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ABSTRACT 

 ϖ 

OUTLINE OF THE THESIS

The principles of coordination chemistry e.g. ligand field theory constitute a common 

ground for molecular magnetism, biomimetics and bioinspired chemistry. The subject of 

molecular magnetism is the center of this thesis. Summarily, this thesis mainly describes 

exchange-coupled homo and heteropolynuclear complexes, containing different 

paramagnetic metal ions, with particular emphasis on the interactions of spin carriers 

based on different topological approach with irregular spin state structures towards 

building high-spin molecules. These polynuclear complexes described here are 

characterized structurally and spectroscopically so that magnetostructural correlations 

can be made. 

This work is divided into eight chapters. The first chapter gives an introduction 

relevant to this work, considering the background of "Molecular Magnetism" and the 

importance of the exchange coupled polynuclear complexes in “molecular magnetism” 

and magnetic molecular materials. The importance of oxime ligands as backbones for 

polynuclear complexes due to their versatility at bonding modes is discussed. A few 

examples of well characterized high spin molecules, relevant to this thesis, are reviewed.  

           The second chapter is concerned with the synthesis, characterization and 

magnetostructural study of exchange coupled trinuclear oximate complexes. It is to be 

mentioned here that new exchange pathways can be expected for heteropolynuclear 

complexes where unusual sets of magnetic orbitals can be made to overlap with each 

other and hence investigations of a series of heteropolynuclear complexes might be more 

informative in comparison to those of homometal complexes. Three trinuclear 

complexes, NiIIMnIIINiII 1, NiIICrIIINiII 2 and NiII
3 3 based on (pyridine-2-

aldoximato)nickel(II) units are described. Two of them, 1 and 2, contain metal-centers in 

linear arrangement, as is revealed by X-ray diffraction. Complex 3 is a homonuclear 

complex in which the three nickel(II) centers are disposed in a triangular fashion. The 

compounds were characterized by various physical methods including cyclic 

voltammetric and variable-temperature (2–290 K) susceptibility measurements. 

Complexes 1 and 3 display antiferromagnetic exchange coupling of the neighboring 

metal centers, while weak ferromagnetic spin exchange between the adjacent NiII and 

CrIII ions in 2 is observed. The experimental magnetic data were simulated by using 

appropriate models. 

           The third chapter presents linear tetranuclear “homo and heteropolymetallates” 

constructed using a dinucleating oxime ligand. One dinuclear and four tetranuclear 
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complexes, MnIIMnII 4, MnIIIMnIIMnIIMnIII 5, MnIVMnIIMnIIMnIV 6, 

FeIIIMnIIMnIIFeIII 7 and CrIIIMnIIMnIICrIII 8 based on (2,6-diformyl-4 methyl 

phenoldioximato)manganese(II) units are described. All of them contain metal-centers in 

linear arrangement, as is revealed by X-ray diffraction. The compounds were 

characterized by various physical methods including cyclic voltammetric and variable-

temperature (2–290 K) susceptibility measurements. Complexes display overall 

antiferromagnetic exchange coupling with extremely low-lying states.  

             The fourth and fifth chapters discuss the building up of high spin polynuclear 

complexes based on different molecular topology such as, butterfly, star-shaped etc, and a 

“parallel spin coupled” system using “accidental ferromagnetism” and “planned 

ferromagnetism” both governed by the common principle of orthogonal orbital overlap. It 

also discusses irregular spin state structures due to spin frustration or competing 

exchange interaction. Two tetranuclear complexes, FeIII
2CuII

2 9, CuII
2CrIII

2 10 based on 

(2,6-diacetyl pyridinealdoximato)copper(II) units and Me3TacnMX3 (where M = Fe(III), 

Cr(III) and X = Cl or Br) are described. Both of them, 9 and 10, contain metal-centers 

disposed in "butterfly" fashion with M(III) as the "wing" and Cu(II) as the "body", as is 

revealed by X-ray diffraction. The compounds were characterized by various physical 

methods including variable-temperature (2–290 K) susceptibility and variable-

temperature variable-field (VTVH) magnetic measurements. The experimental magnetic 

data were simulated by using appropriate models Complexes 9 and 10 display 

antiferromagnetic exchange coupling of the neighboring metal centers, due to the "spin-

frustration" or more precisely competing exchange interactions between the spin carriers 

complex 10 exhibits irregular spin state structure with ST = 2 ground state. While strong 

wing-body interactions over body-body interaction, stabilizes ST = 4 ground state in 

complex 9.  

            Two tetranuclear complexes, MnII
4 11, MnIII

4 12 based on salicylaldoxime ligand 

are described. One of them, 11 contains metal-centers in "star-shaped" arrangement while 

the complex 12 in which the four manganese(III) centers are disposed in a tetrahedral 

fashion, as is revealed by X-ray diffraction. The compounds were characterized by 

various physical methods including variable-temperature (2–290 K) susceptibility and 

variable-temperature variable-field (VTVH) magnetic measurements. The experimental 

magnetic data were simulated by using appropriate models Complexes 11 and 12 display 

weak ferromagnetic exchange coupling of the neighboring metal centers, and yield high-

spin ST = 10 and ST = 8 ground states for the complexes 11 and 12 respectively. 
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             Also hexa-and nonanuclear complexes have been synthesized and are described 

in chapters six and seven. The hexanuclear complexes, composed of two edge-sharing 

triangular units, are also subjected to magnetostructural studies as described in chapter 

five, while sixth chapter describes two rare examples of nonanuclear Ni(II) and Cu(II) 

complexes. Two nonanuclear complexes, NiII
9 16, CuII

9 17 based on (pyridine-2-

aldoximato)nickel(II) unit and N,N'-(2-Hydroxypropane-1,3-

diyl)bis(benzoylacetoneimine) respectively are described. Both of them, 16 and 17, 

contain two irregular tetrahedra connected to a centrally placed M(II) ions, as is revealed 

by X-ray diffraction. The compounds were characterized by various physical methods 

including variable-temperature (2–290 K) susceptibility measurements and variable-

temperature variable-field (VTVH) magnetic measurements. Complexes 16 and 17 

display antiferromagnetic exchange coupling of the neighbouring metal centers. The 

experimental magnetic data were simulated by using appropriate models. 
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                     CHAPTER -1 
INTRODUCTION AND OBJECTIVES
ckground: 

cular magnetism1,7,15 is a field of research where the investigation of the 

c properties of isolated molecules as well as of assemblies of molecules is 

ken. These molecules may contain one or more magnetic centers.  Assemblies of 

es occurring in the solid state may be characterized by weak interactions between 

ecular entities, thus displaying magnetic behavior very similar to that of the 

 molecules or may consist of extended systems built from molecular precursors in 

hat maximizes the interactions between these molecular precursors, yield bulk 

c properties. Solid state systems (metal oxides or metallic compounds) that also 

highly interesting magnetic properties but do not consist of molecular entities or 

derive from molecular precursors are not included within the framework of the 

n on molecular magnetism. In molecular magnetism the magnetic properties of 

netic molecules and how these properties affect the bulk magnetic properties of 

ar materials are described. 

d concerns the chemistry and the physics of open shell molecules and molecular 

ies containing open-shell units. The main facets of molecular magnetism may be 

ized as follows: 

ning of open-shell molecules, the main emphasis being on molecules containing 

two magnetic centers where spin communication is possible between the spin 

. These spin carriers may be transition metal ions as well as organic radicals. 

will be given to the design of polynuclear complexes containing tri, tetra and even 

r nuclearity spin clusters of transition metal ions. 

rmination of the spectra of the low-lying states for such open-shell molecules, 

various techniques such as magnetic susceptibility and magnetization 

ments, EPR and optical spectroscopies or inelastic neutron scattering. 

mistry and physics of transition metal compounds exhibiting a spin conversation 

transition between two different spin states. 

 relations among magnetic properties, structure and reactivity of metalloenzymes 

el compounds. This facet may be defined as biomagnetism. 

1 



INTRODUCTION AND OBJECTIVES 

           (v) Three-dimensional effects in molecular assemblies, containing open-shell units.  The 

main issues deal with molecular-based compounds exhibiting a spontaneous 

magnetization below a critical temperature Tc. 

           A prominent site of molecular magnetism is its interdisciplinary nature. It has already 

been pointed out that molecular magnetism has common frontiers with quite a few other 

areas such as supramolecular chemistry, theoretical chemistry and physics, material and 

life sciences and also molecular electronics.  

           Certainly the subject of "Molecular magnetism"  has become increasingly accessible in 

recent years through many authoritative reviews and books.1-11 As basic ideas and 

concepts related to magnetic interactions are described in these excellent reviews and 

books, we refrain here from repeating the same. Instead a description of the concepts of 

"spin-frustration", "irregular spin-state structure",16,19 "molecular topology" etc. which 

are directly related to this research, is presented. 

 

           1.2 Objectives:

          The objectives underlying the thesis are: 

          (i) Designed Synthesis: 

                      One of the challenges in the field of exchange coupling in polymetallic systems is 

the design of complexes with predicted magnetic properties. To achieve this goal, the 

influence of parameters such as the symmetry of magnetic orbitals, the nature of bridging 

and terminal ligands, and changes in coordination geometry have been studied.12 

Surprisingly, very few studies of the influence of the molecular topology26 on the 

magnetic properties of coordination complexes have been performed. For example, the 

chromium analogue of the Werner's hexol, [CrIII{(OH)2CrIIIen2}3](ClO4)6 by Anderson 

and Berg exhibits a high-spin ST = 3 ground state owing to its topology,25,26 shown 

below.  

 
                       A ferromagnetic-like behavior is obtained with a ground state characterized by a 

large spin, although the interaction between nearest neighbor CrIII ions (SCr = 3/2) is 
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antiferromagnetic. This effective ferromagnetic coupling between the outer ions is highly 

interesting in the context of synthesizing "high spin" molecules. The best result would be 

obtained in a topology, in which a maximum number of spins point in the same direction 

as show in the previous page. Similarly other tetranuclear complexes of the formula 

[{Cu(oxpn)}3Mn](ClO4)2.2H2O by Lloret et.al24a and [Cr(ox){Ni(Me6-(14)ane-

N4)}3](ClO4)3 abbreviated as Cu3Mn and CrNi3 respectively, by Kahn et. al exhibit ST =1 

and ST = 9/2 ground state, respectively and it is to be noted that in case of Cu3Mn, 

however, the pairwise interaction is antiferromagnetic but stabilizes a nondiamagnetic 

ground state due to the topology described above.  

                 Recently more exciting result appeared, dealing with homometal tetranuclear 

nickel(II) planar trigonal-shaped species30 [Ni4(HL)3](ClO4)2 where H3L is 1,4,7-

tris(acetophenoxime)-1,4,7-triazacyclononane. This tetranuclear nickel (II) complex with 

local spins SNi = 1 exhibits antiferromagnetic exchange interaction and yields a high-spin 

ground state ST = 2 owing to the topology of the spin carriers as shown in the Figure 

above. 

                            The other two topological possibilities for tetranuclear complexes, namely the 

square and the linear arrangements of the spin carriers, lead in the case of identical metal 

ions, to a diamagnetic ground state due to the equal number of spins in each direction, as 

illustrated schematically below 

 
            

                          Thus the challenge for the chemists is to design real molecules having the follo-

wing topologies for polymetallic complexes containing n paramagnetic ions, where n = 3, 

4 or 5. 
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  If the two border cases are considered for a heterometallic system, two possible 

situations arise for the spin coupling: i) the smaller spins may be located outside with the 

large spin at the center, yielding an overall "low spin“ground state, in which the outer 

spins partially cancel the central spin and ii) the reverse arrangement, i.e. the larger spins 

outside; the smaller spin located at the center polarizes the outer spins, thus resulting in a 

"high spin" ground state. Chaudhuri et.al used this strategy in the synthesis of a linear 

trinuclear FeIIICuIIFeIII complex27 with an ST = 9/2 ground state, demonstrating the point 

of molecular topology is a very important factor determining the magnetic properties of 

polynuclear complexes with more than two metal ions. It is noteworthy that the actual 

geometry does not govern the spin structure for n > 3 metal ions. Thus it is possible to 

tune the magnetic properties of polynuclear complexes by controlling the topology and 

the nature of the ions in interaction. This approach is particularly promising for the 

synthesis of "high spin" molecules and needs systematic exploration.  

         In the field of magnetic molecular materials, one of the main challenges is the 

design of molecular ferromagnets. One approach to this consists of first synthesizing 

molecular entities with a large spin in the ground state and then of assembling this 

molecules within the crystal lattice in a ferromagnetic fashion. One strategy to obtain 

ferromagnetic interactions within a molecular entity is to make use of the orthogonality of 

the magnetic orbitals of the interacting magnetic centers. These symmetry requirements 

are difficult to achieve. Another strategy based on the concept of irregular spin state 

structures19 leads to new molecular systems with a large spin in the ground state. It must 

be emphasized that the former strategy of orthogonality is not more efficient than the 

latter.  

           The basic idea of an irregular spin state structure can be described in the following way: 

The two 5/2 local spins on the terminal iron(III) ions, for example, are aligned along a 

common direction through the antiferromagnetic interaction with the central local spin 1/2 

of the copper(II) ion, which is depicted below: 
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                   In some way, the small central spin polarizes the two large terminal spins in a 

ferromagnetic-like fashion. It is to be noted that J13, the exchange interaction between the 

two terminal paramagnetic centers, has a profound effect on the spin-state energy-

splitting pattern and depending on its magnitude a variability of the ground state might 

result. The spin-level ordering is a result of the mutual influence of two different 

interactions, J12 = J23 and J13, which may lead to "ground-state variability".31a

                     The key point is to focus on the bridging ligands which have already allowed the 

design of molecular based magnets. To date, these bridges are oxamato, oxamido, 

oxalato, oximato, carboxylato and cyano. Certain complexes involve such as in Fig. (a) 

organic bridging ligand between two similar or dissimilar modules. In (b) and (c) two 

mononuclear dissimilar modules generate heterobinuclear entities, in (d) a single metal 

ion acts as bridge between two mononuclear subunits giving rise to linear symmetric 

heterotrinuclear species. The same approach is used in (e) and (f), but in these cases the 

central metal ions are coordinated in bridging ligands producing heterotri and-

tetranuclear complexes. Case (g) demonstrates the schematical presentation of two 

modules connected in a butterfly fashion. 

                These large, mostly linear polynuclear species received the name baukasten or 

modular complexes. The ligands facially bonded to the terminal ions are called end-caps, 

whereas the intermediate ones are referred to as bridging ligands. The most frequently 

encountered building blocks for modular synthesis have been described previously in the 

review article by chaudhuri, 30 and some of the pertinent concepts are described below. 
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              Figure 1.1: Schematical drawings of dinuclear (a-c), trinuclear (d, e) and tetranuclear (f, g) homo-and 

heterometal complex. 

           The synthetic organization of paramagnetic metal centers into close spaced arrays with 

useful magnetic properties is a challenge, and is generally achieved by having small 

bridging groups, which produce extended 2D and 3D structural arrangements. Cyanide 

has proven to be useful in this regard and with orthogonally connected metal orbitals, 

long range ferromagnetic ordering can be achieved. The optimal organization of 

paramagnetic transition metal centers into extended bridge structures with very short 

metal ion spacing can only be achieved with single atom bridges; this can be approached 

with e.g., oxygen based bridges. The last few years have experienced the ongoing 

development in the area of small 2D arrays with many examples of [3 X 3] magnetic 

grids with Co(II), Cu(II) and Mn(II), where M...M separations are of the order of 4Å . [2 

X 2] self assembled FeII
4 grid reported by Lehn, based on a pyramidine bridging 

framework shows novel spin crossover behavior induced by pressure, temperature or 

light perturbations. These important unit molecule attributes can only be exploited if 

individual molecules can be successfully synthesized. 

                The oxamide dianion can adopt bidentate and bis bidentate coordination modes in its 

metal complexes, like the parent oxalate, to yield polynuclear complexes39. The strong 

electron donating capability of its deprotonated nitrogen amide atoms accounts for the 
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greater stability of its metal complexes when comparing with those of the oxalate. 

Moreover the lower electro negativity of the nitrogen atoms with respect to the oxygen 

atoms allows for stronger magnetic interactions between metal centers through oxamidato 

bridging ligands and several polynuclear complexes of this kind of ligand have been 

reported with magnetostructural studies. On the other hand, bimetallic oxamidato-bridged 

complexes are well known in magnetochemistry because they are suitable candidates in 

designing molecular based magnets. 

                                    Metal oximates have proven to be versatile for this approach as will be 

evident from the structurally and magnetochemically characterized compounds described 

later. The dimensions of structurally characterized oxime groups involve a C=N distance 

of ~ 1.26-1.28 Å and a N-O distance of 1.36-1.42 Å. The vicinal groups in solids are 

stabilized by the presence of C=N-O....H-O-N=C hydrogen bonds and the C-N-O angles 

vary from 110 to 114°. There are different modes of bonding in oxime complexes, these 

modes emerge from the potential ambidentate character through nitrogen and/or oxygen 

coordination. Some of the bonding modes are depicted in the Figure 1.2 below:  
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Figure 1.2:  Bonding modes in oximes. 

                                Due to this versatility of bonding modes, oximes are excellent bridging units 

in modular synthesis. In the last few years, the idea of synthesizing polynuclear 

complexes involving "metal oximates" as building blocks has become quite popular. The 

modular preparation with oximato ligands enables the synthesis of linear symmetrical and 
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asymmetrical cores MAMA,30,32  MAMB,30,32  MAMBMA,
27,31a-b

 MAMBMBMA
36 (MA, MB 

being two different metal ions). The synthesis of asymmetric heterotrinuclear complexes 

MAMBMC and of MA(µ3-O)2 MB butterfly cores have also been achieved. The uniqueness 

of oximates providing diatomic N-O-bridging is demonstrated by several series of 

isostructural complexes with different metal ions like Cr(III), Mn(III), Mn(IV), Fe(III), 

Co(III). Such isostructural series30 are not available for any other bridging ligands. 

 

 

                         Several different end-cap ligands have been reported. The function of such 

ligands is to prevent undesired oligomerization processes. Many acyclic polyamines 

including di-, tri-, and tetra-amines and bipyridine have been used as end cap ligands due 

to their ready commercial availability. Although not so readily available and obtainable 

only by a lengthy multistep synthesis, a very versatile end-cap ligand is the cyclic amine 

1,4,7- trimethyl-1,4,7-triazacyclononan (Me3Tacn). This amine is a facially coordinating 

tridentate nitrogen ligand and a significant number of both thermodynamically and 

kinetically, stable complexes of this ligands are known.27, 30,31a-b 

                              The synthesis and characterization of homo and heteropolynuclear complexes 

with Me3Tacn and oxime ligands using a modular approach has been one of the main 

goal of Chaudhuri and coworkers in recent years. Emphasis is given to the structural and 
 8 
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magnetochemical characterization. Recently it has been reported32 that tris(pyridine-2-

aldoximato) metallates, [MII(L)3]-, are capable of acting as ligands to give rise to various 

asymmetric dinuclear complexes [(Me3Tacn)MIII(L)3MII]2+ where MIII = Cr(III), Mn(III) 

or Fe(III) and  MII = Mn(II), Fe(II), Ni(II), Cu(II) and Zn(II) containing three oximato 

groups (=N-O) as bridging ligands, which can mediate the exchange interactions of 

varying range.  

 

                        The oxime bridged tetranuclear complexes reported until now are of two types: 

                   (i) Linear tetranuclear complexes are relatively rare. Using a modular synthesis some 

examples of MAMBMBMA and MAMAMAMA type containing the dinucleating oxime 

were synthesized.36  

                  Polynucleating ligands, on the other hand, have structural attributes that combine 

separate coordination pockets, and in cases where they are contiguously arranged, metal 

ions are bound in close proximity and can be linked directly by endogenous or exogenous 

ligand fragments, leading to spin communication between metals. The interest in 

polynuclear complexes started with a class of dinucleating phenol containing ligands, 

where the dinucleating phenol provides an ideal focus for the simultaneous coordination 
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of two metal ions in close proximity and in further extension by the deprotonation of the 

dioximate oxygen to bind more metal ions for the modular synthesis of linear tetranuclear 

complexes in designed way. 

                    Compounds with FeIIINiIINiIIFeIII and MnIIINiIINiIIMnIII cores, reported36 earlier are 

similar to MnIIIMnIIMnIIMnIII, MnIVMnIIMnIIMnIV, FeIIIMnIIMnIIFeIII and 

CrIIIMnIIMnIICrIII congeners (Chapter-3) 

           (ii) Butterfly structures with the cores [(MA)2(µ3-O)2(MB)2]8+ and [(MA)4(µ3-O)2]8+

 

                               So far the reported tetranuclear butterfly clusters are based on homonuclear 

tetramanganese and tetrairon cores. Recently heterotetranuclear butterfly cluster was 

reported by Chaudhuri and coworkers in connection with magnetostructural correlation 

studies. And a series of exchange coupled homo and hetero tetranuclear butterfly clusters 

with [Fe4O2]8+, [Mn4O2]8+, [Fe2Mn2O2]8+ cores congeners were structurally and 

magnetochemically characterized.37 Although the intrinsic interaction between the body 

manganese ions of the butterfly is antiparallel in nature, there is frustration in the spin 

alignment or competing interaction in the cluster associated with two manganese ions, 

causing the alignment to be parallel and gives rise to ground state variability. 

                                      So due to the lack of studies on heteronuclear butterfly clusters it allows 

us to investigate such ground state variation of the cluster based on small local spins at 

the body and higher local spins at the wing to have some "high spin" molecules due to the 

spin frustration or competing spin interaction. In this context some success was achieved 

in synthesizing and characterizing such heteronuclear "high spin" complexes and the 

competing spin interaction and irregular spin state structures will be described. 
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                              High nuclearity clusters with more than four metal centers were analyzed 

previously in our group with oxime ligand. An example is the hexanuclear cluster 

comprised of two µ3-oxo centred trinuclear [CrIII
3(µ3-O)] units.38 The antiferromagnetic 

coupling between the CrIII centers reported in the literature is around - 14.0 cm-1( H = - 

2JSiSj), where exchange interaction was mediated through µ-oxo, oximate (=N-O) and 

also through the carboxylate bridging. 

                         Further success was achieved in the synthesis and characterization of some 

hexanuclear complexes with different oxime ligands where exchange interaction 

mediated through oximates (=N-O) and in some complex with a combination of oxime 

and oxo bridge.  

                   (ii) Evaluation of Coupling Constant: 

                      The spin-Hamiltonian accounting for this isotropic exchange interactions may be 

written as H = - 2 Σ Jij Si Sj, where the sum is taken over all pairwise interactions of 

intensity Jij between spins Si and Sj in the molecule.  This model of the isotropic 

interaction between the spin carriers is based on the concept of magnetic orbitals and 

overlaps densities between pairs of such orbitals, and allows an analysis of the spin 

coupling. In molecular magnetism we are concerned not only with local spins associated 

with metal ions, but also with molecular spins associated with open-shell molecular units 

as a whole. It turns that the interaction between two such molecular units may not be of 

the same nature as the interactions between the two metal ions, belonging to a molecular 

unit, the other one belonging to the other molecular unit. 

            There are three mathematical methods for calculating the magnetic susceptibilities in 

polynuclear complexes: 

          (a) Vector Coupling (VC) 

          (b) Full matrix diagonalization (FMD) 

          (c) Irreducible tensor operator (ITO) 

                   The VC method, formulated by Kambe,40 is the easiest of three to set up and of use. 

It can results in the evaluation of closed form expressions for the susceptibility, which 

chemists feel comfortable working with. This method limited by the symmetry of the 

cluster system; since one has to be able to obtain appropriate and unique solutions to 

multivariable problems, it can therefore be used only for certain symmetries. Departure 

from these symmetries causes the Hamiltonian, to involve more J values, some of which 

may or may not be equal.  
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           ITO or FMD methods must be then used. FMD has a major drawback in that it can result 

in very large matrices requiring long diagonalization times, and thus long computing 

times. The ITO method41 on the other hand reduces the size of the matrices and 

computation times dramatically. Its drawback is that it is a bit more difficult to set up in 

the first case and requires a considerable degree or sophisticated mathematics. It is 

difficult to include single-ion effects in the ITO calculations such as zero-field splitting 

(ZFS). In contrast it is relatively easy to set up a matrix in FMD and to include effects 

such as ZFS. 

           (iii) Magnetizations at different fields: 

           A sample containing 1 mol of a molecular compound within an homogeneous magnetic 

field H, acquires a molar magnetization M related to H through, ∂M / ∂H = χ where χ is 

the molar magnetic susceptibility. When the magnetic field is weak enough, χ is 

independent of H, such that one can write M = χ H. The molar magnetization M, is 

expressed in cm3 G mol-1, alternatively, M may be expressed in Nß units, N being the 

Avogadro's number and ß the electronic bohr magneton. The molar paramagnetic 

susceptibility characterizes the way in which an applied magnetic field H interacts with 

the angular momentum associated with the thermally populated states of a molecule. 

When a sample is perturbed by an external magnetic field, its magnetization is related to 

its energy variation through M = - ∂E / ∂H. This equation may be easily translated into 

the language of quantum mechanics. The macroscopic molar magnetization M is then 

obtained by a sum of the microscopic magnetizations weighted according to the 

Boltzmann distribution law, which leads to, 

            M = [NΣn (∂En / ∂H) exp(-En / kT)] / Σn exp(-En / kT), where T is the temperature and k is 

the Boltzmann constant. The above equation may be considered as a fundamental 

expression in molecular magnetism. The molar magnetic susceptibility varies as C/T, the 

constant C depending on the spin multiplicity of the ground state; this is the Curie law, 

which was proposed in 1910 from experimental data before the introduction of quantum 

mechanics and it is important to keep in mind that the Curie law is valid only when H / 

kT is small enough. The molar magnetization is then linear in H. When H / kT become 

large, then M must be calculated from the fundamental equation above. On the contrary, 

when H / kT becomes very large, M approaches the saturation value Ms, Ms = NgßS. The 

saturation magnetization will be expressed in the following chapters in Nß units; its value 

is simply given by gS. 

           (iv) Different methods used for characterization of compounds: 
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            To identify or assign the organic and inorganic compounds from the synergistic 

information afforded by the combination of mass (MS), infrared (IR), nuclear magnetic 

resonance (NMR) and UV-VIS absorption spectrum techniques will be employed. 

Essentially, the molecule is perturbed by these energy probes and the molecule's 

responses are recorded as spectra.  

                 Infrared (IR) radiation refers broadly to that part of the electromagnetic spectrum 

between the visible and microwave regions. Of greatest practical use to the synthetic 

chemist is interested in the region between 4000 and 400 cm-1. Although the IR spectrum 

is characteristic of the entire molecule, it is true that certain groups of atoms give rise to 

bands at or near the same frequency regardless of the structure of the rest of the molecule. 

It is the persistence of these characteristic bands that permits the chemist to obtain useful 

structural information by simple inspection and reference to general charts of 

characteristic group frequencies. Since it is not possible to use IR spectra solely for 

identification, a detailed analysis of the spectrum will not be required but only the 

assignments of the characteristic groups present in the ligand and complexes.                 

           Various methods of producing molecular ions (including EI and ESI method) will be 

taken into consideration for the structure elucidation.  

            Electrochemical methods offer a unique access to information on chemical, biochemical 

and physical systems. The "Electrochemical methods", contains the most frequently 

utilized techniques, i.e., cyclic voltammetry, pulse and square-wave voltammetry and 

coulometry etc. Among the electrochemical techniques, cyclic voltammetry is frequently 

used because it offers wealth experimental information and insights into both the 

thermodynamic and kinetic details of many chemical systems. So voltametric 

experiments with microcrystalline particulate deposits present on the electrode surface 

provide information on the redox processes at the solid/solvent electrolyte interface, so 

for the insight into the redox processes these techniques will also be employed.  

           Mössbauer and EPR spectroscopy techniques will also be taken into consideration 

occasionally for the assignment of the oxidation state of iron atoms in the complex 

through Mössbauer spectroscopy and also to extract chemical information EPR 

spectroscopy will also be employed. 

            At the same time X-ray single crystal structure also important for the information of 

structural parameters that is necessary for better understanding of magnetostructural 

studies. 
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         (v) Advantages of heteronuclear complexes over homometal complexes: 

             Both homo- and heteropolymetallic systems16 provide opportunities to understand 

fundamental factors that govern exchange interactions. New exchange pathways can be 

expected for heteropolynuclear complexes where unusual sets of magnetic orbitals can be 

made to overlap with each other; hence investigations of a series of heteropolynuclear 

complexes might be more informative in comparison to those of homopolynuclear 

complexes. It is worth mentioning in this connection that the presence of different 

competing interactions in polynuclear complexes may lead to ground and other low-lying 

states that cannot be expected by simple combination of the local spins according to the 

nature of the interactions present between the spin carriers.                        

            Another good reason for studying polynuclear complexes is that they may be building 

blocks for molecular-based magnetic materials. Although the pairwise exchange 

interactions in majority of the complexes are found to be antiferromagnetic, "spin-

frustration"17-21 in a general sense of the term, or more accurately competing spin 

interactions, in a polynuclear complex can result in ground states having a relatively large 

number of unpaired electrons. Although spin frustration is a well known magnetic 

phenomenon for extended lattices,22 its application to the magnetochemistry of discrete 

polynuclear complexes is not widely recognized.23 Competing spin interactions may give 

rise to unpredictable ground state spins and peculiar spin state structures. Thus the 

situation of ground state degeneracy induced by competing spin interactions is worth 

investigating. 

           "Spin frustration" will be used as a general case in certain topological arrangements of 

paramagnetic centers with competing exchange interactions of comparable magnitude 

preventing or frustrating the spin alignments that would otherwise be preferred in the 

ground state. The ground state is particularly sensitive to the relative magnitudes of the 

competing interactions and the spin of the ground state adopts an intermediate value 

rather than the lowest value that might be anticipated for an antiferromagnetically 

coupled system. "Spin-frustration degeneracy" of the ground state19 leading to unusual 

electronic properties might be observed for some of the heteropolynuclear compounds to 

be synthesized here.     

                           Linear heterotrinuclear complexes with general formula [(Me3Tacn)MA(oxime 

bridge)2-3MBMA(Me3Tacn)]2+/3+ were exclusively investigated. In these compounds the 

central oxime bridge is usually formed from dimethylglyoxime units N-cordinated to 

central ion MB and bridged through the oxygen atoms to the terminal ions MA. Depending 
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on the metallic ions involved, these complexes exhibit both antiferromagnetic and 

ferromagnetic properties. In the Cr(III) series complexes with Cu(II) and Mn(II) ions in 

the central position lead to ferromagnetic couplings while Ni(II) and Fe(III) result in 

antiferromagnetic exchange interactions. The Mn(III) series also exhibits alternate ferro- 

and antiferromagnetic exchange interaction. The complex MnIV
2Cu is isoelectronic with 

CrIII
2Cu and also exhibits ferromagnetic exchange interaction. The much stronger 

interaction in the MnIV
2CuII core can be attributed to the higher charge and consequently 

higher covalent character of the bonds to the MnIV ion. In contrast to the Mn(IV) series 

all the Fe(III) series exhibit antiferromagnetic exchange interaction. 

                                Recently a rational assembly of a series of exchange coupled linear 

heterotrinuclear complexes of the type MAMBMC based on a strategy using metal 

oximates as building blocks has been reported.35 Thus complexes [(Me3T 

acn)MA(LOX)MBMC]3+ where MA = Fe(III) and Co(III) is facially coordinated to three 

nitrogen donors of the macrocyclic amine and MB = Cu(II) or Ni(II) and MC = Ni(II) or 

Cu(II) are embedded in a asymmetric dicompartmental imine-oxime ligand H4LOX. The 

compounds synthesized in this series MAMBMC are FeIIICuIINiII and FeIIINiIICuII. The 

variable temperature magnetic moments reveal ground states of ST = 3 and 2 respectively, 

also confirmed by the magnetization measurements                               

                              The magnetic interactions operating in this type of linear trinuclear complexes 

result in a ground state of high spin multiplicity, although the nearest neighbor spin 

alignments are antiparallel. Isoelectronic FeIIICuIINiII and FeIIINiIICuII demonstrate the 

strong influence of topological features on the magnetostructural properties. Following 

the Goodenough and Kanamori rules a qualitative rationalization for the exchange paths 

prevailing between neighboring and terminal spin carriers in these heterotrinuclear 

complexes has been presented and implies the predominance of σ-interactions over π-

interactions. 

                               The continuous development of exchange coupled heterometallic systems 

started with the aim of understanding interactions between two magnetic ions. The 

number of papers cited testifies to the uninterrupted interest in this area of coordination 

chemistry involving exchange coupled metal oximates. Of particular interest is the small 

but significant effect of bridging ligands like carboxylate anions for cooperation with the 

ancillary ligand, viz the oxime ligands to build up high nuclearity metal clusters.  

                               To summarize, this work involves studies of magnetic properties of 

complexes containing paramagnetic metal centers in different molecular topology and 
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this thesis is devoted to the homo- and heterometallic exchange coupled polynuclear 

complexes. 
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bridging unit to yield magnetically interesting compounds.3 This chapter describes the spin-

spin interactions between the paramagnetic metal centers through multi-atom bridges and 

deals specifically with the ligation property of tris(pyridine-2-aldoximato)nickel(II), 

[Ni(PyA)3]-. It was prompted to study the coordination chemistry of this metal complex as a 

ligand because of the opportunity for its facile in-situ formation dictated by the 

thermodynamic stability of the resulting monoanion containing facially disposed three 

pendent oxime oxygen atoms for ligation.4 So the ability of [Ni(PyA)3]- monoanion will be 

explored in generating such homo-and heteropolynuclear complexes which will allow us to 

study exchange-coupled interactions. 

 
2.2 Synthesis: 
 
               The reaction of Syn-2-pyridinealdoxime with NiCl2.6H2O and 

Mn(ClO4)2.6H2O; with NiCl2.6H2O and Cr(ClO4)3.6H2O in 6:2:1 ratio in presence of 

NBu4OMe as base yielded heterotrinuclear complexes [Ni(PyA)3Mn(PyA)3Ni] (ClO4) (1) 

and [Ni(PyA)3Cr(PyA)3Ni] (ClO4) (2) respectively; whereas the reaction of Syn-2-

pyridinealdoxime with Ni(ClO4)2.6H2O in 6:3 ratio in presence of NBu4OMe as base yielded 

homotrinuclear complex [Ni3(PyA)5(PyAH)] (ClO4) (3). In all the three complexes 

tris(pyridine-2-aldoximato)nickel(II) unit acting as a building block for the trinuclear 

complexes. These complexes will be abbreviated as NiIIMnIIINiII (1), NiIICrIIINiII (2) and 

contain metal centers in linear arrangement while homotrinuclear complex as NiII3 (3) where 

the three nickel(II) centers are disposed in triangular fashion. 

 

2.3 Infrared and Mass Spectroscopy: 

 The relevant bands in IR spectra of comparable pyridine-2-aldoximato containing 

heteronuclear CrIIIMII and FeIIIMII complexes have been reported earlier by Ross et.al,4 and 

the spectra of 1-3 are also very similar. A notable feature of the NO stretching for 3 is the 

sharp bands at 1130, 1125, 1031 cm-1. The presence of two different coordination modes of 

the oxime group in 3 is consistent with the splitting. 

Electrospray-ionaziation mass spectrometry (ESI-MS) in the positive ion mode has been 

proved to be very successful in characterizing NiIICrIIINiII which shows the monopositively 

charged species [M-ClO4]+ as the base peak. On the contrary the signal for [M-ClO4]+  of 3 

is very weak, together with the base peak for the fragment [M-ClO4-PyA]+. The manganese 
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containing complex NiIIMnIIINiII does not provide signals for unambiguous 

characterization.19

2.4 Solid state Structure: 

2.4.1 X-ray structure of [Ni(PyA)3Mn(PyA)3Ni] ClO4; H2O  (1).  

                          The lattice is built of discrete trinuclear monocations, perchlorate anions, 

and water molecules of crystallizations. The trinuclear complex contains two [NiII(PyA3)]- 

moieties-each having a NiN6 coordination sphere-acting as a tridentate ligand through the 

pendent oximato oxygen  atoms to the centrally placed manganese (III) ion. A view of the 

cation [Mn(PyA)6Ni2]+ ion in  complex 1 is shown in  Figure 2.1. Selected bond distances 

and angles are listed in Table2.1. The cation [Mn(PyA)6Ni2]+ having a crystallographic 

threefold inversion symmetry has therefore a strictly linear arrangement of the NiIIMnIIINiII 

array and the two [Ni(PyA)3]- units necessarily have opposite chirality (∆, Λ) making 

[Mn(PyA6)Ni2]+ achiral.  

The terminal nickel centers are six-fold coordinated yielding an NiN6 core; coordination  

occurs facially through three pyridine nitrogen atoms Npy(1) and three azomethine nitrogen 

atoms Nox(8), from the pyridine 2-aldoximate ligands. The Ni(1)-Nox(8) bond length 

2.039(2) Å, is shorter than the Ni(1)-NPy(1), 2.107(2) Å, bond distance, as has been observed 

earlier for comparable complexes.4 The Ni-N bond lengths fall within the ranges that are 

considered as normal covalent bonds for high spin d8 Ni(II) ions. The facial disposition of 

the three NpyNox-chelate rings at each nickel atom is necessary for the ligation of the pendant 

oxime oxygen atom, O(9) and its equivalents, to the  central manganese. The chelate rings 

are planar. The average chelate bite angle on the two nickel centers is 86.5°. This small but 

negative deviation of the bite angle from 90° necessarily implies the presence of substantial 

trigonal distortion. Indeed the two nickel centers can be considered to have distorted trigonal 

antiprismatic coordination, as is evident from the average twist angle Ψ of 38.0°, which 

deviates appreciably from the ideal 60° for an octahedron. The trigonal twist angle Ψ is 

defined as the angle between the triangular faces comprising three pyridine nitrogens, N(1) 

an its equivalents and three azomethine nitrogens N(8) and its equivalents. That the array 

Ni(N-O)Mn is not planar is shown by the dihedral angle θ of 36.5° between the planes 

comprising Mn(O-N) and Ni(N-O) atoms. These distortion of the 6 coordinate d8 Ni(II) ion 

in complex 1 can be ascribed to both electronic LFSE and its size effects, as has been 

discussed earlier.4-6  
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      The central manganese atom Mn(1) is surrounded by an almost perfect octahedron 

(deviation being less than 4°) of six oximato oxygen atoms O(9), pendent from the two [Ni 

(PyA)3]- fragments. All angles at the metal between cis oxygen atoms deviate from ideal 

90°, being 86.20(5)° and 93.80(5)°, the cis Mn(1)-O bond angle of 93.8(5)° represents the 

oxygen atoms originated from the same [Ni(PyA)3]- fragment, where as the angle 86.20(5)° 

is exhibited between the oxygens of two different [Ni(PyA)3]- fragments. The Mn(1)-O(9) 

distance of 2.027(1) Å is significantly shorter than the divalent manganese–oxygen distances 

lying in the range 2.101(4)-2.218(2) Å,7 indicating that Mn(1) is in higher oxidation state 

than +II. That the central manganese ion must be ascribed to a +III (d4 high spin) oxidation 

level is borne out by the facts that:(i) a perchlorate anion is present for maintaining the 

electroneutrality of the monocationic [Mn(PyA6)Ni2]+ complex, (ii) the magnetic data can 

only be simulated by considering an SMn = 2.0 for the central Mn(1) center, and, (iii) the 

complex is X-band EPR silent at 4-20K. 

 

 

 
Figure 2.1: ORTEP and labeling scheme for NiIIMnIIINiII  (1) 

 

There are rare structural data on high spin Mn(III) complexes with six identical 

monodentate ligands,8 although a large number of tris(bidentate) and polydentate chelate 

complexes are known.7 The Mn(1)-O(9) distance of 2.027(1) Å, found in complex 1 is 

completely in conformity with the Mn(III)-O distances observed in the comparable 

unambiguously established Mn(III)-complexes including the complexes with the Mn(III)-

Ooxime bonds.9-10 The cation in 1 has crystallographic site symmetry 3, (three fold inversion 
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symmetry)-which requires the six Mn-O bonds to be equivalent and hence the Jahn-Tellar 

distortion  expected for a high spin d4 Mn(III) is not observed for the octahedral Mn(1)O6 

polyhedron. The most reasonable explanation for the equivalence of the Mn-O bond lengths 

lies presumably in the dynamic Jahn-Tellar effect. It is concluded, complex 1 contains a 

NiII
2MnIII (high spin) core. Very similar oximato-bridged trinuclear MFe2(low spin) have 

also been reported, although from the magnetochemical point of view they are mononuclear 

with central paramagnetic metal ions.11 

 

     Table 2.1:  Selected Bond Lengths (Å) and Angles (deg) [Ni(PyA)3Mn(PyA)3Ni] ClO4; H2O  (1).  

Ni(1)•••Mn(1)  3.57 Ni(1)•••Ni(1A)  7.14 

    

Ni(1)-N(8)#1 2.039(15) Mn(1)-O(9) 2.027(14)#3 

Ni(1)-N(8) 2.039(15) Mn(1)-O(9) 2.027(14)#4 

Ni(1)-N(8)#2 2.039(15) Mn(1)-O(9) 2.027(14)#5 

Ni(1)-N(1) 2.017(15) Mn(1)-O(9) 2.027(14) 

Ni(1)-N(1)#1 2.017(15) Mn(1)-O(9) 2.027(14)#1 

Ni(1)-N(1)#2 2.017(15) Mn(1)-O(9) 2.027(14)#2 

 

2.4.2 X-ray structure of [Ni(PyA)3Cr(PyA)3Ni](ClO4)  (2). 

The heterotrinuclear complex, 2, NiIICrIIINiII also crystallizes like complex 1 in the space 

group R-3, with threefold inversion symmetry and is isostructural as expected with complex 

1. The trinuclear complex consists of two [NiII(PyA)3]- moieties-each having a NiN6 

coordination sphere acting as tridentate ligand through the pendent oximato oxygen atoms to 

the centrally placed Cr(III) ion. A view of the cation [Cr(PyA)6Ni2]+
 in complex 2 is shown 

in Figure 2.2. The terminal [Ni(PyA)3]- is very similar to that described for  complex 1.  

The central chromium atom Cr(1) is surrounded by an almost perfect octahedron of six 

oximato oxygen atoms, O(9) and its equivalents, pendants from the terminal two [Ni(PyA)3]-

-fragments. The site symmetry 3̄  in the cation of 2 yields the six Cr(1)-O bonds to be 

equivalent for the octahedral Cr(1)-O6 polyhedron. The Cr(1)-O(9) distance of 1.994(1) Å, 
found in complex 2 is completely in conformity with the Cr(III)-O observed in the 

comparable Cr(III)-complexes. That complex 2 is monocationic containing the NiIICrIIINiII 

ions is also evidenced by the presence of an anion perchlorate and the magnetic data 

described later. Selected bond distances and angles are listed in Table 2.2. 
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Figure 2.2: ORTEP and labeling scheme for NiIICrIIINiII (2) 

 
Table 2.2:  Selected Bond Lengths (Å) and Angles (deg) [Ni(PyA)3Cr(PyA)3Ni] ClO4; H2O  (2).  

Ni(1)•••Cr(1)  3.552 Ni(1)•••Ni(1A)  7.104 

    

Ni(1)-N(8)#1 2.036(13) Cr(1)-O(9) 1.9936(11)#1 

Ni(1)-N(8)#3 2.036(13) Cr(1)-O(9) 1.9936(11)#2 

Ni(1)-N(8) 2.036(13) Cr(1)-O(9) 1.9936(11)#3 

Ni(1)-N(1)#1 2.108(13) Cr(1)-O(9) 1.9936(11)#4 

Ni(1)-N(1) 2.108(13) Cr(1)-O(9) 1.9937(11)#5 

Ni(1)-N(1)#3 2.108(13) Cr(1)-O(9) 1.9937(11) 

 

2.4.3 X-ray structure of [Ni3 (PyA)5(PyAH)] CIO4 •CH3CN   (3). 

      The molecular geometry and atom-labeling scheme of the molecule has been shown in 

Figure 2.3. The structure of the complex consists of discrete trinuclear monocations 

[Ni3(PyA)5(PyAH)]+, perchlorate anions, and acetonitrile molecules. There are three types of 

oximic groups: (i) two non-bridging >C= N-OH groups, O(39) and O(59) of which a proton 

is disordered over both sites, which is virtually the universal bonding mode for oximes, (ii) a 

two atom (N-O) bridging group, N(8)O(9) and N(18)O(19), as found in preponderance over 
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(iii), (iii) a monoatomic oximato µ2-O bridging, O(29) and O(49). That an oxime group acts 

as a bridging µ3-ligand, -N-O, is not unprecedented.14 Accordingly, the N-O bond lengths in 

the oximate fragments are in the ranges 1.332(2), 1.341(2)-1.359(2) and 1.370(2)-1.373(2) Å 

and correspond well with those observed in the comparable structures. The bond distance 

C=Nox at average 1.291 ± 0.011 Å and the bridging bond angle C=Nox-O of average 

118.7±1° and non-bridging C=Nox-O of 114.5 ± 0.2° fall in the range reported for complexes 

containing pyridine-2-aldoximato as ligands.4,10,18 All other intraligand bond parameters are 

unexceptional. Figure 2.4 highlights not only the coordination spheres of the three nickel 

atoms, but also illustrates the three different coordination modes of pyridine-2-aldoximato(-) 

ion, NpyNox-O, in complex 3. The three nickel atoms form a triangular arrangements with the 

separations of Ni(1)..Ni(2) 3.240, Ni(1)…Ni(3) 3.276 and Ni(2)…Ni(3) 3.951 Å.  

         The nickel ions all display pseudo-octahedral geometry with NiN4O2 coordination 

spheres. Ni(1) is coordinated to cis-(Npy)2, tarns-(Nox)2 and cis-(µ2-Oox)2 donor atoms, where 

Npy, Nox, Oox represent respectively pyridine nitrogen, oxime nitrogen and monoatomic 

bridging oxime oxygen. The two bridging ligands between Ni(1) and Ni(2) are the 

monoatomic µ2-O(49)(which is bonded to N(48) of an oxime group), N(8)O(9). The 

bridging connectivities between Ni(1) and Ni(3) are also very similar with µ2-O(29) and 

N(18)O(19). On the contrary Ni(2) and Ni(3) are bridged through only the two µ2-O-

oxygens, O(49) and O(49). The coordination octahedron of Ni(1) is slightly irregular, with 

several angles departing from right angles by 11° or so, as exemplified in Figure 2.3 by 

N(8)-Ni(1)-N(11) at 101.54(6)°. The distortion from octahedral geometry for Ni(2) and 

Ni(3) is more pronounced; the trans donor angles deviate from 180° by nearly 20°, viz. 

N(41)-Ni(3)-O(29) at 161.59(5)° and N(21)-Ni(2)-O(49) at 162.79(5)°. Selected bond 

lengths and angles are given in Table 2.3. The Ni(1)-Nox bond lengths are shorter than the 

Ni(1)-Npy bond lengths, while for Ni(2) and Ni(3), the reverse is true. As expected the Ni-

µ2-Oox bond lengths are significantly longer than the Ni-Oox bond lengths involving the two 

atomic oximato bridges, e.g. Ni(3)-O(29) 2.116(1) Å vs. Ni(3)-O(19) 2.051(1) Å. The Ni-N 

and Ni-O bond distances are consistent with normal covalent bonds for high spin d8 Ni(II) 

ions with oximato ligands. 
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Figure 2.3: ORTEP and labeling scheme for NiII
3
  (3) 

 

The short O(39)....O(59) separation of 2.414(2) Å clearly indicates the occurrence of 

strong hydrogen bond interactions between these oxygen atoms, suggesting protonated 

uncoordinated  O(59) and O(39). Indeed, a difference Fourier in the later refinement stages 

did reveal a peak assignable to a proton, appearing between O(39) and O(59) and it was 

included in this position in the final refinement cycle (occupation factor 0.5 each). The 

presence of a single proton per trinuclear unit with six pyridine–2-aldoximato anions is in 

complete accord with the charge balance considerations of the monocations in complex 3. 

The oxime hydrogen was refined isotropically, and approximate bond distances within the 

symmetrical hydrogen bridge are about 0.9Å; O(39)-H = 0.898 and H....O(59)=0.905 Å. That 

the hydrogen bonding is symmetrical is also manifested in similar N-O lengths: O (39)-N 

(38) = 1.359(2) and O(59)-N(58)=1.341(2) Å. 
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Figure 2.4: A schematic representation of the atom connectivities in the triangular trinickel(II) present 

in the cation of complex 3 to highlight three different coordination modes of pyridine-2-aldoximato 

monoanion, NpyNox- 

 

Table 2.3:  Selected Bond Lengths (Å) and Angles (deg) [Ni3 (PyA)5(PyAH)] CIO4 •CH3CN   (3). 

