergibt sich dann mit der
Definition

g =
ε0d33ωsfκ

2P0

cc

für die Leistung von Signal- und Summenfrequenz:

Ps(z) = Ps(0) cos2

(√
ωs

ωsf

|g|z
)

(2.24)

Psf(z) = Ps(0)
ωsf

ωs

sin2

(√
ωs

ωsf

|g|z
)

(2.25)

Die Leistung oszilliert während der Ausbreitung zwischen dem Signal und der Sum-
menfrequenz. Mit der Periode

zsf =
π

|g|

√
ωsf

ωss

(2.26)

erfahren beide Wellen einen Phasensprung von π, wobei die Richtung des Energieflusses
umgekehrt wird. Die Strecke nach der das Signal erschöpft ist, hängt folglich nur ab
von der Leistung der Kontrollwelle und dem Verhältnis der Frequenzen.

Im gepulsten Betrieb ist die Situation komplexer. Je nach Arbeitspunkt und Gruppen-
laufzeitdifferenz kommt es zu einer Reduzierung der Konversionseffizienz. Der Grund
ist, dass Anteile des Spektrums der Signalwelle ähnlich wie bei der Erzeugung der
zweiten Harmonischen (Integrand in (2.17)) „gefiltert“ werden. Betrachtet man das
Problem im Zeitbereich, führt die Differenz in den Gruppengeschwindigkeiten zum
Auseinanderlaufen der Pulse und somit zu Rückkonversionen.

Die SFG kann zu sehr effizientem TDM-Demultiplex11 eingesetzt werden [LSM+03].
Ein Puls mit hoher Energie wird einem Signalpuls überlagert und durch phasenangepas-
ste Summenfrequenzerzeugung wird der Kanal ausgelesen12. Definiert ist die Signalun-
terdrückung als das Verhältnis der Signaltransmission für Ec = 0 (keine Kontrollwelle)

11engl.: Time Division Multiplex
12engl.: channel dropping
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und Ec = E:

ηdepl = 10 · log

(
Es(Ec = E)

Es(Ec = 0)

)
. (2.27)

Abbildung 2.8 zeigt die auf eins normierte transmitterte mittlere Leistung eines Si-
gnals mit einer Wiederholrate von R = 10 GHz als Funktion der mittleren Leistung der
Kontrollwelle. Signal- und Kontrollpulse haben eine Länge von 5 ps. Die Pulsenergie
des Signals beträgt ungefähr Es = 100 fJ. Die Wellenlängen sind λs = 1557.08 nm und
λc = 1550.66 nm, was zu einer Wellenlänge der Summenfrequenz von λsf = 776.93 nm
führt. Experimentell konnte mit einer Pulsenergie von 10.75 pJ (2 W Spitzenleistung)
der Kontrollwelle eine Signalunterdrückung von -15 dB erreicht werden [LSM+03].

Dieser Wert ist in sehr guter Übereinstimmung mit dem theoretischen Resultat von
- 15.1 dB. Wie im Fall der analytischen Lösung der SFG kann man auch hier davon
ausgehen, dass die nichtlinearen Gleichungen nahezu linearisieren, denn die maxima-
le Energie, die vom Kontrollpuls konvertiert werden kann, wird bestimmt durch die
viel kleinere Energie des Signalpulses. Daher sind die Ergebnisse in guter Näherung
unabhängig von der Signalenergie. Abbildung 2.9 links zeigt die Unterdrückung des
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Abbildung 2.8: Normalisierte transmittierte Signalleistung nach 80 mm als Funk-
tion der mittleren Leistung der Kontrollwelle (Pc) im gepulsten Betrieb. Die Wie-
derholrate ist R = 10 GHz. Die Länge der Pumppulse ist 5 ps. Der Arbeitspunkt ist
λs = 1557.08 nm, λc = 1550.66 nm und λsf = 776.93 nm. Je höher die Leistung der
Kontrollwelle ist, desto effizienter wird die Signalwelle abgebaut.
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Signals in dB. Im linken Bild ist ηdepl als Funktion der Wechselwirkungslänge aufgetra-
gen. Nach ungefähr 75 mm wird ein Minimum erreicht, danach findet eine Rückkon-
version zum Signal mittels DFG statt. Bei der Berechnung wurde die bestmöglichen
Zeitdifferenz zwischen dem Signal- und dem Kontrollpuls angenommen. Abbildung
2.9 rechts zeigt die Signalunterdrückung in dB als Funktion der Zeitdifferenz. Man
sieht, dass größtmögliche Konversion erreicht wird, wenn die Kontrollwelle 2 ps vor der
Signalwelle eingekoppelt wird. Der Grund für dieses Verhalten ist, dass die Gruppen-
geschwindigkeit der Summenfrequenzwelle deutlich kleiner ist als die von Signal und
Idlerwelle.

Durch die Gruppenlaufzeitdifferenz kommt es zur Rückkonversion von Summenfre-
quenz zu Signal- und Kontrollwelle, wodurch letztlich die maximale Konversion be-
schränkt wird. Dieser Effekt ist in Abbildung 2.10 gezeigt. Bei z = 0 sind beide Pulse
transformationsbegrenzt und gaussförmig mit einer Halbwertsbreite von 5 ps. Bei der
Berechnung wurde angenommen, dass der Kontrollpuls τ = 2 ps vor dem Signalpuls
eingekoppelt wird, um bestmöglich die Effekte der Gruppenlaufzeitdifferenzen zu kom-
pensieren. Die Pulsenergien betragen 10 pJ für den Kontrollpuls bzw. 100 fJ für den
Signalpuls. Die Ordinate für die Leistung des Kontrollpulses ist auf der rechten Seite
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Abbildung 2.9: Effizienz der Signalunterdrückung mittels SFG . Das linke Bild
zeigt die Abhängigkeit der Signalunterdrückung von der Wechselwirkungsstrecke für
die jeweils optimal Zeitdifferenz τ zwischen dem zu unterdrückenden Signal und dem
Kontrollpuls. Das rechte Bild zeigt den Verlauf der Signalunterdrückung für eine
Wechselwirkungsstrecke von 80 mm als Funktion der Zeitdifferenz τ .
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Abbildung 2.10: Entwicklung der Pulse bei der Kontroll- (λc = 1550.66), Signal-
(λs = 1557.08) und Summenfrequenz-Wellenlänge (λsf = 776.93) im Zeitbereich wäh-
rend der Propagation. Die Energie des Kontrollpulses ist 10 pJ, die des Signalpulses
100 fJ. Beide Pulse haben bei z = 0 eine Breite von 5 ps.

aufgetragen, die des Signals auf der linken Seite. Die Gruppengeschwindigkeiten sind

vg
p = 0.437306 · c0

vg
c = 0.456257 · c0

vg
s = 0.456293 · c0

Daraus ergibt sich ein GVM von jeweils

1

vg
p
− 1

vg
s

= 3.174
ps

cm
1

vg
c
− 1

vg
s

= 5.815 · 10−3 ps

cm
.

Die Gruppenlaufzeitdifferenz zwischen dem Signal und der Kontrollwelle kann vernach-
lässigt werden. Nach einer Wechselwirkungsstrecke von 30 mm ist ein nahezu gauss-
förmiger Puls bei der Summenfrequenz entstanden, der in etwa die Energie des Signal-
pulses besitzt. Der Kontrollpuls ist von der Form unverändert und lediglich durch die
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Streuverluste abgebaut. Nach 60 mm ist der Signalpuls sehr stark abgebaut und der
Summenfrequenzpuls stark deformiert. Es ist deutlich zu erkennen, dass der Puls bei
der Summenfrequenz langsamer propagiert. Qualitativ gleich ist das Bild nach 90 mm.

Abbildung 2.11 zeigt das Spektrum von Signal - und Summenfrequenzpuls nach 0, 30,
60, und 90 mm. Die Einheit ist die logarithmierte Energiedichte bezogen auf Js. Nach
30 mm ist der Großteil der Energie der Signalwelle zur Summenfrequenz konvertiert.
Das Spektrum des Summenfrequenzpulses ist näherungsweise gaussförmig, in guter
Näherung ist der Puls transformationsbegrenzt. Bei längeren Wechselwirkungsstrecken
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Abbildung 2.11: Spektren von Signal- und Summenfrequenzpuls nach 0, 30, 60
und 90 mm.

kommt es analog zur Erzeugung der zweiten Harmonischen zu einer spektralen Filte-
rung des Summenfrequenzspektrums. Vernachlässigt man den Abbau der Kontrollwelle
und die Streuverluste und nimmt man ferner an, dass die Gruppengeschwindigkeiten
von Kontrollwelle und Signal identisch sind, vg

c = vg
s = vg, und dass ∆βSFG = 0

gilt, so lassen sich analog zur Analyse der SHG die Gleichungen der Summenfrequenz
reduzieren (δ = 1/vg

sf − 1/vg):

∂

∂z
Csf(z, ω − ωsh) = −iK exp {iδ · (ω − ωsf)z} ·

∞∫

−∞

dω′Cs(z, ω
′ − ωs)Cc(z, ω − ω′ − ωc) (2.28)



54 KAPITEL 2. DREIWELLEN-FREQUENZKONVERSION

∂

∂z
Cs(z, ω − ωs) = · · · (2.29)

∂

∂z
Cc(z, ω − ωc) = 0 (2.30)

Die Bandbreite der Rückkonversion wird näherungsweise umgekehrt proportional zur
Gruppenlaufzeitdifferenz zwischen Signal- und Summenfrequenzwellen und zur Wech-
selwirkungslänge z. Immer längere Strukturen führen dann zwangsläufig zu einem
Übersprechen der Kanäle.

Ein Lösung des Problems könnte sein, die Quasi-Phasenanpassung mit der Doppelbre-
chung zu kombinieren [YKK+03]. Dann kann erreicht werden, dass bei Verwendung
des d33 die Gruppenlaufzeitdifferenz zwischen der Summenfrequenz und jeweils Signal-
und Kontrollwelle sehr klein wird.

2.2 Differenzfrequenzerzeugung und parametrische Ver-
stärkung

Im Gegensatz zu den bisher diskutierten Prozessen kommt es zu einer Verstärkung13

bzw. Generation (DFG , Abschnitt 1.4) zweier Wellen kleinerer Frequenz unter dem
Abbau einer Welle größerer Frequenz [HHH+99][Haa98][HS88][FSSN98]. Die experi-
mentelle Situation der DFG ist zumeist die, dass neben einer Pumpwelle mit (zumeist)
hoher Leistung eine Signalwelle eingestrahlt wird. Die freie Phase der Idlerwelle14 stellt
sich so ein, dass der Energiefluss hin zur kleineren Frequenz (down conversion) statt-
findet.

Reduziert man das Integro-Differentialgleichungssystem wieder auf den Fall mono-
chromatischer Wechselwirkung und vernachlässigt man den Abbau der Pumpleistung,
kann das linearisierte System gewöhnlicher Differentialgleichungen wieder gelöst werden
[ABDP62]. Im Fall verlustfreier Ausbreitung ergibt sich im Fall der Phasenanpassung:

Ps(z) = Ps(0) cosh2(gz) (2.31)

Pi(z) = Ps(0)
ωi

ωs

sinh2(gz) (2.32)

Der Verstärkungskoeffizient lautet dann g =
√

ωsωid33|cp(0)|κ/2P0. Im Bereich kleiner

13engl.: optical parametric amplification, OPA
14Das englische Wort idler bedeutet Faulenzer. Sie wurde ursprünglich als Nebenprodukt der optisch

parametrischen Verstärkung betrachtet.
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Verstärkung ergibt sich hier näherungsweise:

Pi(z) ≈ Ps(0)
ωi

ωs

g2z2. (2.33)

Die Effizienz der Frequenzkonversion ist somit näherungsweise proportional zum Pro-
dukt aus Pump- und Signalleistung und zum Quadrat der Wechselwirkungslänge. Auch
für die DFG wird häufig eine normierte Effizienz definiert:

ηDFG = 100 · Pi(z = L)

Pp(z = 0)Ps(z = 0)
(2.34)

Wie bei der SHG ist die Einheit der normierten Effizienz %/W. Abbildung 2.12 zeigt
die normierte Effizienz ηDFG als Funktion der Wechselwirkungslänge für zwei verschie-
dene Wellenlängenbereiche und den entsprechenden Wellenleitern. Die Pumpleistung
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Abbildung 2.12: Normierte Effizienz der DFG für das nahe und das mittlere
Infrarot. Die Pumpleistung beträgt in beiden Fällen 10 mW. Im nahen Infrarot (NIR)
sind die Wellenlängen λp = 780 nm, λs = 1550 nm und λi = 1570.1 nm. Im mittleren
Infrarot sind die Wellenlängen λp = 1562 nm, λs = 3391 nm und λi = 2896 nm.

ist in beiden Fällen Pp(0) = 10 mW, die Signalleistung ist Ps(0) = 1 µW. Im nahen
Infrarot (NIR) sind die Wellenlängen λp = 780 nm, λs = 1550 nm und λi = 1570.1

nm. Im mittleren Infrarot sind die Wellenlängen λp = 1562 nm, λs = 3391 nm und
λi = 2896 nm. Die Streuverluste sind 0.3 (0.1) dB/cm für die Pumpe bzw. 0.1 (0.03)
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Abbildung 2.13: Arbeitspunkte, in denen die Gruppenlaufzeitdifferenz (siehe Ab-
bildung 1.11) zwischen Signal- und Idlerwelle verschwindet.

dB/cm für Signal- und Idlerwelle für das NIR (MIR). Die Effizienz zwischen den Wech-
selwirkungen im nahen und im mittleren Infrarot unterscheiden sich auch hier deutlich.
Im Wesentlichen gilt hier die gleichen Abschätzung wie für den Fall der SHG (2.7),
es muß jedoch berücksichtigt werden, dass der Leistungstransfer zur niederfrequenten
Welle geringer ist als zur Welle mit der höheren Frequenz (2.32).

Die Bandbreite der Differenzfrequenzerzeugung wird bei kleiner Verstärkung bestimmt
durch die Phasenfehlanpassung. Bei konstanter Pumpwellenlänge ergibt sich analog zu
(2.19):

∆ωFWHM
DFG =

4 · 1.39

L
·
∣∣∣∣
1

vg
s
− 1

vg
i

∣∣∣∣
−1

(2.35)

Bei der DFG wird die Akzeptanzbandbreite sehr groß, wenn die Differenz der Grup-
pengeschwindigkeit der Signal- und Idlerwelle verschwindet. Klarerweise ist das der
Fall, wenn der Prozess in der Entartung — also wenn die Idler- der Signalwellenlänge
entspricht — stattfindet. Der spezielle Verlauf der Dispersion in LiNbO3 ermöglicht es
jedoch, diese Situation auch ausserhalb der Entartung zu realisieren. In Abbildung
2.13 sind die Arbeitspunkte aufgetragen, in denen die Grupppengeschwindigkeiten von
Signal- und Idlerwelle gleich sind und die Bandbreite sehr groß wird. Die Daten wurden
für einen typischen Wellenleiter für das mittlere Infrarot ermittelt. Die gestrichelte Line
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Abbildung 2.14: DFG Konversions-Bandbreite im Arbeitspunkt λp = 850 nm
und λs = 1153.16 nm. In diesem Arbeitspunkt ist die Bedingung vg

s = vg
i exakt

erfüllt. Die Pumpleistung ist 200 mW, die Signalleistung 1 µW.

markiert jeweils den Punkt der Entartung, in dem natürlich die Gruppengeschwindig-
keiten gleich sind. Die Kurve ist zu lesen wie die Phasenanpasskurven in Abbildung
1.7.

Abbildung 2.14 zeigt die Bandbreite der DFG in einem Arbeitspunkt weit außerhalb
der Entartung, in dem die Bedingung vg

s = vg
i exakt erfüllt ist. Der Arbeitspunkt ist der

Abbildung 2.13 entnommen und die Wellenlängen sind λp = 850 nm, λs = 1153.16

nm unf λi = 3233.23 nm. Die Leistung der Pumpwelle ist 200 mW, für das Signal wird
eine eingekoppelte Leistung von 1 µW angenommen. Die maximale Konversion

ηDFG = 10 · log

(
Pi(L)

Ps(0)

)
(2.36)

ist ηDFG = 0.5 dB. Die gestrichelte Line gibt die 3 db Bandbreite an. Die Bandbreite
beträgt 143 nm. Mit der DFG lassen sich sehr breitbandige Verstärker von um 800 nm
bis 4000 nm realisieren, wenn der Arbeitspunkt geschickt gewählt wird.



Kapitel 3

Kaskadierte
Vierwellen-Frequenzkonversion

Aus theoretischer und experimenteller Sicht sehr interessant ist die Kombination ver-
schiedener Prozesse der Dreiwellen-Mischung. Man bezeichnet diese Kombination auch
als Kaskadierung1 oder kurz als χ(2) : χ(2)-Prozess. Schon in den Anfängen der nichtli-
nearen Optik war bekannt, dass solche Kaskadierungen eine Vierwellen-Mischung, also
eine nichtlineare Wechselwirkung dritter Ordnung, mit sehr großer Effizienz imitieren
können [BZ82][TBT93]. Abbildung 3.1 zeigt schematisch das Prinzip der kaskadier-

1Die Kaskadierung der SHG und der DFG wird im Folgenden als cSHG/DFG bezeichnet. Ana-
loges gilt für die cSFG/DFG .

Abbildung 3.1: Schema der kaskadierten Differenzfrequenzerzeugung. Nach der
Frequenzverdopplung wird die zweite Harmonische verwendet, um den Prozess der
Differenzfrequenzerzeugung anzutreiben.

58



3.1. ZWEITE HARMONISCHE UND DIFFERENZFREQUENZERZEUGUNG 59

ten Frequenzkonversion: nachdem eine starke Fundamentalwelle effizient eine Welle bei
der doppelten Frequenz erzeugt hat, dient die zweite Harmonische als Pumpe für den
Prozess der Differenzfrequenzerzeugung.

Aus experimenteller Sicht sind Frequenzkonverter basierend auf kaskadierten nichtli-
nearen Wechselwirkungen zweiter Ordnung vorteilhaft, da für den Aufbau nur Kom-
ponenten eines Spektralbereichs verwendet werden müssen. Weiterhin entfällt das se-
lektive Anregen der Grundmode in mehrmodigen Wellenleitern, wie es bei der auf der
DFG basierenden Frequenzkonversion erforderlich ist, da die Wellenleiter bei kaska-
dierten Wechselwirkungen für die eingestrahlten Wellen in der Regel einmodig sind.