Ni(1)•••Ni(2)  3.240 Ni(1)•••Ni(3)  3.276 

Ni(2)•••Ni(3) 3.951   

    

Ni(1)-N(18) 2.017(14) Ni(3)-N(51) 2.071(15) 

Ni(1)-N(8) 2.024(14) Ni(3)-N(41) 2.072(15) 

Ni(1)-N(11) 2.104(14) Ni(3)-N(48) 2.081(14) 

Ni(1)-N(1) 2.117(14) Ni(3)-N(58) 2.164(2) 

Ni(1)-O(49) 2.104(12) Ni(3)-O(19) 2.051(12) 

Ni(1)-O(29) 2.138(12) Ni(3)-O(29) 2.116(12) 

    

Ni(2)-N(28) 2.069(14) Ni(3)-O(29)-Ni(1) 100.7(5) 

Ni(2)-N(31) 2.070(15) Ni(31)-O(49)-Ni(2) 100.6(5) 

Ni(2)-N(21) 2.080(134   

 29 
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Ni(2)-N(38) 2.123(2)   

Ni(2)-O(49) 2.107(12)   

Ni(2)-O(9) 2.042(13)   

 

2.5 Magnetic Properties:           

Magnetic susceptibility data for polycrystalline samples of the complexes were collected 

in the temperature range 2-290 K in an applied magnetic field of 1T. We use the Heisenberg 

spin Hamiltanonian in the form: H= - 2J(S1S2+S2S3)-2J13(S1S3) , for an isotropic exchange 

coupling with S1 = S3 = SNi = 1 and S2 = SMn = 2 for 1, S1 = S3 = SNi = 1 and S2 = SCr = 3/2 

for 2. The experimental data as the effective magnetic moments µeff versus temperature T. 

are displayed in Figures 2.5 and 2.6. The experimental magnetic data were simulated using a 

least squares fitting computer program with a full matrix diagonalization approach and the 

solid lines in Figures 2.5 and 2.6 represent the simulations. Table 2.4 summarizes intratrimer 

magnetic parameters.                     

The magnetic moment µeff/molecule for 1, NiIIMnIIINiII, of 6.13 µB (χM•T = 4.692 

cm3.K.mol-1) decreases monotonically with decreasing temperature until it reaches a value 

of 5.199 µB (χM•T = 3.38 cm3.K.mol-1) at 50 K and then starts to decrease further but rapidly 

and reaches a value of 1.639 µB (χM•T = 0.336 cm3.K.mol-1) at 2 K. This temperature 

dependence is in agreement with the weak antiferromagnetic coupling between the 

neighboring Ni(II) and Mn(III) ions resulting in a diamagnetic ST = 0 ground state for 1. A 

simulation kept J13 = 0 and shown as a solid line in Figure 2.4 results in J = - 3.18cm-1, gNi = 

2.05, gMn = 1.97 and 2% paramagnetic impurity with S = 2.0. The observed 

antiferromagnetic coupling agrees well with the comparable exchange coupling constants 

reported earlier.9-10

        The variable-temperature magnetic movements µeff vs. T-plot for complex 2, 

NiIICrIIINiII also shown in Figure 2.6 exhibits in the region 293-100 K nearly temperature-

independent µeff value of 5.52µB  (χM•T = 3.816 cm3.K.mol-1), which is very close to the 

value expected for three uncoupled spins for S1 = S3 = 1.0 and S2 = 3/2 (µeff  = 5.56 µB with g 

= 2.0). Below 100 K the µeff values increase very slowly to reach a peak value of 5.733µB 

(χM•T = 4.11 cm3.K.mol-1) at 10 K. The increase in µeff values indicates an overall 

ferromagnetic coupling. A simulation shown as a solid line in Figure 2.6 results in J = J12 = 

J23 = + 0.60 cm-1, J13 = - 0.90cm-1, gNi = g1 = g3 = 2.0(fixed) and gCr = g2 = 1.95 (fixed).  
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Figure 2.5: Magnetic data for NiIIMnIIINiII (1) and NiII

3 (3) plot of µeff vs. T. The bold points represent 

the experimental data while the solid line represents the simulation.  
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The energy ladder of the spin-states shows that two states with ST = 7/2 and 3/2 form the 

ground state, which is only 1.8 cm-1 below the first excited state with an another ST = 7/2. 

The observed ferromagnetic coupling between Cr(III) and Ni(II) centers agrees well with the 

comparable exchange couplings reported in the literature and is in accord with the 

Goodenough-Kanamori  orthogonality rule3a as expressed by the Ginsberg’s symbols: eg(Ni) 

⎜⎜σNO ⊥ t2g(Cr)6,16
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Figure 2.6: Magnetic data for NiIICrIIINiII (2) plot of µeff vs. T. The bold points represent the experimental 

data while the solid line represents the simulation. 

       

The magnetic movement µeff vs. T plot with an applied field of 1 T for 3 in the range 2-

290 K is shown in Figure 2.4. The magnetic movement µeff /molecule for 3, NiII
3, of 4.896 

µB (χM•T = 2.998 cm3.K.mol-1), at 290 K decreases monotonically with the decreasing 

temperature until it reaches a value of 2.790 µB (χM•T = 0.9735 cm3.K.mol-1) at 5 K, which 

then drops to 2.535 µB (χM•T = 0.8036 cm3.K.mol-1) at 2 K. This temperature dependence is 

in agreement with an antiferromagnetic coupling between the Ni(II) ions resulting in triplet 

ST = 1 ground state for 3. 

                       On the basis of crystal structure of 3, NiII
3 triangular unit with the 

[Ni3(PyA)5(PyAH)]+ can be considered as scalene as a Ni(1)...Ni(2) (3.240 Å), Ni(1)...Ni(3) 

(3.276 Å) and Ni(2)...Ni(3) (3.951 Å) distances are different. Hence three pair wise exchange 

interactions with J12, J13 and J23 at the beginning were used to simulate the experimental 

magnetic data. A good fit (not shown) was obtained with the fitting parameter: J12 = - 32.7 

cm-1, J13 = + 12.5 cm-1,  J23 = + 25.0 cm-1, g1 = g2 = g3= 2.0. As a coupling constant appear to 
 32 



CHAPTER 2 

 33 

us to be physically unreasonable, we generated plots of the relative error for the fitting of the 

data as a function of “J” and g, which show clearly the strong correlation and local minimum 

nature of the fitting. Hence, the data for complex 3 were analyzed as an isosceles system 

with the “two–J” model; a similar magnetochemical analysis of another triangular oxime 

bridged NiII
3 complex is known in the literature.14e Additionally, the bridging ligands 

between Ni(1) and Ni(2) or Ni(3) are same, while Ni(2) and Ni(3) are bridged through only 

two monoatomic µ2-Oox groups, which are consistent with a “two-J” model with the J = J12 = 

J13 and J = J23 expected for an isosceles triangle. Thus, the spin Hamiltonian in used to 

describe the isotropic exchange interaction is given by; H = - 2J(S1S2 + S1S3) - 2J'(S2S3), 

where the subscripts refer to the Nickel centers labeling scheme in Figure 2.4 with S = 1.0. 

An excellent fit of the experimental µeff vs. T data, shown as a solid line in Figure 2.5, with 

fitting parameters J = - 8.20 ± 0.20 cm-1, J = - 2.0 ± 0.1 cm-1 and g1 = g2 = g3 = 2.07, are 

obtained. No other terms were used for the simulation shown in Figure 2.5. thus, the ground 

state is a triplet with ⎢ST, S*> = ⎜1,2> above which the excited states, in order of increasing 

energy are,  ⎜0,1>, ⎜1,1> , ⎜2,2> , ⎜1,0> , ⎜2,1> and ⎜3,2>  with the first excited state ⎜0,1> 

only 8.4 cm-1 and the second excited state ⎜1,1> 24.8 cm-1 above the ⎜1,2>  ground state. 

Such antiferromagnetic interactions in triangular NiII
3 complexes are not unprecedented.10 

   For an isosceles triangle of three spins of S = 1.0 the two antiferromagnetic exchange 

interactions J and J' compete with each other to determine the spin state energies as it is not 

possible for three spins to be aligned anti parallel to each other and thus the spin state 

energies become a function of the relative magnitudes of J and J', i.e., the J' / J. Ginsberg 

et.al.13 have in a seminal paper pointed out for three S = 1.0 spin centers that if x = J' / J be 

less than 0.5 or greater than 2.0, the ground state is a triplet, ST = 1.0. On the other hand, for 

0.5 < x < 2 the ground state is ⎜0,1>.  The evaluated x (= J' / J) of 0.24 for 3 is in accord with 

the observed triplet ground state. We are aware of one very similar oxime bridged trinuclear 

NiII
3 complex17e in which the ratio of the evaluated exchange coupling constants was found 

to be x = J' / J = 0.53 for which hence a ground state of ⎜0,1> is expected. 
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Table 2.4: Intratrimer magnetic parameters for homo-and heterotrinuclear complexes 1-3 

Compounds Magnetic core  J12 [cm-1]  J13[cm-1] J23[cm-1] gNi gMn gCr

     1 NiIIMnIIINiII J12 = J23 - 3.18    2.05 1.97  

     2 NiIICrIIINiII J12 = J23 + 0.6 - 0.9  2.00  1.95 

     3 NiII
3 J12 = J13 - 8.2 ± 0.2  -2.0 ± 0.1 2.07   

 

        The evaluated exchange coupling constant J of  - 8.2 cm –1 for 3 along the short 

edges Ni(1)/Ni(2) and Ni(1)/Ni(3), of the isosceles Ni(II) triangle does fall in the lower end 

of the range which has been observed for oximate bridge-Ni(II) complexes1a. This moderate 

coupling is consistent with its mediation by two types of oximate bridge, a single atom µ3-O 

bridge and a two-atom N-O linkage, of which the later is expected to provide the main 

super-exchange σ-pathway along the short-edges of the triangle. A single-atom oximate µ3-

O  bridges directly Ni(1) to each of Ni(2) and Ni(3) (O(49) and O(29), respectively) and thus 

increases the Ni(2)-µ3-O (49) and Ni(3)-µ3-O (29) bond lengths in comparison to those for 

oximate µ2-O(O(9) and O(19)) and hence a diminution of the strength of antiferromagnetic 

exchange coupling is observed in a manner similar to protonation and metalaton of the µ2-

oxo bridge.14 Additionally, a two-atom N-O-bridge along the short edges of the triangle 

links Ni(1) to Ni(2) and Ni(3) contributing mostly to the net coupling. Thus, the very weak 

coupling J' of – 2 cm-1 transmitted along the long edge of the Ni(II)-triangle is attributed to 

the µ3-O nature of the oximate -O, O(49) and O(29). 

         It is pertinent at this point to mention that in a dinickel(II) complex containing only 

three two-atom N-O linkages, [LNi(PyA)3Ni]+ were L represents a tridentate amine 1,4,7-

trimethyl-1,4,7-triazacyclononane, the J-value has been found to be – 32 cm-1.15 

        By considering that in complex 3 there is only one, two-atom N-O bridge between 

Ni(1) and Ni(2) or Ni(3), the evaluated J-value of – 8.20cm-1 is in well accord with the 

expected value. The J and the J'-values for 3, - 8.2 and - 2.0 cm-1 respectively, are similar 

than those in only other triangular Ni(II)-oximate complex,17e for which the corresponding 

coupling constants are - 14.4 and - 7.6 cm-1. The significantly longer Ni-O bonds in complex 

3 might account mostly for the weaker coupling in 3. It must be pointed out that in the limit 

of weak interactions the exchange coupling constant is also sensitive to small angular 

changes or distortions, but to a lesser degree. 

        Exchange coupling parameters reported for NiIINiII, NiIIMnIII and NiIICrIII 

complexes mediated through oximate (NO) ligands are summarized in the following Table 

2.5. 
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Table 2.5: Magnetic parameters for exchange coupled oximate complexes 

Compounds Magnetic 

core 

JNi(II)...Cr(III) 

[cm-1] 

JNi(II)...Ni(II)  

[cm-1] 

JNi(II)...Mn(III) 

[cm-1] 

gMn(III) gNi(II) gCr(III) Ref:

 

[{Ni(Dien)}2(µ3-

OH)2{Ni2(Moda)4}] (ClO4)2

NiIINiII
 - 20.6   2.32  20b 

[Ni3(Dtox)(Dtox H)2] (ClO4)2 NiIINiII  - 14.4 ± 0.6 

- 7.6 ± 1.1 

  2.17  17e 

[Ni4(MeOH)2(pko)6](OH)(ClO4) NiIINiII  - 24.1 

- 7.25 

  2.2  20a 

[Ni4(LH)3](ClO4)2 NiIINiII  - 13.4   2.00  17i 

K4[Ni(H2O)6][Ni8(HL)10(H2L)2] NiIINiII  - 30.0   2.27  20e 

[(Me3Tacn)Ni2(PyA)3](ClO4) NiIINiII  - 33.6   2.16  15 

[(Me3Tacn)Mn{(dmg)3Ni} 

Mn(Me3Tacn)](ClO4)2

NiIIMnIII   - 5.3 1.98 1.98  9 

[Mn(5-R-saltmen)Ni(PyA)(bpy)2]2

(ClO4)4

NiIIMnIII   - 16.35 2.04 2.04  20c 

[(Me3Tacn)MnNi(PyA)3] 

(ClO4) 

NiIIMnIII   - 9.9 

-14.7             

1.99 2.17             15 

20d 

[Mn2(saltmen)Ni(PyA)2(py)2] 

(ClO4)2

NiIIMnIII        

[(Me3Tacn)CrNi(PyA)3] 

(ClO4)2

NiIICrIII - 9.2    2.19 2.00 4b 

[(Me3Tacn)CrNi{P(PyA)}3] 

(ClO4)2

NiIICrIII    0    2.16 1.98 4b 

[(Me3Tacn)Cr{(dmg)3Ni}Cr 

(Me3Tacn)](ClO4)2

NiIICrIII - 0.7    2.19 2.00 6 
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At present the study of exchange interaction between paramagnetic metal centers 

through various bridging ligands is an active research field in coordination chemistry 

with the aim of understanding fundamental factors governing the magnetic properties of 

transition metal compounds. Relatively few magnetic studies dealing with tetranuclear 

systems have been reported in contrast to the large number of studies dealing with tri-

and bi-nuclear systems, primarily due to lack of fully structurally characterized 

compounds and to the increased complexity involved with the theoretical treatments of 

large spin systems. Most of the studies are concerned with homotetranuclear complexes, 

although a few have treated heterometallic systems. New exchange pathways can be 

expected for heteropolynuclear complexes,1-12 where unusual sets of magnetic orbitals 

can be brought in close proximity; hence investigations of heteropolynuclear complexes 

might be more informative in comparison to those of homopolynuclear complexes. 

        As part of the investigation into the magnetostructural studies of the binucleating 

dioxime ligand 2,6-diformyl-4 methyl phenol dioxime (H3dfmp), and various homo and 

heteropolynuclear complexes have been synthesized and designed to gain insight into 

magnetostructural studies. Formation of binuclear transition metal complexes with 

oxime ligands has been observed previously, notably with CuII and NiII. There have 

been relatively few reports dealing with the coordination chemistry of  2,6-diformyl-4 

methyl phenol dioxime and its derivatives.13-15, 23 In 1973 Okawa13 et al., reported the 

reaction of 2,6-diformyl-4 methyl phenol with NH2OH in the presence of 

Cu(CH3COO)2.H2O and NiCl2.6H2O respectively. Recently Thompson14 and co-

workers have reported magnetochemical and structural data on related a nickel(II) 

oxime complex, Busch15 and co-workers have prepared asymmetric iminooxime 

compartmental species, while Krebs et al., reported4 magnetostructural study on 

heterometallic Fe2Ni2 cluster. But magnetostructural studies on manganese based 

systems have not been explored, which motivated us to design manganese based homo 

and heteropolynuclear complexes with an emphasis towards magnetostructural studies. 

 

3.2 Synthesis: 

This synthesis of the tetranuclear complexes involves five main steps. The first step is 

the synthesis of the macrocyclic amine 1,4,7-triazacyclononane(Tacn),  it's derivative 

1,4,7-trimethyl-1,4,7-triazacyclononane(Me3Tacn) and the synthon [MA(Me3Tacn)Cl3]0 

with the triamine facially coordinated and MA = Fe(III), Mn(III), and Cr(III). These 

syntheses are well documented in the literature and therefore details are not given in this 
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work. The organic precursor H3dfmp is synthesized as discussed previously and used 

for the synthesis of the dinuclear precursors [(MA)2(dfmp)3]5- and [(MB)2(dfmp)3]5-  and 

finally the MAMAMAMA and MAMBMBMA complexes are synthesized. 

A general schematic diagramme is given below: 

 

Figure 3.1: Schematic diagram for the synthesis of linear tetranuclear complexes 

 

3.2A Linear homo and hetero-tetranuclear complexes:

The following complexes were synthesized and characterized: 

4. [(MeB)2MnII
2(dfmp)3](Et3NH) where MeB came from methylboronic 

acid[MeB(OH)2]. 

5. [(Me3Tacn)2 MnIII
2MnII

2(dfmp)3](ClO4) 

6. [(Me3Tacn)2 MnIV
2MnII

2(dfmp)3](ClO4)3

7. [(Me3Tacn)2 FeIII
2MnII

2(dfmp)3](ClO4) 

8. [(Me3Tacn)2 CrIII
2MnII

2(dfmp)3](ClO4) 

and will be identified in the following section by their metallic cores, namely 

BIIIMnIIMnIIBIII(4), MnIIIMnIIMnIIMnIII(5), MnIVMnIIMnIIMnIV(6), 

FeIIIMnIIMnIIFeIII(7) and CrIIIMnIIMnIICrIII(8) 
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       This family of complexes illustrates how two simple tools such as the metal to 

phenol dioximate molar ratio and the coordination properties of the terminal coligand 

allow the synthetic chemist to design a great diversity of nuclearity tailored polynuclear 

species. Each of these compounds was characterized by IR spectroscopy and elemental 

analysis (C, H, N, metals). Mössbauer spectroscopy and temperature dependent 

magnetic behavior were studied and the complexes were also characterized by 

crystallographic techniques. 
 

3.3 Infrared and Mass Spectroscopy: 

 The band in the IR spectra of the complex 4 at 2950 cm-1 corresponds to the C-H 

stretching of the Et3NH group which present as a counteraction in the BIIIMnIIMnIIBIII 

core. A moderately intense C=N stretching band for the ligand was observed at 1608 

cm-1. Notable features are the sharp NO stretching bands at 1109, 1066 cm-1.  

          Complexes 5, 6, 7 and 8 also show C=N stretching bands for the ligand at 1608 

cm-1. Strong peaks at 2918-2920 cm-1 correspond to the C-H stretching mode of the 

Me3Tacn group present as the terminal ligand in the MnIIIMnIIMnIIMnIII, 

MnIVMnIIMnIIMnIV, FeIIIMnIIMnIIFeIII, CrIIIMnIIMnIICrIII core congeners. The NO 

stretching bands for all the linear tetranuclear complexes are observed at 1120, 1109 

and1079 cm-1. Strong bands at 1080 and 624 cm-1 corresponds to the ClO4 unit which is 

the counteranion in all four linear tetranuclear complexes. Though it is not possible to 

distinguish the stretching frequencies for NO and ClO4 around 1080 cm-1 but the peak at 

624 cm-1 confirms the presence of ClO4 group. 

              Electrospray-ioniziation mass spectrometry (ESI-MS) in the negative ion mode 

has been proved to be very successful in characterizing BIIIMnIIMnIIBIII which shows the 

mononegatively charged species [M-Et3NH]- as the base peak. On the other hand, 

electrospray-ioniziation mass spectrometry (ESI-MS) in the positive ion mode is 

successful in characterizing MnIIIMnIIMnIIMnIII (5), FeIIIMnIIMnIIFeIII (7) and 

CrIIIMnIIMnIICrIII (8) which show monopositively charged species [M-ClO4]+ as the base 

peaks, on the contrary the signal for [M-3ClO4]3+ of 6 is not found, but the base peak for 

the fragment [M-2ClO4]2+ was observed. 
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3.4 Solid state Structure  
   3.4.1 Solid-State Molecular Structure of [(MeB)2MnII

2(dfmp)3](Et3NH) . C2H5OH 

(4) 

 The lattice consists of discrete tetranuclear monoanions, triethylammonium 

cations and ethanol molecules of crystallization. The X-ray structure clearly illustrates the 

formation of the cage ligand. The X-ray structure confirms that a linear (180°) 

tetranuclear complex has indeed been formed in such a way that each transition metal ion 

shows octahedral geometry with two terminal B(III) ions and two Mn(II) as the central 

ions are present in the lattice. The central tris(oximato)dimanganese(II) ion, 

[Mn2(dfmp)3]5-, bridges two terminal B(III) centers through the deprotonated oxime 

oxygen atoms. All phenoxy oxygen atoms are µ2-bridging yielding the Mn(2)......Mn(3) 

separation of 2.909 Å.  

 
 

Figure 3.2: ORTEP and labeling scheme for BIIIMnIIMnIIBIII (4) 

 

The terminal B(III) ions, B(1) and B(4) have distorted tetrahedral geometry and are 

bonded to one carbon atom from the methyl group and three oxygen atoms from the 

bridging oximate oxygen groups. The B-O bond length is 1.50Å.  An intramolecular 

B(1)......B(4) separation of  8.864 Å has been found. The phenolate oxygen atoms O (23), 
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O (38) , O (23) of three ligand sets dfmp3-, bridge two central manganese ions, Mn(2) and 

Mn(3) giving rise to a face sharing bioctahedral core structure. The coordination 

geometry around Mn(2) and Mn(3) are strongly trigonally distorted. Selected bond 

lengths and angles of the B(O-N)3 Mn(µ2-O)3 Mn(N-O)3B core in 4 are given in 

Table3.1. The Mn-O and Mn-N bond lengths for both manganese sites are not 

significantly different (average 2.127 Å and 2.174 Å respectively), indicating the 

equivalency of the sites. The three Mn(2)-O-Mn(3) bond angles are 86.67°, 86.04°, and 

86.04°.  

 

Table 3.1:  Selected Bond Lengths (Å) and Angles (deg) for [(MeB)2MnII
2(dfmp)3](Et3NH) (4) 

Mn(2)•••Mn(3)  2.909(5) B(1)•••B(4)  8.664 

    

Mn(2)-O(38) 2.119(2) Mn(2)-O(23)-Mn(3) 86.03(6) 

Mn(2)-O(23)≠1 2.122(2) Mn(2)-O(23)-Mn(3)≠1 86.03(6) 

Mn(2)-O(23) 2.142(2) Mn(2)-O(38)-Mn(3) 86.68(8) 

Mn(2)-N(32) 2.173(2)   

Mn(2)-N(12) 2.174(2)   

Mn(2)-N(20)≠1 2.175(2)   

 

3.4.2 Solid-State Molecular Structure of [(Me3Tacn)2 MnIII
2MnII

2(dfmp)3](ClO4) 

•CH3CN • C2H5OH (5) 

The molecular geometry and atom labeling scheme of the trication in 5 are shown in 

Figure 3.3. The structure of the complex molecule consists of a discrete monocationic 

tetranuclear unit, one perchlorate anion with a molecule of acetonitrile and methanol as 

solvents of crystallization. Selected bond lengths and angles are listed in Table 3.2. The 

X-ray structure confirms that a linear (178°) tetranuclear complex has indeed been 

formed in such a way that a tetrapseudooctaheral geometry containing four metal atoms, 

two terminal Mn(III) and two Mn(II) as the central atoms are present in the lattice. The 

central tris(oximato)dimanganese(II) ion, [Mn2(dfmp)3]5-, bridges two terminal Mn(III) 

centers through the deprotonated oxime oxygen atoms. All phenoxy oxygen atoms are µ2-

bridging yielding a Mn(2)......Mn(3) separation of 3.043 Å. The terminal Mn(III) ions, 

Mn(1) and Mn(4), are in distorted octahedral geometry with three nitrogen atoms form 
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the facially coordinated tridentate macrocyclic amine and three oxygen atoms from the 

bridging oxygen groups. The terminal Mn-O (average 1.944 Å) and the terminal Mn-N 

(average 2.19 Å) bond lengths are consistent with those of implying a d4 high spin 

electronic configuration of the terminal Mn(III) centers, Mn(1) and Mn(4). The N(7)-

Mn(1)-O(8) bond defines an elongated Jahn-Teller axis of a high-spin d4 ion in a 

distorted octahedral ligand field. The average N-Mn-N angle is 85.2°, whereas O-Mn-O 

angle is 98.46°. The Mn(1)......Mn(4) separation of 10.129 Å has been found.  

The phenolate oxygen atoms O (53), O (73) , O (93) of the three dfmp3- ligands bridge 

the two central manganese ions, Mn(2) and Mn(3) giving rise to a face sharing 

bioctahedral core structure. The metrical details of the N3Mn(µ2-O)3MnN3 core in the 

central part of 5 are briefly discussed in the following Table 3.2. The average Mn-N and 

Mn-O bond distances are 2.218 Å  and 2.183 Å respectively, correspond nicely to those 

reported earlier. The coordination geometry of Mn(2) and Mn(3) are strongly trigonally 

distorted. The bond lengths are in agreement with the high spin Mn(II) description of the 

central Mn(2) and Mn(3) atoms. The three Mn(2)-O-Mn(3) bond angles are 88.1°, 88.3°, 

and 88.7°. The three dioxime molecules are nearly planar. The dihedral angles between 

the different planes comprising MnIII-O-N-MnII atoms lie in the ranges 29.95-34.07° 
 

 

Figure 3.3: ORTEP and labeling scheme for MnIIIMnIIMnIIMnIII (5) 
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Table 3.2:  Selected Bond Lengths (Å) and Angles (deg) for [(Me3Tacn) 

MnIII{(dfmp)3MnIIMnII}MnIII(Me3Tacn) ](ClO4)  .CH3CN. CH3OH  5 

Mn(1)•••Mn(2)   3.541 Mn(2)•••Mn(3)   3.043(3) 

Mn(3)•••Mn(4)   3.547 Mn(1)•••Mn(4)   10.129 

    

Mn(1)-N(1)   2.134(7) Mn(4)-N(21)   2.248(9) 

Mn(1)-N(4)   2.119(8) Mn(4)-N(24)   2.229(8) 

Mn(1)-N(7)   2.315(8) Mn(4)-N(27)   2.121(8) 

Mn(1)-O(41)   1.888(6) Mn(4)-O(51)   1.976(7) 

Mn(1)-O(61)   1.894(6) Mn(4)-O(71)   1.977(7) 

Mn(1)-O(81)   2.063(7) Mn(4)-O(91)   1.866(7) 

    

Mn(2)-N(42)   2.214(8) Mn(3)-N(50)   2.225(8) 

Mn(2)-N(62)   2.231(8) Mn(3)-N(70)   2.23(8) 

Mn(2)-N(82)   2.196(8) Mn(3)-N(90)   2.214(8) 

Mn(2)-O(73)   2.20(6) Mn(3)-O(73)   2.17(6) 

Mn(2)-O(93)   2.176(6) Mn(2)-O(93)   2.176(6) 

  Mn(2)-O(53)-Mn(3) 88.1(2) 

  Mn(2)-O(73)-Mn(3) 88.3(2) 

  Mn(2)-O(93)-Mn(3) 88.7(2) 

 

3.4.3 Solid-State Molecular Structure of [(Me3Tacn)2 MnIV
2MnII

2(dfmp)3](ClO4)3   

0.5 CH3CN • 1.5 H2O (6) 

The molecular geometry and atom labeling scheme of the trication in 6 are shown in 

Figure 3.4. The structure of the molecule consists of a discrete tricationic tetranuclear 

unit, three perchlorate anions, 0.5 of the acetonitrile and 1.5 of water molecules as solvent 

of crystallisation. Selected bond lengths and angles are listed in Table3.3. The X-ray 

structure confirms that a linear 179° tetranuclear complex has indeed been formed and 

similar with complex 5. The central tris(oximato)dimanganese(II) ion, [Mn2(dfmp)3]5-, 

bridges two terminal Mn(IV) centers through the deprotonated oxime oxygen atoms. All 

phenoxy oxygen atoms are µ2-bridging yielding the Mn(2)......Mn(3) separation of 2.947 

Å. The terminal Mn(IV) ions, Mn(1) and Mn(4), are in distorted octahedral geometry 

with three nitrogen atoms form the facially coordinated tridentate macrocyclic amine and 

three oxygen atoms from the bridging oximate oxygen groups. The terminal Mn-O 
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(average 1.848 Å) and the terminal Mn-N (average 2.09 Å) bond lengths are consistent 

with d3 high spin electronic configuration of the terminal Mn(IV) centers, Mn(1) and 

Mn(4). The N-Mn-N angle is 83.39°, whereas O-Mn-O angles fall between 98.49°. An 

intramolecular Mn(1)......Mn(4) separation of 10.023 Å has been found.  

The metrical details of the N3Mn(µ2-O)3MnN3 core in the central part of 6 is similar to 

that of 4 and 5 and briefly discussed previously, so refraining from further elaboration. 

The three Mn(2)-O-Mn(3) bond angles are 86.49°, 86.54°, and 86.14°. The three dioxime 

molecules are nearly planar. The dihedral angles between the different planes comprising 

MnIV-O-N-MnII atoms lie in the ranges 20.8-39.8° 

                  

Figure 3.4: ORTEP and labeling scheme for MnIVMnIIMnIIMnIV  (6) 

 

Table 3.3: Selected Bond Distances (Å) and Angles (deg) for  

[(Me3Tacn)MnIV{(dfmp)3MnIIMnII}MnIV(Me3Tacn)](ClO4)3. 0.5 CH3CN. 1.5H2O 6 

Mn(1)•••Mn(2)   3.538 Mn(2)•••Mn(3)   2.947(10) 

Mn(3)•••Mn(4)   3.537 Mn(1)•••Mn(4)   10.023 

    

Mn(1)-N(1)   2.092(4) Mn(4)-N(21)   2.090(4) 

Mn(1)-N(4)   2.096(5) Mn(4)-N(24)   2.087(4) 

Mn(1)-N(7)   2.084(4) Mn(4)-N(27)   2.093(4) 
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Mn(1)-O(41)   1.847(3) Mn(4)-O(51)   1.837(3) 

Mn(1)-O(61)   1.857(4) Mn(4)-O(71)   1.846(3) 

Mn(1)-O(81)   1.841(4) Mn(4)-O(91)   1.862(3) 

    

Mn(2)-N(42)   2.191(4) Mn(3)-N(50)   2.202(4) 

Mn(2)-N(62)   2.192(4) Mn(3)-N(70)   2.204(4) 

Mn(2)-N(82)   2.20(4) Mn(3)-N(90)   2.188(4) 

Mn(2)-O(53)   2.156(3) Mn(3)-O(53)   2.146(3) 

Mn(2)-O(73)   2.158(3) Mn(3)-O(73)   2.142(3) 

Mn(2)-O(93)   2.141(3) Mn(2)-O(93)   2.175(3) 

  Mn(2)-O(53)-Mn(3) 86.49(12) 

  Mn(2)-O(73)-Mn(3) 86.54(12) 

  Mn(2)-O(93)-Mn(3) 86.14(12) 

 

3.4.4 Solid-State Molecular Structure of [(Me3Tacn)2 FeIII
2MnII

2(dfmp)3](ClO4) 

•0.5 CH2Cl2 • CH3CN  (7) 

The molecular geometry and atom labeling scheme of the trication in 7 is shown in 

Figure 3.5. The structure of the molecule consists of a discrete monocationic tetranuclear 

unit, one perchlorate anions, 0.5 of the dichloromethane and one acetonitrile molecules as 

solvent of crystallization. Selected bond lengths and angles are listed in Table 3.4. The X-

ray structure confirms that a linear 179° tetranuclear complex has been formed and 

similar with complexes 5 and 6, except two terminal Fe(III) ions instead of terminal 

Mn(III) or Mn(IV) ions. The central tris(oximato)dimanganese(II) ion, [Mn2(dfmp)3]5-, 

bridges two terminal Fe(III) centers through the deprotonated oxime oxygen atoms. All 

phenoxy oxygen atoms are µ2-bridging yielding the Mn(2)......Mn(3) separation of 3.029 

Å. The terminal Fe(III) ions, Fe(1) and Fe(4), are in distorted octahedral geometry with 

three nitrogen atoms form the facially coordinated tridentate macrocyclic amine and three 

oxygen atoms from the bridging oxygen atoms. The terminal Fe-O (average 1.925 Å) and 

the terminal Fe-N (average 2.231 Å) bond lengths are consistent with d5 high spin 

electronic configuration of the terminal Fe(III) centers, Fe(1) and Fe(4). The average N-

Fe-N angle is average 78.93°, whereas average O-Fe-O angle is 98.89°. An 

intramolecular Fe(1)......Fe(4) separation of 10.034  Å has been found.  

The central N3Mn(µ2-O)3MnN3 core in the 7 is similar with complexes 4, 5 and 6. 

Selected bond lengths and angles are shown in Table 3.4. The three Mn(2)-O-Mn(3) bond 
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angles are 87.92°, 88.12°, and 87.82°. The three dioxime molecules are nearly planar. 

The dihedral angles between the different planes comprising FeIII-O-N-MnII atoms lie in 

the ranges 29.02-33.98° 

 

 

Figure 3.5: ORTEP and labeling scheme for FeIIIMnIIMnIIFeIII  (7) 

 

Table 3.4: Selected Bond Lengths (Å) and Angles (deg) for 

[(Me3Tacn)FeIII{(dfmp)3MnIIMnII}FeIII(Me3Tacn)](ClO4)  .0.5CH2Cl2  . 1CH3CN      7 

    

Fe(1)•••Mn(2)   3.507 Mn(2)•••Mn(3)   3.029(5) 

Mn(3)•••Fe(4)   3.498 Fe(1)•••Fe(4)   10.034 

    

Fe(1)-N(1)   2.239(3) Fe(4)-N(21)   2.226(2) 

Fe(1)-N(4)   2.232(2) Fe(4)-N(24)   2.234(3) 

Fe(1)-N(7)   2.226(2) Fe(4)-N(27)   2.230(3) 

Fe(1)-O(41)   1.938(2) Fe(4)-O(51)   1.907(2) 

Fe(1)-O(61)   1.935(2) Fe(4)-O(71)   1.927(2) 

Fe(1)-O(81)   1,917(2) Fe(4)-O(91)   1.923(2) 
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Mn(2)-N(42)   2.228(2) Mn(3)-N(50)   2.206(2) 

Mn(2)-N(62)   2.245(2) Mn(3)-N(70)   2.224(2) 

Mn(2)-N(82)   2.192(2) Mn(3)-N(90)   2.229(2) 

Mn(2)-O(53)   2.170(2) Mn(3)-O(53)   2.193(2) 

Mn(2)-O(73)   2.179(2) Mn(3)-O(73)   2.177(2) 

Mn(2)-O(93)   2.194(2) Mn(2)-O(93)   2.174(2) 

  Mn(2)-O(53)-Mn(3) 87.92(7) 

  Mn(2)-O(73)-Mn(3) 88.12(7) 

  Mn(2)-O(93)-Mn(3) 87.82(7) 

 

3. 5  Mössbauer spectroscopy: 
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Figure 3.6 : Mössbauer spectrum of FeIIIMnIIMnIIFeIII  (7) 

 

The +3 oxidation state and the high spin electronic configuration of the iron centers in 

complex 7 are confirmed by a Mössbauer spectrum recorded at 80 K and zero field. The 

isomer shift (δ) and quadrupole splitting (EQ) obtained are 0.48 mms-1 and 0.42 mms-1 

respectively. The isomer shift δFe around 0.5 mms-1 is of the magnitude expected for the 

high spin ferric state and is close to the values reported for similar compounds.8,17 
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3.6 Electrochemistry: 

Cyclic voltamograms of complexes 4 and 5 were recorded in CH3CN solution containing 

0.1 M nBu4PF6 in the potential range -2.25 to +1.25 V vs. Fc+/Fc. The CV of 4 afforded 

one 2e reversible oxidation process at nearly same potential of 0.55V vs. Fc+/Fc, which is 

shown in Figure 3.7. The oxidation is metal centred and represents the MnII/MnIII couple 

of both central Mn(II) ions. 

1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5

  

 

E [V] vs Fc+/ Fc

Complex 4

1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5

 

 

E [V] vs Fc+ / Fc

Complex 5

Figure 3.7: Cyclic Voltammogram for BIIIMnIIMnIIBIII  (4) and MnIIIMnIIMnIIMnIII  (5)  

     

The CV of complex 5 afforded two consecutive reversible 2e oxidation processes in the 

potential range 0.0V and 1.0 V vs. Fc+/Fc respectively and one 2e reversible reduction at 

- 0.75V vs. Fc+/Fc. The first pair of oxidation may be assigned to a MnIII/MnIV couple 

and the unambiguous evidence for this is the isolation of complex 6 in aerobic conditions 

where the terminal manganese centers are at the +4 oxidation state compared to the +3 

oxidation state of complex 5. The very similar oxidation potential for MnIII/MnIV 

indicates very negligible electrostatic interaction. The second pair of oxidations can be 

assigned to the central ions and it reflects that in aerobic conditions this process is highly 

unfavourable due to the high oxidation potential. So the oxidation processes can be 

expressed as: 

MnIIIMnIIMnIIMnIII MnIV IVMnIIMnIIMn MnIV IV
Ox1 Ox2 MnIIIMnIIIMn  
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  Analysis of cyclic voltammograms in the more negative potential range (- 0.75V) with 

varying scan rates revealed one 2e reduction step attributable to the following equilibria:  

MnIIIMnIIMnIIMnIII MnII II
Red1

III MnIV IV

MnIIMnIIMn

MnIIMnIIMn MnIIMnIIMn

 

All attempts to isolate the mixed valence complex of the form MnIVMnIIMnIIMnIII proved 

to be unsuccessful. The comproportionation constant Kc for the equilibrium 

2 MnIV III
Kc

+MnIII MnIIMnIIMn  

is calculated to be 22, which is too low for the isolation of the mixed valence species. 

 

3.7 Magnetic Properties: 

Magnetic susceptibility data for polycrystalline samples of the complexes were collected 

in the temperature range 2-290 K in an applied magnetic field of 1T in order to 

characterize the sign and magnitude of the magnetic exchange interaction in the modular 

homo and hetero-tetranuclear systems. The analysis of the magnetic data was performed 

using the Heisenberg-Dirac-Van Vleck (HDVV) model. The least squares fitting 

computer programme JULIUS-F with a full matrix diagonalization approach was 

employed to fit the temperature and field dependent magnetization. The programme uses 

the spin -Hamiltonian operator, Htotal = Hz + Hzfs + HHDVV, where the exchange coupling is 

described by HHDVV = - 2JS1.S2, the Zeeman interactions are given by Hz = µBBgiSi and 

the axial single ion zero field splitting interaction is described by Hzfs = DSz
2. Here we 

use the Heisenberg spin Hamiltonian in the form, H = - 2JS1S2 for an isotropic exchange 

coupling with S1 = S2 = S Mn (II) = 5/2 in case of complex 4 and a "two J" model was 

applied to analyze the magnetic properties of this linear tetranuclear complexes and E = - 

2J(S1S2 + S3S4) - 2J'S2S3 are employed where J = J12 = J34 and J' = J23 for 5, 6,7 and 8. 

        In the model, J = J12 = J34 represents the exchange coupling between adjacent metal 

ions i.e., the terminal manganese and the central divalent manganese ions in case of 

complexes 5 and 6, terminal iron and the central divalent manganese ions for complex 7 

and terminal chromium and the central divalent manganese ions for complex 8, where as 

J'  = J23 describes the interaction between the central manganese nuclei within the linear 

tetranuclear complex. Table 3.5 summarizes the intratetramer exchange parameters. 
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              The experimental effective magnetic moments (µeff) versus temperature (T) are 

displayed in Figures 3.8 and 3.10.  The magnetic moment per molecule of B2Mn2 (4) at 

290 K is 7.12 µB (χM•T = 6.35 cm3.K.mol-1) and decreases monotonically with 

decreasing temperature until it reaches 5.11 µB (χM•T = 3.27 cm3.K.mol-1) at 90 K and 

then starts to decrease further but rapidly and reaches a value of 0.74 µB at 2 K.  
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Figure 3.8: Magnetic data for BIIIMnIIMnIIBIII (4) as a plot of µeff vs. T. The bold points represent the 

experimental data while the solid line represents the simulation 

 

              This temperature dependence magnetic moment is in agreement with 

antiferromagnetic coupling between the neighbouring Mn(II) centers, resulting in a 

diamagnetic ST = 0 ground state for 4. A simulation shown as a solid line in Figure 3.8 

results in J = -8.4 cm-1, gMn = 1.98. The observed antiferromagnetic coupling agrees well 

with the comparable exchange coupling constant reported earlier.24-26 The exchange 

coupling constant J between the manganese ions where exchange coupling is mediated 

through µ2-phenoxo group will be used in deriving the exchange interaction parameters 

for the complexes 5-8. 

                       

             The magnetic behaviour of MnIII
2MnII

2 (5) in the form of the effective magnetic 

moments (µeff) versus temperature (T) is displayed in Figure 3.10a. The magnetic 

moment of 9.41 µB (χM•T = 11.07 cm3.K.mol-1) at 290 K decreases monotonically with 

decreasing temperature and until it reaches a value of 7.3 µB (χM•T = 6.65 cm3.K.mol-1) 
 53



LINEAR TETRANUCLEAR OXIMATE COMPLEXES 

at 40 K and then starts to decrease further but rapidly and reaches a value of 2.51 µB at 

2K. This temperature dependence magnetic moment is in agreement with 

antiferromagnetic coupling.   

             To analyze the magnetic data at the beginning the model for a linear tetranuclear 

complex with two terminal species S1 = S4 = SMn(III) = 2 and two central spins S2 = S3 = 

SMn(II) = 5/2 were considered, as depicted in the following coupling scheme. The 

parameter set, g1 = g4 = gMn(III) = 1.85 and g2 =g3 =gMn(II) = 2.0 and J12 = + 2.8 cm-1 and J23 

= - 8.2 cm-1(comparable with the coupling constant obtained from the complex 4) were 

obtained from the best simulation. The agreement between the calculated magnetic 

moments is good as is evident from Figure 3.10a. The complex exhibit extremely 

complicated low-lying structure with a non diamagnetic ground state which is not well 

separated from the upper-lying states, is in full conformity with the non zero magnetic 

moment at 2 K. The fit parameters were also checked by the 2D-contour plot (Figure 

3.9a) of the exchange coupling constants and the global minima observed in the plot of 

J12 and J23 show the value of J12 is undefined in the ferromagnetic scale and J23 = - 8.0 

cm-1 is also quite satisfactory. 
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  MnII
 MnII J34J23

= 4/2 
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J12
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Scheme 1: Representation of the coupling scheme in complexes 5 and 6. 
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            Exchange interaction between neighbouring manganese (III) and (II) ions for 

nioximate, glyoximate and also acetophenoximate complexes were reported18-20 to be 

weak ferromagnetic (J~ +2 to +5 cm-1) in nature. 

 

            The magnetic behaviour of MnIV
2MnII

2 (6) is shown in Figure 3.10a in the form of 

the effective magnetic moments (µeff) versus temperature (T). The magnetic moment of 

10.37 µB (χM•T = 13.43 cm3.K.mol-1) at 290 K decreases monotonically with decreasing 

temperature and reaches a value of 3.12 µB (χM•T = 1.22 cm3.K.mol-1) at 2 K. The 

experimental magnetic data were simulated using a least squares fitting computer 

programme with a full-matrix diagonalization approach and the solid line in Figure 3.10 

represents the simulation. To analyze the magnetic data at the beginning the model for a 

linear tetranuclear complex with two terminal species S1 = S4 = SMn(IV) = 3/2 and two 

central spins S2 = S3 = SMn(II) = 5/2 were considered, as depicted in the following coupling 

scheme. The parameter set, g1 = g4 = gMn(IV) = 2.0 and g2 =g3 =gMn(II) = 2.2 and J12 = 0.8 

cm-1 and J23 = - 4.1 cm-1 were obtained from the best simulation. The agreement between 

the calculated magnetic moments is good as is evident from Figure 3.10a. The 

experimental results were also simulated with J12 =  + 0.8 cm-1, J23 =  -4.1 cm-1, and J13 =  

+ 0.1 cm-1 but J13  is neglected as it is very small and by neglecting J13 a good fit was 

obtained except some irrational g-values for the Mn(II) centers. This complex also 

exhibits extremely complicated low-lying structure with a non-diamagnetic ground state, 

which is not well separated from the upper-lying states, is in full conformity with the 

non-zero magnetic moment at 2K 

 The fit parameters were also checked by the 2D-contour plot (Figure 3.9b) of the 

exchange coupling constants and the global minima observed in the plot of J12 and J23 

show the value of J12 is undefined in the ferromagnetic scale and J23 = - 4.2 cm-1 is also 

quite satisfactory. It is to be noted here the exchange interaction between the central 

manganese(II) ions is reduced compared two the same interaction in case of complex 4, 

can be attributed in terms of decreasing separation between Mn(2)....Mn(3) [2.95 Å] 

compared to the Mn(2)....Mn(3) [2,90 Å] in case of complex 4. 

 

 MnII
 MnIIJ23 J34J12

 MnIV
 MnIV
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             (a)                                                                                                (b) 

Figure 3.9: Error surface plot for exchange coupling parameters in MnIIIMnIIMnIIMnIII and 

MnIVMnIIMnIIMnIV core congeners 

 

Exchange interactions between the neighbouring manganese (IV) and - (II) ions for 

nioximate, glyoximate complexes were reported to be ferromagnetic (J~ +18 to +25 cm-1) 

previously by our group.18a,21-22  

 

             The magnetic behaviour of FeIII
2MnII

2 (7) in the form of the effective magnetic 

moments (µeff) versus temperature (T) are displayed in Figure 3.10b. The magnetic 

moment of 10.66 µB (χM•T = 14.21 cm3.K.mol-1) at 290 K decreases monotonically with 

decreasing temperature and until it reaches a value of 7.02 µB (χM•T = 6.17 cm3.K.mol-1) 

at 20 K and then starts to decrease further but rapidly and reaches a value of 3.26 µB at 

2K. This temperature dependence magnetic moment is in agreement with 

antiferromagnetic coupling between the spin carriers.  To analyze the magnetic data at the 

beginning the model for a linear tetranuclear complex with two terminal species S1 = S4 = 

SFe(III) = 5/2 and two central spins S2 = S3 = SMn(II) = 5/2 were considered, as depicted in 

the following coupling scheme. The parameter set, g1 = g4 = gFe(III) = 2.0 and g2 =g3 

=gMn(II) = 2.0 and J12 = -1.8 cm-1 and J23 = - 8.0 cm-1(comparable with the coupling 

constant obtained from the complex 4) were obtained from the best simulation. The 

agreement between the calculated magnetic moments is good as is evident from Figure 

3.10b.  
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= 5/2 for complex 7 = 5/2 = 3/2 for complex 8  

 

 

             
 MnII

 MnIIJ23 J34J12
 FeIII
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Scheme 2: Representation of the coupling Scheme in complexes 7 and 8. 

                  

The magnetic behaviour of CrIII
2MnII

2 (8) is shown in Figure 3.10b in the form of the 

effective magnetic moments (µeff) versus temperature (T). The magnetic moment of 8.25 

µB (χM•T = 8.53 cm3.K.mol-1) at 290 K decreases monotonically with decreasing 

temperature and reaches a value of 2.18 µB (χM•T = 0.593 cm3.K.mol-1) at 1.95 K. The 

experimental magnetic data were simulated using a least squares fitting computer 

programme with a full-matrix diagonalization approach and the solid line in Figure 3.10b 

represents the simulation. To analyze the magnetic data at the beginning the model for a 

linear tetranuclear complex with two terminal species S1 = S4 = SCr(III) = 3/2 and two 

central spins S2 = S3 = SMn(II) = 5/2 were considered, as depicted in the following coupling 

scheme. The parameter set, g1 = g4 = gCr(III) = 1.9 and g2 =g3 =gMn(II) = 2.0 and J12 = - 2.4 

cm-1 and J23 = - 8.75 cm-1(comparable with the coupling constant obtained from the 

complex 4) were obtained from the best simulation. The agreement between the 

calculated magnetic moments is good as is evident from Figure 3.10b.  
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Figure 3.10: (a) Magnetic data for MnIIIMnIIMnIIMnIII (5) and MnIIIMnIIMnIIMnIII (6), as a plot of µeff 

vs T. (b) Magnetic data for FeIIIMnIIMnIIFeIII (7) and CrIIIMnIIMnIICrIII (8) as a plot of µeff vs. T. The 

bold points represent the experimental data while the solid line represents the simulation 
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              It is interesting to note that the related isoelectronic MnIVMnIIMnIIMnIV complex 

exhibits ferromagnetic interaction between the MnIV...MnII center and this can be 

attributable to the higher charge on the Mn(IV) center than that on the Cr(III) center. 

Thus, the higher covalent character of the Mn(IV)-ligand bond leads to stronger 

electronic interactions. Weak antiferromagnetic coupling between Cr(III) and Mn(II) ions 

obtained is in contrast to the ferromagnetically coupled oximate complexes with 

CrIIIMnIICrIII and CrIIIMnII core congeners.9,27 

 

Table 3.5: Intratetramer magnetic parameters for homo-and heterotetranuclear complexes. 

Compounds Magnetic core  J12 [cm-1] J23[cm-1] gMn(II) gFe(III) gCr(III) gMn(III)  or 

gMn(IV)  

 

     4          MnIIMnII
  - 8.4 1.98    

     5 MnIIIMnIIMnIIMnIII J12 = J34 + 2.8 - 8.2 2.00   1.85 

     6 MnIVMnIIMnIIMnIV J12 = J34 + 0.8 - 4.1 2.00   2.00 

     7 FeIIIMnIIMnIIMnIII J12 = J34 - 1.8 - 8.0 2.00 2.00   

     8 CrIIIMnIIMnIICrIII J12 = J34 - 2.4 - 8.75 2.00  1.90  

 

              The nearest neighbour interaction, J is ferromagnetic in complexes 5 and 6, and 

antiferromagnetic in complexes 7 and 8, while J' is antiferromagnetic in all the 

complexes. Because of the competing influence of J and J' upon spin coupling in the 

complexes 5-8, the ground state properties are determined by their ratios. 

             A qualitative rationale for the trend will now be provided and the nature of the 

exchange interactions between neighboring MnIIIMnII, FeIIIMnII, MnIVMnII and MnIIMnII 

spin carriers on the basis of the established Goodenough-Kanamori rules for 

superexchange. The evaluated exchange coupling constants can be factored into two 

opposing contributions from antiferromagnetic and ferromagnetic interactions with JAF 

expressed as a negative term and JF as a positive term.  

                                    JT = JAF + JF

Considering the O and N atoms of the bridging oxime groups as sp2 hybridized in the 

network M(O-N)3Mn and sp2 hybridization Mn(O)3Mn, the interaction parameters 

evaluated from the magnetic data will be analyzed. Hence, the different possible 

interactions of the sp2 orbitals on either side of the bridging oximate ligands with the 

different orbitals in idealized D3h symmetry of the whole network MA(O-

N)3Mn(O)3Mn(O-N)3MA will  be considered  
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Figure 3.11:  Schematic diagram for magnetic exchange interaction 

             

 The five metal d orbitals with the 3-fold axis as the z-axis along the M...Mn vector 

transform in D3h symmetry as a1
' (dz

2), e''(dxz,dyz) and e'(dx
2

-y
2,dxy). Dominant exchange 

paths are schematically represented, it is obvious from the above scheme that for the 

FeIIIMnIIMnIIFeIII compound the antiferromagnetic path involving e' ⏐⏐sp2⏐⏐e' 

interactions dominates over all other interactions, resulting in overall antiferromagnetic 

interactions. Whereas in the MnIIIMnIIMnIIMnIII compounds interaction between the 

MnII....MnII is involving dominating e' ⏐⏐sp2⏐⏐e' antiferromagnetic pathways, and the 

antiferromagnetic pathways in MnII...MnIII is over compensated by the presence of 

several ferromagnetic MnIII......MnII paths(e'⊥a1
') and are important in determining the 

strength of the overall exchange interactions. It is also to note that in the case of 

MnIII......MnII with the missing electron in the e' orbital the AF path present in 

FeIII......MnII vanished, resulting in stronger parallel coupling in d4(HS)d5 system.  Now 

on going to the MnIV...MnII, in which MnIV has an empty 2e orbital, the overall 

interaction changes its nature from antiferromagnetic in FeIII...MnII to weak ferromagnetic 

in MnIV...MnII (J = + 0.8 cm-1). Thus the contribution of the path e' ⏐⏐sp2 ⏐⏐e' to the 

overall interaction becomes very important since the 2e orbitals centred on 
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manganese(IV) and manganese(II) are empty and half-filled respectively leading to 

ferromagnetic interaction. The π conjugated system of the 2,6-diformyl 4-methyl 

phenoldioximato ligand delocalized over the bridging groups and perpendicular to the 

plane of the oxime ligands, appears also to have a role, although small, in tuning the 

exchange interactions in this series of compounds. 

Tables 3.6 and 3.7 summarize exchange coupling constants reported in MnIIMnIII, MnIIMnIV, 

MnIIFeIII and MnIICrIII core congeners, where exchange coupling mediated through oximate 

(NO) ligands.  

 
Table 3.6: Magnetic parameters for exchange coupled polynuclear oximate complexes 

Compounds Magnetic 

core 

JMn(II)...Mn(III)  

[cm-1] 

JMn(II)...Mn(IV) 

[cm-1] 

gMn(III) gMn(II) gMn(IV) References
 

[(Me3Tacn)MnIII{(dmg)3MnII}

MnIII(Me3Tacn)](ClO4)2

MnIIIMnII  + 4.7 + 19. 6              18a 

[(Me3Tacn)Mn{(dmg)3Mn}Mn 

(Me3Tacn)](ClO4)2

MnIVMnII      18a 

[L2MnII
2(µ-

O2COMe)(MeOH)MnIII] 

(ClO4)2

MnIIIMnII + 2.0   1.98  2.05  18b 

[(Me3Tacn)MnMn(PyA)3] 

(ClO4)2

MnIIIMnII + 1.8     19 

[(Me3Tacn)MnIII{(niox)3MnII}

MnIII(Me3Tacn)](ClO4)2

MnIIIMnII  + 4.7  1.99 1.99  11 

[(Me3Tacn)Mn{(niox)3Mn} 

Mn(Me3Tacn)](ClO4)2

MnIVMnII  + 25.2  2.00 2.00 11 

[Mn3(MeO)2(pko)4(SCN)2] MnIVMnII  + 3.06  2.09 2.09 21a 

[Mn3(MeO)2(pko)4Cl2] MnIVMnII  + 3.9  2.07 2.07 21b 

[Mn3(MeO)2(pko)4(OCN)2] MnIVMnII  + 4.05  2.08 2.08 21b 

(Me4N)2[Mn4O2(cao)4(MeCN)2 

(H2O)6](NO3)4

MnIIIMnII - 2.5  1.88 1.88  29 

[Mn3(mcoe)6](NO3) MnIIIMnII - 1.3 ± 0.3  2.00 2.00  29 

 
Table 3.7: Magnetic parameters for exchange coupled polynuclear oximate complexes 

Compounds Magnetic core JFe(III)...Mn(II)  

[cm-1] 

JCr(III)...Mn(II)  

[cm-1] 

References 

[(Me3Tacn)FeIIIMnII(PyA)3](ClO4)2 FeIIIMnII - 6.0  8 

[(Me3Tacn)CrIIIMnII(PyA)3](ClO4)2 CrIIMnII  + 1.5 9 

[(Me3Tacn)FeIII{(dmg)3MnII}FeIII(Me3Tacn)](ClO4)2 FeIIIMnIIFeIII - 6.7  28 

[(Me3Tacn)CrIII{(dmg)3MnII}CrIII(Me3Tacn)](ClO4)2 CrIIMnIICrIII  + 4.5 27 
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                  There are several intriguing features associated with polynuclear clusters. 

Firstly, these complexes can have unusual electronic structures and may serve as sources 

of fundamental information about exchange coupling in multinuclear assemblies. A 

second general reason to study polynuclear metal complexes is that, they may be building 

blocks for molecular based magnetic materials. Because of their topology, molecules that 

have large numbers of unpaired electrons should serve as good starting points for 

constructing molecular magnetic materials.27 Though the pairwise exchange interactions 

in these complexes are found almost always to be antiferromagnetic, spin frustration,28 or 

competing spin interactions, can result in polynuclear complexes having  relatively large 

number of unpaired electrons in the ground state. 

                  Additionally, designing molecular entities with interesting spin topologies 

becomes easier with spin carriers of different kinds. Since the pioneering work of Olivier 

Kahn in the magnetism of heterometallic systems, the field has developed tremendously, 

as will be evident from the following discussion on the oximato-bridged tetranuclear 

heterometallic molecules. 

 

4.2 Synthesis: 

The most successful synthetic strategy for heterometallic complex is the use of metal 

complexes as ligands which can act as a building block for polynuclear complexes, 

Therefore, metal complexes containing potential donor atoms can act as a bridging ligand 

for another metal ion or metal complex with empty or available coordination sites. The 

following strategy is an attempt to obtain heterometal complex, in which the oxime 

ligand acting as a bridge between two different metal ions e.g. iron (III), copper(II) and 

chromium(III), copper(II)  
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       The protonated oxime containing mononuclear complex32 [Cu(dapdoH2)2](ClO4)2  has 

been reacted with either [Me3TacnFeIII]3+ or [Me3TacnCrIII]3+ unit in presence of 

triethylamine. The assembly of these two building blocks(oxime complex as bridging 

ligand and [Me3TacnMIII]3+ as capping ligand) in 1:2 molar ratio lead to the formation of 

heterotetranuclear clusters [(Me3Tacn)FeIII
2(dapdo)2CuII

2(O...H...O)(µ2-Cl)](ClO4)2 9 and 

[(Me3Tacn)CrIII
2(dapdo)2CuII

2(µ2-OH)2Br2](ClO4)2  10. 
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Figure 4.1: Schematic diagram for the synthesis of "butterfly" core congeners 9-10 

                 

     4.3 Infrared and Mass Spectroscopy: 

          Complexes 9 and 10 show the C=N stretching bands for the ligand at 1593 and 1595 

cm-1 respectively. Strong peaks at 2916-2920 cm-1 correspond to the C-H stretching of 

the Me3Tacn group, in the FeIII
2CuII

2 (9) and CrIII
2CuII

2 (10) core congeners.  The NO 

stretchings for these two tetranuclear complexes are observed at 1163 and 1080 cm-1. 

Strong stretching bands at 1077, 624 cm-1 and 1090, 624 cm-1 respectively correspond to 

the counteranion ClO4 unit in the tetranuclear FeIII
2CuII

2 and CrIII
2CuII

2 complexes. 
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    Electrospray-ionaziation mass spectrometry (ESI-MS) in the positive ion mode has 

been proved to be very successful in characterizing FeIII
2CuII

2 (9) which shows the 

dipositively charged species [M-2ClO4]2+ as the base peak.  The peak due to [M-ClO4]+ is 

also observed. On the contrary, the signal for [M-2ClO4 + 0.5 H2O]2+ of 10  has been 

found as the base peak. 

4.4 Solid state molecular structure: 
4.4.1 X-ray Structure of [(Me3Tacn)2FeIII

2(dapdo)2CuII
2(O...H...O)Cl](ClO4)2 

.2CH3OH (5) 

           The lattice is built of discrete tetranuclear dication; two noncordinatively bound 

perchlorate anions and two methanol molecules of crystallization. The molecular 

geometry and atom labeling scheme of the cation 9 are shown in Figure 4.3. The cation 

possesses a "butterfly" [Fe2(µ2-O...H...O-µ2)Cu2] core. Cu(1) and Cu(1A) occupy "body" 

positions of the "butterfly" while Fe(1) and Fe(1A) occupy the "wing-tip" positions. The 

O(1) and O(1A)  are acting as double bridging oxo groups in each FeCu unit respectively. 

The structure, thus, can be considered as two edge sharing FeCu2O triangular units as 

shown below.  
F e (1 )

C u (1 A )

C u (1 )
F e (1 A )

C u (1 )

C u (1 A )

C u (1 )

C u (1 A )

F e (1 ) F e (1 A )

O
O

O O

 
 

In addition to two µ2-Oxo groups, there is one µ2-Cl ion which acts as a bridge between 

the "body" copper ions. Both the µ2-oxo groups are strongly hydrogen bonded with a 

distance of 2.24 Å where H is detected crystallographically and gives rise to (O...H...O) 

core. The 2,6-diacetylpyridine dioximate dianion ligands coordinate "body" Cu ions 

through its pyridine N(32) and two oximate nitrogen N(22) and N(30) atoms. So the 
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"body" Cu(II) ions are five coordinated with N3OCl distorted square pyramidal geometry 

with the basal plane comprising two oximato nitrogen atoms, one pyridine nitrogen atom 

and one µ2-oxo oxygen atom. The crystal structure gives τ value of 0.054 indicating an 

essentially square-pyramidal (4 + 1) coordination geometry of the "body" copper ions.43 

In a five coordinate system, ideally square pyramidal geometry is associated with α = β = 

180° for A is the axial ligand (where α and β are the basal angles). In the great majority 

of real square pyramidal systems, metal is displaced out of the equatorial plane toward 

the axial ligand. The geometric parameter τ is defined as [( β - α) / 60] which is 

applicable to five coordinate environment as an index of degree of trigonality, within the 

structural continuum between trigonal bipyramidal and square pyramidal geometries. τ is 

zero for a perfectly square pyramidal geometry, while it becomes unity for a perfect 

trigonal bipyramidal geometry. The average Nox-Cu bond length is 2.056(15) Å, is 

significantly longer than the Npy-Cu bond distance of 1.94(15) Å. The Cu-Cl bond 

distance is 2.539(5) Å  and gives rise to Cu(1)-Cl(1)-Cu(1A) angle 87.91°,whereas the 

bond distance between Cu(1) and O(1) is  1.913(12) Å.  

                    The coordination geometry of the "wing-tip" ferric ion Fe(1) is distorted 

octahedral, with the three nitrogen atoms N(1), N(4) and N(7) from the facially 

coordinated tridentate macrocyclic amine(Me3Tacn) and three oxygen atoms [O(21) and 

O(31) from the deprotonated oxime group, O(1) from the µ2-bridging oxo group] 

resulting in a fac-FeN3O3 coordination sphere. The Fe-N(average 2.24 Å) and Fe-

O(average 1.99 Å) distances are in agreement with a d5 high-spin electronic configuration 

for the iron center. The Fe(1)-µ2-oxo distance is [1.856(12) Å], as expected, the shortest 

among metal-ligand bond lengths. The Fe(1) is displaced by 0.046 Å from the mean basal 

plane comprising N(4)N(7)O(21)O(31) toward the apical µ2-oxygen atom O(1). Selected 

bond lengths and angles for the FeIII
2CuII

2O2 core are given in Table 4.1. The Fe-N 

distance trans to the µ2-oxo group [Fe(1)-N(1) = 2.259(15) Å] is longer than the other Fe-

N distances. A deviation from idealized octahedral geometry at the metal center is found 

for the capping ligand Me3Tacn; the N-Fe-O angles lying in the ranges 77.72° to 78.71°, 

whereas O-Fe-O angles fall between 93.25 and 102.23°. The Fe(1)...Cu(1) and 

Fe(1A).....Cu(1A) separations of 3.29 Å are significantly shorter than the Fe(1)....Cu(1A) 

and Cu(1)....Fe(1A) separations of 4.020 Å. The "body" Cu(1).....Cu(1A) separation is 

about 3.526 Å, while the separation between the "wing-tip" Fe(1).....Fe(1A) is 5.442 Å. 
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Figure 4.3: ORTEP and labeling scheme for the dication FeIII
2CuII

2
  (9) 

 

Table 4.1: Selected Bond Lengths (Å) and Angles (deg) for [(Me3Tacn)FeIII{(dapdo)2CuII
2 

}(O....OH)ClFeIII(Me3Tacn)](ClO4)2  .2 CH3OH      9 

Table 4.1: Selected Bond Lengths (Å) and Angles (deg) for [(Me3Tacn)FeIII{(dapdo)2CuII
2 

}(O....OH)ClFeIII(Me3Tacn)](ClO4)2  .2 CH3OH      9 

Fe(1)•••Cu(1) Fe(1)•••Cu(1) 3.239 3.239 Cu(1A)•••Fe(1A)  Cu(1A)•••Fe(1A)  4.020 4.020 

Fe(1A) •••Cu(1) 3.239 Fe(1)•••Fe(1A)  5.442 

Fe(1)•••Cu(1A)  4.020 Cu(1A)•••Cu(1) 3.526 

Cu(1)-N(22) 2.009(15) Cu(1)-N(22) 2.009(15) 

Cu(1)-N(30) 2.112(15) Cu(1A)-N(30) 2.112(15) 

Cu(1)-N(32) 1.936(15) Cu(1A)-N(32) 1.936(15) 

Cu(1)-O(1) 1.913(12) Cu(1A)-O(1) 1.913(12) 

Cu(1)-Cl(1) 2.539(5) Cu(1A)-Cl(1) 2.539(5) 

Fe(1)-N(1) 2.259(15) Fe(1A)-N(1) 2.259(15) 

Fe(1)-N(4) 2.228(16) Fe(1A)-N(4) 2.228(16) 

Fe(1)-N(7) 2.250(15) Fe(1A)-N(7) 2.250(15) 

Fe(1)-O(1) 1.856(12) Fe(1A)-O(1) 1.856(12) 

Fe(1)-O(21) 2.014(13) Fe(1A)-O(21) 2.014(13) 

Fe(1)-O(31) 1.966(13) Fe(1A)-O(31) 1.966(13) 

  Fe(1)-O(1)-Cu(1) 118.46(7) 
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  Cu(1)-Cl(1)-Cu(1A)  87.91(2) 

  O(1)-Fe(1)-N(1) 168.8(6) 

  O(21)-Fe(1)-N(4) 159.68(5) 

  O(31)-Fe(1)-N(7) 161.59(6) 

 

4.4.2 X-ray Structure of [[(Me3Tacn)2CrIII
2(dapdo)2CuII

2(OH)2Br2](ClO4)2 .3CH3CN 

. 0.5 H2O (10) 

The lattice is built of discrete tetranuclear dication, two noncordinatively bound 

perchlorate anions, three acetonitrile molecules and half water molecule of 

crystallization. The molecular geometry and atom labeling scheme of the cation 10 are 

shown in Figure 4.4. The cation possesses a "butterfly" [Cr2(µ2-OH)2Cu2] core. Cu(1) and 

Cu(2) occupy "body" positions while Cr(1) and Cr(2) occupy the "wing-tip" positions of 

the "butterfly". The O(100) and O(200)  atoms are acting as double bridging hydroxo 

groups in each CrCu unit respectively. The structure, thus, can be considered as two edge 

sharing CrCu2OH triangular units as shown below.  
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Both the µ2-hydroxo groups are strongly hydrogen bonded with a distance of 2.9 Å, and 

gives rise to (O...HO) core. The 2,6-diacetylpyridine dioximate dianion coordinate to 

Cu(1) through its pyridine N(52) and two oximate nitrogen atoms N(42) and N(50) 

atoms, the average Nox-Cu bond length is 2.07(2) Å is significantly longer than the Npy-

Cu bond distance of 1.93(2) Å, whereas the bond distance between Cu(1) and O(200) is  
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1.976(13) Å. The fifth position of the copper ion is satisfied by axial Br(1) and thus 

"body" Cu ions Cu(1) and Cu(2) are in N3OBr coordination sphere with square pyramidal 

geometry (τ value is calculated to be 0.09) around  the copper centers.  

 

 

 
Figure 4.4: ORTEP and labeling scheme of the dication of CrIII

2CuII
2
  (10) 

 

The coordination geometry of the "wing-tip" chromium ion Cr(1) is distorted octahedral, 

with the three nitrogen atoms N(1), N(4) and N(7) from the facially coordinated tridentate 

macrocyclic amine(Me3Tacn) and three oxygen atoms [O(41) and O(61) from the 

deprotonated oxime groups, O(200) from the µ2-bridging hydroxo group] resulting in a 

fac-CrN3O3 coordination sphere. The Cr-N [average 2.212(2) Å) and Cr-Oox(average 1.95 

Å) distances are in agreement with a d3 high-spin electronic configuration for the 

chromium center. The Cr(1)-µ2- hydroxo distance is 1.98(13) Å, as expected for 

chromium-hydroxo bond length. The Cr(1) is displaced by 0.688 Å from the mean basal 
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plane comprising N(4)N(7)O(41)O(61) toward the apical µ2-oxygen atom O(200). 

Selected bond lengths and angles for the CrIII
2CuII

2(OH)2 core for the cation are given in 

Table 4.2. A deviation from idealized octahedral geometry at the metal center is found for 

the capping ligand Me3Tacn; the N-Cr-O angles are lying in the ranges 82.02° to 82.96°, 

whereas O-Cr-O angles are found to be in the ranges 93.18 and 94.13°. The Cr(1)...Cu(1) 

separation of 3.3 Å is significantly shorter than the Cr(1)....Cu(2) separation of 4.377 Å. 

The "body" Cu(1).....Cu(2) separation is about 3.453 Å, while the separation between the 

"wing-tip" Cr(1).....Cr(2) is 5.948 Å. 

 
Table4.2: Selected Bond Lengths (Å) and Angles (deg) for [(Me3Tacn)CrIII{(dapdo)2CuII

2 

}(OH)2Br2CrIII(Me3Tacn)](ClO4)2  3CH3CN . 0.5H2O      10 

Cr(1)•••Cu(1)  3.313 Cu(2)•••Cr(2)  3.296 

Cr(1)•••Cu(2) 4.377 Cr(1)•••Cr(2)  5.948 

Cu(1) •••Cu(2) 3.453 Cu(1) •••Cr(2) 4.332 

Cu(1)-N(42) 2.012(15) Cu(2)-N(62) 2.139(2) 

Cu(1)-N(50) 2.133(15) Cu(2)-N(70) 2.020(2) 

Cu(1)-N(52) 1.926(15) Cu(2)-N(72) 1.932(2) 

Cu(1)-O(200) 1.976(13) Cu(2)-O(100) 1.946(14) 

Cu(1)-Br(1) 2.6013(3) Cu(2)-Br(2) 2.587(3) 

Cr(1)-N(1) 2.125(2) Cr(2)-N(21) 2.125(2) 

Cr(1)-N(4) 2.117(2) Cr(2)-N(24) 2.114(2) 

Cr(1)-N(7) 2.115(2) Cr(2)-N(27) 2.128(2) 

Cr(1)-O(200) 1.976(13) Cr(2)-O(100) 1.958(13) 

Cr(1)-O(41) 1.956(14) Cr(2)-O(51) 1.956(14) 

Cr(1)-O(61) 1.951(14) Cr(2)-O(71) 1.956(14) 

  Cu(2)-O(100)-Cr(2) 115.17(7) 

  Cu(1)-O(200)-Cr(1)  113.9(6) 

  O(61)-Cr(1)-N(1) 172.83(6) 

  O(41)-Cr(1)-N(4) 169.94(9) 

  O(200)-Cr(1)-N(7) 176.67(7) 
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4.5 Magnetic Properties: 
          Magnetic susceptibility data for polycrystalline samples of the complexes were 

collected in the temperature range 2-290 K in an applied magnetic field of 1 T. We use 

the Heisenberg spin Hamiltonian in the form H = -2JA(S1S2 + S3S4) - 2JB (S1S4 + S2S3) - 

2JCS2S4 (for complex 9) and H = -2JA(S1S2 + S3S4) - 2JB (S1S4 + S2S3) (for complex 10) 

for an isotropic exchange coupling with S1 = S3 = SFe = 5/2, S2 = S4 = SCu = 1/2 for 9, and 

S1 = S3 = SCr = 3/2, S2 = S4 = SCu = 1/2 for 10. The experimental data as the effective 

magnetic moments (µeff) versus temperature (T) are displayed in Figures 4.6 and 4.8 

respectively. The experimental magnetic data are simulated using a least squares fitting 

computer program with a full-matrix diagonalization approach and the solid lines in 

Figures 4.6 and 4.8 represent the simulations. Table 4.5 summarizes intratetramer 

exchange parameters 

              The magnetic moment µeff/molecule for 9, FeIII
2CuII

2, of  7.24 µB (χM•T = 6.55 

cm3•K•mol-1) at 290 K, is smaller than the spin only value of χM•T (g = 2) for a unit 

composed of noninteracting [FeIII
2CuII

2] ions is 10.25 cm3•K•mol-1 and increases 

monotonically with decreasing temperature until it reaches a value of 8.2 µB (χM•T = 

8.41 cm3•K•mol-1) at 5 K and then starts to decreases and reaches a value of 7.02 µB 

(χM•T = 6.15 cm3•K•mol-1) at 2 K. Hence the molecule appears to have a high-spin 

ground state, with the low temperature decrease assigned to some contribution from zero-

field splitting (D). This temperature dependence behavior is in agreement with a non 

diamagnetic ground state, is evidenced from the µeff value at 2 K.  

              From the temperature dependence of the magnetic behavior of complex 9, it can 

be thought of ferromagnetic exchange interaction between the spin carriers but this kind 

of nature is also possible due to the presence of different competing spin interactions. The 

total spin (ST) values of the different resultant states range from 0 to 6. For a molecule 

such as 9 with very low symmetry, different exchange parameters Jij are theoretically 

required for each possible pairwise exchange interactions between FeIII...CuII, CuII...CuII 

and FeIII...FeIII centers. In such a case, the determination of different J parameters would 

yield unreliable and correlating values. The exchange parameters between the "wing-tip" 

Fe(III) is assumed to be zero given the large distance between Fe(1) and Fe(1A) [5.442 Å 

]. There are two different kinds of exchange interactions between the "wing-tip" Fe(III) 

and "body" Cu(II) centers. Inspection of the molecular structure of 9 reveals that there are 

three main exchange pathways. 
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Figure 4.5: Perspective view of coupling scheme.  ( JA = J12 = J34 = Jwb,  JB = J23 = J14  = Jwb', JC = J24 = 
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Scheme 1 

The first exchange pathway JA = J12 = J34 (Jwb) refers to the FeIII(O)(NO)CuII interaction, 

second one, JB = J14 = J23 (Jwb') refers to the FeIII(NO)CuII interaction and the third 

pathway JC = J24 (Jbb) refers to the CuII(Cl)CuII interaction. So the magnetic exchange 

coupling (JA) between iron (III) and copper(II) is mediated through different bridges [a 

two atom N-O bridge and through oxo bridge], on the other hand the magnetic exchange 

coupling (JB) between  iron (III) and copper(II) is mediated through a two atom N-O 

bridge. It is to be noted here that the dominated exchange interaction pathways are via the 

µ2-O2- groups not the oximate (N-O) transmitters. So from the magnetochemical view 

point, only three J values are required: JA = Jwb = J12 = J34, JB = Jwb' = J14 = J23 and JC = Jbb 

= J24; where w = wing-tip and b = body. The full-matrix diagonalization of the spin 
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Hamiltonian matrix produced best fit parameters: JA = J12 = J34 = - 125 cm-1;  JB = J14 =J23 

= - 6 cm-1 and J24 = - 50 cm-1 with g1 = g3 = 2.01 and g2 = g4 = 2.04. So, the data for 

complex 9 is analyzed with a "three-J" model. The exchange coupling between the high 

spin iron(III) and copper(II) is antiferromagnetic on the basis of Goodenough-Kanamori33 

rules. In the analysis, two different iron(III)-copper(II) magnetic exchange interactions 

are taken into consideration. The exchange coupling is expected to be much stronger in 

case of JA compared to JB, due to the presence of an oxo transmitter. In the past some 

authors have proposed an oxide ligand as possibly mediating the antiferromagnetic 

coupling in the heme-copper site for the fully oxidized enzyme. It has been reported34 that 

all oxo-and hydroxo bridged FeIIICuII adducts exhibit strong antiferromagnetic coupling. 

In general, oxo bridged dinuclear FeIIICuII core of compounds exhibit near linear Fe-O-

Cu linkage, which makes favourable overlap between the magnetic orbitals and is 

reflected in strong antiferromagnetic exchange interactions. Magnetic exchange 

interaction parameters of these kind of complexes are listed in Table 4.3.  

 
Table 4.3: Magnetic parameter of some FeIII(O)CuII cores 

Compounds Magnetic core JFe(III)...Cu(II)

[cm-1] 

Fe-O-Cu 

(bond angle in deg.) 

References 

[(F8TPP)Fe-O-

Cu(TMPA)]+

FeIIICuII - 174.0 178 34c 

[(OEP)Fe-O-

Cu(Me6tren)]+

FeIIICuII ≥ - 200.0 180 34f 

[(L)Fe-O-Cu]+ FeIIICuII > - 200.0 171 34g 

[(F8TPP)Fe-OH-

Cu(TMPA)]2+

FeIIICuII    - 144.0 157 34b 

[(OEP)Fe-O-

Cu(Me5tren)(ClO4)]+

FeIIICuII    - 170.0 157 34d 

 

                 The environment around the Cu(II) ions in complex 9 is square pyramidal 

which is observed from the structural parameters, with an unpaired electron in the dx
2
-y

2 

orbital. Thus the strong magnetic interactions can be interpreted as the symmetry allowed 

Fe(dx
2

-y
2) ⎜⎜(O) ⎜⎜Cu(dx

2
-y

2) (using Ginsberg symbols) σ-superexchange pathway. The 

dx
2
-y

2 magnetic orbitals of FeIII and CuII ions also interact through the oximato (NO) 

group, and the strong magnetic interaction is expected as the symmetry allowed Fe(dx
2

-y
2) 

⎜⎜σNO⎜⎜Cu(dx
2
-y

2) pathway. The overall exchange coupling constant J results from 

individual antiferromagnetic and ferromagnetic exchange interactions: J = JAF + JF. The 
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ferromagnetic contributions provided by the dx
2

-y
2 ⊥σNO⎜⎜t2g exchange paths can not 

balance the dominant antiferromagnetic interaction, leading to an effective antiparallel 

spin coupling between FeIII and CuII centers. The following diagram shows the 

orientation of the relevant orbitals for the mechanism of interaction. 

NO

Fe Cu  

      The reported antiferromagnetic exchange coupling between iron (III) and copper(II) 

through oxo transmitter in case of synthetic models for heme copper oxidases34lie in the 

ranges of  - 80 to - 200 cm-1(based on H = - 2JSiSj model). In these heterobinuclear 

iron(III)-copper(II) complexes exchange interaction which mediates through oxo 

transmitter is found to be stronger due to the near linear arrangement, which makes the 

Fe-O-Cu angle of nearly 180°. In case of complex 9, it is observed that the Fe-O-Cu bond 

angle is 118.46(7)°, thus the exchange coupling constant is expected to be lower 

compared to the values obtained in the complexes reported by Holm34d,e and Karlin.34a,b,c 

The oximate (N-O) group also contributes in the exchange coupling constant (Jwb = JA) 

and this contribution is also antiferromagnetic in nature and thus, makes the overall 

exchange coupling (JA) to be stronger in magnitude. The investigation of exchange 

interactions as a function of dn- electronic configuration where a two atom N-O bridge is 

the transmitter, reported11,21,31 to be in the ranges of - 40 to - 60 cm-1. Some literature 

values of the exchange interactions mediated through oximato (NO) transmitter between 

high-spin Fe(III) and Cu(II) ions is listed in Table 4.4.  It has been observed that, 

exchange coupling constant between high spin Fe(III) and Cu(II) (through N-O 

transmitter) is - 20 cm-1  in the FeIIICuIINiII complex20 and even is lesser in magnitude (- 5 

cm-1) in the FeIIICuIICuII complex reported by Verani et.al.19 So in case of complex 9 

strong antiferromagnetic coupling (JA  = J12 = J34) between FeIII-CuII (through oxo and 

oximate bridges) predominates over antiferromagnetic exchange coupling (JB = J14 = J23), 

and  the values obtained from simulation is comparable to the values reported earlier.  
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Table 4.4: Magnetic parameters of FeIIICuII oximate complexes 
Compounds Magnetic core JFe(III)...Cu(II)

[cm-1] 
References 

[(Me3Tacn)FeIII{(dmg)3CuII}
FeIII(Me3Tacn)](ClO4)2

FeIIICuIIFeIII - 42.0 18 

[(Dopn)CuII(OH2)FeIII(Cl) 
(Me3Tacn)](ClO4)2

CuIIFeIII - 38.8 16 

[(Me3Tacn)FeIII(Cl)CuII 

(MeOH)NiII(MeOH)2Lox] 
(ClO4)2

FeIIICuIINiII - 20.0 20 

[(Me3Tacn)FeIII(Cl)CuII(H2O)C
uII(H2O)Lox](ClO4)2

FeIIICuIICuII - 5.0 19 

[(Me3Tacn)FeIIICuII(PyA)3] 
(ClO4)2

FeIIICuII - 53.0 21 

 
 

The exchange coupling between the "body" copper (II) ions was evaluated to be - 50 cm-

1, mediated through µ2-Cl bridge. The magnetic properties of a number of bis (µ-chloro) 

copper(II) dimers have been studied and  most of them exhibit antiferromagnetic spin 

coupling. For the dichloride bridged dicopper(II) system, an empirical relationship has 

been developed between the exchange coupling constant and ϕ / R (ϕ is the Cu-Cl-Cu 

angle and R is the longer Cu-Cl separation). According to the relationship, the 

antiferromagnetic interaction would become more significant with increasing ϕ / R (when 

ϕ / R > 33).41 However copper(II) compounds with a monochloride ion bridge are very 

few and there is no magnetostructural relationship developed.  In the present case the two 

body copper atoms bridged by a chloride ion (ϕ / R = 34.6), are in axial position and due 

to the square pyramidal environment of copper(II) ions, the unpaired electron resides in 

copper ions mainly in the dx
2

-y
2 orbital. According to the orbital overlap between copper 

ions and the bridging chloride ligand, a weak coupling is expected. Weak ferromagnetic 

to strong antiferromagnetic exchange coupling interactions through µ-chloro bridge 

ligand are reported in literature.42 Hendrickson and co-workers pointed out  that the value 

of Jwb can be well determined,  but the value of Jbb not. Since Jwb is much stronger than 

Jbb and there are four "wing-body" interactions (two Jwb and two Jwb') and only one Jbb, the 

spin-manifold energies are primarily determined by "wing-body" interactions, making the 

precise value of Jbb indeterminate. Tetranuclear FeIII
2CuII

2 "butterfly" complex is regarded 

as an example exhibiting spin frustration. The strong antiferromagnetic "wing-body" 

interactions frustrate the weaker "body-body" interaction leading to the ST = 4 ground 

state via the spin alignments shown pictorially in scheme1 i.e., the CuII(body) spins are 

polarized ferromagnetically, although the intrinsic interaction between these ions is 

antiferromagnetic. Competing interactions are evidently not limited to triangular 
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topologies. They occur in all cases where there is a competition between different 

exchange interactions.  In a certain sense the uncertainty in body-body interaction is the 

mathematical response to this competition between antagonist factors. It should be 

remembered that the topology sometimes creates a ferromagnetic polarization between 

two antiferromagnetically coupled spin carriers. The competition between these two 

opposite forces may lead to ground states that can not be described in the simple fashion 

of combining the local spins assimilated to classical vectors. 

To determine the spin ground state, magnetization data were collected at 1, 4 and 7 T in 

the temperature range 2-290 K and plotted as reduced magnetization (M/Ngβ) vs (βH/kT) 

(vide infra), where N is the avogadro's number, β is the Bohr magneton and k is the 

Boltzmann's constant. For a system occupying only the ground state and experiencing no 

zero-field splitting (D), the various isofield lines would be superimposed and M/Ngβ 

would saturate at a value ST. The non-superposition of the variable temperature variable 

field (VTVH) plots at low temperature clearly indicates the presence of zero-field 

splitting (ZFS or D). Reduced magnetization measurement yielded a ground state ST > 3 

but < 4. According to the spin coupling scheme ground state ST = 4 could be expected, 

but ST < 4 could be due to the intermolecular interaction or zero-field splitting (D) of the 

ground state.  

Attempts to fit the data by using the method of full-matrix diagonalization of the spin 

Hamiltonian matrix including axial ZFS, with the pairwise exchange interactions, 

produced best fit parameters: Jwb = JA = J12 = J34 = - 125.0 cm-1,  Jwb' = JB = J14 = J23 = -

5.0 cm-1,  Jbb = JC = - 50 cm-1  with DFe = + 2.7 cm-1. With DFe = - 2.7 cm-1 (fixed) a fit 

with poorer quality than that with positive D was obtained. The values of zero field 

splitting, DFe = + 2.7 cm-1 from the best fit, is also quite similar to the value obtained (DFe 

= ⎢2.2 ⎢ cm-1) in case of FeIIICuII complex reported by Ross et al.21 For comparison it is to 

be mentioned, that for a dinucler FeIIICuII complex reported40 by Kahn et. al, observed 

spin Hamiltonian parameters are, JFe-Cu = - 78 cm-1, DFe = + 11.8 cm-1 and DS = 2 =  + 7.8 

cm-1.  
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Figure 4.6: Magnetic data for FeIII
2CuII

2
 (9) plot of µeff vs T and M/Ngß vs ßH/kT. The bold points 

represent the experimental data while the solid line represents the simulation. 

 

   It has been shown in detail by Hendrickson2,7-8 and co-workers that, in the case of spin 

frustration, subtle changes in the ratios of competing exchange interactions in a 

polynuclear transition metal complexes can have dramatic effects on the exact nature of 

the ground and low-lying states. It is the ratio of competing exchange interactions and not 

so much their absolute magnitudes which characterizes the electronic structure of these 

complexes. The ground state of the present complex represents ST = 4. This result is in 

accord with the analysis made by Hendrickson that, when competing exchange 

interactions are antiferromagnetic and are of similar magnitude, the complex will have a 

ground state with the smallest ST value. In the case of FeIII
2CuII

2 "butterfly" core congener 

Fe...Cu and Cu...Cu interactions are not of similar magnitudes and that stabilizes a high-

spin ground state, as is evidenced from the VTVH magnetic measurement. 

 

                                   The magnetic moment µeff/molecule for 10, CrIII
2CuII

2, of 4.9 µB 

(χM•T = 3.0 cm3•K•mol-1) at 290 K decreases monotonically with decreasing 

temperature until it reaches a value of 4.39 µB (χM•T = 8.41 cm3•K•mol-1) at 100 K and 

then starts to increases and reaches a value of 4.84 µB (χM•T = 2.92 cm3•K•mol-1) at 15 
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K and then finally decreases to a value of 4.58 µB. This temperature dependence is in 

agreement with a non diamagnetic ground state. This kind of temperature dependence 

behavior is due to irregular spin state structure. The relative energies of the low-lying 

states can be calculated by using obtained exchange coupling constants. The spin state 

structure, i.e., the energy versus spin diagram is no longer regular; the spin does not vary 

monotonically versus the energy. On the contrary, for J< 0, the ground state has the spin 

ST = 2 which is presented schematically in the scheme 2. This irregularity of the spin 

state structure has quite drastic consequences on the magnetic behavior. The high-

temperature limit of µeff is equal to the sum of the contributions of the isolated ions. 

When the temperature is lowered from high-temperature, the first excited state to be 

thermally depopulated and µeff decreases. In the low-temperature range, when only a few 

excited states are significantly populated, further cooling depopulates states with a spin 

lower than that of the ground state, and µeff increases. At very low temperature, when 

only the ground state is populated, µeff reaches a plateau. These high- and low 

temperature behaviors result in a minimum for the µeff vs. T plot. The more pronounced 

the antiferromagnetic interactions, the higher is the temperature of this minimum. 

                                For a molecule such as 10 with different exchange parameters Jij are 

theoretically required for each possible pairwise exchange interactions between 

CrIII...CuII, and CrIII...CrIII centers. The exchange parameter between the "wing-tip" 

Cr(III) is assumed to be zero given the large distance between Cr(1) and Cr(2) [5.948 Å ].  

Inspection of the molecular structure of 10 reveals that there are two main exchange 

pathways between the "wing-tip" Cr(III) and "body" Cu(II) centers. The first exchange 

pathway JA = J12 = J34 (Jwb) refers to the CrIII(O)(NO)CuII interaction, second one, JB = J14 

= J23 (Jwb') refers to the CrIII(NO)CuII interactions. So the magnetic exchange coupling 

(JA) between chromium (III) and copper(II) is mediated through different bridges [a two 

atom N-O bridge and through oxo bridge], on the other hand the magnetic exchange 

coupling (JB) between chromium(III) and copper(II) is mediated through a two atom N-O 

bridge. It is to be noted here that the dominated exchange interaction pathways are via the 

µ2-OH- groups not the oximate (N-O) transmitters.  
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So from the magnetochemical view point, only two J values are required: JA = Jwb = J12 = 

J34, JB = Jwb' = J14 = J23; where w = wing-tip and b = body. A good fit was obtained with 

JA = J12 = J34 = - 79 cm-1; JB = J14 =J23 = - 17 cm-1 with g1 = g3 = 1.98 and g2 = g4 = 2.03. 

So, the data for complex 10 was analyzed with a "two-J" model. The higher value of JA 

compared to JB can be explained on the basis of spin transmitter. In the model, JA 

coupling transmitted through the diatomic N-O bridge and also µ2-hydroxo group while 

JB coupling transmitted only through the diatomic N-O bridge. In case of JB the bond 

distance between Cr...Cu (4.38Å) is much longer compared to the JA, where Cr...Cu bond 

distance is 3.3Å and gives rise to higher interaction in case of JA compared to JB. 
 



CHAPTER 4 

50 100 150 200 250 300

3.60

4.05

4.50

4.95

 

 

µ e
ff 

/ µ
B

T/K 0,0 0,5 1,0 1,5 2,0 2,50,0

0,5

1,0

1,5

2,0

 

 

M
 / 

N
gß

ßH / kT

 1 T

 4 T

7 T

 

 

Figure 4.8: Magnetic data for CrIII
2CuII

2
 (10) plot of µeff vs T and M/Ngß vs ßH/kT. The bold points 

represent the experimental data while the solid line represents the simulation. 

              

The exchange coupling between the chromium(III) and copper(II) is ferromagnetic on the 

basis of Goodenough-Kanamori rules. The occurrence of an antiferromagnetic interaction 

in 10 is unexpected on the basis of Goodenough-Kanamori rules, since a survey of the 

literature,16,35-36,38-39 shows that most generally, the CuII-CrIII pair has a ferromagnetic 

interaction with J values ranging from + 1.8 to + 52cm-1(based on H = - 2JSiSj). In these 

complexes the equatorial coordination planes are coplanar and ferromagnetism results 

from strict orthogonality of the magnetic orbitals. The complex CrIII
2CuII

2 may adopt a 

very low symmetry which could relax the symmetry requirements for effective overlap of 

the magnetic orbitals, allowing the AF contribution to be predominant. Moreover the 

average Cu-O-Cr angles are 114.5° which reduce the orthogonality of the magnetic 

orbitals and can cause a better overlap, gives rise to antiferromagnetic coupling. On the 

contrary to the ferromagnetic interaction between CrIII-CuII pair antiferromagnetic spin 

interaction J = - 19.5 cm-1 was reported for a CrIII-CuII complex based on oxime ligand.37
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                 Variable temperature variable field magnetic measurements confirm the molar 

magnetization (M/Ngß) at 7T,  is 1.95, very close to the expected saturation value of ST = 

2. The VTVH magnetic measurement was also simulated by using the method of full 

matrix diagonalization and from the best fit the values obtained are JA = J12 = J34 = - 79 
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cm-1, JB = J14 =J23 = - 17 cm-1 with g1 = g3 = 1.98 and g2 = g4 = 2.03. These "J" and g 

values are exactly the same values evaluated from the susceptibility measurements at 1 T 

described earlier and thus confirm the credibility of the simulated parameters. The 

superposition of the variable temperature variable field (VTVH) plots clearly indicates 

the absence of zero-field splitting (ZFS or D). So unambiguously the exchange coupling 

parameters for this CrIII
2CuII

2 complex are evaluated 

                 The energy of the ground state ST = 2, has arbitrarily set at zero and which is 

42 cm-1 below the first excited state ST = 1, and ST = 0 state is about 67 cm-1 well above 

the ground state ST = 2. Since the total spin of the first and the second excited states are 

ST = 1 and ST = 0, their population with increasing temperature reduces the effective 

magnetic moment of complex 10. Population of the third excited state, ST = 3 occurs 

around ∼ 100 K, which accounts for the increase in µeff at higher temperatures. As a result 

a minimum is observed in the magnetic moment curve. The ground state with ST = 2 

results from spin frustration in a broad sense. The term spin frustration describes as an 

effect where the interplay of various exchange interactions in a polynuclear complex 

causes a net spin-vector alignment which is different from that expected upon 

coordination of pairwise exchange interactions. 

 
Table 4.5: Intratetramer exchange parameters for complexes 9-10 
Compounds Magnetic core  J12 [cm-1] J23[cm-1] J24[cm-1] gFe gCr gCu(II)   

 
     9 FeIII

2CuII
2 J12 = J34

J14 = J23

- 125.0 - 6.0 - 50.0 2.01  2.04 

     10 CrIII
2CuII

2 J12 = J34

J14 = J23

- 79.0 - 17.0   1.98 2.03 

 

ST = 2

ST = 1

ST = 0

ST = 3

42 cm-1

66 cm-1

336 cm-1

0  

Low-lying states of the CrIII
2CuII

2 complex 10 
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simple topology and double methoxo bridges [Fe4(OCH3)6(dpm)6, where Hdpm = 

dipivaloylmethane] has been reported to behave as a single-molecule magnet8 in which 

the double methoxo bridges mediate antiferromagnetic interaction to give rise to the 

expected ST = 5 ground state (Scheme 1b). Herein, the structural and magnetic 

characterization of a Mn4 cluster that exhibits this interesting topology will be discussed. 

The compound, [Mn4(ppi)6](BF4)2 (Hppi is the Schiff base derived from 2-

pyridylaldehyde and 2-aminophenol), contains the trigonal Mn(II)[(µ2-phenoxo)2Mn(II)]3 

cluster core in which very weak ferromagnetic interactions are operative through the 

double phenoxo bridges, leading to a ST = 10 ground state not well isolated from other 

low-lying states. 

 

 

Scheme 1 

 

5.2 Synthesis: 

      Synthetic clusters containing three or four or more metal centers are often obtained by 

self assembly reactions. Small variations of the reaction conditions may have a great 

influence on the resulting structure. Therefore well directed design is of high interest for 

preparative inorganic chemistry to open new ways for the synthesis of polynuclear 

complexes. The use of precursor complexes as building blocks establishes an accessible 

way to design multinuclear compounds with a defined structural arrangement. The 
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complex [MnII
4(ppi)6](BF4)2 was synthesized by using the precursor complex [Mn(ppi)2], 

where [Mn(ppi)2] is the mononuclear neutral MnII complex, in which two ppi ligands 

chelate the manganese atom and both the phenoxo oxygen atom occupy the cis position. 

In the tetranuclear [MnII
4(ppi)6]2+ complex dication Mn(1), Mn(1A) and Mn(3) are 

equivalently coordinated by two deprotonated Hppi ligands leading to N4O2 donor set. 

The environment of the central Mn(2) is formed by coordination of the three [Mn(ppi)2] 

fragments resulting in a phenoxo bridged star-shaped Mn4O6 core motif. 

MB MA

MA

MA

MB MA

MA

MA

 

 

Figure 5.1:  Perspective view of the star-shaped core motif 

The complex [MnIII
4(salox)4(salox H)4] was synthesized by using the ligand salicylaldoxime 

(saloxH2), MnCl2.4H2O and Et3N in 2:1:4 ratio. 

 

5.3 Infrared and Mass Spectroscopy:  

The C=N stretching band in the MnII
4 (11) complex is observed at 1585 cm-1, while the 

strong Npy stretching band is observed at 1457 cm-1. The bands at 1083 and 1061 cm-1 

corresponds to the stretching frequency of B-F, confirms the presence of BF4 anion as the 

counteranion in the molecule.  