3.1 Zweite Harmonische und Differenzfrequenzerzeu-
gung

Erstmals wurde die Kaskadierung der zweiten Harmonischen mit der Differenzfre-
quenzerzeugung im kontinuierlichen und im gepulsten Betrieb in periodisch gepolten
Ti:LiNbO3 -Streifenwellenleitern im Jahr 2001 von Gerhard Schreiber [SSL+01] demon-
striert. In den darauf folgenden Jahren konnte mit dieser Methode eine simultane Kon-
version vieler Wellenlängen mit gepulsten und mit kontinuierlichen Quellen erreicht
werden [SLQ+02], [SLQ+01].

Die kaskadierten nichtlinearen Prozesse zweiter Ordnung lassen sich durch sukzessives
Verknüpfen der Gleichungen (1.5) beschreiben. Im Fall der cSHG/DFG findet man
die Gleichungen:
{

∂

∂z
+ i(β(ω)− βfh) +

αfh

2

}
cfh(z, ω − ωfh) =

− iD(z)
ε0ωfhd33κ

2P0

· exp (−i∆βSHGz) ·
∞∫

−∞

dω′c∗fh(z,−ω′ − ωfh)csh(z, ω − ω′ − ωsh)

(3.1){
∂

∂z
+ i(β(ω)− βsh) +

αsh

2

}
csh(z, ω − ωsh) =

− iD(z)
ε0ωshd33κ

2P0

· exp (i∆βSHGz) · 1

2

∞∫

−∞

dω′cfh(z, ω
′ − ωfh)cfh(z, ω − ω′ − ωfh)

− iD(z)
ε0ωshd33κ

2P0

· exp (i∆βDFGz) ·
∞∫

−∞

dω′cs(z, ω
′ − ωs)ci(z, ω − ω′ − ωi) (3.2)
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{
∂

∂z
+ i(β(ω)− βs) +

αs

2

}
cs(z, ω − ωs) =

− iD(z)
ε0ωsd33κ

2P0

· exp (−i∆βDFGz) ·
∞∫

−∞

dω′csh(z, ω
′ − ωsh)c

∗
i (z,−ω + ω′ − ωi)

(3.3){
∂

∂z
+ i(β(ω)− βi) +

αi

2

}
ci(z, ω − ωi) =

− iD(z)
ε0ωid33κ

2P0

· exp (−i∆βDFGz) ·
∞∫

−∞

dω′csh(z, ω
′ − ωsh)c

∗
s (z,−ω + ω′ − ωs)

(3.4)

In dieser Beschreibungsform sind nur Wechselwirkungen berücksichtigt, deren Pha-
senanpassbedingung näherungsweise erfüllt ist. Daher ist eine eingehende Analyse der
Dispersion und der jeweiligen Phasenfehlanpassungen erforderlich, um nicht wesent-
liche Wechselwirkungen unberücksichtigt zu lassen.

Das lässt sich mit einer alternativen Beschreibungsmethode umgehen. Sowohl die Fun-
damentalwelle als auch Signal- und Idlerwelle liegen in einem engen Frequenzband. Die
Frequenzverdopplung dieses Frequenzbandes lässt sich mit Hilfe von (1.69) und (1.70)
berechnen. So werden sämtlichen Mischterme der nichtlinearen Polarisation mit der
entsprechenden Phasenfehlanpassung berücksichtigt. Bei dieser Methode muss man ei-
ne sehr viel feinere Diskretisierung wählen, denn im Zeitbereich treten die Oszillationen
exp (i(ωs − ωi) t) und exp (i(ωs + ωi) t) auf, daher ist der Rechenaufwand deutlich hö-
her bei geringerer numerischer Stabilität. Grundsätzlich wurden in dieser Arbeit beide
Formen verwendet. Insbesondere bei der Beschreibung der simultanen Frequenzkonver-
sion bietet die zweite Methode entscheidende Vorteile, wohingegen einfache kaskadierte
Prozesse sehr effizient mit der ersten Methode beschrieben werden.

Im Dauerstrichbetrieb lässt sich die Beschreibung auf ein System von vier gewöhnlichen
Differentialgleichungen reduzieren [GAS97]:

∂

∂z
cfh = −αfh

2
cfh − i

ε0ωfhd33κ

2P0

c∗fhcsh exp (−i∆βSHGz) (3.5)

∂

∂z
csh = −αsh

2
csh − i

ε0ωshd33κ

4P0

c2
fh exp (i∆βSHGz)−

i
ε0ωpd33κ

2P0

csci exp (i∆βDFGz) (3.6)

∂

∂z
cs = −αs

2
cs − i

ε0ωsd33κ

2P0

cshc
∗
i exp (−i∆βDFGz) (3.7)
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∂

∂z
ci = −αs

2
ci − i

ε0ωid33κ

2P0

cshc
∗
s exp (−i∆βDFGz) . (3.8)

Setzt man Phasenanpassung voraus und nimmt man an, dass nur Fundamental- und
Signalwelle eingestrahlt werden, so erhält man einen analytischen Ausdruck für die
Entwicklung der internen Leistungen von Signal und Idler2 [Wer99]:

Ps(z) =
1

4
Ps(0) {cosh(gz) + sech(gz)}2 (3.9)

Pi(z) =
1

4
Ps(0) {cosh(gz)− sech(gz)}2 (3.10)

Des Weiteren wird angenommen, dass der Modenüberlapp beider Prozesse identisch
ist. Diese Annahme ist legitim, da Fundamental-, Signal- und Idlerwelle ähnliche Wel-
lenlängen haben. Der Verstärkungsfaktor g ist wie oben definiert. Bei der Herleitung
dieses analytischen Ausdrucks wurde angenommen, dass sowohl die DFG als auch die
SHG vollständig phasenangepasst sind. Diese Bedingung kann nur im Punkt der Ent-
artung exakt erfüllt werden. Nimmt man an, dass die SHG exakt phasenangepasst ist
und definiert man β(ωs) = β(ωf +∆ω) und β(ωi) = β(ωf−∆ω), so folgt näherungsweise
für die Verstimmung ∆∆β der DFG :

∆∆β =
∂β

∂ω

∣∣∣
ωf

·∆ω +
∂2β

∂ω2

∣∣∣
ωf

·∆ω2 − ∂β

∂ω

∣∣∣
ωf

·∆ω +
∂2β

∂ω2

∣∣∣
ωf

·∆ω2

→ ∆∆β = 2
∂2β

∂ω2

∣∣∣
ωf

·∆ω2 (3.11)

Die Phasenfehlanpassung der DFG ändert sich folglich in zweiter Ordnung mit der
Frequenz. Unmittelbare Folge ist eine große Bandbreite der Frequenzkonversion. Mit
den Taylorreihen

cosh(x) = 1 +
1

2!
x2 +

1

4!
x4 + · · ·

sech(x) = 1− 1

2!
x2 +

5

4!
+4 − · · · ,

folgt für den Grenzfall kleiner Leistungen

Pi(z) ≈ 1

4
Ps(0)g4z4. (3.12)

Die Effizienz der kaskadierten Frequenzkonversion skaliert in vierter Ordnung mit der
Wechselwirkungslänge. Das ist plausibel, da sich sowohl der DFG-Prozess als auch der
SHG -Prozess mit dem Quadrat der Wechselwirkungslänge entwickeln. Lange Struk-
turen sind somit für die Effizienz kaskadierter Prozesse besonders wichtig. Dies wird

2sech(x) = 1/ cosh(x)
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besonders deutlich, wenn man die Effizienz derDFG und der cSHG/DFG miteinander
vergleicht. Hierzu wird

ηCAS = 10 · log

(
Pi,cSHG/DFG

Pi,DFG

)
(3.13)

definiert und in Abbildung 3.2 aufgetragen. Die angegebene Leistung bezieht sich auf
die Pump- bzw. Fundamentalleistung. Pi steht für die jeweils generierte Idlerleistung.
Für kurze Wechselwirkungslängen findet nahezu keine kaskadierte Konversion statt.
Der Grund dafür ist, dass über den Prozess der Frequenzverdopplung eine Pumpwelle
parametrisch erst erzeugt werden muss, bevor der Prozess der Differenzfrequenzer-
zeugung stattfinden kann. Mit zunehmender Wechselwirkungslänge findet signifikant
kaskadierte Frequenzkonversion statt. Wenn die Pumpleistung um eine Größenordnung
steigt, verschiebt sich das Verhältnis näherungsweise um 10 dB nach oben. Das ist leicht
zu verstehen, da die Effizienz der DFG mit der Pumpleistung skaliert (2.33), die der
cSHG/DFG jedoch mit dem Quadrat der Pumpleistung (3.12). Abbildung 3.3 zeigt
die Entwicklung der internen Leistungen im Dauerstrichbetrieb. Eingekoppelt wurde
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Abbildung 3.2: Vergleich der Effizienz der DFG und der cSHG/DFG für jeweils
1 mW, 10 mW und 100 mW Pumpleistung. Die Wellenlängen sind λfh = 1560 nm,
λs = 1550 nm und λfh = 1570.1 nm.
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Abbildung 3.3: Interne Leistungen von erster und zweiter Harmonischer und von
Signal- und Idlerwelle bei der kaskadierten Frequenzkonversion im kontinuierlichen
Betrieb. Die eingekoppelte Pumpleistung beträgt 100 mW. Die Wellenlängen sind
λfh = 1560 nm, λs = 1550 nm und λfh = 1570.1 nm.

eine Pumpleistung von 100 mW und eine Signalleistung von 1 µW. Man erkennt gut,
dass erst eine Idlerwelle generiert wird, nachdem eine zweite Harmonische signifikant
erzeugt wurde. Das lässt sich vor allem gut an dem Verlauf der Signalleistung erkennen.
Erst nach einer Wechselwirkungsstrecke von ungefähr 30 mm halten sich nichtlineare
Verstärkung und Streuverluste in etwa die Waage. Die Idlerleistung skaliert in etwa
mit z4.

Die Idee ist es nun, einen sehr schnellen, rein optischen3 und breitbandigen Wellen-
längenkonverter und parametrischen Verstärker zu realisieren. Die nichtlineare Wellen-
längenkonversion gibt das nahezu ideale Werkzeug an die Hand. Im Idealfall wird der
Konverter mit einer kontinuierlichen Fundamentalquelle realisiert, um eine konstante
Verstärkung zu gewährleisten. Zusätzlich eingestrahlte Signalpulse (Bits) sollen dann
in der Wellenlänge versetzt werden. Der wesentliche Vorteil dieses Ansatzes ist es, dass
die Gruppenlaufzeitdifferenz zwischen der zweiten Harmonischen und den parametrisch
erzeugten bzw. verstärkten Signal- und Idlerwellen keine Rolle spielt, sofern die Konver-

3engl.: all optical
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sion moderat ist, also die zweite Harmonische nicht signifikant abgebaut wird. Abbil-
dung 3.4 zeigt den parametrisch erzeugten Idlerpuls nach 20, 40, 60 und 80 mm Wech-
selwirkungslänge. Als Fundamentalleistung wurde Pfh = 175 mW gewählt. Die Energie
des Signalpulses beträgt Es = 30 fJ bei einer Pulslänge von 5 ps. Das entspricht in etwa
einer Puls-Spitzenleistung von 6 mW. Koppelt man gleichzeitig weitere Signale ein, so
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Abbildung 3.4: Parametrisch erzeugter Idlerpuls bei einer Wellenlänge von λi =
1570.1 nm nach 20, 40, 60 und 80 mm Wechselwirkungslänge. Die Wellenlänge der
Fundamentalwelle ist λf = 1560 nm. Die kontinuierliche Fundamentalleistung ist
175 mW, die Pulsenergie beträgt bei einer Pulsbreite von 5 ps 30 fJ (≈ 6 mW Spit-
zenleistung).

beobachtet man eine simultane Konversion mehrerer Quellen. Grundsätzlich muss die
Erzeugung der Summenfrequenz der verschiedenen Signalquellen berücksichtigt wer-
den. Es wurde gezeigt, dass die Bandbreite der Differenzfrequenzerzeugung nahe der
Entartung sehr groß ist, da in der Taylorreihe der Phasenfehlanpassfunktion das erste
Glied verschwindet (3.11). Das gilt für die Erzeugung der Summenfrequenz nur, wenn
die Frequenz der Summe konstant bleibt. Das ist jedoch nur der Fall, wenn die Signale
untereinander bzw. ein Signal mit der Idlerwelle eines anderen Signals wechselwirkt.

Abbildung 3.5 zeigt die Modellierung einer simultanen Frequenzkonversion von drei
kontinuierlichen und einem gepulsten Signal. Zusätzlich ist der Vergleich mit dem Ex-
periment eingetragen [SLQ+02]. Die theoretische Effizienz beträgt ungefähr -3.3 dB



3.1. ZWEITE HARMONISCHE UND DIFFERENZFREQUENZERZEUGUNG 65

775 777 779 7811545 1555 1565
-30

-20

-10

0

10

20

10 dB

 

 

Wellenlänge [nm]

 S
pe

kt
ra

le
 L

ei
st

un
gs

di
ch

te
 [d

B
m

]

 

 

Wellenlänge [nm]

Abbildung 3.5: Spektrum der simultanen kaskadierten Wellenlängenkonversion
mit 175 mW interner Fundamentalleistung. Die durchgezogene Linie zeigt die Theo-
rie, die gestrichelte Linie zeigt das Experiment.Die theoretischen Werte sind an das
Experiment angepasst, bei dem eine absolute Leistung gemessen wird, die von der
Auflösung des Spektrometers abhängig ist. Das Spektrum im Bereich der zweiten
Harmonischen wurde experimentell nicht ermittelt.

gegenüber dem experimentellen Ergebnis von -10 dB. Zur Diskussion sollen die Spek-
tralkomponenten von links wie folgt bezeichnet werden: λs1, λs2, λs3, λs4, λfh, λi1, λi2, λi3

und λi4 im Spektrum der Fundamentalwelle und λsf1, λsf2, λsf3, λsf4, λsh, λsf5, λsf6 und λsf7

im Spektrum der zweiten Harmonischen. Man erkennt das Phänomen der spektralen
Inversion. Es erscheint, als ob das komplette Signalspektrum an der Spektralkompo-
nente der Fundamentalwelle gespiegelt wird. Die spektrale Inversion kann ausgenutzt
und zur Dispersionskompensation eingesetzt werden [JvC+05]. Das rechte Diagramm
zeigt das theoretische Spektrum der zweiten Harmonischen. Neben der starken zweiten
Harmonischen λsh treten auch die Summenfrequenzen von λs1 − λs4, λi1 − λi4 mit der
Fundamentalfrequenz λfh auf. Die Struktur auf dem Spektrum bei der Wellenlänge λs4

ist Folge der Superposition von Frequenzverdopplung des gepulsten Signals λs4 mit der
Summenfrequenzerzeugung von λs3 und λfh.

Die cSHG/DFG bietet eine hervorragende Möglichkeit, einen breitbandigen, rausch-
armen und extrem schnellen Frequenzkonverter zu implementieren. Der wesentliche
Nachteil dieses Ansatzes ist, dass die Frequenz der konvertierten Idlerwelle von der
Signal- und Fundamentalfrequenz eindeutig determiniert und nicht durchstimmbar ist.
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Einen weiteren Freiheitsgrad bekommt man, wenn man die DFG mit der SFG kaska-
diert (cSFG/DFG ).

3.2 Summenfrequenz- und Differenzfrequenzerzeugung

Y. H. Min et. al [MLL+03] demonstrierten 2003 die Kaskadierung von Summenfrequenz
und Differenzfrequenz in Ti:LiNbO3 -Streifenwellenleitern. . Der wesentliche Vorteil die-
ser Anordnung ist, dass durch einen weiteren Freiheitsgrad bei fester Signalwellenlänge
die Wellenlänge der erzeugten Welle durchgestimmt werden kann. Dieser Prozess bietet
die Möglichkeit, selektiv ein Signal mittels Summenfrequenzerzeugung zu konvertieren.
Die Idlerwelle wird dann über einen Differenzfrequenzprozess durchstimmbar erzeugt.
Serielle Kaskadierung beider Prozesse wurde zum optischen Schalten eingesetzt [Lee02],
[LMG+02].

Im Fall monochromatischer Wechselwirkung lautet das zugehörige Gleichungssystem
wie folgt:

∂

∂z
cs = −αs

2
cs − i

ε0ωsd33κ

2P0

csfc
∗
p exp (−i∆βSFGz) (3.14)

∂

∂z
cp = −αp

2
cp − i

ε0ωpd33κ

2P0

csfc
∗
s exp (−i∆βSFGz) (3.15)

∂

∂z
csf = −αsf

2
csf − i

ε0ωsfd33κ

2P0

cscp exp (i∆βSFGz)−

i
ε0ωsfd33κ

2P0

ccci exp (i∆βDFGz) (3.16)

∂

∂z
cc = −αc

2
cc − i

ε0ωcd33κ

2P0

csfc
∗
i exp (−i∆βDFGz) (3.17)

∂

∂z
ci = −αs

2
ci − i

ε0ωid33κ

2P0

csfc
∗
c exp (−i∆βDFGz) (3.18)

Das Signal (Index s) und die Pumpe (Index p) erzeugen die Summenfrequenz (Index
sf). Die Summenfrequenz dient dann als Pumpe zur Erzeugung der Differenzfrequenz.
Der Energiefluss geht in Richtung der Kontrollwelle (Index c) und der Idlerwelle (Index
i). Im quantenmechanischen Bild lautet die Energiebilanz wie folgt:

ωs + ωp = ωsf = ωc + ωi (3.19)

Abbildung 3.6 zeigt die Leistungen von Summenfrequenz-, Signal- und Idlerwelle für
den Grenzfall, dass sowohl die Leistung der Pumpwelle als auch die Leistung der Kon-
trollwelle viel größer ist als die Leistung der Signalwelle. Die Kopplung von Signal- und
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Abbildung 3.6: Interne Leistungen von Summen-, Signal- und Idlerwelle bei der
Kaskadierung von SFG und DFG für die Situation Pp = Pc = 100 mW und Ps =
1µW. Die Wellenlängen sind λp = 1542.72 nm, λs = 1549.02 nm, λsf = 772.93 nm,
λc = 1550.80 nm und λi = 1540.96 nm.

Idlerwelle geschieht über die Summenfrequenz, die gleichzeitig auf- und abgebaut wird.
Die mögliche Idlerleistung ist beschränkt durch die maximal mögliche Leistung bei der
Summenfrequenz. Die obere Grenze der Summenfrequenzleistung wird bestimmt durch
die Signalleistung:

Psf,max =
ωsf

ωs

Ps(0) (3.20)

Daraus lässt sich die maximal mögliche Idlerleistung bestimmen:

Pi,max =
ωi

ωs

Ps(0). (3.21)

Definiert man die Konversionseffizienz gemäß

ηconv(z) = 10 log

(
Pi(z)

Ps(0)

)
, (3.22)

folgt unmittelbar die maximale Effizienz:

ηconv,max = 10 log

(
ωi

ωs

)
. (3.23)

Im wesentlichen gibt es also zwei Unterschiede zur cSHG/DFG :
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• Das Signal wird abgebaut und nicht verstärkt (siehe Abbildung 3.6).

• Die maximale Ausgangsleistung wird bestimmt durch die eingekoppelte Signal-
leistung und nicht durch die Pumpleistungen.

Bei der Frequenzkonversion eines gepulsten Signals tritt ein weiteres prinzipielles Pro-
blem auf: das gepulste Signal hat einen Puls bei der Summenfrequenz zur Folge. Die
große Gruppenlaufzeitdifferenz führt zur Verbreiterung des Summenfrequenzpulses und
somit auch der Idlerwelle. Bei Wahl der Wechselwirkungslänge eines Frequenzkonver-
ters auf der Basis der cSFG/DFG muss der bestmögliche Kompromiss zwischen hoher
Konversion und Pulsqualität gefunden werden.

Abbildung 3.7 zeigt die Autokorrelation des Idlerpulses in einem normierten loga-
rithmischen Maßstab nach verschiedenen Wechselwirkungslängen. Die Autokorrelation
eines Gauss’schen Pulses ist wieder ein Gausspuls mit der
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Abbildung 3.7: Autokorrelation des generierten Idlerpulses nach verschiedenen
Wechselwirkungslängen. Pump- und Kontrollwelle sind jeweils kontinuierlich mit
Pp = Pc = 275mW . Das eingekoppelte Signal hat eine zeitliche Breite von 5 ps
bei einer Pulsenergie von 160 fJ.

sprungspulses. Nach 10 mm Wechselwirkungslänge sieht man eine Autokorrelation mit
einer 3 dB Breite von ungefähr

√
2 · 5 ps. Im rechten Bild ist das Bandbreitenprodukt

des Idlerpulses aufgetragen. Nach 10 mm beträgt das Bandbreitenprodukt ungefähr
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0.44. Das lässt auf einen Gauss’schen Puls einer Breite von 5 ps schließen. Mit stei-
gender Wechselwirkungsstrecke kommt es zu einer Verbreiterung des Autokorrelati-
onspulses und schließlich zu einer Verringerung des Bandbreitenproduktes. Die Ursache
sind Rückmischungen zum Summenfrequenzpuls nicht exakt phasenangepasster Spek-
tralkomponenten, oder — im Zeitbild — die Gruppenlaufzeitdifferenz zwischen dem
Summenfrequenzpuls und dem Idlerpuls. Die Verringerung des Bandbreitenproduktes
auf 0.3 in Verbindung mit einer Pulsverbreiterung bedeutet, dass der entstehende Puls
deutlich von einer Gaussform abweicht. Weitere Rückmischprozesse führen dazu, dass
die Länge des generierten Idlerpulses wieder abnimmt. Man sieht jedoch an der Auto-
korrelation, dass es zu einem deutlichen Übersprechen kommt. In dieser Konfiguration
sind Bauteillängen um 30 mm ein guter Kompromiss zwischen hoher Konversion und
guter Pulsqualität. Abbildung 3.8 zeigt den Vergleich einer Autokorrelationsmessung
mit dem theoretischen Ergebnis. Man erkennt sehr gut die Verbreiterung des generier-
ten Idlerpulses. Theorie und Experiment stimmen dabei überein.

In einem 30 mm langen, periodisch gepolten Wellenleiter wurde die Frequenzkonversi-
on mittels cSFG/DFG demonstriert [MLL+03]. Abbildung 3.9 zeigt den Vergleich
der experimentellen Spektren mit der theoretischen Vorhersage nach einer Wechsel-
wirkungslänge von 30 mm. Die Wellenlängen im Bereich der Signalfrequenz seien von
links λi, λp, λs und λc. Die Wellenlängen sind λi = 1541.10 nm, λp = 1542.75 nm,
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0.0

0.2

0.4

0.6

0.8

-20 -10 0 10 20
0.0

0.2

0.4

0.6

0.8

1.07.06 ps

5.70 ps

 

 

A
ut

ok
or

re
la

tio
n 

[b
.E

.]

ττττ [ps]

 Signal
 Idler

6.90 ps

5.70 ps

 

 

A
ut

ok
or

re
la

tio
n 

[b
.E

.]

ττττ [ps]

Abbildung 3.8: Experimentell ermittelte Autokorrelation des generierten Idler-
pulses und des Signals im Vergleich zur Theorie nach einer Wechselwirkungslänge
von 30 mm.
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Abbildung 3.9: Spektrale Leistungsdichte einer cSFG/DFG -Frequenzkonversion
im spektralen Bereich der Summenfrequenz (rechts) und von Signal- und Idlerwelle
(links). Die gestrichelte Linie zeigt zum Vergleich das Experiment. Die Leistungen
von Pump- und Kontrollwelle sind jeweils 275 mW. Der eingekoppelte Signalpuls
hatte eine Länge von 5 ps bei einer Pulsenergie von 160 fJ.

λs = 1549.11 nm und λc = 1550.77 nm. Daraus folgt eine Wellenlänge der Summen-
frequenzwelle von λsf = 772.96 nm. Die Leistungen der kontinuierlichen Pump- und
Kontrollwelle sind jeweils Pp = Pc = 275 mW. Zur Erzeugung des gepulsten Signals
wurde ein integriert optischer modengekoppelter Wellenleiterlaser mit einer Wieder-
holrate von 10 GHz eingesetzt [Wes00]. Die Pulslänge ist 5 ps bei einer Pulsenergie
von 160 fJ. Neben dem Spektrum der Summenfrequenz aus λs und λp treten zudem
die Frequenzverdopplungen von λp und λc auf. Die Energie dieser frequenzverdop-
pelten Wellen oszilliert stark, da der Prozess nicht phasenangepasst ist. Eine weitere
kontinuierliche Welle wird bei der Summe von Pump- und Kontrollfrequenz generiert.
Im Spektrum der Signalwelle ist ein Tal zu erkennen. Die physikalische Ursache die-
ses „Lochbrennens“ ist die große Differenz der Gruppengeschwindigkeiten, die zu einer
schmalen Bandbreite führt.

Abbildung 3.10 zeigt die Effizienz der Frequenzkonversion als Funktion der Leistun-
gen von Pump- und Kontrollwelle. Wenn keine Kontrollwelle eingestrahlt wird, wird
auch keine Idlerwelle parametrisch erzeugt. Es kommt somit zu einer normalen Erzeu-
gung der Summenfrequenz unter Abbau der Signalwelle. Die Energie des Signalpulses
durchläuft ein Minimum, wird aber nicht komplett abgebaut. Die Ursache sind Rück-
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konversionsprozesse während der Propagation. Die minimale Transmission beträgt in
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Abbildung 3.10: Effizienz der Signalunterdrückung (links) und der Frequenzkon-
version (rechts) in der cSFG/DFG Anordnung als Funktion der Pump- und Kon-
trollwelle. Pumpe und Kontrollwelle sind jeweils kontinuierlich, das Signal ist gepulst
mit einer Pulslänge von 5 ps und einer Pulsenergie von 160 fJ.

etwa T = 0.25 bei einer Pumpleistung von etwa Pp = 500 mW. Die Pumpleistung baut
das Signal über die Erzeugung der Summenfrequenz ab. Mit steigender Pumpleistung
kommt es zu einer starken Rückkonversion. Mit steigender Leistung der Kontrollwelle
nimmt die minimale Transmission der Signalwelle ab. Die Ursache ist, dass der Rück-
konversionsprozess von der parametrisch erzeugten Summenfrequenz zur Signalwelle
unterdrückt wird. Durch die eingestrahlte Kontrollwelle wird eben diese Welle bei der
Summenfrequenz über die Erzeugung der Differenzfrequenz parametrisch abgebaut.
Dadurch steht dem Rückkonversionsprozess weniger Energie im Summenfrequenzpuls
zur Verfügung. Auch bei der Energie des Idlerpulses lässt sich ein Extremum beobach-
ten. Die nichtlineare Kopplung von Idlerpuls und Summenfrequenzpuls´skaliert mit der
Leistung der Kontrollwelle. Wird diese Kopplung zu stark, finden auch hier Rückkon-
versionsprozesse statt. Die maximale Konversion von ηconv = −0.93 dB wird erreicht
für Pp = Pc = 1100 W.

Die Kaskadierung von Summen- und Differenzfrequenz bietet die Möglichkeit einer
optischen durchstimmbaren Frequenzkonversion. Während die Frequenzen der Signal-
und Pumpwelle die Summenfrequenz bestimmen, wird die Duchstimmung durch die
Frequenz der Kontrollwelle erreicht. Die Bandbreite ist bestimmt durch den Ausdruck
(2.35). In dem konkreten Beispiel beträgt sie ungefähr 47 nm.



Kapitel 4

Optisch Parametrische Fluoreszenz

Die optisch parametrische Fluoreszenz (OPF) wurde im Jahr 1961 [LAES61] in einem
theoretischen Artikel vorhergesagt und einige Jahre später in ersten Arbeiten in Volu-
menkristallen1 experimentell bestätigt [HOB67]. Mit der Entwicklung neuer Technolo-
gien, wie verlustarmen Wellenleitern und periodischer Inversion der optischen Achse,
geriet die OPF Anfang der neunziger Jahre wieder in den Fokus des Interesses und
wurde 1993 in periodisch gepolten Wellenleitern demonstriert [BNM+93].

Die ersten Experimente zur OPF wurden entweder wie bei den oben zitierten Arbeiten
bei kleinen nichtlinearen Verstärkungen oder in Ti:LiNbO3 bei vergleichsweise kleinen
Leistungen [Ham86][SHSS85] realisiert, so dass die Fluoreszenzleistung bei diesen Ex-
perimenten klein war gegen die Pumpleistung. Mittlerweile konnte jedoch sowohl im
Bulk [GAF+97] als auch im Wellenleiter [XSL+04] eine Fluoreszenzleistung in der Grö-
ßenordnung der Pumpleistung erreicht werden. Bisherige Modelle zur Beschreibung der
OPF gehen davon aus, dass die Pumpwelle während des Prozesses nicht abgebaut wird.
Mathematisch führt das zu einer Linearisierung der Gleichungen. Zur Modellierung der
OPF bei sehr hoher Pumpleistung musste ein nichtlineares Modell entwickelt werden,
welches sowohl den Abbau der Pumpleistung als auch die Rückmischung beschreibt
[Gru05].

Die physikalische Ursache der OPF ist ein spontaner Zerfall eines Photons, wobei die
Relation (1.54) erfüllt wird. Diese Bedingung lässt sich quantenmechanisch als Energie-
erhaltung interpretieren. Diese spontan zerfallenden Photonen stimulieren einen erneu-
ten Zerfall von den Pumpphotonen in Signal- und Idlerphotonen2. Im Rahmen der klas-

1z.B. Lithiumniobat, Ammoniumdihydrogenphosphat (ADP)
2Die Bezeichnung Signal und Idler wird von der Beschreibung der Differenzfrequenzerzeugung

übernommen.
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Abbildung 4.1: Schematische Darstellung der optisch parametrischen Fluores-
zenz. Eine Pumpwelle erzeugt parametrisch aus der spontanen Fluoreszenz Signal-
und Idlerwelle. Verstanden werden kann dieser Prozess nur im quantenmechanischen
Bild.

sischen Maxwelltheorie ist demnach eine Beschreibung der OPF nicht möglich, daher
muss eine quantisierte Beschreibung verwendet werden. Das hier vorgestellte semiklas-
sische Modell verbindet diese quantenmechanische mit der klassischen Beschreibung
der optisch parametrischen Verstärkung.

4.1 Quantentheorie optischer Wellenleiter

Ein wesentlicher Bestandteil der Modellierung parametrischer Fluoreszenz sind die
schon beschriebenen Gleichungen der klassischen Wechselwirkungen (1.5). Allerdings
muss noch ein plausibler quantenmechanischer Ansatz motiviert werden. Die ausführ-
liche quantenoptische Behandlung stammt aus den sechziger Jahren des vergangenen
Jahrhunderts. Yariv [LAES61] und Tang [GT67] seien hier stellvertretend für die we-
sentlichen Arbeiten auf diesem Gebiet genannt.

Das Interesse an der Fluoreszenz wurde mit neuen technologischen Methoden der Wel-
lenleiterherstellung und der Domäneninversion neu entfacht. Neue Ansätze verwen-
deten einen durch Quantenfluktuationen erzeugten Hintergrund, um die klassischen
analytischen Lösungen zu „impfen“. An dieser Stelle soll kurz das quantenmechanische
Konzept, basierend auf der zweiten Quantisierung des elektromagnetischen Feldes, vor-
gestellt werden.

Die quantenmechanische Beschreibung der parametrischen Fluoreszenz erklärt das Ent-
stehen der Wechselwirkung. Da die weitere Verstärkung im Rahmen des Modells klas-
sisch beschrieben wird, kann bei der quantenmechanischen Beschreibung in sehr guter
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Näherung angenommen werden, dass die Leistung der Pumpwelle und die Fluoreszenz-
leistung sich um mehrere Größenordnungen unterscheiden. Das motiviert eine klassische
Beschreibung der Pumpwelle. Quantisiert werden somit Signal- und Idlerwelle.

Im Rahmen der zweiten Quantisierung wird die Besetzung der Zustände mittels eines
harmonischen Oszillators beschrieben [Lou],[Sch82].

Der Hamiltonoperator für den harmonischen Oszillator lautet:

Ȟ0 =
∑

ν

~ων(ǎ
†
ν ǎν +

1

2
) (4.1)

ǎ†ν und ǎν sind die quantenmechanischen Erzeugungs- und Vernichtungsoperatoren für
ein Photon der Energie ων . Aus den klassischen Poisson-Klammern folgen die quanten-
mechanischen Kommutatoren:

[ǎν , ǎµ] = 0 (4.2)

[ǎ†ν , ǎ
†
µ] = 0 (4.3)

[ǎν , ǎ
†
µ] = δνµ (4.4)

δνµ ist das Kronecker-Symbol. Der Anzahloperator ňν = ǎ†ν ǎnu angewendet auf einen
Eigenzustand |nν > des Hamilton-Operators liefert als Eigenwert die Photonenzahl
mit der ein Zustand besetzt ist:

ň|nν >= nν |nν > (4.5)

Weiterhin gelten die folgenden Rechenregeln:

ǎ†ν |nν > =
√

nν + 1|nν+1 > (4.6)

ǎν | 0 > = 0 (4.7)

ǎν |nν > =
√

nν |nν−1 > (4.8)

< nν ||nµ > = δνµ (4.9)

< · || · > ist das Skalarprodukt im Vektorraum der Eigenzustände. Es folgen unmittel-
bar die Bewegungsgleichungen im Heisenberg-Bild:

i~
∂

∂t
ǎν = [ǎν , Ȟ0] = ~ων ǎν (4.10)

i~
∂

∂t
ǎ†ν = [ǎ†ν , Ȟ0] = −~ων ǎ

†
ν (4.11)

Das elektromagnetische Feld entwickelt sich harmonisch in der Zeit mit der Frequenz
ων . Ein reiner Zustand ändert sich nicht mit der Zeit.