The C=N stretching band in the MnIII
4 (12) complex is observed at 1598 cm-1, while the 

sharp O-H stretching band is observed at 3422 cm-1 and the band at 2900 cm-1 confirms the 

hydrogen bonded OH...O core, which is also evidenced from the single-crystal X-ray 

structure. The NO stretchings for the "tetrahedral" MnIII
4 complex are observed at 1152 and 

1122 cm-1. 
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The manganese containing complex MnII
4 (11) provide signals in the ESI mass spectrum 

which allow unambiguous characterization of the complex. The base peak at 701 is due to 

the dipositively charged species [M-2BF4]2+. The peak due to monocation [M-BF4]+ (10% 

intensity) is also observed. Similarly for the MnIII
4 (12) complex the peak due to [M-2(salox 

H)]+ corresponds to the base peak and the peak due to [MnIII
4(salox)4(salox H)4] is also 

observed with 10% intensity. 

 

5.4 Solid State Molecular Structure: 

5.4.1 Structure of tetranuclear "High Spin Molecule" with a Star-Shaped Mn4O6 

core motif (11) 

           The molecular geometry and atom labeling scheme of the dication are shown in 

Figure 5.2. The crystallographic analysis of the complex revealed that the structure of 11 

consists of a dicationic tetranuclear Mn(II) cluster with [Mn4(ppi)6]2+, with 

tetrafluoroborate ions as counteranions, two acetonitrile molecules and one water 

molecule as solvents of crystallization. A perspective view of the cluster is shown in 

Figure 5.2 with selected bond distances and angles listed in Table 5.1. 

                    The tetramanganese cluster  contains a MnII[(µ2-O)2MnII]3 trigonal core with a Mn 

atom (Mn2) at the center and three Mn atoms (Mn1, Mn1A, Mn3) at the apexes and lies 

on a crystallographic 2-fold axis that passes through Mn2 and Mn1. Each of the apical 

Mn(II) ions is ligated by two deprotonated ppi ligands, which are tridentate via the 

pyridyl nitrogen, imine nitrogen, and phenolate oxygen atoms, to complete a highly 

distorted octahedral MnN4O2 coordination sphere. Although Mn1 and Mn3 are 

crystallographically independent, their bond distances and angles are more or less similar. 

As expected, the Mn-N distances [2.214(2)-2.337(2) Å] are longer than the Mn-O 

distances [2.138(14)-2.144(14) Å]. The pyridine nitrogen atoms N(1) and N(21) exhibit 

the longest distances to Mn(1) [2.288(2)-2.313(2) Å]. The three donor atoms of each 

ligand occupy the meridional positions around the metal ion and form two five-

membered chelate rings, imposing very large angular distortions upon the coordination 

environments: the N(pyridyl)-Mn-N(azomethine) and O(phenoxo)-Mn-N(azomethine) 

bite angles of the ligands are restricted to values smaller than 74°. The bond angles of cis 

O(15)-Mn1-N(8), N(8)-Mn(1)-N(1), and O(15)-Mn(1)-N(1) with values 74.26(6)°, 

72.14(6)° and 142.33(6)° are indicative of a distortion of the octahedral coordination 



CHAPTER 5 

environment of Mn(1). This can be attributed to the ligand structure that only allows for 

the formation of five membered chelate rings. Despite their conjugated π system, both the 

ligands show a distortion from planarity. 

 All the six ligands in the cluster are further coordinated to the central Mn(2) atom via 

their phenolate oxygen atoms, completing a pseudo-octahedral MnO6 coordination 

environment around Mn(2), and hence, each apical MnII ion is linked to the central one 

through a double phenoxo bridging moiety. The distortion of the Mn(2) sphere is much 

less significant than that of the apical MnII spheres. The cis O-Mn(2)-O angles are in the 

ranges of 79.81-94.9°, and the trans angles are about 170°. The Mn(2)-O distances fall in 

a narrow range of 2.1695(14)-2.186(14) Å and are slightly longer than the Mn(apical)-O 

bond distances. Detailed examination of the bond parameters around Mn2 shows the 

coordination environment approaches 3-fold symmetry very closely.  

                    The independent double µ2-phenoxo bridging moieties in the cluster show only 

minor differences. The Mn-O-Mn, O-Mn(apical)-O, and O-Mn(2)-O angles are in the 

narrow ranges of 98.75-100.8°, 79.81-82.40°, and 78.55-80.1°, respectively, while all the 

Mn···Mn distances spanned by the phenoxo bridges are equal within experimental error, 

taking the value 3.3 Å. The structural parameters are similar to those of [MnII
4L6](BPh4)2 

and [MnII
4L6](ClO4)2 complexes reported recently.37 

Figure 5.2: ORTEP and labeling scheme for MnII
4 (11) 
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            Due to the presence of the 2-fold axis through the cluster, the four Mn atoms are strictly 

coplanar and form a centered isosceles triangle. The apical angle Mn1···Mn3···Mn1A is 

61.19°, and the basal and side edge lengths are, respectively, 5.78 Å (Mn1···Mn1A) and 

5.68 Å (Mn1···Mn3).  The Mn(1)-O(15)-Mn(2)-O(35) bridging ring is strictly planar, 

which is imposed by the 2-fold symmetry, and the Mn(2)-O(55)-Mn(3)-O(55)≠ ring is 

also planar with the constituent atoms deviating from the mean plane by only ±0.001 Å, 

negligible within experimental error. The Mn(2)-O(55)-Mn(3)- O(55)≠  ring forms 

dihedral angles of 91.9 and 95.4 with the Mn(2)-O(55)-Mn3-O(35) ≠ and Mn(1)-O(15)-

Mn(2)-O(35) rings, respectively. Therefore, the tetranuclear molecule has a propeller 

shape and is chiral. Neighboring molecules are related by rotations to give a heterochiral 

but noncentrosymmetric structure. The molecules in the crystal are well separated from 

each other with the shortest Mn···Mn distance between neighboring clusters being 10.34 

Å.  

 
Table 5.1:  Selected Bond Lengths (Å) and Angles (deg) [MnII

4(ppi)6](BF4)2 .2CH3CN . H2O 

Mn(1)•••Mn(2)  3.286 Mn(3)•••Mn(2)  3.322 

    

Mn(1)-O(15) 2.139(14) Mn(2)-O(55) 2.17(14) 

Mn(1)-O(35) 2.144(14) Mn(2)-O(55) 2.17(14) 

Mn(1)-N(28) 2.214(2) Mn(2)-O(15) 2.181(14) 

Mn(1)-N(8) 2.223(2) Mn(2)-O(15) 2.181(14) 

Mn(1)-N(1) 2.288(2) Mn(2)-O(35) 2.186(14) 

Mn(1)-N(21) 2.313(2) Mn(2)-O(35) 2.186(14) 

Mn(3)-O(55) 2.141(14) N(50)-Mn(3)-N(42) 143.56(11) 

Mn(3)-O(55) 2.247(14) N(10)-Mn(1)-N(2) 141.7(12) 

Mn(3)-N(48) 2.226(2) O(15)-Mn(1)-O(35) 82.00(5) 

Mn(3)-N(48) 2.226(2) O(55)-Mn(3)-O(55) 79.81(8) 

Mn(3)-N(41) 2.337(2) O(55)-Mn(2)-O(55) 78.55(7) 

Mn(3)-N(41) 2.337(2) O(15)-Mn(2)-O(15) 93.68(8) 

  O(55)-Mn(2)-O(15) 168.54(5) 

  Mn(1)-O(15)-Mn(2) 99.07(6) 

  Mn(1)-O(35)-Mn(2) 98.75(11) 

  Mn(3)-O(55)-Mn(2) 100.82(6) 
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  Mn(3)-O(55)-Mn(2) 100.82(6) 

 

 5.4.2 X-ray Structure of [MnIII
4(salox)4 (salox H)4] 2.5 CH3OH    (12) 

The lattice is built of discrete neutral tetranuclear units and two and half methanol 

molecules of crystallization. The molecular geometry and atom labeling scheme of the 

tetranuclear unit is shown in Figure 5.3. The tetranuclear unit possesses a tetrahedral 

MnIII
4 core. The Nox-O bond lengths of average 1.343 +0.003 Å are nearly identical to 

those for other comparable structures and significantly shorter than 1.40 Å in general for 

free oxime ligands. The bond distance C=Nox (average 1.28Å) are expected, identical for 

other reported complexes. 

The X-ray crystal structure depicts a cluster containing four MnIII centers, each of which 

has a distorted octahedral coordination environment with four O and two cis N donor 

atoms. Each MnIII center is ligated by a terminal bidentate saloxH N and O donor [those 

containing N(19), N(39), N(59), N(79) and four atoms (1N and 3O) of ligand [[those 

containing N(19), N(39), N(59), N(79)]  Each of these bridging ligand joins two MnIII 

centers through its oximate oxygen atom (µ-O); the attached nitrogen atom links this Mn-

O-Mn moiety to a third MnIII center (µ-ON) and the phenolate oxygen atom is bound to 

this MnIII ion to form a six membered MnNCCCO chelate ring. The structure of the 

cluster is further stabilized by four intramolecular hydrogen bonds between a terminal 

oxime NOH group of the bidentate salox H ligand and the adjacent phenolate oxygen 

atom of another such ligand. The X-ray structure clearly shows that all the manganese 

ions are Jahn-Teller distorted, high-spin d4 MnIII ions; the axially elongated sites are 

occupied  by the oximate nitrogen  atom and oximate oxygen in µ2-fashion with Mn(1)-

N(19) = 2.261(5)Å, Mn(1)-O(70) = 2.248(4)Å, and O(70)-Mn(1)-N(19) = 168.84(18)°; 

Mn(2)-N(39) = 2.276(6)Å, Mn(2)-O(90) = 2.213(5)Å, and O(90)-Mn(2)-N(39) = 

166.06(18)°; similarly Mn(3)-N(59) = 2.226(6)Å, Mn(3)-O(30) = 2.232(4)Å , and O(70)-

Mn(3)-N(19) = 166.07(19)° ; Mn(4)-N(19) = 2.261(5)Å, Mn(4)-O(70) = 2.248(4)Å , and 

O(70)-Mn(4)-N(19) = 172.26(18)°. Although in oximate based polynuclear systems a two 

atom (N-O) bridging group between two metal centers is virtually the universal bonding 

mode for oximes, a monoatomic oximate-O bridging is also not very uncommon, and 

once again it is also supported from the X-ray structure of the MnIII
4 tetrahedron core. All 

the oximate oxygen of the ligands are not deprotonated, four oximate oxygen atoms 

O(20,40,60,80) remain protonated and hydrogen bonded with the phenolate oxygen atom 
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of the adjacent ligand. The remaining four oximate oxygen atoms O(30,50,70,90) act as a 

bifurcated ligands, O(30), O(50), O(70), O(90) act as a bridge between Mn(3) and Mn(2); 

Mn(3) and Mn(4); Mn(4) and Mn(1); Mn(1) and Mn(2) respectively. The Mn-Oox bond 

lengths lie in the ranges 1.96 to 2.278Å. The average Mn-Ophenoxo bond length is 1.885(4) 

Å and is shorter than the Mn-Oox bond distances, whereas the average Mn-N bond length 

is 2.135(5)Å. So the metrical parameters for the trivalent manganese ions are significantly 

shorter than the metrical parameters of the divalent manganese ions.  

The four MnIII centers of the tetranuclear cluster have a distorted tetrahedral arrangement 

with average Mn....Mn distances of about 3.5Å for linkage by one µ-O and one µ-ON, 

and about 4.1 Å for linkage by two µ-ON groups. A tetranuclear MnIII cluster, albeit with 

a different structure, was identified in [L2MnIII
2(µ3-O)2(salox)2(µ2-OOCR)3MnIII

2](ClO4); 

the cation of which contains a butterfly arrangement  of the four MnIII centers formed by 

two edge sharing MnIII
3(µ3-O) triangular units in which deprotonated NO groups bridge 

the "wing" and "body" position of manganese atoms.35d A similar isostructural FeIII
4 

cluster with a tetrahedral core is also known.20 

 

Figure 5.3: ORTEP and labeling scheme for MnIII
4 (12) 
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There are six strong hydrogen bondings prevailing between the oximate oxygen atoms, 

phenoxo oxygen atoms and methanol oxygen atoms and is shown as dotted lines in the 

Figure 5.3. The OH...O bond distances lie in the ranges of 2.656-2.889 Å and are listed in 

Table 5.2A. These chemically significant hydrogen bondings are responsible for the 

stabilization of the tetranuclear core in cluster 12. 
 

Table 5.2:  Selected Bond Lengths (Å) and Angles (deg) for [MnIII
4(salox)4(salox H)4] 2.5 CH3OH (12) 

Mn(1)•••Mn(2)  3.531 Mn(2)•••Mn(3)  3.574 

Mn(3)•••Mn(4)  3.578 Mn(4)•••Mn(1)  3.584 

    

    

Mn(1)-O(21) 1.869(4) Mn(3)-O(61) 1.869(4) 

Mn(1)-O(11) 1.900(5) Mn(3)-O(51) 1.901(5) 

Mn(1)-O(90) 1.967(4) Mn(3)-O(50) 1.976(4) 

Mn(1)-O(70) 2.248(4) Mn(3)-O(30) 2.232(4) 

Mn(1)-N(29) 2.035(6) Mn(3)-N(69) 2.022(6) 

Mn(1)-N(19) 2.261(5) Mn(3)-N(59) 2.226(6) 

    

Mn(2)-O(41) 1.867(4) Mn(4)-O(81) 1.875(4) 

Mn(2)-O(31) 1.912(4) Mn(4)-O(71) 1.896(4) 

Mn(2)-O(90) 2.213(5) Mn(4)-O(50) 2.278(5) 

Mn(2)-O(30) 1.960(4) Mn(4)-O(70) 1.968(4) 

Mn(2)-N(49) 2.012(5) Mn(4)-N(89) 2.009(5) 

Mn(2)-N(39) 2.276(6) Mn(4)-N(79) 2.220(6) 

    

O(70)-Mn(1)-N(19) 168.84(18) Mn(2)-O(30)-Mn(3) 116.9(2) 

O(90)-Mn(2)-N(39) 166.06(18) Mn(3)-O(50)-Mn(4) 114.4(2) 

O(30)-Mn(3)-N(59) 166.07(19) Mn(4)-O(70)-Mn(1) 116.31(18) 

O(50)-Mn(4)-N(79) 172.26(18) Mn(1)-O(90)-Mn(2) 114.3(2) 

 
Table 5.1A:  Selected Bond Lengths (Å) for the hydrogen bonding in the MnIII

4 cluster. 

O(51)•••HO(40) 2.685 O(31)•••HO(20) 2.656 

O(81)•••HO(100) 2.889 O(71)•••HO(60) 2.696 
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O(41)•••HO(300) 2.887 O(11)•••HO(80) 2.670 

 

5.5 Magnetic Properties: 

5.5.1 Magnetic Properties of MnII
4: 

The magnetic behavior of MnII
4 is shown in Figure 5.4 in the form of the effective 

magnetic moments (µeff) versus temperature (T). The magnetic susceptibility was 

measured at 1T in the 1.95-290 K temperature range. The magnetic moment of 11.74 µB 

(χT = 17.24 emu mol-1 K) at 290 K is lower than the spin only value of χT = 17.5 emu 

mol-1 K expected for four isolated high-spin Mn(II) ions. The effective magnetic moment 

(µeff) increases monotonically with decreasing temperature until it reaches a value of 

12.42 µB (χT = 19.31) emu mol-1 K at 10 K and then starts to decreases and reaches a 

value of 7.98 µB (χT = 7.99 emu mol-1 K) at 1.95K. This temperature dependence 

magnetic behavior suggests that a ferromagnetic interaction is operative through the 

double phenoxo bridges.  

To further verify the weak ferromagnetic interaction, variable temperature variable field 

(VTVH) measurements have been performed at 1.95 -290K at 1, 4 and 7 T. The molar 

magnetizations per MnII
4 cluster in the field range of 1, 4 and 7 T are shown in Figure 

5.4. When ferromagnetic coupling exists between the central and peripheral Mn(II) ions, 

the magnetization will saturate more rapidly than that in the uncoupled system. On the 

other hand, if the coupling were antiferromagnetic, the magnetization would increase less 

rapidly than that in the uncoupled system. In the present case of 11, the magnetization 

increases more rapidly than that of the uncoupled system and saturates at 20Ngβ, 

confirming the ferromagnetic interaction  

                         The analysis of the magnetic data was performed using Heisenberg-Dirac-Van 

Vleck (HDVV) model. The least squares fitting computer program JULIUS-F with a full 

matrix diagonalization approach was employed to fit the temperature and field dependent 

magnetization. The program uses the spin-Hamiltonian operator, Htotal = Hz + Hzfs + 

HHDVV, where the exchange coupling is described by HHDVV = -2JSi.Sj, the Zeeman 

interactions are given by Hz = µBBgiSi and the axial single ion zero field interaction is 

described by Hzfs = DSz
2. Here we use the Heisenberg spin Hamiltonian in the form E = - 

2J(S1S2 + S1S3) - 2J'S1S4 where J = J12 = J13 and J' = J14 .         

 

 



CHAPTER 5 

 

 

 

 

 99 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Mn4 

M

Mn3

n2

Mn1

J14

J13

J12

Schematic representation of exchange coupling model in the star-shaped MnII
4 core 

                              

                         A simulation shown as a solid line in Figure 5.4 results in J = J12 = J13 = + 0.32 

cm-1 and J' = J14 = - 0.2 cm-1, with g1 = g2 = g3 =g4 = 1.98. The experimental data can also 

be simulated by taking isotropic exchange interactions between the central Mn(2) and the 

apical Mn(1,1A, 3) centers with J = J12 = J13 = J14 and the result obtained is J = J12 = J13 = 

J14 = + 0.2 cm-1, gMn(II) = 1.98 and θ = - 0.2. But the more physical solution of explaining 

the exchange interactions is to consider two different exchange couplings due to the  

variation in the average bond angles which are 98.9° [Mn(1)-O-Mn(2); Mn(1A)-O-

Mn(2)] and 100.8°[ Mn(3)-O-Mn(2)]. We have also extracted the exchange coupling 

constants by simulating VTVH measurements. The unambiguously determined 

parameters are J = J12 = J13 = + 0.47 cm-1 and J' = J14 = - 0.19 cm-1 g1 = g2 = g3 =g4 = 1.98. 

So the high-spin Mn(II) centers with S = 5/2 exhibit weak ferromagnetic coupling in the 
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MnII
4 molecule as is evidenced from both the magnetic susceptibility and VTVH 

measurements, yielding high-spin molecules with ST = 10 ground state.  
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Figure 5.4: Magnetic data for MnII
4
 (11) plot of µeff vs T and M/Ngß vs ßH/kT. The bold points represent 

the experimental data while the solid line represents the simulation. 

                                                               

So due to the weak exchange coupling between the Mn(II) ions, the molecule exhibits an 

extremely complicated low-lying structure which is not well separated from the upper-

lying states, according to the Boltzmann distribution law all the excited states will be 

populated. Accordingly, the measured magnetization has more contributions from excited 

states of lower spins than from the ground spin. The above discussion is qualitatively 

valid, although we have ignored zero-field splitting effects. The negative value suggests 

that the zero-field splitting effects should cause a decrease in magnetization, so the 

phenomenon that the magnetization of MnII
4 increases more rapidly than that of a 

hypothetical uncoupled system should be due to ferromagnetic coupling between Mn(II) 

ions. 

Sofar reported exchange interactions between high-spin Mn(II) ions are weakly 

antiferromagnetic, although ferromagnetic coupling between Mn(II) ions is known in one 

azide bridge in the -1,1 mode,9 the ferromagnetic coupling between Mn(II) ions mediated 

by the phenoxo bridge in 11 is rare. For dimeric Cu(II) or Ni(II) complexes it is well 

known that bis(-phenoxo), bis(-alkoxo), and bis(-hydroxo) bridges can mediate overall 

antiferromagnetic coupling or, in the case that accidental orthogonality is achieved, 
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overall ferromagnetic coupling.10-11 Good correlations between the exchange integral J 

and the M-O-M bridging angle have been established in case of Ni and Cu, and the 

magnetic interaction changes from antiferromagnetic to ferromagnetic at a certain angle 

(in most cases around 98°). However, magnetostructural analyses for coupled Mn(II) and 

Fe(III) complexes are far more difficult intrinsically due to complications arising from 

the larger numbers of magnetic orbitals and exchange pathways that have to be taken into 

account for high-spin d5 ions.12-13 Nevertheless, some semiempirical correlations between 

J and bridging parameters have been reported for diiron(III) complexes containing -

phenoxo, -alkoxo, or -hydroxo bridges, suggesting that J correlates strongly with Fe-O 

distances whereas its dependence on the M-O-M bridging angle is very weak. It is 

interesting to note that nearly all these diiron(III) complexes display antiferromagnetic 

interactions, and only one has been reported to be ferromagnetic.14 The authors ascribed 

ferromagnetic coupling mainly to the distortion of the coordination geometry based on 

extended Hückel MO calculations.  

                 The number of oxygen-bridged dimanganese(II) complexes is much smaller than that 

of the Fe(III) analogues, probably due to the tendency of Mn(II) to be oxidized. A 

number of dimanganese(II) complexes with a phenoxo bridge and one or two other 

bridges (frequently carboxylato groups) have been reported,15-16 among which all the 

magnetically characterized species were found to exhibit antiferromagnetic 

intramolecular interactions with – J < 10 cm-1. For (µ-phenoxo)bis(µ-

carboxylato)dimanganese(II) complexes, Dubois et al. established recently a rough linear 

magnetostructural correlation between the J value and the average Mn-O(phenoxo) 

distance (dMn-O), and the general trend is - J decreasing as dMn-O increases.16a Some 

dimanganese(II) complexes with the bis(µ2-phenoxo), bis(µ2-alkoxo), or bis(µ2-hydroxo) 

bridge  have also been reported.17-19 While most of them exhibit antiferromagnetic 

coupling (- J <10 cm-1) with dMn-O = 2.07-2.16 Å, only a bis(µ2-alkoxo) complex and a 

bis(µ2-phenoxo) complex, both with dMn-O = 2.15 Å, have been found to exhibit weak 

ferromagnetic interactions (J = + 1.0 and + 0.8 cm-1, respectively).19 In the present 

ferromagnetic bis(µ2-phenoxo)-bridged MnII
4 complex, the Mn-O distances are between 

2.14 and 2.19 Å. Apparently, with these limited data it is impossible to deduce a 

correlation between the nature of the coupling and dMn-O for these complexes. We also 

compared these complexes in terms of the Mn-O-Mn bridging angle (87-103°) and the 

Mn···Mn distance (2.98-3.37Å), and no simple magnetostructural correlation is evident 

concerning the nature and magnitude of the magnetic coupling. However, close 
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inspection into structural data reveals that the metal environments in the ferromagnetic 

species are highly distorted from octahedral. Similar distortion occurs for the 

ferromagnetic bis(µ2-alkoxo)dimanganese(II) complex,19a while the ferromagnetic bis(µ2-

phenoxo)dimanganese(II) complex exhibits more significant distortion: the chelating 

carboxylato group dictates a very small cis angle of 55°, and the four largest angles lie in 

the narrow 133-140° range.19b It is difficult to distinguish the cis and trans angles in such 

a structure. On the other hand, the antiferromagnetic species exhibit relatively small 

distortion. The largest distortion was observed for [Mn(SALPS)]2 {SALPS = N,N'-[1,l'-

dithiobis-(phenylene)]bis(salicy1ideneaminato)}18a in which the largest cis and the 

smallest trans angles are 108 and 153°, respectively. Although the data available are 

limited, the above observation may suggest that the nature of magnetic coupling in this 

class of complexes correlates with the distortion of the coordination geometry. Perhaps 

the distortion, in conjunction with other factors, dictates a proper relative orientation for 

the interacting magnetic orbitals so that accidental orthogonality is achieved.  

             

5.5.2 Magnetic Properties: 

Magnetic susceptibility data for polycrystalline samples of the complex 12 were collected 

in the temperature range 2-290 K in an applied magnetic field of 1 T. The experimental 

data as the effective magnetic moments (µeff) versus temperature (T) are displayed in 

Figure 5.5. The experimental magnetic data were simulated using a least squares fitting 

computer program with a full-matrix diagonalization approach and the solid lines in 

Figures 5.5 represent the simulations. 

            The analysis of the magnetic data was performed using Heisenberg-Dirac-Van Vleck 

(HDVV) model. The least squares fitting computer program JULIUS-F with a full matrix 

diagonalization approach was employed to fit the temperature and field dependent 

magnetization. The program uses the spin-Hamiltonian operator, Htotal = Hz + Hzfs + 

HHDVV, where the exchange coupling is described by HHDVV = -2JS1.S2, the Zeeman 

interactions are given by Hz = µBBgiSi and the axial single ion zero field interaction is 

described by Hzfs = DSz
2.                

                   The magnetic moment µeff/molecule for MnIII
4 (12) of 9.82 µB (χM•T = 12.05 

cm3•K•mol-1) at 290 K increases monotonically with decreasing temperature until it 

reaches a value of 11.58 µB (χM•T = 16.78 cm3•K•mol-1) at 10 K and then starts to 

decrease with decreasing temperature and reaches a value of 6.8 µB (χM•T = 5.72 
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cm3•K•mol-1) at 1.95 K. This temperature dependence is in agreement with 

ferromagnetic interaction in the MnIII
4 cluster.  

           The coupling model could probably require two J values, exchange pathways with "edge" 

coupling constants and "diagonal" coupling constants; the dominant one would be 

expected to be that associated with the Mn(µ-O)Mn fragment, since µ-oxo bridge MnIII 

dimers are known to be weakly antiferromagnetic or ferromagnetic in nature. 
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Schematic representation of exchange coupling model in the tetrahedral MnIII

4 core. 
           

           Simulations of the experimental data for 12 yield two coupling constants of nearly same 

magnitude, but with opposite signs. In the model as shown below, J (J12 = J23 = J34 = J14) 

represents the exchange interactions between adjacent metal ions, whereas J'(J13 = J24) 

describes interaction between the corner ions of the tetrahedral MnIII
4 core. Here we use 

the Heisenberg spin Hamiltonian in the form E = - 2J(S1S2 + S2S3 + S3S4 + S1S4) - 
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2J'(S1S3 + S2S4). The J coupling is mediated through a combination of µ2-NO and µ2-

O(N) groups, while the J’ is mediated only through µ2-NO group. 

The nearest neighbour coupling i e., the exchange interactions between Mn(1)....Mn(2), 

Mn(2)....Mn(3), Mn(3)...Mn(4), Mn(4)....Mn(1) pairs, J is ferromagnetic in nature with a 

value of + 1.9 cm-1, but the spin interactions between the diagonal Mn(III) ions, 

Mn(1)....Mn(3), Mn(2)....Mn(4) are antiferromagnetic with J' = - 1.6 cm-1. To simulate 

the experimental data with an "one-J" model proved to be unsuccessful. To fit particularly 

the low temperature data for 12, it is necessary to consider the single ion zero-field 

splitting parameter for Mn(III), D(MnIII) during the fitting procedure. It is important to 

note that variations of µeff are not very sensitive to the sign of D and it is difficult, if not 

impossible, to determine unambiguously the sign of D from powder magnetic 

susceptibility measurement. From the best fit the parameters obtained are J = + 1.9 cm-1, 

J' = - 1.6 cm-1, ⎢D ⎢= 3.00 cm-1 and gMn
III = 1.95 
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Figure 5.5: Magnetic data for MnIII
4
 (12) plot of µeff vs. T and M/Ngß vs. ßH/kT. The bold points 

represent the experimental data while the solid line represents the simulation. 

                  

To determine the spin ground state, magnetization data were collected at 1, 4 and 7 T in 

the temperature range 2-290 K and plotted as reduced magnetization (M/Ngβ) vs. 

(βH/kT) (vide infra), where N is the Avogadro’s number, β is the Bohr magneton and k is 

the Boltzmann's constant. For a system occupying only the ground state and experiencing 

no zero-field splitting (D), the various isofield lines would be superimposed and M/Ngβ 
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would saturate at a value S. The non-superposition of the variable temperature variable 

field (VTVH) plots at low temperature clearly indicates the presence of zero-field 

splitting (ZFS or D). Reduced magnetization measurement yielded a ground state ST = 8 

Attempts to fit the data by using the method of full-matrix diagonalization of the spin 

Hamiltonian matrix including axial ZFS, with the pairwise exchange interactions, 

produced best fits with, J = + 1.9 cm-1,  J' = - 1.6 cm-1, gMn = 1.95, D1 = D3 = D5 = D6 = 

⎢DMn(III) ⎢ = 3.0 cm-1. These "J" and g values are exactly the same values evaluated from 

the susceptibility measurements at 1 T described earlier and thus confirm the credibility 

of the simulated parameters. The variable temperature variable field (VTVH) plot is 

shown in the Figure 5.5. It should be pointed that the main source of the molecular 

anisotropy is due to the presence of four Jahn-Teller distorted MnIII ions. The projections 

of these single-ion anisotropies onto the molecular anisotropy axis will determine the 

molecular parameter D. This above result suggests that unambiguous determination of the 

sign of D is not precisely possible from VTVH measurements. 

         A consideration of intermolecular interactions is relevant to the discussion that follows 

of the magnetic properties of this complex. Magnetochemical characterization reveals 

that the tetrahedral MnIII
4 complex possesses small intramolecular ferromagnetic and 

antiferromagnetic interactions manifested through this µ2-NO and µ2-O(N) bridges. The 

smaller magnitude of the exchange interactions derived for 12 may result from the fact 

that the O-atom bridge is a µ-ON rather than a µ-oxo. It must be stressed again that when 

two spin carriers are bridged by several groups, identical or different, it is not possible to 

analyze the interaction parameter deduced from magnetic data without taking into 

account the phase relations between the bridges. In other terms, what is crucial for 

predicting the nature of the interaction is not the symmetry of each of the bridges, but the 

symmetry of the bridging network as a whole.  

                  Ferromagnetic interactions between MnIII ions found in a tetranuclear manganese 

complex reported by Christou et.al.21  Weak ferromagnetic interaction (J = + 1.9 cm-1) 

between MnIII centers are also found in an approximately square MnIII
4 clusters reported 

by Boskovic et al,22 and in a dinuclear manganese(III) oximate complex reported by 

Verani et al.35e  

      The pertinent point of the magnetic analysis and a survey of the series of MnIII-

polynuclear clusters are given below. It led to the combination of similarly sized 

antiferromagnetic and ferromagnetic interactions as shown in Figure 5.5. With the sparse 

data presented to date, it is not obvious why the J values have different signs, although it 
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is known, that J can be just positive or just negative. The Mn...Mn separation in these 

complexes is in the range from 3.08 to 3.26Å , while the Mn-O-Mn angles vary between 

117.9 and 130.9°. Variable temperature magnetic measurement of these complexes 

indicate both weakly ferromagnetic and antiferromagnetic interactions between 

manganese(III) centers.34(see Table 5.3). Observed weak ferromagnetic exchange 

coupling constant in the complex 12 with average Mn-O-Mn angle of 115° is in well 

accord. Table 5.4 summarizes magnetic parameters of exchange coupled manganese 

oximate complexes.36 

Table 5.3: Structural and magnetic properties of MnIII....MnIII core congeners 
Compounds Magnetic core Mn-O-Mn 

angle(in deg)

JMn(III)..Mn(III)  

[cm-1] 

References 

[Mn2O(OAc)(tmima)2](ClO4)2 . 2CH3CN MnIII-MnIII 130.9  + 1.33    23 

[Mn2O(OAc)(bispicen)2](ClO4)3  MnIII-MnIII 130.8  + 19.5     24 

[Mn2O(O2CC6H5)2(N3)2(bpy)2](ClO4)3  

CH3CN . 4H2O 

MnIII-MnIII 122.0  + 8.8     25 

[Mn2O(OAc)2Cl2(bpy)2] MnIII-MnIII 124.3  - 4.1    26 

[Mn2O(OAc)2((HB(pz)3)]2 . 4CH3CN MnIII-MnIII 125.1  - 0.2    27 

[Mn2O(OAc)2((HB(pz)3)]2 . CH3CN MnIII-MnIII 125.0  - 0.7    27 

[Mn2O(OAc)2(tacn)2](ClO4)2 MnIII-MnIII 117.9  + 9.0    28 

[Mn2O(5-NO2-saldien)] MnIII-MnIII 168.4  - 120.0    29 

[Mn2O(OAc)2(Me3Tacn)2](ClO4)2 . H2O MnIII-MnIII 120.9  + 9.0    28 

[Mn2O(OAc)(tppn)]2(ClO4)4 . 4CH3CN MnIII-MnIII  + 11.0    31 

[Mn2O(OAc)(tmip)2](ClO4)2  MnIII-MnIII 124.4 - 0.2    30 

[Mn2O(OAc)(ttco)2](PF6)2  MnIII-MnIII 122.2 + 4.6    32 

[Mn2O(OAc)(mpepma)2](PF6)2  MnIII-MnIII  + 1.0    33 

[(Me3Tacn)2Mn4(salox)2(µ3-

O)2(Ph2C(OH)COO)3](ClO4) 

MnIII-MnIII 92.8 - 7.73   35d 

[(Me3Tacn)2Mn4(salox)2(µ3-

O)2(Ph3CCOO)3](ClO4) 

MnIII-MnIII  - 6.71   35d 

 
 
Table 5.4: Magnetic parameters in exchange coupled manganese oximate complexes 

Compounds Magnetic core JMn(III)..Mn(III)  

[cm-1] 

References 

[(Me3Tacn)MnIII{(dmg)3MnII}MnIII(Me3Tacn)] 

(ClO4)2

MnIII-MnIII  - 3.0 35a 

[(Me3Tacn)MnIII{(dmg)3MnII}MnIII(Me3Tacn)] MnIII-MnIII  + 2.7 35a 
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(ClO4)2

[(Me3Tacn)MnIII{(dmg)3MnII}MnIII(Me3Tacn)] 

(ClO4)2

MnIII-MnIII   - 2.8 35a 

[Mn3(mcoe)6] (NO3) MnIII-MnIII  - 0.6 35b 

[Mn3(µ3-O)(bamen)3] (ClO4) MnIII-MnIII  + 22.3 35c 

[(Me3Tacn)2Mn4(salox)2(µ3-O)2(Ph2C(OH)COO)3](ClO4) MnIII-MnIII - 0.47 35d 

[(Me3Tacn)2Mn4(salox)2(µ3-O)2(Ph3CCOO)3](ClO4) MnIII-MnIII - 1.63 35d 

[(Me3Tacn)MnIIIMnIII(salox)3] MnIII-MnIII + 6.5 35e 

 

It is anticipated that further characterization of the system to determine more precisely  

the values of ST and D and to fully elucidate the sign of the ZFS(D), alternating current 

susceptibility (AC) measurement or high-frequency EPR (HFEPR) techniques will be 

needed. 

Verification of the ST = 8 ground state and the sign and magnitudes of ZFS parameters 

for complex 12 • 2.5 MeOH needs to obtain by means of high-frequency EPR (HFEPR) 

method. This technique is ideally suited for complexes that have appreciable zero-field 

splitting and/or an integer spin ground state. Since the microwave energies employed (> 

100 GHz) are relatively large, it is possible to observe direct transitions between the 

zero-field split components of the large spin ground state. HFEPR has been used to 

characterize the ground state of several high-spin complexes. An analysis of HFEPR 

spectra can give the sign and precise value for the ZFS parameters. In an ideal case, the 

spin ground state can be determined by simply counting the number of peaks in the fine 

structure, and the zero-field splitting can be evaluated from the spacing between 

successive peaks in the structure. 
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CHAPTER-6 
 MIXED-VALENCE HEXANUCLEAR MANGANESE COMPLEXES 

OF [MnII
2MnIII

4O2]12+ AND HEXANUCLEAR COPPER COMPLEX 

OF [CuII
3O...H...OCuII

3]9+ CORE CONGENERS. 

6.1 Introduction: 

It has been shown previously that the oxime ligands can connect two transition metal 

ions, generating oxime bridged polynuclear complexes. Also the ability of the oxime 

functionality to efficiently transmit magnetic coupling has been well documented. A 

number of complexes with Cu3O or Cu3OH cores held by peripheral bridging ligands 

have been reported.1-4 Synthetic and magnetic properties of high nuclearity (≥ 4) 

manganese compounds have been the focus of intense interest of research efforts in 

recent years. Impetus for studying the structural and physical properties of this class of 

molecules has come from a variety of sources including the need for bioinorganic models 

of the polynuclear manganese core in Photosystem II, interest in polynuclear compounds 

of iron, manganese, nickel as possible molecular units for the construction of magnetic 

materials. Large clusters of this kind also represent a new phase of magnetism that lies 

between the simple paramagnetism of isolated molecules and the bulk magnetism of 

extended lattices. 

           With the above areas of interest in mind some groups have synthesized a variety of 

polynuclear magnanese complexes and characterized them crystallographically and by 

several other physical techniques. Several Mn4 compounds have been prepared, which  
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exhibit either a "butterfly" or "distorted cubane" structural motif and which form the 

basic unit of many of the higher nuclearity assemblies. Discrete complexes containing 

more than four metal centers are considerably fewer in number. 

           Continuous interest in polynuclear oxime based complexes enabled the discover 

yet uncommon hexanuclear mixed valence MnIII
4MnII

2 complexes containing the 

structural core [MnIII
4MnII

2(µ4-O)2]. Hexanuclear compound containing the 

[MnII
4MnIII

2(µ4-O)2]10+ core5 which have ST = 0 ground state is known, but the core in the 

fashion [MnIII
4MnII

2(µ4-O)2]12+ is unusual and thus it's magnetic behavior is of interest 

and comparisons of its properties to those of the [MnIII
4MnII

2(µ4-O)2]12+ core can be 

made. 

            Recent report indicates that the pathway used to obtain polynuclear arrays are 

based essentially on the following synthetic strategies: (i) the self-assembly method, (ii) 

the use of polynucleating ligands and (iii) the use of "complexes as ligands". On the basis 

of these principles, a large variety of polynuclear complexes have been synthesized and 

magnetostructurally characterized. So on the basis of the self assembly and using 

polydentate oxime two manganese hexanuclear and one copper hexanuclear complexes 

were isolated and magnetostructurally characterized. 

 

6.2 Synthesis:

 Complexation of the trinuclear precursor [Mn3O(CH3COO)6(H2O)3](CH3COO) by 2,6-

diacetylpyridine dioxime ligand in methanolic solution yields hexanuclear complex 

[MnII
2MnIII

4(µ4-O)2(µ2-OMe)2(dapdo)2(dapdoH)4](ClO4)2 (13) and [MnII
2MnIII

4(µ4-

O)2(µ2-OH)2(dapdo)2(dapdoH)4](ClO4)2 (14) was synthesized by the complexation of 

Mn(ClO4)2 .6H2O by 2,6-diacetylpyridine dioxime where dapdoH2 = 2,6-diacetylpyridine 

dioxime. The mechanism likely involves reaction of a [Mn3O]7+ unit of trinuclear 

complex to a [Mn3O]6+ species which spontaneously aggregates to 13 and 14 containing 

the [Mn6O2]12+ core. On the other hand by using another oxime ligand (b), a hexanuclear 

copper (II) complex which is also composed of two CuII
3O triangular cores synthetically 

and magnetostructurally explored and will be discussed briefly in this chapter. The 

different oximes used for these hexanuclear complexes are shown on next page: 
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Figure 6.1: Ligands used for the hexanuclear complexes, (a) dapdoH2, (b) LH2

6.3 Infrared and Mass Spectroscopy: 
       The relevant bands in IR spectra of the complex 13 and 14 at 3425 and 2950 cm-1 

correspond to the O-H and C-H stretching respectively in the MnIII
4MnII

2 core. A 

moderately intense C=N stretching band for the ligand is observed at 1597 cm-1. A 

notable feature of the NO stretching for 13 and 14 are the sharp bands at 1141, 1121 cm-1.  

A sharp band around 1052 cm-1 is due to bridging OMe groups. Stretching bands at 624 

cm-1 correspond to the ClO4 unit which is the counteranion in all the two hexanuclear 

magnanese complexes. 

        Complexes 15 also shows the C=N stretching band for the ligand at 1628 cm-1. 

Moderate peaks at 3421 cm-1 corresponds to the presence of O-H stretching. While the 

NO stretching bands for the CuII
6 complex are observed at 1121, 1089 cm-1, strong peak 

at 1080 is due to the BF4 counteranion. 

        Electrospray-ionaziation mass spectrometry (ESI-MS) in the positive ion mode has 

been proved to be very successful in characterizing the hexanuclear manganese and 

copper complexes, which show the dipositively charged species [M-2ClO4]2+ as the base 

peak for the hexanuclear manganese complexes (14 and 15), and the tripositively charged 

species [M-3BF4]3+ for 15. 

 

6.4 X-ray structure:
6.4.1 Solid State Molecular Structure of [MnII

2MnIII
4(µ4-O)2(µ2-

OH)2(dapdo)2(dapdoH)4](ClO4)2 .6CH3CN (14) : 

The molecular structures of the complexes 13 and 14 are depicted in the Figures 6.3 and 

6.4 respectively. Approximately equivalent views are presented to aid comparison. The 

labeling schemes are similar but not identical. Selected bond lengths and angles for 14 
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and 13 are given in full detail in Tables 6.1 and 6.2 respectively.  The structure of 14 is 

identical with that of 13  except for small differences in ligation for example µ-OH in 14 

and µ-OMe in 13, herein molecular structure of the complex 14 will be discussed briefly.  

                  The structure of the complex molecule consists of a discrete dicationic 

hexanuclear unit; two noncordinatively bound perchlorate anions and six acetonitrile 

molecules as solvents of crystallization. The structure of 14 consists of six Mn atoms 

arranged as two "edge-sharing" tetrahedra. At the center of each tetrahedron lies a µ4-O2- 

ion. Peripheral ligation includes two dioxime dianions, four dioxime monoanions and two 

exogenous methoxide ligands for 13, and two exogenous hydroxide ligands for 14. 

Oxidation states for the manganese ions in these hexanuclear complexes are readily 

assigned by examining the bond distances in each manganese ion. Many compounds 

containing Mn(III) ions exhibit the classic Jahn-Teller distorted geometry expected for a 

high-spin d4 ion, making the identification of this oxidation state for manganese 

straightforward. All the manganese(III) ions are six coordinate and possess distorted 

octahedral geometry. Charge considerations indicate a mixed valence MnIII
4MnII

2 

description and the MnIII centers are assigned as Mn(1), Mn(6), Mn(3) and Mn(5) . The 

MnII centers are assigned as central Mn(2) and Mn(4), both the MnII centers being seven 

coordinate and are crystallographically equivalent as can be seen in Figure 6.3. As shown 

in Table 6.1, the Mn(1)-O(100), Mn(3)-O(100), Mn(3)-O(110) distances are noticeably 

shorter by 0.40Å than the Mn(2)-O(100) and Mn(2)-O(110) distances consistent with the 

higher oxidation state in Mn(1) and Mn(3). As the core structure can be thought of two 

similar triangular MnIII
2MnII units joined through µ4-O ligation, only one triangular unit 

will be discussed. The MnIII pair [Mn(1) and Mn(3)]  are  bridged by oximate-O(11) and 

through µ4-O(100), whereas the MnIIMnIII pairs [Mn(2) and Mn(3)]  and [Mn(2) and 

Mn(1)]  are bridged by [µ4-O(100) and µ2-OH(110)] and [[µ4-O(100) and oximate-O(31)] 

respectively. In each triangular MnIII
2MnII unit, the MnIII ions [Mn(1) and Mn(3)] have a 

distorted N3O3 coordination sphere, whereas the MnII ion [Mn(2)] has distorted N3O4 

ligands mode. The usual coordination number of Mn(II) is 6, and since high-spin Mn(II) 

obtains no ligand field stabilization in either octahedral or tetrahedral environment, the 

geometry about the Mn is dictated by the ligand constraints. In this case, we observe a 

seven-coordinated Mn(II) with close to pentagonal bipyramidal geometry. The average 

MnIII-Nox bond distance is 2.245(3)Å, significantly longer than the MnIII-Npy bond 

distance of 2.166(3)Å. The average MnIII-Oox distance of 1.938(3) Å is significantly 

shorter than the divalent manganese oxygen distances lying in the range 2.1-2.3 Å 
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(average), whereas the MnIII-O(oxo or hydroxo) bond lengths are also significantly 

shorter ([1.875(2)Å] compared to the divalent manganese oxygen distance of 2.247(2)Å. 

The Mn(1)-O(100)-Mn(3) bond angle is 109.67(12)°. The X-ray structure clearly shows 

that the MnIII ions [Mn(1) and Mn(3)]  are Jahn-Teller distorted, high spin d4 ions, the 

axially elongated sites are occupied by the imine nitrogen atoms of the oximate, with 

Mn(1)-N(2) 2.28(3) Å, Mn(1)-N(10) 2.22(3) Å and N(2)-Mn(1)-N(10) 141.7(12)°, Mn(3)-

N(42) 2.37(3) Å , Mn(3)-N(50) 2.17(3) Å and N(42)-Mn(3)-N(50) 143.56(11)°. 

The average MnII-Nox bond distance lies in the range of 2.302(3)- 2.384(3) Å, is longer 

than the MnIII-Npy bond distance of 2.313(3) Å. The average MnII-Oox distance of 

2.265(2) Å is significantly longer than the MnIII-Oox distances of 1.938(3)Å. The µ4-O-

MnII bond distance 2.247(2) Å is also significantly longer than the average µ4-O-

MnIII[1.944(2)Å] bond distance. The µ2-OH(110) which acts as a bridge between divalent 

Mn(2) and trivalent Mn(3), showed that the Mn(2)-O(110) bond distance of 2.203(3)Å is 

significantly larger than the Mn(3)-O(110) bond distance of 1.875(2)Å. The Mn(1)-

O(100)-Mn(2), The Mn(3)-O(100)-Mn(2), The Mn(3)-O(110)-Mn(2),  bond angles are 

116.78(11)°, 98.88(10)°, 102.69(11)° respectively.  

In addition to the "edge-sharing tetrahedra" description of the Mn6O2 core, two 

alternative ways of describing it can be presented that emphasize the structural 

relationship to smaller nuclearity Mn/O units: (i) The Mn6O2 unit can be considered as 

two [Mn3O]6+ units, joined together by each of the µ3-O2- atoms becoming µ4 by ligation 

to the MnII center of the adjacent Mn3O unit. This also relates to the synthetic procedure 

for making complex 14 from[Mn3O]7+, for reduction of the [Mn3O]7+ unit yields the  

[Mn3O]6+ core and it could be argued that lowering the average metal oxidation state 

increases, the basicity of  the µ3-O2- and allows ligation to an additional metal center. The 

two [MnIII
2MnIIO]6+ units comprising the Mn6O2 core of 14 are conceptually representing 

its parentage, are  Mn(1,2,3)O(100) and Mn(4,5,6)O(100) or, alternatively 

Mn(1,3,4)O(100) and Mn(2,5,6)O(100). (ii) The Mn6O2 core can be considered to contain 

the [MnIII
2MnII

2O2] core of [Mn4O2(OH)(L)2(LH)2]+. This unit possesses a planar Mn4 

rhombus with two µ3-O bridge, one above and one below the plane. This unit has been 

found within 14 [Mn(1,2,3,4)O(100,100)] or [Mn(5,2,6,4)O(100,100)], and completion of 

the Mn6O2 core then requires merely the conversion of the two µ3-O2- to µ4-O2-  by 

ligation to an additional MnII center. Also it is to be noted that the Mn6O2 core contains 

the nonplanar "butterfly" like Mn4O2 unit in complex 14. Such a unit in 14 would be 

formed by Mn(1,2,4,6)O(100,100) or Mn(3,2,4,5)O(100,100) with Mn(2,4) representing 
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the "body" or "backbone" positions and completion of the Mn6O2 again requires 

conversion of the two µ3-O2- to µ4-O2-  by ligation to an additional MnII sites. Thus, the 

planar and butterfly like Mn4O2 units represent the products from two possible ways of 

removing two Mn atoms from the Mn6O2 core as shown: 

 

Figure 6.2: Schematic view of the hexamanganese core structure 

It should also be noted that the MnIII...MnIII [Mn(1) and Mn(3)] separation in the 

[MnIII
2MnIIO]6+ triangular unit is 3.122(9)Å, and the MnII...MnIII [Mn(1)...Mn(2), 

Mn(3)...Mn(2)] separations are 3.516(9)Å and 3.19(9)Å respectively, whereas the 

separation between the MnII...MnII [Mn(2)...Mn(4)] is  3.36(9)Å . 

 
Figure 6.3:  ORTEP plot of the dication in complex 14 
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Table 6.1:  Selected Bond Lengths (Å) and Angles (deg) [MnII
2MnIII

4(µ4-O)2(µ2-

OH)2(dapdo)2(dapdoH)4](ClO4)2 .6CH3CN  (14) 

Mn(1)•••Mn(2) 3.516 Mn(2)•••Mn(3)  3.1903(9) 

Mn(1)•••Mn(3) 3.122 Mn(2)•••Mn(4)  3.36 

Mn(1) •••Mn(4) 

 

3.616 Mn(3) •••Mn(4) 3.547 

Mn(1)-O(100) 1.875(2) Mn(3)-O(100) 1.944(2) 

Mn(1)-O(21) 1.890(3) Mn(3)-O(11) 1.925(3) 

Mn(1)-O(31) 1.938(3) Mn(3)-O(110) 1.874(3) 

Mn(1)-N(12) 2.163(3) Mn(3)-N(52) 2.149(3) 

Mn(1)-N(10) 2.215(3) Mn(3)-N(50) 2.170(3) 

Mn(1)-N(2) 2.282(3) Mn(3)-N(42) 2.365(3) 

Mn(2)-O(110) 2.203(3) N(50)-Mn(3)-N(42) 143.56(11) 

Mn(2)-O(100) 2.247(2) N(10)-Mn(1)-N(2) 141.7(12) 

Mn(2)-O(51) 2.265(2) Mn(1)-O(100)-Mn(3) 109.67(12) 

Mn(2)-O(100) 2.293(3) Mn(1)-O(100)-Mn(2) 116.78(11) 

Mn(2)-N(22) 2.302(3) Mn(3)-O(100)-Mn(2) 98.88(10) 

Mn(2)-N(32) 2.313(3) Mn(1)-O(100)-Mn(4) 119.99(12) 

Mn(2)-N(30) 2.384(3) Mn(3)-O(100)-Mn(4) 113.39(11) 

  Mn(2)-O(100)-Mn(4) 95.66(9) 

  Mn(3)-O(110)-Mn(2) 102.69(11) 

    

 

    6.4.2 Solid State Molecular Structure of [MnII
2MnIII

4(µ4-O)2(µ2-

OMe)2(dapdo)2(dapdoH)4](ClO4)2 .2C2H5OC2H5 (13) : 

The structure of the complex 13 consists of a discrete dicationic hexanuclear unit, two 

perchlorate anions and two diethyl ether molecules as solvents of crystallization. The 

structure of 13 also consists of six Mn atoms arranged as two "edge-sharing" tetrahedra. The 

structure of complex 13 is essentially similar with that of 14 except the difference in ligation 

between Mn(3) and Mn(2). In the complex 14 one of the bridging unit is µ2-OH, which is 

replaced by µ2-OMe in complex 13. Except this difference the core structure is identical 

with that of 14. A view of the dication is shown in the Figure 6.4. Selected bond lengths and 

angles are given in Table 6.2. 
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Figure 6.4: ORTEP plot of the dication in complex 13 

 

Table 6.2:  Selected Bond Lengths (Å) and Angles (deg) [MnII
2MnIII

4(µ4-O)2(µ2-

OMe)2(dapdo)2(dapdoH)4](ClO4)2 .2C2H5OC2H5  (13) 

Mn(1)•••Mn(2)  3.477 Mn(2)•••Mn(3)  3.2073(15) 

Mn(1)•••Mn(3) 3.1147(13) Mn(2)•••Mn(4)  3.396 

Mn(1) •••Mn(4) 3.613 Mn(3) •••Mn(4) 3.554 

Mn(1)-O(60) 1.877(2) Mn(3)-O(60) 1.944(3) 

Mn(1)-O(21) 1.883(3) Mn(3)-O(11) 1.931(4) 

Mn(1)-O(31) 1.938(3) Mn(3)-O(70) 1.876(4) 

Mn(1)-N(12) 2.153(4) Mn(3)-N(52) 2.137(4) 

Mn(1)-N(10) 2.224(4) Mn(3)-N(50) 2.168(4) 

Mn(1)-N(2) 2.283(5) Mn(3)-N(42) 2.385(4) 

Mn(2)-O(70) 2.207(3) N(50)-Mn(3)-N(42) 143.4(2) 

Mn(2)-O(60) 2.222(2) N(10)-Mn(1)-N(2) 142(2) 

Mn(2)-O(51) 2.242(4) Mn(1)-O(60)-Mn(3) 109.2(2) 

Mn(2)-O(60) 2.306(3) Mn(1)-O(60)-Mn(2) 115.88(2) 

Mn(2)-N(22) 2.288(4) Mn(3)-O(60)-Mn(2) 100.46(14) 
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Mn(2)-N(32) 2.305(4) Mn(1)-O(100)-Mn(4) 119.1(2) 

Mn(2)-N(30) 2.370(4) Mn(3)-O(100)-Mn(4) 113.21(15) 

  Mn(2)-O(100)-Mn(4) 97.18(13) 

  Mn(3)-O(70)-Mn(2) 103.2(2) 

    

 

6.4.3 Solid State Molecular Structure of [CuII
6(µ3-O)(µ3-OH)L3(H2O)6](BF4)3 (15) 

The lattice is built of discrete hexanuclear trications, three tetrafluoroborate 

counteranions. The molecular geometry and atom labeling scheme of the complex 15 is 

shown in the Figure 6.5. The hexanuclear CuII cluster consists of two linked [Cu3O] 

cores. The metal ions lie at the corners of an equilateral triangle and are at an average 

distance of 3.204 Å and 3.235 Å respectively in both the two [Cu3O] core. The association 

of two parallel triangular Cu3 species is through two µ3-bridging oxo ligands and three 

deprotonated oximate dianion (L2-) moieties. Both the two [Cu3O] units are strongly 

hydrogen bonded with the formation of [Cu3O...H...OCu3] core, and the bond distance in 

the O...H...O core is 2.518Å. There are two oximate groups in each ligand, one oximate 

binds one triangular unit while the other part binds the other trinuclear unit, making the 

hexanuclear complex. The Nox-O bond lengths of average 1.34 Å are nearly identical to 

those for other comparable structures and significantly shorter than 1.40 Å in general for 

free oxime ligands. The bond distance C=Nox (average 1.28Å) are expected, identical for 

other reported complexes.54 

 Each copper ion is five coordinate and has a distorted square pyramidal N2O3 

environment. The average Cu-N bond distance is 1.976(3)Å, whereas the average Cu-Oox 

bond length is 1.937(2)Å. The average Cu-O (oxo or hydroxo) bond length is 1.919(10)Å. 

The fifth position of each copper ion is filled by an apical water molecule and this longer 

Cu-O bond length is 2.467(5) Å and is very much similar to the bond distance of the 

water molecules ligated to the copper ions in reported compounds. In the [Cu3O] core the 

trans N(2)-Cu(1)-O(1) bond angle is 176.86°(10), where as the N(5)-Cu(1)-O(30) bond 

angle is 168.68°(9), thus the τ parameter55 for each copper in this trinuclear unit is 0.14 

and explains that is in square pyramidal environment, [τ = 0 for ideal square pyramidal 

and τ = 1 for ideal trigonal bipyramidal geometry]. Similarly in the other [Cu3O] core the 

trans N(17)-Cu(2)-O(8) bond angle is 169.17°(15), whereas the N(14)-Cu(2)-O(40) bond 

angle is 166.37°(10), thus the τ parameter for each copper in this trinuclear unit is 0.045 
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and is in a nearly ideal square pyramidal environment. The CuII
6 unit can be thought of as 

dimer of CuII
3 units. 

 

 

Figure 6.5: ORTEP plot of the trication in complex 15 

 

Three different kinds of non-bonded Cu...Cu separation (3.686Å, 4.239Å, 5.042Å) in the 

inter dimer unit is observed, whereas the observed Cu-O-Cu angles in each triangular unit 

are 113.65(9)° and 114.32(8)° respectively. The core structure of the hexacopper(II) 

cluster is shown below in Figure 6.5A. 
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Figure 6.5A: Core structure of the hexacopper(II) cluster 15 

 

Table 6.3: Selected Bond Lengths (Å) and Angles (deg) [CuII
6(µ3-O)(µ3-OH)L3(H2O)6](BF4)3 (15) 

Cu(1)•••Cu(1) 3.204 Cu(2)•••Cu(2) 3.235 

Cu(1)•••Cu(2) 3.686 Cu(1)•••Cu(2B) 5,042 

Cu(1)•••Cu(2A) 4.239 O(30)...HO(40) 2.518 

    

Cu(1)-O(30) 1.9138(10) Cu(2)-O(40) 1.9251(10) 

Cu(1)-O(1) 1.937(2) Cu(2)-O(18) 1.943(3) 

Cu(1)-N(2) 1.967(3) Cu(1)-N(17) 1.968(3) 

Cu(1)-N(5) 1.999(3) Cu(1)-N(14) 1.989(3) 

Cu(1)-O(60) 2.469(5) Cu(1)-O(70) 2.465(5) 

    

Cu(1)-O(30)-Cu(1) 113.65(9) Cu(1)-O(30)-Cu(1) 114.32(8) 

N(2)-Cu(1)-O(1) 176.86(10) N(17)-Cu(1)-O(18) 169.17(15) 

N(5)-Cu(1)-O(30) 168.68(9) N(14)-Cu(1)-O(40) 166.37(10) 
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6.5 Magnetic Properties: 
6.5.1 Magnetic Properties of Hexanuclear Manganese Complexes 

Magnetic susceptibility data for polycrystalline samples of the complexes were collected 

in the temperature range 2-290 K in an applied magnetic field of 1T. The Heisenberg spin 

Hamiltonian in the form H = -2JA(S1S3 + S5S6) - 2JB (S1S2 + S4S6) - 2JC(S2S3+S4S5)-

2JDS2S4 (for complexes 13 and 14) for an isotropic exchange coupling with S1 = S3 = S5 = 

S6 = SMn(III) = 4/2, S2 = S4 = SMn(II) = 5/2 for 13 and 14 are employed to analyze the 

magnetic properties. The experimental data as the effective magnetic moments (µeff) 

versus temperature (T) are displayed in Figure 6.7.  Due to the similarity of the magnetic 

nature in complexes 13 and 14, herein detailed magnetism of the complex 14 will be 

described in the following section. 

              The magnetic moment µeff/molecule for 14, MnIII
4MnII

2, of  11.44 µB (χM•T = 

16.35 cm3•K•mol-1) at 290 K is less than expected  for the spin only value of χM•T = 

20.75 cm3•K•mol-1for 4 uncoupled MnIII and 2 MnII ions and decreases monotonically 

with decreasing temperature until it reaches a value of 8.77 µB (χM•T = 9.63 cm3•K•mol-

1) at 30 K and then starts to increase with decreasing temperature and reaches a value of 

9.03 µB (χM•T = 10.19 cm3•K•mol-1) at 10 K and then again decreases to reach a value of 

6.93µB (χM•T = 5.99 cm3•K•mol-1) at 1.95 K. This temperature dependence behavior is 

consistent with the presence of antiferromagnetic interactions between the spin carriers, 

with the low temperature value of µeff indicating that the molecule has a reasonably large 

spin ground state.  

The magnetic moment µeff/molecule for 13, MnIII
4MnII

2, of 11.34 µB (χM•T = 16.08 

cm3•K•mol-1) at 290 K decreases monotonically with decreasing temperature until it 

reaches a value of 8.68 µB (χM•T = 9.42 cm3•K•mol-1) at 30 K and then starts to increase 

with decreasing temperature and reaches a value of 8.83 µB (χM•T = 9.73 cm3•K•mol-1) 

at 10 K and then again  decreases to reach a value of 6.76µB (χM•T = 5.72 cm3•K•mol-1) 

at 1.95 K. 

           By far the commonest way to model exchange coupling have been performed 

through Kambe's vector coupling method30 and various extensions of Kambe's method 

have been used in specific cases. The Heisenberg Hamiltonian, H = - 2J ∑Si Sj can be 

expressed in case of n number of paramagnetic spin carriers as equation,  

H = - 2 ∑ Jij Si Sj ......(1).  
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 Substitution of the vector model into equation (1) as a general case has been given by the 

equation, H = - 2 (∑ Jij Si Sj  + 2 ∑ Jin Si Sn + 2 Si Sn)........(2).  

The eigen value equation from (2) can be written as: E(ST) = - ∑ (Jij - Jin) [Sij (Sij + 1) -Si 

(Si + 1) - Sj (Sj + 1)] - ∑ (Jij - J1n) [Sin (Sin + 1) -Si (Si + 1) - Sn (Sn + 1)] - J1n ST (ST + 1) + 

J1n ∑ Si (Si + 1)................(3).  

 In real situation, suitable simplifications of the problem can often be made from 

symmetry considerations in order  to reduce equation (3) to an unambiguous and simple 

expression, from which the energy values of the spin states will be available and hence 

the magnetic susceptibility are readily obtained. However, in completely general case 

(none of the Jij necessarily equal) not all the allowed values can be given unambiguously, 

and the problem can not be solved by the extended Kambe’s approach. So except for very 

specialized cases, exchange interactions in a discrete trinuclear and tetranuclear clusters 

can not be described by the Kambe's method of vector coupling. Thus, difficulties 

increase as the number of interacting paramagnetic atoms increases. When the number of 

paramagnetic centers are greater than 5, suitable equation for E(ST) can be obtained by 

substituting in equation (3), but again, for nearly all physical probable arrangement of 

paramagnetic atoms. So due to the complexity in polynuclear complexes, Kambe's theory 

can not be applied to the general case and it is therefore desirable to evolve a completely 

general treatment which would permit complete freedom of choice in the magnitudes of 

the exchange integrals of Jij between pair of spins Si and Sj; where none of the Jij or Si, Sj 

need to be equal.  

The total degeneracy of the spin levels for a cluster of n identical spins S is (2S + 1)n, a 

number which grows very fast beyond the possibilities of handling with any computer. It 

is apparent that procedures are required which employ symmetry in order to reduce the 

dimensions of the matrices. These are essentially of two types, one which takes 

advantages of the total spin symmetry and the other which exploits the point symmetry of 

the cluster.            

 A theoretical model to interpret the magnetic susceptibility data for complexes 13 and 14 

was sought. At the outset it has to be realized that this is a formidable task, for with four 

MnIII (S = 2) and two MnII (S = 5/2) ions, there is a total degeneracy of (2SMn
III + 1)4 

(2SMn
II + 1)2 = 22400. It is simple to realize that as a result of magnetic interactions, the 

hexanuclear complexes have total spin (ST) values of the resultant states range from13, 

12, 11,....., 0. So owing to the size and symmetry of the hexamanganese clusters, it is not 

possible to use Kambe approach to derive a theoretical equation to fit the χMT versus T 
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data. In addition this large number of spin states makes it effectively impossible to 

evaluate the pairwise exchange interactions in the spin Hamiltonian. However, it takes an 

appreciate amount of time with a computer program employing the mathematical 

treatment given below to identify all of the 22400 different electronic states for the 

hexanuclear manganese complexes. By using irreducible tensor operator (ITO) approach 

it is possible to drastically cut the requirement of memory storage and time needed for the 

diagonalization of the Hamiltonian matrices, making the calculations for medium size 

clusters possible even for work station type computers. So the exchange coupling model 

was considered for simulation of the experimental magnetic data using the irreducible 

tensor operator (ITO) mathematical method58 with the Heisenberg Hamiltonian in the 

form H = - 2JSiSj

 An examination of the structures of 13 and 14 shows that two central bis (µ-oxide)-

bridged MnII (S = 5/2) ions are bridged to four MnIII (S = 2) via single µ-oxide bridges. 

The bridging pathways connecting each of the MnII ions, Mn(2) or Mn(4), to one pair of 

the MnIII ions, Mn(1,3) or Mn(5,6) are  equivalent. The appropriate bridging angles in the 

structure of 13 and 14 are noticeably different, e.g., Mn(2)-O(100)-Mn(1) and Mn(2)-

O(100)-Mn(3) are 115.88 and 100.46° respectively for 13 and Mn(2)-O(100)-Mn(1) and 

Mn(2)-O(100)-Mn(3) are 116.78 and 98.88° respectively. At the same time there is 

another µ2-OMe and µ2-OH bridge between the Mn(2) and Mn(3) ions respectively for 13 

and 14, giving the Mn(2)-O(110)-Mn(3) angle around 103.2° and102.69° respectively. A 

general spin-spin interaction model allowing for dissimilar coupling between the MnII-

MnIII pairs could not be constructed by using the Kambe vector coupling method.  

To simplify the problem, a "three-J" model was taken into consideration and the 

assumption was made that all of the MnII-MnIII exchange interactions are equal; i.e the 

Mn6O2 core has the idealized symmetry (D2h) of the two "edge-sharing" tetrahedra. Least 

squares computer program was used to fit the observed temperature dependence of µeff / 

Mn6 cluster as a function of the three exchange parameters, J1, J2, J3, and an isotropic g 

value. A proposed model for the exchange interactions in the MnIII
4MnII

2 cluster is shown 

below in the scheme 1 and we used the spin Hamiltonian in the form, H = - 2J1(S1S3 + 

S5S6) - 2J2(S1S2 + S2S3 + S5S4 + S6S4) - 2J3S2S4; where S1 = S3 = S5 = S6 = 2 and S2 = S4 

= 5/2 
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Scheme 1 

During the fitting, it was observed that there was little correlation between the nature of the 

experimental susceptibility plot and the simulated curve. In this procedure the simulation 

does not show any minimum, which is observed in the experimental data at the lower 

temperature region. Possible reasons for this deviation include the neglect of single ion zero-

field splitting or the assumption that all the MnIII..MnII interactions are equal. To test the 

latter possibility a "four J" model was employed to fit the experimental data instead of the 

"three J" model. A schematic view of the spin topology of the cluster is given below in 

scheme 2. 
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Scheme 2 

 

We used the spin Hamiltonian in the form, H = - 2J1(S1S3 + S5S6) - 2J2(S1S2 + S6S4) - 2J3 

(S2S3 + S5S4) - 2J4S2S4; where S1 = S3 = S5 = S6 = 2 and S2 = S4 = 5/2. Since the value of the 

parameter g is best determined by the high-temperature data, only the data above 20 K were 

fit at first, and by doing so from the best fit the parameters obtained are g = 1.98, J1 = - 12.6 

cm-1, J2 = - 4.6 cm-1, J3 = + 2.4 cm-1 and J4 = + 1.9 cm-1. From this simulation the nature of 

the curve is similar to that of the experimental one but below 20 K the simulated curve does 

not fit perfectly with the experimental one. Zero field splitting effects are likely to influence 

the data in this temperature range. The parameter J1 represents the coupling constant 

between the Mn(III) atoms, the coupling between Mn(II) and Mn(III) atoms in each 

triangular unit are labeled with J2 and J3, while J4 represents the coupling between the Mn(II) 

atoms. The µ4-oxo bridges are assumed to be the dominant pathways of magnetic exchange 

 127 



HEXANUCLEAR COMPLEXES 

 128 

interactions between the Mn ions. Although the oximate (N-O) and µ2-OH or µ2-OMe 

ligands could theoretically transmit the exchange coupling, the fact that the magnetic data 

are nearly similar for complexes 13 and 14  support the assumption that the µ4-oxo bridges 

dominate the exchange interactions.  The values of the MnIII-MnIII, MnII-MnIII and MnII-MnII 

exchange coupling parameters can be compared with those found for the oxo-bridged 

manganese complexes5-6,8-10,20,22,24-26,29,31-38,41  with  attention towards the exchange coupling, 

which is mediated through oximate(=N-O) also.29,54,59-60  Interaction through the oximate 

bridge are antiferromagnetic in nature as usually observed. The exchange coupling between 

the MnII-MnIII pair is weak, in case of J3 the weak ferromagnetic coupling between the 

mixed valence manganese ions compared to the weak antiferrmagnetic exchange interaction 

(J2) between another set of mixed valence manganese ions can be explained in terms of the 

Mn-O-Mn bond angles. The J2 coupling mediates through the Mn-O-Mn angle of 116.78°, 

whereas the J3 exchange coupling mediates through average Mn-O-Mn angle of 101.7°, 

means, a better overlap between the magnetic orbitals expected in case of J2 and can give 

rise to better antiferromagnetic exchange interactions compared to J3. The system may be 

envisaged as ferromagnetically coupled two AF triangles and the fact J1>>J3 clearly 

stabilizes a local S = 5/2 ground state in each triangular unit. The ferromagnetic pathway (J4) 

leads to an S = 5 ground state of the hexanuclear cluster (vide infra). From the above data set 

for the exchange coupling constant, it has been observed that ST = 5 has minimum energy 

compared to other possible spin states and being the ground state. Similar weak 

ferromagnetic exchange coupling constant for MnII(µ4-O)MnII was found in a oximate based 

manganese complex reported recently.60a  Mn(II)...Mn(II) exchange coupling constant 

mediated through µ4-O, with a Mn-O-Mn angle of 94.4° is reported to be + 2.5 cm-1. 

Similarly exchange interaction between MnIII centers with a combination of µ3-O and 

oximate (N-O) bridge is reported to be - 12.6 cm-1 in a hexanuclear manganese complex.10 

In order to provide a theoretical basis for the observed magnetic properties of the complexes 

13 and 14, especially to offer a rationale for the high-spin ground state ST = 5 the proposed 

model for the exchange interactions in the MnIII
4MnII

2 clusters, schematic view of the spin 

topology is given below. 
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Figure 6.6: Spin coupling model for the MnII
2MnIII

4 clusters 

 

 Detailed rationale of the exchange interaction of the different spin carriers will be given 

and compared with the reported literature. The sign of the intramolecular exchange 

coupling constant results from the sum of antiferromagnetic and ferromagnetic 

contributions given in the equation J = JAF + JF. From the structures of the hexanuclear 

clusters the MnIII
2O unit in both complexes may be described as resulting from two 

octahedrally coordinated manganese(III) ions sharing an edge comprised of a µ-oxo 

bridge. The manganese(III) centers (high spin, d4) are tetragonally distorted as is 

evidenced in the X-ray structure, the electronic configuration of the localized metal 

orbitals being (dxz, dyz)2, (dxy)1, (dz
2)1, (dx

2
-y

2)0 in order of increasing energy. It is then 

obvious that the interaction between the (dxz, dyz)2 orbitals of the two manganese(III) ions 

and the bridging oxygen atom provide antiferromagnetic π-pathways; similarly 
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antiferromagnetic σ-paths are available between the (dxy)1 pairs via s and p orbitals of 

oxygen. The path dz
2 ⎢⎢ dz

2 involves weakly delocalized in the molecular plane, and its 

contribution is expected to be rather weak, irrespective of its magnetic nature, with Mn-O 

overlap being of the σ-type. As the MnIII-O-MnIII angle is about 110°, dz
2 electrons 

interact via an antiferromagnetic pathway involving a non-orthogonality of the bridging 

oxygen atom. A negetive J i.e., a net antiferromagnetic interaction is thus expected and is 

observed.5-6,9-10,20,22,24-26,29,31-32,35-38,41 This picture is consistent with the predictions made 

by Kahn for dinuclear complexes. When MnIII-O-MnIII angle is close to 90°, a 

ferromagnetic exchange interaction is also observed.8,24-25,33-34 

The MnII...MnIII interactions obtained in this work for complexes 13 and 14 are weakly 

antiferromagnetic as have been found in most molecules, that have been reported to have 

such interactions. Taking literature data into account the calculated J value (JMn
II..Mn

III) is 

reasonable. The sign and the strength of the exchange interaction between the MnIII 

centers in compounds containing the {MnIII
2(µ-OR)}4+ subunit, where the oxygen atoms 

occupy Jahn-Teller positions at each metal ion, are influenced by subtle geometric and 

electronic factors which create a subtle balance between different exchange pathways, as 

predicted by Goodenough and Kanamori. One important point is that the complex34 

[MnIII
2(µ2-O)(µ-O2CR)2(Me3Tacn)2]2+ exhibits ferromagnetic exchange interaction (J = + 

9 cm-1) between the MnIII centers.  Chaudhuri56 et al., showed the terminal ligand has a 

significant effect on the sign and magnitude of J. Recently Solomon et. al showed25 such 

a influence on the sign and magnitude of J, e.g, replacement of the terminal ligand 

Me3Tacn by bpy and H2O in one complex and bpy and azide in another complex with the 

core of [MnIII
2(µ2-O)(µ-O2CR)2(bpy)2(H2O)2]2+ and [MnIII

2(µ2-O)(µ-O2CR)2(bpy)2(N3)]2+ 

the value of the exchange coupling constant shifts to - 3.4 cm-1 and + 8.8 cm-1 

respectively. Careful study of the literatures8, 24, 27, and 33 reveals that the MnIII-O(R)-MnIII 

angles smaller than ≈ 102° tend to favor weak ferromagnetic exchange interactions. Thus 

from the viewpoint of this structural parameter only, the antiferromagnetic nature of J1 in 

complexes 13 and 14 with MnIII-O(R)-MnIII  angle of 110° is understandable whereas the 

interaction between MnIII(3) and MnII(2) is also expected to be weak whatever in nature 

taking into account all the cross interaction between the said spin carriers and from the 

viewpoint of the structural parameter with average MnIII(3)-O(R)-MnII(2) angle of 

100.5°, a weak positive exchange coupling constant is more likely. Although there is no 

magnetostructural correlations between the MnIII-O-MnII angle and the sign/magnitude of 

the exchange constant, it has been shown that for MnIII-O-MnII angle of  ≈  120° the 
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interaction is antiferromagnetic,5-6,9-10,12-15,17-21,26,31-32,35,38,41 while for ≈ 105° the 

interaction is ferromagnetic.5,11,16-19,21,33,39-40 The ferromagnetic nature of exchange 

coupling interactions can be explained by assuming prevalent eg-eg contributions. Given 

the elongated nature of the distortion from octahedral symmetry, the dx
2
-y

2 orbital is 

empty. Due to the arrangement of local elongation axes in the structure, the dz
2 magnetic 

orbitals of MnIII have a nonzero overlap with the half-filled dx
2

-y
2 orbitals of the MnII 

through µ2-OH or µ2-OMe ligands.  
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Figure 6.7: Magnetic data for MnIII
4MnII

2
 (14), plot of µeff vs. T. The bold points represent the 

experimental data while the solid line represents the simulation 

 

 The weak interaction found between MnIII(3) and MnII(2) may be rationalized on the 

basis of the empty dx
2

-y
2 orbital of the MnIII ions and due to the elongated Jahn-Teller 

distortion, the electronic configuration of the metal orbitals being (dxz, dyz)2, (dxy)1, (dz
2)1, 

(dx
2

-y
2)0 in order of increasing energy and presumably the different cross interactions 

between the Mn(II) and Mn(III) orbitals cancels each other, and can be anticipated from J 

= JAF + JF. This dx
2
-y

2 ⎜⎜ dz
2 pathway is expected to provide a ferromagnetic contribution 

towards overall exchange coupling constant and is nicely explained by Ginsberg. Thus 

the observed exchange coupling constant (J3 = + 2.4 cm-1) is well justified. On the 

contrary the MnIII(1)-O(R)-MnII(2) angle of 116° leads to a better overlap between the 

magnetic orbitals giving rise to a net weak antiferromagnetic exchange interaction (J2) 
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and the obtained value in this case is quite reasonable enough. This is consistent with the 

literature values reported for binuclear and polynuclear transition metal complexes 

containing MnII and MnIII ions 

                  To determine the spin ground state, magnetization data were collected at 1, 4 

and 7 T in the temperature range 2-290 K and plotted as reduced magnetization (M/Ngβ) 

vs. (βH/kT) (vide infra), where N is the Avogadro’s number, β is the Bohr magneton and 

k is the Boltzmann's constant. For a system occupying only the ground state and 

experiencing no zero-field splitting (D), the various isofield lines would be superimposed 

and M/Ngβ would saturate at a value S. The non-superposition of the variable 

temperature variable field (VTVH) plots at low temperature clearly indicates the presence 

of zero-field splitting (ZFS or D). Reduced magnetization measurement yielded a ground 

state ST = 5.  

                  Attempts to fit the data by using the method of full-matrix diagonalization of 

the spin Hamiltonian matrix including axial ZFS, with the pairwise exchange interactions, 

produced best fits with, J1 = - 12.6 cm-1,  J2 = - 4.6 cm-1,  J3 = + 2.4 cm-1,  J4 = + 1.9 cm-1, 

gMn = 1.98, D1 = D3 = D5 = D6 = DMn(III) = 4.0 cm-1. These "J" and g values are exactly the 

same values evaluated from the susceptibility measurements at 1 T described earlier and 

thus confirm the credibility of the simulated parameters. The variable temperature 

variable field (VTVH) plot is shown in the Figure 6.8. It should be pointed that the main 

source of the molecular anisotropy is due to the presence of four Jahn-Teller distorted 

MnIII ions. The projections of these single-ion anisotropies onto the molecular anisotropy 

axis will determine the molecular parameter D. With D1 = D3 = D5 = D6 = DMn(III) = -  4.0 

cm-1 a fit of poorer  quality than that with positive D was obtained. 

 

It is anticipated that further characterization of the system to determine more precisely 

the values of ST and D and to fully elucidate the sign of the ZFS(D), alternating current 

susceptibility (AC) measurement or high-frequency EPR (HFEPR) techniques will be 

needed. 
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In order to offer a rationale for the high-spin ground-state where ferromagnetically 

coupled two AF [MnIII
2MnII] triangular units give rise to ST = 5 ground state is shown 

below in Figure 6.9 
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Figure 6.9: Pictorial representation of exchange coupling for the two possibilities for the ground states, 

the above diagram shows the ST = 5 ground state (above) and ST = 0 ground state (below). 
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               The main lesson from these study is that high nuclearity Mnx complexes can be 

prepared which have either pairwise ferromagnetic MnII...MnIII or MnIII...MnIII 

interactions or a combination of pairwise antiferromagnetic interactions or in the third 

possibility a combination of pairwise ferromagnetic-antiferromagnetic interactions that 

lead to molecules with ST ≠ 0 ground state. Combinations of pairwise exchange 

interactions or competing exchange interactions and topology stabilize the high spin 

ground states of these polynuclear manganese complexes. 

               Although no simple straightforward magnetostructural correlation has been 

established based on either Mn....Mn separation or Mn-O-Mn angles (except in case of J 

vs MnIV-O-MnIV),57  with the availability of more structural data for closely related 

complexes displaying suitable variation over the structural parameters, qualitative 

magnetostructural correlations for exchange coupling in manganese complexes can be 

provided. But based on Goodenough-Kanamori, Ginsberg42 and Kahn7 it can be 

concluded that MnII...MnIII and MnIII...MnIII interactions are weakly ferromagnetic or 

weakly antiferromagnetic in nature depending on the Mn-O-Mn angle, when it is close to 

90°, orthogonality of the magnetic orbitals would be expected and thus provides 

ferromagnetic exchange, while deviations from 90°, causes the net exchange interaction 

to be antiferromagnetic. 

 

6.5.2 Magnetic Properties of CuII
6: 

Magnetic susceptibility data for polycrystalline samples of the complexes were collected 

in the temperature range 2-290 K in an applied magnetic field of 1 T. The experimental 

data as the effective magnetic moments (µeff) versus temperature (T) are displayed in 

Figure 6.10. The experimental magnetic data were simulated using a least squares fitting 

computer program with a full-matrix diagonalization approach and the solid lines in the 

Figure 6.10 represent the simulations. The magnetic moment µeff/molecule for 15, CuII
6, 

of 2.77 µB (χM•T = 0.96cm3•K•mol-1) at 290 K is smaller than the value of six uncoupled 

copper (II) ions (χM•T = 2.25 cm3•K•mol-1) assuming g = 2.00 and decreases 

monotonically with decreasing temperature until it reaches a value of 1.65 µB (χM•T = 

0.34 cm3•K•mol-1) at 1.9 K . This temperature dependence is in agreement with a strong 

antiferromagnetic exchange interaction between the spin carriers.[CuII
6(O)2]8+ core has a 

strong antiferromagnetic interaction within both the [Cu3O]4+ subunit and leaves a single 

unpaired electron in each triangular unit. If the trimeric unit has each metal equivalent 
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and forms an equilateral triangle the spin Hamiltonian will describe in the form given as,  

H = -2JA(S1S2 + S1S3 + S2S3 + S4S5 + S4S6 + S6S5) for an isotropic exchange coupling 

with S1 S2 = S3 = S4 = S5 = S6 = SCu(II) = 1/2. But for a better model the exchange 

interaction between the interdimer units was taken into consideration and hence by using 

a "two J" model the magnetic data of the hexacopper complex was analyzed and we used 

the Hamiltonian in the form; H = -2JA(S1S2 + S1S3 + S2S3 + S4S5 + S4S6 + S6S5) - 2JB(S1S4 

+ S1S5 + S1S6 + S2S4 + S2S5 + S2S6 + S3S4 + S3S5 + S3S6) 
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Figure 6.10: Magnetic data for CuII
6
 (16), plot of µeff vs. T. The square points represent the experimental 

data while the solid line represents the simulation 

                        

So the magnetic susceptibility data was simulated by full matrix diagonalization of the 

appropriate isotropic spin Hamiltonian for a CuII
6 molecule with a dimer of trimers 

topology. The fit was carried out by the Irreducible Tensor Operator (ITO) formalism 

using the CLUMAG program and provides best fit with the following parameters : JA =  - 

614.0 cm-1, JB = - 114.5 cm-1 and g = 2.00.  

As previously reported43-48 the strong antiferromagnetic coupling is possible when the 

trinuclear entity is completely planar. The triangular Cu3X (X = OH, O) core is known to 

be present in different copper(II) complexes with strong antiferromagnetic coupling. It 

has been observed that the Cu3OH core has weaker magnetic exchange (J ≈ - 200 cm-1). 

The tetrahedral sp3 hybridization forces the oxygen to be above the plane of the copper 

atoms and furthermore disrupts the coplanarity of the ligand bridging network due to 
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hindered dx
2
-y

2 overlap. The Cu3O core on the other hand has nearly coplanar geometry; 

the Cu3O oxygen is only slightly raised above the plane to form a weak trimer bond. As a 

result of the nearly coplanar configuration plus additional electrostatic effects, the Cu-O 

bonds are shorter for the Cu3O core. Since the oxygen exhibits the more flat sp2 character, 

overlap with the copper dx
2
-y

2 orbitals still permits the oxime ligands to retain their 

coplanar Cu3O geometry. This overall coplanar Cu3O structure permits larger magnetic 

coupling (J ≥ - 300 cm-1), the magnetic exchange properties of triangular CuII species 

result from large antiferromagnetic interaction documented by a strong exchange 

coupling constant ranging up to - 1000 cm-1. 

 That oximate ligands generally mediate very strong antiferromagnetic exchange 

interaction between two d9 copper(II) ions to provide, in some cases, a nearly complete 

spin pairing at room temperature as was first authenticated in a trinuclear copper(II) 

complex of pyridine-2-aldoxime. The first diamagnetic copper(II) dimer, thus historically 

worth mentioning and ascribable to superexchange through the oxime bridged, was 

described by Bertrand50 et al. with a centrosymmetric nearly planar six-membered ring 

formed by copper atoms and two oxime (NO) groups. Strong antiferromagnetic coupling 

between copper(II) ions ( J ≈ - 475 cm-1)51 was observed, revealing that the NO-group has 

a remarkable ability to mediate strong antiparallel spin coupling when it acts as a 

bridging ligand either through the nitrogen and oxygen atoms or only through oxygen 

atom. Trinuclear copper complexes are known with planar52 or non planar53 geometrical 

arrangements with the exchange coupling constants (J < - 300 cm-1 and J ≈ - 448 cm-1) 

respectively, which suggest that the unusually large spin exchange interaction is not the 

result of any special geometrical feature but is related to the electronic structures of the 

bridging dioximato ions. Detailed inspection of the magnetostructural data54 of oximato 

bridged copper(II) complexes reveal that exchange interactions (J values) show no 

correlation with the distances Cu...Cu, Cu-Nox, Cu-Oox or with the nature of the basal 

skeleton Cu(NO)2Cu i.e. the magnitude of exchange coupling is independent of the 

degree of deviation from planarity, or deviation of the copper from the mean basal plane. 

 In summary it is concluded that due to the presence of oxo and oximate groups, the 

exchange coupling constants are really very strong in magnitude and antiferromagnetic in 

nature. 
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whereas the hydrophobic groups take up positions in the periphery, preventing the core 

from further aggregation and thus forming a finite-sized polynuclear complex.  

                              It has been shown that oxime ligands can connect two transition metal 

ions due to their versatility in coordination modes. Also the ability of the oxime group to 

efficiently transmit magnetic coupling has been well doccumented.14 There are only ten 

structurally characterized oximate bridged nickel(II) complexes reported in last 30 years, 

only seven of which have been subjected to magnetic susceptibility measurements. Thus 

no correlation between structural and magnetic properties for such complexes has yet 

been obtained and hence more oximate bridged paramagnetic complexes of nickel(II) are 

warranted. Since nickel(II) is known to have a large single-ion zero-field splitting and the 

geometrical parameters, which in Ni complexes are well understood, gives rise to 

ferromagnetic coupling, we wish to study the structure and magnetic properties of a 

nonanickel(II) cluster. The complexation of nickel(II) by pyridine-2-aldoxime in aqueous 

solution was studied by Orama et.al1 and the structure of the nickel(II) complex of 

pyridine-2-aldoxime, a neutral tris complex was found in the solid state to consist of the 

monomeric [Ni(PyAH)(PyA)2] units held together by two OH...O hydrogen bonds 

between the oxygen atoms. This is an apparent contrast to the analogous complexes of 

copper(II), both of which in aqueous solution and in solid state are characterized by the 

presence of trinuclear complex species [Cu3(PyA)3(OH)]2+ containing a Cu3OH central 

core.2 We herein present a new nonameric nickel(II) complex with syn-2-pyridine 

aldoxime ligand, [Ni9(PyA)10(µ3-OH)2(µ2-OH)2(µ2-OH2)2(H2O)6](ClO4)4•12H2O 

underlining the versatility of this ligand to adopt a variety of coordination modes. 

Moreover there are very few nonanickel(II) complexes3 known, one of which has been 

subjected to magnetically characterized.4 The difficulties in analyzing large clusters 

magnetochemically prompted us to characterize the nonanuclear Ni(II) cluster 

magnetostructurally and compare the nature of exchange interaction through oximate and 

hydroxo bridging ligands reported earlier. 

                             The magnetism of bis-(µ-hydroxo)- or (µ-alkoxo) dicopper(II) 

complexes has been the subject of extensive investigations for the last two decades.5a 

According to Hatfield and Hodgson, antiferromagnetic interactions between copper(II) 

ions become larger with increasing Cu-O-Cu angle in these complexes.5 This was 

reasonably explained in terms of quantum-mechanical treatments by Hoffmann et al.6a 

and Kahn.6b However this rationale had been confined to doubly bridged systems with the 

Cu-O-Cu angle in the range 95-105° until Mckee et al.7 and Kida et al.8 reported the 
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synthesis and magnetism of copper(II) complexes with a single alkoxide bridge derived 

from 1,3-diamino-2-propanol. Since the Cu-O-Cu angle in such complexes is much larger 

(120-135°) than that of the other bridging ligands, substantially stronger 

antiferromagnetic interactions are expected in spite of the fact that the superexchange 

pathways due to the presence of other ligands might be expected to be different in 

magnitude and sign. It was also revealed that when another bridging group is added to the 

system, the antiferromagnetic interaction is substantially weakened or enhanced, 

depending on the second ligand. This fact was reasonably interpreted in terms of 

Hoffmann's theory that the matching of symmetries of the HOMOs of the bridging 

groups determines whether the two bridges work complementarily or 

countercomplementarily in the superexchange interaction. This theory is essentially 

important when the magnetism of a polynuclear complex possessing two different 

bridging groups is considered. This fact has been recognized in some other examples.9 

Moreover there are very few nonacopper(II) complexes12 known. Thus a nonanuclear 

copper(II) complex was isolated and characterized magnetically where the spin exchange 

interaction was mediated through alkoxo, hydroxo and alkoxo-hydroxo bridge. Magnetic 

properties of this cluster follows the same trend reported earlier.10,12

N N
OH

C
CH3

CH

CHO

Ph

C
CH3

CH

C OH

Ph

N
N OH

 

                     (a)   (PyAH)                                                                     (b) L'H3 

Figure 7.1: (a) Ligand (PyAH) for the nonanuclear Ni(II) complex; (b) Ligand (L'H3) for the 

nonanuclear CuII complex. 

 

7.2 Synthesis: 

                   Nonanuclear nickel(II) and copper(II) complexes respectively are isolated by 

self assembly, using tridentate oxime (PyAH) and pentadentate schiff base ligand(L'H3). 

The schematic diagram of the synthesis is given below: 
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 PyAH + NiCl2. 6H2O + NaOH + NaClO4

H2O(a) 

[Ni9(PyA)10(µ3-OH)2(µ2-OH)2(µ2-OH2)2(H2O)6](ClO4)4. 12H2O  

 

 LH3 + Cu(ClO4)2. 6H2O + Et3N

(b) MeOH

 
[Cu9(L)4(µ3-OH)4(MeOH)2](ClO4)2. 6MeOH 

 

7.3 Infrared and Mass Spectroscopy: 

            The relevant bands in IR spectra of comparable pyridine-2-aldoximato 

containing heteronuclear CrIIIMII and FeIIIMII complexes have been reported earlier by Ross 

et al16 and the spectra of 16 are also very similar. A notable feature for 16 are the sharp NO 

stretching bands at 1141, 1120, 1031 cm-1. The presence of two different coordination 

modes of the oxime group in 16 is consistent with the splitting. A broad O-H stretching band 

around 3441 cm-1 indicates the presence of the OH groups in the compound while the 

stretching band for ClO4 was also identified in the region of 1089 and 626 cm-1.  The IR 

spectrum of compound 17 revealed that the broad stretching band around 3463 cm-1 

indicates the presence of the OH groups in the compound while the stretching bands for 

ClO4 were also identified in the region of 1089 and 626 cm-1. 

             Electrospray-ionaziation mass spectrometry (ESI-MS) in the positive ion mode 

does not provide signal for unambiguous characterization and shows only the 

monopositively charged species [(PyA)5Ni3]+ as the base peak with the peak of 

[(PyA)6Ni4(ClO4)]+ (10%). On the other hand the signal for [L2Cu4(OH)]+ of 17 is the base 

peak, together with the peak for the fragment [L3Cu6(OH)]+ (50%) and [L4Cu8(OH)4] (15%).  
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7.4 X-ray Structure: 

7.4.1 Solid State molecular structure of [Ni9(PyA)10(µ3-OH)2(µ2-OH)2(µ2-

OH2)2(H2O)6] (ClO4)4. 12H2O 
The asymmetric unit contains of a discrete nonanuclear tetracation, four perchlorate 

anions and twelve water molecules of crystallization. There are two types of oximic 

groups, (i) a two atom -N-O bridging group O1, O11, O31, O41, O51, O81 and (ii) µ2-O 

bridging oximate O21, O61, O71, and O91. The nonanuclear complex can be described 

as consisting of two [NiII
4(PyA)5(µ3-OH)(µ2-OH)(µ-OH2)(H2O)3]+moieties are connected 

to a centrally placed Ni(II) ion, Ni(7) through two µ3-OH groups O(153), O(156) and four 

µ2-Oox, O(21), O(61), O(71) and O(91) of the ligands and yielding an Ni(7)O6 core. As 

shown in Figure 7.2, all the nickel centers are 6-fold coordinate and the structure contains 

an octahedral NiO6 central core and four different NiN4O2 and NiN2O4 environments. All 

of the oxime groups are deprotonated, and the nine nickel atoms are linked together via 

several bi-or trifurcated oximato, hydroxo and water bridges. Two nickel atoms (Ni1 and 

Ni3) display pseudo-octahedral geometry with NiN4O2 coordination spheres with two 

pyridine nitrogen atoms, two imine nitrogen atoms and one µ2-OH and the 6th 

coordination mode is satisfied through µ-bridging water molecules O(151) and O(154). 

As shown in Table 7.1, the Ni-µ2-O(151) and Ni-µ2-O(154) bond lengths [2.129(6)-

2.147(7) Å] are significantly longer than the bond distances of Ni-µ-O(152), Ni-µ-

O(153), Ni-µ-O(155) and Ni-µ-O(156) [2.000(6)-2.032(6) Å] and thus O(151), O(154) 

are assigned as µ2-bridging water molecules. The coordination mode around Ni(2)and 

Ni(9) are N2O4, one pyridine nitrogen, one imine nitrogen, one µ3-OH, two oximate 

oxygen, and the 6th coordination is satisfied by µ-bridging water molecules. The 

coordination environment around Ni(4) and Ni(6) differs from that of Ni(2) and Ni(9) in 

that their is only one µ- bridging oxygen of the oximate instead two, µ2-OH instead of µ3-

OH and terminally coordinated water. Whereas Ni(5) and Ni(8) are also in an N2O4 

octahedral environment with one pyridine nitrogen, one imine nitrogen, one µ- bridging 

oxygen from the oximates, one µ3-OH and two coordinated water molecules. The 

distortion from octahedral geometry for the nickel centers are more pronounced; the trans 

donor angles deviate from 180° by nearly 12°. Selected bond lengths and angles are given 

in Table 7.1. 

                  The C=N and N-O distances of the oximate moieties are in the ranges of 

1.28 and 1.36 Å respectively and nearly identical to the corresponding distances for other 
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comparable structures.16d-e,17 The Ni-O distances lie in the range of 2.005 Å to 2.174 Å as 

expected, the Ni-µ2-Oox bond lengths are significantly longer than the Ni-Oox bond 

distances. The Ni-N bond distances are consistent with normal covalent bonds for high-

spin d8 Ni(II) ions with oximate ligands. The Ni-Nox bond lengths are shorter than the Ni-

Npy bond lengths as is evidenced from the X-ray structure. The µ3-OH(153) group acts as 

a bridge between Ni(2), Ni(7) and Ni(8) atoms, similarly µ3-OH(156) group acts as a 

bridge between Ni(5), Ni(7) nd Ni(9). The µ2-OH(152) and OH(155) groups are bridging 

ligands between Ni1 and Ni6;  Ni3 and Ni4 respectively. In the cluster there are two 

different sets of Ni-O-Ni bond angles lying in the ranges 93.7-102.2 and 108.4-114.6°  

 

Figure 7.2: ORTEP and labeling scheme for NiII
9 (17) 

        

There are eight strong hydrogen bondings prevailing between the oximate, hydroxo and 

water oxygen atoms and is shown as dotted lines in the Figure 7.3. The OH...O bond 

distances lie in the ranges of 2.625-2.757 Å and are listed in Table 7.1A. These 

chemically significant hydrogen bondings are responsible for the stabilization of the 

supramolecular metallocyclic core in cluster 16. 
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Figure 7.3:  Schematic view of the hydrogen bonding in the Ni9 core structure. 