4.1. QUANTENTHEORIE OPTISCHER WELLENLEITER 75

Die nichtlineare Wechselwirkung wird auch quantenmechanisch störungstheoretisch be-
rücksichtigt. Das modifiziert den Hamilton-Operator zu

Ȟ = Ȟ0 + Ȟnl. (4.12)

Nimmt man gleiche Polarisation für alle drei Wellen an, so ergibt sich mit quantisierter
Signal- und Idlerstrahlung [Ham86][Yar89]:

Ȟnl = ~ · Γ · cos(ωpt) · (ǎ†s − ǎs) · (ǎ†i − ǎi). (4.13)

Der Verstärkungsfaktor Γ folgt aus dem Integral über das Quantisierungsvolumen:

Γ =
2

π

d33
√

ωsωi

ε0nsni

∫
dV Ep(~r) · Es(~r) · Ei(~r) (4.14)

Mit dem modifizierten Hamilton-Operator ergeben sich im Heisenberg-Bild mit

i~
∂

∂t
ǎ†s = [ǎ†s, Ȟ0] + [ǎ†s, Ȟ

nl] (4.15)

die folgenden Bewegungsgleichungen (analog für ǎ†i ):

∂

∂t
ǎ†s = iωsǎ

†
s −

i

2
Γ {exp (iωpt) + exp (−iωpt)} · (ǎ†i − ǎi). (4.16)

Als Randbedingung muss der Energiesatz ωp = ωs + ωi erfüllt sein. Aus der zeitab-
hängigen Störungstheorie ist bekannt, dass Beiträge, die den Energiesatz verletzen,
gemäß

∆E ·∆t ≥ ~ (4.17)

verschwinden. Das führt dazu, dass nichtsynchrone Terme vernachlässigt werden kön-
nen [LAES61]. Das liefert schließlich die Bewegungsgleichungen

∂

∂t
ǎ†s = iωsǎ

†
s +

i

2
Γǎi exp (iωpt) (4.18)

∂

∂t
ǎ†i = −iωiǎ

†
i −

i

2
Γǎ†s exp (−iωpt) . (4.19)

Aus diesen Gleichungen folgt unmittelbar die Manley-Rowe-Relation:

∂

∂t

(
ǎ†sǎs

)
=

∂

∂t

(
ǎ†i ǎi

)
(4.20)

Das bedeutet, dass die Zahl der generierten Signal- und Idlerphotonen identisch ist. Es
lässt sich leicht nachrechnen, dass die Differentialgleichungen (4.18) und (4.19) durch

ǎ†s(t) =

{
ǎ†s(0) cosh

(
Γt

2

)
+ iǎi(0) sinh

(
Γt

2

)}
exp (iωst) (4.21)

ǎi(t) =

{
ǎi(0) cosh

(
Γt

2

)
− iǎ†s(0) sinh

(
Γt

2

)}
exp (−iωit) (4.22)
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gelöst werden. Es folgt unmittelbar die Entwicklung des Photonenzahl-Operators:

ňs(t) = ňs(0) cosh2

(
Γt

2

)
+ [1 + ňi(0)] sinh2

(
Γt

2

)
+

i sinh

(
Γt

2

)
cosh

(
Γt

2

)
·
[
ǎ†s(0)ǎ†i (0)− ǎs(0)ǎi(0)

]
(4.23)

ňi(t) = ni(0) cosh2

(
Γt

2

)
+ [1 + ns(0)] sinh2

(
Γt

2

)
+

i sinh

(
Γt

2

)
cosh

(
Γt

2

)
·
[
ǎ†s(0)ǎ†i (0)− ǎs(0)ǎi(0)

]
(4.24)

Die zeitliche Entwicklung des Erwartungswertes eines quantenmechanischen Operators
Ǎ berechnet sich im Heisenbergbild mittels:

A =< Ψ(0) |Ǎ|Ψ(0) > . (4.25)

Für den hier betrachteten Fall lautet die Wellenfunktion

|Ψ(0) >= |ns(0) > |ni(0) > . (4.26)

Mit
< nν |ǎν |nν >=< nν |ǎ†ν |nν >= 0 (4.27)

folgt schließlich für den Erwartungswert nν der Photonenzahl:

ns(t) = ňs(0) cosh2

(
Γt

2

)
+ [1 + ňi(0)] sinh2

(
Γt

2

)
(4.28)

ni(t) = ňi(0) cosh2

(
Γt

2

)
+ [1 + ňs(0)] sinh2

(
Γt

2

)
(4.29)

Das bemerkenswerte der quantenmechanischen Beschreibung ist, dass entgegen der
klassischen Lösung eine Konversion stattfindet, wenn nur eine Pumpwelle eingestrahlt
wird. Ursache dieser Fluoreszenz ist, dass die Erzeugung und die Vernichtung eines
Photons nicht vertauscht. Demnach folgt für die spontane Fluoreszenz:

ns(t) = ni(t) = sinh2

(
Γt

2

)
(4.30)

Es lässt sich eine kritische Zeit

tkr =
2

Γ
· ln

(
1 +

√
2
)

(4.31)

definieren nach der der Erwartungswert der Photonenzahl genau 1 ist.
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4.2 Spektrale Leistungsdichte der spontanen Fluores-
zenz

Periodische Randbedingungen bei der quantenmechanischen Beschreibung führen zu
diskreten Zuständen (Frequenzen) in dem Quantisierungsvolumen, die im Sinne der
klassischen Optik als resonante Moden zu verstehen sind (Abschnitt 5.1.1). Die la-
terale Beschreibung in einem Wellenleiter geschieht mittels der klassischen Modenbe-
schreibung. Im Folgenden wird davon ausgegangen, dass die Wellen in der Grundmode
geführt werden und strahlende Anteile werden vernachlässigt. Longitudinal sind nur
Zustände erlaubt, deren Betrag an den Grenzen des Volumens verschwindet. Die semi-
klassische Beschreibung der OPF beruht auf der klassisch beschriebenen Verstärkung
der quantenmechanisch beschriebenen spontanen Fluoreszenz [BNM+93][BSH+96]. Die
Energiedichte der spontanen Fluoreszenz ist proportional zur quantenmechanischen
Zustandsdichte. Man spricht auch schlicht von „einem Photon pro Mode“. Die Zu-
standsdichte ist umgekehrt proportional zum Zustands(Moden)abstand oder auch zum
freien Spektralbereich (5.5) des linearen Fabry-Perot-Resonators der klassischen Optik
(Abschnitt 5.1.1):

∂NV

∂ω
≈ 1

∆ω
=

L

π

1

vg
(4.32)

Aus der Zustandsdichte folgt unmittelbar die Leistungsdichte der spontanen parame-
trischen Fluoreszenz:

∂EV

∂ω
≈ ~L

π

ω

vg
(4.33)

Nun beschreibt die Quantenmechanik Zustände des gesamten Quantisierungsvolumens.
Klassisch betrachtet berechnet sich der zeitlich gemittelte Energiefluss aus der Energie
eines Zustandes bezogen auf die Umlaufzeit TR innerhalb des Quantisierungsvolumens.
Die Umlaufzeit ergibt sich unmittelbar aus der Phasengeschwindigkeit:

TR =
2neffL

c0

. (4.34)

Insgesamt ergibt sich dann:

∂P

∂ω
=

1

TR

∂EV

∂ω
= ~

L

π

ω

vg
· c0

2Lneff

. (4.35)

Näherungsweise kann man annehmen, dass Gruppen- und Phasengeschwindigkeit iden-
tisch sind. Dann gilt vg · neff/c0 ≈ 1. Es folgt unmittelbar ein vereinfachter Ausdruck
für die Leistungsdichte der spontanen Fluoreszenz:

∂P

∂ω
= ~

ω

2π
. (4.36)
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Die gesamte Energie der spontanen Fluoreszenz ist somit proportional zur Breite des
gewählten Zeitfensters TD:

∂E

∂ω
= ~

ω

2π
· TD. (4.37)

4.3 Analytisches Modell

Eine analytische Beschreibung der OPF vernachlässigt immer den Abbau der Pumplei-
stung und basiert letztlich auf der analytischen Lösung der Erzeugung der Differenzfre-
quenz. Für verlustfreie Wellenausbreitung lautet die Lösung im allgemeinen Fall, wenn
drei Wellen eingestrahlt werden [BSH+96]:

Ps(z) = P 0
s

{
cosh2(Γz) +

(
∆β

2Γ

)2

sinh2(Γz)

}
+

ωs

ωi

( g

Γ

)2

P 0
i sinh(Γz)− 2

g

Γ

√
ωs

ωi

P 0
s P 0

i · sinh(Γz)·
{

cosh(Γz) sin(φs + φi) +
∆β

2Γ
sinh(Γz) cos(φs + φi)

}
(4.38)

φs und φi sind die Phasen der langsam veränderlichen Amplitude cs und ci von Signal-
und Idlerwelle bei z = 0 unter der Annahme, dass arg(cp(0)) = 0 gilt. Die obige Lösung
gilt für die Bedingung g > ∆β/2. Für den anderen Fall gilt

cosh(Γz)2 → cos2(Γz)

sinh(Γz)2 → sin2(Γz)

sinh(Γz) cosh(Γz) → − sin(Γz) cos(Γz).

Permutiert man in der Lösung s und i, so erhält man die Lösung für die Idlerleistung.
Diese Gleichungen beschreiben die Entwicklung der Leistung von Signal und Idler im
Grenzfall konstanter Pumpe, wenn alle drei Wellen bei bei z = 0 eingestrahlt wer-
den. Im Fall der optisch parametrischen Fluoreszenz ist die Eingangsleistung die unter
(4.2) hergeleitete Leistungsdichte. Allerdings muss der phasensensitive Teil von (4.38)
gesondert betrachtet werden. Ein spontaner Zerfall eine Pumpphotons in Signal und
Idler ist ein kohärenter Prozess und auch die stimulierten Prozesse sind kohärent. Eine
Messung ist jedoch grundsätzlich eine Mittelung über die Zeit, oder — wie hier —
eine Überlagerung mehrerer Prozesse. Diese Überlagerung geschieht mit stochastischer
Phase von Signal- und Idlerwelle. Dem wird Rechnung getragen, indem über die rela-
tive Phase φs + φi gemittelt wird. Ohne Beschränkung der Allgemeinheit kann φp = 0
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Abbildung 4.2: Analytisch berechnete parametrische Fluoreszenz im mittleren In-
frarot bei einer Pumpleistung von 1 W nahe der Entartung. Die Pumpwellenlänge
beträgt λp = 1550 nm. Phasenanpassung herrscht bei λs = 3050 nm und λi = 3151
nm. Die Wechselwirkungslänge is 80 mm. Streuverluste sind in dem Modell vernach-
lässigt.

angenommen werden:

Ps(z) =
1

2π

2π∫

0

d(φi + φs)Ps(z) (4.39)

Als Konsequenz verschwindet der letzte Term in (4.38), der jeweils sin(φs + φi) und
cos(φs + φi) als Faktoren enthält. Als Startwert wird nunmehr die spektrale Leistungs-
dichte der spontanen Fluoreszenz angenommen. Setzt man (4.36) in (4.39) ein, so erhält
man nach kurzer Rechnung

dPFluor(z, ω) = ~ω

{
C2(Γz) +

[(
∆β

2Γ

)2

+
( g

Γ

)2
]

S2(Γz)
!− 1

}
dω (4.40)

C(Γz), S(Γz) =





cosh(Γz), sinh(Γz) für g2 −∆β2/4 > 0

cos(Γz), sin(Γz) für g2 −∆β2/4 < 0

Das Rufzeichen markiert den zusätzlichen Term minus eins. Das Modell soll die ver-
stärkte spontane Fluoreszenz beschreiben, daher wird die Eingangsleistung subtrahiert.
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Abbildung 4.2 zeigt die Berechnung der spektralen Leistungsdichte der OPF bei
einer internen Pumpleistung von 1 W. Phasenanpassung herrscht im Arbeitspunkt bei
λp = 1550 nm, λs = 3050 nm und λi = 3151 nm, also nahe an der Entartung. Die
Wechselwirkungslänge ist L = 80 mm. Die im Experiment ermittelte Gesamtleistung
der parametrischen Fluoreszenz entspricht dem Integral unter der Kurve.

4.4 Prinzip des numerischen Modells

Das semiklassische Modell verknüpft die quantenmechanische Analyse optisch para-
metrischer Prozesse mit der klassischen Beschreibung der parametrischen Verstärkung
(1.65). Diese Gleichungen werden mit der Energiedichte der spontanen Fluoreszenz
(4.37) „geimpft“. Da die spontanen Zerfälle der Pumpphotonen in Signal- und Idler-
photon inkohärent stattfinden, ist die Phase der Spektralkomponenten stochastisch.

Das deterministische Modell der klassischen Beschreibung liefert für einen bestimm-
ten Satz stochastischer Phasen ein eindeutig determiniertes Fluoreszenzspektrum. In
anderen Worten, das Spektrum hängt eindeutig von der bestimmten Wahl der gleich-
verteilten stochastischen Phase ab. Die experimentelle Situation ist eine andere. Eine
Messung ist immer eine Mittelung über die gleichverteilten Phasen der spontanen Fluo-
reszenz. Spontane und stimulierte Fluoreszenz treten parallel auf.

Um das zu modellieren, wird ein Monte-Carlo-Ansatz verfolgt. Abbildung 4.3 zeigt
das Flussdiagramm des Konzepts zur Modellierung der parametrischen Fluoreszenz
bei hoher Verstärkung. Das Spektrum der inkohärenten spontanen Fluoreszenz wird
generiert und mit einen Satz von Zufallsphasen versehen. Nach der Propagation werden
die Felder überlagert. Das Ergebnis beschreibt dann das im Experiment zu erwartende
Spektrum. Die Zahl der notwendigen Überlagerungen NU hängt dabei im Wesentlichen
von der Pumpleistung ab. Bei kleinen Leistungen entkoppeln die Gleichungen nahezu
und Rückmischung zur Pumpe spielt keine Rolle. Dann liefert oft schon NU = 1 ein

Generation der inkohärenten
spontanen Fluoreszenz Propagation Superposition

Ergebnis

Abbildung 4.3: Flussdiagramm zur Modellierung der parametrischen Fluoreszenz
bei hoher Pumpleistung.
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gutes Ergebnis. Bei sehr hoher und spektral breiter Pumpleistung ist mitunter NU =

200 notwendig.

4.5 Diskussion der Ergebnisse

Abbildung 4.4 zeigt im linken Diagramm in einem doppelt logarithmischen Maßstab
die Leistung der spontanen Fluoreszenz als Funktion der Pumpleistung für eine konti-
nuierliche Quelle. Der Arbeitspunkt ist λp = 1550 nm, λs = 2849 nm und λi = 3400

nm und die Wechselwirkungslänge liegt bei L = 94 mm. Für Leistungen bis 30 dBm3

(1 W) erkennt man einen nahezu linearen Zusammenhang zwischen der Fluoreszenz-
leistung und der Pumpleistung. Es folgt dann ein Bereich mit einer stark überpro-
portionalen Abhängigkeit. Bei sehr großer Verstärkung zeigt die Fluoreszenzleistung

3P [dBm] = 10 log
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Abbildung 4.4: Links: Theoretische und experimentelle Fluoreszenzleistung als
Funktion der Pumpleistung in doppelt logarithmischer Auftragung. Der Arbeitspunkt
liegt bei λp = 1550 nm, λs = 2849 nm und λi = 3400 nm. Die Wechselwirkungs-
länge beträgt L = 94 mm. Rechts: Für die gleiche Rechnung wurde ein linearer
Maßstab gewählt und die Transmission bzw. die Konversion wurde aufgetragen. Als
Pumpschwelle ist der Schnittpunkt der Tangente an die Kurve der Transmission mit
der Abszisse bezeichnet. Die Pumpschwelle gibt an, ab welcher Pumpleistung der
Pumpabbau durch die parametrische Fluoreszenz eine signifikante Rolle spielt.



82 KAPITEL 4. OPTISCH PARAMETRISCHE FLUORESZENZ

ein oszillatorisches Verhalten um eine gesättigte Konversion, deren Ursache eine starke
Rückmischung der Fluoreszenzspektren via SFG ist. Zudem sind verschiedene expe-
rimentelle Ergebnisse aufgetragen [OKG+05]. Quasi-cw4 meint, dass die Pulslängen
sehr groß sind gegenüber der Transmissionszeit durch das Bauteil und dass Gruppen-
laufzeitdifferenzen keine Rolle spielen. Die Pulslängen liegen dabei im Bereich > 25
ns. Die Transmissionszeiten liegen typischerweise im Bereich um mehrere hundert ps.
Zudem sind Messwerte der Fluoreszenz im gepulsten Betrieb aufgetragen. Es wurde
ein modengekoppelter Laser [Wes00] mit Pulslängen um 6.4 ps verwendet, die Pulse
wurden faseroptisch verstärkt. Als Tastverhältnis oder auch Duty-Cycle wird hier das
Verhältnis der Pulslänge τ zu den Pulsabständen ∆t bezeichnet. Aufgetragen sind die
Werte über die maximale Pulsleistung:

Pmax ≈ P · ∆t

τ
(4.41)

Die mit schwarzen Punkten eingezeichneten Messwerte wurden in der Arbeitsgruppe
von A. Barthelemey in Limoges gemessen [Orl]. Im quasi-kontinuierlichen Betrieb und
bis zu einer Pulsspitzenleistung von ungefähr 42 dBm (15.9 W) zeigt sich eine gute bis
sehr gute Übereinstimmung der Messwerte mit den berechneten Werten. Für größe-
re Pulsspitzenleistungen kommt es zu Abweichungen. Mehrere physikalische Ursachen
sind für die Abweichungen vorstellbar. Für sehr hohe Pulsspitzenleistungen kann die
Photorefraktion in LiNbO3 einen Einfluss auf den Arbeitspunkt haben und dadurch
die Konversion beeinflussen. Die Ursache der Photorefraktion ist letztlich die Anre-
gung freier Ladungsträger; die Ladungstrennung erzeugt dann über den elektroopti-
schen Effekt eine Änderung des Brechungsindexes (z.B. [Sch02]). In der Theorie wurde
angenommen, dass es sich um transformationsbegrenzte Pulse handelt. Dies scheint
bei großen Zeitabständen zwischen den Pulsen mit vergleichsweise kurzen Pulsdauern
nicht mehr der Fall zu sein.

Das rechte Diagramm zeigt die Ergebnisse der Rechnung in einem linearen Maßstab,
aufgetragen sind die Transmission der Pumpleistung und die auf die Pumpleistung nor-
mierte Konversion. Als Schwelle ist der Wert definiert, bei dem der Abbau der Pump-
leistung durch die parametrische Fluoreszenz eine signifikante Rolle spielt. Ermittelt
wird die Pumpschwelle, wie skizziert, durch eine Tangente an die Konversionskurve und
den Schnittpunkt der Tangente mit der Abszisse. Der ermittelte Wert ist P = 103W

eingekoppelter Pumpleistung im kontinuierlichen Betrieb. Bei P ≈ 150 W erreicht die
Konversion einen maximalen Wert, danach kommt es zur Rückmischung. Mit größer
werdender Pumpleistung kommt es dann zu einem oszillatorischen Verhalten. Überra-

4engl.: continuous wave (cw)
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schend ist, dass es zur Umkehr der Konversion kommt, obwohl noch ungefähr 12 % der
Pumpleistung transmittiert werden.

Abbildung 4.5 zeigt die berechneten Fluoreszenzspektren für verschiedene Pumplei-
stungen im kontinuierlichen Betrieb. Zentral ist noch einmal zur Veranschaulichung das
rechte Diagramm vonAbbildung 4.4 gezeigt. Bei einer Pumpleistung von P = 1 W er-
hält man ein Spektrum, dessen Form exakt der Verstärkungskurve der DFG entspricht.
Mathematisch gesprochen: die Differentialgleichungen linearisieren, da die Pumpe so

Abbildung 4.5: Signal-Fluoreszenzspektren bei steigender Pumpleistung. Zusätz-
lich ist die Schwelleistung eingetragen.
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gut wie nicht abgebaut wird. Auch die Rückmischung spielt in diesem Bereich keine
signifikante Rolle. Mit steigender Pumpleistung verbreitert sich das Fluoreszenzspek-
trum. Im zweiten Maximum bei P = 196 W ist das Spektrum stark verbreitert und
in der Mitte durch Rückmischung abgebaut. Diese Rückmischung verursacht im Spek-
trum der Pumpe eine starke inkohärente Verbreiterung, die letztlich Ursache dafür ist,
dass die Pumpe durch den nichtlinearen Prozess nicht komplett abgebaut werden kann.
Mit weiter steigender Pumpleistung kommt es zu einer weiteren Verbreiterung und ein
drittes Maximum bildet sich im Spektrum der Fluoreszenz aus.