 

    Table 7.1:  Selected Bond Lengths (Å) and Angles (deg) [NiII
9(PyA)10(µ3-OH)2(µ2-OH)2(H2O)6](ClO4)4 

.12H2O (16) 

Ni(1)•••Ni(2) 3.479 Ni(2)•••Ni(8) 3.351 

Ni(3)•••Ni(4) 3.379 Ni(4)•••Ni(5) 3.396 

Ni(5)•••Ni(9) 3.367 Ni(5)•••Ni(7) 3.117 

Ni(3)•••Ni(9) 3.486 Ni(7)•••Ni(8) 3.125 

Ni(7)•••Ni(9) 3.378 Ni(1)•••Ni(6) 3.486 

    

Ni(1)-N(2) 2.019(7) Ni(4)-N(62) 2.052(8) 

Ni(1)-N(12) 2.044(7) Ni(4)-N(69) 2.070(8) 

Ni(1)-N(19) 2.056(8) Ni(4)-O(21) 2.171(6) 

Ni(1)-N(9) 2.056(7) Ni(4)-O(41) 2.040(7) 

Ni(1)-O(151) 2.147(7) Ni(4)-O(42) 2.096(6) 

Ni(1)-O(152) 2.008(6) Ni(4)-O(155) 2.004(6) 
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Ni(2)-N(22) 2.068(7) Ni(5)-N(82) 2.031(8) 

Ni(2)-N(29) 2.083(8) Ni(5)-N(89) 2.049(9) 

Ni(2)-O(11) 2.071(6) Ni(5)-O(52) 2.102(7) 

Ni(2)-O(31) 2.043(6) Ni(5)-O(53) 2.090(7) 

Ni(2)-O(151) 2.142(6) Ni(5)-O(91) 2.118(6) 

Ni(2)-O(153) 2.032(6) Ni(5)-O(156) 2.002(6) 

    

Ni(3)-N(42) 2.038(7) Ni(6)-N(92) 2.058(8) 

Ni(3)-N(49) 2.070(8) Ni(6)-N(99) 2.082(8) 

Ni(3)-N(52) 2.036(7) Ni(6)-O(1) 2.052(6) 

Ni(3)-N(59) 2.075(7) Ni(6)-O(62) 2.117(6) 

Ni(3)-O(154) 2.129(6) Ni(6)-O(71) 2.174(6) 

Ni(3)-O(155) 2.005(6) Ni(6)-O(152) 2.008(6) 

Ni(7)-O(21) 2.110(6) Ni(8)-N(32) 2.034(8) 

Ni(7)-O(61) 2.160(6) Ni(8)-N(39) 2.074(7) 

Ni(7)-O(71) 2.132(6) Ni(8)-O(61) 2.122(6) 

Ni(7)-O(91) 2.137(6) Ni(8)-O(82) 2.065(7) 

Ni(7)-O(153) 2.001(6) Ni(8)-O(83) 2.108(6) 

Ni(7)-O(156) 2.004(6) Ni(8)-O(153) 2.000(6) 

    

Ni(9)-N(72) 2.055(7) Ni(7)-O(21)-Ni(4) 112.7(3) 

Ni(9)-N(79) 2.091(8) Ni(8)-O(61)-Ni(7) 93.7(2) 

Ni(9)-O(51) 2.068(6) Ni(7)-O(71)-Ni(6) 112.4(3) 

Ni(9)-O(81) 2.055(6) Ni(7)-O(91)-Ni(5) 94.2(2) 

Ni(9)-O(154) 2.131(6) Ni(2)-O(151)-Ni(1) 108.4(3) 

Ni(9)-O(156) 2.040(6) Ni(1)-O(152)-Ni(6) 114.6(3) 

  Ni(7)-O(153)-Ni(8) 102.7(3) 

  Ni(8)-O(153)-Ni(2) 112.4(3) 

  Ni(7)-O(153)-Ni(2) 113.9(3) 

  Ni(3)-O(154)-Ni(9) 109.8(3) 

  Ni(3)-O(155)-Ni(4) 114.5(3) 
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  Ni(7)-O(156)-Ni(5) 102.2(3) 

  Ni(5)-O(156)-Ni(9) 112.8(3) 

  Ni(7)-O(156)-Ni(9) 113.3(3) 

 

Table 7.1A:  Selected Bond Lengths (Å) for the hydrogen bonding in the NiII
9 cluster. 

O(152)•••HO(153) 2.652 O(21)•••HO(154) 2.643 

O(81)•••HO(62) 2.707 O(155)•••HO(154) 2.632 

O(31)•••HO(42) 2.757 O(71)•••HO(151) 2.625 

O(61)•••HO(53) 2.704 O(91)•••HO(82) 2.716 

 

 

7.4.2 Solid State molecular structure of [Cu9(L')4(µ3-OH)4(MeOH)2](ClO4)2 • 6 

MeOH (17) 

The asymmetric unit consists of one half of the nonanuclear dication which resides on a 

crystallographic inversion center, one perchlorate anion and three methanol molecules of 

crystallization. The X-ray structure clearly illustrates the formation of the nonanuclear 

cluster. An ORTEP view of the dication is shown in the Figure 7.4. Selected bond lengths 

and angles are listed in Table 7.2 The nonanuclear complex consists of four alkoxo 

bridged dinuclear units {Cu2L}+, that are covalently linked by µ3-OH bridging ligands to 

form the nonacopper(II) metallocyclic core. The nonacopper cluster can be described as 

consisting of two [CuII
4L2(µ3-OH)2(MeOH)] moieties connected to a centrally placed 

Cu(II) ion, Cu(5) through four µ3-OH groups and two µ3-alkoxo bridges of the ligands 

and yielding a Cu(5)O6 core. Thus the centrosymmetric aggregate can be regarded as two 

irregular tetrahedral [CuII
4L2(µ3-OH)2(MeOH)]2+ units linked via a central CuII ion, 

Cu(5), at its inversion center. As shown in the Figure 7.4, the structure contains an 

octahedral CuO6 central core and all other copper(II) ions are in distorted CuNO4 

environments. All the ligands are deprotonated and the nine copper atoms are linked 

together via several bi-or trifurcated endogenous-alkoxo, exogenous-hydroxo groups and 

enolized oxygen atoms. In the {Cu2L}+ unit, the trianionic ligand displays N2O3-

pentadentate coordination mode with alkoxide oxygen acting as the endogenous bridging 

ligand. 
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Figure 7.4: ORTEP and labeling scheme for CuII
9

  (18) 

All the five coordinated copper ions, Cu(1), Cu(2), Cu(3), Cu(4) and its symmetric 

equivalent centers are in distorted NO4 square pyramidal geometry with an unpaired 

electron in the dx
2

-y
2 orbital. The basal planes around the copper centers are formed from 

the imine nitrogen, alkoxo oxygen, the enolized oxygen atom of the ligand moiety and 

the hydroxo oxygen atoms. The crystal structure gives τ values in the range 0.08-0.26 

indicating an essentially square-pyramidal (4 + 1) coordination geometry of the metal in 

17.18 In a five coordinate system, ideally square pyramidal geometry is associated with α 

= β = 180° for A is the axial ligand (where α and β are the basal angles). In the great 

majority of real square pyramidal systems, metal is displaced out of the equatorial plane 

toward the axial ligand. The geometric parameter τ is defined as [(β - α)/60] which is 

applicable to five coordinate environment as an index of degree of trigonality, within the 

structural continuum between trigonal bipyramidal and square pyramidal geometries. For 
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a perfectly square pyramidal geometry τ is zero, while it becomes unity for a perfect 

trigonal bipyramidal geometry. The Cu-N bond distances in all the eight copper ions, 

Cu(1), Cu(2), Cu(3), Cu(4) and its symmetric equivalent centers are 1.91 Å. A close look 

into the X-ray structure illustrates the presence of two different types of enolized oxygen 

atoms in the complex 17; O(37) and O(47) are bifurcated, whereas O(7) and O(17) are 

monodentate. The O(12) and O(42) alkoxo groups are acting as a µ3-bridge between 

{Cu(1), Cu(2) and Cu(4)} and {Cu(3), Cu(4) and Cu(5)} respectively. The Cu (1)-O(12) 

and Cu(2)-O(12) bond distance is 1.95 Å(basal plane), whereas the Cu(4)-O(12) bond 

distance of 2.5 Å  is longer compared to the previous bond distance. Similarly the Cu(5)-

O(42) bond distance of 2.4 Å is significantly larger compared to Cu(3)-O(42) and Cu(4)-

O(42)  bond distances of 1.94 Å. On the other hand O(37) and O(47) act as  bridges 

between {Cu(1), Cu(3)} and {Cu(2),Cu(4)} respectively.  
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Figure 7.5A: Core structure of the nonacopper(II) cluster 17 
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The central copper ion Cu(5) has been subjected to Jahn-Teller distortion, as is evident  

from the two significantly larger Cu(5)-O(42) and Cu(5)-O(42A) bond distances of 2.4 Å 

compared to Cu(5)-O(1), Cu(5)-O(1A), Cu(5)-O(2), Cu(5)-O(2A) bond distances of ∼ 

1.97 Å . The bond distances of copper with oxygen atoms are also dissimilar (Cu-Oav = 

1.9 and 2.6 Å) in case of µ2-alkoxo groups [O(37) and O(47)]. The µ3-hydroxo groups 

O(1) and O(2) connect {Cu(1), Cu(3), Cu(5)} and {Cu(2), Cu(4), Cu(5)} respectively. 

The average Cu-OH(µ3-) bond distance is 1.975 Å. The nonseparated Cu...Cu distances 

lie in the range from 2.88 Å to 7.3 Å in the nonanuclear cluster. The entire Cu...Cu 

separations are given in the table 6.2. A notable outcome of this cluster is the presence of 

different Cu-O-Cu bond angles which lie in the range 83.95 to 132°. It is to be mentioned 

that the Cu-O(H)-Cu angles are in the range 91.81 to 133.92°, whereas the Cu-µ3-O(R)-

Cu and Cu-µ2-O(R)-Cu angles fall in the range 79.56 to 130.26°, and 77.65° respectively. 

         The dihedral angles (ϕ) between the basal planes are 72.8° within the {Cu2L}+ 

moiety. This suggests a significant deviation from the planarity of the two planes. The 

dihedral angles between the two interunit basal planes {Cu(1) and Cu(3)} and {Cu(2) and 

Cu(4)} having hydroxide bridging ligands are 107.8 and 113.2° respectively. Strong 

deviation from planarity may reduce the magnitudes of the exchange coupling 

considerably.  

         The crystal structure of 17 exhibits chemically significant hydrogen-bonding 

interaction between the complex and the lattice molecules, and also between oxygen 

atoms of the ligand and the coordinated methanol molecules. So the hydrogen bonding 

network may stabilize the core conformation. The O(2)...O(100), O(1)...O(100), 

O(7)...O(60), O(74)...O(80) distances of 2.73, 2.85, 2.84, and 2.83 Å respectively with O-

H....O angle of ∼ 160, 155, 160 and 168° respectively indicate the presence of strong 

hydrogen-bonding interactions.  

         The crystal structure of 17 is of importance as structurally characterized discrete 

molecular nonanuclear copper(II) complexes are limited in number.11 Again the diversity 

of the core structures in these high-nuclearity copper(II) complexes means any 

meaningful comparison difficult. 
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Table 7.2:  Selected Bond Lengths (Å) and Angles (deg) [CuII
9(L)4(µ3-OH)4(MeOH)2](ClO4)2 .6 MeOH  

(17) 

Cu(1)•••Cu(2) 3.2 Cu(1)•••Cu(5) 3.64 

Cu(1)•••Cu(3) 3.25 Cu(2)•••Cu(3) 3.33 

Cu(3)•••Cu(4) 3.4 Cu(3)•••Cu(5) 2.92 

Cu(2)•••Cu(5) 3.64 Cu(2)•••Cu(4) 2.88 

Cu(4)•••Cu(5) 3.03 Cu(4)•••Cu(4A) 6.06 

Cu(2)•••Cu(2A) 7.25 Cu(3)•••Cu(3A) 6.94 

    

Cu(1)-N(10) 1.920(2) Cu(3)-N(40) 1.913(2) 

Cu(1)-O(7) 1.914(1) Cu(3)-O(37) 1.901(1) 

Cu(1)-O(12) 1.947(1) Cu(3)-O(42) 1.944(1) 

Cu(1)-O(1) 1.980(1) Cu(3)-O(1) 1.999(1) 

Cu(1)-O(37) 2.579(6) Cu(3)-O(60) 2.444(6) 

    

Cu(2)-N(14) 1.911(2) Cu(4)-N(44) 1.912(2) 

Cu(2)-O(17) 1.877(1) Cu(4)-O(47) 1.888(1) 

Cu(2)-O(12) 1.949(1) Cu(4)-O(42) 1.945(1) 

Cu(2)-O(2) 1.993(1) Cu(4)-O(2) 2.013(1) 

Cu(2)-O(47) 2.612(1) Cu(4)-O(12) 2.499(6) 

    

Cu(5)-O(1) 1.971(1) N(10)-Cu(1)-O(1) 158.82(8) 

Cu(5)-O(1A) 1.971(1) O(12)-Cu(1)-O(7) 174.75(7) 

Cu(5)-O(2) 1.960(1) N(14)-Cu(2)-O(2) 166.89(8) 

Cu(5)-O(2A) 1.960(1) O(17)-Cu(1)-O(12) 175.97(7) 

Cu(5)-O(42) 2.395(1) N(40)-Cu(3)-O(1) 161.64(8) 

Cu(5)-O(42A) 2.395(1) O(37)-Cu(3)-O(42) 172.56(7) 

  N(44)-Cu(4)-O(2) 176.85(8) 

  O(42)-Cu(4)-O(47) 172.15(7) 

    

Cu(1)-O(12)-Cu(2) 111.43(8) Cu(2)-O(47)-Cu(4) 77.65 

Cu(1)-O(1)-Cu(5) 133.92(9) Cu(2)-O(12)-Cu(4) 79.56 
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Cu(1)-O(1)-Cu(3) 109.59(8) Cu(3)-O(1)-Cu(5) 94.73(7) 

Cu(1)-O(12)-Cu(4) 130.26 Cu(3)-O(42)-Cu(4) 123.18(9) 

Cu(1)-O(37)-Cu(3) 91.79 Cu(3)-O(42)-Cu(5) 83.95(6) 

Cu(2)-O(2)-Cu(5) 132.92(9) Cu(4)-O(42)-Cu(5) 88.00(6) 

Cu(2)-O(2)-Cu(4) 91.81(7) Cu(4)-O(2)-Cu(5) 99.49 

 

7.5 Magntic Properties:           

        The magnetic susceptibility data for polycrystalline samples of 16 and 17 were 

collected in the temperature range 2-290 K in an applied magnetic field of 1T and are 

displayed in Figures 7.6 and 7.9 respectively as plots of the effective magnetic moment 

(µeff) versus temperature (T).  

           The plot of µeff vs. T for NiII
9 shows typical antiferromagnetic behavior, and the 

magnetic moment µeff /molecule of 17  is 8.2 µB  (χMT = 8.4 emu mol-1) at 290 K, smaller 

than the expected value for nine isolated Ni(II) ions S = 1 (9 x 1.00 = 9.00 emu mol-1) 

assuming g = 2.00 (which is unrealistic for a Ni(II) ion, which always has g values > 

2.00) decreases monotonically with decreasing temperature until it reaches a value of 

2.51µB (χMT = 0.8 emu mol-1) at 1.96 K. This temperature dependence is in agreement 

with antiferromagnetic behavior. Complex 17 contains 9 Ni(II) centers, with total spin 

from 0 to 9, owing to the size and low symmetry of the molecule, it is not possible to 

apply Kambe method.19  

            To fit and interpret the magnetic susceptibility data of complex 16, first it is 

necessary to find all the possible magnetic pathways in the complicated but regular 

structure of the complex 16. Close examination of the structure gives the pathways shown 

in scheme 7.5. From this scheme two different superexchange pathways can be identified, 

due to the different bridging modes, whereas the g value is considered to be isotropic and 

equal for all Ni(II) ions. A schematic core for the nonanickel(II) cluster is shown below. 
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Perspective view of the coordination environment around each nickel centers in NiII
9 cluster 

 

The exchange coupling model shown in Figure 7.5 was considered for simulation of the 

experimental magnetic data using irreducible tensor operator (ITO)17 mathematical 

approach with the Heisenberg Hamiltonian in the form H = -2JSiSj. The experimental 

magnetic data have been fitted using the Hamiltonian, H = -2J1(S1S2 + S1S6 + S3S4 + 

S3S9) -2J2(S2S7 + S6S7 + S8S7 + S4S7 + S5S7 + S9S7 +S2S8 + S5S9) ; where the numbering 

of the spins follows the numbering of the nickel atoms in Figure 7.5.  
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Figure 7.5:  Coupling Scheme 
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Figure 7.6:   Plot of effective magnetic moment as a function of temperature. The solid line represents 

the best least-squares fit parameters given in the text. 

 

Such a complicated magnetic structure represents an interesting challenge in order to fit 

and interpret the susceptibility data, J1 and J2 pathways seem to be most defined, where 

the J1 pathway represents the exchange interaction between the nickel centers through (-

N-O) and µ2-hydroxo, whereas J2 pathway represents the exchange interaction between 

the nickel centers through µ2-oxygen atoms of the oximate ligands and µ3-hydroxo 

ligands. In adopting this procedure we have reduced the overparametarization. The total 
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degeneracy of spin levels for nonanuclear nickel (II) with single ion SNi = 1 is 39, a 

number which grows very fast beyond the possibilities of handling with any computer. So 

it is really not a trivial task to diagonalize this 19683 X 19683 matrix. Thus it is apparent 

that procedures are required which employ symmetry in order to reduce the dimension of 

the matrices. Here in the approximation we have reduced the matrix by taking 5 nickel 

centers, as it was described earlier that two tetranuclear units are connected with the 

central nickel(II) ion. In doing so the total degeneracy is now 35 and now the matrix 

dimension is reduced to 243X243. The best fit parameters obtained where J1 = - 26.54 

cm-1 and J2 = -7.02 cm-1 with g = 2.15. The bridging geometries between the nickel 

centers exhibit small variations, and this leads to variation in the exchange coupling 

constant. 

           It is known that the exchange interaction is ferromagnetic when the Ni-O-Ni angle 

falls below 98°, above which the exchange interaction is antiferromagnetic. Since in our 

case just two Ni-O-Ni angles are less than 98°, and all other Ni-O-Ni angles are greater 

than 98° and lie in the ranges 108-114°, the exchange interaction leads complex 16 is an 

antiferromagnetically coupled cluster. This can be explained in terms of interaction of the 

magnetic orbitals of Ni(II) with SNi = 1 which are singly occupied (dx
2
 -y

2)1 and (dz
2)1 

orbitals and the dominant interactions prevailing are listed below, 

dx
2
-y

2⎪⎪ σsp
2(NO) ⎪⎪ d'x2

-y
2    antiferromagnetic 

dz
2 ⎪⎪σsp

2(NO) ⎪⎪ d'z2       antiferromagnetic 

dx
2
-y

2 ⎪⎪σsp
2(NO) ⎪⎪ d'z2         ferromagnetic. 

All reported oximate bridged nickel(II) complexes14-15 accordingly exhibit moderate to 

weak antiferromagnetic interactions, ranging from -7 cm-1 to - 40 cm-1. 

            The antiferromagnetically coupled nonanuclear nickel(II) complex possesses ST = 

1 ground state, as is also evidenced from the variable temperature variable field (VTVH) 

magnetic measurement. From the best simulation we have evaluated the ZFS (D) 

parameter of the ST = 1 ground state to be DS=1 = 2.7 cm-1 
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Figure 7.7:   Plot of variable temperature variable field magnetic measurements (VTVH). The solid line 

represents the best least-squares fit parameters given in the text. 

 

In conclusion we have been able to isolate the NiII
9 complex by using a tridentate oxime 

ligand. The metal ions are in a distorted octahedral coordination sphere. The complex 

exhibits moderate antiferromagnetic exchange interaction. 

 

                   The magnetic moment µeff/molecule for 17, CuII
9, of 4.59 µB (χM•T = 2.63 

cm3•K•mol-1) at 290 K, is smaller than the typical value for nine isolated Cu(II) ions S = 

0.5 (9 x 0.375 = 3.375 cm3•K•mol-1) assuming g = 2.00 (which is unrealistic for a Cu(II) 

ion, which typically has g values > 2.00)  decreases monotonically with decreasing 

temperature until it reaches a value of 3.34 µB (χM•T = 1.39 cm3•K•mol-1) at 70 K and 

then starts to increase slowly and reaches a value of 3.38 µB (χM•T = 1.43 cm3•K•mol-1) 

at 20 K and then finally decreases to a value of 2.7 µB (χM•T = 0.91 cm3•K•mol-1). This 

temperature dependence behavior agrees well with that expected for an antiferromagnetic 

exchange coupling between the copper(II) ions, leading to an irregular spin state 

structure. So in the µeff vs. T plot, the minima at 70-20 K indicating the presence of 

irregular spin levels in the compound.  

                 Complex 17 contains 9 Cu(II) centers, with total spin from 0 to 4.5, owing to 

the size and low symmetry and also due to the complexity of the molecule, here also it is 

not possible to apply the Kambe method19 of vector coupling to model the exchange 

coupling scheme. To fit and interpret the magnetic susceptibility data of complex 17, 

firstly it is necessary to find all possible magnetic pathways in the complicated but 

regular structure of the complex 17. Close examination of the structure gives the 
 158



CHAPTER 7 

pathways shown in scheme 7.8. From this scheme four different superexchange pathway 

can be identified, due to the different bridging modes, whereas the g value is considered 

isotropic and equal for all Cu(II) ions.  
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Figure 7.8: Coupling Scheme 

                  The exchange coupling model shown in Figure 7.8 was considered for 

simulation of the experimental magnetic data using the irreducible tensor operator (ITO) 

mathematical approach with the Heisenberg Hamiltonian in the form H = -2JSiSj. The 

experimental magnetic data have been fitted using the Hamiltonian, H = -2J1(S1S2 + S9S8 

+ S3S4 + S6S7) - 2J2(S2S4 + S7S8) - 2J3( S1S6 + S3S9) - 2J4(S1S5 + S2S5 + S3S5 + S4S5 + 

S6S5 + S7S5 + S8S5 + S9S5); where the numbering of the spins follows the numbering of 

the copper(II) atoms in Figure 7.8.  
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Figure 7.9: Magnetic data for CuII

9
 (18) plot of µeff vs. T. The bold squares represent the experimental 

data while the solid line represents the simulation. 
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Such a complicated magnetic structure represents an interesting challenge in order to fit 

and interpret the susceptibility data. It is logical to consider J1, J2, J3 and J4 pathways 

where the J1 pathway represents the interaction between the copper centers through 

alkoxo bridge in the binuclear {Cu2L}+ unit; whereas J2 and J3 pathway represent the 

interaction between the copper centers through (alkoxo, enolized µ2-O and hydroxo) and 

enolized µ2-O-hydroxo) groups respectively; on the other hand J4 defines exchange 

interaction between the copper(II) ions through hydroxo bridge. The total degeneracy of 

spin levels for nonanuclear copper (II) with single ion SCu = 0.5 is 29, giving rise to a 

matrix of 512 X 512. From the best fit, the parameters obtained are gCu = 2.30, J1  = - 

193.3 cm-1; J2  = - 27.4 cm-1;   J3  = - 6.4 cm-1; J4  = - 53.1 cm-1, with a R agreement factor 

(R = (χM
calc – χM

exp)2/(χM
exp)2) of 2.9 × 10–4. 

But to reduce the possible over parameterization another set of spin modeling was taken 

into consideration with the Heisenberg Hamiltonian;  H = -2J1(S1S2 + S9S8 + S3S4 + 

S6S7) - 2J2(S2S4 + S7S8 + S1S6 + S3S9) - 2J3(S1S5 + S2S5 + S3S5 + S4S5 + S6S5 + S7S5 + 

S8S5 + S9S5), where J1, J2, and J3 define the exchange interactions between the 

copper(II) ions through alkoxo, (alkoxo-hydroxo-enolized µ2-O) and hydroxo bridges 

respectively. In the previous scheme two different exchange coupling constants through 

alkoxo-hydroxo-enolized µ2-O and enolized µ2-O-hydroxo bridges exchange 

interactions were considered.  By using a "three-J" model overparametarization is 

reduced. 
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Figure 7.10: Coupling Scheme. 
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As an approach to the J coupling constants, a fit based on the interaction was performed 

by means of the CLUMAG program, which uses the irreducible tensor operator 

formalism (ITO) on the Hamiltonian. Best fit parameters are in good accordance with the 

expected values for the three kinds of bridges, J1  = - 189.1 cm-1, J2  = - 22.7  cm-1,  J3  = - 

45.7 cm-1, g = 2.29 with a R agreement factor (R = (χM
calc – χM

exp)2/(χM
exp)2) of 1.37 × 

10–4. In this case, attempts to fit the system with a "three-J" scheme give good 

mathematical fits and realistic coupling constants values.  

        Magnetostructural correlations have been found to be very successful in the 

description of the Cu...Cu coupling in binuclear complexes with double bridging 

ligands. It has been shown that if the Cu-O-Cu angle exceeds 97.5°, an 

antiferromagnetic interaction is observed, if less a ferromagnetic interaction.23 

Significant decrease of the values of exchange coupling constants was observed due to 

the displacement of the Cu2O fragment from planarity due to displacement of metal ions 

from the ligand plane.24 To avoid over parameterization in the calculation for the 

compound 17, only the interactions deemed most likely to dominate the coupling were 

considered. It is clear from the vast amount of research that the nature and the strength 

of the exchange are chiefly affected by the Cu-O-Cu angle. In general, the coupling is 

antiferromagnetic and J decreases as Cu-O-Cu angle becomes more acute. For each type 

of bridge there is predicted critical value of Cu-O-Cu angle where J changes sign to 

become ferromagnetic. The antiferromagnetic interaction is favoured by the nature of 

the bridge in the order OPh > OR > OH. Other electronic and geometric factors have 

also been found to exert a particular influence on the value of J, such as the coordination 

geometry around Cu(II),20 the Cu-O bond distances,21 or the electronegativity of the 

additional ligands bound to the metals.22 Because of the approximations included in this 

analysis, however, the numbers obtained must be regarded for scepticism. The structural 

differences of this cluster 17 prevent a systematic comparison between their J values. 

However, the strongest interaction, which controls the coupling, can be compared.  

       As expected, the magnetic response of compounds 17 is dominated by the strong 

antiferromagnetic coupling through the alkoxo bridge in the {Cu2L}+ which shows large 

Cu–O–Cu bond angles. A strong antiferromagnetic exchange is expected when the Cu-O-

Cu bridging angle is close to 180°, whereas for angles close to 90°, the interaction is 

expected to be either ferromagnetic or weakly antiferromagnetic. Therefore, in spite of 

the relatively similar coupling constants, the exchange coupling through different Cu-O-

Cu bond angle based on alkoxo, hydroxo and alkoxo-hydroxo bridge has non-trivial 
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features that should be analyzed separately. In spite of a different coordination 

polyhedron, the interaction through alkoxo bridge coupling reaches a J value comparable 

to that obtained for the interaction between the two copper planes with dx
2
-y

2 interaction. 

Owing to the square pyramidal geometry of Cu(1) and Cu(2), the metallic components of 

their magnetic orbitals is dx
2

-y
2 which points towards the equatorial ligands. As a 

consequence strong overlap is expected with the alkoxo-bridge. From the structural data, 

the coupling constant associated with the alkoxo bridge (J1) should be high in view of the 

large Cu–O–Cu bond angle and weaker value should be expected for the interaction 

through the enolized µ2-O-hydroxo bridge (J2) due to countercomplementary interactions 

promoted by the exogenous hydroxo bridge and expected to be weaker compared to the 

interaction mediated through alkoxo bridge only and are in good agreement with entities 

reported elsewhere. So it can be anticipated that the observed weaker antiferromagnetic 

coupling(J2) compared to that of alkoxo bridge exchange interaction (J1) results from a 

competition between the two different magnetic orbital overlap pathways, viz. Cu-Oenol-

Cu and Cu-O(H)-Cu, which may have opposite face relative to each other. On the other 

hand the hydroxo subunit should correspond to a moderate antiferromagnetic 

superexchange interaction (J3) is due to dx
2

-y
2⎢⎢dz

2 pathway. 

            For the compound 17, in which the environment of the eight copper ions is 

practically square pyramidal (4+1) with unpaired electron in the dx
2

-y
2 orbital, except the 

central copper ions Cu(5)  is in an octahedral environment with the unpaired electron in 

dz
2 orbital, due to the Jahn-Teller distortion, which is evidenced in the X-ray structure. 

The strong interaction mediated through alkoxo bridges in the {Cu2L}+ unit is thus well 

justified and comparable to the reported25 values in the range J = -111 to -380 cm-1. The 

moderately large Cu-O-Cu angles result in good overlap between the copper dx
2
-y

2 and 

alkoxo px and py orbitals. That the J2 coupling is much  smaller in comparison to J1 

coupling could be explained very nicely due to the countercomplementary interaction 

promoted by the exogenous hydroxo group and can be compared with literature survey, 

documented well.8,9b,10,25f,26-27  It is to be also mentioned that though the Cu-O-Cu angle is 

very large (131°) but the interaction is reduced by the countercomplementary exchange 

interaction promoted by the carboxylate group and  in one case the interaction between 

the copper ions mediated through alkoxo-hydroxo is ferromagnetic in nature ( J = + 17 

cm-1)10 due to the countercomplementary interaction mediated through the hydroxo 

bridge. 
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[NiII(PyA)3NiII(PyA)3NiII]0 starting from Nickel(II) acetate resulted in a compound consisting of 

two monomeric [Ni(PyA)2(PyAH)]units held together by two O...H...O bridges. 

     The nickel(II) centers in the triangular unit of complex 3 are disposed as a scalene triangle 

with three different Ni...Ni distances.  In spite of that, an excellent fit of the experimental 

magnetic moment data with an isosceles triangular model of three spins with S = 1.0 is possible, 

presumably due to only two types of bridging ligands. The triplet ground state ⏐1,2>   is only 8.4 

cm-1 below the first excited singlet state  ⏐0,1> for 3. 

        It has been established that the ground state is determined not by the absolute values of J 

and J' but by their ratio, ρ = J'/J.  For ρ ≤ 1/2, the ground state is E(1,2), and for ρ ≥ 2, is E(1,0). 

On the other hand for 1/2 ≤ ρ ≤ 2, the ground state is E(0,1). As a whole, the situation may be 

described as follows : the antiferromagnetic interaction between Ni(1) Ni(2) and Ni(1) Ni(3) 

polarizes the spins around Ni(2) and Ni(3) in a ferromagnetic fashion. Any antiferromagnetic 

interaction along Ni(2) Ni(3) opposes this effect.  When ⎢J' ⎢ is small enough (ρ≤1/2), the 

ferromagnetic polarization takes over.  When ⎢J' ⎢ is large enough (ρ ≥ 2), the antiferromagnetic 

interaction takes over. When the ferromagnetic polarization and the antiferromagnetic interaction 

are of the same order of magnitude, the system looks for a compromise. The spin vectors around 

Ni(2) and Ni(3) are neither parallel nor antiparallel. Particularly interesting are the two situations 

ρ = 1/2 and ρ = 2. For both the cases the ground state is accidentally degenerate and the spins are 

unable to decide which state to be and the system is frustrated. At this point it is really worth-

mentioning that, the ratio, ρ = J'/J determines the ground state in the isosceles triangular model 

where all the local spins are of integer values, this important consideration was overlooked 

previously, in some cases,18 led to a miss assigned spin ground state. 

 

CHAPTER -3 

            The dinucleating oxime ligand acts as a backbone for the synthesis of linear tetranuclear 

complexes where Me3Tacn acts as the terminal ligand. The results described in chapter-3 show 

that it is possible to stabilize the tris(2,6-diformyl-4-methyl phenoldioximato) bis manganese(II) 

pentaanion by complexation with the [Me3TacnMIII]3+, where M = Mn(III), Fe(III) or Cr(III) 

unit. Tris(2,6-diformyl-4-methyl phenoldioximato) bis manganese(II) pentaanion is capable of 

functioning as bridging ligands to give rise to linear homo- and heterotetranuclear complexes and 

can mediate a varying range of exchange interactions, including weak to moderate 

antiferromagnetic and even ferromagnetic exchange. Because of the quasi-isostructural nature 

these materials are unique and ideally suited for the study of intramolecular exchange 

interactions between the paramagnetic transition metal ions as a function of their respective dn 
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electronic configurations.  Five complexes were isolated and they are abbreviated as 

BIIIMnIIMnIIBIII (4), MnIIIMnIIMnIIMnIII (5), MnIVMnIIMnIIMnIV (6), FeIIIMnIIMnIIFeIII (7) 

and CrIIIMnIIMnIICrIII (8).                 

                    All the complexes exhibit overall antiferromagnetic interactions. The magnetic 

susceptibility data for 4 demonstrates antiferromagnetic exchange coupling between the two 

paramagnetic high-spin Mn(II) [SMn(II) = 5/2] centers. The exchange coupling constant was 

evaluated to be J = - 8.4 cm-1. The evaluated value of the isotropic exchange interactions 

between the central Mn(II) centers, in complex 4 was employed to extract the exchange 

interactions parameter in the tetranuclear complexes 5, 6, 7 and 8. The obtained values resemble 

quite satisfactorily in case of complexes 5, 7 and 8, where JMn(II)...Mn(II) were  evaluated to be - 

8.2 cm-1, - 8.0 cm-1 and - 8.75 cm-1 respectively. The nearest neighbor Mn(III)...Mn(II) and 

Mn(IV)...Mn(II) interactions were assigned as weak ferromagnetic in nature, while the 

interaction between the Fe(III)...Mn(II) and Cr(III)...Mn(II) are of weak antiferromagnetic in 

nature. 

                     Complex 6 is the first structurally characterized tris-(oximato) bridged 

MnIVMnIIMnIIMnIV tetranuclear complex and the parallel spin coupling, albeit weak ( J = + 0.8 

cm-1) between the neighboring Mn(IV) and Mn(II) ions, falls at the lower end of the observed 

range for all similar compounds known in the literature.2 Thus the  contribution of the path e' 

⎢⎢sp2⎢⎢e' to the overall interaction becomes very important, since the e' orbitals centred on 

Mn(IV) and Mn(II) are empty and half-filled, respectively, leading to ferromagnetic interaction. 

It is interesting to note that the related isostructural CrIIIMnIIMnIICrIII complex exhibits weak 

antiferromagnetic interaction (J = - 2.4 cm-1) between the nearest neighbor Cr(III) and Mn(II) 

ions. Thus the contribution of the path t2g(CrIII) ⎢⎢sp2 ⎢⎢t2g(MnII) to the overall interaction 

becomes important, as, this path provides antiferromagnetic contribution.  

  CHAPTER-4 

       The results described in chapter-4 reveal that heterotetranuclear butterfly complexes can be 

synthesized by using “metal-complexes” as ligands. (2,6-diacetylpyridinedialdoximato) copper 

(II) anion is capable of functioning as bridging ligands and by complexation with [Me3TacnM]3+, 

where M = Fe(III) or Cr(III), to give rise to heterotetranuclear butterfly complexes   FeIII
2CuII

2 

(9), CrIII
2CuII

2 (10), where Cu(II) occupy the "body" and Fe(III) or Cr(III) occupy the "wing-tip" 

positions of the butterfly. 

       This study confirms that there are indeed three different coupling constants, JA = Jwb, JB = 

Jwb, JC = Jbb operative in the tetranuclear butterfly FeIII
2CuII

2 complex. Full matrix 

diagonalization method produced best fit parameters, JA = Jwb = - 125.0 cm-1 and JB = Jwb = - 6.0 
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cm-1, JC = Jbb = - 50.0 cm-1. VTVH measurement suggests that, it is indeed a high-spin molecule 

with ST = 4 ground state. Simulation of the VTVH magnetic data, provides the information about 

exchange coupling constants with JA = Jwb = - 125.0 cm-1 and JB = Jwb = - 6.0 cm-1, JC = Jbb = - 

50.0 cm-1, DFe = + 2.7 cm-1. 

       Due to the presence of competing exchange interactions the ratio of the exchange coupling 

constants determines the ground state, not their absolute magnitudes. The strong magnetic 

interaction between the Fe(III) and Cu(II) ions can be interpreted by the combinations of the 

symmetry allowed Fe(dx
2

-y
2) ⎢⎢(O) ⎢⎢Cu(dx

2
-y

2) and Fe(dx
2

-y
2) ⎢⎢σNO ⎢⎢Cu(dx

2
-y

2), π- and σ-super 

exchange pathways respectively. Presence of strong Jwb over Jbb induces spin frustration in the 

butterfly FeIII
2CuII

2 core congeners. 

        In order to provide a theoretical basis for the observed magnetic properties of CrIII
2CuII

2, 

a "two-J" model was employed to fit and interpret the experimental data. Full matrix 

diagonalization method produced best fit of the parameters, JA = Jwb = - 81.0 cm-1 and JB = Jwb = 

- 16.0 cm-1. VTVH measurement suggests that the molecule possesses an ST = 2 ground state and 

is indeed a "high-spin" molecule. Simulation of the VTVH magnetic data provides the 

information about exchange coupling constants with JA = Jwb = - 81.0 cm-1 and JB = Jwb = - 16.0 

cm-1. Interestingly, the coupling between the CrIII and CuII ions in 10 is antiferromagnetic in 

nature in contrast to that reported9-11 for oxime bridged heteronuclear Cr(III)Cu(II) complexes 

      Due to the presence of competing exchange interactions the ratio of the exchange coupling 

constants determines the ground state, not their absolute magnitudes. Presence of strong Jwb over 

Jbb induces spin frustration in the butterfly CrIII
2CuII

2 core congeners. CrIII
2CuII

2 species 

exhibits irregular spin state structure. The level ordering is a result of the mutual influence of the 

two different interactions which may lead to ground state variability. 

       These results show that it is possible to stabilize “high-spin" ground states, due to the 

molecular topology of the paramagnetic centers, despite antiferromagnetic interactions 

prevailing between the spin carriers.  In the light of the present state of knowledge, the strategy 

of "irregular spin-state" structure resulting from particular spin topology is more effective in 

obtaining "high-spin" molecules than the common strategy of obtaining ferromagnetically 

coupled systems through involvement of symmetry related strict orthogonality of the magnetic 

orbitals of the interacting metal centers. 

 

CHAPTER-5 

The results described in this chapter show that tetramanganese clusters with different molecular 

topologies can be synthesized and led to interesting magnetic properties. The ligands Hppi and 
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salicylaldoxime act as the backbone for the synthesis of MnII
4 (11) and MnIII

4 (12) complexes 

respectively with different topologies like "star-shaped", "tetrahedral" etc. There are very few 

examples of tetranuclear clusters with centred planar topology. The presented tetramanganese(II) 

cluster with "star-shaped" geometry is one of the rare example in this area. 

         Complex 11 is a rare example of ferromagnetically coupled tetramanganese(II) cluster.  

Detailed analysis of the temperature and field dependent magnetic behavior demonstrates a very  

weak ferromagnetic interaction is operative between the central and peripheral Mn(II) ions, 

which leads to high-spin ground states (ST = 10).  In order to provide a theoretical basis for the 

observed magnetic properties of MnII
4, a "two-J" model was employed to fit and interpret the 

experimental data. Full matrix diagonalization method produced best fit parameters: J12 = J13 = + 

0.32 cm-1 and J14 = - 0.2 cm-1. 

               The high-spin Mn(II) centers with S = 5/2 exhibit weak ferromagnetic coupling in the MnII
4 

molecule as is evidenced from both the magnetic susceptibility and variable temperature 

variable field (VTVH) measurements, yielding high-spin molecule with ST = 10 ground state.  

Simulation of the VTVH magnetic data, provides the information about exchange coupling 

constants with J12 = J13 = + 0.47 cm-1 and J14 = - 0.2 cm-1. 

       [MnIII
4(salox)4(salox H)4] (12) complex is a ferromagnetically coupled "high-spin" 

tetramanganese(III) cluster of tetrahedral geometry. The study also confirms that there are indeed 

two different coupling constants, J12 = J23 = J34 = J14 and J14 = J23 are operative in the tetrahedral 

tetramaganese(III) cluster 12. Full matrix diagonalization method produced best fits of the 

parameters, J12 = J23 = J34 = J14 = + 1.9 cm-1; J14 = J23 = - 1.6 cm-1 and D1 = D2 = D3 = D4 = 

⎜3⎜cm-1 

               The high-spin Mn(III) centers with S = 2 exhibit weak ferromagnetic coupling in the MnIII
4 

molecule as is evidenced from both the magnetic susceptibility and variable temperature 

variable field (VTVH) measurements, yielding high-spin molecules with ST = 8 ground state.  

Simulation of the VTVH magnetic data, provides the information about exchange coupling 

constants with J12 = J23 = J34 = J14 = + 1.9 cm-1; J14 = J23 = - 1.6 cm-1 and D1 = D2 = D3 = D4 = 

⎜3⎜cm-1. 

 

      CHAPTER-6 

       Magnetostructural study of two hexanuclear manganese and one hexanuclear copper clusters is 

presented in this chapter. Two new hexanuclear mixed-valence, isostructural manganese 

complexes 13 and 14 have been prepared from the pentadentate dapdo ligand. The hexanuclear 

mixed-valence MnIII
4MnII

2 complexes containing the structural core [MnIII
4MnII

2(µ4-O)2] are 
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rather uncommon compared to compounds with [MnII
4MnIII

2(µ4-O)2] core. Complexes 13 and 

14 are the first structurally characterized discrete hexanuclear complexes with [MnIII
4MnII

2(µ4-

O)2] core congener. These two hexanuclear MnIII
4MnII

2 complexes represent the examples of 

"edge- sharing tetrahedra".  

               The magnetic susceptibility data for [MnIII
4MnII

2(µ4-O)2] core congeners 13 and 14 exhibit 

both intramolecular antiferromagnetic and ferromagnetic exchange coupling.  A "four-J" model 

was employed to fit and interpret the experimental data. The system may be envisaged of two 

ferromagnetically coupled antiferromagnetic triangles and the fact that JA>>JC clearly stabilize 

a local S = 5/2 ground state in each triangular unit, the ferromagnetic pathway JD leads to an ST 

= 5 ground state. So it is a "high-spin" molecule and ST = 5 is also evidenced from the variable-

temperature-variable field (VTVH) magnetic measurements. 

               By using the ITO mathematical approach the exchange interaction was found to be JA = - 

12.6 cm-1, JB = - 4.6 cm-1, JC = + 2.4 cm-1, JD = + 1.9 cm-1, gMn = 1.98, D1 = D3 = D5 = D6 = 

DMn(III) = 4.0 cm-1. The exchange interaction between Mn(III)...Mn(III) is antiferromagnetic in 

nature, while the interactions between Mn(III)...Mn(II) [d4(HS)/d5(HS)] were found to be both 

antiferromagnetic and ferromagnetic, albeit weak, as the average MnIII-O-MnII bond angle of 

100° prevents the better overlap between the magnetic orbitals. This gives rise to ferromagnetic 

exchange interaction (JB). 

                The main lesson from this study is that high nuclearity Mnx complexes can be prepared 

which have either pairwise ferromagnetic MnII...MnIII or MnIII...MnIII interactions or a 

combination of pairwise antiferromagnetic interactions or in the third possibility combination 

of pairwise ferromagnetic-antiferromagnetic interactions that lead to molecules with ST ≠ 0 

ground state. Based on combination of pairwise exchange interactions, competing exchange 

interaction, and topology the polynuclear manganese complexes are stabilized in high-spin 

ground states. 

               The hexadentate oxime ligand generates a new hexanuclear copper(II) cluster(15), 

consisting two linked Cu3O core. Several trinuclear copper(II) structures with central O2- or 

OH- groups have been structurally characterized, however this structure with two such triangles 

linked by a proton appears to be novel. 

               The oximate ligands generally mediate strong antiferromagnetic exchange coupling 

between the d9 copper(II) ions with a dx
2

-y
2 ground state as each copper(II) ions are in a square 

pyramidal coordination environment. The simulation of the magnetic data affords an 

antiferromagnetic exchange interaction in complex 15, in accordance with the large Cu-O-Cu 

angles of 113.65 and 114.32° respectively in each triangular unit. A "two-J" model was used to 
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analyze the magnetic data. From the best fit, the intra-and interdimer antiferromagnetic 

exchange coupling constants are obtained to be JA = - 614.1 cm-1 and JB = - 114.5 cm-1 

respectively. The overall coplanar Cu3O core structure permits larger magnetic exchange 

interaction. As both the oximate and oxo groups transmit strong exchange coupling between the 

copper(II) ions, the overall effect of both of these transmissions is reflected in strong 

antiferromagnetic exchange interaction in this hexanuclear copper(II) cluster. Values of J ∼ -

1000 cm-1 have been reported for other imino-oximate complexes.  

 

     CHAPTER-7 

       This chapter describes the structure and magnetic properties of two rare examples of 

nonanuclear copper(II) and nickel(II) clusters. Two new nonanuclear nickel(II) (16) and 

copper(II) (17) complexes have been isolated with the ligand syn-2-pyridinealdoxime and N,N'-

(2-hydroxypropane-1,3-diyl)bis(benzoylacetoneimine) respectively. 

                 Chemically significant hydrogen bonding may stabilize the nonanuclear NiII cluster. The 

magnetic susceptibility data for 16 exhibits an antiferromagnetic coupling between the 

paramagnetic Ni(II) (SNi = 1) centers and gives rise to ST =1 ground state. Antiferromagnetic 

exchange coupling is mediated through an average Ni(II)....Ni(II) separation of 3.38 Å . A close 

examination of the structure indicates that there are five different types of bridging groups for 

transmission of exchange coupling between the Ni(II) centers with SNi = 1.0 : i) diatomic -NO-, 

ii) µ3-oximate -N-O, iii) µ2-OH, iv) µ3-OH , and v) µ2-OH2. Two avoid overparametarization a 

"two-J" model was employed to simulate the experimental magnetic data and                    

resulted in moderate antiferromagnetic exchange interaction of the value J1 = - 26.5 cm-1 and J2 

= - 7.0 cm-1.  The stronger J1 interaction through the diatomic NO-bridging as oppose to J2 

interaction mediated through the µ3-oximate oxygen is in accord with the literature. This is the 

second example of the magnetostructurally characterized nonanuclear nickel(II) cluster.  The 

ZFS (D) parameter of the ST = 1 ground state is found to be DS = 1 = + 2.7 cm-1. 

                 The polynuclear copper(II) cluster (17) is a rare example of magnetostructurally 

characterized [CuII
9(OH)4]14+ core congener. This cluster has a novel metallamacrocyclic core 

which is generated from the self-assembly process. The magnetic susceptibility data for CuII
9 

complex exhibits overall antiferromagnetic coupling between the copper(II) centers and result 

in a non-diamagnetic ground state. 

                This complex also belongs to the class of irregular spin state structure, as is evidenced 

from the minima observed in the magnetic susceptibility plot. This is due to the presence of 

competing exchange interactions between the spin carriers. 
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                 To avoid the over-parameterization, three different exchange coupling constants were 

taken into consideration and from the best fit, the values: J1 = - 189.1 cm-1, J2 = - 22.7 cm-1, J3 = 

- 45.7 cm-1 are obtained. J1, J2 and J3 define the exchange interactions between the copper(II) 

ions mediated through alkoxo, alkoxo-hydroxo and hydroxo bridges respectively. As expected, 

the magnetic response of compound 17 is dominated by the strong antiferromagnetic exchange 

interaction through the alkoxo bridge in the {Cu2L}+ unit which shows large Cu-O-Cu bond 

angles. J2 coupling constant is much smaller in comparison to J1 coupling and could be 

explained very nicely due to the countercomplementary interaction promoted by the exogenous 

hydroxo group. 

 

     Magnetostructural Correlation:                         
In the last few years, the idea of synthesizing polynuclear complexes involving "metal-

oximates" as building blocks has become quite popular. In the near future new chemistry is 

expected to be developed that enables chemists to synthesize a wide variety of the ligands 

possessing the versatility of the functioning both as bridging and polynucleating group. Thus, 

larger polynuclear assemblies are expected to be synthesized through modular approaches by 

choosing suitable ligands. The ultimate goal, obviously, is the development of the area of 

molecular magnetism. Oximate groups can mediate exchange interactions of varying range, 

weak and moderate ferromagnetic to strong antiferromagnetic. A problem concerning such 

exchange coupled systems is the lack of availability of isostructural polynuclear complexes 

with varying dn electron configurations. Investigation of a series of isostructural polynuclear 

complexes will be much more informative compared to those comprising singly isolated 

exchange coupled clusters only. Although most of the compounds discussed in this work, along 

with the structurally characterized oximate based polynuclear complexes reported earlier, little 

can be said about the magnetostructural trends.  This thesis is focused on such exchange 

coupled polynuclear complexes containing the bridging core M-N-O-M' originating from metal 

oximates. Qualitative rules allowing the prediction of the nature of interaction between two 

spin carriers according to the symmetry of the magnetic orbitals were proposed in the 1950's by 

Goodenough and Kanamori. The concepts of natural orbital and overlap integral allow the 

generalization and extension of Goodenough-Kanamori rules. However, no such relation have 

been established between the exchange coupling constant and the metrical parameters of the 

diatomic bridge like oximate(N-O), azine (N-N) or oxalate. Discussion, in detail, needs to be 

concentrated on such system where considerable structural and magnetochemical work have 

been reported. This thesis concentrates one of such parameter, e.g. the role of the dihedral angle 
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comprising the planes between M-N-O and O-N-M' in exchange interaction and such work is 

worth doing. In other words, it appears tedious, if not impossible, to extract a qualitative 

understanding of the relation between dihedral angle and exchange interaction. Table 8.1 

summarizes dihedral angle comprising the planes between the planes M(O-N) and (O-N)M’ 

and the exchange coupling constant of some magnetostructurally characterized oximato based 

polynuclear complexes irrespective of nuclearity. 