Abbildung 4.6 veranschaulicht das Prinzip. Eine kohärente monochromatische Pump-
welle erzeugt parametrisch generierte Fluoreszenzspektren, die durch die Akzeptanz-
bandbreite der Differenzfrequenzerzeugung bestimmt sind. Die Spektralkomponenten
bei der Signal- und Idlerwelle erzeugen dann untereinander Summenfrequenzkompo-
nenten im Band der Pumpwelle. Die Rückkonversions-Bandbreite in LiNbO3 kann auf-
grund der speziellen Dispersion der Gruppengschwindigkeit (Abbildung 1.11) beson-
ders groß sein.

Der Arbeitspunkt der parametrischen Fluoreszenz wird bestimmt durch die Phasen-
fehlanpassung (1.64), die abhängig ist von den Frequenzen ωs, ωi und ωs +ωi = ωp und
der korrespondierenden Periode der Domäneninversion Λ. Die Phasenfehlanpassung
∆∆β für die Rückkonversion mittels SFG berechnet sich demnach mit:

∆∆β(∆ωs, ∆ωi) = β(ωp + ∆ωs + ∆ωi)− β(ωs + ∆ωs)− β(ωi + ∆ωi)− 2π

Λ
(4.42)

Abbildung 4.6: Schema der Rückkonversion.
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Dieser Ausdruck lässt sich linearisieren:

∆∆β(∆ωs, ∆ωi) =

(
1

vg
p
− 1

vg
s

)
∆ωs +

(
1

vg
p
− 1

vg
i

)
∆ωi (4.43)

Man sieht, dass die Phasenfehlanpassung der Rückkonversion und somit die Bandbreite
maßgeblich bestimmt wird durch die Differenz der reziproken Gruppengeschwindigkei-
ten. Für die Gruppengeschwindigkeiten bei den Wellenlängen des Beispiels erhält man:

vg
p = 0.45590 · c0

vg
s = 0.45428 · c0

vg
i = 0.45042 · c0

Die Gruppengeschwindigkeit der Signalwelle und der Pumpwelle sind sehr ähnlich. Das
ist eine Folge des besonderen Verlaufs der Gruppengeschwindigkeit bzw. des Grup-
penindex in LiNbO3 (Abbildung 1.11). Das heisst, dass eine große Änderung der
Signalfrequenz ∆ωs nur eine sehr kleine Phasenfehlanpassung zur Folge hat, sofern die
Idlerfrequenz konstant gehalten wird. Demzufolge ist die Bandbreite der Rückkonver-
sion sehr groß.

Verglichen mit Wechselwirkungen im Volumenmaterial sind die Schwelleistungen der
OPF imWellenleitern um Größenordnungen niedriger. Beispielsweise konnte die Schwel-
le im Volumenmaterial mit 300 fs Pumppulsen bei einer Pulsenergie von 54 nJ erreicht
werden, das entspricht ungefähr einer Pulsspitzenleistung von 18 kW [GAF+97].



Kapitel 5

Optisch Parametrische Oszillation

In Kapitel 4 wurde gezeigt, dass entgegen der klassischen Voraussage eine optische
Frequenzkonversion stattfindet, wenn nur eine Welle eingestrahlt wird. Das Phäno-
men der optisch parametrischen Fluoreszenz ist der physikalische Ursprung der optisch
parametrischen Oszillation. Mittels rückgekoppelter Verstärkung der parametrischen
Fluoreszenz innerhalb eines Resonators bilden sich stehende Wellen aus. Optisch pa-

Abbildung 5.1: Skizze eines optisch parametrischen Oszillators. Die Seite, an der
eingekoppelt wird, sei die Seite A. Die gegenüber liegende Seite sei die Seite B.

rametrische Oszillatoren (OPO) dienen zum Beispiel als durchstimmbare kohärente
Strahlungsquellen hoher Qualität in schwer zugänglichen Spektralbereichen. Zum Bei-
spiel können OPOs als schmalbandige Lichtquellen zur spektroskopischen Spurengas-
analyse im Bereich um 3 µm eingesetzt werden [FKHM+98], [MPSK04].

86
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Ähnlich dem Verhalten eines Lasers kann sich innerhalb eines OPOs eine stehende Welle
nur dann ausbilden, wenn die Verstärkung die internen Resonatorverluste1 nach einem
Umlauf kompensiert. Die dazu nötige Leistung nennt man auch hier Pumpschwelle. Zur
Berechnung der Pumpschwelle verwendet man die analytischen Lösungen der Differenz-
frequenzerzeugung (4.38). Mit Hilfe der linearen Algebra lässt sich die Verstärkungs-
bedingung dann auf eine Determinante reduzieren, die als Funktion der Pumpleistung
verschwinden muss.

OPOs lassen sich je nach Verspiegelung in entsprechende Kategorien unterteilen. Je
nachdem, ob der Wellenleiter für eine bzw. beide parametrisch erzeugten Wellen (Si-
gnal und Idler) resonant verspiegelt ist, unterscheidet man zwischen einfach resonanten2

und doppelt resonanten3 Oszillatoren. Wenn der Wellenleiter für die Pumpwelle bis auf
die Streuverluste transparent ist, spricht man von einfachem Pumpdurchgang4. Ist der
Wellenleiter für die Pumpwelle gegenüber der Einkoppelseite verspiegelt, heißt es dop-
pelter Pumpdurchgang5. Abbildung 5.2 zeigt im linken Diagramm die Pumpschwelle

1Die Resonatorverluste bestimmen sich aus Auskopplung an den Spiegeln und aus den Streuverlu-
sten.

2engl. singly resonant oscillator (SRO)
3engl. doubly resonant oscillator (DRO)
4engl. single pass (SP)
5engl. double pass (DP)
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Abbildung 5.2: Pumpschwelle (links) und Leistungscharakteristik eines SP-DRO
im Arbeitspunkt λp = 1550 nm, λs = 2800 nm und λi = 3472 nm. Weiter Erklärun-
gen im Text.



88 KAPITEL 5. OPTISCH PARAMETRISCHE OSZILLATION

eines OPOs im Arbeitspunkt λp = 1550 nm, λs = 2800 nm und λi = 3472 nm. Die
Wellenleiterverluste für die Pumpwelle sind 0.1 dB/cm, die von Signal- und Idlerwel-
le jeweils 0.03 dB/cm. Für die Pumpwelle sind beide Seiten transparent, für Signal-
und Idlerwelle ist der Resonator beidseitig zu 95 % verspiegelt. Es ist also folglich ein
SP-DRO. Ein Länge von 80 mm - 100 mm für OPOs auf der Basis von periodisch
gepolten Ti:LiNbO3 -Streifenwellenleitern hat sich als günstiger Kompromiss herausge-
stellt, da in diesem Bereich eine niedrige Schwelle mit einem günstigen Leistungsverhal-
ten kombiniert wird. Das rechte Diagramm zeigt die transmittierte Pumpleistung und
die erzeugte Signal- und Idlerleistung in Vorwärtsrichtung als Funktion der Pumplei-
stung. Man erkennt ein Verhalten, das dem eines Lasers sehr ähnlich ist. Nachdem die
Pumpschwelle erreicht ist, kommt es mit starken Abhängigkeit der emittierten Leistung
von der Pumpleistung. Man erkennt aber auch ein großes Problem der SP-DRO An-
ordnung. Es kommt zu einer sehr großen nichtlinearen Reflektion (Pumpe, rückwärts).
Ursache ist eine sehr effiziente Rückmischung von den intern stark überhöhten Signal-
und Idlerwellen zur Pumpwelle.

Insbesondere in Resonatoren ist eine verlustarme Wellenausbreitung von entscheiden-
der Bedeutung. Gerade hier eröffnen die titandiffundierten Wellenleiter mit ihrer Kom-
bination aus geringen Streuverlusten und hoher Fokussierung und demzufolge einer
starken nichtlinearen Kopplung große Möglichkeiten. Beispielsweise konnte in einem
Ti:LiNbO3 -Streifenwellenleiter im mittleren Infrarot ein SP-DRO (siehe Fußnote) mit
einer extrem niedrigen externen Pumpschwelle von P thres ≈ 14 mW realisiert werden
[HHS+99][Hof01].

5.1 Abstimmverhalten

Eine Oszillation kann nur stattfinden, wenn die nichtlineare Frequenzkonversion von
Pumpwelle zu Signal- und Idlerwelle phasenangepaßt stattfindet, da es sonst zu keinen
effektiven Energietransfer kommt. Folgerichtig entsprechen die groben Abstimmkurven
exakt den im Abschnitt 1.6 vorgestellten Phasenanpasskurven (Abbildung 1.7). Das
sehr komplexe feine Abstimmverhalten wird jedoch bestimmt zum einen durch die
lineare Umlaufphase (Fabry-Perot) und die nichtlineare Phase der Wechselwirkung.

Ältere Modelle zur Simulation und Berechnung des Abstimmverhaltens gehen aus von
einer linearisierten Beschreibung der nichtlinearen Wechselwirkung [DSGF93] und bie-
ten dann weitgehend analytische Lösungen der Resonatorzustände. Dieser Ansatz be-
schreibt gut viele Phänomene innerhalb der IOPOs wie zum Beispiel das sehr spezielle
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spektrale Sprungverhalten. Ein wesentlicher Nachteil ist jedoch, dass sowohl der Ein-
fluss der nichtlinearen Wechselwirkung auf die Phase der beteiligten Wellen als auch die
Rückmischung von Signal- und Idlerwelle zur Pumpe mittels Summenfrequenzerzeu-
gung — auch nichtlineare Reflexion genannt — nur unvollständig beschrieben werden.
Andere analytische Modelle basieren auf der Annahme einer konstanten Signalwel-
le [CRBM92]. In Resonatoren mit hoher Güte und schwacher nichtlinearer Kopplung
ist das eine gute Näherung. In IOPOs mit deutlich höheren Streuverlusten und grö-
ßerer nichtlinearer Kopplung gegenüber der Freistrahloptik ist diese Annahme nicht
weiter zulässig. Das Modell, das hier vorgestellt wird, ist eine vollständige numeri-
sche Beschreibung des nichtlinearen Resonators unter Berücksichtigung der kritischen
Resonanzbedingung.

5.1.1 Lineare Resonatoreigenschaften

Die Eigenschaften des linearen Fabry-Perot-Resonators gehören zur Grundlage der Op-
tik und sind in der Literatur sowohl im Fall ebener Wellen [Hec87] als auch im Wellen-
leiter [KM91] ausführlich diskutiert. Die Partialwellen innerhalb des Resonators werden
in Form einer geometrischen Reihe beschrieben, deren Grenzwert analysiert wird. Al-
ternativ kann man die Resonanzbedingung auch finden, indem ein selbstkonsistenter
Resonatorumlauf gefordert wird. Im folgenden werden kurz die wesentlichen Aspekte
dieser Methode diskutiert.

Abbildung 5.3 zeigt schematisch das Prinzip des stationären Zustandes des Fabry-
Perot-Resonators. Die innere Amplitude ci muss sich nach einem Umlauf exakt in Phase
und Amplitude reproduzieren. Das Medium wird beschrieben durch die Wellenzahl β

und die Ausbreitungsverluste α. Die Resonatorlänge sei L. Die Verspiegelungen werden

Abbildung 5.3: Skizze des linearen Fabry-Perot-Resonators. Die innere Amplitu-
de ci muss sich nach einem Umlauf reproduzieren.
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beschrieben durch die Reflexionskoeffizienten der Amplituden6 ri. Diese sind mit den
Transmissionen7 über

|ri|2 + |ti|2 = 1. (5.1)

verknüpft. Die Forderung nach Selbstkonsistenz der Feldamplituden lässt sich leicht
formulieren:

ci = ci exp (−i2βL) exp (−αL) r1r0 + c0t0

⇒ ci = c0
t0

1− r0r1 exp (−i2βL) exp (−αL)
(5.2)

Aus dieser Bedingung folgt unmittelbar das Übertragungsverhalten des Resonators:

ct = c0

t0t1 exp (−iβL) exp
(
−α

2
L

)

1− exp (−i2βL) exp (−αL) r0r1

⇒
∣∣∣∣
ct

c0

∣∣∣∣
2

=
(1−R0)(1−R1) exp (−αL)

1− 2
√

R0R1 exp (−αL) + R0R1 exp (−2αL) cos(2βL)
(5.3)

cr = c0
t0t0r1 exp (−i2βL) exp (−αL)

1− exp (−i2βL) exp (−αL) r0r1

− r0c0

⇒
∣∣∣∣
cr

c0

∣∣∣∣
2

=
R0 + R1 exp (−2αL)− 2

√
R0R1 exp (−αL) cos(2βL)

1− 2
√

R0R1 exp (−αL) + R0R1 exp (−2αL) cos(2βL)

(5.4)

Die Quotienten |ct/c0|2 und |cr/c0|2 werden Transmission T und Reflexion R des Reso-
nators genannt. Ein Resonator ist in Resonanz wenn sich die Phase der umlaufenden
Welle bis auf ein Vielfaches von 2π reproduziert. In diesem Fall ist die Transmission
maximal und die Reflexion minimal. Man nennt die Welle dann auch schlicht resonant.

Das linke Diagramm in Abbildung 5.4 zeigt die Transmission eines integriert opti-
schen Fabry-Perot-Resonators als Funktion der Wellenlängenverstimmung ∆λ um den
Arbeitspunkt λ = 2915 nm. Die Länge des Resonators ist L = 80 mm und die Streu-
verluste betragen 0.03 dB/cm. Zusätzlich ist der freie Spektralbereich8 eingezeichnet.

6Der Reflexionskoeffizient der Leistung berechnet sich gemäß Ri = |ri|2.
7Es werden verlustfreie Verspiegelungen angenommen.
8engl.: Free Spectral Range (FSR)
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Abbildung 5.4: Links: Transmission eines Ti:LiNbO3 -Wellenleiterresonators
mit R0 = R1 = 95% und einer Länge von L = 80 mm als Funktion der Frequenzver-
stimmung um den Arbeitspunkt fs = 102.91 THz (2915 nm). Die Streuverluste sind
0.03 dB/cm. Rechts: Verlauf des FSR eines 80 mm langen Wellenleiterresonators
als Funktion der Wellenlänge.

Als freien Spektralbereich bezeichnet man den Frequenzabstand zweier longitudinaler
Moden:

2
{
β(f0 + ∆fFSR)− β(f0)

}
L ≈ 2

∂β

∂ω

∣∣∣
2πf0

· 2π∆fFSRL = 2π

→ ∆fFSR =
1

2L
vg. (5.5)

Das rechte Diagramm inAbbildung 5.4 zeigt den freien Spektralbereich eines Ti:LiNbO3-
Streifenwellenleiters als Funktion der Wellenlänge. Die Resonatorlänge beträgt 80 mm.
Der freie Spektralbereich hat ein Maximum bei λ = 1946 nm und ∆fFSR = 857 MHz.
Mit steigender und fallender Wellenlänge verhält sich der FSR streng monoton.

Ein weiteres wesentliches Kriterium zur Beschreibung von Fabry-Perot-Resonatoren ist
die Finesse [KM91]. Die Finesse ist das Verhältnis des freien Spektralbereichs ∆fFSR

zur Halbwertsbreite der Transmission des Resonators ∆fHB:

F =
∆fFSR

∆fHB
(5.6)

Die Halbwertsbreite ergibt sich nach kurzer Rechnung aus (5.3) aus der Bedingung
∣∣∣∣
ct(fR + ∆fHB/2)

ct(fR)

∣∣∣∣
2

=
1

2
(5.7)
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fR sei die Frequenz einer resonanten Welle am Arbeitspunkt. Es folgt:

∆fHB = − c0

λ2
∆λHB =

vg

2πL
arccos

{
4
√

R0R1 exp (−αL)−R0R1 exp (2αL)− 1

2
√

R0R1 exp (−αL)

}

(5.8)
Es folgt dann für die Finesse:

F =
π

arccos

{
4
√

R0R1 exp (−αL)−R0R1 exp (2αL)− 1

2
√

R0R1 exp (−αL)

} (5.9)

Eine hohe Finesse bedeutet immer auch geringe Umlaufverluste und damit eine gerin-
ge Pumpschwelle. Typische gute Werte in Ti:LiNbO3 -Resonatoren liegen zwischen 20
(nahes Infrarot) und 30 (mittleres Infrarot).

5.1.2 Konzept zur numerischen Beschreibung des Abstimmver-
haltens

Zur Berechnung der stationären Zustände der Resonatoren im nichtlinearen Fall der
parametrischen Oszillation wird das Konzept des selbstkonsistenten Feldes eingesetzt.
Als Basis zur Berechnung eines Resonatorumlaufs dient hier das numerisch leicht aus-
wertbare DGL-System (2.21)-(2.23). Im allgemeinen hat die nichtlineare Wechselwir-
kung Einfluss auf die Phase der beteiligten Wellen. Der Anteil an der Phase aufgrund
der nichtlinearen Wechselwirkung sei φnl. Im selbstkonsistenten Fall muß nach einem
Resonatorumlauf für die Phase einer Welle mit der Wellenzahl β gelten:

φnl + 2βL = 2πN (5.10)

N sei eine ganze Zahl und L die Resonatorlänge.

Zwei Mechanismen haben eine nichtlineare Phase zur Folge. Eine nichtverschwindende
Phasenfehlanpassung ∆β führt zu einer Phasenverschiebung der treibenden nichtli-
nearen Polarisation gegenüber der sich ausbreitenden Welle. Wenn die Periode der
Domäneninversion so gewählt wird, dass die Phasenfehlanpassung im Arbeitspunkt f 0

p

(Frequenz der Pumpwelle), f 0
s (Frequenz der Signalwelle) und f 0

p − f 0
s (Frequenz der

Idlerwelle) verschwindet, wird die Phasenfehlanpassung bei fester Pumpfrequenz letzt-
lich bestimmt durch die Verstimmung ∆fs der Signalfrequenz. Wie bereits in Kapitel
2 diskutiert, unterscheidet sich die DFG (φrel = −π/2) nur durch die relative Phase

φrel = arg(cp)− arg(cs)− arg(ci) (5.11)
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von der SFG (φrel = π/2). Für eine beliebige relative Phase kommt es zu einem Misch-
prozess, der auf die Phase der beteiligten Wellen rückwirkt.

Neben der Phase müssen sich die Amplituden während eines Umlaufs reproduzieren.
Die Konsistenz von Phase und Amplitude zweier Wellen lässt sich zusammenfassen zu
einem Vektor des <4:

~F (|c0
s |, |c0

i |, φrel, ∆fs) =




10 · log

{ |cUmlauf
s |2
|c0

s |2
}

sin

{
1

2

(
arg(cUmlauf

s )− 2β(f 0
s + ∆fs)L

)}

10 · log

{ |cUmlauf
i |2
|c0

i |2
}

sin

{
1

2

(
arg(cUmlauf

i )− φrel − 2β(fp − f 0
s −∆fs)L

)}




= ~0

(5.12)
Die erste und dritte Komponente des Vektors sind die Umlaufverstärkungen beider
Wellen in dB. Die Darstellung in dB hat sich bewährt, da sie numerisch sehr stabil ist.
Die zweite und vierte Komponente stellen sicher, dass sich die Phasen beider resonanter
Wellen nach dem Umlauf nur um ein Vielfaches von 2π von den Phasen vor dem
Umlauf unterscheiden. |c0

s,i| sind die Amplituden von Signal- und Idlerwelle vor einem
Resonatorumlauf. Ohne Beschränkung der Allgemeinheit kann angenommen werden,
dass arg(c0

p) = arg(c0
s ) = 0 gilt. Die Frequenz der Idlerwelle bestimmt sich dann zu

fi = f 0
p − f 0

s −∆fs. (5.13)

Lösungen für (5.12) lassen sich mit bekannten mathematischen Methoden9 finden. Man
erhält einen Satz möglicher Zustände für diskrete Frequenzverstimmungen ∆fs. Ab-
bildung 5.5 zeigt ein Lösungsspektrum für eine feste Pumpfrequenz. Gezeigt wird die
generierte Idlerleistung als Funktion der Frequenzverstimmung ∆fs bei einer Pump-
leistung von 50 mW und einer festen Pumpwellenlänge von λp = 1540 nm. Zu jedem
Punkt gibt es ein Frequenztriple, für das eine selbstkonsistente Lösung existiert. Das
rechte Diagram zeigt einen Ausschnitt dieser Lösungsmenge. Zusätzlich sind die Fabry-
Perot-Resonanzen von Signal- und Idlerwelle eingetragen. Die Resonanzen sind so auf-
getragen, dass zu einer bestimmten Signalfrequenz die Transmission der Signalwelle und
die der zugehörigen Idlerwelle unter Erfüllung der Bedingung (1.54) bei einer festen
Pumpfrequenz gezeigt wird. Wie man leicht erkennt sind selbstkonsistente Lösungen
nur möglich, wenn sowohl Signal- als auch Idlerwelle eine leichte Frequenzverstimmung

9Als Basis dient hier das wohlbekannte Standard-Newtonverfahren [PTVF93] in Kombination mit
Monte-Carlo Startpunkten. Ein modernes Verfahren ist z.B. [DSS02].
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Abbildung 5.5: Links: Ein typisches Lösungsbild eines symmetrischen DRO mit
R = 95 %, 0.1 dB/cm bzw. 0.03 dB/cm Streuverlusten für die Pumpe bzw. für Signal
und Idler bei eine Resonatorlänge von L = 80mm. Der Index B bezeichnet wie in
der Einleitung beschrieben die Seite, an der die Pumpwelle nicht eingekoppelt wird.
Aufgetragen ist die emittierte Idlerleistung als Funktion der Signalverstimmung ∆fs.
Die Pumpleistung beträgt 50 mW. Rechts: Ein Ausschnitt der Lösungsmenge ist mit
den Transmissionen für Signal- und Idlerwelle hinterlegt. Die Frequenzen von Signal
und Idler sind diametral aufgetragen, d. h. die Frequenzen von Signal- und Idlerwelle
genügen in jedem Punkt Bedingung (1.54).

von δfs,i gegenüber der Resonanz haben. Dieser Punkt wird im Folgenden noch genauer
analysiert.

Ähnlich dem Prinzip des Lasers wird der OPO auf den Moden oszillieren, deren Ver-
stärkung und damit Ausgangsleistung maximal ist. Bei kleinen Pumpleistungen knapp
oberhalb der Schwelle ist das genau das Paar mit der geringsten Verstimmung ge-
genüber Resonanz und dem kleinsten Abstand von der idealen Phasenanpassung. Bei
großen Pumpleistungen und somit einer großen internen Verstärkung wird ein anderes
Verhalten beobachtet. Das soll ausführlich in dem kommenden Abschnitt diskutiert
werden.

5.1.3 Diskussion

Wegen (1.54) kann die Bedingung gleichzeitiger Resonanz nur für bestimmte Frequenz-
triple erfüllt werden. Abbildung 5.6 zeigt schematisch die Überlagerung der longitu-
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dinalen Resonatormoden von Signal- und Idlerwelle. Die Transmissionen beider Wel-
len sind gegenläufig aufgetragen (wie in Abbildung 5.5), so dass die Summe zweier
übereinander angeordneter Frequenzen stets der Pumpfrequenz entspricht. Zusätzlich
ist die Verstärkungskurve des nichtlinearen Konversionprozesses angedeutet. Aufgrund
der Dispersion des FSR (Abbildung 5.4) haben Signal- und Idlerwelle unterschiedliche
longitudinale Modenabstände ∆fFSR, welche im Vergleich zur Verstärkungsbandbreite
klein sind. Durch die unterschiedlichen Modenabstände kommt es zu einer Schwebung
der Resonanzverstimmung. Durch diese Schwebung findet man innerhalb der Verstär-
kungsbandbreite Arbeitspunkte, an denen die Resonanzen von Signal- und Idlerwelle
nahezu übereinstimmen. Den Abstand zwischen zwei Übereinstimmungen nennt man
Clusterfrequenz. Die Clusterfrequenz ∆fCluster lässt sich leicht abschätzen [TH94]:

∆fCL = n ·∆fFSR
s

∆fCL = (n± 1) ·∆fFSR
i

⇒ ∆fCL =

∣∣∣∣
1

1/∆fFSR
s − 1/∆fFSR

i

∣∣∣∣ (5.14)

Mit (5.5) folgt unmittelbar:

∆fCL =
1

2L

∣∣∣∣
vg

s · vg
i

vg
s − vg

i

∣∣∣∣ (5.15)

Abbildung 5.6: Schematische Darstellung der longitudinalen Modenüberlagerung
im DRO. Schematisch ist angedeutet, dass die Verstärkungskurve sehr breit im Ver-
gleich zum longitudinalen Modenabstand ist.
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Der Clusterabstand ∆fCL divergiert im entarteten Fall vg
s → vg

i .

Sowohl Signal- als auch Idlerwelle müssen Bedingung (5.10) erfüllen. In einem symme-
trischen Resonator10 entspricht in jedem Punkt z das Verhältnis der Leistungen von
Signal- und Idlerwelle dem Verhältnis der Frequenzen:

Ps

Pi

=
fs

fi

(5.16)

In diesem Fall kann man leicht zeigen, dass für die nichtlinearen Phasen von Signal
und Idler gilt:

φnl
s = φnl

i = δ (5.17)

Das heißt, dass Signal- und Idlerwelle um die gleiche Phase δ aus der idealen Resonanz
verstimmt sein müssen, um die nichtlineare Phase zu kompensieren. Die Verstimmung
δ lässt sich durch das erste Glied der Taylorreihe der Wellenzahl ausdrücken:

δ = 2
∂β

∂ω

∣∣∣
ωs,ωi

L · δωs,i =
2L

vg
s,i

· 2πδfs,i (5.18)

δfs,i ist die Frequenzverstimmung der Signal- bzw. Idlerwelle gegenüber der passiven
Resonanz. Es folgt unmittelbar, dass sich das Verhältnis der Frequenzverstimmungen
in einem symmetrischen Resonator proportional zum Verhältnis der Gruppengeschwin-
digkeiten verhält:

δfs

δfi

=
vg

s

vg
i

. (5.19)

Mit dieser Voraussetzung lässt sich der Frequenzabstand ∆fOPO stationärer Lösungen
abschätzen. Nimmt man an, dass die Signalwelle eine kleinere Gruppengeschwindigkeit
besitzt als die Idlerwelle, so folgt die Bedingung

∆fOPO −∆fFSR
s = δfN

s − δfN+1
s (5.20)

∆fFSR
i −∆fOPO = δfN

i − δfN+1
i . (5.21)

Die Differenz zischen dem Frequenzabstand ∆fOPO und den freien Spektralbereichen
muss der Differenz der Frequenzverstimmungen der N -ten und der N +1-ten Resonanz
entsprechen. Die Bedingung ∆fFSR

s < ∆fOPO < ∆fFSR
i ist eine plausible Annahme.

Verwendet man (5.19), folgt unmittelbar:

1

vg
s
· {∆fOPO −∆fFSR

s

}
=

1

vg
i

· {∆fFSR
i −∆fOPO

}
(5.22)

10Sowohl Streuverluste als auch Reflektivitäten sind identisch für Signal- und Idlerwelle.
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Setzt man (5.5) ein, folgt schließlich ein Ausdruck für den Frequenzabstand longitudi-
naler DRO-Moden:

∆fOPO =
1

L

vg
s · vg

i

vg
s + vg

i

(5.23)

Der Modenabstand wurde unter der Annahme einer festen Pumpfrequenz hergeleitet.
Diese Bedingung ist nicht erfüllt, wenn der OPO durchgestimmt wird. Da jedoch der
Frequenzabstand groß ist gegenüber der Frequenzverstimmung der Pumpwelle,11 ist es
eine sehr gute Näherung für die beobachtbaren Modensprünge. Als Abstimmsteilheit
wird die Steigung der Signalfrequenz als Funktion der Pumpfrequenz innerhalb eines
Frequenz-Clusters bezeichnet [TH94][Hof01]:

s =
∂fs

∂fp

∣∣∣
CL

= 1− ∂fi

∂fp

∣∣∣
CL
≈ ∆fFSR

s

∆fFSR
s −∆fFSR

i

=
vg

s

vg
i − vg

s
(5.24)

Wie der Clusterabstand divergiert auch die Abstimmsteilheit, wenn die Gruppenge-
schwindigkeiten von Signal- und Idlerwelle identisch sind.

Abbildung 5.7 zeigt das Verhalten eines symmetrischen SP-DRO unter Durchstim-
mung der Pumpfrequenz. Die Resonatorlänge beträgt L = 80 mm und der Arbeitspunkt

11Modensprünge um 1 GHz treten auf, wenn die Pumpfrequenz im Bereich um 10 MHz verändert
wird.
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Abbildung 5.7: Feinabstimmverhalten eines DRO mit Ri = Rs = 95 %. Der
Arbeitspunkt ist fp = 194.80 THz (1540 nm), fs = 102.91 THz (2915 nm) und
fi = 91.89 THz (3264.8 nm). Das rechte Bild zeigt explizit die Modensprünge des
Resonators.
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liegt bei fp = 194.80 THz (1540 nm), fs = 102.91 THz (2915 nm) und fi = 91.89

THz (3264.8 nm). Die Pumpleistung ist Pp = 50 mW, was ungefähr dem 5-fachen der
Pumpschwelle entspricht. Mit einem Verlust von 0.03 dB/cm für Signal und Idler ergibt
sich eine Finesse von F = 27.5. Das linke Bild zeigt die Abstimmsteilheit s = 196. Im
Experiment wurde eine Abstimmsteilheit von s = 163 ermittelt [Hof01]. Der Cluster-
abstand beträgt ∆fCL = 168 GHz. Der experimentelle Wert war ∆fCL = 180GHz.
Das Verhalten entspricht dem erwarteten Schwebungsverhalten, welches oben nur un-
ter Einbeziehung linearer Optik erklärt wurde. Das Vorzeichen der Steigung innerhalb
eines Clusters wird bestimmt durch das Verhältnis der freien Spektralbereiche. In dem
gewählten Arbeitspunkt ist die besondere Situation, dass neff,s > neff,i, aber ng

s < ng
i

gilt. Das rechte Bild zeigt einen vergrößerten Ausschnitt der Feinabstimmkurve. Die
einzelnen longitudinalen Modensprünge sind aufgelöst und es ergibt sich eine treppen-
förmige Durchstimmung. In dem Diagramm hat es den Anschein, als sei die Signal-
frequenz konstant zwischen den Modensprüngen. Man muss jedoch beachten, dass die
Skalen von Ordinate und Abszisse sich um drei Größenordnungen unterscheiden. Die
Frequenzsprünge entsprechen (5.23).

An dieser Stelle sei erwähnt, dass das experimentelle Abstimmverhalten [Her91] eines
DRO nicht bis ins Detail erklärt werden konnte. Im Experiment wurde beobachtet,
dass die Abstimmsteilheit während des Durchstimmens nicht konstant ist. Die Ursache
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Abbildung 5.8: Transmission und nichtlineare Reflexion des DRO als Funktion
der Pumpleistung.
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dieses Verhaltens kann demnach nicht eine nichtlinear aufgeprägte Phase sein, da der
Einfluß der nichtlinearen Wechselwirkung auf die Phase in dem Modell exakt beschrie-
ben wird.

Das bisher beschriebene Feinabstimmverhalten ist bekannt und — wie bereits erwähnt
— eine unmittelbare Folge der Schwebung der Resonanzen von Signal- und Idlerwelle
[ENKB91]. Mit steigender Pump- und damit mit steigender Signal- und Idlerleistung
ändert sich das Abstimmverhalten. Abbildung 5.8 zeigt die Leistung der via Sum-
menfrequenzerzeugung generierten Pumpwelle als Funktion der eingestrahlten Pump-
leistung. Zudem ist die transmittierte Leistung aufgetragen. Die Leistung ist normiert
auf die eingestrahlte Leistung, es ergeben sich also Werte für Transmission und Reflexi-
on. Bei dieser Berechnung ist der Arbeitspunkt so gewählt, dass sowohl Signal- als auch
Idlerwelle resonant sind und dass die Phasenfehlanpassung verschwindet. Hohe interne
Leistungen von Signal- und Idlerwelle haben eine starke Rückmischung zur Folge. Zum
Beispiel werden bei einer Pumpleistung von 100 mW ungefähr 40 % der Pumpleistung
auf diese Weise nichtlinear reflektiert. Das hat zur Folge, dass die Umlaufverstärkung
deutlich reduziert wird. Abbildung 5.9 zeigt die emittierte Idlerleistung der mögli-
chen selbstkonsistenten Zustände als Funktion der Frequenzverstimmung ∆fs für eine
Pumpleistung von 100 mW. Der Arbeitspunkt entspricht dem vorherigen Fall. Hin-
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Abbildung 5.9: Idler-Ausgangsleistung an der Transmissionsseite selbstkonsisten-
ter Resonatorzustände aufgetragen über die Signalfrequenzverstimmung. Hinterlegt
ist die normierte Verstärkungskurve der Differenzfrequenzerzeugung. Der grau hin-
terlegte Bereich wird unten näher analysiert.
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terlegt ist die normierte Konversionseffizienz der Differenzfrequenzerzeugung. Es ist
deutlich zu erkennen, dass die Umlaufverstärkung bei einer signifikanten Phasenfehl-
anpassung größer ist als im Arbeitspunkt bei ∆β = 0. Das verwundert umso mehr,
da die normierte Konversionseffizienz auf ungefähr 30 % abgefallen ist. Die normierte
Konversionseffizienz wird jedoch berechnet unter der Annahme, dass nur zwei Wellen
— Signal und Idler — eingestrahlt werden. Damit ist die Phase der Idlerwelle ein freier
Parameter. Die Situation im Resonator ist eine andere. Im stationären Zustand sind
Pump-, Signal- und Idlerwelle bei z = 0 bestimmt. In diesem Fall hängt der Verlauf der
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Abbildung 5.10: Verstärkung als Funktion der Frequenzverstimmung bei einer
Wechselwirkungsstrecke von 80 mm bei 100 mW Pumpleistung und jeweils 50 mW
Eingangsleistung von Signal und Idler. Als Parameter dient die relative Phase φrel

(1.68).

Verstärkungskurve von der relativen Phase φrel oder wie hier von der Phase der Idlerwel-
le bei z = 0 ab. Im Fall φrel = −π/2 kommt es zur reinen Differenzfrequenzerzeugung,
im Fall φrel = 0 findet in der Phasenanpassung keine Konversion statt, da sich dann die
konstruktiv und destruktiv interferierenden Partialwellen der nichtlinearen Polarisat-
ion aufheben, oder, es findet gleichermassen Differenz- und Summenfrequenzerzeugung
statt. Wenn sich in diesem Fall die Phasenfehlanpassung (bzw. die Frequenzverstim-
mung) ändert, bekommt entweder die DFG oder die SFG eine höhere Gewichtung; die
Folge ist eine asymmetrische Verstärkung. In Rückwärtsrichtung sind anfangs nur die
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Abbildung 5.11: Feinabstimmverhalten des DRO bei einer Pumpleistung von 100
mW. Der Arbeitspunkt ist identisch mit dem in Abbildung 5.7.

Signal- und Idlerwelle vorhanden, die Phase der Pumpwelle ist demnach unbestimmt.
Die Rückmischung ist immer im Fall ∆β = 0 maximal.

Abbildung 5.11 zeigt das Feinabstimmverhalten des OPOs im gleichen Arbeitspunkt
wie im vorherigen Fall bei einer Pumpleistung von 100 mW. Eine Emission im Bereich
∆β = 0 findet nicht statt. Je nach Phasenlage bzw. Pumpfrequenz findet die Oszillation
in Bereichen mit positiver bzw. negativer Phasenfehlanpassung statt. Das hat zur Folge,
dass die Oszillationsfrequenz über zwei Clusterabstände springt, die Sägezahnstruktur
spaltet auf in eine Doppelstruktur.

Abbildung 5.12 veranschaulicht dieses Abstimmverhalten. Bereiche rechts (positive
Phasenfehlanpassung) und links (negative Phasenfehlanpassung) der Phasenanpas-
sung weisen eine größere Umlaufverstärkung auf, da die nichtlineare Rückmischung
zur Pumpwelle durch die Phasenfehlanpassung reduziert ist.