 
Table 8.1: Magnetostructural parameters of some oximato complexes 

Compounds Average 

dihedral angle 

between the 

planes 

comprising 

M-O-N and 

O-N-M' atoms

Exchange 

coupling 

constants 

References : 

1.   [(Me3Tacn)MnIIIMnII(PyA)3]2+       32.8  + 1.6  i 

2.   [(Me3Tacn)MnIII(dmg)3MnIIMnIII(Me3Tacn)]2+        13.3  + 4.7  ii 

3.   [(Mcoe)3MnIIMnIIIMnII(Mcoe)3]+         9.3  -1.3  iii 

4.   [(TapTacn)MnII(µ-O2COMe)MnIIIMnII(TapTacn)]+         2.1  + 2.0  iv 

5.   [(Me3Tacn)MnIIIMnII(dfmp)3MnIIMnIII(Me3Tacn)]+       30.3  + 2.8 Complex 5 

6.   [MnIIMnIVMnII(pko)4(OMe)2(OCN)2]       3.75    + 4.1 v 

7.   [MnIIMnIVMnII(pko)4(OMe)2(Cl)2]       14.8  + 3.9 v 

8.   [(Me3Tacn)MnIVMnII(dfmp)3MnIIMnIV(Me3Tacn)]3+       17.0  + 0.8 Complex 6 

9.   [MnIIMnIVMnII(pko)4(OMe)2(SCN)2]       34.3  + 3.1 vi 

10.  [(Me3Tacn)FeIII(dmg)3MnIIFeIII(Me3Tacn)]2+        4.8 - 6.7 vii 

11.  [(Me3Tacn)FeIIIMnII(PyA)3]2+      32.1 - 6.1 viii 

12.  [(Me3Tacn)FeIIIMnII(dfmp)3MnIIFeIII(Me3Tacn)]+      29.8 - 1.8 Complex 7 

13.  [(Me3Tacn)CrIIIMnII(PyA)3]2+      31.4  + 1.5 ix 

14.   [(Me3Tacn)FeIII(µ-O..H..O-µ)CuII
2 

       (dapdo)2(µ-Cl) FFeIII(Me3Tacn)]2+

     5.7 - 125.0 Complex 9 

15.  [(Me3Tacn)CrIII(dmg)3CuIICrIII(Me3Tacn)]2+      9.1 + 18.5 x 

16.  [(Me3Tacn)CrIII(OMe)CuII(dopn)(H2O)]2+     21.8 + 18.5 xi 

17.  [(Me3Tacn)CrIIICuII(PyA)3]2+    34.0 + 1.8 xii 

18.  [(Me3Tacn)CrIII(µ-OH)2CuII
2 

     (dapdo)2(Br2) CrIII(Me3Tacn)]2+

   76.7 - 16.0 Complex 10 

19.  [(Me3Tacn)FeIIICuII(PyA)3]2+     32.1 - 42.5 viii 
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20.  [(Me3Tacn)FeIII(dmg)3CuIIFeIII(Me3Tacn)]2+    10.6 - 53.0 xx 

21.  [(Me3Tacn)MnIII(OOCMe)CuII(dopn)]2+    24.5 + 54.0 xi 

22.  [(Me3Tacn)MnIII(dmg)3CuIIMnIII(Me3Tacn)]2+   26.5 - 63.0 ii 

23.  [(Me3Tacn)FeIII(Cl)CuII(MeOH)NiII(MeOH)2(LOX)]2+    47.1 - 19.8 xii 

24.  [(Me3Tacn)FeIIINiII(dfmp)2NiII(MeCOO)2 

       (MeOH)2FeIII(Me3Tacn)]2+

   31.1 - 6.8 xxi 

25.  [(Me3Tacn)FeIII(dmg)3NiIIFeIII(Me3Tacn)]2+   24.1 - 32.0 xxii 

26.  [(Me3Tacn)FeIII(NCS)NiII(H2O)(NCS) 

       NiII(NCS)2(H2O)(LOX)] 

  28.2 - 9.3 xiii 

27.  [(Me3Tacn)FeIIINiII(PyA)3]2+   39.5 - 34.0 viii 

28.  [(PyA)3NiIIFeIIINiII(PyA)3]+   38.4 - 31.0 xiv 

29.  [(Me3Tacn)CrIIINiII(PyA)3]2+   38.8 - 9.2 ix 

30.  [(Me3Tacn)CrIIINiII(PPyA)3]2+   20.8  0.0 ix 

31.  [(Me3Tacn)CrIII(dmg)3NiIICrIII(Me3Tacn)]2+   25.9 - 0.7 x 

32.  [(PyA)3NiIICrIIINiII(PyA)3]+   35.2 + 0.6 Complex 2 

33.  [{Ni(Dien)}2(µ3-OH)2{Ni2(Moda)4}]2+   7.2 - 20.3 xv 

34.  [Ni4(MeOH)2(pko)6]2+    36.5 -24.0 xvi 

35.  [(Me3Tacn)Ni2(PyA)3]2+   43.1 - 33.0 xvii 

36.  [Ni3(PyA)5(PYAH)]+   24.1 

  75.8 

-8.3 

-2.0 

 

Complex 3 

37.  [Ni4(TapHTacn)3]2+  36.4 -13.4 iv 

38.  [Ni6(amox)6(µ6-O)(µ3-OH)2]2+  44.0 -25.0 xix 

39.  [Ni3(Dtox)(Dtox H)2]2+ 37.5 

58.0 

-14.0 

-7.3 

 

xviii 

 

 

 

The obvious question is: can we find some relation between these parameters? The 

results obtained are summarized below: 

(a) When we consider dihedral angle and exchange coupling constants in a general 

manner, we can not find any correlation. Figures 8.1a and b show such plots where 

little can be said about the influence of the dihedral angles on exchange interaction. 
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              (a)                                                                                                 (b) 
Figure 8.1: Plot of dihedral angles comprising the planes between M(O-N) and (O-N)M' and 

exchange coupling constant (J) 

 

(b) When we consider each individual pair, it seems that there is certain influence of 

the dihedral angles on exchange interactions. 

According to Kahn, Goodenough and Kanamori CrIIINiII [d3d8(octahedral)], CrIIICuII 

[d3d9(octahedral)], and  MnIVMnII [d3d5(HS)(octahedral)] interactions are expected to be 

ferromagnetic due to the t2g⊥ eg  magnetic orbitals as several strictly ferromagnetic 

paths are available..  

               (a)                                                                                                 (b) 
Figure 8.2 : Plot of dihedral angles comprising the planes between MnIV(O-N) and (O-N)MnII and 

exchange coupling constant (J) (a) and  dihedral angles comprising the planes between Cr(O-N) 

and (O-N)Cu and exchange coupling constant (J) (b) 
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Conclusions and perspectives 

Figures 8.2 and 8.3 suggest that there is a decreasing tendency of ferromagnetic 

exchange coupling constants with increasing dihedral angles. This observation leads us 

to the conclusion that with increasing dihedral angle there may be some deviation from 

orthogonality, which in turn, causes better overlap between the magnetic orbitals results 

and is reflected in increasing antiferromagnetic coupling with increasing dihedral angle. 

Deviation from such behavior of the complexes 16 and 32 may be due to the influence 

of subtle coordination differences around metal centers.  
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          (a)                                                                                                 (b) 
 

Figure 8.3: Plot of dihedral angles comprising the planes between Cr(O-N) and (O-N)Ni and 

exchange coupling constant (J) 

 

 The similar trend is also observed in case of MnII…MnIII cases. However MnII...MnIII 

exchange interaction value of J = - 1.3 cm-1 in 3, which results from Mn(III)-O-N-

Mn(II) superexchange pathways can be compared with the related dimethylgyoximato 

(2), diformyl-4 methylphenoldioximato (5) and pyridinealdoximato(1)- bridging in the 

work of Birkelbach, compound 5 and Chaudhuri and co-workers in which 

Mn(II)...Mn(III) interactions were found to be ferromagnetic. The difference of sign of 

these Mn(II)-N-O-Mn(III) interaction results from the net effect of the ferromagnetic 

and antiferromagnetic contributions to JMn(II)...Mn(III)
  Which, in turn, will be influenced 

by subtle coordination differences on the Mn(III) and Mn(II) centers, and to a lesser 

degree by the terminal bridging groups.  Linear trinuclear MnIIMnIIIMnII congener (4) 

does not fit in the trends. Careful examination reveals that the exchange coupling in this 

complex  mediated mainly by two-types of bridges, a single atom -O-bridge and a two 

CrIII(O-N) and (O-N)

30
31

32

29

NiII  MnIII (O-N) and (O-N)MnII
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atom N-O linkage, of which the later contribution is expected to be small. The angle at 

the bridging oxygen would be expected to be important, this affects the nature of σ and 

π overlap between the metal magnetic orbitals and the oxygen px, py and pz orbitals 

mediate the exchange. Mn(1)II-O-Mn(2)III and Mn(2)III-O-Mn(3)II  angles are 97.5 and 

108° respectively. However, the magnetic response in this complex was analyzed by 

using a "one-J" mode, which is not strictly true. So a "two-J" model seems to be more 

appropriate and Mn(1)II...Mn(2)III interactions is expected to be more ferromagnetic 

compared to the exchange interaction between Mn(3)II...Mn(2)III. 

From the above observation it can be concluded that with increasing dihedral angle 

antiferromagnetic exchange interaction increases. 

 

(c) For FeIIICuII complex, antiferromagnetic exchange interaction decreases, with the 

increase of dihedral angle and the observed result is opposite compared to that of 

previous one. Fe(III)...Cu(II) is expected to be antiferromagnetic due to presence of 

several antiferromagnetic paths in the exchange coupling constant. Reduction of 

antiferromagnetic exchange coupling constant suggests that lesser overlap is prevailing 

between the magnetic orbitals with increasing angle. 
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Figure 8.4: Plot of dihedral angles comprising the planes between Fe(O-N) and (O-N)Cu and 

exchange coupling constant (J) 

  

(d) In the Ni-N-O-Ni case little can be said about the trends, but it can be concluded that 

the interaction through diatomic NO bridge is stronger than the interaction mediated 

through µ3-oximate oxygen. Comparison of exchange coupling constants in complexes 
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34, 35, 36, 37 and 38 reveals that each oximate (NO) may transmit J = - 10.5 ± 1.5 cm-1 

antiferromagnetic exchange coupling. While comparison of the exchange coupling 

constants in the FeIII-O-N-NiII complexes reveal that each oximate may transmit J = ∼ - 

11cm-1 antiferromagnetic exchange interaction irrespective of the dihedral angles. 

 

Summarizing some of the results of the exchange-coupled oximate -bridged polynuclear 

complexes reported in the literature, along with some of the complexes in this work, it 

appears that no  strong correlation between structural and magnetic properties for such 

complexes has been obtained. Hence obtaining any such correlation requires 

isostructural purely octahedral dinuclear complexes. The importance of designed 

synthesis lies there in. 

 

Perspectives: 
A few ideas and perspectives, in the continuation of this work are outlined below: 

(1) Synthesis and magnetostructural characterization of linear trinuclear MnIIMnIIIMnII 

complex of syn-2-pyridinealdoxime ligand, isostructural with the complexes 1 and 2 

need to be explored. 

(2) Experimental determination of the exchange coupling constant for complex 4 by 

using X- and Q-band EPR techniques and comparison of the values obtainable from 

spectroscopic technique with the evaluated value from SQUID measurement. 

(3) HFEPR measurement of the complex 9 (FeIII
2CuII

2) to verify the ground state of the 

cluster. 

(4) Alternating current (AC) susceptibility measurement of the MnII
4 complex (11), to 

check whether this complex can be a single molecule magnet (SMM). 

(5) AC-susceptibility and HFEPR measurement of the complex 12 (MnIII
4) to verify the 

ground state of the complex and for the precise determination of the sign and 

magnitudes of zero-field splitting parameter (D). 

(6) AC-susceptibility measurement of the complex 14 (MnIII
4MnII

2), for the precise 

determination of the sign and magnitude of the zero-field splitting parameter and to 

check SMM properties. 

(7) Synthesis and magnetostructural characterization of the CrIII
4 and VIII

4 core 

congeners isostructural with MnIII
4 (12) 

(8) In traversing the first-row d-block elements we have noticed that paramagnetic Ti 

and V-oximates remain relatively unexplored, probably because of difficulties in 
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synthesis and stability. Clearly, these aspects need to be further experimentally 

explored. 
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Electrochemistry 

Cyclic voltammetry, square wave voltammetry and linear sweep voltammetry 

experiments were performed using an ‘EG&G Potentiostat / Galvanostat 273A’. A 

standard three-electrode-cell was employed with a glass-carbon working electrode, a 

platinum-wire auxiliary electrode and Ag/AgCl (saturated LiCl in EtOH) reference 

electrode. Measurements were made under an inert atmosphere at room temperature. The 

potential of the reference electrode was determined using Fc+/Fc as the internal standard. 

 Magnetic Susceptibility Measurements 

The measurements of the temperature or field dependent magnetization of the sample 

were performed in the range 2 to 290 K at 1, 4 or 7 T on a ‘Quantum Design SQUID-

Magnetometer MPMS’. The samples were encapsulated in gelatin capsules and the 

response functions were measured four times for each given temperature, yielding a total 

of 32 measured points. The resulting volume magnetization from the samples had its 

diamagnetic contribution compensated and was recalculated as volume susceptibility. 

Diamagnetic contributions were estimated for each compound by using Pascal’s 

constants. The experimental results were fitted with the program JULIUS calculating 

through full-matrix diagonalization of the Spin-Hamiltonian. The following Hamiltonian-

operators were used: 

HZE = µB∑ gi Ŝi .B 

HHDVV = -2 ∑ Jij Ŝi . Ŝj

HZFS = ∑Di[Ŝiz
2-{Si(Si+1)/3}+ Ei/Di(Ŝix

2- Ŝiy
2)] 

Indexes i,j indicate individual spins. For the magnetic measurement the calculated g 

values obtained during simulation is the isotropic. 

EPR Spectroscopy 

First derivative X-Band EPR spectra of powdered or frozen solution samples were 

measured with a ‘Bruker ESP 300 Spectrometer’ coupled to an ‘Oxford Instruments ESR 

910-Cryostat’. 
57Fe-Mössbauer Spectroscopy 
57Fe-Mössbauer spectra were measured with an Oxford Instruments Mössbauer 

spectrometer in the constant acceleration mode. 57 Co/Rh was used as the radiation 

source. The minimum experimental linewidths were 0.24 mm/s. The temperature of the 

sample was controlled by an ‘Oxford Instruments Variox Cryostat’. Isomer shifts were 

determined relative to α-iron at 300K. The measurements were carried out at 80K and 

100K with solid samples containing the isotope 57Fe. 
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Crystallography 

X-ray diffraction data were collected on an ‘Enraf-Nonius CAD4 Diffractometer’ or on a 

‘Siemens Smart System’. Graphite-monochromatized Mo-Kα with λ = 0.71073 Å was 

employed. Data were collected by the 2θ-ω scan method (3≤2θ≤50°). The data were 

corrected for absorption and Lorenz polarization effects. The structures were solved by 

direct methods and subsequent Fourier-difference techniques, and refined anisotropically 

by full-matrix least-squares on F2 with the program SHELXTL PLUS. Hydrogen atoms 

were included at calculated positions with U < 0.08 Å2 in the last cycle of refinement. 

GC / GC-MS Analysis 

GC of the organic products were performed either on HP 6890 instruments using RTX-5 

Amine 13.5 m S-63 columns respectively. GC-MS was performed using the above 

column coupled with a HP 5973 mass spectrometer with mass selective detector. 

 

9.2 SYNTHESIS 

 
Me3TacnFeCl3, 1 Me3TacnCrBr3

2, [Cu(dapdoH2)](ClO4)2
3 and the ligand, 2-hydroxy-

1,3-propanediylbis(benzoylacetoneimine)4 (L2H3) were prepared according to the 

literature procedure. 

 

9.2.1 LIGANDS 

2,6-Diacetylpyridine dioxime [dapdoH2] 

This synthesis is a modification of Hartkamp's method. 2,6-Diacetylpyridine (2.9 g, 18 

mmol) was dissolved in MeOH (35 cm3), a solution of hydroxylamine hydrochloride (2.8 

g, 40 mmol) and NaOH (1.6 g, 40 mmol) in MeOH:H2O (20 cm3, 1:1 by vol) was 

prepared and added to the diacetylpyridine solution. The resulting solution was refluxed 

with stirring for 2 h. A white precipitate began to form after 5 min heating. After 2 h, the 

mixture was cooled in ice and the white precipitate was collected by suction filtration and 

recrystallized from MeOH. 1H NMR (CD3COCD3, 80 MHz): δ 2.32 (6H, s, CH3), 7.71 

(1H, t, Py-4H), 7.85 (1H, d, Py-3H), 10.64 (2H, s, NO-H). MS: m/z 193 (M+, 100 %). 

 Yield: 3.16 gm (92 %), MP: 236°C      

Molecular Weight:  193 g/mol      C9H11N3O2

 

 

 



EQUIPMENT AND EXPERIMENTAL WORK 

Elemental Analysis: 

 %C %H %N 

Calculated 55.96 5.7 21.76

Found 55.9 5.6 21.73
 

Infrared Spectrum: 

5 0 01 0 0 01 5 0 02 0 0 02 5 0 03 0 0 03 5 0 04 0 0 0

0

5

1 0

1 5

2 0

 

 

 
c m - 1

 

Synthesis of 2,6-Bis-iminomethyl-(4,6-di-tertbutyl-2-iminophenol)-4-methyl-phenol  

(H3dfmp) 

2,6-Diformyl-4-methylphenol was synthesized as described in ref. The corresponding 

dioxime, H3dfmp, was prepared in the following way: To a suspension of 2,6-diformyl-4-

methylphenol (3.36 g; 20 mmol) and NH2OH•HCl (3.13 g; 50 mmol) in water (45 ml), 

warmed at 80oC, was added methanol with stirring until a clear orange solution was 

obtained. The solution was stirred at 80oC for 1 h. The solution was cooled to room 

temperature, followed by addition of enough water, so that the solution just started to 

become turbid. After keeping it at ambient temperature for ca. 24 h, the crystalline solid 

was removed by suction filtration, washed thoroughly with water and dried in air. The 

dioxime can be recrystallized from a methanol-water mixture. IR (KBr, medium and 

strong selective bands only): 3380, 3329, 1623, 1604, 1465, 1307, 1265, 1061, 1027, 934, 

793, 757, 696 cm-1. 1H NMR (CD3OD, 80 MHz): δ 2.34 (3H, s, CH3), 7.37 (2H, s, Ar), 

8.37 (2H, s, oxime). 13C NMR (CDCl3): δ 20.31 (ArCH3), 119.78, 129.84, 130.85 (C-

Ring), 149.17 (CN), 154.48 (C-OH). MS: m/z 194 (M+, 100 %). 
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Yield:  4.5 gm (70 %), MP: 186-188 °C 

Molecular Weight: 194                                                                          C9H10N2O3 

Elemental Analysis: 

 %C %H %N 

Calculated 55.67 5.15 14.43 

Found 55.7 5.2 14.3 

 

Infrared Spectrum: 
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9.2.2 COMPLEXES: 

Synthesis of [NiII(PyA)3MnIII(PyA)3NiII](ClO4) (1) 

To a light green solution of NiCl2 .6H2O (0.47 g; 2 mmol) and Mn(ClO4)2 .6H2O (0.46 g; 

1 mmol) in distilled methanol (25 ml), solid pyridine-2-aldoxime(0.72g; 6 mmol) was 

added with stirring, followed by addition of 7 ml of [Bu4N][OCH3] (20% in CH3OH). 

The resulting red brown solution was stirred for 0.5 h and filter to procure red-brown 

microcrystalline solid. X-ray quality crystals were obtained from a dimethylformamide 

solution, in which methanol was allowed to diffuse. 

Yield: 830 mg (81 %) 

Molecular Weight:  998.49                                                          C36H30ClMnN12Ni2O10 
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EQUIPMENT AND EXPERIMENTAL WORK 

Elemental Analysis: 

 %C %H %N %Ni      %Mn 

Calculated 43.43 3.04 16.88 11.8      5.22 

Found 43.3 3.0     16.9 11.9      5.1 

Infrared Spectrum: 
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Synthesis of [NiII(PyA)3CrIII(PyA)3NiII](ClO4) (2) 

To a light green solution of NiCl2 .6H2O (0.47 g; 2 mmol) and Cr(ClO4)3 .6H2O (0.46 g; 

1 mmol) in distilled methanol (25 ml), solid pyridine-2-aldoxime(0.72g; 6 mmol) was 

added with stirring, followed by addition of 7 ml of [Bu4N][OCH3] (20% in CH3OH). 

The resulting red brown solution was stirred for 0.5 h and filter to procure red-brown 

microcrystalline solid. X-ray quality crystals were obtained from a dimethylformamide 

solution, in which methanol was allowed to diffuse. 

Yield: 720 mg (73 %) 

Molecular Weight:  995.59                                                          C36H30ClCrN12Ni2O10 

Elemental Analysis: 

 %C %H %N %Ni      %Cr 

Calculated 43.43 3.04 16.88 11.8      5.22 

Found 43.3 3.0     16.9 11.9      5.1 
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Infrared Spectrum: 
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Synthesis of [NiII
3(PyA)5((PyAH)](ClO4). CH3CN (3) 

Solid pyridine-2 aldoxime (0.36 g; 3 mmol) was added to a solution of Ni(ClO4)2.  

6H2O(0.55 g; 1.5 mmol) in methanol(25mL) to yield a deep brown solution. 4.5 ml of 

[Bu4N][OCH3] (20% in CH3OH) were added, which upon stirring yielded a red brown 

solution. After 0.5 h stirring the precipitated red brown microcrystalline substance was 

filtered and air dried. X-ray quality deep red-brown crystals were obtained from a 

solution of 8 in CH3CN. 

Yield:  550 mg (53 %) 

Molecular Weight: 1044.36                                                                C38H34ClN13Ni3O10

Elemental Analysis: 

 %C %H %N %Ni 

Calculated 43.7 3.28 17.44 16.86 

Found 43.8 3.4 17.6 17.0 
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EQUIPMENT AND EXPERIMENTAL WORK 

Infrared Spectrum: 
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Synthesis of [(CH3)B{(dfmp)3MnIIMnII{B(CH3)] (Et3NH)  (4) 

 To a solution of H3dfmp (300 mg, 1.5 mmol) and Mn(ClO4)2. 6H2O (370 mg, 1 

mmol) in methanol (40 ml) was added triethylamine (0.6 ml, 4.5 mmol) and the 

suspension was stirred 10 min. To this dark solution methylboronic acid [CH3B(OH)2], 

(60 mg, 1 mmol) was added. The solution was stirred at ambient temperature for 0.5 h in 

the air, after which the precipitated deep yellowish solid was collected by filtration and 

air-dried. The yellowish solid was recrystallized from a solvent mixture of 

dichloromethane-ethanol (2:1).  IR (KBr, cm-1): 1610, 1593, 1580, 1450, 1305, 1208, 

1047, 1008, 946, 935, 833, 761, 738, 705. ESI-MS (m/z): 735 (100 %). 

Yield: 290mg (40%) 

Molecular Weight: 883.33                                                C37H49N7O10B2Mn2 

                                                                                Elemental Analysis: 

 %C %H %N %Mn 

Calculated 50.18 5.14 11.7 13.15 

Found 49.8 4.85 11.56 13.19 
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Infrared spectrum: 
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Synthesis of [(Me3Tacn)MnIII{(dfmp)3MnIIMnII}MnIII(Me3Tacn)](ClO4)  (5) 

 To an argon blanketed atmosphere 300 mg (1.5 mmol) H3dfmp was dissolved in 

30 mL methanol and 0.4 mL (3 mmol) Triethylamine was added in it and it was stirred 

for 10 min. Then 0.24 g (1 mmol) MnII(CH3COO)2 .4H2O was added and stirred. In 

another round bottom flask 0.17 g (1 mmol) 1,4,7-trimethyl 1,4,7-triazacyclononane and 

[MnIII
3(µ3-O)(µ-CH3COO)6(H2O)3](CH3COO) (0.26 g) was dissolved in 20 mL methanol 

and was stirred for20 minutes. This solution was added to the previous solution and then 

it was refluxed for 20 minutes and the resulting solution turned brown black. After 

cooling it was filtered off and 0.24 g (2 mmol) NaClO4 was added and after few minutes 

brown solid precipitated out, was collected by filtration and air-dried. Suitable single 

crystal for X-ray quality was grown from Acetonitrile-methanol (3:1) mixture. IR (KBr, 

cm-1): 1607, 1567, 1542, 1460, 1438, 1322, 1229, 1144,1120,1107,1089 1006, 988, 

705,624. ESI-MS (m/z): 567 (100 %) [M - 2(ClO4)]2+, 1135 (9 %) [M - ClO4]+. 

Yield: 400 mg (37 %).   

Formula Weight: 1308.38                                                            C48H70N13O14ClMn4
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EQUIPMENT AND EXPERIMENTAL WORK 

Elemental Analysis: 

 %C %H %N %Mn 

Calculated 44.06 5.39 13.91 16.8 

Found 43.93 5.2 13.8 16.64 

Infrared spectrum: 
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Synthesis of [(Me3Tacn)MnIV{(dfmp)3MnIIMnII}MnIV(Me3Tacn)](ClO4)3  (6) 

 300 mg (1.5 mmol) H3dfmp was dissolved in 30 mL methanol and 0.4 mL (3 

mmol) triethylamine was added in it and it was stirred for 10 min. Then 0.24 g (1 mmol) 

MnII(CH3COO)2 .4H2O was added and stirred. In another round bottom flask 0.17 g (1 

mmol) 1,4,7-trimethyl 1,4,7-triazacyclononane and [MnIII
3(µ3-O)(µ-CH3COO)6(H2O)3]( 

CH3COO) (0.26 g) was dissolved in 20 mL methanol and was stirred for 20 minutes. This 

solution was added to the previous solution and then it was refluxed for 20 minutes and 

the resulting solution turned brown black. After cooling it was filtered off and 0.24 g (2 

mmol) NaClO4 was added and after few minutes brown solid precipitated out, was 

collected by filtration and air-dried.  Suitable single crystal for X-ray quality was grown 

from Acetonitrile-ethanol (3:1) IR (KBr, cm-1): 1607, 1567, 1542, 1460, 1438, 1322, 

1229, 1144,1120,1107,1089 1006, 988, 705,624. ESI-MS (m/z): 567 (100 %) [M - 

2(ClO4)]2+, 1135 (9 %) [M - ClO4]+. 

Yield: 300 mg (29 %).  

Molecular Weight: 1481.73                                    C46H67.5N12.5O22.5Cl3Mn4
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Elemental Analysis: 

 %C %H %N %Mn 

Calculated 37.29 4.6 11.8 14.83 

Found 37.4 4.73 11.7 14.62 

Infrared spectrum: 
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Synthesis of [(Me3Tacn)FeIII{(dfmp)3MnIIMnII}FeIII(Me3Tacn)](ClO4)   (7) 

 300 mg (1.5 mmol) H3dfmp was dissolved in 30 mL methanol and 0.5 mL (4 

mmol) triethylamine was added in it and it was stirred for 10 min. Then 0.24 g (1 mmol) 

MnII(CH3COO)2 .4H2O was added and stirred, followed by L'FeCl3 (0.33 g, 1 mmol) and 

then it was refluxed for 20 minutes under argon and the resulting solution turned brown 

black. After cooling it was filtered off and 0.24 g (2 mmol) NaClO4 was added and after 

few minutes red brown solid precipitated out and it was filtered through suction filtration 

was washed with diethyl ether and then dried in air. Suitable single crystal for X-ray 

quality was grown from Acetonitrile-dichloromethane (1:3). IR (KBr, cm-1): 1607, 1579, 

1560, 1460, 1444, 1305, 1226, 1031, 1006, 988, 705. ESI-MS (m/z): 1137 (100 %) [M - 

ClO4]+. 

Yield: 390 mg (36 %). 

Molecular Weight:  1236                                      C47.5H67N13O13Cl2Mn2Fe2
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EQUIPMENT AND EXPERIMENTAL WORK 

Elemental Analysis: 

 %C %H %N     %Mn     %Fe 

Calculated 43.18 5.1 13.78    8.33      8.46 

Found 43.22 4.95 13.57    8.21      8.39  

Infrared Spectrum: 
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Synthesis of [(Me3Tacn)CrIII{(dfmp)3MnIIMnII}CrIII[(Me3Tacn)](ClO4)   (8) 

 300 mg (1.5 mmol) H3dfmp was dissolved in 30 mL Methanol and 0.5 mL(4 

mmol) triethylamine was added in it and it was stirred for 10 min. Then 0.24 g (1 mmol) 

MnII(CH3COO)2 .4H2O was added and stirred. To a suspension of 0.46 g (1 mmol) of 

L'CrBr3 in 30 mL methanol was slowly added 0.63 g of AgClO4 (3 mmol) with stirring. 

The suspension was refluxed under argon for 0.5 h; during this time a blue-violet solution 

with a concomitant formation of AgBr resulted. Precipitated AgBr was filtered off, and 

the clear blue-violet solution was charged to the previous methanolic solution and then it 

was refluxed for 20 minutes under argon and the resulting solution turned brown black. 

After cooling it was filtered off and green brown solid precipitated out and it was filtered 

through suction filtration was washed with diethyl ether and then dried in air. Yield: 390 

mg (36 %).  IR (KBr, cm-1): 1607, 1579, 1560, 1460, 1444, 1305, 1226, 1031, 1006, 988, 

705. ESI-MS (m/z): 1129 (100 %) [M - ClO4]+. 

Yield: 390 mg (36 %).  

Molecular Weight:  1236                                      C45H63N12O13ClMn2Cr2
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Elemental Analysis: 

 %C %H %N     %Mn     %Cr 

Calculated 43.18 5.1 13.78    8.33      8.46 

Found 40.13 4.95 13.60    8.71      8.59  

Infrared Spectrum: 
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Synthesis of [(Me3Tacn)2FeIII
2L2CuII

2(O..H..O)Cl](ClO4)2 (9) 

[Cu(dapdoH2)2] (ClO4)2 (0.32 g, 0.5 mmol) was dissolved in 30 mL methanol. Then 

L'FeCl3 (0.33 g, 1 mmol) was also added into the methanolic solution of [Cu(dapdoH2)2] 

(ClO4)2, followed by Et3N (0.26 mL, 2 mmol). The resulting solution was refluxed for 30 

minutes and then NaClO4 (0.36 g, 3 mmol) was added and then it was stirred for another 

15 minutes. On cooling black microcrystalline solid precipitated out. It was then filtered 

through suction filtration and washed with diethyl ether. Suitable quality X-ray crystal 

was grown from CH3CN-C2H5OH mixture. IR (KBr, cm-1): 2906, 1593, 1502, 1545, 

1459, 1444, 1297, 1163, 1077, 1006, 990, 781,623. ESI-MS (m/z): , 516(100 %) [M - 

2ClO4]2+; 1131(5%) [M - ClO4]+ 

Yield: 290 mg (45%). 

Formula Weight: 1295.18                                                C38H69N12O16Cl3Cu2Fe2

Elemental Analysis: 

 %C %H %N %Cu   %Fe 

Calculated 35.24 5.37 12.98 9.8     8.6 

Found 34.9 5.3 12.98 9.7     8.46 
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EQUIPMENT AND EXPERIMENTAL WORK 

Infrared spectrum: 
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Synthesis of [(Me3Tacn)2CrIII
2L2CuII

2(OH)2Br2](ClO4)2  (10) 

To a suspension of 0.46 g (1 mmol) of L'CrBr3 in 30 mL methanol was slowly added 0.46 

g of AgClO4 (2 mmol) with stirring. The suspension was refluxed under argon for 0.5 h; 

during this time a blue-violet solution with a concomitant formation of AgBr resulted. 

Precipitated AgBr was filtered off, and the clear blue-violet solution was charged with a 

solid sample (0.32 g, 0.5 mmol) of [Cu(dapdoH2)2] (ClO4)2 and 0.26 mL (2 mmol) Et3N. 

The resulting green-brown solution was refluxed for 0.5 h, upon stirring at ambient 

temperature, the mixture deposited green amorphous solid. These were filtered off and air 

dried. Suitable quality X-ray crystal was grown from CH3CN-C2H5OH mixture. IR (KBr, 

cm-1):  2916, 1595, 1560, 1461, 1295, 1164, 1090, 1004, 984, 794,624. ESI-MS (m/z): , 

579(100%)[(2 - 2ClO4+0.5H2O)/2]2+.   

Yield: 230 mg (29%).  

Molecular Weight: 1480.95                                             C42H72N15O14.5Br2Cl2Cu2Cr2

Elemental Analysis: 

 %C %H %N %Cu    %Cr 

Calculated 34.06 4.9 14.2 8.58     7.02 

Found 33.8 4.87     14.1 8.41     7.09 
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Infrared Spectrum: 
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Synthesis of [MnII
4(ppi)6](BF4)2 .2CH3CN . H2O (11) 

The mononuclear precursor complex [MnIIL2] was prepared by reacting a solution of 

Hppi (0.396 g, 2 mmol) in acetone (20 mL) with Mn(acac)2 (0.25 g, 1 mmol) in acetone 

(30 mL). Upon addition of the ligand solution to the yellow slurry an immediate color 

change to deep red observed. After stirring for 1 hr the red solid was isolated by filtration 

and washed with acetone to yield 0.45 g [MnIIL2] complex. 

[MnII
4(ppi)6](BF4)2 was prepared by reacting [MnII(ppi)2] (0.45 g, 1 mmol) with 

Mn(CH3COO)2 .4H2O (0.09 g, 0.33 mmol) in 3:1 ration in acetonitrile-methanol mixture 

(30 mL, 1:1). It was stirred in air for 30 minutes and then NBu4BF4 (0.96 g, 3 mmol) was 

added into the black solution. Red solid precipitated out and washed with diethyl ether 

and dried in air. X-ray quality single crystal was grown by diffusing diethyl ether in 

concentrated acetonitrile solution of the complex.  IR(KBr, cm-1): 3053, 1585, 1479, 

1457, 1298, 1280, 1146, 1083, 1061, 865, 750. ESI-MS (m/z): 701(100 %) [M - 

2(BF4)]2+, 1489 (10 %) [M - BF4]+. 

Yield: 220 mg (40 %).  

Molecular Weight:  1676.78                                           C76H62B2F8Mn4N14O7 
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EQUIPMENT AND EXPERIMENTAL WORK 

Elemental Analysis: 

 %C %H %N %Mn    

Calculated 54.44 3.73 11.7 13.11      

Found 54.37 3.62     11.6 13.15      

Infrared Spectrum: 
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Synthesis of [MnIII
4(salox)4(salox H)4] 2.5 CH3OH  (12) 

Complex 12 was prepared by the addition of 1 mmol (0.198 g) of MnCl2 .4 H2O into a 40 

mL methanol solution of 2 mmol (0.27 g) of salicylaldoxime in presence of triethylamine 

(4 mmol, 0.52 mL) in argon blanketed atmosphere. Then the solution was refluxed for 30 

minutes and then exposed in air and the solution turned to black. Brown black solid 

precipitated out while cooling the solution. The X-ray quality single crystal was grown by 

slow evaporation from 2:1 CH2Cl2-CH3OH solution of the complex. IR (KBr, cm-1): 

3422, 2899, 1598, 1536, 1473, 1434, 1268, 1205, 1151, 1122, 1014, 909, 755, 666. ESI-

MS (m/z): 1032(100 %) [M - 2(salox H)]+, 1304 (10 %) [M ] 

Yield: 180 mg (40 %).  

Molecular Weight: 1384.86                                          C58.5H54Mn4N8O18.5 

Elemental Analysis: 

 %C %H %N %Mn    

Calculated 50.74 3.93 8.09 15.87      

Found 50.57 3.84     8.04 15.93      
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Synthesis of [(dapdo)2(dapdoH)4(µ-O)2(µ-OMe)2MnIII
4MnII

2](ClO4)2 (13) 

  To a solution of dapdoH2 (0.19 g, 1 mmol) in 30 mL methanol was added 0.26 g 

[MnIII
3(µ3-O)(µ-CH3COO)6(H2O)3](CH3COO), then 0.26 mL (2 mmol) Et3N. The 

solution then turned brown, and it was then refluxed for 0.5 h whereupon a brown 

microcrystalline solid was precipitated out. It was filtered and washed with diethyl ether 

and air dried. Suitable quality of X-ray crystal was grown by diffusion of diethyl ether 

into the DMF-CH3CN solution.  IR (KBr, cm-1): 3425, 2805, 1597, 1542, 1375, 1141, 

1121, 1052, 952, 811, 661, 624, 559. ESI-MS (m/z): 787(100 %) [M - 2(ClO4)]2+

 

solution then turned brown, and it was then refluxed for 0.5 h whereupon a brown 

microcrystalline solid was precipitated out. It was filtered and washed with diethyl ether 

and air dried. Suitable quality of X-ray crystal was grown by diffusion of diethyl ether 

into the DMF-CH3CN solution.  IR (KBr, cm-1): 3425, 2805, 1597, 1542, 1375, 1141, 

1121, 1052, 952, 811, 661, 624, 559. ESI-MS (m/z): 787(100 %) [M - 2(ClO4)]2+

Yield: 150 mg (33 %) Yield: 150 mg (33 %) 

Molecular Weight: 1922.03                                                                C66H84Cl2N18Mn6O26Molecular Weight: 1922.03                                                                C66H84Cl2N18Mn6O26

Elemental Analysis: Elemental Analysis: 

  %C %C %H %H %N %N %Mn %Mn 

Calculated 40.73 4.35 12.96 16.94 

Found 40.6 4.4 12.83 17.01 
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Infrared Spectrum: 
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Synthesis of [(dapdo)2(dapdoH)4(µ-O)2(µ-OH)2MnIII
4MnII

2](ClO4)2 (14) 

 To a solution of dapdoH2 (0.19 g, 1 mmol) in 30 mL methanol was added 0.36 g 

Mn(ClO4)2.6H2O, then 0.26 mL (2 mmol) Et3N. The solution then turned brown, and it 

was then refluxed for 0.5 h whereupon a brown microcrystalline solid was precipitated 

out. It was filtered and washed with diethyl ether and air dried. Suitable quality of X-ray 

crystal was grown from concentrated CH3CN solution. IR (KBr, cm-1): 3425, 2805, 1598, 

1542, 1375, 1141, 1121, 1080, 1052, 952, 812, 661, 624, 559. ESI-MS (m/z): 755(100 %) 

[M - 2(ClO4)]2+

Yield: 100 mg (20 %).  

Molecular Weight: 1992                                                                C66H78Cl2N24Mn6O24

Elemental Analysis: 

 %C %H %N %Mn 

Calculated 39.8 3.95 16.88 16.55 

Found 39.94 3.84 16.85 16.42 
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Infrared Spectrum: 
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Synthesis of [L3(µ-O)(µ-OH) CuII
6(H2O)6](BF4)3 (15) 

 To a light yellow solution of dioxime ligand (0.30 g; 1 mmol), Cu(CH3COO)2 .H2O 

(0.40 g; 2 mmol) in distilled methanol (30 ml) was added with stirring, followed by 

addition of 0.3 ml of Et3N. The resulting green solution was refluxed for 0.5 h and then 

NBu4BF4 (0.64 g, 2 mmol) was added to procure dark green microcrystalline solid. X-ray 

quality crystals were obtained from a mixture of CH3OH-CH3CN solution. IR (KBr, cm-

1): 3421, 1628, 1534, 1446, 1379, 1220, 1121, 1089, 687, 624 ESI-MS (m/z): 755(100 %) 

[M - 3(BF4)]2+

Yield: 170 mg (25 %).  

MolecularWeight:1683.85                                                                C48H73B3N12Cu6O14F12 

Elemental Analysis: 

 %C %H %N %Cu 

Calculated 34.24 4.37 9.98 22.64 

Found 34.38 4.4 9.91 22.55 
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EQUIPMENT AND EXPERIMENTAL WORK 
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Synthesis of [NiII
9(PyA)10(µ3-OH)2(µ2-OH)2((µ2-OH2)2(H2O)6](ClO4)4 . 12H2O (16) 

 To a light green solution of NiCl2 .6H2O (0.47 g; 2 mmol) in water (25 ml), solid 

pyridine-2-aldoxime(0.24g; 2 mmol) was added with stirring, followed by addition of 

NaOH(0.10 g) to adjust the pH of the solution to 8. NaClO4 (0.36 g, 3 mmol) was added 

as counter anion to isolate the light orange microcrystalline solid. X-ray quality crystals 

were obtained by slow evaporation of the H2O-CH3OH (4:1) solution of the light orange 

microcrystalline solid. IR (KBr, cm-1): 3441, 1604, 1540, 1476, 1223, 1141, 1120, 1088, 

775, 683 626. ESI-MS (m/z): 781(100 %) [(PyA)5Ni3]+, 478(10 %) [(PyA)3Ni2]+,555(10 

%) [(PyA)3Ni3(O)]+, 1058(10 %) [(PyA)6Ni4(ClO4)]+ 

Yield: 200 mg (25 %).  

MolecularWeight: 2565.74                                                               C60H94Cl4N20Ni9O50

Elemental Analysis: 

 %C %H %N %Ni 

Calculated 28.9 3.7 10.92 20.59 

Found 28.7 3.59 10.94 20.52 
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Synthesis of [CuII
9L1

4(µ3-OH)4(MeOH)2](ClO4)2 . 6MeOH (17) 

 To a light solution of the ligand (0.19 g; 0.5 mmol), Cu(ClO4)2 .6H2O (0.37 g; 1 mmol) 

in distilled methanol (30 ml) was added with stirring, followed by addition of 0.5 ml of 

Et3N. The resulting green solution was refluxed for 0.5 h and filter to procure dark green 

microcrystalline solid. X-ray quality crystals were obtained from a mixture of CH2Cl2-

CH3OH solution. IR (KBr, cm-1): 3463, 1607, 1512, 1485, 1409, 1121, 1089, 704, 623. 

ESI-MS (m/z): 1021(100%) [L2Cu4(OH)]+, 1523(50 %) [L3Cu6(OH)]+, 501(33 %) 

[LCu2]+, 2075(15 %) [L4Cu8(OH)4] 

Yield: 300 mg (50 %).  

Molecular Weight: 2596.86                                                                C100H128Cl2N8Cu9O32

Elemental Analysis: 

 %C %H %N %Cu 

Calculated 46.25 4,97 4.31 22.02 

Found 46.10 4.83 4.4 22.1 
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APPENDICES 

(1) 
 (2) 

      (3) 

(1
Crystal data 

 

 1 

Empirical formula                  C36H32

Formula weight                     1016.5

Temperature (K) 100(2)

Wavelength (Å) 0.7107

Crystal system                     Rhomb

Space group                        R-3  

Unit cell dimensions               a = 13.

b = 13

c = 21.

α = 90

β = 90

γ = 120

Volume (Å3);Z 3524.8

 Density (cal.) (Mg/m3)             1.437 

Absorp. coeff. (mm-1)  1.180 

F(000) 

Crystal size                             

1554 

0.12 x 

θ range for data collection    3.55 to

Index ranges                       -18<=h

-18<=k

-28<=l

Reflections collected              20351 

Independent reflections            1941[R

Absorption correction              not cor

Data / restraints / parameters     1941 / 

Goodness-of-fit on F2             1.091 

Final R indices 

 [I>2σ(I)]      

R1 = 0

wR2 =

R indices (all data)               R1 = 0

wR2 =

 

 

 

 

APPENDICES: 
Crystallographic Data 
Magnetochemical Data 
Curriculum Vitae 
 
) Crystallographic Data 
and structure refinement for 1, 2 and 3 

2 3 

N12O11ClMnNi2 C36H30N12O10ClCrNi2 C38H34N13O10ClNi3  

5  999.59  1044.36 

  100(2)  100(2)  

3  0.71073  0.71073  

ohedral Trigonal Monoclinic  

R-3  P2(1)/n 

7375(4) Å     

.7375(4) Å      

5674(6) Å     

 deg.  

deg. 

 deg. 

a = 13.6398(3) Å     

b = 13.6398(3) Å      

c = 21.5949(5) Å     

α = 90 deg.  

β = 90deg. 

γ = 120 deg. 

a = 11.1498(3) Å      

b = 15.8194 (3) Å      

c = 23.9548(6) Å        

α = 90deg 

β = 102.13(1) deg.  

γ  = 90deg. 

7(18); 3 3479.35(13); 3 4130.9(2); 4 

1.425 1.679  

1.155 1.494  

0.09 x 0.09 mm 

1521 

0.10 x 0.10 x 0.10 mm 

1510  

0.15 x 0.12 x 0.08 mm 

 28.31 deg. 4.12 to 31.04 deg. 3.09 to 31.03 deg.  

<=18,  

<=18,  

<=28 

-19<=h<=19,  

-19<=k<=19,  

-31<=l<=31 

-16<=h<=16,  

-22<=k<=22,  

-34<=l<=34 

 2998  106567 

(int) = 0.0355)] 2467[R(int) = 0.0306)] 13148[R(int) = 0.0525)] 

rected  not corrected   not corrected  

21 / 127 2467 / 19 / 132 13132 / 1 / 593 

1.110 1.052 

.0325,  

 0.0944 

R1 = 0.0349,  

wR2 = 0.1088 

R1 = 0.0355,  

wR2 = 0.0726 

 

.0359,   

 0.0970 

R1 = 0.0383,   

wR2 = 0.1118 

R1 = 0.0461,   

wR2 = 0.0821 
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APPENDICES 

Crystal data and structure refinement for 4, 5, 6 and 7 

 4 5 6  7 

Empirical formula C37H49B2N7O10Mn2 

 

C48H70ClN13O14Mn4 C46H67.5Cl3N12.5O22.Mn4 C47.5H67Cl2N13O13Mn2Fe2

Formula weight 883.33 1308.38 1481.73 1320.62 

Temperature 100(2) K 100(2) K 100(2) K 100(2) K 

Wavelength (MoKα) 0.71073 Å 0.71073 Å 0.71073 0.71073 Å 

Crystal System Trigonal Monoclinic Triclinic Monoclinic 

Space group P3121 P2(1)/c P-1 P2(1)/c 

Unit cell dimensions a = 11.269(3) Å a = 16.485(2) Å a = 17.026(4) Å a = 14.411(4) Å 

 b = 11.269(3) Å b = 14.494(2) Å b = 18.267(4) Å b = 16.699(6) Å 

 c = 27.733(7) Å c = 24.365(3) Å c = 23.598(6) Å c = 25.02(8) Å 

 α = 90o α = 90o α = 101.44 (1)o α = 90o

 β = 90o β = 90.26(2)o β = 108.57(1)o β = 104.82(4)o

 γ = 120o γ = 90o γ = 105.65(1)o γ = 90o

Volume (Å3);   Z 3050.4(14);   3 5821.6(13);   4 6366.2; 4 5820.8(3);   4 

Density (calc.) Mg/m3 1.443 1.493 1.546 1.507 

Absorp. coeff. (mm-1) 0.686 1.043 0.984  1.075 

F(000) 1380 2712 3048 2732 

Crystal size (mm) 0.18 x 0.17 x 0.12 0.11 x 0.06 x 0.02 0.12 x 0.10 x 0.05 0.06 x 0.05 x 0.05 

θ range for data collect. 3.04 to 30.48o 3.18 to 22.50o 2.92 to 27.5o 2.08 to 30.55o

Reflections collected 63879 49350 114428 65527 

Independent reflect. 6165  

[R(int.) = 0.424] 

7587 

[R(int.) = 0.1044] 

29183 

[R(int.) = 0.0721] 

17765 

 [R(int.) = 0.0631] 

Absorpt. correction not measured not measured Gaussian,  

face indexed 

not measured 

Data/restraints/param. 6157 / 9 / 281 7587 / 8 / 711 29183 / 906 / 1655 17632 / 7 / 760 

Goodness-of-fit on F2 

Final R indices                       

[I>2σ(I) 

R indices (all data) 

1.107 

R1 = 0.0379 

wR2 = 0.0980 

R1 = 0.0420 

wR2 = 0.1130 

1.216 

R1 =0.1044 

wR2 = 0.1595 

R1 = 0.1430 

wR2 = 0.1737 

1.029 

R1 = 0.0756 

wR2 = 0.1929 

R1 = 0.1075 

wR2 = 0.2143 

1.012 

R1 = 0.0527 

wR2 = 0.1263 

R1 = 0.0856 

wR2 = 0.1494 
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 9 10 

Empirical formula                  C38H69N12O16Cl3Cu2Fe2 C42H72N15O14.5Br2Cl2Cr2Cu2   

Formula weight                     1295.18  1480.95 

Temperature (K) 100(2)  100(2)  

Wavelength (Å) 0.71073  0.71073  

Crystal system                     Monoclinic Triclinic  

Space group                        C2/c  P-1 

Unit cell dimensions               a = 27.449(6) Å     

b = 8.976(2) Å      

c = 24.038(6) Å     

α = 90 deg.  