Eine genaue Analyse ergibt, dass die Oszillationsfrequenz nicht exakt über zwei Cluster
springt:

315 GHz

168 GHz
= 1.875 (5.25)

Emission tritt bei der Frequenz auf, bei der die relative Phase φrel und die Phasen-
fehlanpassung (reduzierte Rückmischung) die größte Umlaufverstärkung haben. Bei
großen internen Leistungen hat das eine signifikante nichtlineare Phase zur Folge. Die-
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Abbildung 5.12: Skizze des Sprungverhaltens im Zweicluster-Betrieb. Die ge-
strichelte Linie markiert den Abstand zweier übereinstimmender Resonanzen. Die
durchgezogene Linie zeigt den Sprung unter Berücksichtigung der Korrektur. Eine
signifikante Verstimmung der Resonanzen von Signal- und Idlerwelle wird bevorzugt.
Die OPO weicht jeweils in Richtung kleinerer Phasenfehlanpassung aus. In der Mitte
befindet sich der Bereich um ∆β = 0.

se nichtlineare Phase muss im stationären Zustand durch eine Resonanzverstimmung
kompensiert werden. Dies wird sehr anschaulich in Abbildung 5.13. Es wird jeweils
die emittierte Idlerleistung der stationären Zustände des DRO als Funktion der Fre-
quenzverstimmung ∆fs gezeigt. Hinterlegt sind die Transmissionen von Signal- und
Idlerwelle für den linearen Resonator. Die Transmissionen von Signal- und Idlerwelle
sind diametral aufgetragen, so dass die Summe aus Signal- und Idlerfrequenz konstant
ist. Der Arbeitspunkt mit der geringsten Verstimmung von Signal- und Idlerresonanz
zueinander befindet sich am rechten Rand des Diagramms. Maximale Konversion lässt
sich aber bei einer Resonanz mit größerer Verstimmung beobachten (fünfte von links).
Dadurch wird der effektive Clusterabstand verkleinert.
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Abbildung 5.13: Emittierte Idlerleistung stationärer Lösungen des DRO für ver-
schiedene Frequenzverstimmungen ∆fs bei einer Pumpleistung von 100 mW. Hin-
terlegt sind jeweils die Transmissionen für Signal- und Idlerwelle des passiven Re-
sonators. Signal- und Idlerfrequenz sind diametral aufgetragen, so dass die Sum-
me aus Signal- und Idlerfrequenz konstant ist. Am rechten Rand erkennt man den
Arbeitspunkt mit der geringsten Resonanzverstimmung von Signal- und Idlerwelle
zueinander. Maximale Konversion wird erreicht bei ∆fs ≈ 162.7 GHz.

5.2 Synchron gepumpte parametrische Oszillatoren

Neben dem kontinuierlichen Betrieb lassen sich auch gepulste Quellen verwenden, um
optisch parametrische Oszillatoren zu betreiben. Man spricht von synchronem Pum-
pen, wenn die Umlaufzeit innerhalb des Resonators einem ganzzahligen Vielfachen des
zeitlichen Abstandes der Pumppulse entspricht.

Die Basis der Modellierung des dynamischen Verhaltens synchron gepumpter OPOs
ist das Verfahren zur Modellierung optisch parametrischer Fluoreszenz. Die Verstär-
kung der spontanen Fluoreszenz wird iterativ durchlaufen, bis sich ein stationärer Zu-
stand einstellt. Als stationär wird angesehen, wenn sich die Energie des generierten
Pulses nach einem weiteren Umlauf nur um eine bestimmte Toleranz (z.B. 10−8) än-
dert [RNW98]. Abbildung 5.14 veranschaulicht dieses Prinzip. Die Synchronisation
der Pumppulse mit den Resonatorumläufen geschieht über die Retadierungsgeschwin-
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Abbildung 5.14: Algorithmus zur Berechnung synchron gepumpter OPOs.

digkeit vr (1.71). vr bestimmt die Geschwindigkeit, mit der das gewählte Zeitfenster
mitbewegt wird. Unterschiedliche Gruppengeschwindigkeiten machen sich dann durch
eine Verschiebung relativ zu diesem Zeitfenster bemerkbar. Als Beispiel, will man ei-
ne Verstimmung von ∆t gegenüber einem Signal berücksichtigen, welches sich mit der
Gruppengeschwindigkeit vg ausbreitet, berechnet sich vr wie folgt:

vr =

{
1

vg
+

∆t

2L

}−1

(5.26)

Damit folgt für den zeitlichen Abstand T der Pumppulse:

T =
2L

vr

(5.27)

Die Wiederholrate ist definiert als Pumppulse pro Zeiteinheit:

R =
1

T
(5.28)

Es wird bei den Berechnungen vorausgesetzt, das jeweils die zentralen Frequenzen von
Signal- und Idlerwelle resonant sind. Ansonsten wird die Dispersion vollständig durch
die beschreibende Gleichungen erfasst. Des weiteren handelt es sich hier eine Einzelpuls-
Analyse. Die Auflösung wird bestimmt durch die Breite des Zeitfensters. Ein Auflösung
des Spektrums eines gepulsten Signals würde eine Fensterbreite von einem Vielfachen
des Pulsabstandes und eine sehr feine Diskretisierung bedeuten, was zu extrem langen
Rechenzeiten führen würde. Die Faltungsintegrale im Frequenzbereich führen jedoch
eine Art Mittelung durch, daher wäre ein Erkenntnisgewinn gering.

In den folgenden Bespielen werden Verluste von 0.1 dB/cm für die Pumpwelle und
jeweils 0.03 dB/cm für Signal- und Idlerwelle angenommen.

5.2.1 Einfachresonanter OPO

Synchrones Pumpen im einfachresonanten Fall bedeutet, dass die Umlaufzeit der Si-
gnalwelle einem ganzzahligen Vielfachen des Pulsabstandes der Pumppulse entspricht.
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Bei den Beispielen in dieser Arbeit ist der Arbeitspunkt so gewählt, dass gilt:

λs < λi (5.29)

vg
p > vg

s > vg
i . (5.30)

Die Gruppengeschwindigkeit von LiNbO3 zeigt im Bereich λ > 1925 nm anormale Di-
spersion. Daher ist die Ausbreitungsgeschwindigkeit des kurzwelligen Pumppulses grö-
ßer als die Geschwindigkeit von Signal- und Idlerpuls. Im einfachresonanten OPO sei die
Verstimmung ∆t definiert als die Differenz des zeitlichen Abstandes T der Pumppulse
und der Umlaufzeit TR

s des resonanten Signals:

∆t = T − TR
s . (5.31)

Positive ∆t bedeuten demnach, dass ein Pumppuls immer etwas „zu spät“ eingekoppelt
wird, also nach einem Umlauf des Signalpulses. Ebenso bedeuten negative ∆t zu frühes
Einkopplen bzw. eine zu große Wiederholrate der Pumppulse.
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Abbildung 5.15: Aufbau der intern erzeugten Pulsenergie des resonanten Pul-
ses eines einfach resonanten OPOs im synchron gepumpten Betrieb als Funktion
der Zeit. Auffallend ist, dass mit einer leichten Verstimmung der Wiederholrate der
Pumppulse gegenüber der Umlaufzeit der Signalpulse eine höhere interne Verstär-
kung erreicht wird (Erklärung im Text). Die Energie des Pumppulses beträgt 10 pJ
bei einer Pulslänge von 5 ps, die Wechselwirkungslänge ist 60 mm. Die Umlaufzeit
des resonanten Signals ist TR = 891 ps, das entspricht einer Wiederholrate von
f = 1.135 GHz.
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Abbildung 5.15 zeigt die Dynamik eines SROs während der ersten 250 ns. Die Dy-
namik wird maßgeblich durch Form und Energie der Pumppulse beeinflusst, qualitativ
lässt sich das Verhalten jedoch auf andere Situationen übertragen. Der Arbeitspunkt ist
so gewählt, dass bei λp = 1550 nm, λs = 2800 nm und λi = 3472 nm Phasenanpassung
herrscht, die Breite des Pumppulses ist 5 ps, die Pulsenergie ist 10 pJ. Die Wechsel-
wirkungslänge ist 60 mm, die Reflektivität für die resonante Signalwelle ist beidseitig
R = 95 %. Für Idler- und Pumpwelle wird jeweils eine Verspiegelung von 0 % angenom-
men. Der Zusammenhang zwischen der Umlaufverstärkung und ∆t ist gut erkennbar.
Ein negatives ∆t bedeutet in diesem Fall, dass der Abstand zwischen zwei Pumppulsen
zu klein ist. Das heißt, dass der Umlauf des Signals noch nicht beendet ist, wenn ein
weiterer Pumppuls eingekoppelt wird. Da die Gruppengeschwindigkeit des Pumppul-
ses höher ist als die des Signalpulses, kommt es in diesem Fall zu keinen zeitlichen
Überlapp, der Pumppuls „flieht“ vor dem Signalpuls. Bei exakt synchronem Pumpen
kommt es zu einem Aufbau eines internen Signalpulses. Für positives ∆t erkennt man,
dass es zu einer verkürzten Aufbauzeit und eine größeren Konversion kommt. Das ist
leicht zu verstehen. Da gilt vg

p > vg
s , kann es zu keinem zeitlichen Überlapp zwischen

dem im vergangenen Umlauf aus den spontanen Zerfällen generierten Signalpuls und
dem Pumppuls kommen. Während der Propagation wird der „Vorsprung“ des Pump-
pulses vergrößert. Erst wenn nahezu synchron gepumpt wird, setzt eine rückgekoppelte
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Abbildung 5.16: Zeit- und Wellenlängenbereich des erzeugten resonanten Signal-
pulses. Als Parameter ist die Verstimmung des zeitlichen Abstandes der Pumppulse
gegenüber der Umlaufzeit des Signalpulses angegeben.
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Verstärkung ein. Mit steigendem ∆t wird die interne Verstärkung vergrößert, da in
diesen Fällen der Pumppuls während der Wechselwirkung den Signalpuls „überholen“
muss und somit der zeitliche Überlapp vergrößert wird. Im Fall ∆t = 0 ist die Auf-
bauzeit ungefähr 250 ns, das entspricht 280 Umläufen der Signalwelle. Eine positive
Verstimmung hat eine deutliche Reduzierung der Aufbauzeit zur Folge.

Abbildung 5.16 zeigt den Zeit- und Frequenzbereich des generierten Pulses für die
verschiedenen Verstimmungen im eingeschwungenen Zustand nach einer Aufbauzeit
von t > 250 ns. Die maximale Pulsleistung ist nahezu identisch in allen Fällen, die
zusätzlich konvertierte Energie verursacht eine Verbreiterung der Pulse. Mit steigender
Verstimmung und einer daraus folgenden Vergrößerung des zeitlichen Überlapps kommt
es zu einer Verbreiterung des Pulses und somit zu einer größeren Konversion. Das
Spektrum der generierten Pulse wird mit steigender Verstimmung schmaler. Für exakt
synchrones Pumpen — also für ∆t = 0 — kann eine Verschiebung des Schwerpunktes
des Signalspektrums zu kürzeren Wellenlängen beobachtet werden.

5.2.2 Doppeltresonanter OPO

Im doppeltresonanten Fall ist synchrones Pumpen nicht eindeutig definiert, da Signal-
und Idlerpuls unterschiedliche Umlaufzeiten TR

s,i haben. Als Bezugspunkt TS wird daher
das arithmetische Mittel aus Umlaufzeit von Signal- und Idlerwelle definiert:

TS =
L

vg
s

+
L

vg
s

(5.32)

Das linke Diagramm in Abbildung 5.17 zeigt die interne Energie des Signalpulses als
Funktion der Verstimmung ∆t = T − TS. Die Energie des Pumppulses ist 10 pJ, die
Pulsbreite beträgt 5 ps. Der Arbeitspunkt ist der des vorherigen Beispiels. Für Signal-
und Idlerwelle wird jeweils eine symmetrische Verspiegelung angenommen. Da gleiche
Streuverluste für Signal- und Idlerwelle angenommen werden, sind die Umlaufverluste
identisch. Daher gilt für die generierten Pulsenergien:

Es

Ei

=
fs

fi

(5.33)

Wenn der Pulsabstand der Pumppulse T der Umlaufzeit von Signal- bzw. Idlerwelle
entspricht, ist die Konversion und damit die Signalpulsenergie jeweils maximal. Man
erkennt gut das schwellenartige Verhalten der Konversion, wenn der Pulsabstand der
Pumppulse kleiner ist als die Umlaufzeit der Signalwelle, bzw. die kleinere Umlaufzeit
beider resonanter Wellen. Der Grund ist wie bereits erwähnt, dass es keinen zeitlichen
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Abbildung 5.17: Rechts: Resonatorinterne Energie des generierten Signalpulses
bei λs = 2800 nm als Funktion der Verstimmung ∆t = T − TS. gegenüber dem
arithmetischen Mittel aus Umlaufzeit von Signal- und Idlerpuls. Die zwei Maxima
treten jeweils auf, wenn synchron mit dem Signal- bzw. Idlerpuls gepumpt wird. Die
Wellenlänge der Pumpwelle ist 1550 nm. Der Pumppuls hat eine Pulslänge von 5 ps
bei einer Pulsenergie von 10 pJ. Der Pfeil bei ∆t = −4.2 ps markiert den Punkt, der
unten dargestellt wird. Links: Signal- und Idlerpuls im Zeitbereich. Der Arbeitspunkt
ist fp = 193.41 THz (λp = 1550 nm), fs = 107.07 THz (λs = 2800 nm) und
fp = 86.35 THz (λp = 3472 nm). Der Puls des synchron gepumpten Signals ist
näherungsweise gaussförmig. Die Schwebungsstruktur des Idlerpulses ist Folge der
Verstimmung, die den Abständen der Maxima entspricht.

Überlapp zwischen dem Pumppuls und den generierten Pulsen gibt. Grundsätzlich ist
in einem Bereich von

T =
1

2

(
TR

s + TR
i

)± 4 ps

eine Oszillation möglich. Das entspricht in dem gewählten Arbeitspunkt bei einer Län-
ge von 60 mm einem Intervall für die Wiederholrate von ∆R = ±5 MHz. Der Pfeil
in dem Diagram markiert den Arbeitspunkt bei ∆t = −4.2 ps, der näher analysiert
werden soll. In diesem Punkt wird synchron mit dem Umlauf der Signalwelle gepumpt,
also T − TR

s ≈ 0, während die Wiederholrate gegenüber der Umlaufzeit der Idlerwel-
le um T − TR

i ≈= 9.2 ps verstimmt ist. Das rechte Diagramm in Abbildung 5.17
zeigt den Zeitbereich im eingeschwungenen Zustand bei z = L innerhalb des Resona-
tors. Der synchron gepumpte Signalpuls ist näherungsweise gaussförmig, während der
Idlerpuls eine kammartige Struktur ausbildet. Der Abstand zwischen den Maxima ent-
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spricht der Verstimmung ∆ti. Die Form des Idlerpulses ist leicht zu verstehen. Während
der Propagation in Vorwärtsrichtung wird parametrisch ein kleiner Idlerpuls erzeugt.
Durch die Gruppenlaufzeitdifferenz kommt es zur Verschiebung der Schwerpunkte von
Signal- und Idlerpuls. Wenn synchron mit der Signalwelle gepumpt wird, entspricht
diese Verschiebung eben genau der Verstimmung ∆ti. Ist die Verstimmung größer als
die Pulsbreite des Pumppulses (5 ps), kommt es zu einer vollständigen Separation der
Idlerwelle. Im nächsten Durchgang wird ein neuer, kleiner Idlerpuls erzeugt. Der vorher
erzeugte Puls zerfällt gemäß der Umlaufverluste. Zusätzlich sind im linken Diagramm
experimentelle Werte eingetragen. Zum besseren Vergleich sind die gemessenen Ener-
gien an die theoretischen Ergebnisse angepasst. Es läßt sich gut erkennen, dass die
experimentelle Breite der ersten Oszillation sehr gut mit dem theoretischen Ergebnis
übereinstimmt. Im Experiment konnte keine Oszillation bei deutlicher Verstimmung
gegenüber der Signalumlaufzeit beobachtet werden, da nicht genügend Pumpleistung
zur Verfügung stand.

Abbildung 5.18 zeigt das Spektrum von Signal- und Idlerwelle. Das Spektrum der
Signalwelle ist gaussförmig. Im Spektrum der Idlerwelle treten neben der phasenange-
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Abbildung 5.18: Spektren von Signal (links) und Idlerwelle. Der Arbeitspunkt
ist fp = 193.41 THz (λp = 1550 nm), fp = 107.07 THz (λs = 2800 nm) und
fp = 86.35 THz (λp = 3472 nm). Das Spektrum der synchron gepumpten Signalwelle
ist näherungsweise gaussförmig. Im Spektrum der Idlerwelle treten Seitenbänder auf,
deren Abstand fB = 116 GHz durch die Differenz von Pulsabstand der Pumppulse
und der Umlaufzeit der Idlerpulse bestimmt wird.
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passten Komponente bei fi = 86.34 THz Seitenbänder im Abstand

fB =

∣∣∣∣
1

T − TR
s

∣∣∣∣ ≈ 116 THz (5.34)

auf. Trotz des unterschiedlichen Zeitverhaltens und der unterschiedlichen Spektren
(5.18) erfüllen die Pulsenergien die Bedingung (5.33).

Abschließend zeigt Abbildung 5.19 die berechnete Leistungscharakteristik eines syn-
chron gepumpten DRO. Gezeigt ist jeweils die mittlere emittierte Signalleistung als
Funktion der mittleren Pumpleistung. Als Wiederholrate wird R = 10 GHz angenom-
men. Bei einer angenommenen Resonatorlänge von 68 mm entspricht das arithmetische
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Abbildung 5.19: Signal- und Idlerpuls im Zeitbereich. Der Arbeitspunkt ist
fp = 193.41 THz (λp = 1550 nm), fp = 107.07 THz (λs = 2800 nm) und fp = 86.35
THz (λp = 3472 nm). Der Puls des synchronen Signals ist näherungsweise gauss-
förmig. Die Schwebungsstruktur des Idlerpulses ist Folge der Verstimmung, die den
Abständen der Maxima entspricht.
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Mittel der Umlaufzeiten ungefähr dem zehnfachen des Pulsabstandes:

1

2

(
TR

s + TR
i

)
=

10

R
(5.35)

Der Arbeitspunkt ist λp = 1554.75nm, λs = 2985 nm und λi = 3254 nm. Zudem werden
die erzeugten Signal- und Idlerpulse und der eingekoppelte Pumppuls des markierten
Punktes gezeigt. Es läßt sich feststellen, dass synchron gepumpte OPOs in den ver-
schiedenen Konfigurationen ein sehr großes Potential als Quellen in den verschiedenen
Spektralbereichen haben.



Zusammenfassung

Im Rahmen dieser Arbeit wurde die Dynamik nichtlinearer Wechselwirkungen in Titan-
diffundierten Streifenwellenleitern ausführlich analysiert. Dabei lag der Schwerpunkt
auf der Erzeugung kohärenter Strahlung bzw. auf der Frequenzkonversion.

Dazu wurden zunächst die theoretischen Grundlagen auf der Basis der Maxwellglei-
chungen hergeleitet. Aus den Maxwellgleichungen folgt für monochromatische Wel-
len eine zeitunabhängige Helmholtz-Gleichung, die eine Beschreibung der Amplituden-
und Phasenfronten einer sich in einem Wellenleiter ausbreitenden Welle ermöglicht.
Die Lösungen dieser Helmholtz-Gleichung bilden ein vollständiges Orthogonalsystem
aus, nach dem beliebige Phasenfronten entwickelt werden können. Unter der Annahme
„hinreichend schmaler“ Spektren bzw.„hinreichend großer“ Pulsdauern der beteiligten
Wellen kann diese Phasenfront für sich ausbreitende Pulse angenommen werden. Das
führt weiter zu einer Beschreibung sich ausbreitender optischer Wellen, die stark an die
Schrödingergleichung der Quantenmechanik erinnert. In Analogie zur zeitabhängigen
Störungsrechnung wird die Theorie gekoppelter Moden eingeführt, mit der optische
Wechselwirkungen in Streifenwellenleitern störungstheoretisch behandelt werden kön-
nen.

Als Störung wird die nichtlineare Polarisation zweiter Ordnung eingeführt. Die Polari-
sation zweiter Ordnung tritt in jeder Permutation als Summe bzw. Differenz zweier Fre-
quenzen auf. Da zwei Wellen bestimmter Frequenz eine dritte generieren, spricht man
auch von Dreiwellen-Mischung. Ein wesentliches Kriterium, um die Gleichungen weiter
zu reduzieren, ist die Phasenanpassung. Mit Phasenanpassung ist im Wesentlichen ge-
meint, dass die Hertz’schen Dipole einer bestimmten Frequenz Partialwellen aussenden,
die allesamt mit einer sich ausbreitenden Welle konstruktiv interferieren. Dazu müssen
die Wellenvektoren der drei beteiligten Wellen in einem bestimmten Verhältnis zuein-
ander stehen. Neben der Möglichkeit die Doppelbrechung in LiNbO3 zu nutzen, kann
diese Bedingung auch im Mittel erfüllt werden. Da es sich hier nicht um eine eigent-
liche Phasenanpassung handelt, spricht man auch von Quasi-Phasenanpassung. Dabei
wird ausgenutzt, dass die Phase der nichtlinearen Polarisation mit der Richtung der

112
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optischen Achse korreliert ist. Deshalb kann durch periodische Inversion der optischen
Achse Phasenanpassung erreicht werden.

Quasi-Phasenanpassung vorausgesetzt wurde in Kapitel 2 die Summen- und Diffe-
renzfrequenzerzeugung und die Erzeugung der zweiten Harmonischen in Ti:LiNbO3 -
Streifenwellenleitern berechnet. Durch die verlustarme Ausbreitung und durch die hohe
Fokussierung in den Wellenleitern können diese Wechselwirkungen sehr effizient reali-
siert werden. Dazu wurde in einer objektorientierten Entwicklungsumgebung ein win-
dowsfähiges Programm entwickelt, dass diese Wechselwirkungen sehr effizient berech-
net. Dabei wurde auch Wert darauf gelegt, den Experimentatoren ein einfach bedien-
bares Programm an die Hand zu geben, mit dem in Zukunft die Experimente schnell
und bequem verglichen werden können.

In Kapitel 3 wurden weiterführend kaskadierte Wechselwirkungen analysiert. Mit den
zugrunde liegenden Methoden kann eine simultane nichtlineare Wechselwirkung von
prinzipiell unendlich vielen optischen Wellen simuliert werden. Hier bietet vor allem
die Kaskadierung von der Erzeugung der zweiten Harmonischen mit der Erzeugung der
Differenzfrequenz große Möglichkeiten, sehr breitbandige und rauscharme Verstärker
und Frequenzkonverter zu realisieren. Eine weitere Möglichkeit der Kaskadierung ist
die Verknüpfung von Summen- und Differenzfrequenzerzeugung, was die Durchstimm-
barkeit der Frequenzkonverter verbessert, allerdings die Bandbreiten einschränkt.

In Kapitel 4 wird ein semiklassisches Modell zur numerischen Beschreibung der pa-
rametrischen Fluoreszenz entwickelt, dass eine Berechnung der spektralen Charakteri-
stik und der Ausgangsleistung der parametrischen Fluoreszenz im Bereich sehr starker
Wechselwirkung erlaubt. Es konnte gezeigt werden, dass der spezielle Verlauf der Grup-
pengeschwindigkeit in LiNbO3 die Bandbreite der parametrischen Rückkonversion der
Fluoreszenzspektren zur Pumpe stark vergrößert. Der Grund ist, dass die Differenz der
Gruppengeschwindigkeit der Pumpwelle zu den Gruppengeschwindigkeiten von Signal-
und Idlerwelle sehr klein ist. Diese Rückkonversion führt zu einer starken inkohärenten
Verbreiterung des Spektrums der Pumpwelle. Durch diesen Prozess können bis zu 20 %
der Leistung der Pumpwelle inkohärent rückkonvertiert werden. Diese Kreuzkonversion
führt dann weiter zu sehr breiten, inkohärenten Fluoreszenzspektren.

Im letzten Kapitel werden schließlich optisch parametrische Oszillatoren analysiert,
die als durchstimmbare kohärente Strahlungsquellen in vielen Spektralbereichen ver-
wendet werden können. Im ersten Abschnitt dieses Kapitels wird ein rigoroses Modell
vorgestellt, welches entgegen früherer seminanalytischer Modelle eine exakte numeri-
sche Beschreibung des Abstimmverhaltens ermöglicht. Mit diese Beschreibung konnte
gezeigt werden, dass die nichtlineare Rückkonversion der resonanten Signal- und Id-
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lerwellen zur Pumpwelle eine Aufspaltung des sogenannten Fein-Abstimmverhaltens
zur Folge hat. Es konnte auch gezeigt werden, dass die nichtlineare Phase nicht Ursa-
che des Abweichens des experimentellen Fein-Abstimmverhaltens von den theoretisch
zu erwartenden ist. Diese Abweichung konnte in diesem Modell nicht gefunden wer-
den. Im zweiten Abschnitt wird auf der Basis der Verfahren des dritten Kapitels das
Verhalten synchron gepumpter OPO’s analysiert. Dieses Modell ermöglicht insbeson-
dere auch Aussagen über das zeitliche Verhalten integriert optischer Oszillatoren. Es
zeigt sich, dass aufgrund der Unterschiede der Gruppengeschwindigkeiten eine leichte
Verstimmung der Pulsabstände der Pumppulse die Verstärkung und die Effizienz der
Konversion vergrößert, da durch dieses „Vorhalten“ der zeitliche Überlapp zwischen
dem Pumppuls und den generierten Pulsen vergrößert wird.



Anhang A

Wellenleitermodell

Seit 1974 ist bekannt, dass durch Ti-Eindiffusion verlustarme Wellenleiter in LiNbO3

ausgebildet werden können [SK74]. Seither wurde die Herstellungstechnologie opti-
miert und ist mittlerweile ein Standardverfahren der integrierten Optik (z.B. [Her91],
[Hof01]). Mittels einer lithographisch hergestellte Maske werden Ti-Streifen auf den
Wellenleiter aufgebracht, die dann eindiffundiert werden. Die Eindiffusion wird durch
dass Fick’sche Diffusiongesetz beschrieben. Mit einem Produktansatz ergibt sich ein
Profil gemäß

cTi(x, y) = c0 ·X(x) · Y (y) (A.1)

mit1

X(x) =
1

2erf
(

W

2 Dx

)
{
erf

(
x + W

2

Dx

)
− erf

(
x− W

2

Dx

)}

Y (y) = exp

(
− y2

D2
y

)

Die Proportionalitätskonstante c0 gibt die Ti-Konzentration im Koordinatenursprung
an und läßt sich aus der Teilchenzahlerhaltung bestimmen:

c0 =
2√
π

1

Dy

τρ erf
(

W

2Dx

)
. (A.2)

τ und W sind jeweils die Dicke und Breite des aufgebrachten Ti-Streifens und ρ =

5.67 · 1022 1/cm3 die Teilchenzahldichte des Titans.

Der Zusammenhang zwischen der Brechungsindexerhöhung und der lokalen Ti-Konzen-
tration ist durch einen Vergleich von SIMS-Messungen mit dem mit der Hilfe der in-
versen WKB-Methode gefundenen Brechungsindexprofil untersucht worden [LSS80]. Es

1erf(x) = 2√
π

∫ x

0
exp(−ξ2) dξ
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wurde ein linearer Zusammenhang des ausserordentlichen Indexhubes und der Ti-Kon-
zentration gefunden. Demgegenüber war der Zusammenhang im Fall des ordentlichen
Brechungsindex nichtlinear. Für λ = 633 gilt:

∆ne,633 = E cTi mit E = 1.2 · 10−23 cm3 (A.3)

∆no,633 = [F cTi]
0.55 mit F = 1.3 · 10−25 cm3 (A.4)

Bei niedrigen Konzentrationen ist die Erhöhung des ordentlichen Indexes größer als die
des ausserordentlichen Indexes. Beide Kurven schneiden sich ungefähr bei cTi = 4.5·1020

1/cm3. Typische maximale Ti-Konzentrationen für Standardwellenleiter liegen im Be-
reich 1.1 · 1021 1/cm3. In diesem Bereich ist die Erhöhung des ausserordentlichen Bre-
chungsindexes größer, daher sind ausserordentlich polarisierte Moden stärker lokalisiert.

In [LSS80] konnte unter anderem im UV-Bereich durch Reflexionsmessungen die Ti-
Absorbtionsresonanz bestimmt werden. Unter der Annahme eines einfachen Lorentz-
Oszillators kann der Indexhub extrapoliert werden [Din94], [Str91]:

∆ne =
0.839 · (λ · 106)2

(λ · 106)2 − 0.0645
∆ne,633 (A.5)

∆ne =
0.670 · (λ · 106)2

(λ · 106)2 − 0.1300
∆ne,633 (A.6)

Somit steht ein Modell zur Verfügung, dass eine Berechung der modalen Feldverteilun-
gen erlaubt. Es muß jedoch erwähnt werden, dass die einfache Extrapolation des Mo-
dells bis in das mittlere Infrarot bin 4000 nm fehlerbehaftet ist. Bisher steht aber kein
besseres Model zur Verfügung. Die abschließende Tabelle zeigt typische Wellenleiter-
Herstellungsdaten. Dabei wird im wesentlichen zwischen Wellenleitern für das nahe
(NIR) bzw. mittlere (MIR) Infrarot unterschieden.

NIR MIR

W (Ti-Streifenbreite) [µm] 7.0 20
d (Ti-Streifendicke) [nm] 98 160
Td (Diffusionstemperatur ) [◦C] 1060 1060
td (Diffusionszeit) [h] 7.5 31



Anhang B

GHG-Approximation

Das Gauss-Hermite-Gauss-Verfahren basiert auf dem Ritz’schen Variationsprinzip. Mit
der Operatoridentität

n2
y

∂

∂y

1

n2
x

∂

∂y
≈ n2

y

n2
z

∂2

∂y2
. (B.1)

haben beide skalaren Wellengleichungen (1.40) und (1.41) die gleiche Struktur:
{

f
∂2

∂x2
+ g

∂2

∂y2
+ k2

(
n2(x, y)− n2

eff

)}
Φ(x, y) = 0. (B.2)

Das Problem läßt sich in einen Variationsansatz überführen [KMB+82], indem für das
Funktional

L(Φ) =

∫∫
dx dy

{
f

(
∂Φ

∂x

)2

+ g

(
∂Φ

∂y

)2

− k2
(
n2(x, y)− n2

effΦ
)
}

(B.3)

eine stationäre Lösung gesucht wird.

dL = 0 (B.4)

Zur Formulierung wurden die folgenden Abkürzungen verwendet:

f g n(x, y) Φ

TE n2
x/n

2
z 1 nx Ex

TM 1 n2
y/n

2
y ny Hz

Zur Lösung des Problems verwendet man einen Produktansatz aus einer Gaussfunktion
und einer Hermite-Gaussfunktion:

Φ(x, y) = X(x) · Y (y) (B.5)
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mit

X(x) =

√
2√
πw

exp

(
−2x2

w2

)

Y (y) =
2√
d
√

π

y

d
exp

(
− y2

2 d2

)

Eine detaillierte Beschreibung der Auswertung des Funktionals findet sich in [Her91].

Insbesondere das evaneszenten Feld der Mode wird durch diesen Ansatz nicht beschrie-
ben, da die Lösung unter der Randbedingung

Φ(x, 0) = 0 (B.6)

gefunden wird. Oberflächennahe Wechselwirkungen könne mit dieser Methode somit
nur sehr unzulänglich beschrieben werden. Die Wechselwirkungen in der nichtlinearen
Optik erstrecken sich aber über den ganzen Wellenleiterquerschnitt. Randfehler spielen
somit nur eine unwesentliche Rolle.



Anhang C

Numerisches Verfahren

Zur numerischen Auswertung werden die Gleichungen in der retardierten Form (1.71),
(1.72) verwendet. Eine Möglichkeit der der Auswertung der Gleichungen wäre es, einen
bekannten Löser (z.B. Runge Kutta, Burlirsch-Stoer [PTVF93]) für gewöhnliche Diffe-
rentialgleichungen zu verwenden und die Faltungsintegrale in jedem Schritt zu berech-
nen. Dieses Verfahren führt allerdings zu sehr langen Rechenzeiten [Sch] und ist nicht
praktikabel. Die spezielle Struktur der Gleichungen1 ermöglicht jedoch, die nichtlinea-
ren Wechselwirkungen nach einer Fouriertransformation2 im Zeitbereich zu berechnen,
während Dispersion und Streuung weiterhin im Frequenzbereich berücksichtigt werden
[Agr95]. Diese Verfahren nennt sich „FFT-Split Step Beam Propagation Method“.

InAbbildung C.1 ist das Berechnungsverfahren illustriert. Die wechselwirkenden Wel-
len werden repräsentiert im Frequenzbereich durch ihre spektralen Komponenten. Die
Schrittweite für die Berechnung ist h. Zu Beginn des Schrittes bei z = 0 wird unter Ver-

1Auf der rechten Seite treten ausschließlich Faltungsintegrale auf. Eine Faltung im Frequenzbereich
entspricht einer einfachen Multiplikation im Zeitbereich.

2Eingesetzt wird die sehr effiziente Fast Fourier Transformation (FFT) [PTVF93].

Abbildung C.1: Schematische Darstellung des Berechnungsverfahrens. Die Di-
spersion wird im Frequenzbereich berechnet, nach einer Fouriertransformation wird
die nichtlineare Wechselwirkung im Zeitbereich berechnet.
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nachlässigung der nichtlinearen Wechselwirkung die Dispersion für eine halbe Schritt-
weite berechnet. Dann wird via inverser FFT in den Zeitbereich gewechselt. Mit Hilfe
eines gewöhnlichen Lösers (s.o.) wird dan die nichtlineare Wechselwirkung berechnet
und die Dispersion vernachlässigt. Nach einem Wechsel zurück in den Frequenzbereich
wird der Schritt vervollständigt.

Bei einer konstanten Domänenperiode — D(z) ist streng periodisch — kann D(z)

durch das erste Glied der Fourierreihe (1.73) ersetzt werden. Höhere Glieder oszillieren
stark und liefern dann keinen Nettobeitrag zur konvertierten Leistung bzw. zur Puls-
energie. In diesem Fall ist der Wert der effektiven Phasenfehlanpassung klein und die
oben erwähnten Lösungsverfahren zur Berechnung gewöhnlicher Differentialgleichun-
gen können verwendet werden. So kann mit Schrittweiten zwischen 1/10 mm und 1
mm gearbeitet werden.

Innerhalb einer Domäne ändert sich die Amplitude einer Welle nur sehr schwach. Di-
spersion und Streuverluste sind im Zeitbereich nicht zu berücksichtigen. Somit lautet
beispielsweise die gewöhnliche Differentialgleichung für die Pumpwelle im Zeitbereich3

∂

∂z
Ĉp(z, t) = ±i

ε0ωpd33κ

2P0

Ĉs(z, t) Ĉi(z, t) exp (i∆βDFGz) (C.1)

Nimmt man an, dass innerhalb eines Integrationsintervalls die Änderung der Amplitude
von Signal- und Idlerwelle vernachlässigbar ist, so gilt näherungsweise:

∂

∂z
Ĉp(zi+1, t) ≈ ∂

∂z
Ĉp(zi, t)± ε0ωpd33κ

2P0

Ĉs(zi, t) Ĉi(zi, t)·
i

∆βDFG

{exp (i∆βDFGzi)− exp (i∆βDFGzi+1)} (C.2)

Mit dieser Methode kann der nichtlineare Schritt im Zeitbereich sehr effizient ausgewer-
tet werden. Zur Erhöhung der Rechengeschwindigkeit können zudem mehrere Schritte
im Frequenzbereich zusammengefasst werden.

3± je nach Orientierung der Domäne.



Anhang D

Sellmeiergleichungen in LiNbO3

Zur Berechnung des ordentlichen [EL84] und des außerordentlichen [Jun97] Brechungs-
indexes werden folgende Gleichungen benutzt:

a1e a2e a3e a4e a5e

5.35583 0.100473 0.20692 100 11.34927

a6e b1e b2e b3e b4e

1.5334 · 10−2 4.629 · 10−7 3.862 · 10−8 −0.89 · 10−8 2.657 · 10−5

a1o a2o a3o a4o b1o

4.9048 0.11775 0.21802 2.7153 · 10−2 2.2314 · 10−8

b2o b3o

−2.9671 · 10−8 2.1429 · 10−8

Fe(T ) = (T − 24.5)(T + 570.82)

Ne(l, T ) = a1e + b1eFe(T ) +
a2e + b2eFe(T )

λ2 − (a3e + b3eFe(T ))2
+

a4e + b4eFe(T )

λ2 − a2
5e

− a6eλ
2

ne(l, T ) =
√

Ne(l, T ) (D.1)

Fo(T ) = (T − 24.5)(T + 570.5)

No(l, T ) = a1o +
a2o + b1oFo(T )

λ2 − (a3o + b2oF (T ))2
+ b3oF (T )− a4oλ

2

no(lT ) =
√

No(l, T ) (D.2)

Die Temperatur T ist in C◦ und die Wellenlänge λ ist in µm einzusetzen.
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