β = 119.883(6)  deg. 

γ = 90 deg. 

a = 14.607(4) Å      

b = 15.153 (4) Å      

c = 15.186(5) Å        

α = 88.13(4) deg. 

β = 86.56(4) deg.  

γ  = 62.57(4) deg. 

Volume (Å3);Z 5135.2(2); 4 2798.00(15); 2 

 Density (cal.) (Mg/m3)             1.675 1.652  

Absorp. coeff. (mm-1)  1.605 2.563  

F(000) 

Crystal size                             

2324 1510  

 

θ range for data collection    3.91 to 31.02 deg. 2.97 to 31.06 deg.  

Index ranges                       -39<=h<=39,  

-13<=k<=13,  

-34<=l<=34 

-21<=h<=21,  

-21<=k<=21,  

-21<=l<=21 

Reflections collected              48703  85582 

Independent reflections            8163[R(int) = 0.0589)] 18949[R(int) = 0.0396)] 

Absorption correction              not corrected   Gaussian, face indexed 

Data / restraints / parameters     8163 / 0 / 339 18883 / 101 / 772 

Goodness-of-fit on F2             1.025 1.019 

Final R indices 

 [I>2σ(I)]      

R1 = 0.0348, wR2 = 0.0709 R1 = 0.0345, wR2 = 0.0806 

 

R indices (all data)               R1 = 0.0477,  wR2 = 0.0755 R1 = 0.0452,  wR2 = 0.1026 

     

     

     

 
Crystal data and structure refinement for 9, and 10 
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Crystal data and structure refinement for 11 and 12  

 

        11      12  

Empirical formula                  C76 H62 B2 Mn4 N14 O7F8 

 

C58.5 H54 Mn4 N8 O18.5  

Formula weight                     1676.78 1384.86  

Temperature (K) 100(2) 100(2)  

Wavelength (Å) 0.71073 0.71073  

Crystal system                     Tetragonal Triclinic  

Space group                        I41/a  No. 88 P-1  

Unit cell dimensions               a = 17.0154(9) Å    

b = 17.0154(9) Å     

c = 53.619(4) Å    

α =90 deg.  

β = 90deg.  

γ = 90deg. 

a = 12.3968(9) Å    

b = 14.715(2)Å 

c = 16.716(2)Å   

α = 84.15(1) deg.    

β = 84.11(1)deg.  

γ = 89.48(1) deg. 

 

Volume (Å3);Z 15524.0(16); 8 3017.4(6); 2  

Density (calculated) (Mg/m3)    1.435 1.524  

Absorption coefficient (mm-1)  0.717 0.898  

F(000)                             6832 1418  

Crystal size (mm) 0.23 x 0.17 x 0.13 0.04 x 0.01 x 0.01  

θ range for data collection    2.24 to 26.35 deg. 2.93 to 22.50  

Index ranges                       -21<=h<=20,  

-21<=k<=20,  

-66<=l<=66 

-13<=h<=12,  

-15<=k<=15,  

-17<=l<=17 

 

Reflections collected              53622 21974  

Independent reflections            7932 [R(int) = 0.0338]  7884 [R(int) = 0.0931]   

Absorption correction              Gaussian, face-indexed Not measured  

Data / restraints / parameters     7843 / 0 / 570 7884 / 12 / 837  

Goodness-of-fit on F2             1.028 1.032   

Final R indices 

 [I>2σ(I)]      

R1 = 0.0353, 

wR2 = 0.930 

R1 = 0.0600,  

wR2 = 0.1137 

 

R indices (all data)               R1 = 0.0571,  

wR2 = 0.1742 

R1 = 0.1215,  

wR2 = 0.1365 
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Crystal data and structure refinement for 13, 14 and 15 

 

 13 14 15 

Empirical formula                  C66 H84 Cl2 Mn6 N18 O26

 

C66 H78Cl2 Mn6 N24 O24 C48 H73B3Cu6 F12 N12 O14 

Formula weight                     1922.03 1992.06 1683.85 

Temperature (K) 100(2) 100(2) 100(2) 

Wavelength (Å) 0.71073 0.71073 0.71073 

Crystal system                     Triclinic Triclinic Cubic 

Space group                        P-1 P-1 Pa-3, No. 205 

Unit cell dimensions               a = 10.636(2) Å    

b = 13.270(3) Å     

c = 15.515(3) Å    

α =65.48(2) deg.  

β = 82.81(2) deg.  

γ = 84.62(2) deg. 

a = 10.9213(9) Å    

b = 13.5592(12)Å 

c = 15.444(2)Å   

α = 101.75(1) deg.    

β = 107.72(1)deg.  

γ = 98.08(1) deg. 

a = 23.8313(9) Å  

b = 23.8313(9) Å  

c = 23.8313(9) Å    

α = 90 deg.  

β = 90deg.  

γ= 90 deg. 

Volume (Å3);Z 1974.5(7); 1 2081.9(4); 1 13534.5(9); 8 

Density (calculated) (Mg/m3)    1.616 1.589  1.653 

Absorption coefficient (mm-1)  1.087 1.034 1.951  

F(000)                             986 1018 6832 

Crystal size (mm) 0.04 x 0.03 x 0.03 0.06 x 0.04 x 0.04 0.36 x 0.32 x 0.22 

θ range for data collection    2.3 to 25.00 deg. 3.43 to 27.50 3.01 to 27.50 deg. 

Index ranges                       -13<=h<=13,  

-16<=k<=16,  

-19<=l<=19 

-14<=h<=15,  

-19<=k<=19,  

-20<=l<=20 

-31<=h<=30,  

-31<=k<=31,  

-31<=l<=31 

Reflections collected              25689 23688 118922 

Independent reflections            6943 [R(int) = 0.0824]  9500 [R(int) = 0.0857]  5319 [R(int) = 0.0570]  

Absorption correction              Not measured Not measured Gaussian, face-indexed 

Data / restraints / parameters     6879 / 95 / 570 9385 / 3 / 568 5319 / 95 / 314  

Goodness-of-fit on F2             1.050 1.010  1.057 

Final R indices 

 [I>2σ(I)]      

R1 = 0.0598, 

wR2 = 0.1180 

R1 = 0.0543,  

wR2 = 0.0916 

R1 = 0.0427,  

wR2 = 0.1139 

R indices (all data)               R1 = 0.1108,  

wR2 = 0.1397 

R1 = 0.1180,  

wR2 = 0.1139 

R1 = 0.0531,  

wR2 = 0.1246 
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Crystal data and structure refinement for 16 and 17 

 16 17 

Empirical formula                  C60H94Cl4N20Ni9O50 C100H128N8O32Cl2Cu9   

Formula weight                     2565.74  2596.86 

Temperature (K) 100(2)  100(2)  

Wavelength (Å) 0.71073  0.71073  

Crystal system                     Monoclinic Triclinic  

Space group                        C2/c , No. 15 P-1 

Unit cell dimensions               a = 24.704(2) Å     

b = 31.015(3) Å      

c = 26.032(2) Å     

α = 90 deg.  

β = 100.13(2) deg. 

γ = 90 deg. 

a = 13.0636(4) Å      

b = 15.2420 (6) Å      

c = 16.0330(6) Å        

α = 107.71(1) deg. 

β = 112.03(1) deg.  

γ  = 101.11(1) deg. 

Volume (Å3);Z 19635.3(2); 8 2643.47(15); 1 

 Density (cal.) (Mg/m3)             1.736 1.631  

Absorp. coeff. (mm-1)  1.899 1.907  

F(000) 

Crystal size                             

10512 

0.28x0.06x0.06 mm 

1335 

0.16x0.15x0.10 mm 

θ range for data collection    2.97 to 22.50 deg. 2.99 to 31.10 deg.  

Index ranges                       -26<=h<=26,  

-33<=k<=33,  

-28<=l<=28 

-18<=h<=18,  

-22<=k<=22,  

-23<=l<=21 

Reflections collected              103240  66247 

Independent reflections            12807[R(int) = 0.0984)] 16905[R(int) = 0.0513)] 

Absorption correction              Gaussian, face indexed  Gaussian, face indexed 

Data / restraints / parameters     12807 /93 0 / 1467 16905 / 1 / 702 

Goodness-of-fit on F2             1.111 1.040 

Final R indices 

 [I>2σ(I)]      

R1 = 0.0717, wR2 = 0.1593 R1 = 0.0446, wR2 = 0.0989 

 

R indices (all data)               R1 = 0.0926,  wR2 = 0.1703 R1 = 0.0616,  wR2 = 0.1026 
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(2) Magnetochemical Data 
 
 
Complex NiIIMnIIINiII (1) 

 
MW = 837.0 g/mol, χdia = -425.0 x 10-6 cm3 mol-1

m = 32.57 mg , H = 1.000 T 
 

No 
 

T(K) χ.Texp.     χ.Tcalc.         µexp              µcalc.

1 1.951    0.33602 0.01984 1.6393  0.39835 
2 5.116    0.83956 0.33326 2.59122 1.63257 
3 10.144    1.37563 0.89542 3.31688 2.67604 
4 15.046    1.79121 1.44128 3.78488 3.39511 
5 20.003    2.14802 1.92967 4.14475 3.92845 
6 30.002    2.70188 2.66048 4.6485  4.61274 
7 39.999    3.09273 3.13414 4.97337 5.00655 
8 50.006    3.38002 3.45382 5.19923 5.25568 
9 60.043    3.59354 3.68111 5.36094 5.42586 
10 70.058    3.7587 3.84908 5.48275 5.54827 
11 80.067    3.8952 3.978  5.58141 5.64042 
12 90.09    4.00346 4.08005 5.65845 5.71231 
13 100.1    4.09563 4.16253 5.72321 5.76976 
14 110.15    4.1709 4.23085 5.77556 5.81692 
15 120.12    4.2364 4.28772 5.82074 5.85589 
16 130.17    4.28919 4.33647 5.85689 5.88908 
17 140.18    4.34007 4.37826 5.89153 5.91739 
18 150.19    4.38152 4.41461 5.91959 5.9419 
19 160.19    4.42087 4.44647 5.94611 5.96331 
20 170.22    4.45514 4.47473 5.96912 5.98223 
21 180.22    4.48471 4.49983 5.98889 5.99898 
22 190.22    4.51229 4.52233 6.00728 6.01396 
23 200.24    4.53428 4.54265 6.0219  6.02746 
24 210.16    4.55519 4.56089 6.03577 6.03954 
25 220.26    4.57663 4.57778 6.04996 6.05072 
26 230.26    4.59272 4.59306 6.06058 6.06081 
27 240.26    4.6115 4.60709 6.07296 6.07006 
28 250.26    4.62828 4.62  6.084  6.07856 
29 260.27    4.64631 4.63194 6.09584 6.08641 
30 270.26    4.66375 4.64299 6.10727 6.09366 
31 280.27    4.67325 4.65327 6.11349 6.1004 
32 290.27    4.69206 4.66284 6.12578 6.10667 
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Complex NiIICrIIINiII (2) 

 
MW = 995 g/mol, χdia = -420 x 10-6 cm3 mol-1

m = 63.45 mg , H = 1.000 T 
 

No 
 

T(K) χ.Texp.     χ.Tcalc.         µexp              µcalc.

 
1 1.912   2.93923 3.39597 4.84837 5.21148 
2 5.089   3.99861 4.11896 5.65502 5.73949 
3 9.999   4.11023 4.09724 5.7334  5.72434 
4 14.959   4.05373 4.02934 5.69386 5.67671 
5 20.004   3.99144 3.98056 5.64994 5.64224 
6 29.999   3.9079 3.92252 5.59051 5.60095 
7 39.996   3.86411 3.88978 5.5591  5.57753 
8 50.009   3.83246 3.86892 5.53628 5.56255 
9 60.047   3.82229 3.8545  5.52893 5.55218 
10 70.052   3.81195 3.844  5.52145 5.54461 
11 80.068   3.81108 3.83599 5.52082 5.53883 
12 90.105   3.80872 3.82967 5.51911 5.53427 
13 100.12   3.81586 3.82458 5.52428 5.53059 
14 110.11   3.81745 3.82039 5.52543 5.52756 
15 120.12   3.82319 3.81687 5.52958 5.52501 
16 130.11   3.82085 3.81389 5.52789 5.52285 
17 140.18   3.82048 3.81129 5.52762 5.52097 
18 150.19   3.80833 3.80905 5.51883 5.51935 
19 160.21   3.79812 3.80708 5.51142 5.51792 
20 170.21   3.79525 3.80535 5.50934 5.51667 
21 180.22   3.79464 3.80379 5.5089  5.51554 
22 190.23   3.7969 3.8024  5.51054 5.51453 
23 200.24   3.79574 3.80115 5.5097  5.51362 
24 210.24   3.79607 3.80001 5.50994 5.51279 
25 220.27   3.79687 3.79898 5.51052 5.51205 
26 230.26   3.79938 3.79803 5.51234 5.51136 
27 240.25   3.80528 3.79716 5.51662 5.51073 
28 250.26   3.81294 3.79636 5.52217 5.51015 
29 260.16   3.81381 3.79563 5.5228  5.50962 
30 270.25   3.82078 3.79494 5.52784 5.50912 
31 280.25   3.8247 3.7943  5.53067 5.50865 
32 290.25   3.83429 3.79371 5.5376  5.50822 
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Complex NiII

3 (3) 
 

MW = 1044 g/mol, χdia = -430 x 10-6 cm3 mol-1

m = 54.25 mg , H = 1.000 T 
 

No 
 

T(K) χ.Texp.     χ.Tcalc.         µexp              µcalc.

 
1 1.96   0.80356 0.98983 2.53507 2.81358 
2 5.11   0.97353 1.02925 2.79032 2.86906 
3 9.99   1.0331 1.00545 2.87442 2.8357 
4 15.02   1.12205 1.07778 2.99561 2.93592 
5 20.01   1.2452 1.21  3.15572 3.1108 
6 30.00   1.51542 1.50578 3.48134 3.47025 
7 40.01   1.75747 1.76298 3.74907 3.75494 
8 50.01   1.9538 1.96718 3.95293 3.96645 
9 60.02   2.10845 2.12762 4.1064  4.12502 
10 70.06   2.23365 2.25491 4.22656 4.24663 
11 80.07   2.33672 2.35677 4.32298 4.34148 
12 90.09   2.42075 2.4402  4.40002 4.41766 
13 100.12   2.49276 2.50933 4.46498 4.4798 
14 110.13   2.55149 2.56741 4.51727 4.53134 
15 120.14   2.60448 2.61687 4.56394 4.57478 
16 130.16   2.64714 2.6595  4.60117 4.61189 
17 140.18   2.68774 2.69656 4.63632 4.64392 
18 150.14   2.72092 2.72887 4.66485 4.67166 
19 160.2   2.75367 2.75771 4.69284 4.69628 
20 170.21   2.78267 2.78323 4.71748 4.71796 
21 180.22   2.80758 2.80609 4.73855 4.73729 
22 190.23   2.83175 2.82667 4.7589  4.75463 
23 200.24   2.85184 2.84529 4.77575 4.77027 
24 210.24   2.87148 2.86221 4.79217 4.78443 
25 220.25   2.88915 2.87767 4.80689 4.79733 
26 230.26   2.90473 2.89184 4.81984 4.80913 
27 240.25   2.92129 2.90484 4.83356 4.81993 
28 250.25   2.93752 2.91686 4.84696 4.82989 
29 260.27   2.95348 2.92801 4.86011 4.83911 
30 270.25   2.96902 2.93832 4.87288 4.84762 
31 280.26   2.98144 2.94794 4.88306 4.85555 
32 290.24   2.99747 2.95689 4.89617 4.86292 
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Complex MnIIMnII (4) 

 
MW = 837.0 g/mol, χdia = -425.0 x 10-6 cm3 mol-1

m = 32.57 mg , H = 1.000 T 
 

No 
 

T(K) χ.Texp.     χ.Tcalc.         µexp              µcalc.

 
1 1.948   0.0677 0.01015 0.73581 0.01018 
2 5.119   0.16488 0.02578 1.14832 0.45402 
3 9.996   0.35264 0.21482 1.67936 1.31074 
4 15.039   0.55982 0.43311 2.11595 1.86114 
5 20.005   0.75228 0.63946 2.45284 2.26144 
6 30.001   1.1297 1.04851 3.00581 2.89578 
7 39.998   1.50433 1.4553  3.46857 3.41158 
8 50.008   1.87591 1.86014 3.87334 3.85702 
9 60.045   2.24432 2.2595  4.23664 4.25095 
10 70.05   2.60378 2.64487 4.56333 4.59919 
11 80.075   2.94663 3.0123  4.85447 4.90827 
12 90.093   3.27157 3.35655 5.11514 5.18115 
13 100.14   3.57341 3.6766  5.3459  5.42254 
14 110.13   3.85239 3.96939 5.55066 5.63432 
15 120.13   4.1087 4.2378  5.73234 5.8217 
16 130.17   4.34608 4.4839  5.8956  5.98835 
17 140.18   4.56144 4.70773 6.03991 6.136 
18 150.19   4.76215 4.91199 6.17136 6.2677 
19 160.21   4.94278 5.09873 6.28731 6.38573 
20 170.22   5.11166 5.26937 6.39382 6.4917 
21 180.22   5.26377 5.42559 6.48825 6.58723 
22 190.24   5.40441 5.56934 6.57436 6.67392 
23 200.24   5.53466 5.70136 6.65311 6.75256 
24 210.25   5.65088 5.82325 6.7226  6.82436 
25 220.25   5.76244 5.93581 6.78864 6.89 
26 230.25   5.86172 6.0401  6.84687 6.95027 
27 240.26   5.95191 6.13702 6.89934 7.00581 
28 250.17   6.03728 6.22633 6.94864 7.0566 
29 260.26   6.12128 6.31111 6.99682 7.10448 
30 270.26   6.20203 6.38957 7.04282 7.1485 
31 280.26   6.28144 6.46301 7.08776 7.18947 
32 290.23  6.35298 6.53167 7.12801 7.22756 
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Complex MnIIIMnIIMnIIMnIII (5) 

 
MW = 1234 g/mol, χdia = -630.0 x 10-6 cm3 mol-1

m = 34.79 mg , H = 1.000 T 
 

No 
 

T(K) χ.Texp.     χ.Tcalc.         µexp              µcalc.

 
          1        1.951 0.79064 0.53854 2.5146          2.07533 
          2        5.072 1.89519 1.48217 3.89319        3.44293 
          3        9.997 2.94776 2.69293 4.85541        4.64079 
          4      15.028 3.82114 3.69206 5.5281          5.43393 
          5      20.004 4.55633 4.50875 6.03652        6.00492 
          6      30   5.73805 5.74341 6.77426        6.77742 
          7      39.999 6.65335 6.61325 7.29457        7.27255 
          8      50.009 7.38764 7.27651 7.68656        7.62853 

                      9      60.022 7.9832            7.81704 7.99039        7.9068 
           10      70.058 8.47748 8.27621 8.23404        8.1357 

        11      80.08 8.88361 8.67223 8.42896       8.32808 
        12     90.088 9.2187  9.01671 8.58646       8.49187 
        13   100.11 9.4894             9.3184  8.71162       8.63277 
        14   110.13 9.72049 9.58288 8.81705       8.75442 
        15   120.17 9.91151 9.81584 8.90327       8.86019 
        16   130.16        10.0726          10.0203             8.97533       8.95199 
        17   140.18        10.2081          10.2017             9.03549       9.03266 
        18   150.18        10.3344          10.3625             9.09122       9.10357 
        19   160.13        10.4319          10.5052             9.134         9.16604 
        20   170.2          10.5331          10.6344             9.1782         9.22223 
        21   180.23        10.6111          10.75             9.2121         9.27222 
        22   190.23        10.6783          10.853    9.24124       9.31688 

                    23   200.24        10.7431          10.9479             9.26924       9.35718 
                    24   210.24        10.7904          11.0332             9.28962       9.39356 
                    25   220.26        10.8469          11.1111             9.31391       9.42666 
                    26   230.25        10.893           11.1821             9.33369       9.45673 
                    27   240.28        10.9354          11.2475             9.35183       9.48435 
                    28   250.27        10.98           11.3073             9.37088       9.50953 
                    29   260.27        11.007           11.3625             9.3824         9.53271 
                    30   270.26        11.0346          11.4136             9.39415       9.55412 
                    31   280.25        11.0707          11.4608             9.40951       9.57386 
                    32   290.26        11.0718          11.5049             9.40998       9.59226   
 
 
 
 
 



APPENDICES 

 
 
 
 
Complex MnIVMnIIMnIIMnIV (6) 

 
MW = 1433 g/mol, χdia = -700.0 x 10-6 cm3 mol-1

m = 33.63 mg , H = 1.000 T 
 

No 
 

T(K) χ.Texp.     χ.Tcalc.         µexp              µcalc.

 
1 1.916    1.21603 1.75514 3.11854 3.74658 
2 5.11    2.91624 3.31404 4.82938 5.14823 
3 9.994    3.99506 4.62802 5.65251 6.08383 
4 15.014    5.00867 5.45928 6.32908 6.60765 
5 20.005    5.85464 6.11183 6.84273 6.99141 
6 30.001    7.18731 7.23633 7.58163 7.60744 
7 40    8.21043 8.21261 8.10331 8.10438 
8 50.013    9.02793 9.04005 8.49715 8.50286 
9 60.031    9.69277 9.72286 8.80447 8.81813 
10 70.038   10.2385 10.2805 9.04894 9.06748 
11 80.069   10.694 10.7386 9.24804 9.2673 
12 90.089   11.0777 11.1163 9.41248 9.42887 
13 100.13   11.39  11.432  9.54424 9.56182 
14 110.13   11.6566 11.6969 9.65529 9.67197 
15 120.14   11.8802 11.9228 9.74746 9.76492 
16 130.16   12.0724 12.1171 9.82599 9.84416 
17 140.17   12.234 12.2856 9.89153 9.91237 
18 150.19   12.3887 12.433  9.95388 9.97166 
19 160.14   12.4916 12.5621 9.99513 10.0233 
20 170.21   12.6331 12.6779 10.05158 10.06939 
21 180.23   12.7325 12.7808 10.09105 10.11017 
22 190.23   12.8205 12.8729 10.12586 10.14653 
23 200.23   12.9041 12.956  10.15882 10.17923 
24 210.24   12.9741 13.0314 10.18634 10.20881 
25 220.24   13.0507 13.1  10.21636 10.23564 
26 230.25   13.1102 13.1628 10.23963 10.26015 
27 240.24   13.159 13.2203 10.25867 10.28253 
28 250.26   13.2152 13.2734 10.28055 10.30316 
29 260.27   13.2625 13.3223 10.29893 10.32212 
30 270.26   13.3201 13.3676 10.32127 10.33966 
31 280.26   13.3867 13.4096 10.34704 10.35589 
32        290.25   13.436 13.4488 10.36608 10.37101 
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Complex FeIIIMnIIMnIIFeIII (7) 
 

MW = 1236 g/mol, χdia = -592.0 x 10-6 cm3 mol-1

m = 22.75 mg , H = 1.000 T 
 

No 
 

T(K) χ.Texp.     χ.Tcalc.         µexp              µcalc.

 
1 1.959    1.32852 0.79258 3.25959 2.5177 
2 5.01    2.77139 2.03779 4.70791 4.037 
3 9.996    4.22679 3.66287 5.81413 5.4124 
4 14.994    5.31265 4.95719 6.51831 6.29647 
5 20.005    6.17474 5.97047 7.0273  6.91009 
6 30    7.45581 7.35645 7.72195 7.67032 
7 40.002    8.39672 8.26324 8.19472 8.12933 
8 50    9.14143 8.94522 8.5504  8.45814 
9 60.038    9.76769 9.51563 8.83843 8.72365 
10 70.056    10.2858 10.0168 9.06982 8.95043 
11 80.089    10.7361 10.4698 9.26622 9.15058 
12 90.1    11.1224 10.8813 9.43145 9.32867 
13 100.12    11.4475 11.2574 9.5683  9.48852 
14 110.13    11.7448 11.6005 9.69175 9.63203 
15 120.14    11.9972 11.9139 9.79534 9.76127 
16 130.17    12.2252 12.2007 9.88798 9.87806 
17 140.19    12.4247 12.4626 9.96833 9.98352 
18 150.19    12.6103 12.7019 10.04251 10.07891 
19 160.2    12.7793 12.9215 10.10958 10.16567 
20 170.22    12.9289 13.1233 10.16858 10.24474 
21 180.23    13.0787 13.3089 10.22732 10.31693 
22 190.24    13.2042 13.4801 10.27627 10.38307 
23 200.24    13.3299 13.6381 10.32507 10.44375 
24 210.24    13.4435 13.7844 10.36897 10.49961 
25 220.26    13.5514 13.9206 10.4105 10.55136 
26 230.25    13.6678 14.0468 10.45511 10.59908 
27 240.25    13.7637 14.1645 10.49173 10.64339 
28 250.26    13.8558 14.2746 10.52677 10.68468 
29 260.27    13.9436 14.3776 10.56007 10.72316 
30 270.25    14.0124 14.4738 10.58609 10.75897 
31 280.17    14.1152 14.5637 10.62485 10.79233 
32 290.26    14.2252 14.6496 10.66617 10.82411 
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Complex CrIIIMnIIMnIICrIII (8) 

 
MW = 1228 g/mol, χdia = -625.0 x 10-6 cm3 mol-1

m = 39.54 mg , H = 1.000 T 
 

No 
 

T(K) χ.Texp.     χ.Tcalc.         µexp              µcalc.

 
1 1.952    0.59263 0.25479 2.17707 1.42748 
2 5.138    1.36712 0.8418  3.30661 2.59469 
3 9.969    1.81119 1.55265 3.80594 3.52384 
4 15.007    2.18216 2.14702 4.17756 4.14379 
5 20.005    2.53284 2.61344 4.50073 4.57178 
6 30    3.19519 3.297  5.05508 5.13498 
7 39.998    3.80295 3.8081  5.51493 5.51866 
8 50.01    4.33953 4.24381 5.89116 5.82582 
9 60.034    4.82463 4.64128 6.21171 6.09254 
10 70.055    5.25082 5.01295 6.48027 6.33178 
11 80.069    5.62698 5.36218 6.70837 6.54862 
12 90.093    5.96075 5.68979 6.90446 6.74571 
13 100.13    6.24829 5.99551 7.06903 6.92456 
14 110.13    6.5057 6.27796 7.21317 7.0858 
15 120.11    6.72787 6.53843 7.33531 7.2313 
16 130.16    6.93391 6.78015 7.44678 7.36375 
17 140.18    7.11205 7.00194 7.54183 7.48322 
18 150.19    7.27804 7.2058  7.62933 7.59138 
19 160.21    7.42578 7.39365 7.70638 7.68969 
20 170.21    7.5584 7.56638 7.77489 7.77899 
21 180.22    7.6811 7.72591 7.83774 7.86057 
22 190.23    7.78637 7.87331 7.89127 7.9352 
23 200.23    7.89224 8.0096  7.94474 8.00359 
24 210.23    7.98217 8.13599 7.98987 8.06649 
25 220.26    8.06887 8.25374 8.03315 8.12465 
26 230.26    8.15133 8.36299 8.07409 8.17825 
27 240.25    8.22445 8.46477 8.11022 8.22786 
28 250.24    8.296 8.55985 8.14543 8.27394 
29 260.27    8.36422 8.64917 8.17885 8.317 
30 270.26    8.41954 8.73256 8.20585 8.357 
31 280.26    8.48277 8.81094 8.23661 8.39442 
32 290.15    8.5273 8.88388 8.2582  8.42909 
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Complex FeIII

2CuII
2 (9) 

 
MW = 1295.0 g/mol, χdia = -620.0 x 10-6 cm3 mol-1

m = 18.61 mg , H = 1.000 T 
 

No 
 

T(K) χ.Texp.     χ.Tcalc.         µexp              µcalc.

 
1 1.947   6.15347 6.18609 7.01519 7.03376 
2 5.025   8.40454 8.49109 8.19854 8.24064 
3 10.058   8.39965 8.34069 8.19615 8.16734 
4 15.031   7.95016 7.90105 7.97384 7.94917 
5 20.003   7.62678 7.58346 7.80998 7.78777 
6 30   7.21982 7.19946 7.59876 7.58804 
7 39.997   6.99787 6.98533 7.48105 7.47434 
8 50.009   6.86339 6.85034 7.40881 7.40177 
9 60.01   6.76545 6.75804 7.35576 7.35173 
10 70.055   6.6945 6.69076 7.31709 7.31505 
11 80.075   6.64977 6.63989 7.29261 7.28719 
12 90.094   6.61113 6.60007 7.27139 7.2653 
13 100.11   6.57834 6.56814 7.25333 7.24771 
14 110.1   6.55335 6.5422             7.23954 7.23338 
15 120.15   6.53128 6.52081 7.22734 7.22155 
16 130.16   6.51287 6.5034             7.21715 7.2119 
17 140.18   6.49725 6.48937 7.20849 7.20412 
18 150.19   6.48503 6.47844 7.20171 7.19805 
19 160.2   6.48535 6.47042 7.20188 7.19359 
20 170.22   6.46962 6.46519 7.19314 7.19068 
21 180.21   6.49148 6.46268 7.20529 7.18929 
22 190.23   6.46212 6.46283 7.18897 7.18937 
23 200.24   6.46348 6.46557 7.18973 7.19089 
24 210.24   6.46667 6.47083 7.1915             7.19382 
25 220.26   6.4667 6.47854 7.19152 7.1981 
26 230.25   6.47453 6.48859 7.19587 7.20368 
27 240.15   6.4784 6.50074 7.19802 7.21042 
28 250.26   6.48892 6.51531 7.20387 7.2185 
29 260.27   6.50329 6.53173 7.21184 7.22759 
30 270.25   6.51218 6.54996 7.21677 7.23767 
31 280.26   6.52818 6.56996 7.22563 7.24871 
32 290.26   6.55049 6.59152 7.23796 7.26059 
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Complex CrIII
2CuII

2 (10) 
 

MW = 1348 g/mol, χdia = -610.0 x 10-6 cm3 mol-1

m = 37.89 mg , H = 1.000 T 
 

No 
 

T(K) χ.Texp.     χ.Tcalc.         µexp              µcalc.

 
1 1.949   1.25667 2.4444  3.17022 4.42146 
2 5.091   2.56664 2.81681 4.53066 4.74633 
3 10.153   2.85421 2.87389 4.77774 4.79418 
4 15.046   2.85834 2.86638 4.78119 4.78791 
5 20.005   2.82607 2.83215 4.75413 4.75924 
6 30   2.72395 2.72977 4.66744 4.67243 
7 40.001   2.63192 2.626  4.58792 4.58276 
8 50.01   2.55155 2.53778 4.51733 4.50512 
9 60.041   2.48523 2.46667 4.45823 4.44155 
10 70.055   2.43778 2.41147 4.41547 4.39158 
11 80.049   2.40619 2.37065 4.38676 4.35425 
12 90.107   2.38338 2.34285 4.36592 4.32864 
13 100.11   2.36909 2.32739 4.35281 4.31434 
14 110.13   2.36202 2.323  4.34631 4.31027 
15 120.15   2.36645 2.32848 4.35039 4.31535 
16 130.16   2.37514 2.34248 4.35837 4.3283 
17 140.18   2.39356 2.36369 4.37524 4.34785 
18 150.19   2.41592 2.39075 4.39563 4.37267 
19 160.21   2.44451 2.42249 4.42156 4.4016 
20 170.21   2.48274 2.45773 4.456  4.4335 
21 180.22   2.5103 2.49561 4.48066 4.46753 
22 190.16   2.54717 2.53501 4.51345 4.50266 
23 200.25   2.58604 2.57615 4.54775 4.53905 
24 210.23   2.62565 2.61743 4.58245 4.57527 
25 220.25   2.6658 2.65901 4.61735 4.61147 
26 230.25   2.70577 2.7003  4.65184 4.64714 
27 240.26   2.74667 2.74115 4.68687 4.68216 
28 250.26   2.78569 2.78127 4.72004 4.7163 
29 260.27   2.82566 2.8206  4.75378 4.74952 
30 270.26   2.86462 2.85889 4.78644 4.78165 
31 280.27   2.89995 2.89622 4.81587 4.81277 
32 290.24   2.93601 2.93234 4.84572 4.84269 
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Complex MnII

4 (11) 
 

MW = 1576 g/mol, χdia = -770.0 x 10-6 cm3 mol-1

m = 35.14 mg , H = 1.000 T 
 

No 
 

T(K) χ.Texp.     χ.Tcalc.         µexp              µcalc.

 
1 1.95   7.98  12.903  7.9906  10.15839 
2 5.08   19.09  19.4542 12.35687 12.47344 
3 10.14   19.31  19.4838 12.42805 12.48292 
4 15.05   18.81  18.9431 12.26628 12.30849 
5 19.99   18.45  18.5727 12.14849 12.18756 
6 29.99   18.107 18.1414 12.0338 12.04522 
7 40.00   17.9295 17.9079 11.97467 11.96745 
8 50.00   17.8172 17.7628 11.93711 11.91887 
9 60.04   17.7392 17.6639 11.91095 11.88564 
10 70.05   17.6572 17.5926 11.88339 11.86163 
11 80.08   17.6318 17.5386 11.87484 11.84341 
12 90.089   17.5972 17.4964 11.86318 11.82916 
13 100.1   17.554 17.4625 11.84861 11.81769 
14 110.08   17.52  17.4347 11.83713 11.80828 
15 120.13   17.4909 17.4113 11.8273 11.80035 
16 130.16   17.4592 17.3915 11.81657 11.79364 
17 140.18   17.4322 17.3746 11.80743 11.78791 
18 150.19   17.41  17.3598 11.79991 11.78289 
19 160.19   17.396 17.3469 11.79517 11.77851 
20 170.21   17.3765 17.3355 11.78855 11.77464 
21 180.23   17.3689 17.3254 11.78598 11.77121 
22 190.23   17.3438 17.3163 11.77746 11.76812 
23 200.24   17.3315 17.3081 11.77328 11.76533 
24 210.15   17.3147 17.3008 11.76757 11.76285 
25 220.24   17.3035 17.294  11.76377 11.76054 
26 230.25   17.3072 17.2878 11.76502 11.75843 
27 240.25   17.295 17.2821 11.76088 11.75649 
28 250.25   17.282 17.2769 11.75646 11.75472 
29 260.26   17.2788 17.2721 11.75537 11.75309 
30 270.26   17.2627 17.2677 11.74989 11.75159 
31 280.23   17.2561 17.2636 11.74764 11.7502 
32 290.24   17.2568 17.2597 11.74788 11.74887 
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Complex MnIII

4 (12) 
 

MW = 1384 g/mol, χdia = -650.0 x 10-6 cm3 mol-1

m = 29.59 mg , H = 1.000 T 
 

No 
 

T(K) χ.Texp.     χ.Tcalc.         µexp              µcalc.

 
1 1.966   5.7165   6.90638   6.76152   7.43198 
2 5.094  14.5492          15.6427           10.78696         11.18498 
3 9.999  16.7753          16.9447 11.58283 11.64116 
4 14.994  16.1334 15.9428 11.35906 11.29176 
5 20.004  15.3838 15.2949 11.09203 11.05994 
6 29.999  14.3461 14.5037 10.7114 10.77008 
7 40  13.7333 14.0042 10.48013 10.58299 
8 50.008  13.3568 13.6506 10.33548 10.44853 
9 60.035  13.0962 13.385             10.23416 10.34638 
10 70.059  12.9027 13.1782 10.15827 10.26615 
11 80.056  12.7774 13.0129 10.10882 10.20156 
12 90.101  12.6807 12.8769 10.0705 10.14811 
13 100.12  12.5933 12.7639 10.03573 10.10348 
14 110.13  12.5281 12.6682 10.00972 10.06553 
15 120.14  12.47             12.5862   9.98648 10.03291 
16 130.16  12.4259 12.5151   9.96881 10.00453 
17 140.18  12.3819 12.4529   9.95114   9.97963 
18 150.13  12.3487 12.3984   9.93779   9.95777 
19 160.19  12.3258 12.3495   9.92858   9.93812 
20 170.22  12.3047 12.3058   9.92007   9.92052 
21 180.23  12.2882 12.2666   9.91342   9.9047 
22 190.23  12.2529 12.2312   9.89917   9.8904 
23 200.24  12.2308 12.199               9.89024   9.87737 
24 210.24  12.2064 12.1697   9.88037   9.86551 
25 220.26  12.1763 12.1427   9.86818   9.85456 
26 230.26  12.1583 12.118               9.86088   9.84453 
27 240.26  12.129 12.0951   9.84899   9.83522 
28 250.25 12.1031 12.074    9.83847   9.82664 
29 260.27 12.0814 12.0544   9.82965   9.81866 
30 270.26 12.0595 12.0361   9.82074   9.8112 
31 280.14 12.05  12.0193   9.81687   9.80435 
32 290.26 12.0524 12.0032   9.81785   9.79779 
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Complex MnIII
4MnII

2 (13) 
 

MW = 1774 g/mol, χdia = -740 x 10-6 cm3 mol-1

m = 22.95 mg , H = 1.000 T 
 

No 
 

T(K) χ.Texp.     χ.Tcalc.         µexp              µcalc.

 
1 1.954    5.71186 5.53098 6.75878 6.6509 
2 5.076    8.99394 7.83852 8.48114 7.91765 
3 9.994    9.72196 8.43898 8.81772 8.21532 
4 15.014    9.67494 8.61716 8.79637 8.30159 
5 20.005    9.53456 8.75954 8.73232 8.3699 
6 30.001    9.40964 9.09982 8.67493 8.53092 
7 39.999    9.55658 9.49414 8.7424  8.71379 
8 50.011    9.90966 9.91632 8.90243 8.90543 
9 60.046  10.34882 10.35492 9.09756 9.10024 
10 70.052  10.80894 10.79858 9.2976  9.29315 
11 80.059  11.27654 11.23944 9.49658 9.48095 
12 90.105  11.73602 11.67076 9.68813 9.66115 
13 100.12  12.1494 12.08298 9.85727 9.83029 
14 110.13  12.54018 12.473  10.01455 9.98769 
15 120.13  12.88962 12.8384 10.15312       10.13293 
16 130.12  13.21522 13.17852 10.28056       10.26627 
17 140.19  13.50796 13.49652 10.3938         10.3894 
18 150.2  13.78836 13.78898 10.50112       10.50136 
19 160.21  14.03658 14.05928 10.59522       10.60379 
20 170.21  14.27676 14.30878 10.68548       10.69746 
21 180.22  14.49874 14.53964 10.76824       10.78341 
22 190.23  14.68712 14.7532 10.83796       10.86232 
23 200.24  14.87638 14.95098 10.90757       10.93489 
24 210.24  15.03404 15.13426 10.96522       11.00171 
25 220.25  15.19804 15.30468 11.02486       11.06347 
26 230.25  15.34708 15.4631 11.07879       11.12059 
27 240.26  15.47818 15.6109 11.12601       11.17361 
28 250.26  15.61206 15.74874 11.17402       11.22283 
29 260.27  15.73  15.8778 11.21615       11.26872 
30 270.26  15.80874 15.99844 11.24419       11.31145 
31 280.24  15.9287 16.11154 11.28677       11.35136 
32 290.26  16.06634 16.21826 11.33543       11.38889 
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Complex MnIII
4MnII

2 (14) 
 

MW = 1744 g/mol, χdia = -720 x 10-6 cm3 mol-1

m = 15.34 mg , H = 1.000 T 
 

No 
 

T(K) χ.Texp.     χ.Tcalc.         µexp              µcalc.

 
1 1.954    5.71186 5.53098 6.75878 6.6509 
2 5.076    8.99394 7.83852 8.48114 7.91765 
3 9.994    9.72196 8.43898 8.81772 8.21532 
4 15.014    9.67494 8.61716 8.79637 8.30159 
5 20.005    9.53456 8.75954 8.73232 8.3699 
6 30.001    9.40964 9.09982 8.67493 8.53092 
7 39.999    9.55658 9.49414 8.7424  8.71379 
8 50.011    9.90966 9.91632 8.90243 8.90543 
9 60.046  10.34882 10.35492 9.09756 9.10024 
10 70.052  10.80894 10.79858 9.2976  9.29315 
11 80.059  11.27654 11.23944 9.49658 9.48095 
12 90.105  11.73602 11.67076 9.68813 9.66115 
13 100.12  12.1494 12.08298 9.85727 9.83029 
14 110.13  12.54018 12.473  10.01455 9.98769 
15 120.13  12.88962 12.8384 10.15312       10.13293 
16 130.12  13.21522 13.17852 10.28056       10.26627 
17 140.19  13.50796 13.49652 10.3938         10.3894 
18 150.2  13.78836 13.78898 10.50112       10.50136 
19 160.21  14.03658 14.05928 10.59522       10.60379 
20 170.21  14.27676 14.30878 10.68548       10.69746 
21 180.22  14.49874 14.53964 10.76824       10.78341 
22 190.23  14.68712 14.7532 10.83796       10.86232 
23 200.24  14.87638 14.95098 10.90757       10.93489 
24 210.24  15.03404 15.13426 10.96522       11.00171 
25 220.25  15.19804 15.30468 11.02486       11.06347 
26 230.25  15.34708 15.4631 11.07879       11.12059 
27 240.26  15.47818 15.6109 11.12601       11.17361 
28 250.26  15.61206 15.74874 11.17402       11.22283 
29 260.27  15.73  15.8778 11.21615       11.26872 
30 270.26  15.80874 15.99844 11.24419       11.31145 
31 280.24  15.9287 16.11154 11.28677       11.35136 
32 290.26  16.06634 16.21826 11.33543       11.38889 
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Complex CuII
6 (15) 

 
MW = 1657 g/mol, χdia = -660 x 10-6 cm3 mol-1

m = 35.32 mg , H = 1.000 T 
 

No 
 

T(K) χ.Texp.     χ.Tcalc.         µexp              µcalc.

 
1 1.922   0.33836 0.0033  1.64501 0.16246 
2 5.19   0.59442 0.1963  2.18035 1.25297 
3 9.991   0.61462 0.4496  2.21709 1.89624 
4 15.013   0.59928 0.5582  2.18924 2.11288 
5 20.005   0.61975 0.6107  2.22633 2.21001 
6 30   0.65456 0.6608  2.28799 2.29887 
7 40.003   0.68417 0.6847  2.33916 2.33916 
8 50.006   0.70997 0.7  2.38286 2.38286 
9 60.03   0.7283 0.71  2.41344 2.41344 
10 70.051   0.74367 0.72  2.43876 2.43876 
11 80.045   0.7599 0.73  2.46523 2.46523 
12 90.082   0.76789 0.74  2.47816 2.47816 
13 100.12   0.77633 0.74  2.49173 2.49173 
14 110.12   0.78415 0.75  2.50426 2.50426 
15 120.14   0.79109 0.76  2.51532 2.51532 
16 130.16   0.7976 0.76  2.52565 2.52565 
17 140.17   0.80391 0.78  2.53561 2.53561 
18 150.13   0.81065 0.79  2.54621 2.54621 
19 160.2   0.81785 0.8  2.55751 2.55751 
20 170.21   0.82507 0.82  2.56877 2.56877 
21 180.22   0.83312 0.83  2.58127 2.58127 
22 190.22   0.8412 0.84  2.59376 2.59376 
23 200.22   0.85044 0.85  2.60796 2.60796 
24 210.23   0.85998 0.86  2.62255 2.62255 
25 220.25   0.87022 0.88  2.63811 2.63811 
26 230.24   0.88141 0.89  2.65503 2.65503 
27 240.25   0.8924 0.9  2.67153 2.67153 
28 250.25   0.90446 0.92  2.68951 2.68951 
29 260.27   0.91742 0.93  2.70871 2.70871 
30 270.25   0.93045 0.944  2.72789 2.72789 
31 280.25   0.94357 0.956  2.74705 2.74705 
32 290.24   0.95801 0.968  2.76799 2.76799 
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Complex NiII
9 (16) 

 
MW = 2347 g/mol, χdia = -990 x 10-6 cm3 mol-1

m = 24.91 mg , H = 1.000 T 
 

No 
 

T(K) χ.Texp.     χ.Tcalc.         µexp              µcalc.

 
1 1.958   0.43884 0.2031  1.87341 1.27448 
2 5.116   0.55179 0.62  2.10071 2.22677 
3 10.168   0.69449 0.83  2.35674 2.57643 
4 15.043   0.88835 0.99  2.66546 2.81382 
5 20.005   1.09873 1.17  2.96432 3.05895 
6 30.002   1.49451 1.51  3.45723 3.4751 
7 40.003   1.83462 1.83  3.83048 3.82565 
8 50.005   2.1308 2.11  4.12811 4.10791 
9 60.038   2.38751 2.37  4.3697  4.35365 
10 70.053   2.61174 2.6  4.5703  4.56001 
11 80.065   2.81625 2.808  4.74586 4.7389 
12 90.087   2.99803 2.9972  4.89663 4.89595 
13 100.13   3.16516 3.168  5.03127 5.03352 
14 110.1   3.31166 3.32  5.14639 5.15286 
15 120.14   3.45017 3.46  5.2529  5.26038 
16 130.17   3.57094 3.58  5.34405 5.35083 
17 140.18   3.68455 3.699  5.4284  5.43903 
18 150.18   3.78576 3.8  5.50244 5.51279 
19 160.2   3.88302 3.89  5.57268 5.57769 
20 170.21   3.96987 3.98  5.63466 5.64184 
21 180.22   4.04943 4.06  5.69084 5.69826 
22 190.24   4.12616 4.13  5.7445  5.74718 
23 200.24   4.19321 4.2  5.79099 5.79568 
24 210.16   4.25886 4.26  5.83615 5.83693 
25 220.24   4.32103 4.32  5.87859 5.87789 
26 230.26   4.37688 4.37  5.91646 5.91181 
27 240.26   4.43332 4.42  5.95448 5.94553 
28 250.25   4.48225 4.47  5.98725 5.97906 
29 260.27   4.52742 4.514  6.01734 6.00842 
30 270.26   4.57264 4.56  6.04732 6.03896 
31 280.26   4.61571 4.59  6.07573 6.05879 
32 290.26   4.66497 4.63  6.10807 6.08513 
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Complex CuII
9 (17) 

 
MW = 2595 g/mol, χdia = -1260 x 10-6 cm3 mol-1

m = 22.53 mg , H = 1.000 T 
 

No 
 

T(K) χ.Texp.     χ.Tcalc.         µexp              µcalc.

 
1 2   0.90783 0.84  2.69452 2.5919 
2 5   1.13652 1.222  3.01487 3.12619 
3 10   1.32429 1.3644  3.2544  3.30332 
4 15   1.40389 1.408  3.35078 3.35568 
5 20   1.43277 1.423  3.38507 3.37351 
6 30   1.43319 1.4189  3.38557 3.36865 
7 40   1.41523 1.4016  3.36429 3.34805 
8 50   1.40297 1.3875  3.34968 3.33116 
9 60.04   1.4014 1.3835  3.34781 3.32636 
10 70.05   1.40066 1.3921  3.34692 3.33668 
11 80.06   1.41961 1.414  3.36949 3.36282 
12 90.09   1.45108 1.4482  3.40663 3.40325 
13 100.09   1.49328 1.4928  3.45581 3.45526 
14 110.16   1.54608 1.5462  3.51638 3.51651 
15 120.14   1.60616 1.6057  3.58405 3.58353 
16 130.16   1.66997 1.6701  3.65455 3.65469 
17 140.13   1.739  1.7372  3.72932 3.72739 
18 150.19   1.8095 1.8068  3.80416 3.80132 
19 160.19   1.88111 1.8767  3.8787  3.87415 
20 170.2   1.95163 1.9467  3.95074 3.94574 
21 180.21   2.02169 2.016  4.02102 4.01536 
22 190.23   2.09067 2.084  4.08905 4.08252 
23 200.24   2.15602 2.1567  4.15246 4.15312 
24 210.24   2.22219 2.2153  4.2157  4.20916 
25 220.25   2.28414 2.2781  4.27406 4.26841 
26 230.24   2.33785 2.3387  4.32402 4.32481 
27 240.24   2.39403 2.3971  4.37567 4.37847 
28 250.25   2.44631 2.4535  4.42319 4.42968 
29 260.26   2.4959 2.5  4.46779 4.47146 
30 270.27   2.54654 2.55  4.51289 4.51595 
31 280.26   2.59664 2.609  4.55707 4.5679 
32 290.26   2.65603 2.6575  4.60889 4.61016 
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